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PREFACE TO THE FIRST EDITION.

In writing this text-book I have tried to keep in view
the following aims :—

To include all the facts of which a knowledge is expected
in elementary examinations.

To present a clear picture of the external physical
processes which cause the sensation of sound. As the
mathematical symbols for a physical process are easily
made a substitute for a clear conception of the process,
the mathematical symbols have been avoided as far as
possible.

To keep before the reader the dlqtmetlun between phrases
which deseribe actual processes or conditions and phrases
which, while they facilitate the prediction of real processes
and real phenomena, do not themselves stand for any
physical condition or event. Such phrases are used in
every department of physics, and are only mathematical
symbols in disguise. ’Where I have departed from, or
added to, the usual forms of explanation, it has usually
been with the intention of making this distinction clearer.

As the book is intended as a physical treatise, it is the
physical processes which cause the sensations of sound,
and not the sensations themselves, which form its subject-
matter. Only those peculiarities of the sensation are
considered which throw light on the external physical
processes which are taking place.

The following portions of the book may be taken as a
suitable course of first reading : —

Arts. 1, 2, 11-16, 21-24, 26-35, 60, 62-64, 77-79,
84-86, 90-92, 94-97, 99, 102, 104, 105.
E. C.

November, 1894,

NorteE o THE THIRD EDITION.

All known errors have been removed, and several

paragraphs have been re-written in the hnpe of distinctly
improving the book.
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CHAPTER L

VIBRATORY MOTION.

1. Cause of Sound.—In every case in which the sensation
of sound can be traced to an external cause, we find that the
cause 1s something in a state of vibration. This vibration is
often sufficiently great to be evident to the eye; not that the
movements can be actually watched, for they are always too
rapid for that, but they often produce the blurred indistinect-
ness of outline, which we know {from experience to result
from rapid movement. This is well seen in the string of a
harp, or along the edge of a large bell, when these are pro-
ducing loud sounds. When the vibration has become too
small to be visible, it can still be detected by touching the
string or bell with the tip of the finger, which is able to
perceive, as separate and successive, movements which follow
one another much too rapidly for the eye to distinguish. If
sound is still heard when even touch detects no vibration, we
find that a suspended pith ball, held so as to hang just in
contact with the sounding body, is driven away every time
it touches the surface, and we naturally attribute this to
blows or taps given to the ball by the sounding body, and
infer that there is still vibration.

The vibration of the string or bell cannot, of course, be
the immediate cause of the sensation of sound. It is a fact
so familiar as to seem an axiom that ‘“‘nothing acts except
where it 1s’’; the immediate cause of the sensation must be
something in contact with the sense organ, the ear. If we
stretch a thin membrane, such as goldbeater’s skin, on a ver-
tical ring of metal, so as to form a sort of tambourine, and
hang a pith ball just in contact with the membrane, it will
be found that the pith ball is driven away whenever the
arrangement, which is called an acoustic pendulum, is in any

8D. B



2 SOUND.,

place where sound can be heard; by special devices for
detecting the movement of the pith ball, it is found that this
is true even for the faintest audible sounds. We infer that
sound 1s only heard i1n places where a stretched membrane
would be in vibration.

The vibration of the membrane depends on some special
condition of the air surrounding it, for it the ¢ acoustic pen-
dulum ” is under the exhausted receiver of an air pump, it
does not vibrate even when loud sounds are audible every-
where round the receiver. And this condition of the air not
only requires for its production a vibrating body ; the vibrat-
ing body must be in contact with the air. Thus, if one of
the deep-toned clocks, which strike on a coiled wire, is sus-
pended by pieces of cotton inside the exhausted air-pump
receiver, no sound is heard when the hammer strikes the
wire, although the wire visibly vibrates. If the eclock,
instead of being suspended, stands on the air-pump plate, it
will be heard to strike, but in this case it can be shown that
the plate itself is vibrating, and the plate is in contact with
the air.

A vibrating body does not produce this condition in the
whole of the air at the same moment. If we stand near a
large clock bell, we cannot detect that there is any interval
between the fall of the hammer and the perception of the
sound, but if we are two hundred yards from the bell the
interval is very noticeable.

Though movements of the air cannot be seen or felt, like
those of solid bodies, it seems obvious that a condition of the
air which is produced by the vibrations of a body in contact
with it, which spreads from the air near the vibrating body
to that at a distance, and which enables the air to set in
vibration light membranes which expose a large surface to if,
must be a vibratory motion of the air itself, and this becomes
a certainty when we find that the velocity with which the
condition travels is exactly that with which it can be calcu-
lated that a vibratory movement would spread from one part
of the air to another.

This condition of vibratory movement spreads not only
through air, but through all known kinds of molecular
matter, and air is not in all cases the substance whose move-
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ment produces the sensation of sound. Thus persons whose
ears are so defective in structure that vibrating air does not
affect them, can often hear a watch held between their teeth,
and in this case it is through the bones, not through air, that
the vibration spreads.

The sensation of sound is never produced by vibrations of
the ether of space, nor does the vibratory condition which
causes sound ever spread from one material substance to
another through a region which contains ether only ; this has
been shown in the two air-pump experiments just described.
It is also proved by the fact that the tremendous explosions
which constantly take place on the sun are quite inaudible
on the earth.,

Though vibratory movements which are very slow, like that
of a pendulum, or extremely rapid, like those of the air in
some very small whistles, do not produce anysensation of sound,
yet, as such vibrations do not differ in their physical nature
from those which are audible, it is convenient to include all
in the same department of physics. The physical study of
sound then includes all kinds of vibration of molecular matter,
but not the vibrations of the ether.

2. Meaning of “ Vibration.”-—Any point is said to vibrate
when 1t goes through the same, or nearly the same, series of
movements at regular or nearly regular intervals. In popular
language the term is confined to motion backwards and
forwards along the same straight line, but the scientific use
of the term is not so limited, and a point moving in a circle
or a figure of 8 is also said to be vibrating. The time occn-
pled by the complete series of movements which constitute a
vibration, from the moment when the point passes any glven
position, to the moment when it passes the same position, in
the same direction, to go through the same_ “series _of move-
ments again, 1s u::alled the period of the ﬂhratmn,_and 18
usuaﬂj' t%enutedf by #._ _The number of such complete permds
in one second is called the Jrequeney of the vibration, and is

usually denoted by #». Evidently » is always equal to lt‘

When a point moves backwards and forwards in a straight
line, its vibrations are called rectilinear. In the case of
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rectilinear vibrations, most French, and some English, writers,
count the time taken in moving from one end of the line to
the other as the period of the vibration; we shall follow the
usual English custom, and consider it only half a period.

3. Curves of Displacement.—A point may vibrate in a
straight line 1n a great variety of ways;. for instance, it may
move rapidly in one direction and slowly in the other, like
the piston of a Cornish pumping-engine; or quickly at one
end of its path and slowly at the other, like an elastic ball
dropped on the ground and rebounding again and again; or
quickly in the middle of its path and slowly at the ends, like
a pendulum-bob, or a ball dancing up and down at the end of
a plece of elastic; and so on. These differences constitute
the character of a vibration. In all these cases, if we marked
down on paper the actual track of the vibrating body, that
track would be simply a straight line, and there would be
nothing to indicate the differences in the characters of
the movements. In order to show these differences graphi-
cally, the following device is often used: Suppose the body
is vibrating vertically; imagine that a sheet of paper is
drawn horizontally at a uniform rate from right to left
behind the body, and that the body leaves a trace on the
paper. The form of this trace will depend on the relative
velocities of the body at different times of its vibration.
Thus, a ball dancing up and down at the end of a piece of
elastic would leave a trace like Fig. 1, while a ball dropped

Fig. 1. Fig. 2.

on a level surface and rebounding, would mark out Fig. 2.
(In each of these cases successive vibrations are drawn
cxactly similar in extent and period; the gradual loss of
velocity due to imperfect elasticity is neglected.) Suppose in
this last instance the ball moved up and down a fixed line
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YZ, Fig. 3,% Z being the point of the level surface against
which it rebounded, and let the ball have left a trace, shown
by the dotted curve, on a sheet of paper drawn uniformly from
right to left behind it. 4 will be a point of the paper which
was behind Z when the ball was at Y, and & will be a point
on the paper which was behind Z when the ball was at ¥
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again after an interval ¢, which is the period of the vibration.
If we divide 4B into say six equal parts, and draw on the
paper verticals through the points of division, these verticals
are lines which coincided with Y2 at instants é, i—t, &e.
after the instant when A passed behind Z, and the distance
up any vertical from 45 to the curve is the distance that
the ball was from Z at the moment when that vertical co-
incided with ¥Z. So that, instead of supposing the curve
actually traced by the moving body, we may construct it
geometrically in this way. Mark off any length 4B on a
horizontal line, and divide it into, say, six equal parts. At
the first point of division put up a perpendicular called an
ordinate, equal in height to the distance of the moving body
from some fixed point, when it has been moving for 1 of its
period, and so on. The curve can then be drawn through
the ends of these ordinates. Or, if the movements of the

ST,

* In all curves in this book which reprcsent the condition of the
same body at different times, a point to the left of another represents
the condition at an earlier moment.
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point are inconveniently long or short for such a diagram,
the ordinates may be made longer or shorter than the actual
distances in any convenient ratio ; the curve will still indicate
the character, though no longer the actual extent, of
the vibratory movement. Such a curve, in which equal
distances along a horizontal line represent equal intervals of
time, while the distance of the curve from the line at each
point 1s proportional to the distance of the moving point from
a fixed one at the corresponding instant of time, is called a
curve of displacement. Practical methods of determining the

frequencics and displacement curves of points on vibrating
bodies will be described in Chapter XII.

4, Curve of Velocities.—Another way of distinguishing
between rectilinear vibrations of different characters, which,
though not quite so simple, is of much greater value in the
study of sound, is to draw a curve whose ordinate at each point
1s proportional to the velocity instead of the displacement of the
vibrating body at the moment represented by the position of
the ordinate along the horizontal line ; velocities in one direc-
tion being represented by heights above that line, velocities
in the opposite direction by distances below it.  As an instance,
we will take again the case of a ball falling and rebounding
vertically, whose curve of displacements was given in Fig. 2,
and construct its curve of wvelocities. Mark off along a

Fig. 4.

horizontal line any length, such as 4 B (Fig. 4), to represent
the time of a complete vibration, and let 4 represent the
moment when the ball is at its highest point and just about
to begin falling, while B represents the moment when it
has just rcached the highest point again. At the moment
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corresponding to 4 the ball has no velocity, and the length
of the ordinate to the curve at 4 is zero. After the lapse of
+ of a complete period the ball has a downward velocity,
represented by F'G, and this downward velocity increases
uniformly with the time, as shown by the straight portion
AD. Just before half the period is completed, at the
moment represented by A, the ball touches the ground, and
n the short time represented by 77/, the downward velocity
represented by HD is changed into the upward one repre-
sented by JZ. At the instant represented by J, the ball
ceases to touch the ground, and from this moment till the
end of the period the upward velocity uniformly diminishes,
as shown by the straight line £ 2.

The character of a rectilinear vibration is fully defined by
either its displacement curve or its velocity curve, and either
curve can be easily drawn when the other is given. The
advantage of the velocity curve will appear later. (Art. 15.)

5. Harmonic Vibration.—There is ome special kind of
rectilinear vibration which is very important in the study
of sound. If a point 4 (Fig. 6) moves to and fro along a
straight line CD in such a way that the line from 4 to a
point B, which is moving uniformly round a circle, remains
parallel to the same direction, then A is said to execute a
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Fig. 5. Fig. 6.
Harmonie vibration, It is sometimes called Pendular
motion, because any point of a pendulum moves very nearly
1n this manner when its swings are short, and sometimes
Simple vibration, for a reason explained in Chap. VI.
Suppose B is moving uniformly round the circle CGD,
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and that the point 4 is at the same time moving up and
down the straight line €D, so as always to be on the same
level as B2, 4 then vibrates hﬂ.rmuulmllv If we divide the
cirele mto say, sixteen equal parts, so that B takes equal
times in moving from & to &, I to @, and so on, we see
that 4 will ta];e equal times in moving ‘from O tuj; f tog,
&e., so that it will move slowly at the ends, quickly in the
middle of its path.

To draw the displacement curve for this movement, we
may mark off sixteen equal spaces along a horizontal line
117, to represent the equal intervals of time occupied by A
in passing from O to f, f to ¢, &e., and at these points draw
ordinates cqual (or, 1if preferred, proportione’;, to the
distances of O, f, g, &c., from some fixed point, which may
conveniently be thL middle point O of C'D. The distances
from O of the points below O must be considered as of
opposite sign to the distances of those above, and the
corresponding ordinates drawn in the opposite direction.
If we start at the moment when 4 is passing through O on
its way upwards, the curve drawn through the ends of the
ordinates will be like the one shown in Fig. 5. Such a
curve 1s called a harmonie or sine curve, the latter name
being given because, as can casily be shown, the ordinate at
cach point of ZIJ is proportional to the sine of the angle
which OB makes with OZF at the instant represented by
that point.

Any quantity is said to vary harmonically with the time
when it changes so as to be at every instant proportional to
the distance of a harmonically vibrating point, such as A4,
from some fixed point in CD ; so that we may have harmonie
velocities, pressures, or electric currents. In any case where
a quantity varies harmonically, if we put up ordinates at
equal distances along a line 7./, and make the ordinates pro-
portional to the value of the quantity at equal intervals of
time, the'curve through the ends of the ordinates is a har-
monic or sine curve.

We have scen that, in general, the velocity curve of a
vibrating point is quite different to its displacement curve.
But if a point vibrates harmonically, we can easily show (see
Appendix A) that its velocity also varies harmonically, so
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that its velocity curve is also a sine curve. Its velocity at
any moment is, however, not proportional to its displacement
at that moment, but to the displacement which it will have a
quarter of a period afterwards. So the curve of velocities is
a quarter of a period behind the curve of displacement, as
shown in Fig. 7.
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Fig. 1.

‘When a point vibrates harmonically, it may be shown (see
Appendix A)that its acceleration is always towards, and pro-
portional to its displacement from, its mean position. So
that if the force on a material particle, when the particle is
displaced from its position of equilibrium, is at every stage of
displacement dirccted towards the position of equilibrium,
and proportional to the amount of displacement, the particle
will vibrate harmonically. We shall see later that, even
when a vibration is not harmonic in character, 1t may be con-
veniently treated as the resultant of two or more harmonie
vibrations. It is to this fact that the importance of harmonic
vibrations is due.

The distance from the middle_point to either end of a har-
monic vibration is called the amplitude of the vibration ; it is
cvidently one-Tourth of the total distance traversed by the
moving point in one complete vibration.

When the force on a particle 1s proportional to its distance
from a given point, the time of vibration about that point is
independent of the amplitude. (See Appendix A.) So that
when, for instance, a steel rod is fixed in a vice, bent aside, and
let go, the period of its vibration does not alter as the vibration
itself dies away. Such vibrations are called #sochronous.
Isochronous vibrations nced nmot be harmonie, but harmonie
vibrations are practically always isochronous.



10 SOUND.

6. Phase—The phase of a harmonically vibratin

usually means the fraction of a whole _period of its ?1brafgg1|{

which has elapsed since it last passed its mean position_in

the direction which we are counting as_positive. Some

writers, however, count the time which has elapsed since it
started from the pnmtwe end of its vibration. Upwards and
to the right are usually counted the positive directions for
vertical and horizontal vibrations respectively. If two points,
both vibrating harmonically in the same period, are in the
same phase at one instant, they are, of course, always in the
same phase, and if they are not, the difference of phase
between them may be conveniently defined by stating the
difference between the times at which they cross their mean
positions in the positive direction as a fraction of the whole
period of either; it may also be stated as the corresponding
angle of revolution of the uniformly revolving point, either
in degrees or in radian measure. Thus, in Fig. 5, if we
suppose f and g to be positions at the same instant of two
points vibrating harmonically in the same period, and that
they are moving in the same direction, their phase-difference

w

may be called -116' e 221°, as we prefer.

When the two vibrations are of different periods, their
phases change at different rates, and there is no constant
phase-difference between them, and there will be instants at
which the two vibrations are in the same phase. The
¢ phase-difference " is, in this case, usually taken to mean
the difference between the times at which the points cross
their mean positions in the positive direction, expressed as a
fraction of the greatest common measure of their periods,
but other notations are also used.

7. Composition of Harmonic Vibrations.—A point may
execute two or more harmonic vibrations at the same time.
This does not mean, as it appears to, that a point 4 can be
moving, at any one instant, with respect to a given point of
reference such as the eaxth with more than one velocity or
in more than onc dlrm:tmn A conventional mﬂanmg 18
attached to the phrase. Harmonic motion, like all motion,
is, of course, relative; thus the piston of the engine of a
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steamer which travels up and down the cvlinder in such a
way that its distance from the end varies harmonically, is
vibrating harmonically with respect to the cylinder, though
if the ship is rolling at the same time the movements of the
piston with respect to the earth may be very complex. If,
then, a point 4 is moving harmonically with respect to a
body B, while B is moving harmonically with respect to the
earth, the movement of 4 with respect to the earth is said to
be compounded, or the resultant, or the sum, of the two
harmonie motions, or, more shortly, 4 is said to be executing
both movements at once. This is not very accurate, but it
1s not misleading, since there is no other sense in which a
point can be moving in two ways at once.

‘When a point is executing two rectilinear harmonic vibra-
tions at once, 1ts motion need not be either rectilinear or
harmonie ; if the periods are incommensurable, it 1s not even
a vibration. Of this we shall have many instances.

8. Lissajous’ Figures.—An important case occurs when the
two harmonic motions are at right angles to one another;
for instance, let 4 vibrate horizontally with respect to a
point B, while £ vibrates vertically with respect to the
paper. If the periods of the two vibrations are incommen-
surable, the motion of 4 will never exactly repeat itself; but
if m horizontal vibrations occur in exactly the same time as
n vertical ones, then at the end of this period the movements
of 4, both horizontal and vertical, will exactly repeat
themselves, and the point will describe the same closed curve
over and over again. The form of this curve will depend
upon, and may therefore be used to determine, the amplitudes,
relative periods, and phase-difference of the two vibrations.

When these are given, the curve may easily be constructed by a
method which will be best understood from an example. Suppose
we require to know what curve will be traced by a point which
vibrates vertically and horizontally at the same time, the periods
of the vertical and horizontal vibration being as 4 : 3, and their
amplitudes 1 and § inch respectively, and the two vibrations
being in the same phase. Imagine that there is a sheet of glass
lying on the page, with a dot on it which we will call 4, and
a horizontal line through A. If a point B moves harmonically right
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and left along this line, with an amplitude of } inch on each side
of A4, and at the same time the plate of glass moves harmonically up
and down the page with an amplitude of 1 inch, then B is said to
be vibrating both vertically and horizontally with respect to the
paper, and the line on the paper over which B passes is the curve
required. Suppose that L (Fig. 8) is the point on the paper which is
under the dot A at the moment when A and B are both at the

! :

middle points of their vibrations,
and therefore coincide. MN isthe
line over which 4 moves up and
down, and if we draw a circle D of
1 inch radius on the paper with
J the centre on the same level as L,
£ and divide this circle into 16 equal
o parts, and draw horizontal lines
735 to MIT through the points of di-
Ll o vision, then LP is the distance A
Fig. 8. will move in < of its period, and

so on. If we draw on the glass

another cirele B of # inch radius, with its centre directly below A,
and divide it into 12 equal parts, and draw vertical lines such as
RS on the glass through the points of division, then, as B starts
moving to the right from 4 on the glass at the same moment that

=]
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A starts upwards from I, B will reach the line RS on the glass at
the same moment that Ais above the point P on the paper, for ; of
A’s period is the same as {; of B's. B is therefore at this moment
above the point T on the paper, for B is always on the same level as
A; and LT is the line on the paper over which B has passed.
Similarly, B crosses each of the rectangles diagonally, so that it
moves over a curve on the paper like the one shown in the figure.

In Fig. 8 the complete lines are supposed drawn on the paper,
and to remain stationary, while the system of dotted lines is sup-
posed drawn on the glass and to be moving up and down with it.

If there is a phase-difference, say §, between the vibrations, and
the horizontal vibration is in advance, then (since } of the G.C.M.
of the periods represented by 3 and 4 is § of the shorter or 4% of
the longer) at the moment when A is over L, B will have arrived
at a vertical line on the glass passing through Z, to a point § of
the circumference of E from N, and will be where thig line cuts
LK. If we divide E into 12 parts, beginning at Z, and number
these Z,, Zy, &c., then B will pass through the point on PJ, which is
exactly above Z;, the point on @H which is exactly above Z;, and so
on, and a different curve will be traversed.

The circles might have been divided into any other numbers of
parts in the ratio 4 : 3, instead of into 16 and 12.

These curves are known as Lissajous’ figures. Their forms,
for some of the most important ratios and phase-differences,
are shown in Fig. 9, where the numbers at the left hand
show the ratio of the period of the horizontal to that of the
vertical vibration. As the figures stand on the page, they
correspond to the phase-differences from 0 to } as indicated
above them ; if the page is inverted, the same figures will
correspond to the phase-differences from 3§ to 1, as shown by
the fractions which will then be above them.

If » horizontal vibrations take very nearly but not exactly
the same time as m vertical ones, the curve traced will be
very nearly one corresponding to the ratio m : », but when
m vertical vibrations are finished, rather more or less than
exactly # horizontal ones have been performed, and the
phase-difference is not exactly the same as at starting. A
slightly different curve, corresponding to a different phase-
relation, is therefore traced in the next cycle, and as the
phase-difference alters during each repetition of the figure,
a series of curves corresponding ‘to gradually increasing or
diminishing phase-differences are traced in turn,
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If the horizontal and vertical vibrations are nearly e qual
in period and are at first in the same phase, the curve traﬂed
in successive vibrations will gradually change, assuming in
turn the forms of the first line of Fig. 9 from left to right

YRR
23>3%
BR008
HH 3B

Fig. 9.

and back again, and returning to 1ts original form when one
movement has been repeated once more than the other. This
gives a very accurate method of determining the difference
between the frequencies of two vibrations. The practieal
details are given in Chapter XII.

9. Methods of producing Lissajous’ Figures.—Though
the connection with the subject is rather remote, it is usual
in text-books on sound to mention several mechanical and
optical devices for showing such curves as we have just
described. A simple device 18 Wheatstone's Kaleidophone,
a good form of which consists of a straight strip of steel,
such as a piece of clock spring, twisted at the middle, so
that the planes of the two halves are at right angles
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(Fig. 10). If the lower end of the rod is fixed in a vice,
the upper end can vibrate either parallel to the jaws, in

which case the lower part remains straight, and the time
of vibration depends on the length and stiffness of the upper
half; or at right angles to the jaws, and in this case only
the lower part bends, and the time of vibration depends on
the length of that part.

The vibrations of a spring fixed at one end soon become
harmonic, as will be explained in Chapter XI., and by
adjusting the position of the rod in the vice the periods of
the two vibrations may be made to have any desired ratio. If
the ratio is made a simple one, and the top of the rod dis-
placed obliquely to the plane of the jaws, the extremity will
describe the curve corresponding to the ratio. If a globule
of mercury is attached by a little grease to the tip of the
rod to form a brilliant point, the whole curve traced will be
visible at once, by persistence of vision, if the vibrations of
the rod are rapid enough.

If two tuning-forks are fixed so that the vibrations
of one take place in a vertical, and those of the other
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in a horizontal, plane (Fig. 11), and if a small mirror is fixea
either on the side or the end of one prong of each fork, so
that, when the prong vibrates, the surface of the mirror is
tilted through a corresponding angle, and if a convergent
beam of light falls on one of the mirrors, is reflected from it
to the other mirror, and from that to a screen, then, if only
the first fork vibrates, the spot of light on the screen will
vibrate harmonically up and down ; if only the second fork
vibrates, the spot will vibrate harmoniecally right and left;
if both vibrate together, the movement of the spot will be
the resultant of these two vibrations, which, if their periods

have a simple ratio, will be the corresponding Lissajous’
figure. It was in this way that Lissajous produced the
figures.

Instead of projecting the spot on a screen, we may watch,
with the eye or a telescope, the 1mage of a brlght point
formed by successive reflection in both mirrors; in this case
the figure will be visible even when the vibrations of the
forks are very minute.,

In these two methods, the track described by the spot is
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énly visible by persistence of vision, and the vibrations must
therefore be rapid. Blackburn’s Pendulum 1is a contrivance
for leaving a permanent trace, so that the vibrations may be
much slower. A funnel, 7; filled with sand (Fig. 12), is
suspended from one of three strings, knotted together at O,

Fig. 12.

and the other two strings are fastened to two points, 4 and B,
on the same level. If the funnel is set swinging in the
vertical plane which contains 4 and B, only the part CF
swings, and the period is that of a pendulum of length CF;
if the movement of 7 is perpendicular to the plane through
A B, the whole system of strings swings together about the
line 4B, in the period of a pendulum of length DF. By
adjusting the length of CF, any desired ratio can be given to
these periods, and if this ratio i1s made a simple one, and F'is
then displaced obliquely to the plane of 4B, it will deseribe
one of Lissajous’ figures. If the sand runs out slowly, it will
leave a sand-trace of the figure on a table placed below,
Tisley’ s Harmonograph is a much better device. It consists of
two heavy pendulums, which swing in planes at right angles
to each other, and whose rods extend a few inches above
their centres of suspension. In one form, shown in Fig. 13,
two horizontal strips of wood, each of which rests at one end
sD. a
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on the pointed top of one of the pendulum rods, are hinged
together at the otlLer by a glass pen, which passes through

Fig. 13.

both strips. Either pendulum, swinging without the other,
would give the pen a very nearly harmonie rectilinear motion ;
when they swing together, the pen traces one of Lissajous’
figures.

In all these methods, the periods of vibration in the two
directions are independent, and, therefore, they can never be
adjusted quite exactly to any simple ratio; the curve de-
scribed, therefore, always changes slowly. It is easy, by
means of rods connected to toothed-wheels working in one
another, to give to a pencil harmonic motions at right angles,
which have exactly a simple ratio, and so to trace always
the same curve, but it is not usual to deseribe such methods
in works on Sound.

If the figure compounded of two vibrations at right angles
is given, the ratio of the periods of the vibrations can at once
be found by inspection; it is the ratio of the number of times
any vertical line is cut by the curve to the number of times
any horizontal line is cut by the curve.

10. Harmonic Vibrations in the same line.—Another im-
portant case is that in which the same point executes at the
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same time two or more harmonic vibrations in the same line.
For instance, suppose that B vibrates harmonically, with
respect to the paper, along XY, while 4 vibrates harmoni-
cally, with respect to B, in the same direction. The motion
of 4, with respect to the paper, will be rectilinear, and 1its
character can therefore only be shown by some device such
as a displacement curve. If O is the middle point of the
vibration of B (or any other point fixed with respect to the
paper), then the distances of B from O at the successive
instants represented by 1, 2, &c., will be equal to the
ordinates at those points of some harmonic curve, such as
CD (Fig. 15), the length of a double bend of which repre-
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sents the period of B’s vibration. And the distances of
A from B at the same instants will be equal to the ordinates
of another harmonic curve, such as FG'H, the length of a
complete double undulation of which represents the period
of 4’s vibration. As the distance of 4 from O is always
the algebraic sum of the distance of B from O, and that
of 4 from B, the displacement curve of 4’s vibration
with respect to the paper will be found by drawing at
each point ordinates equal to the algebraic sum of the ordi-
nates to CDE and FGH at the same point, and drawing the
curve through the ends of these ordinates. The dotted
curve in Fig. 15 shows the displacement curve of the vibra-
tion compounded of the two harmonic vibrations whose dis-
placement curves are CDE and FGII.

It is evident at once that this is not a harmonie curve, so
that a point which executes two harmonic vibrations at once
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may be vibrating non-harmonically. The importance of this
fact will appear in Chapter V.

A spot of light may be made to execute on a screen a
vibration which is the resultant of two or more harmonie
vibrations in the same direction, by successively reflecting a
beam of light from mirrors carried by tuning-forks in exactly
the same way as described for Lissajous’ figures, except that
all the forks must vibrate so as to displace the spot in the
same direction, e.g., all in vertical planes. The vibrating
spot will, however, simply appear as a straight line of light;
there will be nothing to show the character of its movement.
The displacement curve corresponding to the vibration may
be demonstrated by placing between the last fork and the
screen a mirror rotating continuously on a vertical axis; the
beam, being reflected from this after reflection by all the
forks, will sweep round and rcund the room, and, vibrating
vertically while it fraverses the screen horizontally, will
trace on the screen the displacement curve of its vibration,
so rapidly that the whole curve will be visible at once.

There are many mechanical methods of tracing the dis-
placement curves of such resultant non-harmonic vibrations,
but it is not usual to describe them in elementary text-

books.



CHAPTER II,

———

\ PROGRESSIVE UNDULATION.,

11. Transmission of Condensations and Rarefactions
through Air—Imagine a flat plate, held straight in front of
you, vertically, with its edge towards you, and then suppose
it rather suddenly displaced a very short distance towards
your left. As the plate moves, the layer of air immediately
to the left of it will, of course, be driven to the left with a
velocity equal to that of the plate, and the air in that layer
will also be compressed, the increase in pressure and in density
being, in the early stages of the movement, proportional to
the velocity of the plate (Appendix D). But though the
velocity and the additional density of this layer of air both
depend on the velocity with which the plate is displaced,
these conditions are rapidly transferred from the layer of air
in contact with the plate to a layer a little further off, and
from that to the mext, and so on, with a velocity which is
practically independent of the wvelocity of the plate, and
depends only on the properties of the air. In just the same
way, a layer of air immediately to the right of the plate will
move with it to the left, and at the same time its pressure
and density will be diminished; and these conditions of
motion to the left, reduced pressure, and reduced density,
are transferred from that layer to other layers of air more
and more distant from the plate with the same velocity as
the compressed condition on the other side.

The simplest way of explaining this process is to suppose
the air divided, by purely imaginary surfaces, into small
blocks, or particles, in contact with one another; these
particles being, not molecules, but portions of air each
containing many millions of molecules at least. Such a
particle of air behaves, as regards compression, very much
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like an elastic solid ; like a sponge, or ball of wool, to use
Boyle’s illustration ; and the air of a room transmits displace-
mcnts and condensations very much as a mass of balls of wool
in contact might be imagined to do. The way in which a
serics of elastic bodies transmits a condensed or compressed
condition to a distance, while the bodies themselves are only
very slightly displaced, is well illustrated by a row of railway
carriages, standing with their buffers in contact, when one of
the carriages is pushed. 'We will call the carriages in order,
from right to left, 4, B, C, &c. (Fig. 16, line 1), and suppose
that the engine sudden]v moves a s‘hnrt distance, say a foot,
towards 4 (2). The buffer-springs of A are driven in, so
that the carriage (if we measure to the ends of the buﬁers) is
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Fig. 16.

shortened, or, as we may call it, condensed, and the force due
to the compressed springs makes 4 move with increasing
velocity towards 5. When it reaches the half-way point
between the engine and B, the pressures at the two ends
of 4 will be equal (3), but, owing to its inertia, it will
not stop at that point, but will continue to move to
the left till the increasing pressure between it and B
brings it to rest. This will happen when A4 has moved
just one foot, so that the distance between it and the
engine is the same as at first (4). Meanwhile, B has
begun to move to the left, and exactly repeats the move-
ments of 4, and when it has been displaced one foot in its
turn, it stops at its original distance from A (5), and the
bufters between A4 and B cease to extend. The whole of 4
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is then at rest, including the buffers, and it has its original
length. C repcats the movements of B, just as B repeated
those of 4, and so a condition of condensation and movement
is transferred from carriage to carriage all along the train.*

In this process several points are noteworthy. First, that
though a condition, that of compression or condensation of
the carriages, travelled continuously along the train from
right to left, yet each carriage moved only a short distance,
and then stopped, so that it is a condition, and not any mate.
rial substance, which travelled along the train. Secondly,
not only this transfer of a condition, but the existence of the
condition, depends on the fact that each carriage repeats the
movement of one next it a litile laler ; 1if they all moved
together there would be no condensed condition anywhere,
and the direction in which the condition travels is from the
earlier-moving to the later-moving carriages. Third, the
condensed condition is to be found always, and only, in car-
riages which are moving; when any carriage comes com-
pletely to rest (buffers included) it is exactly its original
length. Fourth, the condition may travel much faster than
the carriages themselves move even at their quickest; in our
example, the condensed condition is transferred from one
carriage to another in the time in which the carriage itsclf
has moved only a foot. In all these particulars the trans-
mission of a condensation through air or any elastic substance
resembles that through a row of railway carriages.

We shall find, as we proceed, that many different condi-
tions can be transferred besides that of condensation, and the
four statements just given are true of all of them. In the
case described, we may notice also that the movement of the
carriages themselves was in the same direction as the move-
ment of the condition, but this is only tree when it is a
condition of condensation which is transferred.

If instead of a momentary impulse the engine gives
to A a push lasting for an appreciable time, several carriages
will have begun to move before 4 comes to rest, and as the

¥ In this description the movement of the carriages has been
slightly modified to make it illustrate more exactly the movements
of the air. The carriages would not move just as described.
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condition travels, there will always be several carriages
moving at once, But it will still be true that each carriage
moves exactly like the one next nearer the engine, but
arrives at each stage of its movement a little later ; and also
that each carriage is compressed as long as 1t is moving, and
recovers its original length as it comes to rest. The move-
ment may be considered as due to a succession of momentary
impulses given to 4 one after the other, and each passed on
in turn.

In the case of a row of carriages, each communicates its
movement to one of equal mass, and the movement of an
elastic substance does not correspond exactly to that of the
carriages except when the portions which are successively in
motion are equal. This is not the case when a plate is
waved in free air, so it will be simpler first to consider a
column of air confined in a tube. Let 4B, Fig. 17, be a
long tube full of air, and D a piston. We may imagine the

; H

Fig. 17.

air in 4B divided by imaginary plancs, transverse to the
tube, into equal dises or layers, and we will suppose these
planes to move with the air, if it moves, so that the air
between the same two planes is always the same air. If D
is displaced a short distance to the left, the first of these .
layers, that next to 0, becomes compressed and moves to the
left, and then the next, and so on, just like the railway
carriages. As with the carriages, the movement may have
extended to a number of layers before D comes to rest, so
that a number are moving at once; but, in any case, each
moves exactly like the one next nearer to 0, but begins to
move, and reaches each stage of its movement, a little later.
As with the carriages, also, every layer is condensed while it
is moving, and comes to rest as it is restored to its original
length. The only differences to be noticed (and these are
only apparent) are, first, that the air-discs become condensed
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all through, instead of shortening only at the ends like the
carriages, and, secondly, that, however thin we make our
imaginary layers, each will always be a little later in its
movements than the one next nearer D, so that no finite
length of the air-column begins to move absolutely at the
same instant, as a whole railway carriage appears to do.

If we suppose the carriages 4, 5, C, &e. all held compressed
between an engine to the right of 4 and the end of a siding
to the left of Z, then, if the engine moved one foot away from
A, allowing the buffers at that end of 4 to expand, 4 would
be, for the moment, longer than the other carriages, or rarefied,
as we may call it, and would begin to move towards the
engine. As this would diminish the force on the end of B
next 4, B would follow and become rarefied, while 4
would stop when it reached its original distance from the
engine, and would have been compressed to its original
length again when B stopped after moving one foot in its
turn. In this way a condition of rarefaction passes from .4
to Z, while each carriage in turn moves a foot in the direction
from Z towards A. In every travelling rarcfaction the move-
ment of the matter is in the opposite direction to the movement
of the rarefied condition.

Air is always in a compressed condition, for there is mno
limit to the extent to which it expands if pressure is removed :
and particles of air move like compressed railway carriages.
If the piston D was displaced to the right, first the air in the
layer just to the left of D, and then that in layer after layer
further to the left, would become rarefied and move to the
right, each in turn coming to rest at the same moment at
which it was restored to its original thickness. The air to
the right of 0 is of course condensed by the movement of 2
to the right, and a condensation travels away on that side,
but for the present we consider only the air to the left of D.

Whether we move D to the right or to the left, then, the
movement 1s repeated, first, by the air in contact with D,
and then, layer after layer, by the air further and further off,
su that the condition of being in motion travels away from
D in either case. When D moves towards the air on the
side we are considering, it condenses the air, and each layer
moves in turn away from D, and is condensed while it is
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moving; when D moves away from the air on that side, it
rarefies the air, and cach layer (beginning with the one close
to D) moves in turn towards D, and is rarefied while it is
moving,

If we move D backwards and forwards, in any manner,
exactly the same movement is performed by each layer, but
later and later the further the layer is from D, so that D and
layers near it may have begun to move one way, while
more distant layers are still moving the other. All the layers
which are moving away from D are condensed, and all those
which are moving towards D are rarefied. /

12. Progressive Undulation.—This process, in which a
condensed or rarefied condition is transmitted through the
carriages of a train, or air in a tube, is an instance of what
is called progressive undulation, which may be defined as the
continuous transference in the same direction of a condition
of altered relative position of adjacent particles by similar
movements performed successively by consecutive particles.
In the instances we have so far considered, whether the con-
dition transmitted is one of condensation or rarefaction, the
movements of the particles are in the line along which the
condition is transferred (though they may be in the opposite
direction along that line). When this is the case, the pro-
gressive undulation is called longitudinal. In longitudinal
progressive undulation the condition that is transferred is
always one of altered distance between successive particles, #.e.
of condensation or rarefaction ; it is practically the only kind
which occurs in air and gases. In Chapter XI. we shall
treat of other kinds of progressive undulation in which the
condition transmitted is an altered relative deirection instead
of an altered relative distance.

Since the sensation of sound is usually caused by the
arrival through the air of condensations and rarefactions
transmitted by the process of longitudinal progressive undu-
lation, this process is often conveniently called sound ;
travelling condensations and rarefactions are called sound
waves, and the velocity with which such waves are trans-
mitted in any substance is called the velocity of sound in the
substance. The term pulse is often used to denote cither a
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condensation or a rarcfaction, and avoids the frequent repe-
tition of both terms.

13. Undulation and Vibration.—It is important to
distinguish clearly between undulation and vibration. When
the same point repeats the same movements over and over
again, the point is vibrating. When different parts of the
same substance perform a similar movement one after the
other, the substance is undulating. If it happens that the
movement which the parts perform in turn is a vibratory
movement, then the substance is both vibrating and undu-
lating. This is what is usually happemng when sound passes
through the air. But there is no necessary connection
between the two; a substance may undulate without vibrat-
ing, like the train after a push, or it may vibrate without
undulating if all the parts of it move at the same time, like
a pendulum.

14. Relation between Velocity and Condensation.—It can
be shown (Appendix D) that in any longitudinal progressive
undulation there i1s a constant ratio, depending only on the
nature and condition of the substance conveying the undula-
tion, between the velocities with which different parts are
moving, and the amounts by which the densities of those
parts differ from the average density. If we call the differ-
- ence from the average density the *‘ condensation” or ¢ rare-
faction,”* the velocity at any point is proportional to the
condensation or rarefaction there.

This is, of course, true close to D as at any other point,
and the velocity of the air close to D is the velocity of D ;
the degree of condensation which exists close to D (and
therefore the excess of pressure on the side towards which D
18 moving) is always proportional to the velocity with which
D 18 moving, and does not depend at all on how D has pre-
viously moved.

¥ Strictly, cnndensatmn ” means not the difference between the
actual and average densities, but the ratio of this difference to the
average density. But these are propurtmnal to one another, so that
the velocity with which the air is moving is proportional to the

‘“ condensation” in either sense. Rarefaction may be conveniently
included in the term condensation, and considered merely as the
negative variety,
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15. Wave-form.—Suppose that when D has been moving,
in any manner, for some time, we draw a horizontal line,
0X, Fig. 18 (1), along the tube, and from it draw ordinates
at different points, proportional to the velocitics of the air at
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Fig. 18.

those points, at some given moment, drawing the ordinates
above OX to represent velocity in the direction in which
the waves are moving, and below for velocity in the op-
posite direction. Then the same ordinates are also pro-
portional to the degrees of condensation or rarefaction at the
same points, ordinates above OX representing condensation.
So that the curve in Fig. 18 (1) denotes the same condition
which is represented by shading in (2), and by the relative
heights of the letters €' and £ (Condensation and Rarefaction)
in (3). In(3) the relative velocities are represented by the
lengths of the arrows over the letters; this 1s unneeessary in
the case of a progressive undulation, as the velocities are
proportional to the condensation or rarefaction, but we shall
find 1t useful in other ca-es.

A curve-like that in Fig. 18(1), whose ordinates, at equi-
distant points along a horizontal line, are proportional to the
velocitics with which the air is moving at a number of
equidistant points is said to show the wave-form of the
undulation, the wave-form meaning the way in which
the velocity of the air varies from one part to another of
the wave. It will, of course, be understood that waves of
condensation and rarefaction in air have not anything
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which can be termed form in the ordinary sense, as waves of
the sea have ; the term wave-form is not to be taken literally.

In air, condensations and rarefactions are transmitted at
about 1100 feet per second, If the wave-form shown in
Fig. 18 (1) represents the velocities of the air at different
points of the tube at a moment denoted by 7, then the
ordinate which represents the velocity at the point 1
foot to the right of any point, /” for instance, represents
the velocity which will exist at the point Z at a moment
1% second later than 7' (written, the moment 7'+ +%%),
and so on. The same curve which represents the simul-
taneous velocities of the air at different points in a wave
which is travelling from right to left is therefore also a
velocity curve in which the velocities of the air at any one
point, at successive instants, are represented by thesuccessive
ordinates read from left to right. The same length along
OX, which represents one foot when the curve is taken as
representing the simultaneous velocities at different points
in the air, represents ++v second when the curve is taken
as representing the successive velocities of the air at the
same point. Successive ordinates of the part of the curve
to the left of any point represent the successive velocities
which have, in turn, existed at that point. As the velocity
of the air close to D is the same as that of D itself, the
wave-form of the air in the tube is a velocity curve of the
movements already performed by D.

The difference between the actual pressure at a point in
the air and the average pressure (a difference which we shall
call the pressure-difference) is proportional in all waves to the
condensation or rarefaction, and therefore, in travelling
waves, to the wvelocity of the wundulating substance
(Art. 14). The successive ordinates of the wave-form,
read from left to right, may therefore be taken as repre-
senting the successive pressure-differences, as well as the
successive velocities, which exist at the same point at
successive instants. This is the most useful of the many
meanings of the wave-form, as will appear in Chapter VI. _,

16. Wave-length.—If Dwibrates, or repeatsthe samemove-
mentsatregularintervals, thesame seriesof conditionswill be



510] SOUND.

produced at 1ts surface over and over again, and travel along the
tube. Suppose, for instance, that it repeats its whole move-
ment in ;5 second, then the air, 1 foot, 2 feet, &e., from the
surface of J) is in the same condition as at the surface, and if
we divide the tube into lengths of 1 foot, the air in any of
these sections, at any instant, is moving in the same way as
the air in any other section. One of these sections is called
a complete wave, and its length is called a wave-length. It is
cvident that the wave-length is the distance which a given
condition travels before D comes round to the same stage of
its vibration again; in other words, it is the velocity of the
undulation multiplied by the period of the vibration. If 7
denotes the ve&u.-ity of sound and A the wave-length
h:Vt?Dr;\.=l. l'
n

17. Harmonic Waves.—If D vibrates harmonically, the
wave-form of the undulation in the tube will be a harmonic
curve. Such waves are called harmoniec waves. Two com-
plete harmonic waves travelling, like those in Fig. 18, from
right to left, are represented in Fig. 19, the heights of
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the letters C'and R being proportional to the condensation
or rarefaction. The corresponding wave-form 1s shown
below.

The way in which a condition of condensation or rarefaction
can move always in the same direction while the air itself
moves backwards and forwards, is illustrated by successive
rows, 1, 2, &ec., in Fig. 20. In this figure the successive rows
represent successive stages of a movement in which each of
the vertical lines vibrates harmonically to right and left of a
fixed point, from which it never departs more than 1 of an
inch, @ vibrating about a point under 4, and so on; but each
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linz of a row, in order from right toleft, is a little behind the
line to the right of it in its movement, and the result is, as
seen, that though the mean positions of the lines are equi-
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distant, the lines themselves are at any one time closer in
some places and further apait in others, and that these con-
ditions are found further to the left at each successive stage
of the motion. The construction for the harmonic motion of
a few linesis given, and it will be seen that in any one row,
each line 1s %, of its period behind the one to the right of it,
and that in each row all the movements are % of a period
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further advanced than in the previcus row. The thirteenth
row 1s the same as the first, every line having returned to its
original position.

If any line is traced (by the dotted lines) from one row
to another, i1t will be seen that it is when it is moving to the
left (with the conditions) that it is nearest to its neighbours,
and when it is moving fastest to the right that it is in the
most rarefied region.

If we imagine an equal mass of air confined between each
line and the next, and moving with the lines so that the same
air always remains between the same two lines as they move,
but alters in density as the distance between the lines changes,
this will correspond to the actual movement of the air.
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Fig. 21.

18. Crova’s Disc.—A good and simple device for illus-
trating the movements of the air or other substance when a
harmonic progressive undulation is passing through it, is
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Crova’s disc (Fig. 21); this the student can easily construct,
and should do so if he finds any difficulty in realizing the
motion. |

In the middle of a circle of cardboard, A, 8 inches in diameter,
draw a small circle of § inch radius, and divide its circumference into
twelve equal parts. With each of these points of division in turn as
centre, describe a circle in ink, making the radius of the first § inch,
of the second % inch, and so on, increasing } inch each time. When
you get to the last of the centres go on with the one you used first,
and so round the circle again, making twenty or more circles in all.
In another piece of card cut a slit, EF, 8 inches long and § inch wide,
and make a pinhole at G in a line with EF and 1 inch from E. Push
a pin exactly through the centre of the dise, and put its point
throngh & ; then, holding D in one hand, rotate the disc behind D by
means of the pin.

