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PREFACE.

Ix the * Principles of Hydrostatics,” published a
few months ago, I dwelt in detail on the phenomena
which oceur in considering the mechanical properties of
fluids, and on the principles to which they lead, and 1
illustrated those principles by their applications in various
machines. In the present treatise, which may be con-
sidered as a mathematical supplement to the former,
taking these principles as established, I have endeavoured
to develope them by the application of the Caleulus.
The two will, I hope, be found to contain the inductive
and deductive reasoning which belongs to that depart-
ment of natural philosophy of which they profess to
treat.

The present treatise is compiled principally from
the writings of Poisson and Challis, the well-known
work of the former having furnished most of the pro-
positions in the equilibrium, as the various papers of
the latter have done those in the motion, of fluids;
and T have endeavoured to bring before the student
what has hitherto been done in this department of science,
and to point out the difficulties which present themselves
to its further progress. These difficulties are purely
mathematical, and T venture to hope, that when it is
fully understood that this science and that of Light are
at a stand because of the imperfect state of our analysis,
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some vigorous efforts will be made by those who have
time and talents for this pursuit, to remove this barrier,
and to place these sciences in the same rank, as in-
ductive and deductive sciences, with that of Gravitation.
Much has been done in the last few years, much is
almost within our grasp, but much still remains to be
done.

The importance of the theory of fluid motion in the
present state of science is very great; for the physical
and mathematical phenomena of this department present
many suggestions in the theories of Light and Heat:
thus the way in which the crests of one set of waves
in water may be superposed over the hollows of another,
producing a level instead of an undulated surface, is
strikingly analogous to the interference of the vibrations
of two musical strings producing a momentary silence,
of two waves of light producing absolute darkness; a
complete theory of the one may be the means of leading
to a complete theory of the others, and all will advance
contemporaneously.

The obligations of this treatise to the published
papers of Professor Challis are, as I have stated, con-
siderable; but T am also deeply indebted to him for
the assistance which he has afforded me on every occasion
of difficulty throughout this work. When I commenced
it, many points appeared to me involved in difficulty,
and incapable of being explained in an elementary and
distinet manner; the reverse is now however the case,
as I hope the following pages, and especially Capillary
Attraction, (which subject I had considered as hopeless,
until he furnished me with the very simple and elementary
propositions here given). will testify.
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CHAPTER L

ON THE GENERAL PROPERTIES OF FLUIDS.

1. A Frump um}'-hc defined to be a collection of
particles which can be moved amongst each other in every
direction by any assignable force.

This definition will express the conception of a fluid
mass as consisting of a collection of particles which have
a connection with each other very different from the con-
nection which subsists between the particles of a solid;
and also, that while the particles yield to the least pres-
sure, they yet require the exertion of some force to disturb
their equilibrium, that is, to change their relative position,
or the state of rest in which they exist. Hence it follows,

that,

2. .Pror. A fluid may be divided in any direction.

For the obstacle which prevents the division of a solid
mass in any direction, namely, the cohesion of its particles,
does not exist here: hence a collection of particles con-
stituting a fluid, may be considered as capable of division
in any direction.

3. Any small or elementary portion of a fluid mass
may be considered as consisting of a very great number
of constituent particles; and into whatever elementary por-
tions we conceive the fluid to be divided, the conditions
for the equilibrium and motion of the whole fluid, and of
this elementary portion, will be precisely the same, so long
as both retain their fluid character.

A



- THE GENERAL PROPERTIES 0OF FLUIDS.

4. In treating of the equilibrium of fluids, the trans-
mission of pressure is the contradistinguishing property
* between thew and solids. A fluid transmits pressure in all
directions, a solid only in one, namely, in the direction in
which the pressure is exerted.

This characteristic property is involved in our con-
ception of a fluid mass subjected to pressure and remaining
in equilibrium ; it may be considered as the necessary con-
sequence of the application of pressure to such a collection
of particles as constitute a fluid. For all the particles
being equally free to move in all directions, if any number
of these particles, that is, any portion of the fluid be sub-
jected to pressure, the particles so acted on will be 1mme-
diately put in motion, unless the action be counterbalanced
by the action of the contiguous particles: this mutual
action will extend throughout the whole fluid mass, that
is, there will be a pressure transmitted in every direction.
Hence it follows, that,

5. Pror. The transmitied action is equal fo the
original action.

The action or pressure which is transmitted will be
transferred to every point of the containing surface. At
JAany point in the containing surface, the transmitted action
will be balanced by the reaction of the surface. We have
then two forces of precisely the same kind impressed on
the fluid, namely, the original action and the reaction of
the surface. Now this reaction, whatever be its magnitude,
will, since it is a pressure impressed on a fluid, give rise to
a transmitted action in all directions; and at the point at
which the original action is impressed, the original action
becomes the reaction; for to suppose it either greater or
less, involves an absurdity. The original action then and
the reaction at any point being thus convertible and equal,
and the reaction being, by the general law of the equality
of action and reaction, equal to the transmitted action, the
transmitted action is also equal to the original action.
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Hence a pressure exerted on a fluid is transmitted
equally in all directions; thus fluids press in all direc-
tions, they also press equally in all directions.

6. The preceding is also true for fluids whose parti-
cles have sensible tenacity or viscidity, the only difference
being, that the pressure is not transmitted in all directions
with the same velocity with which it is transmitted in the
direction of the impressed action. This deviation is how-
ever only instantaneous, and when the equilibrium is estab-|
lished the equality of pressure obtains.

7. The action exerted on any portion of a fluid evi-
dently depends on the number of particles which are acted
on, that is, the pressure is proportional to the area pressed.

An area is measured by the number of units of area
which it contains, or by the relation which it bears to that
unit of area; hence the pressure at any point is most con-
veniently measured by the pressure which is or would be
exerted on a unit of area situated at that point. The quan-
tity (p) is the symbol used to denote the pressure so re-
ferred to a unit of area, and it is called the unit of pres-
sure, and must be carefully distinguished from the pressure
which is actually exerted on any portion of the surface.
The quantity p does not represent any pressure actually
produced by the fluid, but that which would be produced
if the pressure at the point under consideration were uni-
formly applied to a unit of area.

When the pressure at any point in a fluid is simply the
transmitted action from some pressure exerted upon it as
at its surface, the pressure p will be the same at Ever}'l
point.

But when, as is generally the case, the impressed forces
are different for every point, p will vary from one point
to another, that is, it will be a function of @, ¥, =, the co-
ordinates of the point; and the determination of it for
different impressed forces is the object of the following
pages.
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4 THE GENERAIL PROPERTIES OF FLUIDS.

The pressure exerted on any small elementary area (w)
is represented by pw; for we may conceive the unit of
area sustaining throughout its extent the same pressure as
this element; thus @ being the area of this element, the
product pew will be pressure upon it.

In elastic fluids the pressure bears a constant ratio to
the IIE!'I'IS_].-I}'.,, the temperature being constant. This ratio is
generally expressed by the quantity &, which depends on
the nature and temperature of the fluid, being constant for
the same fluid at the same temperature. TIf p be the density
of the fluid, we have the equation p = kp. The pressure
1s in this case the measure of the elastic force of the fluid,
and the same equation subsists.

8. Pror. _dny forces being in equilibrium on a

Swid, the equation of virtual velocities holds.

A fluid may be considered as a machine which pos-
sesses the property of transmitting equally in all directions
the pressures to which it is subjected, hence the general
conditions of equilibrium which apply to all other machines
must be expected to apply here also; and it will be found
that the equation of virtual velocities is true for a fluid in
equilibrium, and subjected to pressure.

Now in the general proof of this principle, the absence

‘of all change in the tensions or resistances of the parts of

the system, is the supposition on which the whole demon-
stration rests, and the analogous supposition in a system
of fluid particles is, that the volume of the fluid is invari-
able; for if the fluid change in volume, the mutual relation

and dependence of the points of the system do not remain
unaltered.

Let any forces P, P, P",...applied to pistons whose
areas are a, @, a,...be in equilibrium on a fluid mass.

Let the points of application of the forces suffer a

displacement, that is, let the pistons be moved through
spaces h, &', h",..
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Then the new position is to be one of equilibrium,
hence we must have as before the displacement,

P=pa, P=pd, P’'=pd, ke......(1).

Also the volume of the fluid must be the same as
before the displacement, or we must have

ah+ah +a'h' +...=0.......(2).

These two conditions obtaining, multiplying (2) by
p and substituting from (1), we have

Ph PR PR =0 (3);

which is the general equation of virtual velocities.

Thus the principle is true for all fluids compressible)w, <~k il
or incompressible by virtue of the equation (2), which is Mwas il
the condition of the system. If this condition do not
obtain, the fluid mass is no longer the same machine,
being a collection of particles related by different inter-
nal forces.

9. The equation of virtual velocities, expresses the
relation which may subsist between the external forees
which act on a machine, independent of the internal forces
or pressures. Assuming then this equation as a general
truth, it may be worth while to apply it to a fluid.

Let P, P, P",...be the forces which are in equilibrium
on a fluid, and &, &', A",...the virtual velocities of the points
of application of the forces, then,

PRIE PR L PR G om0 (1).

But the equations of condition are in this case reduced to
one, namely, the invariability of the volume of the fluid,
which is expressed by the condition

af-ball faihti =0 e (2);

where a, @'y ' are the areas of the pistons by which the
forces are impressed, or they may be considered as express-
ing the points which suffer displacement.






CHAPTER IL.

ON THE GENERAL EQUATION OF THE EQUILIBRIUM
0OF FLUIDS.

10. Proe. 7o find the condition of equilibrium
of a fluid mass, every particle of which is acted on
by given forces.

Let AB (Fig. 1.) represent any fluid mass in equili-
brium, and let it be referred to rectangular co-ordinates

whose origin is 0. Let the plane of @y be horizontal, ¢

and the axis of » vertical ; and let @, y, & be the co-ordi-
nates of any point P in the interior of the mass.

Let any elementary parallelopiped PQ of the fluid be
taken whose edges are dw, dy, d=, then, if dM be the
mass of this element and p its density,

dﬂrf:P dax dy dz.

Let the impressed forces be resolved in the direction
of the co-ordinate axes, and let X, Y, Z be the accele-
rating force in the directions of @, v, %, respectively, at
the point P. Then XdM, YdM, ZdM, are the moving
forces on the element d M in the direction of the axes. :

The mass d M is then pressed from without to within,
on its six faces, by the surrounding fluid, and equilibrium
must subsist between the internal forces and the external

PI'E.":-LE'IJTEE.

The pressure on the upper face of the element is

dwat il M

pdady, (Att. 7.). But p is an unknown function of 1143 &, hewe

@, y, &, hence for the under face of the element, the co-
ordinates of a point in which are @, y, ~+d=, p will

- l-i-\{-p i.'_
I{M"‘ i l-i‘i;‘?t‘j

h-#"lii.:“{ ﬁmt

————— o L

SN ; tx‘ "’ﬁ‘""l“""r

Jﬁ*‘_";h‘ |LJ¢.I 3



8 THE GENERAL EQUATION

become p + ?;f .dxz. The pressure therefore on.the under
dp .

face = (p + G dx)dady, and the difference of the pres-
d=z

sures on the upper and under face is

dp dp
(;}-{-T{'I:}dx dy — pdady = Ei da dydz.
The element d M is therefore pressed upwards by this
force, and that it may move neither upwards nor down-
wards, but may remain in equilibrium, we must have

#

3—3 dedydz = ZdM.

But dM&sdr dy dx; when therefore there is equi-
librium, we
d dp
Z.
dz P

Similary, if q, # be the pressures referred to a unit
of area on the other faces, we have for the faces parallel
to #x and yx respectively,

j_;_PY and _—F‘Y

If the element d M were solid, there would be no neces-
sary connection between the unit of pressure on the faces
which are not parallel, but the element might be in equi-
librium if the pairs of forces on any two parallel faces
were in equilibrium; but the element being a fluid element,
and consisting of an indefinite number of fluid particles,
it transmits the pressure on any one face to all the others,
and the equilibrium cannot subsist unless p = g = r; the
three preceding equations become therefore

dp dp dp
s NP g ST e S P L
To=pX Pl R Z......()

which are the general conditions of fluid equilibrium.
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Multi p!_',- these respectively by dw, dy, dx, adding and
observing, that since p is a function of a, ¥, 2, its complete
differential is

d dp d
dp*—Erh‘r!v L P

a dy dz

we have, whenever there is equilibrium,

dp=p(Xda + Ydy + Zdz)......... (2),
which is the general condition required, and from which
the pressure at any point may be obtained.

11. 1In the preceding investigation we ﬂ'llﬁ'ilt in strict
accuracy, to have taken notice of the moving t’mu: of the

fluid contained in the element, which must be added to the

transmitted pressure. If then ~ be the pressure due to
this force which is exerted on the face dydz, we should

have p dydzx + ~ for the whole pressure which takes place |

from within to without, or from the right to the left on this
same face.

Now the pressure arising from the surrounding fluid,
and exerted from without to within, that is, from the left to
the right on this face dydx, has been represented by
rdyds: this force is the resistance which the surrounding
fluid opposes to the pressure transmitted from the interior,
that is, to pdydz + ~ 3 hence we must have

rdyds =pdydz + .

But notwithstanding ~ being unknown, we are certain ?u

that it must be a very small quantity of the third order,

and may therefore be omitted in comparison with pdydx; pumes 4

whence r =p, also g=p. The same conclusion would
have been arrived at, if the element d M, instead of being
taken rectangular, had been any polyhedron, indefinitely
small in all its dimensions, and it had been shewn that the
external pressure exerted perpendicularly on all its faces
by the surrounding fluid, is proportional to their respec-
tive areas, and independent of the moving force of the

polyhedron.
B

.(J--"'?

A "...&...._r

n..ﬂ«"’
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12. The conditions of equilibrium which we have
obtained, require that p should be a function of @, ¥, =,
such as will satisfy the three equations (1) at once, or
satisfy (2). Hence, that the value of p may be possible,
the product of p and Xdw + Ydy + Zdx must be a com-
plete differential of some function of the three independent
variables @, y, ». Conversely, when this product is a
complete differential of a function of these variables, the
value of p can be found by integration, and the three
equations (1) will be satisfied. This then being the case,

we have
p=Jp(Xdv + Ydy + Zd3)......(3).

This integral may be taken with regard to any series of
consecutive values of @, y, .  Hence, the integral taken
with regard to any such series of values, or in other words,
the pressure of every line of fluid particles or canal leading
to the same point, is the same; this was assumed by
Newton as the basis of the theory of the equilibrium of
fluids, and would lead at once to the preceding conditions.

The principle that we may integrate in regard to any
line whatever of fluid particles drawn from the point to
the free parts of the fluid admits of some important appli-
cations, as will be seen hereafter.

18. That the equilibrium may subsist, we must have
p(Xda + Ydy + Zdx)
a complete differential, which it is when
la!._P_il_r=rf_.|r}._lf d"‘]ﬂr:d.fﬁg‘ H*P}T='§_-P£‘:
dy de ' ds do = d= dy
dX dp dY dp
b ol A e g L ad i
o de+ dy 'pd:u+ da
d X dp dZ dp
el S ) AR ol MO £
Pz Phis= e P da i da’
o 1Z d
Y P o e

P}E it dx i dy dy ?

- . 2 e Jf-%%; *”""%*-JJL

[ |

A Jr | I_ r'.l'ill o ‘Jt-;!“"ﬂ k
Y=t A N —ul—
| g \ :
F A G ant, # JPRY, LA .

i} Rar
pfird g/ ST

L O taaih

%n’-?
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multiplying by Z, — ¥, X, respectively, and adding,
r ‘:Y' . FJ | % . 7
(d {E_}’J+ (d/ dX Y(dj:_d_?.)=ﬂ.

T AL T ST
trfﬁﬂa wallT R,

Whenever then such a relation subsists between the
forces that this condition is satisfied, the mass of fluid
subject to these forces will be in equilibrium. If the

fluid be homogeneous or incompressible, p is constant, and -

the conditions become

dX dY dX dZ dY dZ
dy de’ ds  da’ dz dy’

14. The prec:eding conditions are satisfied whenever
the impressed forces are some function of the distance
from fixed or moveable centres.

Let P be the law of foree, and let it be directed to a
centre whose co-ordinates are a, b, ¢, and r its distance
from the point @, y, & Then

r—a y—b B =0

_-'Y=P. 5 Y:P.--—', Z=P‘—-__.‘
r r .

and +* = (v —a)* + (y — b)" + (x —¢)*;
dX dP dr z-a o B0 dr

then — = —.—. .—
N dy dr dy ~r ¥ dy

i

dP F—-I’i @ - u.__P x = y—0b

5 o

dr  r  ® s TR TR
b dP P {.1.‘ = ﬂ.) (yr - b)
3 dr T * ;
s {‘“—’ P}(-T—M(y“b}
imilarly, — ={—-—t—5 ——
d dr T r

the same quantity ; therefore,

L
dy d.v

s &
- - 3.
| v E L LB Bt .._.-l- i # ‘;.,,-' o b P I

SRR

—
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And the same is the case with the other two terms, or
the equation of condition becomes identically null, and
therefore is satisfied for all laws of force which are a
function of the distance. Hence, the laws of gravity and
of centrifugal force are evidently such as may produce
equilibrium, the one varying as the inverse square, and
the other as the direct distance.

15. Pror. To find the equation to the surface of
a free fluid, and fo a surface of equal pressure.

Substituting the co-ordinates of any point in the surface
for @, y, #, in the value of p (3), we obtain the pressure
which is exerted at this point on the side of the containing
vessel ; this pressure will always be destroyed by the re-
action of the vessel, provided it be fixed and capable of
sustaining it.  But in those places where the vessel is
open, or where the fluid is entirely free, there is no sur-
face whose reaction can destroy the pressure p, conse-
quently we must have this equal to nothing for all the
points of the free surface of a fluid in equilibrium ; whence

Adx + Ydy + Zdx=0.........(4),

is the differential equation to that surface. This equa-
tion subsists also if & constant pressure be exerted at the
free surface of the fluid.

For at all the points where the pressure is constant,
dp = 0; hence, the preceding equation obtains for a sur-
face subject to a constant pressure.

Also, if there be any series of points in the interior at
which the pressure is constant, for all these points we have
the same condition; hence (1) is the equation to a surface
of equal pressure.

If the pressure vary from one point to another at the
free surface of a fluid, and the pressure referred to a unit
of surface at any point @, y, 2, be represented by £ (a, y, 2),
the value of p obtained from (4) would coincide for all
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points on the free surface with this given function; hence
the differential equation of the surface would give

p(Xda + Ydy + Zdz) =d. f(x, y, 2).

In the following articles the external pressure is always i
supposed either tmthing or constant at all points of the
surface of a fluid in equilibrium. t

The pressure p being proportional to the density in
elastic fluids, it follows, that the pressure can never be

nothing in an elastic fluid, unless the density also be ¢ AP 4
- g " = = ‘_ "‘l‘lql‘_{ {.ftl.- 1
nothing, that is, so long as the fluid exists and it has not ,  _ 2%, o
lost by cold all its elastic force. e J.
fﬂ_—ht.&'c.."' ? & Lot

An elastic fluid, then, cannot be in equilibrium, unless 2./ }*’-’”’“"‘“"
it is contained in a close vessel or acted upon at every €y - 2« ‘*ﬁ:”/“‘ﬁl
point of its surface by pressures from without to within.  (0£ Wr‘:ﬁna‘}.m
Mannrief JE2 o
16. Pror. The resultant of the forces is perpen- _y
dicular to the surface at all surfaces of equal pressure.

At all surfaces of equal pressure
Xdw + Ydy + Zdz =0,

If now any curve be traced on this surface, and ds be |
the differential element of the curve, the cosines of the
angle which the tangent line at any point @, y, #, makes
with the axes of @, y, %, are respectively,

dae dy dx
ds’ ds’ ds’
Also, the cosines of the angles which the resultant R of
the forces X, ¥, Z makes with the axes @, y, x, are
respectively, since R =+/X* + ¥* 1 Z2,
X B
KL iR R
Hence, dividing the preceding equation by Rds, it becomes
X do . ¥ dy " Z.ds

r-—-—r-—+|_|_

X e )
R ds R dx+R s
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Let a, (3, ~ be the angles which the tangent line
makes with the axis, and «, (3, - the angles which the
resultant 22 makes with the axis, then this equation
becomes,

cosa.cosa + cos3.cos 3 + cosy . cosey' =0

which is the condition that two lines should be at right
angles to each other.

Hence, the resultant R is perpendicular to the tan-
gent line, that is, it is a normal to the surface.

This force will in general act from without to within,
but when the external pressure 1s not equal to zero, it
may be directed from within to without.

17. Pror. o find the equation to a level surface.

Definition. The bounding surface of a free fluid,
under whatever circumstances the equilibrium takes
place, is a level surface; thus, in some cases, this surface
may be ellipsoidal ; in others, as in the figure of the earth,
it will be spheroidal, or very nearly spherical ; and, ana-
lytically speaking, any surfaces which possess the same
properties as a bounding surface, that is, all surfaces of
equal pressure are levels or level surfaces.

If we integrate the differential equation to a surface
of equal pressure, and give to the arbitrary constant con-
tained in the integral any particular values, the resulting
equation will belong to as many surfaces as there are par-
ticular values, each of which will have the same differential
equation ; and, consequently, will possess the properties of
equal pressure at all its points, and of being at right angles
to the resultant of the forces X, ¥, Z.

Those surfaces which are in the interior of the fluid,
as determined by the value of the arbitrary constant, that
is to say, those series of points within the fluid which are
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included in the integrated equation, some value being as-
signed to the arbitrary constant, are level surfaces or levels,
for they are surfaces of equal pressure.

If the constant vary by very small quantities, the fluid
mass is divided into a number of successive layers, or
strata, each of which is (:ﬂtl!pl‘ised between levels: hence
they are called level strata.

The value of the constant which belongs to the surface
depends in each case on the given volume of the fluid, so

that the external pressure lms no mﬂuence on the form of |
equilibrium.  The equilibrium will not be disturbed by

supposing any part to become solid, hence any constant
normal pressures exerted from without to within on all
the elements of the surface of a solid or fluid body are
destroyed and cannot impress on the body any motion
either of translation or of rotation. This equilibrium
between the external pressures results from the character-
istic property of fluids of transmission in all directions of
all pressures exerted on their surface.

18. Let us now suppose the fluid which is in equili-
brium to be homogeneous, and of uniform density and
temperature throughout. The quantity p then being con-
stant, we must have Xda + Ydy + Zdx an exact differ-
ential of the three independent variables; for this is a
necessary condition of the equilibrium, and without it the
equilibrium cannot take place, whatever form is given to
the fluid mass.

Now the condition of integrability is always fulfilled in
all those forces which exist in nature, namely, attractions
and repulsions ; the intensities of which vary as some fune-
tion of the distance of the centres from which they proceed,
(Art. 14). The equilibrium then of a homogeneous liquid
subject to these forces is always possible, and that it
may really take place, we must give to the fluid a form
such that every point of its surface may cut at right angles
the resultant of the attractive and repulsive forces.

e

e ——— e m.



16 THE GEWNERAL EQUATION

19. Pror. The external surface and all internal
surfaces of equal pressure ave surfaces of equal density.

Let the fluid be acted on by forces which are some
function of the distance, that is, let Xda + Ydy+Zdz be a
complete differential dg. Then the equation (2) becomes

dp = pdq.

That this may subsist when p is variable, we must
have the density some funetion of ¢; and conversely, when
this condition is fulfilled there is always a value of p
which satisfies the equation of equilibrium.

Let p = (g), then integrating and taking ¢ for the

value of ¢ at the external surface, *L %osfoce fu wbf o g

p = (g) = (4)-
Now this value of p must be the same whatever point

on the surface is taken, that is, we must have v (¢") con-
stant for all points on the surface; hence, at the external

surface p also is constant, or the external surface is a
surface of equal density.

Since \l (¢) is constant, we have ¢ some function of p;
hence p is constant where p is constant; or surfaces of equal
pressure are also surfaces of equal density.

If the fluid be homogencous, that is, if p be constant
it is no longer a function of ¢; and the preceding condition
that p is the same where p is the same, does not hold.

When the fluid is incompressible, p may be any fune-

tion whatever continuous or discontinuous of the quantit}r

q; when this is given, we may obtain the value of p as a
function of p by integration.

20. Pror. In an elastic fluid, surfaces of equal
pressure arve surfaces of equal temperature.

In an elastic fluid the density is connected with the
pressure by a constant relation, and cannot be arbitrarily

. |
1
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assigned as in a homugeneuus or heterogeneous fluid. The 5 ¢
e, -
relation betwixt them is expressed by the equation p = k 'k 5 P e
hence, dividing dp = pdg, we have 4 My
s g F P q’ L-h"\"l--i:'f l‘.‘;i.nh-'{_, }n - Jl'“-'. & II}-R-_,--L*'*:"I M{ ol 7]
dp dq il I-'l r’ N :I‘I = .'"__. :,':"_-' .-:-. e _J"':J.J
R e P!F!F-F-Ili-(:‘-.)"‘ fl'? """f v, -II, -.rl"" J
P ke v ; et

If the temperature be constant, k is constant, whence

9 .~
lﬁg;u = E 4+ i
Let p' be the value of p when ¢ = 0, then log E = %,
p'
L ;.l;" 1
“p=p e and p= T Ba e L6

If the temperature varies from one point to another,
J¢ will not be constant, and it must be some arbitrary
function of q. The temperature will also be a funection
of g, consequently the temperature must be constant
throughout each surface of equal pressure of an elastic
fluid in equilibrium. Hence, all levels are of equal tem-
perature, and consequently strata of equal pressure are
also strata of uniform temperature.

This condition being included, we must replace equa-
tions (6) by

g L
P:p"f"rk aml F=% Ty {T}

21. When the mass ABCD (Fig. 1) is composed of
many different gases, the conditions of equilibrium may
be fufilled in two different ways: when the gases are per-
fectly mixed so as to form a homogeneous mass, and when
they are superposed in strata so that the bounding surfaces
are levels. The former is the case with the atmosphere,
which is found to consist of the same component gases at
all heights. This state of perfect mixture is that in which

—"".1-'1 {fng-"":-t F‘-\.'\- C .8
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CHAPTER III.

ON THE APPLICATION OF THE PRECEDING THEORY.

22, Pror. A4 mass of fluid subjected to a constant
pressure at its surface, is acted on by a force varying
inversely as the squarve of the distance from a fived
centre ; required the form of equilibrium and the pressure
at any point. i

Let this fixed centre be taken as the origin of co-
ordinates, let u be the intensity of the force at distance

unity from the fixed centre, then "iu will be its intensity
=

at a distance »; resolving it into the direction of the axes
of co-ordinates, if @, y, # be the co-ordinates of the point i
acted on, |

X =

= | =

:-F= ,Z:

%l E
= |

b 1 )

S| ®

Lt
5
The equation to the surface of the fluid (Art. 15) becomes

adw + ydy + xdz = 0; + |

which integrated, gives a*+y*+2*=¢ or r =a constant;
that is, the surface is spherical, and the centre of the fluid
mass is at the fixed centre of force.

Again, supposing the forces to tend fo this fixed centre,

nw wde +ydy + zd=z updr T r
'-'IP g FF' ”___r 3t T e | "‘“"""}%
o fr :
A F  — _j:". + { y -
i S g g o !."- st 57 j;ﬂ. - L
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20 THE APPLICATION OF

At the surface of the sphere p has a constant value;
let p, be this value of p when r=a;

" P]=L;+C;

and subtracting from the preceding

I 1
L *#F{;-—}-

fr

If the force tend from the fixed centre, that is, if it
be repulsive instead of attractive, we have only to change
the sign of u in this equation, and

1 1
el (4 a5l Tt E
r [

Suppose this fixed centre to be replaced by a sphere
which acts on all the points of the fluid with a force varying
as the inverse square of the distance from its centre. Let
b be the radius of this sphere. The value of p then
would be given by the preceding equation for the points
included between r» =5 and r = a.

If the sphere were repulsive, the least value of p
would be that corresponding to = =5, namely,

1 1
P=pP—npnp {E a:} -

If this expression become negative, the fluid will be
detached from the solid sphere and be dispersed in space.
Hence we must have p,, that is the external pressure,

Yo han E:--ﬁ .
greater t Iy —

In general it is necessary, in the equilibrium of a fluid,
that p have a positive value throughout the whole of the
mass, so that the contiguous particles may everywhere be
sustained one against the other, and the fluid be not sepa-
rated. For wherever p becomes negative, it indicates a
defect of continuity in the fluid. J

ety Y e [ppdinns pho Lowsg ;] N
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When the radius is large, the attractive forces directed

towards the centre of the sphere may be considered to have _

their directions parallel ; the surface of the fluid will then
be plane and perpendicular to the direction of this fluid
for a considerable cxtcnt

This is the case of the equilibrium of a heavy liquid, *
which we shall consider in the subsequent chapter.

23. When then a mass of fluid subject to a central
force which varies as the inverse square of the distance
from a fixed centre, is in equilibrium, it will consist of

spherical layers concentric with this centre, and the re-

sultant of the forces will be in the direction of the radius.
If it be a heterogeneous liquid, it is a necessary condition
of the equilibrium, that the mass be formed of spherical
and concentric layers in which the density is constant
throughout the same layer, but varies in any arbitrary
manner from one layer to another. In the same manner,
if any number of heavy liquids are contained in a vessel,
it is a necessary condition of the equilibrium that each
horizontal and indefinitely small slice contain only one
fluid; and this condition will be fulfilled if the upper
surface, which we suppose submitted to a constant pressure,
and the surfaces which separate two consecutive liquids,
are all p[:me and horizontal.

S e

densities nf' tim auperposed llqun:i‘s decrease frnm the lower
to the upper liquid, so that the centre of gravity of this
system of heavy bodies may be the lowest possible.

24. Pror. The atmosphere can never be in equi-
libriwm.

LA
L r o i

The centrifugal force and deviation from a spherical
form of the earth being disregarded, the weight of the €n.. 2D

particles of air is directed towards the centre of the earth,
and the level strata are spherical and concentric. In order
therefore that the atmosphere may be in equilibrium, the

'y =
i J"__..

T Ba
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temperature must be everywhure the same at the same
height above the surface of the earth, and vary enly with
the elevation of successive concentric strata. This, how-
ever, is not the case, for the sun warms unequally dif-
ferent points of the surface of the earth and of the level
strata of the atmosphere. The temperature depending on’
the latitude is sufficient to prevent equilibrium taking
place in the atmosphere, and produces permanent winds,
such as are known to exist near the equator. Moreover,
the condition of equilibrium of the atmospheric strata
cannot give us any information respecting the variation
of temperature in the vertical direction, for the equation (5)
of the preceding chapter subsists, whatever function & be
of g, and consequently whatever be the law of this varia-
tion of temperature.

25. Pror. A mass of fluid revolves about an awis ;
required the form of equilibriwm and pressure at any
point.

If a homogeneous or heterogeneous liquid turns uni-
formly round a fixed axis, the preceding formulse give us

the necessary and sufficient conditions for its preserving
a permanent figure, and moving as a solid.

Let us take the axis of rotation for the axis of %, and
let » be the distance of any point P from this line, then

.l": = r_'L‘x -+ yE_

Let « be the angular velocity, which, since the
motion is uniform, is constant and common for all points
of the fluid mass ; then ra is the absolute or linear velocity
of the point P; and since it will describe a circle whose
radius is 7, the centrifugal force is ra®.

The tendency of this force is te increase 7, and its
components in the direction of the axis of ¥ and y are
y T g Y 2 o
reat. -, and ra’.=; or a’a, and a‘y,
r r

F
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which being added to the forces X, ¥, Z, the general
equation (2) becomes

dp=p (Xdaw + Ydy + Zdz + ’wda + a’ydy)...(a).

The expression within brackets is an exact differential,
namely, the differential of ¢ increased by the differential of

4512- a® (#* + ), or §a'r.

Consequently, the form will be one of permanent equili-
brium ; and if the free surface sustain a constant pressure
throughout, the equation common to this surface, and to
all other level surfaces, is,

Xdo + Ydy + Zdx + o (vdo + ydy) =0...... (b).

In the case of a homogeneous liquid, the free surface
will be determined by the integral of this differential equa-
tion, the arbitrary constant being determined from the
whole volume of the liquid, as we shall see presently.

In the case of a heterogeneous liquid it must be com-
posed of homogeneous strata, the forms of which will also
be determined by the integral of this same equation, and
which differ from the bounding surface only in the value
of the arbitrary constant. :

96. Pror. A mass of liquid in an open vessel and
subject to gravity revolves about a vertical awvis ; required
the form of its surface and the pressure at any point.

Let g be the force of gravity, and let the positive

values of ¥ be measured upwards; let a be the angular
velocity, then X =d'2, YV =d'y, Z=-g, and substitut-
ing in (4), the differential equation to the surface is

alede + ydy— gdz=0;

whence integrating and adding an arbitrary constant,

ol

o
¥=— (*+9) + c;
g
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A - ”'*n ke, which is the equation to a paraboloid; hence the free
Wt urface of the fluid is that of a paraboloid whose axis is

b : -
M4 that of rotation, and whose latus rectum is —.

(2]

To determine the arbitrary constant ¢, let us suppose
the vessel to be a vertical cylinder whose axis coincides
with the axis of ¥ or of rotation.

Let a be its radius, and % the height due to the
absolute velocity aa of the surface, so that a*a® =2g#h,
and consequently

h

¥E=— T'E + C.
-

Let b be the height of the water before the motion
commences, then wa‘b is the whole volume of the liquid
which does not change during the rotation; hence dividing
the paraboloid into infinitely small cylindrical shells having
the axis of # for a common axis, we shall have 2xrdr
for the base, and 2xzrdr for the volume of the eylin-
drical shell, whose radius is 7 and thickness d». The

V.1 fan wbotnd; total volume will then be found by integrating 2wzrdr

katf et dlyid from 7 = 0 to r = a; whence we may conclude, that

ﬂ—j.m....-u.fr ot
T

i |
wa'h = }:E-rrxa-d r, or a’h = EL zrdr.

