A series of chemical problems with key for use in colleges and schools / by T.E. Thorpe. Rev. and enl. by W. Tate; with a preface by H.E. Roscoe.

Contributors

Thorpe, T. E. 1845-1925.

Publication/Creation

London; New York: Macmillan, 1891.

Persistent URL

https://wellcomecollection.org/works/v2jeb7dn

License and attribution

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

Wyodfrey Sceats.

22101674602

Med K1884 Digitized by the Internet Archive in 2016

A SERIES OF CHEMICAL PROBLEMS

A SERIES OF

CHEMICAL PROBLEMS

With Rey

FOR USE IN COLLEGES AND SCHOOLS

T. E. THORPE, LL.D., F.R.S.

REVISED AND ENLARGED BY

W. TATE, ASSOC. N.S.S. (HONOURS), F.C.S.

(Professor in the Civil Engineering College, Calcutta)

WITH A PREFACE BY SIR H. E. ROSCOE, LL.D., F.R.S.

London

MACMILLAN AND CO., LIMITED NEW YORK: THE MACMILLAN COMPANY 1907

All rights reserved

20095

8291394

RICHARD CLAY AND SONS, LIMITED, BREAD STREET HILL, E.C., AND BUNGAY, SUFFOLK.

Copies Received 1870-1874.

First Edition Printed for Macmillan & Co., 1874.

Reprinted 1876, 1877.

With Key 1878. Reprinted 1880, 1881, February and December 1882, 1885,

April and December 1888, 1890.

New Edition 1891.

Reprinted 1892, 1897, 1907.

WEL	LCOME INSTITUTE LIBRARY
Coll.	welMOmec
Call	
No.	(B)

PREFACE

THE following complete series of Questions and Problems in Elementary Chemistry will prove a great boon to those engaged either in teaching or in learning the science. They were prepared by my friend DR. THORPE, with special reference to our junior classes in Owens College, in which my "Elementary Chemistry" is used; but they will of course also be available where any other modern text-book is employed.

My experience has led me to feel more and more strongly that by no method can accuracy in a knowledge of Chemistry be more surely secured than by attention to the working of well-selected problems, and Dr. Thorpe's thorough acquaintance with the wants of the student is a sufficient guarantee that this selection has been carefully made. I intend largely to use these Questions in my own classes, and I can confidently recommend them to all teachers and students of the science.

HENRY E. ROSCOE.

Oct. 15, 1870.

TABLE OF CONTENTS

	PAGE
Metric System of Weights and Measures	I
Conversion of Thermometric Scales	6
Correction of Thermometer Readings	8
Correction of Barometer Readings	10
Gay Lussac's Law; Boyle's Law; Correction of the	
Volumes of Gases for Temperature and Pressure; Law	
of Partial Pressures	13
Relative Density of Solids, Liquids, and Gases; Vapour	
Density	17
Avogadro's Hypothesis; Density and Molecular Weight;	
Valency, Equivalents, and Atomic Weights	33
Deduction of Empirical Formula from Percentage Compo-	
sition. Formulæ of Minerals	36
To Calculate the Percentage Composition of a Compound	
from its Formula	42
Chemical Equations; to Calculate the Amount of Material	
Required to Produce a Given Weight of any Substance,	
or the Quantity of the Substance Produced by the De-	
composition of a known Weight of the Material	44
Combination and Decomposition of Gaseous Bodies	52
Gas Analysis Calculations	54
Calculation of the Results of Atomic Weight Determina-	
tions	67
Calculations Involved in Indirect Analysis	70
General Analytical Questions	74

	PAGE
Solution of Gases in Liquids	78
Solubility of Solids in Liquids; Molecular Weight and the	
Lowering of the Freezing-Point of Solutions	82
Exercises on the Specific Heat, Latent Heat, and Atomic	-
Heat of Substances	06
	86
Heat of Solution; Heat of Combination; Calorific Power	
and Calorific Intensity	91
APPENDIX.	
ATTENDIA.	
Table I Atomic Weights and Combale of the Flowerts	0 11
Table I.—Atomic Weights and Symbols of the Elements.	97
Table II.—Weight of One Cubic Centimetre of Atmo-	
spheric Air at Different Temperatures from o° to 300°,	
at 760 mm. Pressure	99
Table III.—The Weight of 1000 c.c. of Water at t°C.,	
when Determined by Means of Brass Weights in Air of	
o°C., and at a Tension 0'76 m., is equal to 1000-x	
	100
grams	100
Table IV.—Volume and Density of Water at Different	
Temperatures	101
Table V.—For the Calculation of $\frac{I}{I + 0.00367. T.}$	103
Table V.—For the Calculation of 1+0.00367. T.	102
Table VI.—Vapour Pressure (Tension) of Water	103
Table VIIFor the Conversion of Degrees (7') of a	
Mercurial Thermometer into the Corresponding Values	
of an Air Thermometer	104
	104
Table VIII Table for Correction of Thermometer Read-	7.55
ings	105
Table IX.—Table of Useful Constants	106
Table X.—Logarithms and Anti-Logarithms	107
KEY TO CHEMICAL PROBLEMS	117

CHEMICAL CALCULATIONS.

METRIC SYSTEM OF WEIGHTS AND MEASURES.

MEASURES OF LENGTH.

Standard:—I metre, the length at o°C. of a platinum bar preserved in Paris. Originally constructed to represent the 40000000 part of the earth's circumference, measured along the Paris meridian; according to modern measurements it does not fulfil this intention and can therefore only be viewed as an empirical standard.

10 decimetres (dcm.) . . . I metre (m.).

```
100 centimetres (cm.) . . . ,,
    1000 millimetres (mm.)
                          . . .
         1000 metres . . . I kilometre.
            I inch = 2.539954 centimetres.
            I foot = 3.047945 decimetres.
            1 \text{ yard} = 0.914383 \text{ metre.}
            I mile = 1.609315 kilometres.
               MEASURES OF SURFACE.
     100 square decimetres (sq. dcm.) I square metre or
                                      centiare (sq. m.).
  10,000
              centimetres (sq. cm.)
               millimetres (sq. mm.)
1,000,000
        100 square metres . . . . I are.
     1 square inch = 6.4513669 sq. cm.
                   foot = 9.2899683 sq. dcm.
                   yard = 0.83609715 sq. m.
                   acre = 0'404671021 hectare.
```

B

70

MEASURES OF CAPACITY.

1000 cubic decimetres (c.dcm.) I cubic metre or stere.

1,000,000 ,, centimetres (c.c.) ,,
1,000,000,000 ,, millimetres (c.mm.) ,,

I cubic decimetre . . . I litre.

I cubic inch = 16'386176 c.c.

I ,, foot = 28'315312 c.dcm.

I gallon = 4'54345797 litres.

MEASURES OF WEIGHT.

Standard:—I kilogram, the mass of a piece of platinum

weighed in vacuo; preserved in Paris.

Theoretically the gram equals the mass of ic.c. and the kilogram the mass of 1000 c.c. of distilled water at 4°C., at the latitude of Paris; the actual standard differs slightly from its value as thus defined.

1000 grams (grms.) . . . 1 kilogram
10,000 decigrams ,,
100,000 centigrams . . . ,,
1,000 000 milligrams . . . ,,
1 grain = 0.06479895 gram.
1 troy oz. = 31.103496 grms.
1 lb. avd. = 0.45359265 kilo.
1 cwt. = 50.80237689 kilos.

To reduce grams to grains.

Log. grams + 1.188432 = log. grains.

To reduce cubic centimetres to cubic inches. Log. c.c. + (-2.7855224) = log. cubic inches.

To reduce millimetres to inches. Log. mm. $+(-2.5951742) = \log$ inches.

To convert grains into grams. Log. grains $+ (-2.8115680) = \log$. grams.

To convert cubic inches into cubic centimetres. Log. cb. in. + 1.2144776 = log. c.c.

> To convert inches into millimetres. Log. inches + 1.4048258 = log. mm.

SURFACES AND CAPACITIES.

Area of a square = side².

Area of a rectangle, rhombus, or rhomboid = side × perpendicular height.

Area of a triangle = half the side × perpendicular

height.

Area of a circle = $3.141593 \times \text{radius}^2$.

Area of an ellipse = 3'141593 × major semi-axis × minor semi-axis.

Surface of a cube $= 6 \times \text{edge}^2$.

Surface of a sphere = $12.566370 \times \text{radius}^2$.

Surface of a cylinder = 6.283185 × radius of base × sum of height and radius of base.

Surface of a spherical segment = 6.283185 × height ×

radius of circular base.

Volume of a cube = edge³.

Volume of a sphere = $\frac{4}{5} \times 3^{\circ}141593 \times \text{radius}^3$.

Volume of a cylinder = 3'141593 × height × radius².

Volume of a prism = base area × height.

Volume of a cone or pyramid = $\frac{1}{3}$ × base area × height.

EXAMPLES.

I. How many millimetres are contained in 5 metres? From the table we find that 1000 millimetres = 1 metre.

 \therefore 5 metres = 1000 \times 5, or 5000 millimetres.

2. How many decimetres are equivalent to 106725 millimetres?

1 decimetre = 100 millimetres.

.. 106725 millimetres = 1067.25 decimetres.

3. How many litres of air are contained in a room measuring 4 × 3 × 2 metres?

 $4 \times 3 \times 2 = 24$ cubic metres. I cubic metre = 1000 litres. \therefore 1000 \times 24 = 24,000 litres.

4. Required the number of milligrams in 15 c.c. of water measured at 4° C.

1 c.c. of water at 4° C. = 1 gram.
1000 milligrams = 1 gram.
∴ 15 × 1000 = 15,000 milligrams.

QUESTIONS.

- I. How many millimetres, centimetres, and decimetres are respectively contained in 0.437 of a decimetre?
- 2. Required the number of (a) centimetres, (b) decimetres, (c) metres, in 1098765421 millimetres.
- 3. Required the number of square millimetres, square centimetres, square decimetres contained in the top of a table measuring I metre by 70 centimetres.
- 4. Define the gram and the litre. How many grams are contained in 1.725 kilograms?
- 5. How many centigrams are contained in 2.567 kilograms?
- 6. Required the number of milligrams contained in 5 cubic centimetres of water measured at 4°C.
- 7. Calculate the number of square centimetres contained on the surface of a paper filter possessing a radius of 5 centimetres.
- 8. In an English inch are contained 25'3995 millimetres. How many kilometres are there in a mile?
- 9. The mean height of the barometer in the latitude of Greenwich at the level of the sea is 30 inches. How many millimetres is this equivalent to?
- 10. A gallon is equal to 4.543 litres. How many cubic centimetres are contained in one pint?
- 11. A spherical glass bulb possesses a radius of 3 centimetres; calculate its capacity.
- 12. Calculate the length of the polar axis on the supposition that the earth is spherical, and that the actual metre is identical with the metre as defined.
- 13. A fine wire 255 millimetres in length weighs 0'172 grams. What length of such wire would it take to make a centigram 'rider'?

- 14. A piece of platinum foil measuring 10.5 centimetres by 1.5 centimetres weighs 0.723 gram. Into how many pieces, each weighing one decigram, may it be divided?
- 15. A piece of Swedish filter paper measuring 60 centimetres square, leaves on burning 0.1062 gram of ash. Calculate the amount of ash left on burning filters possessing the following radii: (a) 3 centimetres, (b) 4 centimetres, (c) 5 centimetres, (d) 6 centimetres, (e) 8 centimetres, (f) 10 centimetres.
- 16. A perfectly cylindrical tube 90 millimetres in length holds exactly one gram of water at 4° C. Calculate its internal diameter.
- 17. I require a perfectly spherical bulb to hold 300 cubic centimetres. What internal diameter must it have?
- 18. A cylindrical graduated tube 15 millimetres in diameter holds 25 cb. centimetres up to the hundredth division. Calculate the value in grams of water at 4° C. of one division. What will be the length between each division?
- 19. A flask, nominally of I litre capacity, is found to contain 997 grams of distilled water at 15° C., when the lowest point of the meniscus coincides with the graduation mark; (see table III) by how much do its contents fall short of their supposed value?
- 20. A 50 c.c. pipette delivers 50 grams of water at 16° C.; what is the true volume of the space up to the graduation mark?
- volumes of 10 c.c.'s of water, at 15° C., weighed 9'94 grm., 9'99 grm., 10'06 grm., 10'13 grm., 10'19. grm. What corrections should be applied to obtain the volumes delivered from the zero-mark to the 20, 40, and 50 c.c. marks respectively?

CONVERSION OF THERMOMETRIC SCALES.

(C. Centigrade; F. Fahrenheit; R. Reaumur.)

Fahrenheit to Centigrade $\frac{5}{9}$ (F.°-32) = C.° Centigrade to Fahrenheit $\frac{9}{5}$ C.°+32 = F.° Reaumur to Fahrenheit $\frac{9}{4}$ R.°+32 = F.° Fahrenheit to Reaumur $\frac{4}{9}$ (F.°-32) = R.° Centigrade to Reaumur $\frac{4}{5}$ C.° = R.° Reaumur to Centigrade $\frac{5}{4}$ R.° = C.°

EXAMPLES.

1. What temperature on the Centigrade scale is equal to 212° F.?

$$\frac{180 \times 5}{9} = \frac{900}{9} = 100^{\circ}$$
Ans. = 100° C.

2. What temperature on the Centigrade scale is equal to o° F.?

$$\frac{-32 \times 5}{9} = \frac{-160}{9} = -17^{\circ}.77 \text{ C}$$

3. Express 60° C. on Fahrenheit's scale.

$$\frac{60 \times 9}{5} = \frac{540}{5} = 108$$
Ans. $108 + 32 = 140^{\circ} \text{ F}$.

4. Express - 15 C. on Fahrenheit's scale.

$$\frac{-15 \times 9}{5} = \frac{-135}{5} = -27$$
Ans. $-27 + 32 = +5^{\circ}$ F.

QUESTIONS.

22. Express the following temperatures in °C.

60° F.	o° R.	-10° R.
So° R.	−15°.5 F.	25° 5 R.
oo F.	500° F.	o° 2 F.

23. Express the following temperatures in °R.

15° 5 C.	1200° F.	0°.25 C.
60° F.	-40° C.	o°·o F.
32° F.	240° C.	15° o F.

24. Express the following temperatures in °F.

- 25. Bromine boils at 138°.7 F. What is the corresponding temperature on the Centigrade scale?
- 26. Ether boils at 34° 9 C., alcohol at 78° 4 C., and sulphuric acid at 338° C. What are the corresponding boiling-points on Fahrenheit's scale?
- 27. Mercury freezes at -38°.8 C. and boils at 357°.25 C. Calculate the corresponding temperatures on the scales of Reaumur and Fahrenheit.
- 28. Cast-iron melts at 1550° C., zinc at 423° C., lead at 334° C., tin at 235° C. Calculate these temperatures in °F.
- 29. At what point are the numbers on the scales of Fahrenheit and Celsius identical? To what temperature does this point correspond on the scale of Reaumur?

CORRECTION OF THERMOMETER READINGS.

Thermometer readings require, in general, to be corrected:

- (1) For change in the zero-point.
- (2) For the cooling of that portion of the thread not immersed in the heating medium (the emergent thread). For the most accurate work a correction is also applied for the want of uniformity of the bore of the capillary stem, generally by means of a table formed by calibration of the tube or by comparison of the individual thermometer with a standard instrument. Finally, the mercurial-thermometer readings, to be comparable, should all be reduced to air-thermometer readings by means of Table VII. (Appendix).

An approximate correction for the emergent thread may be obtained by means of the expression $\delta (t - t')n$, where δ the co-efficient of apparent expansion of mercury in glass = '000154, t = the observed temperature on the thermometer, t' = the mean temperature of the cooled column as determined by an attached thermometer, and

n = the length in degrees of the cooled column.

In ordinary cases $\delta = 000143$ gives a result nearer the truth than the actual coefficient; a useful table calculated by means of this constant is appended (Table VIII).*

EXAMPLES.

1. In the determination of the boiling-point of a sample of ethyl formate a thermometer is used indicating o° 8 when plunged into melting ice. When the stem is entirely surrounded by vapour the reading taken is 55°. What is the corrected boiling-point?

^{*} Several other formulæ have been proposed to calculate the correction required, but neither these nor the one given above give the true correction in all cases; for moderate values of n Table VIII. is fairly true if thermometers of the ordinary type are employed. See the article "Zur Korrection der Thermometerablesungen für den herausragenden Faden," by Dr. E. Rimbach, in the Zeitschrift für Instrumentenkunde, May 1890.

The zero of this thermometer has risen o 8, hence all readings must be diminished by this amount and we have

 55° - 0° · 8 = 54° · 2 BP required.

2. With a thermometer reading 0°·2 in melting ice, the BP of propionic acid is indicated as 139°·2; the column is immersed in the vapour to the 70° mark and the temperature of the exposed part is 26°; what is the corrected BP? What is the corresponding H – thermometer temperature?

Correction for change of zero-point = -0° .

Correction for cooled column = $+1^{\circ}$ ·13 for $n = 139^{\circ}2 - 70 = 69^{\circ}2$ (70 nearly), and $t - t' = 139^{\circ}2 - 26 = 113^{\circ}2$, while from Table VIII. for n = 70 and t - t' = 110 and 120 the corrections are $+1^{\circ}$ ·10 and $+1^{\circ}$ ·20 respectively.

The required BP is therefore

$$139.2 - 0^{\circ}.2 + 1^{\circ}.13 = 140^{\circ}.13.$$

From Table VII. 139.85° mercury thermr. = 140° hydrogen thermr.; hence $140^{\circ}.13 = (140 - 139.85)^{\circ} = 140^{\circ}.13 + 0^{\circ}.15 = 140^{\circ}.28$ is the corresponding hydrogenthermometer temperature.

QUESTIONS.

- 30. The indicated temperature of the vapour of boiling methyl acetate is 57° 9 when the thermometer is immersed in the vapour to the 100° mark; the same instrument reads 0° 5 in melting snow; what is the corrected boiling point?
- 31. During a fractionation of isobutyric acid 4 portions are collected (a) from 149°·5 to 150°·3 (b) from 150°·3 to 150°·9 (c) from 150°·9 to 151°·1 (d) 151°·1 to 151°·5 as indicated by a thermometer (standing at 0°·4 in clean melting ice), having 55° immersed in the vapour, temperature of outside column as given by a second thermometer being 27°. What are the corrected temperatures between which the four fractions pass over?
- 32. A sample of ethene dibromide distils over mostly between 130°.6 and 130°.7, n = 55 and t' = 11°.3. What is the corrected BP of this fraction? What is the corresponding temperature on the hydrogen thermometer scale?

33. Reduce the indicated BP's given below to temperatures on the hydrogen-thermometer scale.

$$N_2O_4$$
 21°·85 ($n = 22$, $t' = 13°·5$)
 $SiCl_4$ 58°·20 ($n = 0$)
 PCl_3 76°·15 ($n = 18·2$, $t' = 26°$)
 $POCl_3$ 107°·30 ($n = 0$).
 $VOCl_3$ 127°·15 ($n = 10$, $t' = 30°$)

CORRECTION OF BAROMETER READINGS.

Observed barometric heights are reduced to the height of a column of mercury at o° and at the level of the sea in latitude 45°, which would produce the same pressure.

The corrections needed for this reduction are:

I. Correction for temperature, due to expansion of the

mercury and the material of the scale.

Let m = coefficient of expansion of Hg, S = coefficient of linear expansion of the substance of the scale, h = the observed height of the barometer, and H = the

corrected height; then
$$\mathbf{H} = h\left(\frac{\mathbf{I} + st}{\mathbf{I} + mt}\right)$$

or approximately $\mathbf{H} = h \{1 - (m-s)t\}$

Hence the required correction is -(m-s)t.h.

With a brass scale we have $\mathbf{H} = h (1 - 0.000162t)$

and the correction is -0.000162.t.h;

and with a glass scale similarly

$$\mathbf{H} = h (1 - 0.000157t)$$

and the correction is -0'000157.t.h.

11. Correction for height above the sea-level and lati-

tude, obtained as follows :-

If λ be the latitude, and x the height expressed in metres of the place of observation above the sea-level, the length of the column of mercury which produces the standard pressure is

760'000 = 1'946 cos 2 λ + 0'000149x. mm. therefore if the observed height of the barometer be h the true or reduced height

$$\mathbf{H} = \frac{h \times 760}{760 + 1.946 \cos 2\lambda + 0.000149 x}$$

If x be less than 100m, the term 0'000149.r may be omitted.

As these corrections are small, a result approximately true is obtained by taking

$$\mathbf{H} = h - 1.946 \cos 2\lambda - 0.000149 .r.$$

the greatest error so made being 0'04 mm. A further correction is required for the combined effects of error in adjustment of the scale and the depression of the column produced by capillarity, this correction should be given by the maker from comparison with a standard instrument.

EXAMPLE.

A Fortin barometer at latitude 52° and 21m. above sea-level stands at 754'34 mm. The instrument has a brass scale, the correction for index-error and capillarity is + 0'26 mm., and the temperature at time of observation is 16° C.; what is the reduced reading?

Neglecting quantities beyond the second place of

decimals.

11.
$$\mathbf{H} = \frac{H \times 760}{760 + 1.946 \cos 2 \lambda + 0.000149. x}$$

$$= \frac{752.38 \times 760}{760 + 1.946 \cos 104^{\circ} + 0.000149. 21.}$$

$$= \frac{752.38 \times 760}{760 + 1.946 (-0.2419)}$$

$$= \frac{752.38 \times 760}{759.53} = 752.84 \text{ mm.}$$

Hence true height of barometer, reduced to o°C, sealevel, and latitude 45° = 752.84 + '26 mm. = 753.10 mm.

QUESTIONS.

- 34. The barometer-readings taken during a gas-analysis with a Fortin barometer, of which the maker's correction was + 0.19 mm., were 754.83 mm., 756.21 mm., 757.39 mm., and 758.27 mm. The temperature of the instrument was throughout 18° C., what were the barometer-heights reduced to 0°C.?
- 35. Supposing the barometer to stand at 753'82 mm. at London (Lat. 51° 30′ N. $T = 8^{\circ}C$)., Liverpool (Lat. 53° 25′ N. $T = 14^{\circ}C$.), Madeira I. (Lat. 32° 45′ N. $T = 20^{\circ}C$.), and Bombay (Lat. 19° 8′ N. $T = 19^{\circ}C$.); what is the true pressure of the atmosphere at each of these places?
- 36. Fill in the reduced barometric heights, in column VI. of the annexed table. All the barometers have brass scales.
- I. Temperature of barometer at the time of observation.
 - II. Height of place of observation above the sea-level.
 - III. Latitude of "

33

- IV. Maker's correction.
- V. Observed height of mercury column.

1.	11.	111.	IV.	V.	VI.
A. 8° C.	20 m,	45" N.	- o'12 mm.	753 ['] 72 mm.	
B. 15° C.	357 m.	52° S.	- o'35 mm.	761 °08 mm.	
C. 13'5° C.	75 m.	63° N.	+ o'o8 mm.	755 59 mm.	
D. 17 ² C.	28 m.	25° S.	- o'21 mm.	765'34 mm.	
E. 16.8° C.	234 m.	O°	4- o 17 mm.	759°37 mm.	
F. 20° C.	998 m.	72° N.	+ o'15 mm.	760'18 mm.	
G. 11° C.	105 m.	58° N.	- o'23 mm.	762°15 mm.	

CORRECTION OF THE VOLUMES OF GASES FOR TEMPERATURE AND PRESSURE.

Law of Charles: — Gases under constant pressure expand $\frac{1}{273}$ part of their volume at 0° C. for every increase in temperature of 1° C.

Thus 273 volumes of any gas at 0° C. become 274 ,, , 1° C. , 275 ,, 2° C. ,, 276 ,, 3° C. ,, 273 + t ,, , , t°

This fraction $\frac{1}{273}$, or the slightly more accurate decimal fraction 0.003665, is termed the *coefficient of expansion of gases*.

EXAMPLES.

I. 10 c.c. of a gas are measured at 15° C. What volume will the gas occupy at 150° C.?

$$273 + 15 : 273 + 150 :: 10 : x$$

$$x = \frac{423 \times 10}{288} = 14.69 \text{ c.c.}$$

2. 100 c.c. of hydrogen are measured at 100° C. How many cubic centimetres will the gas occupy at - 100° C.?

$$x = \frac{173 \times 100}{373} = 46.37 \text{ c.c.}$$

3. What will be the volume at 25° C. of 252 c.c. of oxygen measured at 15° C.?

$$1 + (15 \times 0.003665) : 1 + (25 \times 0.003665) :: 252 : x$$

$$1.054975 : 1.091625 :: 252 : x$$

$$x = \frac{1.091625 \times 252}{1.054975} = 260.75 \text{ c.c.}$$

By increasing the pressure upon a gas its volume is diminished: by diminishing the pressure the volume is increased.

Boyle's Law:—The volume of a gas at constant temperature is inversely proportional to the pressure to which it is subjected.

1. 1000 c.c. of hydrogen are measured under a barometric pressure of 740 mm. What will the volume become under the standard pressure of 760 mm.?

760 : 740 :: 1000 :
$$x$$

$$x = \frac{740 \times 1000}{760} = 973.6 \text{ c.c.}$$

2. A litre of air is measured at 0° C. and 760 mm. What volume will it occupy at 740 mm. and 15°.5 C.?

$$x = \frac{288.5 \times 760 \times 1000}{273 \times 740} = 1085.34 \text{ c.c.}$$

Dalton's Law of Partial Pressures:—The pressure of a mixture of chemically indifferent gases and vapours is equal to the sum of the pressures which each would exert if it alone occupied the whole space.

EXAMPLES.

1. If 100 vols. of air consist of 20.66 O, 77.9 N, 0.03 CO₂, and 1.40 of aqueous vapour, and the barometer stands at 760 mm.; what is the partial pressure of each of these vapours and gases?

The pressure of a vapour in contact with its own liquid is always the same at the same temperature.

2. An eudiometer, graduated in mm. from the closed end, contains coal gas; pure boiled water is introduced until the mercury meniscus remains wet; the upper level of the mercury with gas dry stands at 400 mm., the lower level at 800 mm.; the average volume of 1 cm, of the tube = 1.66 c.c., barometer stands at 756 mm., temp. of air is 18°C. What are the volumes of the dry coal gas and of the vapour of water in the moist gas respectively, reduced to standard conditions?

Vol. of dry coal gas = $1.66 \times 40.0 = 66.4$ c.c. at 756 -

(800 – 400) or 356 mm. and 18°C.

Hence vol. at o°C. and 760 mm. = $\frac{66.4 \times 356 \times 273}{760 \times 291}$ = 29.18 c.c.

Tension of aqueous vapour at 18°C. = 15.33 mm.; hence upper level of mercury is depressed to (400 × 15.33) mm. and vol. of aqueous vapour = $1.66 \times 41.536 = 68.95$ c.c. at 15'33 mm. and 18°C., and this volume of a gas

$$= \frac{68.95 \times 15.33 \times 273}{760 \times 291} = 1.304 \text{ c.c. at } 760 \text{ mm. and o}^{\circ}\text{C.}$$

QUESTIONS.

- 37. 170 volumes of oxygen are measured at 10°C. What will the volume be on the temperature sinking to o°C.?
- 38. A certain weight of air measures a litre at o°C. How much will the air expand on being heated to 100°C.?
- 39. A gas has its temperature raised from 15° C. to 50° C.; at the latter temperature it measures 15 litres. What was the initial volume?
- 40. A volume of hydrogen measures 1500 cubic centimetres at o° C. How many cubic centimetres will it measure at (a) 15°5 C., (b) at 50° C., (c) at 100° C., and (d) at 300° C.? At what temperature will it measure exactly 1000 cubic centimetres?

- 41. The coefficient of expansion for gases for 1° C. is 0.003665. What is the coefficient for (a) 1° F., and (b) 1° R.?
- 42. A certain volume of air preserved at a constant temperature measures 150 cubic centimetres when the barometer stands at 760 millimetres. On the following day its volume is found to have decreased 1.52 cubic centimetres. Calculate the alteration in the height of the barometer which must have ensued.
- 43. A balloon containing 1200 cubic metres of coal gas under a pressure of 770 millimetres of mercury ascends until the barometer stands at 530 millimetres. What volume would the gas in the balloon now occupy supposing none to have escaped?
- 44. A certain quantity of nitrogen measures 155 cubic centimetres at 10° C., and under a pressure of 530 millimetres of mercury. What will the volume become at 18°.7 C., and under a pressure of 590 millimetres of mercury.
- 45. Calculate the temperature at which air possesses a density equal to that of hydrogen at o° C.
- 46. Oxygen is passed into an eudiometer till the upper level of the mercury stands at 250 mm., level in trough at 780 mm. It is required to add double the quantity of hydrogen; if the tube be adjusted till the trough level becomes again 780 mm. and the average volume of 10 mm. of tube is 1'74 c.c., what will be the reduced volume of the added hydrogen, and what the reading of the upper level of the mercury in the eudiometer after the addition (Bar. 754 mm., T. 17'5° C.)?
- 47. Supposing the atmosphere to be saturated at 15° C., barometer 754 mm., what is the per centage volume of aqueous vapour contained in the air?
- 48. Defining the dew-point as the temperature at which the air would be saturated when containing the amount of vapour of water present at the time of observation, give the per centage volume of aqueous vapour present in the air when the dew-point is 15° C. and 5° C. respectively (Bar. 765 mm.).

49. A gas burette contains 53'2 c.c. of moist coal gas at 760 mm. pressure and 18'5° C.: find the volume of the dry gas under standard conditions.

50. 23'70 c.c. of dry nitrogen are contained in an absorptiometer, 5 c.c. of water are introduced and by agitation 0'07 c.c. of the gas is absorbed. The pressure is brought to that of the atmosphere, 757'3 mm., when reading the volumes, and the temperature remains at 16° C.: what is the volume of moist nitrogen indicated at the end of the experiment?

RELATIVE DENSITY OF SOLIDS, LIQUIDS, AND GASES; VAPOUR DENSITY.

THE specific gravity (sp. gr.) or relative density of a solid or liquid substance is the ratio of its mass to the mass of an equal volume of some liquid taken as unity.