The portions of the circles visible through the slit are
practically straight lines, close in some places, and wider
apart in others, like those in Fig. 21 ; as the dise rotates
these condensations and rarefactions will be seen to travel
continuously along A7, but if the dise is rotated slowly and
the motion of any one of the lines carefully followed, it will
be seen that it simply moves harmonically to the right and
left, and never departs more than ! inch from its mean
position. We can also easily verify the fact that where the
lines are near together they are moving in the same direction
as the condensations and rarefactions, but not so fast, but
that where the lines are far apart theqr;r are moving in the
opposite direction, and that the quickest motion of the lines
is to be found where there is the greatest degree of conden-
sation and rarefaction.

19. Spiral Wire.—The same motion can be shown
by means of a spiral wire.
Get about 20 yards of thick
copper wire (14 gauge 1is
suitable) and wind it in a
close spiral round a tube
or cylinder 2} to 3 inches
in diameter. Stretch this
spiral till it is about 2 yards
long, so that the turns
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are about an inch apart. Suspend the highest point of
each turn by two threads not less than 2 feet long (the
longer the better) from two horizontal wooden bars about
18 inches apart, as shown in Fig. 21 4. This is Wein-
hold’s Wave Machine. If a slight push is given to one end
of the spiral, in the direction of the length of the spiral,
some of the turns at that end will be pressed closer together,
and this condition will be transferred from them to the
next turns, and so on, a condition of unusual closeness of
turns travelling continuously to the other end of the spiral,
while each turn of wire, successively, moves a little way
and then stops. The condition of wunusual closeness
leaves one turn as it includes another, so that it
always includes the same number of turns; it does not
extend so as to include more than when it was originally
" produced.

20. Some difficulty is sometimes found in understanding
how it can be true that the air in a condensation is always
moving away from the source, and yet true that the air
through which sound is passing moves alternately towards
and from the source, and never departs more than a very
small distance from its mean position. To understand
this it must be remembered that the movement of the air
is usually extremely slow compared with that of the con-
densed and rarefied conditions. Consider a cubic centimetre
of air which we will call 4 quite at the left-hand end of the
tube in Fig. 19; it is at rest, and neither condensed nor
rarvefied. But a condensed condition is advancing to the
left, and when it reaches 4, 4 will diminish in volume and
at the same time begin to move to the left. But the air
moves no faster than £ moved, while the condensed con-
dition rushes on with the speed of a rifle ball, so that
before A4 has moved far to the left, the condensed condition
has passed it, and the following rarefied condition has got
to it. .4 now expands to more than its original volume,
and begins to move slowly to the right, but has only got
back to its starting point when the next condensation comes
up, and so on. A is always moving the same way as the
waves when it 1s in a condensed mnd1tmn but it is only in
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a condensed condition a little while at a time, and when it
is rarefied it moves the other way.

Another form of the difficulty is to uu&erstand how the
air is a rarvefaction and that in the following condensation
can always be moving towards each other (see Fig. 19).
As before, the explanation is that the air in the same con-
densation is not always the same air. The air that is now
rarefied will an instant hence be condensed, and the air
which is now condensed will then be rarefied, so that the
parts which are now approaching each other will then be
receding, so that no great change in the distance of two
portions of the air occurs.

21. Energy Transmitted by Progressive Undulation.—
We have already pointed out that in progressive undulation
there is no continuous transference of any thing material, but
it would perhaps hardly be correct to say that nothing except
a conditiontravels from one place to another. Usually, pro-
gressiveundulation is a process by which energy istransferred
from one place to another, and it is now becoming quite
usual to speak of energy as a thing, rather than a condition.
When a succession of particles perform similar movements
in turn, it is nearly always because the movement of each
causes the movement of the next, and one body can cause
the movement of another only by transferring to that other
some of its own energy.

In the case of air, through which waves of condensation
and rarefaction are travelling, we can easily see that the
wave as a whole—the condensed and rarefied portions taken
together—contains more energy than an equal volume of
undisturbed air. For both the air in the rarefied portion
and that in the condensed portion is moving relatively to the
earth, and work could be done by stopping this motion.
When this energy was exhausted, and all the air at rest, we
could still get work done by alInwing the air in the condensed
portionstoexpand through a suitable engine into the rarefied
portions;* this work would be done by using part of the heat
of the compressed portions. The air would then be in its

* It 18 not, of course, meant that this is a practicable experlmbnt
that it is an imaginable one proves the existence of energy in thﬂ
wave.
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ordinary condition, so that it must, while undulating, have
contained more than the usual amount of energy. It is
usual to distinguish the part of this energy which depends
on the motvion of the air relatively to the earth as its kinetie
energy, and the part which depends on the differences of
pressure in different parts as the potential energy. If we
make this distiuction, it can be shown that half the energy
of a complete wave is kinetic and half potential. The
kinetic encrgy is greatest in the most condensed and most
rarefied portions of the wave; the regions where there is
average density are also at rest with respect to the earth, and
do not differ in any way from undisturbed air, so that there
1s no extra energy in them.

We shall see later that this is rather an artificial way of
looking at the energy of a sound-wave in air, since the
whole energy is really kinetic energy of the movements
of the molecules. But it is convenient for the present to
regard the air simply as an elastic substance, and to divide
the extra energy due to its undulation into kinetic and
yotential portions, as we are obliged to do in the case of
solids and liquids where we do not know the real nature of
the ¢“ potential ” part of the energy.

It will be seen that though sound is a special mode of
transmission of energy, it is not a distinct kind of energy, for
part of the energy of a sound-wave is ordinary kinetic energy
of moving air, and the other part is heat.

22. Sound Waves in Free Air. The statement at the
end of Art. 19, that in a tube any movement of one layer
of air is exactly repeated by those more distant from the
source, is only roughly true if applied to considerable
distances, for owing to friction between the air and the
sides of the tube, and still more owing to exchanges of
heat between the air and the sides of the tube, the energy
of a wave travelling along a tube is rather rapidly
converted into heat, and left behind in that form in the
air through which the wave has passed and in the walls of
the tube, and so the movements of the air became less and
less as we get further from the source. 'This will be more
fully explained in the next chapter. If a body vibrates,
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not in a tube but in free air, no transformation of the
energy of the waves after they have once started can
occur from these causes, and though the energy 1s still
ultimately converted into heat, the transformation 1is
almost incomparably slower. In some other respects,

Fig. 22,

also, waves produced in free air differ from those sent
along a tube. Suppose that D, Fig. 22, is, as before, a
piston vibrating at the end of a tube,* but this time we
will consider the free air to the right of D. TFirst we
must notice that though any movement of a piston would

—

* A moving plate surrounded on all sides by free air would produce
condensation on one side and rarefaction on the other, at the same
time, and these would spread through the same air, and the resulting
effect depends on principles to be explained in Chapter IV. The
plate is, therefore, described as moving at the end of a tube so that only
the effect of the condensations and rarefactions produced on one side of
it need be considered.
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send a wave travelling along a tube, waves are not
produced in free air, to any appreciable extent, unless the
vibrating surface is large, or the vibrations of high
frequency. If neither of these conditions is fulfilled, the
air in front of the moving surface simply slips away,
parallel to the surface, till it gets to the edges, instead of
becoming compressed. If a string is stretched between
two practically immovable blocks of stone, and the middle
of it pulled to one side and let go, no sound is heard,
though the vibration is seen to be 111“(‘ but if one end of
the 5t1111g is fastened to a panel of a d{mr a lound sound
comes from the panel when the string vibrates s, although
the movements of the Iusum] cannot be thf(‘Gt{‘{l by the eye.
The air in front of the moving string simply slips round it
to the back, without being lplnmml:]v condensed, but the
air in front of the moving panel has not time to get to the
edge of the panel while the panel moves one way, and must
become condensed and rarefied alternately. Iven if the
surface is large enough, or its frequency Inn]t enough, to
produce waves, it d{wh nut communicate m‘m*ly as Inurh
energy to the air in each wvibration as it would in a tube.
Secondly, when the condensations and rarefactions sueceed
cach other rapidly enough to be transmitted, they spread
through the air in all directions, so that when the piston has
finished a few vibrations, the air near it will be in the con-
dition represented in Fig. 22, alternate spherical shells of air
being condensed while the others are rar efied. As in the
tube wherever the air is condensed it is moving away from
the ];}lfatt}n, and whereveritis rarefied it is moving in towards
the piston; the movement of the air is everyw here at right
angles to the shells. Theair in each shell keeps transferring
its condition to the air outside it, so that the condensed
and rarefied conditions alternately spread continuously
outwards from shell to shell of air, like the cireular wave-
crests produced whenwe throw a stone into a pond. Thirdly,
as the movement and energy of one shell of air are always
communicated to a larger one, the extent of the movement
and the degree of condensation and rarefaction become less
and less as we go outwards from the piston, or the wave-form
becomes flatter. Fourthly, in the immediate neighbourhood
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of the piston verycomplex actions occur, with the result that
the movement of the air a little distance from the piston
may differ considerably in character, aswell as in amplitude,
from the previous movements of the air close to the piston,
so that the wave-form changes as the wave spreads, and at a
little distance is not the same as the velocity-curve of the
movement of the piston. One instance of this change of
character is that, although a single movement of a piston
in a tube, to left or right, not followed by an opposite
movement, would send a condensed or a rarefied condition,
not followed by its opposite, along the tube, a single
movement of a surface in the open air produces a com-
plete wave, consisting of a condensed and a rarvefied shell.
In fact we can easily show that the two principles of
conservation of emergy and conservation of momentum
require that a wave, when expanded to many times its
original radius, shall consist of two opposite layers, the
excess of air in one of which is nearly equal to the defect
of air in the other; more and more nearly equal the
larger the wave. So that a source may produce nothing but
condensations, like a harmonium or a siren (Aris. 89, 102),
and yet the waves which arrive at a point a little way off
will be alternately condensed and rarefied. But though a
single movement of the source produces a complete wave,
a double movement of the source only produces one com-
plete wave, not two, at least in ordinary cases. If the
movement of the piston is harmonic and very small, the
movements in all the surrounding air arve harmonie,
differing only in amplitude, and not in character, from those
of the source. This is an example of a universal prin-
ciple, that if any physical quantity varies harmonically,
and if its variations are small enough, then all variations
which depend on it are also harmonie.

All the above statements about the waves produced by
a piston like 2 are roughly true about the waves pro-
duced by any surface vibrating in free air, such as a
spring or tuning-fork. The slight modifications necessary
are explained in Chapter IV,

Though the movement of the air near a vibrating body
such as a spring is a vibration similar to that of the spring
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itself, the causesof these similar movementsare very different.
When we bend a spring and let it go, it returns of itself to
its original position, passes it, returns again, and so on, each
movement being a consequence of its previous movement;
it vibrates in a particular way, and witha particular period.
But if we displace a part of the air, either in an infinitely
long tube, orinopen space, 1t shows not the slightest tendency
to return to its original position. The air, therefore, cannot
be made to vlbmtc like a spring, by 511111}1} dlbpluung a part
of it and then leaving it free ; each movement that it makes
is the result, not of its own previous movements, but of a
previous movement of sometliing else, transmitted to it
through the air between. The air 1.1111111:&'-3 only as a pump-
handle vibr ates; it requires a separate push from outside
for every movement. It therefore vibrates just as easily in
one way as another, and in one period as another; in faet,
it simply copies the movementsof some othervibrating body.

‘We shall see in Chap. X. that in a tube of finite length the
air may vibrate merely through having been displaced,
without any other vibrating body to cause each movement.

At different distances from the piston the air will be in
different stages of vibration, but it will be possible to draw
round D continuous surfaueg, in each of which all the airis
moving in the same way at the same moment; these will be,
approximately, spherical surfaces, having D as their centre.
Such a continuous surface, at every point of which the air
is in the same stage of its vibration at the same moment,
is called a wave. In the case of the waves produced
by a piston in a tube, the waves were planes transverse
to the tube : in the open air, at a distance from the source,
they are generally roughly spherical, as far as they are
complete. The form of these waves must not be confused
with, or called, the wave-form, a term which, as explained
above, is used in an entirely different sense.

We. may now define a wave-length rather more accurately
as the distance, measured at right angles to the waves,
between two consecutive wave-fronts in which the air
is at the same stagce of its movement. If the move-
ment is harmonie, the wave-length is the distance between
two surfaces in which the air is in the same phase,
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23. Law of Inverse Squares.—If, through any point in the
alr, we suppose an 1manmar5’ EHI‘fﬂ.{ZE drawn at right angles to
the line along which the air is vibrating, then the ﬂmaunt of
energy which passes, in each second, thruugh a square centi-
metre of this surface round the puint, 1s called the nfensity
of sound at that point. It is not usual to measure it in abso-
Jute units, but only to compare the intcnsitics of the same

Tig. 23.

sound at different places. If sound is travelling outwards
in all directions from a source P, the intensities at two
points §,, S, must he nnrersely as the squares of their dis-
tances from P. For, suppose imaginary spherical surfaces drawn
through 8§, S, (F]g. 23). Then, if 2, R, are the distances o

Sy, S; from P, the areas of these spherical surfaces are as &

to B;. And the sound energy which starts from 2 in (say) o
second, takes a second in passing §,8,8,;, and also a sceond
in passing S, S, 8,. Therefore, the amounts of energy which
pass in a second through one square centimetre of S,S,S, and
8,8,8, respectively must be inversely as the arcas of these

surfaces, that is, as 1 isto }-

yin R*
In this proof we have ﬂ,ssumed that all the sound-cnergy
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which starts from P passes 88,8, and S,8,S, unchanged
in form. This is nearly true; the energy of each shell is
passed on to the next almost unaltered in total amount for
a very long distance, and though a very little remains
behind (in the form of heat) in every part of the air through
which the wave has passed, yet, many miles from the
source, by far the greater part of it is still travelling on.
It is because of the diminution of the intensity of the
vibration, due to the dis‘mibution of the energy over
larger and larger shells of air, rather than because it has
been converted into heat, that we cease, at a great distance,
to be able to detect the vibration ; the whole of the energy
1s, however, untimately converted into heat.

24. Intensity and Amplitude.—At any two points in the
air, where the air is vibrating with the same frequency and
in the same manner, but with different amplitudes, the
intensities are proportional to the squares of the ampli-
tudes. It is not possible to prove this by elementary
methods, but it is connected with the fact that the average
velocities of the air at the two places are proportional to
these amplitudes (since at each place the air moves four
times its amplitude in each vibration, and the number of
vibrations per second is the same), and that the average
kinetic energies of equal masses, moving similarly, are
proportional to the squares of their average velocities.

Since when sound spreads in all directions the intensity
varies inversely as the square of the distance from the
source, and since, whether the sound spreads in all directions
or not, the intensity is directly proportional to the square
of the amplitude, it follows that when sound spreads in all
directions the amplitude of vibration of the air must vary
inversely as the distance from the source, so that at 100
yards from a bell the air is moving backwards and for-
wards half as far as at 50 yards.

The circumstances which determine the intensity of
sound at a point in the air can be stated in various ways,
which sometimes are not obviously equivalent. For
instance, we may state the intensity at a point 2 entirely
in terms of what is going on at that point. It would be a
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complete statement to say that it depended on the
frequency and amplitude of the vibration of the air at the
point P, and the density of that air, for if these were
given we could calculate the intensity at P without any
other data. So that if we give these as the circumstances
on which the intensity depends, we must not include any
others, such as the distance from the source. But we
could say, with equal correctness, that the intensity at the
point P depends on the frequency and amplitude of the
vibrating source, on the density of the air in which the
source vibrates and the dimensions of the vibrating surface
in contact with it, on the distance of the point 2 from the
source, and on whether the sound has spread equally in
all directions or not. This again would be a complete
statement, and we cannot include in it any other conditions,
such as those which were included in the other statement,
without making it incorrect. There are many other ways
in which we could make a complete statement different
from either of these, the essential point being that the
statement must include sufficient data to calculate the
intensity, and no more. '

The illustrations given to explain the nature of pro-
gressive undulation, being chosen because of the obvious
movement of the undulating substance, are liable to suggest
an exaggerated idea of the extent of the movements of air
conveying sound. There is no theoretical limit either to
the largeness or smallness of the movements which can be
passed on through the air, all are passed on in the same
way, and (unless very lmge} with practically the same
velocity. But the backward and forward swingings of the
air by which ordinary conversation is transmitted to us are
of very small extent, usually less than a thousandth of an
inch, and often less than a millionth. Thus, though the
movement of the air is reversed hundreds or thousands of
times per second, its velocity, even at its quickest moments,
may be very small; the sound of a whistle is quite audible
at a place where the air at it quickest moment is not 1noving
as fast as 2 inches an hour. The velocity with which the
conditions travel may thus be millions of times as great as
the velocity of the movements of the matter which transmits
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them. The difference in density between the mndeus&tit}?
and the rarefactions is correspondingly small.

25. Doppler’s Principle.—The velocity with which a pulse
travels relatively to the air, when it has once been produced,
18 the same whether the vibrating body which produced 1t
was at rest in the air or IMOVINg through it, and the same
whether the air is moving relatively to the earth or not.
Suppose that a source of bUllIld say a whistle, produces »
condensations per second, and let @ bo the velr}{,lty with
which 1t 1s moving, relatively to the air, towards an
observer. (It 1t 1s not moving directly towards the
observer, ¢ is to mean the component, in the direction
towards the observer, of the velocity, so that if it is
moving directly away from the observer, « will be the
speed with a negative sign.) Let / centimetres per second
be the velocity with which the waves travel relatively to
the air. When the whistle begins to sound, a condensa-
tion starts away from it in every direction with a wveloeity
V'; at the end of 1/n second, when the whistle is just pro-
ducing the mnext condensation, the first has travelled
V/n centimetres while the whistle has travelled a/n towards
the observer, and the part of the first which travels
towards the observer has therefore a start of (V' — a)/n
centimetres in front of the part of the second which
travels the same way. This is therefore the length of the
waves travelling towards the observer.

Let & be the velocity with which the observer is moving
relatively to the air, away from the source, reckoned in
the same way as . Then a total length V" — & of succes-
sive waves will pass the observer in “each second ; as the
length of each wave is(/"— a)/n, the numbm of waves which
pass the observer per second is (V' — b) = {(V — a)[n} or

n(V — 0)/(V — a).

From this expression we easily deduce :—

(1) If the source and the observer move the same way
with the same velocity, the frequency of the waves
received 1s the same as that of the waves sent out.

(2) If the source and observer approach (z.e. if a > )
the frequency of the waves received is greater than that
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of the waves sent out, and wvice versd, but in this case the
frequency of arrival depends on the velocities of both the
source and observer relatively to the air and not simply
on the rate of approach a — . The change of frequency
produced by a certain velocity of the source relatively to
the air is not the same as that produced by an equal
velocity of the observer relatively to the air.
If a and b are very small compared with 7

(V=8)/(V—a)=1+(a—b)/V

nearly, so that the frequency of arrival is in this case
nearly the same whether it is the source or the observer
which is moving relatively to the air. The reason of the
alteration of frequency is, however, quite different in the
two cases ; inone the length of the waves is altered, while
in the other nothing is altered but the rate at which they
pass the observer.

(3) The ratio of the frequencies of the waves received
by an observer before and after passing a source at rest
relatively to the air, is the same as the ratio before and
after a source, moving with the same speed, passes an
observer at mat though the actual frequencies are
different.

We shall see (Art. 60) that the frequency with which
waves arrive at the ear determines the pitch of the sound
heard, greater frequency corresponding to higher pitch,
and that the ratio of two frequencies determines the
musical interval between the sounds (Art. 66). So that
if our distance from a source of sound is increasing, we
Lear a sound of lower pitch, and vice versd. The changein
the pitch of the sound heard when a whistling locomotive,
which has been approaching us, passes and begins to
recede, 1s a familiar instance of this. From (3) we see
that the musical interval between the notes heard is the
same for the same speed, whether it is the whistle or the
observer that is moving relatively to the air, though the
notes themselves are different.

The altered pitch due to movement of the observer
relatively to the air begins and ends with the movement,
but that due to movement of the source does not begin till
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the waves, which left the source as its motion began, have
reached the observer.

Movement of the air relatively to the earth makes no
difference to the formulae given above provided that « and &
are measured relatively to the air, but it we wish to state the
frequency of arrival of the waves in terms of the velocities
of source and observer relatively to the earth, the formulae
are different. Let o/, ¥, w, be the velocities of source,
observer, and wind, relatively to the earth, in the direction
from source to observer (or their components in this
direction), while ¥ is the velocity of sound relatively to the
air. Then a'—w, &'— w, are the velocities relatively to the
air, and must be substituted for ¢ and & Hence

V—0b'+ -w)
EETIEE

From this we see that wind, in the same direction as the
sound, lessens the change of pitch due to a given speed of
source or observer, and vice versa. It comes to the same
thing as a change in the speed of the sound.

The fact that the frequency of the arrival of waves at a
point is affected by movements of the point, or of the
source of the waves, is called Doppler’s Principle.

26. Sound Waves in Liquids and Solids.—So far we have
spoken only of sound waves travelling in air. DBut conden-
sations and rarefactions are transmitted through liquids and
solids in exactly the same way, by exactly similar movements.
It one end of a rod of wood ormetal is pushed or pulled, suc-
cessive layers move, and are compressed or rarified, in turn,
just like the layers of air in a tube, and if any 1}01111} of a
solid block 1is nmde to vibrate, condensation and rarefaction
spread through it in widening spheres, astheydothroughair.

It must not be supposed that this handing-on of condensa-
tions and rarefactions by successive movements of different
portions is a process specially connected with audible sound;
it is the only way in which a pull or a push can be trans-
mitted at all. When a signalman moves a distant signal by
pulling at a handle, which is connected with the signal by a
rod or wire, the movement of the signal appears to besimul-
taneous with the movement of the lever, but this is only

frequency of arrival ==n (
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because of the great velocity with which pulsestraveliniron,
not because any pull or push can be transmitted in a different
way or with a different velocity from sound. When the man
begins to move the lever, he produces an elongation or rare-
faction of a piece of the wire at his end, and this state of
rarefaction travels along the wire at the rate of about three
miles a second, and it is only when the rarefaction reaches
the other end of the wire that the signal begins to move.

26a. Experimental Verification.—From the nature of
the case, there is no absolutely direct evidence that the air
in sound-waves moves, and alters in density, in the way
described in this chapter. That there is no continuous
movement of the air may be inferred from the fact that
the sound from any source passes through a cloud of
smoke without causing any visible movement of the smoke.
That the air does move backwards and forwards seems
proved by the fact that a light membrane in it moves
backwards and forwards. That the movement of the air is
in a line passing through the source, seems proved by the
fact that an acoustic pendulum is very little or not at all
affected when it is edgewise to the source. That the
passage of sound waves through the air is accompanied by
changes of pressure at any point is shown by the fact that
if a hole, cut in one side of a tube, has a thin membrane
stretched over it, against which a pith-ball hangs, sound
waves sent along the tube make the pith-ball dance; a
mere movement of the air along the tube, without any
change of pressure, could not produce a movement of the
membrane, since the air moves parallel to the membrane.
There is no experiment to show that changes of density
occur, but it is impossible to alter the pressure of a gas
suddenly without changing its density, and the changes of
pressure must be sudden, since they make the membrane
vibrate hundreds of times a second. Also it can be shown
(by acoustic pendulums in a long tube) that the air near
the source moves sooner than that at a distance, and it
is obvious that if the air in one part of a tube moves in the
direction of the length of the tube, while the air in another
part does not, the air between must change in density.



CHAPTER III.

b

VELOCITY OF SOUND.

27. Velocity of a Pulse along a Rod.—If we take a long
uniform rod 445 of any elastic substance, and apply at one
end 4 a force of f dynamical units, directed towards B, a
portion of the rod close to 4-shortens, till it exerts a force f
on the next portion, and so the compressed condition extends
along the rod, each original unit length of the rod shortening
by a certain amount /. If m is the mass of a piece of the
rod of unit length, it can be shown (Appendix D) that the
velocity with w hich the compressed condition extends along

the rod is \/ L This 1s true whatever the circumstances

Im

under which the compression takes place, and whether the
“rod” 1is solid or fluid, but only if f is measured in the
dynamieal units based on the units of length, mass, and time
employed in the other measurements. Thus, if / and m are
in centimetres and grammes, f must be in dynes, and the
velocity will be in centimetres per second; or, if / and m are
in feet and pounds, f must be in poundals.

For moderate forces, { is proportional to f, so that \/ Ef
m

is the same whether the force is smaller or larger, if not very
large. Also, if we double the sectional area of the rod, we
require twice the force to produce the same change in the
length of a Eenthetrm but a centimetre has twice the mass,

so that \/ “_ 18 the same for a thick rod as for a thin one of

the same material. We do not need, therefore, to know
either the force applied or the diameter of the rod to calculate
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the velocity with which the condensed condition extends
along the rod, for it would be the same for any diameter and
any force. If we suppose the rod of unit sectional area, f is
aumelically equal to the pressure® applied, and if a rod of

unit area is free to expand sideways, % is equal to the

quantity called Young’s Modulus for the substance of the
rod, which 1s the ratio of a change of stress applied to the
ends of a rod of that substance to the change it produces in
each unit of length of the rod, when the rod is free to
expand sideways. Also, if the rod is of unit sectional area,
each unit of length of it contains unit volume, and m is
numerically equal to the density of the substance. So that
for such a rod, and therefore for any red,

8 Young’s Modulus
velocity = \/ - i :

If the force at 4 is a pull instead of a push, the velocity

1s still \/ 18 where ! is the #nerease in length of each

centimetre produced by the force f. If f is small, this
increase is equal to the decrease produced by an equal puah
so that the stretched or rarefied condition extends at the same
rate as the condensed condition.

The change of length produced by a given change of stress
is nearly the same whatever the actual stress may be, and
the density of a solid is only slightly altered by any ordinary
stress;, The velocity of a condensation or rarefaction along a
rod or wire, therefore, depends hardly at all on whether the
rod or wire is stretched or not.

28. Velocity in a Fluid in a Tube—If instead of a solid
rod we had a fluid column contained in a tube, and applied a
“force of f dynes to a piston at one end, the condensation

* In this book, “ pressure” always means stress, i.e., the ratio
of the force to the area on which it is exerted. Some writers call
the force itself the “ pressure,” and the ratio of force to area the
“ intensity of pressure.”

BD. L
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wotld extend along the tube with a velocity \/ % just ad

before. If our tube were of unit sectional area, we should
be applying an increase of pressure f not only to the end,
but to every side, of the condensed portion of the fiuid, and
{ would be not only the shortening in ecach unit length,
but also the diminution in each unit of volume of the fluid

}(‘

column. o =~ would be the ratio of a change of hydrostatic

[
pressure to the change produced by it in each unit volume of
a fluid ; a quantity which is called the volume elastieity® of
the fluid. The velocity ¥ with which a condensed or
rarefied condition spreads along a liquid or gaseous column is

/volume elasticity

therefore Aoty

29, The two ways of measuring Elasticity.—The volume
elasticity of a fluid depends on the conditions under which
the change of volume takes place. If we could have a cubic
centimetre of air confined under a piston C, Fig. 24, in a tube
AP of unit sectional area, both piston and tube being of very
low thermal conductivity, and applied to the piston a very
small downward force of f dynes, the piston would instantly
descend, diminishing the volume of the air by an amount .

— — o dlm e e ——

* Strictly, Young’s Modulus is defined not as the ratio of change
of stress to change produced in unit length, but as the limit which
this ratio approaches when the change of stress is indefinitely
diminished ; and, similarly, the volume elasticity is the limit of the
ratio of change of hydrostatic pressure to change produced in each
tnit of volume, when the change of pressure is indefinitely

diminished. So that the formulm ¥ =/ oungs Modulus o4
density

V = \/ volume E}ﬂﬂticit}r are only absolutely true for indefi-
density

nitely small changes of stress. But, even for much larger changes
of stress than those which oceur in sound waves, the ratio of change
of stress to change of length or volume is practically the same as for
indefinitely small changes of stress.
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At the same time a quantity of heat equal to the work done
in the descent of the piston would be produced in the com-
pressed air, which would raise its temperature. As the air
cooled to its original temperature, the piston would descend

further, till the volume of the air had been diminished
altogether by a volume 2’. Similarly, if we applied an
upward pull fto the piston, it would instantly rise till the
volume of the air under it had been increased by #, and the
temperature of this air would fall ; then, as the air returned
to its original temperature, the piston would rise still further

till the total increase of volume was z. The ratio ';};Z is
called the adiabatic clasticity (x being mcasured before any

heat has entered or left the air), and % is called the zsothermal

elasticity. As 2’ 1s greater than z, the isothermal elasticity
is smaller than the adiabatic.

The experiment as described above is impracticable, as the
gas loses or gains heat much too quickly to allow of deter-
mining #, but when a pulse travels along a tube, the air in
each centimetre of the tube changes from its original to its
altered volume in less than ;1. of a second, which would
be too short a time for it to lose or gain much heat, even if air
were a good conductor and radiator instead of an extremely
bad one, so that the change of each centimetre length of the
air column is the same as the instantaneous movement which
would be produced by the sams force applied to the piston of
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our imaginary experiment. The quantity v in such a

case 1s therefore equal to v .1(11c1b¢t1[: clestic 1t}T. The same
density

is truc for a liquid.

It will be seen that the quantity \/ gf— 1s greater in the

i
case either of a rarefaction or a condensation than it would
be if no change of temperature took place. This is some-
times expressed by saying that the rise of temperature pro-
duced by condensation and the fall of temperature produced
by rarefaction both increase the velocity of the sound. That
is not a good way of putting it, because it suggests that if
these changes of temperature did not occur the sound would

travel with the smaller velocity \/ Hﬂth”mﬂl EIM

| density
reality it would not travel at all. Indeed, we shall see later
that the change of temperature and the movement of the air
are different ways of expressing the same fact. Newton, who
was the first to calculate the velocity of sound from dynamical
principles, did not know of the changes of tempcrature, but
supposed that the velocity would be equal to

\/IFEEHL]IH al el htll lf"f‘
tlumtj :

it was Laplace who first pointed out that the adiabatic elas-
ticity should be used.

Similarly, in the formula 7 = \/ for the velocity of

pulses along a rod, 7 shonld strictly be the change in unit
length snstantly produced by a force f, before any heat has
left or entered, and thercfore

e \/Ym]nﬂ - Mm]ulus
dunsﬂ:w

is not exactly truc unless the adiabatic value of Young’s
Modulus is taken. But in solids and liquids the difference
between adiabatic and isothermal changes is very small.

J
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30. Indirect Formul® for Velocity.—There is no simple
method of measuring the adiabatic elasticity dircetly, but it
can be shown theoretically that it bears a constant ratio to
the isothermal elasticity, and that this ratio is the same as
that of the specific heat at constant pressure to the specific
heat at constant volume (Zext-book of Heat, 42), a ratio
usually denoted by y. So

e \/ y % 1sothermal elasticity

= density :
This is true for all substances, and as the isothermal elasticity
can be directly measured, and y can be calculated, by thermo-
dynamiec methods, from the specific heat at constant pressure
and the coefficient of expansion, this formula can be used to
find V. For most gases a simpler formula is very nearly
true. Ifany gas exactly obeyed Boyle’s law, it can be shown
that its 1sothermal elasticity would be equal to its pressure,
and this is very nearly the case with all gases which are far
from their condensing temperatures. So that for such gases

= ?P_nearl.
v \/1} y

The value of y depenis on the number of atoms in a molecule
of the gas: for one-atom molecules, like mercury gas, it is
1:66; for two-atom molecules, like oxygen and nitrogen, it
is 1-41; and for three-atom molecules, like water vapour, it
1s about 1-32,

The velocity of sound really depends, of course, on the
changes which actually take place in the air as the wave
travels through it, not on the changes which would take
place under quite different circumstances. The isothermal
elasticity and the specific heats have therefore no direct con-
nection with the velocity, for the air is neither compressed
without change of temperature nor heated without change of
pressure, nor heated without change of volume, when a
sound wave passes through it. But the physical properties
of gas on which the velocity of sound depends (the chief of
which, as we shall shortly see, is the velocity of its mole-
cules) are also factors in determining its elasticities and
specific heats, and therefore it is quite possible to express the
velocity of sound in terms of these quantities,
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|
/f/ 31. Velocity in Free Air.—The velocity of sound along a
rod which is free to expand sideways is much less than it is

when the transverse expansion is prevented, the ratio z being

_ l
much larger in the latter case. In a column of air which
was free to expand sideways sound would not be propagated

at all, as in that case the mtiu*’;— would be zero. Butin
open air the velocity, except within a very short distance
from the source, is the same as along the air in a tube. For
as the condensed condition travels outwards in all directions
from the source, the condensed air does not move exeept in
the line of propagation of the sound, since in all directions at
right angles to this line 1t 1s in contact with air condensed as
much as itself. The velocity with which the condensation
travels is therefore the same as if transverse expansion were
prevented by a rigid tube. For the sume reason the velocity
of a sound wave through a large mass of a solid substance, a
cliff for instance, 1s much greater than along a rod.

32. Velocity Independent of Pressure.—ILet D be the
density of a gas at 0°C. and any standard pressure X dynes per

sq. cm. ; then J‘g; is a constant for the gas, and does not de-

pend on what the pressure 77 was at which D was measured.

We will denote :?{

would have at 0° C. and a pressure of 1 dyne per sq. em.

Then the density of the gas at a pressure P dynes and a tem-
S i = A hris oy

perature ¢° C. 1s Pd(2?3+f) ; see .I_’a?mt book of IHeat, 32.

So the velocity of sound in the gas at this pressure and

temperature is

by d; it 1s the density which the gas

PO T e \/}a(zraﬂj
Pﬂ,(z_f&:S ) 273d

It is therefore independent of the pressure, a fact which may be
explained by saying that the adiabaticelasticity and the density
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are both proportional to the pressure, and that therefore their
ratio, on which the velocity depends (29), is the same for all
pressures ; but this is a mathematical rather than a physical
explanation, and the physical reason will appear later.

In the formulae just given it must be noticed that 4 is not
the density of the gas actually conveying the sound, but the
density it would have at 0° C. and at a pressure of 1 dyne, or
the constant ratio of its density to its pressure at 0° C.

33. Velocity and Temperature.—If 7, ¥, are the velo-
cities of sound in the same gas at two different temperatures

t,y 1 We have L%
\/'y (273 4+ 1) |
7, 273d ’5373—4_5]1
V. y (278+t,) Y 273+t
\/_ 273d

or the ratio of the velocities is the square root of the ratio
of the absolute air-thermometer temperatures. (Zext-book
of Heat, 35.) This 1s true whether the pressures are the
same or not.

34. Velocities in different Gases.—If 7, 7, are the ve-
locities of sound af the same - temperature in two different
oases, X and Y, which have the same number of atoms to the
molecule, and therefore the same value of v

'y (273 +1) U
v, V 273d, dy
Vy \/'y_ (278 +1) .

273d,

or the velocities are inversely as the square roots of the
densities of the gases at 0°C. and 1 dyne pressure, and
therefore inversely as the square roots of the densities at any
pressure and temperature (the same for both). These den-
sities are proportional to the atomic weights, so the velocities
are inversely proportional to the square roots of the atomic
weights. This is true whether the pressures are the same
or not, |
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For instance, if X is hydrogen and ¥ oxygen,
2 /16

i \/1_4

so that sound travels f::mr times as fast in hydrogen as in
oxygen at the same temperature.

Sound travels more quickly in water vapour than in air,
for, thcnugh vy is smaller for water vapour, & is also smaller,

and 7 7 is greater for water vapour. The presence of water

vapour in the air therefore increases the velocity of sound
slightly.

The density of dry air at 0° C. and a million dynes per sq.
cm. pressure (a ‘¢ c.g.s. atmosphere ) 1s ‘0012759, so that o
for air is -0000000012759. The velocity of sound in air at
any temperature £° C. 1s therefore

\/ Nk 41(273+t)
273 ( f}{}ﬂ{]ﬂﬂﬂﬁlzm)

AL
e LT g Zi(}\/
o \/{mnﬂﬂuamm( +z¢ ’ 73

o
If ¢ is small, \/ +2?3 == 1+54é nearly, and the velo-

city is 33,24ﬂ(1+£6), or 33,240+ 60f approximately.

This agrees very closely with experimental determinations.

35. Experimental Determination of Velocity.—The velo-
city of sound can be determined by direct experiment ; this is
one of the most accurate methods of finding the adiabatic elas-
ticity, which can be caleulated from the formula given for 77if
V is known independently. A simple method of finding the
velocity is for two observers, at a distance of some miles, each
to fire a cannon, as nearly as possible at the same time, and
for each to notice the interval between seeing the flash and
hearing the report of the distant cannon. The intervals will
not be equal unless the night is absolutely windless, for the
sound travels relatively to the air with the same velocity
whether the air is moving relatively to the earth or not, so
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that the velocity of the sound relative to the earth, which is
what is measured in the experiment described, is greater than
the velocity relative to the air when the sound travels in the
direction of the wind, and smaller in the opposite direction.
The average of the two velocities found by dividing the dis-
tance between the observers by the observed intervals will be
free from this error.

Another error arises from the fact that we do not perceive
either the flash or the report exactly at the moment when
the light and sound reach us, the processes of perception
requiring appreciable times, which are unequal for sight and
hearing. This can be avoided in several ways, of which the
best is perhaps to dispense with the observer altogether, and
let an electric current which fires the cannon mark the
moment of its occurrence on a revolving cylinder, while the
_arrival of the sound at the distant station makes another
mark on the same cylinder by setting in vibration an acoustic
pendulum (1). For this purpose the membrane and pith-ball
are gilt to make them conducting, and form part of an electric
circuit; the breaking of this circuit on the arrival of the
sound releases the armature of an electro-magnet, which.
marks the cylinder.

By this and similar methods the time taken by the sound
in travelling from one station to the other can be very exactly
ascertained, but as it 1s not possible to determine at all accu-
rately the average temperature of the air through which the
sound passed, and as the velocity depends greatly on tempera-
ture, there is not much value in such determinations.

36. Relation of Velocity to Molecular Structure.— So far
we have considered the air as a continuous elastic substance,
of which every portion exerts a pressure on all the sur-
rounding portions. This is not an incorrect way of regarding
the matter, but it is rather a superficial one, for the transmis-
sion of suund through a substance is closely connected with its
molecular structure. It is well known that air, for instance,
1s not a continuous substance, but consists of very minute
detached bodies, called mnleﬂules of which there are, very
roughly, a million billions in a cubic centimetre. These fly
about in every direction with an average velocity which
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depends on the temperature (more accurately, perhaps, the
temperature depends on the average velocity), but which at
ordinary temperatures is about 50,000 cm. (1,700 feet) per
second. Though the space actually filled by the molecules
1s certainly less, and probably much less, than ;% of th2
whole space, the number of molecules is so great that the
average distance traversed by a mulf.,Lule before coming into
collision with another is only s44%555 of a centimetre, and,
though there 1s of course no regularity in these cﬂ]hamnﬂ, 11:
must be a very rare thing for a molecule to move ;5355 of a
centimetre (15 of a hair’s-breadth) without an encounter
which quite changes its direction. Thus, though the mole-
cules move as fast as cannon-balls, they do not make rapid
continuous progress, and most of those which are in a par-
ticular cubic centimetre of the air at one moment would still
be found in a compact group a second or two later, though
the position of this group, relatively to the earth, may have
changed considerably. A ‘particle” of air is thus like a
swarm of bees, which may be at rest, or moving in a constant
direction, though every bee is moving much faster, and
continually ehanging its direction. Where we have spoken
in the preceding chapter of the velocity of the air, it is this
swarm-velocity that 1s meant, and it 1s equal to the average
veloeity of the molecules reckoned algebraically, vc]nmtles
in one direction being counted as of opposite sign to those in
the other.

To simplify the explanation of the way in which the trans-
mission of sound is related to molecular movements, we will
suppose that all the molecules have the same mass (which is
not the case in a mixed gas like air), and have the same
velocity, which we will take as 50,000 ¢m. per second. We
will also suppose that they all move in horizontal lines run-
ning east and west, and that all the collisions which happen
are direct, so that two molecules still move after collision in
the same line as before, and that the molecules behave like
perfectly elastic equal balls in direct collision, so that each
moves after the collision in the same direction and with the
same velocity as the other did before collision. Suppose a solid
plate in the air moving from east to west, with a velocity of
10 em. per second. Then all the maleaules on the west side
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of the plate which strike it do so with a velceity, relative fo
the plate, of 50,010 cm., and rebound with the same relative
velocity ; that is, they move westwards with a velocity of
50,020 em. Each of these soon encounters a molecule
coming eastwards at 50,000 cm. per second, and sends this
molecule off westwards at 50,020 cm. per second, while it
returns eastwards at 50,000 em. per second, till it meets the
plate again, and so on. Meanwhile the molecule to which
it has passed on its velocity passes it on to one still further
west, and returns eastwards at 50,000 cm. per second. Thus
in the air near the plate all the eastward-moving molecules
have a velocity of 50,000 cm. per second, while the west-
ward-moving ones have a velocity of 50,020 em. per second,
and this condition of the air is spreading westwards with the
velocity of the molecules themselves. The swarm-velocity of
this air is the average of +50,020 and —50,000, or 10 cm.
per second, the same as that of the plate, and it is in the
same direction as the condition is spreading. It is a con-
densed condition, for there is all the air between the plate
and the furthest point to which the condition has extended
westwards that there would have been if the plate had been
at rest, and the distance is smaller than it would have been
in that ease. Also it is a condition of raised temperature, for
the relative velocity of the molecules moving eastwards to
those moving westwards 1s 100,020, while in the rest of the
air it 1s 100,000, and the temperature of a gas is an expres-
sion for the relative velocity of its molecules among them-
selves. Thus all that we have previously learnt about a
travelling condensation is seen to be a natural result of the
molecular constitution of the air. It will be obvious how
the description must be altered to make it apply to a rare-
faction.

Roughly speaking, then, the velocity of sound in a gas is
the velocity of the molecules, but in an actual gas the con-
densed or rarefied condition spreads outwards only about two-
thirds as fast as the average velocity of the molecules. This
1s chiefly because most of the collisions which happen are
oblique, so that each molecule rebounds in a different diree-
tion to that in which the other one was going before the
collision, and thus the extra velocity communicated to one
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molecule by the moving plate is handed on in a zig-zag
manner. There are also other reasons, which cannot be
explained satisfactorily in an elementary book.

The reason why the velocity of sonnd 1is independent of
pressure may now be more clearly explained. The tempera-
ture of a gas is an expression for (though not simply propor-
tional to) the average kinetic energy of each of the molecules,
and this depends on their Telnmt? and mass, not on their
number. So that for any cne gas the wlnmty of its mole-
cules, and therefore the velocity of sound in it, is always the
same at the same temperature, however other mnd1tmm may
vary.

It will now be seen that the two statements that ¢ the air
in a condensed region is moving in the same direction as the
waves,” and that ¢ the air in a condensed region i1s at a
higher temperature than the undisturbed air,”” are two ways,
cach incomplete, of stating the fact that in a condensed
region the molecules which are moving in the direction of
the sound are moving with more than usual velocity, while
those which are moving in the opposite direction have their
ordinary velocity. It is only this particular kind of mole-
cular movement which transfers itself from one part of the
air to another, o that raised temperature is an essential part
of the condition of travelling condensation, and not merely a

- L

f\‘/\ws

h t

cause increasing the velocity with which it travels. The
same is of course true of the lowered temperature of a

travelling rarvefaction.
From the molecular point of view it scems as if the con-
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densed condition ought to travel a little faster than the
rarefied one, for each “condition is handed on by the molecules
which travel in the same direction as the condition, and these
have more than the average velocity in a condensation, less
in a rarefaction. The formula of Art. 33 suggests the same
thing, since the condensations are at a higher temperature
than the rarefactions. The matter is not nearly so simple as
it appears, and the real explanation cannot be given here, but
it 1s a fact that condensation does travel faster than rarefac-
tion. So that, in a wave-system, the wave-form gradually
changes as the waves get further from the source, just as
sea-waves change in form when, reaching shallow water,
the crests travel perceptibly faster than the troughs. Some
stages in the transformation of waves whose wave-form was
originally harmonic are shown in Fig. 25; the waves, like
those in previous diagrams, are suppnss,d tD be trare]lmg
from right to left. The greater the degree of condensation
and rarefaction the greater the difference in the velocities,
and the more rapid the change in wave-form.

CALCULATIONS.

The most important formula for the velocity of sound are—

141(273 + 1) |
1 —
(1) v \/ e (Art. 32),

where t is the centigrade temperature, and d the quotient obtained

by dividing the density of the gas at 0° C. and any pressure by that
pressure expressed in dynes per sq. cm.

(2) For the same gas at different temperatures, ¢,, #,,

Vi _ (/27318
Vs 278 + tg

(3) For different gases, both having the same number of atoms to
the molecule, at the same temperature,

o V&tamic weight of y
Vy atomic weight of a

(Art. 33),

(Art. 34),
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EXAMPLES 1.

ELEMENTARY.

1. At what temperature is the velocity of sound in nitrogei
(atomic weight, 14) equal to its velocity in oxygen at 10° C. (atomic
weight, 16) ?

2. At what temperature is the velocity of sound in air twice as
great as in air at 20° C. ?

3. The welocity of sound in air is 34,000 centimetres per second
when the thermometer is at 13° C, and the barometer at 78 centi-

tres. What will be the velocity if the thermometer rises to 22°

nd the barometer falls to 72 centimetres?

4. The velocity of sound along a tube full of air is found to be
1100 feet per second at 0°. What will be its veloeity in the same
tube (1) if the air in the tube is raised to 20° without letting any
escape from the tube; (2) if the air in the tube is raised to 20° and
the pressure kept constant ?

ADVANCED,

™ 5. A whistle makes 200 waves a second. What number of waves
will a person receive per second (a) if the whistle comes towards
him with the velocity of sound; (b) if the whistle goes away from
him with the velocity of sound; (¢) if he goes towards the whistle
with the velocity of sound ; (d) if he goes away from the whistle
with the velocity of sound ?

