Botanique / par Adrien de Jussieu.

Contributors

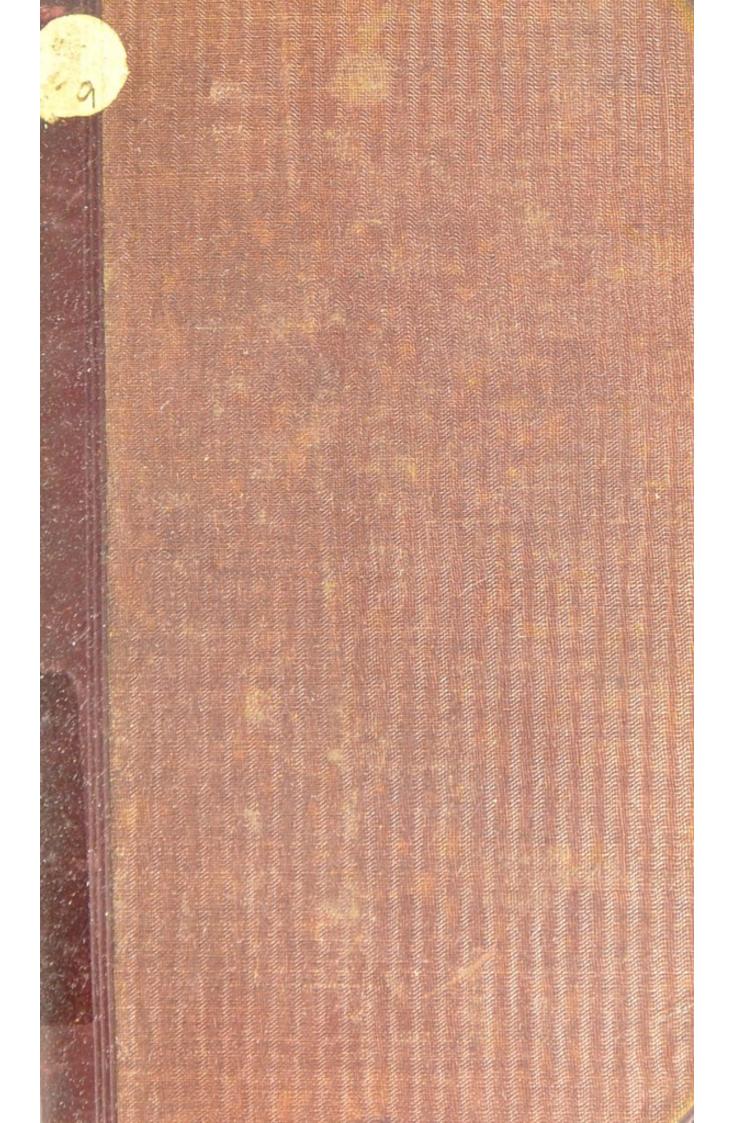
Jussieu, Adrien de, 1797-1853.

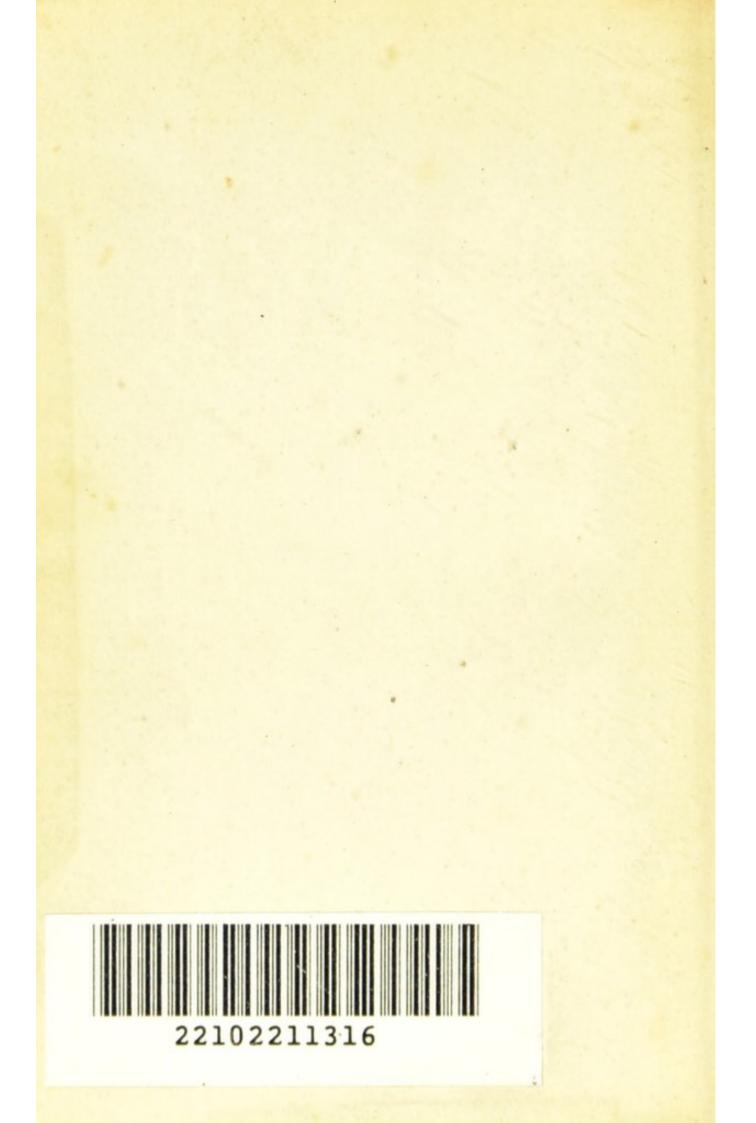
Publication/Creation

Paris : Victor Masson, 1852 (Paris : L. Martinet.)

Persistent URL

https://wellcomecollection.org/works/cez6fzjz


License and attribution


This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

Robe C. R. Tordaus. 1853.

Digitized by the Internet Archive in 2016

https://archive.org/details/b28136512

Robr. C. R. 70 1853

COURS ÉLÉMENTAIRE D'HISTOIRE NATURELLE.

LE COURS ÉLÉMENTAIRE D'HISTOIRE NATURELLE

SE COMPOSE DE

LA ZOOLOGIE

PAR M. MILNE EDWARDS

1 volume in-12, figures. - Prix : 6 francs.

LA MINÉRALOGIE ET LA GÉOLOGIE

PAR M. F.-S. BEUDANT

4 volume in-12, figures. - Prix : 6 francs.

LA BOTANIQUE

PAR M. A. DE JUSSIEU

1 volume in-12, figures. - Prix : 6 francs.

Paris. - Imprimerie de L. MARTINET, rue Mignon, 2.

COURS ÉLÉMENTAIRE D'HISTOIRE NATURELLE

MM. MILNE EDWARDS, A. DE JUSSIEU ET F.-S. BEUDANT.

PAR

dorrando

BOTANIQUE

PAR M. ADRIEN DE JUSSIEU, Nembre de l'Institut. Professeur à la Faculté des sciences de Paris et an Muséum d'histoire naturelle. etc.

Ouvrage adopté

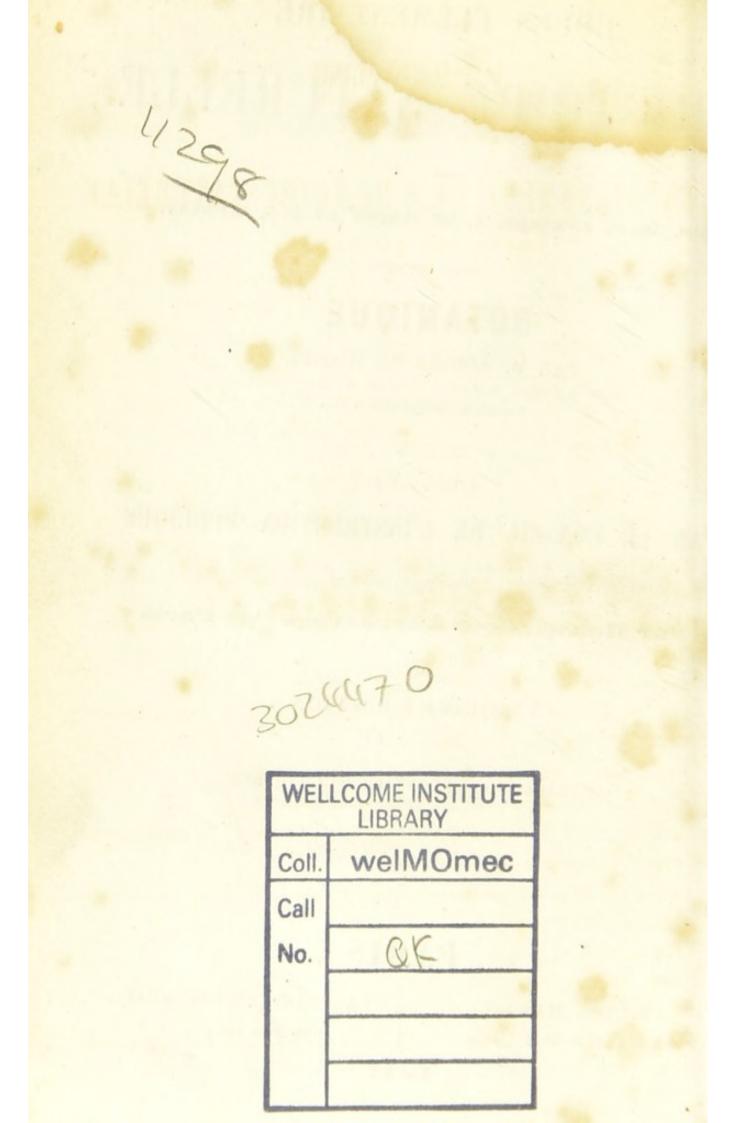
do-do

PAR LE CONSEIL DE L'INSTRUCTION PUBLIQUE

Et approuvé

Par Monseigneur l'Archevêque de Paris

CINQUIÈME ÉDITION .


OUVRAGE ACCOMPAGNÉ DE 812 FIGURES.

PARIS

VICTOR MASSON, Place de l'École-de-Médecine, 17.

LANGLOIS ET LECLERCQ, Bue de la Harpe, 99.

PROGRAMME

POUR

L'ENSEIGNEMENT DE L'HISTOIRE NATURELLE DANS LES COLLÉGES.

ADOPTÉ PAR LE CONSEIL ROYAL DE L'INSTRUCTION PUBLIQUE (44 septembre 1840).

RÈGNE VÉGÉTAL.

XV. Caractères généraux des plantes.

Structure et fonctions des végétaux.

Structure des tissus végétaux ou organes élémentaires.

Organes fondamentaux considérés dans les différentes périodes de la vie du végétal.

Classification des fonctions et des organes.

Des fonctions de nutrition ou des phénomènes de la végétation. XVI. 4° Organes de nutrition.

ATT. T Organes de nutrition.

Tiges; leur structure; leur mode d'accroissement.

Racines; leur structure et leur développement.

Feuilles; origine, structure, forme, disposition, développement et durée; bourgeons et branches.

XVII. 2º Fonctions de nutrition.

Absorption;

Respiration ;

Mouvements de la séve, etc.

XVIII. Des fonctions de reproduction.

Comparaison des organes de la reproduction avec les organes de la nutrition.

a

Description de ces organes et de leurs usages.

1° Fleurs; — leurs dispositions: — lois de l'inflorescence; — composition d'une fleur complète; — fonctions de ses parties.

XIX. 2° Fruits; leur structure; leur accroissement, leurs diverses modifications.

3º Graine considérée à ses différentes périodes d'existence et de germination.

XX. Classification des végétaux.

Emploi des notions précédentes à la distinction des végétaux.

Notions générales sur les classifications. — Systèmes artificiels et naturels ; —- espèce, genre, famille, etc. — Méthode de Jussieu.

XXI, XXII et XXIII. Notions sur quelques unes des principales : familles du règne végétal, considérées comme exemples de la méthode précédente.

XXIV. Notions sur la géographie botanique.

Influence comparative des latitudes et des hauteurs; — différence des continents et des îles; — distribution sur la surface du globe de quelques unes des familles précédemment exposées, et de quelques uns des végétaux les plus utiles à l'homme.

AVERTISSEMENT.

L'auteur, en continuant, pour cette nouvelle édition comme pour les deux précédentes, à se renfermer dans les limites que le programme et l'enseignement universitaires ne lui permettent pas de dépasser, y a néanmoins introduit un certain nombre d'additions et remanié un grand nombre de paragraphes. Il a tàché de mettre, autant que possible, son ouvrage au courant de la science, en exposant les résultats des travaux les plus modernes qui ont pu, avec un degré suffisant d'autorité, compléter ou rectifier quelques notions établies, ouvrir quelques nouveaux points de vue.

Pour plus d'unité, il a, pour les diverses substances végétales dont il a occasion d'indiquer la composition chimique, adopté constamment les formules données par M. Regnault dans son cours élémentaire (4° partie, *Chimie* organique).

On a conservé ici, comme par le passé, la division en dix leçons, telle qu'elle est établie par le programme. Nous devons avouer néanmoins que plusieurs d'entre elles, notamment la deuxième et la quatrième, ont encore une longueur hors de proportion avec le temps qui doit y être

AVERTISSEMENT.

consacré. Le nombre et l'importance des matières qu'il étail prescrit d'y traiter ne permettaient pas plus de brièveté. Il est donc à désirer que dans les colléges on puisse accorden à la botanique quelques leçons de plus, sinon ce sera à la sagesse éclairée du professeur d'empiéter un peu des unes sur les autres, en déterminant dans toutes, les suppressions nouvelles dont s'arrangera le mieux son enseignement.

VIII

COURS ÉLÉMENTAIRE DE BOTANIQUE.

PREMIÈRE LEÇON.

CARACTÈRES GÉNÉRAUX DES PLANTES. — STRUCTURE DES TISSUS VÉGÉTAUX OU ORGANES ÉLÉMENTAIRES. — ORGANES FONDAMENTAUX CONSIDÉRÉS DANS LES DIFFÉRENTES PÉRIODES DE LA VIE DU VÉGÉTAL.

§ 1er. La Botanique est la science qui traite des végétaux.

Dans les notions préliminaires qui sont placées en tête de la Zoologie, on a tracé les principaux caractères qui distinguent les végétaux des animaux, et de leur comparaison on a déduit une définition générale des uns' et des autres. Nous nous contenterons de la rappeler ici : Les animaux sont des corps qui se nourrissent, se reproduisent, sentent et se meuvent. Les végétaux sont des corps qui se nourrissent et peuvent se reproduire, mais qui ne sentent ni ne se meuvent volontairement. Une définition plus rigoureuse du végétal ne pourrait être bien comprise au début de ce livre; elle devra ressortir de toutes les notions qui y seront exposées, et leur servir en quelque sorte de conclusion.

Au mot de *plante* on attache généralement l'idée d'un arbre ou d'une herbe, et nous pouvons en commençant nous contenter de cette notion vulgaire. Cette plante a ordinairement des racines, une tige et des branches, des feuilles, des fleurs, et plus tard des fruits et des graines. C'est ce que tout le monde sait, et ceux qui s'en sont occupés un peu moins sommairement savent de plus que ces parties, les fleurs, par exemple, sont elles-mêmes composées de plusieurs parties plus petites.

Si l'on décompose celles-ci à leur tour, puis si l'on cherche, par une suite d'analyses de plus en plus minutieuses, à diviser en parties plus petites encore celles auxquelles on est déjà parvenu, on finit par en trouver qui ne se prêtent plus à aucune division. On doit les considérer comme les éléments du corps qu'on examine, ct on leur donne le nom d'organes élémentaires. Les parties résultant de leur réunion, qui forment elles-mêmes un tout nettement limité. qui concourent à l'exécution de quelque acte de la vie, de quelque fonction, reçoivent le nom d'organes composés.

§ 2. Les organes élémentaires, ce dernier terme de notre analyse, ne peuvent être admis comme tels définitivement et absolument, puisque notre esprit ne peut concevoir un corps sans parties. Mais nous devons nous arrêter à la limite au delà de laquelle nos sens, aidés des moyens les plus puissants que la science nous fournisse, ne nous montrent plus rien de net et de certain, et où commence le champ des hypothèses. Cette limite a été déjà reculée assez : loin par le perfectionnement des méthodes et des instruments d'observation, surtout du microscope (4).

Lorsqu'on examine par leur moyen une portion quelconque d'un végétal, le dernier degré de division auquel on est parvenu le montre composé d'une foule de cavités de formes et de grandeurs différentes. Les unes sont circonscrites par une paroi qui leur est propre, comme le serait, par exemple, un sac; les autres ne sont que les intervalles des premières, les vides que ces sacs, placés les uns auprès des autres, laissent entre eux partout où leurs parois ne se touchent pas immédiatement.

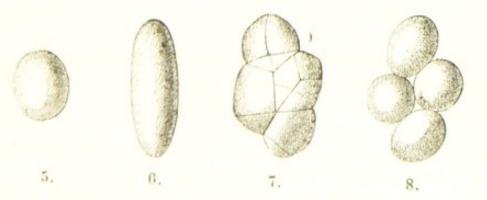
On peut réduire à trois modifications principales les formes que présentent les sacs ou cavités à parois propres. Tantôt ils sont à peu près également distendus dans tous les sens, ou du moins il

 $\begin{array}{c} & \\ & \\ & \\ \hline \\ & \\ Fig. \ 4. \end{array} \begin{array}{c} n'y \ a \ pas \ un \ sens \ suivant \ lequel \ ils \ s'allongent \ plus \ in \ fréquemment \ que \ suivant \ un \ autre. \ Les \ sacs \ qui \ in \ prennent \ cette \ forme \ sont \ appelés \ cellules \ ou \ utricules \ (fig. \ 4). \end{array}$

Tantôt ils s'allongent dans un sens suivant lequel leur diamètre égale un certain nombre de fois le diamètre transversal. Ils sont alors le plus ordinairement effilés à leurs deux bouts; s'ils sont courts, leur forme est à peu près celle d'un fuseau, et c'est ce qui i

(1) Sans l'aide du microscope, les parties dont nous allons nous occuper d'abord ne peuvent être bien vues, et c'est un véritable regret pour nous que les premières notions que nous devons exposer ne puissent être vérifiées par les yeux des élèves. Il est donc à désirer que le maître, familiarisé lui-même avec l'usage des instruments et la préparation des tissus, leur en montre sous le microscope les principales modifications, et leur fasse en même temps rendre compte de ce qu'ils voient ainsi. C'est pour cela que nous avons toujours, autant que possible, pris nos exemples dans des plantes communes et faciles à se procurer.

avait porté M. Dutrochet à les appeler des clostres $(\varkappa \lambda \omega \sigma \tau n \rho, fig. 2)$. S'ils sont plus longs, ce sont des tubes terminés en pointe à leurs deux extrémités. Comme ce sont eux qui forment la plus grande partie du bois, et comme dans ce cas on les désigne ordinairement sous le nom de fibres ligneuses, nous leur appliquerons le nom générique de fibres (fig. 3).


Enfin ces sacs peuvent se présenter sous la forme de tubes assez longs pour que deux de leurs extrémités se trouvent très éloignées l'une de l'autre, et que dans le champ du microscope l'œil ne puisse en apercevoir au plus qu'une à la fois. On les appelle alors des vaisseaux (fig. 4).

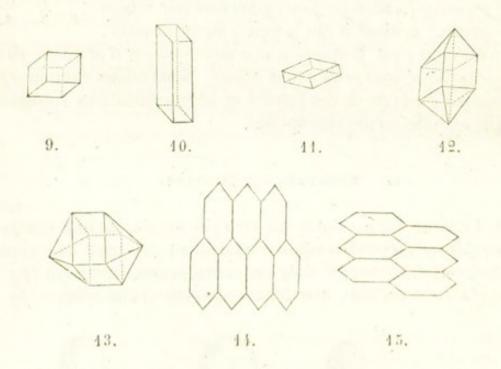
Entre ces trois degrés, les utricules, les fibres et les vaisseaux, il n'y a pas de limites bien tranchées. Les fibres peuvent se raccourcir assez pour recevoir le nom d'utricules, s'allonger assez pour recevoir le nom de vaisseaux; confusion qui a peu d'inconvénients,

puisqu'au fond c'est toujours à une même classe d'organes, diversement modifiés, que nous avons affaire. Nous allons examiner successivement chacune de ces formes et les modifications secondaires dont elle est elle-même susceptible.

UTRICULES OU CELLULES.

§ 3. Lorsque les utricules ne sont pas serrés les uns contre les autres, lorsqu'ils se développent également par tout leur contour sans trouver dans aucun sens un obstacle qui les arrête (fig. 8), leur surface est courbe, leur forme est celle d'une sphère (fig. 5),

ou d'un ellipsoïde (*fig.* 6). Quand, au contraire, ils se rencontrent en se développant et se pressent mutuellement, les faces ainsi en contact s'aplatissent, et ils prennent la forme d'un solide à plusieurs

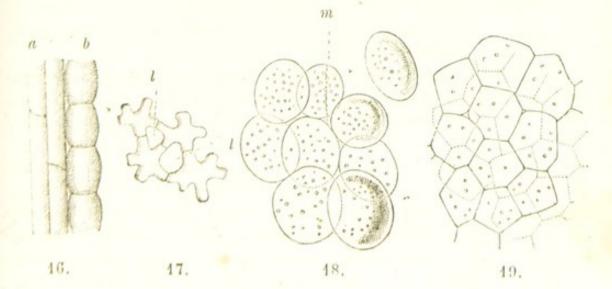

3

2.

3.

angles, ou polyèdre (fig. 7). C'est dans ce dernier cas que leur apparence, rappelant celle des alvéoles d'une ruche (fig. 14 et 15). leur a fait donner le nom de cellules, qui est maintenant employé à peu près indifféremment avec celui d'utricules. Le tissu qui résulte de leur réunion est désigné par l'adjectif d'utriculaire ou cellulaire, ou bien par le seul nom substantif de parenchyme. Quelques auteurs ont proposé de réserver ce dernier nom au tissu serré où les cellules ont la forme angulaire ou polyédrique (fig. 7), et d'appeler mérenchyme le tissu lâche formé par la réunion de cellules sphériques ou ellipsoïdes (fig. 8, 48).

Les formes les plus ordinaires des cellules polyédriques sont les suivantes : 4° le cube ou dé (fig, 9); 2° la colonne prismatique à quatre pans, et dans laquelle la hauteur excède les autres dimensions (fig, 40); 3° la forme tabulaire, c'est-à-dire celle d'un prisme où au contraire la hauteur n'égale pas les autres dimensions (fig, 41); 4° le dodécaèdre (fig, 42 et 43). Sans voir les cellules isolées, on


peut, jusqu'à un certain point, deviner leur forme par l'inspection comparée des coupes horizontale et verticale du tissu. Est-il besoin d'expliquer comment des cellules cubiques, coupées, soit verticalement, soit horizontalement, donnent toujours des carrés égaux; comment le dodécaèdre (fig. 42 et 43) donne dans un sens un carré, et dans le sens contraire un hexagone (fig. 44 et 45), etc.

Il ne faut pas croire au reste que ces figures aient la régularité rigoureuse des figures géométriques auxquelles on les compare. Il s'en faut en général de beaucoup. Les angles s'émoussent, les côtés d'un même carré ne sont pas tout à fait égaux, les lignes ne sont

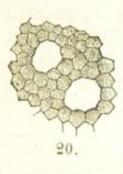
pas tout à fait droites. C'est en partie pour avoir représenté une régularité qui n'est pas dans la nature que la plupart des figures d'anatomie végétale, publiées autrefois, ont manqué de ressemblance.

Les cellules peuvent donc être courbes sur une partie de leur surface et planes sur l'autre. Cette combinaison peut s'allier avec la régularité; par exemple, dans la forme d'un tronçon de colonne cylindrique (fig. 46 a), d'un tonneau (b).

Enfin elles peuvent être inégalement développées sur leur contour, de telle sorte qu'il présente un certain nombre de saillies séparées par autant de sinus ou d'angles rentrants. On leur donne alors le nom de *rameuses*, nom que leur forme justifie quelquefois complétement lorsqu'elles se développent librement à l'extérieur en tout ou en partie, comme cela a lieu dans quelques végétaux aquatiques des plus simples ou dans les poils (*fig.* 467, 2, 3). Lorsque au contraire elles font partie d'un tissu, auquel cas le développement de chaque cellule doit plus ou moins être arrêté par celui des cellules voisines, les saillies de la surface inégale seront en général moins semblables à des rameaux et plutôt comparables à des bosselures. Alors ou bien les saillies des unes s'adapteront exactement aux enfoncements des autres, ainsi qu'on l'observe fréquemment dans l'épiderme des feuilles (*fig.* 79, c), ou bien c'est par les bouts de leurs prolongements que les cellules se rencontreront, laissant

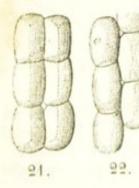
ainsi entre elles de nombreux et grands vides (fig. 47, 415 et

17. Cellules rameuses prises dans la Fève de marais (Vicia faba). - 11 Lacunes.


18. Tissu cellulaire lâche ou mérenchyme, pris dans une jeune feuille de Jouharbe (Sempervivum tectorum). — m Méats intercellulaires.

19. Tissu cellulaire de la moelle du Sureau (Sambucus nigra). Les cellules sont ponctuées ainsi que dans la figure précédente.

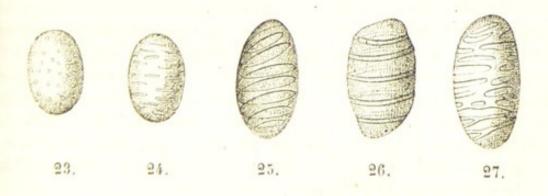
416, *pi*). On conçoit que le plus souvent ces cellules rameuses sont extrêmement irrégulières. Cependant un certain degré de régularité peut s'allier avec cette modification : ainsi elles imitent quelquefois des étoiles, des tronçons de colonnes cannelées, etc., etc.


§ 4. Dans les tissus serrés, lorsque les cellules s'emboîtent exactement les unes entre les autres, se touchant par des surfaces planes, on conçoit qu'il peut ne rester entre elles aucun vide (fig. 7, 49 et 79). Dans les tissus lâches, et lorsque leurs surfaces courbes ne peuvent se toucher que par un petit nombre de points, il doit au contraire rester entre elles des intervalles plus ou moins considérables (fig. 8, 48): on nomme ces intervalles méats intercellulaires (fig. 48 m). Il en existe au reste dans la plupart des tissus, parce que, en raison de ce léger degré d'irrégularité que nous avons reconnu comme un fait général, l'agencement des parties n'est pas rigoureusement exact; mais ces intervalles sont d'autant moindres que le tissu est plus serré.

Entre les cellules rameuses, qui se touchent par les extrémités de prolongements rayonnant d'un centre commun, ces méats occupent nécessairement un espace beaucoup plus étendu, et, dans ce cas, ils

prennent le nom de *lacunes* (fig. 47, 445 et 446, ll). C'est celui qu'on donne généralement à tout intervalle un peu considérable compris entre plusieurs cellules, et n'ayant d'autres parois que celles de ces cellules environnantes. Les lacunes offrent souvent une grande régularité, soit considérées en elles-mêmes, soit dans leur position les unes par rapport aux autres (fig. 20).

§ 5. Les cellules peuvent être placées sans ordre appréciable les unes relativement aux autres; c'est surtout lorsqu'elles sont irrégulières dans leur forme et inégales dans leurs dimensions. Mais lorsqu'elles sont régulières et égales, une certaine régularité se fait aussi remarquer dans leur agencement, et on les voit souvent disposées les unes à la suite des autres par séries rectilignes, soit dans



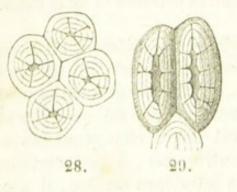
le sens horizontal, soit dans le sens vertical. Les cellules de deux séries voisines qui se touchent peuvent alors être opposées, c'est-à-dire situées à la même hauteur (fig. 24), ou bien alternes, c'est-à-dire à des hauteurs différentes, de telle sorte que le milieu de celles d'une série correspond toujours à peu près aux extrémités de celles des séries voisines (fig. 22). Ce dernier agence-

20. Lacunes dans le tissu de la Renoncule aquatique (Ranunculus aquatilis).

ment a presque nécessairement lieu lorsqu'elles sont plus larges au milieu qu'aux extrémités : pour la forme dodécaédrique, par exemple (fig. 44 et 45).

§ 6. Les parois des cellules ne présentent pas toujours la même apparence. Tantôt elles semblent formées par une membrane unie et parfaitement homogène (fig. 5, 6); tantôt cette membrane est marquée d'un nombre plus ou moins grand de petits points (fig. 23) ou de courtes lignes dirigées transversalement ou obliquement (fig. 24); tantôt elle semble doublée à certains intervalles de petits fils ou bandelettes; ces fils décrivent en général une spirale à tours plus ou moins rapprochés depuis une extrémité de la cellule jusqu'à l'autre (fig. 25); ces bandelettes suivent également une direction en spirale, ou se séparent en plusieurs anneaux à peu près horizontaux (fig. 26), ou dessinent enfin sur la surface une sorte de réseau à mailles plus ou moins grandes (fig. 27). On s'est

assuré que ces diverses apparences ne caractérisent pas constamment des cellules différentes, mais que la même peut en offrir successivement plusieurs, suivant l'époque à laquelle on l'examine. Il est donc nécessaire de suivre attentivement leur développement pour bien se rendre compte de ces apparences diverses et de la cause qui les produit.


Cet examen nous apprend que la cellule, au moment où nous commençons à l'apercevoir comme un organe distinct, est un petit sac formé par une membrane simple, parfaitement continue et homogène, dont la substance, d'abord molle et humide, se sèche et durcit peu à peu. Elle peut persister à cet état en changeant seulement de volume et de forme. Mais d'autres fois, à une certaine époque ultérieure, sur toute la surface intérieure du sac, il s'en forme une seconde. Cette nouvelle membrane ne paraît pas identique

²³ et 24. Cellules ponctuée et rayée, prises dans le tissu du Sureau (Sambucus nigra). 25, 26 et 27. Cellules spirale, annulaire et réticulée, prises dans le tissu de Gui

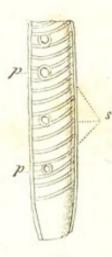
⁽Viscum album),

avec la première dans son mode de développement ; car, au lieu de s'étendre en une toile continue parfaitement correspondante à la première, elle s'interrompt en divers points. Dans ces points, le sac extérieur n'est pas doublé par l'intérieur, et de là résulte cette inégalité d'épaisseur à divers endroits. On pourrait supposer que la membrane interne ainsi distendue s'éraille en un grand nombre de points, et détermine ainsi les ponctuations qu'on apercoit sur beaucoup de cellules; mais, le plus souvent, une merveilleuse régularité paraît présider aux solutions de continuité de l'enveloppe intérieure, qui se déroule du bas en haut de la cellule en un fil ou en un ruban spiral. Si les tours de cette spire sont éloignés l'un de l'autre par un intervalle appréciable, on a deux zones spirales parallèles, l'une où la membrane externe est doublée par l'interne, l'autre où elle est à nu. Si les tours se touchent exactement, leur intervalle n'est plus indiqué que par une strie extrêmement fine ou cessant même d'être perceptible. Mais souvent ils s'écartent un peu de distance en distance, laissant la membrane extérieure à nu dans des espaces qui, pour notre œil, n'excèdent pas en étendue un point ou une courte ligne. De là peut-être la régularité et la direction qu'on observe fréquemment dans ces points, et ces lignes dont la cellule se montre toute parsemée. Les bandes en anneaux ou en réseau paraissent susceptibles d'une explication analogue que nous renvoyons à l'exposition des vaisseaux, où le phénomène deviendra moins obscur, à cause de la plus grande échelle sur laquelle nous pourrons l'observer.

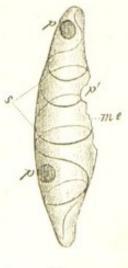
L'épaisseur des parois de la cellule peut être successivement augmentée par la formation d'une troisième couche qui se dépose à l'intérieur de la seconde, d'une quatrième qui se dépose à l'intérieur de la troisième, et ainsi de suite. Ordinairement la seconde

membrane sert de moule à celles qui se développent successivement à l'intérieur; elles la suivent dans tous ses contours et s'interrompent aux mêmes endroits. C'est ce dont on peut se convaincre par la coupe transversale (fig. 28) ou longitudinale (fig. 29) de cellules composées d'un certain nombre de couches superposées. On voit ainsi

bien nettement plusieurs cercles concentriques autour d'une cavité


- 28. Coupe transversale de cellules prises dans la chair d'une Poire.
- 29. Coupe longitudinale des mêmes.

centrale, qui est d'autant plus petite qu'il s'est déposé un plus grand nombre de couches; de cette cavité partent transversalement de petits canaux qui viennent s'arrêter seulement sur la membrane extérieure et qui correspondent aux solutions de continuité des couches secondaires. Il est clair que si elles ne se moulaient pas exactement les unes sur les autres, leurs trous ne se correspondraient pas de manière à former ces canaux continus.


Il peut arriver qu'une couche intérieure ne se moule pas sur celle qui l'enveloppe, mais présente une modification différente

qui se laissera apercevoir, soit à travers l'ensemble des couches transparentes, soit seulement dans les intervalles où la membrane extérieure se trouve à nu. On aura alors l'apparence de cellules en quelque sorte *composites*, par exemple ponctuées et spirales à la fois (fig. 30); et si les ponctuations appartiennent aux couches secondaires, la membrane à spirale constituera une couche tertiaire. C'est au reste un cas fort rare, et la plupart des exemples, entre autres celui que nous avons cité, s'observent dans les fibres plutôt que dans les cellules.

Une modification plus exceptionnelle encore est celle des *cellules poreuses* ou trouées. Sur leur membrane primaire, d'abord continue et homogène comme celle de toutes les cellules en général, on voit plus tard se circonscrire des espaces arrondis, puis la partie ainsi circonscrite se fondre peu à peu et disparaître, en laissant à sa place un véritable trou ou pore, par lequel la cavité cellulaire communique immédiatement avec celle des cellules voisines semblablement organisées. C'est dans un très petit nombre de mousses qu'on a observé cette singulière organisation de certaines cellules (*fig.* 34). On a cité quelques plantes phanérogames dont certaines fibres en ont présenté une analogue.

30.

31.

30. Portion d'une fibre prise dans le bois du Viorne (*Viburnum lantana*). — pp Ponctuation appartenant aux couches secondaires. — ss Fil spiral qui leur est intérieur et constitue une couche tertiaire.

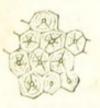
34. Cellule tirée d'une feuille du Sphagnum capillaceum et très grossie, dont la paroi est formée d'une membrane trouée de pores p p et doublée intérieurement d'un fil spiral s. Une petite portion de cette paroi a été déchirée en me, auprès d'un de ces pores, pour montrer qu'il y a véritable solution de continuité.

FIBRES.

§ 7. Les détails dans lesquels nous sommes entré au sujet des cellules nous dispenseront d'en donner d'aussi étendus au sujet des fibres, puisque c'est par la forme seulement qu'elles différent, et que, leur développement étant le même, l'apparence de leur surface doit offrir des modifications analogues.


Nous avons déjà vu que la longueur des fibres est variable : peu prononcée chez les unes, qui se rapprochent des cellules et ont même

> reçu de beaucoup d'auteurs le nom de cellules allongées ; très grande dans d'autres, qui se rapprochent des vaisseaux, et qui ont été souvent classées avec eux sous le nom de vaisseaux fibreux.


> Le tissu qui est formé par la réunion de ces fibres a reçu le nom de prosenchyme. Celles qui s'y trouvent placées à peu près à la même hauteur se touchent par leurs côtés; mais, à leurs extrémités amincies, elles laissent nécessairement entre elles des intervalles libres, dans lesquels viennent s'intercaler les extrémités analogues des fibres situées au-dessus et au-dessous (fig. 32). Dans le parenchyme, au contraire, les cellules supérieures et inférieures se posent l'une sur l'autre par les faces planes (fig. 49, 24) qui les terminent (cellulæ parenchymatis sibi extremitatibus impositæ sunt, prosenchymatis appositæ).

> Leur paroi est en général épaisse et assez dure : elle est formée d'abord d'une membrane unique et continue, qui peut acquérir, sans l'addition d'aucune autre, un certain degré d'épaisseur. Mais, ordinairement, plusieurs couches secondaires se forment successivement de l'extérieur à l'intérieur, de telle sorte que la fibre, dont l'axe creux se rétrécit de plus en plus et se réduit enfin presque à rien, peut paraître pleine ou entièrement solide.

> Il en résulte que la section du prosenchyme montre une masse en général compacte dans laquelle la proportion des parties pleines l'emporte de beaucoup sur celle des vides ; la cavité intérieure des fibres est au plus un canal oblong et grêle, tandis que leurs surfaces extérieures se touchent entre elles assez exactement pour

32.

33.

100

-

1.1.1

-

÷.

ŧ

Ξ

2

: :

:

Ŧ

-

:

.

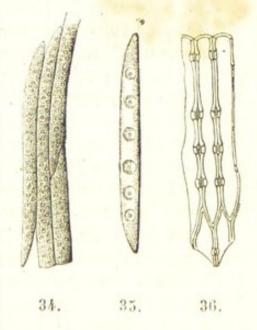
2

-

1 -

-

÷


2

. :

que les méats intermédiaires soient presque nuls. Une autre conséquence de cette juxtaposition est l'aplatissement des côtés en contact, de telle sorte que la paroi de la fibre devient prismatique extérieurement, tandis qu'intérieurement elle reste cylindrique. C'est ce que montre clairement la coupe transversale d'un prosenchyme suffisamment développé (fig. 33).

Nous avons déjà dit que le développement des fibres est le même que celui des cellules. L'accroissement de l'utricule primitif ou de la membrane extérieure détermine leurs dimensions en longueur et en largeur; la formation plus tardive des couches intérieures détermine leur épaisseur, et l'apparence définitive de leur surface, qui peut conséquemment présenter les mêmes modifications que celles des cellules. Il arrive néanmoins assez fréquemment que la couche interne tapisse exactement l'externe, sans solution de continuité, de sorte que la fibre reste aussi lisse qu'elle l'était dans le

principe. La seconde couche peut aussi se montrer sous la forme d'un fil spiral ou bien de bandelettes unies entre elles en manière de réseau; mais cet état ne se rencontre pas souvent. L'existence des fibres fendillées, et surtout ponctuées (fig. 34), est au contraire extrêmement fréquente. Ces ponctuations répondent, comme dans les cellules, aux points où la membrane extérieure n'est pas doublée par les intérieures, et où aboutissent les petits canaux sans issue résultant de ces solutions de continuité. Elles sont particulièrement remarquables

dans le bois du Sapin et des autres arbres analogues qu'on désigne vulgairement sous le nom d'arbres verts, et qui forment la famille des Conifères, que nous apprendrons à connaître plus tard. Les ponctuations y sont assez grandes pour qu'on ait pu d'abord les prendre pour de véritables trous; elles se montrent disposées sur deux séries rectilignes occupant les deux côtés opposés de la fibre, et sont souvent environnées chacune d'une aréole plus ou moins large (fig. 35). On est parvenu à se bien rendre compte de cette disposition : si l'on examine avec un bon microscope une tranche très

36. Coupe longitudinale des mêmes.

^{34.} Fibres ponctuées prises dans le rebord ailé d'une graine de Bignone.

^{35.} Fibres prises dans le bois du Pin commun (Pinus sylvestris).

mince de la fibre coupée suivant un plan qui passerait par les deux lignes parallèles des ponctuations, on voit à l'endroit de la ponctuation la paroi de la fibre s'infléchir à l'intérieur, en déterminan ainsi un petit enfoncement dont le pourtour est circulaire ou elliptique (fig. 36). C'est cet enfoncement, autrement éclairé que le reste de la surface dont il fait partie, qui forme l'aréole, et à son centre vient aboutir un court canal latéral analogue à ceux de toutes les cellules ou fibres ponctuées, et qui forme la ponctuation centrale; et, comme ordinairement les ponctuations de deux fibres voisines se correspondent, il y a à ces points correspondants un petit espace vide de forme lenticulaire, comme on en aurait entre deux verres de montre appliqués l'un sur l'autre par leur contour.

VAISSEAUX.

§ 8. Nous n'avons jusqu'ici appris à distinguer des fibres les vaisseaux ou tubes, que par leur extension beaucoup plus grande en longueur. Cette longueur est quelquefois considérable et égale presque celle du végétal entier. On la constate facilement sur des fragments d'une certaine étendue, par le passage de fils très fins, crins ou cheveux, qui, introduits à l'un des bouts par l'ouverture béante d'un des canaux, finissent par ressortir à l'autre et prouvent ainsi la continuité du canal. Lorsque celui-ci est très gros et droit, sur une branche de vigne, par exemple, on peut, en appliquant l'œil à un bout, apercevoir le jour à l'autre.

Si l'on met à nu un de ces vaisseaux longs et qu'on l'examine suffisamment grossi, on y observe constamment deux caractères : 4° sa surface n'est jamais lisse, comme l'est souvent celle des cellules ou des fibres, mais présente toujours ces inégalités que nous avons vues paraître dans celles-ci à un certain âge, sous l'apparence de points, de raies, d'anneaux, etc.; 2º le cylindre formé par le vaisseau n'est pas parfaitement régulier dans toute son étendue, mais offre de distance en distance des sortes de rétrécissements ou d'étranglements. Ces étranglements sont quelquefois régulièrement espacés et très rapprochés les uns des autres, d'autres fois ils ne se montrent que de loin en loin ou séparés par des intervalles inégaux. En observant attentivement les portions de vaisseaux comprises entre deux étranglements successifs, on est frappé de leur ressemblance soit avec un utricule, soit avec une fibre; cette ressemblance devient bien plus évidente encore par l'action de l'acide nitrique étendu d'eau et bouillant, qui détache fréquemment ces portions les unes des autres. Lorsqu'on les a sous les yeux ainsi isolées, on ne les distingue plus des utricules ou bien des fibres

que parce qu'elles sont percées plus ou moins largement aux deux extrémités par lesquelles elles se continuaient avec le reste du paisseau.

On est porté à conclure de ces observations qu'un vaisseau est formé par une série d'utricules ou de fibres unies bout à bout, et communiquant sans interruption entre elles au moyen d'ouvertures pratiquées à ces deux bouts. Si ce sont des utricules en série, les étranglements seront rapprochés, et la ligne qui les dessine sera horizontale ou légèrement oblique, comme le sont les faces par lesquelles les cellules se superposent ordinairement (fig. 50). Si ce sont des fibres en série, les étranglements seront plus ou moins écartés les uns des autres, et la ligne qui les dessine extrêmement oblique, puisque c'est le côté du cône effilé par lequel les fibres se terminent (fig. 37).

En admettant ce qui précède, les vaisseaux sont des organes déjà moins élémentaires que les utricules et les fibres, puisqu'ils sont composés par l'union de plusieurs de celles-ci. Nous ne devons donc pas être étonnés de retrouver sur leur surface ces mêmes apparences de points, de raies, de bandes formant une spirale continue, ou détachées en anneaux, ou réunies en réseau, etc., etc., que nous avons signalées dans les utricules ou les fibres; mais de ce qu'ici nous les rencontrons constamment, tandis que dans les utricules nous avons vu qu'elles n'existaient pas dans l'état primitif, et résultaient avec l'âge de l'addition de couches nouvelles et plus intérieures, nous devons conclure que les vaisseaux, tels que nous les avons décrits, ont déjà un certain âge, qu'ils ne se sont pas faits ainsi de toute pièce, mais qu'ils ont auparavant passé par d'autres formes.

En effet, si l'on prend un végétal ou une partie de végétal à sa première apparition, on n'y trouve pas la moindre trace de vaisseaux. mais seulement des utricules formés par une membrane lisse et homogène. Ce n'est que plus tard qu'on verra certains de ces utricules s'allonger en fibres; et c'est plus tard encore que les parois perdront leur homogénéité, et que les vaisseaux se montreront. Ils auront passé par les mêmes périodes de formation que les utricules et les fibres : un sac membraneux, d'abord simple et continu, s'est épaissi par l'emboîtement d'autres sacs diversement brodés à jour; en même temps il se soudait intimement avec deux sacs semblables à lui, placés, l'un au-dessus et l'autre au-dessous; mais la partie des parois ainsi soudée, au lieu de s'épaissir comme le reste, s'amincissait et disparaissait en partie. Les diaphragmes qu'on devrait attendre à ces plans de jonction, s'ils ne sont complétement effacés. sont représentés ou par un petit repli qui suit leur contour, ou par un réseau à jour. On a ainsi un canal continu fermé extérieurement

par une membrane continue elle-même, simple sur un grand nombre de points diversement disposés, doublée ou triplée, etc., dans tout le reste de sa surface intérieure.

On a distingué différentes sortes de vaisseaux d'après la forme générale de leur tube et d'après les diverses modifications de leur surface. Nous allons les indiquer successivement et brièvement. Dans cette série d'utricules ou de fibres, nous n'avons nécessairement affaire qu'à une combinaison de formes, à une répétition d'apparences déjà connues. Cependant, aux détails déjà donnés, nous pourrons en ajouter quelques nouveaux; car c'est dans les vaisseaux, à cause de leur volume beaucoup plus considérable, que ces modifications se montrent le plus nettement, et qu'elles ont été le plus tôt et le mieux étudiées.

Nous avons annoncé tout à l'heure que la surface des vaisseaux est toujours inégale, marquée de points ou de lignes, qui naturellement se distribuent comme sur celle des utricules, c'est-à-dire suivent en général une direction spirale. Aussi les trouve-t-on, dans la plupart des ouvrages modernes, traités sous le nom collectif de vaisseaux ou tubes spiraux (*vasa spiralia*, *tubuli spirales*), pour les distinguer des vaisseaux à parois lisses, soit des vaisseaux dits fibreux, dont nous avons parlé déjà au sujet des fibres, soit des vaisseaux propres ou laticifères, dont nous parlerons plus tard.

Parmi les vaisseaux spiraux eux-mêmes, on a distingué les vrais ou trachées; les faux, qui comprennent les vaisseaux annulaires, réticulés, rayés, ponctués, etc.

§ 9. Trachées. — Les trachées sont formées d'un cylindre membraneux dans l'intérieur duquél s'enroule un fil spiral. Ce cylindre se montre, sans aucun changement de forme ou de surface, dans une longueur assez considérable, puis se termine en s'effilant en cône à ses deux extrémités, sur lesquelles viennent souvent s'appliquer celles d'autres trachées qui continuent ainsi la première en haut et en bas. Ce sont donc réellement des fibres très allongées qui composent les trachées (fig. 37).

Le fil spiral de la trachée se continue sans interruption d'un bout à l'autre de chacune de ces fibres. On l'a comparé au fil de cuivre qui forme l'élastique des bretelles; et c'est donner une image assez fidèle de sa disposition. Sa couleur est ordinairement d'un blanc nacré. Quant à sa forme même, elle a été diversement décrite ou supposée par les auteurs : les uns ont voulu que ce fil fût lui-même un tube creux ; les autres, qu'il fût creusé en gouttière du côté interne ; d'autres lui ont assigné d'autres formes diverses. Les observations les plus exactes, à l'aide des instru-

ments les plus parfaits que nous possédions maintenant, font voir ce fil toujours plein, mais variant de forme suivant les places et les parties dans lesquelles on l'a pris : il est quelquefois aplati en ruban, plus souvent épaissi, et sa coupe présente un cercle, une ellipse ou un quadrilatère. Quand on tire légèrement la trachée rompue, les tours de spire s'écartent l'un de l'autre, et le fil se déroule (*fig.* 38) comme celui de l'élastique de bretelle soumis à

une semblable traction. Quand on casse doucement de jeunes branches (de Sureau , par exemple), on voit quelquefois le fragment inférieur rester suspendu au supérieur par des fils tellement ténus que l'œil a peine à les apercevoir : ce sont ceux des trachées déroulées, et cette propriété a fait souvent désigner ces vaisseaux par le nom de trachées déroulables, qu'on oppose à celles des autres vaisseaux spiraux qui ne le sont pas. Au reste, cela n'a pas lieu à tous les âges indifféremment ; dans la trachée extrêmement jeune, dont le tissu est encore un peu mou, le fil n'a pas encore l'élasticité qu'il doit acquérir plus tard, et se rompt avec le tube sans se dérouler. Il peut la reperdre dans la vieillesse, sans doute en se soudant intimement aux parties voisines.

L'écartement des tours de spire entre eux varie. Généralement chaque tour touche immédiatement les deux tours les plus voisins, au-dessus et au-dessous de lui (fig. 38). Alors dans leur intervalle, pour ainsi dire nul, la membrane extérieure ne peut s'apercevoir; sans doute, unie au fil, elle le suit en se déchirant lorsqu'on le tire et le déroule. D'autres fois les tours laissent entre eux un intervalle apercevable quelquefois, et

entre eux un intervalle apercevable quelquefois, et même beaucoup plus grand que l'épaisseur du fil; et c'est seulement dans ces cas qu'on peut voir un peu nettement la membrane extérieure (fig. 39, 42).

Quant à la direction que suit la spirale de la trachée, on a remarqué qu'il y en a une beaucoup plus fréquente que l'autre : c'est celle de gauche à droite, si l'observateur suppose le vaisseau placé devant lui dans sa position naturelle, c'est-à-dire l'extrémité la plus éloignée du sol tournée en haut. Souvent on suppose l'obser-

39.

37.

^{39.} Trachée à tours écartés, prise dans la tige du Potiron. Il faut remarquer que la gravure a, dans cette figure et dans toutes les suivantes, interverti la direction de la spire qui tourne de droite à gauche, lorsqu'elle devait tourner en sens contraire.

vateur placé dans l'axe du cylindre autour duquel s'élève la ligne

40.

spirale; il est clair qu'ainsi sa direction se présente inverse, c'est-à-dire de droite à gauche (fig. 40). Sous le microscope, la face du vaisseau tournée vers l'observateur se trouve, par rapport à lui, dans la première position; la face tournée de l'autre côté se trouve dans la seconde, et les deux directions se croisent. Si le vaisseau est assez fin pour que ses deux faces se trouvent ensemble à peu près dans le champ du microscope, il paraîtra donc parcouru par deux fils qui suivraient deux directions opposées, et qui dessineront ainsi dans leur croisement un réseau

de petites losanges (fig. 40). Quelques botanistes ont été trompés par cette apparence, dont ils n'ont pas su se rendre compte. Quelle que soit la direction de la spire, elle ne change pas d'une extrémité à l'autre de la fibre trachéale.

Le plus souvent le fil contourné en spirale est unique; mais il n'est pas rare de le voir double (fig. 40). Quelquefois il y en a un plus

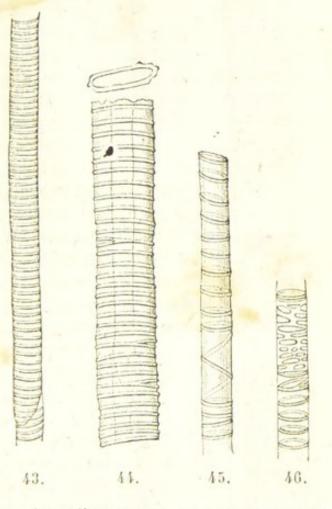
grand nombre (fig. 44); et dans le Bananier on en a compté jusqu'à plus de vingt. Ces fils, rapprochés et parallèles, forment alors comme un ruban spiral qu'on peut dérouler lui-même. Il est évident que, dans ce cas, la direction des tours de spire doit être d'autant plus oblique que le ruban est composé d'un plus grand nombre de fils juxtaposés, puisque entre deux tours d'un même fil il y a toujours toute la largeur du ruban. Au contraire, lorsque le fil est unique et que ses deux tours se touchent, comme dans une élastique de bretelle (fig. 37), ils ne sont séparés que par

l'épaisseur même du fil, et se dirigent suivant une ligne qui paraît presque horizontale, tant son ascension est douce.

Le fil simple ne reste pas toujours tel dans tout son trajet; mais quelquefois il se ramifie en se dédoublant, et l'on voit alors courir parallèlement deux fils plus fins au lieu d'un seul (fig. 42). C'est une transition aux vaisseaux réticulés.

§ 40. Vaisseaux annulaires et réticulés. — Le nom de trachées, si l'on remonte à son origine, conviendrait mieux aux vaisseaux que nous allons examiner qu'aux précédents. En effet, composés d'un tube membraneux que soutiennent intérieurement des anneaux ou cerceaux plus épais placés les uns au-dessus des autres

41. Trachée à plusieurs fibres parallèles prise dans la tige du Bananier.


42. Trachée à spire simple inférieurement, et double supérieurement, tirée de la Betteraye (Beta vulgaris).

16

(fig. 43, 44), ils pourraient, avec plus de justesse, être comparés à la trachée-artère des animaux. Ils sont en général plus gros que les vraies trachées, et beau-

coup moins uniformes d'une extrémité à l'autre. Les anneaux d'un même tube ne sont pas en effet parfaitement semblables (fig. 44); ordinairement horizontaux, ils peuvent aussi être inclinés irrégulièrement dans un sens ou dans un autre ; ils ne sont pas séparés entre eux par des intervalles régulièrement égaux ; enfin ils peuvent être réduits à des fragments annulaires ou représenter une autre sorte de courbe que le cercle. Ainsi il n'est pas rare de voir entre des anneaux de fragments plus ou moins longs d'une spire qui tantôt les lie entre eux (fig. 45), tantôt en reste indépen-

6

dante, mais dans l'un comme dans l'autre cas, se rompt sans se dérouler, lorsqu'on la tire.

D'après ce qui précède, il est facile de prévoir avec quelle facilité aura lieu le passage des vaisseaux annulaires aux vaisseaux réticulés. Ces anneaux, diversement obliques, liés entre eux immédiatement par quelques points de leur circonférence, ou médiatement par des bandelettes diversement contournées, présentent déjà souvent un réseau lâche. Que ces éléments se rapprochent et se multiplient, et l'on aura un réseau plus serré et plus compliqué. Aussi n'est-il pas rare de voir le même vaisseau, annulaire dans une partie de son trajet, devenir réticulé dans une autre (fig. 46).

La terminaison de ces vaisseaux est un cône effilé; la longueur de l'intervalle entre les deux bouts prouve, qu'ainsi que les trachées, ils sont ordinairement composés de fibres.


§ 11. Vaisseaux rayés. — Les vaisseaux rayés, au lieu de spirales, de cercles ou d'aréoles irrégulières, présentent des raies

44 et 45. Vaisseaux annulaires, tirés de la tige de la Balsaminé commune.

^{2.}

BOTANIOUE.

transversales qui n'occupent qu'une partie de la circonférence du

tube, et qui sont en général placées régulièrement les unes au-dessus des autres (fig. 47). La forme du vaisseau est souvent celle d'un prisme dont les faces latérales sont ainsi sillonnées de raies qui s'arrêtent vers les angles (fig. 48). On a comparé la disposition de ces raies et de leurs intervalles à celle des barreaux d'une échelle, et c'est pourquoi l'on ap-

plique souvent le nom de scalariformes aux vaisseaux qui présentent cette apparence. Les raies cependant n'ont pas constamment cet allongement transversal, mais prennent la forme de petites boutonnières, situées de même, mais ordinairement plus nombreuses. comme si plusieurs étaient formées aux dépens d'une seule raie interrompue de distance en distance (fig. 47).

		50.
Signific Control of Co		
	2	- 1

47.

49.

On s'accorde à penser maintenant que ces vaisseaux sont, comme les autres organes précédemment examinés, composés d'un tube membraneux doublé à l'intérieur par une toile à jour; les raies sont les espaces qui répondent à ces jours, et dans lesquels le vaisseau n'est clos que par la membrane externe.

Les vaisseaux rayés sont formés par une série d'utricules allongés, terminés et ajustés l'un sur l'autre par une paroi horizontale ou légèrement oblique, ou de fibres terminées en cône.

§ 42. Vaisscaux ponctués. — Les vaisseaux ponctués, ceux qui, dans les végétaux, acquièrent le volume le plus considérable, et dont souvent même le canal intérieur peut être vu à l'œil nu, se présentent comme criblés de petits points disposés suivant des lignes parallèles ho-

47. Fragment d'un vaisseau rayé, tiré de la Vigne.

51.

48. Fragment d'un vaisseau rayé prismatique, tiré d'une Fougère (Osmunda regalis).

49. Fragment de vaisseau ponctué, tiré de la Vigne. Il est accompagné de quelques

fibres ponctuées. 50. Fragment d'un vaisseau ponctué pris dans la Clématite commune.

54. Fragment d'un vaisseau ponctué pris dans le Gui; sa forme passe à celle de vaisseau en chapelet.

18 .

rizontales, ou, plus rarement, un peu obliques (fig. 49, 50, 54).

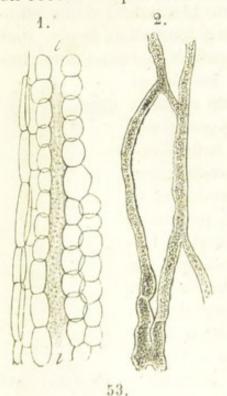
Ces vaisseaux présentent la forme d'un cylindre, sur la surface duquel se dessinent des cercles dépourvus de points, un peu obliques ou plus ordinairement horizontaux, placés à des intervalles plus ou moins rapprochés et en général égaux. Ces cercles ont le même diamètre que le reste du tube, mais quelquefois un diamètre un peu moindre, et il en résulte alors une suited 'étranglements ou rétrécissements de distance en distance (*fig.* 50). La coupe verticale du vaisseau fait voir qu'à ces étranglements correspond quelquefois intérieurement un petit repli circulaire : et quelquefois aussi le vaisseau, chauffé dans l'eau-forte, se coupe, suivant ces mêmes lignes, en autant de fragments, qui représentent clairement chacun un utricule en forme de barrique ou de tonneau qui serait défoncé aux deux bouts. C'est donc par une série d'utricules soudés ensemble qu'est formé le vaisseau ponctué. Les ponctuations sont les places où la membrane externe reste à nu.

Si ces étranglements, qui résultent de la soudure d'une suite d'utricules plus renflés à leur milieu qu'à leurs deux bouts, sont extrêmement prononcés, le vaisseau rappellera la forme d'un cha-

pelet à grains pressés les uns contre les autres (fig. 54). Les vaisseaux qu'on a appelés en chapelet ou vermiformes, parce qu'on peut les comparer aussi au corps d'un ver composé d'un suite d'anneaux (fig. 52), ne sont donc qu'une modification d'une forme plus générale; et cette modification ne se montre pas seulement dans les vaisseaux ponctués, mais de même dans les autres. En général, à l'origine d'organes nouveaux, comme, par exemple, un rameau naissant d'une branche, une feuille d'un rameau, là où les vaisseaux, pour passer de l'un dans l'autre, doivent dévier de leur direction rectiligne, on voit leurs éléments se prêter à cette dé-

viation en devenant plus courts, plus irréguliers, et s'unissant entre eux par des surfaces moins larges. La ligne droite doit se briser en une suite de courtes lignes pour parcourir un trajet flexueux. C'est ainsi que les fibres composant les trachées, ou les vaisseaux annulaires ou rayés, ordinairement très allongées dans la tige, se raccourcissent aux nœuds, et passent même à la forme d'utricules (fig. 52).

§ 13. Vaisseaux laticifères. — Nous avons rejeté à la fin la description d'un ordre de vaisseaux qui sont assez différents de tous les autres pour qu'on ne les ait jamais confondus : ce sont ceux qui


52. Vaisseaux ponctués pris dans la Balcamine, prenant supérieurement la forme en chapelet.

52.

ont reçu le nom de vaisseaux propres ou laticifères, parce qu'ils contiennent le suc propre ou latex.

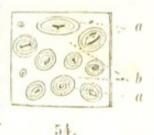
Ce sont des tubes membraneux, communiquant librement entre eux par des branches transversales, de manière à ce que leur ensemble dessine un vaste réseau (fig.53.2,477). Ils ont donc, plus que tous les autres vaisseaux précédemment décrits, quelque ressemblance avec ceux des animaux dont un caractère est d'aller en se ramifiant. Ce mot de ramification serait cependant improprement appliqué aux laticifières qu'on ne voit pas s'épuiser par des divisions successives, comme un tronc se partage en branches, ces branches en rameaux, et ainsi de suite. Ici les branches sont à peu près égales aux canaux qu'elles font communiquer, et dont elles naissent à angle droit ou aigu.

En recherchant ces vaisseaux sur des tissus extrêmement jeunes, on reconnaît que ce sont dans l'origine de simples lacunes bornées

par les cellules même entre lesquelles elles s'étendent et présentant en conséquence, au lieu d'un canal cylindrique, une alternative de rétrécissements et de dilatations correspondant aux saillies de ces mêmes cellules et à leurs interstices (fig. 53.4, l). Elles sont donc alors dépourvues de paroi propre, et c'est plus tard seulement que le suc qu'elles contiennent paraît déposer une couche qui, tapissant ces saillies et comblant ces interstices, circonscrit une cavité cylindrique, et constitue cette paroi en 'se solidifiant. Or les lacunes courent dans diverses directions et communiquent les unes avec les autres : de là le réseau qu'ont coutume de dessiner définitivement les vaisseaux laticifères. Ce mode

de formation et cette disposition réticulée les distinguent donc éminemment, ainsi que l'imperforation de leur paroi, dans l'épaisseur de laquelle on n'observe pas les intervalles amincis, et laissant la membrane primitive à nu sous la forme de bandes, de raies ou de

53, 1. Portion d'un canal (ll) laticifère observé dans l'axe d'un jeune bourgeon de l'Éclaire (*Chelidonium majus*). On voit que ce n'est encore qu'une lacune dont les parois sont formées par le tissu cellulaire environnant. Les granules du latex commencent à apparaître dans le suc jusque-là transparent. — 2. Portion de réseau de canaux laticifères extraits de la même plante à une époque plus avancée, ct pourvus d'une membrane propre.


points, signalée dans les autres vaisseaux, les fibres et les utricules. Cette paroi, mince d'abord, s'épaissit, ainsi que nous l'avons dit, en vieillissant : quelques auteurs on cru même y reconnaître une succession de couches.

§ 14. Moyens d'union des organes élémentaires. — Après avoir exposé les principales modifications que présentent les organes élémentaires des végétaux, nous ne pouvons laisser de côté un problème qui récemment a beaucoup occupé les botanistes : c'est la recherche du moyen, de la force qui tient unis entre eux ces éléments, que jusqu'ici nous avons examinés séparés. Comme tous peuvent se ramener à l'utricule par lequel ils commencent, comme les cellules forment souvent la majeure partie, et quelquefois même toute la masse du végétal, le problème se réduit à la détermination du mode de liaison des cellules entre elles.

Suivant les uns, leur réunion est immédiate; les parois des cellules, d'abord demi-fluides, conservent quelque temps un degré de mollesse qui suffit encore quand les parois de plusieurs cellules voisines viennent à se rencontrer et à se toucher dans leur développement, pour qu'elles se collent entre elles, et que, même en se séchant, elles restent ainsi agglutinées à différents degrés, suivant la forme et la nature du tissu qu'elles constituent.

La doctrine de la réunion médiate, qui n'avait compté que peu de partisans, s'est relevée depuis quelques années appuyée d'une grande autorité, celle de M. Hugo Mohl. Il pense qu'entre les cellules, il s'épanche une sorte de colle, différente d'elles par sa nature, qui les lie, et qu'il appelle matière intercellulaire. Dans certains végétaux d'une structure très simple, comme ceux qui vivent dans l'eau, principalement dans l'eau de la mer, ceux qu'on nomme communément Varechs, et que nous étudierons plus tard sous le nom de Fucus, les utricules (*fig. 54 a a*), dont la plante est toute composée, sont très espacés, laissant entre eux un intervalle souvent plus grand que leur diamètre, et tout cet intervalle est rempli

par cette matière intercellulaire (b), qui forme par conséquent la plus grande partie de la masse. Au contraire, dans les végétaux plus compliqués, dans les arbres et herbes qui couvrent la terre, les utricules (fig. 7, 28) se touchent, et, à peu d'exceptions près, c'est dans les méats intercellulaires seulement que cette matière devient quel-

quefois visible : elle peut même les remplir en partie ou complé-

54. Portion de tissu d'une plante marine (*Himanthalia lorca*). — a a Cellules. —
 b Matière intercellulaire.

tement. Mais, entre les faces par lesquelles les cellules voisines se touchent et s'unissent, sa présence échappe à tous nos moyens d'observation, et même l'union des membranes primaires en contact est tellement intime qu'elles se confondent et semblent former une paroi commune aux deux cellules juxtaposées, paroi dans laquelle nous ne pouvons encore, même à l'aide de plus forts grossissements, reconnaître la ligne de jonction des deux lames qui la composent. Il est vrai que par une macération prolongée dans l'eau froide, par l'action de l'eau bouillante, ou mieux encore par celle de l'acide nitrique, surtout aidée de la chaleur, on parvient à isoler les cellules les unes des autres, et il semblerait que cette opération résulte d'une différence dans la nature des parois des cellules et celle de la matière intercellulaire dissoute par les agents auxquels ces parois résistent. Cependant lorsqu'on examine attentivement les cellules ainsi désagrégées, on reconnaît que leur membrane primaire n'est pas restée intacte, qu'elle s'est déchirée, emportée en partie d'un côté, en partie de l'autre : de telle sorte qu'elle doit participer de la nature de la matière intercellulaire, s'il est vrai que celle-ci joue un rôle dans ce décollement.

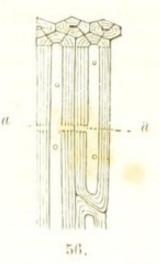
§ 45. L'opinion de M. Mirbel ne rentre dans aucune des deux précédentes. Suivant lui, le tissu végétal commence par une sorte de mucilage comparable à une solution de gomme arabique, qui s'épaissit de plus en plus, et qui, d'abord continu et plein, finit par se creuser d'un grand nombre de petites loges, qui seront les cavités des cellules. Les cellules voisines seraient donc d'abord séparées primitivement par une paroi commune, qui pourrait rester telle, mais qui, plus souvent encore, finirait par se dédoubler quelquefois dans tout son contour, quelquefois seulement en partie et d'abord vers les angles. Dans cette théorie, le développement des cellules serait donc tout à fait inverse de celui qu'on lui attribue dans les autres; elles tendraient à se décoller et non à se coller

entre elles, et leur union ne serait que l'état normal et originel, tendant à s'effacer progressivement avec l'âge. Lorsque ce tissu (fig. 55, bb) persiste à cet état et forme ainsi un réseau continu dont les alvéoles sont doublées chacune d'un utricule distinct (aa), M. Mirbel le nomme

tissu cellulaire interposé. Il est clair qu'il joue ici le rôle de la

55. Partie centrale d'une jeune racine de Dattier. — a a a Cellules. — b b b Tissu cellulaire interposé de M. Mirbel.

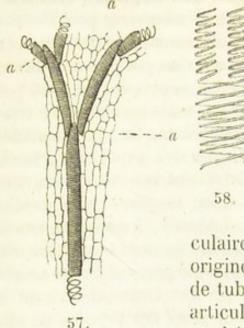
ORGANES ÉLÉMENTAIRES.


matière intercellulaire de M. Mohl, quoiqu'on lui attribue une origine tout à fait différente.

§ 16. Moyens de communication des organes élémentaires. - Si le mode d'union des organes élémentaires peut donner lieu à guelques incertitudes, leur mode de communication est bien évident. Nous avons vu, en effet, qu'ils sont clos par une membrane mince et simple, et que lorsqu'elle vient à s'épaissir, ce n'est pas uniformément sur toute sa surface interne, mais qu'elle reste constamment à nu sur un grand nombre de points. Or, la perméabilité d'une telle membrane est constatée par des expériences nombreuses et décisives. Les gaz ou les liquides contenus dans les cavités des vaisseaux et des cellules trouvent donc toujours, pour passer de l'une à l'autre, une foule de canaux latéraux, fermés seulement par un diaphragme membraneux. Plusieurs auteurs ont même nié l'existence de ces diaphragmes : ils ont nommé pores et fentes ce que nous avons nommé points et raies. Il est fort vraisemblable qu'en effet la membrane disparaît quelquefois dans ces espaces où elle reste à nu; nous l'avons vu sur les extrémités en contact des fibres ou des utricules qui, par leur série, forment les vaisseaux. Quelquefois le tube membraneux d'un vaisseau finit par disparaître complétement, et ses anneaux ne se trouvent plus soutenus que par les parties voisines qui, dans les intervalles, forment la paroi du cylindre. L'existence de véritables trous a été mise hors de doute sur les utricules de certains végétaux, ainsi que nous l'avons vu (§ 6, fig. 31).

Dans deux cellules contiguës, les canaux latéraux de l'une correspondent ordinairement à ceux de l'autre, tellement qu'en général deux canaux appartenant à des cellules dif-

férentes semblent en former un seul (fig. 56 a), mettant en communication les deux cavités, sans que de l'une à l'autre sa continuité soit interrompue autrement que par une mince cloison. Le passage d'un fluide est donc toujours ou entièrement libre, ou facile, ou au moins possible d'une cavité à une autre.


§ 47. Quand d'un groupe de vaisseaux réunis en faisceaux quelques uns se détachent pour se rendre vers un point latéral, par exemple, d'un rameau dans une feuille, et abandonnent ainsi leur première direction rec-

tiligne en formant un coude, la continuité des tubes paraît inter-

56. Cellules allongées prises dans la racine du Dattier. — a a Canaux de communication.

rompue au coude, les vaisseaux qui suivent cette direction nouvelle viennent s'accoler par leur extrémité (fig. 57 aaa) auprès de

celle de vaisseaux qui concouraient à la formation du faisceau primitif. Il se passe donc ici à peu près ce qui a lieu à chaque point de réunion de fibres ou utricules dont la série rectiligne forme un vaisseau, la perforation partielle ou complète des faces accolées; seulement il y a une légère déviation des bouts qui se joignent de cette manière.

Quoique les embranchements vasculaires aient presque constamment cette origine, on a cependant quelques exemples de tubes spiraux véritablement rameux sans articulation. Ainsi on voit quelquefois une trachée à double spirale se bifurquer en

formant deux trachées à spirale simple (fig. 58), par l'écartement angulaire des deux spires qui auparavant s'enroulaient dans un parallélisme complet. Mais cette disposition a été observée si rarement que beaucoup d'auteurs mettent en doute sa réalité.

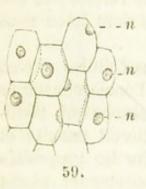
§ 18. Contenu des organes. — Nous avons vu le tissu végétal tout criblé de cavités de formes diverses, occupant l'intérieur des cellules, fibres ou vaisseaux, ou ménagées dans leurs intervalles. Il nous reste à rechercher ce qu'on observe dans ces cavités, si elles sont vides, ou remplies par d'autres corps.

Elles paraissent souvent absolument vides; mais ordinairement alors, en les ouvrant sous l'eau, on voit s'échapper de petites bulles qui annoncent la présence d'un gaz. Tous les degrés intermédiaires, depuis cette consistance aériforme jusqu'à la plus solide, nous sont offerts par les matières contenues dans les cavités du tissu végétal, et qui peuvent être à l'état de gaz, de liquide limpide ou épais, de gelée, de pâte, de granules épars ou réunis en une masse, de pierre ou de cristal. Il est clair que leur observation est d'autant plus facile qu'elles se rapprochent plus d'un solide : à l'état de gaz, il faut, pour les déterminer, appeler la chimie à son aide; à l'état de liquide, outre que dans beaucoup de cas, elles se dérobent à l'observation par leur transparence, elles tendent souvent à s'évaporer du tissu mis à nu; et la cellule qui, pendant la vie, était gonflée par un liquide, peut se montrer, sous le

58. Trachée prise dans un Poliron (Cucurbita pepo).

ORGANES ELEMENTAIRES.

microscope, affaissée et vide, ou seulement avec quelques traces d'un dépôt solide, si l'évaporation a laissé à sec quelques corps auparavant en dissolution, comme la gomme ou le sucre dans l'eau, la résine dans une huile volatile. Il peut aussi s'opérer quelques changements chimiques dans la nature du contenu pendant l'observation qui, l'enlevant à ses rapports vitaux, le met nécessairement en contact avec de nouveaux agents, l'air ou l'eau, etc., etc. Cette recherche, dont les résultats ont tant d'importance pour éclairer la vie du végétal, a donc dû exiger plus de précautions, des méthodes moins directes et plus variées, et elle doit nécessairement être moins avancée que celles dont nous nous sommes occupé jusqu'ici.


§ 49. Ce n'est pas seulement dans la cavité des cellules que se trouvent ces diverses matières ; ce peut être dans l'épaisseur même de leur paroi qu'elles imprégnent comme une substance qui, pénétrant à l'état liquide dans une éponge, se solidifierait ensuite et ferait corps avec elle. Elles viennent ainsi modifier les propriétés de cette paroi dont elles font dès lors partie, appartenant plutôt au contenant qu'au contenu, et c'est leur présence qui a jeté tant d'incertitude sur la nature de la membrane cellulaire qu'elle fait varier dans ses différents âges et ses différentes couches.

Lorsque ces matières imprégnantes sont inorganiques (des terres, des alcalis, des acides métalliques), leur présence est plus facile à démontrer. Il suffit, en effet, de brûler doucement sur une lame de verre une petite portion de ces tissus. Le feu détruit la substance organique, mais non la substance minérale dont elle était pénétrée et qui, restant déposée sur la lame, y dessine le squelette du tissu organique qui a disparu : désagrégé, ce résidu formerait ce qu'on appelle la cendre. On peut montrer, comme existant ainsi constamment dans certaines parties de certains végétaux, la chaux et la silice. C'est celle-ci que présentent à un degré remarquable les tiges des graminées qu'on connaît vulgairement sous le nom de paille ; c'est elle qui leur donne leur dureté, et c'est là l'origine de ces masses vitrifiées qu'on trouve quelquefois dans les débris d'une meule de blé incendiée.

L'imprégnation des parois cellulaires par des matières organiques n'est pas moins générale. Telle est celle qu'on nomme le *ligneux*, et qu'on trouve dans les fibres du bois, d'autant plus abondante qu'elles sont plus avancées en âge. Telles sont, répandues plus généralement encore dans les tissus, les substances azotées qu'on peut reconnaître à la couleur jaune que ces tissus prennent au contact de la teinture d'iode. Ce réactif, ainsi que divers autres, exerçait une action complétement différente sur les parois de-

cellules tout nouvellement formées. On doit donc en conclure qu'elles ne contenaient pas encore ces matières qui ne les ont remplies que plus tard, soit en s'ajoutant, soit en se substituant en partie à une autre substance qui les constituait seule primitivement. On peut d'ailleurs les en dépouiller par l'immersion dans la potasse caustique qui leur restitue leur composition et leurs propriétés primitives.

§ 20. Si, de la matière qui imprègne l'épaisseur de la paroi des cellules, nous passons à celle qui est contenue dans leur cavité,

nous verrons qu'elle varie encore plus à différentes époques. Au début, ce sont encore des matières azotées qui y existent à la fois sous une triple forme : 4° celle d'un amas de granules, en forme de boule ou de lentille, remplissant d'abord la plus grande partie de la cavité, mais qui, à mesure que la cellule se développe, n'augmente pas dans la même proportion qu'elle, n'en occupe plus tard que le centre ou se

trouve rejeté sur le côté, et finit, dans un grand nombre de cas, par se dissoudre et disparaître entièrement. C'est ce qu'on a nommé nucléus ou novau de la cellule, nom auquel M. Schleiden a proposé de substituer celui de Cytoblaste (xúzoc, cavité, utricule; Blazzó; bourgeon, germe), à cause des fonctions qu'il lui attribue, celle de produire par son développement ultérieur la cellule dont il serait en quelque sorte l'état embryonnaire; 2º celle d'un fluide visqueux, trouble, de couleur blanchâtre, mêlé de petits grains, qui entoure le nucléus et a reçu le nom de protoplasma; 3º celle d'une membrane mince granulée (l'utricule primordial de M. Mohl) qui enveloppe cette masse fluide et s'applique sur la paroi cellulaire sans lui adhérer, comme on peut s'en convaincre en plongeant les jeunes cellules dans l'alcool, ou dans les acides chlorhydrique ou nitrique, dont l'action, en condensant le protoplasma, détache et éloigne l'utricule primordial de la surface interne, et permet de l'apercevoir plus facilement recroquevillé au milieu de la cavité. La teinture d'iode aide encore l'observation, surtout si l'on emploie concurremment l'acide sulfurique. Car, tandis que la paroi cellulaire se teint en bleu ou violet, l'utricule primordial avec son contenu se colore en jaunâtre.


Un peu plus tard le protoplasma, ne pouvant plus remplir la cavité qui continue à croître, se creuse de petites vacuoles, à la manière de l'écume, ou se distend en filaments irréguliers qui vont

59. Jeunes cellules avec leurs nucléus n n n, prises dans la Betterave.

ORGANES ÉLÉMENTAIRES.

du nucléus à la paroi. Il finit par empâter soit les autres corps qui se sont formés dans la cellule, soit les parois avec lesquelles il se confond en les incrustant, et ne se laissant distinguer qu'à l'aide des réactifs qui le font apparaître comme une couche intérieure d'une couleur différente.

§ 21. C'est la solution d'iode qu'on emploie à cet usage le plus communément et le plus commodément. Dans un grand nombre de cellules plus avancées, si on les soumet à son action, on voit secolorer rapidement en bleu ou violet des grains contenus dans leur intérieur, ordinairement très inégaux entre eux, tantôt épars en petite quantité, tantôt nombreux et quelquefois même à tel point que, serrés les uns contre les autres (fig. 62), ils obstruent et en quelque sorte solidifient toute la cavité. On est averti par cette action de l'iode, que ces granules sont ceux d'une matière différente de la précédente, entièrement exempte d'azote, qui est extrêmement répandue dans les végétaux et joue un rôle important dans leur nutrition, la fécule. Si l'on examine ceux-ci sans les colorer, on peut les reconnaitre d'ailleurs à certains caractères de formes. C'est en général celle d'un sphéroïde ou d'un ellipsoïde irrégulier, souvent comprimés en lentille, ou d'un polyèdre: corps sur lesquels on voit se dessiner plusieurs cercles concentriques autour d'un point ou d'une ligne centrale (fig. 64) ou excentrique (fig. 60). Ce point, qu'on a nommé le hile du grain, est l'extrémité d'une sorte d'axe un peu plus mou que le reste, autour duquel s'emboîtent l'une dans l'autre des couches successives d'autant plus épaisses qu'elles se rapprochent plus de l'extrémité opposée, probablement d'autant plus anciennes qu'elles sont plus extérieures. Il peut arriver que deux ou trois grains extrêmement voisins se confondent en un seul. dans lequel on remarque alors deux ou trois hiles distincts (fig. 60).

mais l'accroissement ultérieur se fait toujours par un seul d'entre eux sur lequel se coordonnent les lames formées après cette réunion. Si l'on veut entrer dans plus de détails, on voit la forme varier dans

60. Cellule remplie de grains de fécule, tirée d'une Pomme de terre.

62. Grains de fécule du Maïs.

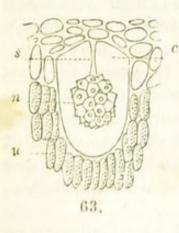
^{64.} Grains de fécule du Blé. Dans la première figure il est représenté à l'état naturel ; dans la deuxième , après l'action de la chaleur, qui a fait fendiller le hile ; dans la troisième , après l'action de l'eau qui, en le gonflant , a rendu plus visibles ses diverses couches.

les fécules tirées de plantes différentes, mais assez constante dans une même espèce de plantes pour qu'un œil exercé reconnaisse à laquelle il appartient. Ainsi, pour prendre les exemples les plus connus, qu'on examine comparativement des tranches extrêmement fines faites sur une Pomme de terre (fig. 60), sur un grain de Blé (fig. 61), et sur un grain de Maïs (fig. 62), et l'on trouvera que les grains de fécule diffèrent assez dans les trois pour se laisser ensuite facilement reconnaître. Si, dans la petite goutte d'eau où on laisse ordinairement les tranches pour prévenir leur dessiccation, on mêle une quantité bien plus faible de solution d'iode, on verra tout de suite se colorer les granules et se dessiner plus nettement les cellules qui les renferment (fig. 60).

C'est aussi par la présence de granules nombreux que se découvre le latex ou suc propre en circulation dans les vaisseaux auxquels il a donné son nom (fig. 53). Ils sont en général très petits, comme une espèce de poussière, mais inégaux entre eux, et au milieu d'eux on en remarque quelques uns beaucoup plus gros, de formes quelquefois bizarres, que l'iode fait reconnaître pour des grains de fécule.

§ 22. Une matière répandue très généralement aussi dans les cellules végétales est celle qu'on a désignée par l'épithète de verte, qui leur communique cette couleur et que, par conséquent, il faut chercher dans les parties qui présentent cette teinte. Dans la plupart des plantes ces parties sont, pour la plus grande proportion, les feuilles, et de là le nom de chlorophylle (xlosos, vert; oùllor, feuille) que reçoit la matière verte; mais elle s'observe également, ainsi que la coloration qu'elle détermine, dans certaines parties des fleurs, en général dans les tissus situés vers la surface comme les jeunes écorces, mais souvent même à l'intérieur et à une profondeur assez grande, par exemple dans la moelle jeune, enfin dans certains végétaux tout entiers très simples réduits à la forme de tubes ou de lames sans feuilles ou sans tiges. Au premier coup d'œil elle semblerait tapisser toute la paroi cellulaire; mais si on l'observe à un grossissement suffisant, on reconnaît que cette paroi conserve sa transparence, et le plus communément c'est sous la forme de grains que, derrière elle, se présente la chlorophylle (fig. 80 et 82, p), et suivant qu'ils sont plus ou moins foncés, plus ou moins abondants et rapprochés, la cellule entière paraît d'un vert plus ou moins pâle ou intense. Ces grains sont tantôt appliqués sur sa surface régulièrement (comme on le voit si bien dans le Chara) ou irrégulièrement, tantôt dispersés dans sa cavité en suspension dans le liquide qui la remplit. Plus rarement, comme, par exemple, dans certaines conferves, la chlorophylle figure des sortes

ORGANES ÉLÉMENTAIRES.


de rubans enroulés en anneaux ou en spirales. Si l'on soumet à l'action de l'alcool ou de l'éther ces différentes cellules à teinte verte, on voit cette teinte disparaître, et cependant les granules ou bandes conservent, décolorés, leur dimension et leur forme primitives, d'où l'on conclut que la chlorophylle ou matière verte proprement dite ne forme qu'un enduit superficiel sur ces corps d'une autre nature que la sienne, et non susceptible de se dissoudre comme elle dans ces deux fluides : et même la portion dissoute dans l'éther n'est pas encore de la chlorophylle pure, car on a prouvé qu'elle est mélée d'une forte proportion de cire. Si l'on ajoute l'emploi de la solution d'iode, on voit les grains se colorer en bleu ou d'autres fois, ainsi que les rubans, en jaune, teintes nouvelles qui font reconnaitre de la fécule ou de la matière azotée. Quelquefois et dans les mêmes cellules, mais assez rarement, la chlorophylle figure de petits filaments ou des flocons nuageux, et c'est sous cette dernière forme qu'on la voit apparaître d'abord dans une partie du protoplasma. Toutes ces observations tendent à démontrer que c'est, en dernière analyse, une matière à demi molle, une gelée, tendant à se déposer sur les divers corps qui se trouvent avec elle dans l'intérieur de la cellule. On a pensé même qu'elle se formait aux dépens de la fécule, dont la substance chimiquement modifiée se changerait d'abord en cette matière circuse toujours unie à la chlorophylle, puis en celle-ci. Cette opinion justifierait le nom de fécule verte que lui donnaient les anciens chimistes. Mais pour qu'elle fût démontrée, il faudrait que la fécule formât constamment le noyau qu'enduit la chlorophylle, tandis que nous venons de voir le contraire : que ce noyau allât en diminuant à mesure que l'enduit vert formé à ses dépens s'épaissirait, tandis que c'est l'inverse qu'on observe souvent : enfin que la fécule préexistât toujours dans les cellules, ce qui est loin d'avoir lieu. Quoi qu'il en soit, les grains de chlorophylle sont généralement très menus ; leur noyau de fécule souvent simple est d'autres fois formé par plusieurs granules réunis sous un enduit commun, et sa nature, que son volume ainsi réduit ne permet pas de reconnaître à sa forme, ne se constate que par l'action colorante de l'iode, à laquelle il échappe dans le cas d'extrême ténuité.

Lorsque beaucoup de feuilles se décolorent vers l'automne en passant à la teinte jaune, cette teinte paraît due à une altération de la chlorophylle, qui, ainsi modifiée, a reçu le nom de *xanthophylle* $(\xi_{\alpha}, \theta_{\gamma\xi})$ jaune).

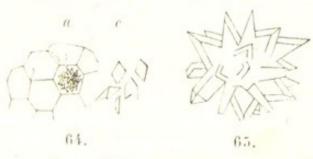
§ 23. Il est très fréquent de rencontrer des cristallisations dans Fintérieur des cellules, où leur présence n'a rien qui doive étonner. En effet, il se forme, par l'acte même de la végétation, dans les

3.

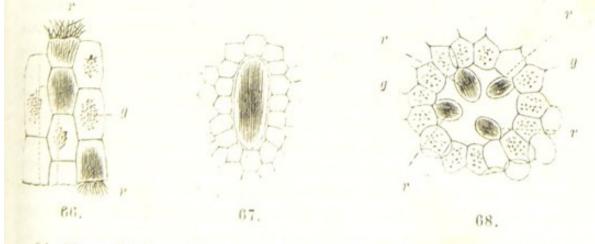
organes de la plante, un certain nombre d'acides particuliers (comme les acides oxalique, malique, etc.): et elle puise l'acide carbonique dissous dans l'eau de l'atmosphère et de la terre en même temps; d'une autre part, le sol contient en dissolution des alcalis inorganiques, comme la chaux, la potasse, la silice, qui sont absorbés et circulent avec la séve. Ces diverses solutions doivent fréquemment venir à se rencontrer dans les cavités de la plante ; et si les corps qu'elles contiennent ont le degré convenable d'affinité l'un pour l'autre et la propriété de former ensemble une combinaison insoluble, ils pourront cristalliser en sels de natures et de formes variées. Il semble, au premier coup d'œil, que ce soit là une opération purement chimique qui a lieu dans l'intérieur des cellules, comme elle aurait lieu dans tout récipient où ces mêmes solutions se trouveraient mélangées et en repos; et quand on trouve les cristaux d'autant plus multipliés que le parenchyme est plus âgé et que son activité vitale est plus affaiblie, on est confirmé dans cette idée, que leur formation est du domaine des forces inorganiques et non de celles de la vie. Cependant plusieurs considérations viennent à l'appui de l'opinion contraire, et surtout l'observation récemment faite par M. Payen, que les cristaux ne se forment pas et ne flottent pas librement dans l'utricule, mais qu'il existe un appareil particulier bien organisé qui les produit et les contient. D'un point de la paroi de ces utricules part un cordon composé lui-même de cellules plus petites, et qui porte suspendue une masse qu'on peut reconnaître pour être un tissu cellulaire très fin et comme à l'état naissant (fig. 63 n). C'est

plus tard, dans l'intérieur des petites cellules de cette masse ainsi suspendue, que se dépose et cristallise la substance minérale, comme dans une gangue; et ce sont elles qui semblent en déterminer les limites et la forme; de telle sorte qu'un même sel, l'oxalate de chaux, par exemple, peut cristalliser dans les végétaux sous plusieurs formes tout à fait différentes, dues aux différences de l'appareil où s'opère la cristallisation. On avait yu la masse cellulaire avant la déposi-

tion du sel; on peut la voir après, plus développée et plus arrêtée


63. Masse de tissu cellulaire prise dans la feuille d'un Figuier (*Ficus elastica*), dans laquelle se développent des cristaux dont l'agglomération figure un noyau hérissé n. Elle est suspendue par une sorte de tube s dans l'intérieur d'une cellule dilatée c, située sous l'épiderme et environnée d'utricules u plus petits, remplis de grains que verdit la chlorophylle.

ORGANES ÉLÉMENTAIRES.


dans ses formes, en dissolvant le sel par un réactif qui n'attaque pas le tissu. Sans l'emploi de ce moyen, le tissu organique qui enveloppe le cristal échappe à la vue par la ténuité de ses membranes appliquées intimement sur les surfaces cristallines.

Quelquefois une même cellule ne contient qu'un seul cristal ou qu'un petit nombre de cristaux, et alors leur volume, assez considérable, permet de déterminer nettement leur forme. Mais, plus souvent, ils y sont réunis en grande quantité, et leur petitesse rend leur détermination fort difficile et incertaine. Alors, en général, ils se groupent suivant deux dispositions différentes, ou en rayonnant d'un centre commun, ou parallèlement les uns aux autres. Dans le premier cas, ils sont ordinairement plus gros et plus courts, et leur agglomération figure une sorte de noyau sphérique ou ovoïde tout hérissé de pointes (fig. 64, 65); dans le second cas, ils ont l'apparence d'un faisceau de fines aiguilles (fig. 66, 67), que l'examen

microscopique fait généralement reconnaître pour de longs prismes à quatre faces terminés à chaque extrémité par une pyramide. Ce sont ces aiguilles qui, prises d'abord pour un organe végétal, une

sorte de poil, avaient reçu le nom de raphides.

64. Tissu cellulaire de la Betterave ; dans l'une des cellules une agglomération a de cristaux hérissés. — c Gristaux séparés.

65. Cristaux agglomérés, pris dans une cellule du pétiole de la Rhubarbe (Rheum undulatum).

66. Tissu cellulaire du Pied-de-veau (Arum vulgare). Plusieurs cellules sont remplies par des grains de chlorophylle g; d'autres par des faisceaux de raphides r r.

67. Faisceaux de raphides dans une cellule dilatée qu'entourent d'autres cellules plus petites. Elle est également tirée de l'Arum.

68. Portion du tissu d'une Aroïdée (Colocasia odora). Des cellules remplies de grains de chlorophylle g g, laissent entre elles une lacune dans laquelle font saillie quatre autres cellules contenant des faisceaux de raphides r r r r.

On a décrit quelquefois les cristaux, et surtout les raphides, comme placés dans les méats ou les lacunes hors des cellules. Cette erreur peut provenir de plusieurs causes : la plus fréquente et la plus naturelle est la dispersion de ces corps par l'effet même de la dissection, qui demande bien du soin et de l'adresse pour ne pas déchirer les parois des cellules ; souvent l'instrument pénètre dans celles-ci, dissocie les raphides et les transporte au hasard dans les cavités voisines. Mais lors même qu'on a ménagé le tissu, on a cru voir quelquefois le faisceau des raphides faisant saillie dans une lacune ou l'occupant presque en entier. C'est que les cellules où se forment ainsi les cristaux prennent souvent un développement tout à fait disproportionné, au point que leur cavité simule une lacune (fig. 67), ou que, situées sur la paroi d'une lacune véritable, elles font saillie dans l'intérieur de celle-ci (fig. 68), qui paraît alors elle-même contenir les cristaux. Jusqu'ici on n'a donc vu ceux-ci que dans l'intérieur des cellules. Ils peuvent s'y rencontrer avec quelqu'une des matières que nous avons décrites précédemment, mais ordinairement ils semblent les exclure et la cavité qui les contient ne montre pas à côté d'eux d'autres corps solides.

On trouve quelquefois hors des cellules, dans les méats ou les lacunes, une matière minérale que constitue la silice, soit seule, soit combinée à l'état d'acide; mais alors elle est en masses irrégulières. C'est là l'origine des corps qu'on a nommés *tabashir*.

§ 24. Nous avons vu à l'intérieur des cellules ou dans leurs intervalles les matières solides ou molles suspendues dans un liquide, et ce n'est qu'à l'état de solution que leurs éléments ont pu être charriés et transportés dans ces cavités diverses, ou qu'elles peuvent en être emportées plus tard. Ce liquide est la séve. Les matières qu'il tient en dissolution sont la dextrine, diverses espèces de gommes et de sucres : mais on ne peut les distinguer à cause de leur transparence qui est celle de l'eau. La chimie jusqu'à présent n'a pas indiqué de reactifs propres à faire reconnaître leur nature par les modifications qu'ils leur imprimeraient. La physique plus heureuse, grâce aux ingénieux et savants travaux de M. Biot, a trouvé dans la diversité de leurs propriétés optiques un moyen de les révéler au milieu du liquide limpide qui, suivant la matière en dissolution, fait dévier en sens différents et à divers degrés les plans de polarisation des rayons lumineux qui le traversent.

Les cavités peuvent contenir d'autres liquides qui, différents de l'eau par leur couleur ou leur densité, n'échappent pas à l'observation immédiate. Ceux-là ne sont pas disséminés comme la séve dansla généralité des tissus, mais concentrés ordinairement dans certains points du végétal. Telles sont des matières colorantes, celles-

ORGANES ÉLÉMENTAIRES.

qui colorent les tissus en bleu, rouge ou violet, et qui s'y trouvent, dans les cellules, à l'état de solution, à très peu d'exceptions près : telles sont les huiles, tantôt remplissant la cavité tout entière, comme les huiles essentielles, tantôt disséminées sous forme de gouttelettes dans un autre fluide, forme sous laquelle se présentent le plus ordinairement les huiles fixes. Les premières remplissent d'autres fois des lacunes, où elles tiennent quelquefois des résines en dissolution, et l'on observe aussi certaines gommes dans ces réservoirs intercellulaires.

§ 24 bis. Les gaz peuvent se rencontrer également dans des lacunes, soit vers la surface de la plante, soit enfoncées assez profondément : c'est un cas assez général dans les plantes aquatiques. On les trouve encore dans les méats et à une certaine époque dans un grand nombre de vaisseaux.

§ 24 ter. Nous avons vu, par tout ce qui précède, que des substances de nature et de consistance différentes remplissent les cavités des différents organes dont le végétal est composé, non pas indifféremment, mais localisées dans tel ou tel de ces organes. Il ne faut pas néanmoins s'attendre à trouver constamment le même organe rempli de la même matière; le mouvement de la vie y amène des changements presque continuels, et ce n'est que lorsqu'elle est suspendue ou éteinte qu'il s'y établit un état fixe permanent. La cellule qui verdit à l'action de la lumière était incolore auparavant, et, en vieillissant, elle prendra des teintes tout à fait différentes; avant de se remplir de granules solides, elle était gonflée de liquide seulement ; ce n'est que plus tard qu'elle contient des cristaux; les vaisseaux qui charrient la séve à une certaine saison, ne contiennent que de l'air pendant les autres. Un examen fait à une seule époque ne donnerait donc que de fausses lumières sur les fonctions de tous ces organes qu'il faut étudier dans toutes les phases de leur vie ; et c'est sans doute parce que les observations ont été ainsi morcelées que les opinions à ce sujet présentent autant de divergences.

ORGANES COMPOSÉS.

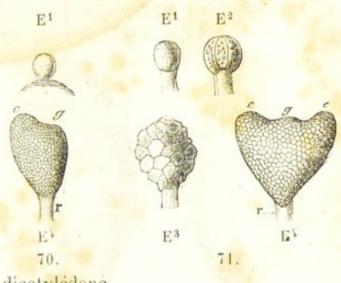
§ 25. Les organes élémentaires, dont nous avons exposé les principales modifications, forment, en se combinant entre eux, les organes composés. Ceux-ci, plus ou moins compliqués, plus ou moins nombreux, se combinent à leur tour pour former par leur ensemble le végétal. Observer ce végétal à son début, c'est-à-dire à son plus grand état de simplicité, et le suivre ensuite dans son développement, en prenant acte de tous les changements qu'il subit, en analysant toutes les parties dont il s'accroît, est le plus sûr moyen de connaître aussi complétement et nettement qu'il est possible tous ces organes dont l'ensemble constitue sa manière d'être, dont l'action constitue sa vie.

§ 26. Le premier état sous lequel s'offre un végétal est celui d'un utricule (fig. 70 et 74 E¹) rempli d'une matière granuleuse (fig. 74 E²). Il y a des plantes qui dépassent à peine ce degré de simplicité extrême dans tout le cours de leur existence et toutes le présentent au début, même celles qui doivent atteindre au degré le plus élevé de l'organisation végétale. La première phase de la vie d'un être organisé est celle pendant laquelle il fait encore partie de l'être semblable à lui dans lequel il s'est formé et qui lui donnera naissance. Il porte alors le nom d'embryon, et cette période de sa vie est dite embryonnaire.

L'embryon végétal est donc d'abord un simple utricule avec des

granules dans sa cavité (*fig.* 69). Quelques changements dans ses téguments et dans la matière contenue sont les seuls qui résultent du développement de certains embryons; quelquefois aussi d'autres cellules viennent se grouper autour de la première, mais sans qu'il soit pos-

sible de distinguer plusieurs parties, plusieurs régions différentes dans cette petite masse homogène.

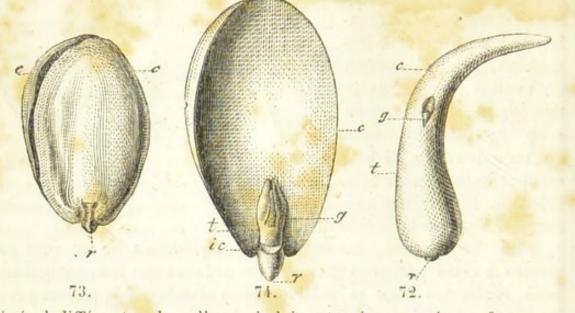

§ 27. Souvent, au contraire, la plante, à l'état d'embryon, a non seulement acquis une masse beaucoup plus grande par l'agglomération d'un assez grand nombre d'utricules, mais elle a pris des formes bien déterminées, et on peut de bonne heure y distinguer deux extrémités dissemblables entre elles. L'une suit la direction de l'axe de ce corps, plus ou moins régulièrement ovoïde; l'autre en dévie un peu en figurant un mamelon rejeté latéralement (fig. 70 E⁴ c) ou bien deux mamelons symétriques (fig. 74 E⁴ cc)

69. Embryon acotylédoné, celui de l'Hépatique commune (Marchantia polymorpha) Ces sortes d'embryons portent aussi le nom de spores.

ORGANES COMPOSÉS.

dans l'intervalle desquels passerait l'axe. Ces mamelons formeront

ce qu'on appelle les cotylédons, et nous avons dès cette première époque trois modifications de l'embryon : celui qui est homogène, sans distinction de parties, sans cotylédon (fig. 69); celui qui en a un (fig. 70 E⁴) et celui qui en a deux (fig. 74 E⁴); on appelle le premier acotylédoné, le deuxième monocotylédoné, le troisième dicotylédone.



§ 28. En général, les embryons cotylédonés ne se sont pas arrêtés à cette première ébauche des organes qui les constituent ; mais, renfermés dans la graine encore attachée à la plante-mère, ils ont continué à croître par toutes leurs parties, principalement par leur cotylédon simple (fig. 72 c) ou double (fig. 73 cc), qui forme une portion notable, quelquefois même la plus grande portion de la masse de l'embryon parfait. Le bout opposé au cotylédon a reçu le nom de radicule (mêmes figures, r) ou petite racine, parce que celle-ci doit plus tard résulter de son développement. Au-dessus de la radicule et dans la continuation de l'axe, on remarque, entre les cotylédons s'il y en a deux (fig. 74 g), caché dans un enfoncement à la base du cotyledon s'il y en a un seul (fig. 72 g), un corps beaucoup plus petit que ceux que nous avons déjà nommés. Au premier aspect, il a aussi l'apparence d'un simple mamelon; mais un examen plus attentif, au moyen d'instruments grossissants, fait reconnaître qu'il se compose luimême de plusieurs petits lobes (fig. 74 g) situés latéralement par rapport à l'axe, comme le cotylédon, dont ils rappellent la première ébauche. Ces petits lobes doivent, plus tard, se développer en feuilles ; et l'on a donné à leur ensemble le nom de gemmule ou petit bourgeon, parce qu'on appelle bourgeon la réunion des

70. Embryon monocotylédoné, celui du Potamogeton perfoliatum, à diverses époques de son développement : — E¹ à sa première apparition, lorsqu'il est encore à l'état d'utricule; — E⁴ lorsque ses diverses parties, la radicule r, la gemmule g, le cotylédon c, commencent à devenir distincts.

71. Embryon dicotylédoné, celui d'une espèce d'Onagre (*Enothera crassipes*) à diverses époques de sou développement : — E^1 à sa première apparition, lorsqu'il est encore à l'état d'utricule; — E^2 , E^3 lorsqu'il est formé de trois utricules agglomérés ou plus tard d'un plus grand nombre ; — E^4 lorsque ses diverses parties, la radicule r, la gemmule g, les cotylédons c c, commencent à devenir distincts.

feuilles non développées et agglomérées sur un axe très court qui doit se développer en rameau. Les cotylédons eux-mêmes ne sont qu'une ou deux premières feuilles de la jeune plante, mais en

général différentes de celles qui doivent suivre par leurs formes et leurs fonctions. L'embryon nous présente donc une suite d'organes latéraux ou feuilles sur un axe, dont l'extrémité, dépourvue de feuilles, formera la racine, et dont tout le reste formera la tige. Celle-ci, dans l'embryon, reçoit le nom diminutif de *tigelle*.

§ 29. Organes fondamentaux. — On peut nommer organes fondamentaux ces trois parties, déjà très distinctes dans l'embryon cotylédoné. Tous ceux que l'évolution ultérieure du végétal fournira à notre observation, malgré leurs différences si frappantes en apparence, malgré la variété des noms par lesquels on a dû en conséquence les désigner, sont, dans un sens général, considérés maintenant comme des modifications de ces premiers organes.

§ 30. C'est par leurs formes et leur position relative qu'on les reconnaît entre eux; car leur composition élémentaire est identique : c'est un amas d'utricules plus ou moins lâchement unis. Lorsque l'embryon est complétement formé, les cellules de ses cotylédons sont souvent plus ou moins riches en fécule, surtout s'ils ont une grande épaisseur ; cas où ordinairement ils remplissent toute la graine, et se trouvent exclusivement chargés de la nourri-

72. Embryon monocotylédoné, celui du *Potamogeton perfoliatum*, à peu près mûr. r Radicule. -t Tigelle. -c Cotylédon. -g Gemmule.

73. Embryon dicotylédoné mûr, celui de l'Amandier commun. — r Radicule. — c c Cotylédons.

74. Le même où l'on a découvert les parties cachées entre les cotylédons en enlevant l'un de ceux-ci. — r Radicule. — t Tigelle. — c L'un des cotylédons qu'on a laissé. c Cicatrice résultant de l'insertion de l'autre cotylédon qu'on a enlevé. — g Gemmule composée de plusieurs petites feuilles.

ORGANES FONDAMENTAUX.

ture de la jeune plante dans les premiers temps qui suivent sa vie embryonnaire et où elle commence à vivre par elle-même détachée de sa plante mère. C'est de l'accumulation de la fécule dans les embryons que résulte l'emploi d'un grand nombre de graines pour la nourriture de l'homme et des animaux.

Lorsque les cotylédons ont déjà un grand développement dans l'embryon, et surtout lorsqu'ils présentent déjà la forme de feuilles, on peut observer dans certaines directions des faisceaux de cellules allongées, première ébauche des vaisseaux.

§ 31. Après l'émission de la graine, ou, pour nous faire comprendre au moyen d'une expression moins scientifique et vulgaire, après que l'œuf végétal est pondu, s'il trouve autour de lui certaines conditions favorables à son développement ultérieur et indépendant, parmi lesquelles doivent entrer en première ligne l'humidité et la chaleur portées à un certain degré, conditions que lui fournit ordinairement la terre lorsqu'il y est enfoncé à une petite profondeur, il y est couvé pour ainsi dire, et la plante commence cette seconde période de sa vie qu'on appelle la germination.

§ 32. Dans les premiers temps elle tire sa nourriture d'ellemême, des principes accumulés soit dans ses téguments, soit dans ses cotvlédons ; principes qui éprouvent divers changements chimiques par les circonstances nouvelles où le corps se trouve placé, et deviennent ainsi propres à prendre part aux actes de sa vie. Il en résulte l'accroissement de toutes les autres parties, de la radicule et de la gemmule. C'est la première dont le développement marche d'abord avec le plus d'activité; et l'on peut s'assurer alors que dans la portion de l'axe comprise sous ce nom de radicule et inférieure au cotylédon, ce n'est que l'extrémité qui appartient proprement à la racine et suit une direction descendante, tandis que tout le reste suit une direction ascendante et appartient à la tige. La racine se reconnaît facilement à tous les petits filaments dont se couvre sa surface (fig. 106 r, r' r'), et au moven desquels elle commence à pomper les sucs de la terre. Bientôt la gemmule s'allonge aussi et se montre en repoussant le cotylédon ou les cotylédons qui la cachaient en l'embrassant. Elle étale les feuilles dont elle est composée (fig. 75 et 77 g) et dont le développement successif a toujours lieu de bas en haut sur l'axe, c'està-dire d'autant plus tôt qu'elles sont plus inférieures. A mesure que ces feuilles ont grandi et se sont montrées en nombre plus grand, les cotylédons se sont épuisés, amaigris, affaissés, et ordinairement ils finissent par tomber. Les feuilles nouvelles diffèrent en général d'eux par leurs formes (fig. 77) et tendent de plus en plus à prendre celles qu'elles présentent sur tout le reste de la plante bien deve-

loppée. Cependant les premières, surtout celles qui sont immédiatement au-dessus des cotylédons, diffèrent souvent encore des autres. § 33. Lorsque le petit végétal s'est débarrassé de ses téguments devenus inutiles, lorsqu'il ne tire plus de nourriture du cotylédon

atrophié ou détaché, et la puise tout entière au dehors de lui-même, on peut dire que la germination est achevée. Elle n'a pas fait apparaître de parties nouvelles, mais elle a rendu plus évidentes, en les développant, celles qui existaient

75. Germination d'un embryon monocotylédoné, celui du Zanichellia palustris, qui est presque semblable à celui du Potamogeton. - m Collet, le point intermédiaire entre la tige t et la racine r. On voit que celle-ci résulte du développement du mamelon terminal qu'on observait fig. 72 r, tout à fait au bas de l'embryon, au-dessous d'une dilatation qui ici se manifeste par une espèce d'épatement en forme de collerette en m, --- c Cotylédon. — g Gemmule dont la première feuille saillante hors de la gaîne du cotylédon cache les autres.

76. Germination d'un embryon dicotylédoné, celui d'une espèce d'Érable (Acer negundo), — mCollet. — r Racine. t Tige. — c c Cotylédons. — g Gemmule.

77. Partie supérieure de la même, plus développée. *c c* Cotylédons. *g g*Gemmule dont les premières feuilles sont déjà étalées.

ORGANES FONDAMENTAUX.

dans l'embryon, les organes fondamentaux, la tige, la racine et les feuilles. Ces organes continuent à croître, et, à mesure que l'axe s'allonge, il produit latéralement de nouvelles feuilles.

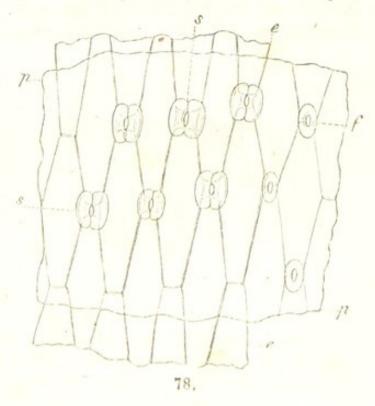
§ 34. La végétation de quelques plantes n'est que cette évolution plus ou moins longtemps continuée, et elles consistent en un seul axe chargé de feuilles diversement modifiées. Mais fort souvent, et surtout généralement dans les plantes dicotylédonées, sur certains points de la tige se montrent de petites excroissances qu'on nomme bourgeons, et qui, à leur tour, dans leur développement, reproduisent tout ce que nous avons observé dans celui de la gemmule, la production de feuilles autour d'un axe qui s'allonge. Le bourgeon et, plus tard, le rameau, qui n'en est que le développement, ne différent donc de la gemmule et de la tige chargée de feuilles qu'en ce qu'ils s'implantent sur la tige elle-même au lieu de s'implanter sur le sol. Ce premier rameau pourra lui-même se couvrir à son tour de nouveaux bourgeons, jouant, par rapport à lui, absolument le même rôle qu'il a joué par rapport à la tige. Ce mode d'accroissement, qui peut se répéter un nombre de fois plus ou moins grand, et duquel résulte la ramification du végétal, ne fait donc que reproduire autant de fois ce que nous a fait voir l'évolution du premier axe qui existait déjà dans l'embryon ; et faire l'histoire de celui-ci, c'est faire celle de tous les rameaux en même temps. Dans tous, nous ne trouverons que des feuilles sur des axes de même nature.

DEUXIÈME LEÇON.

ORGANES DE NUTRITION. TIGES : LEUR STRUCTURE ; LEUR MODE D'ACCROISSEMENT. RACINES : LEUR STRUCTURE ET LEUR DÉVELOPPEMENT. FEUILLES ; ORIGINE, STRUCTURE , FORME , DISPOSITION , DÉVELOPPEMENT ET DURÉE ; BOURGEONS ET BRANCHES.

§ 35. Nous avons vu que la plante se compose d'abord d'un axe, allongé inférieurement en racine, supérieurement en tige, celle-ci couverte de feuilles; que de ce premier axe peuvent en naître d'autres qui ne font que le répéter; que par conséquent, en connaissant le premier, on se trouve conduit à la connaissance des autres et que l'étude du végétal peut être ainsi simplifiée par celle d'un axe unique. Examinons donc les changements que subira progressivement dans sa structure et dans celle de ses feuilles ce premier axe que nous n'avons encore qu'entrevu au dehors au début de son développement. Cet examen se divisera naturellement en trois chapitres, la tige, la racine, les feuilles; mais ces différentes parties en ont une qui leur est commune : c'est une enveloppe mince qui s'étend sur toute la surface du végétal, qu'on appelle épiderme et que nous devons faire connaître préalablement.

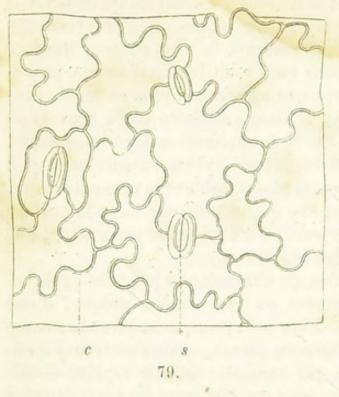
ÉPIDERME.


§ 36. On a longtemps cru que l'épiderme faisait partie du tissu cellulaire qu'il recouvre, qu'il n'en était que la portion la plus extérieure qui, dans l'épaisseur d'une ou plusieurs couches, se trouvait endurcie et légèrement modifiée par le contact de l'air. C'est ce qui est vrai pour un certain nombre de végétaux d'une organisation très simple; mais dans les autres, en général, les cellules qui forment l'épiderme sont tellement différentes de celles du tissu sous-jacent par leurs formes, leurs dimensions, leur mode de réunion, leur contenu, qu'aujourd'hui on s'accorde à le considérer comme un système bien distinct.

ÉPIDERME.

§ 37. Examinons-le d'abord sur les parties qui se trouvent en rapport avec l'air, sur les tiges et les feuilles. C'est lui qu'on détache ordinairement de la surface de ces parties jeunes, avec plus ou moins de facilité, sous la forme d'une membrane le plus souvent incolore et transparente; tantôt c'est sans qu'il y ait besoin d'aucune préparation; tantôt ce n'est qu'après une macération plus ou moins prolongée, par laquelle se détruit le tissu cellulaire placé sous l'épiderme et moins résistant que lui. Si la macération dure longtemps, l'épiderme finit par être attaqué lui-même, et l'on s'assure ainsi qu'il est formé de deux parties : l'une, la plus durable et la plus extérieure, est une pellicule mince et continue qui s'étend sur toute la surface (fig. 78 pp); l'autre, plus intérieure, est l'épiderme proprement dit, composé de cellules juxtaposées (fig. 78 ee).

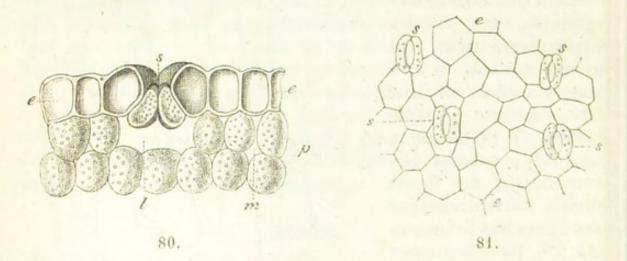
§ 38. En général, ces cellules, de dimensions à peu près égales et de forme tabulaire, sont disposées en une couche unique, d'une épaisseur uniforme (*fig.* 80 *ee*). Elles sont presque toujours beaucoup plus grandes que celles du tissu sous-jacent, quoiqu'on trouve quelques exceptions à cette règle, par exemple, dans le Figuier élastique, dans l'Ornithogalum sylvaticum, où elles sont au contraire plus


petites. Si l'on place la lame transparente d'épiderme à plat sous le microscope, ses cellules s'aperçoivent avec une grande netteté, et l'on voit le contour de leur face supérieure, régulier (fig. 78) ou irrégulier (fig. 81), souvent circonscrit par des lignes droites, souvent aussi pardes lignes très flexueuses (fig. 79). Dans le premier cas, le quadrilatère et Thexagone sont les figures qu'on observe le plus fréquemment.

On peut, dans les cellules épidermiques, considérer des parois latérales, une paroi intérieure et une extérieure. Les parois latérales

^{78.} Lambeau d'épiderme pris sur une feuille de l'Iris des jardins (*Îris germanica*). On voit une pellicule épidermique pp percée de ses fentes en boutonnière f, appliquée sur une portion d'épiderme proprement dit ee, à cellules longuement héxagones. ss Stomates.

adhèrent fortement aux parois analogues des cellules voisines, et de



cette union intime résulte l'absence des méats intercellulaires, ainsi que la solidité de toute la membrane.

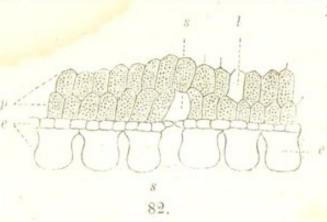
La paroi intérieure, dans les cas ordinaires où l'épiderme est formé d'une couche unique, repose sur les cellules du tissu sous-jacent et lui adhère beaucoup plus faiblement. De là, et de l'adhérence des cellules épidermiques entre elles, la facilité de les détacher de ce tissu en lames plus ou moins grandes.

La paroi extérieure, celle qui est en rapport avec l'air, est souvent beaucoup plus

épaisse que les autres, au point que, dans quelques cas, cette épaisseur va jusqu'à former la moitie de la cellule ou au delà.

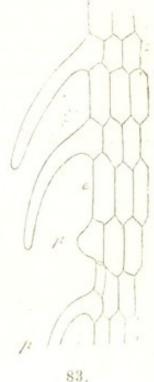
Cette paroi est généralement plane, et la surface unie de l'épiderme en est une conséquence. Mais d'autres fois, chaque cellule se bombe à son sommet, et alors la surface de l'épiderme,

79. Lambeau d'épiderme pris sur la face inférieure d'une feuille de Garance (Rubia tinctorum). — c Cellules épidermiques. — s Stomates.


80. Tranche verticale de l'épiderme de la même feuille, montrant l'union intime des cellules épidermiques ee, et l'union lâche avec le parenchyme vert sous-jacent p, qui est interrompu par des lacunes l, et des méats m. — s Stomates.

81. Lambeau d'épiderme pris sur la face supérieure d'une feuille de Renoncule aquatique venant hors de l'eau. — ee Cellules épidermiques. — ssss Stomates.

EPIDERME.

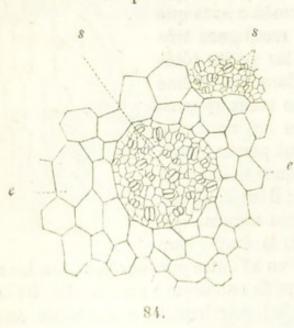

examinée à la loupe, se montre comme toute mamelonnée ou hérissée (fig. 82 e). Un degré

see (μg . 82 e). On degre de plus dans la saillie extérieure des cellules, commencent un poil ou autres organes analogues (fig. 83 p). Mais nous rejetterons plus loin leur examen détaillé, qui viendrait interrompre l'exposition plus générale qui nous occupe.

§ 39. Stomates. — La surface extérieure de l'épiderme est, dans toutes les parties exposées à l'air, marquée de distance en dis-

tance par de petites taches que l'examen, au moyen de grossissements suffisants, fait reconnaître pour autant de solutions de continuité encadrées d'un bourrelet particulier. Qu'on en examine ainsi un petit lambeau pris sur la feuille de l'Iris commune (fig. 78), on le verra composé de cellules figurant sur la surface épidermique des hexagones allongés dans le même sens que la feuille, et disposés en séries rectilignes très étroites dans l'autre sens. Entre les petits côtés des hexagones, qui se suivent dans une même série, viennent, à des intervalles assez rapprochés, s'interposer de petits corps (ss) de forme ovale, qui, dans leur centre, sont percés d'une fente oblongue qu'entoure leur contour saillant. Ce contour n'est pas d'une seule pièce; il est composé lui-même de deux corps légèrement arqués, qui tournent leur concavité du côté de la fente, leur

convexité en dehors, et s'unissent l'un à l'autre par leur bout. On les a comparés à des lèvres, et la fente qu'ils entourent à une bouche. De là le nom de stomates ($\sigma\tau\delta\mu\alpha$, bouche), par lequel on s'accorde aujourd'hui à désigner ces organes, dont la forme, dans la plupart des plantes, se rapproche plus ou moins de celle que nous venons de décrire dans l'Iris. Nous ne nous arrêterons pas ici à décrire toutes


82. Tranche horizontale de l'épiderme de la feuille du *Rochea falcata*. — Son épiderme e est composé de deux couches de cellules : celles de l'extérieure, très grosses et gonflées ; celles de l'intérieure, percées en s d'un stomate, très petites et moindres même que le parenchyme vert sous-jacent p. — ll Lacunes dont l'une correspond à un stomate.

83. Portion d'épiderme enlevée d'une jeune racine de Garance. Plusieurs cellules p, en s'allongeant, ont formé des poils. D'autres e sont restées plates.

ces petites modifications de forme dont on rencontre toutes les intermédiaires entre celle d'un rond et celle d'un ovale très étroit et allongé. D'ailleurs on peut voir varier celle d'un même stomate en faisant varier les conditions dans lesquelles il se trouve, suivant son état d'humidité ou de sécheresse. On s'en assure en comparant, sous le microscope, deux moitiés d'un même lambeau, dont l'une est mouillée et l'autre à sec. Dans la première, les lèvres des stomates sont gonflées et laissent entre elles leur intervalle largement béant en augmentant ainsi leur arqûre; elles sont rétrécies, rapprochées et contiguës dans la seconde. On conçoit donc que, pendant la vie, l'afflux des liquides tend à produire le premier de ces deux effets, à tenir les stomates ouverts et la communication ainsi libre entre l'extérieur et les parties enveloppées par l'épiderme.

§ 40. Les stomates ne s'observent pas indifféremment sur toutes les parties du végétal exposées à l'air : c'est sur les feuilles qu'ils sont le plus abondants, et ordinairement sur leur face inférieure ; leur nombre varie beaucoup, suivant les plantes, et naturellement on en compte d'autant plus qu'ils sont plus petits.

§ 44. Leur disposition est variable comme leur nombre. Tantôt ils semblent dispersés sans aucun ordre (fig. 84 ssss), tantôt ils se

placent en séries rectilignes, et c'est en général lorsque les cellules de l'épiderme affectent ellesmêmes cette disposition (fig. 78). Quelquefois les séries sont séparées entre elles par des espaces égaux ; d'autres fois elles se rapprochent deux à deux , trois à trois ; puis vient une zone assez large, entièrement dépourvue de stomates ; puis de nouveau une zone où se rencontrent les séries. Dans ces divers cas, et en général , les stomates restent toujours un peu écartés entre eux ;

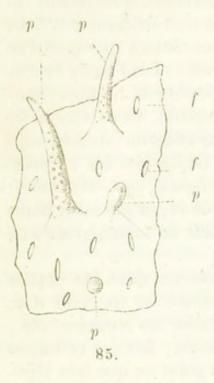
mais d'autres fois, quoique rarement, ils viennent se rapprocher et comme se serrer plusieurs les uns à côté des autres, et, si l'on en excepte ces petits groupes, la surface qui les porte n'en montre pas d'ailleurs (fig. 84). La famille des Protéacées, celles des Bégo-

^{84.} Lambeau d'épiderme de la feuille du Saxifraga sermentosa.— ss Stomates réunis par groupes sur la surface de l'épiderme, dont les cellules deviennent beaucoup plus petites autour d'eux que dans les espaces ce qui en sont dépourvus.

ÉPIDERME.

niacées et des Saxifrages offrent plusieurs exemples de cette disposition particulière.

§ 42. Quelle est la véritable nature des stomates?


Ces corps sont creux à l'intérieur et contiennent des globules ou des granules (fig. 80 et 81 s) de natures diverses, quelquefois incolores, souvent verdis par la chlorophylle. Ce sont évidemment deux utricules dont les produits sont à peu près les mêmes que ceux des utricules placés immédiatement sous l'épiderme ; et si l'on ne les enlevait toujours avec celui-ci, on pourrait croire qu'ils lui appartiennent moins qu'à la masse utriculaire sous-jacente. Nous venons de dire, en effet, qu'ils lui ressemblent par leur contenu; ils s'en rapprochent aussi quelquefois par leur forme, tandis que sur ce point ils différent notablement des cellules épidermiques, qui, d'ailleurs, sont ordinairement remplies par un fluide incolore, et par suite blanches ou transparentes, suivant l'épaisseur plus ou moins grande de leur paroi.

§ 43. Nous avons jusqu'ici examiné l'épiderme dans les parties des végétaux exposés à l'air, et en excluant même les végétaux d'un ordre inférieur. En effet, dans les Champignons, les Mousses, etc., on ne peut pas dire qu'il en existe un véritable; le tissu cellulaire qui forme la masse de la plante ne se modifie point ou que très légèrement à sa surface. Des végétaux acotylédonés, d'une organisation plus compliquée, comme les Lycopodes et les Fougères, sont com parables aux cotylédonés pour leur épiderme, qui a une structure analogue et des stomates. Les végétaux aquatiques sont entièrement privés de stomates et même d'épiderme ; et ce ne sont pas seulement ceux qui forment des familles placées, comme les Algues, par la simplicité de leur organisation, au bas de l'échelle végétale; ce sont aussi des plantes appartenant, sans aucun doute, aux familles les plus élevées dans cette échelle. C'est le milieu où vit la plante qui détermine la présence ou l'absence de l'épiderme. Cela est tellement vrai, que, dans les feuilles qui nagent à plat sur l'eau, la face supérieure, qui se trouve ainsi en rapport avec l'air, est garnie d'épiderme et de stomates; la face inférieure n'en a pas.

§ 44. Les racines, soustraites, quoique moins absolument, au contact de l'air, sont également dépourvues de stomates (*fig.* 83); et même en général, quoiqu'on y reconnaisse une couche d'épiderme, elle diffère beaucoup moins du tissu sous-jacent que celui de la tige, et quelquefois la différence s'efface complétement.

§ 45. Pellicule épidermique, ou enticule.— Nous avons dit qu'une macération prolongée séparait l'épiderme en deux parties, dont l'une, l'épiderme proprement dit, que nous venons de faire connaître, est plus intérieure et revêtue dans toute son étendue par

l'autre pellicule mince qui en suit la surface dans tous ses contours, dans toutes ses saillies. C'est ce qu'on peut voir sur la feuille du Chou; et la pellicule épidermique (*fig.* 85), qu'on détache assez facilement, se montre alors exactement moulée sur l'épiderme qu'elle

couvrait, même sur ses poils auxquels elle formait des gaînes (pppp), et percée de petites boutonnières dans tous les endroits correspondant aux stomates (ff). Cette pellicule est une membrane continue, et ne peut se séparer que par destruction en parties plus petites. Si sa face inférieure montre souvent la trace d'un réseau (fig. 78 p), ce n'est que l'impression qu'a laissée sur elle la surface des cellules épidermiques (p) avec lesquelles elle était en rapport.

Cette pellicule est plus générale que l'épiderme même. Sa présence a été constatée sur les végétaux inférieurs qui n'en ont pas un véritable, et sur les végétaux aquatiques ; aussi est-ce à elle que plusieurs auteurs proposeraient de réserver ce nom d'épiderme.

D'autres fois, dans le lambeau détaché à la surface de l'épiderme, on a constaté l'existence de plusieurs couches superposées et que l'iode colore également en jaune. Plusieurs auteurs en ont conclu que la cuticule n'est pas une membrane distincte, qu'elle n'est autre chose qu'une portion de la paroi extérieure des cellules épidermiques. C'est qu'en effet, dans ce cas, les couches les plus superficielles de cette paroi dont nous avons (§ 38) signalé l'épaississement souvent considérable, imprégnées de matière azotée et plus résistantes que les plus profondes, s'en sont détachées en restant unies à la véritable cuticule. Mais on parvient à séparer celle-ci par une macération plus prolongée ou l'emploi de réactifs plus énergiques; et celui de la potasse caustique, qui n'enlève pas à la cuticule la propriété de se colorer en jaune par l'iode, rend aux couches sous-jacentes, qu'on confondait avec elle, celle de se colorer en bleu, démontrant ainsi leur nature cellulaire (§§ 19, 20).

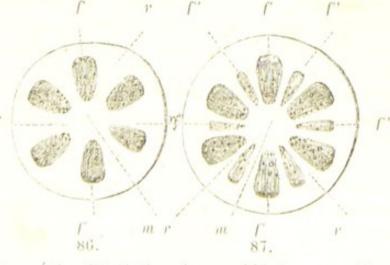
§ 46. Revenons aux organes fondamentaux, après avoir examinéleur enveloppe commune.

Nous avons vu l'axe de la jeune plante se développer dans deux directions opposées; et nous avons appelé *tige* sa partie supérieure

^{85.} Lambeau de la pellicule épidermique détaché par macération d'une feuille de Chou. On y voit les gaînes correspondant à des poils à divers degrés de développement (*pppp*) et les fentes (*ff*) correspondant aux stomates.

portant les feuilles, ordinairement ascendante et en rapport avec l'air; racine, sa partie inférieure, qui n'a pas de feuilles, et s'enfonce le plus souvent dans la terre. Le point de départ commun de ces deux parties, celui où elles se touchent et se continuent ensemble, a été nommé collet (collum) ou nœud vital, parce qu'on le considérait comme le centre de la vie du végétal, et qu'on lui supposait ainsi une importance qu'il n'a pas en effet; ou encore coarcture, à cause du rétrécissement de l'axe qui indique souvent sa place dans la très jeune plante. Plus tard en général ces indications s'affaiblissent, s'effacent, et il devient assez difficile de constater la place réelle du collet au bout de quelques années de végétation.

Nous examinerons d'abord, et successivement, ces deux parties de l'axe, la tige et la racine; puis les organes latéraux, les feuilles qui naissent de la tige.


TIGE.

§ 47. Les tiges développées présentent, suivant que l'embryon est acotylédoné, monocotylédoné ou dicotylédoné, des différences assez grandes pour que leur examen en commun puisse entraîner quelque confusion, et qu'il paraisse préférable de traiter séparément ces trois classes. Nous commencerons par celles des végétaux dicotylédonés, comme nous offrant le meilleur point de départ, le meilleur objet de comparaison avec les autres. En effet, ce sont celles de tous les arbres de nos climats, de sorte qu'on a pu les observer à toutes les époques de leur développement sur des espèces variées, dans un grand nombre de circonstances différentes, et que l'élève peut sans peine trouver autour de lui ces objets de son étude.

TIGE DES PLANTES DICOTYLÉDONÉES.

§ 48. Dans l'embryon la petite tige était, comme toutes les au-

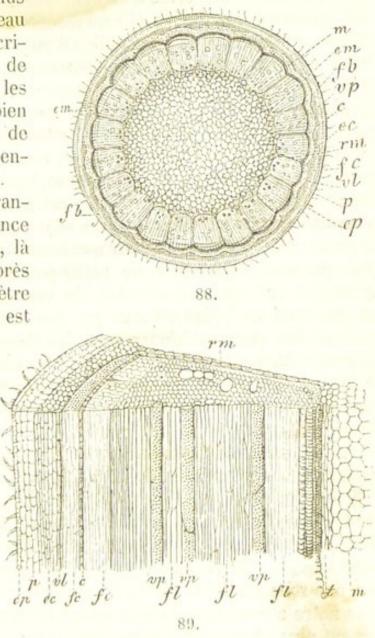
tres parties, entièrement formée par dutissu cellulaire. Pendant la germination, un peu plus tôt, un peu plus tard, quelques cellules commencent à s'allonger en fibres, à s'organiser en vaisseaux, et on les voit, en se multipliant, se grou-

per en plusieurs faisceaux (fig. 86 f'f') qui, considérés ensemble,

sont disposés régulièrement en un cercle. Celui-ci entoure un cercle central entièrement cellulaire, qui est la *moelle* (m), est entouré luimême d'une zone extérieure cellulaire aussi, et qui appartiendra à l'écorce ; et les faisceaux sont séparés l'un de l'autre par des bandes (r)de tissu cellulaire qui établissent la communication entre celui de la moelle et celui de l'écorce, bandes qui sont les premiers *rayons médullaires*.

§ 49. Dans le principe, ces rayons, en nombre nécessairement égal à celui des faisceaux, étaient fort larges. Un peu plus tard ils sont plus étroits et plus nombreux, parce qu'il s'est développé dans leur épaisseur (fig. 87) de nouveaux faisceaux (f' f') qui se sont interposés aux premiers (f' f). Après quelque temps, les faisceaux sont assez multipliés et rapprochés pour former un cercle continu que les rayons médullaires traversent sous la forme de lignes très fines. La tige se présente alors comme composée de dedans en dehors par : 1° le parenchyme de la moelle; 2° le cercle fibro-vasculaire; 3° le parenchyme cortical; 4° l'épiderme.

§ 50. La tige des plantes dites herbacées, celles qui ne vivent qu'une année, s'arrête en général à ce terme, ou même à l'un des états précédents. La proportion de la moelle et des rayons médullaires y est ordinairement très grande par rapport à la partie fibrovasculaire.


§ 54. La tige des plantes ligneuses, celles qui vivent plusieurs années, subit des changements ultérieurs. Mais jusque-là elle était comparable à celle des plantes annuelles : elle était à l'état herbacé, et offrait la même proportion dans ses parties, si ce n'est que le cercle fibro-vasculaire y est de bonne heure plus complet et plus solide. Un rameau d'une année pris sur l'un de nos arbres est donc très bon pour suivre tous les changements successifs exposés précédemment. Ce rameau croît par le haut, de manière que sa base est la portion la plus anciennement formée tandis que le sommet l'est encore à peine. Ainsi, ses différentes hauteurs présentent les mêmes différences qu'offriraient plusieurs tiges de la même plante à diverses époques de développement, depuis celle qui est encore à l'état embryonnaire, que représente le sommet du rameau, jusqu'à celle qui a achevé sa croissance de l'année, et que représente la base. En comparant de très minces tranches horizontales coupées à diverses hauteurs de ce rameau, on constatera donc très facilement et très promptement tous les changements qui s'opèrent dans un an de la vie d'une tige; et l'état de la base servira à son tour de point de départ par la comparaison avec les modifications.que doit amener l'année suivante, ou, en d'autres termes, qu'on doit observer sur une branche de deuxième année.

TIGE.

§ 52. Maintenant recherchons plus en détail les éléments dont se compose cette tige de l'année; et, comme un exemple rendra cet

examen plus clair et plus net, prenons un rameau d'Érable commun, et décrivons toutes ces parties de dedans en dehors en les grossissant assez pour bien déterminer la nature de tous les organes élémentaires qui les composent.

Coupons une petite tranche horizontale très mince vers le haut du rameau, là où il offre à peu près 4 millimètre 4/2 de diamètre (fig. 88). Son contour est circulaire ou se rapproche d'un hexagone. La moelle (fig. 88 m) située à son centre atteint la moitié du diamètre total, ou même davantage. Au milieu elle est formée de cellules grandes, lâchement unies, transparentes, dodécaédriques ou sphéroïdales ; vers la circonférence, les cellules vont en dimi-

nuant progressivement (fig. 89 m) et en se colorant en vert, de sorte que le contour de la moelle présente une zone d'un vert assez foncé et d'un tissu fin et serré, zone de laquelle partent les rayons médullaires (rm) de même couleur, qui divisent en un très grand nombre de faisceaux la zone fibro-vasculaire que nous trouvons en dehors de la

88. Tranche horizontale d'un jeune rameau de l'Érable commun (Acer campestre), vue à un grossissement tel que son diamètre soit vingt-six fois plus grand que dans la nature. — m Moelle. — em Étui médullaire. — fb Faisceaux du bois. — vp Vaisseaux ponctués. — rm Rayons médullaires. — c Cambium. — fc Fibres corticales. — vt Vaisseaux laticifères. — ec Enveloppe cellulaire. — p Enveloppe subéreuse. — ep Épiderme.

89. Tranche verticale du même rameau, menée parallèlement suivant le diamètre au milieu d'un des faisceaux ligneux, et encore plus grosse que la précédente. *t* Trachées.
 — Toutes les autres lettres ont la même signification que dans la figure qui précède.

moelle, et qui lui est concentrique. Ces faisceaux (fb) se distinguent d'elle par un tissu beaucoup plus compacte.

Ils ont chacun la forme d'un coin émoussé. En regardant la tranche horizontale, on devine déjà qu'ils doivent se composer d'éléments divers, puisqu'on voit, au milieu d'un tissu compacte, criblé de petits trous, d'autres ouvertures beaucoup plus larges et béantes. Si l'on cherche à déterminer les parties en les regardant sous un fort grossissement, soit par transparence sur une tranche verticale extrêmement mince, soit après les avoir détachées l'une de l'autre avec le bout d'une aiguille très aiguë, on reconnaît que les grandes ouvertures appartiennent à des vaisseaux (fig. 89 vp): que le reste du tissu, qui paraissait presque plein, est formé par des fibres (fl) de movenne longueur dont les parois sont assez épaisses, et par suite le canal intérieur assez fin pour que leurs ouvertures ne se montrent plus que sous l'apparence de petits points. Elles sont la plupart arrangées par séries divergeant du centre médullaire comme les rayons. Les vaisseaux ne sont pas tous du même ordre; les plus gros et les plus extérieurs sont des tubes ponctués (vp), tandis qu'immédiatement en contact avec la moelle sont des trachées déroulables (t). Elles occupent toujours cette place dans la tige et jamais aucune autre. Ce sont elles qui parmi les vaisseaux se sont formées les premières. Cet ensemble de trachées et de fibres, les premières parties formées du bois et celles qui embrassent immédiatement la moelle, ont reçu le nom d'étui médullaire (fig. 88 em).

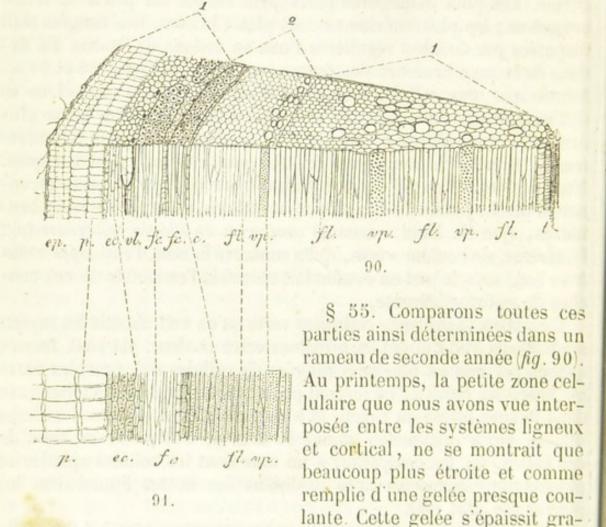
§ 53. En dehors de chaque faisceau fibro-vasculaire, on aperçoit sur la coupe horizontale un autre amas de fibres (fig. 88 et 89 fc) d'un blanc plus mat, réunies en forme d'un croissant tournant sa convexité en dehors. Ce croissant est séparé du reste du faisceau par une zone de tissu cellulaire verdâtre (c). Cette zone mérite de fixer notre attention, car c'est elle qui sépare l'écorce du bois et qui devient plus tard le siége de la formation de couches nouvelles desquelles résulte l'accroissement de la tige en épaisseur. Ces fibres, qu'elle sépare du bois, sont les fibres corticales, plus longues, plus tenaces que les ligneuses.

Au moment où l'on coupe la branche d'Érable, on en voit suinter un liquide blanchâtre et laiteux. C'est de l'écorce qu'il sort, immédiatement en dehors du faisceau des fibres corticales ; et, en effet, l'examen microscopique fait découvrir là un système de vaisseaux propres ou laticifères (fig. 88 et 89, vl).

Plus en dehors nous ne trouvons plus que des cellules dont l'ensemble forme le parenchyme cortical. Il est revêtu d'une pellicule rougeâtre : c'est l'épiderme (ep), composé d'une seule rangée de cellules, et couvert sur toute sa surface d'un petit duvet fin et blan-

TIGE.

châtre. Nous avons indiqué déjà la formation de ces poils, qui ne sont eux-mêmes que des cellules de l'épiderme modifiées dans leur forme.


Sous lui nous trouvons plusieurs rangées de cellules cubiques ou allongées comme celles des rayons dans le sens horizontal (fig. 89 p), un peu différentes par leur forme et leur couleur de celles de l'épiderme. Les plus extérieures participent encore un peu à sa teinte rougeâtre ; les plus intérieures sont plutôt brunes. Les rangées sont disposées par couches régulières l'une en dedans de l'autre. En dedans de la zone brunâtre s'en trouve une autre verte (fig. 88 et 94 ec) formée par des cellules remplies de chlorophylle. Celles-ci ne se distinguent pas seulement par leur couleur, mais par leur forme plus arrondie ou polyédrique. Elles sont aussi disposées moins régulièrement, et non en rangées emboitées par couches concentriques. Nous voyons donc que dans le parenchyme cortical on peut reconnaître deux systèmes : l'extérieur, à cellules rectangulaires et brunâtres, que M. Mohl a nommé couche ou enveloppe subéreuse (p); l'intérieur, de couleur verte, qui a conservé le nom d'enveloppe cellu*laire (ec)*, sous leguel on confondait autrefois l'ensemble de ces couches de nature différente.

C'est dans l'enveloppe cellulaire verte qu'on voit aboutir les rayons médullaires (rm) qui ont eux-mêmes cette couleur. Ils sont formés chacun par une ou plusieurs rangées de cellules qui, pressées entre les faisceaux ligneux, ne tardent pas à se comprimer en s'allongeant dans le sens même du rayon, et à former par leur réunion des lames minces. On a quelquefois donné le nom de *muriforme* au tissu de ces lames, en les comparant à un mur dont les cellules aplaties et placées par couches les unes au-dessus des autres figureraient les pierres (fig. 94, rm).

§ 54. Un rameau d'une année que nous avons examiné dans l'Érable commun, mais qui, pris dans la plupart de nos autres arbres dicotylédonés, nous aurait fait voir les mêmes parties, seulement dans des proportions et avec des formes plus ou moins différentes, présente donc d'abord deux systèmes bien distincts : l'un intérieur, le ligneux; l'autre extérieur, le cortical, séparés l'un de l'autre par une zone celluleuse.

Le système ligneux se compose lui-même de la moelle au centre, et d'une zone extérieure de faisceaux fibro-vasculaires que forment : 4° au dedans, les trachées développées les premières et immédiatement appliquées sur la moelle, autour de laquelle elles constituent, avec quelques fibres entremêlées, l'étui médullaire; 2° plus en dehors, des amas de fibres entremêlées de vaisseaux spiraux d'un autre ordre.

Le système cortical se compose sous l'épiderme de trois couches distinctes : les deux extérieures cellulaires, l'enveloppe subéreuse et l'enveloppe cellulaire proprement dite, sur la limite de laquelle se distribuent des vaisseaux laticifères; l'intérieure fibreuse, dans laquelle ces mêmes vaisseaux s'entremêlent aussi.

duellement, et les observateurs habiles s'accordent à y reconnaître l'organisation d'un tissu cellulaire naissant, quoiqu'en remontant toujours plus haut pour déterminer son mode de formation, ils soient entraînés dans quelques dissidences, qu'on comprend facilement quand il s'agit de déterminer des parties d'une excessive ténuité et encore presque fluides. Quoi qu'il en soit, c'est dans ce tissu que se montreront plus tard tous les développements d'organes élémentaires analogues à ceux que nous avons trouvés dans le rameau d'un

90. Tranche verticale d'un rameau de deuxième année, pris sur l'Érable commun, dans s lequel 4. 1 indiquent les portions formées la première année, 2 les portions formées la seconde. — Toutes les lettres ont la même signification que dans les figures 88 et 89.

94. Quelques parties de la figure précédente plus grossies, de manière à faire mieux voir leur structure : par exemple, les ponctuations des fibres ligneuses, — Les lettres ont toujours la même signification.

an; de là vient le nom de *cambium*, qu'on lui a donné en lui assignant la propriété de se transformer en tous ces organes divers.

On voit en effet, au bout de quelque temps, que dans cet intervalle se sont formées deux zones nouvelles (fig. 90, 2), l'une corticale (fc), l'autre ligneuse (fl), ordinairement semblables aux zones de première année, sur lesquelles elles s'appliquent et se moulent pour ainsi dire : la corticale, composée de fibres, comme la couche la plus interne de l'écorce, avec laquelle elle est en rapport ; la ligneuse, de fibres et de vaisseaux spiraux, comme la partie extérieure du faisceau fibro-vasculaire auquel elle se juxtapose; car elle ne participe pas à la nature de sa partie intérieure ou de l'étui médullaire ; on n'y trouve jamais de trachées. La portion de la zone de cambium, qui correspondait aux rayons cellulaires, s'organise aussi comme le tissu antérieur avec lequel elle est en rapport, et reste cellulaire; de sorte que le rayon se continue sans interruption et sans modification à travers les couches nouvelles.

Ce qui s'est passé cette seconde année se renouvelle la troisième et toutes les années suivantes. Chacune, entre le bois et l'écorce précédemment formés, produit elle-même à son tour sa couche de bois et sa couche d'écorce ; et, ainsi au bout de quelques années, on a un certain nombre de couches concentriques et d'écorce et de bois. Les couches ligneuses se voient nettement, et forment par leur ensemble presque toute l'épaisseur de la branche ; tandjs que les corticales, extrêmement minces, ne composent qu'une zone assez mince elle-même et où elles ne se distinguent pas bien l'une de l'autre.

§ 56: Ces changements que nous voyons s'opérer dans une branche d'*Erable*, nous les aurions vus également, avec quelques modifications, dans la plupart des autres arbres de nos climats; et cet examen d'un exemple particulier peut jusqu'à un certain point tenir lieu de celui des tiges dicotylédonées en général. Complétons néanmoins les notions auxquelles nous avons dû nous borner d'abord; et reprenant successivement les parties que nous avons appris à distinguer dans la tige d'un seul de nos arbres, recherchons maintenant comment elles peuvent varier dans les autres.

Nous considérerons successivement le système ligneux et le système cortical : dans le premier, la moelle, le bois et les rayons médullaires ; dans le second, les couches fibreuses et les deux couches cellulaires.

SYSTÈME LIGNEUX.

§ 57. Moelle. - Nous avons vu que le parenchyme, dont la tige était exclusivement formée dans le principe, se trouve plus tard séparé par le développement du cercle ligneux en deux régions, dont l'une, centrale, prend le nom de moelle; et l'exemple que nous avons choisi nous l'a montrée composée de cellules qui, du centre à la circonférence, vont en diminuant de volume en même temps qu'elles prennent une couleur verte de plus en plus foncée. Celles-ci sont gorgées de sucs abondants qui manquent au contraire dans celles du milieu; et à ces différents caractères il est aisé de reconnaître qu'elles ont une vie beaucoup plus énergique, qu'elles sont plus jeunes. Peu à peu cette énergie s'affaiblit, et, au delà de la première année, la moelle a pris ordinairement dans presque sa totalité une couleur uniforme, souvent blanche, d'autres fois d'une autre teinte. Ses cellules, dont le volume va diminuant du dedans au dehors, ne contiennent plus que de l'air, et la vie y paraît définitivement suspendue : souvent même elles se rompent, et des lacunes plus ou moins considérables se montrent au centre ; ce qui s'observe même quelquefois avant ce terme, notamment dans les plantes annuelles à moelle très large et à végétation très rapide. Cependant dans cette première année, et surtout au début; elles ont dû jouir d'une vitalité très active, et cette action a pu se prolonger assez longtemps. C'est ce que prouvent l'épaississement fréquent de leurs parois et leurs ponctuations : ce qui n'a pu avoir lieu que par la formation de nouvelles couches dans l'intérieur de chacune, et suppose une durée d'action assez longue.

Son diamètre peut varier également, et cela dans deux rameaux qui en ont un égal. Varie-t-il à diverses époques dans un même point de la hauteur ? augmente-t-il ou diminue-t-il avec l'âge ? Des changements peuvent avoir lieu dans la première jeunesse de la tige. Par la multiplication des cellules et par l'augmentation de chacune, la moelle doit s'élargir; et plus tard, quand les faisceaux ligneux se développent à leur tour, ils peuvent de même s'étendre dans tous les sens et, par leur extension en dedans, refouler un peu la moelle. Mais il arrive un moment où l'équilibre est établi; et dès lors son volume reste immuable : c'est ce dont on peut s'assurer en le comparant sur de vieux troncs et de jeunes branches de Sureau. On avait longtemps cru que, repoussée toujours en dedans par l'accroissement du bois, elle finissait par s'oblitérer; mais ce n'était qu'une illusion résultant de sa petitesse relative quand on l'observe dans un gros tronc. Des mesures exactes prouvent le contraire.

TIGE. BOIS.

§ 58. **Bois**. — Nous avons vu (§ 53) que la première couche de bois se compose de faisceaux fibro-vasculaires disposés en cercle autour de la moelle; qu'ils sont séparés l'un de l'autre par des bandes assez larges de tissu cellulaire étendues en manière de rayons de la moelle à l'écorce; que, plus tard, de nouveaux faisceaux se développent dans l'épaisseur de ces rayons et augmentent leur nombre aux dépens de leur largeur (fig. 87 f' f''); qu'enfin ces faisceaux, et par leur multiplication et par l'augmentation de leur volume total, résultant de celle qu'éprouve en particulier le volume de chacun des organes élémentaires dont ils sont composés, finissent par se rapprocher et par se toucher presque en réduisant les rayons qu'ils séparent à des lames extrêmement minces. Ils forment ainsi un cercle ligneux (fig. 88 fb).

§ 59. Nous avons vu encore que ce cercle, dans sa partie interne en contact avec la moelle, a une structure particulière; qu'il présente là, et non autre part, un amas de trachées déroulables (*fig.* 89 *t*), et que cette partie interne a reçu le nom d'étui médullaire. Celui-ci se moule sur la moelle, ou plutôt elle se moule sur lui; et les angles rentrants qu'elle présente toujours dans les premiers temps, et qui persistent dans certaines tiges, correspondent à autant d'angles saillants qui forment le bord interne de chacun des faisceaux.

L'étui médullaire est la partie du bois qui subit le moins de changements. Ses trachées conservent le volume qu'elles ont acquis de bonne heure, et elles peuvent se dérouler même dans les tiges assez vieilles.

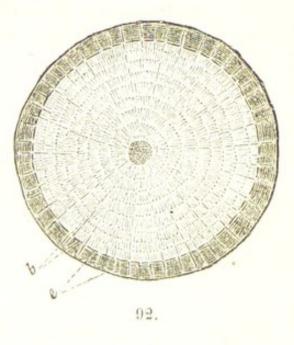
§ 60. Tout le reste du cercle ligneux, et c'est sa plus grande portion, est composé de fibres et de vaisseaux d'un autre ordre, annulaires, rayés ou ponctués (fig. 89 vp, vp), d'un diamètre en général beaucoup plus grand.

Nous savons que là s'arrête le développement des végétaux herbacés. Il en est dont le développement peut prendre une consistance assez solide dans cette première année par le développement en largeur de cette première couche et la densité qu'acquièrent ces éléments. Nous savons enfin que dans les végétaux dont la tige vit un nombre plus ou moins grand d'années, chaque année, entre le bois et l'écorce dont l'intervalle s'est rempli de *cambium* (*fig.* 89, *c*), matière d'abord presque fluide, puis organisée en tissu cellulaire, se forme une nouvelle couche de bois moulée sur la précédente. Il est donc clair que le nombre des couches représente celui des années qu'a vécu l'arbre, que son âge se trouve ainsi écrit sur sa tranche : c'est une vérité depuis longtemps reconnue (4), et que sont venus con-

(1) On attribue à Malpighi l'honneur d'avoir le premier fait cette observation ; mais elle

firmer des faits nombreux plus ou moins piquants. Ainsi, supposons que la couche de cambium se trouve désorganisée à certaines places, ce qui peut résulter de l'action d'un froid très rigoureux : il ne se produira pas de bois à ces places, où il devra rester par suite autant de lacunes dans l'épaisseur du tissu ligneux. Toutes les années suivantes où le froid ne sera pas venu exercer la même action, autant de couches de bois se seront formées et auront recouvert la lacune. Lorsqu'on découvre celle-ci, on doit donc compter autant de cercles en dehors d'elle qu'il s'est écoulé d'années depuis l'hiver rigoureux qui l'a produite. Or, c'est ce que l'expérience a vérifié. En abattant de très vieux et très gros ormes, on y trouva, à l'intérieur, de ces solutions de continuité. On compta le nombre des couches concentriques dont elles étaient recouvertes, et l'on put ainsi constater que la couche de bois dans laquelle se trouvaient les lacunes avait dù être formée telle année : cette année se trouvait précisément correspondre à un hiver d'une rigueur extraordinaire. Des tronçons de ces arbres peuvent se voir dans les galeries botaniques du Muséum de Paris. On y conserve aussi un tronçon de hêtre qui porte une date (4750) inscrite sur son écorce, et la même cachée dans l'épaisseur de ses couches ligneuses; les deux séparées entre elles par un certain nombre (55) de couches. Ce nombre était précisément celui des années écoulées entre celle qu'indique la date et celle où l'arbre fut abattu (1805). L'inscription gravée sur l'arbre, encore assez jeune, avait pu entamer toute l'épaisseur de l'écorce et un peu de celle du bois. Il en résulta dans celui-ci une lacune qui, comme la lacune résultant de la gelée, fut recouverte par les couches successives des années suivantes. Mais ici l'expérience est plus complète, puisqu'elle comprend l'écorce avec le bois, et qu'elle porte sa date authentique. La plupart des collections botaniques offrent des monuments de ce genre, les uns dus au hasard, les autres à des expériences tentées dans le but de constater le mode de croissance de nos arbres. Il est facile en effet d'introduire entre le bois et l'écorce un corps étranger, une lame métallique, par exemple ; et en coupant la branche au bout d'un certain nombre d'années, on retrouve cette lame recouverte par un nombre égal de couches.

Nous avons dit que chaque branche croît de la même manière que

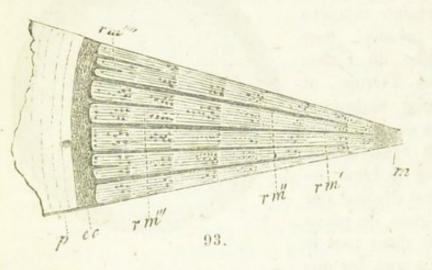

devait être déjà populaire de son temps, puisque ce célèbre anatomiste naquit en 1628, et qu'on peut lire, dans le Voyage de Montaigne en Italie, à la date de 1581, le passage suivant : « L'ouvrier, homme ingénieux et fameux à faire de beaux instrumens de ma-» thématique, m'enseigna que tous les arbres portent autant de cercles qu'ils ont duré » d'années, et me le fit voir dans tous ceux qu'il avoit dans sa boutique, travaillant en » bois. Et la partie qui regarde le septentrion est plus étroite, et a les cercles plus serrés » et plus denses que l'autre. Par ce il se vante, quelque morceau qu'on lui porte, de juger » combien d'ans avoit l'arbre et dans quelle situation il poussoit. »

TIGE. BOIS.

la tige. Celles qui en sont nées la première année offrent donc le même nombre de couches; celles qui sont nées un, deux, trois ans plus tard, offrent : la première, trois couches; la seconde, deux; la troisième, une seule. Quand on coupe un arbre à sa base, on peut dire ainsi à quelle époque de sa vie s'est formée chacune des branches qui le composent en retranchant du nombre des couches de cette base celui des couches de la branche. Si l'on compte cinquante couches concentriques dans un tronc, trente dans telle branche, dix dans telle autre, l'arbre avait vingt ans quand il a produit la première, quarante quand il a produit la seconde.

§ 64. Mais comment ces couches, composées des mêmes éléments, peuvent-elles être distinguées entre elles? C'est parce que dans

chacune les éléments divers ne sont pas disséminés uniformément dans toute l'épaisseur, mais se distribuent d'une certaine manière constante. Qu'on prenne, par exemple, une bûche de Chêne (fig. 92 et 93) ou d'Orme, et qu'après avoir coupé nettement une certaine portion de la surface de sa tranche, on examine ses zones, on verra que le bord interne de chacune est dessiné par une ou plusieurs lignes de petits trous qui manquent dans tout le reste de la zone. Ce sont les ouvertures d'autant de gros vaisseaux


qui se trouvent seulement vers ce bord interne, tandis que la couche est formée plus en dehors par des fibres serrées, à parois assez épaisses pour paraître pleines et pour que le canal qui les parcourt dans leur longueur échappe à l'œil nu. Dans une bûche de Charme, de Tilleul ou d'Érable, on n'observe pas ces gros vaisseaux, dont la large ouverture dessine si nettement le bord interne de la zone annuelle ; mais elle est presque tout entière criblée par celles de vaisseaux plus petits et plus égaux entre eux. Toujours cependant ils cessent vers le bord externe, exclusivement formé par plusieurs rangs de fibres

92. Coupe horizontale d'une branche de Chène âgée de huit ans.— b Bois dans lequel on voit huit zones concentriques, séparées l'une de l'autre par des lignes de points qui répondent aux ouvertures des gros vaisseaux. — e Écorce qui montre elle-même huit zones concentriques, mais beaucoup plus minces et moins distinctes.— Le bois et l'écorce sont traversés par des rayons médullaires, allant de la circonférence, les uns jusqu'au centre qui forme la moelle, les autres seulement jusqu'à un cercle formé l'une des années sujvantes.

qui, en approchant de ce bord, deviennent de plus en plus grêles, serrées, colorées; et il en résulte une ligne de démarcation entre cette couche et la suivante, quelquefois fortement teintée, quelquefois pâle et assez indécise.

Dans plusieurs bois, la ligne de démarcation est marquée par un rang circulaire de cellules analogues à celles des rayons médullaires ; plus rarement ce tissu cellulaire, interposé aux couches de bois, acquiert plus d'épaisseur, dans le Sumac, par exemple, où ses cellules, disposées sur plusieurs rangées concentriques, sont grandes et colorées comme la moelle.

§ 62. Nous avons vu (§ 49) que le nombre des faisceaux ligneux s'augmente parce qu'il s'en développe de nouveaux dans l'intervalle cellulaire d'abord large qui les séparait et qui a servi d'origine aux rayons médullaires (fig. 86 et 87). Ces faisceaux se multiplient plus tard d'après un autre mode, pour ainsi dire inverse, puisque ce sont

des rayons médullaires nouveaux qu'on voit s'interposer aux éléments ligneux (fig. 93). Nous savons que, dans la production de chaque année, sur chaque tissu déjà existant vient s'appliquer, en se formant, un tissu

analogue : des utricules sur des utricules, pour continuer les rayons médullaires ; des fibres et des vaisseaux sur des fibres et des vaisseaux, pour continuer les faisceaux ligneux. Mais le faisceau nouveau, ainsi appliqué sur l'ancien, n'est pas simple comme lui ; il est double ou triple, coupé ainsi en plusieurs par des rangées cellulaires qui commenceront de nouveaux rayons (rm''rm''' rm'''), différents des premiers (rm') en ce qu'ils ne partent pas du centre. Dans la nouvelle zone, plus grande que celles qui l'ont précédée, puisqu'elle leur est extérieure et concentrique, il s'est

93. Coupe horizontale de deux faisceaux ligneux de Chêne-liége, sur une branche de plusieurs années. On voit que ces faisceaux, séparés par le rayon médullaire rm' se sont chacun divisés les années suivantes en plusieurs faisceaux secondaires d'autant plus nombreux et séparés par des rayons d'autant plus courts (rm'' rm''' rm''') que ces rayons ont pris naissance d'un cercle plus extérieur, et par conséquent plus tard. — m Moelle. — ec Enveloppe cellulaire. — p Enveloppe subéreuse, qui dans cette espèce de Chêne prend un développement extrême.

TIGE. BOIS.

naturellement formé un plus grand nombre de faisceaux et de rayons interposés.

§ 63. L'accroissement de chaque zone s'achève dans le courant de l'année : étendue jusqu'à une certaine limite, elle s'y arrête, et pose ainsi une base fixe sur laquelle s'appuiera la zone de l'année suivante. Les changements ultérieurs qu'elle subit ne dépendent plus que de ceux qui se passent dans l'intérieur de ses organes élémentaires. Jeunes, leurs cavités, revêtues de parois plus minces, étaient toutes remplies de sucs liquides. A mesure qu'ils vieillissent, la proportion des liquides diminue relativement aux solides, tant parce que les parois de chaque organe s'épaississent par l'addition de couches emboltées les unes dans les autres (voy. p. 8) que parce que les matières contenues, par suite de l'évaporation de leur partie fluide ou de nouvelles combinaisons chimiques, s'épaississent aussi et durcissent de plus en plus. C'est ainsi que se forme le ligneux, matière qui vient augmenter la densité de la paroi fibreuse en la pénétrant dans presque toute son épaisseur. Tandis que la fibre est de même nature dans toutes les espèces de bois, c'est ce ligneux qui, variant suivant chacune, lui donne ses qualités particulières. Il doit enfin arriver un moment où les fibres ainsi solidifiées cessent d'être perméables aux fluides.

§ 64. Puisque c'est l'âge qui amène ces modifications, elles devront être beaucoup plus avancées dans les cercles les plus intérieurs, dont le tissu sera plus plein, plus dur, plus sec, que dans les extérieurs. Dans les bois colorés, c'est le centre qui le sera d'abord, et la coloration ira, comme la dureté, en s'avançant vers la circonférence. C'est de là qu'est venue, dans beaucoup de bois, la distinction de deux portions : 4° l'une, extérieure, qui conserve encore les qualités du jeune bois, c'est-à-dire qui reste imprégnée des sucs liquides auxquels elle est perméable, plus tendre par conséquent, et pâle ou blanche, ce qui lui a fait donner le nom d'aubier (alburnum); 2° l'autre, intérieure, desséchée, durcie et colorée, qu'on nomme vulgairement le cœur ou bois parfait (duramen).

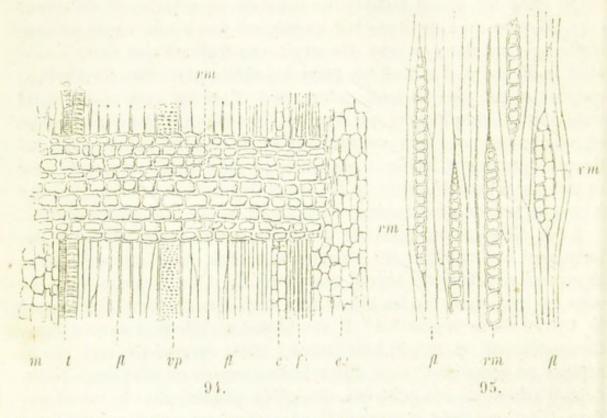
Dans les bois d'une couleur foncée, ceux qu'emploie en général l'ébénisterie, ces deux régions sont extrêmement distinctes; on conçoit, sans l'avoir vu, combien, dans l'ébène, le palissandre ou l'acajou, le cœur, qui sert à faire nos meubles, tranche sur l'aubier encore blanc. Il est inutile d'énumérer ici ces nuances naturelles, si diverses dans les divers bois, que chacun se rappellera pour ceux qu'il connaît déjà, et dont il pourra chercher dans les collections des exemples moins connus et bien plus variés. Quoique cette intensité de couleur se fasse surtout remarquer dans les arbres des climats chauds, quelques uns des nôtres la présentent à un degré assez

remarquable. Dans la plupart cependant le changement est lent, et la transition plus ou moins insensiblement graduée de l'aubier au bois. Dans plusieurs, comme dans le peuplier ou le saule, par exemple, où il ne se colore pas, et qu'on nomme en conséquence bois blancs, l'œil n'aperçoit pas de différences. La dureté est en général en raison directe de la coloration : on cite les bois les plus foncés, l'ébène, le bois de fer, comme les plus compactes et les plus durables. Les bois blancs sont aussi les plus tendres, et se détruisent plus vite et plus facilement ; car ils ont conservé en partie la nature de l'aubier. La mauvaise qualité de celui-ci est une connaissance tout à fait populaire, et pourrait d'ailleurs, sans le secours de l'expérience, être conclue directement de ce que nous avons dit précédemment à ce sujet, la plus grande proportion de liquides et la moindre des solides dans son tissu. Or, outre la diminution qui en résulte pour la portion qui doit seule se conserver et se travailler. on concoit que l'abondance des liquides amène, par leur évaporation ou par les combinaisons nouvelles que leur état favorise, des altérations nombreuses dans le volume et dans la composition même de ce bois imparfait, et surtout y appelle des ennemis toujours prêts, les insectes, attirés par l'amas des matières qui étaient destinées à la nourriture même du tissu végétal.

§ 65. Les couches annuelles sont d'une épaisseur fort inégale, beaucoup plus larges dans les bois tendres, qui, comme on le sait, ont un accroissement très rapide, beaucoup moins dans les bois durs. Elles varient d'ailleurs, sous ce rapport, dans une même espèce d'arbres, suivant les circonstances où il s'est trouvé placé. Ainsi un arbre grossira moins lorsqu'il est environné d'autres arbres serrés contre lui, s'il croît dans un sol moins favorable, s'il est dans un climat plus rude où l'hiver dure plus longtemps. Dans les derniers arbres qu'on trouve en se rapprochant des pôles, les couches annuelles peuvent se distinguer encore, mais elles sont d'une extrême ténuité. On trouvera, par la même raison, entre les couches successives d'un même arbre, une fréquente inégalité, qui tient aux différences qu'ont présentées les saisons dans les années correspondantes.

Une autre cause d'inégalité des couches qu'il est difficile d'apprécier est dans l'âge de l'arbre. Un arbre plus vieux grossit plus régulièrement, mais moins vite que dans sa jeunesse; et dans celle-ci il y a une période où il grossit plus que dans une autre : par exemple, le Chêne de vingt à trente ans. D'une autre part, la moindre épaisseur des couches, de quelque cause qu'elle résulte, s'allie ordinairement avec la plus grande densité du bois. La science du forestier est la connaissance de ces habitudes de chaque espèce d'arbres; il pourra les favoriser ou les combattre; il saura choisir pour

TIGE. RAYONS MÉDULLAIRES.


les coupes régulières, dans lesquelles on a principalement égard à la quantité du bois, l'année où sa croissance commence à se ralentir ; si c'est au contraire la qualité qu'on recherche de préférence, une autre époque conviendra mieux.

Une même zone n'a pas toujours dans toute sa circonférence une épaisseur égale, et, lorsqu'il y a inégalité, elle se fait ordinairement sentir dans un grand nombre de couches successives et du même côté, de sorte qu'il devient clair qu'elle est due à une cause permanente agissant dans ce sens. On avait cru d'abord que cette cause était la diversité d'exposition pour les différents côtés de l'arbre, qui croîtraient plus au midi qu'au nord. Mais on s'est assuré de la nullité de cette influence, qui d'ailleurs devrait agir généralement et régulièrement; et l'on a constaté que le phénomène est dû à des influences purement locales : par exemple, à ce que l'arbre est gêné et masqué d'un côté, libre de l'autre et exposé à la lumière, surtout à ce que ses racines trouvent un meilleur sol de l'un que de l'autre.

§ 66. Nous avons présenté l'alternance des saisons comme déterminant la formation des couches annuelles, par l'interruption et la reprise régulière du travail qui y préside. Que se passe-t-il donc sous les tropiques, où les hivers sont trop chauds pour interrompre le travail de la végétation? Il semblerait qu'elle doit se continuer incessamment, et que le bois formé à toute époque ne doit pas se séparer en zones distinctes. Elles le sont moins en effet dans beaucoup d'arbres de ces contrées, quoiqu'en général elles le soient ençore. C'est que dans la plupart la végétation est soumise aussi à un repos périodique : la saison de la sécheresse, qui pour beaucoup d'arbres amène la chute des feuilles, supplée là, jusqu'à un certain point, à notre hiver. Des observations suivies dans des climats aussi peu semblables au nôtre ne pourraient, du reste, manquer de nous apprendre et de nous expliquer beaucoup de faits différents de ceux auxquels nous sommes habitués.

§ 67. Rayons médullaires. — Nous avons eu occasion, dans tous les articles précédents, de parler fréquemment des rayons médullaires; nous avons exposé leur composition, comment ils se forment et se multiplient. Ceux qui, existant des l'origine de la tige, se continuent sans interruption de la moelle à l'écorce, ont été nommés grands rayons (fig. 93 rm'); ceux qui ne se sont montrés que dans les années suivantes, et ont leur point de départ dans les couches correspondant à ces années, ont été nommés petits rayons (fig. 93 rm'' rm''''). Ceux-ci se présentent même dans les bois où la distinction des couches n'est pas manifeste, et indiquent ainsi, quoique obscurément, des formations successives que l'homogénéité de toute la masse ligneuse ne permet pas d'apercevoir autrement.

Si l'on examine les rayons, non plus seulement sur la tranche horizontale, mais sur la tige fendue dans sa longueur, on voit que les cellules qui les composent, placées les unes au-dessus des autres sur un ou plusieurs rangs, forment des lames minces (fig. 94 rm). Si la marche des faisceaux est parfaitement rectiligne, comme dans

la Clématite, par exemple, les lames formées par les rayons s'étendent sans interruption d'un bout de la tige à l'autre : c'est suivant elles que le bois se fend, et cela avec une extrême facilité. Mais, le plus souvent, les faisceaux partiels sont plus ou moins flexueux dans leur trajet vertical, et alors, là où ils dévient, les lames s'interrompent. C'est ce qu'on constate clairement soit en examinant la surface du bois écorcé, soit encore mieux sur des tranches verticales très minces perpendiculaires aux rayons (*fig.* 95). On voit les faisceaux, d'abord unis, diverger un peu, pour se réunir de nouveau plus bas, et laisser ainsi entre eux dans leur écartement un intervalle rempli par les cellules des rayons, dont les lames se moulent

94. Coupe d'un rameau d'Érable commun, âgé d'un an, verticale et passant par la moelle, vue sous un fort grossissement. On voit la lame formée par le rayon médullaire rm, étendue de la moelle m au parenchyme cortical ec, limitant dans son trajet : 1° un faisceau ligneux composé de dehors en dedans par des trachées t et des fibres ligneuses fl, au milieu desquelles s'aperçoit un gros vaisseau ponctué vp, 2° un faisceau de fibres corticales fc.

95. Coupe verticale du même rameau, tangentielle, c'est-à-dire perpendiculaire aux rayons médullaires. — β , β Fibres ligneuses, formant de petits faisceaux flexueux, qui laissent ainsi entre eux des intervalles traversés par les rayons médullaires rm, rm, rm,

TIGE. ECORCE.

sur ces intervalles et présentent souvent ainsi un peu plus d'épaisseur vers le milieu qu'en haut et en bas.

C'est vers la périphérie du bois, et par conséquent dans la partie où ils se trouvent en rapport avec le système cortical, que les rayons offrent souvent le plus de largeur; c'est là aussi que leur vitalité paraît le plus active. Elle paraît s'éteindre peu à peu dans le cœur du bois, à la couleur duquel leurs cellules participent et contribuent même notablement; tandis que dans l'aubier, et surtout près de sa circonférence, ils sont rémplis de fécule ou de sucs liquides, suivant la saison, et souvent colorés en vert par la chlorophylle. On peut donc les considérer comme liés plus intimement au système cortical qu'à la moelle, et c'est tout naturellement que nous passons de leur examen à celui de l'écorce.

ÉCORCE.

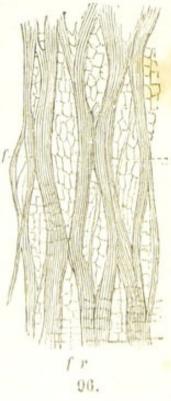
§ 68. Nous savons que dans les premiers temps le système cortical ne se distingue pas du ligneux; qu'un peu plus tard, dans chacun des faisceaux développés en cercle autour de la moelle, une mince ligne d'un tissu demi-fluide, le cambium (fig. 88 et 89 c), dessine elle-même un arc qui sépare ce faisceau en deux parties inégales, l'extérieure (fc) appartenant à l'écorce, beaucoup plus étroite que l'intérieure (fb) appartenant au bois; que toute la zone cellulaire qui est en dehors des faisceaux forme le parenchyme cortical, dans lequel on peut distinguer, outre l'épiderme (ep), deux modifications bien distinctes, l'enveloppe subéreuse (p) et l'enveloppe cellulaire (ec); qu'enfin dans cette enveloppe, et entremélés aux faisceaux de fibres corticales, circulent en général de nombreux laticifères. L'écorce, comme le système ligneux, offre donc une portion cellulaire et une portion fibro-vasculaire. Mais ici il y a inversion et dans la situation et dans la proportion relative des parties, car le parenchyme, cette sorte de moelle de l'écorce, occupe son pourtour, et elle offre un développement plus grand, des formes plus variées que les faisceaux fibro-vasculaires, tandis qu'au contraire dans le bois nous avons vu ces faisceaux beaucoup plus développés et beaucoup moins simples que la moelle.

En conséquence de cette situation inverse des parties, nous suivrons une marche inverse également dans leur examen; nous considérerons d'abord la partie cellulaire et extérieure, qui est la première formée, puis les vaisseaux et les fibres, qui composent la partie intérieure de chaque couche. Car nous savons (§ 60) que dans nos arbres, chaque année, il se forme une couche d'écorce en même temps qu'une de bois. Mais de la situation inverse de la première

résulte un effet qu'il était facile de prévoir. Tandis que les zones de bois restent immobiles, la nouvelle s'adaptant sur une plus ancienne qu'elle vient recouvrir, les zones d'écorce sont incessamment repoussées en dehors, pour faire place à d'autres plus jeunes, et surtout aux nouvelles couches ligneuses qui se forment au dedans d'elles. Une fois qu'elles ont atteint tout le développement dont elles sont susceptibles, ne pouvant se prêter à une extension indéfinie, elles subissent nécessairement des altérations plus ou moins graves, qui sont d'ailleurs augmentées par leur position au dehors; elles se fendent dans divers sens, se détachent par plaques ou par lames, etc., et cela dans l'ordre de leur formation, les plus anciennes et les plus extérieures s'altérant aussi les premières.

§ 69. L'épiderme, qui nous a déjà assez occupés (§§ 36-45) pour qu'il soit inutile de s'y arrêter ici, est la partie de l'écorce qui doit, par la distension résultant de l'accroissement progressif de la tige et l'action des agents extérieurs, disparaître aussi la première. Son existence est en effet tout à fait temporaire; il finit, un peu plus tôt, un peu plus tard, par se fendre, se morceler, se dessécher et se détruire.

§ 70. Sous lui étaient d'autres couches cellulaires : 1º La couche ou enveloppe subércuse, ainsi nommée parce que c'est elle qui, dans quelques arbres, constitue la substance vulgairement connue sous le nom de liége (suber), appelée aussi par quelques auteurs epiphlæum ($i\pi\iota$, sur, $\varphi\lambda_{\sigma\iota\delta\varsigma}$, écorce), à cause de sa position superficielle. On l'aperçoit (fig. 89, 90 p) d'abord sous l'épiderme, formant une ou plusieurs rangées de cellules cubiques ou plus souvent allongées dans le sens horizontal, intimement unies ensemble, ne renfermant jamais de granules à l'intérieur, ayant des parois minces, d'abord incolores, plus tard souvent colorées en brun. Quelquefois ces ran-gées se trouvent séparées par d'autres composées de cellules d'une forme un peu différente, plus comprimées et tabulaires. Tantôt ces: rangées de nature différente se développent concurremment; tantôt! ce sont les unes plus que les autres, et c'est dans le cas où les pre-mières se développent exclusivement qu'il y a production de liége, comme dans l'espèce de Chêne désigné sous ce nom (fig. 93 p); tantôt ni les unes ni les autres ne prennent de développement.


2° Enveloppe cellulaire. — On la nomme aussi couche verte ou herbacée, à cause de sa couleur la plus ordinaire; mesophlœum, à causer de sa position au milieu de la couche corticale ($\mu \epsilon \sigma \delta \varsigma$, qui est au milieu, $\varphi \lambda \delta \iota \delta \varsigma$, écorce). Elle se distingue en effet de la couche subéreuse qui l'entoure par la chlorophylle qui remplit et teint en vert sess cellules polyédriques à parois plus épaisses, plus làchement unies, et laissant en conséquence entre elles des méats ou souvent des-

TIGE. ECORCE.

lacunes. Au milieu des cellules vertes, on en trouve assez fréquemment d'incolores qui renferment des cristallisations.

§ 74. Fibres corticales, ou liber. - Elles forment des faisceaux placés vis-à-vis de ceux du bois, séparés d'eux souvent par une mince lame de l'enveloppe cellulaire, toujours plus tard par une couche d'utricules appartenant au cambium. Ces fibres, d'un blanc brillant, sont plus longues et plus grêles que les ligneuses. Leurs parois, en vieillissant, deviennent très épaisses et ponctuées par la formation de couches à leur intérieur. Ce sont elles qui offrent le plus de ténacité parmi toutes celles du végétal, et qui par là, dans beaucoup de plantes, rendent à l'homme de si importants services, en lui fournissant les matériaux de ses cordages, de ses fils et de ses tissus les plus solides, en même temps que la ténacité des fibres permet de leur laisser souvent toute leur finesse. Parmi les exemples, il n'est besoin que de nommer, entre autres, le Chanvre et le Lin. Le mode même de préparation du premier suffit pour démontrer combien la fibre corticale est plus résistante que tous les autres éléments de la plante, qu'on fait d'abord rouir, c'est-à-dire macérer dans l'eau, et qu'ensuite on bat; puisqu'on obtient les fibres intactes à la suite de cette double opération qui a détruit successivement toutes les autres parties.

Des rayons médullaires qui continuent en général ceux du système ligneux, mais restent plus larges, et composés naturellement de cellules moins pressées et moins unies, séparent les faisceaux corticaux dont l'ensemble constitue une zone concentrique à la zone ligneuse. Comme dans le bois, tantôt les faisceaux marchent suivant une direction rectiligne (dans la Vigne, le Marronnier d'Inde, par exemple), et alors leurs rayons, formant des lames également droites, continuent à s'interposer entre deux faisceaux voisins d'un bout de la tige à l'autre ; tantôt leur marche est flexueuse (comme dans l'Orme, le Tilleul, le Chêne), et alors, se rapprochant alternativement de leurs voisins de droite et de gauche, ils les touchent et se confondent avec eux pour s'en séparer plus bas de nouveau, interrompant ainsi les rayons médullaires qui ne forment plus que des plaques courtes, et constituant

6

96. Réseau formé par le liber dans la Lauréole (Daphne laureola). -- f Faisceaux fibreux. — r Bayons médullaires.

par leurs fréquentes anastomoses un réseau dont les mailles sont remplies par ces rayons (fig. 96). Chaque couche de ces fibres corticales représente une sorte de toile d'un tissu lâche. On a comparé l'ensemble des couches de plusieurs années, dont chacune peut se subdiviser elle-même en plusieurs autres plus minces si ces fibres se sont formées par rangées régulières, à un livre dont toutes les couches diverses forment les feuillets, et de là le nom de *liber* sous lequel les fibres corticales sont le plus ordinairement désignées. Quelques auteurs leur ont encore donné celui d'*endophlœum* ($\xi_{\nu}\delta_{\sigma\nu}$, en dedans; $\varphi\lambda_{\sigma\iota\delta\varsigma}$, écorce), parce que c'est la portion de l'écorce la plus intérieure.

Les feuillets produits d'années différentes sont, comme quelquefois les couches annuelles du bois, séparés entre eux par des zones utriculaires dépendant de l'enveloppe cellulaire dans l'épaisseur de laquelle se sont formés les faisceaux fibreux.

Il est clair que l'accroissement progressif de la tige doit déterminer la distension proportionnelle des feuillets de liber dont les faisceaux vont ainsi toujours en s'écartant, et par suite en s'élargissant. Les rayons, par la multiplication des cellules qui les composent, se dilatent dans la même proportion tant que le tissu reste vivant, et continuent ainsi à les remplir.

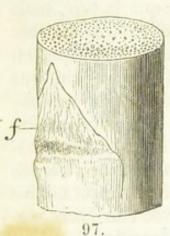
§ 72. En effet, le système parenchymateux de l'écorce conserve une vitalité très active, et la production de cellules nouvelles y a sans cesse lieu, non pas sur un point seulement, mais sur plusieurs à la fois, puisque, indépendamment de la formation annuelle d'une couche du liber et des utricules qui l'entourent immédiatement, il peut y avoir, ainsi que nous l'avons vu tout à l'heure, un accroissement dans l'enveloppe subéreuse; et tous ces développements paraissent marcher l'un indépendamment de l'autre.

§ 73. En même temps, une destruction continuelle des parties extérieures de l'écorce a lieu, et cette portion, rejetée au dehors et enfin détachée, peut comprendre une plus ou moins grande épaisseur des couches corticales, suivant que le développement a lieu dans telle ou telle de ces couches, de telle sorte que ce soit la subéreuse, ou la cellulaire, ou la fibreuse, qui se trouve former l'enveloppe la plus extérieure où se conserve la vie. M. Mohl a montré que ce détachement d'une certaine portion de l'écorce est toujours précédé de la formation de lames continues ou interrompues par plaques, et composées de ces cellules tabulaires que nous avons signalées plus particulièrement dans la couche subéreuse (§ 70). Ces lames sous-jacentes à celles qui cessent de végéter, et délimitant ainsi le mort d'avec le vif, se trouvent donc constituer, après la chute de l'épiderme et d'une certaine portion du tissu cortical,

TIGE DES MONOCOTYLÉDONÉES.

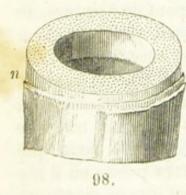
l'enveloppe superficielle de celle qui persiste, à laquelle il propose de donner le nom de *périderme*, nom qui exprime assez bien sa situation intérieure par rapport à l'épiderme proprement dit, périphérique par rapport à l'ensemble de l'écorce ou derme $(\partial i\rho\mu\alpha)$.

§ 74. Lenticelles. - Sur la surface de beaucoup de jeunes écorces, on remarque de petites taches de forme variable, ordinairement allongées, suivant l'axe de la tige, et, par un examen attentif aidé d'un tact délicat, on reconnaît qu'elles y forment une légère saillie. On les a d'abord nommées glandes lenticulaires, et plus tard, après qu'on eut reconnu que leur nature n'était nullement glanduleuse, lenticelles. Elles croissent en même temps que la tige, mais plus en saillie qu'en longueur, de sorte qu'elles tendent à se bomber et à s'élargir toujours davantage. En les étudiant au microscope, on reconnaît un amas utriculaire, et, en recherchant leur origine, que c'est une petite excroissance de l'enveloppe cellulaire qui, repoussant en dehors et faisant crever les parties qui la recouvrent, a fini par faire en quelque sorte hernie extérieurement. L'enveloppe subéreuse qu'elle traverse la suit un peu et forme son contour. Par les nombreuses lenticelles parsemées sur sa surface, l'écorce peut mettre ainsi ses couches les plus intérieures en rapport avec l'air après que les stomates ont cessé leurs fonctions par la disparition de l'épiderme.


De Candolle leur attribuait un autre usage. On sait que, lorsqu'on met un rameau dans l'eau ou dans la terre humide, en général il continue à vivre, et que de sa surface se développent de nombreuses racines qu'on nomme *adventives*, et qui finissent par remplacer celle qui manque à ce rameau, qu'on appelle une *bouture*. De Candolle, ayant remarqué que ces racines adventives partent souvent du centre des lenticelles, regardait celles-ci comme prédestinées à cette production, comme jouant à l'égard de ces racines le rôle que les bourgeons jouent par rapport aux rameaux. Mais on a remarqué que les racines partent aussi de beaucoup d'autres points où il n'y a pas de lenticelles, et l'on a expliqué naturellement leur origine assez fréquente du centre de celles-ci par l'amas celluleux qu'il présente et qui doit favoriser la production de parties nouvelles.

TIGE DES VÉGÉTAUX MONOCOTYLÉDONÉS.