The standard universally adopted is pure water at its maximum density. The number which expresses the relative density of a solid or liquid substance denotes, therefore, how much heavier or lighter the substance is than an equal bulk of water at 4° C.

- I. The relative density of a solid is generally ascertained by :—
 - I. The hydrostatic balance method.

Rel. dens. =
$$\frac{\text{Weight of substance }(W)}{\text{Weight of equal vol. water at 4° C.}} = \frac{IV}{IV - 70}$$

where w = weight of substance in water at 4° C.

If the solid be lighter, bulk for bulk, than water a sinker is employed of weight in water = x, and rel. dens. = d.

Rel. dens. =
$$\frac{W}{W + x - w'}$$

where w' = weight of combination in water.

If the determination be made at t° C., then

Rel. dens. =
$$\frac{W}{W - w} \times \text{rel. dens. of water at } t^{\circ} \text{ C.}$$

EXAMPLE.

A piece of iron sulphide (white pyrites) weighed in air 4'8934 grams: in water it weighed 3'8860 grams. Calculate its rel, dens.

Rel. dens. =
$$\frac{4.8934}{4.8934 - 3.8860} = \frac{4.8934}{1.0074} = 4.857$$
.

II. The specific gravity flask method.

If W = weight of substance in air, w' = weight of flask filled with water, w'' = weight of flask filled with substance and water; we have weight of substance in water = w'' - w' and hence

Rel. dens. =
$$\frac{W}{W - vv'' + vv'} \times \text{rel. dens. of water at } f$$
 C.

- 2. The relative density of a liquid is commonly found by:—
 - I. The specific gravity flask method.

Let x = weight of the empty flask, w = weight of flask filled with water at $t' \in C$, w' = weight of flask filled with liquid under examination, then

Rel. dens. =
$$\frac{w' - x}{w - x} \times \text{rel. dens. of water at } t^{\circ} \text{ C.}$$

II. Weighing an insoluble solid in water and in the liquid.

Let x = weight of solid in air, w = weight in water at t° C., w' = weight in liquid, then

Rel. dens. =
$$\frac{x - \tau v'}{x - \tau v} \times \text{rel. dens. of water at } t^{\circ} C$$
.

III. The method of balanced liquid columns.

If h = height of column of water and h' = height of balancing column of liquid, then

Rel. dens.
$$=\frac{h}{h'}$$
.

EXAMPLES.

I. Find the rel. dens. of absolute alcohol from the following data:—

Weight of bottle empty 3'7200 grams.

" filled with water . 7'9582 "
" alcohol . 7'1508 "

Rel. dens. =
$$\frac{7.1508 - 3.7200}{7.9582 - 3.7200} = \frac{3.4308}{4.2382} = 0.8095.$$

2. A glass rod, weighing 13 grams in air, weighs 8 grams in water, and 3.8 grams in sulphuric acid; what is the sp. gr. of the sulphuric acid?

Sp. gr. =
$$\frac{13 - 3.8}{13 - 8} = \frac{9.2}{5} = 1.84$$
.

Density of gases and vapours:—The density of any substance at a known temperature (and pressure, in the case of gases and vapours) is the mass of a unit of volume of the substance at that temperature (and pressure).

The sp. gr. or rel. dens. of a gas or vapour is the ratio of its mass to the mass of an equal volume of hydrogen

measured at the same temperature and pressure.

The rel. dens. of a gas is commonly termed the density of the gas, and the rel. dens. of the vapour of any sub-

stance the vapour density of the substance.

One gram of hydrogen under standard conditions measures 11 1636 litres; this volume accordingly becomes a convenient unit of volume for measuring densities. Using this unit, the densities are expressed by the same numbers as the relative densities or specific gravities.

One litre of hydrogen gas at o' C. and 760 mm.

barometric pressure and at the level of the sea and latitude 45° weighs 0.08958 gram.

- 3. The rel. dens. of a gas is determined by :-
- I. Weighing a known volume of the gas by means of :-
- A. A counterbalanced globe, filled by the evacuation method.
- B. The displacement method: a bulb of known volume containing an inert gas is kept at a constant temperature while the experimental gas is passed in through one of the leading tubes in such a way as, so far as possible, to fill the bulb by the displacement of the contained gas.
- C. The method of collecting in a light small flask over mercury (Bunsen).
 - II. The effusion method (Bunsen).

The rel. dens. varies directly as the square of the time of effusion of equal volumes.

EXAMPLE.

In one of Bunsen's experiments, a certain volume of air escaped under pressure through a minute orifice in 102.7 seconds; under exactly similar conditions, the same volume of CO_2 required 127.0 seconds to escape through the same orifice. What is the rel. dens. of CO_2 (air = 1)?

$$\frac{\text{Rel. dens. of CO}_2}{\text{Rel. dens. of air}} = \frac{127.0^2}{102.7^2} = \frac{16129}{10547} = 1.5292 = \text{Rel.}$$

$$\text{dens. of CO}_2.$$

- 4. The rel. dens. of a vapour is found usually by :—
- I. A. The direct measurement of the volume of vapour produced by the evaporation in an enclosed space of a known weight of the substance—the principle of the methods of Gay Lussac and Hofmann.
- B. The indirect measurement of the same quantity, the volume of an inert gas displaced being actually measured—the principle of Victor Meyer's method.

Or II. The weighing of a known volume of the vapour taken at an ascertained temperature and pressure—the methods of Dumas, and Deville and Troost.

If D = the required density of the vapour referred to H as unity, we have in case I. A.

$$D = \frac{w \cdot 760 \cdot (1 + 0.00367 T)}{v \cdot 0.00008958 \cdot (H - h) \cdot (1 + kT)}, \text{ where}$$

w = weight of liquid taken, and hence weight of vapour formed.

v =observed volume of vapour in c.c.

H =reduced height of bar. at time of experiment.

h =reduced height of mercury in tube above that in cistern.

T = temperature of vapour.

 $k = \text{coefficient of cubical expansion of glass for } 1^{\circ} \text{ C.}$

And in case I. B.

$$D = \frac{v \cdot 760 \cdot (1 + 0.00367 T)}{v \cdot 0.00008958 \cdot (H - p)}, \text{ where}$$

w = weight of liquid taken.

v = the observed volume of displaced gas in c.c.

H = reduced height of bar. at time of experiment.

 $p = \text{vapour tension of water at temperature } t^{-1} \text{ of measuring vessel.}$

T = temperature of water in collecting trough.

The methods under 4. II. for determining vapour density and under 3. I. for finding the rel. dens. of a gas require the following data:—

P = the weight of bulb in air empty.

P' = the weight of bulb filled with gas or vapour in air.

V = the capacity of bulb in c.c.

v = the volume of the residual air in c.c.

H = height of bar. and t = the temp. at which P' is found.

H' = height of bar, and T = the reduced temp. of the bath at the time of sealing or closing the bulb.

k = the coefficient of cubical expansion of the material of the bulb.

o'00367 = the coefficient of expansion at constant pressure of a gas.

Then
$$P' - P + \frac{0.0012932 \cdot (V - v) H}{(1 + 0.00367 \cdot t) \cdot 760} =$$
the weight of

vapour taken for (V - v) is the volume occupied by the air displaced by the vapour or gas and the weight of the

displaced air =
$$\frac{0.0012932. (V - v) H}{(1 + 0.00367. t). 760}$$
;

(As v is generally small, any small differences between the pressure and temperature under which it is measured and H and t may be neglected.)

and the volume occupied by this weight at H' and T is

$$\left[V(1+kT)-v.\frac{1+0.00367.T}{1+0.00367.t}\right]$$
 which equals under

standard conditions

$$\left[V(1+kT)-v.\frac{1+0.00367.T}{1+0.00367.t}\right]\frac{H'}{.760.(1+0.00367.T')}$$

hence the rel. dens. referred to air as unity is given by the formula

$$P' - P + \frac{0.0012932. (V - v). H}{(1 + 0.00367 t). 760}$$

$$V(1 + k T) - v. \frac{1 + 0.00367. T}{1 + 0.00367. t} \frac{H'}{760. (1 + 0.00367. T).}$$

$$0.0012932$$

if hydrogen be taken as unity 0'0012932 is replaced by 0'00008958 the weight of 1 c.c. of hydrogen in grams.

The expression $\frac{I}{I + 0.00367. T}$ can be at once obtained

from Table V. in the Appendix.

An approximate value for the rel. dens. of a gas or vapour is given by

$$D = \frac{P' - P + Vn^t}{(V - v)n^T} \cdot 14.436.$$

in which

D = the required rel. dens. referred to hydrogen as unity.

 n^t = the weight of 1 c.c. of air at t.

 n^T = the weight of 1 c.c. of air at T.

EXAMPLES.

I. In a determination of the vapour density of heptane by Hofmann's method (I. A.), the following data were obtained:—

Weight of liquid taken . . o'o769 gram.

Volume of vapour . . . 69'77 c.c.

Temperature 99'60°C.

Barometer 749'o mm.

Height of mercury column . 493'4 mm.

Find the vapour density of heptane.

From table V.
$$\frac{1}{1 + 0.00367.996} = \frac{0.73232}{1}$$
and $(H - h) = 749.0 - 493.4 = 255.6$

Therefore, neglecting the expansion of the glass,

$$D = \frac{0.0769 \times 760.1}{69.77 \times 255.6 \times 0.73232 \times 0.00008958} = 49.96.$$

2. Find the vapour density of anthracene from the given data, determined by Victor Meyer's method.

$$D = \frac{0.0530 \times 760 \times (1 + 0.00367 \times 17.2)}{7.8 \times 0.00008958 \times (720.8 - 14.6)} = 86.77.$$

3. Calculate the vapour density of the body furnishing the following data:—

Weight of empty globe, in air, 24'4722 grams.

Weight of globe sealed, with vapour,
in air at 9° C. and 762 mm.

Temp. 215° C., bar. 762 mm., at time of sealing.
Capacity of the globe,
Residual air,

12'5 c.c.

Our approximate formula is

$$D = \frac{P' - P + Vn^t}{(V - v)n^T} = 14.436$$

$$D = \frac{(25.0125 - 24.4425) + (169.5 \times 0.001255.\frac{10.0}{10.0000})}{(169.5 - 15.5).0.000025.\frac{10.0}{10.000}}.14.436$$

$$= \frac{0.5400 + 0.2128}{157.0.000422.\frac{762}{160}.14.436}$$

$$= \frac{0.7528.14.436.}{157.0.000722.782.} = 95.62.$$

From the more accurate formula

$$D = P' - P + \frac{0.0012932.(V - v).H}{(1 + 0.00367 T). 760.}$$

$$[V(1+kT) - v \frac{1 + 0.00367.T}{1 + 0.00367.t}] \frac{H'.0.00008958}{760.(1 + 0.00367 T.)}$$

Taking k for glass equal to 0'000023, we have

$$D = \frac{25.0122 - 24.4722 + \frac{0.0012932.(169.5 - 12.5).762.}{(1 + 0.00367 \times 215)760}}{\left[169.5(1 + 0.000023 \times 215) - 12.5 \frac{1 + 0.00367 \times 215}{1 + 0.00367 \times 215}\right]}$$

$$= \frac{762.0.00008958}{760.(1 + 0.00367 \times 215).}$$

$$= \frac{0.5400 + 0.1971}{\left[170.3 - 21.6\right] \frac{762}{760} \cdot \frac{0.00008958}{1.789}}.$$

$$= \frac{0.7371 \times 1.789 \times 760}{148.7 \times 0.00008958 \times 762} = 98.73.$$

QUESTIONS.

51. Calculate the relative density of a solid substance from the following numbers:—

Weight of substance in air . . . 2'4554 grams. , water . . . 2'0778 grams.

52. Determine the relative density of gold from the following data:—

Weight of gold in air . . . 4.6764 grams. Loss of weight in water . . . 0.2447 grams.

53. Find the relative densities of the following substances:—

 Granite
 Marble
 Hæmatite

 Weight in air. 409'82 grams. 53'2841 grams. 13 6287 grms.
 , water. 259'31 , 33'4020 , 10'9406 , .

54. Determine the relative density of wood from the following numbers:—

Weights of: wood in air, 4 grams,; a silver sinker, 10 grams,; wood and sinker under water, 8.5 grams. Relative density of silver = 10.5.

55. A platinum wire 10 cm. in length weighs o'12 gram. The relative density of platinum being 21'275, calculate the diameter of the wire.

- 56. A glass bulb of 120 c.c. capacity weighs 14'5 grams. The relative density of the glass being 2'48, calculate the thickness of the walls of the bulb.
- 57. Faraday calculated that the gold contained in 4 sovereigns could be drawn into a wire long enough to surround the earth. The weight of a sovereign is 7'988 grams, and 91'66 % of this is pure gold, possessing a relative density of 19'3. Assuming that the length of a quadrant of the earth is 10,000,857 metres, find the thickness of the wire.

58. A piece of bell-metal, weighing 7.550 grams in air,

weighs 6.6635 grams when weighed under water.

Determine the percentage amount of copper and of tin in the piece on the assumption that no alteration in bulk has occurred in alloying the two metals.

Relative density of copper = 8.93; of tin = 7.292.

59. A piece of cast iron, the relative density of which is known to be 7.2, is suspected to have internal cavities.

Its weight is found to be 203'04 grams, and when suspended in water at 4° C. it is found to weigh 171'84 grams. What is the total volume of these cavities?

60. Find the relative density of calcium from the following determination by Bunsen:—

Weight of empty bottle 13'640 grams. bottle filled with naphtha 20'275 , . .

" " partly " . . 16.650 "

", ", and calcium 19¹50 ", .

Relative density of naphtha . . . 0'758 ,, .

61. From the given data, calculate the relative densities of:—

Weights of	Substance in air.	Bottle + water.	Bottle + water and substance.
Quartz	3'445 grams.	75'103 grams.	77'248 grams.
Heavy-spar .	11'216 ,,	69'002 ,,	77'718 ,,
Calcite	34'151 ,,	80'201 ,,	101'824 ,,
Iron pyrites .	0'795 ,,	5'337 ,,	5'973 ,,

62. Calculate the relative density of sea water from the following data:—

Weight of bottle empty 3'5305 grams.

", filled with sea water, 7.7849 ", filled with water 7.6722 ",

63. From the given data, calculate the relative densities of the liquids given.

Weights of	Bottle empty.	Bottle filled with water.	Bottle filled with substance.
A. A mineral water B. Vanadyl trichloride . C. Chromyl dichloride . D. Alcohol	14'1256 gm.	111'1370 gm.	111'7050 gm.
	1'7413 ,,	6'8880 ,,	11'2190 ,,
	3'5312 ,,	7'6649 ,,	11'4692 ,,
	5'2013 ,,	20'2051 ,,	17'0876 ,,

64. A specific gravity flask holds 2,545 milligrams of alcohol, 42,740 of mercury, and 5,829 of sulphuric acid.

Calculate the relative density of the sulphuric acid and mercury, the density of the alcohol being o'8095.

- 65. A solid weighs in vacuo 100 grams; in water 85 grams; and in another liquid 88 grams. What is the relative density of this liquid?
- 66. A piece of a certain metal weighs 3.7395 grams in air; 2.3545 grams in water; and 2.0896 grams in another liquid. Calculate the relative density of the metal and of the liquid.
- 67. A column of distilled water 100 mm. high is found to balance columns of (a) glycerine 79'3 mm. high, (b) olive oil 109'3 mm. high, (c) turpentine 114'9 mm. high. What are the relative densities of these three liquids?
- 68. When a mercury barometer registers 760 mm., a glycerine barometer indicates 8203 mm., and a water barometer 10,162 mm.; the vapour tension of water at the temperature of the air, 15° C., is 12'7 mm. of mercury. What are the relative densities of the mercury and glycerine?
- 69. Regnault obtained, by his method of counterbalanced glass globes, the following data, from which it is required to calculate the relative density of nitrogen (air = 1).

mersed in melting meter, reduced to of closing the tap.	with air while imice. Height of barooc C., at the moment of balloon $H_0 = 761.19$ mm. of balloon $p = 1.487$ gram.
residual air, when in ice	cuated. Pressure of balloon is immersed $h_0 = 8.43$ mm. o balloon $P = 14.141$ gram. ced by nitrogen, same conditions.
I.	$H_0 = 758.55 \text{ mm.}$ p = 1.8725 gram.
II.	$h_0 = 2.18 \text{ mm.}$ $P = 14.227 \text{ gram.}$
70. With the sandrogen were:	me apparatus, the figures given for hy-
1.	$H_0 = 756.16 \text{ mm.}$ p = 13.301 gram.
II. With air = 1, fin	$h_0 = 3.40 \text{ mm.}$ $P = 14.1785 \text{ gram.}$ and the relative density of hydrogen.
71. Calculate the from the following	ne density of thiophosphoryl fluoride data:—
I. Capacity of gla 776 mm.	ass bulb at 15.8° C. and
771 mm. Weight of bu 771 mm. f	lb in air at 17° C. and illed with gas and re-
771 mm. Volume of resi	rogen at 10.7° C. and 60.3954 grams. dual nitrogen at 11.3°C.
	nm
776 mm.	ass bulb at 15.8° C. and b in air at 15.8° C. and c
776 mm.	b in air at 15.8° C. and 59.7282 grams.

72. An experimental determination of the density of hydrofluoric acid under diminished pressure gave :—

Weight of bulb and caps in air at 19'7° C. and 772 mm. 244 0120 grams. Weight of bulb and caps and vapour in air at 17.5° C. and 772 mm. . 244'0025 ,, Cocks turned off at 31.8° C. Bar 772'3 mm., manometer reading 106'2 mm. Weight of bulb and caps + water at 24'3° C. 528.18 grams. Residual air, reduced to o° C. and 3 58 C.C. Weight of I c.c. of air at o° C. and 760 mm. 0.0013038 Coefficient of cubical expansion of platinum for 1° C. o'000027 Sp. gr. of air, H = 1... 14'435

Hence find the rel. dens. of the vapour of hydrofluoric acid, under the conditions at closing the cocks, as compared with air, and with hydrogen.

73. From the tabulated data, calculate the corresponding relative densities of hydrofluoric acid at the given temperatures.

$T^{\circ}C$.		Percentage vol. of residual air.	Pressure of vapour.
26.4°	756 mm.	1.21	745 mm.
27.8	763 ,,	2.53	746 ,,
29.5	762 ,,	1.22	750 ,,
32.0	754'5 ,,	1.25	743 ,,
33.1.	770'5 ,,	2.64	750 ,,
33.8°	767 ,,	1'14	758 ,,
36.3	751 ,,	1.28	739 ,
38.7	764 ,,	1.69	751 "

74. A determination of the density of methyl bromide made by Bunsen according to his method yielded the following data. Calculate the relative density of the compound (H = 1).

Vol. of gas, at 0'7464 m. and 16.8° C							42'19 C.C.
Height of mercury above the	1	ev	el	of	t	he	
metal in trough							0'0243 m.
Weight of the flask and gas.							7'9465 grams.
Weight of the flask and air							7.8397 ,,
Temperature in balance case.							6.2°C.
Height of barometer							0'7421 m.

75. Bunsen determined the times of effusion through a minute aperture of the same volume of gases as follows:—

Air.	Hydrogen.	Air.	Oxygen.		Carbon dioxide,
	29.7				127'0.
(2) 105.6	29.3	103	109	102.7	127.5.

Find the rel. dens. of each gas compared with air.

76. The data below were obtained in three determinations of the vapour density of P_4O_6 according to Hofmann's method; calculate the V.D. in each case, (A) Air = 1. (B) H = 1.

	I.	H.	111.
Weight of substance taken	o'1887 grams.	o'1887 grams.	o'1887 grams
Temperature of tube and vapour	132° C.	159° C.	184° C.
Temperature of air	20° C. 770 mm.	20° C. 769 mm.	20° C. 769 mm.
Height of mercury column	625 mm.	616 mm.	605 mm.
Volume of vapour at T° C. Tension of mercury at	137'5 C.C.	139.6 c.c.	141'45 C.C.
T° C	r'5 mm.	5'6 mm.	12 mm.

77. A series of experiments by Ramsay and Young, under varying conditions, yielded the following data, from which the vapour-density of acetic acid is to be found in each case (Hofmann's method). (H = 1).

Weight taken.	Reduced Temp.	Corrected pressure.	Volume.
A. o'o1126 gram. B. o'03565 ,, C. o'01126 ,, D. o'03565 ,, E. o'03565 ,,	50° C.	13'4 mm,	170°05 c.c.
	78'4 "	63'2 ,,	137°8 ,,
	118'2 "	84'05 ,,	45°15 ,,
	162'5 "	373'1 ,,	37°0 ,,
	184'1 "	791'6 ,,	18 ,,

78. In the determination of a vapour density by Gay-Lussac's method the following data were obtained:—

Weight of substance taken, 0'1163 grams. Temp. of bath, 215° C. Observed volume of vapour, 50'77 c.c. Barometer, 755'5 mm. Difference of height of mercury inside and outside of tube, 80'0 mm. Height of spermaceti column reduced to mm. of mercury, 16'9 mm. Required the sp. gr. of the vapour (H = 1); also the weight of one litre at 0° C. and 760 mm. barometric pressure, assuming the vapour to behave like a perfect gas.

79. Using a porcelain vessel, heated in a Perrot's furnace to 1027° C., Victor Meyer obtained the data given below, from which the vapour density is to be calculated.

	1.	II.
Weight of substance taken (Iodine) Barometer Temperature of the room Volume of air displaced	o'0874 grams. 722'8 mm. 21'5° C. 13'7 c.c.	o'0847 grams. 722'8 mm. 21'5° C. 13'3 c.c.

80. From the tabulated data, obtained by Victor Meyer's method, find the sp. gr. of the vapour of each substance, referred (1) to air, (2) to hydrogen, as unity.

Substance.	Weight taken.	Temp. of room.	Bar.	Volume of air displaced.
A. CHCl ₃ B. CS ₂ C. OH ₂ D. Iodine	o'1008 gram.	16°5° C.	707'5 mm.	22 c.c.
	o'0495 ,,	16°5° C.	717'8 mm.	16'4 c.c.
	o'0102 ,,	16°1° C.	723'3 mm.	14'6 c.c.
	o'1105 ,,	16°0° C.	714'8 mm.	11'1 c.c.

- 81. The specific gravity of coal-gas is about 0.5 referred to air as unity, and air is 14.435 times heavier than hydrogen. Calculate from these data the weight of coalgas, at 10° C. and 530 mm. pressure, required to fill a balloon having a capacity of 800 cu. m.
- 82. Calculate the vapour density (H = 1) of a hydride from the following numbers:—

Balloon with air, 40'7955 grams. Temperature, 11° C. Balloon with vapour, 41'0960 grams. Temperature of sealing, 173° C. Capacity of balloon, 189 c.c.

83. Calculate the vapour density of camphor vapour (H = 1) from the following numbers, obtained by Dumas according to his method:—

Temp. of air, 13'5° C. Bar. 742 mm. Temp. of bath at the moment of sealing the globe, 244°C. Increase of the weight of globe, 0'708 grams. Volume of mercury required to fill the globe, 295 c.c. Residual air *nil*.

84. In a series of determinations by Deville and Troost of the vapour density of sulphur, the following figures were obtained:—

	I.	11.	111.
Temperature of the air Height of barometer Difference of weighings Volume of porcelain bulb Residual air Temp. of bath (Zn vapour)	10° C.	15° C.	10° C.
	769'5 mm.	760 mm.	769'4 mm.
	-0'190 gram.	-0'176 gram.	-0'203 gram.
	281 c.c.	280 c.c.	303'5 c.c.
	3 c.c.	6 c.c.	3'5 c.c.
	1040° C.	1040° C.	1040° C.

Find the vapour density in each case, taking air = 1. Coefficient of cubical expansion of porcelain = 0.0000108. (N.B. The second weighing gives a figure here less than the first with the empty bulb in air.)

85. Using a modification of Dumas' method, Friedel and Crafts obtained the following data, from which the vapour density of aluminic chloride is to be calculated:—Temp. of vapour, 398'2° C. Pressure of vapour, 0'97

atmosphere. Barometer height, 754'8 mm. Volume of globe, 250 c.c. Residual air, 245 c.c. at 10'3 mm. and 117'2° C. Excess of weight of globe, 0'8765 gram. Weight of air displaced 0'3020 gram.

AVOGADRO'S HYPOTHESIS; DENSITY AND MOLECULAR WEIGHT; VALENCY, EQUIVALENTS AND ATOMIC WEIGHTS.

According to Avogadro's Hypothesis equal volumes of gases, at the same temperature and pressure, contain

the same number of molecules.

Hence it follows that the molecular weights of bodies in the state of gas or vapour are in the same ratio as their specific gravities or vapour densities: e.g. if H = 1, the sp. gr. of gaseous HCl. = 18'18.

Assuming the molecular weight of H to be 2, the

molecular weight of HCl is 36.36.

The molecular weight of a gaseous element or compound may be thus defined: The molecular weight of a gaseous element or compound is a number which expresses how many times greater than two unit masses of hydrogen is the mass of the specified element or compound which occupies (under the same conditions of temperature and pressure) the same volume as is occupied by these two unit masses of hydrogen. The maximum atomic weight of an element is a number which expresses how many times greater is the smallest mass of that element which combines with other elements to form a compound gaseous molecule, than the smallest mass of hydrogen which combines with other elements to produce a compound gaseous molecule, such smallest mass of hydrogen being taken as unity. (Watts's Dict. I. p. 341.)

That property of an atom which determines the number of other atoms with which it can combine to form a compound molecule is termed its valency or atomic value. Valency is usually expressed as the number of hydrogen atoms, or atoms chemically equivalent to hydrogen, which one atom of the specified element can combine with or replace when in the same state as in the compound

considered.

The equivalent of an element is the number expressing that weight of the element which will combine with or

replace the unit weight of hydrogen.

Let E = the equivalent of any element, A = its atomic weight, and V = its valency in the compound used for determining the equivalent; the relations between these quantities are expressed by the equation $A = E \cdot V$.

The numerical value of the molecular weight of any substance is obtained by the summation of the atomic weights of the component elements each multiplied by the number denoting how many of such atoms are contained in the molecule, e.g. the molecular weight of alcohol, $C_{2}H_{6}O_{1}$, is found thus $(12 \times 2) + (1 \times 6) + 16 = 24 + 6$ + 16 = 46.

QUESTIONS.

- 86. If the density of sulphuretted hydrogen = 1.791, ammonia = 0'597, nitrous oxide = 1'520, marsh gas = 0'555, chloroform = 4'20, and stannic chloride = 9'20, as compared with air, what are the molecular weights of these bodies taking the molecular weight of hydrogen as 2?
- 87. Determine the weight of one litre of the following simple gases and vapours at oo and 760 mm., on the supposition that they can all exist as perfect gases at the standard temperature and pressure:—

Oxygen. Chlorine. Iodine.

Sulphur. Phosphorus. Nitrogen.

Sodium. Arsenic. Mercury.

88. Calculate the volume, at the standard temperature and pressure, of a kilogram of each of the following gases and vapours :-

Carbon monoxide. Hydrogen sulphide. Marsh gas.

Oxysulphide of carbon. Bromine.

Hydrochloric acid.

Ethylene.

Water.

89. What weight of each of the specified substances is represented by the appended formulæ, taking one gram as the unit of weight?

> Lead chloride, PbCl2; Silicon fluoride, SiF4; Ferric chloride, FeCl₃; Methyl bromide, CH₃Br.

- 90. Find the density (air = 1) of:—Carbon monoxide, CO; Carbon bisulphide, CS₂; Sulphur trioxide, SO₃; Boron trifluoride, BF₃; Phosphorus pentafluoride, PF₅.
- 91. If the electro-chemical equivalent of: Oxygen = 7.98, Silver = 107.66, Chlorine = 35.37, Antimony = 39.86, and Copper = 31.59, and the hydrogen-replacing power of these elements in the compounds used in finding the equivalents be for one atom of the element taken, Oxygen 2, Silver 1, Chlorine 1, Antimony 3, and Copper 2 atoms; what are the atomic weights of these elements?
- 92. From the data given deduce the probable atomic weight of oxygen:

Gaseous compound.	Rel. dens. (air = 1).	Rel. dens. × 28.87 approximate mol. wt.	Mole- cular weight.	Analysis stated in parts by wt. per mol.
Carbon dioxide .	1 '53	44'2	43.89	31'92 O + 11'97 C.
Sulphur dioxide .	2 '25	64'9	63.90	31'92 O + 31'98 S.
Sulphur trioxide .	2 '9	83'7	79.86	47'88 O + 31'98 S.
Carbon monoxide	0 '97	27'97	28.93	15'96 O + 11'97 C.
Water	0 '63	18'2	17.96	15'96 O + 2 H.
Nitric oxide	1 '04	30'0	29.97	15'96 O + 14'01 N

93. Find the most probable atomic weight of carbon from the appended experimental results:

Gaseous compound.	Rel. dens. (air = 1).	Analysis in parts by wt.
Marsh gas	o'555 4'883 4'20 o'968 2'645	11'97 C. + 4'0 H. 11'97 C. + 126'53 I + 3'0 H. 11'97 C. + 106'11 Cl + 1'0 H. 11'97 C. + 15'96 O. 11'97 C. + 63'96 S.

94. Find the molecular weights of the following bodies:

Cadmium at 940°, Rel. dens. = 3'94, (air = 1). Phosphorus at 500°, Rel. dens. = 4'35, Mercury at 446°, Rel. dens. = 6'98, 95. Select the most probable atomic weight for phosphorus as indicated by the given experimental results:—

Gaseous compound.	Rel. dens. (air = 1).	Analysis in parts by wt.
Phosphorus hydride	1°15 4°88 4°60	30'96 P. + 3'0 H. 30'96 P. + 106'11 Cl. {30'96 P. + 15'96 O. + 71'82 C. + 15'0 H.

How many atoms are there in the phosphorus molecule?

DEDUCTION OF THE EMPIRICAL FOR-MULA OF A BODY FROM ITS PERCEN-TAGE COMPOSITION; FORMULÆ OF MINERALS.

In order to calculate the empirical formula of a compound, divide the percentage amount of each constituent by its corresponding atomic weight: divide each of the quotients so obtained by the lowest number, and reduce them to their simplest ratios.

EXAMPLES.

