Theorie der Gewinnung und Trennung der ätherischen Öle durch Destillation : (Grundzüge einer allgemeinen Destillationslehre) / von C. von Rechenberg.

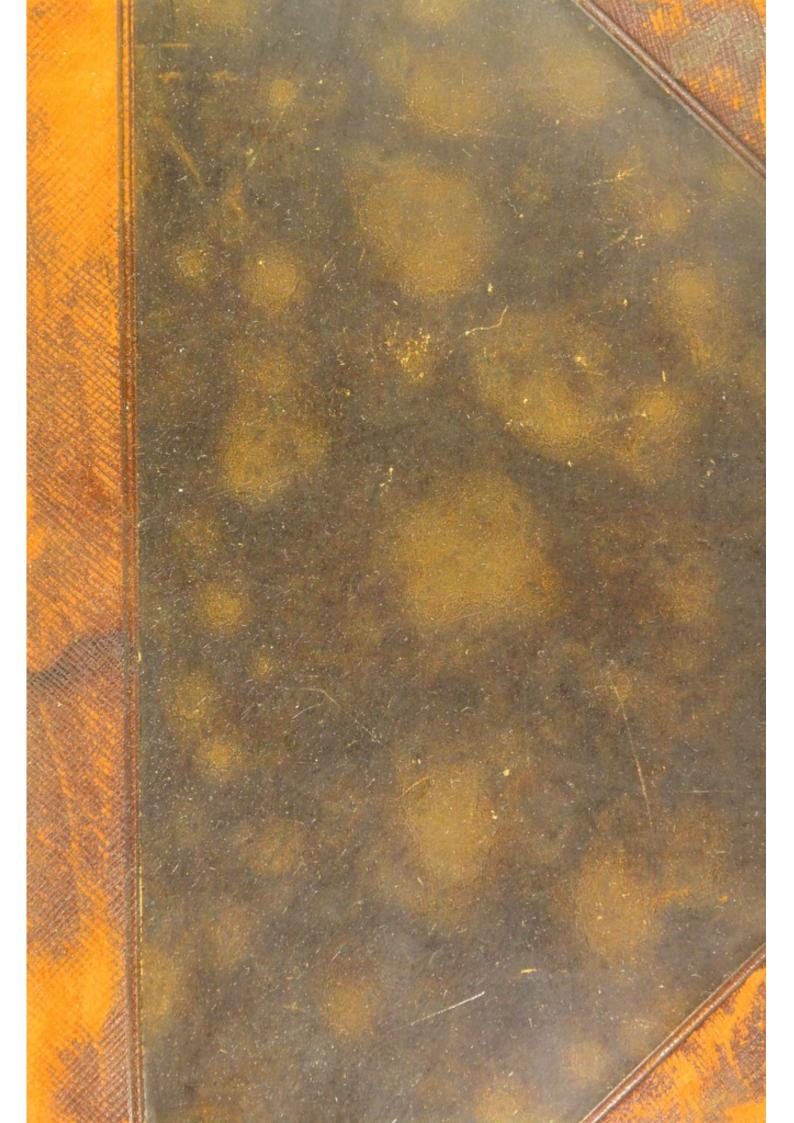
Contributors

Rechenberg, C. von 1852-1926.

Publication/Creation

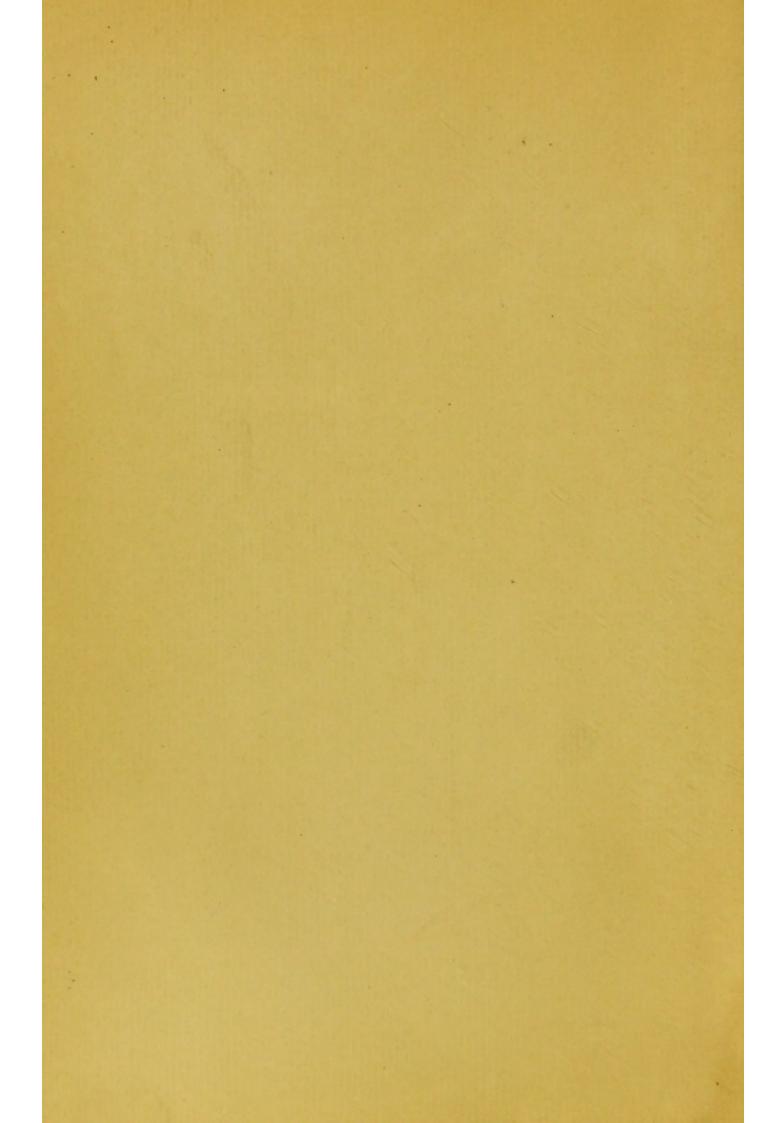
Miltitz bei Leipzig: Schimmel, 1910.

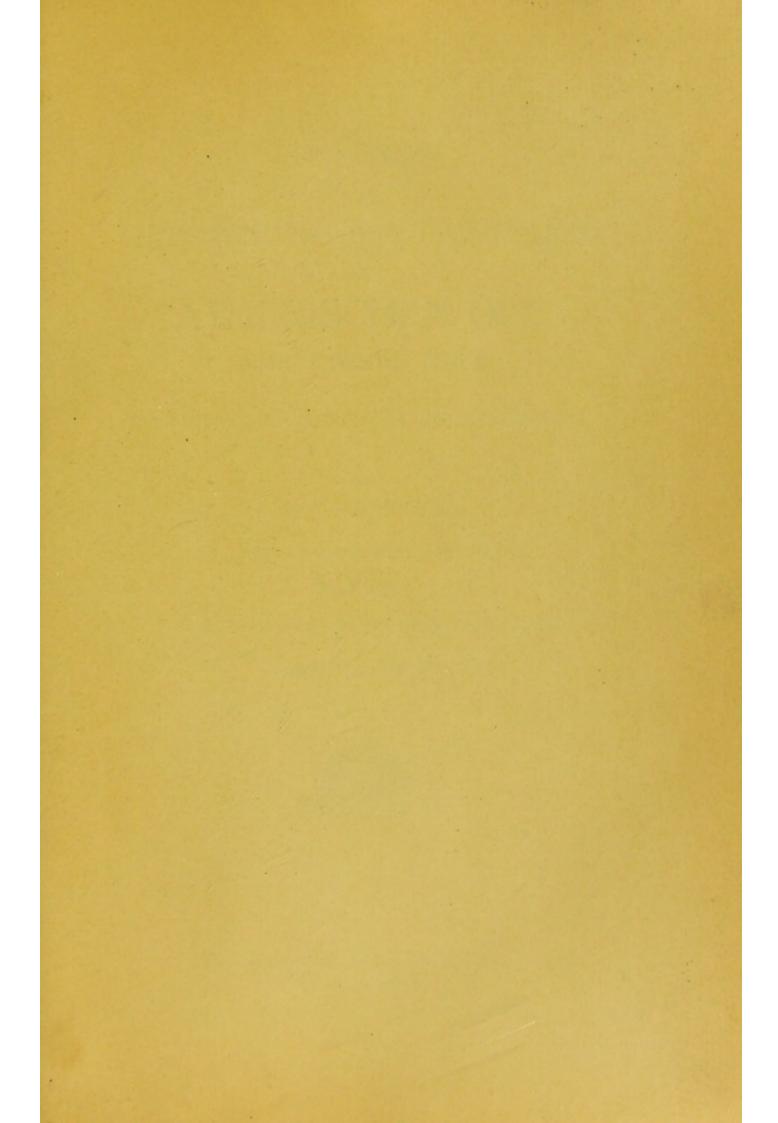
Persistent URL


https://wellcomecollection.org/works/adkq4y4d

License and attribution

Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).




Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

Med K14826

THEORIE

DER

GEWINNUNG UND TRENNUNG

DER

ÄTHERISCHEN ÖLE

DURCH DESTILLATION

(GRUNDZÜGE EINER ALLGEMEINEN DESTILLATIONSLEHRE)

VON

C. VON RECHENBERG.

MIT ZAHLREICHEN ABBILDUNGEN UND TABELLEN.

BEARBEITET

IM AUFTRAGE DER FIRMA SCHIMMEL & CP
IN
MILTITZ BEI LEIPZIG.

SELBSTVERLAG VON SCHIMMEL & C9
MILTITZ BEI LEIPZIG.

(FÜR DEN BUCHHANDEL: L. STAACKMANN, LEIPZIG.)
1910.

95400

Alle Rechte vorbehalten.

33049877

WEL	LIBRARY
Coll	welMOmec
Call	
No.	QV

VORWORT.

In dem vorliegendem Werke hat der Verfasser eine zusammenfassende Darstellung der theoretischen Grundlagen zur
Gewinnung der ätherischen Öle und zu ihrer Trennung in die
Bestandteile durch Destillation gegeben. Zugleich mit diesem
Werke wird in zweiter Auflage "Die ätherischen Öle" von
E. Gildemeister erscheinen, das in erster Auflage von
E. Gildemeister und Fr. Hoffmann verfaßt war. Es wird
in der neuen Auflage zwei Bände umfassen, deren erster vielleicht noch 1910 veröffentlicht wird, der zweite später.

Der in der ersten Auflage enthaltene kleine Abriß über die Gewinnung der ätherischen Öle war völlig unzureichend. Eine ausführlichere Beschreibung auch in praktischer Hinsicht ist schon deshalb wünschenswert, damit den vielen bei der Firma Rat Suchenden eine gründlichere und mehr umfassende Auskunft gegeben werden kann, als es mündlich oder schriftlich möglich ist. Aus diesem Grunde besonders wurde das Kapitel "Kleinbetrieb und Wanderdestillation" eingehender behandelt und dabei nicht nur das ortsübliche Destillationsverfahren durch Wort und Bild erläutert, sondern auch erwähnt, ob und wie es nach Ansicht des Verfassers verbessert werden könnte.

Es war geplant gewesen, die vorliegende Arbeit als Teil in den Rahmen des Gildemeisterschen Buches einzufügen. Im Verlaufe der Ausarbeitung ergab es sich aber, daß statt des gewollten Beitrags ein Sonderwerk mit einem ganz anderen Charakter entstanden war. Das Buch von Gildemeister und Hoffmann hat sich in seiner ersten Auflage die Schätzung, man kann wohl sagen, eines maßgebenden Werkes erworben. Es ist ein Handbuch, während dies ein Lehrbuch geworden ist, das nach seiner allgemeinen Gestaltung und auch nach den darin wiedergegebenen Untersuchungen und Schlußfolgerungen als erstes dieser Art erst die Kritik bestehen muß. Auch der Leserkreis, an den sich die beiden Bücher wenden, ist nicht derselbe. Während das Buch von Gildemeister nur von den ätherischen Ölen handelt, enthält das vorliegende Buch außer der Beschreibung der Gewinnung der ätherischen Öle im Groß- und Kleinbetriebe eine allgemein gehaltene Darstellung der Destillation einheitlicher Körper und der Trennung von Körpergemischen durch Destillation, greift also hierin in viele andere Industriezweige hinüber. Aus all diesen Gründen erschien es notwendig, dies Buch besonders herauszugeben. Weil es schon größeren Teils gedruckt war, konnten die fortlaufenden Seitenzahlen leider nicht mehr geändert werden.

Die Angaben über die zahlreichen und verschiedenartigen Destillationsmethoden, sowohl betreffs der Gewinnung ätherischer Öle aus der Pflanze als auch hinsichtlich der einfachen Verdampfung oder Trennung flüchtiger Körpergemische, beruhen ausnahmslos auf praktischen Erfahrungen. Manche dieser Verfahren werden dem Chemiker im Laboratorium und im Betriebe chemischer Fabriken noch unbekannt sein. Trotz gebotener Kürze habe ich versucht, jedes Verfahren in seinen Eigenschaften, besonders auch in seiner Leistungsfähigkeit, soweit zu erklären, als zum Verständnis notwendig ist.

Zu den Kapiteln über die Verdampfung von Lösungen möchte ich noch eine Bemerkung machen. Im Verlaufe der Durcharbeitung des außerordentlich reichlich vorliegenden Untersuchungsmaterials wurde es mir immer klarer, daß die Annahme van der Waals' von der Kontinuität des gasförmigen und des flüssigen Zustandes nicht aufrecht zu halten ist. Das Verhalten von Lösungen bei ihrer Verdampfung, auch der Verlauf der Dampfdruckkurven einheitlicher Körper drängen geradezu zu dem Schluß, daß die Aggregatzustände durch Unterschiede molekularer Assoziation bedingt sind. Erleichtert wird diese Auffassung durch die Untersuchungsergebnisse der Kolloide. Wenn

auch mit einiger Zurückhaltung habe ich die Assoziationstheorie den Ausführungen über das Siedeverhalten einheitlicher Körper und Körpergemische als Erklärung zu Grunde gelegt. Ich verkenne zwar nicht, daß noch manche Unerklärlichkeiten gegen sie sprechen, trotzdem meine ich, daß ihre allgemeine Annahme nur eine Frage der Zeit sein wird.

Es ist ein Stück Lebensarbeit, das der Verfasser hiermit veröffentlicht, und für das er um freundliche Aufnahme bittet.

Miltitz b. L., im Dezember 1909.

Dr. C. Frhr. v. Rechenberg.

INHALTSVERZEICHNIS.

Einleitung.

Erstes Kapitel.

Praxis der Destination.	Seite
Die Wirkungsart des Wasserdampfes bei seiner Verwendung zur	Seite
Pflanzendestillation u. zur Destillation hochsied. Flüssigkeiten	261
Der Destillationsapparat	265
Verarbeitung des Destillationswassers	270
Das Vorkommen der ätherischen Öle in der Pflanze	272
Vorbereitung der Pflanzenteile zur Destillation	277
Ölverluste des Pflanzenmaterials von der Ernte bis zur Destillation	278
Destillationsmethoden: Wasserdestillation, Wasser- und Dampf-	
destillation, Dampfdestillation, trockene Öldestillation, Minder-	
druckdestillation, Überdruckdestillation, Überhitzungsdestilla-	000
tion, periodisches und kontinuierliches Destillationsverfahren.	283
Betrieb der Pflanzendestillation	286
Wasserdestillation unter Atmosphärendruck, Minderdruck, Über-	
druck	286
Wasser- und Dampfdestillation unter Atmosphärendruck, Minder-	202
oder Überdruck	293
Dampfdestillation unter Atmosphärendruck, Minder- oder Über-	295
druck, Überhitzungsdestillation	290
Betrieb der Öldestillation	300
Wasserdestillation unter Atmosphärendruck, Minder- oder Über-	
druck	300
Dampfdestillation ohne und mit Überhitzung, unter Atmosphären	-
oder Minderdruck	303
Trockene Destillation ätherischer Öle unter Minderdruck	305
Mängel der Hydrodestillation	306

Zweites Kapitel.

Das Daltonsche Diffusionsgesetz.	
Bestätigung und Erweiterung des Daltonschen Diffusionsgesetzes	Seite
durch Regnault	311
Drittes Kapitel.	
Destillation von Gemengen gegenseitig unlöslicher	
Flüssigkeiten.	
Isotherme und isobare Verdampfung eines einzelnen Körpers	313
Druck des Mischdampfes eines Flüssigkeitsgemenges	315 315
Destillationstemperatur eines Flüssigkeitsgemenges	316
Die Berechnung des spezifischen Gewichtes der Dämpfe nach	320
den Gasgesetzen	020
sättigten Wasserdampfes, Tabelle A für gesättigten Wasserdampf, Flüssigkeitswärmen, Verdampfungswärmen. Tabelle B	
für gesättigten Wasserdampf	322
Tabelle über die Zusammensetzung des Dampfgemisches bei der Destillation von Wasser mit einem anderen chemischen Körper	332
Abhängigkeit der Dampfzusammensetzung von der chemischen	252
Konstitution des mit dem Wasser siedenden Körpers	352
Abhängigkeit der Dampfzusammensetzung von dem Destillations- druck	353
Geringe Verdampfung der hochsiedenden Verbindungen	357
Bestätigung der berechneten Verdampfungswerte durch das Experiment	0-0
Verdampfung des ätherischen Öls bei seiner Hydrodestillation in	
der Praxis	301
Zusammensetzung des Dampfes bei der Pflanzendestillation	362
Zusammenstellung der in der Praxis erhaltenen Verdampfungswerte	302
Ursachen des Mehrverbrauchs an Dampf bei der Pflanzendestillation	373
Zusammensetzung des Mischdampfes bei verlangsamter Destillation	0.0
Viertes Kapitel.	
Destillation unter Überdruck oder Minderdruck.	
Überdruckdestillation	375
Überdruckdestillation mit Wasserdampf zur Verstärkung der Ölverdampfung aus der Pflanze	375
Die Überdruckdestillation als Mittel zur Zersetzung organischer	
Verbindungen	378

	IX
	Seite
Minderdruckdestillation	381
Trockene Öldestilllation unter verringertem Druck	381
Hydrodestillation von ätherischem Öl unter verringertem Druck.	382
Fraktionierung eines Flüssigkeitsgemisches unter Minderdruck oder	202
Atmosphärendruck, mit oder ohne Wasserdampf	383 388
Kondensation der Dämpfe	390
Phanzendestillation	390
Fünftes Kapitel.	
Überhitzungsdestillation.	
Überhitzte Dämpfe	395
Überhitzungsgrad	397
Spezifisches Gewicht des überhitzten Dampfes	397
Expansion von gespanntem Wasserdampf	399
Temperatur von trockenem gesättigtem Wasserdampf nach seiner	
Expansion	402
Destillation flüchtiger Flüssigkeiten durch überhitzten Wasser-	
dampf	403
Berechnung der Dampfzusammensetzung	403
Wert der Überhitzungsdestillalion mit Wasserdampf	406
Destillation von wasserlöslichen Flüssigkeiten durch überhitzten	
Wasserdampf	415
Reinheit der Destillation	416
Partielle Kondensation des Dampfgemisches	416
Entwässerung des Destillates	417
Anwending der Obermitzungsdestmation in der Teelmik	
Sechstes Kapitel.	
Die chemisch-physikalischen Vorgänge bei der	
Pflanzendestillation.	
Die Destillationstemperatur	418
Das ätherische Öl in der Pflanze	419
Wirkung von Feuchtigkeit und Hitze auf die Pflanzengewebe	419
Druckdifferenz innerhalb und außerhalb der Ol enthaltenden Zelle	420
Verdampfung des eingeschlossenen ätherischen Öls durch Ver-	
mittelung der Hydrodiffusion	423
Druckdifferenzen in der Blase	433
Wasserdestillation von Pflanzen	434 437
Schwierigkeiten bei der Destillation	
seiner Gewinnung	
Comer Community	

Siebentes Kapitel.

Kleinbetrieb und Wanderdestillation.	
Wesserdestillationshetriehe	
Wasserdestillationsbetriebe	
Kräuterdestillation in Spanien	
Cajeputdestillation auf Ceram	6
Cassiablätter in Südchina	16
Tannenzapfendestillation in der Schweiz	19
Canangablütendestillation auf Java	
Rosendestillation in Bulgarien	
Linaloeholzdestillation in Mexiko	
Betriebe mit Wasser- und Dampfdestillation	
Sternanisfrüchte, Destillation in Tongkin	60
Camphernoizuestillation auf Formosa	61
Ptetterminzkrautdestillation in Japan	
Dampfdestillationsbetriebe	64
Rosmarindestillation in Dalmatien	64
Achtes Kapitel.	
Molekulare Assoziation u. Dissoziation, ihr Einfluss auf die Verdampfung. Neuntes Kapitel.	
Siedetemperaturen u. Dampfdrucke einheitlicher Körper.	
Methoden der Dampfdruckbestimmung. Statische Methode, Iso- thermenmethode, dynamische Methode, indirekte dynamische	
	172
in Sindamplets hestimmungen unter vermindertem Druck	477
Date Descending des Hampidiuckes chies Noipele	490
Demendance on other anners in the same of	494
The day Temperaturen und Drucke gesättigtet Dampie	522
The state of the Standard Residence of the standard Stand	122
The anatioche und praktische Schlubfolgerungen aus der Steam	527
1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
	529
Körnern verschledener Hachtigher	532
	53
Deduktion des beobachteten Siedepuliktes auf	
silberhöhe	53

	Seite
Reduktion eines unter Minderdruck beobachteten Siedepunktes auf einen anderen Minderdruck	536
Umrechnung eines Siedepunktes von Minderdruck auf Atmosphären-	
druck und umgekehrt	536
Zehntes Kapitel.	
Allgemeines über Lösungen.	
Gemenge nicht merkbar löslicher Körper. Gemenge begrenzt lös- licher Körper. Homogene Gemische mit Minorsiedepunkt. Ho- mogene Gemische mit Zwischensiedetemperatur. Homogene	
Gemische mit Majorsiedetemperatur	539
gemischen	541
Untersuchung des Siedeverhaltens von Lösungen	544
Berechnung des Siedeverhaltens von Lösungen. Ideale Gemische, Gemische mit erniedrigter Siedetemperatur. Gemische mit	
erhöhter Siedetemperatur	549
Elftes Kapitel.	
Destillation von Gemengen gegenseitig begrenzt	
löslicher Flüssigkeiten.	
Druck und Temperatur des Dampfgemisches	555
Zusammensetzung des Dampfgemisches	558
Anilin und Wasser	559
Phenol und Wasser	563
Methyläthylketon und Wasser	567
Methylacetat und Wasser	569
Praktische Nutzanwendung	569
Zwölftes Kapitel.	
Destillation homogener Gemische mit Minor-	
siedetemperatur.	
	577
Fraktionierte Destillation von Lösungen mit Minorsiedetemperatur Änderung des Minimumsiedepunktes mit dem Destillationsdruck	579
Minimumsiedepunkt und Dampfzusammensetzung von binären	
homogenen Flüssigkeitsgemischen	581
Die chemische Konstitution der Körper, die Gemische mit Minor-	
siedetemperatur bilden	584
Die Zusammensetzung der konstant siedenden Mischung	The second second
Enthalten die Alkohol-Wassergemische Hydrate?	587 587

		Seite
	linimumsiedepunkt	589
Über die Trennung homo	gener Gemische mit Minorsiedetemperatur	590
Anderung in der Verdar	npfung von wäßrigem Alkohol nach Zu-	E04
satz eines fremden h	Corpers	591
Dreiz	ehntes Kapitel.	
Destillation homogen	Comische ohne konstanten	
	er Gemische ohne konstanten	
S	iedepunkt.	
Reisniele des Siedeverl	naltens und der Dampfzusammensetzung	
von Lösungen ohne	konstanten Siedepunkt	595
von Losungen onne		
Vierz	ehntes Kapitel.	
Doctillation labile	er Additionsverbindungen.	
Destination labit	it Mais reis determinantur	
Homogene Gemisch	e mit Majorsiedetemperatur	
	nische mit Maximumsiedepunkt (Additions-	
verbindungen)		600
Factstellung der moleku	laren Konstitution einer Flüssigkeit. Nach-	
weis von Additionsy	erbindungen	004
Eigenschaften der Addi	tionsverbindungen	011
Wirkung der Wärme at	of Additionsverbindungen	010
Finniskung von Lösung	smitteln auf Additionsverbindungen	011
Benutzung von Additio	nsverbindungen zur Trennung von Flüssig-	
keitsgemischen		022
Tabelle der Additionsv	erbindungen	020
Additionsverbindungen	von Wasser	021
do.	echwethoer Saure und milen Saizen.	
do.	"Orthophosphorsäure	
do.	" rerro, und rerricyania de la conscience de la conscienc	638
	verschiedener Mineralsäuren	. 640
do. do.	von Kohlenwasserstoffen	. 64
do.	Alkoholen und Alkoholäthern	. 64
do.	" Phenolen und Phenoläthern	. 650
do.	" Aldenyden	. 65
do.	Retonen	. 66
do.	"Oxyden	. 66
do.		. 66
do.	von Ammoniakderivaten	. 66
do. do.	Halogenkörnern	67
do.	Nitro- und Nitrosokorpern	. 01
	Schwefelkörnern	
Literatur und Bemerku	ngen zur Tabelle der Additionsver-	47
hindungen		. 67
Dilliani B		

Die hauptsächliche Gewinnung der ätherischen Öle aus ihrem Rohmaterial, der Pflanze und ihren Teilen, geschieht durch Destillation mit Wasserdampf. Das zur Destillation vorbereitete oder im natürlichen Zustande befindliche Pflanzenmaterial wird entweder mit Wasser gekocht, oder der Wasserdampf wird durch die trocken in der Blase liegende Füllung hindurchgeleitet. Das entwickelte Gemisch von Öldampf und Wasserdampf wird in dem mit der Blase verbundenen Kühler kondensiert. Dank der geringen Löslichkeit des ätherischen Öles in Wasser trennen sich Öl und Wasser in den Vorlagen in zwei Schichten.

Nur mit dieser Gewinnungsmethode durch Wasserdampf und im Anschluß daran mit der Destillation von Flüssigkeitsgemischen und ihrer Trennung durch Destillation wollen wir

uns in diesem Abschnitt beschäftigen.

Wirft man rückschauend einen Blick auf die in den letzten Jahrzehnten ungewöhnlich rasche Entwicklung der Industrie der ätherischen Öle, so sind fraglos die Wallachschen Arbeiten über die Terpene ein mächtiger Impuls hierzu gewesen. Sie waren die notwendige Vorbedingung zur erfolgreichen Untersuchung der ätherischen Öle, und erst die Kenntnis der Fabrikate zeigte Mittel und Wege zu einer mit Verständnis betriebenen Fabrikation.

Mit der allmählichen Vergrößerung der Fabrikationsanlagen und besonders durch das Entstehen von Großbetrieben, die sich nicht auf einzelne Rohstoffe beschränkten, sondern alle Pflanzenmaterialien heranzogen, die flüchtige Substanzen enthalten, wurden alle Hilfsmittel der Technik dem besonderen Zwecke dienstbar gemacht. An Stelle der einfachen Universal-Destillationsblase, die für alle Rohmaterialien ohne Unterschied benutzt wurde, wurden je nach der besonderen Destillationsart eigenartige, zum Teil kompliziert gebaute Apparate aufgestellt. Aus der altbekannten Wasserdestillation und der gewöhnlichen einfachen Dampfdestillation entwickelte sich eine Vielheit von Destillationsarten, von denen in jedem Einzelfalle die geeignetste zu wählen ist.

Durch die Untersuchung der ätherischen Öle wurde eine Fülle wissenschaftlich interessanter und technisch wertvoller chemischer Körper entdeckt. Ein neues Arbeitsfeld wurde hiermit der Industrie erschlossen, nämlich die Trennung dieser Stoffgemische in ihre Bestandteile. In der Isolierung einzelner Körper aus diesen meist sehr kompliziert zusammengesetzten Lösungen sind der Destillationstechnik schwierige, aber gerade deshalb reizvolle Aufgaben gestellt, zu deren Lösung die moderne physikalische Chemie die leitenden Ideen zu bieten hat.

Da die ätherischen Öle Gemische von nach Siedepunkt und Zusammensetzung sehr verschiedenartigen, flüchtigen, flüssigen und festen Körpern darstellen, so kann man die in diesem Abschnitt gegebene Theorie der Destillation auch als eine allgemeine Destillationslehre auffassen.

1. Kapitel.

Praxis der Destillation.

Bevor auf die theoretischen Ausführungen über die Destillation von Pflanzen und von ätherischen Ölen näher eingegangen wird, ist es zum besseren Verständnis notwendig, eine kurze Beschreibung der Destillationspraxis und der mannigfaltigen Destillationsmethoden zu geben, wie sie im Großbetriebe benutzt werden.

Die Wirkungsart des Wasserdampfes bei seiner Verwendung zur Pflanzendestillation und zur Destillation hochsiedender Flüssigkeiten. Über die bei oberflächlicher Betrachtung wohl verwunderlich erscheinende Tatsache, daß flüssige oder feste Körper mit Wasserdampf in reichlicher Menge überdestilliert werden können, auch wenn sie einen weit höheren Siedepunkt als das Wasserhaben, finden sich selbst in wissenschaftlichen Werken teils unklare und unsachliche, teils geradezu unrichtige Auffassungen.

In Beilsteins Handbuch und in den meisten Lehrbüchern der organischen Chemie wird bei einzelnen Verbindungen als besondere Eigenschaft bemerkt, ob sie mit Wasserdämpfen flüchtig sind oder nicht. Die Angabe ist unsachlich, mindestens unnötig, wenn irgend ein Siedepunkt angeführt ist, denn flüchtig mit Wasserdämpfen ist jeder Körper, von dem überhaupt eine Siedetemperatur festgestellt werden kann. Eine Angabe über die Destillationsfähigkeit mit Wasserdampf hat nur dann Berechtigung, wenn damit ausgedrückt werden soll, daß der Körper sich mit Wasser nicht zersetzt. Aus der Höhe des Siedepunktes erhellt auch, ob sich die gewöhnliche Destillation mit gesättigtem Wasser-

dampf unter Atmosphärendruck noch gut anwenden läßt, oder ob zur Überhitzungsdestillation unter Atmosphärendruck oder schließlich zum letzten, selten versagenden Mittel, zur Überhitzungsdestillation im Vakuum mit Wasserdampf gegriffen werden muß.

Der in den Büchern besonders hinzugefügten Angabe der Flüchtigkeit mit Wasserdampf bei Verbindungen mit höherem Siedepunkte als Wasser liegt die irrtümliche Annahme zugrunde, als ob das eine erwähnenswerte, nur bestimmten Körpern eigentümliche Eigenschaft wäre. Auf der gleichen falschen Voraussetzung beruht die in technischen Werken¹) zu findende Erklärung, daß besonders die ätherischen Öle, obwohl erst bei hohen Temperaturen siedend, die Eigenschaft haben, sich mit Wasserdämpfen zu verflüchtigen. Vereinzelt wird sogar in sonst gut geschriebenen Büchern diese Tatsache so erklärt, daß die niedriger siedenden Flüssigkeiten durch den Wasserdampf verdampft, die höher siedenden dagegen mechanisch mitgerissen werden.2) In einem bekannten Werke3) über "Verdampfen, Kondensieren und Kühlen" wird eine kleine Aufzählung gegeben, wieviel Wasserdampf zum "Mitreißen" verschiedener Flüssigkeiten notwendig ist, wobei aus den angeführten Zahlenangaben zu sehen ist, daß diese sich bunt durcheinander auf Wasserdampfdestillation unter Atmosphärendruck, auf gewöhnliche Überhitzungsdestillation mit Wasserdampf und auf Überhitzungsdestillation im Vakuum mit Wasserdampf beziehen. Derselbe Verfasser bemerkt hierzu, daß "nach seinen Beobachtungen" diese Destillation mit Wasserdampf nicht ein Verdampfen, sondern ein Mitreißen wäre.

Meint man, daß der durch eine Flüssigkeit von hoher Siedetemperatur hindurchgeleitete Wasserdampf diese nicht verdampft, sondern in die Höhe spritzt und mechanisch als Flüssigkeit mitnimmt, so ist freilich jede sachkundige Verwendung des Wasserdampfes ausgeschlossen; experimentelles Geschick kann höchstens zu einer Sammlung falsch erklärter oder unerklärlicher Erfahrungstatsachen führen. Zu solchen durch "Überreißen" ausgelegten

¹⁾ Dr. Georg Bornemann, Die flüchtigen Öle. 1891, S. 21; ferner Muspratts Handbuch der technischen Chemie. 4. Aufl. Artikel über "Ätherische Öle" von Stohmann, Bd. I, S. 50.

²) Dr. A. Veith, Das Erdöl. 1892. S. 191 und 200. ⁵) E. Hausbrand, Verdampfen, Kondensieren, Kühlen. III. Aufl. S. 18.

Versuchsresultaten würde dann z. B. die Tatsache gehören, daß Myristinsäure mit dem Siedepunkte von ca. 318° durch Destillation mit überhitztem Wasserdampf unter 38 mm Druck schon bei 168,5° ein Destillat liefert, das zu 65,7°/o aus Myristinsäure besteht. Schwieriger wäre schon zu erklären, warum mit demselben Wasserdampf bei der gleichen Destillationstemperatur aber unter 760 mm Druck nur 7,7°/o Myristinsäure "übergerissen" werden, während es nach dieser Auffassung als unerklärlich erscheinen muß, daß ein ätherisches Öl oder sonst ein Gemisch verschiedener flüchtiger Körper durch Destillation mit Wasser oder Wasserdampf nach den Siedetemperaturen der Komponenten zerlegt werden kann, was doch erfahrungsgemäß geschieht.

Ein jeder Körper äußert je nach seiner Temperatur einen bestimmten Dampfdruck, wenn dieser auch bei den praktisch nicht flüchtigen Körpern außerordentlich klein ist. Entsprechend der Höhe dieses Dampfdruckes hat er ein bestimmtes Maximum der Dampfentwicklung, mit dessen Erreichung der Dampf gesättigt ist. Ist der Raum, in dem sich der Körper mit dem gesättigten Dampfe befindet, abgeschlossen, so hört nun die weitere Verdampfung auf, d. h. richtiger ausgedrückt, die Vermehrung des Dampfes hat ihr Ende erreicht. Zwischen der flüssigen Phase, die der noch nicht verdampfte Teil des Körpers darstellt, und der dampfförmigen ist ein Gleichgewichtszustand eingetreten, der aber keinen Ruhezustand bedeutet, denn fortgesetzt findet ein Austausch zwischen beiden Phasen statt, nur daß sich ebensoviel Moleküle aus der flüssigen Phase in die dampfförmige erheben, wie umgekehrt aus dieser in jene zurückkehren.

Wird nun der mit gesättigtem Dampfe erfüllte Raum geöffnet, so tritt Dampf heraus, der durch die gleiche Dampfmenge
von dem Körper ersetzt wird. Dieser sich nur langsam auf dem
Wege der Diffusion abspielende Vorgang verläuft aber schneller,
wenn der Dampf durch die Bewegung eines anderen Dampfes
oder Gases alsbald nach seiner Entwicklung aus dem Raume
entfernt wird. Irgend eine praktisch flüchtige Flüssigkeit, z. B.
Nelkenöl, sei in einen Glaskolben gegossen; durch das Öl wird
Wasserdampf geleitet, wobei es gleichgiltig sein mag, unter
welchem äußeren Druck das Öl steht, und welche Temperatur
es hat, nur muß dafür gesorgt werden, daß wenigstens ein Teil
des Wasserdampfes auch dampfförmig bleibt. Dann zwingt der

Wasserdampf das Nelkenöl zur Dampfbildung, indem jedes Wasserdampfbläschen für das Öl wie ein leerer Raum ist, in welchen dieses sofort Dampfmoleküle sendet. So mit Öldampf beladen, und zwar ein Volumen Wasserdampf mit dem gleichen Volumen Öldampf, steigt der Wasserdampf in die Höhe und tritt aus dem Kolben heraus. Verbinden wir den Kolben durch ein Rohr mit einem Kühler, der das Dampfgemisch kondensiert, so haben wir in diesem Vorgang die Destillation einer flüchtigen Flüssigkeit

mit Wasserdampf.

Die Mitwirkung des Wasserdampfes bei der Destillation ist im wesentlichen dieselbe wie die eines Luftstromes, der durch eine flüchtige Flüssigkeit geleitet wird, nur daß dies eine Verdunstung, d. h. eine isothermische Destillation, darstellt, jenes aber einen Siedeprozeß, d. h. eine isobarische Destillation. Führt man die Luft langsam, in feine Bläschen zerteilt, durch das Öl, so ist der Effekt der gleiche, denn der Öldampf in dem austretenden Luftvolumen ist seiner Temperatur entsprechend gesättigt, oder mit anderen Worten, die Luft ist mit Öldampf gesättigt. Stellt man beide Versuche, die Destillation und die Verdunstung, bei gleicher Temperatur an, so wird auch bei gleicher Gas- resp. Dampfbewegung dieselbe Ölmenge verdampfen, denn ein Volumen irgend eines Gases oder Dampfes nimmt dasselbe Volumen Dampf aus einer Flüssigkeit auf, und zwar gesättigten Dampf, wenn zwischen Flüssigkeit und hindurchgeleitetem Gas oder Dampf keine merkbare Löslichkeit besteht, anderenfalls ungesättigten.

In ähnlicher Weise bewirkt der Wasserdampf auch die Verdampfung des flüchtigen Öls, das sich in der Pflanze befindet. Hierbei ist aber noch eine andere Tätigkeit des Wasserdampfes von wesentlicher Bedeutung für den Destillationsprozeß, nämlich die der Wärmeübertragung. Der starre Pflanzenstoff ist nicht wie eine Flüssigkeit imstande, die durch eine indirekte Heizung empfangene Wärme an alle nicht an den Heizwänden liegenden Teile schnell und gleichmäßig weiterzuleiten. Den hierzu nötigen Wärmeüberträger stellt das Wasser bei seiner Verwendung zur Pflanzendestillation dar, sowohl im flüssigen Zustande bei der Destillation der in Wasser liegenden Pflanze, als auch in Dampfform, wenn der Wasserdampf durch das

Pflanzenmaterial hindurchgeblasen wird.

Wählt man an Stelle des Wassers und seines Dampfes zur Destillation eine andere flüchtige Flüssigkeit, z. B. Spiritus, Petroläther, Methylalkohol oder andere, was vielfach versucht worden ist, ohne daß aber irgend ein Verfahren eine dauernde Anwendung erreichte, so ist zu berücksichtigen, daß diese Vertreter des Wassers, ganz abgesehen von den größeren Kosten, nicht den gleichen technischen Effekt erzielen können, weil sie in den ätherischen Ölen löslich sind, also mit ihnen kein gesättigtes Dampfgemisch bilden. Bei der Berührung mit dem ätherischen Öl erniedrigen sie sofort dessen Dampfdruck. Ein Volumen ihres Dampfes nimmt deshalb in demselben Volumen Öldampf eine erheblich geringere Gewichtsmenge Öl mit. Übrigens liegt hier wegen des Feuchtigkeitsgehaltes des Pflanzenmaterials eine Destillation mit Hilfe eines Gemisches von Wasser und Äthylalkohol etc. vor, so daß eine sichere Voraussage des Resultates nicht gut zu geben ist. Ferner könnte gerade wegen der Löslichkeit des ätherischen Öls in diesen flüchtigen Flüssigkeiten das in Pflanzenzellen eingeschlossene ätherische Öl auf dem Wege der Diffusion schneller dem vorbeiziehenden Dampfe zugeführt werden.1) In Südfrankreich sollen hier und da Blüten und Kräuter vor der Destillation mit Spiritus besprengt werden.

Für die Gewinnung des Blütenaromas hat man auch Gase statt des Wasserdampfes benutzt. Da Gase im gewöhnlichen Kühlverfahren nicht kondensiert werden können, so ist es am besten, dem Gase den von ihm mitgenommenen Öldampf durch Absorption zu entziehen. Das einzige auf diesem Prinzip beruhende Verfahren, das für einzelne Blütenarten trotz aller Mängel dauernd angewendet wird, weil das gewöhnliche Destillationsverfahren mit Wasser oder mit Wasserdampf hierfür versagt, ist das französische Enfleurageverfahren. Das Aroma wird hierbei den Blüten durch Verdunstung an die darüber befindliche Luftschicht entzogen und aus dieser wieder von Fett absorbiert.

Der Destillationsapparat. Die Apparatur zu jeder Destillation gliedert sich in drei hauptsächliche Teile, den eigentlichen Destillationsapparat, der gewöhnlich von alters her "Blase" genannt wird, den Kühler und die Vorlage.

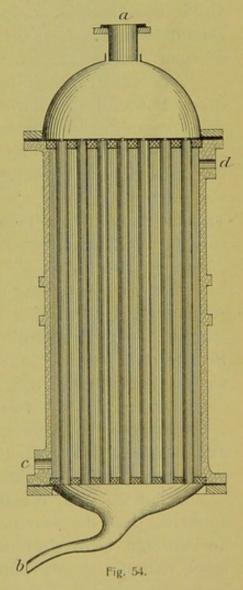
¹⁾ Vergl. das Kapitel: "Die chemisch-physikalischen Vorgänge bei der Destillation des ätherischen Öls aus der Pflanze."

Die Blase hat das Destillationsmaterial aufzunehmen und enthält die Heizeinrichtung. Sie ist entweder zylinderförmig, hoch, dann meist gering konisch zulaufend, oder flach, oder sie ist kugelig, auch eiförmig. Ihre Form und Einrichtung werden durch das Destillationsmaterial und durch die nach diesem erforderliche Destillationsart bestimmt. Sie besteht aus Eisen, Kupfer, Aluminium oder Silber. Die eisernen Blasen werden vorzugsweise für trockene Pflanzenfüllungen benutzt; für Flüssigkeiten, auch für die Wasserdestillation von Pflanzenteilen, dienen kupferne Blasen. Soll von einer flüchtigen Flüssigkeit nur ein Teil abdestilliert und der Rückstand dann aus der Blase abgezogen werden, so wählt man hierzu kupferne Apparate, die im Innern gleichmäßig stark verzinnt sind, weil reines bleifreies Zinn ätherische Öle mit Säure- oder Phenolgehalt nicht färbt; auch Apparate aus Aluminiumblech sind brauchbar, selbst kleine silberne Blasen werden für diesen Zweck verwendet.

Am Boden der Blasen ist ein Ablaßhahn angebracht und oben ein Mannloch zum Füllen, das für die Ölblasen zugleich zum Reinigen dient. Die Blasen mit Trockenfüllung haben seitlich etwas über dem Boden noch ein zweites Mannloch zum Entleeren der ausdestillierten Füllung. Ein Rohr am Kopf der Blase, das sog. Übersteigrohr, führt die im Destillationsraum entwickelten Dämpfe zum Kühler. Teils zur Vermeidung von Wärmeverlusten, teils damit die Blasenfüllung durch die äußere Abkühlung nicht zu naß wird, wird die ganze Blase mit einer 4—8 cm starken Schicht von Wärmeschutzmasse umkleidet.

Die Heizung der Blase kann unmittelbar geschehen — "direkte Heizung" — dann strömt der von außen eingeführte Kesseldampf in das Destillationsmaterial selbst hinein, das entweder aus Pflanzenmassen oder flüchtigen Flüssigkeiten besteht, oder sie geschieht mittelbar — "indirekte Heizung" — indem der Kesseldampf in den Doppelboden der Blase oder in geschlossene Heizschlangen geleitet wird, so daß sich durch diese die Wärme auf das Wasser oder das ätherische Öl innerhalb der Blase überträgt. Der Wasserdampf wird in verschiedener Art angewendet: als gespannter Dampf bis etwa zu 10 Atm. absolutem Druck, auch als Abdampf von der Dampfmaschine oder von Dampfpumpen mit etwa 1,3, höchstens 1,5 Atm. absolutem Druck, ferner als überhitzter Dampf oder als Gemisch von

überhitztem und gespanntem gesättigten Dampf, so daß in den Destillationsraum ein gespannter Dampf von mäßigem Übershitzungsgrade, aber jedenfalls ein vollkommen trockner Dampf eintritt.


In dem Kühler wird das Dampfgemisch von Wasser und ätherischem Öl zu einem Flüssigkeitsgemenge kondensiert. Zwei

Arten von Kühlvorrichtungen lassen sich für flüssige Kondensate hauptsächlich unterscheiden:

1. Die Röhrenkühler (Fig. 54). Ein Bündel von Rohren, die von dem Kühlwasser umspült werden, nimmt das Dampfgemisch auf und läßt das Kondensat in die Vorlage fließen.

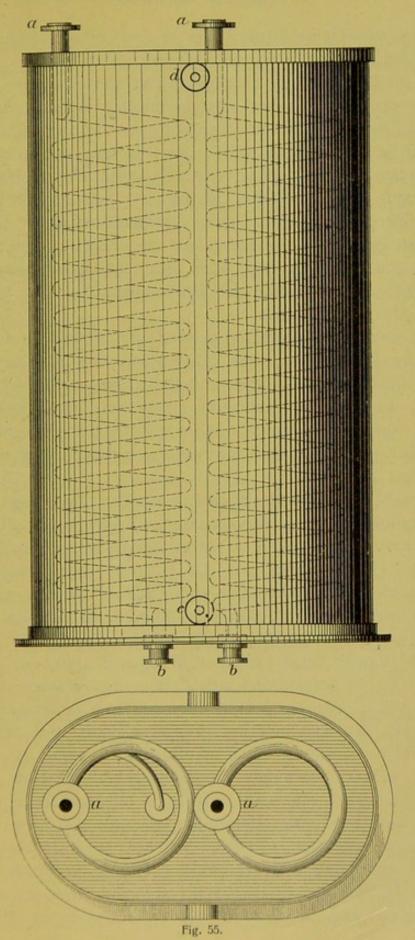
2. Die Schlangenkühler (Fig. 55). Der Dampf geht aus dem Übersteigrohr in ein oder mehrere ineinander oder besser nebeneinander schlangenförmig in zahlreichen Windungen gebogene Rohre, die in einem von dem Kühlwasser durchströmten Wasserbehälter stehen. Die Richtung der Dampfbewegung und des Kühlwassers sind stets entgegengesetzt. In den beiden Figuren bedeutet a den Dampfeintritt, b den Kondensatablauf, c und d den Kühlwasserzufluß und -abfluß.