§ 75. Nous avons suivi l'embryon monocotylédoné comme le dicotylédoné, dans les premières phases de sa vie, depuis sa première apparition (*fig.* 70, 72, 75). Comme lui, il est composé entièrement de tissu cellulaire (dont une couche extérieure, d'une forme un peu différente du reste, constitue l'épiderme), jusque vers l'épo-


que de la maturité, ou en général jusqu'à la germination. Ce n'est qu'alors qu'on y voit apparaître des fibres et des vaisseaux, qui se groupent en faisceaux. Ceux-ci sont d'abord disposés en cercle, et, jusque-là, rien ne distingue nettement cette petite tige de celle qui proviendrait d'un embryon dicotylédoné.

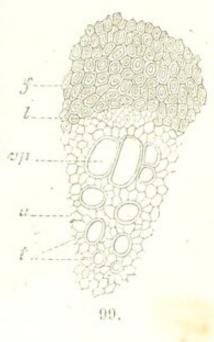
Mais à mesure qu'elle augmente en se couvrant de feuilles plus nombreuses, et que, par suite, les faisceaux se multiplient dans son intérieur, on y remarque une disposition différente de celle qu'ils affectent dans les dicotylédonés, où, rangés en un cercle, ils finissent par se rapprocher, se toucher, et former un anneau ligneux,

coupé seulement par les lignes des rayons médullaires. Dans les monocotylédonées (*fig.* 97), les faisceaux sont dispersés sans ordre apparent, les uns plus en dedans, les autres, plus nombreux, en dehors, au milieu du tissu cellulaire. Ce tissu, interposé entre eux, ne dessine donc pas dans leur intervalle des lignes droites étendues du centre à la circonférence; il ne forme pas de rayons médullaires. Le centre, qui est resté tout entier cellulaire, ou qui n'est parcouru que par un petit nombre de faisceaux, représente

bien la moelle jusqu'à un certain point, mais ordinairement mal circonscrite et dépourvue de cet étui médullaire que nous avons vu,

dans les dicotylédonées, caractérisé par la présence des trachées. La moelle forme un cylindre assez considérable et régulier, tout à fait dépourvu de faisceaux ligneux dans plusieurs monocotylédonées, particulièrement dans les Graminées, ainsi qu'on peut l'observer dans le *Maïs*, dans l'*Arundo*. Mais alors, le plus souvent, elle ne se prête pas au rapide développement de la tige dont elle remplissait d'abord le centre, et qui, plus tard, devient fistuleuse par

la destruction de la moelle (fig. 98). Les restes de celle-ci se voient sur les parois internes du tuyau, dont la tige a pris la forme; ce qui, au reste, arrive également dans les dicotylédonées à moelle très volumineuse et à développement très rapide (les Ombellifères, par exemple).


97. Fragment de tige d'Asperge dont on voit le bout supérieur coupé horizontalement. Dans cette figure et toutes les suivantes, les points marqués sur la tranche indiquent les faisceaux ligneux. — f Feuille réduite à l'état d'écaille.

98. Fragment de tige d'un Roseau (Arundo phragmites) un peu au-dessus d'un nœud. Elle est devenue fistuleuse par la disparition du parenchyme central médullaire qu'on aperçoit encore au niveau du nœud n.

TIGE DES MONOCOTYLÉDONÉES.

§ 76. Si nous comparons dans sa structure anatomique un faisceau fibro-vasculaire de la tige d'une monocotylédonée à celui que nous avons décrit dans une tige ou branche de dicotylédonée de moins d'un an, nous les trouvons assez ressemblants. Le premier, en effet (fig. 99), de dedans en dehors, présente : 4° des trachées (t), puis des vaisseaux plus gros rayés ou ponctués (vp), les uns et les

autres accompagnés et entourés de cellules ponctuées (u), quelquefois allongées en fibres; 2º un amas de vaisseaux laticifères (1) et de fibres à parois simples très minces, enveloppés par un croissant d'autres fibres (f) tout à fait extérieures, à parois épaisses, résultant de plusieurs couches emboîtées les unes dans les autres. Or, ne trouvons- 2/1nous pas dans cette combinaison tous les éléments d'un faisceau fibro-vasculaire de dicotylédonée: dans la portion interne, celle qui correspondrait au bois; dans l'externe, celle qui correspondrait à l'écorce? Aussi, dans la première année, les tiges herbacées des monocotylédonées et celles de beaucoup de dicotylédonées, sont-elles assez difficiles

à distinguer. Mais, si nous voulons pousser la comparaison plus loin, la ressemblance cesse.

Le faisceau de dicotylédonée présentait la même structure dans toute sa longueur; celui de la monocotylédonée, examiné à des hauteurs différentes, se trouve changer d'épaisseur et de composition. Le premier, à une certaine époque, après une année ordinairement, se dissociait en deux portions, l'une restant au système ligneux, l'autre allant au système cortical; et entre elles s'organisait un faisceau nouveau, destiné à subir lui-même, un an plus tard, la même décomposition. Les éléments du faisceau de monocotylédonée ne se dissocient à aucune époque; et si les intérieurs peuvent être comparés au bois, les extérieurs au liber, ce serait un liber dispersé dans toute l'épaisseur de la tige avec les faisceaux ligneux, auxquels il resterait indéfiniment annexé.

On conçoit d'avance, d'après ce premier aperçu, à quel point le mode d'accroissement doit être différent dans les tiges dicotylédonées et dans les monocotylédonées, et que dans celles-ci nous ne

99. Section horizontale d'un faisceau fibro-vasculaire pris sur un Palmier (*Corypha frigida*). — t Trachées. — vp Gros vaisseaux ponctués. — u Utricules accompagnant les vaisseaux, formant du parenchyme, ou dans d'autres points allongés en fibres. — t Vaisseaux propres ou laticifères. — f Fibres épaisses analogues à celles du liber.

pouvons attendre ni zones concentriques ligneuses dont une se forme chaque année, ni feuillets de liber.

§ 77. Malheureusement pour l'étude, les plantes monocotylédonées ligneuses manquent presque dans notre climat; et nous ne pouvons, comme pour les dicotylédonées, citer à l'élève des exem-

400.

ples qui lui soient familiers et qu'il puisse facilement se procurer. Mais il pourra, dans les figures qui accompagnent les relations de voyages, rencontrer souvent des Palmiers, ceux des arbres monocotylédonés qui jouent le plus grand rôle dans la nature; et, en les vovant, il sera nécessairement frappé de la différence que ces arbres offrent avec les nôtres, par leur tronc élancé, d'une épaisseur ordinairement uniforme depuis le bas jusqu'en haut, et par la nudité de ce tronc, qui ne se partage pas en branches et en rameaux, et ne porte qu'à son sommet ses grandes feuilles rapprochées en touffe (fig. 400, 4). L'Yucca aloefolia, qui n'est pas rare dans les jardins, surtout. dans ceux du Midi, peut

donner en petit une idée de ce port des Palmiers.


§ 78. Si de l'examen extérieur d'un Palmier nous passons à celui de son intérieur (fig. 401), nous trouvons cet amas de faisceaux fibreux dispersés sans ordre dans le tissu cellulaire, que nous avions signalé dès la première année. Mais ces faisceaux se sont extrêmement multipliés : plus rares et plus écartés les uns des autres au milieu de la tige (m), ils deviennent plus nombreux, plus serrés et

^{400.} Deux arbres monocotylédonés appartenant à deux familles différentes : l'un, à celle des Palmiers, c'est le Cocotier (*Cocos nucifera*); l'autre, 2, à celle des Pandanées, le Baquois ou Vacoua (*Pandanus odoratissimus*). Le premier offre un exemple de tige simple, le second de tige rameuse. On a placé deux figures d'hommes à leur pied pour indiquer leur grandeur.

TIGE DES MONOCOTYLÉDONÉES.

en même temps plus colorés à mesure qu'on s'approche plus de la circonférence, vers laquelle ils dessinent ainsi une zone compacte et

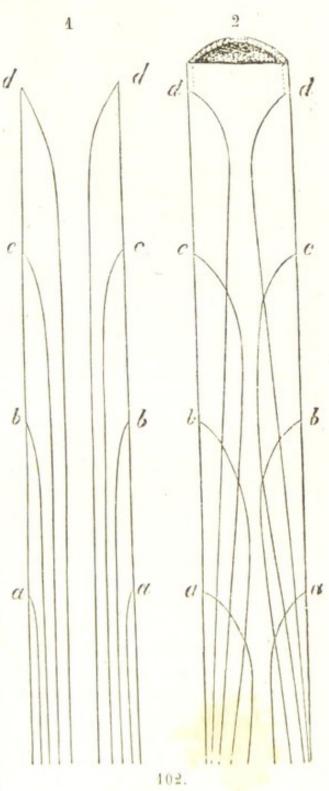
noirâtre (b). Tantôt celleci est recouverte immédiatement par la couche cellulaire qu'on a nommée écorce (e); tantôt entre elle et cette couche est une zone (l) de faisceaux plus lâchement unis, plus grêles, moins serrés et moins colorés, que sa situation et sa nature ont fait souvent prendre pour une zone de liber.

§ 79. Cette structure de la plupart des Palmiers avait été déja reconnue des anciens. Desfontainés eut la gloire de découvrir sa généralité dans toutes les plantes monocotylédonées, et de proclamer cette loi très simple : D'après la structure interne des tiges, les végétaux se partagent en deux grandes classes : 4° ceux qui n'ont pas de couches concentriqués distinctes, dont la solidité décroît de la circonférence vers le centre ; où la moelle est interposée entre les faisceaux fibreux sans prolongements médullaires en rayons divergents : les monocotylédons; 2° ceux qui ont des couches concentriques distinctes; dont la solidité décroît du centre vers la circonférence ; où la moelle est renfermée dans un canal longitudinal avec des prolongements médullaires en rayons divergents : les dicotylédons. Cette loi, ainsi formulée par Desfontaines, n'a pas jusqu'ici été attaquée.

Il n'en est pas de même des conclusions sur le mode de croissance des tiges des végétaux monocotylédonés qu'il en avait tirées fort dubitativement d'après Daubenton, mais qui, plus tard, furent adoptées et proclamées généralement. Comme toutes les feuilles sont ordinairement réunies au sommet de l'arbre, et que, dans leur assemblage, les plus jeunes, les dernières formées, sont celles qui sont placées le plus au centre; d'autre part, comme aux feuilles viennent aboutir tous les faisceaux fibro-vasculaires dont la réunion constitue la partie solide de la tige, les faisceaux qui aboutissent aux feuilles les plus jeunes, et qui par conséquent sont eux-mêmes

formés les derniers, se trouvent situés au centre des autres. Ainsi le tronc s'endurcit continuellement par l'addition de faisceaux nouveaux formés à son milieu, repoussant au dehors les plus anciens, qui se rapprochent et se resserrent de plus en plus, et finissent ainsi par déterminer cette zone extérieure plus dure que le reste. Ce serait un mode de croissance précisément inverse de celui des dicotylédonés, où la couche la plus nouvelle est toujours la plus extérieure, et où chacune est d'autant plus ancienne qu'elle se trouve plus près du centre. On proposa le nom d'*exogènes* pour ces tiges de plantes dicotylédonées qui croissent en dehors, le nom d'*endogènes* pour celles des monocotylédonées qui croîtraient en dedans.

§ 80. Mais pour que ces conclusions fussent vraies, il faudrait que les faisceaux conservassent invariablement les mêmes rapports, et par conséquent la même direction parallèle dans toute l'étendue de leur trajet, que leur ensemble formât une sorte de gerbe. Or, c'est ce qui n'a pas lieu; et dans une tige de Palmier coupée suivant sa longueur, on voit les faisceaux se courber et se croiser dans toutes sortes de directions; on le verrait de même, quoique avec un peu plus de difficulté, dans la courte tige d'un Poireau ou de toute autre de nos plantes herbacées monocotylédonées, où les feuilles s'insèrent pressées sur une tige très raccourcie.


Si l'on suit un de ces faisceaux dans tout son trajet, de haut en bas, c'est-à-dire depuis le point situé sur la surface de la tige où il s'en sépare pour entrer dans une feuille, on voit qu'il se dirige d'abord plus ou moins obliquement en dedans, et puis, arrivé plus ou moins près du centre, en bas. C'est ainsi qu'il paraît sortir de la partie centrale, et c'est pour ne pas l'avoir suivi plus loin que les observateurs ont été trompés sur son origine et ont admis les tiges endogènes. Mais, en le poursuivant plus bas, ils l'auraient vu se diriger très obliquement en sens inverse de sa direction première, c'est-à-dire en dehors, et se rapprocher de plus en plus de la surface jusqu'à ce qu'il arrive sous l'écorce, où sa marche devient à peu près rectiligne. Il a donc décrit un long arc tournant en dedans sa convexité, qui est beaucoup plus prononcée supérieurement. Dans cette course, il a dû croiser successivement tous les faisceaux situés au-dessous de lui, formés avant lui, puisqu'ils se rendaient à des feuilles inférieures, et par conséquent plus anciennes, et il a fini par se placer en dehors d'eux. Les faisceaux les plus récents sont donc définitivement les plus extérieurs, comme ils l'étaient dans les dicotylédonés; seulement les faisceaux contemporains, au lieu de rester à peu près parallèles dans leur trajet et de former ainsi par leur ensemble un cylindre dans la tige, convergent les uns vers les autres dans leur partie supérieure, divergent dans l'inférieure.

TIGE DES MONOCOTYLEDONÉES.

Ajoutons que d'ailleurs l'arc qu'ils décrivent n'est pas compris dans un même plan, et qu'ainsi une section verticale de la tige ne peut nous montrer un même faisceau tout entier d'une de ses extrémités

à l'autre. Sa course tortueuse et la difficulté de le suivre au milieu de tout ce lacis compliquent singulièrement ce genre de recherche. Au reste, deux figures théoriques, indiquant la course de quatre paires de faisceaux, a, b, c, d, dans les deux systèmes, celui des tiges endogènes et celui que nous venons d'exposer, feront facilement comprendre leurs rapports différents suivant l'un et suivant l'autre (fig. 402).

§ 81. Nous avons annonce que la composition d'un même faisceau n'est pas identique, observée à différentes hauteurs pour chacun. En haut, ce sont les éléments que nous avons comparés au bois qui dominent ; en bas, ce sont au contraire les éléments que nous avons comparés à l'écorce : la proportion des uns aux autres va changeant ainsi graduellement. Dans la partie supérieure du trajet d'un faisceau, celle pendant laquelle son arc se dirige vers le centre ou y descend, il offre (fig. 99), de dedans en dehors, plusieurs trachées; puis des vaisseaux plus gros, d'un autre ordre, environnés

de leurs cellules; enfin, en nombre moindre, égal ou peu supérieur, les vaisseaux propres et les fibres épaisses analogues à celles du

102. Rapport de quatre paires de faisceaux, a, b, c, d. 1 Dans le système de tiges cadogènes. 2 Dans le système de M. Mohl.

liber. Mais celles-ci se multiplient de plus en plus, et augmentent même l'epaisseur du faisceau à mesure qu'en descendant il se rapproche de la périphérie; de sorte qu'un peu plus bas on les trouve en grand nombre, bordées encore en dedans par un petit amas de cellules ligneuses entourant un ou deux gros vaisseaux, et que plus bas encore on ne trouve plus qu'elles. Tout à fait en bas, lorsque le faisceau longe l'écorce, il est devenu complétement fibreux, ordinairement très grêle, et souvent même s'est partagé en plusieurs filets partiels, filets qui, en s'anastomosant avec ceux des faisceaux voisins, augmentent la confusion.

Ainsi donc, dans une tranche horizontale de la tige (fig. 101), ce sont ces filets qui forment la partie extérieure, grêles et lâchement unis par un parenchyme à mailles très fines, et formant cette couche qu'on a prise quelquefois pour celle du liber, mais qui, comme on le voit, a ici une origine tout autre que dans les Dicotylédonées, et qui manque quelquefois. C'est la partie des faisceaux essentiellement composée d'un grand amas de fibres à parois épaisses qui forme la zone dure et colorée : c'est leur partie supérieure, où ces fibres sont associées à des vaisseaux et à des cellules ligneuses, qui forme les points plus rares disséminés au milieu du parenchyme central, et ceux qui se trouvent vers l'insertion des feuilles. Tous ces résultats sont dus aux savants travaux de M. Hugo Mohl.

§ 82. La tige a grossi dans les premiers temps, principalement par l'accroissement individuel de chacun des divers éléments qui la composent. Mais pourquoi en général ce grossissement ne tardet-il pas à s'arrêter, et pourquoi offre-t-il un diamètre à peu près égal depuis le haut jusqu'en bas, quand il semblerait que l'addition continuelle de nouveaux faisceaux correspondants à des feuilles nouvelles dût incessamment l'épaissir? Le nombre de ces faisceaux n'est pas comparable à celui qu'on trouve dans les Dicotylédonées, parce que, le plus souvent, la tige, au lieu d'être toute couverte de branches et de feuilles, n'offre celles-ci qu'à son sommet, ne s'accroît en hauteur que par un seul bourgeon terminal. Nous savons d'ailleurs que ces faisceaux, au lieu d'être également épais dans tout leur trajet, s'amincissent graduellement en bas, et probablement finissent par s'épuiser. La base de la tige ne présente donc pas la somme de tous les faisceaux, et le nombre de ceux qui peuvent la traverser s'y trouve compensé par l'amincissement et l'épuisement des faisceaux supérieurs : il en est de même à chaque degré de hauteur. Quelquefois cependant cette compensation n'est pas exacte à toutes les hauteurs, et l'on voit des tiges se renfler vers le bas, vers le milieu ou vers le haut, sans doute suivant l'époque de sa vie où l'arbre a végété le plus activement.

TIGE DES MONOCOTYLÉDONÉES.

§ 83. Nous avons jusqu'ici représenté les tiges monocotylédonées comme dépourvues de ramifications et comme croissant seulement par un bourgeon terminal. Cependant ce cas, quoique le plus commun, est loin d'être général. Nous voyons beaucoup de nos végétaux monocotylédonés, comme l'Asperge, les Asphodèles et un grand nombre de Graminées, qui se ramifient; mais, leur tige ne vivant qu'une seule année, on ne peut calculer bien sûrement l'influence que le développement des branches exerce sur leur grossissement. L'observation est plus concluante pour quelques arbres des pays chauds qui se ramifient aussi, les Baquois (fig. 400, 2), les Draconiers, par exemple. Ils peuvent alors augmenter en diamètre, et il v en a même qui en acquièrent un énorme. Il suffit de citer à cet égard le Draconier des Canaries, l'un des plus gros arbres connus du globe, au point qu'on a pu construire une petite chapelle dans l'intérieur de son tronc, miné à la manière de nos saules 4. Lorsque des bourgeons latéraux viennent ainsi à se développer sur une tige monocotylédonée déjà bien formée, les faisceaux qui leur correspondent, au lieu de percer cette tige en se dirigeant vers son centre, rampent entre elle et l'écorce ; et l'on a alors un épaississement en diamètre analogue à celui des Dicotylédonées ; toujours avec la différence qui résulte de la situation relative et de la composition de ces faisceaux, qui restent indivis comme ceux de la partie centrale.

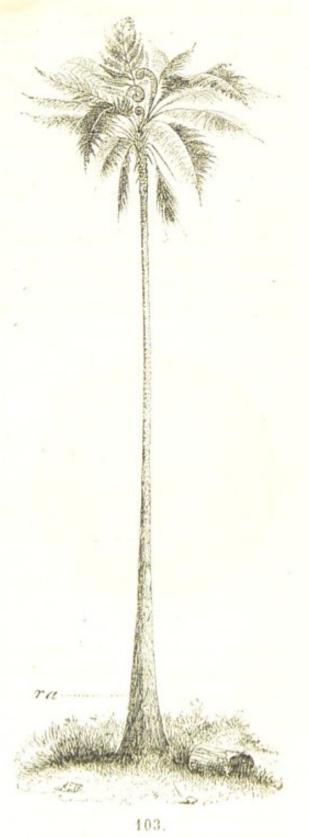
§ 83 bis. Nous avons appelé écorce la couche cellulaire qui, revètue d'abord par l'épiderme, et épaissie ordinairement par la base des feuilles, forme la portion la plus extérieure de la tige. Sa composition se distingue nettement de la portion fibreuse qu'elle recouvre, et dont elle finit quelquefois par se détacher. Quelquefois, au contraire, extrêmement mince et adhérente, elle se confond avec elle : dans quelques cas assez rares, elle prend un développement considérable. Ainsi la tige du Tamnus elephantipes, maintenant assez commun dans les serres, offre l'apparence d'une sorte de dôme dont la surface est divisée en nombreux compartiments séparés par des sillons profonds, et ces compartiments sont autant de plaques d'une substance corticale analogue au liége ; mais, malgré cette apparence, son tissu cellulaire uniforme n'a jamais présenté ces enveloppes distinctes, la subéreuse et la cellulaire, que nous avons décrites dans les Dicotylédonées. Nous savons d'ailleurs que le liber roise rencontre pas dans l'écorce des Monocotylédonées, puisque celui qu'on

(1) Cette destruction de la partie centra'e des tiges monocotylédonées, qu'on observe très fréquemment, est un argument sans réplique contre le système de l'endogénéité L'endogène, avec son centre détruit, ne pourrait pas plus continuer à vivre que l'exogène déponillé à une certaine profondeur de sa portion périphérique.

croyait y avoir observé reconnaît une origine toute différente, et n'est autre chose que l'extrémité inférieure des fibres ligneuses. Plus haut, il joue réellement le rôle de bois, et doit peut-être en recevoir le nom. L'écorce diffère donc autant que le système ligneux dans les tiges de ces deux grandes classes de végétaux ; et même, en rejetant leur distinction en endogènes et exogènes, elles n'en restent pas moins distinctes par des caractères anatomiques d'une grande importance et d'une appréciation facile.

TIGES DES VÉGÉTAUX ACOTYLÉDONÉS.

§ 84. Nous avons vu (§ 26) que l'embryon ou spore d'un végétal acotylédoné ne présente aucune distinction de parties destinées à se développer en racine, tiges et feuilles; que c'est ordinairement un simple utricule rempli par une matière granuleuse. S'il se trouve dans des conditions favorables à sa germination, la portion appliquée sur la terre ou sur toute autre surface suffisamment humide se prolonge en un tube qui joue le rôle de racine ; l'autre extrémité s'élargit, par la production de cellules nouvelles juxtaposées à la cellule primitive, en une expansion ou lame ordinairement horizontale, et plusieurs de ces cellules émettent à leur tour des tubes radicellaires semblables au premier. La végétation d'un grand nombre de ces plantes ne va pas au delà; il ne se produit pas de tiges. Dans plusieurs de celles qui vivent au milieu de l'eau, les Charas, par exemple, en même temps que les racines s'enfoncent dans la vase, s'élève en sens inverse un cylindre qu'on peut appeler tige ou branche : ce n'est qu'une suite de tubes ou cellules allongées accolées bout à bout. D'autres ont une sorte de tige déjà beaucoup plus compliquée, puisqu'elle résulte d'une réunion de cellules : les plus extérieures, conservant la forme primitive arrondie ou polyédrique, constituent l'enveloppe d'un axe composé de cellules de forme différente, allongées, ou même de véritables fibres : c'est ce qu'on observe, par exemple, dans les Mousses et les Hépatiques. Mais tous ces végétaux sont entièrement cellulaires; nous n'y voyons pas encore apparaître de vaisseaux.

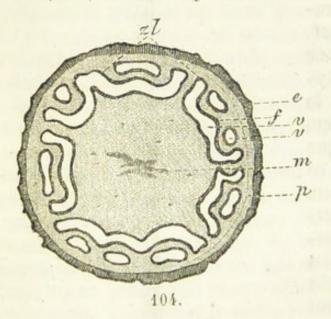

§ 85. Ils se montrent dans les Marsiléacées et dans les Lycopodes, dont la tige, sous une enveloppe cellulaire, présente un axe cellulovasculaire. Celui-ci consiste en un faisceau unique ou en plusieurs faisceaux liés ensemble par un parenchyme délicat. Ces faisceaux, en général, au lieu de la forme plus ou moins cylindrique que nous avons observée dans ceux des végétaux cotylédonés, sont aplatis; ils forment des sortes de rubans diversement pliés ou courbés dans leur longueur. Si l'on détermine, à l'aide du microscope, la nature

TIGE DES ACOTYLÉDONÉES.

des vaisseaux ainsi rapprochés en faisceaux aplatis, on ne trouve que des vaisseaux annulaires, ou le plus souvent de ceux que nous

avons désignés par le nom de scalariformes; ce sont même de longues fibres plutôt indépendantes que soudées bout à bout en un tube continu. Toutes ces plantes, telles que nous les trouvons maintenant sur le globe, sont herbacées; mais il paraît, d'après les restes fossiles d'autres plantes qu'on ne rencontre plus vivantes, qu'à une époque très antérieure, des tiges qu'on peut rapporter aux mêmes familles de végétaux offraient des dimensions beaucoup plus considérables et une consistance ligneuse.

§ 86. Il existe encore une grande famille de plantes acotylédonées très répandue sur la terre, celle des Fougères, qui peut avec une structure analogue nous donner quelque idée de ce qu'étaient ces grands végétaux antédiluviens. Dans nos climats tempérés, il est vrai, les Fougères ne se montrent qu'à l'état herbacé; ou, si leurs tiges vivent plus d'une année, elles rampent et se cachent sous la terre. Comme les Lycopodes, elles offrent à leur centre un faisceau unique ou un petit nombre de faisceaux également composés de vaisseaux la plupart scalariformes. On peut voir (fig. 46) la figure de quelques fragments de ces vaisseaux tirée d'une des



Fougères les plus grandes de notre pays, l'Osmonde royale.

403. Fougère en arbre (Alsophila perrotetiana) des Indes orientales. — La tige cylindrique présente à sa base, en ra, un épaississement conique résultant d'un amas de racines adventives qui en partent et la couvrent dans cette partie.

§ 87. Sous les tropiques et dans les climats chauds qui les avoisinent, les Fougères prennent souvent un tout autre développement. Elles deviennent de grands arbres qu'on voit s'élever jusqu'à une hauteur de 40 ou 45 mètres : ce n'est que parmi celles-ci que nous pourrons trouver des termes de comparaison avec les arbres dicotylédonés ou monocotylédonés qui ont fait précédemment le sujet de notre examen. Extérieurement, c'est aux monocotylédonés qu'elles paraissent le plus ressembler : ce sont des troncs élancés, simples, d'une épaisseur à peu près égale de la base au sommet, et couronnés de même à leur extrémité par une touffe de grandes feuilles, tandis qu'elles en sont entièrement dépourvues sur tout le reste de leur surface (fig. 403).

§ 88. On a cru longtemps que leur structure intérieure était celle des Monocotylédonées. Mais, si l'on coupe un de ces troncs (*fig.* 404) et qu'on en examine les éléments, on constate une différence notable; car, au lieu de petits faisceaux ligneux disposés au milieu du

parenchyme dans toute l'épaisseur du tronc, on en remarque tout de suite de très gros (zl) disposés en un cercle unique vers sa périphérie. Ces faisceaux tantôt sont séparés les uns des autres par du parenchyme, tantôt sont réunis ensemble par leurs bords de manière à constituer un anneau continu. Ils circonscrivent ainsi un très grand cylindre central cellulaire qui, par sa position et par sa

nature, pourra en conséquence recevoir le nom de moelle (m). En dehors de l'anneau est une autre zone cellulaire (p) recouverte par l'épiderme dans le premier âge du végétal, et plus tard par une enveloppe dure (e) que forment les bases longtemps persistantes des feuilles qui sont tombées à mesure que le tronc s'est élevé et qu'elles ont cessé d'en faire le couronnement.

104. Coupe horizontale d'une tige de Fougère en arbre (*Cyathea*). — m Moelle occupant tout le milieu. — $\approx l$ Zone ligneuse formée de gros faisceaux disposés comme ici en cercle interrompu (ou dans d'autres en anneau continu). — f Amas de fibres prosenchymateuses noires formant la bordure de chacun des faisceaux. — v Amas de vaisseaux scalariformes occupant le milieu de chacun des faisceaux et figurant ainsi une bande blanchâtre diversement pliée qu'encadre la bordure noire. — p Zone parenchymateuse extérieure, communiquant directement ou hon avec la moelle. — e Enveloppe dure tenant lien d'écorce.

TIGE DES ACOTYLEDONEES.

Les faisceaux, dans une coupe horizontale, se reconnaissent tout de suite à la durété de leur tissu et à leur couleur ordinairement noirâtre. Cette couleur est due à celle du prosenchyme (f), dont une zone dans chaque faisceau enveloppe l'amas des vaisseaux (v), qui appartiennent tous à ceux que nous avons désignés sous le nom d'annulaires, de rayés et surtout de scalariformes. Les faisceaux entiers, et par suite l'anneau qui résulte de leur rapprochement ou de leur réunion, présentent ordinairement la forme d'une bande qui, pliée ou courbée diversement sur elle-même, détermine ainsi des dessins plus ou moins bizarres, plus ou moins élégants. Outre ces éléments, les vaisseaux blanchâtres qui forment le centre des faisceaux, les cellules prosenchymateuses et noirâtres qui en forment tout le pourtour, M. Schultz dit y avoir constaté entre les premiers et les seconds des laticifères et des fibres allongées analogues à celles du liber. M. Mohl y nie l'existence de liber et de vaisseaux propres.

Quelquefois dans la moelle centrale on trouve disposés d'autres petits faisceaux arrondis, composés de vaisseaux du même ordre que ceux de l'anneau.

Si l'on examine celui-ci dans sa longueur et non plus dans sa coupe horizontale, on voit que ses grands faisceaux suivent un trajet, non rectiligne, mais onduleux, de manière à laisser entre eux, de distance en distance, en se réunissant et se séparant alternativement, des intervalles occupés par du tissu cellulaire qui fait ainsi communiquer celui de la moelle avec celui de la périphérie. On peut bien voir cette disposition en détruisant tout le tissu cellulaire par une macération qui n'attaque pas le tissu fibro-vasculaire. Celui-ci reste sous la forme d'un cylindre creux, d'un étui percé d'un grand nombre d'ouvertures assez régulières, qu'on pourrait comparer au cylindre ligneux de celles des tiges dicotylédones, où les faisceaux suivent également une marche onduleuse, ou mieux encore à l'étui de leur liber.

§ 89. Cette description suffit pour bien faire comprendre la différence des tiges de Fougères arborescentes avec celles de Monocotylédonées et de Dicotylédonées, savoir : la distribution des faisceaux disposés en cercle et non disséminés sans ordre apparent comme dans les premières, ne formant qu'un cercle unique et non plusieurs concentriques avec autant de cercles corticaux comme dans les secondes, et, dans tous les cas, la structure et la forme tout à fait différentes de ces faisceaux. On n'y a jamais trouvé de trachées déroulables, et nous avons vu que les éléments y sont tout autrement agencés que dans les végétaux cotylédonés. Si l'élève a bien suivi la description des uns et des autres, il saisira tous les traits de différence que nous ne pourrions détailler ici qu'en nous répétant.

§ 90. Le tronc des Fougères en arbre acquiert un certain diamètre par le développement des éléments divers qui le composent; puis il cesse de croître en largeur et conserve constamment la même en s'élevant progressivement en hauteur. A peine au-dessus du sol, il était déjà aussi épais qu'il le sera plus tard après être devenu un arbre de 45 mètres. C'est qu'il ne croît que par le sommet, que ses faisceaux s'allongent sans se multiplier, qu'ils restent les mêmes à tout âge et à toute hauteur.

On représente le tronc ligneux comme ne se ramifiant jamais ;

cependant sa division n'est pas sans exemple, et l'on peut voir dans les galeries du Jardin de Paris celle d'une Fougère des Indes (*Alsophila perrotetiana*) fourchue supérieurement. Si l'on coupe cette fourche en long, suivant l'axe (*fig.* 405), on voit que ce n'est pas, comme dans la ramification des végétaux cotylédonés, une branche s'implantant sur un tronc, mais que le tronc est comme dédoublé, que l'étui ligneux se continue également et sans interruption dans les deux côtés.

Beaucoup des plantes acotylédonées herbacées que nous avons citées plus haut, des Fougères, des Lycopodes, des Marsiléacées,

paraissent ramifiées aussi; mais on peut s'assurer que c'est toujours, comme dans le cas précédent, par un dédoublement de l'extrémité et non par implantation d'un rameau latéral. Chacune de ces ramifications forme une fourche, et quand on a suivi sa formation, on voit qu'elle était due à l'existence de deux bourgeons terminaux au lieu d'un seul. Ils s'allongent ensuite, tantôt également, tantôt inégalement; et se dédoublent à leur tour, tantôt tous deux, tantôt l'un des deux seulement. Le végétal paraît plus ou moins rameux d'après le nombre de fois que s'est répétée cette division.

§ 91. C'est donc une loi générale dans les tiges des Acotylédonées qu'elles ne croissent que par leur extrémité supérieure et par l'allongement des faisceaux déjà formés; qu'elles diffèrent ainsi de celles des Cotylédonées où de nouveaux faisceaux se forment incessamment sur la surface des anciens. On avait en conséquence proposé pour ces tiges le nom d'acrogènes, pour l'opposer aux noms antérieurement admis d'exogènes et d'endogènes. Mais nous savons que ce dernier doit être supprimé, et par conséquent il devient inutile d'introduire le premier. Ces mots cependant pourront quelque-

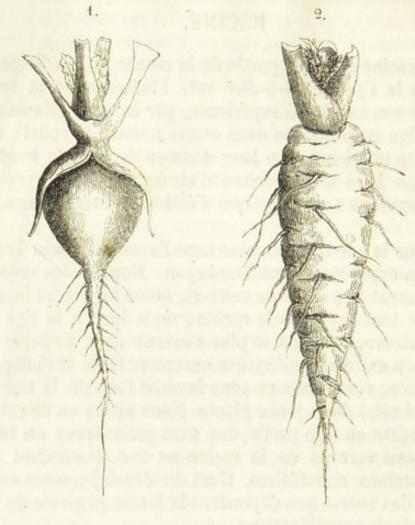
105. Coupe verticale de l'Alsophila perrotetiana à la hauteur de sa fourche. m Moelle. — zl Zone ou étui ligneux.

RACINE.

fois être employés utilement pour abréger le discours, si l'on a soin d'oublier les étymologies et de les définir chacun d'après les notions actuelles de la science.

RACINE.

§ 92. La racine est cette partie de la plante qui se dirige en sens contraire de la tige, c'est-à-dire vers l'intérieur de la terre. On appelle base son extrémité supérieure, par laquelle elle se continue avec cette tige au point que nous avons nommé le collet; sommet, son extrémité inférieure. Le long examen de la tige auquel nous nous sommes livré nous permet d'abréger beaucoup celui de la racine, puisqu'il ne s'agit plus que d'établir la comparaison de l'une à l'autre.


§ 93. Nous la suivrons, comme nous l'avons fait pour la tige, dès sa première apparition dans l'embryon. Nous avons déjà (§ 32) exposé comment la portion de celui-ci, qu'on appelle radicule, n'appartient pas tout entière à la racine, mais bien à la tige dans sa partie supérieure, et même le plus souvent dans presque toute sa longueur, son extrémité inférieure exceptée. Celle-ci s'allongera par la germination, continuant en sens inverse l'axe de la tige et complétant ainsi celui de la jeune plante. Nous avons vu de cet axe primaire ascendant ou tige partir des axes secondaires ou branches ; de même nous verrons de la racine ou axe descendant primaire partir des racines secondaires. C'est du développement comparatif de l'une et des autres que dépendent la forme générale de la racine et ses principales modifications.

En effet, cet axe primaire résultant de l'élongation immédiate de l'extrémité radiculaire de l'embryon peut continuer à s'allonger et s'épaissir en n'émettant latéralement que des racines secondaires relativement plus courtes et beaucoup plus grêles qui peuvent être désignées sous le nom de *radicelles*. Quant à lui, il forme le corps de la racine ou son pivot (*fig.* 406), et elle est dite alors *pivotante* (*palaris*).

Elle garde ce nom tant qu'elle conserve sa direction verticale et sa supériorité sur les branches auxquelles elle donne naissance. Celles-ci cependant peuvent s'épaissir et s'allonger elles-mêmes (fig. 407), et même quelquefois au point de rivaliser avec le pivot. La racine alors figure comme un tronc renversé et enterré avec ses ramifications, et peut être désignée par l'épithète de *rameuse*. Il peut même arriver que ces ramifications prennent un développement tel qu'il égale ou surpasse celui de l'axe dont elles naissent.

Lorsque ces racines secondaires sont nées vers la base de la pri-

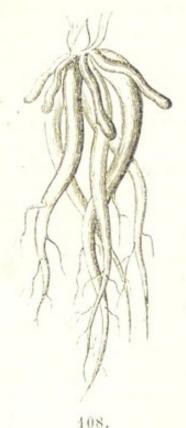
maire ou même à côté d'elle, et que, parties ainsi toutes d'une même hauteur, elles marchent et se développent concurremment en for-mant une touffe ou un faisceau dans lequel la primaire ne se dis-

106.

tingue que peu ou point des autres, on dit la racine dans son ensemble composée ou fasciculée (fig. 408), par opposition à la racine pivotante qu'on appelait aussi simple ou entière; et comme dans ce cas il arrive souvent que chaque brin du faisceau reste plus ou moins grêle, on la désigne souvent alors sous le nom de fibreuse. Quelquefois ces racines se terminent elles-mêmes en se ramifiant; maisplus souvent elles persistent indivises.

On comprend qu'entre ces deux modifications, tous les degrésintermédiaires peuvent s'observer, d'après la variation des proportions relatives que peuvent prendre les racines latérales par rapport à la racine axile. Celle-ci, souvent seule, et toujours la plus impor-

106, 1. Racine du Radis avec ses radicelles sur deux lignes. La partie supérieure et hombée, dépourvue de radicelles, appartient plutôt à la tigelle, et les deux lambeaux qui la couronnent à l'épiderme qui s'en est rompu.


406, 2. Racine pivotante de la Carotte, avec ses radicelles sur quatre lignes. La qua-trième, cachée derrière, ne peut s'apercevoir.

RACINE.

tante dans la germination, peut conserver sa prédominance, ou la perdre, ou même s'arrêter et s'atrophier totalement, remplacée dans ses fonctions par les autres.

107.

§ 94. Nous avons dit que la racine primaire résulte d'une simple élongation de l'extrémité inférieure de la radicule. Les secondaires se forment dans l'épaisseur du parenchyme cortical de la primaire, où elles s'aperçoivent d'abord sous l'apparence d'une petité pelote cellulaire qui s'allonge peu après en mamelon, puis en cylindre obtus à son sommet, se dirige horizontalement ou un peu obliquement de dedans en dehors, atteint enfin la couche épidermique qu'elle pousse devant elle, et finit par percer en se montrant au dehors, entourée ainsi à son point d'émergence par une petite collerette que lui forme l'épiderme percé. Cette collerette s'est quelquefois allongée en une gaîne, et prend le nom de coléorhize ($x_2\lambda_{2255}$, gaîne; $\rho \xi_{27}$, racine). On voit donc que la racine primaire est la seule qui ne soit pas coléorhizée, tandis que toute racine secondaire doit l'être, et que réciproquement toute racine coléorhizé est d'origine secondaire.

§ 95. La tige, placée dans certaines circonstances, émet de sa surface des racines qu'on appelle accessoires ou adventives. C'est ce qu'on observe avec une grande facilité sur certaines branches (de Saule ou de Peuplier, par exemple) dont on plonge l'extrémité infé-

107. Racine pivolante d'une espèce de Mauve (Malva rolundifolia).

108. Racine composée d'une espèce d'Asphodèle (Asphodetus tuteus).

rieure dans l'eau ou dans la terre humide, et qu'on nomme alors des boutures. Sur différents points de la surface de cette extrémité ne tardent pas à se montrer des filets qui s'allongent graduellement en se dirigeant en bas; ce sont autant de racines adventives, relativement auxquelles la partie inférieure de la branche joue le même rôle qu'aurait joué le pivot de la vraie racine relativement à ses ramifications. Certains végétaux n'ont pas même besoin, pour émettre ainsi des racines de la surface de leur tige ou de leurs branches, qu'elle se trouve en contact avec la terre ou l'eau; et l'on nomme *aériennes* celles qui naissent ainsi, se dirigeant du point de leur origine vers le sol, et suspendues dans l'air pendant ce trajet quelquefois très long.

Ce n'est pas indifféremment à tous les points que se développent les racines adventives, mais de préférence à ceux où il y a amas de sucs et de nourriture et rupture de l'épiderme, aux nœuds des tiges, sur les tumeurs accidentelles et les blessures, sur les lenticelles.

Le mode de formation de ces racines aériennes est analogue à celui des radicelles. Un petit corps celluleux caché dans l'épaisseur du parenchyme cortical s'agrandit peu à peu, s'allonge de dedans en dehors, pousse devant lui les tissus qui le recouvrent, déterminant ainsi une petite bosse à la surface de l'épiderme soulevé, et le perce enfin en se montrant à l'extérieur.

Ce développement a été suivi avec soin par plusieurs observateurs, et notamment par M. Trecul. Il a reconnu : 4° Que le petit mamelon radicellaire se revêt d'une couche particulière qui enveloppe son sommet comme une sorte de coiffe, et qu'il nomme en conséquence *piléorhize* ($\pi \tilde{\iota}$) o₅, chapeau), et qui peut persister plus ou moins longtemps après sa sortie au dehors. 2° Que ses vaisseaux se montrent d'abord sous la forme utriculaire au contact du corps ligneux de la branche d'où naît la racine adventive, et en cercle de manière à circonscrire un centre celluleux, une sorte de moelle, puis s'allongeant, convergent les uns vers les autres et finissent par se réunir en un faisceau central entouré par une couche cellulaire ou corticale, que couronne à l'extrémité la piléorhize distincte de l'épiderme.

Il est probable que dans toutes les racines secondaires, quelle que soit leur origine, qu'elles naissent sur la racine proprement dite, sur des tiges souterraines, sur des tiges ou des branches aériennes, les mode de développement est analogue.

§ 96. Les ramifications des racines, de plus en plus petites, finissent par des sortes de fils ou *fibrilles* qu'on a aussi nommées le *chevelu*. Dans les racines indivises, vers le bout, la surface est souvent

RACINÉ.

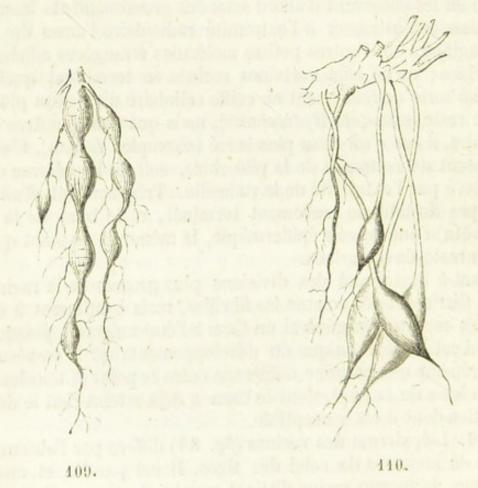
toute couverte de ces fibrilles; quelquefois ce sont elles seules qui paraissent constituer la racine, et d'autres fois, au contraire, elle en est complétement dépourvue. L'existence des fibrilles est temporaire; elles se flétrissent sur les parties vieillies de la racine, et il s'en produit de nouvelles vers les extrémités plus jeunes.

§ 97. C'est en effet précisément à ces extrémités que s'exerce le plus activement l'une des principales fonctions des racines, le passage des liquides de la terre environnante dans la plante. On avait cru qu'il se faisait surtout au moyen de renflements celluleux qui termineraient les fibrilles ou les dernières racines, quel que soit leur mode de division, se gonfleraient à la manière d'une éponge en s'imbibant des liquides en rapport avec eux, et dévraient en conséquence être désignés sous le nom de spongioles (petites éponges). L'examen microscopique apprend qu'on s'en était fait une idée fausse en les observant d'abord sous des grossissements insuffisants qui laissaient attribuer à l'extrémité radiculaire l'amas de flocons mucilagineux ou d'autres petites molécules étrangères adhérentes à sa surface; qu'en effet certaines racines se terminent quelquefois par une sorte de renflement ou coiffe cellulaire d'un tissu plus lâche que le reste (exemple, Hydrocharis), mais que dans d'autres cas, au contraire, il est d'un tissu plus serré (exemple, Lemna). C'est probablement un reste soit de la piléorhize, soit de l'épiderme détaché ou enlevé par l'extrémité de la radicelle. Très souvent d'ailleurs il n'y a pas du tout de renflement terminal, et le bout de la fibrille est revêtu d'une couche épidermique, la même en ce point que dans tout le reste de sa surface.

Quant à l'extrémité des divisions plus grosses de la racine, qui ne se flétrissent pas comme les fibrilles, mais continuent à croître, elle doit montrer en général un tissu à l'état naissant, puisque c'est elle qui est le siége unique du développement; et il en résulte nécessairement une certaine différence entre ce point et tous les autres plus voisins de la base, dont le tissu a déjà atteint tout le degré c'e formation dont il est susceptible.

§ 98. L'épiderme des racines (*fig.* 83) diffère par l'absence constante de stomates de celui des tiges. Il est par là, et aussi par sa forme, beaucoup moins distinct que lui du tissu cellulaire sousjacent.

Les cellules qui le forment se prolongent très souvent en poils simples ou en papilles. On en observe en général vers la base de la radicule, dès qu'elle commence à s'allonger par la germination (fig. 144 rr'), sur les dernières ramifications encore très jeunes, sur les fibrilles. Ces prolongements multiplient la surface des parties à une époque où probablement elle concourt, quoiqu'à un degré


S

moindre, avec les extrémités, à l'absorption des fluides ambiants. Ce sont ces poils épidermiques que quelques auteurs ont nommés *fibrilles* ou *chevelu*, et il peut résulter quelque confusion de ce même nom donné à des organes, les uns simples, les autres composés et présentant même les premiers dans leur composition.

§ 99. Les vaisseaux qu'on rencontre dans les racines jusque tout près de leurs extrémités sont analogues à ceux des tiges, en en exceptant les trachées déroulables qu'on n'y a signalées qu'exceptionnellement et toujours avec incertitude.

Les fibres y sont aussi les mêmes.

Le tissu cellulaire s'y montre en général gorgé de sucs, et souvent la présence de la fécule en grande quantité dans ses cavités prouve que la racine, à la fonction d'absorber et de conduire le fluide nourricier encore brut, en joint souvent une autre, celle de servir

de dépôt pour la nourriture toute formée. Dans ce cas, cette portion du tissu prend souvent une grande extension, et il en résulte des renflements, soit sur une certaine étendue de la racine, soit sur une racine tout entière. Tantôt c'est le corps même ou pivot de la racine qui est ainsi épaissi, et le maximum de son épaississement peut se

109. Racine d'une espèce de Géranium (Pelargonium triste).
 110. Racine de Filipendule (Spiræa filipendula).

RACINE.

montrer près de la base (comme dans la Carotte [fig. 406, 4]), ou vers le milieu (comme dans le Radis [fig. 406, 2]); tantôt dans une racine composée, toutes les branches, ou seulement quelques unes, se renflent de distance en distance et en manière de chapelet (dans le *Pelargonium triste* [fig. 409], par exemple), ou en un point seulement (dans la *Filipendule* [fig. 440], par exemple), ou dans leur totalité (comme chez les *Dahlia*). Ces renflements, le plus ordinairement féculifères, prennent le nom de *tubercules*, 'et les racines l'épithète de *tubéreuses*.

Jetons maintenant un coup d'œil sur les racines comparées dans les trois grandes classes de végétaux.

§ 400. Racine des Dicotylédonées. — C'est dans cette classe et parmi les arbres surtout qu'on trouve les racines pivotantes, et souvent leurs ramifications représentent assez exactement, par leur nombre, leur grosseur et leur étendue, celles de la tige. Quelquefois le pivot ne s'enfonce pas profondément et s'épuise même près de la base, tandis que les branches prennent un grand développement latéral, de même encore que dans beaucoup de tiges. Mais, malgré ces ressemblances fréquentes, le rapport des tiges et des racines est loin d'être constant tant pour la forme que pour le volume. Il y a des racines très volumineuses pour d'assez petits végétaux; il y en a de fort peu développées pour de grands arbres, et ceux-là naturellement se déracinent avec beaucoup de facilité.

Si l'on compare la structure interne de la tige et de la racine d'un arbre dicotylédoné, on voit que la seconde diffère de la première par l'absence de moelle et d'étui médullaire. Le bois, dépourvu par conséquent de trachées, forme donc l'axe de la racine. On a peut-être exagéré ce caractère en l'admettant comme absolu, en supposant que la moelle cesse toujours complétement avec son étui au collet. Cela est vrai dans la plupart des plantes herbacées, mais non dans tous les arbres. Le Noyer et le Marronnier d'Inde, par exemple, offrent la continuation de la moelle très développée dans une assez grande étendue de la racine.

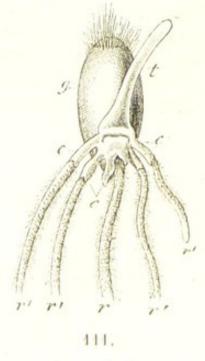
A cette structure de la racine dans les végétaux dicotylédonés paraît se lier un caractère sur lequel l'attention ne s'est portée qu'assez récemment, la disposition régulière des radicelles par séries rectilignes, verticales ou légèrement obliques. Le nombre de ces séries, qui est toujours peu élevé (2, 3, 4, 5, rarement davantage), se montre à peu près constant dans une même plante, souvent même dans tout un groupe naturel de plantes plus ou moins vaste (famille, genre, espèce). Ainsi, tous les végétaux de la famille des Crucifères ou des Fumariacées présentent leurs radicelles disposées suivant deux lignes longitudinales, situées chacune d'un côté de la racine (fig. 106, 2);

tous ceux de la famille des Ombellifères, suivant quatre lignes (fig. 406, 4); plusieurs de la famille des Légumineuses (Vesces, Gesses, Trèfles), suivant trois lignes. C'est dans les racines très jeunes, lorsque les radicelles commencent à sortir de l'axe primaire développé par la germination, qu'on constate facilement et nettement cette disposition qui ordinairement devient plus obscure et confuse par les développements ultérieurs et inégaux. A cette première époque il n'y a encore de formé à l'intérieur de l'axe que peu de faisceaux fibro-vasculaires, et l'on a reconnu que ces premiers faisceaux sont en même nombre que les séries de radicelles : ce qui s'explique aisément. C'est au contact de ces faisceaux que se forment les vaisseaux des radicelles, soit que les petits corps celluleux destinés à les produire par leur évolution soient situés vis-à-vis d'eux (comme cela peut se voir, par exemple, dans la Fève de marais); soit qu'ils soient situés vis-à-vis des rayons médullaires, comme cela paraît avoir lieu plus communément, et tirent leurs vaisseaux des deux faisceaux entre lesquels le ravon s'étend. Dans tous les cas, ces faisceaux, comme les rayons qui les séparent, dessinent des lignes longitudinales, et les radicelles formées vis-à-vis des uns ou des autres doivent accuser ces lignes à l'extérieur. Ces faits, entrevus assez vaguement par plusieurs botanistes, ont été indiqués nettement par M. Mohl, et M. Clos enfin les a constatés dans leur généralité, d'abord par le nombre des séries radicellaires dans une grande quantité de plantes ou de groupes, ensuite par le rapport de ce nombre avec celui des premiers faisceaux de la racine principale.

Les racines s'accroissent en épaisseur comme les tiges, formant chaque année une zone de bois et une zone d'écorce; mais leur mode d'accroissement en longueur n'est pas tout à fait le même. Dans les tiges et leurs branches, les pousses, jusqu'au moment ou elles cessent de s'allonger, croissent dans toute leur longueur. Dans les racines, ce n'est que par leur extrémité, ainsi que nous l'avons annoncé précédemment. C'est un fait qu'il est facile de constater par des signes tracés de distance en distance sur une pousse de tige et sur une pousse de racine : les signes s'éloigneront les uns des autres sur la première; ils conserveront les mêmes intervalles sur la seconde, qui montrera au delà du dernier tout l'allongement qu'elle a acquis pendant l'expérience.

En annonçant le défaut de bourgeons comme un caractère qui distingue nettement les racines des tiges, nous n'avons parlé que des bourgeons normaux, ceux qui naissent dans une situation régulière et prévue, d'ordinaire immédiatement au-dessus des feuilles. Nous verrons qu'il peut s'en produire d'autres çà et là sur la tige, dans des points où il ne s'en développe pas ordinairement, et qui se sont

88


.

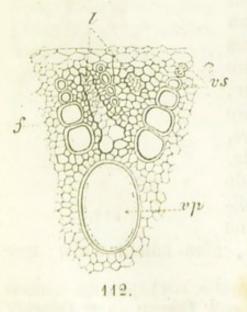
RACINE.

trouvés dans des circonstances particulières favorables à ce développement. Or, ces bourgeons, qu'on appelle adventifs, se montrent aussi quelquefois sur des racines, surtout quand elles se trouvent placées dans les circonstances ordinaires de la tige. Cette possibilité de production réciproque de bourgeons adventifs sur les racines, de racines adventives sur les tiges, est un rapport important entre les unes et les autres.

§ 101. **Racine des monocotylédonées.** — Elle est le plus souvent composée (fig. 108, 111), et ses rameaux, quoique divisés quelquefois, restent souvent aussi indivis. L. C. Richard, frappé de cette disposition commune dans les monocotylédonées, et remarquant que ces racines partielles, qui par leur ensemble forment la composée, présentent à leur origine cette petite gaîne que nous avons nommée coléorhize, que ne présente pas la racine des dicotylédonées, en avait conclu qu'elle ne se développe pas dans celles-ci de la même manière que dans les autres, et, substituant ce caractère qu'il croyait plus sûr et plus général, à celui qu'on tire généralement du nombre des cotylédons, il nommait les dicotylédonées exorhizes et les monocotylédonées endorhizes, parce que la racine serait extérieure ($\varepsilon \xi \omega$, en dehors) dans les premières, intérieure ($\varepsilon z \partial \omega_z$, en dedans) dans les secondes. Mais l'histoire du développement comparatif de la racine primaire et des racines secondaires, telle que nous l'avons exposée

précédemment, montre que cette observation, si fine d'ailleurs, était pourtant incomplète et la différence fondée sur elle moins réelle qu'apparente. En effet, d'une part les dicotylédonées sont endorhizes quant à toutes leurs racines secondaires qui percent la couche corticale pour se produire au dehors; de l'autre, les monocotylédonées sont exorhizes dans leur racine primaire toutes les fois qu'elle se développe. Or, elle se développe dans un certain nombre d'entre elles, par exemple dans les Palmiers, des Liliacées, des Amaryllidées, etc., etc. Mais il est vrai qu'elle n'augmente pas de manière à former un pivot, et s'arrête ordinairement dans sa croissance égalée ou

8.


surpassée par les racines secondaires, nées autour d'elle; que

^{111.} Graine de Blé germant. — g La masse de la graine. — t La jeune tige commençant à s'élever. — r' r' r' r' Racines couvertes de petits filaments. — ccc Coléorhize ou gaine dont chaque racine s'enveloppe à sa base en perçant la couche superficielle de l'embryon.

souvent même elle se réduit à une sorte de moignon, comme dans les Scitaminées, ou même paraît ne pas se développer du tout, comme dans les Graminées (*fig.* 444). Telle est donc la différence véritable du développement radiculaire dans les dicotylédonées et monocotylédonées : dans les premières, développement fréquent et quelquefois presque exclusif de l'axe primaire ; dans les secondes , avortement fréquent et plus ou moins précoce de ce même axe, de telle sorte que l'ensemble de la racine ne se compose plus que d'axes secondaires , par conséquent coléorhizés.

Toutes ces racines secondaires ne se conservent pas si la tige est vivace, mais meurent dans l'ordre où elles se sont formées, de manière à former des cercles de plus en plus extérieurs, puisque ceux de première année se sont formés tout autour de la radicule qui était la continuation de l'axe même.

Les racines aériennes, extrêmement rares dans les Dicotylédonées, se montrent ici fréquemment. On les voit partir plus ou moins haut de la tige : dans beaucoup de Palmiers, elles se produisent en grande abondance à la base du tronc, qu'elles couvrent tout entière et contribuent ainsi à épaissir considérablement. Dans certaines Orchidées, dans les espèces du genre Pothos, elles acquièrent d'assez grandes dimensions et offrent une apparence singulière par leur surface d'un blanc mat, couleur due à une couche accessoire formée par plusieurs rangs de cellules remplies d'air, les plus extérieures quelquefois allongées en poils, sur la paroi desquelles se dessinent des spirales ou des réseaux élégants, couche qui vient renforcer et recouvrir l'épiderme : de là le nom de *voilées (radices velatæ*), que M. Schleiden donne à ces racines.

La structure interne est celle des tiges. Dans les grosses racines, on trouve des faisceaux fibro-vasculaires plus ou moins nombreux dispersés dans du parenchyme, plus rares au centre, multipliés et plus pressés vers la circonférence, et une enveloppe corticale cellulaire couvrant souvent une couche fibreuse. Dans les petites, ces faisceaux se concentrent ou se réduisent souvent en un seul qui forme l'axe, environné d'une zone cellulaire. Une différence cependant se fait remarquer dans la distribution des éléments de ces fais-

112. Faisceaux pris dans la section transversale de la racine d'un Palmier (Diplothemium maritimum), pour montrer la disposition relative des vaisseaux entre eux et avec les

RACINE.

ceaux comparés à ceux des tiges; leurs vaisseaux, qui sont groupés en séries simples ou souvent partagées en V (fig. 442), dirigées comme des rayons par rapport à l'axe de la racine, vont en décroissant de dedans en dehors, d'autant plus petits (vs), et aussi d'autant plus tôt formés qu'ils sont plus extérieurs dans la série; d'autant plus gros (vp), quoique d'une formation relativement moins avancée, qu'ils sont plus intérieurs : ce qui paraît le contraire de l'agencement et du développement des vaisseaux dans les faisceaux des tiges.

§ 102. Racine des Acotylédonées. - Ici, pas de radicule développée par la germination. Ainsi que nous l'avons dit plusieurs fois (§ 93), des prolongements tubuleux de cellules analogues seulement à ceux de l'épiderme des autres racines en remplissent les fonctions et pompent la nourriture pour la jeune tige. Celle-ci, une fois développée, émet des racines adventives, les seules qu'on observe dans ces plantes. C'est souvent aux nœuds qu'elles se produisent, soit tout autour, si l'axe du végétal s'élève verticalement, soit seulement du côté de la terre, s'il marche horizontalement. Sur les troncs des Fougères en arbre, ces racines s'accumulent à la partie inférieure en telle quantité, qu'elles vont jusqu'à en doubler ou tripler l'épaisseur (fig. 403, ra): de là la forme conique que ces troncs montrent souvent jusqu'à une certaine hauteur, où le cylindre formé par leur tige se montre nu et dégagé de cette sorte d'épaisse chevelure formée en bas par les racines adventives. Ces racines rappellent l'organisation de la plante à laquelle elles appartiennent, purement utriculaires dans celles où la tige l'est aussi, montrant l'association des vaisseaux aux cellules dans les végétaux acotylédonés où nous l'avons signalée également pour la tige. Elles se présentent alors sous la forme de filets plus ou moins épais, simples ou rameux, dans lesquels un faisceau fibro-vasculaire forme l'axe entouré d'une couche cellulaire que revêt une enveloppe brunâtre et noirâtre en vieillissant. Ses fibres et ses vaisseaux sont de la même nature que ceux de la tige (§ 89).

autres éléments. — vp Gros vaisseaux ponctués situés en dedans. — vs Vaisseaux scalariformes, plus en dehors, et d'autant plus petits qu'ils sont plus éloignés du centre. f Tissu fibreux ou composé d'utricules allongés qui accompagnent les vaisseaux. l Groupes de vaisseaux propres, des larges en dedans, de très étroits en dehors.

FEUILLES.

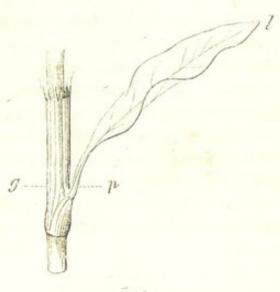
§ 403. Nous avons examiné l'axe de la plante : 4° dans sa partie ascendante ou tige; 2° dans sa partie descendante ou racine. Nous avons vu celle-ci émettre des prolongements latéraux, et, dans un grand nombre de cas, ces prolongements acquérir un volume plus ou moins grand relativement à l'axe, qui peut s'arrêter plus ou moins vite dans son développement. Il peut même ne pas se développer du tout, et alors ce sont les productions latérales qui forment la totalité des racines. Il peut même arriver alors qu'il n'y ait pas d'axe descendant et que toutes les racines partent de la partie inférieure de la tige. Cette dégradation des racines semble en rapport avec la série des végétaux, puisque nous avons observé le plus grand développement de l'axe primaire descendant dans les Dicotylédonées; qu'il se développe à peine relativement 'aux racines latérales dans les Monocotylédonées, et qu'il manque complétement dans les Acotylédonées.

§ 404. Passons maintenant aux productions latérales de la tige, aux feuilles et aux bourgeons. Nous considérerons les feuilles d'abord isolément dans leur structure et dans leur forme, puis dans leurs rapports mutuels avec la tige.

STRUCTURE GÉNÉRALE DES FEUILLES.

Les feuilles sont ces expansions, le plus souvent plates et vertes, qui naissent du pourtour de la tige, et que tout le monde connaît sous cette forme la plus ordinaire. Leur base est l'extrémité, le plus souvent amincie, par laquelle elles se continuent avec la tige; leur sommet ou pointe, l'extrémité opposée.

La base se rétrécit fréquemment en une sorte de queue où la dimension en longueur excède de beaucoup la dimension en largeur, et prend l'apparence d'une sorte de rameau plus ou moins grêle; c'est ce qu'on appelle le *pétiole* (*petiolus*).


Il n'est pas rare de voir ce pétiole lui-même se dilater à sa partie inférieure par laquelle il tient à la tige et l'embrasse quelquefois dans une portion plus ou moins grande de sa circonférence. C'est ce qu'on nomme la guine (vagina); mais souvent cette dilatation semble se détacher en partie ou tout à fait du pétiole, et alors le plus souvent elle forme de chaque côté un petit appendice de forme variée, présentant assez souvent celle d'une petite feuille; ces appendices s'appellent des stipules (stipulæ).

On peut donc considérer la feuille complète comme formée de

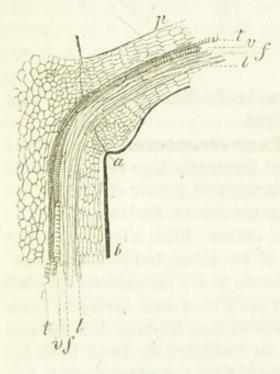
FEUILLES. STRUCTURE.

trois parties : 4° la limbaire, celle que forme la dilatation terminale ordinairement aplatie, ou le *limbe* (*limbus*); 2° la pétiolaire; 3° la vaginale, formée par la gaîne ou les stipules. Une feuille de Renouée

(Polygonum [fig. 443]) offre ensemble ces trois parties bien visibles. Dans d'autres plantes, la feuille est réduite à deux de ces parties ou à une seule. Comme c'est le limbe qui constitue en général la partie la plus étendue et la plus visible et la première formée, que c'est lui qui est vulgairement connu sous le nom de feuille, que c'est en lui que s'exercent les fonctions que cet organe fondamental est appelé à remplir dans la vie du végétal, c'est son examen qui nous occupera prin-

113.

cipalement. Nous l'étudierons : 1° dans les feuilles qui vivent à l'air ; 2° dans les feuilles qui vivent sous l'eau.


§ 105. Feuilles aériennes. — Leur structure. — C'est dans le cours de la première année où s'est formée la tige ou la branche que les feuilles se montrent et s'épanouissent autour d'elle. On les voit d'abord, sous la forme de petites masses ou de lames, rapprochées et serrées les unes contre les autres. Elles s'écartent entre elles à mesure que la tige s'allonge, et en même temps s'agrandissent, en prenant graduellement la forme et les dimensions qu'elles doivent définitivement conserver. Lorsqu'elles y sont arrivées, si on les examine à l'intérieur, on voit qu'elles sont formées des mêmes éléments que la tige, qui semblent se continuer de l'une dans les autres, des mêmes vaisseaux, des mêmes fibres et parenchyme. Ces vaisseaux et fibres sont dans la tige même réunis en un faisceau, et quelquefois conservent plus ou moins longtemps cette disposition en se détachant et s'éloignant de cette tige : c'est alors qu'on a un pétiole. Ce faisceau n'est pas simple ordinairement, mais composé par la juxtaposition de plusieurs ; et, lorsque les latéraux s'écartent un peu des autres à la naissance ou base de la feuille, on a une gaîne ou des stipules. Tantôt près de cette base, tantôt plus ou moins loin, tous ces faisceaux commencent à s'écarter : c'est le commencement du limbe, qui résulte ainsi de leur épanouissement. Les faisceaux

^{413.} Feuille d'une Renouée (*Polygonum hydropiper*) avec un bout de tige qui la porte. — l Limbe. — p Pétiole. — g Gaine ou partie vaginale embrassant la tige, et terminée supérieurement.par des cils.

fibro-vasculaires forment la partie la plus solide du limbe, sa charpente ou son squelette : leurs intervalles sont remplis par le parenchyme. Le tout est enveloppé par l'épiderme qui continue celui de la tige.

§ 406. Le limbe formé par une expansion aplatie, présente nécessairement deux faces (pagina) et deux bords (margines) qui, partant de sa base, vont se réunir à son sommet. Dans la majorité des végétaux, dans la presque totalité de ceux de notre pays (4), son plan est perpendiculaire, ou plus souvent un peu oblique par rapport à la tige, de manière qu'il présente une face supérieure ou regardant en haut, une face inférieure ou regardant en bas, et que ses deux bords regardent l'un à droite et l'autre à gauche.

§ 407. Le limbe, quoique aplati, offre entre les deux lames d'épiderme qui le couvrent une certaine épaisseur occupée par le sque-

114.

lette fibro-vasculaire et le parenchyme. Y observe-t-on des vaisseaux et des cellules de diverse nature, et, dans ce cas, comment sont-ils distribués les uns par rapport aux autres? Nous avons dit que les faisceaux se continuent avec ceux de la tige; nous savons d'autre part que ceux-ci, soit dans les tiges des Monocotylédonées, soit dans celles des Dicotylédonées de première année, se composent en dedans de trachées déroulables (fig. 414 t), un peu plus extérieurement de vaisseaux d'un autre ordre, annulaires, rayés ou ponctués (v), avec des fibres ligneuses (f): tout à fait en dehors, de vais-

seaux propres et de fibres corticales (l). Les rapports de ces parties

(1) L'aspect des arbres et des forêts de la Nouvelle-Hollande avait frappé les premiers voyageurs qui les virent, par la sensation singulière que la distribution des ombres et des clairs donnait à l'œil; et l'on s'étonna de cet effet insolite longtemps avant d'en reconnaître la cause. M. R. Brown, en visitant ce pays, se rendit facilement compte de cet éclairage bizarre, en constatant que la plupart de ces arbres, au lieu d'avoir des feuilles situées comme les nôtres, les ont en sens contraire, de telle sorte que la lumière glisse ainsi entre des lames verticales, au lieu de tomber sur des lames horizontales. Ce sont de véritables feuilles dans un certain nombre d'espèces, mais dans d'autres de simples phyllodes. (Voyez § 122.)

414. Passage d'un faisceau fibro-vasculaire d'une branche b dans un pétiole p. On voit que les éléments, dirigés verticalement dans le premier, prennent une direction horizontale dans le second, et conservent, malgré ce changement, les mêmes rapports entre

FEUILLES. STRUCTURE.

constituantes se conservent dans la feuille (fig. 444 p). Le faisceau, vertical dans la tige, en devenant oblique ou horizontal dans la feuille, doit tourner en haut la portion qui avant regardait en dedans, en bas la portion qui avant regardait en dehors. Or, un faisceau fibrovasculaire de la feuille présente, dans sa moitié tournée vers la face supérieure, d'abord des trachées (t), puis des vaisseaux d'un autre ordre (v) accompagnés de fibres (f); dans sa moitié tournée vers la face inférieure, des vaisseaux propres et des fibres analogues à celles du liber (l) : de telle sorte qu'on pourrait, jusqu'à un certain point, comparer la supérieure au bois et l'inférieure à l'écorce.


§ 408. L'épiderme offre aussi en général sur l'une et l'autre face des différences remarquables. Nous avons déjà signalé précédemment les stomates beaucoup plus abondants sur l'inférieure que sur la supérieure. La première présente encore souvent des poils et des écailles qui manquent ou sont beaucoup plus rares sur la supérieure, et par là une plus grande ressemblance avec l'aspect extérieur de l'épiderme de la jeune tige. Dans les feuilles qui flottent sur l'eau (celles du *Nymphœa*, par exemple), c'est au contraire l'épiderme supérieur qui est percé de stomates, tandis que l'inférieur en est dépourvu. Dans toutes les feuilles, les stomates ne s'observent que sur la portion qui correspond au tissu cellulaire, et manquent sur celle qui correspond aux faisceaux fibro-vasculaires.

§ 409. Quant au parenchyme, il mérite un examen particulier comme siège des fonctions spéciales de la feuille.

En général, dans celles qui sont assez minces et aplaties ($\beta g. 443$ et 146), on peut distinguer deux régions ou couches de ce parenchyme, l'une supérieure, l'autre inférieure. Dans toutes deux, les cellules sont, à l'état normal, remplies de granules colorés en vert par la chlorophylle; mais elles n'ont en général ni la même forme, ni le même agencement dans l'une et dans l'autre. Car dans la supérieure (ps), au-dessous de l'épiderme (es), on trouve un, deux ou trois rangs d'utricules oblongs, beaucoup plus étroits que ceux de cet épiderme, obtus à leurs deux bouts, dirigés perpendiculairement à la surface de la feudle, pressés les uns contre les autres de manière à ne laisser entre eux que d'étroits méats (m), s'écartant cependant quelquefois de manière à laisser entre plusieurs d'entre eux une lacune qui se trouvé le plus souvent correspondre à un stomate ($\beta g = 80 \ s$). La couche inférieure (pi) est composée d'utricules irréguliers, tantôt rameux, unis entre eux seulement par le bout de

eux. On voit aussi comment ils se modifient ainsi que le tissu cellulaire environnant, en passant ainsi d'un organe dans un autre, d'où résulte l'articulation a entre ces deux organes. — t Trachées. — v Vaisseaux spiraux d'un autre ordre ; ils sont ici annulaires. — f Fibres ligneuses. — t Fibres corticales ou du liber.

leurs branches, tantôt simples et accolés par la plus grande partie de leurs surfaces, mais dans tous ces cas laissant entre eux de nombreuses lacunes (l) qui communiquent les unes avec les autres et

forment un parenchyme réticulé, qu'on pourrait appeler caverneux ou spongieux. De ces lacunes, beaucoup sont situées immédiatement sur l'épiderme inférieur, criblé, comme on le sait, d'un bien plus grand nombre de stomates que l'autre, et c'est précisément à ces stomates que correspondent les lacunes. Le parenchyme de ces feuilles est donc généralement plus serré en haut (ps), en bas plus lâche (pi), creusé d'un plus ou moins grand nombre de lacunes communiquant entre elles ou immédiatement ou par les méats, et au dehors par les ouvertures des stomates.

Sa disposition n'est pas la même tout à fait dans les feuilles épaisses des plantes qu'on désigne vulgairement sous le nom de grasses, dont les cellules assez grosses laissent peu d'intervalle entre elles, et ne renferment que peu de globules verts, surtout vers le centre où leur amas blanchâtre simule une sorte de moelle.

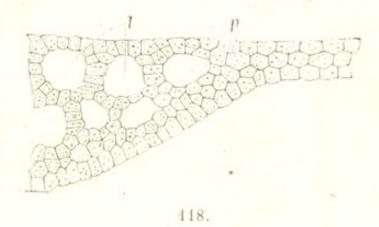
Il est inutile de s'étendre ici sur les modifications diverses que peut présenter ce parenchyme des feuilles, suivant le végétal où on l'examine, suivant la place que la feuille observée y occupe, et même d'une même feuille à différents âges. Mais l'existence dans son épaisseur d'un certain nombre de méats et de lacunes, dont les plus extérieurs s'ouvrent sous les stomates, et le rapport constant qui existe entre la fréquence de ces vides et l'intensité de la coloration en vert, sont deux faits généraux qu'il ne faut pas perdre de vue.

On peut constater cette disposition au moyen de tranches très

115. Tranche mince verticale faite sur une feuille de Lis et vue à un fort grossissement. — es Épiderme de la face supérieure. — ei Épiderme de la face inférieure. ps Parenchyme de la région supérieure. — pi Parenchyme de la région inférieure. m Méats. — ll Lacunes.

116. Tranche semblable sur la feuille de la Balsamine. -- Les mêmes lettres ont la même signification que dans la figure précédente. -- ss Stomates.

FEUILLES. STRUCTURE.


minces de la feuille coupées perpendiculairement à sa surface (fig. 446); elles sont instructives surtout si elles intéressent quelques

stomates. La correspondance de ceux-ci avec les lacunes peut s'étudier aussi sur des lambeaux d'épiderme (fig. 447) avec lequel on a enlevé une petite couche des cellules vertes (pp) qui lui adhèrent, et qui figurent sous le microscope un réseau vert dont les mailles circonscrivent des aréoles incolores dans lesquelles se trouve en général compris un stomate.

s 117.

§ 440. Feuilles submergées. — Les feuilles qui vivent sous l'eau présentent une structure fort différente. Elles sont dépourvues d'épiderme, et par conséquent de stomates. Le squelette fibro-vasculaire y manque aussi, et si quelquefois à l'extérieur on croit l'apercevoir, un examen plus attentif fait avec des grossissements

suffisants fait voir des cellules allongées où l'on avait cru d'abord, par analogie, devoir trouver des vaisseaux. C'est donc le parenchyme seul qui compose la feuille; mais ses cellules, sur deux ou trois rangs seulement d'épaisseur en général, conséquemment la plu-

part en contact immédiat avec le liquide environnant, sont ordinairement régulières, intimement soudées ensemble, sans intervalles allongés en méats ou dilatés en lacunes, cependant montrant toutes dans leur cavité des granules verts (fig. 448 p). Il est vrai que dans celles de ces feuilles qui sont plus épaisses, on trouve quelquefois des lacunes (fig. 448 l); mais alors celles-ci, ordinairement de forme et de disposition très régulières, n'ont de rapport ni les unes avec les autres, ni avec le dehors, complétement closes par leur paroi de cellules environnantes. Elles paraissent destinées à diminuer la pe-

^{417.} Lambeau de l'épiderme inférieur e de la feuille de la Balsamine, sur lequel est appliqué le réseau formé par la couche inférieure du parenchyme p. Les aréoles de ce réseau sont autant de lacunes l, correspondant souvent à des stomates ss.

^{118.} Coupe perpendiculaire à la surface d'une petite portion d'une feuille submergée de Potamogeton perfoliatum. -p l'arenchyme. -l Lacunes.

santeur spécifique de la feuille et à la soutenir ainsi dans l'eau, jouant par là un rôle analogue à la vessie natatoire des poissons.

On peut observer que ces feuilles retirées de l'eau se dessèchent, se crispent et se déforment très rapidement, ce qui s'explique par l'absence d'un épiderme qui retarde l'évaporation des liquides contenus dans le parenchyme, et d'un squelette solide qui le maintienne.

FORME GÉNÉRALE DES FEUILLES.

§ 444. Nous venons de voir que ces feuilles sont formées par du parenchyme et des faisceaux composés soit de vaisseaux et de fibres, soit, dans les végétaux aquatiques ou inférieurs, de cellules allongées et grêles. Ces faisceaux qu'on aperçoit ordinairement à l'extérieur, surtout à la face inférieure du limbe où ils font souvent saillie, ont reçu le nom de *nervures (nervi)*, et leur disposition, celui de *nervation*. C'est d'elle et de l'étendue dans laquelle les intervalles des nervures sont remplis par le parenchyme, que dépend la forme générale de la feuille. Les faisceaux destinés à former les nervures peuvent rester réunis plus ou moins longtemps, puis s'écarter par une sorte d'épanouissement, et nous savons qu'il y a alors distinction de pétiole et de limbe.

> § 112. Nous examinerons plus tard le premier, et, pour le moment, nous nous bornerons à citer le cas où le faisceau se termine sans être divisé, et où par conséquent la feuille tout entière conserve la forme d'un pétiole. Si elle finit en pointe, elle rappelle celle d'une aiguille, et est dite *aciculaire (folium acerosum)*: c'est ce qu'on observe dans beaucoup de nos arbres verts, Pins, Sapins, Mélèzes (*fig.* 419).

> Mais plus ordinairement le faisceau se sépare en plusieurs, et ces faisceaux secondaires peuvent s'écarter, soit en restant sur le même plan, auquel cas la feuille plane n'offre de dimensions qu'en largeur et longueur, soit en se dirigeant sur des plans différents, auquel cas la feuille épaisse offre trois dimensions.

Dans le premier cas, les nervures en se séparant peuvent se diriger toutes suivant un autre plan que le pétiole, en formant un angle avec lui, ou bien, ce qui a lieu le plus ordinairement, rester sur le plan même du pétiole. Alors, tantôt le faisceau se divise en plusieurs presque égaux, qui marchent en s'écartant à peu près comme les doigts de la main ouverte (fig. 424), d'où l'on a nommé cette ner-

119. Feuille de Sapin vue en dessus.

119.

FEUILLES. FORME.

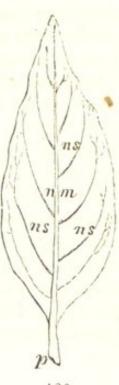
vation *palmée* (*palmata*), et la feuille est alors palminerve; tantôt il se continue dans la direction du pétiole jusque vers le sommet du

limbe, émettant à droite et à gauche des faisceaux secondaires, qui sont disposés par rapport à lui comme les barbes d'une plume par rapport à son tuyau, d'où l'on a nommé cette nervation *pennéc* (*pinnata*), et la feuille est alors penninerve (*fig.* 420). La grosse nervure (*nm*), qui continue le pétiole (*p*), est dite *médiane*, ou est appelée aussi la côte de la feuille. Les latérales (*ns ns*) qui en partent sous un angle plus ou moins aigu sont les nervures secondaires.

Quant au cas où les faisceaux secondaires divergent tous sur un même plan en quittant celui du pétiole à son sommet, disposés à peu près comme les rayons d'une roue par rapport à son axe, la nervation est dite *peltée* (*peltata*), et la feuille peltinerve (*fig.* 421).

Dans les penninerves, les nervures secondaires peuvent partir de la médiane sous tous les angles, depuis le droit jusqu'au plus aigu. Elles peuvent

être toutes égales et courtes ou longues, ou bien être inégales de différentes manières, soit qu'elles aillent en décroissant depuis le


bas jusqu'au haut de la feuille, soit qu'elles aillent au contraire en croissant, soit qu'elles croissent jusqu'à une certaine hauteur, puis décroissent ensuite, offrant leur maximum au milieu de la feuille, ou bien au-dessous, ou bien au-dessus.

§ 443. Lorsque les nervures en s'écartant pour former le limbe se dirigent sur plusieurs plans différents, il en résulte, ou une surface diversement contournée sur elle-même, ou un corps épais et plein. C'est au premier cas qu'on peut rapporter entre autres la forme fistuleuse, c'est121.

à-dire d'un tube cylindrique (dans plusieurs espèces d'ail, par exemple), ainsi que quelques autres formes singulières et assez rares qui rappellent celles d'un cornet, d'un capuchon, d'une outre, d'une urne : ainsi déguisées, les feuilles sont quelquefois désignées sous le nom d'ascidies (de à σ xider, petite outre). Dans le second cas, qui a lieu si le parenchyme comble l'inter-

420. Feuille de Belladone. — p Pétiole. — nm Nervure médiane. — ns ns Nervures secondaires.

.421. Feuille de l'Écuelle d'eau (Hydrocotyle vulgaris).

120.

valle des nervures ainsi divergentes sur plusieurs plans, la feuille offrira un solide terminé par une surface courbe ou par plusieurs surfaces planes, déterminant à leur réunion des angles ou arêtes, ou par une combinaison des unes et des autres. Ce corps sera quelquefois assez régulier pour être reconnu au moyen des noms que la géométrie assigne aux solides (pyramide, prisme, cylindre, cône) : d'autres fois son défaut de régularité échappera aux définitions rigoureuses, et on le désignera plus convenablement par des noms empruntés à des objets vulgairement connus (comme une épée, un sabre, une langue, une bosse, etc., etc.; d'où l'on tire les épithètes ensiforme, acinaciforme, linguiforme, gibbeuse, etc.).

§ 444. Revenons au limbe aplati, ét examinons la distribution du parenchyme par rapport aux nervures. Il peut remplir complétement leurs interstices, de manière que la ligne qui passe par les extrémités des nervures les plus allongées et forme les bords de la feuille soit continue : on dit alors que la feuille est *entière* (*f. integrum* [*fig.* 420]). Souvent le parenchyme s'arrête avant la terminaison des nervures ; alors la feuille est découpée, son bord formé

par une suite de lignes brisées. Ces découpures ont recu différents noms, suivant que le parenchyme s'arrête plus ou moins près de la nervure médiane, et que le bord présente ainsi une alternative d'angles saillants et rentrants plus ou moins profonds. Si ces saillies sont fort courtes, elles ont reçu le nom de dents; celui de dents en scie dans le cas où elles sont aiguës (fig. 428); de crénelures dans le cas où elles sont obtuses. Si les découpures sont plus profondes, auquel cas elles sont aussi, en général, plus lar-

ges, ce sont des *lobes*. Cette profondeur varie beaucoup, et avec ses degrés les noms par lesquels on distingue les lobes. S'ils n'atteignent pas jusqu'au milieu du demi-limbe, ce sont des *fissures*; s'ils pénètrent

122. Feuille de Chêne. 123. Feuille de Valériane (Valeriana dioica).

FEUILLES. FORME.

plus avant et plus près de la nervure médiane, ce sont des partitions : si c'est jusqu'à la nervure même, ce sont des segments. On désigne naturellement la forme des feuilles par des épithètes tirées de ces diverses dénominations. On dit qu'elles sont dentées, dentées en scie, crénelées, fendues, partagées, coupées (folia dentata, serrato-dentata [fig. 424], crenata, fida [fig. 422], partita [fig. 423], secta [fig. 425]), d'après la profondeur, la figure et la grandeur des découpures. Mais ordinairement ces mots ne sont pas employés seuls;

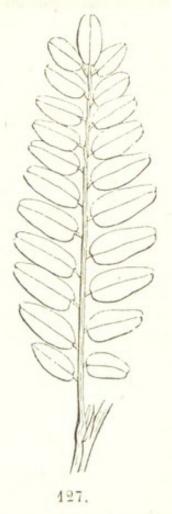
ils font partie d'un autre composé et indiquent par là plusieurs modifications à la fois. Si l'on dit, par exemple, qu'une feuille est trifide, ou quinquéfide, ou multifide, ou palmatifide, ou pinnatifide (fig. 422), etc., on comprend tout de suite que son bord est découpé; jusqu'à une profondeur qui n'atteint pas sa moitié, en lobes au nombre de trois, ou de cinq, ou indéfini, disposés comme les nervures palmées ou pennées, etc., etc. Si, à la désinence fide, on substitue celle de partie (f. multipartita, palmatipartita [fig. 424], pinnatipartita [fig. 423]), on comprend que les découpures pénètrent au delà de la moitié du demi-limbe; si c'est la désinence séquée (palmatisecta [fig. 425], pinnatisecta, etc.), qu'elles pénètrent jusqu'à la nervure médiane, et que chaque lobe ne tient que par celle-ci aux lobes voisins, toujours avec la modification qu'indique le commencement du mot.

§ 445. Dans toutes les feuilles dont nous avons parlé jusqu'ici, c'est toujours en s'éloignant de la nervure médiane ou axe de la feuille que le parenchyme interposé aux nervures secondaires tend

124. Feuille de Ricin (Ricinus communis).

125. Feuille du Fraisier commun.

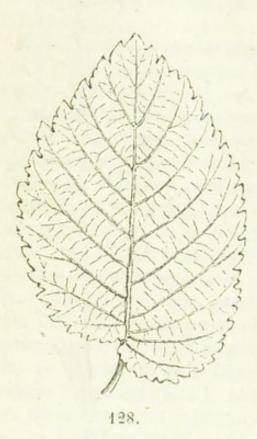
à disparaître, de telle sorte que la lame formée par le limbe, interrompue vers le bord, forme plus intérieurement un tout continu. Nous sommes néanmoins arrivés à un dernier degré de découpure, où cette continuité n'a plus lieu qu'au moyen de la nervure médiane; cependant chaque segment tient encore à cette nervure dans une assez grande étendue, et offre souvent à sa base son maximum de largeur.


Mais il peut se présenter une autre disposition, c'est qu'il ne tienne à la nervure médiane que par le faisceau secondaire qui se détache de celle-ci pour le former, et que l'épanouissement de ce faisceau et l'interposition du parenchyme n'aient lieu qu'à une certaine distance de la nervure. Il est clair qu'alors le faisceau secondaire se comporte relativement à la nervure médiane, absolument comme le pétiole s'est comporté relativement à la branche dont il naît. Cette nervure prend donc l'apparence d'une branche; ces segments prennent celle d'autant de petites feuilles indépendantes les unes des autres. Mais on reconnaît encore que c'est une feuille unique, parce que tous ces segments dont elle est formée sont toujours dans le même plan, et parce que, quand elle se sépare de l'arbre, c'est d'une seule pièce. La feuille prend alors le nom de composée; sa nervure médiane, celui de rachis ou pétiole commun; ses segments prennent celui de folioles; et si le faisceau médian de chacune d'elles reste quelque temps indivis à la base, cette portion est le pétiolule. Ce nom de composée est opposé à celui de feuille simple par lequel on désigne celle dont nous avons parlé précédemment, et dont toutes les parties sont continues.

Connaissant l'origine de la feuille composée, nous savons d'avance qu'elle pourra présenter des modifications analogues à celles que nous avons signalées dans la feuille simple, et qui dépendent de sa nervation palmée ou pennée. C est à ces folioles qu on applique ces épithètes : par exemple, celles du Marronnier d'Inde (fig. 126) sont palmées; celles de notre Acacia (fig. 127) sont pennées. Lorsqu'on . applique à la feuille le nom de pennée (pinnatum) seul, c'est cette dernière forme qu'on désigne. Dans les mots composés par lesquels on caractérise les diverses modifications de ces feuilles, on emploie la désinence de foliolée ; on dit une feuille bifoliolée, trifoliolée, multifoliolée (fig. 127), suivant le nombre des folioles qui en font partie. Souvent elles naissent deux à deux, une de chaque côté de la feuille (fig. 134), et c'est ce qu'on appelle une paire (jugum); d'où l'on a tiré les épithètes de bijuguées, trijuguées, multijuguées, suivant le nombre des paires. On dit que la feuille est pennée sans impaire (abrupte pinnatum) ou avec impaire (imparipinnatum), suivant qu'elle est composée seulement d'une ou de plusieurs paires laté-

FEUILLES. FORME.

rales, ou (fig. 127) que l'extrémité de la nervure médiane ou rachis se termine par une seule foliole qu'on appelle terminale.



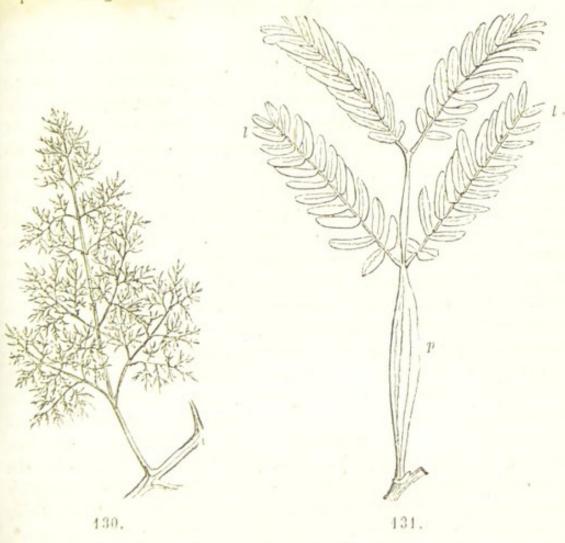
§ 446. Nous n'avons encore parlé que de la nervure médiane et des nervures secondaires. Dans un certain nombre de plantes, la division ne va pas plus loin; mais, dans un plus grand nombre, les secondaires se divisent à leur tour, et l'on peut avoir ainsi une série de subdivisions de plus en plus petites, de plus en plus nombreuses. Or, tout ce que nous avons dit relativement aux nervures secondaires se répète relativement aux nervures de 3° , 4° , 5° ordre, etc., chacune pouvant jouer par rapport à celle dont elle naît les rôles que nous avons vu les secondaires jouer par rapport à la médiane. Dans les feuilles simples, les lobes peuvent donc à leur tour être euxmêmes entiers ou diversement divisés, et ces divisions elles-mêmes étre sujettes à des subdivisions. Pour l'indiquer on se sert des mêmes épithètes précédées des syllabes bi ou tri, qui indiquent le nombre de fois que la feuille va ainsi se subdivisant. Par exemple, une feuille biserrée sera une feuille dentée en scie dont les dents sont

^{126.} Feuille du Marronnier d'Inde (Æsculus hippocastanum).

^{127.} Feuille du Robinia pseudo-acacia, vulgairement Acacia.

elles-mêmes bordées de dents semblables (fig. 128); une feuille bipinnatifide sera une feuille pinnatifide dont les lobes sont eux-mêmes découpés en lobes plus petits ou lobules, toujours suivant la

même disposition pennée des nervures (fig. 429). Au delà d'une double division, les parties deviennent ordinairement trop petites pour qu'on se donne la peine d'en examiner le système régulier, et l'on confond sous le nom de laciniées ou déchiquetées (fig. 430) toutes les feuilles à lobes très nombreux et indéfiniment divisés.


Dans les feuilles composées, les folioles peuvent elles-mêmes être dentées ou lobées. Mais, lorsqu'elles se divisent, c'est plus souvent encore d'après le même mode qu'elles l'ont fait une première fois, chacune se décomposant elle-même en folioles (*f. decompositum*), qui quelquefois se décomposent aussi à leur tour (*f. supra-decompositum*). On dit alors que la feuille est deux fois (*fig. 434 l*), trois fois pennée ou palmée (*f. bi- tri-pinnatum*, *bi- tri-palmatum*). Les nervures secondaires, tertiaires, sont devenues elles-mêmes autant de rachis ou pétioles partiels.

§ 447. Nous ne nous arrêterons pas davantage sur les formes des feuilles, dont la diversité est si grande. Leur connaissance est

128. Feuille d'Orme (Ulmus effusa). 129. Feuille de Pavot (Papaver argemone).

FEUILLES. PÉTIOLE.

nécessaire pour l'intelligence des livres destinés à décrire et distinguer les diverses espèces de plantes, mais superflue lorsqu'on étudie la plante en général. Il nous suffisait de faire comprendre comment

la distribution de ces éléments constitutifs de la feuille, les nervures qui en sont le squelette, le parenchyme qui en est la partie molle et essentielle, détermine ces apparences si variées ; comment au fond il n'y a de différences que dans le degré de développement relatif des unes par rapport à l'autre, et comment la feuille la plus composée n'offre pas un plus grand nombre de parties, mais seulement la même partie répétée un plus grand nombre de fois.

§ 448. **Pétiole.** — Nous avons déjà signalé la forme la plus ordinaire du pétiole, celle qui résulte de la réunion des faisceaux fibro-vasculaires partiels qui, se détachant de la tige pour former l'expansion latérale de la feuille, restent, dans une étendue plus ou moins longue, rapprochés en un faisceau unique, et figurent ainsi

^{430.} Partie de la feuille du Laserpitium hirsutum.

^{434.} Feuille de l'Acacia heterophylla. — p Phyllode ou pétiole élargi qui forme souvent seul la feuille. — l Partie limbaire composée de folioles bipennées, qui manque entièrement dans un grand nombre de feuilles.

une sorte de petit rameau interposé entre cette tige et le limbe. Ce faisceau est accompagné de parenchyme, dont la majeure partie lui forme une enveloppe revêtue elle-même par l'épiderme dépourvu la de stomates, de même qu'il l'est sur la surface des nervures, continuations du pétiole (§ 407).

§ 119. Nous avons dit autre part (§ 12) que les vaisseaux, à l'origine d'un organe naissant d'un autre sous un angle qui change leur direction primitive, présentent quelque changement dans la forme de leurs éléments, cellules ou fibres, qui se raccourcissent et s'unissent bout à bout par des surfaces moins larges. Il résulte de cette union moins intime une tendance à se désunir plus facilement; tendance à laquelle contribue aussi le parenchyme dont les cellules présentent aux mêmes endroits des modifications analogues. Aussi arrive-t-il fréquemment qu'à une certaine époque du développement l'adhérence de ces parties peut se trouver assez affaiblie pour qu'elles finissent par se disjoindre, soit spontanément, soit par le plus léger effort. C'est ce qu'on nomme une *articulation*, et ce qu'on observe souvent au point de juxtaposition de deux organes composés, aux nœuds de la tige, à l'origine des rameaux, à la naissance des feuilles.

Les feuilles sont donc souvent articulées sur la tige, et c'est ordinairement lorsque la surface par laquelle elles se continuent avec elle offre moins de largeur. Alors elles s'en détachent à une époque plus ou moins avancée, lorsqu'elles ont rempli les fonctions auxquelles elles sont destinées dans la vie végétale et tendent à se flétrir. Cette époque varie suivant les plantes : dans un grand nombre, elle arrive dans le courant de l'année qui a vu naître les feuilles ; dans d'autres, elle se diffère davantage. Mais, lorsqu'elles ne sont pas articulées, elles continuent à rester unies au végétal, quoique mourantes ou mortes. C'est ainsi que nous voyons pendant l'hiver les Chênes rester couverts de leurs feuilles flétrics, tandis que celles du Noyer et du Marronnier d'Inde sont tombées dans le courant de l'automne.

C'est parmi les feuilles simples qu'on trouve généralement celles qui persistent, tandis que les feuilles composées sont en général articulées ; et dans ces dernières, non seulement le pétiole l'est sur la tige, mais les folioles le sont aussi sur les pétioles partiels et s'en détachent en se désarticulant. C'est même par ce caractère que beaucoup d'auteurs définissent les feuilles composées, ne considérant pas comme telles celles qui persistent tout d'une pièce, quoique dans leur jeunesse elles présentassent toutes les apparences de la composition.

§ 420. Lorsqu'un pétiole se désarticule, après sa chute on observe souvent sur la tige, au point où il en naissait, un renflement qui auparavant paraissait faire partie de lui-même et lui servait de base.

FEUILLES. PHYLLODE.

On a nommé coussinet (pulvinus) cette petite excroissance latérale de la tige, dont la face tournée en dehors et en haut, et qui se continuait auparavant avec une face semblable du pétiole, est la cicatrice qui résulte de leur désunion (fig. 442 c, 445). On voit en général nettement sur cette face, au milieu du parenchyme, plusieurs points qui indiquent les faisceaux còncourant à la formation de ce pétiole. Ils sont diversement groupés dans les diverses espèces de plantes, et de ce groupement, ainsi que de la forme générale de la cicatrice et du coussinet, on peut tirer de bons caractères pour reconnaître les arbres dans l'état de nudité où les laisse en hiver la perte de leur feuillage.

§ 421. Le pétiole est ordinairement plus court que le limbe; quelquefois il l'égale en longueur, quelquefois il le dépasse. Il varie aussi en épaisseur; lorsqu'elle est assez considérable relativement aux dimensions du limbe, et par conséquent à son poids, il le supporte sans fléchir, surtout lorsqu'il est court, comme on peut le prononcer d'avance d'après les lois de la mécanique. Lorsqu'il est grêle, ou allongé, ou d'un tissu mou où le parenchyme prédomine par rapport aux fibres et aux vaisseaux, il se penche ou se courbe en arc, entraîné par le poids du limbe attaché à l'extrémité de ce levier flexible.

Il est souvent cylindrique ; plus souvent encore arrondi tout le long de sa face inférieure, aplati, ou plus ordinairement encore creusé en gouttière sur la supérieure. Quelquefois il est aplati dans toute son étendue, suivant le même plan horizontal que le limbe. Dans quelques cas rares, à son extrémité il s'aplatit en sens inverse, offrant ainsi une lame verticale qui donne prise au vent : de là dans les feuilles des Peupliers cette mobilité presque continuelle qui leur a fait donner le nom de trembles.

§ 122. **Phyllode.** — Nous avons supposé jusqu'ici que les faisceaux rapprochés dans le pétiole marchent parallèlement jusqu'au limbe, et c'est en effet le cas ordinaire. Il n'est cependant pas constant, et quelquefois les faisceaux commencent à diverger dans le pétiole même. Si cette divergence continuait, ce serait le commencement du limbe; mais, un peu plus haut, les faisceaux convergent de nouveau, et ils se sont rapprochés tout à fait, comme à leur origine, avant d'entrer et de s'épanouir dans le véritable limbe. Dans cette marche, ils ont cessé d'être parallèles, mais en restant dans le même plan et sans se ramifier. Il résulte de cette disposition que le pétiole, ainsi dilaté, offre lui-même l'apparence d'un limbe (fig. 434 p), ce qu'on est habitué à considérer vulgairement comme la feuille, et c'est pourquoi on lui a donné alors le nom particulier de *phyllodo* (diminutif de $\varphi i \lambda \lambda z z$, feuille).

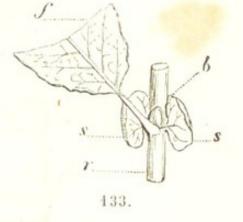
Le phyllode se distingue du limbe parce qu'au lieu de nervures secondaires pennées partant d'une nervure médiane qui s'épuise graduellement à mesure qu'elles s'en détachent, il est parcouru par un certain nombre de nervures longitudinales réparties sur toute sa surface, et à peu près égales entre elles et de la base au sommet ; il s'en distingue aussi parce qu'il est habituellement placé sur la tige dans un sens contraire aux vraies feuilles, c'est-à-dire que son plan est à peu près vertical au lieu d'être horizontal.

§ 123. Gaine. — Stipules. — Le pétiole, avons-nous dit (§ 104), s'élargit quelquefois à sa base et embrasse ainsi la tige tout entière ou une portion de la tige en se continuant avec elle : c'est ce qu'on appelle sa partie vaginale ou gaîne de la feuille. Alors les faisceaux destinés à celle-ci, au lieu de se concentrer et de passer dans le pétiole rapprochés en un seul, se sont détachés séparément du pourtour de la tige, et ont dû former avec le parenchyme

qui les unit une surface cylindrique ou une portion de cylindre creux au lieu d'un petit cylindre plein. Quelquefois les faisceaux d'abord écartés convergent peu à peu plus haut, et la gaîne se rétrécit graduellement en pétiole : c'est une sorte de phyllode commencant immédiatement sur la tige; d'autres fois (fig 132) les faisceaux latéraux s'arrêtent après un trajet plus ou moins court, ou se prolongent sur un autre plan que ceux du pétiole, et c'est alors qu'on a la distinction bien nette du pétiole et de la gaîne. Souvent enfin le parenchyme ne lie pas ces faisceaux latéraux à ceux du milieu qui se con-

tinuent dans le pétiole, et c'est l'origine probable de beaucoup de stipules.

§ 424. On définit généralement celles-ci comme de petits organes foliacés situés d'un et d'autre côté de la base des feuilles, et, dans l'état actuel de la science, il est difficile d'en donner une définition plus rigoureuse. Il est vraisemblable que leur production, qui n'a pas encore été suffisamment éclairée par l'anatomie végétale, est analogue à celle des lobes latéraux des feuilles simples ou des folioles des feuilles composées; que ce sont de même des épanouissements

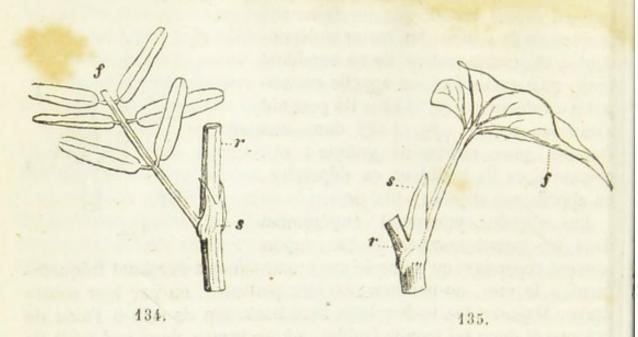

132. Fragment d'un rameau r de l'Églantier commun (Rosa canina), portant une feuille f avec son pétiole p, ses stipules pétiolaires s, et son bourgeon b. — a Un aiguillon.

FEUILLES. STIPULES.

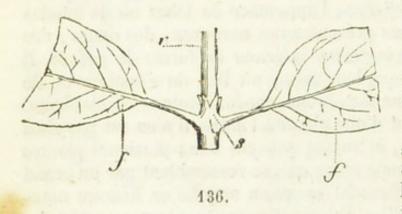
latéraux de faisceaux plus ou moins écartés de la base de la feuille, plus ou moins liés avec elle par du parenchyme intermédiaire, plus ou moins brusquement terminés. Ils peuvent, quoique sortant de la

tige en même temps que les faisceaux propres de la feuille, en rester indépendants, et, comme alors ils ne semblent tenir qu'à cette tige, on appelle ces stipules caulinaires (fig. 133). Ils peuvent s'unir au pétiole (fig. 132) dans une étendue plus ou moins grande ; et, comme alors ils semblent en dépendre, on appelle ces stipules pétiolaires.

Les stipules manquent entièrement dans un grand nombre de cas, moins


souvent cependant qu'on ne le croit ; car elles se dérobent fréquemment à la vue, ou par leur extrême petitesse, ou par leur courte durée. Mais, en les recherchant avec beaucoup de soin à l'aide de la loupe et dans les jeunes feuilles, on en trouve dans une foule de plantes qu'on avait dit en être dépourvues.

§ 125. Leur apparence varie beaucoup. Elles sont souvent réduites à une petite pointe, un petit filet, une petite écaille. D'autres fois elles se développent davantage, et c'est alors souvent qu'elles prennent une consistance foliacée, l'apparence de lobes ou de folioles qui peuvent elles - mêmes présenter des nervures, des dents, des lobules, même un rétrécissement inférieur en forme de pétiole. Il n'est pas rare non plus que leur tissu, au lieu de s'épaissir ou de verdir, reste à l'état d'une membrane mince, incolore ou diaphane. Mais, si elle varie autant d'une plante à l'autre, il n'en est pas ainsi dans une même plante, et même souvent dans plusieurs plantes voisines entre elles, comme celles qui, se ressemblant par un grand nombre de caractères, forment ce qu'on appelle en histoire naturelle des genres, des familles. Des familles entières sont caractérisées par l'absence des stipules ou par leur présence, et alors par quelque circonstance particulière dans leur manière d'être.


§ 426. Nous les avons vues ou entièrement libres, ou soudées avec le pétiole. Si elles offrent une très grande largeur et embrassent ainsi la moitié de la tige, une stipule peut rencontrer l'autre sur le côté opposé à celui où naît la feuille, et leurs bords externes en se rencontrant peuvent même s'unir, soit en bas, soit dans toute leur

^{433.} Fragment d'un rameau r d'une espèce de Saule (Salux aurita), portant une feuille f avec son pétiole, ses stipules caulinaires ss, et son bourgeon b. La portion supérieure du limbe a été retranchée.

ongueur. C'est alors qu'on a une gaîne fendue (fig. 434) ou entière (fig. 443), une stipule vaginale. Si les stipules en se dilatant viennent au contraire à se rencontrer et s'unir par leurs bords internes,

elles forment une lame unique dont le milieu est interposé entre la tige et la naissance de la feuille, dans cet angle qu'on appelle l'aisselle de celle-ci : c'est ce qu'on nomme une stipule *axillaire* (fig. 435). Si les deux feuilles naissent à la même hauteur l'une vis-à-vis de

l'autre, munies chacune de leurs deux stipules, et que de chaque côté la stipule de la feuille de droite vienne à rencontrer celle de la feuille de gauche et à se réunir avec elle, les deux semblent en former une seule intermédiaire aux deux

pétioles et qu'on appelle *interpétiolaire* (*fig.* 436). Dans tous ces différents cas, on est averti de l'origine des deux stipules confondues, soit parce qu'elles ne le sont qu'en partie, soit parce que

134. Portion de feuille de l'Astragalus onobrychis. — f Partie inférieure de la feuille composée avec trois paires de folioles. — s Stipules soudées en une seule sur le côté opposé du rameau r.

435. Feuille f de l'Houttuynia cordata, portée sur un fragment de rameau r, auquel elle se rattache par son pétiole, à la base duquel on voit la stipule axillaire s.

136. Les deux feuilles opposées ff d'une Rubiacée (*Cephalanthus occidentalis*), montrant chacune à leur origine celle de leurs deux stipules qui est tournée du côté du spectateur. Ces deux stipules se sont soudées sur la ligne médiane en une seule interpétiolaire s. Il y en a une semblable du côté opposé. — r Rameau.

COMPARAISON DES FEUILLES DE VÉGÉTAUX. 111

dans des plantes voisines cette confusion n'a pas lieu et qu'on trouve des passages d'un état à l'autre.

Dans toutes les explications précédentes, en disant que les stipules s'élargissent, se rencontrent, se soudent, nous nous servons d'un langage figuratif, leur dilatation et leur union pouvant avoir lieu dès le principe et résultant de la disposition des faisceaux dans la tige et aux points où ils en sortent pour former ces nouveaux organes.

§ 127. Les trois parties de la feuille ne se montrent pas toujours ensemble, et elle peut être réduite à deux ou même à une. On appelle sessile celle dont le pétiole manque, et exstipulée celle qui est dépourvue de stipules. En effet, les parties pétiolaire et vaginale sont celles qui font le plus souvent défaut. Quelquefois cependant c'est le limbe, et alors la feuille a perdu son apparence ordinaire, et est dans quelques cas désignée par d'autres noms.

§ 128. Les feuilles une fois arrivées à leurs dimensions définitives vivent plus ou moins longtemps. On sait que, dans la plupart de nos arbres, cette vie n'excède pas quelques mois. Dans quelques uns, surtout dans ceux des climats chauds, elles persistent deux années ou plus, et ces arbres sont appelés toujours verts, parce qu'on les voit constamment couverts d'un feuillage qui conserve sa couleur; mais ce ne sont pas toujours les mêmes feuilles. Les premières sont tombées après un certain temps; mais l'arbre, déjà couvert de feuilles nouvelles, ne s'est pas dépouillé et a conservé la même apparence. C'est ce qu'on peut aisément vérifier sur nos Pins, nos Houx, nos Chênes verts, etc. Nous avons vu que, parmi les feuilles annuelles, les unes restent flétries sur l'arbre, les autres s'en détachent en se désarticulant. Il est inutile de rappeler comment la couleur verte est remplacée progressivement par celle qu'on connaît sous le nom de feuille-morte. Mais souvent les feuilles, celles qui sont articulées surtout, passent, avant de tomber, par diverses nuances dont la variété, et pour quelques unes la richesse et l'éclat, leur donnent ces teintes automnales si vantées, d'un si grand effet, surtout en massifs.

§ 429. Comparaison des feuilles dans les trois grandes elasses de végétaux. — Jusqu'ici la comparaison des organes fondamentaux dans les trois grandes classes de végétaux nous a montré entre elles des différences notables et constantes. En est-il de même pour leurs feuilles? Rappelons d'abord qu'elles se composent de nervures et de parenchyme, et que les premières sont palmées ou pennées, suivant que le faisceau pétiolaire se partage à son entrée dans le limbe en plusieurs autres presque égaux et divergents, ou se continue sur la ligne médiane en distribuart à droite et à gau-

che des faisceaux plus petits qui se détachent de lui. Nous n'avons pas insisté sur sa marche ultérieure et sur les rapports de ces faisceaux ou nervures secondaires. Or, il peut arriver deux choses : 4° qu'ils continuent tous leur marche sans se ramifier, ou du moins, s'ils émettent quelques divisions latérales, sans se mêler jamais avec les faisceaux voisins; 2° que les nervures secondaires se ramifient elles-mêmes, que ces ramifications se subdivisent à leur tour, que, passant d'une nervure à une autre, elles les réunissent, qu'il en résulte enfin une sorte de réseau vasculaire dont les mailles sont formées par les dernières divisions des nervures, les aréoles par le parenchyme.

Il paraît y avoir un accord assez constant entre ces deux modes de distribution des nervures et les deux grandes classes de végétaux cotylédonés, le premier s'observant en général dans les monocotylédonées, le second dans les dicotylédonées.

437.

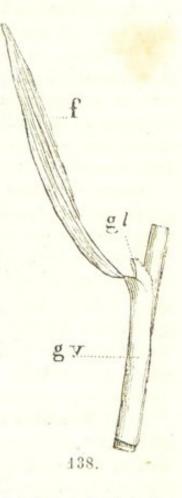
§ 130. Feuilles des Monocotylédonées. Leur limbe ne présente pas des nervures en réseau; quelquefois elles marchent toutes parallèlement, comme dans les feuilles d'Iris, de Roseau, etc.; d'autres fois il v en a de secondaires qui se détachent d'une ou plusieurs principales en marchant dans une autre direction: mais elles s'en séparent par une ligne plus ou moins arquée, dont la convexité est tournée vers la principale (fig. 137). De cette égalité et de ce parallélisme des nervures secondaires, il résulte que la feuille est le plus souvent entière. Les Palmiers, il est vrai, offrent des feuilles pinnatiséquées et palmatiséquées; mais on peut, en suivant leur développement, voir que, dans leur premier âge, elles étaient réellement entières, et que c'est plus tard qu'elles se sont fendues en plusieurs lobes parallèlement à leurs nervures palmées ou pennées.

La partie vaginale est souvent très développée dans les feuilles des Monocotylédonées qui engainent la tige dans une assez grande longueur. Ce sont même plusieurs de ces gaînes emboitées les unes dans les autres qui fortifient la tige et semblent la constituer en grande partie dans beaucoup de ces plantes, dans les Bananiers, par exemple. La gaine à sa terminaison se prolonge quelquefois en une espèce de petite collerette souvent membraneuse et blanchâtre (fig. 438 gl),

137. Feuille de Bananier (très réduite), pour faire voir les nervures secondaires indivises, parallèles et curvilignes à leur origine.

FEUILLES DES MONOCOTYLÉDONÉES.

tantôt entière, tantôt frangée ou déchiquetée, et le plus souvent symétriquement en deux parties latérales. C'est ce qu'on appelle la *ligule* qu'on rencontre dans presque toutes les Graminées, et qu'on


a comparée aux stipules; car, si celles-ci sont considérées comme entièrement distinctes de la gaîne, on n'en trouve pas d'autres dans les Monocotylédonées.

Continuée avec la tige dans une grande partie de son contour et suivant sa direction, la gaîne ne s'articule pas, et la feuille ne tombe pas avant de mourir.

Si les nervures restent toutes parallèles depuis le bas jusqu'en haut de la feuille, sa forme est le plus souvent celle d'un ruban (Typha, Roseau), et il est difficile d'y pouvoir distinguer un pétiole et un limbe. D'autres fois elles divergent peu à peu à partir de la base, puis convergent de nouveau vers le sommet, et l'on a l'apparence d'un limbe (quelques Orchidées, *Epipactis ovata*, *latifolia*, etc.). Si des nervures secondaires se séparent des principales dans une autre direction, en se séparant elles déterminent un élargissement, un limbe bien distinct du pétiole qu'elles formaient rapprochées plus bas. C'est

ce dont les Bananiers donnent l'exemple sur une si grande échelle (fig. 437). Dans la plupart des cas, la feuille tout entière serait plutôt comparable à un phyllode, et une plante très commune sur le bord de nos rivières, la Fléchière (*Sagittaria sagittifolia*), justifie cette comparaison; car on peut y voir sur le même pied des feuilles portant au haut d'un pétiole long et dressé un grand limbe en forme de flèche, d'autres étendues au cours de l'eau qui les baigne, s'allongeant en de longs et minces rubans sans distinction de limbe et de pétiole, et l'on peut suivre le passage d'une de ces formes à l'autre si différente.

Un petit nombre de familles monocotylédonées font exception aux règles précédentes par les nervures ramifiées et anastomosées en réseau de leurs feuilles, où l'on doit reconnaître un véritable limbe, souvent lobé dans son contour. Ce sont les Aroïdées, Smilacées et Dioscoréacées.

^{138.} Portion d'une feuille de Graminée (*Phalaris arundinacea*). -- f Sa partie fimbaire. — g Sa gaîne. — gv Portion vaginale de celle-ci. — gl Sa portion supérieure libre membraneuse, ou ligule.

§ 131. Feuilles des Dicotylédonées. — C'est parmi elles qu'on trouve les feuilles articulées, celles qui sont véritablement composées (fig. 426, 427), celles dont le contour est denté (fig. 428), crénelé, partagé en lobes par des angles ou des sinus (fig. 422, 423, 424, 425), et non par des lignes droites résultant de déchirures. Les nervures, en naissant les unes des autres, forment un angle proprement dit, le plus souvent aigu (fig. 420, 424); elles se divisent et se confondent par leurs dernières ramifications. En nous occupant de la feuille en général, c'est elles et leurs parties constituantes que nous avons eues presque constamment en vue; il serait donc superflu de s'y arrêter ici.

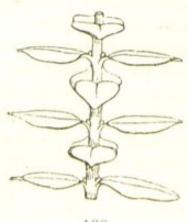
Disons cependant que, dans quelques Dicotylédonées, les feuilles, par les nervures parallèles ou convergentes sans ramifications, jouent assez bien celles de Monocotylédonées. Telles sont, par exemple, quelques unes de nos Renoncules (*Ranunculus gramineus*, *lingua*, etc.). Il y en a qu'on peut, sans aucun doute, reconnaître pour des phyllodes, comme dans les Acacias à feuilles entières, où l'on voit à ces prétendues feuilles s'ajouter constamment le limbe dans les premières qui succèdent à la germination. Beaucoup de botanistes sont tentés, par analogie, d'expliquer de même toutes les feuilles de Dicotylédonées qui offrent cette forme et cette nervation exceptionnelles.

§ 132. Feuilles des Acotylédonées. — Dans cette classe, ce sont les feuilles des Fougères qui prennent le plus grand développement, sessiles ou pétiolées, entières ou découpées. Leur division peut être portée à un degré très remarquable. Ainsi, dans le Pteris aquilina, cette grande fougère si répandue dans les bois de nos environs, ce qu'on est tenté de prendre pour une tige chargée de feuilles, n'est autre chose qu'une seule feuille partant d'une souche souterraine et plusieurs fois pinnatiséquée. Les nervures présentent des ramifications et des réseaux plus variés même que dans les feuilles des Cotylédonées, et pouvant fournir de bons caractères dans la classification. Les pétioles sont parcourus par des faisceaux fibro-vasculaires, semblables par leur composition à ceux de la tige, c'est-à-dire présentant un amas de vaisseaux le plus souvent scalariformes, rapprochés en une bande diversement pliée et entourés par une couche de parenchyme noirâtre. Il en résulte sur la coupe horizontale de ces pétioles des figures variées et bizarres qui peuvent aussi servir à distinguer les espèces entre elles. Nous nous contenterons de citer ici cette ressemblance grossière avec l'aigle à deux têtes des armes d'Autriche, qu'on a signalée dans le faisceau du pétiole du Pteris aquilina coupé obliquement vers sa base. Elle pourra servir à l'étude de cette sorte de vaisseaux et de fibres si communs dans les Fougères.

FEUILLES. PHYLLOTAXIE.

Les feuilles deviennent très simples dans toutes les autres Acotylédonées dont les tiges nous ont offert un système fibro-vasculaire ; encore divisées, comme 4-foliolées, et marquées de nombreuses nervures dans les *Marsilea*, elles se réduisent dans les Lycopodiacées à une lame cellulaire parcourue dans sa largeur par un seul petit faisceau. Celui-ci manque et est remplacé par quelques cellules allongées.dans les familles dépourvues de vaisseaux comme les Mousses et les Jongermannes; et enfin cette ébauche de feuilles disparaît elle-même avec la tige dans les dernières familles, comme les Lichens, les Champignons et les Algues.

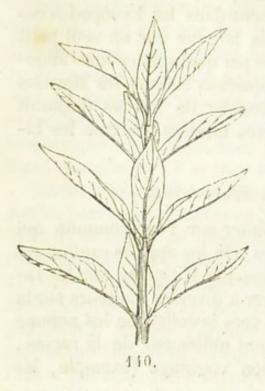
ARRANGEMENT DES FEUILLES SUR LA TIGE.


§ 133. Les feuilles peuvent se présenter sur l'axe commun qui les porte disposées de diverses manières. On les appelle *caulinaires* et *raméales*, suivant qu'elles sont portées par la tige ou par les rameaux. Quelquefois, au lieu de se montrer à diverses hauteurs sur la tige, elles sont toutes ramassées en bas vers le collet; on les nomme alors *radicales*, quoiqu'elles ne dépendent nullement de la racine, mais qu'elles soient seulement dans son voisinage (exemple, les Primevères, etc.).

Plus fréquemment elles sont situées sur l'axe de distance en distance. On appelle nœuds ces points de la tige diversement étagés où naissent les feuilles (fig. 442 n); entre-nœuds ou mérithalles (fig. 442 m), les intervalles nus qui se trouvent entre un de ces points et celui qui est situé soit au-dessus, soit au-dessous. Tantôt un nœud porte deux ou plusieurs feuilles naissant par conséquent à la même hauteur, tantôt chacun n'en porte qu'une seule.

Nous examinerons ces deux cas successivement.

§ 134. Feuilles opposées. — Si à chaque nœud il y a seule-


ment deux feuilles situées l'une vis -à-vis de l'autre, on dit qu'elles sont opposées (fig. 439); s'il y en a un plus grand nombre, qu'elles sont verticillées (fig. 440), et l'ensemble de ces feuilles ainsi groupées en cercle autour de la tige est un verticille. Une loi presque générale, c'est que les feuilles d'un verticille ne se placent pas au-dessus de celles du verticille inférieur, mais dans leur intervalle, ou, en d'autres termes, les feuilles des deux verticilles successifs alternent toujours entre elles.

139.

439. Feuilles décussées, celles du Pimelæa decussata.

C'est le plus ordinairement exactement au milieu de l'intervalle de deux feuilles voisines d'un même verticille que vient se placer la feuille correspondante du verticille supérieur. Dans ce cas, si les

feuilles sont opposées deux par deux, la paire supérieure croisera l'inférieure à angle droit. Cette disposition est appelée décussation, et les feuilles qui la présentent sont décussées (folia decussata [fig. 139]). Quand il y a plus de deux feuilles à chaque nœud, on dit dans la description qu'elles sont verticillées par trois (fig. 140), quatre, cinq, etc. (folia ternatim, quaternatim, quinatim, etc., verticillata). Il n'est pas rare de voir dans la même plante un de ces nombres se substituer à l'autre, comme on peut s'en assurer en comparant plusieurs pieds ou plusieurs branches de la Lysimachie yulgaire. du Laurier-rose, etc.

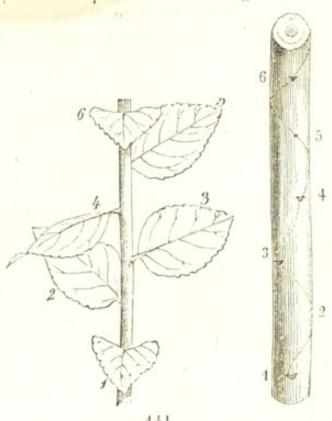
Dans un certain nombre de plantes, les feuilles d'un verticille ne se trouvent pas placées exactement au milieu de l'intervalle des deux correspondantes du verticille inférieur, mais se rapprochent plus de l'une que de l'autre : c'est ce qu'on peut vérifier, par exemple, dans plusieurs. Caryophyllées.

§ 135. Feuilles alternes. - Lorsque de chaque nœud il ne naît qu'une seule feuille, et que par conséquent elles se trouvent toutes à des hauteurs inégales, on dit que les feuilles sont alternes. Longtemps on s'est contenté de ce mot; on y substituait l'épithète éparses lorsque les feuilles semblaient dispersées sans aucun ordre : car on avait remarqué que, le plus souvent, une certaine régularité semblait présider à l'alternance des feuilles. Bonnet vit le premier qu'en faisant passer de bas en haut une ligne par les points successifs d'où partent des feuilles, cette ligne décrit une spirale autour de la tige; que ces feuilles sont, dans un rapport à peu près constant, séparées chacune de la suivante par une partie égale de la circonférence de la tige, de manière que, si l'on en trouve une placée verticalement au-dessus d'une première feuille inférieure dont elle est séparée par un certain nombre de feuilles intermédiaires, la feuille suivante se placera au-dessus de la seconde, la suivante audessus de la troisième, et ainsi de suite. Il avait signalé comme le

140. Feuilles du Lysimachia vulgaris, verticillées trois par trois. Les verticilles sont exactement superposés de deux en deux.

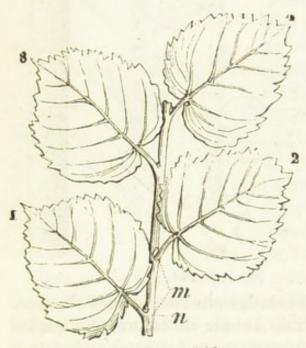
FEUILLES. PHYLLOTAXIE.

cas le plus général celui où les feuilles reviennent, ainsi superposées, de 5 en 5 (fig. 141); de sorte que la 6^e est en ligne droite

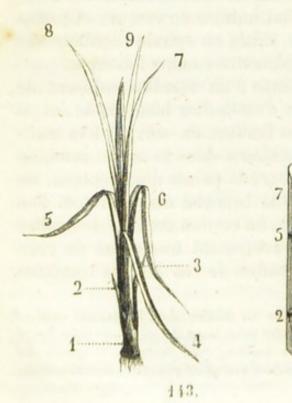

au-dessus de la 1^{re}, la 44^e au-dessus de la 6^e, la 7^e audessus de la 2^e, la 42^e audessus de la 7^e, etc. Il avait entrevu en même temps qu'il y avait d'autres combinaisons plus compliquées, où, au lieu de la 6^e feuille, c'était une autre plus élevée, la 9^e, par exemple, qui venait se placer sur la même ligne verticale que la 4^{re}.

On a beaucoup étudié toutes ces combinaisons dans les temps modernes, et l'on est parvenu à y découvrir des lois d'une précision presque mathématique. Nous ne les exposerons pas ici, nous

les exposerons pas ici, nous 141. contentant de constater cette disposition de toutes les feuilles alternes, suivant une ligne enroulée en spirale autour de la branche qui les porte : disposition que nous devons conserver toujours présente à l'esprit. Car, particulière aux feuilles, elle peut servir à les faire reconnaître dans les cas où leurs formes et leurs autres caractères extérieurs plus ou moins altérés pourraient induire en erreur ; et toutes les fois que des organes se montrent situés en spirale régulière sur un axe, on ne doit pas hésiter à les admettre comme foliaires.

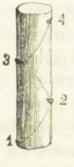

Si l'on prend une branche couverte d'un nombre suffisant de feuilles et régulièrement développée, c'est-à-dire bien droite, et si par tous les points d'insertion de ces feuilles, en suivant leur succession de bas en haut, et tournant toujours dans le même sens, on fait passer un fil ou une ligne tracée avec la pointe d'un couteau, on verra cette ligne dessiner autour de la branche une spire, et l'on aura compté plusieurs tours de spire et un certain nombre de feuilles avant d'arriver à une qui se place directement au-dessus de celle qui a servi de point de départ. Le nombre de ces feuilles comptées

141. Fragment d'une branche de Cerisier avec six feuilles, dont la sixième vient se placer verticalement au-dessus de la première après deux tours de spire. — On a figuré à côté la branche grossie et dépouillée de ses feuilles, en y dessinant la spirale sur laquelle on voit de distance en distance les cicatrices marquant chacune l'insertion d'une feuille.



dans l'intervalle de deux superposées sera, comme nous l'avons dit, 5 ou 8, ou 43, 24, 34, 55, etc., ou encore davantage. Mais jusqu'à présent, dans la description des plantes, on ne tient pas compte de ces nombres, qui d'ailleurs peuvent varier dans la même à divêrses hauteurs, et, dans tous ces cas, on se contente de noter des feuilles alternes.

Il n'en est pas de même de ceux où les feuilles reviennent l'une au-dessus de l'autre à intervalles très rapprochés, par exemple, la



112.

mière, la quatrième au-dessus de la seconde. Les feuilles situées ainsi alternativement des deux côtés opposés de la tige sont dites *distiques* (*fig.* 442). Un cas beaucoup plus rare est celui où ces feuilles alter-

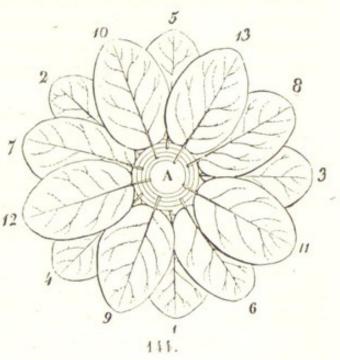
troisième au-dessus de la pre-

nes sont *tristiques*, c'est-à-dire sur trois rangs le long de la branche, la quatrième venant directement au-dessus de la première (*fig.* 143). § 136. Nous avons

jusqu'ici toujours

supposé l'axe assez allongé et les nœuds d'où partent les feuilles assez écartés entre eux, puisqu'on les voit naître à des hauteurs dont la différence est nettement appréciable. Mais cela n'a pas toujours lieu, et quelquefois

> 442. Fragment d'une branche de Tilleul avec quatre feuilles distiques.
> — On a figuré à côté un fragment de branche grossi, avec la spirale et les cicatrices marquant les points où s'insèrent les feuilles.
> — *n* Nœud.
> — *m* Entre-nœud ou mérithalle.


> 443. Jeune pied d'une espèce de Souchet (*Cyperus esculentus*) à feuilles tristiques, — A côté, un fragment de tige plus gros, avec la spirale et les cicatrices marquant l'insertion des feuilles.

FEUILLES. PHYLLOTAXIE.

les nœuds sur un axe extrèmement raccourci se rapprochent tellement que toutes les feuilles semblent à peu près à la même hauteur. On appelle *rosette* cette disposition des feuilles rapprochées et posées les unes contre les autres, dont on a des exemples à la base d'un

grand nombre de plantes . herbacées, notamment de la Joubarbe. Dans une telle rosette (fig. 444), les parties sont d'autant plus extérieures que, sur l'axe allongé, elles seraient plus bas; et les plus intérieures représentent au contraire celles qui seraient le plus haut.

§ 137. Dans ces mêmes rosettes, la spirale générale doit disparaître en apparence; mais on voit nettement les feuilles s'agencer en un certain nombre de

spirales parallèles entre elles, et qu'on nomme secondaires, résultant des rapports constants de disposition que chacune des feuilles doit avoir avec plusieurs autres. C'est ce qu'on peut seulement apercevoir en jetant un coup d'œil sur les feuilles d'un Artichaut ou sur les écailles d'une pomme de Pin ou de Sapin.

§ 138. Les plantes monocotylédonées, dont les premières feuilles sont nécessairement alternes, conservent plus tard cette disposition. On en cite un très petit nombre à feuilles opposées ou verticillées; mais, alors même, il est facile de constater qu'elles ne naissent pas exactement à la même hauteur.

Dans les dicotylédonées, les feuilles conservent souvent l'opposition qu'on observait déjà dans leurs cotylédons; souvent aussi elles la perdent, et ce changement s'opère, ou immédiatement dans les premières feuilles développées de la gemmule, ou peu à peu. Toutes les plantes de certaines familles offrent, sans exception, des feuilles opposées ou des feuilles alternes, et quelquefois même d'autres modifications secondaires. Ainsi toutes les Labiées ont des feuilles décussées; la plupart des Tiliacées, des feuilles distiques, etc.

On trouve aussi dans les acotylédonées des feuilles alternes et des

444. Treize feuilles disposées en une rosette vue par en haut. Sur l'axe très court A qui la porte, on a dessiné cinq tours de spire et indiqué l'origine de chaque feuille.

feuilles opposées. Certaines Fougères arborescentes pourraient être citées comme offrant les verticilles les plus réguliers peut-être de tout le règne végétal.

Du reste, les trois grandes classes de plantes offrent dans la disposition spirale de leurs feuilles les mêmes combinaisons. Il y en a néanmoins qui sont plus rares dans l'une que dans l'autre; ainsi l'arrangement tristique ne se rencontre guère dans les dicotylédonées, tandis qu'un assez grand nombre de monocotylédonées le présentent.

§ 139. Nous avons dit que les feuilles ne sont pas toujours complètes et peuvent se réduire à l'une de leurs parties. Comme c'est le limbe qui prend les plus grandes dimensions, et qu'on est habitué à le considérer comme la feuille même, elles ont, lorsqu'il ne se développe pas, un aspect entièrement différent, et l'on est tenté de ne plus leur donner ce nom. Mais leur position latérale sur la tige aide à les reconnaître, et c'est alors qu'en retrouvant dans l'arrangement de ces organes ainsi déguisés les lois qui président à la disposition relative des feuilles, on ne peut conserver aucun doute sur leur véritable nature. Ainsi, sur l'Asperge, observant de petites écailles (fig. 97 f) insérées sur la tige et disposées en spirale, nous n'hésitons pas à penser que ce sont les feuilles réduites à leur partie vaginale. Lorsqu'elles sont ainsi représentées par la gaîne seule ou par le pétiole, ou plutôt par un simple et court prolongement du faisceau qui aurait formé la nervure médiane, la forme de petits appendices épaissis en écaille, ou amincis en membrane, ou rétrécis en filets, est celle qu'elles prennent le plus habituellement. Nous verrons plus tard qu'elles la présentent souvent au voisinage des fleurs.

and the second s

BOURGEONS.

BOURGEONS.

§ 140. Le point d'où nait une feuille a dans la vie du végétal une double importance, puisque c'est en général immédiatement au-

dessus de lui que nait le bourgeon (gemma [fig. 145, ba, ba, ba]), dans l'angle compris entre la tige et la feuille, et qu'on nomme l'aisselle (axilla) de celle-ci : de là on a formé l'épithète d'axillaire. Le bourgeon n'est autre chose que le premier âge d'une branche, dont toutes les parties latérales, les feuilles à leur premier état de développement, sont ramassées sur un axe extrêmement court. On l'a donc naturellement comparé à l'embryon, dont il diffère parce qu'au lieu d'être indé- ba pendant et de suffire d'abord à sa propre subsistance, au moven d'une ou de deux premières feuilles charnues ou cotylédons, il fait partie d'un végétal déjà formé qui lui fournit sa nourriture, et que ses premières feuilles, appelées à lui rendre d'autres services, ne

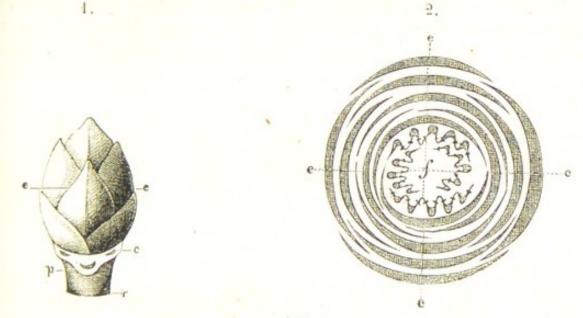
présentent nullement les formes cotylédonaires. Quelques auteurs l'ont en conséquence nommé embryon fixe.

§ 444. C'est, dans le principe, un petit amas ou noyau cellulaire en rapport avec l'extrémité des rayons médullaires, et qui, d'abord caché à l'intérieur, pousse ensuite l'écorce devant lui et se montre extérieurement. Plus tard les séries intérieures des cellules de ce petit axe s'organisent en vaisseaux, et sa surface se couvre de petits appendices cellulaires, premières ébauches des feuilles, dont le développement suivra des lois que nous avons déjà exposées. Nous savons aussi déjà que la branche reproduit la tige dans sa composition et dans son évolution. Les vaisseaux et fibres de l'une se continuent dans l'autre; mais il n'y a pas la même continuité par la moelle : l'étui médullaire de la branche se ferme et se termine à son point d'origine, comme celui de la première se fermait à l'origine de la racine.

§ 442. Le bourgeon, chargé d'une génération de feuilles qui doivent succéder à celle à l'aisselle de laquelle il se produit, survit naturellement à cette feuille ; et, lorsqu'elle tombe ou se flétrit à la

^{145.} Sommet d'un rameau du Lonicera nigra à l'état d'hibernation, c'est-à-dire après la chute des feuilles, et chargé de ses hourgeons; un terminal bl, plusieurs axillaires latéraux ba, ba, ba.

fin de l'année, il persiste sur la tige dans un état stationnaire jusqu'à la saison qui, ranimant la végétation, viendra lui donner une impulsion nouvelle et déterminer son développement en branche. Dans les climats chauds, où cet intervalle de repos est presque nul, où d'ailleurs il est, à cause de la température, sans danger pour le jeune bourgeon, les premières feuilles de celui-ci sont aussi complètes et à peu près les mêmes que seront les suivantes. Mais dans les pays sujets à un hiver plus ou moins rigoureux, auquel ne pourraient résister des organes aussi tendres, les premières feuilles, les plus extérieures, qui, dans l'état de rapprochement où elles se trouvent comme pelotonnées, servent d'enveloppe aux autres, présentent des modifications remarquables de forme et de substance qui les rendent propres à résister elles-mêmes et à protéger les parties les plus intérieures. Leur consistance est alors ordinairement celle à laquelle on donne en botanique le nom d'écailleuse, c'est-à-dire dure et sèche, comme l'est, par exemple, l'enveloppe d'une graine de Melon ou de Poire. Souvent elles sont en outre imprégnées de quelques matières insolubles dans l'eau et conduisant mal la chaleur, comme la résine (dans certains Peupliers, par exemple); d'autres fois doublées d'un épais duvet (dans beaucoup de Saules, par exemple).


Quelquefois ces feuilles ou écailles sont assez développées pour s'envelopper complétement l'une l'autre. Plus ordinairement, elles sont plus courtes que la totalité du bourgeon, et se présentent alors *imbriquées* sur plusieurs rangs, c'est-à-dire les extérieures recouvrant le bas des intérieures, à peu près à la manière des tuiles d'un toit (fig. 445, 446, 4). Dans ce cas, pour peu qu'il s'en trouve un certain nombre et que le bourgeon soit allongé, il est facile d'y reconnaître au premier coup d'œil l'agencement spiral, analogue à celui que nous avons signalé dans les cônes des Pins. On appelle les bourgeons *écailleux*, lorsqu'ils sont ainsi défendus; *nus*, lorsque les feuilles extérieures ne présentent pas de modifications remarquables, comme dans la plupart des arbres tropicaux. Quelques uns des nôtres, cependant, par exemple, la Bourgène (*Rhamnus frangula*), ont les bourgeons nus; mais c'est un cas fort rare.

On a proposé divers termes (*tegmenta*, *perulæ*) pour désigner ces feuilles extérieures et modifiées, qui servent ainsi d'organes protecteurs. Linné les appelait ingénieusement *hibernacula* ou logements d'hiver. C'est à leur ensemble que de Candolle réserve le nom de bourgeon, donnant au reste celui de jeune pousse. Pour éviter la multiplicité des mots, nous les appellerons ici *écailles*, en avertissant que ce n'est pas la forme qu'ils présentent constamment, quoique ce soit la plus ordinaire.

§ 143. La feuille, en remplissant ce rôle, se trouve réduite à l'une

BOURGEONS.

ou à l'autre de ses parties, et de là diverses épithètes par lesquelles on distingue ces origines différentes. Les bourgeons sont dits *foliaces*, si l'écaille est formée par le limbe seul ainsi métamorphosé; *pétiolacés*, si elle est formée par l'élargissement inférieur du pétiole que


146.

nous avons nommé gaîne; *stipulacés*, si c'est par ses productions latérales ou stipules; *fulcracés*, si c'est par le pétiole et les stipules à la fois. La détermination de ces parties est quelquefois clairement indiquée, et souvent la nature confirme nos théories en montrant des transitions graduées des écailles les plus intérieures aux premières feuilles véritables : comme dans le *Pavia*, par exemple.

§ 144. Les feuilles proprement dites, lorsque leur limbe a acquis une certaine grandeur dans le bourgeon, y sont en général diversement pliées ou roulées sur elles-mêmes, de manière à s'adapter à sa forme arrondie et à occuper le moins de place possible. On a nommé cet état *préfoliaison*, ou plus anciennement *vernation* (*vernatio*), c'està-dire état printanier. On désigne chacune de ces modifications par un nom-particulier, que nous ajouterons entre parenthèses après la définition de chacune. Si nous considérons d'abord chaque feuille indépendamment des autres, nous trouverons qu'elles peuvent être : 1° pliées, ou en deux moitiés, soit la partie supérieure sur l'inférieure, en rapprochant ainsi la base du sommet (ce qu'on appelle *feuilles réclinées, folia reclinata*; exemple : Tulipier [*fig.* 447, 4]); soit la moitié de droite sur celle de gauche, les extrémités et la ner-

446. 4. Bourgeon écailleux de l'Érable-sycomore (Acer pseudo-platanus). — r Rameau. — p Coussinet (pulvinus) portant à son sommet la cicatrice c, qui persiste après la chute de la feuille et dans laquelle on aperçoit trois faisceaux qui s'y rendaient. e Écailles imbriquées du bourgeon. — 2. Coupe transversale du même bourgeon. e Écailles.

vure moyenne restant immobiles (f. condupliquées, f. conduplicata; exemple : Chêne [fig. 447, 2]), ou plissées un certain nombre de fois à la manière d'un éventail (f. plissées, f. plicata; exemple : Érable [fig. 446 f, et 447, 3]), et ordinairement le long de leurs principales nervures; 2° roulées, ou leur axe restant droit, soit sur elles-mêmes en cornet (f. convolutées, f. convoluta; exemple : Abricotier [fig. 447, 4]); soit en sens opposé par leurs deux bords, qui

se réfléchissent tantôt en dehors (f. révolutées, f. revoluta; exemple : Romarin [fig. 447, 6]), tantôt en dedans (f. involutées, f. involuta; exemple : Violette [fig. 447, 5]), ou sur leur axe de haut en bas comme une crosse (f. circinées, f. circinata; exemple : Pilulaire [fig. 447, 7]). Ces modifications peuvent se compliquer quelquefois l'une par l'autre, comme, par exemple, lorsqu'un limbe plissé est récliné sur son pétiole, ou se composer lorsque les nervures secondaires s'infléchissent relativement à la médiane, comme celle-ci relativement à l'axe qui porte la feuille. C'est ce qu'on observe fréquemment dans les feuilles profondément découpées (par exemple, les Fougères, dont les découpures sont roulées en crosse comme la totalité de la feuille), et surtout dans celles qui sont véritablement composées.

Si nous considérons maintenant les feuilles d'un même bouton les unes relativement aux autres, nous voyons que : 4° planes ou légèrement convexes, elles se touchent par leurs bords sans se recou-

147. 1-7. Feuilles à l'état de vernation, considérées isolément. — 1 et 7. Vues sur une coupe verticale. — 2, 3, 4, 5, 6. Sur une coupe horizontale. — 8-12. Réunion de plusieurs feuilles d'un même hourgeon, vues sur une coupe horizontale qui indique leur position relative en même temps que leur vernation individuelle. Dans toutes ces figures et dans les précédentes, la nervure médiane est indiquée par une plus grande épaisseur de la tranche, et l'axe qui porte les feuilles, par un rond placé à côté.

RAMIFICATION.

vrir (vernation valcaire, folia valcata [fig. 447, 8]), ou se recouvrent seulement dans une partie de leur hauteur (v. imbriquée, f. imbricata), et alors ordinairement aussi par leurs bords, suivant la disposition spirale qu'elles doivent conserver plus tard (v. spirale, r. spiralis [fig. 147, 9)]; 2º pliées sur elles-mêmes, elles se touchent seulement par leurs bords opposés (fig. 147, 40), ou par leurs faces voisines (v. indupliquée, v. induplicata [fig. 147, 14]); ou bien une feuille condupliquée en embrasse complétement une autre et chevauche sur elle (f. équitantes, f. equitantia [fig. 447, 42]), ou bien elle reçoit dans son pli la moitié d'une autre pliée de la même manière (f. demi-équitantes, f. invicem equitantia seu obvoluta [fig. 147, 13]). Tous ces termes, au reste, ne s'appliquent pas exclusivement aux feuilles dans le bourgeon ; ils servent à désigner des modes et des rapports de plicature ou d'enroulement analogues dans toutes les parties planes des végétaux. dans quelque partie et à quelque époque qu'on les trouve. Mais c'est principalement dans les parties jeunes qu'on les observe ; par exemple aussi, dans celles de la fleur à l'état de bouton. Nous aurons donc à les retrouver plus loin, et il est bon de les fixer dans la mémoire.

RAMIFICATION.

§ 145. C'est naturellement après avoir traité des bourgeons que nous pouvons comprendre la ramification du végétal, puisqu'elle résulte de l'évolution de ses bourgeons qui s'allongent en branches, dont chacune à son tour se couvrira de bourgeons nouveaux se développant en branches nouvelles et préparant eux-mêmes une troisième génération que suivront une quatrième, une cinquième, etc. Si l'on nomme la tige axe primaire, on pourra nommer axes secondaires les branches qui en naissent immédiatement; tertiaires ceux qui naissent des secondaires, et ainsi de suite. Dans l'usage on se sert des mots branches (rami) et rameaux (ramuli) pour désigner ces divisions successives ; et, comme elles sont souvent beaucoup plus nombreuses, on modifie ces noms, dont la valeur n'a rien de rigoureux, par des épithètes ou autrement, de manière à indiquer approximativement à quel degré de division répond la branche dont on parle. Il arrive d'ailleurs fréquemment qu'on donne à ces différents termes une valeur purement relative, prenant pour point de départ, non la tige, mais un axe qui en est plus ou moins éloigné. Ainsi, ce qu'on appelle branche dans les herbiers ne serait appelé le plus souvent sur l'arbre qu'un faible rameau.

§ 146. Il est clair que si, à l'aisselle de chaque feuille, un bourgeon se développait en branche, la situation relative des branches

ne serait autre que celle des feuilles. Dans les plantes herbacées, où le nombre des feuilles et des axes est nécessairement beaucoup plus limité, assez souvent la plupart des bourgeons se développent. L'arrangement des feuilles et la ramification se reproduisent et s'accusent l'un l'autre assez exactement; mais il n'est pas rare non plus qu'un certain nombre de bourgeons axillaires ne se développent pas. C'est ce qui est plus ordinaire encore pour les végétaux ligneux, dont la vie prolongée entraîne une ramification plus compliquée.

Voilà donc une première cause qui modifie l'arrangement des branches par rapport à celui des feuilles, savoir, la suppression d'un certain nombre de bourgeons. Une seconde cause contraire est l'addition d'un certain nombre d'autres qui peuvent se développer à d'autres points. Examinons successivement ces deux causes et leurs effets.

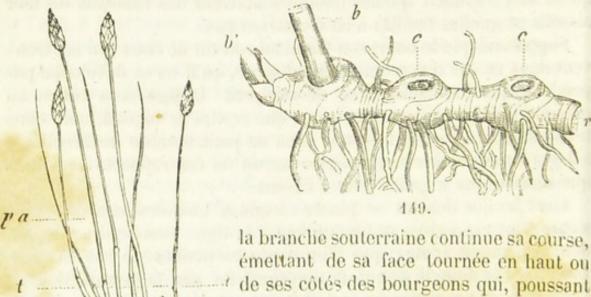
§ 147. Nous n'avons pas parlé précédemment d'un bourgeon dont l'existence est encore plus constante que celle des latéraux placés à l'aisselle des feuilles : c'est le bourgeon terminal, destiné à continuer l'axe à l'extrémité duquel il est né (fig. 145 bt). La gemmule de l'embryon était le premier. Lorsqu'elle a pris tout le développement dont elle est susceptible; que, parvenue à ce premier terme, la tige avec ses feuilles s'arrête dans sa croissance, sur son sommet se forme un bourgeon qui en est comme le couronnement. Après un certain temps d'arrêt, qui, dans notre climat, répond à l'hiver, ce bourgeon commence à se développer, puis s'arrête de même à son tour en en préparant un pour l'année suivante. La tige se compose donc réellement d'un certain nombre de branches bout à bout : par consequent, dans nos arbres dicotylédonés, on doit voir diminuer successivement le nombre des couches ligneuses une par une à mesure qu'on les observe de bas en haut; et, si l'on pouvait distinguer au dehors la pousse de chaque année de celle de l'année précédente, on aurait, tant que cet allongement ne s'arrête pas, un moyen extérieur de déterminer l'âge d'un arbre.

Il y a un assez grand nombre de végétaux où ce bourgeon terminal est le seul qui se développe ; et alors il n'y a pas de ramification latérale : la tige est simple. C'est un cas assez rare pour les dicotylédonés, qui le présentent néanmoins quelquefois, comme les Cycadées ou les Papayers, dont le tronc s'élance en manière de colonne couronnée par une touffe de feuilles ; mais il est fort commun pour les monocotylédonés (*fig.* 400, 4), et nous avons vu que ceux qui deviennent des arbres prennent cette forme le plus habituellement : aussi avait-on proposé, pour reconnaître leur âge , l'emploi de ce moyen que nous expliquions tout à l'heure. Mais si, vers le

RAMIFICATION.

haut de la tige, on trouve des traces annulaires qui indiquent les pousses successives, elles se sont en général depuis longtemps effacées vers le bas dans les vieux arbres. Et d'ailleurs nous ne savons pas encore avec assez de précision si, dans des climats différents des nôtres et exempts d'hiver, la formation de chacun de ces anneaux correspond à une année ou à tout autre intervalle régulier de temps.

§ 448. Prenons maintenant le cas où les bourgeons axillaires se développent en plus ou moins grand nombre, mais non tous. Le défaut de développement des autres peut être irrégulier et dépendre de causes locales ou individuelles. Ainsi, le défaut d'air, de lumière, une mauvaise veine du sol peuvent faire avorter en partie les bourgeons d'un côté de la plante, tandis qu'ils se développent de l'autre où elle n'est pas exposée à ces influences défavorables et accidentelles. Mais sur certains végétaux, c'est avec une régularité digne de remarque qu'on voit avorter certains bourgeons, qu'on voit les autres ne se développer qu'à des intervalles déterminés, de sorte qu'on sait d'avance quelles feuilles émettront des rameaux de leur aisselle et quelles feuilles n'en émettront pas.


Supposons que le bourgeon terminal soit un de ceux qui se trouvent dans ce cas d'avortement prédisposé, qu'il ne se développe pas pendant que les latéraux se développent : la tige sera courte ou presque nulle ; c'est sur les côtés que croîtra le végétal, soit dans tous les sens, soit de préférence dans un petit nombre de directions, s'il y a de ces avortements réglés par un de ces rapports constants que nous avons signalés tout à l'heure.

C'est ici que doivent se placer certaines modifications dont plusieurs sont rapportées ordinairement à la tige, mais qui ne dépendent réellement toutes que d'un mode particulier de ramification. Dans les cas dont il s'agit, la tige produite par la germination de l'embryon cesse, après un certain temps, de croître; et comme elle ne s'allonge pas par la production d'un bourgeon terminal, une branche latérale, née en général près de sa base, se charge de son rôle et de la génération suivante. Or la tige ne commence pas toujours au niveau du sol, elle s'enfonce souvent plus ou moins profondément en dessous; et ainsi cette branche qui la remplacera peut naître dans la terre aussi bien qu'au-dessus de la terre.

§ 149. Les plantes connues vulgairement sous le nom de *vivaces* (*perennes*) sont précisément dans ce cas. La première année, a paru au jour une tige qu'on a vue parcourir toutes les mêmes phases que celle de la plante annuelle, et qui, comme elle, a fini par mourir, mais c'est seulement dans sa portion élevée au-dessus du sol; audessous ont continué de vivre sa racine et la base de sa tige char-

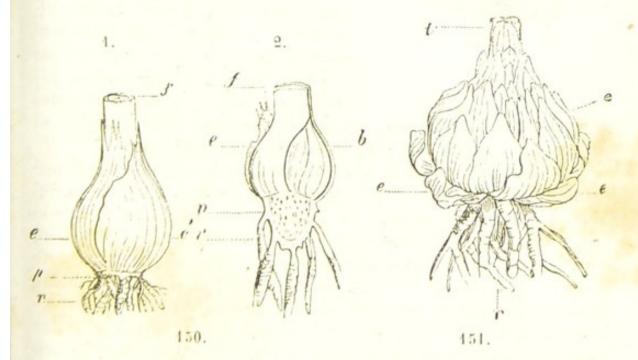
gée d'un ou de plusieurs bourgeons. Elles braveront l'hiver ainsi enterrées, et, se ranimant au printemps suivant, se développeront en autant de tiges appelées à leur tour à la même vie. Ces bourgeons offrent ordinairement une forme particulière; leur axe, épais et charnu, s'allonge beaucoup avant de produire des feuilles : on lui a donné le nom de *turion (turio)*. On peut en avoir des exemples dans les Pivoines, ou, pour en citer un qui sera plus familier à la plupart des lecteurs, dans les pointes d'Asperge à l'état où on les mange.

§ 450. Au lieu de rester stationnaire jusqu'à l'année suivante, et de sortir à l'air en se développant, les branches souterraines peuvent s'allonger sous terre. Nous avons vu autre part (§ 95) que les tiges, dans cette condition, produisent ordinairement des racines adventives. C'est ce qui arrivera à nos branches; et, rampant ainsi obliquement ou horizontalement au-dessous du sol, chargées de prolongements et de fibrilles radiculaires, elles prendront toute l'apparence d'une racine. On les nomme alors *rhizome* (*rhizoma*). Tantôt

de ses côtés des bourgeons qui, poussant verticalement, viennent se développer et s'épanouir au jour (*fig.* 448); tantôt elle se redresse elle-même et vient au jour par sen extrémité terminée en bourgeon;

mais c'est ordinairement après qu'une branche semblable à elle, et née d'elle, a pris sa place et sa marche souterraine. La même plante

118.

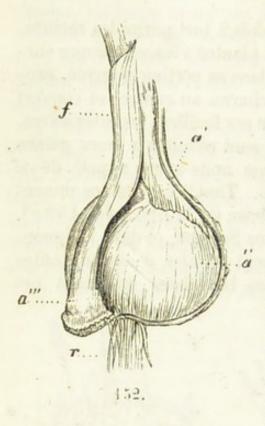

148. Portion du rhizome r du *Scirpus palustris* (beaucoup plus petit que nature). *fe fe* Feuilles situées sur le rhizome, à l'état d'écailles. — *pa* Partie aérienne de la plante, les branches feuillées ou florifères qui s'élèvent au-dessus de la vase. — *l* Nivecu de la terre au-dessus du rhizome.

149. Portion du rhizome r du Sceau-de-Salomon (*Convallaria polygonatum*). b Bourgeon déjà développé en rameau à l'extrémité du rhizome. — b' Bourgeon qui se développera plus tard. — cc Cicatrices indiquant l'insertion de rameaux plus anciens qui se sont flétris et détachés.

RAMIFICATION.

peut courir ainsi un grand espace, et arriver bien loin de la place où elle a commencé à vivre en germant. Une série de cicatrices persistant sur la face supérieure du rhizome indique souvent les pousses successives : par exemple (*fig.* 449 *cc*), dans le Sceau-de-Salomon (*Convallaria polygonatum*).

§ 454. Le bulbé, qu'on classait autrefois à tort parmi les racines, est une autre modification de la tige des plantes vivaces, propre surtout aux Monocotylédonées. Cette tige, dans sa portion enterrée, produit latéralement un bourgeon épais et charnu au centre, et couvert de feuilles plus ou moins nombreuses. De ces feuilles, les extérieures, qui s'insèrent nécessairement plus bas, sont réduites à leurs gaînes à l'état d'écailles, et représentent ce que nous avons appelé de ce même nom dans les bourgeons aériens. Tantôt ces gaînes minces enveloppent chacune complétement la base de la tige (fig. 450 e), comme on le voit dans les Jacinthes, les Safrans, et dans l'Oignon, d'après lequel on a nommé vulgairement plantes à oignon toutes celles qui présentent ce caractère : les botanistes nomment ces



mêmes bulbes *tuniqués*. D'autres fois, au lieu de ces tuniques membraneuses enveloppant tout le bourgeon, on trouve des appendices plus étroits imbriqués en grand nombre (*fig.* 154 e) sur tout le con-

450. Bulbe tuniqué, celui du Poireau (Allium porrum), vu dans son entier 1, et dans sa coupe verticale 2. — r Bacine. — p Plateau intermédiaire aux racines et au renflement bulbeux. — e Écailles ou feuilles inférieures modifiées. — f Feuilles supérieures développées qu'on à coupées vers leur base. — b Bourgeon situé dans l'aisselle d'une écaille et qui forme un nouveau bulbe en se développent.

151. Bulbe écailleux, celui du Lis blanc. — r Bacines. — cc Écailles. — l Tige coupée.

tour du bulbe, qu'on nomme alors *écailleux*, parce que ces appendices ressemblent beaucoup aux écailles, dont ils ne différent que par leur consistance très charnue : le Lis blanc en offre un bon exemple (*fig.* 454). D'autres fois enfin on ne trouve qu'un très petit

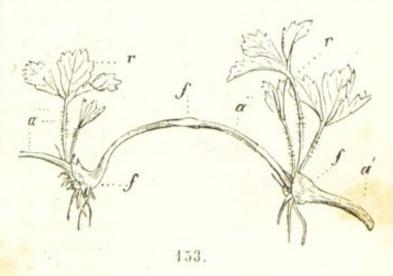
nombre de tuniques ; et comme alors la masse du bulbe est presque entièrement formée par son axe très renflé. on lui donne l'épithète de solide (fig. 152). A l'aisselle de ces feuilles ainsi métamorphosées, on observe des bourgeons secondaires beaucoup plus petits, qu'on appelle des caïeux, et dont le nombre plus ou moins grand semble en rapport avec celui des feuilles. De ces bourgeons, les uns pourront se développer sur le bulbe même, et dans quelques plantes, pendant plusieurs années ; les autres pourront à leur tour devenir bulbes, et. comme ils n'adhèrent que faiblement au bulbe mère, qui finit d'ailleurs par se flétrir, ils s'en détacheront en général à une certaine époque, et toutes

les plantes ainsi formées, quoique appartenant dans l'origine au même pied, seront plus tard autant de pieds différents.

Dans les bulbes solides, souvent sur l'un des côtés se développe un seul bourgeon (fig. 452 a'') qui prend à son tour la forme de celui dont il émane, et produit de même en son temps un bourgeon (fig. 452 a''') latéral, mais situé le plus souvent sur le côté opposé, d'après la loi d'alternation des feuilles et des bourgeons. De cette manière, il se produit un pied chaque année; et si le second naît à droite du premier, le troisième naîtra à gauche du second, le quatrième à droite du troisième : de sorte que l'on trouvera la plante toujours à la même place, oscillant seulement un peu chaque année de droite à gauche et de gauche à droite alternativement. C'est ce qu'on voit très bien dans le Colchique.

Dans chaque bulbe, au-dessous des tuniques, est un court espace en forme de plateau (fig. 450 p), sur la surface inférieure duquel se forment les racines fasciculées. Intermédiaire aux feuilles et aux

^{152.} Bulbe solide, celui du Colchique (*Colchicum autumnale*). — r Racines. — f Feuille. — a' Axe primaire déjà flétri, appartenant à l'année précédente. — a'' Axe secondaire ou tige bulbiforme de l'année. — a''' Point où se développera celui de l'année sujvante.

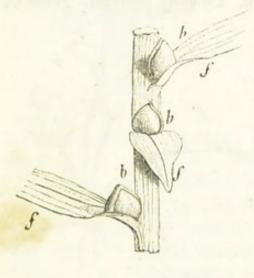

RAMIFICATION.

racines, il est considéré comme la tige; mais il doit l'être plutôt comme la partie inférieure d'une branche, puisque ce n'est autre chose que le bas d'un bourgeon latéral : seulement ce bourgeon s'est détaché ; il est devenu comme une bouture naturelle de la plante mère.

Les bulbes, de même que les rhizomes (§ 450), tantôt se continuent par un bourgeon terminal (comme dans la Jacinthe, le Perceneige), tantôt seulement par des bourgeons latéraux (dans la Tulipe, par exemple).

§ 152. Il en est encore de même des *tiges* dites *rampantes*, celles qui, au lieu de s'élever verticalement, prennent, en général par faiblesse, une direction horizontale immédiatement au-dessus du sol et émettent des racines adventives de leur face en rapport avec lui. Quelquefois (comme dans la Monnaière, beaucoup de Véroniques, etc.), la tige primitive continue à s'allonger chaque année par le développement d'un bourgeon terminal. Plus ordinairement celuici ne se développe pas, et c'est une branche latérale qui, se substituant à la tige, court au niveau du sol. Le plus souvent grêle et

flexible, cette prétendue tige parcourt un certain espace sans produire de feuilles ou n'en produit qu'un très petit nombre de loin en loin, ou même habituellement une seule au plus (fig. 453 a'' f,) dont le bourgeon peut se développer, mais avorte fréquemment, puis elle se termine par une rosette


dirigée naturellement en haut (fig. 453 r); au-dessous de cette rosette se produisent alors des racines qui s'enfoncent en terre, et de l'aisselle de ses feuilles inférieures partent de nouvelles branches (a'')qui se terminent plus loin de même. Tout le monde connaît cette organisation du *Fraisier commun (fig.* 453), de la *Renoncule rampante* et de tant de plantes auxquelles on a donné ce nom spécifique.

153. Portion de Fraisier. — a' Un premier axe qui a produit une rosette r de feuilles, les supérieures r vertes, les inférieures f rudimentaires. De l'aisselle de l'une de celles-ci est sorti un second axe a'' ou jet, portant lui-même vers son milieu une feuille rudimentaire en f, et à son extrémité une rosette r semblable à la première, d'où part un troisième axe a'''.

Le plus souvent ces jets latéraux qu'on nomme vulgairement des coulants (flagellum), finissent par se flétrir, se désarticuler, et les touffes enracinées qu'ils unissent, par devenir autant de pieds distincts. Les jardiniers imitent cette opération de la nature lorsqu'ils marcottent une plante, c'est-à-dire couchent sur la terre une branche qui, légèrement enterrée à un certain point, produit là, en haut des feuilles et en bas des racines, et développe ainsi un pied qui ne tarde pas à végéter pour son propre compte, et peut enfin être détaché.

Dans les plantes grasses, dont les feuilles peuvent suffire quelque temps à leur nourriture, on n'a pas besoin d'attendre que la rosette produite sur le rejet ait formé des racines, pour la séparer et la planter séparément. On appelle *propagule (propagulum)* cette modification du coulant.

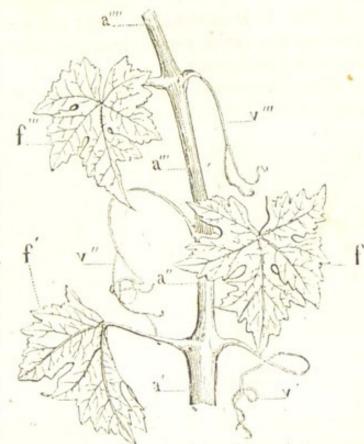
§ 453. A tous les cas précédents, dans lesquels nous observons une si grande tendance des bourgeons et de leurs produits à devenir définitivement indépendants de la tige mère, et les uns des autres,

154.

il faut ajouter cette modification du bourgeon aérien, qu'on connaît sous le nom de *bulbille* (*bulbillus*), diminutif du bulbe, avec lequel il a en effet les plus grands rapports. Il prend alors cette consistance charnue propre à tout organe ou ensemble d'organes qui pourra vivre quelque temps aux dépens de sa propre substance. Ses écailles sont en petit nombre et épaisses, et, quelquefois soudées ensemble en partie ou en totalité, forment une seule petite masse. Il n'adhère que faiblement à l'aisselle de la feuille, finit par s'en

détacher, peut être conservé ainsi quelque temps, et enfin, replanté, reproduire la plante qui lui a donné naissance. C'est un véritable passage entre le bourgeon et l'embryon. Le Lis (*fig.* 454) et la Dentaire bulbifères en fournissent des exemples.

§ 454. Dans tous les cas précédents, la branche chargée de continuer et de représenter la tige conservait, par rapport à celle-ci, sa position latérale. Mais il peut arriver que, plus forte qu'elle, elle la rejette de côté en se redressant elle-même, et usurpe sa place. C'est par la position relative des parties qu'on arrive alors à déterminer


154. Un bout de tige du Lis bulbifère (Lilium bulbiferum), avec trois feuilles f et trois bulbilles axillaires b.

RAMIFICATION.

eur vraie nature. Quand, par exemple, dans la Vigne (fig. 455) on voit la tige produire, de distance en distance, d'un côté une feuille sans bourgeon axillaire (4), de l'autre, sans feuille, un petit rameau

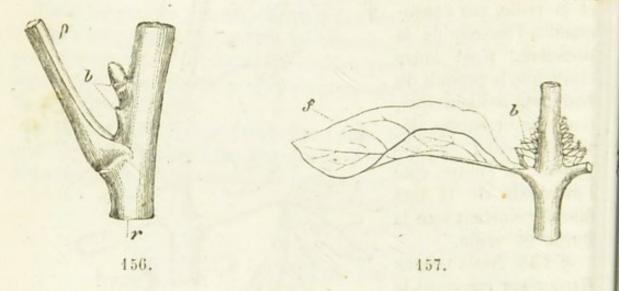
herbacé et rameux, vulgairement connu sous le nom de vrille, on doit penser que la continuation de la tige située entre la feuille et la vrille, par conséquent à l'aisselle de la première, n'est autre chose que le produit du bourgeon axillaire qui, dans son vigoureux développement, a repoussé de l'autre côté l'extrémité de la tige épuisée avortant sous la forme de vrille.

§ 455. Nous venons d'examiner comment la ramification est modifiée par l'avortement irrégulier ou régulier

155. .

d'un certain nombre de bourgeons terminaux et axillaires. Elle peut l'être aussi par le déplacement de ceux-ci, lorsqu'au lieu de se développer à l'aisselle même des feuilles, ils se montrent à une certaine distance. Le bourgeon ou le rameau sont dits alors *extra-axillaires*. Cette disposition peut tenir à plusieurs causes, à l'avortement complet de certaines feuilles, ou souvent à la soudure de la tige soit avec leur partie inférieure, leur pétiole, par exemple, soit avec le bas du rameau axillaire; de telle sorte que le bourgeon semble reporté, dans le premier cas, plus bas que la feuille, et plus haut d'ans le second.

C'est par des considérations de cette nature qu'on a pu se rendre compte de certaines anomalies dans l'arrangement des feuilles de


155. Portion d'un rameau de Vigne. — a' Premier axe terminé par une vrille v', qui s'est déjetée la éralement, et portant une feuille f'. — De l'aisselle de celle-ci part un rameau a'' qui semble continuer l'axe a', terminé de même par une vrille v'', et portant une feuille f''. — a''' Rameau naissant de l'aisselle f'', terminé par v''', et portant f''' de l'aisselle de laquelle part a''''.

(1) Il existe souvent en dedans de cette feuille un bourgeon simple ou double, mais un reu latéral, et non au milieu même de l'aisselle.

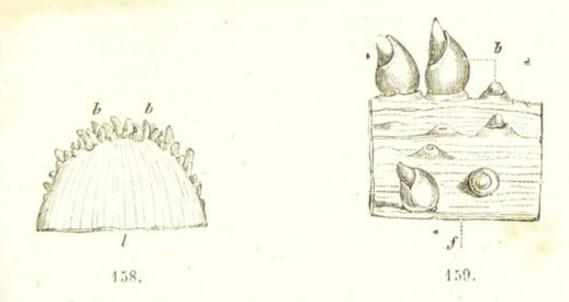
quelques plantes, de beaucoup de Solanées, par exemple. Nous ne pouvons ici entrer dans plus de détails sur ces cas exceptionnels, et que nous retrouverons d'ailleurs en traitant de l'arrangement des fleurs.

§ 456. Si la ramification varie par suite d'avortement, elle peut d'autres fois varier par la cause précisément contraire, la multiplication des bourgeons.

Ainsi quelquefois, assez rarement cependant, on en trouve d'accessoires, outre celui qui existait ordinairement seul à l'aisselle d'une

même feuille, dont on voit alors partir plusieurs branches, comme cela s'observe, par exemple, dans le Noyer (fig. 456) et dans les Chamerisiers (fig. 457).

§ 457. La multiplication des bourgeons est due bien plus fréquemment à ceux dont nous avons déjà dit quelques mots, et qu'on nomme adventifs ou latents.


Toutes les parties cellulaires voisines de la surface sur la tige paraissent disposées, lorsque quelque cause vient y exciter la vitalité et y accumuler les matériaux par un plus grand afflux des sucs, à s'organiser en bourgeons. Mais, quoique plus ordinaires sur la tige, ces productions peuvent se montrer quelquefois sur d'autres parties : les racines exposées à l'air; des feuilles plus ou moins charnues, soit sur les bords (comme dans le *Bryophyllum calycinum*, le *Malaxis paludosa* [fig. 458], etc.), soit sur la surface même (comme dansl'Ornithogalum thyrsoideum [fig. 459]). On peut artificiellement déterminer la formation de bourgeons adventifs par des ligatures ou

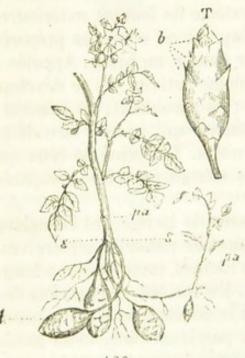
156. Portion d'un rameau r de Noyer, portant le pétiole p d'une feuille dont le rester a été coupé. A son aisselle plusieurs bourgeons superposés b, d'autant plus développéss qu'on les observe plus haut.

157. Portion de rameau r d'un Chamerisier (Lonicera tatarica) portant deux feuilles opposées, dont l'une a été coupée, l'autre f conservée. A leur aisselle une suite de bourgeons superposés b, d'autant plus développés qtf'on les observé plus bas.

RAMIFICATION.

des blessures, qui appellent l'afflux des liquides et la turgescence de la partie où l'on a opéré.

Leur forme diffère naturellement de celle des bourgeons normaux. Ils n'ont ni leurs dimensions ni ce système de feuilles extérieures modifiées en écailles protectrices, puisqu'ils ne sont pas préparés une année à l'avance et prémunis pour passer un hiver. Appelés à la vie au milieu d'une végétation en pleine activité, ils se développent immédiatement et incessamment ; ils paraissent, en général , d'abord sous la forme de petites excroissances qui, après s'être allongées plus ou moins , se couvrent de feuilles. La forme de ceux qui se montrent quelquefois sur les feuilles mêmes peut être comparée plutôt à celle des bulbilles (*fig.* 459).


§ 458. Quoique les parties dépendantes de la tige, les branches, souvent situées sous terre et couvertes alors de radicelles adventives, puissent facilement être prises pour des racines, méprise qui a longtemps régné; quoique, réciproquement, les racines, quelquefois dégagées de la terre et pouvant alors, par le développement des bourgeons adventifs, se couvrir de feuillage, paraissent faire alors partie du système aérien de la tige, nous saurons maintenant dans les deux cas, au moyen de tous les caractères extérieurs que nous avons exposés précédemment, déterminer avec certitude ce qui sera tige ou sa dépendance, ce qui sera racine. La première est toujours caractérisée par des bourgeons produits à l'aisselle de feuilles régulièrement disposées. Ces feuilles, il est vrai, dans les branches végétant

^{458.} Un bout de feuille l du Malaxis paludosa, dont tout le bord est couvert de bulbilles bb.

⁴⁵⁹. Portion du limbe de la feuille f de l'Ornithogalum thyrsoideum, sur la surface de laquelle se sont développés des bourgeons adventifs ou bulbilles bbb déjà plus ou moins avancés.

sous terre, sont extrêmement modifiées dans leur taille, leur forme, leur consistance, leur couleur ; en un mot, dans toute leur apparence : ce sont, le plus souvent, des écailles ou des membranes courtes et brunâtres ; mais, lors même qu'elles sont réduites presque à rien, l'arrangement régulier des bourgeons et leur nature indiquent qu'on n'a pas sous les yeux une vraie racine ; leur absence, qu'on en a une. Lorsqu'une plante trace, c'est-à-dire émet de distance en distance, hors de terre, de nouveaux pieds, on peut savoir de cette manière s'ils partent de ses racines secondaires, courant horizontalement et venant au jour émettre des bourgeons adventifs, ou bien des branches enterrées, suivant une marche semblable et bourgeonnant régulièrement dans leur trajet.

Le problème se complique quelquefois par les changements de forme et de nature que subit la branche souterraine sous l'influence du milieu où elle végète : elle se raccourcit, s'épaissit et devient charnue par l'extrême multiplicité des cellules féculifères qui consti-

160.

tuent presque toute sa masse. Cependant alors même, au moyen 'des mêmes données, la solution est possible. Citons un exemple qui sera familier pour tous nos lecteurs, la Pomme de terre (fig. 460, T). Sa surface est parsemée de petites éminences, qu'on appelle des yeux (b), d'abord cachées à l'aisselle de petites écailles qui tombent plus tard, rangées avec une certaine régularité et le plus souvent en spirale. Ces yeux se développent en'branches, si le tubercule est placé dans des conditions favorables d'humidité, en verdissant si c'est à la lumière. Nous so:nmes portés à prononcer ainsi que ce sont des bourgeons normaux, et la Pomme

de terre est donc une branche. Cette conclusion, qui paraît singulière au premier aperçu, est cependant facilement confirmée par une expérience journalière, celle des jardiniers, qui, en buttant la plante, c'est-à-dire enterrant sa partie inférieure, multiplient le nombre des tubercules par la conversion des bourgeons enterrés en

160. Portion inférieure d'un pied de Pomme de terre. — pa Sa portion aérienne eu tiges chargées de feuilles. — t Sa portion souterraine ou tubercule. — On a figuré un peu plus gros l'un d'eux T, où l'on voit les yeux ou bourgeons b cachés encore par des feuilles à l'état d'écailles régulièrement disposées. — ss Niveau de la terre.

RAMIFICATION.

pommes de terre. Dans les années pluvieuses et obscures, on voit cette métamorphose s'opérer spontanément et graduellement à l'air libre, les rameaux axillaires s'épaissir et s'arrondir en se raccourcis sant, et l'on peut obtenir toutes les transitions entre la branche et le tubercule. Au premier abord, des tubercules de *Dahlia* semblent tout à fait analogues à ceux de Pommes de terre; mais ils n'offrent ni écailles, ni yeux : ce sont des renflements de véritables racines.

§ 459. Nous avons examiné les divers modes de ramification ; nous avons vu que la position relative des rameaux reproduisait celle des feuilles s'il y avait développement d'autant de bourgeons axillaires, mais que le plus souvent elle est modifiée, soit par l'avortement d'un certain nombre de ceux-ci ou du terminal, soit au contraire par leur déplacement et leur multiplication, auxquels contribuent surtout les bourgeons adventifs. On a ainsi un grand nombre de combinaisons possibles, qui doivent imprimer à la physionomie des plantes une extrême variété. Il est clair que la partie souterraine de la ramification n'influe qu'indirectement sur cette physionomie extérieure; que, par elle, on a un plus ou moins grand nombre de pieds de plante semblables et tenant au premier, mais qui en paraissent distincts et qui souvent même le deviennent complétement; que l'évolution de ces bourgeons souterrains amène précisément à l'extérieur les mêmes résultats que ferait la germination d'un certain nombre de graines émanées de la même plante.

§ 460. Laissons donc cette classe de côté, et occupons-nous seulement des cas où les rameaux d'une même plante se rattachent extérieurement et visiblement les uns aux autres. La tige peut se soutenir par elle-même dans sa direction ascendante. Lorsqu'elle atteint des dimensions un peu considérables, on y distingue le tronc, ou partie inférieure, dépouillé de feuillage ; la cime ou tête, partie supérieure, qui en est couverte. Cette nudité du tronc est totale et résulte de l'avortement de tous les bourgeons axillaires, comme nous l'avons vu, par exemple, dans les Palmiers, pour la tige desquels quelques botanistes proposent le nom particulier de stipe (stipes); ou bien elle n'est que partielle par le développement incomplet des bourgeons inférieurs, et plus ordinairement par la chute plus ou moins tardive des branches qu'ils ont produites. Remarquons ici que la plupart de nos arbres doivent cette apparence au travail de l'homme, qui en retranche de bonne heure les branches inférieures ; d'autres fois, au contraire, ce sont les branches supérieures, celles de la cime, qui sont en coupe réglée, si bien que le port naturel des arbres se trouve tout à fait changé. Les Ormes de nos grandes routes et les Saules de nos prairies peuvent être cités comme des exemples des changements apportés par ces deux mutilations en sens inverse : il devient

12.

assez difficile d'y reconnaître l'Orme et le Saule tels que les a faits la nature. Il est bien entendu qu'ici, en parlant de la physionomie extérieure des végétaux, nous ne pouvons les considérer que dans leur état naturel, sans intervention de la serpette et de la hache.

§ 464. Un végétal paraît quelquefois avoir plusieurs tiges, parce que ses branches inférieures, nées au niveau ou à peine au-dessous du sol, ont pris un développement égal à l'axe primaire dont elles sortent, et qu'elles se sont redressées à peu près dans la même direction : on dit alors qu'il est *multicaule (multicaulis)*. L'art profite souvent de ces branches latérales commençant à ras terre, et par suite munies de racines adventives, pour les enlever dès qu'elles paraissent, et en former autant d'individus distincts en les replantant séparément : on les appelle alors des *surgeons* ou *drageons* (*surculi*).

§ 162. En général, la grosseur et la hauteur du tronc doivent, d'après la théorie, être en rapport direct avec l'âge, et pourraient servir à le calculer pour tous les arbres, dont on sait-à peu près combien s'augmentent, dans un temps donné, les différentes dimensions. On connait un certain nombre d'arbres de taille extraordinaire, dont l'origine remonte à plusieurs siècles ou même reste cachée en decà de toute tradition. La plupart sont des dicotylédonés : parmi ces arbres, des Tilleuls, des Sycomores, des Châtaigniers, des Ifs; dans l'Orient, des Platanes, des Figuiers et des Cèdres; sous les tropiques, des Baobabs et plusieurs autres espèces appartenant également à la famille des Bombacées ; mais parmi eux figurent aussi des monocotylédonés : par exemple, le Draconnier d'Orotava, dans les îles Canaries. Leur circonférence varie nécessairement suivant les individus et suivant les espèces : on en cite quelques uns où elle excède plus ou moins 30 mètres, un assez grand nombre de la moitié ou du tiers; mais ces géants exceptionnels ne doivent pas nous arrêter ici.

§ 163. Parmi les végétaux ligneux de taille ordinaire, on a distingué, d'après les limites où elle s'arrête, diverses classes qu'on désigne par des noms particuliers : ainsi on appelle *arbre (arbor)* celui qui dépasse plusieurs fois la taille de l'homme, en réservant quelquefois le diminutif (*arbuscula*) pour celui qui ne la dépasse pascinq fois; *arbuste* ou *arbrisseau (frutex)*, celui qui ne l'atteint pastrois fois et se ramifie dès le bas, en se servant pour les moins grandsdu diminutif (*fruticulus*); *sous-arbrisseau (suffrutex*), celui qui ne dépasse pas la longueur du bras. Si l'arbrisseau est bas et très rameux dès la base, c'est un buisson (dumus, dumetum). Les adjectifs *arborescent (arborescens)*, *frutescent (fruticosus* ou *fruticulosus*), *sous-*

RAMIFICATION.

frutescent (suffruticosus), buissonnant (dumetosus) sont dérivés de ces divers substantifs et n'ont pas besoin d'être définis.

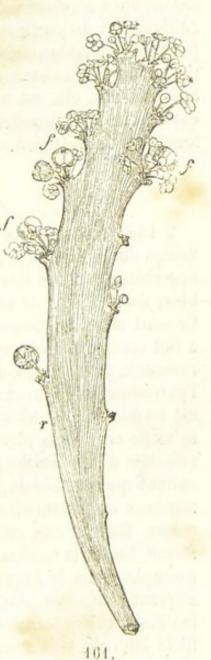
§ 164. La tige, d'autres fois, ne se soutient pas par elle-même et a besoin de s'appuyer sur d'autres corps ; si c'est sur la terre, on la dit couchée (procumbens); si c'est sur un corps lui-même redressé, on la dit grimpante (scandens). En grimpant, tantôt elle conserve à peu près sa direction rectiligne, comme le Lierre, par exemple, qui de toute sa surface en contact émet de petits prolongements radiciformes par lesquels il se fixe à celle sur laquelle il est appliqué ; tantôt elle s'entortille sur son soutien et prend le nom de volubile (volubilis), décrivant souvent des spirales qui, régulières, tournent de gauche à droite (dextrorsum) comme dans le Houblon; ou de droite à gauche (sinistrorsùm), comme dans le Liseron des haies ; ou bien dans un sens, puis dans un autre ; souvent irrégulières et interrompues par intervalles. Dans nos climats froids ou tempérés, la plupart des tiges grimpantes sont herbacées, quoique quelques unes soient ligneuses et susceptibles même d'acquérir des dimensions assez fortes, comme, par exemple, le Chèvrefeuille, la Clématite et surtout la Vigne : on donne alors à leurs branches le nom de sarment (sarmentum). Ce sont les analogues des lianes, qui abondent sous les tropiques. Ces lianes, tantôt enroulées en spirales autour des troncs les plus hauts, tantôt retombant en ligné droite de toute cette hauteur vers la terre, ou d'une branche sur l'autre, courent d'arbre en arbre, les lient entre eux, quelquefois les étouffent. Dans cette marche irrégulière et qui échappe à toute description rigoureuse, elles parcourent souvent de très longs espaces sans produire de feuilles, sans se ramifier; et les voyageurs n'ont pu trop fréquemment apercevoir le feuillage et les fleurs dépendant de ces tiges bizarres qui les environnaient de toutes parts.

§ 465. La ramification influe sur le port général des végétaux sous d'autres rapports encore que celui dont nous nous sommes occupés jusqu'ici, celui du développement d'un certain nombre de bourgeons situés d'une certaine manière. Est-il besoin d'expliquer comment la direction, la consistance, la longueur relative des branches et des rameaux modifient par leurs variétés la physionomie extérieure des plantes ? Les branches partent de la tige, et les rameaux des branches, sous un angle quelquefois très aigu, quelquefois droit, plus ordinairement un peu moins ouvert ; elles sont dressées (*recti*) dans le premier cas, étalées (*patentes*) dans le second, et doivent, en résultat, former dans les deux des cimes toutes différentes, comme le sont, par exemple, celles d'un Cyprès ou d'un Peuplier d'Italie, comparées à celles d'un Cèdre ou d'un Chêne. Dans quelques arbres qu'on appelle *pleureurs*, les branches prennent une direction tout à

fait inverse de la plus habituelle, en se recourbant vers la terre, soit que, longues et faibles, elles retombent par leur propre poids, comme dans le Saule pleureur (*rami penduli*); soit que, conservant une assez grande roideur, elles se rebroussent ainsi dès leur origine (*r. retroversi*), comme dans le Frêne et le Sophora pleureurs. Les branches étalées, partant quelquefois au niveau du sol, sans que la tige prenne un développement vertical, rampent ainsi sur la terre qu'elles couvrent comme une sorte de gazon en se ramifiant.

La longueur relative des branches doit aussi déterminer dans l'aspect général de notables différences. Si les plus basses, formées les premières, continuent à s'allonger dans la même proportion, les supérieures seront de plus en plus courtes à mesure qu'on s'approchera plus du haut, et l'ensemble aura la forme d'un cône on d'une pyramide (ex. : Sapins); si ce sont celles du milieu qui dépassent celles du bas, la cime figurera une boule ou un ovoïde (ex. : Marronnier d'Inde); si ce sont celles du haut qui prennent le plus grand développement, elle sera en parasol (ex. : Pin d'Italie, *Pinus pinea*). Nous ne citons ici que des formes extrêmes, entre lesquelles on peut observer toutes les intermédiaires.

§ 466. Pour résumer en quelques lignes tout ce qui précéde, nous avons considéré comme tige proprement dite celle qui résulte, dans les végétaux cotylédonés, de l'acte de la germination par l'évolution de la gemmule, la partie de l'axe primaire qui se dirige toujours verticalement vers le ciel, en sens inverse de l'autre partie, la radicule, qui descend dans la terre. Cette direction verticale ne peut subir de déviation que par des obstacles mécaniques, ou, pour la tige, que par sa faiblesse, qui la fait retomber en obéissant à la pesanteur. Tantôt cette tige s'allonge indéfiniment, dans la même direction, au moyen de bourgeons terminaux qui se forment et se développent successivement; tantôt elle s'arrête, plus tôt ou plus tard, par l'avortement d'un de ces bourgeons : et, si le végétal continue à s'étendre, c'est au moyen de bourgeons latéraux, par conséquent par un axe secondaire qui se substitue au primaire. L'axe ainsi substitué peut prendre la même direction verticale ou d'autres fois une plus oblique, et même l'horizontale, soit à la surface du sol, soit au-dessous : dans ces derniers cas, c'est que la véritable tige s'est bientôt arrêtée, remplacée par un bourgeon situé auprès de sa base. Nous n'avons donc dû considérer les tiges dites ou rampantes ou souterraines que comme des phénomènes de ramification.