6. A cylindrical rod is 2 metres long when laid down, and 2 centi-
metres in diameter, and weighs. 2000 grams. When it stands
upright, with one end on the greund, it is ; millimetre shorter than
when laid down. What is the velocity of sound in the substance of
the rod ?

7. Calculate the velocity of sound in hydrogen at 20° C. and
1,100,000 dynes pressure, given that the density of hydrogen at 0°
and 1,000,000 dynes pressure is "0000884, and -that the ratio of the
specific heats of hydrogen is 1'408.

8. Given that the velocity of sound in air at 0° is 33,240 cm. per
second, and that the density of air at 0°.and a pressure of 10° dynes
is "001275, find the adiabatic elasticity of air at a pressure of 10°
dynes.



CHAPTER 1V.

INTERFERENCE.

37. Principle of Interference.—Suppose that we have two
sources of sound waves, two tuning-forks, for instance; we
will call them 4 and B. Consider a region of air C,
so situated that waves of quite small amplitude pass
through it if either 4 or B vibrates alone. Let 4 and B be
vibrating together, but suppose that we know what the
condensation and velocity of the air would be at each point
“of the region €, at a given moment 7, if 4 was vibrating as
it actually is, but B was not vibrating, and that we also
know what the condensation and velocity at each point
would be, at the same moment 7, if B was vibrating as it
actually is, but 4 was not vibrating. Then it can be shown
from the principles of dynamics that the actual condensation
and velocity of the air at each point of the region C, at the
given moment 7 are very nearly the same as would be found
by adding the condensation and velocity which there would
be at that point if only 4 was vibrating, and the condensation
and velocity which there would be if only £ was vibrating.

In this addition, rarefaction and condensation must be
counted of opposite signs and added algebraically, and
velocities must be added in the only way in which quantities
which have direction as well as magnitude can be added, by
finding the diagonal of the parallelogram whose sides repre-
sent in magnitude and direction the velocities whose sum is
required.

Similarly, the displacement of any particle of the air from
its mean position is the same as would be found by adding
the displacement which it would have if 4 was vibrating
alone and the displacement which it would have if B was
vibrating alone, displacements being added like velocities.
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The principle that, when the condensation, velocity, and
displacement of the air are small, they are equal to the sums
of the condensations, velocities, and displacements which
there would be if each of the sources was vibrating without
the others, is called the principle of inferference. 1t is a
singularly ill-chosen name, because the fact which is especially
to be noticed i1s that no interference occurs, but that each
source of sound produces the same difference in the condition
of the air that it would do if the other sources were absent.
As Lord Rayleigh says, ¢ if this is interference, it is difficult
to see what non-interference would be.” But the term is
firmly established, and must be used.

In the ordinary physical sense of the terms, neither the
condensations ﬂnd rarefactions which 4 would produce by
itself, nor those which £ would produce by itself, exist in
the region ¢ when 4 and B vibrate together. For instance,
at a point where there would be a cer tain degree of conden-
sation if 4 was vibrating alone, and an equal degree of rare-
faction if 22 was vibrating alone, the principle of interference
shows that the air is at its average density, and is neither
condensed nor rarefied. DBut the easiest way of finding the
actual condition of the air in the region ('is to ¢magine the
condensations and rarefactions which there would be there if
A was vibrating alone, and then those which there would be
if [ was vibrating alone, and then add these imaginary con-
ditions to find the real condition of the air. It 1s usual, and
convenient, to speak of these imaginary wave-systems as
‘“ existing 7’ at the same time in the region €, and to call its
actual condition their resaltant. This should not cause any
confusion, because there cannot, in any physical sense, be
two wave-systems at once in the same air, any more than
there can be two different winds at once at the same place ;
the same air cannot have two densities at once. DBut
it 1s important to remember that, whenever we speak of
two wave-systems in the same air, these wave-systems are
imaginary, and that what really exists in the air is one
wave-system different from either of the Imaginary ones.

When the i imaginary wave-systems in a given region travel
in directions which cross each other, the real movements of
the air are very cowmnplicated, each particle moving in curves
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something like Lissajous’ figures. It is more important to
consider the real condition of the air when the imaginary
wave-systems travel along the same line, either in the same
or in opposite directions.

38. Wave-systems in the same Direction.—Suppose, as
before, that two bodies, 4 and B, are vibrating together.
Let 4 and B be so situated that, if either of them vibrated
alone, waves would travel in the same direction through a
given region, say the direction X0 (Fig. 26). Let 4°A4'A’
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be the wave-form of the waves which would be travelling
through the given region if 4 was vibrating alone; B’ BB
that of the waves which would be travelling through the
same region if B was vibrating alone. Then at any point,
such as D, the actual condensation is proportional to the
algebraic sum of the ordinates from D to A'4'A" and
B'B'B, so that, if we draw a curve ZEFE whose ordinate at
each point is the algebraic sum of the ordinates to 4°4°4’
and B'B'B’, the ordinates of ZEE will be proportional to
the actual condensations.

Since the two wave-systems which there would be if
A and B vibrated separately would both travel in the direc-
tion X 0, ordinates to either curve above the axis OX indi-
cate velocities which the air would have in the direction X0,
and ordinates below the axis indicate velocities which the air
would have in the direction OX. The actual velocity of the
air at any point is therefore proportional to the algebraic sum
of the ordinates to 4°4’ A" and B'B'B’ at that point, 7.e., it
is proportional to the ordinate to KEZE, and it is a velocity in
the direction X O where the ordinate to EEFE is above the
axis.

SD. ¥
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The actual condition of the air, then, is a condition in
which both the condensation and the velocity are propor-
tional to the ordinates to ZFEZF, and are therefore propor-
tional to each other. Now, this, as we have seen, is the
distinctive feature of progressive undulation. The actual
condition of the air, then, 1s a progressive wave-system,
travelling in the direction X0, and having a wave-form
EEE. A progressive system haﬂng this wave-form might
be produced by suitable movements of a single body, such as
the piston in Chapter II., and there would be mo p]lysiﬂa.l
difference whatever between such & wave-system and the one
which 4’ and 5’ produce when they vibrate together.

Whenever there are two or more vibrating bodies, each of
which, vibrating by itself, would produce in a given region
a progressive undulation i the same direction, there 1s in the
given region a progressive undulation whose wave-form is
the sum of the wave-forms of the undulations which there
would be 1if the bodies vibrated separately, and such a pro-
gressive undulation bears no physical trace of having origi-
nated from several sources, but is exactly like an undulation
which might be produced by a single vibrating body.

If, on the other hand, the undulations which the bodies
W:}uld produce separate Iy would travel in different directions
through any region, the actual condition of the air in that
region 1s one in which condensation and velocity are not
proportional to each other, and is therefore a condition
which could not be produced by any possible vibrations of a
single source.

39. Harmonic Waves of Equal Length.—1If the imaginary
wave-systems (those which would actually exist if the
different sources vibrated separately) are all harmonie, and
all in the same direetion, it does not follow that the actual
wave-system is harmonie, for the sum of two harmonic curves
is not always a harmonic curve (Art. 10). But it can be
shown that the curve obtained by adding the ordinates of
harmonic curves whose bends are of the same length is always
a harmonic curve with bends of that length, whatever the
relative positions of the bends. Since harmonie curves whose
bends are of the same length are the wave-forms of harmonie
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wave-systems of equal wave-length, it follows that, where
there are several imaginary harmonic wave-systems of equal
wave-length, travelling in the same direction, the actual
undulation is a harmonic one, and of that wave-length.
There are several important special cases of this.

1) If the imaginary wave-systems are in the same phase
(that is, if the wave-system which would exist at a given
mnment if one source was *ﬂbmtlng alone has its maximum
condensations in the same positions as the maximum conden-
sations of the wave-system which would exist at the same
moment if another source vibrated alone), the maximum
ordinates of the actual wave-form are the sums of the
maximum ordinates of the imaginary wave-systems, and the
actual maximum velocity is therefore the sum of the imagin-
ary maximum velocities. The amplitudes of harmonic vibra-
tions of equal frequency are proportional to their maximum
- velocities (Appendix A), so that the actual amplitude of
vibration is the sum of the amplitudes of the vibrations
wh%eh the air would execute if the sources vibrated separ-
ately.

This case 1s shown in Fig. 27, where the continuous curves

Fig. 27.

are the wave-forms of two imaginary wave-systems in the
same phase, and the dotted curve, obtained by adding the
ordinates of the others, is the wave-form of the actual con-
dition of the air.

(2) If the imaginary wave-systems are in opposite phases
(that is, if the maximum condensations of one imaginary
system coincide with the maximum rarefactions of the other),
the actual amplitude of the vibrating air is the difference of
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the amplitudes which it would have if the sources vibrated
separately. (Fig. 28.)

(8) lu case 2, if the imaginary systems are equal, the real
wave-form is a str aight line; the air is of uniform density,

1‘1]-'g.+ "H}Si

and there is no real wave-system. The condition of the air
is exactly as if the sources were not vibrating.

(4) If the condensations of one imaginary system do not
coincide in position either with the condensations or with the
rarefactions of the other imaginary system, the amplitude of
the real vibration is less than the sum and greater than the
difference of the amplitudes of the imaginary vibrations.

In all these cases the intensity is of course proportional to
the square of the amplitude.

40. Illustrative Experiments.—In order to verify by
experiment the principle of interference in these different

Fig. 29,

cases, we shall require some instrument for roughly com-
paring the intensities of sounds; the most convenient 1s the
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ear. All that we require to know about its indications at
present is that vibrations of the air of the same frequency but
different intensity cause sensations of different loudness, the
more intense vibrations producing the louder sensations.

All the cases may be illustrated by means of an instru-
ment, shown in section in Fig. 29, which is slightly altered
from a form devised by Prof. Quincke. A tube 4 divides
into two branches B and (, which re-unite at D. The
length of €' can be altered by drawing out the sliding portion
E (on the trombone principle). D ends in a flexible pipe,
or, better, in two flexible pipes, one of which is placed in
each ear. In the branch 7 is a sliding door by which the
branch can be closed.

If the branch C& is adjusted till it is the same length as
B, and a vibrating fork held opposite the opening at A, it is
evident that the condensations which there would be in D if
waves travelled by one branch would be in the same places as
the condensations which there would be, at the same instant,
if waves travelled only by the other branch. The actual
vibration in D is therefore greater than if waves travelled
only by one branch, as is shown by the diminution of loud-
ness when the sliding door in 7 is closed.

The same occurs if the difference between the lengths of
ABD and ACECD is made any exact number of wave-
lengths of the waves from the fork.

If 4CECD is made half a wave-length longer than 2, the
condensations of the waves which there would be in D if
waves travelled only by C'Z would be in the same places as the
rarefactions of the waves which there would be if waves tra-
velled only by B, and the amplitudes of these two systems arc
nearly equal. There is, therefore, little vibration of the air
in D when the sliding door in 2 is open, and hardly any
sound is heard. When the sliding door is closed, the sound is
licard clearly., :

The same occurs if the difference between the lengths of
B and CF is made any odd number of half wave-lengths.

This apparatus may evidently be used to determine the
length of the waves from a fork, but it is not a good method,
as there is no point of absolute silence, and the points of
faintest sound are not easy to determine exactly. For abso-
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lute silence it would be necessary, not only that the maximum
condensations of one imaginary system should exactly coincide
with the maximum rarcfactions of the other, but that the
condensation of one system should be equal at every point to
the rarefaction of the other. If the wave-forms of the two
systems are alike (as in the experiment just described), this
requires that the wave-form should be exactly symmetrical,
the part below the axis being exactly like the part above,
inverted. Harmonic waves would, of course, fulfil this con-
dition, but neither perfectly harmonic waves nor waves of any
other perfectly symmetrical form are easy to produce.

If a whistle is fitted into the middle of the bottom of a box
lined with felt (to prevent reflection from, and transmission
through, the sides of the box), and two holes are made in
the top of the box at equal distances from the whistle, simi-
lar pulses start from these openings simultaneously when the
whistle is sounded. At points in the external air above the
box, which are equidistant from the openings, a membrane
stretched on a ring, and held horizontally, is strongly
affected, and sand scattered on it is instantly thrown off,
but it is easy to find points, nearer to one hole than to the
other, where the membrane is very little affected ; these are,
of course, points whose distances from the two holes differ
by an odd number of half wave-lengths.

In these instances the two imaginary wave-systems are
produced in the same phase, and the difference in their
phases, at the points where the air is undisturbed, is due to
the different distances they have travelled. When the
imaginary wave-systemsin a region are in opposite phases, it
is usually either for this reason, or because they were origin-
ally produced in opposite phanes by parts of the same vibra-
ting body which move in opposite directions at the same
time. This is a very common cause, for nearly every vibra-
ting body has parts which move simultaneously in opposite
directions, like the prongs of a tuning fork or nppmlte sides
of a bell ; and, even in the simple case of a spring held in a
vice, one side of the spring is producing a condensation while
the other side is producing a rarefaction. A good illustra-
tion is furnished by a circular plate of glass or metal (A,
Fig. 30) fixed in a horizontal position to a stand by a screw
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through the middle, but free everywhere else. When a
ﬂﬂ].]ﬂ bow is drawn across the edge of such a plate, the plate
vibrates in an even number of sectors—four if it is not
touched anywhere except by the bow—of which at a given

moment half are moving upward and the alternate ones down-
ward, and we have, therefore, condensations starting from
one set and rarefactions from the other at the same moment,
and at a little distance above the plate, whecre the effects due
to each of these wave-systems would be about equal, we have
practically no changes of density at all. If we cut a circle
of cardboard of the same size as the plate, divide it into the
same number of sectors that the plate is vibrating in, cut
away alternate sectors nearly to the middle, and hold the
remaining part of the card B so as to cover, but not to touch,

alternate sectors of the plate, we shall find that the sound -11:
a few feet above the plate is much louder than before, since
the waves from one set of sectors are absorbed by the card
and those which pass through the openings are all in agree-
ment.

The number and position of the sectors of the plate may
be ascertained by scattering on it a little sand, which quickly
ml}:eeta on the lines which divide the crpp-::usately vibrating
sectors

Hopking’s Forked: Tube is used in conjunction with a
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vibrating plate to illustrate the principle of interference. It
is a branched tube shaped like a letter Y. The ends of the
branches are open, but a piece of gold-beater’s skin 1s
stretched over the end of the main stem. The tube is held
in an inverted position ( A) so that the membrane 1s at the
top, and a little sand is scattered on the membrane. If a
plate like that shown in Fig. 30 is made to vibrate, and the
tube held so that the two openings are over sectors which
vibrate in the same direction, the sand is thrown off ; but, if
the openings are symmetrically over sectors which move in
opposite directions, the sand is only slightly disturbed.

The prongs of a tuning-fork (Fig. 31) move outwards
together ; they therefore condense the air outside them while

they rarefy the air between them, and condensation starts off
in all directions from the outer surfaces 4, 4" at the same time
that rarefaction is starting from the inner surfaces 22, ', The
air in the direction of the line joining the prengs is, to a
large extent, shielded from the waves from B, & by the prongs
themselves, while along a line at right angles to this the
effect of the waves from the outer surfaces 4, A" is small, but
in four directions which make angles of about 45° with the
line joining the prongs the waves from the outer surface
A of one prong are almost exactly balanced by the waves
from the inner surface B’ of the other prong, and in these
four directions very little sound is heard. The simplest way
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to show this is to strike the fork, and then to twist the stem
of it round between your fingers so as to make the fork pre-
sent each side to your ear in turn; the sound will be heard
to swell out and die away four times in each rotation of the
fork.

If, when your ear is in one of the four directions from the
fork in which the sound is faintest, you hold a paper tube so
as to enclose, but not to touch, one of the prongs, the sound
becomes much louder, showing that the waves produced by
the two prongs vibrating together are of less intensity than
either would produce by itself.

For reasons given above, it is very difficult to arrange an
experiment in which the imaginary wave-systems are so
exactly opposite that there is complete silence. A very near
approach to success can be made, however, by mounting two
cqual organ pipes, open at the upper ends (as well as at the
lower, or mouthpiece, ends), close side by side on the same
wind-chest. When these are blown, they always start in
opposite phases, so that a condensation leaves the mouth of
one at the same moment that a rarefaction leaves the mouth
of the other, and, as the waves from open pipes are almost
perfectly harmonie, the condensation of one imaginary system
is almost exactly equal to the rarefaction of the other at
every point in the surrounding space. If there is any vibra-
tion of the air at all due to the two pipes, it cannot be heard
among the rushing sound from the air at the mouth-
pieces. Yet, if we stretch a thin membrane on a ring, and
lower this horizontally, with a little sand on it, into cither of
the pipes, the sand is at once thrown off, showmn‘ that the
air-columns are vibrating.

41, Euergy of Waves from two Sources.—When the
condensations of two equal imaginary wave-systems agree in
any region, the actual amplitude of vibration should, on the
principle of interference, be twice as great as either of the
sources would produce scparatdj;, and, therefore, the actual
intensity four times as great as the mtmmty of the sound
which either of the sources would produce separately. There
is, therefore, four times as much energy passing per sccond
thrﬂugh the region as there would be if only one source
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vibrated. This looks at first like a creation of cnergy, but
of course that never occurs. If the sources of the two
imaginary systems are several wave-lengths apart, there are
some regions in the surrounding space where the imaginary
wave-systems are in the same phase, and some regions where
they are in opposite phases; mn the former the intensity is
greater, ﬂml in the latter les'ﬁl than the sum of the intensities
of the imaginary systems. The total ener gy travelling away
from the sources is the sum of the amounts which would be
travelling away if the sources vibrated separately, though it
i3 differently distributed; in some directions more encrgy
travels away, and in other directions less, than the sum of
the amounts which would travel in those directions if the
sources vibrated separately.

If the sources are very close together, and vibrate in the
same phase, the imaginary wave-systems are 1n the same
phase in cvery part of the space round the sources; in this
case either the actual amplitude must be less than the sum of
the imaginary amplitudes (so that the principle of interfer-
ence does not hold), or the sources must give out energy
faster than they would do if they vibrated separately.
Usually 1t 1s the latter that occurs; each vibrating body,
mm'mﬁ* in air which is already mov mn' in the same dlrmtmn
gives up encrgy to it faster than it w oul to undisturbed air,
just as a man pushing at a truck gives energy to i1t much
faster when it has acquired some speed than he does when it
has only just started and i1s moving very slowly.

42, Waves of unequal Length—So far we have consi-
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dered only ecases in which the imaginary wave-systems are of
the same wave-length. Fig. 82 illustrates the actual coa-
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dition of the air when there are in it two imaginary wave-
systems, both harmonic and travelling in the same direction,
but of different wave-lengths. As in previous figures, the
complete lines are the wave-forms of the imaginary wave-
systems, and the dotted curve, obtained by adding the
ordinates of the others, 1s the wave-form of the actual wave-
system.®™ Its bends are mot harmonic in form, and their
maximum ordinates are greater in some places than in others,
so that in some regions the condensations and rarefactions are
intense, in others only slight. As the conditions indicated
by this wave-form pass any point the air there moves back-
wards and forwards through a distance which alters at each
movement, being greatest when the most intense regions of
the wave-system are passing.

In this case the actual wave-system contains as much
energy as the two imaginary systems would contain, but
differently distributed ; it is nearly all in the regions where
the condensations and rarefactions are intense.t

The sound heard by an ear at which such a wave-system
arrives presents peculiarities which will be discussed later,
but the most obvious is the alternation of increased and
diminished loudness as more intense end less intense regions
of the travelling system arrive at the ear.

43. Beats.—These changes in loudness are called beats.
They are readily heard when two tuning forks, whose fre-
quencies differ by three or four, are sounded at the same
time, or two organ-pipes, which have nearly the same fre-
quency.

If 7 is the velocity of sound, and #,, 7, the frequencics
cf two sources of sound, then there are », complete waves ol
one imaginary system, and », complete waves of the other, in

e e ——— ——

* For greater clearness, the imaginary and real wave-forms are
here drawn on separate axis-lines, instead of as in the previous
diagrams, but the three curves denote conditions of the air in the
game region.

t+ The name * interference »* is, by some writers, reserved for the
cases in which the actual energy is very differently distributed from
that of the imaginary systems; that is, for the cases where the
imaginary systems are of equal, or nearly equal, wave-lengths.



76 SOUND.

a distance 7, and, therefore, n,—mn, places in that distance
where the phases of the imaginary systems agree ; these are
the regions of maximum intensity. The distance between

, and

two regi{}ns of maximum iﬂtﬂﬂﬁit? iS, t]iﬂr{‘:fﬂl'ﬂ,
n,—n
1 2

the number of such maxima which pass any given point in a
second 1s #,—n,. The number of beats heard per second is,
therefore, the difference of the frequencies of the sourees.

These beats or variations in the ¢nfensify of the vibration
at a point must be carefully distinguished from the conden-
sations or variations of density at the point. The beats in
fact are variations in the amount of variation of density ; the
mean density is the same in the more intense parts of the
wave-system as in the less intense parts.

The principle of interference is very nearly true when the
ccndensations and rarefactions are slight; but in cases where
the density-differences are not very small, compared with the
mean density of the air, the actual wave-form is different
from the one found by adding the ordinates of the wave-forms
of the wuave-systems which the sources would produce if
they vibrated separately. Such cases will be considered in
Chapter VI.



CHAPTER V.

FORCED VIBRATION.

44, Free and Forced Vibration.—As the series of condi-
tions which constitutes a wave-system travels through the
air, the density at any fixed point increases and diminishes
alternately, and the pressure changes proportionally to the
changes of density. If there is a solid body stationary in
the air, the pressure on its surface rises and falls as the
waves pass it, varying harmonically (Art. 5) if the waves
are harmonie, or, in any case, rising and falling propor-
tionally to successive ordinates of their wave-form. As all
bodies yield more or less to pressure, the body will vibrate.
Such vibrations, caused by continuous changes of external
pressure, are called forced wibrations, to distinguish them
from the free vibrations which take place when a body is dis-
placed from a position of equilibrium and then left to itself.
In most cases it is not possible to determine by elementary
methods the exact character of the forced vibrations which a
given wave-system will cause in a given body; we can only
say that, as the differences of pressure in different parts of an
ordinary sound wave are very small, the vibration produced,
if it depends on the changes of pressure actually taking
place at the moment, will usually be very small also.

45. Resonant Forced Vibration.—But if the successive
waves are all exactly equal and similar, so that the pressure-
change is exactly periodic (7.e., repeats itself exactly at
regular intervals), and if the period of this pressure change
1s related in a certain way, to be explained presently,
to one of the periods of free vibration of the body (it may
have several, according to the way in which it is displaced),
the effects of a number of successive changes of pressure
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may be added together, and so vibratory movements of the
body may be produced, which so greatly exceed in amplitude
those which would be caused by the pressure-changes
actually occurring at the moment, th at the latter may be neg-
lected in comparison. Such forced vibration, greatly exceed-
ing in extent that which would be due to the pressure-changes
actually occurring, and resulting chiefly from past pressure-
changes, 1is cﬂlled f'{fﬂﬂ?mnﬁ ﬁ:rmﬁ vibration. We shall some-
times call it simply resonant vibration, though this term is
often applied also to free vibration when caused by a previous
sound.

46. Experiments on Resonant Vibration.— We have next
to determine under what circumstances such resonant forced
vibration is produced, and for this purpose we may try some
simple experiments.

If we hang up two heavy weights, 4 and B, by strings
of equal length, and set them swinging, we shall find it easy
by Ellghtl} altering the length of one string to get them to
swing in almost {!K"J.Eﬂ} equal times, so that if started in the
same direction they will keep time with each other for some
hundreds of consecutive swings. Now stop 7, and tie a fine
thread to 1t, and every time 4 passes the m1ddlﬂ point of 1ts
swing in one direction, say from right to left, give a very
slight momentary pull to the thread, not enough to produce
any visible movement of B. After a few seconds, we shall
find that & 1s swinging very perceptibly, and at the end of a
minute or two we shall have it swinging through quite a
large arc. The weight swings to a distance on each side of
its mean position much greater than the displacement which
would be due to the actual pull of the thread; often to
a greater distance than the thread could pull it aside without
breaking.

The same thing happens in many other cases. The regular
tramp of soldiers crossing a bridge will break the bridge
down if its period of oscillation agrees with the interval
between the steps; and the vibrations of the air caused by
an organ (it is said even by the voice) will break a pane of
glass in a window if the pane is of such a size that it vibrates
with the same frequency as the waves reach it.
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47. Different Effects of Harmonic and Non-harmonic
Pressure-Changes.—If we alter the length of A4’s string a
few inches, so that the times of swing are slightly unequal,
and repeat the experiment, no large vibration of B will be
produced. But if we lengthen A’s string till 4 makes only
one vibration to two of B (or, which is simpler, if we make
A swing with the same period as B, but pull the thread only
at the end of every two double swings of 4) we shall
gradually increase the movement of B, till it becomes nearly
as large as before. The same occurs if we pull the thread
every third time A passes its lowest point from right to left,
or at any regular intervals which are exact multiples of B’s
free-vibration period. So that in some cases periodic
impulses can cause a resonant vibration whose period is an
exact submultiple of their own. But there is a very im-
portant exception to this. If the periodic impulses, instead
of being forces which begin and stop suddenly, like the pull
of the thread, are forces which increase and diminish Aar-
monically, they will not set in rescnant vibration a body
whose natural period is an exact submultiple of their own.
This can easily be shown by a slight variation of our
experiment. Hang up 4 and B (still by strings of equal
length) a long distance, say 20 feet, apart, and tie one end of
a piece of very thin elastie, about 2 feet shorter than this
distance, to B. Hold the other end of this elastic in your
hand, exactly under 4, so that it is slightly stretched. Set
4 swinging, with an amplitude of about a foot, along a line
passing through 7, and move your hand as 4 swings, so as
to keep the end of the elastic exactly under 4. The pull of
the elastic on & will then increase and diminish harmonically,
or very mnearly, and it will be found that B will begin to
vibrate, and keep increasing its vibration, if its free-vibra-
tion period is the same as that of 4. Butif we lengthen
the string of 4 till it makes only one swing to two of B, and
then keep the end of the elastic under 4 as it swings, no
considerable movement of B will be produced. B does move,
of course, but the movement does not increase beyond that
due to a single pull. Now, we saw that a slight pull on a
thread tied to B, occurring once in every two swings of B,
would produce a large vibration. The difference between
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the two cases is this:—The pull of the thread is a force
which, at regular intervals, increases very suddenly from
zero to its maximum, and, after lasting a very short time,
falls very rapidly to zero. In other words, the thread exerts
on B a force which varies periodically but not harmonically,
while the pull of the elastic varies harmonically. We con-
clude that a periodic force which increases and diminishes
harmonically does not cause resonant vibrations of periods
which are submultiples of its own, though a force which
varies non-harmonically may do so.

48, Period and Amplitude of Forced Vibrations,—Now
adjust the lengths of the strings till 4 swings nearly, but
not exactly, with the same frequency as B. Suppose 30
swings of 4 require the same time as 31 of B, If we repeat
the experiment with the elastic, we shall find that B will
still be set vibrating, and that its amplitude of vibration will
increase for a time, but will soon reach a limit which is much
smaller than when the periods agree more exactly. We
shall find also that the vibration of B agrees in period
exactly with that of the pulls given to the elastic, and does
not depend on its own natural period of Tibratinn. If the
period of 4’s vibration is 2 seconds, the forced vibrations of
B will have a period of 2 seconds also, whatever the natural
period of B, but, unless that natural period is about 2 seconds,
the vibration of & never becomes very much greater than
that which one of the pulls would produce.

Though the vibration produced in a body by a periodic
force, which only nearly agrees in period with the free
vibrations, is always of smaller amplitude than it would be
if the periods agreed exactly, the extent of the difference
depends very much on the mass of the vibrating body and
the amount of friction resisting its motion. If the mass 1s
large and the friction small, as in the case of a heavy
pendulum or tuning fork, the resonant vibration produced by
impulses of nearly the natural period of the vibrating body
is very small compared with that produced by equal impulses
of exactly the right period. But if the mass 1s small and the
friction large, as in the case of a boat rolling in the waves,
or air vibrating in a narrow tube, impulses of nearly the right
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period will produce nearly as strong resonant vibration as
impulses of exactly the right period.

Practically, when we have to do with a body which is not
very light, and periodic pressure-changes which are not very
vmlent we may assume that no perceptible movement will
be caused by a harmonic pressure-change of any period which
1s not almost exactly one of the periods in which the body
can vibrate freely.* So Zarmonic waves do not cause strong
vibration of bodies which they pass, unless the waves arrive
with frequencies which are nearly free-vibration frequenciés
of the bodies.

We have not yet discovered what are the conditions under
which non-harmonic waves cause resonant vibration, though
we have seen that a non-harmonic rise and fall of pressure,
such as non-harmonic waves would produce, sometimes causes
resonant vibration where harmonie waves, arriving with the
same frequency, would fail. To determine what non-har-
monic waves will cause resonant vibration of a given body,
we must resort to a mathematical device, explained in the
next chapter.

* Under exceptional circumstances this may be untrue; an
instance is given in Art, 99,

SDs i



CHAPTER VI.

FOURIER'S THEOREM.

- 49, Components.—We saw in the last chapter how the
risc and fall of pressure at any point can be represented by
a curve. Suppose that the dotted line 4 CBDZ (Fig. 33 or
34) represents the rise and fall of pressure at some point P,
on a scale of, say, an 1nch to a second, the ordinate 4'A4
representing the amount by which the pressure is below the
average at a given moment 7'; an ordinate { inch to the

Figu '3{1-

right of 4’4 representing the difference from the average
pressure + second later, and so on. Now, there is no
physical difference between a force f and two forces, acting
together, whose sum is equal to . So that, instead of saying

that the pressure-difference® at the moment 7" is 4’4, we

* The term * pressure-difference” will be used to mean the
difference between the actual pressure of the air at a given moment
and its average pressure,
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¢an say that it is the sum of pressure-differcnees represented

by A'F and 4'J. So that, if FGHY and JALX arc any

two curves whose ordinates everywhere add up to thosc of

ACBDX, there is no difference between a rise and fall of

pressure represented by 4 CBDX and two pressurc-changes,

happening at the samc time, represented by F'GHY and
KLX,

A dynamical proposition, too difficult for this book, shows
that if the force on any body, due to a displacement from its
position of rest, is proportional to the displacement (which is
usually very nearly the case in the small displacements which
we are considering), then the movement of this body produced
by several pressurc-changes happening together 1s the sum
(in the sense explained in Art. 7) of the movements which
the same pressurc-changes would produce separately.

Pressure-changes such as those represented by #’6¢ /Y and
JHKLX, which add up to a given pressurc-change such as
that represented by 4 CBZ, are called components of the
pressure-change represented by 4 CBZ.

In Figs. 33,34, I'GHY and JALX are drawn as harmonic
curves, and so represent harmonic pressure-changes, but the
proposition just given is just as true for any other kind.
And we could evidently draw as many sets of curves as we
pleased whose ordinates would add up to those of 4 CBZ, so
that any pressure-change has an unlimited number of sets of
components, and the dynamical proposition just given shows
that, to predict the movements which will be produced by
any pressure-change such as that represented by 4 CBZ, we
may first find what movements would be produced by the
members of any set of components separately, and then add
these movements.

All this is {rue whatever kind of pressure-changes the
components arc, But, unless the components are Aarmonie
pressure-changes, the device of components does not help us,
for it 1s no easier to tell what movements they will produce
than it is to tell what movements the pressure-change repre-
sent d by 4 CBZ will produce.

If we could find Zarmonic pressure-changes which would
rdd up to the pressurc-change whose effcct is to be found,
then, as we saw in the last chapter, it would be very easy to
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say whethor any of these, separately, would produce resonant

vibration of a given bmlv whose free-vibration frequency is
known. It would not be easy to tell exactly what move-
ments the others would prmluce separately, but we can be
sure that they would be very small compared with the
resonant vibrations. So that practically, if any of these
harmonic pressure-changes would produce resonant vibration
of the given body, we may neglect the effeet which the
others would produce.

50. Fourier’s Theorem.—Tigs. 15, 33, and 34 show that
there are some non-harmonic curves whose ordinates are the
sums of the ordinates of harmonic curves, so that if a rise and
fall of pressure corresponds to one of these non-harmonie
curves, its effect in producing resonant vibration can be easily
calculated by finding the effects of pressure-changes corres-
ponding to the harmonie curves. A very important theorem,
due to Fourier, shows that this can be done not only in some
cases, but in all.

For our purpose we may state Fourier’s Theorem in this
way. Let there be any given line, such as the dotted line
ACB in Fig. 33 or 34, which does not overhang anywhere,
so that no ordinate auts 1t more than once, and let A, Js e
two points on it. Then it is always passihle to find sets of
harmonie curves whose ordinates will add up to those of the
line A¢B. And (which 1s the important point for our
purpose), if A and B are points whose ordinates are equal,
there is, among the sets of harmonic curves whose ordinates
add up to those of the line 4P, one set (and only one)
which consists entirely of harmonic curves whose lengths
(the length of a double bend measured along the axis) are
contained an exact number of times between the ordinates to
A and B.

Figs. 33, 34 illustrate this. The ordinates at 4 and B
are equal, and the ordinates at every point of 4 C'B are the
sums of the ordinates of the two harmonic curves #'G'H and
JKL, whose lengths are each contained an exact number of
times in the length A4’8'. We could find other sets of
harmonic curves which would add up to 4 C'B, but there 1s
only this one set of harmonic curves whose lengths are con-
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lained an exact number of times between A’ and B', which will
add up to 4CB.

To mmphfy the diagram, we have illustrated a case in
which this set of harmonic curves consists of only two.
Usually there arc more than two, and the number may be
infinite.

51. Application to Sound.—Fourier's Theorem is purely
a mathematical one. Its connection with sound arises from
the fact that, as the pressurc of the air cannot have more
than one value at any one point at the same moment, any
possible rise and fall of pressure can be represented by a
curve which does not overhang anywhere, and that if this
rise and fall of pressure is periodic, or exactly repeats itself
at equal intervals, this curve may be divided into lengths
which are all alike, so that the first and last ordinate of Em':h
length are equal. Suppose the dotted line 4 C'BZ represents
a periodic rise and fall of pressure, and that 4 C'B represents
one complete cycle of changes of pressure, so that the rest of
the curve consists of repetitions of 4CB. Let F'GH and
JHL be the set of harmonic curves whose lengths are con-
tained an exact number of times between 4" and B’, and
which add up to 4 CB. Then, if I'GH, JIKL are continued
to the right, they repeat themselves in the next period 52’
and these portions add up to the same curve as before
—that is, to the form BD. So that, however far we
continue 4CBDZ, the harmonic curves FGHX, JKLY,
also continued, will everywhere add wup to the curve
ACBDZ,

As the harmonic curves F'GIH, JIL repeat themselves
exactly an exact number of times in the length 4’7, they
represent harmonic pressure-changes which repeat themselves
an exact number of times in the period represented by 4'#H,
that is, they are harmonic pressure-changes whose frequencies
are exact multiples of the frequency of the non-harmonic
pressure-change represented by 4 CBZ. In the figure, FGH
represents a harmonic rise and fall of pressure ocenrring once,
and JA'Z a harmonic rise and fall of pressure occurring three
times, in one complete period of the non-harmonic pressure-
change represented by the dotted line,
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52. Harmonic Components.—If there is a non-harmonie
pressure-change repeating itself with frequency #, then
Fourier’s Theorem shows us that we can always find a series
of harmonic pressure-changes, of frequencies which are
cxact multiples of »n (% itself being included), such -that,
occurring together, they are the given non-harmonie
pressure - change.  These harmonic pressure-changes are
called the harmonie components of the non-harmonie pressure-
change.

It should be clearly understood that the statement that a
non-harmonic pressure-change of frequency » is always the
sum of harmonic pressure-changes of frequencies which are
multiples of », does not at all imply that any actions are
taking place which could cause pressure-changes of these
frequencies, or that these pressure-changes have any separate
existence. It is only true in the same sense that anything
5 feet long is the sum of two parts, unc 3 feet and the other
2 feet ; it does not mean that there is any physical distinetion
between the parts. For instance, if a man rows a boat,
making (we will suppose, for convenience, that it is possible)
one double stroke per semnd, he exerts on the oar a push-
and-pull whose frequency is 1 per see. This push-and-pull
is not harmonic; instead of gradually rising to a maximum
and then gradu: dly diminishing, it is nearly umfurm till near
the end of the stroke. Fourier's Theorem shows us that it
is the sum of a number of harmonic pushes and pulls whose
frequencies are 1, 2, 3, 4, 5, &c., per second, happening
together. This does not mean that the man is rually olving
puehm and pulls at these rates; he pulls continuously for
more than half-a-second at a time. But if we replaced the
man by a number of men, of whom one pushed and pulled
harmonically once a second, one twice a second, one three
times a second, and so on, then, if the intensities of these
harmonic pushes and pulls, and the moments of beginning
them, were rightly chosen, the push-and-pull on the oar
would be the same as the non-harmonic push-and-pull exerted
by the actual rower. And this is all that is meant by calling
these harmonic pushes-and-pulls the components of his non-
harmonic push-and-pull.

The proposition of Art. 49 shows that the effect of a non-
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harmonic change of pressure in produecing vibration is the
sum of the effects which its hermonic components (or any
set of components) would produce separately. And we saw
in the last chapter that a harmonic rise and fall of pressure
produces resonant vibration in a body if the frequency of the
pressurve-change is onc of the free-vibration frequencies of
the body. Putting these facts together, we see that a non.
harmonic rise and fall of pressure on a body will set it in
resonant vibration if, and not unless, one of the harmonic
components of the non-harmonic pressure-change has a
frequency which agrees with one of the free-vibration
frequencies of the body.

Of course, any periodic pressure-change on a body sets it
in vibration. The statement just given relates only to
resonant vibration. The changes of pressure, as sound-waves
pass, are so small that, unless the effects of a number of
changes are added by resonance, we may generally neglect
the movements produced.

We now see why, in the experiment described in Art. 46,
a momentary pull every 4 seconds sets a pendulum, whose
free-vibration frequency is 2 scconds, in rescnant vibration.
The pull of the string on the pendulum rises and falls non-
harmonically once in 4 seconds, and one of tke harmonie
components of this non-harmonic variation of force is a pull
rising and falling harmonically twice in 4 seconds. We do
not actually pull twice in 4 seconds, but a harmonic pull
whose frequency is twice in 4 seconds, occurring at the same
time with other harmonic pulls whose periods are contained
exactly in 4 seconds, would be the non-harmonic pull (in-
creasing and d1m1mshmg agam very rapidly omnce every
4 seconds and then remaining zero the rest of the period)
which the string really gives to the pendulum.

53. Fundamental and its Harmonics,—If a non-harmonic
pressure-change has a frequency #, then a harmonic pressure-
change of frequency n 1s called the fundamental pressure-
change of the non-harmonic one, and harmonic pressure-
changes whose frequencies are 2n, 3n, 4n, &c., arc called the
2nd, 8rd, 4th, &c., harmonies of that fundamental. The
harmenie components of a non-harmonic pressure-change are
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all included among its fundamental and the harmonies of
that fundamental. If the fundamental is one of the
harmonic components, it is called the fundamental com-
ponent.

The same method and the same terms may be applied to
anything which varies with the time, end which can there-
fore be represented by a curve. For instance, a non-harmonic
vibration of a point of frequency » 1s always the sum (Art. 7)
of harmonic vibrations of frequencies which are multiples of
n, and these harmonic vibrations are called the harmonie
components of the non-harmonic vibration.

54. Harmonic Components of a Wave-System.—We may
also apply the same theorem to the wave-system which causes
the rise and fall of pressure. Instead of representing a
pressure-change, suppose now that the curve 4 C5Z (Fig. 33
or 34) is the wave-form of any non-harmonic wave-system,
so that 4 CFP is the wave-form of one wave-length. Then
Fourier’s Theorem shows us that we can always find a set
of imaginary harmonic wave-systems whose wave-forms,
FGHY and JALX, add up to the wave-form of the non-
harmonic system, and whose wave-lengths are contained an
exact number of times 1n one wave- lenﬂth of the non-harmonie
system. These imaginary harmonic wave-systems are called
the harmonic components of the real non-harmonic wave-
system. Fach wave-system would produce, as it passed any
point, a rise and fall of pressure represented by a curve which
is the same as the wave form of the system, so that the effect
of any non-harmonic wave-system 1s the sum of the effects
which its harmonic components, if they were real wave-
systems, would produce separately.

A mon-harmoniec wave-system, therefore, sets a body in
resonant vibration if any one of the harmonic components of
the non-harmonie system is one whose waves, if they were
real, would arrive with a frequency corresponding to one of
the free-vibration frequencies of the body.

A given non-harmonic wave-system 1s often said to “‘ consist

of” its harmonic components. This is rather misleading,
because it suggests the idea that this particular set of com-
ponents has a real existence in some different sense to other
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sets of components, harmonic or other, whose wave-forms
would also add to that of the actual wave-system. This is
not the case; we could always find sets of mon-harmonic
waves, and even sets of non-harmonic waves all of the same
kind, whese wave-forms would add up to the wave-form of
any given wave-system, and the real waves ¢ consist of” any
of these sets of non-harmonic components exactly in the same
sensc as they ‘¢ consist of ”’ the harmonic ones. All ¢ com-
ponents,’” harmonic or other, are imaginary, and the only
reason why we do not usually refer to any other set except
the harmonic ones is that the effect of a succession of similar
harmonic waves in producing resonant vibration is so easy to
predict. It is only when we want to know what resonant
vibrations a given wave-system can produce (and in one
other case which will be considered later) that there 1s any
advantage in Fourier’s device of adding the effects which the
imaginary harmonic components would produce separately, to
find the effect of the real waves.

We shall see later that, owing to the nature of the
mechanmism of hearing, a separate semsafion correspends to
each of the harmoniec components of a system of non-harmonic
waves. This of course does not in any way indicate that the
harmonic components have an external physical existence,
any more than the seven distinet colour sensations which we
receive from the spectrum indicate that there are seven
physically different kinds of light. It only shows that the
mechanism of hearing is such that each distinet sensation
depends on the resonant vibration of a distinet body, so that
the sensations which a wave-system can cause depend on the
bodies it can set in resonant vibration. We shall see in the
next chapter how this mechanism works.

54. Harmonic Analysis.—As the harmonic components of
a wave-system, and the harmonic components of the rise and
fall of pressure produced by it, arc represented by the same
harmonic curves, to find the harmonic components of the
pressure-change is equivalent to finding the harmonic com-
ponents of the wave-system. If we knew the character of
the rise and fall of pressure exactly, so that we could draw
the curve representing it, we could find by geometrical
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methods the harmonic curves which add up to that curve,
and these represent the harmonie components of the pressure-
change. But it is not practically possible to determine cither
the wave-form of a series of waves or the rise and fall of
pressure (represented by the same curve) which the waves
produce. It is much easier to determine the harmonic com-
ponents of the pressure-change by finding experimentally
what bodies the pressure-change will set in resonant vibration.
It is not necessary to have bodies of every possible free-
vibration period for this. The harmonic components of a
pressure-change are all pressure-changes whose frequencies
are exact multiples of the frequency of the actual rise and
fall of pressure. If, for instance, the complete cycle of
changes of pressure is repeated 100 times per second, the
harmonie components of the pressure-change are all pressure-
changes whose frequencies arc multiples of 100. So that, if
we expose to this rise and fall of pressure bodies whose free-
vibration frequencies are 100, 200, 300, 400, &e., some of
these will be set in resonant vibration, and the frequencies of
these are the frequencies of the harmonic components of the
actual rise and fall of pressure.

For this experiment it is evidently desirable that the
bodies used should be bodies which have only one {free-
vibration {requency. There are very few such bodics ; the
best for the purpose is the air contained in a glﬂhular or
eylindrical vessel which has an opening much narrower than
the greatest diameter of the vessel. Such a vessel is ecalled
a ‘“‘resonator.” The details of the experiment arc given in
Chapter XI1I.

The determination of the harmonic components of a
pressure-change, vibration, wave-system, &e., is called the
harmonic analysis of it.

55. Relation of Harmonic Components to Source of
Waves.—In some cases, as shown in Art. 39, a non- harmonic
wave-system is produced by two or more sources, each of
which alone would produce a harmonic system. In this
case, as we saw, if the vibrations are of small amplitude, the
wave-form of the actual waves is the sum of the harmonic
wave-forms of the wave-systems which the sources would
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produce separately. These harmonic wave-systems arc
therefore the harmonic components of the actual wave-
system.

Even where there are not any sources which really vibrate
harmonically, the harmonic components of a wave-system,
though quite imaginary, are often similar to real harmomic
wave-systems which might be produced by the actual source.
1t often happens that a body vibrates so that every part of it
moves harmonically in the same period ; in this case it usually
produces nearly harmonic waves. If there are several
different ways in which the body could vibrate harmonically,
with different periods, there are several harmonic wave-
systems of different wave-lengths which it could produce. If
such a body vibrates in any other way, it is usually one in
which its movement is the sum (Art. 7) of two or more of
the harmonic vibrations which it could perform; in this case
the waves from it have a wave-form which is the sum of the
wave-forms of the harmonic waves which these vibrations
would produce, so that these harmonic waves are the harmonic
components of the actual wave-system.

In these cases the harmonic components of the waves
produced are similar to real waves which might be produced
by the same sources. It must not be supposed that this is
always the case, still less that the possibility of finding
imaginary harmonic systems whose wave-forms would add up
to that of the waves from a given source depends at all on
whether the source of sound could vibrate so as to produce
such harmonic systems. In many cases there is no relation
between the harmonic components of a wave-system and any
real harmonie waves which the source could possibly produce.
For instance, if air is blown from a pipe against a revolving
dise having 100 holes drilled in a circle at the same distance
from the axis as the end of the pipe, a puff of air will come
through each hole as it passes—100 puffs per seeond if the
disc rotates once in a second. At the dise, every process
which occurs at all is repeated 100 times a secnud and not
oftener; there is no operation being repeated 200 or 300
times a second. A hundred similar waves, each about 11 feet
long, start from the disc in each second. These waves are
far from harmonic in character, the pressure of the air on the
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side of the disec away frem the pipe rising very suddenly as
a hole comes opposite the pipe and falling very suddenly
when the hole has passed, instead of the gradual harmonic
rise and fall. But the wave-form of these waves, as Fourier’s
theorem shows, might be made by adding the ordinates of the
wave-forms of harmonic waves 11 feet, 22 feet, 21 feet, &e.,
in length. So that harmonic waves of these lengths are
harmonic components of the waves from the dise, although
to produce real harmonic waves X! feet long would require a
movement repeating itself exactly 300 times in each second,
and nothing that happens at the source is repeated with this
frequency.

