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I. Mathematical Investigations concerning the Laws of the Equilibrium
of Fluids analagous to the Eleetric Fluid, with other similar Researches.
By GeorcE GrEEN, Esq. Communicated by Sir Edward Ffrench
Brombead, Bart. M.A. F.R.8.L.. and E.

[Read Nov. 12, 1832.]

AmoxNGsT the various subjects which have at different times occupied
the attention of Mathematicians, there are probably few more interesting
in themselves, or which offer greater difficulties in their investigation,
than those in which it is required to determine mathematically the
laws of the equilibrium or motion of a system composed of an infinite
number of free particles all acting upon each other mutually, and ac-
cording to some given law. When we conceive, moreover, the law of
the mutual action of the particles to be such that the forces which
emanate from them may become insensible at sensible distances, the
researches to which the consideration of these forces lead will be greatly
simplified by the limitation thus introduced, and may be regarded as
forming a class distinct from the rest. Indeed they then for the most
part terminate in the resolution of equations between the values of
certain functions at any point taken at will in the interior of the sys-
tem, and the values of the partial differentials of these functions at the
same point. When on the contrary the forces in question continue
sensible at every finite distance, the researches dependent upon them
become far more complicated, and often require all the resources of
the modern analysis for their successful prosecution. It would be easy
so to exhibit the theories of the equilibrium and motion of ordinary
fluids, as to offer instances of researches appertaining to the former
class, whilst the mathematical investigations to which the theories of
Electricity and Magnetism have given rise may be considered as in-
teresting examples of such as belong to the latter class.

Yor. V. FParr L. A



2 Mr GREEN, ON THE LAWS OF THE EQUILIBRIUM OF FLUIDS.

It is not my chief design in this paper to determine mathematically
the density of the electric fluid in bodies under given circumstances,
having elsewhere* given some general methods by which this may be
effected, and applied these methods to a variety of cases not before
submitted to calculation. My present object will be to determine the
laws of the equilibrium of an hypothetical fluid analagous to the electric
fluid, but of which the law of the repulsion of the particles, instead of
being inversely as the square of the distance, shall be inversely as any
power n» of the distance; and I shall have more particularly in view
the determination of the density of this fluid in the interior of con-
ducting spheres when in equilibrium, and acted upon by any exterior
bodies whatever, though since the general method by which this is
effected will be equally applicable to circular plates and ellipsoids.
I shall present a sketch of these applications also.

It is well known that in enquiries of a nature similar to the one
about to engage our attention, it is always advantageous to avoid the
direct consideration of the various forces acting upon any particle p of
the fluid in the system, by introducing a particular function 7~ of the
co-ordinates of this particle, from the differentials of which the wvalues
of all these forces may be immediately deducedt. We have, therefore,
in the present paper endeavoured, in the first place, to find the value
of V, where the density of the fluid in the interior of a sphere is given
by means of a very simple consideration, which in a great measure
obviates the difficulties usually attendant on researches of this kind,
have been able to determine the value #, where p, the density of the
fluid in any element dv of the sphere’s volume, is equal to the product
of two factors, one of which is a very simple function containing an
arbitrary exponent 3, and the remaining one f'is equal to any rational

* Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism.

+ This function in the present case will be obtained by taking the sum of all the molecules
of a fluid acting upon p, divided by the (n—1)" power of their respective distances from p;
and indeed the function which Laplace has represented by /7 in the third book of the
Mecanique Celeste, is only a particular value of our more general one produced by writing
2 in the place of the general exponent n.
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Ma GREEN, ON THE LAWS OF THE EQUILIBRIUM OF FLUIDS. 3

and entire funetion whatever of the rectangular co-ordinates of the element
dv, and afterwards by a proper determination of the exponent 3, have
reduced the resulting quantity # to a rational and entire function of
the rectangular co-ordinates of the particle p, of the same degree as
the function /. This being done, it is easy to perceive that the reso-
lution of the inverse problem may readily be effected, because the
coefficients of the required factor # will then be determined from the
given coefficients of the rational and entire function #, by means of
linear algebraic equations.

The method alluded to in what precedes, and which is exposed in
the two first articles of the following paper, will enable us to assign
generally the value of the induced density p for any ellipsoid, what-
ever its axes may be, provided the inducing forces are given explicitly
in functions of the co-ordinates of p; but when by supposing these axes
equal we reduce the ellipsoid to a sphere, it is mnatural to expect that
as the form of the solid has become more simple, a corresponding degree
of simplicity will be introduced into the results; and accordingly, as
will be seen in the fourth and fifth articles, the complete solutions both
of the direct and inverse problems, considered under their most general
point of view, are such that the required quantities are there always
expressed by simple and explicit functions of the known ones, inde-
pendent of the resolution of any equations whatever.

The first five articles of the present paper being entirely analytical,
serve to exhibit the relations which exist between the density p of our
hypothetical fluid, and its dependent function F7; but in the following
ones our principal object has been to point out some particular appli-
cations of these general relations.

In the seventh article, for example, the law of the density of our
fluid when in equilibrium in the interior of a conductory sphere, has
been investigated, and the analytical value of p there found admits of
the following simple enunciation.

The density p of free fluid at any point p within a conducting sphere

A, of which O is the centre, is always proportional to the (» —4)" power

of the radius of the circle formed by the intersection of a plane per-

pendicular to the ray Op with the surface of the sphere itself, provided
A2
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n is greater than 2. When on the contrary # is less than 2, this law
requires a certain modification; the nature of which has been fully
investigated in the article just named, and the one immediately fol-
lowing.

It has before been remarked, that the generality of our analysis will
enable us to assign the density of the free fluid which would be induced
in a sphere by the action of exterior forces, supposing these forces are
given explicitly in functions of the rectangular co-ordinates of the point
of space to which they belong. But, as in the particular case in which
our formule admit of an application to natural phenomena, the forces in
question arise from electric fluid diffused in the inducing bodies, we
have in the ninth article considered more especially the case of a con-
ducting sphere acted upon by the fluid contained in any exterior bodies
whatever, and have ultimately been able to exhibit the value of the
induced density under a very simple form, whatever the given density
of the fluid in these bodies may be.

The tenth and last article contains an application of the general
method to cireular planes, from which results, analagous to those formed
for spheres in some of the preceding ones are deduced; and towards
the latter part, a very simple formula is given, which serves to express
the value of the density of the free fluid in an infinitely thin plate,
supposing it acted upon by other fluid, distributed according to any
given law in its own plane. Now it is clear, that if to the general ex-
ponent » we assign the particular value 2, all our results will become
applicable to electrical phenomena. In this way the density of the
electric fluid on an infinitely thin circular plate, when under the in-
Auence of any electrified bodies whatever, situated in its own plane,
will become known. The analytical expression which serves to repre-
sent the value of this density, is remarkable for its simplicity ; and by
suppressing the term due to the exterior bodies, immediately gives the
density of the electric fluid on a circular conducting plate, when quite
free from all extraneous action. Fortunately, the manner in which
the electric fluid distributes itself in the latter case, has long since
been determined experimentally by Coulomb. We have thus had the
advantage of comparing our theoretical results with those of a very
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accurate observer, and the differences between them are not greater
than may be supposed due to the unavoidable errors of experiment,
and to that which would necessarily be produced by employing plates
of a finite thickness, whilst the theory supposes this thickness infinitely
small. Moreover, the errors are all of the same kind with regard to
sign, as would arise from the latter cause.

1. If we conceive a fluid analogous to the electric fluid, but of
which the law of the repulsion of the particles instead of being in-
versely as the square of the distance is inversely as some power » of
the distance, and suppose p to represent the density of this fluid, so
that dv being an element of the volume of a body A through which
it is diffused, pdv may represent the quantity contained in this element,
and if afterwards we write g for the distance between dv and any
particle p under consideration, and these form the quantity

the integral extending over the whole volume of .4, it is well known
that the force with which a particle p of this fluid situate in any
point of space is impelled in the direction of any line ¢ and tending
to increase this line will always be represented by

. dF
(1) cesorenesn 3— (?{T;) :
¥V being regarded as a function of three rectangular co-ordinates of

2k
dyg
being the partial differential of /., relative to this last co-ordinate.

p,» one of which co-ordinates coincides with the line ¢, and (

In order now to make known the principal artifices on which the
success of our general method for determining the function 7~ mainly
depends, it will be convenient to begin with a very simple example.

Let us therefore suppose that the body 4 is a sphere, whose centre
is at the origin O of the co-ordinates, the radius being 1; and p is
such a function of &, ¥, &, that where we substitute for &, ¥, &' their
values in polar co-ordinates
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¥=rcosl, y=rsin® cosw, =+ sinb sina,
it shall reduce itself to the form
p={1—1")F f(r?);
/' being the characteristic of any rational and entire funetion what-
ever: which is in fact equivalent to supposing

p=(1=—a" =y =P fla"+ ¢ +27).

Now, when as in the present case, p can be expanded in a series
of the entire powers of the quantities 2/, ¥, #, and of the wvarious
products of these powers, the function / will always admit of a similar
expansion in the entire powers and products of the quantities =, g, =,
provided the point p continues within the body 4% and as moreover
V- evidently depends on the distance Op=r and is independent of 8
and zr, the two other polar co-ordinates of p, it is easy to see that the
quantity # when we substitute for x, y, x these values

x=rcos B, y=rsinfcosw, z=rsinb sinw

will become a function of #», only containing none but the even
powers of this variable.

But since we have
de=7"dr d6'd="sin ¢, and p=(1—-r") f(r"?),

the value of ¥ becomes

Ve ;g = [rdr'd0da’ sin & (1 - 7% F(r?).g"-";

the integrals being taken from z'=0 to &'=2=, from 6 =0 to 8 =7,
and from =0 to ' =1. :

* The truth of this assertion will become tolerably clear, if we recollect that J* may be
regarded as the sum of every element pdv of the body's mass divided by the (n—1)" power
of the distance of each element from the point p, supposing the density of the body A to be
expressed by p, a continuous function of #, %, . For then the quantity F is represented
by a continuous function, so long as p remains within A4; but there is in general a violation
of the law of continuity whenever the point p passes from the interior-to the exterior space.
This truth, however, as enunciated in the text, is demonstrable, but since the present paper
is a long one, I have suppressed the demonstrations to save room.
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Now ¥ may be considered as composed of two parts, one V' due
to the sphere B whose centre is at the origin O, and surface passes
through the point p, and another /7" due to the shell .§' exterior to B.
In order to obtain the first part, we must expand the quantity &'~

¥

x : : ¥ -
in an ascending series of the powers of —. In this way we get
r

1=r

g ~"=[r"—2rr jcos 0 cos® +sin 6 sin @ cos (&'~ @)} +7777
;...' : ?,’2 ri“_
= gl=n_ (Qu'!‘ Q:I ; + f-ei f"_l '+*Q¢F + &;,[:p) z

If then we substitute this series for g'-* in the value of 77, and
after having expanded the quantity (1-—77)", we effect the integrations
relative to #, ', and @', we shall have a result of the form

Vi=r'=" {44+ Br + Cr' + &e.}

seeing that in obtaining the part of 7 before represented by #', the
integral relative to »* ought to be taken from ' =0 to »"=» only.

To obtain the value of /", we must expand the quantity g'-* in

i - i
an ascending series of the powers of -, and we shall thus have

]

&' ~"=(r*—2r+ [cos 6 cos & +sin 0 sin & cos (w—a')] +77) 7
2 3]
=" QR %+ Qo+ Q I+ & ;
the coefficients Q, @, Q. &ec. being the same as before.

The expansion here given being substituted in 7, there will arise
a series of the form

Fi=T+ T+ T+ T+ &e.
of which the general term T is

o &1 - a - ]
T.= [do'dw' sin & Q, fr*dr L= ()3

the integrals being taken from #'=# to »'=1, from #=0 to # ==, and
from w'=0 to @' =2x. This will be evident by recollecting that the
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triple integral by which the value of #7” is expressed, is the same as
the one before given for V, except that the integration relative to #,
instead of extending from » =0 to =1, ought only to extend from
¥F=pr to r=1.

But the general term in the function jf(»*) being represented by
A v, the part of T, dependent on this term will evidently be
()i Ay [d0da’ sin 0. Q, [r*+3-r-mdy’ (1 —r)P;
the limits of the integrals being the same as before.
We thus see that the value of 7T, and consequently of ¥ would

immediately be obtained, provided we had the value of the general
integral

Srrtdy (1 — %P,
which being expanded and integrated becomes

ko Bl B(B~1) 1l &
Pl 15387 1.0 hib o
g +1 +E ?-.b+3 _ﬁ{ﬁ_]] e
“bh+1 T 1°6+3 1.2 "b+5
but since the first line of this expression is the well known expansion of
- ({2Y (e
GG
. (P+q
nl ( = )

when n=2.p=5b+1 and ¢=2(B+1) we have ultimately,

+ &e.