ORGANES ACCESSOIRES OU TRANSFORMÉS.

ORGANES ACCESSOIRES OU TRANSFORMÉS.

§ 167. Nous avons examiné les organes fondamentaux (tige, racine, feuilles) sous leurs formes les plus générales. Nous avons vu

les uns prendre quelquefois celles des autres, les tiges simuler des racines, et réciproquement, les racines simuler des tiges. Il peut arriver aussi que les branches s'élargissent et s'aplatissent en manière de feuilles, et recoivent alors ce nom des observateurs superficiels. Mais un examen plus approfondi dissipe cette illusion, et dans tous ces cas la position relative des parties apprend à reconnaître leur véritable nature. Ainsi, dans les Xylophylla (fig. 161), en voyant les prétendues feuilles naitre les unes des autres et porter des fleurs, on sait qu'on a affaire à des rameaux, puisque ce sont eux qui naissent les uns des autres et sur lesquels les fleurs naissent, double relation que ne peuvent jamais présenter les feuilles. On appelle fasciation cet aplatissement foliiforme des branches qui est l'état normal dans plusieurs plantes, mais qui dans d'autres ne se rencontre qu'accidentellement (souvent dans l'Asperge, le Frêne, etc.).

§ 467 bis. D'autres fois, les organes fondamentaux se déguisent sous des formes entièrement nouvelles, qui leur permettent de servir à des usages un peu différents dans la vie du végétal. De là le nom d'organes accessoires sous lequel beaucoup d'autres les désignent alors, celui d'or-

ganes transformés leur conviendrait également. Telles étaient ces écailles, feuilles modifiées que nous avons vues entourer les bourgeons et protéger le rameau naissant; tels sont les vrilles, rameaux ou nervures transformés, au moyen desquels les plantes peuvent s'attacher et grimper sur les corps voisins; tels sont les piquants qui leur servent de défenses. D'autres fois, ce ne sont plus

461. Un rameau foliiforme r du Xylophylla longifolia. — fff Faisceaux de fleurs qui en naissent.

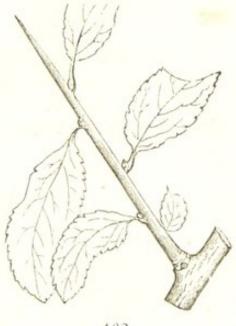
des organes composés et fondamentaux qui se prêtent à des fonctions nouvelles en changeant de forme, ce sont aussi les organes élémentaires, les cellules, qui viennent saillir à l'extérieur en épines ou en poils, ou former les glandes. Leur exposition eût peut-être dû prendre place au chapitre du tissu cellulaire ou à celui de l'écorce, puisque ces organes accessoires ne sont qu'une forme de ce tissu, et particulièrement du cortical ; mais nous avons mieux aimé la rejeter ici pour ne pas embrouiller, en l'allongeant, l'examen général de ces tissus, où leur existence est loin d'être constante, et où, lorsqu'ils y apparaissent, elle est tout à fait locale, et de plus parce que leur examen se lie naturellement au chapitre suivant consacré à celui des fonctions de nutrition.

VRILLES (cirrhi).

§ 168. Nous avons eu précédemment l'occasion de parler des vrilles de la Vigne (§ 454, fig. 455), et nous avons vu que c'était une métamorphose des rameaux allongés en filets herbacés et flexibles, susceptibles de se tortiller autour des corps qu'ils rencontrent. Ce sont alors les dernières ramifications d'une tige grimpante, tout à fait comparables à ces jeunes pousses, mais différant des véritables rameaux, en ce que leurs feuilles ne se développent pas. Tantôt c'est l'extrémité seule du rameau qui est ainsi modifiée, et alors la vrille est terminale ; tantôt c'est un rameau tout entier, et-souvent alors la vrille occupe la place normale de ce rameau, c'est-à-dire, part de l'aisselle d'une feuille (par exemple, dans les Passiflores). Elles résultent quelquefois de la métamorphose d'un autre organe que les rameaux ou pédoncules, de celle des différentes parties de la feuille même. Dans ce cas, ce sont les nervures qui se prolongent sous cette forme, tantôt la médiane seule à l'extrémité du limbe, ou simple (par exemple, dans le Flagellaria indica, le Methonica gloriosa), ou plus souvent composée (dans les Pois, les Vesces, les Gesses). Dans ces feuilles pennées terminées en vrille, celle-ci produit fréquemment des filets latéraux dus à une métamorphose analogue des folioles supérieures. Il n'est pas rare de voir le parenchyme disparaître complétement dans ces feuilles ainsi converties et réduites, soit à leurs principales nervures, et alors la vrille est rameuse, soit à leur nervure médiane, et alors la vrille est simple (par exemple, dans le Lathyrus aphaca). Comme la nervure médiane et le pétiole sont la continuation d'un même faisceau, on donne à ces vrilles l'épithète de pétiolaires.

Dans tous les cas, le point de départ des vrilles permet de déterminer quel est l'organe ainsi déguisé. Si elles résultent de la méta-

PIQUANTS.


morphose de plusieurs axes de différents degrés, comme dans la Vigne, on observe souvent, à la naissance de chaque filet latéral, une petite feuille rudimentaire relativement à laquelle il est axillaire.

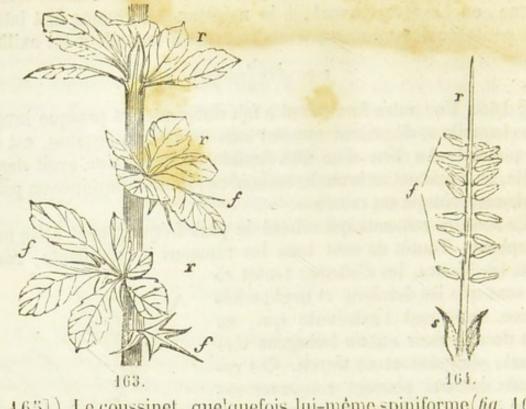
PIQUANTS (spince).

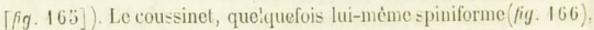
§ 169. Une autre forme tout à fait différente, et presque inverse. sous laquelle se déguisent souvent tous ces mêmes organes, est celle de piquant. Au lieu d'un filet flexible et mou qu'on avait dans la vrille, on a une petite branche raccourcie, roide et terminée en pointe, également simple ou rameuse.

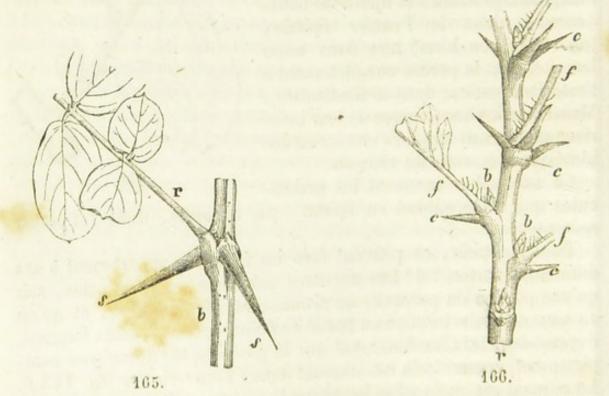
Ce sont les rameaux qui offrent le plus fréquemment cette métamorphose. Tantôt ce sont tous les rameaux d'une plante, comme

dans les Ajoncs, les Colletia; tantôt ce ne sont que les derniers, et quelquefois même seulement l'extrémité qui, au lieu de s'épaissir en un bourgeon terminal, s'aiguise et se durcit. Ces rameaux épineux peuvent conserver encore en partie leur caractère en se chargeant de feuilles et même de fleurs comme dans le Prunier épineux [fig. 162]), ou bien, nus dans toute leur étendue, le perdre complétement à l'extérieur (comme dans le Gleditschia). Mais l'examen anatomique de leur intérieur montrerait toujours une structure identique avec celle du rameau.

162.


Ce sont plus rarement les pédoncules qui se terminent en épines (par exemple, dans l'Alyssum spinosum).


Dans la feuille, ce peuvent être les faisceaux appartenant à ses différentes parties : 1º Les nervures médianes ou principales, soit qu'une portion du parenchyme réunisse encore leur base, et qu'on ait ainsi un limbe terminé ou bordé de pointes plus ou moins longues, comme dans les Chardons; soit que le parenchyme disparaisse complétement, comme cela est fréquent dans l'Épine-vinette (fig. 463 f). Le piquant est quelquefois formé par le pétiole seul. Souvent ce n'est qu'en vieillissant qu'il prend cette forme : le rachis de la feuille pennée de l'Astragale adragant et autres (fig. 464), par exemple, après la chute des folioles qu'il a portées pendant la jeunesse de la plante 2" Les stipules endurcies en deux épines plus courtes à la


162. Rameau du Prunellier (Prunus spinosa) ; terminé en pigtant.

144

base de la feuille, comme dans notre Acacia (Robinia pseudo-acacia

163. Rameau de l'Épine-vinette (Berberis vulgaris), dont les feuilles fff ont pris la forme de piquants rameux. De l'aisselle de chacune naît une rosette rrr de feuilles régulièrement conformées.

164. Feuille composée d'un Astragale (Astragalus massiliensis), dont le rachis r se termine en piquant. - s Stipules pétiolaires. - f Folioles groupées en neuf paires.

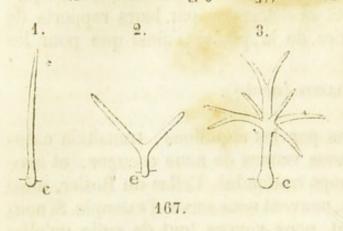
165. Base de la feuille composée du Faux Acacia (Robinia pseudo-acacia), dont les stipules ss ont pris la forme de piquants. - b Branche. - r Rachis.

166. Rameau du Groseillier à maquereau (Ribes uva-crispa), où l'on voit les cous-

POILS.

s'en distinguera aisément s'il forme une seule pointe immédiatement au-dessous de la feuille; mais s'il se redresse en une double pointe, la distinction deviendra moins facile. Il n'est pas besoin d'expliquer comment l'origine des piquants se détermine par leurs rapports de position avec les autres parties de la plante, ainsi que pour les vrilles.

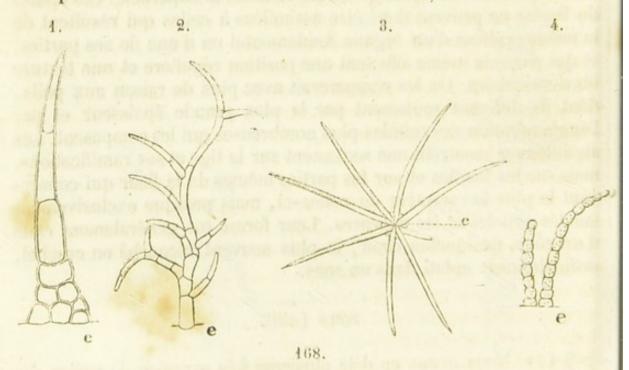
AIGUILLONS (aculei).


§ 170. Nous commencerons par les aiguillons, transition naturelle après les épines, dont nous venons de nous occuper, et avec lesquelles on les avait longtemps confondus. Celles du Rosier, ainsi qu'on les nomme vulgairement, peuvent nous servir d'exemple. Si nous les considérons extérieurement, nous voyons tout de suite qu'elles n'occupent aucune place fixe sur la branche, tantôt écartées, tantôt rapprochées sans ordre ; nous voyons aussi qu'elles n'y tiennent que faiblement et s'en détachent par un léger effort sans rupture. Leur examen microscopique les montre toutes composées d'un tissu cellulaire analogue à celui de l'enveloppe subéreuse, comme lui bientôt sec, et ne conservant la vie qu'à sa base, par laquelle il peut continuer à s'accroître, épais et durci sur toute la superficie. Ces épine: du Rosier ne peuvent donc être assimilées à celles qui résultent de la métamorphose d'un organe fondamental ou d'une de ses parties. et qui par cela même affectent une position régulière et une texture fibro-vasculaire. On les comparerait avec plus de raison aux poils, dont ils diffèrent seulement par la plus grande épaisseur et par l'agglomération des cellules plus nombreuses qui les composent. Les aiguillons se montrent non seulement sur la tige et ses ramifications. mais sur les feuilles et sur les parties mêmes de la fleur qui conservent le plus le caractère de celles-ci, mais presque exclusivement sur les pétioles et les nervures. Leur forme est généralement celle d'un cône, quelquefois droit, le plus souvent recourbé en crochet, ordinairement aplati dans un sens.

POILS (pili).

§ 171. Nous avons eu déjà plusieurs fois occasion de parler des poils, mais seulement à leur plus grand état de simplicité, lorsqu'ils résultent chacun de l'allongement d'une seule cellule épidermique (fig. 83). Cette cellule, enfoncée par sa base au milieu des autres, fait par le reste de son corps saillie au dehors, dirigée tantôt per-

sincts cccc des feuilles développés chacun en un piquant simple ou triple. — fff Base des feuilles. — bb Bourgeons naissant de l'aisselle de ces feuilles.

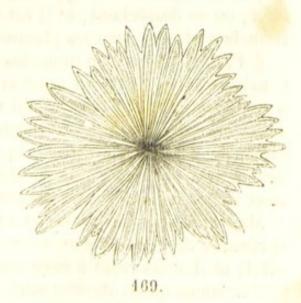

pendiculairement à la surface de l'épiderme (fig. 467, 4), tantôt obliquement, soit le plus souvent de bas en haut, soit en sens contraire (*pili retrorsi* [fig. 83]), tantôt enfin presque parallèlement

(pili adpressi). Sa surface est lisse ou assez souvent toute hérissée de petites aspérités (fig. 468, 4); sa forme la plus ordinaire est celle d'un cône long et grêle (fig. 467, 4), d'une aiguille; mais elle peut quelquefois être à peu près cylindrique et même se renfler en massue à son som-

met. Enfin elle peut se diriger à la fois dans deux ou plusieurs directions (fig. 467, 2), devenir rameuse (fig. 467, 3), quoique présentant toujours à l'intérieur une seule cavité continue. Ce n'est pas toujours dès sa base, ce n'est quelquefois qu'à une certaine hauteur qu'elle se ramifie ainsi.

Beaucoup de poils sont formés, non plus par une cellule unique, mais par une suite de cellules unies bout à bout ; et comme les sur-

167. Poils formés d'une seule cellule sortant de l'épiderme c. — 1. Poil simple. — 2. Poil bifurqué pris sur le Sisymbrium sophia. — 3. Poil rameux pris sur la feuille de l'Arabis alpina.


168. Poils composés, formés par la réunion de plusieurs cellules. — e Épiderme d'où naît le poil. — 1. Poil cloisonné simple, pris sur la tige de la Bryone (Bryonia alba). — 2. Poil rameux, pris sur la fleur du Nicandra anomala. — 3. Poil en étoile, pris sur la feuille de la rose trémière (Althæa rosea). — 4. Poil moniliforme, pris sur le Lychnis chalcedonica; on voit sa surface toute hérissée de petites aspérités.

faces en contact par lesquelles se superposent ou s'unissent ces cellules semblent interrompre la continuité du poil par autant de cloisons, on le dit alors cloisonné. Du reste, ces formes diverses sont alors à peu près les mêmes que lorsqu'il est formé par une cellule unique, celles d'un cône où les cellules superposées vont en diminuant de bas en haut (fig. 468, 4), ou d'un cylindre où elles sont d'égal diamètre, ou d'une massue où les supérieures s'élargissent, ou d'un petit arbre plus ou moins ramifié (fig. 468, 2). Lorsque plusieurs poils partent d'un centre commun, ils forment un pinceau (pili penicillati) ou une étoile (p. stellati ou radiati [fig. 468, 3]), suivant qu'ils se dirigent obliquement ou parallèlement à la surface de l'épiderme. Ces dernières dispositions sont caractéristiques dans des familles entières de plantes (par exemple, dans les Malvacées). Les cellules unies bout à bout peuvent ne pas offrir, chacune dans sa longueur, un diamètre égal ou graduellement décroissant, mais se rétrécir soit vers leur milieu, soit le plus souvent vers leurs extrémités, et par là le poil prend l'aspect d'un petit chapelet (p. moniliformes [fig. 168, 4]).

Le poil composé ne l'est pas toujours d'une seule rangée de cellules; mais on peut quelquefois en trouver plusieurs juxtaposées à la même hauteur. C'est un premier passage à l'état d'aiguillon, qui en diffère néanmoins en tant que venant d'une couche plus profonde.

L'examen microscopique fait voir les cellules des poils comme composées d'une double membrane. C'est qu'ainsi que nous l'avons vu (§ 45 [fig. 85]), la pellicule épidermique s'étend sur les poils comme sur le reste de l'épiderme, et leur forme autant de gaînes par lesquelles la membrane propre de chaque poil se trouve revêtue d'une autre membrane plus extérieure.

§ 472. Les poils qui rayonnent d'un centre commun viennent quelquefois à se réunir entre eux, probablement au moyen de cette pellicule qui enveloppe leur ensemble, et alors, au lieu d'une étoile, ils figurent une sorte de plaque membraneuse (fig. 469) adhérente seulement par son centre à la surface qui les porte et s'en détachant facilement, comme les petites écailles qu'on voit se détacher de la peau par desqua-

469. Écaille ou poil en écusson pris sur la feuille d'une Élæagnée (Hippophae vhamnoides).

mation. On a donc nommé ces poils écailleux ou en écusson (*pili* squamosi seu scutati, ou d'un seul mot emprunté au grec, *lepis*). Ils ont en général un reflet brillant et souvent comme métallique, comme, par exemple, sur les feuilles des Élæagnées.

On peut citer auprès d'eux d'autres petites expansions squamiformes ou membraneuses, qui, au lieu de tenir à la surface par un point central, lui adhèrent par tout leur bord le plus large. C'est comme un repli de l'épiderme, ou, si l'on aime mieux, comme un poil composé formé de la réunion d'un assez grand nombre de cellules, et tiré en largeur au lieu d'être en longueur. On leur donne le nom de poils scarieux (*pili ramentacei*, ou en un seul mot, *ramenta seu vaginellæ*). On les trouve particulièrement développés sur les pétioles et les limbes des feuilles de la plupart des Fougères. Leur couleur devient généralement brunâtre.

§ 173. Les poils abondent souvent sur les rameaux et sur les feuilles, et dans celles-ci se montrent beaucoup plus fréquemment et plus copieusement sur la face inférieure et sur les nervures et les pétioles. Leur existence et leurs fonctions paraissent être en rapport avec la jeunesse de ces parties, avec l'afflux des liquides dont elles sont alors gorgées et l'activité de l'évaporation qui en est la suite naturelle, et que probablement ils sont destinés à modérer. A mesure que les surfaces s'étendent par l'extension des parties qui vieillissent, il n'y a pas toujours production proportionnelle de nouveaux poils. Ceux qui les revêtaient d'un enduit épais, écartés l'un de l'autre par un espace qui grandit, finissent par le recouvrir incomplétement. C'est la cause qui fait que les poils, souvent si abondants sur les jeunes pousses, semblent avoir disparu après qu'elles ont acquis un certain développement. Quelquefois ils se détachent en effet, ou se dessèchent, et il est rare d'en trouver sur l'écorce des branches adultes dans les plantes ligneuses.

§ 474. Nous avons indiqué les formes les plus générales des poils : considérés isolément. En général, dans les descriptions, on s'arrête a celles qui s'aperçoivent à l'œil nu ou à la loupe, et l'on dit que les poils sont simples ou rameux de telle ou telle manière, sans rechercher s'ils sont unicellulaires ou multicellulaires; ce qui, en effet, peut n'avoir pas une grande importance, puisqu'on en trouve des deux sortes les uns à côté des autres.

Mais la description s'attache à représenter l'aspect qui résulte de la réunion de poils plus ou moins nombreux sur une partie du végétal, et il nous reste à faire connaître quelles sont les principales modifications qu'on observe sous ce rapport et par quels mots on less désigne. Ces mots, les voici :

GLANDES.

Glabre (glaber), état d'une surface dépourvue de tout poil. Glatratus, qui a perdu son poil.

Poilu (pilosus), garni de poils.

Pubescent (*pubescens*), garni de poils mous, assez courts et un peu clair-semés, d'un duvet (*pubes*) comparé à celui du menton d'un adolescent.

Velu (villosus), garni de poils longs, doux, un peu obliques.

Soyeux (sericeus), garni de poils couchés, soyeux, à reflet plus ou moins brillant.

Hispide (hispidus, hirtus), hérissé de poils roides, non couchés. Hirsutus tient le milieu entre cet état et celui qu'on exprime par rillosus.

Velouté (velutinus), couvert d'un duvet court, ras, comme du velours.

Cotonneux (tomentosus), couvert de poils crépus comme le coton, entremêlés en une sorte de feutre (tomentum). C'est l'état qui résulte en général de l'accumulation de poils en pinceaux ou rayonnants.

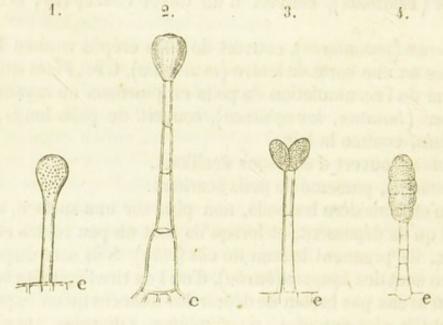
Laineux (lanutus, lanuginosus), couvert de poils longs, mous, entrecroisés, comme la laine.

Lepidotus, couvert d'écussons écailleux.

Ramentaceus, parsemé de poils scarieux.

Lorsqu'on considère les poils, non plus sur une surface, mais sur son bord qu'ils dépassent, et lorsqu'ils sont un peu roides et écartés entre eux, ils prennent le nom de *cils* (*cilia*). S'ils sont disposés par touffes, ce sont des *houppes* (*barba*), d'où l'on tire l'épithète *barbatus*.

Nous n'avons pas besoin de définir les nuances qu'on exprime par les diminutifs glabriusculus, pilosiusculus, villosulus, tomentellus, hispidulus, ciliolulatus, pour indiquer l'état d'une surface où les poils sont comparativement plus courts, plus clair-semés.


GLANDES.

§ 175. On appelle glande, dans les végétaux comme dans les animaux, un appareil contenant quelque liquide d'une nature particulière et différent de ceux qui sont répandus dans tout le reste du corps; liquide que l'action des organes qui composent cet appareil sécrète, c'est-à-dire tire des matériaux mis en rapport avec eux. C'est un tissu cellulaire qui, dans le végétal, est toujours chargé de cette fonction, et il ne se distingue pas de celui que nous avons appris à connaître jusqu'ici. On ne le reconnaît qu'à son contenu; mais il est impossible de préjuger de son action par sa forme. Aussi des organes qu'on regarde aujourd'hui comme glandulaires ont-ils pendant longtemps été confondus avec d'autres qui ne sécrètent

149

aucun fluide particulier, avec les poils, par exemple. Ce sont les poils qu'on a désignés sous le nom de glanduleux.

§ 476. Poils glanduleux. — Ces poils sécréteurs conservent même quelquefois, sans la plus légère modification, une des formes que nous venons de passer en revue. On ne voit rien de différent, sinon le liquide s'accumulant dans leurs dernières cellules et en suintant. Mais plus souvent la propriété sécrétante se lie à un léger changement de forme, ordinairement à un renflement terminal. Si le poil est formé par une cellule unique, elle se dilate, ou tout entière ou seulement à son sommet, en globe, en œuf, en massue (fig. 470, 4); s'il est formé de plusieurs cellules, ce sont toujours les plus élevées qui sécrètent : tantôt une seule (fig. 470, 2), la der-

170.

nière, plus ou moins dilatée avec quelques unes de ces formes que nous venons de citer; tantôt plusieurs terminales, placées ou bout à bout (fig. 470, 4), ou à la même hauteur, deux l'une à côté de l'autre (fig. 470, 3), ou quatre en croix, etc.; tantôt enfin plusieurs réunies en une seule masse qui constitue le renflement. Les autres cellules du poil, placées au-dessous, présentent leur conformation ordinaire, et exhaussent, en la rattachant à l'épiderme, la celluleglande simple ou multiple, qui est dite alors *pédicellée*.

170. Poils ganduleux. - e Épiderme d'où naît le poil.

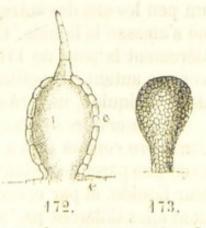
1. Poil composé d'une cellule unique, pris sur la feuille du Sisymbrium Chilense.

2. Poil composé de plusieurs cellules et terminé par une seule sécrétante, pris sur le pédoncule du Mufflier (Antirrhinum majus).

3. Poil composé de plusieurs cellules et terminé par deux sécrétantes accolées, prissur le pédoncule du Lysimachia vulgaris.

4. Poil composé de plusieurs cellules et terminé par plusieurs sécrétantes unies bout à bout, pris sur la Benoîte (Geum urbanum).

GLANDES.


§ 177. On a décrit comme conformés tout autrement les poils urticants (setœ urentes), ceux dont la piqure détermine une vive démangeaison : de l'Ortie, par exemple. On avait supposé, en effet, le liquide sécrété dans un amas de cellules glandu-

leuses caché sous l'épiderme, et du milieu de cet amas partant le poil dont le tube servirait à l'écoulement extérieur du venin et le verserait dans la blessure, absolument comme le crochet de la vipère, percé d'un canal en communication avec une petite glande située à la base de la dent; mais il n'en est pas ainsi. Les poils des Orties (fig. 474), des Loasa, de quelques Jatropha, sont tous également formés par une seule cellule conique, longue et roide, dilatée en bulbe à sa base (b) et terminée à son autre extrémité, soit directement, soit un peu de côté, par un petit bouton (s). C'est dans cette cellule que se forme le liquide brûlant; et, lorsqu'elle s'enfonce dans la peau, elle y laisse, en se cassant, son extrémité, retenue par le petit bouton terminal. De là une double cause d'irritation : la présence d'un corps étranger, et la propriété particulière de son contenu.

§ 478. Glandes proprement dites. — Le passage des poils glanduleux aux glandes est presque

insensible. Lorsqu'on a un amas de cellules sécrétantes sans pédicelle, mais attaché à l'épiderme par un rétrécissement, est-ce un poil composé sessile? est-ce une glande superficielle pédicellée? Au reste, peu importe le nom. On remarque alors deux modifications d'une certaine valeur : 4° la glande est creusée à l'intérieur d'une cavité, dont ces cellules, sur un seul rang, forment l'enveloppe (fig. 472): 2° la glande est pleine

loppe (fig. 472); 2º la glande est pleine, sans lacune centrale. On

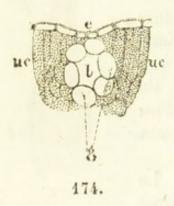
471. Poil de l'Ortie commune (Urtica dioica), conique, terminé à son sommet s par un renflement ou bouton, à sa base par une grosse dilatation en bulbe b. Cette base est environnée de cellules de l'épiderme ue qui se relève autour d'elle pour lui former une sorte de support. On voit dans la cavité du poil des courants d'une matière granuleuse ff.

172. Glande prise sur le pédoncule de la Fraxinelle (*Dictamnus albus*), coupée verticalement, de manière à laisser voir sa cavité centrale l, que remplit une huile verdâtre, et dont l'enveloppe est formée par une couche de cellules c remplies d'un suc rouge. e Épiderme.

173. Glande prise sur le Rosier à cent feuilles. Il y en a de formes diverses. — e Épiderme.

passe aussi graduellement de cette glande pédicellée (fig. 473) à celle qui s'étale fixée par une large surface, comme une sorte de verrue. Ainsi, dans les Roses, dans les Ronces, on en trouve dont le sommet est à peine plus renflé que la base.

§ 479. D'autres fois les glandes sont enfoncées à l'intérieur dans l'épaisseur du parenchyme cortical, mais en général fort superficiellement et immédiatement sous l'épiderme; et même alors il n'est pas très rare de les voir faire encore saillie au-dessus, revêtues par cet épiderme, quelquefois un peu modifié, qui les suit en se moulant sur leur surface, ou bien de voir l'épiderme interrompu encadrer une partie supérieure de la glande laissée à découvert.


§ 180. Parmi ces glandes intérieures, on doit distinguer celles qu'on a appelées vésiculaires, et qui, munies de parois pellucides sécrétant une huile volatile incolore ou à peine colorée, se dessinent

> sous la forme de points transparents, sur le fond vert de la feuille qui les porte, lorsqu'on regarde à travers le jour. Les feuilles du Millepertuis, de l'Oranger, du Myrte, de la Rue (fig. 474) sont des exemples familiers à tout le monde et peuvent servir à cette recherche. On y verra ces points transparents formés par un petit nombre d'utricules g plus gros que ceux du tissu environnant uc et lâchement unis entre eux. Ils finissent même quelquefois par s'écarter

un peu les uns des autres, en laissant entre eux une lacune centrale *l* où s'amasse le liquide. Ce sont ces glandes qui forment presque entièrement la peau de l'Orange. Sur sa fleur blanche on les aperçoit comme autant de petites taches vertes, ce qui prouve cette teinte dans le liquide, malgré sa transparence.

Les réservoirs des sucs propres, des gommes et des résines, qu'on considère comme tout à fait distincts des glandes, sont des lacunes avec une paroi de cellules particulières où se forme et d'où s'épanche leur liquide, et par conséquent se rapprochent bien des vésiculaires, dont elles diffèrent par leur situation plus profonde.

§ 181. La plupart des glandes intérieures sont, contrairement à celles que nous venons d'examiner, plus opaques et formées de cellules plus petites que le tissu environnant, très intimement unies, ne déterminent pas ainsi par leur écartement un réservoir central,

^{474.} Glando vésiculaire prise sur la feuille de la Rue commune (*Ruta graveolens*). — g La glande formée par de gros utricules transparents, écartés entre eux de manière à laisser une lacune centrale l. — e Épiderme de la surface supérieure de la feuille. uc uc Cellules allongées et d'autres formes remplies de chlorophylle et formant le tissu vert de la feuille.

GLANDES.

et laissent au plus se former dans leur épaisseur quelques lacunes accidentelles. Quelquefois, c'est du moins ce que nous observons dans les Malpighiacées, toute la surface de la glande présente une couche de cellules tout à fait différentes de celles qui composent la masse intérieure. Ce sont comme autant de petits poils obtus et très fins qui veloutent cette surface en la multipliant.

§ 182. La matière formée par les glandes est tantôt limpide, tantôt plus épaisse, de nature très diverse, suivant les plantes où elle se produit. Nous l'avons vue s'accumuler dans l'intérieur des cellules qui la forment ou dans des réservoirs voisins. Souvent elle s'épanche au dehors, soit que la surface extérieure soit elle-même sécrétante, soit plutôt qu'il y ait transsudation à travers la paroi cellulaire. Alors, au contact de l'air, elle change fréquemment de nature, s'épaissit ou se concentre, et c'est à ce dernier état qu'on l'observe souvent à l'extérieur.

TROISIÈME LEÇON.

FONCTIONS DE NUTRITION.

ABSORPTION ; RESPIRATION ; MOUVEMENTS DE LA SÉVE, ETC.

§ 183. Nous avons suivi (§ 31-34) les premiers changements qu'offre la jeune plante commençant à vivre par elle-même, ou, en un seul mot, germant. Lorsque sa germination est achevée, elle se trouve, par sa partie inférieure, ses racines, en rapport avec la terre; par sa partie supérieure, sa tige et ses feuilles, en rapport avec l'air. Ses racines pompent les liquides de la terre ou de tout autre milieu humide dans lequel elles se trouvent: cette fonction est appelée absorption. Le liquide, une fois entré dans la plante, parcourt dans tous les sens son tissu, où nous avons vu (§ 16) les moyens de communication merveilleusement préparés : c'est ce qu'on a nommé circulation, d'après un terme emprunté à la zoologie, quoique dans les animaux la fonction analogue s'exerce par des forces et d'une manière différentes. Le liquide, qui prend le nom de séve, se modifie dans son trajet, notamment sur toute la surface de la partie du végétal en rapport avec l'air : cette action de l'air sur la séve est la respiration. La séve, ainsi perfectionnée, est devenue propre à nourrir les tissus, c'est-à-dire au moyen de particules semblables à eux, à fortifier les organes déjà existants, à en produire d'autres de même nature : de là résulte la nutrition ou assimilation. Sur quelques points cependant elle fournit des matières plus ou moins différentes, soit destinées à un usage spécial, soit mises à part pour subir plus tard une nouvelle élaboration, soit inutiles ou même nuisibles à la plante, qui les rejette hors du tissu vivant. Ce sont les sécrétions, qui dans le dernier cas sont dites excrémentitielles. Tel est l'ensemble des fonctions de la végétation communes à la plante et à l'animal.

ABSORPTION.

ABSORPTION DES RACINES.

§ 184. Nous avons vu (§ 97) les racines recouvertes par une couche de cellules continue sans ouvertures. Comment le liquide en contact les pénétrera-t-il, et comment d'elles passera-t-il dans toutes les autres cavités qui composent le tissu végétal, séparées entre elles par de minces membranes? Ces membranes sont, il est vrai, perméables aux fluides; mais, pour que ceux-ci les traversent, il faut qu'ils soient sollicités par une force suffisante. Celle que M. Dutrochet a nommée *endosmose*, et si bien fait connaître, permet de se rendre parfaitement compte non seulement de l'absorption par les racines et de celle qui a eu lieu consécutivement de cellule à cellule, mais encore d'une partie de la circulation des végétaux, qui, avant cette découverte, était restée inexplicable.

Si une petite vessie dont la paroi est une membrane, soit animale, soit végétale (celle de la gousse du Baguenaudier, par exemple), est plongée dans l'eau pure et contient elle-même un liquide plus dense, comme de l'eau sucrée ou gommée, les deux liquides tendront à se mettre en équilibre de densité, et il s'établira à travers les parois un double courant, l'un de dehors en dedans de l'eau pure vers l'eau sucrée, l'autre de dedans en dehors de l'eau sucrée vers la pure. Mais les deux liquides ne filtrent pas à travers la membrane avec la même facilité, avec la même rapidité; le moins dense passe plus-vite que l'autre. La masse d'eau intérieure gagne ainsi plus qu'elle ne perd, tandis que l'extérieure perd plus qu'elle ne gagne : d'où doivent résulter une différence de niveau entre les deux et l'ascension du liquide contenu dans la vessie ; ascension qui ne s'arrête qu'au moment où les deux liquides se trouvent avoir acquis par cet échange continué une égale densité (1). En adaptant à la vessie 175. un tube vertical (fig. 175) gradué, on peut calculer la vitesse de l'ascension et sa force. Si au tube droit on en

(1) D'après les observations récentes de M. J. Béclard, les mouvements d'endosmose pourraient être considérés comme des phénomènes moléculaires de chaleur latente ; les liquides qui ont une chaleur spécifique plus grande marcheraient vers ceux qui en ont une plus petite. L'action de l'endosmose devra en général s'exercer de l'eau vers les autres liquides, parce qu'elle est celui de tous qui a la chaleur spécifique la plus considérable.

substitue un à double courbure, l'inférieur rempli de mercure; celui-ci, en montant dans la partie extérieure et graduée du tube, indiquera, par la hauteur de sa colonne, la résistance que la colonne d'eau sucrée a dû surmonter. On constate par de telles expériences que la vitesse et la force de l'endosmose marchent ensemble, qu'elles sont considérables, et que l'action dure longtemps. Une solution aqueuse de 4 partie de sucre pour 2 d'eau fit, en deux jours, monter la colonne de mercure de plus d'un mètre ; et, au bout de ce temps, elle ne contenait encore que 3 d'eau pour 4 de sucre.

§ 485. L'absorption exercée par les racines devient maintenant facile à expliquer. Les cellules qui forment leur tissu sont remplies de sucs plus denses que l'eau dont la terre est imbibée, et cette eau doit, par l'effet de l'endosmose, s'infiltrer à travers leurs membranes, gonfler les cavités des cellules les plus extérieures, en diminuant la densité du liquide qui s'y trouvait, et passer de là dans les cellules plus intérieures. Si l'on croyait favoriser la nutrition de la plante en lui fournissant sa nourriture toute préparée, en mettant, par exemple, ses racines en contact avec une solution sucrée, loin de marcher plus vite au but, on s'en éloignerait, on empêcherait l'endosmose et par suite l'absorption.

§186. Par quels points de la racine celle-ci s'exerce-t-elle le plus activement? L'expérience nous apprend que c'est par ses dernières ramifications les plus nouvellement formées, par leurs extrémités, ainsi que par les fibrilles ou chevelu dont elles sont recouvertes. On sait que, pour assurer le succès d'une transplantation, on doit conserver la plus grande quantité qu'il est possible de ces fibrilles, en les maintenant dans cet état d'humidité et de turgescence qui leur est propre. Nous avons vu (§ 98), que, dans les premiers temps, elles se hérissent de poils mous qu'on peut supposer destinés à multiplier leur surface, et par conséquent les points d'absorption. Cependant l'observation nous apprend que l'action de ces deux surfaces est très faible, comparée à celle des extrémités mêmes. On peut en effet disposer les racines d'une plante à quelque distance au-dessus de l'eau, de manière que leurs extrémités seules y plongent, tandis que tout le reste est au dehors ; et, dans ce cas, on voit par l'activité de la végétation que celle de l'absorption a lieu à un haut degré. On peut disposer au contraire ces mêmes racines de manière qu'elles plongent tout entières dans l'eau, excepté par leurs extrémités, qu'on maintient au dehors; et dans ce cas, la végétation ne cesse pas tout à fait, mais languit : il est clair que l'absorption s'exerce encore, mais à un degré insuffisant. Cependant M. Ohlert, auquel on doit de nombreuses expériences sur ce sujet, tout en reconnaissant que l'action absorbante, nulle vers le haut de la racine,

CIRCULATION. SEVE ASCENDANTE.

ne s'exerce que vers sa partie inférieure, conclut que c'est sur les côtés et non à sa pointe.

Nous avons dit (§ 400) que l'élongation de la racine et de toutes ses ramifications a lieu exclusivement par leur bout, qui, par conséquent, se trouve à l'état de tissu naissant pendant tout le temps que se maintient l'activité de la végétation. Ce n'est donc pas par suite d'une modification particulière du tissu gonflé et agissant à la manière d'une éponge, comme on l'avait supposé, que les extrémités radicellaires pompent l'humidité qui les environne; c'est, au contraire, parce que leurs cellules naissantes, et comme telles déjà gonflées de sucs épais, se trouvent dans les conditions les plus favorables pour l'endosmose. Leur épiderme n'est pas encore formé; il l'est plus haut, et oppose à l'absorption une couche plus sèche, moins perméable.

§ 187. Le liquide environnant est absorbé d'autant mieux et en plus grande quantité qu'il est plus fluide. Dans la terre, c'est l'eau tenant en dissolution les diverses matières solubles qui s'y rencontrent et varient suivant les sols. La dissolution de ces matières doit être complète; et, si elles sont en suspension seulement, elles ne peuvent passer, si menues qu'elles soient. En mélangeant avec de l'eau une poussière, la plus fine, la plus impalpable qu'on peut obtenir, mais qui ne peut s'y dissoudre directement, celle de charbon, par exemple, et en l'offrant en cet état à l'absorption des racines, on observe que l'eau passe seule dans ces racines, et que tout le charbon reste au dehors, sans qu'il soit possible d'en retrouver un seul atome au dedans. Avec presque toutes les infusions colorées on obtient le même résultat; l'eau, en passant dans l'extrémité radicellaire, se dépouille à son passage de la matière colorante, qui se dépose à la surface.

CIRCULATION.

§ 188. Séve ascendante. — Le liquide de la terre a pénétré dans les racines par leurs extrémités. De celles-ci il doit, par une opération semblable, passer dans les cellules situées immédiatement au-dessus, puis de là dans les cellules situées plus haut encore. Ainsi, de proche en proche, il monte dans la racine jusqu'à ce qu'il arrive à la tige, où son mouvement ascensionnel doit continuer. Car nous sommes en droit de comparer la plante à un appareil endosmique, dans lequel la terre joue le rôle du récipient plein d'eau; et cet appareil est d'autant plus énergique que sa partie située audessus du récipient n'est pas un tube vide et inerte, mais qu'elle est elle-même un tissu rempli de nombreux dépôts de matières analogues à celles qui ont déjà provoqué l'action des racines; de sorte

que cette action, loin de s'épuiser, s'entretient et se renouvelle à chaque hauteur. Le liquide n'a pas, comme dans l'expérience, perdu de sa densité à mesure qu'il augmente en masse et monte en conséquence; au contraire, agissant sur ces matières qu'il trouve sur sa route, il dissout une portion de celles qui étaient à l'état solide, et tend ainsi à s'épaissir de plus en plus. Modifié de la sorte dès son entrée dans le végétal, il a pris le nom de *seve*. Si, à diverses hauteurs d'un arbre, on perfore profondément son tronc, qu'on introduise un tube dans chaque trou, et qu'on recueille séparément la séve qui s'écoule de ces divers canaux, on pourra se convaincre qu'elle est d'autant plus dense qu'elle a été prise plus haut: nous verrons plus tard quels changements seront opérés dans sa composition et par quels moyens on la constate.

§ 489. Nous avons parlé jusqu'ici comme si la plante était exclusivement formée de cellules; et c'est, en effet, la structure de quelques végétaux. Mais nous savons que plus souvent, dans les cotylédonés, de nombreux vaisseaux se montrent au milieu de ce tissu cellulaire et suivent la direction des axes. On conçoit combien la progression de la séve, poussée incessamment par en bas, doit être accélérée dans ces longs canaux, où elle ne trouve pas d'obstacle, et comment elle peut ainsi franchir rapidement de grandes distances qu'elle eût parcourues lentement de cellule en cellule.

Remarquons ici que le centre des racines est occupé dans leur longueur par des faisceaux de vaisseaux qu'on peut suivre jusqu'auprès des extrémités où l'absorption commence. Le liquide absorbé rencontre donc presque aussitôt cette voie plus rapide; et c'est sans doute là une raison de plus pour que l'effet de l'absorption des extrémités soit bien plus prompt et se fasse sentir bien plus vite sur tout le reste de la plante.

§ 190. La physique nous apprend que dans les tubes extrêmement fins, et qu'on nomme capillaires, en les comparant à celui d'un cheveu, la paroi interne du canal exerce sur le liquide contenu qui la mouille une sorte d'attraction qui détruit une partie de l'effet de la pesanteur, et détermine ainsi l'ascension de ce liquide au-dessus du niveau où il se serait autrement arrêté. La plupart des vaisseaux dans le végétal sont, par leur ténuité, autant de tubes capillaires, et doivent exercer sur leur liquide contenu cette action qui le fait monter à une certaine hauteur, et vient s'ajouter ainsi à celle de l'endosmose. Avant que cette dernière fût connue, c'était à l'influence de la capillarité qu'on attribuait la plus grande partie du mouvement ascensionnel de la séve, sans pouvoir cependant expliquer par elle seule tous les phénomènes qui l'accompagnent.

Lorsqu'on plonge dans l'eau, ou dans tout autre liquide suffisam-

CIRCULATION. SEVE ASCENDANTE.

ment léger, le bout d'une branche nettement coupée, ce liquide pénètre par les orifices béants des vaisseaux, et monte immédiatement, par l'effet de la capillarité, jusqu'à un certain point. On conçoit que dans ce trajet l'action de l'endosmose s'exerce à travers les parois des vaisseaux et les cellules environnantes; de sorte que ce bout coupé supplée à l'action absorbante des racines. C'est pourquoi en plantant un végétal dont les fibrilles et les extrémités radicellaires desséchées sont devenues incapables d'absorption, comme cela a si fréquemment lieu dans les transplantations, les jardiniers ont soin de rafraîchir les racines, c'est-à-dire de les couper au point où ils voient leur fraîcheur et leur vitalité bien conservées. C'est encore la même cause qui permet de multiplier les plantes par bouture, en fixant dans un milieu suffisamment humide l'extrémité d'une branche, qui pompe par sa section les sucs au moyen desquels sa vie se prolongera assez longtemps pour qu'elle puisse produire des racines adventives et rentrer alors dans les conditions d'une plante enracinée. La fraîcheur conservée aux bouquets, en laissant dans l'eau leurs queues, est un phénomène familier à tous nos lecteurs. La nécessité de couper bien nettement le bout qu'on met en rapport avec le liquide dans toutes ces expériences s'explique par celle de ménager l'ouverture des vaisseaux, qui se bouche ou s'obstrue lorsque le bout a été séparé par arrachement ou torsion. Les tubes capillaires des végétaux offrent un passage assez large au liquide pour qu'il y pénètre plus facilement qu'à travers les parois cellulaires. Ils peuvent donc admettre des liquides tenant en suspension une matière très ténue, une matière colorante, par exemple; et l'on s'est servi de cette propriété pour étudier dans leur intérieur la marche de la séve, qu'on peut suivre sans trop de difficulté lorsqu'elle est ainsi colorée. Mais il faut être très réservé sur les conclusions qu'on en tire, puisqu'alors les choses ne se passent pas de la même manière que dans la vie habituelle, lorsque l'absorption a lieu par les racines et de cellule en cellule en même temps que par les vaisseaux.

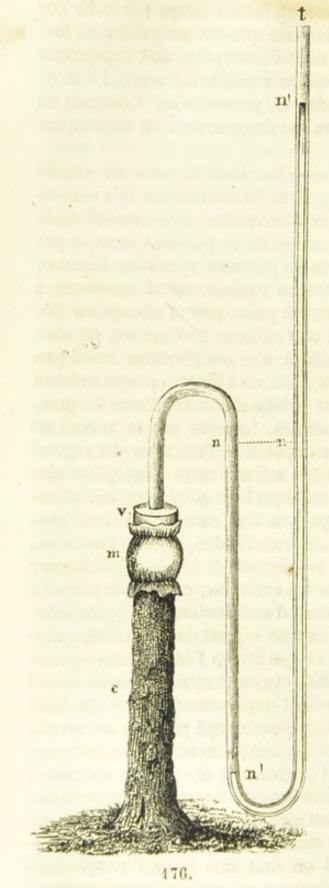
§ 494. Mais l'endosmose et la capillarité ne sont pas les seules forces qui déterminent l'ascension continuelle de la séve. On prévoit en effet qu'il doit arriver un moment où elles ont produit tout leur effet, et qu'alors il devrait s'établir une sorte d'équilibre et de stase dans toutes les parties liquides du végétal. Or, quoique cela ait lieu jusqu'à un certain point, et qu'après une certaine période d'activité extrême ce mouvement se ralentisse considérablement et cesse entièrement dans certaines parties, cependant il continue dans d'autres, et l'action absorbante des racines se maintient dans la même proportion. On sait qu'en arrachant de terre une plante parvenue à l'état parfait, elle ne se conserve vivante qu'un temps plus ou moins

court; et qu'en plongeant dans l'eau ses racines entières, si elles sont fraîches, ou coupées, si elles s'étaient déjà desséchées, on la voit revivre rapidement et d'un bout à l'autre : il y a donc eu appel et transmission d'une quantité assez considérable d'eau de l'extrémité inférieure à la supérieure, et les liquides contenus dans la plante n'étaient pas à un état d'équilibre d'où résultât leur immobilité définitive.

§ 192. Citons une observation intéressante qui peut se rattacher à ce sujet. Sous les tropiques un certain nombre de lianes, notamment celles du genre Cissus, voisin des Vignes, sont gorgées d'une séve abondante, fraîche et agréable au goût. L'eau qui coule copieusement de leurs bouts coupés peut servir de boisson, et les hommes, dans leurs courses au milieu des forêts, l'emploient pour se désaltérer : ce qui a fait nommer vulgairement ces plantes lianes à eau ou lianes du chasseur. M. Gaudichaud, qui en a découvert au Brésil une de cette sorte à laquelle il donne le nom de Cissus hydrophora, a remarqué que, si l'on se contente de couper transversalement la liane à une seule hauteur, il sort des deux surfaces de la section très peu de liquide. Il continue à monter rapidement dans la partie supérieure, où l'on peut s'assurer que les vaisseaux se vident de bas en haut. Cette ascension ne peut être attribuée à l'action des racines, avec lesquelles la partie supérieure n'est plus continue, et ils sont d'un diamètre beaucoup trop gros pour que la capillarité ait ici quelque influence. Mais si l'on a coupé à deux hauteurs différentes, de manière à détacher un fragment de tige d'une certaine longueur, on voit aussitôt couler une séve abondante par celles des deux extrémités qu'on tient le plus bas, obéissant par conséquent aux lois de la pesanteur. Or, auparavant, la séve continuait à monter très activement. Ce ne pouvait donc être par une force exercée ni en bas ni latéralement; ce ne pouvait être que par une cause ayant son siége au-dessus de la seconde section et attirant d'en haut le liquide.

§ 193. Il n'est pas difficile d'arriver à la connaissance de cette force nouvelle. Le végétal, à une certaine hauteur, est muni d'un nombre plus ou moins grand de bourgeons. Dès qu'ils commencent à se développer, ils tirent de la tige ou de la branche avec laquelle ils sont continus les matériaux destinés à les nourrir et dont la quantité doit être en proportion avec le rameau qui résultera de ce développement. Les feuilles se montrent en même temps, s'étendent à l'air, et deviennent le siége d'une évaporation considérable par leur surface criblée de pores. Tout ce qui s'évapore ainsi par les feuilles, et en même temps par la jeune écorce du rameau, tout ce qui est employé à former et à nourrir ces parties nouvelles est autant de pris sur la masse du liquide de la tige, et il en résulte vers la surface et l'origine de chaque rameau, d'une part un épaississe-

CIRCULATION'S SEVE ASCENDANTE.


ment qui redouble l'activité de l'endosmose, de l'autre des vides qui sont aussitôt comblés par une quantité proportionnelle de séve enlevée à la tige, remplacée elle-même en même temps par celle des parties voisines, et déterminant ainsi de proche en proche un flux ascensionnel à partir de la racine, dont l'absorption doit compenser cette perte. Il n'est pas besoin d'expliquer quelle influence l'état de l'air, chaud ou froid, sec ou humide, la présence ou l'absence du soleil, son action directe ou à travers les nuages, doivent exercer sur l'évaporation des végétaux.

§ 194. Exposons maintenant, en cherchant à nous en rendre compte, les diverses phases qu'apporte la succession des saisons qui constitue notre climat dans ce mouvement ascensionnel de la séve. Avant que les feuilles se développent et puissent exercer par l'action évaporante de leurs surfaces ce puissant appel des liquides. l'endosmose doit être la force presque exclusivement agissante à cet effet. Continue-t-elle tout l'hiver à provoquer l'absorption des racines? Ce n'est pas improbable à une certaine profondeur, où elles sont plongées dans une terre humide à une température assez peu abaissée : c'est presque certain vers la fin de l'hiver, époque où le sol est déjà moins refroidi et en général imbibé d'eau. D'ailleurs la guantité de matières plus ou moins épaisses, formées par le travail de l'année précédente et conservées en dépôt dans l'intérieur du végétal pendant l'hiver, doit par l'endosmose activer cette absorption des racines, et les liquides montent ainsi dans le végétal avec une abondance extrême, telle qu'il finisse par en être saturé, d'autant plus qu'il continue toujours à gagner sans rien perdre, comme plus tard, par l'évaporation des surfaces ; et ces liquides tendront à s'échapper par toute voie qui leur sera ouverte à l'extérieur, ce dont on s'assure en voyant alors l'eau s'écouler comme d'une fontaine, de toute solution de continuité pratiquée sur une tige qui est dans cet état, qu'on appelle la séve du printemps. C'est ce qui forme l'écoulement aqueux déterminé dans la Vigne par la taille, et connu sous le nom de pleurs de la Vigne. Comme ces pleurs coulent copieusement dans un bout de tige dépourvu de toute feuille et même coupé presque au niveau du sol, il est impossible d'attribuer dans ce phénomène une influence à l'appel des liquides résultant de l'évaporation des parties aériennes, et l'on n'y peut reconnaître que celle que détermine l'absorption des racines. En adaptant un tube à l'extrémité coupée, on voit la séve y monter à une hauteur qu'on peut ainsi déterminer, et qui est considérable. L'Anglais Hales, auquel on doit une suite d'expériences aussi précises qu'ingénieuses destinées à déterminer le mouvement des sucs dans les plantes, et consignées dans sa Statique végétale, avait appliqué à l'évaluation de la force et de la vitesse ascension-

161

1/1.

nelle de la séve le même appareil que M. Dutrochet dut ensuite employer pour évaluer la force de l'endosmose, c'est-à-dire ce tube à

double courbure dont une branche ascendante est adaptée au bout de la tige coupée mise en expérience, et dont la courbure inférieure est remplie de mercure qui, repoussé par la séve accumulée en montant dans les branches intérieures, monte lui-même dans l'extérieure, et indique par la hauteur de sa colonne les valeurs qu'on cherche (fig. 176). Or, Hales a vu la colonne de mercure ainsi soulevée jusqu'à 4 mètre, ce qui équivalait à 14 mètres d'eau; et il a calculé que la force qui pousse ainsi la séve dans la Vigne est cinq fois plus grande que celle qui pousse le sang dans une grosse artère d'un cheval.

§ 195. Les bourgeons se développent, les feuilles s'étalent, et leur action vient s'ajouter à celle de l'endosmose. Alors s'établit un courant qui entraîne les liquides vers toutes les surfaces évaporantes, et ne leur permet plus de s'accumuler dans les tissus en les saturant d'humidité. Aussi une solution de continuité latérale ne donnet-elle plus, à cette époque, lieu à un écoulement comme celui de la séve de printemps. L'influence que cette nouvelle force, agissant concurremment avec l'endosmose, exerce sur le mou-

476. c Cep de vigne coupé à 5 décimètres de terre. — t Tube de verre à double courbure ajusté sur une virole de cuivre v qui est adaptée et lutée à l'extrémité coupée du cep, l'appareil étant recouvert et maintenu par un morceau de vessie m. — nn Niveau

CIRCULATION. SEVE ASCENDANTE.

vement ascensionnel, peut se constater par des expériences analogues aux précédentes. Ainsi, si l'on adapte au bout inférieur d'une branche un long tube plein d'eau qu'on plonge lui-même par son autre extrémité dans un bain de mercure, la branche pompera une certaine quantité d'eau qui sera indiquée par l'ascension d'une colonne égale de mercure dans le tube. On varie l'état de la branche, qui peut être garnie d'un plus ou moins grand nombre de feuilles, dépouillée d'une partie d'entre elles, réduite même à ses bourgeons ; celui de l'atmosphère, qui peut être à différents degrés de sécheresse ou d'humidité: on observe par divers temps, à diverses heures de jour ou de nuit, et l'on voit que toutes les causes qui ont une influence sur les divers degrés d'évaporation de la branche en exercent une analogue sur la quantité d'eau qu'elle pompe.

§ 196. Cependant les rameaux se sont successivement développés ainsi que leurs feuilles; ils ont acquis peu à peu leurs dimensions parfaites, et la consistance qui caractérise leurs tissus à cet état que nous pourrions appeler leur âge adulte, en même temps que de nouveaux tissus s'organisaient dans certaines parties intérieures du végétal. Il est ainsi arrivé à cette sorte d'équilibre dont nous avons parlé; équilibre qui n'implique pas l'immobilité de la séve, mais seulement son mouvement modéré d'après les besoins d'un état où il ne s'agit plus que d'entretenir en compensant les pertes continuelles qui accompagnent l'exercice même de la vie, en complétant ce qui peut encore manquer sur certains points et préparant pour l'année suivante les organes qu'elle doit à son tour développer et les matériaux destinés à cet usage.

§497. Si tout ce travail vital s'est commencé et exécuté de bonne heure, si l'année a été précoce, il peut arriver que ces matériaux se trouvent prêts en quelque sorte trop tôt, dans une saison qui n'est pas encore assez avancée, et leur présente ainsi les conditions propres à provoquer leur développement anticipé. C'est ce qui arrive assez souvent vers la fin de l'été, où l'on voit pousser quelques uns des bourgeons nouvellement formés, se renouveler quelques phénomènes partiels du printemps, et nécessairement avec eux se ranimer pour un moment le mouvement ascensionnel de la séve : ce qu'on nomme la séve d'août.

Il languit de nouveau. Pendant l'automne, l'évaporation des surfaces a diminué de plus en plus; les tissus se sont séchés en se solidifiant; les feuilles peu à peu meurent ou tombent, et l'arbre arrive à cet état de repos presque complet dans lequel la vie semble suspendue. Le mouvement de la séve a cessé alors extérieurement avec

de la colonne de mercure dans les deux branches de la courbure inférieure du tube avant l'expérience. -n'n' Niveau à la fin de l'expérience.

ses causes, et s'arrête plus ou moins complétement pour toute la durée de l'hiver.

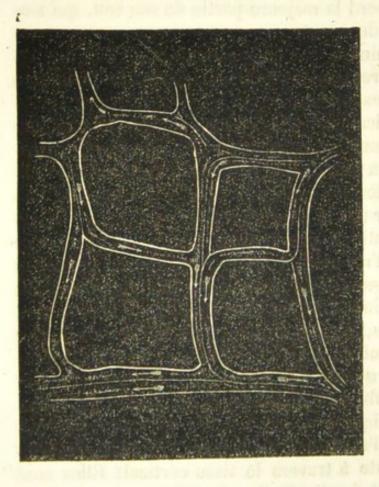
§ 198. Pour suivre les différentes phases de ce mouvement de la séve ascendante, nous avons choisi les exemples où elles se montrent le plus nettement et le plus complétement, ceux du moins où elles nous sont le mieux connues, ceux des arbres de nos climats tempérés. Ce qui se passe dans un de leurs rameaux doit, à peu de chose près, se passer dans toute plante herbacée, avec plus d'activité cependant, puisqu'elle se ramifie le plus ordinairement, et développe ainsi dans le courant de la même année plusieurs générations de bourgeons. Quant aux végétaux des latitudes plus chaudes, les époques changent; et, sous les tropiques, les intervalles de repos semblent devenir presque nuls, le mouvement presque continu. Mais on en peut juger plutôt par les saisons et par les phénomènes extérieurs de la végétation que par des observations directes et approfondies, qui offriraient tant d'intérêt.

§ 199. Un point important nous reste encore à éclaircir. Quelle voie, au milieu des divers organes élémentaires combinés dans la tige, la séve suit-elle au juste dans ce mouvement ascensionnel? Celle du printemps envahit tous les tissus, remplissant les cellules, les fibres, les vaisseaux, les méats. C'est presque entièrement par le corps ligneux qu'elle monte, ainsi qu'on peut s'en assurer par l'inspection de la branche fraîchement coupée. On voit le liquide s'écouler de la surface de la section : de tout le corps ligneux, si la branche est jeune ; si elle est âgée, seulement de la zone extérieure, qui est encore à l'état d'aubier. Après la séve du printemps, beaucoup de vaisseaux sont vides, et, en les examinant sous l'eau, on s'assure qu'ils sont occupés par des gaz qu'on en voit sortir par petites bulles. C'est donc par le tissu cellulaire que doit alors avoir lieu, du moins pour la plus grande partie, le passage de la séve, mais par un mouvement peu sensible du bas vers le haut, le végétal étant alors comme saturé de liquides et à peu près dans la condition d'un appareil plein d'eau qui, percé de petites ouvertures à ses deux extrémités, laisserait écouler par l'une une certaine quantité, et recevrait par l'autre une quantité équivalente, sans qu'il en résultât de courant apparent. Si quelque cause vient à troubler cet équilibre, comme après une sécheresse plus ou moins prolongée et à laquelle succède la pluie, ou par le développement de nouveaux bourgeons, l'ascension de la séve doit se ranimer et reprendre en partie les voies qu'elle avait momentanément abandonnées.

§ 200. Séve descendante ou élaborée. — La séve, enrichie de toutes les matières qu'elle a dissoutes et s'est incorporées sur son trajet, est arrivée aux jeunes branches; puis, en les parcourant,

CIRCULATION. SEVE DESCENDANTE.

jusque vers la surface de leur écorce, par le tissu cellulaire des rayons et du parenchyme cortical, jusqu'à celle des feuilles, par la voie du parenchyme en tout temps et aussi à certaines époques par la voie plus rapide des vaisseaux. Ces surfaces se trouvent, par les stomates plus ou moins nombreux qui les couvrent, en rapport immédiat avec l'air atmosphérique pouvant pénétrer par ces petites ouvertures et circuler dans le réseau des lacunes du tissu sous-jacent. La séve ne se trouve donc plus séparée de l'air que par les minces membranes de ce tissu, à travers lesquelles les principes de l'un et de l'autre peuvent agir réciproquement, s'échanger, et par suite se modifier. Nous verrons en détail, à l'article de la respiration et de la nutrition, quels sont ces changements. Il nous suffit pour le moment d'annoncer qu'ils ont lieu; que, par suite, la séve change de nature en même temps qu'elle perd la majeure partie de son eau, qui s'échappe au dehors à l'état de vapeur.


Il est facile de se convaincre, par l'inspection des parties, que les feuilles et la jeune écorce renferment des sucs différents de la séve que nous avons jusqu'ici examinée.

§ 201. Cette séve corticale a-t-elle comme l'autre un mouvement général? Si l'on coupe transversalement une tige, on voit que la surface inférieure de la section fournit très peu de suc comparativement à la supérieure. Si l'on enlève un anneau circulaire d'écorce, en voit le suc suinter et s'amasser sur le bord supérieur de la plaie, et non sur l'inférieur. Si l'on pratique une ligature bien serrée autour de la tige, on voit, au bout d'un certain temps, l'écorce se gonfier et former un bourrelet au-dessus de la ligature, et la tige au-dessous conserver son diamètre primitif. Il y a donc un flux de la séve corticale du haut vers le bas, c'est-à-dire en sens inverse de la séve ascendante. C'est pourquoi on lui a donné le nom de séve descendante; on la nomme aussi quelquefois séve élaborée, à cause du travail organique qu'elle a subi pour acquérir ses propriétés nouvelles.

§ 202. Nous avons indiqué quelques causes physiques par lesquelles on peut expliquer l'ascension de la séve. En trouvons-nous qui déterminent sa descente à travers le tissu cortical? Elles sont beaucoup plus obscures et il est difficile, dans l'état actuel de la science, de rien affirmer à cet égard. Nous avons d'abord la force de la pesanteur qui agit dans cette direction. On admet que la surface des feuilles et de la jeune écorce absorbe l'eau en contact avec elle. Cette absorption, active surtout dans les circonstances qui tendent à diminuer ou à annuler l'évaporation, dans les temps de pluie ou de brouillard, et par suite de tout abaissement de température qui amène la condensation de l'humidité en excès dans l'atmosphère, effet qui a lieu périodiquement toutes les nuits, peut-elle exercer sur

les surfaces aériennes une action analogue à celle qui a lieu par les racines au sein de la terre, mais naturellement dirigée en sens contraire, c'est-à-dire de haut en bas? Ce même refroidissement peut-il déterminer, comme l'a pensé M. Biot, une contraction dans les tissus et par suite le reflux des liquides qu'ils contiennent? Ce sont autant de questions qu'on peut s'adresser et qu'on n'a pas résolues.

§ 203. M. Schultz a proposé sur la marche des sucs corticaux et sur la voie qu'ils suivent une théorie qui attribue le principal rôle aux vaisseaux laticifères dont nous avons parlé précédemment (§ 43) et dont il s'est tant occupé. Le liquide contenu dans ces vaisseaux est le *latex* qu'il considère comme le suc essentiellement nourricier. Il est souvent coloré, et, dans ce cas, est généralement connu sous le nom de *suc propre*. D'autres fois les mêmes vaisseaux charrient

177.

un suc incolore, mais qui paraît de même nature; et quelques observations constatent que le même végétal qui, dans les climats froids et tempérés, présente un latex incolore, peut en présenter un laiteux sous le climat des tropiques. Dans tous les cas, il est composé de même de granules extrêmement fins, inégaux et nageant dans un liquide. La présence de ces granules et la transparence des parois des laticifères permettent de constater, à l'aide du microscope, le mouvement du latex. Que, par exemple, on place sur le porte-objet

et sous une mince lame de verre une jeune feuille d'*Eclaire* (fig. 477), cette plante si commune le long de nos murs et reconnaissable à son suc âcre de couleur orangée; que cette feuille, choisie aussi mince et transparente que possible, tenant à sa plante

477. Petit fragment d'une feuille d'Éclaire (*Chelidonium majus*) très grossi et montrant plusieurs mailles du réseau des laticifères. La direction des courants est indiquée par celle des flèches.

CIRCULATION. SEVE DESCENDANTE.

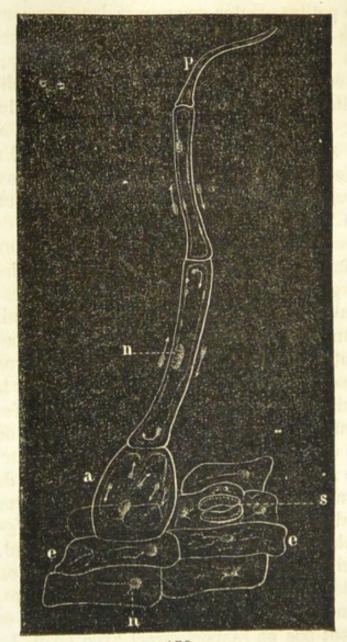
bien vivante, participant en conséquence à sa vie, et humectée pour éviter le desséchement, soit examinée par transparence à l'aide d'un fort grossissement, on apercevra dans son épaisseur de petites trainées d'une matière granuleuse en mouvement, trainées dont les unes se dirigent dans un sens, les autres dans un autre, et même en sens contraire des premières, dont les unes restent isolées, les autres se rapprochent, s'unissent et se confondent. En embrassant un champ suffisant, on reconnaît que ces traînées se rattachent l'une à l'autre, et forment ainsi un réseau : c'est celuides laticifères (fig. 53, 2). Le latex descend dans un embranchement pour remonter dans un autre, et l'on observe ainsi une véritable circulation, tout à fait comparable à celle qu'on connaît dans les vaisseaux capillaires des animaux. M. Schultz la désigne sous le nom de cyclose. Ces laticifères abondent dans les feuilles, et sur l'axe ils se concentrent presque exclusivement dans l'écorce au voisinage du liber, quoiqu'on en rencontre quelquefois plus intérieurement, mais en nombre relativement insignifiant. La cyclose, commençant dans les feuilles où s'est organisé le latex, doit se propager de là dans l'écorce et donner pour résultat un mouvement, sinon direct, du moins général de haut en bas, et cette suite de cercles que le liquide décrit dans cette marche sinueuse doit favoriser les phénomènes de nutrition, puisqu'en prolongeant et multipliant les rapports du latex avec les tissus qu'il parcourt, elle doit aider aux effets qui résultent de la présence du suc nourricier.

Cette théorie, qui semble si bien rendre raison de la nature et de la marche de la séve élaborée, se trouve réfutée par des observations plus récentes et plus précises : 4º Nous avons vu l'origine des laticifères dans des méats ou lacunes intercellulaires qui finissent par se revêtir d'une paroi propre (§ 43). Or les communications des unes aux autres sont fréquemment interrompues, de sorte qu'il y a en réalité une foule de petits réseaux partiels au lieu d'un unique et vaste réseau continu d'un bout du végétal à l'autre, comme il devrait l'être pour porter les sucs de toutes les surfaces jusqu'à l'extrémité des racines. 2º Le courant de liquide qu'on y observe à travers les parois transparentes de ces vaisseaux est un phénomène purement accidentel et transitoire. C'est en général sur des parties détachées du végétal qu'on l'examine au microscope; or pour les détacher on a coupé cette partie, et cette blessure donne lieu à un écoulement qui met de proche en proche en mouvement le liquide contenu dans tout le système de vaisseaux en rapport direct avec l'orifice béant. Qu'on le bouche en le brûlant ou laissant coaguler les sucs, le courant s'arrête; qu'on le rouvre par une nouvelle section, le courant se rétablit. On répondra qu'il se montre également dans

une partie attachée encore au végétal sans solution de continuité, et par conséquent sans écoulement possible à l'extérieur; mais alors par une pression appliquée sur tel ou tel point, on détermine ou l'on modifie les courants. M. Amici a fait voir qu'en approchant à quelque distance un corps fortement chauffé, suivant la direction dans laquelle on le place, on change à volonté celle des courants, et alors on peut y reconnaître, en conséquence, l'effet purement physique de la chaleur agissant sur le liquide contenu dans ces tubes, comme sur celui d'un thermomètre, action qui doit, il est vrai, se faire sentir sur le végétal vivant, exposé au soleil, au vent, à tant de causes d'échauffement ou de refroidissement, mais qui doivent agir très irrégulièrement et non dans un sens constant comme celui de la marche de la séve descendante. 3° Si le latex était le fluide nourricier, il devrait se présenter dans l'universalité des végétaux avec un certain ensemble de qualités et de propriétés caractéristiques; or elles varient de l'un à l'autre et le suc propre et laiteux ne se rencontre que dans un petit nombre. Ces diverses considérations doivent nous porter à considérer ce curieux système de vaisseaux sous un autre point de vue qu'on ne l'a fait pendant quelque temps et à lui attribuer une moindre importance.

§ 204. Pour résumer en peu de lignes ce que nous savons du mouvement général des liquides dans les végétaux les plus parfaits, l'eau de la terre, tenant diverses substances en dissolution, entre dans les racines par leurs extrémités; de là, sous le nom de séve, monte par ces racines, puis par la tige à travers le corps ligneux, tant par les canaux directs que lui offrent les vaisseaux que par les fibres et les cellules qu'elle traverse successivement, dissolvant et s'appropriant diverses substances nouvelles. Cette marche de bas en haut et de dedans en dehors la mène dans les feuilles et à la surface de l'écorce, où elle se met en rapport avec l'air; puis, complétement organisée par cet acte respiratoire, elle prend une marche rétrograde et descend pour la plus grande partie à travers l'écorce, déposant sur son son passage, dans des solutions de continuité toutes préparées. des amas de matières la plupart destinées à la nourriture ou à la formation des tissus; et elle arrive enfin à l'extrémité des racines, où l'absorption a commencé.

§ 205. Rotation ou circulation intra-cellulaire. — Les végétaux dans lesquels nous avons jusqu'ici étudié le mouvement général des sucs sont pourvus de cavités et de canaux variés dans lesquels ce mouvement a lieu. Mais nous savons qu'il existe beaucoup d'autres plantes d'une structure bien plus uniforme, composées de cellules seulement, sans vaisseaux spiraux ou laticifères. On conçoit, par le raisonnement, que les liquides pourraient parvenir de


CIRCULATION. ROTATION.

leur extrémité inférieure à la supérieure par la seule force de l'endosmose; mais l'observation fait voir, au moins dans plusieurs d'entre elles, qu'il se passe antre chose que ce phénomène physique. Prenons l'exemple le plus connu et où cette observation est le plus facile, le Chara. Ce sont de petites plantes communes dans nos eaux stagnantes, et composées (§ 84) d'une série de cellules cylindriques accolées bout à bout : dans plusieurs espèces, une cellule unique forme en quelque sorte un entre-nœud; dans plusieurs autres, elle est enveloppée d'autres cellules parallèles et plus étroites qui lui forment comme une gaîne : et pour bien voir cette cellule centrale, il faut enlever, en grattant légèrement, celles qui l'entourent. En placant dans l'eau et sous le microscope soit la cellule centrale ainsi découverte, soit la cellule unique, on apercoit à son intérieur un mouvement très sensible. C'est celui d'un très grand nombre de granules de diverses grosseurs nageant dans sa cavité au milieu d'un liquide transparent qui la remplit, et se mouvant ensemble le long des parois dans deux directions générales : l'une ascendante, l'autre descendante. On reconnaît bientôt que c'est le résultat d'un courant unique qui suit en montant un côté du tube, se réfléchit à son bout supérieur, redescend de l'autre côté du tube, et, se réfléchissant à son bout inférieur, se retrouve à son point de départ, pour recommencer la même course en décrivant ainsi une ellipse plus ou moins allongée. selon la longueur plus ou moins grande du tube. C'est pourquoi on a donné le nom de rotation à ce mouvement intra-cellulaire du suc.

Plus tard, on constata le même mouvement dans les cellules de plusieurs végétaux aquatiques d'une organisation simple, quoique beaucoup moins que celles des *Charas*, comme dans les *Naias*, *Hydrocharis*, *Vallisneria*. Le phénomène s'y voit aussi très nettement, surtout dans les cellules qui forment les poils radicellaires ; mais on l'observe également dans les autres parties des mêmes plantes, dans les cellules qui occupent l'intérieur des tiges ou des feuilles, et par conséquent ne se trouvent pas en rapport direct avec l'eau. Le courant indiqué par la marche des granules y décrit aussi une ellipse dans le sens de l'axe de la plante, et ordinairement parallèle ou un peu oblique par rapport à celui de la cellule. Comme ici les cellules ne sont pas isolées, on peut étudier le mouvement à la fois dans plusieurs cellules voisines juxtaposées; et reconnaître que celui des unes est complétement indépendant de celui des autres.

Cette circulation intra-cellulaire est-elle propre aux végétaux aquatiques et d'une structure simple? Les recherches étendues à une foule de plantes appartenant à tous les degrés d'organisation, lorsqu'elles ont été faites avec une habileté suffisante, ont presque toujours constaté un mouvement analogue dans l'intérieur des cel-

lules, surtout dans les tissus riches en séve et siége actuel d'une croissance rapide. Les plantes de la famille des Commélinées, et entre autres l'Ephémère des jardins (*Tradescantia virginica*), sont parti-

178.

culièrement citées comme offrant ce phénomène d'une manière remarquable dans leurs poils cloisonnés, et aussi dans diverses autres parties de leur fleur et de leur tige (fig. 478).

Le courant n'est pas toujours unique comme dans les premiers exemples que nous avons indiqués. Il se divise quelquefois; et quoique alors même ses divisions ne paraissent que des ramifications déviées d'un cours principal, on voit la paroi interne de la cellule sillonnée par de petites traînées se mouvant dans diverses directions, et formant ainsi une sorte de réseau très irrégulier (fig. 478 a). Il peut être comparé en plus petit à celui des laticifères, et même M. Schultz va jusqu'à croire que ce sont des ramifications

très menues de ces vaisseaux pénétrant dans l'intérieur des cellules. Ce serait donc dans celles-là un phénomène de cyclose, quoique dans le Chara et autres végétaux cellulaires il admette la rotation.

178. p Poil pris sur le calice de la fleur de l'Éphémère commune (*Tradescantia virginica*), avec une petite portion d'épiderme *ee* sur lequel on voit un stomate s. Dans chacune des cellules qui composent tant l'épiderme que le poil, on observe un nucléus n et des courants rotatoires dont la direction est indiquée par celle des flèches. Il y a dans chaque cellule plusieurs courants venant en général se croiser à l'endroit du nucléus. On les voit obscurément dans celles de l'épiderme, et même dans celles qui forment le stomate ; très nettement dans la cellule a qui sert de base au poil : la figure n'en laisse apercevoir qu'un seul (quoiqu'il en existe aussi plusieurs) dans les cellules allongées supérieures.

Mais le phénomène paraît tellement semblable dans toutes ces plantes différentes; parmi les modifications qu'il peut présenter on passe par des transitions si insensibles de l'une à l'autre, et la pénétration de vaisseaux à travers la paroi cellulaire paraît un fait si singulier, qu'on s'accorde généralement à attribuer au mouvement intra-cellulaire des sucs la même nature dans les végétaux dedivers degrés d'organisation. D'ailleurs, si l'on observe pendant longtemps ces cellules à courants multiples, on ne tarde pas à voir dans ceuxci des changements plus ou moins marqués et nombreux. Ils ne suivent pas de directions ni de trajets constants, comme cela devrait être s'ils étaient emprisonnés dans des tubes particuliers.

La rotation qu'on avait d'abord considérée comme un mode de circulation propre aux végétaux inférieurs et aquatiques, où il ne peut y en avoir une analogue à celle des végétaux vasculaires, est, d'après tout ce qui précède, un fait presque général dans le règne végétal, et dont la généralité mêmedoit faire présumer l'importance. Aussi son activité paraît-elle ordinairement en rapport avec celle de la vie même: l'une est modifiée de même que l'autre par les mêmes circonstances. Les agents physiques ou chimiques qui, d'après les expériences, augmentent, ou ralentissent, ou arrêtent la première, se trouvent précisément ceux qu'on sait exercer sur la seconde une influence analogue.

Plusieurs plantes, principalement celles auxquelles leur tissu charnu et épais a fait donner le nom de plantes grasses, ont montré dans leurs cellules, au lieu d'une rotation bien déterminée, des mouvements vagues du suc d'un point vers un autre de la paroi; courants partiels qui commencent sans s'achever, ou qui, au plus, s'achèvent dans un coin de la cavité. Enfin, il y a beaucoup de végétaux où l'on a cherché vainement toute trace de mouvement intracellulaire. Mais on ne peut tirer conclusion de ces faits négatifs, en présence de faits positifs et nombreux. Ainsi, sous l'immobilité apparente du végétal se cache un mouvement réel, général, déterminé dans chacune de ses moindres parties aussi bien que dans tout son ensemble.

RESPIRATION.

§ 206. La respiration est l'acte par lequel un être organisé en contact avec l'air atmosphérique puise dans cet air certains éléments qu'il retient à son intérieur et y verse d'autres éléments dont il se dépouille. Ce contact peut avoir lieu à la surface même du corps, ou dans son intérieur où l'air a pénétré par certaines voies.

Ce sont les feuilles qui forment pour la plus grande partie la surface du végétal en rapport avec l'air, et ce sont elles, en effet, où il paraît subir les modifications les plus importantes et les plus variées.

L'examen anatomique nous a appris (§ 408, 109) que les feuilles sont percées à leur surface d'une multitude de petites ouvertures ou stomates, auxquels correspondent plus intérieurement des lacunes, que celles-ci communiquent entre elles et plus profondément avec les méats intercellulaires. L'air, pénétrant par ces ouvertures dans ce réseau de cavités intérieures, peut donc circuler librement autour des cellules et agir sur leur contenu dont il n'est séparé que par une membrane mince, surtout en certains points.

§ 207. C'est ici le lieu de signaler une théorie déjà ancienne, reposant sur de fausses données anatomiques, dont nous ne nous serions pas occupé, si elle ne se trouvait encore aujourd'hui professée dans certains ouvrages arriérés et ne donnait aux élèves qui s'en servent une notion erronée que nous voyons trop souvent se reproduire dans les examens. C'est la théorie qui attribue dans la respiration le premier rôle aux trachées déroulables. La ressemblance extérieure de ces vaisseaux avec les trachées des insectes dut naturellement en donner l'idée. On sait que sur les côtés du corps de l'insecte s'ouvre une série de pores qui donnent entrée dans autant de tubes munis extérieurement d'une fibre spirale; que ces tubes se distribuent, par une suite de ramifications de plus en plus ténues, dans tout l'intérieur du corps ; qu'ils s'y trouvent ainsi baignés par le fluide vital qui le remplit librement; que le fluide d'une part, et de l'autre l'air qui, entrant du dehors par les pores, circule dans les tubes, en rapport à travers les minces parois de ceux-ci, réagissent l'un sur l'autre ; que la respiration s'exécute ainsi immédiatement dans toutes les parties. En trouvant dans les végétaux des vaisseaux munis d'une fibre spirale qui se distribuent précisément dans tout le système des rameaux et des feuilles la première année de leur formation, c'est-à-dire dans toutes les parties vertes, où s'opère le plus activement la respiration, on fut porté à croire qu'ils contribuaient à cette fonction. On supposait même autrefois que les trachées allaient se terminer directement aux stomates, et alors l'analogie avec celles des insectes eût été complète et eût presque commandé la conviction. Mais il n'en est pas ainsi, et nous savons aujourd'hui que les trachées sont séparées des stomates, dans les rameaux, par toute l'épaisseur des parties interposées entre l'étui médullaire et l'épiderme (§ 59), dans les feuilles, par toute celle du parenchyme, et que dans celles-ci elles correspondent d'ailleurs à la face supérieure et où les stomates sont le moins abondants (§ 107, 108). L'air, loin d'entrer directement dans les trachées par les stomates, ne pourrait donc arriver à elles qu'après avoir traversé des couches plus ou moins épaisses d'autres parties, et s'introduire dans leur cavité qu'à travers leurs parois.

RESPIRATION.

§ 208. On sait que l'air atmosphérique est un mélange de deux gaz: l'oxygène et l'azote. Un volume d'air offre, sur 400 parties, à peu près 79 d'azote pour 21 d'oxygène; on doit y ajouter une très faible quantité d'un autre gaz, l'acide carbonique. Celui-ci est une combinaison de 8 parties en poids d'oxygène avec 3 de carbone, corps que nous voyons à l'état solide dans le charbon, mais qui est passé à l'état gazeux en se combinant avec l'oxygène. C'est cette petite quantité de gaz acide carbonique aux dépens de laquelle s'opère la respiration des plantes: et l'on pourrait au premier coup d'œil s'étonner qu'elle y suffise, en pensant que l'acide carbonique ne forme guère que la millième partie du poids de l'air. Mais cet étonnement disparaît par la réflexion qui nous rappelle l'étendue et la hauteur de l'atmosphère pesant sur notre globe, et nous suggère que ce poids, réduit à sa millième partie, représente encore une énorme quantité, bien des fois supérieure à celui de tous les végétaux de la terre réunis; car ce calcul prouve que l'atmosphère renferme 4500 billions de kilogrammes de carbone.

§ 209. La chimie est arrivée à déterminer les changements produits dans cet air ainsi composé, par deux méthodes différentes: 1º On laisse végéter une plante sous une cloche remplie d'air qui ne peut se renouveler, puis après un temps déterminé on fait l'analyse de cet air. On peut varier l'expérience en composant à la plante sous la cloche une atmosphère artificielle où les éléments de l'air ne soient pas dans leur proportion naturelle, ou soient remplacés par d'autres. et voir ensuite ce qui en résulte, tant pour la composition de cette atmosphère que pour la plante elle-même. 2° On fait germer une graine dans du sable pur arrosé d'eau également pure, et l'on continue à laisser végéter la plante une fois levée, en ne lui donnant pour nourriture que des quantités de cette eau connues: puis on constate par l'analyse sa composition chimique. On connaissait exactement celle de la graine, d'après d'autres graines absolument semblables et de même poids; on sait tout ce que la plante a pu puiser dans l'eau, sa nourriture unique. Tout ce qu'elle présente en plus de ce que la graine avait primitivement et de ce qu'elle a ensuite emprunté à l'eau, a nécessairement été pris à l'air. Comme ici l'expérience se prolonge longtemps dans un air renouvelé, elle peut découvrir des quantités très faibles qui eussent été nulles dans un volume d'air et dans un temps très limités, et qui, par conséquent, eussent dû échapper au premier mode d'expérimentation.

§ 240. C'est par le premier qu'on a constaté que l'air atmosphérique dans lequel une plante a respiré a perdu une certaine quantité de carbone et qu'il a gagné une certaine quantité d'oxygène. Or, ces deux quantités sont à peu près dans le rapport qu'il faut pour

15.

former, par leur combinaison, de l'acide carbonique: il y a seulement un peu d'oxygène en moins. La plante, en respirant, décompose donc l'acide carbonique, retient son carbone et un peu d'oxygène, en dégageant le reste de ce dernier, devenu libre. Mais cet acide carbonique décomposé provient-il seulement de la portion qui vient de s'introduire immédiatement de l'air atmosphérique dans l'intérieur du végétal; ou bien peut-il venir en partie de cet intérieur, où il se trouverait déjà tout formé? Cette dernière opinion est probable, puisque, si l'on place la plante dans une atmosphère entièrement dépourvue d'acide carbonique, dans de l'azote pur, par exemple, on y trouve mélangée, au bout de quelque temps, une certaine portion d'oxygène provenant de la décomposition de l'acide carbonique que la plante renfermait dans son propre tissu.

§ 211. C'est ainsi que les choses se passent lorsque la plante est exposée à la lumière solaire. Dans l'obscurité complète, il en est tout autrement : car on trouve dans le ballon de l'acide carbonique en plus et de l'oxygène en moins. L'action s'est donc alors intervertie, et les parties vertes de la plante ont pris et retenu le second en dégageant le premier. Ainsi, l'alternative du jour et de la nuit entraîne celle des phénomènes respiratoires: fixation de carbone et dégagement d'oxygène pendant le jour, dégagement d'acide carbonique et prise d'oxygène pendant la nuit. Pendant le jour même, les végétaux privés de la lumière subissent une influence analogue; maintenus à l'ombre, ils finissent par s'étioler, c'est-à-dire se décolorer et s'allonger en perdant beaucoup de leur solidité, manifestant ainsi la privation du carbone, qui verdit leurs surfaces et solidifie leurs tissus. Il est clair cependant que tous ne sont pas également sensibles à cette influence et n'ont pas besoin du même degré de lumière, puisque plusieurs végètent vigoureusement à l'ombre. Entre les deux extrêmes, la lumière solaire directe et l'obscurité complète, il y a une dégradation proportionnée dans l'intensité des phénomènes respiratoires. Une lumière artificielle très vive peut même faire reverdir légèrement des plantes étiolées.

§ 212. Les parties dont la coloration naturelle est autre que la verte agissent au jourmême comme les vertes privées du jour; elles s'oxygènent et se décarbonisent. Les racines et autres parties souterraines sont dans ce cas: et cet oxygène qu'elles attirent leur semble nécessaire; car, plongées dans un gaz qui en est privé, elles ne tardent pas à mourir. L'accès facile de l'air atmosphérique jusqu'à elles est une condition favorable à la végétation, et leur enfouissement à une profondeur où il pénètre difficilement en est une contraire.

§ 213. Il en est de même de la graine. Lorsqu'on la fait germer,

RESPIRATION.

dans son premier développement elle dégage, même à la lumière du soleil, de l'acide carbonique et absorbe de l'oxygène. Le premier résulte d'une certaine partie de carbone renfermé dans le tissu de la graine qui s'est combiné avec l'oxygène absorbé, qui est en totalité employé à cet usage: car si la germination se fait dans l'oxygène pur, la quantité d'acide carbonique dégagé équivaut à celle de l'oxygène absorbé. Cela dure jusqu'à ce que la germination, plus avancée, ait étalé au jour les parties vertes de la petite plante; dès lors le phénomène est interverti, l'inspiration de l'acide carbonique et l'expiration de l'oxygène commencent. Ce besoin d'oxygène pour la première germination explique comment les graines peuvent se conserver si longtemps intactes à de grandes profondeurs.

§ 214. Des observations modernes donnent à penser qu'une graine germant au milieu de l'eau peut décomposer celle-ci et s'approprier une partie de son hydrogène. D'autres démontrent que certaines plantes empruntent directement à l'air, ou plutôt aux vapeurs ammoniacales qui y sont habituellement répandues, une petite quantité d'azote. Mais nous pouvons ici laisser de côté cette absorption de l'hydrogène et de l'azote aux dépens de l'atmosphère ; absorption le plus souvent inappréciable, et dont le rôle dans la respiration paraît jusqu'ici tout à fait secondaire, relativement à celui du carbone et de l'oxygène.

§ 245. Il y a donc deux actions différentes et même inverses du végétal sur l'air, l'une exercée seulement par les parties vertes sous l'influence de la lumière, l'autre exercée en tout temps, depuis que la plante a commencé à vivre dans la graine en germination, sans intermission et dans toutes les parties. Nous disons toutes, parce que, d'après un travail récent de M. Garreau, les feuilles elles-mêmes, pendant le jour, expireraient une certaine quantité d'acide carbonique qui aurait 'échappé aux observateurs précédents, dissimulé par son mélange avec celui de l'atmosphère ambiant où puisent les inspirations.

§ 216. Beaucoup d'auteurs sont portés aujourd'hui à considérer cette seconde action comme la véritable respiration végétale, qui dès lors serait tout à fait semblable à celle des animaux, une combinaison de l'oxygène avec les fluides ou tissus vitaux. Ils se fondent non seulement sur ce rapport, mais aussi sur la continuité et la généralité de la fonction, tandis que la décomposition de l'acide carbonique dont le carbone se fixe dans le végétal, ne s'opérant que pour certains organes et avec certaines conditions nécessairement intermittentes, leur paraît purement un acte de nutrition. Ils montrent en effet que la plante qui cesse de décomposer l'acide carbonique, ce qui a lieu lorsqu'on la laisse longtemps dans une complète obscurité, ne meurt pas, mais seulement languit et pâlit comme

étant privée de nourriture (§214), tandis que celle qui ne reçoit plus d'oxygène, ainsi qu'on peut l'expérimenter en la plaçant dans un autre gaz comme l'azote et l'hydrogène, ou encore dans le vide de la machine pneumatique, ne tarde pas à mourir comme asphyxiée: asphyxie promptement déterminée à l'obscurité, beaucoup plus lente à la lumière, dont l'action décomposant l'acide carbonique contenu dans les tissus, répand dans l'atmosphère non respirable une petite quantité d'oxygène. Si au moyen d'un autre corps mis sous le récipient on s'empare de cet oxygène à mesure qu'il se dégage, la plante, bientôt épuisée, cesse de végéter.

§ 217. Cependant l'opinion la plus ancienne et même encore la plus généralement reçue, est celle qui considère l'inspiration de l'acide carbonique avec expiration d'oxygène comme constituant la respiration végétale, et par conséquent les surfaces vertes du végétal en rapport avec l'atmosphère, l'écorce et surtout les feuilles, comme les organes respiratoires. On se rattache à cette idée encore plus par un parallèle avec la respiration des animaux. Dans l'inspiration, ils enlèvent à l'air de l'oxygène que le sang porte avec lui dans toutes les parties du corps, pour amener par une voie rétrograde du carbone que, par l'expiration, il verse dans l'air sous la forme d'acide carbonique. Les végétaux enlèvent à l'air de l'acide carbonique qui, porté dans l'intérieur de leur tissu, y laisse du carbone, et ils rendent à l'air de l'oxygène. Ainsi, la respiration des végétaux représente en sens inverse celle des animaux, elle en compense les effets dans l'atmosphère; et l'air, après avoir parcouru ce cèrcle dans les organes respiratoires des êtres organisés appartenant aux deux règnes différents, se retrouve avec sa composition primitive. Il est vrai que de la part des végétaux, l'effet produit sur l'air pendant la nuit doit détruire en partie l'effet produit pendant le jour ; mais quand on réfléchit à l'énorme quantité de carbone accumulée dans les végétaux, et qu'on pense qu'il y a été fixé par suite de l'acte respiratoire, on voit qu'il n'y a pas compensation, que le gain diurne de carbone a outrepassé considérablement la perte nocturne. Les courants de l'air atmosphérique rétablissent sans cesse l'équilibre qui pourrait être rompu sur quelques points par des accumulations soit d'animaux, soit de végétaux.

On pourrait s'étonner de cet état d'équilibre et demander comment est compensée dans la décomposition de l'air cette grande perte de carbone que les végétaux retiennent fixé. Une partie y retourne par la combustion, et comme l'homme emploie beaucoup d'autres combustibles que les végétaux, c'est autant de gain pour ceux-ci. Nous avons déjà signalé la source abondante d'acide carbonique que verse la respiration des animaux. Les volcans, les sources miné.

RESPIRATION.

rales, etc., etc., en fournissent aussi leur contingent. Le règne végétal peut donc puiser largement dans l'atmosphère qu'il purifie en lui enlevant cet excès de carbone que diverses causes tendent à renouveler. Il est dans les conditions auxquelles on soumet artificiellement la plante isolée sous une cloche, et qui s'y développe avec d'autant plus de vigueur qu'on y a fait pénétrer un plus grand excès d'acide carbonique.

§ 248. Quelle sera définitivement pour nous la respiration des végétaux, le mode analogue à celle des animaux ou le mode inverse? Comme le dernier est encore le plus généralement admis, malgré les objections élevées non sans raison, nous continuerons, pour plus de clarté et de brièveté, à nous servir de la langue usitée, en l'appelant *respiration*; seulement, pour plus de précision, nous pouvons au besoin y ajouter l'épithète de *diurne*, à laquelle naturellement s'opposera celle de *nocturne* pour désigner le mode inverse. Une définition rigoureuse de la respiration exigerait d'abord celle de fluide nourricier qu'elle est destinée à revivifier, et nous avons vu combien il est difficile de le définir dans les végétaux.

§ 249. La comparaison précédemment établie entre les deux règnes nous amène naturellement à l'examen de la respiration des végétaux vivant sous l'eau, dont, par une théorie ingénieuse, M. Ad. Brongniart a établi le rapport avec celle des poissons. On sait que chez ces derniers, et chez un grand nombre d'autres animaux aquatiques, l'organe respiratoire n'est mis en rapport avec l'atmosphère qu'à travers l'eau qui le baigne immédiatement, qu'il emprunte à cette eau l'air atmosphérique qui s'y trouve dissous, et le décompose à la manière ordinaire, en gardant l'oxygène et rendant à l'eau l'acide carbonique. Nous connaissons la structure des feuilles submergées (§ 440 [fig. 448]), qui, dépourvues d'épiderme, et par conséquent de stomates, présentent immédiatement à l'eau leur parenchyme a parois minces, serrées les unes contre les autres sans méats intercellulaires, et ordinairement sur un très petit nombre de rangs d'épaisseur. L'eau peut donc agir facilement sur ce parenchyme au moyen de l'air qu'elle tient en dissolution, qui y pénètre et s'y décompose. Du carbone est fixé dans les cellules qui verdissent; de l'oxygène est exhalé. La lumière a son influence habituelle sur ce phénomène, et, à une certaine profondeur, on voit les plantes pâlir et s'étioler. Comme les branchies des poissons, ces feuilles, une fois hors de l'eau, se sèchent promptement et deviennent ainsi incapables de continuer à respirer. Cette dessiccation rapide est due au défaut de l'épiderme qui, dans les végétaux aériens, en modérant l'évaporation, protége les cavités respiratoires contre un pareil danger, et laisse en général aux liquides contenus dans l'intérieur de la

plante le temps de venir remplacer celui qui se perd en s'évaporant.

§ 220. Évaporation .--- L'évaporation ou exhalaison aqueuse par les parties du végétal exposées à l'air, dont nous avons eu déjà occasion de parler comme de l'une des causes les plus puissantes de l'ascension habituelle de la séve, se fait presque entièrement par la voie des stomates, quoiqu'elle ait lieu sur tout le reste de la surface, et surtout sur les surfaces vertes, mais assez faiblement pour qu'on puisse la nommer insensible. On peut se convaincre aisément qu'elle se fait par les stomates, en remarquant qu'elle est presque nulle quand ils manquent, peu marquée quand il y en a peu, beaucoup plus active en général sur la face inférieure de la feuille que sur la supérieure, en un mot toujours en proportion avec leur nombre. Cette évaporation, qu'on a comparée à la transpiration des animaux, mériterait peut-être plutôt, à cause de son siége, qui se trouve être précisément la surface respiratoire, d'être assimilée à l'exhalation pulmonaire, cette émission très considérable de vapeur d'eau qui s'échappe avec l'haleine; et c'est pourquoi nous nous en occupons ici. Ajoutons à l'appui de ce rapprochement que son activité est influencée précisément par la même cause que celle de la respiration, par l'exposition à la lumière. A l'ombre, une chaleur égale et même très supérieure n'a comparativement qu'un faible effet, tandis qu'elle en a un marqué sur la transpiration insensible. La nuit, l'exhalaison s'arrête.

NUTRITION ET SÉCRÉTIONS (4).

§ 221. La nutrition est cette fonction par laquelle le corps organisé prend dans les matières en rapport avec lui les principes propres tant à entretenir et fortifier ses parties déjà formées qu'à former des parties nouvelles, tant à le conserver qu'à l'accroître. Ce travail organique se partage, dans la vie végétale, en trois actes : 1° ces matières, venant du dehors à l'état brut, sont introduites dans le corps ; 2° elles subissent dans son intérieur certaines préparations,

(1) La nutrition et les sécrétions se trouvent traitées ici dans le même chapitre à cause de la difficulté de les distinguer nettement dans les végétaux. Si un organe sécréteur est un appareil local dans lequel s'élabore et se dépose une matière spéciale différente de celles qui sont généralement répandues dans le tissu, il est rare d'en rencontrer qui justifient parfaitement cette définition. Les glandes (§ 175-178) se confondent souvent avec le tissu environnant; les parois sécrétantes des lacunes gommifères ou résinifères ne s'en distinguent pas; et ce n'est qu'au produit qu'on reconnaît l'organe, souvent limité d'allleurs à une simple cellule. Aussi, pour la plupart des auteurs, presque toutes les matières stationnant ou même circulant dans l'écorce, sont-elles des sécrétions. Nous avons mieux aimé les confondre sous un autre point de vue, d'après le but commun auquel elles paraissent toutes concourir, et ne sachant pas bien discerner parmi elles celles qui peuvent constituer exclusivement la séve descendante.

NUTRITION ET SECRÉTIONS.

dues pour la plupart à des associations nouvelles et plus compliquées des éléments introduits; elles s'organisent; 3° chaque partie prend dans ces matières ainsi préparées ce qui convient à sa nature et à sa destination particulières, le fixe en lui communiquant les propriétés qui lui manquaient, et dont elle-même est douée; elle se l'assimile.

Le premier acte, qui a déjà fait l'objet de notre examen, paraît se passer sous l'influence presque exclusive de forces physiques. Le second consiste dans une suite de transformations, dont la chimie peut le plus souvent donner ou pressentir l'explication. Le troisième est en grande partie le secret de la vie, et l'on a nommé vitale la force inconnue qui l'opère. La force vitale, au reste, préside à toute cette succession et cet ensemble de phénomènes, qui sans elle cessent ou de se reproduire ou de s'enchaîner dans leur ordre; et toujours on est obligé de la reconnaître derrière ces forces mécaniques, physiques et chimiques, dont elle se sert et qu'elle a mises en mouvement.

§ 222. En traitant de l'absorption des racines et de la respiration, nous avons étudié l'introduction des matières du dehors dans le végétal, fournies les unes par la terre et les autres par l'air. Les unes viennent à la rencontre des autres, et au point où elle a lieu, vers la surface des rameaux et des feuilles, s'opère un travail chimique que nous avons vu manifesté par la composition de l'air différente à son entrée et à sa sortie. Il s'est donc là produit à l'intérieur une transformation des matières venues du dehors, une de ces opérations par lesquelles nous avons caractérisé la nutrition. C'est ainsi que la respiration se rattache à elle intimement, et qu'on a pu les confondre dans une seule fonction plus générale.

§ 223. L'analyse chimique, dans toutes les parties végétales, trouve toujours seulement quatre corps élémentaires : le carbone, l'oxygène, l'hydrogène et l'azote. Ce sont précisément ceux que nous avons vus fournis à la plante par l'air, et par conséquent la terre n'a pu lui porter que les mêmes. Il est vrai, comme nous avons déjà eu occasion de le dire, que différentes substances minérales que l'eau a pu dissoudre dans la terre s'introduisent avec elle dans les racines, qu'elles parcourent ainsi les tissus, et que quelques unes s'y fixent. Mais leur présence est variable, souvent accidentelle; leur rôle, encore très obscur, quoiqu'elles semblent exercer d'autres fois une influence indirecte, mais utile; elles conservent leur nature et souvent même leurs formes cristallines (§ 23). Nous les laisserons donc pour le moment de côté, pour nous occuper des matières essentiellement organiques formées par les éléments que nous avons nommés.

§ 224. Quoiqu'au nombre de quatre seulement, ils peuvent

fournir de nombreux composés. On sait, en effet, que les corps élémentaires se combinent en différentes proportions. Supposons la combinaison d'un corps A avec un corps B : le corps unique C qui en résulte peut renfermer parties égales de A et de B; ou bien 2, 3, 4, etc., parties de A pour 1 de B; ou bien 2, 3, 4, etc., parties de B pour 4 de A; en un mot, un certain nombre des unes pour un certain nombre des autres, et de toutes ces proportions différentes résultent autant de corps différents par leurs caractères et leurs propriétés. On admet que cette combinaison a lieu entre des particules de l'un et de l'autre corps infiniment petites, au delà desquelles il n'y a plus de division possible, et qu'on appelle des atomes: par exemple, entre 2 atomes de A et 3 de B pour former une molécule de C. Mais on conçoit que ces atomes puissent se grouper, les uns par rapport aux autres, de deux, trois ou plusieurs manières différentes. Les molécules de C devront s'agencer en conséquence et se grouper aussi entre elles de deux ou trois manières; et il en pourra résulter trois corps, C, C', C', différents par leurs caractères et leurs propriétés, quoique l'analyse chimique ne découvre entre eux aucune différence, qu'elle les trouve tous trois composés de 2 parties de A contre 3 de B. Ce sont ces corps différents, quoique composés des mêmes éléments en même proportion, qu'on a nommés isomères. Après toutes ces notions élémentaires, que nous avons rappelées parce qu'il est bon de les avoir devant les yeux pour tous les détails qui suivent, on comprend sans peine combien quatre éléments susceptibles de se combiner par deux, par trois et par quatre, et chaque fois en différentes proportions, peuvent donner de corps différents, surtout si quelques unes de ces combinaisons forment chacune de leur côté plusieurs substances isomères.

Les corps bruts ou minéraux peuvent être formés par un élément unique, ou par deux ou plusieurs combinés ensemble. Mais alors en général les proportions de ceux-ci sont fort simples, indiquées par des nombres assez bas. Citons pour exemples ceux qui nous intéressent le plus comme fournissant au végétal les principes dont il formera en les combinant ses matières organiques. L'eau est composée en volume de 4 d'oxygène et de 4 d'hydrogène (HO [4]); et le premier pesant 8 fois plus que le second, elle est composée en poids de 8 d'oxygène et de 4 d'hydrogène; l'acide carbonique, en volume de 4 de carbone et 2 d'oxygène (CO²), en poids de 3 du premier et 8 du second; l'ammoniaque, en volume de 4 d'azote et 3 d'hydrogène (AzH³), en poids de 44 du premier et 3 du second.

(1) Nous indiquons à la suite de chaque corps composé la formule qui représente sa composition en atomes ou mieux en équivalents. Les lettres indiquent un de ses éléments et le chiffre écrit en manière d'exponentielle le nombre des atomes.

NUTRITION.

Les substances végétales comparées aux corps bruts offrent un plus haut degré de composition. Elles résultent pour la plupart de l'association de trois éléments au moins, le carbone, l'hydrogène et l'oxygène, ou de quatre par l'addition de l'azote; et leurs proportions sont toujours plus complexes, indiquées par des nombres beaucoup plus élevés. La composition va en se compliquant dans les substances animales.

Nous ne passerons pas en revue toutes les matières végétales, nous bornant à celles-qui sont les plus répandues dans la généralité des plantes, et procédant des plus simples aux plus composées. Nous commencerons donc par les principales matières ternaires, c'est-à-dire celles qui résultent de la combinaison du carbone avec Foxygène et l'hydrogène.

§ 225. Parmi elles, la première qui doit fixer notre attention est celle qui forme la charpente du végétal, les parois des cellules, des fibres et des vaisseaux. Car M. Payen a constaté qu'elle offre partout la même composition, que les différences apparentes qu'on pourrait y apercevoir sont dues à d'autres produits variables déposés à sa surface ou même infiltrés dans son épaisseur (§49); et qu'après qu'elle en a été débarrassée et amenée à son état de pureté, cette substance, qu'on peut appeler cellulose, présente toujours identiquement la même composition. Cette composition est de 42 molécules de carbone pour 40 d'hydrogène et autant d'oxygène (C12H10O10). ou, ce qui revient au même, de 42 de carbone pour 40 d'eau, puisqu'une d'eau est formée par 4 d'oxygène et 4 d'hydrogène : ce qui équivaut en poids à 72 parties de carbone, 10 d'hydrogène et 80 d'oxygène. Or la fécule ou amidon (§ 24), cette matière dont nous avons déjà eu occasion de parler souvent comme si abondamment et si généralement répandue dans l'intérieur des cellules, à l'état de grains solides et insolubles dans l'eau froide, se trouve avoir précisément la même composition chimique ; et on la retrouve encore dans une autre matière également fréquente, mais soluble dans l'eau à froid et ne se colorant pas en bleu ou violet par l'iode, matière qu'on a nommée dextrine (1). Voici donc trois substances composées de même avec des caractères différents, par conséquent isomères. On conçoit comment elles pourront se convertir l'une en l'autre par un simple changement de forme toutes les fois que leur arrangement moléculaire viendra à être troublé, et comment une

(1) A cet état on l'a souvent confondue avec la gomme, dont elle a l'apparence et presque la composition. Mais les véritables gommes, distinctes du reste par plusieurs caractères chimiques et physiques, paraissent le produit de l'élaboration des sucs dans l'écorce où elles se trouvent, et sont, en général, comme les autres sucs qu'on y rencontre aussi (§ 229), des matières plus ou moins complexes.

matière peut, dans les tissus des végétaux, tantôt se conserver en dépôt à l'état de grains, que préservent leur solidité et leur insolubilité ; tantôt en perdant cette dernière propriété, devenir un sirop que la séve délaye et porte avec elle dans tous les points du végétal ; tantôt enfin s'étendre et se solidifier en membranes qui forment les parois des cellules nouvelles, ou doublent celles d'une cellule déjà existante.

§ 226. Nous avons déjà parlé aussi du sucre comme d'une substance fréquemment répandue dans l'intérieur du végétal. On distingue plusieurs espèces de sucre : ceux qui nous intéressent ici, comme les plus communs, sont ceux qu'on a nommés de canne et de raisin, d'après les plantes où ils sont le plus abondants et où ils ont été le plus tôt connus. Le sucre de canne est ainsi composé : 12 molécules de carbone, 44 d'hydrogène, 44 d'oxygène (C12H11O11); celui de raisin, qu'on connaît sous le nom plus général de glucose, de 42 de carbone, 44 d'hydrogène et 44 d'oxygène (C¹²H¹⁴O¹⁴). Il en existe une troisième espèce, le sucre des fruits acides (C¹²H¹²O¹²), intermédiaire, comme on le voit, aux deux précédents, dans lequel en effet le premier se transforme aisément, et qui à son tour donne le second sous la forme de petits grains cristallins lorsqu'on abandonne à elle-même sa solution sirupeuse. En comparant ces compositions à celle de la cellulose, de l'amidon et de la dextrine donnée plus haut, on voit qu'elles diffèrent bien peu, puisqu'il suffit d'ajouter à celle-ci 1 molécule d'hydrogène et 1 d'oxygène, ou, ce qui est : la même chose, de lui ajouter 1 molécule d'eau, pour avoir précisément celle du sucre de canne, et à ce dernier 3 nouvelles molécules d'hydrogène et 3 d'oxygène, c'est-à-dire 3 molécules d'eau, pour avoir celle du sucre de raisin.

Tous ces corps identiques ou si analogues, où l'oxygène et l'hydrogène se montrent combinés dans la proportion qui forme l'eau, sont neutres et ce sont eux qui se montrent le plus généralement : et le plus constamment dans les végétaux.

§ 227. Passons maintenant à des substances plus complexes, mais dont l'existence semble, comme celle des précédentes, générale dans les tissus végétaux : ce sont des composés quaternaires dans lesquels l'azote vient s'associer aux trois autres éléments. On les appelle albuminoïdes du nom de la plus commune d'entre elles, l'albumine, ou protéiques du nom d'une substance qui paraît former le principe essentiel de toutes ces substances, la protéine. On regarde celle-ci comme composée de 36 molécules de carbone, 25 d'hydrogène, 4 d'azote et 40 d'oxygène (C³⁶H²⁵Az⁴O¹⁰). La combinaison de cette base avec de très faibles proportions de deux nouveaux corps, le soufre et le phosphore, produirait, d'après les recherches les plus

NUTRITION.

modernes, les diverses modifications des matières protéiques. Suivant M. Mülder, 40 molécules de protéine combinées à 4 de soufre donneraient la caséine ; à 4 de soufre et 4 de phosphore, la fibrine ; à 2 de soufre et 4 de phosphore, l'albumine. Ces matières azotées, liquides ou coagulées, solubles dans l'eau ou insolubles, suivant la nature et les proportions de celles avec lesquelles elles se trouvent en rapport, comme les acides et les alcalis, se trouvent donc dans les mêmes conditions que les autres pour se mobiliser ou se fixer suivant les besoins du végétal.

§ 228. La chlorophylle a été reconnue aussi pour une matière quaternaire, et les travaux les plus récents lui assignent pour formule C¹⁸H¹⁰AzO⁸. Mais il est difficile de s'assurer qu'on l'ait obtenue à l'état de pureté parfaite. Nous avons vu (§ 22) qu'elle se montrait toujours accompagnée d'une matière grasse ou'cire, et que plusieurs la considéraient comme une transformation de celle-ci qui se formerait elle-même aux dépens de la fécule. On expliquerait ainsi l'origine d'une portion de l'oxygène si abondamment dégagé par les parties vertes des végétaux. Car, en admettant que cette matière grasse est représentée par C⁸H⁷O, 2 parties de fécule avec une d'eau (2C¹²H¹⁰O¹⁰ + HO), donnant par leur conversion en 3 de matière grasse (3 C⁸H⁷O), mettraient 48 d'oxygène en liberté.

Nous avons vu aussi que diverses considérations contredisent cette théorie, que la chlorophylle se forme souvent là où il n'y a pas de fécule, et se montre d'abord dans le protoplasma. Celui-ci est une matière protéique à laquelle elle emprunte sans doute l'azote qui entre dans la composition.

§ 229. Mais quelle force dans ce végétal change ces substances les unes dans les autres en modifiant soit leur état moléculaire, soit, par l'addition de quelques parties d'eau, leur composition première? On peut bien, dans les laboratoires de chimie, produire artificiellement quelques unes de ces réactions ; mais c'est le plus souvent à l'aide d'agents que nous ne trouvons pas dans le corps organisé, qui d'ailleurs ne supporterait pas leur action trop prompte et trop énergique. La plupart des phénomènes semblent s'y accomplir par ces forces lentes et disséminées sur une grande étendue, qui peuvent difficilement être constatées sur un point donné, mais qui, opérant sur un grand nombre à la fois, donnent pour résultat de toutes ces petites actions locales un effet général par lequel nous reconnaissons leur existence sans pouvoir bien apprécier leur nature. Cependant la chimie parvient à jeter du jour sur quelques uns de ces problèmes. Donnons-en un exemple au sujet de l'un des plus intéressants, la conversion de l'amidon en dextrine, qui le rend soluble à froid et permet ainsi son transport à travers les tissus.

MM. Payen et Persoz ont trouvé que dans l'amidon accumulé dans certaines graines céréales, vers le point d'insertion de la Pomme de terre et même au-dessous des bourgeons de certains arbres, au moment où la graine commence à germer, le tubercule ou le bourgeon à pousser, une partie d'amidon disparaît pour faire place à une nouvelle substance qu'ils ont appelée diastase, et qui a la singulière propriété de désagréger les grains de la fécule, de les changer en dextrine; et, si l'action se prolonge, celle-ci se convertit elle-même : en sucre. Cette action a lieu même à froid, puisque, même à la température de la glace fondante, 12 parties de diastase produisent en vingt-quatre heures, avec 400 d'amidon, 44 de sucre: à 20 degrés elles en produisent 77. On voit que la chaleur favorise cette action ; et l'effet va croissant jusqu'à la température de 70 à 80 degrés, à laquelle la diastase dissout 5,000 fois son poids de fécule. C'est un agent puissant que la science a emprunté à la nature pour la fabrication du sirop gommeux de dextrine et du sucre d'amidon, d'un emploi maintenant si général.

Cette action de la diastase sur la fécule est de l'ordre de celles que les chimistes appellent de contact ou catalytique, et par laquelle, en vertu d'une force mystérieuse qu'on n'a su expliquer jusqu'ici, certains corps mis en contact avec d'autres composés déterminent des modifications dans leur arrangement moléculaire ou dans leur composition, sans fournir par eux-mêmes ou recevoir de nouveaux éléments, en un mot, sans réaction chimique. On peut la comparer à celle des ferments, par conséquent de la levûre de bière mise en présence du sucre qu'elle transforme en alcool. Il est à remarquer que dans les plantes ce sont le plus ordinairement des corps azotés qui jouent ce rôle, et l'on comprend ainsi leur grande importance dans l'économie végétale.

§ 230. L'effet le plus manifeste de la respiration diurne est de fixer dans le végétal une quantité additionnelle de carbone et de lui enlever de l'oxygène. Après avoir mis ce fait hors de doute, on l'expliquait par une simple décomposition de l'acide carbonique dont l'oxygène serait mis en liberté et dont le carbone s'unirait directement à l'eau, si abondante dans les organes du végétal pour produire ces combinaisons neutres, que nous avons vues former sa trame et la plus grande proportion des principes organiques qui y séjournent ou y circulent. Cependant comme l'eau se décompose beaucoup plus facilement que l'acide carbonique, on serait aujourd'hui porté à admettre que c'est elle qui cède son hydrogène à l'acide pour former les combinaisons neutres, et abandonne son oxygène.

§ 234. Quelle que soit l'origine de l'oxygène dégagé, et nous avons vu (§ 228) qu'il peut provenir encore d'autres sources, sans celles que

NUTRITION.

nous indiquerons plus tard (§ 235), la soustraction de ce gaz peut déterminer dans les matières nouvelles qui se forment par toutes ces réactions une proportion plus forte d'hydrogène. En effet, nous trouvons toutes les matières formées dans l'écorce sous l'influence de la lumière solaire, empreintes de ce double caractère, augmentation dans la proportion d'hydrogène et surtout de carbone : c'est ce que nous présentent la chlorophylle et le latex, ainsi que les résines, les huiles essentielles, la cire (4).

Il ne peut y avoir aucun doute que tous ces produits ne résultent de l'action de la lumière; car, privés d'elle, on les voit peu à peu s'affaiblir et disparaître. Nous avons déjà parlé de l'étiolement que présente la plante après un séjour prolongé dans l'obscurité, et qui suppose l'altération de la chlorophylle et les conditions propres à empêcher son développement. Or, un effet analogue se produit par la même cause sur les sucs propres, les résines et les huiles essentielles ; et, parmi les preuves de cette vérité, il suffit de citer cette pratique familière des jardiniers pour la culture de certaines plantes potagères qui, développées à la lumière libre, auraient des sucs d'une odeur trop forte, d'une saveur trop âcre et quelquefois même d'un usage dangereux, comme plusieurs ombellifères, par exemple. Ils couvrent de terre la portion inférieure de la plante qui doit être employée; ce qu'ils appellent blanchir, parce qu'elle perd sa couleur verte. Mais elle perd en même temps les qualités trop intenses de ses sucs, qu'on réduit ainsi au degré où elles ont pu devenir agréables et innocentes.

§ 232. C'est dans les cellules de l'écorce que se forment encore ces combinaisons quaternaires désignées maintenant sous le nom d'alcaloïdes, parce qu'elles ont la propriété de se combiner avec les acides à la manière des alcalis. C'est même ainsi combinées, et seulement avec un petit nombre d'acides végétaux, qu'on les rencontre

(1) Nous ne citons pas ici les huiles fixes, parce que c'est en général dans le fruit et l'amande de la graine qu'elles se montrent, disséminées par gouttelettes à l'intérieur des cellules où elles se forment. « Ces huiles comprennent des corps insolubles dans l'eau, » fluides à la température ordinaire et non susceptibles de se volatiliser sans décompo-» sition. Les cires ne diffèrent guère des précédentes qu'en ce qu'elles sont solides à la » température ordinaire. Les huiles volatiles, ou essentielles, qui ressemblent aux huiles » fixes, s'en distinguent par une odeur plus ou moins forte, une légère solubilité dans » l'eau, et enfin par la propriété de se volatiliser sans décomposition. Les résines ren-» ferment des corps plus ou moins fragiles, assez solubles dans l'alcool, et plus ou moins » altérables par l'action de la chaleur. » Ces définitions, que nous empruntons à M. Chevreul, sont les seules par lesquelles nous puissions ici distinguer ces corps. Tels que la nature nous les présente, ce sont toujours des matières plus ou moins complexes, complexité qui s'oppose nécessairement à ce qu'on puisse déterminer les caractères chimiques d'une manière en même temps générale et précise. Leur examen détaillé nous entraînerait beaucoup au delà des limites qui nous sont imposées.

pendant la vie. Les recherches modernes ont extrêmement multiplié le nombre de ces substances, qu'on désigne en général par la désinence en ine (quinine, morphine, strychnine, etc., etc.). Naturellement ces recherches se sont dirigées sur les végétaux les plus remarquables par leurs propriétés; chacun a fourni ses alcaloïdes, plus d'un à lui seul en a fourni plusieurs différents. Ces alcaloïdes, extraits du même végétal, paraissent avoir entre eux une sorte d'affinité qui sera facilement comprise par un exemple bien connu. L'écorce de quinquina en présente pour sa part plusieurs, dont deux principaux, la cinchonine et la quinine. Tous deux dans leur composition ont 38 atomes de carbone, 24 d'hydrogène, 2 d'azote ; la cinchonine a de plus 2 d'oxygène et la quinine 4 : de sorte que les trois premiers éléments semblent se réunir ici pour jouer le rôle d'un corps simple qui, oxydé à deux degrés différents, formerait les deux alcaloïdes ; et même un troisième, la cusconine, semble donner le terme suivant.

C'est dans ces substances que les propriétés les plus énergiques des végétaux paraissent résider, et le petit nombre des citations auxquelles nous avons dû nous borner nous a rappelé des médicaments ou des poisons bien actifs et bien célèbres.

§ 233. Nous venons d'énumérer les principales substances qui se forment par la soustraction d'une portion d'oxygène. Il s'en trouve au contraire où il est en excès, c'est-à-dire en proportion plus grande relativement à l'hydrogène que celle qu'il faut pour former l'eau : ce sont les acides.

Les acides végétaux, dont la chimie moderne a aussi beaucoup augmenté le nombre, se rencontrent bien rarement libres dans les tissus vivants, mais ordinairement combinés, soit avec les alcaloïdes, soit avec les matières alcalines inorganiques apportées par la séve. L'un des plus répandus est l'acide oxalique, remarquable par, sa composition binaire, et très rapproché par elle de l'acide carbonique, puisqu'il ne diffère que par une proportion moindre d'oxygène dont il renferme 3 parties pour 2 de carbone. Beaucoup sont des composés ternaires, comme les acides acétique, citrique, pectique, malique, tartarique, etc., etc.; très peu des composés quaternaires avec une proportion assez forte d'azote, comme l'acide aspartique, etc. Quant à l'acide hydrocyanique, connu autrefois sous le nom de prussique, loin de devoir être rangé parmi les substances suroxygénées, il ne renferme pas du tout d'oxygène, mais une énorme proportion d'azote, un peu plus de la moitié de son poids. Cet azote, uni à du carbone, forme une base, nommée cyanogène, qui s'unit elle-même à 3 parties d'hydrogène pour former ainsi cet

NUTRITION.

hydracide, qu'on trouve dans l'Amandier et dans plusieurs arbres de la même famille.

§ 234. Les acides minéraux ont la propriété d'agir par contact sur la fécule et les corps isomères à la manière de la diastase, quoique beaucoup plus faiblement et plus lentement, d'opérer la désagrégation de la fécule et sa conversion en dextrine, puis en sucre, celle du sucre de canne en sucre de fruit, etc. C'est ce qu'ont démontré les expériences nombreuses et variées des chimistes, et quelques unes ont constaté la même propriété pour les acides végétaux. Nous voyons là une des manières dont ils peuvent intervenir dans la formation des matières organiques.

§ 235. M. Liebig leur fait, dans cette formation, jouer un rôle important qui se lierait à la respiration diurne. Il pense que l'acide carbonique introduit d'une part dans les parties aériennes par cette respiration, de l'autre dans la séve par l'absorption des racines, se change en acide oxalique qui ne diffère que par une proportion un peu moindre d'oxygène ; puis il établit une série d'acides ternaires dans lesquels cette proportion va graduellement décroissant, et admet qu'ils se transforment successivement les uns dans les autres, laissant en liberté à chaque nouvelle transformation une nouvelle quantité d'oxygène, jusqu'à ce qu'on arrive enfin aux combinaisons neutres. Il rend compte ainsi, d'une part, d'une portion de l'oxygène dégagé ; de l'autre, de l'utilité des bases alcalines ou terreuses qui se combinent à ces acides pour former des sels qui les tiennent en réserve, tour à tour composés et décomposés : ce qui explique pourquoi ces bases se montrent dans un rapport à peu près constant et peuvent, suivant les divers terrains, se substituer l'une à l'autre par équivalents. Néanmoins comme beaucoup de ces sels fixés dans l'intérieur des cellules à l'état de cristaux insolubles cessent de prendre part aux réactions, on ne peut admettre que la quantité des acides et des bases se trouve dans un rapport nécessaire avec les besoins de la plante, et d'ailleurs ce sont tel acide et telle base qui paraissent nécessaires à la vie de certains végétaux ou de certaines parties du végétal, puisque ce sont ceux qu'on y rencontre constamment sans les voir remplacer par d'autres; et dans un grand nombre, l'existence permanente et l'abondance de l'acide oxalique semblent exclure la réalité de ces transformations ultérieures.

§ 236. La production des véritables acides, ceux qui résultent d'une augmentation dans la proportion de l'oxygène, doit être favorisée par la respiration nocturne, par laquelle cet élément pénètre abondamment dans le végétal. Aussi est-ce dans les parties soustraites à l'action de la lumière solaire ou colorées autrement qu'en vert, parties où ce mode a constamment lieu, comme les racines et

les fruits, qu'on rencontre le plus grand nombre et la plus grande quantité d'acides. Remarquons que ce sont ces mêmes parties que nous voyons souvent devenir des dépôts plus ou moins considérables de fécule et de sucre, c'est-à-dire de ces matières qui nous ont offert la combinaison de parties à peu près égales d'eau et de carbone, et qui, sous l'influence de la lumière, se sont modifiées en prenant une plus grande proportion d'hydrogène et surtout de carbone. Il était nécessaire que, là où elles doivent s'accumuler, une fois formées elles ne fussent pas modifiées, ou qu'une fois modifiées elles fussent ramenées à leur composition primitive par la soustraction de l'excès de carbone fixé dans les parties vertes par la respiration diurne. Or, c'est cet effet que doit produire l'autre période ou l'autre mode de respiration, et c'est ce qui explique peut-être le besoin d'oxygène manifesté par les parties souterraines, et l'influence favorable que peut avoir la nuit sur la végétation, en rétablissant l'équilibre après l'énergique action du jour. Cette action nocturne est une objection à l'ingénieuse théorie de M. Liebig, puisqu'alors l'acide carbonique, aux dépens duquel les autres devraient se former, est expulsé du végétal.

§ 237. Au reste, cette absorption du gaz oxygène par les parties végétales n'est pas un phénomène qui soit propre à la vie. Si après la mort ces parties sont mises en rapport avec de l'oxygène et de l'eau, le premier disparaît en se combinant avec le carbone de la matière végétale, et il se forme de l'acide carbonique. Pendant cette combustion très lente, la matière change de forme et de couleur, et passe peu à peu à l'état d'une poussière noirâtre qui est connue sous le nom de terreau ou humus, et dans laquelle on retrouve les éléments qui y existaient pendant la vie; mais leurs rapports sont altérés. Cependant une portion de carbone s'y trouve encore combinée aux éléments de l'eau, et constitue un composé qui a pour formule C⁴⁰ H¹⁶O¹⁴. D'après les recherches de M. Mulder, cette substance, qu'on appelle ulmine, se transforme en une série d'autres substances (acide ulmine, humine, acides humique, géique, apocrénique, crénique) de plus en plus oxygénées. Ces acides, qui ont une très grande affinité pour l'ammoniaque, s'unissent aux bases alcalines et terreuses pour former des sels, solubles dans l'eau avec les premières, à peine ou non solubles avec les secondes. Mais ceux-ci forment avec les alcalis et l'ammoniaque des sels doubles qui redeviennent solubles. Ainsi sont portées à l'absorption des racines plongées dans l'humus ces diverses matières si utiles à la végétation, l'ammoniaque notamment. Celle-ci n'est pas fournie seulement par les débris des matières organiques en décomposition dans l'humus et par l'eau de la pluie; suivant M. Mulder, l'eau qui concourt à

NUTRITION.

former les dérivés de l'ulmine en leur abandonnant, à mesure qu'ils se transforment, de plus en plus d'oxygène, laisserait libre une proportion équivalente d'hydrogène qui se combinerait à l'azote de l'atmosphère. En effet, de jeunes plantes élevées dans de l'acide ulmique et de la poudre de charbon entièrement dépouillés d'ammoniaque, arrosées avec une eau, et renfermées dans une atmosphère qui n'en contenaient pas davantage, ont fourni à l'analyse une quantité double ou triple de l'azote que contenait leur graine au début de l'expérience.

Cependant ce contingent d'azote, emprunté soit à l'air, soit à l'eau qui l'a traversé, serait loin de suffire au développement complet de la plante, où il se montre toujours si abondant dans tous les tissus en voie de formation, et où nous avons déjà plusieurs fois signalé la nécessité de son intervention, et ce développement ne tarderait pas à s'arrêter, si la plante ne trouvait une autre source dans laquelle elle pût largement puiser, le dépôt que viennent accumuler à la surface de la terre les débris des végétaux et des animaux, ces derniers surtout riches en principes azotés. De là l'utilité des engrais là où l'homme veut multiplier certains végétaux entassés sur un espace borné, végétaux qui, le plus souvent destinés à la nourriture des animaux, doivent eux-mêmes fixer dans leurs tissus beaucoup de ces principes; de là leur nécessité dans le cas où ces végétaux, comme les céréales par exemple, n'empruntent pas directement d'azote à l'atmosphère. C'est à l'état d'ammoniaque qu'il se mêle d'abord à la séve.

§ 238. Il nous reste à examiner, parmi les matières fournies par la terre, celles qui appartiennent au règne minéral, et leur influence sur la végétation. Cette influence peut être de deux sortes : l'une exercée par celles qui, ne pouvant se dissoudre dans l'eau, restent autour des racines, mêlées aux débris végétaux et animaux dont la terre dite végétale est composée; l'autre, par celles qui, dissoutes, s'introduisent et se mêlent avec la séve.

On comprendra, sans qu'il soit besoin de longs détails, combien la première est puissante et comment elle varie avec la constitution primitive du sol. L'argile qui retient l'eau, le sable qui la laisse passer en totalité, présentent les deux conditions opposées et extrêmes dans lesquelles ne pourront vivre que des végétaux différents; et si nous nous rappelons le besoin impérieux que la plupart des plantes ont en même temps et de l'eau à l'intérieur et du contact de l'air pour leurs racines, on jugera qu'un mélange convenable de parties de nature différente, qui retienne une quantité suffisante d'eau et laisse circuler librement l'air, présente les conditions les plus favorables à la végétation. Les matières minérales propres à fixer l'acide carbonique et l'ammoniaque pourront ainsi en retenir

autour du végétal une portion qui autrement se serait volatilisée, et la conserver comme un dépôt qui s'ajoutera à la quantité fournie directement par l'air et à celle que l'eau pouvait déjà tenir en dissolution. C'est à une pareille cause que M. Liebig attribue l'heureuse influence du plâtre et des sels ferrugineux, parce que le plâtre, ainsi que les oxydes de fer et d'alumine, attire l'ammoniaque et forme avec elle un composé solide dont elle est ensuite séparée peu à peu à chaque chute de pluie, pour être entraînée avec l'eau que pomperont les plantes voisines.

§ 239. Mais ce qui nous intéresse ici davantage, c'est la connaissance des matières minérales, qui, elles-mêmes solubles, pénètrent et s'incorporent dans le végétal. Une fois introduites, elles peuvent, ou conserver leur état liquide, ou se solidifier, ce qui arrive, soit par l'évaporation de l'eau qui les tenait en dissolution, soit lorsque dans leur trajet elles rencontrent des acides avec lesquels elles ont la propriété de se combiner en un sel insoluble qui dès lors reste fixé à la place où il s'est formé. Nous avons déjà indiqué (§§ 19-23) les formes qu'affectent le plus ordinairement ces corps minéraux répandus dans les tissus de la plante et les places où ils se rencontrent le plus fréquemment ; c'est surtout près de l'écorce, siége le plus actif de l'évaporation. La proportion des substances minérales est généralement en proportion de l'activité de la végétation, puisqu'elle détermine le passage d'une plus grande quantité d'eau, et par conséquent des matières minérales qui s'y trouvent dissoutes. La quantité de celles qui restent solubles pourra varier à diverses époques; celle des insolubles ne peut nécessairement aller qu'en augmentant avec l'âge.

Cette proportion peut facilement s'évaluer au moyen de la combustion. Le feu détruit sans exception toutes les matières végétales, et c'est encore là un de leurs caractères. Il ne détruit pas les matières minérales que la plante contenait, et dont le résidu forme les cendres. En pesant un corps végétal, puis les cendres provenant de sa combustion, on obtient donc le rapport cherché. On doit avoir égard aux carbonates qui se sont formés dans la combustion même par la substitution de l'acide carbonique aux acides végétaux qu'elle a détruits.

§ 240. Les substances minérales qu'on trouve le plus communément dans le végétal sont la potasse et la soude, la chaux, la magnésie, la silice, et rarement l'alumine, quelquefois un peu de fer et de manganèse. Des observations récentes ont constaté, dans les végétaux terrestres, la présence fréquente de l'iode, qu'on croyait autrefois n'exister que dans ceux de la mer. Ces corps peuvent se trouver déjà à l'état de sels, combinés avec certains acides miné-

NUTRITION.

raux, les acides sulfurique, phosphorique, etc.; ce qui explique la présence du soufre et du phosphore que nous avons trouvés dans les matières protéiques, et qui indépendamment d'elles se trouvent quelquefois en assez grande proportion, par exemple dans les feuilles de mûrier. Avec l'acide carbonique, la combinaison peut avoir eu lieu en dehors ou en dedans de la plante. Les sels qui se forment au dedans par la combinaison avec les acides végétaux, et méritent ainsi le nom de substances végéto-minérales, résultent le plus souvent de celle de la chaux ou de la potasse avec les acides oxalique, malique, citrique, pectique, etc.

§ 244. Il est bien clair que la nature de ces composés est toujours corrélative à celle du sol où croit la plante. L'une ne peut recevoir que ce que l'autre peut lui donner. Mais le reçoit-elle indifféremment? En d'autres termes, est-ce parce qu'un tel terrain renferme telles substances minérales que la plante qui y croît les renferme elle-même, ou bien est-ce par cette raison même qu'elle croît sur ce terrain-là? Pour certains végétaux, la réponse ne saurait être douteuse. Ainsi la plupart des plantes qui croissent sur le bord de la mer renferment beaucoup de soude, provenant du chlorure de sodium ou sel marin; et elles ne croissent pas autre part, si ce n'est auprès des salines situées même au loin dans l'intérieur des terres, mais où elles retrouvent ce même sel. Il leur est donc nécessaire ; elles ne le prennent pas parce qu'elles le trouvent, mais elles se trouvent la parce qu'elles peuvent l'y prendre. Certaines familles de plantes très naturelles, c'est-à-dire semblables par tous les principaux points de leur organisation, présentent dans leurs tissus les mêmes substances minérales, et l'on doit en conclure que la présence de ceux-ci est en rapport avec cette organisation. Celle des Graminées en offre un double exemple : ses fruits parfaits (dans les Céréales) contiennent assez abondamment du phosphate de magnésie et d'ammoniaque; ses tiges, presque sans exception, de la silice qui vient encroûter leur épiderme et leurs nœuds (§ 19): C'est cette silice qui donne aux pailles leur faculté de se conserver longtemps sans pourrir, leur rigidité, leur dureté, telle qu'elle ébrèche souvent la faux, et que la surface de grosses tiges, comme celle du Rotang, peut faire feu au briquet.

Cependant il arrive souvent que la même plante, croissant dans des terrains différents, ne présentera pas les mêmes sels. C'est, suivant M. Liebig, parce que certaines bases peuvent se suppléer l'une l'autre : ce sont celles qui sont susceptibles d'entrer en combinaison avec les mêmes acides végétaux. Il pense même que les proportions de ces acides dans le végétal où ils entrent comme substances organiques sont soumises à une certaine fixité, et qu'en conséquence

les bases qui sont venues s'unir à eux, quoique différentes suivant les terrains, se trouvent néanmoins à peu près équivalentes (§ 235).

§ 242. Il est donc à croire que toutes ces substances, quoique inorganiques, jouent un rôle important dans l'organisation ; que leur quantité et leur qualité se trouvent dans un certain rapport avec les besoins des végétaux, constant pour une plante donnée ou pour une certaine classe de plantes. Les corps minéraux auraient donc une double influence sur la vie des végétaux : l'une générale, en fixant autour d'eux une plus grande provision de leurs principes essentiellement nutritifs; l'autre spéciale, en les pénétrant et leur communiquant des matériaux qui se mêlent aux matières organisées sans pouvoir s'y assimiler, les excitant par leur présence ou les solidifiant, ou les neutralisant en partie; qui, malgré l'ignorance où nous sommes le plus souvent de leur mode d'action, paraissent nécessaires à l'exercice de la vie dont ils sont privés eux-mêmes, et qui enfin ne sont pas toujours les mêmes pour les végétaux différents. L'agriculture mêle à la terre comme amendements diverses substances inorganiques (plâtre, marne, cendres, etc.), qu'elle varie suivant la nature du terrain et suivant celle du produit qu'elle veut favoriser.

§ 243. Excrétions. — Le corps organisé a reçu à l'intérieur des matières venant du dehors; il en a tiré, mis à part, sécrété tout ce qui pouvait être employé à sa nourriture. Il peut rester alors une certaine partie impropre à cette destination, et le corps tend à s'en débarrasser, à la rejeter en dehors, à l'excréter, suivant l'expression usitée dans la science. Ces matières excrémentitielles peuvent avoir conservé la composition qu'elles avaient en entrant dans le corps, ou bien, par suite des combinaisons opérées à l'intérieur, en avoir changé.

Dans les animaux (en exceptant toutefois ceux que leur organisation moins parfaite place au bas de l'échelle) les excrétions trouvent des voies préparées pour s'échapper au dehors, le plus souvent des canaux destinés à cet usage et dits excréteurs; elles peuvent ainsi, pour la plupart, être plus facilement étudiées. Mais il n'en est pas de même dans les végétaux. Il est vrai que de petits canaux excréteurs ont été observés par M. Ad. Brongniart dans les glandes qui garnissent le fond des fleurs de certaines Liliacées. Mais on peut dire que ces canaux manquent en général, et les matières qui doivent être rejetées ne trouvent d'autres voies ouvertes que les mêmes qui servent à la transmission des matières nutritives. Quand elles ne s'échappent pas de glandes superficielles et directement ouvertes au dehors, elles doivent donc s'échapper, soit par transmission à travers les parois de l'épiderme, soit à travers les stomates ou autres

EXCRETIONS.

solutions de continuité naturelles qui peuvent exister à la surface du végétal.

§ 244. On doit distinguer trois classes de matières ainsi rejetées à cette surface, et à tort confondues sous ce même nom d'excrétions :

4° Celles qui, étendues sur les surfaces, sont conservées pour les protéger, et continuent, par conséquent, à servir à la vie. Ce sont, en général, des matières résineuses imperméables à l'eau, pouvant donc, au moyen de cette sorte de vernis, d'une part, empêcher les effets de l'humidité extérieure sur les tissus; de l'autre, modérer l'évaporation, comme cette substance dont sont imprégnées les écailles des bourgeons dans la plupart de nos arbres, comme cette matière cireuse qui sous forme d'une poussière blanchâtre recouvre certaines feuilles (celles du Chou, par exemple) et certains fruits (comme la Prune, le Raisin, etc.), sur la surface desquels elle forme ce qu'on appelle leur *fleur*. Telle est encore peut-être cette couche glaireuse qui enduit la plupart des plantes submergées dans l'eau de la mer, ainsi que dans l'eau douce, et les protége contre l'action du liquide environnant, où elles finiraient par se macérer.

2" Les matières rejetées au dehors, non comme impropres à la nutrition, mais seulement parce qu'elles se trouvent en excès, et qu'il s'en est formé plus qu'il ne s'en peut consommer pour les besoins de la plante : tels sont divers sucs propres qui s'échappent des fruits, de l'écorce, les gommes de celle de nos Pruniers et Pommiers, par exemple, les résines de celle des Sapins et autres arbres verts.

3° Les matières impropres à la nutrition et rejetées au dehors méritent seules le nom d'excrétions; mais il est bien difficile de déterminer dans les végétaux celles qui sont réellement dans ce cas. Même les produits des glandes que nous voyons s'écouler ou se volatiliser à l'extérieur peuvent nous laisser à cet égard quelque doute, puisqu'il serait possible qu'ils fussent en partie résorbés pour être reportés dans la masse du fluide nourricier, et qu'alors la partie qui se perd à l'extérieur ne fût, comme dans le cas précédent, qu'un excédant dont les tissus se débarrasseraient

Mais existe-t-il une voie générale par laquelle le corps végétal, après avoir épuisé dans les substances nutritives toutes les particules qu'il doit s'assimiler, dirige au dehors toutes celles qui y sont impropres ? Beaucoup d'auteurs ont pensé que c'était une des fonctions des racines, et cette théorie semble justifiée par le raisonnement. La séve, entrant par les racines, a parcouru d'abord tout le corps ligneux, puis s'est complétement organisée dans l'écorce, par laquelle elle redescend, fournissant dans ce trajet à toutes les parties les éléments de la nutrition, et revenant ainsi dans les racines, aux extrémités des-

quelles elle doit arriver dépouillée en partie de tous ces éléments qu'elle a distribués sur la route. La question est de savoir si là le résidu est rejeté au dehors comme excrément, ou repris au dedans et mêlé à la séve encore imparfaite, comme le sang veineux dans les animaux. Il est de fait que, sur beaucoup de racines, on peut observer autour des extrémités de petits grumeaux ou des flocons d'une matière qui a l'apparence d'une gelée ou d'un mucilage, et absorbe l'eau en se gonflant. C'est elle qui entraîne souvent ces petits grains de terre ou de sable qu'on trouve collés au bout des racines, avec quelque soin qu'on les détache. Il est difficile de ne pas croire que ce soit là une excrétion de ces racines.

Dans cette supposition, autour d'elles se déposeraient ainsi continuellement des matériaux impropres à nourrir désormais la plante; ce qui expliquerait comment ces racines sont toujours obligées de s'étendre plus loin pour aller chercher leur nourriture, comment un arbre languit à la place où un autre de même espèce l'a précédé, comment certains végétaux d'espèce différente se nuisent par leur voisinage. On en a déduit une théorie des assolements, c'est-à-dire de la succession des cultures différentes, que l'agriculteur doit remplacer annuellement l'une par l'autre, s'il veut tirer du même terrain plusieurs bonnes récoltes successives. Mais cette nécessité s'explique également par l'épuisement du sol où la plante a dû consommer en grande partie les matériaux propres à la nourrir, mais a pu en laisser d'autres propres à nourrir une plante de nature différente. Quoi qu'il en soit, dans l'intervalle de plusieurs cultures ainsi variées avec intelligence, la terre tend à reprendre peu à peu sa composition première sous l'influence incessante des agents atmosphériques.

ACCROISSEMENT DES TISSUS:

§ 245. La nutrition du végétal donne pour résultat son accroissement. Ses organes élémentaires, augmentant en dimensions et en hombré, déterminent une augmentation proportionnelle dans ses organes composés. C'est le mode de croissance des uns et des autres qu'il hous reste à examiner successivement.

Nous ne nous arrêterons pas sur la manière dont les cellules, les fibres, les vaisseaux s'agrandissent et s'épaississent. C'est ce qui a été exposé dans les premiers chapitres qui les concernent, ainsi que l'ordre dans lequel ces organes divers se développent généralement les uns par rapport aux autres. Mais leur mode de multiplication ne nous a pas encore occupés, et c'est ici le lieu de traiter cette question.

§ 246. Accroissement du tissu cellulaire. -- La multipli-

ACCROISSEMENT DES TISSUS.

cation des cellules peut se faire de plusieurs manières différentes :

4° Celle qui a été le mieux constatée, et qui paraît la plus générale, a lieu par la division de la cellule qui d'unique devient double par la formation d'une cloison médiane.

Nous avons vu (§ 20) que la jeune cellule présente un utricule primordial qui enveloppe le protoplasma et tapisse la membrane primaire. Lorsqu'elle a atteint une partie de son développement, on aperçoit vers le milieu de l'utricule primordial un étranglement résultant d'un plissement annulaire, et dans ce pli s'interpose, en se moulant sur lui, un pli de la membrane secondaire qui s'est déposée entre la primaire et l'utricule. Ce pli, ainsi composé, se prononce de plus en plus, s'avançant de dehors en dedans jusqu'à ce que ses bords libres se rencontrent au centre, et se confondent pour constituer une cloison composée de deux lames. Alors, on a deux cellules au lieu d'une seule, chacune entourée d'une membrane propre ou secondaire, avec une membrane primaire commune à toutes deux et qui n'intervient pas dans la cloison, laquelle n'est en effet autre chose que la paroi des deux nouvelles cellules juxtaposées, sur les faces par lesquelles elles se touchent. Par le fait même de cette division, la masse du protoplasma s'est coupée en deux masses, dont chacune remplit la cavité de la cellule qui lui correspond. Les cellules ainsi formées pourront à leur tour se subdiviser en deux, et celles-ci de même; et, après un certain nombre de ces divisions, on peut calculer à quelle quantité de cellules aura donné naissance une cellule primitivement unique.

Ce développement peut être suivi très clairement sur les végétaux les plus simples, comme les conferves où M. Mohl le premier l'a bien constaté. Ces plantes sont formées par des séries de cellules formant par leur ensemble un tube transparent et comme articulé. C'est la cellule terminale qu'on voit se doubler en s'étranglant vers son milieu, après qu'elle a acquis deux fois la longueur des cellules définitives. Quant aux cellules inférieures, on en voit quelques unes se boursoufler latéralement vers leur sommet, cette saillie latérale s'allonger en tube continu avec la cavité de la cellule; puis, lorsqu'il a acquis une certaine longueur, cette continuité s'interrompre par un plissement des membranes, et enfin la formation d'une cloison complète, d'où résulte une cellule nouvelle, base d'une ramification de la conferve. On a vu les cellules se multiplier d'une manière analogue, non seulement dans des végétaux aussi simples, comme les Nostochs, les Charas, etc., mais aussi dans les plus organisés. La cloison que nous avons vue transversale dans les conferves, où la multiplication des cellules détermine par là l'allongement, peut se

former dans tout autre sens, et déterminer ainsi l'élargissement et l'épaississement du végétal.

2º Un second mode de multiplication est celui par lequel les cellules nouvelles se forment dans une cellule-mère ou préexistante sans se continuer avec elle par leurs parois. Le protoplasma de la cellule-mère se partage alors en plusieurs petits groupes ou noyaux autour de chacun desquels s'organise une membrane, d'où résultent autant de cellules indépendantes au début. Plus tard, elles peuvent se réunir, et ordinairement la cellule-mère résorbée a disparu alors. Ce mode, qu'on a pu bien observer dans le sac embryonnaire (§ 446), a été signalé particulièrement par M. Schleiden, qui l'admettait comme général, et pour lui le petit amas de matière protéique condensé en nucléus ou cytoblaste (§ 20) est le générateur de la paroi cellulaire, et doit ainsi précéder toute cellule. On le trouve en effet dans la plupart au début ; mais s'il persiste quelquefois, le plus souvent il ne tarde pas à disparaître. Cette formation de cellules libres pourrait s'appeler intra-utriculaire.

3° Plusieurs auteurs en admettent une inter-utriculaire, c'est-à-dire dans l'intervalle des cellules. Ainsi M. Mirbel a cru voir les lacunes dans les jeunes tissus de certains Palmiers se remplir d'un cambium qui s'organise en utricules; M. Kützing décrit et figure dans les Fucus des cellules nouvelles se développant dans l'épaisseur de la matière intercellulaire qui sépare les plus anciennes. Mais ce mode, nié positivement par plusieurs autres, reste au moins fort douteux.

§ 247. C'est par division que les cellules se multiplient entre le bois et l'écorce aux dépens du cambium. Comment le cambium lui-même se forme-t-il? On peut penser que c'est aux dépens des sucs les plus élaborés, ainsi que le prouvent les nombreuses et ingénieuses expériences de Duhamel sur la formation du bois dans les arbres dicotylédonés. Une mince lame d'étain introduite entre l'écorce et le bois permit de constater que tout le cambium avait dû venir du côté de l'écorce. Un lambeau d'écorce tenant supérieurement à l'arbre fut souleve, et la surface du bois au-dessus fut détruite, ce qui n'empêcha pas la production du cambium sous le lambeau replacé. Une décortication annulaire mise à l'abri de la sécheresse montra le cambium sortant entre le bois et l'écorce, en grande abondance du bord supérieur de la plaie, beaucoup moins de l'inférieur. On en conclut que ce sont les sucs de l'écorce venant de haut en bas qui fournissent le cambium, et que ce n'est pas la séve ascendante.

§ 248. La multiplication des cellules a lieu quelquefois avec une extrême rapidité. Les jeunes pousses de quelques uns de nos arbres, par un temps favorable, au printemps, peuvent nous en donner un exemple, et cependant la marche de leur végétation n'a rien de

ACCROISSEMENT DES TISSUS.

comparable à celle qu'active une température plus élevée. Dans nos serres mêmes, on peut voir des Agaves au moment de leur floraison, des Bambous, etc., etc., s'allonger dans certains moments de plus de 2 décimètres en vingt-quatre heures. Certaines plantes entièrement composées de tissu cellulaire se développent très vite dans notre climat ; par exemple, les Champignons, dont la rapide croissance a donné lieu au proverbe. Il y en a un, le Lycoperdon giganteum, qui, en trois ou quatre jours, peut acquérir la forme d'une boule de 3 décimètres de diamètre.

§ 249. Accroissement des tiges et des racines.—Pour ce qui concerne l'accroissement des organes composés, nous avons déjà, aux articles *Tige*, *Racine* et *Feuille*, exposé ce qui se passe ; il s'agit maintenant de rechercher comment tous ces changements ont lieu. Nous le rechercherons sur les plantes dicotylédonées qui sont mieux connues comme acquérant un grand développement dans nos climats, et qui, par la formation de bourgeons latéraux, fournissent des données plus nombreuses et plus claires pour la solution du problème. Rappelons en peu de mots que les tiges s'allongent de bas en haut, les racines en sens inverse ; que les premières présentent une moelle et un étui médullaire composé en partie de trachées déroulables qui manquent aux secondes ; que plus tard, entre l'étui et l'écorce, s'interposent de nouvelles fibres et des vaisseaux d'un autre ordre, et que, de cette interposition qui se répète chaque année, résulte l'accroissement en épaisseur.

C'est l'origine de ces fibres et vaisseaux au sujet de laquelle les botanistes ne sont pas encore entièrement d'accord. En exposant et discutant les opinions divergentes et les faits sur lesquels elles s'appuient, nous aurons occasion de traiter avec un détail suffisant ce qui se rapporte à l'accroissement des organes composés.

§ 250. Nous savons que les cellules se multiplient dans la plus grande partie du végétal par division (§ 247, 1°); nous savons de plus que les vaisseaux se forment par la continuité établie dans une série de cellules ou fibres unies bout à bout (§ 8). Les organes élémentaires doivent donc se former en place: mais si c'est aux dépens de la séve élaborée ou descendante, il est naturel de penser que cette formation aura lieu plutôt progressivement de haut en bas, quoiqu'elle puisse être presque simultanée dans une grande étendue.

§ 250 bis. Une théorie ingénieuse, que professent plusieurs auteurs, fut proposée par un astronome français, Lahire, au commencement du xvur^e siècle, mais en quelques pages et sans preuves à l'appui, de sorte qu'elle resta négligée et probablement ignorée. Un siècle plus tard, un autre Français, Dupetit-Thouars, la proposa de nouveau, l'ayant sans aucun doute retrouvée par ses propres obser-

17.

vations; et comme il la soutint par des ouvrages riches en faits et en raisonnements, il eut l'honneur de la découverte, et on ne la connaît que sous le nom de théorie de Dupetit-Thouars. Elle a pris récemment un nouveau développement entre les mains de M. Gaudichaud.

Les bourgeons, ainsi que nous l'avons plusieurs fois répété. peuvent être comparés à autant d'embryons ; ils se développent chacun en une branche semblable à la tige qui est résultée du développement de l'embryon. Mais celui-ci, fixé sur la terre, a en germant produit à sa partie inférieure des racines chargées d'aller pomper sa nourriture. Les bourgeons qui, parvenus à maturité, se détachent de la tige, comme nous en avons vu dans les caïeux (§ 151), les bulbilles (§ 153), les rosettes des tiges rampantes (§ 152), imitent les vrais embryons et émettent par leur bas des racines. Les bourgeons qui restent fixés sur la tige en seraient-ils seuls dépourvus? Dupetit-Thouars ne le croit pas, et, voyant que cet amas de faisceaux fibro-vasculaires qui se forment entre l'écorce et l'étui médullaire ne se montrent qu'après que les bourgeons ont commencé leur évolution, qu'on les voit se rattacher d'une part à la base de ceux-ci, et que de l'autre on peut les suivre jusqu'à l'extrémité des racines, il pense qu'ils ne sont autre chose que les racines mêmes des bourgeons courant dans l'interstice de l'écorce et de l'étui jusqu'à ce qu'elles s'échappent au dehors sous forme de racines, soit normales, soit adventives. Le cambium ne serait alors lui-même qu'un fluide nourricier que ces racines puisent dans ce trajet à travers l'épaisseur du végétal. Chaque année, une nouvelle production de bourgeons ou embryons fixes détermine ainsi une nouvelle émission de faisceaux radiculaires correspondants, dont l'ensemble ajoute une couche au bois et de nouvelles ramifications à la racine.

Les feuilles jouent par rapport au rameau absolument le même rôle que les bourgeons par rapport à la tige qui les porte, chacune d'elles constituant une sorte d'individu végétal (*phyton* de M. Gaudichaud), et se continuant au-dessous de l'entre-nœud inférieur en faisceaux fibro-vasculaires, qui représentent la racine du phyton. L'ensemble de ces faisceaux de toutes les feuilles d'un rameau constitue son bois.

Les fibres et vaisseaux de l'écorce ont la même origine que les faisceaux fibro-vasculaires du bois, auxquels ils marchent accolés dans le principe. Ils naissent de même des bourgeons, et appartiennent au système descendant.

Quant au tissu cellulaire, sa production est partout locale et résulte de la multiplication des cellules déjà existantes; par consé-

FORMATION DU BOIS.

quent, dans le bois, de l'extension des rayons médullaires. Ainsi, dans l'accroissement en épaisseur, la propagation de ce tissu a lieu transversalement, tandis que celle des fibres et vaisseaux a lieu verticalement ; c'est une sorte d'étoffe où l'un fournit la trame, et les autres fournissent la chaîne. Lorsque les faisceaux se dégagent au dehors pour former les racines, c'est au tissu cellulaire voisin qu'ils empruntent la couche qui les accompagne, et qui, croissant à mesure qu'ils s'allongent, leur constitue une sorte de gaîne.

§ 254. Les principaux faits cités à l'appui de toute cette théorie sont l'analogie de structure dans le bois proprement dit de la tige et dans celui des racines, tous deux également dépourvus de trachées déroulables; la continuité des faisceaux du bois de la tige avecceux du bois de la racine qui, formée postérieurement, a dû par conséquent l'être par des faisceaux suivant une marche descendante; la production fréquente de racines aériennes, qui ne semblent autre chose que ces mêmes faisceaux qu'elles continuent, sortant au dehors, et quelquefois même par l'existence de racines bien distinctes qui descendent sous l'enveloppe corticale, et présentent une sorte de terme moyen entre les racines aériennes et le système ligneux de la tige (comme dans les Vellozia, dans certains Lycopodes, etc.).

La marche descendante des faisceaux du bois se manifeste surtout par les obstacles qu'elle peut rencontrer. Si l'on enlève un anneau d'écorce ou si l'on fait autour de la tige une ligature, on voit au bord supérieur de l'anneau, au-dessus de la ligature, les tissus s'épaissir et former un bourrelet; tandis qu'il n'y a pas d'épaississement audessous. En disséquant celui-ci, on le trouve composé d'un lacis de faisceaux entrecroisés et contournés dans tous les sens, mais se continuant toujours avec ceux qui vont aboutir supérieurement aux bourgeons. Si l'on n'a enlevé qu'une portion de l'anneau d'écorce, ces faisceaux ne tardent pas à contourner les bords de la plaie pour reprendre au-dessous leur course verticale. Si l'on comprime la tige par une ligature dirigée en spirale, comme le font naturellement dans nos bois certains arbrisseaux grimpants (les Chèvrefeuilles, par exemple), il se forme, comme dans l'autre cas, au-dessus et le long de la ligature, un bourrelet dirigé alors en spirale, et la dissection fait voir les faisceaux accumulés suivant cette même direction. Si la tige autour de laquelle on pratique la décortication annulaire n'avait au-dessous aucune branche, ou qu'on supprime toutes celles qui pouvaient y exister, de sorte qu'il ne se trouve plus de bourgeons qu'au-dessus de la plaie, et si celle-ci est assez large pour que ses bords ne puissent finir par se rejoindre, toute la portion du végétal située au-dessus continue à s'accroître en épaisseur par la production régulière des couches ligneuses, et l'accroissement et la

formation du bois s'arrêtent dans la portion située au-dessous. On conclut de toutes ces expériences que les faisceaux ligneux viennent de haut en bas, et sont produits par les bourgeons dont ils représentent les racines.

§ 252. Mais à côté de ces faits divers rapportés en faveur de la théorie de Dupetit-Thouars ne s'en trouve-t-il pas quelques autres en opposition, et d'ailleurs est-elle la seule qui puisse les expliquer?

Les faits sur lesquels elle s'appuie de préférence sont, comme nous venons de le voir, ceux que nous montre l'arrêt des faisceaux descendants au-dessus de tout obstacle naturel ou artificiel, audessus des ligatures et des décortications, et là l'accumulation du tissu ligneux, qui cesse au contraire de se produire au-dessous (§ 254). Mais ne s'expliquent-ils pas aussi clairement et naturellement par la marche des sucs nourriciers qui fournissent les matériaux du cambium? Ces sucs, suivant dans l'écorce une marche descendante, doivent s'accumuler au-dessus de tout obstacle apporté à leur cours, en passant outre s'il n'est pas infranchissable, en le contournant s'il y a une voie latérale ouverte, en s'y arrêtant s'il n'y en a pas; et, dans tous ces cas, l'afflux des matériaux doit déterminer une production plus abondante de tissus, leur défaut amener l'atrophie, suivant les règles communes à tous les corps organisés. L'afflux des sucs précède là l'apparition des faisceaux fibro-vasculaires ; ils s'y forment au lieu d'y arriver tout formés. Le développement des racines aériennes auprès des nœuds, où il y a souvent un léger arrêt dans la circulation, se comprend aussi facilement, puisque c'est vers tous les points où il y a un amas de sucs, et par suite de tissu cellulaire, qu'elles tendent à se développer (§ 95). Puisque l'évolution des bourgeons est une des causes déterminantes de l'ascension de la séve (§ 193); puisque la séve, une fois montée, est élaborée dans les jeunes écorces, et surtout dans les feuilles (§ 200), il est clair que la suppression des bourgeons et des feuilles arrêtera cette ascension, l'élaboration et nécessairement, faute de matériaux, la formation consécutive des fibres ligneuses; il est clair qu'il ne pourra s'en former sur toute partie du végétal à laquelle on aura coupé la communication avec celle qui est chargée de feuilles et de bourgeons.

On ne conçoit pas bien, avec la théorie de Dupetit-Thouars, comment un arbre qui a' subi une décortication annulaire telle qu'il ne se forme plus de couches ligneuses au-dessous, peut continuer à vivre et à croître. Car cette croissance suppose que les racines continuent à se former dans la même proportion ; et comment les faisceaux ligneux radiculaires arrêtés en chemin iront-ils les former ?

FORMATION DU BOIS.

Les adversaires de cette théorie lui objectent encore les résultats de l'examen anatomique des faisceaux ligneux. Si ces faisceaux sont de véritables racines, ils devraient s'allonger par leur extrémité inférieure seulement; on devrait trouver leur organisation d'autant plus avancée qu'on les examine plus haut, plus près du bourgeon dont ils émanent ; on devrait les voir s'arrêter plus ou moins bas, suivant que le moment est plus ou moins rapproché de la première évolution du bourgeon. Or, il est vrai que dans quelques cas on trouve au-dessous du bourgeon un amas, comme un écheveau de filets ligneux qui s'arrêtent à peu de distance ; mais le plus souvent il est impossible de suivre le développement des filets ligneux, qui se trouvent presque au même instant formés d'un bout à l'autre de la tige ; et l'examen microscopique fait reconnaître que souvent c'est en haut qu'ils sont plus mous, leurs éléments fibreux et vasculaires plus incomplétement, et en conséquence plus nouvellement formés. Il semblerait par là que les faisceaux se forment à peu près simultanément sur toute leur longueur, et que, dans quelques cas du moins, c'est plutôt de bas en haut qu'en sens contraire.

§ 253. Pour nous résumer au sujet de l'accroissement en épaisseur des tiges et des racines, on est d'accord en ce qui concerne la formation de la partie purement cellulaire : on ne l'est pas encore en ce qui concerne celle des faisceaux fibro-vasculaires du bois et de l'écorce. Deux théories sont proposées : l'une considère ces faisceaux comme les racines des bourgeons, et par conséquent comme développés de bas en haut; l'autre considère leurs éléments comme répandus à la fois, en forme d'une gelée demi-fluide (le cambium), sur toute la surface interne de l'écorce, et se développant là en place. Cependant nous pensons que ces deux théories ne sont peutêtre pas si opposées qu'elles le paraissent. Elles le seraient sans doute si l'on admettait des faisceaux ascendants allant produire les bourgeons à leur extrémité. Mais cette doctrine a-t-elle cours maintenant? Nous avons admis que les feuilles n'ont dans le principe avec le rameau, ni le bourgeon (§ 144) avec la tige qui les porte, aucune continuité vasculaire; qu'élaborés dans ces feuilles et ces rameaux, les sucs descendent de là jusqu'à l'extrémité des racines par l'écorce, sur la surface de laquelle se dépose une matière demi-fluide où s'organisent les tissus. M. Gaudichaud, de son côté, admet que « des sucs élaborés et en partie organisés (le cam-» bium), des tissus fluides encore se forment et se solidifient en » descendant des bourgeons sur les rameaux, des rameaux sur les » tiges, et des tiges sur les racines, par un mode d'allongement » analogue à celui des racines, s'il n'est entièrement le même. »

Entre ces tissus descendant à l'état demi-fluide et nos tissus formés dans une matière demi-fluide que fournissent des sucs descendants, peut-on établir une distinction assez nette, assez fondamentale, pour qu'elle puisse constituer deux doctrines opposées?

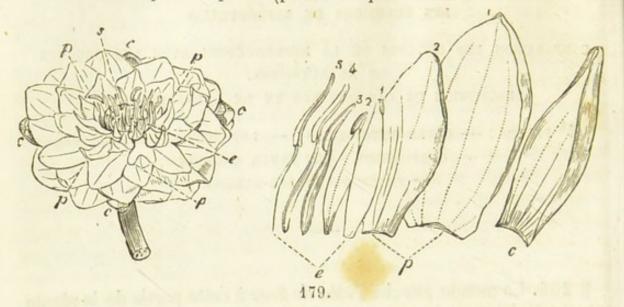
§ 254. Nous avons dû nous arrêter à l'examen des Dicotylédonées, et par la plus grande facilité de les étudier, et parce que, dans les arbres monocotylédonés, l'accroissement des tiges en épaisseur s'arrête en général de très bonne heure, par défaut de bourgeons latéraux. D'ailleurs, l'absence de véritable écorce, ainsi que l'union permanente des laticifères et des fibres analogues au liber avec les vaisseaux et les fibres du bois dans un même faisceau, et la course tortueuse de ces faisceaux dans l'intérieur de la tige, eussent rendu l'exposition des faits beaucoup plus compliquée et obscure. Nous renverrons donc simplement à ce que nous avons dit antérieurement à ce sujet (§ 80), ainsi que sur l'accroissement des arbres acotylédonés (§ 90).

h adam and a serie

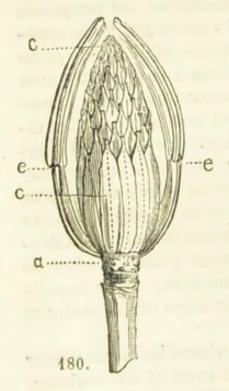
QUATRIÈME LEÇON.

DES FONCTIONS DE REPRODUCTION.

COMPARAISON DES ORGANES DE LA REPRODUCTION AVEC LES ORGANES DE LA NUTRITION. DESCRIPTION DE CES ORGANES ET DE LEURS USAGES. 1° FLEURS : - LEURS DISPOSITIONS ; - LOIS DE L'INFLORESCENCE ; - COMPOSITION D'UNE FLEUR COMPLÈTE ;


- FONCTIONS DE SES PARTIES.

§ 255. Le monde attache l'idée de fleur à cette partie de la plante colorée de teintes plus ou moins brillantes et ordinairement différentes de la verte, souvent odorantes, qui se développe en général après les feuilles, et, après une existence passagère, est remplacée un peu plus tard par le fruit. Le botaniste ne s'arrête pas à ces apparences ; pour lui la fleur en est souvent dépourvue, et alors elle passe presque inaperçue des autres. Nous chercherons à la connaître sous toutes ses formes, à tous ses degrés de réduction : mais pour le mo= ment prenons-en une bien complète, qui soit une fleur pour le vulgaire aussi bien que pour le savant, par exemple une de ces Renoncules qui en étéémaillent nos prairies de leurs boutons d'or. En l'examinant de l'extérieur à l'intérieur nous verrons qu'elle se compose en dehors de cinq lames ovales et verdâtres, qu'on appelle folioles du calice; puis plus en dedans de cinq autres lames jaunes, plus développées, qu'on appelle pétales; puis d'un assez grand nombre de filets terminés chacun par un renflement jaunâtre, qu'on appelle étamines; enfin au centre d'un amas de petits corps verts, ovales et comprimés, qu'on nomme des carpelles.


§ 256. On s'accorde assez généralement aujourd'hui à considérer toutes ces parties, bien que différentes de formes et de couleurs, comme autant de feuilles plus ou moins modifiées. On se fonde sur plusieurs considérations.

4° Dans un grand nombre de plantes, on peut voir les feuilles se modifier insensiblement à mesure qu'elles se rapprochent des fleurs, tellement qu'entre les plus proches et les folioles du calice on ne trouve

presque plus aucune différence. Dans certaines fleurs (celles du *Magnolia*, par exemple, et du Tulipier), se montre le passage des folioles du calice aux pétales, et dans d'autres (comme on peut si bien l'étudier sur le Nénuphar blanc [fig. 179]) celui des pétales aux étamines. Beaucoup de carpelles (parmi lesquels nous citerons ceux du

Baguenaudier et surtout du Sterculia platanifolia) se présentent comme une véritable feuille repliée sur elle-même. Les formes des

feuilles et des parties de la fleur sont donc quelquefois presque identiques, et d'autres fois, quoique si différentes en apparence, se lient par des transitions insensibles.

2° Même rapport dans leur structure. Développées, elles offrent également des nervures disposées d'une manière analogue et dont les intervalles sont remplis par du parenchyme. Elles commencent toutes de même par un petit mamelon ou amas celluleux, dans lequel plus tard s'organisent des faisceaux fibro-vasculaires.

3° Les rapports de position sont les mêmes entre les parties de la fleur qu'entre les feuilles. Si elles sont disposées par verticilles, les parties de deux verticilles successifs alternent régulièrement entre elles;

479. Fleur du Nénuphar (Nymphæa alba), vue d'en haut et plusieurs fois moindre que nature. — cccc Les quatre folioles du calice. — pppp Pétales. — e Étamines. s Pistil. — On peut suivre les dégradations de forme des parties de l'extérieur à l'intérieur, et d'ailleurs on a placé séparément à côté une série de folioles modifiées, depuis la verte du calice c et la blanche de la corolle p 4, jusqu'aux étamines, de plus en plus caractérisées par la différence de la forme e 4, 5.

180. Partie centrale de la fleur du Tulipier (Liriodendron tulipifera), composée de

FLEUR EN GÉNÉRAL. INFLORESCENCE.

si elles sont disposées à différentes hauteurs, la ligne qui passe par leurs insertions successives forme une spirale. Ces spirales s'aperçoivent clairement, pour peu que les parties se multiplient sur un axe allongé, comme les folioles calicinales des *Camellias*, les étamines et carpelles des *Magnolias* et du *Tulipier* (fig. 480 c).

4º La nature nous montre assez souvent dans des fleurs monstrueuses le retour de ces parties à la forme et à la couleur des feuilles, tantôt complet et tel qu'à la place du pétale ou du carpelle on a une feuille véritable, tantôt incomplet, et tel qu'on a des parties ambiguës et intermédiaires, demi-feuilles, demi-pétales ou demi-étamines.

On conclut de ces rapports si nombreux, que la fleur est un amas de feuilles modifiées et rapprochées sur un axe raccourci ou presque nul, une véritable rosette (§ 436).

Mais ces nouvelles feuilles qui constituent les parties de la fleur diffèrent des véritables, non seulement par leur forme, leur couleur et par quelques points de leur structure intime ; elles en diffèrent en outre en ce qu'elles ne produisent jamais à leur aisselle de nouveaux bourgeons, non plus que l'axe qui les porte. Cet axe ne peut donc ici se ramifier ni s'allonger ultérieurement. C'est là une différence essentielle entre les feuilles de la fleur et celles du reste de la plante. La végétation des branches chargées de feuilles devra se continuer indéfiniment par la production de nouveaux bourgeons, si la mort, l'avortement ou quelque cause étrangère ne viennent l'arrêter. La végétation d'une branche chargée d'une fleur à son extrémité s'arrête naturellement à ce bourgeon terminal d'une nouvelle sorte et qui n'en produit pas d'autres.

INFLORESCENCE.

§ 257. On nomme *inflorescence* l'arrangement des fleurs sur le rameau qui les porte, et par conséquent des unes par rapport aux autres. Son examen se lie intimement à celui de la ramification et le complète, puisqu'elle en est la terminaison vraie et nécessaire. Nous devons donc ici avoir bien présents à la pensée toutes les notions et tous les termes que nous avons exposés précédemment au chapitre de la ramification.

§ 258. Tantôt une seule fleur f' se développe immédiatement à l'extrémité de la tige ou axe primaire (fig. 484 a'); tantôt c'est à l'extrémité d'un axe secondaire a'', tertiaire a''', ou d'un autre ordre a''''. Les feuilles situées au-dessous d'elle ont conservé leur

carpelles cc, dont l'ensemble forme le pistil. Ils couvrent la partie supérieure d'un axe a, et au-dessous s'insèrent de nombreuses étamines desquelles on a laissé quelques unes cc, et enlevé d'autres dont les insertions ont laissé de petites cicatrices sur l'axe en a. Ces étamines sont hypogynes et extrorses.

nature ; quelquefois aussi elles ont commencé à se modifier dans leur forme et leur couleur, sans produire à leur aisselle aucun bourgeon

soit foliacé, soit floral. Dans tous ces cas on dit que la fleur est solitaire.

§ 259. Mais, le plus souvent, de l'aisselle de ces feuilles ainsi modifiées partent des rameaux, soit nus, soit chargés d'autres feuilles modifiées elles - mêmes d'une manière analogue, et à un plus haut degré, et terminés par une fleur : cette ramification peut se répéter un nombre de fois plus ou moins grand, et l'on a ainsi un groupe de fleurs entremélées de leurs feuilles modifiées ; groupe qui se distingue nettement de toute la partie de la plante chargée de feuilles véritables, et qu'on a appelé aussi inflorescence. Ce dernier terme a donc deux acceptions dans lesquelles nous pourrons dorénavant l'employer : nous avons vu qu'il signifiait l'arrangement des

fleurs ; il signifie aussi un ensemble de fleurs qui ne sont pas séparées les unes des autres par des feuilles proprement dites.

Dans ce groupe de fleurs, les diverses parties prennent avec des apparences nouvelles des noms nouveaux : les *feuilles* modifiées, que souvent on appelle *florales*, celui de *bractées* (*fig.* 484 *bbb*); les rameaux qui ne portent que des bractées et des fleurs, celui de *pédoncules* (a' a''). Dans les groupes ramifiés, on distingue parmi ceux-ci les derniers rameaux, ceux qui portent chacun immédiatement une fleur, sous le nom de *pédicelles* (a''' a''''). Souvent les dernières bractées ne présentent pas de rameaux à leur aisselle, et l'on peut trouver aussi des pédicelles munis au-dessous de la fleur de plusieurs

181. Un pied de Renoncule bulbeuse (Ranunculus bulbosus). On voit son axe a' renflé à sa base en un bulbe b, d'où partent inférieurement des racines, et supérieurement des feuilles radicales, et terminé à son extrémité par une fleur épanouie f'. Vers son milieu il porte une feuille de l'aisselle de laquelle part un axe secondaire a'', terminé par une fleur f'' un peu moins avancée que f'. — a'' porte une feuille et un axe tertiaire terminé par un bouton f'''; et a''' une quatrième feuille à peine développée, à l'aisselle de laquelle on aperçoit un autre bouton encore moins avancé et dont l'axe n'a pas encore commencé à s'allonger.

FLEUR EN GÉNÉRAL. INFLORESCENCE.

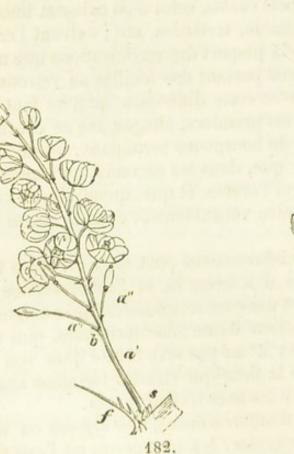
petites bractées, qu'on désigne dans les descriptions par le diminutif de *bractéoles*. Comme leur nature est évidemment la même que celle des autres, et que, dans quelques cas, on voit des fleurs se développer aussi à leur aisselle, de sorte que le pédicelle ainsi chargé de plusieurs fleurs cesse d'en être un, il vaudra mieux réserver ce nom au dernier entre-nœud du pédoncule florifère, et le pédicelle sera caractérisé non seulement par la fleur qui le termine, mais par l'absence de toute bractée.

Quand nous aurons à décrire une inflorescence, nous devrons d'abord indiquer ses rapports avec le reste de la plante, avec les feuilles proprement dites : elle partira de l'aisselle d'une de celles-ci ou terminera un rameau ; elle sera axillaire ou terminale, située plus ou moins haut sur le végétal, se détachant de sa partie feuillée dans une étendue plus ou moins grande, etc., etc. Nous devrons ensuite l'examiner indépendamment du reste de la plante et dans la relation de ses différentes parties en elle-même. La traitant alors comme un tout séparé, nous y nommerons axe primaire le pédoncule commun, que les auteurs ont souvent appelé rachis, celui d'où naissent tous les autres; et ceux-ci, axes secondaires, tertiaires, etc., suivant l'ordre dans lequel ils se montrent. Or la plupart des modifications que nous a offertes la ramification des axes portant des feuilles se retrouvent dans celle des axes florifères, avec cette différence qu'il ne faut pas perdre de vue : c'est que, dans les premiers, chaque axe se continue indéfiniment par la production de bourgeons terminaux, et ne s'arrête que par leur suppression; que, dans les seconds, au contraire, c'est la production d'une fleur qui l'arrête, et que, quand il n'en vient pas une pour le terminer, il rentre véritablement dans la classe des premiers.

§ 260. L'axe primaire de l'inflorescence peut donc : 4° être terminé par une fleur ; dans ce cas il s'arrête là, et l'inflorescence ne continue à s'étendre qu'au moyen des axes secondaires, qui s'arrêtent, bornés à leur tour par la production d'une fleur terminale, puis des axes tertiaires, et ainsi de suite : 2° ne pas être arrêté dans son allongement par la production de la fleur qui viendra terminer seulement ou les axes secondaires, ou les axes tertiaires, etc.

De là deux grandes classes d'inflorescences, les *définies* ou *terminées*, les *indéfinies* ou *indéterminées* : les premières, où l'axe primaire porte immédiatement une fleur ; les secondes, où il ne porte de fleurs que médiatement à l'extrémité des axes d'un ordre moins élevé.

Nous avons donc ici les deux grandes modifications que nous avait déjà présentées la ramification de la tige, et nous allons observer la même analogie dans les ramifications secondaires, qui dépendront de même du nombre de fois que l'axe se ramifie avant de


se terminer, de la longueur relative de ces axes d'ordres différents, de l'avortement régulier d'un certain nombre d'entre eux, etc., etc.

Ces considérations, qu'on doit surtout à M. Roeper, ont permis d'apporter un peu plus de rigueur dans la définition des infloréscences, qui auparavant était trop souvent vague et confuse. Tout en gardant les mots anciennement admis et en cherchant à leur conserver, autant que possible, leur première valeur, on a été forcé de la changer un peu pour la rendre plus fixe et plus précise. Définissons donc ces mots, en examinant successivement les deux classes d'inflorescences que nous avons reconnues.

INFLORESCENCES INDÉFINIES.

§ 264. Nous avons un axe primaire allongé sans fleur.

Les axes secondaires peuvent être terminés chacun par une fleur, et dans ce cas à eux s'arrête l'inflorescence. Si alors ils sont tous à peu près de même longueur, on a ce qu'on appelle une grappe (racemus [fig. 182]).

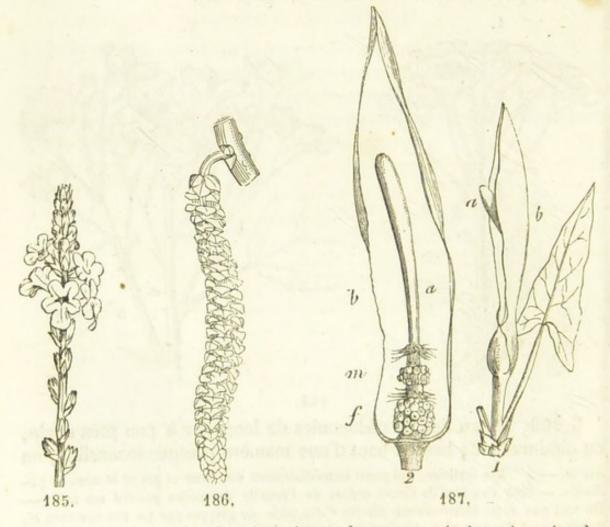
182. Grappe de l'Épine-vinette (*Berberis vulgaris*). On la voit naître à l'aisselle d'une feuille f changée en piquant, et qui a conservé ses deux stipules s. - a' Axe primaire d'où partent de petites bractées b alternes, et à leurs aisselles des axes secondaires a'' que termine la fleur. On peut suivre l'évolution graduelle de ces fleurs de la base au sommet; les inférieures commencent à être en fruit, celles du haut sont encore en bouton, celles du milieu épanouies.

183. Panicule de l'Yucca gloriosa. — a' Axe primaire ou rachis. — a'' Axes secon--

FLEUR. INFLORESCENCES INDÉFINIES.

D'autres fois tous les axes secondaires, ou seulement quelques uns d'entre eux, les inférieurs ordinairement, ne se terminent pas par tine fleur, mais émettent latéralement des axes tertiaires : ceux-ci peuvent se ramifier à leur tour. Dans tous les cas, la grappe ainsi composée prend le nom de *panicule (panicula [fig.* 483]). Sa forme générale la plus habituelle est la pyramidale, par le développement inégal de ses pédoncules, plus grand dans les inférieurs et d'autant moindre qu'on les observe plus haut. Mais quelquefois les pédoncules du milieu sont plus longs que ceux des deux extrémités, et la panicule porte alors le nom de *thryse (thyrsus)*.

184.


§ 262. Si, au lieu de pédoncules de longueur à peu près égale, ou diminuant de bas en haut d'une manière presque insensible, on daires. — a''' Axe tertiaire, qui porte immédiatement une fleur et prend le nom de pédicelle. — bbbb Bractées de divers ordres de l'aisselle desquelles partent ces axes. — On voit que cette inflorescence résulte d'une série de grappes sur un axe commun a', qu'elles sont d'autant plus développées et plus précoces qu'on les observe plus bas, et que dans chaque grappe les fleurs sont aussi d'autant plus avancées qu'elles sont plus inférieures.

184. 1. Corymbe simple du Gerisier de Sainte-Lucie (*Cerasus mahaleb*). — a' Axe primaire, d'où naissent les bractées b alternes, émettant à leurs aisselles les axes secondaires a'' a'' qui portent chacun immédiatement une fleur et prennent le nom de pédicelles. On peut suivre l'évolution graduelle de ces fleurs de dehors en dedans ; la plus intérieure est encore à l'état du bouton. — Ge corymbe est né à l'aisselle d'une feuille déjà tombée, et termine un rameau avorté où l'on voit les feuilles inférieures à l'état d'écailles e.

2. Corymbe composé de l'Alisier des bois (*Cratægus torminalis*). — a' Axe primaire. — a'' Axes secondaires. — a''' Axes tertiaires portant immédiatement les fleurs ou pédicelles. — bbb Bractées.

trouve les inférieurs beaucoup plus longs que les supérieurs, et dressés de sorte que tous ne portent fleur qu'arrivés à la même hauteur à peu près, et que l'ensemble des fleurs forme ainsi une sorte de parasol à rayons inégaux, on a ce qu'on appelle un *corymbe* (*co-rymbus*) simple (fig. 484, 4), ou composé (fig. 484, 2), suivant que les fleurs sont portées sur les axes secondaires ou sur des pédoncules ramifiés un plus grand nombre de fois.

§ 263. Supposons maintenant les axes secondaires extrêmement raccourcis, tellement que l'axe primaire se trouve ainsi chargé sur

ses côtés de toutes les fleurs, qui, sur la grappe, étaient écartées de lui de toute la longueur de ces axes secondaires, et qui ici semblent

185. Extrémité de l'épi de la Verveine commune (Verbena officinalis). — On voit les fleurs inférieures déjà passées à l'état de fruit, celles du milieu épanouies, celles du sommet en bouton.

186. Chaton de Noisetier. Les bractées, réduites à l'état d'écailles, sont rapprochées de telle sorte que leurs dispositions spirales peuvent s'apercevoir. On voit saillir entre elles le bout des étamines des fleurs mâles qui leur correspondent.

187. Spadice du Pied-de-veau (Arum vulgare). — 1. Enveloppe de sa spathe b roulée en cornet et qui en laisse sortir l'extrémité a. — 2. Le même, dont la spathe a été coupée dans sa longueur de manière à laisser voir tout l'axe a chargé d'un amas de fleurs femelles f en bas, et d'un amas de fleurs mâles m un peu plus haut.

FLEUR. INFLORESCENCES INDÉFINIES.

reposer immédiatement sur lui, ou, en un seul mot, sont sessiles : ce sera un épi (spica [fig. 485]). On le dira composé, si l'axe primaire en porte de secondaires, eux-mêmes allongés et non terminés, mais chargés de fleurs latérales et sessiles.

On a distingué par des noms différents des épis offrant certains caractères particuliers et propres à certaines classes ou familles de plantes, comme le *chaton* (*amentum*), épi simple qui tombe en se désarticulant après la floraison et est formé de fleurs toutes d'un même sexe, ordinairement mâles (*fig.* 486); le *spadice* (*spadix* [*fig.* 487]), épi de monocotylédone enveloppé à sa base d'une grande bractée, qu'on nomme *spathe*, et dont les fleurs extrêmement rapprochées se trouvent comme incrustées dans un axe épaissi, le plus ordinairement simple, quelquefois rameux, comme dans les Palmiers, où il prend alors le nom de *régime*.

§ 264. Faisons maintenant une supposition contraire à la précédente, savoir, que la partie de l'axe primaire d'où partent les secondaires s'est raccourcie, ou plutôt ne s'est pas allongée, au point de paraître presque nulle (fig. 488 a'); tandis que les secondaires a'' qui


prennent le nom de *rayons*, se sont bien développés. Alors ordinairement, partant ensemble, ils s'allongent à peu près également, et, s'ils se terminent chacun par une fleur, ces fleurs, portées à la même hauteur, forment par leur ensemble une sorte de parasol à rayons égaux, et qu'on nomme ombelle (umbella [fig. 488 o'o'o']). Celle-ci est donc une grappe à axe primaire presque nul, dans laquelle, par l'effet de ce raccourcissement, le rapport des pédoncules les uns aux autres se trouve

changé, les supérieurs devenant intérieurs, les inférieurs devenant extérieurs dans l'ombelle. On dit qu'elle est *stipitée*, si l'axe primaire atteint une certaine longueur avant de donner nais-

488. Plusieurs ombelles o' de l'Aratia racemosa. — a Axe général ou sommet de la branche, terminé lui-même par une ombelle plus avancée que les autres. — a' a' a' Axes naissant du précédent, et secondaires par rapport à lui, mais portant chacun une inflorescence et primaires par rapport à elle. — a'' a'' a'' Axes secondaires ou rayons des ombelles. — bbb Bractées alternes sur l'axe général. On peut remarquer à l'aisselle de l'une d'elles en d deux axes du même ordre partant l'un au-dessus de l'autre par suite d'un double bourgeon. — 4ii Bractées verticilles sur les axes de chaque inflorescence, y formant un involucre.

sance aux secondaires; qu'elle est sessile, si cette partie inférieure manque elle-même. Les pédoncules secondaires peuvent eux-mêmes, au lieu de porter fleur, se ramifier d'après le même principe (fig. 489), et l'on a ainsi plusieurs ombelles secondaires ou ombellules o'', disposées en une ombelle générale ou composée : elle est à la simple ce que la panicule est à la grappe.