Soll bei dem Destillate jede Färbung durch das Metall der Kühler vermieden werden, so werden alle mit dem Kondensate in Berührung kommenden Metallteile aus Zinn oder Aluminium angefertigt, sonst aus Kupfer,

Röhrenkühler.

während Eisen wegen seiner stark färbenden Eigenschaften nur in besonderen Fällen verwendet wird. Für die Destillation unter vermindertem Druck müssen die Kühler auch die Druckdifferenz von einer Atmosphäre aushalten können, ohne einen Tropfen Wasser in das Destillat zu geben, damit bei trockner Öldestillation das Destillat nicht feucht wird. Außerdem muß der Kühler für die Minderdruckdestillation hinreichend weit in seinen Rohren sein

— besonders gilt dies für die Schlangenkühler — so daß der Dampf bei seinem Durchgange nicht gehemmt, und der Druck in der Blase nicht zu stark erhöht wird.


An die Leistungsfähigkeit der Kühler werden selbstverständlich sehr verschiedene Anforderungen gestellt, je nach der Größe des Destillationsapparates und der notwendig verlangten Destillationsstärke, die bis zu zwei Kubikmeter Destillationswasser in einer Stunde beträgt.

Aus den Kühlern fließt das Destillat in die Vorlagen, deren Einrichtung nach Art der bekannten Florentiner Flasche die Trennung des ätherischen Öls von dem Wasser bezweckt. Seite 244 sind zwei derartige Glasvorlagen für Öl abgebildet, das leichter oder schwerer als Wasser ist. Aus Glas nimmt man sie nicht gern größer als mit etwa 15 Liter Fassungsraum. Der Trichter besteht aus Zinnblech und ebenso das gebogene Ablaufrohr für Wasser in jeder Vorlage, das beweglich durch Korkdichtung eingefügt ist.

Die größeren Vorlagen werden aus Zinn, verzinntem Kupfer, Aluminium, Kupfer oder auch aus Eisen hergestellt. Blei läßt man nicht mit ätherischen Ölen, die zum Verkauf gelangen, in Berührung kommen, weil es, zumal von Ölen mit freien Fettsäuren, angegriffen wird, sodaß giftige Bleiverbindungen in das Öl gelangen. Die Verwendung von Kautschukschläuchen und wenn möglich von Kautschukdichtungen ist zu vermeiden, weil die Öle den Kautschuk teilweise lösen und davon einen unan-

genehmen Geruch erhalten.

Damit Öl und Wasser Zeit haben, sich in Schichten zu sondern, darf die Durchlaufgeschwindigkeit des Destillates in der Vorlage nicht groß sein; die Größe und Anzahl der Vorlagen richtet sich also nach der Destillationsstärke. Hierbei ist zu berücksichtigen, daß die Strömungsgeschwindigkeit mehr durch nebeneinander gestellte Vorlagen, die sich in der Aufnahme des Destillates teilen, gemäßigt wird, als durch übereinanderstehende, wobei das Destillat ungeteilt von einer Vorlage in die andere läuft. Ändert sich im Verlaufe der Destillation das spezifische Gewicht des ätherischen Öls, so daß die eine Fraktion auf dem Wasser schwimmt, die andere nach dem Boden der Vorlage strebt, so verbindet man eine Vorlage für leichtes Öl mit einer solchen für schweres.

Schlangenkühler.

Zeigt das Öl im Kühler oder in der Vorlage Neigung zu erstarren oder Kristalle auszuscheiden, wie z. B. Ajowanöl oder Anisöl, so läßt man das Destillat warm ablaufen. Die Trennung des Öls von dem Wasser entsteht durch die mangelnde gegenseitige Löslichkeit; die Abscheidung aber in zwei übereinander liegende Schichten wird durch die Differenz der beiderseitigen spezifischen Gewichte verursacht. Ist dieser Unterschied bei der Temperatur des Destillates gering, so daß das Öl in feinen und größeren Tropfen in dem Destillationswasser schwebend bleibt, so ist der Kühlwasserzulauf zu mäßigen, damit das Destillat warm in die Vorlage fließt, denn bei Erwärmung nehmen die spezifischen Gewichte der ätherischen Öle sehr viel stärker ab als das des Wassers.

Die sonst im allgemeinen geltende Regel, kalt zu destillieren, damit die Verdunstung des ätherischen Öls aus dem Kühler heraus und in den Vorlagen möglichst eingeschränkt wird, ist für Öle, die spezifisch schwerer als Wasser sind, noch deshalb wichtig, weil dieser Unterschied im spezifischen Gewicht in vielen Fällen nur gering ist und durch etwaige Erwärmung noch mehr verkleinert würde.

Verarbeitung des Destillationswassers. Das aus den Vorlagen abfließende Destillationswasser enthält von dem ätherischen Öl je nach der Löslichkeit seiner Bestandteile mehr oder weniger aufgelöst. Erwägt man, wie das Destillat durch Kondensation aus einem innigen Gemisch von Öldampf und Wasserdampf entsteht, so ist es klar, daß das Wasser im Destillat eine bei seiner Temperatur gesättigte Lösung des ätherischen Öls sein muß. In Wasser relativ leichter lösliche Bestandteile des ätherischen Öls werden hierbei zum Teil in das Wasser übergehen, so daß das im Wasser gelöste ätherische Öl anders zusammengesetzt ist, als das sich in der Vorlage aus dem Wasser abscheidende. Ersteres wird im Betriebe, wenn es aus dem Wasser wieder gewonnen ist, Wasseröl genannt, letzteres Hauptöl. Weil die wasserlöslichen Ölbestandteile im allgemeinen sauerstoffhaltige Verbindungen sind, und diese meist ein größeres spezifisches Gewicht als die sauerstoffreien haben, so wird auch das Wasseröl in der Regel spezifisch schwerer als das Hauptöl sein. Vielfach verwischt sich jedoch dieser Unterschied, weil das Wasser außer den in Lösung befindlichen Ölbestandteilen eine andere oft sehr erhebliche Ölmenge emulsionsartig in feinen Tröpfchen schwebend enthält. Bei Abwesenheit wasserlöslicher Ölbestandteile ist das Destillationswasser klar oder fast klar, sonst mehr oder weniger milchig.

Nur in wenigen Fällen läßt man das Wasser wegfließen. Entweder wird es in die Destillationsblase zurückgeleitet oder aber mit Injektor oder Pumpe zur Destillation in andere Blasen gedrückt. Diese Wiedergewinnung des Öls aus dem Wasser durch Destillation nennt man Kohobieren und die hierzu dienenden Blasen Kohobationsblasen. Es ist das ein alter Ausdruck, der eigentlich den Vorgang bezeichnet, bei dem das Destillationswasser immer wieder zur Destillation von neuem Pflanzenmaterial verwendet wird.

Die Redestillation des Wassers geschieht in Blasen mit Doppelmantel oder geschlossener Heizschlange meist mit indirekter Heizung, denn direkte Heizung vermehrt die Wassermenge und erschwert dadurch die Verdampfung des Öls aus dem Wasser. Bei manchen Wässern genügt es, wenn nur etwa 10% davon abdestilliert werden; den Rückstand läßt man dann aus der Blase in die Schleuse fließen. In der Regel muß jedoch mehr abgetrieben werden, zuweilen bis zu drei Viertel der Wasserfüllung, ehe dem Wasser das Öl entzogen ist, soweit das durch Destillation überhaupt möglich ist.

Enthält das Wasser wertvolle, in Wasser relativ leichtlösliche Ölbestandteile von hohem Siedepunkte, die durch einfache Destillation unzureichend daraus erhalten werden können, so wird es vor der Destillation mit Kochsalz gesättigt. Hierdurch nimmt die Löslichkeit der Ölteile in dem Wasser ab und die Verdampfungsfähigkeit deshalb zu. In besonderen Fällen wird das mit Kochsalz gesättigte Wasser durch Extraktion mit gereinigtem Äther, Petroläther oder Toluol von den gelösten flüchtigen Substanzen befreit.

Eine jede Destillation, falls sie nicht bei einer Temperatur unter etwa 60° geführt wird, bringt in das Destillat Zersetzungsprodukte aus dem nicht flüchtigen Pflanzenmaterial, je nach der Art der Pflanzenteile z. B. Acetaldehyd, Schwefelwasserstoff, niedere Fettsäuren, Methylalkohol, stickstoffhaltige Körper, Phenole und andere Körper. Für das ätherische Öl bilden diese Zersetzungsprodukte unangenehme Verunreinigungen. Dank ihrer Löslichkeit

in Wasser gehen sie größeren Teils in das Destillationswasser über, zumal da bei der Pflanzendestillation im Destillat das Wasser an Menge weitaus überwiegt. Dieser Umstand kann zur Reinigung des ätherischen Öls benutzt werden, indem man bei der Pflanzendestillation oder bei der Ölrektifikation das Destillationswasser nicht zurückfließen läßt, und statt dessen reines Wasser in die Blase gibt.

Das Vorkommen der ätherischen Öle in der Pflanze. Die Pflanze birgt das ätherische Öl in besonderen Zellen, Räumen und Gängen. Man kann dreierlei Art seiner Ablagerung unterscheiden, in Hautdrüsen, in Sekretzellen und in Sekretbehältern.1)

Die Hautdrüsen sind Endzellen oder Zellengruppen in Epidermishaaren. Die Pfefferminzblätter bieten ein Beispiel hierfür, auf deren Epidermis außer den eigentlichen Trichomen sich solche mit Ölzellen befinden, die nach ihrer Verletzung das Pfefferminzöl austreten lassen. Oder die Epidermis enthält selbst die Ölzellen.

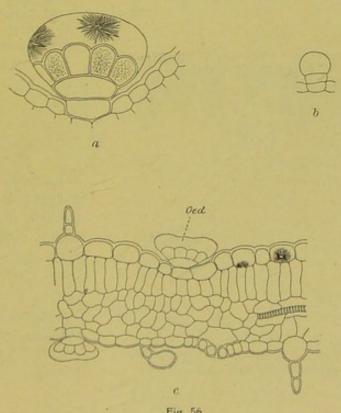
Die mit dem ätherischen Öle erfüllten Sekretzellen sind kuglige, wie z. B. bei dem Pfeffer, oder schlauchförmige Zellen, die als Idioblasten einzeln

oder in Gruppen zerstreut in dem Gewebe vorkommen.

Die intercellularen Sekretbehälter stellen Zwischenräume dar, die sich zwischen Zellgruppen durch Vergrößerung der Intercellularräume gebildet haben, indem die anliegenden Zellen beiseite geschoben worden sind (schizogene Sekreträume), oder indem die anliegenden Zellen nach Lösung von deren Zellhaut und Protoplasma mit einbezogen wurden (lysigene Sekreträume). Häufig sind diese Sekretbehälter schizogen und danach lysigen. Ihre Form kann rundlich sein wie bei den Rutaceen, oder langgegestreckt, kanalartig, wie bei den Coniferen und Umbelliferen.

Ungleich den Fetten und Kohlehydraten stellen die ätherischen Öle in der lebenden Pflanze keine Reservestoffe dar, die in den Stoffkreislauf der Pflanze wieder hineingezogen und verzehrt werden. Wohl aber können sie sich nach ihrer Ablagerung umwandeln, wobei außer flüchtigen Produkten auch nichtflüchtige Harze gebildet werden, oder sie werden, wie z. B. von Blüten und teilweise auch von Blättern mit zarter Epidermis, ausgeatmet, oder von den Hautdrüsen, so vielfach bei Knospen, in flüssiger Form exzerniert. Schließlich fließen sie auch bei Blutungen der Pflanze durch Verletzungen in emulgiertem Zustande aus, z. B. bei den Coniferen.

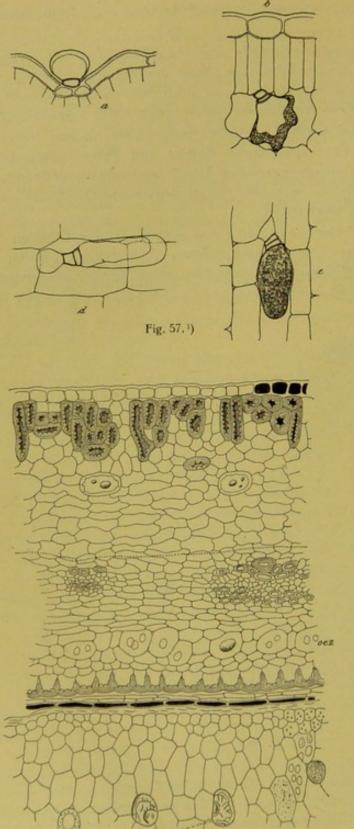
Das ätherische Öl befindet sich entweder in einem emulsionsartigen Zustande in der Pflanze, zuweilen so fein zerstreut, daß es selbst mikroskopisch nicht sichtbar ist, wie z. B. in der Iriswurzel, oder es ist in den Zellen und Sekreträumen in Form von farblosen oder gelblichen Tröpfchen abgelagert. In nicht mehr frischen Drogen enthalten die Behälter ein oder mehrere Harzklümpchen; sie können auch ganz leer sein, ihr Inhalt ist dann in die Membranen der benachbarten Zellen übergetreten und hat diese mit

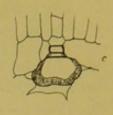

¹⁾ Fr. Czapck, Biochemie der Pflanzen. 1905. II, 627.

einer braunen Harzmasse infiltriert. (Nach mikroskopischen Beobachtungen von A. Tschirch).1)

Im lebenden, turgescenten Zustande sind die Zellhäute, zumal wenn sie stark cuticularisiert sind, für das ätherische Öl so gut wie undurchlässig; eine Ausnahme machen manche Hautdrüsen. Im getrockneten Zustande ist die Durchlässigkeit durch die Kontraktion der Poren vollständig aufgehoben.

Abgesehen von den an der Oberfläche befindlichen Hautdrüsen in und auf der Epidermis sind die Ölbehälter durch Reihen von Zellschichten gegen äußere Eingriffe mehr oder weniger geschützt. Die Membranen dieser deckenden Zellen können sehr zartwandig sein oder derart widerstandsfähig, daß selbst Kochhitze ihnen nichts anhaben kann.


Als Beispiele zur Erläuterung der Form und Lage der Olzellen und Sekretbehälter der Pflanzen können nachstehende Abbildungen dienen, die hauptsächlich dem vortrefflichen anatomischen Atlas der Pharmakognosie und Nahrungsmittelkunde von A. Tschirch und O. Oesterle entnommen sind.



- Fig. 56.
- a Öldrüse von Mentha piperita mit Mentholkristallen.
- b Entwicklungsstadium einer Öldrüse von Mentha piperita.
- e Querschnitt durch ein Blatt von Mentha crispa; Oed ist eine Öldrüse.

¹⁾ A. Tschirch u. O. Oesterle, Anatom. Atlas der Pharmak, u. Nahrungsmittelkunde. 1900. — A. Tschirch, Harze und Harzbehälter. 2. Aufl. 1906. — A. Tschirch, Chemie und Biologie der pflanzl. Sekrete. 1908.

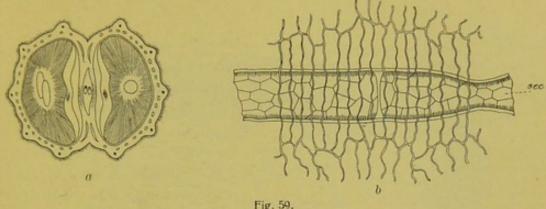
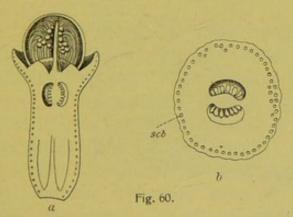
v. Rechenberg, Gewinnung und Trennung der ather. Öle.

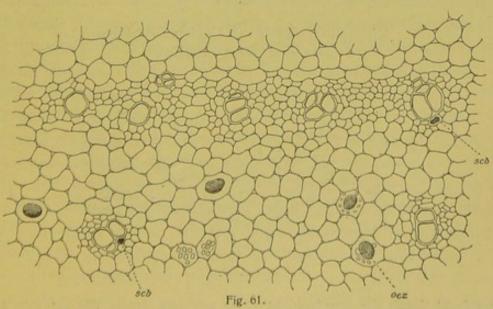
- a Blasige Hautdrüse am Patchouliblatt.
- b und c. Innere Drüsen im Mesophyll des Patchouliblattes.
- d und e. Innere Drüsen in der primären Rinde der Stengelteile von Pogoste-mon Patchouli Pellet. Die Köpfchen zeigen eine schlauchartige, in der Richtung des Stengels gestreckte Form.

Querschnitt durch die Fruchtwand, Samenschale und das Perisperm einer nahezu reifen Frucht von Piper nigrum L. Die punktierte Linie gibt an, an welcher Stelle die äußere Fruchtwand behufs Darstellung des weissen Pfeffers abgelöst wird; oez sind Ölzellen.

Fig. 58.

¹⁾ Nach Solereder. Arch. der Pharm. 245 (1907), 406.


Fig. 59.

- a Querschnitt durch die Frucht (Lupenbild) von Anis.
- b Ölgang mit den Querzellen (innere Epidermis der Fruchtschale), Längsschnitt.

Die Ölkanäle in der Anis- und Fenchelfrucht sind nach Tschirch 25-100 mik im Durchmesser und so lang wie die ganze Frucht, also beim Anis etwa 3 mm, beim Fenchel je nach dessen Herkunft 3-9 mm lang.

- a Längsschnitt durch eine Blütenknospe von Eugenia caryophyllata Thunb.
- b Querschnitt durch den Fruchtknoten; scb sind Sekretbehälter (Lupenbild).

Querschnitt durch die endodermale Partie des Rhizoms von Zingiber officinale Rosc.; oez sind Ölzellen, sch sind Sekretbehälter.

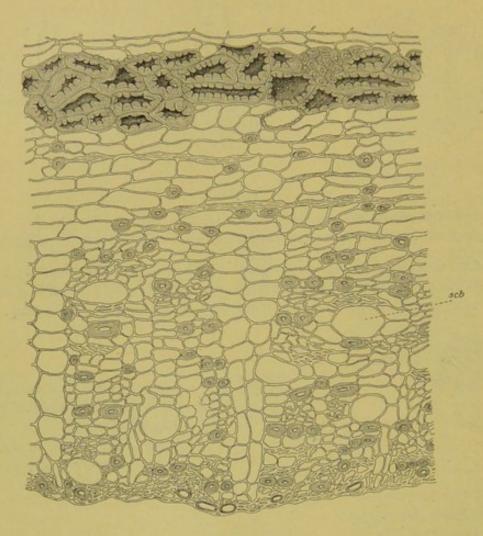


Fig. 62.

Querschnitt durch die Ceylon-Zimt-Rinde. scb sind Sekretbehälter.

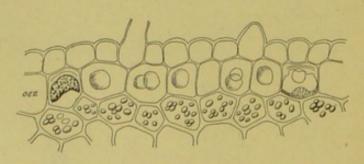
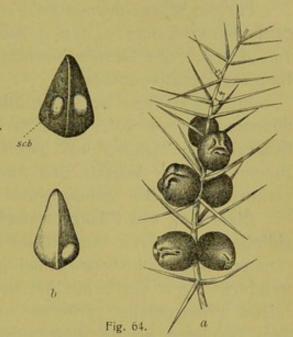



Fig. 63.

Querschnitt durch die Randschicht einer 2,5 mm dicken Wurzel mit der Ölführenden Hypodermis von Valeriana officinalis L.

oez sind Ölzellen.

- a Zweig von Juniperus communis L. mit Blüten und Früchten.
- b herauspräparierte Samen von der Rückseite und Bauchseite.
- sch sind Sekretbehälter.

Vorbereitung der Pflanzenteile zur Destillation. Die Vorbereitung des Rohmaterials bildet eins der wichtigsten Erfordernisse für die Destillation. Das eingeschlossene flüchtige Öl muß soweit als möglich freigelegt werden. Das geschieht durch die Zerkleinerung, deren Grad aber der erforderlichen Destillationsart angepaßt sein muß.

Die Dampfdestillation und die Wasser- und Dampfdestillation (s. darüber weiterhin) brauchen Zwischenräume in dem Destillationsmaterial, damit der aufsteigende Wasserdampf Raum zur Entwicklung findet und gleichmäßig die Füllung durchdringt ohne Steigerung des Druckes über die durch das Gewicht der Füllung gezogene Grenze. Von der Größe der Zwischenräume hängt das zulässige Maximum der Destillationsstärke ab. Feine Mahlung liefert kleine Zwischenräume, die eine langsame Destillation zur Bedingung machen. Der Vorteil der besseren Aufschließung des Destillationsmaterials für die Verdampfung wird also durch den Zwang der geringeren Destillationsstärke wieder geschmälert. Grobe Zerkleinerung gestattet zwar stärkere Dampfdurchströmung, bedarf aber doch wieder längerer Destillationszeit, weil das flüchtige Öl durch zu dicke Zellschichten bedeckt ist. Steigt bei gesteigerter Destillationsführung der Druck unterhalb der Blasenfüllung über deren Gewicht, so bricht sich der Dampf Gänge und Kanäle durch die Füllung, und ein Ausdestillieren ist unmöglich.

Für die Wasserdestillation kann das Destillationsgut mehlfein gemahlen sein, oder es muß gröber zerkleinert werden; das hängt von der Art des Destillationsmaterials ab, aber auch von dem Bau der Destillationsblase.

Im allgemeinen werden Blätter, die meisten Blüten und die dünnstengligen Kräuter ohne Zerkleinerung in die Blase gefüllt. Starkstenglige Kräuter und frische Wurzeln werden zerschnitten, Rinden, trockne Wurzeln und trockne Früchte gemahlen, Samen

zerquetscht, Hölzer entsprechend zerkleinert.

Ölverluste des Pflanzenmaterials von der Ernte bis zur Destillation. Der erste Angriff auf die in Zellen und Interzellularräumen eingeschlossenen flüchtigen Substanzen der Pflanzen geschieht nach der Ernte bei dem Trocknen. Frische wasserreiche Pflanzenteile verlieren nach Destillationsversuchen bei dem Trocknen an der Luft zuweilen sehr viel ätherisches Öl, z. B. Calmuswurzel, Rainfarn, Rosen etc., zuweilen auffallend wenig. Der Verlust kann durch Verdunstung, durch Verharzung oder sonstige chemische Umbildung entstehen. Es scheint aber, daß im allgemeinen wider Erwarten die Verdunstung eine viel geringere Quelle der Gehaltsverminderung an flüchtigen Stoffen darstellt als die Verharzung. Eine eigentliche Verdunstung, d. h. also Verdampfung des ätherischen Öls aus dem Inneren der Pflanze durch die Zellwandungen hindurch, kann auch nicht stattfinden. Das Öl muß erst auf dem Wege der Diffusion an die Oberfläche geschafft werden, wozu das Wasser, der Feuchtigkeitsgehalt der Pflanze, den Transport vermittelt. Abgesehen von zartwandigen Blättern und Blüten, wo die Diffusion nur wenige, nicht stark cuticularisierte Zellwandungen zu durchwandern hat, würde die Verdunstung hiernach weniger die leichter siedenden, als vielmehr die leichter in Wasser löslichen Bestandteile eines ätherischen Öls treffen.

Übrigens sind Untersuchungen über den Rückgang an flüchtigen Stoffen bei dem Trocknen von wasserreichen Pflanzenteilen sehr schwierig durch Destillation anzustellen, wenigstens wenn sie einwurfsfrei sein sollen, weil eine Destillation von wasserreichem Pflanzenmaterial stets Zweifel an ihrer Vollständigkeit zuläßt. Ein klassisches Beispiel hierzu bietet die Destillation von Pfefferminzkraut, von dem man früher angenommen hat, daß sein Ölgehalt bei dem Trocknen des Krautes zunimmt.

Eingehende Destillationsversuche zeigten die Irrigkeit dieser Annahme, die freilich sehr erklärlich ist, weil frisches Pfefferminzkraut, wie wohl alle wasserreichen Pflanzenteile, überhaupt nicht vollständig ausdestilliert werden kann. Wurde von einer Menge frischem Kraut ein Teil sofort destilliert, ein anderer stark welk, so daß die Blätter fast trocken waren, und wurden die erhaltenen Ölausbeuten auf 100 kg frisches Kraut bezogen, so hatte das frische Kraut etwas mehr ätherisches Öl geliefert, zuweilen aber auch gleichviel. Das frische Kraut enthält also mehr ätherisches Öl, wahrscheinlich sehr viel mehr als das trockne, nur läßt es sich schwieriger aus dem frischen Kraut durch Destillation gewinnen.

Ziemlich große Unterschiede können die ätherischen Öle in ihrer Beschaffenheit zeigen, je nachdem sie aus frischen oder getrockneten Pflanzenteilen gewonnen sind, so daß bei Ölen von Kräutern, Blättern, Blüten und Wurzeln, überhaupt von Pflanzenteilen, die im frischen Zustande wasserreich sind, zur Charakteristik ihrer physikalischen Konstanten dazu bemerkt werden müßte, ob das Öl von frischem, abgewelktem oder lufttrockenem Pflanzenmaterial stammt. Von frisch geerntetem Pfefferminzkraut wurde ein Teil sofort destilliert, der andere Teil erst nach dem Trocknen. Das Kraut wurde hierzu in einem bedeckten luftigen Raum flach ausgebreitet aufbewahrt, bis es "kleetrocken" geworden war, wie man den Zustand nennt, bei dem der Stengel noch biegsam, die Blätter aber dürr trocken sind.¹) Das Destillat aus frischem Kraut hatte das spezifische Gewicht 0,908, das aus dem getrockneten 0,912.

Im folgenden sind nach zahlreichen, in der Fabrik von Schimmel & Co. ausgeführten Destillationen die physikalischen Konstanten von Ölen aus frischen und trockenen Pflanzenteilen mitgeteilt. 2)

Destillat von frischer Angelikawurzel: d_{15°} 0,857 – 0,866; Destillat von trockner Angelikawurzel: d_{15°} 0,876 – 0,902.

Die Öle aus trockner Wurzel haben also durchgehends ein höheres spezifisches Gewicht und zwar steigt es mit der Lagerzeit der Wurzel.

¹⁾ In dieser Weise wird z. B. in England allgemein das Pfefferminzkraut auf dem Felde auf Schilfmatten zur Destillation vorgetrocknet.
2) Bericht von Schimmel & Co., April 1895, 9.

Destillat von frischer Liebstockwurzel: d₁₅₀ 1,002—1,035; Destillat von trockner Liebstockwurzel: d₁₅₀ 1,039—1,04.

Beide Destillate sind wieder durch die Unterschiede der spezifischen Gewichte gekennzeichnet; noch auffallendere Verschiedenheiten zeigen sich bei der Destillation. Wird trockne Liebstockwurzel destilliert, so erscheint mit dem Öl von Beginn der Destillation an, besonders aber gegen deren Ende, eine gelbe, klebrige, harzige Materie, die sich im Ausflußrohr des Kühlers und im Trichter der Vorlage ansetzt, der Hauptmenge nach aber im Öl gelöst bleibt. Bei der Destillation frischer Wurzel tritt dieser gelbe Harzbelag überhaupt nicht auf, aber die Destillation welker Wurzeln zeigt ihn ebenfalls, wenn auch in geringem Maße. Wird ein aus frischer Liebstockwurzel erhaltenes Öl rektifiziert, so ist fast das ganze Öl flüchtig; Öl aus trockner Wurzel hinterläßt dagegen bei der Rektifikation große Mengen hochsiedender, durch einfache Wasserdestillation nicht destillierbarer harziger Massen.

Destillat aus frischer Calmuswurzel:

$$d_{15^{\circ}}$$
 0,962—0,968, $\alpha_{\rm p}$ + 20 bis + 31°.

Destillat aus trockner Wurzel:

$$d_{15^{\circ}}$$
 0,963—0,978, α_{D} + 15 bis + 20°.

Öl aus frischer Wurzel ist um 15% in Spiritus von 70 Vol.% leichter löslich als das aus trockner Wurzel. Mit der Lagerzeit der trocknen Wurzel geht die Löslichkeit des Öls noch weiter zurück.

Destillat aus frischem Esdragonkraut:

$$d_{150}$$
 0,918—0,934, $\alpha_{\rm p}$ + 2 bis + 4°.

Destillat aus trocknem Kraut:

$$d_{150}$$
 0,890—0,923, $\alpha_{\rm p}$ + 5 bis + 8°.

Interessante Belege über die Verharzung ätherischer Öle in Gewürzpflanzen bringt Tschirch¹) in seinen mikroskopischen Untersuchungen.

Ob die Bildung dieses sogenannten Harzes auf Polymerisation homogener oder auf Addition heterogener Verbindungen beruht, oder auf Oxydationen oder auch anderer Umbildung von flüchtigen Körpern, darüber liegen noch keine exakten Untersuchungen vor.

¹⁾ Harze und Harzbehälter, 2. Aufl., 1906. 1. u. 2. Bd.

Das Rohpfefferminzöl aus frischem Kraut ist in Spiritus von 70 Vol.% leichter löslich als das aus trocknem Kraut; aber diese Löslichkeit geht schon nach wenigen Monaten zurück. Wird das Öl rektifiziert, so verharzt es immer von neuem, während ein Rektifikat aus trocknem Kraut die leichte Löslichkeit sehr lange behält. Hiernach scheint also ein Bestandteil des Pfefferminzöls während des Abtrocknens des Krautes zum größeren Teil verharzt zu sein.

Daß in besonderen Fällen bei dem Abwelken und Eintrocknen infolge der Säftewanderung von Zelle zu Zelle durch die nicht mehr turgescenten Zellmembranen auch neue flüchtige Körper, z. B. durch Glycosidspaltung, entstehen können, beweist der Bittermandelgeruch des fetten Mandelöls oder Aprikosenkernöls, wenn die bitteren Mandeln oder Aprikosenkerne einige Zeit nur etwas feucht gelegen haben. Wenn für diese Umwandlung der Weg vom Amygdalin (dem Glycosid) zum Emulsin (dem Enzym) für wässrige Lösungen frei ist, der zu Lebzeiten der Pflanze versperrt war, so werden wohl analoge Umbildungen resp. Spaltungen auch sonst vorkommen. So hat z. B. die frische Iriswurzel einen eher unangenehmen Krautgeruch, während die getrocknete Wurzel sehr mild, und schwach nach Veilchen riecht. Die frisch abgepflückten Patchouliblätter sind geruchlos; der bekannte Patchouligeruch entwickelt sich erst im Verlaufe des Abwelkens und Trocknens und soll durch Einleiten eines eigentlichen Fermentierungsprozesses wie bei der Bildung des Vanillins in den Vanilleschoten an Stärke gewinnen. Der Cumaringeruch des Heues ist bekannt. Es ist wahrscheinlich, daß sich das Cumarin erst durch den Austausch von Zellinhalten gebildet hat. Man kann aber auch die Meinung vertreten, daß es präexistierend war und im Geruch nur durch den Grasgeruch verdeckt wurde. Jedenfalls sind aber Grasgeruch und Heugeruch so verschiedenartig, daß nicht nur Verdunstung, sondern auch chemische Prozesse mitgewirkt haben müssen. Was aber die Ursache des fast völligen Verschwindens des Geraniols in den getrockneten Rosen ist, während der Phenyläthylalkohol darin sich zwar vielleicht vermindert hat, aber jedenfalls noch reichlich vorhanden ist, darüber kann man im Zweifel sein.

Geringer als bei dem Abwelken und Trocknen sind die Ölverluste bei dem Lagern von lufttrocknem Pflanzenmaterial.

Maßgebend hierfür sind Beschaffenheit des Materials, Art der Lagerung, Zeitdauer des Lagerns und schließlich die chemischen Eigenschaften des Öls selbst. In der Regel, aber unter vielen Ausnahmen, vertragen Blüten, Blätter und Kräuter keine lange Lagerung, während Samen, Rinden, Hölzer, Wurzeln erklärlicherweise ihren Bestand an ätherischem Öl nach Art und Umfang länger bewahren. Selbstverständlich spricht noch der Umstand mit, ob z. B. sperriges Material offen in Haufen liegt, oder in Säcken dicht aufeinanderliegend verpackt oder zusammengepreßt ist. Verdunstung und Verharzung und noch mehr die Sauerstoffaufnahme werden durch Luftbewegung und durch starken Wechsel im Feuchtigkeitsgehalte der Luft gefördert. In ruhiger Luft von gleichmäßigem Feuchtigkeitsgehalte können manche Pflanzenteile ohne Schaden ziemlich lange aufbewahrt werden. Ein Beleg hierfür gibt ein Versuch mit Holländer Kümmel. Von 10000 kg Kümmel frischer Ernte wurden 8000 kg in vier Füllungen vom 27. bis zum 30. August destilliert, die 5,87, 5,81, 5,72 und 5,76% Öl gaben. Der Rest von 2000 kg, in Säcken verpackt, wurde bis zum 19. Februar des folgenden Jahres zurückgestellt und dann noch einmal gewogen. Das Gewicht war 1916 kg, was einen Trockenverlust von 4,2% ergibt. Die Destillation lieferte 118,3 kg Öl, d. h. 5,91% vom Anfangsgewicht 2000 kg, oder 6,12% vom Endgewicht 1916 kg des Kümmels. Also hatte der ein halbes Jahr gelagerte Kümmel kein ätherisches Öl verloren.

Interessant ist, wie in manchen, freilich wohl vereinzelten Fällen das ätherische Öl trotz aller Witterungseinflüsse, denen der Pflanzenteil Jahre hindurch ausgesetzt gewesen ist, gut erhalten bleiben kann. Von Guajakholz (von *Bulnesia Sarmienti* Lor.), einem aus Brasilien stammenden, sehr harten, dicht gewachsenen Holz, das gegen 5 bis 7 % eines hochsiedenden, bei Lufttemperatur festen ätherischen Öls enthält, wurden einzelne Stämme einer Sendung, die ihrer Bearbeitung und ihrem verwittertem Aussehen nach viele Jahre als Zauneinfriedigung gedient haben müssen, geraspelt und destilliert. Die Ausbeute an Öl war um weniges geringer als die von anderen, anscheinend frisch gefällten Stämmen. Die Beschaffenheit des gewonnenen Öls war normal.

Den stärksten Verlust kann das ätherische Öl bei der zur Destillation nötigen Zerkleinerung der Pflanzenteile erleiden, besonders wenn sie in schnell rotierenden Mahlmaschinen geschieht. Die Größe dieses Verlustes hängt von der Stärke der Luftbewegung, von der Erwärmung des Mahlgutes und von den Eigenschaften des ätherischen Öls ab, von dessen Siedetemperatur und seiner Oxydationsfähigkeit. Zu ihrer Feststellung fehlen die Unterlagen.

Destillationsmethoden. Von den im folgenden angegebenen Destillationsmethoden werden einige häufiger, andere seltener benutzt. Einzelne sind nur versuchsweise ausgeführt worden. Die Verschiedenartigkeit des Pflanzenmaterials und vor allem auch des ätherischen Öls zwingen geradezu zur Anwendung besonderer Destillationsverfahren, wovon eine reiche Auswahl zur Verfügung steht.

Vier wesentlich verschiedene Verfahren lassen sich unterscheiden:

- 1. Die Wasserdestillation. Das Destillationsmaterial, Pflanzenteile oder ätherisches Öl, liegt in der Blase in Wasser, das durch indirekte oder direkte Heizung zum Kochen und zur Dampfentwicklung gebracht wird.
- 2. Die Wasser- und Dampfdestillation, nur für Pflanzenmaterial geeignet. Die Füllung liegt trocken auf einem Siebboden in der Blase. Der zur Destillation nötige Dampf wird aus Wasser entwickelt, das auf dem Boden der Blase durch indirekte Heizung zum Sieden gebracht wird.
- 3. Die Dampfdestillation, für Pflanzen- und Ölfüllung. Das Pflanzenmaterial wird, wie bei der Wasser und- Dampfdestillation, trocken auf einen Siebboden in der Blase gelegt, oder das ätherische Öl wird ohne Wasser in die Blase gegeben. Der Wasserdampf wird jedoch nicht in der Blase erzeugt, sondern von außen eingeführt. Der Unterschied von der zweiten Destillationsart erscheint vielleicht gering und unwesentlich für die Pflanzendestillation, ist aber im technischen Effekt groß.
- 4. Die trockne Öldestillation. Das ätherische Öl wird nur durch indirekte Dampfheizung oder durch Gasheizung destilliert, was je nach der Flüchtigkeit der zu verdampfenden Substanzen unter Atmosphärendruck oder im Vakuum geschieht.

Änderung des Dampfdruckes in der Blase. Jede dieser vier Destillationsmethoden läßt sich wieder verschieden aus-

führen, indem man den Destillationsdruck ändert, d. h. nicht die Tension des in die Blase eintretenden gespannten Kesseldampfes, sondern den im Destillationsraum herrschenden Druck, wie er sich ohne Rücksicht auf die etwaige Tension des eingeblasenen Dampfes von selbst bildet, wenn die Blase mit der äußeren Luft durch den Kühler in freier Verbindung steht, oder wie er durch besondere Maßnahmen über oder unter diesem Atmosphärendruck hergestellt wird. Hiernach sind Minderdruck-, Atmosphärendruck- und Überdruckdestillation zu unterscheiden. Der abweichende Effekt dieser drei Variationen im Verfahren drückt sich im Verhältnis des Wassers zur flüchtigen Substanz in dem Destillat aus, aber auch in anderen Besonderheiten der Verdampfung, die weiterhin in den betreffenden Kapiteln eingehender besprochen werden.

Minderdruckdestillation. Hiermit soll nicht nur die sogenannte Vakuumdestillation bezeichnet werden, bei der gewöhnlich an eine weitgehende Luftverdünnung gedacht wird, sondern jede unterhalb des gerade herrschenden Atmosphärendrucks mit Hilfe einer Luftpumpe ausgeführte Destillation. Läßt man den Destillationsdruck weiter sinken, so beginnen sich die charakteristischen Wirkungen der niedrigen Destillationstemperatur geltend zu machen, die sich im technischen Effekt sehr verschieden äußern, je nachdem trocken oder mit Unterstützung von Wasser oder Wasserdampf destilliert wird.

Die wasserlose Destillation von hochsiedenden Körpern unter Minderdruck erfreut sich, wie bekannt, im Laboratorium und in der Technik allgemeiner Anwendung. In der Mineralöl- und Paraffinindustrie wird sie unter Heizung mit Feuer ausgeführt, in der Industrie der ätherischen Öle mit Dampfheizung, für kleinere Ölmengen auch mit Gasheizung.

Der Vakuumdestillation von Pflanzenteilen oder ätherischen Ölen mit Wasser oder Wasserdampf ist eine außerordentlich niedrige Destillationstemperatur eigentümlich, die ihre Grenze nach unten nur in der Temperatur des Kühlwassers hat. Durch diese Destillation ist jede Zersetzung ausgeschlossen; andrerseits ist die Verdampfungsfähigkeit hochsiedender Körper, besonders wenn sie einige Löslichkeit zu Wasser haben, außergewöhnlich stark herabgesetzt.

Überdruckdestillation. Wird im Übersteigrohr der Blase ein Hahn oder Ventil eingesetzt, das während der Destillation nur teilweise geöffnet wird, so wird der Dampfstrom im Übersteigrohr gedrosselt, und es entsteht in der Blase ein höherer Druck als außerhalb. Diese Überdruckdestillation wird für Pflanzen in großen und kleinen Betrieben zu 1,5 bis selbst über 2 Atmosphären absolutem Druck (d. h. also 0,5 bis über 1 Atm. Überdruck) angewendet. Wegen der reichlich dabei auftretenden Bildung von Brenzprodukten ist sie nicht zu empfehlen. Für ätherische Öle resp. für einzelne flüchtige Körper kann sie brauchbar sein, wenn die Zersetzung gerade erwünscht ist. 1)

Überhitzungsdestillation. Außer diesen Varianten der genannten vier Grunddestillationsarten, die durch Änderung des Destillationsdruckes erzielt werden, kann speziell die Dampfdestillation noch eine bedeutungsvolle Abänderung der gewöhnlichen Ausführung erfahren, indem man nämlich statt des gesättigten Wasserdampfes von niedriger oder hoher Spannung überhitzten Wasserdampf durch das Destillationsmaterial, seien es Pflanzenteile oder ein flüchtiges Öl, hindurchleitet. Es resultiert dann eine Überhitzungsdestillation. Unter dieser Bezeichnung ist nicht immer eine hohe Destillationstemperatur zu verstehen - die Temperatur kann nach Belieben hoch oder niedrig, selbst weit unter 100° liegen - sondern charakteristisch an dieser Destillationsart ist nur, daß der Wasserdampf in dem Gemisch mit dem Öldampf wärmer ist, als der Siedetemperatur des Wassers unter dem gerade vorhandenen Destillationsdruck entspricht, daß also der Wasserdampf weniger Wasser enthält, als er bei derselben Destillationstemperatur im gesättigten Zustande haben

¹) Unter Überdruck ist bei dieser Destillation nicht die Tension des gespannten Wasserdampfes bei der indirekten Heizung in einem Doppelboden oder in einer Heizschlange gemeint, sondern der Druck, der durch besondere Maßnahmen in dem Füllungsraum der Blase erzielt wird, so daß die Füllung, d. h. das ätherische Öl oder das Pflanzenmaterial unter diesem Druck destilliert wird. Durch direktes Einblasen von hochgespanntem Wasserdampf bildet sich kein höherer Druck in der Blase, wenn diese durch Übersteigrohr und Kühler mit der Atmosphäre in freier, ungehinderter Verbindung steht, und diese Verbindung in ihrem ganzen Verlaufe hinreichende Weite für den durchströmenden Dampf bietet, so daß nirgends eine Drosselung des Dampfes entsteht. Der etwa mit hoher Spannung in die Blase eintretende Dampf sinkt dann sofort auf den Druck der äußeren Atmosphäre.

würde. Da nun, wie schon ausgeführt wurde, bei der Destillation flüchtiger Substanzen mit Wasserdampf mit einem Volumen von ihm auch das gleiche Volumen Öldampf entwickelt und mitgenommen wird, so liegt der technische Effekt der Überhitzungsdestillation darin, daß im Destillate der Anteil an Wasser geringer geworden ist.

Auch bei der Überhitzungsdestillation kann man den Destillationsdruck beliebig variieren. Für die Praxis besonders wertvoll hat sich die Überhitzungsdestillation unter Minderdruck erwiesen, weil sie selbst die trockene Vakuumdestillation in der Möglichkeit, sehr hoch siedende Körper bei verhältnismäßig niedriger Temperatur in reichlicher Menge zu verdampfen, übertrifft.

Periodisches und kontinuierliches Destillationsverfahren. Im allgemeinen werden die ölhaltenden Pflanzenteile oder das ätherische Öl in der Weise destilliert, daß das Destillationsmaterial in die Blase gefüllt und nach beendeter Verdampfung die Destillation abgebrochen, die Blase entleert und zu neuer Destillation gefüllt wird. Gegenüber dieser periodischen Destillation läßt sich auch das kontinuierliche Destillationsverfahren anwenden, bei dem das flüssige oder feste, natürlich zuvor passend zerkleinerte Destillationsgut ununterbrochen der Blasenanlage zufließt und bei andauernder Destillation nach vollständiger Abgabe der flüchtigen Stoffe den Apparat wieder verläßt.

In der Technik wird die kontinuierliche Destillation schon vielfach angewendet, allgemein z. B. bei der Entgeistung alkoholhaltiger Flüssigkeiten in größeren Brennereien, ferner vereinzelt in Schottland bei der Verarbeitung des Teers aus der Schwelkohle und ebenso vereinzelt in Deutschland bei der Destillation des Steinkohlenteers; auch für die Vakuumdestillation von Glycerin werden kontinuierlich arbeitende Apparate benutzt. In der Industrie der ätherischen Öle ist dies Verfahren bis jetzt nur

wenig eingeführt.

Betrieb der Pflanzendestillation.

Wasserdestillation. Als noch die Destillationsapparate allgemein mit Feuer geheizt wurden, kannte man keine andere Methode, die flüchtigen Stoffe aus den Kräutern, Wurzeln, Hölzern, Rinden, Blättern, Blüten, Früchten und Samen zu gewinnen, als daß man sie in der Blase in Wasser legte und das Wasser zum Kochen erhitzte. Vereinzelt wurde wohl nach dem Prinzip der Wasser- und Dampfdestillation gearbeitet, jedoch im allgemeinen blieb die eigentliche Wasserdestillation im Gebrauch. Durch die Einführung von in besonderen Kesseln erzeugtem Wasserdampf, zuerst von geringer, dann allmählich von höherer Spannung, wurde nach und nach diese Destillationsart im Großbetriebe verlassen. Jetzt ist die Wasserdestillation nur auf einzelne bestimmte Pflanzenmaterialien beschränkt, während vorwiegend die Dampfdestillation und in besonderen Fällen auch die Wasser- und Dampfdestillation benutzt wird.

Die Wasserdestillation hat einen Vorzug vor allen übrigen Destillationsmethoden, ihr Destillat ist freier von Zersetzungsprodukten der Pflanzenmaterie, sie kostet aber mehr Dampf, mehr Blasen und mehr Fabrikraum. Ferner erfordert ihre Anwendung mehr Betriebserfahrung und Kenntnis der Eigentümlichkeiten des Wasserdampfes, so daß die Ölausbeute sehr leicht hinter der durch Dampfdestillation und besonders durch Wasser- und Dampfdestillation erhaltenen zurückbleibt. Selbst für mehlfein gepulvertes Destillationsmaterial, das sich anders kaum destillieren läßt, ist sie anwendbar. Zu ihr muß gegriffen werden, wenn die Pflanzenteile so wasserreich sind und bei der Destillation so wenig sperrig bleiben, daß sie in für den Dampf undurchdringlichen Klumpen und Ballen zusammensinken. So lassen sich z. B. Rosen nicht anders als durch Wasserdestillation verarbeiten.