Now substituting for x its value,

e A
. 287 6% Jerdr = [(5 7 + o) rar
: e8 :
-\.I Ex. Lk "L"'T"r {;l} q%".ﬂ.iﬁ & A
- B i Sy :
e -7}:”.;1" +4er* + C;
'-"":-.r 2
.:_}._rl $ n:"i- = l; : 'Jln a k - : h
o P f ET'dT:%:ﬂ‘+%HH'=%a- (_+c.);
B TOE R el 1 'k ) B [ 2
e I' - G Wls e, o a. ol
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But we have seen that a*b = 2 j:xrdr,

[

‘" Ceo= !:_ _Ehr
: L] L] h
: a'bza'(§+c), orc=b-%h

ke . |
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The equation then of the superior surface of the
liquid is
h
L By S
= p r 4+ x

The least and greatest value of z, are those which cor-
respond to 7 = 0, and r = a, hence calling them %, and 2’
respectively, we have

z,=b-%h, #=b+Lh,
whence it appears that the depression of the fluid at the
axis, and its elevation at the circumference due to the

rotation, are each equal to half the height due to the
velocity of the circumference.

To find the pressure on the side.
Let p=1, then the general equation becomes
dp = o’ (vda + ydy) — gd=,
. p=%at (@ +¢4°) —gx + C.
Now at the part of the surface immediately in contact

with the sides of the vessel, that is at the highest part
of the surface, p=0, and x=b+ 1h;

0= (P +y)—gb+3h)+C,
which subtracted from the preceding gives
p=gib+ih—x}.  E -8y

The pressure on any elementary annulus of the side
of the cylinder will be p x 2wadz. Therefore the whole
pressure on the sides

= ferag {b+Lh—-2}dx
=2rag {b+ih-3zl2+C
which taken between the limits ¥ =b + L A, 2 =0,
= mag (b + 1 k)"

27. When the forces whereof X, ¥, Z, are the com-

ponents, proceed from the attractions of all the points of
D

PR
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the liquid varying as the inverse square of the distance,
or according to other laws, the total values of X, ¥, Z
depend in general on the form of the liquid and its level
surface, and conversely this form depends on the values
of these components. This mutual dependence between
the attractions of the fluid and its figure, renders the
determination of the latter extremely difficult by means
of the equation (). When the liquid is homogeneous,
the problem may be solved for the ordinary laws of at-
traction, that is, of the inverse square of the distance,
by supposing the centrifugal force very small, so that
the form of the fluid differs but little from the spherical
form which it would take if this force were nothing,
that is to say, if the fluid were at rest. 1t may be shewn,
that the form of the fluid is necessarily an oblate spheroid,
the flattening of . which at the poles is determined from
the ratio of the centrifugal force at the equator to the
attraction on the fluid at the same point. The investi-
gation, however, cannot be given here®.

98. There is an essential difference between the level
surfaces traced in the interior of a fluid, subject to the
mutual action of all its points, and those which are de-
scribed in a fluid subject only to extranecous force, that
is to say, which are acted on only by attractions or repul-
sions directed to or from fixed centres, and which are

some functions of the distance.

Let ABCD be the surface of a fluid in equilibrium,
at rest or turning about a fixed axis. Let EFGH be
any level surface, or surface of equal pressure in the
interior, and let B be the resultant of all the forces which
act in any point M of this surface. In both cases this
force will be in the direction of the normal, but in the
cecond case its magnitude and direction not depending
on the action of the points of the fluid, will be perpen-
dicular to the surface EFGH, if the strata of fluid com-

* See Figure of the Earth, Encye. Metrop. or Airy's Tracts.
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prised between the two surfaces be removed, so that after.
this has been removed, the fluid bounded by EFGH will
still be in equilibrium. But in the case of the action
of the points of the system, the force R will depend on
the action both of the internal fluid and of this inter-
mediate stratum. It will change in general in magnitude
and direction when the fluid comprised between ABCD
and EFGH is removed, and the fluid bounded by EFGH
will no longer be in equilibrium, which can only subsist
by the surface becoming perpendicular at each point to
the remaining force. '

The action of the external layer comprised between
EFGH and ABCD, will be nothing on all points in the
interior of the fluid and in the surface EFGH, when
the mass of the fluid is homogeneous and differs but -
little from a sphere, and the points are only acted on
by their mutual attractions, varying as the inverse square
and by the centrifugal force. In fact, all surfaces of level
are similar ellipsoids, and consequently the fluid comprised
between 4BCD and EFGH exerts no action on the fluid
in the interior of EFGH, since the attraction of an
ellipsoidal or spherical shell on a point in the interior
is nothing. -

But this, that the action of a stratum terminated by
level surfaces on the interior of the fluid is equal to
zero, is not a condition of the equilibrium of fluids; for
the forces being such as we have supposed, it is not
zero when the fluid is heterogeneous; from which cause
the surfaces of levels are dissimilar, but still elliptical,
and such that the ellipticity of amy surface EFGH de-
pends on the thickness and constitution of the exterior
layer.

29. Among the different laws of attraction, there 1s
one which does not exist in nature, but possesses some
remarkable properties; this law is that of a mutual action
in the direct ratio of the distance, and the remarkable
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property is that the resultant of the actions of all the
particles of a mass on any point is independent of the
form and constitution of the body, whether homogeneous

or heterogeneous, and the same as if the whole mass were
collected at its centre of gravity.

Let #, y, & be the co-ordinates of an attracted point,

‘rrﬂ y‘r’ ﬁr FERRFA PR EFEEFET AR SRR R R R ﬂtt-ra'ﬂting ......

and u the mass of this second point, r the distance between
them, and ku the accelerating force in the direction from
the first point to the second, where % is a constant. The

components of this force in the directions parallel to the
co-ordinate axes, are

ku (@' — @), ku(y —y)s ku (s - ).
Hence, if X, ¥, Z be the resultants of these attractions,
X =kZIpad' —kaZu,
Y =kZuy - kyZp,
Z=kZnx —kxZu,

the symbol = applying to the whole mass of the attracting
body.

If m be the whole mass of the body, and 2, ¥, #

72
the co-ordinates of its centre of gravity,

Zu=my, Zur' =ma, Epy, =my, Su = mg ,
whence substituting in the preceding,

X = km (2, — 2),
Y =km(y, —y),
Z =km(z, — %),
or the forces are the same as if the whole mass were

collected at its centre of gravity. ‘... ﬂzéd".-.og da N L n(-:'...h.
Substituting these values of X, Y, Z in (b), and

2

: a
making T e, we have,
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(v, —x)da + (y,—y)dy + (¥,—2)dz+e(xda+ydy)=0,
whence integrating and adding an arbitrary constant c,
(x—a)+{y-y)+(z-z)-e(a®+y)=c

This equation is that of the levels of a fluid turning
about an axis %, and attracted by a force varying directly [l
as the distance; we can shew that all the surfaces are con- |

: |
centric, and of the second degree.

If the origin be transferred to their common centre,
that is, to the centre of gravity of the fluid, the terms in-
volving the first powers of x , y,, , must disappear, or

2=0 ¥y=0, z=0;
the equation becomes therefore,
Fr(l-e)(a®+y)=c;

hence the levels are spheroids or hyperboloids, according
as e is less or greater than unity, having in both cases
the same axis, which 1s the axis of rotation.

The volume of the fluid being given, the hyperboloid
is not possible unless the fluid is contained in a vessel, and
then the equation applies only to the free surface of the
fluid. When then e is > 1, the permanent figure of a free
liquid subject to the laws which we have supposed, is
impossible.

If ¢ be <1, all the levels are spheroidal differing ac-
cording to the value of e. To determine the value of this
quantity corresponding to the external surface, we must

f!'ﬂ‘ﬂ'\,/;;

equate the volume of the spheroid, which is EG=6) 0

the given volume of the liquid.

It is remarkable that in this example the law of the

densities of the strata has no influence on the external -

form, and on that of the levels.




CHAPTER IV,

ON THE PRESSURE OF FLUIDS SUBJECT TO GRAVITY.

30. Ix the preceding chapters the conditions of the
equilibrium of a mass of fluid subject to any impressed
forces, have been fully examined; and we have now to
consider the application of these principles where the only
impressed force is gravity, and where different fluids are in
equilibrium with each other.

Pror. To determine the pressure at any point.

Let any vessel (Fig. 3.) having its base 4B on a hori-
zontal plane contain a mass of liquid whose surface is PQ.

If the liquid is at vest, the surface PQ is perpendicular
to the direction of gravity, (Art. 16.), and consequently
horizontal or parallel to the base AB of the vessel, since
for small spaces the directions of gravity may be consi-
dered as parallel.

The equilibrium also of the surface will not be affected
by the application of a constant pressure of any magni-
tude (Art. 15.), and the pressure referred to a unit of
surface being the same throughout each level (Art. 17.)
when a fluid is in equilibrium, the pressure in this case
will be the same throughout each horizontal section of the
liquid mass.

Let the surface of the fluid be taken for the plane
of wy, then the axis of » will coincide with the direction
of gravity.
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Hence in the general equation, (Art. 10.), putting
X=0, Y=0, and Z =g,

we have
d-jj = gpd:’;

whence, if we consider p constant, we have by integration,

p = glﬂ.ﬁ' + C”.-o-n-(l)'

Let the surface be subject to a constant pressure, and
when # = 0 let p = p,, substituting therefore in (1),

py=C3
S P =P1=EPT OF P=gPF +Procenn. (2).

If the surface be subject to no constant pressure, p, or
C=0 and p =gp=.

The equation (2) expresses the pressure on a unit of
surface situated any where in the interior of the liquid,
and it may be observed, that the pressure thus found is
the sum of two pressures, whereof the one (gp¥) is the
weight of the superincumbent column of the fluid, and
varies with every value of z, that is, for every point in
the liquid, being in fact proportional to the depth of the
point; and the other (p;) is the same for every point,
being transmitted equally in all directions throughout the
fluid mass.

31. This latter pressure (p,) being the same at every
point, may, for the sake of simplicity when we are con-
sidering the pressure of the liquid at any point, be omitted,
and the general expression is

p=gp=.

To find the pressure at any point in the base, since
the whole base is at the same depth below the surface.
putting x =k, we have

p=gph

e e
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Let 4 be the area of the base, then the whole pressure
on the base
= p..‘i = gpfi‘d.

But gphd is the weight of a vertical column of the
fluid whose base is 4 and height . Hence, the whole
pressure exerted by the fluid on the horizontal base of any
vessel containing it, is the weight of the superincumbent
column of the fluid.

Thus, the pressure exerted by any liquid on the base
of the containing vessel, is independent of the forms of
those vessels, Hence, if there be any number of vessels
standing on the same horizontal plane and filled to the
same height with the same liquid, the pressure on their
bases if they be equal, or on equal portions of their bases
if they be unequal, must be the same whatever be the
shapes of the containing vessel, and all experiments shew
most distinetly that this is the actual fact.

32. If several liquids be superposed one above an-
other in the same vessel, the only condition requisite for
the equilibrium is that the surface of each fluid must be
a level, (Art. 17.), that is, in this case horizontal. Thus
each fluid will exert a constant pressure on the surface of
the one below it, which will be transmitted to all points
below it, without in any way affecting the equilibrium of
the lower fluids.

33. Pror. To find the pressure at any point in
the bottom of a vessel containing any number of fluids
lying one above the other.

Let P'Q, P"Q", (Fig. 3.) represent the surfaces of
fluids lying above PQ, these surfaces being all horizontal,
are parallel to each other and to the base 4B of the vessel.

Then if A, &', 2", be the thicknesses of the fluids, and
P> P p", their densities, the pressure on the base 4B fmj
the fluid whose surface is PQ, is

p =gph. (Art. 30.)
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The pressure on the surface PQ for the fluid whose
surface is P'Q, is p =gp'h'.

The pressure on the surface P'Q for the fluid whose
surface is P"Q", is p = gp”h”; and so on, whatever be
the number of layers.

The pressure exerted on Q" is transmitted to every
point of PQ; hence, the pressure at any point in PQ is
P = gP”"‘t.;F + glﬂf ﬁ.r.
The pressure exerted on PQ is transmitted to every
point in A B, hence, the pressure at any point in AR is

p=A(gp k" +gp'l') + gph
=g(ph + p'h' + p"h").
Hence, whatever be the number of fluids, we should
e p=2gZ(ph),
the whole pressure on AR, if A be its area =p x 4
=g{ph+ph + ...) 4 or gdZ(ph).

Thus, whatever be the number of the fluids superposed
above each other, the whole pressure which they exert on

the base of the containing fluid depends on the magnitude

of that base, the thickness and density of the different
fluids.

When the vessel is cylindrical and vertical, the whole
pressure is equal to the weight of all the fluids, and the
pressure will not change however the form of the vessel be
changed, provided that the base of the vessel, and the thick-
ness and density of each laver or stratum of fluid are all
invariable.

34. Hence, when the same vessel contains different
fluids, they are superposed in horizontal layers, and the
pressure on the base is the product of its area and the sum
of the thickness of each layer maltiplied by its density.
This result will hold when the thickness of each layer is

E
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indefinitely diminished, that is, when the density of the
fluid mass varies continuously in the vertical direction ;
it is therefore true for compressible fluids. It is equally
true when the weight varies from one stratum to another
with the density, which is the case when the height of the
fluid cannot be neglected, in comparison with the radius
of the earth.

The same conclusion is deduced immediately from the
equation dp = pgdx, which applies to the equilibrium of
all fluids compressible or incompressible, in which we may
suppose that the force of gravity g and the density p are
functions of the vertical ordinate =.

35. We have now to consider the equilibrium of a
liquid contained in several vessels which communicate
with each other, so that the liquid may run from one
to another. If the apertures be all closed at once the
equilibrium will not be disturbed, but the surface of the
liquid in each vessel will be horizontal; this condition is
not, however, sufficient when the orifices are not closed,
and there exists a certain ratio between the elevations
of the liquid in the different vessels and their densities.

The conditions of equilibrium under these circum-
stances are determined in the following propositioris.

36. Pror. When g liquid is in equilibrium in any
system of communicating vessels the surfaces of the liquid
must be on the same level, that is, when the vessels are
near each other, in the same horvizontal plane.

Tet AB, CD, (Fig. 4.) be the bases of two vessels
standing on the same horizontal plane and communicating
with each other, and containing the same liquid.

Let the liquid stand at Pm in one vessel, and at Qn
in the other, which are not in the same horizontal plane,
but let Qn produced meet the other vessel in ab at a
distance h below Pm. ;
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If the equilibrium can exist in this state, it will not
be disturbed by replacing the open section Qn by a fixed |
plane, or by supposing the surface to become rigid. The !
fluid between Pm and ab exerts on ab a pressure which
will be transmitted by the intermediate fluid and impressed |
on the rigid surface Qn. Let K be the area of Qun, then 1
the pressure thus exerted on this surface from below

=pK=gphk.

The pressure upwards then on Qn being gph K, the fluid
cannot be at rest unless this vanishes, which it can only
do by A becoming zero. And the preceding demonstration
is independent of the forms of the containing vessels, which
may be supposed any whatever.

Hence, when the vessels are comtiguous, the surface
of the liquid in each must be in the same horizontal plane.
If the vessels are not contiguous, but at a considerable
distance from each other, the preceding reasoning will
apply, ab and Qn being taken on the same level, for
all level surfaces are surfaces of equal pressure; it will
follow therefore that the equilibrium is not possible unless
Pm and Qn are on the same level.

This proposition is also evidently true for any number
of vessels, for since the surface in any two will be on the
same level, the surface in all must be on the same level.

37. Pror. To determine the condition of equili-
brium of several fluids contained in any communicating
vessels.

Let PQ, PQ,...and PQ, P Q,,... (Fig. 5.) be the
bounding surfaces of several liquids, which are contained
in two vessels which communicate with each other.

Let PQ be the level surface in which the two fluids ISP P
bounded by P’Q and P Q, meet, and let PQ produced in- bls & ft?*a
tersect the other vessel in m#n. Then if a fixed plane ,-{{ Femt. i
be supposed at mn, or if the particles in the surface mn tﬁm‘mi feppennk;

g

s g ——
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become rigid, the transmitted pressure of the liquids super-
posed above PQ will be sustained by the rigidity of this
surface.

Let K be the section of the vessel at mn, and let
psp ...be the densities of the liquid contained between
PQ and PQ, PQ and P’'Q", &c. respectively, and
&'y h"...the thickness of the layers.

Then the transmitted pressure on mn
=pk
=gZ(p k) K. (Art. 33.)

But this upward pressure may be counterbalanced by
strata of liquids superposed above mmn.

Let p, p,...be the density, and 4, &, the thickness
of the successive strata of superposed fluids which effect
this equilibrium, their surfaces being at P.Q , P Q...

Then the pressure on mn = p K
=gZ2 (ph) K,

and the equilibrium will subsist if this equals the pressure
on the under surface, that is, the condition required 1s

E (Prb’:l = E (Plﬁ.r)'
If there are only two fluids the equation becomes
Pph.‘ — f}:;‘f!,

that is, their elevations above the point in which they
meet are inversely as their densities

38. The following method of arriving at the same
condition 1s given on account of the beautiful example
it affords of the application of the principle of Virtual
Velocities.

Let any number of fluids whose surfaces are at P, ...
in one vessel be in equilibrium with the fluids whaose
surfaces are at P, P, in another. (Fig. 5.)
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Let PQ be the horizontal plane in which the two
fluids whose surfaces are at P and P meet.

Then if the fluid is in equilibrium, we may consider
the pressures of the superposed strata as forces impressed
on every particle in the surfaces at P and P, of the fluid
machine. Then if & be the area of PQ, and K of ma,
we have, using the same notation as before,

the impressed force on PQ = pk =gkZ(p' k),
......................... PQ=pK=gKZ(ph).

Now let a small displacement consistent with the con-
ditions of the system be given to the points of the appli-
cation of the forces; that is, let the surface PQ and PQ,
move through the vertical spaces a, — 3, respectively ; then
by the principle of virtual velocities,

gZ(p'h") . ka—gZ(ph) .Kf3=0.

But the system must be invariable, that is, we must
have ka— K3 =0,

whenece 2 (p'h') — Z(p,h) =0,
Z(p'h') = Z(p,h)
If there be but two liquids the condition becomes
fyh
° h = P, ﬁ-;,
or their elevation above the horizontal plane in which
they meet is inversely as their density.
If there is but one liquid, or p’' =p,,
then pr (' =h) =0,
which can only be satisfied if &' =4, or the surfaces

must be in the same level.

39. The general condition at which we have arrived
for the equilibrium of several fluids in a system of com-
municating vessels, is

- P ~
> {p h—} = = {p_fr[},

—

e S
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Either of the columns may be supposed to consist of
indefinitely thin strata, whose density is uniform through-
out the extent of any one stratum, but differing much
from one stratum to another.

Also it is quite immaterial, so far as the actual equi-
librium is concerned, in what order the densities succeed
each other; for if this equation be satisfied, the columns
may be in equilibrium without any reference to the order
of succession of the densities.

Thus a heavier fluid may lie above a lighter, a liquid
above a gas; such an arrangement, however, 1s not one
of stable equilibrium; for the equilibrium of a system
of particles is only stable when the centre of gravity is
the lowest possible.

Such an arrangement then, being one of unstable equi-
librium is theoretically possible, and also practicable, if
any means be taken to prevent the least disturbance of
any of the particles of the system. If, however, such
a disturbance be not guarded against, the different fluids
will pass into a position of stable equilibrium, in which
the heaviest fluids will occupy the lowest place.

Thus as we have seen (Art. 24.) the atmosphere can
never be in a state of stable equilibrium, since the dif-
ferent parts of all vertical columns are subject to great
variations in density.

40. 1In applying the preceding condition where the
atmosphere is one of the fluids, it will be convenient to

assume
= [‘p,.’lj] = Ff.t.

For the effect produced is the same as may be produced
by a homogeneous column. If g be the accelerating force
of gravity, the weight of the atmospheric column may
in the same manner be represented by gph, the weight
of a column of uniform density p, and given height A,
and whose base is equal to the unit of area.
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41. If the surface Qn (Fig. 4.) be supposed rigid,
it will sustain a column .of fluid whose surface Pm is
of any height, and the pressure on its under surface
will be

ph =gphk.

If W then be the whole upward pressure on Q#n, we
have
W=gphk,

which may be increased indefinitely by increasing K and
h, the unit of area remaining the same. But we may
conceive (An replaced by a piston so loaded as to equal W.
There will then be equilibrium as before. Thus an
enormous downward pressure may be sustained by the
upward pressure, which is transmitted from the weight
of a column of fluid of small section but considerable
height; thus it is evident that an exceedingly small quan-
tity of water may be made to sustain or raise a weight
however large.

42, When water is contained in any vessel or in a
system of communicating tubes or vessels, and exposed
at its upper surface to the atmospheric pressure, it will
be in equilibrivm when the whole surface or the surfaces
in the different vessels are in the same horizontal plane,
whatever be the pressure to which their surfaces are sub-
ject, provided it be the same for all the surfaces. But
the equilibrium may also subsist under certain circum-
stances when the vessels are inverted, and the conditions
requisite for equilibrium in these cases are supplied by
the equation of the preceding articles.

Suppose a vessel, as for instance, a tumbler full of
water to be inverted, then since we have only two fluids,
air and water, the preceding equation of equilibrium
reduces itself (Art. 40.) to

P’fl.r = ph,
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where p' is the density of the water, and p of the air
supposed homogeneous, and &, % are the elevations of
the fluids above the horizontal plane in which the fluids
meet; and as long as this equation is satisfied the equi-
librium is possible.

The equilibrium however cannot under these circum-
stances actually take place, for this being an instance of
unstable equilibrium, any disturbance which causes the
least displacement in any part of the surface of the fluid
will destroy the equilibrium. If a piece of paper be laid
on the surface of the water, the vessel may then be in-
verted and the water will remain suspended, the particles
of the water being insured from any displacement by the
rigidity of the paper. If the vessel be of small diameter,
as a capillary tube, the molecular action will insure the
particles at the surface from displacement.

But the most usual way of effecting this in practice is
to invert the heavy liquid over a basin containing the same
liquid, which serves the double purpose of insuring the
stability of the surface and of permitting the superincum-
bent column to vary in altitude, the equilibrium still
remaining stable.

| These conclusions will be sufficiently illustrated by an
i explanation of the siphon and barometer.

L 43. The Siphon. Let a tube ABC (Fig.6.) be
| I“[’ :_:# partly filled with water, and inverted ; let P and Q be the
L #=0T  wwisurfaces of the water in the two branches, they will be

| et J 3 idne e
| E_:I“ ) in the same horizontal plane when there 1s equilibrium.

r i i [ ] g .
EEM' ;m{ -~ Then if p' be the density of the water and A’ the height
"ﬁ,'*- e sy of B above P or Q, the condition for the equilibrium of
o 4, un&i';%?these columns with the atmospheric column is
: P‘] h:, = PJ‘IL-

But the equilibrium will also subsist if pk be > pA’,
since it is the same for both columns, that is, if the

e R —— e s
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pressure exerted by the atmosphere at 2 and @ be greater
.than the weights of the columns BP or BQ of water.

Let p, be the atmospheric pressure, then gp k' is the
weight of the column of water whose section is unity ; and
we must have p, equal to or greater than gp'h.

If py = gp'l', the pressure at B will be nothing.
If p, be >gp'#’, the pressure at B = p, -gp' k.

If p, be <gp'h’, p, — gp'k" becomes negative, or the
liquid will separate at B (Art. 23.); and no means
being taken to insure the stability of the surfaces, it will
run out.

When the extremity Q of the water is a little below or
a little above the extremity /, the excess of the atmo-
spheric pressure above the pressure of the liquid, is greater
or less at the point P than at the point @, and the liquid
runs out in one case by the branch BC and in the other
by the branch BA of the siphon.

In practice the shorter leg of the siphon is placed in
a vessel of water, and consequently as long as the surface
P in the shorter leg is above the surface @ in the longer
leg, the liquid will be discharged at C.

4. The Barometer. Any vessel full of a liquid and
inverted over a basin of the same or a different liquid, so
as to secure the equilibrium of the surface, becomes a
barometer.

In general, the barometer consists of a straight tube
filled with mercury and inverted over a basin of the same
liquid, or a tube ABC (Fig. 7.) is hent at B, so that the
legs AB, BC are parallel.

Let P be the surface of the mercury in AR, and Q
its surface in BC,
F
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Then if p' be the density of the mercury, and &' the
height of the surface P above the surface @, we have as
the condition of equilibrium,

p"h’ = .uf.!.

The equilibrium being established, we may conceive
the branch BC to be prolonged vertically to the extremity
of the atmosphere; consequently, the atmospheric pressure
which is in equilibrium with the column of mercury, is the
weight of the air contained n a vertical cylinder whose
base is equal to the unit of surface and height equal to the
extent of the atmosphere, The weight of this column
varies with the variations of gravity, it is therefore less
as we ascend from the surface of the earth; it varies also
with the density, the temperature, and the quantity of
vapour which exists in the atmosphere.

If any other liquid be used in the barometer instead
of mercury, the altitude of the column sustained will be
inversely as the density, that is, as the specific gravity of
the fluid: and if several fluids be used, superposed one
above another, the equilibrium will subsist when the con-
dition = (p'h") = ph (Art. 23) is satisfied.

If the vacuum above the surface of the mercury at F*
be not perfect, as if a small quantity of air or other elastie
fluid occupy the space 4P, the effect of its elastic force
estimated by the weight of the column which it would
sustain (as will be seen in the following article) must be
taken into the equation of equilibrium.

The pump is the same in principle as the barometer ;
a column of water is in equilibrium with the atmospheric
column, the piston of the pump, which is air-tight, being
the closed end of the inverted tube. When the pump is
not full of water it is an instance of an imperfect baro-
meter, where the elastic force of the air between the piston
and the sustained column must be taken account of.
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45. The Manometer. The equilibrium being estab-
lished, we may conceive a close vessel as represented by
the dotted lines (Fig. 7.) to be attached to the open tube
C of the barometer. All communication being thus cut
off with the external air, the column of mercury is no
longer sustained by the weight of the superincumbent at-
mospherie column, but by the elastic force of the air which
has been enclosed in this vessel. The variations of gravity
may be observed by this instrument, as will hereafter be
shewn. It is thus that the elastic force of different gases
may be measured and expressed in terms of the height
of a mercurial or other barometric column.



CHAPTER V.

ON THE FRESSURE OF FLUIDS ON SURFACES.

46. Wmnex a body is immersed in a fluid or when
any vessel contains fluid, each portion of the surface of the
body immersed in it and each portion of the containing
vessel sustains a pressure, the magnitude of which may
be determined.

Pror. To find the pressure everted by a fluid on
a surface in contact with it.
Let .8 be the surface the pressure on which is required.

Let d§ be any elementary Pm'l;idn of the surface at
a depth x below the surface of the fluid.

The whole pressure on this element = pd &
= gpzd.ds.

The whole pressure on the surface .§ will be the sum of
the pressures on all such elements, and will therefore be
found immediately by the Integral Calculus.

The whole pressure on ' = [gpxdS

But [¥d.§ is the moment of the surface § about a line
in the surface of the fluid at right angles to it, and there-
fore, by the property of the centre of gravity, is the same
as of the whole body collected in its centre of gravity about
this line.
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Let Z be the depth of the centre of gravity of §':
zdS =2Z_8,
or the whole pressure =gpZ. 8.

But gpZS§ is the weight of a column of fluid whose
height is Z and base equal to the surface 9.

The whole pressure therefore on any surface is the
weight of a column of the fluid whose base is equal to the
area of the surface pressed, and whose height is equal to
the depth of the centre of gravity of the surface pressed

below the surface of the fluid.

Ex. 1. A cone with its base downwards and filled with
fluid.

Let @ be the height of the cone (Fig. 8.), and b the
radius of its base. Then for the base, Z = a, & = 75?*:

.. the whole pressure on 4B = gpZ .S
=gp-.a.xb
—gpwabi...............(1).

For the surface, Z=2a, 8= wbr/a* + 0*;
therefore the whole pressure on the surface of the cone
=2gpmaba/a’ + IP...(2).
The weight of the contained fluid
=gp.-+7b*.a
=+ gpmal......l . (3).

Then comparing (1) and (8), it appears that the pres-
sure on the base equals three times the weight of the con-
tained fluid.

The pressure on the base 4B is the same for all the
vessels represented by the dotted lines, since the base and
the depth of its centre of gravity is the same in all of them.
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&7. Centre of pressure. When the bottom of the
vessel, or the plane immersed, is horizontal, the pressure on
every point is the same; and the forces being all parallel,
the centre of these forces will be the centre of gravity of
the plane, and their resultant passing through this point
will be the sum of all these forces.

But when the plane is inclined at any angle to the
surface of the fluid the pressure is not the same at all
points, but greater at the lower than at the upper points
and the resultant of these forces will not pass through the
centre of gravity of the surface, but through a point below
it, which is called the centre of pressure. This point will

' |ee, evidently be below the centre of gravity for all fluids in
2 5t which the pressure varies as the depth.

¢ %/ Definition. The centre of pressure of any surface
frese, Ao immersed in a fluid is the point in which the resultant of :
i il p ' . s ' Vs,
" . .. the pressures of the fluid meets the surface. S0 $& & ety

W -
&l ﬂ'-rs! 1---1[:.-'5-
o Ealha

3 " te. e If then this surface form part of the containing vessel
it

o ofte-r and be supposed moveable, it will be kept at rest by a
R ,.'! xh -
; W |, pressure equal to the sum of these pressures applied at

?"f y ,::."_ffhis point in an opposite direction.
A
A S '}j ;_'t“' 48. Pror. To find the centre of pressure of any
LS an plane surface.
i Let ARC (Fig. 9.) be any plane surface in a fluid,

and DE the water-line, that is, the line in which the
plane (supposed produced) cuts the surface of the fluid.

Let 4 be the origin of the rectangular co-ordinates to
which the plane surface is referred, and through 4, drawing
OAx perpendicular to DE; take da for the axis of a,
and Ay parallel to DE for the axis of y.

Let P be any point @, ¥ in the plane surface, and PQ
an element dady, then AN =2, NP=y.
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Let /= 04 be the distance of the origin 4 from the
water-line, and @ the inclination of the plane to the sur-
face of the fluid.

Let X, ¥ be the rectangular co-ordinates of the centre
of pressure, measuring from 4.

Then since the pressure at each point is the weight of
the superincumbent column, the pressures are all parallel
forces; and taking the moments with respect to Ay and 4 a,

X . (pressure on A BC) = moment of pressure on ABC . (1),
¥ . (pressure on 4 BC) = moment of pressure on ABC . (2).

And the moment of the pressure on ABC equals the
sum of the moments of the pressures on the small elements
into which the plane is divided.

The pressure on the element dody at P = pdady.
Hence, the pressure on 4ABC = [[pda dy.
Drawing PM perpendicular to the surface of the fluid,
p=gp.-PM=gp(a+l)sing;
. the pressure on ABC =gpsin® [[(z + 1) du dy.
Multiplying this by @ to obtain the moment about Ay.

The moment of the pressure on ABC about Ay
= gpsin @ [[(o% + lv) do dy.
Similarly, wultiplying by y to obtain the moment
about Aa.

The moment of the pressure on ABC about 4w
=gpsin® [[(» + ) ydady.

Substituting in (1) and (2), and omitting the common
factor gpsinf, which will be constant for the same plane,
the fluid being supposed homogeneous,
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X [[(x + D dady = [[(2* + la)dady......(3)
Y [f(v + dady = [f(2 + ) ydady......(4),
whence X and ¥ may be determined.

When the surface is bounded by a curve whose equa-
tion is given, we have y a function of x; hence, integrating
with respect to v,

X f(x+Dyda= [(a" + lv)yda,

f(a* + Ix)yda
" J@+hyds T
(@ + Dyda™" TV
which are the formulx generally used. Tor the value of
y being substituted in terms of a they are immediately

integrable, and the integrals being properly corrected, the
co-ordinates will be given in terms of known quantities.

)

or

and similarly, ¥ =

When the plane coincides in any point with the surface
of the fluid, we have if this point be the origin of co-
ordinates, /=03 and the preceding equations become

-lji' di'l-‘ = i e deﬂ
.{'Y=f x JI' TTaes r!i{T}! ]-‘ = %I-f ym'**"'(ﬂ)’
[ryda ® [wyda

which would be obtained at once by the same steps as the
more general case here given.

49. It will be observed that these expressions are
independent of @, the inclination of the plane to the sur-
face of the fluid; the position therefore of the centre of
pressure will remain the same if the plane revolve through
any angle about DE as an axis, so long as [, that is, the
distance 04 is the same.

_. The equations (7) and (8) are those for determining
.~ the centre of percussion of a plane moveable about the

axis Ay, hence the centres of pressure and percussion

coincide when the plane meets the surface of the fluid.
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o0. If the plane be sunk to a great depth, the centres 2, ¢ 4 %, V vil

of gravity and pressure coincide. fisrrity Iy g
Cerig sl oy
In equations (3) and (4) let / = =<, then bt T oty AT
ﬂ‘l--tﬁ""___{t
i ﬂ':ﬁ;d’: dy' fly'ﬂ'? _.-;ﬁ S .qi" RISl
[Jdzdy — Jyda’ tole «j’r-’- IR 1
when the surface is bounded by a plane curve, and | *{“ " i = :""'*
_'_..n.. S B .'-. Lo _,.._‘S-'s::;'
Vo [faydw dy _ jw; do "y gV Gee el

ffdady = fyda

which are the co-ordinates of the centre of gravity of a
plane surface bounded by a plane curve: hence the centres
of pressure and gravity coincide.