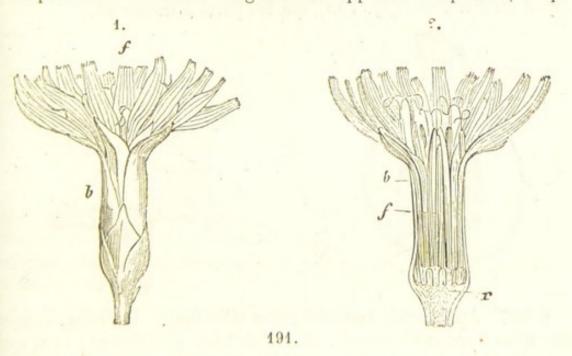
^{189.}

Lorsque d'un axe primaire extrêmement court et comme nul partent plusieurs pédoncules secondaires grêles qui, au lieu de s'élever, de diverger et d'étaler ainsi les fleurs qui les terminent en une sorte de parasol, s'approchent et se pressent en manière de gerbe, et souvent même penchent tous d'un même côté dans le cas où ils ont une certaine longueur, il est bon de distinguer cette disposition de l'ombelle, et l'on peut lui donner le nom de *faisceau* ou *fascicule (fasciculus [fig.* 464 *f]*). Ces faisceaux se présentent le plus souvent sessiles à l'aisselle des feuilles ou des bractées.

§ 265. Enfin les axes secondaires peuvent ne pas s'être allongés, non plus que la partie du primaire d'où ils partent ; et alors, nécessairement, toutes les fleurs se trouvent rapprochées en une sorte de disque ou de boule, où les extérieures représentent celles qui se-

^{189.} Ombelle composée de la Carotte. — a' Axe primaire réduit dans l'inflorescence à une surface convexe. — a'' Axes secondaires ou rayons de l'ombelle générale portant chacun une ombellule o''. — a''' Axes tertiaires ou rayons des ombellules. — i' Bractées pinnatipartites en verticilles et formant l'involucre général. — i'' Bractées simples formant les involucelles.

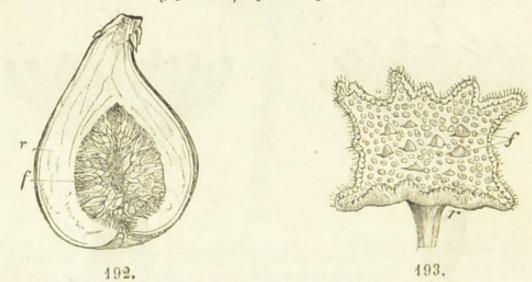
FLEUR. INFLORESCENCES INDÉFINIES.


raient en bas sur l'axe allongé; les intérieures, celles qui seraient en haut. On nomme cette disposition tête ou capitule (capitulum

[fig. 490]). Le capitule, comme l'ombelle, peut être sessile ou pédonculé.

On a donné un nom particulier, celui de *calathide* (*calathis*), à une modification du capitule dépendante de celle du sommet florifère de l'axe primaire. Ce sommet s'est épaissi et élargi de manière à offrir à l'insertion des fleurs une

grande surface, plane, concave ou convexe. On en voit tous les exemples dans les fleurs vulgairement appelées composées, et qui


ne sont autre chose qu'un amas de petites fleurs ainsi réunies en une masse qui, au premier aspect, offre l'apparence d'une fleur unique et grande, comme sont celles de la Chicorée ou de la Scorsonère (fig. 191, 1), du Chardon ou du Soleil. Chacun se rappellera facilement, dans ce dernier, la tige dilatée à son extrémité en un plateau arrondi et charnu, tout chargé de fleurettes jaunes. Ce plateau (fig. 191, 2r) florifère a reçu divers noms: autrefois celui

190. Un capitule de la Fleur des veuves (Scabiosa atropurpurea). On peut voir comment la floraison est d'autant moins avancée qu'on observe les fleurs plus près du centre.

191. 1. Capitule entier de la Scorsonère (Scorsonera hispanica). — 2. Le même, coupé verticalement de manière à montrer le sommet du pédoncule élargi en un réceptacle r qui porte des fleurs f sur sa surface. Celles de la circonférence sont déjà épanouies, celles du milieu encore à l'état de bouton. — b Bractées imbriquées formant l'involucre.

de réceptacle, plus récemment celui de phoranthe ou de clinanthe (d'après l'étymologie, support ou lit des fleurs).

§ 266. Nous venons de dire que sa surface est quelquefois concave. Cette concavité est ordinairement superficielle et très évasée; mais d'autres fois elle s'enfonce davantage, en manière de coupe ou même d'urne : enfin ses bords peuvent se rapprocher et se toucher, de manière qu'elle forme une cavité complétement close. C'est ce qu'on observe dans la Figue (fig. 492), et c'est pourquoi les personnes étrangères à la botanique ne connaissent pas ses fleurs, insérées sur toute la surface intérieure du réceptacle refermé au-dessus d'elles, et qui ne laisse apercevoir au dehors que sa surface extérieure, verte et conformée en poire. Dans d'autres plantes de la même famille, on trouve toutes les transitions depuis cette cavité close, où sont cachées les fleurs de la Figue, jusqu'au réceptacle évasé du *Dorstenia* (fig. 493), qui les porte à découvert.

§ 267. Après avoir comparé entre elles toutes les inflorescences que nous venons d'exposer, on voit qu'elles ne diffèrent, ainsi que nous l'avions annoncé, que par le développement ou l'avortement de certains axes et par leurs longueurs relatives. Cela est tellement vrai qu'il est facile de donner de chacune de ces inflorescences une définition qui ne soit qu'un terme de comparaison avec tout autre. Ainsi on pourra dire que la grappe est un épi à fleurs pédicellées; l'épi, une grappe à fleurs sessiles; l'ombelle sessile, une grappe sans rachis ou axe primaire; le capitule, une grappe où les axes sont supprimés, ou un épi où le rachis est nul, ou encore une ombelle sans rayons; l'ombelle, un capitule à fleurs pédicellées, etc.

192. Une Figue coupée dans sa longueur, de manière à montrer ses fleurs f insérées sur toute la surface interne du réceptacle v.

193. Inflorescence du Dorstenia contrayerva, où les fleurs f sont à demi plongées dans un réceptacle r, légèrement concave, sur la surface duquel on voit saillir leurs extrémités,

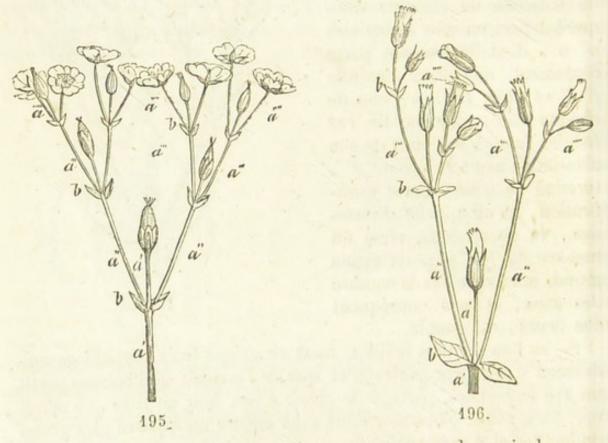
FLEUR. INFLORESCENCES DEFINIES.

INFLORESCENCES DÉFINIES.

§ 268. C'est dans les plantes à feuilles opposées que l'inflorescence définie se montre le plus fréquente et le plus régulière. Nous commencerons donc son étude dans une de ces plantes : par exemple, dans une Gentianée, la Petite Centaurée (fig. 494).

L'axe primaire a' se termine plus ou moins haut, par une fleur f. Immédiatement ou un peu plus bas au-dessous d'elle il portait une paire de feuilles, de l'aisselle de chacune desquelles part un axe secondaire a" a", dont le sommet porte également une fleur centrale f'' ('' et deux feuilles, une de chaque côté; chacune de ces feuilles émet à son tour de son aisselle un axe tertiaire a''' a'''. terminé de même. Cette ramification, qu'on appelle dichotomie, va se répétant ainsi un nombre de fois plus ou moins grand, et chaque fois le nombre des axes, et par conséquent des fleurs, est doublé.

Si, au lieu de deux feuilles, nous en avions trois verticillées audessous d'une fleur centrale, et que de l'aisselle de chacune partit un axe secondaire, partagé de même à son tour en trois, ce serait une *trichotomie*. Nous pourrions avoir encore un nombre plus grand de feuilles et d'axes verticillés.


Nous n'avons pas décrit plus tôt ces modes de ramification, puisqu'ils se montrent avec les fleurs, et se lient par conséquent à l'inflorescence. Quelquefois cependant les axes, sans être limités par une fleur (qui avorte alors préalablement), peuvent s'arrêter ainsi à chaque production d'axes nouveaux, et l'on a une suite de bifurca-

194. Sommet d'un pied de Petite Centaurée (*Erythræa centaurium*). — a' Axe primaire. — a'' a''' Axes secondaires au nombre de deux. — a''' a''' a'''' a'''' Axes tertiaires au nombre de quatre. — a'''' a'''' Axes quaternaires au nombre de huit. f Fleurs. On a désigné celles qui terminent chacun des différents axes précédents par le même signe que lui. — On voit les fleurs d'autant plus avancées qu'elles appartiennent à un axe d'un ordre plus élevé; f' à l'état de fruit; f'' f'' épanoules; f''' f''' en bouton.

tions, ou, beaucoup plus rarement, de trifurcations successives, accompagnées de feuilles sans fleurs.

Dans le cas où les unes existaient avec les autres, on avait une suite de fleurs solitaires et terminales. Mais si les feuilles se modifient et passent à l'état de bractées, tout ce système forme une seule inflorescence, qu'on désigne par l'épithète de di-ou trichotome. Les auteurs les plus modernes lui ont appliqué le nom de *cime* (*cyma*), pris autrefois, et encore par quelques uns, dans un sens plus restreint.

Dans cette cime, les fleurs peuvent se trouver plus ou moins éloignées les unes des autres, suivant que tous les axes successifs, allongés et dépassant de beaucoup le sommet florifère de celui qui

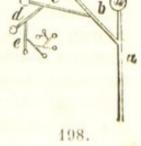
les précède, donnent à l'ensemble une apparence de panicule renversée (fig. 195), ou que, de plus en plus courts, ils se dépassent à peine, de sorte que les fleurs se trouvent toutes portées à peu près à la même hauteur, en manière de corymbe.

§ 269. Assez souvent la division par dichotomie ne se poursuit pas aussi régulièrement du bas au sommet de l'inflorescence; mais,

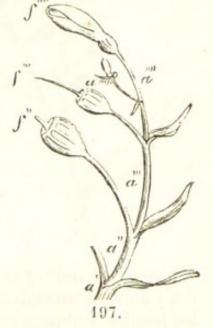
195. Inflorescence du *Cerastium grandiflorum*. — Les lettres ont la même signification que dans la figure précédente. — *bbb* Bractées opposées entre elles à chaque ramification.

196. Inflorescence du *Cerastium tetrandrum.* — Même signification que dans les figures précédentes. — On voit que les axes quaternaires a'''' sont réduits à un latéral par l'avortement du second.

FLEUR. INFLORESCENCES DEFINIES.


à une certaine hauteur, tandis que l'un des axes donne naissance, au-dessous de sa fleur terminale, à deux bractées et à deux axes nouveaux, celui qui lui est opposé porte sa fleur sans bractées, ou du moins sans que rien se développe à leur aisselle, et la ramification se trouve ainsi arrêtée d'un côté tout en se continuant de l'autre fig. 496 a'''').

Supposons que cet arrêt latéral, fréquent vers le sommet de l'inflorescence dichotome, commence dès sa base, qu'à chaque nœud manque un des deux axes opposés qui auraient dû s'y développer.


On aura alors l'apparence d'une grappe ou d'un épi; mais, au lieu d'un seul axe sans fleur terminale en portant d'autres florifères et tous du même ordre, ce sera une série d'axes d'ordres différents qui naitront successivement l'un de l'autre, terminés chacun par sa fleur; et comme nécessairement la bractée la plus voisine de chaque fleur en est séparée par l'axe suivant qu'elle porte à son aisselle, cette position de la bractée située vis-à-vis du pédicelle de la fleur voisine, au lieu d'être située immédiatement dessous, comme dans une vraie grappe, trahit ici le véritable mode d'inflorescence de cette grappe fausse (fig. 197).

Il sera aussi indiqué en général, parce qu'alors toutes les fleurs sont ordinairement situées d'un même côté, le plus souvent de l'intérieur; ce qui tient à ce que l'avortement porte en général sur tous les axes d'un même côté, l'extérieur. Dans ce même cas, le rachis, au lieu d'être rectiligne, présente ordinairement une suite de courbures ou de coudes.

§ 270. On peut rencontrer sans avortement la même disposition des fleurs et des axes qui les portent, lorsque les feuilles sont alternes au lieu d'être opposées. Si d'un axe a (fig. 498) terminé par sa fleur naît un axe b, de celui-ci et du même côté un axe c, de c un axe d, etc., etc., chacun de ces axes avec sa fleur terminale, il est clair qu'on aura une sorte de grappe, mais composée d'une suite d'axes différents et par suite d'autant de cender

d'axes différents et par suite d'autant de coudes; et, si chacun de

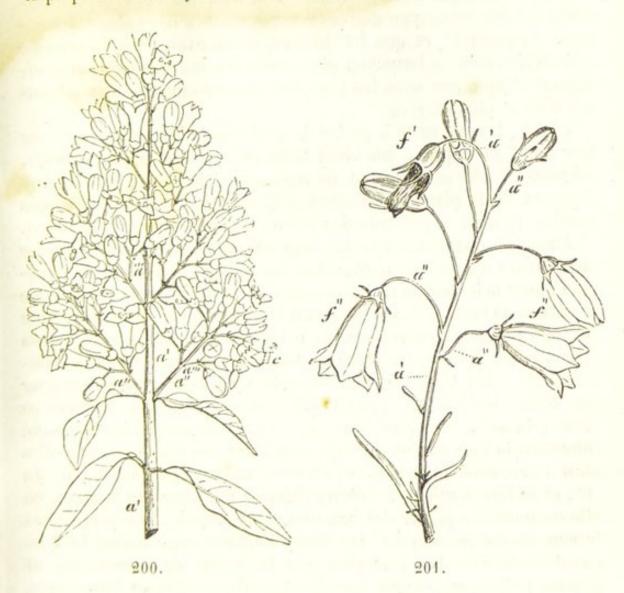
^{497.} Fausse grappe d'une espèce d'Alstræmeria. — On voit la succession des axes a' a'' a''' qui semblent en former un seul continu dont ils seraient les entrenœuds. Chacun nait à l'aisselle d'une feuille et est terminé par une fleur f opposée à cette feuille.

ces axes naît à l'aisselle d'une bractée, que celle-ci se présentera opposée à la fleur la plus voisine. C'est l'ensemble de plusieurs de ces fausses grappes naissant à une même hauteur (comme dans beaucoup de *Sedum*), que Linné et encore aujourd'hui maints auteurs

après lui appellent *cime*. Cette courbure dont nous avons expliqué l'origine va souvent jusqu'à former, surtout dans la jeunesse, un véritable enroulement qu'on a comparé à celui de la queue d'un scorpion : et de là le nom de grappes, ou mieux *cimes scorpioïdes* (*fig.* 199) qu'on donne souvent à ce mode d'inflorescence.

§ 274. De Candolle, sous le nom d'inflorescences mixtes, en a signalé plusieurs qui se rattachent en même temps aux définies et aux indéfinies, parce que leurs différents axes ne se comportent pas de la même manière. Dans les Labiées, par exemple, les fleurs forment des cimes disposées à l'aisselle de feuilles opposées sur un

axe commun indéterminé. Si les feuilles conservent leur caractère, il n'y aura aucun embarras et l'on décrira des cimes axillaires ; mais si les feuilles sont passées à l'état de bractées, et que toutes ces mêmes cimes se trouvent ainsi confondues dans une seule inflorescence, comment les définira-t-on ? La difficulté nous semble facile à résoudre : en décrivant des cimes en épi, grappe ou panicule, on aura clairement indiqué le double caractère de cette inflorescence.


§ 272. D'autres fois ce n'est pas seulement l'axe primaire, ce sont aussi plusieurs axes naissant de lui qui ne portent pas immédiatement de fleurs ; l'inflorescence ne présente inférieurement ni dichotomie ni succession d'axes différents, en un mot, ne paraît pas définie, et cependant le devient à ses extrémités, ses dernières ramifications seulement se divisant par bifurcations régulières ou par cimes unilatérales. Ce cas, on le devine, ne peut s'offrir que dans celles qui sont ramifiées un assez grand nombre de fois, les panicules (fig. 200) et les corymbes.

On peut néanmoins trouver quelque chose d'analogue dans des inflorescences plus simples, la grappe et l'épi, lorsque leur axe pri-

199. Cime scorpidide du Myosotis palustris.

FLEUR, INFLORESCENCES DÉFINIES.

maire vient à se terminer par une fleur, comme, par exemple, dans la plupart des Campanules (fig. 201).

Doit-on inventer des mots nouveaux ou changer la signification des mots anciens pour désigner ces modifications? Il nous paraît plus simple et plus clair d'employer des termes connus ou indiquant par un adjectif la modification qu'a subie l'objet qu'ils expriment. Ainsi on pourra dire *cimes en panicule* ou *en corymbe*, ou bien *panicules* ou *corymbes terminés en cime*, ou bien encore plus brièvement, *panicules*, *corymbes* ou *grappes définies*. Les transitions ne

200. Panicule définie terminale du Troëne. L'axe primaire a' émet des axes secondaires opposés a'' a'', d'où partent des tertiaires a''' a''', terminés par dichotomie, et conséquemment par de petites cimes triflores *cc*. On voit dans chacune d'elles sa fleur centrale plus précoce que les latérales.

201. Grappe définie d'une Campanule. — a' a' Axe primaire, terminé par une fleur f', déjà flétrie et commençant à passer à l'état de fruit. — a'' a'' a'' Axes secondaires, terminés chacun par une fleur f'', d'autant plus avancée, qu'elle est plus inférieure dans la grappe.

peuvent être en général exprimées en un seul mot, puisqu'elles supposent deux termes de comparaison.

§ 273. Quelque nomenclature qu'on adopte à cet égard, il importe de faire remarquer que ces inflorescences mixtes sont extrêmement fréquentes; et que les définies, qu'on avait dans le principe considérées comme beaucoup plus rares que les indéfinies, se multiplient chaque jour sous les yeux des observateurs maintenant plus attentifs et plus exercés.

§ 274. Il nous reste à parler de quelques inflorescences qui, par leur point de départ, semblent faire exception à la loi générale, puisque les pédoncules, qui ne sont autre chose que les derniers rameaux de la plante, devraient toujours partir de l'aisselle des feuilles, et qu'il se présente des cas où il paraît en être autrement.

Ainsi, on admettait autrefois une inflorescence radicale, comme si les fleurs eussent pu quelquefois naître immédiatement de la racine ; mais la définition même qu'on en donnait dès lors indique que la nature de cette inflorescence était bien comprise, qu'on avait bien reconnu que le raccourcissement extrême de la partie feuillée de la tige donnait lieu à cette illusion. Dans ce cas, dans la partie inférieure de cette tige, les entre-nœuds sont assez rapprochés pour que toutes les feuilles (appelées elles-mêmes radicales) forment au niveau du sol une rosette du milieu de laquelle sortent les fleurs qui terminent la tige ainsi contractée ou partent des aisselles des feuilles ainsi ramassées. Mais souvent elles ne naissent pas aussi près du sol, et la tige continue à s'élever jusqu'à une certaine hauteur, où elle commence à porter des bractées et des fleurs : elle prend alors le nom de hampe (scapus). Du reste, l'inflorescence rentre dans les cas déjà connus. Les exemples sont fréquents dans beaucoup de plantes bulbeuses (comme dans les Jacinthes), dans les Primevères, les Pâquerettes, etc., etc.

§ 275. On admettait aussi des inflorescences pétiolaires ou bien épiphylles, faisant ainsi naître les fleurs sur la feuille. C'est qu'alors le plus souvent on prenait pour une feuille le rameau qui peut s'altérer ainsi dans sa forme, comme nous l'avons vu plus haut (§ 467, *fig.* 464). D'autres fois, c'est bien d'une feuille véritable que partent les fleurs : c'est qu'alors le pédoncule qui les porte s'est soudé en partie avec la feuille à l'aisselle de laquelle il naît, soit avec son pétiole (comme dans l'*Helwingia*, le *Chailletia* et plusieurs *Hibiscus*), soit dans une plus grande longueur, avec le limbe même (comme dans le *Zostera*). La feuille florifère peut être alors à l'état de bractée, comme dans le Tilleul, où il est facile de constater cette soudure partielle du pédoncule.

§ 276. C'est également par des soudures de parties ordinairement

FLEUR EN GÉNÉRAL. FLORAISON.

distinctes qu'on peut expliquer beaucoup d'inflorescences extraaxillaires, c'est-à-dire qui semblent naître d'un autre point de la branche que les aisselles des feuilles: les Solanées peuvent en fournir de bons exemples. L'insertion du pédoncule soudé dans une certaine longueur avec la branche semble alors reportée plus ou moins haut au-dessus de la feuille; et si la partie de ce pédoncule ainsi confondue se trouve plus longue que l'entre-nœud, il pourra se trouver une ou plusieurs feuilles entre celle de l'aisselle de laquelle il avait dû partir et le point où il se détache réellement : une ligne droite, tirée de ce point, doit, en descendant, rencontrer cette feuille en laissant les autres de côté, et l'on arrive ainsi à la détermination du rapport véritable des parties que cette complication avait rendue plus difficile.

Quant au cas où l'inflorescence est oppositifoliée, c'est-à-dire se présente directement opposée à la feuille, au lieu de partir de son aisselle, il a déjà été suffisamment expliqué (§ 454, *fig.* 455). C'est une inflorescence terminale rejetée sur le côté par un rameau axillaire qui prend sa place en paraissant continuer l'axe principal. La vrille de la Vigne qui nous a servi d'exemple n'est même autre chose que le rameau florifère ainsi avorté et déjeté : on y trouve parfois quelques fleurs, et aux points où la vigne fleurit on voit les vrilles remplacées par des panicules.

FLORAISON.

§ 277. Dans quel ordre se développent les fleurs d'une inflorescence? C'est une question à laquelle les notions précédemment exposées rendent la réponse facile. Nous avons poursuivi dans ses différents détails la comparaison des branches chargées de feuilles et des branches chargées de fleurs; nous avons vu que leur ramification suit les mêmes lois, et que tout pédoncule terminé par une fleur peut être assimilé à un rameau. Or, tout rameau se développe nécessairement avant ceux qui naissent de lui : son évolution est déjà plus ou moins avancée quand celle de ses bourgeons latéraux commence. Il en sera de même des axes florifères : chacun d'eux devra se développer avant tous les axes secondaires relativement à lui : les fleurs terminant des axes différents s'épanouiront_donc dans t'ordre de succession des axes qui les portent.

Au lieu d'une branche plusieurs fois ramifiée, considérons-en une bornée à ses bourgeons latéraux, ou, en d'autres termes, un axe primaire avec un certain nombre d'axes secondaires seulement Nous savons que cette branche croît par le haut, de manière que

19.

ses parties sont formées d'autant plus tôt qu'on les observe plus bas. Ses bourgeons suivent ce mouvement d'évolution de bas en haut, et se développent d'autant plus tôt qu'ils sont plus inférieurs. Le même ordre doit avoir lieu pour une suite d'axes florifères naissant immédiatement sur un même pédoncule; l'évolution des fleurs qui les terminent doit commencer par celle de l'axe située le plus bas, et se poursuivre ensuite de proche en proche et de bas en haut. Nous avons donc cette seconde loi, que des fleurs terminant des axes de même ordre situés sur un même axe commun s'épanouissent de bas en haut.

L'établissement de ces deux lois résulte de l'observation comme de la théorie. Elles président à l'évolution de toutes les inflorescences, moins quelques cas d'irrégularité sous l'influence de causes intérieures ou extérieures qui demandent à être déterminées à part. Ces lois connues enseignent à distinguer facilement entre eux des modes différents d'inflorescence dont la détermination, sans cette aide, serait difficile et obscure.

§ 278. On sait déjà que, quand toutes les fleurs d'une même inflorescence sont portées à la même hauteur ou à peu près par l'allongement de certains axes ou le raccourcissement de certains autres, les inférieures se trouvent naturellement en dehors, les supérieures en dedans. On peut alors dire indifféremment extérieur pour inférieur, et intérieur pour supérieur, de dehors en dedans pour de bas en haut, de dedans en dehors pour de haut en bas. Si nous considérons donc une ombelle ou un capitule, nous verrons l'épanouissement des fleurs marcher du pourtour vers le centre de l'inflorescence, comme nous l'aurions vu marcher de la base vers le sommet dans une grappe. De là le nom d'évolution *centripète* qu'on a donné à celle des fleurs de ces sortes d'inflorescences, et par suite à celle de toutes les inflorescences indéfinies.

Prenons, au contraire, une cime composée d'un axe primaire et de deux ou plusieurs axes secondaires. La fleur qui termine le premier, et occupe nécessairement la partie centrale de l'inflorescence, s'épanouira d'abord ; puis viendront celles qui terminent les seconds et qui occupent la circonférence. Dans ce cas, l'évolution suit une marche inverse de la précédente ; elle va du centre à la circonférence ; elle est dite *centrifuge*, terme qu'on a par suite appliqué à celle de toutes les inflorescences définies. On comprend cependant qu'il est loin d'être juste dans tous les cas, puisqu'en supposant une suite de dichotomies florifères, entre la fleur centrale et celles qui terminent les axes secondaires viendront s'en interposer de tertiaires qui fleuriront plus tard que les secondes, quoique plus intérieures. Il convient donc, en adoptant ce mot, de se

FLEUR EN GÉNÉRAL. FLORAISON.

souvenir qu'il ne doit pas être pris dans son acception rigoureuse.

§ 279. Tout cela posé, il est facile de prévoir combien, à la première inspection d'un ensemble de fleurs, nous serons aidés pour la détermination de son mode d'inflorescence par les rapports de position des fleurs développées à différents degrés. Si nous apercevons au centre ou en haut une fleur plus développée que celles qui sont autour ou au-dessous d'elle, nous savons tout de suite que nous avons affaire à uné inflorescence définie ; si le haut ou le centre nous offre au contraire des fleurs moins développées que le bas ou la périphérie, nous savons que l'inflorescence est indéfinie. Les degrés de floraison auxquels les diverses fleurs sont arrivées les unes par rapport aux autres nous indiquent d'avance les degrés des axes qui les portent, ou leur position relative sur un pédoncule commun.

§ 280. Nous avons, pour plus de clarté, supposé les cas les plus simples, ceux où l'inflorescence est peu ramifiée. Si elle l'est un grand nombre de fois, l'examen se complique par la dispersion d'axes du même degré dans un grand nombre de points de l'inflorescence. Nous l'avions déjà indiqué pour les cimes; mais on en peut dire autant pour une inflorescence indéfinie, par exemple, pour une panicule, où des axes secondaires situés à différentes hauteurs portant médiatement chacun des fleurs de plusieurs degrés différents, on peut vers le bas trouver des fleurs moins avancées que d'autres qui leur sont supérieures, ce qui semble contraire à l'évolution centripète.

On doit remarquer que, dans ce cas, l'ensemble de l'inflorescence n'est que la répétition d'un certain nombre de groupes de fleurs à peu près semblables disposés sur un axe commun; par exemple, qu'une panicule n'est, en général, qu'une réunion de grappes sur un même pédoncule. On est porté ainsi à admettre des inflorescences composées, ou dans l'inflorescence générale (que seule nous avons considérée jusqu'ici) on peut en distinguer plusieurs partielles, dont chacune dans sa floraison manifestera les lois que nous avons exposées. En comparant ensuite la floraison des unes à celle des autres, nous verrons que chacun de ces groupes de l'inflorescence composée peut être assimilé à une fleur d'une inflorescence simple; que, s'ils sont tous latéraux par rapport à l'axe, ils seront d'autant moins avancés qu'on les examinera plus haut, qu'ils se développeront de bas en haut; que si l'un termine ce même axe, il se développera avant les autres (fig. 188), et même alors souvent la floraison de ces autres marchera de haut en bas : elle deviendra centrifuge. Nous sommes ainsi conduits à l'énoncé de cette troisième loi : Dans une inflorescence composée, les inflores-

cences partielles suivent, pour leur évolution relative, les mêmes lois que les fleurs dans une inflorescence simple.

On conçoit que la ramification d'une inflorescence peut se compliquer assez pour qu'elle soit plusieurs fois décomposable : par exemple, une panicule générale en panicules partielles, chacune de celles-ci en grappes, etc., etc.

BRACTÉES.

§ 281. Nous avons dit que les bractées sont des feuilles modifiées à l'aisselle desquelles naissent les axes chargés de fleurs. Quelquefois la modification n'est pas complète, et les bractées conservent, surtout vers le bas de l'inflorescence, la couleur verte et toute l'apparence de feuilles, quoique amoindries et raccourcies, de manière qu'on hésite sur le nom qu'on peut alors leur donner : ce ne sont plus les feuilles du bas de la plante, ce ne sont pas encore des bractées. On indique cet état de transition en ajoutant à l'inflorescence l'épithète de *feuillées* (*foliosa*). C'est ainsi qu'on décrit c'es panicules, des grappes, etc., feuillées.

D'autres fois, tout au contraire, l'avortement des feuilles accompagnant les fleurs est complet; on n'en trouve pas la moindre trace, soit à l'origine des inflorescences générales ou partielles, soit à celle de chaque fleur en particulier. On indique ce défaut de bractées en notant les inflorescences ou fleurs qui s'en trouvent dépourvues (*flores ebracteati*). C'est ce qu'on observe, par exemple, dans celles de la famille des Crucifères.

§ 282. Entre ces deux états extrêmes, le développement foliacé ou l'absence complète de bractées, on trouve tous les intermédiaires, et alors la réduction de la feuille peut présenter les modifications diverses que nous avons signalées à l'occasion des enveloppes du bourgeon (§ 443).

Dans le plus grand nombre des cas, la métamorphose de la feuille bractée est d'autant plus complète qu'on l'observe sur un axe d'un degré plus élevé dans l'inflorescence; et dans la même on peut quelquefois signaler, depuis sa base jusqu'à son sommet, toutes les transitions que nous venons d'énumérer. Cette diversité peut compliquer la description, qui doit en tenir compte en l'indiquant d'une manière générale.

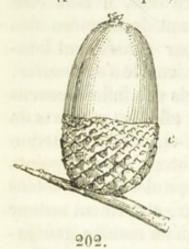
La bractée, lorsque c'est le limbe qui persiste, peut conserver, avec une forme plus élargie rappelant plus ou moins celle de la feuille, sa structure et sa couleur verte, et on la dit alors *foliacée*. D'autres fois, elle se raccourcit et s'épaissit en écaille, ou bien s'amincit en membrane colorée ou transparente, et est alors, en

FLEUR EN GÉNÉRAL. BRACTÉES.

général, formée par la partie vaginale. Lorsqu'elle est réduite à un faisceau grêle, elle prend la forme d'un fil; ou bien très courte, celle d'une arête, ou seulement d'une petite pointe ordinairement roide et noirâtre.

Souvent elle commence à passer à la couleur de la fleur, et les nuances plus ou moins vives qu'on voit dans celle-ci se retrouvent, ou affaiblies, ou tout aussi foncées, dans les bractées, qui alors sont ordinairement assez dilatées : les bractées écarlates de la Sauge éclatante, celles de quelques Mélampyres, en fournissent un exemple facile à se procurer.

Par suite de la réduction du limbe dans la bractée, son contour est le plus souvent entier; quelquefois cependant il est découpé en dents ou en segments plus ou moins profonds (par exemple, dans ces mêmes Mélampyres).


§ 283. Les bractées peuvent persister longtemps ou même indéfiniment à la base du pédoncule; mais plus souvent elles sont articulées; et tombent de bonne heure : c'est ce dont il faut être bien averti pour ne pas décrire comme manquant de bractées des inflorescences qui en sont pourvues, et c'est par conséquent lorsqu'elles sont encore très peu avancées qu'il convient de s'en assurer.

§ 284. Les bractées, hors les cas exceptionnels des inflorescences extra-axillaires (§ 275), doivent conserver entre elles les rapports de position des pédoncules florifères: lorsque ceux-ci, par la réduction de leur axe commun, partent de la même hauteur ou de points très voisins, comme dans les ombelles et les capitules, les bractées se trouvent donc elles-mêmes à la même hauteur, et forment autour de l'axe une sorte de verticille ou de rosette qu'on nomme généralement involucre (involucrum), et dans lequel elles prennent chacune le nom de folioles, ou quelquefois, d'après leur consistance, d'écailles. Si l'inflorescence est composée, outre un involucre à la base de l'inflorescence générale, on peut en trouver aussi à la base de chacune des partielles. On distingue ces dernières par le diminutif d'involucelles (involucellum). Ainsi, dans les Ombellifères, les ombellules sont souvent involucellées (fig. 189 i''), l'ombelle générale involucrée (fig. 489 i'). Le nom français assez significatif de collerette s'applique fréquemment aussi à ces verticilles de bractées: elle est générale ou partielle.

Les folioles de l'involucre peuvent être rangées en un seul cercle (*unisériales*), comme c'est le cas le plus habituel dans ces mêmes Ombellifères; ou bien elles peuvent être étagées sur plusieurs rangs (*plurisériales*), comme on l'observe souvent dans les fleurs dites composées. Dans ce dernier cas, serrées les unes contre les autres, les extérieures couvrent le bas des intérieures à la manière des

tuiles d'un toit: on les dit *imbriquées* (fig. 494, 4 b). Si elles sont alors nombreuses, on distingue facilement leur arrangement général en spirale en voyant se dessiner plus ou moins nettement les spirales secondaires: les bractées de l'Artichaut, ce qu'on appelle ses feuilles, en fournissent un exemple familier à chacun. Mais quelquefois cette disposition ne se manifeste pas: c'est lorsque les bractées sont peu nombreuses, et notamment sur deux rangs, où celles de l'extérieur, plus petites, ne sont pas semblables à celles de l'intérieur. Quelques uns désignent cette dernière disposition sous le nom d'*involucre caliculé*.

§ 285. Tantôt toutes les folioles de l'involucre sont libres, tantôt elles se soudent entre elles ou par leur base ou complétement : on dit l'involucre *polyphylle* ou *monophylle*, suivant l'un ou l'autre de ces deux cas. Dans le dernier, si les folioles sont sur un seul rang, elles forment une collerette, ou entière, ou découpée dans son contour (par exemple, dans les *Buplevrum*); si elles sont sur plusieurs

rangs, elles forment une sorte de coupe toute hérissée à l'extérieur d'écailles ou de pointes qui sont les extrémités libres de ces folioles soudées et confondues entre elles dans tout le reste de leur corps. Telle est l'origine de la *cupule* (*cupula*) du gland (*fig.* 202 *c*). L'enveloppe épineuse de la châtaigne en a une analogue : c'est un involucre, et sa peau coriace et brunâtre est un involucelle renfermant plusieurs fleurs, comme l'indique la pluralité des fruits qu'on trouve souvent dans son inté-

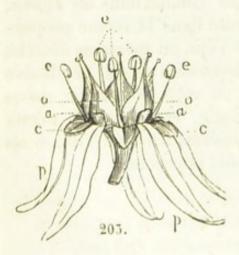
rieur. On voit combien toute ressemblance avec la feuille s'est effacée ici complétement, par suite de ces métamorphoses et de ces soudures qui viennent si souvent se placer entre nos sens et l'intelligence claire et facile des faits.

§ 286. Il est clair que, dans ce cas où les bractées se soudent ainsi sur plusieurs rangs, il ne peut se développer de fleurs à l'aisselle que de celles qui sont tout à fait supérieures; mais la même chose arrive fréquemment, même dans le cas où elles sont libres, et le plus souvent l'imbrication entraîne la stérilité aux aisselles de toutes les folioles extérieures d'un capitule. Souvent alors elles se développent d'autant plus, et celles qui portent des fleurs à leur aisselle sont fort différentes et moindres. Citons encore ici l'exemple de l'Artichaut, dont le réceptacle, la partie charnue qu'on mange, bordé de ces folioles stériles, longues, épaisses et vertes, porte sur

202. Un gland de Chêne. — c Cupule formée par la soudure d'un grand nombre de bractées dont on voit encore les pointes libres et disposées en spirale.

FLEUR EN GÉNÉRAL. BRACTÉES.

toute sa surface supérieure, entremêlées avec ses fleurs, d'autres bractées courtes, membraneuses et blanchâtres.


Il y a plusieurs plantes où, au-dessous d'une fleur unique, on trouve plusieurs de ces bractées stériles disposées en un involucre monophylle ou polyphylle, qu'on a nommé alors *calicule* ou *calice extérieur* : les *Hibiscus*, les *Malope*, les Mauves et beaucoup d'autres Malvacées offrent ce caractère (fig. 248).

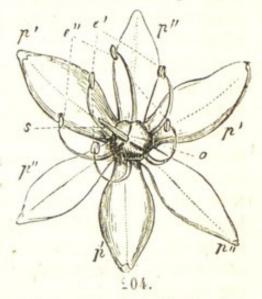
§ 287. Quelquefois c'est une bractée unique qui enveloppe l'inflorescence en partie ou tout entière. Nous avons déjà (§ 263) nommé la spathe (spatha), qu'on rencontre dans un assez grand nombre de Monocotylédonées, autour d'un épi de nature particulière, simple dans le spadice, composé dans le régime des Palmiers. C'est une sorte de feuille engaînante à la base, souvent roulée en cornet, quelquefois prolongée au sommet en une languette latérale, tantôt verte (comme dans le Pied-de-veau ou Arum vulgare [fig. 187 b]), tantôt colorée (comme dans le Calla æthiopica). Ses bords, qui viennent se raccourcir inférieurement en se soudant ensemble quelquefois, finissent souvent par se fendre ou se séparer, lorsque l'inflorescence ou le fruit, en grossissant, repousse les parois d'une cavité devenue trop étroite. D'autres fois, on voit alors la spathe se diviser en deux pièces ou valves, parce qu'elle était composée de deux bractées distinctes ou soudées, mais toujours, nécessairement, l'une extérieure à l'autre, d'après la loi de l'alternance constante des feuilles dans les Monocotylédonées. Sur d'autres points plus élevés du spadice se trouvent quelquefois, à la base de fleurs séparées ou de petits groupes de fleurs, des bractées plus petites qu'on nomme alors spathelles. La spathe paraît destinée à protéger l'inflorescence dans sa première jeunesse; car, à cette époque, elle l'enveloppe toujours, quoique dans beaucoup de plantes (comme dans les Typha, les Pothos) elle ne se développe plus ensuite dans la même proportion, reste déjetée sur le côté à la base de l'épi, ou même se détache d'assez bonne heure. Au reste, une disposition assez semblable s'observe dans plusieurs Dicotylédonées, où cette enveloppe, qu'on nomme alors quelquefois spathe, par analogie, et qui serait mieux nommée involucre spathiforme, résulte généralement de l'union ou du rapprochement de deux grandes bractées opposées.

FLEUR.

§ 288. Nous avons signalé (§ 255) dans les feuilles dont l'assemblage compose la fleur, quatre modifications essentielles qui constituent les folioles du calice, les pétales, les étamines et les carpelles. Nous avons vu que quelquefois toutes ces parties, soit toutes en même temps, soit celles de même nom seulement, se succèdent sur une ligne déroulée en spirale autour d'un axe plus ou moins raccourci, de même que les feuilles alternes se succèdent sur le rameau qui les porte ; que d'autres fois les parties de même nom s'insèrent sur cet axe à la même hauteur, comme des feuilles verticillées; et, dans ce dernier cas, on a quatre cercles concentriques d'organes différents qui sont de dehors en dedans : le cercle des folioles du calice dont l'ensemble porte le nom de calice ; celui des pétales dont l'ensemble porte le nom de corolle ; celui des étamines dont la réunion a recu, dans les temps modernes, le nom d'androcée ; celui des carpelles dont la réunion a recu le nom de gynécée, ou plus ordinairement de pistil. On appelle ces différents cercles d'organes ou feuilles diversement modifiées les verticilles de la fleur.

Mais ce nom de verticilles est employé également dans le cas où les parties s'insèrent à des hauteurs inégales ; car à cause de l'extrême raccourcissement de l'axe, ces différences de hauteur sont le plus souvent peu appréciables, assez peu pour que les organes de même nom semblent au premier coup d'œil disposés en un cercle. On est donc convenu de dire le *verticille des pétales*, le *verticille des étamines*, etc., lors même que ces parties ne se trouvent pas exactement verticillées.

§ 289. Si la fleur est parfaitement régulière en même temps que complète, les parties, dans chacun de ces différents verticilles, seront en nombre égal, et alors nous retrouverons la loi que nous avons signalée comme générale dans les rapports des feuilles de deux verticilles superposés, l'alternance de celles de l'un avec celles de l'autre (§ 434). Montrons-le par un exemple. La fleur des *Crassula lucida*, *rubens* (fig. 203, 212), etc., pré-


203. Fleur du *Crassula rubens.* — cc Folioles du calice. — pp Pétales. — ec Étamines. — oo Carpelles, à chacun desquels répond extérieurement un petit appendice a en forme d'écaille. — La tranche horizontale ou le diagramme de cette même fleur est l représenté par la figure 212.

FLEUR EN GÉNÉRAL. ADHÉRENCES.

sente: 4° un calice, composé de cinq languettes vertes, égales, disposées en cercle (fig. 203 cc); 2° une corolle de cinq pétales pp rosâtres et plus longs, qui naissent sur un rang un peu intérieur, précisément dans les cinq intervalles qui séparent les cinq languettes; 3° cinq étamines eee dans les intervalles des pétales, et placées par conséquent devant les divisions du calice; 4° cinq carpelles oo disposés en étoile, alternant avec les étamines, et en conséquence placés devant les pétales.

§ 290. Au milieu de cette prodigieuse diversité qui permet de distinguer à leurs fleurs tant de milliers d'espèces de plantes, on doit s'attendre à rencontrer une grande variété dans le nombre des parties dont sont formés les verticilles floraux : et c'est ce qui a lieu

en effet. Néanmoins, parmi ces nombres, il y en a deux qui se représentent le plus généralement, ce sont les nombres 5 et 3 ; et un fait bien digne de remarque, c'est que le premier se rencontre dans la majorité des plantes dicotylédonées, le second bien plus général encore dans celle des monocotylédonées. La fleur du *Crassula*, que nous venons de décrire, peut être citée comme un type des premières; celle du Lis (*fig.* 225), de la Tulipe, des *Scilla* (*fig.* 204) et

de la plupart des Liliacées, comme type des secondes. Celle-ci se compose d'un verticille de trois folioles (fig. 204 p' p' p'), de trois autres p'' p'' p'' sur un cercle plus intérieur alternant avec les premières, auxquelles elles sont plus ou moins semblables; de trois étamines e' opposées aux premières, puis de trois autres e'' opposées aux secondes, et par conséquent un peu plus intérieures; enfin, de trois carpelles o soudés au centre de la fleur, alternant avec les folioles et les étamines intérieures. Ce type peut donc être considéré comme formé de cinq verticilles ternaires, deux de folioles calicinales, deux d'étamines et un de carpelles.

§ 291. Adhérences des parties de la fleur. — Deux fleurs où le nombre des verticilles est égal, ainsi que celui des parties qui composent chacun d'eux, peuvent cependant se distinguer par beau-

204. Fleur du Scilla italica, vue par en haut. — p' p' p' Les trois folioles extérieures du périanthe. — p'' p'' p'' Les trois folioles intérieures. — e' Étamines opposées aux premières ou extérieures. — e'' Étamines opposées aux secondes ou intérieures. — o Ovaires soudés en un seul. — s Trois styles confondus en un seul. — On peut voir, fig. 211, 4, le diagramme d'une fleur toute semblable.

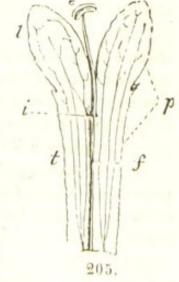
coup de caractères, par des différences de grandeur, de formes, de couleur. Un de ceux qui contribuent le plus à déterminer des combinaisons variées, c'est la réunion ou soudure des parties voisines entre elles; de telle sorte qu'elles ne semblent plus présenter qu'une pièce unique, au lieu de plusieurs distinctes. Dans les fleurs que nous avons citées précédemment, malgré le soin que nous avons pris d'en choisir où toutes les parties fussent indépendantes comme les feuilles d'un rameau, nous avons cependant rencontré déjà quelques unes de ces réunions : celle des carpelles du *Scilla*, telle que le pistil constitue un corps simple en apparence ; celle des folioles calicinales du *Crassula*, qui se confondent en une sorte de coupe à leur base. Ces sortes de soudures existent fréquemment, tantôt sur un point, tantôt sur un autre, tantôt sur plusieurs à la fois. Examinons d'une manière générale les principales modifications qui peuvent en résulter.

§ 292. C'est entre les parties d'un même verticille que la réunion peut avoir lieu, et, comme on le comprend d'avance, à dif-férents degrés qui les confondent plus ou moins intimement ou laissent plus ou moins visible leur indépendance essentielle. Ce peuvent donc être les pièces du calice qui sont ainsi soudées les unes avec: les autres par leurs bords jusqu'à une plus ou moins grande hau-teur, ou bien ce peuvent être les pétales. Dans ce cas, on dit que le calice est monophylle (nom que nous avons déjà vu employer en) pareil cas pour les bractées formant involucre [§ 285]); la corolle, monopétale, en opposition avec les termes polyphylle, polypétale, par lesquels on désigne l'état contraire, dans lequel les folioles ou pétales qui, au nombre de plusieurs, composent le calice et la corolle sont tous indépendants et entièrement distincts. On a assez: justement critiqué les premiers termes qui, d'après l'étymologie (µóvos, unique), sembleraient indiquer qu'il n'y a qu'une seule foliole, qu'un seul pétale. Mais ils sont adoptés depuis si longtemps: et si généralement, qu'il est bon de les conserver, en se rappelant! bien que le calice ou la corolle ainsi nommés sont composés, non pas d'une partie unique, mais de plusieurs parties soudées ensemble en une seule pièce. On a aussi proposé d'y substituer les noms de gamophylle, gamopétale (de vápos, noce, union); et ils sont adoptés aujourd'hui par beaucoup d'auteurs.

§ 293. La cohérence peut avoir lieu entre les étamines. Si elles sont élargies à la manière des pétales, elles peuvent se joindre de la même manière par leurs bords (fig. 206 e); maiss plus souvent elles sont rétrécies en filets qui ne viennent à se toucher et se confondre qu'autant qu'ils sont assez nombreux; ett alors on les voit souvent se réunir, non pas en un cylindre uni-

FLEUR EN GÉNÉRAL. ADHÉRENCES.

que, mais en plusieurs faisceaux ou adelphies (d'àδελφειός, fraterne [fig. 217]).


§ 294. Énfin, c'est entre les parties du verticille le plus intérieur, les carpelles, que la réunion peut exister ; et comme ils se présentent l'un et l'autre par des faces et non plus par des bords, comme d'ailleurs ils occupent le centre de la fleur, le corps qui résulte de cette réunion est un solide beaucoup plus simple en apparence que les appareils que nous avons vus résulter de celle des autres verticilles.

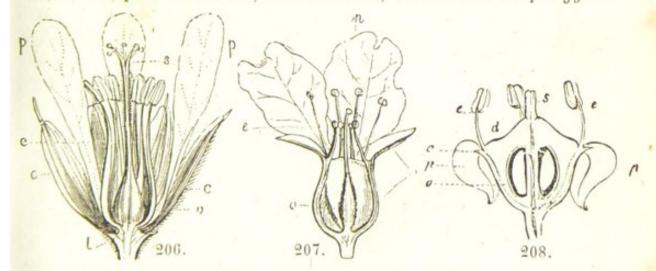
§ 295. Mais ce n'est pas seulement entre les parties d'un même verticille, c'est entre celles de deux verticilles différents que la réunion peut avoir lieu, et sous l'influence de causes analogues à celles que nous venons d'indiquer. C'est de même par leur portion inférieure, où ces parties ont moins de jeu dans leur développement, qu'elles se soudent le plus ordinairement. Les verticilles floraux peuvent ainsi s'accoler deux à deux (la corolle avec le calice ou avec les étamines), trois à trois (le calice, la corolle et les étamines), quatre à quatre. Ce dernier cas doit se présenter toutes les fois que le calice vient à se souder avec le pistil, puisque le bas des étamines et des pétales situés dans leur intervalle se trouve nécessairement compris dans cette soudure. Mais il est extrêmement rare que le pistil entre dans une soudure dont le calice reste indépendant, avec les étamines (Nymphæa alba), ou en même temps avec les pétales (Raspalia), quoiqu'on voie par ces exemples mêmes que cette combinaison peut se rencontrer.

§ 296. Lorsque plusieurs verticilles différents se réunissent ainsi entre eux, les parties d'un même verticille doivent se réunir elles-

mêmes ensemble; c'est une conséquence presque nécessaire de la loi d'alternance d'un verticille à l'autre. Si les parties des deux verticilles A et B alternent, une partie quelconque de B, ainsi située entre deux parties de A, ne pourra se souder à ces parties sans les joindre entre elles, si elles ne s'étaient pas déjà jointes immédiatement.

§ 297. Très souvent les traces de la soudure persistent bien manifestes. Ces parties restent distinctes, quoique adhérentes; et même, dans quelques cas, il suffit d'un faible effort pour détruire cette adhérence. Ainsi, dans beaucoup

205. Portion détachée de la corolle monopétale p d'un *Collomia*, montrant une lanière du tube t terminée par deux lobes du limbe l, et à laquelle s'insère une étamine e dont le filet libre, à partir du point d'insertion i, s'aperçoit encore au-dessous f jusqu'à la base du tube confondu avec son tissu.


de corolles monopétales, sur le tube que forment les parties inférieures des pétales réunies, on aperçoit les filets des étamines adhérentes qui tranchent par leur saillie et par leur couleur souvent différente, et qu'on peut suivre jusqu'à l'origine même du tube (fig. 205 f, 299 i). Dans d'autres cas, les traces de la soudure ont disparu; des deux parties soudées, la plus intérieure paraît naître de l'autre au point même où elle devient libre, et au-dessous duquel les deux tissus se confondent en un seul.

§ 298. Mais fort souvent, dans tout l'espace où deux verticilles sont ainsi réunis, on remarque un tissu particulier, différent de celui des parties qui les composent; tissu le plus ordinairement glanduleux, c'est-à-dire offrant dans sa structure cet amas de petites cellules serrées et denses qui caractérisent celle de beaucoup de glandes : même assez fréquemment il se prolonge au delà sous la forme d'un bourrelet ou d'un anneau saillant. En examinant bien la surface comprise entre le calice et le pistil, surface à laquelle on a donné autrefois le nom de réceptacle de la fleur, plus récemment celui de torus, et qui porte les parties de cette fleur, on la trouve souvent à leur origine tapissée de ce tissu, qui tantôt reste étendu en une lame superficielle, tantôt se relève en saillies concentriques, comme les verticilles. Cette saillie, désignée par plusieurs termes, assez généralement par celui de disque, donne le plus ordinairement naissance aux parties du verticille correspondant ; elle pourrait, sous ce rapport, être comparée aux conssinets des feuilles. Les parties peuvent naître du bord libre du disque, ou de sa face interne, ou de sa face externe. Il peut s'allonger plus ou moins, et les porter ainsi à une distance plus ou moins grande de la surface du torus. Plus ou moins épais, il peut combler l'intervalle souvent étroit qui sépare deux verticilles, et devient ainsi entre eux le moyen le plus fréquent d'union. C'est ainsi que son tissu se rencontre si habituellement dans la soudure de plusieurs verticilles du calice avec ceux qui sont plus intérieurs que lui, du pistil avec ceux qui lui sont extérieurs. Alors ce n'est pas sur la portion inférieure du pétale ou de l'étamine, c'est sur le disque qui l'exhausse en lui servant de base que la soudure a lieu.

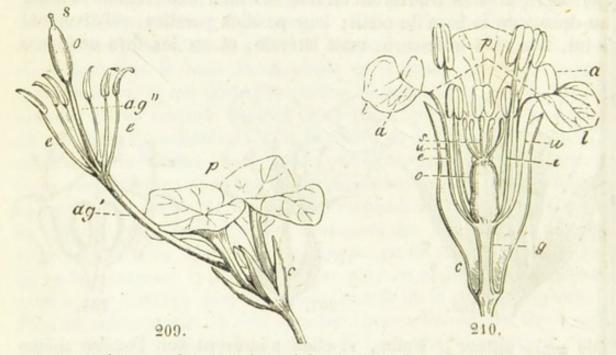
§ 299. Insertion des parties de la fleur. — Des faits qui précèdent, et qui font varier le point de départ apparent des verticilles de la fleur les uns par rapport aux autres, résultent des différences faciles à saisir et importantes pour la distinction des différentes fleurs. Comme chaque verticille semble commencer au point même où il se distingue ou se dégage des verticilles voisins; comme, considéré en dehors, il paraît s'insérer à la hauteur correspondante sur l'axe général qui porte la fleur, on a nommé caractères d'inser-

FLEUR EN GÉNÉRAL. INSERTIONS.

tion ceux qui résultent de ces rapports divers des verticilles de la fleur non soudés ou diversement soudés entre eux à leur origine et dans une étendue plus ou moins grande. C'est principalement le rapport des étamines et du pistil, les parties essentielles de la fleur, ainsi que nous le verrons bientôt, qu'on a cherché à exprimer par les termes inventés pour désigner ces différents modes d'insertion. Si les étamines se soudent avec la corolle, on les dit épipétales, et en ce cas on considère l'insertion de l'une et des autres comme la même, ainsi qu'elle l'est en effet relativement au reste de la fleur. Si les étamines, soit réunies ainsi à la corolle, soit indépendantes d'elle, le sont également et du calice et du pistil, il est clair qu'elles s'inséreront au torus au-dessous de ce pistil (fig. 206): on les appellera hypogynes (d' $\dot{\upsilon}\pi\dot{\upsilon}$, sous). Si elles s'insèrent sur le calice (fig. 207), elles se trouveront élevées sur lui à une certaine hauteur au-dessus de la base du pistil; leur position paraîtra, relativement à lui, non plus inférieure, mais latérale, et on les dira périgynes

(de $\pi_{i\rho}i$, autour). Enfin, si elles s'insèrent sur l'ovaire même (fig. 208), elles sont épigynes (d' $i\pi i$, sur). Dans ce dernier cas, ordinairement les quatre verticilles seront en partie soudés ensemble. et par conséquent les étamines se trouveront en même temps insérées sur le calice et sur le pistil, ce qui porte quelquefois à hésiter

206 - 208. Trois fleurs coupées verticalement de manière à montrer les trois principaux modes d'insertion des étamines. — c Calice. — p Pétales. — c Étamines. — os Pistil composé d'un ovaire o, d'un style et d'un stigmate s. — t Torus.


206. Coupe de la fleur du Geranium robertianum. Les pétales et étamines sont hypogynes, et celles-ci en même temps monadelphes.

207. Coupe de la fleur de l'Amandier. Les pétales et étamines sont périgynes. Le pistil est libre comme dans le cas précédent.

208. Coupe de la fleur de l'Aralia spinosa. Les pétales et étamines sont épigynes, insérés sur le pourtour d'un gros disque d qui recouvre tout le sommet de l'ovaire. Celui-ci, adhérent au calice, est ouvert de manière à montrer ses loges et les ovules pendants qu'elles contiennent.

entre ces deux modes d'insertion, et les a fait confondre par plusieurs auteurs, notamment de Candolle, qui a nommé *Calyciflores* les plantes dont les fleurs sont dans ce dernier cas, ou bien offrent des étamines franchement insérées sur le calice ; *Corolliflores*, celles où la corolle porte les étamines ; *Thalamiflores*, celles où les verticilles, indépendants l'un de l'autre, s'insèrent immédiatement sur le torus, autrement dit quelquefois *thalamus*.

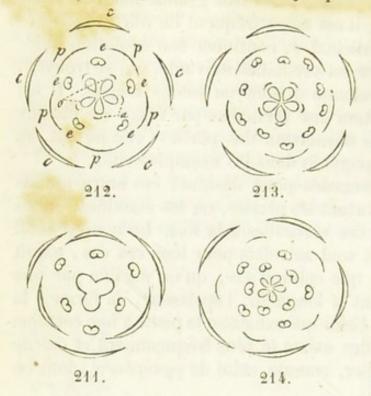
§ 300. Nous venons de voir que les différents verticilles de la fleur peuvent être écartés plus ou moins l'un de l'autre par suite des adhérences qu'ils contractent entre eux, et qui les reportent audessus de la place qu'ils devraient naturellement occuper sur l'axe; mais ils peuvent aussi s'écarter tout en conservant leurs rapports avec cet axe, et c'est lorsque celui-ci continue à s'allonger, quoiqu'il

ne porte qu'un nombre très borné de parties. Les verticilles se trouvent par là éloignés l'un de l'autre, et d'autant plus élevés que, dans une fleur ordinaire à torus plan ou peu saillant, ils seraient plus intérieurs. Les Capparidées (fig. 209) offrent des exemples très remarquables de cette élongation : les pétales p restent à peu près à la même hauteur que le calice c, mais le pistil o se trouve à l'extrémité

209. Fleur d'une Capparidée (Gynandropsis palmipes). — c Calice. — p Pétales. — e Étamines. — ag' Gonophore ou entre-nœud de l'axe portant les étamines. — ag'' Gynophore ou entre-nœud portant le pistil. — os Pistil composé d'un ovaire o, d'un style et d'un stigmate s.

240. Fleur d'une Caryophyllée (le Lychnis viscaria), coupée dans sa longueur de manière à laisser voir le rapport des parties. — c Calice. — p Pétales avec leur onglet allongé u, leur limbe l, et l'appendice a qui se trouve à la jonction des deux. — ee Étamines. — o Ovaire surmonté de cinq styles s et formant avec eux le pistil. — g Prolongement de l'axe portant les pétales, étamines et pistil (on a proposé de l'appeler alors anthophore).

FLEUR EN GÉNÉRAL. MULTIPLICATIONS.


d'un long cylindre ag' qui s'élève au-dessus de la fleur, et n'est autre chose que l'axe ainsi développé et sur lequel le verticille des étamines e peut être lui-même porté à une assez grande hauteur. Dans les Caryophyllées (fig. 240), il est assez fréquent de voir l'axe, après avoir produit le verticille calicinal c, continuer son évolution quelque temps avant de produire les verticilles suivants, qui se trouvent ainsi exhaussés sur une colonne g plus ou moins longue. Il est bien clair que cette disposition des verticilles par étage ne change rien aux véritables rapports d'insertion des parties; elle ne fait, au contraire, qu'exagérer l'hypogynie dans les exemples cités.

Plusieurs mots ont été proposés pour désigner ces entre-nœuds de la fleur, suivant qu'ils portent les pétales, ou les étamines, ou les carpelles, ou plusieurs de ces verticilles à la fois. Le nom général de *stipes*, qu'on employait seul autrefois pour tous ces cas, paraît suffire encore, aussi bien que celui d'*axe*, qu'on modifie par une épithète convenable, suivant la longueur, l'épaisseur, la forme, la direction de l'entre-nœud. Celui qui exhausse le pistil à une certaine distance des autres verticilles existe le plus fréquemment et mérite peut-être un nom particulier, comme celui de *gynophore*, dont on se sert assez généralement.

§ 301. Nombre des parties de la fleur. — Nous avons déjà dans toutes ces combinaisons, et dans les différents degrés que chacune d'elles peut offrir, un certain nombre de caractères par lesquels nous pouvons distinguer entre elles un assez grand nombre de fleurs. Cependant nous avons jusqu'ici supposé constant le nombre des verticilles de la fleur et des parties qui composent chacun d'eux; nous n'avons admis de différence marquée sous ce rapport qu'entre les Monocotylédonées dont la fleur serait composée de cinq verticilles de trois parties chacun (fig. 204 et 214) et les Dicotylédonées où elle le serait de quatre verticilles, chacun de cinq parties (fig. 203 et 212). Mais autour de ces deux types, qui peuvent nous servir de points de départ, s'observent d'innombrables variations qu'il nous reste à examiner. Elles peuvent se distribuer en deux grandes classes. Les nombres auxquels nous nous étions arrêtés, ou bien s'augmentent par l'addition de parties nouvelles, ou bien diminuent par la soustraction de quelques parties. Étudions successivement ces deux importantes modifications. -

§ 302. Leur augmentation. — Le nombre des verticilles peut rester le même, tandis que celui des parties augmente d'une quantité égale dans chaque verticille. Ainsi à l'exemple que nous avons choisi comme type de la fleur de Dicotylédonée, à celle du *Crassula* (fig. 212), comparons celle d'un genre tout voisin, le *Sempervivum*, ou vulgairement Joubarbe; dans l'espèce qui croît communément

sur nos murs; nous pourrons voir dans chaque verticille, aux cinq parties qui composent celui du *Crassula*, s'en ajouter d'une à quatre, ce qui pourra porter le nombre jusqu'à neuf. Dans d'autres espèces

du même genre, ce nombre s'accroîtra encore, et l'on en connaît où il est porté jusqu'à vingt, où il s'est par conséquent quadruplé, en particulier dans chaque verticille, et en général dans la fleur.

§ 303. Plus souvent l'accroissement numérique des parties résulte de celui des verticilles mêmes. Les folioles calicinales, ainsi que les pétales, peuvent se montrer ainsi en nombre double et disposées sur deux rangées

concentriques. Mais c'est surtout pour les étamines que ce doublement est fréquent, et il a le plus souvent lieu sans que les deux verticilles extérieurs y participent, de manière qu'elles se trouvent en nombre double des folioles du calice ou de la corolle : on dit alors que la fleur est diplostémone $(\delta_{i\pi}\lambda_{o\bar{v}\varsigma}, \text{ double}; \sigma_{\bar{\tau}\pi'\mu\omega\nu}, \text{éta$ $mine}); on la disait isostémone (<math>i_{\sigma\delta\varsigma}, \text{égal}$), si les étamines étaient en nombre égal aux pétales.

Néanmoins la diplostémonie peut avoir lieu sans que le nombre des verticilles soit véritablement augmenté. Expliquons cette sorte

211 – 214. Diagrammes de différentes fleurs, c'est-à-dire position relative de leurs différentes parties, telles que la présenterait la tranche résultant de la section horizontale de la fleur non encore ou à peine épanouie. Dans ces diagrammes et tous les suivants, les mêmes figures ont été toujours employées pour distinguer les mêmes parties, savoir : 1° une ligne double c pour les folioles ou les divisions, soit du calice des Dicotylédonées (fig. 212), soit du périanthe des Monocotylédonées (fig. 211); 2° une ligne simple p pour les pétales ou les divisions de la corolle; 3° un petit rond pour l'étamine à anthère uniloculaire; deux ronds accolés pour l'étamine e à anthère biloculaire, ou plus ordinairement leur réunion en une petite figure de la forme d'un rein; 4° un ovale dont le petit bout est tourné vers le centre pour le carpelle o, ou un grand cercle pour l'ovaire composé de plusieurs carpelles (fig. 227). — De petits corps accessoires a peuvent se rencontrer, et sont indiqués par un petit point ou un petit trait.

211. Diagramme de la fle	de l'Orniti	hogalum 1	myrenaicum.
--------------------------	-------------	-----------	-------------

- 212. de la fleur du Crassula rubens.
- 213. de la fleur du Sedum telephium.
- 214. -- de la fleur du Corsiaria myrtifolia:

FLEUR EN GÉNÉRAL. MULTIPLICATIONS.

d'énigme par des exemples. La fleur du Redoul (Coriaria myrtifolia [fig. 214]) offre cinq folioles calicinales, cinq petits pétales courts et épais alternant avec elles, puis dix étamines sur deux rangs, le plus extérieur opposé au calice, le plus intérieur aux pétales, enfin cinq carpelles alternant avec ceux-ci; nous avons donc bien addition d'un verticille d'étamines, qui est venu s'intercaler entre les cinq premières et les carpelles, et qui a dû occuper la situation normale de ceux-ci vis-à-vis des pétales : la règle générale se maintient, les verticilles successifs alternent entre eux. Examinons comparativement une fleur de Sedum (fig. 213); presque semblable à celle du Crassula (fig. 212), elle n'en diffère que par l'addition d'un cercle de cinq étamines, et par conséquent présentant en apparence absolument le même nombre de verticilles et de parties que la fleur du Coriaria. Néanmoins, si nous recherchons avec plus d'attention la situation relative de ses parties, nous reconnaissons que des dix étamines, les cinq qui se trouvent placées un peu extérieurement par rapport aux autres sont précisément devant les pétales, et même soudées avec eux tout à fait à leur base. Nous aurions ainsi deux verticilles successifs opposés, contrairement à la règle. Nous nous trouvons donc conduits à nous demander s'il y a en effet ici double verticille, ou si plutôt nous ne devons pas en reconnaître un seul composé de parties doublées, de manière que cette fleur se trouverait ramenée au type primitif, celui que composent un verticille de cinq folioles calicinales, un de cinq pétales, un de cinq étamines. un de cinq carpelles ; seulement les pétales seraient doublés chacun d'une étamine. Cette conclusion est justifiée non seulement par une considération que nous avons déjà eu occasion de répéter plusieurs fois, savoir : que le guide le plus sûr pour déterminer la véritable nature des parties végétales, si variables par leur forme, se trouve dans la détermination même de leurs rapports constants de position ; elle l'est encore par la fréquence d'un phénomène que nous ferons connaître tout à l'heure, celui du dédoublement des organes végétaux.

§ 304. La multiplication des parties de la fleur par l'augmentation du nombre des verticilles ne se borne pas toujours à ce que celui d'un ou de plusieurs d'entre eux devienne double : il peut devenir triple, quadruple, etc. C'est ce qu'on observe souvent pour les étamines, plus rarement pour le calice et la corolle, plus rarement encore pour le pistil. Mais en général, lorsque le nombre s'élève beaucoup, les parties ne se groupent plus par verticilles alternant régulièrement entre eux ; la disposition la plus commune pour l'insertion des feuilles véritables, l'insertion spirale, reparaît sur un torus ou étendu en largeur ou prolongé en ave. C'est ce que nous

avons vu dans les pétales et les étamines du Nymphæa, dans les carpelles du Magnolia, ce qu'on peut observer dans les fleurs d'un assez grand nombre de Renonculacées, dans celles des Cactus, des Camellias (fig. 235), etc., etc.

§ 305. Par dédoublement. — Les parties de la fleur peuvent encore se multiplier d'après un autre mode. Que dans une fleur de

Renoncule, on regarde la base de chaque pétale en dedans, on en verra partir un petit corps de même couleur et de tissu analogue, qui en est comme un repli (fig. 245 a). Dans celles de *Crassula*, de *Sedum*, de *Sempervivum*, que nous avons citées, en dehors et à la base de chaque carpelle, on peut observer une petite écaille verdâtre (fig. 203 a) insérée au même point que lui et qui paraît en dépendre. Il semble que, dans ces deux cas, parmi les faisceaux vasculaires qui se rendent à ces feuilles modifiées et destinées à former les pétales ou les carpelles, plusieurs se sont détachés pour aller for-

^{215.} mer, sur un plan intérieur ou extérieur, ces petits corps accessoires. On peut supposer que ces corps ne s'arrêtent pas à ces proportions minimes, mais se développent assez pour égaler presque la partie de la fleur à laquelle ils sont accolés, et alors elle devra paraître double, comme cela a lieu dans les pétales des *Erythroxylon*. Ceux de beaucoup de Sapindacées, de plusieurs Caryophyllées (*Silene, Lychnis, Cucubalus*), offrent quelque chose d'analogue dans le repli qui vient doubler une partie de leur surface interne. C'est ce genre de production qu'on a nommé *dédoublement* ou *chorize* (de $\chi opi \zeta_{eiv}$, séparer), et c'est vraisemblablement la cause à laquelle est due, dans un assez grand nombre de cas, une multiplication des parties de la fleur indépendante de celle des verticilles.


Ce dédoublement, que nous venons de voir substituer deux parties à une seule, peut en substituer un plus grand nombre. Ainsi, dans les fleurs des *Luhea* (fig. 216), les cinq étamines alternant avec les pétales sont remplacées par cinq faisceaux composés chacun d'étamines nombreuses ; dans les fleurs de certaines Myrtacées, il y a cinq étamines seulement; dans celles de certaines autres, des *Melaleuca*, par exemple, on trouve à leur place cinq groupes d'étamines pressées les unes contre les autres et soudées ensemble inférieurement.

Si cette multiplication résultait de celle des verticilles ou d'une série de parties disposées en spirale, ces parties devraient, dans l'un

215. Un pétale de la Ficaire (Ficaria ranunculoides), vu en dedans, — l Lim¹e. a Petit appendice à sa base.

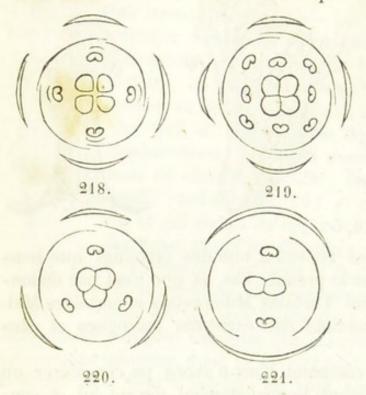
FLEUR EN GÉNÉRAL. RÉDUCTIONS.

comme dans l'autre cas, se distribuer sur toute la zone intermédiaire entre le pistil et les pétales, et non se concentrer dans cinq points ayant une relation constante avec ces pétales. On en conclut donc

que chacun de ces groupes répond à une des étamines que nous avions vues solitaires dans le premier cas, et que c'est par dédoublement qu'on en a plusieurs. Certains Millepertuis et certaines Malvacées (fig. 217) présenteraient des exemples analogues et plus faciles à se procurer.

On conçoit maintenant comment nous n'avons pu considérer un pétale et une étamine naissant immédiatement devant lui et souvent accolée par sa base, comme résultant d'un dédoublement du même genre. Il est vrai que les parties ainsi substituées à une seule doivent naturellement être de la même nature. Mais le rapport intime qui existe entre celle des pétales et celle des étamines ressortira bientôt de leur examen plus détaillé, et nous avons déjà pu le pressentir en voyant le passage presque insensible des unes aux autres dans le Nymphæa (fig. 179).

§ 306. Réduction dans le nombre des parties de la fleur.—Après avoir examiné les différences que peut apporter à un certain type de la fleur, choisi comme point de comparaison générale, la multiplication des parties qui la composent. et qui peut avoir lieu de diverses manières, recherchons celles qui résultent de la cause contraire, la diminution en nombre de ces mêmes parties.


Le nombre des verticilles restant le même, celui des parties dont

216. 1. Fleur du Luhea paniculata. — cece Calice. — pp Pétales. — ec Étamines groupées par faisceaux qui alternent avec les pétales. — s Stigmate composé de cinq parties.

2. Un des faisceaux précédents grossi. On voit que tous les filets se soudent en une masse unique à la base, puis se séparent supérieurement; que les intérieurs fa, plus longs, se terminent chacun par une anthère; les extérieurs fs, plus courts et stériles, ne portent rien.

217. Un des cinq faisceaux d'étamines pris dans la fleur d'une Mauve (Malva miniata).

chacun d'eux est formé peut être également diminué. Ainsi, la Rue commune (*Ruta graveolens*) a, au bas de ses cimes unilatérales, des fleurs à cinq parties, tandis que toutes les autres sont réduites à quatre, savoir : un verticille de quatre folioles calicinales, un de

quatre pétales chacun avec une étamine accolée, un de quatre étamines, un de quatre carpelles (fig. 219). Ce nombre quatre s'observe dans toutes les fleurs d'un autre genre de la même famille: le Zieria (fig. 218), où d'ailleurs il n'y a que les quatre étamines alternant avec les pétales; il est réduit à trois dans celles du Cneorum tricoccum (fig. 220), où trois folioles calicinales alternent avec trois pétales, trois carpelles avec trois étamines ; à deux dans

celles du *Circæa lutetiana* (fig. 224), où l'on observe deux folioles calicinales, deux pétales, deux étamines, deux carpelles.

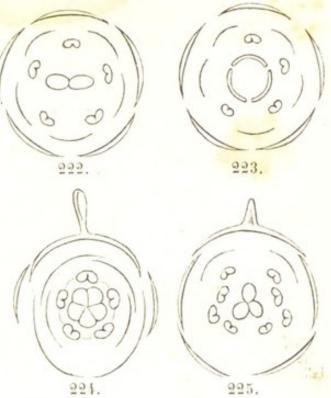
§ 307. Le nombre des verticilles étant toujours le même, celui des parties qui composent un ou plusieurs d'entre eux peut diminuer. Ainsi, les fleurs du Staphylea (fig. 222), qui ont cinq folioles calicinales, cinq pétales, cinq étamines, n'ont que deux ou trois carpelles; dans celles de plusieurs Caryophyllées (Polycarpon, Holosteum [fig. 223], etc.), on voit les étamines réduites à trois ou quatre, avec cinq folioles calicinales et cinq pétales; dans les Balsamines (Impatiens [fig. 224]), quoiqu'il se trouve cinq carpelles, cinq étamines et cinq pétales, le calice a le nombre de ses folioles réduit à trois. Au contraire, avec cinq folioles, il n'y a plus que deux pétales dans certaines Capucines (Tropæolum pentaphyllum [fig. 225]), qu'un seul dans l'Amorpha. Plusieurs verticilles peuvent être diminués dans la même fleur. Ainsi, dans ce même genre Capucine (fig. 225), les carpelles ne sont qu'au nombre de trois; il y a deux

218 - 221. Diagrammes de fleurs régulières où chaque verticille est diminué d'une ou plusieurs parties.

218. Diagramme de la fleur du Zierta.

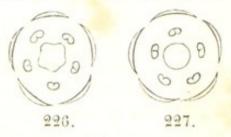
219. — de la fleur du Ruta graveolens.

220. - de la fleur du Cneorum tricoccum.


221. _____ de la fleur de l'Herbe à la sorcière (Circæa lutetiana).

FLEUR EN GÉNÉRAL. RÉDUCTIONS.

cercles d'étamines, le plus extérieur opposé aux pétales ; mais à chacun de ces rangs il y a une étamine de moins, et leur nombre total est ainsi de huit au

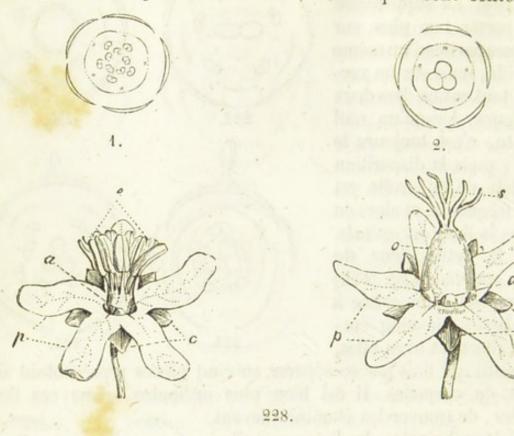

lieu de dix.

§ 308. La suppression peut porter non plus sur quelques parties d'un même verticille, mais sur un verticille tout entier. Des deux extérieurs, lorsqu'un seul persiste, c'est toujours le calice ; mais la disparition complète de la corolle est assez fréquente, et alors on dit que la fleur est apétale. Ainsi la petite fleur du Glaux maritima (fig. 226) se compose d'un calice à cinq parties, de cinq étamines alternant avec elles,

d'un pistil qui finit par se séparer en cinq pièces représentant ainsi autant de carpelles. Il est bien plus ordinaire, dans ces fleurs

apétales, de trouver les étamines devant les folioles calicinales placées comme elles le seraient si le verticille intermédiaire des pétales eût existé (par exemple, dans le *Chenopodium* (*fig.* 227) et beaucoup d'autres Atriplicées, etc.); et en effet,

alors, on en trouve souvent quelques vestiges, ou bien on le voit reparaître dans des plantes incontestablement très voisines. Quelques Caryophyllées montrent aussi cette suppression des pétales qui cependant existent dans la plupart; parmi les Paronychiées, qui ont avec les précédentes tant de rapports, la moitié des genres est munie de pétales, tandis que l'autre moitié en est dépourvue.


§ 309. Dans d'autres fleurs ce sont les étamines ou bien le pistil

222-225. Diagrammes de fleurs où certains verticilles sont seulement diminués d'une ou de plusieurs parties, par conséquent plus ou moins irrégulières.

- 222. Diagramme de la fleur du Staphylea pinnata.
- 223. de la fleur de l'Holosteum umbellatum.
- 224. de là fleur de l'Impatiens parviflora.
- 225. de la fleur du Tropæolum pentaphyllum,

226-227. Diagramme de deux fleurs où le verticille de la corolle est supprimé, et l'ovaire composé à placentation centrale : — 226 du Glaux maritima, 227 du Chenopodium album.

qui manquent. Ainsi, parmi les fleurs des Médiciniers ou Jatropha, en dedans du calice à cinq folioles et de la corolle à cinq pétales, les unes (fig. 228, 2) présentent un pistil sans étamines, les autres (fig. 228, 4) dix étamines sans pistil. Nous verrons plus loin que le pistil qui devient plus tard le fruit, dans lequel sont contenus et

mûrissent les graines ou œufs des végétaux, joue le rôle de la femelle également destinée à la production des œufs dans les animaux, que les étamines qui fécondent les œufs jouent le rôle de mâle. De là vient que les pistils sont aussi vulgairement désignés sous le nom d'organes femelles, les étamines sous celui d'organes mâles, leur ensemble sous celui d'organes de la fécondation. De là aussi le nom de *fleurs hermaphrodites* donné à celles qui contiennent ces deux organes réunis ; celui de *fleurs mâles* donné aux fleurs seulement staminifères ; d'androcée (androceum, d'àváp, mâle, oixia, habitation) à la réunion des étamines ; celui de *fleurs femelles* donné aux fleurs seulement pistillifères. Nous avons décrit plus haut (§ 303) la fleur du *Coriaria* comme munie à la fois d'étamines et de pistil ; mais il se trouve ordinairement sur le même pied d'autres fleurs où le pistil est supprimé, et d'autres encore où ce sont les

228. Fleurs mâle (1) et femelle (2) du Jatropha curcas. — c Calice. — p Gorolle. e Étamines qui occupent le centre dans la fleur 1, à cause de la suppression du pistil, et qui manquent complétement dans la fleur. — 2. Pistil composé d'un ovaire o, que surmontent trois styles bifides s. — a Petits appendices glanduleux alternant avec les divisions de la corolle. — Au-dessus de chacune de ces deux fleurs, son diagramme.

FLEUR EN GÉNÉRAL. RÉDUCTIONS.

étamines. Quand une plante offre ce mélange de fleurs hermaphrodites, de fleurs mâles et de fleurs femelles, on les dit *fleurs polygames*. Si les fleurs hermaphrodites manquent complétement dans une plante, les fleurs qu'on y rencontre, pourvues seulement ou d'étamines ou de pistil, prennent alors le nom de *diclines*; alors les mâles peuvent se trouver sur le même pied que les femelles (comme dans le Ricin, la Sagittaire, etc., etc.); elles habitent en quelque sorte un domicile commun, et l'on dit que cette plante a des *fleurs monoïques* ($\mu \acute{o}\nu o_5$, seul; $oixí\alpha$, maison). D'autres fois, dans le Chanvre ou la Mercuriale, par exemple, certains pieds de la plante ne portent que des fleurs mâles, certains autres que des femelles; les fleurs occupent deux domiciles séparés et sont dites *dioïques* ($\delta_{ioixzziv}$, habiter séparément).

§ 340. Les fleurs sont destinées à propager la plante au moyen des graines, dernier terme de leur développement. Les pistils où ces graines sont contenues sont donc des organes essentiels ; mais depuis longtemps l'expérience a constaté que, s'il n'y a que des pistils, les graines avortent et la plante ne se reproduit pas, que le voisinage et l'action des étamines sur le pistil est nécessaire pour qu'elles deviennent fécondes et produisent un embryon qui nous a servi de point de départ dans l'histoire de la plante (§ 26) ; les étamines sont donc des organes également essentiels. Quant au calice et à la corolle, ils ne jouent dans la fleur qu'un rôle purement secondaire, destinés à servir aux étamines et aux pistils d'enveloppes, à l'abri desquelles ils se développent et atteignent leur perfection. On conçoit que ces enveloppes pourraient, à la rigueur, manquer complétement sans que la fleur devînt impropre à ses fonctions, tandis que celle où les étamines et les pistils manqueraient à la fois serait un stérile ornement, tout à fait inutile à la reproduction de la plante. Aussi appelle-t-on neutres quelques fleurs bornées ainsi aux verticilles du calice et de la corolle, qui souvent alors prennent un développement remarquable. Les fleurs bornées au contraire aux pistils et aux étamines, ou seulement aux uns ou aux autres, mais complétement dépourvues d'enveloppes, sont dites achlamydées (à privatif ; ylauú;, chlamyde, vêtement), ou plus vulgairement nues (flores nudi).

§ 344. Nous avons vu que les parties de la fleur pouvaient se réduire : 4° par la suppression de quelques parties dans chaque verticille; 2° par la suppression d'un ou plusieurs verticilles tout entiers. Combinons ensemble ces deux modes de diminution, et nous arriverons, par des suppressions successives, dont la nature nous présente tous les exemples, à un degré plus grand de simplicité, dont le dernier terme sera une étamine ou un carpelle isolé. C'est

là que sont réduites, par exemple, les fleurs du genre Naias (fig. 234) dont deux espèces (major et minor) croissent dans nos rivières. La seule famille des Euphorbiacées nous présenterait, dans une suite

d'exemples instructifs (fig. 229-234), la dégradation progressive du nombre des étamines qui constituent ses fleurs mâles, et que nous y verrions enfin réduites à trois, a deux et à une (*Euphorbe*).

§ 312. Nous avons déjà vu ces parties de la fleur susceptibles d'un nombre considérable de combinaisons différentes par la multiplication ou par la diminution, qui peuvent porter tant sur les verticilles entiers que sur les éléments de chacun d'eux. Ces deux causes principales de modification peuvent agir ensemble. Ainsi, dans le Magnolia ou le Tulipier, que nous avons cités, le verticille calicinal, borné à trois folioles seulement, était au-dessous du nombre le plus ordinaire dans les Dicotylédonées ; les pétales étaient également disposés par verticilles ternaires, avant subi par conséquent cette même réduction ; mais il y avait plusieurs de ces verticilles, et de cette multiplication s'ensuivait récessairement celle des pétales. Dans des genres de la famille voisine des Anonacées (Hemistemma, Pleurandra), les étamines manquent tout à fait sur l'un des côtés de la fleur, mais par compensation elles se trouvent multipliées de l'autre. Dans le Millepertuis commun, les étamines sont multipliées, mais elles sont disposées en trois faisceaux résultant de dédoublement, et leur verticille se trouve ainsi réduit à trois, tandis qu'il revient à cinq dans quelques autres.

La loi d'alternance des verticilles successifs se maintenant, on conçoit comment leur nombre augmenté dans la fleur doit y altérer le rapport apparent des parties. On s'étonnait de voir les étamines

229-234. Diagrammes de fleurs de plus en plus simples, où l'on voit : 4° le calice, enveloppe unique, réduit à trois parties (229, 230, 234), se supprimer lui-même complé tement (232, 233, 234), et être remplacé par une bractée, de l'aisselle de laquelle naît la fleur, quelquefois accompagnée en plus de deux bractéoles plus intérieures (232, 233); 2° les fleurs seulement mêlées, réduites à trois étamines (229), à deux (230-232), enfin à une étamine (231, 233), et enfin cette étamine unique, réduite elle-même à une seule loge (134, 4); ou seulement femelles (234, 2) et réduites à un carpelle.

229. I	Jiagrammo	de la fleur	male du Tragia cannavina.
230.	-		du Tragia volubilis.
231.		-	de l'Anthostemma senegalense.
232.			de l'Adenopeltis colliguaya.
233.	_		d'un Euphorbe.
274		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	du' Naias minor, 1 :- de la fleur femelle du N. major, 2

FLEUR EN GÉNÉRAL. DÉGÉNÉRESCENCES.

opposées aux pétales, et ceux-ci aux folioles calicinales, dans la fleur de l'Épine-Vinette; mais tout s'explique en observant que les verticilles sont réduits à trois parties, et en même temps chacun doublé, de manière que les parties doivent s'opposer si on les prend six par six, comme on l'avait fait: c'est l'alternance de six en six qui ici eût été une exception à la règle.

§ 313. Dégénérescences et transformations des parties de la fleur. — Après avoir examiné comment la fleur peut varier d'après les combinaisons de nombre et de situation des parties qui la constituent, recherchons les différences qui peuvent dépendre d'un tout autre ordre de causes, des modifications de forme de ces parties. Ces modifications sont trop variées pour que nous puissions ici les passer toutes en revue. Il nous suffira d'indiquer que les organes prennent souvent la forme d'un autre (par exemple, l'étamine celle d'un pétale), ou qu'ils sont réduits à une partie d'eux-mêmes (par exemple, l'étamine à un filet). Mais la forme sous laquelle ils se déguisent le plus souvent est celle de petites glandes ou d'écailles ; et ces corps d'apparence différente étaient, pour la plupart, confondus par Linné et beaucoup de ses successeurs parmi ceux auxquels on donnait le nom de nectaires.

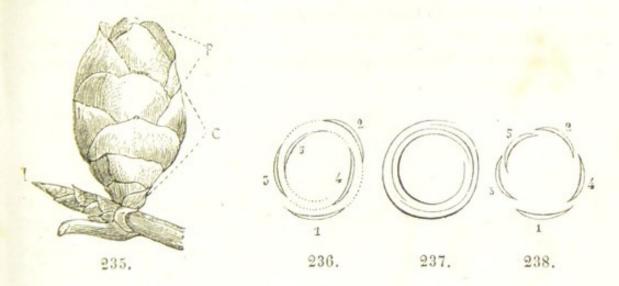
Dans tous les cas, et quelle que soit cette apparence, on détermine leur véritable origine par leur position. Ainsi, en trouvant dans le Samolus cinq petits filets, dans le Clavija cinq glandes au dedans des pétales et dans leur intervalle, précisément à la place qu'auraient dù occuper cinq étamines qui manquent, on n'a pas de peine à reconnaître, dans ces filets ou ces glandes, cinq étamines transformées.

§ 314. Lorsque les parties d'un même verticille se développent inégalement, de manière qu'elles ne sont pas toutes semblables entre elles pour la forme ou la grandeur, on dit qu'il est irrégulier. Il est donc d'autant plus régulier que cette similitude et cette égalité sont plus parfaites; et quand elles le sont, il est clair que si l'on divise le verticille en deux moitiés, elles sont semblables, quelle que soit la direction suivant laquelle la division se fait. Une fleur irrégulière est celle qui a un ou plusieurs verticilles irréguliers ; mais, en général, on lui donne ce nom seulement quand l'irrégularité porte sur les verticilles extérieurs, formant les enveloppes et beaucoup plus apparents que les intérieurs.

§ 315. Il ne faut pas confondre les fleurs régulières et les fleurs symétriques. Les premières peuvent se partager dans tous les sens en deux moitiés exactement semblables; les secondes ne le peuvent que suivant un seul plan, et ce plan est généralement parallèle et perpendiculaire à celui de l'axe qui porte la fleur. On peut le véri-

fier sur les fleurs de Verveine et de Scabieuse (fig. 485, 490) que nous venons de citer ; et l'on verra que, par un plan ainsi mené, on les partage en deux moitiés tout à fait pareilles, l'une de droite, l'autre de gauche. Suivant tout autre plan, les deux moitiés cesseraient de se ressembler. C'est que, si les conditions étaient différentes en dehors et en dedans, en haut et en bas, pour les parties de la corolle, elles se trouvent précisément semblables à droite et à gauche.

Il peut donc y avoir des fleurs symétriques, quoique irrégulières, et c'est même le cas le plus fréquent pour celles-ci : celui où il y a défaut de symétrie en même temps que de régularité est beaucoup plus rare.


§ 346. **Préfloraison**.—Il y a une époque où tous ces rapports de position des parties de la fleur qui viennent de nous occuper sont le plus manifestes et le plus faciles à déterminer ; c'est dans le bouton, ce premier état de la fleur qui est pour elle ce que le bourgeon est pour le rameau. Alors la situation réelle des parties ne s'aperçoit pas seulement par leur point de départ plus ou moins bas, plus ou moins extérieur sur le torus, mais aussi par l'ordre dans lequel elles se superposent ou s'enveloppent l'une l'autre, puisque toute partie enveloppante est presque nécessairement extérieure à la partie enveloppée. Linné a appelé *estivation (æstivatio, d'où l'on* a tiré le verbe *æstivare*), ou état d'été, cet agencement des parties dans le bouton, comme il avait appelé *vernation*, celui des feuilles dans le bourgeon (§ 444). Ce nom a été conservé; mais on lui substitue souvent, et presque indifféremment, celui de *préfloraison* (*præfloratio*).

Nous voyons se dessiner, dans les différents modes d'agencement des enveloppes de la fleur à ce premier état, les deux modifications principales que nous avons reconnues dans celui des feuilles aussi bien que des parties de la fleur, leur disposition en spirale ou à des hauteurs inégales, en cercle ou à une même hauteur.

§ 347. La préfloraison spirale est aussi nommée *imbriquée*; cette dernière épithète, qui est très significative quand les parties se recouvrent seulement dans une partie de leur hauteur, à la manière des tuiles d'un toit (fig. 235 c), cesse de l'être lorsqu'elles s'enveloppent complétement, et alors quelques uns lui substituent l'épithète d'enveloppante ou convolutive (convolutiva [fig. 237]). Souvent les parties ne sont pas assez larges pour envelopper ainsi entièrement toutes celles qui sont situées plus en dedans, mais seulement assez pour recouvrir par leurs bords celles de ces parties qui sont placées immédiatement à côté d'elles; et dans les Dicotyiédonées, où le nombre des parties d'un verticille floral est si

FLEUR EN GÉNÉRAL. PRÉFLORAISON.

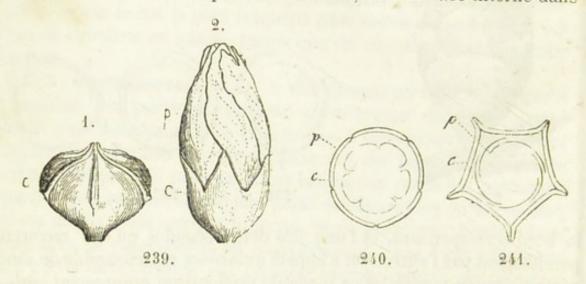
fréquemment cinq, si leur préfloraison est imbriquée, il s'en trouve ordinairement deux placées plus extérieurement par rapport aux autres, et recouvrant les voisines par leurs deux bords, deux placées plus intérieurement et recouvertes par les deux côtés, la cinquième toujours placée entre l'une des deux premières qui la recouvre par

le bord correspondant, et l'une des deux secondes qu'elle recouvre pareillement par l'autre. On a appelé *quinconce* cet ensemble de cinq parties ainsi disposées, et ce mode de préfloraison *quinconcial (quincuncialis)*. Il est aisé de voir que c'est un résultat nécessaire de leur insertion sur une ligne spirale (*fig.* 236) qui décrirait un double tour.

Mais dans la fleur où ces insertions sont si rapprochées, et où l'une d'elles peut si facilement se trouver portée un peu plus en dedans ou un peu plus en haut, il arrive assez souvent que ce rapport est interverti (fig. 238) : par exemple, que, par un léger changement de position, la foliole 2 est recouverte par le bord correspondant de la foliole 4, au lieu de la recouvrir. C'est cette dernière disposition qu'on observe entre les pétales dans la fleur des Papilionacées, et à laquelle on donne quelquefois le nom de vexillaire.

§ 318. Il y a plusieurs autres combinaisons d'après lesquelles les parties d'un même verticille se trouvent toutes dans le même rapport les unes relativement aux autres : on peut croire alors qu'elles sont toutes placées dans les mêmes conditions, régulièrement en

235. Bouton du Camellia japonica. — c Folioles du calice imbriquées. — p Pétales à préfloraison convolutive.


236. Coupe horizontale du calice dans le houton du Liseron des haies (*Convolvulus sepium*). On a indiqué par une ligne de points la marche de la spirale, qui passe par les insertions successives de ses cinq folioles.

237. Disposition de trois folioles extérieures (celles qui correspondent au calice) dans le bonton du Magnolia grandiflora, coupé transversalement et très diminué.

238. Disposition des cinq folioles du calice dans la fleur du Muflier (Anturhinum majus). On les a numérotées en correspondance avec la figure 236:

cercle et à la même hauteur. Elles peuvent se toucher par les bords contigus dans toute leur longueur, comme ceux des battants d'une porte : c'est la préfloraison valvaire (p. valvata [fig. 240 c]).

D'autres fois, plus larges, elles se réfléchissent soit en dedans, soit en dehors, sur les côtés; et ceux qui se correspondent dans deux parties voisines s'appliquent l'un contre l'autre, par une portion plus ou moins étendue de leur face externe, dans le premier cas (préfloraison induplicative [fig. 240 p]), où le bouton offre toute l'apparence extérieure de la disposition valvaire; de leur face interne dans

le second cas, où le bouton est relevé extérieurement d'autant d'angles saillants qu'il y a de parties ainsi accolées (p. réduplicative [fig. 239, 4; 244 c]). Ces cas doivent être considérés comme de simples et légères modifications de la préfloraison valvaire. Les folioles d'un même verticille, au lieu de former les arcs d'un cercle ou les côtés d'un polygone, ayant pour centre celui de la fleur, peuvent prendre une direction plus ou moins oblique relativement à lui, comme si chacune éprouvait une sorte de torsion sur son axe; par là, un des côtés, le même pour toutes les folioles, est porté plus en dedans, l'autre plus en dehors, et, dans ce cas, les sommets, ordinairement élargis, doivent s'imbriquer en cercle, chacun recouvrant d'un côté un de ses voisins et recouvert de l'autre : c'est la préfloraison tordue (præfl. contorta [fig. 239, 2 p; 244 p]).

§ 349. C'est un cas très fréquent qu'on observe dans deux verti-

239. Bouton de Rose trémière (Althœa rosea). — 1. Encore peu avancé, lorsque le calice enveloppe complétement les autres parties, et que les bords de ses divisions se touchent. — 2. Plus avancé, lorsque les bords des divisions calicinales c se sont écartés pour laisser passer la corolle, dont les pétales p sont tordus. Le diagramme est figuré fig. 241.

240. Diagramme du calice c et de la corolle p dans le bouton du *Guazuma ulmifolia*. La préfloraison des folioles du premier est valvaire ; celle des pétales, induplicative.

241. Diagramme du calice c et de la corolle p dans le bouton de la Rose trémière (Althœa rosea). La préfloraison du calice c est réduplicative; celle des pétales p, tordue.

FLEUR EN GÉNÉRAL. PRÉFLORAISON.

cilles successifs un mode de préfloraison différent : ce changement est constant et caractéristique dans plusieurs familles. Ainsi, par exemple, dans les Malvacées (fig. 239, 241), les Convolvulacées, la plupart des Caryophyllées (comme dans l'Agrostemma githago), la préfloraison de la corolle est tordue; celle du calice est néanmoins valvaire dans les premières (fig. 244 c), imbriquée dans les autres. Ce dernier exemple suffit pour nous démontrer que, dans la même fleur, les parties d'un verticille peuvent être disposées en spirale, celles du voisin en cercle.

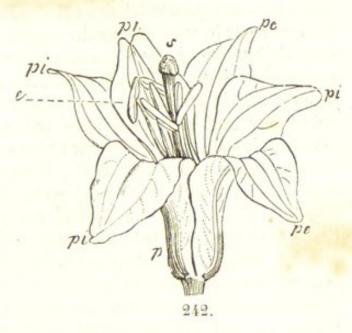
§ 320. La préfloraison ne fait qu'accuser plus nettement des rapports de position entre les parties de la fleur et permet de les déterminer plus facilement : c'est à leur importance qu'elle emprunte toute la sienne. Dans beaucoup de fleurs, l'épanouissement écarte ces parties, qui cessent de se recouvrir, de se toucher, et ces relations si manifestes dans le bouton s'effacent alors plus ou moins complétement. Mais il y a aussi un grand nombre de fleurs où elles persistent jusqu'à un certain degré. Ainsi la disposition quinconciale peut encore s'observer sur beaucoup de corolles de Rosacées ; celles des Apocynées restent toujours fortement tordues, et il n'est pas rare que celles des Malvacées conservent aussi des traces de cet agencement antérieur.

§ 321. Nous avons appris à déterminer, autant que le permet l'état actuel de la science, la position relative des parties de la fleur les unes par rapport aux autres; il convient de plus de la déterminer par rapport au reste de la plante. Pour y réussir, on cherche comment elle est placée relativement à l'axe d'où part son pédicelle. En prenant une partie quelconque de cette fleur pour point de repère, sa foliole la plus extérieure, par exemple, on peut supposer cette foliole tournée du côté de l'axe, ou du côté diamétralement opposé, ou à droite, ou à gauche. Or, il est à remarquer qu'une de ces positions, quelle qu'elle soit, lorsqu'elle a lieu pour une fleur, a généralement lieu également pour toutes les autres fleurs de la même plante; et même on a constaté que cette uniformité s'étend quelquefois à toutes celles d'une même famille. Ainsi, dans les Scrofularinées, et dans d'autres groupes voisins, il y a deux carpelles tournés, l'un du côté de l'axe, l'autre du côté opposé ; si l'on trouve une fleur conformée en apparence comme celle des Scrofularinées, mais les deux carpelles tournés l'un à droite et l'autre à gauche, on pourra prononcer que la plante n'appartient pas à l'un de ces groupes. Ainsi l'unique étamine qu'on voit se développer dans les Cannées et dans les Scitaminées, regardant, dans les unes en haut, dans les autres de côté, suffit pour faire distinguer au premier coup d'œil ces deux familles voisines.

En général, les folioles du calice se coordonnent sur la bractée qui accompagne la fleur, ou, à son défaut, sur le point de l'axe où elle eût dû se développer, de même que la série des feuilles d'un rameau se coordonne sur la feuille de l'aisselle de laquelle part ce rameau. Lorsque le pédicelle se tord sur lui-même, ou lorsqu'il est allongé, grêle ou flexible, la position primitive de la fleur, par rapport à l'axe d'où part ce pédicelle, peut être plus ou moins dissimulée. C'est encore un cas où l'étude du bouton peut nous éclairer, parce que le pédicelle s'est d'autant moins tordu, d'autant moins allongé et aminci, que la fleur est plus jeune.

Cet ensemble de caractères qui résulte de la position des parties de la fleur relativement au rameau qui la porte, et les unes relativement aux autres, est ce qu'on appelle sa *symétrie* : mot pris ici dans une tout autre acception que celle dans laquelle nous avons précédemment parlé (§ 345) de fleurs symétriques.

ENVELOPPES DE LA FLEUR.


§ 322. Nous savons que deux verticilles de parties ordinairement différentes dans l'un et l'autre par leur forme et leur coloration, le calice et la corolle, composent les enveloppes de la fleur lorsqu'elles sont au complet. Nous savons aussi qu'il n'est pas rare d'en trouver un seul; que, dans ce cas, c'est presque toujours la corolle qui manque, et qu'on dit en conséquence apétales les fleurs qui présentent cette disposition.

Ce terme n'a donné lieu à aucune objection pour les Dicotylédo nées, où, lorsque les enveloppes florales se bornent à un seul verticille floral, elles offrent en général manifestement l'apparence et tous les autres caractères d'un calice. Mais dans les fleurs des Monocotylédonées, il n'en est pas toujours ainsi. Nous avons annoncé (§ 290) que leurs enveloppes sont le plus généralement formées de six parties disposées trois par trois sur deux cercles concentriques. Très souvent toutes les six sont semblables entre elles, et alors elles peuvent être vertes (dans la fleur de l'Asperge, par exemple); mais plus souvent elles sont peintes de couleurs différentes et quelquefois fort vives, comme dans le Lis (fig. 242), la Jacinthe, la Tulipe, etc. D'autres fois les trois extérieures diffèrent des trois intérieures : les premières vertes et semblables à un calice, les secondes colorées et semblables à des pétales, comme dans les Éphémères, le Plantain d'eau ou Alisma, etc. Dans ce cas on serait tenté d'appeler en effet le verticille extérieur calice, et l'intérieur corolle; mais, par une conséquence nécessaire, il faudrait leur appliquer les mêmes noms dans toutes les autres fleurs de Monocotylédonées, où pourtant les

FLEUR EN GÉNÉRAL. ENVELOPPES.

parties ne présentent aucune différence entre elles. C'est ce que font plusieurs auteurs. D'autres, plus anciennement, ne prenant que les caractères de couleur pour guides, admettaient dans ces fleurs,

caracteres de couleur pour tantôt un calice et une corolle, tantôt un calice seul, tantôt une corolle seule, quoique évidemment les six parties, dans leurs rapports constants, doivent toujours représenter la même chose. D'autres, enfin, les nomment dans tous les cas un calice, qu'ils définissent le système d'enveloppe le plus extérieur de la fleur, ne pouvant reconnaître deux systèmes différents dans celles de la plupart des

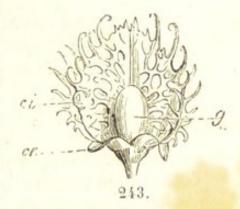
Monocotylédonées. Il est nécessaire d'être prévenu de ce défaut d'accord dans la terminologie des divers botanistes, pour éviter la confusion qu'elle peut entraîner.

Beaucoup d'auteurs, dans ce but, désignent cette enveloppe unique des fleurs par un terme différent, et qui ne fait rien préjuger sur sa nature, soit par celui de périgone (perigonium), soit plus ordinairement par celui de périanthe (perianthum; de $\pi \epsilon pi$, autour, et ανθος, fleur), que Linné avait proposé pour le calice, toutes les fois qu'il est en contact immédiat avec les étamines ou le pistil. Ce nom pourra être admis avec avantage pour la description des Monocotylédonées ; mais il aurait des inconvénients réels pour celles des Dicotylédonées, où vous trouvez souvent l'une auprès de l'autre des plantes, les unes munies, les autres dépourvues de pétales (dans les Carvophyllées et les Paronychiées, par exemple). Or, avec deux fleurs, du reste fort semblables, vous ne pouvez nommer dans l'une périanthe ce que dans l'autre vous nommez calice. Il paraît donc plus convenable d'appliquer constamment ce dernier nom au verticille d'enveloppes, soit extérieur, soit unique, de toute dicotylédonée, et pour les Monocotylédonées d'employer ou le même nom qu'on modifie par des épithètes variées suivant les cas, du celui de périanthe. Nous les confondrons dans l'examen suivant.

242. Fleur du Lis blanc (Lilium candidum). — p Périanthe, dont frois parties un peu plus extérieures pe, alternent avec trois plus intérieures pi. — e Étamines dont ou aperaçoit le sommet des filets avec leurs anthèfes oscillantes. — s Lès stigmates terminant la partie supérieure du style.

§ 323. **Calice** (calyx). — Nous avons dit que le calice est le verticille le plus extérieur des enveloppes de la fleur, qu'il est composé de plusieurs pièces représentant autant de feuilles, et qu'on a nommées en conséquence folioles calicinales. M. Link a proposé de les désigner par le nom unique de *phylles* $(phylla, \varphi i \lambda \lambda 222, feuille)$, qui était déjà employé dans la composition des adjectifs monophylle et *polyphylle*; de Candolle a fait adopter généralement celui de sépales (sepala) : de là les épithètes de *polysépale* ou monosépale données au calice, suivant que ses folioles restent entièrement indépendantes les unes des autres, ou bien sont réunies ensemble dans une étendue plus ou moins grande (§ 292). Nous nous servirons donc indifféremment à l'avenir de ces deux mots, folioles du calice ou sépales.

§ 324. Nous avons considéré ces parties comme de véritables feuilles, et leur structure justifie cette manière de voir ; elles sont, en effet, formées de même à l'intérieur d'un parenchyme, que parcourent dans la direction générale, de bas en haut, des faisceaux fibro-vasculaires composés de trachées déroulables et de minces fibres, et sont extérieurement revêtues par un épiderme muni de stomates beaucoup plus abondants sur la face extérieure du sépale, qui, à cause de sa position redressée, correspond à l'inférieure de la feuille. L'épiderme est souvent couvert de poils semblables à ceux qui couvrent les feuilles mêmes et les jeunes pousses, par conséquent, plus fréquents et plus abondants sur la face externe que sur l'interne. Pour exprimer l'absence des poils, leur présence et les diverses manières dont elle peut modifier la surface du calice, on se sert de termes que nous avons déjà fait connaître (§ 474).


§ 325. Les faisceaux fibro-vasculaires dessinent à l'extérieur des nervures (dont la médiane seule est assez souvent saillante) et suivent, quoique d'une manière bien moins visible à cause de la petitesse des parties, les mêmes lois que dans les feuilles des plantes dicotylédonées, et monocotylédonées, se réunissant entre eux par des ramifications dans les calices des premières, marchant parallèlement et sans se diviser dans ceux des secondes. Lorsque les folioles calicinales sont confondues en un seul corps à la partie inférieure, les nervures médianes qui se prolongent sur la surface de ce corps peuvent indiquer le milieu de chacune d'elles (fig. 246). On trouve souvent autant d'autres nervures, placées précisément dans les intervalles des premières sur la ligne de jonction des folioles soudées, et résultant chacune de l'union de faisceaux appartenant à deux folioles voisines; car on les voit, à la hauteur où celles-ci se séparent, se dédoubler en deux rameaux qui suivent les deux bords correspondants (fig. 248).

§ 326. La forme des sépales peut, en général, se comparer à

CALICE.

celle des bractées plutôt qu'à celle des feuilles; c'est ordinairement celle d'une lame qui va en se rétrécissant vers son sommet, et qui représente par conséquent, soit le limbe réduit, soit la partie vaginale de la feuille. On les voit quelquefois se rétrécir aussi à leur

partie inférieure, mais il est extrêmement rare que ce rétrécissement s'allonge en un pétiole. Il est rare que le bord se découpe ou se lobe (*Rumex maritimus* et autres espèces du même genre [*fig.* 243]. Rose [*fig.* 333]); il est ordinairement entier. Nous ne décrirons pas ici toutes les formes possibles des sépales : la plus fréquente est celle d'un ovale obtus ou aigu à son sommet. Dans leur description,

outre leur nombre et leur forme, on doit mentionner leur direction tantôt en haut (s. dressés, erecta), tantôt en dedans (s. connivents, conniventia), tantôt et plus souvent en dehors (s. divergents, étalés, réfléchis, divergentia, patula, reflexa, suivant qu'ils s'inclinent plus ou moins, leur sommet tourné en haut, ou horizontalement, ou en bas).

§ 327. Quand le calice est monophylle, l'union des parties peut avoir lieu dans une étendue plus ou moins grande. Si elle a lieu seulement à la base, cette courte portion inférieure est appelée le fond du calice; si elle a lieu jusqu'à une hauteur un peu considérable, la portion réunie porte le nom de tube. Dans les deux cas, la portion supérieure où les sépales restent libres est le limbe; et, suivant qu'ils restent plus ou moins complétement séparés, que le limbe, par conséquent, se compose de parties (laciniæ) plus ou moins longues relativement au fond ou au tube, on leur donne des noms analogues à ceux que nous avons fait connaître (§ 114) pour les divisions du bord de la feuille plus ou moins profondes. Ainsi, ce sont des segments ou des partitions, si les sépales restent distincts jusqu'auprès de leur base ; des fissures, s'ils s'unissent jusqu'au-dessus de leur milieu (fig. 245); ou des lobes, s'ils sont en même temps élargis; des dents (fig. 246) ou des crénelures (fig. 261 c), s'ils ne sont libres qu'à leur sommet, aigus ou obtus. On emploie souvent ces mots dans l'épithète composée par laquelle on caractérise le calice et qui indique en même temps le nombre de ces divisions. Ainsi, on dira

243. Calice d'une espèce d'Oscille (Rumex uncatus). Il est composé de deux verticilles, l'extérieur ce à divisions courtes et entières, l'intérieur ci à divisions beaucoup plus grandes, découpées sur leur bord en lanières étroites ou sortes de crochets, réticulées sur la surface extérieure, en bas et au milieu de laquelle on remarque un renflement glanduleux g en forme de grain.

que le calice est quinte-parti, ou quadrifide, ou trilobé, ou sexdenté, etc. Si la forme et l'union des parties est telle qu'il n'y ait aucun degré de division sensible et que la totalité du calice ne forme

qu'un tube bordé supérieurement par un cercle, on dit qu'il est entier (*integer*) ou tronqué (*truncatus*). Remarquons que tous ces mots qui s'appliquaient aux parties d'une feuille unique s'appliquent, pour le calice, à la réunion de plusieurs feuilles considérées elles-mêmes comme parties d'un autre tout, qu'il n'y a donc qu'analogie et non identité dans l'emploi qu'on en fait ici.

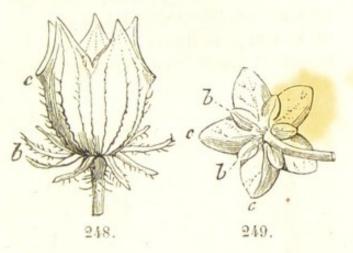
Outre ces formes générales dues aux différents degrés de soudure entre les différentes pièces du calice, il peut offrir plusieurs modifications secondaires par l'allongement plus ou moins considérable du tube et ses renflements à diverses hauteurs, par les directions variées du limbe relativement à lui, etc. Nous indiquerons les termes par lesquels on les désigne, à l'article de la corolle où ces mêmes modifications se montrent plus prononcées à cause de l'extension généralement plus grande qu'elle prend (§ 344).

Nous avons supposé, dans tous les cas précédents, le calice régu-

lier; mais il peut ne pas l'être; et l'irrégularité porte, soit sur le tube qui peut alors se couder ou se bossuer (dans les *Scutellaria*, par exemple) à certains endroits, ou sur le limbe dont certaines parties se développent plus que les autres. Il n'est pas très rare de voir les sépales, soit unis, soit libres, se prolonger au-dessous de leur point d'insertion, soit en une lame plane (comme dans les Violettes), soit en un sac qui tourne alors son ouverture du côté intê-

rieur de la fleur. S'il se prolonge beaucoup, il prend le nom d'éperon

244. Calice pentaphylle de la Stellaire (Stellaria holostea).


- 245. quinquefide de la Primevère (Primula elatior).
- 246. quinquédenté du Behen blanc (Silene inflata).
- 247. Calice c de la Capucine. -- c Éperon. -- p Pédicelle.

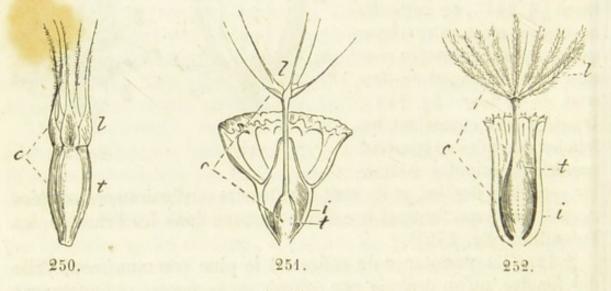
CALICE.

(calcar) et le calice est dit éperonné. Cette modification peut affecter soit un seul sépale (comme dans la Capucine [fig. 247]), soit chacun d'eux (comme dans l'Ancolie). Dans le Pelargonium cet éperon se soude intimement au-dessous de la fleur avec le pédicelle qui la porte, et dont il semble faire partie.

§ 328. La fleur de quelques plantes paraît entourée d'un double calice. On donne le nom de *calicule* au calice extérieur, et l'on dit la fleur *caliculée*. On s'est également servi dans le même cas de

l'épithète de bractéolé ajoutée au calice, et en effet le plus souvent, d'après ce que nous avons dit précédemment (§ 284), ce verticille accessoire n'est autre chose qu'un amas de bractées réunies immédiatement au-dessous de la fleur (fig. 248). D'autres fois cependant les folioles du calice se trouvent munies de stipules comme

les véritables feuilles, et ce sont ces stipules (ordinairement soudées deux à deux) qui forment le calicule (comme dans les Fraisiers, les Potentilles [fig. 249]).


§ 329. La consistance du calice est le plus communément celle des feuilles, qu'on désigne par foliacée ou herbacée; ordinairement alors la couleur est verte, mais dans quelques plantes elle passe à d'autres teintes analogues à celle des parties les plus intérieures : au rouge dans le Fuchsia, le Grenadier, etc.; à l'orangé dans la Capucine, au rose dans le Laurier de Saint-Antoine (Epilobium spicatum). Quelquefois avec ces autres couleurs, ordinairement propres à la corolle, il lui emprunte aussi son tissu plus mince, plus délicat et mou, et en prend toute l'apparence extérieure, ce qui le fait alors nommer pétaloïde : l'Ancolie, l'Hortensia en offrent des exemples parmi les Dicotylédonées. Ils abondent parmi les Monocotylédonées, où c'est même la consistance la plus habituelle du calice ou périanthe tout entier (Lis blanc et Martagon, Jonquille, Glaïeul, Jacinthe, etc., etc.), quelquefois seulement de sa rangée la plus intérieure. La consistance est, au contraire, dans d'autres monocotylédonées, complétement différente, c'est-à-dire sèche, dure, avec des dimensions fort réduites et rappelant plutôt celle des bractées, avec une couleur verte ou brunâtre, comme par exemple, dans les Joncs.

248. Calice c d'une Malvacée (Hibiscus), avec son calicule b.

249. Calice d'une Potentille (Potentilla verna), vue en dessous avec son calicule b.

Le calice, ainsi modifié, est dit écailleux (squamosus), parce que ses sépales imitent les écailles du bourgeon, et souvent aussi glumacé (glumaceus), à cause du nom de glume qu'on a donné aux enveloppes de la fleur des Graminées remarquables précisément par cette consistance.

§ 330. Le limbe du calice se présente quelquefois entièrement méconnaissable sous la forme d'un cercle ou d'une touffe de soles ou de poils, qui prend le nom d'aigrette (pappus) et lui communique celui d'aigretté (papposus). Plusieurs familles de plantes, les Valérianées, les Dipsacées, les Composées, nous font voir les transitions de la forme ordinaire à celle-ci, dont les dernières surtout nous montrent toutes les modifications possibles. On peut dans une suite

d'exemples convenablement choisis parmi les plantes de ces familles, suivre toutes ces transformations, en partant de la forme régulière de cinq dents ou lobes qu'on voit dans d'autres fleurs (fig. 254) se prolonger chacune en une arête, quelquefois toute hérissée de petits poils (fig. 250), et l'on arrive ainsi par des intermédiaires à des arêtes velues (fig. 252) groupées en manière de touffes qui ont fait donner à ces singuliers calices ce nom très expressif d'aigrettes. Les arêtes en sont appelées les rayons. On dit que l'aigrette est plumeuse (plumosus) quand chacun de ces rayons est couvert de petits poils visibles à l'œil nu (fig. 250, 252, comme dans les Scorsonères, les Cirses, etc.); simple (simplex seu pilosus) quand chaque rayon, dépourvu de ce duvet, a lui-même l'apparence d'un long poil uni à sa

250-252. Exemples de calice dont le limbe l passe graduellement à l'état d'aigrette. — c Calice dont le tube t fait corps avec l'ovaire et se rétrécit au-dessus de lui en une colonne grêle dans les fig. 254 et 252, dont le limbe l est à plusieurs divisions rétrécies en fil à leur sommet ou dès leur base. — i Involucre ou calicule coupé dans sa longueur.

250. Calice du Catananche cærulea.

251. - de la fleur de Veuve (Scabiosa atropurpurea).

252. — du Pterocephalus palæstinus.

COROLLE.

surface (fig. 251 l, comme dans le Pissenlit). Mais alors même, en le regardant à travers une loupe, on aperçoit en général cette surface toute hérissée de petites aspérités ; lorsqu'elles se prononcent assez pour figurer autant de petites dents facilement visibles, l'aigrette est dite *dentelée*.

§ 334. La durée du calice est variable suivant les différentes fleurs. Dans les unes il se détache du torus en se désarticulant (comme la feuille du rameau qui la porte [§ 449]), soit en plusieurs, soit d'une seule pièce ; il est *caduc* (*deciduus*), et tombe le plus souvent avec la corolle après la fécondation, quelquefois beaucoup plus tôt, dès que la fleur commence à s'épanouir (*c. fugace*, *c. fugax*, *caducus*), comme, par exemple, dans les Pavots. Dans d'autres fleurs le calice reste attaché à sa place même après que la floraison est achevée ; il est *persistant* (*persistens*), par exemple, dans les Labiées, les Personées, les Borraginées, etc. Mais tantôt il cesse de vivre, se fane et se dessèche ; tantôt, au contraire, il continue à végéter et prend quelquefois même de l'accroissement, comme dans le *Physalis alkekengi*. On le dit dans le premier cas *marcescent*, dans le dernier *accrescent*.

§ 332. Corolie (corolla). — La corolle est l'enveloppe colorée de la fleur, intérieure au calice, composée de parties qui tantôt continuent la série spirale commencée par les folioles calicinales (§ 288). tantôt, et plus ordinairement, s'agencent en un verticille et alternent régulièrement avec ces mêmes folioles. Nous savons déjà que celles de la corolle sont nommées pétales (petala, de πέταλον, feuille). Cette étymologie et le nom de feuilles qu'on donne, dans le langage commun, à ceux de la Rose et de beaucoup d'autres fleurs, prouvent que l'idée de les comparer aux feuilles véritables est loin d'être nouvelle. Nous avons cherché à faire voir que, dans beaucoup de cas, le passage des sépales (dont la nature foliacée est incontestable) aux pétales se fait presque insensiblement, et que les règles qu'on peut déduire des rapports de position s'appliquent aux seconds aussi bien qu'aux premiers. Voyons si leur structure anatomique soutient également la comparaison.

§ 333. Un pétale, considéré isolément, est une lame de forme variable. le plus ordinairement élargie supérieurement et rétrécie à la base; assez fréquemment ce rétrécissement a une certaine longueur, comme dans le pétale de l'OEillet, et prend alors le nom d'onglet (unguis), tandis que l'expansion supérieure reçoit celui de lame ou limbe (lamina, limbus). L'onglet paraît, par rapport à la lame, ce que, dans la feuille, le pétiole est au limbe ; les faisceaux fibrovasculaires marchent rapprochés et unis dans l'un, s'écartent et s'épanouissent dans l'autre. Ces faisceaux sont formés de trachées

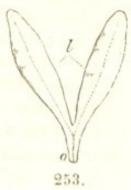
22.

déroulables et de cellules allongées ; leur intervalle, occupé par du tissu cellulaire qui tantôt le remplit complétement (auquel cas le bord du pétale entier est circonscrit par une ligne courbe continue), d'autres fois s'interrompt vers le bord, de manière à laisser saillir les extrémités des faisceaux sous la forme de dents, de franges (fimbriæ [fig. 259, p. 262]), de lobes plus ou moins profonds. Ces diverses modifications sont indiquées en général par les mêmes termes . que les modifications analogues des feuilles. Beaucoup plus mince que celles-ci, le pétale ne présente pas dans son tissu intérieur, formé par un petit nombre de rangs de cellules, ces couches différentes que nous avons décrites dans la feuille; mais son parenchyme peut être souvent analogue seulement à celui de la couche supérieure de cette feuille (fig. 115, ps), c'est-à-dire serré, ou seulement à celui de sa couche inférieure (fig. 115, pi), c'est-à-dire caverneux. L'épiderme qui le revêt est aussi beaucoup moins distinct du reste; il l'est plus sur la face externe où il est quelquefois percé de stomates, mais beaucoup moins nombreux et moins constants; ils manquent presque toujours sur l'interne. Les cellules superficielles ou épidémiques, surtout de cette face interne, font quelquefois une saillie plus ou moins prolongée, obtuse ou conique, et c'est de l'ensemble de ces saillies que résulte le velouté du pétale.

§ 334. La couleur verte est très rare dans la corolle, quoiqu'on la rencontre franche dans quelques unes, comme dans celles de certains Cobæas, de quelques Asclépiadées (*Hoya viridiflora, Gonolobus viridiflorus, Pentatropis spiralis*), etc., etc. Lorsqu'elle existe, elle se montre le plus souvent pâle et délayée par d'autres teintes, ou panachée par des taches tout autrement colorées. La présence de la chlorophylle est donc rare dans les cellules, qui sont habituellement remplies par des granules ou par un liquide d'autre couleur (§ 24) ou vides.

§ 335. Dire que la chlorophylle manque dans les pétales, c'est annoncer que les phénomènes chimiques de la respiration diurne ne s'y passent pas comme dans les feuilles (§ 246). Les corolles et toutes les autres parties de la fleur non colorées en vert, sous l'influence de la lumière, absorbent de l'oxygène en exhalant de l'acide carbonique. La présence d'une grande masse de fleurs, ornées de teintes plus ou moins brillantes, a donc pendant le jour, sur l'atmosphère, une action tout opposée à l'action salutaire d'une masse de feuilles vertes. Mais cet effet n'est pas le seul et se complique souvent de l'exhalaison des huiles essentielles et autres principes odorants si souvent concentrés dans cette même partie du végétal.

§ 336. La consistance des pétales est variable, le plus souvent molle et délicate, quelquefois épaisse et charnue (Stapelia), quel-

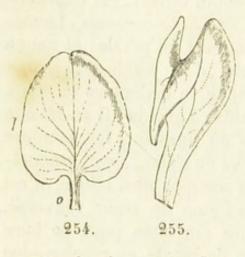

COROLLE.

quefois sèche comme du papier ou une membrane (Bruyères), quelquefois dure et roide (Xylopia).

§ 337. Puisque les pétales proprement dits appartiennent aux fleurs des plantes dicotylédonées, leurs nervures doivent naturellement se ramifier et se terminer par un réseau que forment en se réunissant leurs dernières ramifications. Les secondaires ou veines se détachent de la médiane, soit à différentes hauteurs, comme dans une feuille penninerve, soit souvent dès la base du limbe, comme dans une feuille palmatinerve; et cette dernière disposition, qui rappelle les branches divergentes d'un éventail ouvert, est exprimée par l'épithète qu'on donne alors au pétale (flabellato-venosum). La médiane se prolonge quelquefois jusqu'au sommet du pétale, et même au delà, en une petite pointe libre (cuspis, d'où petalum cuspidatum); mais plus ordinairement elle tend à se dédoubler en deux moitiés, dont l'une se dirige à droite et l'autre à gauche. Il en résulte souvent alors au sommet une échancrure ou sinus qui fait nommer le pétale échancré (emarginatum); et, s'il va en s'élargissant graduellement, depuis sa base aiguë jusqu'à son sommet ainsi bilobé, il est dit obcordé (obcordatum), à cause de sa forme de cœur renversé. Le partage des faisceaux de la nervure moyenne peut se faire inégalement, de manière qu'une moitié du pétale en recoive plus que l'autre et se développe davantage, ce qui étend l'un des deux côtés aux dépens de l'autre, rejetant l'axe un peu latéralement : le pétale est alors inéquilatéral (inæquilaterum), ou oblique (obliquum, obliquè obcordatum, ou toute autre épithète qui peint mieux sa forme générale). Le partage de la nervure médiane, et par suite, du limbe, peut commencer plus ou moins bas, quelquefois tout auprès de la base, et le pétale est alors bifide ou biparti,

et peut même paraître, lorsqu'il n'y a pas d'onglet, presque composé de deux collatéraux égaux (par exemple, dans l'Alsine media [fig. 253]), ou inégaux.

Notons que l'irrégularité du pétale oblique n'entraîne pas celle de la corolle dont il fait partie, puisque les divers pétales qui la composent peuvent dans ce cas être parfaitement semblables entre


eux, et qu'il résulte de leur réunion un tout régulier : cela s'observe dans beaucoup de corolles à préfloraison tordue, celle des Malvacées, par exemple.

Les pétales s'insèrent, en général, par une base étroite; mais souvent ce rétrécissement ne se prolonge pas, et ils sont dits ses-

253. Un pétale du Mouron des oiseaux (Alsine media). - 1 Limbe, - o Onglet.

siles. Quelquefois la base est large, elle peut même l'être autant que le reste du limbe, dans la fleur d'Oranger, par exemple. Si, quoique étroit à son insertion, il ne va pas en s'élargissant, il prend la forme d'un petit ruban et est dit *linéaire*. Entre cette dernière et celle d'un cercle, on peut observer toutes les intermédiaires, comme pour les feuilles. Il est assez fréquent de voir les deux côtés du limbe se prolonger inférieurement en deux lobes obtus ou deux angles parallèles ou obliques par rapport à l'onglet : on le dit alors en cœur (cordatum [fig. 254]), ou sagitté (sagittatum), ou hasté (hastatum).

Le limbe peut être plane ; mais très souvent aussi il présente une

surface courbe, tournant ordinairement sa concavité vers le centre de la fleur. Quelquefois alors la nervure moyenne fait en dehors une grande saillie aiguë, comme la quille d'un bateau, et le pétale en prend le nom avec la forme (*p. naviculaire*, *cymbiforme*). Quelquefois aussi il est plié de manière à rapprocher sa pointe de sa base, comme dans beaucoup d'Ombellifères (*fig.* 255).

Dans la plupart des fleurs, il est glabre, cependant dans plusieurs il est revêtu d'un duvet, ordinairement très court, fin et rare, quelquefois plus épais, qu'on observe plus fréquemment et plus abondamment, en général, même exclusivement, sur la face externe, de même que pour les feuilles et les sépales. Quoiqu'il se montre sur les pétales bien moins communément et plus clair-semé que sur les autres parties du végétal, il est de même nature : ainsi, dans les plantes caractérisées par des poils étoilés, les Bombacées, par exemple, ceux de la corolle sont également en étoile.

Dans les descriptions botaniques, l'épithète par laquelle on caractérise la forme du pétale s'applique au limbe. Quand on décrit des pétales onguiculés, orbiculaires, dentelés, concaves, c'est comme si l'on disait des pétales avec un onglet et avec un limbe orbiculaire, dentelé et concave.

§ 338. On dit la corolle *dipétale*, *tripétale*, *tétrapétale*, *pentapé-tale*, etc., suivant qu'elle est composée de deux, trois, quatre, cinq pétales distincts. Nous avons vu qu'en général leur nombre est égal à celui des divisions du calice avec lesquelles ils alternent; mais qu'il peut se présenter cependant quelques exceptions à cette règle (§ 307), par la suppression d'un ou de plusieurs pétales dans le ver--

254. Un pétale d'un Genêt (Genista candicans). — l Limbe. — o Onglet. 255. Un pétale de l'Eryngium campestre.

COROLLE.

ticille de la corolle comparé à celui du calice, et réciproquement. Ainsi, dans la fleur du Marronnier d'Inde, le calice est à cinq dents, mais on ne trouve que quatre pétales alternant avec quatre d'entre elles, et la place du cinquième est vide; dans la Capucine à cinq feuilles (fig. 225), il n'y a plus que deux pétales et trois places vides. On signale cette circonstance en décrivant alors la corolle comme tétrapétale ou dipétale par avortement, expression tout à fait juste; car on voit dans d'autres espèces de Marronnier, et même dans quelques fleurs du même, reparaître le cinquième pétale; on en compte constamment cinq dans beaucoup d'autres espèces de Capucines. Le nombre des pétales, qui est de cinq dans presque toutes les Légumineuses, se trouve dans l'Amorpha, réduit à un seul, placé entre deux des cinq divisions du calice, et en ce cas on dit la corolle unipétale, mot qu'il ne faut pas confondre avec monopétale (§ 292).

§ 339. Dans la description on doit indiquer, outre le nombre, la direction des pétales (dressés, divergents, étalés, réfléchis [§ 326]), par rapport à l'axe de la fleur, celle du limbe par rapport à l'onglet avec lequel il fait quelquefois un angle; leur longueur par rapport au calice; leur forme, sur les modifications de laquelle nous venons de donner quelques détails, et qui peut être semblable, ainsi que leur grandeur, dans tous ceux d'une même fleur, ou bien différente. Dans ce dernier cas, où la corol'e polypétale est irrégulière, on décrit à part les pétales dissemblables, en désignant leur place par rapport à l'axe de l'inflorescence.

Quand l'irrégularité est la même pour les fleurs d'un grand nombre de plantes, il suffit d'un mot pour en faire connaître les traits principaux. Tel est celui de *papilionacées*, appliqué aux corolles de toutes les Légumineuses de notre pays. Des cinq pétales ($\beta g. 256$) un supérieur (e), c'est-à-dire tourné du côté de l'axe, plus grand et ordinairement plié sur lui-même, embrasse les quatre



autres: on le nomme l'étendard (vexillum); deux latéraux (a), qu'on appelle les ailes (alw), recouvrent eux-mêmes les deux inférieurs (b), qui, rapprochés et souvent même soudés par leur bord, forment par leur réunion une pièce en forme de nacelle, la carène (carina).

Certaines modifications de corolles polypétales régulières, qu'on retrouve dans un grand nombre de fleurs, en général dans celles d'une même famille, ont aussi reçu des noms particuliers. C'est

^{256.} Fleur d'une Papilionacée (le Pois de senteur [Lathyrus odoratus]). — c Calie. — e Étendard. — a Ailes. — b Carène.

ainsi qu'on appelle cruciformes (fig. 257) celles qui ont quatre pétales opposés deux à deux en croix; rosacées (fig. 258), celles qui ont cinq pétales sans onglets et ouverts, disposés comme dans la

258.

259.

Rose simple; caryophyllées (fig. 259), celles qui ont cinq pétales munis d'onglets.

§ 340. La plupart des notions que nous avons données sur les

257. Fleur de la Giroflée commune (*Cheiranthus cheiri*). — c Lobes des folioles du calice, dont deux, plus extérieurs, se prolongent inférieurement en une bosselure. — pp Pétales. — e Les plus grandes étamines, dont on n'aperçoit que le sommet des anthères.

258. Fleur d'une Rose (Rosa rubiginosa). — b Bractée. — ct Tube du calice. — cf cf Folioles du calice. — ppppp Pétales. — e Étamines.

259. Fleur d'un Œillet (*Dianthus Monspessulanus*, 1, - b Bractées. - c Calice. - pp Pétales avec leurs onglets o rapprochés en tube. - c Étamines. - 2. Un pétale du précédent, séparé. - o Onglet. - l Limbe.

COROLLE.

pétales en général peuvent s'appliquer également à ceux qui, par leur réunion, forment la corolle monopétale. On conçoit cependant qu'il ne peut être question ici de la distinction en onglet et limbe, puisque les bases sont confondues. Souvent pourtant ces bases paraissent représenter les onglets, les sommets représenter les limbes. Aussi appelle-t-on de ce même nom de *limbe* (fig. 260 l) ces parties supérieures libres dans leur contour, et décrit-on leur forme par les mêmes termes que celle des pétales isolés ; la partie inférieure dans laquelle les pétales sont intimement unis par leurs bords s'appelle le *tube* (260-67 t), et en a ordinairement la forme; l'entrée du tube, le cercle intérieur à la hauteur duquel les pétales se détachent l'un de l'autre, est la gorge (faux).

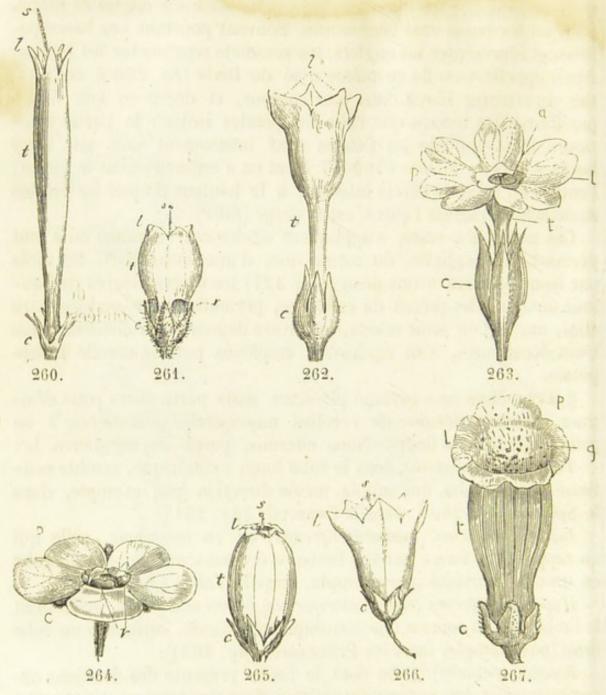
Ces noms, au reste, s'appliquent également au calice ou à tout périanthe monophylle, de même que, d'une autre part, les mots par lesquels nous avons désigné (§ 327) les divers degrés de hauteur auxquels les pièces du calice ou périanthe sont soudées entre elles, ou, si l'on aime mieux, les divers degrés de profondeur dans leurs découpures, sont également employés pour la corolle monopétale.

§ 344. Mais on a inventé plusieurs mots particuliers pour désigner certaines formes de corolles monopétales communes à un grand nombre de fleurs. Nous citerons, parmi les régulières, la :

Tubuleuse (tubulosa), dont le tube long, cylindrique, semble continué par le limbe, qui suit la même direction (par exemple, dans le Spigelia [fig. 260], dans la Consoude [fig. 264]).

Infundibuliforme (infundibuliformis) ou en entonnoir, celle qui en rappelle la forme par son limbe, s'écartant au sommet du tube en un cône renversé (par exemple, dans le Tabac [fig. 262]).

Hypocratériforme (hypocrateriformis) ou en soucoupe, celle dont le limbe, plane comme une soucoupe très évasée, surmonte un tube droit (par exemple, dans les Primevères [fig. 263]).


Rotacée (rotacea), celle dont le limbe présente des divisions ouvertes comme les rayons d'une roue dont le tube, extrêmement court, figurerait le moyeu (par exemple, celle du Myosotis [fig. 264]).

Etoilée (stellata), la même à divisions très aiguës (par exemple, dans les Galium).

Urcéolée (urceolata), ou en grelot, celle dont le limbe est presque hul, le tube renflé à son milieu, rêtréci aux deux bouts (par exemple, dans la Bruyère cendrée [fig. 265]).

Campanulée (campanulata) ou en cloche, celle qui imite cette forme par son tube évasé graduellement jusqu'au limbe (par exemple, dans les Campanules [fig. 266]).

Digitaliforme (digitaliformis), en forme de dé à coudre ou cloche allongée (fig. 267).

260-267. Corolles monopétales régulières. — c Calice. — p Corolle. — t Son tube, — t Son limbe. — s Sommet du style et stigmates.

260. Fleur du Spigelia Marylandica.

261. — de la grande Consoude (Symphytum officinale). — En r, ouverture extérieure des replis qui font saillie au dedans du tube.

262. Fleur du Tabac (Nicotiana tabacum).

263. — de la Primevère commune (*Primula elatior*). — a Anthères à la gorge de la corolle et opposées à ses lobes.

264. Fleur du Myosotis palustris. — r Replis de la corolle faisant saillie à l'entrée du tube, et opposés aux lobes du limbe.

265. Fleur de la Bruyère cendrée (Erica cinerea).

266. — de la Campanule commune (Campanula rotundifolia).

267. — de la Digitale pourprée (*Digitalis purpurea*). Cette dernière corolle est déjà un peu irrégulière.

COROLLE.

Calathiforme (calathiformis), celle qui est hémisphérique et concave comme un bol. Cette forme est plus fréquente pour les calices. Cyathiforme (cyathiformis), celle qui a la forme d'un verre à pied,

c'est-à-dire concave, en forme de cône renversé.

Parmi les irrégulières, la corolle :

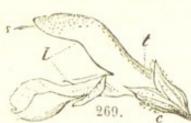
Ligulée (ligularis) [fig. 268]), celle dont le tube, à une certaine hauteur, se fend d'un côté et se rejette de l'autre sous la forme d'une languette l plate (ligula) que terminent quelques petites dents. On peut considérer aussi les ligules comme formés par les divisions linéaires du limbe qui restent cohérentes, ou toutes (comme dans la Scorsonère, le Pissenlit et toutes les autres Chicoracées), ou seulement plusieurs ensemble (comme dans le *Chèvrefeuille*). Cette dernière modification se rapproche de la suivante.

Labiée (labiata [fig. 269]), celle dont les divisions sont disposées de manière à former deux espèces de lèvres

écartées : l'une, supérieure, ordinairement formée de deux ; l'autre, inférieure, de trois (par exemple, dans les Sauges et toutes les autres plantes de la même famille). Le calice est alors généralement lui-même bilabié, mais en sens inverse, c'est-à-dire tournant deux de ses divisions en bas et trois en haut.

Personée (personata), en mufle ou masque (fig. 270), celle qui a deux lèvres comme la précédente, mais rapprochées et closes par un renflement de la supérieure p, qu'on a appelé a 268. Ŀ 270.

son palais (palatum) par exemple, dans le Muflier.


Le tube peut offrir lui-même des irrégularités indépendamment

268 – 270. Corolles monopétales irrégulières. — c Calice. — p Corolle. — t Son tube. — t Son limbe. — g Gorge. — s Stigmates et sommet du style.

268. Fleur du *Catananche cœrulea*. Le calice, à limbe quinquefide c, est soudé inférieurement avec l'ovaire o. Les étamines c ont leurs anthères soudées en un tube a que traverse le style terminé en stigmates bifides, s.

269. Fleur de la Sauge des prés (Salvia pratensis).

270. — du Muflier commun (Antirrhinum majus). Le tube de la corolle se projonge à la base en une bosselure a, et est fermé à sa gorge par un renflement p.

de celles du limbe, par exemple dans le Lycopsis, où ce limbe régulier est supporté par un tube coudé.

§ 342. Nous devons signaler encore dans les pétales quelques formes bizarres et insolites. Dans certaines fleurs, le limbe, au lieu de rester plane ou légèrement concave, se contourne de manière à imiter un casque (p. galeatum: dans l'Aconit, par exemple), ou en capuchon (p. cuculliforme: dans l'Ancolie, par exemple), ou en cornet (dans l'Hellébore, par exemple), etc., etc. Le nom est dans ces cas emprunté, comme on le voit, à l'objet commun dont il rappelle la forme. Lorsqu'il se prolonge en dehors ou en bas en une sorte de sac allongé ou éperon, il est dit éperonné (calcaratum), comme, par exemple, dans la Violette ou la Linaire. Au lieu d'un sac, c'est d'autres fois un simple repli plus ou moins court, plus ou moins comprimé, dont la cavité peut s'ouvrir, soit en dedans de la fleur, soit en dehors (comme dans la Bourrache, le Myosotis [fig. 270] et beaucoup d'autres Borraginées [fig. 265]). Au lieu d'une saillie creuse, on peut enfin en avoir une pleine, formée par l'épaississement et l'extension du tissu du pétale (comme dans beaucoup d'Asclépiadées [fig. 657, 659, a]). Dans ces derniers cas, où la corolle est monopétale et régulière, ces saillies opposées aux lobes forment un cercle intérieur, une sorte de couronne, et ont reçu des noms divers, suivant les diverses apparences qu'ils présentent.

Nous avons déjà vu (§ 305) que c'est assez souvent celle d'une lame plus ou moins étendue qui vient comme doubler le limbe, soit en dehors (dans quelques Résédas, par exemple), soit en dedans (par exemple, dans diverses Caryophyllées, les Lychnis [fig. 274], les Cucubalus, etc.), et qu'elle peut être considérée comme due à un dédoublement. Le pétale est dit alors appendiculé (appendiculatum).

§ 343. La durée de la corolle varie comme celle du calice (§ 334), mais est toujours bien plus passagère. Elle tombe quelquefois au moment de l'épanouissement, presque toujours après la fécondation, et, quand elle persiste plus tard, ce n'est que desséchée, ou, en d'autres termes, marcescente (par exemple, dans les Bruyères, les Campanules). La corolle monopétale se détache toujours d'une seule pièce.

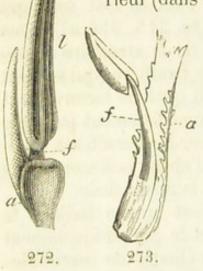
271. Pétale du Lychnis fulgens, vu du côté intérieur. — o Onglet. — l Limbe. a Appendice.

ÉTAMINES. FILET.

ORGANES DE LA FÉCONDATION.

ÉTAMINES (stamina).

§ 344. Jusqu'ici nous n'avons examiné les étamines que dans leurs rapports de position avec les autres parties de la fleur. Quant à leurs formes et à leur structure propre, elles nous ont à peine occupés, et nous nous sommes contentés de les représenter comme des folioles étroites et épaissies supérieurement en deux corps qui bordent chacun un des côtés dans une certaine longueur, ou plus souvent même réduites à un cylindre grêle qui porte à son sommet ces deux mêmes corps (§ 256). On nomme anthère l'épaississement supérieur de l'étamine, filet sa partie inférieure, qui présente le plus souvent cette forme. L'anthère est la partie essentielle de l'étamine, et si elle vient à manquer ou à se développer incomplétement, l'étamine impropre à ses fonctions prend l'épithète d'abortive (abortivum, effætum); mais elle ne l'est pas si c'est le filet seul qui manque, auquel cas l'anthère est dite sessile [fig. 545, 550 a]). Nous renverrons à la fin de ce chapitre l'examen de la structure anatomique, du développement et des fonctions de l'anthère, qui se lient si intimement à celles du pistil, qu'il y aurait quelque inconvénient à ne pas faire suivre l'exposition de l'une immédiatement par celle de l'autre; et nous commencerons par examiner les caractères extérieurs et généraux des étamines considérées d'abord isolément, puis dans leur ensemble en tant qu'appartenant à la même fleur.


§ 345. Filet (filamentum). — Le filet, dont le nom indique la forme la plus habituelle, se présente en effet le plus fréquemment sous celle d'un corps allongé en un mince cylindre ou insensiblement effilé de la base au sommet (f. filiforme [fig. 568]); beaucoup plus rarement il va s'épaississant en massue de bas en haut (f. clavalum [fig. 277 f]). Il a souvent un assez grand degré de solidité et se soutient par lui-même ; mais d'autres fois (comme dans les Graminées, les Plantains, les Littorelles, etc.), il n'a que l'épaisseur et la consistance d'un cheveu: il est capillaire (fig. 488). Il n'est pas rare de le voir, aplati ou linéaire à sa base, s'effiler à son extrémité supérieure (f. subulé, f. subulatum [fig. 498]). Plane dans toute son étendue, il peut figurer un ruban allongé, ordinairement entier sur ses bords, plus rarement crénelé (par exemple, dans l'Yèble), ou denté (fig. 281 f); il peut enfin s'élargir en une lame qui acquiert dans certaines fleurs (Canna et autres Marantacées, Nymphœa alba [fig. 179]), le développement et les apparences d'un véritable pétale. Sa direction est habituellement continue d'un bout à l'autre : on trouve néan-

moins quelques exemples où elle change brusquement suivant un angle plus ou moins obtus, qu'on compare à celui du genou, d'où le filet est dit alors genouillé (f. geniculatum).

§ 346. Nous venons de voir qu'il présente assez souvent à sa base une partie élargie ; alors, au lieu d'aller en se rétrécissant graduellement de bas en haut, il peut, à une certaine hauteur, passer tout à coup de cette forme de lame à la forme filamenteuse (par exemple dans le *Peganum harmala*, le *Tamarix gallica* [*fig.* 297]). Cette dilatation inférieure, qui souvent se prolonge plus ou moins des deux côtés en un lobe ou une pointe libre, rappelle celle que forme la gaîne des feuilles à la base du pétiole, qui peut lui-même être comparé à la partie rétrécie du filet.

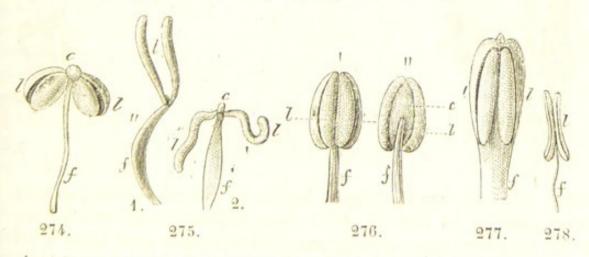
§ 347. Mais il arrive quelquefois que cette portion inférieurement dilatée semble plutôt une partie accessoire soudée avec le filet, par

> rapport auquel elle occupe un plan soit intérieur (comme dans le Zygophyllum fabago (fig. 272) et beaucoup d'autres Zygophyllées, les Simaroubées, etc.), soit extérieur (dans la Bourrache (fig. 273), le Trichilia et autres

Méliacées). Ces deux cas, dans lesquels le filet est dit appendiculé, correspondent évidemment à ceux où le pétale reçoit le même nom (§ 342); dans le second, l'étamine accolée ainsi à une lame placée en dehors se trouve, relativement à elle, précisément comme elle est relativement au pétale, lorsqu'elle s'accole à sa base en faisant partie d'un verticille immédiatement opposé (§ 303). L'appendice basilaire du filet reçoit des noms divers, suivant ses diverses apparences : ceux de glandes,

d'écailles, etc., auxquels on ajoute l'épithète de staminifères.

§ 348. Anthère (anthera). — Lorsqu'on coupe transversalement l'anthère, c'est-à-dire l'épaississement par lequel se termine supérieurement l'étamine, on reconnaît que ce n'est pas un corps plein, mais qu'il est creusé à l'intérieur (fig. 288; 294, 2) et rempli d'une très fine poussière. Dans tous les exemples que nous avons cités, l'épaississement était double, et par conséquent la cavité aussi. On appelle *loge (loculus* ou *theca)* chaque cavité de l'anthère ; et toutes les fois qu'il s'en trouve ainsi deux rapprochés au bout d'une même


272. Étamine de la Bourrache (Borrago officinalis).— f Filet porté sur la face interne d'un appendice a prolongé extérieurement en corne. — l Loges de l'anthère.

273. Étamine du Zygophyllum fabago. — f Filet porté sur la face externe d'un appendice a.

ÉTAMINES. ANTHÈRE.

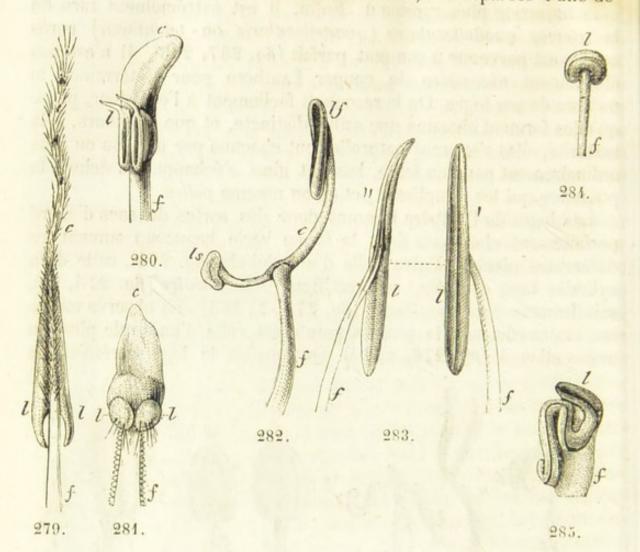
filet, ce qui est le cas le plus général, on dit que l'anthère est biloculaire (anthera bilocularis ou ditheca). Il arrive quelquefois qu'elle est uniloculaire (unilocularis ou monotheca [fig. 283, 284]), mais beaucoup plus rarement. Enfin, il est extrêmement rare de la trouver quadriloculaire (quadrilocularis ou tetratheca) après qu'elle est parvenue à son état parfait (fig. 287, 288). Il n'est pas absolument nécessaire de couper l'anthère pour déterminer le nombre de ses loges. On le reconnaît facilement à l'extérieur, parce qu'elles forment chacune une saillie distincte, et que d'ailleurs, à la maturité, elles s'ouvrent naturellement chacune par un trou ou plus ordinairement par une fente, laissant ainsi s'échapper au dehors la poussière qui les remplissait, et qu'on nomme pollen.

Les loges de l'anthère figurent donc des sortes de sacs d'abord parfaitement clos, sacs dont la forme varie beaucoup suivant les différentes plantes. Entre celle d'un globule (*fig.* 274), celle d'un cylindre long et grêle, soit rectiligne (*loge linéaire* [*fig.* 275, 4]), soit flexueux (*loge vermiforme* [*fig.* 275, 2; 285]), on observe toutes les intermédiaires: la plus fréquente est celle d'un ovale plus ou moins allongé (*fig.* 276, 277 *l*). Quelquefois la loge se rétrécit en

pointe à son extrémité, l'anthère est alors *aiguë* (par exemple, dans la Bourrache [fig. 272]) si les deux loges restent accolées, *bicorne* (*bicornis*) si elles se séparent (fig. 292, 280 l): chacune de ces cornes peut elle-même se bifurquer, et l'anthère devenir quadricornée (quadricornis [fig. 294]).

§ 349. Les deux loges d'une anthère biloculaire se touchent

274-285. Anthères diverses avec le sommet du filet f. - l Loges. - c Connectif. 274. Anthère de la Mercuriale (Mercurialis annua).


275. — de l'Acalypha alopecuroidea. — 1 Dans le bouton. — 2 Dans la fleur épanome.

276. Anthère de l'Amandier. - ' Vue pardevant. - " Par derrière.

277. — du Begonia manicata.

278. — du Poa compressa.

quelquefois immédiatement en s'unissant par leurs faces en contact. Elles peuvent être accolées au sommet du filet, s'appliquant alors sur son côté interne ou sur son côté externe, ou séparées l'une de

l'autre par toute son épaisseur : dans tous ces cas, on dit l'anthère adnée (adnata) au filet (fig. 277) ; mais le plus souvent ce n'est pas le filet lui-même qui s'applique ou s'interpose aux deux loges, c'est un corps qui le continue, mais en changeant de structure, et qu'on a nommé connectif (connectivum), parce qu'il est ainsi le moyen d'union des deux loges. Ses proportions, relativement aux loges,

279. Anthère du Laurier-rose (Nerium oleander).

280. — du *Byrsonima bicorniculata*. Les loges vides au sommer se détachent du connectif sous forme de deux petites cornes.

281. Anthère de l'Humiria balsamifera. Exemple de filet cilié de dents glanduleuses.

282. — de la Sauge officinale (Salvia officinalis). — if Loge fertile, pleine de pollen. — is Loge stérile, vide.

283. Anthère uniloculaire d'une Épacridée (Styphelia læta), vue par devant, ouverte ', et par derrière ''.

284. Anthère de la Guimauve (Althœa officinalis), avant la déhiscence. 285. — de la Bryone commune (Bryonia dioica).

ÉTAMINES. ANTHÈRE.

sont très variables: tantôt égal à elles en longueur, il les unit complétement d'un bout à l'autre ; tantôt il est plus court qu'elles, et peut alors se réduire à un point (fig. 274, 275) ou à une courte ligne ; tantôt, au contraire, il prend un grand développement, et dans ce cas il suit ordinairement la direction du filet, et se prolonge au delà des loges en une arête (fig. 279), ou en une masse plus ou moins épaisse rappelant la forme d'une massue ou d'une langue (fig. 280), d'un cône (fig. 284), etc., etc., ou en une expansion membraneuse (fig. 290 c); mais plus rarement il s'étend perpendiculairement au filet, figurant ainsi le fléau d'une balance qui porterait une loge à chaque extrémité (fig. 282 c).

Nous verrons plus tard que le connectif se distingue des loges par sa structure; mais il s'en distingue aussi au premier coup d'œil par sa couleur, qui tranche sur le jaune plus ou moins foncé, teinte la plus ordinaire de ces loges.

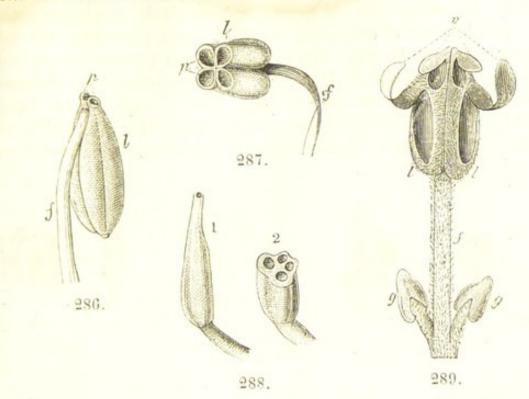
§ 350. Lorsque les loges tiennent au connectif par la plus grande partie de leur longueur, on dit qu'elles lui sont *adnées*; lorsqu'il ne les réunit que dans un très court espace, qu'elles sont *libres* ou mieux *distinctes*. Le point d'union peut être alors situé, ou vers le milieu des loges ou en bas, et alors elles sont *dressées*; ou en haut, et alors elles sont *pendantes*. Si, liées dans toute leur partie moyenne, elles deviennent libres à leurs deux extrémités, elles figurent un xallongé (fig. 278); si, liées dans toute leur partie supérieure, elles ne le sont pas à leurs bouts inférieurs qui s'écartent plus ou moins, suivant que ces bouts sont aigus ou obtus, elles sont dites *sagittées* (fig. 279) ou cordiformes (fig. 276, 273, 298); ce dernier cas est extrêmement fréquent.

§ 354. Le connectif et le filet peuvent se continuer ensemble en conservant la même direction et à peu près la même épaisseur : alors, dans le cas où les loges sont adnées, l'anthère ne peut changer de position par rapport au filet; elle est immobile (fig. 277, 280, 288). Mais le plus souvent le sommet du filet vient en s'amincissant se terminer sous un angle très aigu à un point du connectif, vers son milieu (fig. 242 e), ou plus près de l'une de ses deux extrémités. Il arrive alors que l'anthère finit par faire la bascule sur le filet, et prend des positions diverses suivant les divers mouvements imprimés à la fleur; elle est alors oscillante (versatilis [fig. 283, 242]).

§ 352. Lorsque l'anthère est uniloculaire, le filet vient s'attacher directement à un point de la loge unique (fig. 283). On conçoit qu'on ne doit pas alors chercher de connectif : il peut néanmoins être représenté par un corps différent du reste du filet, ntermédiaire entre lui et la loge ; et il est à présumer, dans ce cas,

que si ce corps ne porte pas une seconde loge placée symétriquement, c'est qu'elle ne s'est pas développée. En effet, on en trouve quelquefois la trace; par exemple, dans les Sauges, où le balancier qui forme connectif porte à l'une de ses extrémités une loge bien conformée et remplie de pollen, à l'autre une loge défigurée et sans pollen (fig. 282): en pareil cas, l'anthère n'est uniloculaire que par avortement. Il faut aussi prendre garde de la regarder comme telle dans deux cas tout à fait opposés où la méprise est facile, celui où les deux loges, écartées l'une de l'autre, pourraient être prises chacune pour une anthère distincte (dans l'Adoxa, par exemple), celui où, au contraire, elles se continuent en se confondant par leurs bases, et semblent ainsi n'en former qu'une seule.

§ 353. On appelle déhiscence (dehiscentia) l'acte par lequel les loges de l'anthère s'ouvrent pour se vider. Nous avons dit que c'est le plus souvent par une fente dirigée suivant leur longueur. Cette fente, dont la place et la direction sont indiquées à l'avance par une ligne ou strie (fig. 276, 4; 277), regarde naturellement du côté opposé à celui par lequel la loge est attachée soit au filet, soit au connectif. Dans la plupart des cas, les loges étaient parallèles ou inclinées un peu obliquement par rapport au filet ou au connectif: mais si elles viennent à s'incliner davantage et prendre une position qui se rapproche de la perpendiculaire (fig. 299 ag), la ligne de déhiscence prendra la même direction : on dira que l'anthère s'ouvre longitudinalement (longitrorsùm) dans le premier cas (fig. 280), transversalement (transversè) dans le second (fig. 284); et c'est dans ce dernier que la fausse apparence d'une loge unique peut résulter de ce que les deux fentes transverses semblent quelquefois se continuer.


La loge ne se fend pas toujours dans toute sa longueur à la fois ; mais les lèvres de la fente, qui s'écartent en bas ou en haut, restent plus longtemps unies dans le reste de leur étendue, et la déhiscence semble alors se faire par une ouverture inférieure ou supérieure (fig. 290, 292).

D'autres fois, il n'y a ni fente ni ligne qui l'indique. Chaque loge à son sommet, par une solution de continuité des parois qui la forment, se perce d'un trou ou *pore*, par lequel elle se vide, par exemple, dans les Pyroles (*fig.* 226), dans les *Solanum*, dans le *Poranthera* (*fig.* 287). D'autres fois, par exemple, dans le *Tetratheca juncea* (*fig.* 238), ces pores se confondent en un seul, issue commune des loges de l'anthère.

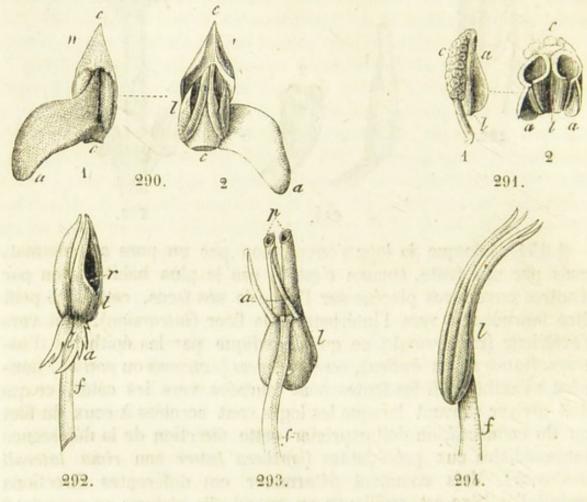
Enfin, dans un très petit nombre de plantes, une certaine portion des parois se circonscrit, puis se soulève en manière de châssis qui se détache complétement du reste, fixé seulement par l'un de ses bords. L'anthère de plusieurs Lauriers (fig. 289) montre deux de

ÉTAMINES. ANTHÈRE.

ces sortes de fenêtres l'une au-dessus de l'autre de chaque côté celle de l'Hamamelis, une seule.

§ 354. Lorsque la loge s'ouvre, non par un pore au sommet, mais par une fente, comme c'est le cas le plus habituel, ou par d'autres ouvertures placées sur l'une de ses faces, cette face peut être tournée soit vers l'intérieur de la fleur (*introrsûm*), soit vers l'extérieur (*extrorsûm*); ce qu'on indique par les épithètes d'*introrse* (*introrsa* ou *antica*), ou d'*extrorse* (*extrorsa* ou *postica*) données à l'anthère. Si les fentes sont tournées vers les côtés, ce qui doit arriver souvent lorsque les loges sont accolées à ceux du filet ou du connectif, on doit exprimer cette direction de la déhiscence intermédiaire aux précédentes (*anthera latere* seu *rima laterali dehiscens*). Mais comment déterminer ces différentes directions quand l'anthère est oscillante ou quand elle s'ouvre au sommet? On peut, pour le premier cas, l'étudier dans le bouton où, droite encore, elle ne s'est pas inclinée sur le filet ; et dans les autres cas, si le filet vient s'attacher sur le milieu ou le haut de l'anthère, c'est

286. Anthère biloculaire du *Pyrola rotundifolia*, pendante à l'extrémité du filet, et s'ouvrant au sommet par deux pores p.


287. Anthère quadriloculaire du *Poranthera*, s'ouvrant au sommet par quatre pores p.

288. Anthère quadriloculaire du *Tetratheca juncea*, entière et coupée transversalement.

289. Anthère du Laurus persea à quatre loges superposées deux par deux, et s'ouvrant chacune par une valve v. Au filet f sont accolées inférieurement deux glandes gqui semblent elles-mêmes des anthères avortées.

sur sa face interne ou sur sa face externe, et l'on peut constater ainsi sa position extrorse ou introrse.

§ 355. De même que les autres organes de la fleur que nous avons précédemment examinés, l'anthère peut présenter des appendices. Ce sont le plus souvent de simples prolongements des parties qui la composent. Ainsi, les loges peuvent, à l'une de leurs extrémités, s'effiler en pointe (fig. 294), s'aplatir en lame (fig. 292 a), etc., et à l'extrémité, ainsi modifiée, la cavité intérieure se trouve interrompue. Quelquefois, des excroissances insolites se

montrent sur leurs faces en forme de pointes (fig. 293 a), ou de verrues, ou de crêtes (fig. 291 a). Nous avons déjà vu que souvent le connectif peut prendre, au delà des loges, un développement plus ou moins grand et de formes diverses. D'autres fois, quoique

290-294. Anthères appendiculées. — a Appendice. — l, p, c, f. Même signification que dans les figures précédentes.

290. Anthère sessile de la Violette des jardins (Viola odorata), vue par derrière 1, et par devant 2.

291. Anthère du Pterandra pyroidea. — 1 Tout entière, vue de côté. — 2 Moitié inférieure, après qu'on l'a coupée transversalement.

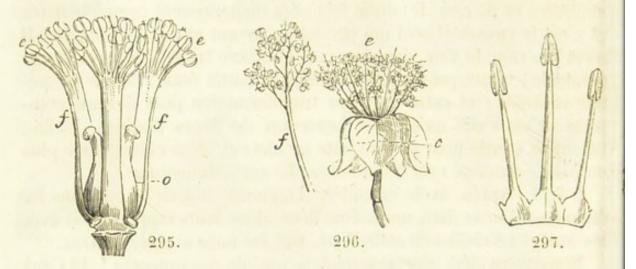
292. Anthère de la Bruyère cendrée (Erica cincrea).

293. — du Vaccinium uliginosum.

294. — du Gaulteria procumbens.

ETAMINES.

plus rarement, c'est au-dessous ou au dehors qu'il se prolonge, par exemple, dans deux des cinq étamines de la Violette, en un éperon, qui s'enfonce dans celui de la corolle (fig. 290 a).


§ 356. Si, dans l'étamine, l'anthère est la partie essentielle pour la fécondation, le pollen l'est dans l'anthère elle-même, ainsi que nous le verrons. On nomme donc stériles les étamines où cette poussière vient à manquer. Alors les loges peuvent exister, mais affaissées et flétries. D'autres fois elles disparaissent complétement, et c'est le connectif seul qui persiste, souvent en se développant. Il n'est pas rare de voir, dans ces cas, l'anthère transformée en limbe pétaloïde, tantôt pelotonné et chiffonné, tantôt étalé comme un pétale véritable ; et cette dernière transformation peut devenir complète : c'est à elle qu'on doit beaucoup de fleurs doubles. Enfin, l'étamine stérile peut être réduite au filet ; et celui-ci lui-même plus ou moins diminué : on dit alors qu'elle est rudimentaire.

§ 357. Après avoir considéré l'étamine isolée, examinons les étamines réunies dans une même fleur, dans leurs rapports soit avec les autres verticilles de cette fleur, soit les unes avec les autres.

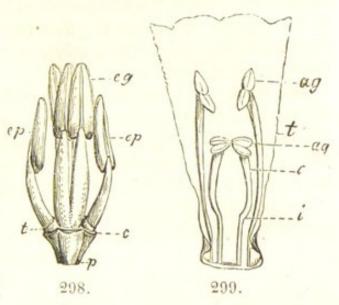
Nous avons déjà exposé quelques uns de ces rapports : 4º Ceux qui dépendent du nombre, celui des étamines se trouvant égal à celui des folioles calicinales et des pétales (fleur isostémone [§ 303]), ou inégal (fleur anisostémone, de arcos, inégal, et or ipuos, étamine), soit qu'il se trouve alors double (fleur diplostemone [§ 303]) ou moindre (fleur méiostémone, de usion, moindre), ou au contraire, plus que double (fleur polystémone, de molos, nombreux): nous avons vu que cette dernière circonstance peut résulter tantôt de l'addition de nouveaux verticilles d'étamines (§304), tantôt du dédoublement de quelques unes d'entre elles ou de toutes (§ 305); 2º ceux qui dépendent de leur position relativement aux parties des verticilles voisins, opposées ou alternes, ou dans une situation intermédiaire ; 3° ceux qui dépendent des divers degrés de soudure qu'elles peuvent contracter avec ces mêmes verticilles, et d'après lesquels peut varier leur insertion, c'est-à-dire leur point apparent de départ, relative ment à eux et notamment au pistil, suivant lequel on les divise en trois grandes classes, étamines hypogynes, périgynes, épigynes (§ 299).

§ 358. Quant à leurs rapports mutuels, les étamines d'une même fleur peuvent être complétement indépendantes les unes des autres (étamines libres ou distinctes, stamina libera seu distincta), ou bien contracter ensemble des adhérences (étamines soudées ou connées, stamina coalita seu connata). Cette adhérence a lieu entre les anthères, comme on le voit dans toutes les Composées, les Lobelia, les Jasione, et, dans ce cas, les étamines sont dites syngénèses, ou mieux

synanthérées (syngenesa seu synanthera, de $\sigma \omega_{\nu}$, avec [qui, dans les mots composés, indique l'union] $\gamma i \nu \epsilon \sigma \iota \varsigma$, origine, et $\ddot{a}_{\nu} \theta_{n\rho\alpha}$, anthère). Plus souvent encore, c'est entre les filets que l'union est établie, soit que tous se trouvent ainsi confondus en un corps unique, soit qu'ils se réunissent en plusieurs groupes auxquels nous savons qu'on a donné le nom d'adelphies (§ 293), de manière que les étamines sont monadelphes (fig. 600), diadelphes, triadelphes (fig. 295), pentadelphes

(fig. 246, 4), polyadelphes (fig. 296), suivant que, par la réunion de leurs filets, elles forment un seul de ces groupes, ou deux, ou trois, ou cinq, ou davantage. Dans le cas de monadelphie, si le pistil n'a pas été supprimé, il est clair que les filets soudés doivent laisser pour lui un espace libre au centre de la fleur et former alentour un tube ou anneau (fig. 206); ce n'est que s'il n'y a pas de pistil, si la fleur est mâle, que ces filets peuvent être réunis en un faisceau luimême central (fig. 228, 4). Dans les cas où il y a plusieurs groupes : d'étamines, ils forment ou autant de segments de cercle (fig. 247) ou autant de faisceaux (fig. 295). Quelquefois les filets restent unis dans toute leur longueur ; plus souvent, unis inférieurement, ils se séparent à leur partie supérieure (fig. 247, 295). Dans le premier cas, le faisceau prend une forme columnaire ; dans le second , il est rameux, et sa ressemblance avec un petit tronc divisé en rameaux terminés chacun par une anthère devient vraie, surtout lorsque tous les filets ne se séparent pas à la même hauteur, mais que quelques uns restent unis ensemble plus haut que d'autres (fig. 296 f).

205. Étamines triadelphes ee d'un Millepertuis (Hypericum ægyptiacum) entourant 1 e pistil o. Les enveloppes de la fleur ont été enlevées.


296. Fleur mâle du Ricin commun, consistant en un calice c de cinq folioles réfléchies, et des étamines e polyadelphes. Un des faisceaux rameux f a été figuré grossi à l côté.

297. Trois des dix étamines du *Tamarix gallica*. On voit que les filets se soudent l' entre eux seulement par leur base dilatée, de manière à former une sorte d'anneau dont l on voit ici un fragment.

ÉTAMINES.

§ 359. Les étamines d'une même fleur, comparées entre elles, sont égales ou inégales en grandeur, et, dans ce dernier cas, c'est avec plus ou moins de régularité. Lorsqu'elles sont nombreuses, elles peuvent être d'autant plus longues qu'elles sont plus intérieures (fig. 216, 2) ou, au contraire, qu'elles sont plus extérieures (comme dans beaucoup de Rosacées [fig. 207]). Dans les fleurs diplostémones,

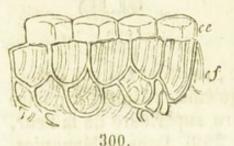
presque toujours les étamines opposées aux pétales sont plus courtes que les étamines alternes. On appelle tétradynames (de $\tau \epsilon \tau \rho \alpha$, quatre, et dúvaµıç, puissance, domination) celles des Crucifères dont quatre grandes, disposées par paires, alternent avec deux plus petites isolées (fig. 298, 579); didynames (de díç, deux fois) celles des Labiées, Personées et autres plantes où les cinq étamines,

alternant avec les cinq lobes de la corolle, se trouvent par l'avortement plus ou moins complet de la cinquième, réduites à quatre dont deux plus grandes répondant à la lèvre supérieure de la fleur, deux petites répondant à ses côtés (*fig.* 299). Dans le Manguier, l'*Hiptage*, des dix étamines, une seule prend un grand développement. Mais il serait trop long et superflu de passer en revue toutes les combinaisons possibles dans la proportion relative des étamines inégales.

§ 360. Quant à leur proportion avec la corolle, elle doit être notée dans la description. Lorsque les étamines sont plus longues qu'elles et la dépassent, elles sont dites *saillantes* (*exserta*); lorsqu'au contraire, plus courtes, elles restent cachées par elles, elles sont dites *incluses* (*inclusa* [*fig.* 260 et suivantes, 299]).

§ 361. Elles se dirigent de diverses manières, ou directement en haut (étamines dressées, erecta), ou vers le centre de la fleur (étamines infléchies, inflexa), ou en dehors, soit qu'elles divergent sim-

298. Appareil des étamines tétradynames de la Giroflée commune (*Cheiranthus cheiri*). — p Sommet du pédicelle. — c Cicatrices laissées par les folioles du calice qui sont tombées. — eg Deux paires de grandes étamines. — ep Petites étamines. — t Torus glanduleux sur lequel toutes ces étamines s'insèrent.


299. Corolle de la Digitale (*Digitalis purpurea*) coupée et étalée pour montrer l'appareil des étamines didynames qu'elle porte. — t Tube. — f Filets, dont au-dessous de leur insertion i, on peut apercevoir le prolongement dans l'épaisseur de la corolle jusqu'à sa base. — ag Anthères des grandes étamines. — aq des petites.

plement, soit qu'elles s'étalent horizontalement (patula), ou se courbent tout à fait (reflexa), ou même pendent ou se rapprochent de la verticale (pendula). Quelquefois elles s'inclinent toutes en se courbant d'un même côté de la fleur, vers le haut ou vers le bas (declinata, comme dans le Marronnier d'Inde et la Fraxinelle).

§ 362. Structure de l'étamine. — Après avoir examiné les formes extérieures des étamines dans les diverses espèces de plantes, et les rapports que peuvent offrir entre elles, et relativement aux autres parties, celles d'une même fleur, recherchons la structure anatomique de l'étamine.

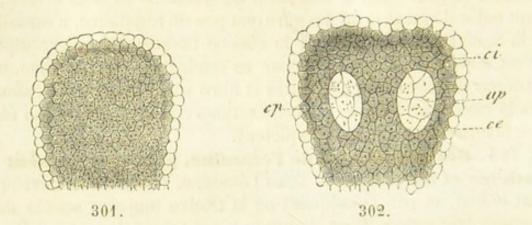
Du filet. — Le filet se compose : 4° d'un faisceau central de trachées, faisceau qui le parcourt de la base au sommet, sans se ramifier dans tout ce trajet; 2° d'une couche de tissu cellulaire enveloppant ce faisceau vasculaire ; 3° d'un mince épiderme, sur lequel on observe quelquefois des stomates, mais fort rares.

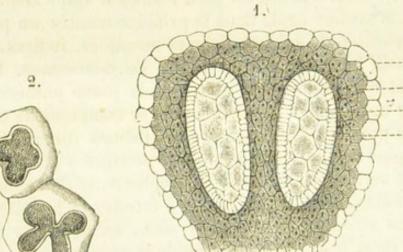
Le faisceau des trachées se continue et se termine dans le connectif, quelquefois avant. Ce connectif est formé, du reste, par un

Ce connectif est forme, du reste, par un amas de cellules un peu différentes de celles du filet, et par leur couleur et par leur forme. Leur consistance est souvent celle d'un tissu glanduleux.

§ 363. De l'anthère. — Les loges de l'anthère à l'état parfait présentent intérieurement une cavité remplie par le pollen, extérieurement par une mem-

brane épidermique (fig. 300 ce), souvent parsemée de stomates; dans l'intervalle, une couche d'un tissu particulier (cf), dont on concevra facilement la nature et la forme, si nous disons qu'il a commencé par une réunion de cellules spirales (fig. 25) ou annulaires (fig. 26), où, plus souvent encore, réticulées (fig. 27), disposées sur un seul ou sur plusieurs rangs d'épaisseur. Mais ordinairement la membrane de ces cellules a complétement disparu aux approches de la maturité de l'anthère, et il ne reste que les fils ou bandelettes, arrangés par conséquent en spirale, ou plus souvent en anneau ou en réseau (fig. 300 cf). On a nommé cellules fibreuses ces cellules à claire-voie ainsi réduites aux lames qui les doublaient primitivement, à leurs fibres, en attachant à ce mot, non l'idée d'un utricule allongé, ainsi que nous l'avons fait dans tout le courant de cet ouvrage, mais celle d'un fil ou d'un ruban plein. Cette couche fibreuse va en diminuant d'épaisseur à mesure qu'elle se


300. Portion de la coupe horizontale de la paroi d'une anthère de *Cobæa scandens*, à l'époque de la déhiscence. — *ce* Couche externe composée par les cellules de l'épiderme. — *cf* Cellules fibreuses formant la couche interne.


ÉTAMINE. DÉVELOPPEMENT.

rapproche de la ligne suivant laquelle doit se faire la déhiscence de l'anthère, et sur cette ligne elle s'interrompt complétement. Ces petites lames très élastiques et hygrométriques doivent se tendre, se détendre, s'allonger et se recourber de manières diverses, suivant que l'anthère est plus sèche ou plus humide; et ces variations doivent suivre, d'une part, le développement de l'anthère, dont les sucs, d'abord abondants, se résorbent ou s'évaporent peu à peu; de l'autre part, l'état variable de l'atmosphère. Le tissu qui forme la paroi de l'anthère, soumis ainsi à une suite de tractions en sens divers, se rompt naturellement là où il n'offre que peu de résistance, c'est-à-dire sur la ligne ou sur le point où la couche fibreuse est interrompue; et c'est ainsi que la loge finit par se fendre et communique avec l'extérieur de manière à permettre la libre sortie du pollen renfermé dans la cavité, sortie que les contractions continuées du tissu élastique favorisent ensuite et complètent.

§ 364. Développement de l'étamine, particulièrement de l'anthère et du pollen. - Dans l'étamine, l'anthère se développe avant le filet, et par conséquent on la trouve toujours sessile dans le bouton très jeune. C'est d'abord un petit mamelon qui s'allonge peu à peu, et dont la surface égale dans le principe montre un peu plus tard, par l'apparition de sillons, diverses inégalités, indices de la séparation en deux loges et de leurs lignes de déhiscence. Le tissu cellulaire dont est entièrement composée la jeune anthère a commencé par être homogène : les cellules qui le composaient offraient toutes à peu près la même forme et les mêmes dimensions (fig. 304). Un peu plus tard, ce tissu semble se détruire à plusieurs places situées à une certaine distance de la périphérie, et de sa destruction résultent autant de lacunes, d'abord étroites et linéaires, puis de plus en plus élargies. Ces lacunes sont, en général, au nombre de quatre, deux pour chaque moitié de la masse totale de l'anthère, moitié qui constitue définitivement une loge. Un fluide mucilagineux, formé sans doute aux dépens du tissu détruit, remplit les lacunes, et bientôt on le voit s'organiser lui-même en cellules (fig. 302 et 303): les extérieures, plus petites (cp), ce sont elles qui plus tard formeront l'enveloppe fibreuse (fig. 300 cf) de l'anthère ; les intérieures (up), beaucoup plus grandes , non seulement que celles qui viennent de se former en même temps qu'elles, mais aussi que toutes celles qui préexistaient. On leur a donné le nom d'utricules polliniques, ou cellules mères du pollen, parce que c'est dans leur cavité que ce pollen va se former. En effet, ces utricules ne tardent pas à s'obscurcir par la présence de nombreux granules qui se ramassent peu à peu en une masse (fig. 303, up), laquelle se divise plus tard en quatre par la formation de cloisons qui s'avancent

progressivement (fig. 303, 2) de la paroi vers le centre où elles finissent par se réunir. Alors la cavité primitivement unique se trouve séparée en quatre logettes, chacune remplie par la masse qui lui correspond (fig. 303, 3), et qui n'est autre chose qu'un grain de pollen. Nous avons là un nouvel exemple de la multiplication des cellules par division (§ 246), et cette origine est mise hors de doute par les observations de M. Mohl, qui a pu extraire de l'utricule pollinique, avant l'achèvement complet des cloisons, la masse encore unique,

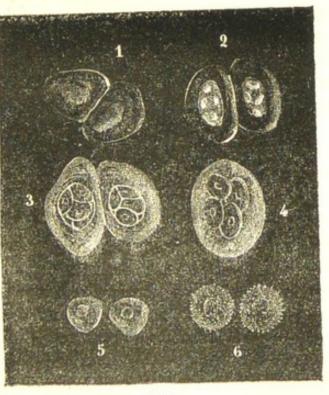
303.

3.

un

301. Tranche horizontale d'une anthère de *Cucurbita pepo*, prise dans un bouton qui n'a encore que 2 millimètres de long.

302. Tranche horizontale de la même, dans un bouton un peu plus avancé. — ce Couche extérieure des cellules qui forment l'épiderme. — ci Couche intermédiaire de cellules sur plusieurs rangs, dont la plupart seront résorbées. — Logettes remplies par un tissu à cellules beaucoup plus grosses up, et qui sont un premier état des utricules polliniques.


303. 1. Tranche horizontale de la même, encore plus avancée, Même signification pour les mêmes lettres. — *cp* Couche de cellules plus petites tapissant les logettes et qui deviendra celle des cellules fibreuses. — 2. Deux utricules polliniques qui ont commencé à se partager par la formation de cloisons, extraits d'une anthère un peu plus avancée. — 3. Utricule pollinique complétement divisé en quatre logettes. Un des grains de pollen a été par une légère pression chassé hors de la sienne.

ÉTAMINE. DÉVELOPPEMENT.

mais déjà partagée extérieurement en quatre lobes par quatre sillons profonds.

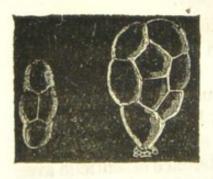
Plusieurs botanistes, comme MM. Nægeli et Hofmeister, admettent au contraire une formation libre intracellulaire (§ 246, 2°), et

c'est ce qui paraît résulter aussi des observations de M. Decaisne sur celle du pollen du Gui. Il a vu en effet dans la masse granuleuse qui remplissait l'utricule pollinique (fig. 304, 4) se dessiner plus tard quatre novaux ou nucléus (fig. 304, 2), autour de chacun desquels la matière s'est condensée de manière que plus tard la cavité contenait quatre globules distincts (fig. 304, 3 et 4), chacun avec son nucléus. Il est vrai que concurremment s'organisaient des cloisons qui

	- A			
	ы.	n	ε.	
	- 14		ъ.	
. 1		v	ε.	

ont fini par déterminer une logette particulière pour chaque globule, cloison qu'il attribue à la solidification de la matière d'abord liquide qui remplissait la cavité de l'utricule.

Quoi qu'il en soit, que la formation de ces utricules nouveaux qui constitueront chacun un grain de pollen, ait lieu tantôt suivant un mode et tantôt suivant un autre, ou que le second rentre dans le premier, il y a toujours ici à signaler une différence essentielle avec la multiplication ordinaire des cellules par division. En effet, ces quatre cellules nouvelles, ces quatre grains de pollen, qui viennent de se former, ne constitueront pas un tissu continu, mais resteront libres dans leur logette particulière. Bien plus, les utricules mères et les cloisons qui en sont émanés disparaîtront peu à peu par résorption, si bien que les grains de pollen, cessant d'être clos, se trouveront libres et immédiatement en rapport dans la cavité générale


304. Développement du pollen dans le Gui (Viscum album). 1. Deux utricules polliniques remplis par une masse granuleuse. — 2. Apparition de quatre noyaux dans cette masse. — 3. Séparation en quatre masses correspondant chacune à un noyau ou à un nouvel utricule. — 4. Utricule pollinique où ces utricules intérieurs sont déjà désunis. — 5. Deux de ces derniers ou jeunes grains de pollen retirés de l'utricule mère. — 6. Les grains de pollen à l'état parfait.

de l'anthère, qui se montre définitivement ainsi remplie d'une sorte de poussière.

Mais auparavant, encore renfermé dans la logette de l'utricule pollinique, le grain de pollen n'a pas tardé à se revêtir d'une membrane transparente, et l'on peut à cette époque, en pressant doucement et faisant crever l'utricule mère, en faire sortir les grains de pollen encore réduits à cette membrane (*fig.* 304, 5). Plus tard il se couvre d'une nouvelle enveloppe extérieure, plus dure, plus épaisse et plus opaque (*fig.* 304, 6), qui paraît sécrétée à sa surface, et qu'on pourrait comparer à la cuticule.