¥

@ or

r (;,_;1) r(8+1)
(8)...... [rtdr(1—1r")F= —1x

or {f}+3

— &e.
5 5) ;

rﬁ-‘-L ﬁ rlu-ri
5+1 1 * %8

By means of the result here obtained, we shall readily find the
value of the expression (2) which will evidently contain one term multi-
plied by 7 and an infinite number of others, in all of which the quantity
r is affected with the exponent #. But as in the case under considera-
tion, » may represent any number whatever, fractionary or irrational,
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it is clear that none of the terms last mentioned can enter into V,
seeing that it ought to contain the even powers of » only, thence the
terms of this kind entering into /7", must necessarily be destroyed by
corresponding ones in 77'. By rejecting them, therefore, the formula (2)
will become

r (t F2— ‘?-*ﬂ"—?‘*-) [ (B+1)
- O - A, [d8dzm’ sin ' Q..
or (.-:+£+3 =220

But as 7 ought to contain the even powers of » only, those terms
in which the exponent s is an odd number, will vanish of themselves
after all the integrations have been effected, and consequently the only
terms which can appear in 7, are of the form

n

r (H—E—ﬁ'- ﬂ] (8 +1)

(g A [do'dw’ sin 0 Q.

i R
2] (hﬁ-&ﬂ § 2)

where, since s is an even number, we have written 25 in the place of
s, and as Q.. is always a rational and entire function of cos #, sin @
cos @', and sin @ sin @', the remaining integrations may immediately be
effected.

Having thus the part of 7", due to any term A,#*' of the function
f(r*) we have immediately the value of 7", and consequently of 7",
since

VF'=U+ T+ Ty + TV + T + &c.;
(" representing the sum of all the terms in 77" which have been rejected
on account of their form, and 7] 7Y 7. the value of T, T T\, &c.
obtained by employing the truncated formula (2) in the place of the
complete one (2).
But 8V=V+V'=V+U+T/+T/+ T+ T+ &e.

or by transposition,

Fe =TT =Ty k= B T,
and as in this equation, the function on the left side contains none

but the even powers of the indeterminate quantity », whilst that on
Vor. V. Part 1. B
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the right does not contain any of the even powers of r, it is clear that
each of its sides ought to be equated separately to zero. In this way
the left side gives

(8)eereene. V=T + T3 + TV + T¥ + &e.

Hitherto the value of the exponent 8 has remained quite arbitrary,
but the known properties of the function I' will enable us so to
determine /3, that the series just given shall contain a finite number
of terms only. We shall thus greatly simplify the value of ¥, and
reduce it in fact to a rational and entire function of r°.

For this purpose, we may remark that

'(0)=w, I'(-1)=w, '(=2)=wn, in iefinitum.

If therefore we make — E + 3 = any whole number positive or

negative, the denominator of the function (4) will become infinite, and
consequently the function itself will vanish when & is so great that

e g +pB+t+8-4 is equal to zero or any negative number, and as

the value of ¢ never exceeds a certain number, seeing that f(»*) is
a rational and entire function, it is clear that the series (4) will termi-
nate of itself, and #» become a rational and entire function of .

(2) The method that has been employed in the preceding article
where the function by which the density is expressed is of the particular
form

p=(1=rP. £
may by means of a very slight modification, be applied to the far more
general value

p=(1- P&, o, )= (1= & =y =P (&, ¥/, %)

where f is the characteristic of any rational and entire function what-
ever: and the same value of 8 which reduces }” to a rational and entire
function of #* in the first case, reduces it in the second to a similar
function of &, y, = and the rectangular co-ordinates of p.
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To prove this, we may remark that the corresponding value »” will

become
V= [rdrdé'de’ sind (1 -r"Vf(x,y, e

the integral being conceived to comprehend the whole volume of the
sphere.

Let now the function f be divided into two parts, so that

J@ v, )y =4, ¢, &) + 460, ¢, &);

/i containing all the terms of the function f in which the sum of the
exponents of &, #, ¥ is an odd number; and £ the remaining terms, or
those where the same sum is an even number. In this way we get

V=V.+ ¥

the functions 7, and V., corresponding to f and f, being

Vi= [rdr'd8@da sin 6 (1 -1 f (2, y, ) g' ",

Vi = [rdr dg da’ sin @ (L— 1 f.(, f, ¥) &'~
We will in the first place endeavour to determine the value #7; and
for this purpose, by writing for a', ¥, ' their values before given in
r', &, =, we get

Ji (@, o, &) = 'y (0?)

the coefficients of the various powers of 7* in (r*) being evidently

rational and entire functions of cos @, sin @ cos w', and sin @ sin =

Thus
V= [r*dr'ddda smé (1 —rf (") g

this integral, like the foregoing, comprehending the whole volume of
the sphere.

Now as the density corresponding to the function ¥, is
pr = {1 - .1'” a yrg St x’:};jﬁ (.I?’, y,-, zl),

it is clear that it may be expanded in an ascending series of the entire

powers of &', ¥, ¥, and the various products of these powers consequently,

as was before remarked (Art. 1.), 7, admits of an analagous expansion

in entire powers and products of z, , x. Moreover, as the density p,
B 2
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retains the same numerical value, and merely changes its sign when
we pass from the element dv to a point diametrically opposite, where
the co-ordinates ', ¥, ' are replaced by -2/, -y, —x": it is easy to
see that the function 77, depending upon p, possesses a similar property,
and merely changes its sign when &, y, 2, the co-ordinates of p, are
changed into —a, —y, —x. Hence the nature of the function ¥, is
such that it can contain none but the odd powers of », when we sub-
stitute for the rectangular co-ordinates @, #, %, their values in the polar

co-ordinates », 6, .

Having premised these remarks, let us now suppose V), is divided
into two parts, one /7 due to the sphere B which passes through the
particle p, and the other 77" due to the exterior shell 5. Then it is
evident by proceeding, as in the case where p = (1—+")%f(s%), that VY
will be of the form

V/=r—"§d4d+Br+Cr + &c};
the coefficients A, B, C, &c. being quantities independent of the variable r.
In like manner we have also
V' = [r*drd@da sind (1 - . r' V(™) g "

the integrals being taken from =7 to r=1, from =0 to ==, and
from &' =0 to @' =2

By substituting now the second expansion of g'-* before used (Art. 1.),
the last expression will become

W=T+T+ T+ T; + &e.
of which series the general term is
T, = fd8'dw sin @ Q, [r*"dr (1 -1"”}19; W (7).
Moreover, the general term of the function - (#*) being represented by
A", the portion of 7! due to this term, will be
(@).eiven... 7 [dO'dw sin & Q A, Jr'i "+ "dr (1 —=17);

the limits of the integrals being the same as before.

'3'..-'-:';1"":‘!|M' T P p———— i
F g S -
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If now we effect the integrations relative to ' by means of the for-
mula (3), Art. 1, and reject as before those powers of the variable .
in which it is affected, with the exponent #, since these ought not enter
into the funection ¥, the last formula will become

r(BmRER=0 L,
9]
A - - o : 'sin@' Q. A,
() TteB-ntif ¢ v [dedw sinf'Q .4,
T

and as 7, ought to contain none but the odd powers of », we may make
s=2&+1, and disregard all those terms in which s is an even number,
since they will necessarily vanish after all the operations have been
effected. Thus the only remaining terms will be of the form

e — g
6+2B3-n+2f—25 ' [d@'dw’ sin 0 Qup i1 Ay
2.1"( . )

where, as 4, and Q..., are both rational and entire functions of cos#,
sin @ cos ', sin @ sin ', the remaining integrations from 6 =0 to & ==,
and = =0 to @ =2, may easily be effected in the ordinary way.

If now we follow the process employed in the preceding article, and
suppose 1, TV, TV, &ec. are what T, T', T, &ec. become when we use
the truncated formula (&) instead of the complete one (#), we shall
readily get

VFi=TV+ TV + TV + 17 + &c.
In like manner, from the value of V., before given, we get
V)' = [r*dv'd&d= sind (1 —r"Pp(r*)g'";
the integrals being taken from »'=# to r=1, from 6'=0 to ¢ ==, and
from =0 to w=2m.

Expanding now g'-" as before, we have

V:=U+U+ U+ U; + &e.
where

U, = [d8'dz' sin &' Q, /v "dr' (1 — ") ;q& ("),
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and the part of U, due to the general term B in ¢ (+%), will be
(3)eeereere. #* [d0 dow’ sin 0'Q, B, flr* -+ =rdy (1 — 1*)P;

which, by employing the formula (37) Art. 1., and rejecting the inad-
missible terms, gives for truncated formula

F(é—ﬂ-gﬂf—s) 1*{,B+1}

(e Er(_ﬁr_""'ﬂﬁ"'ﬂf_a) 7 [dé'd=" sin 6 Q, B,
2

By continuing to follow exactly the same process as was before
employed in finding the value of #,, we shall see that s must always
be an even number, say 2s; and thus the expression immediately pre-
ceding will become

I (eh—n +EE£—- 23’) F(B+1)

L (6—n+23+2¢—2¢8
g

" [dedw" sin @ Q. B,

Moreover, the value of ¥, will be
Vo= U/+ U+ U/ + U; + &e.;
Uy, U, U, U, &e. being what U,, U,, U, &c. become when we use
the formula () instead of the complete one ().

The value of P~ answering to the density
p=ptp=(1=r" S, ¥, 7),

by adding together the two parts into which it was originally divided,
therefore, becomes
V=V, +V=T'+T5+ T+ TV + &e.
+ U+ U+ U+ U + &e.

When S is taken arbitrarily, the two series entering into ¥ extend
in infinitum, but by supposing as before, Art. 1.,
—n

g tR=;
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w representing any whole number, positive or negative, it is clear from
the form of the quantities entering into 7%,,, and U.,, and from the
known properties of the function I', that both these series will terminate
of themselves, and the value of #” be expressed in a finite form; which,
by what has preceded, must necessarily reduce itself to a rational and
entire function of the rectangular co-ordinates z, », x. It secems needless,
after what has before been advanced, (Art. 1.) to offer any proof of this:
we will, therefore, only remark that if - represents the degree of the
function f(a', ¥/, ), the highest degree to which 7~ can ascend will be

v+ 2w + &

In what immediately precedes,  may represent any whole number
whatever, positive or negative; but if we make »= —2, and consequently,

B= %i’, the degree of the function 77 is the same as that of the factor
Sy, %),

comprised in p. This factor then being supposed the most general of
its kind, contains as many arbitrary constant quantities as there are
terms in the resulting function V. 1If, therefore, the form of the rational
and entire function 7 be taken at will, the arbitrary quantities contained
in f(a, ¥, ¥) will in case w= —2 always enable us to assign the corres-
ponding value of p, and the resulting value of f{(a, %, #') will be a rational
and entire function of the same degree as 7. Therefore, in the case
now under consideration, we shall not only be able to determine the
value of 7 when p is given, but shall also have the means of solving
the inverse problem, or of determining p when # is given; and this
determination will depend upon the resolution of a certain number of
algebraical equations, all of the first degree.

3. The object of the preceding sketeh has not been to point out
the most convenient way of finding the value of the function 7, but
merely to make known the spirit of the method; and to show on what
its success depends. Moreover, when presented in this simple form.
it has the advantage of being, with a very slight modification, as ap-
plicable to amy ellipsoid whatever as to the sphere itself. But when
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spheres only are to be considered, the resulting formule, as we shall
afterwards show, will be much more simple if we expand the density p
in a series of functions similar to those used by Laplace (Mee. Cel.
Liv.iii): it will however be advantageous previously to demonstrate
a general property of functions of this kind, which will not only serve
to simplify the determination of V., but also admit of various other
applications of do.

Suppose, therefore, ¥ is a function of 6 and =, of the form con-
sidered by Laplace (Mee. Cel. Liv. iii.), », 6, = being the polar co-ordi-
nates referred to the axes X, ¥, Z, fixed in space, so that

x=rcosd, y=rsinfcosw, ==r¢sindbsnoz;

then, if we conceive three other fixed axes X, ¥, Z, having the same
origin but different directions, ¥ will become a function of 8, and .
and may therefore be expanded in a series of the form

(6)......... ¥ = F¥ 4+ ¥¥ + ¥® + F® + &e.

Suppose now we take any other point p’ and mark its various co-ordinates
with an accent, in order to distinguish them from those of p; then, if
we designate the distance pp’ by (p, p), we shall have

1

i = {#*— 27 [cos 0 cos @ +sin @ sin & cos (z—=)] + 7%} -}

=@+ @ .l +@% 1+ @ 1 &e),

as has been shewn by Laplace in the third book of the Mec. Cel,, where
the nature of the different functions here employed is completely ex-
plained.