When the centres of pressure and gravity do not = o4 |
coincide, that which is above or below the other in any (lnes, A '"""f_‘“ﬁ
one position of the plane is always above or below it /ilt’“" 7 Y
The centre of pressure is above or below the centre of Al '?y__
gravity, according as its vertical co-ordinate is less or 4» a» . WMJ

greater than the vertical co-ordinate of the centre of mfﬂ.'w-"f'

gravity, that is, as G 232 ss ».;Lh.“
&
f(ft"’+.-fr.-,}Jdm )8 b }ﬂm&
(v + :‘f)yd.z j_;dt'

or as (fa*yda) (fyda) is < or > (fay dr)?,

which expression being independent of Z, it follows that
the relative positions of these centres cannot change- for

different depths.

5l.  Pror. T determine the centre of pressure of
a plane made up of portions whose centres of pressure $(éutee 4 7, 1
are known. i f

Let 4 be the area of a plane consisting of portions
Ay, Ay, Ay,...whose centres of pressure are known, then

A=J1+AE+33+.-+ Y4
1 " + ”; Widn /% Lran
G 4m A Rf e/l
—_— J{‘?‘:‘.‘flﬁ _f‘!.d:;'

ATA Syl
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Let @, @...and #,, ¥....be the co-ordinates of the
centres of pressure of these portions.

Let hy, hs...and %, k,...be the co-ordinates of their
centres of gravity.
[y da

Then @, = T between proper limits.

Now [wxydx= Ak, by the property of the centre
of gravity ;

f.?.?r"yd.r = A,y @4

and similarly for all the other portions. But if X, Y be
the co-ordinates of the centre of pressure of the whole
surface, since the pressure on each portion may be con-
sidered as a single force through its centre of pressure,
we have by the general proposition for the centre of any
number of parallel forces,

zjryds | oo E']E,ﬁ'_yfif,

" S fayda’ ~ S fayda

Lo A b2, + dyhe@s + ...

S I R [ ST
Vi %Alklyi + Ao koY + -

AL+ Ayl t ovee

which determine the centre of pressure of this compound
area.

52. The formule in the preceding articles are suf-
ficient to determine the centre of pressure in all cases,
in consequence, however of the difficulty of expressing y
as a function of @ in some cases, particular methods are
more convenient than the application of the general for-
mula, as will be seen in some of the following examples.

When the plane is symmetrical about the axis of a,
the equation (5) or (7) is sufficient to determine the centre
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of pressure since it lies on the axis of a, the equation (6)
or (8) being nothing in the case of a symmetrical plane.

Similarly, if the plane be symmetrical about the a:{is\ ?
of y, the equation (6) or (8) will be sufficient.

53. Ex. 1. A semiparabola at a given depth below

the surface of the fluid with its axis vertical.

The vertex being uppermost and the axis being taken
for the axis of x, the ordinates y will be parallel to the
intersection of its plane with the surface of the fAuid.

The formulse here are

[(@* + 12) yda [(z + 1) y’dx

X="—"-—- and ¥ =1 . —
[(@+Dyda ’ ® (@ +Dydaw Py "O{:T;
In the parabola #* = 4ma; -‘;‘;3,' —— )

A © gw
'. f{:.:**+fm)ydm:ﬂﬁf{ﬁ+£ﬁ)d.t 5 GL! "'U

[(@ + i) yda = 24/ m [(af + lad) dw Mg
=ov/m (2@ + £1) at;

J(@+ D yde = am [(a* + l2)da
= dm (} @ + +1) %

no correction being requisite since the integrals begin with
a and 3

Ta+ 41 L %.:‘

" X=-i T_i-f -'i‘!':L _I_'E

oF 3 5 '3
2 1y Lkl
) L e S e -5—"\/11.1!1 i T,
*ﬁr—l-'*-' Ixwgll]

whence the position of the centre of pressure is known.

Let the vertex of the parabola be in the surface of
the fluid, or =0, then
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X=%a, and ¥= %‘v’m*‘ =@l

as would have been determined at once from equations (7)

and (8).

Let the parabola be sunk to a great depth, or /= <",
then

X=ia, Y=3+ma=3y,
which are the expressions for the centre of gravity of a
semiparabola, # and % being the extreme ordinates.

Ex. 2. A rectangular flood gate its upper side co-
inciding with the surface.

Bisect the upper side, and taking this point for the
origin of co-ordinates, equation (7) is sufficient.

Let @« be the vertical, and b the horizontal side of
the gate, then
Lr o I L1 ;J a
[ @yda [ a'da

X = = ———, since y 1s constant,

_,f: aydu J: xda

k]

Wi—

[ 7. e
fivia wmal b Al PIAEE

— g
E-HIE-* et

|

—

b=
=

The whole pressure on the gate = gp x f; x ab (Art. 46.)

=4gpah

If then a force be applied at the centre of pressure
in an opposite direction to the pressure of the fluid, and
equal in magnitude to } gpa®b, the gate will be kept at
rest by this single force.

 wee.Hence may be found the moment of the pressure to
“/turn the gate about a given axis.

The moment to turn the gate about a vertical axis
at the side

i ] Tl
=s8pa . —= |' Zp it b

v

)
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The moment about an axis in the surface
=gygpabxLa
=4 gpa‘b.
The moment about an axis at the bottom of the gate
=tgpa*h x La= +gpa’h.

The flood gate may turn about a vertical axis on a single
hinge at the depth of 2ds the height of the gate, and
then a force equal to { gpab at the centre of pressure,
or - gpa’h at the opposite side will keep the gate at rest.

If it turn about an axis in the surface, then a
force equal to L gpa®b applied at the bottom of the gate
will keep it at rest. :

If it turn about an axis coinciding with its bottom,
the force which must be applied at the top is Lgpa’d.

In the preceding reasonings the height of the water
is supposed to be invariable.

Ex. 3. The staves of a barrel held by a single hoop.

From the preceding example it appears that the depth
of the centre of pressure of any rectangle is equal to
2ds of its height. Hence if we conceive a barrel to be
composed of a great number of similar staves, each of
which differs insensibly from rectangular ones, they pre-
sent a plane surface to the fluid, and the barrel when full
of fluid will be kept together by a single hoop passing
through the centre of pressure of all the staves. Hence
the hoop must be at a distance equal to 2ds of the height
of the barrel from the top.

If the staves be prevented from revolving inwards by
the bottom of the barrel, the hoop may he below the centre
of pressure, but not above it; it will be best placed just
helow the line of pressure.

Fha., Lo, %f..q-

"*-L-A’--x:?j
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Ex. 5. A right-angled triangle with its base in the
surface.

Let ABC (Fig. 10.) be the triangle, let AB=a, BC =5,
_J:I.r"’y da

i

il
[, vyda

8 g ,
v 2y’ da
— E— - .
J'TI ay da
The relation betwixt y and @, or the equation to BC

which cuts the co-ordinate axes at distances « and b from
the nrigin 18

then X =

then substituting for w,

[ty da = [b (1 —;—T:) o da

]
’,I-_-.\
Bo |
|
= | -
==
e o
5
+
3

_,I';"mzy da = 5 a*b.
g # i 1 @
Similarly [‘xy do = La*b,

L
Jeyrde = [B? (I ST J'—u) wda

/2 -

. L A T
A

ci X=Ya=dAN; ¥=iti= NP,
whence P the centre of pressure is fully determined.

Ex. 6. A sector of a circle, the centre being in the | |
surface.

Let ABC (Fig. 11.) be the sector, and let the side N s

AB make an angle a with the surface of the fluid, and
let BAC =3 and 4B = a.

Let AP =r be any radius vector inclined at an angle
0 to AR, and let PQ be the small element described by
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dr, the radius vector r + dr having revolved through an
angle d#.

Then the element PQ = dr x rd6
and p=gp. PN =gprsin(a+0);
therefore, the pressure on PQ
= gpridrsin (a + 0) d6.

Then, taking the moments about a vertical and hori-
zontal line through A4, we have if X, ¥ be the vertical and
horizontal ordinates of the centre of pressure, since

NP =rsin(a +0) and AN =rcos (a + 6),
X[ [Pr#sin(a+8)drdf= [ [[1*sin’ (a+6) drd6,:
y[ [Frsin(a+6)drdd= [} [ *sin (a-+6) cos (a+ 6) drd.
[[# sin* (a+0) drdf = [} r*sin® (a+ A do+C;

4
- ﬂ:f*sihﬂ{a +Ndrdf = E—f% il —c0s2 (a+ ) } de

{9—%sinﬂ(a+9}} +C;

| =

therefore,

J':! -".:.ﬁ"i*“s:-ir.2 (a +6)drdf = % §B+%[sin2a—sin2(a+ A;-
Similarly,
[ [P sint (a-+ 8)dr 46 = = feosa—cos(a+ )]

Also,
j:" _,l;ﬂr"‘ sin (e + 0) cos (a+ H)drdﬂzﬁlﬂ- sin2 (a +6)d@+

4
=%{C‘—-—%—msﬂ(a+ﬁ'}}

4
L

ok $cos2a—cos2(a+ )] :
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.yl B+Lisineq a—sinﬂ(a+ﬁ£
8 cosa — cos(a+ [3)

2

3 cos2a —cos(a+ 3)

B e—

16 cosa —cos (a+ [3) =

whence the centre of pressure is fully determined.
Let the radius 4B be perpendicular to the surface of

the fluid, then « = ;;

3 - Lal ) : .
,X:E"B Tsin (w + !8__}{;_=éf3+sn:1ﬁ.m%§ﬂ
- {05 (E e ’8) i 31n ,13
2

3{ B + cos B}n':.

=§ sin 3

- 8 cosw —cos (7 + 23)

fr

16 -
—-ons | — 4
s (i_! - }3)
31+ cos? 3 sin®
=———— = — [
16 sing3 8 sin
=-sinf3.a
m
Let the sector be a quadrant, or 8= =
i,
R 3 3
= ..:"?=—.—.|"I-=—_T.|"ﬂ5 F=—ﬂ,
8 @ 16 8

the same values as were obtained before, Ex. 4.

Ex. 7. An oblique parallelogram with one angle in
the ‘surface.

Let ABDC (Fig. 12.) be the parallelogram, and let
AB =a, AC=0b, make angles @, 3, with the vertical
through A.

H



58 THE PRESSURE OF

Let X, ¥, be the vertical and horizontal co-ordinates
of the centre of pressure.

Let @, y , be the vertical and horizontal co-ordinates
AN, NP, of any point P whose co-ordinates referred to
the axes AB, AC are a, .

Then, @, = ¥ cosa + y cos [3,
y, = asina — ysin 3.
The co-ordinates being oblique, an element da dy at P
= da . dysin (a + 3),
and p = gpa,

we have therefore,

X[ [udedy=[[ a}dady,
¥ J.F]bﬂ';dm dy = |, Yoy dedy,
whence X and ¥ may be determined.
Now,
[fo*da dy = [[(a*cos’a + 2@ycosacosf3 + y*cos’B) du dy
= [(#*cos*a + ay cosa cos (3 + Lycos’ B) yda +C,
the integration being performed for g, then
[[ta?da dy= [(acos*a+xbeosacos B+ cos* B) bda
= (Lafcos*a+Labeosacos B+ L b cos’ B)ba+ C';
st fPelde dy=(La’cos’a +Labeosacos 3+ L b cos’ B) ab.
Similarly,

Jlr:."fu"m, dody=1(acosa+beosf3)ab.
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Also, [fa,y dady= [f}+a" sin2a+aysin(a—f3)
—+yfsin23t dady
= [{1a*sin2a+ Loy sin (a—3)
—Ly*sin2 3t yda;
. L - . :
o ey dedy = [§1a*sin2a + Labsin (a—3)
—Lb*sin® B} bdw
= {1a*sin2a +Labsin(a—3)
—-Lp*sineBlba+ C;
o ey, dedy =4t a*sin2a + Labsin(a-f3)
— 4 sing B} abs
La?cos’a+ Labcosacos B+ L cos’ B
L(acosa+bceosB) :
@' sin2a+ fabsin(a— B) —+b*sin2f3

Y= :
1 (@cosa + b cos 3)

Let the parallelogram be right-angled, the side AC
being in the surface.

3 T
Then a = 0, ﬁ::,
: 1
it - = ah
X=2 _2qg ¥Y=—1_=-—1,
la ra

as we have already determined them, Ex. 2.

The Pressures on Curved Surfuces.

54. The pressure on any portion of a eurved surface
is determined by resolving the normal force at each point
into the directions of the three co-ordinate axes, and cal-
culating by two integrations the total components in these
directions. These components may always be reduced to
two forces: these two forces however seldom admit of a sin-
gle resultant. But when the pressure exerted on a curved
surface is a fluid pressure, the pressures always admit of
a single resultant whose direction and magnitude must be
determined. To find then the resultant of the fuid pres-
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sure on a curved surface, the pressure at any point being
resolved into its components in the planes of the co-ordi-
nates, it will be shewn that the horizontal pressures destroy
each other, their resultant therefore is zero, and that the
resultant of the pressures is therefore vertical.

55. Pror. The horizontal pressures on the surface
of any body immersed in a fluid are in equilibrium with
each other.

Let APB (Fig. 15.) be any body immersed in a fluid ;
let the body be referred to three rectangular axes, the
surface of the fluid being taken for the plane of xy.

Let P be any point =, 9, %, in the surface of the body,
and let w be a small element of the surface at this point,
then pw is the pressure on this element in the direction PG
of the normal to the surface.

The value of p will be the same for all points which
are at the same distance » from the surface of the fluid,
that is, for all peints which are in the same horizontal
plane, whether the fluid be homogeneous, or whether it be
composed of level strata of different densities.

Let @, b, ¢ be the projections of the element @ on the
co-ordinate planes y=, vz, xy, respectively ; and let a, 3, ~
be the angles which the normal PQ makes with the axes
of #, y, . Then a, B3, + are also the angles which the
tangent plane at the point P makes with the planes of y=z,
%, ay, respectively.

Therefore,

a=weosa, b=wcosf3, ¢=wcos~;
and multiplying these equations by p,

pa=pwcosa, ph=pwcosf3, pec=pwcos.

But pwcosa is the resolved part of the normal pressure
pw i the direction of 2.
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Hence pa, pb, pe, are the components of the normal
pressure pw in the directions of the axes of @, y, ¥ or the
component in the direction perpendicular to any co-ordinate
plane of the normal pressure on any portion of the surface,
equals the product of that pressure and of the projection of
the portion of the surface on the co-ordinate plane.

Whatever be the nature of the body, there must always
be a portion of its surface opposite to w, which will have
the same projection on the co-ordinate plane. Let PP M
be drawn perpendicular to the plane of y=, meeting the
side of the body opposite to P in P; and let w, be the
element of the surface at this point, which has the same
projection on the plane of yz.  Then the pressure on w,
resolved in the direction perpendicular to the plane of gz,
being by what has just been stated equal to the product
pa, will be the same whenever p is the same, that is, for
all points in the same horizontal plane.

Thus the pressures on any portion e in the direction of
the axis a, dﬂstmy each other ; and the same may be shewn
for the direction of ¥, and for every point in the same
horizontal plane.

Hence it appears that the horizontal components of the
pressures exerted on the elements of the surface of any
body immersed in a fluid, destroy each other in each hori-

zontal section; and therefore the horizontal forces on il‘.sr

whole surface destroy each other.

There is then no force which can produce lateral motion,
the resultant of the horizontal pressures being zero; it
follows therefore that the only forces which are to have
a resultant are the vertical pressures, and consequently
that all the forces may be reduced to a single vertical
force which is the resultant of the components perpen-
dicular to the plane of wy, and which arises from the
excess of the value of p for the lower parts of the body.

N,

LUV iy "r:lrl‘
4%
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Con. If the pressure p arises from a pressure exerted
on the surface of the fluid, its value would be constant for
every point in the surface of the body ; and the components
would destroy each other in the vertical as well as in the
horizontal direction. Whatever then be the form of a
solid or fluid mass, a constant normal pressure impressed
at all points of its surface cannot produce any motion
either of translation or rotation.

56. Pror. 7o find the resuitant of the vertical
pressures acting on a body immersed in a fluid.

From P draw a perpcndiculm‘ to the plane of @y
meeting the body in P, and let o be the clement of the
surface at this point corresponding to w at P.

Their projections on the plane of vy are the same and
equal to ¢, but the value of p is different. Let p' be the
value of p at P. Then the vertical line of particles
terminated by these two elements will be pressed vertically
from below upwards, with a pressure pe — p e

Let the fluid be homogeneous, then if PP'=1,

p—p =gpl and pe—p'e=gpel.

But gpcl is the weight of a column of fluid whose
volume is fe, hence the vertical pressure equals the weight
of a volume le of the fluid, that is, it equals the weight
of the fluid column whose place is occupied by that portion
of the body; and the same being true for every other
column of the body, the whole vertical pressure is the
weight of a mass of the fluid equal in bulk to the body
displaced. ~ The resultant therefore of the fluid pressures
is a vertical force applied at the centre of gravity of the
body immersed in an opposite direction to gravity. When
the body is homogeneous, the centres of gravity, of the
body and of the flu id displaced, coincide.

If the body be not wholly immersed, we have p' =0,
and the resultant of the pressures is the weight of the
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volume of the fluid displaced by the portion of the body
which is immersed, and is applied at the centre of gravity
of this portion.

57. The preceding results are also true when the fluid
is composed of horizontal strata of very different densities:
as will also be evident from the following considerations.

The equilibrium once established will not be disturbed
by supposing any part of the fluid to become solid, so that
this part itself becomes a floating or immersed body. But
in order that the normal pressures exerted on the surface
of the body by the surrounding fluid may be in equili-
brium with the weight of this solid part, their resultant
must be a single force, and act in a direction contrary to
the weight of the body; and if we replace the part of the
fluid which is supposed to have become solid by another
body having exactly the same surface, it is evident that
no change can have taken place in the pressures of the
surrounding fluid ; consequently the pressures exerted on
the surface of a body immersed, wholly or not, in a fluid
at rest either homogeneous or heterogencous, are always
equivalent to a single force, which is equal to the whole
weight of the successive strata of fluid whose place is oc-
cupied by the body, and which is applied in a direction
contrary to gravity at the centre of gravity of these
strata.

We may conclude then that a body totally immersed
in a fluid will be in equilibrium when its mean density
is equal to that of the fluid displaced, and when its centre
of gravity and that of the fluid displaced are in the same
vertical ; which latter condition is always fulfilled when
the body and liquid are both homogeneous.

The equilibrium of bodies which are not whelly im-

mersed, but float at the surface of a fluid will be examined
in the following chapter.
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58. Hydrostatic Balance. 'I'he conclusion at which
we have just arrived is generally enunciated by saying,
that a body immersed in a fluid loses as much of its weight
as is equal to the weight of the fluid displaced.

Hence it is evident that to obtain the true weight of
a body it ought to be weighed in vacuo.

Two bodies weighed in air, or in water, or in any
other liquid, and which are in equilibrium on a very
exact balance, have really very different weights unless
their volumes should be equivalent.

The greater weight is that of the body which has the
greater volume, because having experienced a greater loss
in the fluid, it is still in equilibrium with the other.

If the same body is weighed successively in vacuo and
in water, and W be its weight in vacuo, and W' in water,
W and W—W' will be the absolute weight of the body, and
of a quantity of water of the same volume. But when
the volume is constant the weight varies as the density,
hence W and W—W"' are as the densities of the solid and
water. If then D be the density of the solid, that of
water being unity, we shall have

b w
=W

It is thus that the densities or specific gravities of sub-
stances which can be weighed in water without being
dissolved, are ascertained by means of the Hydrostatic
Balance.

59. 'The reasonings in the preceding articles apply
equally to the pressures exerted on the sides of vessels
containing fluid ; and the same result would be obtained ;
namely, that the horizontal pressures exerted from within
to without on all the internal surface destroy each other,
that is, they consist of pieces of equal and opposite forces ;
whence if a vessel is set on a horizontal plane, the action
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of the fluid which it contains eannot put it in motion:
this result is also a necessary consequence of the conser-
vation of the motion of the centre of gravity. But if an
aperture be made in one of the sides of the vessel below
the surface of the fluid, the fluid will run out, and the
pressure being no longer exerted on that part of the
surface which is removed, the pressure which is exerted
on the opposite side will not be destroyed. In this case
then the sum of the horizontal forces are not zero for
these points, and consequently the vessel can be put in
motion on the side opposite to the issuing fluid.

This is the principle of all the machines whose motion
depends on the reaction of a fluid, and which has been
suggested by Bernouilli as applicable to the motion of
vessels. The application of this principle is exhibited in
the machine called Barker's Mill.

6G0. From the same reasoning it is also evident that
the whole vertical pressure exerted on the bottom and on
the sides of a vessel is always equal to the weight of
the fluid contained and applied in the direction of gravity
to the centre of gravity of the fluid,

Each vertical line of the fluid which extends without
interruption from the surface to any point of the vessel,
exerts at this point a normal pressure, which is equal to
the weight of this line: that line which is interrupted
and meets the internal surface of the vessel in more points
than one, as for instance, at a point in the hottom and
in one of the sides, exerts at these two points pressures
whose vertical components are in opposite directions. The
component which belongs to the lower point is in the
direction of gravity, and exceeds the other by a quantity
equal to the weight of this line; and the same is true
for all the points in which this line meets the containing
surface; thus the excess of the pressures downward over
those upwards is equal to the weight of the contained

Auid. The resultant then of all the vertical pressures of
I
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these lines of Huid is precisuly the same as the Iﬁ'E]gill
of the fluid in question.

This pressure must be accurately distinguished from
that which takes place simply on the bottom of the vessel,

and which is only equal to the weight of the fluid when

the vessel is a right cylinder. It is less than the weight
when the vessel increases in size from the bottom to the
top, as the frustrum of an inverted cone, because the
vertical lines of fluid which extend from the surface, and
are intercepted by the sides of the cone, do not press on
the bottom of the vessel; on the other hand, it is greater
than the weight of the fluid, when the vessel increases
from the top to the bottom, because the vertical lines
which extend from the bottom of the vessel, and are
intercepted by the side, exert nevertheless the same pres-
sure on the bottom of the vessel as if they extended to
the surface of the fluid; the deficiency in the weight of
cach of these incomplete lines being made up by the re-
action of the side by which they are terminated.

61. When fluid is contained in a flexible vessel, the
pressure and the resultant of the tensions on a portion
of any section of the vessel must be equal and opposite.

Let PQ (Fig. 14) be a portion of any section of a
flexible vessel which is full of fluid.

. Let p be the pressure at any point, and ¢ the tension,
which must be uniform throughout each section.

Draw normals at P and Q meeting in O, and tangents
at P and Q meeting in 7", join T0.

Let ~ be the radius of eurvature at P, and 2ds the
portion PQ of the curve,
the pressure on PQ = 2pds.

The tensions at P and Q compound a force in the
direction 7°0
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CHAPTER VL

ON THE EQUILIBRIUM OF FLOATING BODIES.

62. Wmuex a body is placed in a fluid, its density, if
it be homogeneous, or its mean density, if it be not homo-
geneous, being less than the density of the fluid, it sinks
in the fluid until the weight of the fluid displaced becomes
equal to the weight of the body ; it then remains at rest,
provided its centre of gravity and that of the fluid dis-
placed are in the same vertical.

For the only forces which exist are the weight of the
body and the resultant fluid pressure. And it has been
shewn that the resultant of the fluid pressures is a vertical
force, the horizontal forces destroying each other. The
weight of the body therefore, and the resultant of the
fluid pressure, must be in equilibrium with each other;
and they are parallel forces, and may be applied at the
same point, or at different points in the same vertical, or at
points in different verticals,

In the first case, the body will either ascend or descend
vertically, and when the weight of the fluid displaced
equals the weight of the body, it will be absolutely at
rest.

In the second case, the body cannot rest but may have
a motion both of translation and of rotation communicated
to it.

Now, these forces are applied at the centres of gravity
of the respective masses; hence the conditions for the
equilibrium which are both necessary and sufficient, are,
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1. That the weight of the fluid displaced be equal to
the weight of the body.

2. That the line joining the centre of gravity of the
body and of the fluid displaced, be vertical.

63. To find the positions of equilibrium of a floating
hody.

If ¥V be the volume of the fluid displaced and p its
density, and V' the volume of the body and p’ its density,
then by the first condition

Flﬂg= V*P’gr; i FP: 2 'f.,
AR L e e I"—V::p:_p’-—_p;

that is, the body must be cut by a plane, so that the seg-
ments shall have to each other a given ratio.

Also, by the second condition the line joining the centres
of gravity of the two portions must be vertical, or the
cutting plane must be perpendicular to it. Hence the
determination of the positions of equilibrium of a floating
body is reduced to the following problem in Analytical
Geometry :—*“To cut any body by a plane so that the
volume of one segment may be to that of the whole body
in a given ratio, and that the line joining the centres of
gravity of this segment and of the whole body may be
perpendicular to the cutting plane.” When the section
of a body satisfying these two conditions has been de-
termined, it must be placed coincident with the surface
of the fluid; the segment whose volume has been con-
sidered being the segment which is immersed in the fluid,
and the other segment being above the fluid : this position
will be one of equilibrium.

These conditions may be expressed by equations, the
complete solution of which will give all the positions of
the equilibrium of a body; sometimes their number will
be infinite, as is the case for a solid of revolution whose
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axis is horizontal ; but it would be difficult to demonstrate
« priori that there is always a position of equilibrium what-
ever be the form of the body. The method of proceeding
in any case will be sufficiently illustrated by the following

example.
Ex. A triangular prism with its edges horizontal.

The determination of the positions of the equilibrium
of this body evidently reduces itself to the determination
of the position of v;=qu1hhuum of a triangle which is its

generating sec tion.

Here two cases present themselves aucurding as one
or two angles are immersed; we shall first consider the
case when one angle is immersed, and shew how one case
may be reduced from the other.

1. Let ABC and PQ (Fig. 15.) be the sections of
of the triangular prism and of the surface of the fluid
made I]_}" a vertical plane.

Let @, b, ¢, be the sides of the triangle which are
opposite to the angles 4, B, C, and a, y the sides CP,
CQ of the part which is immersed.

Let s be the ratio of the specific gravities of the body
and of the fluid, that is, the ratio of their densities.

Let 1 be the area of the part immersed, and ¥V’ of the
whole, then by the first condition, (Art. 62.)

r
e =
ll.l
But V=1 xy sin C, and V' =Labsin C, therefore

Vog=V'pg, orV=

ay=4aab......(1):

Again, let G and F' be the centres of gravity of the
triangles ACB, PCQ. Then if D and E be the bisections
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of AR and PQ, (G =3CD and CF = $CE; join GF,
DE, DP, DQ.

Then by the second condition (Art. 62.) GF' is vertical,
and therefore perpendicular to PQ.

But DE is parallel to GF. It is therefore perpen-
dicular to PQ; that is, the line joining the bisections of
AB and PQ must be vertical. Hence also, since PE = EQ,
and DE is perpendicular to PQ, DP = DQ.

Conversely, if DP = DQ, the line DE will be perpen-
dicular to PQ, and therefore its parallel GF will be
perpendicular to PQ. Hence that the line joining the
centres of gravity of the body and of the fluid displaced
may be perpendicular to the surface of the fluid, 1t is
necessary and sufficient that DFP should be equal to DQ.
Then if CD =% and &, 3 be the angles DCA, DCB, we
have

DFP =} + & = 2hwcosa,

D = h* + y* —2hycosf3;
. a?—2hacosa =1y —2hycosPB.....cninny...(2)

i e A
But from (1) y = —, eliminating y, we have

2* —2hcosa @ + 2hsabeosP @ —5*a*H = 0......(8) ;

whence having determined the four values of a, the cor-
responding values of y are given by the equation
sab
Y=
The equation (3) is of even dimensions, and has its
last term negative ; it must have, therefore, two real roots
of contrary signs.

The other two roots may be real or imaginary. If
they are real, the rule of signs shews us that it has three
positive and one negative root; for there must be three

1
f'“l*h-

LI ST
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changes and one continuation, whatever be the sign of the
term which is wanting.

The unknown quantities # and y, which are the sides
of the triangle PCQ, can [}nl}r be positive quantities less
than the sides C'4 and CB respectively; the negative root,
therefore, of the equation may be rejected as inapplicable.

There are, therefore, at the most but three positions of
equilibrium when one angle only is immersed.

2.  Let two angles, as 4 and B of the triangle, be
immersed,

Then if PQ be considered as the line of Hloatation, the
centres of gravity of 4CB and 4APQRB must be on the same
vertical, and we must have, as before,

APQD : ACB :: p' : p

L b

whence PCQ : ACB :: 1—5: 1:
o #y=(1—8)ab.ei.os.e.(4).
Hence, eliminating ¥ between this and (2), the equation is
the same as before, (1 — ¢) being in the place of s, or the
equation required is

a'—2hcosa a'+2h(1-s)abcos @ — (1—s)*a’b* = 0...(5).
And from the same reasoning as was applied to (8) it

appears that there are at the most but three positions of a
triangle floating with two angles immersed.

There are, therefore, three positions of equilibrium of

. a triangular prism when one angle is immersed, and also
. three when that angle is the only one not immersed; that

is, there are on the whole six possible positions of equi-
librium for each angle, and therefore eighteen for the whole
triangular prism,

64. Let the section of the prism be an isosceles tri-
angle; then pursuing the same reasoning, we shall arrive
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at an equation which admits of immediate solution. The
equation of the preceding article may be adapted at once
to this case.

Let a =5, then the triangles ACD, BCD, are right-
angled and equal, whence,

.8=|:.(, f;l!.ﬁ:ﬂ.z—?’-{!ﬂ, acosa = h,
and equations (1) and (2) become

¥ . . dat-=c
xy =sa’, and a* —y° - = (# —y) = 0......(6).

This is satisfied by taking a = y = a+/s, which is a
possible value, since s is less than unity. Hence PQ must
be parallel to 4B, that is, AB is horizontal ; and the same
is true when C is out of the water. But there are other
positions of equilibrium ; for suppressing the factor (x —y)
we have

4a® - c*

s s

which combined with xy = sa® gives for the two values of
x and y

] —
T j4a® — e & \/J{rl-ar.eE - ¢y — 16sa'}.

Each of these being taken successively for # and y, if both
be less than a, there are two new positions of equilibrium in
which the base AB is out of the fluid.

Substituting 1 — s for s, there are two other positions
when AB is immersed, provided both roots be less than a.
When the two preceding roots are equal, the base 4B is
horizontal : these new positions ought to be identical with
the former: 1n this case

4a® — ¢ = + halq/ s,

whence v =y =a A/s, as before.
K
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65. Let the section be an equilateral triangle, then
w="0b=e¢, and the equations of the preceding articles give
for the unequal values of x and gy, when one angle i=
immersed,

{'

i £3 & V9 — 16st,

&

and when two are immersed,
ﬂ ——
— i' : o —
A !.i*«,/lfu. TS.

The value of the ratio s must be examined into, that these
may be real and less than a.

If s be < - and = 1, the first expression is real and
less than @; and if s be < 1 and > %, the second ex-
pression is real and less than a.

Hence when one angle is immersed, the limits of s are
between L and 1% and when two angles are immersed,
the limits are L and % ; and between the values 4% and
1o the prism has no oblique position of equilibrium.

Since all the angles are equal, there may sometimes
be eighteen and sometimes only six positions of equi-
librium.

66. Besides the horizontal positions of equilibrium
which we have just treated of, prisms and cylinders may
float in a vertical position with their bases parallel to the
surface of the fluid ; there are two positions of equilibrium
for each body when they float in this manner, for there is
one for each base of the solid.

The line joining the centres of gravity of a vertical
prism and of the part immersed must be perpendicular to
the surface of the fluid; the ratio of their volumes is the
same as that of their heights, and consequently the height
of the part immersed is to that of the whole prism as the
density of the body is to the density of the fluid ; this one
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condition then determines the depth to which the body
sinks, and is the solution of the problem.

Solids of revolution, and all bodies which are sym-
metrical about a given axis, have two positions of equi-
librium for each axis, which may be determined as in the
following example.

Ex. An ellipsoid with an axis vertical.

Let a, b, ¢, be the semiaxes of the ellipsoid, and let
the axis 2¢ be vertical.

Let =, be the distance of the plane of floatation from
the centre of the ellipsoid, which will be positive or nega-
tive according as this section is above or below the centre
of the ellipsoid.

Let K be the area of any section at a distance ¥ from
the centre of the ellipsoid.

The volume of the semiellipsoid = Zzabe; the volume
of the part between the plane of 2y and the surface of the

ellipsoid is ["Kdz.
Hence the volume of the part immersed
=2rabe - j:'f(n!x.
Hence when there is equilibrium
Emabe - [Kdx = {mabe.s.

Now the area K is an ellipse, and the equation to the

ellipsoid being

and the semiaxes of a section at a distance 3 from the
centre being obtained by putting y and @ successively
equal to nothing, are

E«\f{:" —2* and I—}v’:ﬁ—mﬁ’.
i [ s

Ui L::..L
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The area therefore required is

mab
s L RN
K= = (¢ — %) ;
- ., wab
?ﬂﬂflﬂ"‘f“ —Pz-—[cd—f)dz=.§-¢rubcs.

But [7(¢* — ¥)dx = (¢* - } 27, substituting and
omitting the common factor wabe, we have
5

- - (@ - 433, = 45,

g ¢ J
or -3¢z, —2(2-1)=0,

whence the distance of the plane of floatation from the
centre of the ellipsoid is known. This equation being
independent of @ and b, the values of ¥, are independent,
or are the same for the ellipsoid, the spheroid, and the
sphere.

It must have one real root, which will lie between % ¢,
being positive or negative according as s is > or < 1. 1In
the extreme cases when s =0 and s =1 this root is ¥ =¢
and z = —¢.