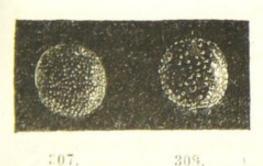
Ce ne sont pas seulement les utricules polliniques qui se dissolvent et disparaissent graduellement; c'est aussi la couche (fig. 303 ci) intermédiaire à l'épiderme et aux logettes. C'est ainsi que les deux logettes voisines finissent par se rapprocher et se confondre en une seule qui est la loge, et la couche cp par former la paroi sous-épidermique de l'anthère. Il arrive quelquefois que cette résorption de la couche ci n'est que partielle, et si elle persiste entre les deux logettes, chacune de celles-ci devient une loge, et c'est alors que l'anthère est quadriloculaire.

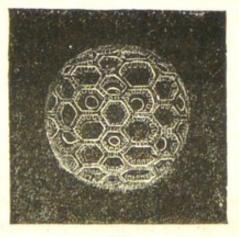
§ 365. Le mode de formation du pollen, tel que nous venons de l'exposer, laisse quelquefois des traces dans l'anthère mûre, soit par l'existence d'une matière visqueuse qui empâte les grains (comme

305. 306.

dans les Onagraires), et semble un reste de la substance des utricules polliniques incomplétement dissoute et disparue, soit parce que les grains restent agglutinés par quatre (fig. 305) ou par multiples de quatre (fig. 306), conservant ainsi leur rapport primitif. Mais c'est un cas fort rare, et habituellement les grains, définitivement libres dans une cavité commune, la remplissent comme une sorte de poussière et

s'éparpillent lorsqu'ils en sortent. Ces grains, avons-nous déjà dit, sont eux-mêmes des utricules; nous avons donc à y étudier deux parties : l'une contenante, ou l'enveloppe; l'autre contenue.


§ 366. Lorsque le grain de pollen est mûr, son enveloppe est généralement double, composée d'une membrane externe (*extine* ou *exhymenine*) et d'une interne (*intine* ou *endhymenine*). La seconde, comme nous l'avons vu (§ 364), s'est formée d'abord et s'est doublée plus tard de la première. Dans quelques cas rares, on trouve une troisième membrane intermédiaire. Dans quelques cas, beau-


305. Pollen du Periploca graca. 306. Pollen de l'Inga anomala.

ÉTAMINE. POLLEN.

coup plus rares encore, on n'en trouve qu'une seule, et alors elle est analogue à l'interne par sa texture.

C'est la membrane externe qui donne au grain de pollen sa forme et sa couleur, constante dans une même espèce de plante. Elle est, en effet, ordinairement assez dure et ferme, tantôt lisse, tantôt toute parsemée de petites ponctuations (fig. 307), ou souvent même de granulations (fig. 308), qui lui donnent sous le microscope l'apparence de peau de chagrin ; tantôt hérissée de mamelons ou même de petites éminences qui, grossies de même, représentent autant de poils ou d'aiguillons (fig. 347). Il arrive quelquefois que ces éminences, distribuées avec une grande régularité, et unies par une matière analogue, presque gélatineuse, dessinent ainsi un réseau saillant à la surface des grains, qu'on pourrait dire alors gaufrés (fig. 309). Il est à remarquer que, dans tous les cas où la surface

309.

extérieure se couvre ainsi de granulations ou d'autres saillies encore plus prononcées, elle suinte, en général, un liquide huileux et coloré : c'est ce qui lui donne sa couleur, tandis qu'elle n'en a pas ordinairement lorsque le grain est parfaitement lisse ; et alors il laisse apercevoir son intérieur à travers ses enveloppes transparentes. Dans d'autres cas, on n'obtient cette transparence qu'après avoir dissous l'enduit huileux au moyen de réactifs convenables, par exemple, d'une huile grasse ou essentielle.

§ 367. Quant à la membrane interne, elle est toujours identique dans tous les pollens différents, unie, très mince et transparente, extrêmement extensible. Dans quelques plantes, les Graminées, par exemple, elle adhère dans toute son étendue à la membrane externe ; dans d'autres, à certaines places seulement ; dans la plupart, elle s'en détache en totalité.

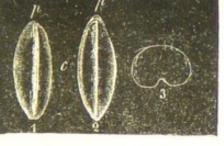
§ 368. Au dedans de cette enveloppe interne est renfermée une

309. Grain de pollen de l'Ipomara.

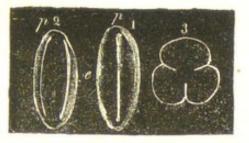
matière à laquelle on a donné le nom de *fovilla*, formée d'un fluide épais et d'une foule de petits corpuscules granuleux, auxquels viennent fréquemment s'associer des gouttelettes huileuses et, beaucoup plus rarement, se substituer des granules de fécule. Les corpuscules sont en général de deux sortes (fig. 349 f), la plupart extrêmement petits et sphériques : quelques uns (fig. 320) beaucoup plus gros , globuleux eux-mêmes, ou ellipsoïdes, ou allongés en courts cylindres, amincis à leurs extrémités. On a cru reconnaître dans ces derniers des mouvements de contraction ou de flexion, rappelant jusqu'à un certain point ceux des animalcules infusoires. Mais ces délicates observations, sujets de nombreuses controverses, demandent à être encore soigneusement vérifiées.

§ 369. Les grains de pollen se présentent le plus fréquemment sous la forme d'un ellipsoïde (fig. 314, 312), plus ou moins aminci à ses deux bouts (pp), qu'on peut appeler ses pôles; de même qu'on peut appeler équateur la ligne circulaire (e) qui, également distante de ces deux extrémités, la partage en deux moitiés égales. Cette ligne, le plus ordinairement idéale, est quelquefois marquée par la présence de certains points particuliers, ainsi que nous le verrons tout à l'heure. Dans le cas où le grain est un ellipsoïde, comme dans le cas le plus rare où c'est un sphéroïde, la surface offre une courbe continue. D'autres fois sa surface n'offre pas cette régularité, mais semble formée par la rencontre de plusieurs segments courbes. Une forme assez commune est celle qui résulte de la rencontre de trois de ces segments, et alors on dit que le pollen est trigone (fig. 324).

Enfin, il n'est pas rare que les grains de pollen affectent la forme d'un polyèdre. Alors des faces planes ou à peine courbes sont séparées par angles solides, quelquefois même saillants en manière de crêtes. Ces faces peuvent être toutes semblables entre elles; mais, dans le plus grand nombre de cas, elles ne le sont pas toutes, et, par exemple, on trouve celles qui correspondent aux pôles p différentes de celles qui correspondent à l'équateur e (fig. 340).


§ 370. Nous devons faire remarquer que la forme du pollen se modifie suivant le plus ou moins grand degré d'humidité dont il est pénétré. Si on le laisse quelque temps exposé à l'air, il se dessèche, se rétrécit ; ses pôles ou ses angles tendent à devenir de plus en plus aigus (fig. 348, 4). Si, au contraire, on le place dans l'eau, il se gonfle (fig. 348, 2); ses angles s'effacent, et il ne tarde pas à prendre l'apparence plus ou moins complète d'un globule. Sa forme véritable doit être cherchée entre ces deux extrêmes : c'est celle qu'il a dans l'intérieur de l'anthère encore close, dans un milieu humide, mais non liquide.

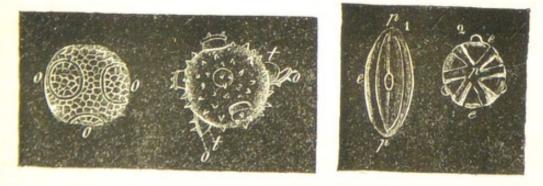
ÉTAMINE, POLLEN.


§ 374. La déhiscence du pollen résulte de la faculté inégale qu'ont ses deux membranes de s'étendre lorsqu'elles sont mises en rapport

340.

311.

312.


313.

314.

315.

316.

avec un liquide. L'extérieure, qui la présente à un degré moindre

310. Grain de pollen de la Chicorée (Chicorium intybus).

317.

311. Pollen d'un Ail (Allium fistulosum). - p Pôle. - e Équateur. - 1 Grain vu sur une face. - 2 Sur la face opposée. - 3 Sa tranche transversale, suivant l'équateur, 312. Pollen d'un Liseron (Convolvulus tricolor). Les lettres et numéros ont la même

signification que dans la figure précédente.

313. Grain de pollen d'une Graminée (Dactylis glomerata).

314. Grain de pollen du Chanvre (Cannabis sativa). - e Équateur. - pp Pôles.

315. Grain de pollen du Corydalis capreolata.

316. Grain de pollen d'une Passiflore (Passiflora kermesina), avant la déhiscence.-00 Opercules.

347. Grain de Pollen de la Courge (Cucurbita pepo), au moment de la déhiscence. - oo Opercules déjà séparés du reste de la membrane externe par autant de saillies de l'interne.

348. Grain de pollen de la Salicaire (Lythrum salicaria), où l'on observe six plis, dont trois percés d'un porc à leur milieu, trois autres alternant avec les premiers et sans pore. — pp Pôles. — ec Équateur. — 1 Grain sec. — 2 Le même gonflé dans l'eau, de telle sorte qu'il a pris la forme globuleuse et que ses plis se sont déployés. La membrane interne commence à faire saillie à travers les pores.

que l'intérieure, doit, à la fin, pressée par celle-ci, lui donner passage. Ce passage a lieu à travers des ouvertures, soit accidentelles, soit ménagées d'avance sur la surface du grain.

Le premier mode a lieu lorsque sa surface est parfaitement homogène dans toute son étendue, comme elle l'est, en effet, dans un certain nombre de plantes. Alors, si l'humidité se trouve appliquée à une certaine place du grain, la partie correspondante de la membrane interne tend à se distendre plus que les autres, tandis que celle de la membrane externe ramollie lui oppose un moindre obstacle, et, poussée de dedans en dehors, finit par se rompre.

§ 372. Mais, dans la plupart des pollens, les choses ne se passent pas ainsi, parce qu'il se trouve d'avance sur la surface de la membrane externe des places plus faibles que d'autres ; soit qu'elle s'y montre seulement amincie, soit qu'il s'y rencontre de véritables solutions de continuité. Ces amincissements se présentent, en général, sous l'apparence de plis saillants vers l'intérieur du grain ; ces solutions de continuité, sous celle de petites ouvertures circulaires qu'on a nommées *pores*, mais qui, comme celles des cellules auxquelles on donne le même nom (§ 46), ne sont peut-être le plus souvent que de petits espaces extrêmement amincis eux-mêmes, et par conséquent susceptibles de se rompre beaucoup plus rapidement. Tantôt les grains d'un même pollen n'offrent que des plis sans pores, tantôt que des pores sans plis, tantôt les uns et les autres.

§ 373. Le nombre des plis varie suivant les plantes auxquelles appartient le pollen. Le plus fréquent est l'unité qu'on observe dans la majorité des plantes monocotylédonées (fig. 344), ou celui de trois qui se rencontre au contraire dans beaucoup de dicotylédonées (fig. 342). L'existence de deux ou de quatre plis s'observe peu; celle de six beaucoup moins rarement. On peut en trouver jusqu'à douze et même au delà.

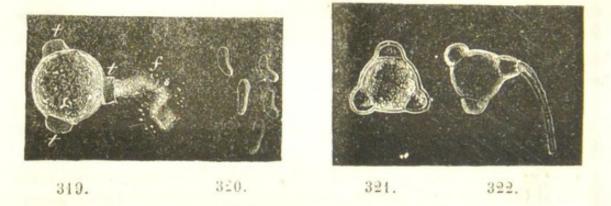
§ 374. Les pores varient, de même que les plis, par leur nombre, et offrent sous ce rapport les mêmes combinaisons, c'est-à-dire qu'on en trouve souvent un seul, et cela le plus ordinairement dans les Monocotylédonées, par exemple dans les Graminées (fig. 343); souvent trois, et cela dans les Dicotylédonées; quelquefois deux, d'autres fois quatre ou davantage. Lorsqu'il y en a ainsi plusieurs, ils peuvent être rangés régulièrement en cercle, et ce cercle est celui de l'équateur (fig. 344); ou bien dispersés sur toute la surface avec une régularité sensible ou sans ordre bien apparent (fig. 345).

Les pores se dessinent extérieurement de différentes manières, mais bien mieux après qu'on a fait gonfler le grain en le mouillant. On voit alors le pore sous la forme d'un petit rond formé par une membrane transparente, soit l'intérieure se présentant à l'ouverture

ETAMINE. POLLEN.

béante; soit plutôt l'extérieure extrêmement amincie, poussée un peu en dehors. Quelquefois celle-ci a conservé toute son épaisseur et se détache circulairement comme une sorte de couvercle: on dit alors que le pollen est operculé (fig. 316, 317).

§ 375. Enfin, les mêmes grains, dans un grand nombre de plantes appartenant toutes aux Dicotylédonées, peuvent offrir en même temps des plis et des pores : tantôt les uns correspondent aux autres, ou un seul pore au milieu de chaque pli, ou deux pores aux deux extrémités d'un même pli ; tantôt les plis n'offrent des pores que de deux en deux, de telle sorte qu'on trouve, par exemple, trois seulement des premiers pour six ou neuf des seconds (*fig.* 348); tantôt, enfin, il y a des plis et des pores séparés et alternatifs.


Dans les grains polyédriques, ceux de beaucoup de Composées, par exemple, les pores sont situés ou sur les angles ou sur le milieu des faces.

§ 376. Si le grain de pollen est maintenu quelque temps dans l'eau, il continue à se gonfler, sans doute par l'effet de l'endosmose, parce que cette eau, moins dense que la fovilla, doit s'infiltrer en grande quantité dans la cavité qui renferme celle-ci. Les membranes se trouvant ainsi distendues, si l'extérieure est partout homogène. elle se rompt dans un point quelconque; si elle a des plis, cette portion, plus mince et plus extensible, se prête quelque temps encore à cette augmentation de volume, et forme une saillie avant de se rompre elle-même. La membrane interne, qui jouit de cette propriété à un degré beaucoup plus élevé, fait saillie à travers ces ruptures de l'extérieure, ou bien plutôt à travers ses pores, s'ils préexistaient. Dans ce dernier cas, on la voit sortir par tous ces pores sous forme d'autant de petites ampoules (fig. 345, 348, 349), et elle donne le meilleur moyen de bien constater leur distribution sur la surface du grain : on aide cette action en ajoutant à l'eau un peu d'un acide assez énergique, le nitrique, par exemple. Ainsi tiraillée dans un grand nombre de points, la membrane interne ne tarde pas à céder elle-même, se crève en un de ces points, et laisse échapper. la fovilla sous la forme d'un jet plus ou moins long (fig. 349 f). Les anciens botanistes, observant toujours la déhiscence du pollen dans l'eau, avaient reconnu ce dernier phénomène, l'éruption du jet, qui, comme le plus apparent, avait dû arrêter leur attention, et ils en avaient naturellement conclu que c'était de cette manière que dans la vie le pollen se vidait de sa fovilla lorsqu'il se trouvait sur la surface humide du stigmate.

§ 377. Mais il est clair que, dans ce dernier cas, le grain en contact par une petite partie de sa surface seulement avec le liquide, n'est plus dans les mêmes conditions qu'environné de tous côtés

EOTANIQUE.

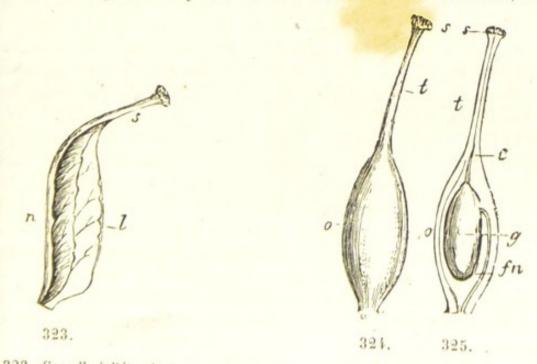
par de l'eau ; que son gonflement est plus lent ; que les membranes distendues ainsi graduellement, et seulement d'un côté, peuvent s'allonger bien plus sans se rompre. C'est ce qu'on observe facilement sur le pollen en contact, soit avec le stigmate même, soit avec une surface légèrement humide. Alors ce n'est plus par tous ses plis, par tous ses pores, que la membrane interne tend à faire hernie au dehors, c'est seulement par l'un d'eux (*fig.* 322), par deux

rarement ; mais l'ampoule qui s'est montrée d'abord s'allonge ensuite et peu à peu en une sorte de boyau qui finit par former un tube plus ou moins long, tube à travers les parois duquel on peut apercevoir les granules de la fovilla, qui ont suivi en partie au dehors la membrane qui les renfermait immédiatement. Dans quelques cas même, on les a vus dans ce tube se mouvoir en courants, de ce mouvement que nous avons appelé rotatoire (§ 205). Ce tube ou boyau pollinique est, avons-nous dit, formé par la membrane interne ; mais à sa base il peut être doublé par l'externe, qu'il aura entraînée quelque temps avec lui avant de la rompre. S'il en existe une troisième intermédiaire, plus analogue à l'interne, elle la suit aussi plus loin.

PISTIL (pistillum).

§ 378. Nous avons déjà plusieurs fois parlé du pistil qui occupe le centre de la fleur, qui se présente entouré des enveloppes et des étamines dans la fleur hermaphrodite et complète (§ 288), des enveloppes seulement dans la fleur femelle (§ 309), et qui la forme

319. Grain de pollen de l'Amandier nain (Amygdalus nana), dont la membrane interne a commencé à faire saillie par les trois pores sous forme d'autant d'ampoules t, et s'est crevée à l'extrémité d'une d'elles en donnant issue au jet de fovilla f, où l'on peut apercevoir des grains de diverses grosseurs.


320. Gros granules de fovilla de l'Hibiscus palustris.

321. Grain de pollen de l'Onagre (Enothera biennis), entier.

322. Le même éméttant par l'un de ses angles entr'ouvert un prolongement de sa membrane interne sous forme d'un tube.

seul lorsqu'elle est, de plus, nue (§ 315). Nous avons vu que ce pistil est composé de feuilles modifiées ou carpelles, dont le nombre varie suivant les plantes et peut être réduit à l'unité; que ces carpelles tantôt restent distincts les uns des autres (§ 289), tantôt se soudent entre eux en un seul corps (§ 294). Il nous reste à faire connaître la structure et les diverses modifications de ce corps simple ou composé, que nous n'avons examiné jusqu'ici que dans ses rapports de position. Pour mieux nous faire comprendre, nous examinerons d'abord un carpelle isolé, et nous considérerons ensuite les cas où plusieurs de ces carpelles se trouvent réunis dans une même fleur, et les rapports divers qu'ils peuvent alors présenter avec les autres parties de cette fleur.

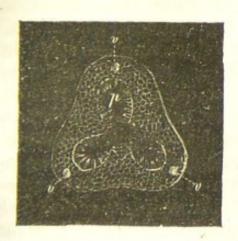
§ 379. Le Cerisier nous offrira la preuve du passage de la feuille au carpelle. Si nous prenons, en effet, une fleur double de Cerisier, nous verrons son centre occupé par de petites feuilles parfaitement conformées et à peine pliées (fig. 323), élargies inférieurement en un limbe vert (l), rétrécies supérieurement en un prolongement qui semble la continuation de la nervure moyenne (s). Mais dans une fleur simple, à la place de ces deux feuilles centrales, nous

323. Carpelle à l'état de feuille, tel qu'on le trouve dans la fleur double du Cerisier. — l Limbe. — s Prolongement de la nervure moyenne n qui devient libre supérieurement, représente le style et se termine par un épaississement qui représente le stigmate.

324. Carpelle du Cerisier, tel qu'on le trouve dans la fleur simple. — o Ovaire. — t Style. — s Stigmate.

325. Le même, coupé verticalement de manière à faire voir dans son ovaire o une cavité centrale remplie par l'ovule g, pendu à sa paroi en un point auquel vient aboutir un faisceau fn de vaisseaux nourriciers ; et dans son style t le petit canal c qui le parcourt depuis le stigmate s jusqu'à la cavité de l'ovaire.

trouverons un seul corps (324, 325, o), inférieurement renilé ett creux, avec un corps plus petit (g), renfermé dans sa cavité, à la paroi de laquelle il est attaché; on appelle *ovaire* (*ovarium*, ou plus anciennement germen) ce corps ainsi creusé à l'intérieur; loge (loculus), sa cavité; *ovule* (*ovulum*), cet autre corps plus petit (g) renfermé dans cette cavité et adhérent à un point de sa paroi: c'est lui qui plus tard deviendra la graine. Le prolongement cylindrique (t)qui surmonte l'ovaire et semble le continuer (comme dans la fig. 323 la nervure médiane prolongée au-dessus du limbe), est ce qu'on nomme le *style* (*stylus*), et sa dilatation terminale (*s*) le *stigmate* (*stigma*). Nous retrouvons donc ici la feuille (fig. 323) que nous avons vue au centre de la fleur double, avec cette différence que son limbe s'est épaissi, et, par le rapprochement et la soudure de ses bords, a formé une cavité close ou loge dans laquelle s'est développé un ovule.

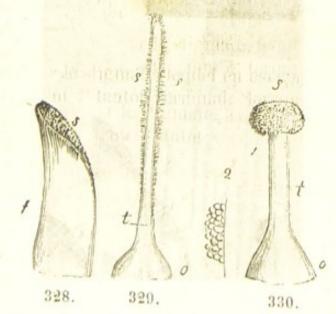

§ 380. Un carpelle complet se compose de ces trois parties : l'ovaire, ou cavité close, qui renferme un ou plusieurs ovules ; le style, prolongement supérieur rétréci et plein ; le stigmate, qui termine le style et s'en distingue assez souvent par un renflement, toujours par une différence de tissu. Quelquefois ce tissu, au lieu d'être porté sur un style qui l'écarte plus ou moins de l'ovaire, se trouve immédiatement ou presque immédiatement sur la surface extérieure de cet ovaire ; le style alors manque, ou est tellement raccourci, qu'on le considère comme nul, et l'on dit que le *stigmate* est *sessile* (fig. 362).

§ 384. L'ovaire, comme le limbe d'une feuille qu'il représente, se compose d'un parenchyme parcouru par des faisceaux fibro-vasculaires et revêtu par un épiderme. Le parenchyme, quelquefois très mince, est souvent assez épais, plus charnu et plus riche en sucs que celui de la feuille. L'épiderme extérieur, qui correspond à celui de la face inférieure de la feuille, est comme lui parsemé de stomates plus ou moins nombreux. Quant à l'épiderme intérieur qui tapisse la cavité de la loge, soustrait à l'action de la lumière, il est, en général, beaucoup plus pâle ou blanchâtre, et toujours dépourvu de stomates.

§ 382. Le style, qui paraît le plus souvent à la première inspection un cylindre plein, vu plus attentivement et avec un grossissement suffisant, se trouve avoir son axe occupé par un canal très étroit (fig. 325 c), terminé d'une part à la paroi interne de l'ovaire, de l'autre au stigmate. Mais ce canal lui-même est en général rempli par un tissu cellulaire différent de celui qui forme le corps du style, lâche, composé de petites vésicules saillantes (fig. 326 et 327 p) auxquelles viennent quelquefois plus tard s'en associer d'autrés

TISSUS CONDUCTEUR ET STIGMATIQUE.

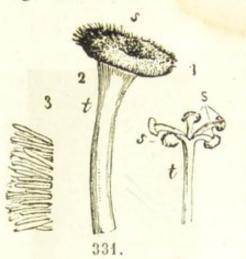
molles et comme filamenteuses (fig. 327 f). On a nommé tissu conducteur celui qui revêt ainsi ou obstrue le canal du style, ct nous verrons bientôt l'origine de ce nom.


320.

327.

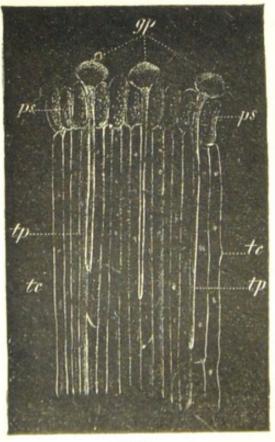
§ 383. C'est lui qui paraît former le stigmate, lequel en est comme la continuation et l'épanouissement : tantôt terminal, lorsque le

canal du style s'ouvre en s'évasant à son sommet seulement (fig. 325 s, 330 s); tantôt latéral, lorsque ce même canal, fendu dans une longueur plus ou moins grande, s'ouvre ainsi, soit sur un seul côté (fig. 328), soit sur les deux côtés en même temps (fig. 329 s). Il n'y a pas de démarcation entre le tissu conducteur et celui du stigmate; l'un passe insensiblement à l'autre. Le


326. Coupe transversale du style de l'Impériale (*Fritillaria imperialis*), composé de trois soudés ensemble. — *vvv* Trois faisceaux vasculaires, correspondant chacun à un des trois styles. — *pp* Papilles saillant dans la cavité du canal.

327. Structure du canal qui occupe le centre du style d'une Campanule. — cc Tissu cellulaire qui forme ses parois, parcourn par des faisceaux de trachées vv. — pp Utricules d'une autre forme, comme disloqués, qui tapissent cette paroi, et avec d'autres allongés et filamenteux f obstruent en partie le canal.

328. Stigmate unilatéral s de l'Asimina triloba. — t Style. 329. — bilatéral s d'un Plantain (Plantanovit)


329. — bilatéral s d'un Plantain (*Plantago saxatilis*). — o Ovaire. — t Style.
 330. 4 Stigmate s du Daphne laureola, terminant son style t. — o Sommet de l'o-

stigmate est donc composé d'un tissu cellulaire plus ou moins

lâche, dont le plus souvent les utricules les plus extérieurs s'allongent en papilles (fig. 330, 2), ou même en véritables poils (fig. 334, 3; 357 s). D'autres fois, il est plus compacte et plus uni à l'extérieur; mais, dans tous les cas, à l'époque de la fécondation, toutes ses cellules, ainsi que celles du tissu conducteur, se remplissent d'un suc liquide et ordinairement plus ou moins visqueux, qui suinte à la surface du stigmate ainsi tout humide et gluante.

§ 384. Lorsque l'anthère, en s'ouvrant élastiquement, émet au

332.

dehors le pollen qui la remplissait, les grains de ce pollen se trouvent naturellement jetés sur le stigmate, soit à cause du voisinage immédiat de ces deux organes dans la plupart des tleurs, soit que le pollen soit transporté au stigmate plus éloigné par le vent, ou par les insectes qui l'entraînent avec eux d'une partie de la fleur ou d'une fleur à l'autre. Une fois que le grain pollinique a touché le stigmate, il peut y être retenu, soit par les inégalités de sa surface, soit par la couche souvent visqueuse qui l'enduit ; et là commence une action que nous pouvons aisément prévoir, puisque nous avons vu ce qui

vaire. - 2 Une petite portion de la surface du stigmate, beaucoup plus grossie pour faire voir sa nature papilleuse.

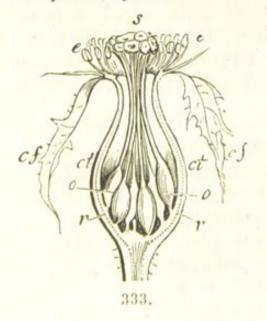
334. 4 Sommet du style t de l'Hibiscus palustris, partagé en cinq branches qui se terminent chacune par un stigmate s. — 2 L'une de ces branches plus grossie. — 3 Portion de la surface du stigmate beaucoup plus grossie encore pour faire voir ses papilles a'longées en manière de poils.

332 Portion de stigmate de l'Antirrhinum majus, au moment de la fécondation. — γs Cellules superficielles formant les papilles. — tc Cellules profondes, allongées, cylindriques, formant le tissu conducteur. — gp Grains de pollen fixés à la surface. — tp Tubes émis par chacun des grains de pollen s'enfonçant dans les interstices de ce tissu stigmatique.

MARCHE DU TUBE POLLINIQUE.

se passe au contact du grain sur une surface humide (§ 376). Par un effet d'endosmose, il absorbe l'humidité moins dense que la matière contenue dans son intérieur; il se gonfle lentement, sa membrane interne, plus extensible que l'externe, tend à se rompre ou à s'allonger, et comme l'action est fort lente, elle s'allonge en effet et fait saillie par les points les moins résistants du tégument externe, points que nous avons signalés dans la description du pollen comme autant de plis ou de pores disposés à l'avance. La saillie observée sous le microscope se montre d'abord comme une petite ampoule, puis à mesure que l'action se continue, comme un tube fermé à son extrémité libre. Ce tube s'engage dans les interstices du tissu cellulaire qui constitue la surface du stigmate, en traverse peu à peu l'épaisseur, et se trouve au milieu du tissu conducteur qui continue à lui fournir l'humidité nécessaire à l'action de l'endosmose. Le tube continue donc à s'allonger au milieu du style en vertu de l'extensibilité dont est douée sa paroi : peut-être, suivant quelques auteurs, par un mode d'accroissement comparable à celui des fibres radiculaires. Il chemine ainsi jusqu'à la cavité de l'ovaire. Or, sur les parois de celle-ci, le tissu conducteur se continue jusqu'au voisinage des ovules, qui, à cette époque, sont comme autant de petits sacs ouverts à l'une de leurs extrémités correspondante à ce tissu, celle que nous verrons désignée sous le nom de micropyle. Le tube pollinique vient donc enfin toucher ce micropyle, dans lequel il s'engage, et un rapport immédiat est ainsi établi entre le pollen et l'ovule, entre la production essentielle de l'étamine et celle du pistil.

La formation du tube pollinique ne s'aperçoit qu'à l'aide du microscope; sa progression fort lente est d'une observation beaucoup plus difficile encore, et l'on doit peu s'étonner qu'elle ait échappé à l'examen des botanistes, tant qu'ils n'avaient pas à leur disposition des instruments aussi parfaits qu'aujourd'hui, et que la connaissance de la structure de l'ovule d'une part, et du pollen de l'autre, était encore peu avancée. On croyait alors que le pollen se rompait immédiatement sur le stigmate; la marche et l'action ultérieure de la fovilla restaient dans le domaine des conjectures. La solution du problème se trouve donc avancée par ces découvertes toutes modernes; mais elle n'est pas encore complète, et les botanistes, tous à peu près d'accord jusqu'au point où nous sommes arrivés, cessent de l'être plus loin. Les uns admettent que le tube pollinique s'arrête en deçà ou au delà du micropyle; les autres, avec M. Schleiden, qu'il pénètre plus avant, franchit le micropyle en poussant devant lui la pointe du nucelle, et que c'est son extrémité même qui devient l'embryon. Quelle que soit l'origine de


25.

celui-ci, nous verrons plus tard (§ 563) ce que le microscope nous révèle sur son développement.

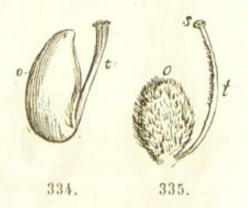
§ 385. Nous pouvons maintenant concevoir nettement la structure et les fonctions du carpelle : 4° Une portion, celle qui correspond à une feuille, est formée par l'ovaire et le style, et constitue le système nutritif : elle se lie, en effet, au végétal, et est continue au reste de la fleur et de la plante par ses vaisseaux, qui portent sur tous ses points jusqu'à son extrémité, et de dedans en dehors, les sucs nécessaires à leur entretien et à leur accroissement. 2° Une autre partie est formée par le stigmate et le tissu conducteur, et constitue le système fécondant. Elle conduit jusque dans la profondeur de l'ovaire un corps venant du dehors. Nous n'avons plus besoin maintenant d'expliquer pourquoi on a proposé et adopté ce nom de tissu conducteur.

§ 386. Après avoir exposé l'organisation et les fonctions du carpelle, considéré en général, examinons le pistil, composé de plusieurs carpelles réunis dans une même fleur.

Ils naissent tantôt à la même hauteur sur un même plan, disposés alors en verticille (*fig.* 338, 355); tantôt à des hauteurs inégales, disposés alors en spirale. C'est que, dans ce dernier cas, le cône ou réceptacle, qui en est tout chargé, s'est allongé en axe cylindrique

(comme dans le Magnolia ou le Tulipier [fig. 480]), ou conique (comme dans le Framboisier), ou renflé (comme dans le Fraisier); ou bien que sa surface dilatée, au lieu de rester plane, s'est évasée en coupe ou recourbée en urne (comme dans le Rosier [fig. 333]). Quelquefois, quoique la partie de l'axe qui porte les carpelles prenne un assez grand développement en longueur, ils n'occupent que son sommet, rapprochés ainsi et verticillés sur une étroite surface. C'est un de ces cas que nous avons cités (§ 300) où l'on observe,

entre différents verticilles de la fleur, des entre-nœuds plus ou moins allongés. Celui qui se montre ainsi au-dessous du pistil (fig. 338, 339 g) a reçu des noms différents, suivant ses différentes apparences, ses différents degrés de longueur ou d'épaisseur, qui varient beau-

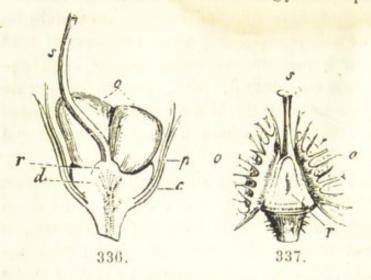

333. Fleur de Rosier, coupée verticalement de manière à montrer la position des carpelles au fond du calice sur la surface concave du torus r. - ct Tube du calice. - cf Son limbe partagé en folioles. - c Étamines. - o Ovaires surmontés chacun de son style qui fait saillie hors du tube calicinal et se termine par un stigmate évasé s.

PISTIL. STYLES.

coup suivant les plantes. On s'accorde assez généralement maintenant à lui donner celui de gynophore (gynophorum). Linné donnait alors au pistil l'épithète de stipité, appelant stipe ou support tout prolongement semblable sur lequel un organe se trouve ainsi exhaussé; et, si ce terme, pris en général, peut, par sa généralité même, donner lieu à quelque incertitude, il n'a aucun inconvénient dans les descriptions, où l'on sait toujours à quel organe il est appliqué.

§ 387. Nous ne devons pas passer sous silence une modification remarquable, où le torus porte non seulement l'ovaire, mais aussi le style, qui en semble indépendant. Pour bien la comprendre, il faut revenir un moment sur le style et l'ovaire, et chercher les positions diverses qu'ils peuvent avoir l'un relativement à l'autre. Nous avons supposé jusqu'ici, ce qui est en effet le cas le plus fréquent, le style *apicilaire*, c'est-à-dire continuant l'ovaire à son sommet (fig. 324). La feuille qui constitue le carpelle a conservé alors dans toute sa longueur une même direction ascendante; mais on peut

aussi supposer son limbe réfléchi d'une manière analogue à celle que nous montre la vernation réclinée de certaines feuilles (§ 414, fig. 447, 4); alors l'extrémité qui correspond à l'origine du style se trouvera reportée plus ou moins bas sur le côté, le style sera latéral (fig. 339). Elle se trouvera en bas à peu près (fig. 334) ou tout à fait (fig. 335), et le style sera basilaire si l'inflexion est

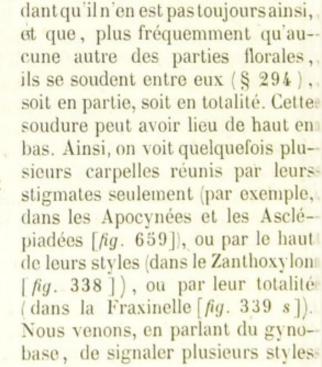


telle qu'une moitié supérieure du limbe se trouve ainsi repliée sur une inférieure. L'ovaire nous offre des exemples de tous ces degrés d'inflexion, tous les intermédiaires entre la position apicilaire et la position basilaire du style. Cette dernière s'observe dans le pistil du Fraisier (fig. 334) et de plusieurs autres Rosacées (fig. 335), famille qui nous fournirait aussi de bons exemples pour sa position latérale.

§ 388. Il est clair que le style basilaire se rapproche du torus à son point de départ ; il le touche si l'ovaire est sessile, et, si l'ovair s'enfonce un peu par sa base dans le torus, il y entraîne avec lu l'origine du style, qui dès lors semble partir plutôt du torus que de la surface ovarienne. Telle est la modification remarquable que nous voulions faire connaître, et à laquelle on a donné le nom de gynobase (gynobasium): l'ovaire est dit alors gynobasique. En général,

334. Un carpelle du Fraisier. — o Ovaire. — t Style. — s Stigmate.
 335. — du Chrysobalanus icaco. Même signification pour les lettres.

les styles de plusieurs ovaires gynobasiques, verticillés, se soudent :


5

339.

338.

ensemble et semblent en former un seul, une sorte de colonne centrale autour de laquelle les ovaires, sans autre style apparent, sont disposés en cercle. C'est ce qu'on observe dans les Ochnacées, dans toutes les Labiées (fig. 336),, dans la plupart des Borraginées (fig. 337).

§ 389. Nous avons jusqu'ici considéré les carpelles comme libres, c'est-à-dire indépendants les uns des autres. Nous savons cepen--

336. Pistil d'une Labiée (Lamium album), dont on a enlevé une partie de la fleur part une section verticale. On a enlevé aussi deux des quatre ovaires pour montrer l'insertion du style's sur le torus r. - o Les deux ovaires restants. - d Disque glanduleux placée au-dessous du pistil. - c Portion du calice. - p La corolle.

337. Pistil d'une Borraginée (Erythricium jacquemontianum), dont on a enlevé l'ovaire placé devant le spectateur, pour faire voir comment les ovaires oo s'insèrent obliquement sur un torus pyramidal r, d'où part le style s, évasé à son sommet en stigmate.

338. Pistil du Zanthoxylon fraxineum, consistant en cinq carpelles distincts exhaussés sur un gynophore g. — Les ovaires o portent chacun un style terminal renflé à son extrémité en un stigmate s, et les cinq stigmates restent longtemps soudés entre eux par les côtés.

339. Une portion du pistil de la Fraxinelle (*Dictamnus fraxinella*), où, des cinq carpelles, on en a enlevé deux pour laisser voir comment les styles s, nés sur le côté interne de ces carpelle se d'abord distincts, ne tardent pas à se rapprocher et se souder

PISTIL. OVAIRE.

intimement unis, quoique correspondant à des ovaires distincts.

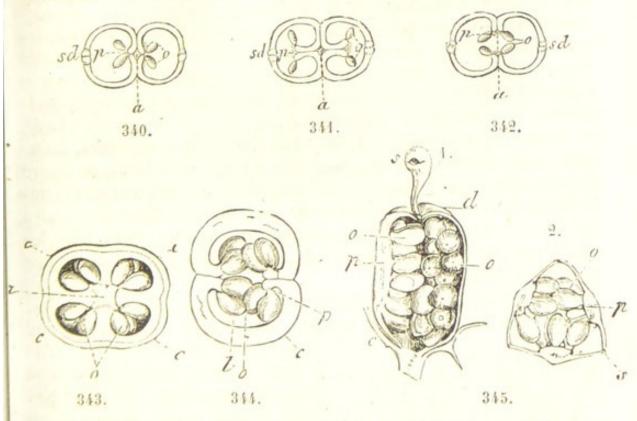
§ 390. Mais, bien plus ordinairement, la soudure marche de bas en haut, les ovaires se réunissant plutôt que les styles, les styles plutôt que les stigmates. Les ovaires ainsi cohérents peuvent l'être par leur partie inférieure seulement et rester distincts à leur sommet (comme dans la Rue, par exemple); c'est ce qu'indique la description (ovaria plura basi tantùm coalita), ou bien elle se sert du terme d'ovaire à plusieurs lobes. Lorsque plusieurs ovaires sont confondus en un corps unique, c'est ce corps qui prend le nom d'ovaire.

Autrefois on le considérait comme un organe unique, diversement partagé à l'intérieur, et alors on opposait l'ovaire simple ou unique (celui qui résultait ou de l'existence d'un carpelle unique ou de la soudure de plusieurs) à l'ovaire multiple, c'est-à-dire au cas de plusieurs carpelles libres dans une même fleur. Aujourd'hui on continue généralement à se servir des mêmes termes, quoiqu'on y attache une valeur différente et que l'ovaire simple doive être, en réalité, seulement celui qui appartient à un carpelle libre ; l'ovaire composé, celui qui est formé par la réunion de plusieurs carpelles en un seul corps. C'est ce qu'il ne faut pas perdre de vue dans l'usage des livres de botanique écrits à des époques différentes.

Chacun de ces carpelles isolés présentait une face extérieure ou dorsale, et deux faces latérales convergeant l'une vers l'autre et unies à angles du côté qui regarde le centre de la fleur. C'est par ces angles et par ces faces latérales que les carpelles se sont soudés ensemble pour former un ovaire plus ou moins simple en apparence. Il en résulte que, si l'on coupe celui-ci en travers, on le trouvera partagé en cinq cavités séparées par les faces latérales, qui, soudées deux à deux, forment ainsi autant de cloisons intérieures, dont le plan est nécessairement parallèle à l'axe de la fleur; et qui alternent avec les styles, puisqu'elles répondent aux côtés de la feuille carpellaire, tandis que le style répond à son milieu. Chacune de ces cavités est la loge du carpelle correspondant et porte le même nom de loge (loculus): de la l'épithète de multiloculaire (multilocularis) qu'on donne à un pareil ovaire; de bi, tri, quadri, quinquéloculaire, suivant que le nombre des loges est de 2, 3, 4, 5, etc. Le nombre des cloisons (dissepimenta) est égal à celui des loges, et elles sont formées de deux lames plus ou moins intimement accolées. Le nombre des styles, lorsqu'ils restent distincts, est aussi le même, et

tous les cinq en un seul. — o Ovaires dont les deux de devant montrent leur face dorsale d et l'une de leurs faces latérales l. — A la base du gynophore g, on voit les cicatrices c marquant l'insertion du calice des pétales et des étamines.

peut à l'extérieur indiquer celui des loges qu'on trouvera à l'intérieur.


§ 394. Il n'y a donc aucune difficulté pour déterminer le nombre des carpelles qui concourent à la formation d'un ovaire, soit au moyen des styles, tant qu'ils restent simples et séparés; soit au moyen des cloisons, lorsqu'elles conservent leur intégrité. Mais l'un de ces moyens peut venir à manquer. Ainsi, par exemple, dans la plupart des Caryophyllées, où les cloisons disparaissent de très bonne heure, on est néanmoins averti, par la présence de plusieurs styles, que l'ovaire est réellement composé de plusieurs feuilles carpellaires, par exemple, de deux dans l'OEillet (fg.574), de trois dans l'Alsine (Mouron des oiseaux), de cinq dans la Nielle ou le Cerastium (fg. 346 s). Dans beaucoup de cas, au contraire, ce sont les styles qui cessent d'indiquer le nombre des loges, parce qu'ils se soudent en un seul, ou qu'en se ramifiant ils semblent en représenter un plus grand nombre; alors on est obligé de couper l'ovaire, et le nombre des cloisons ou des loges constate celui des carpelles.

§ 392. Mais il peut arriver que ces deux indications fassent défaut à la fois, que dans le même pistil les cloisons manquent et plusieurs styles se confondent en un seul. Alors, en général, on pourra encore déterminer le nombre des feuilles carpellaires dont l'ovaire est composé par celui des lignes placentaires. On nomme ainsi la ligne que dessine ordinairement sur la paroi interne de la loge l'attache des ovules. On conçoit en effet que ceux-ci ne peuvent puiser leur nourriture que dans des sucs qui leur arrivent tout élaborés du reste de la plante, et principalement des parties situées au-dessous d'eux. Des faisceaux fibro-vasculaires, qui ont traversé ces parties, viennent donc se distribuer dans les carpelles, et envoient un rameau particulier à chacun des ovules, qui se trouve ainsi lié au système général. A ces faisceaux venant de bas en haut, s'associe une traînée de tissu conducteur venant de haut en bas. Cette union des deux tissus détermine, sur un point quelconque des parois de la loge, une saillie plus ou moins marquée, à laquelle se rattachent les ovules qu'elles renferment et qu'on a nommée placenta. Quelques auteurs, réservant ce nom à la saillie qui correspond à l'attache d'un seul ovule, donnent celui de placentaire (placentarium) au corps formé par la réunion de plusieurs placentas portant plusieurs ovules. De ce mot vient aussi celui de placentation, par lequel on désigne la distribution des ovules, et, par conséquent, des placentas, dans un ovaire simple ou composé.

§ 393. Dans le plus grand nombre de cas, la ligne des placentas suit les bords de la feuille carpellaire, et par conséquent lorsque cette feuille est complétement repliée de manière que ses bords se tou-

PISTIL. PLACENTATION.

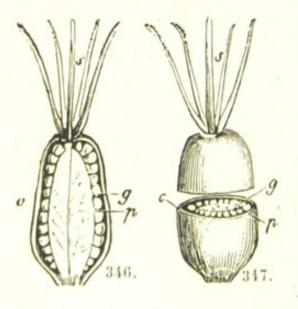
chent et s'unissent en fermant ainsi le carpelle ou la loge, et formant par cette union un angle qui correspond à l'axe de la fleur, c'est cet angle qu'occuperont les placentas : on dit alors *placentation axile*. Si l'ovaire est multiloculaire, cet angle se trouvera, pour chaque loge, à la réunion interne de deux cloisons voisines (*fig.* 340, 343), qui peuvent même, une fois parvenues à l'axe, se replier plus ou moins de dedans en dehors dans l'intérieur de la loge (*fig.* 341).

§ 394. Mais supposons que les bords des feuilles carpellaires repliés ne s'avancent pas jusqu'à l'axe et ne forment ainsi, dans l'intérieur de l'ovaire, que des cloisons incomplètes (fig. 342, 344), ou même qu'ils ne se replient pas du tout, se soudent non plus par une

340, 344 et 342. Tranches horizontales d'ovaires, composées de deux feuilles carpellaires dont les bords repliés se rencontrent à l'axe a, dans 340; se réfléchissent dans le dedans de la loge après s'être rencontrés à l'axe, dans 344; ne parviennent pas jusqu'à l'axe, dans 342. — a Ovules. — p Placentas. — sd Sutures dorsales.

343. Tranche horizontale de l'ovaire d'un Fuchsia (F. coccinea). — cecc Paroi de l'ovaire ou réunion de quatre feuilles carpellaires qui le constituent. — a Axe quadrangulaire soudé avec les cloisons, les liant entre elles. — σ Ovules attachés au bord interne des cloisons.

344. Tranche horizontale de l'ovaire de la Petite Centaurée (*Erythræa centaurium*). — c Paroi de l'ovaire ou feuille carpellaire. — p Son bord qui forme le placenta et porte les ovules o. — l Cavité ou loge.


345. 4. Pistil de la Pensée (Viola tricolor), coupé verticalement pour montrer l'altache des ovules σ aux parois. — On en aperçoit deux rangées, l'une de face, l'autre de profil, et l'on voit qu'à celle-ci correspond une ligne de la paroi épaissie ou placenta $p_{-} - e$ Calice. — d Ovaire. — s Stigmate terminant un style court.

2. Tranche horizontale du même. - p Placenta. - o Ovules. - s Suture.

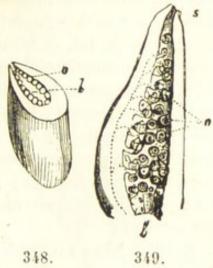
face latérale, mais seulement par leurs bords (fig. 345, 2), et qu'ainsi il n'y ait pas de cloison : les lignes placentaires qui suivent ces bords se trouveront par là reportées à une distance plus ou moins grande de l'axe, et se montreront le long des cloisons incomplètes dans le premier cas (fig. 344), sur les parois mêmes de la loge dans le second (fig. 345, 2): c'est ce qu'on a appelé la placentation pariétale.

Dans ce cas, chaque ligne placentaire correspond aux bords de deux carpelles différents, tandis que, dans le cas précédent, elle correspondait aux deux bords d'un même carpelle. Les placentas axiles sont donc alternes par rapport aux placentas pariétaux; et cette vérité théorique se trouve souvent vérifiée en fait. Dans des ovaires à placentation axile (ceux de plusieurs Méliacées, par exemple) quelquefois les cloisons se rétractent à une certaine distance de l'axe, et chaque série d'ovules qui, dans les ovaires bien constitués, occupait l'angle interne de la loge et alternait avec les cloisons, se sépare en deux séries longitudinales dont chacune s'accole à une série semblable de la loge voisine pour former avec elle une ligne placentaire sur le bord libre de la cloison devenue incomplète. Dans tous les cas, il est clair que toute ligne placentaire est essentiellement une association binaire.

§ 395. Supposons, en troisième lieu, qu'avec les placentas axiles, comme dans le premier cas, la partie des cloisons située entre eux

et les parois de l'ovaire (fig. 575) s'arrête de très bonne heure dans leur développement, ne suive pas celui de ces autres parties et ne tarde pas à se rompre et à disparaître ; les placentaires avec leurs ovules formeront alors une masse sans connexion latérale apparente avec les parois (fig. 346, 347, 574, 576); les diverses loges, qui ne sont plus séparées par des cloisons, se confondront en une cavité unique au milieu de laquelle s'élèvera le corps placentaire (p) chargé

de ses ovules (o) : c'est ce qu'on appelle placentation centrale. Nous avons donc trois modes principaux de placentation : l'axile,


346. Pistil du *Gerastium hirsutum* coupé verticalement. — o Ovaire. — p Placen-taire. — g Ovules. — s Styles.

^{347.} Le même, coupé horizontalement, dont on a éloigné les deux moitiés ainsi séparées, de manière à faire voir l'intérieur de la loge avec son placentaire central p tout t chargé d'ovules g.

PISTIL. PLACENTATION.

la centrale et la pariétale ; les deux dernières différant de la première, l'une par la destruction des cloisons, l'autre par leur formation incomplète.

§ 396. Cependant les deux derniers modes ne reconnaissent pas invariablement l'origine que nous leur avons assignée, et d'après laquelle les placentas suivraient toujours les deux bords de la feuille carpellaire. Dans quelques exemples, rares il est vrai, c'est à sa nervure moyenne, et non à ses bords, qu'ils paraissent correspondre, et dans quelques autres, comme le *Butomus* (*fig.* 348 et 349), on les voit s'éparpiller sur toute la

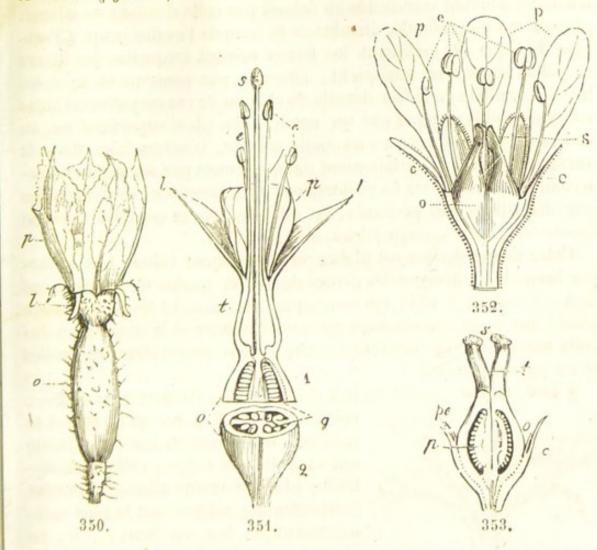
301

surface de la loge. Voilà deux modifications de la placentation pariétale auxquelles ne peuvent s'appliquer les règles précédemment énoncées.

On peut concevoir aussi pour la placentation centrale une autre origine que la première dont nous avons parlé (§ 395). Admettons, en effet, que le placentaire se développe tout à fait indépendant de la feuille carpellaire à laquelle jusqu'ici nous l'avons trouvé toujours associé, que plusieurs de ces feuilles verticillées autour du corps placentaire qui continue et termine l'axe de la fleur se courbent autour de lui en se soudant entre elles et l'enveloppent sans le toucher. Nous avons une placentation centrale plus essentielle que celle qui a été précédemment expliquée: car elle aura été telle dès le principe, tandis que l'autre l'est devenue par le développement inégal des parties, d'où est résultée la disparition des cloisons, dont souvent même encore on trouve plus tard des vestiges à la partie inférieure de l'ovaire (dans beaucoup de Caryophyllées, par exemple); car elle peut exister même dans un carpelle simple, tandis que l'autre exige pour sa formation la réunion de plusieurs carpelles. Ce mode de placentation centrale essentielle paraît être celui des Primulacées (fig. 628, 629), Santalacées, Olacinées, etc.

§ 397. Nous avons dit que la réunion de plusieurs carpelles en un seul ovaire ne s'observe qu'entre ceux qui se trouvent verticillés sur un même plan, et qu'en conséquence l'axe de l'ovaire et ses cloisons sont parallèles. On peut cependant concevoir aussi la réunion de plusieurs carpelles situés à des hauteurs différentes, mais rappro-

348-349. Un des carpelles du Jone fleuri (Butomus umbellatus) coupé dans deux sens. — l Loge. — o Ovules. — s Stigmates.


348. Sa coupé transversale. 349. — longitudinale.

chées; dans ce cas, les faces en contact par lesquelles les soudures doivent avoir lieu ne sont plus les latérales, mais un carpelle se joindra par sa face supérieure avec l'inférieure de celui qui se trouve au-dessus de lui, et les cloisons seront horizontales ou obliques. Ce cas, extrêmement rare, paraît se présenter dans l'ovaire du Grenadier, divisé assez irrégulièrement en plusieurs étages de loges. Le plus ordinairement, lorsque ces sortes de soudures ont lieu entre les carpelles disposés en spirale sur un axe allongé, ils ne se confondent que par leurs bases et restent distincts dans la plus grande partie de leur étendue, de manière à ne laisser aucun doute sur leur pluralité, comme on peut le voir dans plusieurs Magnoliacées, par exemple.

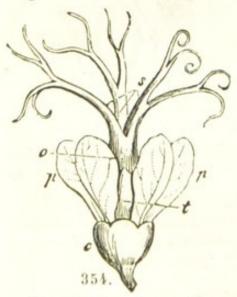
§ 398. Nous avons déjà vu (§ 295) que les carpelles peuvent se souder non seulement entre eux, mais aussi avec les autres verticilles de la fleur, et qu'alors c'est en général avec le calice ; de telle sorte que les verticilles intermédiaires se trouvent compris dans cette soudure, et que toutes les parties de la fleur se trouvent ainsi confondues inférieurement en un seul corps. Les termes de calice adhérent et d'ovaire adhérent indiquent tous deux également cette circonstance : on la désignait autrefois sous ceux de calice supère et d'ovaire infère, parce qu'alors le limbe (fig. 3501) qui constitue la portion distincte du calice paraît naître au-dessus de l'ovaire (o), avec lequel se confond sa portion inférieure ou son tube. Le tissu de l'ovaire et celui du calice sont dans ce cas continus, quoique souvent quelques différences sensibles établissent la démarcation de l'un à l'autre; mais on ne laisse pas de les décrire comme l'ovaire, quoique l'épiderme et la couche sous-jacente appartiennent véritablement au calice. Quelquefois leur union n'a lieu que dans leur portion inférieure, et ils se dégagent l'un de l'autre supérieurement, ce qu'on indique par l'expression de calice ou d'ovaire semi-adhérent (fig. 352, 353). Par opposition, lorsqu'ils restent complétement indépendants l'un de l'autre, on les dit libres; autrefois on disait calice infère et ovaire supère. C'est en général un caractère important que ce rapport du calice à l'ovaire, d'autant plus que l'adhérence entraîne nécessairement la périgynie ou l'épigynie des étamines; il faut donc le constater avec soin en commençant l'examen de toute fleur. On reconnaît souvent avec facilité l'ovaire adhérent au renflement qui se prononce au-dessous des divisions calicinales (fig. 350 et 354 o). La section transversale de ce renflement constate si l'on a un seul corps creusé d'une ou de plusieurs loges parfaitement closes, comme dans la fleur du Pommier, par exemple. En coupant de même celle du Rosier, où l'on a un renflement si considérable, on voit au contraire une cavité ouverte à son sommet, et toute cou-

PISTIL. OVAIRE.

verte de carpelles distincts (fig. 333). On prononcera donc qu'il y a un ovaire adhérent dans le Pommier, plusieurs ovaires libres dans le Rosier (fig. 333).

350. Fleur du Melon (*Cucumis melo*). — o Renflement inférieur correspondant à l'ovaire adhérent avec le calice — l Partie supérieure du calice dépassant l'ovaire ou limbe. — p Corolle.

351. Fleur du Fuchsia coccinea, séparée en deux moitiés au moyen d'une section horizontale menée par le milieu de son ovaire o. — On a laissé intacte la moitié inférieure 2 pour faire voir les quatre loges avec les ovules attachés à leur angle interne : la fig. 343 montre cette tranche encore plus grossie. — On a coupé verticalement la moitié supérieure 4 pour montrer des ovules g disposés en séries dans chaque loge ; le calice confondu inférieurement avec l'ovaire se prolongeant au-dessus de lui en un tube t, et se divisant à son sommet en plusieurs segments l; les pétales p insérés sur ce tube à la hauteur où il se divise ; les étamines e insérées de même, alternativement plus grandes et plus petites; le style s'élevant du sommet de l'ovaire et terminé par un stigmate ovoïde s.


352. Feur d'une Saxifrage (Saxifraga geum), coupée verticalement pour montrer son ovaire o adhérent jusqu'à la moitié de sa hauteur avec le calice c - p Pétales. - e Étamines. - s Styles et stigmates.

353. Pistil d'une autre plante de la même famille (*Hoteia Japonica*), coupé verticalement de manière à montrer l'intérieur de ses deux loges. — o Deux ovaires soudés en un seul adhérent jusqu'à la moitié de sa hautenr avec le calice c. — l Styles. — s Stigmates. — p Placentas axiles et saillants, tout couverts d'ovules. — pc Base des pétales.

§ 399. La forme de l'ovaire, soit libre, soit confondu avec le calice, varie beaucoup. La plus commune est celle d'un sphéroïde, ou plus souvent d'un ovoïde. Lorsqu'il y a plusieurs loges, leur existence est souvent manifestée au dehors par celle d'autant de sillons, plus ou moins profonds, étendus de la base de l'ovaire jusqu'à l'origine du style et indiquant les lignes suivant lesquelles les divers carpelles soudés se réunissent, alternes par conséquent avec les loges. Le milieu de la face dorsale de chacun de ces carpelles ou loges est quelquefois marqué par un autre sillon plus superficiel ou, au contraire, par une côte ou un angle saillant. D'autres fois, toute la surface de l'ovaire, parfaitement unie, n'accuse pas ses divisions intérieures. Lorsque les faces dorsales, très bombées, sont séparées par des sillons très profonds, on dit que l'ovaire est lobé (ovarium uni-bi-tri-quadri-quinquelobum, etc.).

Cette même surface est glabre ou diversement velue. Les termes par lesquels on désigne les divers degrés et modes de villosité ont déjà été définis (§ 474). On remarque fréquemment dans une même plante une assez grande analogie pour la nature et la disposition des poils entre ceux qui couvrent l'ovaire et ceux qui revêtent les feuilles et les jeunes pousses.

§ 400. Style. - Le style a pris son nom du mot grec στύλος,

colonne ou stylet, parce qu'en effet il se présente fréquemment sous une forme qui rappelle ces corps, celle d'un cylindre plus ou moins allongé, souvent graduellement aminci, soit le plus ordinairement de bas en haut, soit, au contraire, quelquefois de haut en bas. Le style appartenant à un carpelle est souvent indivis, souvent aussi tend à se diviser par bifurcation (fig. 228, 2 s), et quelquefois chaque branche de cette fourche se divise de même à son tour (fig. 354 s).

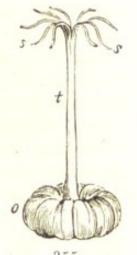
Quand l'ovaire est à plusieurs loges, les styles qui leur corres, pondent peuvent se souder en un seul dans toute leur longueur; et dans ce cas, comme dans celui du style indivis pour un carpelle unique, on dit le *style simple* (*stylus simplex* [*fig.* 354]). D'autres fois ils ne se confondent qu'en partie, par l'inférieure généralement, et alors on décrit un style multiparti ou multifide (*fig.* 355), suivant la

354. Fleur femelle d'une Euphorbiacée (*Emblica officinalis*). — c Calice. — pp Pétales. — t Tube membraneux entourant l'ovaire. — o Ovaire surmonté de trois styles s chacun deux fois bifurqué.

PISTIL. OVAIRE.

hauteur plus ou moins grande jusqu'à laquelle les styles sont soudés. On indique leur nombre par le mot ou le chiffre joint à la désinence parti ou fide (bifidus, tripartitus, 4-fidus, 6-partitus, etc.) : ce sont

les expressions usitées dans toutes les descriptions les plus anciennes ; dans les plus modernes on trouve souvent le même fait exprimé par 2-3-4, etc., styles soudés jusqu'au milieu, ou au-dessus ou audessous (styli usque medium, supra medium, infra medium coaliti). Enfin, quoique les carpelles soient complétement réunis, les styles peuvent rester tout à fait indépendants (fig. 347, 354, 357), et l'on décrit alors 2-3-4-5-plusieurs styles libres, ou bien un ovaire à plusieurs styles (ovarium 2-3-multistylum). Ces styles d'un ovaire composé, soit qu'ils restent distincts, soit qu'ils se soudent à la base, peuvent être eux-mêmes simples (fig. 347) ou


divisés (fig. 354). Nous avons déjà dit que leur nombre peut, en général, indiquer à l'extérieur celui des carpelles ou des loges, et qu'ils répondent à l'angle interne de celles-ci, alternant par conséquent avec les cloisons.

Les styles varient par leur forme assez souvent différente de celle que nous avons décrite comme la plus générale : dans l'Iris ils prennent celle d'un pétale (fig. 503 s). Ils varient aussi par leur longueur et leur direction (qu'on a l'habitude de comparer à celle des autres parties de la fleur, mais plus particulièrement des étamines), par l'état de leur surface glabre ou velue. Ils se hérissent quelquefois de poils différents de ceux des autres surfaces et qu'on a nommés collecteurs, parce qu'ils paraissent destinés à recueillir le pollen (fig. 673). Dans la grande famille des Composées, ces

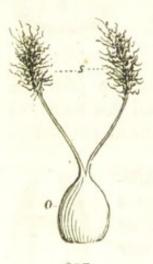
poils assez roides couvrent le pourtour du style à une certaine hauteur et dans une étendue plus ou moins grande (*fig.* 356 *pc*, 683, 684, 685, 686, 687, 688, 689); et comme ce style, en se développant plus tard que les étamines, s'élève au milieu des anthères qui l'entourent immédiatement, ces poils en passant agissent sur les

355. Pistil d'une Mauve (Malva alcea). — o Ovaires au nombre de neuf, soudés en un seul, sur lequel se dessinent autant de sillons. — t Colonne formée par les neuf styles soudés entre eux jusque vers leur sommet, où ils se séparent en divergeant et se réfléchissant, terminés chacun par un stigmate s.

356. Sommet du style t d'un Aster, partagé en deux branches terminées chacune en un cône couvert de poils collecteurs pc. — Le stigmate s s'observe au-dessous, sur la face interne des branches, sous la forme d'une petite bande.

305

355,

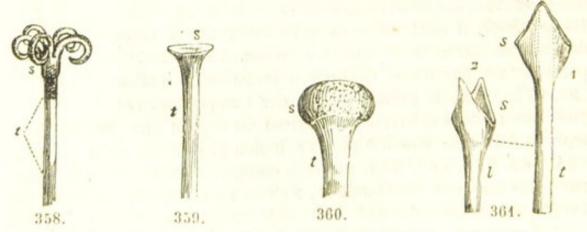

356.

t

BOTANIQUE,

loges de celles-ci comme des sortes de brosses, et se chargent ainsi de la poussière pollinique.

§ 404. Stigmate. — Nous avons vu que, dans un carpelle simple, le stigmate peut être sessile, c'est-à-dire situé immédiatement sur l'ovaire (§ 380 [fig. 580 s]), ou bien porté sur le style (§ 383), soit à son extrémité supérieure seulement (fig. 325, 330, 334), soit sur ses côtés (fig. 329), soit sur un de ses côtés seulement (fig. 328), cas auquel il peut regarder ou le dedans ou le dehors de la fleur. Nous avons vu, de plus, que les utricules dont il se compose tantôt forment une surface unie, tantôt s'allongent en saillies plus ou moins prononcées, en simples papilles ou en véritables poils. Ceux-ci sont quelquefois ramassés en une sorte de pinceau ou bien de goupillon, ou dispersés de manière à imiter le duvet d'une plume (stigmate plu-


357.

358.

mcux), comme dans un grand nombre de graminées (fig. 357 s, 488 s).

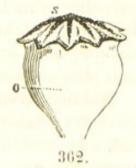
Lorsque le style se divise, le stigmate doit se partager également pour former la terminaison de chacune de ces divisions, et il est probable même que souvent c'est lui seul qui la constitue. Il tend en effet à se lober par bifurcation, comme on peut le voir dans les Graminées et les Composées où il est double, quoiqu'il n'y ait qu'une loge unique.

Mais le plus souvent, ses divisions, de même que celles du style, indiquent qu'on a affaire à un pistil composé de plusieurs carpelles sou-

357. Pistil d'une Graminée (Cynodon dactylum). — o Ovaire. — s Stigmates. 358-361. Stigmates s de diverses fleurs, avec le sommet du style t qui les porte.

--- d'une Campanule (Campanula rotundifolia).

359. — d'un Arbousier (Arbutus andrachne).


360. — de la Belle-de-nuit (*Mirabilis jalapa*). 364. — d'une Bignone (*Bignonia pandorea*). Les deux lamelles naturellement sont appliquées l'une contre l'autre comme dans la fig. 1. Elles sont écartées artificiellement dans la fig. 2.

PISTIL. STIGMATE.

dés en un seul, ainsi que leurs styles. Dans ce cas, il peut arriver que les stigmates seuls ne participent pas à cette soudure et forment à l'extrémité du style simple un corps composé d'autant de lobes qu'il y a de loges à l'ovaire. Ainsi le stigmate trilobé ou quinquéfide des Campanules (fig. 358, 673 s) correspond à trois ou cinq loges; le stigmate bilobé des Scrofularinées, des Acanthacées, des Bignoniacées (fig. 364), à deux loges, etc., etc. Ces lobes affectent diverses formes; ils conservent ce nom lorsqu'ils sont épais et obtus; ils prennent celui de lanières (s. bifide, comme dans les Labiées [fig. 636 s], les Composées [fig. 268 s et 356]; trifide, comme dans le Polemonium; multifide [fig. 602 s], etc.), lorsqu'ils sont plus allongés et aigus; de lamelles (s. bilamellé, comme dans le Mimulus, les Bignonia lactiflora, pandorea, etc. [fig. 364]), lorsqu'ils sont aplatis en palettes.

D'autres fois, les stigmates se soudent eux-mêmes en un seul corps ou parfaitement uni à sa surface, ou souvent marqué d'autant de sillons superficiels et rayonnants qu'il entre de stigmates partiels dans sa composition. On le dit en tête (s. capitatum) lorsqu'il est obtus et plus large que le style qu'il surmonte : il peut être globuleux (par exemple, dans la Belle-de-nuit [fig. 360, 330 s]), hémisphérique, ovoïde (fig. 354 s), polyédrique, en massue, etc.; sou-

vent plane à son sommet (comme dans l'Épinevinette) ou même élargi en un disque qui repose par son centre sur le sommet du style (s. peltatum, comme dans le Sarracenia, l'Arbousier, etc. [fig. $359 \ s$]). Le stigmate pelté et sessile des Pavots (fig. $362 \ s$) se compose de deux parties : l'une formée de rayons d'un tissu papilleux, qui sont véritablement la portion stigmatique ; l'autre, d'une

sorte de bouclier crénelé dans son contour et lisse à sa surface supérieure, sur laquelle sont portés ces rayons, et qui semble par conséquent représenter une réunion de styles élargis stigmatifères tout le long de l'une de leurs faces.

Les stigmates terminant les styles vraiment simples, ceux qui répondent à un seul carpelle ou à une seule loge, doivent, s'ils sont simples eux-mêmes, s'opposer aux loges avec les cloisons ; s'ils se bilobent, leurs lobes s'opposent au contraire à celles-ci.

§ 402. Appendice. — Dans tout ce qui précède, nous avons suivi la théorie généralement admise, qui considère l'ovaire comme formé par une ou plusieurs feuilles carpellaires, tantôt indépendantes des folioles calicinales, tantôt soudées avec elles, et par conséquent

362. Pistil du Pavot (*Papaver somniferum*). — o Ovaire. — s Bouclier chargé de stigmates rayonnants.

formé dans tous les cas par des organes foliaires. L'axe s'arrête-t-il, en effet, constamment à la naissance de l'ovaire, et n'intervient-il jamais dans sa composition? C'est ce dont il est permis de douter. Déjà nous l'avons vu constituer par son prolongement les placentaires centraux essentiels (§ 396) et porter ainsi immédiatement les ovules; mais il serait possible que ce ne fût pas seulement dans sa direction primitive et ascendante que ce développement eût lieu; qu'il pût aussi se dilater sur les côtés en plateau, et même s'évaser en une cupule qu'on aurait prise pour la base du calice ou de l'ovaire.

Nous avons signalé de pareilles modifications de l'axe dans les inflorescences; nous l'avons vu porter les fleurs sur son sommet élargi en plateau (§ 265, fig. 494, 2) ou recourbé en coupe (fig. 493), ou même se prolonger en les enveloppant complétement (§ 266, fig. 192). En comparant les fleurs aux inflorescences, nous pourrions y reconnaître tous les degrés analogues, voir les carpelles portés sur l'axe allongé en cylindre, et comme dans les Magnoliacées (fig. 480) et les Renoncules (fig. 586), en cône comme dans les Ronces (fig. 618) ou certaines Borraginées (fig. 337), épaissi en globe comme dans les Fraisiers, élargi en disque comme dans les Potentilles, ou même évasé en coupe comme dans d'autres Rosacées. Nous serions tenté de le retrouver enveloppant complétement les carpelles dans la Rose (fig. 333) comme il enveloppe les fleurs dans la Figue, et enfin, par la soudure de ces diverses parties en un corps unique, nous arriverons à la Poire qui offrirait un ovaire adhérent, non plus au calice, mais à l'axe prolongé tout à l'entour.

Maintenant supposons que les feuilles carpellaires d'un ovaire multiloculaire naissent, ainsi que les folioles calicinales, non pas tout à fait à la base de la dilatation de l'axe ainsi évasé, mais plus ou moins haut sur sa surface interne, la totalité ou une partie des parois des loges se trouvera appartenir à cet axe ; les feuilles carpellaires ne fournissent plus que la portion supérieure de cette paroi (fig. 352), ou même que les styles (fig. 626).

C'est ce qu'admet M. Schleiden, qui fait ainsi, dans la composition de la fleur, jouer à l'axe une portion du rôle qu'on réservait exclusivement aux feuilles, et qui a cherché à déterminer dans un grand nombre de cas ce qui appartient soit à l'un, soit aux autres. Pour cette détermination, il s'appuie sur leur mode inverse de développement, et, remarquant que la tige ou axe croît de bas en haut, la feuille de haut en bas, toutes les fois que ses études organogéniques lui montrent un développement dans le premier sens, il pense que c'est une dépendance de l'axe; dans le second sens que c'est un organe foliaire. Dans tous les cas, les ovules qu'il considère comme des bourgeons modifiés, partent toujours de l'axe ou de ses ramifi-

NECTAIRES.

cations constituant les placentaires, soudés ou non avec les feuilles carpellaires.

On conçoit quelles importantes modifications cette manière de voir, une fois admise, introduirait dans celle d'interpréter et d'évaluer les différents organes des différentes fleurs; en un mot, dans la morphologie. Dans beaucoup de cas, le fruit serait quelque chose de distinct de la fleur, comme le voulaient les plus anciens botanistes; le calice redeviendrait, conformément à leurs idées, réellement infère ou supère ; l'insertion des étamines se ferait sur l'axe dans beaucoup de fleurs, où on la croyait calicinale, épigyne même, etc., etc. Avec la théorie, la terminologie et la classification devraient être changées dans un certain nombre de points. Avant d'opérer une pareille révolution, il faut constater la vérité par de nombreuses et minutieuses études, et faire l'histoire complète du développement des organes dans toute la série des familles végétales. Jusqu'à l'accomplissement de cette grande œuvre, il nous paraît plus sage de conserver la théorie et la langue encore généralement admises, et c'est ce que nous avons fait. Mais nous avons dû signaler en peu de lignes ce point de yue qui ouvre un nouveau champ aux recherches, et peut, dans un avenir plus ou moins prochain, faire subir à la science des changements auxquels il est bon que les esprits soient préparés à l'avance.

NECTAIRES.

§ 403. On trouve dans beaucoup de fleurs des parties qui n'offrent pas la structure et la forme de celles à l'examen desquelles nous nous sommes arrêtés, les folioles calicinales, les pétales, les étamines, les carpelles : on les a nommées *parties accessoires*. Nous nous en sommes occupés déjà (§ 343), et nous avons reconnu que c'étaient le plus souvent quelques unes de ces autres parties essentielles déguisées par des dégénérescences et des transformations, mais que sous ce déguisement il était encore possible de les déterminer d'après la situation qu'elles occupent dans la fleur et leur rapport de position avec les verticilles voisins: si elles alternent avec les parties de ces verticilles, ce sont des organes transformés ; si elles leur sont opposées, ce sont de simples dédoublements (§ 305). Les étamines surtout sont sujettes à ces transformations, et multiplient le nombre de ces parties accessoires.

Celles-ci se présentent sous des formes très variées, sous celle de filets, de lanières, de lames vertes ou colorées, épaisses ou membraneuses, d'écailles. Aussi les décrit-on souvent sous ces différents noms, qui expriment leur apparence. Mais, très fréquemment, c'est

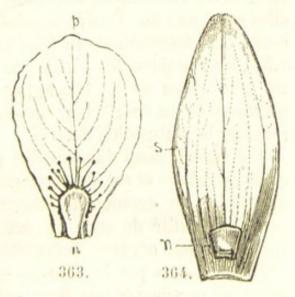
3

la forme de glandes qu'elles prennent, et alors elles en exercent plus ou moins manifestement les fonctions, devenant le siége d'une sécrétion dont le produit mielleux a reçu le nom de nectar. De là celui de *nectaire (nectarium)* par lequel beaucoup d'auteurs les désignent. Et, comme leur analogie avec les parties accessoires d'une structure différente est incontestable, on a souvent avec Linné étendu ce nom de nectaire à toutes celles-ci, lors même qu'elles ne sont nullement des organes nectarifères.

Mais, d'une autre part, ces mêmes sécrétions se remarquent souvent sur quelque point des organes de la fleur, du reste parfaitement conformés, sur de vrais pétales ou de vraies étamines; et Linné appelle aussi nectaires les siéges de ces sécrétions, de telle sorte qu'en adoptant sa terminologie on se trouve conduit à appliquer la même dénomination à des parties qui n'ont aucun rapport entre elles; par exemple à quelque portion glanduleuse d'un pétale, parce qu'elle sécrète; et à l'ensemble de quelque filet ou quelque écaille, quoiqu'ils ne sécrètent pas.

Il semble donc préférable de s'en tenir à l'étymologie, et de réserver le nom de nectaires aux points de la fleur où se montre cette formation du nectar, quelles que soient leur position et leur origine. C'est dans ce sens plus restreint qu'ils sont définis par la plupart des auteurs, et par Linné lui-même, qui a dit : *Nectarium*, *pars mellifera flori propria*.

La formation de cette exsudation sucrée est un fait extrêmement fréquent dans les fleurs où les abeilles viennent le recueillir pour en composer leur miel. L'afflux du sucre paraît en effet nécessaire au développement des parties florales, et, s'il se forme dans beaucoup d'autres parties du végétal, c'est vers les fleurs surtout qu'il semble tendre. Ainsi, par exemple, on a remarqué récemment que la séve du Maïs est chargée d'une grande proportion de sucre, mais seulement avant la floraison ; plus tard il est passé presque tout entier dans les fleurs et a disparu du reste de la plante.


§ 404. Nous savons que ces feuilles modifiées qui forment les diverses parties de la fleur présentent dans leur structure des différences assez tranchées avec celle des feuilles véritables. Ces différences se montrent non seulement dans leur propre tissu, mais dans la surface même où elles prennent leur origine, et qui forme tout le fond de la fleur ou torus (§ 298); surface qui, au lieu de ressembler à une écorce, se revêt souvent d'une couche glanduleuse plus ou moins épaisse, surtout par places. Or, c'est à la base même des organes qu'on voit fréquemment ces épaississements, et, l'organe venant à avorter, l'épaississement peut n'en pas moins persister ou même se développer d'autant plus : de là sans doute la forme de

NECTAIRES.

glandes à laquelle se trouvent si fréquemment réduites les parties avortées. Cette couche glanduleuse de torus qui s'amplifie non seulement par ces saillies dont nous venons de parler, mais aussi en s'étendant dans beaucoup de fleurs sur la surface de certaines parties florales qu'elle double inférieurement en les revêtant, constitue sans doute un appareil propre à modifier les sucs qui passent de la plante dans la fleur, et contribue à la formation du nectar, en général d'autant plus abondante qu'il est lui-même plus développé.

§ 405. Les appareils glanduleux, au reste, sont loin de dépendre tous du torus; on en observe sur d'autres points des parties florales plus ou moins éloignées de leur base : sur la surface interne du périanthe ou du calice; sur celle des pétales, quelquefois à leur extrémité, et souvent à celle des étamines (comme dans beaucoup de Rutacées). Nous n'ajouterons pas plus de détails sur les formes variées de ces nectaires, qui rentrent dans celles des glandes que nous avons décrites autre part (§ 478). Nous nous contenterons de

citer, comme exemple pour l'étude, les nectaires pédicellés à la base des étamines dans les Lauriers (fig. 289 gg) ou ceux du Parnassia (fig. 363 n), qui semblent remplacer les anthères sur des filets si régulièrement et si élégamment dédoublés; les glandes saillantes et sessiles, d'où partent les étamines des Crucifères (fig. 298 t), ou celles qui se montrent autour et au-dessous du pistil, dans la plupart des La-

biées; ceux qui couronnent l'ovaire dans les Ombellifères; ceux qui forment vers le bas de la surface interne des folioles du périanthe de l'Impériale (fig. 364 n) de larges enfoncements d'une couleur différente, etc., etc.

C'est dans les cavités des organes appendiculés, surtout dans les éperons, qu'on trouve souvent le nectaire, et cette cavité devient comme un réservoir où s'accumule son produit (Melianthus, Capucine, Pelargonium).

Au reste, il n'est pas rare de rencontrer une exsudation sucrée sans apparence de surface glanduleuse, suintant, par exemple, de

^{363.} Un nectaire n du *Parnassia palustris* avec le pétale p, devant lequel il est placé dans la fleur.

^{364.} Division s du périanthe de l'Impériale (*Fritillaria imperialis*), creusé à sa base d'un nectaire n sous forme d'une cavité superficielle autrement colorée que le reste.

celle même du pétale, qui du reste ne paraît pas particulièrement modifiée. On s'en convaincra en touchant au moment de la floraison un grand nombre de fleurs dont la plupart révéleront au tact la présence du suc incolore qui échappe à la vue.

§ 406. Remarquons que cette exsudation suit les phases de la floraison, commence, croît, diminue et finit avec elle : qu'il est très rare de la voir précéder la déhiscence de l'anthère et l'épanouissement de la fleur; que c'est pendant l'émission du pollen qu'elle est à son maximum ; qu'elle cesse lorsque l'étamine se flétrit et que le fruit se noue. Les nectaires se montrent surtout autour des organes essentiels de la reproduction (des étamines et du pistil), et il n'y a guère à douter que leur résultat ne se lie à celui de cette fonction. Est-ce particulièrement aux fonctions de l'étamine ou à celles du pistil? Ce n'est certainement pas aux unes à l'exclusion des autres, puisque dans certaines plantes diclines les fleurs mâles montrent des nectaires aussi bien que les fleurs femelles. D'un autre côté, l'action des nectaires et celle des organes de la fleur, si elles ont l'une sur l'autre une influence évidente, ne paraissent pas néanmoins nécessairement liées ensemble. On peut enlever les pétales, les étamines, les pistils ; et les nectaires continueront à sécréter tant qu'on ne les blesse pas eux-mêmes : on peut enlever les nectaires ou au moins leur produit, sans nuire à la fécondation et retarder la maturation du fruit.

En réfléchissant dans quelle proportion le nectar s'extravase et coule au dehors et est emporté par les insectes pendant la floraison, qu'ensuite cet écoulement s'arrête quand le fruit noué réclame une grande quantité de suc, on est tenté de considérer les nectaires autant comme organes excréteurs que sécréteurs, qui provoquent l'afflux des sucs par la dépense qu'ils en font, en lâchant au dehors un excès inutile pour la fleur; et lorsque le fruit en réclame en se développant une proportion bien plus considérable, ces sucs continuent à arriver par les voies ouvertes, et, n'en trouvant plus pour se perdre, profitent tous à la maturation.

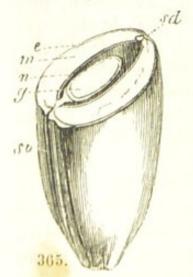
§ 407. Quoi qu'il en soit de la fonction des nectaires, ils fournissent de fort bons caractères pour la distinction des plantes, offrant une grande constance de nombre, de forme, etc., dans une espèce donnée. Il est à remarquer que leur développement, sur un point particulier de la fleur, se lie fréquemment à son irrégularité et semble entraîner celui du côté où le nectaire a son siége.

CINQUIÈME LEÇON.

FRUITS :

LEUR STRUCTURE, LEUR ACCROISSEMENT ; LEURS DIVERSES MODIFICATIONS. GRAINE CONSIDÉRÉE DANS SES DIFFÉRENTES PÉRIODES D'EXISTENCE ET DE GERMINATION.

FRUIT.


§ 408. La fécondation une fois opérée, les organes qui y ont concouru meurent et disparaissent plus ou moins promptement. Or, ces organes sont de deux ordres : 1º les uns essentiels : d'une part l'anthère, de l'autre le stigmate et le tissu conducteur; 2° les autres accessoires : les filets, qui portaient les anthères; les styles, qui portaient les stigmates et à travers lesquels s'insinuait le tissu conducteur; enfin les enveloppes, qui protégeaient tout cet appareil, les pétales, dont nous avons plus d'une fois signalé l'analogie évidente avec les étamines, et le calice, qui en diffère bien davantage en tant que représentant des feuilles beaucoup moins modifiées. Plus les organes prennent à la fécondation une part directe, plus leur durée est passagère. Ainsi, après la fécondation, le stigmate, le tissu conducteur, les anthères ne tardent pas à se flétrir et à disparaître. Les styles, les filets, les pétales peuvent persister un peu plus longtemps, mais en général ils meurent bientôt, tombent, ou bien restent attachés à leur place. Le calice lui-même, quoiqu'un peu plus tardivement, et si ce n'est dans quelques cas où il continue à végéter et même quelquefois à croître (§ 334), s'arrête dans son développement et cesse de vivre, soit qu'il se détache, soit qu'on le voie persister à la manière des feuilles marcescentes. On a donné le nom d'induviæ à ces débris du calice, de la corolle, des filets, qui peuvent se montrer plus ou moins longtemps avec le fruit et qui fournissent quelques caractères soit par leur persistance même, soit pour reconnaître les parties de la fleur et leurs rapports lorsqu'on n'a pu l'observer à son état parfait et antérieur. Le style persiste

quelquefois, et c'est en général sous la forme d'une pointe située vers le sommet du fruit qu'on dit alors apiculé.

§ 409. C'est qu'à cette époque la vie s'est concentrée dans l'ovule, où la fécondation devait aboutir ; et dans l'ovaire, qui le protége en le renfermant. Dès lors tous deux continuent à croître en prenant des apparences nouvelles, de nouveaux caractères et aussi des noms nouveaux : l'ovule devient la graine, l'ovaire devient le péricarpe (pericarpium, de $\pi \epsilon \rho i$, autour, $\varkappa \alpha \rho \pi \delta \varsigma$, fruit, c'est-à-dire la partie qui forme l'enveloppe de celui-ci), et leur ensemble constitue le fruit. En général, leur vie et leurs développements sont intimement liés, et les graines venant à avorter, le péricarpe ne se développera pas ; le péricarpe avortant, les graines se flétriront. On peut, cependant, citer quelques cas exceptionnels dans lesquels ou les graines mûrissent sans péricarpe, ou au contraire l'avortement des graines, loin d'arrêter le développement, semble le favoriser, comme dans les Bananes, l'Arbre à pain, etc. Leurs variétés qu'on mange et dont le fruit devient si charnu et si succulent, ne produisent pas de graines fécondes; et, lorsque celles-ci se développent, la chair du fruit perd d'autant en épaisseur et en sapidité. On observe, au reste, quelque chose d'analogue dans les fruits de nos vergers, et les sauvageons présentent, en général, un développement de la graine beaucoup plus grand par rapport à celui du péricarpe.

§ 440. Mais prenons le cas ordinaire et normal, celui où les deux développements marchent concurremment, et examinons d'abord les changements qui s'opèrent dans l'ovaire. Ceux de l'ovule et sa structure nous occuperont ensuite.

Rappelons d'abord la structure du carpelle, qui est celle d'une feuille repliée ou contournée sur elle-même, dont les bords se sont

soudés ensemble, de telle sorte qu'il offre une surface intérieure correspondant à une cavité, et une surface extérieure, revêtues chacune par leur épiderme, et, entre ces deux couches d'épiderme, un parenchyme parcouru de bas en haut par des faisceaux fibro-vasculaires. On peut donc y reconnaître trois couches : l'épiderme intérieur (fig. 365 e), ou épicarpe (epicarpium, d'ini, sur); le parenchyme intermédiaire (fig. 365 m), ou mésocarpe (mesocarpium, de μέσος, qui est au milieu); l'épiderme intérieur (fig. 365 n), ou endocarpe (endocarpium de evoor, en dedans). L'utilité de ces noms

365. Partie inférieure du carpelle ou gousse de la Fève de marais (Faba sativa), coupée transversalement pour faire voir la composition du péricarpe. -- c Épicarpe ou

FRUIT. PÉRICARPE.

différents résulte du développement différent que prennent souvent ces parties dans celui du fruit.

§ 444. Tantôt le péricarpe, en se développant, conserve sa ressemblance avec la feuille, comme, par exemple, dans le fruit si connu du Baguenaudier : on le dit alors foliacé ou herbacé. Tantôt cette ressemblance s'efface plus ou moins complétement par la couleur et la consistance différente que prennent une ou plusieurs des trois couches. L'extérieure (épicarpe), celle qui forme ce qu'on appelle le plus souvent la peau du fruit, conserve en général son apparence épidermique, quoique épaissie souvent par l'addition d'un certain nombre de rangées cellulaires. Le mésocarpe prend fréquemment un développement tout à fait différent du parenchyme de la feuille, et se change en une chair plus ou moins succulente, plus ou moins épaisse ; c'est ce qui avait engagé Richard à proposer, pour cette couche moyenne, le nom de sarcocarpe (sarcocarpium, de gáos, gaoxós, chair, pulpe), nom qui, d'après son étymologie, ne convient pas aux fruits herbacés, et qu'en conséquence il vaut peut-être mieux ou abandonner tout à fait ou appliquer seulement aux fruits charnus. L'endocarpe reste quelquefois à l'état d'une fine membrane tapissant la surface de la loge ; mais d'autres fois ; ses cellules s'encroûtent d'une matière ligneuse, et souvent alors celles de la portion voisine du mésocarpe éprouvent une modification analogue, de telle sorte qu'on a autour de la cavité du péricarpe une enveloppe plus ou moins épaisse, plus ou moins dure; c'est elle qui, dans beaucoup de fruits, forme ce qu'on appelle le noyau (putamen).

§ 412. Éclaircissons l'exposition précédente par quelques exemples bien connus. Dans une Cerise, un Abricot, une Pêche, la peau est l'épicarpe ; la partie qu'on mange, le mésocarpe ou sarcocarpe ; le noyau, l'endocarpe. En ouvrant celui-ci, on trouve à l'intérieur une amande, qui est la graine. Dans le fruit de l'Amandier, en dehors de l'amande, on trouve l'endocarpe sous la forme d'une coque mince et cassante, que revêt un mésocarpe à chair coriace, verte et mince. Dans celui du Noyer, la noix est la graine enveloppée de son endocarpe ; l'enveloppe verdâtre et fibreuse, dont on s'est débarrassé en l'écalant et qu'on connaît sous le nom de *brou*, est le mésocarpe avec son épiderme. C'est donc la graine de ces deux derniers fruits qu'on mange en rejetant les péricarpes ; tandis que dans les premiers on mange une partie du péricarpe en rejetant l'endocarpe et la graine. Ils résultent tous d'un carpelle simple. La Poire, la Pomme résultent, au contraire, d'un ovaire composé et adhérent ;

épiderme extérieur. — m Mésocarpe. — n Endocarpe. — sd Suture dorsale. — sv Suture ventrale. — g Une graine située à la hauteur de la section, et coupée de même transversalement.

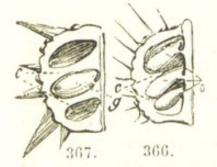
leur peau ou épicarpe était donc l'épiderme du calice confondu avec l'ovaire ; leur chair est le mésocarpe, et leur centre est occupé par cinq petites cavités renfermant les pepins ou graines, et tapissées d'une couche écailleuse, qui est l'endocarpe. Celui-ci, dans la Nèfle, prend un développement beaucoup plus grand, celui d'un noyau : on y trouve donc cinq noyaux correspondant avec cinq loges (fig. 373). Dans d'autres fruits la démarcation est loin d'être aussi nette : dans le Melon, par exemple, c'est le mésocarpe qui varie de l'extérieur, où il conserve une couleur verte et une saveur acerbe, à l'intérieur, où il prend une autre couleur avec la saveur sucrée, tandis que les traces de l'épicarpe et de l'endocarpe sont à peine visibles. La peau de l'Orange est la réunion de son épicarpe et de son mésocarpe ; la mince membrane qui tapisse les quartiers est l'endocarpe, et ces quartiers eux-mêmes forment autant de loges remplies d'un tissu additionnel (§ 419) qui est la partie qu'on mange en rejetant le véritable péricarpe. Les divers exemples que nous aurons occasion de citer dans la suite viendront s'ajouter aux précédents pour montrer la diversité des parties qui donnent aux fruits leurs saveurs, leurs propriétés, leurs applications diverses.

§ 413. L'union des deux bords soudés de la feuille carpellaire est souvent indiquée par une ligne extérieure, par un sillon, lorsque ces bords se sont un peu réfléchis vers la cavité de la loge. On peut l'observer sur beaucoup de fruits produits par un carpelle simple, sur celui du Baguenaudier, par exemple, sur l'Abricot, la Prune, etc.; et non seulement sur leur surface externe, mais jusque sur le noyau, dont tout le bord correspondant est creusé d'une cannelure plus ou meins profonde. Le nom de suture par lequel on a désigné cette trace prouve que dès longtemps on a reconnu sa véritable origine, puisque ce mot indique que deux surfaces séparées ont été réunies, comme cousues ensemble. Mais la feuille repliée en carpelle peut, outre cette ligne correspondant à la réunion de ses bords, et par conséquent comme eux regardant toujours l'axe de la fleur, en présenter une autre correspondant à sa nervure moyenne, et regardant au contraire en dehors. On a donné également à cette seconde ligne le nom de suture; et comme dans le carpelle et la graine on appelle dos ou face dorsale celle qui est tournée en dehors, ventre ou face ventrale celle qui est tournée en dedans, on a distingué dans le premier une suture dorsale et une suture ventrale.

§ 444. Il est clair que les sutures dorsales peuvent seules paraître à la surface des fruits multiloculaires à placentation axile, puisque les ventrales s'y trouvent cachées et modifiées dans l'épaisseur même du fruit. Mais si leur placentation est pariétale (§ 394), ou centrale (§ 395-96), les bords des carpelles se trouvant reportés vers la pé-

FRUIT.

riphérie, leurs sutures le sont également et peuvent se voir alors à l'extérieur.


§ 445. La suture, examinée avec attention, paraît formée par la réunion de deux faisceaux accolés qu'on sépare assez facilement l'un de l'autre en introduisant et promenant entre eux une lame fine. Cette séparation se fait spontanément dans beaucoup de fruits à une certaine époque, soit sur la suture ventrale, soit sur la dorsale, soit sur toutes deux à la fois. Il en résulte alors que le péricarpe se trouve séparé en plusieurs pièces dont le nombre doit, dans les cas réguliers, être en général égal à celui des loges ou double. Ces pièces sont appelées des valves (valvæ), et l'on dit d'après les nombres, que le fruit est univalve (fig. 372), bivalve (fig. 373). trivalve multivalve (uni-bi-tri-multivalvis, etc.).

§ 446. Nous venons de voir plusieurs des changements que peuvent subir les parties de l'ovaire en passant à l'état de péricarpe ; mais nous avons supposé jusqu'ici toutes ses parties se développant régulièrement, ce qui n'a pas lieu constamment. Les diverses parties de l'ovaire peuvent se modifier de telle sorte qu'on ait peine à les reconnaître dans le fruit parvenu à sa maturité. Les loges, les graines qu'elles renferment et leur placentation, les cloisons qui les séparent, présentent souvent des modifications qu'il importe d'étudier.

Des carpelles qui, soit libres, soit soudés, composaient le pistil, plusieurs avortent souvent, de telle sorte qu'on ne les retrouve plus en même nombre dans le fruit. Les avortements ont quelquefois lieu avec une grande régularité et se lient presque toujours à celui des ovules. Ainsi l'ovaire du Frêne offre deux loges, renfermant chacune deux ovules à placentation axile ; mais les deux ovules dans une loge, et un ovule dans l'autre, ne se développent pas ordinairement ; le seul qui mûrit repousse alors la cloison (fig. 384), qui vient s'accoler contre les parois, de manière que la seconde loge s'efface et qu'on ne trouve définitivement qu'une seule cavité renfermant une seule graine, attachée sur son côté, et non plus à l'axe. Le Marronnier d'Inde avait un ovaire à trois loges contenant chacune deux ovules fixés à l'axe (fig. 406), et, par des avortements analogues, son fruit n'a plus en apparence qu'une seule loge avec une grosse graine unique. Nous nous contenterons de ces deux exemples, qu'il serait facile de multiplier. D'autres fois les avortements ne marchent pas aussi régulièrement, et, parmi les fruits d'une même plante, tous n'offrent pas exactement le même nombre de loges et de graines, suivant que tel ou tel ovule a ou n'a pas échappé à la fécondation. C'est donc dans l'ovaire qu'il faut étudier le nombre et la disposition des carpelles et des ovules, qui peuvent plus tard être dissimulés par ces déve-

loppements inégaux ou irréguliers, et masquer ainsi la vraie symétrie des parties de la fleur.

§ 447. Les cloisons sont aussi plus ou moins profondément modifiées pendant la maturation du fruit. D'après leur origine organique, elles devraient être formées de deux lames accolées, et chacune de ces lames, de trois couches représentant celles du péricarpe, telles qu'on les observe sur les côtés d'un carpelle libre. Mais ces lames, dans le fruit multiloculaire, pressées d'une part l'une contre l'autre, de l'autre part par les graines qui remplissent les loges, n'ont pas le libre développement de leurs couches, dont une ou deux s'atrophient en partie. La plus interne, l'endocarpe, se développe le plus souvent seule et même se soude intimement dans les deux lames accolées qui se confondent ainsi en une seule. Quelquefois elles restent distinctes, et même une petite couche de mésocarpe s'interpose entre elles ; mais l'épicarpe y disparaît, ne persistant que sur la face dorsale libre du carpelle, et revêtant ainsi seulement la partie extérieure du fruit : c'est ce qu'on peut aisément constater sur celui du Ricin, de l'Euphorbe ou de la Mauve. Les cloisons, quelquefois réduites à l'état d'une mince membrane, peuvent dans quelques fruits se détruire en tout ou en partie avant la complète maturité ; et nous avons déjà vu (§ 395) que cette destruction, arrivant à une époque

très antérieure dans l'ovaire encore très jeune, détermine la placentation centrale dans plusieurs, ceux des Caryophyllées, par exemple.

§ 448. Dans un petit nombre de fruits, on observe des changements tout contraires, par suite du développement que prennent les cloisons. L'ovaire du *Tribulus*

est à cinq loges, et, dans l'intérieur de chacune, on voit déjà la paroi former de petits replis (fig. 366 c) qui s'avancent un peu entre les trois ou quatre ovules qui s'y trouvent contenus. Ils continuent à s'avancer de plus en plus d'arrière en avant à mesure que le fruit mûrit, et finissent par gagner le côté opposé de la loge et s'interposer entre les graines comme autant de cloisons transversales, si bien que chaque loge se trouve définitivement divisée en autant de loges secondaires placées les unes au-dessus des autres (fig. 367). Dans les fruits de plusieurs Légumineuses (dans la Casse

366. Une loge de l'ovaire du Tribulus terrestris, coupée verticalement pour montrer les saillies c de la paroi qui commencent à s'interposer en dehors aux ovules o.

367. Une loge d'un carpelle mùri du même, coupée de même pour la montrer partagée par des cloisons transversales c en logettes, dans l'une desquelles on a laissé une graine g.

en bâton, par exemple) on observe une suite de divisions analogues : c'est ce qu'on appelle de *fausses loges* et de *fausses cloisons*, et on les reconnaît facilement, dans ce cas, à l'horizontalité de ces cloisons et à leur formation postérieure à la fécondation. Mais on conçoit que ces prolongements ou replis de l'endocarpe peuvent être aussi parallèles aux véritables cloisons, ce qui a lieu, par exemple, dans les Astragales, où chaque carpelle se trouve ainsi subdivisé en deux. Ces fausses cloisons verticales, plus difficilement reconnues, peuvent l'être néanmoins par leurs rapports de position avec les styles, et parce qu'elles ne portent jamais les graines, et surtout par l'étude du pistil jeune.

§ 419. Les loges se remplissent quelquefois d'une matière pulpeuse qui enveloppe alors les graines comme nichées dans son épaisseur (semina nidulantia); elles paraissent donc pleines, et leur cavité s'efface, ainsi que leurs cloisons, de telle sorte qu'il n'est plus aussi aisé de constater la situation des parties. C'est encore dans l'ovaire qu'il convient de la rechercher, et l'on peut, de plus, suivre ainsi la formation de la pulpe. Ainsi dans les Aroïdées on voit que c'est le tissu conducteur même qui pullule au delà de son canal dans l'intérieur de la loge. Dans l'ovaire de l'Oranger on observe dans chaque lóge les ovules attachés à l'angle interne; tandis que, sur la face opposée, la paroi est toute couverte de petites vésicules ou cellules allongées et verdâtres, qui, se multipliant, encombrent peu à peu la cavité entière, changent de couleur, se gorgent de sucs sapides, et constituent ainsi le tissu qu'on mange dans l'Orange. Dans tous les fruits dits pulpeux, ce sont toujours des cellules ainsi gorgées qui remplissent la loge; mais tantôt ils dépendent du péricarpe, comme dans le cas précédent ; tantôt de la graine, comme dans les Groseilles et les Grenades.

§ 420. Enfin les placentas montrent aussi divers changements dans le développement du fruit ; c'est naturellement par celui des vaisseaux et du tissu cellulaire qui constituent le système nourricier des graines. Une portion reste fixée aux parois de la loge, sur lesquelles elle forme quelquefois une saillie assez considérable ; une autre portion se détache de cette paroi pour constituer autant de prolongements qu'il y a de graines, et destinés à les porter. Ils ont souvent la forme d'un petit cordon, ce qui leur a fait donner le nom de funicule (funiculus). On a proposé celui de podosperme (de $\pi o \tilde{v}_{\varsigma}$, $\pi o \delta \tilde{v}_{\varsigma}$, pied, et de $\sigma \pi i \epsilon \mu \alpha$, graine), qui est usité par plusieurs auteurs, et les mêmes changent celui de placenta en trophosperme (de $\tau p \circ \omega \tilde{v}_{\varsigma}$, nourricier).

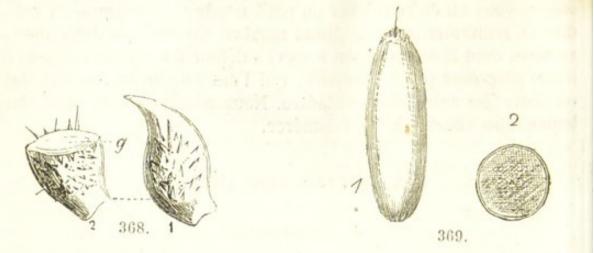
§ 421. Nous avons jeté un coup d'œil sur les principaux changements qui s'opèrent dans l'ovaire depuis la fécondation jusqu'à la

maturité du fruit. Quand on réfléchit à la diversité des modifications que présentait déjà l'ovaire observé dans l'immense variété des végétaux, et qu'on les voit se combiner avec des modifications bien plus nombreuses encore que peut lui imprimer son développement en fruit; quand on le voit conserver dans les uns presque le même volume et la même consistance, dans les autres acquérir une forme, un volume, une consistance tout à fait hors de rapport avec l'état primitif; quand on se rappelle, par exemple, que la Groseille et le Potiron ont leur origine dans des ovaires à peu près égaux et semblables, on conçoit les différences multipliées et tranchées que les fruits divers doivent offrir dans leur apparence et dans leur structure; on en a en conséquence distingué beaucoup de sortes et l'on a inventé beaucoup de noms pour les désigner. Mais, même en les admettant tous, de nombreuses modifications échappent encore à ces noms et à leurs définitions, et sans cesse on est obligé d'y ajouter des explications, des phrases descriptives, pour bien faire connaître le fruit dont on parle. Or, puisque les noms ne sont adoptés que pour éviter ces descriptions à l'aide d'un seul mot préalablement bien défini, et qu'ici ils n'en dispensent pas le plus souvent, il paraît plus sage de ne pas les multiplier autant et de se borner à ceux qui désignent les modifications les plus générales et les plus constantes du fruit. C'est du moins ce que nous ferons dans la classification que nous allons exposer.

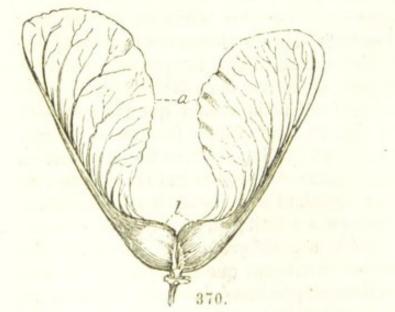
§ 422. Nous savons déjà que les fruits, comme les ovaires, sont formés de carpelles ou indépendants les uns des autres, ou réunis en un corps unique. De là une première division en fruits apocarpés (fructus apocarpi, d'ano, qui indique la séparation) et syncarpés (syncarpi, de σύν, qui indique la réunion). Nous savons, de plus, que le péricarpe peut conserver sa consistance mince et foliacée, ou se renfler en une masse plus ou moins épaisse et charnue. Dans ce dernier cas, l'enveloppe ainsi épaissie ne se divise pas à la maturité ; ce n'est qu'en se détruisant, en se fendant irrégulièrement, en pourrissant ou se flétrissant, qu'elle finit par livrer un passage aux graines contenues. Dans le cas même où elle est foliacée, elle peut continuer à rester close; mais souvent alors, au contraire, soit par le décollement des sutures dont nous avons parlé précédemment (§ 415), soit par la rupture, beaucoup moins fréquente et moins régulière, de quelque autre point de sa surface, le péricarpe une fois mûr s'ouvre naturellement, et les graines se trouvent ainsi en rapport avec l'extérieur. On distingue donc les fruits qui ne s'ouvrent pas ou indéhiscents, soit charnus, soit secs; et les fruits qui s'ouvrent d'euxmêmes à la maturité, ou déhiscents. Cette déhiscence, lorsqu'elle a lieu le long des sutures, peut se faire ou par les deux sutures à la

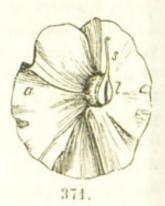
FRUITS APOCARPES.

fois, ou seulement par l'une des deux, et séparer ainsi chaque carpelle en deux ou en une seule valve. Enfin, chaque carpelle ou loge peut être monosperme, c'est-à-dire renfermer une graine unique; oligosperme, ou en renfermer un petit nombre; polysperme, c'est-àdire en renfermer un plus grand nombre. Ce sont ces différents caractères dont la combinaison a servi à définir les diverses classes de fruits proposées par les auteurs, qui l'ont employée, les uns dans un ordre, les autres dans un autre. Nous adopterons ici celui dans lequel nous venons de les énumérer.


A. FRUITS APOCARPÉS.

a. Indéhiscents.


§ 423. Les uns ont un péricarpe charnu et un endocarpe durci en noyau, et sont ordinairement monospermes, soit que dans l'ovaire il n'y eût qu'un ovule, soit que de deux l'un ait avorté. C'est ce que l'on appelle une *drupe* (*drupa*), dont la Cerise, la Prune, etc., nous offrent des exemples familiers. Les fruits de l'Amandier, du Noyer, n'en sont que de légères modifications, marquant le passage aux fruits suivants.


Ceux-ci ont un péricarpe beaucoup plus mince et sec; et dans lequel la consistance de l'endocarpe et du mésocarpe n'offre pas une différence aussi tranchée. Une graine unique remplit la loge, avec les parois de laquelle elle peut se trouver dans deux rapports différents. En effet, le plus souvent elle ne lui adhère que par son point d'attache, son funicule; et alors on a un achaine (achenium, d'à privatif et yaiver, s'ouvrir [fig. 368]). Mais d'autres fois la graine en se développant se soude aux parois de l'ovaire qui l'enveloppe, de telle sorte que le péricarpe, semblant faire partie de ses téguments propres, disparaît en apparence. Ce fruit, qu'on a nommé cariopse (cariopsis), a longtemps porté le nom de graine nue, qu'on étendait même à beaucoup d'achaines, en croyant que le tégument du fruit appartenait à la graine qu'il enveloppe immédiatement. Mais on est averti de la vérité, et par la présence du style, qui naît de ce tégument et ne peut partir que d'un ovaire, ou par l'étude de celui-ci. dans lequel la séparation de l'ovule avec les parois de la loge est encore bien manifeste. Citons comme exemple de cariopses le fruit des Graminées (comme le Blé, l'Avoine [fig. 489], le Seigle [fig. 369], le Maïs), qui est ce qu'on connaît vulgairement sous le nom de grain. Le péricarpe très mince et la membrane de la graine intimement unis lui forment une enveloppe en apparence unique, et qui constitue le son

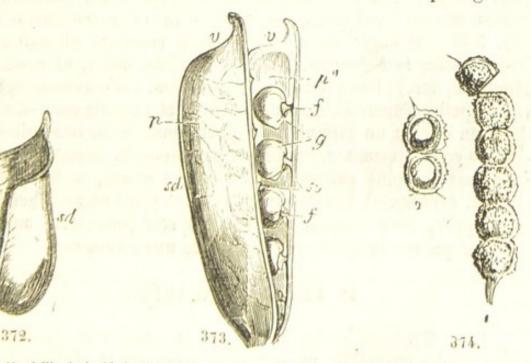
lorsqu'on la détache en la déchirant par le broiement. Les carpelles de la Bourrache et autres Borraginées (fig. 336), ceux des Renoncules (fig. 586), des Roses (fig. 333), sont des achaînes diversement

groupés dans ces différentes plantes. Ceux des Composées (fig. 690) en sont aussi, mais un peu différents par leur péricarpe adhérent au calice et non libre. Quelques uns peuvent servir de transition aux: cariopses, parce que leur graine se soude par places à la paroi de la loge. On appelle quelquefois *utricule* (*utriculus*) un achaîne à paroi très mince et comme membraneuse. Supposons que le péricarpe s'amincisse au delà de la loge en une lame membraneuse, où il est

368. Un achaine pris parmi ceux dont la réunion constitue le fruit du Ranunculus muricatus. -1 Entier. -2 Coupé transversalement pour faire voir une graine g sans adhérence avec les parois.

369. Un cariopse de Seigle (Secale cereale). — 1 Entier. — 2 Coupé transversale ment pour faire voir la graine adhérente aux parois.

370. Fruit d'un Érable (Acer pseudoplatanus), composé de deux samares. — a Partie supérieure formant une aile dorsale. — l Partie inférieure répondant à la loge.


374. Une samare séparée du fruit d'un Hiræa. — s Style persistant. — l'Partie répondant à la loge. — aa Aile marginale.

FRUITS APOCARPES.

presque réduit à un repli de son épicarpe: on aura une samare. Ce repli semble prolonger tantôt la nervure médiane de la feuille carpellaire, tantôt ses nervures latérales, et former ainsi une aile tantôt dorsale (fig. 370), tantôt marginale (fig. 371).

b. Déhiscents.

§ 424. C'est lorsque le carpelle s'ouvre seulement par sa suture ventrale qu'il justifie le mieux par son apparence l'origine que nous lui avons assignée, celle d'une feuille pliée sur elle-même; son nom de *follicule* (*folliculus*) la rappelle, et cependant il était adopté longtemps avant qu'on songeât à cette théorie. On en trouve de nombreux exemples dans les fruits des Renonculacées (comme l'Hellébore [*fig.* 372], l'Ancolie, les *Delphinium*, etc.), d'Asclépiadées (*fig.* 662), d'Apocynées (comme la Pervenche), etc. Le carpelle qui, s'ouvrant par ses sutures ventrale et dorsale, se sépare en deux valves, est, s'il contient un très petit nombre de graines (en général une ou deux), une coque (coccum), à endocarpe ordinairement ligneux ou crustacé (exemple : la Fraxinelle). S'il contient un plus grand

372. Un follicule isolé de l'Hellébore commun (Helleborus fælidus), après la déhiscence. — sd Suture dorsale. — sv Suture ventrale.

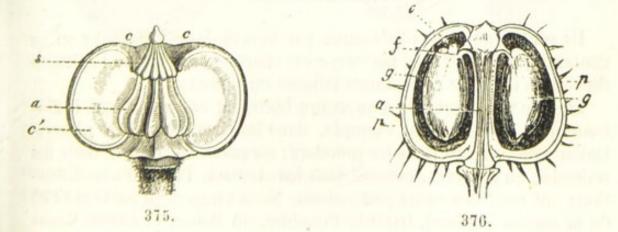
373. Gousse de petit Pois (*Pisum sativum*), ouverte. — vv Valves formées par deux pièces du péricarpe qu'on voit du côté de la face externe ou péricarpe en p, du côté de la face interne ou endocarpe en p'. — g Graines superposées, attachées par le moyen de courts funicules ff à un placenta qui suit, sous la forme d'un cordon longitudinal, le bord interne des valves répondant à leur suture ventrale sv. — Leur bord externe répondant à leur suture dorsale sd.

374. Fruit lomentacé du Sainfoin d'Espagne (Hedysarum coronarium). — 4 Entier, Particle supérieur presque détaché des autres. — 2 Deux articles coupés longitudinalement, laissant voir ainsi deux fausses loges, chacune avec leur graine.

nombre de graines attachées le long de sa suture interne, c'est une gousse ou légume (legumen), qui a donné son nom à la grande famille des Légumineuses (exemples : le fruit du Haricot, de la Fève de marais, du petit Pois [fig. 373], etc.), laquelle présente cependant quelques exceptions où le péricarpe reste clos au lieu de se séparer en deux valves. D'autres offrent cette structure singulière que la gousse, au lieu de s'ouvrir dans toute sa longueur, se rétrécit de distance en distance et finit par se séparer en autant d'articles dont chacun renferme une graine. Ce carpelle, ainsi coupé de cloisons transversales qui se dédoublent en se désarticulant, rentre dans ceux que nous avons appelés à fausses loges (§ 408), et est dit *lomentacé* (*lomentaceus*), ou substantivement *lomentum* (exemples: celui des Sainfoins [fig. 374], des Coronilles, etc.).

§ 425. Rappelons que dans un fruit apocarpé, ainsi que dans la fleur où il était à l'état d'ovaire, il peut y avoir un seul carpelle (comme dans les Légumineuses, le Prunier, le Cerisier, etc.), ou qu'il v en a plusieurs, et que ceux-ci peuvent alors être disposés soit en cercle ou verticille sur un même plan (par exemple, dans la Fraxinelle [fig. 339], le Spiræa, l'Hellébore, etc.), soit à des hauteurs différentes, sur un torus élargi ou creusé en vase (comme dans le Rosier [fig. 333], le Calycanthus, etc.), ou au contraire allongé en axe comme dans le Myosurus, la Renoncule [fig. 586], le Fraisier, le Magnolia, etc.). Dans tous ces derniers cas, l'agencement spiral de ces carpelles s'aperçoit assez nettement, et rappelle celui des fleurs dans un épi ou un capitule. On peut donc le décrire brièvement d'après cette apparence, en disant, par exemple, drupes ou achaines ou coques, ou plus généralement carpelles en épi, en téte (carpella spicata, capitulata). Ces désignations au moyen d'un petit nombre de mots appropriés à chaque cas particulier sont préférables aux noms uniques qu'on a proposés pour quelques uns de ces cas.

B. FRUITS SYNCARPÉS.

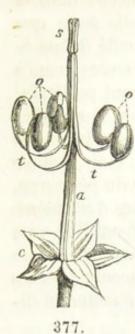

§ 426. Dans ces fruits, formés par la réunion de plusieurs carpelles soudés ensemble, on doit noter avec soin la placentation, qui est susceptible des diverses modifications déjà décrites dans l'ovaire (§ 393-94), c'est-à-dire axile, centrale ou pariétale.

Les faces latérales des loges ou carpelles qui forment les cloisons, en s'avançant de dehors en dedans, peuvent changer de direction et se replier de côté ou de dedans en dehors. Elles forment alors une saillie dans l'intérieur de la loge, et le placenta qui les borde est dit saillant (prominens), d'autant plus que, dans ces cas, il se présente le plus souvent sous la forme d'une masse épaisse tenant aux parois de la

FRUITS SYNCARPES.

loge par une lame plus ou moins large. La cloison en se réfléchissant s'est dédoublée ; des deux faces carpellaires, ou lames par l'accolement desquelles elle était formée, chacune s'est réfléchie dans la loge à laquelle elle appartient primitivement; de telle sorte que chaque placenta paraît souvent alors double ou bilamellé (bilamellata). Si les cloisons se dévient ainsi avant d'être arrivées jusqu'à l'axe du fruit (fig. 342), la placentation est nécessairement pariétale; mais fréquemment elles s'avancent jusqu'à l'axe, et de la se réfléchissent en sens contraire, reportant ainsi le placenta qui les borde à une distance plus ou moins grande de l'axe (fig. 344); mais, comme en s'en écartant c'est toujours par là qu'il tient au reste du péricarpe, on doit le considérer alors comme axile. Les deux côtés d'un même carpelle, en se repliant ainsi, convergent nécessairement l'un vers l'autre, se rencontrent, et, le plus ordinairement, se soudent. Si les parties réfléchies restent complétement soudées, le placenta paraîtra simple; si elles ne se soudent que dans une petite étendue et divergent de nouveau, il paraîtra double ou bilamellé.

§ 427. L'axe est souvent une ligne purement idéale, suivant laquelle se rencontrent et se touchent les angles internes des carpelles.



Mais d'autres fois il existe bien réellement, continuant et terminant l'axe de la fleur au delà de l'insertion des carpelles, aux angles desquels il s'interpose en les liant entre eux. Il est formé alors par du tissu cellulaire que parcourent des faisceaux vasculaires, qui se distribuent tant au péricarpe qu'aux placentas. Il s'épuise ainsi en

375. Fruit d'une Mauve (Malva rotundifolia), dont on a enlevé la moitié des carpelles pour laisser voir l'axe a interposé entre eux et qui se termine à la hauteur où naissent les styles s. - cc Le reste des carpelles qu'on a laissés attachés à l'axe autour duquel ils sont verticillés. Les deux de devant c'c' se montrent par leur face latérale.

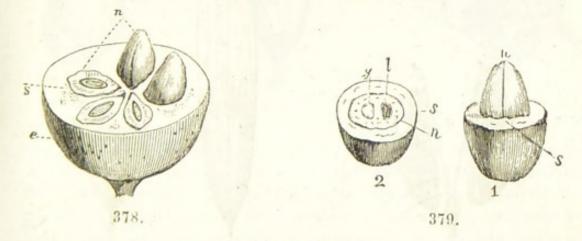
376. Capsule du Ricin (*Ricinus communis*), coupée verticalement de manière à montrer l'axe a prolongé entre les carpelles et se terminant dans chacun d'eux vers le sommet par un petit cordon f qui forme le funicule. — gg Graines dans leur loge que la section a mise à découvert, surmontées chacune d'une caroncule charnue c. — Péricarpe.

s'élevant, et cesse, en général, au-dessous de l'insertion des styles; mais, dans quelques cas rares, on le voit se prolonger même au delà et s'interposer aux styles comme il s'est interposé aux carpelles:

c'est ce qui a lieu, par exemple, dans les Geranium, dont le fruit (fig. 377), à la maturité, montre ses cinq carpelles et leurs styles se détachant de bas en haut d'un long axe pyramidal auquel ils étaient ainsi accolés. Les Malvacées (fig. 375), les Euphorbiacées (fig. 376, 394), etc., offrent des exemples d'axes très développés, mais terminés vers la naissance des styles.

§ 428. Passons maintenant à l'énumération des diverses sortes de fruits syncarpés les plus communes, en les divisant comme les apocarpés en deux catégories, suivant qu'ils ne s'ouvrent pas ou qu'ils se séparent spontanément en plusieurs pièces à la maturité. Les premiers peuvent être également charnus ou secs.

a. Indéhiscents.


Ils sont généralement désignés par le nom de *baie* (*bacca*) : on se contente de ce mot si le péricarpe est charnu; on y ajoute l'épithète de *sèche* s'il est de consistance foliacée ou ligneuse.

La baie peut provenir d'un ovaire libre (par exemple, dans le Solanum) ou adhérent (par exemple, dans les Groseilliers); à placentation axile, comme dans les premiers; ou pariétale, comme dans les seconds ; ou centrale, comme dans les Ardisia. Plusieurs modifications ont recu des noms particuliers. Nous avons déjà parlé (§442) de la pomme (pomum), fruit du Pommier, du Poirier et autres Rosacées, à chair épaisse, revêtu par le calice adhérent et couronné par son limbe desséché à l'endroit qu'on appelle œil; de l'hespéridie (hesperidium), fruit de l'Oranger, du Citronnier et d'autres arbres de la même famille, libre, à loges remplies de vésicules succulentes, tapissé par un endocarpe membraneux, le tout entouré d'une écorce ou peau plus ou moins épaisse. On a appelé péponide (pepo) celui des Melons, Potirons, Courges et autres Cucurbitacées à chair épaisse, laissant au centre une cavité sur les parois de laquelle sont nichées les graines ; nuculaine (nuculanium), le fruit formé par la réunion de plusieurs drupes, présentant, par conséquent, vers le milieu de son

377. Fruit du Geranium sanguineum. — c Calice persistant — a Axe. — l Les styles qui lui étaient accolés d'abord et qui s'en sont détachés en emportant avec eux les ovaires o. — s Stigmates.

FRUIT. DÉHISCENCE.

épaisseur, autant de noyaux (pyrenw), et qui peut provenir d'un ovaire libre, comme dans le Houx; ou adhérent, comme dans la Nèfle (fig. 378). Quelques auteurs nomment cette dernière modification pomme à noyau, et pomme à pepins celle dont nous avons parlé plus haut. On peut, au lieu de nuculaine, dire tout bonnement drupe à plusieurs noyaux, en indiquant le nombre de ceux-ci. On conçoit que les noyaux d'une nuculaine peuvent se souder entre eux, de telle sorte qu'on en trouve au centre un seul, et que le fruit ne diffère pas, en apparence, de la drupe telle que nous l'avons définie. Il mérite cependant d'en être soigneusement distingué, en tant que provenant d'un ovaire composé, et non d'un carpelle simple; et c'est ce qu'on indique en décrivant alors une drupe à noyau multiloculaire (par exemple, dans le Cornouiller [fig. 379]).

b. Déhiscents.

§ 429. On doit distinguer deux degrés dans la déhiscence des fruits syncarpés : 4° la séparation des carpelles entre eux; 2° la division de chaque carpelle s'ouvrant en particulier.

Le premier degré par lequel les carpelles, après être restés unis plus ou moins complétement, finissent, en se détachant l'un de l'autre à la maturité, par devenir indépendants (*carpella ab invicem solubilia*), établit évidemment le passage entre les fruits apocarpés et les syncarpés, à tel point qu'on a souvent peine à déterminer à laquelle de ces deux classes ils appartiennent : preuve nouvelle que dans la pratique il ne faut pas attacher beaucoup d'importance à tous

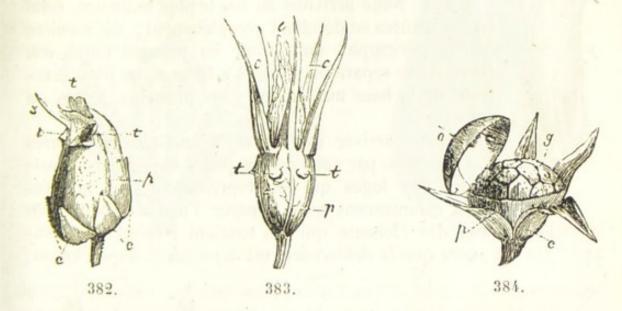
378. Fruit du Néflier dont, par une section transversale, on a détaché la chair dans toute sa moitié supérieure, de manière à montrer les noyaux n disposés en cercle vers le centre. Deux sont entiers ; les trois autres coupés transversalement. — e Épicarpe. — s Sarcocarpe.

379. 4 Fruit du Cornouiller commun (*Cornus mas*) dont, par une section transversale, on a détaché la chair *s* dans toute sa moitié supérieure, de manière à montrer le noyau central n. - 2 Section comprenant le noyau central n lui-même pour faire voir qu'il est creusé de deux loges. On a figuré l'une l vide, l'autre remplie par la graine g.

ces noms. Les carpelles ainsi séparés peuvent rester chacun indéhiscent, comme cela a lieu dans les Mauves (fig. 605), la Capucine, les Ombellifères, etc. Dans ces dernières (fig. 380), les carpelles, au lieu de se détacher complétement, restent supendus à l'axe, qui se décompose en autant de filets qu'il y a de loges, disposition particulière qui avait fait proposer le nom de crémocarpe (de xpepáeiv, pendre) pour ces sortes de fruits. Dans tous ces cas, lorsque la loge est monosperme, on peut dire qu'elle représente un achaîne, comme

elle représente une samare lorsqu'elle se prolonge en aile ; ses deux loges ainsi ailées se séparent à la maturité dans les Erables (fig.370), mais restent soudées dans le Frêne (fig.381) et l'Orme, et tous ces fruits ont été confondus sous le nom de samare, qu'il vaudrait peutêtre mieux conserver au carpelle simple qui offre cette sorte de caractère, en décrivant dans ces divers cas le fruit comme composé de plusieurs samares se séparant ou ne se séparant pas définitivement.

380.


§ 430. Les fruits considérés comme véritablement déhiscents et qu'on désigne sous le nom général de *capsule* (*capsula*), sont ceux dont les carpelles s'ouvrent eux-mêmes. Mais quelquefois les sutures ne cèdent pas, et le péricarpe se rompt en dehors sur un seul point

380. Fruit d'une Ombellifère (*Prangos uloptera*), après la déhiscence qui a écarté les deux carpelles *cc* et séparé l'axe *a* en deux filets auxquels ces carpelles restent suspendus. — *ss* Styles persistants.

384. Fruit d'un Frêne (*Fraxinus oxyphylla*). — 4 Entier avec son aile a. — 2 Portion inférieure du même coupé transversalement, pour faire voir qu'elle est occupée par deux loges, dont l'une l, avortée, est réduite à une très étroite cavité l; l'autre est très dé veloppée et remplie par une graine g.

FRUIT. DÉHISCENCE.

constant, soit vers le haut (par exemple, dans le Muflier [fig. 382 t]), soit vers le bas ou dans un point intermédiaire (dans les Campanules [fig. 675, 383 t]). Cette ouverture, plus ou moins irrégulière dans son contour, a la forme d'un trou ou pore par lequel le péricarpe est baillant (hians). Dans quelques fruits (ceux du Mouron

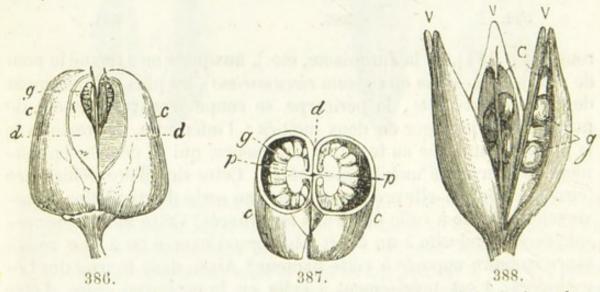
rouge [fig. 384], de la Jusquiame, etc.), auxquels on a donné le nom de pyxides (pixidium ou capsula circumscissa), ou plus vulgairement de boites à savonette, le péricarpe se coupe transversalement de manière à se partager en deux moitiés : l'inférieure, qui reste avec le placenta, attachée au torus; la supérieure, qui se détache en manière de couvercle mobile (operculum). Cette singulière déhiscence (circumscissio) est-elle prédisposée par une sorte d'articulation transversale analogue à celle des fruits lomentacés? Cette ligne transversale correspond-elle à un effort plus grand exercé ou à une résistance moindre opposée à cette hauteur? Ainsi, dans le fruit des Lécythidées, c'est précisément à celle où le péricarpe cesse d'être doublé par le calice adhérent qu'il se fend circulairement.

§ 434. D'autres fois c'est sur les sutures que la déhiscence a lieu;

382. Capsule du Muflier (Antirrhinum majus), après déhiscence. — cc Calice persistant. — p Péricarpe percé de trois trous ttt qui répondent, deux à une loge, et un à la seconde, près du sommet qui est acuminé par le reste du style persistant s.

383. Capsule d'une Campanule (*Campanula persicœfolia*), s'ouvrant par des trous ttau-dessus du milieu. — c Le calice persistant, inférieurement confondu avec le péricarpe p, séparé supérieurement en cinq lanières, au milieu desquelles on aperçoit la corolle flétrie et plissée faisant partie des *induviæ* e.

384. Pyxide du Mouron rouge (Anagallis arvensis). — c Calice persistant. — p Péricarpe qui s'est séparé en deux moitiés, dont la supérieure se détache en un opercule o. On aperçoit sur l'un et l'autre trois lignes étendues de la base au sommet du fruit, et marquant les sutures et par conséquent les véritables valves. — g Graines formant une agglomération globuleuse autour d'un placenta central.


mais elles ne cèdent qu'incomplétement, en général à leur partie supérieure, et il s'établit ainsi au sommet du fruit une ouverture

> bordée par ces sommets de valves qui figurent autant de dents (par exemple, dans les *Cerastium* [*fig.* 385, 576], *Alsine* et autres Caryophyllées).

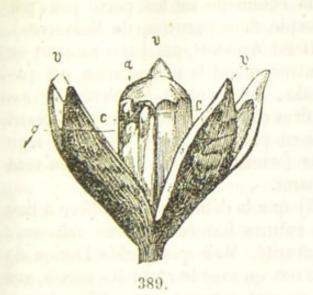
> § 432. Nous arrivons au cas le plus ordinaire, celui où les sutures se décollent complétement, de manière que le péricarpe, dans toute ou presque toute son étendue, se sépare du sommet à la base, ou plus rarement de la base au sommet, en plusieurs pièces ou valves.

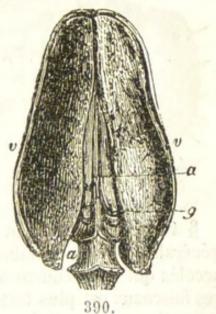
> Il peut arriver que cette disjonction des sutures soit précédée par celle des carpelles eux-mêmes, c'està-dire des loges qui les représentent, et que ces loges commencent à se séparer l'une de l'autre par

le dédoublement des cloisons qui les tenaient réunies (fig 386-387). On dit alors que la déhiscence est septicide (coupe-cloison,

d'après son étymologie) : les cloisons forment les côtés de la valve, puisque celle-ci correspond au carpelle même (valvæ septis contrariæ). D'autres fois les cloisons résistent à la séparation, et la suture dorsale cède, ouvrant ainsi par son milieu la loge qui reste fermée

385. Capsule du *Cerastium viscosum* après la déhiscence. — p Péricarpe séparé supérieurement en dix dents, sommets d'autant de valves qui restent inférieurement réunics. — c Calice persistant.


386. Capsule de la Digitale (*Digitalis purpurea*) au moment de la déhiscence qui dédouble la cloison d entre deux loges cc, qui reprennent ainsi l'apparence de carpelles distincts. On aperçoit au sommet l'intérieur des loges avec les graines g.

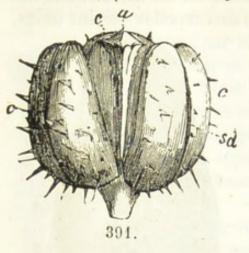

387. Partie inférieure de la même, coupée transversalement, pour faire voir la composition de la cloison d formée par les deux faces internes accolées des carpelles c. p Placentaires réfléchis et saillants dans l'intérieur des loges. — g Graines.

388. Capsules du Gombaut (*Hibiscus esculentus*), au moment de la déhiscence. - vvv Valves. -c Cloison. -g Graines.

FRUIT. DÉHISCENCE.

par les côtés (fig. 388). C'est la déhiscence loculicide (coupe-loge), par laquelle le péricarpe se trouve divisé en un certain nombre de pièces composées chacune de deux moitiés de carpelles voisins unies,

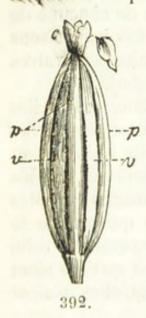
de sorte que les cloisons sont portées sur le milieu de chacune de ces pièces ou valves (valvæ septis oppositæ). Quelquefois les cloisons cèdent le long de leur bord externe et se séparent ainsi des valves (fig. 389): c'est la déhiscence septifrage (rompt-cloison).


§ 433. Dans ce dernier cas les cloisons restent unies entre elles et avec l'axe, qui, au centre du fruit, persiste plus ou moins développé, chargé d'autant de lames verticales qu'il y a de cloisons, et dans l'angle rentrant que forment leurs intervalles tapissés par les placentaires auxquels les graines sont attachées. Dans les capsules à placentation centrale, le corps chargé de graines qui occupe le milieu de la loge est formé par l'axe, tout à fait comparable à celui que nous venons de décrire, moins les cloisons, soit qu'elles aient disparu par suite d'une rupture prématurée, soit qu'elles n'aient jamais existé.

Lorsque les cloisons ne se séparent pas des valves, dans la déhiscence loculicide et surtout la septicide, elles doivent se séparer de l'axe, et, s'il est bien développé, on le voit persister dans la direction perpendiculaire sous la forme d'une pyramide ou d'un cône, d'un prisme ou d'un cylindre, comparable ainsi à une sorte de petite colonne, et pour cette raison nommé souvent columelle. Tantôt les

389. Capsule du Cedrela angustifolia dont les valves vvv se sont séparées des cloisons cc de haut en bas, de sorte que l'axe a persiste au centre, relevé des cinq angles saillants qui répondent aux cloisons et séparent autant d'angles rentrants qui répondent aux loges et portent les graines g.

390.º Capsule de l'Acajou (Swietenia Mahogoni), qui s'ouvre en sens inverse de la précédente, c'est-à-dire de bas en haut. -- Même signification pour les lettres.


placentas restent sur cette columelle, qui se trouve ainsi chargée des graines (dans les Euphorbes, par exemple, et autres Euphor-

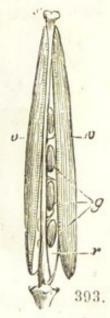
rbes, par exemple, et autres Euphorbiacées [fig 391 a]); tantôt ils suivent les bords des carpelles avec les graines. et la columelle ne les porte pas (par exemple, dans beaucoup de Malvacées).

Il est évident que l'axe ne peut se montrer quand la placentation est pariétale, puisqu'alors les éléments vasculaires et cellulaires qui le composent se sont partagés dès le bas de la loge pour former les placentas qui suivent la paroi.

§ 434. Nous avons dit (§ 415) que la déhiscence régulière a lieu généralement par le milieu des sutures formées de deux faisceaux accolés qui se décollent à la maturité. Mais quelquefois l'union de ces faisceaux est plus forte entre eux qu'avec le reste des parois, sur lesquelles se passe alors ce qu'on voit souvent aux étoffes de nos

vêtements, qui se déchirent en long à côté de la couture plutôt que de se découdre. De même le péricarpe peut se rompre des deux côtés de la suture placentifère, qui forme alors une bandelette plus ou moins épaisse chargée de graines : le nom de *replum* est employé par quelques uns pour la désigner. Quoiqu'on ait quelques exemples de cette déhiscence dans des capsules à placentation axile, c'est plus ordinairement dans celles à placentation pariétale qu'on l'observe. Ainsi, dans les fruits des Orchidées (*fig.* 392), où les graines sont disposées en trois rangées longitudinales sur les parois, on voit, à la maturité, le péricarpe se diviser en six parties : trois segments v plus larges et plus minces

qui se détachent par tout leur pourtour et tombent en manière de valves; trois arceaux p alternant avec ces valves, plus épais et plus droits, qui continuent à rester unis en haut et en bas, et forment ainsi un péricarpe à claire-voie. On voit ces trois arceaux tout cou-


391. Capsule du Ricin (*Ricinus communis*) au moment de la déhiscence. Les trois carpelles ou coques ccc se sont écartées de l'axe a qui les réunissait d'abord (voyez fig. 376) et qui persiste sous la forme d'une petite colonne dressée. Ces coques commencent à s'ouvrir par leur suture dorsale sd.

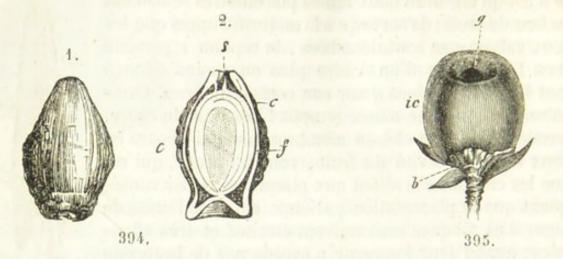
392. Capsule d'une Orchidée (Orchis maculata) au moment de la déhiscence. c Débris du limbe calicinal qui couronne le fruit. — vv Segments du péricarpe qui se détachent en valves. — pp Segments qui persistent et portent les graines.

FRUIT. DÉHISCENCE.

verts de graines menues en dedans, et ils correspondent aux sutures placentifères.

Le fruit, si généralement connu sous le nom de silique (siliqua) est une capsule (fig. 393) analogue à la précédente, si ce n'est qu'elle offre deux lignes placentaires seulement au lieu de trois ; de sorte qu'à la maturité, après que les deux valves v se sont détachées, le replum r persiste sous l'apparence d'un cadre plus ou moins allongé tout bordé de graines q sur son contour interne. Ordinairement une lame mince remplit l'intérieur du cadre, formant ainsi une cloison membraneuse qui sépare en deux loges la cavité du fruit, contre l'usage, qui est que les cloisons s'arrêtent aux placentas, et par conséquent que la placentation pariétale entraîne l'unité de loge. Les siliques sont souvent étroites et très allongées; quand leur longueur n'excède pas de beaucoup leur largeur, on les désigne par le diminutif de silicule

(silicula). On peut en observer toutes les modifications dans les diverses plantes de la grande famille des Crucifères.


§ 435. Dans le cas le plus ordinaire, où la déhiscence se fait par le décollement des cloisons ou des sutures, ce peut être par les deux à la fois; elle est en même temps septicide et loculicide. Ainsi, qu'on prenne les capsules de la petite espèce de Lin commune sur nos pelouses (Linum catharticum), on verra les sutures dorsales se séparer les premières, et chaque loge s'ouvrir ainsi par le milieu, de manière qu'alors la déhiscence serait décrite comme loculicide. Mais, un peu plus tard, les cloisons se dédoublent à leur tour, déterminent la séparation des loges en autant de carpelles distincts ou coques bivalves, et la déhiscence devient alors septicide.

Après que la capsule est séparée par le dédoublement des cloisons en plusieurs carpelles, ceux-ci figurent autant de follicules s'ils s'ouvrent par les sutures ventrales seulement; s'ils s'ouvrent par leurs deux sutures à la fois et se divisent ainsi en deux valves, ils figurent des légumes contenant une rangée verticale de graines ou des coques (fig. 538) qui n'en renferment qu'un très petit nombre. Ce dernier mot est employé indifféremment pour les fruits apocarpés (§ 424) et syncarpés : on dit une capsule bi, tri, multicoque.

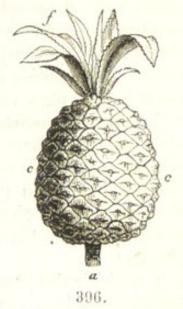
§ 436. Fruits anthocarpés. — Le fruit, outre son enveloppe que forme le péricarpe, peut en présenter d'accessoires fournies par une autre partie de la fleur (ανθος) que l'ovaire. Nous avons vu déjà, il est vrai, dans beaucoup de cas, le calice associé au fruit ; mais il

393. Silique de la Giroffée commune (Cheiranthus cheiri). - vv Valves. - r Replum, - g Graines.

était dès le principe adhérent à l'ovaire et confondu en partie avec lui. Il en est autrement dans les fruits dont nous parlons. C'est un verticille primitivement indépendant de l'ovaire, ordinairement un calice libre ou un involucre, qui, persistant autour de lui, s'épaissis-

sant ou s'endurcissant à la manière d'un péricarpe, finit par former à celui-ci une seconde enveloppe extérieure. On peut la voir sèche et représentant un véritable achaîne dans le fruit de la Belle-de-nuit (fig. 394), charnue dans l'Hippophaé, l'If (fig. 395), etc.

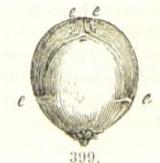
§ 437. Fruits agrégés.—Le fruit, dans toutes les modifications que nous avons examinées jusqu'ici, était le produit du pistil d'une même fleur. Il y en a cependant qui, quoique formant un corps unique, proviennent de plusieurs fleurs différentes. Ainsi, dans les diverses espèces de Chèvrefeuilles ou de Chamerisiers, on voit naître deux fleurs du même point, et leurs ovaires ainsi rapprochés se soudent, quelquefois même au point de se confondre, de sorte qu'on finit par avoir un fruit réellement composé de deux. Dans certains capitules ou certains épis, si les fleurs sont très rapprochées, les fruits qui leur succéderont n'offriront pas de différence apparente avec ceux qui proviendraient d'une fleur unique dont les carpelles couvriraient un axe plus développé en épaisseur ou en longueur. Ainsi, au premier aspect, les fruits du Mûrier et ceux de la Ronce ou du Framboisier paraissent de même nature ; et même les petits carpelles succulents de la Mûre, soudés par leur base en une seule masse, sembleraient moins indépendants entre eux que ceux de la


394. Fruit de la Belle-de-nuit (*Mirabilis jalapa*). — 4 Entier. — 2 Coupé longitudinalement, pour faire voir les parties qui le composent. — cc Partie inférieure du calice durcie, et formant une enveloppe extérieure. — f Le fruit véritable, caché par la précédente. Ses téguments sont confondus avec ceux de la graine qui a été également coupée. Mais on le reconnaît facilement au reste du style s qui apicule son sommet.

395. Fruit de l'If (Taxus baccata). — b Bractées imbriquées à sa base, — ic Enveloppe charnue tenant lieu de péricarpe et laissant voir le sommet de la graine nue g, qu'elle enveloppe en partie.


FRUITS AGREGES.

Framboise bien nettement séparés ; et cependant celle-ci est le pistil fructifié d'une fleur unique ; la Mûre, la réunion des pistils de tout un petit épi de fleurs. Aussi trouve-t-on à la base de la


première un calice qu'on chercherait vainement dans la seconde, où les calices nombreux se sont épaissis et soudés avec le bas des péricarpes. L'Ananas (fig. 396) représente la Mûre en grand, et le fruit de l'Arbre à pain en beaucoup plus grand encore. Dans tous, ce sont des épis à fleurs pressées dont les pistils se sont soudés entre eux ; et les calices, les bractées, l'axe même, gorgés des mêmes sucs, contribuent à augmenter cette masse dans laquelle ils sont confondus. La figue (fig. 492) offre quelque chose d'analogue, avec cette différence qu'ici c'est l'axe dilaté qui se recourbe autour de l'amas de petits fruits, et

forme ainsi l'enveloppe du fruit général (§ 266). Dans tous ces fruits, nous voyons le péricarpe s'enrichir par l'association de quelques parties accessoires, et, sous ces rapports, ils rentrent dans les anthocarpés.

Le cône (strobilus), fruit des Pins, Sapins, Cèdres, etc., et qui a fait donner le nom de Conifères à la famille des arbres verts dont ceuxci font partie, résulte d'une agrégation analogue. C'est un véritable épi plus ou moins allongé et chargé d'écailles plus ou moins épaisses, dont chacune portant deux ovules peut être comparée à une feuille carpellaire non repliée. Elles sont bien manifestement indépendantes dans le cône du sapin (fig. 397); mais dans d'autres elles sont

396. Ananas. — a Axe chargé de fruits c rapprochés et soudés ensemble en une seule masse et couronné par une touffe de feuilles f_i

397. Cône d'un Pin (Pinus sylvestris).

398. Cône d'un Cyprès (Cupressus sempervirens).

399. - d'un Genévrier (Juniperus macrocarpa).

assez cohérentes pour former, par leur réunion, un corps unique en apparence. Ce corps, qui, malgré son nom, est loin de montrer la forme conique dans les différentes plantes de cette famille, prend plutôt celle d'un sphéroïde lorsque ses écailles sont en très petit nombre -(comme dans le Cyprès [fig. 398]); et même dans les Genévriers (fig. 399), ainsi groupées en globe, de plus charnues, et par suite soudées ensemble, elles simulent une baie, dont ce fruit porte à tort, mais vulgairement, le nom.

§ 438. Maturation du péricarpe. — Il nous reste à rechercher quels changements s'opèrent dans la matière qui forme le péricarpe depuis le moment où il est passé de l'état d'ovaire à celui de fruit jusqu'à sa parfaite maturité. Dans cette recherche, nous devons examiner séparément les péricarpes qui conservent jusqu'à la fin leur consistance foliacée et ceux qui la perdent en devenant charnus.

L'analogie des premiers avec les feuilles se montre dans leur nutrition aussi bien que dans leurs caractères extérieurs. Comme les feuilles (§§ 240, 244), quoique à un degré plus faible, sous l'action de la lumière, ils prennent dans l'air environnant de l'acide carbonique en dégageant de l'oxygène ; la nuit, ils prennent de l'oxygène en dégageant de l'acide carbonique. Leur vie passe par les mêmes phases; leurs tissus, d'abord mous et riches en sucs, se solidifient graduellement, et, arrivés à une certaine période, commencent à se dessécher, à perdre la couleur verte pour en prendre une autre, soit celle de feuille morte, soit des teintes différentes analogues à celles que certaines feuilles revêtent en automne ; et le péricarpe, flétri, continue à rester attaché à l'arbre, ou tombe en se désarticulant. C'est un phénomène de désarticulation que le retrait qui a lieu, aux soudures des faces carpellaires accolées en cloisons, des faisceaux accolés en sutures, et qui détermine la déhiscence. Dans quelques péricarpes plus épais et indéhiscents, la maturité amène des phénomènes plutôt comparables à ceux que nous observons sur l'écorce ; leurs couches externes se détachent en se fendant irrégulièrement par une sorte de décortication.

Dans la vie des péricarpes charnus, on distingue deux phases: la première, où ils se comportent comme la plupart des précédents, colorés en verts, dégageant de l'oxygène pendant le jour. et de l'acide carbonique pendant la nuit; la seconde, où ils cessent de dégager de l'oxygène: c'est l'époque de la maturité et celle qui l'avoisine. C'est par un grand développement cellulaire que le fruit grossit; les faisceaux vasculaires ne se multiplient que peu ou point, ou, s'ils le font, la chair filandreuse n'acquiert pas la qualité qu'on y recherche. L'eau qui arrive avec la séve est, relativement au vo-

FRUIT. MATURATION.

lume du fruit, en proportion d'autant plus grande que la maturité est moins parfaite, quoique l'évaporation diminue cependant graduellement. C'est qu'une partie de cette eau se fixe en se combinant avec d'autres principes. Si elle reste à l'état aqueux et continue à arriver en grande quantité, le fruit, il est vrai, grossit beaucoup plus, mais il acquiert beaucoup moins de saveur, comme on l'observe dans les étés très humides, ainsi que sur les jeunes arbres ou sur ceux qui croissent dans un sol trop arrosé. 'Avec cette eau, on trouve dans la chair du péricarpe de la dextrine ou de la gomme, du sucre, du ligneux, et en outre des acides différents suivant les différents fruits (malique, citrique, tartrique, etc.), des bases inorganiques comme la potasse et la chaux, d'autres matières ternaires connues sous le nom de principes gélatineux, de l'albumine végétale, et enfin une substance aromatique particulière pour chaque fruit. Tels sont les éléments qu'on rencontre dans la généralité des nôtres, ceux sur lesquels s'est naturellement portée l'étude, mais diversement mélangés et dosés suivant les fruits divers.

Le ligneux, qui s'accumule quelquefois à un point si remarquable dans les cellules de l'endocarpe, se montre aussi très développé dans le sarcocarpe de certains fruits, par exemple des poires, et notamment de certaines variétés (celles de Saint-Germain, d'Angleterre, de cresane, par exemple), où chacun aura remarqué la chair toute parsemée de petites granulations dures et comme pierreuses. Ce sont autant de cellules encroûtées de ligneux, disséminées par petits amas au milieu des autres cellules remplies de sucs plus ou moins liquides.

Les fruits en général se sucrent en mûrissant; mais cette proportion croissante du sucre est très variable, puisque dans les uns on l'a trouvée douze ou quinze fois plus considérable que dans le fruit vert, et dans d'autres à peine doublée. Quelle est son origine? On l'a attribuée à la fécule qui, plus ou moins abondante d'abord, disparaît en partie, et dont la conversion peut s'opérer par l'action des acides (§ 234) aidée de celle de la chaleur que tout le monde sait si influente sur la maturation; à la conversion des acides eux-mêmes (§ 235); à celle du ligneux qu'on voit en effet généralement diminuer à mesure que la nutrition marche, et dont la perte de carbone expliquerait l'exhalation simultanée de l'acide carbonique. Pour justifier l'une de ces hypothèses, il faudrait constater que la quantité de la substance dont on suppose la conversion va en diminuant en rapport avec la quantité additionnelle du sucre qui se forme, et c'est ce que l'analyse n'a pas encore démontré.

Quoi qu'il en soit, la saveur sucrée doit se prononcer de plus en plus par une autre cause, celle de la neutralisation progressive des

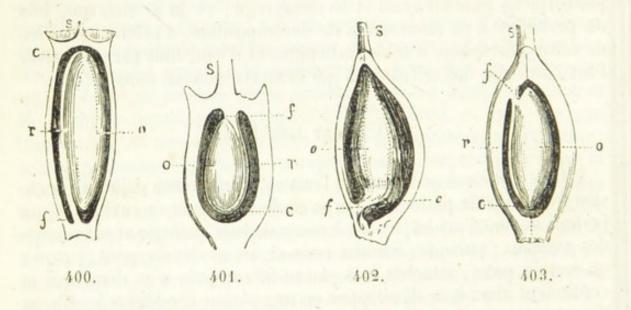
acides se combinant avec les bases alcalines que leur apporte la séve. Le Raisin, si aigre au début par la présence de l'acide tartrique, en fournit un bon exemple. Faute de potasse, il reste à l'état de verjus, mais se sucre si elle vient former un tartrate.

L'albumine, par sa faible proportion à toute époque relativement aux autres principes du fruit, proportion qui d'ailleurs va croissant dans les uns, diminuant dans les autres, ne doit pas jouer ici un rôle important, quoiqu'elle puisse, comme les acides, agir en certains cas par contact (§ 229).

Les principes gélatineux sont ceux qui donnent aux sucs la propriété de former des gelées en se gonflant par l'addition de l'eau. surtout à l'aide de la chaleur, dans la Groseille et la Pomme, par exemple. Ils paraissent dériver d'une substance mal déterminée qui s'observe dans le fruit encore acide, où elle a peut-être été souvent confondue avec le ligneux: c'est la pectose. Auprès d'elle se forme la pectase, comme la diastase auprès de l'amidon (§ 229), c'est-àdire un ferment propre à la modifier, elle et ses dérivés. Elle passe ainsi à l'état de pectine, corps neutre et soluble dans l'eau, auquel M. Fremy a donné pour formule C⁶⁴H⁴⁰O⁵⁶8HO, et qu'il a vu se transformer en une série d'autres corps (parapectine, métapectine; acides pectosique, pectique, parapectique, métapectique), dont la composition ne diffère que par des dédoublements moléculaires, et un peu d'eau en plus ou en moins, mais remarquables par la différence des propriétés physiques, notamment par l'acidité croissante. La pectine se montre au moment où le tissu du fruit, auparavant acide, tourne, c'est-à-dire devient mou et gommeux ; la parapectine et la métapectine, à mesure qu'il marche et parvient à la maturité ; l'acide métapectique lorsqu'il la dépasse et blossit. On voit que nous trouvons là, outre l'origine des gelées végétales, une réserve d'acides propre à opérer la conversion de la dextrine en sucre si les autres font défaut.

Quelle est l'époque précise de la maturité du péricarpe? Pour celui qui est foliacé ou déhiscent, cette époque est assez nettement déterminée par celle qui précède immédiatement la déhiscence; mais, pour celui qui est charnu, cette détermination est beaucoup plus incertaine, puisque chaque jour amène des changements nouveaux dans la composition du fruit, et qu'il ne se fixe pas à un certain état d'équilibre où les combinaisons opérées se maintiennent sans altération pendant quelque temps. Dans l'usage, et pour ce qui concerne les fruits qu'on mange, on est convenu d'appeler maturité le moment où la combinaison des divers principes sucrés, acides et autres, est telle qu'il en résulte le degré de saveur le plus agréable, et qu'à partir de ce moment elle n'aille plus qu'en se détériorant. Or,

dans les différents fruits, ce maximum ne correspond évidemment pas au même degré, puisqu'en prenant, par exemple, l'état blet ou blossissement (celui d'une poire molle), nous voyons que cette poire est encore mangeable, quoique ayant perdu la plus grande partie de ses qualités; qu'une pomme, au même point, est en état de pourriture; qu'une nèfle, au contraire, est, comme fruit comestible, à son degré le plus parfait.


Quoi qu'il en soit, il se passe dans les fruits ce que nous avons montré dans les autres tissus, une fois abandonnés par la vie (§ 237) : une combustion plus ou moins lente, résultant de la combinaison de l'oxygène de l'air avec le carbone du végétal, y amène un dégagement d'acide carbonique, et quelquefois d'autres gaz carbonés et d'eau, les phénomènes de la fermentation ou de la pourriture. Le péricarpe se ramollit ainsi et se désagrége ; et la graine, qui, loin de participer à ce mouvement de décomposition, a profité au milieu de cette atmosphère d'acide carbonique et d'eau, finit par se trouver libre, dégagée des enveloppes qui l'emprisonnaient dans le fruit.

OVULE ET GRAINE.

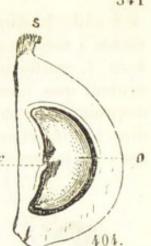
§ 439. En nous occupant de l'ovaire, nous avons déjà eu l'occasion fréquente de parler des corps renfermés dans sa cavité, et qui portent le nom d'ovules (ovula), à cause de leur analogie avec les œufs des animaux ; puisque, comme ceux-ci, ils se développent, jusqu'à un certain point, attachés à la plante-mère, puis s'en détachent et continuent alors à se développer en une plante semblable à celle où ils ont pris naissance. Nous avons vu qu'ils se trouvent sur certains points des parois de la cavité ou loge de l'ovaire, et que sur ces points s'observe une modification particulière du tissu des parois, telle que la nourriture soit transmise de la base de l'ovaire jusque dans l'intérieur de l'ovule. Ce système nourricier consiste généralement en un petit faisceau de trachées entouré de cellules allongées, le tout ordinairement environné de cellules plus courtes et plus semblables au reste du parenchyme des parois ovariennes. Il en résulte un renflement plus ou moins marqué, nommé placenta s'il correspond à un ovule unique, placentaire s'il correspond à un ensemble de plusieurs ovules. Tantôt l'ovule part immédiatement du placenta, il est sessile; tantôt l'un se lie à l'autre par un prolongement, le plus ordinairement rétréci, qui présente la même structure, et est appelé funicule. Le point, plus ou moins étendu, par lequel le funicule vient adhérer à l'ovule, a reçu le nom de hile (hilum), ou plus anciennement d'ombilic. Nous apprendrons bientôt à distinguer à sa surface plu-

sieurs autres points extérieurs en rapport avec ses parties intérieures, et qu'il importe en conséquence de bien connaître.

§ 440. On doit d'abord déterminer la position des ovules relativement à la loge qui les renferme. Commençons par le cas le plus simple, celui où elle n'en renferme qu'un seul (*loge uniovulée*), et supposons à l'ovule sa forme la plus habituelle, celle d'un ovoïde plus ou moins allongé attaché par un funicule assez court qui affecte, à peu de chose près, la même direction que lui. Le placenta peut être situé à la base même de la loge, et le funicule, ainsi que l'ovule, s'élever dans une direction à peu près verticale (*fig.* 400); on le dit alors *dressé* (*erectum*). Il peut être, au contraire, situé au sommet de la loge, duquel pend, dans l'intérieur, le funicule avec son ovule, qu'on dit alors *renversé* (*inversum* [*fig.* 401]). Le plus habituelle-

ment, ainsi que nous l'avons dit, c'est sur le côté de la loge que se trouve le placenta correspondant à sa suture dorsale, ou plus souvent à la ventrale; si c'est vers le haut, l'ovule est pendu (*appensum* [*fig.* 403], *pendulum*); si c'est vers le bas, l'ovule est *ascendant* (*ascendens* [*fig.* 402]); si c'est vers le milieu, l'ovule peut diriger sa pointe soit vers le bas, soit vers le haut de la loge, et on lui applique, suivant ces cas, les deux épithètes précédentes. Dans quelques cas il prend la direction à peu près horizontale, et on le désigne par cet adjectif.

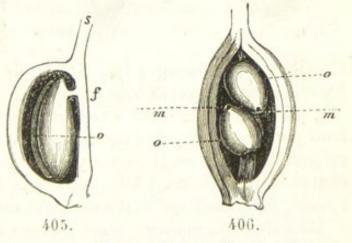
400-403. Ovaires appartenant à diverses fleurs et coupés dans leur longueur, pour faire voir les directions variées de l'ovule unique o qui s'y trouve renfermé. — f Funicule. — r Raphé. — c Chalaze. — s Base du style.


400. Un ovaire de Seneçon à ovule dressé, anatrope.

401. — de la Pesse (Hippuris vulgaris) à ovule renversé, anatrope.

- 402. de la Pariétaire (Parietaria officinalis) à ovule ascendant, orthotrope.
- 403. --- de Thymélée (Daphne Mezereum) à ovule pendant, anatrope.

OVULE.

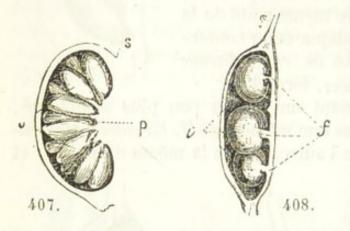

§ 441. Quelque embarras peut avoir lieu quand l'ovule, au lieu d'être droit, se recourbe sur lui-même. Si cette courbure est peu prononcée, on n'y a point égard, et l'on désigne la direction de l'ovule comme s'il était droit. Si elle est très forte, de telle sorte que les deux extrémités de l'ovule se trouvent très rapprochées f. l'une de l'autre et regardent le même point de la loge (fig. 404, 408 o), on indique cette conformation en ajoutant l'épithète de campulitrope (de xaµπu) δ_5 , recourbé; $\tau_{P}\delta\pi_{25}$, forme).

AA

§ 442. Supposons maintenant un cas un peu plus compliqué, celui où il y a deux ovules dans une même loge (l. biovulée). Ils peuvent, s'insérant l'un à côté de l'autre, suivre la même direction, et

on les dit juxtaposés ou collatéraux (collateralia [fig. 405]); ou plus rarement suivre une direction inverse, de telle sorte, par exemple, que l'un soit pendant et l'autre ascendant (comme dans certains Spiræas, dans le Marronnier d'Inde [fig. 406]). Ils peuvent aussi s'insérer à

des hauteurs inégales, de telle sorte qu'ils se placent l'un au-dessus de l'autre (ovules superposés, o. superposita), et dans ce cas ils suivent le plus ordinairement la même direction.


Les mêmes règles s'observent lorsqu'il y a dans chaque loge trois ovules qui s'attachent soit à des hauteurs inégales, soit à la même hauteur. Dans ce dernier cas, ils prennent en général des directions différentes : l'un en haut, l'autre en bas, l'autre intermédiaire, le premier ascendant, le second pendant, le troisième horizontal. C'est un résultat presque nécessaire du champ donné à leur développement lorsque le placenta se trouve vers la moitié de la hauteur de la loge.

404. Carpelle d'un Ménisperme (Menispermum canadense) à ovule courbe ou campulitrope o. — f Funicule. — s Stigmate.

405. Carpelle d'une Rosacée (Nuttallia cerasoides) à deux ovules o collatéraux pendants. — f Funicule. — s. Base du style.

406. Une loge de l'ovaire d'un Marronnier (Esculus hybrida), ouverte pour faire voir les deux ovules o insérés à la même hauteur, mais dirigés en sens inverse. — m Micropyle qui indique leurs sommets.

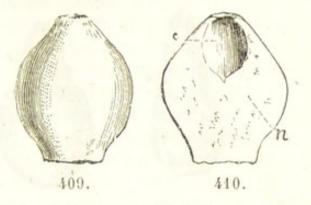
§ 443. La direction des ovules devient de moins en moins constante à mesure qu'on en trouve un plus grand nombre dans la même loge (*l. multiovulée*) et insérés sur un plus petit espace; car il est évident que, comme dans le cas précédent et à plus forte raison, ils devront se développer suivant l'espace qui leur est offert, c'est-àdire les inférieurs de haut en bas, les supérieurs de bas en haut, ceux du milieu dans des directions intermédiaires (fig. 407): sou-

vent alors, pressés les uns contre les autres et se gênant mutuellement dans leur développement, ils deviendront anguleux à leur surface et la forme polyédrique se substituera à la forme ovoïde. Mais si la loge est allongée et les ovules superposés (comme dans les Légumineuses ou les

Crucifères, par exemple [*fig.* 408]), ils ne se géneront pas mutuellement et se dirigeront tous en général de la même manière.

§ 444. Dans tous ces cas, on se sert des termes indiqués plus haut pour désigner ces directions, qui, comme on le voit, dépendent en grande partie de la forme de la loge et de la situation des placentas. La position du hile, soit vers le haut, soit vers le bas de l'ovule, détermine son état ascendant ou pendant.

Mais de cette manière nous n'avons appris à connaître encore la situation de l'ovule que relativement à la loge qui le renferme, et quelques difficultés peuvent se présenter : par exemple, si le hile se trouve placé vers le milieu de l'ovule, et non près de l'une de ses deux extrémités. Nous marcherions avec bien plus de certitude si nous pouvions dans tous les cas reconnaître à des caractères constants, dans l'ovule, une base et un sommet, et par la détermination de ces deux points arriver à celle de sa direction absolue. Or, l'observation peut nous donner ces points : nous apprendrons à les connaître en étudiant plus à fond la structure de l'ovule, que nous n'avons considéré jusqu'ici que tout à fait en général par rapport à d'autres parties, et non dans celles mêmes qui le constituent. La meilleure manière pour procéder dans cette étude est de le suivre dans ses états successifs depuis le moment où il commence à paraître jusqu'à celui où il a atteint son parfait développement.

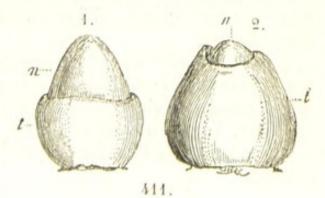

^{407.} Loge de l'ovaire du *Peganum harmala*, à ovules o nombreux insérés à un placenta saillant p, et se dirigeant dans plusieurs sens différents.

^{408.} Carpelle d'une Légumineuse (Ononis rotundifolia) à plusieurs ovules superposée et campulitropes o. — f Funicules.

OVULE.

S 445. Le Gui nous offrira un exemple dans lequel l'ovule se présente à son plus grand degré de simplicité. Il commence à se montrer au fond de la loge sous l'apparence d'un petit mamelon composé

de cellules uniformes, puis s'allonge en une masse ovoïde qui s'épaissit peu à peu, toujours formé d'un tissu homogène (fig. 409). A une certaine époque, cette masse se creuse vers son sommet (fig. 440 c), et ensuite, après que la fécondation est opérée, on voit poindre vers le haut

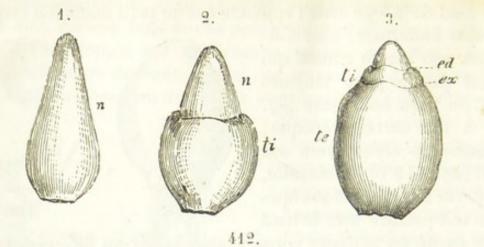


de cette cavité un nouveau corps suspendu par un filet résultant de la réunion de plusieurs cellules. Ce corps, dont les formes se détermineront de plus en plus, est l'ébauche de la petite plante nouvelle, l'embryon. On a donné le nom de nucelle à l'ensemble de la masse cellulaire, qui, dans ces cas, constitue seule l'ovule; de suspenseur, au petit fil par lequel l'embryon se rattache à son sommet. On peut nommer cavité embryonnaire celle dont s'est creusé à son centre le nucelle.

§ 446. Il est très vraisemblable que cette cavité est due au développement prédominant d'une cellule intérieure du nucelle qui a refoulé tout le tissu environnant. Du moins c'est ce qu'on voit nettement dans la plupart des nucelles, où une cellule se développe ainsi graduellement en un sac qui persiste et prend le nom de sac embryonnaire, parce que c'est dans sa cavité que se formera l'embryon (§ 456).

§ 447. Le cas le plus ordinaire est celui où le nucelle, au lieu

d'être ainsi nu dans la loge de l'ovaire, se revêt d'une enveloppe extérieure. Celle-ci se montre plus tard que lui sous la forme d'un petit bourrelet circulaire qui entoure la base du nucelle (fig. 411, t), puis s'allonge graduellement en une gaîne qui finit par l'envelopper


jusqu'au sommet (fig. 442 i). Plus ordinairement encore se forme une seconde enveloppe, et alors au-dessous du premier bourrelet on en

409. Ovule du Gui, entier.

410. Le même, coupé pour faire voir la cavité embryonnaire c et tout le reste de la masse n formé d'un tissu uniforme et constituant ainsi un nucelle sans téguments.

414. Ovule du Noyer (Juglans regia). — t Tégument simple. — n Nucelle. — 4 Pre-

voit un second qui s'accroît de même graduellement ; de telle sorte que le nucelle se présente environné de deux gaînes emboitées l'une

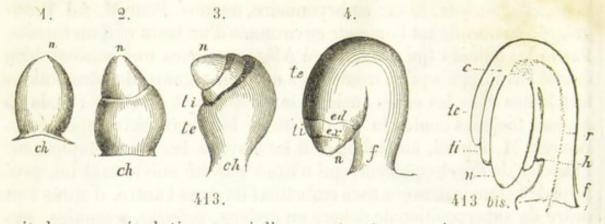
dans l'autre, l'intérieure dépassant pendant quelque temps l'extérieure (fig. 412, 3), qui néanmoins finit souvent par l'égaler et la dépasser à son tour. Dans ces deux cas, le sommet du nucelle continue quelque temps à faire saillie au-dessus de cette enveloppe simple (fig. 414 n) ou double (fig. 412 n); mais il arrive un moment où il est dépassé et caché; l'ouverture par laquelle il sortait s'est rétrécie graduellement et finit par se réduire à un très petit trou ou canal (fig. 406 m) qu'on a nommé micropyle, micropylum (de μ_{12205} , petit, et $\pi i \lambda_n$, porte).

Dans le cas où l'enveloppe est double, le micropyle est composé de deux ouvertures, l'une (ex) correspondant au tégument externe, et que M. Mirbel nomme exostome ($\xi \xi \omega$, en dehors; $\sigma \tau \partial \mu \alpha$, bouche, ouverture); l'autre (ed) correspondant au tégument interne, qu'il nomme endostome ($\xi \partial \sigma \nu$, en dedans). Ces deux ouvertures peuvent se correspondre exactement et former ainsi un petit canal, ou bien ne pas se correspondre si l'un des deux téguments dépasse plus ou moins l'autre.

§ 448. L'ovule complet se compose donc d'un noyau cellulaire ou nucelle creusé à l'intérieur d'une cavité que revêt le sac embryonnaire; enveloppé au dehors de deux autres sacs ou téguments, l'un extérieur, l'autre intérieur, qui lui adhèrent a la base seulement et sont entr'ouverts à l'extrémité opposée. Leur texture est entièrement cellulaire.

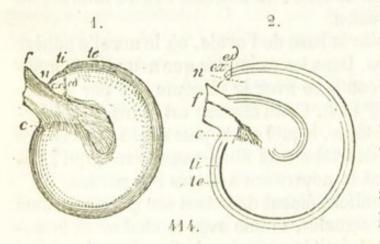
mier âge, où le tégument ne recouvre que la base du nucelle, - 2 Deuxième âge, où le nucelle est presque complétement recouvert.

442. Ovule du Polygonum cymosum à plusieurs âges. — n Nucelle. — te Tégument externe. — ti Tégument interne. — ex Exostome. — ed Endostome. — 4 Premier âge, nucelle encore nu. — 2 Deuxième âge, nucelle recouvert à sa base par le tégument interne encore seul. — 3 Troisième âge. Les deux téguments formant une double gaine, au sommet de laquelle on voit encore saillir le nucelle.


§ 449. Ces différentes parties ont reçu différents noms. M. R. Brown, qui, parmi les modernes, a le premier complétement éclairci cette structure, appelle les téguments testa et membrane interne, le nucelle, nucleus; le sac embryonnaire, amnios. Pour M. Ad. Brongniart, ce nucelle est l'amande environnée d'un testa et d'un tegmen. Parmi les auteurs qui les ont précédés, quelques uns avaient bien étudié l'ovule, puisqu'on trouve déjà sur son organisation des notions fort justes dans les écrits anciens de Malpighi et de Grew ; mais ils avaient toujours confondu en une seule les deux enveloppes extérieures. M. Mirbel, auguel on doit les travaux les plus complets sur l'histoire du développement, qui n'avait pas été suivi avant lui, propose de nommer tous ces sacs emboîtés l'un dans l'autre, d'après leur ordre de superposition de dehors en dedans, primine, secondine, tercine ou nucelle, quartine, quintine. Cette dernière est le sac embryonnaire. La quartine est une couche formée guelquefois à une époque postérieure autour du sac et dont l'existence paraît rare et passagère, de sorte que la plupart des auteurs l'ont négligée. D'autres noms encore ont été proposés. Nous continuerons à employer ici ceux dont nous nous sommes servis dans l'exposition précédente, ceux de tégument simple ou double, l'un externe, l'autre interne, de nucelle et de sac embryonnaire.

§ 450. On appelle *chalaze* la base de l'ovule, où le nucelle adhère à ses enveloppes extérieures. Dans les exemples que nous avons montrés, cette même base se continue avec le placenta, et par conséquent forme aussi le hile (§ 439). Cette chalaze est marquée en général par une différence de tissu, lequel est là plus dense, plus coloré et d'ailleurs parcouru par des faisceaux fibro-vasculaires, qui, venant du placenta, apportent la nourriture à toutes ces parties.

Si l'ovule se développe uniformément dans tout son pourtour, tous ces points que nous avons signalés, le hile avec la chalaze et le micropyle, situés aux deux extrémités opposées de l'ovule, conservent leurs rapports primitifs : cet ovule est *droit*, ou, suivant la nomenclature de M. Mirbel, *orthotrope* (d'òc0óc, droit).


Mais il arrive fort souvent que le développement ne marche pas ainsi égal de tous les côtés, que sur l'un il est très prononcé, tandis qu'il reste à peu près stationnaire sur le côté opposé. Par là, la pointe de l'ovule, avec son micropyle tourné primitivement en haut se tourne de côté (fig. 443, 3 n), puis un peu plus tard en dehors, puis enfin tout à fait en bas (4 n), après avoir fait ainsi un demi-tour de révolution. La chalaze, emportée de même avec les téguments, qui s'étendent, et conservant ses rapports avec le micropyle, fait une révolution analogue, mais en sens inverse, et marche de bas en haut : de manière qu'elle s'éloigne de plus en plus du hile, dont le micropyle

au contraire s'est rapproché de plus en plus. On peut dire qu'alors l'ovule est *réfléchi*, ou, suivant M. Mirbel, *anatrope* (d'àνατροπή, renversement). Le faisceau vasculaire qui aboutissait à la chalaze la

suit dans sa révolution en s'allongeant, et ce prolongement forme, dans l'épaisseur des téguments (de l'externe lorsqu'il y en a deux), un petit cordon ou ruban qui, venant du hile, se termine à la chalaze, et qu'on a nommé *raphé* (de $\dot{\rho}\alpha\varphi\eta$, ligne qui ressemble à une couture).

§ 454. D'autres fois l'ovule en se développant se courbe ou se plie sur lui-même de manière que sa moitié supérieure se dirige à peu

près en sens inverse de l'inférieure, et que son sommet organique ou micropyle se rapproche, comme dans le cas précédent, du hile. Dans cet ovule recourbé, ou campulitrope, le côté extérieur s'est développé beaucoup plus que l'intérieur (fig. 414), et alors la chalaze

c a été reportée un peu en dehors du hile qui se trouve entre elle et le micropyle, ces trois points étant fort rapprochés et regardant dans

413. Différents âges de l'ovule de l'Éclaire (*Chelidonium majus*). — h Hile. — c Chalaze. — f Funicule. — r Raphé. — n Nucelle. — ti Tégument interne. — te Tégument externe. — ed Endostome. — ex Exostome. — 4 Premier âge. Nucelle encore nu. — 2 Deuxième âge. Nucelle recouvert à sa base par le tégument interne. — 3 Troisième âge. Le tégument externe s'est développé et a recouvert à sa base l'interne. — L'ovule, par suite du développement d'un des côtés, a commencé à se réfléchir et tourne sa pointe latéralement. — 4 Quatrième âge. L'ovule s'est complétement réfléchi et tourne sa pointe en bas.

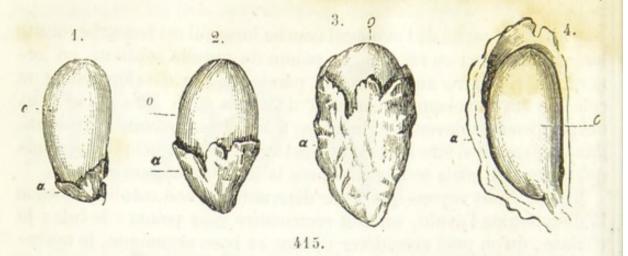
413 bis. Le même, coupé dans sa longueur pour faire voir le rapport des différentes parties.

414. Ovule campulitrope de la Giroflée. — 1 Entier. — 2 Coupé dans sa longueur. — Même signification des lettres que dans les figures précédentes.

OVULE. ARILLE.

le même sens. Il arrive souvent que les deux faces qui correspondent à la concavité de la courbure se touchent et même se soudent ensemble.

§ 452. La cavité de l'ovule est courbe lorsqu'il est recourbé, droite lorsqu'il est droit ou réfléchi. La pointe du nucelle continue, en général, à répondre au micropyle, parce que son développement et celui de ses enveloppes marchent d'un pas égal. Mais si ces deux développements devenaient inégaux, il est clair que cette correspondance cesserait d'être exacte; et c'est ce qui a lieu quelquefois, quoique rarement, mais seulement après la fécondation opérée.


§ 453. Nous voyons que, pour déterminer d'une manière absolue la direction de l'ovule, on doit reconnaître trois points : le hile ; la chalaze, qu'on peut considérer comme sa base organique; le micropyle, qu'on peut considérer comme son sommet. Les deux premiers se dessinent en général d'autant plus nettement que l'ovule est plus avancé ; le dernier tend, au contraire, à s'effacer de plus en plus. Sa position, de laquelle nous verrons se déduire celle de l'embryon, n'en est pas moins nécessaire à constater, et son rôle physiologique est d'une importance extrême, puisque c'est par cette ouverture que le tube pollinique, parvenu à travers le tissu conducteur du style jusque dans la cavité de l'ovaire, peut s'insinuer jusque dans l'ovule et se mettre en rapport direct avec le nucelle.

§ 454. Quelquefois sur les parois de la loge se montre, au-dessus de l'ovule, un petit renflement charnu qui, à une certaine époque, coiffe en quelque sorte son sommet et s'engage même par une petite pointe dans le canal du micropyle, lié sans doute à l'axe de la fécondation. C'est l'origine de certaines *caroncules* qu'on observe plus tard sur certaines graines.

D'autres fois ces caroncules sont dues à un grand épaississement de l'exostome (fig. 443 c).

§ 455. Cette expansion peut prendre un tout autre développement, et, en s'étendant sur la surface de l'ovule, l'envelopper plus ou moins complétement en formant ce qu'on appelle un arille (*arillus*). Celui-ci a commencé, comme dans les cas précédents, par un renflement qui s'évase peu à peu en une sorte de calotte (fig. 445, 4 a), puis en un sac entourant plus ou moins làchement une partie ou la totalité de l'ovule (2, 3, 4 a), ouvert plus ou moins largement à son autre extrémité. Son développement, qu'on peut suivre facilement sur le Fusain (fig. 445), est donc analogue à celui des autres téguments ; mais il s'en distingue facilement, non seulement parce qu'il se forme postérieurement, qu'il part des environs du hile, et par conséquent se dirige souvent en sens inverse des autres qui partent de la chalaze, mais encore par sa consistance et toute son appa-

rence. Il est souvent charnu, peint de couleurs plus ou moins brillantes, élégamment frangé dans son bord (comme dans les Urania,

certains *Hedychium*), brodé à jour dans la noix de Muscade, où il constitue ce qu'on appelle le *macis*.

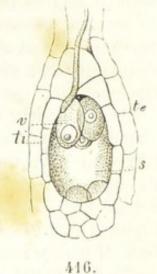
Cette enveloppe accessoire, et formée plus tard que les autres, peut devoir son origine à l'expansion de parties diverses. Ce peut être à celle du funicule même qui se renfle immédiatement au voisinage du hile, s'étend plus ou moins sur la graine, et finit par l'envelopper plus ou moins complétement, comme dans le Nymphæa (fig. 447 a), dans les Passiflores, etc.

On admettait jadis comme générale cette origine de l'arille; mais des recherches plus récentes, notamment celles de M. Planchon, ont fait reconnaître qu'elle ne l'est pas; que d'autres fois, comme dans le Fusain que nous avons cité (fig. 445), dans les Celastrus, dans la Muscade, etc., c'est une expansion de l'exostome, par conséquent du tégument externe réfléchi sur lui-même qui constitue cette enveloppe, ne différant donc de la caroncule des Euphorbiacées (fig. 443 c) que par un plus grand développement. On propose dans ce cas de la distinguer sous le nom de fausse arille, ou arillode.

D'autres fois encore, le tissu correspondant au trajet du raphé semble pulluler et détermine une excroissance celluleuse, soit limitée au voisinage du hile comme dans le Bocconia et quelques autres Papavéracées, soit étendue de là jusqu'à la chalaze et même au delà, et recouvrant dans sa longueur une partie de la graine comme dans l'Asarum : c'est ce qu'on appelle une *strophiole*.

§ 456. Nous avons (§ 446) expliqué la formation du sac embryonnaire par le développement excessif d'une cellule intérieure du nucelle, qui le plus souvent continue à l'entourer, affleuré par elle

^{415.} Développement de l'arille a autour de l'ovule o du Fusain (*Evonymus europæus*), à quatre âges successifs 1, 2, 3, 4. Dans le 4, l'arille a été coupé dans sa longueur, pour laisser voir ses rapports avec l'ovule, qu'il enveloppe complétement.


OVULE, ARILLE.

vers son extrémité supérieure. Plus rarement le sac fait hernie au dehors, libre et constituant la presque totalité de l'ovule si le nucelle était nu comme dans les Santalacées, s'engageant plus ou moins dans le canal du micropyle si le nucelle était revêtu de téguments.

Dans le protoplasma qui remplit ce sac embryonnaire se sont montrés bientôt, vers son sommet, un ou plu-

sieurs nucleus, trois le plus ordinairement, et par suite autant d'utricules (fig. 446 v); c'est dans l'un d'eux que doit se former l'embryon, ce qui leur a fait donner le nom de vésicules embryonnaires.

D'une autre part, les tubes émis par les grains du pollen arrêtés sur le stigmate se sont introduits à travers les interstices du tissu conducteur qui garnit le canal du style (§ 384, *fig.* 332), et continuant à s'allonger par une sorte de germination, au début de laquelle on a pu observer dans la fovilla qu'ils contiennent le mouvement rotatoire, ils finissent par arriver jusque dans l'in-

349

térieur de la loge, tantôt pendant librement dans sa cavité comme dans les Cistes, tantôt et ordinairement rampant sur les placentaires. Là ils rencontrent les ovules qui leur présentent l'ouverture béante de leurs micropyles; ils s'y engagent et arrivent au contact du sac embryonnaire, directement lorsqu'il fait saillie au dehors (fig. 446), sinon en pénétrant plus loin entre les cellules du nucelle. Ils se trouvent ainsi en rapport avec les vésicules embryonnaires, médiatement à travers les parois du sac, ou même, mais dans des cas très rarement observés, immédiatement en le percant. A ce contact, sans doute par la réaction établie à travers ces minces membranes entre les fluides contenus d'une part dans le tube pollinique, de l'autre dans les vésicules, s'opère le phénomène mystérieux de la fécondation, puis on voit se flétrir et disparaître le tube pollinique en même temps que l'une des vésicules embryonnaires, très rarement plusieurs dans le cas de polyembryonie, se développe en se multipliant par division : de ce développement résulte l'embryon.

M. Schleiden admet que l'embryon se forme dans l'extrémité même du tube pollinique, qui pénétrerait dans la cavité du sac

^{416.} Ovule de l'Orchis Morio au moment de la fécondation. — tp Extrémité du tube pollinique traversant le micropyle et affleurant l'une des trois vésicules embryonnaires v. — te Tégument externe de l'ovule, dont on a enlevé une partie. — ti Tégument interne. — s Sac embryonnaire ; il paraît à nu par suite de la disparition antérieure de la couche mince de nucelle qui le recouvrait.

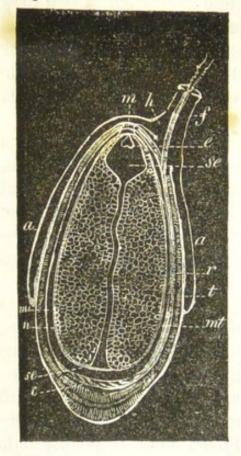
embryonnaire en refoulant la partie correspondante de sa paroi membraneuse dont elle resterait enveloppée. D'après cette théorie qui a eu un grand retentissement, et donné lieu à de savantes et nombreuses controverses, mais que n'adopte pas définitivement la majorité des botanistes, ce serait donc le pollen qui fournirait l'embryon, non l'ovule, simple appareil destiné à le loger et à le nourrir. Les noms d'organes mâle et femelle, appliqués à ces parties différentes, le seraient conséquemment à tort. Dans quelques cas, plusieurs tubes pénétrant à la fois dans le même ovule y détermineraient le développement simultané de plusieurs embryons qu'on observe quelquefois.

Il peut arriver que ce rapport des tubes polliniques avec les vésicules embryonnaires ne s'établisse pas, que certains ovules n'en reçoivent pas: ceux-là s'arrêtent alors dans leur développement, ils avortent; et c'est pourquoi souvent, parmi les ovules d'une même loge, on en voit quelques uns mûrir: quand ils sont nombreux, l'avortement d'une partie d'entre eux est un fait assez habituel. Il n'est même pas rare que tous ceux d'une même loge échappent à la fécondation, et, dans ce cas, on la voit elle-même s'atrophier graduellement et disparaître plus ou moins complétement. Les autres loges et les ovules fécondés continuent au contraire à croître, et même avec d'autant plus de vigueur qu'ils profitent des sucs qu'eussent employés celles et ceux qui restent stériles.

§ 457. Graine. — Examinons les changements successifs qu'on observe dans ces ovules fécondés qui prennent le nom de graine (semen). Nous supposons l'ovule aussi complet que possible, c'està-dire un nucelle doublé intérieurement d'un sac embryonnaire, où l'embryon a commencé à paraître revêtu extérieurement d'un double tégument:

Quelquefois tous ces sacs ainsi emboîtés persistent et croissent ensemble, les uns plus, les autres moins, de telle sorte qu'on les retrouve dans la graine mûre (fig. 417). Plus souvent il y en a qui se confondent en un seul (comme les deux téguments), ou qui cessent de croître, et alors, refoulés en dehors par l'embryon de plus en plus développé, s'amincissent graduellement, s'effacent et finissent même par disparaître complétement. Quelquefois, c'est le nucelle qui disparaît ainsi, et le sac embryonnaire se montre à nu sous les téguments (fig. 416 s). Il en résulte que, dans la graine mûre, le nombre des enveloppes paraît souvent diminué, le plus ordinairement réduit de 4 à 2. On donne généralement à l'extérieure le nom de testa, à l'intérieure celui de membrane interne.