56. Resultant Tones—We may go further than this, and
say that there are always, among the imaginary harmonie
components of a wave-system, some which could not really
be produced by any vibration which the source of sound
could execute. The phenomenon of ¢ resultant tones” is one
instance of this. As stated in Art. 37, the principle of
superposition is not eractly true except for infinitely small
vibrations. If there are two sources, A4 and B, each of which
would by itself produce intense harmonic waves, the wave-
form of the actual waves can only be approximately made by
adding the harmcenic wav e-forms of the waves which 4 and
B would produce separately. It can, as Fourier’s theorem
shows, be exactly made by adding harmonic wave-forms, but
some others are required besides those of the waves which
could really be produced by A and B separately. The most
important of these additional harmonic curves are wave-forms
of waves which might be produced by two other sources
vibrating har nmmeallj with frequencies which are respectively
the sum and difference of the frequencies of 4 and B. The
actual waves have therefore four imaginary harmonic com-
ponents, and the frequencies with which the waves of these
harmonic components would arrive, if they were real, are (if
we call the frequencies of A, B, @ and & 1‘espec:tivelyj a, b,
a+b, a—b. As stated above, waves may produce a distinct
sensation for each of their harmonic components; so that
there are two additional sensations when A4 and B vibrate
together, which cannot be produced by cither separately.
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These additional sounds are called respectively the summation
and diffcrence tones.

57. Change of Components.—As stated in Art. 36, waves
change their form a little as they travel. At some distance
from the source their form cannot be made by adding the
same harmonic curves which add up to their form near the
source. In other words, the harmonic components change as
the waves travel ; the components at a distance are not the
same as near the source. DBut if the fundamental is onc of
the components at one place it always 1s so at any other
place.

58. Different Wave-systems with same Components.—
As shown in Figs. 33, 34, the same harmonic curves, in
different relative positions, add up to quite different forms.
So that two wave-systems, of quite different wave-forms,
may have the same harmonic components, in different relative
positions. Two such wave-systems set the same bodies in
resonant vibration, and therefore cannot be distinguished
from each other by merely observing which of a series of
resonators they excite.

In this chapter we have considered chicfly the rise and fall
of pressure on a body as waves pass it, because 1t is to changes
of pressure that the resonant vibration of the body is directly
due, and the chief use of Fourier’s device is to determine
what bodies will be set in resonant vibration. But the
vibration of the particles of the air as the waves pass may
also be represented by a curve, and may therefore be con-
sidered as the sum of a number of harmonic vibrations, of
frequencies which are muitiples of the frequencies of the
actual vibration. The curve which represents the movement
of a particle of air (the displacement curve, Art, 3) is not
the same as the curve which represents the rise and fall of
pressure in that particle, which is the same as its velocity
curve (Art. 15). The two curves, however, can always be
made by adding the same harmonic curves in different relative
positions. So the harmonic components of the vibration have
the same frequencies as the harmonic components of the
change of pressure,
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The constitution of a mnon-harmonic pressure-changé
means the frequencies and amplitudes of its harmonie
components without reference to their relative phases, and
the same term is applied to vibrations, wave-systems, &e.
So that the vibrations, pressure- ch*m'ws or wave-systems
represented by the dotted curves in 1*1{-'-‘& 33 and 84 are
said to have the same constitution, tht::ruﬂ'h not the same
character.

By the aid of Fourier’s Theorem we can often simplify
problems in interference. - Thus in the first experiment of
Art. 40, instead of saying that absolute silence can only be
produced if the waves are symmetrical, we can say that it
an only be produced if the difference between the paths
ABD and ACECD is an odd number of half wave-lengths
for each component of the actual waves, which obviously
can only occur if the components are all odd harmonics of
the fundamental. By comparing Figs. 33, 34, 15, we see
that waves with only odd harmonic components are sym-
metrical, the wave form of the rarefaction being that of the
condensation inverted, but that this is not the case if an
even component is present.



CHAPTER VII.

e

THE EAR AND HEARING.

59. Structure of the Ear.—The rise and fall of pressure
which occur as sound waves arrive at the ear, produce, by
their effect on its structures, the sensation of sound, and the
nature of this sensation depends on the nature of the rise and
fall of pressure; in other words, on the character of the
sound waves. We may, therefore, learn much about sounl
waves from the sensations they produce. But, to understand
what physical facts about the waves are indicated by different
sensations, we must know something about the structure of
the ear.

This apparatus is a very complex one, but it is constructed
on quite simple principles. The external ear, or pinnrae, has,
in ourselves, no connection with hearing, which is not affected
by its removal ; but in many animals 1t is funnel-shaped, and
1t then serves to increase the intensity of the vibration, in a
way explained in the next chapter. A funnel-shaped pinna
is also useful for ascertaining the direction from which the
waves come. From the pinna a tube, called the meafus, in
man about 1} in. long, leads directly inwards, and is closed
at the inner end by a stretched membrane, the 2 YmMpanum or
drum of the ear. This membrane is connected by a chain of
three small bones to another membrane, the fenestra ovalis,
which forms part of the wall of the hearing chamber, or
cochlea. |

The principle of this hearing chamber may bz understood
if we imagine a long, low, narrow building of two storeys (a
ground floor and one above it), having at one end two doors,
one into the ground floor, the other into the upper storey.
The floor which separates the storeys is not complete ; it does
not extend quite to the further end of the building from the
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doors, and along one side of the building it does not reach, as
a solid floor, up to the wall; along this side, however, but
not at the end, it is completed by two sheets of membrane,
one completing the ceiling of the lower room, the other the
floor of the upper one; between these membranes there is a
space, which is entircly shut off from the rooms, since the
membrancs meet and join at the end furthest from the doors.
The lower and upper rooms are in free communication at the
end furthest from the doors, where the floor between them 1s
entirely wanting. The doors are thin and flexible. The
whole space inside the building is filled with water.

In the space between the two membranes there are about
3000 rods of different lengths; these stand on the lower
membrane, in two parallel rows running its whole length ;
they are fastened at their lower ends to the membrane on
which they stand. The rods in each row lean towards the
other row, and at their upper ends cach touches, and is joined
to, its fellow in the other row; each such pair is free except
where the lower ends arc attached to the lower membrane.
The whole series forms ‘“a sort of gable roof.”

If in such a building the thin material of the door of the
upper storey was pushed in, a wave, very similar to an
ordinary water wave on a canal, would travel all along the
upper room to the further end, depressing all portions of the
membranous part of the floor in turn as it passed along ; as
the liquid 1s incompressible, the membranous ceiling of the
lower room would be forced down at the same time, and the
flexible door of the lower room would be forced out. Every
movement of the door of the upper room produces a move-
ment of the membranous part of the ceiling of the lower and
of the rods supported by it, and if the door is made to vibrate
regularly, any rod whose natural vibration period corresponds
will be set in resonant vibration.

In the actual ear, a chamber constructed on a principle
similar to the building above described is coiled into a spiral
so close that one side of the building, where the solid
floor is complete, becomes a mere central pillar. The cham-
ber resembles a snail shell in form ; hence the name cochlea.
The upper door is the fenestra ovalis already mentioned ; the
other is called the fenestra rotunda. The rods are called the
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fibres or rods of Corti. A nerve-filament from the brain is
connected to each pair of rods.

If the cochlea was uncoiled and straightened out, a longi-
tudinal section of it would be something like Fig. 35 (&), and
a transverse section something like Tig. 35 (4); but these
figures merely indicate the general arrangement, not the
proportions of the parts.

When sound waves reach the tympanum, it vibrates, and
its movements cause corresponding, but smaller, movements

(a) Longitudinal section. (b) Transverse section.
Fig. 35.
8V, 8T, Scala vestibuli, and Scala tympani, the two storeys; f.o.,
fenestra ovalis; 8, stapes, the last of the chain of bones connecting
the fenestra ovalis to the tympanwm ; fr., fenestra rotunda ; 8C,

Scala cochleae, the space between the membranes; m.b., membrana
basilaris, to which the rods are attached.

of the fenestra ovalis,” with which it is connected. These
movements are transmitted to the liquid which fills the
cochlea, and to the rods which are bathed in this liquid.
The sensation of sound depends on the vibration of these
rods; usually on their resonant vibration, since ordinary
sound waves do not produce sufficiently great vibration unless
the effects of a number of waves are added by resonance.
There is no way of ascertaining whether the resonant vibra-
tion of each rod produces a separate sensation, because we
cannot make one rod vibrate alone. As the rods are of small
mass, and move with considerable friction in the liquid, the
resonant vibration caused by the movements of the liquid is
not much stronger in the rod whose free-vibration period
exactly corresponds than in a number of others whose periods
are not very different (Art. 48). Harmonic waves, there-
fore, set in resonant vibration not one rod, but a group of
consecutive rods. The resulting sensation is, however,
always a simple one; it is only when two groups of rods
8D, H
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vibrate, while intermediate ones do not, that we have the
sensation of hearing two sounds at once, and this cannot be
caused by harmonic waves.

Seveml objections have been raised to the explanation
given above. 1t has been stated that the organ of Corti
is absent in birds (though the contrary is also main-
tained), and also that fibres so short as the rods of Corti
cannot have such low frequencies as are required by the
explanation. Many persons believe that the fibres of the
basilar membrane itself, and not the rods of Corti, are
the resonant bodies. It is not universally admitted that
the ear acts by resomance. The telephonie theory is that
each wave, when it reaches the basilar membrane and its
associated structures, sends a nervous impulse to the brain,
and that the sensation depends on the frequency with
which these impulses are received. It will be seen that
this view differs radically from the resonant theory. On
the resonant theory periodicity extends only as far as the
basilar membrane; the nervous impulse sent to the brain
i1s not periodie, and the pitch of the sensation depends on
which nerve-fibre is stimulated, not on how it is stimulated,
so that if the nerve-fibre belonging to the rod of Corti
whose natural frequency is 200 could be stimulated in any
other way, for instance by a non-periodic stimulus such
as an electric current, we should hear the note which is
usually produced by 200 waves per second, though nothing
would really be repeated with that frequency or repeated
periodically at all. On the telephonic theory the nervous
impulses transmitted to the brain have the same frequency
as the waves, and the sensation depends on the frequency
of these nervous impulses, so that no non-periodie stimula-
tion could produce a sensation of definite pitch. As the
telephonic theory does not profess to explain any of the
observed relations between waves and sensations of sound,
it hardly admits of experimental proof or disproof, but the
rescnant theory is more in accordance with analug}r, since in
other cases the stimulation of a particular nerve produces a
particular kind of sensation, irrespective of the nature of the
stimulus ; a blow on the eye produces the sensation of light.

In the following pages we speak of the sensation as due
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to the resonant vibration of the rods of Corti, without
meaning to imply that this theory is the correct one.

60. Pitch.—The sensation differs according to the fre-
quency of the vibration. This differenceis called a difference
of piteh, and the sensations produced by harmonic waves of
greater and smaller frequency are said to be sensations of
higher and lower pitch respectively. There seems no rela-
tion between the ordinary meanings of the words ‘‘ high ”
and ‘“low” and the sensations produced by waves of
different frequencies arriving at the ear; probably the
names are derived from the sensations felt in the vocal
organs in producing such waves,

Strictly, the term pitch is applied only to the sensation,
not to the vibration which produces it, but the term is often
loosely used as equivalent to frequency.

That pitch depends on frequency of vibration may be
ghown by fitting two toothed wheels, with different numbers
of teeth, on the same uniformly revolving axle (the axle of a
heavy top answers well). If a card is held against the
wheels in turn, the one with more teeth gives a mnote of
higher pitch.

Non-harmonic waves produce in the ear the same effect as
on any other system of resonators ; that is, they set in reson-
ant vibration all the rods whose frequencies of free vibration
correspond with the frequencies of any of their harmonie
components. The resulting sensation differs very much in
different persons, and even in the same person, according
to the amount of attention he gives. A person who has been
musically trained, and listens attentively, will generally be
conscious of hearing, at the same time, the different sounds
which real harmonic waves, similar to the harmonic com-
ponents, would produce separately. With less training or
attention, only a single sensation is perceived, which usually
seems to be of rather higher pitch than would be produced by
harmonic waves of the same frequency, but is not exactly
like the sensation produced by harmonic waves of any fre-
quency. There is then a difference between sensations
produced by waves of different forms, even if they are of the
same frequency, and this is called a difference in the quality
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of the sound. The terms character, timbre, clang-tint, are
used by different writers as equivalent to quahty

61. Quality.—It 1s this difference in the quality of the
sensations which enables us to distinguish between con-
tinuous notes of the same frequency prmluoed by different
instruments, a flute and a harmonium, for instance, though we
may be qulte unable to say which is of higher plteh But
where the sound is not continuous we are aided in our
judgment about its origin, by the way in which the sound
begins and ends.

Two wave-systems which are exactly similar 1n frequency,
amplitude, and wave-form must give rise to the same sensa-
tion, for there is no respect in which the two can differ. But
it does not follow that two wave-systems of different wave-
form will produce different sensations.

Quite different curves may be produced (Art. 58) by adding
the ordinates of the same harmonic curves in different rela-
tive positions, and waves of these different forms set the same
resonators in vibration. If the rods of the ear were indepen-
dentresonators, it is probable that two wave-systems of different
wave-forms would produce exactly the same sensation, if
their wave-forms were such as might be formed by adding
the same harmonic curves in different relative positions. 1f
this was the case, we could say that the quality of fhe sensa-
tion produced hy non-harmonic waves depended on the
frequencies and amplitudes, but no¢ on the relative phases, of
their harmonic ccmponents.

It was Helmholtz’s view that this actually was the case,
and he designed the following experiment to prove it. He
had 13 tuning-forks, whose frequencies were in the ratios
1:2:3:4: &c., mounted each in front of a resonator (Art.
54) of corresponding frequency ; the openings of these reso-
nators could be closed by sliding doors. All the forks were
kept in continuous vibration by the same momentary electrie
currents passing at regular intervals round electro-magnets
placed close to the prongs ; the interval was an exact multiple
of the period of the slowest, and therefore of every other,
fork ; and, as the force varied non-harmonically, it produced
resonant vibration in them all (Art. 46). The sound of any
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fork was hardly audible, except when the door of its resonator
was open. Helmholtz first determined, by the method
described in Art. 54, the harmonic components of some sound
of marked and peculiar quality (say that of a trumpet) which
was of the same frequency as the slowest of the forks. He
then opened the doors of the resonators opposite the forks
whose frequencies corresponded to the harmonic components
of the sound of the trumpet, and found that the sound from
these resonators vibrating together was similar in quality to
that of the trumpet. Now in this experiment the harmonic
waves from the resonators would not, unless by accident, be
in the same relative positions as the harmonic components of
the waves from the trumpet; there was, therefore, usually
no resemblance between the wave-forms of the two wave-
systems. The fact that the sensations were similar seemed
to prove that waves of different form produced the same sen-
sation if they could be made of the same harmonics in different
relative positions.

This experiment is often described as the synthesis of a
given non-harmonic sound. It is, however, only the sensa-
tion, not the wave-system, which is reproduced, so that the
experiment is purely a physiological (and psycholegical) one.
There is no physical resemblance whatever (except in length)
between the original waves and Helmholtz’s copy of them,
and if we saw sound waves instead of hearing them, it would
be obvious that they were tot-lly unlike. The apparent
resemblance i1s due simply to the very imperfect way in
which the ear distinguishes between waves of different form,
just as the apparent resemblance between the white lights
produced by adding different pairs of complementary colours
1s due to the imperfect way in which the eye distinguishes
between non-barmonie light waves.

Though Helmholtz failed to detect any difference in the
sensations produced by the trumpet and by the forks, itis not
impossible that resonant bodies which, like the rods of
Corti, are all connected to the same membrane may
vibrate differently according to the relative phases of the
different harmonic components, and though Helmholtz has
shown that this difference will be small, there is some
experimental evidence to show that waves having the same
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harmonic eomponents in different relative positions are
sometimes distinguishable by the ear. It is therefore best
to state that the quality of the sensation depends on the
wave-form of the waves which produce it, but that
waves of different wave-form produce nearly the same
sensation it there 1s no difference except in relative
position (phase) between the harmonic curves of which the
different wave-forms can be built up. The sensation pro-
duced by harmonie waves is by some called a fone, that due
to non-harmonic but periodic waves a nofe. A note may
be regarded as a number of tones heard at the same time.

62. Limits of Audible Sound.—Waves arriving with a
frequency greater than 38,000 per second produce no sensa-
tion of sound., Harmonic waves of smaller frequency than
about 83 per sccond also produce no sensation,® but non-
harmonic waves of lower frequency than 33, if they have a
harmonie component of greater frequency than 33, may pro-
duce the sensation corresponding to the frequency of thatcom-
ponent. These limits vary considerably in different persons.

The ear is very sensitive to differences of frequency be-
tween sounds of frequencies such as are commonly produced
by the voice; a change of } per cent. in the frequency of
such sounds is easily detected. Outside the limits of the
voice, the sensitiveness of the ear to changes of frequency
is much smaller.

63. Musical Sound and Noise.—When a series of travel-
ling condensations and rarefactions is irregular, and cannot
be divided into waves equal in length and similar in wave-
form, the sensation produced is that of noese, and has no
recognisable pitch., This may be shown by pressing a card
against a revolving wheel notched at the edge with irregu-
lar teeth of different sizes.

64. Loudness.—Differencesof intensity in the wavesreach-
ing the ear produce differences of loudness in the sound heard,
but no simple relation between the intensity and the loudness
can be stated, loudness, indeed, like all sensations, not admit-

* It is sometimes stated that the waves, when very slow, are
heard as separate shocks, but there seems no evidence of this, at
any rate in the case of harmonic waves.
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ting of quantitative measurement. Of two wave-systems
of the same frequency and wave-form, the one of greater
intensity sounds the louder, but this is not necessarily the case
if the frequencies or wave-forms are different. Waves of very
low and very high frequency (near the limits of audible
frequency) sound not nearly as loud as waves of the same
intensity which are nearer the middle of the audible range.

65. Discord.—When two sources sound together which
would, separately, produce harmonic waves of nearly equal
length, the actual wave-system consists of alternate groups of
more and less intense waves (Art. 42). As these reach the
ear, the sound heard keeps increasing and diminishing in
loudness ; these variations are called beafs. These beats may
be considered a conscquence of the fact, explained above, that
there 1s not much difference between the intensity of the
resonant vibration of the rods of Corti caused by waves of
exactly their own free-vibration period and that causel by
waves of nearly their own period. So that, if two sources of
sound have nearly equal vibration frequencies, there are rods
which either of the sources would set in resonant vibration,
the frequency of this vibration being always that of the
source, not the free-vibration frequency of the rod (Art. 48).
The movements which these rods would be executing if one
of the sources was vibrating alone are sometimes in the same
direction, sometimes in the opposite direction, to those which
they would be executing if the other source was vibrating
alone, and the actual movement of these rods keeps increasing
and diminishing.

From this it will be seen that no beats will be heard if the
frequencies of the sources are so different that they do not
cause resonant vibration of the same rods. This is found to
be the case when the difference of frequencies is more than L
of the smaller frequency.

These constant variations in the intensity of the sound,
like the variations in the light of a flickering or ¢ bobbing
flame, are very unpleasant within certain limits of frequency.
These limits are different for sounds of different pitch. With
very low or very high notes, the beats are hardly noticed.
For notes of medium pitch (within the range of the voice)
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they are hardly distinguished if less frequent than 2 per
second. From 2 to 10 per second, each beat is heard
separately, but the effect is not very unpleasant. Above 10
per second the beats are no longer heard separately, but
produce the peculiar jarring sensation known as discord. The
unpleasantness of this increases with the frequency of the
beats up to a certain point, about 30 beats per second for the
middle of the voice-range. The effect then becomes less
unpleasant, with increasing frequency, and becomes imper-
ceptible when the beats are more than 1 to every 4 vibrations,
or when they are more than about 80 per second, whichever
is first reached.

As each rod is set in vibration by harmonic components
nearly agreeing with itself in frequency, just as if these
components were the whole sound, we have the sensation of
beats or discord when two non-harmonic wave-systems arrive
together, if any two among their harmonic components have
frequencies whose differences are within the limits just
given.

In consequence of this, non-harmonic wave-systems are
often discordant when harmonic systems of the same fre-
quencies would be concordant. A tuning fork vibrating
gently 200 time a second sounds quite harmonious with
one of any frequency above 240, since they do not affect
the same fibres. DBut a note of frequency 200 and one of
frequency 280 on a piano would be discordant, since the
third harmonie, 600, in the sound from the first would be
discordant with the second harmonie, 560, in the sound
from the second. Indeed, if we assume that all the possible
harmonics are present in each note, we shall find that there
will be discord between almost any two notes of moderate
frequency, and even between the different harmonics of
the same note if it is low enough. DBut if only the three or
four lowest harmonics of each note are intense enough to
affect the ear, we shall find that a combination of two
notes of moderate frequencies is usually concordant if the
frequencies are in a simple ratio, and discordant if not.
Thus 200 and 280 are discordant if the harmoniecs up to
the third are intense enough to affect the ear, but 200 and
250 have no discordant harmonics below 800 and 750, so
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that there is no discord unless the fourth harmonic of the
lower note is fairly strong, while 200 and 300 or 200 and
400 have no discordant harmonics at all.

Though the concord or discord of two notes thus depends
chiefly on their frequency-ratio and the harmonics present,
it also depends to some extent (owing to the fact that beats
more frequent than about 80 per second do not produce
noticeable discord) on absolute frequency. Thus 200 and
300 are concordant whatever harmonics are present, but
100 and 150, the same ratio, are discordant if the first four
harmonics of each are present, and in general the lower
the notes the simpler must be the ratio, or the fewer the
harmonics present, to avoid discord.

When the frequency of one note is double that of
another, the first is said to be an octave above the second,
for a reason which will appear shortly, and all notes whose
frequencies lie between any number » and 2z (inclusive)
are said to be ‘“in the same octave.”

When one note is an octave above another, all the har-
moni¢c components of the first are among the possible
harmonic components of the second; if the two notes
contain many harmonics, there is a sirong similarity
between the sensations produced, so that from the point of
view of sensation the first is often considered to be not a
different note from the second, but ‘‘the same note an
octave higher.”” This may be shown by fixing on a
revolving axle three toothed wheels, having respectively
say 60, 120, and 130 teeth. If a card is held in quick
succession against the first and second, a resemblance will
be noted in the sounds produced which is quite absent if
we press the card successively against the first and third,
or the second and third, although in the last case the notes
are much nearer in pitch than those produced by the first
and second, For this reason, two such notes are called in
music by the same name and are for most purposes
regarded as the same note,

Any notes of the same name can be sounded together
without discord ; indeed, this simply amounts to strengthen-
ing some of the harmonic components of the lowest, so
that the result is a note of the same pitch as the lowest,
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but of different quality. But any other combination of
notes within the same octave has harmonic components
whose frequencies are not multiples of the lowest, and is
different in its effect from a note of any quality.

66. Musical Scales.—A combination of two or more
notes sounded together is called a chord. If it produces
the jarring effect described above it is called a discord, if
not, a concord. Though a discord by itself, or if long
continued, 1s unpleasant, a series of discords following
each other aceﬂrdmg to certain rules may be pleasant, and
modern musical compositions usually consist largely of
discords. DBut it 1s essential that a series of discords
should lead up to a concord; concords form an essential
part of all musical compositions in which more than one
note is sounded at once. The scale, a series of notes used
in a musical composition, must therefore be so chosen that
concords can be formed from it. All musical scales consist
of notes related to each other, directly or indirectly, by
simple frequency-ratios. This is not entirely due to the
difficulty of combining other notes without discord, for
before harmony, or the pleasing combination of Imtes, was
attempted it had been found that melody, or the pleasing
succession of notes, required the choice of notes which are
now known to be related by simple frequency-ratios. This,
of course, cannot depend on beats, and is probably due to
the fact that when tlhe notes used are related in this way,
the same frequencies often recur, in various combinations,
among the harmonies. Both for melody and for harmony,
then, we must have simple relations between the frequencies
of the notes used, but the conditions for the two are by
no means identical, and a scale may be quite suitable for
melody, and not for harmony. Aswe saw above, it is also
a condition for harmony (though not for melody) that we
should be able to produce the notes used without intense
harmonies higher than the third; notes without any
harmonics higher than the :Eundamentul, however, are
wanting in expression,

In any musical scale the frequencies of all the notes are
related, directly or through other notes, to the frequency
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of one note which is called the Zey-nofe or fomic of the
scale. All scales, n.nﬂi&nt and modern, include the notes
whose frequencies are § and 4 of that of the tonic; these
are called the dominant and subdominant 1eqpect1vely The
other notes of the scale have been very var mualy chosen,
both as to number and relation, in different times and
countries ; most are more directly related to the dominant
and subdominant than to the tonic. The scales now used
in western Europe are made, with various slight modifi-
cations, from a series of notes whose frequencies are in the
ratios of the numbers
24, 27, 80, 32, 36, 40, 45, 48,

the last of these being the lowest note of a similar series
having the same ratios, and so on, both upwards and
downwards. On the system called the ‘“moveable Do”
system, these notes are called (whatever their actual
frequencies) by the names

Do, Re, Mi, Fa, Sol, La, Si, Do,
the names being repeated in the octaves above and below.
(Other spellings of these names are also used, and Te is
often written for Si, and Ut for Do, the latter especially in
foreign works.) When it is necessary to distinguish between
notes of the same name in differest octaves, this is done by
dashes above or below the name ; thus Mi” means a note
two octaves above the note indicated by Mi.

Any one of these notes might be chosen as tonie, but
the scales which have survived as those in which the Do
and the La are respectively chosen as tonic. If the Do is
chosen as tonie, the scale is called the major diatonic scale.
Its notes have to the key-note the ratios

o Re Mi Fa Sol La Si Do
1 L] 3 £ £ i1 15 9
B + b -1 3

If the La is chosen as key-note, there isno nﬂte having a fre-
quency exactly 4 that of the key-note, so the Re is shghtly

modified. The ratios of the notes to the key-note are then

a8 Do Be Mi Fa Bil Ia
1 R 4 & AR 2
This is the original form of the minor diatonic scale. In

modern wmusic the ¢ is usually changed to 3%, and the %
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sometimes changed to %, making these notes the same as
in the major scale.

When two notes whose frequencies are in a simple ratio
are sounded, either together or in turn, a special relation
is perceived between them, owing to the fact that some of
their harmonics are identical. This relation is always
recognisably the same for the same ratio, when the actual
frequencies are changed, and is different for each different
ratio; it is called the interval between the notes. The
chief intervals occur among the relations of the notes of
the diatonic scales to the key-note, and are named from
the positions of these notes in the scales, the key-note
being counted as 1.

The interval between any two notes of the diatonie scale
1s named according to the number of notes of that scale
from one to the other, both inclusive; thus the interval
between Mi and La is called a fourth. When two different
intervals have the same name, the larger is called major
and the smaller minor; thus the interval between Do and
Mi (ratio 5 : 4) is called a major third, while that between
Mi and Sol (ratio 6:5) is called a minor third. Where
one of two nearly equal intervals is much simpler than the
other, the simpler is distinguished as perfeet; thus the
mterval between Do and Sol (ratio 3 : 2) is called a perfect
fifth, while the interval between Si and Fa' (ratio 64 : 45)
is a diminished fifth. The diatonic scale with its notes in
the exact ratios given above, and the intervals of that scale,
are called just to distinguish them from tempered scales and
intervals such as those described 1n the next section. The
terms eighth and second are not used; 2 :1 is called an
octave, 9 : 8 a major tone, 10 : 9 a minor tone (¢.e. the
relation between two notes of the same frequency) unison.

If there are any three notes, , %, %, in ascending order,
the interval between # and =z is called the sum of the
interval between z and ¥, and the interval between  and z.
If N, N, N. are the frequencies of the three notes,

‘111% — _‘EEE b4 P"_E
IR AT

two intervals is the product of the ratios corresponding to

or the ratio corresponding to the sum of
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the intervals themselves. Thus the sum of a perfect fifth
and a perfect fourth is an octave, since § X $ =%. For
many purposes it is more convenient to take the logarithm
of the ratio of the frequencies as the numerical measure of
the interval. Then the logarithmic measure of the sum of
two intervals is the sum of the logarithmic measures of the
intervals themselves. Thus a major third added to a
perfect fourth makes a major sixth, since log £ + log ¢ =
log §, and a major ninth is twice as great as a perfect fifth,
since log § = 2 log £. |

- The only combinations of more than two mnotes within
the same octave which involve no dissonance, if the first
three harmonics of each note are present, are in the ratios
4:5:6 and 10:12:15. The former is called the major
{riad, the latter the minor #riad. The diatonic series
includes (in each octave) three major triads, viz,:—
Do, Mi, Sol; Fa, I.a, Do’; Sol, Si, Re/, and three minor
triads, La,, Do, Mi; Re, Fa, La; Mi, Sol, Si; the second
of these being very slightly inaccurate unless the Re is
modified. In either the major or minor scale the tonie,
subdominant, and dominant are each the lowest note of the
triad, major or minor; these triads are called the tonie,
subdominant, and dominant triads respectively. In either
scale every note forms part of at least one of these triads.
In the major scale these triads are all major; in the minor
scale the tonic triad is minor, and the others may be so.

Each triad consists of a major and a minor third, but
in the major triad the major third is below the minor, and
vice versa.

Of the many other scales which were used before the
development of harmony led to the disuse of scales which
did not allow a sufficient variety of concords, the most
important was the Pythagorean, whose notes have to the
key-note the ratios

1 ¥ L k| 1% 188 -2,
every note of which is derived from the key-note by taking
octaves and fifths upwards or downwards. An approxima-
tion to this scale is often used by soloists, using instruments
without fixed notes, like the violin.

The musical effect of a composition depends chiefly on
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the order and duration of the chords and intervals which
succeed each other, .. on the 7elative, not the absolute,
frequencies of the noteq at least to the extent that the
composition is recﬂgmqa,bly the same when the frequencies
of all the notes are raised or lowered in the same ratio,
Thus any series of notes of prc e durations, whose frequen-
cies have the ratios of 1, 44, &, 44 1, & 4, 1, %, %, 2,
1, 1%, &, 1§ &, ete., is recng‘msed as the air “Men of
Harlech.” All these are diatonic intervals, so that if we
liad an instrument whose notes formed a diationic scale
(having, for instance, notes of the frequencies 240, 270,
300, 320, 360, 400, 450, with the doubles and halves of
each of theae, and so r:)n) we could produce on it the air
“Men of Harlech” and many other simple compositions.
But an instrument with only these notes would be very
restricted in its use. We could produce on it the air
“Men of Harlech ” by sounding notes of frequencies 240,
225, 200, 225, ete., or if we preferred it higher, we might
use notes of twice these frequencies, but we cannot get
notes, having the right ratios, of any intermediate
frequencies. The pleasurable effect of a musical com-
position depends largely on the appropriateness of the
absolute pitch of the notes used, and absolute pitch is
of still greater importance when the instrument is to
accompany the voice, since a small change of absolute
pitch may make some of the notes too high or too low for
the singer to produce. It is therefore very probable that
neither the lower nor the higher series of notes gwen
above would be satisfactory, though either would g

the required air. To be satisfactory in this 1eapeot an
instrument would require to be able to produce the notes
of any one of at least six diatonic scales. DBesides this, for
any but the simplest musical effects, it is necessary to be
able to pass from one scale to another whose key-note is
related to that of the first, and so on, and in most music
notes are used occasionally which do not belong to the
diatonic scale. To fulfil all these conditions, and yet
retain the exact ratios of the notes in each scale, we
should require mnot less than twenty mnotes in each
octave, a number not easily practicable in instruments
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with fixed notes. In such instruments, therefore, a
tempered scale is used,

67. Tempered Scales.—A tempered scale is one in which
the frequencies of the notes are not exactly in simple ratios;
by sacrificing this advantage it is possible to make a
sufficient variety of scales out of only twelve notes to the
octave. The temperament most in use is the equal tem-
perament,

The equal temperament scale consists of a series of notes
having the ratios

Do  Re M Fa Sol La 8 - Do
1 oif o1t 2‘{% 917 ol% 2‘1{% 9
or 1 1:123 1-260 1:335 1-498 1-682 1888 2

If we compare these with the just diatonic ratios
(L1125  1-250 1:338 1-500° 1-667  1-875 2,
we see that none of them differ by as much as 1 per cent.,
so that when two notes of the tempered scale which corre-
spond to a perfectly harmonious combination on the just
scale are sounded together the beats are not rapid enough
to be disagreeable. It is this very remarkable approxima-
tion of the powers of 'y/2 to simple fractions which
makes an equally tempered scale possible. The most
important intervals, the fourth and the fifth, are, by a curious
coincidence, the nearest to those of the just scale, being

within about 1 per cent.
In key-board instruments a series of notes is provided,

the frequency of each of which is 9™% times that of the note
below it; any one of these notes may be taken as the key-
note of either a major or a minor scale,

Thus if we take any note of the series as Do, and count
upwards, reckoning it as first, the third, fifth, sixth, eighth,
tenth, twelfth, and thirteenth notes of the series will
correspond very nearly to the Re, Mi, Fa, Sol, La, Si and
Do’ of the just distance scale, so nearly that most persons
do not detect the difference. (The Re of this scale is
between the Re of the just major scale and the modified
Re of the just minor scale, and serves for either.) So that
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from this series of notes we can make twelve major and
twelve minor scales, whose key-notes differ in frequency,
each from the next, by less than six per cent., and we
can take any note of any scale which we are usmg, as the
keynote of a fresh scale, which may be either major or
minor,

It is usual to let one of the notes have a frequency about
260, and to denote it by C, and the notes of the majur scale
which has it as key-note by the letters D, E, F, G, A, B.
(The notes of this scale are the white notes of the pmnc})
The remaining notes are denoted by the letter of the note
below with the sign § (sharp) or by that of the note above
with the sign o (ﬂa,t)

68. Resultant Tones.—It was shown in Art. 55 that if
there are two bodies, vibrating in the same air with
frequencies n, and #n,, the pressure-change in the air will
have components of frequencies n, 4 n, and n; — n,, besides
multiples of »; and »,, and these will of course produce the
corresponding sensations. These sensations are called
physical resultant tones, that corresponding to #, — #, being
called the difference tmw and the other, which is less intense,
being called the summation tone.

Since the physical resultant tones depend on the ampli-
tude of vibration being too large for the principle of super-
position to be applied, they must be of extremely small
intensity except when the same air is strongly agitated by
both the sources of sound. In fact the tuning-fork method,
described in Art. 106, failed to detect them in any case in
which the sources were really independent, even though
near together, though they were easily detected when two
strings vibrated on the same sounding box, or when air
was blown from the same air-chamber through two rows
of holes in a rotating disc. The tuning-fork can detect
sounds far too faint to affect the ear, yet the ear can often
hear resultant tones which the fork does mot show. It
seems to follow that resultant tones are sometimes produced
in the ear itself, and Helmholtz had pointed out that this
would be the case. It can be shown that if a pressure-
change, whose harmoni¢ components are », and n: occurs
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at the surface of & membrane which is more easily dis-
placed one way than the other, the forced vibrations of the
membrane will have harmonic components of frequencies
ny — n, and 7, 4+ n, as well as #, and »,. The tympanum
is such a membrane. The new harmonic components
introduced by it are called physiological resultant tones. It
seems to be proved by the experiments just mentioned
that the summation and difference tones heard when two
independent sources vibrate are almost entirely ear-made.

Both physical and physiological resultant tones increase
in intensity in a much greater ratio than the sounds due to
the sources separately, so that they are much more easily
detected when the sounds themselves are loud.

Owing to resultant tones, it often happens that two notes
are discordant when sounded together, which on the prin-
ciples explained in Art. 65 we should expect to be concordant:
Thus closed cylindrical organ pipes (which produce only
the odd harmonics) of frequencies_400 and 780 have no
harmonics which can clash, but the difference tone 380 is
discordant with 400, and the summation tone 1180 with
the odd harmonic 1200. Discord depending on resultant
tones differs from discord depending on harmoniecs in being
hardly noticeable unless the sound is loud.

The summation tone may be audible when both notes
are below the limits of audible frequency, and the difference
tone when both notes are above the limit.

The difference tone is sometimes used in musiec when a
lower note is required than the instrument can produce.
Thus organ pipes of frequencies 80 and 120, sounded
together, produce a note of frequency 40. This method
can only be applied with loud sounds.

69. Difference Tones and Beats.—The difference tone agrees in
frequeney with the beats due to the two sources, and, before Helm-
holtz’s investigation, 1t was usual to explain the difference tone by the
supposition that beats (variations of intensity) when they became too
rapid to be heard separately, produced the same sensation of tone as
variations of pressure of the same frequency. This of course left the
summation tone unexplained. The statement that beats produce a
tone 18 still sometimes made, but it is difficult to attach a distinct
meaning to it. If we produce beats of frequency # by sounding
together two sources whose frequencies differ by »n, we necessarily

8D, I
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produce a difference tone of that frequency, while there is no other
known mode of making the intensity of a sound vary » times a second
in which the pressure change produced has not a harmonie component
of frequency n. For instance, if the sound from a tuning-fork of
frequency 1000 is allowed to pass through a hole which is opened and
partly closed ten times a second, the sound on the other side of the
hole becomes louder and fainter ten times a second, so that beats of
that frequency are heard. The pressure-change in the air beyond the
hole repeats itselt completely only ten times a second, since though
the pressureactually rises and falls 1000 times a second all these pressure-
changes are not equal. The actual pressure-change, repeated com-
p]vti,]y ten times per second, has a harmonie Lmnpuncnt of that
frequency (Art. 52). If the hole is opened and closed 100 times a
second, the beats are too rapid to be heard separately, and a note {)f
frequency 100 is heard together with the note of the fork, but as there
is now a harmonic component of frequency 100 present it is not clear that
the note should be attributed to the beats. The only clear meaning of
the statement that beats produce a tone is that when two sources
vibrate together with frequencies whose difference is #, #n being within
the limits of audible frequency for vibrations, a note is heard, corre-
gponding in pitch to # vibrations, which does notinerease in loudness,
when the sounds are increased, more rapidly than the sounds, as the
difference tone does, But there scems no evidence of this.

11, instead of adding two harmonic curves where bends are of equal
heights, as in Fig. 32, we add two harmonic curves one of which
has higher bends than the other, the resultant curve is like the
third line in Fig. 32, but the crests are not equidistant, but are eloser
in the more intense parts than in the less intense parts, or vice versa.
It has sometimes been supposed from this that there would be a
difference of pitch, as well as of loudness, between the more intense
and the less intense parts of the waves from two unequal sources of
different frequencies. On the resonant theory of the ear, there should
be no difference due to this cause, since the less and more intense parts
have the same harmonic components, and the effect depends on the
harmonic components of the pressure change, not on how many times
a second the actual pressure rises and falls, The difference seems to
be actually heard, but another possible explanation is that the resonant
bodies of the ear (like stretched strings) have not the same free
frequency for large as for small vibrations, so that the fibre which
resounds most strongly to a loud sound is not the fibre which resounds
most strongly to a faint sound of the same frequency.



CHAPTER VIIL

REFLECTION OF SOUND.

70. Reflection with Change of Sign,— In Art. 11 we
described the transmission of a condensed or rarefied condition
along a row of elastic bodies such as the carriages of a train.
We will now consider what will happen when the pulse
reaches the last carriage, which we will call Z. As in the
latter part of Art. 11, we will suppose Z in contact with a
fixed obstacle, such as the end of a siding, and that all the
carriages are to some degree compressed between the engine
and this obstacle. We will also suppose ourselves looking
from a position such that the direction from A4 to Z is from
right to left, as in Fig. 16.

When a condensation, produced in 4 by a push of the
engine, reaches Z, Z moves 1n 1ts turn to the left, compress-
ing the buffers between it and the end of the siding. When
Z comes to rest, these are more compressed than those
between ¥ and Z, and therefore Z begins to move back again,
and stops only when it has transferred its condensed con-
dition to ¥ Then ¥ moves in the same direction, and in
this way the condensation travels back again to 4, each
carriage moving in turn a short distance towards the engine.

In the same way, if a rarefaction travelled from 4 to Z, Z
would move in its turn towards 4, but, as the end of the siding
is fixed, this leaves the pressure between Z and the end of
the siding less than that between Z and ¥, and so Z moves
back, ¥ follows, and a rarefaction travels back to 4, each
carriage moving a short distance away from the engine.

In these cases it will be noticed that the condition that
travels back is of the same kind as that which travelled to Z
from A, but the direction in which the carriages themselves
move is reversed when the wave travels back again. When
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this is the case, the wave is said to be reflected with change
of sign. It should, however, be noticed, that as the direction
of movement of a wave is determined when the direction of
movement of the substance and the kind of pulse (condensa-
tion or rarefaction) are given, the wave can only be reflected
by reversing the sign of one of these. So that ¢ reflection
with change of sign” is really reflection in which it is the
velocity and not the condensation of the undulating substance
which is reversed in sign.

Reflection with change of sign takes place not only at a
fixed obstacle, but at any point where the movement of a
smaller mass 1s transferred to a larger one. If there is a row
of trucks of which, say, those from 4 to F are empty, and
the rest loaded, then, when a condensation produced in A
reaches £, a smaller condensation travels on along the rest
of the train, while another condensation travels back from #'
to 4. The energy in these two condensations is equal to
that in the original condensation.

In exactly the same way condensations or rarefaction travel-
ling through the air (or any substance) are reflected when
they reach a substance of greater density. The greater and
more sudden the change of density the larger the proportion
of the energy which is reflected.

71. Reflection without Change of Sign.— When the move-
ment of one portion of an undulating substance 1s communi-
cated to another of smaller mass, a different kind of reflection
takes place. Suppose that there is a series of trucks of which
those from A to /' are loaded, while the rest are unloaded,
and that a push is given to 4 which compresses it. Each
truck from 4 to £ moves in turn to the left, and is brought
to rest by the increasing pressure between it and the next.
When # moves on in its turn, and the pressure between F'
and @ begins to inerease, ¢, being lighter, moves on more
quickly than the heavier trucks did, so that the pressure
between F and G does not increase so fast as that between &
and ' did; " therefore moves further than the other loaded
trucks before it comes to rest, and & moves the same distance
as F. This evidently leaves /' in an expanded or rarefied
condition, and also leaves a greater space between ¥ and &
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than between £ and D). FE therefore begins to move towards
F, expanding its buffers as it does so, and then D towards Z,
and so on, and in this way a rarefied condition travels back
from #'to A, while a condensed condition travels forward from
G along the rest of the train. As before, these two contain
together the energy of the original condensation.

In this case it is to be noticed that the reflected pulse is of
the opposite kind to the original one, rarefaction instead of
condensation, but that the movement of the trucks when the
reflected pulse reaches them is in the same direction as it was
when the original condensation reached them. The conden-
sation is reversed in sign, the velocity is not. This is called
rcflection without change of sign. A rarefaction arriving at #
starts a condensation back in the same way.

Reflection of this kind happens when a wave which has
been travelling in 2 dense medium reaches a rarer one, for
instance, when sound waves produced under water reach the
surface, or when waves travelling in air reach the surface of
a gas flame. Every condensation that arrives starts a rare-
faction back, and vice versd.

In either kind of reflection, each pulse which arrives at
the second medium sends a pulse forward into the second
medium as well as one back again through the first, though
the forward pulse may be of very small intensity if the
difference of density is great. This forward pulse in the
second medium is of the same kind as the original pulse in
the first medium, neither the kind of pulse nor the d.rection
of movement of the substance being reversed in it.

72. Reflection in Tubes.—As might be expected, the first
kind of reflection occurs when sound waves travelling along
a tube reach its closed end ; each pulse as it arrives starts one
of the same kind back. The second kind of reflection occurs
when sound waves passing along a tube recach its open end.

It is difficult at first to see why this should happen, since the air
beyond the end of the tube is not less dense than that in the tube,
but the reason is somewhat as follows :—In the case described in
Art.71 the reason why a condensation reaching F started a rarefac-
tion back again was that when F moved on, the pressure in front
did not increase so fast as it had done with the other heavy trucks,
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so that F moved further than they did. The same oceurs when a
pulse comes to the open end of a tube. Let 4B (Fig. 36) be a tube

Fig. 36.

of 1 sq. em. area of eross section, and let C'D be a thin layer of air in
the tuve. Suppose CD displaced 1 mm. to the right in 53}55 see.
At the end of this interval the effect will not have spread beyond
1 em. of the tube on each side of CD, so that an extra hundred cubie
millimetres of air have been forced into the cubic centimetre of
space immediately to the right of CD, and the pressure there
increased accordingly. But it a layer EF at the end of the tube
moved a millimetre to the right in 33155 sec., at the end of this
interval the condensation would affect all the air within a radius of
1 em. from the end of the tube, and only the same volume of extra
air, 100 cubic mm., has been added to this much larger space. The
rise of pressure to the right of EF is therefore nol nearly so great
as it was in the case of CD. So that when a wave of condensation
passes along 4B, and each layer of air passes on its energy to the
next and comes to rest itself, EF will not have expended all the
cnergy passed on to it by the previcus layer when it has moved tha
same distance as the other layers moved. EF will thersfore move
further than the other layers did, and so, while it transmits a con-
densation to the air in front, it will leave a rarefaction behind it,
which will travel back along the tube just as in the case of the
railway trucks. In the same way, a rarefaction reaching the end of
the tube spreads a rarefaction through the air beyond the end, but
starts a condensation back along the tube.