The other two roots will be found greater than ¢, and
are therefore excluded.

The Stability of a Floating Body.

67. The conditions that a body may rest in a fluid
are, as we have seen, two; it remains now to consider
what is the nature of the equilibrium in which it exists,
that is, if the body be slightly disturbed from that posi-
tion, by being moved through a small angle about some
axis, and then left to itself, whether it will have a tendency
to return to its original position, or to recede from it, or to
move neither way, but rests in that new position.

These distinctions in the nature of the equilibrium
have, as is well known, received the corresponding terms
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of stable, unstable, and indifferent or neutral equilibrium,
they apply to the nature of the equilibrium of any system
acted on by any forces and are therefore applicable to a
floating body. The general proposition therefore that the
positions of stable and unstable equilibrium recur alter-
nately will obtain here.

In general when a floating body is disturbed there
will be a motion both of translation and of rotation
about some axis; as these however may be independent,
we shall consider only the motion of rotation, and suppose
that the body is disturbed by being caused to revolve
about some axis, and then left to itself; it is the mo-

tion after the disturbance has ceased which we have to
examine.

It will always be supposed that the volume of the fluid

displaced is unaltered by the disturbance, for the impressed "

force being the weight of the fluid displaced, if there be
any variation in its volume a motion of translation must
occur as well as a motion of rotation.

It will also be supposed that the body is symmetrical

about a vertical plane, and that the disturbance leaves the’

plane of symmetry vertical.

Under these circumstances it will be found that in
some cases, where the body is left to itself, its motions will
be vertical and angular simultaneously. o illustrate
this, we shall premise the following proposition.

68. Pror. If a body be turned through a small
angle about an axis through the centre of gravity of
the plane of floatation, the fluid displaced is unaltered.

Let ADB (Fig. 16.), represent the body in its new
position, having been turned through a small angle about
an axis through C, the centre of gravity of the plane of
floatation AB.

Let the axis of rotation be taken for the axis of y, and
let @ be the angle of displacement.

r {“..
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The wedges 4Ca, BCH may be considered as generated
by the revolution of €4 and CB, hence if dady be an
clement of the plane C4 at a distance @, y, from C the
elementary prism which is generated = 28 . dady, therefore,

the wedge ACa = [[xfdady = 0 ffxdxdy.

Similarly, if da’dy be an element in the plane CB at the
distance a’y’ from C,

the wedge BCb = 0 [[2'da’dy’.
But by the property of the centre of gravity

[frdady = [[x'da'dy’s
.. the wedge 4Ca = the wedge BCb.

Hence aDb = ADB or the volume of the body im-
mersed or of the fluid displaced is unaltered.

69. Pror. To ewplain the connection between the
vertical and angular motions of a floating body.

A body immersed in a fluid is acted on by two forces,
its own weight applied at its centre of gravity, and the
weight of the fluid displaced applied at its centre of
gravity, Now the motion of the centre of gravity of a
body will be the same as if these forces were applied at
that point, and motion of rotation round the centre of
gravity will be the same as if that point were fixed and
the same forces applied. Suppose the body to have been
disturbed from its position of equilibrium by being made
to revolve about an axis through the centre of gravity of
the plane of floatation, then as has been shewn the volume
of the fluid displaced will not be altered. The centre of
gravity of the body will describe a small eircular arc which
may be considered as a straight line. If the centre of
gravity of the body be (in the position of equilibrium)
vertically beneath the centre of gravity of the plane of
floatation, this small straight line will be horizontal.
There is no force at present tending to move the centre
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of gravity of the body, and if the equilibrium be stable,
so that the angular motion round the centre of gravity
brings the body back to its original position of equili-
brium, the centre of gravity of the original plane of
floatation will remain in the surface of the fluid. In this
case then the small angular motions will be unattended
with any vertical ones, or there will be motion of rota-
tion simply.

But if in the position of equilibrium the centre of
gravity of the body is not vertically beneath the centre
of gravity of the plane of floatation, when the body is
disturbed as before, its centre of gravity will be raised
or lowered, and though there is no force in consequence
of such a disturbance tending to produce a motion of
translation in the centre of gravity but only of rotation
about it, yet in consequence of this angular motion round
that point the centre of gravity of the original plane of
floatation will be raised above or lowered beneath the
surface of the fluid. 'The volume of the fluid displaced
will therefore be altered, and the weights of the body and
of this fluid thus becoming unequal, a force will be gene-
rated which tends to produce a vertical motion in the centre

of gravity of the body.

Hence there must be simultaneous motions of transla-
tion and of rotation.

In bodies which are symmetrical with respect to the
vertical line through their centre of gravity, it is evident
that the centre of gravity of the plane of floatation will
be in this line. But there are cases in which it is not,
as for instance, in a scalene triangle with one angle im-
mersed.

70. The connection which thus subsists between the
motions of translation and rotation, when the volume of the
fluid displaced remains unaltered, having been shewn, we
shall now suppose the floating body to assume a new
position, and consider simply the force which exists in
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consequence of this new ]msitiml to move it about an
axis through its centre of gravity.

The body is supposed to be symmetrical about a ver-
tical plane both before and after the disturbance, that is,
in its old and new position, and the volume of the fluid
displaced is constant. It will be convenient to premise
the following proposition.

71. Pror. The intersection of the two planes of
floatation is a line passing through their common cenire
of gravity.

Let ADB (Fig. 16.), be the section of the floating
body by the plane of symmetry and let the two planes

of floatation 4B and ab intersect in C, then C is their
common centre of gravity.

Since the fluid displaced is invariable, subtracting the
common part e DB, the wedge A4C a = the wedge BCb.

The wedges may be divided into elementary prisms
the base of one of which = dady and its height = 20,
therefore,

the wedge ACa = [[x@dxdy =0 [fvdvdy = Ah,

if 4 be the area of the portion C'a of the plane of float-
ation and & the distance of its centre of gravity from C.

Similarly the wedge BCbh = AW, therefore dh = AR,
for the wedges are equal.

The distance of the centre of gravity of the plane ab

Ah— AW IR e

—_— = 5 .
P , or is a

The same reasoning would apply to 4B, for the base
dady of the elementary prisms may be taken in either
plane, hence the centre of gravity of the two planes is
in the line of their intersection and is therefore at C,
since the solid is symmetrical about the vertical plane.

from C =
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72. Pror. To determine the nature of the equili-
brivm of a floating body.

This as we have seen depends on the tendency of its
motion when left to itself after an angular disturbance;
hence the moment of the impressed force, that is, of the
fluid displaced about the centre of gravity of the body,
is the qmmtit}' to be discovered.

Let AB, ab (I'ig. 16.), be the planes of floatation of
the old.and new position; they will intersect in C' their
common centre of gravity (Art. 71).

Let G, H be the centres of gravity of the body and
of the fluid displaced before the disturbance, and H' the
centre of gravity of the fluid displaced in the new position.

Through H' draw the vertical H'M and draw GN
horizontal.

The fluid displaced acts upwards in H'M, and if W
be the weight of the body, that is, of the fluid displaced,
the moment of the impressed force about G = W.GN
and the equilibrium will be stable, unstable, or indifferent,
according as this force diminishes or increases, or does
not affect the angle GMH : to determine these different
cases for any given body we must express GN in terms
of assigned or assignable quantities. This may be readily
effected by taking the moments of the whole body made
up in two different ways.

The moments may be taken with respect to any ver-
tical plane; let them be taken with respect to the vertical
through C.

Let g and g’ be the centres of gravity of the wedges,
Cm and Cm’ their horizontal distances; then, since

ACa +aDb = ADB + BCb

and the moment of each of these equals the moment of

IJ’
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ADb, we have drawing the horizontals GE, HF, H'F,
ACa.Cm + aCh.HF' = ADB.HF + ( — BCbh.Cm)),

or, V being the volume of the part immersed and observ-
ing that HF — H'F'= GN + HL,

V.(GN + HL) = ACa.Cm + BCb.Cm......... (1).
But ACa.Cm=0[[vdadyx Cm.........(Art. 71.)
= 0 [fa*dady

by the property of the centre of gravity.
Similarly BCb.Cm'= 0 [[a'da’dy’ x Cm’
=0 [[a"da’ dy.

And the sum of these two double integrals 1s the mo-
ment of inertia of the plane of floatation ab about an

axis through C, let this be I;
. V(GN+ HL)=01I, orGN =10 {-.; - HL.
Let GH = )\, then HL =\ sinf = X0 nearly;
I
. e GN=9(F _?‘.);
whence GN is known for any given body.

I
The moment of the impressed force = W6 (F - ?l) :

I aE
When f,_iai greater than A this is always positive, or

the moment of the fluid displaced brings the body back

to its original position; the equilibrium is therefore stable.

d :
When 7= A the moment is zero, or the body has no

tendency to move; the equilibrium is therefore neutral or
indifferent.
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/ ;
When 718 less than A the quantity becomes negative,

or the moment evidently moves the body farther from its
original position: the equilibrium is therefore unstable.

This moment is a measure of the stability of the float-
. ; e
ing body, and depends entirely on the quantity -~ A, that

is, on the moment of inertia of the plane of floatation, the
quantity of the fluid displaced, and the relative position
of the centre of gravity of the body and of the fluid
displaced. Hence the equilibrium will always be stable
if this is always positive, which will be the case if G is
below H, for then, as will be seen at once by retracing
the steps of the investigation, the term (—2A) will be
positive. The equilibrium then is stable, unstable, or in-

’ A I : e :
different, according as (T’ + }\) is positive, negative, or
Zero,

73. Pror. To determine the metacentre of a float-
ing body.
The nature of the equilibrium evidently depends on

the position of M the metacentre. Then, pursuing the
investigation as in the preceding article, we have by (1),

GN+HL=B’—F.
V
But GN + HL = HM .sin = HM .6, nearly;
I I
e HJM.H-—-BF., or HM = 'F_;.1

whence M is fully known.
Also, GN=GMsinf =GM.0, and HG = A6.

Let GM = pu, then

I
L= -I-;=Fl.



a4 THE EQUILIBRIUM OF

according as G is above or below H. 'I'he determination
of the nature of the equilibrium of a floating body depends
on the value of p.

If u be positive, the equilibvium is stable and M is
above G.

If u be negative, the equilibrium is unstable and M
is below G.

If u =0, the equilibrium is neutral and M coincides
with .

Hence the equilibrium is stable, unstable, and indif-
ferent, as M is above, below, or coincident with G.

From an inspection of the figure, it is evident that
when M is above, below, or coincident with G, the equili-
brium will be of the character just assigned to it. Hence,
if a body be ballasted so that M can never come below G,
the equilibrium cannot be unstable.

Ex. A cone floating vertically.

The plane of floatation will be a circle, and let the
cone float with its vertex downwards.

Let @, y be the height and radius of the base of the
cone which is immersed, and a, b of the whole cone. Then

I = %WEIIII; l - :;E {ﬂ = -I—')*, }.l' - -;IJ_ iﬂ-yﬂir_

Making these substitutions in the value of u, we have

3y ,
= -!'- {IF (frf o ]}

But the part immersed bears a constant ratio to the
whole body, (1° Art. 63.), and the cones being similar solids
are to each other as the cubes of their height or of the
radit of their bases, hence,

W = aat andtart = gbs
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A b 3
- L = g —  and n=-
ot il 4

i
fst= = (1=sh)} b,

(1S

whence the stability for particular values of s and of the

7

ratio — may be determined.
i

If the cone float with its base immersed, we must ex-
press ¥ and A in terms of the proper quantities, and
replace s by (1 —s), as in 2°. Art. 63.

The Oscillations of Floating Bodies.

74. In the preceding propositions, the conditions of
the equilibrium and stability of floating bodies have been
fully considered ; we have now to consider the vertical and
angular oscillations consequent on a body being disturbed
and then left to itself.

The hml}' when left to itself will make oscillations
about its original position of equilibrium, until by the
action of the fluid it is reduced to rest.

In a complete solution of this problem the motion of
the fluid ought to be taken into the account, as this how-
ever would be an investigation of extreme difficulty, we
shall consider simply the vertical and angular oscillations
about the centre of gravity of a body symmetrical about
a vertical plane.

In determining the time of an oscillation, no account need
be taken of the resistance of the fluid, for this resistance
is a disturbing force which affects the extent but not the
time of each oscillation ; and if the disturbing force ceased
at any instant to act, the body would go on for ever oscil-
lating in an are of equal extent to that which it had the
instant at which the disturbing force ceased to act*.

Hence, when the oscillations are small the time may be
found very accurately.

 Any's Planetory Theory,  Arte 10
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75. Pror. To determine the time of the small ver-
tical oscillations of a body floating in a fluid.

The vertical motions of the body are the same as the
motions of its centre of gravity, and the motion of the
centre of gravity is the same as if the whole mass were
collected in it, and the forces applied immediately to it.

Now the resultant of all the forces acting on a body
floating in a fluid, is a single force equal to the weight of
the fluid displaced. If, therefore, the body floating in the
fluid be depressed through any space and then left to itself,
the force applied to the body will be the whole weight of
the fluid displaced, the resultant of which being a single
force in a wvertical direction, the motion of the centre of
-gravity, and therefore the motion of the body will be
wholly in a vertical direction.

The body not being wholly immersed, let ¥ be the
volume of the fluid displaced when the body is at rest, and
V' that of the whole body. Then (Art. 62.)

Let the centre of gravity be the origin of co-ordinates,
and a plane parallel to the surface of the fluid be the plane
of xy.

Let & be the distance of the centre of gravity from its
original position at any time (#), then — d;‘; is the effective
accelerating force on the body to bring it back to its ori-
ginal position.

The impressed force is the weight of the fluid displaced
by the motion of the body.

Let U7 be the volume of the fluid displaced by the
depression of the body, its weight = Upg; then since V'p’
is the mass moved,
f;rpg Efg‘

s == bl

the accelerating force =
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The impressed and effective forces are equivalent,
therefore
i
U d =

7 dt®’

But since the motion is small, we may assume U= K& 2
where A is the area of the plane of floatation ;

.~L~[}F=—-I—!— Ty ‘.t. ‘L': < '\/z%?
whence multiplying by 2dx and integrating

dz\* Kg .

(_E?) R

When the body is at its lowest point, that is, when the
motion commences let 2 = a;

Kg
L 0=0C- F— ﬂ?,

and subtracting from the preceding,

dey* g0
('&3) kst

whence the velocity is known, To determine the time

t_(F’)i " —dx
- \Kg/ Jy @i -#
STt
_(Eg) T

this therefore is the time of the body returning to its ori-
ginal position of rest, and it will go on oscillating till
reduced to rest, the time of each whole oscillation being

iy \/7 , that is, the motions are isochronous with those
Kg

of a cycloidal pendulum whose length is e
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CHAPTER VIL

ON THE APPLICATIONS OF THE BAROMETER.

77. From the explanation which has been already
given of the barometer (Art. i4.) it appears that the
atmospheric pressure is in equilibrium with the weight
of the mercury in the barometer tube: hence, if m be
the density of mercury, g the accelerating force of gravity,
# the difference of level in the two branches of the tube,
and p, the atmospherie pressure, we have

mgh = py.

It must be supposed that the barometer is accurately
filled, so that there is no sensible pressure above the
mercury at the closed end of the tube. Now the open
end of the tube may be considered as produced to the
limit of the atmosphere; then p, is the weight of the
vertical and cylindrical atmospheric column whose base
is equal to the unit of area. This weight, as appears from
the preceding condition, 1s equal to the weight of a column
of mercury of the same base, and whose height, as ap-
pears from observations on the barometer, to be very accu-
rately 29.92 inches as its mean value. The pressure then
of the atmosphere on each square inch of the earth’s surface
will be 29.02 x the weight of a cubic inch of mercury
= 99.92 x 7.85 ounces™ = 14.7 pounds avoirdupois.

As we ascend above the surface of the earth, the height
and consequently the weight of the superincumbent column
of the atmosphere diminishes; the height therefore, and

* Hydrostatics. Art. 8. Ex, 6.



THE APPLICATIONS OF THE BAROMETER. 91

consequently the weight of the sustained barometrie column
must diminish also; there must then exist some relation
between the height which has been ascended, and the
height of the sustained column, and it is the object of
the present chapter to ascertain this relation.

78. The mass of the atmosphere may be compared

with the mass of the earth by the preceding article.

Let & be the surface of the earth expressed in square
inches, then the mass of the atmosphere may be considered
as equal to m Sh.

The mass of the earth (considered spherical) = % pS'r,
if p be its mean density, and » its radius. Then

the mass of the atmosphere : mass of the earth
=+ mSh : -:]j-pSr

b

I P_T'

But the mean density of the earth is about 5% times
that of water, and the density of mercury is about 13}
that of water at the same temperature and pressure;

1 ' :
. —=2.5, nr_-arly; also = 4000 miles, and /& = 20.9 inches,
Il'.]
from which data it will be found that the mass of the
atmosphere is a little less than one millionth part of the
mass of the earth.

79. If the air had the same density throughout the
atmospheric column, the height of this column, and the
height (%) of the barometric column would be inversely
proportional to the densities of the air and the mercury.

Let H be the height of the atmospheric column, and
p its mean density, then

H k= s o H=—h.

1
H E 'g

-
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m 13.58 %
But — = =
f 001209

. H = 1045 x 20.9 = 4.9 miles, nearly.

The atmosphere must evidently extend much higher than
this, since the density and weight of its strata diminish
as we ascend above the surface of the earth. We shall fix
a limit to which it cannot reach by determining the point
at which the centrifugal force is equal to gravity; for
from that point the centrifugal force would disperse the
molecules of air in space. This limit is less elevated at
the equator than at any other place.

At the equator the centrifugal force = i

289 '’
At a height % ahove the surface it becomes
Z(r + =)
a8gr
ar

and the intensity of gravity at that point is ("_)94
3 r+

the limit pmposed is given therefore by the equation
r+z  gr

e ———

a89r (r + =)*’

" o 3
whence (1 + —) = 280, org= h“;’ 280 — 1} 7y

r

that is, about five times the radius of the earth. This
might be near the truth were the temperature invariable
as we ascend, but the repulsive power of the particles
is so rapidly diminished by the cold, that a limit is soon
fixed to the extent of the atmosphere.

The general equation p = kp is true in all ordinary
cases, but evidently fails in extreme cases, as when the
condensation or rarefaction is extreme. The accurate
equation must be of the form p =k (p — d), where ¢ is a

* Table of Specific Gravities. t Figure of the Earth.
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very small quantity, which may generally be omitted, but
at the limit of the atmosphere it is appreciable.

80. The force of gravity may also be measured by
observations on the barometric column: for if the mano-
meter (Art. 45.) be observed at different places on the
earth’s surface, the temperature and density of the air
contained in the vessel C (Fig. 7.) remaining the same,
the height of the mercury must vary inversely as the
gravity, in order that the weight of the column may
remain the same.

In order to make these observations with accuracy,
the variation in the volume of the air contained in the
vessel at C, in connection with the height of the mercury
in the closed tube must be taken into the aceount.

Let g be the force of gravity, and % the height of
the column at one station, the surfaces of the mercury
in the manometer being at P and Q. When the mano-
meter is transferred to another place, let g, &’ be the values
of & and &, the surfaces of the mercury being at P and Q.

The pressures of the barometric columns in the two
cases will be as gh and g'A'; these will be proportional
to the density of the air in the manometer, and conse-
quently in the inverse ratio of its volume.

Let V and V' be its volume at the two stations, then

gh V'
gi&.r = V 3

Let % be the arvea of a horizontal section of the tube
at P, then the volume of mercury contained between P
and P’ will equal (A= %) %. But the mercury being in-
compressible, this must be equal to the variation V'— ¥
of the volume of the elastic fluid, therefore

Vi= V4 (K - h) k;
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whence substituting for ¥’ in the preceding

a2 A Vh

g AV+ (R —h)E}R’
which gives the ratio of the intensities of gravity at the
two places. This method is precarious, however carefully
the observations are made, and the accuracy of the results

cannot be compared with the accuracy of those derived
from experiments with a pendulum.

81. It is found by experiment that the air and all
other gases when subject to the same and a constant pres-
sure dilate equally for equal increments of temperature,
and this increment of bulk is found to be equal to gth
of its volume for each degree of Fahrenheit®.

If then the volume of any gas be constant, its elastic
force will increase, and if the elastic force be constant,
that is, if it be subject to the same pressure, its volume
will increase for every increase of temperature. It is
therefore of the greatest importance to connect these quan-
tities by an equation.

Pror. To evpress the elustic force of any gas as a
function of its density and temperature.

Let V be the given volume of a gas at the standard
temperature, e its elastic force, and D its density.

The elastic force e, that is, the pressure on a unit of
surface remaining the same, let the temperature be in-
creased by €, let V' be the volume, and D' the density
of the gas, then if a be the increment of bulk for each

degree of temperature,

V' = F{l -+ aﬁ)
But the density varies inversely as the volume;
! 1 -D
.-.E—F Dl

D_LHI"E=1+HB

* Hydrostatics. Art. 73,

e

——aa
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Now suppose that the pressure is changed, the tempera-
ture remaining constant, namely, let p be the value of e,
and p the value of I, then by Mariotte’s law,

A e s L
E—Dr'r "P—B;—PI}(]."'HH)-

e . .
Let i k a constant quantity which expresses the

~ ratio between the elastic force and the density at a given
temperature, therefore

p=kp(l + ab).

This formula is applicable to all gases, vapours, or their
mixtures. '

82. Pror. To find the difference of the altitude
of two stations by means of the barometer.

The general equation between the pressure at any point
of a fluid mass, and the impressed forces is (Art. 10.)

dp = p(Xda + Ydy + Zdz).

In the atmosphere, gravity being the only force

g.’.ﬂ
X=0, Y=0, and Z=—"——
(r+ =)
for a point at a height ¥ above the surface of the earth,
g being the gravity at the surface, and » the radius of
the earth. Then since this force tends to diminish = it
is negative; the equation becomes therefore
dp  grids

P

But p = kp (1 + af) (Art. 81.) hence dividing,

dpng grids
p  k(+ab)(r+2)°
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It is impossible to integrate this expression, since 0
is an unknown function of z; and the exact law of the
variation of the temperature being unknown, we shall con-
sider @ as constant; integrating therefore on this hypo-

thesis,

ys 1
log /e . + C.
= k(1 +al) r+=
In order to determine the constant, let p, be the value
of p when x = 0, that is, the pressure at the surface of

the earth, then

g 1
]. B e R - 1PN [or
og p, %0 +ab) ?‘+C’

and subtracting

P ar &
log — =

P, k(1+ab (r+2) M

To apply this formula to determine the distance of
any point above the surface of the earth.

Let & be the height of the upper station, and let p’
be the value of p at that point.

Let =, be the number of degrees by which the tem-
perature at the surface of the earth exceeds the standard
temperature, and 7’ the number of degrees for the point
at the height 2.

Now the change of temperature as we ascend from
the surface of the earth is gradual and nearly uniform
for small elevations, hence there will be no great error
T, T

in assuming the quantity @ =
%

Let h, k' be the observed heights of the barometric

column at the lower and upper station, then, since

(Art. 77.) p,=mgh,, p'=mgh'
E h

=

pl’ ‘&Ir

o
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Making then these substitutions in the equation (1) and
changing the sign, since

r

Iug?é =— lng}i we have
P b,
Ing%: e (2),
k(l +aT’j’T)(r+z’)

whence 2’ the height above the surface of the earth may
be found, since all the other quantities are known, and
the height of any other station being ascertained in the
same manner, the elevation of one above the other is
determined.

83. The preceding equation will require several cor-
rections.

1. The temperature will be different at the station
whose height is required, and at the surface of the earth,
and the mercury will be denser at the colder place than
at the other, and consequently the same atmospheric
pressure sustains a less column than it would have sus-
tained had the temperature remained unchanged. Hence
to compare the pressures at the station and at the surface
of the earth, the barometric column must be reduced to
the same density; and the column at the colder place
must be increased by the quantity by which it would
expand at the temperature of the warmer.

Let 3 be the coefficient expressing the change in bulk
which each unit of volume undergoes for each degree of
temperature.

Then since (7, — 7') is the difference of temperature
of the two places (the upper being taken as the colder),
each unit of bulk of the barometric column is diminished
by 3(r,— 7); and this correction may be considered as
due to the height simply, no correction being necessary

for the diameter of the column, since glass and mercury
N
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expand and contract equally at ordinary temperatures.
Instead therefore of using the observed height k', we must

use
K1+ B(r, -}
Hence log &' is to be replaced by
loghh" }1+ B (7, — )t =log I + log {1 + B (T, - )}
= log K+ Mj3 (TJ —7')s
nearly, where M is the modulus of the system of logarithms.
9", The force of gravity varies with the latitude,
hence g ds not constant for all places on the earth’s sur-

face; and the general expression for gravit}r in terms of
the latitude 1is

g=E@ +asin®)\)%,
where E is the equatorial gravity, and » a known quan-
tity.
Then if G be the force of gravity at latitude 45%,
G=E(1+n)
14+ nsin® A

1 +n

=Gi1- 2 (1 — 2 sin* )} nearly

T
= G (1 - cos2)).

3% The coefficient @ will require some correction, and
also the constant k.

In determining the values of these quantities, the air
was either supposed to be dry, that is, not to contain
any agueous vapour, or that the quantity of that vapour
is constant. But as the temperature increases, the quan-
tity of vapour increases also in the atmosphere, and the
elastic force of the vapour being added to the elastic force
of the air, the increment of volume for a given volume
of air must be greater for air which contains vapour than
for dry air, hence « must be increased by a small quantity.

* Figure of the Earth.
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For the same reason & will require a small correction,
since it expresses the ratio of the elastic force to the
density at a given temperature of air that is dry, or
contains a constant quantity of vapour.

84. For practical purposes an approximate value of
the general equation (2), (Art. 82.), may be found. Multi-
plying up it becomes

r+g . g % o
(] r, =l
TR : 2
But = (1——) =2
r+ % r

very nearly, in all cases to which the barometer can gene-
rally be applied ;
s + T ft
'af=—(1+a’r' T)lﬂgrf
1 L3

B &

h,
) log ik

!
T, +T

fc
=-M (1 +
o %
where M is the modulus of the common system of log-
arithms.

F
Now - M may be taken equal to 20117 yards, and
g

a 1 . . :
~ equal to Sh0; = mean values including the corrections.
2 900

Whenece

| Y/
% = 20117 {1 +T‘9";;} lng}:{,

which will be found a convenient formula for determining
in yards the elevation of one station above another, the
temperatures being the number of degrees above 52" F.



CHAPTER VIIL

ON CAPILLARY ATTRACTION.

85. TuE centres of the attractive or repulsive forces
which act on a fluid mass, may be all the other points of
the fluid. In this case, the components of X, ¥, Z, of
the accelerating force acting on the point P, will consist
of an infinite number of terms; these may be certain
functions of @, y, =, common to all points of the fluid,
if we suppose that the principle of the equality of action
and reaction obtain in their mutual attractions and re-
pulsions, and that all the points are besides submitted to
the same extraneous forces.

In nature, these forces are of two kinds, the one
varying according to the inverse square of the distance,
and the intensities of the other are expressed by functions
which decrease with extreme rapidity and are not sensible
except at insensible distances.

The components of the former of these may be calecu-
lated by dividing the fluid into small elementary masses,
and obtaining by the integral calculus the sum of the
attractive or repulsive forces in each direction. The other
class of forces, which are molecular forces, and which are
either attractive or repulsive according as the attraction of
the ponderable matter is greater or less than the repulsive
power which is due to heat, cannot be taken any account
of in the calculation of the forces X, ¥, Z, for any point
in the interior of the fluid mass. For these molecular
forces are those which produce the pressure p equal on all
sides of the point, and which we have already considered »
in forming the equations of equilibrium.
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It follows from this latter consideration, that the equa-
tions (1), (Art. 10.) which we have obtained, are the
necessary and sufficient conditions of equilibrium of all
the forces, and that the molecular forces which act on
any element of a fluid mass are comprised in them: so
that the equilibrium most certainly subsists when there is
a value of p which satisfies these equations for all the
points of the fluid, which coincides with the value given
directly of the pressure at a free surface, and which does

not become negative at any point so long as the particles
of the fluid remain contiguous.

If the law of these molecular forces were riven as a
function of the distance, and we could deduce from these
forces the expression for p as a function of the mean
interval between the molecules, it might be substituted in
the equations (1). One of them would determine the mag-
nitude of this interval which exists in a state of equili-
brium about the point P, and the other two would express
the conditions of that equilibrium.

The numerical value of p would be afterwards found
from that of the mean interval or from the corresponding
value of the density, and the method in which this pressure
p may vary very much, for the very small variations of the
density which we observe in fluids is explained by Poisson.*
But the direct determination of the pressure p being im-
possible, we are obliged to deduce its value from the con-
ditions of equilibrium themselves, or from the equation (2)
which results from these.

When the point P is situated at the surface of the
fluid or is distant from it by a less quantity than the
radius of the action of the molecular forces, we must take
account of these forces, and also of the rapid variation of
the density at the surface, in the calculation of their com-
ponents X, ¥, Z, and consequently of the value of the
pressure p deduced from (2). Thence there arises an

* Jowrnal de " Ecole Polytechnique, 20 cahier.
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influence of molecular forces on the figure of a fluid in
equilibrium, which is not in general sensible, and which
cannot be so except in capillary spaces.

86. 1If a fluid be regarded as composed of atoms held
in places of equilibrium by attractive and repulsive forces
proceeding from the atoms, it will necessarily follow that
every change of pressure is accompanied by a change of
density, and that at their surfaces there will be a rapid
change of density within a small, and, as experience shews,
insensible extent, depending on the sphere of sensible ac-
tivity of the molecular forces. In strictness, this super-
ficial variation of density should, as we have just said, be
taken into account in treating of capillary action, as Pois-
son has done in his New Theory of Capillary Action ;
but as neither theory nor experiment has hitherto deter-
mined to what degree it affects capillary phaenomena,
and, considering the great repulsive and feeble attractive
molecular action of fluids, the effect is probably of small
magnitude, we shall therefore neglect it in the following
propositions, and suppose the fluid to be perfectly incom-
pressible and to be acted upon, in addition to gravity,
only by the molecular attraction of its own particles and
of those of the solid with which it is in contact. The
law of the attraction is unknown, but as experience
teaches, must be considered sensible only at insensible
distances from the attracting centres. With this limita-
tion Problems in Capillary Attraction are to be treated
as any other questions in Hydrostatics, with the modifica-
tions that the peculiar nature of the forces introduces.

87. Let AB and CD (Fig. 17.) be the sides of a
colid between which fluid is drawn up, and abe the capil-
lary surface of the fluid. Let P and Q be points in the
capillary surface and in the horizontal surface of the
external fluid, both points being beyond the sphere of the
molecular action of the particles of the solid. Let an
indefinitely small canal be drawn from P to Q, its extre-
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mities being perpendicular to the surfaces at P and @, and
having every point beyond the sphere of the molecular
attractions of the particles of the solid.

Pror. To find the condition of equilibrium of this
canal.

The forces that sustain it are the molecular attractions
of the surrounding fluid and gravity ; the molecular attrac-
tions of the solid being by the hypothesis laid out of the
case, every point of the canal being beyond the sphere of
these actions. If we find the resolved parts of these forces
in the direction of the axis of the canal and equate their
sum to zero since the canal is in equilibrium, we shall have
an equation for determining the form of the surface abe.

Take any element as R at a sensible distance from the
extremities of the canal; the molecular attractions on this
element must be equal in opposite directions, and therefore
destroy each other. This will not be the case at the ex-
tremity Q, where the attractions of the surrounding fluid
on an element Qg downwards will not be counteracted by
an upward attraction; and r_'onsequentl}', the canal will be
urged in a direction from @ towards R.

If a tangent plane be drawn to the capillary surface at
P, the fluid below this plane will urge an element at that
extremity of the canal in the same manner and to the same
degree as the fluid below Q urges an element at that ex-
tremity. These forces acting in opposite directions along
the canal will destroy each other.

The only remaining molecular attraction, is that of the
fluid contained between the capillary surface a Pe and the
tangent plane 7'P. Let the moving force on the canal
due to this attraction for the present be considered equal
to Ppk®, where p is the density of the fluid, &* the section
of the canal, and P is to be determined. Opposed to
this force is the action of gravity, tending to depress the
part PS which rises above the external horizontal surface.



104 CAPILLARY ATTRACTION.

The action of gravity on the part QRS of the canal
has plainly no tendency either to elevate or to depress
the fluid. Now if = be the vertical height of the point P
above the horizontal surface, the action of gravity on PS§
resolved in the direction of its length is to produce a
weight equal to that of a column of height = and base i
Hence

Ppk®=gpzk’, or P=gs.

88. Pror. To find an ewpression for P in terms
of the principal radii of curvature of the surface.

Let the tangent plane at any point O (Fig. 18.) in the
surface be taken for the plane of #y, then O a normal to
the surface will be the axis of .

Let a plane passing through the normal, and making
an angle @ with the plane of a%, intersect the capillary
surface and the tangent plane at O in OP and OT. Then
+Ox, =0y are the planes of maximum and minimum

curvature.

Let Of =7, pt =%, and R be the radius of curvature
of OpP at O, then
ot 7
R =—, whence 2=—:.
2pt o R
Let R,, R, be the greatest and least radii of curva-
ture ; then, since
1 cos’f@ sin*0

i EE A o

3

we have

=
i

e {cnsiﬂ s1n° @ }
¥ =— ;
e R

Let another plane be conceived drawn through the
normal Oz, making an angle 6 +d@ with the plane of
xx: then we shall have a small pyramid or wedge whose
four edges are the sections of the normal planes with
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the capillary surface and the tangent plane. Let an
elementary column of this pyramid be taken as at pt.

The column thus taken is such as pbed (Fig. 19.),
where apbe is the portion of the capillary surface, and
tdef of the tangent plane; whence it will be seen at
once that

the content of this column pf = xrd0dr.