 A body on analysis yielded the following percentage composition:—

Calculate its empirical formula.

The atomic weight of carbon = 12; that of oxygen = 16.

Then

$$C = \frac{27.273}{12} = 2.2727$$

$$O = \frac{72.727}{16} = 4.2424$$

The simplest relation between the carbon and oxygen is at once seen to be as I to 2, since

Hence the formula of the compound is CO2.

2. A compound of hydrogen and nitrogen was found to possess the following percentage composition. Calculate its formula.

The atomic weight of N = 14, and of H = 1.

$$N = \frac{82.353}{14} = 5.882$$

$$H = \frac{17.647}{1} = 17.647$$

The simplest ratio between the nitrogen and hydrogen is as 1 to 3, since

Hence the formula of the body is NH2.

3. A compound of iron and oxygen possesses the following percentage composition. Calculate its formula.

At. weight of Fe = 56°o. At. weight of O = 16.

Then

$$\frac{70.01}{26} = 1.5114$$

$$\frac{29.99}{16} = 1.8744$$

The ratio between 1'2514: 1'8744:: 1:1'5

The simplest ratio, in whole numbers, is therefore 2:3. Hence the formula of the body is Fe_2O_3 .

FORMULÆ OF MINERALS.

There exist many groups of minerals of which the individual members are composed of equal numbers of atoms similarly combined, and which possess the same or nearly the same crystalline form; such groups are termed isomorphous groups, and the minerals forming each group are said to be isomorphous with each other.

Isomorphous minerals may replace each other without affecting the exterior form of the mineral partially replaced. As the percentage amount of the elements in such minerals is different in each case, mixed minerals do not admit of being directly represented by a simple formula derived as above from the percentage composition.

It is the practice to represent minerals of this type by a general formula obtained by considering the particular isomorphous substance present in greatest quantity as the typical substance and reducing the quantities of the replacing bodies to equivalent quantities of the typical body, when the formula may be at once obtained by the ordinary means.

When possible, mineral analyses are ordinarily reported as percentages of oxides, and in the calculation these oxides are considered as the isomorphous components to be reduced to terms of that present in greatest amount.

As an example we may consider the case of ankerite: an analysis of which by Schrötter yielded the following results:

CaO.		26.90
MgO.		7.84
FeO.		19.91
MnO.		1.85
CO ₂ .	٠	43.02
		99.22

CaO is the oxide present in greatest quantity: we therefore reduce the other oxides to their equivalents of CaO and adding all together we obtain the typical composition of the mineral considered as if it were a Ca compound; thus:—

$$\frac{7.84 \times 56}{40}$$
 = 10.98 = CaO equivalent to MgO present.

$$\frac{19.91 \times 56}{72}$$
 = 15.48 = CaO equivalent to FeO present.

$$\frac{1.82 \times 56}{70}$$
 = 1.46 = CaO equivalent to MnO present.

Hence total typical oxide present (M" O)

$$= 26.90 + 10.98 + 15.48 + 1.46 = 24.82$$

combined with CO₂ 43'05

By the ordinary method

M" O. .
$$\frac{54.82}{56} = 0.98$$
 nearly, and $\frac{0.98}{0.98} = 1$

$$CO_2$$
 . . . $\frac{43.05}{44} = 0.98$ nearly $\frac{0.98}{0.98} = 1$

Hence typical composition is M"O.CO₂ or M"CO₃, where M" represents Ca, Mg, Fe, and Mn.

The formula of ankerite may therefore be written (Ca, Mg, Fe, Mn) CO₃.

Qu	ESTIONS.—D	educe th	ne form	nulæ of the	following
96.	Hydrogen . Oxygen .	. 5.88	† 103.	Calcium . Phosphorus Oxygen .	20'00
	Nitrogen . Oxygen	100'00	† 104.	Sodium . Aluminium Fluorine .	32'79
: 98.	Iron Oxygen	. 29.99			100.00
99.	Carbon Oxygen Sulphur .	. 26.67	105.	Potassium Nitrogen . Oxygen .	16.45
100.	Potassium . Hydrogen . Sulphur Oxygen	. 0'73	106.	Aluminium . Sulphur Oxygen	28
! 101.	Magnesium Sulphur . Oxygen Water	. 13.01	107.	Copper . Carbon . Hydrogen . Oxygen .	5'43
102.	Zinc Sulphur . Oxygen	. 11.12	† 108.	Hydrogen Oxygen Nitrogen Sulphur Nickel	33.88 14.84 16.95

110.	Carbon. Hydrogen Carbon. Hydrogen	100'00	112.	Carbon Hydrogen Nitrogen	. 8.64
	Carbon . Hydrogen Sulphur Oxygen .	4.76	113.	Carbon Hydrogen Nitrogen Oxygen Platinum Chlorine	 . 4.26 . 5.20 . 5.92 . 18.26

! 114. Show that a mineral having the following percentage composition is represented by the formula MOCO₂ when M signifies a metal of the magnesium family:

on analysis. Calculate its formula:

 SiO_2 MgO H_2O 46.96 31.26 21.22=99.44.

116. A specimen of cobalt-bloom was found to have the following composition. Determine its formula:

 $As_2 O_5$ Co O Fe O H_2O 38.43 36.52 1.01 24.10=100.06

117. Calculate the formula of soda-feldspar from the following analysis:—

SiO₂ Al₂O₃ Fe₂O₃ CaO MgO K₂O Na₂O 68.45 18.71 0.27 0.50 0.18 0.65 11.24=100.00.

118. Calculate the formula of labradorite from the following analysis:—

$$SiO_2$$
 Al_2O_3 Fe_2O_3 CaO MgO Na_2O 52.52 30.03 1.72 12.58 0.19 $4.51 = 101.55$.

TO CALCULATE THE PERCENTAGE COM-POSITION OF A COMPOUND FROM ITS FORMULA.

FIRST calculate the molecular weight of the compound by adding together the sums of its atomic weights. Thus the formula for water is H₂O; its molecular weight is therefore 17.96.

Atomic weight of H. =
$$1 \times 2 = 2$$

Atomic weight of O. = 15.96
 17.96

In order to calculate from the molecular weight of the compound the percentage amount of its constituents—that is, to determine how much of each constituent is contained in 100 parts of the compound—multiply the amounts of the several constituents in the compound by 100, and divide each of the products by the molecular weight of the compound. Thus, to calculate the amounts of hydrogen and oxygen contained in 100 parts of water:—

$$H = \frac{2 \times 100}{17.96} = 11.14$$

$$O = \frac{16 \times 100}{17.96} = 88.86$$

$$100.00$$

Table I. in the Appendix gives the atomic weights of the elements according to the most trustworthy determinations.

QUESTIONS.

Calculate the percentage composition of the following compounds:—

1119. Water	H_2 O.
1120. Potassium chlorate	K Cl O ₃ .
1121. Mercury monoxide	Hg O.
1122. Potassium nitrate	KNO3.
1123. Sodium nitrate	Na N O ₃ .
1124. Barium sulphate	Ba S O ₄ .
125. Calcium carbonate	Ca C O ₃ .
126. Silver chloride	Ag Cl.
127. Magnesium pyrophosphate.	$\operatorname{Mg}_{2}\operatorname{P}_{2}\operatorname{O}_{7}.$
128. Potassium platinum chloride	2 (K Cl) + Pt Cl ₄ .
129. Sodium thiosulphate	$Na_2 S_2 O_3 + 5 H_2 O.$
130. Magnetic oxide of iron	$Fe_3 O_4$.
131. Hausmannite	$Mn_3 O_4$.
132. Copper pyrites	$Cu_2 S + Fe_2 S_3$.
133. Stromeyerite	Ag Cu S.
134. Stilbite	$Ca O Al_2 O_3 . 6 Si O_2$
	$+ 5 H_2 O.$
135. Idocrase	9 (2 Ca O . Si O ₂) .
	2 (2 Al ₂ O ₃ . 3 Si O ₂).
136. Spodumene	
	4 (Al ₂ O ₃ . 3 Si O ₂).
137. Sphene	Ca Si O ₃ . Ca Ti O ₃ .
138. Pyromorphite	3 Pb ₃ P ₂ O ₈ . Pb Cl ₂ .
139. Ethyl alcohol	$C_2 \stackrel{\circ}{H_6} \stackrel{\circ}{O}$.
140. Cane sugar	C ₁₂ H ₂₂ O ₁₁ .
141. Xylene	C ₈ H ₁₀ .
142. Cymene	C. H.
	1 7 7 1
	. C. H.
143. Silicon ethyl S	C. H.
	/ C. H.
144. Potassium thiacetate	CHKOS
145 Potassium ferrocyanida	K. Fe C. N
145. Potassium ferrocyanide	CHNO HO
147. Rosaniline	C H N O
148. Strychnine	C21 H22 N2 O2.

CHEMICAL EQUATIONS; TO CALCULATE THE AMOUNT OF MATERIAL REQUIRED TO PRODUCE A GIVEN WEIGHT OF ANY SUBSTANCE OR THE QUANTITY OF THE SUBSTANCE PRODUCED BY THE DECOMPOSITION OF A KNOWN WEIGHT OF THE MATERIAL.

Chemical equations:—The results of any chemical actions are represented by equations in which the signs + and = are used in the same sense as in algebra, so far as regards the weights of matter represented by the symbols.

The meaning of such an equation will be best shown by

examples.—

1.
$$H_2SO_4 + BaCl_2 = BaSO_4 + 2 HCl.$$

This equation indicates not only that sulphuric acid and barium chloride react to produce barium sulphate and hydrochloric acid, but, further, that the molecular weight of sulphuric acid reacts with the molecular weight of barium chloride to produce the molecular weight of barium sulphate and twice the molecular weight of hydrochloric acid; hence 98 parts by weight of sulphuric acid react with 208 parts by weight of barium chloride to form 233 parts by weight of barium sulphate and 73 parts by weight of hydrochloric acid gas.

The number of *atoms* of each element must be the same on either side of the equation, consequently the total number of *atoms* must be the same on either side. The numbers of *molecules* before and after a reaction are not

necessarily the same.

2.
$$H_2 + Cl_2 = 2 HCl$$
.

Here, as in (1), it is indicated that 2 parts by weight of hydrogen combine with 71 parts by weight of chlorine to produce 73 parts by weight of hydrochloric acid. But the equation signifies more: as we know the molecular weights

of all the reacting bodies and products it shows that a molecule of hydrogen combines with a molecule of chlorine to form two molecules of hydrochloric acid gas. If we state the molecular weights in grams we know from the equation that 22.4 litres of hydrogen combine with 22.4 litres of chlorine to yield 44.8 litres of hydrochloric acid, for two grams of hydrogen measure 22.4 litres approximately at the standard conditions and, by Avogadro's hypothesis, equal numbers of molecules under the same conditions occupy equal volumes.

EXAMPLES.

I. How much oxygen can be obtained by the decomposition of 100 grams of mercury monoxide? The symbol for mercury monoxide is HgO; hence its molecular weight is 216.

$$Hg = 200$$
 $O = 16$
 216

When mercury monoxide is heated, it is completely resolved into oxygen and metallic mercury,

$$2 \text{Hg O} = 2 \text{Hg} + O_2$$

432 parts of mercury monoxide giving 400 of mercury and 32 of oxygen. If, therefore, 32 grams of oxygen are evolved by the decomposition of 432 grams of mercury monoxide, how many grams of oxygen will be evolved by the decomposition of 100 grams of mercury monoxide?

432 : 100 :: 32 :
$$x$$
, $x = 7.407$.

7'407 grams of oxygen will therefore be evolved on heating 100 grams of mercury monoxide.

2. I want 100 lbs. of oxygen: how many lbs. of potassium chlorate must I take?

The formula of potassium chlorate is KClO₃. Its

$$K = 39.1$$
 $C1 = 35.5$
 $O_3 = (16 \times 3) 48.0$
 122.6

This substance on being heated eventually decomposes into potassium chloride and oxygen.

$$2K Cl O_3 = 2K Cl + 3O_2$$
.

That is, 96 lbs. of oxygen are evolved on heating 245'2 lbs. of potassium chlorate. Then how many lbs. of potassium chlorate are required to yield 100 lbs. of oxygen?

96 : 100 : 245'2 :
$$x$$
. $x = 255'4 \text{ lbs.}$

Hence it would require 255'4 lbs. of potassium chlorate to yield 100 lbs. of oxygen.

3. How many cubic centimetres of oxygen and hydrogen, measured at 10°C. and 770 mm. pressure, can be obtained by the decomposition of 1 gram of water?

The symbol for water is H₂O, its molecular weight is 18. The weight of hydrogen yielded by a gram of water is

$$x = 0.1111 \text{ gram}.$$

The weight of oxygen is

$$x = 0.8889$$
1.0000 gram.

1000 cubic centimetres of hydrogen at 0° C. and 760 mm. weigh 0'08936 grams. Then what volume would 0'1111 gram of hydrogen occupy?

0.08936 : 0.1111 :: 1000 :
$$x$$
. $x = 1243.28$ c.c. of hydrogen.

This at 10° and 770 mm. would measure

$$x = 1272.09 \text{ c.c.}$$
 273 + 10 $x = 1272.09 \text{ c.c.}$

1000 cubic centimetres of oxygen at o° C. and 760 mm, weigh (16 × 0.08936 gram) = 1.42976 grams. Then what volume would 0.8889 grams occupy?

1.42976 : 0.8889 :: 1000 :
$$x$$
. $x = 621.713$ c.c. of oxygen.

This at 10° C. and 770 mm, would measure

$$\begin{cases} 273 : 273 + 10 \\ 770 : 760 \end{cases}$$
 :: 621'713 : x

Therefore, a gram of water on being decomposed would yield at 10° C. and 770 mm. pressure, 1908'206 c.c. of mixed gases consisting of

QUESTIONS.

- 149. How much potassium chlorate is needed to furnish

 1 lb. of oxygen?
- 150. I require 2 kilograms of oxygen: how much (a) mercury monoxide, (b) potassium chlorate, (c) manganese dioxide, (d) sulphuric acid, shall I need?
- veight of potassium chlorate, I obtain 20'246 grams of potassium chloride. What weight of potassium chlorate did I take, and how much oxygen was evolved?
- 152. A gas bag has a capacity of 45 litres: how much manganese dioxide containing 70 per cent. of Mn O₂ is required to fill it with oxygen at 15° C. and 760 mm. barometric pressure?
- 153. 132'74 kilograms of hydrogen are needed to inflate a balloon. What weight of zinc and sulphuric acid will be required to produce this quantity of gas?

- 154. Iron, zinc, and sulphuric acid diluted so as to contain 20 per cent. of real acid (SO₄H₂), are supplied to you. Find the amount of these materials required to produce the above quantity of hydrogen, (1) by the action of sulphuric acid upon iron, (2) by the action of sulphuric acid upon zinc.
- 155. What weight of potassium chlorate is needed to furnish oxygen sufficient to burn the hydrogen evolved by the action of water upon 200 grams of sodium?
- 156. How many cubic centimetres of oxygen and hydrogen measured at 12° C. and under a pressure of 762 mm. of mercury can be obtained by the electrolysis of 10 grams of water?
- 157. 100 grams of steam is passed over 1000 grams of red-hot iron wire. Required the volume of hydrogen evolved measured at 10° C. and 742 mm. pressure, and the weight of iron oxide produced.
- 158. 77 per cent. of the weight of the air, freed from moisture and carbonic acid, consists of nitrogen. Calculate the weight of (a) metallic copper, and (b) of phosphorus required to abstract the oxygen from 1 lb. of air.
- 159. Required the weight of ammonia and of chlorine needed to produce a litre of nitrogen.
- 160. What quantities of nitre and Chili saltpetre respectively will be required to obtain the maximum quantity of nitric acid by reaction with 140 kilos. of 97 per cent. sulphuric acid?
- ! 161. How much nitre and sulphuric acid shall I need to prepare nitric acid enough to neutralize exactly 5 lbs. of chalk?
- 162. Calculate the volume of nitrogen monoxide at 15° C. and 740 mm. produced on heating 30 grams of ammonium nitrate.
- 163. What weight of copper is required to yield a litre of nitrogen dioxide at o° C. and 760 mm.?

- 164. At the ordinary temperature and pressure water absorbs 50 per cent. of its weight of ammonia. Calculate the amount of sal-ammoniac and quicklime needed to produce 10 kilograms of *Liquor Ammoniae*.
- 165. Coal contains about 2 per cent. of nitrogen. Assuming that 75 per cent. of this amount escapes as ammonia on distillation, calculate the amount of coal required to furnish the sal-ammoniac needed to produce the 10 kilograms of *Liquor Ammoniae*.
- 166. Calculate the weight of air required to burn a ton of coal possessing the following percentage composition:—

Carbon, 88:42; Hydrogen, 5:61; Oxygen, 5:97.

- 167. How much marble and hydrochloric acid containing 22 per cent. HCl are needed to yield 10 litres of carbon dioxide at 15° C. and 760 mm. barometric pressure?
- 168. According to Boussingault, a square metre of leaf will decompose in sunlight 1.108 litres of carbon dioxide in an hour. Calculate in tons the amount of carbon assimilated in an hour by a million trees, each possessing 100,000 leaves, and each leaf containing 25 square centimetres. Calculate the volume of the carbon so assimilated on the assumption that it possesses a sp. gr. of 1.6.
- ! 169 How many litres of (1) hydrogen and of (2) carbonic oxide gases at 10° C. and 750 mm. can be obtained by the decomposition of 100 grams of steam by passing it over red-hot charcoal?
- 170. I require 10 litres of carbon monoxide at o° C. and 760 mm. pressure. How many grams of (1) oxalic acid, (2) of formic acid, and (3) of potassium ferrocyanide shall I need?
- 171. Required the weight in grams of sodium acetate to yield 10 litres of methane at o and 760 mm.
- 172. Manchester coal-gas contains 35 per cent. by volume of marsh gas. Calculate the weight of this gas in a gasometer holding 100,000 cubic feet of coal-gas.
- 173. Calculate the weight in kilos. of air needed, and of ccarbon dioxide and water formed, by the complete com-

bustion of 10,000 litres of Manchester coal-gas possessing the following composition by volume:—

Hydrogen							45.28
Marsh gas	5 .	,					34'90
Carbon m	ono	cid	e		4	10	6.64
Ethylene							4.08
Butylene							2.38
Sulphuret	ted l	1yc	lro	gen			0'29
Nitrogen							2.46
Nitrogen Carbonic	acid						3.67
							100.00

174. 100 grams of pure silver cyanide are shaken up with 120 grams of hydrochloric acid containing 26'1 per cent. of HCl. Required the amount of silver chloride produced, and the percentage amount of hydrocyanic acid in solution.

175. Required the weight of manganese dioxide containing 60 per cent. MnO₂ to liberate all the iodine from 100 grams of potassium iodide.

176. A manufacturer of bleaching powder requires 10 tons of chlorine. How much salt, manganese containing 59 per cent. of the dioxide, and sulphuric acid containing 58 per cent. of real acid, will he need?

177. What weight of hydrochloric acid gas is produced in the manufacture of 100 tons of salt cake? What volume of gas escapes supposing the manufacturer to condense only 92 per cent. of the quantity evolved?

178. 5'75 grams of silver nitrate are added to 5'75 grams of a solution of hydrochloric acid containing 10'22 per cent. H Cl. How much silver is precipitated and how much remains in solution?

179. What weight of bleaching powder can be theoretically produced from 150 tons of manganese containing 68 per cent. of the dioxide?

180. Required the weight of potassium chlorate yielded by the chlorine evolved from 100 tons of manganese containing 60 per cent. of the dioxide.

- 181. What weight of potassium bromate can be obtained by neutralizing 520 grams of bromine with potash?
- 182. Iodic acid may be obtained by passing a stream of chlorine through water containing iodine in suspension. How much iodine and chlorine will be needed to prepare 100 grams of iodic acid?
- 183. Required the weight of copper and sulphuric acid needed to yield 3 litres of sulphurous acid at the standard temperature and pressure.
- ! 184. A vitriol-maker prepares 100 tons of vitriol of specific gravity 1'6, containing 70 per cent. of acid: how many tons of pyrites containing 42 per cent. of sulphur must for this purpose be burnt? Supposing that 3 per cent. of the theoretical yield of sulphur remained unburnt in the pyrites, what would be the difference in the production of sulphuric acid?
- 185. What volume of oxygen at 10° C. and 743 mm. of mercury can be obtained by the decomposition of a litre of sulphuric acid possessing a density of 1.854 at 0° C.?
- 186. What weight of iron sulphide will be needed to yield a litre of hydrogen sulphide at o C. and 760 mm., and how much air will be required to burn this gas completely to water and sulphur dioxide?
- † 187. I gram of phosphorus is to be converted into the pentachloride. How many litres of chlorine at o° C. and 760 mm. are required?
- 188. How much crystallized microcosmic salt must be ignited to furnish a gram of sodium metaphosphate?
- ! 189. An alkali-maker consumes 300 tons of salt per week: he divides three-quarters of his yield of soda-ash equally for the preparation of soda crystals, bicarbonate, and solid caustic containing 70 per cent. Na₂O. What weight of sulphur will he need to use weekly, and what is the theoretical weekly yield of the four products of manufacture?
- 190. Required the weight of limestone needed to convert 50 tons of soda crystals into bicarbonate.
- ! 191. 100 grams of pure iron is burnt in excess of (1) oxygen and (2) chlorine. What is the weight of oxide and chloride produced?

COMBINATION AND DECOMPOSITION OF GASEOUS BODIES.

EXAMPLES.

1. 4 litres of hydrogen are mixed with 5 litres of chlorine, and the mixture exploded. What volume of hydrochloric acid gas is produced? Which gas, and how much of it remains in excess?

From the equation

$$H_2 + Cl_2 = 2H Cl$$

2 volumes + 2 volumes = 4 volumes

it is evident that I volume of hydrogen combines with I volume of chlorine to form 2 volumes of hydrochloric acid gas. Therefore 4 litres of hydrogen would require 4 litres of chlorine, and would form 8 litres of hydrochloric acid gas, I litre of chlorine remaining uncombined.

2. 150 cubic centimetres of oxygen are mixed with 400 cubic centimetres of hydrogen and the mixture exploded. What volume of steam is produced? Which gas, and

how much of it, remains uncombined?

From the equation

$$_{2} H_{2} + O_{2} = _{2} H_{2} O$$

4 vols. + 2 vols. = 4 vols.

it is evident that 150 cubic centimetres of oxygen would require 300 cubic centimetres of hydrogen, and yield 300 cubic centimetres of steam, 100 cubic centimetres of hydrogen remaining in excess.

3. 100 cubic centimetres of ammonia gas are completely decomposed by a series of electric sparks, yielding 200 cubic centimetres of mixed hydrogen and nitrogen: an excess of oxygen is next added, when the volume of mixed gases is found to amount to 290 cubic centimetres. The mixture is now exploded, when 65 cubic centimetres of gas remain. Show from these data that the symbol for ammonia is NH₃.

The total volume of the mixed gases before the explosion was 290 cubic centimetres; after the explosion 65 cubic centimetres remain. Hence (290-65)=225 cubic centimetres of oxygen and hydrogen have disappeared to form water, and two-thirds of this contraction gives the amount of hydrogen in the mixture, and hence in the 200 cubic centimetres resulting from the decomposition of the 100 cubic centimetres of ammonia gas. $\frac{2}{3}$ of 225=150 cubic centimetres. Hence in the 200 cubic centimetres of the gas, 150 cubic centimetres were hydrogen, the remaining 50 being nitrogen. The gases are therefore mixed in the proportion of 1 volume of nitrogen to 3 volumes of hydrogen, and hence the symbol for ammonia is NH_3 .

QUESTIONS.

- ! 192. 20 litres of hydrogen are mixed with 10 litres of chlorine. Which gas remains in excess? How many litres of hydrochloric acid are produced?
- † 193. One cubic foot of hydriodic acid is decomposed by an excess of bromine. How many cubic feet of hydrobromic acid are formed?
- † 194. The iodine in 100 volumes of hydriodic acid is liberated in succession by chlorine and by oxygen. How many volumes of chlorine and how many volumes of oxygen are required?
- 195. 50 cubic centimetres of hydrogen are exploded with 75 cubic centimetres of oxygen. Required the total volume of the gases after the explosion, measured at 150° C. and 760 mm. pressure.
- 196. How many litres of oxygen are contained in 3 litres of nitrogen peroxide (N₂O₄)?
- 197. An unknown volume of hydrogen sulphide required 110'34 cubic centimetres of chlorine for complete decomposition. What was the volume of the hydrogen sulphide?

198. How many cubic centimetres of hydrogen and nitrogen are contained in a litre of ammonia gas?

† 199. V volumes of a hydrocarbon C_n H_{2n} are submitted to combustion. How many volumes of oxygen are required for its complete combustion, and how many volumes of carbonic anhydride are generated?

200. How many litres of air at o° and 760 mm. are required for the complete combustion of 10 litres of (1) marsh gas, (2) olefant gas, (3) acetylene?

201. 5 litres of chlorine are mixed with 5 litres of carbon monoxide. What volume of phosgene gas is produced, and how much hydrochloric acid and carbon dioxide would be produced by the decomposition of this gas with water?

202. What volume of arsenic is contained in a litre of oxide of cacodyl vapour measured at 500° C.?

GAS ANALYSIS CALCULATIONS.

The processes employed in gas analysis fall naturally under the heads:—

I. Proximate analysis, effected by the successive absorption of the various constituents of a gaseous mixture

by suitable reagents.

Ultimate analysis, performed by the combustion of the gaseous mixture and calculation of the quantity of each element present from the observed alteration in volume due to the combustion, and the quantities of CO_2 and residual gas resulting therefrom. The combustion method in most cases allows the proximate composition of the mixture to be obtained indirectly; e.g. a mixture of x c.c. C_1 , y c.c. CC_2 , and z c.c. C_2 , CC_2 CC_2 , CC_2 CC_2 , CC_2 CC_2 , CC_2 CC_2 C

From the equations

- (1) $2 H_2$ (2 vols. gas) + O_2 (1 vol. gas) = $2 H_2O$ (liquid).
- (2) CH_4 (1 vol. gas) + 2 O_2 (2 vols. gas) = CO_2 (1 vol. gas) + 2 H_2 O (liquid).
- (3) ${}^{2}C_{2}H_{2}$ (2 vols. gas) + ${}^{5}O_{2}$ (5 vols. gas) = ${}^{4}CO_{2}$ (4 vols. gas) + ${}^{2}H_{2}O$ (liquid).

we have

$$A = x + y + z.$$

$$B = \frac{3}{2}x + 2y + \frac{3}{2}z.$$

$$C = y + 2z.$$

Hence

$$y = 2B - 3A$$
. $z = \frac{3A - 2B + C}{2}$. $x = \frac{5A - 2B - C}{2}$.

x, y, and z are thus all expressed in terms of the measured quantities A, B, and C and can therefore be readily found.

It is required to measure the comparative quantities of gas present before and after an experiment in both I. and II. Three quantities require to be taken into account in such measurements, namely: (a) the volume of the gas, V; (b) its temperature, t (or absolute temperature 273 + t = T); (c) its pressure, P. With reference to the measurement of V, T, and P four cases occur among common methods of gas analysis:—

- (A). T and P are kept constant, V alone requires to be measured. Many technical processes, e.g. Orsat's method, follow this plan.
- (B). V and T are maintained throughout the same, P is the measured quantity. Regnault's and derived processes use this method.
- (C). The ratio $\frac{T}{P}$, termed the disgregation of the gas, is always brought to the same value, V is the recorded quantity. Doyère's method furnishes an example of this type.

(D). Analysis by the eudiometer and absorption tube needs the observation of all these variables, P, V, and T.

In (A) and (C) the observed volumes are in the direct ratio of the volumes reduced to standard conditions and hence may be directly compared; in (B) the measured pressures vary directly as the corrected volumes and can therefore be substituted for the latter in all calculations of the relative composition of the gas sample; in (D) all volumes must be reduced to some standard conditions before they can be compared.

EXAMPLES.

1. A heating-gas, made by working coke-gas producers with air and steam, yielded on analysis the following data:—

- (b) Vol. after absorption of CO2 by potash . . 87.5 c.c.
- (d) Vol. taken from (c) for estimation of H . . 59'3 c.c.
- (e) Vol. after addition of air 98.8 c.c.
- (f) Vol. after combustion with palladium asbestos in capillary tube 80.5 c.c.

Assuming the pressure and temperature to have remained constant during the analysis, calculate the percentage composition of the gas.

 CO_2 absorbed by potash = 97.7 - 87.5 = 10.2 c.c.

hence
$$^{\circ}/_{\circ}$$
 of $CO_2 = \frac{10.2 \times 100}{97.7} = 10.45$.

CO absorbed by cuprous chloride = 87.5 - 68.6 = 18.9 c.c.

hence
$$^{\circ}/_{\circ}$$
 of CO = $\frac{18.9 \times 100}{97.7} = 19.34$.

Contraction on combustion = 98.8 - 80.5 = 18.3 c.c.

From equation 2 $H_2 + O_2 = 2 H_2O$, it is seen that $\frac{2}{3}$ of observed contraction represents vol. of H present;

hence vol. of H in 59.3 c.c.
$$(d) = \frac{18.3 \times 2}{3} = 12.2$$
 c.c.

and .:
$$^{\circ}/_{\circ}$$
 of H in gas = $\frac{12.2 \times 68.6 \times 100}{59.3 \times 97.7} = 14.44$.

By difference, the °/o of N is

$$100 - 10.45 - 19.34 - 14.44 = 55.77.$$

The percentage composition is then :-

- 2. A determination of the composition of air by Frankland and Ward's modification of Regnault's process supplied these figures (V and T are constant in this method):
- (a) Air alone :—

(b) Air + hydrogen :-

(c) After explosion :-

Hence pressures are :—(a) 290'0 mm. (b) 562'0 mm. (c) 380'3 mm.; and the corrected volumes are in the same ratio as the observed pressures, therefore the percentage of oxygen present in the sample of air is

$$\frac{3}{562.0 - 380.3} \cdot 100 = \frac{200}{60.26 \times 100} = 20.88.$$

3. Find the composition of a sample of coal-gas from the data given (Bunsen.)

	Volume.	Pressure.	Temperature °C.
A. Gas taken	134.3 131.1	oʻ7285 m. oʻ7317 m. oʻ7293 m.	14.5 17.8 17.5

A portion of the residue was treated in an absorptiontube with H₂SO₄ containing excess of SO₃, and then washed with KOH.