In like manner, if the same quantity is expressed in the polar co-
ordinates belonging to the new system of axes X,, Y, Z, we have,
since the quantities » and »* are evidently the same for both systems,

1 = l (5] {:Ji Iﬂf i:ﬂlr_m ).
(s ) r(Q' +Q r+Q' r’-’+Q‘ r"-‘+&c' :

and it is also evident from the form of the radical quantity of which
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the series just given are expansions, that whatever number i may re-
present, @ will be immediately deduced from @ by changing 6, =,

¢, =’ into 6, =, &', =" But since the quantity Sl indeterminate,

(ps P

and may be taken at will, we get, by equating the two values of e

and comparing the like powers of the indeterminate quantity ;,
Ql‘} == {_J!ffil

If now we multiply the equation (6) by the element of a spherical
surface whose radius is unity, and then by Q% = @, we shall have,
by integrating and extending the integration over the whole of this
spherical surface,

[Audz QO YO = [dudm QP { V¥ + Y0 4 ¥, + &c.}.

Which equation, by the known properties of the functions Q" and ¥,
reduces itself to
0= fduydz Q" Y,",

when % and 7 represent different whole numbers. But by means of a
formula given by Laplace (Mec. Cel. Liv. iii. No. 17.) we may imme-
diately effect the integration here indicated, and there will thus result

F k) o

Y™ being what Y, becomes by changing 6, =, into 6,, =/, and as
the values of these last co-ordinates, which belong to p’, may be taken
arbitrarily like the first, we shall have generally ¥, except when
k=i Hence, the expansion (6) reduces itself to a single term, and

becomes
) I A

We thus see that the function ¥ continues of the same form even
when referred to any other system of axes X, ¥, Z,, having the same
origin O with the first.

This being established, let us conceive a spherical surface whose center
is at the origin O of the co-ordinates and radius #, covered with fluid,
Vor. V. Parr L B
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of which the density p= ¥""; then, if do’ represent any element of
this surface, and we afterwards form the quantity

V= Jfpds'y (g%) = [¥"0da'y(g%);

the integral extending over the whole spherical surface, g being the
distance p, do’ and +- the characteristic of any function whatever. I
say, the resulting value of ¥ will be of the form

V=YOR;

R being a function of r, the distance Op only and ¥ what ¥ becomes
by changing 6, @', the polar co-ordinates, into 6, =, the like co-ordinates
of the point p.

To justify this assertion, let there be taken three new axes X, ¥,, Z,
so that the point p may be upon the axis X,; then. the mew polar
co-ordinates of d¢’ may be written #, ¢, =, those of p being r, 0, =,
and consequently, the distance will become

&= (r*=2rr cos 8, +r);
and as do'=7"d8,dw, sin 8, we immediately obtain

V = [Y"9"7d0,dw, sin 0, (r— 2rr cos b +r7)
= 7" f7d8, sin 0, s (r* = 2rr cos 0, + 1) [ Tdw, ¥'Y,
Let us here consider more particularly the nature of the integral
Sdaw X0,

In the preceding part of the present article, it has been shown that
the value of ¥, when expressed in the new co-ordinates, will be of
the form ¥,“; but all functions of this form (Vide Mee. Cel. Liv. iii.)
may be expanded in a finite series containing 2¢+1 terms, of which
the first is independent of the angle #,, and each of the others has
for a factor a sine or cosine of some entire multiple of this same angle.
Hence, the integration relative to =" will cause all the last mentioned
terms to vanish, and we shall only have to attend to the first here.
But this term is known to be of the form

}( T T I g T

At el i =i . Arps,
<o S P T "'2.4.21'—1.2:*—3”" &c)’

b i
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and consequently, there will result

| ,,._£+z‘.z'—1.i-2.i-3
2 9;—1"" 2. 4.2;—1.2i—3

S dw! ¥O=2k (- i — &c.] :
where u'=cos8’ and % is a quantity independent of 6 and =/, but
which may contain the co-ordinates 6, =, that serve to define the
position of the axis X, passing through the point p.

It now only remains to find the value of the quantity £ which may
be done by making 6,'=0, for then the line » coincides with the axis
X, and ¥ during the integration remains constantly equal to ¥,
the value of the density at this axis. Thus we have
_ 4.1 i pi—1.—2.—-8 h&c)'

2.2:—1 2.4.2i—1.2¢—3 )

O r V=0 rk (1

or, by summing the series within the parenthesis, and supplying the
common factor 2w,

].2.3.-.-.—-1.-1.:- i-
T = b
Y llaaﬁllclalallg't_l =

and, by substituting the value of %4 drawn from this equation in the
value of the required integral given above, we ultimately obtain

¥ ) 1'3‘r||+lfiﬂz‘_'l az i:.i_!.
f’:dwl ¥Fh=ayF® = (I-H'

AT o =B .
T T 2.92i—1" +&‘")'
If now, for abridgement, we make
LA R R T
e T e i ey L M

we shall obtain, by substituting the value of the integral just found in
that of ¥~ before given,

L e
= Ul b | s
A L o T

which proves the truth of our assertion.

Srdw' (D (P —=2rr' w +7%);

From what has been advanced in the preceding article, it is likewise
very easy to see that if the density of the fluid within a sphere of
any radius be every where represented by

p= T p();
c2
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¢ being the characteristic of any function whatever; and we afterwards
form the quantity

V= [pdv (g9,
where dv represents an element of the sphere’s volume, and g the dis-
tance between dv and any particle p under consideration, the resulting
value of 7~ will always be of the form

L T

r
Y being what ¥"” becomes by changing @, »’, the polar co-ordinates
of the element dv into 6, w, the co-ordinates of the point p; and R
being a function of #, the remaining co-ordinate of p, only.

4. Having thus demonstrated a very general property of functions
of the form ¥, let us now endeavour to determine the value of F
for a sphere whose radius is unity, and containing fluid of which the
density is every where represented by

p = (L=a =y = Pf (&, o), ¥);

a', o, ¥ being the rectangular co-ordinates of dv, an element of the
sphere’s volume, and j# the characteristic of any rational and entire
function whatever.

For this purpose we will substitute in the place of the co-ordinates
a, ¥, & their values
¥ =rcost: y =rsind cosm: ¥ = sing sing;

and afterwards expand the function f(2', , ¥') by Laplace’s simple method,
(Meec. Cel. Liv. iii. No. 16.). Thus,

Derereene f(&s o ¥) = FOSO 1O+ & + O
s being the degree of the function f(z, ¥/, %).

It is likewise easy to perceive that any term /“ of this expansion
may be again developed thus,

S0 = 0yl g 05 0+ Kess
and as every coefficient of the last developement is of the form U,
(Mee. Cel. Liv. iii.), it is easy to see that the general term f"?7%** may

always be reduced to a rational and entire function of the original
co-ordinates ', v, ¥.
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If now we can obtain the part of V due to the term

ﬁt-’] % r"s+ﬁj

we shall immediately have the value of 7 by summing all the parts
corresponding to the various values of which ¢ and ¢ are susceptible.
But from what has before been proved (Art.3.), the part of ¥ now
under consideration must necessarily be of the form ¥ ; representing,
therefore, this part by F", we shall readily get

p’"l:i} Ef,;r'i +et+2 of o (1 i J.ﬂ}ﬂfdwfdﬁf <in H:ﬁ"[ngl et

Moreover from what has been shown in the same article, it is easy
to see that we have generally
) 2 3 -1.3.5....21—1 A e ;. o
[Y'dw'de sin @' (g)=2rF" ST 2.8 7 - dpy () (r=2rru+¢7):
y being the characteristic of any function whatever, and ¥ what ¥
becomes by substituting @, = the polar co-ordinates of p in the place
of @, @', the analogous co-ordinates of the element dv. If therefore
in the expression immediately preceding, we make

1—n
¥

]_'”“'=ﬂ‘“ and ,‘P {gc) =£.q_| 2= {ge}_,

and substitute the value of the integral thus obtained for its equal in
V@ there will arise

sudoakaas II"'1 PG40 # # * i ] : ¢ i W]
1—~——1ng2;£ o Ry (1= d (1) (P = 2P e+ 17) *

| —=ui

(8) Vi'=2mfi®

where £ is deduced from /£'® by changing ¢, =’ into 8, =, and (i), for
abridgement, is written in the place of the function

SRl e G- 2.6—8

- e
e e e e o e L

As the integral relative to u', which enters into the expression on
the right side of the equation (8) is a definite one, and depends therefore
on the two extreme wvalues of u', only, it is evident that in the deter-
mination of this integral, it is altogether useless to retain the accents
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by which u', is affected. But by omitting these superfluous accents,
we shall have to calculate the value of the quantity

=i
Sordp (@) (P =2rr n+ 17 7 ;
where
3.i—1 t.t—1.1—2.:—8

s e MRS yiy i
O)=w— g " tager—Tai—3"

=4 = &,

The method which first presents itself for determining the value of
l=m

the integral in question, is to expand the quantity (#*—2r#'u+7%)* by
means of the Binomial Theorem, to replace the various powers of x by
their values in functions similar to (i) and afterwards to effect the in-
tegrations by the formule contained in the third Book of the Mee. Cel.
For this purpose we have the general equation
gt ! B ii—1.i—2.i—3

(B)eacnieeer W SOH e WS =8
ii—1.i—2.i-83.i—4.i—5
2.4.6.2¢1—5.2i-7.2i—-9

i—4)

(i - 6)+ &e.

To remove all doubt of the correctness of this equation, we may
multiply each of its sides by g, and reduce the products on the right
by means of the relation

5

R

which it is very easy to prove exists between functions of the form (i)
In this way it will be seen that if the equation (9) holds good for any
power u' it will do so likewise for the following power u*', and as it
is evidently correct when i=1, it is therefore necessarily so, whatever
whole number ¢ may represent.

Now by means of the Binomial Theorem, we obtain when »<#

I=n
1—n e fv:T
=1 L ! Iy 3 = s =
r=L(r—2rrptre) (1 E‘“-r‘-i'r'*)
—g-t—l.2tl.n43...... n+28—3 (E i_f]‘_
i T e v e i

-

If now we conceive the quantity (ﬂu;r, - ;ﬂ)‘ to be expanded by
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at F420
the same theorem, it is easy to perceive that the term having (:T)

for factor is
n—1.n+1.2+3...... u+21j+=i~f—3 gibav ivav (:)!'1-'21!
BRSO 2Qi4+4¢ r
o H—l.ﬂ!+1 ------ ﬂ+:ﬂd£+4fﬂ_5_ﬂi+glr-!#i+!‘b‘—e (i)f+ﬂl-2f.i+2t‘r— ]
2 . 4 ... 24+4-—2 ' 7'* 1

n—1.n+1...... n+2i+4F =7 eaves [ENHT 4 34 262,427 -3
¥ I 2i + 4f — 4 (2w) (F) 7 | 5}

e &:cll.‘!-!!-l!"!!I-"'!!--!l-!l!+li-l+lE&EQI-Iil-----r-ili-iil-l-ll-li-l!l&(;q------ll s EmEmEE

i+
and therefore the coefficient of (;) in the expansion of the funetion

r e
(1"2“?'*;7‘*) ’

will be expressed by

g—1.n41.....04+244F'—2s—8 _ .,
= g e A e ip2e=2s (1Y
Qg LG 2i+4¢—2s (2m) =1
i+2f—5.i+2—s5—1...... i+t —2s+1
2 1 i o 8 :

Hence the portion of this coefficient containing the funection (7), when
the various powers of x have been replaced by their values in functions

of this kind agreeably to the preceding observation will be found, by
means of the equation (9), to be

nalt—=1l.2+1...... n+2t+4f—25—3
e g T T T

. t14+2f - 2s.¢ 428 —25-1...... i+1

C e e 2f —2s %2t +2f —25+1.2:+2¢—2¢—1...2¢+3

i+av 20 __ £+5f—ﬂ’-i+23'—-?—1.........5—[-21"-—231-_1
""" s (10 T, S e s

=(£)Eu—-1.n+1.ﬂ+3 ...... n+2i+4f—25—3
R [ R | Qi+ 4f—25

; Eiﬂr-h E- I):
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g i+1.i4+2.i+3.84+4......... i+ 2 —¢
""" 1.2.8......6%2.4.6......2f —2sx2i+2f —2s+1......2:+8
— 9. (i). 3 (=1y.n—1.n+1.n+38........ 0+ 21+ 4 - 25-8
RaR e T T 2t x2.4...... SaxHodn. Qf — s x 2t +2f —28+1...2¢+3

3+5+7-t-.-n2£+1 (E_:’ x?‘1_1.?!'+1.H+3|!i+|rﬂ+g$'+gf"'ﬂ
1.2.8 i N T T E T

n+2i4+2F—1...... n+2% 44 -25—3
- A8 o af —28

Hﬂf+ﬂt‘—2ﬂ+3 ...... Y +2f+1
2. 4.6 Qs

ceammn M mal — 11

L]

where all the finite integrals may evidently be extended from s=0
to s = o, and it is clear that the last of these integrals is equal to the
coeflicient of #* in the product

r.z+ﬂz'+2f-‘—la.+ n+2+2—1.n4+2i+20+1

3 . a0 2+ &e. in anfl

11+

_25+2.'.’+1 2i+20+1.2 + 20—

1 g
2 X+ o i ' = &e. n iy}

x {1

If now we write in the place of the series their known values, the
preceding product will become

LB e | I e | f—mn

(1 =ea) ST el a=y et i
and consequently the value of the required coefficient of a* is

PR B T N [ N+ § g |
- r. R | ar E

This quantity being substituted in the place of the last of the finite
integrals gives for the value of that portion of the coefficient of
| =m

» i+alr h P fﬂ -
(F) m(-mpm) T

which contains the function (¢) the expression

g. 5. YTk n LT a1 84 T80 n+2i+2¢ -3 H—E.ﬂ......u+2f—4(£}
B P e ] B D 2:+ 28 +1 Ry R Qf )
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B2
By multiplying the last expression by (%) , and taking the sum
of all the resulting values which arise when we make successively
£=0,1, 2 3, 4, 5, 6, &c. in infinifum,

we shall obtain the value of the term ¥ contained in the expression

8y 1=
(l—ﬂug—,+ :;) T VOLFOLPOL PO &,
Hence,
' 3-5-#---nﬂ£+1 " .‘:’z_]-l?l"-‘_] ++++++ ?I+E£+Et'_3
0 =
= - e aereaas 2i+2f +1
B-2.n.... n+ 2 —4 (-r)"‘”'_
2.4...... 2t :

the finite integral extending from #=0 to #=o.