Eine charakteristische Eigenschaft dieser Destillationsart ist noch zu erwähnen, daß nämlich hochsiedende Bestandteile des ätherischen Öls, die eine gewisse Löslichkeit zu Wasser haben, wie z. B. Phenyläthylalkohol, Zimtalkohol und hochsiedende andere Alkohole, ferner Phenole, Säuren oder stickstoffhaltige Verbindungen von dem Wasser in bestimmten Mengen zurückgehalten werden, so daß bei deren Gegenwart die Destillation selbst bei sorgfältiger Ausführung unvollständig ausfallen muß. Beispielsweise kann der in den Orangenblüten vorkommende Anthranilsäuremethylester nicht vollständig aus den Blüten abdestilliert werden. Ob und wieviel von solchen Körpern über-

destilliert, hängt von deren Siedepunkt und Wasserlöslichkeit und von deren Mengenverhältnis im Wasser, d. h. also von ihrem Gehalte in dem Pflanzenteile ab.

In der Figur 65 ist die Skizze einer kupfernen Blase für Wasserdestillation von Pflanzenteilen gegeben. Durch das Mannloch g in der Mitte oben auf der Blase wird die Pflanzen-

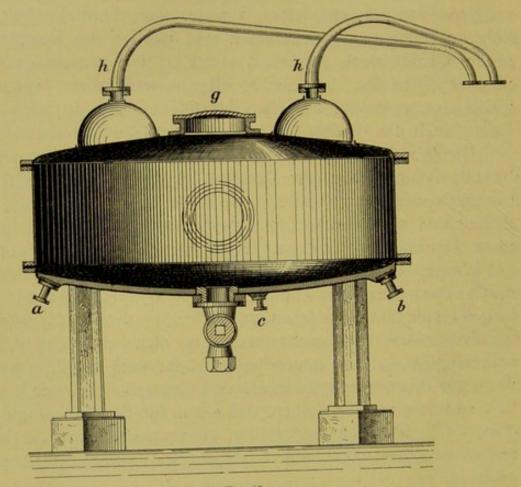


Fig. 65.

Wasserdestillation von Pflanzenteilen.

füllung eingeschüttet und gleichmäßig auf dem Boden verteilt. Die Menge der Füllung ist so zu bemessen, daß sie nirgends höher als höchstens 10 cm liegt. Dann läßt man Wasser einfließen, bis es einige Zentimeter über der Füllung steht. Die Heizung der Blase findet durch Kesseldampf mit wenigstens drei Atmosphären absoluter Spannung statt, der bei a und b in den doppelten Boden der Blase einströmt. Das Kondensat des Heizdampfes fließt aus dem mit einem sogenannten Kondenstopfe

in Verbindung stehenden Rohre c ab. Durch die geheizte Bodenwandung wird das Wasser zum lebhaften Sieden gebracht und damit jedes Teilchen der flachen, gering lastenden Füllungsschicht in unausgesetzter Bewegung erhalten. Die entwickelten Dämpfe entweichen durch die beiden Übersteigrohre h in den Kühler, aus dem das Kondensat von Wasser und ätherischem Öl in die Vorlagen abfließt. Dauert die Destillation so lange, daß das Wasser in der Blase nicht mehr die Pflanzenmasse überdeckt, so muß es ersetzt werden, was am besten dadurch geschieht, daß man das Destillationswasser in einen Behälter laufen läßt, aus dem es ein Injektor in die Blase zurückbefördert. Das hierzu nötige, oben in die Blase einmündende Rohr ist in der Zeichnung nicht angegeben. Nach beendeter Destillation öffnet man den Hahn an dem weiten Auslaufrohr und läßt die Füllung ablaufen.

Als allgemeine, für alle Pflanzen- und Öldestillationen geltende Regel ist festzuhalten, Menge der Füllung und Stärke der Destillation so einzurichten, daß die Destillation wenn möglich in einer Tagesarbeit beendet werden kann. Nicht immer ist das bei Pflanzendestillationen zu erreichen. Jedenfalls muß man sich darüber klar sein, daß die Verharzung oder Zersetzung des ätherischen Öls, auch seine Verunreinigung durch Zersetzungsprodukte aus der Pflanzenmaterie um so geringer ist, je kürzer die Destillation dauert. Der Verlust kann leicht mehrere Prozente von dem ätherischen Öle betragen.

Bei der Destillation von Pflanzenteilen mit Wasser liegt noch ein besonderer Grund vor, sich nicht einfach nach der Größe des dargebotenen Füllungsraumes zu richten. Enthält die Füllung zwischen all ihren Teilen Zwischenräume, die nicht allzuklein sind, so daß sie hindurchgleitenden Dampfblasen den Durchgang gestatten, und wird das durch die Hitze erweichte und nachgiebiger gewordene Destillationsmaterial während der Destillation nicht zu sehr zusammengedrückt, so kann die Füllung einigermaßen hochgeschichtet liegen; der Wasserdampf arbeitet sich dann in den Zwischenräumen in die Höhe und nimmt auf seinem Wege den Öldampf mit. Ein völliges Ausdestillieren kann aber hierbei nicht immer mit Sicherheit erwartet werden. Den besten Erfolg verspricht dagegen eine Wasserdestillation, bei der die Füllung nur so hoch liegt, daß eine starke Dampf-

entwicklung vom Boden aus das Gewicht der Füllung überwinden kann. Einem Rührwerk gleich wirft der Dampf dann alle Pflanzenteile fortwährend durcheinander. In diesem Falle ist es vorzuziehen, ohne Siebboden in der Blase zu arbeiten. Liegt die Füllung jedoch höher, so daß sie während der Destillation auf dem Boden lastend aufliegt, und sind die Zwischenräume der Füllung einigermaßen groß, so ist es besser einen Siebboden einzulegen.

Für eine Pflanzenfüllung, deren Teile auch bei größerer Menge durch lebhafte Dampfentwicklung in dem Wasser schwebend erhalten werden können, wie z. B. Rosen, können auch tiefer gebaute Blasen mit nahezu halbkugelförmigem Boden benutzt werden. Hierbei ist es vorzuziehen, keine Heizschlange in die Blase zu legen, die zum Festsetzen von Teilen der Füllung leicht Veranlassung gibt.

Mehlige Stoffe, z. B. das Mehl von ausgepreßten bitteren Mandeln oder Aprikosenkernen, brennen bei der Wasserdestillation auf einem geheizten Boden leicht an, weshalb sie nicht durch indirekte Heizung, sondern nur durch direkt unten in die Füllung eingeblasenen Dampf destilliert werden. Hierzu sind zylinderförmige, hochgebaute Blasen den flachen vorzuziehen. Das Wasser von der Destillation wird dann aufgefangen und während der Destillation nicht in die Blase zurückgegeben.

Wasserdestillation von Pflanzen unter Minderdruck. Zu dieser Destillationsart erhält der Blasenkörper an seinem oberen Teile ein Quecksilbermanometer und ein Thermometer, die Druck und Temperatur im Destillationsraum angeben. Bei allen Vakuumdestillationsarten muß berücksichtigt werden, daß bei gleicher Destillatmenge das Dampfvolumen im Destillationsraum und damit die Dampfgeschwindigkeit mit abnehmendem äußeren Druck sich vermehrt, so daß z. B. eine bestimmte Gewichtsmenge eines bei 760 mm Quecksilberhöhe total gesättigten Dampfgemisches von Benzaldehyd und Wasser bei 76 mm Druck ungefähr das zehnfache, bei 31 mm Destillationsdruck das vierundzwanzigfache Dampfvolumen von dem unter Atmosphärendruck einnimmt. Da in gleichem Verhältnis die Geschwindigkeit steigt, mit der das Dampfgemisch in der Blase in die Höhe und in den Kühler gejagt wird, so ergeben sich daraus mannigfache Unzuträglichkeiten bei der Destillation, die man kennen muß, um sie zu vermeiden.

Das Freisein des aus dem Destillationsmaterial emporgetriebenen Dampfgemisches von fein zerstiebten Teilen der Füllung, besonders solchen, die das ätherische Öl färben, hängt von der Geschwindigkeit der Fortbewegung und wohl auch von der Dichte des Dampfes ab. Eine Steigerung der Geschwindigkeit vermehrt auch die Unreinheit des Destillates. Hieraus folgt, daß es sich für die Wasserdestillation im Vakuum empfiehlt, weite Blasen zu nehmen, Kugelblasen wenn möglich zu vermeiden und außerdem noch die Destillationsstärke zu vermindern.

Im Übersteigrohr, dem engsten Apparatteil auf dem Wege des Dampfes zum Kühler, wird der Dampf wie bei einem nur teilweise geöffneten Ventil mehr oder weniger gedrosselt, so daß also ein Anschwellen des Druckes in der Blase fast unausbleiblich ist, und leicht eine Druckdifferenz zwischen Vorlage und Blase von über 10 mm entsteht. Bei trockner Destillation ätherischer Öle im Vakuum kann hierdurch die Verdampfung hochsiedender Flüssigkeiten sehr gehindert werden, bedeutungslos ist aber dieser Überdruck in der Blase bei der Vakuumdestillation mit Wasser oder Wasserdampf, wenn man die Destillationsstärke nach der Temperaturangabe in der Blase einstellt, falls das Überschreiten einer bestimmten Destillationstemperatur vermieden werden soll.

Aus all dem folgt, daß man gut tut, bei der Vakuumdestillation die Destillationsstärke zu verringern, den Querschnitt von Übersteigrohr und den Kühlrohren reichlicher zu bemessen und überhaupt die Kühlfläche des Kühlers um das Mehrfache des für Destillation unter Atmosphärendruck erprobten Umfangs größer zu nehmen.

Fahren wir in der Beschreibung des Vakuumapparates für Wasserdestillation von Pflanzen fort. Das Auslaufrohr des Kühlers ist in einer metallenen Halbkugel eingefügt, die oben zur Beobachtung des Destillates mit einer abnehmbaren starken Glasplatte oder Glasglocke luftdicht verschlossen ist. Unten an der Halbkugel ist ein Rohrstutzen mit einem Dreiweghahn angebracht, mit dem durch Rohre zwei zylinder- oder kugelförmige Rezipienten in Verbindung stehen, so daß das Destillat nach Belieben in die eine oder andere dieser geschlossenen Vorlagen geleitet werden kann. Jede der Vorlagen hat am Boden einen Hahn zum Ablassen des Destillats und

oben einen zweiten kleineren zur Verbindung mit einem gemeinsamen Quecksilber-Manometer¹) und zum Einlassen der Luft. Ein Rohr mit Hahn führt zur Luftpumpe, die hier für die Wasserdestillation nur die geringe Leistung von 60 bis 100 mm Quecksilberhöhe zu haben braucht. Zur Beobachtung der Destillatmenge in den Vorlagen sind Schaugläser angebracht, die, zum Abschrauben eingerichtet, zugleich zur Reinigung der Vorlage dienen.

Die Verwendbarkeit der Wasserdestillation von Pflanzen unter Minderdruck ist eng begrenzt. Wertvoll an ihr ist die Möglichkeit, die Destillation bei niedriger Temperatur auszuführen, so daß eine Zersetzung des ätherischen Öls wie der Pflanzenmaterie ganz ausgeschlossen ist. 50° im Mittel ist wohl die richtige Temperatur. Weit tiefer zu gehen ist nicht ratsam, weil die vollständige Kondensation des Dampfgemisches dann schwierig wird, und erhebliche Verluste an ätherischem Öl eintreten können. Die bei der Wasserdestillation unter Atmosphärendruck schon erwähnte Gefahr, daß höher siedende, gering wasserlösliche Bestandteile des ätherischen Öls in der Pflanze teilweise zurückgehalten werden, ist bei der Wasserdestillation im Vakuum so groß, daß ihre Anwendung nur in wenigen Fällen zweckentsprechend ist.

Weil die Destillationstemperatur von 30 bis 50° und die Anwesenheit des Wassers sehr günstige Bedingungen für fast jede Fermentierungswirkung darstellen, darf die Destillation nur wenige Stunden dauern. Einen Kochgeruch wird ein derartig

Auch im Laboratorium bei Siedepunktsbestimmungen im Vakuum, selbst bei wissenschaftlichen, eine besondere Genauigkeit erfordernden Dampfdruckbestimmungen wird der Druck meistens an der Vorlage und nicht dort abgelesen, wo die Temperatur des Dampfes beobachtet wird, d. h. am Siedekolben, wodurch die Möglichkeit einer Fehlerquelle von unbekannter Größe gegeben ist.

¹) Wohl allgemein begnügt man sich bei Vakuumdestillationen mit der Messung des Druckes in den Vorlagen; das kann zu großen Täuschungen Veranlassung geben. Das Manometer an den Vorlagen mag zur dauernden Kontrolle während der Destillation dienen, weil seine Beobachtung sehr bequem ist, aber hin und wieder muß auch der Druck in der Blase selbst beobachtet werden. Der wahre Destillationsdruck, unter dem die Verdampfung in der Blase stattfindet, läßt sich nur an einem oben an der Blase angebrachten Quecksilbermanometer feststellen; er ist meistens höher, zuweilen über 10 mm, als der in der Vorlage gemessene; das hängt von der Destillationsstärke und von der Weite des Übersteigrohres und der Kühlrohre ab.

gewonnenes Destillat von Blüten nie haben, wohl aber leicht

einen Gärungsgeruch.

Wasserdestillation von Pflanzen unter Überdruck. Wegen der durch die Erhöhung von Druck und Temperatur verursachten Vermehrung von Brenzprodukten aus dem Pflanzenmaterial erscheint diese Destillationsart kaum vorteilhaft, um so weniger, als ein erheblicher Gewinn in dem Verhältnis von Öl zu Wasser in dem Destillat nicht vorhanden ist, man müßte denn zuvor die Destillation unter Atmosphärendruck sehr unzweckmäßig geführt haben.

Wasser- und Dampfdestillation. Fig. 66, S. 294, zeigt die Einrichtung eines Apparates für diese Destillationsart, die ich deshalb so bezeichne, weil sie sowohl mit der Wasserdestillation als auch mit der Dampfdestillation manches gemeinsam hat.

Auf dem Boden der Blase befindet sich Wasser, das durch Doppelboden oder geschlossene Heizschlange zum Sieden gebracht wird. Der Dampf wird von dem kochenden Wasser auf seiner ganzen Oberfläche entwickelt und steigt fast gleichmäßig verteilt durch alle Zwischenräume der Füllung in die Höhe, zum vorteilhaften Unterschiede von der Dampfdestillation, bei der eine gleichmäßige Verteilung des eingeblasenen Dampfes fast unmöglich ist. Der Dampf ist feucht und ohne Spannung, wirkt deshalb bei seinem Auftreffen auf die Pflanzenteile nicht trocknend und brennend, so daß das Destillat weniger Brenzprodukte der Pflanzensubstanz enthält als bei der Dampfdestillation. Wie bei der Wasserdestillation, kann mit Rücklauf des Destillatwassers in die Blase gearbeitet werden. Vor der Wasserdestillation hat die Wasser- und Dampfdestillation den Vorzug, daß infolge der gleichmäßigen Durchdringung aller Füllungszwischenräume mit Dampf eine vollständige Verdampfung der flüchtigen Körper der Pflanzenteile sicherer zu erwarten ist; vor der Dampfdestillation hat sie den Vorteil, daß die Destillation mehr beschleunigt werden kann, ehe ein Durchbruch durch die Füllung eintritt. Im Dampfverbrauch und in der Größe der zeitlichen Ölproduktion steht sie zwischen der Wasserdestillation, der teuersten, und der Dampfdestillation, der sie in der Ölproduktion fast gleicht. Als Nachteil, durch den ihre Anwendung beschränkt wird, ist aber hervorzuheben, daß sie für Pflanzenteile, die wegen der Menge und Schwerflüchtigkeit ihres ätherischen Öls eine

längere Destillationszeit erfordern, unzweckmäßig ist, weil die Füllung allmählich zu naß wird und dann ihren Restbestand an ätherischem Öl nur schwierig oder gar nicht mehr abgibt.

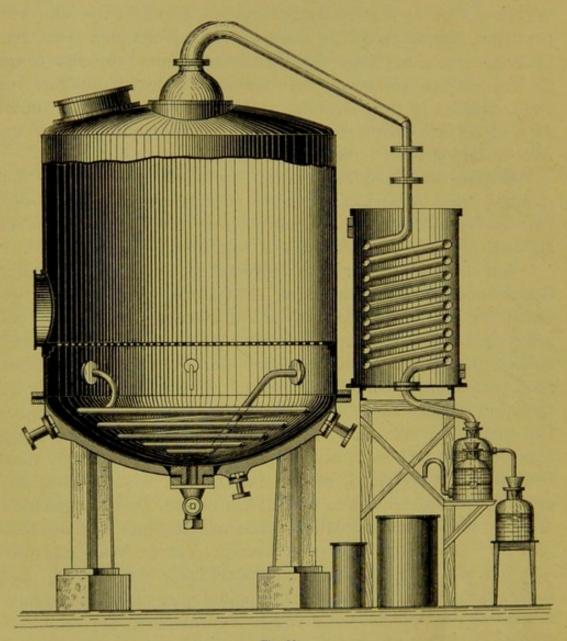


Fig. 66.

Blase zur Wasser- und Dampfdestillation von Pflanzenteilen.

Zur Wanderdestillation, überall, wo die Blase mitten unter den zu destillierenden Pflanzen zeitweilig aufgestellt wird, wo ein Dampfkessel fehlt, eignet sich die geschilderte Destillationsart besser als die in solchem Falle allgemein angewandte Wasserdestillation, denn statt der indirekten Dampfheizung kann die Blase auch sehr gut mit Feuerheizung eingerichtet werden. Wasser- und Dampfdestillation unter Minderdruck oder Überdruck. Von diesen beiden Verfahren ist die Minderdruckdestillation in gewissen Fällen mit Vorteil anwendbar, während von dem anderen Verfahren dasselbe gilt, was oben von der Wasserdestillation unter Überdruck gesagt wurde.

Dampfdestillation. Am meisten von allen Verdampfungsmethoden des in Pflanzenteilen befindlichen ätherischen Öls wird die Dampfdestillation unter Atmosphärendruck benutzt.

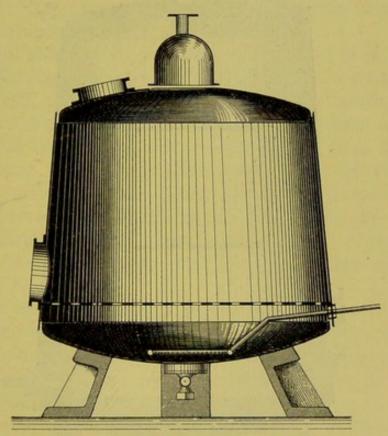


Fig. 67.

Blase zur Dampfdestillation von Pflanzenteilen.

Fig. 67 stellt eine hierzu geeignete Blase in roher Skizze mit nur einer Füllungsschicht dar, Fig. 68, S. 296, eine solche mit drei Füllungsschichten; durch die höhere Füllung soll der Wasserdampf besser ausgenützt werden. Die Blasen sind zylinderförmig, nach oben gering konisch zulaufend. Die Höhe der Einzelschicht hängt von dem Destillationsmaterial ab, wobei zu berücksichtigen ist, daß durch das Gewicht der Füllung die für die Verdampfung nötigen Zwischenräume nicht zu sehr verkleinert werden dürfen. Dicht über dem Boden der Blase, unter

dem Siebboden, wird der durch Wasserabscheider möglichst von flüssigem Wasser befreite Dampf eingeblasen, bei umfangreichen Blasen durch zwei oder mehr Rohrstutzen, bei kleineren Blasen nur durch einen.

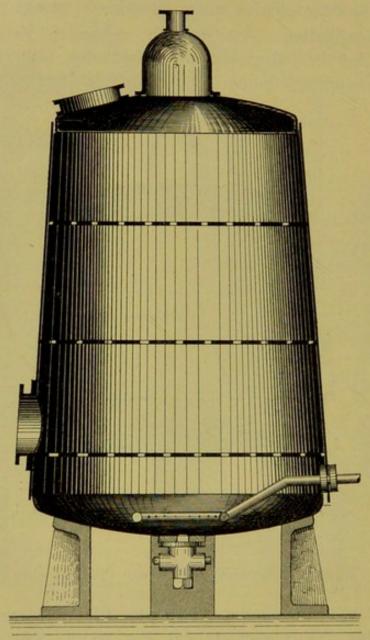


Fig. 68.

Blase zur Dampfdestillation von Pflanzenteilen.

Die Verteilung des Dampfes unterhalb des Siebbodens geschieht bei Blasen von mäßigem Umfange gewöhnlich durch ein mit zahlreichen kleinen Öffnungen versehenes Rohr, das ringförmig gebogen ist. Man hat für die sehr wichtige Dampfverteilung verschiedene andere Einrichtungen konstruiert, von denen aber keine ganz zufriedenstellend ist. Früher allgemein, und wohl noch jetzt vielfach legte man auf den Boden der Blase noch eine geschlossene, mit gespanntem Dampf geheizte Schlange in Form einer Uhrspirale, um den eingeblasenen Destillationsdampf trocken zu erhalten. Diese Vorkehrung beeinträchtigt die Reinheit des Destillates sehr stark, weil das von der Pflanzenfüllung herabtropfende Kondensat, das zwar kein ätherisches Öl, wohl aber nichtflüchtige Extraktstoffe enthält, auf der Heizschlange unter Abgabe schlecht riechender Dämpfe verdampft und verbrennt.

Der Dampf steigt durch den unteren Siebboden in die Höhe; überall die flüchtigen Substanzen, die er berührt, verdampfend und mitnehmend, geht er durch das Übersteigrohr in den Kühler über, wo das Gemisch aus Öldampf und Wasserdampf kondensiert wird. Das Wasser von dem Destillat wird in einer anderen Blase kohobiert. Bei längerer Destillationsdauer ist von Zeit zu Zeit das sich auf dem Boden der Blase ansammelnde Kondensat abzulassen. Der hierzu an der tiefsten Stelle des Bodens angebrachte Hahn dient zugleich zum Ablauf des Spülwassers, wenn die Blase nach der Destillation gereinigt werden soll.

Je größer die Spannung des eingeblasenen Wasserdampfes zuvor war, um so trockener bleibt die Füllung während der Destillation; nur der rings an der Blasenwandung anliegende Teil der Füllung wird trotz der Wärmeschutzmasse, die die Blase überall umkleidet, feuchter.

Die "Destillationsstärke", womit wir das Verhältnis der Menge an Destillationswasser zur Zeit ausdrücken wollen, ist nach dem Querschnitt der Blase und nach der Größe der Zwischenräume innerhalb der Füllung einzustellen. Die Geschwindigkeit des in der Füllung emporstrebenden Dampfes darf nicht zu gering sein, weil dann der Dampf in dichter liegenden Teilen der Füllung stagniert und ein Fertigdestillieren ausgeschlossen ist, auch nicht zu groß, weil die Füllung dann von dem Dampf durchbrochen und sogar in den Kühler geschleudert werden kann. Eine Kontrolle hat dafür zu sorgen, daß die richtige Destillationsstärke innegehalten wird. Diese Feststellung erfolgt in der Weise, daß das während zwei oder drei Minuten aus der Blase ablaufende Destillationswasser besonders aufgefangen und gewogen wird; das ätherische

Öl braucht hierbei nicht berücksichtigt zu werden, weil für die Dampfgeschwindigkeit in der Blase das in der Zeiteinheit emporgetriebene Dampfvolumen maßgebend ist, dessen Größe ebenso durch den Wasserdampf für sich wie durch den Öldampf bestimmt ist. Wird dann das in Kilogrammen ausgedrückte Gewicht auf eine Stunde reduziert und von dem engsten Füllungsquerschnitt der betreffenden Blase auf 1 qm umgerechnet, so erhält man die Destillationsstärke in Stunden-Kilogramm (St. kg) für 1 qm, die mit dem Destillationskoeffizienten zu vergleichen ist, wie er durch die Erfahrung für das vorliegende Destillationsmaterial und für seine Zerkleinerungsart bei Destillationen unter Atmosphärendruck als Norm festgestellt ist. Richtiger wäre die Umrechnung auf die Dampfgeschwindigkeit selbst (Dampfvolumen in 1 Sek. durch Querschnitt), denn um diese handelt es sich eigentlich. Leider ist das unmöglich, weil dann nicht der Querschnitt der Füllung zur Berechnung benutzt werden dürfte, sondern derjenige der Füllungszwischenräume, der aber unbekannt ist.

Dampfdestillation unter Minderdruck. Die Apparatur hierfür ist die gleiche wie für die Wasserdestillation unter Minderdruck, nur daß eine Zylinderblase mit Siebboden zu verwenden ist, wie sie die beiden Figuren 67 (S. 295) und 68 (S. 296) zeigen.

Setzt man bei diesem Verfahren die Luftverdünnung bis auf 100 mm oder noch weniger herab, so entsteht ein in mehrfacher Beziehung interessantes Destillationsbild. Trotz der niedrigen Destillationstemperatur wird eine Zersetzung zwar auf ein Minimum herabgesetzt, aber nicht vollständig verhindert, wenn Dampf von höherer Spannung eingeleitet wird, weil dessen hohe Temperatur nicht sofort bis zur niedrigen Destillationstemperatur herabgeht. Aus dem gesättigten gespannten Dampf wird ein überhitzter Dampf, der ein lufttrocken eingefülltes Destillationsmaterial schließlich vollständig austrocknet. Hierbei geht das flüchtige Öl infolge der unausbleiblichen Druckschwankungen im Destillationsraum¹) sogar schneller über als durch Dampfdestillation unter Atmosphärendruck. Ist aber dann noch ein Rest von dem in Zellen eingeschlossenen ätherischen Öl zurückgeblieben, so hört dessen weitere Verdampfung auf, weil

¹⁾ S. das Kapitel "Destillation unter Minderdruck".

der trockene Dampf dies Öl nicht mehr erreichen kann. Die Destillation wird also unvollständig. Die Anwendbarkeit dieses Destillationsverfahrens ist daher sehr beschränkt.

Dampfdestillation unter Überdruck. Ihr haften die schon erwähnten Nachteile an. Trotzdem wird sie vielfach benutzt, weil durch die unausgesetzten Druckschwankungen in der Blase ein Stagnieren des Dampfes in dichter zusammenliegenden Teilen der Blasenfüllung erschwert wird. Sie vermag deshalb eventuell die Destillationsdauer abzukürzen, sogar die Ölausbeute zu erhöhen, wenn man nämlich bei der damit verglichenen Destillation unter Atmosphärendruck nicht sachgemäß gearbeitet hat. Die Einrichtung einer derartigen Druckblase ist S. 302 beschrieben.

Überhitzungsdestillation ölhaltender Pflanzen. Die oben erwähnte Minderdruckdestillation mit gespanntem Dampf stellt eigentlich eine Überhitzungsdestillation dar, deren Wirkung um so kräftiger ist, je höhere Spannung der eingeblasene Dampf zuvor hatte. Auch bei jeder Dampfdestillation unter Atmosphärendruck geht gespannter Dampf bei seinem Eintritt in den Destillationsraum in überhitzten Dampf über. Der Überhitzungsgrad wird jedoch erst bei hoher Spannung des Dampfes einigermaßen erheblich.

Von dem Gedanken ausgehend, daß überhitzter Dampf seinem Gewichte nach mehr flüchtige Stoffe zu verdampfen vermag als gesättigter, läßt man in einzelnen Fabriken den Dampf durch in Feuer liegende Rohre eines Ofens, des bekannten Überhitzers, streichen und führt ihn mit gesättigtem, gespanntem Dampf vermischt in die Blase unter den Siebboden, auf dem die Pflanzenfüllung liegt. Durch das Vermischen mit gesättigtem Dampf soll ein durch Unachtsamkeit sonst leicht vorkommendes Verbrennen des Destillationsmaterials vermieden werden. Man erhält so jedenfalls einen trocknen Dampf von mehr oder minder großem Überhitzungsgrade. Trotzdem bilden sich hierbei stets reichlich Brenzprodukte; die Destillation wird in der Tat abgekürzt, es entsteht aber die Gefahr, daß durch das völlige Austrocknen der Füllung die Destillation leicht unvollständig wird. So wertvoll die Überhitzungsdestillation für Öle ist, für Pflanzen erscheinen die Nachteile größer als die Vorteile.

Betrieb der Öldestillation.

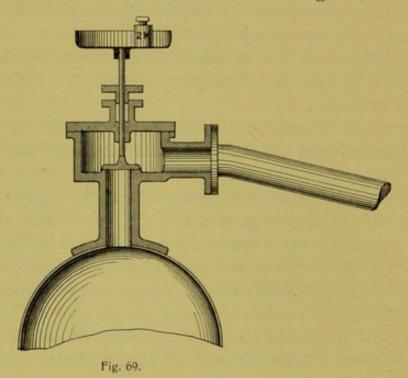
Wasserdestillation von ätherischen Ölen. Ätherische Öle werden destilliert, um von färbenden oder schlecht riechenden Verunreinigungen befreit zu werden (Rektifikation des Öls) oder um in einzelne, nach ihren Siedetemperaturen verschiedene Fraktionen zerlegt zu werden (Fraktionierung des Öls).

Bei jeder Ölrektifikation ist vor allem wichtig, so zu arbeiten, daß das aus der Ölfüllung emporsteigende Dampfgemisch nur aus Dampf besteht und von allen nicht verdampften, nur mechanisch mitgerissenen Flüssigkeitsteilen frei ist, denn, seien es Spritzer, sei es nur Dunst, jedes mitgerissene Teilchen des Blaseninhaltes verunreinigt und färbt das Destillat. Zu dieser Reinhaltung des Dampfgemisches ist es notwendig, seine Geschwindigkeit zu mäßigen, damit der mitgenommene, aus feinsten Tröpfchen bestehende Dunst zurücksinken kann.

Da aber eine Reinhaltung des Dampfgemisches von mitgerissenem Dunste doch nicht vollständig möglich ist, wie die Destillation sehr dunkel gefärbter Öle beweist, wenn deren Siedepunkt so hoch liegt, daß das Dampfgemisch nur wenig von ihnen enthält, so ist dafür zu sorgen, daß die Ölfüllung in der Blase nicht während der Destillation durch Zersetzung und durch Aufnahme von Metall in der Blase zu sehr nachdunkelt. Aus diesem Grunde ist es vorzuziehen, die Blase derartig mit ätherischem Öl zu beschicken, daß sie nur soviel enthält, als zur reichlichen Sättigung des Wasserdampfes mit Öldampf für einige Stunden genügt. Aus dem gleichen Grunde sind eiserne Blasen für die Wasserdestillation ätherischer Öle wenig empfehlenswert, weil Eisen mit Säuren, Phenolen und anderen sauerstoffhaltigen Körpern dunkel gefärbte Verbindungen bildet, so daß das Öl in einer eisernen Blase sehr bald braun und schließlich schwarz wird.

Die Heizeinrichtung der Blase kann entweder aus einem Doppelboden oder aus einem geschlossenen Rohr bestehen, das spiralförmig gebogen fast auf dem Boden liegt. Die Heizung ist also indirekt und zwar mit Kesseldampf beliebiger Spannung. Zur direkten Heizung und besonders zum Ausdampfen der Blase, wenn diese nach Gebrauch und Reinigung mit Wasser oder

Natronlauge für eine andere Öldestillation zurecht gestellt werden soll, geht ein besonderes Dampfrohr bis auf den Boden der Blase, das am Ende offen oder zu einem mit vielen kleinen Öffnungen versehenen Ringe gebogen ist. Da der direkt in die Füllung geblasene, gespannte Dampf durch seine große Ausströmungsgeschwindigkeit sehr leicht Flüssigkeitsteile in die Höhe spritzt und mit sich in den Kühler nimmt, wird man, wenn irgend möglich, nur indirekte Heizung anwenden. Bei der Füllung der Blase ist darauf Rücksicht zu nehmen, daß viele Öle, z. B. Kümmelöl, Pfefferminzöl und zahlreiche andere, nicht an den hocherhitzten Metallwänden liegen dürfen, weil der Geruch des Öls dadurch unangenehm verändert wird. Das Öl erhält dann den sogenannten Blasengeruch. Bei der Destillation solcher Öle muß das Wasser den Doppelboden oder die Heizschlange reichlich überdecken.


Die Wasserdestillation wird für ätherische Öle gern angewendet, weil sie wegen der niedrigen Destillationstemperatur, die stets unterhalb des Siedepunktes des Wassers liegt, zur Zersetzung und Verharzung des ätherischen Öls wenig Veranlassung gibt, vorausgesetzt, daß das Öl keine Ester enthält, ferner weil sie das Öl am besten von wasserlöslichen Verunreinigungen befreit. Im Vergleich mit der Überhitzungsdestillation und der trocknen Vakuumdestillation ist jedoch ihre Leistungsfähigkeit sehr viel geringer.

Für gewöhnlich wird man mit Rücklauf des Destillationswassers in die Blase arbeiten. Sollen aber wasserlösliche Verunreinigungen entfernt werden, so hat der Ersatz des verdampften Wassers in der Blase besser durch reines Wasser zu geschehen, oder man destilliert während dieser Zeit mit direkt in die Füllung einströmendem Dampf.

Wasserdestillation von ätherischem Öl unter Minderdruck. Die Änderung der Vorlagen hierzu und ihre Verbindung mit der Luftpumpe ist schon erklärt. Benutzt wird diese Destillationsart nur, wenn jede Zersetzungsmöglichkeit ausgeschlossen werden soll. Selbst leicht spaltbare Ester bleiben intakt. In gewissen Fällen ist sie zur Fraktionierung sehr gut verwendbar, indem nämlich wasserlösliche hochsiedende Körper je nach Wasserlöslichkeit und Siedepunkt mehr oder weniger in der Verdampfung zurückgehalten werden. Die Ölproduktion

ist noch geringer als bei der Wasserdestillation unter Atmosphärendruck, denn der Dampfdruck aller höher siedenden Körper wird durch die Abnahme des äußeren Druckes stärker herabgesetzt als der des Wassers. Durch den geringen Unterschied zwischen der Destillationstemperatur und der Temperatur des Kühlwassers kann der Destillationsverlust an Öl ziemlich groß werden, zumal wenn man diesen Temperaturunterschied durch unnötige Herabsetzung des Destillationsdruckes noch verringert.

Wasserdestillation von ätherischem Öl unter Überdruck. Zur Überdruckdestillation erhält das Übersteigrohr, das

Drosselventil für Überdruckdestillation.

Blase mit Kühler verbindet, einen Hahn, mit dem das übergehende Dampfgemisch nach Belieben gedrosselt werden kann. So kann im Destillationsraum der Blase bis fast zur Höhe des Kesseldruckes jeder gewünschte Dampfdruck erzeugt werden, dessen Größe ein Federmanometer an der Blase anzeigt. Ein mit seinem Kegel gut schließendes Sicherheitsventil sorgt dafür, daß der Destillationsdruck nicht die Haltbarkeit der Blase übersteigt. Statt des Drosselhahns ist es vorzuziehen, ein besonders konstruiertes Destillationsventil in dem Übersteigrohr einzusetzen, wie es Fig. 69 zeigt. In seiner selbsttätigen Bewegung hält es den gewünschten, durch die aufgelegten Gewichte ge-

gebenen Destillationsdruck unverändert fest. Schwankungen der Tension des Kesseldampfes beantwortet es mit der Änderung der Destillationsstärke. Bei der Füllung der Blase sorge man für einen hohen Steigraum, weil sonst leicht ein Überschäumen des Blaseninhaltes eintreten kann. Die Heizung wird meistens direkt geschehen, weil ein Nachfüllen des Wassers während der Destillation kleine Schwierigkeiten bietet. Bei dem Anheizen der Blase ist es besser, zuerst ohne Überdruck zu destillieren, bis keine Luft mehr in dem Apparate ist.

Die Wasserdestillation unter Überdruck ist zur Spaltung von Estern unter Umständen brauchbar, auch zur Durchführung anderer chemischer Prozesse vielleicht anwendbar, aber als ausschließliches Mittel zur Verdampfung nicht zweckmäßig. Der Dampfdruck höher siedender Körper steigt zwar mit Zunahme der Temperatur stärker als der des Wassers, weshalb bei Überdruckdestillationen im Destillat der Ölgehalt zunimmt, aber hierin steht dies Destillationsverfahren der trocknen Dampfdestillation und der Dampfdestillation mit überhitztem Wasserdampf nach, die ohne den hohen Druck in der Ölverdampfung mehr leisten.

Dampfdestillation von ätherischen Ölen. Wird durch eine flüchtige Flüssigkeit in einer Blase Wasserdampf hindurchgeleitet, ohne daß das Öl außerdem indirekt geheizt wird, so besitzt diese Destillation alle Eigenschaften einer Wasserdestillation, denn der Wasserdampf wird fortgesetzt Kondensat abscheiden. Wählt man Dampf von hoher Spannung, etwa 10 Atmosphären, so kann bei sehr guter Wärmeschutzumkleidung der Blase und sorgfältiger Wasserabscheidung des Dampfes unmittelbar vor seiner Einführung in die Blase vielleicht die Bildung von Wasser in der Blase unterbleiben, dann haben wir aber eine Überhitzungsdestillation, denn der gesättigte gespannte Dampf geht bei seiner Expansion in überhitzten Dampf über. Mit anderen Worten, eine reine Dampfdestillation ist für flüchtige Flüssigkeiten praktisch unausführbar. Es entsteht entweder eine Wasserdestillation des Öls mit der Modifikation, daß das Wasser in der Blase seiner Menge nach hinter dem ätherischen Öl zurücksteht, oder eine Dampfdestillation unter Überhitzung.

Dampfdestillation von ätherischen Ölen unter Überhitzung. Eine Überhitzungsdestillation ist vorhanden, wenn in dem Gemisch aus Wasserdampf und Öldampf, das sich aus dem Destillationsmaterial erhebt, der Wasserdampf überhitzt ist. Wie schon erwähnt, ist dieser Zustand der Wasserkomponente im Dampfgemisch für die Ölverdampfung von großer Bedeutung, denn dann ist in demselben Raume, den auch der Öldampf einnimmt, eine geringere Gewichtsmenge von Wasser enthalten, als wenn der Wasserdampf gesättigt wäre.

Diese Überhitzung des Wasserdampfes kann praktisch auf zwei verschiedenen Wegen geschehen.

- 1. Überhitzung innerhalb der Blase. Das ätherische Öl wird ohne Wasserzusatz in die Blase gefüllt und durch indirekte Heizung (Doppelboden oder Heizschlange) über den Siedepunkt des Wassers unter dem betreffenden Dampfdruck erwärmt. Wird nun gesättigter, möglichst trockener Dampf in das Öl in guter Verteilung geleitet, so wird der Wasserdampf durch das heiße Öl überhitzt. Diese Art einer Überhitzungsdestillation wird wohl schon solange angewendet, wie Dampfkessel zur Gewinnung und zur Destillation von ätherischem Öl dienen, sie ist jedenfalls die bekanntere, wenn auch ihre Bedeutung nicht allgemein erkannt ist.
- 2. Überhitzung außerhalb der Blase. Der Wasserdampf wird außerhalb der Blase in besonderen Öfen überhitzt und dann in das nicht besonders geheizte Gemisch flüchtiger Substanzen geleitet.

Zur besseren Wirkung kann man auch beide Überhitzungsarten vereinigt benutzen. Die Überhitzung außerhalb der Blase wird schon mehrfach in der Industrie der ätherischen Öle angewendet.

Damit der eingeleitete Wasserdampf die Temperatur des erhitzten Öls annehmen und sich bei dieser Temperatur auch noch mit Öldampf sättigen kann, sind die Überhitzungsblasen hoch gebaut mit engem Querschnitt, ihre Heizapparatur ist möglichst ausgedehnt einzurichten: Doppelboden, Doppelmantel und eine vielgewundene Heizschlange im Innern.

Dampfdestillation mit Überhitzung unter Minderdruck. Die Ausführung kann wie bei dem vorigen Verfahren geschehen, indem der in das Öl eingeführte Wasserdampf entweder innerhalb oder außerhalb der Blase überhitzt wird. Eine wesentliche Änderung besteht aber darin, daß die Blase mit den geschlossenen Vorlagen mit einer Luftpumpe verbunden wird, so daß sich die Verdampfung des Öls unter vermindertem Druck vollzieht. Je nach der Temperaturhöhe des aus dem Öle entwickelten Dampfgemisches, die man ganz nach Wunsch einstellen kann, bildet sich ein geringerer oder stärkerer Überhitzungsgrad mit steigendem Ölgehalte im Destillate. In jedem Falle ist der Ölgehalt größer als bei einer Destillation ohne Überhitzung. Wird das Öl in der Blase mit Kesseldampf von 10 Atm. indirekt geheizt, wird derselbe Dampf in sehr gemäßigtem Strome durch das Öl geleitet und stellt man Luftpumpe und direkte Dampfzuführung so ein, daß etwa ein Destillationsdruck von 30-40 mm und eine Temperatur von ca. 160° in der Blase erhalten wird, so destillieren Glyzerin, Palmitinsäure, Ölsäure etc. genügend reichlich über. In der Verdampfung höchstsiedender Körper übertrifft dies Verfahren selbst die trockene Öldestillation unter Minderdruck. Zur Kondensation des Mischdampfes gehört, wie bei jeder Vakuumdestillation mit Wasserdampf, eine sehr ausgedehnte Kühlanlage. Soll das Destillat möglichst rein von übergerissenen Teilen der Ölfüllung bleiben, so muß der Kesseldampf in die Ölfüllung entsprechend langsam eingeführt werden.

Trockne Destillation ätherischer Öle unter Minderdruck. Bei der trocknen Destillation wird das Gemisch flüchtiger Körper nur durch indirekte Heizung zur Verdampfung gebracht. Unter Atmosphärendruck können nur leicht siedende Flüssigkeiten destilliert werden, denn trotz umfangreicher Heizeinrichtung wird es selbst mit Dampf von 10 Atm. Spannung kaum gelingen, die Temperatur des Blaseninhaltes erheblich über 160° während der Destillation zu erhalten. Für ätherische Öle ist nur die trockne Destillation unter Minderdruck verwendbar, wenn nicht mit Gas- oder anderem Feuer, sondern mit indirekter Dampfheizung gearbeitet wird. Die Form der Blase ist hierfür von geringerer Bedeutung. Wichtig ist aber, die gesamte Apparatur so einzurichten, daß Luftverdünnung und Heizung möglichst verstärkt werden können. In der Vorlage muß ein Druck von 1 bis 2 mm erzielt werden können, im Destillationsraum also etwa 5 mm bei mäßiger Dampfentwicklung. Unter dieser Voraussetzung kann als äußerste Grenze der Destillierbarkeit im Vakuum mit

indirekter Dampfheizung die Destillation von Kohlenwasserstoffen von etwa 300° oder von Säuren oder Phenolen von etwa 280° Siedepunkt gelten, wenn gleichzeitig eine erhebliche Kondensation des Dampfes an den Wänden des Destillationsapparates verhindert wird.

Mängel der Hydrodestillation.

Bezeichnen wir jede Destillation flüchtiger Körper, die mit Hilfe von Wasser oder Wasserdampf geschieht, mit dem Ausdruck Hydrodestillation, und werfen wir einen vergleichenden Rückblick auf die Vorteile und Nachteile dieses und des trocknen Destillationsverfahrens, so springt die fast allgemeine Überlegenheit der Hydrodestillation über die trockne Destillation in die Augen. Mit spielender Leichtigkeit kann man ganz nach der Natur des zu verdampfenden Körpers die Destillationstemperatur auf fast jede beliebige Höhe einstellen; wo die trockne Destillation an der Grenze ihres Könnens angelangt ist, weil die höchstsiedenden Körper sich selbst im Vakuum unterhalb ihres Siedepunktes zersetzen, da vermag die Vakuumdestillation mit überhitztem Wasserdampf noch weit darüber hinaus mit Erfolg zu arbeiten. Nicht zu verkennen ist aber, daß die Hydrodestillation einige Eigentümlichkeiten hat, die ihre Verwendbarkeit nach gewissen Richtungen stark einschränken.

- 1. Wie für die trockne Destillation ist es auch für die Hydrodestillation günstig, wenn der zu verdampfende Körper flüssig ist oder wenigstens unterhalb der Destillationstemperatur schmilzt. Jedoch lassen sich auch feste, selbst hochsiedende Körper mit Wasserdampf verdampfen, wenn sie in mäßig feiner Zerkleinerung dem Wasserdampf dargeboten werden, so daß dieser, wie bei einer Dampfdestillation von Pflanzenteilen, die auf einem Siebboden liegende Masse des Destillationsmaterials durchzieht.
- 2. Selbstverständlich ist die Hydrodestillation nicht anwendbar, wenn das Wasser mit dem zu verdampfenden Körper auch bei niedriger Temperatur stabile Verbindungen eingeht, oder wenn es Spaltungen bewirkt.

3. Nicht nur die Zersetzlichkeit des Körpers durch Wasser, sondern auch seine Löslichkeit in Wasser kann unter Umständen ein unüberwindbares Hindernis für die Hydrodestillation bilden, nämlich dann, wenn sich zur Löslichkeit ein hoher Siedepunkt gesellt und ferner, wenn der wasserlösliche Körper in den Pflanzenteilen in nur kleiner Menge enthalten ist. Durch die Lösung des Körpers in Wasser wird sein Dampfdruck erniedrigt und damit seine Verdampfungsfähigkeit verringert, d. h. zur Verflüchtigung der gleichen Ölmenge ist mehr Wasserdampf erforderlich. Da nun die Erniedrigung des Dampfdruckes im Verhältnis zur gebotenen Wassermenge steht, so sind wasserlösliche hochsiedende Körper oder Pflanzenteile mit solchen Körpern besser mit Dampfund nicht mit Wasser zu destillieren. Würde es z. B. möglich sein, Rosen durch Dampfdestillation zu verarbeiten, so würde von dem in ihnen enthaltenen Phenyläthylalkohol wohl kaum ein erheblicher Rest in den Blüten zurückbleiben.

Die Wasserlöslichkeit bildet aber nicht nur eine Erschwerung für die Verdampfung, sondern auch für die Abscheidung aus dem Destillat. Das ist der Grund, weshalb sich aus sehr vielen Blüten das Aroma nicht durch Destillation gewinnen läßt. Alles was riecht, ist auch praktisch flüchtig; was seinen Dampf an die Luft merkbar abgiebt, muß ihn auch in gleicher Menge an den Wasserdampf abgeben, sogar in größerer, wenn die Destillationstemperatur höher als die Lufttemperatur ist. Die Schwierigkeit entsteht erst dadurch, daß die kleine Menge flüchtiger Substanz aus den großen Wassermassen nicht gewonnen werden kann.

2. Kapitel.

Das Daltonsche Diffusionsgesetz.")