	Volume.	Pressure.	Temperature °C.
B. Portion taken	97'3	oʻ6923 m.	18.2
lene, propylene, and benzene-vapour	93'2	oʻ6835 m.	18.0

A part of the residue from B was then exploded in the eudiometer.

	Volume.	Pressure.	Temperature °C.
C. Part taken	150°9	o'1774 m.	18'4
	281°5	o'3041 m.	18'9
After further addition of air	472'3	o'4942 m.	19°0
	425'5	o'4485 m.	17°8
After absorption of CO ₂ . On addition of H After explosion	407.7	o'4375 m.	18'0
	561.7	o'5888 m.	19'3
	367.5	o'3965 m.	19'6

The remainder of the gas from A was then similarly analysed.

Pressure.	Temperature °C.
oʻ1623 m. oʻ2963 m.	15°2 15°7
o'4704 m.	13'3
oʻ4296 m. oʻ4236 m. oʻ6296 m.	14°1 16°8 17°1 17°2
	o'4629 m.

All the volumes given in this example require to be reduced to some common temperature and pressure; taking o° C. and 1 m. pressure for standards, we have:—

A. Gas taken = 92'91; after KOH absorption = 90'06;

hence
$$^{\circ}/_{\circ}$$
 of $CO_2 = \frac{(92.91 - 90.06) 100}{92.91} = \frac{285}{92.91} = 3.07$.

After absorption by alkaline pyrogallate, remaining vol. = 89.51, hence % of

$$O = \frac{35.01}{(30.09 - 80.21) \cdot 100} = \frac{35.01}{0.22 \times 100} = 0.20$$

B. Part taken = 63.08; after absorption of ethylene propylene, and benzene-vapour by $SO_3 = 59.75$; hence

$$\frac{63.08 \times 92.01}{63.08 \times 92.01} = 5.00$$
.

C. Portion taken = 25.1; after addition of O = 80.1; after addition of air = 218.2; after explosion = 179.2; hence contraction = 218.2 - 179.2 = 39.0. (1)

After absorption of CO_2 produced = 167.4; hence vol. of $CO_2 = 179.2 - 167.4 = 11.8$ (2)

After addition of H = 308.9; after explosion = 135.9; hence second contraction = 173. (3)

The incombustible residue of N from (2) is therefore, $167.4 - \frac{17.8}{3} = 167.4 - 57.66 = 109.74$, of which 0.7904

(218.2 - 80.1) = 109.15 belongs to added air, hence N in 25.1 vols. taken = 109.74 - 109.15 = 0.59 vols.; therefore

$$^{\circ}$$
/ $_{\circ}$ of N in gas = $\frac{0.29 \times 20.72 \times 80.21 \times 100}{25.1 \times 63.08 \times 92.91} = 2.12$.

Combustible gas = 25.1 - 0.59 = 24.51; and this consists of x vols. H + y vols. CH₄ + z vols. CO.

From the equations :-

$$2 H_2 + O_2 = 2 H_2O.$$
 $CH_4 + 2 O_2 = CO_2 + 2 H_2O.$
 $2 CO + O_2 = 2 CO_2.$

we have, contraction $39 = \frac{3}{2}x + 2y + \frac{1}{2}z$ (a)

$$CO_2 \text{ formed } 11.8 = y + z.$$
 (b);

and total volume 24.51 =
$$x + y + z$$
. (c);
hence $x \{ from (b) \text{ and } (c) \} = 12.71$.

Solving (a) and (b) for z, we have :—

$$39 = 19.06 + 2y + \frac{1}{2}z$$

$$23 = 2y + 2z$$
hence $\frac{3z}{2} = 23.6 + 19.06 - 39 = 3.66$.
and $z = \frac{3.66 \times 2}{2} = 2.44$.

From (b) y + z = 11.8

so
$$y = 11.8 - z = 11.8 - 2.44 = 9.36$$
.

Therefore
$$^{\circ}/_{\circ}$$
 of H = $\frac{12.71 \times 59.75 \times 89.51 \times 100}{25.1 \times 63.08 \times 92.91} = 46.21$.

$$^{\circ}/_{\circ}$$
 of CH₄ = $\frac{9.36 \times 59.75 \times 89.51 \times 100}{25.1 \times 63.08 \times 92.91} = 34.03$.

and
$$^{\circ}/_{\circ}$$
 of $CO_2 = \frac{2.44 \times 59.75 \times 89.51 \times 100}{25.1 \times 63.08 \times 92.91} = 8.87$.

D. Portion taken containing all the combustible gases = 21.5; after addition of O = 77.3; after addition of air = 200.4; after explosion = 166.2; hence contraction = 34.2.

After absorption of CO_2 produced, vol. = 152.9; hence $CO_2 = 166.2 - 152.9 = 13.3$. (2)

After addition of H to residue, vol. = 351'3; after explosion 184'8; hence second contraction = 166'5. (3)

The contraction on explosion

(1) = $\frac{34.2 \times 89.51 \times 100}{21.5 \times 92.91}$ = 153.2 per cent. of the volume of the original gas.

The CO2 produced

(2) =
$$\frac{21.2 \times 89.21 \times 100}{13.3 \times 89.21 \times 100}$$
 = 59.60 per cent. of the same.

Contraction due to CH₄, CO, and H, from C. (1), $= \frac{39 \times 59.75 \times 89.51 \times 100}{25.1 \times 63.08 \times 92.91} = 141.8 \text{ per cent. of original vol.; hence contraction due to ethylene, propylene, and benzene,} = 153.2 - 141.8 = 11.4 \text{ per cent. of vol. of original gas.}$

Similarly, CO_2 produced from CH_4 and CO, from C (2) $= \frac{11.8 \times 59.75 \times 89.51 \times 100}{25.1 \times 63.08 \times 92.91} = 42.90 \text{ per cent., and so}$ vol. of CO_2 produced from ethylene, propylene, and benzene, = 59.60 - 42.90 = 16.70 per cent. of vol. of original gas.

The percentage of ethylene, propylene, and benzene-vapour, present in the original gas is 5.09. (B).

Let $x = \text{percentage of } C_2H_4$, $y = \text{percentage of } C_3H_6$, and $z = \text{percentage of } C_6H_6$; then, from the equations:—

$$C_2H_4 + 3$$
. $O_2 = 2CO_2 + 2H_2O$.
 $2C_3H_6 + 9$. $O_2 = 6CO_2 + 6H_2O$.
 $2C_6H_6 + 15$. $O_2 = 12CO_2 + 6H_2O$,

we have contraction 11.4 = $2x + \frac{5}{2}y + \frac{5}{2}z$.	(4)
and vol. of CO_2 16.70 = $2x + 3y + 6z$;	(5)
also vol. of gases $5.09 = x + y + z$.	(6)
From (4) and (6) $11.4 = 2x + \frac{5}{2}y + \frac{5}{2}z$ $12.72 = \frac{5}{2}x + \frac{5}{2}y + \frac{5}{2}z$	
whence 1.32 = $\frac{1}{2}x$	
and $x = 2.64$ °/ $_{\circ}$ of C ₂ H ₄ .	
From (5) and (6) $16.70 = 5.28 + 3y + 6z$ 5.09 = 2.64 + y + z	
or 11.42 = $3y + 6z$	
or 11.42 = $3y + 6z$ 14.70 = $6y + 6z$	
whence $3y = 3.28$ and $y = 1.09 ^{\circ}/_{\circ}$ of C_3H_6 .	
Again, $y + z = 2.45$ $\therefore z = 2.45 - 1.09 = 1.36$ C_6H_6 .	% of
Tabulating our results, the percentage composition coal gas is:—	on of
Carbon dioxide	3°07. 0°59.
Oxygen	1.09. 1.36.
Nitrogen	2°15. 6°21. 34°03.
Carbon monoxide	8.87.

QUESTIONS.

203. Calculate the percentage composition of a sample of atmospheric air from the following numbers:—

	Volume.	Pressure.	Temperature °C.
Air employed	863.7	oʻ5576 m.	5°5
	1006.7	oʻ6911 m.	5°5
	800.7	oʻ4914 m.	5°6

204. A gaseous mixture containing oxygen, nitrogen, and carbonic acid, yielded the following numbers on analysis. Calculate the proportion of the constituent gases in 100 volumes of the mixture (Bunsen):—

	Volume,	Pressure.	Temperature °C.
Original gas	171'2	o'6240 m.	13.2
After absorption of carbonic	167.3	0.6196 m.	13.2
After absorption of oxygen.	147'0	o 6058 m.	13'9

205. Determine the amount of aqueous vapour in a sample of air which yielded the following numbers on analysis (Bunsen):—

Air saturated with moisture.

Lower level Hg. stands					
Upper level in eudiome					
Vol. corresponding to 3	17	.3			292.7
Meniscus correction .					0.4
Air temperature					
Height of barometer					0'7469 m.

Same volume of air dried by Ca Clo.

Lower level Hg. stand	ls a	ıt			565'9
Upper level in eudion					
Vol. corresponding to	31	0.7			286.0
Meniscus correction					0.4
Air temperature					20'2 °C.
Height of barometer				,	0'7474 m.

206. Calculate the composition by volume of water from the following eudiometric synthesis:—

A. Hydrogen saturated with moisture.

B. Hydrogen + Oxygen saturated with moisture.C. Residue after explosion saturated with moisture.

	Λ.	В.	C.
Observations at lower level of Hg	771'8 238'0 262'5 0'7540 m. 12'1°	768'2 435'0 468'3 0'7540 m. 12'6°	771 '9 332'0 360'8 0'7540 13'0"

207. Find the volume of each constituent contained in one volume of methyl ether from the data below, and deduce its empirical formula:

	Volume.	Pressure.	Temperature
A. Gas taken	50.6	o'1419 m.	1'4°C.
After addition of oxygen .	199.8	o'3112 m.	2.6°C.
After explosion	172'4	o'2738 m.	3'7°C.
After absorption of CO2 .	132.8	o'2409 m.	3'9°C.
After addition of H	547 3	o'6955 m.	2.6°C.
After explosion	466.6	0 0120 m.	150.
B. Gas taken	79.6	· o'3140 m.	4 °0°C.
After addition of oxygen .	327'2	o'5615 m.	5°0°C.
After explosion	268'7	o'4915 m.	4'9°C.
After heating to 99'5"	418.1	o 6752 m.	99'5°C.
After cooling	268.2	0'4914 m.	3'7°C.
After absorption of CO2 .	193'3	o'4188 m.	0'7°C.

208. Find the formula of nitrous oxide from the analytical results given :-

	Volume.	Pressure.	Temperature.
Gas taken	140'2	oʻ2175 m.	14'4°C.
After addition of H	191'4	oʻ3219 m. oʻ2664 m.	14'0°C.
After addition of O	228'8	o'2931 m.	12'8°C.
After explosion	160.6	o'2253 m.	13.7°C.

209. A gaseous mixture collected from Hekla a month after an eruption yielded the following figures; find its percentage composition:

	Volume.	Pressure.	Temperature
Gas taken	114'9	o'6944 m.	20°4°C.
After absorption with MnO ₂ . After absorption with KOH.	108.1	o'6958 m. o'7092 m.	20°4°C. 20°6°C.
Gas decanted into eudiometer	136.4	o'3460 m.	20.6°C.
After explosion with (H2+O)	137.2	o'3452 m.	20.7°C.
After addition of H	190'4	o'3980 m. o'3585 m.	20'5°C. 20'3°C.
After absorption with KOH	148.9	o'3665 m.	18.9°C.

210. Find the percentage volume of H,SH₂, CO₂, N, CO, and CH₄ present in a fumarolle-gas giving on analysis:—

	Volume.	Pressure.	Temperature.
Gas taken	94°0	o'6945 m.	13'3°C.
	73°7	o'6728 m.	13'6°C.
	46°1	o'6502 m.	13'6°C.
Gas decanted into eudiometer After addition of air	96.8	oʻ3093 m.	13°1°C.
	243.0	oʻ4534 m.	13°6°C.
After explosion	172'0	oʻ3839 m. oʻ3902 m.	13.7°C.

amount of nitrogen present in each body analysed, and give the volumes, reduced to standard conditions, of the nitrogen and nitric oxide respectively in each case.

Measured in Frankland and Ward's apparatus.

Substance taken.	Volume in c.c.	Temperature.	Pressure N + NO	Pressure N.
A. o'1263 gm. B. o'0832 ,, C. o'0827 ,, D. o'0856 ,, E. o'0878 ,, F. o'1259 ,,	13'79	18°C.	451 mm.	423 mm.
	22'32	20°C.	411 ,,	378 ,,
	22'32	24°C.	416 ,,	373 ,,
	22'32	29°C.	396 ,,	375 ,,
	13'5	19°C.	597 ,,	582 ,,
	9'02	20°C.	408 ,,	405 ,,

212. Find the composition of marsh gas from the figures given below, obtained by Thomas's modification of Frankland and Ward's apparatus.

Temperature constant at 15'4° C. Gas taken at 118'5 mm. pressure.

After addition of oxygen, pressure=357'8 mm.

Pressure after explosion=121'12 mm.

Pressure after absorption of CO₂=2'32 mm.

- 213. Calculate the percentage of CO₂ by volume contained in a sample of air which gave the accompanying data—10 c.c. of baryta solution agitated in a flask, containing the air, of 618 c.c. capacity, required 6 o c.c. of normal oxalic acid for neutralization, of which I c.c. equals I c.c. of CO₂ at o C. and 760 mm.; bar. 726 mm., temp. 21° C. The same amount of baryta solution directly titrated with normal oxalic acid required 8 c.c.
- 214. To a solution of baryta sufficient alcoholic solution of phenolphthalein is added to produce a distinctly pink coloration; I c.c. of the solution=0.104 c.c. carbon dioxide. A volume of 25 c.c. of the coloured solution becomes decolorized on the aspiration of 540 c.c. of air through it, owing to the absorption of CO₂; find percentage of CO₂ present.
- 215. An analysis of a specimen of coal-gas is made by (1) successive absorption of carbon dioxide, ethylene (propylene, butylene), benzene, oxygen, and carbon monoxide by means of Hempel's pipettes; (2) combustion of the hydrogen in a palladium-asbestos tube; (3) combustion of the methane by red-hot copper oxide with estimation of the carbon dioxide produced by titration. From the subjoined figures find the composition by volume of the sample analysed:

Volume of gas employed	99.1 c.c.
(1) Volume after absorption by KOH	
Volume after treatment with Br water	93'9 c.c.
Volume after treatment with fuming NO ₃ H	92'9 c.c.
Volume after alkaline pyrogallol absorption	92.6 c.c.
Volume after treatment with cuprous	
chloride	86.2 c.c.

- (3) Residue of 65.7 c.c. is burned by air and copper oxide, and CO₂ titrated by baryta-water and oxalic acid.

Gas measures 65'7 c.c. at 736 mm. and 20° C.
Baryta-water, I c.c. = I'04 c.c. oxalic acid = I'04 c.c.
methane.

Baryta-water employed 50 c.c. Oxalic acid required for re-titration . . . 37'4 c.c.

216. 100 volumes of Manchester cannel gas contained 4'98 volumes of olefines, which yielded on combustion 13'93 volumes of carbon dioxide. Required the volumes of ethylene (C₂ H₄) and butylene (C₄ H₈) contained in the gas, and the value of the illuminating power of the gas expressed in percentages of ethylene.

CALCULATION OF THE RESULTS OF ATOMIC WEIGHT DETERMINATIONS.

The data required for these calculations, when not otherwise given, may be obtained from Table I. in the Appendix.

- 217. DUMAS found, on heating copper oxide in a stream of dry hydrogen, that a certain weight of this substance lost 59'789 grams of oxygen, and yielded 67'282 grams of water. Calculate from these numbers the atomic weight of hydrogen.
- 218. Marignac obtained 314'894 grams of silver nitrate from 200 grams of silver. 14'110 grams of silver nitrate required 6'191 grams of potassium chloride for complete precipitation, and 10'339 grams of silver dissolved in nitric acid required 5'120 grams of ammonium chloride for precipitation. Calculate the atomic weight of nitrogen from these data.

- 219. Stas found that 91'462 grams of metallic silver, when heated in a stream of chlorine, yielded 121'4993 grams of pure silver chloride. Calculate from this the atomic weight of chlorine.
- 220. Stas found, after adding 7.25682 grams of potassium chloride to 10.51995 grams of silver dissolved in nitric acid, that 0.0194 grams of silver remained in solution. Calculate from these data the atomic weight of potassium.
- of mercury from 118'3938 grams of the red oxide. Calculate the atomic weight of mercury.
- of the following analyses by Redtenbacher and Liebig of
- 1. Silveracetate C₂H₃AgO₂ 28.803 grams gave 18.612
- 2. Silvertartrate C₄H₄Ag₂O₆ 16.220 ,, ,, 9.6175
- 3. Silvermalate C₄H₄Ag₂O₅ 25.898 ,, ,, 16.059
- 223. Mallet found that 8.2144 grams of ammonia-alum dried by exposure to air at $21^{\circ}-25^{\circ}$ C. yielded 0.9258 gram of Al_2O_3 . Taking the following atomic weights: O = 15.961; S = 31.966; N = 14.010; find the atomic weight of aluminium.
- 224. Mallet found that 6'9617 grams Al Br₃ required 8'4429 grams of Ag for precipitation of the bromine; if Ag = 107'649 and Br = 79'754 what is the atomic weight of Al as deduced from this result?
- 225. 0'3697 gram of aluminium liberated 0'04106 gram of hydrogen on being dissolved in a strong solution of sodium hydrate; find atomic weight of aluminium.
- was made by finding the weight of pure silver required to precipitate the chlorine from an aqueous solution in which a bulb containing a known weight of TiCl₄ had been broken. A quantity of the pure silver nearly sufficient was in each experiment first converted into nitrate and then mixed with the titanium solution, the precipitation was finished by addition from a burette of a centinormal

solution of AgNO₃. Find the atomic weight of Ti from the annexed data in each case. (Take Ag = 6.7456, Cl= 2.21586, H = 0.06265, O = 1.)

Corrected weight of	Weight of silver	Weight of silver
TiCl ₄ used.	weighed out.	added from burette.
2'43275 grams. 5'42332 ,, 3'59601 ,, 3'31222 ,, 4'20093 ,,	5'49288 grams. 12'30669 ,, 8'15960 ,, 7'44102 ,, 9'52445 ,,	o'03509 gram. o'01591 ,, o'01501 ,, o'08619 ,,

227. A series of experiments made for the purpose of determining the atomic weight of gold consisted in finding the ratio existing between the quantities of KBr and metallic Au remaining on the decomposition of potassium bromo-aurate by heat.

Taking the equivalent of H, 0'06265, K, 2'44523, and Br 4'99634, when O = 1, calculate the atomic weight

of gold from the following data:

Weight of Au.		Weight of KBr.
6.13001	:	3.73440.
4.76957	:	2.87715.
4.14020	:	2.49822.
3.60344	:	2.17440.
3.67963	:	2.21978.
4.57757	:	2.76195.
5.36659	:	3.23821.
5.16406	:	3.11233.

228. The atomic weight of silicon has been determined by estimating the amount of SiO₂ obtained on treatment of known weights of SiBr₄ with water.

From the following table of results, find the ratio Si: H, taking H = 0.06265, and Br = 4.99721, (O = 1).

Weight of Si Br4 in vacuo.	Weight of Si O2 in vacuo.
9.63007 grams.	1.67070 grams.
12'36099 ,,	2.14318 "
12.98336 ,,	2.25244 ,,
9.02269 ,,	1.56542 ,,
15.38426 ,,	2.66518 ,,

229. Taking the atomic weights of O = 15.96, N = 14.02, H = 1, find the mean atomic weight of chromium from the given experimental results.

Corrected weight of	Corrected weight of Cr2O3
$(NH_4)_2Cr_2O_7$.	obtained therefrom.
1.01272	0.61134
1.08181	0.65266
1.59430	0.78000
1.13966	0.68799
0.98778	0.2020
1.14319	0.68982

230. From the following readings given by Ramsay, showing the volume of hydrogen obtained by means of pure zinc, calculate the equivalent of zinc (H = 1).

Weight, in a vacuum, of the zinc used.	Reduced volume of hydrogen.	Reduced pressure.	Thermometer reading, C.
3*299584	1216'86 cc. 1219'64 ,, 1222'73 ,, 1225'62 ,, 1233'05 ,, 1230'54 ,, 1228'02 ,,	729'18 mm. 727'78 ,, 725'78 ,, 724'08 ,, 719'72 ,, 721'10 ,, 722'65 ,,	10°54 10°54 10°54 10°54 10°53 10°48

CALCULATIONS INVOLVED IN INDIRECT ANALYSIS.

There are three main types of Indirect Analysis, namely:—

(I) The method of substitution; an equivalent amount of some other radicle (or substance) is substituted for the radicle we wish to determine and is then estimated directly; for instance we may determine free Cl by adding to its solution KI when KCl is formed and free I, equivalent in amount to the Cl present, remains and can be estimated directly.

- (2) The residue method; the body in which the radicle occurs undergoes a definite chemical change when acted upon by a known amount in excess of some reagent, and the excess of reagent is determined.
- (3) The method depending on the numerical differences between molecular weights; with a mixture of two salts, differing considerably in molecular weight, but possessing a common constituent, it is possible from the estimation of the common radicle to calculate the quantities of each of the other radicles present in the mixture.

EXAMPLES.

(1) To 50 c.c. of a solution of Cl, an excess of potassium iodide solution was added; the liberated I was then estimated by means of a standard solution of Na₂S₂O₃ using starch solution to indicate the end of the reaction. I c.c. Na₂S₂O₃ solution = 0.0127 gram I, and 22.5 c.c. of this solution were used; what was the strength of the Cl solution in grams per c.c.?

Iodine set free = 0.0127 × 22.5 gram.

which is equivalent to $\frac{0.0127 \times 22.5 \times 35.37}{126.54}$ gram of Cl. which was the weight of Cl contained in 50 c.c.

Hence, weight of Cl per c.c.

$$= \frac{0.0127 \times 50 \times 126.24}{50 \times 126.24} = 0.001294 \text{ gram}.$$

(2). 0'2815 gram of calcite was dissolved in 30 c.c. of normal HNO₃, and the excess of acid determined by normal NaOH of which 24'43 c.c. were required; what percentage of CO₂ did the sample contain?

The HNO_3 neutralized by the $CaCO_3$ present in the calcite was 30.00 - 24.43 = 5.57 c.c.

126 grams HNO3 are equivalent to 44 grams CO2.

Hence, amount of CO2 present was :-

$$\frac{0.063 \times 5.57 \times 44}{126}$$
 gram.

and hence
$$^{\circ}/_{\circ}$$
 of $CO_2 = \frac{0.063 \times 5.57 \times 44 \times 100}{126 \times 0.2815} = 43.53$.

(3). Two grams of a mixture of barium carbonate and calcium carbonate evolve o'67 gram of carbon dioxide; find the percentages of Ca and Ba present in the mixture.

Taking the following atomic weights,—Ca, 400; Ba,

137'2; C. 12'0; O. 16; we have

BaCO₃ contains $\frac{44}{197.2}$ of its weight of CO₂, and CaCO₃ contains $\frac{44}{100}$ of its weight of CO₂.

Let x be the weight of $BaCO_3$ in the mixture taken, then (2 - x) is the weight of $CaCO_3$ present.

CO₂ present is
$$\frac{44}{197.2} x + \frac{44}{100} (2 - x) = 0.67$$
.
hence, $\frac{44(197.2 - 100)}{100 \times 197.2} \cdot x = 0.21$.
 $\therefore x = 0.968$ gm. Ba CO₃.

and
$$2 - x = 2 - 0.968 = 1.032$$
 gm. Ca CO₃.

Whence % of Ba in mixture =
$$\frac{0.968 \times 137.2 \times 100}{197.2 \times 2} = 33.67$$
.

and
$$^{\circ}/_{\circ}$$
 of Ca = $\frac{1.032 \times 40 \times 100}{100 \times 2} = 20.64$.

QUESTIONS.

231. 0'2151 gram of uric acid was heated with sodalime and the evolved NH₃ absorbed in HCl. The NH₄Cl was evaporated to dryness and redissolved, the Cl being then thrown down as AgCl, of which o'7390 gram was obtained; what percentage of nitrogen did the sample of uric acid contain? 232. 25 c.c. of a solution, containing 0'2105 gram of a copper alloy in the form of sulphates, was neutralized with Na₂CO₃ and then rendered acid by acetic acid; to the acidulated solution an excess of freshly prepared potassium iodide solution was added and the liberated iodine titrated by a standard Na₂S₂O₃ solution; 31'29 c.c. were required for the reaction. 25'22 c.c. of the thiosulphate solution were found to be equivalent to 25 c.c. of iodine solution of which I c.c. = 0'006313 gram of copper. Calculate the percentage amount of copper present in the alloy.

233. 0'5005 gram of a sample of calcite, was weighed out, dissolved in dilute HCl and precipitated as calcium oxalate; the washed precipitate was treated with dilute sulphuric acid and the solution titrated with potassium permanganate solution of which I c.c. = 0'0056 gram of iron; 100'08 c.c. of the permanganate were decolorized. What was the percentage of calcium in the mineral?

234. In an estimation of nitrogen by the soda-lime method, 0'2102 gram of benzamide was taken and the evolved ammonia absorbed in $\frac{N}{2}$ sulphuric acid solution, 25 c.c. being taken; the residual acid required 21'517 c.c. of $\frac{N}{2}$ NaOH for neutralization. What was the percentage amount of nitrogen in the benzamide?

235. The subjoined data were obtained in an estimation of NH_3 in $(NH_4)_2 SO_4$ by the method of distillation with soda-lime in the wet way.

Weight of ammonium sulphate taken = 0'3200 gram.

Amount of H_2SO_4 solution taken = 60 c.c.

I c.c. of acid solution = 0.855 c.c. $\frac{\text{normal}}{2}$ NaOH sol.

41'7 c.c. of $\frac{N}{2}$ soda just neutralized the residual acid. Calculate from these data the percentage amount of

ammonia in ammonium sulphate.

236. One hundred cubic centimetres of a semi-normal solution of sodium carbonate were added to 100 c.c. of a neutral solution containing copper sulphate. After filtration, the residual Na_2CO_3 was determined by means of $\frac{N}{2}$ sulphuric acid, of which 27 c.c. were required. What weight of Cu SO_4 in grams was present in each litre of the solution?

237. The following results, obtained in an analysis of Rochelle salt, give sufficient data for the estimation of K and Na in the sample used; find the percentage of each of these elements present.

238. From 0'9330 gram of a mixture of sodium chloride and iodide, 0'9066 gram of sodium sulphate is obtained. What weights of the sodium chloride and sodium iodide are there in the weight of mixture taken?

(Take Na = 23, S = 32, O = 16, Cl = 35.5 I, = 127.)

GENERAL ANALYTICAL QUESTIONS.

239. CALCULATE the formula of a salt containing sodium and chlorine which yielded the following numbers on analysis:—

- (a) 0'1998 gram of the salt gave 0'4865 gram of silver chloride, and 0'0032 ,, metallic silver.
- (b) 0.9543 gram of the salt gave 1.1584 grams of sodium sulphate.

240. 0'3951-gram of a substance supposed to be arsenic pentoxide was dissolved in dilute ammonia, and precipitated as magnesium-ammonium-arseniate. After drying at 110° the precipitate weighed 0'6544 gram. Was the substance $As_2 O_5$?

241. The mineral nontronite gave on analysis the following numbers. Calculate its formula.

1'4155 grams of the mineral gave and o'5711 grams of silica.
and o'5157 ,, ferric oxide.
o'0380 ,, lime.
1'1205 ,, lost on drying o'2311 ,, water.

- 242. 100 grams of a mixture of potassium and sodium chlorides have furnished 164'I grams of potassium-platinum chloride. What is the composition of the mixture?
- 243. Calculate the formula of thallium perchlorate from the following determination:—0'1831 gram of salt gave 0'2476 gram of the double chloride of platinum and thallium.
- 244. Calculate the percentage amount of chlorine contained in vanadyl trichloride of which 3'9490 grams added to 7'383 grams of silver dissolved in nitric acid required 3 cubic centimetres of centesimal HCl solution for complete precipitation according to Gay-Lussac's method.
- !245. Two equal volumes of a liquid found to contain an oxygen compound of bromine were completely reduced with sulphurous acid, the excess of which was removed by boiling: in one portion the sulphuric acid formed was estimated as barium salt, and in the other the bromine was weighed as silver bromide. Analysis gave: weight of Ba SO₄ = 0.402 gram; weight of silver bromide, 0.3240 gram. Required the composition of the oxide of bromine.
- 246. 1'2185 grams of perchloric acid yielded 1'6785 grams of dry potassium salt: of this salt 0'9660 gram lost 0'444 gram on heating, and the residue required 0'744 gram of pure silver for complete precipitation. Required the percentage amount of acid contained in the quantity taken. (Roscoe.)
- ! 247. Required the percentage of real acid contained in I'483 grams of aqueous acetic acid, which evolved o'427 gram of carbonic acid on adding it to bicarbonate of sodium.
- 248. 2'122 grams of aqueous formic acid required for neutralization 36'3 cubic centimetres of soda solution, of

which each cubic centimetre contained (0'9025 × 31) milligrams of soda. Required the percentage of pure acid contained in the liquid.

249. Calculate the volume of carbonic acid in 10,000 volumes of sea-air, from the following numbers, obtained by Pettenkofer's method:—

I cubic centimetre of oxalic acid solution = I mgrm. CO₂. 50 cubic centimetres of baryta water = 55'18 cubic centimetres of oxalic acid solution.

Capacity of flask used, 4815 cubic centimetres. Temp.

of air 13° 9. Bar. 753'1 mm.

50 cubic centimetres of baryta solution taken: of this 25 cubic centimetres after the experiment required 26.29 cubic centimetres of oxalic acid solution for neutralization.