§ 458. Mais d'autres changements se sont en même temps passés dans l'intérieur de l'ovule croissant. Après l'apparition de l'em-


GRAINE. PÉRISPERME.

bryon, le sac embryonnaire est rempli d'un fluide mucilagineux qui ne tarde pas ordinairement à s'organiser en un tissu cellulaire d'abord mou et lâche. Il peut s'établir une formation à peu près semblable en dehors du sac embryonnaire, par conséquent dans celui qui est constitué par le nucelle lui-même, et qui s'épaissit par un développement celluleux. Ce cas est précisément l'opposé de celui que nous avions exposé au paragraphe précédent, de celui où le nucelle disparaissait refoulé et résorbé graduellement.

§ 459. Ces sucs d'abord demi-liquides, puis organisés en un tissu continu, sont destinés à la nourriture du jeune embryon, qui continue lui-même à s'étendre; tantôt il les absorbe avant que ce tissu soit solidifié, et, s'avançant toujours, envahit peu à peu tout l'intérieur de la graine, et finit par la remplir, recouvert immédiatement par les enveloppes que nous avons décrites plus haut.

§ 460. D'autres fois, il prend beaucoup moins de place, et le reste est occupé par ce tissu formé en dernier, soit dans le nucelle, soit plus ordinairement dans le sac embryonnaire, soit dans tous deux à la fois (fig. 417); tissu qui forme alors une masse solide, à laquelle on a donné le nom de périsperme (perispermum). Richard le nommait endosperme, et Gærtner, avant lui, albumen. Ce dernier nom, qui est celui du blanc de l'œuf, était emprunté à la comparaison de notre œuf végétal avec celui des oiseaux ; comparaison qui, quoique fausse en certains points, est néanmoins assez propre à bien faire concevoir cette structure. On sait en effet que dans l'œuf le jeune animal, développé sur un point à la surface du jaune ou vitellus, absorbe pour sa nourriture ce jaune, puis le blanc qui l'entoure placé sous la coque doublée d'une membrane. Il était naturel de lui assimiler l'embryon ou jeune végétal situé de même en dedans de ces deux dépôts concentriques de matières différentes amassées, l'extérieur dans le nucelle, l'intérieur dans le sac embryonnaire, comparables ainsi dans leurs rapports à l'albumine et au vitellus ; et Gærtner a poussé jusqu'au bout la comparaison en donnant ce dernier nom au périsperme intérieur dans les cas, fort rares du reste, où l'on en rencontre deux dans la graine mûre. C'est ce qu'on voit, par exemple, dans celle des Nymphæa (fig. 447), où le développement de toutes les parties préexistantes dans l'ovule s'observe avec une grande netteté. Sous un arille a mince qui recouvre cette graine, sous un testa t assez épais et une membrane fine mi représentant les deux téguments de l'ovule, on trouve un gros corps farineux n remplissant presque toute la graine, mais dont l'axe est occupé par une sorte de long boyau fixé inférieurement à la chalaze, et supérieurement dilaté en un petit sac se à

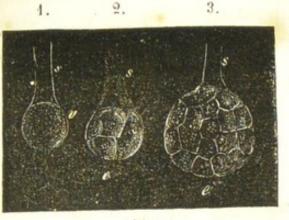
parois épaisses, au dedans duquel est l'embryon e. Il est difficile de ne pas reconnaître là le sac embryonnaire épaissi par un dévelop-

417.

pement cellulaire à son extrémité où s'est arrêté celui de l'embryon; de ne pas reconnaître dans le corps farineux le nucelle développé à un degré bien plus remarquable encore. Le périsperme peut donc être forme par des dépôts d'origine différente.

§ 461. Il peut de plus varier par sa nature et sa consistance et fournit ainsi d'utiles caractères pour la détermination des graines. 4° Ses cellules sont assez souvent remplies de grains de fécule, et l'on dit alors qu'il est farineux. C'est à cette nature du périsperme que beaucoup de graines, celles des Céréales par exemple, doivent leur propriété nutritive. 2° D'autres fois ces cellules acquièrent une assez grande épaisseur tout en conservant un certain degré de mollesse, et l'on dit qu'il est charnu. C'est dans ce cas qu'à l'inté-

rieur des cellules se forme quelquefois de l'huile (dans le Ricin, par exemple), et on l'appelle alors *oléagineux*. 3° Ces cellules peuvent acquérir, avec beaucoup d'épaisseur, une très grande dureté, presque celle de la corne, et le périsperme est *corné* (dans la Datte, le Café et l'Iris, par exemple).


§ 462. Embryon.—Pendant que ces changements divers s'opéraient dans les enveloppes de la graine, il s'en est opéré dans l'embryon, sa partie la plus essentielle et à laquelle toutes les autres sont nécessairement subordonnées. Examinons maintenant ce développement de l'embryon. Nous avons vu (§ 456) la vésicule embryonnaire se développer au contact du tube pollinique. D'abord simple, elle s'est doublée par une cloison transversale (fig. 448, 4), puis les cellules se sont multipliées (fig. 448, 2) par voie de division. Elles s'accolent ordinairement bout à bout en une série dont toute la portion supérieure forme le suspenseur, dont l'extrémité infé-

447. Graine jeune du Nymphæa alba, coupée verticalement. — f Funicule. a Arille. — r Raphé. — c Chalaze. — h Hile. — m Micropyle. — t Testa. — mi Membrane interne. — n Périsperme farineux formé par le nucelle. — se Sac charnu ou périsperme intérieur formé par le sac embryonnaire. — e Embryon.

EMBRYON.

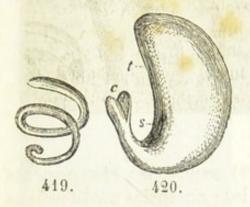
rieure forme l'embryon, borné d'abord à un seul utricule, composé

bientôt de plusieurs associés en une petite masse (fig. 448, 2,3 e). Souvent le suspenseur » s'arrête à ce degré de ténuité; d'autres fois, il s'allonge et se fortifie par l'addition de cellules nouvelles; mais, néanmoins, il finit presque toujours par disparaître lui-même, lorsque l'embryon, quelque temps suspendu par lui au sommet

353

418.

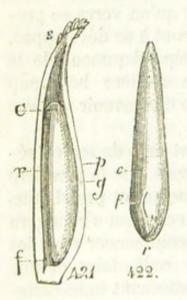
du sac, a acquis un certain volume.


§ 463. Nous avons déjà (§§ 27, 28) exposé les changements progressifs, les parties constitutives et les principales modifications de l'embryon. Nous avons vu que cette petite masse cellulaire, d'abord indivise, montre plus tard une sorte de division propre à établir la distinction de plusieurs parties; qu'on y distingue un axe et de petites excroissances latérales, ébauches des premières feuilles ; que parmi ces premières feuilles une ou deux, qu'on nomme cotylédons, offrent une forme et une structure particulières, et que, suivant l'unité ou la pluralité des cotylédons, s'établit dès lors entre les végétaux une différence fondamentale qu'on verra se prononcer de plus en plus à mesure qu'ils continueront à se développer. Mais nous n'avons examiné l'embryon qu'indépendamment de la graine, et nous l'avons d'ailleurs traité d'une manière beaucoup trop générale pour qu'il ne soit pas nécessaire d'y revenir ici avec beaucoup plus de détails.

C'est l'axe qui se forme le premier, tournant une de ses extrémités vers le suspenseur et l'autre du côté opposé. Or la première est toujours celle d'où partira plus tard la racine, et prend dans l'embryon le nom de *radicule*; la seconde est celle qui s'allongera en tige, en se couvrant de feuilles, et qui pour commencer émet les cotylédons. On distingue donc une extrémité radiculaire et une extrémité cotylédonaire. La radiculaire, se continuant immédiatement avec le suspenseur, regarde par conséquent le sommet du nucelle et le micropyle qui lui correspond; la cotylédonaire, directement opposée, devra donc regarder la base du nucelle, c'est-àdire la chalaze; et ces premiers rapports se maintiendront presque

448. Premier développement de l'embryon du *Draba verna* — s Suspenseur. — v Vésicule embryonnaire. — e Embryon. — 4 Première époque, où l'on n'aperçoit encore que la vésicule embryonnaire doublée. — 2 Deuxième époque, où plusieurs utricules se sont formés dans cette vésicule. — 3 Troisième, où l'embryon est devent plus manifeste par la formation et l'agglomération d'un plus grand nombre d'intricules.

toujours, de telle sorte qu'à l'inspection de la graine il suffise de pouvoir déterminer la chalaze et le micropyle, pour déterminer avec un assez grand degré de certitude les deux extrémités correspondantes de l'embryon encore caché sous ses enveloppes.


§ 464. Dans la graine d'un petit nombre de végétaux, notamment de plusieurs de ceux qui vivent en parasites, l'embryon est borné

à l'axe, alors indivis, comme on peut le voir, par exemple, dans la Cuscute (fig. 449); ou, si les cotylédons existent, c'est à l'état rudimentaire, et souvent tellement petits, qu'on a de la peine à les reconnaître (dans le *Pekea*, par exemple [*fig.* 420]), qu'il faut quelquefois même le microscope pour y parvenir (comme dans les Orchidées).

Ces cas sont assez rares, et ordinairement on observe dans l'embryon mûr, outre les cotylédons plus ou moins volumineux, les feuilles qui suivront, ramassées alors en un premier bourgeon extrêmement petit qu'on a nommé gemmule.

Ces différentes parties offrent des différences assez marquées, suivant que le cotylédon est simple ou double. Examinons-les successivement dans l'un et l'autre cas.

§ 465. Embryon monocotylédoné. — La forme la plus habituelle des embryons monocotylédonés est celle d'un cylindre arrondi à ses deux extrémités ou celle d'un ovoïde plus ou moins allongé (*fig.* 422). A l'extérieur, il est difficile d'y distinguer différentes parties ; mais, en la coupant verticalement par le milieu, on observe, à une hauteur variable, un petit mamelon niché dans une cavité immédiatement au-dessous de la surface. C'est la gemmule, terminaison supérieure de l'axe, auquel appartient toute la portion située au-dessous ; portion qui se compose presque entièrement de la pe-

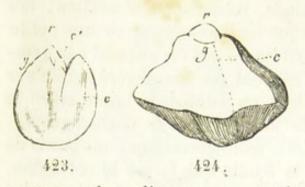
419. Embryon de la Cuscute.

420. Embryon du *Pelcea butyrosa*. — t Grosse tigelle formant presque toute la masse, réfléchie à son extrémité en un rétrécissement qui s'applique sur le sillon s et qu'on a écarté pour le mieux faire voir, ainsi que les deux cotylédons rudimentaires c qui le terminent.

421. Coupe verticale d'un carpelle du Troscart (*Triglochin Barrelieri*). — p Péricarpe surmonté par le stigmate sessile s. — g Graine. — f Funicule. — r Raphé. — c Chalaze.

422. Embryon, vu séparément. — r Radicule. — f Fente correspondant à la genimule. — c Cotylédon.

EMBRYON DICOTYLÉDONÉ.

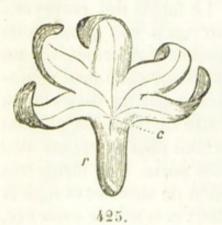

tite tige ou *tigelle* de ce végétal raccourci, mais qu'on désigne ordinairement sous le nom de *radicule* (fig. 422 r), parce qu'elle s'allongera inférieurement en racine. Toute la portion située au-dessus de la gemmule est le cotylédon (fig. 422 c). Avec beaucoup d'attention, et en examinant sous un grossissement suffisant l'embryon frais ou humecté, il est possible de déterminer, même sans dissection, ces diverses régions; car on peut presque toujours découvrir une petite fente (fig. 422 f) ou boutonnière extérieure qui correspond à la gemmule, indiquée d'ailleurs le plus souvent par une légère saillie sur la surface de l'embryon, et dès lors on connaît la limite entre la portion radiculaire tournée vers le micropyle et la portion cotylédonaire tournée vers la chalaze. Cette fente correspond aux bords de la gaîne ou portion vaginale de la feuille que forme le cotylédon.

La radicule est, dans quelques embryons, aussi et même plus longue que le cotylédon (fig. 72 t), et on les appelle alors macropodes (de $\mu \alpha z \rho \delta z$, long, et $\pi \rho \delta z$, $\pi c \delta \delta z$, pied). Quelquefois même ils se dilatent latéralement de manière à former une sorte d'excroissance qui peut s'étendre jusqu'à constituer la plus grande partie de la masse embryonnaire. Mais plus habituellement (fig. 422), la radicule (r) est au contraire beaucoup plus courte que le cotylédon (c); elle est aussi, en général, plus épaisse et d'un tissu un peu plus compacte. Ce n'est pas cette extrémité même qui s'allongera pour la former, et nous avons vu (§ 404) que le plus souvent c'est une sorte de mamelon interne qui, perçant la couche extérieure, se développera ainsi.

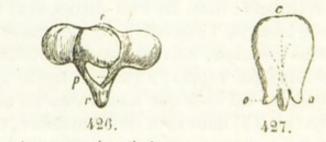
§ 466. Embryon dicotylédoné. — La forme des embryons dicotylédonés est beaucoup trop variée pour qu'il soit possible de l'exprimer d'une manière générale. Quelquefois conformés en un cylindre ou un ovoïde très allongés, ils rappellent celle des monocotylédonés ; mais ils s'en distinguent toujours par la division en deux lobes de l'extrémité cotylédonaire : cette division est plus ou moins profonde, suivant que les cotylédons sont plus ou moins développés par rapport à l'axe ou tigelle qui les porte. Une forme très commune est celle que nous avons eu occasion de signaler et figurer déjà (fig. 73) dans ceux de l'Amandier, où deux cotylédons ovales cc, appliqués l'un sur l'autre, constituent la plus grande partie de l'embryon, tandis que l'axe est réduit à un corps beaucoup plus étroit et plus court qu'on ne voit à l'extérieur que sous l'apparence d'un petit cône r saillant au-dessous des cotylédons ; cette portion inférieure aux cotylédons est la radicule, dont l'extrémité, ainsi que nous l'avons déjà dit (§ 93), se prolongera immédiatement en racine. L'autre portion de l'axe, supérieure à leur insertion, la gemmule, plus ou moins, quelquefois à peine développée et cachée entre

eux, ne se voit qu'après qu'on les a artificiellement écartés. Elle est souvent terminée elle-même par deux petits lobes (fig. 74 g), quelquefois montre un plus grand nombre de ces lobes latéraux, premières ébauches des feuilles, d'autres fois paraît encore indivise.

§ 467. Il peut arriver qu'un embryon à deux cotylédons paraisse



n'en avoir qu'un, soit par leur extrême inégalité et le développement à peine sensible de l'un des deux (*fig.* 423), soit parce que tous deux à peu près également développés se sont soudés plus ou moins intimement par leurs faces en contact (*fig.* 424),


comme cela a lieu, par exemple, dans la graine de la Capucine.

Mais laissons de côté ces dispositions insolites, et prenons la plus habituelle, celle dans laquelle les deux cotylédons sont égaux et seulement contigus. Tantôt ils acquièrent une grande épaisseur (comme dans l'Amandier [fig. 73], le Haricot, les Pois [fig. 432, 643], le Noisetier [fig. 527], le Chêne, etc.), et l'on dit alors qu'ils sont charnus : dans ces cas, les deux faces en contact ou internes sont en général planes ; les faces libres ou externes, plus ou moins convexes. Tantôt ils sont comprimés en lames minces, aplaties sur leurs deux faces, et on les dit foliacés (commedans le Ricin, l'Euphorbe [fig. 540], le Fusain, etc.).

Dans ce dernier cas on voit déjà sur les cotylédons des nervures plus ou moins évidentes, tandis qu'elles ne le sont que peu ou point

sur ceux qui sont charnus. La nature foliacée de ces organes se manifeste aussi par leur forme, puisqu'ils peuvent être pétiolés (fig. 426), avoir un limbe échan-

423. Embryon de l'Hiræa salzmanniana, coupé verticalement pour faire voir l'inégalité de ses deux cotylédons dont l'un c forme presque toute la masse embryonnaire. c' Le petit cotylédon. — g Gemmule. — r Radicule.

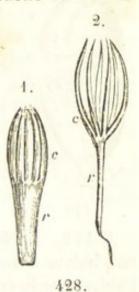
424. Embryon du Carapa Guianensis, coupé verticalement pour faire voir la soudure des cotyédons dont la distinction ne s'aperçoit plus que par une faible ligne c. - r Radicule. - g Gemmule.

425. Embryon du Tilleul. - r Radicule. - c L'un des cotylédons.

426. — du Geranium molle. — r Radicule. — c Cotylédons qui s'y rattachent par un pied ou pétiole p.

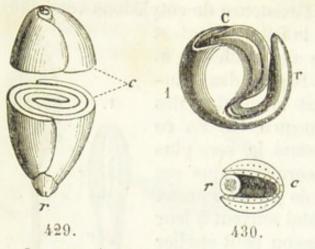
427. Embryon de l'Orme, - r Radicule, - c Cotylédon, - vo Ses oreillettes,

EMBRYON DICOTYLÉDONÉ.

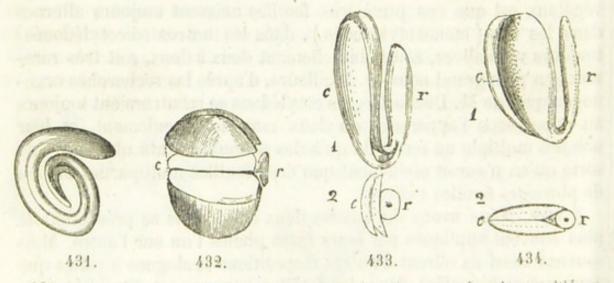

cré (fig. 427) ou lobé (fig. 425), comme celui de véritables feuilles. Au reste, le plus ordinairement ils sont sessiles, et leur contour entier. § 468. Il y a des plantes où l'existence de cotylédons verticillés

au nombre de plus de deux est le fait constant et normal, par exemple beaucoup de Conifères, et notamment les Pins (*fig.* 428) et Sapins, dans plusieurs espèces desquels on voit le nombre des cotylédons s'élever à 6, 9 et jusqu'à 45. En ce cas leur forme est linéaire, comme le sera plus tard celle des feuilles : et remarquons que ces feuilles, réunies en faisceau sur de petits rameaux contractés et presque nuls, offriront souvent à leur tour une disposition analogue qu'on peut étudier sur les Pins, les Mélèzes, etc.

Cette multiplicité de cotylédons a fait proposer de substituer au nom général de végétaux dicoty-


lédonés, celui de polycotylédonés. Mais le premier convient à la grande majorité, ou plutôt à la presque totalité de ces végétaux; il est depuis longtemps et généralement adopté, et doit en conséquence être conservé. On devra seulement se rappeler que la différence essentielle des embryons dans ces deux grandes classes de végétaux est que ces premières feuilles naissent toujours alternes dans les uns (monocotylédonés), dans les autres (dicotylédonés) toujours verticillées, soit habituellement deux à deux, soit très rarement en plus grand nombre. D'ailleurs, d'après les recherches organogéniques de M. Duchartre, les cotylédons se montreraient toujours au début sous l'apparence de deux mamelons seulement, et leur nombre multiple ne serait dû qu'à des dédoublements ultérieurs, de sorte qu'on n'aurait réellement que deux feuilles multiparties au lieu de plusieurs feuilles entières.

§ 469. Nous avons dit que les deux cotylédons se présentent le plus souvent appliqués par leurs faces planes l'un sur l'autre. Mais souvent aussi ils offrent d'autres dispositions analogues à celles que nous avons signalées dans les feuilles proprement dites avant le développement, lorsqu'elles sont resserrées dans le bourgeon à l'état de vernation (§ 444). Ainsi ils peuvent être pliés en deux moitiés, réclinés (fig. 447, 4) ou condupliqués (fig. 447, 2; 430), convolutés (fig. 447, 4; 429) ou circinés (fig. 447, 7; 434). Le plus ordinairement les deux cotylédons se plient et se contournent ainsi dans le même sens, et parallèlement, comme s'ils ne formaient qu'un


^{428.} Embryon du Pin. — 4 Pris dans la graine. — 2 Ayant commencé à germer. r Badicule. — c Cotylédons.

même corps; plus rarement c'est en sens contraire, comme lorsqu'ils sont équitants (fig. 147, 9) ou demi-équitants (fig. 147, 8). Quel-

quefois ils sont en outre chiffonnés (fig. 654, 655). On conçoit que ce sont les cotylédons foliacés qui doivent se prêter à ces divers modes de plicature et d'enroulement quelquefois très compliqués, et qui alors ne peuvent être définis par un seul mot, mais demandent une petite description plus explicite.

§ 470. Après avoir examiné les diverses positions que les deux cotylédons d'un même embryon peuvent prendre l'un par rapport à l'autre, recherchons celles qu'ils peuvent prendre par rapport à l'autre partie fondamentale de cet embryon : la radicule. Très souvent celle-ci suit la même direction que les cotylédons : la direction rectiligne si l'embryon est droit, curviligne s'il est courbe. Cette courbe figure ordinairement un arc de cercle plus moins étendu, mais quelquefois devient une véritable spirale à plusieurs tours dis-

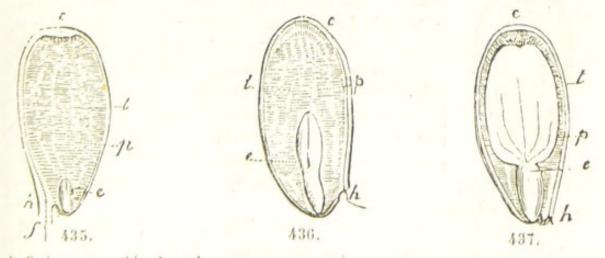
429. Embryon du Grenadier (*Punica granatum*), qu'on a coupé en deux moitiés en écartant la supérieure de manière à montrer l'enroulement des cotylédons c. - r Radicule.

430. Embryon du Chou (Brassica oleracea). — r Radicule. — c Cotylédons. — 1 Entier. — 2 Tranche horizontale.

431. Embryon du Bunias orientalis.

2432. — du petit Pois, qu'on a coupé en deux moitiés en écartant la supérieure : de manière à montrer la séparation des cotylédons c charnus et accombants.

433-434. Embryons de Crucifères. - r Radicule. - c Cotylédons.


433. — du Pastel (Isatis tinctoria). — 1 Entier. — 2 Sa tranche horizontale.
434. — de la Giroflée commune (*Cheiranthus cheiri*). — 1 Entier. — 2 Sa tranche horizontale.

GRAINE. RAPPORTS DES PARTIES.

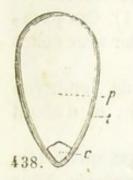
posés soit sur un seul plan (fig. 434), soit sur plusieurs plans les uns au-dessus des autres (fig. 419). D'autres fois la direction de la radicule n'est pas la même que celle des cotylédons, mais forme avec elle un angle obtus, ou droit, ou aigu; ou même, se repliant complétement, marche parallèlement aux cotylédons, mais en sens inverse. La radicule ainsi pliée peut s'appliquer soit sur la face des cotylédons, soit sur leur bord. Dans le premier cas, on les dit *incombants* (fig. 433); dans le second, *accombants* (fig. 432, 434). Ces plicatures de la radicule sur les cotylédons peuvent coïncider avec celles des cotylédons sur eux-mêmes (fig. 430).

§ 471. Étudions maintenant les divers rapports de l'embryon avec les diverses parties de la graine qui le renferme, et d'abord avec le périsperme lorsque celui-ci s'est développé.

Nous avons vu que l'embryon n'est, dans le principe, qu'un très petit corps suspendu au sommet de la cavité embryonnaire. Nous avons vu qu'il s'étend graduellement, et finit souvent par la remplir tout entière, absorbant tous les sucs qui s'y sont accumulés, et même une partie des enveloppes qui existaient à une première époque. Qu'on suppose tous les degrés intermédiaires entre ce premier et ce dernier état de l'embryon; qu'on le suppose arrêté à chacun de ces degrés, et dans chacun de ces cas la place, qui n'est pas envahie par l'embryon, occupée par le périsperme; on concevra tous les rapports de grandeur possibles entre l'un et l'autre, rapports

infiniment variés dont la nature nous offre tous les exemples (fig. 435, 436, 437). Ainsi, l'embryon peut n'occuper qu'un très petit point au sommet du périsperme, ou s'étendre jusqu'à sa moitié, ou moins

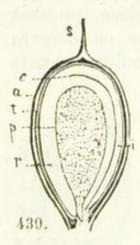
435-437. Graines mures, coupées verticalement pour montrer les relations différentes de grandeur de l'embryon e par rapport au périsperme p. — t Tégument. — f Funicule. — h Hile. — c Chalaze.


435. Graines d'une Renonculacée (Helleborus niger).

436. — d'une Berbéridée (Diphylleia peltata).

437. ___ d'une autre Berbéridée (l'Épine-vinette ou Berberis vulgaris',

ou plus, ou enfin l'égaler en longueur. Il peut être plus ou moins mince, plus ou moins épais, et cette épaisseur sera nécessairement en sens inverse de celle du périsperme, dont la couche s'atténuera de plus en plus à mesure que l'embryon grossira davantage.


§ 472. Celui-ci peut se diriger suivant l'axe même de la graine, et alors il est dit *axile*. Alors deux cas se présentent : ou il repousse

au-dessous de lui le périsperme, avec lequel il ne se trouve en rapport que par une partie de son extrémité inférieure ou cotylédonaire (fig. 438); ou il s'enfonce dans l'épaisseur même du périsperme qui l'environne alors de toutes parts, excepté tout à fait à son extrémité radiculaire (fig. 437). Rarement une soudure s'opère entre cette extrémité et le périsperme (par exemple, dans beaucoup de Coni-

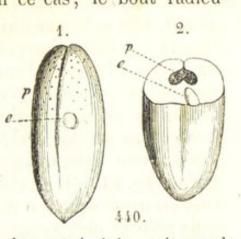
fères), sans doute au moyen du suspenseur épaissi.

§ 473. D'autres fois l'embryon, dans son développement, ne suit pas l'axe de la graine et se rejette sur le côté, en général sur celui qui est opposé à la chalaze. Même en ce cas, il peut être encore complétement enveloppé par le périsperme, dont la couche est alors

beaucoup moins épaisse d'un côté que de l'autre. D'autres fois il est tout à fait en dehors du périsperme et placé immédiatement sous les téguments. C'est surtout dans les graines recourbées, résultant d'ovules campulitropes, qu'on observe cette disposition; et alors la chalaze occupant la concavité de la courbure, l'embryon, qu'on dit *périphérique*, suit sa convexité et paraît entourer le périsperme au lieu d'en être entouré (*fig* 439, 577): si la graine n'est pas courbée, si l'embryon est petit par rapport au périsperme, il se trouve rejeté sur

le côté (fig. 565), ou sur un point de sa surface, comme dans les Graminées, par exemple (fig. 489).

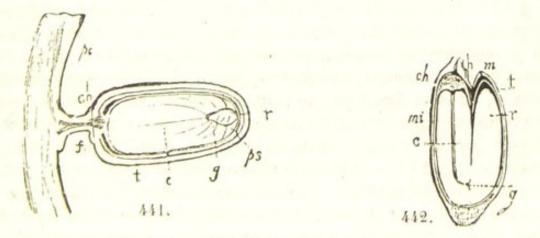
§ 474. Enfin, dans un petit nombre de cas, le développement des téguments divers peut avoir marché irrégulièrement, de manière que le micropyle cesse de coïncider avec le sommet du nucelle, et par conséquent l'axe de la graine (c'est-à-dire la ligne courbe ou droite tirée entre le micropyle et la chalaze) ne suit réellement


438. Graine du Carex depauperata coupée verticalement. - t Tégument. - p Périsperme. - e Embryon.

439. Carpelle de la Belle-de-nuit (*Mirabilis jalapa*) coupé verticalement avec la graine qu'il contient.— a Péricarpe surmonté du reste de style s.— t Téguments de la graine. — e Embryon avec sa radicule r et ses cotylédons c.— p Périsperme.

GRAINE. RAPPORTS DES PARTIES.

plus celui de la cavité embryonaire. En ce cas, le bout radiculaire de l'embryon, qui est dit excentrique, vient aboutir à une certaine distance de l'extrémité de la graine. On en voit des exemples dans les Primulacées (fig. 632), les Plantains, beaucoup de Palmiers (fig. 440), etc.


§ 475. Nous venons de voir que l'embryon, lorsqu'il est accompagné d'un périsperme, se trouve le plus souvent entouré par lui ; que d'autres

361

fois il se trouve au dehors, soit à l'une des extrémités, soit sur le côté. Richard l'appelait intraire (intrarius) dans le premier cas, extraire (extrarius) dans le second.

§ 476. Examinons enfin les rapports de l'embryon avec les téguments de la graine, c'est-à-dire avec ses trois principaux points, le micropyle, la chalaze et le hile. Nous savons déjà qu'ils sont, à très peu d'exceptions près, constants avec les deux premiers, l'extrémité cotylédonaire regardant la chalaze, la radiculaire regardant le micropyle. Ce n'est donc qu'avec le hile qu'ils doivent varier. Or celui-

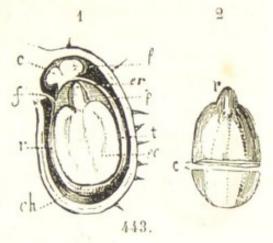
ci se trouve confondu avec la chalaze dans les ovules droits ou orthotropes, reporté à l'extrémité opposée dans les ovules réfléchis cu anatropes. Dans le premier cas, la radicule se trouve donc dirigée

440. Amande ou noyau de la Datte. - p Périsperme. - e Embryon. - 1 Entier. -2 Coupé transversalement à la hauteur de l'embryon.

441. Graine du Sterculia balanghas coupée longitudinalement avec la portion du péricarpe pc à laquelle elle est attachée. - f Funicule. -- ch Chalaze et hile confondus. - t Téguments de la graine. - ps Périsperme dont on n'aperçoit que le sommet. -c Un des cotylédons, l'autre a été enlevé de manière à laisser voir la genimule g. --r Radicule.

442. Graine de l'Erysimum cheiranthoides coupée longitudinalement. — m Micropyle. - ch Chalaze presque confondue avec le hile h. - t Testa. - mi Membrane interne. - r Radicule. - c Cotyledons. - g Gemmule.

en sens inverse du hile (radicula hilo contraria [fig. 441]); dans le second, elle se trouve dirigée de son côté (radicula hilum spectans [fig. 443]). Richard appelait antitrope (de $\tau co\pi \eta$, action de se tourner; avri, à l'opposé) l'embryon qui est dans le premier cas; homotrope (d'óµó5, semblable) l'embryon qui est dans le second. Il nommait amphitrope (d'àugi, autour) celui qui, courbé sur lui-même, rapproche ainsi ses deux extrémités (fig. 442), et que nous avons vu le plus souvent entourer d'un côté une partie ou la totalité du périsperme (fig. 439). Il est clair que l'embryon antitrope devra se former dans un ovule droit ou orthotrope; l'embryon homotrope, dans un ovule réfléchi ou anatrope; l'embryon amphitrope, dans un ovule courbe ou campulitrope. Nous devons convenir que toutes ces épithètes sont, par leur consonnance, propres à entraîner quelque confusion. Il faut soigneusement distinguer celles qui se rapportent à l'ovule et celles qui se rapportent à l'embryon. Sans doute en réservant pour ces dernières exclusivement cette désinence en trope, et ne se servant, quand il s'agit de l'ovule, que des épithètes de droit, réfléchi et courbe, on éviterait cet inconvénient. Mais comme tous ces mots différents se trouvent employés dans divers ouvrages, nous avons dû ici en faire connaître la valeur.


§ 477. Nous avons vu (§ 440) quels peuvent être les différents rapports de l'ovule avec la loge de l'ovaire qui le renferme. Ils ont pu se modifier par les changements que l'ovule subit en se développant; mais néanmoins, lorsqu'il est arrivé à l'état de graine parfaite, celle-ci, dans sa direction, ne peut présenter d'autres combinaisons que celles que présentent les ovules eux-mêmes; elle doit être ou dressée (fig. 421, 532), ou ascendante (fig. 638), ou renversée, ou pendante (fig. 443), soit dans le même sens que le funicule, soit en sens inverse; elle peut être attachée par son milieu, et aussi être recourbée ou pliée sur elle-même. Les figures (400-403) par lesquelles nous avons cherché à éclaircir ces diverses positions de l'ovule s'appliquent donc à la graine mûre, aussi bien que les mots par lesquels on les désigne.

§ 478. Mais l'identité de direction, par rapport à la loge observée dans deux graines appartenant à des plantes différentes, n'implique pas la même identité pour les embryons. Ainsi, par exemple, un ovule dressé pouvait être droit ou réfléchi, tourner son micropyle vers le haut ou vers le bas de la loge. La radicule, qui correspond presque constamment au micropyle, doit, dans le premier cas, être également tournée vers le haut; dans le second, vers le bas. C'est ce qu'on indique par certaines épithètes appliquées à cette radicule, qu'on dit *supère* lorsqu'elle se dirige en haut (*fig. 443 er*); *infère*, lorsqu'elle se dirige en bas (*fig. 690*); *ventrale* ou *centripète*, lors-

GRAINE. BAPPORTS DES PARTIES.

qu'elle se dirige en dedans; dorsale ou centrifuge (fig. 441 r), lorsqu'elle se dirige en dehors. Il est clair que de cette direction de

Fembryon, combinée avec celle de la graine, on peut conclure la direction absolue de l'ovule; de même que, réciproquement, on pouvait prévoir, par celle-ci, quelle serait plus tard celle de l'embryon. Un ovule dressé et droit (ou orthotrope) annonçait d'avance que l'embryon serait antitrope, avec une radicule supère; de même qu'en rencontrant celui-ci dans la graine mûre, on en conclut, avec, certitude ce qu'a été

conclut avec certitude ce qu'a été antérieurement l'ovule.

§ 479. Le micropyle est bien visible sur un certain nombre de graines, comme celles de l'Iris, de la Fève, du Haricot, du petit Pois, et autres légumineuses où il persiste sous la forme d'un petit trou. Mais il a disparu sur le plus grand nombre, et alors, pour déterminer la place où il a dû exister, il suffit de disséquer la graine et de constater où vient se terminer la pointe de la radicule.

Quant au hile et à la chalaze, ils sont en général plus nettement dessinés que sur l'ovule. Le premier se constate par le point où se fixe le funicule, ou, lorsque cette attache s'est rompue et que la graine s'est détachée, par la cicatrice qui en résulte sur la surface des téguments. La seconde se reconnaît souvent à une couleur différente du reste de ces téguments, plus pâle, ou au contraire et généralement plus foncée ; d'autres fois de la même couleur qu'eux, elle s'en distingue plus difficilement, et même seulement à l'aide de la dissection qui fait reconnaître dans ces téguments une portion plus épaisse et d'un tissu un peu différent correspondant à cette chalaze. D'ailleurs elle regarde toujours l'extrémité cotylédonaire de l'embryon. Elle varie aussi par sa forme, qui est tantôt linéaire, tantôt et plus souvent celle d'une aréole plus ou moins régulièrement arrondie, ou enfin intermédiaire entre ces deux extrêmes. Si le

443. 4 Coupe verticale d'un carpelle de Ricin (*Ricinus communis*) et de la graine qu'il renferme. — a Péricarpe. — l Loge. — f Funicule. — t Téguments de la graine, l'extérieur surmonté par la caroncule c, qu'on voit traversée par le petit canal de l'exostome, lequel a cessé de correspondre exactement à l'endostome placé immédiatement au-dessus de la radicule. — r Raphé. — ch Chalaze. — p Périsperme dont on n'aperçoit que la portion supérieure. — e Embryon avec sa radicule er et ses cotylédons ec.

2 L'embryon séparé, coupé transversalement et dont les deux moitiés ont été un peu écartées pour laisser voir les deux cotylédons c appliqués l'un contre l'autre. r Badicule.

hile est situé immédiatement en dehors de la chalaze (dans les graines droites ou à embryon antitrope), ces deux points se confondent extérieurement. Si le hile s'éloigne de la chalaze, le faisceau vasculaire qui, arrivant au premier avec le funicule, va se terminer à la seconde à travers les téguments, se dessine sous ceux-ci comme une ligne ou une bandelette, en général plus

foncée, que nous avons appris à connaître sous le nom de raphé (fig. 445 r).

D'après les notions précédentes, on conçoit que de l'aspect extérieur de la graine, et de la détermination de ses divers points ou parties, le hile, la chalaze, le micropyle, le raphé, on peut conclure la direction de l'embryon qu'on ne voit pas ; mais la réciproque n'a pas lieu ; et si l'em-

bryon aide pour reconnaître ces points sur le tégument, il ne suffit pas, puisqu'il n'a pas de rapports nécessaires avec le hile, dont la position peut varier.

§ 480. Il ne nous reste qu'à ajouter quelques détails à ceux que nous avons déjà donnés (§ 457) sur les enveloppes de la graine : mûre, dont nous avons vu le nombre quelquefois porté à trois ou quatre, comme celles de l'ovule, se réduire le plus ordinairement à deux, une extérieure ou testa, une intérieure ou membrane interne (endoplèvre, De Candolle). L'embryon, soit dépourvu de périsperme, soit entouré ou accompagné de cette formation postérieure, forme, avec ou sans elle, un corps auquel on donne le nom d'amande; corps qui est tapissé extérieurement par la membrane interne qui le suit dans tous ses contours. Le testa le suit aussi quelquefois, moulé sur l'amande et cette membrane intermédiaire : c'est ce qui a lieu ordinairement lorsque la graine est droite ou à peine recourbée. Mais si sa courbe se ferme ou se replie sur elle-même, c'est généralement la membrane interne seule qui s'interpose dans ce repli, et le testa ne s'y enfonce que peut ou point. Quelquefois même, au lieu de s'étendre régulièrement et d'une manière continue sur la face interne du testa, elle forme des rides ou des replis nombreux qui se réfléchissent en dedans, et divisent ainsi plus ou moins profondément en un grand nombre de compartiments toute la périphérie de la cavité de la graine. Le périsperme qui remplit une pareille cavité se trouve donc sillonné à sa surface et dans une certaine épaisseur par des rides ou des rainures correspondant à tous ces replis : on dit alors

444. Graine du Noisetier. — f Funicule. — r Raphé. — c Chalaze. — n Nervures qui en partent en rayonnant et se répandent en remontant dans les téguments de la graine.

DISSÉMINATION.

qu'il est *ruminé* (*ruminatum*, comme dans les Anonacées, le Sagou, l'Arec et beaucoup d'autres Palmiers [*fig.* 496]).

Mais d'autres fois, au contraire, le testa peut former en dehors des prolongements où ne le suit pas la membrane interne. Ce sont de petites excroissances charnues ou caroncules qui, le plus souvent, circonscrivent le micropyle (fig. 443 c); ce sont des replis, membranes ou ailes, qui (comme celles des samares) tantôt s'étendent de l'une ou l'autre extrémité, tantôt partent du pourtour de la graine, soit d'un côté seulement, soit de tout son contour, au nombre de un ou plusieurs : on dit alors la graine *ailée*.

La membrane interne mérite le plus souvent son nom par son tissu mince et flexible; quelquefois cependant elle s'épaissit, et même au point de sembler une couche de périsperme, auquel son tissu, alors charnu, fournit ainsi une transition plus ou moins insensible. Ce n'est pas toujours également qu'elle se renfle ainsi : mais elle peut ne s'épaissir que par places seulement, conservant dans les autres sa nature membraneuse. Elle est le plus souvent blanchâtre ou demi-transparente.

Quant au testa, il peut présenter la même apparence et la même couleur; mais plus ordinairement diffère par sa teinte plus foncée, ainsi que par son tissu plus compacte et son épaisseur plus grande. Sa consistance est quelquefois molle, charnue, quelquefois coriace, souvent d'une dureté qui se rapproche plus ou moins de celle du bois : alors, s'il est mince, il devient fragile. Sa surface est lisse ; ou elle est inégale, se recouvrant de saillies diverses, obtuses ou aiguës, régulières ou irrégulières ; ou bien, au contraire, se creusant de points, de petites fossettes, de rides, même d'alvéoles, qui figurent une sorte de réseau. Elle est glabre ou couverte de poils de nature diverse, analogues à ceux que nous avons vus sur d'autres parties.

§ 481. **Dissémination**. — La maturité de la graine coïncide, le plus généralement, avec celle du fruit. Alors commence la dissémination, c'est-à-dire l'acte par lequel les graines, détachées de la plante qui leur a donné naissance, s'éparpillent plus ou moins loin d'elle pour vivre de leur vie propre. Souvent le fruit se détache avec elles par la désarticulation de son pédoncule, ils tombent l'un contenant encore l'autre. Le funicule se désarticule lui-même au point du hile, et la graine devient libre dans la loge. Si le péricarpe est déhiscent, elle en sort naturellement dans les mouvements qui peuvent être imprimés au fruit desséché, souvent par la pression même des valves qui se contractent élastiquement en se séparant ; s'il est indéhiscent, la sortie est plus tardive à travers le péricarpe, qui, désormais privé de vie, se décompose peu à peu et se sépare

31.

par lambeaux. Des causes nombreuses favorisent la dissémination : la pesanteur qui a augmenté à mesure que la force d'adhérence diminuait, l'ébranlement donné par le vent ou la pluie; l'intervention des animaux qui transportent et quelquefois même enfouissent les graines, soit involontairement, soit volontairement et pour s'en nourrir; et, lors même qu'ils se sont nourris du fruit, il arrive fréquemment que l'amande, défendue par un noyau ou un testa ligneux et épais, résiste à la digestion et est rendue intacte à la terre avec les excréments. Certaines graines offrent prise à l'action de ces agents extérieurs, comme, par exemple, toutes les graines pourvues d'aigrettes, sorte de parachute qui les soutient en l'air et permet au vent de les emporter au loin.

§ 482. Bien des graines échappent à ces actions, se dessèchent à l'air, se pourrissent dans l'eau, sont dévorées par les animaux : mais il en est toujours un certain nombre qui, par une cause ou l'autre, se conservent à la superficie du sol ou s'enfouissent à une certaine profondeur. La nature a assuré la conservation des espèces végétales par le nombre des graines qu'elles portent, nombre hors de toute proportion avec celui des individus qui doivent vivre. On cite à cet égard l'exemple du Pavot, où chaque fruit renferme une telle multitude de graines qu'il suffirait pour couvrir de pavots toute la surface de la terre en peu d'années, si elles se développaient toutes pendant plusieurs générations successives.

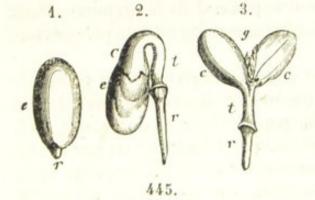
§ 483. Germination. - Un certain degré de chaleur et d'humidité est nécessaire à la vie ultérieure de l'embryon dans la graine devenue libre, avec ou sans son péricarpe. Nous avons vu (§ 213) qu'il lui faut une certaine proportion d'oxygène, et par conséquent le libre accès de l'air; mais chez beaucoup de graines, lorsqu'elles sont privées de ces conditions, la vie se suspend sans s'éteindre, et · on peut les conserver ainsi pendant une longue suite d'années en les tenant à l'abri de l'eau et de l'air : de là l'usage de les enfouir à une grande profondeur dans des cavités convenablement préparées, et qu'on nomme des silos. Leur conservation spontanée s'observe fréquemment dans la nature. Les terrains nouvellement défrichés, les bords des tranchées plus ou moins profondes sur un sol très longtemps intact, se couvrent presque toujours d'une végétation nouvelle, différente de celle qu'on y observait auparavant, et il n'est pas rare d'y voir paraître des plantes depuis longtemps disparues du pays, où cependant on sait qu'elles ont autrefois vécu. Leur apparition prouve que leurs graines, enfouies à cette époque lointaine, se sont conservées vivantes : longtemps soustraites à l'accès de l'air, elles commencent à pousser dès qu'il leur est donné.

§ 484. Supposons une graine dans toutes les conditions favora-

GERMINATION.

bles à son développement, et observons les nouveaux changements qu'elle subit. Tantôt ils se font avec une incroyable rapidité, tantôt avec une grande lenteur : le Cresson alénois germe en un jour, tandis qu'il y a des plantes auxquelles il faut des années. Il est vrai que ces dernières sont, en général, entourées de téguments qui les mettent à l'abri des agents extérieurs, et résistent elles-mêmes longtemps à leur action ; de sorte que la germination , à proprement parler, ne commence qu'après un long intervalle.

§ 485. On peut distinguer deux périodes dans la germination : une première, pendant laquelle l'embryon continue à croître au dedans de la graine devenue libre ; une seconde, où, s'étant fait jour à travers les enveloppes de cette graine, mais y tenant encore, il se développe en dehors d'elle. Si l'on poursuit une comparaison que nous avons déjà indiquée (§ 460), celle de la graine avec l'œuf des oiseaux, on reconnaîtra sans peine que la première période correspond aux changements survenus dans l'intérieur de cet œuf pendant l'incubation, c'est-à-dire pendant qu'il est couvé ; que la seconde correspond à l'éclosion.


§ 486. Examinons d'abord ce qui se passe dans la première. Deux cas peuvent se présenter : l'embryon est accompagné d'un périsperme, ou il en est dépourvu.

S'il y a un périsperme, celui-ci se ramollit par l'action combinée de la chaleur et de l'humidité; sa nature chimique change aux dépens des éléments que lui fournit l'oxygène de l'air et de l'eau (§ 243, 214). L'embryon, en contact avec lui, par la totalité ou par la plus grande partie de son contour, absorbe ces matières devenues aptes à le pénétrer par leur état de solution et à le nourrir par les modifications qu'elles viennent de subir. Ainsi nourri, il grandit dans la même proportion que le périsperme décroît, et finit par remplir tout l'intérieur de la graine, où il n'occupait d'abord qu'un espace plus ou moins limité. Alors le périsperme a disparu, et l'embryon ne peut plus s'étendre qu'en rompant les téguments qui, ramollis, opposent d'ailleurs une résistance de moins en moins grande.

§ 487. S'il n'y a pas de périsperme, et que l'embryon remplisse déjà, au moment de la dissémination, toute la cavité de la graine, il est clair que la germination devra être considérablement abrégée, puisque ses parties auront dès lors acquis un bien plus grand dévéloppement que dans le cas précédent. En général, ce sont les cotylédons qui forment alors la plus grande partie de la masse embryonaire, et l'on doit remarquer que, dans ce cas, leur nature est analogue à celle du périsperme : c'est une masse celluleuse, dont les cellules sont remplies de fécule (Haricot, Pois, etc.) ou charnues, et contiennent souvent des gouttelettes d'huile (Noix, Colza, etc.).

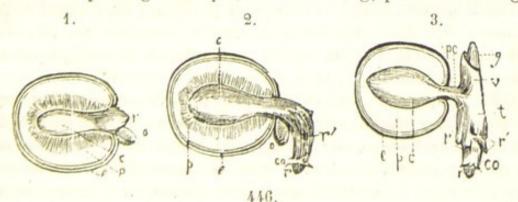
Cette masse joue, par rapport au reste de l'embryon, le rôle de périsperme, subit des changements analogues à ceux que nous avons vus précédemment s'opérer dans celui-ci, et fournit ainsi la nourriture à la radicule et à la gemmule, organes où se porte toute la force de développement.

§ 488. Ainsi fortifié, soit aux dépens du périsperme, soit aux dépens de ses propres cotylédons, l'embryon, continuant à croître, presse ses téguments, qui se rompent et lui livrent passage. Presque toujours c'est la radicule qui se montre la première au dehors (*fig.* 446, 4), comme on devait s'y attendre, puisque, dès le principe, c'est son extrémité qui était la plus rapprochée des téguments, presque à nu au-dessous d'eux et correspondant à une solution de continuité naturelle, le micropyle. La radicule donc fait saillie au dehors. Mais ce que nous avons appelé radicule est presque entièrement formé par la tigelle, au sommet de laquelle est la gemmule, qui, à son tour, se trouve ainsi en dehors; son axe, jusqu'alors contracté et presque nul, s'allonge; ses petits lobes latéraux, rudiments des feuilles, se développent, et tout ce système se dirige verticalement

de bas en haut vers le ciel. Mais dans cette germination la partie véritablement radiculaire, bornée jusque-là à l'extrémité seule de la radicule, a commencé elle-même à s'allonger (fig. 446, 2), et toujours dans la direction inverse, de haut en bas, vers le centre de la terre.

Le cotylédon, simple ou double, reste le dernier engagé dans la graine : tantôt même il ne s'en dégage pas et se flétrit avec elle; tantôt il s'en débarrasse à son tour, et, devenu libre, s'épanouit (fig. 446, 3) en feuille au point de la jeune tige qui sépare la portion appartenant primitivement à la radicule de celle qui appartenait à la gemmule. Alors toutes ces parties commencent à verdir sous l'influence de l'air et de la lumière.

§ 489. Faisons néanmoins remarquer que beaucoup d'embryons se montrent déjà verts au dedans de la graine, avec une teinte quel-


445. Germination d'une graine dicotylédonée non périspermée, celle de l'Acacia julibrissin. — e Enveloppe de la graine. — r Radicule de l'embryon. — t Tigelle. c Cotylédons. — g Gemmule. — 1 Première époque, où la radicule se montre au dehors à travers l'enveloppe rompue. — 2 Deuxième époque, où les parties développées, et déjà bien distinctes entre elles, se sont dégagées de l'enveloppe, qui cependant contient encore le sommet des cotylédons. — 3 Troisième époque, où l'embryon est dégagé en entier de l'enveloppe, et où les cotylédons, redressés et écartés, laissent aperceveir la gemmule.

GERMINATION.

quefois pâle ou jaunâtre, mais quelquefois aussi très foncée. Nous citerons comme exemples, parmi les graines périspermées, celles des Fusains, des Nerpruns, etc.; parmi les graines dépourvues de périsperme, celles du Pistachier, de l'Érable, de la plupart des Crucifères. Mais le plus souvent l'embryon contenu dans la graine est blanchâtre, ainsi que le périsperme. Nous ne connaissons que le Gui où celui-ci soit vert. L'identité de couleur entre l'embryon et le périsperme, confondant au premier coup d'œil ces deux corps en une masse unique, rend leur observation moins facile. On peut aider à leur distinction en plongeant la graine coupée dans l'eau bouillante, qui, agissant différemment sur les deux tissus différents, fait trancher le blanc de l'un sur le blanc moins mat de l'autre.

§ 490. Ajoutons quelques détails sur les différences que nous n'avons pas encore signalées entre la germination des graines monocotylédonées et celle des dicotylédonées.

Les premières sont, pour la plupart, pourvues d'un périsperme, le plus souvent très considérable, et dans toutes celles-là le cotylédon ne se dégage pas de la graine ; seulement quelquefois il forme au dehors un prolongement plus ou moins long, plus ou moins grêle

(Éphémères, Ail, Balisier [fig. 447, 3], par exemple), par lequel il se rattache à l'axe. Ce prolongement, qui se produit par l'acte de la

446. Germination d'une Monocotylédonée, le Balisier, ou Canna indica. On a coupé la graine pour montrer les rapports du périsperme diminuant progressivement avec l'embryon qui augmente. — e Enveloppe de la graine. — o Sa partie supérieure, qui se détache en manière d'opercule pour donner passage à la radicule. — p Périsperme. — c Cotylédon. — r Badicule. — r'r' Badicules secondaires. — co Coléorhize. — f Fente correspondant à la gemmule, formant plus tard l'ouverture d'une gaine allongée v. — pc Portion rétrécie du cotylédon (correspondant à sa portion pétiolaire), intermédiaire entre sa partie élargie c (correspondant à la partie limbaire) et sa partie vaginale v. — t Tigelle. — g Gemmule. — 1 Première époque, où la radicule commence à se montrer au dehors à travers les téguments. — 2 Deuxième époque, où la fente f se montre aussi au dehors. La radicule véritable r a percé l'épiderme dont elle est entourée, et qui se montre à sa base sous la forme d'une petite collerette déchiquetée ou coléorhize. On voit déjà une das radicules secondaires r' elle-même coléorhizée. — 3 Troisième époque, où toutes ces parties se sont plus développées, et où la gémmule g fait saillie en dehors de la fente, dont les contours se sont allongés en gaîne v.

germination, peut être comparé au pétiole, tandis que la partie c engagée au dedans est le limbe cotvlédonaire déjà tout formé auparavant. Quelquefois il reste sessile sur l'axe, qui est alors immédiatement tangent à la graine. Dans tous les cas, la gaîne qui entoure la gemmule, et qu'indiquait sur l'embryon une petite fente latérale (fig: 447, 2 f), a suivi cette gemmule au dehors, et continue à la suivre dans sa direction ascendante en s'allongeant avec elle. Sa fente se prononce de plus en plus, et ses deux lèvres s'écartant laissent passer les premières feuilles (fig. 447, 3 g), puis l'axe qui les porte. Le cotylédon nous montre donc dans son évolution toutes les mêmes phases que la feuille : d'abord c'est le limbe qui se forme, puis la gaîne, puis quelquefois un pétiole qui écarte l'un de l'autre. La seule différence, c'est que dans le cotylédon le limbe s'arrête dans son développement, gêné par le corps de la graine qui continue à le renfermer, et conserve par ce même fait une direction différente de celle de sa gaîne qui monte et croît pendant quelque temps.

Dans le petit nombre de graines monocotylédonées qui n'ont pas de périsperme (Alismacées, Potamées, etc.), les choses ne se passent pas tout à fait de même : le cotylédon se dégage en général de ses téguments et s'élève verticalement avec la gemmule (fig. 75). Nous avons déjà parlé (§ 404) du mode particulier de développement des racines, dites endorhizes, et il est inutile d'y revenir ici.

§ 494. Quant aux embryons dicotylédonés, quelquefois aussi leurs cotylédons restent engagés dans la graine, ou bien encore plus ou moins soudés entre eux, et alors la sortie de la gemmule doit offrir quelque ressemblance avec celle des monocotylédonés, ressemblance, au reste, seulement apparente, puisqu'ici la gemmule sort de l'intervalle des cotylédons à leur base et non de l'intérieur d'une gaine. Le plus habituellement les deux cotylédons s'écartent l'un de l'autre, et la gemmule s'allonge librement dans sa direction, tandis que la radicule exorhize (§ 404) se continue dans la sienne.

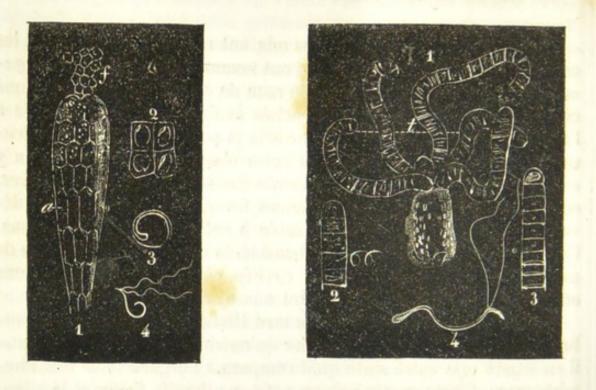
§ 492. Les cotylédons restent quelquefois cachés sous la terre (Arachis), et sont dits hypogés (d'ú π ò, sous; y'n, terre). Ordinairement ils s'élèvent au-dessus de sa surface, plus ou moins haut, suivant que la tigelle s'allonge plus ou moins : ils sont alors épigés (d' $i\pi$ ì, sur).

§ 493. Les cotylédons ont continué, en s'épuisant eux-mêmes peu à peu, à fournir à la jeune plante sa nourriture, qu'elle commence à puiser directement dans le sol. Ils se flétrissent et tombent ; la germination est achevée, et le végétal, vivant désormais par luimême, recommence cette série d'actes que nous avons cherché à faire connaître le moins incomplétement possible. Nous nous trou-

ANTHÉRIDIES.

vons ainsi avoir parcouru le cercle entier de la végétation, et ramenés à notre point de départ.

ORGANES DE LA REPRODUCTION DANS LES VÉGÉTAUX ACOTYLÉDONÉS.


§ 494. Parmi les auteurs, les uns ont refusé à ces végétaux les organes de la fécondation, et les ont nommés en conséquence agames; les autres, en leur donnant le nom de cryptogames, ont indiqué ce seul fait, que ces organes cachés avaient échappé jusque-là à l'observation, mais sans nier pour cela la possibilité absolue de leur existence. Depuis longtemps, et cette observation est facile, on y avait reconnu certains corps renfermés dans des cavités particulières, et qui, placés dans des circonstances favorables d'humidité, se développaient en une plante semblable à celle dont ils étaient issus. Ces corps étaient naturellement considérés comme jouant le rôle de graines, et par conséquent les cavités où ils se forment comme analogues jusqu'à un certain point aux ovaires.

§ 495. Anthéridies. — Plus tard Hedwig, dans un grand nombre de Cryptogames, fit distinguer qu'outre les organes précédents, il en existe une autre sorte qu'il compara à l'organe mâle des Phanérogames. C'est, en général, un petit sac dont la forme et la situation varient suivant les plantes : d'abord parfaitement clos, puis s'ouvrant à une certaine époque par un point de sa surface, et laissant par cette ouverture sortir la matière qu'il renfermait, un amas de corpuscules ordinairement liés par un liquide mucilagineux. Il semble donc représenter une anthère, imparfaite il est vrai, et dont par cette raison on a proposé d'altérer le nom en celui d'anthéridie (antheridium).

Le sac de l'anthéridie varie par sa forme : dans les végétaux les plus simples, ce n'est qu'une vésicule; dans d'autres plus organisés, c'est un sac membraneux composé d'un petit nombre (fig. 449, 4) ou d'un grand nombre (fig. 447, 4) de cellules. Il varie aussi par sa forme, qui est celle d'un globe, d'un œuf, d'une massue, ou d'une bouteille, ainsi que par sa situation, tantôt plongé et caché dans l'intérieur du tissu de la plante, tantôt saillant à sa surface.

Si par tous ces caractères l'anthéridie diffère déjà de l'anthère véritable, elle paraît présenter une différence bien plus essentielle encore par la nature de la matière contenue dans son intérieur. En effet, cette matière consiste en utricules diversement agencés suivant les différentes familles, et ces vésicules se sont trouvées renfermer dans un grand nombre, au lieu de fovilla, un petit corps allongé en forme de ver courbé d'abord sur lui-même en cercle, ou en spirale

(fig. 447, 2 et 3), puis déroulé (fig. 447 et 448, 4); d'autres fois (dans les Fucus) la vésicule simple, qui constitue l'anthéridie, renferme et émet immédiatement un grand nombre de petits corps globuleux ovoïdes ou amincis à l'une de leurs extrémités (fig. 450)

447.

448.

et marqués plus bas d'un point coloré. Dans tous les cas ces corps : sont doués de mouvements très actifs, du moins pendant un certain temps de leur vie. Le microscope a fait reconnaître dans beaucoup d'entre eux, comme organes de ces mouvements, des fils : extraordinairement fins ou cils vibratiles, quelquefois multipliés : ou même groupés en sortes de houppes (fig. 449, 2), plus souvent au nombre de deux seulement et alors diversement placés et dirigés : ainsi dans les corps vermiformes ces cils sont situés un peu en arrière

447. 1 Anthéridie a d'une Mousse (Hypnum triquetrum), au moment où de son sommet ouvert sort la matière contenue f. - 2 Quatre utricules de cette matière contenant chacun un corpuscule circulaire mobile ou anthérozoïde. - 3 Un de ces anthérozoïdes isolés. Les cils vibratiles, qui existent au nombre de deux vers l'extrémité la plus grêle, n'ont pas été figurés. - 4 Anthérozoïde sorti de l'anthéridie du Polythricum commune, avec ses cils.

448. 1 Portion du contenu d'une anthéridie du *Chara vulgaris*. Plusieurs tubes cloisonnés l, attachés à un utricule b. Un petit amas d'utricules semblables, servant de base à un beaucoup plus grand nombre de ces tubes, remplit pour la plus grande partie la cavité de l'anthéridie. — 2 Extrémité d'un des tubes, composé de plusieurs cellules, dans chacune desquelles est un anthérozoïde. Un d'eux est déjà plus qu'à moitié dégagé de sa cellule. — 3 Extrémité d'un tube dont les anthérozoïdes sont déjà sortis, excepté de la dernière cellule. — 4 Un anthérozoïde isolé.

ARCHÉGONES DES ACOTYLÉDONÉES.


de l'extrémité la plus mince et se meuvent dans la même direction (fig. 447 et 448, 4); dans les corps ovoïdes s'insèrent près du point

coloré et se meuvent en sens inverse, l'un en avant, l'autre en arrière (fig. 450). Ces corps singuliers, qu'il est bien difficile de distinguer de véritables animalcules, ont reçu le nom de *phytozoaires*, ou anthérozoïdes (de $\zeta \tilde{\omega}_{02}$, animal).

§ 496. Archégones, sporanges et spores. — Passons aux autres corps d'une observation plus facile, d'une existence plus généralement constatée, qui dans les Cryptogames présentent les analogues des ovaires ou au moins des ovules.

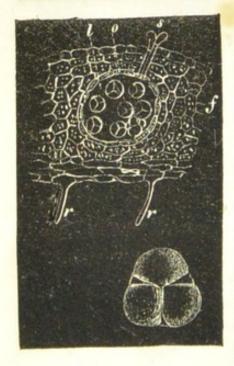
Beaucoup d'auteurs ont cru les y reconnaître. Les Mousses et les Hépaticées étant parmi ces végétaux ceux où la similitude paraît le moins contestable, c'est par ceux-là que nous commencerons ici.

Dans les Hépaticées, dans l'épaisseur du tissu dont l'expansion constitue la plante (*Riccia*, *fig.* 452, 4), ou à sa surface, ou sur d'autres expansions distinctes par leur forme et leur situation (*Marchantia*); dans les Mousses, à l'extrémité des rameaux ou à l'aisselle des feuilles, on observe de petits organes celluleux dont la forme ne peut être mieux comparée qu'à celle d'une bouteille; car, dilatés inférieurement (*fig.* 454, 4 o), ils s'amincissent supérieurement en une sorte de goulot (*t*) percé d'un canal central, d'abord fermé à 449.

450.

1. 2.

449. 4 Anthéridie d'une Fougère (*Pteris aquilina*) avec une partie de la cellule sur laquelle elle est portée. On aperçoit à travers sa paroi diaphane l'amas intérieur d'utricules contenant chacun un anthérozoïde. — 2 Un de ces anthérozoïdes isolé, qui semble emporter avec lui l'utricule dont il est sorti?


450. Anthérozoïde du Fucus platycarpus.

451. 4 Archégone du Marchantia polymorpha. — o Renflement inférieur, creux, qui contient les spores et a été comparé à un ovaire. — t Rétrécissement supérieur en forme de goulot qu'on a comparé au style. — s Évasement terminal, qu'on a comparé au stigmate. — c Tube celluleux qui entoure l'archégone comme un calice.

2 Spores du Marchantia polymorpha, en germination plus avancée dans l'une que dans l'autre.

son extrémité, puis béant par l'écartement des cellules terminales (s). On est maintenant assez généralement convenu de désigner ce corps sous le nom d'*archégone* (*archegonium*, d' $\partial_{\varphi\chi} \hbar$, principe, origine, et $\gamma \acute{o} \nu o_{\zeta}$, semence). C'est en effet dans son intérieur que vont se former les petits corps qui, semés, se développeront chacun en une petite plante semblable à celle où ils ont pris naissance. La forme de l'archégone et la formation des corps reproducteurs dans son intérieur l'ont fait naturellement comparer au pistil, la partie inférieure dilatée à l'ovaire, le goulot supérieur au style, l'orifice terminal au stigmate, et même beaucoup d'auteurs continuent à appliquer ces noms à ces différentes parties.

§ 497. Cependant la comparaison rigoureusement poursuivie montre, à côté de ces points de ressemblance, des différences essentielles. En effet, l'archégone, au lieu d'être creusé, comme l'ovaire, d'une loge, présente un tissu cellulaire plein. Dans une cellule centrale beaucoup plus ample que les autres, se développe un utricule

452. 2.

libre, qui bientôt se double par division, puis se multiplie par suite de dédoublements successifs. Ces cellules sont remplies d'une matière granuleuse, d'un protoplasma qui donne un aspect opaque à ce petit amas central qu'on aperçoit à travers la membrane externe transparente. Un peu plus tard, la matière contenue dans chaque cellule se partagera en quatre petites masses qui se revétiront chacune d'une membrane proprè. En même temps la membrane de la cellulemère se résorbera, et les quatre petites masses d'abord réunies (fig. 452, 1 s, 2) finiront par se séparer et devenir libres dans une cavité commune. Chacun de ces grains constitue une spore (de anicea, semence) et le corps qui les renferme

prend le nom de sporange (d'àγγεῖον, vase). On a dû assimiler aux graines les spores qui en germant reproduisent la plante, et les sporanges aux fruits. Mais déjà par tout ce

452. 4 Coupe perpendiculaire de la fronde f du Riccia glauca et du sporange o qui est enfoncé dans son épaisseur. — s Rétrécissement ou style par lequel le sporange communique au dehors.— t Sa cavité ou loge.— s Jeunes spores encore réunies quatre par quatre dans des utricules-mères. — t Cellules allongées en manière de racines. — 2 Un des utricules grossi davantage, avec les quatre spores qu'il contient. On en aperçoit trois, sous lesquelles la quatrième est cachée.

SPORES DES ACOTYLÉDONÉES.

qui précède nous voyons que la comparaison est inexacte. Ce sac celluleux environnant une multitude d'utricules libres ne nous offre aucunement les caractères que nous avons décrits dans l'ovaire des Phanérogames, pas plus que ces utricules formés quatre par quatre dans d'autres utricules-mères ne nous offrent les caractères des ovules et des graines. On sera frappé au contraire d'une autre analogie, celle que présente toute cette formation de spores avec celle du pollen, si on l'a présente à l'esprit (§ 364).

La différence des graines avec les spores deviendra bien plus frappante encore, si, au lieu de choisir un archégone plongé dans le tissu de la fronde comme celui du *Riccia* (fig. 452), on en considère un saillant à sa surface comme celui du *Marchantia*, des Jongermannes, des Mousses. En effet, dans ces plantes le noyau celluleux développé au centre de l'archégone s'allonge, et en s'allongeant rompt vers sa base cette enveloppe qu'il emporte avec lui à son sommet qu'elle continue à coiffer quelque temps, jusqu'à ce qu'elle se détache en tombant. Le sporange ici ne représente donc plus l'archégone, comme le fruit représente l'ovaire développé; mais un corps différent et de formation postérieure.

§ 497 bis. La difficulté se complique bien davantage par les observations récentes et si curieuses qui ont fait découvrir les organes de la reproduction dans les Fougères, les Prêles, les Lycopodiacées et les Rhizocarpées. Dans toutes ces familles la formation de l'archégone ne paraît pas, comme dans les mousses, le terme de la végétation ; tout au contraire. La spore en germant produit une expansion celluleuse de proportions et de formes très diverses, qu'on appelle le prothallium, et sur laquelle ne tardent pas à apparaître les archégones, tantôt concurremment avec les anthéridies, tantôt séparément. C'est à cette époque que la fécondation semble s'opérer, que par suite une cellule se développe au centre de l'archégone et s'organise en une sorte d'embryon qui, en se développant lui-même, fixé encore au prothallium, produit la tige et les feuilles, sur lesquelles définitivement se montreront les sporanges et les spores, dont la formation se trouve ainsi séparée de celle des archégones par toute la période la plus apparente de la végétation, la seule qu'on ait longtemps étudiée.

§ 497 ter. Si ces connaissances acquises nous permettent maintenant de hasarder une comparaison avec les organes de la reproduction des végétaux phanérogames, nous pourrons trouver de l'analogie entre cette cellule centrale de l'archégone et le sac embryonaire (fig. 416), entre l'utricule libre qui s'y développe et la vésicule embryonaire, par conséquent entre l'archégone lui-même et un ovule imparfait. Mais à partir de ce point les rapports deviennent

confus, puisque : 1º dans certaines plantes (comme les Mousses) l'embryon, produit de la fécondation de cet ovule, produirait immédiatement l'appareil sporigène, et que les spores devenues libres produiraient l'appareil de la végétation (tiges, racines et feuilles); 2º dans d'autres (comme les Fougères) l'embryon produirait l'appareil de la végétation, qui à son tour produirait l'appareil sporigène. Nous ne pouvons donc trouver à quel organe la spore pourrait être justement assimilée, non plus que l'appareil qui résulte immédiatement de son évolution, soit le prothallium que nous venons de signaler dans plusieurs familles, soit le mycélium que nous verrons plus tard dans les Champignons (§ 545). les Lichens (§ 546) et les Mousses même (§ 547) : appareil qui représente une phase de végétation manquant dans les Phanérogames. On pourrait cependant se demander si l'analogie signalée précédemment entre les spores et les grains de pollen, d'après leur mode de formation (§ 497), analogie que viennent confirmer des ressemblances assez frappantes de formes extérieures et de structure, ne s'étend pas encore plus loin ; si le tube pollinique ne représente pas un prothallium aussi simple qu'il est possible, dont l'extrémité jouerait le rôle de l'anthéridie, par la production de corpuscules agents de la fécondation.

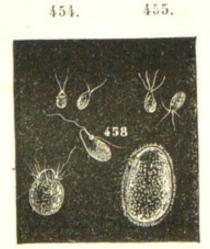
§ 498. Quoi qu'il en soit, la formation des spores, telle que nous l'avons décrite dans les Hépaticées (§ 497), se retrouve dans la plupart des Cryptogames (Mousses, Rhizocarpées, Lycopodiacées, Fougères, Équisétacées), où sans doute les sporanges présentent des

453.

modifications différentes par leur forme et leur situation, mais où les spores s'organisent par une suite de changements semblables, par groupes quaternaires dans des cellules-mères remplissant ces sporanges et disparaissant ensuite par résorption.

On la retrouve encore, mais plus obscure, dans les familles d'une organisation plus simple, comme les Lichens, par exemple, et certains Champignons; mais la cavité sporifère ne paraît plus être autre chose que celle même de la cellule-mère, qui a persisté au lieu de disparaître par résorption, et dont la paroi, qui prend alors le nom de thèque (*fig.* 453, 4), forme celle du sac sporifère. Une masse semi-

fluide et granuleuse le remplit d'abord, puis finit par se séparer en


453. 1 Thèque d'un Lichen (Solòrina saccata), renfermant quatre spores cloisonnées. — 2 Deux des couples précédents, grossis davantage.

SPORES DES CRYPTOGAMES.

un certain nombre de spores : deux, quatre (fig. 453, 4), six (fig. 470), huit, ou un multiple de deux encore plus élevé. Quelquefois ces spores sont elles-mêmes divisées chacune par des cloisons en deux compartiments (fig. 453, 2) ou en un plus grand nombre toujours multiple : de sorte qu'on peut avoir une subdivision secondaire, comme de nouvelles thèques adhérentes à leurs spores et logées ensemble dans une thèque commune. Ces thèques sont rapprochées par groupes, soit à la surface de l'expansion qui forme le végétal, soit dans son épaisseur. La formation quaternaire des spores a été aussi observée dans un grand nombre d'Algues.

§ 499. Dans celles-ci, c'est-à-dire dans les plus simples des végétaux, on a constaté récemment un phénomène bien remarquable et analogue à celui que nous avons déjà signalé dans les

anthéridies : c'est le mouvement dont ces spores sont douées à une certaine époque de leur existence, celle qui suit immédiatement leur sortie de l'utricule-mère. Ces mouvements sont tout à fait comparables à ceux des animaux dits infusoires, et tout récemment on a découvert qu'ils s'exercent au moyen d'organes semblables, de cils vibratiles, c'est-à-dire de petits filets partant d'une partie du corps et s'agitant dans l'eau en manière de nageoires (fig. 455-458). Cette faculté de locomotion est passagère; bientôt le mouvement s'arrête, la spore passe de la vie animale à la végétale,

457. 453.

et c'est alors qu'elle peut commencer à germer. Une autre observation également curieuse, c'est que celles de ces spores qui dès le principe s'étaient montrées simples et avaient ainsi échappé à cette loi de la formation quaternaire, s'y montrent soumises par suite de la germination qui les démembre en deux ou en quatre.

§ 500. Les détails dans lesquels nous venons d'entrer montrent que la fécondation niée dans les Cryptogames par quelques auteurs, soupçonnée par d'autres qui n'en avaient pas su bien déterminer les

454-457. Zoospores de diverses Algues d'eau douce	454-	457. 2	Loospores (le diverses /	Algues d'eau d	ouce.
---	------	--------	-------------	---------------	----------------	-------

45	١.	 d	une	Conf	erve,	avec	deux	cils	vibratiles.	
					~				a second s	

- 455. d'une Chætophora, avec quatre.
- 456. d'une Prolifère, avec un cercle de cils.
- 457. d'un Vaucheria, toute couverte de cils. 458. Zoospore d'une Algue marine (Cutteria multifi

Zoospore d'une Algue marine (Cutleria multifien), avec ses deux cils partant d'un point coloré et dirigés en sens inverces.

organes, paraît aujourd'hui bien prouvée pour la plupart, où l'on rencontre deux sortes d'appareils. Leur existence simultanée constatée aujourd'hui dans un grand nombre de cas, la stérilité de ceux qu'on doit considérer comme femelles lorsque manquent ceux qu'on peut regarder comme mâles (les anthéridies), laissent peu de doutes sur cette question qu'achèveront sans doute d'éclairer les recherches poursuivies avec patience et sagacité.

SIXIÈME LEÇON.

CLASSIFICATION DES VÉGÉTAUX.

EMPLOI DES NOTIONS PRÉCÉDENTES A LA DISTINCTION DES VÉGÉTAUX. NOTIONS GÉNÉRALES SUR LES CLASSIFICATIONS. SYSTÈMES ARTIFICIEL ET NATUREL; — ESPÈCE, GENRE, FAMILLE, ETC. MÉTHODE DE JUSSIEU.

§ 504. Quand nous jetons les yeux sur les végétaux répandus autour de nous, nous voyons dans chacun d'eux un *individu*. Ce nom même indique un tout indivis, des parties liées les unes aux autres sans discontinuité. L'apparence peut nous tromper souvent en nous montrant extérieurement comme séparées des plantes qui appartiennent à une souche commune cachée sous la terre. Ainsi les rhizomes du *Carex arenaria*, par exemple, parcourent une étendue très considérable en longueur, émettant de distance en distance des tiges qui s'élèvent hors de terre et nous font l'effet d'autant d'individus distincts, quoiqu'elles ne soient en effet qu'autant de parties d'un seul et même individu. Il est clair que tous ces rejets offrent entre eux une ressemblance frappante, telle qu'en les considérant à tort comme autant de pieds différents, nous n'hésitons pas cependant à reconnaître que nous avons toujours affaire à une plante identique et à les appeler tous du même nom.

§ 502. Espèces. — Or cette ressemblance nécessaire des différents rejets d'un même individu peut se trouver dans plusieurs individus réellement séparés. Un champ de seigle ou d'avoine nous en présente des milliers que nous pouvons facilement isoler l'un de l'autre, mais que nous ne saurions distinguer entre eux. Dans les champs, dans les jardins, nous reconnaissons de distance en distance des plantes que nous saluons sans hésitation du même nom. Cette collection de tous les individus qui se ressemblent ainsi entre eux a reçu, en histoire naturelle, le nom d'espèce (species) : leurs caractères communs, ceux dont la combinaison les distingue des autres, sont dits spécifiques. Nous savons de plus qu'en séparant les rejets d'un individu ou en faisant germer ses graines, nous obtiendrons autant d'individus nouveaux semblables au premier. Cette notion complète la définition de l'espèce : collection de tous les individus qui se res-

semblent entre eux plus qu'ils ne ressemblent à d'autres, et qui, par la génération, en reproduisent de semblables; de telle sorte qu'on peut par analogie les supposer tous issus originairement d'un même individu.

§ 503. Variétés. — Cependant cette ressemblance fraternelle peut présenter différents degrés. Si deux graines prises dans le même fruit sont semées dans des terrains différents, dans des climats différents, dans des saisons différentes, les deux pieds, développés dans des conditions qui ne se ressemblent pas, trahiront cette inégalité de conditions de leur nutrition par certaines dissemblances d'autant plus marquées que les causes en auront été plus nombreuses et plus intenses. Nous ne pouvons passer ici en revue toutes les modifications dont une espèce est susceptible sous l'influence de ces conditions diverses, et que d'ailleurs l'étude des divers organes, de leur structure, de leur développement, de leur nutrition, peut jusqu'à un certain point nous faire prévoir. Faisons seulement remarquer qu'elles sont d'autant plus fréquentes qu'elles affectent un organe moins important et sont moins importantes elles-mêmes. Ainsi les changements de couleur, et surtout de telle couleur en telle autre, le développement ou l'absence des poils, le tissu plus compacte ou plus lâche, s'observent assez communément dans une même espèce, et qui plus est dans un même individu, si l'on diversifie les circonstances dans lesquelles il se trouve; ce sont alors de simples variations. Lorsque la modification est plus profonde et plus tenace, elle prend le nom de variété (varietas) : alors elle se montre avec une certaine fixité dans un certain nombre d'individus, et peut faire distinguer leur collection entre les individus de la même espèce, moins nettement cependant que ceux-ci ne sont eux-mêmes distingués de ceux d'une espèce différente.

Nous venons de voir que la variation accidentelle et individuelle peut disparaître avec la cause qui la produit dans l'individu même qui en est affecté. D'autres fois l'effet persiste après la cause, et l'individu conserve toute sa vie ses caractères de variété. Celle-ci peut être plus permanente encore et se reproduire par extension dans tous les individus obtenus du premier par greffes, boutons ou marcottes. Mais si l'on sème les graines qui en proviennent, les nouveaux individus ainsi obtenus ne montrent plus ces mêmes caractères et reviennent à ceux de l'espèce primitive.

Enfin il y a une classe où les germes contenus dans les graines conservent et transmettent les caractères de la variété sur laquelle ils se sont formés. Ces variétés héréditaires sont souvent aussi nommées des races.

Une cause puissante de variété, c'est l'hybridité, c'est-à-dire la

VARIÉTÉS.

fécondation d'un individu d'une espèce par celui d'une espèce différente, lorsque le pollen de l'un est porté sur le stigmate de l'autre. Elle ne peut réussir lorsque les plantes sont bien différentes entre elles ; mais il est incontestable qu'elle a lieu entre des plantes d'espèces très voisines quoique distinctes, et qu'alors les graines, quoique tendant généralement à avorter, sont quelquefois fertiles. La plante qui en provient doit naturellement présenter des caractères intermédiaires entre les deux qui lui ont donné naissance, et comparée soit à l'une, soit à l'autre, des caractères différentiels qui lui donnent l'apparence d'une variété. Mais à laquelle des deux la rattachera-t-on comme telle? Ce sera à celle avec laquelle elle a le plus de traits communs, si élle en offre fort peu avec l'autre : sinon on la désignera simplement comme hybride. Mais, après quelques générations, les traits de l'un des parents se prononcent de plus en plus, surtout s'il y a un nouveau croisement entre l'hybride et l'une des espèces primitives; et l'on conçoit qu'on peut arriver ainsi à une variété bien définie. Mais les hybrides sont fort rares dans la nature, où les espèces les plus voisines par leurs caractères ne le sont que rarement par leur station. Dans nos jardins, surtout dans les jardins botaniques, où l'on cherche au contraire à montrer ensemble les espèces qui se ressemblent le plus, les croisements sont beaucoup plus fréquents et plus multipliés.

La culture profite de toutes ces données pour faire varier les végétaux, en variant les conditions de leur nutrition, conservant et multipliant les produits qui en sont résultés, les propageant par la graine, les améliorant par de nouveaux croisements. De là, ce mmbre prodigieux de variétés pour certaines espèces de fleurs et de fruits recherchés par l'homme. L'espèce, travaillée ainsi pendant une longue suite de générations, se trouve représentée par une suite de modifications où ses traits primitifs, altérés à des degrés et avec des nuances différentes, se reconnaissent difficilement, d'autant plus que plusieurs se trouvent souvent empruntés à d'autres espèces : résultat précieux pour le cultivateur, fort embarrassant pour le botaniste. Mais, si quelques végétaux domestiques demandent une étude aussi compliquée, ils ne sont pas nombreux, et la plupart des espèces, telles qu'elles croissent naturellement, conservent intacts et constants leurs caractères originaires, qui varient seulement dans des limites assez étroites pour qu'il nous soit possible de les saisir et de tracer ainsi de chacune d'elles un portrait assez ressemblant pour la reconnaître au milieu des autres. C'est donc dans la nature que nous pouvons retrouver les types primitifs de quelques plantes masqués et défigurés par les innombrables variétés de nos jardins, et parmi lesquels il suffit de citer les Dahlias, les Calcéolaires, les Géramiums, etc.

Leur étude, véritable chaos, a peu d'intérêt sous le rapport de la botanique; elle en aurait beaucoup sous celui de la physiologie, si le cultivateur pouvait déterminer par quelle route le hasard l'a mené à un but qu'il ne connaissait pas d'avance.

§ 504. Genres. — S'il n'existait qu'un nombre très borné d'espèces, la mémoire pourrait sans grande difficulté retenir le signalement de chacune et le nom particulier par leguel on la désignerait. C'est ce que nous voyons aux époques et chez les peuples où l'étude de la botanique se borne à distinguer les principaux végétaux croissant autour de soi, dans un pays peu étendu, sans s'occuper de ceux qui n'attirent pas l'attention par leurs dimensions, leurs formes, leur éclat, leur usage, ou par quelque propriété remarquable, non plus que de ceux qui habitent des contrées différentes. On apprend alors à les connaître de même que les autres mots usuels de la langue, sans ordre fixe, comme le hasard ou le besoin les présentent; on les définit par le caractère réel ou imaginaire qui les recommande à l'attention. C'est ainsi que, dans les plus anciens ouvrages d'histoire naturelle, nous voyons figurer un certain nombre d'espèces dont la classification et la description ne suivent aucune règle fixe, et dont l'auteur s'attache à signaler les vertus et les usages bien plus que les caractères à l'aide desquels on peut les reconnaître ; ce qui était considéré comme superflu sans doute, puisque le nom populaire cité suffisait en général pour cela.

A la renaissance des lettres, l'étude des auteurs grecs et latins, où l'on croyait devoir tout retrouver, absorba longtemps les efforts des savants ; et la botanique se borna d'abord à de longs et pénibles commentaires sur Théophraste, sur Pline et sur Dioscoride. On finit cependant par comprendre que, pour l'intelligence de leurs ouvrages sur l'histoire naturelle, l'étude des objets naturels eux-mêmes fournirait un puissant secours : on examina ceux-ci en regard de ces ouvrages ; on essaya de les éclaircir non seulement par des écrits, mais plus tard aussi par des figures. L'obstination avec laquelle on cherchait à rattacher à ces traditions des pères de la science les végétaux observés dans des pays pour la plupart différents de celui qui leur avait fourni leurs matériaux, a sans doute entraîné beaucoup d'erreurs; mais, néanmoins, elle accoutuma à connaître ces végétaux par eux-mêmes, tout en les nommant souvent à tort : on apprit à en distinguer beaucoup plus que l'antiquité n'en mentionnait, et, cette vérité une fois reconnue, on multiplia les recherches, et par suite le nombre des espèces végétales connues ; tellement qu'il arriva un moment où l'encombrement de ces richesses nouvelles se fit sentir. La diversité des choses et des mots commençait à dépasser les forces de la mémoire humaine.

SYSTÈMES ET MÉTHODES.

§ 505. Il fallut alors lui venir en aide en établissant un certain ordre dans cet amas confus, et, de même qu'on avait naturellement réuni d'abord en une espèce tous les individus semblables entre eux, on chercha, pour les réunir sous un même nom et sous une définition commune, toutes les espèces qui offraient entre elles une certaine ressemblance manquant aux autres. C'est ainsi que de plusieurs de ces unités nommées espèces, on composa des unités d'un ordre plus élevé auxquelles on donna le nom de genre (genus). Ce rapprochement de plusieurs espèces en un groupe est une opération naturelle de l'esprit, quoiqu'à un moindre degré que celui des individus. Les auteurs anciens en fournissent cà et là des exemples, et les noms que des peuples étrangers aux sciences et même à demi sauvages donnent aux végétaux pour lesquels leur langue a des noms prouvent souvent, par la désinence commune de quelques uns d'entre eux, le sentiment d'un rapport entre les objets qu'ils servent à désigner. De pareils genres pèchent sans doute fréquemment contre nos règles actuelles, ainsi que ceux qui résultaient des premiers essais des botanistes ; mais c'était déjà beaucoup d'établir des règles quelconques, de reconnaître des rapports, et, parmi les caractères spécifiques, d'en élever plusieurs à un degré supérieur comme communs à un certain nombre d'espèces, comme génériques.

§ 506. Systèmes et méthodes. - Les genres devaient se multiplier en même temps que les espèces, et leur multiplication faire sentir la nécessité de divisions nouvelles dont chacune réunit un nombre limité de ces genres semblables entre eux par quelques caractères plus généraux. Cette nouvelle opération diminuait notablement la fatigue et la difficulté des recherches en les circonscrivant : qu'il s'agit, soit de trouver un genre déjà connu, soit d'assigner une place à un genre nouveau, ce n'était plus à l'universalité des plantes qu'il était nécessaire de le comparer, mais leur majorité se trouvait exclue de la comparaison dès qu'on avait reconnu les caractères généraux par lesquels la plante étudiée se rattachait à tel groupe ou à tel autre ; et l'opération ainsi divisée, bornée définitivement à l'étude d'un nombre beaucoup plus petit de genres, devenait beaucoup plus simple et en même temps plus sûre. L'utilité évidente de ces divisions en augmenta le nombre ; les plus générales furent divisées à leur tour, puis celles-ci subdivisées, et l'on obtint ainsi une suite de groupes subordonnés au-dessus des genres et des espèces, dernier terme de la classification.

On a souvent comparé cette organisation à celle des armées. Une troupe peu nombreuse peut marcher sans chefs et sans ordre, dont le besoin se fait sentir si elle le devient davantage; on réunit alors les soldats par escouades, par compagnies, par bataillons; les grandes

armées ont leurs corps, leurs divisions, leurs régiments; les cadres s'élargissent dans la même proportion qu'elles grandissent ellesmêmes, et de cette manière des masses énormes peuvent se mouvoir avec ordre, se manier avec facilité, et la place du moindre soldat bien déterminée permet d'arriver jusqu'à lui, tandis qu'il serait introuvable sans ce classement.

Ainsi sont nés les systèmes et les méthodes en histoire naturelle. Il est difficile d'établir nettement la distinction entre les classifications désignées par ces deux noms différents. On définit, il est vrai, ordinairement, les premiers comme n'employant que des caractères tirés exclusivement d'un seul organe, les secondes comme se servant de plusieurs organes à la fois. Mais l'étude de la plupart des systèmes nous les montre toujours fondés sur l'emploi de plusieurs organes, aussi bien que les méthodes ; et, d'une autre part, celles-ci en font généralement prévaloir un sur les autres. Nous nous servirons donc à peu près indifféremment de ces deux mots.

§ 507. Les plus anciens auteurs de traités sur les plantes partageaient déjà en plusieurs catégories le petit nombre de celles qu'ils mentionnaient, mais seulement d'après leur aspect général et surtout d'après leurs propriétés. A mesure qu'ils en étendirent le nombre et qu'ils pénétrèrent plus avant dans l'étude des plantes ellesmêmes, ils cherchèrent dans leurs caractères les fondements de leur division : et sous ce rapport on doit citer Césalpin, qui, dès la fin du seizième siècle, faisait entrer dans sa classification des considérations tirées du fruit et de la graine. Nous ne nous arrêterons pas sur ces essais assez nombreux, parce que parmi tous ces auteurs, chacun, inventant sa propre méthode et ne l'appliquant qu'à une faible partie des végétaux, n'était pas suivi par d'autres, et que, faire l'histoire de tous ces systèmes isolés, ce serait presque passer en revue tous les ouvrages publiés pendant une longue suite d'années. Au reste, ceux qui voudront s'en faire une idée les trouveront résumés dans des livres plus modernes (4), notamment dans l'Introduction des familles des plantes, par Adanson, et dans les Classes plantarum de Linné ; et leur intelligence n'offrira aucune difficulté si l'on a présentes à l'esprit les notions que nous avons données sur les organes divers et sur leurs principales modifications.

§ 508. Système et nomenclature de Linné. — Le système de Linné, publié en 4734, fit abandonner généralement tous ceux qui l'avaient précédé. Il offrait un grand attrait de nouveauté en se basant sur les organes de la fécondation, négligés jusqu'alors, et

(1) Nous avons nous-même fait une exposition des classifications botaniques plus complète, en ce qu'elle les résume toutes jusqu'à notre époque, à l'article TAXONOMIE du Dictionnaire universel d'histoire naturelle, t. XII, 1848.

SYSTÈMES ET MÉTHODES.

dont les usages physiologiques, d'une bien plus haute valeur que ceux des autres parties de la fleur, pouvaient être considérés comme une découverte encore récente. Linné, d'ailleurs, sut lier cette innovation à plusieurs autres d'une grande importance : il fit disparaître la confusion qui résultait de la multitude des variétés, qu'il réduisit ainsi que les espèces douteuses à celles qu'il savait nettement circonscrire. Il diminua aussi le nombre des genres, et compléta leur signalement par l'emploi des étamines et de certaines parties du pistil. Mais surtout, grâce à des lois qui sont encore et resteront probablement en vigueur, il introduisit une admirable réforme dans la langue et la nomenclature botanique, en définissant rigoureusement chacun des termes destinés à exprimer toutes les modifications d'organes qu'il devait employer comme caractères, et en réduisant l'appellation de toute plante à deux mots : le premier, substantif, qui désigne son genre; le second, adjectif, qui désigne son espèce. Avant lui, chaque genre portait bien un nom unique; mais, pour l'espèce, ce nom devait être suivi d'une phrase entière récapitulant tous ses signes distinctifs ; plus il y avait d'espèces dans un genre, plus il fallait de signes pour les distinguer entre elles; les phrases, s'allongeant ainsi par les progrès mêmes de la botanique, surchargeaient la mémoire au delà de ses forces et embarrassaient le discours, au milieu duquel la mention d'une plante venait à chaque instant jeter toute une phrase incidente. C'était la confusion qui s'introduirait dans la société et dans le langage si, au lieu de distinguer chacun par un nom de famille et un nom de baptême, on supprimait le second en y substituant l'énumération de plusieurs qualités distinctives de la personne. La nomenclature linnéenne déchargea donc la mémoire au profit d'autres facultés et dégagea l'allure de l'idiome botanique. Les ouvrages où la série des plantes se trouvait exposée suivant son nouveau système devaient donc, offrant à la fois tous ces avantages, obtenir dès leur apparition une vogue presque universelle. C'est ce qui arriva. La réforme fut adoptée de tous les côtés et dans tous ses points : le système de Linné détrôna tous les autres et régna jusqu'à la fin du dix-huitième siècle presque sans contestation, si ce n'est de la part de quelques esprits plus retardés ou, au contraire, plus avancés que la généralité. On y classa toutes les plantes nouvelles à mésure qu'on les découvrait, et les tableaux du règne végétal continuèrent à s'agrandir sans qu'on consentit à changer les cadres. Comme on possède un nombre considérable d'ouvrages rédigés suivant le système de Linné et même de nos jours ; comme à cause de la nomenclature binaire, dès lors adoptée, ils sont consultés fréquemment et facile ment; comme, au contraire, la plupart des ouvrages antérieurs,

écrits dans une langue qui n'est plus l'usuelle, ne le sont rarement et n'ont conservé, pour la plupart, qu'un intérêt historique, nous avons dû omettre les autres systèmes que l'élève n'est pas obligé de connaître. Mais il doit se familiariser avec celui de Linné, et nous devons l'exposer ici avec plus de détail.

§ 509. On est habitué à définir ce système comme fondé sur le nombre des étamines, mais tout à fait à tort, puisque Linné, tout en choisissant dans ces organes ses principaux caractères, a égard en premier lieu à d'autres considérations : celle de leurs rapports avec le pistil, séparé des étamines dans une fleur différente, ou rapproché dans la même fleur ; celle de leurs rapports entre elles, soit d'adhérence par les filets ou par les anthères, soit de grandeur. Le nombre absolu ne vient qu'ensuite, c'est-à-dire au cinquième ou sixième rang. C'est, au reste, ce que le tableau suivant fera connaître d'un coup d'œil.

TABLEAU DU SYSTÈME DE LINNÉ.

1 dans chaque fleur I Monandrie.	2 2 Diandrie /. 244. 3 3 Triandrie /. 243. 4 4 4 5 5 5 6 1 5	7		adhérentes entre elles par leurs filets soudés en un	seul corps	 sur le même individu 21 Monœcie f. 551. sur deux individus différents 22 Diœcie f. 534 - 537. et hermaphrodites, sur un ou plu- sieurs individus
égales entre elles			1 alantai	entre elles		 es su su et
Étamines				adhérentes		sur les autres rsmåles et femelles
non adhérents entre eux.		-				portes les uns su ême fleur. Fleurs
toùjours réunis dans la même fleur						l portes les uns non réunis dans la même fleur. Fleur
visibles		1				
Étamines et pistils						

Nous avons déjà eu occasion, au chapitre de la fleur et des étamines, de faire connaître tous ces noms, qui, au reste, se trouvent définis ici par le tableau même.

§ 540. Les 24 classes ainsi obtenues sont subdivisées ensuite chacune d'après d'autres considérations puisées soit dans les étamines, soit dans les pistils. Ainsi, dans les 16°, 17°, 18°, 20°, 21°, 22^e classes, nous voyons reparaître le nombre absolu des étamines pour fournir des divisions secondaires : la monadelphie décandrie, par exemple, comprendra les plantes qui offrent dix étamines réunies entre elles par leurs filets; la gynandrie hexandrie, celles qui offrent six étamines portées sur le pistil; la diæcie pentandrie, celles dont les fleurs à cinq étamines sont dépourvues de pistils qu'on ne trouve que dans d'autres fleurs non staminifères et placées sur un individu différent. La 23° classe, d'après la distribution des fleurs de trois sortes sur un même individu ou sur deux ou trois différents, se subdivise elle-même en polygamie monœcie, diæcie, triæcie. La 19e, dont les fleurs, réunies dans un même capitule, offrent cinq combinaisons possibles de fleurs hermaphrodites, mâles, femelles et neutres, se partage en plusieurs polygamies. Quant aux quinze premières classes, où le nombre absolu des étamines libres a déjà été employé, l'auteur, pour les subdiviser, a recours à des considérations tirées du fruit, court ou allongé dans la 15°, monosperme (gymnospermie), ou polysperme (angiospermie) dans la 14e; et, dans toutes les autres, du nombre des styles, qui, simple, double, triple, multiple, donne les sections appelées monogynie, digynie, trigynie..., polygynie : par exemple, le Cerfeuil, qui a cinq étamines libres et deux styles distincts, se trouvera dans la pentandrie digynie.

§ 514. Ce système a un défaut que tous ceux qui l'avaient précédé offraient aussi plus ou moins : l'espèce composée d'individus ressemblants entre eux par l'ensemble de leurs caractères était désignée par la nature elle-même. En formant le genre de plusieurs espèces liées entre elles par une ressemblance générale, on avait encore suivi l'indication de la nature : mais on l'abandonnait à partir de là, puisque, pour réunir un certain nombre de genres en une classe, ou en tout autre groupe (quelque nom qu'on lui donnât), on n'avait égard qu'à un petit nombre de traits de ressemblance, le plus souvent assez insignifiants ; de sorte qu'il n'existait pas un lien naturel, un rapport essentiel entre ces genres ainsi rapprochés. Montrons-le par quelques exemples pris dans ce système de Linné : une plante a six étamines égales et un seul style ; elle devra donc prendre place dans l'hexandrie monogynie, qui se trouvera ainsi comprendre le Jonc auprès de l'Épine-vinette. Or, il n'y a aucun rapport entre ces deux plantes, pas plus qu'entre le Riz et l'Atra-

MÉTHODE NATURELLE.

phaxis, qui se rapprochent dans la digynie ; entre l'Oseille, le Colchique et le Ménisperme, qui se rapprochént dans la trigynie; pas plus qu'entre la Vigne et la Pervenche dans la pentandrie monogynie ; entre la Carotte et le Groseillier dans la pentandrie digynie, etc. Pourquoi cela? Parce que Linné avait eu égard, pour réunir entre eux tous les Groseilliers, à un ensemble de caractères tirés de toutes les parties de la plante ; tandis que, pour les rapprocher dans une même classe du genre Carotte, il n'a eu égard qu'à la présence des cinq étamines et des deux styles, rapports qui ne se lient à aucun autre et peuvent se trouver entre une foule de plantes essentiellement différentes.

Le système de Linné est donc fondé sur des lois arbitraires; c'est un arrangement conventionnel, une sorte d'artifice par lequel les plantes se disposent assez commodément en un certain nombre de cadres, où il était facile d'aller les trouver tant qu'on n'en connaissait pas encore une très grande quantité. De là le nom de *système artificiel* qu'on a donné à celui de Linné, ainsi qu'à tous ceux qui ont, comme lui, groupé les genres d'après un petit nombre, et non d'après l'ensemble des rapports, et qui, se proposant pour but la distinction de ces genres plutôt que leur connaissance intime, insistent beaucoup sur leurs différences, peu sur leurs ressemblances.

MÉTHODE NATURELLE.

§ 512. Un système qui présenterait les différents genres liés entre eux comme les espèces le sont dans un même genre, les individus dans une même espèce, devrait suivre un procédé précisément contraire. Il devrait rapprocher les genres qui ont le plus grand nombre de rapports l'un avec l'autre, et par conséquent employer non pas quelques caractères seulement, mais tous les caractères à la fois ; et s'il parvenait à représenter fidèlement dans son arrangement tous ces rapports, il serait l'expression de la nature même. De là le nom de méthode naturelle, par lequel on distingue un pareil système de ceux que nous venons de désigner comme artificiels. De ceux-là on peut en inventer à l'infini, puisque, d'après chaque organe et d'après chaque point de vue sous lequel on le considère, on peut établir autant de ces systèmes. Mais il ne peut y avoir qu'une méthode naturelle qui ne dépend pas des botanistes, qu'ils peuvent découvrir, et non faire. Il y a eu beaucoup d'essais différents de cette méthode : il nous reste à exposer comment ils ont procédé pour arriver à leur but et quels sont ceux qui paraissent s'en approcher le plus, et ont réuni l'assentiment de la majorité des botanistes.

On peut conclure de ce qui précède que, pour grouper les genres entre eux, il fallait qu'on fît une opération analogue à celle qui avait été faite pour grouper les espèces entre elles, s'attacher à rechercher leurs rapports et à rapprocher les genres qui en offraient la plus grande somme; qu'au moyen de ces unités, nommées genres, en réunissant ceux qui se ressemblent plus entre eux qu'ils ne ressemblent à tous les autres, on composât de nouvelles unités d'un ordre plus élevé. Ce sont ces collections naturelles de genres qu'on appelle des *familles*, terme heureux imaginé par un botaniste français, Magnol.

§ 513. L'établissement de la méthode naturelle reposait donc sur celui de familles dignes de ce nom. Linné, qui en comprenait le besoin, et qui était doué d'un jugement trop sain, d'un tact trop exquis pour ne pas sentir les défauts de son propre système, tenta, sous le titre de Fragments de la méthode naturelle, un autre essai de classification où les genres se trouvaient distribués en familles; mais ce fut une simple liste de noms, sans explication qui pût faire connaître les principes par lesquels il s'était laissé guider, et probablement il suivit plutôt les inspirations d'un heureux génie et d'une expérience consommée que des lois bien arrêtées. Un botaniste francais du même temps, Bernard de Jussieu, essaya de son côté dans la plantation du jardin botanique de Trianon, une classification naturelle ; mais, pour en deviner les bases, on fut de même réduit à un simple catalogue, sans autre éclaircissement. Un peu plus tard un autre Français, Adanson, publia des familles de plantes, et le premier traça les caractères de ces familles, en développant les principes qui avaient présidé à leur formation. Il avait commencé par établir un grand nombre de systèmes, sur chaque partie de la plante et sur les principales modifications de ces parties ; chacun de ces systèmes constatait certains rapports entre certaines plantes. En les comparant entre eux, on pouvait évaluer la somme de ces rapports entre deux plantes données, et le système naturel général était le résultat de tous ces systèmes partiels. Mais si avec beaucoup de raison il avait employé concurremment tous les caractères des plantes pour les classer, il avait eu le tort de les employer tous à peu près au même titre, et souvent la somme des rapports ainsi calculée se trouva fausse comme le serait une somme de monnaies qu'on prétendrait évaluer, en ayant égard seulement au volume et non au métal des pièces. Aussi, nous ne voyons pas que ces diverses tentatives de méthode naturelle, quoique faites par d'aussi grands maîtres, aient exercé une influence directe sur la marche de la science.

MÉTHODE NATURELLE.

§ 514. Il n'en fut pas ainsi de celle qu'un quart de siècle plus tard proposa Antoine-Laurent de Jussieu, neveu de Bernard; car après qu'eut paru (en 1789) l'ouvrage fondamental où il exposait les caractères de tous les genres alors connus, disposés en familles naturelles, la classification nouvelle qui s'y trouvait établie et expliquée s'étendit dans le monde savant par un progrès lent et continu, et se substitua peu à peu aux systèmes antérieurement suivis. Ce fut pour la méthode naturelle un code de lois claires et précises, au lieu des oracles un peu vagues et incompris auxquels s'étaient arrêtés Linné et Bernard; et l'assentiment général leur donna une sanction qui a toujours manqué à celles d'Adanson. Expliquons-en la cause.

A.-L. de Jussieu admit, comme Adanson, que l'examen de toutes les parties d'une plante est nécessaire pour la classer ; mais, tout en poursuivant cet examen complet, il ne chercha pas à en déduire théoriquement la coordination des genres, et pour les grouper en familles, il imita les procédés suivis pour la formation des genres eux-mêmes. Les botanistes, frappés par la ressemblance complète et constante de certains individus, les avaient réunis en espèces; puis, d'après une ressemblance également constante, mais beaucoup moins complète, avaient réuni les espèces en genres. Les caractères qui peuvent varier dans une même espèce doivent dépendre de causes placées hors de la plante et non en elle-même, par exemple sa taille, sa consistance, certaines modifications de forme et de couleurs, etc., qu'on voit changer avec le sol, le climat, et sous d'autres influences purement circonstancielles. Les caractères spécifiques. au contraire, ceux que doit présenter tout individu pour être rapporté à certaine espèce, quelles que soient les circonstances où il se trouve, doivent tenir à la nature même de la plante. Parmi ces caractères, il y en a plusieurs plus solides encore que les autres, moins sujets à varier d'une plante à une autre : ce sont ceux qui, se retrouvant dans un certain nombre d'espèces, leur impriment une ressemblance assez frappante pour qu'on en constitue un genre. Ceux-là auront donc par leur généralité plus de valeur que les spécifiques, et les spécifiques plus que les individuels. Mais comment est-on parvenu à estimer ces différentes valeurs? La nature ellemême avait indiqué à l'observateur les espèces et beaucoup de genres par les traits de ressemblance dont elle marque certains végétaux; mais au delà des genres ce fil conducteur manquait, puisque tous les botanistes, à peu près d'accord jusqu'à ce point, se séparaient plus loin pour suivre chacun une route différente. Cependant il y a plusieurs grands groupes de végétaux liés entre eux par des traits d'une ressemblance tellement évidente, qu'elle n'avait

échappé à aucun et qu'il n'est pas besoin d'être botaniste pour la reconnaître. Outre ces traits communs à toutes les espèces d'un de ces groupes, il y en a qui ne sont communs qu'à un certain nombre d'entre elles, de telle sorte qu'il peut être subdivisé en un grand nombre de groupes secondaires. Ceux-ci avaient été reconnus comme genres par les botanistes. On avait donc déjà quelques collections de genres évidemment plus semblables entre eux qu'ils ne l'étaient à ceux de tout autre groupe, ou, en d'autres termes, quelques familles incontestablement naturelles. Jussieu pensa que la clef de la méthode naturelle était.là ; puisqu'en comparant les caractères d'une de ces familles à ceux des genres qui la composent, il obtiendrait la relation des uns aux autres; qu'en en comparant plusieurs entre elles, il verrait quels caractères, communs à toutes les plantes d'une même famille, varient de l'une à l'autre; qu'il arriverait ainsi à l'appréciation de la valeur de chaque caractère, et que cette valeur, une fois ainsi déterminée au moyen de ces groupes si clairement dessinés par la nature, pourrait être à son tour appliquée à la détermination de ceux auxquels elle n'a pas aussi nettement imprimé ce cachet de famille, et qui étaient les inconnues de ce grand problème. Il choisit donc sept familles universellement admises : celles qu'on connaît sous les noms de Graminées, Liliacées, Labiées, Composées, Ombellifères, Crucifères et Légumineuses. Il reconnut que la structure de l'embryon est identique dans toutes les plantes d'une de ces familles; qu'il est monocotylédoné dans les Graminées et les Liliacées, dicotylédoné dans les cinq autres; que la structure de la graine est identique aussi; l'embryon monocotylédoné, placé dans l'axe d'un périsperme charnu chez les Liliacées, sur le côté d'un périsperme farineux chez les Graminées ; l'embryon dicotylédoné, au sommet d'un périsperme dur et corné chez les Ombellifères, dépourvu de périsperme chez les trois autres; que les étamines, qui peuvent varier par leur nombre dans une même famille, les Graminées, par exemple, ne varient pas en général par leur mode d'insertion, hypogyne dans les Graminées, dans les Crucifères ; sur la corolle dans les Labiées et les Composées ; sur un disque épigynique dans les Ombellifères. Il obtenait ainsi la valeur de certains caractères qui ne devaient pas varier dans une même famille naturelle. Mais au-dessous de ceux-là s'en trouvaient d'autres plus variables qu'il chercha à apprécier de même, soit par l'étude d'autres familles indiquées par la nature même, soit dans celles qu'il formait en appliquant ces premières règles 'et plusieurs autres également fondées sur l'observation. Nous ne pourrions le suivre ici dans les détails de ce long travail, duquel résulta l'établissement de cent familles comprenant tous les végétaux alors connus.

MÉTHODE NATURELLE.

§ 545. On voit dans tout ce qui précède l'emploi d'un principe qui avait échappé à Adanson : celui de la subordination des caractères, qui, dans la méthode de Jussieu, sont, suivant sa propre expression, pesés et non comptés. Ils sont considérés comme avant des valeurs tout à fait inégales : de telle sorte qu'un caractère du premier ordre équivant à plusieurs du second, un de ceux-ci à plusieurs du troisième, et ainsi de suite. Cette valeur est déterminée par l'observation et l'expérience ; et, à mesure qu'elle s'abaisse, elle est de moins en moins fixe. Pour me servir d'une comparaison familière employée plus haut, celle de monnaies de métal différent avec les divers caractères qui doivent par leur réunion composer une certaine somme de rapports entre les plantes d'une même famille, les pièces d'or auraient un taux invariable, plus que celles d'argent ; et celles de cuivre vaudraient un peu plus ici, là un peu moins, destinées en quelque sorte à fournir l'appoint de cette somme où la monnaie d'un métal plus précieux forme le principal et est seule rigoureusement contrôlée.

§ 546. L'importance de la subordination des caractères résulte surtout d'une considération que nous n'avons pas fait valoir encore, mais qui ressort nécessairement de cette combinaison de plusieurs caractères dans chaque famille. C'est qu'un caractère d'un ordre supérieur en entraîne à sa suite un certain nombre d'un ordre différent, et en exclut, au contraire, un certain nombre d'autres : de sorte que l'énonciation pure et simple du premier suffit pour faire préjuger la coexistence ou l'absence de ces autres, et qu'une partie de l'organisation d'une plante est annoncée d'avance par un seul point qu'on a su constater, ce qui abrége et simplifie merveilleusement les recherches et le langage. Ainsi, par exemple, nous avons vu, presque à chaque chapitre de cet ouvrage, que l'absence ou la présence des cotylédons, leur unité ou leur pluralité se manifestent presque dans toutes les parties de la plante, qui présentent des différences profondes et frappantes suivant que son premier germe s'est montré différemment constitué sous ce rapport. Lorsque nous disons qu'une plante est monocotylédonée ou dicotylédonée, ce n'est donc pas ce simple fait que nous énoncons, mais un ensemble de faits ; nous avons une idée de l'agencement général des organes élémentaires dans ses tissus, de la manière dont elle germe et se ramifie, de la structure et la nervation de ses feuilles, de la symétrie de ses fleurs, etc., etc. De tel caractère secondaire, nous pouvons de même en déduire plusieurs autres d'un ordre supérieur, égal ou inférieur : dire que la corolle est monopétale, c'est dire que la plante qui en est pourvue est dicotylédonée, que les étamines sont insérées sur la corolle en nombre défini égal ou

inférieur à celui de ses divisions. La connaissance de tous ces rapports constants entre les différentes parties, qui permet de conclure de la partie au tout comme du tout à la partie, est la base de la méthode naturelle ; et, si cette connaissance était parfaite, on pourrait dire que la méthode est la science elle-même, puisque la place qu'elle assignerait à chaque plante résumerait son organisation, et que de son organisation dépend toute sa manière de vivre. Aussi voyons-nous qu'en général dans une famille vraiment naturelle règne un grand accord de propriétés économiques ou médicales entre les plantes qui la composent: ce qui doit peu étonner, puisque la similitude d'organes doit y entraîner celle des produits. Cette vérité donne à la méthode naturelle un grand avantage sous le point de vue d'utilité pratique.

§ 547. Classes.—Les familles une fois constituées, il s'agissait de les coordonner entre elles de manière à rapprocher à leur tour celles qui se ressemblent le plus et éloigner celles qui se ressemblent le moins. Le procédé suivi pour le groupement des genres s'offrait naturellement; les caractères communs à plusieurs familles à la fois permettaient d'en réunir plusieurs en groupes plus élevés, et la subordination des caractères établie indiquait dans quel ordre ils devaient être employés. Celui de l'embryon marchait évidemment en avant de tous les autres, et partageait le règne végétal en trois grands embranchements : les Acotylédonées, Monocotylédonées et Dicotylédonées. Après ce caractère fondamental, mais bien au-dessous de lui, A.-L. de Jussieu plaça l'insertion des étamines, hypogyne, périgyne ou épigyne. Mais, dans les Dicotylédonées, ces étamines se soudent par leurs filets avec la corolle lorsqu'elle est monopétale ; de manière que dans ce cas leur insertion, au lieu d'avoir lieu immédiatement sur le torus, sur le calice ou sur l'ovaire, ne s'y fait que par l'intermédiaire de la corolle, naissant à l'un de ces trois points. Le caractère de la corolle ainsi lié à celui de l'insertion marche de pair avec lui. L'insertion n'est que l'expression de la situation relative des deux ordres d'organes de la fleur, des étamines, par rapport au pistil, dans une même enveloppe. Mais, s'ils sont séparés sur des fleurs différentes, cette relation n'a pas lieu, et c'est le fait même de leur séparation qu'il faut exprimer. Telles sont les principales considérations d'après lesquelles les familles furent distribuées en 45 classes que voici résumées par un tableau qui les fera plus facilement comprendre. Les termes employés dans les premières colonnes ont été précédemment définis (§§ 299, 308, 309); ceux de la dernière ont été proposés à une époque plus récente, pour pouvoir désigner chaque classe plus commodément.

MÉTHODE DE JUSSIEU.

CLEF DE LA MÉTHODE D'A.-L. DE JUSSIEU.

		amines { hypogynes	s	acotylédones f 502-526. monohypogynes f . 531. monopérigynes f . 546. mono-épigynes f . 551-555.
Dicotylė- dones.	apétales. monopétales.	- { épigynes. périgynes hypogyne hypogyne périgynes	5	<pre>épistaminées f. 599. péristaminées f. 607-612. hypostaminées f. 616. hypocorollées f. 678. péricorollées f. 722. épicorollées synauthères f. 730. épicorollées corisanthères f. 716.</pre>
		- {hypogynes périgynes	· · · · · · · · · 12 s · · · · · · · · 13 · · · · · · · · · 14	épipétalées $f. 674.$ hypopétalées $f. 634-642.$ péripétalées $f. 663.$ diclines $f. 558-592.$

§ 518. Il y a donc deux parties distinctes à considérer dans la méthode de Jussieu : 4° le groupement des genres en familles ; 2º la coordination de ces familles en classes et leur série. C'est presque toujours cette division en classes, telle qu'elle est indiquée par le tableau précédent, que les livres élémentaires se contentent de présenter sous le nom de cette méthode, quoiqu'elle ne soit seulement que la partie la moins importante de ce grand travail. Le grand pas vers l'établissement de la classification naturelle, c'était celui de familles qui méritassent ce nom; et c'est ce qu'exécuta A.-L. de Jussieu. Il semble lui-même avoir signalé cette distinction dont nous parlons par le titre de son ouvrage, qui annonce les genres disposés en familles naturelles suivant une méthode employée au jardin de Paris (Genera plantarum secundum ordines naturales juxta methodum in horto regio Parisiensi exaratam). Il appliquait l'épithète aux familles et non à la méthode tout entière. Mais en exposant le premier les grands principes qui doivent présider à la classification non seulement des plantes, mais de tous les êtres organisés; en donnant, par les familles dans lesquelles il distribuait tous les végétaux, une base solide en même temps qu'un modèle à la science, il avait fait assez pour qu'on pût dater de ce moment la fondation de la méthode naturelle, qui des lors ne fut plus à découvrir, mais à perfectionner.

Ses familles ont été toutes conservées, avec les seuls changements qu'amène nécessairement le progrès de la science, soit en apprenant à connaître à fond des plantes qui n'étaient connues

qu'imparfaitement, soit en en faisant découvrir un grand nombre de nouvelles, pour lesquelles il faut ou former des cadres nouveaux ou élargir les anciens. Mais, dans ces cas, si les limites conventionnelles changent, les rapports réels ne changent point, pas plus, par exemple, que ceux de divers points dans une étendue de pays qui, de province unique, serait scindée en plusieurs départements.

Quant à la coordination des familles, elle a été souvent attaquée et modifiée, non pas dans sa division fondamentale, admise universellement, mais dans ses divisions secondaires, tirées de l'insertion des étamines. On leur a reproché d'admettre beaucoup d'exceptions, de contrarier plusieurs rapprochements naturels, et d'en amener qui ne le sont pas. Ces reproches sont souvent justes; mais cependant, quoique plus d'un demi-siècle se soit écoulé depuis cette classification, et que bien des essais aient été tentés pour en substituer une meilleure, nous ne voyons pas qu'on ait jusqu'ici trouvé beaucoup mieux, rien du moins que justifie l'adoption de la généralité des botanistes.

§ 519. De Candolle, qui a le premier appliqué la méthode naturelle à l'ensemble des plantes d'un grand pays, la France, et, plus tard, à l'universalité des espèces végétales, a suivi, dans la série des familles, un ordre qui ne s'éloigne pas essentiellement de celui de Jussieu. En effet, séparant les Dicotylédonées en *thalamiflores*, qui répondent précisément aux hypopétalées; *calyciflores*, qui répondent aux péripétalées; *corolliflores*, qui répondent aux monopétales, et *monochlamydées*, qui répondent aux apétales, il se trouve avoir suivi les règles tirées de la corolle et de ses insertions, et ne diffère qu'en ce que les deux dernières de ces grandes classes en comprennent chacune plusieurs.

§ 520. D'autres auteurs se sont éloignés davantage de cet ordre. Mais tous, du moins tous ceux qui méritent quelque autorité, sont d'accord sur la première division du règne végétal en grands groupes dont la structure de l'embryon résume les caractères, et à peu près sur la dernière division en ces groupes plus petits que nous avons nommés familles. Ce n'est que sur les divisions intermédiaires que portent les dissidences. Nous n'avons pas à nous en occuper jusqu'à ce qu'elles cessent, et que, soit par la connaissance d'éléments qui nous manquent encore, soit par quelque heureux effort d'un génie auquel se découvre une base jusqu'ici inconnue, nous voyions s'établir une classification qui rallie toutes les opinions et commande les convictions. Elle sera pour la coordination des familles entre elles ce qu'a été l'établissement des familles ellesmêmes pour la coordination des genres. Ce sera le second et der-

MÉTHODE DE JUSSIEU.

nier grand pas dans la marche de la méthode naturelle appliquée au règne végétal.

Mais le premier était peut-être de beaucoup le plus important; car, malgré la multiplication des familles, leur nombre n'est pas tel que la mémoire ne puisse retenir leurs traits distinctifs, surtout par le secours qu'elle reçoit de leur première division en trois grands embranchements. Le but évident de la méthode est de nous faciliter la reconnaissance complète des végétaux divers, en substituant à ces unités naturelles, qu'on appelle espèces ou genres, et qui dans leur multitude ne peuvent être toutes à la fois présentes à la mémoire la plus heureusement douée, d'autres unités d'un ordre plus élevé, en nombre assez limité pour que leur connaissance simultanée n'excède pas les forces de l'esprit humain. C'est ce qu'a fait l'établissement des familles. Sachant qu'une plante appartient à telle ou telle famille, nous avons déjà des notions sur tous les principaux points de son organisation et sur ses rapports avec le reste des végétaux. Toutes les fois que nous avons besoin d'en trouver de plus étendus, nos recherches, ainsi resserrées dans un cercle plus étroit, deviennent plus promptes et plus faciles ; de là les progrès incontestables qu'a faits la botanique depuis que les familles ont remplacé d'autres systèmes dont les groupes secondaires, réunissant des végétaux par un seul point de leur organisation, n'en représentaient qu'un seul trait souvent insignifiant. De là cette assertion émise plus haut : que le grand pas vers la découverte de la méthode naturelle a été l'établissement de familles dignes de ce nom et du principe de la subordination des caractères.

En constatant ce titre de gloire du nom que j'ai l'honneur de porter, je crois avoir été mû par le sentiment de la justice autant que par un sentiment filial. Il importait d'ailleurs de bien pénétrer l'esprit des élèves de cette vérité : que l'œuvre de Jussieu n'est pas dans le court tableau qu'on leur présente comme son résumé ; qu'elle resterait intacte même en le réformant ou en le rejetant, et que, tout en se le rendant familier, ils doivent aller au delà s'ils veulent avoir une idée nette de la méthode naturelle. La connaissance des familles est sans doute trop vaste et demande une trop longue étude pour qu'ils puissent l'acquérir complétement ; mais il est bon qu'ils en étudient quelques unes avec soin, qu'ils se pénètrent bien de cet ensemble de caractères qui les constitue. Alors ils pourront, par analogie, juger des autres, et comprendre nettement ce qu'on entend par famille.

§ 524. Les bornes de cet ouvrage ne nous permettent pas de les exposer toutes, même brièvement. Nous nous contenterons donc d'une suite de tableaux propres à faire saisir leurs principaux ca-

ractères. Mais parmi toutes ces familles, nous en choisirons, en outre, quelques unes que nous décrirons avec un peu plus de détail, quoique le plus succinctement possible. Ce seront les plus importantes ou celles qui, présentant quelque point d'organisation peu commun ou exceptionnel, nous donneront l'occasion, en les signalant, de compléter les notions plus générales auxquelles nous avons dû nous borner dans le cours de l'exposition précédente. Nous entrerons aussi dans quelques détails sur celles qui se font remarquer par quelques propriétés particulières, par des produits soit utiles à l'industrie, à l'économie ou à la médecine, soit au contraire nuisibles.

§ 522. D'après toutes les considérations qui ont été présentées plus haut, dans l'exposition de toutes les familles du règne végétal, nous adopterons encore les grandes divisions établies par A.-L. de Jussieu, de préférence à celles qu'on a plus récemment proposées, parce que celles-ci ne reposent pas encore sur des règles fixes, et que, malgré le mérite qu'elles peuvent avoir si on les considère une à une, il manque encore à leur ensemble ce lien systématique au moyen duquel le commençant peut les comprendre facilement et les fixer dans sa mémoire. Nous ne croyons pas néanmoins devoir suivre strictement l'ordre suivant lequel elles ont été primitivement rangées, et il nous reste à expliquer les considérations nouvelles d'après lesquelles cet ordre nous semble devoir être interverti dans quelques unes de ses parties.

Jussieu, dans l'exposition de ses familles, a sagement procédé du simple au composé, commençant par les Acotylédonées et finissant par les Dicotylédonées. La vérité de cette progression a été généralement admise, non parce que la duplicité de cotylédons est plus complexe que l'unité, et leur unité que leur absence complète, mais parce que, considérés dans toutes leurs parties, les végétaux acotylédonés sont évidemment plus simples que les cotylédonés, les monocotylédonés que les dicotylédonés : c'est ce qui ressort de l'examen de tous les organes, et nous n'avons pas besoin d'en donner ici les preuves, qui ne seraient que des répétitions de ce que nous avons eu l'occasion d'exposer déjà à l'article de chacun de ces organes. Cet ordre ne peut donc jusqu'à présent être sujet à aucune objection. Les Dicotylédonées étaient partagées en apétales, monopétales, polypétales et diclines; c'est à cette série que nous croyons devoir substituer la suivante : 4º diclines, 2º apétales, 3º polypétales, 4º monopétales. Nous allons examiner en quoi les dernières nous paraissent offrir un degré de composition supérieur aux précédentes, et mériter en conséquence cette nouvelle place que nous leur assignons.

MÉTHODE DE JUSSIEU.

§ 523. Tout être organisé l'est à un degré d'autant plus élevé que sa vie résulte d'un plus grand nombre de fonctions, exécutées par un plus grand nombre d'organes. L'organe végétal le plus simple est évidemment une cellule, puisque c'est le premier état de tous les autres. Une plante qui serait réduite à une cellule, ou à un petit nombre de cellules identiques entre elles, serait donc sans contredit la plus simple entre les plantes. Or, nous observons ce degré de réduction dans certaines Algues, qui, par conséquent, doivent occuper la première place dans une série procédant du simple au composé. Chaque cellule, en se séparant des autres, est ici également propre à propager la plante: il y a donc confusion complète des organes de la végétation et de la reproduction.

§ 524. Nous trouvons ensuite d'autres végétaux, dont le corps forme une masse uniforme sans distinction nette de parties, mais dont cependant le tissu n'est pas aussi parfaitement homogène; car parmi les cellules qui le composent, quelques unes prennent par leur forme et leur contenu un développement un peu différent des autres, et les premières sont plus propres à reproduire le végétal que les secondes. Il y a donc déjà des fonctions différentes exercées par ces organes encore si simples ; celles de reproduction se trouvent confondues encore avec celles de végétation, si l'on n'a égard qu'à la masse indivise qui constitue le végétal ; elles se séparent si l'on a égard aux divers points de cette masse, puisqu'elles se localisent sur plusieurs d'entre eux.

§ 525. D'autres végétaux plus composés commencent à nous montrer dans leur corps la distinction de certaines parties de ces organes que nous avons appelés fondamentaux, l'une centrale ou axe, les autres latérales ou feuilles. La végétation n'est pas identique dans les unes et les autres, et devient plus compliquée lorsque, dans le tissu jusqu'ici exclusivement cellulaire, viennent se former diverses modifications de vaisseaux : voilà donc une fonction exercée par un plus grand nombre d'organes différents. Ceux de la reproduction se sont séparés de plus en plus nettement; ils se sont en général associés aux organes latéraux, dont ils semblent encore faire partie dans beaucoup de cas (dans les Fougères, par exemple): mais, dans tous les cas, ces organes ne consistent encore qu'en une portion de tissu cellulaire modifiée d'une manière particulière, telle que dans certaines cellules s'en forment plusieurs autres que nous avons nommées spores (§ 496).

§ 526. De cet examen rapide des Cryptogames, nous pouvons conclure que le degré de confusion entre les organes de la végétation et ceux de la propagation est la mesure du degré de simplicité du végétal tout entier; que leur distinction de plus en plus

nette exprime, en général, une organisation de plus en plus composée, comme le prouve le perfectionnement des organes fondamentaux, qu'on voit se compliquer suivant la même progression.

§ 527. Arrivés aux plantes cotylédonées ou phanérogames, nous voyons les organes de la reproduction prendre une forme nouvelle et double: celle d'anthère et d'ovule; et l'action réciproque de ces deux organes est nécessaire pour que la fonction s'exerce. Cette nécessité de leur concours constate un degré plus élevé de dignité dans la fonction, qui prend un nom nouveau: celui de fécondation. Elle établit un rapport entre le règne végétal et le règne animal, qui, sans contestation, jouit d'une organisation beaucoup plus élevée. Il ne peut donc y avoir de doute que les plantes phanérogames ne soient plus organisées que les cryptogames. Il reste à rechercher comment, dans les premières, on peut établir cette gradation, que nous avons essayé de faire reconnaître dans les secondes.

§ 528. Les organes de la végétation sont dans les Phanérogames, comme dans les Cryptogames les plus élevées, des axes et des feuilles ; ceux de la reproduction sont compris sous le nom général de fleur, et nous avons vu qu'on s'accorde généralement, aujourd'hui, à considérer les différentes parties de la fleur comme autant de feuilles plus ou moins profondément modifiées. Plus la métamorphose des unes dans les autres sera complète, plus la distinction entre les organes de la végétation et ceux de la reproduction sera large et nette, moins, si la règle que nous avons posée plus haut est vraie, le végétal sera simple.

§ 529. La modification est toujours profonde et complète dans les organes essentiels de la fécondation, l'anthère et l'ovule. L'anthère, dont toutes les cellules en produisent à leur intérieur plusieurs autres d'une nature particulière, agents immédiats de la fonction (grains de pollen), offre, par ce point de son organisation, un rapport évident avec les feuilles sporifères des Cryptogames; mais la feuille, dans celles-ci, n'est métamorphosée qu'incomplétement et exerce encore, dans une partie plus ou moins grande de son étendue, ses fonctions végétatives : dans l'anthère, elle s'est, par une complète métamorphose, exclusivement vouée à la fonction reproductive, et, par cette distinction nette de forme et d'action, elle constate déjà une organisation plus élevée. L'ovule, avec sa structure si compliquée, paraît moins une seule feuille qu'un petit amas de feuilles; mais ce n'est guère que par le raisonnement et l'analogie qu'on est conduit à leur assigner cette origine. Si ce sont en effet des feuilles, elles sont entièrement méconnaissables et exercent d'ailleurs des fonctions entièrement différentes. Les oyules,

SÉRIE NATURELLE.

de plus, sont généralement cachés sous une enveloppe que forme une autre feuille modifiée elle-même, quoiqu'à un moindre degré (le carpelle); de sorte qu'on pourrait dire qu'ici la métamorphose s'est élevée à sa seconde puissance. Rien d'exactement comparable dans les Cryptogames.

§ 530. Mais nous avons vu que très souvent d'autres feuilles voisines, dépouillant les apparences et les fonctions foliaires, prennent part à ce déguisement pour former les enveloppes de la fleur : elles isolent encore plus les étamines et les carpelles des organes végétatifs, et forment avec eux un système plus composé et plus distinct. L'accession de ces parties nouvelles aux organes de la reproduction paraît donc accuser un nouveau degré d'organisation.

§ 531. Cependant ces diverses parties de la fleur retiennent encore souvent quelques vestiges de leur nature foliaire, sans lesquels on ne fût pas parvenu à la reconnaître : c'est surtout lorsque, indépendantes les unes des autres, elles conservent sur l'axe raccourci qui les porte les positions relatives qu'on est accoutumé à voir entre les feuilles. Ce caractère de la situation, bien plus tenace que celui de la forme, de la structure et, par suite, de la fonction, est le dernier qui s'efface ; mais, s'il s'efface lui-même, on peut dire que la métamorphose atteindra son maximum. Or, c'est ce qui a lieu par suite des adhérences entre les divers organes floraux. Il est clair, que dans un calice ou une corolle à cinq dents, dans un tube formé par la soudure de cinq anthères, dans un ovaire quinquéloculaire surmonté d'un style simple, il était bien plus difficile de reconnaître cinq feuilles que dans autant de sépales, de pétales, d'étamines et de carpelles entièrement distincts; que, dans des étamines régulièrement disposées en spirale sur un torus aplati ou surtout cylindrique (comme chez les Magnoliacées), on pouvait présumer des feuilles modifiées, plutôt que dans ces mêmes étamines partant du tube du calice ou de la corolle, ou surtout d'un disque tapissant le sommet d'un ovaire confondu avec le calice. Qu'on combine ensemble, dans une fleur, ces divers degrés d'adhérence des diverses parties, et l'on arrivera à un ensemble où tout observateur, s'il n'est pas averti d'avance, ne pourra soupçonner une succession de feuilles et où les organes de la reproduction seront devenus aussi distincts qu'ils peuvent l'être de ceux de la fécondation, en perdant leurs derniers rapports, ceux de position.

§ 532. On concevra maintenant pourquoi nous avons placé les Monopétalées au-dessus des Polypétalées, contre l'usage universellement reçu. D'ailleurs si, d'après un autre principe généralement admis, on estime la valeur des caractères par leur constance, on verra que çelui de la corolle monopétale, surtout liée à l'insertion médiate

des étamines, admet beaucoup moins d'exceptions que celui de la corolle polypétale. La plupart des familles polypétalées renferment quelques genres apétales, et plusieurs offrent une affinité évidente avec d'autres familles entièrement dépourvues de corolle. C'est un point si bien reconnu, que plusieurs auteurs proposent de les mêler dans une grande classe commune, comme l'a fait, par exemple, M. Adolphe Brongniart dans l'ordre qu'il a adopté pour l'école botanique du Jardin des Plantes de Paris.

§ 533. Les Monocotylédonées peuvent offrir, dans la composition de leur fleur, divers degrés, comme les Dicotvlédonées, et même arriver, par les adhérences de leurs parties, à un état de complication presque aussi remarquable que celui des Synanthérées que nous avons placées au dernier et plus haut point de la série végétale : les Orchidées en offrent un exemple. On ne voit donc pas pourquoi, sous ce rapport, elles seraient considérées comme inférieures en organisation; car si leurs enveloppes sont toujours bornées à un périanthe simple, c'est aussi le cas pour les fleurs de beaucoup de Dicotylédonées, et même, parmi celles-ci, on en trouve qui, réduites à un ovule nu, présentent encore un plus grand degré de simplicité. Ces deux grands embranchements, considérés par rapport aux organes de la fécondation, marchent donc suivant deux lignes parallèles plutôt que sur une seule et même ligne, l'un en arrière et à la suite de l'autre. Mais en recourant alors à la comparaison des organes de la végétation, l'égalité disparaît : les Monocotylédonées offrent une structure plus simple, un tissu beaucoup plus uniforme.

§ 534. Nous avons cherché des principes d'après lesquels puisse être établie la série des végétaux, des plus simples aux plus composés ; mais nous avons vu, par les divergences des botanistes, la difficulté d'en trouver une qui puisse satisfaire parfaitement à cette condition et placer toutes les plantes dans leurs véritables rapports les unes relativement aux autres. Ces rapports, en effet, sont multiples dans la nature. Toute espèce ou toute autre collection de plantes (genre, famille, etc.) se rapproche de plusieurs autres à la fois par des rapports d'une valeur égale ou presque égale, et dans toute série elle ne peut être rapprochée que de deux, celle qui la précède et celle qui la suit ; ce qui rompt nécessairement d'autres rapports souvent aussi intimes. Linné a ingénieusement comparé le tableau du règne végétal à une carte géographique où chaque pays en touche à la fois plusieurs dont il est environné : qu'on tire une ligne continue de l'un à l'autre, elle ne passera que par un certain nombre de pays et en laissera un plus grand nombre à droite et à gauche. La série des familles est cette ligne, et nous ne pouvons les y placer toutes qu'en en transportant beaucoup hors de leur place naturelle

SÉRIE NATURELLE.

M. R. Brown a expliqué cette vérité avec autant de bonheur en disant que le lien des êtres organisés est un réseau et non une chaîne.

Une troisième comparaison, que nous emprunterons au règne végétal même, aidera à comprendre comment cette multiplicité de rapports n'exclut pas l'idée d'une série générale, et comment ces lignes dirigées et entrecroisées en tout sens peuvent se coordonner en une seule ligne continue. Les familles sont comme les branches d'un grand arbre nées sur un tronc commun, dont chacune dans son développement en touche plusieurs autres à la fois et peut même les croiser, dont quelques unes peuvent en dépasser d'autres nées audessus d'elles ; mais, malgré cette divergence dans un sens et cette confusion apparente, elles convergent toutes vers le tronc et en partent l'une après l'autre sur une seule ligne déroulée de bas en haut. On conçoit sans plus de détails comment la métaphore peut se continuer et comment la ramification diversement modifiée, avec ses divisions de tout ordre et de toute grosseur, peut représenter toutes celles qu'on voudra admettre dans la classification.

§ 535. Les rameaux, nés sur les branches qui figurent les familles, figureront eux-mêmes des genres. Or, ils peuvent naître tous successivement l'un après l'autre sur une branche simple, ou bien plusieurs ensemble vers une même hauteur sur une branche ellemême ramifiée; formant ainsi dans le premier cas une série, un groupe dans le second. Cette double modification s'observe également dans l'arrangement des genres d'une même famille. Il y a des *familles par groupes*, dont tous les genres très ressemblants entre eux, chacun touchant à plusieurs autres à la fois, s'agglomèrent dans une certaine confusion. Il y a des *familles par enchaînement*, dont les genres, liant chacun celui qui le suit avec celui qui le précède, forment une véritable série dans laquelle le dernier ne se rattache au premier que par cette suite de chaînons intermédiaires et peut quelquefois lui ressembler assez peu. Les premières sont nécessairement plus naturelles que les secondes.

Avant de commencer le tableau et l'exposition des familles, nous devons encore ajouter quelques notions.

§ 536. 4° Sur leur nom. — Plusieurs des plus anciennement et plus universellement reconnues le tirent de quelques uns de leurs traits les plus saillants : comme les Ombellifères et Corymbifères, de leur mode d'inflorescence; les Légumineuses et Conifères, de leur fruit; les Labiées et Crucifères, de la forme de leur corolle; les Palmiers, les Graminées, de l'ensemble de la plante, etc., etc. Mais, quant aux autres, on est convenu, en général, de désigner chaque famille par le nom d'un de ses principaux genres, celui qu'on peut considérer comme le type autour duquel viennent se rallier tous les

autres, et la désinence du nom latin de ce genre est changée en une autre : acées (comme dans Rubiacées), inées (comme dans Laurinées), idées (comme dans Capparidées), ariées (comme dans Onagrariées). C'est la première de ces terminaisons, celle en acées, qui est le plus généralement employée, et quelques auteurs, avec raison peut-être, s'en servent exclusivement. On est convenu de réserver en général la simple désinence en ées, que beaucoup de noms de familles (Joncées, Polygonées, etc.) prenaient autrefois, pour désigner des divisions d'un ordre inférieur. En effet certaines familles sont susceptibles d'être partagées en plusieurs groupes secondaires unis par des caractères qu'on ne regarde pas encore comme assez importants pour les élever eux-mêmes à la dignité de familles : on les appelle des tribus. Ainsi les Méliacées forment une famille dont tous les genres sont réunis autour du genre Melia par certains caractères communs, mais il y a d'autres caractères qui ne sont pas communs à tous les genres de la famille, et ceux-là offrent deux combinaisons : l'une, qu'on retrouve dans le Melia et quelques autres genres ; l'autre, qu'on observe dans le reste et notamment dans le genre Trichilia. On pourra donc partager les Méliacées en deux tribus, Méliées et Trichiliées. Les tribus doivent composer des groupes naturels, et ce sont par conséquent comme de petites familles, susceptibles d'être un jour élevées à ce rang, s'il arrive que, par la découverte d'un assez grand nombre de plantes nouvelles, la famille dont elles font partie vienne à prendre elle-même assez d'étendue et d'importance pour justifier ce démembrement. La plupart des tribus établies primitivement sous le nom de sections par Jussieu, dans ses familles, en sont devenues plus tard elles-mêmes. On doit donc peu s'inquiéter si un groupe est famille ou tribu, pourvu qu'il soit bien naturel, d'autant plus que toutes les familles sont loin d'avoir une importance égale, ou par le nombre des plantes qui s'y rattachent, ou par la valeur des caractères qui les distinguent. Dans l'énumération qui suit, nous avons trop peu d'espace pour descendre jusqu'aux tribus, que nous indiquerons seulement dans quelques cas, lorsque les caractères employés par nos tableaux, écartant un peu l'une de l'autre deux tribus d'une même famille, nous y conduiront séparément. Nous emploierons aussi indifféremment les différentes désinences que nous venons d'indiquer, choisissant de préférence pour chaque famille celle du nom sous lequel elle est plus vulgairement connue. Ajoutons, pour ceux qui veulent étudier quelques familles sur la nature, le conseil de choisir toujours une espèce bien authentique du genre qui lui donne son nom. Ils seront sûrs, en effet, de ne jamais rencontrer là quelqu'une de ces exceptions qui déroutent l'étudiant. Quelques révolutions qu'on opère dans les remaniements possibles des groupes,

NOMENCLATURE DES FAMILLES.

il est bien clair, par exemple, que l'Azedarach commun, type du genre Melia, sera toujours une Méliacée.

§ 537. 2° Sur leurs caractères. — Ce sont ceux de la reproduction (character fructificationis) qui passent en première ligne et qui servent essentiellement à définir la famille. Mais on y joint toujours ceux de la végétation, qui, comme nous l'avons dit, présentant le plus souvent quelque trait particulier pour chaque famille, servent à confirmer par là les premiers et, dans quelques cas, en facilitent beaucoup la recherche. C'est ainsi, par exemple, que des feuilles simples opposées avec des stipules interpétiolaires aident à reconnaître au premier coup d'œil une Rubiacée. On emploie de même pour la description des genres les caractères de la reproduction et de la végétation concurremment. Linné ne se servait que des premiers, réservant les seconds pour la distinction des espèces.

Tantôt on décrit une famille dans ses moindres détails de manière à n'omettre aucun trait : c'est ce qu'on appelle le *caractère naturel*. Tantôt on se borne aux traits caractéristiques, ceux dont la combinaison la distingue de toutes les autres : c'est le *caractère essentiel*. C'est à celui-ci que nous devons nous borner.

§ 538. Mais ce caractère résulte, comme nous venons de le dire, de la combinaison de plusieurs et non d'un seul isolé. Il ne faudra donc pas se contenter de l'un d'eux, fût-il tout à fait propre à la famille : comme, par exemple, les étamines tétradynames aux Crucifères. Ce serait vouloir faire un portrait par la représentation d'un seul trait du visage. On verra par les tableaux joints aux leçons suivantes qu'il faut, pour pouvoir s'en servir, avoir bien présentes à l'esprit, avec les termes dont ils font usage, les notions organographiques éparses dans le cours de ce livre, surtout celles que nous avons données sur la fleur, sur la symétrie de ses parties et leurs insertions, sur la situation des graines, et particulièrement sur leur structure, dont les diverses modifications fournissent les caractères les plus importants et à plusieurs degrés.

SEPTIÈME, HUITIÈME ET NEUVIÈME LEÇONS.

NOTIONS

SUR QUELQUES UNES DES PRINCIPALES FAMILLES DU RÈGNE VÉGÉTAL, CONSIDÉRÉES COMME EXEMPLES DE LA MÉTHODE PRÉCÉDENTE.

§ 539. Commençons par indiquer la marche qui nous paraît la plus convenable pour mettre à profit ce nombre de leçons si peu en rapport avec celui des objets qui se pressent en foule devant nous. Dans ces premières études il ne s'agit pas d'apprendre la science que n'épuise la vie ni d'un homme ni des générations successives; il s'agit de concevoir nettement l'esprit de la science. On ne peut prétendre à connaître le tout, on ne peut qu'en juger d'après quelques parties, d'après quelques exemples bien choisis.

Pour bien comprendre ce que c'est qu'une famille, il est bien meilleur d'en étudier à fond quelques unes, que de charger sa mémoire des caractères incomplets d'un grand nombre qu'on apprend ainsi à distinguer seulement par leurs différences, c'est-à-dire systématiquement. Nous conseillons donc au professeur, avant de commencer la revue générale de ces familles, d'en faire connaître à ses élèves trois ou quatre en détail. Il devra les choisir de telle manière qu'ils y trouvent des exemples de familles par enchaînement aussi bien que par groupes. J'indiquerai comme des plus favorables à cet exercice celles des Rosacées, des Renonculacées, des Crucifères qui offrent ces modifications bien caractérisées à différents degrés et ont de plus l'avantage d'être représentées par un grand nombre de plantes faciles à se procurer dans les jardins et dans la campagne. Cette démonstration servira en même temps à donner la notion du genre, puisqu'il faudra comparer entre eux tous les principaux genres qui constituent chacune de ces familles ; un petit nombre de ceux-ci suffira dans une famille par groupes comme celle des Crucifères ; il en faudra beaucoup plus dans une famille par enchaînement comme celle des Rosacées, plusieurs ou au moins un pour chacune de ses tribus. On devra suivre pour guide un auteur d'une autorité bien reconnue comme De Candolle dans son Prodrome, Endlicher dans son Genera. Celui de Jussieu en serait encore un excellent, et suffisant pour cette sorte d'exercice qui n'exige pas la connaissance complète de l'état actuel de la science. Il sera bon enfin de profiter de

FAMILLES DU RÈGNE VÉGÉTAL.

cette occasion pour comparer entre elles les principales espèces de quelques uns de ces genres et donner ainsi d'un seul coup à l'élève une idée nette de toutes ces unités subordonnées, famille, tribu, genre, espèce. Deux ou trois leçons seraient très utilement consacrées à cette exposition; puis une seule suffirait pour comparer à ces familles bien étudiées, toutes les autres où l'on ne s'attacherait plus qu'à faire ressortir les principaux caractères, surtout ceux dont on pourrait montrer des exemples.

§ 540. Ainsi que nous l'avons annoncé (§ 524), nous avons donné quelques détails sur quelques familles seulement, les plus remarquables par le rôle qu'elles jouent dans la végétation générale de la terre et en particulier de notre pays, ou bien encore par leurs produits et leur application aux besoins de l'homme. Mais nous avons cru devoir y joindre la revue complète des familles dans une suite de tableaux qui indiquent leurs principaux caractères et par conséquent leurs rapports. Il était nécessaire de les connaître au moins à ce degré, pour que le chapitre suivant, celui de la géographie botanique, où il est indispensable d'en citer un assez bon nombre, ne présentât pas un assemblage de noms sans signification.

§ 544. Rappelons bien enfin toute l'insuffisance de ces tableaux : destinés seulement à signaler les différences des familles par les principaux points de leur organisation, mais nullement à faire connaître cette organisation tout entière, ils sont nécessairement plus ou moins systématiques, et n'ont pu, pour se prêter à des coupes nettes et claires, respecter toujours l'ordre naturel (4). Quelques familles se trouvent donc un peu hors de la place qu'elles devraient y occuper. Nous avons néanmoins cherché à les en éloigner dans ce cas le moins possible, et à les montrer au moins dans le groupe des familles avec lesquelles elles ont le plus d'affinités ; quoique cela même ne nous ait pas été toujours permis, par les concessions qu'entraînait l'établissement de certaines grandes divisions : de celle des Diclines, par exemple. Quelques notes, au reste, pourront signaler ces écarts à mesure qu'ils se présenteront.

L'ordre que nous suivons a été annoncé précédemment (§ 522); nous ne le répéterons pas ici, pour abréger, et nous renverrons à la table des matières qui résume cet arrangement général tel

(1) Dans un autre ouvrage déjà cité précédemment (Dictionnaire universel d'histoire naturelle, article TAXONOME, vol. XII, p. 445-426), où nous n'étions pas gênés par la forme des tableaux analytiques adoptée ici, nous avons exposé la distribution des familles dans l'ordre que nous concevons comme le plus naturel. Nous ne pouvons la reproduire ici à cause des limites dans lesquelles est obligé de se resserrer ce cours élémentaire, et devons nous contenter de renvoyer à cet ouvrage les lecteurs qui voudront prendre une idée plus complète tant de notre propre système que des autres qui ont été proposés dans ces derniers temps. qu'il ressort de la suite de nos tableaux.

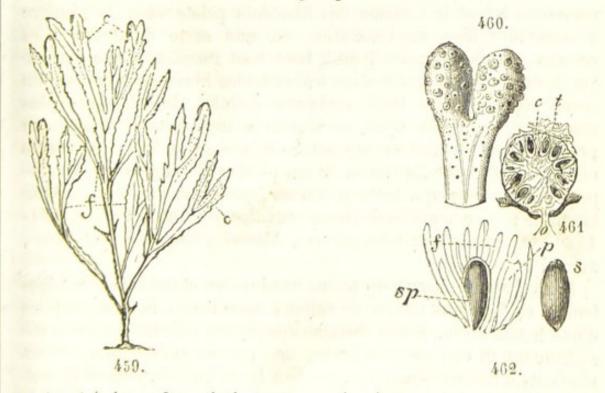
Nous ne répéterons pas non plus les caractères qui séparent les trois grands embranchements du règne végétal, puisqu'ils ont été exposés aux différents chapitres de ce livre.

VÉGÉTAUX

ACOTYLÉDONÉS.

§ 542. Nous avons déjà examiné en général les organes de leur végétation (§§ 84-91, 402, 432) et ceux de leur reproduction (SS 494-500). Il nous reste à voir comment ces organes diversement modifiés permettent d'établir plusieurs divisions dans cet embranchement. Nous nous rappellerons que les uns plus simples n'offrent dans leur structure que des cellules, que les autres offrent en outre des faisceaux fibro-vasculaires; que les uns ne présentent aucune distinction des organes fondamentaux (tige et feuilles) qui se montrent dans les autres. Ces premières notions suffiront pour faire comprendre en partie le tableau suivant, et quelques détails ultérieurs en compléteront l'explication.

VÉGÉTAUX ACOTYLÉDONÉS


FAMILLES. Tableau

ALGUES. CHAMPIGNONS. LICHENS.	HÉPATIQUES. Mousses. Characées. Équisétacées. Fougères. Fougères. Rhizocarpées.	
ture entiérement cellulaire. Pas d'axe ni de feuille ou de fronde foliacée. Plantes aquatiques ALGUES. Plantes terrestres . Pas de thallus CHAMPIGN In thallus et des thèmes. LICHENS.	Un axe. Feuilles ou fronde foliacée. Capsule sans opercule. Élatères. Pas de columelle. Hépartques. Un axe. Feuilles ou fronde foliacée. Capsule sans opercule. Élatères. Pas de columelle. Mousses. Rousses. Capsule operculée. Columelle. Pas d'élatères Mousses. Mousses. ChAnacées. Pas de feuilles ni de fronde. Capsule operculée. Columelle. Pas d'élatères	
truc	and the second of the	

ALGUES.

§ 543. La plupart de ces groupes sont moins des familles que des classes, les nombreux végétaux qu'ils renferment pouvant se subdiviser en groupes secondaires et ceux-ci en tertiaires qui correspondraient à autant de familles. Nous ne les suivrons pas jusqu'à ce degré de division, d'autant plus qu'ici la simplicité de l'organisation exigerait, pour faire comprendre les caractères délicats d'où résulte la distinction de ces familles, une foule de détails qui sortent du cadre de cet ouvrage. Nous nous contenterons de quelques renseignements sur les plus importantes de ces classes et leurs principales divisions.

§ 544. Algues (Algæ). — Les algues ont toujours besoin, pour croître, d'un milieu aquatique : quelques unes, il est vrai, se ren-

contrent à la surface de la terre, mais c'est seulement lorsqu'elle est extrêmement humide; presque toutes vivent plongées dans l'eau. On connaît sous le nom général de *Conferves* celles qui habitent les eaux douces; sous celui de *Fucus* ou *Varechs*, celles qui

459. Figure d'une Algue aplosporée, le Fucus serratus. La plante entière (beaucoup plus petite que nature). — f Sa fronde. — cc Conceptacles parsemés à la surface des extrémités.

460. Un bout de fronde chargé de conceptacles.

461. Une coupe verticale d'un conceptacle c, dont on voit la surface intérieure couverte de spores. — t Partie du tissu superficiel dans lequel le conceptacle est enfoncé. — o Ouverture ou ostiole par laquelle il communique à l'extérieur.

462. Spores, l'une sp encore enveloppée de son périspore ; l'autre où le périspore ps'est vidé de la spore s qu'il contenait et qu'on voit séparée à côté. — f Filets stériles. — C'est sur de pareils filets que dans une espèce voisine (le Fueus platycarpus) se trouvent les anthéridies.

habitent les eaux salées, et abondent sur le bord de la mer. Mais, à cette classification, qui a été longtemps suivie, nous devons préférer celle qui se fonde sur l'étude de leur structure et de leur fructification, et telle que l'a proposée M. Decaisne.

Quelques unes, ainsi que nous l'avons dit, présentent le degré d'organisation le plus simple qu'on puisse concevoir, puisqu'elles consistent en une simple vésicule ; dans d'autres, plusieurs vésicules s'unissent bout à bout pour former des filaments, tantôt isolés, tantôt rapprochés ou comme pelotonnés, quelquefois avec une certaine régularité telle qu'ils semblent rayonner d'un centre commun. Nous avons vu (\S 244, r) que ces filaments sont en général recou verts d'un enduit muqueux, et celui-ci forme souvent une enveloppe commune à tout le système des filaments pelotonnés, de manière à constituer leur agglomération en une sorte d'individu. Ces cellules isolées ou unies bout à bout sont remplies d'une matière verte, dont chaque grain dans les vésicules libres peut devenir un corps reproducteur. Dans certaines cellules des filaments plus composés la masse verte se sépare à une certaine époque en plusieurs, et chacune de ces petites masses secondaires représente une spore. Ce sont les spores de ces plantes si simples qui, échappées de la cellule qui les a produites, jouissent pendant quelque temps de mouvements analogues à ceux des animaux (§ 499, fig. 454-458). On peut donc nommer ces Algues Zoosporées (de ζώον, animal).

Dans d'autres, beaucoup moins nombreuses et qui consistent également en filaments formés de cellules unies bout à bout et remplies d'une masse verte, à une certaine époque ces cellules sur leur côté s'allongent en une sorte de poche. Les poches appartenant à deux filaments différents s'accolent par leur bout, puis se percent de manière à établir la communication d'une cellule à l'autre, et alors la masse verte de l'une passe dans l'autre, se confond avec celle qu'elle contenait déjà, et forme ainsi confondue le corps qui jouera le rôle de spore. Nous avons donc ici un plus grand degré de complication, puisque deux filaments distincts concourent à la formation d'une spore, et nous pouvons séparer ces Algues sous le nom de Synsporées (de $\sigma \dot{\nu} \nu$, qui indique l'unión).

Nous en trouverons ensuite d'un tissu compliqué : les unes, il est vrai, consistent encore en des filaments simples, mais dans les autres ces cellules et filaments se réunissent entre eux pour former des corps plus composés, qui s'allongent en manière de tiges, ou s'aplatissent en lames; et ces expansions arrondies ou planes, qu'on appelle la *fronde* (*frons* [*fig.* 459 *f*]), peuvent se ramifier un certain nombre de fois, souvent par dichotomie. De leurs cellules

ALGUES.

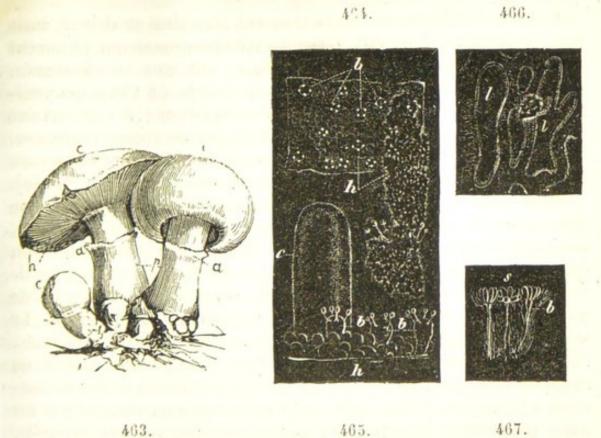
il y en a qui font saillie à l'extérieur, souvent portées sur une sorte de pédicelle; et c'est dans celles-là que la matière contenue s'organise en une spore à laquelle la membrane cellulaire forme une enveloppe (périspore), mais qui en outre se revêt d'une membrane propre (épispore), intimement unie à sa substance et continuant à la tapisser après qu'elle s'est échappée de sa membrane extérieure. On peut nommer ces Algues Aplosporées (d' $a\pi\lambda \delta o_{5}$, simple). Ce n'est pas toujours à la surface même de la fronde que se montrent les spores, mais elles se cachent souvent dans les conceptacles, ou cavités disséminées sur cette surface (fig. 460), qu'elles continuent au moyen d'un petit canal ou ostiole (fig. 461) par lequel elles s'ouvrent au dehors.

Ce nom s'oppose à celui de Choristosporées (de yupistic, séparé) par lequel on désigne la division suivante, celle qui comprend les Algues les plus élevées en organisation. Dans celles-là, les organes reproducteurs sont de deux sortes : les uns consistent en un corps saillant à l'extérieur, assez semblable à la spore des précédentes, si ce n'est qu'il forme une masse continue et n'est pas contenu dans un périspore dont il sorte pour germer ; les autres se forment dans des cellules plus profondes aux dépens d'une masse d'abord simple, mais qui plus tard se partage en quatre spores. Celles-ci, dont l'existence est générale dans les Choristosporées, méritent véritablement ce nom; les premières, quoique susceptibles de gérmer de même, sont plutôt analogues à des bulbilles. La plante entière présente la forme de rameaux ou de lames, et est toujours d'une couleur rouge, très éclatante quelquefois ; couleur qui passe au vert lorsqu'elle reste exposée à l'air. Les Aplosporées, au contraire, sont vertes sous l'eau, et se décolorent, en blanchissant, lorsqu'elles en sont dehors.

Nous avons cru devoir encore conserver provisoirement cette classification de M. Decaisne, telle qu'elle fut proposée en 4842, quoiqu'elle doive probablement subir de grandes modifications par suite des études et découvertes nombreuses auxquelles la famille des Algues a donné lieu depuis cette époque. Ces études n'ont pu encore s'appliquer à tous les types si divers de cette famille, et se poursuivent activement. C'est ce qui nous a engagé à attendre qu'elles se soient assez multipliées pour pouvoir se généraliser et se résumer plus sûrement en une classification dont l'essai serait aujourd'hui prématuré. Les zoospores ont été déjà constatés dans tant de genres, où d'abord on ne les avait pas connus, et qui dès lors doivent être transférés des autres groupes auxquels on les rapportait à celui des Zoosporées, que ces premiers groupes ainsi diminués demandent à être remaniés aussi bien que le dernier, dans lequel

ces nouvelles acquisitions trop variées doivent amener de nouveaux démembrements. M. Thuret en a proposé un fondé sur la nature même des zoospores qui peuvent présenter une différence essentielle dans leur coloration en même temps que dans l'insertion et la direction de leurs cils vibratiles. D'après ce principe les Zoosporées se subdiviseraient en Chlorosporées (de $\chi\lambda\omega\rho\delta\varsigma$, vert), où la matière qui colore la moitié ou les deux tiers de la spore est verte, et les cils en cercle au nombre de deux, quatre ou plus (fig. 454, 455, 456), un peu au-dessous du rostre ou de l'extrémité incolore amincie; et en Phéosporées ($\varphi\alpha\iota\delta\varsigma$, brun), où la matière colorante est brune ou olivâtre, les cils vibratiles au nombre de deux, émanés d'un point rougeâtre situé vers les limites de la coloration, et se dirigeant, l'un, plus long, en avant, l'autre en arrière (fig. 458). La première section comprend avec les Algues d'eau douce un certain nombre de marines, la seconde des Algues marines seulement.

Nous avons parlé (§ 495) des anthéridies et des anthérozoïdes des Fucus. Ces anthéridies sont cachées dans une cavité, ou saillantes à la surface de la plante, tantôt placées sur d'autres individus que les sporanges, tantôt sur les mêmes individus, et quelquefois dans les mêmes conceptacles.


Les Algues les plus simples flottent sans tenir au sol, et les plus composées peuvent vivre aussi dans cette condition, quoique plus habituellement elles se fixent au fond et aux rochers par des prolongements qui ressemblent à des racines; mais ce sont de véritables crampons et non des organes d'absorption. Car toutes ces plantes absorbent par toute leur surface l'eau qui leur porte leur nourriture, et présentent souvent dans leur composition les principes inorganiques contenus dans cette eau. C'est ainsi que la soude et l'iode se trouvent en grande abondance dans les plantes marines, qu'on exploite pour en extraire ces substances. Leur sécrétion est un mucilage qui, dans un certain nombre d'espèces, est assez organisé pour servir à la nourriture de l'homme.

§ 545. Champignons (*Fungi*). — Tandis que les Algues vivent dans l'eau, les Champignons vivent dans la terre ou à sa surface, abondant surtout sur les matières animales et végétales en décomposition. Quoique dans les uns l'organisation s'élève à un degré de composition évidemment supérieur à celle des Algues, elle descend dans d'autres à un degré égal, on peut dire, au dernier degré de simplicité, comme le montrera la classification suivante, due à M. le docteur Léveillé, dont les travaux ont jeté tant de jour sur la connaissance de ces végétaux.

Il y en a, en effet, qui consistent en filaments simples ou rameux, composés d'articles qui finissent par se séparer tantôt dans toute

CHAMPIGNONS.

la longueur du filament, tantôt seulement à son extrémité. Chacun de ces articles est une spore, et par conséquent le végétal ne paraît

463.

467.

composé que d'organes de la reproduction qui se confondent donc avec ceux de la végétation. On peut nommer ces Champignons Arthrosporés (d'aoθρον, article, jointure).

D'autres, qu'on peut appeler Trichosporés (de θρίξ, τριχός, poil), présentent la même forme filamenteuse, simple ou ramifiée; mais leurs spores, au lieu de former le filament par leur union bout à bout, en sont bien distinctes et s'insèrent soit à son extrémité, soit plus bas, quelquefois isolées, plus souvent plusieurs ensemble, dis-

463. Une touffe de Champignons de couche (Agaricus campestris) développés à divers degrés. — p Pied. — c Chapcau. — v Velum qui unit d'abord le pied au chapeau, et plus tard, en se rompant, forme l'anneau a. - h Lames rayonnantes sous la face inférieure du chapeau, revêtues par l'hymenium.

464. Hymenium vu en dessus, et sur lequel les spores s se laissent apercevoir rapprochées quatre à quatre.

465. Une petite portion de l'hymenium, très grossie et vue de côté. - h Son tissu. - b Basides avec leurs spores. On en a figuré supérieurement à part une qui en porte un plus grand nombre. — c Cystides.

466. Une petite portion du chapeau en forme de treillage du Clathrus cancellatus, avec l'hymenium qui couvre sa face interne et s'aperçoit sur le contour des lacunes l du treillage.

467. Hymenium beaucoup plus grossi, pour montrer la forme particulière des basides b. - s Spores.

35.

posées en un faisceau terminal ou en verticilles régulièrement étagés, ou enfin dispersées sur toute la surface depuis le bas jusqu'au haut.

D'autres fois les spores ne se trouvent plus ainsi au dehors, mais sont renfermées dans des vésicules membraneuses qui terminent des filets capillaires simples ou rameux, continus ou cloisonnés. Ces vésicules sont donc de véritables sporanges (§ 496), qui indiquent déjà un plus grand degré de composition; à une certaine époque, elles s'ouvrent pour laisser échapper les spores contenues. C'est ce qu'on peut observer facilement sur la moisissure commune. Nous appellerons ces Champignons *Cystosporés* (de zúgrez, vessie).

Nous trouvons ensuite des filaments simples ou rameux, chaque filet ou chaque rameau terminé par une spore isolée, ovale ou ronde, simple ou cloisonnée. Mais tous ces filaments se rattachent à un corps commun ou réceptacle, auquel on est convenu de donner le nom particulier de *stroma* ($\sigma\tau_{\rho}\tilde{\omega}\mu\alpha$, lit, matelas); et de là celui de *Stromatosporés*, par lequel on peut désigner ces Champignons. Le stroma, tantôt charnu, s'étend en une surface plane ou concave, laissant ainsi les spores saillantes à l'extérieur ; tantôt coriace ou membraneux, il se recourbe et se referme au-dessus d'elles de manière à les enfermer dans une cavité qui s'ouvre au sommet par un pore. Quelquefois les pores de plusieurs stromas, groupés en cercle, viennent aboutir au même centre, qui semble ainsi une ouverture commune à tous. Le stroma est quelquefois exhaussé sur un pied plus étroit que lui, plus ordinairement sessile.

Supposons, au lieu des filets sporifères, un sac, soit globuleux, soit allongé en massue ou en cylindre, et contenant dans son intérieur quatre ou huit spores libres, ou, en un seul mot, ce que nous avons désigné (§ 498, fig. 453) par le nom de thèque, et ces thèques insérées sur un réceptacle commun qui, comme dans le cas précédent, ou les supporte, ou les enveloppe complétement : nous aurons les Champignons Thécasporés. Ici le réceptacle, en général beaucoup plus développé, ne porte plus le nom de stroma. Dans ses rapports avec les thèques, il présente cette suite de modifications que nous avons autre part signalées (§ 266) dans l'inflorescence des Phanérogames entre les fleurs et l'axe qui les porte. Ainsi le réceptacle des Thécasporés peut être chargé de thèques sur toute sa surface extérieure (comme dans le Geoglossum), ou bien seulement à son sommet ordinairement renflé (comme dans la Morille), ou bien sur la surface supérieure de cette même extrémité supérieure évasée en cupule (comme dans les Pezizes); ou bien cette cupule se referme au-dessus des thèques qui se trouvent alors cachées dans une cavité intérieure qui peut ou laisser à une certaine époque

CHAMPIGNONS.

échapper les spores de son sommet ouvert, ou (comme dans la Truffe) rester close et ne leur donner issue qu'en se désagrégeant par décomposition. Les thèques sont souvent entremêlées de cellules allongées et vides, ou *paraphyses*.

Enfin nous trouvons les Champignons les plus parfaits, et parmi eux ceux dont les formes nous sont le plus familières et qu'on est le plus habitué à connaître sous ce nom. Cependant nous en observons encore ici d'analogues aux précédentes, celles de massues, de masses ovoïdes ou sphériques, de cupules ; l'une des plus communes et des plus remarquables (fig. 463) est celle d'un dôme ou chapeau (c) exhaussé sur un support ou pied (p) plus ou moins étroit, plus ou moins allongé. Mais ce qui distingue éminemment tous ces Champignons, c'est la forme de leurs organes reproducteurs. Ce sont de petits corps arrondis, terminés par deux ou plus souvent quatre pointes qui supportent chacune une spore à leur extrémité. On a nommé ces corps basides (basidium [fig. 465]), et les Champignons qui en sont pouvus Basidiosporés. Assez fréquemment, mais non constamment, à ces basides se trouvent entremêlés en moindre nombre d'autres corps vésiculeux ordinairement plus volumineux, transparents, remplis à ce qu'il paraît par un liquide, sans pointes ni spores aucunes : on les désigne par le nom de cystides (fig. 465 c). Quelques auteurs les regardent comme destinées à la fécondation des spores et jouant relativement à elles le rôle d'étamines ; mais alors il faudrait les retrouver dans tous les Basidiosporés, ce qui n'a pas lieu : elles sont probablement les analogues des paraphyses. Ces basides et cystides, comme les thèques dans le cas précédent, se trouvent situés extérieurement ou intérieurement. Intérieurs, ils se présentent (comme dans les Sclérodermes) entremêlés aux cellules, aux parois desquelles ils sont accolés, ou tapissent la surface de lacunes plus considérables (comme dans les Lycoperdon); extérieurs, ils sont quelquefois recouverts d'une couche mucilagineuse (comme dans les Phallus); mais plus souvent, extérieurement libres, ils sont épars sur toute la surface du réceptacle allongé en masse ou ramifié en manière d'arbre (comme dans les Clavaires), ou bien seulement sur sa face inférieure. C'est alors en général que le réceptacle offre la forme d'un parasol ou chapeau au-dessous duquel sont des lames rayonnantes (comme dans les Agarics), ou des veines (comme dans les Chanterelles), ou des tubes (comme dans les Bolets), ou des pointes (comme dans les Hydnum), ou enfin une surface lisse ou hérissée de courtes papilles (comme dans les Téléphores). C'est cette surface ou celle des pointes, des veines, des lames, ou l'intérieur des tubes, qui est recouverte par les basides.

Différents termes, outre ceux que nous avons déjà cités, ont été

adoptés pour désigner toutes ces différentes parties et abréger ainsi la description des Champignons. Ainsi la couche formée par les corps reproducteurs, basides ou thèques, est l'hymenium. On voit que les Champignons les plus simples, tels que nous les avons décrits, sont à peu près réduits à cet hymenium ou même à un fragment; que, dans ceux qui le sont moins, une couche d'un autre tissu appartenant au système de la végétation vient s'y ajouter et former le réceptacle, puisque ce réceptacle s'agrandit de plus en plus et peut finir par présenter diverses parties. S'il est entièrement clos, c'est un peridium. Mais, même dans les Champignons en parasol, le chapeau (pileus) dans la première jeunesse forme quelque temps une cavité close au moyen d'une membrane (velum [fig. 464 v]) qui de son bord va se continuer sur le pied, et qui plus tard, en se rompant, forme autour du pied une sorte de collerette ou seulement de cicatrice annulaire a (anneau, annulus); guelguefois, en outre, dans le premier âge, un sac cellulaire (volva) enveloppe le Champignon tout entier depuis sa base, autour de laquelle il s'insère, puis se déchire irrégulièrement pour la laisser se développer (dans l'Oronge, par exemple).

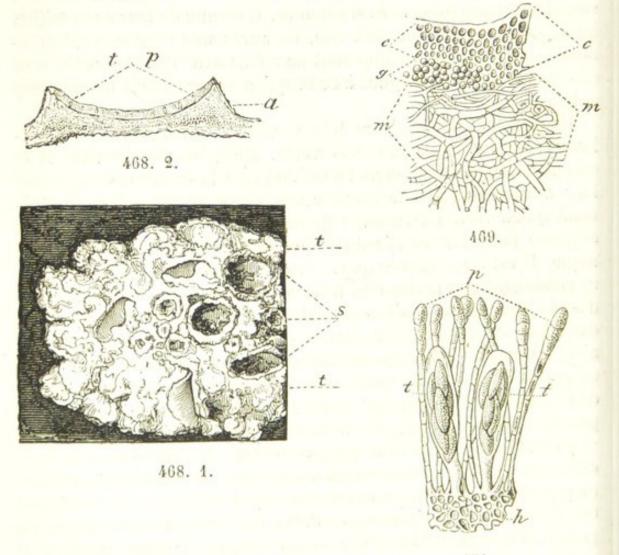
Ce que nous avons décrit ne constitue pas d'ailleurs tout le Champignon; ce n'est en quelque sorte que son inflorescence. Avant que cette partie se développe, on voit des filaments rayonnant d'un centre (probablement de la spore en germination), entrecroisés dans tous les sens; ils finissent par s'agglomérer et se condensent en certains points où se forment les appareils que nous avons fait connaître. On nomme mycelium ce réseau filamenteux, caché le plus ordinairement sous la terre et échappant à notre observation par sa situation ainsi que par sa texture fragile. Il n'est pas rare de l'apercevoir sur les surfaces humides et obscures ; sur les planches de nos caves, par exemple. Ce mycelium est une sorte d'arbre souterrain qui n'apporte au jour que ses extrémités chargées des organes de la reproduction, de sorte qu'en général tous les Champignons que nous voyons croître dans le voisinage l'un de l'autre appartiennent réellement à un seul individu : de là la disposition en cercle qu'ils affectent souvent, le mycelium se développant régulièrement dans un milieu homogène et envoyant tous ses rayons à la même distance.

Le tissu des Champignons est une sorte de feutre de cellules, les unes arrondies, les autres allongées et unies bout à bout en tubes. L'hymenium est souvent formé par l'extrémité de ces tubes, dont quelques uns se terminent par les thèques, basides ou cystides, de sorte que ces filaments isolés représentent réellement des Champignons plus simples, cystosporés ou trichosporés.

La membrane de ces cellules est de même nature que celle de

toutes les autres parois végétales : c'est de la cellulose. On croyait autrefois le tissu des Champignons formé par une substance tout à fait différente, très azotée, et qu'on nommait *fungine*. Mais cette composition est étrangère à la paroi, et due sans doute aux matières qui la remplissent ou la pénètrent. Ils se montrent très supérieurs aux Algues par les produits qu'ils sécrètent, et parmi lesquels on remarque l'albumine, le sucre, une matière grasse et divers acides, sans compter plusieurs qui leur sont propres et auxquels ils doivent sans doute leurs propriétés si connues. Il résulte de leur composition qu'ils croissent extrêmement vite, et, après une existence extrêmement passagère, se décomposent de même avec des phénomènes et des produits très analogues à ceux qu'on observe dans les matières animales.

Ils déploient des couleurs très variées et quelquefois très brillantes, mais presque jamais la verte. Aussi les voit-on vivre et se colorer tout aussi bien dans l'obscurité qu'à la lumière, et agir sur l'air atmosphérique à la manière des autres parties colorées autrement qu'en vert. Ils vicient très rapidement l'air en absorbant son oxygène pour former et exhaler une égale quantité d'acide carbonique. Il est à remarquer que, dans l'oxygène pur, ils l'absorbent, en combinant une partie avec leur carbone, et le rendant sous forme d'acide carbonique, en conservant une autre qui semble remplacer dans leur tissu une assez grande quantité d'azote qu'ils exhalent alors au dehors. Dans une atmosphère d'azote, ils modifient à peine ce gaz. C'est donc à la terre qu'ils empruntent ce principe si abondant chez eux, ainsi qu'on devait s'y attendre en les voyant vivre presque toujours sur les matières organiques en décomposition.


Chacun sait que les Champignons offrent, à côté de mets recherchés, des poisons extrêmement dangereux. Il n'y a malheureusement pas de caractères auxquels on puisse distinguer les vénéneux des innocents, et l'on doit apporter à leur usage d'autant plus de prudence que l'expérience des autres n'est pas toujours décisive. Il paraît, en effet, que la manière de les apprêter entre pour beaucoup dans les effets qu'ils peuvent produire. On détruit les qualités malfaisantes de certaines espèces en les faisant cuire ou saler, ou infuser dans le vinaigre ; ce qui prouverait qu'en cas d'empoisonnement il faudrait se garder de sel ou de vinaigre, qui, dissolvant le principe vénéneux, le répandraient avec beaucoup plus de rapidité dans tout le corps.

۶.

6

§ 546. Lichens (Lichenes). — Les Lichens forment ces expansions ordinairement sèches que nous voyons s'étendre sur les pierres, la terre, l'écorce des arbres, qu'ils recouvrent de ces teintes variées qui leur sont propres. L'expansion qu'on appelle le *thallus* du Lichen

a quelquefois la consistance d'une fine poussière, et alors elle est mal circonscrite et sans forme arrêtée. D'autres fois elle forme une sorte de croûte de forme déjà plus régulière et de consistance assez analogue au stroma de certains Champignons. Enfin elle peut s'étendre en lames (fig. 468 t) dont le contour est nettement circonscrit, souvent par des lobes qui en se développant se partagent par une

470.

sorte de dichotomie, ou bien s'allongent en filets simples ou rameux. On reconnaît dans le tissu trois sortes de cellules : les unes courtes,

468. 4 Lichen hyménothalamé, le *Parmelia acetabulum*. — t Thallus. — s Apotheciums en forme de scutelles et à divers degrés de développement. — 2 Apothecium coupé verticalement et grossi assez pour qu'on aperçoive la couche tp formée par l'union des thèques et des paraphyses.

469. Tranche du thallus du Peltigera polydactyla, perpendiculaire à sa surface. cc Couche corticale. — g Gonidies. — mm Couche médullaire.

470. Petite portion de l'apothecium du même lichen. — h Portion de l'hypothecium. 11 Deux thèques, renfermant chacune six spores. — p Paraphyses.

à parois épaisses et d'ordinaire unies intimement entre elles (fig. 469 c); les autres allongées en filaments lâchement feutrés (fig. 469 m); les troisièmes, globuleuses, éparses sans adhérence (fig. 469 g), et qu'on nomme gonidies. Celles-ci peuvent par leur développement individuel reproduire le végétal dont elles sont nées. Les trois sortes de cellules s'observent ensemble dans les Lichens les plus parfaits, qui présentent en conséquence trois couches : la plus superficielle ou corticale (c), formée par les premières; la plus profonde ou médullaire (m), formée par les secondes; l'intermédiaire ou gonidiale (g), formée par les gonidies, quelquefois aussi disséminées par groupes au milieu du tissu médullaire. Dans certains Lichens moins complets, qu'on appelle crustacés parce que leur tissu est constitué par une sorte de croûte, ce tissu est presque exclusivement borné au cortical. Dans ceux qu'on appelle pulvérulents et que nous avons déjà indiqués plus haut, cet aspect de poussière est dû aux gonidies nombreuses entremélées aux filaments de la couche médullaire ; mais il est très vraisemblable que cette forme n'est celle que de Lichens imparfaitement développés et dépourvus des organes de reproduction, ce qui n'empêche pas leur multiplication, qui a lieu au moven des gonidies.

Pour ces organes reproducteurs qu'on trouve dans les autres Lichens, ils se rapprochent tout à fait des Champignons thécasporés, car chez eux ce sont aussi des thèques (fig. 470 t) contenant les spores au nombre de 2 ou de l'un de ses multiples : 4, 6, 8 le plus souvent, quelquefois 42 ou 46. Elles sont rapprochées par groupes tantôt portés immédiatement sur la substance du thallus, qui forme ainsi par places le réceptacle, tantôt sur une substance propre et intermédiaire qu'on nomme hypothecium. Ce réceptacle (fig. 468 s) se relève autour des groupes en un rebord saillant formé de même aux dépens ou du thallus, ou de la substance propre, ou des deux à la fois, et qui tantôt forme autour une simple margelle (fig. 469), tantôt, dépassant les thèques, se referme au-dessus d'elles de ma= nière à les renfermer dans une cavité, et prend alors le nom de perithecium. Souvent il ne les enveloppe complétement que dans le premier âge, puis s'entr'ouvre et s'étale. Aux thèques s'entremêlent des filets stériles, ou paraphyses (fig. 470 p), qui, plus longues et unies par leur sommet, au moyen d'une matière visqueuse qu'ils exsudent, lient tout ce système en une sorte de masse unique (nucleus ou excipulum). Cette masse, avec son réceptacle, représente évidemment celle des Champignons avec son hymenium, et prend ici le nom d'apothecium.

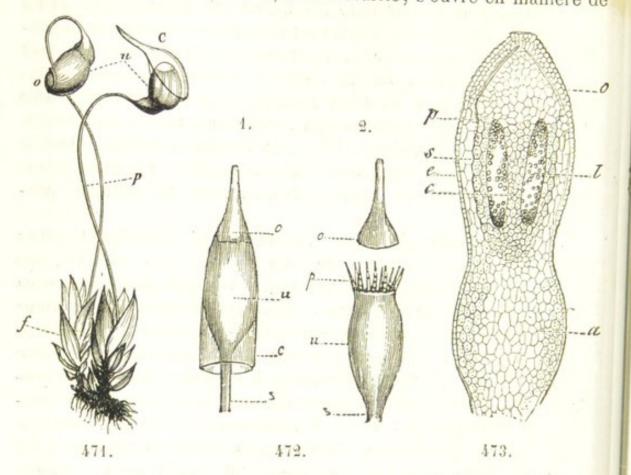
A côté de ces appareils qui portent les thèques, on en a reconnu d'autres analogues par leur forme, mais beaucoup plus petits et

souvent plongés dans l'épaisseur du thallus. Leur surface est recouverte de filets cellulaires ordinairement cloisonnés, dont les extrémités, tantôt ovoïdes, tantôt filiformes, finissent par se désarticuler, et, libres dans la cavité qui les a produits, s'en échappent enfin par un pore dont son sommet est percé. M. Tulasne, qui a fait bien connaître ces corps dans un grand nombre de Lichens, propose de les nommer *spermaties (spermatia)*, et la cavité qui les renferme *spermogonie (spermogonium)*. Il n'a pas reconnu à ces spermaties les mouvements que leur attribuent d'autres observateurs. Mais leur présence presque constante au voisinage des apotheciums porte à penser qu'ils sont destinés à les féconder, et que par conséquent ces appareils sont analogues aux anthéridies.

La spore, parvenue à maturité et sortie de la thèque, germe à la manière de celle des Champignons, c'est-à-dire s'allonge par un ou plusieurs points en filaments rameux qui, se multipliant, ne tardent pas à s'entrecroiser, soit entre eux, soit avec ceux des spores voisines, et à constituer ainsi un réseau comparable au mycelium. Sur divers points de ce réseau, là où le feutre est le plus épais, on voit apparaître de petits amas celluleux qui, se dilatant et s'étalant peu à peu, constitueront le thallus.

On peut distinguer les Lichens où le réceptacle est fourni par le thallus même, en coniothalamés ou pulvérulents, et idiothalamés ou crustacés; ceux où il est formé par une substance propre, en gastérothalamés, ceux qui sont munis d'un perithécium clos, et hyménothalamés, ceux où il est ouvert. L'apothecium a été souvent désigné sous d'autres noms, suivant les différentes formes qu'il affecte : par exemple, sous ceux de disque, scutelle, tubercule, globule, qui se comprennent d'eux-mêmes; ou encore sous celui de lirelle, lorsque, linéaire et flexueux, il s'ouvre par une fente longitudinale.

Les Lichens diffèrent encore des Champignons en ce qu'ils persistent pendant un temps très long, et, s'appliquant sur des corps inorganiques, vivants ou morts, mais jamais en putréfaction, semblent rechercher l'air et le jour. Ils offrent cependant rarement la couleur verte, quoique tous la prennent sans distinction lorsqu'ils sont mouillés ou humides, et leur tissu, sec, cassant ou coriace, devient alors mou, flexible et facilement déchirable.


Le tissu de plusieurs lichens est employé utilement pour la nourriture des hommes dans certains cas, et des animaux dans certains pays : c'est le *Cenomyce rangiferina* qui nourrit les rennes pendant l'hiver en Laponie. Les *Cetraria islandica* (Lichen d'Islande), *Sticta pulmonacea* et autres, fournissent une gelée saine et nutritive dont l'usage est avantageux pour certains états de santé. La cellulose qui forme les parois de la couche médullaire, isomérique, comme on le sait (§ 225), à la fécule, approche autant qu'il est possible de ses propriétés dans ces végétaux, où elle bleuit même par l'iode. C'est elle qui, étendue en gelée par une certaine proportion d'eau, et relevée par le mélange_d'un principe légèrement amer contenu dans les cellules, peut fournir dans les Lichens un aliment doux et un peu tonique. Des espèces différentes sont remarquables par l'abondance d'un principe colorant, qui néanmoins ne devient apparent que par la préparation. En effet, dans la nature, leur tissu est grisâtre ; mais après qu'on les a fait fermenter avec un alcali (la potasse ou l'urine, si riche en ammoniaque), on obtient une couleur rouge, puis, si l'on force en potasse, bleue. La Parelle et surtout l'Orseille sont particulièrement employées à cette extraction ; plusieurs autres Lichens fourniraient le même principe, mais en moindre proportion.

§ 547. Mousses (Musci). — Chacun connaît ces élégants petits végétaux si abondants à la surface de la terre, des rochers, des écorces, qu'ils revêtent d'un tapis vert, croissant quelquefois sous l'eau. En les examinant de près, on les voit formés par des tiges grêles, simples ou rameuses, couvertes de feuilles menues d'une texture entièrement cellulaire, mais au milieu desquelles une série d'autres cellules allongées commence à ébaucher la nervure médiane. Nous voyons dans l'intérieur des cellules de ces plantes apparaitre la chlorophylle : aussi la surface extérieure sur guelques points est-elle parsemée d'ouvertures ou stomates propres à les mettre en rapport avec l'air atmosphérique. Leurs organes reproducteurs sont de deux sortes : 1º des anthéridies (§ 495, fig. 448) groupées au milieu de rosettes terminales de feuilles ou situées à leur aisselle, ordinairement entremélées de filets stériles ou paraphyses ; 2º des archégones d'une forme particulière. Ceux-ci dans le premier âge isolés ou réunis plusieurs ensemble, tantôt éloignés des anthéridies sur des pieds différents ou à une autre place du même pied, tantôt environnés par ces corps, représentent autant de sacs en forme de bouteille et sessiles. De plusieurs archégones ainsi groupés un seul se développe ordinairement, tandis que les autres se flétrissent. Alors celui-ci s'allonge, et en s'allongeant rompt le sac extérieur qui l'enveloppe et l'emporte avec lui posé sur son sommet en manière de bonnet de nuit, d'où lui vient le nom de coiffe (calyptra [fig. 474 c; 472 c]). On distingue alors deux portions dans la partie intérieure développée : un pédicelle inférieur et grêle, appelé quelquefois la soie (seta [fig. 471 p]); un renflement supérieur, globuleux ou ovoïde, ou souvent en forme d'urne, capsule, thèque ou urne (theca [fig. 474 u]). La capsule à l'intérieur présente une cavité parcourue au centre par une sorte d'axe plein, la columelle (colu-

: 1

ŝ

mella [*fig.* 473 *c*]) remplie tout autour de cet axe par une multitude de spores menues devenues libres par la résorption de leurs cellulesmères, dont le tissu dans le principe réunissait la columelle aux parois de la capsule. Celle-ci, à la maturité, s'ouvre en manière de

pyxide par la séparation d'un couvercle ou opercule (o) conoïde longtemps caché sous la coiffe, mais qui après sa chute se dessine nettement du reste de la capsule par un sillon annulaire. Lorsqu'il se sépare lui-même, il laisse celle-ci ouverte au sommet : cette ouverture porte le nom de péristome. Le péristome est entouré par un rebord tantôt entier ou nu, tantôt tout garni de petites dents (fig. 472 p) souvent allongées en soies droites, ou tordues. Ces dents

474. Une Mousse (le Funaria hygrometrica), un peu grossie. — f Feuilles. — u Urne portée sur un long filet ou pédicelle p. — o Opercule. — c Coiffe qui persiste sur l'une des deux urnes et est déjà tombée de l'autre.