Ein ätherisches Öl stellt selten einen chemisch einheitlichen Körper dar, einen ganz reinen Körper genau genommen nie; wenigstens Spuren anderer geringflüchtiger Substanzen aus der Pflanze sind stets beigemischt. Meist haben wir es mit Flüssigkeitsgemischen mehrerer, häufig sehr zahlreicher chemischer Körper zu tun.

Es handelt sich also um die Destillation eines Flüssigkeitsgemisches, einer meist schon bei Lufttemperatur, sonst bei höherer Temperatur homogenen Lösung mit Hilfe des Wasserdampfes.

Hierbei ist hervorzuheben, daß das Wasser sich in dieser Lösung flüchtiger Substanzen nicht oder nur sehr wenig löst; sonst würde der Wasserdampf ein sehr schlecht geeignetes Destillationsmittel sein, weil die Trennung des ätherischen Öls von dem Wasser im Destillatgemisch sehr schwierig wäre. Außerdem ist diese Unlöslichkeit oder wenigstens schwere Löslichkeit des ätherischen Öls in Wasser auch für die Destillation selbst von höchster Bedeutung. Mit dieser Destillation von Gemengen gegenseitig unlöslicher oder schwerlöslicher Flüssigkeiten wollen wir uns zuerst beschäftigen.

Läßt man ein Gas in einen Raum treten, der mit einem anderen zu ihm chemisch indifferenten Gase erfüllt ist, so wird es nach gewisser Zeit diesen Raum infolge der Diffusion ebenso

¹) Die Bezeichnung eines Dampfdruckes oder Luftdruckes ist im folgenden nicht als Überdruck über eine Atmosphäre oder im Abzug von einer Atmosphäre zu verstehen, sondern nur in absoluter Zählung, wenn es nicht ausdrücklich anders bemerkt ist.

vollständig erfüllen wie das andere Gas. Der Vorgang würde sich auch nicht anders abspielen, wenn noch ein drittes oder viertes Gas hinzuträte. Die Volumen der einzelnen Gase sind untereinander gleich und auch dem Gesamtvolumen gleich, das alle Gase umfaßt, denn alle Gase erfüllen ein und denselben Raum.

Will man den Dampfdruck des Gasgemisches in Beziehung zu den Einzeldrucken im Gasgemisch setzen, so ist aus einfach logischem Grunde der Druck des Gemisches gleich der Summe der Einzeldrucke.

Es gelten hiernach folgende Gleichungen:

$$p_1 + p_2 + p_3 + \ldots = P$$

und

$$V_1 = V_2 = V_3 = \dots = V,$$

schließlich daraus folgend

$$v(p_1 + p_2 + p_3 + ...) = VP$$
,

worin p_1 , p_2 , p_3 die Drucke der einzelnen Gase in dem Gemisch bezeichnen und P den Druck des Gasgemisches selbst, ferner v_1 , v_2 , v_3 die Einzelvolumen und V das Gesamtvolumen.

Mit dieser Gleichung läßt sich freilich kein Gasgemisch numerisch feststellen, so lange man nicht weiß, wie groß diese Einzeldrucke p sind. Sind es dieselben, welche die Gase vor der Vermischung gehabt haben, oder haben sich die Gasdrucke trotz Temperaturkonstanz allein durch den Akt der Vermischung infolge einer gegenseitigen Beeinflussung der verschiedenen Moleküle geändert? Hierüber hat das Daltonsche Diffusionsgesetz Klarheit geschaffen. Dalton¹) fand, daß der Druck eines Gases durch die Gegenwart eines andern Gases nicht verändert wird.

Der von einem Gasgemisch auf die Wände des einschließenden Gefäßes ausgeübte Druck ist ebenso groß wie die Summe der Drucke, welche die einzelnen Gase ausüben würden, wenn sie allein das Gefäß erfüllten.²)

Einen andern, gerade für Verdampfung und Destillation sehr wichtigen Satz fügte noch Dalton hinzu:

¹⁾ Gilberts Annalen 12 (1802), 385. — Ostwald, Allgemeine Chemie II. Aufl. Bd. I, S. 607.

²) Nach der für unseren Zweck sehr treffenden Formulierung von Nernst, Theoretische Chemie, IV. Aufl., S. 42.

Der Dampfdruck, den eine Flüssigkeit äußert, bleibt derselbe, ob sie sich im Vakuum befindet oder dem Drucke eines fremden Gases ausgesetzt ist.

Die Dämpfe, welche ein reiner flüssiger Körper beim Sieden entwickelt, sind gesättigte Dämpfe, die Gase sind ihrem Verhalten nach ungesättigte, überhitzte Dämpfe. Die Tatsache nun, daß gesättigte und ungesättigte Dämpfe ihren durch die Temperatur, resp. durch die Temperatur und das Volumen gegebenen Druck bewahren, auch wenn sie mit einem fremden Gase vermischt werden, kann man sich durch die Annahme veranschaulichen, daß in dem Raum zwischen den materiellen Molekülen noch reichlich Raum für fremde Moleküle vorhanden ist, so daß bei der großen Entfernung der Schwingungszentren der gleich- und ungleichartigen Moleküle voneinander die sicherlich vorhandene gegenseitige Beeinflussung unmerkbar klein wird.

In dieser Erklärung ist zugleich angedeutet, daß das Daltonsche Diffusionsgesetz oder, wie es auch genannt wird, das Gesetz der Partialdrucke nur ein Näherungsgesetz, ein Grenzgesetz sein kann wie alle Gasgesetze, denn in Wirklichkeit kann es kein Gas geben, dessen Materie so weit zerteilt ist, daß die Anziehungskräfte gleicher oder fremder Moleküle gänzlich aufgehoben sind. Das sogenannte ideale Gas, das man den Gasgesetzen zu Grunde legt, ist nur ein Gedankenabstrakt.

So haben denn auch alle genaueren Beobachtungen¹) Abweichungen von dem Daltonschen Gesetz festgestellt, die am kleinsten bei den eigentlichen, den früheren "permanenten" Gasen sind, aber um so größer werden, wenn die Gase komprimiert sind und sich dem Kondensationspunkte nähern. Deshalb machen sich diese Differenzen bei den Dämpfen und zumal bei den gesättigten Dämpfen besonders bemerkbar. Trotzdem läßt sich das Gesetz sehr wohl auf gesättigte Dämpfe und auch auf den Wasserdampf anwenden, bei niedriger Temperatur fast fehlerlos. Bei höherer Temperatur und unter höherem Druck zeigt aber gerade der gesättigte Wasserdampf infolge von Molekülassoziationen ziemlich erhebliche Abweichungen von den Gasgesetzen.

¹) Regnault, Mém. de l'Acad. des sc. 26 (1862), 256. — Andrews, Phil. Mag. (5), 1 (1876), 78. Phil. trans. 1887, A. 45. — F. Braun, Wiedemanns Annalen 34, (1888), 943.

Bestätigung und Erweiterung des Daltonschen Gesetzes durch Regnault. Bis jetzt haben wir nur das Verhalten eines Gases in einem andern Gase und die Dampfbildung eines reinen flüssigen Körpers in einem fremden Gase kennen gelernt. Es fragt sich nun, was geschieht, wenn ein Gemisch mehrerer gegenseitig chemisch indifferenter Flüssigkeiten verdampft. Es sind hierbei drei Fälle zu unterscheiden:

- die Flüssigkeiten lösen sich zu einem homogenen Flüssigkeitsgemisch,
- 2. sie sind gegenseitig begrenzt löslich,
- 3. sie sind gegenseitig unlöslich.

Schon Magnus¹) machte darauf aufmerksam, daß bei der Verdampfung wechselseitig unlöslicher Flüssigkeiten der Mischdampf den Summendruck der Partialdrucke äußert, also dem Daltonschen Gesetz folgt. Umfassendere und genauere Untersuchungen hat später Regnault²) darüber angestellt, in deren Veröffentlichung im Jahre 1854 er sagt:

"Es ist eine bekannte Tatsache, daß ein Gemenge mehrerer flüchtiger Substanzen, welche sich nicht chemisch verbinden, ein Dampfgemisch entwickelt, dessen totaler Dampfdruck im Zustande der Sättigung gleich der Summe der Drucke ist, welchen jede der Flüssigkeiten für sich bei derselben Temperatur äußern würde. Diese Feststellung ist übrigens nur ein Sonderfall des allgemeinen Gesetzes, das unter der Bezeichnung des Gesetzes von Dalton bekannt ist, und das sich auf jedes Gemenge flüchtiger Flüssigkeiten, permanenter Gase oder von Dämpfen erstreckt." "Man nimmt gewöhnlich an, daß Dalton dieses Gesetz auf Grund von Experimenten aufgestellt hätte, was aber schwer zu begreifen ist, weil seine Feststellung sehr genaue Messungen verlangt. Man sagt auch, daß Gay-Lussac die Richtigkeit dieses Gesetzes von Dalton bestätigt habe, aber von solchen Experimenten ist nichts zu finden."

Im folgenden sind zwei Untersuchungsreihen Regnaults wiedergegeben, bei denen es sich um binäre Gemenge gegenseitig nahezu unlöslicher Flüssigkeiten handelt, deren Dampfdrucke nach der barometrischen Methode im Vakuum bestimmt wurden. Zum Vergleich mit dem beobachteten Dampfdruck der beiden Flüssigkeitsschichten hat Regnault auch die Dampfdrucke der Komponenten angeführt, die sie nach anderen Be-

¹⁾ Poggendorffs Annalen 38 u. 39 (1836).

²) Compt. rend. 39 (1854), 397.

stimmungen von ihm als Maximaldruck haben, wenn die Flüssigkeiten für sich auf die gleiche Versuchstemperatur erwärmt werden. In der letzten Rubrik der Tabelle stehen die Unterschiede zwischen dem berechneten und dem beobachteten Totaldruck.

Verdampfung wasserunlöslicher Flüssigkeiten mit Wasser.

1	2	3	4	5	6	
Versuchs- Tempe- ratur.	Beobachteter Druck des Dampf- gemisches.	Druck des Wasserdampfes, wenn er bei der in Rubrik 1 an- gegebenen Tem- peratur allein entwickelt würde.	Druck des an- deren Dampfes, wenn er bei gleicher Tempe- ratur allein ent- wickelt würde.	Summe dieser beiden Dampfdrucke.	Differenz zwischen dem berechneten und dem beobachteten Dampfdruck.	
	Verdampfur	ng von Wass	er und Schw	efelkohlenst	off.	
8,85 0	196,81 mm	8,48 mm	189,2 mm	197,7 mm	0,9 mm	
12,07	225,93	10,51	216,7	227,2	1,3	
18,85	299,52	16,20	285,2	301,4	1,9	
26,87	412,28	26,32	388,7	415,0	2,7	
14,10	247,43	11,99	236,0	248,0	0,6	
22,43	347,17	20,17	328,5	348,7	1,5	
38,35	634,60	50,26	584,9	635,2	0,6	
31,80	498,74	34,96	464,8	499,8	1,1	
	Verda	ampfung von	Wasser und	Benzol.		
10,100	54,92 mm	9,23 mm	47,0 mm	56,2 mm	1,3 mm	
12,38	61,93	10,72	52,4	63,1	1,2	
15,26	72,34	12,91	60,5	73,4	1,1	
18,01	83,0	15,36	69,2	84,6	1,6	
19,88	91,49	17,36	75,7	93,0	1,5	
22,53	104,28	20,30	86,0	106,3	2,0	
10,53	56,03	9,49	48,2	57,7	1,7	

Diese Unterschiede sind klein, also die Giltigkeit des Daltonschen Gesetzes für die Dämpfe eines Gemenges gegenseitig praktisch unlöslicher Flüssigkeiten ist damit erwiesen, an welchem Resultate der etwaige Zutritt der Atmosphäre nichts ändern würde. Die Regellosigkeit in der Größe der Unterschiede ist durch Versuchsfehler zu erklären. Interessant ist aber, daß die kleine Differenz stets nach gleicher Richtung ausfällt. Der beobachtete Druck des Dampfgemisches ist nach allen Bestimmungen um

ein geringes niedriger, als der aus den Partialdrucken für gesättigten Dampf berechnete. Der Grund liegt darin, daß noch Lösungseffekte mitwirken, indem jede Komponente von der andern eine Spur lösend aufgenommen hat, so daß beide Partialdrucke etwas niedriger werden als dem gesättigten Dampfzustande entspricht.

Das Daltonsche Gesetz der Partialdrucke ist das Fundamentalgesetz, auf dem die ganze Industrie der ätherischen Öleberuht, insofern als sie im wesentlichen auf Destillation der Roh-

materialien mit Wasserdampf angewiesen ist.

3. Kapitel.

Destillation von Gemengen gegenseitig unlöslicher Flüssigkeiten.

In einem Gefäße befindet sich ein reiner flüssiger oder fester Körper, der merkbar Dampf entwickelt, so daß sein Dampf allmählich den Raum erfüllt. Ist das Gefäß verschlossen und ist keine weitere Wärmequelle vorhanden, als durch die Temperatur der äußeren Atmosphäre gegeben ist, so wird schließlich ein Endzustand der Dampfentwicklung entstehen, der außer von der atomistischen und molekularen Konstitution des Körpers nur von seiner Temperatur abhängt. Die Bildung des Dampfes kann man messend durch seinen Druck verfolgen, den er auf die Gefäßwände ausübt. Die Höhe des schließlich erreichten Dampfdruckes ist als Ausdruck der Größe der Dampfentwicklung, gleichwie diese selbst, für den betreffenden Körper durch die Temperatur bestimmt.

Hat das Gefäß mit der Atmosphäre in Verbindung gestanden und ist es danach verschlossen worden, so daß sich in ihm Luft mit dem Drucke einer Atmosphäre befindet, so ändert sich dadurch der Endzustand in der Dampfbildung des Körpers bis auf eine geringe eben merkbare Abschwächung nicht. Wenn auch langsamer, stellt sich dasselbe Gleichgewicht wie zuvor zwischen der Flüssigkeitsphase und der Dampfphase ein, mit demselben

Dampfdruck, zu dem sich nun noch der Druck der Luft gesellt, so daß sich in dem verschlossenen Gefäße ein Überdruck gegenüber dem äußeren Atmosphärendruck geltend macht. Öffnen wir jetzt das Gefäß, so entweicht von dem Gemisch von Dampf und Luft so viel, bis der Innendruck dem äußeren Druck gleich geworden ist.

Die Flüssigkeit in dem Gefäße soll nun durch eine darunter angebrachte Wärmequelle erhitzt werden, so daß die Dampfbildung verstärkt wird. Druck und Temperatur des Dampfes, der mit Luft vermischt aus dem Gefäße quillt, steigen, bis schließlich der Dampf die gleiche Tension erreicht hat, mit der die Luft auf die Flüssigkeit drückt. Durch fortgesetzte Heizung wird die Flüssigkeit ungestört weiter Dampf entwickeln, so lange noch etwas von ihr vorhanden ist; aber einen höheren Druck als den äußeren der Atmosphäre kann der Dampf nicht erlangen, weil jeder durch vermehrte Dampfbildung entstehende Ansatz zu einer Drucksteigerung nur ein verstärktes Ausströmen des Dampfes aus dem Gefäße zur Folge hat. Wie zuvor hat sich wieder zwischen den zwei Phasen ein Gleichgewichtszustand eingestellt, der dort durch die Temperatur, hier durch die Höhe des äußeren Druckes gegeben ist.

Deshalb nennt man die erstere Verdampfung eine isotherme, die letztere eine isobare. Die isotherme Verdampfung ist eine Verdunstung; die isobare Verdampfung, wenn der Dampf aufgefangen und durch Abkühlung kondensiert wird, ist die gewöhnlich ausgeführte Destillation mit der äußeren Erscheinung des Siedens der Flüssigkeit.

Bei der isobaren Verdampfung hat gleich dem Drucke auch die Temperatur eine bestimmte Höhe erreicht, die ebenfalls trotz verstärkten Siedens der Flüssigkeit konstant bleibt, so lange wie der äußere Druck nicht geändert wird. Wie bei der isothermen Verdampfung in dem verschlossenen Gefäße enthält der flüssigkeitsleere Raum in dem Gefäße wieder ein Maximum an Dampf, das durch die Höhe des Druckes und die entsprechende Temperatur zum Ausdruck kommt. Der Dampf ist gesättigt. Druck und Temperatur sind für einen gesättigten Dampf gegenseitig feststehend; die eine Größe ist eine Funktion der anderen. Beide zusammen, und damit auch die Masse an Dampf, werden durch die Höhe des äußeren Druckes bestimmt.

Da die Masse der Dampfentwicklung von der Menge der Flüssigkeit unabhängig ist, und da der Druck eine Eigenschaft der lebendigen Kraft der Dampfmoleküle, aber nicht der Flüssigkeit ist, so ist auch die Menge der Flüssigkeit für die Höhe des Dampfdruckes gleichgültig. Wichtig ist nur, daß überhaupt von der Flüssigkeit, der Dampfquelle, noch ein Teil zugegen ist, damit der Sättigungszustand erhalten bleibt.

Druck des Mischdampfes eines Flüssigkeitsgemenges. Wird ein Gemenge von flüchtigen, wechselseitig unlöslichen und chemisch indifferenten Flüssigkeiten bis zum Sieden erhitzt, so findet, wie zuvor gezeigt wurde, aus jeder der Flüssigkeiten Dampfbildung statt, als ob die andere Flüssigkeit nicht zu-

gegen ist.

Jede der Flüssigkeiten entwickelt gesättigten Dampf, der den Maximaldruck hat, den er bei der Destillationstemperatur überhaupt äußern kann. Vorausgesetzt ist nur, daß nicht Lösungserscheinungen oder chemische Affinitätsäußerungen auftreten, denn beide beeinflussen den Dampfdruck des Flüssigkeitsgemenges.

Der Druck des Dampfgemisches ist gleich der Summe der Partialdrucke, und diese Partialdrucke der Komponenten des Gemenges sind diejenigen für gesättigten Dampf; es können also zur Berechnung des Gesamtdruckes auch die Dampfdrucke eingesetzt werden, welche von jeder der Flüssigkeiten für sich bei der betreffenden Temperatur als Maximaldrucke bestimmt worden sind.

Destillationstemperatur eines Flüssigkeitsgemenges. Da eine Flüssigkeit siedet, wenn ihr Dampfdruck den äußeren Druck, dem die siedende Flüssigkeit ausgesetzt ist, erreicht hat, so muß auch das Flüssigkeitsgemenge zu kochen beginnen, sobald ihr Summendruck gleich der Höhe des äußeren Druckes geworden ist. Daraus folgt, daß ein derartiges Flüssigkeitsgemenge bei einer niedrigeren Temperatur als jeder der beiden Gemengteile siedet, wenn er für sich allein erhitzt würde. Die Destillationstemperatur liegt also sogar unter der des flüchtigeren Bestandteils.

Als Beispiel diene die Destillation von Wasser mit Benzol. Der äußere Druck sei der normale Luftdruck von 760 mm Quecksilber. Der Siedepunkt des Benzols ist bei diesem Druck 80,2°, der des Wassers 100°. Wird aber ein Gemenge von Wasser mit Benzol erhitzt, so teilen sich in der Überwindung des äußeren Druckes von 760 mm der Dampfdruck des Wassers und der des Benzols. Das Gemenge beider wird also schon bei 69,2° zu sieden beginnen, denn bei dieser Temperatur entwickelt das Wasser einen Maximaldampfdruck von 225,4 mm und das Benzol nach Youngs Bestimmungen einen solchen

von 534,6 mm, deren Summe 760 mm beträgt.

Weil von heterogenen Flüssigkeitsgemengen keine Flüssigkeit bei ihrer Dampfbildung von der anderen beeinflußt wird, so ist offenbar auch das Mengenverhältnis der übereinander geschichteten Flüssigkeiten sowohl für den Dampfdruck als auch für die Destillationstemperatur und die Zusammensetzung des Mischdampfes gleichgiltig. Ferner läßt sich daraus folgern, daß Dampfdruck, Destillationstemperatur und Dampfzusammensetzung während der Destillation konstant bleiben, so lange wie überhaupt noch beide Flüssigkeiten in der Blase in einiger Menge vorhanden sind. Erst wenn bei Überschuß der einen Komponente die andere Komponente des Gemenges so weit abgenommen hat, daß der Rest bei der Destillationstemperatur in der anderen Flüssigkeit gelöst ist, tritt eine Änderung in der Destillation ein. Es beginnt die Destillation einer Lösung; der Dampfdruck sinkt, die Temperatur steigt, und der Gehalt des Mischdampfes an diesem Restbestandteil nimmt mehr und mehr ab, bis schließlich die im Überschuß vorhanden gewesene Flüssigkeit rein überdestilliert. Es ist dabei gleichgiltig, ob diese Flüssigkeit in dem Gemenge die höher oder niedriger siedende gewesen ist.

Bei den vorstehenden Erörterungen sind die beiden Flüssigkeiten in der Blase schichtweise übereinander gelagert gedacht. An diesem eben geschilderten Siedeverhalten wird nun nichts geändert, wenn nur eine Flüssigkeit sich in dem Destillationsapparate befindet und der Dampf der anderen Flüssigkeit von

außen in die erstere eingeführt wird.

Durch das Herabdrücken der Siedetemperatur einer flüchtigen, in Wasser unlöslichen Substanz bei ihrer Destillation mit Wasser resp. mit Wasserdampf gelingt es, manche chemische Körper zu destillieren, die sich, für sich allein erhitzt, bei ihrer hohen Siedetemperatur nur unter Zersetzung verflüchtigen.

Zusammensetzung des Mischdampfes. Es drängt sich nun die praktisch sehr wichtige Frage auf, wie dieser Mischdampf quantitativ zusammengesetzt ist.

Wir haben in einem Kolben zwei sich wechselseitig nicht lösende reine Flüssigkeiten und saugen den Kolben luftleer. Von beiden Flüssigkeiten tritt vermehrte Dampfbildung ein. Die Dämpfe der unteren Flüssigkeitsschicht durchdringen auf dem Wege der Diffusion die obere Flüssigkeitsschicht, je nach deren Stärke in kürzerer oder längerer Zeit, und mischen sich mit dem Dampfe der oberen Flüssigkeitsschicht. Den luftleer gewordenen Kolben schließen wir von der Luftpumpe ab, die Temperatur halten wir konstant. Zwischen den beiden Phasen, der flüssigen und der dampfförmigen, wird alsbald ein Gleichgewichtszustand eintreten. Ebensoviele Moleküle wie sich fortgesetzt aus dem Flüssigkeitsgemenge dampfförmig erheben, kehren aus dem Dampfzustande wieder in die Flüssigkeit zurück. Das Dampfgemisch ist alsdann in seinen beiden Bestandteilen gesättigt, es erfüllt den flüssigkeitsleeren Raum im Kolben, und eben diesen selben Raum nimmt auch jede seiner beiden Komponenten ein. Also sind die beiden Dampfvolumen untereinander und dem Raume gleich, der sie zusammen enthält.

Das Gewicht der Volumeneinheit, d. h. das spezifische Gewicht, des einen gesättigten Dampfes bei der gemeinsamen Temperatur sei G, und das des anderen gesättigten Dampfes in dem gemeinsamen Gemisch sei G,, so daß also G, + G, das Gewicht der Volumeneinheit des Dampfgemisches darstellt; dann drücken G, und G, die Gewichtsanteile der beiden Komponenten des

Dampfgemisches aus.

Wir ändern jetzt den Versuch, indem wir die Flüssigkeiten in einen mit Kühler verbundenen Destillationsapparat gießen, erhitzen das Flüssigkeitsgemenge zum andauernden Sieden und fangen das Destillat in einer Vorlage auf. Unter welchem äußeren Druck die Destillation auch ausgeführt wird, stets wird irgend ein beliebiges, aus dem Flüssigkeitsgemenge sich erhebendes Dampfvolumen beide Dampfkomponenten zugleich enthalten. Als Basis für jede Berechnung der Dampfzusammensetzung gilt der Satz: das Volumen der einen Dampfkomponente ist gleich dem Volumen der anderen Komponente. Eine weitere Untersuchung hat dann zu lehren, ob sich im vorliegenden Falle die Komponenten in dem Dampfgemisch im gesättigten Zustande befinden oder nicht. Für zwei zusammensiedende, gegenseitig unlösliche und chemisch indifferente

Flüssigkeiten ist der entwickelte Dampf in seinen beiden Bestandteilen gesättigt, falls beide Flüssigkeiten in reichlicher Menge vorhanden sind und nicht zu stürmisch erhitzt werden.

Hiernach lautet die Regel: Bei der Destillation eines Gemenges gegenseitig unlöslicher Flüssigkeiten ist das Dampfgemisch nach dem Verhältnis der spezifischen Gewichte der gesättigten Dampfkomponenten zusammengesetzt.

Gewöhnlich wird der Satz so formuliert: Die Gewichte der Dampfkomponenten verhalten sich wie die Produkte aus ihren Molekulargewichten und den Einzeldampfdrucken.

Erweitert man die Aussage des ersteren Satzes auch auf total oder partiell ungesättigte Dämpfe, was dann bei Berechnung des spezifischen Gewichtes der Dampfkomponenten zu berücksichtigen ist, so drückt der letztere Satz dem Inhalte nach dasselbe aus, denn die spezifischen Gewichte verschiedener Gase verhalten sich bei gleicher Temperatur, aber verschiedenem Drucke, wie ihre Produkte aus Molekulargewicht und Dampfdruck. Nach ersterer Fassung des Gesetzes werden aber genauere Resultate erhalten, wenn durch Beobachtung gewonnene spezifische Dampfgewichte benutzt werden können. Letzterer Satz ist nur dann richtig, wenn die aus der chemischen Konstitution abgeleiteten Molekulargewichte gleich den Dampfmolekulargewichten sind, was bei Dämpfen selten vollständig zutrifft.

Zu diesem anderen Ausdruck des Daltonschen Diffusionsgesetzes können wir auch durch eine besondere Erwägung gelangen.

Nach Avogadros Regel enthalten unter demselben Druck und bei derselben Temperatur gleiche Volumen verschiedener Gase die gleiche Anzahl von Molekülen; also die Gewichte gleicher Volumen verschiedener Gase stehen in demselben Verhältnis zu einander wie die Gewichte der Molekularvolumen. Ist aber der Druck verschieden, so ändert sich diese Beziehung im Verhältnis der verschiedenen Drucke. Sind demnach die Gewichte der Volumeneinheit g₁ und g₂, die Gewichte der Molekularvolumen Mol.₁ und Mol.₂ und die Drucke p₁ und p₂, so ist

bei gleichem Druck $g_1: g_2 = \text{Mol.}_1: \text{Mol.}_2$, bei verschiedenem Druck $g_1: g_2 = p_1 \, \text{Mol.}_1: p_2 \, \text{Mol.}_2$.

Erstere Gleichung ist die Avogadrosche Regel, letztere das Daltonsche Diffusionsgesetz, wenn man annimmt, daß die Gasgesetze nicht nur für getrennt von einander befindliche, sondern auch für in einem Raum vermischte Gase und Dämpfe gelten, und das eben haben Dalton und Regnault nachgewiesen.

An einem Beispiel sei die Berechnung der Dampfzusammensetzung mit Hilfe der spezifischen Gewichte der Dampfkomponenten gezeigt. Es destilliere Wasser mit Benzol, und die Destillationstemperatur sei 80° C. Die Destillation würde dann unter einem Drucke von 1108,5 mm Quecksilbersäule stattfinden, denn bei 80° beträgt der Maximaldruck des Benzols nach Young¹) 753,6 mm und der des Wassers 354,9 mm. Nach Regnault-Zeuner ist das spezifische Gewicht des gesättigten Wasserdampfes bei 80° 0,0002959. Für Benzoldampf fand Young das spezifische Volumen bei 80° zu 361,7, wonach das spezifische Gewicht, sein reziproker Wert, 0,002765 beträgt. Hiernach enthalten 0,0002959 + 0,002765 = 0,0030599 kg Mischdampf oder Destillat 0,0002959 kg Wasser und 0,002765 kg Benzol, d. h. das Destillat besteht aus 90,5 Gew. % Benzol und 9,5 Gew. % Wasser.

Um das Mengenverhältnis im Destillat eines Gemenges gegenseitig unlöslicher Flüssigkeiten zu erfahren, ist also nur die Kenntnis der spezifischen Gewichte der Dampfkomponenten bei der Destillationstemperatur erforderlich. Vom Wasserdampf, der einen für uns in Frage kommenden Dampfkomponente, sind die spezifischen Gewichte genau bekannt, von anderen Substanzen liegen aber nur wenige Beobachtungen vor, und diese meist nicht bei der gewünschten Temperatur, so daß erst extrapoliert werden müßte. Für diese bleibt kein anderer Ausweg als die Berechnung des spezifischen Gewichtes aus den Dampfdrucken mit Hilfe der Gasgesetze. Die Genauigkeit der so durch Rechnung erhaltenen Resultate hängt ganz von der Höhe des vorliegenden Dampfdruckes ab. Bei niederen Drucken bis zu einigen Atmosphären werden sie für die Zwecke der Praxis fehlerlos oder nicht merkbar fehlerhaft sein. Wir werden weiterhin sehen, welche eventuellen Unterschiede zwischen Berechnung und Beobachtung vorkommen können.

¹⁾ Journ. chem. Soc. 55 (1889), 486.

Die Berechnung des spezifischen Gewichtes der Dämpfe nach den Gasgesetzen. In der bekannten Zustandsgleichung für Gase

pv = RT

bedeutet p den Druck, v das Volumen und T die absolute, von — 273° C. an gerechnete Temperatur. T ist also gleich 273 + t, wenn t die Temperatur des Gases in Graden Celsius ausdrückt. R, der Ausdruck für die Gaskonstante, ist eine für ein bestimmtes Gas konstante, aber für jedes Gas verschiedene Größe; es stellt den für das betreffende Gas bei der Temperatur — 273° geltenden Wert von pv dar.

v, das spezifische Volumen, ist der reziproke Wert des spezifischen Gewichtes g, also gleich 1: g. Demnach ist das spezifische Gewicht eines Gases

$$g = \frac{p}{RT}$$

Hierin sind p und T durch Beobachtung festzustellen, unbekannt ist noch R.

Nach der Avogadroschen Regel, daß gleiche Volumen verschiedener Gase bei gleicher Temperatur und unter gleichem Druck dieselbe Anzahl Moleküle enthalten, ist

 $v_1: v = Mol.: Mol._1$ oder ebenso

 $g: g_1 = Mol.: Mol._1;$

unter Benutzung der Gleichung

 $g = \frac{p}{RT}$

gilt daher

 $\frac{p}{RT}: \frac{p}{R_1T} = Mol.: Mol._1$ $R_1: R = Mol.: Mol._1$ $R_1 = \frac{Mol. R}{Mol._1}.$

Das Produkt Mol. R ist, wie wir sehen, gleich Mol., R, ist also für jedes Gas gleich groß. Es braucht demnach nur auf Grund genauer Bestimmungen an irgend einem Gase ein für allemal berechnet zu werden, damit es dann für jedes andere Gas benutzt wird.

R ist der auf — 273° C. reduzierte Wert von p · v. Sind also p und v von einem Gase bei 0° bestimmt, so hätten wir

$$R = \frac{p_0 \ v_0}{273}$$

Das Volumen vo möge vom Sauerstoff, als dem in dieser Hinsicht bestuntersuchten. Gase, benutzt werden. Nach den Bestimmungen von Regnault unter Benutzung der Korrektur von Crafts1) wiegt 1 Liter reiner trockner Sauerstoff bei 00 und 760 mm Barometerstand 1,43011 g oder 1 cbm 1,43011 kg. Eine Quecksilbersäule von 760 mm Höhe und 1 qm Grundfläche übt nach Regnaults Bestimmungen einen Druck von 0,76 · 13596 = 10333 kg aus. Hiernach ist also für Sauerstoff

$$R = \frac{10333 \cdot 1,43011}{273} = 26,466.$$

Wird dieser Wert der Gaskonstante in die oben angeführte Gleichung $R_1 = \frac{\text{Mol. R}}{\text{Mol.,}}$

eingesetzt, und dazu die Zahl 32 für das Molekularvolumen des Sauerstoffs, so wird erhalten

$$R = \frac{32 \cdot 26,466}{\text{Mol.}_1} = \frac{846,912}{\text{Mol.}_1}.$$

Da nun

$$G = \frac{p}{R T}$$

war, so gilt

a)
$$G = \frac{p}{T} \cdot \frac{Mol.}{846,912}$$

womit das spezifische Gewicht des Dampfes von jedem Körper berechnet werden kann, wenn p und T gegeben sind; p bedeutet den Druck des Dampfes, in Dampfgemischen unlöslicher Körper den Partialdruck des betreffenden Dampfes und zwar in Gleichung a den Druck in Kilogramm auf einen Quadratmeter. Soll p die Anzahl der Atmosphären ausdrücken, so lautet die Formel

b)
$$G = \frac{p}{T} \frac{\text{Mol. } 10333}{846.912} = \frac{p}{T} \text{ Mol. } 12,201.$$

Oder ist der Druck in Millimeter Quecksilbersäule gegeben, so ist

c)
$$G = \frac{p}{T} \frac{\text{Mol. } 13,596}{846,92} = \frac{p}{T} \text{ Mol. } 0,01605.$$

¹⁾ Ostwald, Allgemeine Chemie 2. Aufl., Bd. I, S. 164.

v. Rechenberg, Gewinnung und Trennung der äther. Öle.

In allen drei Gleichungen ist unter G das spezifische Gewicht des Dampfes in Kilogramm von einem Kubikmeter zu verstehen.

Diese letztere Formel c wurde im folgenden zur Berechnung der spezifischen Dampfgewichte benutzt, soweit nicht experimentelle Bestimmungen vorliegen, was selten der Fall ist. Nur vom Wasserdampf, der ausreichend untersucht ist, sind immer die beobachteten Werte verwendet worden.

Druck, spezifisches Volumen und spezifisches Gewicht des gesättigten Wasserdampfes. In der nachstehenden Tabelle haben die Buchstaben am Kopf der Rubriken folgende Bedeutung:

t ist die Temperatur in Graden Celsius,

p der Dampfdruck oder die Tension in Millimeter Quecksilberhöhe nach Regnaults Messungen von Broch berechnet. Diese Zahlen sind den Tabellen der zweiten Auflage von Landolt-Börnstein entnommen.

v ist das spezifische Volumen des gesättigten Wasserdampfes (die Raumeinnahme von 1 kg Dampf in Kubikmetern ausgedrückt), nach Regnaults Messungen von Zeuner¹) berechnet.

γ ist das spezifische Gewicht des gesättigten Wasserdampfes = 1: v. Es stellt das Gewicht von 1 cbm Wasserdampf in Kilogramm dar. Die Werte von 5° zu 5° sind genaue Daten, die Zwischenglieder aber nur durch einfache arithmetische Interpolierung berechnet.

g ist ebenfalls das spezifische Gewicht, aber nach der Gasgleichung berechnet, wobei als Molekulargewicht für H₂O 18,016 benutzt wurde,

$$g = \frac{p}{T} 18,016 \cdot 0,01605 = \frac{p}{T} 0,289.$$

Vergleicht man in der Tabelle die Werte von g mit denen von γ , d. h. die aus der Zustandsgleichung für Gase berechneten spezifischen Gewichte mit den durch Beobachtung bestimmten, so wird man finden, daß zwischen $+15^{\circ}$ und $+40^{\circ}$ Beobachtung und Berechnung übereinstimmen. Bis $+15^{\circ}$ und von 40° bis etwa 80° bestehen zwar Unterschiede, die aber sehr gering sind. Bei 100° macht die Differenz zwischen Beobachtung und Berechnung schon $2,8^{\circ}/_{\circ}$ des beobachteten Wertes aus, bei 150° 6 $^{\circ}/_{\circ}$ und bei 200° $9,5^{\circ}/_{\circ}$.

¹⁾ Zeuner, Technische Thermodynamik, 2. Aufl., 1900, Bd. II, Tab. 1b.

Tabelle A für gesättigten Wasserdampf.

				4 MARTINES	
Tempe-	Druck in mm	Spezifisches Volumen.	Spezifische	s Gewicht.	Differenz von
ratur.	Quecksilber-	1 kg in cbm	1 cbm	in kg	im Mittel von
ratur.	höhe.	beobachtet	beobachtet	berechnet	5 Graden
t ^o	p	v	γ	g	$\gamma_{n+1}-\gamma_n$
- 20°	0,927 mm	994,78	0,00100	0,00106	
15	1,40	666,59	150		
10	2,093	451,42	221		
5	3,113	307,33	325		
0	4,60	210,68	0,00475	0,00483	
+1	4,91		513		
2	5,27		551		0,00038
3	5,66		589		
4	6,07		627		
5	6,51	150,24	0,00666	0,00677	
6	6,97		717		
7	7,47		768		0,00051
8	7,99		819		
9	8,55		870		
10	9,14	108,52	0,00922	0,00933	
11	9,77		989		
12	10,43		1056		0,00068
13	11,14		1124		
14	11,88		1192		
15	12,67	79,355	0,01260	0,01271	
16	13,51		1348		
17	14,40		1436		0,00088
18	15,33		1525		
19	16,32		1613		
20	17,36	58,726	0,01703	0,01712	
21	18,47		1817		The state of the s
22	19,63		1931		0,00114
23	20,86		2045		
24	22,15		2159		1 3 5 6 6
25	23,52	43,968	0,02274	0,02281	1
26	24,96		2420		
27	26,47		2566		0,00146
28	28,07		2712		,
29	29,74 -		2859		

Tempe- ratur.	Druck in mm Quecksilber- höhe.	Spezifisches Volumen. 1 kg in cbm beobachtet		es Gewicht. in kg berechnet	Differenz von γ pro 1 Grad im Mittel von
to.	p				5 Graden
	P	V	7	g	$\gamma_{n+1}-\gamma_n$
30°	31,51 mm	33,270	0,03006	0,03005	
31	33,37		3191		
32	35,32		3376		0,00185
33	37,37		3561		
34	39,52		3746		
35	41,78	25,439	0,03931	0,03920	
36	44,16		4162		
37	46,65		4393		0,00231
38	49,26		4625		
39	52,00		4857		
40	54,87	19,647	0,05090	0,05066	
41	57,87		5377	0,00000	
42	61,02		5664		0,00287
43	64,31	Com Page 1	5951		0,00207
44	67,76		6239		
45	71,36	15,317	0,06528	0,06485	
46	75,13		6882		
47	79,07		7236		
48	83,19	NOT THE REAL PROPERTY.	7590		0,00354
49	87,49		7944		.,
50	91,98	12,051	0,08298	0,08230	
51	96,66		8730		
52	101,55		9162		
53	106,66		9594		0,0043
54	111,97		0,1003		
55	117,52	9,5622	0,1046	0,1035	
56	123,29	THE PERSON NAMED IN	1098		
57	129,31		1150		0,0052
58	135,58		1202		
59	142,10	-113	1254		
60	148,89	7,6538	0,1307	0,1292	
61.	155,95		1370		
62	163,29	-	1433	1000	0,0063
63	170,92		1496		
64	178,86		1559	1	
65	187,10	6,1717	0,1623	0,1600	
66	195,67		1697		
67	204,56		1771		0,0074

Tempe-	Druck in mm	Spezifisches Volumen.	Spezifische	es Gewicht.	Differenz vor γ pro 1 Grac
5.550	Quecksilber-	1 kg in cbm	1 cbm	in kg	im Mittel von
ratur.	höhe.	beobachtet	beobachtet	berechnet	5 Graden
to.	p	v	γ	g	$\gamma_{n+1}-\gamma_n$
68°	213,79 mm		1845		
69	223,40		1920		
70	233,31	5,0144	0,1994	0,1966	
71	243,62		2082		
72	254,31		2170		0,0088
73	265,39		2258		
74	276,78		2347		
75	288,76	4,1028	0,2437	0,2398	
76	301,09		2541		
77	313,85		2645		0,0104
78	327,06		2749		
79	340,73		2854		
80	354,87	3,3792	0,2959	0,2905	
81	369,51		3081		
82	384,64		3203		0,0122
83	400,29		3325		1000
84	416,47		3448		
85	433,19	2,8006	0,3571	0,3497	
86	450,47		3713		
87	468,32		3855		0,0142
88	486,76		3997		
89	505,81	W. W.	4140		
90	525,47	2,3346	0,4283	0,4183	
91	545,77		4448		
92	566,72		4613		0,0165
93	588,34		4779		
94	610,64		4945		
95	633,66	1,9568	0,5110	0,4976	
96	657,54		5299		A STATE OF THE PARTY OF THE PAR
97	682,03		5488		0,0189
98	707,28		5677		
99	733,30		5867		1 19
100	760,00	1,6508	0,6057	0,5894	
101	787,59		6275		
102	816,01		6493		0,0218
103	845,28		6711		
104	875,41		6929		

Tempe-	Druck in mm Quecksilber- höhe.	Spezifisches Volumen. 1 kg in cbm beobachtet		es Gewicht. in kg berechnet	Differenz vor ypro 1 Grad im Mittel vor 5 Graden
t ^o	p	v			$\gamma_{n+1} - \gamma_n$
105°	906,41 mm	1,3989	0,7148	g 0.6030	1 1 1 1
106	938,31	1,0909	7397	0,6930	
107	971,14		7646		0.0340
108	1004,91		7895		0,0249
109	1039,65		8144		
110	1075,37	1,1914	0,8393	0,8114	
111	1112,09	.,	8676	0,0114	
112	1149,83		8959		0,0283
113	1188,61		9242		0,0200
114	1228,47		0,9525		
115	1269,41	1,0195	0,9809	0,9455	
116	1311,47		1,0129	1	
117	1354,60		1,0449		0,0320
118	1399,02	THE REAL PROPERTY.	1,0769		
119	1444,55		1,1090		
120	1491,28	0,8763	1,1411	1,0967	
121	1539,25		1772		
122	1588,47		2133		0,0361
123	1638,96		2494		
124	1690,76		2855		3 199
125	1743,88	0,7566	1,3217	1,2661	
126	1798,35		3622		in the same of the
127	1854,20		4027		0,0406
128	1911,47	THE REAL PROPERTY.	4433		-
129	1970,15		4839		
130	2030,28	0,6559	1,5246	1,4560	
131	2091,94		5700		The second of th
132	2155,03		6156		0,0454
133	2219,69	100000000000000000000000000000000000000	6610		
134	2285,92		7063		
135	2353,73	0,5709	1,7516	1,6672	
136	2423,16	SER STORY	8023		0.0507
137	2494,23		8530		0,0507
138	2567,00		9037 9544		3300
139	2641,44	- 200		4.0044	
140	2717,63	0,4987	2,0052	1,9014	
141	2795,57	3 (2)	0615		0.0563
142	2875,30		1178	3	0,0563

Tempe-	Druckinmm	Spezifisches Volumen.		es Gewicht.	Differenz von
ratur.	Quecksilber-	1 kg in cbm		in kg	im Mittel von
	höhe.	beobachtet	beobachtet	berechnet	5 Graden
t ^o	p	v	γ	g	$\gamma_{n+1} - \gamma_n$
1430	2956,86 mm		2,1741		
144	3040,26		2305		la minima su
145	3125,55	0,4373	2,2868	2,1610	
146	3212,74		349		
147	3301,87		411		0,0622
148	3392,98		473		
149	3486,09		535		
150	3581,2	0,3849	2,5981	2,4467	
151	3678,4		667		
152	3777,7		736		0,0689
153	3879,2		805		
154	3982,8		874		
155	4088,6	0,3398	2,9429	2,7608	
156	4196,6		3,019		
157	4306,9		3,094		0,0756
158	4419,6		3,170		
159	4534,6		3,245		
160	4651,6	0,3011	3,3211	3,1047	and the same of
161	4771,3		3,404		
162	4893,4		3,488		0,0834
163	5017,9		3,571		
164	5145,0		3,655		P. Marie Park
165	5274,5	0,2675	3,7383	3,4801	
166	5406,7		3,829		
167	5541,4		3,920		0,0909
168	5678,8		4,011	WHITE WALL	
169	5818,9		4,102	*	
170	5961,7	0,2385	4,1929	3,8892	
171	6107,2		4,292	3,000	
172	6255,5		4,392	Party and	0,0995
173	6406,6		4,491		
174	6560,6		4,591	Series Committee	The state of
175	6717,4	0,2132	4,6904	4,3333	
176	6877,2		4,799		
177	7040,0		4,907		0,1085
178	7205,7		5,016	2000	
179	7374,5		5,124		
180	7546,9	0,1911	5,2328	4,8147	

In der nachstehenden Tabelle B, die Zeuners "Technischer Thermodynamik" entnommen ist, sind auch die Werte für die Wärmeaufnahme bei der Verdampfung des Wassers mit angeführt. War die Tabelle A nach den Temperaturen geordnet, so diese nach dem Druck in Atmosphären. Unter einem Atmosphärendruck ist der Dampfdruck von 10333 kg auf 1 qm verstanden.

Die Zahlen in den Kolumnen für die Flüssigkeitswärme und die Verdampfungswärme (latente Wärme) bedeuten Calorien. Eine Calorie ist gleich der Wärmemenge, welche zur Erwärmung von 1 kg Wasser von 0° um 1° C. nötig ist.

Flüssigkeitswärme: Die zur Erwärmung von 1 kg flüssigem Wasser von 0° bis zur Temperatur t° erforderliche Wärmemenge in Calorien.

Verdampfungswärme: Die zur Verwandlung von 1 kg flüssigem Wasser von t^o in trocken gesättigten Dampf von t^o unter dem Drucke p aufgenommene Wärmemenge in Calorien.

Die Summe der Flüssigkeitswärme und der Verdampfungswärme gibt die Gesamtwärme, die zur Verdampfung von flüssigem Wasser von 0° in trocken gesättigten Dampf von t° unter dem Drucke p erforderlich ist.

Zur Berechnung dieser drei Wärmewerte hat Regnault aus seinen experimentellen Bestimmungen die folgenden empirischen Formeln abgeleitet:

Flüssigkeitswärme = $t + 0,00002\,t^2 + 0,0000003\,t^3$ Verdampfungswärme = $606,50 - 0,695\,t - 0,00002\,t^2 + 0,0000003\,t^3$ Gesamtwärme = $606,50 + 0,305\,t$.