As the attraction is sensible only for very small dis-
tances from the canal whose axis will coincide with Oz,
the height = of the column may be considered to be al ways
very small, and its attraction to be the same as if collected
at its middle point o.

Let 0G ==, GO =r,, and pk*dz, be the element of
the canal at G; the attraction then of the column at pt
upon it is, if ¢ () be the law of the molecular attraction,

grd@drg(r,) x Fpdxz,.

Resolving this force in the direction GO, the part re-
quired is
%

Fpg(r)zrdrdfds x —,

'rl
which, substituting the preceding value of =, becomes

- 1 cos’@~ sin*f
é-fc‘qu(?'t).r—u.r“'dr.x,d;, ( R + 73 )dﬁ';

— | d8.
R S el

1 cos®f  sin®@
P [[[3plr) - Pdrmds, ( )
1

Integrating with respect to 8, from 8 =0 to @ =2,

1 1

P=1 (E + E) [fridp(r) Pdrzdx,.
0
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Now r'=#"+ ¢ and as =, 1s to vary independently
l]F I", T]{f’}*l - ﬂld:‘ﬁ‘l;

- ff¢ (rl}%xlds:,rzdr — [fep (rr)dryp*dr.

Here the integration is to be performed with respect
to r mnﬂidering r, as constant. Hence the limits of this
integration must be from 7 =0 when GO =7, to 7="7
when GO =0.

The integral therefore is equal to 4 f¢p (r)r'dr, from
r,=0 to 1, =oc?, as its value is not generally increased
by increasing 7,, on account of the form of the function
¢(r). The last integration cannot be performed, since
the form of the function ¢ is unknown. Let us assume,
however,

+fnn¢{r1}7'|lid'r1 = Hq

Then P=%(-fliﬁ + I;-—)H;
: E

The equation thus obtained is the differential equation
of the capillary surface, by integrating which and deter-
mining the values of the arbitrary constants, the form of
the surface will become known.

We shall proceed in the following articles to apply
the preceding theory to some of the known instances of

capi]]ary attraction.

89. Ex. 1. A eylindrical tube of small diameter.

Let ACDB (Fig. 20.) be the section of the cylindrical
tube, and abe the section of the capillary surface by a
vértical plane through the axis of the tube. Since every

int is symmetrical with respect to this axis, the capillary
surface will be one of revolution.
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Let @, y be the vertical and horizontal co-ordinates
MN, NP of a point P in the section abe.

Thus the radii of greatest and least curvature at the
point P are the normal and radius of curvature at that

dy™\*
1y* (I & dy")
1 ar
d

'y ’

da?

point ; hence

or, writing p and g for the first and second differential
coefficients, and substituting in (4), we have

1 1 q

= e .+ H = gw,
ﬂ{y(l +p) (1 +;ﬂ”)3} 5
E{ P S \YDY
2z (1 +p)t (1 +p)t
Let Mb=~h, bN =a', then

P d dg
_-y:lF!'-+lm".‘ P=df?’ q=di‘

or

} = ayp.

i

and the preceding becomes

H { P Y1g
22 (1 +p%) (14 p*)d
But the first side of the equation is the same as

H d Y

2gda’ A /T4 p*
integrating, therefore, and adding an arbitrary constant,

H
B =hy+2f'yp + C.

E'\/1+p“

When the diameter of the tube is very small, a' will
be small compared with A: hence, neglecting the term

} = hyp + @'yp.
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involving &', and supposing the integral to begin when
y =0, so that the constant becomes nothing, we have

: H 1
gha/1+p*
H
Let —=a; then
gh

l+p=‘=i, and pP=—5-1;
A y'ﬂ T,"E

1 Y ]
R
and, integrating,
&= —+/a* -4+ C.
When y=0, @'=0;
D= A O
and, subtracting from the preceding,

—

d=a-va-9y;

that 1is,
yﬁ =2qx — {ﬁ‘m,

the equation of a circle whose radius is a. The capillary
surface is therefore very nearly spherical.

. H : . :
Since a = o the radius of the capillary surface varies

inversely as A.
Ex. 2. Two parallel plates.

Let AB, CD as before (Fig. 20.) be the sections of
the plates, and abe of the capillary surface by a vertical
plane perpendicular to the plates. Then BD is the dis-
tance of the plates from each other.

The capillary surface will here be cylindrical, and
one of the radii of curvature will be infinite at every

pn‘]tlt :



CAPILLARY ATTRACTION. 109

)i
Hence if R, =", and R, = (1 +p9t
=il

;
the equation (A4) becomes
P H q

2g (1 +p°)}

if Mb=h and bN =&, as in the preceding example.

[}
=x=h+a,

Separating this into two terms by adding and sub-
tracting p° in the numerator,

_f_{,,_‘f P }_k v.
2gl0+p) QY "7

Whence, integrating,

H J
= L Ry +4a?+ C.
284/1 4+ p*
Now p =oc" whena =0,
H
s ——=0
g
whence, by subtraction,
H p ;
— el L S kel il 1.2 ) oo e

Since 2 is small compared with k, we may omit }a’

compared with A, and assuming %z,@, we have

[

. j'_'] _I'.
(1+p)t B’

p ay
1+ p* B B
3 1 2Ba' - a”

1
« Whence 1 + ;)Tz = qr, — m =

B- " 7B
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L3y B-a
s (A ] = ——ae Y
P d:?r 1.?‘ 2!3{[’." -tTJE

and integrating,

y=4/2 Ba' — a”,

the equation to the section, no correction being requisite,
since ¥ and a’ begin together.

The section of the capillary surface is therefore a semi-
circle whose radius is (3. The whole surface is therefore
cylindrical.

H .
We assumed i 3, and in the preceding example
~g
H : i
we assumed == a. It follows, therefore, that if A be
g

the same both for the parallel plates and for the eylindrical
tube, 28 = a.

90. In the preceding investigation every point of
the canal was supposed to be beyond the sphere of the
molecular attraction of the particles of the solid.

Let 4B, CD (Fig. 21.) represent the bounding sur-
faces of the solid, and let 4'B’', ("D’, drawn parallel to
these through the points b, d, of the capillary surface, be
the limits of the sensible molecular attraction of the
sides of the solid.

Draw tangents at these points, meeting the axis MN
in m and n.

The angle which the fluid in the capillary surface
makes with the surface of the solid is called the actual
angle of contact, or, the angle of actual contact.

The angle which the fluid in the capillary surface
makes with the line drawn at the limit of the molecular
attraction of the particles of the solid at the point where
its surface meets this line, is the angle of contact, or,
the theoretical angle of contact.
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In the figure amN is the angle of actual contact,
and bn N the angle of contact.

91. Pror. To determine the law of ascent of a
Jiuid in different capillary tubes, or between parallel
plates separated by different intervals.

The equation (A4) having been obtained on the hy-
pothesis that every part of the canal was beyond the
sphere of the molecular attraction of the particles of the
solid, that is, that the canal was wholly without the por-
tions of the fluid between the side 4B and the line
through b parallel to it, and between the side CD and
the line through ¢ parallel to it, cannot be applied to the
fluid contained between these portions.

The above equation applies therefore to the fluid
bounded by a surface A'B'C'D', similar to the surface
ABCD but not to the fluid which is included between
these two surfaces.

The angles in which the fluid meets these two sur-
faces as well as the forms of the portions ab, ed, of the
surface will depend on the law of the molecular attrac-
tions, and their relative intensities for the solid and the
fluid: they cannot therefore be determined since these
elements are at present unknown: We may however assert,
that, considering the small distances to which the mole-
cular attractions are sensible, the portion @b, of the
curve, and the angles which the tangents at @ and &
make with the vertical are no ways dependant on the
diameter of the capillary tube, they will be the same for
instance, in a tube one-twentieth of an inch in diameter,
as when the fluid ascends against a plane surface.

92. Let us apply these considerations to the pre-
ceding examples.

Let O be the centre of the circular arc bd, and w
the angle of contact, that is, the angle which the tan-
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gent bn makes with the vertical through b. Let Ob =
Od = r, and the chord bd =2b. Then w= bnQ, bN = b,
and since Obn is a right-angled triangle and bN is per-
pendicular on its base, the angle ObN = the angle bn N ;

. b=rcosw, or r=bsecw.

Now since 4B’ is exceedingly near to 4B, bN in the
case of a capillary tube differs by a very small quantity
from the radius of the tube.

H
But, it was shewn (Ex. 1.) that r = —5
g

1
., — = hgegiw, oOC B= Hmsma+
&h R

Consequently, as w 1is the same for tubes of different

diameters ;
" 1
l:xl —
b 3
that is, the height of ascent of the fluid in the capillary
tube is inversely as the radius. And experiments con-

firm this result.

Cor. As h may be taken for the mean height of
ascent, the weight of fluid raised is wbhp very nearly.
This quantity, by substituting for & the above value, is

b H

1

weight of fluid raised varies as cosw. Although the
angle w is not affected by the magnitude of the radius
of the tube, it greatly depends on the matter of which
it is composed, and the state of the internal surface as to
polish or greasiness. The way in which the solid tube
affects the height of ascent, is by determing the magni-
tude of the angle w. The immediate action of the tube
is on the aqeous cylindrical shell, included between the
surfaces ABDC, A'B'D'C, and by the intervention of

P cosw. Hence for a given tube, the

equal to
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this, it supports the rest of the fluid. The vertical action
of the tube on the aqueous cylindrical shell is very nearly
the same as the vertical action of the shell on the rest of
the fluid, since the weight of the shell by reason of its thin-
ness is exceedingly small. If the latter action be calcu-
lated and equated to the weight of fluid raised, this
weight will be found to be proportional to cosw, in con-
firmation of the result obtained above. This calculation
however, which is given in Art. 18. of Poisson’s Treatise,
is too long to be inserted here.

93. When the fluid rises between two plates, 26 is
very nearly the interval between the two plates, and

H
{Ex.2.), r= Hence = h sec w,
2ah 2eh
Hceosw 1 1
ST Sttt et RO
o @b ah

or the height of the fluid varies inversely as the interval
between the plates, and is the same as in a tube where
the radius is equal to the interval between the plates.

If b be given, the height of ascent is greatest when
w = 0.

When w is > 90, the fluid is depressed below the
level of the external fluid as is the case with mercury.

It follows immediately from the law of ascent be-
tween parallel plates above determined, that if two plates
inclined at a very small angle be dipped in a fluid, with
the line of their junction vertical, the fluid will ascend
between them in the form of a rectangular hyperbola, the
asymptotes of which are the line of junction and the in-
tersection of either plate with the horizontal surface of
the fluid. For any two opposite elements of the surfaces
of the plates may be considered as parallel, and the rise
between these elements will consequently be inversely pro-
portional to their distances from each other, and therefore

l.'ll
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inversely proportional to their common distance from the
vertical asymptote, which indicates that the boundary of
the fluid surface will be a rectangular hyperbola.

94. Pror. 7o determine the angle of actual con-
tact, with the capillary surface.

The condition of equilibrium requires, that the re-
sultant of the forces which act at any point of the sur-
face should be perpendicular to the surface, and this
will enable us to determine something about the angle of
actual contact.

We proceed to determine the direction of the resultant
of the forces which act on a particle situated at a or e
Draw a tangent am, and let am N = ¢.

Conceive a plane perpendicular to the plane of the
paper to pass through a, making an angle 6 with 4B,
the dotted line representing its section. Let another plane
be drawn through the same point, making an angle 6 + d@
‘Ir'-'i'l.hI AB.

Then d@ being indefinitely small, the attraction of the
fluid between the planes on the particle at a will vary
as df. Let it be equal to gqdf. The parts of this, in
the vertical and horizontal direction respectively, are
qdBcosf, and qdfsin @, hence,

the total vertical attraction = [ ? g cos d@ = g sin ¢,
the total horizontal attraction = | ?¢sin@df = g(1 — cos P)-

The total action of the solid, which will be whelly
in the horizontal direction, will be found by putting ¢
for ¢, and 180" for ¢ in the last expression, therefore

the total action of the solid = 24

The resulting attraction of the fluid between the sur-
face ab, and the tangent plane am, cannot be calculated
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as the form of the surface is unknown. It will in general
be small, and its direction will very nearly coincide with
am; let its value be u, then g being the force of gravity,
we have, the total force

in the vertical direction = g + ¢ sin P + mcos ¢,
in the horizontal direction = 24" - ¢ (1 — cos¢p) — psin ¢p.

The resultant of these is perpendicular to the surface
at a, that is, to am, their ratio must equal tan¢; or
calling then X and ¥ respectively, and R their resultant,
we have X = Rsin¢, Y = Rcosq, whence

g+qsinq;+pmsgb" iy
o e »

2¢ —q(1 —cosg) — using
. geos g 4+ { sin ¢pcos + r:ns”gb
= 24'sin ¢ ~ g sin ¢ (1 — cos ) — u sin’gy,
or (2¢ —q)sing = gcosp + u.

Now, with respect to all fluids which are capable of
hanging in drops of sensible thickness from the horizontal
surface of the solid, 2¢" is greater than 2¢, and both
these quantities are exceedingly greater than gravity.

Also, if ¢p were an angle of considerable magnitude,
u must be exceedingly smaller than the terms on the left
side of the equation. Hence this equation cannot in
general be satisfied, except for a very small value of ¢.

For mercury, which is not capable of suspension from
a solid, that angle is not small. The smallness of this
angle is a necessary condition, that a fluid may be capable
of wetting a solid.

In experiments with capillary tubes, it is usual to
moisten the interior of the tube as much as possible be-
fore the ascent of the fluid in them. In this case, the
ascent is occasioned by the molecular attraction of the
particles of the coating of fluid which lines the cylinder.
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To apply the preceding equation to these cases, we
must put ¢'=g¢q, and ¢ will still be a very small angle
in consequence of the largeness of ¢ in comparsion of g.
The angle b, will in this case be the same as that called
w, and thus, as @ will be very small, the capillary sur-
face will be very nearly a hemisphere, and the height of
ascent the greatest possible.

If 2¢'=q, =90 and pn=0. Hence also w=90%

and A =0, or there is no ascent of the fluid.

95. Pror. A drop of water placed in a conical
tube of very small vertical angle will run towards the
vertex.

Let abde (Fig. 22.) be a drop of water in a coni-
cal surface, and aeb, ¢fd the bounding surfaces.

Let ab =2b, and ed = 2b’, the capillary attraction at

3 ) Hcosw 1

¢ will sustain a column, whose height equals B’
' i Hcosw 1

and at f, will sustain a column whose height = TR

and they act in opposite directions, that at f acting to-

wards e.

Hence the resulting action towards ('

ook

Hceosw (1 I Hceosw b=V
g -“( ] & Wb

This is the force which causes the drop to runm,
which, when the drop is small, and b — b mnearly con-
1

stant, varies as -f;?



CHAPTER IX.

ON THE SPECIFIC HEAT OF GASES, AND ON THE
LAWS OF COOLING.

96. Tue law of Mariotte, that the elastic force is
proportional to the density, is true only on the supposi-
tion that a fluid has had time after condensation or ra-
refaction to return to its original temperature. If this
be not the case, the temperature increases or diminishes
with the density, and the elastic force increasing or de-
creasing by reason of the increase or decrease both of
the density and temperature, ought for the same fluid to
vary in a greater ratio than the density simply. When
the fluid is contained in a vessel whose sides are imper-
meable to heat, it preserves all its caloric during conden-
sation and rarefaction, and consequently, the temperature
increases or diminishes. The same takes place when the
variations in the density are so sudden that no transfer
of heat can take place, that is, in the case of condensa-
tion the heat has not had time to escape by radiation,
or to communicate itself by contact to the neighbouring
substances; and in the case of dilatation, the surrounding
bodies have not had time to communicate to the fluid,
either by radiation or contact, any sensible quantity of
caloric. This is the supposition made, as will be hereafter
seen in the case of the variations of density which take
place in the waves of air which produce sound, the du-
ration of these variations being some thousandths part of
a second.

In this and many other questions it is important to
know the expression for the elastic force of a gas in
terms of the density, and the corresponding elevation or
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~depression of the temperature, the actual quantity of heat
or caloric which the fluid mass contains remaining con-

. stant. In the present state of our knowledge however,

we have not the requisite data for the complete solution

~of the problem, and the following chapter will contain

what is principally at present known from caleulation
and experiment on this important subject.

All gases expand equally for equal increments of
temperature, and we have a relation subsisting between
the elastic force, the density and the temperature, which
is given by the general equation,

P :ffp(l =i ﬂe)--------'(l}!

where a 1s the same for all gases, and & is different for
different gases.

The absolute quantity of heat which a given weight,
as a pound of any substance, contains cannot be calcu-
lated, but it is supposed to be inexhaustible, since ex-
periment shews that all substances, however apparently
devoid of heat, may be made to give some out; it is
also supposed extremely great as compared with the
quantities by which it is increased or diminished, when
the body changes its density or temperature; it is these
variations, that is, the quantities added and subtracted,
which have to be compared together and submitted to
calculation.  This variation is evidently a function of the
elastic force, the density, and the temperature, or of any
two of them, by virtue of the equation (1), which sub-
sists between these three quantities.

97. Pror. To ewpress the variation in the quan-
tity of heat.

Let g be the excess of heat which a given quantity of
any gas, whose elastic force is p, density p, and tempera-
ture 6, contains above the quantity of heat which the
same portion of gas contains at the standard pressure

oo ¥
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and temperature. Then ¢ is a function of p, ps 0, or
by virtue of the equation p = kp(1 + af), we have
q =f (P P}:

where the form of the function must be determined.

The specific heat of the fluid is the quantity of heat

; i onn i
which must be added to raise its temperature one degree, * - s A
or, it is the rate of increase of ¢ with respect to @, and —
b
" d - = ] e,
will therefore be expressed by d—q | el ey
b A M o G
i ot .,-"'- -._ -l PRI ",
Now two cases present themselves; first, we may _, "** = &,
consider the pressure constant, and that the gas has the ir’&: t"".f“l__.'h &
liberty of expanding ;: and secondly, we may consider the =

volume constant, and that the pressure varies with the
temperature.

In the first case p being constant, and p the de-
pendent, and € the independent variable, we have from
(1), (Art. 96.);

dp ap

dp
il R By =
76 \Lital) 3 kap a0 Tk oD

In the second case p being constant, and p the de-
pendent, and 0 the independent variable, we have from
the same equation,

Let ¢ be the specific heat of the gas when the pres-
sure is constant, and ¢, its specific heat when the density

- £l d L] A
is constant, hence since g is the general expression for

de
the specific heat,
dq dqdp dqg dgdp
ﬂ-&_ﬁi_&fiﬁ’ and “’“EE'E}E@'

—
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Substituting from the preceding equations,

dg ap BN g
- dipa—t =l
g T ap and ¢, P (2)s

i

whence, dividing so as to eliminate

dg e dg
S ey SRy
Pdp i Jr:f dp

Let ~ express the ratio of the specific heat of the
gas at a constant pressure to its specific heat at a con-
i

stant volume, or o = —,
('.J
dg dg
—_— + -~ — = l.-.';
dp /P dp

The value of ~ can only be known by experiment, but
4w [ it is evident that its value must be greater than unity,

‘o senfil. fooel for it must require a greater quantity of heat to aug-
f.,-f“‘-_u rd ment the temperature of the gas and dilate it at the
i ens same time, than only to augment its temperature, with-

out removing the particles from each other. We shall
E see hereafter the method of determining it.
i 5". ; I':L" \'.I' - rb* ¥ I.--‘:' i ""I!'.-l,... i

\_"_1_.?1'.'f-l..n1. " L4

g 98. Pror. To determine the increment of tempera-
b il :

et yature for a small condensation. iﬂxftvm eated

} s
p WA ;

/. +ren/Let 0 be the temperature of the gas, and € + w be its

.F'l':-'_ a, s+oo temperature when the density of the fluid has been in-
L.-..:Ir._;;:‘_ ,;..:?L by creased by a very sudden condensation in the ratio of
ht T .tl + & : 1, where s 1s a very small fraction.
B s WA & e

tawel ™ If the loss of heat during the compression is insensible,
g the increase @ of the temperature, corresponding to the
increase s of the density, is the quantity which has to

be determined in the following experiment,
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For this purpose, suppose the atmospheric air to be
the gas in question, and let it be contained in a closed
vessel, the pressure, density, and temperature being the
same both at the exterior and interior, which, for the
external air, we shall suppose represented by p, 5, 6,
during the whole experiment.

Let a small portion of the atmospheric air be removed,
and when the air has acquired its original temperature,
let p,, p’ be its elastic force and density.

M

- - " "I-I
Let a communication be again opened with the ex- ., ..~/ —~

ternal air; the elastic force, the density, and the tem- va,... 4vffe,
perature will increase together, so that in a very slmrfvr_fi--u.' biod ;
@ x5 iy, i the internal and external pressures will be equal R
e _.,:&m,ﬁ to the external pressure. At this instant let the com- W
munication be cut off, and let p" be the density, and
0 + @ the temperature of the internal air. Very soon, Lk \
the increment w of the temperature will vanish, and with- ;""" P,
out the density p” having undergone any change the . . ° .o

ure wi diminishec i ; Al spy
press 11 be nished to p” suppose 2

By
l'l‘\
¥

The dr:-nsit}' of the iuternal air hm’ing passed very

I"II r

rapidly from p’ to p”, if we take s = b 2 , and neglect

¥

P
the small quantity of heat which is absorbed by the vessel

during the small time of this passage, the increase w of
the temperature is that which corresponds to the con-
densation s, and is the quantity which is required. The
change in the thermometer is too slow to indicate this
increment of temperature, which exists only for a very
short period, but its value may be inferred from the three
pressures p, p, p”, as indicated by the heights of a baro-
metric column at the time of the experiment.

Now it is to be observed in the preceding experiment
that there are two epochs, so to speak, at which the same
temperature 6 corresponds to the densities p' and p”, and
to the pressures p’ and p”.

.I -.'{d.
nlhllf""‘&\

LY = £
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Hence, the temperature being constant, we have by
Mariotte’s law

o) oAb
P
oplep

P
whence the condensation s is known.

Again, there are two epochs at which the same density
p" corresponds to the temperatures 6 + w, and 6, the pres-
sures being p and p”.

Hence, since
p=kp’ {1 +a(@+w)}, p"=kp’ (1 +ab),
p 1+a(b+w)

T b e T T S 4
p" 1+ af *),
whence the value of w corresponding to the condensation
s may be determined. il
/' w
/
Eaperimental Determination™. S/

In an experiment made by Desormes and Clements,
when the change of the density from p' tufp" took place
in less than half a second, they observed, |

\
p = 0™.7665, p’ = 0™.7527, P =0".1629,
whence &= 0°0133.

The temperature 6 was 125 C., and since « always
— 0:003875, we deduce from equation (4),

w=1°-3178 C.

Hence for a condensation 00133 without loss of heat,
the temperature of the air is augmented by 1°-3178 C.,
or the temperature of the air would be raised 1° C. for

* In these experiments I have retained the measures of the original
EXPErimenters.
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: 001831
a condensation § = —
1-3178

= (0r0101.

The increase of temperature may, as we shall see here-
after, be deduced from the velocity of sound.

99. Pror. To determine the ratio of the specific
heat of a gas at a constant presswre to its specific heat
at a constant volume.

Let us suppose, as in the preceding article, that the
elastic force and temperature of any gas are p and 6;
the condensation s may be equivalent to that which the
fluid experiences when the temperature is slightly di-
minished, the pressure remaining unaltered. el s

Let ¢ be this slight variation in temperature and p’

the value of p.

Dividing the one by the other, we have, since p=p’,

p 1+a(@—-e . e
p’ 5 1+ af 1+ af ;.
whence % s s very nearly, and therefore,
Pf - IU = e = Bonen -
lﬂ 1 4= HH . .I:I.-'I ¢ '. |

Let ¢' be the quantity of heat which must be com-
municated to the given quantity of gas to raise its
temperature from @ —¢ to @ without changing the pressure
p, then if ¢ be the specific heat at a constant pressure,

f

£ —
I..r!.o-t-l-"‘ L
r -
ff = EE. . b z
S il

After this communication of heat let the fluid be sud-

denly compressed so as to resume its former volume, it S el ady

will then undergo a condensation s, and if there be no
loss of heat, its temperature being augmented by w will
become 0 + w. Under these circumstances the pressure
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will be greater than p, but if without changing its volume
the temperature be allowed to sink as far as 6 —e, this
pressure will diminish at the same time and become p.

During this fall of temperature the gas will lose a
quantity of heat proportional to the small diminution e + w
of temperature, which may be expressed by e (e + w),
since ¢, is its specific heat at a constant volume. The
volume, the temperature, and the pressure being all the
same after this loss of heat as they were before the quan-
tity ¢' of heat was communicated to the fluid, the loss
¢, (e + w) must be equal to ¢, hence

ce=c, (e+ w);

i 1]
s — =] 4+ —.
¢, €
. e
Bubpriomsie yEd drvoietioie a
a i
T o [Jr e L b b
v + ( +ab)s (3)
Now § = P_FFP » (Art.98.) and from (4), 1-:-"{19 #P;;? e
k- L p=
i —PJP

which is an expression for ~ in terms of quantities capable
of being observed. If we take the data furnished by the
experiment detailed in the last example, we shall find

p

. |

I

=1 +E =1 4 08482 = 1-3482,

— =1

¢

P

for the value of the ratio of the specific heat of air at
a constant pressure to its specific heat at a constant volume,
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By an analogous proceeding, Gay-Lussac and Walter
have obtained ~ = 1°3748, and Dulong has obtained by
a different proceeding ~ = 1421 for air perfectly dry.
These results differ but very slightly, and their small
differences do not prevent us from considering ~ as con-
stant.

100. Considering then ~ as constant, the integral of
the partial differential equation
s 2, P T = o e
4";5 + J'” &’ AV dp dp
is, if f be the form of the arbitrary function,

1,

c A e o
q = f( P"") 2=k (f e
! 2 S
Hence, p7 = pf-'(g)s of p=p7p(@).errens(1),
where ¢b is an inverse function of f. 07 O o
But since p = kp (1 + afl), we have
]
H‘=————-— [ == e (2).
i $(9) (2)
If now g remain the same, and p, p, 6 become p', o, &,
respectively,
P=p7P(g)---(8), and 0'=—p"'P(g) ——...(4).
Eliminating ¢ (g) between (l} and (3},

’

; p\7
P

and eliminating it also between (2) and (4),

e B

These two equations express the laws of the elastic
force and temperature of a gaq compressed or dilated

rl [
}:J'. f'l'rw L J‘~ wilberia fenn ‘-T-"..-\ o Crvnet o F .rb =
s . 2 2
P s it[_ﬂr" """—"ﬁ.y} f )

>
0 3 R,
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without any variation in the quantity of the heat; but
it must be observed, that they depend on the fact of ~
being constant, which, from what has been said, may be
considered as established for common air.

The form of the arbitrary function may be determined
by supposing that under a constant pressure a gas dilates
equally for equal increments of temperature, as is shewn
by Poisson*®, to whom the reader must refer for further
applications of this theory.

On Cooling.

101. When a body cools suspended in air, the heat
is transferred by conduction, that is, by transmission
through particles in immediate contact, by convection, that
is, by the motion of the warm particles which are replaced
by colder ones, and by radiation. But when a body cools
in vacuo it is by the latter method, namel}r, by radiation
that the cooling takes place; and it is the laws of cooling
as depending on this radiation that we are now about to
consider.

et lly

54 The principle arrived at by observation and which may

be made the basis of the mathematical theory, is, that the
temperature of a body is in the excess of the sensible heat
which it gives out above that of the surrounding bodies,
and the cooling of a body is the excess of its radiation
above the radiation of the surrounding bodies.

Pror. To obtain the law of cooling in vacuo.

If then 7 be the excess of the temperature of the body
cooling in vacuo, above the surrounding substances whose
temperatures are ¢, =+ 6 will be the temperature of the
body, and the velocity of cooling may be expressed by
F(r+ 0) — F(0), where the form of the function F'is to

* Teaite de Mécanigue, Art. 3.
t Principles of Hydrostafics, Art. 147,
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odeds : . .
be determined.” 3f then v be this velocity of cooling, which
will be nothing when + is nothing,

= F(r + 6) - F(9).

Now, Newton and all succeeding philosophers have
from their observations been led to assign some geometric
progression as expressing the velocity of cooling. Let
us suppose, therefore, that the velocity of cooling may be

expressed by ¢ (7) @’, where a is some constant and ¢ has
to be determined. Then

& (r)a® = F(r +0) - F(8): ﬁ?j,a" T3

Ert—b
and expanding by Taylnr"'s series, we have {,,ff/__,, £ Sorms ?"M
e {E} a0 L ea¥ T,
‘f»’ = 1 L mﬂﬂﬂéfﬂﬂ
Ty
Now this e{]uatiﬂn must subsist for all values of 7, and
since when 7 is nothing, the temperature would be that of
the surrounding hnﬂles or constant, we must have in this
. ¢ (7) "ﬁ
case or when + is small, Y—= = n, some constant. But
T
p(x) F @) F(6)
= H + H T + =% 4
T il 1 | Eor b
the right side of which when 7 is small is reduced to the
first term. hence,
i :
" = -—Eﬂ , or F'8=nad
i
Integrating and adding an arbitrary constant,
St 0,
F(0) = a’ + C =ma’ + C,
log a
if S Hence,
log a
F(r+0) =ma®+ (.
’ - ¥ ¥
‘?ihr} ., %J% :,,._.Q; s -’.’i'-zu;},.,,_‘ Cr s My R,7r+*Rh 3. -2-.-.,:?
ﬁ,f.a " ;;--?, e O . -ﬁ; '
wopprs PP AT
L. . A
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Substituting then for these quantities, we have
=ma®(a™ - 1).

If then the theory of exchanges on which the preceding
reasoning is founded be true, we arrive at the following
law : ““that when a body cools in vacuo in a vessel whose
temperature is constant, the velocity of cooling for ex-
cesses of temperature in arithmetic progression increases as
the terms of a geometric progression diminished by a con-
stant quantity.”

The experimental verification of this law is most
remarkably exact, and the Memoir# of Dulong and Petit,
from which the preceding is taken, is a most beautiful
example of the plan that must be pursued in these and
similar researches. The remarkable accuracy of the re-
sults obtained from the preceding formula for all tempera- |
tures, removes all doubt respecting the truth both of the |
law and of the principles on which it is foundad.

102. The total radiation of the surrounding medium
is ' (0), and its value is ma® + C. But the point for the
commencement of the absolute temperatures being arbi-
trary, it may be chosen so that the constant will vanish ;

Rk ot B hence, the absolute radiation may be expressed by F (6)
tanead wet M — gpgf simply without any constant.  If then it were
B S aome ;E':Hir possible to observe the cooling of a body in vacuo, so that

Eey v alase, . . o - .
Bas s there was no interchange of radiation, that is, no portion
o . %= ' of heat being restored from the surrounding bodies, we
(- g z : :
v should have for the velocity of cooling,
il
o | L [ 4 " £
J G e v =ma™™ = ma®a™ = Ma~,
ﬂ---f {'-’l-r-:l"; I’.i l.':: e - " »
& puo ol IR ifma® = M, or the velocities of cooling would increase in
T = geometric, the temperatures increasing, in arithmetic pro-
?“3 ffr" gression. \
=
'-' 1 £ s "
{ o el 3 * Annales de Chimie, vii. 1817. See Encyc. Meirop, Art. Heal. {
l}ik ﬁ *'I. [ e g

. =)
ol b dtanans, B - e,
rfiu *:_."v-uura- nﬁ-t '&#'-‘i-’ "g"'""" '},"L"‘ ||"-""1'-J e L TR = E-E.-P-r.n }v‘v"—:ﬂ‘.ﬁ..-:J
‘-l’r-fl v “'; & i‘" iy ﬁL H#'nfj :f-‘-!l-\-w Lﬂﬂ#} I"'Lu'ﬁl I.F W

s n-f_z o r Lo F i?-
L. R ATN, L § b e il _..-
'|r'|-' |"' I v S e e
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The real veloeity of cooling in vacuo in any case may
then be expressed by v=M (¢ - 1), where M is the quan-
tity to be taken from the terms of the geometric progression,
and depends on the temperature of the surrounding bodies.
When the temperatures are low V= Ma™ nearly, which
is the Newtonian law.

103. Pror. To find the fime of cooling in vacuo.
The time of cooling may be readily deduced from the

velocity with respect to the time, for generally we have

d d
¥F= d—:—_ - ﬁ in this case, since the excess of tempera-

ture diminishes with the time;

dr dr £ e
_.—-=M T -1 d df = 3 a” 4
T s e e M(a - 1) ’
- ."rr‘_'_f__ &
= 1 11 ffi-ﬂ‘i ~ AT, v,
M{.«; -1} = MlogaJ1-. oy

a ) + C.

o ng ~log (1 -

When ¢ =¢ let == 17, then

t=— log (1 —a™) + C3

b Lng a
1 l1—=a™
t=1f = log ——— ...... 13.
b e oY
When £=¢ let =7,
: 1 1 —a ™
AR T e i e ’
i MIUgﬂ- ]'Dg y [ {:IT-_T (E)
and the coefficient lug being eliminated between these .{ [ =y v i
. ; i
two equations, the time of cooling is fully known. ;:-»1"' e
R " ™

e &y
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104. The laws of cooling in vacuo being known, 1t
will be easy to deduce from them and observation the
cooling which is due to the contact of any gas. For we
have only to subtract from the actual velocities of cooling
those quantities which would be the velocities of cooling
if the body, cateris paribus, were placed in vacuo. Thus
we can determine the energy of cooling due to the sole
contact of fluids, and such as would be observed directly
if the body could be deprived of its property of radiating.