But by the known properties of functions of this kind, we have
by substituting for ¥ its value

() (1-20 s+ 55) T =/3du (@) 7O

_3 1 5 e ul—l*lfd —1.n+1..,..,u+2$+2f—.‘_£
TR R ST T T
xﬂ—ﬂ.ﬂ. L2 — 4.4( )"“'

Rk af r
__EI.E.S...... i En—l.:—*s-{-l ...... nt+2i+2£-3
T o T T 2¢—1 S T 27+ 24 + 2
X u—ﬂ.u_l...ﬂ+ﬂf-4 (*.:)**“’

T e af r :

since by what Laplace has shown (Mee. Cel. Liv, iii. No. 17.)

B P Tl
-y
f du(i)= g5+1(1.3.5 ...... 95—1)+
Vor. V. Pant L D
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If now we restore to p the accents with which it was originally
affected, and multiply the resulting quantity by -, we shall have when
roy

1=-8

.-n Ll —
(10) S 3dus() (= 2rrs 49 7 = i () (1- 2 5+ B)

i ?._.-1_”142.3 ...... j E-_‘.E_—'!__—n_,{_l ...... n""ﬂi‘l‘ﬂf*—ﬁ
T Il Barn@i~l 08 . B B LT Rk

+ n—2.%.....0+2¢ - 4 (?-)hn'
A o 7 ’

and in order to deduce the value of the same integral when # <, we
shall only have to change # into #, and reciprocally, in the formula
just given.

We may now readily obtain the value of P by means of the
formula (8). For the density corresponding thereto being

:}f;[i}rl +2 {1 o ?"L!:]#,

it follows from what has been observed in the former part of the
present article, that £2**" may always be reduced to a rational and
entire funection of 2/, y, ¥’ the rectangular co-ordinates of the element
dv, and therefore the density in question will admit of being expanded
in a series of the entire powers of &', , ¥ and the various products of
these powers. Hence (Art. 1.) 7" admits of a similar expansion in
entire powers, &c. of x, ¥, x the rectangular co-ordinates of the point p,
and by following the methods before exposed Art. 1 and 2, we readily

et

i ] Y] gl 2 4T =R rog ’ H=1.041+1...00a n 1 i
P/ 0= O 120430 gy (1 — 9P 3 1.241 +2i42f—3

R TR T

n—-2.0.042...... n+ 2 —4 (i--‘m'
L8 4 AR R Qf' 3
and thence we have ultimately,

J,nels. .. H+E£+ﬂf--’3Hﬂ—ﬂ.ﬂ......ﬂ+ﬂf-—4
¥ Ll 242 +1 N T, ar

L -
(1) VO=2zf03—

e I i s B i i N o i

oo il ol WG
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F(Ef—ﬂtg-}-é—n)rm_i_lj C(B+1)T (4;:-1)

= [EJ, - _-_._ 'i..........
r (23—2.—!'+2,ﬁ3+ﬁ—:¢) At r (h+2,i?»~u] 4

2 2

rj-l-ﬂ!

R

4—n.6—1n...... 2{—2F+2—n #n=2 . R...... n+2¢ =4
6+2B—n......2{—2f+2B +4—n 2

~a"_|:-~a-~1.ir!+'.l ...... n+2i+2£-3
T T 2: + 2/ +1 °

the finite integrals being taken from ¢#=0 to #=ce« and I being the
characteristic of the well known function Gamma, which is introduced
when we effect the integrations relative to # by means of the formula

(3), Art. 1.

Having thus 7, or the part of ¥/ corresponding to the term /',
in £, y,¥) we immediately deduce the complete value of 7™ by giving
to ¢ and ¢ the various values of which these numbers are susceptible,
and taking the sum of all the parts corresponding to the different terms
in the expansion of the function f(a', ¥, ).

Athough in the present Article we have hitherto supposed f to be
the characteristic of a rational and entire function, the same process will
evidently be applicable, provided f(a/, #, &) can be expanded in an
infinite series of the entire powers of a', &, ¥ and the various products
of these powers. In the latter case we have as before, the development

Sl o, €)=+ Ot O+ O &e.

of which any term, as for example f“ may be farther expanded as
follows,

fr.;i}=~f;q|'|.rri+hﬁa;ii,.’i.£+l}|ﬁ;':i}_’,ﬂi“ + &{:-

and as we have already determined 7" or the part of ¥~ corresponding
to f£i"77'+*¥, we immediately deduce as before the required value of ¥,
the only difference is, that the numbers ¢ and ¢, instead of being as
in the former case confined within certain limits, may here become in-
definitely great.

D2
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In the foregoing expression (11) 8 may be taken at will, but if we
28—

2
series contained therein will terminate of itself, and consequently the
value of 7™ will be exhibited in a finite form, capable by what has
been shown at the beginning of the present Article of being converted
into a rational and entire function of x, y, 2, the rectangular co-ordinates
of p. It is moreover evident, that the complete value of ¥ being com-
posed of a finite number of terms of the form F, will possess the same
property, provided the function f(&, ¢, 2) is rational and entire, which
agrees with what has been already proved in the second Article, by a
very different method.

assign to it such a value that E may be a whole number, the

(5) We have before remarked, (Art. 2.) that in the particular case
#—4

where 3 = e the arbitrary constants contained in f(a/, %, ¥') are just

sufficient in number to enable us to determine this function, so as to
make the resulting value of 7 equal to any given rational and entire
function of @, ¥, %, the rectangular co-ordinates of p, and have proved
that the corresponding functions 7~ and f will be of the same degree.
But when this degree is considerable, the method there proposed becomes
" impracticable, seeing that it requires the resolution of a system of

s+1.84+42.8438
I Ly

linear equations containing as many unknown quantities; s being the
degree of the functions in question. But by the aid of what has been
shown in the preceding Article, it will be very easy to determine for
this particular value of B8 the function f(2', ¥, 2) and consequently the
density p when F is given, and we shall thus be able to exhibit the
complete solution of the inverse problem by means of wvery simple
formulze.

For this purpose, let us suppose agreeably to the preceding remarks,
that p the density of the fluid in the element dv is of the form

n=4

p=(1—=r"7 fla, ¥, %);



Mr GREEN, ON THE LAWS OF THE EQUILIBRIUM OF FLUIDS. 29

J being the characteristic of a rational and entire function of the same
degree as F, and which we will here endeavour so to determine, that
the value of F thence resulting, may be equal to any given rational
and entire function of 2, y, z of the degree s.

Then by Laplace’s simple method (Mec. Cel. Liv.iii. No. 16.) we
may always expand F in a series of the form

F=V9 L PO FO4 &e...... + P9,

In like manner as has before been remarked, we shall have the
analogous expansion

J& 9, &) =FO+ O+ O+ O+ &e....... & 1O,
of which any term /' for example, may be farther developed as follows,
=0 4 0 1 O L Ko =20 (T 0 4 S0 &e)
L0 A9 Y, &e. being quantities independent of »" and all of the form
¥'O (Mee. Cel. Liv. iii.) Moreover V" the part of ¥ due to the general

] : ) S -4 :
term f£'r"+*" of the last series, will be obtained by writing &ﬂ— for 3

-

in the equation (11), and afterwards substituting for

n—2y . fd—=m . . T
I‘( 3 )1 (T) its value ———— )
sin (---—'rr

In this way we get

P S S 2f— 2 +2—n
: (n-ﬂ) L e 2f-2f
sin T

O

n-2.n...0+%%—4 3 n—1.n+1.....n+2i+2{ -3
T af LR T

S being what £"? becomes by changing &, @ into 6, =, and the finite
integral being taken from #=0 to f'=w.
Let us now for a moment assume

(£)= =2 . Reeu. n+2f—4 1 n—1.n+1.....n+ Ejiﬂf—&
A g i Jay SN 2;+ 241 °
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then the expression immediatel}r preceding may be written

P - 2n" fi%. 7 2- —n.6—mn...... Et—25+2—u¢w}.?ﬂ,

2 4 ...... 2t-—-21
hlﬂ( 2 :—'r)

and by giving to ¢ the various values 0, 1, 2, 8, &ec. of which it is sus-
ceptible, and taking the sum of all the resulting values of 7" the quantity
thus obtained will be equal to 7 or that part of 7 which is of the
form Y'Y Thus we get

2. 1’

G n—2 )H
51 (Tw

],-""ijl=

......... ¢ (0) .47
+ *“‘—-tﬁ (0).£i7+ ¢ (1) A7 ¢

it

+ 222020 g 0). A0+

.L—Eﬂ.rﬁ#‘ H‘Bb ¢ (U‘lf"" —7i. ﬁ {l}f{” Eﬂ- ¢{Emlj+ r'-t-qﬁ[ﬂﬂ;‘”-ﬂ

- &cuoq FAE pas SEE RS AR R R -i---l-ll---&ﬂilliihlliht--ﬁllll-ﬁ-t- ----i-----&Ea---p---tit---l---

L0224 $(2) 9. 7

since all the terms in the preceding value of /., in which # >¢ vanish
of themselves in consequence of the factor

(Et-2#'+4—m)
4—n.6—n...... Ef—ﬂf+ﬂ—:~1_ﬂ 2

2 . & LSRR ‘]“ t+1}r(*;)

=0 (when ' > ¢).

But 7Y as deduced from the given value of # may be expanded in
a series of the form

VO=pi S04 P 0p 4 VO, 08+ V098 &}
and if in order to simplify the remaining operations, we make generally

Qe y R—2.%ee. N+ D=4 gt 1.2+1...... n+21+2¢—3
sin (H_E ) 2.4.re.e. R 8 .5 v T3 F0E4]

I,-‘rw _

U

ey [

2
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- Q" . ‘ﬁ“} : EI;['.],

sin (E—_—E )
E w

the equation immediately preceding will become

mt. 1
= "H T (i) 52 T (i) ;
¥ —-Sin (n—ﬂ ) x 1¢(0). UL +¢(1). U + ¢ (2) UY. * + &e.
2 mw
which compared with the foregoing value of 77, will give by suppressing
the factor S x , common to both, and equating separately the

sin (ﬂ w)
2

coefficients of the different powers of the indeterminate quantity » the
following system of equations

g f[” —n.6~n, '-:-—a.: £y

4
) . 4= . A=n.b6-=-n ..
U."}z,f."’+ ﬁm_*'_ﬁ___'q._ﬁm—l_ &,
U{“—J‘m-i' f[F:' e r_r-_{')_ fm'i‘&{
&ﬂ: ...&E---n.u-.“---....'.“.I&LE ........................... &C_

for determining the unknown functions £%, £, £, &c. by means of the
known ones U, U, U}, &e. In fact the last equation of the system
gives U=/, and then by ascending successively from the bottom to
the top equation, we shall get the values of /U, f%. /£Y, &c. with
very little trouble. It will however be simpler still to remark, that the
general type of all our equations is

0—4
Uh=(1-6) 7 f9,

where the symbols of operation have been separated from those of
quantity and ¢ employed in its usual acceptation, so that

E'f;l:i] J__ﬂ{i:l” ﬂfiil — E‘fm — “ii?h &,
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But it is evident we may satisfy the last equation by making
JI=(1 - e}% U,

Expanding now and replacing « U ; & U, &e. by these values Uf,,
Ul &c. we get

4n
4

n—-4.n=2.m
- R

from which we may immediately deduce £ and thence successively
J =t (O O 0 + &e)
f‘:,ﬂa y” o __Jr"u:l:-h +f“’ f[:-!}_,‘_ &{: ______ __l_f" {‘I’

m—d

and p=(1-2"-y*—=2") 7 . f(a, ¥, ®).