Dividiert man die Druckangabe p der Tabelle A durch 760, so erhält man den Druck in Atmosphären (10333 kg auf 1 qm oder 1,0333 kg auf 1 qcm); multipliziert man in der Tabelle B die Angabe des Atmosphärendruckes in der ersten Kolumne mit 10333, so erhält man den spezifischen Druck des Wasserdampfes, d. h. den Druck in Kilogramm auf 1 qm, der durch 10000 dividiert den Druck in Kilogramm auf 1 qcm gibt.

Tabelle B für gesättigten Wasserdampf.

	Marie Control of the				
Druck in Atmo- sphären.	Temperatur.	Spezifisches Volumen. 1 kg in cbm	Spezifisches Gewicht. 1 cbm in kg	Flüssigkeits- wärme in Cal.	Ver- dampfungs- wärme in Cal.
0,02	17,83	67,304	0,0149	17,84	594,10
0,04	29,35	34,770	0,0288	29,38	586,08
0,06	36,56	23,642	0,0423	36,60	581,05
0,08	41,92	17,988	0,0556	41,98	577,31
0,10	46,21	14,553	0,0687	46,28	574,31
0,12	49,83	12,242	0,0817	49,92	571,78
0,15	54,37	9,9073	0,1009	54,48	568,61
0,2	60,45	7,5438	0,1326	60,59	564,35
0,3	69,49	5,1403	0,1945	69,69	558,01
0,4	76,25	3,9167	0,2553	76,50	553,26
0,5	81,71	3,1718	0,3153	82,02	549,40
0,6	86,32	2,6713	0,3743	, 86,66	546,17
0,7	90,32	2,3098	0,4329	90,70	543,34
0,8	93,88	2,0367	0,4910	94,30	540,83
0,9	97,08	1,8228	0,5486	97,54	538,57
1,0	100,00	1,6505	0,6059	100,50	536,50
1,1	102,68	1,5088	0,6628	103,22	534,60
1,2	105,17	1,3902	0,7193	105,74	532,84
1,3	107,50	1,2893	0,7756	108,10	531,18
1,4	109,68	1,2025	0,8316	110,32	529,64
1,5	111,74	1,1269	0,8874	112,41	528,17
1,6	113,69	1,0606	0,9429	114,39	526,79
1,7	115,54	1,0018	0,9982	116,27	525,47
1,8	117,30	0,9494	1,0533	118,06	524,22
1,9	118,99	0,9023	1,1083	119,78	523,01
2,0	120,60	0,8599	1,1629	121,42	521,87
2,1	122,15	-0,8213	1,2176	122,60	520,76
2,2	123,64	0,7862	1,2719	124,51	519,70
2,3	125,07	0,7540	1,3263	125,97	518,68
2,4	126,46	0,7245	1,3803.	127,39	517,68
2,5	127,80	0,6972	1,4343	128,75	516,72
2,6	129,10	0,6720	1,4881	130,08	515,80
2,7	130,35	0,6486	1,5418	131,35	514,90
2,8	131,57	0,6268	1,5954	132,56	514,03
2,9	132,76	0,6065	1,6488	133,81	513,18

		1			
Druck	The same of the sa	Spezifisches	Spezifisches		Ver-
in Atmo-	Temperatur.	Volumen.	Gewicht,	Flüssigkeits-	
sphären.	- on portun.		dewicht.	wärme	dampfungs-
opinaren.		1 kg in cbm	1 cbm in kg		wärme
р	tº	V	γ	in Cal.	in Cal.
3,0	133,91	0,5875	1,7021	134,99	512,35
3,1	135,03	0,5696	1,7556	136,13	511,55
3,2	136,12	0,5529	1,8086	137,25	510,77
3,3	137,19	0,5372	1,8615	138,34	510,00
3,4	138,23	0,5223	1,9147	139,40	509,26
3,5	139,24	0,5082	1,9676	140,44	508,53
3,6	140,23	0,4950	2,0203	141,45	507,82
3,7	141,21	0,4824	2,0729	142,45	507,12
3,8	142,15	0,4705	2,1255	143,42	506,44
3,9	143,08	0,4591	2,1780	144,37	505,77
4,0	144,00	0,4484	2,2303	145,31	505,11
4,1	144,89	0,4381	2,2826	146,22	504,47
4,2	145,76	0,4283	2,3349	147,11	503,84
4,3	146,61	0,4180	2,3871	147,99	503,23
4,4	147,46	0,4100	2,4391	148,86	502,62
4,5	148,29	0,4014	2,4911	149,71	502,02
4,6	149,10	0,3932	2,5430	150,54	501,44
4,7	149,90	0,3854	2,5949	151,36	501,80
4,8	150,69	0,3778	2,6467	152,17	500,29
4,9	151,46	0,3706	2,6984	152,96	499,73
5,0	152,22	0,3636	2,7500	153,74	499,19
5,1	152,97	0,3569	2,8016	154,51	498,64
5,2	153,70	0,3505	2,8531	155,26	498,12
5,3	154,43	0,3443	2,9046	156,01	497,59
5,4	155,14	0,3383	2,9560	156,74	497,08
5,5	155,85	0,3325	3,0073	157,47	496,56
5,6	156,54	0,3269	3,0586	158,18	496,06
5,7	157,22	0,3215	3,1098	158,88	495,57
5,8	157,90	0,3163	3,1610	159,58	495,08
5,9	158,56	0,3113	3,2122	160,26	494,60
6,0	159,22	0,3064	3,2632	160,94	494,12
6,1	159,87	0,3017	3,3142	161,61	493,65
6,2	160,50	0,2972	3,3652	162,26	493,20
6,3	161,14	0,2927	3,4161	162,92	492,73
6,4	161,76	0,2884	3,4670	163,55	492,28
6,5	162,37	0,2843	3,5178	164,18	491,84
6,6	162,98	0,2802	3,5685	164,81	491,40

Druck in Atmo- sphären.	Temperatur.	Spezifisches Volumen. 1 kg in cbm	Spezifisches Gewicht. 1 cbm in kg	Flüssigkeits- wärme in Cal.	Ver- dampfungs- wärme in Cal.
-					
6,7 6,8 6,9	163,58 164,18 164,76	0,2763 0,2725 0,2688	3,6192 3,6699 3,7206	165,43 166,05 166,65	490,96 490,53 490,11
7,0	165,34	0,2652	3,7711	167,24	489,89
7,25	166,77	0,2566	3,8974	168,72	488,65
7,50	168,15	0,2485	4,0234	170,14	487,64
7,75	169,50	0,2410	4,1490	171,54	486,66
1,15	109,00	0,2410	4,1470	,0.	100,00
8,0	170,81	0,2339	4,2745	172,89	485,71
8,25	172,10	0,2273	4,3997	174,22	484,77
8,50	173,35	0,2210	4,5248	175,51	483,86
8,75	174,57	0,2151	4,6495	176,78	482,97
0,70	114,01	0,2101	1,0150	,.	100,77
9,0	175,77	0,2095	4,7741	178,02	482,09
9,25	176,94	0,2041	4,8985	179,23	481,24
9,50	178,08	0,1991	5,0226	180,41	480,41
9,75	179,21	0,1943	5,1466	181,58	479,58
-,		,,,,,			
10,0	180,31	0,1897	5,2704	182,72	478,78
10,25	181,38	0,1854	5,3941	183,83	477,99
10,50	182,44	0,1812	5,5174	184,93	477,22
10,75	183,48	0,1773	5,6405	186,01	476,46
	The second second				
11,0	184,50	0,1735	5,7636	187,07	475,71
11,25	185,51	0,1699	5,8864	188,13	474,97
11,50	186,49	0,1664	6,0092	189,13	474,25
11,75	187,46	0,1631	6,1318	190,14	473,54
12,0	188,41	0,1599	6,2543	191,13	472,84
12,25	189,35	0,1568	6,3765	192,10	472,15
12,50	190,27	0,1539	6,4986	193,06	471,48
12,75	191,18	0,1510	6,6206	194,01	470,80
					-
13,0	192,08	0,1483	6,7424	194,94	470,14
13,25	192,96	0,1457	6,8642	195,86	469,49
13,50	193,83	0,1431	6,9857	196,77	468,85
13,75	194,69	0,1407	7,1072	197,62	468,22
14,0	195,53	0,1373	7,2283	198,54	467,60

Tabelle über die Zusammensetzung des Dampfgemisches bei der Destillation von Wasser mit einem anderen chemischen Körper. In den nachstehenden zwei Tabellen ist für die drei Dampfdrucke

76 mm oder 0,1 Atm.

760 ,, ,, 1 ,, 3040 ,, ,, 4 ,,

die Destillationstemperatur und die Zusammensetzung des Dampfes berechnet, der bei der Destillation eines reinen chemischen Körpers mit Wasser oder mit gesättigtem Wasserdampf entwickelt wird. Die Körper sind nach ihrem Siedepunkt unter Atmosphärendruck geordnet, d. h. nach der Temperatur, bei welcher sie unter einem Drucke von 760 mm, wenn für sich allein erhitzt, sieden würden. Berücksichtigt wurden fast alle Körper, von denen exakte Dampfdruckbestimmungen von sorgfältig gereinigter Substanz in solchem Umfange vorliegen, daß aus ihnen durch Interpolierung der gewünschte Dampfdruck genau berechnet werden kann.

Die gegenseitige Unlöslichkeit oder wenigstens Schwerlöslichkeit ist im allgemeinen die notwendige Voraussetzung für die Anwendbarkeit des Daltonschen Gesetzes der Partialdrucke. Nur wenn diese Bedingung erfüllt ist, können zur Berechnung der Zusammensetzung des Dampfgemisches aus seinen Partialdrucken die Maximaldrucke, d. h. die für gesättigten Dampf, benutzt werden. In der Tabelle sind aber auch in Wasser leicht lösliche, selbst solche Flüssigkeiten aufgenommen, die sich mit Wasser in allen Verhältnissen mischen, z. B. die niederen Alkohole und Fettsäuren. Das geschah, um etwaige Gesetzmäßigkeiten in der Destillation mit Wasser oder Wasserdampf ohne Rücksicht auf Lösungseffekte erkennen zu lassen. Für die Praxis sind die Werte der in Wasser löslichen Körper nur mit Vorbehalt verwendbar.

Von hochsiedenden Körpern sind nur wenige Bestimmungsreihen von Dampfdrucken vorhanden. Deshalb ist die Berechnung der Wasserdestillation von Quecksilber aufgenommen, weil sie einen guten Anhalt über die Zusammensetzung des Dampfgemisches ähnlich hochsiedender Körper mit Wasser gibt. Gleich diesem werden übrigens auch viele von den anderen Körpern kaum praktisches Interesse haben. Sie sind aber zum Vergleich wertvoll und zur Erkennung von Gesetzmäßigkeiten brauchbar.

Zur Erklärung der Rubriken in der Tabelle und zugleich der Art, wie die Daten erhalten wurden, sei an einem Beispiel der Gang der Berechnung wiedergegeben. Wir wählen die Destillation von Äthyläther mit Wasser unter Atmosphärendruck.

Der Dampfdruck des Äthyläthers beträgt nach Batelli

bei
$$40^{\circ} = 922,96$$
 mm $30^{\circ} = 648,20$, Temp.-Diff. von $10^{\circ} = 274,76$ mm $10^{\circ} = 27,476$, $10^{\circ} = 27,476$,

Für Wasser lauten die analogen Werte:

$$\begin{array}{c} 40^{\circ} = 54,87 \text{ mm} \\ 30^{\circ} = 31,51 \text{ ,} \end{array}$$
 Temp.-Diff. von $\begin{array}{c} 10^{\circ} = 23,36 \text{ mm} \\ 1^{\circ} = 2,336 \text{ ,} \end{array}$

Wird hiernach Wasser mit Äthyläther destilliert, so entwickelt das Gemisch, Unlöslichkeit der Komponenten vorausgesetzt,

bei
$$40^{\circ}$$
 922,96 $+$ 54,87 $=$ 977,83 mm , 30° 648,20 $+$ 31,51 $=$ 679,71 ,,

Der gemeinsame Dampfdruck soll aber 760 mm sein, d. h. um 760-679,71 = 80,29 mm höher als 679,71 mm. Da nun 1º Temperaturdifferenz zwischen den Destillationstemperaturen 40° und 30° einem Totaldruck von 27,476 + 2,336 = 29,812 mm entspricht, so sind die 80,29 mm Druck gleich 2,7° Temperaturdifferenz. Die wahre Destillationstemperatur von Wasser mit Äthyläther unter einem Drucke von 760 mm wird also zwischen 32° und 33° liegen. Nun ist der Dampfdruck des Äthyläthers

bei
$$33^\circ = 648,20 + 3 \cdot 27,476 = 730,628$$
 mm , $32^\circ = 648,20 + 2 \cdot 27,476 = 703,152$,

und der des Wassers nach der Wasserdampftabelle:

bei
$$33^{\circ} = 37,37 \text{ mm}$$

" $32^{\circ} = 35,32$ "

Die weitere Rechnung ist ebenso wie oben angegeben,

$$33^{\circ} = 730,628 + 37,37 = 767,998 \text{ mm}$$

 $32^{\circ} = 703,152 + 35,32 = 738,472$.
Temp.-Diff. für $1^{\circ} = 29,526 \text{ mm}$;

von den 738,472 mm fehlen noch 760-738,472 = 21,528 mm für den Druck von 760 mm, die einer Temperaturdifferenz von 0,73° entsprechen, denn

$$21,528:29,526=0,73.$$

Hiernach destilliert ein Gemisch von Wasser mit Äthyläther unter einem Drucke von 760 mm bei 32,73°; das Wasser entwickelt bei dieser Temperatur nach der Wasserdampftabelle einen Druck von 35,32 + 0,73 · 2,05 = 36,82 mm und der Äthyläther einen Druck von 703,152 + 0,73 · 27,476 = 723,21 mm. Diese beiden Daten 36,8 und 723,2 sind in der Mischdampftabelle angegeben. In allen Horizontalreihen der Tabelle sind stets die oberen Zahlen diejenigen für Wasser, die unteren die für den anderen Körper, der mit Wasser destilliert wird. Die Destillationstemperatur 32,73° ist für beide Komponenten gemeinsam.

Genau genommen ist die Berechnung des Dampfdruckes des Äthyläthers aus den 10° auseinanderliegenden gegebenen Drucken durch einfache arithmetische Interpolierung nicht richtig, denn der Druck wächst mit der Temperatursteigerung nicht um gleiche Intervalle, sondern er nimmt progressiv zu. Mit der von Batelli aus seinen Beobachtungen für Äther konstruierten Interpolierungsformel

würde sich auch der gewünschte Einzeldruck exakt berechnen lassen¹). Für unseren Zweck ist jedoch diese Fehlergröße bedeutungslos. Das hier Gesagte gilt auch für die Interpolierungsberechnung des spezifischen Dampfgewichtes aus den beobachteten Werten, falls solche vorhanden sind.

1 cbm gesättigter Wasserdampf von 32,73° wiegt nach den in der Wasserdampftabelle für 32 und 33° angeführten Zahlen 0,0356 kg, während das Gewicht von 1 cbm Äthylätherdampf nach der S. 321 mitgeteilten allgemein gültigen Formel

$$\frac{p}{T}$$
 Mol. 0,01605

sich zu 2,810 kg berechnet, denn

$$\frac{723,2 \cdot 0,01605}{273 + 32,73} \cdot 74 = 2,810.$$

¹⁾ Sehr oft läßt sich die fortlaufende Reihe von Beobachtungen nicht in eine mathematische Formel zwängen. In diesem Falle oder wenn die Benutzung der zuweilen komplizierten mathematischen Formel unbequem ist, lassen sich Zwischenglieder zwischen den Beobachtungswerten leicht und in genauer Weise durch die graphische Methode feststellen. Hierzu werden die Beobachtungsdaten für die Dampfdrucke resp. für die Dampfdichten auf die eine Achse des Koordinatensystems aufgetragen und die zugehörigen Temperaturen auf die andere Achse. Werden nun in diesen Punkten Senkrechte zu den Achsen errichtet, und werden die erhaltenen Schnittpunkte der korrespondierenden Senkrechten geschickt durch eine vollkommen gleichmäßig verlaufende Kurve verbunden, die sogar den einen oder anderen etwas abliegenden Beobachtungswert korrigieren kann, so kann man aus dieser Kurve für jeden Druck oder für jede Temperatur den entsprechenden andern Wert ablesen. Was jedoch das Extrapolieren betrifft, d. h. die mathematische oder graphische Ermittelung eines über die erste oder die letzte Zahl einer Beobachtungsreihe hinausliegenden Wertes, so ist das nur dann gestattet, wenn der zu ermittelnde Wert sehr nahe an dem nächsten beobachteten liegt.

Bei der Destillation eines Gemenges von Äthyläther und Wasser unter einem äußeren Drucke von 760 mm erheben sich hiernach aus dem siedenden Gemenge zu gleicher Zeit 0,0356 kg Wasserdampf und 2,810 kg Ätherdampf. Das Destillat enthält also 98,7 Gew. Proz. Äthyläther. Rechnen wir die Gewichtsprozente in Molekularprozente um, - diese Umrechnung ist nötig, wenn irgendwelche in der chemischen Natur der Stoffe liegenden Gesetzmäßigkeiten gefunden werden sollen - und nehmen wir als Molekulargewicht des Wasserdampfes 18 und des Ätherdampfes 74 an, so finden wir, daß in 100 Molekülen des Dampfgemisches 5,2 Moleküle Wasser und 94,8 Moleküle Äthyläther enthalten sind:

$$\left(\frac{98,7}{74}100\right): \left(\frac{98,7}{74} + \frac{1,3}{18}\right) = 94,8 \text{ Mol. Proz. Äthyläther.}$$

Die Unlöslichkeit der beiden Komponenten vorausgesetzt, müßte die in Gew.-Proz. oder in Mol.-Proz. in dieser Weise berechnete Dampfzusammensetzung mit der experimentell gefundenen übereinstimmen, wenn die nach den Gasgesetzen berechnete Dampfdichte auch die wahre Dampfdichte ist.

Durch Untersuchungen von Batelli und ebenso von Ramsay und Young ist die Dampfdichte des Äthyläthers festgestellt. Wählen wir die Zahlen von Ramsay und Young, nach denen bei 40° 1 ccm gesättigter Dampf 0,003731 g wiegt und bei 30° 0,0026799 g, so ergibt sich als Gewicht von 1 cbm Ätherdampf von 32,73° 2,963 kg. Aus diesem und dem spezifischen Dampfgewicht des Wassers, 0,0356, folgt, daß das Destillat 98,8 Gew.% Äthyläther enthält. Der Unterschied mit dem Rechnungswert ist also gering; wie die Tabelle zeigt, ist er bei Atmosphärendruckdestillation auch bei anderen Körpern nicht groß, erst bei höheren Drucken bleibt die berechnete Dampfdichte hinter der wahren erheblicher zurück.

Sollen nun auch hier die Gewichtsprozente in Molekularprozente umgerechnet werden, so darf hierzu offenbar nicht das Gasmolekulargewicht 74, sondern muß das Molekulargewicht zugrunde gelegt werden, das aus den experimentell beobachteten Dampfdichten folgt.

Die Gleichung zur Berechnung des spezifischen Dampfgewichtes für Athyläther lautete:

 $\frac{723,2 \cdot 0,01605}{305,73} \cdot 74 = 2,810.$

Wird hierin für 2,810 das experimentell festgestellte spezifische Dampfgewicht 2,963 und für das angenommene Molekulargewicht 74 das zu berechnende x eingesetzt, so ergibt sich 78 statt 74 für x und danach als Äthergehalt im Dampfgemisch 94,2 Mol. Proz. Nach der Tabelle stimmen diese so aus den beobachteten Dampfgewichten berechneten Molekularprozentzahlen mit den nach den Gasgesetzen berechneten meist überein, während die beiden Werte, welche den Gehalt in Gewichtsprozenten angeben, bei den Destillationen unter 4 Atm. Druck mehr von einander abweichen.

In gleicher Weise wie diese Verdampfungswerte des Äthyläthers sind alle übrigen Zahlen in der Tabelle berechnet.

Mischdampf-Tabelle A.

-		-						-		1000		199
o Korr. Siedetemperatur bei O 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- Drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A. mm	o Destillations-Temperatur.	Spezifisches Gewicht der E Dampfkomponenten; das des E Wassers beobachtet, das des Körpers A berechnet.	Gehalt des Dampfgemisches an dem Körper A.	G Chem. Molekulargewicht,	Separat des Dampfgemisches an dem Körper A.	g Beobachtete spez. Gewichte	Gehalt des Dampfgemisches an dem Körper A.	Aus den spez. Dampfgewichten berechnete Molekulargewichte.	o W Gehalt des Dampsgemisches an dem Körper A.
31,8	Ameisens. Methyl ¹)	HCO ₂ CH ₃	1,1 74,0	-18,2		99,5		98,3				
			32,7 727,6	30,65	0,0313 2,3076	98,7	18 60	95,8				
			248,1 2791,6	71,42	0,2119 7,806	97,4	18 60	91,8	0,2119 8,330	97,5	18 64,0	91,65
34,61	Äthyläther	(C ₂ H ₅) ₂ 0	1,1 75,0°2)	-17,23	0,0012 0,3483	99,6	18 74	98,4				
			36,8 723,2°)	32,7	0,0356 2,810	98,7	18 74	94,8	0,0356 2,963 ⁸)	98,8	18 78	94,22
			304,3 2735,5°)	76,25	0,2567 9,3018	97,3	18 74	89,8	0,2567 10,5638®)	97,6	18 84	89,77
36,3	n-Pentan4)	C5 H12	1,1 75,0	-18,2	0,0012 0,3402	99,6	18 72	98,4				
			40,9 719,0	34,6	0,0386 2,7057	98,6		94,6		98,8	18 81,4	94,88
			345,7 2695	79,35	0,2890 8,8344	96,8	18 72	88,3	0,2890 10,003	97,2	18 81,5	88,55
46,0	Schwefel- kohlen-	CS ₂	1,784 74,09	-11,5	0,00201 0,34612	99,4	18 76,12	97,6	0,00201 0,3535	99,4	18 77,7	97,66
	stoff ⁵)		65,24 694,85	43,27	0,06028 2,68399	97,8	18 76,12	91,3	0,0603 2,9877	98,0	18 84,7	91,33
			489,3 2550,4	88,13	0,4025 8,6244	95,3	18 76,12	82,7	0,4025 9,2866	95,8	18 82	83,44
54,3	Ameisens. Äthyl 1)	HCO2 C2 H5	4,60 72,45	00	0,00475	98,5	18 74	94,1				
	Aulyi /		95,3 664,8	50,7	0,0860 2,4390	96,6	18 74	87,3				
		-	584,0 2457	92,8	0,4745 7,9772	94,4	18 74	80,4	0,4745 8,601	94,7	18 79,8	80,
57,1	Essigs. Methyl ¹)	CH3 CO2 CH3	5,30 70,6	2,05	0,0057 0,3048	98,2	18 74	93,0				
	, ictily!		108,3 652,0	53,3	0,0972 2,3732	96,1	18 74	85,7	The same of the sa		40	
			623,0 2417	94,5	0,5027 7,8144	94,0	18 74	79,1	0,5027 8,437	94,4	18 79,9	79,3

										-			
Dampigewishten berechnete /	. Korr. Siedetemperatur bei .760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A. mm	o Destillations-Temperatur.	Spezifische Gewichte der a. Damplkomponenten; das des A gewassers beobachtet, das des Körpers A berechnet.	Gehalt des Dampsgemisches an dem Körper A.	Chem. Molekulargewicht.	Sebalt des Dampfgemisches an dem Körper A.	g Beobachtete spez. Gewichte ii der Dampfkomponenten.	Gehalt des Dampfgemisches	Aus den spez.	Se Gehalt des Dampfgemisches an dem Körper A.
S. Marine	58,08	Diiso- propyl ⁷)	Co H14	4,21 71,9	-1,3	0,00436 0,3657	98,4	18 86	94,7				
				108,8 651,1	53,4	0,0977 2,7537	96,5	18 86	85,2	0,0977 2,8900	96,7	18 90,6	85,3
8	8			716,4 2323	98,35	0,5743 8,6344	93,8	18 86	75,9	0,5743 9,546	94,3	18 95,1	75,8
4,0.91	64,7	Methyl- alkohol *)	CH ₃ OH	10,8 65,2	12,5	0,0109 0,1173	91,5	18 32	85,8				
8		1	A	145,5 614,5	59,5	0,128 0,949	88,1	18 32	80,6	0,128 0,990	88,5	18 33,3	80,6
8 34				677 2363	96,8	0,539 3,283	85,9	18 32	77,4	0,539 3,639	87,1	18 35,5	77,4
4 35	69,0	n-Hexan 10)	Co H14	7,83 68,1	7,7	0,00804 0,33487	97,7	18 86	89,5				
8				160,0 600,4	61,55	0,1417 2,4768	94,6	18 86	78,6	0,1417 2,6239	94,9	18 91,1	78,6
1,4 94 8 1,5 883				920,1 2119,4	105,43	0,7255 7,7305	91,4	18 86	68,9	0,7255 8,6026	92,2	18 95,7	69,0
8	77,15	Essigs. Äthyl ¹)	CH ₃ CO ₂ C ₂ H ₅	14,4 61,5	17,0	0,01436 0,2996	95,4	18 88	80,9				
8 213				209,2 551,8	67,5	0,1808 2,288	92,6	18 88	71,9				
8 -0				1061 1976	109,6	0,8293 7,2952	89,8	18 88	64,3	0,8293 7,9269	90,5	18 95,6	64,2
5 94	78,3	Äthyl- alkohol	C ₂ H ₅ OH	21,8 54,2 ¹⁴)	23,75	0,0213 0,1348	86,4	18 46	70,2				
				225,4 534,6 ¹²)	69,2	0,1935 1,1546	85,6	18 46		0,1935 1,2569 ¹⁸)	86,6	18 50	70,0
18 81				942 2098 ¹²)	106,1	0,7422 4,0848	84,6	18 46		0,7422 4,6730 ¹⁸)	86,3	18 52,6	68,3
19/5 04/9	79,7	Propions. Methyl ¹)	C2 H5 CO2 CH3	15,5 60,6	18,2	0,0154 0,2942	95,0	18 88	79,6				
				225,4 534,6	69,2	0,1934 3,1170	94,2	18 88	76,7				
18 7				1117,6 1921,8	111,2		89,0	18 88	62,3	0,8710 7,6668	89,8	18 95,5	62,4
Stan	1	v. Rechen	berg, Gewinn	ung und Tr	ennung d	ler äther. C	Die.			22			

Siedetemperatur bei 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A. mm	် Destillations-Temperatur.	Spezifische Gewichte der Dampfkomponenten; das des es es es es beobachtet, das des Körpers A berechnet.	Gehalt des Dampfgemisches an dem Körper A.	Chem. Molekulargewicht.	Gehalt des Dampfgemisches an dem Körper A.	Beobachtete spez. Gewichte	Gehalt des Dampfgemisches an dem Körper A.	Aus den spez. Dampfgewichten berechnete Molekulargewichte.	o W Gehalt des Dampfgemisches	
80,2	Benzol 15)	Се Не	13,5 62,5	16,0	0,01348 0,27074	95,3		82,3					ı
			225 535	69,2	0,1935 1,9570	91,0	18 78	70,0					I
			1173 1867	112,6	0,9129 6,0614	86,9	18 78	60,4	0,9129 6,4437	87,6	18 82,9	60,5	15
80,85	Hexa- methylen 16)	C6 H12	13,3 62,8	15,8	0,01330 0,29316	95,7	18 84	82,6					П
			228,4 532,7	69,5	0,1957 2,058	91,3	18 84	69,0					ı
			1200 1840	113,3	0,9328 6,4218	87,3	18 84	59,6	0,9328 6,843	88,0	18 89,5	59,6	1
80,9	Ameisens. Propyl 1)	HCO ₂ C ₃ H ₇	16,03 59,9	18,7	0,0159 0,2900	94,8	18 88	78,8					I
			244,6 526	70,1	0,2003 2,1648	91,5	18 88	68,8					
			1155,7 1883	112,15	0,9001 6,9054	88,5	18 88	61,1	0,9001 7,4370	89,2	18 94,8	61,,	
92,3	Isobutters. Methyl 1)	C ₃ H ₇ CO ₂ CH ₃	23,5 52,2	25,0	0,0227 0,2867	92,7	18 102	69,0					
			307,5 452,5	76,5	0,2593 2,1196	89,1	18 102	59,1					100
			1609 1431	118,7		84,5	18 102	49,0	1,0993 7,4059	87,1	18 126,3	49,1	
97,4	n-Propyl- alkohol 17)	C ₃ H ₇ OH	39 37	33,8	0,0371 0,1161	75,8	18 60	48,4					
			368 392	80,9	0,3069 1,0668	77,6	18 60	51,0	0,3069 1,0898		18 61,3	514	Total State
100			1431 1609	118,7	1,0993 3,9552	78,2	18 60	51,8	1,0993 4,2833	79,6	18 65	511.	
97,9	Ameisens. Isobutyl 18)	HCO ₂ C ₄ H ₉	29,0 47,0	28,5	0,02785 0,2552	90,2	18 102	61,9					120
		100	340,7 419,3	79,0	0,2854 1,9500	87,2	18 102	54,5					
			1544 1496	121,1	1,1808 6,2142	84,0	18	14,9					

							-						
A THE REST MENT TO SEE LEGISLIC TO	Korr. Siedetemperatur bei 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A. mm	ို့ Destillations-Temperatur.	Spezifische Gewichte der an Dampfkomponenten; das des a Wassers beobachtet, das des Körpers A berechnet.	Gehalt des Dampfgemisches an dem Körper A.	Chem. Molekulargewicht.	S Gehalt des Dampfgemisches an dem Körper A.	Beobachtete spez. Gewichte	Gehalt des Dampfgemisches	Aus den spez.	GEhalt des Dampfgemisches an dem Körper A.
STATE OF	98,43	n-Heptan 19)	C7 H16	26,17	26,8	0,02537	01.2	18	616				
				50,35 342,9	79,15	0,2696 0,2869 1,902	91,3	18	64,6 54,4	0,2869 1,9483	97.2	18	515
				417,3 1591,5	122,06	1,2155	82,9	18	46,6	1,2155		102,4 18 108,9	
	99,0	Propions.	C ₂ H ₅ CO ₂ C ₂ H ₅	1448,8 30,1	29,2	5,886 0,0289	1	18	61,2	0,4113	04,1	100,9	+0,0
		Äthyl¹)		45,9 354,9	80,0	0,2487	89,9 86,3	18					
				403,6 1578,6	121,8	1,8717 1,2061 6,0659	83,4	18	52,6 47,0	1,2061 6,521	911	18 109,6	47.0
The same of	100,75	Ameisen-	HCO ₂ H	27,75 48,5 ¹⁴)	27.0	0,02683	81,6	18 46	63,4	0,021	0+,+	109,0	47,0
		säure		374,8 385,2°0)	01 25	0,3124 0,8025	72,0	18	50,1				
Total Section	101,55	Essigs.	CH ₃ CO ₂ C ₃ H ₇	32,1 43,9	30,3	0,0306 0,2369	88,6	18	57,7				
		Propyl')		371,0 389,5	81,1	0,3093 1,8003		18 102	50,6				
				1636,4 1404,5	122,95	1 2176		18	45,1	1,2476	83.4	18 109,8	45.2
100	102,75	Butters. Methyl ¹)	C ₃ H ₇ CO ₂ CH ₃	32,6 43,3	30,6	0,03117 0,2335		18 102	56,9		00,1	10,0	10,2
		Mediyi /		378,6 382,0	81,6	0,3154 1,7636		18 102	49,6				
				1660 1375	123,4	1,2638 5,6783		18 102	44,2	1,2638	83,1	18 111,9	44.2
Total Section	107,92	Isobutyl- alkohol ²⁰)	C4 H 9 OH	49,7 26,3	38,1	0,04648 0,1004	68,4	18	34,5				
				441,8 318,2	85,5	0,3642 1,082	74,9	18	42,1				
The same of	109,2	Diisobutyl ²)	Cs H ₁₈	34,6 41,65	31,6	0,0330 0,2502		18 114	54,5				
The Real Property lies,				411,6 346,9	83,7	0,3410 1,7784		18	45,2	0,3410 1,827	84,2	18 117,1	45,0
-				1825,3 1214,4	126,5	1,3825 5,5632		18	38,8	1,3825		18 127,6	
										22*			

=													18
Norr. Siedetemperatur bei 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A.	o Destillations-Temperatur,	Spezifische Gewichte der an Damfkomponenten; das des an Wassers beobachtet, das des Körpers A berechnet.	Gehalt des Dampfgemisches an dem Körper A.	G Chem. Molekulargewicht.	Gehalt des Dampfgemisches an dem Körper A.	Beobachtete spez. Gewichte	Gehalt des Dampfgemisches	Aus den spez. Dampfgewichten berechnete Molekulargewichte.	G Gehalt des Dampfgemisches	F. Korr, Sledtetemperatur het
110,1	Isobutters. Äthyl 18)	C3 H7 CO2 C2 H5	36,8 39,2	32,7	0,03506 0,2387	87,2	18 116	51,4				1	130,1
			424,7 335,3	84,5	0,309 1,746	85,0	18 116	46,8					
			1826 1214	126,8	1,3825 5,660	80,3	18 116	38,7					
110,4	Toluol 14)	C ₆ H ₅ CH ₃	35,32 40,8	32,0	0,0338 0,1975	85,4	18 92	53,3				H	138,45
			421,6 338,5	84,45	0,3503 1,3984	80,0	18 92	43,9					140,3
116,3	Essigs. Isobutyl 18)	CH3 CO2 C4 H9	44,5 31,5	36,15	0,0419 0,1897	81,9	18 116	41,4					
			484,9 275,1	87,9	0,3983	78,1	18 116	36,5				H	
			1954,5 1085,5	128,75	1,4738 5,0304	77,2	18 116	34,4					141.0
117,6	n-Butyl- alkohol 14)	C4 H9 OH	56,7 19,0	40,6	0,0526 0,0727	58,0	18 74	25,1					in.
			513,7 247	89,4	0,4197 0,8088	65,8	18 74	31,9				ı	
118,7	Essig- säure ⁶)	CH3 CO2 H	46,7 29,3	37,0	0,04393 0,09102	67,4	18 60	38,3	0,04393 0,1784	80,2	18	399	
			487 273	88,0	0,3997 0,7284	64,6	18 60	35,4	0,3997 1,2620	75,9 1	18	355	153,3
			1981 1059	129,18	1,4913 2,5356	63,0	18 60	33,8	1,4913 4,1930	73,8	18 99,2	333,	
123,3	Ameisens. Amyl 18)	HCO ₂ C ₅ H ₁₁	45,5 30,5	36,55	0,0429 0,1834	81,0	18 116	39,8					
			508 252	89,1	0,4154 1,2957	75,7	18 116	32,3				ı	155,5
		100	2092 948	131,0	1,570 4,369	73,5 1	18	30,1				Ш	6
125,8	n-Octan 11)	Cs H ₁ s	48,7 27,4	37,8	0,0458 0,1607	77,8 1	18	35,6					
			511,5 248,0	89,3	0,4183 1,2517	74,9 1	18 14	32,0					Big B
			2136 902,4	131,7	1,6018 4,0801	71,8 1	18 14	28,9	1,6018 4,491		18,9 25,5 2	00	150

Norr, Siedetemperatur bei	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A. mm	O Destillations-Temperatur.	Spezifische Gewichte der sign Dampfkomponenten; das des sign Wassers beobachtet, das des Körpers A berechnet.	Gehalt des Dampfgemisches	G Chem. Molekulargewicht.	of Gehalt des Dampfgemisches an dem Körper A.
130,1	Isoamyl- alkohol ²¹)	C5 H11 OH	64,3 11,7	43,0	0,05951 0,05227	46,8	18 88	15,2
			581,9 176	92,7	0,4729 0,6797	59,0	18 88	22,7
			2210 831	132,9	1,6565 2,8864	63,5	18 88	26,3
138,45	p-Xylol ²²)	Co H4 (CH3)2	571 188	92,2	0,4646 0,8756	65,3	18 106	24,3
140,3	Propion- säure ²³)	C2 H5 CO2 H	65,4 10,9	43,3	0,06037 0,04092	40,4	18 74	14,2
			617,6 142,5	94,3	0,4995 0,4607	48,0	18 74	18,3
			2395 645	135,6	1,7820 1,8766	51,3	18 74	20,4
141,0	Propylen- bromid 14)	CH3 CHB1 CH2 B1	57,87 18,4	41,0	0,05337 0,20008	78,9	18 202	25,0
			586,2 173,1	92,9	0,4763 1,5338	76,4	18 202	22,4
			2392,2 647,4	135,55	1,7795 5,1369	74,3	18 202	20,5
153,3	Isobutter- säure ²¹)	C ₃ H ₇ CO ₂ H	68,5 7,1	44,2	0,06296 0,03161	33,4	18 88	9,32
			663,7 96,1	96,25	0,5346 0,3675	40,7	18 88	12,0
	Bernan		2582 459	138,2	1,9138 1,5752	45,2	18 88	14,4
155,5	Brom- benzol ¹⁴)	Ce H5 Br	64,31 11,8	43,0	0,05951 0,09409	61,3	18 157	15,3
			636,1 123,2	95,1	0,5129 0,8431	62,2	18 157	15,9
45.0			2559,7 481,3	137,9	1,8986 2,9516	60,9	18 157	15,1
156,9	Butters. Isobutyl 18)	C ₃ H ₇ CO ₂ C ₄ H ₉	654,8 105,2	95,9	0,5281 0,6591	55,5	18 144	13,5
			2593 447	138,35	1,9214 2,512	56,7	18 144	16,4

_		L. Philippine and Michigan						
Korr, Siedetemperatur bei 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A.	ိ Destillations-Temperatur.	Dampfkomponenten; das des	Gehalt des Dampfgemisches	Chem. Molekulargewicht.	Gehalt des Dampfgemisches an dem Körper A.
1600	Dutter.				in kg			
160,0	n-Butter- säure 24)	C ₃ H ₇ CO ₂ H	72,1 3,9	45,2	0,06599 0,01731	20,8	18 88	5,09
			694,4 66,0	97,5	0,5588 0,2516	31,0	18 88	8,4
			2695 343	139,7	1,9899 1,1739	37,1	18 88	10,8
160,2	Propions. Amyl 18)	C ₂ H ₅ CO ₂ C ₅ H ₁₁	67,0 9,0	43,8	0,0618 0,0657	51,5	18 144	11,7
			663,9 96,1	96,25	0,5346 0,6015	52,9	18 144	12,3
			2642 415,7	138,77	1,9427 2,3333	54,6	18 144	13,7
164,4	Trimethylen- bromid 14)	CH ₂ Br CH ₂ CH ₂ Br	669,7 90,1	96,5	0,5393 0,7906	59,4	18 202	11,6
	A CONTRACTOR OF THE PARTY OF TH		2665,1 375,1	139,31	1,9701 2,9492	60,0	18 202	11,8
178,3	Benz- aldehyd 14)	Ce H5 CHO	72,5 3,6	45,3	0,06634 0,01924	22,5	18 106	4,70
	THE PARTY		706,0 56,5	97,9	0,5658 0,2592	31,4	18 106	7,21
			2772 268	140,7	2,0446 1,1021	38,2	18 106	9,50
178,6	Butters. Amyl ¹⁸)	C ₃ H ₇ CO ₂ C ₅ H ₁₁	703,0 56,2	97,87	0,5652 0,3843	40,5	18 158	7,19
	**		2782 258	140,83	2,0519 1,581	43,5	18 158	8,08
181,4	Phenol 14)	C ₆ H ₅ OH	75,13 1,18	46,0	0,06882 0,00558	7,50	18 94	1,53
	The last		722,9 37,8		0,5790 0,1532	20,9	18 94	4,81
	*		2827,5 214	141,4	2,0840 0,7793	27,2	18 94	6,68
183,9	Anilin 14)	Co Ho NH2	74,75 1,56		0,06847 0,00730	9,64	18 93	2,02
			717,7 43,0		0,5753 0,1728	23,1	18 93	5,50

				0				
Korr. Siedetemperatur bei 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A.	ိ Destillations-Temperatur.	Spezifische Gewichte der Bampfkomponenten; das des Se Bampfkomponenten; das des Se Bassers beobachtet, das des Körpers A berechnet.	Gehalt des Dampfgemisches an dem Körper A.	G Chem. Molekulargewicht.	Gehalt des Dampfgemisches an dem Körper A.
			2819,5 219,0	141,3	2,0840 0,7886	27,4	18 93	6,87
184,4	n-Valerian- säure 14)	C4 H9 CO2 H	733,3 27,5	99,0	0,5867 0,1210	17,1	18 102	3,54
			2867,3 175	141,9	2,1122 0,6905	24,6	18 102	5,45
184,8	Dimethyl-o- Toluidin 14)	C ₆ H ₄ (CH ₃) N(CH ₃) ₂	73,25 2,78	45,5	0,06705 0,01890	22,0	18 135	3,66
			715,1 45,6	98,3	0,5734 0,26595	31,7	18 135	5,82
			2819,4 220,8	141,3	2,0784 1,2884	38,3	18 135	7,64
188,2	Jodbenzol ²⁵)	C ₆ H ₅ J	72,1 3,8	45,2	0,0660 0,0391	37,2	18 203,85	4,97
			712,5 47,4	98,2	0,5715 0,4179	42,2	18 203,85	6,06
			2827,5 214	141,4	2,0830 1,6899	44,8	18 203,85	6,68
190,1	o-Kresol 14)	C ₆ H ₄ (CH ₃) OH	74,38 1,64	45,8	0,06811 0,00892	11,7	18 108	2,16
			729,14 30,0	98,84	0,5836 0,1393	19,3	18 108	3,83
			2871,0 171,3	141,95	2,1153 0,7155	25,3	18 108	5,34
190,6	Benzonitril 14)	C ₆ H ₅ CN	74,0 2,08	45,7	0,06729 0,01078		18 103	2,72
			720,4 40,0	98,5	0,5772 0,1780	23,6	18 103	5,12
			2839,4 201,0	141,55	2,0925 0,8013	27,7	18 103	6,25
193,1	Dimethyl- anilin 14)	Co Ho N (CH ₃) ₂	75,13 1,69	46,0	0,06882 0,01284		18 151	2,17
			725,5 33,4	98,7	0,5809 0,2177	27,3	18 151	4,28
			Marie Control	1	1	12		

_			La contraction of					
Korr. Siedetemperatur bei 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A.	ns-Tempe	Spezifische Gewichte der a. Dampfkomponenten; das des se a. Wassers beobachtet, das des Körpers A berechnet.	Gehalt des Dampfgemisches an dem Körper A.	O Chem. Molekulargewicht.	Gehalt des Dampfgemisches an dem Körper A.
			1		1 m ng	1		
193,8	Methyl-	C II NHOII	2863,6 176,7	141,8	1,0522	32,5	18 151	5,44
170,0	anilin 14)	C ₆ H ₅ NH CH ₃	733,3 27,25	99,0	0,5867 0,1258	17,7	18 107	3,48
107 =	D	0 11 00 01	2883,5 157,1	142,1	2,1234 0,6499	23,4	18 107	4,90
197,5	Benzoes. Methyl ¹⁴)	Co Ho CO2 CH3	75,13 1,39	46,0	0,06882 0,00952		18 136	1,80
			732,0 28,06	98,95	0,5858 0,16456	21,9	18 136	3,58
			1891,6 148,5	142,2	2,1459 0,7806	26,7	18 136	4,60
199,7	o-Toluidin 14)	Co H4 (CH3) NH2	75,13 0,89	46,0	0,06882 0,00479	6,51	18 107	1,16
			736,0 24,4	99,1	0,5886 0,1126	16,1	18 107	3,12
			2899,8 139,1	142,3	2,1347 0,5757	21,2	18 107	4,34
200,4	p-Toluidin 14)	C ₆ H ₄ (CH ₃) NH ₂	736,0 23,6	99,1	0,5886 0,1089	15,6	18 107	3,01
			2903,8 136,3	142,35	2,1375 0,5639	20,9	18 107	4,25
200,5	Isocapron- säure 14)	(CH ₃) ₂ CH CH ₂ CH ₂ CO ₂ H	746,7 12,7	99,5	0,5961 0,0635	9,61	18 116	1,62
			2932,6 107,0	142,7	2,1572 0,4791	18,2	18 116	3,33
200,5	m-Kresol 14)	Co H4 (CH3) OH	741,3 18,0	99,3	0,5924 0,0838	12,4	18 108	2,30
			2010.3	142,54	2,1482 0,5033	19,0	18 108	3,76
201,1	p-Kresol 14)	C ₆ H ₄ (CH ₃) OH	742,6 17,6		0,5933	12,1	18 108	2,25
			2021.0	14256	2,1493	18,7	18 108	3,70
		HE IN STREET	15 33					

orpers A. Irper A, Iestilliert Iestilliert appropriate comperatur. comperatur. comperatur. comperatur. pfgemisches recchnet. pfgemisches recchnet.	misches A.
Chemischer Körper A, der mit Wasser destilliert wird. Chemischer Körper A, der mit Wasser destilliert wird. Wird. Laugh Bandra Gewichte der Körpers A berechnet. Chem Molekularansiches an dem Körper A. Chem Molekularansiches	0
201,5 Aceto-phenon 14) C ₆ H ₅ CO CH ₃ 74,7 1,32 45,9 0,06847 0,00797 10,4 120	
734,6 25,8 99,05 0,5876 18,5 120	
2901,4 138,3 142,32 2,1358 0,6414 23,1 12	
203,3 m-Toluidin 14) C ₆ H ₄ (CH ₃) NH ₂ 739,2 99,22 0,5908 14,0 10	
2916,1 124 142,5 2,1459 110	
204,0 Äthylanilin ¹⁴) C ₆ H ₅ NHC ₂ H ₅ 757,3 99,9 0,6038 12	
2916,1 124,6 142,5 2,1459 21,34 12	
205,0 Benzyl- C ₆ H ₅ CH ₂ OH 744,0 99,4 0,5943 10,2 10	
2932,4 106,5 142,7 2,1572 17,1 10	
205,7 n-Capron- säure 14) C5 H11 CO2 H 749,3 99,6 0,5960 0,0513 7,93 110	
206,0 Campher C ₁₀ H ₁₆ O 75,13 46,0 0,06882 0,00749 9,82 15	
735,4 24,57 ²⁷) 99,08 0,5882 0,1611 21,5 15	
2924 117 ²⁷) 142,6 2,1516 0,6869 24,2 15	
208,3 Nitro- benzol ¹⁴) C ₈ H ₅ NO ₂ 740,0 99,25 0,5914 12	
2928,3 110,5 142,65 2,1544 19,6 12	
208,8 o-Chlor- anilin 14) Cs H4 Cl NH2 740,0 99,25 0,5914 18 20,05 99,25 0,1136 16,1 127	,45 2,64
2926,7 113,4 142,63 2,1533 20,6 127	,45 3,53
209,5 Dimethyl-p- C ₆ H ₄ (CH ₃) N(CH ₃) ₂ 741,3 99,3 0,5924 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8

_			A Company of the last	14				
Korr. Siedetemperatur bei 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A.	ns-Tempe	Spezifische Gewichte der	Gehalt des Dampfgemisches an dem Körper A.	Chem. Molekulargewicht.	Gehalt des Dampfgemisches an dem Körper A.
					in kg			
215,5	Diäthut	0 H W(0 H)	2921 109,0	142,56	0,0084	20,9	18 135	3,41
210,0	Diäthyl- anilin 14)	Co H5 N(C2 H5)2	746,7 14,2	99,5	0,5962 0,0916	13,3	18 149	1,81
218,1	Nanhthalin 260	0 11	2953,5 86,7	142,96	0,4904	18,7	18 149	2,70
210,1	Naphthalin 26)	C ₁₀ Hs	75,4 0,565	46,08	0,06910		18 128	0,735
			741,8 18,1	99,33	0 =000		18 128	2,31
220,4	o-Nitro- toluol 14)	C ₆ H ₄ (CH ₃) NO ₂	748,0 12,5	99,55	0,5854 0,0738	11,2	18 137	1,63
			2962,7 77,3	143,07	2,1780 0,4096	15,8	18 137	2,72
221,0	n-Heptyl- säure 14)	C6 H13 CO2 H	757,7 4,27	99,9	0,6038 0,0239	3,71	18 130	0,51
			2998,6 50,4	143,5	2,2022 0,2522	10,3	18 130	1,56
228,5	m-Chlor- anilin 14)	Ce H4 Cl NH2	751,4 8,85	99,68	0,5996 0,04857	7,49	18 127,45	1,13
			2979,4 60,06	143,27	2,1893 0,2952	13,5	18 127,45	2,16
237,5	n-Capryl- säure 14)	C7 H15 CO2 H	757,33 1,58	99,9	0,6038 0,00966	1,57	18 142	0,202
			3011,1 29,08	143,65	2,2107 0,1590	6,71	18 142	0,903
237,7	p-Nitro- toluol 14)	C ₆ H ₄ (CH ₃) NO ₂	752,0 7,38	99,7	0,5999 0,0439	6,82	18 137	0,955
			2990,22 48,63	143,4	2,1966 0,2569	10,5	18 137	1,51
237,8	Chinolin 28)	C9 H7 N	752,0 8,4	99,7	0,59993 0,04710	7,28	18 129	1,08
			2990 52,2	143,4	2,1966 0,2595	10,6	18 129	1,62

Charles and the same of	Maria Contract of the							
Norr. Siedetemperatur bei O 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser destilliert wird.	Chemische Formel.	Partial- drucke der Dampf- kompo- nenten. Obere Zeile Wasser, untere Körper A.	Destillations-Temperatur.	Spezifische Gewichte der n. Dampfkomponenten; das des massers beobachtet; das des Körpers A berechnet.	Gehalt des Dampfgemisches	Chem. Molekulargewicht.	Gehalt des Dampfgemisches
249,0	Benzoe- säure 14)	C ₆ H ₅ CO ₂ H	3021,9 17,6	143,78	2,1785 0,0827	3,65	18 122	0,56
253,4	n-Pelargon- säure 14)	Cs H ₁₇ CO ₂ H	759,73 0,28	99,99	0,6055 0,00188	0,31	18 156	0,036
			3023,6 15,06	143,8	2,2191 0,0904	3,91	18 156	0,468
259,3	Chlor- naphthalin 14)	C10 H7 Cl	756,0 3,87	99,85	0,6029 0,0271	4,30	18 162,45	0,496
			3011,1 28,38	143,65	2,2107 0,1776	7,43	18 162,45	0,882
268,4	n-Caprin- säure 14)	C ₉ H ₁₉ CO ₂ H	3034,4 5,97	143,93	2,2266 0,0396	1,74	18 172	0,185
281,1	«-Brom- naphthalin 14)	C10 H7 BY	757,33 2,27	99,9	0,60371 0,02022	3,24	18 207	0,290
			2023,6 14,94	143,8	2,2191 0,1190	5,09	18 207	0,545
290	Glycerin 20)	C ₃ H ₅ (OH) ₃	3036,9 3,00	143,96	2,2282 0,01063	0,475	18 92	0,093
356,83	Quecksilber	Hg	75,99 ³⁰) 0,0105	46,22	0,06960		18 200	0,014
			759,72 ³⁰) 0,284		0,6056 0,00244	0,40	18 200	0,036
			3037,79 ⁸¹) 2,206	143,97	2,2303 0,0170	0,80	18 200	0,073
440	Schwefel 82)	Ss	760 0,007	100		0,013		

Literaturnachweise zur Mischdampf-Tabelle.