From a series of most careful experiments, Dulong and
Petit are led to infer that the state of the surface of the
body has no influence on the quantity of heat which is
carried away by the contact of the gas, and that the
density and temperature of the gas do not affect the cooling,
except by the variation which they cause in the elastic
force of the gas. So that the cooling power of a gas may
be considered as depending simply on its elastic force.
The velocity of cooling of a body due to the contact of a
gas depends on its excess of temperature and on the elastic
force of the gas; and if v’ be the velocity, = the excess of
temperature, and p the elastic force, we have as the result
of experiment,

r '] ©
v =T P,

where b is the same for all substances, ¢ the same for all
bodies, but varies for different gases: and m varies with
the nature of the gas and with the dimensions of the solid.

When a given body cools from the contact of any gas,
mp is constant for that body and gas; hence we may have

'l.'lIr — N ‘Tb.

Pror. To determine the complete law of cooling.

Let the body be suspended in air, then the velocity of
cooling due to radiation is v = M (a7~ 1).
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The velocity of cooling due to the contact of the gas
is ¢' = N+". The total velocity of cooling then being the
sum of these, 1s

V=M@ -1)+ N7

Now the velocity of cooling due to the radiation de-
pends very much on the state of the surface of the body,
but that due to the contact of the gas depends simply on
the elastic force of the gas. Hence, if V' and M" be the
corresponding values of V and M for a change in the
surface of the body, '

V' = M (a” - 1) + N=".
Then the ratio of the velocities of cooling 1s
V _ M(a7—1)+ N+
¥V M (e - I)TN?"
Suppose M greater than M, that is, let M belong to

the body which radiates best; and let the value of this
ratio be ascertained for different values of +.

. : ; 0
Now when 7 =0 or 7=oc"¥, this ratio becomes 5’

which must be determined in the usual manner; hence,
differentiating the numerator and denominator,

V. M logaa™ + Nbr'-' M

V' Mlogaa™+Nbr*"' M’

when +=0 or +=0oc®.  Thus for very small or any
large excesses of temperature, the ratio of the velocities
of cooling depends simply on the mnature of the cooling
body.

For other values of + we have
b







CHAPTER X.

ON THE GENERAL EQUATIONS OF THE MOTION
0F FLUIDS.

105. Tur general equation of the equilibrium of
fluids was obtained from the property which all fluids
possess of transmitting pressure equally in all directions,
so that, it is impressed on every particle throughout its
mass.

This property is conceived by Poisson*® to arise from
the fact, that the particles of any fluid after compression or
dilation return to a similar relative state, so that the fluid
is a system of material points, similar to itself and existing
on a smaller or a larger scale. 'The time of the fluid
passing into a similar state, produces no influence on the
laws of the equilibrium, which are only observed after it
has obtained that state.  But this time, however small,
must influence the laws of the motion of fluids, so that the
equal transmission of pressure does not obtain so accurately
in the motion as in the equilibrium of fluids.

Another distinetion must be remarked with respect to
Marriotte’s law. This law requires that the temperature of
the fluid should be the same before and after the com-
pression or dilation. This distinction is of no importance
in liquids, but in gases, where the vibrations of the parti-
cles are very rapid, the equality of pressure is considerably

modified.,

* Journal de I'Ecole Polytechnique, 20 cahier.
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"These circumstances introduce conditions of great im-
portance but of extreme difficulty, and in the following
articles we shall suppose that the equal transmission of
pressure obtains equally in a fluid at rest and in motion.

106. Pror. To find the pressure at any point of
a fluid mass in motion.

Let @, y, %, be the co-ordinates of any point P of
a fluid mass at the time #, and let dM be any element-
ary mass of the fluid at the same point.

Let p be the density of the fluid at that point, and
X, Y, Z, the impressed forces in the directions of the
three co-ordinate axes. These quantities will be given
functions of @, y, %, when the forces are directed to or
from a fixed centre, and these functions will contain the
time explicitly when the centres are moveable. When
the centres are within the fluid they will be functions

of @, ¥, % L

Let 2, v, w, be the velocity of the particle at the
same time resolved in the same directions; these are un-
known functions of @, 7, =, #, because for the same value
of # the velocity varies from one point to another, both in
magnitude and direction, and for the same value of @, y, =,
it changes from one instant to another. Now,

d(n) d(v) d(w)
dt 2T

are the effective accelerating forces in the directions of the
three axes at the time f.

d () d(v) d(w
X - e b
Hence T T Z o

forces lost during the time d¢ by the particle submitted
to the action of the forces X, Y, Z.

, are the



OF THE MOTION OF FLUIDS. 135

But by D’Alembert’s principle the impressed and
effective forces are in equilibrinm with each other, or
the forces lost are precisely such as would preserve the

system in equilibrium. Hence the general equation of v fowe o .
equilibrium will be satisfied by these forces, and we Avieh 15,,1
have P ;,-’

d (ue d(v d
d(p)v:p{(}i'-—-—-(——]-)dw (} {})d_;+(’ '[“’:')ds :

d dt
or,
d(p) (d(u-} d(v) d(w)
—c=Xdot+Ydy+Zdz- de+——dy+—= .
p L+ &g de S ap T4 d’“j (1)

We have seen that w = f(x, y, %, #), and the incre-
ments of @, y, ¥ within the time d# will be wdt, vdé,
wdt, i‘e&peuti*—‘e]}?; therefore

' =f(o+udt, y+vdt, =+ wdt, t+dt).
Whence,

d(u) du du d o

—— =t — O — W —
di dax -

and similarly for the quantities » and w,

d(v) dv i dv dv dﬂ
— = —— U+ —V 4 ——
dt de . dy i de Wig
d(w) duw dw dw dw

“ o - —
dt  da 7 f.fﬂ'* Tdx W di

Before these quantities are substituted in (1), let us
assume that Xda + Ydy + Zdx is a complete -:Iifferential
of dP, and also that uda +vdy + wdx =d¢p; we shall 2., o “ Loy
see hereafter to what circumstances these analytical fa{-te. S -
have reference. Then, :

d'l;b de d'¢ o ¢l l:f(’p d e tfﬁgﬁ:

de’ dr  dv*’ dady dady’ dx  dadz’
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(the quantities being written in the denominators in the
order of the differentiation) and similarly for the other
quantities.

Then
d(u) d'pdep L d'p d¢p  d'g d_ci[_}+ d*

df  do’ da T dady dy T dedy dy © dadt’

d (v) d’p dep A Fp dep dp dgp d'¢p
dt dydx do dy dy 4 dyds dz 2 dydt"

dw) d'¢p do ¢ dp dpdp  d'¢
3 T duds duik xdy dy T dxt dr dzdt’
these being multiplied respectively by dz, dy, dz, and
added, and observing that

g _ 2 2 d 2
d tﬁld_‘i’dr L e ff[f]dﬂ{__d_ﬁb_(;’d$=%d_({fﬂ)!

dot do :-'.r'._;;rL-i:: de dzdr da d.a*

and that there is a similar expression for the sums of
the second, third, and fourth terms of these equations so
multiplied, we have, by substitution in (1),

d(p) —dP=14d. { (d_‘}f’}z i (dq))ﬂ + (d__(p)"} g - (fi—?)

p da dy dz
ds\* dd
=dP-4d.(3) —d.(-—'),
: * (rh'.‘ dt

if ds be the space which the particle describes in d¢;
integrating, therefore,

) p_ (dey 4

40 F\dt, dt

The quantity f 4(p) being properly determined, the
P

pressure p at the point required will be known.  This
equation contains five unknown quantities; hence for the
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solution of the problem five equations will be necessary
and sufficient.

107. Pror. To form the equations for the detey-
mination of the five unknown quantities in the general
equation of fluid motion.

Three equations are supplied at once from the general
equation (1), which has been obtained by applying
D’ Alembert’s principle to pass from the general equation
of equilibrium to that of motion.

E, j‘j ;il be the partial differential of p
with respect to ax, y, x; then

I_dp_‘ll-* d(u) 1dp _y d(v) 1dp z d (w)

Let

e e ] | 2 = == - .."1!‘ .
P da it P (’f!} dt p dzx d f (4)
where
d(n) du du du d u d(v) d(w)
— T mm— — 1 —_—— i E ]
di dmf+rf§,fi +ffa' 5 -er, o dt °  di

have similar values.

One equation, and in some cases two, may be formed
out of the condition that the mass of any element of the
fluid continues the same during the time d#; hence this
equation is called the equation of continuity. Tt is
formed as follows.

Since during the motion the element of fluid will
change both in form and density, but its mass is always
to remain the same, the difference of the product of the
volume and density at the time ¢ + d# and at the time £
will be zero.

At the time # the co-ordinates of any point P are
@, ¥y, ¥, and the values of x for the two ends of the edge
dx of the element are # and @ + do. Let u, be the
value of = for the point whose co-ordinates are a + da,

4, ¥; then at the time ¢+ d#, these are
=

'ﬂ:-{-"".-.nd-,.-r”:} ﬁi‘i,’b-ﬂ».n_ﬂ. sl By o | i, ;rLJ- PP PR 'j‘ -h-'-'.. R -+-r‘~ T ﬂe-“

.

1 i S
’s'il-i- £ b sl Al H-.__-. Y & Sy

4."-;‘ LU ol 2 ', ol - 5 m ,L X e A ; T N o
Ara \5}/""‘"5 e, H!-trq,a._ f..u-J“V'L‘-'«H 3 e
#14:’!'__3&:!‘.'5 dd\ 4.;..-,&4.--.5}
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v +udt, and @ +udt +da;
. the length of the edge = (u, - n)dt + de.

1 i By 1 v
Now Tjj{:::, y, %, t), then u, being the value of
for the variation only of @,

u,=f(x+da, ys % t)
du

= u + — dwx, very nearly.
da y z

1 . I!'f”'-
The length, therefore, of the edge do=dv + == dadt.
da

e : dr
Similarly, the length of the edge dy=dy + 2 dydt,
‘ "l il

o w
de =dz + —dzdl.
dx

Again, the density p is a function of @, y, 2, 3
Sop =f(e+ udt, y + vdt, =+ wdt, t+dt)
: dp dp dp dp
ol SR et i i
P+ U #+dyﬂ t+d:wdt+dta{.{.¢.

The new element will therefore

L pata Y

L Y iR ‘ " du dv dw
godiasle _ trae s —— dpdf)(d — dydt) (dz + —
B Trldzaoodn ) ( y+d_yryd}(f +——tnoi)

F

-

R apeatect . du dv d w
= 1 —r 1 W T o -
p 1+ e dt) (1 + dydt} (1 + T, dtydadydz,

the change of the element from rectangular to oblique,
introducing only quantities which may be omitted. Now
the variation of this element is to be zero; hence, sub-
tracting from this product pdadydz, and omitting all
terms above the fifth order, and all common factors, we

have
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dp dp dp dp dv dw
i : M =0T (B}
d.ztr+ffy”+d‘t{'+dt P(dd+dy+ﬂ,z) (B)
d.r}t{f d - v n‘-.Pw dp ..?’
N : R ﬂ. ,,_'...'I
Sl T dy dw o di -

Another equation is p = kp, provided the motion is
of such a nature that this equation can subsist; that 1s, |
if there be no change of temperature during the motion. & c4 aose"9
Thus we have five equations which are sufficient to de- fe.. jerafiee
termine p, p, u, v, W, the five ynknown quantities.

108. In the preceding article the fifth equatmn was
furnished by Mariotte’s law, but when the fluid is m_élwﬂm"'
compressible this equation does not obtain. We have, lrm‘*ﬁl’"‘
therefore, only four equations. But in this case the et e e
equation of continuity will be sufficient. For let thcﬁ“ v ""'*E

fluid be incompressible and heterogeneous. Tt WA
W d( = ] I
Then _:f? =05 DE; Tt
dp dp dp dp
Tl by S YaeT

which is one equation, and (B) becomes

di dv ) div
do  dy = d=

which is another equation. In this case, then, we have
the proper number, or five equations.

Again, let the fluid be incompressible and homogeneous.
f'l....,,ll. Ls“h't lfm

?t R oo 1;11%.

d ;
Then f, &e. are all nothing, and (B) becomes pntt

i

du dvr dw
drqdrf dx
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Here, then, we have but four equations; there are
but four unknown quantities; hence we have in each
case the proper number of equations.

’
A
da’ n"J dz

with respect to @, y, %, derived from the supposition
that wda +vdy +wdx is a complete differential, the
preceding equation, substituting for u, v, w, their
d d o

-—qj, —qj-, —?, becomes

do” dy " d=

d“"t}‘) i r:."(p dq!} o
d a* ﬂfl,'” 37 4

partial differential coefficients

values

a parti:ﬂ differential equation of the second order.

Thus when the fluid is ;ncuillpl'essihle the equation
of continuity (B) and the equations (4) are sufficient
for the solution of the problem; and when the fluid is
compressible, they furnish four equatiows, the fifth being
given by Mariotte’s law, which may .be considered to
hold if the temperature be the same throughout the
whole mass during the motion as it was during a state
of equilibrium. - '

But variation in density is always attended with change
in temperature; hence the pressure is no longer propor-
tional to the density f.-;impl',' When the motion is mpid
the development of heat gives rise to a great increase in
the elastic foree of the ﬂmd as will be seen in the theﬂr}f
of sound. But if the motion be slow, so that the variation
in the density and elastic foree is small, the equation
p=kp(l +abf) may subsist, and will furnish the fifth

equation.

109. In the preceding investigations it was assumed

" that wda + vdy + wdz is a complete differential dgh, and

[:i.'}nHL‘{]HEI]l]}‘ the g@ﬂeral Equatinn obtained on this h_','pn—

-‘--,J
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thesis can only be applied to the cases in which that |

condition obtains.

Hitherto no general determination has been given of
the cases in which udx + vdy + wdz is a complete dif-
ferential. Particular cases have been indicated by Poisson®,
and Professor Challis+ has shewn that when in incom-

.. -'-.L-p-

pressible fluids the motion at each point of any element pAet

is directed to fixed or moveable focal lines, the equation
du dv dw

+ -—— + — = 0, depending on the above condition, is 2

da " dy Y %

satisfied. It seems probable that ultimately it will be
found that in every instance of fluid motion for which
ude + vdy + wdz is a complete differential, the character
of the elementary motions will be of the same description.
When the parts of the fluid do not move infer se, that is,
do not change their relative positions, but move as if they
were rigidly connected, the quantity ¢ has no existence,
and the pressure is determined by the equation

P(Xd.:u + Ydy + Zdz), 1

=

; N,
the forces jt’ I’ ? 111c1ud1ng thnse whmh arise from the
rotation ; as for instance, when a mass of fluid revolves
about an axis without changing its form.

It was also assumed that Xda + Vdy+ Zdz is a
complete differential d”. This, as is well known, is the
case whenever the forces are directed to fixed centres,
or when they are directed to moveable centres].

The integrals of partial differential equations contain
arbitrary functions, and the existence of these arbitrary
functions in the equations of the motion of fluids is an
analytical fact which shews that in their application to

physical questions any motion whatever may be given to |
the particles, which is an evident consequence of the |

® Traité de Meeanique, Art. G54,
+ Camb. Phil. Trans. Vol. V. virn.
* Itid, Vol. I1Y. xvii

),
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fundamental principle of the perfect mobility of the
particles.

In the following articles we shall prucr:ed to illustrate
fully the circumstances of the motion in space of two
:hmensmna, and state what is at present known of motion

in three dimensions. |

Motion in two Dimensions.

110. Pror. The motion being in space of two 1
dimensions, to obtain an integral of the equation of '
continuity.

Let the motion be in the plane of xy; then the equa-
?‘-“-*’*""f‘-"""“"ﬁ‘:" tion of LD]‘Itll]'Lllt‘y becomes

Lok
& I _, Jame Y an for foti
do?  dyt 1 ey Dree L 2helyf
At . T T |
_ Let ¢ be a function of ¢, and o° + ¢, or .

: dgb dh dr da;b x
en R G PR AR T % |

@_@icpdr w dqbl dq,') dr a

= +
i dit der drr dr de v

d2¢)ﬂ:‘g (l_mﬂ)
T odr . e

it

Also Ihp g t}bj dﬁﬁ (j - -*) 5

dy*  dr* 1 T dr T

Epa+y A (B -f“w*):u,
drt dr \r g

v , d;- rh 7
'll'\_"'lr ""' 'l' L l.: f'&.i"-_u - f :{ ?
-.f :._a- A L e g f-p- P ﬁ:\; #Jh ‘ﬁ‘“

— XY b ol
r‘."f.i I./.JJ -r"f.f:::# f
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digj) de & p
r - o
S T 1 dr

rd
d. —-[-I-)
dr
= ().
rdr

Then integrating and adding an arbitrary function of ¢,

i {
B S f{;f _f®

dy }

and ¢ = f(#) log.r + F(f)....... (2).

'{.‘he velocity, or r::i)‘. thus appears equal to "f{:}.
) S - ‘
_The physical meaning of this result may be illustrated
by supposing fluid to be contained in a cylinder capable
of expanding in the direction of its radius, and a very
slender cylinder of solid matter to be inserted with its
axis coincident with the axis of the cylinder. The fluid
particles, by the insertion of this solid cylinder, will be
moved through spaces which vary inversely as the dis-
tances from the axis. LT+ s B
i ity § %

The distance of the point under consideration from "
the origin of co-ordinates being (r), we see by (1) that
it is moving in such a manner that its velocity varies
inversely as its distance from some point, and its motion

i

-

i

is directed either to or from this point. J

111. But it is of great importance to obtain also
the integral of this equation of continuity independently
of any hypothesis respecting ¢, and to shew the con-
nection which subsists between this and the preceding
integral. The following investigation is given by Professor
Challis*. The usual method of finding the integral of

& omb., Phil, Trans. Vol, V. virr.

LJL

.
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Cag

e
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a linear partial differential equation of the second order
between fwo variables leads in the present case to the
integral

¢=F@+yv/ -1 +fl@a-yv/ -1).

To ascertain its general signification, let the forms
of the functions F and f be determined independently
of any hypothesis respecting the mode in which the fluid
was put in motion. The quantity ¢ is subject to the

dqb “_{fE—u

condition d¢p =uda +vdy, whence —- =,
Then
w=F(@+yv/-1)+f(2-yv/-1),

v=A/=1F (@+yv/ = 1) =~/ = 1f' (@ - yv/-1).

First, it may be observed that % and v are not both
possible for any values of @ and y, unless the functions
F' and f be the same. Again, as the form of F' we
are secking for is to be independent of all that is arbitrary,
it will remain the same whatever direction we arbitrarily
assign to the axes of co-ordinates. Let therefore the axis
of y pass through the point to which the velocities %, v,
belong. Then

y =0, ?¢=2F'(m}, v = 0.

If now the axes be supposed to take any other position,
the origin remaining the same, % will be equal to

. B 2
\/I‘ —!—1} (1‘/1? +Jz}

Hence

F' m+y~/_1}+F(1: —yn/ —1)=

2 + o),

7

a functional equation for determining the form of F.
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Let

r+ys/ —1=m, and x—y+/—-1=n;

——

2xr=m+n, and ~,/.r'*+y?=\/aJ

Therefore,

then

m + 9

F'(m) + F' (n) = Vi F'(v/mn)

i 7

p— !, ——
= FI —'—:...F .
e A

G
A/ mn

It is easily seen that if F’(v’a) = , the

equation is satisfied. Hence

dep #: i C _ 2Cx
de g4y =1 .r—yv/‘:i o+’
d 2
and P = ¢€y¢;
dy 2"+ o

and consequently the velocity at ay, or

'\/ u® + o= —2..—‘::-'—4— ;
vVt v

These results shew that the velocity is directed to or
from the origin of co-ordinates, and varies inversely as
the distance from it. But we must observe that this
limitation as to the point to which the velocity is directed,
is owing to the particular forms, @+ y4/ = m—y\/ =
of the quantities which the function F' involves. For
the differential equation is also satisfied by a more general
value of these quantities, as is there shewn; and the
result shews that the velocity is directed to a certain
point, and varies inversely as the distance from it. And
this result having been arrived at without considering

any circumstances under which the fluid was caused to
T
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move, the inference to be drawn is, that such is the
general character of the motion.

Also the co-ordinates of the point to which the mo-
tion is directed may be constant, or functions of the time
and the given conditions of the motion.

112. The following considerations are added in con-
firmation of the foregoing reasoning. In whatever man-
ner the fluid is put in motion, we may conceive a line,
commencing at any point, to be continually drawn in a
direction perpendicular to the directions of the motions
at a given instant of the particles through which it passes.
This line may be of any arbitrary and irregular shape,
not defined by a single equation between @ and y. But
it must be composed of parts either finite or indefinitely
small, which obey the law of continuity. Consequently
the motion, being at all the points of the line in the di-
rections of the normals, must tend to or from the centres
of curvature, and vary, in at least elementary portions
of the fluid, inversely as the distances from those centres.
An unlimited number of such lines may be drawn through
the whole extent of the fluid mass in motion,

Motion in Space.

f 113. An integral of the equation of continuity for
incompressible fluids may be obtained on the particular
supposition that ¢ is a function of » and ¢, when

?‘2 = ‘T.e + y'-! + HE# ’rlh'f;"ﬂ,.

dp dpdr dpw

o dr de dr r
d“tp 19 :Fq!; dr a d("b 1 d¢dr

d.w“_ﬁd.r;-i_drr dr da 7

‘fiﬂfgﬁ(i_f},

dy? . e0r Ao
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AT

&P & drp( ,f)

d¥ _-&Fr dr )

And substituting in the equation of continuity,

&P a*+y' + 2 dqﬁ( :z*“+;rﬁ+z’)=

dr r dr e
:f'jl:f_r 2 dp v
et -
3 _ Ay
A g £
But TP _ d‘-’:p 2d¢p | Brg L5
rdr d’r” PR | T = =

Integrating and adding an arbitrary function of ¢,

__(P '_'..f( }:

- and{integrating again and adding another arbitrary func-

tion,

r¢aﬂﬂipw;

()
e A

The velocity of the fluid = /2 + v* + w*

q’ f{t)‘t' ‘f() “/' +..{l)+

e —

ey dg* dg* _d¢

N\, % da? dy* i d=¢  dr’
\H“u___

@ — - the velocity = - F(f) e L2) (e

dr i (d ad,

b1

[
e, 1

£

/ | TR 5
? harad & LA

rx '-.-"‘ f: '{1__,&,4,,-—
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The preceding result may be illustrated as before by
conceiving a spherical mass of fluid enclosed in an ex-
tensible envelope, and that a small sphere being placed
at the centre of this mass, the particles will be made to
move from their original places through spaces which
vary inversely as the square of their distances from the
centre.

114. A general integral of the preceding equation
of continuity cannot be obtained, and the general law of
the motion of the parts of the fluid amongst each other
so as to fill always the same space, cannot in this case
be found in the same manner as in space of two dimen-
sions by subjecting the general integral to a similar
discussion, but by reasoning analagous to that contained
in (Art. 112.), Professor Challis infers that the elemen-
tary motions are every where directed to focal lines.
But the reader must have recourse to the original paper®,
where it is proved that the equation of continuity is
satisfied by the kind of motion there supposed. Also
the general conclusion arrived at by this reasoning is,
that the law of variation or the velocity from any point
to another indefinitely near in the direction of the mo-

tion at a given instant, may be expressed by — 2 3

r(r+1)
where € and [ are constant at a given instant, and 7 is
the distance of the point under consideration from a

line whose position is fixed at a given instant.

If C =0, we have as a particular case the velocity
== which represents the law of the variation of the

velocity under these particular circumstances, and agrees
with the particular case of the integral just treated of.

Since r is ultimately in the direction in which the
velacity V takes place, if a line commencing at a given

® Cam. Phil. Tran. Vol. V. Part 11

s e o i 10
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point be drawn constantly in the direction of the mo-
tion, at a given instant, of the point through which it
passes, dr may be considered as the increment of this
line,

Hence, if s be its length reckoned from the fixed

puint
dp _do _

dr ds

Then integrating ¢ = [Vds + f(¢), and differentiating un-
der the sign of integration,

d¢ dV

SELS e P,

dt / il

Substituting this value in the general expression for p,

I

p=[(Xdo + Ydy + Zdz) - fﬁ ds — % V2 = f' ().
If V be always the same in quantity and direction at

the same point,

dV

e [(Xdw + Ydy + Zdz) -5 V' = f'(2).
This equation, which may be considered as strictly

deduced from the general equations of fluid motion, is

the equation of steady motion, as we shall see presently.

115. When the fluid is compressible or elastic, the
equation of continuity is not as we have seen, resolved
into two, and the general equation is of too complicated
a nature to be readily treated.

In one case, however, when the motions of the parti-
cles are small, and no extraneous force acts, the equation
of continuity admits of simplification, and the general
equation can be treated.






CHAPTER XI.

ON THE MOTION OF FLUIDS ON PARTICULAR HYIOTHESES.

116. Tur general equation of the motion of fluids
is not readily applicable to practice, and in a case of
such great difficulty as the present, recourse must be had
to particular cases of the motion. Fortunately, indeed,
the cases which most commonly oceur 1n practice, are
such as can be brought under the equation of motion,
either directly or by particular hypotheses which conduct
to results very nearly true.

One large class of questions is where the motion is
steady, and we have already seen that the general equa-
tion admits of great simplification in this case; we shall
shew how the same equation may be deduced at once
from the general equation to which we are led by the
application of I’Alembert’s principle.

Steady Motion.

117.  Definition. The motion of a fluid is said to
be steady, when the velucit}r at all points in space is/
mnstanﬂ}r the same both in magnitude and dlI‘L‘LtlL‘II!"
that is, when the accelerating force on each p&rtlcle 1*-'.
the same as it passes thrﬂugh the same point in space. |

Pror. The motion being steady to find the pressure
at any point.

Let @, %, = be the co-ordinates of any point in mo-
tion at the time (£); X, ¥, Z the impressed accelerating
forces, and u, v, w the velocities in the direction of the
co-ordinate axes.
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d(u) d(v) d(w)
F]‘1 i
e e T

forces, and

are the effective accelerating

d (1) d(v) d(w)
_d-t’r_d.-f’z_ dt ’

are the forces lost, hence the fluid would be in equili-
brium if these forces acted on it, or we have as before

-:!p=|u{( —E‘gg)dm+(}’—d—'m)dy+(;-m)dx};

di dt
dae dv dw
oo p=Jp(Xda+Ydy+Zdz)-[p (dt dao+ E!-de—i--ﬂdﬂ) :

This integral is generally to be taken between the
limiting values of @, y, %, which belong to some point
at the surface, and at some arbitrary point at which the
pressure is required ; £ being constant, and @, y, & being
entirely independent, or having such relations as may be-
long to any line of particles arbitrarily chosen betwixt the
above limits.

Let the integral be taken with regard to any line
of particles which terminate in a given particle, as for
instance, with regard to the line which this very particle

. has traversed in coming to the point under considera-

tion, that is, to the point at which the pressure is re-
quired. Then since each particle is moving with the
same velocity as it passes through the same point in
space, the particles in the line thus traversed will all
be moving with the same velocity, or acted on by pre-
cisely the same force at any given instant as the given
particle was whilst traversing it; hence the values of
a(x) 4 d(ﬂ), i) for successive
dt di di
corresponding to successive values of #, will be precisely
the same as the values of these quantities for the same

values of 2, wy, =,
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successive values of @, y, ¥ corresponding to any one
value of #; and therefore in the case of steady motion
we may integrate the above equation considering #, y, =
as functions of £, and we shall obtain the same value as
if we integrated on the supposition of # being constant.
But @, y, & being functions of ¢, we may write
& d (%)
¢

gy for ——

. d.
At TR

and similarly for the other quantities;

f(%‘;ﬂdw+%?dy+igg sx)

rdaed’c + dyd'y + ds d*s
reks s

. —]

d N B
-4 (z) +¢
¥ it
if ds be the space described by the particle in the time
dt, and C be the arbitrary constant which may be a func-

tion of the time; then for convenience calling » the ab-

r e
solute velocity 25 e have

p=[p(Xda+ ¥Ydy + Zdx) — L pv* + C, fhe cus

#

which is the equation of steady motion.

v+ To determine the value of the arbitrary constant,
let », be the velocity which the particle whose path
has been considered had at the surface, and let p, be the
value of p, then if the surface of the fluid be taken for
the plane of xy,

= %‘P v, + C,
which being subtracted from the preceding, we have

P-p =fp(Xd.r+ Ydy + Zdz) - %P{ﬂﬂ_”ﬁ---(c}
U

J-I-H‘.'{:'; . W

¥

ril_
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Let gravity be the only force which acts, and let
p=1 then
p-p=gx—% - v})-

Let a be the ratio of the velocity at the upper surface
to that of the issuing fluid, then

p-p =gz -1 -d).
This equation is applicable to the issuing of water retained
at a constant elevation in any vessel through any small

orifice or adjutage fitted to the orifice. We shall proceed
to illustrate its application.

118. Pror. To determine the velocity of a fluid
issuing through a small orifice.

Let the fluid be constantly supplied so that the surface
is retained at a constant elevation, the motion will then
be steady, and the equation of steady motion may be
applied.

Let k be the area of the orifice, and K the area of
the surface of the fluid which will be constant, the fluid
being retained at a constant elevation.

The velocity of the fluid at the orifice, and the surface
is inversely as these sections, for the fluid being incom-
pressible, the quantity contained in the vessel is constant,
hence the same quantity must flow out and in during a
given time, that is, the product of the area of any section
and of the velocity of the fluid passing through it is in-
variable.

Let v, V be the velocities of the fluid issuing through
the sections k and K, then

vk = VK, or

=u.’

| =
2 |~

and the general equation is

k*
p —;u1=gs:-'—%v2(l _E’_”)
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Now since k& is small, the velocity at every point of
the issuing stream which is in immediate contact with
the air will' be very nearly the same. But it appears
from experiment, that when water issues through an orifice
into the air, the stream converges for some distance, when
it acquires a constant permanent form, neither converging
nor diverging, which is called the vena contracta.

This form of the issuing stream shews that the surface
of the converging stream is moving with a greater velocity
as far as the vena contracta than any point in the interior;
hence the pressure at the surface, is as the equation shews,
less than at any point in the interior, and consequently
the pressure in the interior is greater than the atmospheric
pressure. But at the vena contracta there is no tendency
to diverge or converge, every point of the section is
moving therefore with the same velocity, and the pressure
is every where the same as the atmospheric. At this part
then of the stream we have p=p,, and the equation
becomes

2
0D=gx — Jﬂ—vg (l —f:;,—__,):

"

S ~8%
S0 = /\/ =
1

W]

The section % then is the section of the vena contracta
and not of the actual orifice, for it is through a section
of the vena contracta that the efflux really takes place,
since the stream has not acquired its greatest velocity
before reaching this point, and the converging part of
the issuing stream must be considered as a continuation
of the containing vessel.

The section of the vena contracta may be taken as -
equal to -,g—ths the actual orifice®.

* See REnwIE'S Repori to Brifish Associalion, 1631,
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119. If the 'constant surface of the fluid be large

k
compared with the orifice, the ratio e will be small, and

; exceedingly small, hence if & be the depth of the

commencement of the vena contracta below the surface
of the fluid, we have for the issuing stream v =+/2gh,
or the velocity of the issuing fluid is that due to the height
through which it has descended supposing it to fall freely.

If the fluid be not supplied at the same rate as that
with which it escapes, the surface is no longer stationary,
and the hypothesis of the steadiness of the motion is not
fulfilled. When, however, the orifice is exceedingly small,
the true velocity will differ from 4/2gh by a quantity
which is not assignable, and no appreciable error will be
introduced by using this value.

120. Pror. To find the time of a vessel emptying
itself through a small orifice in the base.

At any time (¢) let A be the area of the surface of
the fluid, and = the depth of the effective orifice & below
_the surface of the fluid, and » the velocity of the issuing
stream.

Then —dx being the descent of the surface in the
time df, we shall have

kvdt = — Kdx.

Kz
But v=4/2g2; ..dit=-—
& fin/ Ega{’

1 - Kdx
Fﬁfﬂgf VE

Let the vessel be prismatic, then K is constant, and

and ¢ =

2K
tswﬂ—_g §C — o/}
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When the motion commences let z = a ;

§C —n/a},

kv"

and subtracting,

v/a- v/}

a K ﬂ.,/ i At

-—, which is double
k'\/ g

the time in which the same quantity would run out, if

the fluid were retained at a constant. elevation.. If the

vessel be not prismatic, the surface K must be expressed

as a function of =, and the time can be found as before.

.fs:v/%g

The whole time of efHux is

121. The effect of adjutages in increasing the ex-
penditure of a given orifice is known practically to be
very considerable; we shall apply the preceding equation
of steady motion to some of those which were employed
by Venturi in his experiments on issuing fluids.

Ex. 1.  Adn adjutage consisting of a conical and cylin-
drical tube of the form of the issuing stream.

Let abge (Fig. 23.) represent this adjutage.

Let &k be the section at ¢d or the effective orifice, and
h, k' the depths of ef, ed, below the constant surface of
the fluid.

The velocity of the fluid issuing into the air without
sah !
g 14 » If @ be the ratio of

=
=

the effective orifice to the surface of the fluid.

the adjutage would be =

The velocity of the fluid issuing at eg = \/Egh

1—-ga°
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The increase of velocity due to the adjutage is there-

= N ZE -V,

The pressure at cd =p, + gh' =5 v° (1 — ).

fore

The pressure at the orifice = p, +gh —30*(1 - ),
hence the pressure at the commencement of the vena con-
tracta is less than the atmospheric by g (k — &), or the
weight of the column in the cylindrical tube. This agrees
very nearly with the results obtained by Venturi.

Ex. 2. A cylindrical tube with its awvis horizontal.

L
Fed

When the fluid fills the tube, the velocity of rushing
into the air will be 4\/ : ghz, and the expenditure will
1,

consequently be increased by the adjutage in the ratio
of the area of the orifice to the section of the vena con-
tracta in air: for in this case the actual ovifice is rendered

the effective orifice.