- Ry |
fO=U+2=2 U9, + U + Uls + &e.,

Application of the general Methods exposed in the preceding Articles
to Spherical conducting Bodies.

(6) In order to explain the phenomena which electrified bodies
present, Philosophers have found it advantageous either to adopt the
hypothesis of two fluids, the vitreous and resinous of Dufay for
example, or to suppose with Hpinus and others, that the particles of
matter when deprived of their natural quantity of electric fluid, possess
a mutual repulsive force. It is easy to perceive that the mathematical
laws of equilibrium deducible from these two hypotheses, ought not to
differ when the quantity of fluid or fluids (according to the hypothesis
we choose to adopt) which bodies in their natural state are supposed
to contain, is so great, that a complete decomposition shall never be
effected by any forces to which they may be exposed, but that in
every part of them a farther decomposition shall always be possible by
the application of still greater forces. In fact the mathematical theory
of electricity merely consists in determining p* the analytical value of

“ It may not be improper to remark that p is always supposed to represent the density
of the free fluid, or that which manifests itself by its repulsive force; and therefore, when

the hypothesis of two fluids is employed, the measure of the excess of the quantity of either
fluid
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the fluid's density, so that the whole of the electrical actions exerted
upon any point p, situated at will in the interior of the conducting
bodies may exactly destroy each other, and consequently p have no
tendency to move in any direction. For the electric fluid itself, the
exponent # is equal to 2, and the resulting value of p is always such
as not to require that a complete decomposition should take place in
the body under consideration, but there are certain values of # for which
the resulting values of p will render fpdv greater than any assignable
quantity ; for some portions of the body it is therefore evident that
how great soever the quantity of the fluid or fluids may be, which
in a natural state this body is supposed to possess, it will then become
impossible strictly to realize the analytical value of p, and therefore some
modification at least will be rendered necessary, by the limit fixed to
the quantity of fluid or fluids originally contained in the body, and
as Dufay’s hypothesis appears the more natural of the two, we shall
keep this principally in view, when in what . follows it may become
requisite to introduce either.

7. The foregoing general observations being premised, we will proceed
in the present article to determine mathematically the law of the density
p, when the equilibrium has established itself in the interior of a con-
ducting sphere .4, supposing it free from the actions of exterior bodies,
and that the particles of fluid contained therein repel each other with
forces which vary inversely as the »"™ power of the distance. For this
purpose it may be remarked, that the formula (1), Art. 1, immediately
gives the walues of the forces acting on any particle p, in virtue of
the repulsion exerted by the whole of the fluid contained in 4. In

this way we get

2.3 .ﬂr= the force directed parallel to the axis X,
1 — R d:ﬂ -

—1_-—.'{—;: = the force directed parallel to the axis ¥,
1—n dy

fluid which we choose to consider as positive over that of the fluid of opposite name in any
element dv of the volume of the body is expressed by pdv, whereas on the other hypothesis
pdv serves to measure the excess of the quantity of fluid in the element dv over what it
would possess in a natural state.

Vor. V. Pant L E
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AR § 2
1—n'ds

= the force directed parallel to the axis Z.

But since, in consequence of the equilibrium, each of these forces is
equal to zero, we shall have

dV dV dV
B=EE(E:I'+E?;£JEF+E¥JE = dp'..
and therefore, by integration,
V" = const.

Having thus the value of 7 at the point p, whose co-ordinates are
z, y, %, we immediately deduce, by the method explained in the fifth
article,

. [R=2
sIn (F—w) b ,_:1_,.*2:,"2 ;

2

ll:j_.ﬂ.

i =

seeing that in the present case the general expansion of F there given

reduces itself to
V= Vo

If moreover @ serve to designate the total quantity of free fluid in
the sphere, we shall have, by substituting for

™
-2y _ [d—m\"'
L s Slear)

sin (}%q 'n-) e
V/idrrtdr(1-r*)? = V.

oy

P b S
a.m( 3 ':rr) its value

Q = fpdv =

See Legendre. FEuwer. de Cal. Int. Quatrieme Partie.

In the preceding wvalues, as in the article cited, the radius of the
sphere is taken for the unit of space; but the same formule may

readily be adapted to any other unit by writing % in the place of »,

and recollecting that the quantities p, 7, and @, are of the dimensions
0, 4—mn, and 3 respectively, with regard to space; a being the number
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which represents the radius of the sphere when we employ the new
unit. In this way we obtain

. (n—2 L.
SII'I(-E-—#) e | (EJ““ I
— Flat=r"* and Q = 1 :
P QD ot (¢*'~17)? , and Q r n + 1 r 4 — )
)

Hence, when @, the quantity of redundant fluid originally introduced
into the sphere is given, the values of # and of the density p are like-
wise given. In fact, by writing in the preceding equation for

I (E), and sin (%ﬂ' 'rr) 3

2
their values, we thence immediately deduce
n+1

() o o P
---------- P = 1-1./“- r (H.-—_%) ]

2

oT (u-;] f (@;n)
and ¥V = 7 a = )
™

The foregoing formula present no difficulties where # > 2, but when
n < 2, the value of p, if extended to the surface of the sphere A4, would
require an infinite quantity of fluid of one name to have been origi-
nally introduced into its interior, and therefore, agreeably to a preceding
observation, could not be strictly realized. In order then to determine
the modification which in this case ought to be introduced, let us in
the first place make »>2, and conceive an inner sphere I, whose
radius is @—de, in which the density of the fluid is still defined by
the first of the equations (12); then, supposing afterwards the rest of
the fluid in the exterior shell to be considered on A’s surface, the portion
so condensed, if we neglect quantities of the order ¢a, compared with those

retained, will be .
Ry

o3 9 - R
; a® Q.da? ,
-
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and since, in the transfer of the fluid to A’s surface, its particles move
over spaces of the order da only, the alteration which will thence be
produced in ¥ will evidently be of the order

=12 Ll

da® xda = da*,

and consequently the value of # will become

V= jﬂ_ r (R;]) r (4;?3) a“"‘Q-E*k.ﬁa:T;

k being a quantity which remains finite when da vanishes.

In establishing the preceding results, »# has been supposed greater
than 2, but p the density of the fluid within B and the quantity of it
condensed on A’s surface being still determined by the same formula,
the foregoing value of ¥ ought to hold good in virtue of the generality
of analysis whatever » may be, and therefore when » is a positive quantity
and J« is exceedingly small, we shall have without sensible errors

r=J=t Ea e )eti

Conceiving now P to represent the density of the fluid condensed
on A’s surface, 4=« P will be the total quantity thereon contained, which
being equated to the value before given, there results

. n+1
9F r‘( 2 )

Vo r(ﬂ)

2=n
dra’ P = a® Qia’,

2
and hence we immediately deduce
E"'ﬁ_ F( 2 ) E+n n.T—&.‘

: = a 7 .Q.%a
- (2)

P=

Moreover as Q represents the total quantity of redundant fluid in the
entire sphere 4, the quantity contained in B is
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e =
Q——jﬂ_- lé) T T,

If now when » is supposed less than 2, we adopt an hypothesis
similar to Dufay’s, and conceive that the quantities of fluid of opposite
denominations in the interior of 4 are exceedingly great when this
body is in a natural state, then after having introduced the quantity
of redundant fluid, we may always by means of the expression just
given, determine the wvalue of da, so that the whole of the fluid of
contrary name to @, may be contained in the inner sphere B, the
density in every part of it being determined by the first of the equa-
tions (12). If afterwards the whole of the fluid of the same name as
Q is condensed upon A’s surface, the value of ¥ in the interior of B
as before determined will evidently be constant, provided we neglect

indefinitely small quantities of the order d«*. Hence all the fluid con-
tained in B will be in equilibrium, and as the shell included between
the two concentric spheres, 4 and B is entirely void of fluid, it follows
that the whole system must be in equilibrium.

From what has preceded, we see that the first of the formula (12)
which served to give the density p within the sphere 4 when 2 is
greater than 2, is still sensibly correct when = represents any positive
quantity less than 2, provided we do not extend it to the immediate
vicinity of A’s surface. But as the foregoing solution is only approxi-
mative, and supposes the quantities of the two fluids which originally
neutralized each other to be exceedingly great, we shall in the follow-
ing article endeavour to exhibit a rigorous solution of the problem,
in case #» < 2, which will be totally independent of this supposition.

8. Let us here in the first place conceive a spherical surface whose
radius is @, covered with fluid of the uniform density P, and suppose
it is required to determine the value of the density p in the interior
of a concentric conducting sphere, the radius of which is taken for
the unit of space, so that the fluid therein contained, may be in equi-
librium in virtue of the joint action of that contained in the sphere
itself, and on the exterior spherical surface.
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If now F represents the value of V due to the exterior surface,
it is clear from what Laplace has shown, (Meec. Cel. Liv. ii. No. 12.) that

V= Ei’f = 2meT (@t = (a—ryys

T (8—n)r
ds being an element of this surface, and g' being the distance of this
element from the point p to which /' is supposed to belong.

If afterwards we conceive that the function # is due to the fluid
within the sphere itself, it is easy to prove as in the last article, that
in consequence of the equilibrium we must have

V' + ¥V = const.

But 77 and consequently ¥ is of the form ¥, therefore by employ-
ing the method before explained, (Art. 4.) we get

J&, o, ==+ L0 "%+ 0.9 + &e. = B, + By + Bor'' + &e.;
where, as in the present case, £, AY, A, &ec. are all constant
quantities, they have for the sake of simplicity been replaced by

B, B, B, &c

Hitherto the exponent 8 has remained quite arbitrary, but by making

3= f:‘_E_f_{{ the formula (11) Art. 4. will become when i=0,

e

() (45
2 9 od—n.6—n...... 2t—2W +2—m
f"l"}:ql a
i T (2) B ot—2F + 2
n-2.n—1...... n+2t—38
2.8.% 2f +1
(n—2)=* B, o 4=n.6—n......2{-2{+2-n n-2.2-1.....0+28-8
= = R ;
. [n—2 " TR g Q-2+ 2 - . (R 2 +1
S111 (—-2—-* ‘.ﬂ']

(Giving now to ¢ the successive values 0, 1, 2, 8, &c. and taking
the sum of the functions thence resulting, there arises
V=V "=V 2"+ V O+ V" + V" + &e.=8.V"

(n-2)=* o d-n.6-n...... 2{-2¢' +2-2 n-2.n-1......0+2¢'-8
e S, 2r &0 .8 ourvse 2f—-2¢'+2 S T 2r+1 "'
s (—E—ﬂ")

where the sign S is referred to the variable ¢ and 2 to 7.
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Again, by substituting for 7~ and F' their values in the equation
V' + V=const. and expanding the function 77 we obtain

e Y B=2.8=1.8...... n+ 28 -3
R A i e A 2f +1
(n—2) =* 4-n.6-n......2{-2'+2-n n-2.n-1...... n+2t+3
s B,
Si“(ﬂ-_ﬂ#) SH-B‘r 4 N 6 ------ Ef“‘ﬂf‘l‘ﬂ - Ens-éi‘l--r- g!‘l'i']
2

which by equating separately the coefficients of the various powers of
the indeterminate quantity #, and reducing, gives generally

e B n—2
e2P'a .sm( 3 ﬂ')

T . e e 25

Then by assigning to ¢ its successive values 1, 2, 3, &c. there results for
the determination of the quantities B,, B, B., &c. the following system
of equations,

o (%ﬂ ) =B+ ol e B

T 2 2 4
ar . -2 ar 2—n 2—n.4—n
—“'_*- &', 51n (_E_ 'rrj .0 3=B1 + 2 B + _9—1- Bx + &c.
QP . (n=2 h Q- Qe . d—mn
@' ~*. sin [ —u|.a'=B:+ —— B, -3—41ﬂ+&{
L e e e LA S S e W DL W

But it is evident from the form of these equations, that we may satisty
the whole system by making

B =B, .a* B,=B,.a", B.=B..a B,=B,.a? &c.
provided we determine B, by

g o . m=2 N @ . B=nid=mn _ - o
Sl sm( 2 -.n‘) =B, (1+ e g + &ec.)
n—%
=B (1-a%7.
Hence as in the present case, ﬁ:ﬁ—;g, we immediately deduce the

successive values
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S @ Y, 5)=f =B, + B+ B+ &e.=B, (1- 2) 7,

a’
-3 o E.'_"
and p=(1-r9) 7. Ff(, ¢, 2= ,_qi:_a. sin (ﬂ - 2“_] Aat=1) * ...
...... (@ — )" (1 = r'*}%,

In the value of p just exhibited, the radius of the sphere is taken
as the unit of space, but the same formula may easily be adapted to

any other unit by writing % and %J in the place of @ and ' respectively,

and recollecting at the same time that in consequence of the equation

] »

g

is a quantity of the dimension —1 with regard to

do. da P’
const.= V 4+ V= [—F 4
o

before given, il =
space: b being the number which represents the radius of the sphere
when we employ the new unit. Hence we obtain for a sphere whose
radius is bg, acted upon by an exterior concentric spherical surface

of which the radius is «,

2P'a.sin (H;ﬂﬂ-) e sed
{ﬁ}P= - i _EJH}T {ﬁz_,rfu}-] {bﬂ_?k}-ﬂ'—;

il

P being the density of the fluid on the exterior surface.