73. Illustrative Experiments.—Take a coil of hard brass

SO N MR B R
[
Junlinmin,

wire about 20 gauge, having (as it usually has when sold) a
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diameter of about 5 inches. Separate the coils so as to form
a close spiral, and suspend every fourth or fifth ring by two
threads to two parallel wooden rods 8 or 10 feet long, as
shown in Fig. 37, arranging the threads so that the turns of
wire hang about an inch apart. The longer the threads are,
the better; the distance between the rods may be about
equal to the length of the threads. (To make the figure
clearer the size and distance of the coils of wire are much
exaggerated.)

If one end of this spiral is fixed to a wall, and condensa-
tions and rarefactions sent along it as described in Art. 19,
each pulse when it reaches the wall sends a pulse of the
same kind back. But when this pulse reaches the free end
from which it started, it is reflected again as a pulse of the
opposite kind. 3

The reflection of sound waves from the surface of a denser
medium hardly needs experimental iilustration ; echoes are a
familiar instance of it. Reflection from a rarer medium may
be illustrated by the following experiment :—

Arrange two tubes, each about 3 inches in diameter and
3 or 4 feet long, at right angles to each other, as shown in
Fig. 38. (Tubes of thick paper are sufficient.) Place a

Fig. 38,

watch at 4, and your ear at B, with a large book or some
newspapers between 4 and B to prevent sound travelling
direct. The watch will be nearly inaudible, but the ticking
becomes very distinet if a large flat. gas flame is placed at C,
with its plane vertical and inclined at 45° to 4 C and CB,



120 SOUND.,

74. Reflection in Open Air.—In the cases of wave-pro-
pagation which we have so far considered, the wave-fronts, or
continuous surfaces drawn through those points where the air
is in the same phase of its vibration, have been either com-
plete spheres or have been bounded at the edges by the walls
of a tube; in either case the wave-front can only travel at
right angles to itself; expansion in its own plane is impossi-
ble. But when wave-fronts, expanding through the air,
reach a fixed obstacle, only the pieces of the wave-fronts
which are stopped by the obstacle are reflected. We require
therefore to know how pieces of wave-front travel through
the air when they are not confined at the edges by the walls
of a tube.

Suppose we have a screen or wall ZF (Fig. 39) of some
material which does not transmit sound, and that in this
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(a) Fig. 39. (B)

screen there is a hole . T1f waves or shells of condensation
and rarefaction, such as 4 B, arrive at this sereen from a source
to the left of it, a piece of each wave-front passes through
the hole, and spreads through the air to the right of the
gcreen.  How 1t spreads depends on the relation between the
diameter of the hole and the distance between successive
shells of maximum condensation (wave-length). As each
shell of condensation arrives at the hole, the air in the hole

becomes condensed and moves to the right, exactly as it
would do if a solid piston fitting the hole moved to the right,

/
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and, if the distance between a wave-front of maximum con-
densation and one of maximum rarefaction is larger than the
diameter of the hole, a shell of condensation spreads spheri-
cally in every direction through the air to the right of the
screen, exactly like the waves produced Ly the vibrating
piston in Fig. 22 ; rarefactions spread similarly in their turn.
This is illustrated in Fig. 39 {(@); the thick circles are wave-
fronts of maximum condensation, the thin ones those of
maximum rarefaction. In this case the sound is audible at
any point. But, if the wave-length is much smaller than the
diameter of the hole, the piece of each shell which passes
through hardly spreads at all after reaching the other side,
but travels at right angles to its own wave-fronts* as shown
in Fig. 39 (b). In this case no sound is audible except at
points from which straight lines can be drawn to the source
of the sound ; we have in fact on the further side of the hole
a beam of sound in a definite direction from the source.

This may be considered as an instance of “ interference ”’ (Chap-
- H

Fig. 40.
ter I11.). Let H (Fig. 40) be any point from which the source of

* This would also be the case with the waves produced by a
vibrating solid surface if they were short compared to the surface,
but practically solid surfaces cannot be made to vibrate fast enough
for this, so that the waves spread from them in all directions.
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sound would not be visible, and let waves be arriving from the left
whose wave-length ig much smaller than the diameter of the hole.
Then the distances of H from different parts of the hole differ by
more than half a wave-length. We may suppose the hole divided
by cross lines into small holes, and we can pair off each of these
small holes with another whose distance from H is half a wave-
length greater or less. (It is not self-evident that they can all be
paired off in this way, but this 1s proved in works on Physical
Optics, where the subject of transmission of waves is more fully
treated.) Let J, K be such a pair. Then, if all the opening except
J was blocked up, waves would spread from J in all directions to the
right, and a condensation would reach H at the same moment that a
rarefaction would reach H if all the opening except K was blocked
up, so that, if Jand K are open together and the rest of the opening
blocked, there is no vibration at H. As this applies to every pair of
gmall holes, there ig no vibration at H when the whole opening is
free.

It is evident that this argument does not apply to a point guch as
P, from which the source would be visible through the opening, for
the different parts of the opening are all practically at the same
distance from P. 8o that there are waves from the opening in the
direction of P, but not in the direction of H. Also the argument
would not apply if the wave-length was greater than twice the
diameter of the hole, for then we could not find two parts of the
opening whose distances from H differed by half a wave-length. In
that case there would be vibration at H, wherever H was taken,
that is, the waves would spread in all directions from the opening.
There ig not a definite line between the two cases; the smaller the
wave-length compared to the opening, the less the pieces of wave-
surface which come through the hole spread sideways, and the more
nearly the vibration is confined to the regions from which the source
would be visible.

The part played by the screen is simply to limit the size of
the piece of each wave-front. It does not matter what limits
the size ; any limited piece of a travelling shell of condensa-
tion or rarefaction, if small compared with the distance
between two successive shells, spreads in every direction in
front of it, but a piece of a travelling shell which 1is large
compared with the distance between two shells advances at
rigcht angles to its own surface, and does not spread. As each
picce of shell is accompanied by a nearly constant quantity of
cnergy, the intensity of the sound diminishes very slowly
with distance when the pieces of shells do not increase in size.

The different behaviour of waves of different lengths 1s
casily shown experimentally. In a sheet of roofing felt,
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say 3 feet square, cut a round hole 6 inches in diameter. It
will be found that the sound of a humming top, placed 2 feet
from the hole on one side of the felt, is quite audible at any
point on the other, and is not perceptibly louder at points
from which the top is visible through the hole than at points
in quite a different direction from the hole; the sound is,
however, nowhere nearly as loud as if the felt was removed.
But if for the top, which gives waves perhaps 4 feet long, we
substitute as source of sound a watch, which gives waves
from 2 inches to half an inch in length, we shall find that at
any point from which the watch is visible through the hole
the sound is nearly as loud as if no screen was interposed,
while at points from which the watch is not visible it is
hardly audible at all.

There is a similar difference between the behaviour of waves
of different lengths when an obstacle is interposed between a
source of sound and the ear. If the interval between succes-
sive shells of condensation is greater, or even not much
smaller, than the diameter of the obstacle, the waves close
in round the edge into the space behind the obstacle, and the
sound 1s heard at any point. But waves which are very close
compared with the diameter of the obstacle do not close in
much, but advance at right angles to their own surfaces, each
shell advancing with a hole in it where part has been stopped
by the obstacle, The obstacle thus casts a sound shadow
whenever the wave-length of the sound 1s much less than the
dimensions of the obstacle. This, like the corresponding
case of the opening in a screen, may be shown to be an
instance of interference.

The short waves from a watch are almost entirely cut off
from the ear by a quarto magazine interposed, but the longer
waves from a small clock are not. This is most strikingly
shown by placing the watch between the clock and the car,
so that both are heard at once, but in such a position that the
watch sounds much the louder. If a thick quarto magazine
is placed in the line from the ear to the two sources of sound,
the clock is heard much louder than the watch, even if the
watch is audible at all. A large screen (such as a pile of
open newspapers) cuts off the sound from both ; a packet of
post-cards from neither.

-
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When a wave of condensation reaches a plane solid or
liquid surface, a wave of condensation begins to travel away
from cach point of that surface as soon as the original shell of
condensation reaches that point. The result is that a reflected
shell of condensation i1s furmed, which makes the same angle
with the plane surface as the original shell, but slopes in the
opposite direction. Some successive stages in the formation

~/

Fig, 41,

of such a rcflceted shell are shown in Fig. 41, the reflected
part being shown by a broken line.

If the piece of each shell which is reflected is large com-
pared with the distance between two condensed shells, the
reflected pieces advance at right angles to their own surfaces
without spreading, and the effect of the reflceted sound 1s
confined to a reflected beam, which follows the same law as
the reflection of light. If the condenscd waves are farther
apart than the diameter of the reflecting surface, the reflected
waves spread in every direction from the rtﬂmtmg surface,
and diminish so rapidly in intensity that they canmot be
detected at a short distance. The same is true when the
reflection is ““without change of sign,” as from the surface of a
gas flame ; hence in the experiment shown in Fig. 38 the source
of sound must produce very short waves.

A reflected sound is called an echo. An echo, to be audible,
must be formed by reflection against a surface whose dimen-
sions are very large compared with a wave-length of the
sound, for otherwise the sound energy intercepted by the
surface is dispersed in all directions, and soon becomes
inaudible. The sound of a gun requires a cliff or high wall
to form a good echo, but a much smaller surface will give a
clear echo of a shrill whistle.

Echoes afford a rough method of finding the velocity of
sound. If we shout, and observe the interval before the echo
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is heard, this interval is the time taken by sound to travel
twice the distance from us to the cliff or wall.

When a shell of condensation or rarefaction arrives at a
concave solid surface, and 1is turned back, the reflected shell
is concave to the direction in which it is going, if the con-
vexity of the original shell was not too great. Some stages
of such reflection are shown in Fig. 42, where the lines
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Fig. 42.

marked 1, 2, 3, 4, &c., are successive positions of a shell of
(say) condensation which originally started from a source C.
As each part of the shell reaches the concave surface, a con-
densed condition starts back, so that when one part of the
shell of condensation has reached the position 33, other parts
have already started back and reached the position 33’, so
that 8’833’ is a continuous shell of condensation, of which the
part shown by the complete line is still travelling towards
the mirror, while the broken line parts are travelling away.
If these reflected portions are large compared with the dis-
tance between a condensed and a rarefied shell, they will
advance at right angles to their own wave-fronts without
spreading, assuming the successive positions 4'444’, 5565, &ec.,
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so that the reflected wave may (if the reflecting surface is
rightly shaped) converge towards a point F. At this point
the intensity of the sound is very great, for the diminishing
pieces of shells have always the same energy; the sound is
brought to a focus just as light is. After reaching £ the
wave diverges again, on the other side, assuming successively
the positions 11, 12, &e.

All this is only true if the mirror, and therefore the reflected
pieces of the shells, are large compared to a wave-length. If this
is not the case, the reflected wave spreads in every direction,
instead of converging. In fact, in that case it makes no practical
difference what the form of the mirror is. This seems to be lost sight
of by some makers of ear trumpets, who attempt, by parabolie
reflectors, to converge the sound waves into the ear. No reflector,
whatever its shape, can do this unless it is many times larger than
the wave-length of the sound waves, and the waves produced in
conversation are not often less than 18 inches long. A funnel-
shaped tube concentrates sound to some extent, but it acts not by
making the wave-fronts concave, but by communicating the move-
ment and energy of each layer of air to a smaller one, so that the
amplitude continually increases.

In Fig. 42, the reflected condensed shell is represented converging
till it becomes a mere point. This does not really happen, because
before it gets so small it ceases to be large compared with the
distance between it and the shells of rarefaction in front and
behind, and then it no longer advances only at right angles to itself,
but spreads at the edges. Fig. 43 shows, roughly, some successive
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stages in the advance of a concave wave-surface which is no longer
large compared to a wave-length.

1t F is the centre of the reflected shells as long as they remain
gpherical, it is evident that the total distance from C to any point
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of the mirror, and thence to F, must be constant, for every part of
the same reflected wave-front (999, for instance) started at the
same time from C, has been travelling with the same velocity ever
gince, and is now at the same distance from F. It can easily be
shown that this is equivalent to saying that lines from C and F to
any given point of the mirror make equal angles with the reflecting
surface; i.e, ' and € are conjugate foci for light (Text-book of
Light, Art. 32), so that the point where the sound is most intense is
the point where an image of the source is formed if the mirror is
polished. In fact, light waves are reflected just as sound waves
are when the sound waves are short compared to the reflecting
surface.

If the concave surface is a yard across, a watch placed at
C is heard as loudly by an ear at /' as if the watch was an
inch instead of perhaps several feet away, but there is no
increase of loudness due to the mirror at a point a few inches
from #. If a large tuning-fork is used instead of a watch,
the sound will not be perceptibly louder at # than at other
points.

As before, we may consider the intensity of the sound at I
and its absence at points near F, to be due to ““interference’;
to any point except F' there are routes from € (vid the
reflector) of different lengths, so that condensation would
arrive by one route at the same time as rarefaction by
another. As long as all routes from € to 7" vid the reflector
are too nearly equal for this to happen, it makes little differ-
ence to the intensity at # whether they are ezactly equal or
not. So that roughnesses or irregularities of the mirror are
unimportant if they are much smaller than a wave-length ;
the mirror need not be polished, but may be of gutta-percha
or sheet lead.

75. Refraction of Sound.—Sound waves may also be con-
verged by means of a leus, but the lens must be of gas, not
of any denser substance, or nearly all the energy will be
reflected at its first surface. If two convex circular sheets
of collodion film are cut from a large collodion balloon and
attached by their edges to a metal hoop, and the space
between them filled with carbon dioxide gas, we have a lens
which will answer the purpose. Sound travels more slowly
in carbon dioxide than in air, so that when each shell reaches
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the lens it advances more slowly at its centre than af the
edges, as shown in Fig. 44, so that when 1t comes out at the

-
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other side it is conecave instead of convex towards the direc-
tion in which it is advancing. If these concave pieces of
shells are large compared with the distance between successive
waves, they will converge towards a point F, though, as ex-
plained above, they do not really become points. As in the
case of the concave mirror, it is only sound whose wave-
length is short compared with the diameter of the lens which
can thus be converged; waves of greater length spread in
all directions after passing through the lens, as if the lens
was a mere hole, and do not converge.

A similar effect is produced by a concave lens filled with a lighter
gas than air; coal-gas is best. Hydrogen does not answer well, the
difference of density between air and hydrogen being so great that
a large part of the energy is reflected on reaching the lens (Art. 72).

Prisms of collodion film filled with earbon dioxide have also been
made, and give a deviated beam of sound if the wave-length is ghort
compared to the prism, but there is no dispersion of sound of
different wave-lengths, as in the case of light, since all sound waves
travel with the same velocity. (The spectrum analysis of sound
has, however, been performed with a gigantic diffraction grating).

The statements made above are strictly true only for
harmonic waves. If the waves are non-harmonie, we may
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conveniently apply Fourier’s device, and calculate the result
of the reflected or refracted waves as if the ¢ harmonic com-
ponents’” had a separate’ physical existence, and were
reflected or refracted each according to its wave-length. The
different harmonic components are of course quite differently
reflected and refracted; thus a concave mirror converges the
shorter harmonic components nearly to one point, while it
distributes the longer ones in every direction. The character
of non-harmonic waves is therefore often entirely altered by
reflection or refraction, or by simply passing an obstacle,
having at one place a larger proportion and at another a
smaller proportion of harmonic components of very short
wave-length.

A simple experiment shows this very well. Hold a watch at
arm’'s length, and interpose a large sheet of card between it and the
ear. The sound is practically cut off. Now try with a post-card
instead of the large sheet. The sound is not much fainter when the
card is interposed, but it is a much lower note, or rather, as a trained
ear will recognise, all the higher components, which give the peculiar
sharp click, are cut off, and only the lowest of the notes produced is

heard. The longer harmonic components come round the card to
the ear; the shorter ones are absent behind the card (Art. 74).

76. Effect of Wind.—When there is a wind blowing, the
air close to the ground travels more slowly than that higher
up, so that on the side of the source towards which the wind

<

Fig. 45,

blows the waves advance more rapidly above than below.
SD, K
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As the wave-fronts, being large compared with a wave-length,
advance at right angles to themselves, an obstacle such as 4,
Fig. 45, will not cut off the sound coming from a source €, from
an observer at J, for the higher parts of the waves, which
have passed over 4, soon begin to advance in a slightly
downward direction, and so reach the earth at a point
beyond. It is for this reason that sound is much better
heard on the side of the source towards which the wind
blows, especially if there are obstacles between the source
and the listener. In tne other direction the waves advance
less rapidly above than below, and soon leave the earth
entirely, as shown in the figure, where the wind is supposed
blowing from right to left. (The difference of velocity
above and below is very greatly exaggerated in the figure.)



CHAPTER IX.

STATIONARY UNDULATION.

77. In Chapter IV. we found that, if two sources of
sound vibrate at the same time, the air is in the condition of
progressive undulation only in the regions in which the
waves from the sources, if the sources vibrated one at a time,
would travel in the same direction. Of the other vibratory
conditions of the air which may exist, the most important is
the condition of Stationary Undulation. This is produced
in any region of the air if two sources vibrate together which,
vibrating separately, would send through the region, in
exactly opposite directions, waves of the same length,
amplitude, and wave-form. We will first suppose that this
wave-form is harmoniec.

Let each of the lines ¥, Z, 11, 12, &ec., in Fig. 46, represent
the same region of air, in different conditions. Suppose that
there are two similar vibrating springs 4 and B (not shown),
one to the left and the other to the right of the region. Let
the top line ¥ represent, on the plan explained in Art. 15,
the condition in which the air in this region would have been,
at a given instant 7, if 4 had been vibrating exactly as it
is, while B was at rest, and let the second line Z represent
the condition in which the same air would have been, at the
same instant 7, if B had been vibrating exactly as it is,
while 4 was at rest. Y represents a progressive wave-
system travelling from left to right, while Z represents an
exactly similar wave-system travelling from right to left.
The actual condition of the air in the region represented, at
the instant 7, will be (very nearly) the resulfant of the two
conditions represented by ¥ and Z.
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This condition is represented in the third line marked 11.
The height of the letter € or R at each point, which denotes
the degree of condensation or rarefaction there, is the sum of
the heights of the letvers at the corresponding points of ¥
and Z if they are both (' or both &, and the difference of
their heights if one is €' and one £ ; and the length of the
arrow over each letter, which denotes the velocity with
which the air is moving at each point, is the sum or differ-
ence of the lengths of the arrows at the corresponding points
of ¥ and Z, according as these are in the same or opposite
directions.

On examining line 11, we see that we have a condition of
the air quite different from any kind of progressive undula-
tion. In every progressive undulation the velocity of the air
is greatest where the condensation or rarefaction is most
extreme, but here the greatest velocity occurs at the parts
which are neither condensed nor rarefied, and the greatest
density-differences occur where the air is at rest. So that,
though there are regions where the airis condensed and others
where it 1s rarefied, these do not correspond with the ¢ con-
densations” and ¢ rarefactions” of progressive undulation.
In progressive undulation a ‘‘ condensation” means a region
where the air is all condensed, and all moving one way. In
the condensed region in line 11, half the air is moving one
way and half the other.

Next let us consider what will be the condition of the air
in this region an instant later than the moment for which ¥
and Z are drawn. We can represent the condition in which
the air would have been an instant later if 4 had been
vibrating alone by shifting the line ¥ a little to the right,
and the condition in which it would have been if B had been
vibrating alone by shifting the line Z the same distance to
the left. Suppose each shifted the distance of between two
letters, and find the resultant condition again. Thistime we
get line 12. We notice that, though we have supposed lines
¥ and Z altered only in position, the resultant condition
has not been displaced either to right or left, but has changed
in degree; the condensations and rarefactions have become
everywhere less pronounced, while the velocity of the air has
everywhere increased. We see, in fact, that in this mode of
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vibration a given condition of the air does not move along as it
does in progressive undulation. The greatest degree of rare-
faction which existed at the moment shown in line 11 is not
to be found in line 12 a little to right or left of its former
place ; it no longer exists nnywhclu And, though there is
now }Zl[ re so great a degree of rarefaction as in ]me 11, the
greatest degree of r: arefaction which exists anywhere in
line 12 is in the same position as the greatest degree of rare-
faction in line 11.

At certain points, those under the 4’s in the top line, the
degrece of condensation which would be due to one of
the progressive wave-systems ¥, Z'is exactly equal to the
degree of rarefaction which would be due to the other, so
that the actual condition of the air at these points, as shown
in line 11, is one of average density. It is easy to see that,
if cach of the lines Y, Z is shifted onward the same dlstance
to represent the conditions which would be due to the two
wave-systems a moment later, the rarefactions and condensa-
tions under the 4’s are still equal, so that this condition of
average density is a permauent one at these points, which are
called Antinodes.

We see also that there are certain other points, those under
the N’s in the top line, where the velocity of the air which
would be due to one of the wave-systems ¥, Zis equal and
opposite to the wzelocity which would have been due to the
other, so that at these points the air is at rest; and, as
before, we sce that this is a permanent condition at these
points, which are called Nodes.

The artinodes are called by some writers “ ventral segments
or loops.” This name is more properly applied to the whole
region between one node and the next, an antinode being the
middle point of a ventral segment.

The existence of points fixed with respect to the air, at
which a definite condition of the air is always to be found, is
the most striking peculiarity of this mode of vibration; hence
the name Stationary Undulation. .

To get a more exact idea of this eondition, we will trace
the changes in the region shown in the figure through some
further stages, at each stage advancing ¥ and Z one letter as
before. The condition of the air at these stages is shown in
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the lines 1 to 10. These complete a cycle, as the next stage
after that shown in line 10 is line 11 again.

By comparing the successive lines of Fig. 46 we can
make out the following important points.

(1) Nodes occur at the points where the maximum conden-
sations of one imaginary progressive wave-system (z.e., the
wave-system which one of the sources would produce i it
vibrated alone) arrive at the same moments as the maximum
condensations of the other. Antinodes occur where a maxi-
mum condensation of one imaginary system arrives at the
same moment as a maximum rarefaction of the other.

(2) The distance between two successive nodes, or two
successive antinodes, i1s half the wave-length of the waves
which the sources would produce separately. From a node
to an antinode is one-fourth of this wave-length.

(3) The period in which the stationary undulation goes
through all its changes is the period in which the waves
which the sources would produce separately would advance
their own wave-length, ¢.e., it is the vibration period of
either source.

(4) Condensation and rarefaction do not move along as in
progressive undulation ; they simply appear and disappear
a%ain, to be succeeded by the opposite condition in the same
place.

(6) The nodes are not places of greater awerage density
than the rest of the air, but of greatest variation of density ;
each node is a point of maximum and minimum density in
turn. The average density is the same at nodes as else-
where.

(6) There is an instant, twice in each complete vibration,
when all the air is stationary at the same moment (line 4 or
10). This may be called the stationary instant. At a
stationary instant every point has the maximum degree of
condensation or rarefaction which it ever has, and this is
greatest at the nodes and diminishes to zero at the antinodes,
alternate modes being condensed and rarefied. After the
stationary instant all the air, except at the nodes, begins to
move from the condensed nodes towards the rarefied ones
(lines 5, 11); its velocity at any one instant is greatest at
the antinodes and diminishes to zero at the nodes. The
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velocity increases everywhere (line 6 or 12), the velocities at
the different points always keeping the same ratio, so that it
is always greatest at the antinodes. Meanwhile the conden-
sation and rarefaction everywhere diminish, but fastest at the
nodes, so that the degrees of condensation and rarefaction at
different points remain in the same ratio. The velocity
increases, and the condensation and rarefaction diminish, till
we reach an instant (line 7 or 1) when the air has every-
where the same density, which is that of the external air.
This may be called the moment of uniform density. At this
moment the air has at each point the maximum velocity
which it ever has at that point. The air continues to move
in the same direction, but with diminishing velocity, and the
nodes towards which it is moving, which were previously the
rarefied ones, now become condensed (line 2 or 8) and those
which were previously condensed become rarefied. The
velocity everywhere diminishes, and the degree of condensa-
tion and rarefaction everywhere increases (line 8 or 9), till all
the air comes to rest at the same moment, and we have a
stationary instant again. Then all the movements begin
again, but in the reverse direction, and so on.

(7) At any given moment all the air between two consecu-
tive nodes 1s moving in the same direction, and all the air
between two consecutive antinodes is in the same condition
(all rarefied or all condensed).

(8) Since the velocity of the air at each point varies har-
monically, the air at each point moves harmonically, and its
amplitude at each point is proportional to the maximum
velocity of the air there; this amplitude is therefore greatest
at the antinodes and zero at the nodes. Each particle of air
passes its mean position at the moment (line 1 or 7) when it
has its maximum velocity.

78. Energy of Stationary Undulation.—The total energy
in the stationary undulation is the sum of the energies of the
undulations which the sources would produce separately, but
it is in a different form. For, while in any progressive
undulation half the energy i1s at any one moment kinetic and
the other half potential, in the stationary wave-system the
whole energy keeps changing from one form to the other.
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When the air is in the condition shown in line 1, Fig. 46,
there are no differences of density, and the whole energy is
kinetic, depending on the velocity with which the air is
moving. At this moment most of the energy is near the
antinodes, where the air is moving fastest. When the air
1s In the ﬁtage of stationary undulation shown in line 4, there
is no kinetic energy, as all the air is at rest; it is all pntentml
depending on differences of pressure, and none is at the
antinodes. In intermediate stages the energy is partly in
one form, partly in the other.
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Fig. 47.

79. Fig. 47 shows in the same form as Fig. 20 the move-
ments which take place in a region of stationary undulation,

T —— . —
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The vertical lines in each row represent, as before, plane
surfaces, seen edgewise, which were equidistant in the
undisturbed air, and the air is to be supposed moving in such
a way that the same air always remains between the same
two planes. The lines vibrate harmonically about their
mean positions ; those at the antinodes have the greatest
amplitude of T’ibrﬂtil}ﬂ and those at the nodes have zere
amplitude. They all cross their mean positions together,
but those on opposite sides of the same node are moving in
opposite directions. The numbers of different stages corre-
spond with those in Fig. 46. It is easy to see, from the
successive lines, how the air sways backwards and forwards
between fixed planes, the nodes.

A comparison of Figs. 20 and 47 shows clearly the funda-
mental difference between progressive and stationary undula-
tion. In the former all parts of the air move the same
distance, but at different times. In the latter they move at
the same time, but different distances.

80. Cheshire’s Disc.—The movement of which Fig. 47

shows successive stages may be shown passing through these
stages by a modification of Crova’s Dise (IFig. 21), designed
by Mr. Cheshire and published in Nafure.

To construct the dise for this purpose, deseribe a cirele of % inch
radius in the middle of a circle of cardboard 8 inches in diameter.
Divide the circumference of the small circle into twelve equal parts,
numbering the points of division 1 to 12. Draw a diameter from 3
to 9, and draw lines at right angles to this diameter from 2 to 4,
1 to 5, 12 to 6, 11 to 7, 10 to 8, so dividing the diameter into six
parts, not all equal. We will call the points of division of the
diameter a, b, ¢, &c., so that, including its ends, there will be seven
marked points on the diameter, marked respectively 9, a, b, ¢, d, e, 3.
Taking these points as centres, in this order, describe ink circles,
increasing the radius ! inch each time. When you have described
the circle with centre 3, go back to ¢, d, &c., to 9, then a, &c., back
again, making 20 or more circles in all. Mount this disc exactly
like the one in Fig. 21, and, on rotating it, the portions of the circles
seen through the slit will execute the movements of stationary
undulation. :

The movement can also be well shown by the spiral wire

of Art. 73, as described in the next chapter.

81. Stationary Undulation caused by Reflection.—It does
not often happen that the condition of stationary undulation
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is due to the simultaneous vibration of two sources.
Much more usually it is due to reflection of waves from a
single source. In this case the two imaginary component
wave-systems are the waves which the source would produce
if no reflection occurred, and the reflected wave which each
of these would produce if it arrived by itself at the reflecting
surface. The real condition of the air between the source
and the reflecting surface (say a tuning fork and a wall) can
be found by adding these imaginary conditions, and it is
evidently nearly stationary undulation along a line from the
fork at right angles to the wall, if the circumstances are such
that an incident wave is reflected without much spreading
and consequent loss of intensity. This, as we saw in the last
chapter, requires that the waves shall be short compared to
the reflecting surface ; a shrill whistle, or a squeaker, such
as is used in many tuys, is therefore better than a tuning
fork. If such a squeaker is blown with a steady pressure of
alr (=0 as to give always waves of the same length) at a dis-
tance of a few feet from the wall of a room, there is stationary
undulation between.

At the wall itself there is a node, for the part of the
reflected wave which is just starting back is the reflection
of, and similar in condensation to, the part of the incident
wave which arrived an infinitely short time ago, and therefore
differs infinitely little in condensation frora the part of the
incident wave which 1s just arriving ; and a node 1s a point
where the degrees of condensation of th2 components art
always equal. Other nodes occur every half wave-length of
the incident waves from the wall.

It is only along a line from the source perpendicular to the
wall that the direct and reflected waves are in exactly oppo-
site directions, so that the condition of stationary undulation
strictly exists only along this line, but there will be a condi-
tion which is very nearly nodal at all points, not very far
from this line, which are at the same distance from the wall
as the true nodes, and similarly for the antinodes, so that the
nodes and antinodes are surfaces parallel to the wall. Their po-
sition depends only on the position of the wall and the length
of the waves, not at all on the position of the source, which
1s not, unless by accident, either at a node or at an antinocde,
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82. Experiments on Stationary Undulation,—The exist-
ence of nodes and antinodes may be shown, and their positions
found, in two ways. One end of a flexible tube may be
inserted into the ear, and the other end moved along the
perpendicular from the source to the wall, keeping the plane
of the opening of the tube parallel to this line. A series of
points are found where the sound is fainter than at inter-
mediate points ; these are the antinodes, for the movement
of the air hﬂckwards and forwards across the opening, with-
out change of density, sends no waves up the tube. When
the open end of the tube is at a node, each change in the
density of the air sends a corresponding wave up the tube,
and loud sound is heard. This is not a very good method.
It is clear from Fig. 46 that the absence of change of density
at the antinodes depends on the exact equality of the conden-
sations of one component wave-system and the rarefactions of
the other. Now the rarcfactions of the reflected waves arc
produced by the rarefactions of the incident waves, and do
not correspond in wave-form with the condensations of the
incident waves unless the incident waves are symmetrical,
which never is the case in practice. So that unsymmetrical
waves, like those from the squeaker, do not, when reflected
““ with change of sign,” form perfect antinodes at all,
though they do form true nodes, or places of no movement.
So the antinodes are indicated, not by silence, but only by
faintest sound, and the nodes b*}' loudest smmd neither 1s
easy to determine. A sensitive flame, which dlrectly deter-
mines the nodes, is much better.

A sensitive flame is produced by burning, at a burner per-
forated with a single pin-hole, coal-gas at a pressure equal
to that of 8 or 10 inches of water. It will be found that, as
the tap is turned on, the flame, which is like a much elon-
oated candle flame, increases in length to about 16 or
20 inches, and then suddenly shortens to half that length,
flaring at 'the top and producing a loud noise. If the supply
is adjusted so that the flame is just on the point of flaring, it
is very sensitive to movement of the air just above the
burner, which makes the flame flare as long as the movement
lasts, but it 1s not at all sensitive to ch:mgea of pressure in
the air apart from movement. Such a flame, held in a region
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of stationary undulation, flares everywhere except at the
nodes, and thus the nodes, if they are at all perfect, may be
very exactly determined.

This is, of course, a method of finding the length of the
waves from the source, which is twice the distance between
two consecutive nodes (Art. 77). For very short waves it is
one of the best methods.

This form of sensitive flame 1equires a gas-bag or gas-holder,
since the ordinary gas supply is at too low a pressure, but sensitive
flames may be more simply obtained. If gas at the ordinary
supply pressure is allowed to issue from a pin-hole burner, and a
piece of wire gauze fixed a little distance above the jet, the gas may
be lit above the gauze without lighting that between the gauze and
the burner, and the flame above the gauze will be blue at the bottom
and yellow above. If we increase the distance of the ganze from
the burner, the blue part increases and the yellow diminishes, and
by trying different distances a position may be found at which the
flame is sensitive, the yellow tip entirely disappearing while any
vibratory movement of the air, of high frequency, is taking place
above the burner. A wide glass tube or lamp-chimney round the
flame, standing on the gauze, makes the flame still more sensitive
and the effect more visible, as a much longer flame is then obtained,
which shortens to less than half its length, and becomes much less
luminous, when there is any vibration in the air. These flames, like
the other, are unaffected at a node, but disturbed at any other point
in a stationary undulation.

Sensitive flames may also be used for showing to an andience the
phenomena of reflection and refraction of sound—for instance, its
concentration at the focus of a concave mirror,

83. As reflected waves are not quife as intense as the
incident ones, stationary undulation produced by reflection is
more or less imperfect. It is convenient to consider the
incident wave-system as the sum of two systems, one of the
same intensity as the reflected waves, the other making up
the actual intensity. The first of these, with the reflected
system, gives true stationary undulation, so that the actual
condition of the air is the sum of a stationary undulation,
and a very feeble progressive undulation in the direction of
the incident waves.

Very perfect stationary undulation occurs in organ-pipes,
but there it is complicated by resonance. We consider it in
the next chapter.,
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" VIBRATIONS OF AIR IN PIPES.
»

84, Wave in a Tube.—Take a wide tube, say about
3 inches in diameter and 6 inches long, and stand it on a
table, so that its lower end 1s closed. Hold a strip of paper,
an inch wide, with its free end over the open mouth of the
tube, and tap the upper side of the paper sharply, near the
frec end, with a penholder, so that the paper moves suddenly
towards the tube, but does not reach it. In addition to the
noise which would be produced in any case by striking the
paper, another sound will be heard which is not produced
when the paper is held at a distance from the tube and
struck in the same way. This additional sound will be
found to be always the same for the same tube, and quite
independent of the size of the paper or the way in which it
is held and struck, and most persons will recognise that it is
a musical note of definite piteh, which can be matched on the
piano or by the voice, while the tap of the penholder on the
paper is a mere noise, and has no definite pitch.

Any large wide-mouthed hollow vessel, a jug for instance,
may replace the tube in this experiment, and the sound pro-
duced 1is so characteristic of hollow vessels that any sound
which produces the same effect on the ear is commonly
termed a ¢ hollow sound.”

The sensation of definite pitch is found, in all cases which
can be investigated, to depend on condensations and rare-
factions reaching the ear at regular intervals (Art. 63). Now
there is nothing regular about the movements of a piece of
paper which has been struclk; this is shown by the sound
being a mere noise. The tube, then, has in some way the
effect of converting the single wave produced by striking the
paper into a succession of waves starting at regular intervals.
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And it is not the tube itself which does this, but the air con-
tained in it, for, if we try the experiment with a metal and a
pasteboard tube of the same size and shape, we find no
difference in the hollow sounds they give back.

The way in which this happens is as follows :—The con-
densation produced by tapping the paper travels down the
tube to the table, where (Art. 72) it is reflected, and a con-
densation travels up the tube again. When it arrives at the
open end, a slight condensation starts off through the outside
air, but (Art 72) by far the greater part of the energy travels
down the tube again in the form of a rarefaction. This is
reflected, still as a rarefaction, at the closed end, and, when
it reaches the mouth again, a slight rarefaction starts off
through the air, while a condensation travels back along the
tube, and so on. Only a small fraction of the energy leaves
the tube each time the wave reaches the mouth, so that the
wave may travel hundreds of times up and down the tube,
changing its sign each time it reaches the mouth, before it
becomes imperceptible. A condensation starts off from the
mouth at the end of every fourth single journey of the wave,
and a rarefaction half way between each two condensations,
and, as these travel away through the air at the same speed
as the wave travels in the tube, we have waves, travelling
away through the air, whose wave-length is four times the
length of the tube.

A similar action will take place if we tap a strip of paper
over the upper end of a tube which is also open at the
lower end. In this case the condensation produced by the
sudden movement of the paper travels down to the bottom of
the tube and there starts a slight condensation off through
the outside air, while a rarefaction travels back up the tube.
When this reaches the upper end, a rarefaction starts off
through the air and a condensation travels down again, and
50 on. In this case a condensation starts away from the tube
through the outside air at the end of every second single
journey of the wave in the tube, so that the waves in the air
are only twice as long as the tube. An open tube, under
these circumstances, gives waves of about the same length as
a tub}e of half its length closed at one end (called a ¢ closed
tube 7).
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Though a hollow vessel is often said to resound?” to a
sudden blow like that of the penholder on the paper, the
sound produced is not an instance of resonant vibration in
the sense in which we have used the term, for the air in the
tube was set in vibration by a single violent impulse, not a
succession of properly timed small impulses. But, as the air
in the tube has, as we have seen, a natural period of vibration,
1t can be set in resonant forced vibration by impulses of the
same period.

85. Resonant Vibration of Air Columns.—Suppose we
take a tube open at the top and closed at the bottom, and
make a flut spring vibrate over the mouth. Each movement of
the spring towards the mouth of the tube sends a condensation
down the tube, and each movement away from the mouth, a
rarefaction. When the first condensation returns to the top,
it would of itself start a rarefaction down. If at this
moment the spring is moving upwards, a rarefaction produced
by its movement travels down the tube together with the
rarefaction which would in any case be produced by the
arrival of the condensation at the top ; we have a rarefaction
of nearly double the amplitude of the first wave. When
this returns to the top, it wonld of itself send a condensation
down, and, if the spring is at this moment moving downwards,
this condensation will be increased by that due to the spring,
and so on. Evidently the effect of a large number of
impulses can be added up in this way if the period of the
spring is exactly such that, each time the wave in the tube
returns to the mouth, it finds the spring moving in the
opposite direction to that in which it was moving the pre-
vious time.

The condition that the air in a closed tube may be set in
resonant vibration by a spring is, therefore, that the spring
must make an odd number of half vibrations in the time that
a pulse takes to travel twice the length of the tube.

In the case of an open tube, a condensation sent down
returns as a rarefaction, which would of itself start a con-
densation down again. In order that this may be increased
by the movement of the spring, the spring must be at that
moment moving downwards again, so that it must have
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¢ompleted a whole number of (double) vibrations while a pulse
has travelled twice the length of the tube.

In trying the experiment it is more convenient to use a
tuning fork than a spring, because, unless the spring is very
firmly fixed, it shakes its support, and then it does nof
vibrate very long or regularly.

A closed tube, then, will be set in resonant vibration by &
fork which makes either 1, 3, 5, or any other odd number
of half vibrations while a pulse travels twice the length of
the tube. In any of these cases each pulse of condensation
or rarefaction, on reaching the mouth, gives off a small
fraction of its energy in the form of a wave of its own kind,
which travels away through the outside air, while the rest of
the energy travels back down the tube as a pulse of the
opposite kind, increased by the wave which the fork was
sending down at the same moment. The wave 1n the tube
keeps on increasing till the energy sent off at each return
equals that received from the fork. As the tube sends a
pulse off for each one that the fork sends down the tube, the
waves start from the tube with the same frequency as from
the fork, and are of the same wave-length, but they are of
much greater intensity, so that the sound heard, though of
the same pitch as that heard when the fork is sounded without
the tube, 1s very much louder. It is not at first clear how
this increased loudness can be produced, as of course the tube
cannot send out more energy than it receives from the fork,
but we shall see presently that, when the air in the tube is in
resonant vibration, the air near the mouth moves up and
down, keeping time with the fork, and under these circum-
stances the fork communicates its energy much more rapidly
to the air, as explained in Art. 41. Of course the fork comes
to rest much sooner when it makes the tube resound, but
while 1t lasts the sound is much louder.

86. Condition of the Air in a Resounding Tube. If
we produce at the mouth of the tube a single condensation,
as in the experiment with the strip of paper, a real wave
travels up and down the tube, and would be seen to do so if
the air was visiblee. When a fork vibrates continuously

at the mouth of the tube, producing condensations and
8D.
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rarefactions alternately, it is convenient to speak as if these
actually travelled down the tube, while previous waves,
reflected from the lower end, were travelling up again. It
has, however, been explained (Art. 37) that this is merely a
convenient way of saying that the real condition of the air is
one which can be found by adding two such wave-systems,
and does not mean that these systems really exist in any
physical sense. So that, if we could make the air in a tube,
which is resounding to the tuning fork, visible, we should
not see waves travelling down and other waves travelling up,
or indeed anything moving continuously along the tube
either way ; what we should see would be slmply the process
of stationary undulation described in the last chapter, since
this is the condition which we find when we add two
imaginary equal wave-systems in opposite directions.

It is very important to keep in mind that the real physical con-
dition of the air in a resounding tube is the condition of stationary
undulation, and that the waves travelling up and down are a
mathematical fiction, not a physical fact. To describe the condition
of the air as one in which waves are travelling along it in opposite
directions is as physically incorrect (and as mathematically correct)
as to describe the condition of a man who is standing still, by
saying that he is walking forwards and walking backwards at the
same time.

All harmonic stationary longitudinal undulation is of the
same kind, so that the general description of this process
given in Art. 77 applies to the air in any resounding tube if
the vibrations are harmonic. To make it a complete account
of the movement of the air in a resounding tube it only
remains to state where the nodes and antinodes are situated
in the tube. This is easily found in any given -case.
Suppose, for instance, that we hold over the mouth of a tube,
closed at the bottom, a fork which makes 25 vibrations while
a pulse would travel up and down the tube, so that a pulse
travels % of the length of the tube while the fork makes a
vibration. Tig. 48 shows the position of the fork at the
moment when it is producing a maximum of condensation,
and the positions which each maximum of condensation and
rarefaction previously produced would occupy at that moment
if it was solitary. The maximum condensation produced
one period ago would be % of the way to the bottom, and
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the one before that would have reached the bottont and come
2 of the way up again, while the maximum rarefaction which
started 25 periods ago would have just reached the top, so
that the maximum condensation due to it would be just ready
to start down with that now being produced by the fork.
Those pulses which started still earlier would in the same
way have positions coincident with later ones, so that the
points marked are all the places where there would be
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maxima of condensation ard rarefaction if each pulse travelled
independently. The actual condition of the air can be in-
ferred from the positions of these imaginary pulses. N, IV, WV,
where an imaginary maximum of condensation travelling
down passes another travelling up, are nodes (Arxt. 77);
A, A, A, where imaginary pulses of opposite kinds cross, are
antinodes. In Fig. 48 the imaginary waves travelling down
the tube are shown on the left, and the imaginary reflected
waves travelling up again on the right, the directions in
which the air would be moving in such waves being shown
by short arrows. The actual condition of the air in the tube
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(¢.e., nodal or antinodal) with the actual direction of move-
ment of air is shown by encircled letters in the middle
column. The moment chosen is the “uniform density instant.”

In the same way we find that forks which make respee-
tively 1, 2, 2 vibrations while a pulse travels twice the length
of & closed tube throw the air into the conditions of sta-
tionary undulation represented by a, b, ¢ of Fig. 49, and forks
makm;:, ¥ 25 %5+ or any higher odd number of half-vibrations
in the same time will produce a similar condition with still
shorter intervals between the nodes. And by the same
method we find that forks which make respectively 1, 2, 3
vibrations while a pulse travels twice the length of an open
tube throw the air into the conditions of stationary undula-
tion represented by d, ¢, f of Fig. 49, and forks making 4, 5,
or any higher number of complete vibrations in the same time
would produce a similar condition.

In either open or closed tubes, the number of half-segments
into which the tube is divided by nodes and antinodes is
equal to the number of half-vibrations made by the spring
(and therefore by the air in the tube) while a pulse would
travel twice the length of the tube; the number of half-
segments is therefore odd in a closed pipe and even in an open
one, A closed end is always a node, and an open end an
antinode. The middle point of an open tube must be either
a node or an antinode ; in a closed tube 1t is neither.

The mouth of the tube being an antinode, the air there
simply moves in and out, and may be considered as a piston
vibrating at the end of the tube like that in Fig. 22. Con-
densation and rarefaction are therefore produced in turn in
the air just outside the mouth, and travel away (by the
process of progressive undulation) in all directions through
the external air. The condensation just outside the mouth
is at its maximum when the air just inside the mouth is
moving outwards most rapidly, which is at one of the
moments of uniform density of the stationary undulation in
the tube; the maximum degree of rarefaction just outside
the tube occurs at the other uniform density instant (Art. 77).
It is this latter instant which is represented in Fig. 48, and
the letters and arrows round the mouth are intended to
indicate that the air there is rarefied and moving inwards
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towards the mouth, while the rarefied condition is travelling
away in all directions. It will be seen that this condition of
the air outside the mouth might be considered as a continua-
tion into the external air, with diminished amplitude, of the
imaginary return waves which have been reflected at the
hottom. The changes of density produced in the air outside,
though it is to them that the sound we hear is due, are very
small compared to those which occur in the air in the tube
itself.

As a condensation starts off through the external air each
time the air just inside the mouth of the tube moves outwards,
the length of the waves in the air outside is the distance a
pulse travels in one period of the stationary undulation.
And we showed in Art. 77 that the period of a stationary
undulation was four times the time required for a pulse to
travel a half-segment (from a node to the nearest antinode).
So that the waves produced in the external air are always
four times the length of a half-segment of the stationary
undulation in the tube. If we examine Fig. 49, kecping this
in mind, we can easily make out the following table, in which
[ is the length of the tube, and ¢ the time required by a pulse
to travel this length.

K1nvp oF TuRE. CLoOSED. OPEN.
Slowest ' };'-5.]01.*.'1::51, .
or | or
Mode of Vibration. Funda- | 2nd. | 8rd. | &e. || Funda- | 2nd.| 3rd. | &e.
mental. | | mental.
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g .37 ; . S 5
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Some of the statements just given are only approximately
true, for the mouth of a tube is not strictly an antinode.