250. The following numbers express the amount of the constituents in 1,000 grams of the water of the Irish Channel:—

I.	Chlorine							18.62650
	Bromine							.06133
3.	Sulphuric	aci	d	(SC	(4)			2.59280
4.	Lime (tota	il)						0.57513
5.	Calcium c	arb	on	ate				0.04754
6.	Magnesia							2.03233
7.	Potassium							0.30131
8.	Sodium.							10'40200
9.	Ferric oxid	de						.00462
IO.	Ammonia							.00011
II.	Nitric acid	1.						.00129
	Total fi	xed	C	onst	itu	en	ts	33.83855

Calculate the composition of the saline matter of the water on the following assumption: That the sodium, potassium, and ammonium are combined with chlorine, the excess of chlorine being united to magnesium. The bromine and nitric acid are also to be united to the magnesium. The sulphuric acid exists in combination with lime, the excess being united to magnesia. The ferric oxide exists as ferrous carbonate.

! 251. Calculate the illuminating power of a gas flame burning 5 cubic feet per hour, expressed in candles burning 120 grains (7'79 grams) of sperm per hour, from the following data:—

Rate at which gas issues = 4.8 cubic feet per hour.

Consumption of standard candle in 10 minutes = 1.38 grams.

Readings on the photometer scale for each minute of observation:—

252. 0'5637 grams of the barium salt of an organic acid, obtained by the action of carbonic acid on C₆ H₄ BrC₂ H₅ in presence of sodium, lost, on drying at 120° C., 0'0430 gram of water, and gave 0'2733 gram barium sulphate. Required the formula of the salt.

! 253. 4.826 grams of a nitrogenous organic body yielded, after heating with soda-lime, 1.532 grams of the double chloride of platinum and ammonium. Required the percentage of nitrogen contained in the organic substance.

! 254. Required the percentage composition, observed and calculated vapour density, and formula of a body which gave the following analytical results:—

(a) 0'4245 gram yielded o'5670 gram of carbonic acid, and o'3025 ,, water.

(b) 0'1810 gram yielded.
0'3855 gram of silver chloride, and
0'0165 ,, metallic silver.

(c) Determination of vapour density according to Gay-Lussac's method:—

Weight of substance employed, 0.0893 gram.

Temperature of the air, 8° C. Height of barometer, 739 mm.

Temperature of vapour, 50° C. Volume, 46'2 cubic centimetres.

Difference of level, 140'5 mm. Coefficient of expansion of mercury = 0'0001815.

Coefficient of cubical expansion of glass, 0'0000262.

- 255. 1'5055 grams of a mixture of sodium and potassium chlorides gave 3'4222 grams of silver chloride. Calculate the relative amounts of the two chlorides.
- 256. I'2060 grams of a mixture of sodium bromide and sodium chloride gave, on complete precipitation by silver nitrate, 2'6554 grams of mixed silver chloride and bromide, which, on reduction, yielded I'8418 grams of metallic silver. Calculate the proportion of chloride and bromide.

SOLUTION OF GASES IN LIQUIDS.

GASES fall into two groups when considered in relation to their solubility in liquids:—

- (1). Those gases completely expelled from the solvent by raising its temperature or reducing the pressure to which it is subjected.
 - (2) Other gases.
- I. In group (1), the amount of gas absorbed depends upon:—
 - I. The nature of the gas and of the absorbing liquid.

II. The actual pressure of the gas considered.

Henry's Law:—The quantity of any gas absorbed by a given quantity of a liquid is proportional to the pressure.

III. The temperature. Volume absorbed decreases with the increase of temperature; it may be expressed by means of an empirical formula of the form $V=a-bt+ct^2$, where a, b, c are constants for each gas and t is the temperature.

The absorption-coefficient of a gas is a number which expresses the ratio of the volume of the gas, measured at o° C. and the pressure of absorption, absorbed by the liquid at the temperature of observation to the volume of

the absorbing liquid. In a mixture of gases, each component behaves as if it alone were present under the partial pressure which is exerted by itself.

EXAMPLE.

It is required to calculate the absorption coefficient of nitrogen dissolved in water at 19° C. from the appended data (Bunsen).

I. Observations before Absorption.

Lower level of mercury in outer cylinder Upper level of mercury in absorption		
tube	b = 124'I ,,	
Height of barometer		
Temperature of absorptiometer	$t = 19.2^{\circ} \text{ C}.$	
Temperature of barometer	$T = 19.0^{\circ} \text{ C}.$	

II. Observations after Absorption.

Lower level of mercury in oute			a_1	=	352'2 mm.
Upper level of mercury in a					
tube			6,	=	350.7 "
Water level in absorption tube			61	=	65.5 "
Water level in outer cylinder	2		di	=	8.0 "
Height of barometer			p,	=	746'3 "
Temperature of absorptiomete	r		1,	=	19.0° C.
Temperature of barometer .					

III. Tabular Data.

Volumes, according to the calibration table, of:-

The absorption coefficient
$$a = \frac{I}{h} \left(\frac{VP}{P_1} - V_1 \right)$$

P and P_1 being the pressures of the dry gas before and after absorption respectively, V and V_1 being the corresponding volumes of gas reduced to o° C.

P = p reduced to 0° C. -(a - b) reduced to 0° C. - vapour pressure of water at 19.2° C.

$$= (744.4 - 298.5 - 16.6) \text{ mm.} = 429.3 \text{ mm.}$$

 $P_1 = p_1$ reduced to o° C. $-(a_1 - b_1)$ reduced to o° C.

 $+\{(a_1-b_1)+(c_1-d_1)\}$ reduced to equivalent mercury column at 0° C. - vapour pressure of water at 19° C.

$$= (743.8 - 1.5 + 4.4 - 16.3) \text{ mm.} = 730.4 \text{ mm.}$$

$$V = v \cdot \frac{1}{(1 + 0.00367.19.2)} = 34.90 \cdot \frac{1}{1 + 0.00367.19.2}$$

= 32.608.

$$V_1 = v_1 \cdot \frac{1}{(1 + 0.00367.19)} = 17.67. \frac{1}{1 + 0.00367.19} = 16.52.$$

Hence
$$a = \frac{1}{182.37} \left(\frac{32.608 \times 429.3}{730.4} - 16.52 \right) = 0.01448$$

QUESTIONS.

- 257. The absorption coefficient of nitrogen dissolved in water is 0.0152 at 12.6° C.; what volume of the gas measured at 0° C. and 760 mm. pressure is absorbed by one litre of water at 12.6° C. at each of the pressures:

 1000 mm., 748.2 mm., 391 mm., and 14.3 mm.?
- 258. What is the volume of nitrogen absorbed in each case in question 257, measured at the temperature and pressure of the experiment? What is the weight of the gas absorbed in each case?
- 259. The absorption coefficient of hydrogen dissolved in water is represented by the interpolation formula $a = 0.0215286 0.00019216t + 0.0000017228t^2$: what quantities of the gas measured (a) under the experimental conditions, (b) under standard conditions,

will be given off on boiling 325 c.c. of the solution made by agitating water in hydrogen (A) at 10° C. and 750 mm., (B) at 14° C. and 767 mm., (C) at 18° C. and 732 mm.?

- 260. The coefficient of absorption of carbon dioxide in water is found to be $a = 1.7967 0.07761t + 0.0016424t^2$; find the coefficients for $t = 4.4^{\circ}$ C., 8.4° C., 13.8° C., 16.6° C., 19.1° C., and 22.4° C.
- 261. The coefficient of absorption of hydrogen in alcohol is given by the interpolation formula $a = 0.06925 0.0001487t + 0.000001t^2$; find the values of the coefficient at 1°, 5°, 11.4°, 14.4°, and 19.9° C., and compare each value with the corresponding value of the coefficient for water as given in question 259.
- 262. Find an interpolation formula expressing the variation of the coefficient of absorption of carbonic oxide in water with alteration of temperature, the coefficients found by experiment being:—at 5.8°, 0.028636; at 8.6°, 0.027125; at 17.4°, 0.023854; at 18.4°, 0.023147; at 9°, 0.026855; and at 22°, 0.022907.
- 263. At 23° C. the absorption-coefficient of oxygen in water is 0.03402, that of nitrogen is given by the expression $a = 0.020346 0.00053887t + 0.000011156t^2$; what will be the percentage composition by volume of the gas mixture obtained by boiling water previously saturated with air at 23° C.? (Air:—N, 79.1; O, 20.9.)
- 264. A litre of water saturated with carbon dioxide at 4'4° C. and 748 mm. is shaken up with a litre of nitrogen at 23° C. and 760 mm.; the temperature of the whole being now 23° C., what is the composition of the gas remaining over the solution, a for nitrogen being taken as in question 263, and for CO₂ being equal to 1'7967 0'07761t + 0'0016424t²?
- 265. A mixture of hydrogen and carbon dioxide is agitated with 356'4 c.c. of water at 5'5° C., volume of gas before absorption reduced to 0° C. = 171'29 c.c. and pressure = 0'5368 m.; vol. of gas after absorption at 0° C = 119'61 c.c., and its pressure = 0'6809 m.; a for H = 0'0193, for $CO_2 = 1'4199$; what is the percentage composition of the original mixture?

SOLUBILITY OF SOLIDS IN LIQUIDS. MOLECULAR WEIGHT AND THE LOWERING OF THE FREEZING-POINT OF SOLUTIONS.

THE solubility of solids in liquids does not admit of being represented by any simple law; the alteration of the solubility with temperature may generally be expressed by an equation of the form $x = a + bt + ct^2 + dt^3$, where a, b, c, d are constants for each set of substances considered, and t is the temperature.

As these constants have only been determined in a few cases, the consideration of problems arising in connection therewith does not fall within the scope of this book.

It has been found that substances dissolved in any solvents which solidify at attainable temperatures cause a lowering of the freezing-point according to the following law:—

If the molecular weight (in terms of any unit) of any substance be dissolved in 100 times the molecular weight (in terms of the same unit) of any liquid, the freezing-point of the latter is lowered by an amount always very near to 0.63° C.

Let A be the coefficient of lowering of the temperature of solidification (lowering produced by one gram dissolved in 100 grams of solvent), M be the molecular weight of the dissolved compound, T be the molecular lowering of the freezing-point (that produced by the molecular weight in grams of the substance dissolved in 100 grams of the

solvent); then MA = T, and $M = \frac{T}{A}$.

If P be the weight of the solvent, P' the weight of the dissolved body, K the lowering of the freezing-point given by experiment, we have

$$A = K. \frac{P}{P' \times 100}.$$

And hence
$$M = \frac{T(P' \times 100)}{PK}$$

If M' be the molecular weight of the solvent employed, then $T = M' \times 0.63$ very nearly, with the exception of the solvent water.

Thas been determined by numerous experiments for

the commoner solvents; its mean value for:

Acetic acid = (18°0 in a few cases), 38°6.

Formic acid = 27.7.

Benzene = 50'o.

Nitrobenzene = 70'7.

Water = {
18.5 (for organic substances, some salts of diad metals, all the feeble bases and acids). 37 (for alkaline and alkaline earthy salts, and all the strong acids and bases).

EXAMPLE.

The freezing-point of a sample of acetic acid was found to be 16'490° C.; taking 62'014 grams of this acid and adding thereto 0'2540 gram of pure propionic acid, the solidifying point of the mixture is found to be 16'277° C. What is the molecular weight of propionic acid?

The observed lowering of the freezing-point is

$$16.490 - 16.277 = 0.213^\circ = K,$$

the weight of solvent P = 62.014 gram, weight of dissolved body P' = 0.2540 gram, and T = 38.6 for acetic acid, hence

$$M = \frac{38.6 (0.2540 \times 100)}{62.014 \times 0.213} = 74.3$$

(Calculated molecular weight of $C_2H_5COOH = 74$)

QUESTIONS.

266. If the molecular lowering of the freezing-point of acetic acid, 16'75° C., be 43 in the case of benzoic acid, what is the temperature of solidification of a 4 per cent. solution?

267. Plot out a curve showing the relation between concentration and K in the case of ethyl formate dissolved in acetic acid,

Percentage	of Ethyl Formate.	Observed K.
	0.1977.	0.101° C.
	0.3971.	0'212° C.
	0.5935.	0.312° C.
	0.9692.	0.211° C.
	1.3907.	0.758° C.,

and find the mean molecular weight of the ethyl formate as given by this series of experiments.

- 268. Find the coefficient of lowering of the freezing-point of acetic acid by ethyl formate from the data of the preceding question.
- 269. What percentage of methyl acetate has been added to a sample of acetic acid freezing originally at 16.52° C. and after addition of the ester at 15.619° C.?
- 270. By what amounts should the freezing-point of benzene be lowered in 5 per cent. solutions of each of the following bodies—toluene, xylene, and anthracene?
- 271. Taking 56'7 gram of acetic acid freezing at 16'52° C. and adding methyl acetate in successive quantities as follows: (1) 0'0725 gram, (2) 0'0970 gram, (3) 0'0821 gram, (4) 0'1192 gram, the freezing-points after each addition are observed to be (1) 16'452° C., (2) 16'363° C., (3) 16'282° C., and (4) 16'177° C. respectively; what is the molecular weight of methyl acetate found from each observation?
- 272. What should be the normal molecular lowering of the freezing-point in the case of (a) anthracene, (b) sodium, (c) tin?
- 273. 6 grams of anhydrous magnesium sulphate are dissolved in 100 grams of water; the observed depression of the freezing-point is 0.958° C. Taking the value of T to be 37, which of the following formulæ most probably represents the state of the dissolved salt, (a) MgSO₄: (b) MgSO₄, 7H₂O?

274. It has been found that the latent heat of fusion of a solvent is connected with the molecular lowering of its freezing-point as shown in the formula,

$$T = 0.02$$
. $\frac{\text{(absolute temperature)}^2}{\text{latent heat of fusion}}$.

The freezing-point of ethylene dibromide being 7.9° C., and the molecular depression of its freezing-point 117.9, find its latent heat of fusion.

- 275. The value of T for water is 185, for formic acid 277, and for acetic acid 386, when organic substances are dissolved in each solvent. What inference may be drawn as to the relative complexity of the molecules of each of these solvents?
- 276. What conclusion would you draw as to the molecular weight of nitrogen tetroxide from the following data?
- (a) 0.5269 gram of CHCl₃ introduced into 17.3046 grams of nitrogen tetroxide lowers the freezing-point of the latter by 1.06°.
- (b) Similarly 0.4931 gram of C₆H₅Cl mixed with 16.7650 grams of nitrogen tetroxide lowers its freezing-point 1.09°.
- 277. Find the molecular weight of gold, from the figures below showing the effect of Au in lowering the freezing-point of Na. (Take T = 104).

Weights of Na.	Weights of Au added in succession.	Freezing-point.		
20'425 (a) ,, (b) ,,	2'1 1'316	97 [*] 44 91 [*] 99 88 [*] 59		

278. Plot out a curve to show the variation of the molecular lowering of the freezing-point with concentration, using the data obtained by Haycock for mercury dissolved in sodium.

Weight of Na.	Weights of Hg added in succession.	Freezing.point.
32 ['] 47 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	0'5605 0'7410 0'5740 0'5170 1'771 4'950	97.47 96.6 95.38 94.46 93.64 90.93 83.35

EXERCISES ON THE SPECIFIC HEAT, LATENT HEAT, AND ATOMIC HEAT OF SUBSTANCES.

THE capacity of a body for heat is measured by determining the number of units of heat required to raise that body one degree of temperature.

The Specific Heat of a body is the ratio of the quantity of heat required to raise that body one degree to the quantity required to raise an equal weight of water one degree.

Latent Heat is the quantity of heat which must be communicated to a body in a given state in order to convert it into another state without changing its temperature.

The Atomic Heat of an element is the product of its atomic weight into its specific heat; for the greater number of the elements, the mean value of this quantity is 6.40. This is expressed by Dulong and Petit in the form of a law, thus:—The atoms of all elementary bodies have exactly the same capacity for heat.

The following table by Regnault shows the specific heat of the more important elements and compound gases between o°—100° C.

Iron	0.11326	Sulphur 0'20259
Zinc	0'09555	Selenium 0.08370
Copper	0.09212	Tellurium 0'05155
Mercury	0.03333	Potassium 0'16956
" (solid) .	0.03241	Bromine (liquid). 0'11094
Cadmium	0.02669	" (solid—28°) 0.08432
Silver	0'05701	Iodine 0.05412
Arsenic	0.08140	Carbon 0'24111
Lead	0'03140	Phosphorus o'18870
Bismuth	0.03084	Atmospheric Air. 0'2375
Antimony	0.05077	Oxygen 0'2175
Tin	0.05623	Nitrogen 0.2438
Nickel	0.10863	Hydrogen 3'4090
Cobalt	0.10606	Carbon monoxide 0'2479
Platinum plate .	0'03243	Chlorine 0'1214
" sponge.	0.03293	Carbon dioxide . 0'2164
Palladium	0 05927	Nitric oxide o'2238
Gold	0.03544	Steam 0'475

The following table, embodying the results obtained by Person, gives the latent heat of several bodies:—

Water	79.25	Bismuth 12.64
Phosphorus	5.03	Lead 5'37
Sulphur	9.37	Zinc 28.13
Sodium nitrate.	62.97	Mercury 2.83
Potassium nitrate	47.37	Steam 537
Sodium chloride.		Alcohol vapour 208
Tin	14'25	Ether vapour 90

The heat required to raise the temperature of a kilogram of water through 1° C. is able to do work equivalent to the lifting of a kilogram weight through 425 metres. The mechanical equivalent of heat is 425 metre-kilograms.

A kilogram of water falling through a height of 425 metres, and having its motion suddenly arrested, would

have its temperature raised 1° C.

QUESTIONS.

279. The following quantities of water are mixed together:—

I kilogram at 40° C. 2 kilograms ,, 30° ,, 3 ,, 20° ,, 4 ,, 5° ,,

Calculate the temperature of the mixture.

! 280. If one kilogram of mercury at 20° C. be mixed with one kilogram of water at 0°, the temperature of the mixture will be 0.634° C. Calculate the specific heat of mercury.

- ! 281. Determine the specific heat of mercury from the observation that when the same vessel is filled successively with water and mercury, and heated to the same temperature, the water and mercury cool through the same number of degrees in 10 minutes and 270 seconds respectively. The specific gravity of mercury being considered constantly at 13.6.
- 282. Calculate the specific heat of mercury from the following numbers obtained by Kopp, according to his method:—

Temperature of mercury bath . . 51°·1 C.
Initial temperature in calorimeter . 13°·41 ,,
Final ,, , , . . 16°·50 ,,
Weight of water in calorimeter . . 26′·945 grams.
Weight of mercury used 53′·015 ,,
Thermal value of apparatus . . . 0′·651 ,,

283. Calculate the specific heat of phosphorus from the following determination by Kopp:—

Temperature of mercury bath . . 38°·8 C.
Initial temperature in calorimeter . 10°·05 ,,
Final ,, ,, . . . 13°·20 grams.
Weight of water in calorimeter . . 26·95 ,,
Weight of phosphorus employed . 3'075 ,,
Weight of water in tube . . . 2'065 ,,

- † 284. The specific heat of water is 4 times, and its density 770 times, that of air. Supposing a cubic mile of water to yield up one degree of its heat to a cold atmosphere, what quantity would 1000 cubic miles of the atmosphere be heated?
- 285. A bar of platinum weighing 150 grams is heated in a furnace until its temperature becomes constant, when it is thrown into a kilogram of water, the temperature of which it raises from 15° to 20°. Required the temperature of the furnace on the assumption that the specific heat of platinum is 0.03308 + 0.0000042t between 0.0000042t and 0.00000042t. (Pouillet.)
- 286. A determination of the specific heat of iron made in the calorimeter of Lavoisier and Laplace yielded the following data. Calculate the specific heat of iron:—

Weight of iron taken . . . 100 grams. Weight of ice melted . . . 14'35 , Initial temperature of iron . 100° C. Latent heat of water . . . 79'25

- 287. The mechanical equivalent of heat is 425 metre-kilograms. What is this in foot-pounds?
- 288. From what height must a block of ice at o° C. fall that the heat generated by its collision with the earth shall be just competent to melt it? From what height must it fall that the heat generated may be sufficient to convert it into steam?
- 289. If W_w = the number of scale divisions on a Bunsen's calorimeter equivalent to one gramme-degree unit of heat, T = the observed movement of the thread in scale divisions, G = the weight of substance taken and t its temperature, then sp. ht. = $\frac{T}{W_w \cdot G \cdot t}$. Find the sp. ht. of indium if G = 1.1514, $t = 99.82^{\circ}$ C., $W_w = 14.657$ and T = 100.2. Time correction for T = -3.45.)
- 290. From the data given, find the specific heats of (A) cast silver, (B) cast zinc, (C) cast antimony, (D)

cast cadmium, (E) roll sulphur, as determined by Bunsen's method. $W_w = 14.657$.

	A.	В.	C.	D.	E.
Weight of substance Temperature Scale movement	 100°C.	2'5150 99'8°C. 343'8	3'8575 99'8°C. 279'5	1'8675 99'8°C. 146'7	1 '0708 100 °C. 268 '8

291. One kilogram of steam at 100° C. is condensed in forty-nine kilos of water at 16° C.; what is the temperature of the mixture?

292. It is required to distil 2 kilos. of ethyl alcohol (BP. 78.3°) per hour. What must be the supply of water at 16° C. in order that the temperature of the water round the worm may not average higher than 25° C.? (Specific heat of ethyl alcohol = 0.615).

293. 75 grams of water are placed in a calorimeter of which the water equivalent is 5 grams; when at 15° C, 5 grams of steam are passed into and condensed by the water with the result that the temperature of the calorimeter and its contents is raised to 51.6° C.; from these data calculate the latent heat of vaporization of steam.

294. Using the atomic weights given in Appendix I., calculate the atomic heats of Pb, Ag, Cu, Fe, S, and P.

295. Taking the mean value of the atomic heats of the elements as 6.4, and the specific heats given in the table, find the atomic weights of Ag, Zn, Bi, Sn, and Fe. The stochiometrical quantities of these elements found by analysis as equivalent to 35.37 parts of Cl are as follows:—Ag 107.66, Zn 32.44, Bi 69.16, Sn 29.339, and Fe 18.626; from these numbers deduce the exact atomic weights of the elements in question.

296. It is found that in many compounds the sum of the atomic heats of the atoms of which the molecule is built up equals the product of the molecular weight into the specific heat of the compound (the molecular heat); assuming this to be always the case, deduce the atomic heats in the solid state of Cl and O, from the data that the

sp. ht. of $PbCl_2 = 0.0644$ (Regnault), of $Ga_2O_3 = 0.1062$, and of $In_2O_3 = 0.0807$.

(Specific heats, -Ga, 0.079; In, 0.057.)

297. Deduce the atomic heat of oxygen from the molecular heat 28.3 of potassium permanganate.

(Specific heats,-K, 0.166; Mn, 0.122.)

298. Find the approximate atomic heat of hydrogen if the molecular heat of NH₄Cl be taken as 20, and the atomic heats of N and Cl as 5.6 and 6.4 respectively.

299. The atomic heat of lead is deduced from Regnault's value for the specific heat to be about 6.3, the specific heat of cerussite = 0.080, of calc-spar = 0.206, of strontianite = 0.145, and of witherite = 0.109; find the atomic heats of Ca, Sr, and Ba.

HEAT OF SOLUTION; HEAT OF COMBINA-TION; CALORIFIC POWER; CALORIFIC INTENSITY.

CHEMICAL change is usually accompanied by changes in the distribution of energy in the system considered. By far the larger part of the energy lost to the changing systems during chemical reactions is given out in the form of heat; reactions in which heat is evolved are said to be *exothermic*. There exists also a class of reactions requiring heat to be imparted from without the system to the reacting bodies to enable the change to occur; such reactions are termed *endothermic*.

It is convenient to consider the thermal effects of the solution of substances together with the changes of energy-distribution due to strictly chemical reactions. The thermal unit in general use in connection with problems of this character is defined to be the amount of heat required to raise the temperature of one kilogram of water one degree Centigrade (the Calorie).

Generally the heat of combination is only one of a number of factors in the total thermal effect, heat being absorbed in the liquefaction or vaporization and evolved on the solidification of the reacting substances and pro-

ducts.

In the phenomena of ordinary combustion the terms calorific power and calorific intensity are used; by the former we understand the amount of heat produced by the combustion of one unit of weight of the burning substance, whereas the latter indicates the temperature to which the products of combustion can be raised by the heat evolved.

The calorific intensity $I = \frac{H}{m_1s_1 + m_2s_2 + m_3s_3 + \dots}$ where H represents the calorific power, $s_1 s_2 s_3 \&c.$, the specific heats, and $m_1 m_2 m_3 \&c.$, the masses of the products of the combustion of one unit weight of substance.

The following table expresses the calorific powers of a

number of substances burnt in oxygen :-

Hydrogen	34,462.	Tin	1,144.
Carbon .	8,080.	Copper	602.
Sulphur.	2,220.	Carbonic oxide.	2,403.
Phosphorus	5,747.		13,063.
Zinc	4 40	Olefiant gas	
Iron	1,576.	Alcohol	6,850.

The calorific power of any substance is a constant, being the same whether the body be burnt in oxygen or in air and whether it be burnt rapidly or slowly; the calorific intensity is modified by the circumstances under which the combustion takes place, any mixture of inert material—e.g. nitrogen in air, ash in coal—lessening I since heat must be used to raise the temperature of the foreign matters. Again, if radiation be allowed to take place freely the temperature reached during slow combustion will not be nearly so high as that attained by a more rapid burning.

A special form of notation is used in thermo-chemistry—e.g. $[H^2, Cl^2] = 44,000 + ...$ in words means 'two kilograms of hydrogen combine with seventy-one kilograms of chlorine with the evolution (+) of 44,000 Calories.'

EXAMPLES.

1. The calorific power of carbon is 8080, what is its calorific intensity when burnt in oxygen?

12 parts of carbon give on combustion 44 parts of carbon dioxide, hence 1 kilo. produces 3.67 kilos. The specific heat of carbon dioxide is 0.2164.

Hence
$$I = \frac{8080}{3.67 \times 0.2164} = 10,174$$
°C.

2. Find the calorific intensity of hydrogen burning in oxygen from the appended data.

Calorific power of hydrogen 34,462.

Weight of the product of combustion (H₂O) yielded by I kilo. of hydrogen, 9 kilos.

Specific heat of steam 0'475.

Here it must be remembered that at the temperature of combustion the water produced remains in the gaseous state, whereas the calorific power given above includes the heat given out on the condensation of the water vapour produced to water; hence the latent heat of vaporization of the water must be deducted from the given calorific power in calculating the value for *I*.

Assuming that the initial temperature is o°C. the total heat required to raise the temperature of the water produced to $T^\circ = 9 \{100 + 537 + 0.475 (T - 100)\}$ and this is necessarily the same as the calorific power.

Hence $I = T^{\circ}$, and

$$9 \left\{ 100 + 537 - 47.5 + 0.475 \ T \right\} = 34,462.$$

$$589.5 + 0.475 \ T = \frac{34462}{9}$$
therefore
$$I = T = \left(\frac{34462}{9} - 589.5 \right) = 6820.2^{\circ}\text{C}.$$

3. Determine the heat of formation of CH₂O₂ from its elements from the data:—

$$[C,O^2] = 96,960 + ;$$
 $[H^2,O] = 68,360 + ;$ $[CH^2O^2,O] = 65,900 + .$

The total heat produced by the oxidation of free C. and H₂ to CO₂ and H₂O must evidently be equivalent to the heat of formation of CH₂O₂ together with the heat pro-

duced by the oxidation of CH₂O₂, for we obtain the same final products in both cases.

$$[C,O^2] + [H^2,O] = [C,H^2,O^2] + [CH^2O^2,O]$$
. and $[C,O^2] + [H^2,O] = 96,960 + 68,360 = 165,320 + .$

...
$$[C,H^2,O^2] = 165,320 - [CH^2O^2,O]$$

= $165,320 - 65,900$
= $99,420 +$.

- 4. Find the heat of solution of HBr from the data :-
- (I) [KOH Aq, HCl Aq] = [KOH Aq, HBr Aq].
- (2) [K Br Aq, Cl] = 11,500 + . (3) [Br, Aq] = 500 + .
- (4) [H, Br] = 8,400. (5) [H, Cl, Aq] = 39,300.

From (2). [KBr Aq, Cl] = [K, Cl, Aq] + [Br, Aq] – [K, Br, Aq] = 11,500.

Replacement of Br by Cl gives 11500 thermal units. From this (5) and (1) we have

[H, Br, Aq] = [H, Cl, Aq] = 11,000 = 28,300 and [HBr, Aq] = [H, Br, Aq] - [H, Br] that is [HBr, Aq] = 28,300 - 8,400 = 19,900,

or the heat of solution of HBr is represented by 19,900 thermal units.

QUESTIONS.

300. What weight of water would be heated from o° to 1° C. by the combustion of 1 gram of hydrogen?

301. One gram of phosphorus is burnt in oxygen. To what temperature would a kilogram of water at o° C. be raised by the combustion?

302. Calculate the amount of water raised 15° by the combustion of 1 gram of sulphur in oxygen.

303. Calculate the calorific intensity of (1) ethylene, (2) of methane burning in air.

304. Calculate the calorific intensity of Newcastle Hartley coal possessing the following percentage composition:—

305. Determine the amount of heat disengaged by the combination of I gram of carbon with oxygen from the following experiment by Andrews:—

Weight of substance burnt 1'088 grams.

Temperature of the air 10° 06 C.

The excess of the final temperature of the water above that of the air Increment of temperature found . 2° 473 , 2° 464 , 318'3 grams.

Thermal value of the vessels . . 180 ,

! 306. Calculate the thermal power of charcoal from the following data:—

Weight of substance consumed . 10 parts.

" the water 8900 "

" the copper vessel . . 1000 "

Specific heat of copper . . . 0'09515

Initial temperature 11° C.

Final " 20° C.

307. Calculate the height to which a ton weight would be raised by the combustion of a kilogram of this charcoal, supposing that all the heat evolved was utilised in the lifting.