If now we conceive a conducting sphere 4 whose radius is @, and
determine P so that all the fluid of one kind, viz. that which is re-
dundant in this sphere, may be condensed on its surface, and afterwards
find & the radius of the interior sphere B from the condition that it
shall just contain all the fluid of the opposite kind, it is evident that
each of the fluids will be in equilibrium within 4, and therefore the
problem originally proposed is thus accurately solved. The reason for
supposing all the fluid of one name to be completely abstracted from
B, is that our formule may represent the state of permanent equilibrium,
for the tendency of the forces acting within the void shell included
between the surfaces 4 and B, is to abstract continually the fluid of
the same name as that on 4's surface from the sphere B.
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To prove the truth of what has just been asserted, we will begin
with determining the repulsion exerted by the inner sphere itself, on
any point p exterior to it, and situate at the distance » from its centre
0. But by what Laplace has shown (Mee. Cel. Liv. ii. No. 12.) the
repulsion on an exterior point p, arising from a spherical shell of which

the radius is #, thickness ' and center is at O will be measured by
E?r:l"rffi"‘;p o (p+ ?-’}ﬂ--n =% {j,_ ?."'}!':—.u

1—n.3—n dr’ i
the general term of which when expanded in an ascending series of

the powers of i; is,

ot —2+nxn.n+1.2+2...... :.-r+'rL-:—3:-cu+‘£.?—l'l ss gesks d
. k. S L P :
TR T e s e g+ 1 f

and the part of the required repulsion due thereto will, by substituting
for p its value before found, become

8 . (n—ﬂ ) (@ E'E?;—E+nxn.n-l—1 ...... u+ﬂmmﬂxn+lx-1?__n_,___
i T BF ) R e 95 +1

b r'i* =1
= - S S e
H»].:(l ﬂﬂ) (B —9") = 2 2dy,
It now remains to find the value of the definite integral herein con-

'3, —1
tained. But when (1-— E) is expanded, and the integrations are

effected by known formulz, we obtain

3 f& = 4 g "_;E L s ~ 0 f'f“' t sl "I-.;ﬂI I8 5 o & g
(14) J;(I‘E) B =y T ey = [ 55 o (=) T
p @bl r@r(e)
=%y:+|+n§:£ﬁ 5 2 2 = L, 2 2
j 3 - B F
I‘(3+£+§ +n) _ | (.v+ 5. F E)
2s+3 b 25+5.258+45 bt
Bt e srwa G isin darbena T o0

" 3 2
= LBte+14n : (ﬁ) F (EHI_ §) % (2s+1+n)(1—a%) * 2 da
2 : i/ 3 m‘ff+l-n

r (.H— et —)
2

: ° (1— 2

Vor. V. Part L F
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ol ﬂ E 1 & 3 - 5 iﬁilllﬂs‘l‘l ﬁi‘+l-r-'-| x {lmm?] 2 f'-rﬂ-i'l‘ldai ;
w1y Cl+n.84n.5+n...nn 2s—1+n EIEIETI A =
or (23 ) (1 -2y

where after the integrations have been effected, & ought to be made

b
L’gllﬂl to =

The value of the integral last found being substituted in the expres-
sion immediately preceding, and the finite integral taken relative to s
from s=0 to s=» gives for the repulsion of the inner sphere,

1
e
— 41"“—1 ‘E’ . 2 {aa__.a::l"z_'
1] r (1+n) . ﬂ—?z}
| C 2 ( )
-1
e =2 nt2. 25— 4 (b)"““{l—.r”-]T ' de
G T T e Q r i %
$ r o (12
L Y T = A 2 ==
/. -nl-lm/wP:r 5" n-2.n.n+2...... n+28—4 (E) [z, (1—2)7 s
. +-n] r("'_”) g0 .. 2s r
r{ pes
. . . (R—2 -
since I' (1) =+/m, sin ( = :r) =

JOEl
and as was before observed, 'T=?r

But we have evidently by means of the binomial theorem,

r

(1 o aﬁ)";‘_f n=2.n.0+2....0+25—4 (.n::c)*’_
R« A SRR G i

¥ =

and therefore the preceding quantity becomes

f -n & g i=n -
(18):viadvinks _dmairal guH [Fda 2 (1—%2)"'(1—;&}7.

r () ()

i
¥
L]
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r

ra . ]
If now we make x = —, the same quantity may be written
a

L1, R iy o A V/WP‘Z”T Jff‘.r”'rf.r'{l ~.r’*}='%“ (1 - --—-)_h

Lfl4my (2=

e )

Having thus the value of the repulsion due to the inner sphere 13

on an exterior point p, it remains to determine that due to the fluid
on A’s surface. But this last is represented by

F 2ral .[‘E;{a..l_r]“"ﬁ_{a_r};s—u
l—n.3—n dr v .

T S

(Mec. Cel. Liv. ii. No. 12.) Now by expanding this function there re-
sults

Q—n nne+1 na2+l.n+2.2+3 _»
1—n " s E = = snd g & -\
4 P at-"y 3 {1 15 a"+ 1.5 6.7 ‘Ea4+ c
Q—n _.Nn+1.24+2.cicaines n+2s5—1 =
iy 1-- —
—4xPa-"r. 3 T e e (a+1}ﬂ._,,

The last of these expressions may readily be exhibited under a finite
form, by remarking that

: g f=n _1-9;1,-3)-?“= bt s “‘T" nnt2..n428 -2 gt
Sowrdz(1 - ) 2 (1 a’ &da (1 &) 22.4.6... 25 T

I (iﬁf-i*ﬂﬁ-}-l) F{i:_ﬂ)

_x* nn+2.n+4......... n+2s—2 r" . 2
Ll S B 2s a 25 + 5
T (=)
I 2—-n r 1+n
( 2 ) ( 2 ) L=n E,u.u+1.a+ﬁ....,,...ﬂ+ﬂ£—1w+1 .r_'
1 ST i B S T R 25+3 b
F(E)

Hence, since I'(})=4/m the value of the repulsion arising from A's
surface becomes

414/’#..?!11'“.?' ; o 9%" _E: _T
e i o)

F 2
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Now by adding the repulsion due to the inner sphere which is given
by the formula (16), we obtain, (since it is evidently indifferent what
variable enters into a definite integral, provided each of its limits re-
main unchanged)
das/ TP a'r
1Ry L (E—n
()5

L el

ra -

a!

1-']1'1'/'1'1' IJ" I—?f
[]+u]1 L —EJ b

for the value of the total repulsion upon a particle p of positive fluid
situate within the sphere .4 and exterior to B. We thus see that
when P’ is positive the particle p is always impelled by a force which
is equal to zero at B’ surface, and which continually increases as p
recedes farther from it. Hence, if any particle of positive fluid is
separated ever so little from s surface, it has no tendency to return
there, but on the contrary, it is continually impelled therefrom by a
regularly increasing force; and consequently, as was before observed,
the equilibrium can not be permanent until all the positive fluid has
been gradually abstracted from B and carried to the surface of A,
where it is retained by the non-conducting medium with which the
sphere A is conceived to be surrounded.

flatda (1 —gr'-'}%, (] e ‘l_&‘i} B

I.et now ¢ represent the total quantity of fluid in the inner sphere,
then the repulsion exerted on p by this will evidently be

qr-s

when » is supposed infinite. Making therefore » infinite in the expression

(15), and equating the value thus obtained to the one just given, there
arises

— 4wy w. Pa

r {l+uJ {

When the equilibrium has become permanent, ¢ is equal to the total
quantity of that kind of fluid, which we choose to consider negative,
originally introduced into the sphere 4; and if now g, represent the

qg= _ju'n’.t' .r“[l-r}*

J{Jr@'dr{l-a} {1—;_—-)-—|'J,n’1:{l ¥ (1_*“r ]"?}

-l
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total quantity of fluid of opposite name contained within .4, we shall
have, for the determination of the two unknown quantities P’ and &,
the equations

g =4wa’. P,
- o L
and 1 = T fedzar (1= 2%,
¢ I 1+n I 2—n :
) ()

and hence we are enabled to assign accurately the manner in which the
two fluids will distribute themselves in the interior of 4: ¢ and ¢,. the
quantities of the fluids of opposite names originally introduced into A
being supposed given.

9. In the two foregoing articles we have determined the manner
in which our hypothetical fluids will distribute themselves in the interior
of a conducting sphere 4 when in equilibrium and free from all exterior
actions, but the method employed in the former is equally applicable
when the sphere is under the influence of any exterior forces. In facr,
if we conceive them all resolved into three X, Y, Z, in the direction
of the co-ordinates x, y, * of a point p, and then make, as in Art. 1,

fpﬂfb
ot =1
we shall have, in consequence of the equilibrium,

ﬁ—-ldVXU 1 dV

1—n dx 1—n dy

L R
F, ﬂz]._—.i'#ﬁ'_-x-i_dg‘

which, multiplied by dz, dy and dx respectively, and integrated, give
const. = -%E V + [(Xda+ Ydy+ Zdz);

where Xdx+ Ydy+ Zdx is always an exact differential.

We thus see that when X, ¥, Z are given rational and entire funetions
¥V will be so likewise, and we may thence deduce (Art. 5.)

L
o= (1—2"—y — )7 f(d, ¥, ),
where f is the characteristic of a rational and entire function of the same

degree as V.
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The preceding method is directly applicable when the forces X, ¥, Z
are given explicitly in functions of &, y, . But instead of these forces,
we may conceive the density of the fluid in the exterior bodies as given,
and thence determine the state which its action will induce in the con-
ducting sphere 4. For example, we may in the first place suppose
the radius of 4 to be taken as the unit of space, and an exterior con-
centric spherical surface, of which the radius is a, to be covered with
fluid of the density U"": U"" being a function of the two polar co-
ordinates " and =" of any element of the spherical surface of the same
kind as those considered by ILaplace (Mee. Cel. Liv. iii.). Then it is
easy to perceive by what has been proved in the article last cited, that
the value of the induced density will be of the form

p= U (1= 7 F(r);
», &, =' being the polar co-ordinates of the element dv, and U™ what
" becomes by changing 8", =" into ¢, @',

Still continuing to follow the methods before explained, (Art. 4. and 5.)
we get in the present case
f@, o, ) = U9 f(r) = f9,
and by expanding f(+*), we have
J (@) = B,+ B\r" + B + Byr' + &e.
Hence, £ = B,U", and

. ot [Ty s snd—n.6—n..... Qf =2 +2—n n—-2.n..n0+2¢—4
I}":Ll]z ¥ g '
2 (ﬂ—ﬂﬂ}ﬂ'z“'r N Y e Qf—-2¢ x P TR
[a)
n—1.n+1.... n+2+2—3
S T T 2i+27+1

Then, by giving to ¢ all the values 1, 2, 3, &c. of which it is sus-
ceptible, and taking the sum of all the resulting quantities, we shall
have, since in the present case P reduces itself to the single term F,

Q. [Ty 4—n.6—n....2{—2'4+2=n n-2.n..0+2—4

P 'R, S il
i n—2 = SBZr " B e gi—ar 2.4,.... at

Si]] 1-2—11'

n—1.n+1..n+2i+2¢'-3
8 . 5 e 24420417

the sign S belonging to the unaccented letter ¢.
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If now P represents the function analagous to /” and due to the
fluid on the spherical surface, we shall obtain by what has been proved
(Art. 3.)