- 1. Young u. Thomas, Journ. chem. Soc. 63 (1893), 1191, 1207, 1211, 1216, 1219, 1222, 1226, 1232, 1234.
- 2. Batelli, Annal. de Chim. et Phys. VI. 25 (1892), 38, nach Graetz in Winkelmanns Handbuch der Physik, II. Aufl., 1906, III. Bd., S. 962.
- 3. Ramsay und Young, Phil. Trans. 177 (1887), 57, nach Graetz.
- 4. Young, Journ. chem. Soc. 71 (1897), 446.
- 5. Batelli, Mem. Acc. di Torino 41 (1890), 1 u. 42 (1891), 1, nach Graetz.
- 6. Ramsay u. Young, Journ. chem. Soc. 49 (1886), 790.

- 7. Young u. Fortey, Journ. chem. Soc. 77 (1900), 1126.
- 8. Ramsay u. Young, Phil. Trans. 178A (1887), 313 u. 321, nach Graetz.
- 9. Woringer, Zeitschrift f. physik. Chem. 34 (1900), 261.
- 10. Young u. Thomas, Journ. chem. Soc. 67 (1895), 1071.
- 11. Young u. Thomas, Journ. chem. Soc. 77 (1900), 1145.
- 12. Ramsay u. Young, Phil. Trans. 176 (1885), 123.
- 13. Batelli, Mem. Acc. di Torino 44 (1893) (2), 1, nach Graetz.
- 14. Kahlbaum, Siedetemperatur und Druck (1892), ferner Studien über Dampfspannkraftmessungen Bd. I (1893), Bd. II (1897), im Auszug, Zeitschr. f. physik. Chem. 13 (1894), 14 und 26 (1898), 577.
- 15. Young, Journ. chem. Soc. 59 (1891), 626 u. 911.
- 16. Young u. Fortey, Journ. chem. Soc. 75 (1899), 873.
- 17. Ramsay u. Young, Phil. Trans. 180 (1889), 137 nach Graetz.
- 18. Schumann, Wiedemanns Annalen 12 (1882), 40 nach Graetz.
- 19. Young, Journ. chem. Soc. 73 (1898), 675.
- 20. Richardson, Journ. chem. Soc. 49 (1886), 762 u. 765 nach Graetz.
- 21. Schmidt, Zeitschr. f. physik. Chem. 7 (1891), 433 u. 8 (1891), 641.
- 22. Neubeck, Zeitschr. f. physik. Chem. 1 (1887), 655.
- 23. Richardson, Journ. chem. Soc. 40 (1881), 766 nach Graetz.
- 24. Ramsay u. Young, Berl. Berichte 19 (1886), 2107.
- 25. Young, Journ. chem. Soc. 55 (1889), 486.
- 26. Allen, Journ. chem. Soc. 77 (1900), 400 u. 413.
- 27. Ramsay u. Young, Phil. Trans. 175, I (1884), 37.
- 28. Young, Journ. chem. Soc. 55 (1881), 483 nach Graetz.
- 29. Richardson, Journ. chem. Soc. 49 (1886), 764 nach Graetz.
- 30. Hertz, Wiedemanns Annalen 17 (1882), 193 nach Graetz.
- 31. Ramsay u. Young, Zeitschr. f. physik. Chem. 1 (1887), 252. 32. H. Gruener, Chem. Zentralbl. 1907, II. 2021 u. Ruff u. Graf ibidem S. 2022.

Vollständig bis zum Jahre 1905 hat Graetz in dem Handbuch der Physik von Winkelmann 2. Aufl. 1906 III, S. 962 die vorhandenen Untersuchungen von Drucken und spez. Volumen gesättigter Dämpfe zusammengestellt. Eine nicht ganz vollständige Zusammenstellung von Schenk findet sich in Landolt-Börnsteins physikalisch-chemischen Tabellen, 3. Aufl., 1905. Die statischen Dampfdruckbestimmungen von Landolt und von Woringer, ferner die ersten dynamischen Bestimmungen von Kahlbaum an noch unvollständig gereinigten Präparaten wurden nicht verwendet.

In der folgenden Mischdampf-Tabelle B sind der besseren Übersichtlichkeit wegen nur die Werte für die Zusammensetzung des Mischdampfes wiedergegeben und zwar, wo das möglich ist, diejenigen Werte, die aus den beobachteten spezifischen Gewichten der Dämpfe berechnet sind; nur für Äthylalkohol sind allein die berechneten spezifischen Dampfgewichte zu Grunde gelegt, weil die Einstellung der beobachteten Dampfdichten in die Rechnung zu unwahrscheinlichen Verdampfungswerten führt.

Mischdampf-Tabelle B.

				_	_	_		_	
Korr. Siede. temperatur b. 760 mm des Körpers A.			Geh	alt d	es D	ampfg	gemiso	ches	
de. 760	Chemischer		an	dem	Körpe	er A 1	bei ei	nem	
Sic r b.	Körper A, der mit	Chemische	1	Destil	lation	isdru	ck vo	n	
ratu Kö	Wasser	Formel.	76	mm	760	mm	3040 mm		
K npe des	destilliert wird.	Tormer.					Gew.	Mol.	
ter			Gew.	Mol.	Gew.	Mol.			
°C.			0/0	0/0	9/0	0/0	0/0	0/0	
31,8	Ameisens, Methyl	HCO ₂ CH ₃	-99,5	98,3	98,7	95,8	975	91,6	
34,61	Äthyläther	(C ₂ H ₅) ₂ O	99,6	98,4	98,8	94,2	97,6	89,7	
36,3	Pentan	C ₅ H ₁₂	99,6	98,4	98,8	94,8	97,2	88,5	
46,0	Schwefelkohlenstoff		99,4	97,6	98,1	91,3	95,8	83,4	
54,3	Ameisens. Äthyl	HCO ₂ C ₂ H ₅	98,5	94,1	96,6	87,3	94,7	80,1	
57,1	Essigs. Methyl	CH ₃ CO ₂ CH ₃	98,2	93,0	96,1	85,7	94,4	79,2	
58,08	Diisopropyl	C ₆ H ₁₄	98,4	94,7	96,7	85,3	94,3	75,8	
64,7	Methylalkohol	CH ₃ OH	91,5	85,8	88,5	80,6	87,1	77,4	
69,0	n-Hexan	C6H14	97,7	89,5	94,9	78,6	92,2	69,0	
77,15	Essigs, Äthyl	CH ₃ CO ₂ C ₂ H ₅	95,4	80,9	92,6	71,9	90,5	64,2	
78,3	Äthylalkohol	C ₂ H ₅ OH	86,4	70,2	85,6	69,9	84,6	68,2	
79,7	Propions. Methyl	C ₂ H ₅ CO ₂ CH ₃	95,0	79,6	94,2	76,7	89,8	62,4	
80,2	Benzol	C ₆ H ₆	95,3	82,3	91,0	70,0	87,6	60,5	
80,85	Hexamethylen	C6H12	95,7	82,6	91,3	69,0	88,0	59,6	
80,9*	Ameisens. Propyl	HCO ₂ C ₃ H ₇	94,8	78,8	91,5	68,8	89,2	61,2	
92,3	Isobutters. Methyl	C ₃ H ₇ CO ₂ CH ₃	92,7	69,0	89,1	59,1	87,1	49,0	
97,4	n-Propylalkohol	C ₃ H ₇ OH	75,8	48,4	78,0	51,0	79,6	51,2	
97,9	Ameisens. Isobutyl	HCO ₂ C ₄ H ₉	90,2	61,9	87,2	54,5	84,0	44,9	
98,43	n-Heptan	C7H16	91,3	64,6	87,2	54,5	84,1	46,6	
99,0	Propions. Äthyl	C2H5CO2C2H5	89,9	61,2	86,3	52,6	84,4	47,0	
100,75	Ameisensäure	HCO ₂ H	81,6	63,4	72,0	50,1			
101,55	Essigs. Propyl	CH ₃ CO ₂ C ₃ H ₇	88,6	57,7	85,3	50,6	83,4	45,2	
102,75	Butters. Methyl	C ₃ H ₇ CO ₂ CH ₃	88,2	56,9	84,8	49,6	83,1	44,2	
107,92	Isobutylalkohol	C ₄ H ₉ OH	68,4	34,5	74,9	42,1			
109,2	Diisobutyl	C_8H_{18}	88,4	54,5	84,2	45,0	81,8	38,8	
110,1	Isobutters. Äthyl	C ₃ H ₇ CO ₂ C ₂ H ₅	87,2	51,4	85,0	46,8	80,3	38,7	
110,4	Toluol	C ₆ H ₅ CH ₃	85,4	53,3	80,0	43,9			
116,3	Essigs. Isobutyl	CH ₃ CO ₂ C ₄ H ₉	81,9	41,4	78,1	36,5	77,2	34,4	
117,6	n-Butylalkohol	C ₄ H ₉ OH	58,0	25,1	65,8	31,9			
118,7	Essigsäure	CH ₃ CO ₂ H	80,2	39,6	75,9	35,3	73,8	33,8	
123,3	Ameisens. Amyl	HCO ₂ C ₅ H ₁₁	10000	39,8	100000000000000000000000000000000000000	32,3	73,5	30,1	
125,8	n-Octan	C ₈ H ₁₈	77,8	35,6	74,9	32,0		29,6	
130,1	Isoamylalkohol	C ₅ H ₁₁ OH		15,2		22,7	63,5	26,3	
138,45	p-Xylol	C ₆ H ₄ (CH ₃) ₂	1			24,3		The said	
140,3	Propionsäure	C ₂ H ₅ CO ₂ H	40,4	14,2	48,0	18,3	51,3	20,4	
				1		1	1	-	

Korr. Siede- comperatur b. 760 mm	Chemischer		G	ehalt	des D	ampfg	emisc	hes	
Siec.	Kärner A der mi	0	aı	n dem	Körp	er A b	ei eir	nem	
atur Kön	Körper A, der mi Wasser	Chemische		Dest	illatio	ationsdruck von			
Ke des	destilliert wird.	Formel.	76	mm	760	mm	3040 mm		
°C.			Gew.	Mol.	Gew.	Mol.	Gew.	Mol.	
			0/0	0/0	0/0	0/0	0/0	0/0	
	Propylenbromid	CH ₃ CHBr CH ₂ Br	78,9	25,0	76,4	22,4	74,3	20,5	
	Isobuttersäure	C ₃ H ₇ CO ₂ H	33,4	100000000000000000000000000000000000000	40,7	12,0	45,2	14,4	
	Brombenzol	C ₆ H ₅ Br	61,3	15,3	62,2	15,9	60,9	15,1	
156,9	Butters. Isobutyl	C ₃ H ₇ CO ₂ C ₄ H ₉	1000		55,5	13,5	56,7	16,4	
	n-Buttersäure	C ₃ H ₇ CO ₂ H	20,8	5,09		8,4	37,1	10,8	
	Propions. Amyl	C2H5CO2C5H11	51,5	11,7	52,9	12,3	54,6	13,7	
	Trimethylenbromid	CH ₂ BrCH ₂ CH ₂ Br			59,4	11,6	60,0	11,8	
	Benzaldehyd	C ₆ H ₅ CHO	22,5	4.70	31,4	CONTRACTOR OF THE PARTY OF THE	38,2	9,55	
	Butters. Amyl	C ₃ H ₇ CO ₂ C ₅ H ₁₁		,,,,	40,5		43,5	8,08	
181,4	Phenol	C ₆ H ₅ OH	7,50	1.53	20,9	2 100.00	27,2	6,68	
183,9	Anilin	C ₆ H ₅ NH ₂	9,64			0.000	27,4	6,87	
184,4	n-Valeriansäure	C ₄ H ₉ CO ₂ H			17,1		24,6	5,45	
184,8	Dimethyl-o-Toluidin	C ₆ H ₄ (CH ₃)N(CH ₃) ₂	22,0	3 66	31,7	5,82		7,64	
	Jodbenzol	C ₆ H ₅ J	37,2	975	42,2	6,06		6,68	
190,1	o-Kresol	C ₆ H ₄ (CH ₃)OH	11,7	100000000000000000000000000000000000000	19,3	3,83		5,34	
190,6	Benzonitril	C ₆ H ₅ CN	13,8	The state of the s	23,6	5,12		6,25	
193,1	Dimethylanilin	C ₆ H ₅ N(CH ₃) ₂	15,7	100000000000000000000000000000000000000	27,3	4,28		5,44	
	Methylanilin	C ₆ H ₅ NHCH ₃	10,1	2,17	17,7	3,48		4,90	
	Benzoes. Methyl	C ₆ H ₅ CO ₂ CH ₃	12,15	1.80	21,9	3,58		4,60	
	o-Toluidin	C ₆ H ₄ (CH ₃)NH ₂	6,51	100000	16,1	3,12		4,34	
200,4	p-Toluidin	C ₆ H ₄ (CH ₃)NH ₂	0,01	1,10	15,6	3,01			
100000000000000000000000000000000000000	Isocapronsäure	(CH ₃) ₂ CH CH ₂ CH ₂			10,0	3,01	20,9	4,25	
		CO ₂ H			9,61	1,62	182	3,33	
200,5	m-Kresol	C ₆ H ₄ (CH ₃)OH			12,40	2,30	S. Contract of	3,76	
	p-Kresol	C ₆ H ₄ (CH ₃)OH			12,1	2,25		3,70	
The state of the s	Acetophenon	C ₆ H ₅ COCH ₃	10,4	1 72	18,5	3,30		4,31	
NO. OF THE PARTY O	m-Toluidin	C ₆ H ₄ (CH ₃)NH ₂	,.	1,12	14,0	2,64		3,88	
	Äthylanilin	C ₆ H ₅ NHC ₂ H ₅			18,6	0.000	21,34	3,88	
	Benzylalkohol	C ₆ H ₅ CH ₂ OH			10,2	1,87	0.000	3,32	
100000000000000000000000000000000000000	n-Capronsäure	C ₅ H ₁₁ CO ₂ H			7,93	1,32	11,1	0,02	
The same of the sa	Campher	C ₁₀ H ₁₆ O	9,82	1 27	21,5	3,14	212	3,41	
	Nitrobenzol	C ₆ H ₅ NO ₂	,,02	0.00	15,3	2,58		3,44	
100000000000000000000000000000000000000	o-Chloranilin	C ₆ H ₄ CINH ₂			16,1	2,64		3,53	
The state of the s	Dimethyl-p-Toluidin				15,7	2,43		3,41	
	Diäthylanilin	$C_6H_5N(C_2H_5)_2$			13,3	1,81		2,70	
	Naphthalin	C ₁₀ H ₈	5,0	0,735	10	2,31	,,	2,10	
	n-Heptylsäure	C ₆ H ₁₃ CO ₂ H	0,0	0,100	3,71	0,51	10.3	1,56	
	o-Nitrotoluol	C ₆ H ₄ CH ₃ NO ₂			11,2	1,63		2,72	
	J. Hilotofiloi	C6111 C11311O2			1,0	1,00	.0,0	2,12	

Korr. Siede- temperatur b. 760 mm des Körpers A.	Chemischer Körper A, der mit Wasser	Chemische Formel.	an	dem	Körpe	er A	gemiso bei ein ck von 3040	nem
Ke mper des	destilliert wird.	Tormer.	Gew.		Gew.	Mol.	Gew.	Mol.
°C.			% o/o	0/0	0/o	9/0	0/0	0/0
228,5 237,5 237,7 237,8 249,0 253,4 259,3 268,4 281,1 290 356,83 440	m-Chloranilin n-Caprylsäure p-Nitrotoluol Chinolin Benzoesäure n-Pelargonsäure Chlornaphthalin n-CaprinsäureBromnaphthalin Glycerin Quecksilber Schwefel	C ₆ H ₄ CINH ₂ C ₇ H ₁₅ CO ₂ H C ₆ H ₄ CH ₃ NO ₂ C ₉ H ₇ N C ₆ H ₅ CO ₂ H C ₈ H ₁₇ CO ₂ H C ₁₀ H ₇ CI C ₉ H ₁₉ CO ₂ H C ₁₀ H ₇ Br C ₃ H ₅ (OH) ₃ Hg S ₈	0,16	0,014	7,49 1,57 6,82 7,28 0,31 4,30 3,24 0,40 0,013	1,13 0,202 0,955 1,08 0,036 0,496 0,290 0,036	10,5 10,6 3,65 3,91 7,43 1,74 5,09 0,475	2,16 0,903 1,51 1,62 0,56 0,468 0,882 0,185 0,545 0,093 0,073

Wenn wir in der Tabelle A die Siedetemperaturen der Gemische bei der Destillation unter Atmosphärendruck verfolgen, so sehen wir die schon besprochene Erscheinung, daß diese Temperaturen stets niedriger als die Siedetemperaturen der Komponenten unter Atmosphärendruck sind.

Sehr anschaulich wird die Tatsache der Siedepunktserniedrigung bei der Destillation zweier unlöslicher Körper durch folgenden Versuch gezeigt. In einem Kolben wird Wasser zum lebhaften Sieden gebracht. Der Kolben ist durch ein seitlich an seinem Halse angebrachtes Rohr mit einem Kühler verbunden und enthält in seinem Halse eingesenkt ein Thermometer und zugleich einen Scheidetrichter mit Hahn. Das Thermometer zeigt 100°. Läßt man nun aus dem Trichter die Pinenfraktion von Terpentinöl tropfenweise auf das siedende Wasser laufen, ohne daß dadurch die Destillation unterbrochen wird, so sinkt der Quecksilberfaden des Thermometers fast sofort, stellt sich sehr bald auf 95,6° ein und bleibt so stehen, so lange Pinen auf das Wasser fließt. Sobald der Pinenzufluß aufhört und das in dem Kolben noch befindliche Pinen verdampft ist, steigt das Quecksilber alsbald wieder auf 100°.

Abhängigkeit der Dampfzusammensetzung von der chemischen Konstitution des mit dem Wasser siedenden Körpers. Überblickt man in der Tabelle B die Vertikalkolumnen, in denen die Zahlen für den Gehalt des Dampfgemisches an dem Körper angegeben sind, so zeigt sich die selbstverständliche Tatsache, daß diese Werte mit steigender Siedetemperatur des Körpers sinken. Die Abnahme erfolgt aber nicht gleichmäßig, auch wenn wir nicht die Zahlen der Gewichtsprozente sondern die der Molekularprozente ins Auge fassen. Besonders merkbar treten die Abweichungen von der regelmäßigen Abnahme in der Reihe der Destillationen unter Minderdruck auf. Geht man bei dem Vergleich der einzelnen Körper auf deren chemische Konstitution ein, so erhellt sofort, daß sich am stärksten die Verbindungen mit freiem Hydroxyl in ihrer Verdampfung von den übrigen absondern. Von gleich oder ähnlich siedenden Körpern haben bei der Destillation mit Wasser die Säuren, Alkohole und Phenole die niedrigsten Verdampfungswerte, die Kohlenwasserstoffe die höchsten. Die Reihenfolge ist ungefähr:

Säuren, Alkohole, Phenole,
Ammoniakderivate,
Aldehyde und Ketone,
Äther und Ester,
Halogenderivate der Kohlenwasserstoffe,
Kohlenwasserstoffe.

Der Grund dieses abweichenden Verhaltens verschieden zusammengesetzter Körper bei ihrer Verdampfung mit Wasser erklärt sich durch folgende Erwägungen.

Zuerst muß man sich vergegenwärtigen, daß die ganze Mischdampftabelle im Grunde genommen nichts anderes als einen Vergleich des Dampfdruckes des Wassers mit dem der verschiedensten Körper bei einer bestimmten Temperatur, nämlich der Destillationstemperatur, darstellt. Es handelt sich also eigentlich um Dampfdruckvergleiche. Nun ist die Reihe der Verbindungen in der Tabelle nach der Höhe der Siedetemperatur geordnet, bei der die Verbindung für sich allein unter Atmosphärendruck sieden würde. Wäre die Anordnung nach der Destillationstemperatur mit Wasser geschehen unter einem bestimmten Druck, wir wollen annehmen unter dem Druck von vier Atmosphären, so würde sich in dieser einen Reihe selbst-

verständlich eine genaue regelmäßige Abnahme der mit dem Wasser verdampfenden Körper im Dampfgemisch zeigen, die als Ursache die bekannte Abnahme des Dampfdruckes mit der Abnahme der Flüchtigkeit der Körper hat. Dann aber würden in der Reihe der Destillationen unter Atmosphärendruck und besonders in derjenigen unter Minderdruck die Unterschiede der verschiedenen chemischen Körperklassen bei der Verdampfung mit Wasser noch schärfer hervortreten. Es würde sich dann noch klarer zeigen, was in dem Kapitel "Siedetemperatur und Dampfdruck" näher ausgeführt und durch zahlreichere Beispiele begründet ist, die Tatsache nämlich, daß der Dampfdruck der hydroxylhaltigen Verbindungen mit dem Sinken der Temperatur stärker abnimmt, oder mit dem Steigen der Temperatur mehr zunimmt, als derjenige der hydroxylfreien, und das aus dem Grunde, weil die hydroxylhaltigen Verbindungen im flüssigen oder festen Aggregatzustande stärker molekular associiert sind.

Von vielen Säuren und Alkoholen ist es auch durch die Untersuchung der Oberflächenspannung¹) nachgewiesen, daß sie als Flüssigkeit aus größeren Molekularaggregaten bestehen, und daß sich diese Aggregate mit dem Steigen der Temperatur in ihrem Umfange verringern, daß sie sich partiell spalten. Erklärlicherweise muß hiermit ein Anschwellen des Dampfdruckes parallel gehen, denn ein Doppelmolekül z. B. wird einen kleineren Dampfdruck äußern als die zwei Einzelmoleküle. Von molekular associierten Körpern muß deshalb der Dampfdruck mit fallender Temperatur schneller sinken als von nicht associierten.

Abhängigkeit der Dampfzusammensetzung von dem Destillationsdruck. Nehmen wir an, es gäbe einen Körper, eine Flüssigkeit, die nicht Wasser ist und doch bei allen Temperaturen denselben Dampfdruck wie das Wasser äußert, die also unter jedem äußeren Druck die gleiche Siedetemperatur wie das Wasser hat, die aber in Wasser unlöslich ist, so würde die Berechnung ergeben, daß bei dem Zusammensieden des Wassers mit dem Pseudowasser das Destillat zu genau gleichen Molekülen aus diesen beiden Körpern besteht. Hätten beide im dampfförmigen Zustande das gleiche Molekulargewicht, so würde das Destillat nicht nur gleiche Molekülmengen, sondern auch gleiche Gewichtsmengen von den beiden Flüssigkeiten enthalten.

¹⁾ Siehe das Kapitel "Molekulare Association und Dissociation".

Bei der Destillation dieses Flüssigkeitsgemenges unter dem Drucke von 4 Atm. braucht jede der Komponenten nur eine Dampfmenge mit dem Drucke von 2 Atm. zu entwickeln, um zusammen den äußeren Druck von 4 Atm. zu überwinden und zum Sieden zu kommen. Da nun der gesättigte Wasserdampf 2 Atm. Druck äußert, wenn seine Temperatur 120,60° beträgt (siehe die Wasserdampftabelle B, S. 329), so würde 120,60° auch die gemeinsame Destillationstemperatur sein. Führen wir die Destillationen wie in den Mischdampftabellen A und B noch unter den Drucken von einer und von einer zehntel Atmosphäre aus, so erhalten wir folgende numerischen Destillationsbilder:

	Totaldruck und zugleich äußerer Druck.	Jeder Partialdruck.	Temperatur des Mischdampfes.	Dectillate a	
1.	76 mm	38 mm	33,30 %	50 Mol. %	
2.	760 "	380 "	81,710	50 , %	
3.	3040 "	1520 "	120,600	50 ,, %	

Ein solcher Körper wie das erdachte Pseudowasser ist nahezu der n-Propylalkohol, ein Hydroxylkörper gleich dem Wasser. Sonst enthält die Tabelle noch ein Beispiel einer Verbindung, die zwar einen anderen Dampfdruck als das Wasser hat, deren Dampfentwicklung aber bei Temperaturänderung analog der des Wassers verläuft. Es ist das Brombenzol, das mit Wasser zum Sieden erhitzt, bei jeder Temperatur in gleicher Menge überdestilliert, zu 15,1 Mol. % (4 Atm.), 15,9 Mol. % (1 Atm.) und zu 15,3 Mol. % (0,1 Atm.). Im Übrigen finden wir in der Tabelle keine Verbindung, deren Dampfentwicklung bei Temperaturänderung mit der des Wassers gleichen Schritt hält. Im allgemeinen kann man sagen, daß mit steigendem Destillationsdrucke die niedriger siedenden Verbindungen in ihrer Verdampfung mit Wasser zurückgehen, die höher siedenden dagegen zunehmen. Aber nicht eine allgemein giltige, bestimmte Siedetemperatur scheidet die Verbindungen in dieser Hinsicht, die Grenztemperatur ist vielmehr nach der Konstitution der Verbindungen verschieden.

Bei den Alkoholen, die von allen organischen Körpern dem Wasser am ähnlichsten zusammengesetzt sind, — ein H im H-O-H

ist durch einen Kohlenwasserstoffrest ersetzt, - ist die Grenztemperatur etwas niedriger als die Siedetemperatur des Wassers. Der Äthylalkohol mit dem Siedepunkt 78,30 zeigt mit steigendem Destillationsdrucke noch sehr geringe Abnahme im Mischdampfe, der Isobutylalkohol dagegen mit dem Siedepunkte 107,9 6 schon energische Zunahme.

	76 mm	760 mm	3040 mm	
Äthylalkohol	70,2 Mol. º/o	69,9 Mol. º/o	68,2 Mol.º/o	Abnahme
Isobutylalkohol	34,5 " %	42,1 " %		Zunahme

Im folgenden sind, wie von den Alkoholen, auch von anderen Körpergruppen die beiden Grenzglieder angegeben.

Siede- punkt.		76 mm	760 mm	3040 mm	
118,70	Essigsäure	39,6 Mol.º/o	35,3 Mol.º/o	33,8 Mol. º/o	Abnahme
140,3	Propionsäure	14,2	18,3	20,4	Zunahme
123,3	Ameisens. Amyl	39,8	32,3	30,1	Abnahme
156,9	Butters. Isoamyl	200	13,5	16,4	Zunahme
141,0	Propylenbromid	25,0	22,4	20,5	Abnahme
155,5	Brombenzol	15,3	15,9	15,1	unentschieden
164,4	Trimethylenbromid		11,6	11,8	Zunahme
176,0	Limonen	nach De	stillationserge	bnissen	Zunahme.

Auf Grund einiger weniger Berechnungen stellten E. Charabot und 1. Rocherolles1) den Satz auf, daß mit dem Wachsen des Dampfdruckes auch die mit dem Wasser zusammen verdampfende Substanz in größerer Menge überdestilliert, sobald das Verhältnis

$$MF: M^{1}F^{1} < 1$$

ist. M1 bedeutet hierin das Molekulargewicht, F1 den Dampfdruck des Wassers bei der Destillationstemperatur und M und F die entsprechenden Werte der mit dem Wasser zusammen destillierenden Substanz bei derselben Temperatur. Dagegen soll die Substanz mit dem Wachsen des Druckes in kleinerer Menge überdestillieren, wenn

$$MF : M^1F^1 > 1$$

ist.

¹⁾ Compt. rend. 138 (1904), 497; Bull. Soc. Chim. 31 (1904), 533.

MF: M1F1 stellt das Verhältnis der beiderseitigen Substanzgewichte im Mischdampf oder im Destillate dar, denn es ist

$$MF: M^1F^1 = P: P^1$$

worin P das Gewicht der Substanz und P1 das Gewicht des Wassers im Mischdampf bedeutet. Wir brauchen also nur in der Mischtabelle B die Zahlen für die Gewichtsprozente ins Auge zu fassen und darauf zu achten, von welchen Körpern mehr als 50 Gew. % mit dem Wasser überdestillieren und von welchen weniger. Wir sehen dann, daß der von den genannten Verfassern aufgestellte Satz nicht stimmt.

Trotzdem die Mischdampf-Tabelle A auf S. 336 mangels der Dampfdruckbestimmungen sehr lückenhaft ist, enthält sie doch mehrere Körper mit mehr als 50% Gehalt im Mischdampfe, die mit steigender Temperatur eine Zunahme in ihrer Verdampfung mit Wasser aufweisen. Werden die mit Wasser in allen Verhältnissen mischbaren niederen Fettsäuren und Alkohole aus der Betrachtung ausgeschieden, so stimmen folgende Körper in ihrer Verdampfung mit Wasser nicht mit dem erwähnten Satz der Verfasser überein:

Isobutylalkohol, n-Butylalkohol, Isoamylalkohol, Buttersäure-Isobutylester, Propionsäureamylester, Trimethylenbromid.

Übrigens sind einfache Gewichtsverhältnisse kein geeignetes Mittel zur Erkenntnis von Gesetzmäßigkeiten in den gegenseitigen Beziehungen verschiedener chemischer Verbindungen. Aber auch wenn man an Stelle der Gewichte die den Gewichten entsprechende Anzahl der Moleküle setzt, trifft der Satz nicht zu.

Für die Destillationspraxis ist es wichtig zu wissen, daß bei der Destillation im Vakuum die Dampfentwicklung von hochsiedenden Substanzen relativ stärker zurückgeht als von Substanzen mit niedrigem und mittlerem Siedepunkte. Hierbei nehmen die hydroxylhaltigen Verbindungen wieder eine Sonderstellung ein, indem bei diesen Verbindungen die Depression in der Verdampfung mit dem Sinken des Destillationsdruckes größer als bei den hydroxylfreien Verbindungen ist, wenn man unter Atmosphärendruck gleichsiedende Substanzen vergleicht. Von der n-Pelargonsäure destillieren

über, dagegen von dem ähnlich siedenden a-Chlornaphthalin

Bei Benutzung der Mischdampftabelle zur annähernden Ermittlung, wieviel von einem in der Tabelle nicht angeführten Körper mit bekanntem Siedepunkte mit Wasser oder Wasserdampf im Maximum überdestillieren kann, ist die geringere Verdampfung der Säuren, Alkohole und Phenole zu berücksichtigen.

Geringe Verdampfung der hochsiedenden Verbindungen. Die Körper mit hohem Siedepunkte haben erklärlicherweise eine sehr geringe Verdampfung. Im total gesättigten Glycerin-Wasserdampf unter Atmosphärendruck sind nicht mehr als 0,2 bis etwa 0,3 Gew. % Glycerin enthalten, unter der Voraussetzung, daß sich keine Lösungsaffinität geltend macht. Da sich aber Glycerin mit Wasser in allen Verhältnissen zu mischen vermag, so destilliert in Wirklichkeit eine andere Glycerinmenge über, die von der Konzentration der Glycerinlösung abhängig ist und im Maximum an 0,2% herankommen kann. Werden Laurinsäure (Siedep. ca. 295°) oder Myristinsäure (Siedep. ca. 318°) mit Wasser oder Wasserdampf unter Atmosphärendruck ohne Überhitzung destilliert, so wird das Destillat ca. 0,2% dieser Fettsäuren im Maximum enthalten, von dem Gemisch aus α- und β-Santalol, dem Hauptbestandteil des ostindischen Sandelholzöls, mit den Siedepunkten 301 o und 309 o, etwa 0,6 o/o, geschlossen aus den bei höherer Temperatur gemachten Dampfdruckbestimmungen.

So gering diese Destillationswerte auch sind, praktisch rentabel kann trotzdem selbst für solche hochsiedenden Körper die gewöhnliche Atmosphärendruckdestillation werden, vorausgesetzt, daß der Wert des Fabrikates die hohen Dampfkosten zahlt. Wird zur Gewinnung des ostindischen Sandelholzöls das zerkleinerte Holz in gewöhnlicher Weise unter Atmosphärendruck mit Wasserdampf destilliert, so ist das Verhältnis von 100 Teilen Wasser zu 0,1 Teilen Öl im Destillate im Mittel der ganzen Destillation normal zu nennen, 0,2% ist nur bei hoher mehrfach unterbrochener Füllung zu erreichen. Diese letztere Zahl bedeutet bei einem Destillationsapparate, der stündlich 1000 kg Destillatwasser liefert, eine tägliche (12 Stunden) Leistung von 24 kg Öl.

Bei der Destillation des Schwefels mit Wasser unter Atmosphärendruck geht der Schwefel nur zu 0,013 Gew. % im Destillat über. Wir werden sehen, daß bei der Gewinnung des ätherischen Öls aus der Pflanze in einzelnen Fällen das Verhältnis von Öl zu Wasser im Destillat sich noch weit ungünstiger stellt und daß trotzdem mit Erfolg die Ölgewinnung durch Destillation geschehen kann. Selbstverständlich kostet

eine derartige Destillation relativ viel Dampf. Davon abgesehen, ist es schließlich nicht die geringe Verdampfung, die eine Destillation praktisch unmöglich macht, sondern die Schwierigkeit der Abscheidung des Öls aus der zehntausend- bis hunderttausendfachen Wassermenge im Destillat. Die Trennung der 0,013% Schwefel von dem Wasser würde wohl ohne Extraktion kaum ausführbar sein. Dagegen läßt sich aus dem Destillate von mit Wasser oder mit Wasserdampf destillierten Arnikablüten das Öl in der Vorlage von dem Wasser abscheiden, trotzdem bei vollständig zu Ende geführter Destillation im Destillate gegen 100000 kg Wasser auf 1 kg Öl im Mittel der ganzen Destillation kommen.

Bestätigung der berechneten Verdampfungswerte durch das Experiment. Wird eine in Wasser praktisch unlösliche, chemisch reine Flüssigkeit in genügender Menge mit Wasser zusammen in die Blase gefüllt, und wird das Gemenge durch indirekte Dampfheizung zum Sieden und Destillieren gebracht, so ergibt eine Untersuchung des während einer beliebigen Zeit aufgefangenen Destillates fast genau die gleiche Zusammensetzung, wie sie sich aus dem Verhältnis der beiden berechneten spezifischen Dampfgewichte ergibt. Rechnung und Experiment decken sich.

Bedingung für das Gelingen des Destillationsversuches ist, daß das Dampfgemisch total, d. h. in seinen beiden Bestandteilen gesättigt ist. Damit dies geschieht, sind einige Vorsichtsmaßregeln zu beachten. Bei der Wasserdestillation muß die auf dem Wasser liegende Öldecke nicht zu schwach sein; nur das Wasser darf die geheizten Metallwände berühren, nicht das Öl, weil sonst Überhitzungsdestillation entsteht. Am sichersten ist es, zumal wenn das Öl schwerer als Wasser ist, wenn ein Rührwerk das Gemenge während der Destillation innig durcheinanderarbeitet. Wird Dampfdestillation gewählt, so muß die Ölschicht möglichst hoch sein, indirekte Heizung darf die Blase überhaupt nicht erhalten, und der in das Öl einströmende Wasserdampf muß langsam durch das Öl geführt werden, damit er sich mit ihm innig durchmischen kann. Hierzu wird entweder mit Rührwerk destilliert, oder es werden mehrere Siebbleche in Abständen übereinander in das Öl gelegt, durch welche die aufsteigenden Blasen des Wasserdampfes zerteilt werden. Als Dampf kann gespannter, auch hochgespannter in das Öl eingeleitet

werden; damit aber keine Überhitzung trotz der äußeren Abkühlung entsteht, ist es gut, wenn vor der Destillation zu dem Öl etwas Wasser gegeben wird. Notwendig ist dieser Zusatz besonders bei Destillation unter vermindertem Druck. sichersten erreicht man eine totale Sättigung des Dampfgemisches im Großen durch Benutzung einer Kolonnenblase im Kleinen im Glaskolben durch hohen, gut arbeitenden Fraktionieraufsatz. Ist das sich aus dem wässrigen Gemenge in der Blase oder im Glaskölbchen erhebende Dampfgemisch in einem seiner Bestandteile nicht ganz gesättigt, so muß es durch die wiederholte partielle Kondensation und Redestillation sehr bald total gesättigt sein. Ist es aber total gesättigt, so kann es durch eine weitere partielle Kondensation in seiner Zusammensetzung keine Änderung erfahren, denn das Kondensat stellt genau die gleiche Mischung wie das total gesättigte Dampfgemisch dar, aus dem es abgeschieden ist. Voraussetzung hierbei ist aber, daß mit dem Wasser nur ein einzelner chemisch reiner Körper destilliert wird, und daß dieser mit dem Wasser keine Lösung, auch nicht eine partielle bildet.

Diese letztere Bedingung ist, genau genommen, nicht erfüllbar, denn Körper, die eine, wenn auch noch so geringe, Dampfentwicklung äußern, müssen auch gegenseitige Löslichkeit besitzen. So zeigen denn auch die Destillationen von Wasser mit praktisch wasserunlöslichen Verbindungen kleine Abweichungen von der theoretisch verlangten Dampfzusammensetzung. Mit zunehmender Löslichkeit wächst der Unterschied zwischen Rechnung und Beobachtung und zwar in dem Sinne, daß der experimentell gefundene Gehalt des Dampfes an dem mit dem Wasser destillierten Körper in der Regel hinter dem berechneten zurückbleibt. Bei in Wasser wenig löslichen Flüssigkeiten, z. B. Eugenol und Carvon, ist eine Fehlerquelle bei Ausführung des Versuches nicht ganz zu vermeiden, die sich bei der Gewichtsbestimmung der beiden Bestandteile im Destillate geltend macht. Solche partiell löslichen Flüssigkeiten trennen sich nicht so klar, wie z. B. Benzol oder Pinen vom Wasser, wodurch ihre Bestimmung leicht zu niedrig ausfallen kann.

-			- I - I - I - I - I - I - I - I - I - I	reme	Погре	
Siedetemperatur des Präparats unter AtmDruck.	Substanz, die mit Wasser destilliert wird.	B Destillations- B Druck.	Destillations.	Gefundener Gehalt des Destillats an dem Präparat in Gew. %.	Berechneter Gehalt in Gew.º/o.	Beobachter.
80,20	Benzol	741	69	91,2%	91,0 %	A. Naumann, Berl. Berichte1877, S. 1421, 1819, 2014, 2099.
81-82	Isopropylalkohol	768	78,5—79,5	89		G. Ryland, Americ. Chem. Journ. 22 (1899), 384.
95,7	n-Propylalkohol	Atm.	85—85,5	77	87,2	Konowalow, Wiedem. Ann. 14 (1881), 34.
95,7	do.	770	87-87,5	72	87,2	G. Ryland, I. c.
105-106	Isobutylalkohol	Atm.	89-90	< 80	74,9	G. Ryland, I. c.
108	do.	"	90,5	80	74,9	Pierre u. Puchot, Compt.rend. 73 (1871), 599.
107,9	do.	760	90,0	66,8	74,9	Young, Fractional Destillation, S. 92.
108,5	Toluol	753	84	80,7	80,4	A. Naumann, I. c.
125,5	Xylol, unrein	751	91	66,2		do.
130	Isoamylalkohol	Atm.	96	ca. 55	59,0	Pierre u. Puchot, I. c.
158-164	Terpentinől	748	94,5	55,6	56,2	A. Naumann, I. c.
ca. 160	do.	Atm.	all many	50,0	56,2	Charabot u. Rocherolles, Bull. Soc. Chim. III. 31 (1904), 533.
ca. 160	do.	210		51,1	ca. 57,5	do.
159-160	Buttersäure	763	99-99,5	20	31,0	G. Ryland, I. c.
175	Limonen	Atm.		40	41	Schimmel & Co.
183,1	Anilin	746,4		19,9	23	Young, I. c.
198	Linalool	Atm.		18,2		Charabotu.Rocherolles, l.c.
198	do.	200		11,7		do.
205-210	Nitrobenzol	752	99	14,7	15,3	A. Naumann, I. c.
213	Athylbenzoat	750	99	15,3	15,6	do.
218	Naphthalin	747	99	15,4	14,4	do.
229	Geraniol	Atm.		5,6		Charabotu.Rocherolles, l.c.
229	do.	14-19		4,5		do.
233	Carvon, rein	757,5	99,4	9,7		Schimmel & Co.
233	do.	43,1	34,6	3,6		do.
233	do.	22,6	23,1	2,9		do.
234	Anethol	Atm.		7,1		do.
250	Zimtaldehyd	Atm.		1,8		do.
255	Eugenol	Atm.		1,7		do.
306	Santalol	Atm.	4	ca. 0,5		do.
382	Anthrachinon	Atm.	100	0,2		A. Naumann, I. c.

Verdampfung des ätherischen Öls bei seiner Hydrodestillation in der Praxis. Bei der Destillation von ätherischem Öl mit Wasser oder mit Wasserdampf im Fabrikbetriebe wird, wenn sie nicht allzu stürmisch geführt wird, in der Regel der Dampf ölgesättigt sein. Selbstverständlich gilt dies nur, wenn das ätherische Öl ein einheitlich zusammengesetzter Körper ist, der nur durch Rektifikation von geringen färbenden Beimengungen befreit werden soll, und wenn zwischen dem Körper und dem Wasser keine stärkere Löslichkeit oder gar Mischbarkeit besteht. Das für die Destillation wichtige Kapitel der Lösungen wird weiterhin behandelt. Hier sei nur erwähnt, daß bei stärkerer Löslichkeit des Wassers zu dem ätherischen Öle eine reichlichere Verdampfung des Körpers durch Dampfdestillation und nicht durch Wasserdestillation zu erwarten ist.