308. Find the heat of formation of H₂SO₄ from its elements.

Data given :— $[H^2SO^3Aq, H^2O, Cl^2] = 73,900$; [H, Cl, Aq] = 39,300; $[H^2,O] = 68,400$; $[SO^2,Aq] = 7,700$; $[S,O^2] = 69,900$; $[SO^3,Aq] = 37,400$; $[H^2SO^4, Aq] = 17,000$;

- 309. Given that $[C,O^2] = 96,900$ and $[H^2,O] = 68,400$, find the heat of formation of CH_4 , if the complete combustion of CH_4 gives 213,500 heat units.
 - 310. From the given data, find the heat of formation of $HCN := [C,O^2] = 96,900$; $[H^2,O] = 68,400$; [2HCN,5O] = 319,000.
- 311. What is the thermal value of the reaction $[N^2,O]$? Data :— $[C,2N^2O] = 133,900$. $[C,O^2] = 96,900$.
- 312. Calculate the heat of combination of alcohol and acetic acid [C²H⁶O, C²H⁴O²], having given :—

$$[C^{2}H^{6}O,O^{6}] = 330,400$$
; $[C^{2}H^{4}O^{2},O^{4}] = 210,300$; $[(C^{2}H^{5})OOC.CH^{3}, 5.O^{2}] = 553,780$.

313. Find the heat of formation of aldehyde from its elements, (a) liquid, (b) gaseous.

Data :—
$$C_2H_4O + 5.O = 2CO_2 + 2H_2O$$
.
 $[C^2H^4O, 5O] = 275,500$; $[C,O^2] = 96,900$;
 $[H^2,O]$ liquid = 68,400; $[H^2,O]$ gaseous = 58,700;
 $[C^2H^4O,5O]$ gaseous = 266,000.

- 314. The heat of solution of K_2SO_4 is 6340 -, of $CuSO_4.5H_2O$ is 2430 -, of $K_2SO_4.CuSO_4.7H_2O = 14,360 -$. What is the heat of formation of the double salt in solution?
- 315. $[P^2,O^5] = 369,100 + with ordinary phosphorus, [P^2,O^5] = 326,800 + with amorphous phosphorus. What is the thermal value of the change from the yellow to the red variety?$
- 316. In the reaction [H³PO³Aq, x NaOH Aq] the heat of neutralization for $x = \frac{1}{2}$ is 7,400; for x = 1 is 14,800; for x = 2 is 28,500; for x = 3 is 28,900. What deductions may be drawn as to the basicity of this acid?

Questions marked thus (!) are from the Owens College Calendars. Questions marked thus (†) are from the examination papers of the Science and Art Department.

APPENDIX.

TABLE I.

Atomic Weights and Symbols of the Elements.

Aluminium	Al	 27°1
Antimony	Sb	 120'2
Argon	A	 39'9
Arsenic	As	 75'0
Barium	Ba	 137.4
Bismuth	Bi	 208 0
Boron	В	 II.O
Bromine	Br	 79'96
Cadmium	Cd	 1124
Cæsium	Cs	 132'9
Calcium	Ca	 40'1
Carbon	C	 12'00
Cerium	Ce	 140'25
Chlorine	Cl	 35 45
Chromium	Cr	 52 I
Cobalt	Co	 59'0
Columbium	Cb	 94
Copper	Cu	 63.6
Erbium	Er	 166
Europium	Eu	 152
Fluorine	F	 10.0
Gadolinium	Gd	 156
Gallium	Ga	 70
Germanium	Ge	 72.5
Glucinum	GI	 0,1
Gold	Au	 197'2
Helium	He	 4'0
Hydrogen	H	 1,008
Indium	In	 1,12
Iodine	I	 126'97
Iridium	Ir	 193'0
Iron	Fe	 55'9
Krypton	Kr	 81.8
Lanthanum	La	 138.0
Lead	Pb	 206.9
Lithium	Li	 7'03
Magnesium	Mg	 24.36
Manganese	Mn	 550

Mercury		 200'0
Molybdenum	Mo .	 96'0
Neodymium	Nd .	 143'6
Neon	Ne .	 20
Nickel	Ni .	 58.7
Nitrogen	N	 14'01
Osmium	Os .	 191
Oxygen	0	 16.00
Palladium	Pd	 106.2
Phosphorus	P	 31,0
Platinum	Pt	 194.8
Potassium	K	 39'15
Praseodymium	Pr	 140 5
Radium	Rd	 225
Rhodium	Rh	 103'0
Rubidium	Rb	 85.5
Ruthenium	Ru	 101'7
Samarium	Sa	 150'3
Scandium	Sc	 44'I
Selenium	Se	 79'2
Silicon	Si	 28.4
Silver	Ag	 107'93
Sodium	Na ·	 23'05
Strontium	Sr	 87.6
Sulphur	S	 32'06
Tantalum	Ta	 181
Tellurium	Te	 127'6
Terbium	Tb	 159'2
Thallium	TI	 204°I
Thorium	Th	 232.2
Thulium	Tm	 171
Tin	Sn	 110,0
Titanium	Ti	 48'1
Tungsten	W	 184
Uranium	U	 238.2
Vanadium	V	 51'2
Xenon	Xe	 128
Ytterbium	Yb	 173'0
Yttrium	Yt	 89.0
Zinc	Zn	 65'4
Zirconium	Zr	 90.6

TABLE II.

Weight of one Cubic Centimetre of Atmospheric Air at different Temperatures from 0° to 300°, at 760 mm. pressure.

0 I 2		0					1
I				0		0	
I	0'001293	46	0,001108	92	0.000967	138	0'000858
1000	001288	47	001105	93	000964	139	000856
	001284	48	001102	94	000962	140	000854
3	001279	49	001098	95	000959	141	000852
4	001275	50	001095	96	000956	142	000850
5	001270	51	001091	97	000953	143	000848
5	001266	52	001088	98	000951	144	000846
	001261	53	001084	99	000948	145	000844
7 8	001257	54	180100	100	000946	146	000842
9	001252	55	001077	IOI	000943	147	000840
10	001248	56	001074	102	000941	148	000838
II	001243	57	001070	103	000938	149	000836
12	001239	58	001067	104	000936	150	000834
13	001234	59	001063	105	000933	151	000832
14	001230	60	001000	106	000931	152	000830
15	001225	61	001057	107	000928	153	000828
16	001221	62	001053	108	000926	154	000826
17	001217	63	001050	109	000923	155	000824
18	001213	64	001047	110	000921	156	000822
19	001209	65	001044	III	000019	157	000821
20	001205	66	001041	112	000016	158	000819
21	001201	67	001038	113	000914	159	000817
22	001197	68	001035	114	116000	160	000815
23	001193	69	001032	115	000909	161	000813
24	001189	70	001029	116	000907	162	118000
25	001185	71	001026	117	000905	163	000809
26	001181	72	001023	118	000903	164	000807
27	001177	73	001020	119	000900	165	000806
28	001173	74	001017	120	000898	166	000804
29	001169	75	001014	121	000896	167	000802
30	001165	76	001011	122	000894	163	000800
31	001101	77	001008	123	000891	169	000798
32	001157	78	001005	124	000889	170	000796
33	001154	79	001002	125	000887	171	000794
34	001150	80	001000	126	000884	172	000793
35	001146	81	000997	127	000882	173	000791
36	001142	82	000994	128	000880	174	000789
37	001138	83	000992	129	000878	175	000788
38	001134	84	000989	130	000876	176	000786
39	001131	85	000986	131	000874	177	000784
40	001128	86	000983	132	000871	178	000782
41	001124	87	000980	133	000869	179	000781
42	001121	88	000977	134	000867	180	000779
43	811100	89	000974	135	000865	181	000777
44	001114	90	000972	136	000863	182	000776
45	001111	91	000969	137	000860	183	000774

TABLE II.—(continued.)

1 0	1	11 0	1	11 0	1	11 .	1
184	0'000772	213	0'000725	242	0'000685	271	0'000648
185	000770	214	000724	243	000683	272	000647
186	000769	215	000722	244	000682	273	000646
187	000767	216	000721	245	00068r	274	000645
188	000765	217	000719	246	000679	275	000643
189	000763	218	000718	247	000678	276	000642
190	000762	219	000716	248	000677	277	000641
191	000760	220	000715	249	000675	278	000640
192	000758	221	000713	250	000674	279	000639
193	000757	222	000712	251	000673	280	000638
194	000755	223	000710	252	000672	281	000636
195	000754	224	000709	253	000670	282	000635
196	000752	225	000708	254	000669	283	000634
197	000751	226	000706	255	000668	284	000633
198	000749	227	000705	256	000666	285	000631
199	000748	228	000703	257	000665	286	000630
200	000746	229	000702	258	000664	287	000629
201	000744	230	000701	259	000663	288	000628
202	000743	231	000699	260	000662	289	000627
203	000740	232	000698	261	000660	290	000626
204	000739	233	000697	262	000659	291	000625
205	000737	234	000695	263	000658	292	000624
206	000736	235	000694	264	000657	293	000623
207	000734	236	000692	265	000655	294	000622
208	000733	237	000691	266	000654	295	000621
209	000731	238	000690	267	000653	296	000620
210	000730	239	000689	268	000652	297	000619
211	000728	240	000688	269	000651	298	000618
212	000727	241	000686	270	000650	299	000617
						300	000616

TABLE III.

The weight of 1000 c.c. of water of t° C., when determined by means of brass weights in air of 0° C., and of a tension 0.76m., is equal to 1000 - x grms.

t°	0	I	2	3	4	5	6	7	8	9	10	11	12
x	1.26	1.30	1,19	1,13	1,15	1,13	1'14	1.17	1'22	1.58	1,32	1.44	1.2
t°	13	14	15	16	17	18	19	20	21	22	23	24	25
x	1.65	1.48	1'92	2.07	2'23	2.40	2.28	2.48	2'99	3,50	3'43	3.66	3,80
t°	26	27	28	29	30								
x	4'17	4.45	4.72	4'99	5°26								

Volume and Density of Water at different Temperatures, (Rossetti).

Temp.	Volume of Water	Sp. Gr. of Water	Volume of Water	Sp. Gr. of Water
°C.	(at $o^{\circ} = 1$).	(at $o^{\circ} = 1$).	(at $4^{\circ} = 1$).	(at $4^{\circ} = 1$).
0	1,00000	1,000000	1,00013	0*999871
I	0'99994	1'000057	1'00007	0'999928
2	0'99990	1,000008	1'00003	0.999969
3	0'99988	1'000120	1,00001	0'999991
4	0'99987	1'000129	1,00000	1,000000
5	0'99988	1,000110	1,00001	0,000000
5	0'99990	1,000003	1,00003	0'999970
7 8	0'99994	1'000062	1'00007	0'999933
8	0'99999	1,000012	1,00011	0'999886
9	1'00005	0'999953	1,00018	0'999824
IO	1'00012	0'999876	1'00025	0'999747
II	I 00022	0'999784	1'00034	0 999655
12	1'00032	0'999678	1'00045	0'999549
13	1'00044	0'999559	1'00057	0'999430
14	1'00057	0'999429	1'00070	0'999299
15	1'00071	0'999289	1'00084	0,090160
16	1,00084	0.999131	1,00100	0'999002
17	1,00103	0'998970	1,00119	0'998841
18	1'00122	0.998785	1'00135	0'998654
19	1 00141	0.998288	1'00154	0'998460
20	1,00191	0.998388	1'00174	0'998259
21	1,00183	0.998146	1,00109	0'998047
22	1'00205	0.997956	1'00217	0'997828
23	1'00228	0'997730	1'00240	0'997601
24	1'00251	0'997495	1'00264	0'997367
25	1'00276	0'997249	1,00580	0'997120
26	1,00301	0'996994	1'00314	0'996866
27	1 00328	0'996732	1'00341	0'996603
28	1'00355	0.996460	1.00368	0'996331
29	1,00383	0.996179	1.00399	0'996051
30	1'00412	0.99289	1'00425	0'99577
40	1'00757			
50	1 01182	***	***	
60	1'01678	***	***	
70	1 02243	***		***
80	1 02874	***	•••	
90	1 03554	***		***
100	1'04299	***		***

TABLE V.

For the Calculation of
$$\frac{1}{1 + 0.00367T}$$
.

T		Т		T		T	
		-					
I	0.99634	38	o'87761	75	0.78416	112	0.70870
2	99271	39	87479	76	78191	113	70686
3	98911	40	87199	77	77967	114	70503
4	98553	41	86921	78	77745	115	70321
5	98198	42	86645	79 80	77523	116	70140
	97845	43	86370		77304	117	69960
7 8	97495	44	86097	81	77085	118	69781
	97148	45	85826	82	76867	119	69603
9	96803	46	85556	83	76651	120	69425
10	96460	47	85289	84	76436	121	69249
II	96120	48	85022	85	76222	122	69073
12	95782	49	84758	86	76010	123	68899
13	95446	50	84495	87	75798	124	68725
14	95113	51	84234	88	75588	125	68552
15	94782	52	83974	89	75379	126	68380
16	94454	53	83716	90	75171	127	68209
17	94127	54	83460	91	74964	128	68038
	93803	55	83205	92	74758	129	67869
19	93482	56	82952	93	74554	130	67700
20	93162	57	82700	94	74354	131	67532
21	92844	58	82450 82201	95	74148	132	67365
22	92529	59 60	81954	96	73947	133	67034
23	92216	61	81708	97 98	73747	134	66870
24 25	91905 91596	62	81464	99	73548 73350	136	66706
26	91390	63	81221	100	73153	137	66543
27	90984	64	80979	IOI	72957	138	66380
28	90682	65	80740	102	72762	139	66219
29	90381	66	80501	103	72568	140	66059
30	90082	67	80264	104	72376	141	65899
31	89785	68	80028	105	72184	142	65740
32	89490	69	79794	106	71993	143	65582
33	89197	70	7956I	107	71803	144	65424
34	88906	71	79329	108	71615	145	65268
35	88617	72	79099	109	71427	146	65112
36	88330	73	78870	110	71240	147	64957
37	88044	74	78642	III	71055	148	64802

TABLE VI.

Pressure (tension) of Water Vapour between - 19° and 101° C., (Broch).

T.°C.	mm.	T.°C.	mm.	T.°C.	mm.	T.°C.	mm.
- 19	1'0288	12	10'4322	43	64.3104	74	276.8675
- 18	1'1202	13	11'1370	44	67.7568	75	288 7640
- 17	1'2187	14	11.8835	45	71'3619	76	301,0800
- 16	1'3248	15	12.6739	46	75 1314	77	313.8475
- 15	1'4390	16	13,2103	47	79'0714	78	327 0549
- 14	1.2018	17	14'3950	48	83.1883	79	340 7265
-13	1.6939	18	15 3304	49	87.4882	80	354 8730
-12	1'8357	19	16.3189	50	91'9780	81	369 5075
- 11	1.0880	20	17'3632	51	96.6644	82	384 6432
-10	2 1514	21	18.4659	52	101'5541	83	400'2933
-9	2.3266	22	19.6297	53	106.6546	84	416,4721
-8	2'5143	23	20.8576	54	111'9730	85	433'1938
-7	2'7153	24	22'1524	55	117'5162	86	450'4730
-6	2'9304	25	23'5174	56	123'2925	87	468'3240
- 5	3'1605	26	24 9556	57	129'3095	88	486.7635
-4	3 4065	27	26.4705	58	135 5750	89	505 8059
-3	3.6663	28	28'0654	59	142'0973	90	525 4676
-2	3 9499	29	29'7439	60	148.8848	91	545 7650
- I	4 2493	30	31,2006	61	155 9456	92	566'7149
0	4.5687	31	33 3664	62	163.5888	93	588 3349
+1	4'9091	32	35,3181	63	170 9236	94	610.6426
2	5 2719	33	37 3689	64	178.8285	95	633 6567
3	5'6582	34	39'5228	65	187 1028	96	657 3956
4	6.0603	35	41.7842	66	195'6663	97	681.8201
5	6.2064	36	44 1577	67	204 5586	98	707 1271
	6.9718	37	46.6477	68	213'7895	99	733'1602
7	7 4660	38	49 2950	69	223'3691	100	760 0000
8	7 9909	39	51 9965	70	233 3079	IOI	787 6678
9	8.5484	40	54.8651	71	243.6163		
10	9,1398	41	57'8700	72	254 3048		
II	9.7671	42	61 0167	73	265 3849		

TABLE VII.

For the Conversion of the Degrees (T') of a Mercurial Thermometer into the corresponding values (T") of a Hydrogen

Thermometer.

T'	T"	T'	Т"	T'	T"	T'	Т"
-10°.07	-10,00	100°	100	189.65	190	280'52	280
0,00	0,00	109,08	110	199.70	200	290.81	290
+10.02	+10,00	119'95	120	209.75	210	301,08	300
20'08	20'00	129'91	130	219.80	220	311'45	310
30,10	30,00	139.85	140	229.85	230	321.80	320
40'11	40'00	149.80	150	239*90	240	332*40	330
50'10	50.00	159'74	160	250'05	250	343'00	340
60.09	60.00	169.68	170	260'20	260	354'00	350
70'07	70.00	179.63	180	270.38	270		
80.02	80.00						
90.03	90.00						

TABLE VIII.

For the Correction of Thermometer Readings.

					n					
t-t'	10	20	30	40	50	60	70	80	90	100
10	0,01	0.03	0'04	0.06	0'07	0.00	0'10	0'11	0,13	0'14
30	0'02	0.00	0.00	0 17	0'14	0'17	0,30	0 22	0.39	0'29
40 50 60	0°05 0°07 0°08	0°11 0°14 0°17	0'17 0'21 0'25	0°23 0°29 0°35	o'28 o'36 o'43	0°34 0°43 0°51	o'40 o'50 o'60	o'47 o'60 o'70	o'52 o'64 o'77	o'57 o'71 o'86
70 80 90	0,13	o'20 o'23 o'26	o'30 o'34 o'39	0°40 0°45 0°51	o'50 o'57 o'64	o'60 o'68 o'77	o'70 o'80 o'90	0.80	0,00	1 00 1 14 1 30
100 110 120	0'14 0'16 0'17	o'28 o'31 o'34	0°43 0°47 0°51	o'57 o'63 o'69	o'71 o'79 o'86	o'85 o'94 1'03	1,00 1,10	1°14 1°26 1°37	1'29 1'42 1'54	1'43 1'58 1'71

	n										
t - t'	110	120	130	140	150	160	170	180	190	200	
10 20 30	0'16 0'31 0'47	0'17 0'34 0'51	o'19 o'37 o'56	0°20 0°40 0°60	o'21 o'43 o'64	o'22 o'46 o'68	0°24 0°49 0°73	0°26 0°51 0°77	0°27 0°54 0°82	o'29 o'57 o'86	
40 50 60	o'63 o'79 o'94	o'69 o'86	0'74 0'93 1'12	0.80 1.00 1.50	o:86 1'07 1'29	0'91 1'14 1'37	0'97 1'22 1'46	1'03 1'29 1'54	1'09 1'36 1'63	1'14 1'43 1'72	
70 80 90	1'10 1'26 1'42	1°20 1°37 1°54	1'30 1'49 1'66	1'40 1'60 1'80	1'50 1'72 1'93	1'60 1'83 2'05	1'70 1'94 2'17	1.80 2.02 2.31	1'90 2'17 2'45	2 00 2 29 2 54	
100 110 120	1.28 1.23	1,21 1,80	1.84 2.04 2.23	2'00 2'20 2'40	2°15 2°36 2°57	2°29 2°51 2°74	2°43 2°67 2°92	2°57 2°83 3°09	2'72 2'99 3'26	2.86 3.15 3.43	

TABLE IX.

Useful Constants.

	Number.	Logarithm.
g, at Greenwich. Coefficient of expansion of Hg. for 1° C. Mass of 1 c.c. of Hg. at 0° C. Volume of 31 92 gm. of oxygen in litres. Conventional molecular vol. in litres. Coeff. exp. air, at constant pressure. Coeff. elasticity of air at constant volume. One litre of hydrogen at 0°C and 760 mm.	3'1416 981'17 cms. 0'0001802 13'596 grams. 22'325 22'4 0'00367 0'003665	0'4971499 2'9917443 4'2557548 1'1334112 1'3487915 1'3502480 3'5646661 3'5640740
barometric pressure and at the level of the sea and latitude 45° weighs Do. oxygen	o'08958 grms. 1'4298 ,, 1'2562 ,, 1'2932 ,,	2'9522111 0 1552753 0'0990588 0'1116657

	ur.	ı
	_	×
		•
	ъ.	۰
	e	1
	27	
1	٩.	
ъ	÷	٠
т		
*		۰
	.00	e
	50	×
	_	
	•	
	-	
	•	
	-	•
۰	,	•
		a
	=	
	-	
	2	
	•	
	-3	Е
	•	
	-	-
	,	٩.
	٠.	ð
	-	
١	ń	
i		
1		4
1	1	4
-	2	4
	9	1
	2	+
-	0	+

١.	
6	
3	
٠.	
١.	
٩.	
,	
•	
•	
١.	
•	
٧.	
2	
í	
1	
٠.	
:	
1	
1	
1	
-	
-	
-	
-	
-	
-	
-	
1	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	

6	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10
00	1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	112 21 12 12	11110000000
7	26 27 27 27 27 27 27 27 27 27 27 27 27 27	15 14 11 12 11 11 11 10 11	0 0 0 0 0 0 0 0 0 0 0 0 0
9	22 23 110 110 110 110 110 110 110 110 110 11	113 115 110 100 100 000 000 000 000 000 000	0000000
N)	191111111111111111111111111111111111111	H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VVV0000000
4	113 113 119 0 0 0 0	0000777000	00000000004
to.	1112	0000 NNNNN 4	444444000
64	88 V000 NNN4	44444000000	000000000000
н	44000000000	000000000	нннннннн
0	0374 0755 1106 1430 1732 2014 2279 2529 2765 2989	3201 3404 3598 3784 3962 4133 4298 4456 4609	4900 5038 5172 5302 5428 5551 5670 5786 5899
00	0334 0719 1072 1399 1703 1987 2253 2253 2504 2742 2967	3181 3385 3379 3766 3945 4116 4742 4742	4886 5189 5289 5289 5416 5539 5539 5588 5888 5999
7	0294 0682 1038 1367 1673 1959 2227 2480 2718	3160 3365 3560 3747 3927 4099 4265 4425 4579	4871 5011 5145 5276 5475 5647 5647 5877 5988
9	0253 0645 1004 1335 1644 1931 2201 2455 2695	3139 3345 3341 3729 3909 4082 4249 4409 4564 4713	4857 4997 5132 5263 5263 5391 5635 5752 5866 5977
w	0212 0607 0969 1303 1614 1903 2175 2430 2672 2900	3324 3324 3722 3722 4005 4232 4393 4598	4843 4983 5119 5250 5378 5502 5623 5740 5855 5966
4	0170 0569 0934 1271 1875 2148 2405 2405 2878	3096 3304 3502 3692 3692 4048 4216 4533 4683	4829 4969 5105 5237 5386 5490 5611 5729 5843 5955
to.	0128 0531 0899 1239 1553 1847 2122 2380 2625 2856	3075 3284 3483 3674 4031 4200 4362 4518	4814 4955 5092 5224 5353 5478 5599 5717 5832 5944
CI	00 00 00 00 00 00 00 00 00 00 00 00 00	33.05 33.05 33.05 33.05 44.05 45 45.05 45 45 45 45 45 45 45 45 45 45 45 45 45	4800 4942 5079 5211 5340 5465 5587 5705 5821 5933
н	0043 00453 00828 1173 1492 1790 2068 2330 2577	3032 3243 3243 3644 3820 4106 4106 41330 4187	4786 4928 51988 5328 5453 56575 56575
0	0000 0414 0792 1139 1461 1761 2041 2553 2788	3010 3222 3424 3617 3802 3979 4150 4472 4624	4771 50051 51051 53155 5315 5563 5798 5911
Nat. numb.	11 12 11 12 11 10 10	0 1 0 0 0 0 0 0 0 0	33 33 33 33 33 33 33 33 33 33 33 33 33

LOGARITHMS.

	0	5 a a a a a a a a a a a	2777777788	0000000000
	00	0000000000000	000000000	0000000000000
arts.	7	000111111000	00000000000	N N N N N N N N 4 4
1 P	9	0000000000	NNNNNNNN44	444444444
ona	N)	N N N N N N N N 4 4	444444444	440000000000
Proportional Parts.	4	4 4 4 4 4 4 4 4 4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Pro	m	m m m m m m m m m	~~~~~~~~~~~	00000000000
	64	0000000000	аааааааанн	нининини
	н	нннннннн	нннннннн	нннннннн
	6	6117 6222 6325 6425 6522 6618 6712 6803 6893	7067 7152 7235 7316 7316 7474 7551 7627 7701	7846 7917 7987 8055 8122 8189 8254 8319 8445
	00	6107 6212 6314 6415 6513 6609 6702 6794 6884	7059 7143 7226 7308 7388 7466 7543 7619 7619	7839 7910 7980 8048 8116 8182 8248 8376 8439
MO.	7	6096 6201 6304 6405 6503 6503 6785 6875 6985	7050 7135 7218 7300 7380 7459 7612 7612 7686	7832 7903 7973 8041 8109 8176 8241 8370 8432
HINE	9	6085 6191 6294 6395 6493 6590 6684 6776 6866	7042 7126 7210 7292 7372 7451 7528 7604 7679	7825 7825 7966 8035 8169 8235 8235 8426
1	N)	6075 6180 6284 6385 6484 6580 6075 6975	7033 7202 7284 7364 7443 7520 7520 7572	7818 7889 7959 8028 8096 8162 8228 8228 8357 8420
	4	6064 6170 6274 6375 6474 6571 6665 6758 6937	7024 7110 7193 7275 7356 7435 7513 7589 7664 7738	7810 7882 7952 8021 8089 8156 8222 8287 8287 8414
	0	6053 6160 6263 6365 6464 6561 6656 6749 6839	7016 7101 7185 7267 7348 7427 7505 7505 7505 7505	7803 7875 7945 8014 8082 8149 8215 8280 8344 8407
	64	6042 6253 6253 6355 6454 6551 6646 6739 6830	7007 7093 7177 7259 7340 7497 7574 7649	7796 7868 7938 8007 8075 8142 8209 8274 8338 8401
	н	6031 6138 6243 6345 6444 6542 6637 6730 6821	6998 7084 7168 7251 7412 7412 7490 7566 7642 7716	7789 7860 7931 8000 8136 8202 8267 8267 8331 8395
	0	6021 6128 6232 6335 6435 6628 6721 6812	6990 7076 7160 7243 7324 7404 7482 7559 7634 7704	7782 7853 7924 7993 8062 8129 8129 8261 8325 8325
	Nat. numb.	0 H 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6	55 24 23 2 1 0 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	60 64 65 67 68 68

	article in
	112
_	-
	100
	-
	_
-	-
	10.
	-
	_
_	-
	V.
	-
_	-4
×	-
	-
	/ Bes
	-
_	-
_	_
7	-
-	_
	-

Proportional Parts.

0	0 10 10 10 10 10 10 10 10 10 10 10 10 10	NNNNNNN444	444444444
00	N N N N N N N 4 4 4	444444444	44444444
1	444444444	4444444000	00000000000000
9	44444000000		mmmmmmmmm
2	m m m m m m m m m	0000000000000	0000000000
4	0 0 0 0 0 0 0 0 0 0 0		00000000000
m	0 0 0 0 0 0 0 0 0 0 0	аааааааннн	ннининини
61	нннннннн	нинининин	ннининини
н	нининини	нининнооо	000000000
	S S	0.0000000000000000000000000000000000000	9 m 9 m 0 m 0 m 9
6	8506 8557 8627 8627 8745 88745 88745 8875 9871	9079 9079 9073 9073 9073 9073 9073 9073	9586 99589 99589 9958 99968
	221 221 339 339 339 339 339 339 339 339	400 0 0 4 10 10 10 4 10	81 222 222 68 68 14 14 91 91
00	8500 8501 8621 8621 8639 8797 8854 8910 9050	99999999999999	958 999 999 999 999 999
-			
7	88 8555 88615 88733 88733 88733 88733 88733 88733 88733	9069 9122 9175 9277 9279 9330 9430 9479	9576 9624 9671 9671 9763 9889 9889 9983 9987
	000000000000000000000000000000000000000	00000000000	0000000000
	w 0000 \ N 0 0 + 0	W > 0 W + W W W + W	H 0/0 10 0 10 0 + 0 10
9	8488 8549 8669 8669 8727 8727 88785 88842 8899 9009	9063 8170 9117 9117 9222 9274 9375 9475	9571 9666 9713 9713 9729 9939 9939 9939
	233 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	800000000	934 935 938 458 458 458 458 458 458 458 458 458 45
N	8482 8663 8663 8722 8779 8837 9004	9058 9112 9165 9217 9269 9320 9370 9489 9518	9566 96614 9708 9708 9754 99845 99845
-			
4	8476 8537 8657 8716 8714 8887 8888 8983 8983	90053 9159 9159 9159 9155 9155 9155 9155 91	9562 99699 99657 97750 97750 97750 97750 97750 97750
	0 0 0 0 0 0 0 0 0 0 0	888888888	2222222222
	0 4 4 4 0 0 10 0 0 0	- U - U - U - U - U - U - U - U - U - U	
m	8470 8531 8531 8710 8768 8825 8838 8938 8938	9047 9154 9154 9156 9156 9156 9156 9156 9156	9557 9665 9665 9669 9745 977 978 978 978 978 978 978 978 978 978
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0.0.0.0.0.0.0.0.0.0	00000000000
	222242222	400HW4WWW4	40 V 4 H O 4 V H 10
CI	88525 88525 88762 88820 88820 8932	90042 90042 90040 90040 90040 90040 90040 90040 90040 90040 90040	9552 9660 9647 9741 9786 977 99832
	1		
	88 8579 88579 88579 88539 88539 8871 88871	9036 9036 9143 9196 9248 9299 9350 9490	7 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	88888888888	9999999999	9547 9595 9643 9689 9736 9736 99827 99872
0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	993931	9550 9550 9550 9550 9550 9550 9550
	000000000000000000000000000000000000000	00000000000	0000000000
at.	0 H 0 00 + 1000 h 00 0	0 + 0 50 + 10 0 50 0	0 4 0 6 4 10 5
Nat. numb.	74777777	8 8 8 8 8 8 8 8 8 8 8 8	84884888888
-			•

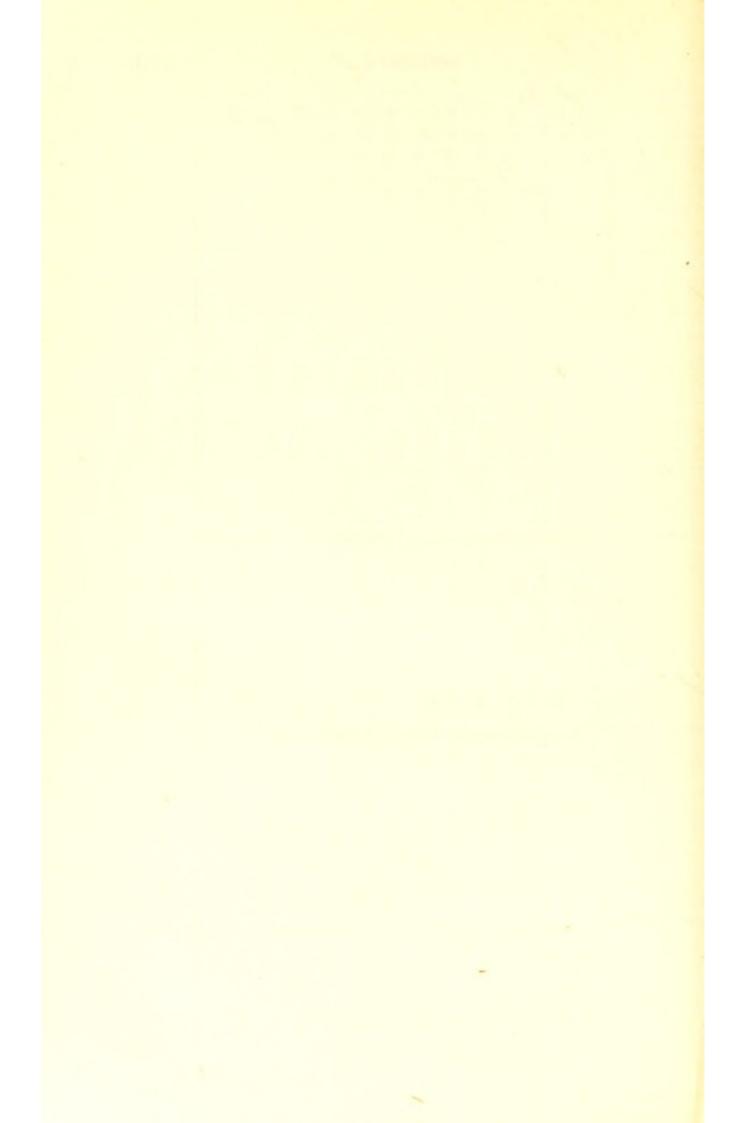
Proportional Parts.