(e

0

Te

Eţ

80]

Uni

der

elle.

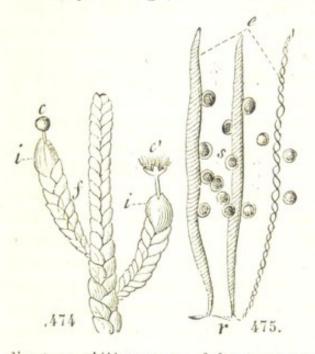
des

dahi

472. Uffie de l'*Encalypta vulgaris*. — u Urne. — o Opercule. — s Sommet du pédicolle. — 1 Avant la déhiscence, et encore enveloppée de la coiffe c, à travers laquelle on l'aperçoit. — 2 Après la déhiscence, lorsque l'opercule détaché a mis à découvert le péristome p bordé de 16 cils ou dents.

473. L'urne encore très jeune du Splachnum, coupé dans sa longueur. — a Apophyse. — c Columelle. — s Cavité ou loge tournant tout autour de la columelle et remplie par les spores. — Le tégument de l'urne est formée de l'extérieur à l'intérieur par plusieurs couches cellulaires différentes : la première e, qui forme l'épiderme et s'épaissit au sommet pour former l'opercule e; deux intermédiaires, qui se déchiquèteront plus tard à leur sommet pour former les dents du péristome; une intérieure s, qui forme la paroi de la loge ou sac sporifère.

HÉPATIQUES.


sont sur un seul cercle ou sur deux : d'où l'on dit le péristome simple ou double. Il est bien remarquable qu'elles sont en nombre constant dans une espèce donnée et toujours multiple de 4, savoir 4, 8, 46, 32, 64. Leur texture éminemment hygrométrique détermine suivant les variations de l'état de l'atmosphère des mouvements variés, d'où résulte le détachement de l'opercule d'abord, puis la dispersion des spores. Rarement le péristome est formé par une membrane étendue horizontalement, ou épiphragme. La cavité sporifère n'occupe pas tout le renflement de la capsule dont la partie inférieure, souvent pleine, prend le nom d'apophyse (fig. 473 a).

La spore en germant émet des prolongements tubuleux qui, se divisant par des cloisons transversales, s'allongent et se ramifient à la manière des conferves (§ 246, 4°), dont cet ensemble de filets, qu'on désigne par l'épithète de proembryonaires, offre toute l'apparence. Après qu'elle a végété quelque temps à ce premier état confervoïde, qu'on pourrait comparer au mycélium des Champignons, la cellule initiale qui constituait la spore et quelques unes des cellules terminales des filets se divisent par des cloisons obliques ou longitudinales, et il en résulte autant de petits corps celluleux destinés chacun à former un axe qui émettra à sa base des racines adventives, sur son contour des feuilles, et plus haut enfin les organes reproducteurs. C'est le second état de la mousse, sa forme définitive sous laquelle elle est généralement connue et décrite.

Les mousses ne sécrètent aucun produit remarquable et ne servent à aucun usage économique qui ait assez d'importance pour être mentionné ici, et cependant elles paraissent en avoir un considérable par le rôle qui leur est assigné dans l'ensemble de la végétation. Elles couvrent la terre d'un tapis épais qui, y entretenant la fraîcheur et augmentant par ses détritus l'épaisseur de la couche végétale, permet à d'autres plantes de s'y établir et d'y prospérer. Nous avons vu (§ 6, fig. 31) que plusieurs offrent un système particulier de cellules poreuses dont la réunion constitue des sortes d'éponges propres à absorber l'eau qui, portée ainsi au contact de l'air, s'évapore incessamment. Ce sont principalement les *Sphagnum* qui peuvent de cette manière convertir les terrains inondés en tourbières, et contribuer puissamment à leur desséchement graduel et à leur solidification.

§ 548. **Hépatiques** (*Hepaticæ*). — Elles forment avec les Mousses une classe naturelle, présentant comme elles un tissu vert coloré en dedans par la chlorophylle, percé à sa surface de stomates ; comme elles aussi, deux sortes d'organes reproducteurs, des anthéridies et des sporanges (*fig.* 450) assez analogues par leurs formes. Cependant ces sporanges n'offrent ni columelle, ni opercule, ni dents, et

contiennent au dedans deux sortes d'utricules : 4° les uns qui renferment les spores formées dans leur intérieur tout à fait à la manière des grains polliniques, et qui, résorbés peu à peu, finissent par laisser ces spores libres dans la cavité du sporange ; 2° les autres, plus longs, renfermant seulement quelques grains verts, et

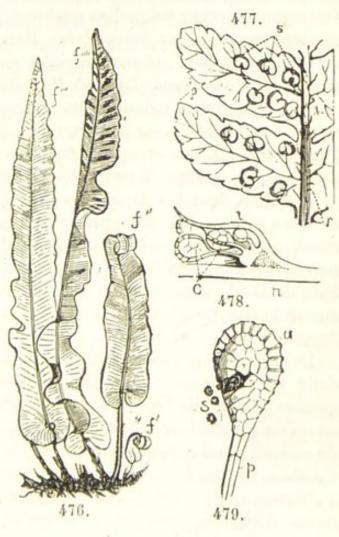
finissant par se découper en autant de lanières spirales (fig. 475 e) très hygrométriques, servant par leurs mouvements à disperser les spores, et qu'on a nommées élatères.

Les Hépatiques n'ont pas toujours des feuilles (fig. 474) comme les Mousses, mais sont quelquefois réduites comme les Lichens à des lames ou expansions herbacées nommées frondes, dans l'épaisseur desquelles peuvent être plongés les sporanges (fig. 452, 4), qui dans

d'autres s'élèvent en dehors sur un pédicule, première ébauche de l'axe.

§ 549. Fougères (Filices). — Nous nous sommes déjà occupés des caractères de la végétation de ce grand groupe de végétaux acotylédonés, de ses tiges (§§ 86-91) qui, dans les espèces de nos climats tempérés, marchent sous la terre, mais qui, dans beaucoup de celles des régions tropicales, se dressent en un tronc perpendiculaire (fig. 403); de ses racines toutes adventives (§ 402); de ses feuilles (§ 432) quelquefois entières, mais souvent extrêmement divisées. Ces feuilles présentent ce caractère constant, qu'avant leur développement elles se roulent en crosse et en dedans, non seulement le limbe général sur le pétiole commun, mais tous les lobes (qu'on nomme des *pinnules*) sur les pétioles partiels, de manière que, dans ce jeune âge, la face supérieure se trouve toujours cachée. Nous avons enfin dit un mot (§ 172) des poils particuliers scarieux, c'est-à-dire dilatés en écailles ou membranes, qui sont dispersés en grande abondance à la surface des diverses parties : ils fournissent

474. Un fragment de Jongermanne (Jungermannia tamarisci). — f Rameaux couverts de feuilles imbriquées, distiques, les deux latéraux portant chacun une capsule exhaussée sur un filet qu'environne à sa base un involucre formé par l'enveloppe membraneuse de l'archégone. — c Capsule fermée. — c' Capsule ouverte.


475. Un point r du réceptacle portant quelques élatères c dont un déjà découpé en double fil spiral. On voit aux environs des spores libres s.

FOUGÈRES.

aussi d'utiles caractères pour la distinction des genres et espèces. Les spores, qui jouent ici le même rôle que dans les familles précédemment exposées, sont renfermées dans de petits sacs celluleux, sporanges ou capsules, toujours situés sur la face inférieure des feuilles. Ces feuilles chargées de sporanges, tantôt conservent la même forme que celles qui n'en portent pas, tantôt en prennent

une un peu différente, dans laquelle le parenchyme foliacé est beaucoup moins développé, et même disparaît presque complétement, laissant à nu les nervures toutes couvertes de capsules.

Celles-ci offrent, en général, dans leur paroi celluleuse, un rang de cellules beaucoup plus grandes et plus épaisses que les autres, disposées bout à bout en manière d'anneau. L'anneau entoure quelquefois entièrement la capsule, suivant une direction soit verticale (dans les Polypodiacées [fig. 479]), soit horizontale ou oblique (dans les Hyménophyllées). D'autres fois, incomplet, il ne forme qu'un fragment d'anneau

oblique (dans les *Parkeriacées*). Son rôle physiologique semble analogue à celui des élatères et des péristomes ; c'est-à-dire que, plus résistant que le reste des parois, et tendant à se contracter ou s'étendre par l'effet de sa croissance ou par ses changements hygrométriques, il détermine la rupture irrégulière de ces parois sur un

476. Pied de Scolopendre (Scolopendrium officinale), avec plusieurs feuilles f' f'' f'''f'''' à divers degrés de développement. Sur la face inférieure de f'''' on voit les sores dessinant des lignes transversales noirâtres.

477. Fragments de la fronde d'une autre fougère (Nephrodium angulare), vue en dessous. -p Deux pinnules chargées de sores s. -r Rachis qui les porte.

478. Un des sores coupés verticalement. — n Nervure qui le porte. — i Indusium ou repli qui le couvre. — c Capsules.

479. L'une des capsules séparée au moment de sa déhiscence. — s Spores qui s'échappent. — a Anneau cellulaire.

autre point, et, par ses mouvements, pousse au dehors les spores contenues. Cette déhiscence n'a pas toujours lieu de cette manière, mais par une fente régulière qui ouvre la capsule, soit d'un seul côté, soit dans son pourtour en la séparant en deux valves. Dans ces derniers cas, ou l'on obsérve encore un anneau complet reporté au sommet en manière de calotte (chez les Lygodiacées), et un incomplet (chez les Osmundacées), ou il n'y en a pas du tout (chez les Ophioglossées, chez lesquelles quelquefois ces capsules bivalves se soudent en série par leurs côtés). Enfin, elles ont une consistance coriace particulière, et sont rangées en un cercle du côté intérieur duquel elles s'ouvrent (dans les Marattiacées).

Les capsules ne naissent pas éparses, isolées à la surface inférieure des feuilles, mais par groupes, qu'on appelle des sores (sori [fig. 476 f's]). Ces sores affectent des formes diverses : tantôt ils sont arrondis (comme dans les Polypodes), tantôt plus ou moins allongés (comme dans les Asplenium [fig. 476 f'''']); tantôt écartés les uns des autres, tantôt rapprochés en série longitudinale. Leur position aussi varie par rapport à la feuille sous laquelle ils sont dispersés avec plus ou moins de régularité, soit à la surface, soit le long du bord (comme dans les Adianthées), dont leur série peut suivre le contour (comme dans les Pteris), ou la nervure médiane (comme dans les Blechnum).

Ils se montrent quelquefois à nu sur la surface de la feuille (comme dans les *Polypodes*) : mais plus souvent une membrane fine, qui semble un repli de l'épiderme, se détache pour les couvrir, et c'est ce qu'on appelle leur *indusium*. Celui-ci forme quelquefois une sorte de collerette ou capsule qui entoure le sore (par exemple, dans les *Cyathea*); mais, plus souvent, il les recouvre comme un couvercle à charnière (*fig.* 478 *i*), et, dans ce cas, se continuant avec l'épiderme d'un côté, présente de l'autre un bord libre qui peut regarder soit le milieu, soit le contour de la feuille (*fig.* 477). L'indusium s'attache par un simple point (comme dans les *Nephrodium*), ou par une ligne plus prolongée (comme dans les *Athyrium*). Tous ces caractères, tirés de la forme des sores, de celle de l'indusium, de son point d'attache, de sa figure et de sa direction, servent à la distinction des genres.

Les capsules elles-mêmes, considérées à part, sont sessiles ou portées sur un pédicelle plus ou moins allongé (fig. 479, p). Les spores se forment dans leur intérieur de la même manière que celles des Cryptogames précédemment examinées, c'est-à-dire quatre par quatre dans les cellules-mères qui, dans le principe, sont soudées ensemble en un tissu continu, et qui, se résorbant plus tard, laissent les spores libres dans la cavité de la capsule.

Les spores par la germination émettent un prolongement tubuleux qui ne tarde pas à se partager par division en deux cellules, lesquelles à leur tour se divisent par de nouvelles cloisons, les unes transversales, les autres longitudinales : d'où résultent un accroissement en longueur et en largeur, et la formation d'une lame celluleuse ou prothallium, ordinairement bilobée à son extrémité. C'est sur la face inférieure de ce prothallium que se développent bientôt d'assez nombreuses anthéridies (§ 495, fig. 449, 4) et quelques archégones situés vers l'échancrure terminale. L'un d'eux, fécondé sans doute, produit un corps comparable à un embryon, qui s'allonge en un axe redressé dont le sommet produira des feuilles, dont la base émettra latéralement des racines adventives. La petite plante s'enracine ainsi formée et commence à vivre par elle-même. Alors le plus souvent le prothallium disparaît, quoique dans quelques cas rares il persiste et puisse même acquérir des dimensions assez considérables. Cet organe, imparfaitement connu, avait été considéré comme un cotylédon par plusieurs botanistes qui, en conséquence, sous le nom de Cryptogames monocotylédonées, séparaient les Fougères et quelques familles voisines du grand embranchement qui nous occupe. Cependant ce mode de développement ne soutient pas une comparaison rigoureuse avec la structure et la germination d'un véritable embryon monocotylédoné, et est au contraire tout à fait analogue à celui des Acotylédonées, dont nous avons traité précédemment, notamment des Hépatiques.

Dans plusieurs Fougères des pays chauds, les souches contiennent, un principe nutritif qui permet de les employer à l'alimentation ; mais, dans les nôtres, le mucilage est mêlé à un autre principe amer, quelquefois stimulant et même purgatif, qui les rend impropres à ce premier usage, utiles au contraire à la médecine, à laquelle certaines espèces fournissent des anthelminthiques, c'est-a-dire un remède contre les vers intestinaux. Cette propriété s'affaiblit ou disparaît dans les feuilles, où un principe aromatique, s'associant au mucilage, lui communique de nouvelles propriétés.

§ 550. Équisétacécs.— Celles-ci s'éloignent assez notablement de toutes les autres Acotylédonées par la structure de leur tige, la disposition de leurs rameaux et celle de leurs organes reproducteurs. La tige est creusée à l'intérieur d'une grande lacune cylindrique coupée de distance en distance par des cloisons qui répondent à autant d'articulations; et elle présente dans sa partie solide, presque toute cellulaire, d'autres lacunes beaucoup plus petites disposées en un ou deux cercles. Quelques vaisseaux annulaires se trouvent le long de ces lacunes. De l'extérieur de la tige, à la hauteur de l'articulation, partent des rameaux en cercle, et, en dedans de ces

rameaux, une gaîne membraneuse terminée par un certain nombre de lanières ou dents. Ces gaînes sont les seuls organes de nature à être comparés à des feuilles : comparaison que repoussait la considération des rameaux situés en dehors et alternant avec les dents, tandis que si chacune de ces dents eût représenté l'extrémité d'une feuille, le rameau eût dû naître vis-à-vis d'elle et à l'aisselle de la feuille, c'est-à-dire en dedans de la gaîne. Cependant les travaux organiques les plus récents conduisent à admettre chaque gaîne, non plus comme un verticille de feuilles soudées par leurs bords, mais comme une feuille unique amplexicaule. Ils ont fait reconnaître que les rameaux , qu'on ne peut considérer que comme adventifs , naissent dans l'épaisseur de la base de cette feuille et la percent pour sortir au dehors, n'occupant ainsi que consécutivement cette position extérieure par rapport à elle.

La tige est terminée par une sorte de cône formé par la réunion d'un grand nombre d'écailles en forme de clous (fig. 480), perpendiculaires à l'axe. Sous la tête *e* de chacun de ces clous naissent en cercle de petits sacs *c* (capsules ou sporanges), dont chacun (fig. 481), fendu dans sa longueur à la maturité, laisse échapper une foule de spores. Chacune de celles-ci se montre sous la forme d'une masse

celluleuse, du bas de laquelle partent quatre fils élastiques ou élatères (fig. 482) dont les mouvements aident la dissémination. Dans le principe, le sac était rempli par un tissu cellulaire continu. Puis dans ces cellules, suivant la loi ordinaire, se sont formés quatre utricules. Ceux-ci devenus libres plus tard par la résorption de la cellule-mère, présentent ce caractère remarquable, qu'il se forme dans chacun d'eux un nouvel utricule adhérent au premier par un

480. Une écaille e séparée du cône terminal d'un Equisetum, avec le verticille de capsules c qu'elle porte en dessous et le rétrécissement p par lequel elle se rattache à l'axe commun.

481. c Une capsule vue séparément du côté intérieur, où elle s'ouvre par une fente.

482. s Une spore avec ses quatre fils roulés en spirale autour d'elle. — s' La même avec ses fils déroulés.

LYCOPODIACÉES. RHIZOCARPÉES.

point seulement, que cet utricule inclus forme la spore, et l'utricule enveloppant découpé en une double spirale, les élatères.

Cette spore en germant produit un prothallium comme celle des Fougères, mais de forme différente. Sur les bords de celui-ci, vers son extrémité, se montre des anthéridies contenant des anthérozoïdes assez semblables aussi à ceux des Fougères, et sur sa surface on a aperçu également des commencements d'archégones, quoiqu'on n'ait pu jusqu'ici suivre leur développement, qu'au reste prouve suffisamment par analogie celui d'une tige qui s'élève d'un point du prothallium.

550 bis. Lycopodiacées. Rhizocarpées. — Nous nous contenterons pour ces deux familles de décrire brièvement leurs organes de reproduction, qui, dans leur développement, suivent une marche un peu différente de celle que nous avons indiquée dans les familles précédentes. Les recherches récentes sur ce sujet, notamment celles de M. Hofmeister, dont nous nous sommes déjà fréquemment éclairés, nous serviront de guides dans cette dernière exposition.

Le genre séparé du Lycopodium sous le nom de Selaginella offre, à l'aisselle de petites feuilles un peu modifiées qui terminent certains rameaux, des sacs jaunâtres de deux sortes : les uns, plus petits, contenant un grand nombre de grains menus; les autres, plus grands, contenant seulement quatre grains plus gros. On les confondait sous le nom de spores qu'on distinguait en petites et en grosses. Dans une première période, ces deux sortes de sacs présentent la même apparence et le même mode de développement. A l'intérieur d'une enveloppe celluleuse s'organise un tissu cellulaire dont chaque cavité est remplie d'une masse granuleuse, laquelle plus tard se sépare en quatre masses secondaires. Dans la plupart des sacs, à une certaine époque, les parois des cellules-mères sont résorbées, et les grains formés quatre par quatre, les petites spores, s'isolent et deviennent libres dans la cavité commune, puis s'en échappent par une fente. Dans un potit nombre de sacs situés inférieurement, toutes les cellules-mères avortent avec leurs grains, excepté une qui se développe considérablement et finit par former les quatre grosses spores remplissant le sac amplifié, moulé sur elles, qui s'ouvre à une certaine époque pour les laisser sortir.

Les petites spores semées se modifient à la longue, et, au bout de quatre à cinq mois, leur intérieur s'est rempli d'un tissu cellulaire très fin, dont chaque cellule renferme un petit corps filiforme enroulé en cercle ou en spirale qu'il est facile de reconnaître pour un anthérozoïde. La spore, qui n'est donc autre chose qu'une anthéridie, se crève à la fin par une de ses extrémités et laisse sortir les

utricules que percent les anthérozoïdes qui se meuvent à la manière ordinaire.

Les grosses spores, après un temps encore plus prolongé, produisent à leur sommet une couche celluleuse, et dans cette couche ou prothallium se forment plusieurs archégones. Dans une cellule qui se développe au centre de l'un d'eux, se montre et s'accroît un petit corps celluleux, véritable embryon, qui, continuant à s'allonger, perce le prothallium et pousse en haut un petit axe bientôt terminé par deux feuilles, tandis que de sa base une racine adventive se dirige en sens contraire.

Les Rhizocarpées doivent leur nom (¿¿ζα, racine; χαρπός, fruit) à ce que les organes reproducteurs sont renfermés dans des sortes de fruits capsulaires situés au voisinage des racines. On trouve des sacs de deux sortes, les uns plus petits, les autres plus grands, tantôt réunis dans une même capsule et diversement agencés, suivant les genres (Pilularia, Marsilea), tantôt séparés dans des capsules différentes (Salvinia). Quoi qu'il en soit, les uns et les autres sacs commencent comme dans les Lycopodiacées, par se développer de la même manière, c'est-à-dire par produire dans des cellulesmères des grains agglomérés quatre par quatre. Dans les petits sacs tous ces grains se développent concurremment et finissent par s'isoler et devenir libres. Chacun d'eux est aussi une anthéridie montrant dans chaque utricule de son tissu intérieur un anthérozoïde qui se meut en en sortant. Dans les grands sacs, toutes les cellules-mères se résorbent et avortent avec leur contenu, excepté une où des quatre grains contenus un seul continue à se développer. Celui-ci devient la spore, et en germant produit à son extrémité une expansion celluleuse ou prothallium, où se forme un archégone qui le constitue presque entièrement, et se développe un embryon. Tous ces changements ne demandent pas une longue germination comme dans les Lycopodiacées, mais se succèdent assez rapidement.

Ainsi, dans toutes ces plantes, les archégones se produisent comme dans les Fougères et les Equisétacées, sur un prothallium, réduit seulement à de beaucoup moindres dimensions. Mais les anthéridies se séparent de la plante-mère avant de s'organiser, et n'ont aucune liaison avec le prothallium, mode singulier que nous avons dû signaler pour compléter les notions données précédemment (§ 497) sur la reproduction des Cryptogames.

VÉGÉTAUX MONOCOTYLÉDONÉS.

VÉGÉTAUX MONOCOTYLÉDONÉS.

§ 554. Leurs tiges (§ 75-83 *bis*), leurs racines (§ 404), leurs feuilles (§ 430), la symétrie de leur fleur (§ 290), son enveloppe (§ 322), leur embryon (§ 465) et sa manière de germer (§ 490), ont été examinés d'une manière générale, et nous avons signalé, dans beaucoup d'autres passages encore, les divers points d'organisation qui les distinguent des acotylédonés d'une part, et de l'autre desdicotylédonés : nous y renvoyons donc pour abréger. Ceux qu'il resterait à faire connaître ressortiront de l'examen particulier des diverses familles.

Jussieu les divisait en hypogynes, périgynes et épigynes. Nous ne suivrons pas ici cette division, parce que la distinction entre le premier et le second de ces modes d'insertion des étamines n'est pas bien nette dans plusieurs des familles monocotylédonées : dans les Liliacées, par exemple. La structure de la graine nous semble en fournir une première plus constante et plus importante. Dans la grande majorité, en effet, cette graine est pourvue d'un périsperme en général fort épais, tandis que dans d'autres elle en est entièrement dépourvue ; et celles-là offrent du reste entre elles des rapports marqués. Un de ces rapports est leur habitation dans l'eau : et l'on peut par là les distinguer de quelques autres monocotylédonées sans périsperme, quoique appartenant au premier groupe : les Orchidées, par exemple. Mais ces dernières ont des habitudes tout à fait différentes, vivant sur la terre ou sur les arbres. Nous avons donc cette première division:

Faisons remarquer que ces deux groupes ne se suivent pas dans la série naturelle, mais marchent plutôt parallèlement ; dans l'un comme dans l'autre, on s'élève graduellement de la fleur la plus simple, c'est-à-dire réduite à une étamine ou à un carpelle, jusqu'à la plus composée, c'est-à-dire à celle qui présente tous les verticilles d'organes soudés ensemble.

§ 552. Nous avons défini ailleurs (§§ 476, 465) les épithètes diverses appliquées dans ce tableau à l'embryon. Cet embryon macropode, c'est-à-dire à radicule très développée par rapport au cotylédon, est, comme on voit, un caractère presque général dans tout ce groupe de familles à graines sans périsperme; car on le retrouve aussi dans les trois dernières. La radicule, ou mieux la tigelle, ainsi

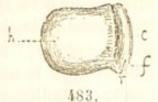
aquatiques, à graine sans périsperme. bacé. * ppées, souvent (les 3 intérieures au moins) pétaloïdes. ** Périanthe nul 1 carpelle bieurs distincts. Périanthe nul ou composé de 4 écailles. Périanthe nul ou composé de 4 écailles. 		Naiadées. Potamées.	Zostřracées.	JUNCAGINEES.	Alismacées. Butomées. Hydrocharidées.
aquatiques, à graine sans périsperme. pbacé. * ppées, souvent (les 3 intérieures au moins) pétaloïdes. ** Périanthe nul 1 carpelle Périanthe nul 1 carpelle ou Périanthe nul 1 carpelle ou igelle latéralement développés Périanthe nul 1 carpelle ou sieurs dist ' l' carpelle ou ou composé de 4 écailles. } ' l' carpelle ou sieurs dist ' ou réwins c ou réwins c ou réwins c de la loge, courbe Ovaires libres et distincts pariétale réfléchis Ovaires libres et distincts		Plantes d'eau douce. Naiadées. Plantes d'eau douce. Poramées.	Plantes marines	Plantes d'eau douce.	Plantes d'eau donce. Plantes d'eau donce. Plantes d'eau donce.
ou écailleux, ou herbacé. * dirisions bien développées, sour otrope, macropode – Péri hitrope, macropode. – Péri trope, macropode à tigelle latéra trope, à radicule courte. –	aquatiques, à graine sans périsperme.	e ou disti		Périanthe nul ou herbacé.	111
 Férianthe nul, a 6 Embryon hom ami ami anti anti anti anti anti 		 l'mbryon hemotrope, macropode – amphitrope, macropode. – Péri 	antitrope, macropode à tigelle latéra		

VÉGÉTAUX MONOCOTYLÉDONÉS

FAMILLES. Tableau II.

432

BOTANIQUE.


FAMILLES. TABLEAU III. VEGÉTAUX MONOCOT	YLÉDONÉS
à graine périspermée, à flet	ir apérianthée
Embryon à radicule courte ne débordant pas le resto. Une bractée très-développée à la base d'un épi ter à radicule macropode, développée latéralement. Bractées courtes, écailleuses, répondant à des	minal
Spadicées, application of an and an an and an	icilaire, antitrope
Fleurs nues, les mâles consistant chacune en l étamine, Spathe enveloppante, persistante. Embryon ax	ile, antitrope ou anatrope pas de feuilles
co ax	Fleurs dioïques. art, axile. 1 scule loge à placentat, pariét. Fleurs monoïques, en- tremélées sur le même épi ile, homotrope. 1 scule loge à 1 ovule pendant. Fleurs monoïques, separées sur les épis.
entourées d'écailles, en manière de périanthe, mais presque jamais ternées	ile. Ovaire à plusieurs loges, Ovules demi-réfléchis,
Glumacées.	alaussa Rauillas taistias
Graine dressée. Embryon extraire, apicilaire1 écaille pour chaque fleurTiges pleines et aug adnée sur le côté. Embryon extraire, latéral2 écailles pour chaque fleurChaume	
FAMILLES, Tableau IV. VÉGÉTAUX MONOCOTY	
à graine périspermée, à flo	eur périanthée
Ovaire libre	
1. Embryon excentrique ou antitrope Fleurs hermaphrodites ou diclines, en Périanthe à 6 divisions	calicoïdes, coriaces
antitrope, extraire, sans repli du té- 3 loges 1-spermes. Périanthe à 2-6 divisir	
1 loge polysperme. Placent, pariét, . } Périanthe à divisions i	nternes pétaloïdes
, tegument Placent axile	nternes pétaloïdes
homotrope extraire	internes pétaloïdes
ou pétaloïdes irrégulier, 5-6-parti	Stamines sur un tubeEmbryon courbeFeuilles graminoïdesGILLIESIACÉES.
régulier. Style indivis 5	Pas de tube staminifère.—Embryon droit.—Feuilles à limbe élargi.—PONTEDERIACLES Stigmates réunis ou distinctsFeuilles à nerv. parall,—LUIACÉES. Stamines extrorses.—CapsuloFeuilles à nerv. parall.—MÉLANTHACÉES.
	introrsesBaie
2. Fieurs diclines un ou deux verticilles d'étamines fertiles Anthères introrses hermaphrodit, un ou deux verticilles d'étamines fertiles. intraireAnthères extrorses. Embryon	-Plantes grimpantes
introrses.	o opposeds was divisions interrentes, sour fune transversarements [Dansvision of
	6. Périanthe tubuleux, a divisions planes, tout entier pétaloide.) II ruopon chu
	Graines à test coriace
	Graines à test crustacé, luisant
actualize . Therefore in formation	 6-5. Périanthe irrégulier, tout entier pé-{ Fouilles à nerv. trans-} MUSACÉES. 6. Périanthe à div. ext. calie., intér. pé- { Fouilles à nerv. longi-} Provinciers.
Toutes les étamines d'un verticille et plu- simple Placentation axile. 3	taloïdes
sieurs de l'autre avortant. Périsperme une anthère 1-locul	loges - Filets nétaloldes ou avortés un (Feuilles à nere trans.)
seul portant une anthère 2-10	Deul
sentation	pariét. 1 loge.—1-2 anthères épi- (Feuilles à nerv. longi-)
	gynes
(En regard de la page 433.)	

VÉGÉTAUX MONOCOTYLÉDONÉS.

allongée et rentlée, offre ordinairement un tissu très riche en fécule, et peut ainsi, pour la nourriture du jeune embryon, jouer le rôle

physiologique dont sont ordinairement chargés ou les cotylédons, alors beaucoup plus développés relativement, ou le périsperme. C'est surtout dans les Zostéracées que la tigelle prend ces dimensions remarquables, formant même le plus sou-

vent une excroissance latérale qui compose la plus grande partie de la masse de l'embryon.

Nous voyons les enveloppes manquer à la fleur de la plupart de ces familles ; c'est dans les Juncaginées, où elles commencent à se montrer, qu'on peut bien observer le passage de l'inflorescence à la fleur. Dans cette dernière famille, les parties de l'embryon commencent à montrer leurs rapports les plus habituels de grandeur, la radicule étant beaucoup plus courte que le cotylédon (fig. 422). Le tissu de ces végétaux (comme de tous les végétaux aquatiques en général) est très simple; le cellulaire y prend une grande extension, criblé de lacunes remplies d'air ou d'un autre gaz, et qui par là, diminuant la pesanteur spécifique de la plante, lui permettent de s'élever dans l'eau, jusqu'à sa surface ou en partie au-dessus. Les vaisseaux, au contraire, y sont beaucoup plus rares et même dans quelques uns manquent complétement. De cette disposition doit résulter le peu d'activité des sécrétions et par suite le défaut de propriétés particulières, ainsi que d'usages utiles à l'homme. De toutes ces plantes, la plus souvent citée est une Hydrocharidée, le Vallisneria spiralis, qui encombre certains bras du Rhône et beaucoup de canaux et de fossés de notre Midi. On a souvent raconté, en prose et en vers, comment ses fleurs mâles et femelles, séparées sur des pieds différents, se rejoignent au moment de la floraison, comment les premières se détachent alors par la rupture de leur pédoncule, flottent soutenues sur l'eau par la petite conque que forme leur périanthe bombé, et se rapprochent des secondes, fixées à leur plante par un long fil dont la spirale s'est déroulée; comment enfin. après ce rapprochement, la spire, rapprochant ses tours, renfonce la fleur fécondée qui mûrit sa graine sous l'eau.

§ 553. Parmi les Monocotylédonées qui (à part quelques exceptions) offrent des graines pourvues de périsperme, la fleur des unes, plus simple, n'a pas de périanthe véritable; l'enveloppe qu'on rencontre n'en a pas franchement les caractères ordinaires quant au nombre et à la structure de ses parties remplacées par des écailles ou des bractées; celle des autres montre un véritable périanthe it folioles verticillées trois par trois. De là une première division en Apérianthées (tableau III) et en Périanthées (tableau IV).

§ 554. Les premières peuvent se diviser en Spadicées et Glumacées. Ces deux divisions sont ainsi nommées : la première, de son inflorescence en spadice (quelquefois dissimulé par le moindre développement et la chute précoce de la bractée générale qui ne persiste pas en spathe); la seconde, de la nature des enveloppes de la fleur qui ont reçu le nom particulier de glumes et représentent de petites bractées écailleuses.

Parmi toutes les familles énumérées dans ce tableau, nous ne nous arrêterons que sur les deux dernières, dont l'une surtout, celle des Graminées, mérite toute notre attention par son importance sous le rapport économique, aussi bien que botanique.

§ 555. Cypéracées. — On confond dans le monde sous le nom d'herbes, des plantes monocotylédonées ordinairement vertes dans toutes leurs parties, même leurs fleurs, à tiges herbacées, à feuilles entières allongées en rubans étroits que parcourent parallèment les nervures longitudinales : mais ces herbes appartiennent réellement à plusieurs familles différentes, plus particulièrement à celle-ci et à la suivante.

Les Cypéracées se distinguent facilement des Graminées par leur tige pleine sans renflements à la renaissance des feuilles, offrant souvent la forme d'un prisme triangulaire, forme qui se lie à la disposition tristique de ces feuilles. La portion vaginale de celles-ci entoure la tige sans se diviser jusqu'à la naissance du limbe, ou, en d'autres termes, leur gaîne est entière : les supérieures même n'ont que le limbe sans gaine. Les fleurs sont disposées en épis vers le sommet de la plante, épis qui quelquefois, à cause de leur brièveté, prennent le nom d'épillets, groupés alors de diverses manières, les uns par rapport aux autres. Ces épillets consistent en une série de bractées écailleuses à l'aisselle desquelles sont situées tantôt plusieurs étamines autour d'un pistil, tantôt des étamines ou des pistils seulement. Ces parties manquent assez souvent aux écailles inférieures de l'épillet. Ces combinaisons diverses de fleurs hermaphrodites ou de fleurs diclines, et les différentes dispositions des bractées de l'axe qui les porte, servent à distinguer plusieurs tribus. Ainsi des bractées distigues accompagnant des fleurs hermaphrodites caractérisent les Cypérées ; imbriquées dans tous les sens, les Scirpées. Lorsque les étamines sont séparées des pistils, l'ovaire peut être caché dans une enveloppe particulière, ou utricule, qui s'ouvre pour donner passage au style et dont l'ouverture est bordée par deux dents. C'est ce qu'on observe dans les Caricinées, tandis que dans les Sclériées, également diclines, l'ovaire n'est pas clos. Les étamines sont au nombre de 4 à 42, le plus souvent de 3, et leurs filets grêles portant des anthères biloculaires s'insèrent au-dessous de l'ovaire

GRAMINEES.

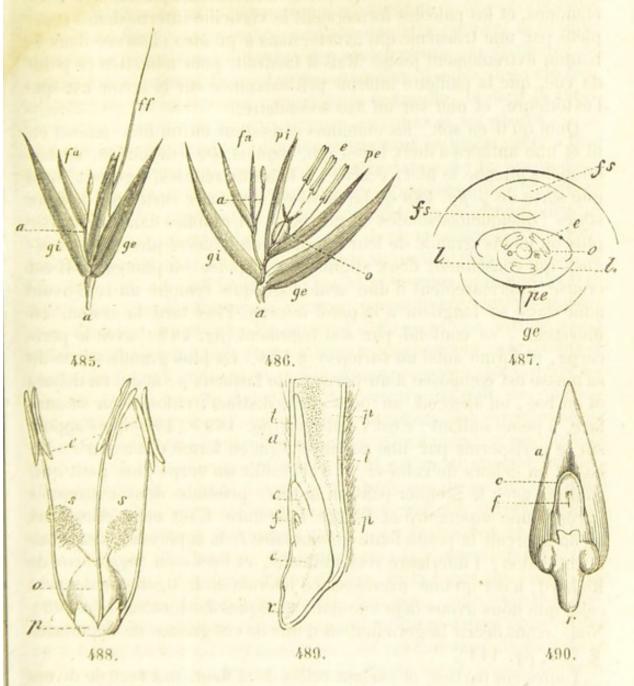
lorsqu'elles l'entourent. Dans ce cas, on trouve quelquefois, en outre, d'autres filets stériles ayant l'apparence de soies ou d'écailles en nombre égal ou plus grand. L'ovaire, surmonté d'un style bifide ou trifide à son sommet, est creusé d'une loge unique contenant un ovule dressé. Plus tard, son péricarpe prend une

consistance crustacée ou osseuse (dans les Sclériées). La graine (fig. 438) consiste en un sac membraneux rempli par un gros périsperme farineux, excepté à son bout inférieur, sous lequel est niché un petit embryon, tourné par conséquent du côté du hile. Cet embryon (fig. 484) a ordinairement la forme d'une toupie et présente sur le côté un petit renflement cr; c'est celui-ci qui correspond au cotylédon et à la rádicule, comme le prouve

plus tard la germination; et le reste de la masse embryonnaire a est formé par la tigelle extrêmement dilatée.

En parlant de la tige, nous n'avons considéré que celle qui se montre au-dessus du sol, et qui n'est souvent, dans le fait, qu'un rameau partant d'un rhizome horizontal.

§ 556. Graminées. - Elles se présentent le plus communément sous cette apparence qui est vulgairement désignée par le nom d'herbe. Cependant on les voit quelquefois prendre des dimensions qui ne s'accordent plus avec ce nom. Le grand Roseau de notre Midi (Arundo donax) dépasse déjà beaucoup la taille d'un homme. et, sous les tropiques, les Bambous deviennent de véritables arbres. Comme les Cypéracées, les Graminées ont souvent une tige souterraine d'où partent celles que nous voyons s'élever au-dessus du sol. Ce sont celles-ci qu'on connaît sous le nom de chaume (culmus), et qui se caractérisent par les renflements qu'on y observe de distance en distance à chaque nœud, c'est-à-dire à la naissance de chaque feuille, ainsi que par leur cavité intérieure. En effet, les faisceaux fibro-vasculaires se rapprochent et se serrent vers l'extérieur, laissant le centre vide, excepté à la hauteur des nœuds, où ils se réfléchissent horizontalement, s'entrecroisent, et, par leur lacis entremélé de tissu cellulaire, forment une sorte de plancher (fig. 98). Le chaume est donc un cylindre creux dont le canal est interrompu par une suite de cloisons répondant à la naissance des feuilles. Celles-ci entourent la tige par une gaîne dont l'insertion embrasse le nœud, et qui est fendue dans la plus grande partie de sa longueur sur le côté opposé, et au-dessus d'elle s'allongent en un limbe ou


484. Embryon séparé du Carex depauperata. — r Radicule. — c Cotylédon. — f Fente correspondant à la gemmule. — a Renflement latéral de la tigelle.

lame étroite. La séparation du limbe et de la gaîne est le plus souvent marquée par un petit prolongement membraneux, tronqué ou aigu, ou bifide, déchiqueté même et réduit quelquefois à une touffe de poils : c'est la *ligule* (\S 430, *fig.* 438 *gl*). Les feuilles sont ordinairement distiques, et leurs aisselles donnent souvent naissance à des bourgeons dont le développement détermine la ramification de la plante.

Cette disposition distigue se retrouve surtout dans les bractées de l'inflorescence, qui consiste en épillets (spiculæ), c'est-à-dire en épis extrêmement courts, au point que longtemps on les a décrits chacun comme une fleur. Considérés ainsi, ces épillets se groupent entre eux tantôt en panicules (comme dans l'Avoine), tantôt en épis, et, dans ce dernier cas, il arrive souvent que l'axe qui les porte se creuse alternativement dans un sens et dans l'autre pour recevoir leur insertion. Ce sont ces épis (tels que ceux du Froment, du Seigle) qui sont devenus le type le plus vulgairement cité de ce mode d'inflorescence, quoiqu'ils soient réellement composés, puisque chaque épillet est un petit groupe de fleurs. Jusqu'ici nous trouvons une grande ressemblance entre l'épillet des Cypéracées et celui des Graminées. Les deux bractées inférieures qui, de même, ne portent rien à leur aisselle, semblent former une enveloppe commune à tous les autres et prennent le nom de glumes (glumæ [fig. 485, 486 ge gi]). Mais les suivantes offrent chacune en dedans non seulement les organes de la reproduction, mais aussi (et c'est ce qui les distingue de celles des Cypéracées) une seconde bractée opposée à la première, un peu supérieure et intérieure par rapport à elle. Ces bractées, qui prennent le nom de paillettes (paleæ [fig. 486 pe pi]), forment ainsi, opposées deux à deux, autant d'involucres entre lesquels sont placés étamines et pistil, et chacun de ces petits systèmes est une vraie fleur. Il peut se trouver au-dessus des glumes un seul de ces systèmes, ou deux, ou trois, ou un plus grand nombre, et, suivant ces cas, on dit l'épillet uniflore, biflore, triflore, multiflore. Les étamines, quelquefois portées à six ou plus, quelquefois réduites à deux ou même à une, mais le plus ordinairement au nombre de trois, sont insérées au-dessous d'un pistil central (fig. 486, 488) qui, dans des cas beaucoup plus rares, manque ici et se retrouve seul dans d'autres fleurs séparées. Ordinairement on trouve, en outre, des deux côtés, et un peu en dehors de l'étamine la plus extérieure, deux petits corps membraneux ou écailleux qu'on a nommés paléoles (paleolæ [fig. 487 ll, 488 p]). Comme la paillette extérieure est marquée d'une nervure médiane, que l'intérieure, au contraire, en est souvent dépourvue et munie de deux nervures latérales, une de chaque côté, beaucoup d'auteurs considèrent cette

GRAMINÉES.

paillette parinervée comme résultant de la soudure de deux ; on en

485. Un épillet de l'Avoine cultivée (Avena sativa). - a Axe. - ge Glume externe. - qi Glume interne. - ff Fleur inférieure fertile. - fa Deux fleurs supérieures avortees.

486. Le même, avec les enveloppes écartées pour laisser voir les parties intérieures.pe Paillette externe de la fleur fertile, surmontée d'une arête. - pi Paillette interne. e Étamines. - o Pistil. - Du reste, même signification des lettres.

487. Diagramme de l'épillet. - Même signification des lettres que dans la figure précédente. — Il Paléoles. — fs Fleurs stériles ou avortées. 488. La fleur fertile, dépouillée de sa glume. — e Étamines. — p Paléoles. —

o Ovaire. - s Stigmates.

489. Coupe verticale du cariopse dont on a retranché la partie supérieure. - t Téguments confondus du cariopse et de la graine. - p Périsperme. - e Embryon vu de côté. --- Mêmes lettres pour ses parties que dans la figure suivante.

490. Embryon séparé, vu de face. - r Radicule. - c Cotylédon. - f Fente correspondant à la gemmule. - a Renflement latéral ou hypoblaste.

BOTANIQUE,

aurait ainsi trois devant lesquelles se trouveraient placées les trois étamines, et les paléoles formeraient le verticille intermédiaire complété par une troisième qui avorte, mais a pu être observée dans le bouton extrêmement jeune. Mais il faudrait, pour admettre ce point de vue, que la paillette interne prît naissance sur le même axe que l'extérieure, et non sur un axe secondaire.

Quoi qu'il en soit, les étamines consistent en un filet aminci en fil et une anthère à deux loges qui, réunies par leur milieu, au bas duquel s'attache le filet, écartées à leurs extrémités, figurent ainsi une sorte de γ (fig. 488 e). Le pistil est un ovaire surmonté de deux styles (quelquefois soudés en un seul), et ramifiés dans une partie plus ou moins grande de leur longueur en lanières plus moins lon-, gues qui constituent deux stigmates s hispides ou plumeux Il est creusé intérieurement d'une seule loge que remplit un seul ovule adné dans sa longueur à la paroi interne. Plus tard la graine, en mûrissant, se confond par son tégument (fig. 489 t) avec le péricarpe, et forme ainsi un cariopse (§ 423). La plus grande partie de sa masse est composée d'un périsperme farineux p; mais, en dehors et en bas, on aperçoit un petit corps distinct, enfoncé sur sa surface, à peine saillant : c'est l'embryon (fig. 489 e, 490) qui s'appuie sur le périsperme par une partie élargie en forme d'écusson a. En bas et en dehors de celui-ci on voit saillir un corps plus petit qui, continu avec le premier par son milieu, présente deux extrémités libres, l'une supérieure et l'autre inférieure. C'est entre elles deux qu'on aperçoit la petite fente gemmulaire f; la supérieure c est donc le cotylédon, l'inférieure r la radicule, et l'écusson (hypoblaste de Richard) n'est qu'une excroissance latérale de la tigelle analogue à celle que nous avons déjà vue dans quelques Zostéracées (fig. 403). Nous avons décrit la germination d'une de ces graines de Graminées (§ 101, fig. 111).

Toutes ces parties, et surtout celles de la fleur, ont reçu de divers auteurs une variété de noms différents que la place nous manque ici pour rapporter. Nous nous contenterons d'ajouter que le nom de glumes, au lieu d'être appliqué à chacune des bractées inférieures et stériles de l'épillet, l'est quelquefois à leur ensemble, et qu'alors elles sont autant de valves de la glume; que celui de *balle* est donné à l'ensemble des paillettes, qui sont alors les valves de la balle. Ajoutons encore, pour l'intelligence des caractères génériques et des descriptions, que dans les bractées extérieures de la glume et de la balle la nervure médiane se prolonge souvent en une arête plus ou moins longue au-dessus du sommet, ou d'autres fois se détache plus ou moins bas au-dessous. Le mode d'inflorescence, le nombre des fleurs dans chaque épillet, leur développement complet ou l'avorte-

GRAMINEES.

ment de plusieurs, qui d'autres fois a lieu constamment dans chacun d'eux, la réunion ou la séparation des étamines et des pistils dans une même fleur, la présence ou l'absence des glumes, la consistance et la forme des paillettés, les styles réunis ou distincts, la nature des stigmates, le nombre des étamines et celui des paléoles, tels sont les caractères qui varient dans la famille, et dont la combinaison est employée pour distinguer les tribus et les genres.

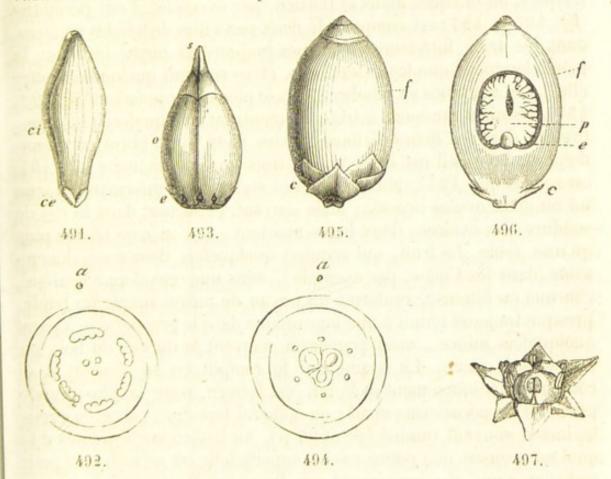
Cette immense famille, distribuée sur tout le globe, sert à des usages aussi variés qu'importants. L'abondance de la fécule dans ses fruits fait cultiver un certain nombre d'espèces qui prennent le nom de céréales : ce sont de préférence celles où la graine offre un volume assez considérable, le Froment dans les climats tempérés : concurremment avec lui ou un peu plus au nord l'Orge, le Seigle et l'Avoine; plus au midi le Maïs, le Riz et le Sorgho; quelques autres différentes sous les tropiques, comme, par exemple, le Poa abyssinica, diverses espèces de Panicum et d'Eleusine. La farine qu'on retire du périsperme broyé est un aliment doublement nourrissant et par la fécule qu'il contient et par le gluten, principe azoté, qui y est associé. Le son résulte des débris du péricarpe et doit ses qualités aux particules amylacées qui y restent attachées. La séve de beaucoup de Graminées contient le sucre en dissolution ; c'est surtout de la Canne (Saccharum officinale), où il est en si énorme proportion, qu'on l'extrait avec avantage. La présence du sucre détermine la fermentation par suite de laquelle sont produits divers liquides de nature alcoolique recherchés aussi pour la boisson et plusieurs autres usages de l'homme. C'est ainsi que le rhum et le tafia sont obtenus du jus de canne, l'arak du riz, et la bière de l'orge. Le procédé pour la fabrication de cette dernière, qui consiste à soumettre à la fermentation dans un grand mélange d'eau l'orge auquel on a fait éprouver un commencement de germination, dépend de ce qu'en germant, une certaine partie de fécule de la jeune plante se convertit en sucre. Cette abondance de divers principes nutritifs dans les diverses parties des Graminées est employée aussi utilement à la nourriture des animaux, et fait d'un très grand nombre d'espèces la base des pâturages et des fourrages. Enfin nous avons vu (§ 49, 244) que les Graminées ont une affinité particulière pour la silice, qui, pénétrant avec leur séve et se solidifiant dans les parois de leurs cellules les plus extérieures, encroûte souvent leur épiderme et leurs nœuds : de là la rigidité et l'incorruptibilité de certaines pailles, dont l'industrie tire parti.

Toutes les Graminées ne sont pas sans odeur ; quelques unes, au moment de la floraison, en exhalent une douce, mais en même temps pénétrante, dont tous les promeneurs ont dû être frappés à cette

époque, surtout lorsque les individus sont multipliés, comme dans une prairie. On cite la Flouve (*Anthoxanthum*) comme l'une des plus odorantes parmi nos espèces indigènes. Il y en a qui le sont à un beaucoup plus haut degré dans les climats plus chauds, et l'on en extrait une huile essentielle. Le vetiver, si généralement employé maintenant pour parfumer les vêtements, est la racine d'une Graminée (*Andropogon muricatum*).

§ 557. Jussieu composait ses monohypogynes des familles précédentes ; des suivantes , ses monopérigynes , et ses monoépigynes , entre lesquelles la ligne de démarcation n'est pas facile à tirer.

Nous les diviserons donc d'après un autre caractère qui se lie aussi en général à celui de l'insertion et a l'avantage de pouvoir être aisément constaté, l'adhérence ou la non-adhérence du calice avec l'ovaire. Les plantes de ces familles monocotylédonées, qu'il nous reste à examiner, offrent un périanthe à folioles presque toujours disposées par verticilles ternaires, le plus ordinairement par deux, qui sont ou semblables entre eux, offrant l'un et l'autre l'apparence soit d'un calice, soit d'une corolle, où différents, l'extérieur alors calicoïde et l'intérieur pétaloïde.


Parmi les familles à ovaire libre, nous citerons particulièrement les trois suivantes.

§ 558. Palmiers (Palmæ). — Nous avons exposé précédemment (§ 77, 78) la structure de la tige des Palmiers et leur port le plus habituel (fig. 400, 4). Quoique le plus ordinairement elle se dresse en un tronc plus ou moins élevé et simple, ce n'est pas un cas sans exception. Ainsi elle se divise à une certaine hauteur par une dichotomie régulière dans le Doum (Cucifera thebaica), et, dans plusieurs autres, se réduit à un bulbe ou à un rhizome. Le tronc, lorsqu'il s'allonge, peut être assez épais ou plus ou moins grêle; ses entre-nœuds sont tantôt très courts, tantôt écartés l'un de l'autre par de longs intervalles : sa surface est quelquefois lisse et même luisante (comme dans les Calamus), souvent au contraire toute hérissée par les bases persistantes des feuilles ou même, dans les parties plus vieilles où elles se sont détachées, inégale, rugueuse et fendillée ; il n'est pas rare de la voir armée d'épines droites plus ou moins longues. Les racines adventives, naissant au-dessus du sol et accumulées vers la base de la tige, forment souvent autour d'elle un lacis qui l'épaissit en une sorte de cône.

Les feuilles, qui atteignent des dimensions considérables, sont portées sur de longs et forts pétioles très flexibles, auxquels leur limbe très épais s'attache non en ligne droite, mais sur une ligne brisée en zigzag, de manière à former une suite de plis qu'on ne peut mieux comparer qu'à ceux d'un éventail, et qui se déploient

PALMIERS.

absolument de la même manière. Tantôt ces plis sont en effet disposés comme les branches d'un véritable éventail, s'insérant tous ensemble à l'extrémité du pétiole élargi ; tantôt ils le sont comme les barbes d'une plume, s'insérant les uns au-dessus des autres sur les deux côtés du pétiole qui devient alors la nervure moyenne ou rachis. Tout ce limbe ainsi plié était continu dans le premier âge,

mais il finit par se fendre tout le long des plis, et se partage ainsi plus ou moins profondément en une foule de lanières qui donnent à l'ensemble l'apparence palmatiséquée ou penniséquée (fig. 400, 4). Aux aisselles de ces feuilles qui, renouvelées par un bourgeon terminal, forment une sorte de touffe au sommet de la tige, naissent les fleurs en spadices, ou simples, ou souvent rameux; et les spa-

494. Fleur de l'Areca cathecu, non épanouie. — ce Périanthe externe. — ci Périanthe interne.

492. Diagramme de cette fleur, où les étamines se sont développées, et où les ovaires ont avorté. — a Position de l'axe de l'inflorescence, par rapport à la fleur.

493. Autre fleur dépouillée de son périanthe, dans laquelle les étamines ont avorté en partie, et l'ovaire o s'est développé. — s Stigmate.

494. Diagramme de la fleur précédente, avec son périanthe.

495. Fruit f de la même, entouré à la base de son périanthe c persistant.

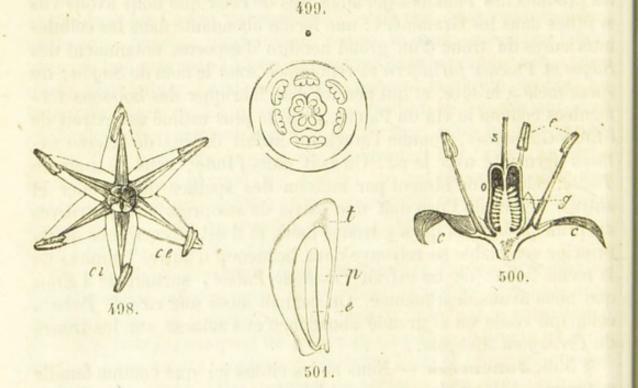
496. Coupe verticale de ce fruit. — c Périanthe. — f Péricarpe. — p Périsperme ruminé. — e Embryon.

397. Fleur du Chamærops humilis vue par en haut.

thes dont ils sont d'abord enveloppés, puis plus ou moins longtemps accompagnés après qu'ils les ont entr'ouvertes en les dépassant. ont elles-mêmes un tissu épais, dur, quelquefois ligneux, au point de former comme une nacelle. Il y en a une ou plusieurs ; elles sont complètes ou incomplètes, et quelquefois même manquent tout à fait. Les fleurs peuvent être hermaphrodites, ou polygames, ou monoïques, ou dioïques (dans le Dattier, par exemple). Leur périanthe (fig. 495 c, 497) est composé de deux verticilles de folioles coriaces, dont les trois intérieures n'ont pas toujours la même forme et la même longueur que les extérieures, et se soudent quelquefois entre elles. Les étamines au nombre de six le plus communément (fig. 492. 497), réduites rarement à trois, se montrent quelquefois plus nombreuses dans les fleurs diclines ; leurs filets sont libres ou monadelphes. Le pistil est composé de trois ovaires distincts (fig. 497) ou soudés (fig. 493), ainsi que leurs styles, et renfermant chacun un ou deux ovules dressés; mais souvent, et surtout dans le cas de soudure des ovaires, deux loges avortent, et l'on n'en trouve plus qu'une seule. Le fruit, qui acquiert quelquefois d'énormes dimensions (dans les Cocos, par exemple), sous une enveloppe épaisse, charnue ou fibreuse, renferme un noyau de même simple ou triple, presque toujours réduit à une loge unique dans le premier cas, à paroi quelquefois mince, mais acquérant souvent la dureté du bois ou même de la pierre. La graine qui le remplit en se soudant et se confondant fréquemment avec lui, est formée, pour la plus grande partie, d'un périsperme épais, en général fort dur, corné ou cartilagineux, souvent ruminé (fig. 496 p), au bas ou sur les côtés duquel est creusée une petite cavité superficielle où se niche un petit embryon e qui, par conséquent, se dirige tantôt vers le hile, tantôt d'un tout autre côté (fig. 440).

On a distingué plusieurs tribus de Palmiers d'après diverses modifications des inflorescences et des spathes qui les accompagnent ordinairement, et d'après celles du fruit variant par la consistance de son péricarpe, composé de plusieurs carpelles distincts ou d'un seul, et, dans ce cas, contenant plusieurs loges et plusieurs graines ou bien une seule. Elles peuvent se prêter à des sous-divisions, d'après les deux formes si distinctes du feuillage ; la division et la forme du périanthe ; le nombre et la figure des étamines libres ou soudées ; la forme des anthères ; le degré de cohérence des ovaires et des styles et leurs avortements ; la forme , la grandeur, le tissu du fruit et de ses parties, du noyau, du périsperme ; la position de l'embryon ; la distribution des pistils et des étamines sur les mêmes fleurs ou des fleurs différentes , appartenant au même arbre ou à des arbres différents. Toutes ces différentes modifications diverse-

JONCACEES.


ment combinées servent à distinguer des genres assez nombreux.

Cette belle famille de végétaux, par plusieurs de ceux qui la composent, rend aux habitants des pays qu'ils habitent les services les plus variés. En effet, d'une part, leur bois est employé à la construction des huttes, dont les feuilles, si grandes et si dures, fournissent la toiture sans grand travail; et les fibres si flexibles et si résistantes, dispersées dans toutes les parties, servent à fabriquer des cordages, des armes et divers ustensiles domestiques. De l'autre, diverses espèces offrent des aliments presque sans apprêt. Chacun sait que des populations entières se nourrissent presque exclusivement de Dattes, et que le Coco contient une crème acidule, boisson délicieuse dans les pays chauds : cette crème n'est autre chose que le périsperme encore fluide, qui plus tard s'épaissit de plus en plus, et finit par se solidifier en une masse aussi dure que la pierre. Le bourgeon terminal d'une autre espèce précieuse aussi, l'Areca oleracea, vulgairement connu sous le nom de Chou palmiste, est recherché lui-même comme aliment. D'ailleurs nous retrouvons dans les produits des Palmiers quelques uns de ceux que nous avons vus si utiles dans les Graminées : une fécule abondante dans les cellules intérieures du tronc d'un grand nombre d'espèces, notamment des Sagus et Phænix farinifera et renommée sous le nom de Sagou; du sucre mélé à la séve, et qui permet d'en fabriquer des boissons fermentées comme le vin de Palme, dont le plus estimé est extrait de, l'Elais Guineensis, comme l'arack qu'on fait du jus de l'Areca cathecu fermenté avec le riz. On boit dans l'Inde, sous le nom de Toddy, celui qu'on obtient par incision des spathes du Cocotier et autres. Le lait de Coco doit une partie de ses propriétés nutritives au principe huileux qui s'y trouve mélé, et il est à remarquer qu'un principe semblable se retrouve dans beaucoup d'autres Palmiers de la même tribu : on en extrait l'huile de Palme, surtout de l'Elais que nous avons déjà nommé. On connaît aussi une cire de Palme, celle qui coule en si grande abondance et s'amasse sur les troncs du Ceroxylon Andicola.

§ 559. Joncacécs. — Nous ne les citons ici que comme famille communément représentée parmi les plantes de notre pays, et vulgairement confondue sous le nom d'herbe avec les Graminées, de même qu'on est porté d'autre part à confondre sous le nom de Joncs beaucoup d'herbes croissant dans les marais. La structure de leurs fleurs les fait facilement distinguer, et par l'existence d'un périanthe à six parties, et par celle d'un ovaire à trois loges ; mais la consistance écailleuse ou herbacée du premier fournit en quelque sorte le passage des enveloppes florales des Glumacées aux périanthes colorés des familles suivantes.

§ 560. Liliacées. - Le périanthe acquiert ses plus brillantes couleurs dans les Liliacées, recherchées en conséquence avec tant de prédilection dans nos jardins et nos campagnes. Il suffit de nommer la Tulipe, la Jacinthe, le Lis, l'Impériale, l'Asphodèle, pour en donner une idée. Les Liliacées de nos climats sont herbacées ; leurs tiges, souvent courtes et renflées en bulbes, dont nous avons fait connaître autre part (§ 151) les diverses modifications : d'autres fois elles s'allongent soit rampantes, soit dressées, et quelquefois même très ramifiées. Mais dans les climats plus chauds on en observe en outre de vraiment arborescentes (comme dans les Yucca, quelques Aloès, etc.), et c'est même parmi elles qu'on trouve les exemples des arbres monocotylédonés les plus volumineux (les Draconniers, § 462). Les feuilles sont allongées, assez généralement rétrécies, à nervures parallèles. Leurs graines prennent un grand développement autour de certains bulbes qu'elles contribuent à épaissir et forment en partie.

Les fleurs (fig. 204, 498) offrent le type exact de celles des Mono-

cotylédonées : un périanthe à six folioles sur deux rangs concentriques, semblables entre elles, tantôt distinctes et tantôt soudées

498. Fleur du Scilla autumnalis, vue par en haut. - ce Périanthe externe. - ci Périanthe interne.

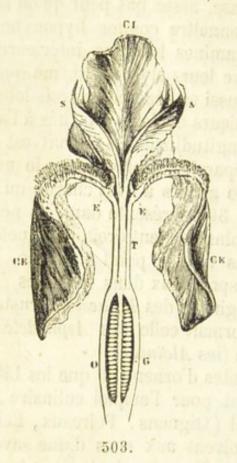
499. Diagramme de la même.

500. Coupe verticale de cette fleur. — cc Périantlic. — e Étamines. — o Ovaire. — s Style et stigmates. — g Ovules.

501. Graine séparée et coupée dans sa longueur. - t Tégument. - p Périsperme. - e Embryon.

IRIDÉES.

inférieurement en tube ; six étamines opposées à ces folioles, comme elles disposées en deux verticilles, insérées sur leur tube quand elles sont soudées, sinon tout à fait à leur base, assez bas pour qu'on soit dans quelques cas autorisé à les reconnaître comme hypogynes; trois ovaires alternant avec les trois étamines les plus intérieures, soudés entre eux en un seul, ainsi que leurs styles et même quelquefois leurs stigmates, qui peuvent aussi se séparer en trois lobes. Chaque loge (fig. 500 o) renferme plusieurs ovules g attachés à l'angle interne sur un ou deux rangs longitudinaux. Le fruit est en général une capsule loculicide. On séparait autrefois, sous le nom d'Asparaginées, un certain nombre de genres à fruit charnu qu'on leur a réunis depuis. La graine (fig. 504) présente dans un périsperme charnu (p) un embryon (e) le plus souvent droit, quelquefois courbe, mais dirigé dans tous les cas vers le point d'attache. Le testa (t) qui forme son tégument est spongieux dans les unes (les seules dont se composait la famille originelle des Liliacées), crustacé et brillant dans d'autres (dont on formait celle des Asphodélées). membraneux dans un certain nombre (les Aloïnées).


Ce n'est pas seulement comme plantes d'ornement que les Liliacées sont cultivées. Plusieurs le sont pour l'emploi culinaire, et appartiennent en général au genre Ail (Oignons, Poireaux, Échalotes, Rocamboles, etc.). Elles le doivent aux sucs d'une saveur prononcée et d'un effet légèrement stimulant abondants dans toutes leurs parties et surtout dans leurs tiges bulbiformes. Cette propriété peut acquérir un degré de plus d'intensité, et les plantes à sucs àcres où elles se développent devenir ainsi utiles à la médecine, comme la Scille, les Aloès, et d'autres qu'il serait trop long d'énumérer.

Dans la famille voisine, celle des Mélanthacées (Colchique, Veratrum), on remarque beaucoup plus d'énergie encore, et l'on trouve de véritables poisons.

Parmi les familles à ovaire adhérent, nous en signalerons ici seulement deux.

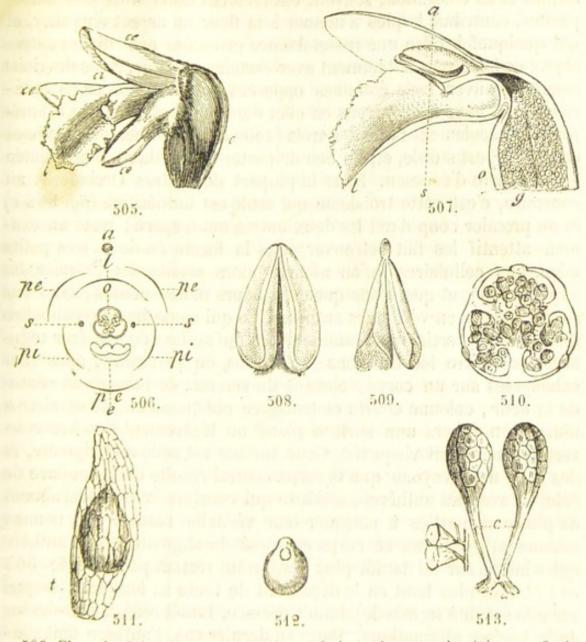
§ 564. Iridées. — Celles-ci, assez ressemblantes aux précédentes, s'en distinguent facilement et par l'adhérence de l'ovaire au périanthe, et par leurs trois étamines placées devant les trois divisions extérieures du périanthe, et dont les anthères s'ouvrent en dehors (fig. 502). Leurs filets sont quelquefois soudés en un tube. Les trois stigmates opposés aux anthères s'élargissent dans plusieurs en autant d'expansions pétaloïdes (fig. 503 s), et ce sont eux qu'on récolte dans le Safran, où ils servent et par leur saveur si connue et par le principe colorant qu'ils renferment en grande quantité. Le périsperme des graines (fig. 504) est quelquefois formé par

une chair dense, d'autres fois tout à fait corné. Cette consistance, qui rappelle celui du café, a suggéré l'idée d'essayer en remplace-

504.

ment celui d'une espèce d'Iris (*I. pseudoacorus*), et l'on prétend que, torréfié et préparé de même, il a présenté quelque analogie.

§ 562. Orchidées. — Les fleurs de cette famille fixent l'attention de l'observateur superficiel par la bizarrerie de leurs formes; du botaniste par une structure particulière. Cherchons, pour la bien comprendre, à la ramener au type connu des Monocotylédonées. Le périanthe adhérent avec l'ovaire, qui est sessile, se partage audessus de lui en six divisions, trois extérieures assez semblables entre elles, et trois intérieures différentes des premières, et les unes des autres. En général, les premières et deux des secondes se redressent en haut du côté de l'axe de l'inflorescence, la sixième se déjette en sens contraire, et de cette manière le périanthe devient comme labié, la lèvre supérieure étant formée par l'ensemble de cinq divisions, l'inférieure par la sixième, qui de là prend le nom de


502. Diagramme de la fleur de l'Iris germanica. — a Position de l'axe dans l'inflorescence.

503. Coupe verticale de cette fleur. — ce Divisions externes du périanthe. — ci Divisions internes. — t Son tube, au-dessus de la partie adhérente à l'ovaire. — o Cet ovaire. — g Ovules. — e Étamines. — s Stigmates.

504. Graine supérieure et coupée dans sa longueur. — t Téguments. — p Périsperme. — c Embryon. — m Micropyle.

ORCHIDÉES.

labelle. Dans la fleur très jeune, ce labelle était situé du côté de l'axe (fig. 506); mais plus tard l'ovaire, en se tordant sur lui-même,

505. Fleur du Spiranthes autumnalis, après la torsion, vue de côté. — o Ovaire avec le périanthe adhérent. — cc Divisions externes du périanthe. — ci Divisions internes, dont l'inférieure l, plus développée, prend le nom de labelle.

506. Diagramme de cette fleur avant la torsion. — a Axe de l'épi. — pe Divisions externes du périanthe. — pi Divisions internes. — l Labelle. — e Anthère fertile. — s Anthères avortées ou staminodes. — o Ovaire.

507. Sommet de la fleur coupée verticalement.— o Ovaire adhérent couvert d'ovules g pariétaux. — l Labelle. — s Stigmate. — a Anthère.

508. Anthère vue séparément du côté de sa face interne pour montrer ses deux loges.

509. Masses polliniques granuleuses retirées de l'anthère.

510. Coupe horizontale de l'ovaire, avec ses placentas pariétaux.

511. Une graine séparée, avec son tégument externe t.

512. Embryon de l'Ophrys anthropophora dépouillé de ses téguments.

513. Masses polliniques de l'Orchis maculata, à grains liés en petites masses en forme de coin, dont on a figuré deux séparées sur le côté. — c Caudicule terminée inférieurement par le rétinacle.

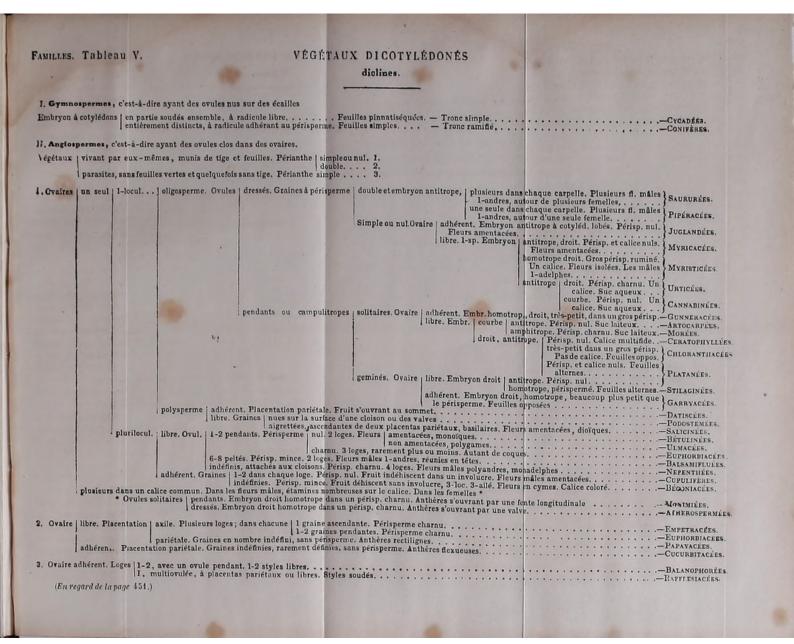
a interverti la position des parties en les portant dans celle où nous les montre la fleur épanouie (fig. 505). C'est le labelle qui, par ses formes et sa coloration, souvent entièrement différentes des autres parties, contribue le plus à donner à la fleur un aspect singulier, et qui quelquefois offre une ressemblance grossière avec divers autres objets de la nature, notamment avec certains insectes. Nous devrions ensuite trouver trois étamines opposées aux trois divisions extérieures, et nous les trouvons en effet dans le Sabot de Vénus (Cypripedium); seulement l'une des trois (celle qui est située vers le haut de la fleur) est stérile, et, au lieu de porter une anthère, s'est dilatée en une sorte d'écusson. Dans la plupart des autres Orchidées, au contraire, c'est cette troisième qui seule est anthérifère (fig. 506 e) et au premier coup d'œil les deux autres ont disparu ; mais un examen attentif les fait retrouver sous la forme de deux très petits mamelons cellulaires qu'on nomme alors staminodes (staminodia [*jig*: 506 s]), et que, dans quelques fleurs monstrueuses, on a vus se développer en véritables anthères. Ce qui empêche de reconnaître facilement ce verticille d'étamines, c'est qu'au lieu de s'insérer régulièrement entre les divisions intérieures du périanthe, elles sont exhaussées sur un corps s'élevant du sommet de l'ovaire au centre de la fleur, colonne courte et tronquée obliquement, de manière à tourner en dehors une surface plane ou légèrement concave couverte d'un enduit visqueux. Cette surface est celle du stigmate, et dès lors nous voyons que le corps central résulte de la soudure de celui-ci avec les anthères, soudure qui conspire avec l'avortement de plusieurs parties à masquer leur véritable nature. On nomme colonne ou gynostème ce corps composé du stigmate et de l'anthère qui s'insère sur lui tantôt plus bas, en lui restant parallèle (fig. 507 as), tantôt plus haut en le dépassant de toute sa longueur (auquel cas elle est dite terminale), tantôt dressée, tantôt réfléchie au-dessus de la surface stigmatique. Dans ce dernier cas, l'anthère finit souvent par se détacher; dans les autres, elle persiste en place même après l'émission du pollen. Celui-ci offre une structure insolite, l'apparence de plusieurs masses distinctes avant la consistance de la cire, ou d'un plus grand nombre de plus petites en forme de coin, reliées en une seule sur une sorte d'axe d'une substance visqueuse (fig. 513); mais d'autres fois, celle plus usitée d'un amas de poussière, à grains souvent encore agglomérés quatre par quatre, probablement ainsi qu'ils se sont formés dans leurs cellules-mères. On a reconnu que dans tous les cas il est composé de grains analogues à ceux d'un pollen ordinaire, et séparables, mais liés entre eux plus ou moins lâchement par une autre matière. L'anthère (fig. 508) est partagée en deux loges qui s'ouvrent du côté du stigmate, et sou-

ORCHIDÉES.

vent chacune d'elles est subdivisée par des cloisons intérieures en plusieurs logettes. Chaque loge ou logette est remplie par une masse pollinique (fig. 509, 543), celle qui résulte de cette conglutination des grains de pollen dont nous venons de parler. On compte donc toujours deux de ces masses ou un nombre plus grand multiple de deux. Chacune d'elles quelquefois se rétrécit inférieurement en une sorte de queue (caudicule [fig. 543 c]), et celle-ci dans quelques cas est terminée par un petit corps glanduleux (rétinacle) qui va se loger dans une pochette (bursicule) située au-dessous de l'anthère. Nous devions entrer dans tous ces détails, parce que c'est d'après ces diverses modifications que sont établies plusieurs tribus dans cette grande famille, suivant la nature du pollen, le nombre de ses masses, la forme de chacune munie ou non d'une caudicule avec ou sans rétinacle, la direction générale de l'anthère. Pour l'élève qui ne voudra pas entrer dans leur étude, il suffit de se rappeler qu'il y a une seule anthère à deux loges contenant chacune une ou plusieurs masses de pollen.

Quant à l'ovaire, il est beaucoup plus uniforme dans toute la famille, tordu sur lui-même, ainsi que nous l'avons dit, et creusé à l'intérieur d'une seule loge qui communique par un assez large canal avec le milieu de la surface stigmatique. De ce canal jusqu'au bas courent sur la paroi interne trois placentas longitudinaux opposés aux divisions internes du périanthe et tout chargés d'ovules par milliers (fig. 507 g). L'ovaire devient une capsule dont nous avons décrit (§ 434, fig. 392) la singulière déhiscence, par laquelle les trois placentas persistent, attachés en bas au pédoncule, en haut par le périanthe, tandis que trois panneaux intermédiaires se détachent et tombent. La Vanille, par son fruit indéhiscent et pulpeux, fait exception à cette règle.

Les graines, innombrables et très menues, sont scobiformes, c'està-dire rappellent par leur aspect de la fine sciure de bois. En les examinant mieux on trouve qu'en général elles présentent un tégument extérieur lâche, allongé en fuseau (fig. 514 t), et un autre beaucoup plus dense, sphéroïde ou ovoïde, sous lequel est une petite masse cellulaire, en apparence indivise, mais où le microscope fait découvrir une petite fossette (fig. 512) dont le bord se relève un peu de côté, et d'où, par la germination, partira l'axe de la plante, ce qui permet de considérer le bord relevé de la fossette comme le cotylédon, et son fond comme la gemmule. Nous aurions donc ici encore un développement énorme de la tigelle. Cette masse embryonaire paraît avoir son analogue dans le tubercule qu'on observe à la base de beaucoup d'Orchidées toutes développées. C'est de ce


tubercule que part la tige de l'année, puis il se flétrit et il s'en forme à côté un autre pour l'année suivante.

Les véritables racines sont fasciculées (fig. 444); les tiges simples ou ramifiées; les feuilles simples, entières, marquées de nervures longitudinales, quelquefois articulées à leur base, et dans beaucoup d'espèces exotiques renflées au-dessous de l'articulation en une masse charnue. Nos Orchidées croissent sur la terre; dans les régions tropicales on en trouve un grand nombre sur les arbres (*Orchidées épiphytes*), non qu'elles y vivent en parasites, mais elles s'établissent dans les fentes, les trous, les angles qu'elles y rencontrent, et trouvent sans doute dans le terreau amassé à ces points une nourriture suffisante : leurs racines en tirent probablement la plus grande partie de l'humidité de l'air, avec lequel elles sont en contact et dont elles paraissent avoir le plus impérieux besoin. De là l'habitude actuelle de les cultiver dans des paniers à claire-voie, en n'entourant leur base que de mousse humide ou de mottes de terre entre lesquelles l'air puisse librement circuler.

Si l'on en excepte la Vanille, dont le fruit, légèrement charnu, renferme un principe d'un parfum si délicieux, et fournit en conséquence un assaisonnement si recherché, on ne trouve guère dans les Orchidées d'autres parties employées que les tubercules de quelques espèces avec lesquelles on prépare un aliment très restaurant, le salep, mélange de la fécule qui y abonde avec les téguments qui la renferment, et d'un autre principe analogue aux gommes et nommé bassorine, qui se trouve concentré dans de petits noyaux de consistance cornée, disséminés dans la masse de ces tubercules. Malgré des usages si bornés, les plantes de cette famille sont extrêmement recherchées à cause de la beauté et de la bizarrerie de leurs fleurs; leur culture, qui demande la serre chaude, est devenue dans certains pays une véritable mode, et, tandis que Linné n'en connaissait qu'une douzaine d'espèces exotiques, on en compte plus de quinze cents dans les catalogues de plusieurs jardins modernes.

VÉGÉTAUX DICOTYLÉDONÉS.

§ 563. Les Dicotylédonées, qui forment la plus grande partie des plantes phanérogames, ont dû nous occuper beaucoup et nous fournir la plupart de nos exemples. Leurs caractères généraux et les principaux points de leur organisation se trouvent donc déjà précédemment exposés, et plusieurs chapitres leur sont plus particulièrement consacrés. C'est ainsi que nous avons fait connaître leurs tiges (§§ 48-74, 249-254), leurs racines (§400), leurs feuilles

VÉGÉTAUX DICOTYLÉDONÉS.

(§§111-121, 131), la symétrie de leur fleur, les modifications de leur embryon (§§ 27, 28, 466-470), celles de leur graine et sa germination (§ 488). La revue de leurs familles complétera la connaissance de leurs caractères en nous donnant l'occasion de montrer comment ils se diversifient et se combinent, et de signaler ceux qui ont pu ou dû nous échapper dans une exposition très générale. Nous nous contenterons des notions exprimées par les tableaux pour la plupart de ces familles, n'en tirant à part pour un plus ample examen qu'un petit nombre; car, à cause de leur multiplicité, la place nous manquerait, et les différences ne porteraient pas toujours sur des points qui doivent nous arrêter ici.

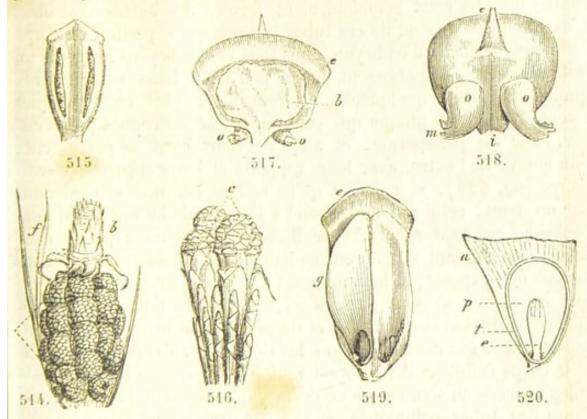
Nous rappellerons que nous suivons d'abord la première et grande division proposée par Jussieu, mais en intervertissant un peu son ordre et examinant successivement les diclines, les apétales, les polypétales et les monopétales.

VÉGÉTAUX DICOTYLÉDONÉS DICLINES.

(Tableau V, page 445.)

§ 564. Parmi les familles qui se rapportent à cette division, il y en a deux, les Conifères et les Cycadées, qui, par le caractère particulier de leur port général et de quelques uns de leurs organes, avaient dès longtemps frappé les botanistes, et dont la place à part vient d'être marquée plus nettement encore par des observations et des théories assez récentes. Nous avons décrit les ovules comme toujours renfermés dans un ovaire, et montré que les graines nues des anciens auteurs ne l'étaient pas en effet et ne le paraissaient réellement, dans quelques cas, que par la soudure des téguments de la graine avec ceux du fruit. Nous avons exposé la structure des ovules, consistant en un corps central ou nucelle dans une enveloppe simple ou double qui lui adhère par un bout et laisse à l'autre une petite ouverture. Or, les corps qui, dans les Conifères et les Cycadées, avaient été considérés comme des ovaires avec un style et un stigmate, suivant quelques uns même avec un calice adhérent, ne montrent pas à l'examen cette diversité de parties, mais semblent plutôt offrir la structure si simple d'ovules, un nucelle dans une enveloppe double béante au sommet ; seulement ici ce sommet se prolongerait (fig. 518 o) un peu plus longuement en pointe, en simulant une sorte de style, et le contour du micropyle s'ouvrirait quelquefois en se déchiquetant en manière de stigmate. On a en conséquence reconnu là des ovules que les écailles plus ou moins planes sur lesquelles ils s'insèrent, dressés ou pendants, n'enveloppent pas à la manière d'un péricarpe. Ce sont donc des oyules

nus, et l'on peut nommer gymnospermes (de $\gamma \circ \mu \nu \circ \varsigma$, nu, et $\sigma \pi \acute{e} \circ \mu \sigma$, graine) les végétaux qui les présentent; pendant que tous les autres, avec leurs ovaires clos, sont angiospermes (d'á $\gamma \gamma \epsilon \widetilde{\epsilon} \circ \nu$, vase): deux mots inventés par Linné, mais par lui appliqués à tort.


Ce caractère des organes de la reproduction, qui se lie à d'autres de la végétation, est assez important sans doute pour qu'on sépare ce petit groupe des Dicotylédonées gymnospermes de toutes les autres qui sont angiospermes. Nous ne l'avons pas fait ici pour troubler moins l'ordre établi, et parce qu'en faisant porter cette division sur les diclines seulement, la place de nos deux familles dans la série ne s'en trouvait en rien changée.

§ 565. Conifères. — Les arbres que nous connaissons plus particulièrement sous le nom d'arbres verts, appartiennent à cette famille, qui ne comprend aucune plante herbacée. Nous avons fait connaître (§ 7, fig. 33, 34) la nature particulière de leurs fibres marquées de grands pores régulièrement disposés. A l'exception de quelques trachées distribuées dans l'étui médullaire, ce sont ces fibres seules qui constituent tout le bois, et par lesquelles celui d'une Conifère peut facilement se distinguer de tout autre presque sans exception. La forme des feuilles réduites, comme dans les Pins, Sapins, Mélèzes, etc., à des lames étroites, ou même à des sortes d'aiguilles (fig. 119) est moins caractéristique ; car on les voit s'élargir davantage dans d'autres genres (Araucaria, Cuninghamia), et même tout à fait à la manière des limbes ordinaires (Dammara, Gincko). Faisons remarquer que dans plusieurs les derniers rameaux se raccourcissent assez pour que ces feuilles aciculaires se rapprochent en faisceaux et semblent partir deux ou plusieurs du même point (Pins, Mélèzes).

Les fleurs sont monoïques ou dioïques. Les mâles consistent en petits chatons (fig. 514) chargés d'anthères éparses ou plus souvent d'écailles qui portent une ou plusieurs anthères (fig. 545). Ils se groupent souvent en une inflorescence commune, une sorte d'épi serré. Chaque anthère ou chaque écaille staminifère est considérée comme une fleur. Les femelles sont ces ovules nus dont nous avons parlé, et qui, de forme un peu diverse, sont portés au nombre d'un, de deux ou plus sur une écaille (fig. 517, 518). Ces écailles ovuli-fères se groupent sur un axe commun en un cône plus ou moins allongé (fig. 397), et auquel on donne quelquefois aussi le nom de galbule, lorsqu'il est très court et composé d'un très petit nombre d'écailles (fig. 398). D'autres fois plusieurs écailles s'imbriquent sans porter d'ovule, mais forment ainsi une sorte d'involucre commun autour d'un seul ovule ou de deux au plus, qui alors sont en outre enveloppés plus ou moins complétement par une cupule.

CONIFERES.

La graine des Conifères est remarquable en plusieurs points et notamment par son développement différent de celui des autres phanérogames. En effet son périsperme ne s'organise pas après que

l'embryon, produit de la fécondation, a commencé à se développer, mais à une époque antérieure. C'est seulement lorsque cette masse celluleuse s'est formée au centre du nucelle, que vers son sommet se montrent plusieurs vésicules disposées ordinairement en cercle et affleurant presque sa surface ; c'est avec une ou plusieurs de ces vésicules que les tubes des grains de pollen, tombés sur le sommet du nucelle immédiatement, se mettent en rapport. Dans chacune alors se développe un des utricules contenus qui, se multipliant par

514-520. Organes de la fructification du Pin commun (Pinus sylvestris).

514. Agglomération de chatons mâles c. - f Feuilles. - b Bourgeon terminal.

515. Fleur mâle ou écaille anthérifère, vue séparément.

516. Trois agglomérations de fleurs femelles ou jeunes cônes c, à l'extrémité d'un rameau.

517. Une écaille détachée d'un de ces cônes et vue en dehors. — b Bractée. — e Écaille. — oo Sommet des ovules.

548. La même, vue en dedans. — e L'écaille. — i Le point par lequel elle s'insère sur l'axe. — oo Les deux ovules nus, renversés. — m Leur ouverture supérieure ou micropyle, qui est décrite comme stigmate par ceux qui voient là un ovaire au lieu d'un ovule.

549. La même, prise dans le cône mùr. — e et i, même signification. — g L'une des graines avec son aile. L'autre a été enlévée et l'on ne voit que son empreinte.

520. La graine, coupée longitudinalement. — a Base de l'aile. — t Tégument. — p Périsperme. — e Embryon. Auprès de la radicule on aperçoit deux petits corps qui sont deux autres embryons avortés.

division, finit par former un petit groupe et, en continuant son évolution, un faisceau de cellules tubuleuses, lequel perce la vésicule et s'étend dans une lacune centrale du périsperme, où il rencontre les faisceaux semblablement formés des autres vésicules. L'extrémité de chacun de ces tubes (suspenseurs) produit un corps celluleux, ébauche d'embryon. Mais tous ces embryons, excepté un ordinairement, disparaissent peu à peu avec leurs suspenseurs, quoiqu'on puisse quelquefois en rencontrer plus tard quelques traces. L'embryon unique qui continue à s'accroître finit par occuper l'axe du périsperme, et alors ces deux corps se présentent, l'un autour de l'autre, avec leurs rapports et leurs apparences ordinaires (fig. 520), si ce n'est qu'ils restent continus et confondus par un bout, celui qui correspond à la radicule ou mieux au suspenseur (embryon synorhizé de Richard). Mais on a pu se convaincre en suivant attentivement leur développement tel que nous venons de l'exposer, et le comparant à celui des graines ordinaires, que les choses se sont passées ici d'une autre manière, que les analogues du sac embryonaire et du périsperme ne sont pas rigoureusement le sac développé dans les Conifères au centre du nucelle et le corps celluleux dont il s'est rempli, puisque ce sont les vésicules formées au sommet de ce dernier qui recoivent l'action fécondante des tubes polliniques, et qui par conséquent jouent le rôle d'autant de sacs embryonaires.

Au mode de formation de l'embryon, à la soudure de son extrémité avec le tissu environnant, ajoutons l'existence fréquente de plus de deux cotylédons, soit que ces premières feuilles soient en effet verticillées en nombre plus ou moins grand, soit qu'il n'y en ait que deux opposées réellement, mais chacune divisée en plusieurs jusqu'à sa base (§ 468).

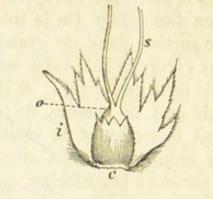
La pluralité d'embryons existe également dans les Cycadées, et plus marquée encore. Car leurs rudiments persistent réunis par de longs suspenseurs à l'extrémité radiculaire de l'embryon qui s'est complétement développé, et les cavités vésiculaires où ils se sont formés s'observent facilement à l'œil nu, disposés en cercle vers le haut du corps périspermique.

On voit à quel degré de simplicité descendent dans ce groupe les organes de la reproduction, réduits à des anthères et des ovules, quelquefois même à leur unité. On n'en trouve pas de plus ni même d'aussi simples dans les Monocotylédonées, et c'est ce qui nous a fait dire que ces deux grands embranchements des Phanérogames, considérés sous ce rapport, marchent plutôt parallèlement que successivement en une série progressive.

Le bois des Conifères est employé avec avantage pour toutes

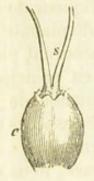
AMENTACEES.

sortes d'ouvrages et de constructions. Il le doit à l'abondance de la résine sécrétée dans son tissu, qui lui communique un degré plus ou moins grand d'imperméabilité à l'eau, et, par suite, une grande durée de conservation. Cette résine, liquide pendant la vie, se concrète après la mort par l'évaporation des huiles essentielles qui la tiennent en dissolution. On la trouve dans toutes les parties, mais accumulée surtout dans de grandes lacunes régulièrement distribuées dans l'écorce. Elle varie suivant diverses espèces, où elle se mélange de principes divers, et d'après ces différents états. prend les noms de poix, de baumes, de térébenthine. C'est aussi de là que proviennent le storax et la sandaraque. Les résines exercent sur l'économie animale un effet stimulant ou même irritant, pour lequel elles servent à la médecine, qui emploie en conséquence diverses parties ou divers produits de plusieurs espèces appartenant à la famille qui nous occupe. Les galbules du Genièvre, qu'on nomme à tort baies, à cause de leurs écailles charnues soudées en un corps en apparence simple, servent dans la fabrication de la liqueur de ce nom, autrement gin, qui lui doit sans doute sa saveur dominante et quelques unes de ses propriétés, mais à laquelle concourent plusieurs autres fruits indigènes sauvages, plus riches en principes sucrés. Les résineux n'existent pas encore dans l'amande de la graine; douce et huileuse, elle se mange dans quelques espèces où elle est assez volumineuse, notamment dans le Pin pignon.

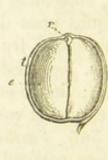

§ 566. Parmi toutes les familles diclines angiospermes, nous en citerons particulièrement quelques unes.

Autrefois on en confondait plusieurs sous le nom d'Amentacées, toutes unies par le caractère commun de leurs fleurs mâles en chaton, et auxquelles se lient, par ce même caractère, les Juglandées, différentes cependant par leurs feuilles composées et non simples comme dans toutes les autres. Avec les Conifères, ces familles sont celles qui fournissent presque tous les grands arbres de nos pavs et dont les espèces composent nos forêts : les Bétulinées, l'Aune et le Bouleau ; les Cupulifères, le Chêne, le Châtaignier, le Hêtre, le Coudrier (fig. 521-527), le Charme; les Salicinées, le Peuplier et le Saule : les Platanées, le Platane ; les Ulmacées, l'Orme et le Micocoulier ; les Juglandées, le Noyer. Les Myricées ne sont représentées chez nous que par d'humbles arbustes, mais dans les archipels de l'Asie par de grands arbres dont le port rappelle celui de certaines Conifères, les Casuarina, type d'une petite famille distincte pour quelques auteurs. L'utilité de ces végétaux pour l'homme, de tous par leur bois, de beaucoup par la propriété tannante de leur écorce, de quelques uns par leurs graines, est trop connue pour qu'il soit besoin de s'y arrêter. Remarquons seulement que c'est à

cause de la présence de la fécule et de l'huile mélangées en proportions diverses que ces graines, celles du Châtaignier, du Hêtre, du Noisetier, du Noyer, sont employées, les unes plus particulièrement



521.


523.

524.

527.

525.

à la nourriture, les autres à l'extraction de l'huile, ou à ce double usage concurremment.

§ 567. L'ancienne famille des **Urticées** en réunissait également plusieurs, maintenant séparées : 4° Celle qui conserve ce nom et qui a pour type le genre Ortie (*fig.* 528-533), si connu par l'effet de la piqure de ses poils dont nous avons fait connaître la structure

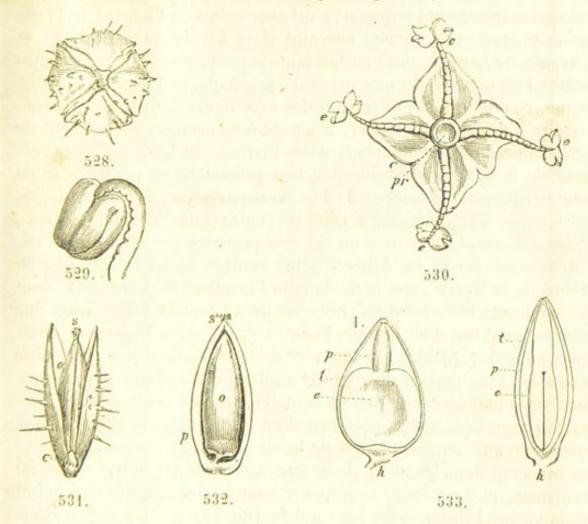
521-527. Organes de la fructification d'une Cupulifère, le Coudrier ou Noisetier (Corylus avellana).

521. Écaille staminifère e ou fleur mâle, vue séparément. - a Étamines.

522. Fleur femelle ff, très jeune, avec son involucre i.

523. La même, plus avancée, l'involucre i ouvert laissant voir l'ovaire o, couvert en grande partie par le calice c. - s Styles.

524. La même, coupée longitudinalement pour montrer ses deux loges avec un ovule pendant dans chacune.


525. La même, encore plus avancée.

526. Fruit mur f, enveloppé de l'involucre i.

527. Graine séparée, dont on a enlevé la moitié des téguments t, pour montrer l'embryon e. — r Badicule.

URTICEES.

(§ 477, fig. 171), effet d'une tout autre intensité de la part de plusieurs espèces des tropiques que de la part des nôtres, et qui provoque des inflammations violentes, prolongées, quelquefois, dit-on,

mortelles. 2° Les **Cannabinées**, auxquelles appartiennent entre autres le Houblon employé pour la fabrication de la bière, à laquelle il donne une amertume agréable due au principe résineux contenu dans les petits grains jaunâtres dont sa surface, celle des calices surtout, est toute saupoudrée, et qui constituent la lupuline; le Chanvre, si utile par la ténacité des fibres de son liber, ténacité

528-533. Organes de la fructification d'une Ortie (Urtica urens).

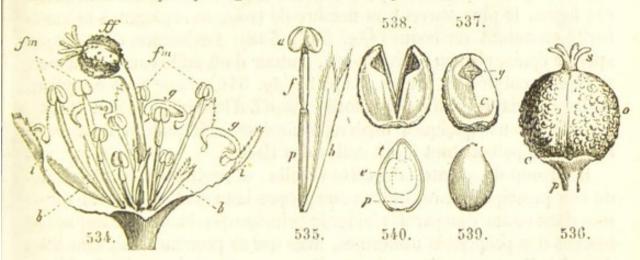
528. Bouton de la fleur mâle, vu d'en haut.

529. Étamine prise dans le précédent, pour faire voir la courbure et la structure de son filet motile, et celle de son anthère avant la déhiscence.

530. Fleur måle épanouic. — c Calice. — cecc Étamines redressées et ouvertes, hypogynes. — pr Rudiment du pistil central.

531. Fleur femelle. — c Calice à folioles inégales, deux extérieures beaucoup plus petites. — o Ovaire. — s Stigmate sessile.

532. Pistil, coupé verticalement pour faire voir la direction de l'ovule o. - p Paroi de l'ovaire. - s Stigmate.


533. La graine, coupée verticalement, parallèlement 1 et perpendiculairement 2 aux cotylédons. — t Tégument. — h Hile. — p Périsperme. — c Embryon.

qui, au reste, est aussi l'attribut de plusieurs autres plantes de cette famille et de la précédente, des Orties elles-mêmes. La graine du Chanvre est le chènevis. Ses feuilles renferment un principe narcotique extrêmement puissant ; c'est avec celles du Chanvre de l'Inde qu'on prépare cet aliment enivrant si recherché dans l'Égypte et l'Arabie, le hashish, dont on fait tant de récits merveilleux, et entre autres l'étymologie du mot assassin, parce que le Vieux de la montagne, ce chef qui savait trouver des exécuteurs pour tous les meurtres qu'il voulait commander, avait obtenu l'aveugle dévouement de ses sectaires en leur donnant, dans l'ivresse du hashish, un avantgoût de la béatitude céleste qu'il leur promettait en récompense de leur périlleuse obéissance. 3º Les Artocarpées, parmi lesquelles on compte deux végétaux célèbres entre tous les alimentaires, comme donnant un pain et un lait tout préparés par la nature : l'un, l'Artocarpus incisa ou Arbre à pain; l'autre, le Galactodendron ou Arbre de la vache, qui croît dans la Cordillère de Venezuela, dont les habitants le mettent en traite réglée: il fournit par incision une énorme quantité d'un liquide blanc et épais qui a le goût et quelques unes des qualités du lait véritable. Il contient plus de moitié d'eau, et, avec un peu de sucre et d'albumine, une très grande proportion d'une matière grasse à laquelle paraissent dues ses principales propriétés. Cette présence d'un suc laiteux et abondant est commune aux autres plantes de la même famille ; mais, salutaire ou innocent dans les unes, il devient âcre dans les autres et même vénéneux, et il est assez singulier d'avoir à citer, auprès de l'Arbre de la vache, l'Antiaris de Java qui fournit l'upas, un des poisons renommés comme les plus violents et sujet aussi de contes bien terribles. On peut en révoquer en doute la plus grande partie, mais non la propriété fondamentale due à la présence de la strychnine, alcaloïde bien étudié et expérimenté par la chimie et la médecine. 4º Les Morées, remarquables par quelques arbres : comme le Mûrier et le Figuier. Les espèces de ce dernier genre sont extrêmement nombreuses et contiennent aussi, de même que la plupart des autres plantes de la famille, un suc laiteux ordinairement fort âcre. Comme celui de la précédente, il mérite l'attention par la présence d'un principe particulier et utilement employé dans l'industrie, le caoutchouc, qui du reste existe fréquemment dans les sucs de cette nature, quoique extraits de végétaux appartenant à plusieurs familles très différentes.

§ 568. Les **Euphorbiacées** sont considérées par plusieurs auteurs comme devant se classer parmi les polypétales hypogynes, non loin des Malvacées ou des Rutacées ; ce qui peut être vrai, si l'on ne considère que leurs genres à fleurs bien manifestement péta-

EUPHORBIACEES.

lées. Mais nous voyons dans le tableau V que nous y sommes aussi arrivés d'un autre côté par l'existence de fleurs à périanthe simple ou même nul. C'est qu'en effet cette grande famille offre une extrême variété sous le rapport de la composition de la fleur, qui, presque complète dans certains genres (le *Jatropha*, *fig.* 228, par exemple), descend successivement dans d'autres jusqu'au dernier degré (l'Euphorbe, *fig.* 233, 534, 535, 536, par exemple). Nous observons assez souvent quelques genres moins complets que les autres dans

une même famille; ils en sont membres par quelques caractères essentiels, mais membres appauvris et dégradés, qui la représentent mal : et alors, en général, c'est aux plus complets qu'il convient de s'adresser pour déterminer le véritable type de la famille masqué par des réductions dans les autres. Mais, dans les Euphorbiacées, c'est la minorité qui présenterait ce type plus élevé, tandis que la grande majorité offre dans sa fleur, particulièrement dans le grand genre Euphorbe, d'où elles tirent leur nom, une simplicité extrême, qui, assimilant parfois leur inflorescence entière à une fleur (fig. 534), les rapproche ainsi d'une autre part de beaucoup d'Amentacées et Urticées. Quoi qu'il en soit de la place définitive des Euphorbiacées,

534-540. Organes de la fructification d'un Euphorbe (Euphorbia palustris).

534. Inflorescence dont on a ouvert et écarté l'involucre i pour montrer la situation des fleurs qu'il renferme. — gg Lobes glanduleux alternant avec autant de divisions, b Lames membraneuses ou bractées à la base des fleurs. — fm fm Fleurs mâles, consistant chacune en une étamine. — ff Fleur femelle centrale.

535. Une fleur måle séparée. — b Bractée. — p Pédicelle. — f Filet articulé sur le pédicelle. — a Anthère.

536. Fleur femelle. — p Sommet du pédicelle qui la porte. — c Calice. — o Ovaire. — s Stigmates.

537. Une coque c séparée, vue du côté interne. On aperçoit la graine g à travers l'ouverture par laquelle pénétraient ses vaisseaux nourriciers.

538. Coque séparée, après la déhiscence et l'émission de la graine.

539. Graine.

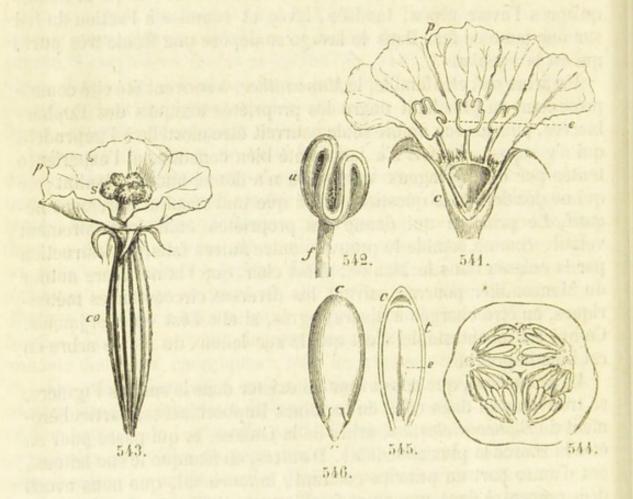
540. La même, coupée verticalement.— t Téguments.— p Périsperme.— e Embryon.

marquée plus bas dans la série par la structure du plus grand nombre de ses genres, plus haut par celle de quelques uns dont la fleur s'élève en composition, on peut suivre la progression insensible des uns aux autres ; et tous d'ailleurs se lient ensemble par quelques caractères communs, comme la séparation constante des étamines et des pistils dans des fleurs différentes, l'hypogynie des étamines distinctes ou souvent réunies, l'ovaire libre à plusieurs loges avec un ou au plus deux ovules pendants de l'angle interne dans chacune, ces loges, le plus souvent au nombre de trois, se séparant à la maturité en autant de coques (fig. 537, 538); l'existence d'un périsperme épais, charnu, oléagineux, autour d'un embryon à radicule supère, à cotylédons larges et aplatis (fig. 540). Leur port est très varié, depuis celui d'arbres élevés jusqu'à d'humbles herbes. Il est singulier dans quelques espèces africaines d'Euphorbe dont les formes rappellent tout à fait celles des Cactus.

Beaucoup de plantes de cette famille, et particulièrement celles de son principal genre, ont un suc propre laiteux et âcre. C'est surtout dans ce suc que paraît résider le principe qui donne aux Euphorbiacées des propriétés uniformes, mais qui se prononce inégalement dans les diverses espèces, de manière que son action, réduite dans les unes à une irritation légère, détermine dans les autres une vive inflammation jusqu'au point où elle devient un violent poison. Les diverses parties où les vaisseaux propres abondent, la racine, les feuilles, l'écorce surtout, devront donc déterminer sur l'économie animale des effets énergiques; mais les graines sont aussi dans ce cas. On a fait à leur sujet cette remarque ingénieuse qu'il n'y a pas identité dans les propriétés de leurs parties différentes, et que celles de l'embryon, de la radicule particulièrement, sont beaucoup plus prononcées que celles du périsperme. Cette inégale répartition des principes les plus actifs dans les diverses portions d'une même plante rend compte des résultats contradictoires auxquels ont souvent conduit des expériences qui négligeaient de tenir compte de la portion employée. La médecine s'est beaucoup servie de ces vertus des Euphorbiacées pour en obtenir des médicaments émétiques (par exemple, des racines de l'Euphorbia ipecacuanha) ou plus fréquemment purgatifs. Mais, pour ceux-ci, elle a dès longtemps abandonné, comme trop dangereux, le suc laiteux et concentré qu'on' tirait de certaines espèces d'Euphorbe, notamment des charnues, et elle emploie de préférence l'huile tirée des graines : de celles du Ricin ou Palma-Christi, par exemple, si l'on veut une action douce; de celles du Croton tiglium, si l'on en veut une extrêmement active. Les Jatropha, ou Médiciniers, doivent ce dernier nom à la même origine.

CUCURBITACEES.

Il est bien remarquable que nous trouvions, à côté de médicaments et même de poisons énergiques, un aliment très doux, comme la farine de *Manioc* ou *Cassave*, fournie par le *Janipha*, genre tout voisin des précédents, et servant à la nourriture d'une grande partie de la population de l'Amérique méridionale. Cette contradiction n'est qu'apparente: la racine épaisse et charnue dont on extrait cette farine serait fort dangereuse crue, et le lait dont elle est alors remplie cause des accidents terribles et même une mort prompte; mais la cuisson détruit le principe vénéneux, et, en conséquence, on ne la mange qu'après l'avoir ràpée, tamisée, lavée et soumise à l'action du feu sur une lame de fer. Dans le lavage se dépose une fécule très pure, qui est le *tapioka*.


Un arbre de cette famille, le *Mancenillier*, a souvent été cité comme présentant au plus haut degré les propriétés toxiques des Euphorbiacées, puisque son ombre seule pourrait être mortelle à l'imprudent qui s'y repose. Le fait n'a jamais été bien constaté, et l'expérience tentée par de courageux voyageurs n'a donné aucun résultat; ce qui ne décide pas la question, ainsi que tout résultat purement négatif. Le principe qui donne ces propriétés étant ordinairement volatil, comme semble le prouver, entre autres faits, sa destruction par la cuisson dans le Manioc, il est clair que l'atmosphère autour du Mancenillier pourra, suivant les diverses circonstances météoriques, en être chargée à divers degrés, si elle l'est en effet jamais. Ce qui est incontestable, c'est que le suc laiteux du même arbre en est bien imprégné.

Le caoutchouc, que nous avons vu exister dans le suc des Figuiers, se trouve aussi dans celui de certaines Euphorbiacées, particulièrement du Siphonia elastica, arbre de la Guiane, et qui passe pour en être la source la plus abondante. D'autres, où manque le suc laiteux, ont d'autre part un principe colorant, le tournesol, que nous avons déjà rencontré dans une autre famille toute différente, les Lichens, d'où le commerce le tire de préférence. Une petite plante, commune dans le midi de la France, le Crozophora tinctoria a été longtemps exploitée pour cet usage.

§ 569. Les **Cucurbitacées** s'éloignent bien plus certainement que la famille précédente de toutes celles que nous avons énumérées dans cette division, et deivent plutôt prendre place parmi les polypétales périgynes, auprès des Passiflorées et des Loasées, malgré leurs fleurs diclines, et quoique leur périanthe interne, lorsqu'il existe, ne soit pas franchement une corolle et ne se partage pas en pétales distincts. Il suffit de citer le Melon, la Pastèque, la Citrouille, le Concombre, pour faire connaître et les aliments qu'elle fournit à

39.

l'homme, et l'aspect général des plantes qui la composent, avec leurs tiges herbacées rampantes ou grimpantes, garnies de feuilles palmatinerves et lobées, ainsi que de vrilles dont la situation anomale sur le côté et non à l'aisselle du pétiole mérite d'être signalée. Dans les fleurs, quelquefois fort grandes, le calice, terminé par cinq dents, se double intérieurement d'une seconde enveloppe qui lui appartient peut-être aussi. Il porte dans les mâles cinq étamines à filets élargis chargés d'une anthère flexueuse (fig. 542), souvent groupées en

trois (fig. 544). Dans les femelles l'ovaire se soude complétement avec lui (fig. 543), porte ses ovules sur trois placentas pariétaux charnus et saillants dans l'intérieur de la loge (fig. 544), de manière

541-546. Organes de la fructification du Concombre (Cucumis sativus).

541. Fleur mâle, dont les enveloppes ont été fendues dans leur longueur et écartées pour montrer l'intérieur. — e Calice. — p Calice interne coloré ou corolle. — e Étamines périgynes.

542. Une étamine séparée. — f Filet. — a Anthère.

543. Fleur femelle. — co Calice soudé avec l'ovaire. — p Corolle. — s Stigmates.

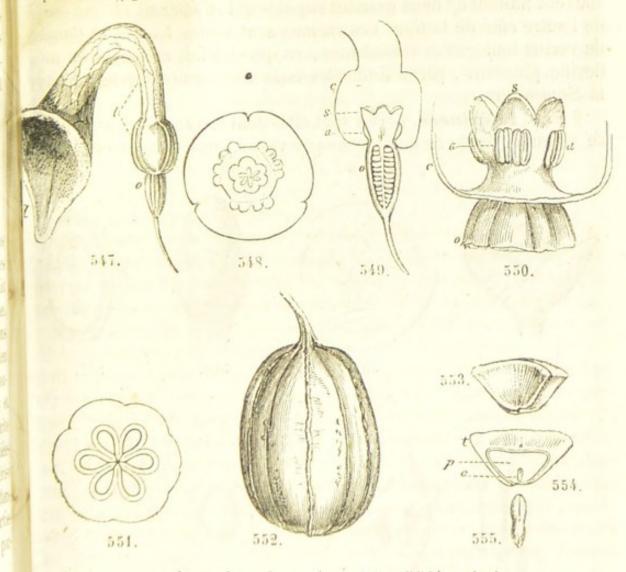
544. Tranche horizontale de l'ovaire, montrant sa division en trois loges et l'insertion pariétale de ses ovules.

545. Graine coupée verticalement. — t
 Tégument renflé à la chalaze c. — e Embryon
 546. Embryon séparé. — r Badicule. —
 c Cotylédons.

	Santalacées. Myrodalanées. Samvdées.	Laurinėes. Ėlæagnėes.	ProréAcies.	renæadels. Aquilarinées.	Thymélæacées. Phytolacinées.	Polygonées. Scléranthées.	Atriplicées. Amarantacées.	NYCTAGINĖES.
Embryon droit occupant l'axe de la graine, dans un périsperme charan ou sans périsperme	C - O N A	1 loge 1-2 Ovules pendants. Radic, supère, Pas de périsperme. par des fentes; en nombre égal ou double des fel. calic. Ovaire enve- loppé par le cal. 1-loc. 1 ovule dressé. Radicule inf. Périsperme. égal lopposées aux div. du cal. 4-parti et	insérées vers son sommet. Ovaire 1-loc. 1-2-plus. ovules. Rad. infere. Pas de périsperme	egal ou double des div. du calice tubuleux, 4-5 lobé * ovaire[2-loc 1 ovule wendent Badic su-	eurs 1-sp. et autant de styles distincts. Calice herbacé ou coloré, 4-5-parti	Une scule. Embryon latéral à peine courbe, antitrope à radicule supère. Calice herbacé ou coloré, 5-4-5-6 parti. Etamines en nombre égal ou plus. 2-4 styles	 5-5-parti, herbacé. Etamin. en nombre égal opposées. Une seule graine. 4-5 stigmates distincts 5-5-parti, scarieux, avec 2 bractéoles. Etam. en nombre égal opposées, ou double; les alternes stéril. Une ou plusieurs graines. Style simp. Stiem. simple ou lobé. 	Juvolucre 1-multi-flore. Calice tubuleux, pétaloïde, dont la base durcie enveloppe le fruit. Limbe 4-10-divis. Etamines hypogynes en nombre égal, moindre ou plus grand. Une g aine. Style et stigmate simples.

à la remplir presque entièrement; il se termine par un style court et un stigmate épais et velouté. Nous avons vu, par les exemples cités, la nature des fruits, qui, quelquefois assez petits, acquièrent d'autres fois d'énormes dimensions et souvent des formes bizarres, dans les Calebasses, par exemple. Les graines, nombreuses et plates, contiennent, sous un testa coriace, un embryon sans périsperme, tournant sa radicule du côté du point d'attache (fig. 545-546).

VÉGÉTAUX DICOTYLÉDONÉS à fleurs hermaphrodites APÉTALES.


(Tableau VI, page 463.)

§ 570. Nous savons que Jussieu divisait les Apétales en trois classes : les Épistaminées, Péristaminées et Hypostaminées. Des familles énumérées dans le tableau VI, la première seule composait la première classe, les deux dernières se rapportaient à la troisième, tout le reste à la seconde. Nous n'avons pas suivi cette division dans ce tableau, parce que l'insertion périgynique des étamines, bien évidente, il est vrai, dans la plupart de ces familles, le devient beaucoup moins dans les Polygonées, surtout dans les Atriplicées et Phytolacinées, où elle passe quelquefois à l'hypogynique et mérite ce dernier nom presque autant que dans les deux suivantes, liées d'ailleurs avec elles en un grand groupe très naturel et caractérisé par la structure particulière de la graine. Faisons remarquer que dans ces familles apétales on observe très communément, dans les parties de la fleur, un nombre autre que 5, souvent le nombre 3 plus particulièrement propre aux Monocotylédonées.

§ 574. Aristolochiées. — Ces plantes sont remarquables par plusieurs caractères, et notamment par l'insertion des étamines franchement épigynes (ce qui est un cas assez rare) et le nombre ternaire des parties. Le calice adhérent à l'ovaire (fig. 547) se prolonge au-dessus de lui en un tube souvent renflé que terminent trois segments tantôt égaux, tantôt inégaux, à préfloraison valvaire. Ce limbe calicinal présente souvent des couleurs assez vives, et quelquefois des dimensions telles qu'on cite en Amérique la fleur d'une espèce dont les enfants se coiffent comme d'un bonnet. Les étamines, au nombre de 6 à 42, ou rarement indéfinies, sont en général réduites à des anthères presque sessiles portées sur un disque annulaire épigynique ou soudées avec la base du style, avec lequel elles semblent ainsi faire corps (fig. 550). Le style, court, en forme de colonne, que couronne un stigmate divisé en 6, 4 ou 3 rayons, termine un ovaire partagé en autant de loges, dont chacune renferme un grand nombre d'oyules attachés sur un ou deux rangs à l'angle interne, ascendants

ARISTOLOCHIÉES.

ou horizontaux. Il devient un fruit charnu, ou plus ordinairement capsulaire (fig. 552), à déhiscence loculicide, et dont chaque loge

contient un grand nombre de graines (fig. 553) aplaties ou angueuses, présentant, vers le sommet d'un gros périsperme charnu u légèrement corné, un embryon très petit, droit, dont la radiule, plus longue que les cotylédons, se dirige vers le point d'at-

547-555. Organes de la fructification d'une Aristoloche (Aristolochia clematitis).
547. Fleur entière. – o Partie du calice adhérente à l'ovaire. — t Partie supérieure
son tube inférieurement renflé. — l Son limbe prolongé latéralement en languette.
548. Diagramme de cette fleur.

549. Portion inférieure de cette fleur coupée verticalement. — o Ovaire. — s Stigate. — a Anthères. — c Renflement du tube calicinal.

550. Stigmate s avec les anthères aa accolées deux à deux aux lobes, — o Sommet 2 l'ovaire. — c Renflement du tube calicinal.

551. Tranche horizontale de l'ovaire.

552. Fruit mûr.

553. Graine.

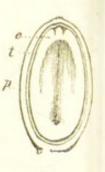
al ta

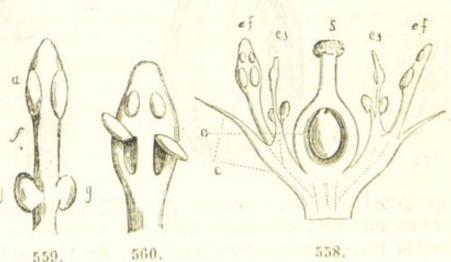
192

554. La même, coupée verticalement. — t Tégument épaissi du côté de la chalaze. — Périsperme. — e Embryon.

555. Embryon séparé.

tache (fig. 554). Les tiges sont herbacées ou frutescentes: dans ce dernier cas souvent grimpantes; les feuilles alternes et simples, souvent munies de deux grandes stipules qui se soudent en une seule de l'autre côté de la tige. Les racines sont toutes amères et douées de vertus toniques et stimulantes, ce qui en a fait employer en mé-decine plusieurs, parmi lesquelles nous nous contenterons de citerr la Serpentaire.


§ 572. Laurinées. — Ce sont elles dont les anthères présentent ce singulier mode de déhiscence par valves, que nous avons décrit


556.

562.

autre part (§ 353, fig. 289), et quelquefois l'existence de quatr loges superposées deux à deux (fig. 560) : organisation extrêmemer

556-562. Organes de la fructification du Cannellier (Laurus cinnamomum).

556. Fleur entière.

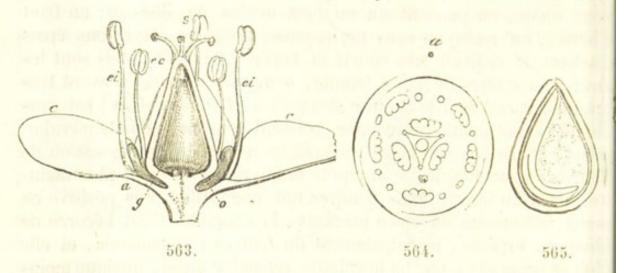
557. Son diagramme.

558. La même, coupée verticalement. - c Calice. - ef Étamines fertiles. - es Étam mines stériles. - o Ovaire avec sa loge unique et son ovule pendant. - s Style stigmate.

559. Étamine séparée. - f Filet chargé à sa base de deux corps glanduleux gg. a Anthère.

560. Anthère séparément vue du côté et au moment où elle s'ouvre.

561. Fruit accompagné du calice persistant.


562. Le même, dépouillé de son calice et coupé verticalement. - p Péricarpe. t Tégument de la graine, - c Embryon,

POLYGONEES.

rare. Le calice est à 4 ou 6 divisions (fig. 557) alternant sur deux rangs, et porte les étamines, qui sont opposées en nombre double, par conséquent sur quatre rangs. Celles des rangs intérieurs sont souvent stériles : mais, fertiles, elles offrent ce singulier caractère que leurs anthères regardent et s'ouvrent en dehors, tandis que celles des rangs extérieurs regardent et s'ouvrent en dedans (fig. 557). Un ovaire terminé par un style et un stigmate simple, creusé d'une loge unique où pendent un ou deux ovules (fig. 558, o); un fruit charnu; un embryon sans périsperme, dont les cotylédons épais cachent la radicule très courte et supère (fig. 562), tels sont les autres caractères de cette famille, composée d'arbres souvent très grands. Parmi eux, le Laurier des poëtes (Laurus nobilis) est sans doute le plus connu, et comme croissant dans nos climats méridionaux, et par les couronnes triomphales qu'il a été en possession de fournir depuis une haute antiquité et qui ne s'emploient plus maintenant qu'au figuré. Mais d'autres ont une utilité plus positive en nous fournissant un épice précieux, la cannelle. C'est l'écorce de diverses espèces, principalement du Laurus cinnamomum, et elle doit sa propriété à une huile volatile, répandue aussi, quoique moins abondamment, dans d'autres parties, ainsi que dans d'autres végétaux de la même famille. On y trouve encore un autre principe, le camphre, dont la présence dans les plantes où abonde l'huile volatile est un fait confirmé par d'autres familles. Dans celle-ci, il est surtout produit par le Laurus camphora, ou Camphrier. Il existe concurremment dans le tissu des Laurinées une autre huile fixe, quelquefois assez àcre, mais douce et très abondante dans l'un des fruits les plus renommés des tropiques, celui de l'Avocatier, ou Laurus persea.

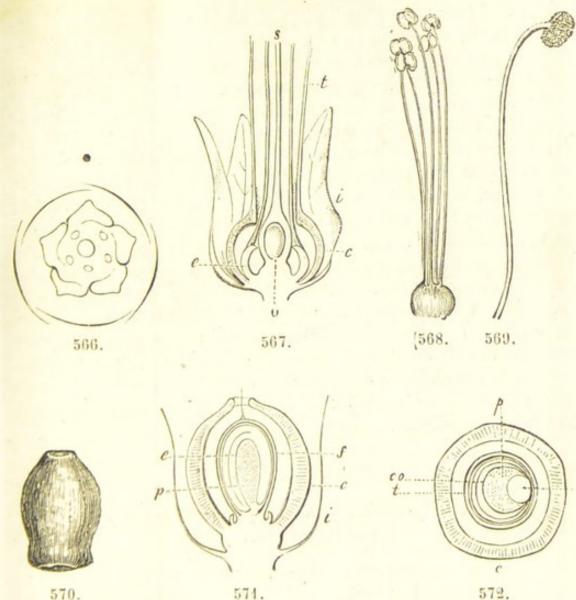
§ 573. **Polygonées**. — Ce sont pour la plupart des plantes herbacées, à feuilles alternes, roulées en dehors dans la préfloraison, et dont nous avons fait connaître les singulières stipules soudées en une gaîne (ochrea) qui entoure la tige (§ 426, fig. 443). Le nombre des divisions calicinales est quinaire (fig. 564), ou ternaire sur deux rangs; les étamines qu'elles portent vers leur base leur sont opposées en nombre égal ou en nombre plus grand, et, dans ce dernier cas, sont sur deux rangs, dont l'intérieur est incomplet, remarquable de plus, comme dans les Laurinées, par ses anthères extrorses, tandis qu'elles sont introrses dans le rang extérieur (fig. 564). L'ovaire, surmonté de 2, 3 ou 4 styles libres ou soudés, quelquefois extrémement courts, terminés en stigmates simples ou plumeux, est relevé au dehors d'autant d'angles, et dans une loge unique, contient un seul ovule dressé (fig. 563, o). Il devient un cariopse ou un achaine : et dans sa graine l'embryon droit ou arqué, rejeté sur le côté d'un

périsperme farineux, tourne sa radicule en haut, c'est-à-dire en senscontraire du point d'attache (fig. 565). C'est la farine de ce périsperme qui est employée à la nourriture de l'homme et des animaux dans le Sarrasin (*Polygonum fagopyrum*) et quelques autres espèces. On mange aussi les feuilles et jeunes pousses de diverses espècess d'Oseille (*Rumex*) et de Rhubarbe (*Rheum*). La présence très abondante de l'acide oxalique communique à plusieurs d'entre elles une

agréable acidité. Mais d'autres principes, et par conséquent d'autrespropriétés, se trouvent dans les racines où s'associent une matière résineuse, une matière gommeuse et une matière astringente. De là sans doute leurs vertus en même temps purgatives et toniques si connues, surtout dans la Rhubarbe.

§ 574. Nyctaginées. — Nous avons fait connaître (§ 436, fig. 394), le fruit et la graine de la Belle-de-nuit (*Mirabilis jalapa*), type de cette famille, nous avons vu que la base du calice endurci l'enveloppe et semble en faire partie (fig. 574). A une époque antérieure, du rétrécissement supérieur de cette base verte partait un limbe évasé et coloré (fig. 567, t), qui plus tard se coupe et se détache à ce point. Autour et au-dessous de l'ovaire s'insèrent des étamines en nombre défini, dont les filets libres traversent ce détroitt supérieur (fig. 567) sans lui adhérer (malgré l'apparence), et portent des anthères biloculaires. L'ovule est unique et dressé (fig. 567, o) comme la graine, dont l'embryon, enroulé autour d'un périsperme farineux, tourne sa radicule en bas vers le point d'attache (fig. 574, e). Nous ne mentionnerons les propriétés purgatives des racines de cette famille qu'à cause de l'opinion fondée sur cette connaissance,

563. Fleur du Sarrasin (*Polygonum fagopyrum*) coupée verticalement. — c Calice. - cc Étamines extérieures et introrses. — ci Étamines intérieures et extrorses. a Appendices glanduleux. — o Ovaire avec sou ovule dressé g. — s Styles et stigmates.


564. Son diagramme. - a Axe.

565. Graine coupée verticalement.

NYCTAGINÉES.

469

qui avait fait faussement attribuer à celle que nous avons citée plus haut l'origine et par suite le nom spécifique du jalap.

570.

566-572. Organes de la fructification de la Belle-de-nuit (Mirabilis jalapa). 566. Diagramme de la fleur.

567. Partie inférieure de la fleur coupée verticalement. — i Involucre. — c Base du calice verte et renflée autour de l'ovaire. - t Partie de son tube coloré. - e Partie inférieure des filets. — s Partie du style. — o Ovaire avec son ovule dressé.

568. Étamines avec le renflement en voûte à la base de leurs filets.

569. Style et stigmate.

570. Fruit enveloppé de la base persistante et endurcie du calice.

571. Le même, coupé verticalement. — i Involucre. — c Calice. — f Péricarpe. p Périsperme. — e Embryon.

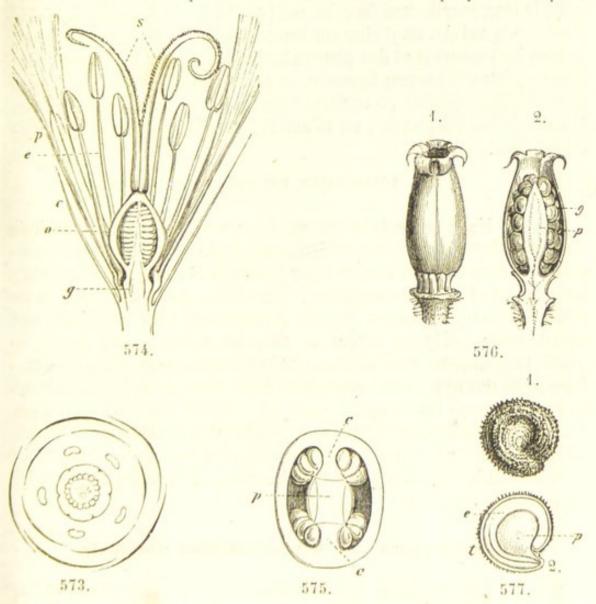
572. Tranche horizontale du même. - c Calice. - t Tégument de la graine avec le péricarpe. - p Périsperme. - r Radicule. - co Cotylédons.

VÉGÉTAUX DICOTYLÉDONÉS POLYPÉTALES.

§ 575. Jussieu, leur appliquant sa division tirée de trois modes d'insertion, les distinguait en Épipétalées, Hypopétalées et Péripétalées. Nous l'adopterons avec quelques légères modifications ; nous confondrons, en effet, les épigynes avec les périgynes, parce que dans le très petit nombre de familles dont se composait la première de ces classes, l'insertion des étamines sur le contour d'un disque qui couvre, il est vrai, le sommet de l'ovaire, mais qui se rattache d'autre part au calice, est réellement ambiguë: puis nous commencerons par séparer, sans avoir égard à l'insertion, un petit groupe de familles qui se lient aux précédentes par un caractère très particulier, la structure de ses graines à périsperme farineux entouré par l'embryon (fig. 577) et portées sur un placenta central (fig. 576, 2). Peut-être même devrions-nous négliger aussi ce dernier caractère et rapporter à ce groupe, malgré leur placentation pariétale, deux autres familles, l'une (les Ficoïdes) où l'embryon arqué forme un demi-anneau sur le côté d'un périsperme farineux ; l'autre (les Cactées) que la première entraînerait à sa suite, quoique dépourvue de périsperme, mais indiquant par la courbure générale de son embryon une tendance analogue.

FAMILLES. Tableau VII. POLYPÉTALES

à placentation pariétale et à périsperme farineux entouré par l'embryon.


Etamines	périgynes.	Sépales souvent réduits à deux. Pas de stipules. Plantes ordinairement charnues. Sépales en nombre égal aux pétales. Stipules scarieuses. Plantes ordi-	PORTULACEES.
	hypogynes.	4-5 sépales et autant de pétales. Plan- tes ordinairement sèches	CARYOPHYLLEES.

L'insertion paraît avoir peu d'importance dans ce groupe, ainsi que la présence des pétales ; car il se mêle dans la première famille quelques plantes hypogyniqués, dans la dernière quelques genres périgyniques, quelques uns apétales dans toutes les deux, et pour les Paronychiées on peut dire qu'elles ne sont que des Scléranthées avec l'addition d'une corolle. Quelquefois dans le même genre, bien plus, dans la même espèce, nous voyons ici les pétales exister ou manquer, presque indifféremment. Cependant elles forment toutes ensemble un groupe si incontestablement naturel, que tous les

CARYOPHYLLÉES.

auteurs s'accordent à l'admettre. On n'y observe aucune propriété remarquable, aucune plante utile, si ce n'est qu'on mange cuites les feuilles charnues de quelques Portulacées, particulièrement du *Pourpier* qui lui sert de type.

§ 573. Caryophyllées. — Aux caractères de la placentation, sur la nature de laquelle nous nous sommes expliqué autre part

573. Diagramme de la fleur de l'Alsine media.

574. Coupe de la fleur de l'Œillet à bouquets (*Dianthus caryophyllus*). — c Calice. — p Pétales soudés à la base avec l'étamine opposée. — c Étamines. — g Gynophore. — o Ovaire. — s Styles, couverts du stigmate papilleux tout le long de leur face interne.

575. Tranche horizontale de son ovaire très jeune, quand il est séparé encore en deux loges par les cloisons c qui se détruiront plus tard en laissant pour porter les graines la partie centrale ou placenta p.

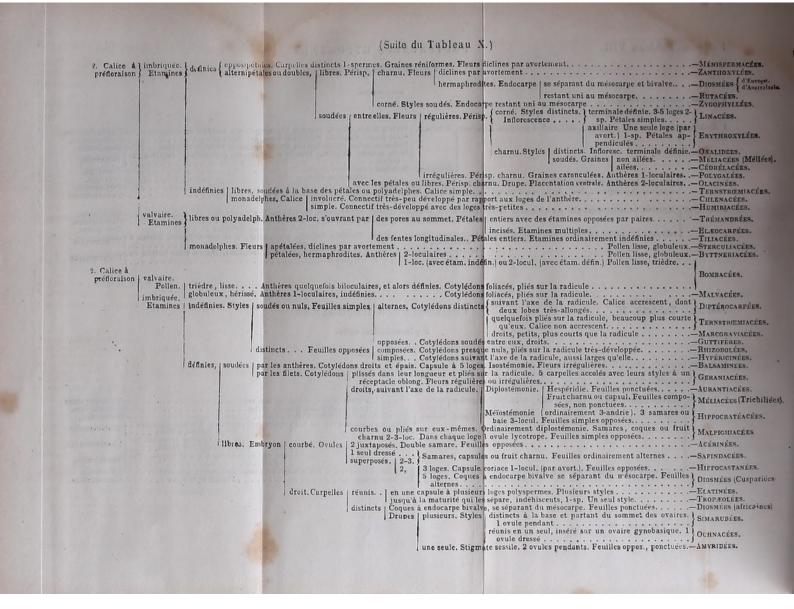
576. Capsule de la Nielle (Agrostemma githago) au moment de la déhiscence par laquelle le péricarpe se sépare en plusieurs valves au sommet seulement. — 4 entière. — 2 coupée verticalement, de manière à montrer ses graines g groupées en un amas central sur le placenta p.

577. Graine 1 entière. — 2 coupée verticalement. — t Tégument. — e Embryon. — p Périsperme.

 $(\S 395)$, et de la graine, nous ajouterons les suivants : Pétales onguiculés; étamines en nombre égal ou double, celles qui leur sont opposées quelquefois soudées avec eux à la base (fig. 574); ovaire souvent exhaussé sur un axe en forme de colonne qui porte aussi les pétales et les étamines (§ 300, fig. 210), surmonté de 2 à 5 stigmates allongés en manière de styles, mais couverts de papilles sur toute la longueur de leur face interne (fig. 574, s); capsule (fig. 576) à autant de valves, dont chacune souvent se fend elle-même en deux. Toutes les espèces sont des plantes herbacées, prenant très rarement une consistance un peu ligneuse. A leurs nœuds renflés s'opposent deux feuilles simples et entières. Quelques auteurs renvoient aux Paronychiées les genres, en minorité, où elles sont accompagnées de stipules.

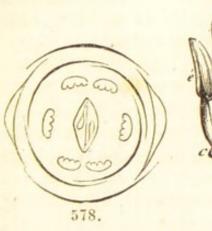
POLYPÉTALES HYPOGYNES.

§ 577. Nous les subdiviserons d'après la placentation pariétale ou axile : dans la première catégorie nous placerons les fruits composés de carpelles réunis, soit par leurs bords, soit par leurs côtés réfléchis en cloisons incomplètes : dans la seconde, les fruits où les côtés réfléchis de chaque carpelle forment une loge complète, soit qu'elle reste isolée des autres en carpelle distinct, soit qu'elle se soude latéralement avec elles en ovaire pluriloculaire. Tous les fruits apocarpés des hypogynes rentreront donc dans cette dernière, dans le cas même où les ovules dressés ou pendants du fond de la loge, même disséminés sur ses parois, ne semblent pas s'attacher à l'angle interne. Ainsi notre division peut recevoir cette autre expression : 1º ovaire uniloculaire à plusieurs placentas; 2" ovaire pluriloculaire ou carpelles distincts.

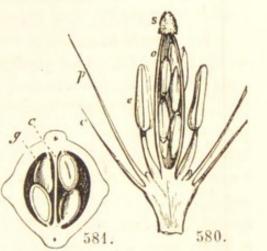

POLYPÉTALES HYPOGYNES à placentation pariétale.

§ 578. Les placentas tantôt bordent les valves du fruit, et par conséquent alternent avec elles, tantôt occupent le milieu de leur longueur et leur sont opposés. Dans quelques cas où le fruit est indéhiscent, les autres caractères tirés de la structure de la graine permettront de suppléer à l'absence de celui-là.

(Voyez Tableau VIII, page 472.)

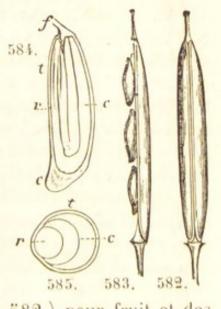

§ 579. Nous citerons parmi ces familles les **Violariées**, à fleurs présentant des sépales, des pétales et des étamines au nombre de cinq ; les anthères ont leurs loges portées sur un large connectif qui se prolonge en pointe au-dessus d'elles, et se soudent quelquefois

	à placentation pariétale.
lacentas opposés aux valves 1. alternes 2	and the second property of the second s
	t peu près, Etamines définies, , Style 2-3-fide. Pas de stipules. Fleurs régulières. Anthères extrorsesFRANKENIACÉES, Style simple. Stipules, Fleurs régulières, Anthères extrorsesBAUVAGEBREES. Style simple. Stipules, Fleurs régulières, Anthères extrorsesDROSERACÉES. Style simple. Stipules, Fleurs ordinairement irrégulières, Anthères in-} trorsesCISTINÉES. homotrope, droitBIXACÉES. Per 3 valves, Graines aigrettées, Etamines en nombre égal aux pétales ou doubleTAMARISCINÉES
The Restored States and the State of the second	même. Fleurs Irrégulières. Etamines définies ou indéfinies. Capsule bâillant au sommetRésébacéssCAPPARIDÉES. régulières. Sépales et pétales 4. Etamines indéfinies, Capsule so baieCAPPARIDÉES. définies, didynames. SiliqueCAUCIFÉRES. suc aqueux
AMILLES. Tableau X.	POLYPÉTALES HYPOGYNES
	à placentation axile.
mbryon très-pellt, niché à l'extrémité d'un gros p entouré d'un périsperme, qu'il égale à pe sans périsperme.	u près 2.
entouré d'un périsperme, qu'il égale à pe sans périsperme	u près 2.
entouré d'un périsperme, qu'il égale à pe sans périsperme	u près 2.
entouré d'un périsperme, qu'il égale à pe sans périsperme	u près



CRUCIFÈRES.

entre elles en une sorte de tube appliqué sur l'ovaire. Le style est simple, oblique, terminé par un stigmate incliné, épais et percé à son milieu (fig. 345); le fruit, une capsule à trois valves. On distingue deux tribus d'après les fleurs régulières (dans les Alsodinées), irrégulières (dans les Violées, qui sont les plus nombreuses). Nous



avons donné un exemple de l'irrégularité que présentent alors deux des étamines (fig. 290). Les racines, dans cette famille, jouissent assez fréquemment de propriétés émétiques, et c'est pourquoi plusieurs de celles de l'Amérique du Sud sont connues et vendues sous le nom d'Ipécacuanha.

§ 580. **Crucifères**. — 4 sépales en croix, 4 pétales alternant avec eux (fig. 257), 6 étamines tétradynames insérées sur ou en dedans de 4 glandes dont l'ensemble forme un disque hypogynique (fig. 579), un ovaire à deux placentas pariétaux, une silique (fig. 584, 582) pour fruit et des

578-585. Organes de la fructification d'une Crucifère (Erysimum murale).

578. Diagramme de la fleur.

579. Fleur dépouillée de ses enveloppes. — e Cicatrices résultant de la chute des folioles du calice. — g Glandes qui accompagnent l'insertion des étamines. — e' Les deux étamines plus courtes. — e'' Les paires d'étamines plus longues. — p Pistil.

580. Coupe verticale de la fleur. — c Calice. — p Pétales. — e Étamines. — o Ovaire ouvert. — s Stigmate.

581. Tranche horizontale de l'ovaire. - c Cloison. - g Ovules.

582. Silique.

583. La même, dont une des valves a été enlevée de manière à laisser voir les graines attachées au replum.

584. Coupe verticale de la graine. — f Funicule. — t Tégument renflé à la chalaze c.
 — r Rédicule. — c Cotylédons.

585. Tranche horizontale de la graine. — t Tégument. — r Radicule. — c Cotylédons incombants.

graines sans périsperme, tels sont les caractères qui distinguent facilement et sûrement cette famille si naturelle et si répandue dans notre pays. Nous avons défini la silique (§ 434, fig. 393) avec sa cloison si différente des autres et déterminant la coexistence de deux caractères ordinairement incompatibles, la placentation parié tale et la pluralité des loges (fig. 584); nous avons vu les diverses manières dont la radicule se plie sur les cotylédons (fig. 430, 431, 433, 434, 442). Les espèces sont presque sans exception herbacées; leurs feuilles alternes et sans stipules, leurs fleurs blanches ou jaunes, rarement rougeâtres. Elles sont remarquables par la présence dans leurs tissus d'une grande proportion d'azote et d'une huile volatile. A la première elles doivent leurs propriétés nutritives, dont les nombreuses variétés de choux fourniront le meilleur exemple, mais aussi leur facilité à se putréfier, et l'odeur infecte et animale qu'elles donnent en formant de l'ammoniaque. Elles doivent à la seconde des propriétés stimulantes, si exaltées dans la moutarde, et qui, plus affaiblies et tempérées en outre par une matière sucrée, font le mérite de certaines racines, le Radis et la Rave. Cet affaiblissement, qui résulte naturellement de leur séjour sous la terre à l'abri de la lumière, on le provoque artificiellement dans des parties extérieures en les faisant avorter, comme dans l'inflorescence des Choux-fleurs; en recouvrant leurs jeunes pousses, comme dans le Crambe, ou ne choisissant que les feuilles intérieures des bourgeons, comme dans les Choux pommés. La médecine met à profit ces propriétés excitantes, et s'en sert pour rendre le ton aux organes dans certaines maladies débilitantes, le scorbut surtout. Les Crucifères, en effet, sont éminemment antiscorbutiques, et d'une manière si générale, que dans un célèbre voyage l'équipage attaqué de ce mal fut guéri au moyen d'une plante nouvelle, et encore inconnue, mais qui, reconnue crucifère par le botaniste Forster, un des compagnons de Cook, fut essayée à ce titre et obtint un plein succès. Les embryons sont oléagineux, et plusieurs espèces sont en conséquence cultivées pour l'huile qu'on en tire, par exemple, le Colza (Brassica campestris), la Navette (Brassica napus), la Caméline (Camelina sativa), etc.

§ 581. **Papavéracées.** — Nous retrouvons ici dans la fleur des parties qui se croisent alternativement : le calice de 2 sépales, caducs (de 3 par exception); les pétales au nombre de 4 ou d'un de ses multiples; les étamines en nombre double, ou plus ordinairement multiples, et alors opposées par faisceaux aux pétales. Le style est court ou nul, les stigmates au nombre de 2 au plus, et nous avons vu dans ce dernier cas la disposition peltée et rayonnante qu'ils affectent (§ 401, fig. 362). Le fruit offre à l'intérieur autant de

NYMPHÉACÉES.

placentas saillants sous forme de cloisons incomplètes, et à la maturité se fend en autant de valves complétement, ou bien seulement au sommet, qui, couronné par le bouclier stigmatifère, offre ainsi dans son pourtour un cercle d'ouvertures par lesquelles s'échappent les graines. Celles-ci sont extrêmement nombreuses, avec un très petit embryon vers l'extrémité d'un gros périsperme charnu oléagineux. Les tiges sont ordinairement herbacées, les feuilles alternes, et toutes les parties gonflées d'un suc propre, généralement laiteux, rarement d'une autre couleur. Ce suc a des propriétés très prononcées, les unes résultant d'une grande âcreté qu'on peut constater, par exemple, dans celui de l'Eclaire, et qui fait employer comme purgatives ou émétiques les racines de plusieurs Papavéracées ; les autres narcotiques, connues principalement dans les Pavots; et dues à plusieurs alcaloïdes que leur suc charrie, la méconine, la codéine, la narcotine et surtout la morphine. Ces substances, avec bien d'autres encore, composent l'opium, qui n'est que ce suc concrété, après avoir été extrait des capsules et de leurs pédoncules, où il est plus abondant qu'ailleurs. Ces principes ne se trouvent pas dans la graine, de laquelle on tire une huile qui fut longtemps suspecte à cause de son origine, mais qui, reconnue innocente, a été admise dans le commerce et l'aide surtout à falsifier celle d'olive ; elle est connue sous le nom d'huile d'œillette, nom fort impropre qui n'est sans doute qu'un diminutif de celui d'olium.

§ 582. Nous placerons ici un petit groupe intermédiaire, parmi les polypétales, entre celles qui offrent la placentation pariétale et celles où elle est axile; car il présente l'une et l'autre à la fois, mais se distingue de tout le reste par le petit sac charnu qui enveloppe son embryon et qui est fourni par un périsperme interne, ordinairement accompagné d'un externe, renflé en une masse farineuse, plus rarement isolé.

FAMILLES.

Tableau IX.

Embryon dans un	1-loculaire , farineux .	polysperme Gros périsperme	
sac particulier.	and the	de perisperme.	NELUMBONÉES.
	carpelles,	sur un réceptacle à peine élargi. 2-3 ovules attachés à l'angle interne. — Périsp. charnu	CABOMRACEES.

Nymphéacées. — Nous ne reviendrons pas ici sur cette famille, dont le type, le Nénuphar blanc, nous a déjà plusieurs fois occupés (§ 256, 460, fig. 479, 417). Les graines, dont la structure est si remarquable par l'existence d'un périsperme interne qui forme un

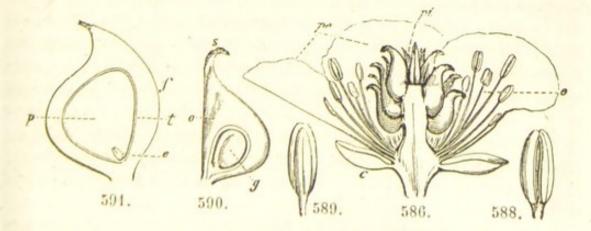
petit sac autour de l'embryon, peuvent rendre quelques services par la masse du périsperme externe ou farineux, auquel on a eu quelquefois recours en temps de disette. Dans l'Amérique méridionale, on mange ainsi et l'on connaît sous le nom de *Maïs d'eau* celles d'une autre Nymphéacée, la plus belle entre toutes ces belles fleurs et qu'on a jugée digne en conséquence d'être dédiée à la reine d'Angleterre, le *Victoria regia*. Les feuilles et les fleurs de ces différentes plantes flottent sur les eaux stagnantes, au-dessous desquelles se cachent leurs tiges rampantes, riches aussi en fécule qui peut servir à la nourriture, mais au moyen d'un lavage préalable pour la dépouiller des principes amers qui y sont mêlés.

POLYPÉTALES HYPOGYNES à placentation axile.

§ 583. Comme les familles qui présentent ce triple caractère sont extrêmement nombreuses, nous chercherons à les distribuer à leur tour en plusieurs sections, et la structure de la graine nous fournira : une première division. L'embryon est à nu sous les téguments ; ou bien il est entouré par un périsperme qu'il égale à peu près en longueur; ou bien beaucoup plus court que lui, il est niché à son extrémité. Mais faisons remarquer que si ce dernier caractère a une valeur réelle, les deux autres semblent en avoir beaucoup moins. Le périsperme, lorsque sa masse n'est pas proportionnellement beau-coup plus considérable que l'embryon, paraît perdre pour la clas-sification une grande partie de son importance : il passe par desdégradations insensibles du plus au moins, et même disparaît tout à fait dans des plantes évidemment assez voisines : aussi dans nostableaux nous verrons-nous amenés quelquefois par deux cheminsà la même famille, généralement, il est vrai, à des tribus diffé-rentes.

(Voyez Tableau X, page 476.)

§ 584. **Renonculacées** (*Ranunculaceæ*). — Pour ceux qui veulent bien comprendre ce que c'est qu'une famille, c'est un excellent sujet d'étude que celle-ci, d'autant plus qu'elle a servi en quelque sorte de base à tous les travaux d'A.-L. de Jussieu, à qui son examenn fournit le premier aperçu sur la classification naturelle des plantes. Un calice composé de cinq folioles, cinq pétales alternes, des étamines en nombre indéfini et libres sur un torus plan ou saillant (45) au bas duquel elles s'insèrent (*fig.* 586 *c*), plusieurs carpelles indépendants (*fig.* 586 *pi*), tantôt indéhiscents et monospermes, tantôt déhiscents et polyspermes; des graines où le petit embryon est


RENONCULACÉES.

niché du côté du hile vers l'extrémité d'un gros périsperme corné (fig. 591), tels sont ses caractères généraux, tel est le type dont on peut suivre les déviations dans un certain nombre de genres : les uns où le nombre quinaire des parties fait place au ternaire, d'autres où les pétales changent de forme, métamorphosés en petites lames ou en cornets, ou bien même manquent tout à fait. Ils manquent, par exemple, et le calice prend alors les couleurs et l'apparence de la corolle, dans les *Clématidées*, où sa préfloraison est valvaire, avec des feuilles opposées; dans les Anémonées, où sa préfloraison est

imbriquée, avec des feuilles alternes. Les Ranunculées offrent le type décrit plus haut, avec des achaines renfermant une seule graine dressée (fig. 590, 591), tandis qu'elle était pendante dans les deux tribus précédentes. Les Helléborées ont des follicules polyspermes avec des pétales enroulés. Dans toutes ces plantes, les étamines se terminaient par des anthères adnées et extrorses (fig. 586); mais elles deviennent introrses dans les Paoniées, dont le fruit se compose de plusieurs carpelles déhiscents ou non et renfermant plu-

587.

45.

sieurs graines. On peut voir par des exemples convenablement choisis dans cette famille, en examinant comparativement les pistils du Pied-d'alouette (Delphinium Ajacis), de l'Ancolie, du Nigella

586-591. Organes de la fructification d'une Renoncule (Ranunculus acris).

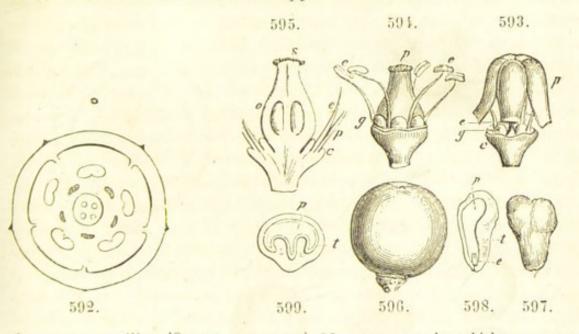
586. Fleur coupée verticalement. - c Calice - pe Pétales. - e Étamines. - pi Pistil composé de plusieurs carpelles sur un axe allongé.

587. Diagramme de la fleur.

588. Anthère vue du côté extérieur par lequel elle s'ouvre.

589. La même, du côté intérieur.

590. Section verticale d'un ovaire a laissant voir l'ovule $g_* - s$ Stigmate.


591. Section verticale d'un carpelle mûr. - f Péricarpe. - t Tégument de la graine, - p Périsperme. - e Embryon.

orientalis et du Nigella damascæna, comment on passe graduellement des carpelles libres à un ovaire unique et multiloculaire. Elle nous montre de plus, par tout ce qui précède, comment certains caractères peuvent se modifier dans un groupe très naturel, quels sont ceux au contraire qui se présentent le plus invariables ; elle nous enseigne leur subordination, démontrant l'importance de la graine et assignant un rang plus élevé aux rapports de situation ou d'adhérence des parties qu'à leur nombre. Les Renonculacées sont pour la plupart des plantes herbacées, quelques unes des arbrisseaux le plus souvent grimpants. Les feuilles, dépourvues de stipules, sont quelquefois simples et réduites même à des phyllodes; mais leur limbe, généralement, se lobe plus ou moins profondément. Le suc, d'apparence aqueuse, est extrêmement âcre et caustique; les principes auxquels il doit cette propriété paraissent fort volatils ; aussi sontils beaucoup plus énergiques dans les racines que dans les parties extérieures, où il se dissipe dans l'air ou dans l'eau environnante, quoique sur certains points celles-ci les manifestent à un très haut degré : comme les Aconits, poisons si connus et dans les fleurs desquels les abeilles, dit-on, ont été quelquefois chercher les matériaux d'un miel vénéneux; comme diverses espèces de Renoncules et d'Anémones dont les feuilles ont été dans certains temps et dans certains pays employées comme vésicatoires à cause de leur action sur la peau. De là le nom d'herbe aux gueux donné aux Clématites dont les mendiants se frottent pour développer sur leur corps des ulcères superficiels et passagers. L'Hellébore, si vanté dans l'antiquité, agit comme un violent purgatif. Dans les graines le principe âcre existe, mais mélangé à un principe aromatique, ce qui les a fait quelquefois employer par le peuple comme condiments en guise de poivre, notamment celles de la Staphisaigre (Delphinium staphisagria), où se trouve d'ailleurs un alcaloïde particulier, la delphine.

§ 585. Les **Ampélidées**, ou **Vinifères**, sont remarquables par l'opposition de leurs 4 ou 5 pétales à des étamines en nombre égal. Elle résulte de l'avortement d'un rang entier d'étamines, comme le prouve leur existence rudimentaire sous la forme de cinq lobes dans le *Leea*. L'ovaire, assis sur le milieu d'un gros disque glanduleux (fig. 594) dont le pourtour porte les étamines, est surmonté d'un style et d'un stigmate simples, et creusé de deux à six loges, au bas desquelles se dressent un ou deux ovules (fig. 595). Il devient une baie, et chacun connaît les graines ou petits pepins (fig. 597) qu'on trouve à leur intérieur, sous le tégument comme ligneux desquels s'observe un périsperme dur, du double plus long que l'embryon qui occupe son axe, tourné vers le point d'attache (fig. 598). Les

AMPÉLIDÉES.

Ampélidées sont des arbrisseaux le plus souvent grimpants, à nœuds renflés et susceptibles de se désarticuler, à feuilles alternes, lobées, ou que composent plusieurs folioles pennées ou palmées. Nous avons vu comment les inflorescences opposées à ces feuilles peuvent se

changer en vrilles (§ 454, *fig.* 455). Nous avons signalé la grosseur des vaisseaux qui transportent la séve, la force et l'abondance de celle-ci (§ 492, 494) dans les tiges. Est-il besoin de rappeler les produits que l'homme tire du raisin? Le sucre abondant associé dans la pulpe à un acide végétal, le tartrique, donne au fruit frais son agréable saveur, se concentre dans le fruit sec, et, communiquant aux sucs la propriété de fermenter, permet de les transformer dans la boisson la plus estimée entre toutes celles qu'on nomme alcooliques.

§ 586. Nous voyons dans les Malvacées un autre exemple de ces grands groupes naturels qui réunissent plusieurs familles. Aussi celle qui portait primitivement ce nom comprend elle maintenant les **Sterculiacées**, **Byttnériacées**, **Bombacées** et **Malvacées** proprement dites. Ces dernières, celles qui nous sont les plus fa-

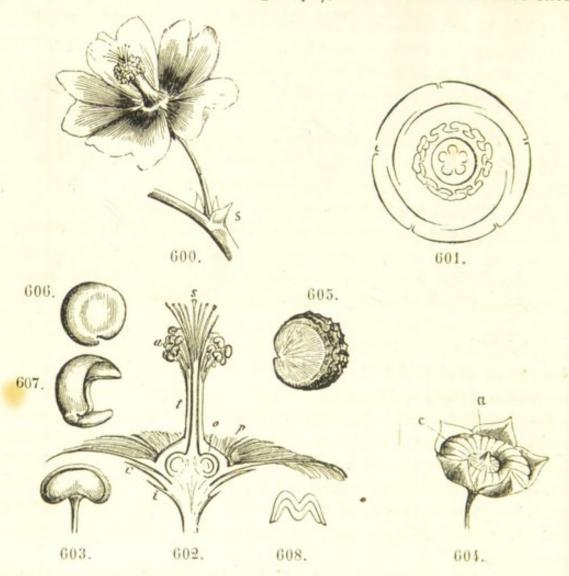
592-599. Organes de la fructification de la Vigne (Vitis vinifera).

592. Diagramme de la fleur.

593. Fleur au moment de la floraison qui détache les pétales p par le has, tandis qu'ils restent unis en haut. — c Calice. — g Glandes. — c Étamines dont on aperçoit sculement les filets.

594. Fleur après la chute des pétales. — g Glandes. — e Étamines. — p Pistil.

595. Section verticale de la fleur. — c Calice. — p Pétales. — c Filets. — o Ovaire avec ses deux loges et leurs ovules dressés. — s Stigmate.


596. Fruit (vulgairement le grain de Raisin).

597. Graine (vulgairement le pepin).

598. La même, coupée verticalement.- t Tégument.- p Périsperme.- e Embryon.

599. Coupe horizontale de la même vers son milieu.- t Tégument.- p Périsperme.

milières, et dont les Mauves et Guimauves peuvent nous donner une idée, sont caractérisées par leur calice épais à préfloraison valvaire (commune, au reste, à tout le groupe), assez souvent entouré exté-

rieurement d'un involucre ou calicule (fig. 248); leurs pétales, en général grands, obliques et obcordiformes, tordus même après l'épa-

600-608. Organes de la fructification d'une Mauve (Malva sylvestris).

600. La fleur vue par en haut, avec son pédoncule accompagné de deux stipules s.

601. Diagramme.

602. Sectión verticale de la fleur. — *i* Calicule ou involucre. — *c* Calice. — *p* Pétales. — *t* Tube des étamines monadelphes, élargi en voûte au-dessus de l'ovaire *o* et soudé à sa base avec les pétales, divisé à son sommet en un grand nombre de filets portant autant d'anthères a. — *s* Styles distincts au sommet, soudés inférieurement en un seul.

603. Une anthère séparée avec le sommet du filet.

604. Fruit environné du calice persistant.- c Coques verticillées, réunies par l'axc a.

605. Une coque séparée vue de côté.

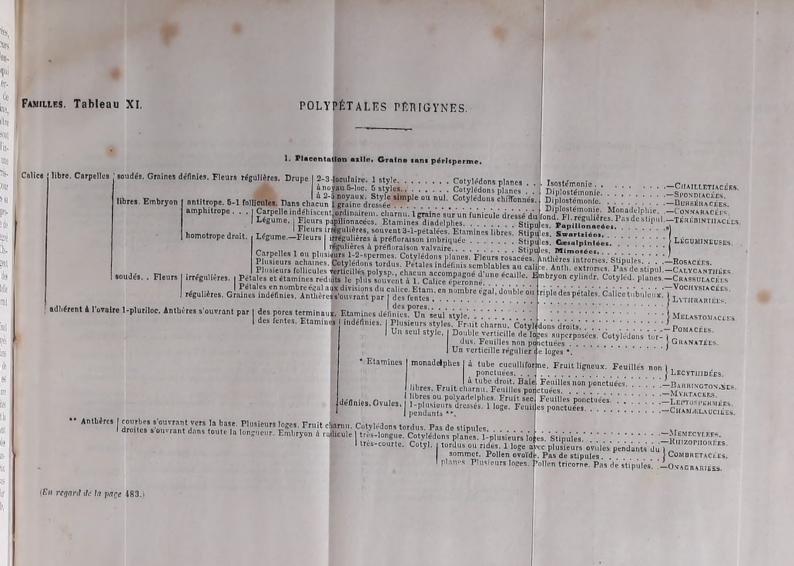
606. Graine.

607. Embryon.

608. Sa coupe vers le milieu de sa hauteur pour montrer l'agencement de ses cotytédons.

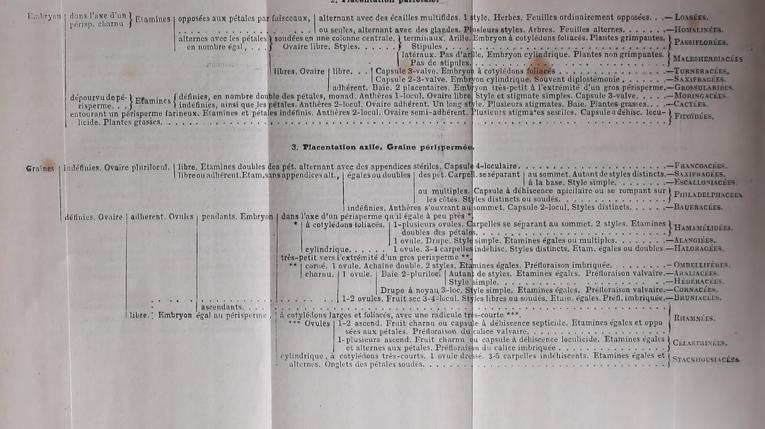
BYTTNÉRIACÉES. TERNSTROEMIACÉES.

nouissement ; leurs étamines à filets réunis dans une partie de leur longueur en un cylindre qui se soude inférieurement avec la base des pétales, se termine supérieurement par un bord entier ou quinquélobé, et se divise extérieurement en un nombre plus ou moins considérable de filets, chacun terminé par une anthère réniforme, uniloculaire (fig. 284, 603), remplie d'un pollen à gros grains globuleux et hérissés ; leurs carpelles, verticillés autour d'un gros axe central en forme de colonne (fig. 375, 604) du sommet de laquelle partent les styles soudés ensemble, excepté à leur extrémité (fig. 355, 602 s), renferment chacun une ou plusieurs graines, dans lesquelles l'embryon sans périsperme reploie sa radicule entre ses cotylédons plissés (fig. 607, 608). Les feuilles alternes, stipulées, sont la plupart plus ou moins profondément lobées, et alors, en général fort sujettes à varier. Les diverses parties sont ordinairement tout imprégnées d'une substance mucilagineuse qui leur donne les propriétés émollientes par lesquelles elles sont renommées. C'est à cette famille qu'appartiennent les Gossypium, dont les graines sont recouvertes de ce lacis de filaments fins qui constituent le coton, si important pour l'industrie.


C'est aux **Byttnériacées** qu'appartient l'arbre qui fournit le cacao (*Theobroma*). C'est son embryon charnu, oléagineux, de couleur brunâtre, de consistance de cire, qui, après avoir été torréfié, sert à la fabrication du chocolat, dans lequel on tempère par le mélange du sucre l'amertume assez intense de la matière. La pulpe huileuse qui, remplissant la loge, entoure les graines, participe un peu à leur saveur, et est employée sous le nom de beurre de cacao.

§ 587. Les Ternstroemiacées se divisent en plusieurs tribus, dont l'une, celle des Camelliées, mérite de nous arrêter un instant par deux arbrisseaux qui s'y rapportent : l'un, le Camellia, que la beauté de ses fleurs (nommées vulgairement roses du Japon) a mis à la mode, et dont la culture en conséquence a su obtenir de si nombreuses et riches variétés ; l'autre, dont bien peu de personnes connaissent les fleurs, quoique fort élégantes aussi, mais dont les feuilles sont devenues un des objets de commerce les plus importants de la terre, le Thé. On sait qu'il est originaire de la Chine et que c'est elle qui le fournit à la consommation du monde, quoiqu'on ait commencé à essayer sa culture dans quelques autres pays, notamment au Brésil. La feuille, recueillie jeune, est légèrement torréfiée et pressée pour la débarrasser d'un suc assez abondant, âcre et légèrement corrosif ; on l'enroule ensuite, et on la dessèche plus ou moins rapidement, selon qu'il s'agit de la fabrication du thé vert ou de celle du thé noir, pour lequel on emploie d'ailleurs des feuilles un

41


peu plus âgées et conséquemment plus ligneuses. Ainsi préparées, elles contiennent, outre plusieurs substances qui leur sont d'ailleurs communes avec toutes les autres feuilles, trois autres qui leur donnent leurs propriétés particulières : 4° une huile essentielle, qui communique au thé son arome; 2° de la théine, substance quaternaire, riche en azote puisqu'elle est composée de 8 atomes de carbone, 40 d'hydrogène, 2 d'azote, 2 d'oxygène ; 3° de la caséine, autre substance azotée que nous avons appris ailleurs à connaître (§ 227). Cette dernière est insoluble dans l'eau chaude qui dissout les deux autres, les seules par conséquent qui se trouvent dans l'infusion du thé telle que nous la prenons. Ce n'est donc pas une boisson excitante seulement, mais elle est en même temps nourrissante, puisqu'elle peut contenir de la théine jusqu'à plus de 6 pour 400 du poids du thé employé, un peu moins en général, d'après sa qualité et le degré plus ou moins parfait de la dissolution. Cette propriété du thé, qu'on soupçonnait si peu autrefois, rend compte de son usage si général dans d'autres pays que la France, et du degré de concentration qu'on aime à donner à son infusion. Mais les Chinois et autres peuples asiatiques ne s'en contentent pas : ils mangent les feuilles ainsi bouillies. Or comme, après avoir été épuisées des principes solubles, elles se trouvent retenir la caséine, et en telle proportion que ce résidu peut en contenir 28 pour 100, il fournit un aliment plus riche encore en azote des 3/4 que la boisson.

§ 588. Les Aurantiacées ont pour type l'Oranger, dont le fruit a reçu de quelques auteurs le nom d'hespéridie et nous à déjà occupés plusieurs fois (§§ 442, 449, 428). Il est à peu près le même dans la plupart des autres genres, sauf des modifications de forme, de grandeur, de couleur, de saveur ; mais la variété de celles-ci est extrême, et c'est un exemple frappant de l'influence de la culture sur les fruits domestiques. Toutes les parties sont criblées de petites glandes vésiculaires ou cavités remplies d'une huile volatile, dont la nature peut varier suivant les divers organes, et qui parsement les feuilles de points transparents au jour. Ces feuilles sont simples ou souvent composées, et nous citerons, à ce sujet, celles de l'Oranger, qui semblent dans le premier cas, mais où la présence de deux rebords foliacés sur le pétiole et l'articulation du limbe au-dessus d'eux indiquent clairement une feuille trifoliolée. Leur bois est dur et compacte, et, comme tel, employé en ébénisterie : par exemple, celui du Citronnier.

(Suite du Tableau XI.)

2. Placentation pariétale.

FAMILLES.

BURSÉRACÉES.

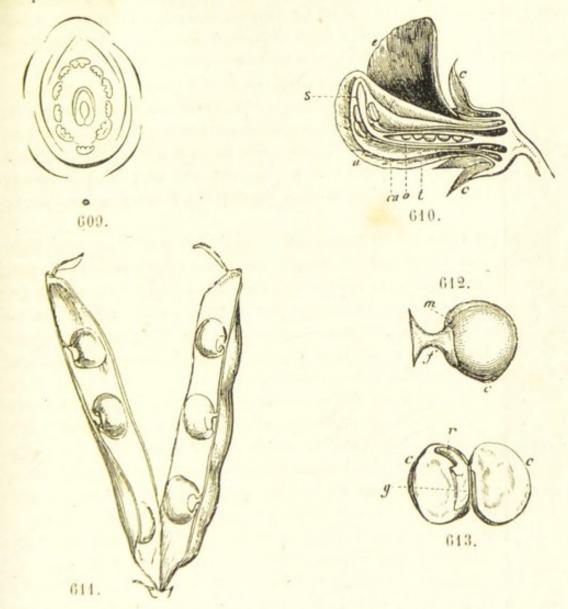
POLYPÉTALES PÉRIGYNES.

§ 589. Nous pourrons diviser les périgynes, comme les hypogynes, d'après la placentation axile ou pariétale. La graine est pourvue d'un périsperme dans un certain nombre de familles et en est dépourvue dans d'autres; ce qui nous permet d'établir deux sections dans les périgynes à placentation axile, sections entre lesquelles nous placerons celles à placentation pariétale, pour obtenir une série qui se lie mieux avec les parties précédente et suivante de la série générale.

(Tableau XI, page 483.)

§ 590. Plusieurs familles les **Spondiacées**, les **Burséracées**, les **Connaracées**, les **Térébinthacées**, étaient, dans le principe, confondues ensemble en une seule sous ce dernier nom. Elles offrent, en effet, quelques caractères communs, mais d'autres bien distincts, notamment dans le fruit, qui se compose de carpelles séparés avec un embryon homotrope dans les Térébinthacées, antitrope dans les Connaracées, soudés en une drupe à plusieurs noyaux dans les Burséracées, à un seul pluriloculaire dans les Spondiacées. Les avortements sont assez fréquents dans les fleurs de plusieurs de ces familles, de manière que quelques unes de leurs plantes semblent, par exception, rentrer dans les diclines ou les apétales. Mais elles sont nécessairement entraînées ici à la suite de plantes plus nombreuses et complètes, dont elles offrent le type avec quelques unes de ces dégradations dont nous avons parlé autre part (§ 568).

Les **Burséracées** sont des arbres ou arbrisseaux pleins de sucs résineux, dont plusieurs sont répandus dans le commerce sous les noms de baumes et d'encens. Nous ne citerons que les plus connus, comme le baume de la Mecque, fourni par le Balsamodendron opobalsamum; celui de Gilead, par le B. gileadense; la myrrhe, par le B. myrrha; la gomme élémi, par l'Icica heptaphylla. C'est le Boswellia serrata qui produit dans l'Inde le véritable encens, sous le nom duquel on met en circulation plusieurs autres matières résineuses, les unes étrangères à cette famille, les autres qui lui appartiennent. Dans les pays tropicaux où habitent ces différents arbres, ce sont ordinairement les branches elles-mêmes, tout imprégnées de leurs sucs, qu'on fait brûler dans les temples. Il est clair que ces produits jouissent, à des degrés divers, des propriétés stimulantes qui appartiennent généralement aux résines, et c'est à ce titre que plusieurs sont employés par la médecine.


Nous les retrouvons dans les Térébinthacées ; mais l'huile vo-

latile, qui tient leur résine en dissolution, est souvent d'une âcreté extrême et leur suc appliqué sur la peau, et à plus forte raison pris à l'intérieur (par exemple, celui de plusieurs Sumacs), détermine des accidents plus ou moins graves : on en attribue même aux émanations seules de quelques arbres de cette famille. Mais ces sucs rendent de grands services aux arts, en fournissant quelques uns de ces beaux vernis désignés quelquefois sous le nom de laques, qui, blancs d'abord, tant que les innombrables particules de la substance organique qui les forme, encore désagrégées, dispersent la lumière dans toutes les directions, plus tard, quand ces particules, décomposées au contact de l'air, se sont liées en une masse homogène, passent à une belle couleur rouge ou noire. La première est, par exemple, celle de la laque du Japon, produit du Stagmaria verniciflua; la seconde, celle du vernis du Japon (Rhus vernix). Deux espèces de Pistachiers (Pistacia lentiscus et atlantica) fournissent la résine qu'on appelle mastic, et une autre (P. terebinthus) celle qu'on appelle térébenthine de Chio : de là l'origine du nom donné à la famille entière, quoique celle de la plupart des térébenthines soit différente, ainsi que nous l'avons vu (§ 565). Dans certains fruits, la pulpe du sarcocarpe prend un assez grand développement pour n'admettre que la proportion d'huile volatile propre à l'aromatiser, et ils deviennent non seulement innocents, mais agréables : ceux du Manguier, par exemple. Faisons remarquer dans l'un d'eux, celui de l'Anacardium occidentale (vulgairement noix d'acajou), le pédoncule renflé en une masse beaucoup plus grosse que le fruit lui-même. La graine des Térébinthacées est charnue et ordinairement oléagineuse, sans mélange de ces autres principes excitants, comme on en a un exemple bien connu dans celle du Pistachier (P. vera). Les feuilles d'un Sumac (Rhus coriaria), riches en tannin, sont employées par les corroyeurs.

§ 591. Légumineuses (Leguminosæ). — La gousse ou légume (§ 424, fig. 373, 374) caractérise toutes les plantes auxquelles on a conséquemment appliqué ce nom, et dont le groupe, si étendu, peut être considéré moins comme une seule famille que comme une agglomération de plusieurs. La plus nombreuse est celle qui nous est familière, comme étant seule représentée dans notre pays, celle des *Papilionacées*, ainsi nommée de sa fleur, que nous avons fait connaître (§ 339, fig. 256, 640), et caractérisée en outre par dix étamines, quelquefois libres, plus habituellement monadelphes ou diadelphes, soit qu'elles se soudent cinq par cinq, soit que la dixième se détache seule d'un tube formé par les neuf autres (fig. 609, 610); enfin par un embryon courbé à radicule pliée sur les cotylédons accombants (fig. 432, 643). Les fleurs, encore irrégulières dans les

LÉGUMINEUSES.

Cæsalpiniées, conservent la forme papilionacée ou tendent à la rosacée; les dix étamines sont le plus souvent libres; l'embryon droit. Les pétales se réduisent en nombre, ou même manquent tout à fait

dans un autre groupe fort peu étendu (les Swartzièes), où le nombre des étamines dépasse quelquefois dix, et où l'embryon se remontre courbe. Un dernier, très considérable, est celui des

609-613. Organes de la fructification d'une Papilionacée, le Pois de senteur (Lathyrus odoratus).

609. Diagramme de la fleur.

610. Sa coupe longitudinale. — c Calice. — e Étendard. — a Une des ailes. — ca Moitié de la carène. — t Tube des étamines. — o Ovaire ouvert, avec ses ovules. — s Stigmate.

611. La gousse s'ouvrant en deux valves, de manière à montrer l'insertion des graines.

612. Une graine séparée. — f Funicule. — c Chalaze. — m Micropyle.

613. Embryon dont on a écarté les cotylédons cc, pour laisser voir la gemmule g cachée entre cux. — r Radicule.

Mimosées, où la corolle devient régulière ainsi que le calice, la préfloraison valvaire, tandis qu'elle était imbriquée dans toutes les autres; les étamines sont en nombre égal aux pétales, ou plus souvent multiple, au point même de devenir indéfini ; l'embryon droit. Remarquons que, dans ces deux dernières familles, l'insertion des étamines, franchement périgyne dans les autres, tend à se rapprocher de plus en plus du fond du calice et à passer à l'hypogynie. Remarquons aussi que quelquefois la membrane interne de la graine s'épaissit beaucoup et simule presque un périsperme. Nous avons eu plusieurs fois occasion de parler des feuilles qui, dans un grand nombre de Légumineuses, sont composées une ou plusieurs fois et souvent articulées, toujours munies de stipules à la naissance de leur pétiole.

Quand on réfléchit au nombre si grand d'espèces contenues dans ce groupe, qui comprend des plantes de toutes dimensions et du port le plus varié, depuis les arbres les plus élevés jusqu'aux herbes les plus humbles, on doit s'attendre à y rencontrer en même temps une grande variété de produits et de propriétés. Les passer en revue serait une tâche beaucoup trop longue, et nous nous contenterons de signaler ici les plus remarquables.

Beaucoup d'arbres de cette famille sont employés pour la charpente dans les pays où ils croissent, et l'on peut citer dans le nôtre le Faux-Acacia, excellent par sa durée et par sa résistance à l'humidité. Le grain serré, les teintes foncées que prend le cœur dans un grand nombre, les font rechercher pour l'ébénisterie et les ont rendus un objet de commerce plus ou moins considérable. Citons le bois de palissandre, dont l'origine, longtemps inconnue, est rapportée maintenant à une légumineuse (une espèce de Dalbergia), le bois de Fernambouc (Cæsalpinia echinata), de Brésil (C. brasiliensis), de Sappan (C. Sappan), un bois de fer (Swartzia tomentosa), celui de Baphia, et tant d'autres, parmi lesquels un arbre indigène, le Faux-Ebénier (Cytisus laburnum), pourrait être mentionné.

Beaucoup d'espèces herbacées de Papilionacées sont riches en principes nutritifs, cultivées comme fourragères, et ce sont elles dont on forme les prairies artificielles : les Trèfles, les Luzernes, les Sainfoins, etc., etc. Elles abondent, en effet, en produits azotés, et les expériences de M. Boussingault prouvent qu'elles peuvent prendre directement dans l'atmosphère une certaine proportion d'azote.

Cette propriété se retrouve souvent dans le péricarpe foliacé des fruits, et c'est ce qui permet de manger les cosses de plusieurs de ces gousses encore jeunes.

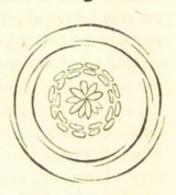
Quant aux graines, elles sont de plusieurs sortes : les unes à cotylédons minces et foliacés, non alimentaires; les autres à cotylé-

dons épais, qui le sont fréquemment. Ce sont celles qui en naissant se remplissent d'une abondante fécule, comme les haricots, fèves, lentilles, petits pois, vesces, etc., et beaucoup d'autres moins communes ou exotiques, dont les noms ne nous rappelleraient pas des objets aussi familiers. Remarquons que cette fécule est mêlée de principes azotés très abondants et qui en font encore un aliment beaucoup plus substantiel; remarquons aussi qu'elle ne se forme et s'accumule que graduellement dans la graine qui, dans son premier âge, bornée pour sa plus grande partie à ses téguments, offrait des cellules remplies de ces principes et d'un mucilage sucré, et, par conséquent, donnait à cette époque, une nourriture différente de celle qu'elle doit donner plus tard. Des pois, par exemple, petits et nouveaux, ou vieux et gros, sont deux mets aussi différents pour l'alimentation que par la saveur. Dans d'autres les cotylédons sont charnus-oléagineux, comme par exemple dans l'Arachis hypogæa (vulgairement Pistache de terre), qui peut fournir une grande proportion d'huile, et, sous ce rapport, est devenue, dans ces derniers temps, un objet de spéculation. D'autres fois c'est une huile essentielle qui aromatise la graine, et c'est ainsi que celle du Coumarouna odorata (vulgairement la fève de Tonka) sert à parfumer le tabac. Les graines à cotylédons foliacés ont souvent des propriétés toutes contraires et deviennent purgatives : par exemple, celles du Baguenaudier, de plusieurs Genêts et Cytises, etc., etc. Il faut donc user de précautions dans les essais auxquels on serait tenté de se livrer, par la ressemblance extérieure des fruits avec nos légumes les plus familiers.

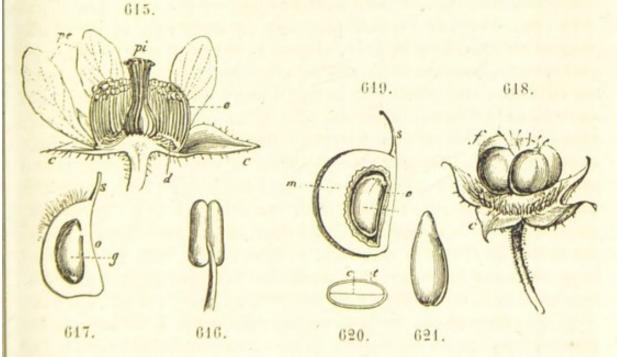
Mais ces propriétés purgatives se retrouvent dans d'autres parties : dans les feuilles, dans les péricarpes, surtout ceux qui sont foliacés. Le médicament le plus connu sous ce rapport est le Séné (feuilles et principalement fruits des Cassia senna et acutifolia, qui nous viennent de l'Orient) : on en extrait une substance particulière, la cathartine, qui paraît être là le principe actif; mais c'en est sans doute un différent que contient la pulpe qui remplit la cavité du fruit dans la casse en bâton (Cathartocarpus fistula), dans le Tamarin, le Caroubier, et dont l'action est infiniment plus douce. Les propriétés précédentes s'observent surtout dans les Cæsalpiniées. Dans les Mimosées, c'en sont d'autres, toniques et astringentes, dont nous ne citerons qu'un exemple, le cachou, suc d'un Acacia (A. cathecu) qu'on obtient par extrait, c'est-à-dire en faisant bouillir le cœur de son bois, puis laissant évaporer, épaissir et sécher la dissolution obtenue. La présence abondante du tannin rend compte de ces propriétés, et donne à l'écorce de plusieurs autres de ces plantes une grande valeur pour la préparation des cuirs.

Parmi d'autres produits de certaines Légumineuses, on trouve quelques résines, comme l'une de celles qu'on appelle sang-dragon, extraite ici du *Pterocarpus draco*; quelques unes, encore liquides, parce qu'elles retiennent une portion de l'huile volatile qui les tenait en dissolution dans le végétal, comme le *baume de copahu* (fourni par plusieurs espèces de *Copaifera*, notamment l'officinalis); quelques autres, associées à de l'acide benzoïque, et constituant par conséquent de véritables baumes, comme ceux du *Pérou* (*Myrospermum peruiferum*), de *Tolu* (*M. toluiferum*).

C'est encore cette famille qui produit les gommes les plus estimées : l'arabique (fournie par divers Acacias, et surtout le nilotica), celle du Sénégal (fournie par d'autres Acacias), l'adragante (faussement attribuée à un sous-arbrisseau du midi de l'Europe, l'Astragalus tragacantha, mais provenant d'espèces orientales du même genre : les A. gummifer, verus, creticus).


Enfin, la teinture emprunte aux légumineuses plusieurs matières précieuses, comme le bois de Campêche (*Hæmatoxylum campechianum*), d'un rouge brun, cédant facilement à l'eau et à l'alcool sa couleur, due à un principe particulier qu'on appelle l'*hématine*, et surtout l'*indigo*, dont nous avons déjà signalé le principe colorant, ou *indigotine*, dans des familles bien éloignées (§ 546), mais qu'on extrait surtout de celle-ci et de plusieurs espèces du genre *Indigofera*. Ces plantes bisannuelles sont cueillies dès la première année, plongées dans l'eau, où on les laisse fermenter, qu'on soutire ensuite, et qu'on agite au contact de l'air jusqu'à ce qu'elle soit devenue bleue par la combinaison de son oxygène avec l'indigotine; puis on aide la précipitation de la matière en suspension par un mélange d'eau de chaux, et l'on fait, par l'évaporation, sécher le précipité.

§ 592. Rosacées. — Voici encore une famille qu'on peut considérer comme une association de plusieurs qu'il est impossible d'éloigner les unes des autres, tout en les dissociant. Son étude est instructive, en nous montrant comment certains caractères peuvent varier dans un même groupe naturel; comment, en suivant ces variations d'un état extrême à un autre, par une suite d'intermédiaires, nous ne pouvons conserver de doutes sur le lien qui les unit; comment enfin, voyant un autre caractère immuable à côté de celui qui change ainsi, nous apprenons à lui attribuer relativement plus de valeur. Le pistil d'un Pommier se compose d'un ovaire adhérent au calice dans toute son étendue, et renfermant au milieu d'une chair épaisse cinq petites loges; celui d'un Fraisier, d'une foule de petits carpelles distincts à la surface d'un axe épaissi, saillant au-dessus du calice libre. Nous avons l'exemple d'un fruit syncarpé dans le premier, apocarpé dans le second au plus haut degré.


ROSACÉES.

Mais si nous prenons un Spiræa, où cinq carpelles distincts sont fixés sur un torus plan au fond du calice encore libre, puis un Cerisier, où il n'y a plus qu'un seul carpelle autour duquel le calice s'élève en s'évasant (fig. 207), puis une Alchemille, où le calice,

toujours libre, rétrécit son tube au-dessus des carpelles, au nombre d'un à quatre; une Rose (fig. 333), où les carpelles, plus nombreux et éparpillés, semblent naître de la surface interne du tube, qui, renflé à leur niveau, se referme au-dessus d'eux, ne laissant que le passage suffisant aux styles; si, par une supposition, nous allons un pas plus loin, et que, rapprochant toutes ces parties jusque - là distinctes, nous les soudions en un seul corps,

614.

nous serons revenus au pistil du Pommier. Cependant l'insertion des étamines n'a pas varié ; elle s'est montrée constamment sur un

614-621. Organes de la fructification d'une espèce de Ronce (Rubus strigosus).