'5'!Illﬂi'—'1

S i) (¢ — 2arut @)

() representing the same function as in the article just cited.
Moreover, it is evident from the equation (10) Art. 4, that

|, PR ?n—l.n +1.....n4+2:4+2F-3

I—um
B | L B .. ‘ET= 1 —n = S il
[-idu(i) (r—2aru + @) R o1~ 3§ . i er+1

o n—=2.n..... n+2f—4 (J.)-‘-i-zl.'.
x40 BF a 3

and consequently,

- w—1.n+1....0+2i+21—3
_____ .I'= {'3.4 H—h.E :
(). F'=UY4xq e
X.M—E.:-'a ..... n+2 —4 (,-YHI_
- T T al ’

the finite integrals extending from #'=0 to ¥'=w.
Substituting now for ¥~ and 7' their values in the equation of equi-
librium,
(20) ....i.... const, = V' + F,
we immediately obtain

- n—1. ok O
const. = U®. 4nad—. == l.n41....n4+2t+ 2 -3

-, FES e 2i+ 21 +1
: n-ﬂ.u......:;_-l-ﬂ_{T 4 (f')"*“’
. oF a
27 - o Bl w1 o2+ 28 -3
iy E -|-|l ’ 2
0 UPSB.Er e R 2+ 24 —1
5m( wj
n—2.n.....t+ 2% ~4 4—nb6-—-n..2{-20'+2—n
Bk it . G, BT ’

the constant on the left side of this equation being equal to zero, except
when ¢ = 0.
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By equating separately the coefficients of the various powers of the
indeterminate quantity », we get the following system of equations:

. (n—2
g ( 2 T) 4 -n
- ffH_"_I=B“+B|'_g— +B¢

w

4—n.6—n
iR = + &e.

z n—2
Esm( 11')
2 e 4—n d—n.6—n
e = . il = + D, ) +-Hs R + &e.

2sin |——=x
- ( < )u*'""-‘—ﬂz+33ﬂ+ﬂli’ﬂ‘ﬁ__”+&c_
- 2 - Y. !
T LRy Ly, ST LWL B e e e

But it is evident from the form of these equations, that if we make
generally B,., = a*B,, they will all be satisfied provided the first is, and
as by this means the first equation becomes

2 sin (% 11")

4—n 4=—n.6—n
S—m—t -2 -t
— - 17 —Eu(l-!- 2 a +_E Tk a +&c.)
=i #_:&
=B,(1-e¢?* = Be"(@-1)",
there arises
2 sin (E-;—E‘w) ' —
B, =- ” a''(g*-1)*, B,=B,a?’ B.=B,a" kec
Hence
S =B+ B+ B+ &e.= B, (1 + g e
s 0 1 H = L] ﬂ" ﬂ:l -
. (n—2
- 2sin ("3 )

@t (@ —1)" (@—1")""

m

= B, (1— ’:F)-1= R e p——

and the required value of p becomes

(@1).c.recp = UO2 (1= 7 (%)
2 sin H—E“ Fyoh :
= - ( - ) (@=1)*a U"“(E (@ = 7%~ (1 —7")

m
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But whatever the density P on the inducing spherical surface may
be, we can always expand it in a series of the form

P=U"+ U4 U+ U" + &c. in inf.

and the corresponding value of p by what precedes will be -

. [n—2
Esm( 5 rr) Gas i
— a(@—1)2 (- ' (1—-2") 7 ......

™

x JU 4 [rrm + er@] + U’“} + &e. in inf};

------

o, o', U, &e. being what U™, U™V, U™, &e. become by changing
8, @" Into &, w', the polar co-ordinates of the element dv. But, since

we have generally
4T T (i)

Jde"d=" sin 8" PQ" = [d§"d="sind" U QY = T ke
(Mec. Cel. Liv. 1ii.) the preceding expression becomes

sin (H*ﬂ )
= m
2

2 '?rg

d=mn
ala-1)* (& —r")- 1(1-;»*‘} ﬁ.’fﬂ"’rfw sin@... ..

s e
s E R EI} {ES‘I"I}PQ{];F;

the integrals being taken from 6" =0 to 8" =m, and from @" to " =2

In order to find the value of the finite integral entering into the
preceding formula, let R represent the distance between the two ele-

b g : :
ments do, dv; then by expanding 2 i an ascending series of the powers

of g we shall obtain
E = S ( k] el i E:‘ Ql} f_‘:
B /&= 2ar [cos @ cos 8" +sin & sin 8" cos (7 —a") + 7" e
Hence we immediately deduce

Mee. Cel. Liv. iil.).

h
ﬂ“/?J—E Q‘”’-"—.—, and Ev’r’jr, a}gf-ﬁ (22+1) &

G

t-’r

‘JI:-L. Y. Pazt I
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If now we substitute this in the value of p before given, and after-

., s a@—r" . : :
wards write = and S 0 the place of their equivalents,

I n <] ] d J?"
d8"d =" sin 8", and n./—-b_, T

we shall obtain

. (=2
sin (—-— ) B
) do P
p=- T —1)7 (A=) 7 }rza

the integral relative to de being extended over the whole spherical sur-
face.

Lastly, if p, represents the density of the reducing fluid disseminated
over the space exterior to 4, it is clear that we shall get the corres-
ponding value of p by changing P into p,da in the preceding expression,
and then integrating the whole relative to . Thus,

(= 2 )
s "
2 du‘ffﬁpl

p=m et (1= (1 w)c [oeean

But deda=duv,; dv, being an element of the volume of the exterior
space, and therefore we ultimately get
2 (?.t-fl ) =
sin [ ——m : i=n

—5 ai—1) 2
(22)....-: p=— - (1=#9)7 _';Plfgrl': R“) ;

where the last integral is supposed to extend over all the space exterior
to the sphere and R, to represent the distance between the two elements
dv and dv,.

It is easy to perceive from what has before been shown (Art. 7.), that
we may add to any of the preceding values of p, a term of the form

h(1—17)% 5
/i being an arbitrary constant quantity: for it is clear from the article

just cited, that the only alteration which such an addition could produce
would be to change the value of the constant on the left side of the
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general equation of equilibrium; and as this constant is arbitrary, it is
evident that the equilibrium will not be at all affected by the change
in question. Moreover, it may be observed, that in general the additive
term is necessary to enable us to assign the proper value of p, when
Q, the quantity of redundant fluid originally introduced into the sphere,
is given.

In the foregoing expressions the radius of the sphere has been taken
as the unit of space, but it is very easy thence to deduce formula

. : ) |
adapted to any other unit, by recollecting that I{:, ;,, E',-{j"“’ and f.'_‘::”

are quantities of the dimensions 0, —1, —1 and 3 —» respectively with
regard to space: for if b represents the sphere’s radius, when we employ

r ¥ R dy

any other unit we shall only have to write, T ms T and & in the

b b

place of », #, R, dv, and a, and afterwards to multiply the resulting
expressions by such powers of &, as will reduce each of them to their
proper dimensions.

If we here take the formula (22) of the present article as an example,
there will result,
. [Bn—2
sin (T )

2 T e g {{F-fﬁ}%
PRy ... p=— = (B =) * [odo, =,
for the value of the density which would be induced in a sphere A,
whose radius is b, by .the action of any exterior bodies whatever.

When 2 > 2, the value of p or of the density of the free fluid here
given offers no difficulties, but if » < 2, we shall not be able strictly to
realize it, for reasons before assighed (Art. 6. and 7.) If however =
is positive, and we adopt the hypothesis of two fluids, supposing that
the quantities of each contained by bodies in a natural state are ex-
ceedingly great, we shall easily perceive by proceeding as in the last
of the articles here cited, that the density given by the formula (23)
will be sensibly correct except in the immediate vicinity of s surface,
provided we extend it to the surface of a sphere whose radius is
b—3b only, and afterwards conceive the exterior shell entirely deprived
of fluid: the surface of the conducting sphere itself having such a

G 2
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quantity condensed upon it, that its density may every where be repre-
sented by

" ﬂ:_ﬂ =4 w3 i=n
s (T "") T (e (i (@—b) "
2 T i

P=— )iz

Application of the general Methods to circular conducting Planes, &e.

10. Methods in every way similar to those which have been used
for a sphere, are equally applicable to a circular plane as we shall im-
mediately proceed to show, by endeavouring in the first place to determine
the value of 7 when the density of the fluid on such a plane is of
the form

p= 01— f y):

J being the characteristic of a rational and entire function of the degree s:

', y' the reetangular co-ordinates of any element do of the plane’s
surface, and 7, @ the corresponding polar co-ordinates.

Then we shall readily obtain the formula

ye 282 pp e ds 0= e
= (r*— 272 cos (6—0) + :-"'2}"_*'

where », 6 are the polar co-ordinates of p, and the integrals are to be
taken from =0 to #=2=, and from »'=0 to »'=1; the radius of
the circular plane being for greater simplicity considered as the unit
of distance.

Since the function f(a', ') is rational and entire of the degree s
we may always reduce it to the form
(24) vevennnnn Jfl&, y)=A"+ AV cos 0'+ A cos 20"+ 4™ cos 36¢' +
+ B sin @'+ BY sin 26' + B sin 36’ +
the coefficients A, AY, 4%, &e. BY, BY, B, &c. being functions
of # only of a degree not exceeding s, and such that
A%=ad + a1 + al'r" + &e.; AV=(al’ + "1 + o’ + )15
BO= (B0 + b0 + B0 + &) 'y BO= (30 + BPr" + &) 7"
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We will now consider more particularly the part of P due to any
of the terms in f as AY cos i@ for example. The value of this part
will evidently be

I dr'd0' (1 — 1) A cos it/

n=13

(r*—2rr cos (8— @)+

the limits of the integrals being the same as before. But if we make
8'=8 + ¢, there will result d¢'=d ¢, and cos i€ = cos i@ cos i¢p—sin 76 sin i,
and hence the double integral here given by observing that the term
multiplied sin i¢p vanishes when the integration relative to ¢ is effected.
becomes

cos i0 /1A' dr' (1 — r*)P f ; r—d‘f’__m"'f.i‘;l__i :

"(¥*—2re cos ¢ + P
If now we write F,© for that portion of 7~ which is due to the term

a”. "+ in the coefficient 4 we shall have

: : - e dcp cos iqg
Vi?=q". cos i@/ r" 2+ 1y (1 —--r"’}'ﬂf P i — .
(' —2rr' cosg + )T

But by well known methods we readily get

J‘»”" dep cos i
"(r* — 2ry’ cos ¢p + 7%)

R=]

2

n=1.n+1...... H+ﬂft—_3xR—I.H+1......H+Ef+2f'—3
T RSO e e SRy ¥ HHE - ¥ T

IO o
=Qar.r' "%, T

when #» >#, and when # <r, the same expression will still be correct,
provided we change » into # and reciprocally.

This value being substituted in that of 7, we shall readily have by
following the processes before explained, (Art. 1. and 2.)

; s n=1.n+1...... n+2f -3
i) — () gub 21
O G S i S e o7
3+2%-2—n
nml.uil_ ...... ﬂ+2_i:|—2£'-3 F{ﬁ+1}1‘( 2 )

T YT — 2iv8f (2B +5+2l— 27
21 ( : )
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r@+nr(=5")

= 7a," " cos 0.

23 +5—mn
e
Tz.ﬁ,.g.e_—l.?;v%l ...... ;-1+§3_r'—3 n—=1.n4+1...... n+2t+2f—3
= % . A gF e 9 e 2i+2F
8—n.5—mn...... 1+2{—2t—n

2B +5—n...... ﬂﬁ+3+2£+ﬂf—ﬂ;
the sign of integration = belonging to the variable #,

Having thus the part of 7~ due to the term & cos i’ in the expansion
of fl«, y) it is clear that we may thence deduce the part due to the
analogous term 4 sin {8’ by simply changing @ cos ¢8 into 5 sin 78, and
consequently we shall have the total value of ¥ itself, by taking the
sum of the various parts due to all the different terms which enter
into the complete expansion of f(a/, y').

n—=3

If now we make 8 = and recollect that

n—1 3—mn T
P(E)F(E)_Sin(u—lﬂ_)’
2
the foregoing expression will undergo simplifications analogous to those
hefore noticed (Art. 5.) Thus we shall obtain

2 o (1) b, 4 s ]
izl ) " a1y by . wh-1l.2+1.....0+20 -3
Vi = i 08 DB e Sl of
sin (—11')
xﬁ_ﬁl.n+l ...... ”+2;+Ef‘§x?-,{3.:.‘i__” ...... 1+2t—=2f—mn
2 Ll 4 BEEREE 25+Ef 2 - 4 |||||| ﬂfﬁ'ﬂf :

or by writing for abridgment
He=l.8+1...0.. R+2'-8 n-1l.n+1...... n+2i4+2'—-8

Al v e gf- egieog e 2i+er °
there will result this particular value of j3
i = al” G ot gy Al W 1+2¢=28—=n iy
Ol oY Ry k. R gt—er P )
s1m —E"'J'I‘)

- .Lhm.ww——
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and afterwards by making
V= P’DU} + P’;Eil “e _I?;ﬂ__l_, _F':{i} + p:[n':l + &,

we shall have
O a ; s
V= 7 cos if into x ......
sin (~——R-1 )
2
al’.1.¢(i; 0)
SR 0 .
+ad). ——.¢(i;0) +al’.1.¢ (5 1). 7
3—-n.5-n . A 8= : 2 i
+ﬂn-—H.¢{!;ﬂ}+f£}. ﬂﬂ.lp(f;1}.:-'"+a§:’¢{a;2j,r'
G=—n.b5—n.T—n ; G —n.5—mn :
i) . L) bR b R . .
+ay. I Y - (i3 0) + & T A
i S—n g 4 i) : &
-+ .-—2—.435(;, 2).r'+al.1.¢p(i; 8).2
e ee e nne - LG rrsussrarns -0 o R 4 NCiraareers

Conceiving in the next place that 77 is a given rational and entire
funection of x, %, the rectangular co-ordinates of p, we shall have since
x=rcosb, y=rsinb,
(25} . iinas V=C"+4C" cos 8 + C" cos 28+ C' cos 36 + &c.
+ E™ sin 84 E™ sin 20 + E® sin 360 + &c.
of which expansion any coefficient as C” for example, may be still
farther developed in the form

.
sin (i_-l )
2 w

Now it is clear that the term C" cos i8 in the developement (25)
corresponds to that part of #~ which we have designated by /%, and
hence by equating these two forms of the same quantity, we get

F® = C% cos 10,

Y= {c}j‘.q&{i; ﬂ)+c‘.'3.¢(."; I}.r“ﬁ—c{f’.:;:{i; E}.f"+&'{:.}.
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which by substituting for 77 and C" their values before exhibited, and
comparing like powers of the indeterminate quantity » gives

— 3—n.5- 6. d=n.5—n.T— :
" o n.5 B 8 o—n.T Ha‘,"+&c.

aF Ak e ok 2. bt

8—n .., $—n.5—n
= al + TTH?F+&C.
- .

c'=1.a" +

=1 .e" +

£ L B—n
c=1.al+ —t al + &c.