The stationary undulation in the tube is not divided
from the progressive undulation which starts from it by a
definite linc ; the reflection of the wave at the open end does
not take place exactly at any one point, so that there is an
intermediate region, partly in the pipe and partly outside,
where the undulation is not exactly either stationary or pro-
gressive. There 1s thus no true antinode at the mouth, nor
is the distance from the mouth to the first node quite as
great as the distance from a node to an antinode in the tube.
The difference is shown, both by experiment and caleulation,
to be about equal to % of the radius of the tube, so that we
must add this quantity to the length of a closed tube, and
twice this quantity to that of an open one, to get the length
of an exact number of half-segments. Strictly, therefore,
these increased lengths should be substituted for / in the table.

The length of the waves from a closed tube vibrating in
its slowest mode 1s thus 4 (/4 @) where @ 1s about £ of the
radius of the tube; from an open tube it is 2 (/+2a). The
waves from the open tube are therefore not exactly half as
long as those from a closed tube of the same length, but
rather more ; the note produced by the open tube is rather
less than an octave higher than that of the closed one.

The slowest resonant harmonic vibration possible for a
pipe is called its fundamental vibration, and the others are
called its harmonics, or overtones. We see from the table
that the overtones of a closed pipe have frequencies which
are odd multiples of that of its fundamental, while the over-
tones of an open pipe have frequencies which include every
exact multiple of its fundamental.

The air in a tube closed at both ends may be set in resonant
vibration, as in Kundt’s experiment deseribed in Chapter XII. The
modes of vibration possible in this case are like those of an open
tube with nodes and antinodes interchanged. As no waves are

iven off from a tube closed at both ends, the resonance is not
audible in this case unless the observer is inside the tube, which
may be a long room or passage; but in smaller tubes the fact of
the resonant vibration may be shown in other ways, to be explained
in Art. 93.

So far, we have considered only pipes of uniform bore. Pipes of
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varying diameter can also be thrown into resonant vibration; in
this case they divide into segments whose natural vibration periods
are equal, but whose lengths are unequal. A conical pipe, stopped
at the apex, may be made to vibrate with 1, 3, 5, &c., half-segments
like a cylindrical stopped tube, the apex being of course a node,
But, when it vibrates as one half-segment, its period is only half
that of a eylindrical stopped tube of the same length, or the same
as that of a cylindrical open tube of that length. Also, when it
vibrates with 3 half-segments, the first of these (beginning at the
apex) is half the length of the tube, and when it vibrates with
5 half-segments, the first is 1 of the length of the tube, and so on,
so that its successive harmonice have to its fundamental the ratios
2, 3, &e. Thus both its fundamental and its more rapid modes of
vibration correspond in frequency with those of an open cylindrical
tube of the same length, though the actunal mode of vibration is
quite different.

87. Vibration produced by Air Blast.—The air in a tube
may be set in resonant vibration in many other ways. One
is to send a blast of air across an open end of the tube.

It is not very clear how this produces resonant vibration, and
various explapations are given. It is sometimes stated that the
rushing noise produced by the blast striking the edge of the hole
has among its harmonic components a vibration of the frequency to
which the tube resounds; but, if that was the cause, a tube ought
also to resound when a rushing sound is produced near its mouth
by blowing across the edge of something else, without the blast
itself reaching the tube, and this does not occur. The following is
perhaps nearer to the true explanation. A very slight difference in
the direction of the blast of air determines whether the air goes
into the tube, so producing a condensation, or simply passes across
the opening, in which case it exhausts air from the tube, by an
action similar to that of spray and scent diffusers. If, as is usnally
the case, this exhausting action first takes place, the air inside the
mouth is rarefied, till the pressure inside the tube becomes so
much less than that outside, that the air blast is deflected inwards,
so producing condensation; and so on. These conditions travel
down the tube, and are reflected, and each condensation, as it reaches
the mouth again, deflects the air blast outwards, so that its action
increases the rarefaction which would in any case be produced by a
condensation reaching the mouth; and similarly for a rarefaction,
The stronger the blast, the more rapidly it exhausts or condenses
the air, and the larger the number of rarefactions and condensations
which start down the tube before the first returns, after which the
action of the blast is simply to increase the waves each time they
return to the mouth. "
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A blast of proper intensity will throw the air in a tube
into any of the modes of stationary undulation into which it
raight be thrown by a fork; a very weak blast causing the
fundamental vibration, and blasts of increasing strength pro-
ducing higher and higher harmonics. Itis, however, difficult
to produce any but the fundamental mode of vibration in
wide tubes.

The blast of air may be across the end, as in whistling
with a key, or across a hole in the side, as in a flute, or
directed by means of a passage so that the jet strikes a sharp

Fig. 51.

edge, as in a whistle, or organ pipe with a flute mouthpiece ;
a section of the latter 1s given in Fig. 50.

Instead of producing any required mode of vibration by
adjusting the strength of the blast, we can produce one
mode to the exclusion of others by opening additional holes
in the side of the tube at points which are antinodes for the
particular mode of vibration we require, for no mode of
vibration 1s possible which has not an antinode at every
opening. This prineiple is used in the flute.

88. Non-harmonic Vibration.—The impulses given by
the wavering air-blast to the air-column ave periodic but nof
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harmonic, and may therefore be considered as the sums of
harmoniec pressure-changes of frequencies which are multiples
of the real movement of the blast. (Art. 52.) Each such
pressure-change would produce resonant vibration of its own
period if the air column had a free-vibration period not very
different. The vibration produced is therefore not harmonie,
and may have harmonic components of any frequencies
(multiples of that of the vibration) which are necarly equal to
possible free-vibration frequencies of the air column. Thus
the vibration in a closed tube, caused by a blast, may have
harmonic components whose frequencies are odd multiples of
its own, but not even ones ; that of an open tube may have
components which are any exact multiples of its frequency.
The harmonic components of the waves sent out are the same
as those of the air column itself.

Any air column, open or closed, 1f set in resonant vibra-
tion by a single tuning fork, vibrates harmonically like the
fork, and under these circumstances the resonant sounds from
an open and a closed tube are exactly alike. But, when
either tube, if not very wide, is set in resonant vibration by
a blast of air, it usually vibrates non-harmonically, and in
that case the sounds are of different quality, because, as
explained above, the closed tube gives waves whose harmonie
components are all odd multiples of their fundamental, while
the open tube has even multiples as well. Very wide tubes
are not easily set in non-harmonic vibration by a blast of air,
so that there is not so much difference in the quality of the
sounds from open and from closed pipes when they are wide
as when they are narrow.

There is an important difference between the vibration pro-
duced by a fork and that produced by a blast of air. The air
column in a tube is of small mass, and there is considerable loss of
energy in each vibration owing to the waves sent off; forced
resonance, of a period different to its natural vibration, is there-
fore easily produced. (Art. 48.) A fork has a natural period not
eagily altered, and accordingly sets an air column in resonant
vibration of this period, even when the natural period of the air
column is considerably different. The air blast, on the contrary,
has no natural period of vibration, and is controlled by the return
of the waves it produced, so that the period of the resonant vibra-

tion is exactly that in which a pulse would travel the length of four
half-segments of the tube. (Art, 77.)
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89. Reed pipes.—An air column may also be thrown into
resonant vibration by means of a reed. The term ““reed ” is
applied sometimes to the whole and sometimes to a part of
an arrangement consisting of a strip or tongue, usually of
thin metal, fixed at one end to a plate, so that it covers a
rectangular opening in the plate, as shown in Fig. 51. The
tongne may be either a little larger than the opening, in which
case 1t 1s a striking reed, or a little smaller, when 1t 1s a free
reed. In either case the tongue 1s bent so that its free end
stands a little away from the plate, and a blast of air is
blown through the opening from the side on which the
tongue is fixed. As the air increases in speed, it carries the
tongue with it, and so blocks the opening ; when the rush of
air stops, the tongue springs back. Thus a succession of
puffs of air escape through the opening, producing waves.
These may either be allowed to escape into the air, as in the
harmonium, in which case the frequency of the pufts is that
of the natural vibrations of the tongue; or they may escape
into a pipe whose length 1s such that 1t can be set in resonant
vibration of the same frequency, as in the clarinet and
several kinds of organ pipes. In this case, the tongue being
of small mass as well as the air column, each forces the
vibrations of the other ; the vibration period is a compromise
between that natural to the rced and that natural to the air.

The tongue of a free reed is not a freely vibrating spring,
being affected by the changing pressure of the air blast; its
frequency is not independent of this pressure, as is often
stated, but increases with it: this is easily shown on a
concertina. The striking tongue, which rebounds from the
plate, has its frequency still more increased by an increase of
air pressure. The striking form is the one practically used to
cause vibration in tubes.

Fig. 51 shows a reed in conjunction with a conical tube,
the box which contains the reed being provided with windows
for observing the vibration. The air is blown from below
into this box, passes through the reed in the direction away
from the reader, and escapes behind the metal plate into the
conical tube. The vibration period of the tongue is adjusted
by a sliding wire which allows a shorter or longer portion to
yibrate. '
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An air blast against an edge of a hole in a tube sets the air
column in vibration whether the other end of the tube is open or
closed ; in either case the hole across which the air is blown ig an
antinode,and the air vibrates in and out throughit, but the blast sucks
out in one half-vibration the air that it has just blown in in the other ;
there is no continuous current of air along the tube, and if smoky
air is used for the blast the air in the tube remains clear for a long
time. The case is quite different when a tube is made to vibrate
by a reed at one end, as in the clarinet. Here the air never passes
out of the tube through the reed, so that the tube must be open at
the other end; and as a condensation, returning to the reed end,
does not escape there, it is reflected as a condensation, so that the
reed end is a node. A reed tube is therefore always a closed tube,
and, if cylindrical, can give only the odd harmonics of its funda-
mental. As pointed out above, this may be avoided by making the
tube conical, as in the French horn, in which, as in many other
ingtruments, the lips of the performer take the place of a mechanical
reed.

Vocal Sounds.—The vowel sounds produced by the voice
are due to the vibrations of two cartilaginous plates, the
vocal chords, placed at the top of the windpipe, edge to
edge, with a narrow slit between them ; air blown through
this slit from the lungs keeps the plates vibrating. The
apparatus is really a free reed. The vocal chords have
muscles attached to them, which can vary the frequency
of the vibration, and the pitch of the sound produced.
The different vowel sounds are produced by wvarying the
size and shape of the mouth cavity, but it is uncertain
what effect this produces. Some believe that the mouth
reinforces by resonance certain harmonics in the sound
produced by the chords, a sound containing among its
harmonics the same multiples of the fundamental being
recognised as the same vowel, whatever the absolute fre-
quency of the fundamental. Thus a note whose harmonic
components are the fundamental and its octave is said to
give the sound 6, while the fundamental with the first five
harmonic overtones gives the sound a. On this view each
vowel is a note of particular quality. Another view is that
each vowel is distinguished by the addition to a note which
may have any pitch, of one or two other notes whose abso-
lute frequencies determine which vowel is heard; thus the
sound o requires a note of frequency about 980 added to the
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louder and lower note. The note which determines the
vowel is not a harmonic of the note which constitutes the
greater part of the sound. The two views are often held
together, each vowel sound being considered to require cer-
tmn ]uunmnw-ﬁ of the hunl‘unvn‘ml note, and also certain
notes of fixed frequency independent of ‘the fundamental.
There seems no direet evidence that these notes are pro-
duced, and if they are, they probably exist only for a short
110110{1 at the beginning of the sound. The consonant
sounds are pmduced by the tongue, teeth, and lips. Most of
them are notses. Others, e.g. Jt” J, 15 are notes with accom-
panying noises. “'mv{-“'utl sounds uf-,u*llh called consonants,

e.g. L and M, ave reaily vowels with their quality modified
by the resonance of the cavities of the nose, or of parts
of the mouth cavity partitioned off by the tcmgue

90. Effect of Change of Temperature.—As the vibration
period of an air column depends.on the time taken bya
pulse to travel its length, the vibration frequency is propor-
tional to the velocity of a pulse. Rise of temperature
therefore inereases the vibration frequency of the air column,
the frequency being proportional to the square root of the
absolute temperature (Art. 83). The increase of frequency
is really a little less than this, because the pipes lengthen
with rise of temperature ; this effect is greater with metal
than with wood pipes. In reed pipes the increase of fre-
quency with rise of temperature is much less than with flute
pipes, because the stiffness of the tongue diminishes as the
temperature rises, so that, while the risc of temperature
+hortens the natural period of the air column, it lengthens
that of the reed. Reeds without pipes, as used in the
harmonium and concertina, diminish slightly in frequency
with rise of temperature.

91. Vibration of Ligquid Columns.—Liquid columns may
also be set in resonant vibration. 1f a common tin whistle
is immersed entirely in water in a jar, and connected by a
tube to a high pressure water supply (such as the ordinary
water pipes of a house), the water in the whistle is set in
resonant yvibration, Not much sound is heard, as sound does
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not pass easily from water to air (Art. 71) but the trembling
of the jar is ecasily felt. If the observer puts his ear under
the water, the sound is well heard.

92. Vibrations of Solid Rods.—As condensations and
rarefactions travel along rods of elastic material exactly as
along the air in tubes, and are reflected at free ends of rods
exactly as at open ends of tubes, and at fixed or loaded
points of rods exactly as at closed ends of tubes, rods can be
set. in resonant stationary undulation exactly like that of
air columns, but different means must be adopted to give the
successive impulses. The simplest way 1s to draw a resined
cloth along the rod.

Resin, like other viscous substances, adheres the more strongly to
surfaces over which it moves the more slowly it travels along them,
The cloth sticks to the rod, pulling the part with which it is contact
along with it, and so producing condensation in front and rarefac-
tion behind. © These conditions travel to the ends of the rod, or to
any point of it which is fixed or loaded, and are reflected ; and thus
travel up and down the rod, and as they pass any part of the rod
that part moves a short distance. .As a wave passes the cloth, if it
ig one in which the particles of the rod move in the same direction
as the cloth, the relative velocity of the eloth along thé rod is
diminished, and the cloth adheres more strongly to the rod, and
gives the surface a pull in the direction in which it is already
moving, while a contrary action takes place if the wave is one in
which the particles of the rod are moving the opposite way to the
cloth. Each wave is therefore increased each time it passes the
eloth, and the rod is set in resonant vibration.

The resonant vibration of a rod fixed or loaded at one end
is exactly similar to that of the air in a closed tube, for the
waves are reflected in just the same way. The vibration of
a rod not firmly fixed anywhere, for instance held in one
hand and rubbed with the other, 1s similar to that of the air
in an open tube. In the vibration of a rod clamped in the
middle, each half vibrates like any other rod clamped at one
end, but the two halves keep time with each other, so that
points at equal distances from the middle always move in
opposite directions at the same time. A rvod fixed at both
ends (which may be a stretched wire) vibrates like the air in
a tube closed at both ends. If pieces of lead are fixed by
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clamps to two points on a stretched wire, and a picce of
sundpaper, or resined cloth, drawn along the part of the wire
between them, a loud sound 1s produced, whose pitch
depends on the distance between the pieces of lead, but not
on the tightness of the wire. This sound is due to the
resonant longitudinal vibration of the part of the wire
between the lead blocks, which are nodes. The blocks
need not be fixed, except to the wire, as the waves are
almost totally reflected on arriv ing at a portion of the wire
of so much gr Uatu density than the rest (Art. 70).

Owing to the great number of successive impulses whose
cnergy may be added to cause a resonant vibration, the
movement of the air in a resounding tube, or of the material
of a rod in resonant vibration, may be very large compared
with the ordinary movements of progressive undulation.
In an air column the movement of the air may amount,
to an actual wind, capable of carrying along cork filings
or other light powders. By drawing, with one hand,
a resined cloth along a steel bar, we can make the bar
lengthen and shorten to an extent which it wouid require a
direct pull of many tons’ weight to effect. Thick glass rods
capable of supporting a ton or more, may easily be pulled to
pieces in this way.

93. Experimental Illustrations.—The movement of the
vibrating air in a tube may be studied in various ways. If
the tube, or one side of it, is of glass, we may place it vertically,
and let down into it a thin membrane stretehed on a horizontal
wire ring (as described in Art. 40), with a little sand on the
membrane ; the sand dances everywhere except at nodes.
Or the tube may be placed horizontally and a light powder
such as cork dust scattered in it; this, being blown about
everywhere else, soon collects at the modes. The same
method may be used for a vibrating liquid column, a heavier
powder, such as precipitated silica, being used instead of
cork dust.

For demonstrating to a large audience the different modes
of stationary undulation of the air in an organ pipe, Konig’s
manometric capsules (F1g. 52) are very useful. A manometric
capsule is a box, shaped like a large pill-box, of which one
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ehd consists of a stretched membrane. It 1s fitted into
a hole cut in the side of the organ pipe, with the membrane
side inwards, in contact with the air in the pipe. Coal-gas

1s conveyed into the capsule by a tube, and out by another
to a pin-hole burner, where it burns as a small flame. I¢f
any rapid changes take place in the pressure of the air in the
part of the organ pipe where the capsule is inserted, the
membrane vibrates and the flame flickers, and, though this
flickering is too rapid to be easily observed directly, it may
be detected by watching the reflection of the flame in a
rapidly rotating mirror. It then appears as a band of light
toothed along its upper edge, the teeth being the images of
the flame at the moments when it is highest. (A similar
effect can be produced, without a rotating mirror, by rapidly
turning the head from side to side while looking at the flame.)
If a number of such capsules are inserted in the side of an
organ pipe, the flames of all of them flicker except of those
at antinodes, and the positions of these are therefore easily
seen. The methods previously given detect the nodes.

The nodes of a rod in stationary undulation may be shown
either by scattering sand on it or by putting a number of
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card or wire rings on the rod and holding it nearly, but not
quite, horizontally. When the rod is set in resonant vibration,
the rings slip down it till they reach a node.

Any of the modes of resonant vibration of an air column may be
imitated by means of the spiral wire of Art. 73. A short heavy
pendulum, of adjustable length, must be suspended vertically over
one end of the spiral, so that the bob of the pendulum hangs between
the horizontal rods and on a level with them. The pair of strings
supporting that end of the spiral are then to be disconnected from
the rods and tied to the pendulum bob, so that the end coil of the
spiral now hangs from the bob, while the others hang from the rods.
The other end of the spiral must be fixed if the vibration in a closed
tube is to be represented ; free for an open tube. If the pendulum,
which represents the tuning fork used with an air column, is set
swinging in the direction of the length of the spiral, only an ir-
regular movement of the coils results until the period of the
perdulom is adjusted so that it fullils the condition necessary in
order that periodic impulses may cause resonant vibration of a rod
or fluid column ; the condition explained in Art. 85. The spiral
then begins to vibrate quite regularly, with definite nodes where
the coils do not move, and forms a good illustration of the process
of longitudinal stationary undulation. With a little practice, the
hand, moved regularly and rapidly backwards and forwards, may
replace the pendulum bob, and gives better results.

The resonant vibration of gas columns and rods affords a
means of determining the velocity of sound in the respective
gases and solids; these methods are explained in Chapter X1,
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EXAMPLES II.

In the following examples the velocity of sound in air is to be
taken as 33,240 + 60f cm. per second, ¢ being the centigrade tempera-
ture. Unless otherwise stated, the temperature is to be taken as 0° C.

. ELEMENTARY.

1. Give the lengths of the three shortest closed tubes, and of the
three shortest open tubes, which would resound to a tuning fork
making 200 vibrations per second.

\ 2. A whistle making 2000 vibrations per gecond is placed a metre
from a wall. At what points between the whistle and the wall are
antinodes to be found 7

3. A whistle is sounded near a wall, and the nearest node to the
wall is 3 em. from it. Determine the frequency of the whistle.

V4, Give in each case the four slowest vibration frequencies
possible in a tube 3324 metres long (a) when open at both ends,
(b) when open at one end, (¢) when closed at both ends. [Neglect
the correction for radius. ]

™ 5. If a tube makes 340 vibrations per second when the temperature
is 16° C., what is its frequency, in the same mode of vibration, when
the temperature is 51° C.? [Neglect expansion of tube.]

““6. The air in a closed tube 34 cm. long is vibrating with two
nodes and two antinodes, and its temperature is 51°C. What is
the wave-length of the waves produced in the air outside the tube,
if the temperature of that air is 16°C. ?

"\7. A closed tube 15 cm. long resounds, when full of oxygen, to a
egiven fork. Give the length of a closed tube, full of hydrogen,
which will resound to the same fork.

8. If the velocity of sound in hydrogen is 126,000 cm. per second,
and in air 33,300 cm. per second, what is the length of the waves
which will be produced in the surrounding air by blowing an open
organ pipe, a metre long, with hydrogen, the pipe being also full of
hydrogen.

ADVANCED,

1. A vertical tube 1 metre long and 4 em. in diameter is gradually
filled with water, while a tuning fork, making 500 vibrations per
second, is held over the upper end. At what positions of the water
surface will the tube resound (taking the correction for diameter of
the pipe into account) ?

2, What must be the diamster of a closed tube 2 ft. long in order
that it may resound to the lowest note given by an op:n tube 4 ft.
long and 8 ins. in diameter ?

&D. M
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3. Where must a conical tube. closed at the apex, be cut in two in
order that each part may resound to the same note? What is the
ratio between the frequency of this note and the note to which the

whole tube would resound ?

4. A wooden rod 1yd. in length floats (when compelled to float
vertically) with 2 ins. of its length out of water, and if rubbed
longitudinally, without being firmly fixed anywhere, the lowest note
it can be made to give has a frequency of 256. Find Young’s
Modulus for the wood in poundals per square foot.

5. A brass wire, 2 metres long and 1 sq. mm. in sectional area
weigls 16 gm., and when it is hung up by one end, and 20 kilog.
are suspended from the other, it elongates by 6 mm. What note
will it give when rubbed in the direction of its length ?



CHAPTER XI.

TRANSVERSE UNDULATION.

94, Transverse Wave in a Cord.—Take a long rope 45
(Fig. 53) and fasten one end # firmly to a wall at a point
about six feet from the ground. Hold the other end 4 in
your hand, about four fect from the ground, and stretch the

B

Fig. 53.

rope till the part nearest to your hand is about horizontal.
It will not be quite straight ; but we neglect that at present.
Raise your hand suddenl} a few inches, so that 4 is at 4".
The immediate result of this is that a short portion A4°C,
close to your hand, is in an altered condition, not rarefied or
condensed, but sloping instead of horizontal, the rope having
the form A°CB. The point C is now acted on by two forces,
due to the stretched condition of the string, along C4” and
CB, and the resultant of these is upwards. (€ therefore
begins to move up, and it stops only when it has moved as
far as 4 moved, so that a portion of the rope 4"C”is hori-
zontal again, while the sloping condition exists in another
pﬂrtmn C'D, the rope having now the form 4'C"DB. D then
begins to move up in the same way, and so the sloping con-
dltmn which was first produced in A'C travels all along the
rope.
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Now this continuous movement of a condition of slope
along the rope has been effected by each portion of the rope
moving in turn a short distance in a direction at right angles
to the rope: 4 to A’y C to (', and so on. Further, each
portion moved only while it formed part of the sloping
section ; as soon as the sloping condition had passed it, it was
at rest again.

The whole process is in many respects very similar to the
transmission of a pulse of condensation or rarefaction, as
described in Art. 11. In both cases a condition of altered
relative position of the particles travels continuously, while
each particle in turn moves a short distance and then stops.
In both cases the altered relative position exists where the
particles are moving, and when the particles come to rest
they are in their original position relative to their neighbours,
though not in space. In both cases the velocities with which
the particles at different points are moving are proportional to
the difference between their actual and their ordinary relative
position. The chief differences are (1) that in the experiment
we have just described the ‘¢ altered relative position ” of
the particles is altered relative direction, not altered relative
distance ; slope, not condensation or rarefaction; (2) the
short movement which each particle executes in turn is at
richt angles to the direction in which the condition travels,
not in that line, as in Art. 11. For this reason this kind of
motion is called transverse progressive undulation.

95, Velocity of Transverse Waves.—It can be shown
(see Appendix D) that the slope produced by the movement
of 4 (i.e., the angle between the changed direction and the
original one) is proportiinal (as long as it is small) to the
velocity with which 4 was displaced, but that the velocity
with which the sloping condition travels along the rope does
not depend on how 4 moved, but only on the mass of each
unit length of the string and on the force with which the
string is stretched. Even without investigating the exact
relation, it is evident that, the more tightly the string is
stretched, the greater the resultant force on €, and therefore
the quicker ¢ will move up to €', and the sooner D will
begin to move, and so on. So that the velocity of a trans-
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verse wave depends on the force with which the string is
stretched. The velocity of a longitudinal wave, on the other
hand, is the same whatever the tightness of the string, as
explained i Art. 27. Even if a string or wire 1s stretched
to the point of breaking, the velocity of a transverse wave
along it 1s always much less than that of a longitudinal one.

A fuller investigation shows (sece Appendix D) that the
velocity with which a sloping condition travels along a rope is

\/ force with which the rope is stretched

mass of unit length of the rope ’

the stretching force being measured in dynamical units, as
explained 1 Art. 27.

96. Reflection of Transverse Waves.— When the sloping
condition arrives at the fixed point B, it is reflected, and
travels back again to 4. The direction of the slope is the
same 1n the reflected as in the original wave, but the move-
ment of each particle of the rope while it forms part of the
reflected wave is in the opposite direction to its motion while it
formed part of the original wave. This corresponds to the re-
flection of a condensation or rarefaction at the closed end of a
tube, and is reflection with change of sign.

If such a transverse wave arrives at a free end of a rope, it
1s also reflected, but in this case the slope is reversed, and
the motion of the particles is not. This corresponds to the
reflection of condensations and rarefactions at the open end of
a tube. The wave produced by cracking a whip 1s reflected
in this way.

Every movement which we cause 4 to execute at right
angles to the length of the rope is repeated in turn by each
particle ; later and later the further from 4. So that, until
the waves reach B, the past displacements of 4 are the
present displacements of the successive points of the rope.
The rope is in fact a displacement curve representing the
history of the movements of 4.

If we move 4 up and down harmonically, the rope itself
1s thus thrown into harmonic waves, which travel along it
away from 4. The continuous line in Fig. 54 shows the
form of the rope at an instant when A has been vibrating
harmonically for some time; the arrows show the relative
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velocities of the material of the rope at different points.
These velocities are proportional at each point to the slope of
the rope there, and are in opposite directions at points where

the rope slupes oppositely. An instant later ecvery point
of the rope has moved a short distance in the direction of the
arrow attached to it, and the form of the rope is the dotted
curve. Thus, while each particle of the rope has moved up
or down, the form of the rope has moved to the left.

If the stretching force is different in different parts of the string,
the velocities with which the waves travel along different parts are
proportional to the square roots of the stretching forces, as shown
above. The number of waves which pass any point in a second is of
course equal to the number that start in a second, and is the same
in all parts of the string. The waves are therefore longer where
they travel quicker, the length of a wave varying as its velocity
varies as it goes along, as in longitudinal waves.

97. Transverse Stationary Undulation. — Next suppose
we move both 4 and B up and down harmonically with the
same frequency. A series of harmonic waves, of equal wave-
length, will start from cach end towards the other. After
these wave-systems have met in the middle of the rope, the
principle of superposition shows that the actual displacement
at any given moment, of every part of the rope, can be found
by adding the [11‘21}13.(10]1101113‘3 which would be due at that
moment to the wave-systems separately.

Let X, Fig. 55, be the form which the rope would have,
at a given moment 7, if only the waves from A travelled
along it, and let ¥ be the form which it would have at the
same moment if only the waves from B travelled along it.
The actual form of the rope at the moment 7'is that found
by adding the ordinates of X and Y; it is shown in line 8.
The forms which would be due an instant later to the waves
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from A and from 2 respectively can be found by shifting X
to the left and ¥ an equal distance to the right. If we
suppose each advanced 1 of a wave-length, and add the

P
=

ordinates again, we get line 1. By advancing X and ¥
again each 1 of a wave-length, we get line 2, and so on.
(Only 5 out of the 8 such stages of a complete cycle are
shown, the remaining 3 being simply 1, 2, and 3 inverted.)
We see that the actual movement of the cord is one in which
its form is always a harmonic curve, and that, twice in each
complete cycle, there is a moment when every part of the
cord has, simultaneously, its maximum displacement, and 1is
therefore at rest (stationary instant) while twice in each cycle
the curve becomes a straight line. We see also that there
arecertain fixed points—nodes-—through which the cord always
passes, so that the displacement at these points is always
zero, but that it is at these points that the greatest changes
of slope occur. Also that between these there are other
points—antinodes—where the greatest displacements occur,
but where the cord is always parallel to its original position,
so that there are no changes of slope. The movement of the
cord is thus one of fransverse stationary undulation. We see
also that the distance from one node to the next is half a
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wave-length of cither of the wave-systems which would be
caused by the movement of 4 or B alone, and that the
stationary undulation goes through the complete cycle of
movements in the time in which either of the progressive
undulations, due to 4 or B alone, would advance one wave-
length, or twice the distance between two nodes.

Thus, if 7 is the distance between two nodes and 7 the
velocity of a transverse travelling wave, 2//V is the period
in which the stationary undulation goes through its changes,
and ¥7/21 is its frequency or the number of times it does this
is a second, As

g \/ dynamical measure of stretching force
~ mass of unit length ’
this frequency
ol \/ dynamical measure of stretching force
2UY e o mass of unit length ;

If, when the cord is in this condition of stationary undula-
tion, we fix any two nodes, say C and D, the movement of
the cord is of course unaffected, since C'and D were stationary
already. The condition of stationary undulation will therefore
continue till the energy of the string has been partly com-
municated to the air in sound waves, and partly converted
into heat in the string itself. When two points on a string
are fixed, a solitary travelling wave in the part between
would run backwards and forwards between them, being
reflected each time it reached either, and the stationary
undulation of a cord fixed at two points may be conveniently
considered as the resultant of two fictitious wave-systems
travelling in opposite directions and continually reflected in
the same way.

We saw above that, if we had any stretched string, we
could, by sending harmonic waves of length 2/ along it from
both ends, throw it into a condition of stationary undulation
with nodes / apart, and that if the mass per unit length of
this string is m, and the force with which it is stretched f,

the frequency of its stationary undulation is \/ ;;; Also
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that, if we fix any two nodes !/ apart (« being any whole
number), the part of the string between them will continue
to vibrate with the same frequency in z loops separated by
nodes. At each stationary instant such a string is a motion-
less harmonic curve having « single bends. So that, if we
took a similar string, similarly stretched, fixed it in the form
of a harmonic curve having z single bends of length /, and
then let it go everywhere at once except the two ends
(that this is impracticable does not matter for our present
purpose), it also would vibrate in the same way and with the
same frequency. (This can also be proved directly, without
considering the movement as the resultant of two fictitious
travelling waves.) The more bends we made, the shorter /
would be, and the greater the frequency, the frequency being
proportional to the number of bends. If, for instance, we
could bend a string into the form of the continuous harmonie
curve F, Fig. 56, and let go, it would vibrate from that
position to that of the dotted onc and back, with a frequency

Fig. 56.

% \/ ;;.fg* ! being in this case the whole length of the string.

We will call this frequency n. If we could bend the same
string into the form of the continuous line & and let go, it
would vibrate in two loops, with a frequency 2, since 7 s
now only half the length of the string. Similarly for three
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or more bends. In any case, if the string starts from a har-
monic form, every point of it vibrates harmonically with the
same frequency.

98. Quality of Sound from String.—Next suppose that
we could bend the string into the form /7, whose ordinates
are the sums of the ordinates of /' and ¢. When we let it
go, the movement of each point of the string will be the sum
(in the sense explained in Art. 7.) of the movement which it
would have executed if it had been bent in the form # and
that which 1t would have executed i1f it had been bent into
the form &. In other words, the string vibrates in two
loops from side to side of an imaginary line which vibrates
like £ in the same way as the string & vibrates in two loops

Fig. 57.

from side to side of a straight line. Fig. 57 shows some
stages in this movement, the dotted line being the imaginary
line which moves as the string #” did. The movements of
different points of the string are not similar, nor, usually,
barmonic, but the motion of each point is the sum of two
harmonic vibrations of frequencies » and 2.

The same would be true if we began by bending the string
into a form which was the sum of any number of harmonic
curves which, like /' and @, have an exact number of single
bends in the length of the string. Now, when we pull a
point of the string to one side, the form the string assumes
is that of two straight lines meeting at an obtuse angle at
that point. This is not a form which looks likely to be the
sum of a number of harmonic curves, but Fourier’s Theorem,
or an easy extension of it, shows that any of the angular
forms which can be produced by pulling a point of the
string to one side, is a form which might be made by adding
the ordinates of harmonic curves of which the length of the
string contains an exact number of single bends. It shows
further that, of the infinite number of such curves, all are .
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required except those which cut their axis line at the point
at which the string was pulled aside. Those which cut the
axis very near this point are required only of small ampli-
tude.

Suppose, for instance, we pull the string C'D (Fig. 58) to
one side at a point Z, 1 of the way from € to D. The form
CED is one which might be produced by adding the ordin-
ates of harmonic curves which have 1, 2, 3, 4, 6, 7, 8, 9, 11,
&e., half-waves in the length €D, those which have any

E

___ﬂ—— \
D c
' Fig. 58.

multiple of 5 half-waves being omitted, because they would
cross the axis under the point £. So that, if » is the frequency
with which the string would vibrate if bent into the form of
a single harmonic halt-wave, the motion of each point of the
string, when it has been pulled into the form CZD and
released, is the sum of harmonic movements whose frequencies
are n, 2n, 3n, 4n, 6n, &c.  Vibrations of these frequencies
are the harmonic components of the real movement of the

string.

Similarly, if we pull a string aside at a point -g of its length

—g— being a fraction in its lowest terms, any
harmonic curve which has 26 single bends in the length of the
string (# being any whole number) cuts the axis at the point
where the string was pulled aside. The harmonic com-
ponents of the vibration produced when the string is let
go are vibrations whose frequencies are all the multiples of
n which are not multiples of n, » having the same meaning
as above,

If we strike a string, as in the piano, the harmonic com-
ponents of the vibration produced have the same frequencies

as if we had pulled it to one side at the same point, but

from one end,
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their relative amplitudes are different. A hard hammer,
which touches only a very short piece of the string, and
remains in contact with it a very short time, produces a
vibration whose high-frequency harmonies are intense, and
conversely.

Next, suppose we touch the vibrating string at some other
point with a light object such as a feather or camel’s-hair
brush. This stops all modes of vibration of the string
except those which have a node at the point touched, and
the subsequent motion of the string is the sum of those
harmonic components of its previous movement, which have a
node at this peint. If, for instance, after plucking the
string C'D at L of its length from one end we touch it at a
point 1 of its length from one end, all harmonic vibrations
become impossible exeept in 3, 6, 9, 12, 15, &c., loops.
Of these its motion included all except that in 15 loops, so
that the subsequent motion is the sum of the harmoniec
vibrations which it could execute in 3, 6, 9, 12, 18, &e.,
loops, all multiples of 3 which are not multiples of 5 being
included. The harmonic components of this vibration have
of course frequencies 3n, 6n, 9n, 12n, 18n, &e. ; n having the
same meaning as before.

Similarly, if a string which has been plucked or struck at

o point & of its length from one end is then touched at

b

a point — from onme end (‘:;’— and .5% being fractions in

their lowest terms), the harmouic components of the subse-
quent vibration have frequencies which include all the
multiples of » which are multiples of #n but are not multiples
of bn.

The ends of a stretched string must be fastened to some
solid body, for instance, to pegs or screws in a board, and
when the string vibrates its pull on the pegs varies and the
hoard vibratesalso, and so produces air waves. The movements
of the air so produced correspond nearly to those of the board,
and the movement of the board, though it does not correspond
closely tothat of the string, is the sum of the movements which
the harmonic components of the vibration of the string would



TEANSVERSE UNDULATION. 173

produce separately, so that the movement of the board has a
harmonic component corresponding in frequency to each
harmonic component of the movement of the string. (The
relative amplitudes of the components may be very different
for the board and string, since some components may cause
resonant vibration of the board, and not others. There may
also be components of the vibration of the board which are
not components of that of the string.) The string itself also
produces waves in the air, but for the reason explained in
Art. 22 they are insignificant in intensity compared with
those from the larger moving surface of the board, and a
vibrating string would hardly be audible if it could be
fastened to absolutely immovable points.

99. Resonant Vibrations of Strings.—The harmonic com-
ponents of the air waves, and therefore the quality of the
sensation they produce, thus depend on the point at which
the string is pulled aside or struck, but we cannot make the
string vibrate harmonically or produce harmonic air waves
by pulling or striking it. DBut it may be set in resonant
vibration by impulses agreeing in frequency with any of its
modes of vibration ; if these impulses are harmonic in character,
the resonant vibration will be harmonic. For instance, if we
attach a thread to one prong of a tuning fork, as shown in
Fig. 59, it will be found that when one of certain definite

ﬁ?

£ ¥
Fig. 5.

loads is placed in the scale-pan, and the fork excited by
drawing a violin bow across one prong, the thread is thrown
into strong stationary undulation, the number of loops depend-
ing on the weight in the pan, This occurs only if the weight is
such that one of the modes of free stationary undulation of
the thread is nearly of the same frequency as the fork ; the
weights which are requircd to make the same string vibrate
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in 1, 2, 3, &c., loops are inversely proportional to the
squares of these numbers. This is ¢ Melde’s experiment.”

The fork may also be placed so that it vibrates in the
direction of the length of the thread, instead of at right angles
to that direction, so that the fork pulls the thread instead of
shaking 1t up and down. In this case there is resonant
vibration when the weight is such that one of the modes of
vibration of the thread has half the frequency of the fork,
for the thread is straight when the prong is at one end of its
swing, and loosest when the prong is at the other, so that a
quarter vibration of the thread takes place in half a vibration
of the fork.

Merely bringing the stem of a vibrating fork into contact
with the board on which a string is stretched will set the
string in resonant vibration if Lhe frequency of one of its
modes agrees nearly with that of the fork. This may be
used to find the frequency of a fork, if the string is stretched
by means of a weight so that the stretching force is known.
This weight, or the length of the string, is altered till the
fork throws the string into resomant wvibration, which 1s
detected by placing a little folded piece of paper astride the
string ; the paper is thrown off when resonance occurs. The
mode of vibration is determined by placing a large number of
such *riders” at different points along the string; those
which are at or near nodes are not thrown off. The mass per
unit length of the string is ascertained by weighing and
measuring it or a similar piece. The frequency of the string
in the mode in which the fork sets it vibrating can be calcu-
lated by the formula given above, and this is the frequency
of the fork. This method is not very accurate, partly because
the rigidity of the string makes its frequency rather greater
than that given by the formula, which is strictly accurate
only for a perfectly flexible string, and partly because, owing
to the small mass of the string, it is not easy to determine
exactly when the resonance is at its maximum, and the free-
vibration frequency of the string therefore equal to that of
the fork. The latter cause of error may be avoided by ad-
justing the string until the note produced by twanging 1t or
drawing a violin bow across it is the same as that of the fork,
a3 shown by the absence of beats, or, as very slow beats are
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not easily heard, till the beats have a frequency which is
easily counted. The frequency of the beats must of course be
added to or subtracted from the calculated frequency of the
string., The action of the bow, which is resined, is the same
as that of the resined cloth in Art. 92 ; though it produces
resonant vibration, its impulses depend on the vibration
already existing, and the vibration it produces has the
frequency of the free vibration of the string.

This experiment is most easily carried out on a sonometer,
which is an instrument for experimenting on the vibrations of
strings. Its usual form is shown in Fig. 60. 4.4 is a long
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box with holes in its sides. Two wires are stretched over
the two fixed bridges B, B, the upright faces of which are a
metre apart. One of the wires passes over a pulley and is
stretched by weights; the other is stretched by a wrest pin,
D, which is turned by a key. A third bridge C is movable,
and a little higher than the others, so that it presses the string
and reflects transverse waves.
A simpler form, with one string, is called a monochord.

The formula » = glg ;; is most easily proved expcriment-

ally by means of the same apparatus, the string being
stretched by a weight. 7, f, m can be observed, and the
calculated value of » compared with that determined by
direct measurement. For this, if we wish to avoid all
assumptions, we can use the photographic method, or the
method of tracing on a revolving drum, or the vibration
microscope. If we assume that the pitch of the note pro-
duced corresponds to the frequency of the vibrations of the
string, the frequency may also be measured by the siren,
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These methods are described in the next chapter. The
calculated and observed frequencies agree very closely.

From the formula n = — \/ f sf;.veral facts at once follow

which are sometimes callcd the “laws” of the transverse
vibration of strings. The most important are :

(1) If the stretching force and mass of unit length remain
constant, the frequency varies inversely as the length.

(2) If the length and mass per unit length remain constant,
the frequency varies directly as the square root of the
stretching force.

(3) If the length and stretching force remain constant, the
frequency varies inversely as the square root of the mass of
unit length.

The last of these may be put in a different form for round
strings or wires, viz. :

(3a) If the length, stretching force, and material of several
strings are the same, their frequencies are inversely as their
radii (or diameters).

These laws, being merely proportional, are true whatever
units are used to measure the different quantities. In this,
as already pointed out, they differ from the absolute formula

] “_f ., which cannot be deduced from these laws, as it

21
contains more than they do.

The ¢“laws” are of course completely proved by the
experiments which prove the absolute formula, but they may
also be illustrated by less elaborate experiments which do not
involve the measurement of an absolute frequency. These
experiments are often said to ‘ prove’ the laws, but the
proof 1s far from conclusive, and involves several assump-
tions.

We shall evidently require some means of determining
whether the changes of frequency produced by changing the
length, stretching force, or thickness of the string correspond
with the changes predicted by the laws given above. As
explained in Art. 65, most persons easily recognise whether
the interval between two notes is exactly an octave, and it
was shown by an experiment that when it is an octave, the
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frequency of one vibration is twice that of the other. We
shall assume, then, that the perception of this relation
between the sounds is sufficient proof that the frequencies of
the strings are as 2 : 1. With this assumption, the following
experiments may be considered to illustrate the laws, though
it would be easy to devise quite different laws with which
the experiments are equally consistent.

Law 1.—Adjust the tension of the string which is stretched
by the wrest-pin till it gives the same note as the other string
when made to vibrate, which is best done by drawing a
resined violin bow across it. Insert the movable bridge C
under the string #, but not under &, and adjust the distance
CB till the portion of the string 7' between B and C gives,
when plucked or bowed, a note an octave higher than that
given by G. It will then be found that the length BC is
almost exactly half the length BE".

Law 2.—Next remove the bridge €' and increase the weight
Z till F gives a note an octave higher than ¢, and
therefore an octave higher than 7# did originally. It
will then be found that the total weight at £ has been
increased very nearly to four times its original amount,
allowing for the weight of the rod in each case.

Law 3.—Next substitute for 77 a brass wire of 20 gauge,
and load Z' till this wire gives the same note as ¢. Then
replace it by a brass wire of 25 gauge, and load this till
it gives a note an octave higher than @. It will be found
that the weight required is about the same as that used for
the 20-gauge wire. By weighing equal lengths of the two
wires, or by measuring with a screw-gauge, 1t can be shown
that the mass of unit length of 20-gauge wire is about 4 times

as great as of 25-gauge wire, or that the diameter of the
former is twice that of the latter.

The quantity \/ stretehing' force  \which appears 1n
mass per unit length

the cxpressions for velocity of a transverse wave and fre-
quency of a transverse vibration may be put in a different
8D, N
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form. The ratio - %tl"ﬂttlllﬂ”‘ fUFLL - 1s the tension® of the

area of cross ‘w(.tmn

mass per unit length is the density of the

area of cross section-

material. The ratio _ stretehmg, T N 1s therefore equal
mass per unit length

to, though not the same as gE T
density ’

be substituted for the former. The mass of unit length of a
string is sometimes called its linear density.

string. The ratio

the latter may therefore

100, Transverse Vibration of Rods and Plates.—A wave of
transverse displacement may be sent along a rod of any elastic
material in the same way as along a stretched cord, but the rod need
not be stretched, and it is the elasticity of the material, not tension,
which restores the successive portions of the rod to their original
relative positions. The velocity of such a transverse wave, if har-
monic, is independent of the thickness b of the rod in the direction
perpendicular to the displacement; proportional directly to the
thickness ¢ in the direction of the displacement, and to the square
root of Young’s Modulus Y for the substance ; proportional inversely
to the square root of the density d and to the length of the wave A. A
non-harmonic wave has no definite veloeity, but the movement is
the sum of the movements which would be due to the harmonic
components, each travelling with the velocity proper to its wave-
length. This dependence of velocity on wave-length makes the laws
of transverse vibration of elastic rods much more complex than
those of strings, In elastic rods stationary transverse undulation
is produced, as in strings, by the interference of wave systems, which
are travelling in opposite directions, and which have been reflected
from the ends of the rod. The modes of stationary transverse
undulation possible in a bar depend on what points, if any, are fixed,
and whether the bar at these points is fixed both in direction and in
position, as when a rod is held in a vice, or fixed only in position, as
when it merely rests on fixed supports, as in the toy called the har-
monicon. In any of these cases there may be nodes and antinodes,
and an end which is fixed in position but not in direction is always
a node. An end fixed in direction is not a true node, since it i8 not

* “Tension ” is still sometimes used as equivalent to “ stretehing
force,” but it is better to avoid this and use the term only for the
stress, or ratio of stretching force to area of cross section. Compare
footnote to Art. 27,
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& point of maximum change of slope (Art. 97) ; nor is a free end a
true antinode, since it is not a place where the rod moves parallel to
itself. The point of no transverse motion nearest to a free end is
also not a true node, since the ¢hange of slope there is not as great
ag at the free end itself. All the true nodes are equidistant ; the
distance from an end fixed in direction to the nearest node, cr from
a free end to the nearest true node, is 1} times the distance between
two true nodes; the distance from a free end to the nearest point
of no transverse motion is a little less than a third of the distance
between two true nodes. From these rules the different possible
modes of harmonic vibration in any given case are easily determined ;
the simpler ones, for a bar entirely free (or supported at two nodes)
are shown in Fig. 61, for a bar fixed in direction at one end in Fig. 62.