INTI-LOGARITHMS.

0	00000000000		000444444
00		000000000000	00000000044
7	0000000000	00000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
vo	ппппппппппппппппппппппппппппппппппппппп	0000000000	00000000000
ın	ннининнин	нааааааааа	00000000000
4	ннининнин	ннининнин	напапапапап
ro.	ннннннннн	ннннннннн	нининини
61	0000ннннн	ннининнин	нининини
н	0000000000	0000000000	000000000
6	1021 1045 1069 1094 1119 1172 1199 1227 1256	1285 1315 1346 1377 1409 1442 1476 1510	1618 1656 1694 1734 1774 1816 1985 1901 1945
co	1019 1042 1067 1091 1117 11143 1169 1197 1225	1282 1312 1343 1374 1406 1439 1472 1507 1578	1614 1652 1690 1730 1770 1811 1854 1897 1941
7	1016 1040 1064 1089 1114 1140 1167 1194 1222	1279 1309 1340 1371 1403 1469 1503 1538	1611 1648 1687 1726 1766 1807 1849 1892 1936
9	1014 1038 1062 1086 1112 1138 1164 1191 1219	1276 1306 1358 1400 1432 1466 1500 1535	1607 1644 1683 1722 1762 1803 1845 1932 1932
w	1012 1035 1059 1084 1109 1135 1161 1189 1216	1274 1303 1334 1395 1429 1462 1496 1531	1603 1641 1679 1718 1758 1758 1799 1841 1928 1928
4	1009 1033 1057 1081 1107 1132 1159 1186 1213	1271 1300 1350 1361 1426 1459 1459 1528	1600 1637 1675 1714 1754 1795 1879 1923 1923
10	1007 1030 1054 1079 1130 1136 1183 1211	1268 1297 1327 1358 1390 1422 1489 1524 1560	1596 1633 1671 1710 1750 1791 1832 1919 1919
CI	1005 1028 1052 1076 1102 1127 1153 1180 1208	1265 1294 1324 1387 1419 1419 1486 1521 1521	1592 1629 1667 1706 1746 1786 1828 1871 1914
I	1002 1026 1050 1074 1099 1125 1178 1205 1205	1262 1321 1321 1352 1352 1449 1449 1517	1589 1626 1663 1702 1742 1782 1824 1866 1910
0	1000 1023 1047 1072 1096 1122 1148 1175 1202	1259 12888 1318 1349 1380 1413 1445 1514 1514	1585 1622 1660 1698 1738 1778 1820 1862 1905
Log.	9,00,00,00,00,00	0 H 2 H 1 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	222222222222222222222222222222222222222

2	
2	

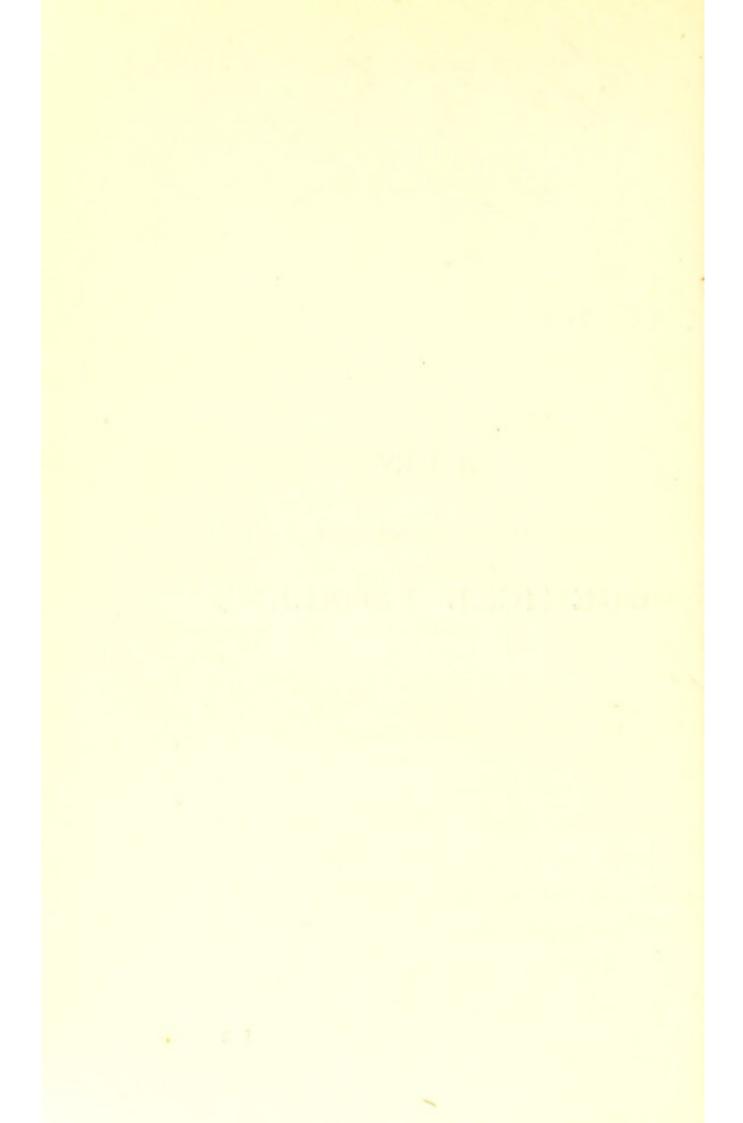
0	44440000000	0000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00	444444444	00000000000000	7777700000
1	WWWW444444	4444400000	n n n n o o o o o o o
9	m m m m m m m m m	444444444	4 10 10 10 10 10 10 10 10 10
w	0 0 0 0 0 0 0 0 0 0 0	wwwwwwww44	44444444
4	0000000000	8 8 8 6 6 6 6 6 6 6 6	00000000044
m	ниннаааааа	0000000000	00000000000
61	ннннннннн	ннннннннн	→ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
н	ООООННННН	нннннннн	нннннннн
6	200837 200837 200837 200837 200833 200833 200833 200833 200833	2564 2624 2624 2748 2812 2877 2944 3013 3155	3228 3381 3459 3540 3540 3707 3707 3972
00	2003 2003 21128 2228 2228 2333 2443 2643	2559 2618 2679 2742 2805 2871 2871 2938 3006 3148	3221 3296 3373 3451 3532 3614 3698 3784 3873
7	2028 2075 2173 2275 2275 2328 2438	2553 2612 2673 2735 2735 2735 2739 2864 2931 2999 3069	3214 3289 3365 3443 3524 3606 3690 3776 3864
9	2023 2070 2118 2168 2218 2270 2323 2432 2489	2547 2606 2667 2729 2729 2729 2724 2924 2922 3062	3206 3281 3357 3436 3516 3597 3681 3767 3855
N.	2018 2065 2113 2163 2213 2217 2317 2427 2427	2541 2660 2661 2723 2723 2723 2723 2723 2723 2723 3725 3055	3199 3173 3173 3173 3173 3173 3173 3173
4	2014 2061 2109 2158 2208 2259 2312 2366 2421	2535 2594 2716 2780 2780 2844 2971 2979 3048	3192 3266 3342 3499 3581 3664 3750 3926
m	2009 2056 2104 2153 2203 2203 2207 2360 2415	2529 2588 2649 2710 2773 2838 2904 2972 3041	3184 3258 3334 3412 3573 3656 3741 3917
. 01	2004 2051 2099 2148 2249 2301 2355 2410	2582 2642 2764 2767 28831 28831 28897 2965 3034	3177 3251 3404 3483 3565 3648 3753 3908
н	2000 2046 2046 2193 2296 2350 2404 2460	2518 26336 26336 2761 28361 28958 2958 3027	3170 3319 3319 3319 3475 3556 3556 3511 3811
0	1995 2008 2008 2138 2138 2239 2344 2399	2572 26530 26530 27592 27592 29818 30951 30951	3162 3236 33311 3388 3467 3548 3631 3890 3890
Log.	8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 4 4 4 4 4 4 4 4 4 4 4 4	50 50 50 50 50 50 50 50 50 50 50 50 50 5


000	
6.8.3	
-	
-	
-	
-	
Investi	
_	
_	
*	
-	
_	
-	
_	
- 4	
100	
00	
_	
- 4	
-	
-	
-	
pr. 200.	
7	
~	
_	
E 3	
-	
-	
-	
. "	
-	
_	
F	
1	
-	
7	
1	
Fred	
-4	
-	
The sale	

			-	
	0	@ 000000000000	111111111111111111111111111111111111111	W444NNN000
	00	V00000000000	0000000	0000000444 HHHHHHHHHH
Parts.	-	0000111110	888000000000	
			ннн	нниннины
13	9	777 00000000	V V V 00 00 00 00 00 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
tion	w	000000000000000000000000000000000000000	777770000	∠∞∞∞∞∞∞∞∞∞
Proportional	4	44444444	000000000000000000000000000000000000000	000000
Pr	m	m m m m m m m m m	444444444	4 N N N N N N N N N N
	C1		8888888888888	
	H	нннннннн	ннининнин	
	0,	4064 4159 4256 4355 4457 4757 4775 4887 5000	5117 5236 5358 5483 5610 5741 6012 6152 6295	6442 6592 6745 6902 7063 7228 7396 7745
	00	4055 4345 4345 4345 455 455 455 455 455 45	5105 53246 5346 5528 5728 5728 5728 6138 6281	6427 6577 6730 6887 7047 7211 7379 7551 7727
	7	4046 4140 4140 4535 4539 4645 4645 4773	5093 53433 53433 5348 5348 6124 6266	6412 6561 6714 6871 7031 7194 7362 7534 7709
	9	4036 4130 4527 4525 4529 4742 4885 4966	5082 5200 5321 5445 5702 5702 5834 5970 6109 6252	6397 6546 6699 6855 7015 7178 7345 7516 7691
	N	4027 4121 4217 4315 4519 4624 4732 4842 4955	5070 5188 5309 5433 5559 5821 5957 6095	6383 6531 6683 6839 6998 7161 7328 7499 7674
	4	4018 4111 4207 4305 4406 4508 4613 4721 4831 4943	5058 5176 5297 5420 5546 5608 5943 6223	6368 6516 6668 6823 6982 7145 7311 7482 7656
	m	4009 4102 4198 4295 4498 4710 4819 4932	5047 5164 5284 5408 5534 5662 5794 5929 6067 6209	6353 6501 6653 6808 6966 7129 7295 7464 7638
	C4	3999 4 4 4 4 4 4 4 4 4 4 4 4 4 8 5 8 5 8 5 8	5035 5152 5272 5395 5521 5649 5781 5916 6053 6194	6339 6486 6637 6792 6950 7112 7278 7447 7621
	н	3990 4083 4178 4276 4375 4477 4581 4797 4797	5140 5140 5140 5360 5508 5636 6139 6139	6324 6471 6522 6776 6934 7261 7430 7780
	0	3981 4704 4705 4705 4705 4705 4705 4705 4705	5012 5129 5248 5348 5370 5623 6026 6166	6310 6457 6607 6761 6918 7079 7244 7413 7586
	Log.	000000000000000000000000000000000000000	0 H S E E E E E E E E E E E E E E E E E E	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ANTI-LOGARITHMS.

Proportional Parts.


0	17	7	17	60	001	61	61	20	20	20
00	in	1 2 1	15 1	1 91	16	17	17	17	8 I	CO H
7	13 1	13 1	14	14	14	15	15	15	91	91
9	II	II	12	12	12	12	13	13	13	14
ın	0	0	01	01	OI	OI	II	HH	II	11
4	7	00	00	00	00	00	00	6	6	6
m	9	9	9	9	9	9	9	7	7	7
C4	4	4	4	4	4	4	4	4	4	in
н	64	61	61	64	61	CS	Cd	61	69	61
6	8110	8299	8492	8690	8892	6606	9311	9528	9750	7266
oo	1608	8279	8472	8670	8872	8206	9290	9206	9727	9954
7	8072	8260	8453	8650	8851	9057	9268	9484	9705	9931
9	8054	8241	8433	8630	8831	9606	9247	9462	9683	8066
so.	8035	8222	8414	8610	8810	9016	9226	9441	1996	9886
4	8017	8204	8395	8590	8790	8995	9204	9419	9638	9863
10	7998	8185	8375	8570	8770	8974	9183	9397	9196	9840
C)	7980	8166	8356	855I	8750	8954	9162	9376	9594	9817
н	7962	8147	8337	8531	8730	8933	9141	9354	9572	9795
0	7943	8128	8318	8511	8710	8913	9120	9338	9550	9772
Log.	06.	16.	.92	.63	+6.	.65	96.	16.	86.	66.



## A KEY

TO THE SERIES OF

CHEMICAL PROBLEMS



## KEY TO CHEMICAL PROBLEMS.

## METRIC SYSTEM OF WEIGHTS AND MEASURES.

- I. 43'7 millimetres: 4'37 centimetres.
- 2. 109876542'I centimetres: 10987654'21 decimetres: 1098765'421 metres.
- 3. 70 square decimetres: 7,000 square centimetres: 700,000 square millimetres.
- 4. The weight of a cubic centimetre of pure water weighed at 4° C. in the latitude of Paris, is styled a gram. A litre denotes a volume equivalent to I cubic decimetre. I,725 grams.
  - 5. 256,700 centigrams.
  - 6. 5,000 milligrams.
  - 7. 78'54 square centimetres.
  - 8. 1.60931 kilometres.
  - 9. 761'985 millimetres.
  - 10. 567.875 cubic centimetres.
  - II. II3'097 cubic centimetres.

- 12. 12,732,394 metres.
- 13. 14.826 millimetres.
- 14. 7 pieces and 0'023 gram will remain.
- gram, (d) 0'00083 gram, (b) 0'00148 gram, (c) 0'00231 gram, (d) 0'00333 gram, (e) 0'00593 gram, (f) 0'00926 gram.
  - 16. 3'76 millimetres.
  - 17. 8.305 centimetres.
  - 18. 1'4 millimetres. 0'25 gram.
  - 19. I'II cubic centimetres.
  - 20. 50'10 cubic centimetres.
  - 21. 0.03 c.c., + 0.20 c.c., + 0.41 c.c.

# CONVERSION OF THERMOMETRIC SCALES.

22. 15°·5 C.	o°·o C.	- 12°.5 C.
100°·0 C.	−26°·38 C.	31°.87 C.
17°·7 C.	260°·o C.	- 17°.6 C.
23. 12°·5 R.	519°·1 R.	o°·20 R.
12°·44 R.	- 32°·0 R.	-14°·22 R.
0°·0 R.	192°·0 R.	-7°·55 R.
24. 39°·2 F.	59°·0 F.	413°.6 F.
59°·9 F.	32°·18 F.	842°.0 F.
140°·0 F.	212°·0 F.	33°.8 F.

- 25. 59° 28 C.
- 26. 94°·82 F., 173°·12 F., 640°·4 F.
- 27. -31°·04 R., -37·84° F.; 285°·8 R., 675°·05 F.
- 28. 2822° F., 793° 4 F. 633° 2 F., 455° F.
- 29. -40°., -32° R.

# CORRECTION OF THERMOMETER READINGS.

30. 57'4°.

31. (a) 150°.76 to 151°.56, (b) 151°.56 to 152°.17, (c) 152°.17 to 152°.38, (d) 152°.38 to 152°.78.

32. 131°·54 to 131°·64; 131°·64 to 131°·74.

33. 21°.78, 58°.11, 76°.22, 107°.32, 127°.37.

### CORRECTION OF BAROMETER READINGS.

34. 752.82 mm., 754.20 mm., 755.38 mm., 756.25 mm.

35. 753'29 mm., 752'69 mm., 750'57 mm., 749'97 mm.

36. A. 752.63 mm.

B. 760.72 mm.

C. 755.58 mm.

D. 761.75 mm.

E. 755'49 mm.

F. 758.87 mm.

G. 762'30 mm.

# CORRECTION OF THE VOLUMES OF GASES FOR TEMPERATURE AND PRESSURE; LAW OF PARTIAL PRESSURES.

- 37. 163'992 volumes.
- 38. 1'3663 litres.
- 39. 13'3746 litres.
- 40. (a) 1585'165 cubic centimetres, (b) 1774'725 cubic centimetres, (c) 2049'45 cubic centimetres, (d) 3148'35 cubic centimetres.  $-91^{\circ}$  C.
  - 41. 0'002036 for 1° F., 0'004581 for 1° R
  - 42. From 760 mm. to 767.77 mm.
  - 43. 1743'4 cubic metres.

44. 143'518 c.c.

45. 3677° C.

46. The volume reduced to 0° C. and 760 mm. of the added hydrogen will be 24'10 c.c.

The reading of the upper level of  $Hg = 423^{\circ}I$  mm.

47. 1.68 per cent.

48. 1.66 per cent., and 0.85 per cent.

49. 48.7.9 c.c.

50. 24'06 c.c.

# RELATIVE DENSITY OF SOLIDS, LIQUIDS, AND GASES; VAPOUR DENSITY.

51. 6.503.

52. 19'11.

53. Granite 2'72; marble 2'68; hæmatite 5'07.

54. 0.8793.

55. 0.268 mm.

56. 0'49 mm.

57. 0'0000219 mm.

58. Relative density of alloy is 8.516.

Percentage of copper = 74.7. "" tin = 25.3.

59. 3 cubic centimetres.

60. 1.28.

61. Quartz 2.65; heavy-spar 4.48; calcite 2.72; iron pyrites 5.0.

62. 1'0272.

63. A. 1.00585; B. 1.841; C. 1.920; D. 0.792.

```
64. Sulphuric acid 1.84; mercury 13.54.
```

65. 0.8.

66. Metal 2.7, liquid 1.19.

67. (a) 1.26; (b) 0.915; (c) 0.87.

68. Glycerine 1.26; mercury 13.598.

69. 0'97176.

70. 0.06935.

71. 59.56.

72. 1'177 ; 16'99.

73. (Air = 1). 1'773; 1'712; 1'578; 1'377; 1'321; 1'270; 1'115; 1'021. (H = 1). 25'59; 24'71; 22'77; 19'87; 19'06; 18'33; 16'10; 14'73.

74. 47'29.

75. (1). 0'0792; 1'1205; 1'5292.

(2). 0.0770; 1.1199; 1.2414.

76. I. II. III.

(A). 7.67 7.71. 7.69.

(B). 110'7 111'29. 111'0.

77. (A). 49.60; (B). 44.70; (C). 36.07; (D). 34.95; (E). 35.54.

78. 50.29. 4.494 grams.

79. I. 5'75; II. 5'74.

80. (Air = 1). A. 4.036; B. 2.621; C. 0.6012; D. 8.665. (H = 1). A. 58.26; B. 37.83; C. 8.678; D. 125.1

81. 347'96 kilos.

82. 51'77.

83. 76.33.

84. I. 2'21; II. 2'30; III. 2'20.

85. 137.7 (H = 1).

## DENSITY AND MOLECULAR WEIGHT; VALENCY, EQUIVALENTS, AND ATOMIC WEIGHTS.

86. SH₂, 34'38; NH₃, 17'23; N₂O, 43'88; CH₄, 16'02; CHCl₃, 121'25; SnCl₄, 265'6.

87.	Oxygen .				1'4297	gram.
	Chlorine .				3.1666	"
	Iodine.				11.3355	21
	Sulphur .				2.8648	
	Phosphoru	IS			5.246	"
	Nitrogen .				1.255	"
	Sodium .				2.0208	
	Arsenic .				13'419	"
	Mercury .				8.949	22

- 89. PbCl₂, 277'13 gm; Si F₄, 104'24 gm; Fe Cl₃, 161'99 ,, ; CH₃Br, 94'73 ,,
- 90. CO, 0'967; CS₂, 2'630; SO₃, 2'766; BF₃, 2'358; PF₅, 4'373.
- 91. O, 15'96; Ag, 107'66; Cl, 35'37; Sb, 119'58; Cu, 63'18.
- 92. The most probable value for the atomic weight of oxygen is 15'96, for this number represents the smallest quantity by weight of oxygen occurring in the molecular weight of any of the given compounds.
- 93. The approximate molecular weights, calculated from the relative density in each case, are:—16°0; 141°0; 121°3; 27°96; 76°4,—hence the parts given in the third column

refer to parts by weight per molecule and therefore the atomic weight of carbon is 11'97.

94. Cd, 1137; P, 1256; Hg, 2015.

95. Atomic weight of phosphorus 30.96. From molecular weight found above, molecule is P₄.

# DEDUCTION OF EMPIRICAL FORMULA FROM PERCENTAGE COMPOSITION, FORMULÆ OF MINERALS.

96. H₂O₂. 97. NO₂. 98. Fe₂O₃. 99. COS.

100. KHSO₄. 101. MgSO₄ +  $7H_2O$ .

102. ZnSO₄ + 7H₂O. 103. Ca₃P₂O₈. 104. Na₃AlF₆.

105. KNO₂. 106. Al₂ (SO₄)₃.

107. CuCO₃ + Cu H₂O₂. 108. NiSO₄2NH₃.

109. C_nH_{2n}. 110. C₂H₂. 111. C₂H₆SO₄. 112. C₁₀H₁₄N₂.

113. (C21H22N2O2)2H2PtCl6.

114. A comparison of the amount of oxygen contained in the various bases with that contained in the acid, shows that the two quantities are in the ratio of 1:2, in conformity with the formula MOCO₂ thus—

CaO			28.4	Containing oxygen. 8.11)	Ratio.
				and the second	
MgO				4.92 16.19	
FeO			12.3	2.73(10.19	I
MnO			1.0	0.43	
$CO_2$			44.4	32.3	2
			99.3		

115.  $2(MgO SiO_2) + 3H_2O$ .

116.  $Co_3As_2O_8 + 8H_2O$ .

117. Na2O Al2O3 6SiO2.

118. 3CaO, Na₂O, 4Al₂O₃, 12SiO₂.

### TO CALCULATE THE PERCENTAGE COM-POSITION OF A COMPOUND FROM ITS FORMULA.

119.	Hydrogen Oxygen.	: :	11.14	125.	Calcium . Carbon Oxygen	12.01
120.	Potassium Chlorine Oxygen.		28.93	126.	Silver Chlorine	
121.	Mercury. Oxygen.			127.	Magnesium Phosphorus Oxygen	27.95
122.	Potassium Nitrogen Oxygen.		13.88	128.	Potassium . Platinum . Chlorine .	
123.	Sodium. Nitrogen Oxygen.		16.20	129.	Sodium Sulphur	25.83
124.	Barium . Sulphur . Oxygen .		13.74	Or-	Sulphur Hydrogen . Oxygen .	4.04

KEY TO CHEMICAL PROBLEMS.	125
130. Iron	29.21
Oxygen 72'03 137. Lime Silicon dioxide Titanium ,,	23.85
132. Copper 34'52	6·87
133. Silver 53'07 Copper 31'15 Sulphur 15'88  100'00	13.04
134. Lime (CaO) . 9'20 Alumina (Al ₂ O ₃ ) 16'79 Silica (SiO ₂ ) . 59'21 Water 14'80  100'00	6.45
135. Lime 43'49	90.24

142. Carbon 89.53 Hydrogen 10.47	146. Carbon 32'18 Hydrogen 6'05 Nitrogen 28'25 Oxygen 21'45 Water 12'07
143. Silicon 19.48 Carbon 66.61 Hydrogen 13.91	147. Carbon
144. Carbon 21'02 Hydrogen 2'63 Potassium 34'26 Oxygen 14'01 Sulphur 28'08	148. Carbon
145. Potassium	

CALCULATIONS OF THE AMOUNT OF MATERIAL REQUIRED TO PRODUCE A GIVEN WEIGHT OF ANY SUBSTANCE, OR OF THE QUANTITY OF THE SUBSTANCE PRODUCED BY THE DECOMPOSITION OF A KNOWN WEIGHT OF MATERIAL.

149. 2'554. lbs.

150. (a) 27.038 kilos., (b) 5.1088 kilos., (c) 16.307 kilos., (d) 12.208 kilos.

151. 33'275 grams; 13'029 grams.

152. 709.84 grams.

153. 4306.0856 kilos. zinc; 6492.3134 kilos. H2SO4.

154. 3708'8 kilos. iron; 4306'1 kilos. zinc; 32461'5 kilos. sulphuric acid.

155. 177'256 grams.

156. 12,939.8 c.c. hydrogen; 6469.9 c.c. oxygen.

157. 322.216 grams Fe₃O₄; 132.029 litres of hydrogen.

158. 0.91048 lbs. copper; 0.1284 lbs. phosphorus.

159. 6.096 grams ammonia; 9.506 grams chlorine.

160. 140'1 kilos. KNO3; 117'8 kilos. NaNO3.

161. 10'116 lbs. nitre; 9'805 lbs. sulphuric acid.

162. 9'08 litres.

163. 4'246 grams.

164. 5'477 kilos. lime; 10'446 kilos. sal-ammoniac.

165. 183.03 kilos. of coal.

- 166. Assuming air to contain 23 per cent. by weight of oxygen, 11'94 tons.
- 167. 42'36 grams marble; 140'42 grams hydrochloric acid solution.
  - 168. 146.215 tons carbon; 3275 cubic feet.
  - 169. (1) 130.53 litres; (2) 130.53 litres.
- 170. 40'223 grams oxalic acid; 20'559 grams formic acid; 27'444 grams potassium ferrocyanide.
  - 171. 36.67 grams sodium acetate.
  - 172. 707'333 kilograms.
  - 173. 76'395 kilos. air; 10'73 kilos. water; 12'353 kilos carbon dioxide.
- 174. 106'99 grams silver chloride; the solution will contain 17'79 per cent. of hydrocyanic acid.
  - 175. 43.647 grams.
- 176. 16.501 tons of salt; 20.778 tons of manganese dioxide; 47.683 tons of sulphuric acid.
- 177. 51'294 tons of hydrochloric acid; 2,558,701 litres will escape.
  - 178. 1'7355 grams precipitated; 1'907 grams in solution.
  - 179. 192'33 tons of {Ca(OCl)(OH)}2, CaCl2.
  - 180. According to the equation  $3Cl_2 + 6KOH = KClO_3 + 5KCl + 3H_2O$ , 28.201 tons of  $KClO_3$ .
  - 181. 181'10 grams.
  - 182. 72'135 grams iodine; 100'815 grams chlorine.
  - 183. 8'49 grams copper; 26'29 grams sulphuric acid.
- 184. 54'487 tons of pyrites; if 3 per cent. of the theoretical yield of sulphur remained unburnt, 97 tons of the dilute acid would be produced.

- 185. 224'28 litres.
- 186. 3'935 grams ferrous sulphide; 9'325 grams air.
- 187. 1.802 litres.
- 188. 2'0488 grams microcosmic salt.
- 189. 82'19 tons of sulphur; 68 tons of salt cake; 107'742 tons of bicarbonate; 183'398 tons of soda crystals; 56'87 tons of solid caustic.
  - 190. 17'474 tons of limestone.
  - 191. 138.14 grams Fe₃O₄; 289.889 grams Fe₂Cl₆.

# COMBINATION AND DECOMPOSITION OF GASEOUS BODIES.

- 192. 20 litres of hydrochloric acid gas; 10 litres of hydrogen remain in excess.
  - 193. I cubic foot of hydrobromic acid gas.
  - 194. 50 vols. of chlorine; 25 vols. of oxygen.
  - 195. 154'97 c.c.
  - 196. 3 litres of oxygen.
  - 197. 110'34 c.c.
  - 198. 500 c.c. nitrogen; 1500 c.c. hydrogen.
  - 199. V. 1'25. n vols. oxygen; V.n vols. carbon dioxide.
  - 200. (1) 95.42 litres; (2) 143.13 litres; (3) 119.27 litres,
- 201. 5 litres phosgene gas; 5 litres carbon dioxide, weighing 9.8296 grams, and 10 litres hydrochloric acid gas, weighing 16.2903 grams.
- 202. I litre, on the assumption that its density is normal.