Gelingt es mit einer Kolonne aus einem Körpergemisch den einen oder anderen Bestandteil als Fraktion rein abzuscheiden, so muß in dieser Fraktion Wasser und Öl in dem gleichen Gewichtsverhältnis vorhanden sein, wie sich aus den Tensionen der beiden Bestandteile für gesättigten Dampf bei der Destillationstemperatur berechnet, d. h. wir erhalten die Werte der Mischtabelle, vorausgesetzt daß sich keine Lösungsaffinitäten zu dem Wasser geltend machen.

Sobald aber die Fraktion keinen reinen Körper darstellt, wird mehr oder weniger Wasser mit überdestilliert sein, je nachdem die Beimengungen schwerer oder leichter sieden als der fragliche Körper.

Wird z. B. in einer Kolonnenblase Kümmelöl, das abgesehen von wenigen Prozenten Dihydrocarveol, Dihydrocarvon und anderen geringen Beimengungen ziemlich zur Hälfte aus Limonen und Carvon besteht, mit Wasser unter Atmosphärendruck destilliert, so wird das Destillat zuletzt, wenn mit dem Wasser reines Carvon überdestilliert, etwa 9% Carvon enthalten, d. h. das Carvon erscheint mit der gleichen Wassermenge im Destillat. wie wenn es in reiner Form für sich allein mit Wasser destilliert wird. Dasselbe gilt von dem Limonen, wenn es gelingt, es als reine Fraktion zu gewinnen.

Zusammensetzung

des Dampfes bei der Pflanzendestillation.

Bei der Destillation der Pflanze bildet die Totalsättigung des in den Kühler übergehenden Dampfgemisches von Wasser und ätherischem Öl eine Ausnahme. In der Regel enthält das Destillat mehr Wasser, oft sehr viel mehr Wasser, als wenn das betreffende Öl selbst mit Wasser destilliert worden wäre. Das Dampfgemisch ist partiell gesättigt, der Wasserdampf darin ist entsprechend der Temperatur des Dampfes gesättigt, der Öldampf aber ist ungesättigt, ist überhitzt. Zum Beweis dafür wird bei partieller Kondensation eines derartigen Dampfgemisches fast reines Wasser abgeschieden, erst bei weiterer Abkühlung wird Wasser mit reichlich Öl kondensiert.

Zusammenstellung der in der Praxis erhaltenen Verdampfungswerte. In der nachstehenden Zusammenstellung ist der mittlere Ölgehalt in Gewichtsprozenten im Destillat von einzelnen vollständigen Destillationen angegeben, wie er nach zahlreichen Bestimmungen bei der Destillation von Pflanzenmaterial im Fabrikbetriebe gefunden wurde. Meist betrifft es Dampfdestillationen und zwar ohne Überhitzung des Wasserdampfes, nur in einzelnen Fällen Wasserdestillationen, beide unter Atmosphärendruck. Die Destillationsfüllung betrug 100 kg bis zu 2000 kg. In einigen wenigen Fällen wurde das ganze Destillat im Verlaufe einer Destillation gewogen, Öl und Wasser je für sich, und das aus dem Wasser durch Wiederdestillation (Kohobation) erhaltene Öl zu dem übrigen Öl gerechnet. Meistens aber wurde das Destillatwasser nur während eines bestimmten Bruchteils der Destillationsdauer, in der Regel während 5 Minuten, gesondert aufgefangen, gewogen und auf die ganze Destillationszeit umgerechnet. Die so sich ergebende Wassermenge wurde dann mit dem insgesamt erhaltenen ätherischen Öl in Beziehung gesetzt.

Mittlerer Ölgehalt im Destillat bei der Pflanzendestillation.

0,77%/0	Ajowan. Angelikasamen.	0,05 %	Alantwurzel, trocken.
0,03	Angelikawurzel, frische.	Control Contro	Calmuswurzel, trocken.
0,81—1,16	Anis. Arnikablüten.	0,12	" frisch.
	Arnikawurzel, trocken.	0,01	Costuswurzel, trocken.

1,2%	Cubeben.	1,03-1,5200	Nelkenstengel.
0,12-0,2	Cypresse.	0,19	Pockholz.
1,42-2,08	Fenchel.	0,12-0,13	Patchouliblätter.
0,05-0,08	Galgantwurzel.	0,11	Pfefferminzkraut, frisch.
0,28	Ingwerwurzel.	0,18	Piment.
0,004-0,007	Kamillenblüte, trocken.	0,25-0,31	Sadebaum.
0,56-0,57	Koriander.	0,05-0,16	Ostind. Sandelholz.
2,22-3,04	Kümmel.	0,23-0,34	Westind, Sandelholz.
0,05	Liebstockwurzel, trocken.	0,17	Selleriesamen.
0,02	" frisch.	0,015-0,02	Vetiverwurzel.
0,02	Liebstockkraut, frisch.	0,20	Wacholderbeeren.
0,60-0,86	Nelken.	0,31-0,34	Ceylon Zimt.

Mit diesen Werten für den mittleren Ölgehalt im Mischdampf vergleiche man die nachfolgenden Gehaltszahlen des Mischdampfes bei der Hydrodestillation einiger reiner Körper, die in kleinerer oder größerer Menge in ätherischen Ölen vorkommen. Zum Teil sind diese Zahlen schon S. 360 angeführt.

Hydrodestillation von	Gehalt im Mischdampf.	Vorkommen im		
Styrol	57 %	Zimtöl.		
Cymol	45,7	Ajowanöl.		
Pinen	55,6	Ajowanöl.		
Limonen	40,0	Kümmelöl.		
Dipenten	40,0	Ajowanöl.		
Linalool	18,2	Korianderöl.		
Menthol	12,0	Pfefferminzöl.		
Carvon	9,7	Kümmelöl.		
Anethol	7,1	Anis-, Fenchel-, Sternanisöl.		
Zimtaldehyd .	3,0	Zimtöl, Cassiaöl.		
Eugenol	1,7	Nelken-, Nelkenstielöl, Piment-, Bay-, Zimtöl.		
Santalol	ca. 0,5	Ostind. Sandelholzöl.		

Die Gehaltszahlen des Dampfes dieser reinen Körper würden auch für die Destillation von Pflanzen maßgebend sein, wenn der betreffende Pflanzenteil nur einen einzelnen flüchtigen Körper enthält. Das ätherische Öl in der Pflanze stellt aber Gemische flüchtiger Substanzen dar, und die Verdampfung einer Lösung ist von dem molekularen Mengenverhältnis ihrer Bestandteile abhängig. Berücksichtigt man das Mengenverhältnis im ätherischen Öl, so geben die Verdampfungswerte der reinen Komponenten immerhin einen Anhalt über die Verdampfung des ätherischen Öls selbst. So sind z. B. das a- und B-Santalol

(Sdp. 301° und 309°) im ostindischen Sandelholzöl zu etwa 90°/ο enthalten, während das α- und β-Santalen (Sdp. 252° und 263°) nur zu etwa 6°/ο im Öl nachgewiesen sind. Die ca. 4°/ο Acetsantalol sieden ungefähr 10° höher als die zugehörigen Santalole; trägt man nun noch dem geringen Gehalt an hochsiedenden harzigen Bestandteilen des Öls Rechnung, so läßt sich alles in allem schließen, daß der mittlere Ölgehalt im Dampfe bei einer vollständigen Hydrodestillation des ostindischen Sandelholzöls unter Atmosphärendruck etwas über 0,5°/ο sein wird.

Zutreffender, aber noch sehr ungenau sind die folgenden Untersuchungen über den Dampfverbrauch bei der Destillation von ätherischen Ölen. Hierbei wurde das ätherische Öl durch Wasserdestillation unter Atmosphärendruck verdampft und im Destillat Öl und Wasser gewogen, wenn der Mittellauf des Öls überdestillierte. Als mittlerer Ölgehalt wurde so gefunden:

Um genaueren Aufschluß über die Verdampfung eines ätherischen Öls zu geben, wurden in derselben Blase zwei Destillationen von Kümmelöl unter Atmosphärendruck ausgeführt. Das Destillat wurde in Fraktionen aufgefangen, deren Ölgehalt durch Wägung festgestellt wurde; auch das spezifische Gewicht des Öls wurde jedesmal bestimmt. Auch diese Versuche können nur ein angenähertes Resultat geben. Wenn auch der kleine kupferne Destillationsapparat, in dem die Versuche ausgeführt wurden, in dicker Lage mit Wärmeschutzmasse umkleidet ist, erfolgt doch an der Innenwandung des Apparates, soweit sie nicht von dem siedenden Flüssigkeitsgemisch bespült wird, eine partielle Kondensation und damit eine teilweise Veränderung des Dampfgemisches. Diese Kondensation des Dampfes und Redestillation des herunterrieselnden Kondensates vollständig zu verhindern, bildet bekanntlich die größte Schwierigkeit bei der Untersuchung der Dampfbildung eines Flüssigkeitsgemisches nach dem dynamischen Verfahren.

1. Versuch. Einlage 2,0 kg Kümmelöl vom sp. Gew. 0,9085 und 11 l Wasser. Das verdampfte Wasser in der Blase wurde durch reines Wasser ersetzt.

Evalution	im	Destillat	spez. Gewicht des
Fraktion.	Wasser.	Ö1.	Öls bei 15°.
1.	381 g	180 g = 32,0°/°	0,8585
2.	299	130 = 30,3	0,8596
3.	367	156 = 29,8	0,861
4.	292	121 = 29,3	0,862
5.	430	152 = 26,1	0,866
6.	550	154 = 21,8	0,875
7.	428	93 = 17,8	0,8877
8.	610	101 = 14,2	0,905
9.	1022	119 = 10,4	0,935
10.	1333	128 = 8,7	0,956
11.	1326	124 = 8,5	0,964
12.	1210	113 = 8,5	0,9645
13.	1847	168 = 8,3	0,965
14.	904	87 = 8,7	0,964
15.	1649	128 = 7,2	0,9644
16.	2164	22 = 1,0	
17.	1730)		0,9641
18.	1051	2 = 0,07	
Zusammen	17,593 kg	1,978 kg = 10,11°/0	0,907

2. Versuch. Einlage 1,500 kg Kümmelöl vom spez. Gew. 0,910 und 10 1 Wasser. Das verdampfte Wasser wurde nach jeder Fraktion durch das Wasser des Destillates wieder ersetzt. Barometerstand, auf 0° reduziert, 755,55 mm.

Fraktion.	Zeit in	im	Destillat	spez. Gewicht des
raktion.	Minuten.	Wasser.	Ö1.	Öls bei 15°.
1.	5	304 g	128 g = 29,6°/°	0,859
2.	4,5	327	135 = 29,2	0,861
3.	3,5	259	99 = 27,6	0,863
4.	5	282	100 = 26,1	0,866
5.	6	382	114 = 23,1	0,870
6.	6	432	103 = 19,2	0,881
7.	9	556	98 = 14,9	0,897
8.	9	684	85 = 11,0	0,924
9.	14	905	88 = 8,8	0,950
10.	17	1017	95 = 8,5	0,960
11.	16	1017	91 = 8,2	0,962
12.	20	1312	118 = 8,2	0,9625
13.	20	1283	117 = 8,3	0,963
14.	35	2482	116 = 4,4	0,963
15.	85	4231	10 = 0,23	_
Zusammen	4 Std. 15 Min.	15,473 kg	1,497 kg = 8,80°/6	0,9094

Der erste Versuch dauerte wegen absichtlich verzögerter Destillation 12 Stunden, der zweite 4 Stunden 15 Minuten. Durch die trotz Einpackens der Blase erfolgende partielle Kondensation des Dampfgemisches an den freiliegenden Teilen der Blase tritt eine Entmischung des Dampfes ein, indem von dem Limonen-Carvongemisch im Dampfe hauptsächlich Carvon ausgeschieden wird. Deshalb hat die langsamer verlaufende Destillation das Kümmelöl mehr fraktioniert als die schnellere. Daß aber insgesamt bei der schnelleren Destillation im Mittel weniger Öl mit der gleichen Wasserdampfmenge verdampfte, hat eine andere Ursache. Das Verdampfen der letzten Ölteile kostet einen erheblichen Bruchteil des gesamten Dampfverbrauchs, bei beiden Versuchen ungefähr die gleiche Dampfmenge. Erklärlicherweise fällt dieser Betrag bei der kleineren Ölfüllung mehr als bei der größeren ins Gewicht, daher bei jener 8,80% mittlerer Ölgehalt im Dampfe, bei dieser 10,11 %.

Zu erwähnen ist noch, daß zu den 1,978 kg insgesamt erhaltenem Öl des ersten Versuchs noch das Öl von dem Destillationswasser zu rechnen ist.

Ursachen des Mehrverbrauchs an Dampf bei der Pflanzendestillation. Die 2,22% bis 3,04% (S. 363) mittlerer Ölgehalt im Dampfe bei der Destillation von Kümmelfrüchten gegenüber 10,11% oder 8,80% bei der Destillation von Kümmelöl bedeuten nicht nur einen größeren Dampfverbrauch, sondern, was fast noch mehr ins Gewicht fällt, eine verlängerte Destillationsdauer und infolgedessen eine längere Inanspruchnahme von Destillationsapparaten für die gleiche Ölproduktion.

Diese Ölarmut des Destillates bei der Pflanzendestillation hat folgende Ursachen.

1. Der Ölgehalt der Pflanze ist häufig so gering, daß er nicht einmal hinreicht, um die relativ große Menge des durch die Pflanzenfüllung schnell hindurchstreichenden Wasserdampfes zu sättigen. Es ist aber nicht zweckmäßig, die Destillation bis unter eine gewisse Grenze zu mäßigen, weil die durch die größere Dampfgeschwindigkeit verursachten Druckdifferenzen in der Blase verhindern sollen, daß der Dampf in den dichter liegenden Teilen der Blasenfüllung stagniert. Aus diesem Grunde, besonders aber zur Erhöhung der Arbeitsleistung der Blase, wird man geneigt sein, viel reichlicher Dampf zuzuführen, als eigentlich notwendig

ist, wodurch der Wassergehalt im Destillate stark anschwellen kann. Wenn z. B. eine Füllung von 2000 kg mit 250 St. kg Dampf (250 kg Destillationswasser in einer Stunde) in etwa 11 Stunden fertig destilliert werden kann, und man statt dessen 500 St. kg Dampf durch die Füllung jagt, so erreicht man wohl eine Abkürzung der Destillationszeit, aber nicht etwa um die Hälfte, sondern höchstens um ein Drittel, meist nur um ein Viertel. Die Produktionsfähigkeit der Destillationsanlage wird auf Kosten eines Mehrverbrauchs von etwa 50 % Dampf gesteigert.

- 2. Wenn im Verlaufe der Destillation der Ölgehalt in der Blasenfüllung abnimmt, so bricht zum Schluß die Ölverdampfung nicht etwa scharf ab. Das geschieht, wie wir gesehen haben, nicht einmal bei der Hydrodestillation eines ätherischen Öls, noch weniger aber bei der von Pflanzen. Es ist klar, daß dieses mehr oder weniger lange Hinausziehen des Destillationsschlusses den Dampfverbrauch für die Ölausbeute stark und aus subjektiven Gründen sehr verschieden beeinflussen wird.
- 3. Der Dampfdruck des an der Pflanze haftenden ätherischen Öls wird durch Adhäsionskräfte erhöht. Man muß sich hierbei vergegenwärtigen, daß die meist geringen Mengen von ätherischem Öl in einem Pflanzenteil, zumal nach dessen Zerkleinerung, auf verhältnismäßig große Oberflächen der Pflanzenmasse verteilt sind.

Eine interessante Untersuchung über die Erhöhung des Dampfdruckes durch Adhäsion hat H. Rodewald1) angestellt. Er bestimmte den Dampfdruck einer Stärke mit 31,6% Feuchtigkeitsgehalt zu 4,56 mm bei 0%. Der Druck war also gleich hoch wie der von reinem Wasser bei 0°, wie zu erwarten war; denn bei einem derartig hohen Wassergehalt kann eine Beeinflussung der Dampfbildung durch Adhäsion kaum merkbar vorhanden sein. Denken wir uns einen festen Körper mit einer Flüssigkeitsschicht überzogen, so wird die Adhäsion vorzugsweise auf den unmittelbar anliegenden Teil der Schicht einwirken, weniger aber auf den weiter abliegenden. So erhielt denn auch Rodewald ein anderes Resultat, als er Stärke von geringerem Feuchtigkeitsgehalte untersuchte. Er fand, daß eine lufttrockene Stärke mit 20% Feuchtigkeit nur noch einen Dampfdruck von 1,15 mm bei 0% zeigte, also einen etwas über 3 mm geringeren Druck als reines Wasser von derselben Temperatur. Mit sinkendem Wassergehalte wird die Druckdepression noch größer. Wie stark das letzte Prozent Feuchtigkeit von der Stärke bei Trockenbestimmungen festgehalten wird, ist bekannt. Um solch geringe

¹⁾ Zeitschr. f. physik. Chem. 24 (1897), 193.

Mengen von ätherischem Öl handelt es sich aber bei der Pflanzendestillation, vielfach sogar um noch bei weitem geringere, wenn am Schlusse der Destillation die letzten Ölteilchen verdampft werden sollen.

Zur Geltung wird die Adhäsionskraft jedoch nur bei völlig trockenem Destillationsmaterial kommen, also nur bei der vollständigen Überhitzungsdestillation; in feuchtem Destillationsmaterial wird das Wasser das Adhärieren

des Öls erschweren.

4. Das ätherische Öl ist im pflanzlichen Gewebe eingeschlossen, und durch mehrere, oft starke Membranschichten der direkten Berührung mit dem Wasserdampf entzogen. Deshalb ist die Zerkleinerung für die meisten Pflanzenstoffe unbedingt notwendig. Diese Zerkleinerung, also das Zermahlen oder Zerstoßen, Zerquetschen, Raspeln usw. darf aber für die Dampfdestillation nur bis zu einem gewissen Grade erfolgen, darf nicht feines Mehl liefern, weil die Zwischenräume in dem Destillationsmaterial dann zu klein werden. Für den durchströmenden Wasserdampf muß Raum zur gleichmäßigen Durchdringung aller Teile der Füllung bleiben. Sind die Zwischenräume sehr klein, so ist man zu einer wenig fördernden, sehr langsamen Destillation gezwungen, weil jede stärkere Dampfzuführung Kanäle durch die fein gemahlene Füllung brechen oder die Füllung in die Höhe und in den Kühler schleudern würde. Ein mehlfein zerkleinertes Destillationsmaterial wird von dem Dampfe ungleichmäßig durchzogen und kann deshalb nicht ausdestilliert werden.

Ein derartig begrenzt zerkleinertes Destillationsmaterial wird deshalb außer einem freigelegten Teil des ätherischen Öls stets noch eine gewisse kleinere oder größere Menge des Öls in intakten Zellen eingeschlossen enthalten. Bei einzelnen Zerkleinerungsarten, besonders bei dem Zerquetschen wird außerdem ein Teil des ätherischen Öls durch Pflanzenmassen wieder fest zugedeckt. Die Destillation zerquetschter Samen dauert gleiche Dampfzuführung vorausgesetzt, deshalb erfahrungsgemäß länger, als wenn derselbe Samen zerrissen oder gemahlen ist.

Wird das Pflanzenmaterial unzerkleinert destilliert, was bei den Kräutern, Blättern und den meisten Blüten die Regel bildet, so haben wir es nur mit eingeschlossenem Öl zu tun. Das Zerhacken mit der Axt oder das Zerschneiden mit der Häckselschneidemaschine liefert in der Hauptsache nur einen Gewinn für die gleichmäßige Lage der Füllung und für die Gleichmäßigkeit der Dampfdurchdringung; von einem Freilegen von Ölzellen und Poren kann hierbei nur wenig die Rede sein.

Nur was der Wasserdampf direkt berührt, kann er verdampfen, das ist das freigelegte Öl. Das eingeschlossene Öl ist einer unmittelbaren Verdampfung entzogen; es muß ihr erst mit Hilfe des flüssigen Wassers auf dem Wege der Diffusion1) durch die in der feuchten Wärme gequollenen, aber nicht zerrissenen Zellwandungen hindurch zugeführt werden. Die Diffusionstätigkeit arbeitet aber langsamer als die fast momentan erfolgende Verdampfung, sie braucht Zeit, ehe sie alles eingeschlossene Öl herbeigeschafft hat. Hieraus erklärt sich die Ölarmut des Destillates und die relativ lange Dauer der Destillation unzerkleinerter Blätter, Blüten und Kräuter.

5. Ferner wird die Verdampfung des ätherischen Öls in der Pflanze dadurch erschwert, daß in ihm schwer flüchtige oder praktisch nicht flüchtige Substanzen wie Harz, Paraffin und Wachs gelöst sind. Wird das Pflanzenmaterial vor der Destillation zerkleinert, so vermischen sich noch die Inhalte anderer Zellen mit dem ausgetretenen ätherischen Öl und erschweren dessen vollständige Verdampfung außerordentlich. Besonders trifft dies bei dem Zerquetschen von Samen zu, die meistens reichlich fettes Öl enthalten. Auf diese Tatsache wurde früher vielfach hingewiesen und deshalb für gewisse Fälle von einer Zerkleinerung abgeraten, so z. B. bei den fettreichen Früchten der Umbelliferen, dem Kümmel, Anis, Fenchel.

Nach den Untersuchungen in der landwirtschaftlichen Versuchsstation Möckern bei Leipzig²) hatten die ausdestillierten Sämereien, auf Trockensubstanz bezogen, folgenden Fettgehalt (Atherextrakt):

> Kümmel . . . 16,06% Fett Fenchel . . . 16,71 " " Anis 18,59 " Ajowan 33,20 " " Sellerie 31,32 " " Koriander . . . 26,40 " "

¹⁾ Siehe darüber das Kapitel "Die chemisch-physikalischen Vorgänge bei der Destillation des ätherischen Öls aus der Pflanze".

²⁾ P. Uhlitzsch, Monographie der Rückstände der ätherischen Ölfabrikation. Paul Parey in Berlin. - F. Honcamp und T. Katayama. Untersuchung über die Zusammensetzung und Verdaulichkeit einiger Rückstände der ätherischen Ölfabrikation. Landw. Versuchsstationen, 62 (1905), 11.

v. Rechenberg, Gewinnung und Trennung der äther. Öle.

Die lufttrocknen Kümmelfrüchte, wie sie zur Destillation gelangen, haben etwa 15% Feuchtigkeit; unter Annahme von 5,5% ätherischem Öl kommen also auf 5,5% ätherisches Öl 12,8% Fett. Für die Destillation bedeutet das aber die Verdampfung von 5,5 Teilen flüchtigem Öl aus 12,8 Teilen nicht flüchtigem Fett, d. h. es soll ein Fett destilliert werden, das 30% flüchtige Substanzen enthält. Nimmt man für galizischen Fenchel 5% als mittleren Gehalt an ätherischem Öl an, für Anis 3%, Ajowan 3,5%, Sellerie 2,5% und Koriander 1%, so würden folgende Fette zu destillieren sein:

Kümmelfett mit 30 % äther. Öl Fenchelfett " 27 " " " Anisfett " 16 " " " Ajowanfett " 11,5 " " " Selleriefett " 9,7 " " " Korianderfett " 4,2 " " "

Daß diese großen Fettmengen imstande sind, den Dampfdruck und damit die Verdampfung des in ihnen gelösten flüchtigen Öls stark herabzudrücken, ist erklärlich. Hiernach ist es, von anderen Gründen ganz abgesehen, trotz beliebig erhöhter Blasenfüllung ausgeschlossen, bei der Destillation von Samen mit Wasser oder mit Wasserdampf ein total gesättigtes Dampfgemisch zu erhalten. Stets wird das ätherische Öl darin aus ungesättigtem Dampf bestehen, der um so weiter von dem Sättigungspunkte entfernt ist, je mehr der Gehalt an Fett im Samen den an ätherischem Öl überwiegt. Hiermit im Einklang stehen die Erfahrungen in der Praxis bezüglich des Dampfverbrauchs für die verschiedenen Sämereien.

Noch besseren Aufschluß geben aber zwei Destillationsversuche von Gemischen aus Kümmelöl und fettem Aprikosenkernöl, die in demselben Verhältnis hergestellt waren, wie das flüchtige Öl zum fetten Öl in den Kümmelfrüchten steht. Die Destillation bestand aus Wasserdestillation unter Atmosphärendruck, bei dem ersten Versuche unter Ersatz des verdampften Wassers durch reines Wasser, bei dem zweiten durch das Destillationswasser. Die Einlage war jedesmal 1,500 kg Kümmelöl (sp. Gew. 0,9085 beim 1. Versuch und 0,910 beim 2. Versuch) mit 3,50 kg fettem Aprikosenöl und 11 kg Wasser.

1. Versuch.

Fraktion.	im	Spez. Gewicht des			
	Wasser.	Öl.	Öls bei 15°.		
1.	441 g	111 g = 20,1°/o	0,863		
2	408	88 = 17,7	0,865		
2. 3.	461	87 = 15,8	0,8679		
4.	535	93 = 14.8	0,870		
5.	567	86 = 13,1	0,874		
6.	732	98 = 11,8	0,878		
7.	697	78 = 10,0	0,884		
8.	879	83 = 8,6	0,890		
9.	1244	94 = 7,0	0,900		
10.	1435	85 = 5,6	0,914		
11.	1611	77 = 4,5	0,929		
12.	2087	80 = 3,6	0,941		
13.	2052	62 = 2,9	10000		
14.	1820	46 = 2,4	0,953		
15.	1562	35 = 2,1			
16.	2654	54 = 1.9	State of the last		
17.	2987	42 = 1,3	0,962		
18.	3499	41 = 1,1			
19.	3630	28 = 0.76			
20.	4131	21 = 0.5			
21.	3507	11 = 0,3	0,9637		
22.	2728	7 = 0,25	Madrey Co.		
23.	7570	10 = 0,13			
Zusammen	47,217 kg	1,417 kg = 2,91°/	0,904		

2. Versuch.

Fraktion.	Minuten.	Im	Destillat	Spez. Gewicht des		
	Minuten.	Wasser.	Ö1.	Öls bei 15°.		
1.	14	468 g	127 g = 21,3°/o	0,866		
2.	11	481	113 = 19.0	.0,868		
3.	13	424	93 = 17,9	0,869		
4.	12	524	97 = 15,6	0,8735		
4. 5.	18	595	99 = 14,2	0,8775		
6.	22	800	108 = 11,8	0,885		
7.	26	877	97 = 9,9	0,893		
8.	34	1267	106 = 7,7	0,906		
9.	40	1576	101 = 6,0	0,923		
10.	58	2100	103 = 4,9	0,943		
11.	75	2285	86 = 3,6	0,954		
12.	85	2915	90 = 2,9	0,960		
13.	65	2100	56 = 2,5)	0,963		
14.	110	3611	69 = 1,8	0,903		
15.	180	6720	76 = 1,1	0,963		
16.	215	- 8256	41 = 0,49	0,900		
17.	95	3969	7 = 0,17	-		
Zusammen	18 Stunden	38,968 kg	1,469 kg = 3,63%	0,9085		

Red. Barom. bis zur 13. Fraktion 751,85 mm, dann 752,0 mm.

Die Destillationsdauer des ersten Versuches betrug 19 Stunden, die des zweiten 18 Stunden, darnach sind die Destillationsstärken 2,49 St. kg (1. Vers.) und 2,16 St. kg. (2. Vers.)1). Die lebhaftere Dampfentwicklung hat also einen geringeren Ölgehalt des Destillates verursacht, ohne Zweifel, weil die Geschwindigkeit der Dampfbewegung für die Aufnahme an ätherischem Öl ungünstig groß ist, zumal wenn am Schlusse der Destillation die letzten Mengen des flüchtigen Öls aus dem fetten Öl verdampft werden sollen. Man vergleiche diese beiden Destillationen mit denen S. 364 und 365, wo das Kümmelöl ohne das fette Öl mit Wasser destilliert wurde. Der erste Versuch mit dem Gemisch aus Kümmelöl und fettem Öl läßt den Ölverlust nicht klar erkennen, weil das in dem Destillationswasser enthaltene Kümmelöl, das vorzugsweise aus Carvon besteht, noch zu dem Hauptöl zugerechnet werden müßte. Bei dem zweiten Versuch, bei dem das Destillationswasser immer wieder der Blase zugeführt wurde, fehlten 31 g Öl = 2,06% von der Einlage an Kümmelöl, während der zweite Versuch der reinen Kümmelöldestillation mit Wasser (S. 365) nur mit 0,2% Ölverlust verbunden war. Wie in der Praxis fast allgemein bei der Pflanzendestillation, besonders aber bei Samendestillationen, so kann auch hier die Destillation eigentlich nicht fertig geführt werden; das fette Öl hält die letzten Mengen des Kümmelöls zu fest. Man bricht die Destillation schließlich ab, weil Dampf und Zeit nicht mehr im Einklang mit der minimalen Verdampfung an flüchtigem Öl stehen.

Die Seite 363 aus der Praxis mitgeteilten Zahlen des mittleren Ölgehaltes im Destillate von Kümmel, 2,22% bis 3,04%, stimmen mit den hier erhaltenen Zahlen 2,91 % und 3,63 % gut überein. Man erkennt daraus, daß die Depression in der Ölverdampfung bei den Sämereien hauptsächlich durch das nicht flüchtige fette Öl der Samen verursacht wird.

Bei Vergleichung der spezifischen Gewichte der Fraktionen von den vier Kümmelölversuchen ohne und mit fettem Öl ergibt

¹⁾ Die zylinderförmige kupferne Blase, die zu den Versuchen diente, hat einen lichten Durchmesser von 30 cm, also einen lichten Querschnitt von 0,07 qm. Bezieht man die beiden Destillationsstärken auf 1 qm Blasenquerschnitt, so erhält man 35,6 St. kg (1. Vers.) und 30,9 St. kg (2. Vers.), - Für eine Wasserdestillation von Öl unter Atmosphärendruck sind beide sehr mäßige Destillationsstärken, die erfahrungsgemäß ein merkbares Überreißen von Flüssigkeitsteilchen des Blaseninhaltes nicht erwarten lassen.

sich noch die interessante Tatsache, daß das Limonen von dem fetten Öl augenscheinlich in der Verdampfung mehr zurückgehalten wird als das Carvon. Der Dampfdruck des Limonens wird stärker herabgedrückt als der des Carvons. Danach müßte die Lösungsaffinität der Glyceride der höheren Fettsäuren zu dem Limonen größer sein als zu dem Carvon.

Zusammensetzung des Mischdampfes bei verlangsamter Destillation. Es war interessant zu erfahren, wie das Verhältnis von Wasser zu Öl im Destillat von Kümmel bei sehr verlangsamter Destillation ist, weshalb folgende Destillationsversuche angestellt wurden.

In einem zylinderförmigen Destillationsapparate von 0,78 qm lichtem Querschnitt wurden 150 kg zerquetschter Holländer Kümmel mit Wasser- und Dampfdestillation destilliert. Vor Beginn der Destillation lag die Füllung 74 cm hoch. Das Destillationswasser wurde aufgefangen und kohobiert, während in die Blase die gleiche Menge reines Wasser periodisch mit Injektor gegeben wurde. Öl und Wasser im Destillate wurden nach je 30 Minuten gewogen, nur Nr. 18 ist das Destillat von einer Stunde.

```
Destillat
 1. 2,96 kg \ddot{O}l + 15,2 kg Wasser = 16,3 %,
                                         0,867
 2. 1,16 " " + 17,1 "
                                 6,3
                                         0,903
 3. 0,77 , , + 15,1 ,
                              = 4,8
                                         0,928
                              = 3,2 ,,
 4. 0,50 ,, ,, + 15,4 ,,
                                         0,940
                             = 2,8 ,,
5. 0,45 ,, , + 15,1 ,,
                                         0,946
 6. 0,37 ,, + 14,6 ,,
                              = 2.5
                                         0,950
7. 0,37 , , + 15,1 ,
                              = 2.4
                                         0,953
8. 0,34 ,, ,, + 17,9 ,,
                             = 1,8 ,,
                                         0,956
9. 0,27 " " + 17,2 "
                              = 1,5
                                         0,956
10. 0,22 , , + 17,2 ,
                              = 1.2
                                         0,9565
                             = 0,9 ,,
11. 0,16 " " + 16,8 "
                                         0,9565
12. 0,14 " " + 16,7 "
                             = 0.8
                                         0,9565
13. 0,09 " " + 15,5 "
                             = 0,6 ,,
                                         0,9535
14. 0,06 , , + 16,1 ,
                             = 0,37 ,,
15. 0,03 " " + 15,6 "
                             = 0,19 ,,
16. 0,01 " " + 15,8 "
                             = 0,06 "
                                         0,9485
17. 0,005 " " + 16,7 "
                             = 0,03 ,,
18. 0,003 " " + 33,3 " "
                             = 0,009 ,,
   0,40 " " aus dem Destillationswasser
                                         0,961
```

Nehmen wir an, die Destillation wäre eine Stunde früher abgestellt worden, denn die 3 g Öl der letzten Stunde deckten nicht mehr die Kosten von Dampf und Zeit, so betrug die Ölausbeute der 150 kg Kümmel 8,305 kg = 5,53%, die mit 273,1 kg Wasser überdestillierten, so daß also das Destillat im Mittel der ganzen Destillation 2,95% enthielt. Die Destillation dauerte 8,5 Stunden; das spezifische Gewicht des ganzen Öls im Gemisch war 0,912. Da die mittlere Destillationsstärke 32,1 St. kg und der Füllungsquerschnitt 0,78 qm war, so folgt daraus eine Destillationsstärke von 41,2 St.kg für 1 qm Füllungsquerschnitt. Hiermit haben wir uns der Minimalgrenze stark genähert, haben sie aber noch nicht überschritten, denn die Ölausbeute stimmt mit der Ausbeute desselben Kümmels, wie sie im Großbetriebe erhalten wurde, überein. Bei der gewählten Destillationsart kann erfahrungsgemäß die Destillation von zerquetschtem, großkörnigem Holländer Kümmel bis zu etwa 500 St.kg für 1 qm Füllungsquerschnitt gesteigert werden, ehe der Dampf die Füllung durchbricht.

40 St. kg und 500 St. kg! Der Unterschied zwischen diesen beiden Grenzzahlen ist genügend groß, um reichlich Gelegenheit zu vernünftiger Destillationssteigerung bis zu Dampfverschwendung zu geben. Der mittlere Ölgehalt des Destillates, 2,95%, ist den Verhältnissen entsprechend normal.

In derselben Blase wurde noch ein anderer gleichartiger Destillationsversuch gemacht, bei dem die Dampfentwicklung noch mehr eingeschränkt wurde. 150 kg von demselben Holländer Kümmel wurden wieder mit Wasserund Dampfdestillation unter Atmosphärendruck destilliert. Statt der Nachfüllung von reinem Wasser wurde diesmal das Destillationswasser in die Blase zurückgeführt. Halbstündig wurde die Vorlage gewechselt und Öl und Wasser gewogen, nur Nr. 21 umfaßt 5 Stunden Destillation und Nr. 22 3 Stunden 50 Minuten.

00 .		CII.									
									Öl in		spez. Gew.
		-							Destill		des Öls
1.	2,18	kg	Ö1	+	8,8	kg	Wasser		19,8	0/0,	0,863
2.	0,78	"	1)	+	6,5	"	"	-	10,6	"	0,882
3.	0,47	"	"	+	8,9	"	"		5,0	"	0,902
4.	0,41	"	"	+	8,2	"	"		4,8	"	0,920
5.	0,46	"	11	+	12,2	"	,,		3,7	"	0,937
6.	0,25	"	"	+	7,3	"	"		3,3	11	0,943
7.	0,31	11	"	+	9,4	"	1)		3,2	"	0,947
8.	0,28	"	"	+	7,3	"	"		3,7	"	0,949
9.	0,24	"	99	+	8,4	"	"		2,8	"	0,951
10.	0,22	11	"	+	8,3	"	"		2,6	"	0,953
11.	0,16	"	"	+	7,1	"	"		2,2	"	0,954
	0,19	11	"	+	8,4	"	"		2,2	"	0,955
	0,19	"	11	+	8,8	"	"		2,1	"	0,957
	0,15	"	"	+	6,9	"	"		2,1	"	0,957
	0,17	"	"	+	8,1	"	"		2,06		0,958
	0,16	"	"	+	8,9	"	"		1,76		0,957
	0,10	11	"	+	7,0	"			1,41	"	0,956
	0,08			+	7,0		"		1,13	270	0,954
	0,20	11	"	+	10,0	"	"		1,96		0,952
	0,10			+	6,2		"		1,60		0,955
		"	"			"	"				
	0,215		"	+	59,4	11	1)			"	0,9565
22.	0,040	,,	"	+	35,8	"	- 17		0,11	"	-

Insgesamt wurden 7,355 kg Öl = 4,90% vom Kümmel erhalten, zu deren Verdampfung 258,9 kg Wasserdampf erforderlich waren, wonach der Mischdampf im Mittel der ganzen Destillation 2,76% ätherisches Öl enthielt.

Die mittlere Destillationsstärke betrug 14,1 St. kg für 0,78 qm Füllungsquerschnitt oder 18,1 St. kg für 1 qm. Hiermit ist die Dampfgeschwindigkeit durch die Füllung hindurch zu gering geworden, so daß der Wasserdampf nicht alle Zwischenräume der Füllung durchströmen konnte. Die Ölausbeute fiel deshalb zu niedrig aus, die Füllung wurde nicht vollständig ausdestilliert. Der mittlere Ölgehalt des Destillates ist sogar geringer als bei dem vorigen Versuche. Auch der anscheinend höhere Ölgehalt des ersten Vorlaufs, 19,8%, stellt sich in Wahrheit nicht höher, wenn man das spezifische Gewicht dieses Vorlauföls, 0,863, berücksichtigt.

4. Kapitel.

Destillation unter Überdruck oder Minderdruck.

Überdruckdestillation.

Zweierlei Zweck kann man bei der Überdruckdestillation verfolgen; entweder man beabsichtigt, Zersetzungen der organischen Verbindung herbeizuführen, ähnlich wie im Autoklaven, dann ist eventuell der Druck stark zu steigern, oder man wünscht nur eine günstigere Verdampfung zu erzielen, dann wird zur Vermeidung von Zersetzungen mit möglichst geringem Überdruck zu destillieren sein.

Überdruckdestillation mit Wasserdampf zur Verstärkung der Ölverdampfung aus der Pflanze. In manchen Fabriken werden Pflanzenteile, z. B. Iriswurzel, Sandelholz, Gewürznelken, Kümmel, Zweigenden und Nadeln von Koniferen und anderes unter erhöhtem Druck destilliert, mit der Begründung, daß das Verhältnis des Öls zum Wasser im Destillat günstiger sei, also die Destillationsdauer abgekürzt und selbst die Ausbeute erhöht würde. Die Frage ist in theoretischer und praktischer Hinsicht zu erörtern. Was die theoretische Begründung anbetrifft, so erhellt aus der Mischdampftabelle, daß die niedrig siedenden

Kohlenwasserstoffe und anderen hydroxylfreien Verbindungen mit der Steigerung des Druckes im Dampfgemisch abnehmen. Für diese übrigens praktisch auch weniger interessierenden Substanzen würde also die Überdruckdestillation keinen Gewinn bringen. Bei den höher siedenden hydroxylfreien Verbindungen wirkt die Erhöhung des Destillationsdruckes im Mischdampfe wohl ölanreichernd, ist aber bedeutungslos. Anders verhält es sich aber mit den höher siedenden Säuren, Alkoholen und Phenolen, die durch Hydrodestillation bei starker Steigerung des Dampfdruckes erheblich mehr als unter Atmosphärendruck verdampft werden. Freilich, ein oder zwei Atmosphären sind hierbei nicht von wesentlichem Belang. Ein nennenswerter Destillationsgewinn tritt erst mit etwa vier Atmosphären Druck ein. Eine derartige Destillation verursacht jedoch tiefeingreifende und umfangreiche Zersetzungen der Pflanzenmaterie und auch des ätherischen Öls, so daß sie praktisch nicht möglich ist.

Welche Erhöhung des Destillationsdruckes hier oder da benutzt wird, ist dem Verfasser dieser Abhandlung unbekannt, — wohl weniger als eine Atmosphäre über dem normalen Druck. Da nun an der Versicherung, daß diese Art der Pflanzendestillation vorteilhafter als die gewöhnliche unter Atmosphärendruck gefunden wurde, nicht zu zweifeln ist, die Berechnung aber nachweist, daß der höchstmögliche Ölgehalt im Destillate nicht merkbar durch einen solchen Destillationsdruck vermehrt wird, so kann die Erklärung dieser anscheinend merkwürdigen Divergenz der Tatsachen nur darin liegen, daß die letzte Periode des Ausdestillierens, der sich zuweilen lang hinziehende Destillationsschluß, aus mechanischen Gründen abgekürzt wird.

Wird zur Herstellung des erhöhten Destillationsdruckes in der Blase der durch das Übersteigrohr zum Kühler hinströmende Dampf durch einen Hahn oder ein Ventil gedrosselt, so zeigt ein empfindliches Federmanometer, daß im Destillationsraum der Druck schwankt. Durch diese Druckschwankungen wird ein Verharren des Dampfes in zu dicht liegenden Teilen der Füllung verhindert. Bei größeren Schwankungen scheint geradezu die Füllung in all ihren Teilen aufgelockert zu werden. Das betrifft besonders die Dampfdestillation, zum Teil auch die Wasserund Dampfdestillation, wenn die Pflanzenmasse sehr hoch oder sehr ungleichmäßig dicht in die Blase gefüllt ist. Bei der Wassersehr ungleichmäßig dicht in die Blase gefüllt ist. Bei der Wassersehr ungleichmäßig dicht in die Blase gefüllt ist. Bei der Wassersehr ungleichmäßig dicht in die Blase gefüllt ist.

destillation dagegen konnte kein Unterschied zwischen der gewöhnlichen und der Überdruckdestillation bemerkt werden.

Im allgemeinen kann man vielleicht sagen, daß man in der Überdruckdestillation um so mehr einen Gewinn finden wird, je weniger sachgemäß man zuvor bei dem Füllen der Blase und bei der Destillation verfahren hat. In solchem Falle ist es auch erklärlich, wenn durch die Überdruckdestillation eine größere Ölausbeute erzielt wird.

Zur Rektifikation eines ätherischen Öls ist diese Destillationsart mindestens unnötig, weil die Überhitzungsdestillation bei weitem wirksamer ist, und zur Pflanzendestillation ist sie nicht empfehlenswert, weil sie die Bildung von Zersetzungsprodukten sowohl des ätherischen Öls als besonders der Pflanzenmaterie vermehrt.

Maßgebend für Art und Anfang der Zersetzungsvorgänge ist der Grad der Temperatur- und Drucksteigerung und die Zeit der Einwirkung, also die Destillationsdauer. Schon die gewöhnliche Destillation unter Atmosphärendruck läßt das aus zahlreichen flüchtigen Körpern bestehende Ölgemisch, wie es sich in der Pflanze befindet, nicht völlig intakt. Noch weniger verträgt die Pflanzenmaterie eine höhere Destillationstemperatur.

Jede, wenn auch geringe Erhöhung von Temperatur und Druck vermehrt auch die Verunreinigung des Destillates mit Zersetzungsprodukten. Das beweist die Erfahrung immer wieder. Regnault¹) untersuchte rektifiziertes Terpentinöl und Citronenöl hinsichtlich ihres Dampfdruckes. Beide Öle wurden damals noch für einheitlich zusammengesetzte Flüßigkeiten gehalten. Er fand, daß die Messungen bei Citronenöl schon über dem Druck einer Atmosphäre, bei Terpentinöl über 1,5 Atm. hinaus wegen Umsetzung in den Ölen ungenau und unbrauchbar werden. Im Bergamottöl und im Lavendelöl werden durch Überdruckdestillation die Ester bis auf wenige Prozente gespalten, ebenso, aber im geringeren Umfange das Aceteugenol im Nelken- und Nelkenstiel-öl, das Acetsantalol im ostindischen Sandelholzöl. Bei letzterem Öl tritt auch starke Verharzung, wahrscheinlich des Sesquiterpens ein. Durch Wasserdestillation werden die Ester leichter als durch

¹⁾ Mémoires de l'Institut 21 (1847), 487 u. 502.

Dampfdestillation gespalten. Schon bei gewöhnlicher Wasserdestillation unter Atmosphärendruck kann im Verlaufe einer zwölfstündigen Destillation von dem Linalylacetat im Bergamottöl über die Hälfte in Linalool und Essigsäure zersetzt werden. Geranylacetat ist widerstandsfähiger.

Zahlreiche andere Körper, z. B. Fettsäuren, gesättigte Aldehyde, Ketone, Alkohole, Phenole mit einem Hydroxyl, auch gesättigte Kohlenwasserstoffe sind dagegen sehr resistent gegen Druck- und Temperaturerhöhung.

Noch weniger verträgt die Pflanze und deren Teile eine Überdruckdestillation. Zu den erwähnten Umwandlungen der flüchtigen Bestandteile treten ganz allgemein mehr oder weniger tiefgreifende Zersetzungen der nicht flüchtigen Pflanzenmaterie unter Bildung flüchtiger Produkte, die Farbe und Geruch des ätherischen Öls sehr stark verändern können und das Destillat mit soviel fremden Substanzen verunreinigen, daß selbst eine Rektifikation keine normale Beschaffenheit erzielen kann.

Abgesehen von der Esterspaltung, verträgt die Wasserdestillation eher eine Steigerung des Destillationsdruckes als die Wasser- und Dampfdestillation und besonders als die Dampfdestillation.

Die Überdruckdestillation von Pflanzen wird nicht nur in kleinen, sondern hier und da auch in größeren Betrieben angewendet. Sie ist nicht zu empfehlen, wenn die Gewinnung des ätherischen Öls Endzweck der Fabrikation ist. In einzelnen Fällen kann sie vielleicht vorteilhaft sein, wenn das Destillat weiter verarbeitet werden soll.