Ex. 3. A horizontal adjutage converging to the vena
contracta and then diverging.

An adjutage consisting of two conical portions having
their smaller ends united at the commencement of the
vena contracta, was found by Venturi to give a large
expenditure.

The equation p =p, +g% —5v° (1 —a’) shews that
as the velocity will decrease in passing from the minimum
section towards the mouth of the adjutage, the pressure
will increase; and this is confirmed by experiment. In
such an adjutage as this, the stream is divergent when
it leaves the adjutage and the velocity of that portion
of it which is in immediate contact with the air, being
nearly the same, it must consequently be less than the
velocity in the interior of the stream at a small distance
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from the aperture. At a small distance from the adjutage
there must be a section where the stream ceases to be
divergent, and at which consequently the velocity is the
same for every point and the pressure equal to the atmo-

- : : 2o}
spheric. The velocity at this point will be ‘\/ Ik

1 —a* :
and as this section, the stream having being divergent, is
larger than the aperture, there must be a greater expen-
diture from a conical diverging adjutage than from a

eylindrical tube of the same aperture®.

The Varviable Motion of Fluids.

122. Pror. The motion not being steady, to deter-
mine the pressure on the hypothesis of parallel sections.
T ——

When the motion is not sfeady, returning to the
general equation, we have

p=fp(Xda+ Ydy + Zdxz)
{d{w)

dr + —

- Ip

d(v} _ch{w) B
i e d“’}'

Here since the particles are moving with different velo-
cities as they pass through the same point in space, the
quantities

d(w) d(v) d(w)

T TN T T T
are no longer the same for successive values of #, y, » and
successive values of £, as for the successive values of w, v,
2 and the same value of #; but the integral must be taken
at a given instant for a line of particles terminating in the
given point, that is, the quantities must be integrated ex-
clusively with reference to a, y, =

To effect the integration in the most general manner,
without any special hypothesis respecting the direction of

® See Cuanrrs, Camb. Phil, Trans. xvion, 180,
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the motions of the particles, let ds be the space described
in time df, by a particle whose co-ordinates are x, ¥, =,
and let ¢ be its velocity.

dg . ; ) B !
Then —E 18 the effective ﬂcccleratmg force upon 1t In
€

the direction of its motion, and

du d¢ dr dv_d¢dy dw dqb ds
A it da’ df  didz dr i ok

duv dw ) da* + dy’ + d=* dgp
e o i hiss o
=P ( i Bl ) =Jp ds dt
d
=Jr d? o8

The quantity P is a function both of the position of
the whole mass of the fluid and of the given particle

within it, or it is a function of ¢ as well as of @, y, =; but

since fp [?ds is to be taken exclusively with reference

20

to x, Y, %, we must express G in terms of the variables

on which it depends, to effect which recourse must be had

to some partiuu]ar hypothesis.

The one chosen is the hypothesis of parallel sections,
which supposes, that if any section be taken at any instant
perpendicular to the motion of any particle, then all the
other particles are moving with the same velocities and in
the same direction.

This hypothesis amounts to supposing that a fluid, as
water, descends in parallel slices, so that a portion which is
at any instant included between two planes, will always be
between planes parallel to these. It may be shewn from
the general equations, that for some cases the motion is
in strict conformity with this hypothesis*.

" Cnarnnis, Phil. Mag, Jan. 1851,
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Then all the particles being supposed to move with the
same velocity in the same section, let « be the section of
the fluid, every particle in which is moving with the
velocity ¢.

Also let & be any section of the vessel through which
the particles are moving with a velocity v, then the fluid

being incompressible, K i
_Kte
-’ = & & b
k¢ = kv, or ¢ = —-; whence, differentiating, K
ﬁ:"

dp _kdv kv de

dié rkdt «k*df d

hut sinee x varies with the motion of the Huid,

ok X di ds i ds kv !
T T T T
_de ¥ ke dv km di a"pt
"dt kdt & ds’
dp dv ds dx
SR o P00 T s W TR
i dt 7 di l K
15 : .
Now v, and therefore T is a function exclusively
of the time, the position of k being given, and dx and ﬁ
K

are functions of », ¥, %; hence, integrating with respect
to these quantities,
d dv rds kv
-Et:L?z k— | —+ 31 —.
di df K K"
Substituting and supposing that gravity is the only

force and that p =1,
b4
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dv rds kv
T Ly L LA

K
where ( may be a function of the time. To determine

the arbitrary constant, let us suppose that & = K at the
surface of the fluid, let p , %, be the values of p and = at

:d,
the surface, and let f s N, then
3 K

duv | 1
p—p =gz -—=x)- k&?N—ﬁlfﬁﬂ*{F - }T}'
whence the pressure at any point below the surface of the
fluid may be determined.

123. The preceding equation may be applied to an
issuing fluid, and the results compared with those which
have been already obtained.

Pror. To find the velocity of a fluid issuing
through a given orvifice.

Let water issue into free air, then the pressure at the
orifice will be the same as the atmospheric pressure, or
p=p,. Let k be the orifice and » the velocity of the
issuing fluid, then, since « may be situated anywhere, let
it coincide with the orifice, and let & be the depth of the
orifice, then ki = — %, ;

dv I 1
s gk e N — X 1 (_.ﬂ ___)
AR TS K
dv
=gﬁ.—kEN——%1:‘-’(1 — a*),

ke
if a=—.
K
Now since (1 — ) is essentially positive, we may
assume it = (3%
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Let the fluid be retained at a constant height, then
i and N are constant; we have therefore

2 Nduv
Egh Iﬂ“’ vt

kN V/2gh + Bo

—_— e

?‘ ‘.
ﬁ\/“gﬁ ﬂg!.; - [Bu

No correction is requisite, since » and ¢ begin to-

gether. The quantities 3 and v/2gh may also be positive
or negative. Taking them as positive, we have, assuming

kN 1
Ba/2gh T
2L h = BP LY
———— e E ,
2oh — (31
A .
whence ——— 8

m/ ‘?’gﬁ TR
Substituting for (3 its value,

C2gh \teM -1
E* | ety

e

K

P =

e =1 L1 et
&+l l+e
to unity as its limit, and at this hmlt the wvelocity is
independent of the time,

As t increases,

apprmﬁ.hes rapidly

2gh \}
k‘! 3
-5

or v =

the velocity when the motion is steady, as was before
shewn.



164 THE MOTION OF FLUIDS

It appears then that on the hypothesis of parallel
sections, the motion can never be strictly steady; if how-

k )
ever the ratio e be small, and % be not exceedingly small,

A is large, and the motion may be considered as steady,
after a very small time.

Steady Motion of en Elastic Fluid.

124. The variation of the temperature being neg-
lected, which may be done without sensible error when
the motions are not very rapid, our general equation of
steady motion becomes, when applied to elastic fluids, if
i aEP:l

a’logp =gz —4v*+ C.

Ex. Let air be driven by a constant pressure through
a small orifice out of a vessel into the atmosphere.

The effect of gravity may here be neglected, and if
P be the constant pressure and V the velocity where the
pressure has this value, then

a”lngP=—% PP g
subtracting from the preceding,

. ur“']ug%.: LV -v%);

hence the pressure is less as v is greater. Also,
o 1 IR Giasl g anel R i
v'=V*=-2alog— = V*+2a’log—
e p g p’
P

or v* — V®=2a*log=—.
?.i

Let a be the ratio of the velocity at the surface sub-
ject to the constant pressure, to the velocity at the orifice,
then

f)
v* (1 — a*) = 2¢°log— .
g'p
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When the orifice is very small, * may be omitted,
s
and v = '\/ﬂcﬁlog—.
P

The equation «® log % = L (V*—+%), shews that points

of equal pressure are also points of equal velocity, since
p=P and v =V simultaneously; consequently, that as
the pressure at every point of the surface must be nearly
the atmospherie pressure, if the stream contract like water,
as there is good reason to conclude it does, there will be a
converging surface at every point of which the velocity is
nearly the same and greater than the velocity at all points
within it, so that the pressure within the surface is greater
than the pressure of the atmosphere.



CHAPTER XIIL

ON THE THEORY OF SOUND.

125. Souwp is caused by the vibrations arising from
some disturbance to which the particles that constitute an
elastic fluid have been subjected, and the theory of sound
consists in applying the preceding general equations to the
motion consequent on such disturbance. A single disturb-
ance is not sufficient to produce the vibrations necessary
for the production of sound, but they arise from the con-
stant repetition of such disturbances, and the velocity of
sound is the rapidity with which these disturbances are
propagated through the elastic medium.

The air is the fluid to which we shall now proceed to
apply the general equations (Art. 106.); and we shall sup-
pose that it is perfectly elastic and homogeneous, having,
when at rest, every where the same density and tempera-
ture; and also, that it is so slightly disturbed from its
state of rest, that during the motion which arises from
this disturbance, the velocities of the particles are exceed-
ingly small, in consequence whereof the accompanying
condensations and rarefactions will also be exceedingly
small quantities. Hence the squares and products of
these small quantities may be omitted, the effect of which
will be to render the general equation linear, and there-
fore integrable under a finite form.

This linearity of the equation is a point of the greatest
importance, since, otherwise, the general equation is abso-
lutely intractable; for it is evident that if no hypothesis be
made limiting the extent of the motions of the particles
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from their points of quiescence, the case to which we
should be about to apply the equations would involve all
the possible motions of elastic fluids.

We shall suppose also that no extraneous force acts,
or that X, ¥, Z, are all equal to zero, in which case
the density will, in a state of equilibrium, be constant and
uniform throughout, as we have already supposed it to be.

126. Pror. 7o form the equations for the small
vibrations of an elastic fluid.

Let D be the density of the air when at rest, and p its
density at a point @, ¥, 2, and after a time # from the com-
mencement of the motion: then

where s is a small fraction either positive or negative.

Let & and gmh be the height and pressure of the
barometric column corresponding to the density D, m
being the density of the mercury. Then when the fluid
is in motion, the pressure p which corresponds to the den-
sity p is gmh (1 + 5), provided the temperature remains
invariable; this however is not the case, since the tem-
perature 1s increased or diminished according as the density
increases or diminishes, that is, according as the fraction
§ is positive or negative. Suppose then that we have

p=gmh(l + s+ a),

where ¢ is a small quantity of the same sign as s, of which
it is some function; and since s 1s small, let us assume

ﬂ':ﬁ&‘,

where 3 is a positive quantity and independent of s.

We have then, making the substitutions and differ-
entiating,

dp =gmh (1 + 3)ds:
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and dividing by p=D(1 +s) and representing the co-

A (1
efficient £ SD =) by

. d
.d'f_’= e f—p~_— *log (1 + 8)s

L 2
P L P
no constant being requisite if the integral be supposed to
vanish when s = 0.

But log (1 +8)=s—-3 8+ ... =85, very nearly ;
d
i == {EES‘
P

But the squares of the velocities

dp d¢ d¢
de’ dy’ d=z

are to be omitted here; hence the general equation becomes

de dep d¢p
H=—0—, 0=—"1, W=—"—,..12

gives four equations for determining the condensation and
the velocity of the fluid at the time ¢ and the point @, ¥, %,
the function ¢ having been determined.

The displacement of the particles of the fluid being
d¢p d¢p d
d—f, d_i)’ g, are to be
omitted, and the equation of continuity (Art. 107.) be-
comes, substituting for s its preceding value,
di d—i di? 2
Eda

Frintel ot m R

small, the products of s and
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These three equations are those of the theory of sound
propagated in air of uniform temperature and density:
they depend on the hypothesis that wda + vdy + wdx
1s a complete differential, which it is in the cases to which
we shall apply them.

Rectilinear Motion.

127. Let a small quantity of air be enclosed in a
cylindrical tube with its axis horizontal, and let the motion
be in the direction of this axis; if then this axis be taken
for the axis of », we have v =0, w =0, and ¢ will be a
function only of » and f; the equation (3) becomes

¢ ,d'¢
dt* dat

This equation, which belongs to the simplest case of
propagated motion, is the one which we shall employ. A
different one, which will also serve to determine the motion,
may be obtained from the conditions of the problem in an
independent manner, as we shall proceed to do in the
following proposition.

128. Prov. To find the differential equation for
a disturbance propogated in a small eylindrical column
of air.

Let the axis of the column be horizontal, and let it be
supposed that the temperature is uniform throughout the
motion, and that no extraneous force acts.

Let the section of the column be unity, and PQ
(Fig. 24.) an element da of the fluid at a distance « from
the origin O of co-ordinates. In the time df let PQ be
transferred to P'Q, let PP = X and p, p' the densities
of the air in PQ and P'Q. Then,

OF =a 4+ X,

and since X will vary for da in passing from Q to @,

3
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Now the general law of elastic fluids is, that the
pressure is proportional to the density; hence, since there
is a change in the density, there will be a corresponding
change in the elastic force.

Let e, ¢ be the elastic force corresponding to the
densities p, p’, then the temperature being supposed
constant,

e=kp, and €' =kp';
dX
=P—,=1+@, and ﬂ'=e( ),
I d @

G pp

e
B da

d.X s . .
the powers of e above the first being omitted, since the
x

motions are small.

But & is the pressure exerted at an instant £+ di,

a d a da*’
and e =Fkp;
S Tdp .-‘c:tFX‘
Dk pda B o’
and substituting this value,
ﬁx}r =% fF.rY_
det da*’

which is the partial differential equation required.

If the change of elastic force consequent on the sudden
variations of density had been taken into account, a like
equation would have been obtained with «* in the place
of k.

129. The equations (1), (2), (3), become then in the
case of rectilinear motion,

L agu P d*cp ﬂgd“fﬁ
S edt da’ dE = da®

o ==
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The integral of this partial differential equation of the
second order is

¢ =F (v —af) + f (@ + al)......(4)
where F' and f, are arbitrary functions; hence,
u=F(x—at) + f(o+al) ......(5),
and as = F (v - at) - f(x + at) ......(6).

The discussion of these equations will shew distinctly the
nature of the motions which we have to consider.

And first, the differential equation is linear. Now the
linearity of this equation is a remarkable analytical fact,
and arose from the omission of the terms which consisted
of the products of the condensation and velocity of the
particles; and this omission was allowable because of the
hypothesis, that the motions of the particles from their
state of quiesence were small. The physical fact in the
propagation of sound through air is known to be in accu-
rate accordance with this hypothesis, the agitation of each
particle being so minute as not to move it sensibly from
the state of rest; for when sounds are transmitted through
a smoky or dusty atmosphere, there is no visible motion
in the smoke or floating dust, unless the source of the
sound be so near as to cause a wind*.

If then the motions of the particles be exceedingly
small, the differences of these motions for two consecutive
particles, that is, the amount of condensation or rare-
faction undergone, must also be exceedingly small; the
products then or squares of these small quantities will
be quantities of a higher order than those of the other
terms, and may therefore be omitted in comparison with
them.

When motion therefore takes place in a medium under
these circumstances and conditions, the equation will be

linear.
®* Encyc. Mel. Art. Sound, M.
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Now it is the property of all linear equations of the
first degree, that if any number of functions satisfy the
equation independently, their sum will also satisfy it ; and
conversely, if the sum of any number of functions satisfy
it, then each function will separately satisfy it. And this
property of the linear equation of the first degree is a
necessary consequence of its linearity ; for the equation
involves no powers of the differential coefficient but the
first, and since any differential coefficient of the sum of
any number of functions is the same as the sum of their
differential coefficients, the substitution of a sum of fune-
tions is the same as their substitution separately and con-
versely ; therefore if the sum of any number of functions
satisfy the equation, each function will satisfy it sepa-
rately. This property then that the equation may be
broken up into several parts similar to each other and
to the whole, is an analytical fact and the necessary
consequence of its linearity.

130. ¥rom equation (5) we have the velocity given
by the sum of two functions, but from what has preceded
it is evident that we may have

u=F (r—at)+ Fy(z —at) +......
+ fi(x + at) + file + at) +......

If the disturbance be propagated only in one direction,
there will be (as we shall see presently) but one of these
two lines of functions to be taken, the form of each
function being determined by the initial circumstances of
the disturbance.

If there be but one original cause of the disturbance
not resolvable into component disturbances, there will be
but one function as F, to be considered; but if there be
several original disturbances, there will be one function
mrreapondfng to each, and the whole disturbance will be
the algebraical sum of these functions. And it is par-
ticularly to be remarked, that the whole disturbance thus
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found as the effect of all the original causes together,
is precisely the algebraical sum of a number of disturb-
ances, each of which would have been produced by one
of the original causes acting separately.

Hence, whenever a particle is affected by several dis-
turbances simultaneously, the motion it receives is com-
pounded of all the different motions it would have received
had each disturbance acted separately. Thus the velocity
at any point is the resultant of several velocities produced
by different causes, and any given cause will have the
same effect in producing velocity at a given point, whether
or not other causes are operating to produce velocities
at the same point.

The preceding is the general theoretical proof of the
co-existence of small vibrations in rectilinear propagation ;
an experimental confirmation of which may be derived
from the well-known fact, that an ear is sensible of the
effect of every instrument at a concert, which could not
be the case, except on the hypothesis of the simultaneous
transmission of different disturbances.

It must also be remarked with respect to these equa-
tions, that the origins of @ and ¢ are perfectly arbitrary ;
and that as the equations were investigated without any
reference to the manmer in which the particles were put
in motion, all the results derived prior to any hypothesis
about the mode of disturbance must be perfectly general ;
that is, these results must obtain whatever be the nature
of the disturbance, or in whatever way the particles have
been caused to move, provided always that = be small
compared with a.

131. The determination of the velocity with which
a disturbance is propagated in transmitted motion had
been incorrectly treated by analysts, till Professor Challis
directed their attention to it. In his Report® he expresses

¥ Trans. Brit, Aszoc, 1834,
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his doubts as to whether the arbitrary functions obtained
by the integration of the differential equation can be im-
mediately applied to any but the initial state of the fluid,
and whether previous to their application at any subsequent
epoch, the law of transmission must not be first deduced
by means of the quantities which the arbitrary functions
involve; that is, if the differential equations be applied
to one, as for instance, to the initial state of the fluid,

can they or. can they not be applied to another state
without first determining the law of transmission ?

Now previous to an examination into the law of trans-
mission, we cannot know whether the form of the functions
may not change with the time; and if this be the case
there will be an evident fallacy in determining the velocity
of propagation, on the supposition that the same form
which expresses the state of disturbance at a time (£) will
also express it at the time # + 7.

This determination of the velocity of propagation leads,
however, to no erroneous results in the case of sound,
because the velocity of propagation happens to be uniform;
and the fact that the functions do not change form is the
consequence of the uniform transmission. Whenever then
the velocity of propagation happens to be uniform, this
method leads to no erroneous results, because it rests
on a supposition which implies the uniformity of pro-
pagation. It could not, however be applied without error
to an instance of propagation like that which obtains in
waves at the surface of water, where the forms of the
propagated waves, though dependent on the initial state
of the fluid, are continually changing with the time.

The method of obtaining a general expression for the

velocity of propagation is given in the following pro-
position*,

132. Pror. To determine generally the velocity of
propagation in transmitted motion.

* See UHaLLis, Ed. Phil. Mag, April 1835,
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Let y = ¢ (v, {) express the state of the particles at
a distance & from the origin at the time Z

Suppose any given value of the ordinate (if we sup-
pose the state of the particles to be represented by a curve)
to be carried through space with the velocity » during
the time #; in general » will be a function of « and #,
but it may be supposed constant during the small time o
and for a small increment of a, that is, for a portion da
of the axis of absciss. For on this supposition quantities
of the order #* and #'da only will be omitted.

Hence, for the small interval of time so far as it relates
only to a portion da of the axis of abscissse, the function

¢» may be considered invariable, consequently,
d(est)=¢(w+ot, t+1)

dgp ., dg,
._(p(e?-,t}-'.-'ﬁﬂt'f"a{f Foeennne |

o d
0= E%] v +d_(f very nearly, and

which is a general expression for the velocity of propa-
gation.
This formula is of extensive application, and will serve

either to find » in terms of @ and ¢ when F is given,
or to determine F by integration when v is given.

133. To determine the velocity of propagation in a
eylindrical column of air, and the nature of the motion.

We have seen that either of the functions will satisfy
the equation separately, then for the function F we have,

since
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d F s d I .
T =0 F' (v — at), and == F (v - at),
—aF (v —at
. the velocity of propagation = — ;;F(Tm(ti = :; ) =

For f(x + at) in the same manner,

the velocity of propagation = — a.

Thus it appears, that whatever be the initial disturb-
ance, the velocity of propagation is constant; hence, we
may consider that the ordinate of the curve representing
the state of the particles is transferred with a uniform
motion through space, and consequently the functions
F and f do not change with the time.

It appears also that the functions apply to propaga-
tions in opposite directions; the function F' to propagation
in the positive direction, and f to propagation in the
negative direction, whether on the positive or negative
side of the origin.

Since the two kinds of functions # and f, which
separately satisfy the differential equation, satisfy it con-
jointly, the inference from this analytical fact is, that
the most general character of the motion is such as
results from two simultaneous propagations in opposite
directions. The velocity and condensation of the par-
ticles, whether at the instant of original disturbance or
at any subsequent period, are such as are consistent with
two motions transmitted in opposite directions with the
uniform velocity a.

134 Proe. To determine the nature of the trans-
mitted motions.

Since each of the functions satisfy the equation, let
us first consider F(w — af). This, as we have seen,

refers to propagation in the positive direction with a
A
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uniform velocity @.  The motion represented by one of
the functions expresses a possible motion, but is not the
most general which can obtain.

Then u = as = F(x — at)

This equation shews that the velocity is always pro-
portional to the condensation. Also, since

I
w=as, and s=-—F(r-at),
a

if at any instant, that is, for any value of #, an ordinate,
: 4 1

as determined from the equation s =—F(x —at), be
0

erected at each point in any line taken as the axis
of abscissa, these ordinates will be proportional to the
condensation, and the bounding curve will give at once
the law of the density and the velocity; the positive
ordinates corresponding to velocities in the positive direc-
tion 4BE (Fig. 25.), or to condensations, and conversely ;
the negative ordinates to velocities in the negative direc-
tion EBA, or to rarefactions, and conversely.

The state and motion of the particles then at any
time #, may be accurately represented by some curve,
the exact form of which is of no importance.

This being the state of things at a time #, let us
enquire what is the state at a time ¢ + ¢, that is, let ¢
be supposed variable, and « constant.

Then u =as=Fi{o—a(t+t)}
= F{(x - at) — at}
= F(a' — at), suppose,

which is of the same form as F (@ — at), that is, the
state of the particles at a distance 2’ from the origin,
and at a time #, is precisely the same as at a distance @
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from the origin and a time #; or we shall have the same
velocities and condensations of the particles when @ 1s
constant and # becomes # 4+ #, as when £ is constant and
x becomes ¥ — at'.

Hence the velocities and condensations which the par-
ticles at a given point undergo during the time ¢ are
the same as those which the particles in a space at'
measured from the given point towards the origin of
co-ordinates are undergoing at the instant ' commences.

The motion is therefore such as will be understood
by imagining a curve, which gives the velocities and con-
densations, to move without undergoing any alteration
along the axis and from the origin; but it must par-
ticularly be remarked, that this conceived transfer is a
transfer of form, and not of matter, and that it is more
properly expressed by saying that the particles at a
distance @ +at from the origin at the time #+¢ are
in the same relative state as were the particles at a dis-
tance @ from the origin at the time ¢

The general conclusion then to which we are led by
the preceding is, that each particle (taken successively
in order of space) is successively, in order of time, in a
similar state of displacement, which may be represented
by conceiving a peculiar form of curve to advance from
the origin with a uniform velocity.

The same remarks apply to the function f, the only
difference being that the propagation is in the opposite
direction, or towards the origin.

If there be several initial disturbances, there will be
a function corresponding to each, and the ordinate ex-
pressing the velocity and condensation at any point will
be the algebraical sum of the ordinates which would
obtain by virtue of each disturbance considered separately.
Thus the corresponding modes of vibration, when co-exist-
ing, will produce a compound curve very different from
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the curve which would be traced for any one of the
disturbances acting singly.

135. Pror. To express the disturbance at any
epoch in terms of the initial disturbance.

Let ¢ be dated from the commencement of the motion,
and let the initial disturbance extend through the limits
47, and let \/(#) be the function which represents the
initial values of the condensation, the velocity being sup-
posed nothing when ¢#=0. Then, (Art. 129.),

0= F(a) + f(2),
V(@) = aF () - af(a),
and F= —f; therefore, since F(z) = — f(«),
V(@) = 2 F ().

In the same manner v (#) = — 2f(«); we have, there-
fore, since the functions do not change with the time,

F(a = at) = 3\ (x - af),

[l + at) = — L\ (v + at).
Then
u = (@ — at) — L\ (z + at),

atl = 3—1{;(3-' — at) + +\ (@ + at).

These equations apply to the motion for any values
whatever of « and ¢, with the single limitation that the
function \y must become evanescent for any values of
a2+ at and @ —af not included between the limits =/
It will hence appear that from the first instant of the
motion the initial disturbance is divided into two equal
propagations, one in the positive and the other in the
negative direction, and that as soon as these two parts
are completely separated from each other by the propaga-
tion, the function \s(x —af) only applies to the former,
and the function (v 4 af) only to the latter.
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The motion then at any point on the positive side
of the disturbance commences when @ — af =/, and ends
when @ —at= -1, that is, it begins to move when

x -1 x4+l

= , and ceases when ¢ = ——; the duration, there-
@ @

- - " 2 L] - . L] -
fore, of its motion is —, which is the time of vibration
a

of a particle.

Now, since a is constant, the time of vibration depends
simply on the extent of the disturbance; hence, if + be
the time of vibration and X the length of the wave, we
have, as in light*,

91>
00

the velocity of the wave =

I

] [fhour] -

which is independent of the length of the wave, or the
velocity of transmission is constant, as it was before
determined to be.

136. The periodicity of the motions of the particles
leads us to assign some trigonometrical form to the
arbitrary function, and the simplest which suggests itself,
from the analogy which subsists between the motion of
the particles of air and the oscillatory motion of a pen-
dulum, is

;1
b sin — (v — at + C),
@

which will express a possible motion, but not the most
general one.

This function goes thrnugh all its values when nt
" s - E 5
increases by 2, that is, when # increases by “T . which
7
is therefore the time of vibration of a particle.

* Aey's Undulalory Theory, Art. 5.
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; : 5 : A
But by the last article the time of vibration = —;
a
A 29 7 2
. —=—, ' whence — = —
a n @

If, therefore, the origin either of £ or @ be so assumed
that the arbitrary constant C is nothing, we have

)

. 2%
Hsin — (@ — et
T (o~ at)

as the form of the function for a single disturbance ;
and if there be several such disturbances, the sum of a
number of such funetions will indicate a possible motion.

137. Pror. To explain the reflevion of sound.

We have generally for the disturbance of a particle
of air in a cylindrical column

w=F(r - at) + f(x + at).

Suppose that w=0 when =1 for all values of ¢;
then

f(l+at)= - F(l - af),
and since this holds for all values of #, we have
f(l + at) = — F(I - at).
Let ¢ and # be so connected together that
w+at=1+at;
Bl gt=l=ni:
and f(l + at) = - F(l - af):
s fle +at)=—=F(2l— 2 - at);
= F(r - at) - F(&l -x - at)
= F(v~af) - F{2] - (v + al)}.
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Hence it appears that when in a cylindrical column
of air any particle at a distance / from the origin is
always at test, the motion of a particle at any point
less than 7 will be such as results from two equal and
opposite propagations having their origins equidistant
from the point at rest, and commencing at the same
Instant.

Now the effect will not be altered by supposing a
rigid partition at any point, provided it be endued with
the motion of the particles at that point. Let such a
partition be placed at a distance ¢ from the origin, that is,
at the point of rest; the partition will consequently be
always at rest. Under these circumstances the air on
one side of the partition does not act on the air at the
other side; if one portion be removed, the motion will
take place as before, but in this case the partition be-
comes a rigid reflecting surface, thus a sound is reflected
back again.

138. In a preceding proposition (Art. 135.) we sup-
posed that the velocity was originally nothing, the
condensation being expressed by a given function. We
will now consider the case when both the initial velocity
and the condensation are given by separate arbitrary
functions.

The equations for the velocity and condensation in
a cylindrical column are

u = F(w — at) + f(x + at),
as = F(w — at) = f(« + at).

Suppose that when ¢=0 we have w=1(®) and
s=vy(x); then

U () = F(a) + f(x), and ay(x) = F(z) - f(2),
whence,
F(x)=13Vya+ay(@)i,
f(@) =43P —ax(@)};
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Sy (w—at)-x(v+at)i,

wla

o u=g i (e-at)+\p(@rat)} +

s= Iy (0-at)—y (v+at)} + 4 {x(@-at)+ x(@+at)}.

9

Let the initial disturbance extend through a dis-
tance & /; then for all other values the initial functions
are nothing; therefore \IJ(’L) =0 and x(m):ﬂ from
=1 to x =", and from o= -1 to 2 = - .
If now @ be =1I, we shall have

V(z+at)=0, y(x+at)=0,

and =1} (v —af) + ay(x - at)},

1
s.—.;;{\][,r{.r—ﬂf) +ﬂx(m-ﬂf)};
‘o« M= (L8,

Again, if » be < -1,
Yr(#—at) =0, and y(2-at)=0,
and w =} i (2 +at) —ay (v + at)},

B = _;1 ixp(.r+at)—x{w+ﬁ.¢]}i

"r’ﬂ

U= 8.

Hence, beyond the limits of the primitive disturbance
on each side of it, the condensations of the particles are
proportional to their actual velocities, and the particles
are in a state of condensation or rarefaction according as
their motion is in the same or contrary direction to that
of the propagation.

This relation, which does not necessarily hold within
the limits of the primitive disturbance, establishes -a
marked distinction between the primary and the pro-
pagated waves, the former being subject to no law, but
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to the arbitrary one which we assign to the function, the
latter being subject to this condition. ‘Any impulse in
which this condition is not satisfied will immediately di-
vide itself into two pulses running opposite ways, in each
of which the preceding condition holds, and so long as
this condition holds, no subdivision takes place. Hence
we see the reason why every propagated wave does not
divide itself into two, but is propagated only in one
direction.

Suppose this condition to obtain in the primitive
impulse, then,

and the preceding equations give

1
w=(w—at), s=- V(v = at),
i

whence it appears, that for all negative values of @ greater
than —/, we shall have % =0, s = 0, which shew that on
the negative side the motion is not propagated beyond
the limits of the primitive disturbance.

Whenever then in passing through a medium a wave
receives from extraneous causes any modification, such as
disturbs the preceding relation, it will be subdivided, and
a portion reflected. Similarly, this portion may be again
subdivided, and so on; this subdivision being always
accompanied with reflection, will give rise to a continued
series of repetitions of the original sound as echoes.

Motion in three Dimensions.

139. Having fully discussed rectilinear motion, we
shall proceed to apply the general equations to a mass
of air of indefinite extent, and in which the disturbance
extends itself in all directions from a centre.

A A
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Pror. 7T find the propagated motion in a mass
of air of indefinite extent.

Let the centre of disturbance be taken for the origin
of co-ordinates, and r be the distance of any point @, y,
z, at the time #, and { its velocity, which will be in
the direction of the radius r, and a function of r and ¢
and of the condensation s; for during the whole motion
every thing must be symmetrical about the origin of co-
ordinates.

Then we have

U = E—, §y
7

vV=—, W =
T

k.

<
r
but #* + 4 + 8% =13 .- rda + ydy + xdzx = rdr,

¢

and wda +ydy + wdz = = (vda + ydy + zdz) = gdﬂ';

or, uda +ydy +wdx is a complete differential of some
function of » and £  This function being the quantity
¢ determined from the equation (3) (Art. 126.), we have

d

(=1 +0"+w'= ==

as the resultant of the velocities %, v, w.

Differentiating ¢ with respect to @, y, z, we have
dp dpdr df dpdr do dpdr
de drda’ dy drdy’ dx T odr de’
differentiating again and substituting,

i .# 2 . 2

de®  drt +*  dr *)r

dpa® dpy +2°
Tdrt e dr P
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¢ dpy dpat+
—t = + —— —— 5
T L e R

& dp dpat+y
e PR T

and the equation (3), becomes

rff.y}? 2ia (d_:r(p X ff_(j}j

e e L]
d ¥ dre  r dr,

which may be put under the equivalent form,

d.r¢p ,dirgp
— i A m s mEa EE R WA ‘1' -
G g *)

The complete integral of which is
r¢p = F(r —at) + f(r + at).

d¢

But {= 7 indicating therefore by the differential
r

coefficients by accents,

(= ::‘EF*{-r—faf}+f'(r+utJ}—;:ziF{f—ﬂ-f)+f(-r+ﬂﬂ}}---(-‘-'*J-
1 d¢p

Also s=—- — "3
a di

o i _{_;; SF' (r —at) = f'(r + at)}.........(6),

and these formule will determine the velocity and con-
densation at any instant when the functions F, F” have
been determined for all the positive or negative values
of (r — at), and f, f* for all the positive values of (r + at).

140. The remarks in Art. 129, on the linear equa-
tion for rectilinear motion, apply here also, and it is
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therefore unnecessary to repeat them. The complete
discussion of this equation has not as yet been effected,
and for what is at present known respecting it, the reader
must have recourse to the researches of Poisson® and
Challist. It appears, as in rectilinear motion, that the
velocity and density are propagated uniformly, the velo-
city of propagation being equal to «; that the function
F applies to propagation from a centre, and f to pro-
pagation towards a centre; and if the equations involve
but one arbitrary function, they apply to a single dis-
turbance. In this case, when » is very small, the second
term of the equation (5), which involves +* in its deno-
minator, may become much greater than that involving
r; for expanding the functions, supposing » to be very
small,

F'( - at)

»

+ F"( - at) + &e.