614. Diagramme de la fleur.

615. La même, coupée verticalement. — c Calice. — pe Pétales. — e Étamines. — d Disque tapissant le fond du calice et sur lequel s'insèrent les étamines. — pi Pistil composé de plusieurs carpelles.

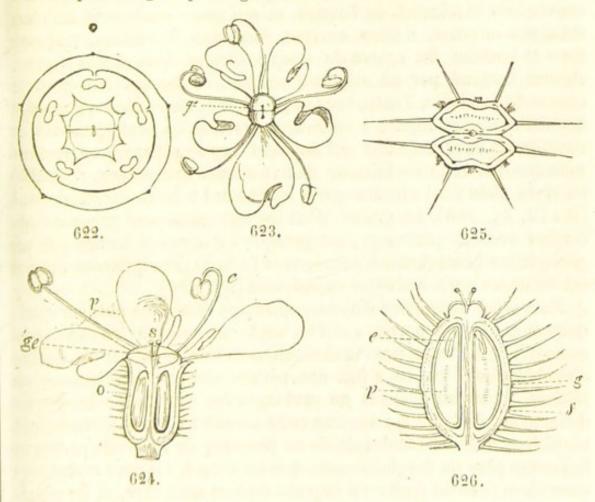
646. Une anthère séparée avec le sommet du filet, vue en dehors.

647. L'ovaire o coupé verticalement pour montrer la position de l'ovule g. - s Style.

618. Fruit. — f Carpelles charnus accompagnés par le calice persistant c, sur lequel en voit encore les filets flétris.

619. Section verticale d'un carpelle. — s Style. — m Mésocarpe charnu ou sarcocarpe. — e Endocarpe. — g Graine.

620. Tranche horizontale de la graine. — t Tégument. — c Cotylédons de l'embryon 624. Embryon isolé.


cercle vers le sommet du tube calicinal. Donc la périgynie des étamines a plus de fixité et d'importance que la relation du calice et de l'ovaire libres ou adhérents entre eux.

Ajoutons, aux indications qui précèdent, des pétales insérés audessus des étamines sur le calice, alternant avec les lobes du calice en nombre égal, le plus fréquemment cinq, et étalés en rose; un embryon sans périsperme, droit, à cotylédons charnus, à radicule courte tournée vers le point d'attache de la graine ; les feuilles simples ou composées, mais toujours munies de stipules, et nous aurons les caractères généraux des Rosacées. L'ovaire adhérent, avec deux ovules, très rarement plus ou moins, ascendants dans chaque loge et se changeant en un fruit charnu, distinguera nettement les Pomacées. Plusieurs achaines distincts, enveloppés par le calice charnu, insérés sur son fond, renfermant chacun une seule graine pendue, caractériseront les Rosées ou Rosacées proprement dites. Les Dryadées (fig. 614-621) auront plusieurs achaines sur un réceptacle saillant au centre de la fleur, chacun avec une graine pendante ou dressée ; les Sanguisorbées, des achaines réduits presque toujours à un ou deux, recouverts par le tube rétréci du calice endurci, qui souvent ne portait pas de pétales; les Spiræacées, cinq carpelles verticillés au fond d'un calice à tube court, renfermant chacun deux ovules au plus, pendants ou ascendants, et s'ouvrant le long d'une suture interne : les Amygdalées, un seul ovaire libre avec des ovules pendants collatéraux, et, plus tard, une drupe; les Chrysobalanées, de même, avec la différence que les deux ovules sont dressés. Parmi les arbres de nos pays tempérés, si presque tous ceux des forêts se rapportent aux Amentacées, la famille des Rosacées revendique presque tous ceux des potagers et des vergers, et c'est elle qui nous fournit la plupart des fruits que nous mangeons. Les Pommes, les Poires, les Coings, les Nèfles, Cormes, Azeroles sont produits par les Pomacées; les Cerises, Prunes, Abricots, Pêches, Amandes, par les Amygdalées ; les Frambroises et les Fraises, par les Dryadées. Mais il est bon de remarquer que dans tous ces fruits, quoique provenant d'une même famille, ce n'est pas toujours la même partie que nous mangeons, puisque c'est le calice épaissi, confondu avec le péricarpe, dans les Pomacées; le sarcocarpe seulement, dans les Amygdalées, en exceptant l'amandier, dont nous rejetons le péricarpe pour manger l'embryon ; dans la Fraise, le réceptacle charnu qui porte les carpelles, et, dans la Frambroise, les carpelles sans le réceptacle. Un autre fait digne d'attention, c'est, dans les Amygdalées, la présence du principe le plus vénéneux qu'on connaisse, l'acide hydrocyanique, qui se trouve dans les feuilles et les noyaux. Il entre donc, mais pour une proportion extrêmement faible, dans

OMBELLIFÈRES.

les liqueurs fermentées qu'on fait avec des fruits de certains Cerisiers : le marasquin, avec la Cerise-Marasca ; le kirschwaser, avec la Merise ou Cerise sauvage.

§ 593. **Ombellifères** (Umbelliferæ). — Ce groupe, si naturel et comme tel facilement reconnaissable à plusieurs traits saillants, a été depuis longtemps et généralement reconnu. On lui a conservé

le nom qu'il reçut dès le principe, d'après son mode d'inflorescence, que nous avons fait connaître (§§ 264, 284, fig. 489). Il se compose de plantes la plupart herbacées, annuelles ou vivaces, dont la tige aérienne, devant ainsi se développer dans le cours d'une année, pendant lequel elle acquiert souvent des dimensions assez considérables (développement auquel la moelle ne peut longtemps se prêter), devient fistuleuse comme celle des Graminées, comme laquelle aussi elle présente des diaphragmes à ses nœuds. Les feuilles alternes, à

622-626. Organes de la fructification de la Carotte (Daucus carota).

622. Diagramme de la fleur.

623. La fleur, vue d'en haut. - ge Disque épigynique.

624. Coupe verticale de la fleur. — p Pétales. — e Étamines. — o Ovaire confondu avec le calice adhérent. — s Styles et stigmates. — ge Disque glanduleux épigynique.

625. Tranche horizontale du fruit.

626. Sa coupe verticale. - /Péricarpe. - g Graine. - p Périsperme. - e Embryon.

limbe presque toujours divisé profondément, embrassent ces nœuds par une gaine longue et large qui se prolonge plus ou moins haut et persiste presque seule dans les supérieures. Les fleurs (fig. 624) se composent d'un calice adhérent terminé par cing petites dents. quelquefois à peine visibles, et avec lesquelles alternent autant de pétales insérés sur le contour d'un gros disque glanduleux qui recouvre tout le sommet de l'ovaire, et qui porte également les cinq étamines alternes, à filets souvent recourbés en dedans, toujours dans le bouton. Du centre du disque sortent deux styles courts, chacun terminé par un stigmate simple, et tournés l'un vers le centre de l'ombelle, l'autre vers sa périphérie, disposition qui répond à celle des deux loges, renfermant chacune un ovule pendant et constituant deux achaines qui finissent par se séparer, ne restant unis que par l'axe ou faisceau des vaisseaux nourriciers, dédoublé en deux filets dont chacun porte suspendu l'achaine correspondant (§ 429, fig. 380). La graine, dont les téguments sont presque confondus avec le péricarpe, est presque entièrement formée par un périsperme généralement corné, vers l'extrémité supérieure duquel est niché un petit embryon cylindrique (fig. 626).

Mais il est nécessaire d'ajouter quelques détails de plus sur quelques unes de ces parties, si l'on veut comprendre les caractères employés maintenant pour la distinction et l'arrangement des genres d'Ombellifères. On en a tiré des pétales entiers ou échancrés ou bilobés, plans au sommet ou prolongés en une pointe repliée en dedans (fig. 255, 623) : souvent cette corolle n'est pas parfaitement régulière, mais les pétales situés au pourtour de l'ombelle prennent beaucoup plus de développement que les autres. Ce sont surtout les caractères tirés du fruit qu'il importe de bien connaître, et ils résultent des nervures saillantes à sa surface (fig. 622), le long de laquelle ils dessinent des cotes (juga) plus ou moins développées, tantôt sous la forme de lignes superficielles, tantôt sous celle de crêtes. Or, le calice adhérent se compose de cinq folioles, ainsi que le prouvent les dents libres au sommet ; chacune d'elles offre une nervure médiane, et leurs bords, en se soudant deux à deux, déterminent autant d'angles alternant avec les premiers, de sorte que l'ensemble du fruit en présente dix correspondant alternativement aux nervures médianes (juga carinalia) et aux bords réunis (juga suturalia); et que chacun des deux carpelles en présente cinq, un médian, deux intermédiaires et deux latéraux qui s'accolent avec les homologues du carpelle opposé. Entre les cinq côtes ainsi formées à la surface d'un carpelle doivent se trouver quatre angles rentrants ou vallécules (valleculæ). Quelquefois une nervure secondaire, double par chaque foliole, divise chaque vallécule dans sa longueur et en double

OMBELLIFERES.

ainsi le nombre. Souvent, dans l'épaisseur du péricarpe et le long de chaque vallécule, sont creusées une ou plusieurs lacunes remplies d'un suc propre résineux, qui vont en s'élargissant de haut en bas où elles se terminent en cœcum, et dessinent à l'extérieur autant de lignes colorées ou bandelettes (vittæ). Ce sont la forme et le nombre des côtes, des vallécules, et la diposition des bandelettes, qui fournissent les caractères principaux maintenant employés et qu'il faut apprendre à déterminer. Les faces internes, par lesquelles les deux carpelles sont d'abord réunis, et qui finissent par se séparer, sont quelquefois planes (Ombellifères orthospermées [fig. 625, 626]), d'autres fois concaves, soit par l'inflexion de leurs bords ou côtes latérales (O. campylospermées), soit plus rarement parce qu'elles se recourbent à leurs deux extrémités (O. cælospermées). Le périsperme, formant la plus grande partie de la masse de chaque carpelle et intimement adhérent à ses téguments, présente les mêmes modifications de forme.

Le suc accumulé dans les bandelettes est une huile aromatique qui communique ses propriétés et son parfum aux graines employées en conséquence dans un certain nombre d'espèces, comme l'Anis, le Coriandre, le Fenouil, le Cumin, etc., etc. Cette huile est souvent associée à un principe narcotique dans les autres parties du végétal, surtout dans l'écorce et les feuilles où abondent les sucs propres qui peuvent, suivant la proportion du principe qui domine, présenter des qualités diverses. Tantôt ils forment des gommes-résines stimulantes ou antispasmodiques utilement employées par la médecine, comme l'assa fœtida, l'opopanax, le sagapenum, le galbanum, la gomme ammoniaque ; tantôt ils deviennent des poisons plus ou moins violents, dans le Conium maculatum, le Cicuta virosa, l'Æthusa cynapium, le Phellandrium aquaticum, etc., plantes auxquelles on donne vulgairement les noms de Ciguë, petite Ciguë, Ciguë aquatique, sans pouvoir déterminer avec précision celle avec laquelle se préparait le breuvage de mort si célèbre dans l'antiquité; tantôt enfin ils sont mitigés au point de ne plus servir, de même que dans les graines, qu'à aromatiser les parties au milieu desquelles ils se distribuent et qui deviennent comestibles, comme dans les feuilles du Persil, du Cerfeuil, dans les tiges de l'Angélique. Mais faisons remarquer que c'est surtout dans les parties soustraites à l'action de la lumière que cela a lieu, dans les racines particulièrement, comme celles de la Carotte, du Panais, etc., etc., d'un usage si journalier, et que les jardiniers déterminent artificiellement cette modification en couvrant certaines portions destinées à la nourriture, par exemple les feuilles du Céleri. On a observé aussi que ces propriétés augmentent ou diminuent d'énergie suivant le climat plus ou moins

chaud : qu'ainsi le *Conium maculatum*, poison dangereux dans le midi de l'Europe, peut se manger sans inconvénient en Russie. Les racines charnues, que nous avons citées plus haut et que chacun connaît, présentent en outre une proportion assez considérable de matière sucrée.

VÉGÉTAUX DICOTYLÉDONÉS MONOPÉTALES.

§ 594. Nous les avons vus divisés par Jussieu (§ 517) en Hypocorollées, Péricorollées et Épicorollées, ces dernières partagées en deux classes, suivant que leurs anthères sont distinctes ou soudéesentre elles. Tout en suivant cette classification, nous confondronsles monopétales à insertion périgynique et épigynique, à cause de la difficulté qu'on éprouve fréquemment à distinguer l'une de l'autre dans la pratique.

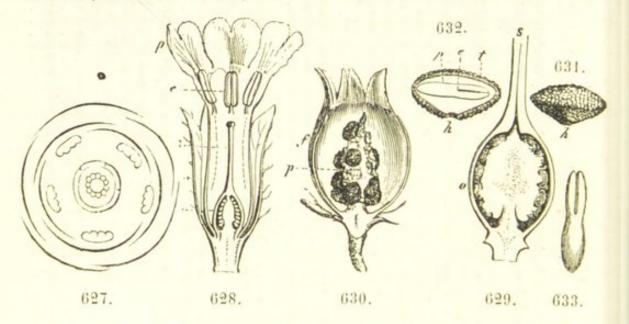
MONOPÉTALES HYPOGYNES.

§ 595. Parmi les autres, nous commencerons par un certain nombre de familles qu'en peut considérer comme établissant le pas-sage des polypétalées aux monopétalées. Plusieurs en effet nousoffrent ce double caractère dans leurs genres, liés du reste entre eux par une affinité évidente : telles sont les Styracinées, les Ébé-nacées, les Illicinées. Quoique dans le reste les pétales se soudent l entre eux jusqu'à une certaine hauteur, c'est quelquefois dans une étendue extrêmement courte ; et d'ailleurs plusieurs caractères propres aux plantes essentiellement monopétalées font ici défaut. Dans celles-ci, les étamines sont portées sur la corolle ; leur nombre égale au plus ou n'atteint pas celui de ses divisions, et enfin on ne retrouve pas ce nombre dans celui des carpelles, qui, pour la plupart des cas, se réduit à trois, ou plus ordinairement deux. Les familles qui suivent nous présentent au contraire des carpelles souvent en nombre égal aux pétales, des étamines souvent en nombre double ou multiple, et très fréquemment aussi parfaitement indépendantes de la corolle. Plusieurs, il est vrai, ont, suivant la loi ordinaire, leurs étamines insérées sur le tube de cette corolle, et en même nombre que ses lobes; mais le plus souvent alors elles leur sont opposées, et la présence fréquente d'autres corps, même de filets stériles, qui, alternant avec elles, viennent occuper leur place normale, indique assez l'existence d'un second verticille d'étamines dissimulées jusqu'à un certain point par un avortement plus ou moins complet. Ces diverses considérations nous ont engagé à présenter ces familles dans un tableau à part; et, si dans quelques uns de leurs genres, même dans un petit nombre de familles tout entières

FAMILLES. Tableau XII.

MONOPÉTALES A COROLLE RÉGULIÈRE,

à étamines ordinairement hypogynes, souvent indépendantes d'elle, multiples, doubles ou opposées, très-rarement égales et alternes, ou moindres en nombre; à car


de la corolle.	EPACRIDÉES.	Pyrolacies. Rhodonacies de. } Ericinées. Vacciniées.	-STYRACINĖES,	-EBENACÉES OLÉINÉES.	JASMINEES.	ILICINÉES.	SAFOTÉES.	ÆGYCÉRÉES.	Myrsinėes.	PRIMULACÉES.	PLUMBAGNEES.	PLANTAGINÈES
our participation de la corolle,	·· · 0	ailées. Capsule. Anthères mutiques, tubuleuses, à pores terminaux non ailées. Capsule à déhisc. septicide. Anthères mutiques. Fruit charnu, ordinairement caps. à déhisc. loculicié e. Anthères aristées. souvent aristées.	Etamines doubles ou multiples. Ovaire adhérent, à 3-5 loges multiovulées. Fruit charnu, Périsp. charnu. Pl. ligneusesSryrACINÉES.	en nombre moindre (2) que les divis. coroll.) pendants. Périsp. épais. Préfloraison valvaire. Fruit charnu , cap- } Ovaire libre 2-loc. 1-2 ovules) sule ou samare. Pl. ligneuses } Oraire libre 2-loc. 1-2 ovules	dressés. Périsp. mince. Préfloraison imbriquée. Fruit charnu ou capsule. Pl. ligneuses.			Ovaire libre 1-locul. Plusieurs ovules. Pas de périsp. Follicule. Pl. ligneuses { /	Embr. excentrique dans un périsp. charnu ' ou corné. Drupe. Pl. ligneuses N	-	1 seul ovule. Embryon dans l'axe d'un périsperme charnu. j P Capsule. Pl. herbacées.	
	nthe		Eta									

MONOPÉTALES A COROLLE RÉGULIÈRE.

que nous avons cru devoir y comprendre, nous ne trouvons pas ces caractères exceptionnels, leur place naturelle n'en est pas moins marquée ici par l'ensemble de tous leurs autres caractères, auquel nous avons dû avoir égard. L'insertion même semble perdre un peu de son importance dans ce groupe ainsi formé qui nous offre quelques cas, bien rares il est vrai, de périgynie : nouveau lien avec les familles polypétales par lesquelles nous avons fini.

(Tableau XII, page 495.)

§ 596. Les **Primulacées**, par leurs étamines opposées aux lobes de la corolle (*fig.* 627, 628), par la placentation centrale de leurs graines (*fig.* 628, 629, 630), et par la situation de l'embryon qui

tourne son côté, au lieu de son extrémité, vers le point d'attache (*fig.* 632), se distinguent facilement de toutes les autres familles monopétales, si ce n'est des **Myrsinées**. Mais celles-ci sont en quelque sorte les Primulacées des régions tropicales, où elles croissent exclusivement, et elles n'y sont représentées que par des arbres ou des arbrisseaux; tandis que les Primulacées proprement dites,

627-633. Organes de la fructification du Primula elatior.

627. Diagramme de la fleur.

628. Sa coupe verticale. — c Calice. — p Corolle. — e Étamines. — o Ovaire. s Style et stigmate.

629. L'ovaire o coupé verticalement pour montrer le placenta central chargé d'ovules.
 — s Base du style.

630. Coupe verticale du fruit. — f Péricarpe. — p Placenta central chargé de graines, dont quelques unes ont été détachées.

631. Graine.

632. La même, coupée verticalement. — t Téguments. — lt Hile. — p Périsperme. - c Embryon.

633. L'embryon séparé.

MONOPÉTALES HYPOGYNES.

habitantes des climats tempérés ou froids, sont toujours herbacées. On ne les recherche qu'à cause de l'élégance de leurs fleurs, qui, pour plusieurs espèces, offrent l'avantage de paraître à une époque de l'année où nos champs et nos jardins sont encore si peu fleuris, précocité qui a valu son nom au principal genre, la Primevère (*Primula*). Les propriétés de cette famille sont peu prononcées, mais paraissent avoir un certain degré d'énergie, notamment dans l'Anagallis 'ou Mouron (qu'il ne faut donc pas confondre avec celui des oiseaux). L'extrait de l'A. arvensis est un poison de la classe des àcres.

§ 597. Les familles comprises dans les tableaux suivants, et qui forment la grande majorité des Monopétales, présentent constamment ces caractères que nous avons plusieurs fois signalés comme liés à cette modification de la corolle dans le nombre, la position et l'insertion des étamines, ainsi que dans le nombre des carpelles ordinairement inférieur à celui des pétales, quoique dans quelques rares exceptions on le trouve au contraire supérieur. Plusieurs plantes des familles énumérées dans le tableau précédent, et où l'on rencontre ces mêmes caractères, devraient donc se ranger dans l'un de ceux qui suivent, si l'on n'avait égard qu'à leur place systématique; mais nous avons mieux aimé les laisser à celle que leur assignent leurs rapports naturels. On ne pourra en aucun cas les confondre avec celles du tableau XIII, où la corolle est irrégulière, et quant à celles du tableau XIV, l'examen des autres caractères pourra facilement décider la question dans le petit nombre de cas où elle serait douteuse.

(Tableaux XIII et XIV, pages 498 et 499.)

§ 598. Avant d'examiner en particulier quelques unes des familles mentionnées dans les deux tableaux suivants, il convient d'examiner en général plusieurs points de leur organisation. Celles dont les pétales inégaux forment par leur réunion une corolle irrégulière nous occuperont d'abord. Ordinairement un de ces pétales est opposé à la bractée, c'est-à-dire regarde en dehors et se soude plus ou moins haut avec les deux voisins, tandis que les deux autres se déjettent du côté opposé ou intérieur, de manière que le limbe se partage en deux parties ou lèvres, la supérieure bilobée, l'inférieure trilobée ; et qu'en coupant la corolle, suivant un plan parallèle à l'axe, on obtient deux moitiés inégales et de formes différentes dont chacune constitue une de ces lèvres ; en la coupant dans un plan perpendiculaire au précédent et suivant l'axe, on obtient deux moitiés symétriques. Le calice peut être lui-même régulier ou participer à cette irrégularité ; dans ce dernier cas, il sera lui-même bilabié. Des cinq

497

42.

FAMILLES. Tableau XIII.

MONOPÉTALES HYPOGYNES,

à corolle irrégulière, portant les étamines alternes, réduites à 4 didynames ou à 2 par l'avortement complet ou partiel des autres.

Ovaires [un seuf, avec style] 1-locul. Placentation [latérale. 1 seule graine pendante. Périsperme épais. 4 étamines	Etamines didynames ou 2) Fantles for the guelof. Gessnent Ces.	2-locul. Placent. axile. Graines indéfinies non ailées. Périsperme épais, charnu. Etamines di- } Scrofularines.	-1-	Une seule pendante. Périsperme charnu. Etamines didynames. Anthères 2-loc MyopoRINÉES.	2-4-loculaire. Graines définies. Fruit échiné. Périsperme nul. Etamines didynames.	14 distincts, avec style gynobasique. 1 seulé graine dressée. Pas de périsperme. Etamines didynames VERBENACEES.
Ora					. ^	

BOTANIQUE.

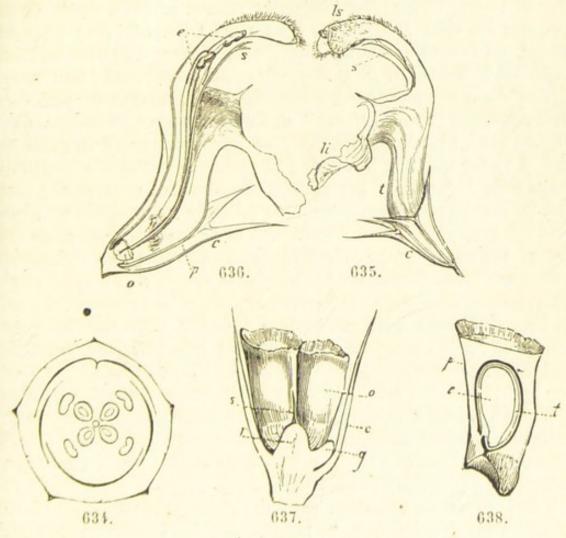
FAMILLES. Tableau XIV.

MONOPÉTALES HYPOGYNES,

à corolle régulière, portant les étamines alternes en nombre égal.

MONOPÉTALES HYPOGYNES.

étamines alternes avec les cinq pétales, celle qui s'insère dans l'intervalle des deux lobes de la lèvre supérieure ne se développe que rarement; le plus souvent elle avorte, soit incomplétement, indiquant alors sa présence par un filet rudimentaire (comme dans plusieurs *Scrofularinées* et *Bignoniacées*), soit tout à fait. Dans ce dernier cas, des quatre autres étamines, les deux inférieures, celles qui alternent avec les lobes de la lèvre inférieure, prennent un plus grand développement; les deux latérales, celles qui alternent avec les deux lèvres, se développent aussi tout en restant plus petites (auquel cas on a des étamines tétradynames'), ou ne se développant qu'incomplétement et ne se montrant qu'à l'état rudimentaire (auquel cas la fleur est diandre).


§ 599. On a pu remarquer combien, dans les familles monopétales à fleurs régulières aussi bien qu'irrégulières, est fréquent le nombre binaire des carpelles, et un examen attentif porte à penser qu'il l'est en réalité plus encore que ne l'indiquent nos tableaux. Nous trouvons, en effet, que dans certaines familles le nombre des loges se réduit souvent de quatre à deux, mais qu'alors celui des graines est double dans chacune ; que dans d'autres le nombre 4 des carpelles est constant (comme dans les Labiées et les Berraginées); mais alors même le style unique est bifide, ou terminé par deux stigmates, et chacun des stigmates s'oppose à une couple de carpelles. D'ailleurs les insertions de quatre ovules ne se croisent pas d'ordinaire régulièrement, mais se rapprochent deux à deux en s'opposant aux deux stigmates. Certaines monstruosités nous montrent les carpelles dissociés, mais par couples dont chacune porte un style avec son stigmate ; et un genre de Dichondrées offre deux styles distincts, chacun servant également une paire de carpelles. Il serait peut-être permis d'en conclure que chacune de ces couples représente un carpelle unique bilobé ou biovulé, ce que confirmerait l'existence fréquente de deux ovules dans chacune des loges des ovaires franchement biloculaires, et la tendance que ces mêmes loges ont à se diviser en deux compartiments par la récurrence d'une cloison médiane. C'est même ce qui porte dans certains cas le nombre apparent des loges à 8 ; c'est qu'alors il y en a réellement quatre, mais chacune coupée en deux par une cloison; en ce cas (dans certaines Verbénacées), au lieu de 8 noyaux uniloculaires, on en observe quatre biloculaires.

La position des deux loges relativement à l'axe de la fleur est au contraire fixe et importante. Dans les Scrofularinées, Solanées, Acanthacées, etc., l'une des loges est supérieure, c'est-à-dire tournée du côté de l'axe; l'autre inférieure, c'est-à-dire tournée du côté de la bractée. Dans les Gentianées, Apocynées, Asclépiadées, etc., elless

LABIEES.

sont toutes deux latérales, situées, par rapport à l'axe, l'une à droite et l'autre à gauche.

§ 600. Labiées (Labiatæ). -- La corolle labiée (fig. 269, 635), les étamines didynames rarement réduites à deux (dans les Sauges, par exemple) par l'avortement presque complet des deux intermédiaires, et les quatre ovaires avec un seul style gynobasique (fig. 336,

637 s) bifide à son sommet (fig. 636 s), distinguent facilement cette famille de toutes les autres. Ajoutons-y leur tige ordinairement quadrangulaire et leurs feuilles opposées ; et, lors même qu'on n'aurait à sa disposition que ces organes de la végétation, ils pourraient suffire

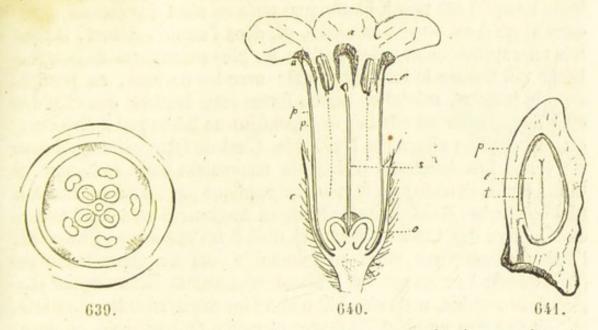
634-638. Organes de la fructification du Lamium album. — c Calice. — p. Corolle. — t Tube. — ls Sa lèvre supérieure. — li Inférieure. — c Étamines. — s Style et stigmates.

634. Diagramme de la fleur.

635. Fleur entière vue de côté.

636. La même, coupée verticalement.

637. Fruit coupé verticalement, de manière que deux des carpelles ont été enlevés. c Calice persistant. — g Glandes. — r Réceptacle gynobasique, c'est-à-dire portant le style s. — o Carpelle.


638. Un carpelle coupé verticalement. — p Péricarpe. — t Tégument de la graine. — e Embryon.

au diagnostic par l'existence d'un grand nombre de petits réservoirs d'huile essentielle dont les feuilles sont couvertes. C'est à ces huiles que les Labiées doivent leur odeur aromatique, variée suivant les espèces, et si agréable dans quelques unes qu'il suffit de nommer :: la Sauge, le Thym et le Serpolet, la Mélisse, la Lavande, la Menthe, le Romarin, le Patchouly (espèce de Pogostemon), etc., etc. Tantôt on extrait l'huile même pour l'employer comme parfum, tantôt on en i prépare les eaux spiritueuses dont nous faisons le plus fréquent usage, ou l'on en aromatise divers cosmétiques. Certaines feuilles. celles de la Sarriette, de la Marjolaine, du Basilic, etc., sont introduites dans nos mets comme condiments. L'infusion de plusieurs; déjà nommées (Sauge, Mélisse) et d'autres encore (Moldavie, Gléchome, etc.), légèrement tonique, est prise quelquefois en guise de thé. A l'effet que doit déterminer la présence d'huiles essentielles : dont nous connaissons la propriété généralement excitante, il faut ajouter souvent celui que produira la présence simultanée d'un autre principe gommo-résineux, légèrement amer, duquel résulteront ces : vertus toniques. Aussi plusieurs de ces boissons sont conseillées pour cette cause comme stomachiques; et même, si le dernier principe abonde, elles pourront devenir fébrifuges (Germandrée, Ivette, Scordium). Il est à remarquer que le camphre, cette substance que nous avons déjà signalée dans une famille bien différente, celle des Laurinées, se trouve associé à l'huile volatile des Labiées, et avec une telle abondance dans quelques unes (Sauge et Lavande), qu'elles pourraient servir avantageusement à son extraction. On cite enfin quelques espèces dont les racines présentent des renflements tuberculeux dont la fécule peut fournir un aliment, et, parmi elles, une de notre pays, le Stachys palustris.

§ 604. Les **Borraginées**, par leurs quatre ovaires distincts avec un seul style gynobasique, se rapprochent des *Labiées*; mais leurs feuilles alternes, sur une tige arrondie avec leur corolle presque constamment régulière, et même lorsqu'elle ne l'est pas (dans les *Echium*), portant cinq étamines anthérifères, les distinguent au premier coup d'œil : et cette distinction serait facile même si l'on n'avait qu'une seule feuille, car on pourrait la reconnaître à sa consistance molle, sa surface hérissée d'aspérités qui résultent des bosses renflées et endurcies de poils simples, son tissu entièrement dépourvu d'huile : et, malgré la ressemblance du pistil ou du fruit, ils suffiraient encore sans autre caractère, à cause de la position des ovules pendants au lieu d'être dressés, et de la direction de la radicule qui en est une conséquence nécessaire, et qui, infère dans les *Labiées* (fig. 638), est supère dans les *Borraginées* (fig. 644). Les propriétés de celles-ci, abondantes en mucilage qui donne à leur

SOLANÉES.

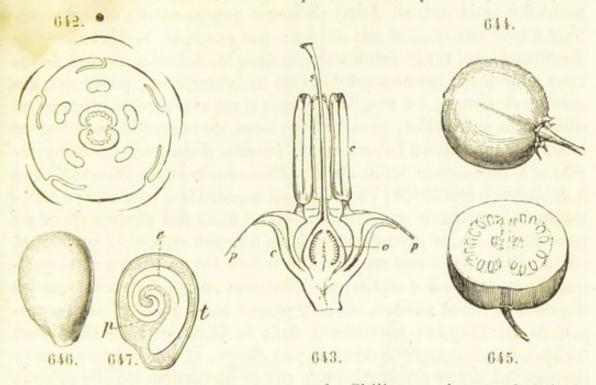
infusion des propriétés simplement émollientes, sont également distinctes. La racine de plusieurs espèces, notamment de l'Orcanette (Anchusa tinctoria), à laquelle on peut substituer celles de l'Onosma

echioides et du Lithospermum tinctorium, est employée pour la teinture. Elle est rouge à l'extérieur au contact de l'air, blanche en dedans, et contient une matière insoluble dans l'eau, soluble dans l'alcool, l'éther, les huiles et les corps gras en général ; forme, avec les alcalis, une combinaison de couleur bleue, et est précipitée de sa solution alcoolique par les dissolutions métalliques en laques diversement colorées.

§ 602. Solanées. — Les plantes de cette famille méritent d'être citées pour l'énergie et en même temps pour la diversité de leurs propriétés. La plus généralement répandue est la propriété narcotique qui réside dans les sucs des racines, feuilles et fruits de certaines espèces bien connues : la Belladone (Atropa belladona), la Mandragore (A. mandragora) si renommée autrefois, la Jusquiame (Hyoscyamus niger) et autres espèces du même genre, la Pomme épineuse ou Stramoine (Datura stramonium), diverses espèces du genre Solanum (par exemple, le S. nigrum, si commun dans nos campagnes). La chimie a découvert des substances particulières et en même temps analogues dans ces différentes plantes dont elle leur a donné les noms (atropine, hyoscyamine, daturine, solanine), et c'est à elles que leurs qualités paraissent dues. Les Physalis som-

639=644. Organes de la fructification d'une Buglosse (l'Anchusa italica).

639. Diagramme de la fleur.


640. Sa coupe verticale. — c Calice. — p Corolle. — a Ses appendices. — c Étamines. — o Ovaires, dont deux coupés. — s Style.

641. Un des carpelles coupé verticalement. — p Péricarpe. — t Téguments de la graine. — e Embryon.

nifera et le Nicandra physalodes produisent des effets semblables, quoique moins intenses. Ceux des feuilles du Tabac, dus également à la présence d'un alcaloïde particulier (la nicotine), sont très violents lorsqu'il est pris à l'intérieur; mais ce n'est que comme médicament qu'il est ainsi administré, et, dans l'usage habituel, il n'est mis en rapport qu'avec les parties les plus extérieures de la membrane qui tapisse le tube intestinal : avec les narines, en poudre : avec la bouche, mâché ou fumé, forme sous laquelle son effet doit être singulièrement affaibli, et cependant ne laisse pas d'être énergique lorsqu'on n'en a pas l'habitude. C'est de l'Amérique qu'il nous est venu. Les habitants d'Haïti le nommaient yati, et le nom de tabac, qu'ils donnaient à la pipe, fut appliqué par les Européens à la plante. Walter Raleigh l'introduisit en Angleterre en 4586; mais il était cultivé dès 4560 en Portugal, d'où il fut apporté en France par l'ambassadeur Nicot, dont on a donné le nom au genre botanique (Nicotiana). Son usage fut d'abord sévèrement défendu par plusieurs souverains, mais s'établit malgré les menaces et les punitions, et finit par être un objet de faveur et même de monopole, en devenant une branche importante des revenus publics, comme il l'est aujourd'hui. Répandu sur toute la surface de la terre, sa culture s'est aussi généralisée, et l'on pourra s'étonner de trouver jusqu'en Écosse et en Suède celle d'une plante originaire des contrées tropicales : mais il est facile de s'expliquer cette diffusion, si l'on réfléchit que c'est une herbe annuelle, qui ne demande pour parvenir à sa perfection que peu de mois de chaleur, et qui d'ailleurs, dans son pays natal, croît sur les hauteurs, par conséquent dans un climat plus tempéré. Plusieurs espèces sont cultivées : le Nicotiana tabacum à fleurs roses, le plus généralement ; le N. rustica à fleurs jaunes, de préférence dans l'Afrique occidentale et l'Égypte, ainsi que dans le midi de l'Europe, où l'on en prépare le tabac de Salonique et probablement aussi de Latakié. Celui de Shiraz est le N. persica, peutêtre originaire de cette contrée, ce qui pourtant est loin d'être certain. Il est assez singulier dans cette famille, à côté de ces produits vénéneux, d'en trouver d'autres d'une nature entièrement différente. Les fruits du Piment (Capsicum) sont extrêmement piquants au goût et même âcres, mais se mangent impunément; et ceux de la Tomate (Lycopersicum esculentum), de l'Aubergine (Solanum melongena) et de quelques autres, sont tout à fait doux et comestibles. Mais c'est surtout la Pomme de terre (Solanum tuberosum [fig. 642-647]) dont l'emploi fait contraste avec tous les narcotiques que nous avons cités d'abord. Il est vrai que cet aliment si usité est fourni par une autre partie de la plante et tout autrement modifiée, par les rameaux inférieurs et souterrains (§ 158, fig. 160) qui forment en se renflant

SCROFULARINÉES.

de riches dépôts de fécule. C'est aussi de l'Amérique que nous est venu ce végétal si utile ; mais de quelle contrée précisément? On l'a

trouvé sauvage dans les montagnes du Chili, vers le 33° degré de latitude australe; dans celles du Pérou, où peut-être il avait été porté par les Incas; récemment sur les pics du Mexique, où cepen dant il n'était pas connu du temps de Montezuma, et ce fut de Virginie que Raleigh le rapporta en Angleterre. Mais il est bien difficile de déterminer si une plante d'une propagation aussi facile a toujours crû spontanément dans un certain lieu, ou si elle y a été laissée par le voisinage de l'homme à une autre époque. Quoi qu'il en soit, la Pomme de terre a eu plus de peine que le Tabac à s'établir en Europe, et chez nous on peut regarder sa culture en grand comme ne datant que de ce siècle. Elle était plus tôt en usage dans le midi de la France ; mais il fallut les efforts les plus persévérants d'un philanthrope éclairé, Parmentier, pour la faire adopter dans le Nord. C'est un fait qui a droit de nous causer aujourd'hui un singulier étonnement.

§ 603. Scrofularinées. — Elles ont les rapports les plus intimes avec les Solanées, dont elles diffèrent seulement par l'irrégula-

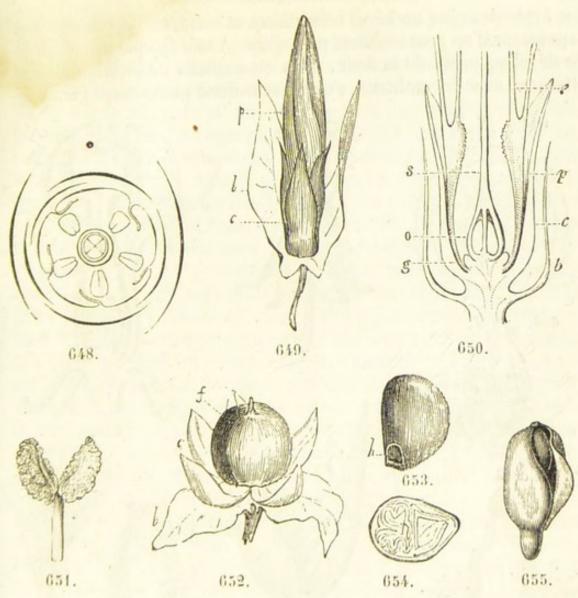
642-647. Organes de la fructification du Solanum tuberosum.

642. Diagramme de la fleur.

643. Sa coupe verticale. — c Calice. — p Partie inférieure de la corolle. — c Étamines. — s Ovaire. — s Style et stigmate.

644. Fruit.

645. Le même, coupé horizontalement.


646. Graine.

647. La même, coupée verticalement. - t Tégument. - p Périsperme. - c Embryon.

rité de leurs corolles et celle de leurs étamines, réduites à quatre didynames par l'avortement de la cinquième, ou à deux par l'avortement des trois autres. Aussi plusieurs genres ont-ils été rapportés tour à tour aux unes et aux autres : par exemple, le Verbascum ou Bouillon-blanc, rangé primitivement dans les Solances à cause de ses cinq étamines ; maintenant dans les Scrofularinées , parce que ces mêmes étamines, au nombre de cinq il est vrai, mais inégales et différentes entre elles, ainsi que les lobes de la corolle, manifestent ainsi leur tendance à l'avortement. Jussieu distinguait les Scrofularinées à déhiscence septicide des Pédicularinées ou Rhinanthacées à déhiscence loculicide; on les réunit aujourd'hui parce qu'on a remarqué le premier mode de déhiscence dans des plantes qu'on ne peut éloigner des premières, et elles forment ensemble un seul et vaste groupe subdivisé en plusieurs tribus. On y observe ainsi quelquefois la déhiscence septifrage. Elles sont en général, ainsi que les Solanées, âcres et amères, et l'on y trouve aussi quelquefois des propriétés narcotiques, notamment dans la Digitale, véritable poison lorsqu'on l'administre à dose un peu élevée, et dont l'action singulière se fait sentir principalement sur la circulation, qu'elle ralentit à un point remarquable après l'avoir accélérée momentanément; ce qui l'a fait employer dans les maladies où il importe de modérer le cours du sang, dans les palpitations et les anévrismes.

§ 604. Convolvulacées. - Les Cuscutées et Dichondrées leur sont en général réunies comme simples tribus. Plusieurs des caractères distinctifs des vraies Convolvulacées ont été indiqués dans le tableau XIV: ajoutons ici la disposition nettement quinconciale des cinq folioles du calice insérées à des hauteurs inégales, la corolle à cinq plis qui sont tordus dans le bouton, la déhiscence loculicide de la capsule. La plupart des espèces de cette famille sont grimpantes ; et leurs diverses parties pleines d'un suc laiteux. Ce suc est en général extrêmement purgatif, qualité dépendante de sa nature résineuse. Elle a été constatée dans un grand nombre d'espèces du genro Convolvulus ou Liseron, dont quelques unes sont surtout employées en médecine, comme le Jalap (C. jalapa), la Scammonée (C. scammonia), le Turbith végétal (C. turpethum) et autres. Ce sont surtout les racines où ce principe abonde et dont on les extrait. Il est remarquable d'en trouver dans le même genre d'autres qui, par sa suppression presque complète et un énorme développement, deviennent des aliments sains et recherchés. Telle est entre autres celle de la Patate (C. batatas). Le C. dissectus contient une proportion notable d'acide hydrocyanique : aussi est-ce une des plantes avec lesquelles on prépare la liqueur de novau.

APOCYNÉES, ASCLÉPIADÉES,

§ 605. Apocynées. Asclépiadées. — Ces deux familles, primitivement réunies en une seule, dont elles étaient considérées simplement comme deux tribus, présentent en effet les plus intimes rapports et ne diffèrent que par la disposition de leurs étamines, distinctes dans les premières, où le pollen offre la structure pulvérulente habituelle, tandis que dans la seconde il se réunit en masses, ou granuleuses, ou plus souvent d'une dureté comparable à celle de la cire, au nombre de 40 en général, c'est-à-dire une dans chacune

648-655. Organes de la fructification du Convolvulus sepium.

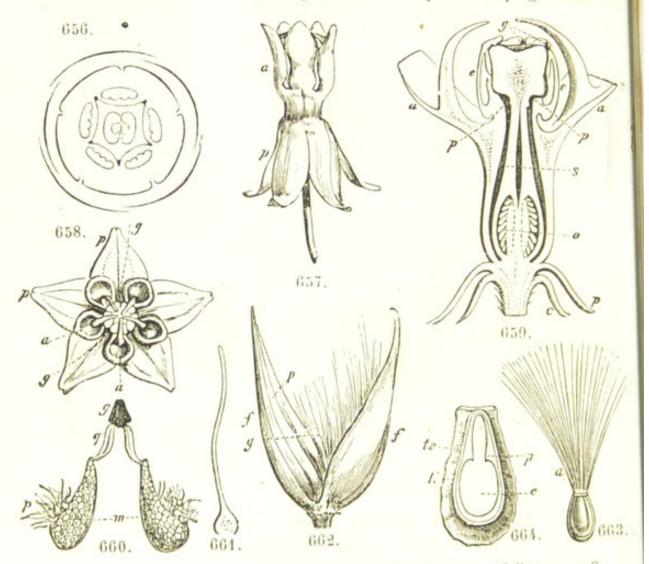
648. Diagramme de la fleur.

649. Bouton. — b Bractées. — c Calice. — p Corolle.

650. Coupe verticale de la partie inférieure de la fleur. — b Bractées. — c Calice.

- p Tube de la corolle portant les filets des étamines e. - o Ovaire. - s Style.

651. Sommet du style et stigmates.


652. Fruit f entouré du calice c et des bractées b qui persistent.

653. Graine. --- h Hile.

654. Sa coupe, montrant les cotylédons chiffonnés,

655. Embryon séparé.

des loges des cinq anthères biloculaires et extrorses, appliquées sur le pourtour d'un gros stigmate pentagone. A une époque peu avancée du développement de la fleur, dans cinq sillons de ce stigmate qui alternent avec les anthères, s'organisent deux petits corps glanduli-

656-664. Organes de la fructification de l'Asclepias nivea. - c Calice. - p Corolle. — a Appendices formant la couronne. — g Corps glanduleux portës sur les stigmates et portant les masses polliniques.

656. Diagramme de la fleur.

657. La fleur entière.

658. La même, vue d'en haut.

659. La même, coupée verticalement. — e Étamines. — o Ovaires. — s Styles réunis en haut par le gros corps stigmatique, à la base duquel pénètrent les tubes polliniques vers les points pp.

660. Deux masses polliniques attachées par deux prolongements en forme de queue qà un autre corps g formé par la réunion de deux glandes. — p Grains polliniques commençant à s'échapper de la masse.

661. Un d'eux vu séparément et grossi davantage.

662. Fruit au moment de la déhiscence. - ff Follicules. - p Placenta qui se détache. - g Graines aigrettées.

663. Une de celles-ci séparée.

664. Graine dépouillée de son aigrette et coupée verticalement. - te Tégument externe. - ti Tégument interne. - p Périsperme. - c Embryon.

APOCYNÉES, ASCLÉPIADÉES.

formes, plus tard confondus, prolongés chacun en une sorte de queue gélatineuse, laquelle, au moment de la déhiscence, s'unit à l'extrémité de la masse pollinique correspondante et la tire à lui hors de la loge, de sorte qu'examinés à cette époque, cette masse, la glande portée sur le stigmate et son prolongement, ne semblent plus faire qu'un seul corps. Ce corps pollinique (fig. 660) est formé d'un tissu cellulaire à cellules intimement unies renfermant chacune un grain à membrane simple, dont la paroi cellulaire environnante doit être considérée peut-être comme la membrane externe. Quoi qu'il en soit, une fente longitudinale finit par s'établir sur l'un des côtés de la masse, et des cellules ainsi ouvertes s'échappent les grains (p) qui viennent s'appliquer seulement à la partie inférieure du gros stigmate (fig. 659 pp), auprès de l'insertion du style dans lequel les tubes polliniques pénètrent ainsi. Cette organisation du pollen ne peut être guère comparée qu'à celle que nous avons précédemment fait connaître dans un certain nombre d'Orchidées, et est assez singulière pour justifier la distinction des Asclépiadées. Ajoutons un autre trait qui caractérise beaucoup de leurs genres : c'est l'existence d'autant d'appendices de forme variable opposés à chacune des étamines, et qui forment au dedans de la corolle un verticille aussi développé qu'elle, et décrit sous le nom de couronne (fig. 658, 659 a). Nous avons fait connaître la disposition des deux ovaires distincts. ainsi que les styles qui les terminent (fig. 659 os) réunis seulement au moyen du gros corps stigmatique que nous venons de décrire. Ils se changent plus tard en deux follicules polyspermes (fig. 662) dans toutes les Asclépiadées et dans toutes les vraies Apocynées; mais, dans une tribu de celles-ci (Ophioxylées), deviennent deux drupes, et dans une autre (Carissées) sont soudés dès le principe en un seul qui le plus ordinairement devient une baie. C'est dans ces deux derniers cas qu'on trouve quelquefois les ovules définis ou même solitaires.

Les plantes des deux familles sont souvent grimpantes. Leur suc, laiteux, est âcre et amer, et de l'excitation qu'il provoque résultent divers effets, suivant la partie du corps où il agit : les vomissements ou la purgation, la sécrétion abondante de la sueur ou de l'urine. Ainsi les feuilles du *Cynanchum arguel* agissent comme celles du Séné, auxquelles on les mêle pour les falsifier, mais d'une manière beaucoup plus dangereuse ; le suc du *C. monspeliacum* est connu aussi sous celui de *Scammonée de Montpellier* et purge violemment, tandis que la racine du *C. ipecacuanha*, l'une de celles qui sont confondues dans le commerce sous ce dernier nom , fait vomir. Le *Dompte-venin* (*C. vincetoxicum*) devait ce nom aux évacuations qu'il provoque et qui peuvent être si utiles en cas d'empoisonnement.

509

43.

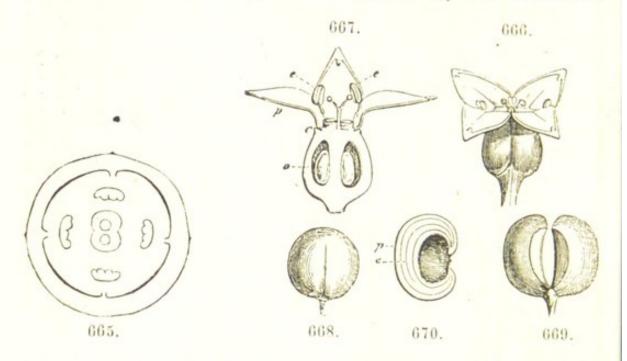
Mais on peut dire qu'en général ces propriétés dangereuses sont moins prononcées dans les *Asclépiadées* que dans l'autre famille, et l'on en cite même dont le lait serait innocent et employé comme aliment. Il est d'ailleurs riche en caoutchouc dans quelques espèces qui servent à son extraction.

Nous venons de dire que le suc des Apocynées présente les propriétés âcres à un degré plus intense. Nous ne citerons, parmi beaucoup d'exemples, que le Nerium oleander (Laurier-rose) dont l'extrait est un narcotico-âcre très violent et dont les émanations seules peuvent, surtout dans les contrées méridionales où il croît spontanément, déterminer les plus graves accidents. Nous nous arrêterons un peu davantage sur les graines à gros périsperme corné du genre Strychnos, qui contiennent un des poisons les plus actifs qu'on connaisse', cet alcaloïde qu'on a nommé de la strychnine. Il détermine, sans doute en agissant sur la moelle épinière, des contractions dans les muscles telles, qu'à quelques convulsions succèdent bientôt la roideur et l'immobilité, puis l'asphyxie par la suppression des mouvements respiratoires. C'est ce qu'on a quelquefois l'occasion d'observer sur les chiens vagabonds empoisonnés par les boulettes jetées à cet effet dans nos promenades publiques et préparées avec de la Noix vomique. C'est de celle-ci (Strychnos nux vomica) et de la Fève de Saint-Ignace (S. ignatiana) qu'on extrait la strychnine, qui donne aussi ses propriétés à l'écorce de Fausse-Angusture, laquelle paraît provenir également d'un Strychnos, peut-être du Nux vomica luimême, ainsi qu'au célèbre poison dont les Javanais enveniment leurs flèches, l'upas tieuté, autre espèce du même genre (S. tieuté). Mais la médecine a su appliquer ces propriétés formidables à un emploi salutaire, et s'est servie de la strychnine dans les cas où la contraction musculaire paralysée a besoin d'être réveillée par un agent très énergique : seulement elle l'administre à très faible dose, celle d'une petite fraction de grain. Le péricarpe charnu de diverses espèces de Carissées ne participe pas à ces qualités dangereuses et se mange dans les pays où ils croissent : tels sont les fruits des Carissa edulis et carandas, du Melodinus monogynus, du Willughbeia edulis, etc.

MONOPÉTALES PÉRIGYNES.

(Tableau XV, page 514.)

§ 606. **Rubiacées**. — Ce groupe, l'un des plus considérables et des plus naturels du règne végétal, peut se subdiviser en plusieurs d'après diverses considérations. D'abord en deux grandes sections : celle des *Cofficacées*, à loges contenant un seul ou plus rarement deux oyules ; celle des *Cinchonacées*, à loges multioyulées. On les


EAMLIES. Tableau XV.

MONOPÉTALES PÉRIGYNES,

à ovaire adhérent, à corolle régulière ou irrégulière, portant ordinairement les étamines alternes en nombre égal, rarement moindre.

RUBIACÉES.

partage ensuite en tribus d'après la nature de leur fruit, qui est, soit charnu, une baie ou une drupe à plusieurs noyaux; soit sec, indéhiscent ou déhiscent; dont les carpelles restent unis à la maturité ou se séparent (fig. 669); dont les loges, le plus souvent réduites à deux, sont d'autres fois plus nombreuses : d'après la consistance

charnue ou cornée du périsperme : d'après l'inflorescence, dont les fleurs se pressent souvent en tête et quelquefois même se confondent en se soudant entre elles par leurs ovaires : d'après les bractées plus ou moins développées, tantôt soudées entre elles dans l'intervalle des deux pétioles et formant ainsi quelquefois des sortes de gaînes de forme diverse. Dans les Rubiacées d'Europe, ces stipules se développent en feuilles semblables aux véritables et en augmentent le nombre plus ou moins, suivant les divers modes de soudure ou de dédoublement des accessoires. Il en résulte alors un verticille de ces feuilles ordinairement étroites et disposées comme les rayons d'une étoile, d'où l'on a donné à ces plantes le nom d'étoilées (stellatæ): mais on n'y voit toujours se développer à chaque nœud que deux bourgeons opposés. L'ovaire adhérent est souvent couronné par un disque charnu (fig. 667), qui est percé par le style simple, mais souvent partagé jusqu'à une assez grande profondeur en autant de branches qu'on compte de loges.

665. Diagramme de la fleur du Galium mollugo.

666. Fleur entière.

667. La même, coupée verticalement. — c Calice confondu avec l'ovaire o. — p Corolle. — c Étamines.

668. Fruit de la Garance (Rubia tinctorum).

669. Le même, après l'écartement des deux carpelles.

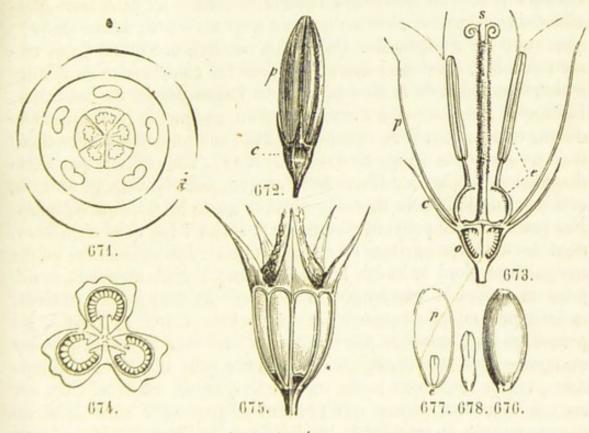
670. Coupe verticale de la graine, -p Périsperme. -e Embryon.

RUBIACÉES.

Cette famille présente dans un assez grand nombre de ses espèces des propriétés remarquables qu'il nous reste à examiner. L'écorce de plusieurs est astringente et amère à un haut degré, et possède à ce titre une vertu fébrifuge, renommée surtout dans celles des Cinchona, plus connues vulgairement sous le nom de Quinquina. Cellesci le doivent à des alcaloïdes que nous avons déjà eu l'occasion de citer (§ 232), la cinchonine, et surtout la quinine. Il y a des espèces dont l'écorce les contient toutes deux en même temps, d'autres qui n'en renferment qu'une seule : aussi leur action médicale n'est-elle pas tout à fait la même. Autrefois on les administrait, soit en nature, soit en extrait après avoir dissous leurs principes actifs dans l'eau, ou mieux dans l'alcool qui est beaucoup plus propre à opérer cette dissolution. Aujourd'hui qu'on sait extraire en les isolant les principes actifs, ce sont ceux-ci qu'on emploie directement et par conséquent avec une bien plus grande certitude de l'effet qu'on produira et de la dose qu'on doit administrer. On conçoit donc comment le médicament complexe qu'on obtenait de l'écorce doit différer du médicament simple que fournit l'alcaloïde toujours identique qu'on emploie maintenant. Il y a d'autres Rubiacées qui, quoique employées comme fébrifuges, n'en contiennent nullement, par exemple les Exostema. Cette propriété réside donc dans des principes amers qui peuvent varier ; elle n'est pas un attribut particulier à la quinine, qui la possède seulement à un degré plus énergique, mieux connu, digne par conséquent de plus de confiance. Le nom de quinquina, appliqué vulgairement à l'écorce de plusieurs plantes tant de cette famille que d'autres entièrement différentes, n'implique donc nullement l'existence de la quinine ou de la cinchonine, mais seulement celle d'un principe amer, tonique et astringent quelconque, dont l'efficacité a été reconnue dans la guérison des fièvres.

Les racines d'autres Rubiacées sont renommées comme émétiques, et parmi elles surtout celles du *Cephaelis ipecacuanha*, dont le nom a été également donné à d'autres, soit de la même famille (*Psychotria emetica*, diverses espèces de *Richardsonia* et de *Spermacoce*), soit de familles entièrement différentes, ainsi que nous l'avons exposé à leur article. On a su extraire aussi le principe actif du *Cephaelis*, l'émétine, qui entre dans la composition de sa racine pour 46 sur 400 parties et qu'on administre maintenant séparée à la dose de 2 ou 3 décigrammes en général. Se retrouve-t-elle également dans toutes les autres racines émétiques et appelées ainsi du nom d'ipécacuanha?

D'autres racines sont recherchées pour leur principe colorant et utilement employées en teinture, surtout celle de la Garance(Rubiatinctorum). Plusieurs espèces du même genre (R. cordifolia et an-


gustifolia), originaires d'autres pays, ont les mêmes propriétés, qui paraissent communes à d'autres du nôtre appartenant à la même tribu, celle des Rubiacées étoilées (comme l'Asperula tinctoria, etc.), ou à des tribus différentes (comme plusieurs Morinda, l'Hydrophylax maritima et l'Oldenlandia umbellata, dont la racine est vulgairement connue sous le nom de Chaya-vair). Mais, moins riches en principes colorants que la Garance, elles sont négligées ou d'un emploi bien moins général.

Le Café est la graine d'une Rubiacée, le Coffea arabica, et presque toute sa masse est formée par le périsperme corné, auquel il doit ses propriétés, comme on le sait, manifestées par la torréfaction qui, par la volatilisation d'une huile concrète, y développe cet arome si estimé. On y trouve aussi une autre huile fusible à 25 degrés, un principe amer et un autre azoté qu'on nomme coffeine, mais qui, chose assez singulière, paraît identique avec la théine (§ 557), ce qui le rend nourrissant jusqu'à un certain point pour les peuples qui, ne se contentant pas de l'infusion, n'en séparent pas le marc. Cette plante, dont la culture est répandue maintenant presque partout sous les tropiques, vient de la haute Éthiopie, d'où elle fut, vers la fin du xve siècle, transportée à Moka, où elle s'est si bien acclimatée qu'on l'en a longtemps crue originaire et que sa qualité y est encore considérée comme supérieure. Le Café, apporté par les Vénitiens, fut connu en France et en Angleterre dans le milieu du xvue siècle; mais ce fut plus tard, et par les Hollandais qui l'avaient cultivé à Batavia et à Maurice, que des plants furent introduits en Europe. Leur première culture au Jardin de Paris date de 4743, et c'est de là, quatre ans plus tard, que le Caféier fut transporté dans nos colonies des Antilles : on a souvent raconté comment ces plantations si étendues plus tard à la Martinique, à Cayenne, à Bourbon, proviennent toutes d'un seul pied sauvé alors pendant la traversée par les soins du capitaine Declieux, qui alla jusqu'à partager sa ration d'eau avec lui. Il est à croire que les graines d'autres Rubiacées à périsperme corné offriraient quelque analogie; et quelques essais faits sur celles des Galium, à l'époque où le système continental génait l'arrivée du café colonial en France, autorisent cette supposition. Ils n'ont pas au reste été poursuivis, et tout naturellement, pour les succédanés du Café comme pour tous les succédanés en général, on a laissé de côté le pis dès qu'on a pu facilement se procurer le mieux.

§ 607. **Campanulacées**. — Cette famille présente, parmi les monopétales, une exception remarquable, que nous n'avons trouvée que dans plusieurs de celles énumérées au tableau XII : c'est que les étamines ne sont pas insérées sur la corolle, mais sur le calice

CAMPANULACÉES.

directement. Il est vrai que cette corolle est d'un tissu particulier, sec et membraneux (comme l'est celui de beaucoup d'*Ericinées*), et au lieu de tomber tout d'une pièce, comme la plupart des corolles staminifères, elle reste attachée à sa place, où elle persiste desséchée au-dessus du fruit. Celui-ci s'ouvre soit au sommet par plusieurs valves qui restent cohérentes dans le reste de leur étendue,

soit par des ouvertures latérales (*fig.* 383, 675) correspondant à autant de loges, dont le nombre tantôt égale celui des autres parties de la fleur, tantôt est réduit à trois ou à deux. Les Campanulacées, par leur port, par leur préfloraison, par leurs styles hérissés de poils collecteurs, par leurs anthères quelquefois soudées en tube (dans le *Jasione*), se rapprochent beaucoup des Composées, et particulièrement des Chicoracées par leur suc laiteux. Celui-ci est un peu âcre, mais pas assez pour que les jeunes racines de plu-

671-678. Organes de la fructification de la Raiponce (Campanula rapunculus). — c Calice. — p Corolle.

674. Diagramme de la fleur.

672. Son bouton.

673. Coupe verticale de la fleur. — δ Stigmates: - δ Ovnire avec le tube du calice adhérent. — e Étamines.

674. Tranche horizontale de l'ovaire:

675. Fruit couronné par le limbe du calice:

676. Graine.

677. La même, coupée verticalement. - p Périsperine. - c Embryon.

678. Embryon séparé.

sieurs espèces, celle de la Raiponce, par exemple, ne puissent être : mangées.

§ 608. Composées. - Ce groupe de plantes, dans lequel entrent : 9,000 espèces connues, doit être considéré moins comme une famille que comme une classe. Nous avons vu qu'il forme en effet la dixième (Épicorollées synanthères) de la méthode de Jussieu, et presque tous : les auteurs se sont accordés à l'admettre comme tel dans leurs classifications diverses, sous un nom ou sous un autre, Linné (§ 509) sous celui de Syngénésie. Quant aux subdivisions qu'ils y ont ensuite établies, il est nécessaire pour bien les comprendre de donner d'abord une idée de la structure et de l'agencement de ces fleurs. Elles sont ramassées, à l'extrémité d'un pédoncule plus ou moins : dilaté, en un capitule ou calathide (§ 265) environnée d'un involucre d'un ou plusieurs rangs de folioles (§ 284) : elles offrent par 'cette : disposition l'apparence d'une fleur unique, dont l'involucre serait le calice ; et de là le nom de calice commun qu'on lui donnait autrefois. Les petites fleurs peuvent être de deux sortes : les unes régulières, . dont le limbe se partage en cinq dents ou lobes égaux ; les autres ; irrégulières, dont le limbe, fendu dans une grande étendue, se dé-jette en dehors en une languette composée de cinq parties soudées, . et terminée en conséquence par cinq petites dents (fig. 268) : les : premières sont appelées fleurons (flosculi), les secondes demi-fleurons : ou ligules (semi-flosculi, ligulæ). Ces fleurs sont tantôt hermaphrodites, tantôt seulement mâles ou femelles, tantôt neutres. C'est sur les combinaisons variées qui peuvent se présenter ainsi dans un même capitule qu'on a fondé les divisions du groupe entier. Linné : les a distinguées d'après la distribution des sexes dans les fleurs d'un même capitule, qui peuvent être toutes hermaphrodites (polygamie égale), les hermaphrodites mélées à des femelles (P. superflue) ou à des neutres (P. frustranée), les unes mâles et les autres femelles : (P. nécessaire), ou d'après celle des involucres, rapprochés plusieurs en un seul capitule (P. séparée). Tournefort, qui a été bien plus généralement suivi, les séparait en semi-flosculeuses (celles où le capitule n'est composé que de demi-fleurons), flosculeuses (celles où il est composé exclusivement de fleurons), et radiées (celles où il est composé des uns et des autres) : ce dernier nom venait de ce que les demi-fleurons occupent alors la circonférence de la calathide, disposés en un cercle (rayons, radius) d'où les ligules rayonnent en dehors; les fleurons, le centre, où leur assemblage figure un disque (discus). Plus tard, Vaillant, et d'après lui Jussieu, modifièrent un peu cet arrangement, conservant les semi-flosculeuses sous le nom de Chicoracées; réunissant sous celui de Corymbifères la totalité des Radiées à quelques Flosculeuses, dont le reste forme les Cyna-

COMPOSÉES.

rocéphales, distinctes par leur port et par leur style renflé au-dessous des stigmates. On a respecté jusqu'à un certain point cette dernière classification, tout en multipliant beaucoup, dans les temps modernes, les divisions et les subdivisions des Composées, qu'on partage maintenant en trois grandes séries : 4" les Liguliflores (fig. 680), qui répondent aux Semi-flosculeuses ou Chicoracées ; 2° les Labiatiflores (fig. 681), dont les corolles offrent un mode d'irrégularité différent de celui des précédentes, se partageant en deux lèvres, l'une tournée en dedans et formée d'une ou deux divisions, l'autre tournée en dehors et formée de quatre ou trois autres. Ces plantes étaient à peine connues autrefois, et c'est pourquoi nous les trouvons omises dans les anciennes classifications. 3^a Les Tubuliflores (fig. 682), dont les fleurs, soit toutes, soit celles des disques seulement, sont tubuleuses et régulières, et qui comprennent par conséquent les Radiées et les Flosculeuses, mais parmi lesquelles une tribu (celle des Cynarées) répond encore aux Cynarocéphales. Outre celle-là, on en a admis quatre autres, et on les a fondées principalement sur des différences dans la structure du style et des stigmates : caractère dont on a constaté l'importance dans ce groupe, en ce qu'il se trouve en entraîner à sa suite beaucoup d'autres dont il se trouve ainsi être à lui seul l'expression. Or, ce style, simple dans les fieurs mâles, se partage toujours dans les femelles et les hermaphrodites en deux branches terminales, couvertes, dans une partie de leur étendue, de poils collecteurs, et parcourues, sur le rebord de leur face interne, par deux petites bandes glanduleuses qu'on considère comme les vrais stigmates, quoiqu'on donne souvent ce nom aux branches tout entières. Nous avons déjà vu que dans les Cynarées (fig. 685) on observe immédiatement au-dessous de ces branches un renflement ou nœud, et il est souvent hérissé de poils : les bandes stigmatiques parcourent la branche dans toute sa longueur et confluent à son sommet. Dans les Sénécionidées (fig. 686) le style est parfaitement cylindrique, les branches sont tronquées à leur sommet, que couronne seuvent un pinceau de poils, au delà duquel elles s'allongent d'autres fois en cône ou autre appendice; mais c'est toujours à ce point que s'arrêtent les bandes stigmatiques sans confluer. Dans les Astéroïdées (fig. 687), les branches linéaires se continuent sans changement jusqu'à leur sommet, si ce n'est qu'extérieurement elles s'aplatissent et se couvrent de poils très fins, et que les bandes cessent à cette même hauteur.

Les branches sont longues, un peu dilatées en massues, couvertes de papilles en dehors, dans les *Eupatoriacées* (fig. 688); elles sont ou allongées et subulées, ou courtes et obtuses, hérissées de poils longs et égaux dans les *Vernoniées* (fig. 689); dans les unes et

BOTANIQUE.

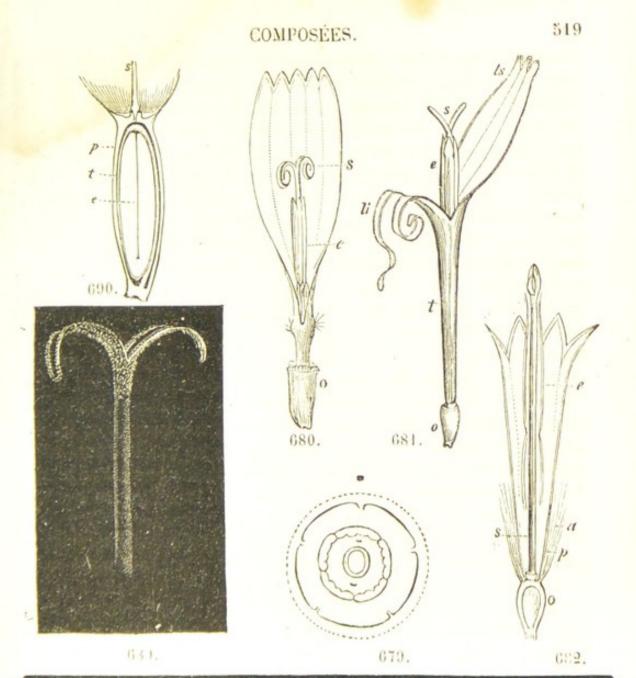
les autres, les bandes marginales s'arrêtent avant le milieu de la branche. — On a subdivisé ces sept tribus : les Liguliflores, les Labiatiflores et les cinq que nous venons d'indiquer dans les Tubuliflores, en un grand nombre de sections que nous ne pouvons exposer ici. Mais il est nécessaire, néanmoins, d'ajouter encore quelques détails sur les principaux points de la structure des organes de cette classe si importante, et sur les termes particuliers par lesquels on a dû désigner leurs diverses modifications; termes destinés à abréger les descriptions, qui ne pourraient être comprises si l'on ne connaît pas la valeur des mots employés à cet usage.

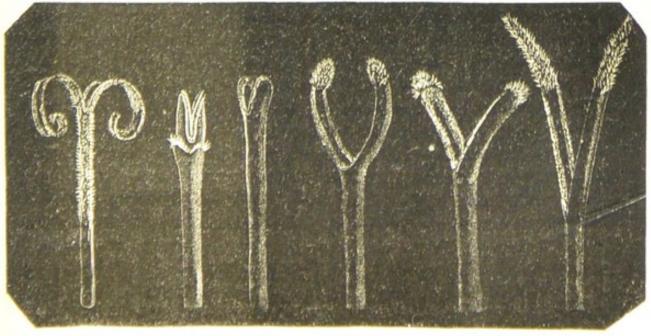
Le sommet du pédoncule, élargi en un plateau qui porte les fleurs du capitule, et qu'on nomme réceptacle (phoranthe ou clinanthe de quelques auteurs [§ 265]), est plan ou concave, ou, au contraire, convexe, ou même conique. Les fleurs peuvent partir immédiatement de sa surface unie, ou bien leur insertion s'y enfonce plus ou moins et y détermine ainsi des aréoles (receptaculum areolatum), ou même des alvéoles plus profondes (r. alveolatum) dont les bords se relèvent autour de la base de chaque ovaire ou achaine, en lames tantôt continues, tantôt déchiquetées en languettes membraneuses irrégulières, ou souvent en fibrilles ou poils (r. fimbrilliferum). Cet assemblage de fleurs est entouré par un involucre de folioles ou bractées de formes diverses, souvent réduites à celle d'écailles et en portant le nom, quelquefois terminées en épines (comme dans les

679-690. Organes de la fructification des Composées.

679. Diagramme de la fleur d'un Sénegon. - Le cercle extérieur ponctué indique l'aigrette ou limbe du calice.

680. Demi-fleuron de la Chicorée (*Chicorium intybus*). — o Ovaire adhérent avec le calice. — e Tube formé par les étamines et traversé par le style bifide s.


684. Fleur d'une Labiatiflore (*Chætantera linearis*). — o Calice et ovaire adhérents. — t Tube de la corolle. — ls Sa lèvre supérieure. — li Sa lèvre inférieure. — e Tube des anthères. — s Sommet du style.


682. Fleuron d'une Flosculeuse (*Aster rubricaulis*), coupé dans toute sa longueur, de manière à montrer l'ovule o dressé dans l'ovaire confondu avec le calice et le tube e des anthères porté sur la corolle p et traversé par le style s. — a Aigrette.

688. Sommet du style d'une Chicoracée (Chicorium intybus).

- 684: d'une Labiatiflore (Chatantera linearis).
- 685. --- d'une Cynarée (Thevenotia).
- 686: d'une Sénécionidée (Senecio doria).
- 687. ____ d'une Astéroïdée (Aster adulterinus).
- 688: d'une Eupatoriacée (Stevia purpurea):
- 689. d'une Vernoniée (Vernonia angustifolia).

690. Fruit mur d'un Séneçon, coupé verticalement. — s Style. — p Péricarpe. - t Tégument de la graine. — e Embryon.

683. 685. 684. 687. 686. 688.

BOTANIQUE.

Chardons), disposées en cercle sur un seul rang, ou sur deux, en deux cercles concentriques (§ 284), ou le plus souvent imbriquées en spirale. Elles se soudent ensemble inférieurement dans quelques cas, mais restent plus souvent distinctes. Ces bractées sur plusieurs rangs ne portent pas de fleur à leur aisselle, excepté souvent celles du plus intérieur; mais chaque fleur particulière peut être accompagnée d'une bractée propre, qui part avec elle du réceptacle, et, cachée entre les fleurs hors de l'influence de la lumière, prend la consistance et l'apparence d'une écaille blanchâtre ou d'une membrane (bractéoles, paillettes). Lorsque ces bractéoles couvrent le réceptacle, on le dit paléacé (r. paleaceum); lorsqu'elles manquent entièrement, on le dit nu (r. nudum vel epaleaceum). L'involucre contient des fleurs toutes hermaphrodites (capitula homogama), ou bien ensemble des fleurs de deux sortes (c. heterogama): dans ce dernier cas, ce sont les neutres ou les femelles qui occupent la circonférence, les hermaphrodites ou les mâles qui occupent le centre. Lorsqu'il réunit les fleurs mâles et femelles, il est monoïque (c. mo*noica*). Lorsque les capitules sont composés les uns de fleurs mâles seulement, les autres de femelles, mais portés sur une même plante, ils sont hétérocéphales (c. heterocephala); si les mâles se trouvent sur d'autres pieds que les femelles, ils sont dioïques (c. dioica). Nous avons déjà vu que les capitules peuvent contenir des fleurs seulement flosculeuses (c. flosculosa seu discoidea) ou seulement semiflosculeuses (c. semi-flosculosa seu ligulata) ou les deux à la fois (c. radiata) : elles peuvent encore être toutes bilabiées (c. falso-discoidea), ou celles de la circonférence ligulées et celles du centre labiées (c. falso-radiata seu radiatiformia): quelquefois, dans des capitules flosculeux ou faux-discoïdes comme ceux du Bluet et de beaucoup d'autres Centaurées, par exemple, les fleurs extérieures, tout en conservant la forme des intérieures, peuvent prendre un développement beaucoup plus grand (c. coronata).

Le calice est adhérent avec l'ovaire qu'il recouvre complétement, et quelquefois se termine avec lui de manière à n'offrir aucune trace de limbe, d'autres fois se prolonge un peu au-dessus en une sorte de petite couronne, plus souvent en plusieurs divisions qui offrent rarement la forme de folioles, plus fréquemment celle de paillettes ou écailles, le plus généralement celle d'aigrette commençant au sommet même de l'ovaire (*aigrette sessile*, *pappus sessilis*), ou exhaussée sur un prolongement du tube calicinal en forme de filet (*aigrette stipitée*, *p. stipitatus*). Nous avons examiné autre part (§ 330) la nature et les diverses modifications des poils de l'aigrette.

Aux formes principales de la corolle que nous avons fait con-

COMPOSEES.

naître, il convient d'ajouter la connaissance de quelques caractères remarquables qu'elle présente. Tel est celui de sa nervation. Nous savons qu'en général, dans les fleurs des autres plantes, c'est la nervure médiane qui domine, et qu'ainsi, dans le tube d'une corolle monopétale, les cinq nervures principales sont opposées aux cinq lobes, dans l'axe desquels elles viennent se terminer. Il n'en est pas ainsi dans les fleurs des Composées : les cinq nervures alternent avec les lobes; arrivées à eux, se partagent en deux qui se prolongent sur leurs bords correspondants, de telle sorte que chaque division du limbe est bordée de deux nervures saillantes confluentes à son sommet (fig. 268, 680-83). Ce sont donc les latérales qui prennent ici le plus grand développement, soudées deux à deux dans le tube, séparées dans le limbe : quant aux médianes, elles se montrent aussi quelquefois, mais manquent plus souvent. On avait proposé de nommer les Composées, d'après ce caractère si remarguable, Nervamphipétalées. La préfloraison valvaire se lie à cette disposition. On y observe des corolles de toutes les couleurs, et tantôt toutes les fleurs d'un capitule ont la même (capitula homochroma), tantôt une différente (c. heterochroma), celles du disque alors toujours jaunes, celles du rayon blanches ou de quelque nuance dérivant du bleu.

Les étamines portées sur le tube de la corolle ont leurs filets libres ou soudés : mais leurs anthères sont toujours réunies par leurs bords, et forment ainsi elles-mêmes un tube, ne se distinguant entre elles que par leurs sommets ordinairement prolongés en un appendice plus ou moins long, et souvent aussi par leurs bases allongées en une queue (antheræ caudatæ), qui manque d'autres fois (antheræ ecaudatæ). Le style, que nous avons décrit, traverse le tube formé par les anthères, et, en s'allongeant, balaye, au moyen de ses poils collecteurs qui s'enfoncent dans les fentes de leurs loges, le pollen qui y est contenu.

L'ovaire est à un seul ovule dressé dans une seule loge ; cependant, d'après le nombre double des stigmates et d'après l'existence de deux cordelettes qu'on voit quelquefois, partant de la naissance du style, parcourir, en sens opposé et de haut en bas, la paroi interne de la loge jusqu'à l'inserțion de l'ovule, serait-il permis de supposer qu'il est réellement formé de la soudure de deux carpelles?

Il devient un achaine qui, par l'absence ou la présence et la nature de l'aigrette, fournit d'utiles caractères. La graine, en grossissant, finit quelquefois par confondre avec le péricarpe ses téguments composés d'une double membrane. L'embryon tourne en bas, vers le point d'attache, sa radicule courte (fig. 690).

Les Chicocacées ou Tubuliflores ont un suc laiteux analogue à celui

44.

BOTANIQUE.

des Campanulacées. Il est amer, un peu astringent et même narcotique. Ces propriétés se trouvent dans presque toutes les espèces sauvages à un degré plus ou moins prononcé : on les remarque surtout réunies dans les *Lactuca sylvestris* et *virosa*, dont l'extrait est employé comme l'opium, sans déterminer cependant les mêmes accidents. Mais ces propriétés s'affaiblissent dans d'autres espèces, notamment celles que nous cultivons et dont on mange soit les racines, comme celles du Salsifis et de la Scorsonère, soit les jeunes pousses ou les feuilles, comme celles de la Laitue, de la Chicorée, du Pissenlit, de la Barbe-de-Bouc, etc., etc. Remarquons qu'on emploie ainsi des parties étiolées, ou naturellement, comme celles qui croissent sous tèrre, ou artificiellement, ou toutes jeunes, de manière que le suc propre n'a pu encore être complétement élaboré, et ne possède que ce faible degré d'astringence ou d'amertume qui plait au goût et relève la saveur des aliments.

On en peut dire autant des diverses *Cynarocéphales* ou *Cynarées*, qui sont alimentaires : des feuilles de Cardon qu'on a soin de laisser blanchir ou étioler, des réceptacles d'Artichaut et autres qu'on cueille avant l'épanouissement de la fleur, et qu'on mange même crus lorsqu'ils sont encore extrêmement jeunes. Chacun connaît l'extrême amertume des autres parties de l'Artichaut, et c'est un caractère commun à toutes les autres plantes de cette même tribu, et qui en fait employer plusieurs comme stomachiques.

Nous le retrouvons dans celles qu'on confondait sous le nom de Corymbifères, mais il s'y modifie par la coexistence d'un principe résineux qui en exalte ordinairement les propriétés. Si celui-ci, au lieu de se concentrer en se solidifiant, reste à l'état d'huile volatile, la plante sera à la fois tonique, aromatique et antispasmodique, comme dans les Camomilles, les Armoises, les Achilléa, la Tanaisie, etc. On a même proposé l'infusion de plusieurs en guise de thé. La prédominance du principe amer lui donne des vertus fébrifuges, comme aux diverses espèces confondues sous le nom de Camo mille, etc. Celle de la résine augmentera les propriétés stimulantes, provoquera la sueur, la salivation, la sécrétion abondante de l'urine : et c'est sans doute à ces effets que plusieurs espèces exotiques doivent leur renommée comme antidotes à la morsure des serpents : telles sont une espèce d'Eupatoire, l'Ayapana, et une de Mikania, le Guaco. - On trouve dans un petit nombre de Corymbifères des dépôts de fécule qui sont utilisés pour la nourriture de l'homme ou des animaux ; le Topinambour (Helianthus tuberosus) est, sous ce rapport, tout à fait comparable à la Pomme de terre, et ce sont ses rameaux inférieurs et souterrains qui se métamorphosent en tubercules chargés d'yeux et féculents. On a découvert dans un autre,

COMPOSÉES.

l'Aunée (Inula helenium), un principe amer qu'on a nommé Inuline, extrêmement analogue à la fécule, dont il a presque la composition (en poids 43,72 de carbone, 62,0 d'hydrogène, 50,8 d'oxygène) et toutes les propriétés, si ce n'est qu'il est un peu soluble dans l'eau qui en dissout, chaude $\frac{4}{4}$, et froide $\frac{1}{50}$, et que l'iode le colore en jaune et non en bleu. Il se trouve au reste dans un grand nombre d'autres végétaux ou il remplace la fécule.

Les graines de la plupart des Composées sont oléagineuses comme on peut facilement s'en convaincre par l'examen de celles du *Soleil*. On cultive même plusieurs espèces pour l'extraction de l'huile, les *Madia sativa, Guizotia oleifera*, etc.

DIXIÈME LEÇON.

NOTIONS SUR LA GÉOGRAPHIE BOTANIQUE.

INFLUENCE COMPARATIVE DES LATITUDES ET DES HAUTEURS; DIFFÉRENCE DES CONTINENTS ET DES ILES; DISTRIEUTION SUR LA SURFACE DU GLOBE DE QUELQUES UNES DES FAMILLES

PRÉCÉDEMMENT EXPOSÉES

ET DE QUELQUES UNS DES VÉGÉTAUX LES PLUS UTILES A L'HOMME.

§ 609. On sait que toute plante n'est pas répandue uniformément sur tout le globe, mais se montre seulement sur telle ou telle partie de sa surface. Ces limites assignées à chacune d'elles dépendent de plusieurs causes. L'organisation, diversement modifiée dans les divers végétaux, leur impose des conditions différentes d'existence. et ils ne peuvent vivre et se multiplier que là où ils trouvent réunies ces conditions propres à chacun d'eux. De plus, Tobservation démontre que toutes les plantes ne sont pas parties d'un centre unique d'où elles se seraient dispersées ensuite en rayonnant, mais qu'il a existé une foule de centres originaires de végétation, chacun avec la sienne propre, quoique, d'une autre part, plusieurs espèces semblent avoir été communes à plusieurs centres à la fois. Si les conditions sont différentes sur deux points, leur végétation doit donc l'être également, mais la similitude des unes n'entraîne pas aussi nécessairement celle de l'autre, surtout à de grandes distances, puisque les plantes n'ont pu en général passer de l'un de ces points à l'autre, où elles auraient également prospéré. Ainsi, la distribution des végétaux sur la terre est réglée par des causes compliquées, les unes physiques, dépendant de leur nature et des agents qui les entourent, les autres cachées à nos recherches dans le mystère de l'origine des êtres.

§ 640. La géographie botanique est la partie de la science qui s'occupe de cette distribution des végétaux. Le fait de leur existence

CLIMATS.

dans tel ou tel milieu, présentant un certain ensemble de conditions physiques, constitue leur station; le fait de leur existence dans tel ou tel pays constitue leur habitation. Quand on dit qu'une plante croît dans les marais, sur le sable du rivage de la mer, sur les rochers des montagnes, au bord des glaciers, on indique sa station. Quand on dit qu'elle croît en Europe, en France, en Auvergne, autour de Paris, on indique son habitation dans des limites de plus en plus précises. Ces notions peuvent s'appliquer à des unités d'un ordre plus élevé que les espèces; on peut rechercher la distribution de genres entiers, ou même de tribus ou de familles, et souvent ces associations plus ou moins considérables d'espèces, entre lesquelles il est permis de préjuger alors une grande uniformité d'organisation, en offrent une remarquable dans leurs stations, ou leurs habitations, ou dans les deux à la fois.

§ 614. Il convient d'abord de se livrer à quelques considérations générales sur la manière dont se distribuent à la surface de la terre ces agents extérieurs que nous avons vus jouer un rôle si important dans la végétation, principalement la chaleur et l'humidité, qui dans chaque lieu se combinent en un certain rapport pour former le climat.

La chaleur va en décroissant de l'équateur vers les pôles et assez régulièrement, si l'on considère à part un seul et même méridien, mais si l'on considère ce décroissement sur plusieurs méridiens à la fois on est frappé des différences qu'ils présentent sous ce rapport. Chaque lieu, dans le cours d'une année, reçoit une certaine quantité de chaleur, et si l'on compare ces quantités pendant une longue suite d'années, on en déduit la température moyenne du lieu. La ligne qui passerait par une suite de lieux avant la même température moyenne est dite isotherme (1005, égal ; Ospuós, chaleur). En comparant entre elles les lignes isothermes telles qu'on a pu les constater par l'observation directe, on s'aperçoit tout de suite qu'elles forment, au lieu de circonférences parallèles à l'équateur ou seulement entre elles, des courbes inégalement éloignées de lui et l'une de l'autre dans les divers points de leur trajet. Dans l'hémisphère boréal, en les suivant d'occident en orient, on les voit s'abaisser vers le sud dans l'intérieur des deux grands continents et surtout de l'Amérique, se relever vers le nord dans les grandes mers qui lui sont interposées et surtout dans l'océan Atlantique. La température de l'ancien continent est donc généralement plus élevée que celle du nouveau, celle des continents moins à l'intérieur que sur les bords de la mer, et beaucoup plus sur le rivage occidental que sur l'oriental.

§ 642. De ce que plusieurs lieux sont situés sur la même ligne

GEOGRAPHIE BOTANIQUE.

isotherme, de ce qu'ils ont, dans le cours de toute une année, reçui la même somme de chaleur, il ne s'ensuit pas que leur climat soit identique. En effet, cette somme peut se distribuer de différentes manières entre les différents mois, et par suite entre les saisons; ou avec une certaine égalité, de manière que l'hiver et l'été soient tous deux fort tempérés; ou, au contraire, très inégalement, de manière que l'été soit très chaud et l'hiver très froid. Ces différences de températures extrêmes ont beaucoup plus d'influence sur la végétation que la température moyenne. On appelle *isochimène* ($\chi z i \mu \omega v$, hiver) la ligne qui passerait par tous les lieux où l'hiver (année moyenne) descend au même point; et *isothère* ($\vartheta z \rho \sigma z$, été) celle qui passerait par les lieux où l'été s'élève au même degré de chaleur. Ces nouvelles lignes, s'éloignant à leur tour des isothermes, ne comprennent pas la même série de lieux.

§ 613. La masse des eaux tend bien plus que la terre à une certaine constance de température, telle que sur mer, dans un moment donné, sa différence entre deux points de latitude différente soit moindre, et que, dans un lieu donné, la différence entre l'hiver et l'été le soit aussi. Les terres adjacentes participent à cette uniformité; et de là la distinction des climats en marins et en continentaux : les premiers, ceux des rivages et des îles, plus tempérés, et d'autant plus que les îles sont plus petites, plus écartées au sein de la mer ; les seconds, où la différence de la chaleur estivale au froid hibernal est d'autant plus marquée qu'on se place plus vers la ligne médiane du continent.

L'humidité de l'atmosphère exerce sur la végétation une grande influence, soit que l'eau à l'état de vapeur entoure les parties aériennes des plantes, soit qu'elle retombe en pluie et pénètre le sol. Elle est nécessairement favorisée par le voisinage de grands réservoirs. Celui de la mer, combiné avec la direction dominante des vents, qui détermine celle des vapeurs formées à sa surface, est une source plus ou moins abondante d'humidité, plus constante nécessairement dans les îles. L'humidité est donc une condition qui accompagne très fréquemment celle de laquelle nous avons vu résulter l'uniformité de température. La présence de moindres réservoirs, lacs, marais, cours d'eau grands et petits, agit d'une manière analogue, mais dans des limites proportionnelles.

§ 614. Examinons maintenant les modifications générales que la végétation présente, en rapport avec celle des climats que nous venons de signaler.

Pour peu qu'on s'occupe de la recherche des plantes, on s'apercoit tout de suite avec quelle inégalité leurs différentes espèces se trouvent distribuées. Les unes se rencontrent localisées dans un

:26

INFLUENCE DES LATITUDES.

espace très borné, d'autres, au contraire, dispersées sur un grand nombre de points à la fois. Cette différence, que nos herborisations nous montrent sur une petite échelle, se fait également sentir lorsqu'on compare les résultats de celles qui nous ont appris à connaître la végétation de pays nombreux et vastes ; certaines plantes sont particulières à certains pays, d'autres communes à plusieurs. Ces limites, dans lesquelles se resserre ou s'étend l'habitation de chaque espèce, constituent ce qu'on a nommé son aire (area). Celles dont l'aire est très circonscrite peuvent donc être considérées comme caractérisant la végétation de cet espace, qu'elles ne franchissent pas : mais on concoit qu'il n'en doit pas être question ici, où nous ne devons traiter que les points les plus généraux. Celles dont l'aire est très étendue, ne peuvent, par le fait même de cette diffusion, servir à caractériser une région particulière, et nous devons également les laisser de côté, nous arrêtant à d'autres qui se retrouvent abondantes et répandues sur plusieurs parties distantes du globe, mais pas hors d'une certaine zone plus ou moins étroite dont elles forment ainsi un des traits distinctifs. Plus on pourra grossir la liste de ces végétaux caractéristiques, plus le signalement sera exact. Mais cette multiplicité de détails ne peut appartenir qu'à un traité complet, et, dans une exposition abrégée, il faut se borner à un petit nombre de végétaux qu'on choisit parmi ceux qui, par leur taille, ou leur physionomie remarquable, ou leurs usages, sont plus propres à fixer l'attention, et qui, par cette raison, n'ont pas échappé à celle des voyageurs, même étrangers à la botanique. Les arbres offrent, en général, un grand avantage sous ce rapport, d'autant plus qu'ils peuvent être considérés comme étant avec le climat, aux vicissitudes duquel ils sont exposés pendant le cours de l'année entière, dans une liaison bien plus intime que les végétaux herbacés, qui peuvent se soustraire en partie à son action pendant une portion de l'année, et surtout que les plantes annuelles, qui ne vivent qu'une saison. On caractérise aussi certaines régions par la présence de groupes d'un ordre plus élevé, les genres, les familles ou leurs tribus, toutes les fois que leur aire se trouve ainsi circonscrite, et l'on conçoit combien le signalement gagne alors en portant sur un plus grand nombre de traits. D'ailleurs, il n'est pas nécessaire que la totalité des espèces du groupe en question se renferme exclusivement dans la région qu'on veut peindre ; il suffit que leur plus grand nombre s'y trouve concentré. Sans la méthode naturelle, la géographie botanique se perdrait nécessairement dans des détails sans fin, et l'on peut dire qu'elle s'est établie par l'établissement des familles, comme elle se perfectionnera par leur perfectionnement.

GEOGRAPHIE BOTANIQUE.

§ 615. Jetons maintenant un coup d'œil sur les principales régions : caractérisées ainsi, soit par l'existence de certains végétaux particuliers et remarquables, soit par la présence exclusive ou par la grande abondance de ceux de certaines familles. Nous les examinerons en marchant de l'équateur aux pôles ; et, pour plus de clarté, nous diviserons la terre en un certain nombre de zones d'après les latitudes, sans avoir pour le moment égard aux modifications qu'apporteraient dans leur circonscription les inflexions des lignes isothères : et isochimènes.

§ 646. La zone qui est limitée sur les deux hémisphères par les tropiques, et que depuis l'antiquité on désigne sous le nom de torride, présente une végétation bien distincte de celle au milieu de laquelle nous vivons, par sa vigueur, par sa variété, par les formes. et les caractères particuliers d'un grand nombre des plantes qui la composent. La proportion des végétaux ligneux s'y montre considérable; et si l'humidité et la richesse du sol viennent s'ajouter à la chaleur de la température, ce sont de grands arbres réunis en vastes forêts d'un aspect tout différent des nôtres ; car au lieu de la répétition uniforme d'un nombre très borné d'espèces, elles offrent une diversité infinie, soit qu'on les examine rapprochées sur un même point, soit qu'on les compare sur deux points séparés; et d'ailleurs ces espèces, pour la plupart, appartiennent à d'autres genres, à d'autres familles que les arbres des zones tempérées. Dans de vastes contrées peu habitées, où les besoins de l'homme ne les ont pas encore soumises à l'exploitation et où leur existence n'a d'autres limites que celles que leur assigne la nature, ces foréts vierges (sylvæ primævæ) ont acquis leur plus magnifique développement ; et ce n'est pas seulement par ces tiges d'une épaisseur et d'une élévation si remarquables que se manifeste la force de la végétation, c'est par la production d'autres plantes plus humbles, les unes ligneuses, les autres herbacées, qui, sous l'abri des hautes cimes, pullulent au milieu de cette atmosphère chaude et humide ; par celle des plantes parasites, qui couvrent et cachent en partie ces troncs; surtout par celle des lianes, qui courent de l'un à l'autre, montent jusqu'à leurs sommets pour retomber et remonter encore, les enlacent en s'enroulant alentour, et les lient entre eux comme les agrès des mâts d'un navire. Un des traits distinctifs de cette végétation tropicale dépend de ce qu'elle se trouve soumise à des influences à peine variables pendant le cours entier de l'année. Dans des climats plus tempérés, où les saisons sont nettement tranchées, l'une amène la floraison, l'autre la maturation régulière; de telle sorte qu'on voit la plupart des arbres, après un repos pendant lequel ils sont restés plus ou moins dénudés, se couvrir ensemble

INFLUENCE DES LATITUDES.

de feuilles, de fleurs à une même époque, de fruits à une époque ultérieure. Sous l'équateur, toutes ces phases se confondent, et comme d'ailleurs cette extrême activité pousse à la production des feuilles, qui ne tombent pas annuellement, on est frappé de la production beaucoup moindre de fleurs, et par conséquent de fruits, dans un moment donné, quoiqu'on en trouve en tout temps.

§ 617. Les Palmiers et autres Monocotylédonées arborescentes (Pandanées, Draconniers, etc.), ainsi que les Fougères en arbre, contribuent notablement à imprimer à la végétation tropicale sa physionomie particulière. Une autre forme également caractéristique est celle qu'on est convenu d'appeler des Scitaminées, en comprenant sous ce nom, non seulement les plantes de cette famille, mais celles des Musacées et des Cannacées. Le Bananier (qui acquiert tout son développement dans les serres d'Europe) peut en donner une idée. Ajoutons ici l'énumération des familles qu'on peut nommer tropicales, soit parce qu'elles ne se montrent pas au delà des tropiques, soit parce qu'elles offrent entre eux le maximum de leurs espèces. Telles sont les Broméliacées, Aroïdées, Dioscoréacées, Pipéracées, Laurinées, Myristicées, Anonacées, Bombacées, Sterculiacées, Byttnériacées, Ternstræmiacées, Guttifères, Marcgraviacées, Méliacées, Ochnacees, Connaracees, Anacardiacees, Chailletiacees, Vochysiacees, Mélastomacées, Myrtacées, Turnéracées, Cactées, Myrsinées, Sapotées, Ebénacées, Jasminées, Verbénacées, Cyrtandracées, Acanthacées, Gessnériacées. Plusieurs grandes familles qui, dans nos climats, comptent un nombre d'espèces plus ou moins considérable, se trouvent entre les tropiques représentées par d'autres plus nombreuses encore (comme les Euphorbiacées, Convolvulacées, etc., etc.); mais quelques unes de formes différentes, comme par exemple les Bambous, ou autres Graminées arborescentes, les Orchidées épiphytes; d'autres distinguées par des caractères particuliers propres à constituer des tribus tout entières (par exemple, des Mimosées et les Casalpiniées dans les Légumineuses, les Cordiacées dans les Borraginées, les Rubiacées non étoilées). Citons enfin plusieurs familles caractéristiques, parce que, parmi leurs espèces, sont ces parasites d'une végétation si curieuse (les Loranthacées, Rafflesiacées, Balanophorées); et surtout plusieurs de ces Lianes dont nous avons plus d'une fois fait mention (les Malpighiacées , Sapindacées , Ménispermées, Bignoniacées, Apocynées, Asclépiadées).

§ 648. Jusqu'ici nous avons parlé de la zone intertropicale comme jouissant, sur toute son étendue, d'un climat identique. Mais on conçoit qu'il n'en peut être tout à fait ainsi. La marche de la terre autour du soleil, qui pour nous amène les extrêmes de l'hiver et de l'été, ramène au contraire, pour les régions situées immédiate-

GÉOGRAPHIE BOTANIQUE.

ment sous l'équateur, des conditions exactement semblables, et toute différence tend à s'y effacer de plus en plus dans le passage du soleil d'un tropique à l'autre. Il n'y existe donc pas de distinction de saisons : la température moyenne se trouve être en même temps celle de toute l'année ; c'est aussi la température du sol à une certaine profondeur, celle où se passe les phénomènes de la vie dans les parties souterraines des végétaux. La durée constamment égale des jours et des nuits tend à compléter cette uniformité constante dans les conditions auxquelles ils se trouvent soumis. Quelques degrés de latitude changent à peine ces conditions; mais à mesure qu'on s'en éloigne, la distinction des saisons doit se laisser de plus en plus apercevoir. Cette différence, il est vrai, si l'on se contente d'une apparence générale et qu'on excepte certains points où des influences locales déterminent d'assez notables variations, est toujours assez faible, et les lignes isothermes, tout en s'abaissant de quelques degrés de chaleur, s'éloignent peu des isochimènes et des isothères, toutes conservant un certain parallélisme avec l'équateur, et l'intérieur du sol maintenant à une certaine profondeur une température constante qui n'est autre que la moyenne. Quoi qu'il en soit, il en résulte dans la végétation des différences appréciables; et l'on peut sous ce rapport subdiviser cette grande zone en équatoriale, comprenant à peu près 45 degrés des deux côtés de l'équateur, et tropicale, étendue du 45° au 24°. Pour nous contenter de quelques traits principaux choisis parmi ceux que nous avons réunis plus haut, la première se caractérise par la présence plus exclusive des Palmiers et des Scitaminées; la seconde, par celle des Fougères en arbre, des Mélastomacées, des Pipéracées. Il est clair qu'il ne peut y avoir de limite tranchée entre l'une et l'autre, soit par la température, soit par les productions naturelles, et que les différences ne se font bien sentir que si l'on se place à des points suffisamment éloignés en latitude ou en hauteur.

§ 649. Les grandes zones qu'on nomme vulgairement *tempérées*, et qui des tropiques s'étendent jusqu'aux cercles polaires, présentent nécessairement, d'une de ces limites à l'autre, des différences de climat et de végétation tout autrement tranchées que celles qui ont été signalées jusqu'ici. On doit donc dans l'examen qui nous occupe les subdiviser en plusieurs dont les bornes se trouvent déterminées moins par les latitudes que par les lignes isothermes qui, ainsi que nous l'avons annoncé, en deviennent de plus en plus indépendantes.

§ 620. Une première zone, étendue des tropiques jusque vers le 34° ou 36° degré, qui serait mieux définie comme parcourue vers son milieu par l'isotherme de 20 degrés, et qu'on pourrait nommer

INFLUENCE DES LATITUÉES.

juxtatropicale, nous montre la transition de la végétation tropicale à celle des climats essentiellement tempérés. On y observe encore beaucoup des plantes et des formes que nous avons précédemment énumérées, mais bien plus clair-semées, et mêlées en grande proportion à celles de notre pays. Les Palmiers, les grandes Monocotylédonées et les Fougères en arbre, s'y montrent encore ; les Mélastomacées y sont nombreuses; les Myrtacées, Laurinées, Diosmées, Protéacées, Magnoliacées, y acquièrent leur plus grand développement numérique. A côté, on y voit paraître des représentants des familles que nous avons à nommer dans la zone suivante, et naturellement dans une proportion croissante, à mesure qu'on s'approche de celle-ci; on y trouve des genres européens, et même un certain nombre d'espèces identiques. Ce mélange de productions bien diverses et la possibilité d'emprunter à la fois à des climats tout à fait différents la plupart de celles qui peuvent être utiles ou agréables à l'homme, placent cette zone dans des conditions particulièrement favorables; aussi comprend-elle les pays que le genre humain a les premiers habités, et ces îles que les anciens décoraient du nom de Fortunées.

§ 624. La portion de la zone tempérée située en dehors de la précédente peut elle-même, d'une manière générale, être partagée sur chaque hémisphère en trois zones secondaires : une première, ou *tempérée chaude*, parcourue par les isothermes de 45 à 40 degrés ; une intermédiaire, ou *tempérée froide*, par celles de 40 à 5 degrés ; une dernière, par celle de 5 à 0 degré. Celle-ci ne mérite pas le nom de tempérée, et peut prendre celui de *sous-arctique* à cause du voisinage du cercle polaire, dont elle se rapproche, au delà duquel elle s'avance même sur un petit nombre de points, ceux qui correspondent aux rivages occidentaux de l'Europe et de l'Amérique, tandis que, sur tout le reste des continents, elle reste plus ou moins en deçà. Paris, où la température móyenne est de 40°,8 ; Londres, où elle est de 40°,4 ; Vienne, où elle est de 40°,4, sont à peu près situés sur la limite commune des deux premières.

§ 622. Enfin nous trouvons la zone polaire ou glaciale dans laquelle la végétation, de plus en plus appauvrie, ne tarde pas à disparaitre entièrement.

§ 623. Si nous n'avons pas dessiné tout de suite les principaux traits qui caractérisent les végétations de ces différentes zones tempérées et froides, c'est qu'on peut les saisir au moyen d'une autre considération que nous avons laissée de côté jusqu'ici. En effet, nous n'avons pas encore tenu compte d'une autre cause qui influe puissamment sur l'inégale distribution de la chaleur à la surface de la terre', dont nous avons parlé, comme si elle présentait partout un même niveau, celui de la mer. Mais chacun sait qu'il en est autrement, et que le relief de cette surface est loin d'être égal sur une partie de son étendue, mais exhaussé en plateaux sur plusieurs étages, et hérissé de montagnes qui forment des chaînes plus ou moins longues que dominent des sommets encore plus élevés de distance en distance. Or, à mesure qu'on s'élève, on trouve que la température s'abaisse, et dans une proportion telle qu'une ascension de quelques heures suffit pour vous faire passer par tous les degrés de température décroissante. Une très haute montagne, située sous la ligne, et couverte, à son sommet, de neiges éternelles, comme l'est par exemple le Chimborazo dans la grande Cordillière des Andes, représente donc, dans un espace très borné, tous les changements qu'on éprouverait dans une succession plus lente si l'on allait de l'équateur au pôle.

Si la loi suivant laquelle la chaleur décroît de l'équateur au pôle est variable suivant les divers méridiens, celle suivant laquelle elle décroît à mesure qu'on s'élève en hauteur paraît, de son côté, varier, suivant diverses circonstances, comme la saison, l'heure du jour, l'inclinaison et l'exposition de la pente. Le décroissement est plus lent l'hiver, la nuit, sur une pente très douce ou sur les plateaux. Une différence de 200 mètres, plus ou moins, suivant ces circonstances, donne en moyenne un degré de différence dans la température, à peu près comme le donnerait un intervalle de deux degrés en latitude. A une certaine hauteur, le froid doit être tel que la chaleur des jours d'été ne puisse suffire à dissoudre les glaces formées pendant le reste de l'année; et là commence la limite des neiges éternelles, limite nécessairement d'autant moins élevée que le climat est moins chaud à la base de la montagne, ou, en d'autres termes. qu'elle se rapproche plus des pôles, et qui, à une certaine distance de ceux-ci, vers 75 degrés, se trouve, après s'être abaissée graduellement, descendre jusqu'au niveau de la mer. Ainsi, cette limite se trouve à près de 5,000 mètres dans les Cordillières entre le; tropiques, à 2,700 dans nos Alpes, au-dessous de 1,000 en Islande. Les glaciers sont des prolongements qui descendent plus bas qu'elle, suivant les accidents du terrain, et marquent la voie naturelle assignée à l'écoulement des neiges et des eaux qui proviennent de leur fonte.

La végétation suivie depuis la base jusqu'au sommet de la montagne présentera des modifications analogues, une succession de zones comparables à celles que nous avons indiquées en marchant de l'équateur au pôle. Au pied d'une montagne située précisément sous l'équateur, nous trouverons la végétation de la zone équatoriale ; à une hauteur de 600 à 4,200 mètres, celle de la zone tropicale ;

SUCCESSION DES ZONES.

plus haut celle de la zone juxtatropicale qui sera graduellement remplacée par celle des zones tempérées. Nous voyons donc que, dans ces dernières où nous vivons, il est possible, sans voyager jusqu'aux pôles et sans sortir de notre pays, de se faire une idée juste de ces diverses végétations appartenant à des zones de plus en plus froides ; qu'il suffit pour cela de suivre celle d'une haute montagne à ses divers degrés d'élévation. Ainsi, le midi de la France appartenant à la zone tempérée chaude, celui qui pourra gravir les Pyrénées en partant des plaines du Roussillon, ou de la Provence s'élever jusqu'au sommet des Alpes, qui s'avancent là si près du rivage, verra dans cette courte excursion s'opérer rapidement sous ses yeux tous les changements qu'il observerait en parcourant l'Europe du midi au nord jusqu'aux derniers confins de la Laponie. C'est donc cette marche que nous suivrons de préférence. Nous signalerons encore, chemin faisant, les familles qui fournissent à chaque végétation ses traits principaux ; mais nous nous aiderons aussi de quelques végétaux remarquables, familiers à la plupart de nos lecteurs, et qui nous serviront comme de jalons; puis nous jetterons un coup d'œil sur les autres parties du globe comprises dans la même zone, où les modifications de la végétation seront plus facilement comprises, quand il ne s'agira plus que de la comparer à celle que nous connaissons par nous-mêmes.

§ 624. Nous avons nommé la Provence et le Roussillon. Tous les pays baignés par la Méditerranée offrent avec ceux-là les rapports les plus frappants dans leur végétation jusqu'à une certaine distance du rivage, et forment dans leur ensemble une région botanique presque uniforme. Quelques unes des familles tropicales s'avancent jusque-là, mais n'y sont plus représentées que par un petit nombre d'espèces : comme les Palmiers, par le Dattier et le Chamærops; les Térébinthacées, par le Lentisque, et le Pistachier : les Myrtacées, par le Myrte et le Grenadier ; les Laurinées, par le Laurier des poëtes; les Apocynées arborescentes, par le Laurierrose. D'une autre part, d'autres familles jusque-là peu nombreuses multiplient leurs représentants, comme les Caryophyllées, les Cistinées, les Labiées qui, couvrant tous les terrains secs et abandonnés, remplissent l'air de leurs exhalaisons aromatiques. Les Crucifères commencent aussi à se montrer. Parmi les Conifères on trouve les Cyprès, les Pins pignons, d'Alep, laricio, etc.; parmi les Amentacées, les Chenes verts, le Liège, les Platanes, etc. Un arbre cultivé, l'Olivier, est particulièrement propre à caractériser cette région, où on le trouve à peu près partout et hors de laquelle on le rencontre à peine.

§ 625. La végétation des environs de Paris peut nous donner une

45.

idée générale de celle d'une grande partie de la zone tempérée froide. Les familles que nous venons de nommer s'y montrent aussi dans une grande proportion, mais moindre pour les Labiées, et Caryophyllées, croissante au contraire pour les Ombellifères et les Crucifères. Ce sont encore les mêmes familles d'arbres, mais représentées par d'autres espèces : les Conifères, par le Pin commun, les Supins, le Mélèze, etc.; les Amentacées, par les Chénes, Coudriers, Hêtres, Bouleaux, Aunes, Saules, tous sujets à perdre leurs feuilles pendant l'hiver; et de là une physionomie toute différente dans le paysage et variable suivant les saisons. Ces divers végétaux varient eux-mêmes soit par leur nombre proportionnel, soit par leurs espèces mêmes, suivant le point de la zone où l'on est placé.

§ 626. Supposons le spectateur au pied des Alpes, vis-à-vis d'un de ces grands massifs que couronnent les neiges éternelles. En portant ses regards sur la montagne, il remarquera facilement que cette végétation qui l'environne immédiatement, et qui caractérise le centre et le nord de la France, disparaît à une certaine hauteur pour faire place à une autre, qui subit elle-même des changements successifs à mesure qu'elle s'élève ; et comme à une certaine distance son œil ne pourra saisir que les masses dessinées par les grands végétaux au milieu desquels se cachent d'autres plus humbles, il verra comme une suite de bandes superposées les unes aux autres : d'abord celle des arbres à feuilles caduques, qui se distingue à sa verdure plus tendre, puis celle des Conifères à verdure foncée et presque noire ; puis enfin une bande dont le vert plus indécis est interrompu çà et là par des plaques d'autre couleur, et va se dégradant jusqu'à la ligne sinueuse où commence la neige; elle est due à ce que les arbres dont les cimes se confondaient plus ou moins rapprochées, et coloraient ainsi uniformément les espaces recouverts par eux, ont cessé et ont fait place à des arbrisseaux ou herbes de plus en plus voisins du niveau du sol et rabougris.

Si, du point où les objets s'offraient ainsi massés, il s'avance vers la montagne et la gravit, il pourra d'abord recueillir les plantes de nos champs, puis sur les premières pentes il en verra apparaître d'autres plus ou moins différentes et qu'on désigne sous le nom d'alpestres, des Aconits, des Astrantia, certaines espèces d'Armoises, de Seneçons, de Prenanthes, d'Achillées, de Saxifrages, de Potentilles, etc., etc. Après avoir côtoyé des Noyers, traversé des bois de Châtaigniers, il aura vu ceux-ci cesser, et les bois se composeront de Chênes, de Hêtres, de Bouleaux. Mais les Chênes cesseront les premiers (vers 800 mètres), les Hêtres un peu plus tard (vers 4,000 mètres). Ensuite les bois seront formés presque exclusivement par les arbres verts (le Sapin, le Mélèze, le Pin commun), qui s'ar-

SUCCESSION DES ZONES.

rêtent eux-mêmes à des étages successifs (jusque vers 4,800 mètres). Une Conifère, le Pin cembro, s'observe encore quelquefois pendant une centaine de mètres. Au delà de cette limite, les arbres s'abaissent pour former d'humbles taillis, comme par exemple d'une espèce d'Aune (Alnus viridis). C'est à peu près alors qu'il se verra entouré par ceux de cet arbrisseau qui caractérise si bien une région des Alpes dont on l'appelle la Rose, le Rhododendron, qui cesse plus haut à son tour pour faire place à d'autres plantes plus basses encore, dépassant peu le niveau du sol, et qu'on désigne par l'épithète d'alpines : ce sont des espèces de quelques unes de ces familles qu'il observait à son point de départ, des Crucifères, Caryophyllées, Renonculacées, Rosacées, Légumineuses, Composées, Cypéracées, Graminées, mais des espèces différentes : ce sont aussi de nombreux et nouveaux représentants d'autres familles qui ne se montrent que plus rarement dans la plaine : des Saxifrages, des Gentianes, etc. Les plantes annuelles manquent presque entièrement, et c'est ce qu'on devait prévoir, puisqu'il suffit pour détruire leur race qu'une année défavorable ait empêché la maturation complète de leurs graines, et que ce cas doit se présenter assez souvent dans un climat aussi rigoureux. Les plantes vivaces ou ligneuses au contraire se conservent sous le sol maintenu à une température beaucoup moins basse, soustraites ainsi à l'influence mortelle de l'atmosphère, et se développant toutes les fois qu'elle s'adoucit ou se réchauffe à un degré suffisant : mais ce n'est que pendant une bien courte saison, et sur certains points qu'une fois en plusieurs années. Il en résulte que les tiges s'élèvent à peine, que celles qui sont frutescentes ordinairement rasent le sol, tantôt rampantes, tantôt courtes, roides, enchevêtrées, formant de loin en loin des plaques épaisses et compactes, comme deviendrait un arbrisseau qu'on taillerait chaque année très près de terre. La physionomie propre à chaque famille s'efface en quelque sorte, remplacée par la physionomie générale de plante alpine, et l'on retrouve celle-ci jusque dans des genres à espèces ordinairement arborescentes, par exemple dans des Saules, qui ici rampent cramponnés sur le sol. Sur le bord des eaux, là où la croupe des montagnes forme une pente adoucie, ou s'aplatit en gradins sur lesquels puisse s'arrêter une couche d'humus, la végétation forme des tapis étendus; mais le plus souvent ce tapis est déchiré par les accidents du terrain, et la verdure ne se montre que par lambeaux dans les intervalles, les fentes ou les anfractuosités des rochers. Plus on s'élève, plus elle s'éparpille et s'appauvrit, jusqu'à ce qu'enfin ces rochers ne montrent plus d'autre végétation que celle des Lichens, dont les croûtes varient un peu la teinte monotone de leur surface. On est arrivé aux neiges éternelles, où les êtres organisés

GÉOGRAPHIE BOTANIQUE.

ne peuvent plus accomplir leur vie, mais ne se montrent qu'en passant.

§ 627. Comparons maintenant ce qu'on observe en s'avançant du centre de la France vers le pôle, à ce qu'on a observé dans l'ascension des Alpes. On voit de même graduellement diminuer le nombre absolu des espèces et le nombre relatif de celles de certaines familles (Labiées, Ombellisères, Rubiacées, etc.), disparaître complétement celles de plusieurs autres (Malvacées, Cistinées, Euphorbiacées, etc.). En prenant pour point de comparaison certains végétaux caractéristiques, ces arbres que nous avons suivis sur la pente des Alpes, nous trouvons leur distribution à peu près analogue, si on la considère d'une manière générale, un peu différente cependant si on se livre à un examen plus détaillé et plus rigoureux. Ainsi sur les côtes occidentales de la Scandinavie, le Hêtre s'arrête à 60 degrés, un peu plus tôt que le Chene, qui s'avance jusqu'à 61 degrés. C'est la limite septentrionale de la zone froide tempérée. Nous entrons dans la zone sous-arctique, au milieu des forêts d'arbres verts, de Sapin qui cesse vers 68 degrés, de Pin qui cesse vers 70 degrés, mais où le Mélèze manque entièrement. Le Bouleau commun s'avance encore un peu plus loin. Ce sont donc les mêmes végétaux dont nous avons vu l'ensemble caractériser ces diverses zones déterminées par les diverses hauteurs des montagnes, mais ici ils se dépassent dans un ordre différent et quelquefois inverse. On ne rencontre plus ensuite que des arbrisseaux bas, et, vers l'extrémité de la Laponie, nous entrons dans la région polaire. Mais celle-ci peut elle-même se subdiviser en deux : l'une arctique, analogue à celle des Alpes que nous avons vue nue d'arbres, mais revêtue encore d'humbles arbrisseaux. Ici le Bouleau nain, jusqu'au 71e degré, remplace l'Aune vert des montagnes, et le Rhododendron se représente par une espèce particulière (R. laponicum). Au Spitzberg, enfin, nous sommes dans la région des plantes alpines, dans l'autre zone qu'on peut appeler proprement polaire, où la végétation, réveillée quelques semaines seulement, dort ensevelie sous la neige le reste de l'année, et ne produit plus que des végétaux vivaces et sous-frutescents, chétifs, clair-semés, les mêmes, pour la plupart, que nous avons signalés vers la limite des glaces éternelles. Mais faisons bien remarquer que dans le parallèle précédent des diverses zones de végétation suivant les altitudes et suivant les latitudes, nous avons pour ces dernières choisi la portion de la terre la plus favorisée comparativement, celle où les lignes isothermes se relèvent le plus vers le pôle, la côte occidentale de l'Europe. En suivant d'autres méridiens, nous aurions vu les zones successives s'arrêter à des latitudes beaucoup moins élevées, d'autant moins que nous nous serions avancés davantage vers ceux qui traversent le centre des grands continents ou se rapprochent de leurs côtes orientales.

§ 628. Rappelons aussi ce que nous avons annoncé (§ 612): c'est que la température moyenne exerce moins d'influence sur la végétation que la température extrême des hivers, et surtout celle des étés, ainsi que de leur durée. Car beaucoup de végétaux échappant sous la terre et sous la neige qui les recouvre à l'action de l'atmosphère, peuvent braver ainsi celle des hivers les plus rigoureux et reparaître au jour pendant l'été, en parcourant même toutes les phases de la floraison et de la fructification, s'il est assez chaud et assez long. Ces mêmes conditions permettent également la conservation d'un certain nombre d'espèces annuelles. Il peut donc en résulter de notables différences dans la végétation de deux points situés sur une même isotherme : celui où les températures estivale et hivernale différent peu, et celui où elles différent beaucoup, comme à l'ouest et dans l'intérieur des continents, chacun d'eux excluant un certain nombre de plantes que l'autre admet. En conséquence, les lignes isothermes ne peuvent, non plus que celles des latitudes ni celles des altitudes, définir rigoureusement une zone végétale : les isochimènes et les isothères n'y suffiraient pas davantage. La végétation d'un pays plus ou moins borné est une résultante de ces influences combinées et de beaucoup d'autres encore, bien plus complexe par conséquent que le climat auguel elle ne se subordonne que d'une manière générale. On ne peut donc prétendre circonscrire ses variations si nombreuses dans certaines lignes continues, ou les formuler dans un petit nombre de lois. On conçoit par là combien est imparfaite et incomplète l'esquisse que nous avons tracée, obligé de nous resserrer dans quelques pages et d'éviter la multiplicité des détails ici pourtant si nécessaire : aussi dans cette exposition avons-nous eu recours moins aux préceptes qu'aux exemples. Nous avons naturellement pris le nôtre dans l'Europe. et surtout dans la France, pour que le lecteur ait au moins le terme de comparaison à défaut de la comparaison tout entière.

§ 629. Nous ne nous sommes guère arrêté que sur les grands continents et à partir des zones tempérées nous nous sommes borné à l'Europe et à ses montagnes. Il nous reste donc à ajouter quelques lignes sur les différences que les îles peuvent présenter dans leur végétation, comparées aux continents. Celles qui ont une grande étendue peuvent être considérées comme de petits continents ellesmêmes, mais néanmoins offrent toujours, par le développement de leur littoral, une proportion plus grande de terrains soumis au climat plus humide et plus tempéré que nous avons nommé marin (§ 613). Cette différence influe nécessairement sur leur végétation,

GÉOGRAPHIE BOTANIQUE.

à laquelle elle imprime quelques caractères particuliers, mélés à ceux qu'elle offre en commun avec les parties des continents voisins et situés à la même latitude. Un de ces caractères est l'abondance relative des végétaux acotylédonés cellulaires, et principalement des Fougères, auxquelles ce climat paraît singulièrement favorable, et d'autant plus qu'il est en même temps plus chaud. Elles s'y montrent donc dans une proportion d'autant plus grande, par rapport à la totalité des autres végétaux, que l'île est moins considérable et par conséquent plus complétement placée dans ces conditions de température. Ainsi, dans la grande île de la Jamaïque, le nombre des Fougères, comparé à celui des espèces phanérogames, est comme un 4 à 10. La proportion est 1/8 dans les îles de France et de Bourbon, 4/6 à la Nouvelle-Zélande, 4/4 à Otaïti, 4/3 à l'île Norfolk, 4/2 à celle de Tristan-d'Acunha. Un autre caractère de la végétation des îles mise en regard de celle des continents, c'est que le nombre total des espèces végétales y est moindre sur une étendue égale, et d'autant moindre que l'île se trouve plus petite et plus écartée au sein de l'Océan : résultat presque nécessaire de l'obstacle qu'oppose cette interposition des mers à la transmission d'espèces primitivement étrangères au sol, qui, au contraire, sur un espace égal, mais continental, peuvent arriver et finir par s'établir, en s'avançant de proche en proche de tous les espaces circonvoisins. Le climat marin, sur beaucoup de points, et surtout en s'éloignant des tropiques, paraît nuire à la végétation arborescente, probablement aidé par l'action de vents violents et fréquents. C'est ce qu'on peut déjà remarquer sur beaucoup de nos côtes. L'Islande, les archipels Shetland et Feroë, n'ont pas d'arbres ou n'en offrent que quelques bouquets rabougris, isolés sur un petit nombre de points abrités, tandis que nous avons vu ces arbres s'avancer autant et même plus loin en latitude sur la côte de Norwége, y acquérir une grande vigueur et y former des forêts.

§ 630. Les bornes de cet ouvrage ne nous ont pas permis d'examiner les diverses parties de la terre, de suivre chaque zone sur tout le contour du globe, et de comparer les zones analogues sur ses deux hémisphères boréal et austral, de déterminer les différences que présentent les chaînes de montagnes appartenant à des contrées plus ou moins éloignées ou courant dans des directions inverses. Cette étude nous eût montré des ressemblances frappantes lorsque les circonstances météorologiques sont les mêmes, une analogie remarquable entre la végétation du sommet des Alpes et celle des Andes et de l'Himalaya, du nord de l'Amérique ainsi que de l'Europe et de l'Asie; mais elle nous eût montré en même temps de notables différences. Celles-ci se prononcent d'autant plus que

CENTRES PRIMITIFS DE VÉGÉTATION.

les parties de la terre comparées se trouvent plus complétement séparées entre elles par un plus grand espace de mers, comme le sont, par exemple, relativement l'un à l'autre, l'ancien continent, celui de l'Amérique, celui de la Nouvelle-Hollande. Nous eussions vu ainsi que les analogies résultent tantôt de la similitude des formes imprimées à des plantes du reste différentes, comme par exemple à toutes celles des régions polaires ou à celles qu'on observe aux dernières limites de la végétation des montagnes; tantôt au contraire de la présence de plantes de mêmes genres ou de mêmes familles, mais revêtues de formes extrêmement diverses. Cependant les différences se seraient trouvées en général prévaloir, et nous serions arrivés à ce résultat qu'un grand nombre de points de la terre offrent dans leur végétation une dissemblance indépendante des conditions différentes dans lesquelles ils se trouvent placés, comme si chacun d'eux, dans le principe, avait été l'objet d'une création à part. Deux points éloignés avec un climat analogue et même identique, et avec toutes les autres circonstances dont l'ensemble devrait entrainer l'identité des productions naturelles, peuvent néanmoins ne produire que des plantes différentes. C'est donc que chacun d'eux dans le principe a reçu les siennes et non les autres, quoiqu'elles eussent pu également y vivre. Cela est tellement vrai qu'on voit certaines espèces, transportées d'un centre à un autre, y prospérer comme dans leur patrie primitive.

§ 631. On conçoit qu'une espèce, partant ainsi d'un centre quelconque, se propage en rayonnant autour de lui tant qu'elle trouve les conditions nécessaires à sa vie. Les latitudes différentes, les chaînes de montagnes, les déserts, les mers surtout sont autant de barrières naturelles qui s'opposent à son extension indéfinie, et la renferment le plus ordinairement dans des bornes plus étroites que lui assignent les conditions propres à son organisation particulière, dont nous ne pouvons nous rendre compte. Suivant ces différences de vitalité qui permettent aux unes et interdisent aux autres des séjours variés, les unes se répandent dans un vaste espace, les autres se concentrent dans des limites plus ou moins rétrécies ; mais il en est qu'on rencontre sur des points très distants, séparés par des obstacles naturels dont nous venons de signaler quelques uns et qu'elles n'ont pu franchir seules. Elles ont pu, comme dans les cas que nous avons cités, être transportées des uns aux autres par l'homme, ou par quelques uns de ces agents divers qui favorisent la dissémination (§ 484). Il y en a cependant pour lesquelles on ne peut expliquer ou supposer cette agence, et l'on se trouve ainsi conduit à admettre que plusieurs ont pu appartenir à plusieurs centres de végétation primitive à la fois, et que chacun de ces centres

GEOGRAPHIE BOTANIQUE.

se compose de végétaux en plus grande proportion propres à lui seul, en moindre proportion communs à plusieurs autres en même temps. On a nommé sporadiques (σποραδικός, vagabond) ces végétaux répandus dans de grands espaces et dans plusieurs pays différents, endémiques (Evôcuos, résidant dans sa patrie) ceux qu'on ai observés dans un seul pays. Parmi les premiers, les uns se montrent | sur des points très divers d'une même zone, mais sans la franchir (comme par exemple le Sauvagesia erecta qu'on a observé aux. Antilles, à la Guyane, au Brésil, à Madagascar, à Java): d'autres sur plusieurs zones à la fois (comme le Scirpus maritimus, qui) croît en Europe, dans l'Amérique du Nord, aux Indes occidentales, au Sénégal, au Cap, à la Nouvelle-Hollande ; le Samolus Valerandi, presque également disséminé). Les mêmes épithètes peuvent s'appliquer aux genres et aux familles aussi bien qu'aux espèces, nécessairement dans des limites plus étendues. Les Cactées, concentrées dans l'Amérique intertropicale, qu'elles ne dépassent que peu au nord, les Quinquinas, sur une certaine zone des Andes, sont des exemples de famille et de genre endémiques.

§ 632. Si deux points, placés sur le globe à des distances assez : considérables, mais dans des conditions analogues, n'offrent pas la même végétation, il y a néanmoins, en général, entre ces deux végé-tations, des rapports qu'on ne peut méconnaître. Les plantes, d'une part, différent en tant qu'appartenant à deux centres différents ; de l'autre, se rapprochent en tant que destinées à vivre dans des con-ditions semblables. Ainsi, ce peuvent être les mêmes genres représentés par des espèces différentes, les mêmes familles représentées par des genres différents ou des familles voisines. Les exemples : pourraient être apportés en foule ; il nous suffira d'en rappeler quelques uns, déjà cités, pour la plupart, comme celui des Amentacées et des Conifères de l'Europe tempérée représentées par d'autres espèces des mêmes genres dans la même zone de l'Amérique septentrionale ; ceux des Conifères par d'autres genres (Araucaria, Podocarpus) dans celle de l'Amérique méridionale ; le Hetre commun, placé vers la limite septentrionale de la zone tempérée dans notre hémisphère ; le Hêtre antarctique, placé vers la limite méridionale dans l'hémisphère austral ; deux espèces de Chamærops , marquant ! la limite septentrionale des Palmiers, l'humilis en Europe, le Pal-metto en Amérique; le Rhododendron des Alpes, remplacé en Laponie par une autre espèce, sur les Andes par un autre genre, le Béfaria ; la présence de Diosmées aux terres australes, au cap de Bonne-Espérance, dans l'Europe méridionale, mais sur chacun de ces points offrant des genres assez divers pour former autant de tribus distinctes ; les Éricinées du Cap, remplacées en Australie par

ARITHMÉTIQUE BOTANIQUE.

la famille voisine des Épacridées; celle des Sélaginées par les Myoporinées, etc., etc. On pourrait donc, par une comparaison empruntée à la chimie, dire que dans ces combinaisons de familles, de genres, d'espèces, qui forment la végétation d'un pays, il existe des équivalents, il s'opère des substitutions, pour constituer celle d'un autre pays analogue, quoique différente.

§ 633. Dans l'étude de la géographie botanique, au lieu de passer en revue les diverses contrées de la terre, en indiquant les variations que la végétation subit de l'une à l'autre, on peut suivre une marche en quelque sorte inverse en prenant toutes les familles une à une, et examinant comment chacune a ses espèces distribuées sur le globe. C'est par cette comparaison générale qu'on s'assure de quelques unes de ces vérités que nous avons déjà indiquées sur la concentration ou la dispersion de certaines espèces, genres et familles, et qu'on peut déterminer leur proportion relative, soit sur l'universalité de la terre, soit sur ses grandes divisions ou parties, soit en particulier sur chacun de ses points dont on connaît suffisamment la flore (nom par lequel on désigne soit la végétation d'une contrée, soit l'ouvrage destiné à la faire connaître). La détermination de ces proportions a été nommée Arithmétique botanique par M. de Humboldt. Si les flores de toutes les contrées étaient faites avec un degré de perfection suffisant, et par conséquent si toutes ces proportions se trouvaient une fois bien déterminées, la connaissance des plantes d'une seule famille pourrait sur un point quelconque donner, dans certaines limites, une idée du reste de sa végétation. La science est bien loin d'être arrivée à ce degré de précision qui permettrait de conclure ainsi de la partie au tout ; contentons-nous donc de quelques rapports généraux, ceux qu'on a pu déterminer avec moins d'incertitude et qui d'ailleurs peuvent seuls entrer dans le cadre étroit de cet ouvrage.

§ 634. En recherchant les proportions relatives des espèces appartenant aux trois grands embranchements du règne végétal sous différentes latitudes, si l'on s'en rapporte aux nombres donnés par les flores, on sera tenté d'admettre cette loi, que le nombre des cryptogames ou acotylédonées augmente proportionnellement à celui des phanérogames ou cotylédonées à mesure qu'on s'éloigne de l'équateur. D'après les tableaux donnés par M. de Humboldt pour les parties moyennes des trois grandes zones terrestres, les espèces cryptogames seraient égales en nombre aux phanérogames dans la zone glaciale (de 67° à 70°), de moitié moins nombreuses qu'elles dans la zone tempérée (de 45° à 52°), à peu près huit fois moins dans la zone équatoriale (de 0° à 40°), le rapport étant 4/45 pour les plaines et 4/5 pour les montagnes. Ce dernier rapport viendrait en

ŝ

.

1

e

8

8

541

GÉOGRAPHIE BOTANIQUE.

confirmation aux autres. Mais on doit remarquer que dans les flores le nombre des cryptogames est loin d'être fixé d'une manière aussi précise que celui des phanérogames ; que le premier continue à augmenter par les recherches qui ajoutent peu au second (par exemple dans la flore de Paris); que les divers pays de l'Europe ont été sous ce rapport explorés par des botanistes sédentaires avec un tout autre soin que les pays étrangers n'ont pu l'être par des voyageurs, auxquels devaient échapper beaucoup de plantes obscures et peu visibles, comme le sont la plupart des acotylédonées; qu'on s'est d'autant plus attaché à la recherche des cryptogames que celle des phanérogames était plus tôt épuisée, et par conséquent le pays plus rapproché des pôles; que les proportions trouvées ont dû se ressentir de cette inégalité dans les investigations, qui, poursuivies avec le même soin dans les régions tropicales, amèneraient sans doute des résultats un peu différents dans la proportion de ces végétaux, soit sur toute la terre, soit dans chaque zone, principalement dans les plus chaudes. Au reste, tout ce qui précède s'applique particulièrement aux acotylédonées cellulaires. Nous verrons que la distribution des vasculaires suit d'autres lois et connues avec plus de certitude.

§ 635. En comparant entre eux les deux grands embranchements des végétaux cotylédonés, on voit que la proportion relativedes monocotylédonés va en augmentant à mesure qu'on s'éloigne de l'équateur. Jusqu'à 10 degrés, elle était, relativement à l'ensemble des phanérogames, à peu près de 1/6 pour le nouveau continent et 4/5 pour l'ancien. Croissant progressivement, elle atteint 4/4 vers le milieu de la zone tempérée et 4/3 vers ses limites. Mais elle redescend un peu dans les régions glaciales, par exemple au Groënland. Il est clair que la proportion des dicotylédonées est inverse et s'exprime par des fractions complémentaires des précédentes. C'est l'augmentation de certaines familles, la diminution de certaines autres, qui déterminent ces résultats, comme le fera comprendre le tableau suivant, que nous empruntons à M. de Humboldt, et qui indique, pour le milieu des trois grandes zones et relativement à la totalité des phanérogames, la proportion de quelques unes des familles les plus généralement répandues et les plus importantes par le nombre de leurs espèces, et dont le contingent doit par conséquent, en variant suivant les zones, influer le plus sur les variations de ces grands rapports.

ARITHMÉTIQUE BOTANIQUE.

GROUPES	Rapports à toute la masse des Phanérogames.			
ou FAMILLES.	Zone égratoriale, latit. 0°-10°.	Zone tempérée, latit, 45°-52°.	ZONE GLACIALE, latit. 67°-70°.	
Joncées Cypéracées Graminées Amestacées Éricinées Écohorbiacées. Robiacées Légumineuses Malyacées Ouberlipéres Caucoféres Composées Fougères	1/40 ancien continent 1/2 nouveau continent 1/5 1/1 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/1 1/1 1/1 1/1 1/3 1/40 ancien continent 1/1	$ \left\{ \begin{array}{c} 1/20 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/12 \\ 1/10 $		La proportion va en augmentant de l'équateur vers le pôle. La proportien va en augmentant du pôle vers l'équateur. La proportion va en diminuant de la zone tempérée vers le pôle et vers l'équateur.

§ 636. Les espèces plus nombreuses répandues entre les tropiques correspondent nécessairement à un plus grand nombre de familles et de genres; et il diminue progressivement en se rapprochant des pôles. Mais comme alors chaque genre est représenté par un nombre moindre d'espèces, dans ces flores des pays froids, le nombre des genres, par rapport à celui des espèces, devient plus grand. Ainsi, par exemple, la flore française compte aujourd'hui plus de 7,000 espèces réparties dans plus de 4400 genres; celle de Suède un peu plus de 2,300 espèces pour 566 genres; celle de Laponie, un peu moins de 4,400 espèces pour 297 genres ; de sorte que pour chaque genre le nombre moyen des espèces est en France de 6, en Suède de 4,4, en Laponie de 3,6.

Le nombre absolu des espèces ligneuses et leur proportion aux espèces herbacées augmentent ainsi à mesure qu'on s'approche davantage de l'équateur. Le nombre relatif des espèces annuelles ou bisannuelles croît donc suivant une marche inverse, mais qui ne se continue pas ainsi jusqu'au pôle. Ce sont les régions tempérées qui paraissent le plus favorables à leur nature délicate, ainsi que le prouve l'expérience de nos jardins. Elles y acquièrent leur maximum, et plus loin leur proportion reprend une marche décroissante. Nous avons vu qu'elles disparaissent dans les zones les plus froides, soit en latitude, soit en hauteur, où la plupart des plantes sont vivaces ou sous-frutescentes.

Un corollaire des propositions précédentes, c'est que la taille des

végétaux va en augmentant d'une manière générale des pôles versl'équateur. Mais cette règle semble intervertie pour un ordre particulier de plantes, les *Fucus*, qui, assez petits dans les mers tropiques, acquièrent d'énormes dimensions dans les mers arctiques ou polaires. On en a mesuré au cap Horn dont la longueur atteignait à peu près 400 mètres.

§ 637: Nous n'avons encore parlé que des rapports numériques : entre les différents groupes de plantes (familles, genres, espèces), rapports qui, par leurs combinaisons diverses suivant les diverses contrées, donnent la physionomie propre au paysage de chacune d'elles. Mais celle-ci dépend en même temps d'une autre cause que nous n'avons pas encore examinée, du nombre des individus d'une même espèce dans une étendue donnée. Dans tout pays, celui qui considérera avec quelque attention la végétation qui l'entoure, et, ne se contentant pas d'un coup d'œil vague jeté sur l'ensemble, cherchera à en analyser les divers détails, reconnaîtra tout de suite que, parmi les végétaux qui le composent, les uns se répètent un nombre infini de fois, et que telle espèce couvre de grands espaces de ses individus pressés les uns contre les autres, tandis que ceux de telle autre ne se montrent que de loin en loin. De la multiplicité d'espèces diverses réunies sur un même point ou de la multiplication d'une même qui croît à l'exclusion de la plupart des autres, dépend la sensation de variété ou de monotonie que l'œil transmet à l'esprit. On a nommé plantes sociales celles qui vivent ainsi en société, comme certains animaux par grands troupeaux : si l'on en rencontre quelques pieds isolés à grande distance de tout autre, ce n'est qu'une rare exception. Leur présence indique toujours une même nature dans le terrain qu'elles couvrent; la ligne où elles s'arrêtent, un changement dans la nature du terrain.

§ 638. Nous nous trouvons ici naturellement amené à l'examen d'une influence, celle du sol, que nous avons dû jusqu'à présent laisser de côté, puisque nous avons considéré les grandes régions du globe dans l'ensemble de leur végétation, et que les variations résultant de celles du terrain sont beaucoup plus locales, plus morcelées, et se multiplient dans chacune de ces régions, souvent sur des espaces assez bornés. Par ce nom général de sol, nous devons entendre tout milieu où peut croître une plante, et par conséquent les eaux s'y trouvent elles-mêmes comprises.

§ 639. Commençons par celles de la mer où nous avons vu (§ 529) vivre une partie des Algues, celles qu'on connaît vulgairement sous le nom de *Fucus*, et qui, cramponnées, mais non enracinées sur les fonds ou les rochers, absorbent leur nourriture dans l'eau salée qui les environne. Quelques unes même flottent librement : telle est

STATIONS.

cette curieuse espèce qu'on appelle Raisin des tropiques, à cause de ses renflements ramassés en grappes, et qui se montre aux navigateurs sous la forme de bancs d'une vaste étendue, entre les 22^e et 36^e degrés de latitude boréale, entre les 25^e et 43^e degrés de longitude. Parmi les Phanérogames les Zostéracées seules (tableau II) sont des plantes marines.

§ 640. Parmi celles d'eau douce, nous trouvons une autre partie des Algues (§ 544), quelques unes librement flottantes, la plupart enracinées aux fonds, les *Characées*, les *Rhizocarpées*, quelques Mousses et Hépatiques; des Phanérogames, presque toutes les espèces de Monocotylédonées à graine dépourvue de périsperme et à périanthe nul ou herbacé (tableau II), d'autres à graine périspermée, comme les *Pistiacées* et certaines *Typhinées*; des Dicotylédonées, les *Cératophyllées*, *Podostémacées*, *Nymphæacées*, *Nélumbonées*, *Cabombacées*, la plupart des *Haloragées*, *Utricularinées*, etc., etc.

§ 641. La plupart de ces plantes élèvent au-dessus de l'eau leurs sommités portant fleurs et fruits, et nous fournissent ainsi un passage presque insensible à celles de marais ou de rivages, qui n'ont que leur partie inférieure sous l'eau, leurs inflorescences et souvent une partie de leurs feuilles au-dessus : les Juncaginées, Alismacées, Butomées, sont dans ce cas. Les Graminées, Joncées, Cypéracées, en fournissent de nombreux exemples. Citons encore les Orontiacées, Pontédériacées, quelques Lycopodiacées, Iridées, Orchidées, Polygonées, Caryophyllées, Crucifères, Renonculacées, Lythrariées, Rosacées, Onagrariées, Ombellifères, Plantaginées, Scrofularinées, Labiées et Composées. Il en est qui préfèrent les eaux stagnantes, les unes étendues en étangs plus ou moins considérables, les autres resserrées dans des mares et des fossés ; d'autres veulent des eaux courantes ; quelques unes l'eau glacée qu'entretient la fonte des neiges perpétuelles, comme les jolies espèces de Saxifrages et autres plantes alpines qui tapissent le bord des ruisseaux dans ces hautes régions.

L'eau salée, mortelle pour la plupart des plantes, est au contraire nécessaire à la vie de plusieurs qu'on voit pulluler dans les sables du rivage de la mer, et dont quelques unes s'avancent même un peu plus loin et y baignent leur pied à une certaine profondeur : tels sont par exemple, les *Avicennia* et les *Palétuviers* ou *Mangliers* (*Rhizophorées*, tableau XI), ces arbres éminemment sociaux, communs sur les rivages de toutes les mers tropicales, auxquelles ils impriment une singulière physionomie par leurs fortes racines s'élevant audessus de l'eau et formant comme autant d'arcs-boutants sur le centre desquels s'élève la tige.

On nomme tourbières certains marais d'une nature particulière, couverts de plantes sociales dont les racines entremêlées intimement

46.

entre elles finissent par former une sorte de terrain spongieux et mouvant, dont le fond est souvent rempli par les espèces d'un genre de Mousses, le Sphagnum, où se plaisent certaines plantes (Drosera, Oxycoccus, quelques Saules, etc.; et quelques Fougères, comme l'Osmunda regalis). La végétation de chaque année, en s'élevant, exhausse le fond, et celle des années précédentes s'enfonce ainsi et s'enterre de plus en plus, cesse de vivre, mais à l'abri de l'action de l'air, ne se décompose pas et finit par constituer, avec le limon qui lie ses différentes parties dans leur position primitive, une masse compacte susceptible d'être exploitée comme combustible sous le nom de tourbe.

Certaines plantes se rencontrent à peu près également sur la terre recouverte d'eau ou desséchée. Beaucoup de celles des marais sont dans ce cas, et on les nomme *amphibies*. Quelques unes qu'on désigne par l'épithète particulière d'*inondées*, croissent sur les terrains alternativement recouverts et abandonnés par l'eau. Les feuilles de ces Amphibies sont sujettes à varier de formes suivant qu'elles se sont développées dans le milieu aquatique ou dans l'atmosphère : celles du *Ranunculus aquatilis* méritent d'être étudiées sous ce rapport.

§ 642. Nous avons parlé autre part (§ 238-242) de l'influence que la nature du sol solide diversement modifiée exerce sur la végétation ; mais nous avons dû nous occuper seulement du rôle qu'elle joue dans la nutrition des végétaux, et il nous reste à chercher maintenant celui qu'elle peut avoir dans la distribution de leurs espèces ou familles. Les terrains de composition chimique différente présentent dans leurs productions spontanées quelques différences, mais assez peu appréciables dans l'ensemble de la flore. Ainsi, les terres calcaires, ou siliceuses ou argileuses, montrent sans doute quelques plantes qui sont propres à chacune d'elles, mais ce n'est pas en un nombre ou avec une constance tels que la flore de l'une se distingue nettement de celle de toutes les autres par des traits généraux. Il en est autrement des terrains salés : ils se couvrent de certaines espèces, et beaucoup d'entre elles prennent des formes assez caractéristiques dans leur feuillage court et épaissi, comme les Salsola, Salicornia. D'autres Atriplicées, quelques Crucifères (Crambe et Cakile), quelques Primulacées (Samolus et Glaux), des Statice, abondent aussi sur les bords de la mer, et nous avons déjà fait remarquer (§ 244) qu'on retrouve les mêmes végétaux ou d'autres analogues dans l'intérieur des terres toutes les fois que leur composition est saline.

Mais, en général, la composition du sol agit surtout en modifiant ses propriétés physiques, en le rendant plus meuble ou plus com-

INFLUENCE DE L'HOMME.

pacte, plus ou moins perméable à l'eau et à l'air, plus propre à retenir ou à laisser passer la première ; tellement que le même terrain pourra être favorable ou nuisible à la même plante, sous deux climats de nature opposée, et que réciproquement la même plante demandera des terrains de nature différente dans l'un et dans l'autre de ces climats différents.

§ 643. C'est la nature du sol qui détermine un grand nombre de stations des plantes. Elles ont, pour nous résumer, leurs séjours dans l'eau de la mer, sur son bord imprégné de sel marin ou sur des terrains qui en sont éloignés, mais salés par une autre cause: dans l'eau douce, stagnante dans des espaces petits ou étendus, courante en ruisseaux ou en rivières; sur leurs rives; dans les marais; dans les tourbières; sur les rochers; dans les sables dont la composition chimique peut varier, mais est le plus ordinairement siliceuse ; dans des lieux stériles par une autre cause (par exemple, parce que le terrain, au contraire, trop compacte, se durcit par la chaleur en une masse que les racines ne peuvent percer); dans les terrains où domine l'argile, ou la chaux, ou le gypse, ou un autre élément, formés en place, ou par des alluvions, ou par des atterrissements, ou par des déjections volcaniques, ou d'une autre origine quelconque, etc. D'autres fois l'indication de la station est empruntée à l'association de la plante avec d'autres combinées déjà entre elles d'une certaine manière. C'est ainsi qu'on distingue celles qui croissent dans les forêts, dans les prairies, dans les haies, dans les terrains cultivés et remués souvent (Plantæ arvenses), etc. Nous trouvons ici l'influence de l'homme sur la distribution des végétaux, puisque c'est elle qui a déterminé artificiellément ces dernières combinaisons. Mais il en existe une autre que celle qu'il exerce volontairement et sciemment. Certaines plantes sauvages, certaines mauvaises herbes. qu'il serait plus porté à extirper qu'à propager, l'accompagnent partout et se multiplient autour de sa demeure comme les Orties. diverses espèces de Chenopodium et de Rumex, de Mauves, le Mouron des oiseaux, etc., etc. Leur présence au milieu d'une campagne déserte, de solitudes perdues à une grande élévation dans les montagnes, indique qu'il a passé par là, et qu'au moins la hutte d'un berger y a été quelque temps élevée.

§ 644. L'homme civilisé, auquel ne suffisent plus les productions spontanées que lui offre la terre, et qui cherche à multiplier autour de lui les animaux et les végétaux qui peuvent lui servir ou lui plaire, à détruire ceux qui lui déplaisent ou lui nuisent, tend nécessairement à modifier de plus en plus la distribution de ces êtres et la physionomie de la nature primitive. Nous ne la voyons qu'ainsi altérée dans la plus grande partie de l'Europe, où il faut qu'un lieu

soit bien inaccessible ou irrévocablement stérile pour rester abandonné à lui-même. Les forêts, dans l'état de la nature, tendent à s'emparer du sol, ainsi qu'on peut le voir encore dans le sud du Chili, où les bouquets de bois, une fois établis sur le bord ou au milieu des prairies, empiètent sur elles chaque année en s'avançant sur toute la ligne de leurs lisières comme en colonne serrée, finissent par opérer leur jonction, et, rétrécissant de plus en plus le cercle des Graminées, par les remplacer complétement. C'est le contraire dans les pays cultivés. Les forêts, qui en couvraient primitivement la plus grande étendue, s'éclaircissent et disparaissent graduellement sous les coups de l'homme, et celles qu'on conserve, soumises pour la plupart à des coupes réglées, n'ont plus ni le même aspect ni la même influence sur la nature environnante. Les conditions du climat ont été ainsi modifiées ; celles du sol le sont sans cesse par la culture, qui règle d'ailleurs les espèces peu nombreuses qui doivent le couvrir. Beaucoup de celles qui formaient la flore spontanée sont ainsi détruites, au moins par places ; quelques autres, au contraire, sont introduites, et ce sont en général des plantes annuelles dont les graines se sont mêlées à celles des Céréales venues de pays plus ou moins lointains. Mais guelles que soient ces modifications, elles ne peuvent être tellement profondes que la nature ne conserve pas toujours ses droits; elle dirige l'homme tout en le suivant : les plantes spontanées qu'elle continue à faire croître en abondance, les plantes cultivées qu'elle laisse croître, sont un double indice par lequel elle se fait reconnaître. Les dernières fournissent même des signes excellents à l'étude de la géographie botanique : seulement, en les employant, on doit se rappeler que l'industrie humaine trouve moyen de pousser toute culture avantageuse plus ou moins au delà des limites où s'arrêterait la croissance des mêmes plantes laissées à elles-mêmes ; mais ces limites ainsi étendues conservent leur rapport pour les diverses espèces. Il faut se souvenir aussi que l'absence d'une culture dans un lieu donné peut ne pas impliquer son impossibilité, mais seulement la préférence donnée à d'autres plus avantageuses pour ce lieu-là. C'est dans sa région natale qu'un végétal est cultivé avec le plus de succès et ordinairement qu'il l'a été d'abord. Les climats analogues lui sont ensuite les plus favorables, et, à mesure qu'on s'éloigne davantage de cette zone, sa culture devient de plus en plus difficile, sa production de moindre en moindre. En ayant égard à ces considérations, la géographie botanique et l'agricole s'éclaireront mutuellement. La première empruntera à la seconde des points de repère bien définis, et, une fois qu'on aura vu certains végétaux spontanés accompagner telle ou telle culture, en

PLANTES CULTIVÉES. - CÉRÉALES.

les rencontrant autre part, on en conclura la probabilité que cette même culture pourrait y réussir aussi.

§ 645. Dans le rapide examen qu'il nous reste à faire de la distribution des végétaux cultivés, nous nous bornerons à un petit nombre, à ceux qui servent le plus généralement de base à la nourriture de l'homme, et se trouvent en conséquence les plus répandus sur la terre. Nous emprunterons à l'excellent travail de M. Schouw beaucoup des détails qui suivent.

La culture des *Céréales* (§ 556) est poussée dans le nord de la Scandinavie jusque vers le 70° degré, à peu près vers la limite où nous avons vu cesser aussi les arbres. C'est le seul point où elle dépasse le cercle polaire, en deçà duquel elle s'arrête sur tout le reste de la terre, vers 60 degrés dans l'ouest de la Sibérie, vers 55 degrés plus à l'est ; près de la côte orientale , elle n'atteint pas le Kamstchatka, c'est-à-dire le 54° degré. Dans l'Amérique, elle peut arriver jusqu'au 57° degré sur la côte occidentale, comme le prouve l'expérience des possessions russes ; mais, sur l'orientale, elle ne dépasse pas le 50° ou au plus le 52° degré. La ligne qui la circonscrit au nord dans les deux continents se trouve donc suivre les mêmes inflexions que les isothermes.

C'est l'Orge qui mûrit jusqu'à cette limite, dont s'approche aussi l'Avoine, mais à laquelle la récolte est loin d'être sûre, et ne réussit quelquefois qu'une année sur plusieurs. Leurs graines font l'aliment de l'homme dans le nord de l'Écosse, de la Norwége, de la Suède et de la Sibérie.

Plus au midi, on voit s'y associer la culture du Seigle, qui, du reste, monte aussi loin que celle de l'Avoine dans la Scandinavie. C'est celle qui domine dans cette partie de la zone tempérée froide, que forment le sud de la Suède et de la Norwége, le Danemark, presque tous les pays riverains de la Baltique, le nord de l'Allemagne et une portion de la Sibérie. On commence à y rencontrer aussi le *Blé*, et l'on ne cultive plus guère l'Avoine que pour la nourriture des chevaux, l'Orge que pour la fabrication de la bière.

Puis commence une grande zone où le *Blé* est cultivé presque à l'exclusion du Seigle, et qui comprend le sud de l'Écosse, l'Angleterre, le centre de la France, une partie de l'Allemagne, la Hongrie, la Crimée et le Caucase, et des parties de l'Asie centrale celles où il y a quelque agriculture. Comme la Vigne croît dans une partie de cette zone, le vin remplace la bière, et en conséquence l'Orge est moins recherchée.

Le Blé s'étend bien plus au sud, mais là on y associe communément la culture du *Riz* et du *Maïs*. C'est ce qui a lieu dans la Péninsule espagnole, une partie du midi de la France, notamment celle

GEOGRAPHIE BOTANIQUE.

qui borde la Méditerranée, l'Italie, la Grèce, l'Asie Mineure et la Syrie, la Perse, le nord de l'Inde, l'Arabie, l'Égypte, la Nubie, la Barbarie et les Canaries. Dans ces derniers pays, le Maïs et le Riz sont le plus généralement cultivés vers le sud, et dans quelques uns aussi le Sorgho et le Poa abyssinica. Le Seigle, dans cette double zone du Froment, est relégué sur les montagnes à des élévations assez considérables, l'Avoine aussi ; mais sa culture finit par disparaître à cause de la préférence donnée à l'Orge pour la nourriture des chevaux et mulets. A l'extrémité orientale de l'ancien continent, dans la Chine et le Japon, par une cause qui paraît inhérente aux habitudes du pays, nos graines sont presque abandonnées pour la culture exclusive du Riz. Elle domine aussi dans les Provinces méridionales des États-Unis, mais celle du Maïs est générale dans le reste de cette partie de l'Amérique beaucoup plus que dans notre continent.

Dans la zone torride, c'est aussi le *Maïs* qui domine en Amérique, le *Riz* en Asie, distribution qui tient sans doute à l'origine primitive de ces deux Graminées. Elles sont cultivées également toutes deux en Afrique.

Dans l'hémisphère boréal, dont les régions tempérées admettraient sans doute la plupart de ces cultures, elles doivent être plus rares, à cause de l'état de civilisation moins perfectionné et des populations plus clair-semées, et dépendent en partie des usages apportés par les colonies. Celle du *Blé* est dominante dans le midi du Brésil, à Buenos-Ayres, au Chili, au cap de Bonne-Espérance et à la Nouvelle-Hollande, dans la Nouvelle-Galles du sud, où l'*Orge* et le *Seigle* se montrent plus au midi, ainsi que dans l'île de Van-Diemen.

En recherchant maintenant la distribution des Céréales sur les zones différentes par les hauteurs, nous la trouverions analogue à celle que nous venons de voir sur les zones différentes par les latitudes. Pour avoir un exemple qui les présente toutes à la fois, prenons les Andes de l'Amérique équatoriale. Le *Maïs* y domine de 4,000 à 2,000 mètres, mais arrive encore à près de 400 encore plus haut. Entre 2,000 et 3,000, ce sont les Céréales d'Europe qui dominent à leur tour : le *Seigle* et l'*Orge* vers le haut, le *Blé* plus bas.

§ 646. La Pomme de terre (§ 602), à une époque toute moderne, s'est répandue dans presque tous les pays cultivés, et est venue s'ajouter aux aliments farineux fournis par la graine des Céréales, les remplacer presque dans certaines contrées. Sa culture suit celle de ces Céréales jusqu'à ses dernières limites, et même les dépasse un peu, si l'on choisit les variétés hâtives qu'un été fort court peut

PLANTES CULTIVEES.

amener à maturité. C'est ainsi qu'on la cultive maintenant en Islande, et à des hauteurs considérables sur les montagnes d'Europe, là où les Céréales ne peuvent plus réussir. Dans les pays chauds, au contraire, la Pomme de terre dégénère facilement, et est en conséquence abandonnée, si ce n'est à des hauteurs suffisantes pour ramener le climat aux conditions convenables de température. Sa culture est générale, suivant M. de Humboldt, dans les Andes équatoriales, entre 3,000 et 4,000 mètres.

§ 647. Dans le haut Pérou, le Quinoa, espèce du genre Chenopodium, de la famille des Atriplicées, était communément cultivé, avant l'arrivée des Européens, pour ses graines farineuses, et il l'est encore, quoiqu'à un beaucoup moindre degré.

§ 648. Plusieurs espèces du genre *Polygonum*, type de la famille voisine des Polygonées (§ 573), dont la graine offre une composition analogue, servent, pour cette raison, habituellement d'aliment aux peuplades qui habitent les montagnes septentrionales et les hauts plateaux de l'Asie, d'où ces espèces sont originaires. L'une d'elles, le Sarrasin (*P. fagopyrum*), est très répandue dans le nord de l'Europe, particulièrement dans la Bretagne, où elle forme la principale nourriture des paysans

§ 649. Les populations de quelques districts montagneux, dans l'Apennin en Italie, en France dans les Cévennes et le Limousin, se nourrissent, pendant une partie de l'année, de Châtaignes. Le *Chataignier* (§ 566) croît spontanément dans toutes les régions montueuses du midi de l'Europe, dans l'Asie Mineure et le Caucase, et il est cultivé assez loin de ses limites naturelles. Mais il lui faut, pour que son fruit mûrisse, un certain degré de chaleur assez longtemps prolongé. Au delà de Londres et de la Belgique, vers 54 degrés, il ne vient plus à maturité et n'est plus cultivé comme fruitier, mais seulement pour son bois ou pour l'ornement. Comme en sa qualité d'arbre, il doit subir toute l'influence des hivers, il est probable que sa limite au nord est marquée par une ligne isochimène. Mais l'redoute aussi la chaleur : déjà, en Italie, il ne croît que sur le penchant des montagnes, et il manque à l'Atlas.

§ 650. Entre les tropiques, dans toutes les parties peu élevées au-dessus du niveau de la mer, ce sont d'autres produits végétaux qui nourrissent l'homme, parce que, en général, la quantité de subtance alimentaire fournie par eux est beaucoup plus considérable ur un espace donné, et que, d'ailleurs, les fruits obtenus, le plus ouvent presque sans culture, favorisent l'aversion aux rudes traaux sous un climat brûlant. Nous avons cité : 4° le *Bananier*, qui st cultivé pour ses fruits jusqu'en Syrie, vers 34 degrés, et ui, dans les Andes, ne fructifie qu'avec peine à une hauteur de

GEOGRAPHIE BOTANIQUE.

2,000 mètres, où la chaleur moyenne tombe à 48-19 degrés; 2° le Dattier (§ 558), Palmier de l'Afrique septentrionale où certaines populations se nourrissent de son fruit, qui ne peut mùrir au delà d'une certaine ligne allant de l'Espagne jusqu'en Svrie, du 39° au 30° degré, quoique l'arbre puisse encore végéter quelques degrés plus au nord; 3º le Cocotier (§ 558), originaire de l'Asie méridionale, maintenant répandu, comme le Bananier, sur toute la zone intertropicale, mais se plaisant seulement sur les bords de la mer, loin de laquelle on ne peut l'obtenir. Il demande une température movenne de plus de 22 degrés, s'arrête par conséquent, à peu près là où commencent les Céréales, et fournit à certains peuples, par exemple, ceux de la péninsule de l'Inde et de l'ile de Ceylan, un objet important de nourriture et de commerce : 4º l'Arbre à pain (§ 567), aliment de la plupart des habitants des îles de la mer du Sud, dont il est originaire. transporté maintenant aux Antilles, au Brésil, à la Guyane, et à l'île de France, mais qui craint assez le froid pour ne pouvoir dépasser le 22° ou 23° degré de latitude.

§ 651. Citons encore quelques plantes alimentaires cultivées pour leurs racines farineuses : l'Igname (Dioscorea alata), originaire de l'archipel Indien, et dont la culture ne s'étend guère au delà de 10 degrés de chaque côté de l'équateur dans l'ancien monde; la Patate (§ 604), venue de l'Inde, mais qui réussit jusque dans nos climats tempérés, quoiqu'elle cesse d'être cultivée en grand au delà de la zone chaude, c'est-à-dire de 44 à 42 degrés; le Manioc (§ 568), répandu du Brésil jusque sur la côte occidentale d'Afrique, cultivé en Amérique jusqu'au 30° degré des deux côtés de l'équateur, et qui ne peut l'être sur les montagnes à une élévation surpassant 1,000 mètres.

§ 652. Nous avons vu, à l'article des différentes familles, à quel point les boissons fermentées et alcooliques sont recherchées par l'homme, qui s'en procure dans presque tous les pays au moyen des végétaux qu'il peut y avoir à sa disposition. Nous en examinerons ici un seul, le plus important de tous, la *Vigne* (§ 585), relativement aux limites de sa culture en grand pour la fabrication du vin. Cette limite paraît s'être étendue autrefois plus au nord que maintenant, puisqu'on faisait du vin en Bretagne et en Normandie, où l'on n'en fait plus, moins sans doute parce que le climat se serait détérioré, comme quelques uns le prétendent, que parce que la civilisation, facilitant les échanges et les transports, a engagé à substituer d'autres cultures plus avantageuses à celle-là, et à abandonner un produit médiocre et incertain, qu'on pouvait aisément et sûrement tirer supérieur d'autre part. Quoi qu'il en soit, la ligne où s'arrête actuellement la culture en grand de la Vigne commence

PLANTES CULTIVÊES. - VÍGNE.

maintenant sur la côte occidentale de France, vers Nantes (47°,20); de là elle remonte jusqu'auprès de Paris (49 degrés), un peu plus haut encore en Champagne, et sur la Moselle et le Rhin, jusqu'à 51 degrés; puis, après quelques ondulations, passe à peu près au même degré en Silésie, redescend ensuite, vers le midi, à 48-49 degrés en Hongrie, d'où elle se soutient à la même latitude jusqu'en Crimée et au nord de la Caspienne, où elle disparaît. La limite méridionale de la Vigne est aux Canaries vers 27°,48, puis elle suit le littoral de la Barbarie, s'y interrompt pour reparaître sur un petit point de l'Égypte et beaucoup plus abondante en Perse, à 29 degrés et même à 27 degrés. Elle ne mûrit pas au Japon, et n'est pas cultivée dans la Chine, où sans doute elle pourrait l'être, mais dont tout le vaste empire est voué à la boisson du Thé.

Dans l'autre hémisphère et en Amérique, cette culture a été tentée avec succès, sur quelques points disséminés, d'après les habitudes et les idées des colons, mais non sur une échelle assez générale pour que sa circonscription actuelle puisse être considérée comme nécessaire et fixée par la nature. Dans l'Amérique septentrionale, où les premiers navigateurs trouvèrent plusieurs espèces distinctes de Vignes croissant spontanément, la limite septentrionale de sa culture ne dépasse pas 37 degrés sur les bords de l'Ohio, 38 degrés dans la Nouvelle-Californie ; sa limite méridionale, 26 degrés à la Nouvelle-Biscaye, 32 degrés au Nouveau-Mexique. Dans l'hémisphère austral, où elle n'atteint certainement nulle part 40 degrés , on l'observe au Chili et dans la province de Buenos-Ayres ; vers 34 degrés dans la Nouvelle-Hollande et au cap de Bonne-Espérance, si renommé par son vin.

Quant aux montagnes d'Europe, elle monte au plus à 300 mètres en Hongrie : dans le nord de la Suisse, à 550 ; ne dépasse pas 650 sur le versant méridional des Alpes, et peut s'approcher de 960 dans l'Apennin méridional et en Sicile, quoiqu'à Ténériffe elle n'aille qu'à 800.

De tout ce qui précède on peut conclure que la Vigne veut un climat tempéré, mais qu'elle se règle moins sur la température moyenne que sur la température de l'été, qui doit avoir une certaine force pour mûrir ses fruits, et une certaine durée, pour que cette maturation, qui doit s'achever en automne, y trouve encore une température assez élevée. Ne rencontre-t-elle nulle part sous les tropiques ces conditions favorables? Les observations modernes semblent décider la question affirmativement, puisque, outre certains points déjà signalés autrefois (comme une des îles du cap Vert, celle de Saint-Thomas près de la côte de Guinée, et l'Abyssinie), on fait maintenant sur la côte ouest de l'Amérique méridionale,

GÉOGRAPHIE BOTANIQUE.

vers le 18°, le 44° et jusqu'au 6° degré, du vin dont les voyageurs parlent avec éloge. On pourrait supposer que les hauteurs où cette culture a lieu compensent les latitudes trop basses; mais cela ne peut être vrai partout, puisqu'on la voit, sur certains points, descendre jusqu'à la côte. Seulement il faut que le climat soit extrêmement sec, et l'humidité semble autre part la rendre impossible.

§ 653. Les limites de cet ouvrage ne nous permettent pas d'exposer la distribution de plusieurs autres végétaux cultivés comme utiles à l'économie et à l'industrie, et nous forcent de renvoyer aux courts renseignements dont quelques uns d'eux ont été l'objet à l'article de sa famille, comme l'*Olivier*, la *Canne à sucre* (§ 556), le *Caféier* (§ 606), le *Cacao* (§ 586), le *Thé* (§ 587), et diverses plantes servant à la fabrication des fils et cordages, des tissus, ou à la teinture.

Nous nous contenterons, en finissant, d'appeler l'attention du lecteur sur cette liaison intime des diverses branches de la science entre elles, et des connaissances théoriques avec la pratique. La classification, éclairée par l'étude de l'organisation, éclaire à son tour celle des propriétés ; elle introduit l'ordre dans le chaos des innombrables espèces végétales, permet de constater celles qui sont propres à chaque point du globe, conclut des associations naturelles des végétaux, desquelles résulte la flore de chaque contrée et de chaque terrain, celles que l'art peut essayer, et devient ainsi l'un des auxiliaires les plus utiles de l'agriculture.

554

TABLE DES MATIÈRES

AVEC RENVOI AUX NUMÉROS DES PARAGRAPHES.

ORGANES DE LA VÉGÉTATION. 1.

ORGANES ÉLÉMENTAIRES. 2. — Utricules ou cellules. Parenchyme. 3-6. — Fibres. Prosenchyme. 7. — Vaisseaux en général. 8. Trachées. 9. Vaisseaux annulaires et réticulés. 40. — rayés. 41. — ponctués. 42. — laticifères ou propres. 43. — Moyens d'union des organes élémentaires. 44-45. — Leurs moyens de communication. 46. — Contenus des organes, gazeux, liquides ou solides. — Nucleus. Protoplasma. Fécule. Chlorophylle. Cristaux. 48-24.

ORGANES COMPOSÉS. 25. — Embryon et son premier développement. 26-34. — Épiderme et stomates. 35-44. — Pellicule épidermique. 45.

Tige. 47. — Celle des végétaux dicotylédonés. 48-56. — Système ligneux. Moelle. 57. Bois. Son accroissement. Étui médullaire et couches concentriques. Cambium. 58-66. — Rayons médullaires. 67. — Écorce. 68-69. — Enveloppes subéreuse et cellulaire. 70. — Fibres corticales ou liber. 71. — Divers développements de l'écorce. 72-73. — Lenticelles. 74.

Tige des végétaux monocotylédonés. Leur structure et leur mode d'accroissement. 75-83.

Tige des végétaux acotylédonés. - 84-85. - Fougères. 86-90.

Racine. 92-99. — Celle des Dicotylédonées. 100. — des Monocotylédonées. 101. — des Acotylédonées. 102.

Feuilles. 103-104. — Feuilles aériennes. Leur structure. 105-109. — Feuilles submergées. 110. — Forme générale des feuilles. Leur nervation. 111-113. — Limbe. — Son contour et ses divers degrés de composition. 114-117. — Pétiole. 118-120. — Phyllode. 122. — Gaine. Stipules. 123-128. — Comparaison des feuilles dans les grandes classes de végétaux. 129. — monocotylédonés. 130. — dicotylédonés. 131. — acotylédonés. 132.

Phyllotaxie ou arrangement des feuilles sur la tige. 133. — Feuilles opposées ou verticillées. 134. — Feuilles alternes. 135-139.

Bourgeon. 140-143. - Modes divers d'estivation ou préfoliaison. 144.

Ramification, 145-146. — Tiges simples, 147. — divisées. — 148. — Plantes vivaces, 149. — Rhizomes, 150. — Bulbes, 151. — Tiges rampantes, 152. — Bulbilles, 153. — Rameaux opposés aux feuilles, 154. — extra-axillaires, 155-156. — Bourgeons adventifs, 157. — Rameaux radiciformes, 158. — Port des végétaux dépendant de la ramification diversement modifiée, 160-165. — Résumé, 166.

Organes accessoires ou transformés. 167. — Vrilles. 168. — Piquants. 169. — Aiguillons. 170.

Poils. 171-174. — Glandes. 175. — Poils glanduleux. 176-177. — Glandes proprement dites. 178-181.

FONCTIONS DES ORGANES DE LA VÉGÉTATION, 183.

Absorption des racines. Endosmose et exosmose. 184-187.

Circulation. Séve ascendante ou brute. Forces qui déterminent l'ascension. 188-193. — Ses phases. 194-199. — Séve descendante ou élaborée. Cyclose. 200-204. Rotation ou circulation intra-cellulaire. 205.

Respiration. Ses organes. 206-207. — Composition de l'air, et sa décomposition dans les parties vertes à la lumière. 208-210. — à l'obscurité. 211. — Décomposition dans les parties non vertes. 212. --- dans la graine en germination. 213-214.
 — Diverses manières de considérer la respiration des végétaux. 215-217. — Résumé et comparaison avec la respiration des animaux. 218-219.

Evaporation. 220.

Nutrition et sécrétions. 221-222. — Composition chimique des matières végétales. 223-224. — Matières ternaires. — Cellulose, fécule, dextrine, 225. — Sucre. 226. — Matières quaternaires ou azotées. 227-228. — Diastase. 229. — Ligneux et autres produits surcarbonés ou surhydrogénés. 230-234. — Alcaloïdes. 232. — Produits suroxygénés. Acides. 233-236. — Humus, ulmine. Proportion de l'azote dans les tissus naissants. 237. — Matières minérales fournies par la terre, et leur influence sur la végétation. 238-242.

Excrétions. 243. Enduits visqueux, cireux et glaireux. 244. 4°. — Matières organiques en excès. 2°. — Excrétions proprement dites. Opinions sur celles des racines et leur application à la théorie des assolements. 3°.

Accroissement des tissus. 245. — Celui du tissu cellulaire. 246-248. — Accroissement des tiges et des racines. 249-250. — Théorie de **Dupetit-Thouars** et de M. **Gaudichaud**. 250 *bis*-254.

ORGANES DE LA REPRODUCTION.

DE LA FLEUR. 255.

Inflorescence. 257-260. — Inflorescences indéfinies. Grappe, panicule, thyrse. 261. Corymbe. 262. Épi, chaton, spadice, régime. 263. Ombelie. 264. Capitule. 265-266. — Inflorescences définies, dichotomes. Cymes. 268-270. — Inflorescences mixtes. 271-273. — Anomales. 274-276.

Floraison. Son ordre et ses lois. 277-280.

Bractées. 281-283. - Involucre, cupule, calicule, spathe. 284-287.

Fleur considérée en général. — Type général des fleurs. Verticilles dans les dicotylédonées. 289. — dans les monocotylédonées. 290.

Adhérences des parties de la fleur. 291-298. — Insertions. 299. — Nombre des parties de la fleur. 301. — Leur augmentation. 302. — par addition de plusieurs verticilles. 303-304. — par dédoublement. 305. — Réduction des parties de la fleur. 306-307. — Fleurs apétales. 308. — diclines, polygames, monoïques et dioïques. 309. — neutres, achlamydées ou nues. 340. — Combinaison de ces diverses modifications. 311-312. — Dégénérescences et transformations des parties de la fleur. 313. — Fleurs irrégulières. 314.

Préfloraison. 346. — imbriquée. 317. — valvaire, tordue. 318. — Comparaison des divers verticilles relativement au mode de préfloraison. 319. Caractères qu'on en tire. — Symétrie de la fleur. 320-321.

ENVELOPPES DE LA FLEUR. Périanthe. 322.

Calice. Ses parties, phylles ou *sépales*. 323-326. — Leur soudure à divers degrés ou calice monophylle. 327. — Calicule. 328. — Consistance des parties. 329. — Leur modification pour former l'aigrette. 330. — Durée. 331.

Corolle. Ses parties ou *pétales*. 332. — Parties du pétale, *onglet* et *limbe*. 333. — Leur couleur. 334-336. — Leurs formes diverses. 337. — Leur nombre et leur disposition. 338. — Noms donnés aux diverses formes de la fleur résultant de cette disposition dans les corolles polypétales. 339. — dans les monopétales. 340-341. — Appendices. 342. — Durée. 343.

Étamine. Ses parties. 344. — Filet. 345-347. — Anthère. Ses loges, leur nombre et leurs formes. 348. — Leurs rapports avec le filet et le connectif. 349-352. — Leur déhiscence. 353-354. — Leurs appendices. 355. — Leur avortement. 356. — Bapports des étamines avec les enveloppes de la fleur. 357. — entre elles. 358-359. — Leur longueur et leur direction. 360-364.

Structure de l'étamine, — du filet, 362, — de l'anthère, 363, — Développement de l'étamine, particulièrement de l'anthère et du pollen, 364.

Pollen, 365-367. — Fovilla, 368. — Enveloppes et formes extérieures du pollen. 369-376. — Tube pollinique, 377.

556

TABLE DES MATIÈRES.

Pistil. 378. → Développement des carpelles. 379. — Parties d'un carpelle. 380. — Structure de l'ovaire. 381. — du style, tissu conducteur. 382. — du stigmate. 383. — Action du pollen sur le stigmate. 384-385. — Disposition relative des carpelles. Leurs rapports avec le réceptacle de la fleur. 386. — Ceux du style avec l'ovaire. 387-388. — Soudure collatérale de plusieurs carpelles, et ses divers degrés. Ovaire multiloculaire. 389-391. — Placenta, placentaire et placentation. Divers modes de celle-ci. 392-396. — Soudures dans d'autres sens. 397. — Rapports du pistil avec les autres verticilles de la fleur. Ovaire adhérent et ovaire libre. 398. — Forme et surface de l'ovaire. 399.

Styles de l'ovaire multiloculaire et leurs divers degrés de soudure. 400.

Stigmate. 401.

Appendice. — L'ovaire considéré dans quelques cas comme formé aux dépens de l'axe. 402.

Nectaires, 403-407.

Fruit. 408. — Péricarpe. 409. — Ses diverses couches. 410-411. — Sutures. 413-414. — Valves. 415. — Modifications du fruit comparé au pistil. 416-419. — Classification des fruits. 421-422. — Fruits apocarpés, indéhiscents. 423. — déhiscents. 424. — Fruits syncarpés. 426-427. — indéhiscents. 428. — déhiscents. 429. — Divers modes de déhiscence. 430-435. — Fruits anthocarpés. 436. — Fruits agrégés. 437.

Maturation du fruit. 438.

Ovule et graine. Leur système nourricier. *Funicule* et hile, 439. — Leur position dans la loge. 440-444. — Développement et structure de l'ovule. *Nucelle* et ses enveloppes. *Micropyle* et chalaze. 445-449. — Différents rapports de ces deux points et du hile. 450-453. — Caroncules et arille. 454-455.

Fécondation. 456.

Graine. Changements de la graine comparée à l'ovule. 457. - Formation et origine du périsperme. 458-460. Sa structure. 464.

Embryon. Son développement. 462-464. — Ses parties. 464. — Embryon monocotylédoné. 465. — Embryon dicotylédoné. 466-468. — Dispositions relatives des deux cotylédons, l'un par rapport à l'autre. 469. — Par rapport à la radicule. 470. — Rapports divers de l'embryon avec le périsperme. 474-475. — avec les téguments de la graine. 476. — avec la loge. 477-478. — Micropyle, chalaze, hile, raphé. 479.

Téguments de la graine. 480.

Dissemination. 481-482.

Germination. 483-493.

ORGANES DE LA REPRODUCTION DANS LES VÉGÉTAUX ACOTYLÉDONÉS, 494.

Anthéridies et Anthérozoïdes. 495.

Archégones, Sporanges et spores. 496. — Leur développement. 497. — Formes diverses. Thèques. 498. — Mouvements de certaines spores ou zoospores. 499.

CLASSIFICATION ET FAMILLES.

Individus. 501. — Espèces. 502. — Variétés. 503. — Genres. 504-505. — Systèmes et méthodes. 506-507. — Système et nomenclature de **Linné**. 508-514. — Méthode naturelle. 512-513. — Familles. — Méthode d'**A**. **L**. de **Jussie**. Marche qu'il a suivie. 514. — Subordination des caractères. 515-516. — Ses classes. 517. — Ses familles. 518. — Travaux de ses successeurs. 519-520. — Plan et ordre de l'exposition des familles qui suit. 521-522. — Considérations d'après lesquelles cet ordre ou série a été fixé, ou sur les différents degrés d'organisation des plantes dans leur progression ascendante. 523-535. — Sur la nomenclature des familles. 536. — Sur leurs caractères. 537.

Détails sur un certain nombre de familles en particulier.

VÉGÉTAUX ACOTYLÉDONÉS, 539-543. — Algues, 544. — Champignons, 545 — Lichens, 546. — Mousses, 547. — Hépatiques, 548. — Fougères, 549. — Équisótacées, 550. — Lycopodiacées, Bhizocarpées, 550 bis.

TABLE DES MATIÈRES.

Végétaux Monocotylédonés. 554. - Aquatiques et à graine dépourvue de périsperme. 552. - A graine périspermée. 553. - A fleur apérianthée. 554. -- Cypéracées. 555. - Graminées. 556. - A fleur périanthée. 557. - Palmiers. 558. -Joncacées. 559. — Liliacées. 560. — Iridées. 561. — Orchidées. 562.

Végétaux dicotylédonés, 563. - Diclines, Gymnospermes. Cycadées. Conifères. 564-565. — Amentacées. 566. — Urticées. 567. — Euphorbiacées. 568. — Cucurbitacées. 569.

Végétaux dicotylédonés à fleurs hermaphrodites apétales. 570. - Aristolochiées, 571. - Laurinées, 572. - Polygonées, 573. - Nyctaginées, 574.

Végétaux dicotylédonés polypétales. 575. — A placentation centrale et à périsperme farineux entouré par l'embryon. - Caryophyllées. 576.

Hypogynes. 577. A placentation pariétale. 578.— Violariées. 579. — Crucifères. 580. — Papavéracées. 581. — A embryon renfermé dans un sac particulier. Nymphéacées. Nélumbonées. Cabombacées. 582. — A placentation axile. 583. — Renonculacées. 584. - Ampélidées. 585. - Malvacées, Bombacées, Byttnériacées, Sterculiacées, 586. — Ternstrœmiacées, 587. — Aurantiacées, 588.

Périgynes. 589. — Térébinthacées. 590. — Légumineuses. 591. — Rosacées. 592. - Ombellifères. 593.

Végétaux dicotylédonés monopétales. 594. — Hypogynes. 595. — A corolle régulière, à étamines ordinairement hypogynes, souvent indépendantes d'elles, multiples, doubles ou opposées. Primulacées. 596. - A étamines insérées sur la corolle, 597-599. - Labiées, 600. - Borraginées, 601. Solanées, 602. - Scrofularinées. 603. - Convolvulacées. 604. - Apocynées et Asclépiadées, 605. - Périgynes. Rubiacées, 606, Campanulacées, 607, - Composées, 608,

Tableaux synoptiques des familles, d'après leurs principaux caractères.

Végétaux acotylédoné <mark>s.</mark> — monocotylédonés	apérispermés, aquatiques	-Tableau IV, p 457
a	iclines	Tableau V, p 450 Tableau VI, p 405
p	alvnétalés à placentation cer	itrale et a ix entouré Tableau VII, j. 470
	hypogynes à pla parié	tale } Tableau VIII, p 472
	dans	l'embryon unsacpar- er P 4750
		centation Tableau X, p 476
	périgynes	
1 2	onopétalés. Hypogyn, à corol.	re. l.
		2Tableau X1V, F 499
		lière, Tableau XIII, p 498 *
	Périgynes	-Tableau XV. p 511

GEOGRAPHIE BOTANIQUE.

Notions préliminaires, 609-640, - Climats, Influence des latitudes, 644-642, de l'humidité, 643. - Aire des plantes et diversité de leur distribution. 614-615. -Végétation de la zone torride, 646-647. - Sa division en zones équatoriale et tropicale. 618. - Zones tempérées. 619. - Leur division en juxtatropicale. 620. - tempérée, chaude et froide, et sous-arctique, 621. - Zone polaire, 622. - Influence des hauteurs et succession des zones de la base au sommet des montagnes, 623. -

2

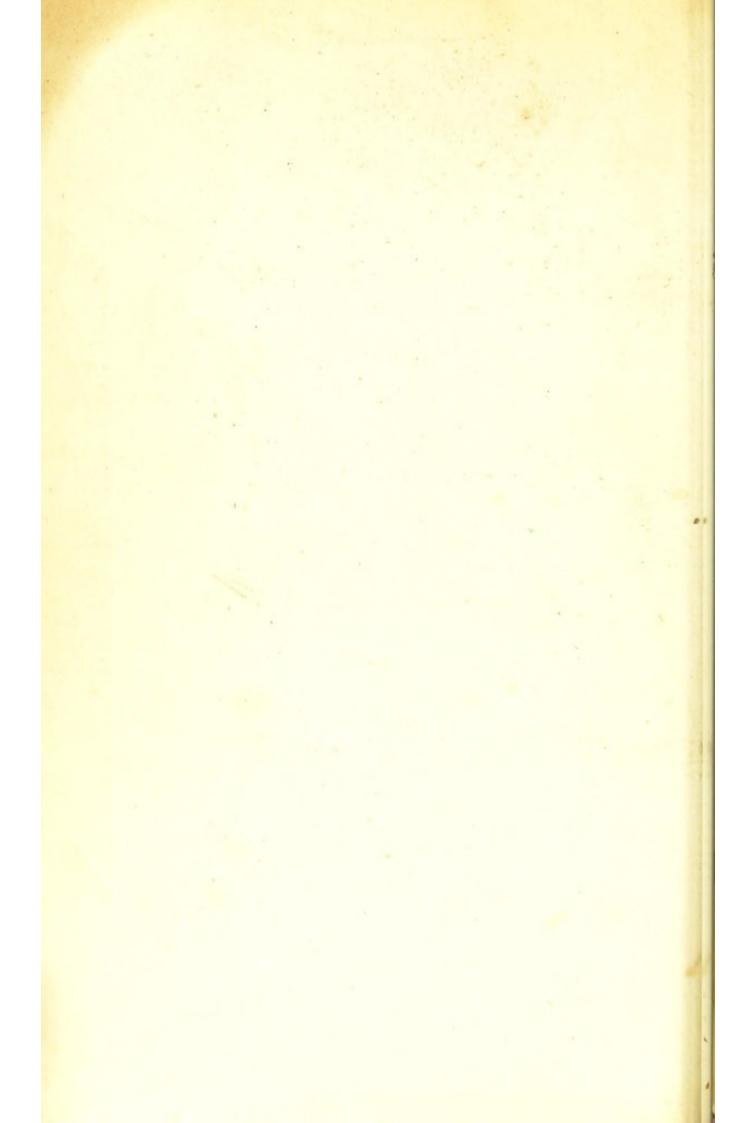
TABLE DES MATIÈRES.

Exemples pris dans l'Europe, d'après les hauteurs. 624-626. — d'après les latitudes. 627. — Végétation des îles. 629.

Pluralité des centres primitifs de végétation. 630. — Équivalents d'un centre à l'autre. 632. — Arithmétique botanique. 633-636. Plantes sociales. 637. — Influence du sol. 638. — Plantes d'eau salée. 639. — d'eau douce 640. — de marais, de tourbières, amphibies, inondées. 641. — Influence de la composition chimique du sol. 642. — Stations des plantes. 643. — Influence de l'homme. 644.

Distribution des principales plantes alimentaires cultivées. — des Céréales. 645. de la Pomme de terre. 646. — du Quinoa. 647. — du Sarrasin. 648. — du Châtaignier. 649. — de plusieurs arbres et racines des régions tropicales. 650-651. de la Vigne. 652.

FIN DE LA TABLE DES MATIÈRES.


LIBRARY