### GAS ANALYSIS CALCULATIONS.

203. N, 79'060 per cent.; O, 20'940 per cent.

204. N, 83'37 per cent.; O, 13'80 per cent.; CO₂, 2'83 per cent.

205. 3'48 per cent. of aqueous vapour.

206. 26'46 vols. of oxygen unite with 52'71 vols. of hydrogen.

207. C (hypothetical vapour volume), 1'025; H, 3'129; O, 0'484.

The empirical formula of methyl ether is C₂H₆O.

208. N.O.

- 209. N, 81.81 per cent.; O, 14.21 per cent.; CO₂, 2.44 per cent.; SO₂, 1.54 per cent.; H, 45.07 per cent.; SH₂, 24.25 per cent.
- 210. CO₂, 29'96 per cent.; N, 0'72 per cent.; CO & CH₄, none.
- 211. The percentages of N are:—A, 7'39; B, 16'28; C, 16'16; D, 15'00; E, 13'99; F, 4'48.

  The volumes of gases obtained, reduced to 0° C. & 760 mm. are:—

Α.	В.	C.	D.	E.	F.
				9.66 c.c.	

used. Carbon dioxide formed = 118.8 = oxygen used in burning C. Hence O used to burn H = 118.18.

... Vol. of H would be 236.36 and hypothetical vol. of C.  $\frac{118.8}{2} = 59.4$ .

Hence composition of marsh gas is represented by CH₄.

213. 0.53 per cent. by volume.

214. 0'47 per cent. by volume.

215. The percentage composition of this sample of coal-gas is:—

CO₂. 1'41; CO. 6'15; C₂H₄ &c. 3'84; H. 47'73; C₆H₆. 1'04; CH₄. 35'63; O. 0'30; N. 3'90.

216. 3 vols. ethylene; 1'98 vols. butylene. Equal in illuminating power to a gas containing 6'96 per cent. of ethylene.

### ATOMIC WEIGHT DETERMINATIONS.

217. 1'00108.

By precipitation with potassium chloride 14'026
By precipitation with ammonium chloride 13'945

Mean 13'979

219. 35'356.

220. 39'033.

221. 199.6.

222. (1) 12.014, (2) 12.014, (3) 12.030. Mean = 12.019.

223. 27'029.

224. 27.028.

225. 27'012.

226. 48.06; 48.07; 47.98; 48.04; 48.04.

227. 196·88; 196·90; 196·86: 196·85; 196·89;

228. 28.347; 28.303; 28.347; 28.352; 28.243.

229. 52.061.

230. 65.506.

#### INDIRECT ANALYSIS.

231. 33.51.

232. 93.03.

233. 39'98.

234. 11.61.

235. 25.51.

236. 58.035 grams.

237. K, 13'75 per cent.; Na, 8'25 per cent.

238. 0'6281 gram NaCl; and 0'3049 gram Na I.

#### GENERAL ANALYTICAL QUESTIONS.

239. (a) 0'1998 gram of the salt gave 0'4865 gram silver chloride, and 0'0032 reduced silver.

$$0.4865 + 0.00425 = 0.49075 \text{ gm. Ag Cl};$$

$$\frac{0.49075 \times 35.37 \times 100}{143.03 \times 0.1998} = 60.74 \text{ per cent. chlorine.}$$

(b) 0'9543 gram of the salt gave 1'1584 gram sodium sulphate.

$$\frac{141.81}{1.1284 \times 42.00} = 0.32268;$$

and 
$$\frac{0.37568 \times 100}{0.9543} = 39.36$$
 per cent. sodium.

 $\frac{60.74}{35.37} = 1.7$ ;  $\frac{39.36}{23} = 1.7$ ; hence the chlorine and sodium in the compound are in the ratio of atom to atom, and the formula of the salt is Na Cl.



240. 0'3951 gram of substance gave 0'6544 gram of  $NH_4MgAsO_4$ ,  $H_2O = 0'3781$  gram  $As_2O_5$ : hence the substance contained 95'70 per cent. arsenic anhydride.

241. The percentage results of the analysis are :-

Silica					40.35
Ferric					
Water					20.65
Lime					2.68

100.08

Neglecting the lime as an unessential constituent, the percentage composition of the mineral becomes:—

Silica					41.46
Ferric	oxide				37.43
Water					51.13
					0
					100.08

The simplest ratios of the oxygen contained in each of the constituents is 6:3:5. Hence the formula of the compound is  $3 \text{ SiO}_2$ ,  $F_2O_3$ ,  $5 \text{ H}_2O$ .

242. 164'I grams of K₂Pt Cl₆ are equivalent to 50'39 grams of potassium chloride. Hence the composition of the mixture is:—

Potassium chloride	*		50.39
Sodium chloride .			49.61
			100,00

243. 0'2476 gram Tl₂ Pt Cl₆ = 0'1239 grams thallium, or 67'67 per cent. Its composition is therefore:—

Tl					67.67
Cl O4		*		٠	32.33
					100,00

$$\frac{67.67}{203.7} = 0.332. \quad \frac{32.33}{99.51} = 0.355.$$

Hence the formula is Tl Cl O4.

244. Centesimal hydrochloric acid corresponds to 1.0766 grams of Ag per litre, hence Ag used = 7.383 - 0.0032298 grams = 7.37977 grams; and  $\frac{7.37977 \times 35.37 \times 100}{107.66 \times 3.949}$  = 61.40 per cent. chlorine.

245. 2 BaSO₄ = O. AgBr = Br.

o'402 gram  $BaSO_4 = 0$ '01378 O. o'324 gram Ag Br = 0'1372 Br.

$$\frac{0.01378}{12.00} = 0.00086. \quad \frac{0.1375}{20.0012} = 0.00125.$$

Hence the formula is Br₂ O.

246.  $KClO_4 = HClO_4$ . I.6785  $KClO_4 = 1.2167$   $HClO_4$  or 99.85 per cent.  $HClO_4$ .

o'966 gm. lost o'444 gm. O, or 45'97 per cent.: KClO₄ ought to lose 46'18 per cent.

o  $\cdot 966 - 0.444 = 0.522$  KCl; this required 0.744 gram of silver for precipitation: theory requires 0.7523 gram.

247. Na H CO $_3$  + CH $_3$ . COOH = CH $_3$ . COONa + CO $_2$  + H $_2$  O or 43.89 parts of CO $_2$  = 59.86 parts of CH $_3$ . COOH. Then 0.427 CO $_2$  = 0.5823 CH $_3$ . COOH,

and 
$$\frac{0.5823 \times 100}{1.483} = 39.26$$
 per cent.

248. NaOH = HCOOH. Then 1'01558 NaOH = 1'1664 HCOOH and  $\frac{1'1664 \times 100}{2'122} = 54'967 \text{ per cent.}$ 

249. 2'921 vols. CO2, in 10,000 vols. of air.

250. Sodium chloride . . . . . 26.402. Potassium chloride . . . . o'7459. Magnesium chloride . . . . 3.0368. Magnesium bromide . . . . 0'0705. Magnesium sulphate . . . . 2.0648. 1.2896. Calcium sulphate . . . . . Calcium carbonate . . . . 0.0475. Ammonium chloride . . . . 0'00035. Magnesium nitrate . . . . 0'00185. Ferrous carbonate.... o'00674. MgO unaccounted for . . . 0.02904.

251. 22'53 candle power.

252. (1) 
$$C_6 H_4 Br C_2 H_5 + Na_2 + CO_2$$
  
=  $C_6 H_4 C_2 H_5 COO Na + NaBr$ .

(2) 
$$C_6 H_4 C_2 H_5 COO Na + HCl$$
  
=  $C_6 H_4 C_2 H_5 COOH + NaCl$ .

and the acid gave on treating with baryta water the barium compound, of which 0'5637 gram lost 0'0430 gram water, or 7'63 per cent.; and gave 0'2733 gram barium sulphate, or 28'517 per cent. Ba. Hence the composition of the salt is:—

					100,00
$H_2$ O				٠	7.63
					28.25
					63.85

$$\frac{63.85}{148.65} = 0.429; \frac{28.25}{136.86} = 0.209; \frac{2.63}{12.06} = 0.425.$$

Hence formula is Ba (C9 H9 O2)2, 2 H2 O.

253. 1'994 per cent. nitrogen.

254. The composition of the body, as determined by experiment, is:

Carbon .			36.43
Hydrogen			7.91
Chlorine.			55.66

The simplest relation between these numbers is represented by C2 H5 Cl, which formula requires :-

> Carbon . . . Hydrogen . . . . 7'77 Chlorine. . . . . 55'01

The vapour density found is 32'44, calculated 32'15.

- 255. Na Cl. 66'39 per cent. KCl. 33.61 per cent.
- 256. NaCl. 60'3 per cent. NaBr. 39'7 per cent.

#### SOLUTION OF GASES.

257. 20 c.c.; 14'96 c.c.; 7'82 c.c.; 0'286 c.c.

258. The volume is the same in each case, 15'90 c.c. The weights are respectively:

> o'018792 gram; 0'025124 gram; 0'0098237 gram; 0'0003593 gram.

(B)259. (A)

6.454 c.c.

(C)

(a) 6.664 c.c.; 6.553 c.c.; (b) 6.344 c.c.; 6.201 c.c.;

5.832 c.c.

260. 1'4584; 1'2607; 1'0385; 0'9610; 0'9134; 0'8852.

261. 0'06910; 0'06853; 0'06769; 0'06732; 0'06669. Water: 0'02134; 0'02099; 0'01956; 0'01912; 0.01839.

262.  $0.032874 - 0.00081632 t + 0.000016421 t^2$ .

263. 39'36 per cent. O. and 60'64 per cent. N.

264. By volume : -44.7 per cent.  $CO_2$ ; 55'3 per cent. N.

265. 92'07 per cent. H.; 7'93 per cent. CO2.

# MOLECULAR WEIGHT AND LOWERING OF THE FREEZING-POINT.

266. 15'34° C.

267. 73'44.

268. 0'5256°.

269. 1.69 per cent.

270. 2.867°; 2.488°; 1.482°.

271. (1) 72.58; (2) 73.50; (3) 71.97; (4) 73.60.

272. (a) 111.87; (b) for Na, 14.49; (c) for Sn, 73.93.

273. MgSO₄, 7 H₂O.

274. 
$$L = \frac{0.02 \cdot (280.9)^2}{117.9} = 13.38.$$

275. 
$$\frac{18.5}{.63} = 29$$
;  $\frac{27.7}{.63} = 44$ ;  $\frac{38.6}{.63} = 61$ ; the numbers

here obtained according to Raoult should represent the molecular weight of the solvent in each case; in the cases of formic and acetic acids this holds very nearly but in the case of water 29 bears no simple relation to 18 the molecular weight of water in the gaseous state, the conclusion may therefore be drawn that the molecule of water in the liquid state is more complex than the molecules of formic and acetic acids under similar conditions.

276. From (a) the molecular weight deduced is 65.80, from (b) 65.99; for  $N_2$   $O_4$  molecular weight is 92, for  $NO_2$  it is 46; hence it is probable that at the temperature of the experiment nitrogen tetroxide consists of a mixture of  $N_2O_4$  and  $NO_2$ .

277. (a) 196.2; (b) 196.5.

## SPECIFIC HEAT, LATENT HEAT, AND ATOMIC HEAT.

279. 18° C. 280. 0.0327. 281. 0.03308.

282. 0'0335. 283. 0'208. 284. 3°08.

285. 893° C. 286. 0'1137. 287. 774'6 for 1° F.

288. 33681 metres. 289. Sp. Ht. of Indium is 0.0574.

290. (A) 0.0559; (B) 0.0935; (C) 0.0495; (D) 0.0548; (E) 0.1712.

291. 28.4° C.

292. 7.284 kilos. per hour.

293. 537'2.

294. Pb 6'48; Ag 6'13; Cu 6'01; Fe 6.36; S 6.48; P 5.84.

- 295. Approximate atomic weights:—Ag, 112'3; Zn, 66.98; Bi, 207.5; Sn, 113.8; Fe, 56.23. Exact atomic weights: -Ag, 107.66. Zn 64.88; Bi, 207.5; Sn, 117.35; Fe, 55.88.
- 296. 5.67 = atomic heat of solid chlorine. 2'98 and 3'06 are the atomic heats for O calculated from the respective oxides.

297. 3.8.

298. 2.

299. Ca 5.6; Sr, 6.3; Ba 6.4.

#### HEAT OF SOLUTION AND COMBINATION.

300. 34'462 kilos.

301. 5'747° C.

302. 0'148 kilos.

303. (1) ethylene 2714.5°; (2) methane 2381.3°.

304. 2677.6°.

305. 7,614 thermal units.

306. 8095.6.

307. 3386.4 metres.

308. 192,700 +.

309. 20,200 +.

310. 28,400 -.

311. 18,500 -.

312. 13,080 -.

313. (a) 55,100 + ; 45,200 - .

314. 5,590 -.

315. 21,150 +.

316. It may be concluded that H₃ PO₃ is a dibasic acid, for the addition of sodic hydrate beyond two equivalents causes but a very slight liberation of heat, and from nothing to two equivalents the heat evolved is considerable and proportional (or nearly so) to the amount of sodic hydrate added.



RICHARD CLAY AND SONS, LIMITED, BREAD STREET HILL, E.C., AND BUNGAY, SUFFOLK.

## MACMILLAN AND CO.'S BOOKS

FOR

# STUDENTS OF CHEMISTRY.

- ESSAYS IN HISTORICAL CHEMISTRY. By T. E. THORPE, C.B., LL.D., F.R.S. Second Edition, enlarged. 8vo, 12s. net.
- CHEMISTRY OF THE PROTEIDS. By Dr. Gustav Mann. Based on Professor Cohnheim's "Chemie der Eiweiss Körper." 8vo, 15s. net.
- INTRODUCTION TO PHYSICAL CHEMISTRY. By James Walker, D.Sc., Ph.D. Fourth Edition. 8vo, 10s. net.
- OUTLINES OF INDUSTRIAL CHEMISTRY. A Text-Book for Students. By Frank Hall Thorp, Ph.D. 8vo, 15s. net.
- GASES OF THE ATMOSPHERE: The History of their Discovery. By Sir W. RAMSAY. Third Edition. Ex. crown 8vo, 6s. net.
- HISTORY OF CHEMISTRY FROM THE EARLIEST TIMES TO THE PRESENT DAY. By Ernst von Meyer, Ph.D. Third Edition. Translated by George McGowan, Ph.D. 8vo, 17s. net.
- THEORETICAL CHEMISTRY FROM THE STAND-POINT of AVOGADRO'S RULE & THERMO-DYNAMICS. By Professor Nernst. Translated by Professor Charles Skeele Palmer, of the University of Colorado. Re-edited and Revised in accordance with the Fourth German Edition, by Dr. R. A. Lehfeldt. 8vo, 15s. net.
- A MANUAL OF MICROCHEMICAL ANALYSIS.

  By Professor H. Behrens. With an Introductory Chapter by Professor J. W. Judd, F.R.S. 6s.
- A TEXT-BOOK OF THE PHYSIOLOGICAL CHEM-ISTRY OF THE ANIMAL BODY, including an Account of the Chemical Changes occurring in Disease. By ARTHUR GAMGEE, M.D., F.R.S. Vol. II. 8vo, 18s.
- THE CHEMICAL BASIS OF THE ANIMAL BODY.
  An Appendix to Foster's "Text-Book of Physiology." By A.
  SHERIDAN LEA, M.A., D.Sc., F.R.S. 8vo, 7s. 6d.
- CHEMICAL TECHNOLOGY AND ANALYSIS OF OILS, FATS, AND WAXES. By Dr. J. Lewkowitsch, F.C.S., Examiner in Soap Manufacture and in Fats and Oils to the City and Guilds of London Institute. Third Edition entirely re-written and enlarged. In 2 Vols. With 88 Illustrations and numerous Tables. Medium 8vo, 36s. net.

MACMILLAN AND CO., LTD., LONDON.

-

#### MACMILLAN AND CO.'S BOOKS

FOR

## STUDENTS OF CHEMISTRY.

- A TREATISE ON CHEMISTRY. By Sir H. E. ROSCOE, F.R.S., and the late C. Schorlemmer, F.R.S. 8vo. Vol. I. The Non-Metallic Elements. New Edition. Completely revised by Sir H. E. Roscoe, assisted by Drs. H. G. Colman and A. Harden. With 374 Illustrations and a Portrait of Dalton engraved by C. H. Jeens. 21s. net. Vol. II. Metals. 31s. 6d. Vol. III. Organic Chemistry. Parts II., IV., and VI., 21s. each. Part III., 18s.
- THE PRACTICAL METHODS OF ORGANIC CHEMISTRY. By Ludwig Gattermann, Ph.D. Authorised Translation by William B. Shober, Ph.D. With numerous Illustrations. Globe 8vo, 8s. 6d.
- A LABORATORY MANUAL OF ORGANIC CHEMISTRY: a Compendium of Laboratory Methods for the use of Chemists, Physicians, and Pharmacists. By Dr. Lassar-Cohn. Translated from the Second German Edition by ALEXANDER SMITH, B.Sc., Ph.D. Crown 8vo, 8s. 6d.
- PRINCIPLES OF INORGANIC CHEMISTRY.

  By Professor W. OSTWALD. Translated by A. FINDLAY. Second Edition.

  8vo, 18s. net.
- THE SCIENTIFIC FOUNDATIONS OF ANALY-TICAL CHEMISTRY TREATED IN AN ELEMENTARY MANNER. By Wilhelm Ostwald, Ph.D. Translated by George McGowan, Ph.D. Crown 8vo, 6s. net.
- MANUAL OF PHYSICO-CHEMICAL MEASURE-MENTS. By Professor W. OSTWALD. Translated by JAMES WALKER, D.Sc. Ph.D. Illustrated. 8vo, 7s. net.
- ANALYTICAL CHEMISTRY. By A. MENSCHUTKIN.

  Translated from the Third German Edition, under the supervision of the Author,
  by James Locke. Medium 8vo, 17s. net.
- QUALITATIVE CHEMICAL ANALYSIS OF INOR-GANIC SUBSTANCES. By A. A. Noves. 8vo, 5s. net.
- A DICTIONARY OF CHEMICAL SOLUBILITIES, INORGANIC. By ARTHUR MESSENGER COMEY, Ph.D. Demy 8vo, 15s. net.
- A NEW VIEW OF THE ORIGIN OF DALTON'S ATOMIC THEORY. A Contribution to Chemical History. Together with Letters and Documents concerning the Life and Labours of John Dalton, now for the first time published from manuscript in the possession of the Literary and Philosophical Society of Manchester. By Sir Henry E. Roscoe, F.R.S., and ARTHUR HARDEN. With Portrait. Six page plates. 8vo, 6s. net.

MACMILLAN AND CO., LTD., LONDON.

FOR

# STUDENTS OF CHEMISTRY.

A PRIMER OF CHEMISTRY. By Sir H. E. ROSCOE,

F.R.S. Illustrated. Pott 8vo, 1s.

ELEMENTARY PHYSICS AND CHEMISTRY. By R. A. GREGORY and A. T. SIMMONS, B.Sc. (Lond.). First, Second, and Third Stages. Globe 8vo, 1s. 6d. each.

INTRODUCTORY CHEMISTRY FOR INTER-MEDIATE SCHOOLS. By LIONEL M. JONES, B.Sc. Globe

INTRODUCTION TO THE STUDY OF CHEMISTRY. By W. H. PERKIN, Jr., Ph.D., F.R.S., and BEVAN LEAN, D.Sc. Globe 8vo, 2s. 6d.

INTRODUCTION TO CHEMISTRY AND PHYSICS. By W. H. PERKIN, Jr., Ph.D., F.R.S., and BEVAN LEAN, D.Sc.

2 vols. Globe 8vo, 2s. each.

THE ELEMENTS OF CHEMISTRY. By IRA REMSEN, Professor of Chemistry in the Johns Hopkins University. Fcap. 8vo, 2s. 6d.

INORGANIC CHEMISTRY FOR BEGINNERS. By Sir HENRY E. ROSCOE, F.R.S., and J. LUNT, B.Sc. Globe 8vo, 25. 6a.

LESSONS IN ELEMENTARY CHEMISTRY, IN-ORGANIC AND ORGANIC. By Sir H. E. ROSCOE, F.R.S.

Fcap. 8vo, 4s. 6d.

INORGANIC CHEMISTRY FOR ADVANCED STUDENTS. By Sir H. E. ROSCOE, F.R S., and ARTHUR HARDEN, Ph.D. Adapted to the Advanced Stage of the South Kensington Syllabus. Globe 8vo, 4s. 6d.

AN INTRODUCTION TO THE STUDY OF CHEMISTRY (INORGANIC CHEMISTRY). By IRA

REMSEN. Crown 8vo, 6s. 6d.

ELEMENTS OF INORGANIC CHEMISTRY. By Prof. H. C. Jones. Crown 8vo, 6s. 6d.

OUTLINES OF INORGANIC CHEMISTRY. By Prof. F. A. GOOCH and C. F. WALKER. Ex. crown 8vo, 7s. 6d. net.

COLLEGE TEXT-BOOK OF CHEMISTRY. By IRA

REMSEN. Ex. crown 8vo, 8s. 6d. net.

EXPERIMENTAL PROOFS OF CHEMICAL THEORY FOR BEGINNERS. By Sir WILLIAM RAMSAY, Ph.D., Professor of Chemistry in University College, London. Pott Svo, 25. 6d.

MACMILLAN AND CO., LTD., LONDON.

FOR

# STUDENTS OF CHEMISTRY.

CHEMICAL THEORY FOR BEGINNERS. By LEONARD DOBBIN, Ph.D., and JAMES WALKER, Ph.D., D.Sc., Professor of Chemistry in University College, Dundee. Pott 8vo, 2s. 6d.

CHEMISTRY FOR ORGANISED SCHOOLS OF SCIENCE. By S. Parrish, B.Sc. With Introduction by D.

FORSYTH, D.Sc. Globe 8vo, 2s. 6d.

PRACTICAL INORGANIC CHEMISTRY. By G. S.

TURPIN, M.A. Globe 8vo, 2s. 6d.

JUNIOR COURSE OF PRACTICAL CHEMISTRY.

By Francis Jones, F.R.S.E. With a Preface by Sir Henry
E. Roscoe, F.R.S. Illustrated. Globe 8vo, 2s. 6d.

PRACTICAL INORGANIC CHEMISTRY FOR ADVANCED STUDENTS. By CHAPMAN JONES, F.I.C.,

F.C.S. Globe 8vo, 2s. 6d.

ELEMENTS OF QUANTITATIVE ANALYSIS. By

G. H. BAILEY, D.Sc. Globe 8vo, 4s. 6d.

INORGANIC CHEMICAL PREPARATIONS. By Felix Lengfeld, Assistant Professor of Inorganic Chemistry in the University of Chicago. Globe 8vo, 2s. 6d. net.

PRACTICAL CHEMISTRY. By R. ABEGG and W. Herz, Professor and Demonstrator of Analytical Chemistry at Breslau University. Translated by H. T. CALVERT, B.Sc. Crown 8vo, 6s. (Table of Ions sold separately, 1s. per dozen).

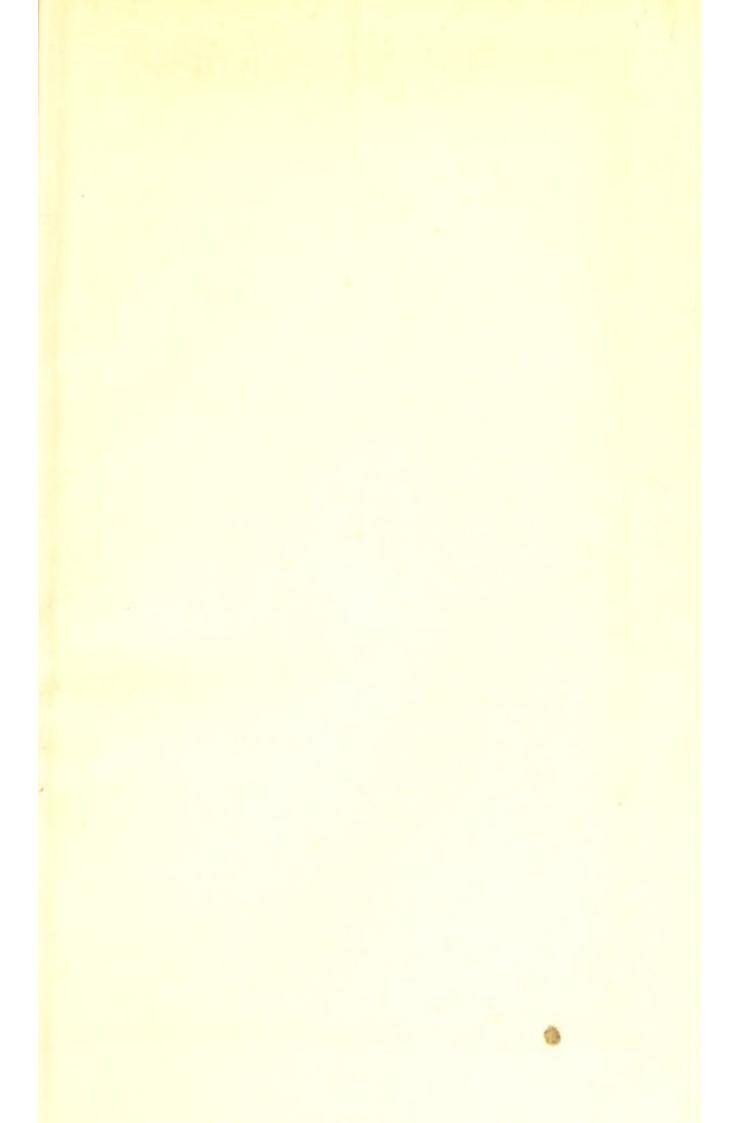
LESSONS IN ORGANIC CHEMISTRY. By G. S.

TURPIN, D.Sc. Globe 8vo, 2s. 6d.

PRACTICAL ORGANIC CHEMISTRY for AD-VANCED STUDENTS. By Julius B. Cohen. Globe 8vo, 3s. 6d. THEORETICAL ORGANIC CHEMISTRY. By Julius

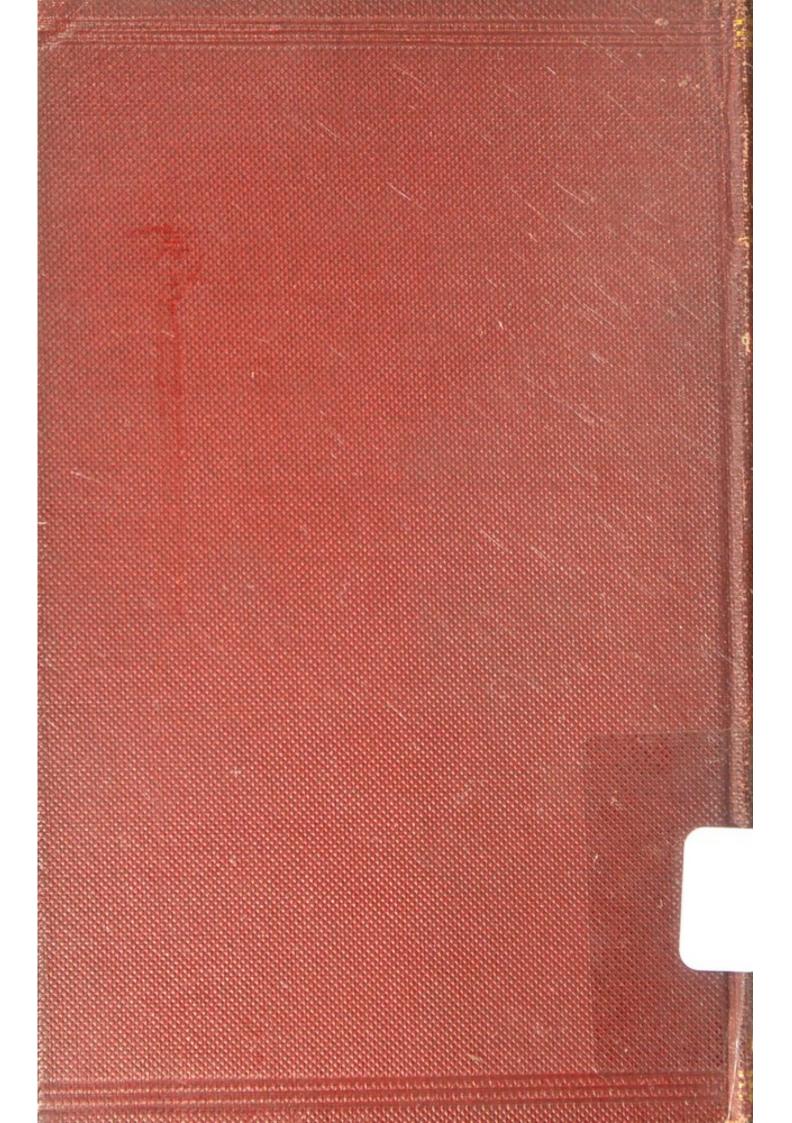
B. COHEN, Ph.D. Globe 8vo, 6s.

COMPOUNDS OF CARBON; or, An Introduction to the Study of Organic Chemistry. By IRA REMSEN. Crown 8vo, 6s. 6d.


CHEMICAL ARITHMETIC. With 1,200 Problems. By Sydney Lupton, M.A. Fcap. 8vo, 4s. 6d.

EXPERIMENTS FOR CHEMICAL LECTURES. By

F. G. BENEDICT, Ph.D. Crown 8vo, 8s. 6d. net.


SCIENCE OF COMMON LIFE (Experimental Hygiene).
By A. T. Simmons, B.Sc., and E. Stenhouse, B.Sc. Globe
8vo, 2s. 6d.

MACMILLAN AND CO., LTD., LONDON.