(=

F(-—at) F(-at) F'(- at)

- &e.
ot r a
F({ - at
e _._{ -QH” nearly,
r*
_¥@
=15,

T

When, therefore, the disturbance is made by a sphere of
small radius, the motion is transmitted from its surface
to other parts of the fluid nearly as if the fluid were
incompressible.

At a great distance from the centre of the disturb-

: . 1 5%
ance we may neglect the term involving 2 in (5) and

FArL G660, Traitc de MWeécanigue.
+ Camb. Phil. Trans. Vol. 111 and Vol. v.
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e : - s y I
(6) in comparison with the term involving —; we have
.ri

then during the whole motion

§=£LS,

as in rvectilinear propagation.

The velocity of the particles decreases in the inverse
ratio of 7, hence, since the intensity of sound is pro-
portional to the square of its velocity, its intensity at a
considerable distance from the centre of the primitive
disturbance will decrease inversely as the square of the
distance; and experience confirms this conclusion.

141. We may here also determine the manner in
which the motion of the fluid is affected when the rect-
ilinear transmission of an impulse tending from any
centre is interrupted by a plane surface. For suppose
two impulses tending from two centres to be of equal
magnitude and in every respect alike; then if the
straight line joining these centres be bisected at right
angles by a plane, there will be no motion of the par-
ticles contiguous to the plane in a direction perpendicu-
lar to it, because the resultant of the velocities from the
two causes must lie wholly in the plane. Hence, since
the division of fluids may be effected without the ap-
plication of any force (Art. 2), nothing will be altered
if we suppose the plane to become rigid and to inter-
cept the communication of the fluid on one side with that
on the other. The motion on each side will then be re-
flected, and the angle of incidence will be equal to the
angle of reflection.

142. Pror. To determine numerically the velocity
of sound.

The velocity of propagation of a disturbance through
an elastic fluid is a. Now by assumption (Art. 126.),
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that the condensation s takes place without any loss of
heat, we may substitute s and 5 for d and w in (5),
(Art. 99.), hence,

1+ 3=m;

where « is the ratio of the specific heat of air under a

constant pressure to its specific heat under a constant
volume.

The value of a becomes therefore

gmhe
€= ’\/—D - 4 .

Let A be the density of the air under a constant
pressure gmh at the standard temperature, then (Art. 81),

and consequently

a= l\/@{l + EB)”.......(E):

the expression whence the velocity of sound may be cal-
culated numerically.

The value of ~, as determined by experiment (Art. 99.),
was considered as independent both of the pressure and
temperature ; it appears then, 1% that the velocity of sound
increases with the absolute temperature @ in the ratio of
A/1+ab to unity ; 2, that it does not vary with the
barometric column, since # and A vary at the same time
and in the same manner, so that their ratio is constant.

The hygrometric state of the air must produce a
slight influence on the velocity, this however may in ge-
neral be omitted, since the total variation for the ex-
tremes of dryness and of moisture will not amount to
sith of the velocity of sound.
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Numerical Determination.

The values of the constants which Poisson® has taken, are
L o= HL I
g = 9".80896, A = 0".76, B 10.462,

a = 0.00875, 0=15"9C., = 1.3748,

whence he deduces
a = 337™.07 = 1105 feet.

This value is a little less than what he considers as
its value according to the best observers, namely,

= 340™.80 = 1115 feet.

We have seen (Art. 98.) that different experimentalists
have assigned different values to «; if we take its larger
value, namely, ~ = 1,421, we shall obtain, using the pre-
ceding data,

¢ = 542".69 = 1124 feet.

Thus it appears that this value exceeds the observed
value by nearly the same as the other falls short of it.

143. The determination of the ratio of the specific
heats of an elastic fluid is a most important inquiry; we
have already seen (Art. 99.) how this is to be determined
experimentally, and that its value is essential to the nu-
merical determination of the velocity of sound; and we
shall now shew how its value may be determined from
the observed velocity of sound. The circumstances under
which sound is propagated, are far more favourable to the
full production of the whole effect due to the cause in
question, than the experiment with closed vessels; and the
whole circumstances of the two cases are so widely different,
that while a considerable deviation in the results would be
insufficient to falsify the theory, a close agreement in the

% Peaité de Mécanique, Art. Bl

BN PO TS

F e
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results affords an evidence almost conclusive. Here then
the results agree so nearly, that there can be no doubt of
the truth of the hypotheses on which they rest.

The observed value of the velocity of sound is
a = 340™.89.
Substituting in the formula
@’ A
V= gmh (1 + ab)’
the data of the preceding article will give
ry = 1.4061,

a most remarkable result, being nearly the mean of the
smaller value of Gay-Lussac and Walter, and the larger
one of Dulong.

In comparing this value of ~ with the preceding ex-
perimental ones, it must be remembered that the conden-
sation and rarefaction were supposed to take place so
rapidly, that the quantity of heat which the fluid con-
tained had not time to vary sensibly. But in the propa-
gation of sound in free air, it is possible that the heat may
escape or return more readily by radiation than in the
propagation of sound in confined air, as in a closed tube,
where the heat of each stratum of air can vary but little
except by contact with the sides of the tube, and the large
value of ~ is the one which experiment assigns to the con-
fined air. This remark may explain the difference of the
two experimental results, and inclines to the larger value
of ~ as the more exact.

144. The velocity of sound as determined simply from

/i :
the formula '\/ gl;?;—l , by neglecting altogether the change

of temperature consequent on the alternate rapid conden-
sations and rarefactions, is less by one-sixth than the
B B
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observed velocity, and the accurate agreement of the the-
oretical with the observed velocity can leave no doubt of
the truth of this theory, which is due entirely to Laplace.

The propagation of sound in the vapour of water at
its maximwum density is due to the same cause.

If a vibration be excited in a close vessel full of vapour
and not mixed with air, sound will be generated and pro-
pagated without. But if the temperature of the stratum
of vapour contiguous to the vibrating body was not aug-
mented, the condensation consequent on the vibration would
reduce the vapour to water, which would be precipitated
on the surface of the vibrating body, since by the hypo-
thesis the density is at the maximum, that is, the quantity
of vapour is that which is due to the temperature under
a given pressure. But heat being developed by the com-
pression, the temperature of the condensed contiguous
stratum is raised, and can consequently continue in a state
of vapour. The condensation and increased temperature
is propagated from stratum to stratum, and sound is pro-
duced just as in a vessel of permanently elastic fluid.

The rarefactions of the strata are accompanied with a
diminution of temperature, but then the density being
diminished at the same time, the vapour is not reduced
to water, but descends to the mawximum which is due to
the relative temperature of the space it occupies.

The preceding is an ewperimentum crucis for deciding
on the validity of the explanation above stated as given by
Laplace, of the excess of the observed above the theoretical
velocity of sound as determined without any regard to the
developement of heat.

If the instantaneous condensations and rarefactions of
an elastic fluid do (as is supposed in that explanation) give
out and absorb heat, sound will be freely propagated in a
saturated vapour, that 1s, in a vapour in contact with a

B s i i1
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liquid, or under a pressure it can just sustain. If not, no
sound can be transmitted through it. The experiments
are decisive®.

145. Water being considered as a fluid slightly com-
pressible and elastic, sound will be propagated in it accord-
ing to the same laws through any other elastic medium.
The sound, when it reaches the surface of the water, will be
partly transmitted to the external air and partly reflected;
and the direction of the transmitted and reflected waves
will follow the same laws as those of light. The velocity
of the reflected sound will be the same as that of the direct
sound, and the ratios of the intensities of the transmitted
and reflected sound to the direct sound, will depend on the
ratio of the velocities of propagation of sound in air and
water.

When a given column of water suffers condensation,
there does not appear to be any development of heat, so
that there seems reason to conclude that the velocity of
sound propagated in water is not influenced by any varia-
tion in temperature. Theory and observation give a velo-
city of propagation about quadruple the velocity in air.

On Musical Sounds.

146. The equations which express the nature of the
disturbance produced in a eylindrical column of air have
been discussed, and the sounds arising from the vibrations
excited by blowing across the open end of a pipe or an
aperture at its side, may be explained by the preceding
equations. The current must be directed not info but
across the aperture, so as to graze the opposite edge; a
small portion will then be caught by the edge and turned
aside down the pipe, thus giving an impulse to the con-
tained air, and propagating along it a pulse in which the
air is slightly condensed ; this will be reflected at the end

* Encycl. Met. Art. Sound, 88. Mém. d’Arcueil, rr. 99.
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These equations hold for all values of #, hence, when
. 2wl - :
u = 0, we must have sm—l—zﬂ, and when (2) is satis-

2qrl '
fied, tnsT = 0; we shall proceed to discuss these cases.

147. Nodes. When a disturbance is propagated along
a column of air, the column may at any instant be divided
into several portions, in each of which the corresponding
particles are in a similar state of displacement and motion.

These portions are termed nodal sections, and the
points in which the axis of abscissa would cut the curve
which gives. the condensations and rarefactions at any
instant, are the nodes. At these points the velocities of
the particles are nothing, hence their position is determined
by the equation

. 2wi 2
= 2m sin ——cns—r{d—rzf],
A A

. e . 2qrl h
which is satisfied when SHIT = 0, that 1s, at a node

2arl A

—  =qaq, or l=n-,
A

where n is any term of the series 0, 1, 2, &ec.

Hence the interval between two consecutive nodes is
half the length of a wave.

The closed end of the pipe is a node, or the extremity
of a nodal section, since at this point the velocity of the
particles is nothing. .

Loops. Half way between two nodes the condensations
are rarefactions, are evanescent, and the amplitudes of the
molecular excursions are at a maximum ; these points are
called loops, and are given by the condition that s =0;
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hence, in the preceding case the closed end being a node,
we have a loop when (2) is satisfied, that is, when

2l
cos —— =1,
A

For a loop then,

A

al
-

2l T
T={9’”+ )=, or, I=(n+3)

where n is any term of the series 0, 1, 2, &ec.
At any l:u}int, then, In a c:,r]inr.lrical column of air, at
_ A : A
which 1= nes there is a node; and 7= (n +4) -, there
is a loop.

148. When a musical note is prnduced from a tube
whose length is / closed at one end, by blowing across
the open end, experience shews that when the lowest or

: A
the fundamental note 1s sounded, 7 18 equal to the length

of the tube, hence n = 0 for this note; also the conden-
sation at the orifice is nothing, which will be the case
if the orifice be the p]ace of a luup.

A
If 2 = 0, then we have from I = (n + %} S

A
£=-EIE:;, or, }b,="1'£..

3A 41
Let n =1, then I = — O A= = and so on.

Hence, if the fundamental note be called 1, the others
will be 3, 5, &c. being inversely as A, the breadth of the

wave.
It is found in fact, that 1, 8, 5, &c. are the only notes
which can be sounded.

In the case above considered, the existence of the nodes
and loops depends on the reflection at the closed end. If

e — -

S
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the tube be open at both ends, and the disturbance be
made as before, the same cause does not operate to produce
nodes and loops; yet is found by experiment, that there
are places of maximum and minimum velocity at regular
intervals, and that the two ends are nearly positions of
maximum velocity. Assuming the ends to be positions
of loops, we shall proceed to apply the equations to this
case,

Let ' be the length of the tube, then

as = F(x - at) - F(2l’' - a - at)

)

sl 2 . 2
= m sin . (# —af) —msin N (2l — & — at)

2 2
= 21 COS % (' = at) sin —?:I (! - a).

And ¢ =0, when =0, and @ = {';

2 . 2qr
' 0=co8 — (I' —af)sin— I’
,1( ) N wed

N : aql’ , A
which 1s satisfied when : =nr; ..onl = =

But for the fundamental note n = 1;
s A =20

therefore for the same note as in the preceding case we
must have
2l' = 4l, or I' = 2,

that is, a tube open at both ends gives the same note as
one of half the length closed at one end; and experience
confirms this result.

149. Pror. To find the time of vibration for any
note.

1°. Let the tube be closed at one end and = I, then
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the period of which depends on that of sin " (I - at).

e : / f
Now sin Tﬂ- (l—at)=sin2r (- _ﬂ_)

A X

i@ T g

= 5In T _‘; — ‘h—)
2aqat
= sin :
A
AL X Lk 2 :
which is nothing when = — n = for any multiple of half

a
a wave. W hence as before

for the fundamental note.

150. Pitch. The pitch of a note is determined solely
by the frequency of repetition of the impulse, so that all
sounds, whatever be their infensity or quality, in which
the elementary impulses occur with the same frequency,
are pronounced by the ear to have the same pitch.

The intensity of sound depends on the violence of the
impulses, the quality on the greater or less abruptness
of these impulses.

The pitch then of a note depending on the number
of waves which impinge on the ear during a given time
varies inversely as the time of vibration of a particle;

. LR A
and the time of vibration = -, therefore
7

the pitch =c =

3

= Rl
> &

Ce
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151. We have generally in the closed tube

2 gl
1% = 2m Cos —;:I (I — at) sin % (- x),

L

which is nothing for all values of ¢, when sin Tw{ﬂ—ﬂ?)=ﬂ:

L

-

. l
that is, when l—@=n—-, or 2 =l-mn

If therefore A be given, we have nodal points corres-
ponding to the values of 2, which arise from giving dif-
ferent values to n.

2 2
Also as = 2m sin — (I — at) cos it (1 =),
A A
2
and s = 0 for all values of #, when cos ~ (I -a)=0,

e s A
or l—a = (2n + 1) = I'herefore :.-:=.-!—(n+-&)§
gives the position of the loops, which evidently occur at

equal intervals with the nodes.
; . . . 2@
The maximum vibration depends on EmmnT(.!—m)

in the preceding value of %, which takes place when
2 T
S (-a)=(n+1) 2,

and its maximum value is 2m ; and obtains at points where
the condensation is nothing.

For further information on this subject, see a paper
by Mr Hopkins¥.

* Camb, Phil. Trans. Vol. v, p. 10.




CHAPTER XIII.

ON RESISTANCES.

152. WHuEN a solid is moved through a fluid its
motion is resisted, and this resistance arises partly from
friction and the tenacity of the fluid, but principally
from the inertia of the fluid, that is, from the force
which the body moving through the medium, necessarily
exerts in putting the fluid particles in motion. Hence
it may be considered as the reaction of the fluid particles,
and ceeteris paribus, if the velocity be increased, the re-
sistance also will be increased, for the body will strike
more particles and with greater violence. The law, ac-
cording to which this resistance varies with the velocity
must be deduced from experiment, and the square of
the velocity is the power according to which it appears
to vary; but no formula has hitherto been discovered
which expresses with sufficient accuracy the absolute
amount of the resistance for different velocities. In the
following propositions we shall see how the subject is to
be treated theoretically on the hypothesis that the re-
sistance is as the square of the velocity, and what con-
clusions may thence be deduced.

153. Definition. The resistance of a fluid on a solid
moving in it is the resultant of the excess of the pressure
of the fluid on the solid in motion, above the pressure
of the fluid on the solid at rest.

This resistance being a pressure, is of the nature
of a moving force, and may be represented by weight.
Its effect then on the body, or the refarding force of
the resistance, is the resistance divided by the mass.
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154. Pror. To find the resistance on a plane

moving perpendicularly to ifself with a given velocity in
a fluid.

Let us suppose that the plane and fluid are moving
steadily with the given velocity v, the plane being im-
mersed perpendicularly to the motion of the stream.

Let the plane be stopped at any instant, then the
motion of the fluid is resisted, and the mutual action
between the fluid particles and the plane is precisely the
same as the resistance on the plane moving with the given
velocity through the fluid at rest. For we may suppose
a velocity v to be impressed on every particle of the system
in the direction opposite to the motion of the stream, the
consequence of which will be that the fluid is reduced
to rest, and the plane moves through it with the given
velocity.

Now the pressure at any instant during the motion
on a unit of the plane is

P=gpz—dpvi+ (.

At the instant the plane is stopped, let p’ be the value
of p, then » = 0, and

p‘=g,ﬂx—’+ 'C.:
.”r _P . %Fﬂ?'

But p’ —p is the resistance on a unit of surface, hence
the resistance on an arca A is é pv* x A,

Let % be the height due to the velocity v, then v*=2g#,
.. the resistance on the plane =gph,

or the resistance on a plane moving perpendicularly to
itself, is the weight of a column of fluid whose altitude
is the height due to the velocity and base the area re-
sisted.
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Cor. If both the solid and fluid are in motion, the
resistance on the solid is as the square of the relative
velocity of the plane and of the fluid.

155. In the preceding proposition the resistance de-
pends simply on the equality of action and reaction at
the anterior surface of the plane, and no account is taken
of the variation in the pressure which results from the
disturbance at the posterior surface of the plane. This
is doubtlessly one source of the discrepancy between the
results of theory and experiment.

Again, no account is taken in the preceding of the
fluid which collects in a quiescent state before the plane,
the insfantaneous effect will be such as is there stated,
but the plane being moved through the fluid, the particles
which have lost their velocity will constitute a conoidal
mass of fluid, quiescent relatively to the plane, and
bounded by a corresponding hollow conoid of moving
fluid. The action between the surfaces of these two conoids
will cause a pressure on the plane essentially different from
the instantaneous action of the particles on the plane.
These remarks are sufficient to point out the imperfections
in the preceding theory.

156. Pror. A plane moves obliquely in a Sluid,
required the resistance in the direction of its motion.

Let P (Fig. 26.) be any point in the plane, PA the
direction of its motion, and PR perpendicular to the
plane.

Then we may either consider the plane as moving
with a given velocity v in the direction PA, or the stream
as impinging on the plane in the direction 4P with the
given velocity, the effect on the plane being in both cases
the same; and the resistance on the plane in the direction
of its motion is the same as the impelling force of the
stream in the direction of its motion.
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Let 6 be the angle of incidence, that is, the angle
APB, and R the resistance, or the force with which
the stream impels the plane.

Let K be the area of the plane, and R the resistance
upon it moving with the given velocity v, that is, the
force with which the stream impels the plane in the
direction perpendicular to the plane.

Then the velocity of the stream resolved in the direc-
tion PB = vcosf; hence

R =1 pvicos’O K.

And the part of R in the direction of the plane’s
motion, that is, in the direction of the stream,

= R cosf = L pv*cos’ O K.

And the part in the direction perpendicular to the
motion of the plane

= R sinf = Lpv* cos’fsinf K.

Hence the resistance on any plane moving obliquely
is as the cube of the cosine of the angle of incidence,
that is, as the cube of the sine of its angle of inclination
to the stream.

157. Pror. To find the resistance on a solid of
revolution moving in the dirvection of ils awis.

Let BAC (Fig. 27.) be a solid of revolution moving
in the direction D4 of its axis. Let @, y be the co-
ordinates of any point P, and PQ an element ds of the
generating curve, and mn the corresponding element dy
of the base, and @ the angle which the tangent at P
makes with the axis; then v being. the wvelocity, the
resistance on PQ = &p v sin®@ x PQ, and the resistance
on mn = 4pv’ x mn, by the preceding article;

T ——



ON RESISTANCES. 207

.. resistance on PQ : resistance on man :; PQsin’*@ : mn

d
2 dsdl: dy
299
TS

And the same holds for every element of the annulus
whose breadth is PQ, and for the corresponding portion
of the base; it is therefore true for the whole annulus.
The annular portion of the base corresponding to the
portion of the surface = 27ydy, and the resistance upon
it="1pv* x 2wrydy;

E

. the resistance on the surface = 27 pv ff.-;dy o

The mass of the solid of revolution = xp'[y*da,
if p' be its density, and dividing,

dy*
deJd

fy‘*dtr

Ex. Resistance and retarding force on a sphere.

the retarding force of reslstam,e‘—- ? e

Let a be the radius of the sphere, the centre being
the origin of co-ordinates; then

d
the resistance = wpv® [yd yt—i-%._: :

Now #* = a* — 2%, and @_\/ +———-—f\/ ig-_-.ﬁ:,

fydydyg Jyd y——fy(l-if)dy

- (s-18)7+0
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which, taken between the limits y = 0 and y = a,

a

|

therefore the resistance on the s[ﬁwrc

| yo s
= rmwptia

1 the resistance on a great eircle.

And the mass of the sphere = {mp'a®, if p' be its
density ;
; Spv’
. the retarding force = ———.
: 16p'a

158. Pror. A4 heavy sphere descends vertically in
a fluid, required its velocity.

Let @ be the radius of the sphere and p’ its density,
and p the density of the fluid.

Then, as we have seen, the moving force of resistance
upon a sphere is 4 the resistance on one of its great
circles moving perpendicularly to itself.

The resistance on one of its great circles = -%—Iuv*arn‘?;

.. the resistance on the sphere = L7 pa®o®

And the mass of the sphere = 4 wp'a’; hence

tmpatv’ S

the retarding force of resistance = — = L
4mpa’ 16p @

= kv®, suppose.

The force by which a body descends in a fluid is,
neglecting the resistance, the excess of its weight above
the weight of an equal bulk of the fluid.

The weight of the sphere = +7p'ga’,
the weight of an equal bulk of the fluid = {wpga’.
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Hence, subtracting and dividing by the mass of the
sphere, this force

r

=P—:—Pg= (1-7)g
P

if » be the ratio of the density of the fluid to the density
of the sphere.

The whole accelerating force on the sphere
= (1 —r)g — kv,

Now generally, if f be the accelerating force, v the
velocity, and s the space,

vdv = fds;
wovde = (1 —r)g - kvl ds,
or d.v'+ 0. 2kds=2(1 -r)gds,

which is a common linear equation, and will be rendered
integrable by the factor ¢**“*. Multiplying and inte-

grating, we have

1 —
uﬂeﬁka‘= g-"?r:-’—gﬁ'“k‘—!— C--.. ------(1)-

To determine the arbitrary constant, let the sphere
descend from rest, then v and s commence together;

) (1-7)g
S 0= T c,
subtracting and reducing,

1—7
,DE — B 1 ik E—'Jk&‘ !
=&l )

When s is large, the second term may be omitted ;
the velocity then becomes constant, or is the terminal
velocity. Let V be this value of v, then

DD
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1-1r
V= 2 Z,
and the preceding becomes
v*'= V(1 “’“) ............ (2)

: Jr g
The constant k=—3; .. 2k=—.
16 a Sa

Let the sphere be double the density of the fluid,

1

then f'=f; =-; and let the sphere have descended
PSR i

through a space equal to 16 diameters.

Then s=292a; .. k=¢e?*=¢® =, nearly.

Hence ©*=V(1-g5); - v=V( -z, or, by
the time that a sphere of twice the density of the fluid
has descended through 16 diameters, which, when the
particles are small in an insensible space, the velocity is
within <L, of the terminal velocity, and may after that
be considered as moving uniformly.

4 1 — £
The terminal velocity ¥V = \/ !:T’r}g, and substi-

16a : 2
g’ which varies as

tuting the preceding values, V' =

the square root of the diameter of the sphere.

Hence it appears that the smaller the sphere the
sooner it acquires its terminal velocity, and the less that
velocity is when acquired. If then any small spherical
bodies, as small dust, descend in water, or condensed
vapour, as very small rain, descend in air, the velocity
will be uniform and almest imperceptible.

159. Pror. 7o determine the motion of an air-
bubble ascending in a fluid.

B iy M,
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The air-bubble will increase in magnitude as it
ascends; and let it be supposed to start “from depth
in the fluid at which its density is very nearly that of
the fluid: let b be its radius at this instant, and a its
depth below the surface of the fluid, and p its density
or that of the fluid.

After it has ascended through some distance, let y
be its radius, a its depth, and p’ its density. Then,
since its magnitude is as the cube of the radius and
inversely as its density, and the pressure, being propor-
tional to the depth, is as the density, we have

Also p' : p =2 @ : a; .. FJ=P‘1...“......I:E]-

The accelerating force upwards of the fluid displaced

.F‘
s F---;'a &, which
P

S (E_ I)g: G‘ lx]gf by (2).

: i v o -
The retarding force of the resistance 1s P . which
]'P I
sab v v*
= e — =N —
160 af ah’
.J-Hi

by substitution from (1) and (2), if » be assumed = ok

therefore the whole accelerating force upwards

a v
=(—' —])g-'ﬂ-—f.

i ars
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Hymers (Dr.) Treatise on Trigonometry, and on the
Trigonometrical Tables of Logarithms. Second Edition. 8vo. Plates,
8s. Gd.

Hymers (Dr.) Treatise on Spherical Trigonometry.
8vo. Plates, 2s. 0d.

Hymers (Dr.) Treatise on Conic Sections and the Ap-
plication of Algebra to Geometry. Third Edition. 8vo. 9s.

Integral Calculus;

A Collection of Examples on the. 8vo. 5s. Gd.

Jarrett (Rev. T.) An Essay on Algebraical Develop-
ment ; containing the principal Expansions in Common Algebra, in
the Differential and Integral Calculus, and in the Caleulus of Finite
Differences. 8vo. 8s, Gd.

Kelland (Rev. P.) Theory of Heat.
8vo. 9s.

Mechanical Problems,
Adapted to the course of Reading pursued in the University of Cam-
bridge. 8vo. Ts.

Miller (Prof.) The Elements of Hydrostatics and
Hydrodynamics. Third Edition. 8vo. Plates, Gs.

Miller (Prof.) Elementary Treatise on the Differential
Caleulus. Third Edition. 8vo. Plates, Gs.

Miller (Prof) Treatise on Crystallography.
8vo. Plates, Ts. 6d.

Miller (Prof.) Table of Mineralogical Series ;
Being a Syllabus of the Lectures on Mineralogy. 8vo. 1s. 6d.

Murphy (Rev. R.) Elementary Principles of the Theory

of Electricity. 8vo. Ts. Gd.

Myers (C. J.) Elementary Treatise on the Differential
Caleulus. 8vo. 2s. Gd.

Newton’s Principia.

The first three Sections of Newton’s Principia, with an Appendix ;

“and the ninth and eleventh Sections. Edited by Jomx l—F Evans,
M.A., late Fellow of St John’s College and Head Master of Sedbergh
Grammar School. Third Edition. 8vo. 6s. :

O’Brien (Rev. M.) Mathematical Tracts.
On La Prace’s Coefficients ; the Figure of the Earth ; the Motion of a
Rigid Body about its Centre of Gravity ; Precession and Nutation.
E\'ﬂl 'ﬁsl- Ed.
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O'Brien (Rev. M.) KElementary Treatise on the Diffe-
rential Caleulus. 8vo. Plates, 10s. Gd.

O’ Brien (Rev. M.) Treatise on Plane Co-ordinate Geo-

metry ; or the Application of the Method of Co-ordinates to the
Solution of Problems in Plane Geometry. 8vo. Plates, 9s.

Peacock (Dean). Treatise on Algebra.
Vol I. Arithmetical Algebra. 8vo. 15s.
Vol. II. Symbolical Algebra, and its Applications to the Geometry of
Position. 8vo. 16s. Gd.

Senate-House Problems for 1844. With Solutions, by
M. O’Briex, M.A., Caius College, and R. L. Ervis, M.A., Trinity
College, Moderators. 4to. sewed, 4s. Gd.

Statics (Elementary) ;

Or a Treatise on the Equilibrium of Forces in One Plane. 8vo. Plates,
4. Gd.

Stevenson (R.) Treatise on the Nature and Properties
of Algebraic Equations. Second Edition. 8vo. Gs. Gd.

Trigonometry.
A Syllabus of a Course of Lectures upon, and the Application of Algebra
to Geometry. Second Edition. 7s. Gd.

Walton (William). Treatise on the Differential Caleulus,
8vo. cloth, 10s. 6d.

Walton (William). A Collection of Problems in illus-

tration of the Principles of Theoretical Mechanics. 8vo, cloth, 16s.

Webster (T.) The Theory of the Equilibrium and
Motion of Fluids. 8vo. Plate, 9s.

Whewell (Dr.) Elementary Treatise on Mechanies.
Sixth Edition, with Supplement. 8vo. Plates, 8s.

Whewell (Dr.) The Mechanical Powers:

A Supplement to the sixth edition of the Elementary Treatise on
Mechanics. 8vo. ls.

Whewell (Dr.) On the Free Motion of Points, and
on Universal Gravitation. Including the principal Propositions of
Books I. and II1I. of the Principia. The first part of a Treatise on
Dynamies. Third Edition. 8vo. Plates, 10s, Gd.

Whewell (Dr.) On the Motion of Points constrained

and resisted, and on the Motion of a Rigid Body. The second part of
a Treatise on Dynamics. Second Edition. 8vo. Plates, 1Zs. 6d.
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Whewell (Dr.) Doctrine of Limits, with its Algpliua-
tions ; namely, Conic Sections; the Three First Sections of Newton ;
and the Differential Calculus. 8vo. 9s.

Whewell (Dr.) Analytical Staties.
8vo. Plates, Ts. 6d.

Whewell (Dr.) Mechanical Euclid,

containing the Elements of Mechanics and Hydrostatics, demonstrated
after the manner of Geometry. Fourth Edition. 12mo. 4s. 6d.; or
with Supplement, 5s.

Whewell (Dr) Remarks on Mathematical Reasoning
and on the Logic of Induction ; a Supplement to the Fourth Edition
of Dr. WaeweLL's Mechanical Euclid, containing the omitted parts
of the Third Edition. 12Zmo. 1s.

Whewell (Dr.) The Mechanies of Engineering,
intended for use in the Universities, and in Colleges of Engineers.
8vo. Os.

Willis (Prof.) Principles of Mechanism.
8vo. 15s.

Wood (Dean). Elements of Algebra.
Revised and enlarged, with Notes, additional Propositions, and Examples,
by T. Luxp, B.D., Fellow of St. John's College. 8vo. 12s. Gd.

Wood (Dean). Appendix to Algebra.

Containing Solutions of difficult Equations, and Problems, together with
a large collection of Examples in every part of Algebra, and College
Examination Papers, by T. Luxn, B.D. 8vo. Gs. Gd.

Woodhouse (Prof.) Treatise on Plane and Spherical

Trigonometry. Fifth Edition. 8vo. 125,

Wrigley (A.) and Johnstone (W. H.) Collection of

Examples in Pure and mixed Mathematics, with Hints and Answers.
8vo. Bs. Gd.



VIEWS

OF THE

COLLEGES AND OTHER PUBLIC BUILDINGS,
Pn the WAnibersitn of Cambridae,

Taken cxpressl}f for the UxivErsiTy ALMANACK,

{Measuring about 17 inches by 11 inches.)

No. Year. Sulsect, :
1—=1801 TRINITY COLLEGE—West Front of Library.

21802 KING'S COLLEGE and CHAPEL—West Front, and Clare Hall.
3—1803 St. JOHN'S COLLEGE—Bridge and West Front.
41804 QUEENS' COLLEGE-—taken from the Mill.

518056 JESUS COLLEGE—taken from the Road.

6—1806 EMMANUEL COLLEGE—West Front.

7—1807 PEMBROKE COLLEGE—West Front.

8—-1808 TRINITY HALL—taken from Clare Hall Garden.

01809 SIDNEY SUSSEX COLLEGE—taken from Bowling Green.
101810 CHRIST'S COLLEGE—taken from the Garden.

111811 CAIUS COLLEGE—Second Court.

121812 DOWNING COLLEGE-—Master’s Lodge.

131813 Srt. PETER'S COLLEGE—taken from the Street.
14—1814 CATHARINE HALL—Interior of Court.

15—1815 CORPUS CHRISTI COLLEGE—Interior of Old Court.
16—1816 MAGDALENE COLLEGE—Front of Pepysian Library.
17—1817 SENATE-HOUSE and UNIVERSITY LIBRARY.
181818 TRINITY COLLEGE—Great Court.

191819 St. JOHN'S COLLEGE—Sccond Court.

20—-1820 MAGDALENE COLLEGE—First Court.

211821 EMMANUEL COLLEGE—First Court.

22_1822 EKING'S COLLEGE—Old Building.

231823 JESUS COLLEGE—taken from the Close.

241824 QUEENS' COLLEGE—taken from the Grove.

25—1826 OBSERVATORY.

261826 CORPUS CHRISTI COLLEGE—West Front, New Building.
271827 TRINITY COLLEGE—Interior of King's Court.

281828 Sv. PETER'S COLLEGE—Gisborne’s Court.
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No. Year. Sulgeed.
201829 KING'S COLLEGE NEW BUILDINGS and CHAPEL—taken
fromm the Street.
$0—1830 St. JOHN'S COLLEGE—New Building.
31—1831 TRINITY COLLEGE—West Front of King's Court and Library.
321832 CHRIST'S COLLEGE—New Buildings.
331833 KING'S COLLEGE CHAPEL—Between the Roofs.
341834 PITT PRESS.
951835 SIDNEY SUSSEX COLLEGE—taken from an Elevation.
36—-1836 EKING'S COLLEGE—CHAPEL, &c. West Front.
37—1837 St. JOHN'S COLLEGE—New Bridge, &c.
381838 FITZWILLIAM MUSEUM.
30—-1839 The NEW UNIVERSITY LIBRARY.
40—1840 CAMBRIDGE—from the top of St. John's College New Buildings.
41—1841 CLARE HALL—from the Bridge.
421842 FITZWILLIAM MUSEUM. Entrance Hall and Statue Gallery.
431843 TRINITY COLLEGE. Interior of the Hall.
441844 Srv. SEPULCHRE'S CHURCH, as restored by the CAMBRIDGE
CaMDEN SOCIETY.
451845 CAIUS COLLEGE Gate of Honour. SEATE HoustE and NEw
UxivERSITY LIBRARY.
46—1846 GREAT COURT OF TRINITY COLLEGE.
Nos. 1 to 25, inclusive ....., Price, Plain Impressions ...... 25 6d.
Proafs .....coeociaiisiaaic S 04,
Nos. 20 t0 45, ——————= ...... —= FPlain Impressions ...... &s. Od.
Proofs .. Bz 04,

on India Paper...12s 0d.