)

‘--Eex{% 2

Fig. 61. Pig. 62.

The frequency of the vibration, being the reciprocal of the time
required for two travelling waves to pass each other whose length A
is twice the distance D between two true nodes, is independent of b,
proportional to ¢ and +/Y, and inversely to +/d and D2 TFrom this
it follows that, (1) if tworods vibratein the same mode, their frequencies
are proportional directly to £ and +'Y, and inversely to +/d #nd to
the squares of their lengths; (2) if the same rod vibrates in two
different modes, the frequencies are inversely proportional to the
squares of the lengths of pieces which vibrate in the same way, for
instance, the pieces 4, B or the pieces C, D, in Fig. 62. The frequency
of each mode of vibration, relatively to the other modes of the same
figure, is shown by the number to the right of the diagram.

If a rod is bent into a U-shape, and made to vibrate with an even
number of nodes, two of these nodes are very close together at the
bend, and at the antinode between them there is not only no change
of direction, but very little transverse motion, as shown in Fig. 63.
If the vibrating rod is held by this point, it shakes the holder
very slightly, and so loses very little energy except by communi-
cating it directly to the air; it thus vibrates a very long time. The
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tuning-fork (Fig.31) is an application of this principle. It may
be made to vibrate by striking one prong on an inelastic substance
such as lead, or by drawing a violin bow across one
prong, or (if the prongs are nearer together at the
points than at the bend) by drawing between the points = :
of the prongs a rod of wood just too large to pass
without bending them. The relative frequencies of
the different modes of vibration do not differ much
from those of a straight bar fixed at one end (Fig. 62).
The slowest mode (that shown in Fig. 63) lasts much
lonrer tham the others, so that the wvibrations of a
tuning-fork which has been vibrating for some time y
are always in this mode, and are (practically) perfectly
harmonie.

It will be noticed that the frequencies of the Fig. 63.
different modes of free harmonic vibration of a bar
or tuning-fork are not exact multiples of the slowest, as they are
in the case of perfectly flexible strings and (nearly) in perfectly
cylindrical or conical tubes. The following laws apply to most cases
where the more rapid modes are not exact multiples of the slowest,
e.g., to uniform rods, tuning-forks, plates, bells, columns of air of
other forms than eylindrical or conical, such as resonators (Art. 106).

(1) The free vibration of such a body, if not harmonie, is the sum
of two or more of its harmonic modes occurring together. The
slowest of these is called the fundamental, and the others partials,
upper partials, or overtones. These terms can be applied to any
components of higher frequency than the fundamental, whether
exact multiples of the fundamental or not. The term harmonics is
restricted to exact multiples.

(2) When such a body is set in foreced vibration by a periodic
force, all the components of its motion are exact multiples of the
frequency of the force, so that all the upper partials are harmonics
of the fundamental. The components which have any considerable
amplitude correspond to components of the periodic force which
nearly agree in frequency with possible free vibrations of the body.

It must be remembered that, even when a bar or fork vibrates
quite harmonically, the air-waves from it are not exactly harmonie
(Art. 22), and therefore they have harmonic components which are
exact multiples of the frequency of the bar. So that, when a bar
is in free non-harmonic vibration, the waves from it have two
distinet sets of harmonic components: one set which correspond in
frequencies to different modes in which the bar can vibrate, but
are not exact multiples of the fundamental frequency; the other
set having frequencies which are exact multiples of the fundamental
frequency, but do not correspond to anything in the movement of
the bar. The former set are called the non-harmonic overtones, the
latter the harmonic overtones. The latter are still present when
the motion of a fork has become quite harmonie.
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If a tuning-fork vibrates in front of a spherical resonator whose
slowest vibration frequency is the fundamental frequency of the
fork, none of the overtones of the fork correspond with free-
vibration frequencies of the resonator, and therefore the forced
vibration of the resonator has no intense overtones, but iz nearly
harmonic. The waves so produced are the most nearly harmonic
waves which can be made.

Plates of glass, metal, or any elastic solid, clamped at one point
and free everywhere else, can be made to vibrate transversely, as
already explained in Art. 40. In the stationary undulation pro-
duced, there are certain lines on the surface which have no move-
ment in space, but where the surface slopes first one way, then the
other. These lines are called nodal lines, and the parts of the
surface separated by a modal line are moving, at any one moment,
in opposite directions. The antinodes, or places where the surface
moves parallel to itself, are also lines. The nodal lines ¢an be found
by scattering sand on the surface and drawing a violin bow across
the edge of the plate, which for this purpose must be fixed horizon-
tally ; the sand collects along the nodal lines, as it is thrown into
the air from every other point. The figures so produced are called
Chladni’'s figures. In the case of a circular disc fixed at its centre
the nodal lines are radii, and divide the dise into an even number of
equal sectors. There are four such sectors if the edge of the dise is
touched only by the bow, but if, while the plate is bowed, we touch
with our fingers two points on the edge whose distance apart is
contained an even number of times in the circumference, there will
be that number of radial nodal lines, and two of them will run from
the centre to the points touched by the fingers. There may also be
eircular nodal lines concentric with the plate.

The frequencies of the same plate vibrating with different
numbers of radial nodes are proportional to the squares of these
numbers. The frequencies of plates of the same material vibrating
with the same number of radial nodes are inversely as the squares of
the radii and directly as the thicknesses of the plates.

Circular stretched membranes vibrate in modes which are very
similar, though the vibrations depend on the force with which they
are stretched, not on elasticity, and the relative frequencies are not
those of plates.

Plates of other forms can also be made to vibrate, their nodal
lines being olten very complex. In the case of square and rect-
angular plates they have a general resemblance to Lissajous’ figures.
The following device, due to Wheatstone, enables us in many cases
to predict their forms :—A rectangular plate D, Fig. 64, might be
supposed divided into a series of equal rods by parallel cuts in “either
of two directions. We will call these the 4 and B series respectively.
Among the modes of transverse vibration possible for these i imagin-
ary rods there is sure to be one mode for those of the A series, and
one for those of the B series, of about equal frequency. Suppose
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the rods made to vibrate in these modes, but with exactly equal
frequencies and amplitudes, all the rods of the same series executing
simultaneously the same movement, and th rods of both series
reaching their stationary instants simultaneously. In the figure,

D C

EESIE

|

I I-;

the shaded parts of the rods are parts which might be moving all in
one direction at the same time ; while the unshaded parts were
moving in the other direction. The actual movement of any part
of the plate is the sum of the movements of the corresponding
portions of the two fictitious rod-systems vibrating as above, and
the nodal line of the actual vibration is one like that in C, at every
point of which the movements of the fictitious rods would either
both be zero or equal and opposite.

A bell, which ig simply a concave circular plate, bears to a flat
plate the same relation as a tuning-fork to a straight bar, the
advantage gained by the bent form being the same as explained
above in the case of the fork. The modes of vibration of a bell are
the same as those of a circular plate, the edge being divided by
nodal points into any even number, not less than 4, of oppositely
moving segments. This may be tested by holding a suspended pith

Fig. 65.

ball against different parts of the edge, or by inverting the bell,
filling it with water, and bowing the edge; ripples will be seen to
proceed from all points except the nodes.

The curved form makes a difference which in the case of a bell is
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of some importance. The edge of a bell vibrating in four segments
keeps changing its form from that of the dotted line in Fig. 65 to
that of the broken one and back again, and its edge always passes
through the points ABF@, which are therefore considered nodes.
These nodes, however, are not points where the substance of the
edge iz not displaced, as they are in a flat plate. The arc ACB
is longer than the arc ADB, so that particles of the rim which were
at A, B before the vibration began are at A’, B’ when the rim has
the dotted form and at A", B when it has the broken one. (The
distances 44, &c., are exaggerated in the fizure.) There is therefore
a tangential vibration of the material of the bell at 4, B, F, (&, as well
as a radial vibration at D, H, J, K, and a vibration making an oblique
angle with the edge at intermediate points. As one of these move-
ments cannot take place without the other (unless the edge alters
in length), the whole movement is produced if we either make D
vibrate radially or make 4 vibrate tangentially, so that striking the
edge of the bell at D, or drawing a violin bow across that part of the
edge, produces exactly the same vibration as applying a resined
finger at A and drawing it along the edge. So that, when we run a
wet finger round the edge of a tumbler, it vibrates just as if we struck
it at a point 45° from the finger, and as the finger moves round, the
mode of vibration moves round also, the finger being always at a
point of purely tangential vibration, or node.

If one end of a rod is twisted, the next portion twists, and a wave
of twist or torsion travels along the rod. The velocity of such
torsional waves depends on the rigidity of the substance, and their
chief interest is as a means of determining this. They are reflected
a:;ld form nodes and antinodes, exactly like longitudinal vibrations
of rods.

For a rod of circular section the velocity is

,\/ dynamical measure of rigidity
density g

101, Law of Linear Dimensions.—A very important law,
which applies to every kind of vibration of solids or fluids, is
due to Bernouilli and is called the Law of Linear Dimensions.
It states that bodies of geometrically similar form, and the
same material, differing only in dimensions, when they vibrate
in the same manner, have periods proportional to their linear
dimensions,
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EXAMPLES III.
ELEMENTARY.

1. If four strings of the same length and material, but of diameters
in the ratios 1:2:3:4, are all stretched to half. their breaking stress,
compare their vibration fr equencies.

2. A string is stretched by the weight of 60 lbs. and it is found
that a hump (or small transverse wave) produced by striking it
travels along it at 30 feet per second. By what weight must it be
stretched to make the hump travel 90 feet per second ?

3. A string stretched by the weight of 10 lbs. gives a eertain note,
By what wmght must a second string of the same material, but of
twice the length and twice the diameter, be stretched to make 1t
give a note an octave higher than that of thc first string ?

4. Four violin strings, all of the same length and material, but
of diameters in the ratios 4:3 :2 :1 are to be stretched so that
each gives a note a fifth above the preceding. Compare the forces
necessary. (For meaning of “a fifth above ” see Art. 66.)

ADVANCED.

5. A string whose mass is 500 grams hangs vertically, and a
mass of 400 erams is fastened to its lower end. A transverse wave
an inch in length is produced by shaking the lower end, and travels
to the top of the string. What is the length of the wave at the
middle and at the top?

6. A rope weighing half a pound to the foot is stretched hori-
zontally by a force equal to the weight of 100 1bs. If the rope is
shaken at one end, with what velocity do the waves run along it ?

7. A wire a metre long, weighing 2! grams, is stretched on a
sonometer by a weight of 18 kilograms, and when its length is
adjusted to 80 centimetres and a vibrating fork applied, the string
throws off a rider placed at any point except two, besides the ends.
Find the frequency of the fork.

8. A bar 2 feet long and ; inch square, fixed at one end in a
vice, makes 20 vibrations per second. How many vibrations will a
bar of the same material, 1 foot long, } inch wide, and } inch thick,
make per second if made to vibrate transversely in the direction of
its thickness ?

9. In performing Melde’s experiment, it was found that the
string vibrated in 5 loops when 10 grams was placed in the scale-
pan. What mass must be placed in the scale-pan to make
the string vibrate in 7 loops? [Neglect the weight of the scale-

pan. ]



CHAPTER XIIL

ACOUSTIC MEASUREMENTS.

102. Frequency.—The frequency of a solid vibrating
body is best determined by means of a Stroboscope. This
is a disec which can be made to rotate on its axis by means
of a band passing round a small wheel on the axis and a
larger wheel turned by hand. Radial slits are cut in the
disc at equal intervals, and a counting mechanism, records
its rotations. If we fix a bright point to a vibrating part
of the body and look at the point through the slits while
we allow the disc to slacken gradually from a very high
speed, we shall see the point as a line of light, except when
the disc reaches certain speeds when the bright line changes
for a few seconds into a number of separate points. When
the frequency of the slits is only a little greater than that of
the point, a single slowly moving point is seen, which be-
comes stationary when the frequencies are exactly equal.
The rotation is now maintained by the handle at such a
gpeed that the point seems to remain stationary, and the
counting mechanism set in action for a measured time;
from the number of rotations recorded the frequency of the
slits 1s easily found, and this is the frequency of the point.
Care must be taken that the speed of the disc is the Aighest
speed at which a single stationary point is seen, as the same
appearance is presented if the frequency of the slits is an
exact submultiple of that of the point. If the amplitude
of the vibration is small, the bright point may be viewed
through a microscope; the stroboscope disc revolving be-
tween the microscope and the point,

Graphic methods, in which the vibrating body traces
its movements, are less accurate, since the necessary
friction always affects the frequency of the vibration.
The Vibroscope (Fig. 66) is a good example of this
method. The vibrating body is fixed so that the points
whose movements are to be counted moves near to the
surface of the cylinder, and parallel to its axis, The



186 SOUND.

cylinder 1s covered with smoked paper, and a fine wire, attached
with wax to the vibrating body, just touches the paper. As
the handle is turned, and the body vibrates, the wire traces
a wavy line on the paper; this line forms a screw thread

round the cylinder, which is made to advance in the direction
of its length by a screw thread cut on the axle. When this
apparatus is used for measuring frequencies, the vibrating
body is insulated and connected to one end of the secondary
of an induction coil, while the other end 1s connected to the
revolving cylinder. The pendulum of a (seconds) clock is
arranged to make contact, as it passes its lowest point, with
a drop of mercury, and so to close and break, once in each
second, a circuit which includes pendulum, mercury drop,
the primary of the induction coil, and a battery. The spark
which passes between the wire and the smoked paper, each
time this circuit is broken, knocks off a little spot of the soot
at the point in contact with the wire at the moment ; the
number of double bends between two successive spots on the
wavy line traced by the wire gives the frequency.
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Both these methods give the displacement curve of the movement
of a point, so that they may be used to determine ithe character as
well as the frequency. A fairly accurate measurement of the
frequency of a funing fork may be made by means of the simple
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Fig. 67.

apparatus shown in Fig. 67. The tuning fork A is fixed in a nearly
vertical position, and a bristle or pointed piece of thin sheet metal B
is fastened with wax to one of its prongs. The prongs are pressed
together till they are close enough to enter a square notch in the
metal plate O, which holds them in this compressed position. A
smoked plate of glass D is suspended from two pins E, F by a silk
thread @ hanging over them in two loops, one of which is cemented
to the upper edge of the glass plate, while the other is caught under
one of the points of the metal plate €. When ( is withdrawn,
which should be done quite horizontally, the plate D falls freely
(the friction of the silk thread on the pins being negligible), and at
the same instant the prongs, suddenly allowed to fly apart, begin to
vibrate. The point B thus traces on the falling plate a wavy line
similar to H, the bends of which at the lower end are too close to
be distingunished, because traced when the plate was falling very
slowly, but widen out as we go up. In any part of the trace where
the bends are quite clear and distinet we mark three points, X, ¥, Z,
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such that there is some exact whole number a of double bends
between X and ¥, and the saume number between ¥ and Z. Let the
distance XY be d;, and YZ, d,. Then the average velocities of the

plate while the parts XY, YZ passed the tracing point, were dits and

a
dsn respectively (n being the frequency of the fork), and these were
a

the actual velociiies at the mid-instants of these intervals. So the
(dg—d;)n

plate gained a velocity
@

while the pointer traced a waves,

" IEI- - - d "-d ?LE & &
in — seconds, so its aceceleration was LQ—EQ . This = ¢,* which
n a
is 981 in England if centimetres and seconds are the units. Hence
081
=
T

It is ditficult to get on a freely falling plate a continuons trace
representing more than } sec., and this limits the accuracy with
which n can be found. A better method is to fix the glass plate
to the bob of a heavy seconds pendulum, so that the face of the
glass is vertieal and parallel to the plane of swing. The fork is
held so that the bristle vibrates vertically and touches the plate.
The trace on the plate is a wavy line, the bends of which are of
unequal lengths, as the plate moves with ditferent velocities in
different parts of the swing. In any part of this trace where the
waves are not too crowded to be distinet, mark off any three con-
gsecutive lengths co faining each the same number a of waves.
Let d,, dy, d3 be these lengths. The longer the portion of the trace
occupied by them, the more accurate the result. Let 6 be the angle
tI. 5 fi;_:,-

lfI-l
pendulum, Then the frequency of the fork can be shown to

3607 x @
be - =
or

In all these graphic methods the attachment of a tracing
point, by increasing the mass, diminishes the frequency of
vibration, and this must be allowed for. It is best done by
comparing the frequency of the vibrating body, before and
after the attachment of the tracing point, with the nearly
equal fI’L[lHLHCF of a fork which remains in the same condi-

whose cosine is , and T the time of a double swing of the

* Thig experiment is also nsed as a method for [‘udmg g, the
frequency of the fork being assumed known, but, as ¢ is a quantity
which can easily be measure od many times more accurately than the
frequency of the fork can possibly be known, this cannot be con-
sidered as more than a very rough method fnr finding g.
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tion in both experiments ; the change due to the mass of the
tracing point 1s thus determined.

There are several good methods of making this comparison
between the fmquencms of nearly equal forks. Oune is simply
to count the beats heard when the two are sounded together;
the number of beats per second is the difference of the
frequencies. If two forks, 4 and B, are very nearly equal in
frequency, the beats cannot be hearﬂ in this case take a
third fork, C, of about the same frequeney, and load its
prongs with wax till it gives about four beats per second when
sounded with 4. Then determine by counting beats how
much faster 4 and B are, respectively, than C'; the
difference between these two differences is of course the
difference between 4 and 2.

Where a third fork is not used, it will be necessary to
determine not only the difference between 4 and B, but
which of them has the higher frequency. Most persons can
decide this by ear; if there is any difficulty, the prongs of
one fork must be loaded with a little wax, and the beats
counted. If they are now faster than before, the fork that
has been loaded was the slower, and vice versda.

The device of a third fork may be made to give very
accurate results by employing Lissajous’ figures instead of
beats to determine the difference of frequency. In this
method, if the nearly equal frequencies of .4 and B are to be
compared, a third fork, € (Fig. 68), has a convex lens fixed
to one prong, and 1s adjusted by sliding movable masses
along the prongs till its frequency is a little less than those of
A4 and B. It is fixed so that its prongs, and their plane of
motion, are horizontal. One of the forks to be compared,
gay A, has a small bright dot seratched with a diamond on
the smoked end of one prong m, and is fixed vertically, with
the dot immediately under the lens of (), and so that the
movements of the dot are at right angles to these of the lens.
The dot is illuminated by a condensing lens ¢. If A4 and C
are both made to vibrate, the virtual image of the dot seen
from above through the lens has a movement which is the
sum of the movements of the dot and lens; it describes,
according to the relative phases of these movements, one of
the forms of the top line of Fig. 9, the curve described
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(which, by persistence of vision, appears as a continuous
bright line) assumes in turn all the forms of the series,
going through the whole cycle in the period in which

Fig. 68.

A gains one complete vibration on . As the moments at
which the curve becomes a straight line can be observed very
exactly, the difference of frequency between 4 and €, which
is the number of complete cycles per second, can be found
within J; of a vibration per second. Similarly, B can be
compared with €, and the difference between 4 and B
deduced from the two results.

The superiority in exactness of this method to that of
audible beats results from the great accuracy with which we
can ascertain when one fork has gained an exact whole
number of vibrations on the other, and the fact that the
vibrations can be observed for a much longer time than they
are audible.

A still better arrangement is to place the lens f at such a
distance above m that a real image of m is formed, and to
examine this real image through a fixed eyepiece g, as shown
in the figure.
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The character, as well as the frequency, of the non-harmonie
vibration of a point may be determined by the use of a lens-fork.
If a globule of mercury is attached with grease to a string, and
observed through the vibrating lens after the string has been
plucked or struck, a curve is visible if there is a simple ratio between
the two periods, but the curve is not one of Lissajous’ figures, since
one of the movements, that of the string, is not harmonic. It is an
easy matter to determine what movement of the string, combined with
the harmonic movement of the fork, would give the observed curve.

By means of this wvibration microscope we can adjust a fork very
exactly to a frequency which has any simple ratio to that of C.
The fork can be made quicker by filing it near the points, or slower
by filing it at the bend, and is to be adjusted till a Lissajous’ figure
corresponding to the required ratio is seen,'and changes only very
slowly. Two forks can be adjusted to have a given ratio to each
other by adjusting them, in turn, to any convenient ratios to the
lens-fork which have the required ratio to each other.

The vibratory movements of the air caused by a vibrating
body at any point which is always at the same distance from
the body must agree in frequency with those of the body
itself; the exact repetition of the same causes must produce
the same effects. Frequency is indeed the only particular in
which vibrations of the air necessarily agree with those
of the body causing them. Any of the methods for deter-
mining the frequency of the movements of the air can there-
fore be used to determine the frequency, though not the
character, of the vibrations of a solid body.

To determine the frequency of the movements of the air
at a point, an apparatus called a Phonautograph (Fig. 69)
may be used. A large funnel, usually made parabolic in
form, is closed at the smaller end by a stretched membrane ;
belowthe centre of this membrane, at right angles to its surface,
1s fixed a short bristle. The funnel is fixed so that the mem-
brane is parallel and very close to the surface of a smoked
cylinder exactly like that of the Vibroscope. A spring, which
touches a point of the membrane exactly above the centre,
insures the membrane always wvibrating with a - vertical
nodal line through the centre; the part of the membrane
which carries the style is therefore never displaced in the
direction of the axis of the funmel, but merely alters its
direction, vibrating on a fixed vertical axis. The point of the
bristle therefore moves parallel to the axis of the cylinder,
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and always remains just in contact with the smoked surface,
and its movements correspond in frequency, though not in
any other respect, with those of the air.

Seconds can be marked on the trace left by the bristle by
the electrical method deseribed above for the vibroscope, or a
tuning-fork of known frequency can be made to trace a wavy
line on the cylinder by the side of that traced by the bristle,
and the frequency of the bristle determined by comparing its
movements with those of the fork.
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Fig. 69.

The frequency of air waves can also be found by means of
a counting siren. Any instrument in which a sound is
produced by puffs of air escaping at regular intervals through
holes or notches in a rotating plate or eylinder, is called a
siren. 'The name was given because most forms of such
an instrument may be blown with water in water instead of
with air in air ; this is however not peculiar to the siren, but
is equally true of nearly all wind in:-atrume::ltﬁ (Art. 91), and
Homer's Sirens differed from the mechanical ones in this
respect. A common but not very good form of counting
siren is shown in Fig. 70. The lid of the box € and the
revolving plate D contain the same number of hi}l?ﬁ, and a
puff issues simultaneously from all the holes each time those
in the plate coincide with those in the lid, so that there are



ACOUSTIC MEASUREMENTS. 193

4s niany successive puffs in each rotation of the dise as there
are holes in the circle. The rotations of the disc are
counted by wheels, similar to the counting apparatus of a
gas metfer, which are driven by a screw on the axle of
the dise, and can be made to begin counting by pressing a
knob, and stopped by releasing it. Air is blown into the
box 4, and the velocity of the disc increased till the pitch of
the note heard is nearly that of the sound whose frequency
is to be determined. There is nothing harmonic about the

i
[ !|
s 11}
==
|

el
2
| I [Tk

- i
|||- Ehy ||- Ii i ; HIH |
et L ||. # LI
.5| i ]ll {1l il
"” fhit |'| il (It
|I. (RN ER IR AL
_ T

Fig. 70,

process by which the waves from a siren are produced, and
the waves, being not at all harmonic in form (Art. 55), have
many harmonic components, and can excite in the ear or
other resonators vibrations of higher frequencies than that of
the actual puffs, and it is only after much practice that it is
possible to be certain whether it is the frequency of the
puffs, or one of its multiples, which is equal to the frequency
of the waves from the other source. When we are sure that
it is the lowest in pitch of the sensations due to the siren
(which is often not the loudest), which corresponds to the
sD, 0
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lowest of the sensations due to the other source, the velocity
of rotation should be slightly diminished till beats are heard
at the rate of about four per second. The counting mechanism
is then set in action for a definite time, say thirty seconds,
while the observer keeps count of the total number of
beats heard during this interval, and regulates the rotation
so that the beats do not become too rapid to count or too
slow to distinguish. The total number of rotations recorded,
multiplied by the number of holes in the dise, gives the
number of waves from the siren during the observed interval
of time, and this number, plus the number of beats counted,
1s the number of waves which left the other source during
the same interval.

In the siren shown in the figure, the disc is made to rotate
by the air issuing from the ]u:nlf.ﬁ1 which are drilled obliquely
in both lid and dise, but slope opposite ways, as shown in
section at . This 1s a very bad arrangement, for the speed
can only be increased by blowing harder, which also increases
the loudness of the sound, and beats are not very distinetly
heard except between two sounds of nearly equal loudness.
It is much better to drive the dise independently by an
electromotor or other easily contrelled mechanism,

It must not be forgotten that beats are also heard if any of
the harmonic components of the sound from the siren nearly
agree in frequency with any of the harmonic components of
the sound from the other source, so that, if the waves from
the other source are also very far from harmonie, the effect
on the ear is that of several series of beats, of different
frequencies, happening at the same time. This renders the
counting of the beats of the fundamental vibration very difficult.

103. Konig’s Wave Siren.— By substituting for a dise with
holes a disc with its edge cut in harmonic waves, the siren may be
made to give more nearly harmonic sotunds. In this case, the air is
blown from a single radial slit, which is entirely or only partly
covered by the dise, according to the position of the latter. The
amount of air issning from the slit varies nearly harmonieally if the
teeth of the disc are of harmonic form, so that the waves as they
start are approximately harmonie. 'Ihey become legs so, however,
as they proceed, o that the difficulty of beats between the harmonic
components 1s not entirely overcome.

By cutting the edge of such a disc into waves or shallow teeth of
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different forms, waves of different wave-form can be produced, and
M. Kionig showed that discs whose edges are cuf into different
curves which have the same harmonic components (Art. 58) may
produce sounds of different quality, and le considered that this
disproved Helmholtz’s view (Art. 61) that the quality of the sound
due to wave systems having different forms but the same com-
ponents is the same. M. Kénig's experiment, however, in no way
disproves Helmholtz’s view unless we assume that the harmonic
components of the waves produced are the same as the harmonic
components of the form of the teeth of the disc, and there is no
reason to believe that this is the case. There are, however, more
satisfactory arguments against Helmholtz’s view.

These are the most important methods of measuring
frequency directly. If the velocity of sound in a medium 1s
known, and the length of the waves is measured, the frequency
can be at once determined, since

frequency x wave-length = velocity.

104. Wave-length, — No method is in use for directly
measuring the wave-length of a travelling undulation ; it
would, perhaps, be difficult to devise one. A method based
on the interference of two systems travelling in the same
direction was given in Art. 40. More usually the travelling
undulation is converted, by reflection, into a stationary un-
dulation, and the wave-length of the travelling undulation
determined by finding the distance between the nodes and
antinodes of the stationary one.

One method of doing this has been given in Art. 82; it is
the best when the waves are very short. For longer waves,
such as those from a tuning-fork, a long glass tube about
2 inches wide, and closed at one end, may be fixed vertically,
and water poured in until the air column above the water is
of such a length that it resounds when the vibrating fork is
held over the mouth of the tube. If the tube is long enough,
a number of lengths can be found which resound to the same
fork. As explained in Art. 85, a closed tube resounds when-
ever the distance from the point of reflection, just outside
the open end, to the closed end, is an odd number of quarter
wave-lengths of the waves arriving from outside. The distance
between any two consecutive levels of the surface of the
water which leave air columns of lengths which will resound
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is half a wave-length of the waves from the fork, or the
distance from the highest of such water-levels to the point of
reflection (which is about ‘8 of the radius of the tube above
the level of the opening) i1s a quarter of the wave-length.
It is from the last fact that the wave-length is most easﬂy
found ; the resonance of the longer columns being less distinct.

105. Velocity,—If the frequency of the fork is already
known, this experiment gives the velocity of sound, which is
wave-length x frequency. By surrounding the tube with a
larger one, and filling the space between with water of
different temperatures, we can determine the change of
velocity due to a given change of temperature in the air
of the inner tube. In this experiment, mercury should be
used to adjust the length of the air column in the inner tube
instead of water, as, if water was used, the air would be mixed
with a large proportion of water vapour at high temperatures.

The tube can be filled with other gases instead of air, and
the velocities determined. TFor gases lighter than air, the
open end of the tube must be turned downwards, and the
length of the column adjusted by means of a sliding piston
instead of liquid.

Owing to the small mass of the air column, its vibrations
are easily controlled, so that 1t resounds nearly as loudly when
it is a centimetre too long or too short as when it is of a
length which would vibrate freely with the same frequency
as the waves arriving from outside. Any single determina-
tion of the wave-length by this method is therefore very
uncertain, though the average of a large number of indepen-
dent determinations is fairly reliable. A much better way is
to use a closed organ-pipe whose length can be adjusted by a
sliding piston. The tube is kept sounding by an air-blast,
and the piston adjusted till the note is the same as that of
the fork, as shown by the absence of beats. In this case the
air column is vibrating with its free-vibration frequency.
But an organ-pipe does not work well unless its mouth is
much smaller than the cross section of the tube, and the
narrowness of the opening increases the time required for the
air to move in and ont, so that an air column much shorter
than a quarter of the wave-length of the fork vibrates with
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the same frequency as the fork. In an organ-pipe, there-
fore, the distance from the mouth to the nearest node differs
from a quarter of a wave-length by a considerable, and
rather uncertain, amount, so that we cannot determine the
wave-length of a note irom a knowledge of any one length
of the column which will give the note. Two observations
are necessary. First blow gently, so that the air column
vibrates in its fundamental mode (Fig. 49, a), and observe
what length gives the same note as the fork. Then blow
harder so as to make the column vibrate in its second mode
(Fig. 49, b), and increase the length of the column till it again
gives the note of the fork. In each experiment there is a
node at the piston, and in the second experiment there is
also a node at the point where the piston was in the first,
since the frequency is the same in each case. So the differ-
ence between the lengths of the column in the two experi-
ments is half a wave-length of the waves from the fork.

A whistle fitted by means of a cork into one erd of a long
glass tube 2 inches in diameter answers well for this ex-
periment ; it can be blown by foot-bellows.

The difficulty about the exact position of the point of
reflection is avoided by another method, due to Kundt.
Though a wave-length is actually measured, it is not really
a method of determining the wave-length of a given wave-
system, but of comparing the lengths of waves of the same
frequency in different substances, and so the velocities of
sound in those substances. One form of the apparatus is
shown in Fig. 71. A wide glass tube BB, about 4 feet long
and 2 inches in diameter, is closed at one end by a tight-fitting

Fig. 71.

cork . This cork grasps tightly the middle of a metal or
glass rod 4.4, on the inner end of which is fixed a disc @ of
wood or card fitting the tube very closely without being tight.
A cork ¥ sliding in the other end of the tube serves to adjust
the length of the air space between itself and the card disc. In
this space is scattered lycopodium powder or fine cork dust,
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A cloth, dusted with resin, or (for a glass rod) moistened
with alcohol, is drawn along the outer half of the rod, and
when this squeaks the rod is in longitudinal stationary
undulation, the middle being a node and the ends antinodes,
If the lycopodinm is distributed over the walls of the
tube by shaking, and then the tube is placed horizontally
and the rod made to squeak, again and again, the position
of the cork 4" being changed “each tll.L'LP a Pﬂ‘ﬁlflﬂl'l. of ¥
will soon be found such tlmt, when the rods squeaks, the
lycopodium slips right to the bottom of the tube, forming
a line, except at a series of equi-distant points, where it
only 5111]?. down each side part of the way to the bottom,
forming a double line, so that the pow der forms along the
bottom a pattern like this = o 5

This happens because the air is in shtmnmfy undulation,
and everywhere except close to the nodes it keeps moving
the powder backwards and forwards; each time the powder
moves it slips a little downhill il it reaches the lowest
position. The oval loops are at the nodes, and their centres
always divide the distance from the cork &' to the dise a
into an exact number of equal parts; the single-line parts
of the pattern are narrowest when each of these parts is
exactly half the length of the waves which the dise would
produce in an infinitely long tube of the same diameter, so
that the length of such waves is found by adjusting ‘the
distance ad’ 1:1]1 the single-line parts of the pattern are as
narrow as possible, and dividing i1t by half the number of
single lines.

Though this is the arrangement usually deseribed, there is some
rl1ﬁ1f-ultj, in holding the rod firml y enough by one pmnt The experi-
ment is much easier if the rod is firmly held in two clamps, at distances
of a quarter of the length of the rod from each end. The rod is set in
vibration by drawing a resined cloth along the part of therod between
the clamps. The clamps are nodes, the ends of the rod and its middle
points antinodes.

Twice the distance between two antinodes in the rod is
the distance a wave would travel in the rod while the rod
malkes one vibration. The distance a wave would travel
in the air of the tube while the rod malkes one vibration
is found as explained above. The ratio of these is the
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ratio of the velocity of sound in the rod to the velocity of
sound in the air in the tube, so that either of these velocities
can be determined if the other is known. Or if the fre-
quency of the rod is determined by the vibroscope or siren,
or by calculation,* the absolute velocity of sound in air can
be found. By filling the tube with different gases in turn,
the relative velocities of sound in them can be found : they
are proportional to the spaces between consecutive nodes;
If liquids be used instead of gases a heavier powder, such
as fine silica, must be used. As the walls of the tube are
not perfectly rigid, the velocity of sound along the liquid
in a tube is not nearly so great as in a large volume of the
same liquid (Art. 31), so the results are not of great value.

Rods of different materials may be tried in place of the
glass one, the tube being always filled with air. The velocities
of sound in the different rods are proportional to the numbers
obtained by dividing the length of each rod by the length of
the segments into which the ridges divide the air space when
that rod is sounding ; for these numbers are the ratios of the
velocities of sound in the rods to velocity in air.

For any of these purposes, except the comparison of different
rods, the rod and disc may be dispensed with, and the wide tube
irself made to vibrate longitudinally. This is done by holding it by
the middle, and drawing a cloth, moistened with alcohol, along
cne half. The tube is closed at both ends by corks, one at least of
which must be adjustable in position as in the last experiment.
When the distance between the corks is exactly or nearly an exact
number of half wave-lengths in air of the frequency of the vibrations

of the glass, the air is thrown into resonant stationary undulation,
the corks being nodes (very nearly, like the disc in the other form).

106. Wave-form.—No accurate method seems to be known
of determining the wave-form of an undulation. The
phonautograph described above gives fraces which are
different for waves of different character, and these traces are
sometimes loosely spoken of as the wave-forms, but neither
this method nor any method which depends on the yielding of

* If Young’s Modulus for the glass, and its density, are known,
the velocity of a travelling wave in it can be found from Art. 27,
and the period of the stationary undulation of the rod, when vibrating
with one node as in this experiment, is the time that a travelling
wave would require to travel twice the length of the rod,
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a membrane can give the wave-form asdefined in Art. 15, 1f
a membrane could be massless and perfectly loose, it would
move exactly as the air moved, and might be made to trace a
displacement curve of the movement of the air. If a mem-
brane could be stretched infinitely tightly, its displacement at
each instant would be proportional to the pressure on it at
that instant, and 1t might be made to trace a true pressure-
curve or wave-form, though the amplitude of this would be
indefinitely small. The movement of any real membrane
is a compromise between them, modified considerably by the
mass of the membrane and its liability to be thrown into
resonant vibration if any of its own very numerous modes of
free vibration agree in frequency with any of the harmonie
components of the waves reaching it.

The wave-forms of undulations then cannot at present be
determined with any accuracy, and are, in fact, unknown,
except in the regions close to large vibrating surfaces, where
they cannot differ much from the velocity curves of the
surfaces themselves. We can, however, determine, by the
method explained in Art. 54, the frequencies of the harmonie
waves whose wave-forms would add up to that of the actual
waves. That 1s not at all the same as knowing the actual
wave-form, because we cannot find cither the relative
amplitudes or the relative phases of these harmonic waves at
all accurately, and harmonic waves of the same frequencies,
but of different amplitudes and relative phases, may add up
to quite different wave-forms. Still, for many purposes, to
know the frequencies of the harmonic waves whose wave-
forms would add up to the actual wave-form, is as useful as
to know the wave-form itself, and this can be ascertained by
means of resonators. A resonator is a globular or eylindrical
box with a wide hole at one end, and a small one, fitted with
a tube, at the other. Its frequency of free vibration is found
by blowing across the wide hole, and determining the frequency
of the sound produced, by the siren, phonautograph, or other
method. This frequency can be altered by slightly altering
the size of the larger hole, for a tube whose diameter is
diminished at an open end has a much longer vibration period
than an ordinary open tube. In the case of cylindrical
resonators, which are made in two pieces to slide one inside
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the other like the joints of a telescope, the frequency can
also be adjusted by altering the length. A set of such
resonators is prepared whose free-vibration frequencies are
exact multiples of the frequency of the waves to be analysed,
and, if the tubes from the smaller openings of these resonators
are placed in turn in the ear, we hear a loud sound from
those whose free-vibration frequencies correspond to those of
the harmonic components of the arriving waves.

As the components can only be detected by this method
one at a time, it is only suitable for the analysis of sounds
which can be produced continuously. For those of short
duration we must be able to determine which resonators are
vibrating at a given moment. For this purpose the smaller
opening of each resonator is fitted with a manometric capsule,
and the flames from all the capsules are arranged close one
above another in front of a rotating mirror, as in Fig. §3.
The appearance of the flames in the mirror shows which
resonators are vibrating. In this way the analysis can be
shown to a large audicnce.

This method is not suitable for the detection of feeble harmonic
components in a loud sound, as, on account ot the small mass of the air
in a resonator, a strong component ot a wrong frequency will produce
more vibration than a feeble component of the right frequency, so
that the presence or absence of the latter cannot be ascertained.
Tuning forks are much better detectors of weak components, since the
forced vibration produced in a fork by even a very strong component
of different frequency cannot be detected. The resonant forced
vibration produced by a weak harmonic component of the same
frequency as the fork is small, but it can be detected by a device due
to Professor Riicker. A beam of light is partly transmitfed and
partly reflected by a plate of glass placed at 45° to it; these two parts
are reflected back along their own courses by silvered mirrors, one
fixed, the other fastened to the prong of the fork as in Fig. 11.
When these reflected beams reached the plate of unsilvered glass
again, part of the beam which was originally transmitted is reflected,
and part of the beam which was reflected 1s transmitted, and these
parts coincide and can be received on the same screen. The apparatus
is arranged so that the light reaching the centre of the screen by the
two routes has travelled the same distance when the fork is still; the
centre of the screen is bright, but the parts of the screen to which the
two paths differ by an odd number of half wave lengths of light are
dark ; there is a system of approximately hyperbolic dark and bright
bands. A movement of the prong to the extent of a quarter wave
length makes the dark parts %ﬁghﬁ and vice verse ; a trembling of the



202 SOUND.

prong to this or any greater extent interchanges dark and light so
rapidly that no bands are wvisible. [This effect is produced h r an
extremely feeble sound of exactly the frequency of the fork, but not
by very loud sounds of other frequencies. T'he method has been
successfully used to investigate the question whether resultant tones
exist outside the ear. (Art. 68).]

107. Phonograph.—Edison’s Phonograph is similar to the
phonautograph in principle, but a cylinder covered with wax
is substituted for the smoked one, and a very narrow chisel
for the tracing point. The centre of the membrane is in this
case made an antinode, and the point of the chisel therefore
moves perpendicularly to the surface of the cylinder, not
parallel to it, and so digs a trench of varying depth as the
membrane vibrates. A section of this trench, parallel to its
length and perpendicular to the surface of the cylinder, shows
the form of the bottom, which depends on the quality of the
sound, but 1s not the ‘“ wave-form " in any accurate sense of
the term. It 1s, however, (like the trace of the phonauto-
graph) a curve whose harmonic components are nearly the
same as those of the waves. If the chisel is now replaced by
a blunt point, and the cylinder, after being replaced in its
original position, turned again in the same direction as at
first the blunt point presses on the undulating bottom of the
trench already cut by the chisel, and the membrane to which
the point is connected repeats the movements by which the
trench was originally cut. It thus produces waves in
the air similar to those which, by their arrival, caused
the original movements of the membrane, though they are
reversed, the condensations of the original waves being
represented by rarefactions in those afterwards produced by
the membrane. Though in this and other respects there 1s con-
siderable difference between the wave-forms of the original
sound and the sound reproduced by the membrane, the two have
nearly the same harmonic components, and ther Ef()I'B seem to
the ear so nearly of the same quality that, if the original
sound was that of the speaking voice, the ‘different vowels

(which are only special qualities) are easily distinguished in
the reproduction.

Tt is worth noticing that it is the imperfection of the ear
as a detector of differences in air waves that makes the
phonograph and telephone possible. The waves they give
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out are in form often so different from the original waves
that, 1t the ear had as great a power of distinguishing between
different wave-forms as the eye has of distinguishing different
outlines, 1t would be impossible to recognise any resemblance
to the original sound.

108. Amplitude.—The amplitude of the vibrations of any
point of a solid body can of course be found from its trace on
the vibroscope cylinder. No method is known of measuring
the amplitude of the vibrations of gases; such estimates as
those in Art. 24 are arrived at by assuming that all the
energy observed to be expended in keeping the source in
vibration is converted into sound, and determining the ampli-
tude of vibration necessary at any given distance from the
source in order that the air at that distance may transmit
energy at the same rate as 1t leaves the source. The true
amplitude, of course, cannot be greater than this, but it is on
theeretical grounds that 1t 1s believed to be not much less.






APPENDIX.

A. (Arr. 5).

Let B (Fig. 72) be a point revolving uniformly round a circle of
radius e in a period ¢, and 4 a point moving up and down a diameter
€D go as to be always on the same level as B, so that 4 moves harmoni-
cally. Let B, be the position of B when OB has moved through an
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Fig. 72.

angle 0 from the position at right angles to CD. At this moment the
displacement 04, of 4 from its mean position O is asind. The

velocity of B is Ei:' in the direction BE, and the component of this

velocity in the direction parallel to OC is BF, or BE cos 8, or
?_‘;E sin (04+90°. This is the velocity of 4 when it is at 4,. Now

8+ 90° is the angle through which OB will have rotated from 0X a
quarter of a period later. So the velocity of a harmonically vibrating

point at any instant is E?Tr times the displacement which it will have

a quarter of a period later.

Now the velocity of 4 is the rate of change of the displacement
of A4, so that, if we take the displacement of 4 to represent any
quantity which varies harmonically, the velocity of 4 at the rame
instant represents the rate at which that quantity is changing. Hcnee
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the rate of change of any quantity that varies harmoniecally, and has

74
a mean value = 0, is f: times the value that the quantity itself will

have a quarter of a period later. And the acceleration of 4 is the
rate of change of the velocity of 4. The acceleration of 4 when

I.} -
at A, is therefore ? times the velocity it will have a quarter of a

period later, or 17:'1 sin (6 + 180°), or —4—"';-:—@ gin @. It is therefore pro-
portional to the displacement of 4, but in the opposite direction.
The ratio of the acceleration to the displacement is — 4‘%, and is

therefore independent of the amplitude. 1If, therefore, the force on a
body, due to displacement, is such as to produce an acceleration which
isalways — & times the displacement, the body will vibrate harmonically

472

in a period ¢ such that # = ~—, and this period is independent of the

=’

amplifude.
B. (ArT. 23).

The term infensily of an undulation is used by some writers to mean
the quantity of energy which flows per second through a square centi-
metre parallel to the wave-fronts, and by others to mean the quantity
of energy in a cubic centimetre of space at a given moment. We
have adopted the former definition, which has the high authority of
Lord Rayleigh ; but the other seems to be coming more into favour,
It makes some difference to the proofs which definition is adopted ; if
the first, it follows easily that the intensity is inversely as the square
of the distance, but it is difficult to give a satisfactory elementary
proof that the intensity is proportional to the square of the amplitude.
From the second definition this latter proposition follows at once, but
it is then difficult to prove the former. In many books the definition
is given so loosely that it may be taken to have either meaning, and
then both propositions deduced from it.

If the definition we have adopted is used, the intensities of the
transmitted and the reflected wave, when waves reach the surface
between two media, are together equal to the intensity of the incident
waves, but this is not true on the recond definition.

C. (Arr 37).

The name interference is applied by some writers to all cases of
superposition, and limited by others either () to those cases in which
the actual distribution of energy is very different from that of the
imaginary systems (see footnote to Art.42), or (#) to those cases in
which the vibration due to the sources together is less intense than
that which would be due to one of them alone. We adopt («) as being'
usual in England, though (#) has the high authority of Lord Rayleigh.
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D. (Amts. 14, 27, 95).

VELOCITY O0F A LONGITUDINAL WAVE ALoNg A Rop or Frumn Corvay
(Arr. 27).

Let a force of f dynes be applied to one end A of a very long rod 4B,
and let the force be directed towards B. The first centimetre of the
rod shortens till it exerts a force of fdynes on the next centimetre,
and then this shortens till it exerts the same force on the next, and
so on. As the process is exactly the same for.each successive centimetre,
the compressed condition extends, with uniform velocity, along the
rod. Let this velocity be 77, ana let the mass of each centimetre be m,
and let the amount by which each [original) centimetre is diminished
in length, when there is a force f at each end of it, be /. As each
centimetre becomes compressed in its turn, all the centimetres between
it and 4, which are compressed alrcady, advance towards B through
a distance /. As 7 fresh centimetres become compressed in each
second, F7is the velocity with which the portion already compressed
moves towards B. In each second J fresh centimetres are added to
this portion, and each of these, when compressed, has a momentum Vimn.
So F*lm is the increase of momentum of this portion per second.
But rate of change of momentum is equal to the force producing it.

Hence f= Vim or V = \/i
I

Let 4, B, be two points in a fluid column of unit sectional area,
and let the line joining them be parallel to the length of the column,
and the distance, #, between them very small. Let p, d, » be the
pressure [dynamm&l measure) density, and velocity of the fluid at A,
and pi, d1, v1 those at B, and let all these conditions be travellmrr
along the column with the velocity 7. Then the rate at which the

(01 — ®) ¥
x

velocity of the fluid between 4 and B is changing is , while

the mass of fluid between two transverse planes through 4 and B is
ad (since dy is very nearly the same as ) and the forces on the ends of
this layer are p and p1. Hence

Pr=10 (ﬂl -"EJ:] Vgr V= (__ﬁ_.l_'.__..ﬂig_
ad z L=t

Also the rate at which the density of the fluid between the planes is

changing is U=, while it is also 1= 2% since U= is the

&

fractional change per second of volume of the space between the
planes. Hence
dp—d) V

(
" — — *
| =
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V2= Ri=p or J = ,\/}’1__3?‘
dy — d TEE ]

ReratioNn BETWEEN CoNDENSATION AND VErocrry (Arr. 14).