T RIS | SO [ JE S

of which system the general type is
=3

' = (1-— e]_“'; i s
the symbols of operation being here separated from those of quantity,
and ¢ being used in its ordinary acceptation with reference to the lower
index u, so that we shall have generally

B ﬂE:.} - au{fm-
The general equation between a and ¢!’ being resolved, evidently gives
by expanding the binomial and writing in the place of ecl, ¢, 'cl’, &e.
their values ¢, X%, %, &c.

1 T R o a’=(1-¢)* "=+ L

e n—3.n—1
e CERE

n—3%.n=1.n+1
@ - o EEh

"v_l:ijﬂ + ﬂ..[.::lu + &{‘i

Having thus the value of « we thence immediately deduce the value
of A" and this quantity being known, the first line of the expansion
(25) evidently becomes known.

In like manner when we suppose that the quantity E“ is expanded
in a series of the form

EO= fel.p(i; 0) +ellp (i3 1).7" + &l P (i5 2). 7' + &e ]

i
P —

i e s s

Sl o e e e o e e

L.

SRS —— S ]

_-'I—l—-



7

Mr GREEN, ON THE LAWS OF THE EQUILIBRIUM OF FLUIDS. 35

we shall readily deduce

n—3 n=-3.n-1
5 e 4 - 1 e + &e.,

d=n
W=(1-¢" e=¢l+

and &7 being thus given, B“ and consequently the second line of the
expansion (25) are also given.

From what has preceded, it is clear that when # is given equal to
any rational and entire function whatever of x and y, the wvalue of
S, y') entering into the expression

2

p= (=7 . £, o)

will immediately be determined by means of the most simple formulz.

The preceding results being quite independent of the degree s of
the function f(«', ') will be equally applicable when s is infinite, or
wherever this function can be expanded in a series of the entire powers
of &', ¥/, and the various products of these powers.

We will now endeavour to determine the manner in which one Huid
will distribute itself on the circular condueting plane 4 when acted
upon by fluid distributed in any way in its own plane.

For this purpose, let us in the first place conceive a quantity ¢ of
fluid concentrated in a point P, where r=a and 6=0, to act upon a
eonducting plate whose radius is unity. Then the value of ¥ due to this
fluid will evidently be

7 =V,

(@ —2ar cos 0 +7r*) 7

and consequently the equation of equilibrium analogous to the one marked
(20) Art. 10., will be

(2%)...cs.0eui. v cOnSt. = 7 =t F;
(€ —2ar cos 8 + r°) T

¥ being due to the fluid on the conducting plate only.

If now we expand the value of 7 deduced from this equation, and
Yor. V. Pazr L H
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then compare it with the formule (25) of the present article, we
shall have generally EY'=0, and

r-.’-

o= —ﬂqa-“;. {3 0)+¢(i51) 5+ (3 D+ (i; 3}£ + &e.f,

except when ¢=0, in which case we must take only half the quantity
furnished by this expression in order to have the correct value of C'™.
Hence whatever # may be,

2 sin (1;—1 11')

=0, and = — =

1

gﬂ! —l-i—?ﬂ ™

the particular value i =0 being excepted, for in this case we have agreeably
to the preceding remark

and then the only remaining exception is that due to the constant
quantity on the left side of the equation (27). But it will be more
simple to avoid considering this last exception here, and to afterwards add
to the final result the term which arises from the constant quantity thus
neglected.

The equation (26) of the present article gives by substituting for
" its value just found.

. n-—1
ﬂsm( 3 w) L

i]=_ 1—n—l'a-11. 1
a, — qa 11+ 3

™"

n=3.u—-1 _~ a—Kna-I.n-]1
o hie . L iRuge T ol iy

. [n—1
2 sin (—_'ﬂ_ 11‘) o
— = ga' """ (1—a™)

2 sin (H—#—l ) 3=n
2 =2 =2 2 -

i
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and consequently,
A" = §af + d*r* + a"* + &e.} #

. n—=1
2 51n (T ﬁ-) o T
= - - - T N ok | LTy ]
= ga" (@ —1)F L1+ = + <+ ke
2 sin —H_l-,-.— Lt
- - i —1T o (1-2)
= = g a—1)* r ( .s_r:J
2 sin (ﬁ—;g -;r) = :

=

e g2 AN B 2_."-'ur£.
= = qla®—1)* (a8 —r") =3

the particular value 4 being one half only of what would result from
making ¢=0 in this general formule.

But &Y =0 evidently gives I"=0, and therefore the expansion of
S, y) before given becomes
J@&, y)y=A9+ AV cos & + A cos 20"+ A cos 30 + &ec.
2 sin (H; 3 'rr) 3=n = ,s
R g@-1)* (a8—r*)". {3 +E{!Uﬁﬁ'+

— c0s 26" + &e. !
T @

or by summing the series included between the braces.
sin (n_l ) ==
—_—
Q

N (a"—=1) %
S y)= T @ —2ar cos 0 +r*

. n—1 ) I=mn
o ( T N
at q R: »
R being the distance between P, the point in which the quantity of

fluid ¢ is concentrated, and that to which the density p is supposed to
belong.

Having thus the value of /(a', ') we thence deduce

sin (n—l ) =1
.fn-'__i r 2 ¥ .hn“‘—.:é-"'Is RE-I t
F={1—i’")2f{ﬂ-‘rf:|=- “_z (1_?.,.} g{ _R‘.':I h

H 2
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The value of p here given being expressed in quantities perfectly
independent of the situation of the axis from which the angle € is
measured, is evidently applicable when the point P is not situated upon
this axis, and in order to have the complete value of p, it will now
only be requisite to add the term due to the arbitrary constant quantity
on the left side of the equation (26), and as it is clear from what has pre-
ceded, that the term in question is of the form

n—3
const. x {(1—#%)7 ,

we shall therefore have generally, wherever PP may be placed,

sin (% rr) (il 1}3
= q-. id

—}

The transition from this particular case to the more general one,
originally proposed is almost immediate: for if p represents the density
of the inducing fluid on any element do, of the plane coinciding with
that of the plate, pdo, will be the quantity of fluid contained in this
clement, and the density induced thereby will be had from the last
formula, by changing ¢ into p,do,. If then we integrate the expression
thus obtained, and extend the integral over all the fluid acting on the
plate, we shall have for the required value of p

n=3
p=1-r"", {coust, -

L‘H—l \

i mal (a* - 1]3;_’}

g sin 2
p=(1—r*"* .{Q‘ﬂllﬁit. - 'Tr.; Jmda, o Iy

R being the distance of the element ds, from the point to which p belongs,
and a the distance between s, and the center of the conducting plate.

Hitherto the radius of the cireular plate has been taken as the unit
of distance, but if we employ any other unit, and suppose that & is
the measure of the same radius, in this case we shall only have to

: Y day B . .
iate %, :TT &i and - in the place of @, #, do, and R respectively,

recollecting that f is a quantity of the dimension 0 with regard to space,
1
by so doing the resulting value of p is
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. ﬁ—l I—n
B bt
= P, i N

(28).........p= = j‘f”)Tr {E(}nst_ i

By supposing n = 2, the preceding investigation will be applicable
to the electric fluid, and the wvalue of the density induced upon an
infinitely thin conducting plate by the action of a quantity of this
fluid, distributed in any way at will in the plane of the plate itself
will be immediately given. In fact, when »=2, the foregoing value of

p becomes

1 1 va-b
= m {ﬂﬂ‘nﬁt = ? fPt(jal _Rz__}

If we suppose the plate free from all extraneous action, we shall
simply have to make p,=0 in the preceding formula; and thus

const.
{Eg}lu TR F _ ——

Biot (Traité de Physique, Tom. 11. p. 277.), has related the results of
some experiments made by Coulomb on the distribution of the electric fluid
when in equilibrium upon a plate of copper 10 inches in diameter, but
of which the thickness is not specified. If we conceive this thickness
to be very small compared with the diameter of the plate, which was
undoubtedly the case, the formula just found ought to be applicable
to it, provided we except those parts of the plate which are in the
immediate vieinity of its exterior edge. As the comparison of any
results mathematically deduced from the received theory of electricity
with those of the experiments of so accurate an observer as Coulomb
must always be interesting, we will here give a table of the values of
the density at different points on the surface of the plate, calculated
by means of the formula (29), together with the corresponding values
found from experiment.
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|
Distaneces from the Obeerved ! Caleulated
Plate's edge. ! densities. i densities.
L s Iy ‘ 1,
ALY - 1,001 i 1,020
Baiiniainn 1,005 l 1,000
R 1,17 | 1,250
Jooniae I 1,52 . 1,667
psaua e 2,07 ‘ 2,204
R 2,00 infinite.

We thus see that the differences between the calculated and observed
densities are trifling; and moreover, that the observed are all something
smaller than the caleulated ones, which it is evident ought to be the
case, since the latter have been determined by considering the thickness
of the plate as infinitely small, and consequently they will be somewhat
greater than when this thickness is a finite quantity, as it necessarily
was in Coulomb’s experiments.

It has already been remarked that the method given in the second
article is applicable to any ellipsoid whatever, whose axes are @, b, ¢
In fact, if we suppose that x, y, x are the co-ordinates of a point p
within it, and 2, #, ®' those of any element dv of its volume, and
afterwards make

@ =a.cos8, y=>bsind cosw, =»=c.sind sinm,
¥=a.cost, ¥y=0>bsin® cosw, &= c.sinf sinw,

we shall readily obtain by substitution,
I=H

V = abe [p.rdr'dddg' sin @ . (\r'—2urr’ +vr®) ?
the limits of the integrals being the same as before (Art. 2.), and
A = a® cos 8 + b° sin @ cos @ + ¢ sin & sin &,
u = @' cos B cos @ + & sin @ sin @' cos = cos @' + ¢* sin A sin ' sin = sin @,
v = @’ cos 8* 4 b sin 8”7 cos =" + ¢ sin 6" sin =™
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Under the present form it is clear the determination of F~ can offer
no difficulties after what has been shown (Art. 2.). I shall not there-
fore insist upon it here more particularly, as it is my intention in a
future paper to give a general and purely analytical method of finding
the value of ¥/, whether p is situated within the ellipsoid or not. 1
shall therefore only observe, that for the particular value

.= .(1 -% - i %); = R(l-pmy T,

the series U, + UL + U/+ &e. (Art. 2.) will reduce itself to the single
term U, and we shall ultimately get

.ﬂ:ﬂf){! y . : ) 1-n
i - -5 dO'sin® /7] dw' (@ cos8” + b*sin6” cos @* + ¢’ sinf”sinw"™) 7,
ESi“ (Tﬂ‘)

which is evidently a constant quantity. Hence it follows that the ex-
pression (30) gives the value of p when the fluid is in equilibrium
within the ellipsoid, and free from all extraneous action. Moreover,
this value is subject, when = < 2, to modifications similar to those of
the amalagous value for the sphere (Art. 7.).

. GREEN.