Bubstifuting,

Density of compressed portion of rod _ 1
Density of uncompressed portion of rod 1-=!
Change of density _

Original dﬁ-nm‘f}*

Velocity of movement of compressed material Vi

= 1+ nearly.

= [ nearly.

= - = E-i
Velocity of advance of compressed condition V
Change of density _ velocity of substance
Original density velocity of wave

As the denominators are sonstants,
velocity of undulating substance
= difference between its actual and average density.

Verocrty or Ao TrawsveErRsE WAVE AroNG A STRING (ART. 95).

Let 4B, Fig. 73, be a very long string, stretched horizontally by a
force of s (1}‘11&‘3 a,t cach end, so that a small portion 4 is in equilibrium
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Fig. T73.

between two forces of s dynes, one A€ along 4B, and the other 4D in
the opposite direction. Apply at 4 another force A4 F of fdynes in
an upward direction, and let the resultant of 4 F and 41} be a force
in the direction A¢. .4 will then move in the direction A F, and it
can never be in equilibrium until the part of the string close to .d is
in the direction opposite to AG. When a portion of the string has
thus assumed the position 4, H, the forces on a small portion at ff are
a force r in the direction I74,, and a force s in the direction HJ.
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These are equal and parallel to the forces , s on .4 when the force
was first applied ; H therefore begins to move upwards exactly as 4
did, and another portion HJ becomes equally sloping, and so on. As
the forces on 4, would accelerate it if 4,H was more horizontal
than 4,G,;, and retard 4, if 4,H was less horizontal than 4,G,, 4
moves in such a way that 4 H is always opposite to 4 G, and similarly
for each succeeding portion. Thus, as point after point of the string
begins to move sideways, 4 continues to move in the direction 4.4, in
such a way that the part of the string between 4 and the point of the
string' which is just beginning to move is parallel to the line GA.
Let 4, be the position 4 has reached when the gloping condition has
extended to P. 4.A,P is really isosceles, but in practice 4.4, 1s very
chort compared with the other sides, and we may consider 4.4, as

: A : .
ul ol 232 S the velocit
perpendicular to 4P, Hence T T e If ¥V is the velocity

with which the sloping condition extends along the string, 22 is the
&

velocity with which the part of fhe string which is already sloping
moves upwards. If m is the mass of one centimetre of the string,

b is the momentum of each centimetre of the sloping portion, and,
8

as ¥V fresh centimetres are added to this portion per second, LUl L
&

the increase of momentum per second. This is equal to the force
which produces it. Hence f = me or V= 5.
i

Just as in the corresponding proof for a longitudinal wave, every

variation of f produces a corresponding change of slope in the part of

the string close to .4, which slope is always proportional to f, and every

change of slope produced in the part close to A4 extends along the

string with the veloecity %.

The reader who has not studied dynamics may be surprised that a
constant force applied to 4 gives .4 instantly a velocity which does
not afterwards increase, not an increasing velecity. It must be re-
membered that the effect of a force is to cause a momentum which
increases as long as the force lasts. If the mass in movement is
constant, its velocity must increase, but if, as in the cases considered
above, the mass in movement keeps increasing as long as the force
lasts, the velocity of the part in motion may be constant,

BD, i 5
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The Wniversity Tutorial Deries.

General Fditor: WM. Bricas, LL.D., M.A., F.C.8., F.R.A.S.
Classical Editor: B. J. HAYES, M.A.

The object of the UNIVERSITY TUTORIAL SERIES is to provide
candidates for examinations and learners generally with text-books
which shall convey in lhe simplest form sound instruction in accord-
ance with the latest results of scholarship and scientific research.
Important points are fully and clearly treated, and care has been
taken not to introduce details which are likely to perplex the be-
zinner.

The Publisher will be happy to entertain applications from School-
masters for specimen copies of any of the books mentioned in this
List.

SOME PRESS OPINIONS,

* This series is successful in hitting its mark and supplying much help to students
in places where a guiding hand is sorely needed.” —Jonrnal of Education,

“The volumes in this series are strictly practical.” —Guardian.
“The series is eminently successful.”'—=Spectator.

“The elassical texts in this series are edited by men who are thoroughly masters
of their craft.” — Saluwrday Review.

““This series of educational works has been brought to a high level of efficiency.”—
Educational Times.

““This series has proved serviceable to many, and is now well-known for its
accuracy in teaching elementary principles, and the thoroughness of the aid which
it supplies.” — Educafional Keview.

“The more we see of theze excellent manuals the more highly do we think of
them.””—Schoolmaster,

“The evident care, the clearly conceived plan, the genuine scholarship, and the
general excellence of the productions in the series give them high claims to com-
mendation."—Educational News.

* This useful series of text-books.”’—Nature.

“It may justly be said that any books published in this series are admirably
adapted for the needs of the large class of students for whom they are intended,”
~Cambridge Review,



THE UNIVERSITY TUITORIAL SERIES. 3

1atm and GreeR Classics.

(See also page 4.)

The editions of LATIN and GREEK CLASSICS contained in the UNI-
VERSITY TUTORIAL SERTES are on the following plan:—

A short INTRODUCTION gives an account of the Author and his
chief works, the circumstances under which he wrote, and his style,
dialect, and metre, where these call for notice.

The TEXT is based on the latest and best editions, and is clearly
printed in large type.

The distinctive feaiure of the NOTES is the omission of parallel
passages and confroversial discussions of difficulties, and stress is
laid on all the important points of grammar and subject-matter.
Information as to persons and places mentioned is grouped together
in a HISTORICAL AND GEOGRAPHICAL INDEX; by this means the
expense of procuring a Classical Dictionary is rendered unnecessary.

The standard of proficiency which the learner is assumed to possess
varies in this series according as the classic dealt with is usually read
by beginners or by those who have already made considerable progress.
A complete list is given overleaf.

VOCABULARIES, arranged in order of the text and interleaved with
writing paper, are issued, together with Test Papers, in the case of
the classics more Gumm{)nl}' read by beginners; the price is 1s. or (in
some instances) 1s. 6d. A detailed list can be had on application.

Caesar.—Gellic War, Book I. By A. H. ALLCROFT, M.A. Oxon., and
F. G. Prarstowg, M.A. Camb. 1s, 6d.

“A clearly printed text, a good introduction, an excellent set of notfes, and a

historical and geographical index, make up a very good edition at a very small
price.”"—Schoolmaster.

Cicero.—De Amicitia and De Senectute. By A. H. AnncroFr, M.A.

Oxon.; and W. F. MasoMm, M.A. Lond. 1s. 6d. each.
“The notes, although full, are simple.”— Educational Times.

Horace.—Odes, Books I.—III. By A. H. ArrcrorT, M.A. Oxon., and
B. J. HAavEs, M.A. Lond. and Camb. 1s. 6d. each.
“Notes which leave no difficulty unexplained.”’—=8ehoolmaster.

“The Notes (on Book III.) are full and good, and nothing more can well be
demanded of them.”—Journal of Education.

Livy.—Book I. By A. H. ALLCROFT, M.A. Oxon., and W. F. MasoM,
M.A. Lond. Third Fdition. 2s.6d.

“The notes are concise, dwelling much on grammatical points and dealing with
questions of history and archeeology in a simple but interesting fashion.”—Education,

Vergil.—Aeneid, Books I.XII. By A. H. AuLcrorT, M.A. Oxon.,
assisted by W. I'. Masom, M.A. Lond., and others. 1s. 6d. each.

Xenophon,—Anabasis, Book I. By A. H. Arrcrorr, M.A. Oxon.,
and F. L. D. RicHARDSON, B.A. Lond. 1ls. 6d.
“The notes are all that could be desired.”—Schoolmaster.
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Editions of Latin and Greck Classics.

(INTrRODUCTION, TEXT, AND NOTES),

AFSCHYLUS — Fumentdes,
Persae, 3/6; Irometheus,
Septem contra Thebas, 3/6.

ARISTOPHANES—Ranae, 3/6.

CaEsAR— Civil War, Bk. 1, 1/6;
Gallic War, Bks. 1, 2, 3, 4,
5, 6, (each) 1/6; Gallic War,
Bk. 1, Ch. 1-29, 1/6; Gallic
War, Bk. 7, 2/6; Gallic War,
Bk. 7, Ch. 1-68, 1/6 ; Invasion
of Britain (IV. 20-V. 23), 2/6.

CiceEro—Ad Atticum, Bk. 4, 3/6;
De Amicitia, 1/6: De Finibus,
Bk. 1, 2/6 ; De Finibus, Bk. 2,
3/6: De Officiis, Bk. 3, 3/6;
Philippic II., 3/6; Pro Cluen-
tio 3/6; Pro Milone, 3/6 ; I'ro
Plancio, 2/6 ; De Senectute, In
Catilinam I., Pro Archia, Pro
Balbo, Pro Marcello, (each
Book) 1/6.

DEMOSTHENES—Androtion, 4/6.

FEuririDES—Alcestis, 3/6; Andro-
mache, 3/6; DBacchae, 3/6;
Hecuba, 3/6 ; Hippolytus, 3/6 ;
Medea, 3/6.

Hrronorus—Bk. 3, 4/6; Bk. 4,
Ch. 1-144, 4/6; Bk. 6, 2/6;
Bk. 8, 3/6.

3/6;
2/6 ;

d

HomeEr—Iliad, Bk. 24, 3/6;
Odyssey, Bks. 9, 10, 2/6;
Odyssey, Bks. 11, 12, 2/6;
Odyssey, Bks. 13, 14, 2/6;

Odyssey. Bk. 17, 1/6
HoracE—Epistles, 3/6; Epodes,

1/6; Odes, 3/6; Odes (each

Book) 1/6 ; Satires, 4/6.
IsocrATES—De Bigis, 2/6.

JUVENAL— Satires, 1, 3, 4, 3/6;
Satires, 8, 10, 13, 2/6 ; batires,
11, 13, 14, 3/6.

Livy—DBks. 1, 5, 21, 22, (each)
2/6 ; Bks. 3, 6, 9, (each) 3/6;
Bk. 21, Ch. 1-30, 1/6.

LucrtaAN—Charon and Timon, 3/6.

Lysrias—Eratosthenes and Ago-
ratus, 3/6.

N eros—Hannibal, Cato, Atticus,
1/0.

OviD—PFasti, Bks. 3, 4, 2/6;
Heroides, 1, 5, 12, 1/6; Meta-
morphoses, Bk. 1, 1-150, 1/6,
Bk. 3, 1-130, 1/6; Bks. 11,
13, 14, (each) 1/6; Tristia,
Bks. 1, 3, (each) 1/6.

Prato—Apology, Ion, Laches,
Phaedo, (each) 3/6 ; Euthyphro
and Menexenus, 4/6.

SanrnusT—~Catiline, 2/6.

SoPHOCLES—Ajax, 3/6; Anti-
gone, 2/6; Klectra, 3/6.
TAciTuS—Annals, Bk. 1, 3/6;

Annals, Bk. 2, 2/6; Histories,

Bk. 1, 3/6; Bk. 3, 3/6.
TERENCE—Adelphi, 3/6.
Trnuveypinpes—Bk. 7, 3/6.

VERGIL—Aeneid, Books 1-12,
(each) 1/6; KEclogues, 3/6;
(Georgics, Bks. 1, 2, 3/6; 1, 4,
3/6.

X ENOPHON—Anubasis, Bk. 1,1/6;
Bk. 4, 3/6; Cyropaedeia, Bk.
1, 3/6 ; Hellenica Bk. 3, 3/6:
Hellenica, Bk. 4, 3/6 ; Oecono-
micus, 4/6.

A detailed catalogue of the above can be obtained on application.
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Grech and Aatin.

(GRAMMARS AND READERS.

The Tutorial Greek Course. [In preparation.

The Tutorial Greek Reader. With VoCABULARIES. By A. WauagH
Younag, M.A. Lond., Gold Medallist in Classics, Assistant HEx-
aminer at the University of London. Second Edition. 2s. 6d.

Advanced Greek Unseens: DBeing a Higher Greek Reader. With
the Greek Unseens set at B.A. Lond., 1877-1901. 3s. 6d.

The Preceptors’ Latin Course. By B. J. Haves, M.A. 2s. 6d.

“A good practical guide. The principles are sound, and the rules are clearly
stated. — Educational Times.
The Tutorial Latin Grammar. By B. J. HAvEs, M.A. Lond. and

Camb., and W. F. Masom, M.A. Lond. Fourth Edition. 3s. 6d.

“ Practical experience in teaching and thorough familiarity with details are
plainly recognisable in this new Latin Grammar." —Educational News,

“It is accurate and full without being overloaded with detail, and varieties of

type are used with such effect as to minimise the work of the learner. Tested in

respect of any of the crucial points, it comes well out of the ordeal.” —S8echoolmaster,

The Tutorial Latin Grammar, Exercises and Test Questions on. B
F. L. D. RicHArRDSON, B.A. Lond., and A. E. W. HAZEL,
LD, M.A. B.OL. 1s 6d. ,

“This will be found very useful by students preparing for University examina-
tions.” — Westminster Review,

A Higher Latin Grammar, [ In the press.

Latin Composition. With copious EXERrcIsES. By A. H. ALLCROFT,
M.A. Oxon., and J. H. HaypoN, M.A. Lond. and Camb.
Fifth Ediiion, revised. 2s. 6d.

“This useful little book.”—Journal of Education,
“ Simplicity of statement and arrangement: apt examples illustrating each rule;

-xceptions to these adroitly stated just at the proper place and time, are among some

uf the striking characteristics of this excellent book.”—S8choolinaster,

I'he Tutorial Latin Dictionary. By F. . PLaistowE, M.A. Lond.
and Camb., Gold Medallist in Classics, late Fellow of Queens’
College, Cambridge. 6s. 6d.

*“* A good specimen of elementary dictionary-making."—FEducational Times.
** A sound school dictionary.""—Speaker.
The Preceptors’ Latin Reader. By E. J. G. Forsg, M.A. 1s. 6d,
“A well graded and carefully thought-out series of Latin selections. The
vocabulary is worthy of very high praise.”—Educational News.
The Tutorial Latin Reader. With VoCcABULARY. 2s. 6d.

‘“ A soundly practical work.” —Guardian.

Advanced Latin Unseens. Being a Higher Latin Reader, Kdited by
H.J. MAiDMENT, M.A. Lond. and Oxon., and T. R. MILLs, M. A.
Ozon. 3s. 6d.

‘A work which will be found generally useful by students. The notes are
valuable.” — Westminster Review.

**Contains some good passages, which have been selected from a wider field than
that previously explored by similar manuals.”” —Cambridge Review.
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Roman and GreeR Mistory.,

The Tutorial History of Rome. (To 14 A.D.) By A. H. ALLCROFT,
M.A.Oxon.,and W. F. MAsoM, M.A. Lond. ‘-.-‘_Fith Maps. 3s. 6d.

** [t is well and clearly written.”—Saturday Review.

The Tutorial History of Greece. (To 323 B.c.) By W. J. Woon-
HousE. M.A. Oxon. [ In preparation.

A Longer History of Rome. By A. H. ArLrcrorr, M.A. Oxon.,
and others (each volume contains an account of the Literature of
the Period)—

390-—202 B.c. 4s. 6d. 133—T78 B.C. 3s. 6d,
287 —202 B.c. 3s. 6d. Y8—31 B.C. 3s. 6d.
202—133 B.C. 3s. 6d. 31 B.C.—96 A.D. 3s. 6d.

#This volume (133—78 B.c.) gives a vigorous and carefully studied picture of the
men and of the time.”—S&pectator,

* Written in a clear and direct style. Its authors show a thorough acquaintance
with their authorities, and have also used the works of modern historians to good
vlfect.” —Journal of Education (on the period 31 B.c.—96 A.p.).

A Longer History of Gresce. DBy A. H. ALLCROFT, M.A. Oxon.,
(each volume contains an account of the Literature of the

Period)—
To 495 B.C. 3s. 6d. 404—362 B.C. 3s. 6d.
495—431 B.c. 3s. 6d. 871—323 B.Cc. 3s. 6d.

431—404 B.c. 3s. G6d. Sicily, 490—289 B.c. 3s. 6d.

“ For those who require a knowledge of the period (to 495 B.c.) no better book
cow'd be recommmended.”—Educational Times.

English history.

The Tutorial History of England. By C. S. FEARENSIDE, M.A.
Oxon. [ In preparation.

The Matriculation History of England. By C. 5. FEARENSIDE,
M.A. Oxon. (To 1702 A.D.) Second Edition. 38. 6d.

“The ingenious arrangement, numerous synopses, cross-references, and excellent
index will enable the student to work out almost any problem suggested by his
tutor or sct in past examination papers. We can heartily recommend it.”—
Guardian.

“We can heartily commend it."”’—Schoolmaster.

‘* For the upper forms of schools the volume is specially suited.”— MWorning Post.

The Intermediate Text-Book of English History: a Longer History
of Fngland. By C. S. FEARENSIDE, M.A. Oxon., and A,
JOHNSON IivaNs, M.A. Camb., B.A. Lond. With Maps & Plans.

YoL. 1., to 1485 (In preparation.) VoL. III., 1603 to 1714. 4s. 6d.
Vor. II., 1485 to 1603. 4s. 6d. Vor. IV., 1714 to 1837. 4s. 6d.

“Itis lively; it is exact; the styleis vigorous and has plenty of swing ; fhe facts
are numerous, but well balanced and admirably arranged."” —&ducation.
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French.

The Preceptors’ French Course. By E. WEERLEY, M.A. 2s. 6d.
“The execution is distinctly an advance on similar courses."—Journal of

Education,
‘A clear and satisfactory book on the elements of French Grammar. The use of
tenses and irregular verbs are well treated, and the exercises well chosen.” —Academy.

The Matriculation French Course. By E. WEEKLEY, M.A. (Incor-
porating the simplifications authorised by the Decree of February

1901). 3s. 6d.
Combined with the Frenei Prose Reader this book provides all that is required
by candidates for London Matriculation,

The Tutorial French Accidence. By ErNEsT WEERKLEY, M.A. Lond.
and Camb., Professor of French, University College, Nottingham.
With EXERCISES, Passages for Translation into French, and a

Chapter on Elementary Syntax. Third Edition. 3s. 6d.
##We can heartily recommend it.”—Schoolmaster,

The Tutorial French Syntax., By ErNEsT WEEKLEY, M.A., and

A.J. Wyatrrt, M.A. Lond. and Camb. With Exercises. 3s. 6d.
It is a decidedly good book and should have a ready sale.”— Guardian.
“ Mr. Weekley has produced a clear, full, and careful Grammar in the ‘ Tutorial
French Accidence,’ and the companion volume of ‘Syntax,’ by himself and Mr.
Wyatt, is worthy of it."” —Saturday Keview,

The Tutorial French Grammar. Containing the Aecidence and the
Syntaz in One Volume. 4s, 6d.

French Prose Composition. By E. WEekLEY, M.A. 3s. 6d.

“The arrangement is lucid, the rules clearly expressed, the sugzestions really
helpful, and the examples carefully chosen.” — Educational Times.

““We like the plan and arrangement of this bock, which will be welcome to

London candidates and more advanced students.” —Guardian.

The Preceptors’ French Reader. By ERNEST WEEKLEY, M.A. Lond.

and Camb. With Notes and Vocabulary. Second Edition. 1s. 6d.
“ A very useful first reader with good vocabulary and sensible notes.”’—S8chool-
master,

French Prose Reader. Edited by S. BARLET, B. és Sc., Examiner
in French to the College of Preceptors, and W. F. Masom, M.A.

Lond. With Notes and Vocabulary. Third Edition. 2s. 6d.

“ Admirably chosen extracts. They are so selected as to be thoroughly interesting
and at the same time thoroughly illustrative of all that is best in French literature.”
—iSehool Board Chronicle,

Advanced French Reader. Edited by S. BArrLEr, B. és Sc., Examiner

in French to the College of Preceptors, and W. F. Mason,

M.A. Lond. Second Edition. 3s. 6d.
“Chosen from a large range of good modern authors, the book provides excellent
practice in ‘ Unseens.’ "' —=8choolmaster,

Higher French Reader. Edited by ERNEST WEEKLEY, M.A. 3s. 6d.
“'I'he passages are well chosen, interesting in themselves, and representative of
the best contemporary stylists.”—Jowrnal of Education.
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English Language and Literature,

The English Language: Its History and Structure. By W. H. Low,
M.A.Lond. With TEST QUESTIONS. Sizth Edition, Revised. 3s. 64d.

CoNTENTS :—The Relation of English to other Languages—Survey
of the Chief Changes that have taken place in the Language—
Sources of our Vocabulary—The Alphabet and the Sounds of
English—Grimm’s Law—Gradation and Mutation—Trans-
position, Assimilation, Addition and Disappearance of Sounds in
English—Introductory Remarks on Grammar—The Parts of
Speech, etec.—Syntax—Parsing and Analysis—Metre—320 Test
Questions— Index,

“ A clear workmanlike history of the English language done on sound principles.”
—Saturday Keview.

* The author deals very fully with the source and growth of the language. The
parts of speech are dealt with historically as well as grammatically. The work is
scholarly and accurate.” —achovimusier.

*It is in the best sense a scientific treatise. There is not a superfluous sentence.”
— Educational News.

The Preceptors’ English Grammar. With a Course of Exercises. By
W. H. Low, M.A. Lond., and ARNOLD WALL, M.A. Lond.
[Ln preparation.

English Literature, The Tutorial History of. Dy A. J. WyaATT,
M.A. Lond. and Camb. Second Edition. 2s. 6d.

“ This is undoubtedly the best school history of literature that has yet come
under our notive." —Guardian.
“ A very competent piece of workmauship.”—Educational News.
““Ttis excellent. The judgments are sensible and simply stated ; the selections
are chosen independently and skiifully.” —Lxpository Times. .
. “*This is a scholarly and yeta sunple manual, written with admirable lucidity and
conciseness.” — Glasgow Heralu,

The Intermediate Text-Book of English Literature. By W. H. Low,
M.A. Lond., and A. J. WyaTr, M.A. Lond. and Camb.

PaRrt L. (to 1660), 3s. 6d.; Parr II. (1660-1832), 3s. 6d.

‘* Really judicious in the selection of the details given."”—Saturday Eeview.

“A serviceable student’s digest of an important period in our literature.”—
Schoolmaster.

*This volume seems both well-informed and clearly written. The illustrative
selections are very happily chosen. Those who need a handbook of literature will
not readily find a more workmaunlike example of this size and price.”’—Journal of
Edaducatio: .

*The historical part is concise and clear. but the criticism is even more valuable,
and a number of illu=trative extracts contribute a most usetul feature to the volume.
As a compendium for examination purposes this volume ought to take high rank.”—
School W eria.

““A wery serviceable text-book, closely analytic throughout, with fairly safe
judgments and adequate provision of speaimens. Two more competent editors of a
1;‘_11-1100]{ on English authors it would have been difficult to find.”—Educational

imes.
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English Classics.

Chaucer.—Prologue, Knight's Tale. By A. J. Wyarr, M.A. Lond.
and Camb., with a Glossary by 8. J. Evans, M.A. Lond.
28. 6d. Also separately, The Prolegue, 1s.

“The notes are of real value.” —Educational Review.
‘““Quite up to date. The Glossary is excellent.”—Morning Post.

Chaucer.—Man of Lawes Tale, with the PROLOGUE fo the CANTER-
BURY TALes. By A. J. Wyarr, M.A. Lond. and Camb.,
with a GLOSSARY by J. MALINS, M.A. Lond. 2s. 6d.

Dryden.—Essay of Dramatic Poesy. By W. H. Low, M.A. Lond.
Second Edition. 3s. Gd.

Dryden.—Defence of the Essay of Dramatic Poesy. By ALLEN
MAwWER, B.A. Lond. 1s. 6d.

Dryden.—Preface to the Fables. By ALLEN MAWER, B.A. Lond. 1s. 6d.

Langland.—Piers Plowman. DPrologue and Passus I.-VII., Text B.
By J. F. Davis, D.Lit., M.A. Lond. 4s. 6d.

Milton.—Paradise Regained. By A.J. WyaTr, M.A. 2s. 6d.
“The notes are concise and to the point.,”’ —Cambridge Review,

Milton.—Samson Agonistes. By A.J. Wyarr, M.A. 2s. 6d.
# A capital Introduction. The notes are excellent.,” —Educational Times.

Milton,—Sonnets. By W. F. Masoar, M.A. Lond. 1Is. 6d.

Shakespeare.— With INTRoDUCIION and Nores, by Prof. W. J.
RoL¥E, D.Litt., in 40 volumes. 2s. each.

A descriptive catalogue, containing Prof. Rolfe’s Hints to Teachers
and Students of Shakespeare, can be obtained on application.

Merchant of Venice Winter's Tale Hamlet
Tempest King John King Lear
Midsummer Night's Richard II. Cymbeline

Dream Henry IV. PartI, Julinus Caesar
As You Like It Henry IV. Part II, Coriolanus
Much Ado About Nothing Henry V. Antony and Cleopatra
Twelfth Night Henry VI, Part L Timon of Athens
Comedy of Errors Henry VI. Part IL Troilus and Cressida
Merry Wives of Windsor Henry VI. Part IIL Pericles
Love's Labour’'s Lost Richard III. The Two Noble Kinsmen
Two Gentlemen of Verona Henry VIIL Titus Andronicus
The Taming of the Shrew | Romeo and Juliet Venus and Adonis
All's Well that Ends Well | IMacbeth Sonnets
Measure for Measure | Othello

This edition is recommended by Professor Dowden, Dr. Abbott, and Dr. Furnivall.
Shakespeare.—Henry VIII. By W. H. Low, M.A. Lond. 2s.

Spenser.—Faerie Queene, Book L ith INTRODUCIION, NOTES,
and GLOSSARY, by W. H. Hizr, M.A. Lond. 2s. 6d.
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(Mental and Moral Science.

Ethics, Manual of. By J. S. MACKENZIE, M.A., Professor of Logic
and Philosophy in the University College of South Wales and
Monmouthshire, formerly Fellow of Trinity College, Cambridge,
Examiner in the Universities of Cambridge and Aberdeen.
Fourth Edition, enlarged. 6s. 6d.

“In writing this book Mr. Mackenzie has produced an earnest and striking con-
fribution to the ethical literature of the time.”—Mind.

““This excellent manual.”—Iniernational Journal of Ethics.

“ Mr. Mackenzie may be congratulated on having presented a thoroughly good
and helpful guide to this attractive, yet elusive and diflicult, subject.”—S8echoolmaster,

“Mr. Mackenzie's book is as nearly perfect as it could be. The pupil who
masters it will find himself equipped with a sound grasp of the subject such as
no one book with which we are acquainted has hitherto been equal to supplying.”—
Literary World.

£} Wrﬂstnn with lucidity and an obvious mastery of the whole bearing of the subject.”
-—otandard,

Logic, A Manual of. By J. WELroN, M.A. Lond. and Camb.,
Professor of Kdueation in The Yorkshire College, Victoria
University. 2vols. Vol. 1., Second Edition, 8s. 6d. ; Vol. IL., 6s. 6d.

This book embraces all those portions of the subject which are
usually read, and renders unnecessary the purchase of the numerous
books hitherto used. "The relative importance of the sections is
denoted by variety of type, and a minimum course of reading is thus
indicated.

Vol. I. contains the whole of Deductive Logic, except Fallacies,
which are treated, with Inductive Fallacies, in Vol. II.

“ A clear and compendious summary of the views of various thinkers on important
and doubtful points.”—Journal of Education,

“ A very good book . . . not likely to be superseded for a long time to come.”’—
FEiduweational Eeveew.

“ Unusually complete and reliable. The arrangement of divisions and subdivisions
is excellent.””’—Schoolmasier.

*The manual may be safely recommended.”—Educational Times.

Psychology, A Manual of. By G. I¥. StouT, M.A., LL.D., Fellow of St.
John’s College, Cambridge, Wilde Reader in Mental Philosophy
in the University of Oxford, Examiner in Mental and Moral
Science in the University of London. Second Idition, Revised and
Enlarged. 8s. 6d.

“Tt is unnecessary to speak of this work except in terms of praise. There isa
refreshing absence of sketchiness about the book, and a clear desire manifested to
help the student in the subject.””—Saturday fieview. _ _

“The book is a model of lucid argument, copious in its facts, and will be invaluable
to students of what is, although one of the youngest, perhaps the most interesting
of the sciences.”"—C'ritic.

“I'he student’s task will be much lightened by the lucidity of the style and the
numerous illustrative facts, which together make the book highly interesting.”—
Literary World.
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Matbematics and Adechanics.

Algebra, The Tutorial. Part I. ELEMENTARY CoURSE. By RUPERT

DEAKIN, M.A., Headmaster of Stourbridge Grammar Sch. 3s. 6d.
“ An excellent introduction to Algebra.”—0O.rford Magaszine.
““One of the best elementary text-books we have seen.””— Teachers' Monthly.

Algebra, The Tutorial. Part II. ADVANCED CoURSE. By WL
BrigGs, LL.D., M.A., and G. H. BRYAN, Sc.D., F.R.5. 6s. 6d.

i All the theorems usually associated with advanced algebra are here given, with
proofs of remarkable force and clearness.”—=Schoolmasier.

Algebra, A Middle. By WM. Brices, LL.D., M.A.,, F.R.A.S,,
and G. H. BRYAN, Sc.D., M.A., F.R.5. 3s. 6d.

Arithmetic, The Tutorial. By W. P. WorkMAN, M.A., B.Sc., Head-
master of Kingswood School, Bath. 3s. éd.

Astronomy, Elementary Mathematical. By C. W. C. BarLow, M. A,
Lond. and Camb., B.Se¢. Lond., and G. H. BRYAN, Se.D., M.A_,
F.R.S. Second Edition, with Answers. 6s. 6d.

* Probably within the limits of the volume no better description of the methods by
which the marvellous structure of scientific astronomy has been built up could have
been given.—Adthenmum.

Book-keeping, Practical Lessons in. Adapted to the requirements of
the Society of Arts, London Chamber of Commerce, Oxford and
Cambridge Locals, etc. By T.C.JAckson, B.A., LL.B. 3s. 6d.

“Well-adapted for teaching purposes, containing as it does a considerable num-

ber of useful examples and decidedly lucid descriptions.””—The Accountant.
Book-keeping, The Preceptors’. By T. C. Jacksow, B.A., LL.B.
1s. 6d. KEY, 2s. 6d. net.

Coordinate Geometry: Part I. The Right Line and Circle. By
Wn. Brigaes, LL.D., M.A,, F.R.AS, and &. H. BRYAN,
Se.D., M.A., F.R.S. Third Fdition. 3s. 6d.

¢ It is thoroughly sound throughout, and indeed deals with some difficult points
with a clearness and accuracy that has not, we believe, been surpassed.”— Education.,

Coordinate Geometry: Part II. The Conic. By J. H. GrACE, M.A.,
Fellow of St. Peter’s College, Cambridge, and F. R0OSFNBERG,
M.A. Camb., B.Sc. Lond. 4s. 6d.

“The chapters on systems of conics, envelopes, and harmonic section are a
valuable addition to scholarship students.” —Guardinn.
Dynamics, The Tutorial. By WM. Briees, LL.D., M.A., F.C.8,,
F.R.A.S., and G. H. BRYAN, Sc.D., M.A.,, F.R.S. 3s. 6d.

“In every way most suitable for the use of beginners, the initial difficulties
being fully explained and abundantly illustrated.”—Journal of Education,

Euclid.—Books I.,II. By RUPERT DEAKIN, M.A. Lond. and Oxon.,
Headmaster of Stourbridge Grammar School.  1s.

Euclid.—Books I.-IV. By RuPErT DEAKIN, M.A. Lond. and Oxon.

2s. 6d.

“The propositions are well set out, and useful notes are added. The figures and
letterpress are both well printed.” — Cambridge Keview,
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athematics and adechanics—continued.

Euclid, Deductions in. By T. W. EpmoxnpsoN, B.A., Ph.D. 2s. 6d.

Geometry of Similar Figures and the Plane. (Euclid VI. and XI.)
With numerous Deductions worked and unworked. By C.W.C.
Barrow, M.A., B.Sc., and G. H. BRYAN, Sc.D., F.R.S. 2s. 6d.

Hydrostatics, An Elementary Text-Book of. By Wu. BRiGas,
LL.D., M.A., F.C.8,, F.R.A.8.,, and G. H. BRrRYAN, Se.D.,
F.R.S. Second Fdition. 28s.

“The work is thoroughly sound. The earlier chapters are models of lucidity.
The hand of the practical teacher is manifest throughout.””—Educational Review.
““ An excellent text-book.”—Journal of Education.

Mechanics, An Elementary Text-Book of. By the same authors.
Second Fdition. 3s. 6d.

“ 1t is a good book—clear, concise, and accurate.”—Journal of Education,
“ Affords beginners a thorough grounding in dynamics and statics.”—EKnowledge.
¢ A most useful and helpful manual.”—Educational Review.

Mechanics, The Preceptors’. By I'. ROSENBERG, M.A., B.Se. 2s. 6d.
“The book possesses all the usual characteristics and good qualities of its
fellows.”"—Schoolmaster.,
Mensuration of the Simpler Figures. By Ww. Bricas, LL.D.,
M.A., F.C.S,, F.R.AS,, and T. W. EpmMoNDsSoN, B.A. Camb.
and Lond. Third Edition. 2s. 6d.

Mensuration and Spherical Geometry: Being Mensuration of the
Simpler Figures and the Geometrical Properties of the Sphere.
Specially intended for London Inter. Arts and Science. By
the same authors. Third Ldition. 3s. 6d.

“The book comes from the hands of experts; we can think of nothing better
qualified to enable the student to master this branch of the syllabus, and to
promote a correct style in his mathematical manipulations.”—Schoolmaster,

Statics, The Tutorial. By Ww. Bricas, LL.D., M.A., F.R.A.8,,
and G. H. BrYAN, Se.D., F.R.S. Second Edition. 3s. 6d.

“This is a welcome addition to our text-books on Statics. The treatment is
sound, clear, and interesting, and in several cases the familiar old proofs are simpli-
fied and improved.” —Journal of Education.

Trigonometry, The Preceptors’. By Ww. Brices, LL.D., M.A.,
F.C.S., and G. H. BRYAN, Sec.D., M.A., F.R.S., 2s. 6d.

“The book meets excellently the wants of the student reading for the College of
Preceptors’ examination. ‘The explanations are clear, and the illustrative
examples well selected.” —Guardian.

Trigonometry, The Tutorial. By WM. Brieas, LL.D., M.A.,
F.R.A.S., and G. H. BRYAN, Sc.D., M.A., F.R.S. 3s. 6d.

¢ An excellent text-book.""—S8chool Guardian.
“The book is very thorough.”—Sehoolmaster.

Trigonometry, Synopsis of Elementary. By WM. BriaGs, LL.D.,
M.A., F.R.A.8. ZThird Edition. Interleaved. 1s. 6d.
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Physics.

THE TUTORIAL PHYSICS. By R. WALLACE STEWART, D.Se. Lond.,
First in’ First Class Honours in Physics at B. Se., and B. CATCH-
P0OL, B.Se. Lond., qualified for the Univ ermt}r Scholarship in
Phj'ﬂlr:a In Four Volumes.

1. Sound, Text-Book of. By E. Catcuroor, B.Sc. 3Srd Iidition. 3s.6d.
CI}NTEHTI :— Vibratory Motion—Progressive Undulation— Velocity
of Sound—Interference— Forced Vibration—Fourier’s Theorem—The
Ear and Hearing—Refleetion of Sound—=Stationary Undulation—
Vibration in Pipes—'I'ransverse Undulation—Acoustic Measurements.

II. Heat, Text-Book of. By R. W. STEWART, D.Sc. Third
Edition. 3s. 6d.

CoNTENTS :—Thermometry—Expansion of Solids—of Liquids—-

- of Gases—Calorimetry—Liquefaction and Solidification— Vaporisation

and Condensation—Hygrometry—Conduction, Convection, Radiation

—The First Law of Thermo-Dynamics—Graphic Methods.

III. Light, Text-Book of. By R. W. StEwarr, D.Sc. Third
Edition. 3s. 6d.

ConTENTS :—Rectilinear Propagation of Light—Shadows—FPhoto-
metry—Reflexion at Plane Surfaces—at bpheucal Surfaces—Refraction
at Plane and Spherical Surfaces—Refraction through Prisms and
1.enses—Dispersion— Veloeity of Light —Optical Tnstruments.

IV. Magnetism and Electricity, Text-Book of. By R. W. SrEwarr,
D.Se. Fifth Edition. 3s. 6d. :

CoNTENTS :—Electrification— Electrostatic Induction—Distribution
of Electricity—Frictional Electrical Machines—Potential and Capacity
—Induction Electrical Machines. Fundamental Magnetic Phenomena
—Terrestrial Magnetism—DMagnetic Measurements. General Effects
of Currents—DMagnetic Effects—Ohm's Law—Chemical Effects—
Heating Effects—Magneto-Electric Induction—Thermo-Electricity.

“ There are numerous books on acoustics, but few cover exactly the same ground
?‘.’ﬂthw (Sound), or are more suitable introductions to a study of the subject.”—

ature.

“(Clear, concise, well arranged, and well illustrated, and, as far as we have tested,
accurate.” —Journal of Education (on Heat).

“The style of the book (Light) is slmgie the matter well arranged, and the
underlying principles of the subjects treated of accurately and concisely set
forth.”— Educational Review.

“Mr. Wallace Stewart, in his Text-Book of Magnetism and Electricity, main-
tains the high level of E:{‘ﬂllency‘ which his already published science text-books
possess,''— Literary Opinion,

HEAT AND LIGHT, ELEMENTARY TEXT-BOOK OF. By R. W.

STEWART, D.Se. Lond. Third Edition. 3s. 6d.
“ A welcome addition to a useful series.””—School Guardian.

Heat, Elementary Text-Book of. By R. W. SrEwart, D.Sc. Lond. 2s.
Light, Elementary Text-Book of. By R. W. StEwart, D.Se.  2s,
Sound, Elementary Text-Bookof. By Joux Dox, M.A., B.Sc. 1s. 6d.
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Chemistry.,

Anealysis of a Simple Salt, With a Selection of Model Analyses.
By WM. Bricas, LL.D., M.A., F.C.S., and R. W. STEWART,
D.Se. Lond., Fourth Edition. 18. 6d. - TABLES OF ANALYSIS
(on linen). 6d.

“The selection of model analyses is an excellent feature.”—Educational Times.

Chemistry, The Tutorial. By G. H. BATLEY, D.Se. Lond., Ph.D.
Heidelberg, Lecturer in Chemistry in the Vietoria University.
Edited by WM. Briges, LI..D., M.A., ¥.C.S.

Part I. Non-Metals. 3s. 6d.
Part II. Metals. 3s. 6d.

“The descriptions of experiments and diagrams of apparatus are very good, and
with their help a beginner ought to be able to do the experimental work quite
satisfactorily.”’ —Cambridge Keview,

“We cannot speak too highly of its lucid and concise explanations, its
thﬂr:}ugh!;f scientific freatment, and its eminently practical arrangement and
execution.”’— Educational News.

* The leading truths and laws of chemistry are here expounded in a most masterly
manner; made, in fact, accessible to very moderate capacities.”—Chemical News.

“The merits of the plan on which the book is arranged are undoubted, and the
jrrnrk E}irmultl commend itself to all students of chemistry.”"—Pharmaceutical

owrnal,

Chemistry, The Matriculation, being the Matriculation edition of
The Tutorial Chemistry. 4s.
# Dr. Bailey can be congratulated on the preduction of a chemistry, serviceable
and thoroughly reliable, which we can unhesitatingly recommend for the higher
forms of Second and other Schools.”'— Education,

“An excellent treatise, full of well chosen matter admirably arranged.’’—
Fractical Teacher.

Carbon Compounds, An Introduction to. DBy R. H. Abpig, M.A.,
B.Sc. 25.64d.
“The subject-matter of elementary organic chemistry is sketched in both an
interesting and profitable manner.” —Guardian,
“To students who have already a slight elementary acquaintance with the

subject this work cannot fail to afford valuable assistance. The experiments are
well selected.” —Natfure.

Chemistry, Synopsis of Non-Metallic. With an Appendix on Caleu-
lations. By WM. Briees, LL.D., M.A.,, F.C.S5. New and
Revised Edition, Interleaved. 1s. 6d.

“ Arranged in a very clear and handy form.”—Journal of Education,

Chemical Analysis, Qualitative and Quantitative. By Whar,
Bricas, LL.D., M.A., F.C.8., and R. W. SrEwART, D.Sc. Lond.
3s. 6d.

“The instructions are clear and concise. The pupil who uses this book ought to
obtain an intelligible grasp of the principles of analysis.”" —Nature.
“The matter is well and clearly arranged.” —School Guardian.

“ A most eareful and reliable compendium of inorganic analysis. The book has
our commendation.” —Practical Teacher.
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General Elementary Science.

General Elementary Science. Edited by W Brices, LL.D.,

M.A., F.C.8. Third Edition. 38. 6d.

 Just the book for the London Matriculation. Will be welcomed by thousands.’
—Board Teacher. -

# Students entering for the Matriculation Examination of the Londoa Universit
will certainly do well to possess themselves of a copy of this work, which they will
find an excellent guide.” —S&chool Guardian.

** The fact that the first edition of six thousand copies is disposed of affords proof
of its popularity and its adaptation to the needs of matriculating students.”—
Teachers’ Aid. 3

*Decidedly above the average of this class of work., The experimental part of
the Chemistry is decidedly good."” —Guardian.

“We can confidently recommend this book as being admirably adapted for its
purpose.’”’—Journal of Education.

‘“ A book so clear and thorough as the one before us will be very welcome.”—

Schoolmaster. .
‘ Biology.

Botany, Text-Book of By J. M. LowsoN, M.A., B.Sec., F.L.S.

Second Edition. 68, 6d.
i Tt represents the nearest approach to the ideal bofanical text-book that has yet
been produced.”’—Pharmaceutical Journal,
“ An excellent book.”"—Guardian.
“ A workmanlike and well graded introduction to the subject.””—Secotsman.

Zoology, Text-Book of. By H. G. WELLS, B.Se. Lond., F.Z.S.,
F.C.P. Enlarged and Revised by A. M. DAVIES, B.Se. Lond. 6s.6d.

“ The information appears to be well up to date. Students will find this work
of the greatest service to them.”— Westminster Review.

““This book is a distinct success, and should become the standard work for the
London Intermediate Examinations. Itis carefully written throughout, clear and
concise, and yet is extremely interesting reading.”—-Glasgow Herald.

Biology, Text-Book of. With Plates and numerous Questions. By
H. G. WEeLLs, B.S¢. Lond., F.Z.8., F.C.P., with an Intro-
duction by G. B. Howks, F.L.S., F.Z.5. In Two Parts.

Part I., Vertebrates. Third Edition. 2s. 6d. Part II.,
Invertebrates and Plants. 2s. 6d.

The UWniversity Correspondent

AN

UNIVERSITY CORRESPONDENCE COLLEGE MAGAZINE,

Issued on the 1st and 15th of each month. Price 1d., by Post1id.;
Half-yearly Subscription, 1s. 6d.; Yearly Subscription, 2s. 6d.

Eramination Divectories.

Matriculation Directory, with Full Answers to the Examination
Papers. Published during the fortnight following each Examination.
Mo WT., ¥WTL, IX., XI._XXJ:, XXIII., XXIX, XXX
18. each, ne/. No. XXXI. (January 1902), 1s. net.
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e

FOR THE ELEMENTARY STAGE. 2s. each Vol

I. First Stage Practical Plane and Solid Geometry. [In prep».

II. First Stage Machine Construction and Drawing. [In prep».

III. First Stage Building Construction.

V. First Stage Mathematics (Huclid and Algebra). [In prep®.
VI.A. First Stage Mechanics of Solids. Fowrth Edition. ;
VI.B. Firat Stage Mechanics of Finids., Second FEdition.

VII. First Stage Apvolied Mechanics. [ In preparation.
VIIIL. First Stage Sound, Light, and Heat.
IX. First Stage Magnetism and Electricity. Second Edition.

X. First Stage Inorganic Chemistry (Theoretical).

XTI. First Stage Organic Chemistry, Theoretical. [ In preparation.
XI1V. First 8tags Physiology, [[I-u preparation.
XVII. First Stage Botany.
XVIII. First Stage Mining. In preparation.
XXII. First Stage Steam. Eﬁi preparation,
XXIII. First Stage Physiography.

XXIII. Bection Ons Physiography. [In preparation,
XXYV. First Stage Hygiene. Second I Tition.
XXV. Section One Hygiene. [In preparation.

X.p. First 8tage Inorganic Chemistry (Practical). Second Ed. la.
XTI.p. Practical Organic Chemistry. 1s. 6d,

FOR THE ADVANGCED STAGE. 3s. 6d. cach Vol.

V. Second Stage Mathematics (being the additional Algebra and
Kuclid, with the Trigonometry required.) Second Edition.
VI.A. Advanced Mechanics (Solids), Part . DyNaMIcs. Part 11,

STATICS. OSecond Edition.

VIII.c. Advanced Heat. Second Edition.
IX. Advanced Magnetism and Electricity.

X. Advanced Inorganic Chemistry (Theoretical). Second Edition.
XXYV. Advanced Hygiene. [In preparation.

X.P. Advenced Inorganic Chemistry (Practical). 2s.
XI.p. Practical Organic Chemistry. 1s. 6d.

LONDOH: W. B. CLIVE, 157 DRURY LANE, W.C.