Die Überdruckdestillation als Mittel zur Zersetzung organischer Verbindungen. Druckblase und Autoklaven dienen im wesentlichen demselben Zwecke, durch die erhöhte Temperatur organische Verbindungen in ihrem Gefüge zu lockern oder zu spalten, durch den erhöhten Druck wieder unter Umlagerung zu vereinigen oder nach Austritt von Spaltungsprodukten zu kondensieren. Das Ergebnis sind Umlagerungs-, Spaltungs- oder Kondensationsprodukte. In der Wirkung sind jedoch Druckblase und Autoklaven etwas verschieden. Bei der Destillation unter erhöhtem Druck werden die Spaltungsprodukte weiterer Einwirkung von Hitze und Druck je nach der Destillationsführung mehr oder weniger schnell entzogen. Es kommt mehr das analytische Moment der erhöhten Temperatur zur Geltung, während die synthetische Wirkung des Druckes zurücktritt. Im Autoklaven dagegen arbeiten ungehindert beide Faktoren.

In der Laboratoriumspraxis wird die Überdruckdestillation noch wenig angewendet. Die in der Literatur darüber angeführten Untersuchungen betreffen vorwiegend Arbeiten in größerem Maßstabe. Schmiedeeiserne Destillationskessel oder solche aus Gußstahl wurden benutzt, die mit Regulierventil ausgestattet waren, so daß es gelang, den Druck bis zur Höhe von 25 Atm. konstant zu erhalten.

Engler¹) arbeitete nach einem den Riebeckschen Montanwerken in Halle patentierten Verfahren, um durch die Zersetzung von Fetten durch Hitze und Druck den Nachweis zu liefern, daß die Erdöle aus tierischen Fetten entstanden seien. Er begann seine Destillation mit einem Drucke von 10 Atm. und einer Temperatur von 320° C. und schloß sie mit einem Drucke von 4 Atm. und einer Temperatur von 400°. Aus 492 kg Tran vom Menhadenfisch erhielt er 60°/0 Destillat von spez. Gewicht 0,8105. An verseifbaren Bestandteilen blieben noch gegen 5°/0 zurück.

Krämer und Spilker²) versuchten durch Druckdestillation von Phenylxylyläthern, dem Nebenprodukt der Schwefelsäurewäsche des Rohxylols, ferner
von Harzöl und von kaukasischem Schmieröl die Konstitution dieser MineralölKohlenwasserstoffe durch das Studium der Spaltungsprodukte aufzuklären. Bei
dem Xylolstyrol gelang die Spaltung schon bei einem Drucke von 10 Atmosphären, wobei die Bildung eines kokehaltigen Rückstandes vermieden werden
konnte. Bei dem Harzöl mußte der Druck bis auf 25 Atm. und die Temperatur
auf 450° gesteigert werden, wobei gegen 10°/0 vom Harzöl an Koken gebildet
wurde. Die Spaltung des kaukasischen Schmieröls (Bakunin), das zwischen
360 und 420° siedet, gelang trotz der Verwendung des für den Apparat
höchstzulässigen Druckes von 25 Atm. und einer Temperatur von ca. 460°
nur unvollkommen.

In interessanter Weise führten T. E. Thorpe und John Young³) die Druckdestillation aus, um aus Schieferkohle dargestelltes Paraffin zu zerlegen. Wenige Gramm des Paraffins wurden in eine starke Verbrennungsröhre, die in der Mitte V-förmig gebogen war, eingeschlossen. Die Röhre wurde mit einem starken Drahtnetz sorgfältig umwickelt und mit seinem das Paraffin enthaltenden Schenkel in einem Gasverbrennungsofen mäßig erhitzt, bis das Paraffin in den anderen nicht erwärmten Schenkel überdestilliert war. Die Röhre wurde nun umgedreht und das Paraffin von neuem überdestilliert. Diese Operation wurde so oft wiederholt, etwa ein Dutzend mal, bis das Destillat nach dem Erkalten teilweise flüssig blieb.

Zur analogen Verarbeitung größerer Mengen Paraffin bedienten sich die Verfasser zweier eiserner Quecksilberflaschen, die durch eine stumpfwinklig gebogene, mit Hahn und Ventil versehene eiserne Röhre verbunden waren. Die Hitze wurde so geregelt, daß ein Druck von etwa 4 Atm. während der ganzen Operation in dem Apparate herrschte. In dieser Weise wurden 3,5 kg Paraffin in einer Destillation in 5 Stunden überdestilliert. Das verwendete Paraffin hatte ein spezifisches Gewicht von ca. 0,906 bei 13° einen Schmelz-

¹⁾ Berl. Berichte 21 (1888), 1816 u. 22 (1889), 592.

²⁾ Berl. Berichte 33 (1900), 2265.

³⁾ Liebigs Annalen 165 (1873), 1.

punkt von 46° und einen Erstarrungspunkt von 43°. In dem Destillat wurde nach sorgfältiger Untersuchung ein Gemisch von flüssigen Paraffinen und Olefinen, von Pentan und Amylen an aufwärts, nachgewiesen.

In der Technik wird die Überdruckdestillation vereinzelt benutzt, so greift man z. B. in der Mineralölindustrie hin und wieder zu ihr, wenn eine nach der Handelskonjunktur nicht gut verkäufliche höher siedende Fraktion in eine spezifisch leichtere übergeführt werden soll. Zuerst wurde dies Verfahren in der schottischen Schieferölindustrie¹) angewendet. Redwood²) gibt an, daß ein Paraffinöl von 0,845 bis 0,860 spez. Gew., unter einem Drucke von 3,8 Atm. (nach absoluter Rechnung) destilliert, 50 bis 70% Öl von spez. Gew. 0,820 liefert. Wurden die Rückstände zweier solcher Destillationen noch einmal unter demselben Druck destilliert, so wurden noch 8 bis 10% spezifisch leichtes Öl, auf das ursprüngliche Ölgewicht berechnet, erhalten. Die Blase war ein liegender Zylinder, der durch Feuer geheizt wurde.

In Deutschland wurde später dies Hilfsmittel, schlecht verkäufliche Schweröle in Leichtöle zu verwandeln, ebenfalls angewendet.³) Den Riebeckschen Montanwerken in Halle wurde auf dasselbe Verfahren ein deutsches Patent⁴) verliehen. Nach der Patentschrift geben schwere dunkle Paraffinöle (Braunkohlenteeröl), Rohpetroleum oder die Rückstände seiner Raffinierung, sowie der Teerrückstand, der bei der Bereitung des Ölgases aus Paraffinöl oder aus Petroleumrückständen resultiert, bei ihrer Destillation unter Druck infolge weitergehender Zersetzung reiche Ausbeuten an Benzin und Leuchtölen. Der Blasenrückstand ist als Schmieröl oder Asphaltöl verwendbar. Für schweres Paraffinöl eignet sich am besten ein Destillationsdruck von 3 bis 6 Atm., für Rohpetroleum und dessen Residuen ein Druck von 2 bis 4 Atm., für Ölgasteer von 4 bis 6 Atm.

Die Druckblase hat die Form eines stehenden Zylinders, besteht aus Gußstahl und ist mit Sicherheitsventil, Füllstutzen usw. armiert. Durch Übersteigrohr steht sie mit dem Kühler in Verbindung. Übersteigrohr und Kühlrohr können engrohrig sein. Im Übersteigrohr befindet sich das Druckventil, das sich selbsttätig aushebt, d. h. öffnet, sobald der zur Zersetzung gewünschte Druck erreicht ist. Die Heizung geschieht durch Feuer; bei dem Anheizen wird zuerst ohne Druckgabe die Luft aus der Blase getrieben. Hierauf wird das Ventil auf den gewünschten Druck eingestellt.

Zur Erkennung der Wirkung werden in der Patentschrift Destillationsbeispiele aus dem Großbetriebe wiedergegeben.

¹⁾ James Young Engl. Patent v. 27. Dez. 1865, Nr. 3345.

²) Die Mineralöle von Iltyd Redwood, übersetzt von Dr. Singer, Leipzig 1898, S. 192 u. 276.

³) Die Industrie des Steinkohlenteers u. Ammoniaks von Dr. G. Lunge, IV. Aufl. von Dr. H. Köhler, Braunschweig 1900, 1. Bd., S. 481. — Das Erdöl, Dr. A. Veith, Braunschweig, 1892, S. 92.

⁴) D. R. P. v. 28. Febr. 1886, Kl. 24, Nr. 37728.

Minderdruckdestillation.

Trockene Öldestillation unter verringertem Druck. Zur Fraktionierung ätherischer Öle oder anderer flüchtiger Substanzen von mittlerer Siedetemperatur wird aus der Fülle von Destillationsarten die Minderdruck- oder Vakuumdestillation, wie sie gewöhnlich genannt wird, am meisten benutzt, im Laboratorium fast ausschließlich, in der Technik vorzugsweise. Ihre Anwendung im Fabrikbetriebe zu erörtern, liegt außerhalb des Rahmens meiner Aufgabe. Den Siedetemperaturen unter vermindertem Druck ist ein besonderes Kapitel gewidmet.

In die Praxis des Laboratoriums hat sie F. Krafft¹) durch seine Destillationen höherer Fettsäuren im Jahre 1877 eingeführt. Er arbeitete damals noch mit einem Destillationsdruck von 100 mm, während es ihm später²) gelang, die Luft in dem Destillationsapparate so weit zu verdünnen, daß in einer zwischen Vorlage und Luftpumpe eingeschalteten Hittorfschen Röhre das durch deutsche Gläser apfelgrün leuchtende Kathodenlicht erstrahlte, was einem Druck von etwa 0,001 mm Quecksilberhöhe entspricht. Er konnte so unter vielen anderen Körpern Coffeïn, Codeïn, Indigo ohne Zersetzung überdestillieren und die Milchsäure kristallisierfähig rein erhalten.

Anschütz hat die Vakuumdestillation den einfacheren Mitteln des Laboratoriums sehr geschickt angepaßt und durch seine bekannte Broschüre eigentlich erst populär gemacht.

Über Verfahren und Apparate zur Destillation unter Minderdruck im Laboratorium ist besonders folgende Literatur zu nennen: Anschütz. Die Destillation unter vermindertem Druck. 2. Aufl. 1895.

Lassar-Cohn. Arbeitsmethoden für organisch chemische Laboratorien. L. Voß, Leipzig, 4. Aufl. 1906, S. 56.

Kahlbaum. Siedetemperatur und Druck, Leipzig, 1885. Studien über Dampfspannkraftmessungen, Basel, Bd. I, 1893, Bd. II., 1897.

Krafft, siehe Literatur zur Siedetemperaturtabelle, 9. Kapitel.

Fischer u. Harries, Berl. Berichte 35 (1902), 2158.

Liebermann u. Rieber. Destillationen und Siedetemperaturen im sogenannten absoluten Vakuum des Krafftschen Destillierapparates.

C. N. Rieber. Ein neuer Sublimationsapparat. Berl. Berichte 33 (1900), 1655.
R. Kempf. Praktische Studien über Vakuumsublimation. Journ. f. prakt. Chem. II. 78 (1908), 201.

") Krafft und Weilandt, Berl. Berichte 29 (1896), 1316 u. 2240.

¹⁾ F. Krafft. Über die Destillation von Rizinusöl im luftverdünnten Raume. Berl. Berichte 10 (1877), 2034.

Hydrodestillation von ätherischem Öl unter verringertem Druck. Sie kann als Wasserdestillation oder als Dampfdestillation angewendet werden. Das, was diese eigenartige und im allgemeinen wenig bekannte Destillationsart besonders kennzeichnet, die niedrige Destillationstemperatur, bildet auch die Grenze ihrer Verwendbarkeit, denn nach der Mischdampftabelle sinkt bei den höher siedenden Körpern mit der Erniedrigung des Druckes die Verdampfungsfähigkeit auf so geringe Größen, daß von einer fördernden Destillation nicht mehr die Rede sein kann.

Da die Destillationstemperatur so niedrig gewählt werden kann, wie das Kühlwasser noch im Stande ist, die Dämpfe zu kondensieren, so ähnelt dies Verfahren in seiner Anwendung als Dampfdestillation der Operation, wenn Luft oder Kohlensäure durch eine Flüssigkeit getrieben wird. Hierbei besteht jedoch der bemerkenswerte Unterschied, daß man dem indifferenten Gase die mitverdampfte Substanz durch Absorption entziehen muß, ohne doch einer vollständigen Gewinnung des verflüchtigten Körpers sicher zu sein, während man den Wasserdampf nur zu kondensieren braucht, um das verdampfte Öl ohne Verlust zu erhalten.

Sie eignet sich zur Rektifikation von Flüssigkeiten mittlerer Flüchtigkeit, die keine Erhitzung vertragen, auch zur Reinigung höher siedender Gemische, die nur von leichter flüchtigen oder geringen Mengen schwerer flüchtiger Verunreinigungen befreit werden sollen.

Ist die Gegenwart des Wassers nicht unbequem oder schädlich, so ist das Verfahren der Hydrodestillation unter Minderdruck auch anwendbar, um aus einem Extrakte das Lösungsmittel oder den letzten Rest des Lösungsmittels zu entfernen, oder um ein Reaktionsgemisch, das nicht höher erwärmt werden darf, von flüchtigen Körpern zu befreien. Breiige Massen, aus denen übrigens selbst verhältnißmäßig leichter flüchtige Substanzen schwierig vollständig abzudestillieren sind, müssen hierzu im Wasser fein verteilt werden. Damit ein etwaiges Ansetzen auf dem Boden der Blase und jede stärkere Erhitzung vermieden wird, kann es vorzuziehen sein, ohne indirekte Heizung der Blase nur mit direkt einströmendem Kesseldampf zu destillieren, dessen Tension zuvor reduziert worden ist.

Fraktionierung eines Flüssigkeitsgemisches unter Minderdruck oder Atmosphärendruck, mit oder ohne Wasserdampf. Seite 356 wurde aus den Daten der Mischdampftabelle gezeigt, wie die Verdampfung der höher siedenden Körper bei ihrer Destillation mit Wasser zurückgeht, und daß der Ölgehalt im Destillat besonders stark durch Vakuumdestillation verringert wird. Um zu erkennen, ob dieses Verhalten höher siedender Körper zur Trennung von Flüssigkeitsgemischen benutzbar ist, wurde eine Reihe von Destillationen ausgeführt, die nebenbei einen Vergleich der verschiedenen Destillationsverfahren in dieser Hinsicht geben.

Zu den Versuchen¹) diente Kümmelöl, das zu ungefähr gleichen Teilen aus Limonen (Sdp. 175°) und Carvon (Sdp. 231,8°) besteht. Das Destillat wurde in Fraktionen aufgefangen, deren Ölmenge ungefähr gleich war. Der Carvongehalt im Öldestillat wurde aus dem spezifischen Gewichte berechnet, wobei für Limonen das spezifische Gewicht 0,848 bei 15° zu Grunde gelegt wurde und für Carvon 0,965 bei 15°. Die Berechnungsformel ist

$$x = \frac{a - 0,848}{0,965 - 0,848} \cdot 100$$

worin für a das spezifische Gewicht der fraglichen Fraktion einzusetzen ist. x bedeutet den Carvongehalt in Prozenten. Die ersten 6 Versuche wurden mit demselben Kümmelöl in derselben Blase ausgeführt, der 7. Versuch in einer anderen Blase. Sobald Carvon von spezifischem Gewicht über 0,964 überdestillierte, wurde jedesmal der Versuch abgebrochen.

1. Wasserdestillation unter Atmosphärendruck aus einfacher Blase ohne Fraktionierkolonne mit stetem Rücklauf des Destillationswassers in die Blase. Füllung: 93,5 kg Kümmelöl und Wasser.

```
1. Fraktion 11,1^{\circ}/_{\circ} Carvon 2. , 11,1^{\circ}/_{\circ} ,, 3. , 12,4^{\circ}/_{\circ} ,, 4. , 14,5^{\circ}/_{\circ} ,, 5. , 17,9^{\circ}/_{\circ} ,, 6. , 22,2^{\circ}/_{\circ} ,, 7. , 31,6^{\circ}/_{\circ} ,, 8. , 47,9^{\circ}/_{\circ} ,, 9. , 83,8^{\circ}/_{\circ} ,,
```

Blasenrückstand, Carvon 24,8 kg = 26,4% der Füllung.

2. Wasserdestillation unter Atmosphärendruck aus einer Kolonnenblase mit Rücklauf des Destillationswassers. Füllung: 155,0 kg Kümmelöl und Wasser.

¹⁾ Bericht v. Schimmel & Co. April 1908, 165.

```
1. Fraktion 5,5% Carvon
               6,400
2.
3.
               6,40/0
       11
                          33
4.
              11,1%
                                   95,31 kg \tilde{O}1 = 61,5^{\circ}/_{\circ} der Füllung.
5.
              15,8%
6.
              13,2%
       11
                          22
7.
              27,40/0
       33
8.
              72,6%
```

Blasenrückstand, Carvon 59,25 kg = 38,2% der Füllung.

Bis zur 5. Fraktion wurde die Kolonne nur unvollständig angewendet, von da an trat vollständige Benutzung der Kolonne ein, weshalb die nächste Fraktion sofort wieder reicher an Limonen wurde. Die fraktionierende Wirkung der Kolonne ist also klar ersichtlich, auch in der Vermehrung der Reincarvon-Gewinnung, 38% im Vergleich zu 26%, bei der Wasserdestillation aus einfacher Blase.

3. Wasserdestillation unter Atmosphärendruck aus Kolonnenblase mit sorgfältiger Anwendung der Kolonne von Destillationsbeginn an. Wieder Rücklauf des Destillationswassers. Füllung: 93,7 kg Kümmelöl und Wasser.

```
1. Fraktion 2,2% Carvon
             2,20/0
2.
3.
             3,0%
      23
             3,40/0
4.
                              45,62 \text{ kg Ol} = 48,7\% der Füllung.
             5,60/0
5.
                      33
6.
             7,3%
      "
7.
            14,5%
      ,,
            69,2%
                               7,8 kg \ddot{O}l = 8,3\% der Füllung.
                      11
   Blasenrückstand, Carvon 39,18 kg " = 41,7%, "
```

Die Carvon-Fraktion ist noch etwas größer, die Vorläufe sind ärmer an Carvon.

4. Vakuumdestillation aus einfacher Blase ohne Kolonne, trockene Öldestillation ohne Wasser oder Wasserdampf, Füllung 153,4 kg Kümmelöl. Die Destillation wurde so stark getrieben, wie der Kühler zuließ; der Destillationsdruck war schwankend, gegen 50 mm bei dieser wie bei den folgenden Destillationen.

```
1. Fraktion 11,1% Carvon
2.
             11,1%
3.
             12,9%
      "
                        99
             14,5%/0
4.
                                 111,98 \text{ kg Ol} = 73,0\% \text{ der Füllung.}
5.
             16,6%
                        55
             21,8%
                        55
7.
             30,8%
8.
             46,6%
             71,8%
```

Blasenrückstand, Carvon 40,0 kg Öl = 26,0% der Füllung.

5. Der Versuch wurde genau gleich dem vierten angestellt, nur wurde sehr langsam destilliert, damit die geringe Fraktionierung mehr zur Geltung kommen konnte, die durch die partielle Kondensation des Dampfgemisches an den inneren Wandungen der Blase und des Blasenhelmes infolge der Abkühlung von außen stattfindet. Füllung 91,0 kg Kümmelöl.

```
1. Fraktion 10,7% Carvon
            8,5%
            8,900
3.
     33
                             54,63 \text{ kg Ol} = 60,0\% der Füllung.
           11,5%
4.
           14,5%
5.
           19,6%
6.
           27,4%
7.
    "
           55,5%
```

Blasenrückstand, Carvon 35,5 kg Öl = 39,0% der Füllung.

Durch die langsamere Destillation wurde demnach mehr Reincarvon gewonnen.

6. Trockene Öldestillation im Vakuum aus einer Kolonnenblase. Wegen des aus irgend einem Grunde schlechteren Vakuums, gegen 80 bis 90 mm, konnte die Kolonne nur unvollständig benutzt werden. Die Füllung betrug 153,8 kg Kümmelöl.

```
1. Fraktion 2,6% Carvon
2.
              0,3%
                                    60,3 \text{ kg} = 39,2^{\circ}/_{\circ} \text{ nahezu reines}
              0,0%
3.
                                                     Limonen.
              0,3%
4.
              0,8%
5.
             32,1%
6.
                                    31.8 \text{ kg} = 20.6^{\circ}/_{\circ} \text{ Mittellauf.}
            46,0%
7.
      11
8.
             65,0%
```

Blasenrückstand 60,3 kg = 39,2% Carvon.

7. Zum Schluß sei der entscheidende Versuch einer Destillation mit Wasser unter vermindertem Drucke wiedergegeben. Die Füllung bestand aus 24 kg Kümmelöl mit genügend Wasser, so daß es die durch den Doppelboden erhitzten Metallwände der Blase überdeckte. Die Blase war eine einfache Kugelblase ohne Kolonnenaufsatz. Die Heizung war indirekt. Das Wasser vom Destillat wurde nach jeder Abnahme der Fraktion in die Blase zurückgegeben.

Fraktionierung von Kümmelöl aus einfacher Blase durch Wasserdestillation unter Minderdruck.

Fraktion.	Im Destillat		% Ö1 im	Carvon-	Destillations-
	Wasser.	Ö1.	Destillat.	Gehalt des Öls.	Temperatur.
1	6,4 kg	0,82 kg	11,3%	17,9%	
2	7,0	0,83	10,6	25,7	390
3	15,0	1,40	8,54	32,5	D. Elevis de
4	17,5	1,82	9,42	30,0	55
5	17,0	1,93	10,2	31,6	55
6	15,0	1,37	8,37	44,4	53
7	17,0	1,57	8,45	44,8	52
8	21,5	1,70	7,33	47,9	52
9	19,0	1,39	6,33	55,5	51
v. Reche	nberg, Gewinnu				25

Fraktion.	lm Destillat		% Öl im	Carvon-	Destillations-
	Wasser.	Öl.	Destillat.	Gehalt des Öls.	Temperatur.
10	23,0	1,29	5,31	70,1	50
11	22,0	1,03	4,47	81,0	50
12	24,5	1,00	3,92	95,7	50
13	29,0	1,19	3,91	98,3	52
14	28,5	1,21	4,07	99,2	51
15	28,5	1,00	3,39	98,3	52
	290,9	19,55	6,30		

Die Vakuumdestillation wurde nach der 15. Fraktion abgebrochen und das letzte Öl in der Blase unter Atmosphärendruck abdestilliert. 1,76 kg Öl mit dem spezifischen Gewicht 0,963 wurden noch erhalten, im ganzen also 21,31 kg Öl von 24,0 kg der Füllung. Dieser große Destillationsverlust ist nicht der normale einer Wasserdestillation im Vakuum. Der Ablaufhahn unten an der Blase schloß zwar soweit, daß kein Wasser abtropfte, war aber nicht vollständig dicht, so daß fortgesetzt Luftblasen während der Destillation durch Wasser und Öl aufstiegen und nach der Größe ihres Volumens entsprechend der Temperatur des Destillats (etwa 15°) Öl mit in die Luftpumpe nahmen.

Die Destillation unter Minderdruck hatte 13 Stunden gedauert. Die Destillationsstärke betrug also 22,4 St. kg.

Statt der erwarteten besseren Fraktionierung erhalten wir hiernach das eigentümliche Resultat, daß die Vakuumdestillation mit Wasserdampf das Ölgemisch am schlechtesten getrennt hat. Nicht einmal reines Carvon wurde erhalten. Einige Überlegung läßt uns auch den Grund finden. Bei allen vorhergehenden Versuchen gibt das Mischungsverhältnis im Destillat nicht die Zusammensetzung des unmittelbar aus siedender Flüssigkeit sich erhebenden Dampfgemisches wieder, auch nicht bei den Destillationsversuchen ohne Benutzung einer Fraktionierkolonne.

Trotz der Bekleidung der Blase mit Wärmeschutzmasse wird ein Teil des aufsteigenden Dampfes an den inneren Blasenwandungen, besonders am Dom und dem aufsteigenden Ast des Übersteigrohrs, kondensiert und von dem darüber hingleitenden Dampfe redestilliert. Es findet also in der Blase teilweise eine Entmischung, eine Fraktionierung statt, die bei allen Versuchen ziemlich gleich sein wird, da ein und dieselbe Blase verwendet wurde, und da die Destillationstemperatur, also auch die Abkühlung annähernd die gleiche ist; nur nicht bei dem letzten Versuche, bei dem die Destillationstemperatur erheblich niedriger, also auch die Abkühlung geringer war. Dazu kommt noch als besonderer Umstand, der jede Fraktionierung eines Dampfgemisches wesentlich erschwert, daß bei diesem Versuche unter vermindertem Druck, dieselbe Destillatmenge vorausgesetzt, der Dampf entsprechend seiner geringeren Masse mit verstärkter Geschwindigkeit in die Höhe gerissen und in den Kühler gejagt wird. Vergleicht man die Wasserdestillationen unter

Atmosphärendruck mit einer Destillationstemperatur von etwa 99° und die Destillation unter verringertem Druck mit der Temperatur 50 bis 55°, so hatte bei der letzteren die Aufwärtsbewegung des Dampfgemisches in der Blase ungefähr die sechsfache Geschwindigkeit. Deshalb trat auch bei der Wasserdestillation unter Minderdruck sofort eine kleine Besserung in der Fraktionierung ein, als sich die Destillationstemperatur von 39° auf 55° erhob.

Der Versuch hat also die Frage nicht zu beantworten vermocht, ob bei der Hydrodestillation eine Herabsetzung der Verdampfungstemperatur auf die Trennung eines Gemisches, das aus einem niedrig und einem hochsiedenden Körper besteht, günstig wirkte. Trotzdem ist der Versuch für die Praxis der Destillation sehr lehrreich, denn er zeigt, welche Faktoren auf die Fraktionierung eines Flüssigkeitsgemisches von entscheidendem Einfluß sein können.

Ziehen wir die Schlußfolgerungen aus diesen Versuchen, die die Unterschiede in der Trennung ein und desselben Ölgemisches zeigen, je nachdem es unter Atmosphärendruck oder unter Minderdruck mit Wasser oder trocken destilliert wird.

Bei den ersten drei Versuchen wurde das Öl mit Wasser zusammen unter demselben Druck destilliert. Aus ihnen erhellt
der Trennungserfolg durch die Benutzung einer fraktionierenden
Kolonne. Also durch einen leistungsfähigen Blasenaufsatz wird
auch durch Wasserdestillation ein Gemisch flüchtiger Substanzen
sehr viel besser in die Bestandteile getrennt als durch Destillation aus einfacher Blase. In diesem Grade war es von
vornherein nicht anzunehmen, denn es ist zu bedenken, daß
von dem in die Kolonne aufsteigenden Dampfstrom nur ein Teil,
und zwar meistens ein kleiner Bruchteil, aus dem flüchtigen Öl
besteht, dessen Kondensat in der Kolonne vielfach durch Wasser
verdeckt und der Redestillation entzogen wird.

Die andern drei Versuche stellen Destillationen desselben Öles dar, wieder ohne und mit Fraktionierkolonne, aber alle drei ohne Beihilfe von Wasser. Der Destillationsdruck war zwischen 50 und 60 mm, die Destillationstemperatur einige 90° zu Beginn eines Versuches. Auch diese Versuche lassen auffallend stark die fraktionierende Wirkung der Kolonne mit Dephlegmator erkennen.

Vergleichen wir nun die beiden Versuchsreihen gegenseitig, also Destillation mit Wasser und ohne Wasser.

Versuch 1 und 4: Die Fraktionierung ist dieselbe, ob mit Wasser oder trocken destilliert wird, wenn, wie hier, die Ölbestandteile keine bemerkenswert verschiedene Löslichkeit in Wasser haben.

Versuch 3 und 4: Eine leistungsfähig konstruierte Kolonne vermag auch bei Wasserdestillation soweit fraktionierend zu wirken, daß im Vergleich damit das Ölgemisch durch trockene Destillation aus einfacher Blase erheblich schlechter getrennt wird.

Versuch 3 und 6: Die beste Trennung eines Gemisches flüchtiger Substanzen wird durch trockene Destillation mit Kolonne erreicht. Sie gab als einzige von allen Destillationsarten reines Limonen im Vorlauf, trotzdem bei Versuch Nr. 6 die volle Leistungsfähigkeit der Kolonne, wie bei dem dritten Versuche,

nicht einmal in Anspruch genommen war.

In besonderen Fällen, wenn die Siedepunkte der Komponenten des Ölgemisches nahe zusammen liegen, und der höher siedende Bestandteil in Wasser reichlich löslich ist, z. B. m. oder p. Kresol und Linalool, Thymol und Carvon, Benzoesäure und Anisaldehyd, wird die Wasserdestillation wirksamer als die trockene Destillation sein. Ist der Löslichkeitsunterschied beider Komponenten des Gemisches in Wasser groß, so daß also der Dampfdruck des löslicheren Bestandteils stark herabgedrückt wird, so muß selbst eine Wasserdestillation aus einfacher Blase das Gemisch besser als eine trockene Destillation in einer Kolonnenblase zu trennen vermögen.

Soll die Lösungsaffinität zu Wasser voll zur Geltung kommen, so ist Wasserdestillation und nicht Dampfdestillation zu wählen. Bei der Fraktionierung eines flüchtigen Flüssigkeitsgemisches im Vakuum, besonders wenn sie durch Hydrodestillation geschehen soll, muß die Dampfbewegung in der Blase möglichst gemäßigt werden, weil andernfalls die Tätigkeit einer sonst wirksamen Fraktionierkolonne beeinträchtigt wird.

Zur Trennung hochsiedender Flüssigkeitsgemische ist die Hydrodestillation unter Minderdruck unbrauchbar, weil sie zu zeitraubend wird.

Kondensation der Dämpfe. Damit bei der Destillation schwerer flüchtiger Körper die Verdampfung durch gesteigerte Destillation gefördert werden kann, muß die Vakuumblase Steigraum für die kochende Füllung, besonders aber eine sehr ausgedehnte Kühleranlage besitzen, etwa das Fünffache der bei Destillation unter Atmosphärendruck genügenden Kühlfläche. Eine Rechnung möge die unterschiedliche Leistungsfähigkeit ein und desselben Kühlers je nach der Destillationstemperatur klarstellen.

Unter Atmosphärendruck bei ca. 100° Destillationstemperatur kann 1 kg Kühlwasser von 10° zur Kondensation des Dampfes und zur Abkühlung des Kondensates höchstens 100-10=90 Cal. aufnehmen. In der Praxis wird aber selten das Kühlwasser mit Siedetemperatur ablaufen. Um an der Kühlergröße zu sparen, wird man lieber Kühlwasser verschwenden und einen für die Destillationsstärke zu kleinen Kühler benutzen, so daß das Kühlwasser höchstens bis zu etwa 70° erwärmt wird. Für die Rechnung möge jedoch die sparsame Ausnutzung des Kühlers bis zum theoretischen Maximum angenommen werden. Bei einer Temperatur des Dampfes von 50° beträgt die höchstmögliche Wärmeaufnahme nur 40 Cal. Das sind die Wärmemengen, die 1 kg Kühlwasser je nach der Destillationstemperatur aufnehmen kann. Halten wir die Wärmesumme dagegen, die einem Kilogramm Wasserdampf von 100°, 50° oder 30° zur Kondensation und zur Kühlung des Kondensats bis auf 200 entzogen werden muß.

```
1. Einem kg Wasserdampf von 100^{\circ} = 536,5 + (100 - 20) = 616,5 Cal. 2. " " " 50^{\circ} = 536,5 + (50 - 20) = 566,5 " 3. " " 30^{\circ} = 536,5 + (30 - 20) = 546,5 "
```

Hierzu sind erforderlich:

```
1. 616,5/90 = 6,85 kg Kühlwasser
2. 566,5/40 = 14,16 ,, ,,
3. 546,5/20 = 27,33 ,, ,,
```

Die Vakuumdestillation mit Wasserdampf bei 30° unter einem Druck von 31,5 mm verlangt also im Vergleich zur Destillation unter Atmosphärendruck mindestens die viereinhalbfache Kühlwassermenge.

An und für sich ist hiernach die Wärmemenge, die dem Dampfe zur Kondensation und zur Kühlung des Kondensats bei der Vakuumdestillation entzogen werden muß, geringer als bei der Destillation unter Atmosphärendruck. Es liegt nur an dem Kühlwasser, dessen Fähigkeit zur Wärmeaufnahme mit der Minderung der Destillationstemperatur sinkt, so daß also die Kühlfläche des Kühlers schlechter ausgenutzt wird. Hierzu tritt noch als besonderer Umstand, durch den die Leistungsfähigkeit des Kühlers beeinträchtigt wird, daß das Dampfgemisch bei der Hydrodestillation unter Minderdruck mit sehr großer Geschwindigkeit in den Kühler getrieben wird.

Beträgt z. B. die Destillationsstärke 200 St.kg, d. h. in einer Stunde werden 200 kg Destillatwasser1) erhalten, so hat diese Wassermenge in Form von gesättigtem Dampf ein Volumen von

1, 330 cbm bei 100° unter 750 mm Druck

2. 2410 ,, ,, 50° ,, 3. 6654 " " 30° " 31,5 ,,

Zur Berechnung der Dampfgeschwindigkeit in dem zum Kühler führenden Übersteigrohr sei dessen lichte Weite zu 100 mm, also dessen Querschnitt zu 0,0785 qm angenommen. Die Geschwindigkeit ist durch das Verhältnis des Volumens zum Querschnitt ausgedrückt. Da das Dampfvolumen in einer Sekunde

1) 0,092, 2) 0,670 3) 1,847 cbm

beträgt, so ergibt sich hieraus eine Dampfgeschwindigkeit in einer Sekunde von

1. 0,092/0,0785 = 1,17 m

2. 0,670/0,0785 = 8,53 m3. 1,847/0,0785 = 23,53 m

Mit diesen Geschwindigkeiten strömt der Dampf in den Kühler hinein. Daß ein derartiger Sturmwind von über 23 m in 1 Sek. nur schwierig seine höhere Wärme an die nur wenige Grade kühlere Metallfläche abgibt, ist wohl erklärlich.

Diese Schwierigkeit in der Kondensation der Dämpfe bei der Vakuumdestillation zeigt sich jedoch nur dann, wenn die Verdampfung mit Hilfe des Wasserdampfes ausgeführt wird. Bei trockner Öldestillation ist sie nicht vorhanden, weil man sich hierbei, da das Destillat nur aus dem ätherischen Öl besteht, mit einer geringeren Destillationsstärke begnügt. Übrigens ist auch die Verdampfungswärme aller flüchtigen organischen Verbindungen bedeutend geringer als die des Wassers.

Pflanzendestillation. Zwei Fälle sind hierbei zu unterscheiden. denen auch ein verschiedener Zweck zu Grunde liegt, nämlich die Destillation unter gering vermindertem Druck und die eigentliche Vakuumdestillation unter so niedrigem Druck, daß die Destillationstemperatur gerade noch genügend hoch über derjenigen des Kühlwassers liegt, um die Dämpfe vollständig kondensieren zu können.

¹⁾ Das in dem Destillat außer dem Wasser noch vorhandene ätherische Ol hat als Dampf keinen besonderen Raum in der Blase eingenommen. Derselbe Raum, der das Wasser als gesättigten Dampf enthält, hat auch den Öldampf mit aufgenommen.

Wie die nachstehend wiedergegebenen Destillationsversuche zeigen, wird die Destillationsdauer erheblich abgekürzt, wenn in dem Destillationsraum der Blase der Druck herabgesetzt wird. Diese Versuche wurden in einer kleinen Blase mit etwa 30 Liter totalem Fassungsraum ausgeführt, die mit Wärmeschutzmasse in ca. 5 cm dicker Lage bekleidet ist.

Zuerst wurden 5 kg zerquetschter Holländer Kümmel in gewöhnlicher Weise unter Atmosphärendruck durch Dampfdestillation destilliert. Die Destillation dauerte 11 Stunden und gab 241 g = 4,82% Öl, dessen spezifisches Gewicht 0,9194 war, während nach zwei vergleichsweise ausgeführten Destillationen von je 100 kg desselben Kümmels in einer größeren Blase 5,30% Öl mit dem spezifischen Gewichte 0,9179 und 5,50% mit 0,914 spez. Gewicht erhalten wurden. Die Unterschiede in der Ölausbeute gehen parallel mit Unterschieden im spezifischen Gewichte der Öle, d. h. der höhere Ölertrag hat auch jedesmal Öl von geringerem spezifischem Gewichte geliefert. Nicht unvollständige Destillation, sondern Abdunsten von Öl von dem zerguetschten Kümmel vor der Destillation war die Ursache. Vorzugsweise war Limonen, derjenige Bestandteil des Kümmelöls, dem im Vergleich zum Carvon ein niedrigerer Siedepunkt und ein geringeres spezifisches Gewicht eigen ist, verloren gegangen. Man kann hier wieder erkennen, was früher näher besprochen wurde, wie große Ölverluste durch Abdunsten in der Luft entstehen können. Zu diesen Destillationsversuchen wurde der Kümmel, dessen Ölzellen durch Zerquetschen freigelegt waren, nur durch Absondern von dem großen Haufen und Abwägen etwas mehr durchlüftet1).

Die genannte kleine Blase wurde mit einer Luftpumpe verbunden. Als Füllung erhielt sie 5 kg zerquetschten Kümmel und das zu einer Wasser- und Dampfdestillation erforderliche

¹) Überzeugend redet folgender kleiner Versuch. 100,09 g zerquetschter Kümmel wurde offen auf die Schale einer Wage gegeben und genau abgewogen. Der Kümmel wurde nun auf einen Bogen Papier und dann sofort wieder auf die Wagschale geschüttet, wonach er 0,5 g weniger wog. Also die einfache Manipulation des Abwiegens veranlaßte einen Gewichtsverlust durch Verdunstung von 0,5%, der ganz oder wenigstens hauptsächlich aus ätherischem Öl bestand, denn der Kümmel war lufttrocken und hatte im zerquetschten Zustande in einer Kiste mit locker aufgelegtem Deckel gelegen, die schon mehrere Wochen in dem Versuchsraume gestanden hatte.

Wasser. Diese Destillationsart wurde an Stelle der Dampfdestillation gewählt, damit jede Möglichkeit einer Überhitzung des Wasserdampfes ausgeschlossen war. Von Zeit zu Zeit wurden die Höhe des Dampfdruckes und die Temperatur des Dampfes in der Blase abgelesen, danach jedesmal das Destillat abgenommen, und darin Öl und Wasser gewogen. Das gemeinsame Verbindungsrohr der Vorlagen mit der Luftpumpe hatte einen mit einem Hahn verschließbaren Rohransatz. Um die Wirkung der Luftpumpe abzuschwächen, war dieser Hahn teilweise geöffnet.

Minderdruckdestillation von Kümmel.

	Destilla	Destillations-		Im Destillat		Im Destillat	
	Temperatur.	Druck.	Wasser.	Öl.	Destillat		
Nach 12 Min.	80,20	500 mm	600 g	75 g	11,1%		
,, 7 ,,	86	482	750	35	4,5		
,, 8 ,,	89	538	517	22	4,1		
,, 8 ,,	-	-	700	26	3,6		
,, 10 ,,	90	522	805	21	2,5		
,, 21 ,,	86	470	920	15	1,6		
,, 12 ,,	85	466	347	8	2,3		
,, 98 ,,	-	-	2225	30 .	1,3		
,, 17 ,,	83	444	640	3	0,5		
,, 70 ,,	85	434	3900	- 8	0,2		

Das verdampfte Wasser wurde nach jedesmaliger Wegnahme des Destillates ersetzt und zwar nach den ersten 27 Minuten durch das Destillatwasser selbst, danach durch die gleiche Menge reines Wasser. Das gesammelte Destillatwasser gab durch Destillation noch 14 g Öl. Die Ölportionen wurden zusammengegossen und nach Absetzen der noch darin enthaltenen Wassertropfen gewogen. Es wurden im ganzen 241 g Öl = 4,82% erhalten. Im Großbetriebe hatte derselbe Kümmel 5,5% gegeben, wonach wieder, wie bei dem oben erwähnten Destillationsversuche von 5 kg, durch Verdunstung ein erheblicher Ölverlust entstanden war. Die Destillation dauerte 4 Stunden und 15 Minuten, also weniger als die halbe Zeit der Destillation unter Atmosphärendruck, trotzdem die Destillationsstärke bei der Minderdruckdestillation sogar etwas geringer war. Die Ursache des auffallenden

Zeitgewinns und der großen Dampfersparnis erkennen wir aus der Reihenfolge der Dampfdrucke. Derartig bedeutende Druckschwankungen, wie sie hier aufgetreten sind und wie sie als Begleiterscheinung bei jeder Minderdruck- und Überdruckdestillation auftreten, wirken fortgesetzt lockernd auf die Blasenfüllung. So groß wie hier bei den Destillationsversuchen im Kleinen, sind jedoch im Großbetriebe die Unterschiede in der Destillationsdauer nicht, weil durch die größeren Füllungsschichten der Wasserdampf im allgemeinen besser ausgenützt wird.

Bei weiterer Herabsetzung des Destillationsdruckes bleibt trotz der noch geringeren Verdampfungsfähigkeit des flüchtigen Öls die günstigere Verdampfung bestehen. Besonders charakteristisch für die eigentliche Vakuumdestillation mit Wasserdampf ist aber der völlig reine Geruch des gewonnenen ätherischen Öls, das frei von allen Zersetzungsprodukten ist, den steten Begleitern jeder über etwa 70° geführten Pflanzendestillation.

Ein Bild einer derartigen Destillation gibt der folgende kleine Versuch, der in derselben Blase mit demselben Kümmel ausgeführt wurde. Auch die Destillationsart war wieder Wasserund Dampfdestillation, nur der Druck war jetzt geringer. Zu Anfang wurde das in der Blase verdampfte Wasser durch Destillatwasser, dann durch frisches Wasser ersetzt.

Wasser- und Dampfdestillation von Kümmel unter Minderdruck.

		Im Des	Im Destillat		
		Wasser.	Ö1.	- ⁰/₀ Öl.	
Nach 20 Min.	35,9°, 40 mm	732 g	61 g	8,33%	
,, 9 ,,	35,6 40 ,,	667	16	2,4	
,, 9 ,,	35,0 38 ,,	642	20	1,8	
,, 9 ,,	35,8 38,5 ,,	620	11	1,77	
,, 8 ,,	35,7 38,5 ,,	581	9	1,54	
,, 8 ,,	36,6 42 ,,	524	8	1,52	
,, 11 ,,	35,6 39 ,,	767	10	1,3	
,, 10 ,,	36,5 40 ,,	679	7,5	1,1	
,, 11 ,,	36,2 40 ,,	813	8	0,98	
,, 10 ,,	36,2 40 ,,	717	7	0,97	
,, 21 ,,	33,8 38 "	1365	6 -	0,44	
,, 14 ,,	36,5 45 ,,	800	4	0,5	
" 3 Std.	34 48 ,,	11575	20	0,1	

Der Destillationsdruck wurde nicht an der Blase selbst, sondern an den Vorlagen gemessen, der Blasendruck ist mehrere Millimeter, vielleicht 4-6 mm höher. Können daher diese Angaben auch nicht als absolut richtig gelten, so ist doch ihr relativer Wert benutzbar. Ihre geringen Unterschiede zeigen, daß diesmal keine großen Schwankungen im Destillationsdruck aufgetreten sind. Dementsprechend brauchte die Destillation auch längere Zeit, nämlich 5 St. und 20 Min. Weil die Temperatur in der Blase nur wenig höher als die Lufttemperatur war, blieb die Füllung nach der Destillation auch trocken, so trocken, daß man annehmen konnte, die Füllung sei unvollständig ausdestilliert. Eine anschließende Destillation unter Atmosphärendruck gab nach einer Stunde auch noch 10 g Öl. Im ganzen wurden 200 g reines Öl = 4,0 % der Füllung erhalten. Diese geringe Ausbeute ist jedenfalls zum Teil Undichtheiten der Blase zuzuschreiben, durch welche die eingedrungene Luft flüchtiges Öl mit in die Luftpumpe genommen hat.

Wird bei der Vakuumdestillation nicht wie bei den hier mitgeteilten Versuchen der Wasserdampf durch siedendes Wasser in der Blase erzeugt, sondern von außen als gespannter Kesseldampf eingeführt, so entsteht schon durch Kesseldampf von 5 Atm. eine vollständige Überhitzungsdestillation. Die zuvor lufttrockene Pflanzenfüllung wird schließlich trocken, wonach das noch eingeschlossene ätherische Öl nicht mehr verdampfen kann. Erst wenn dann durch eine sich anschließende Destillation unter Atmosphärendruck durch Kondensation flüssiges Wasser entsteht, das alsbald in die trockenen Pflanzengewebe eindringt, kann durch die Diffusion wieder ätherisches Öl 'dem Dampfe zugeführt werden. Bei Destillationsversuchen mit zerquetschtem Kümmel wurden so noch über 20% des gesamten Öls erhalten.

5. Kapitel.

Überhitzungsdestillation.

Überhitzte Dämpfe.

Solange ein Dampf mit der Flüssigkeit, aus der er entstanden ist, in Verbindung bleibt, ist er gesättigt. Er besitzt dann charakteristische Eigenschaften, die ihn scharf von solchen Dämpfen unterscheiden, die von ihrer Entstehungsquelle getrennt sind.

Die geringste Abkühlung des gesättigten Dampfes bewirkt partielle Kondensation, die geringste Wärmezufuhr verstärkte Verdampfung. Mit der sinkenden Temperatur vermindern sich das spezifische Gewicht und der Druck des Dampfes, mit steigender Temperatur vermehrt sich beides, aber der Dampf bleibt dabei gesättigt.

Gesättigter Dampf, solange er noch mit seiner Flüssigkeit in Verbindung steht, ist so gut wie niemals ganz trocken, d. h. ohne jede Beimengung von Flüssigkeitsteilchen, von feinst zersprengten Tröpfchen. Auch gemäßigte Verdampfung, selbst einfache Verdunstung, wenn nur ein Hauch von Luftbewegung über die Oberfläche der Flüssigkeit zieht, vermag mikroskopisch feine Tröpfchen in die Höhe zu führen. Starkes Sieden reißt aus der wellenschlagenden Flüssigkeit größere Mengen empor; sie werden von dem Dampfstrom schwebend erhalten, oder sie fallen wieder zurück, um durch neu in die Höhe geführte ersetzt zu werden.

Sehr nasser Dampf ist mehr oder weniger undurchsichtig, ist dunstig. Aber die Klarheit eines Dampfes ist nur dafür ein Zeichen, daß er keine größeren Flüssigkeitsmengen enthält, nicht dafür, daß er davon vollständig frei ist, denn die in dem klaren, unsichtbaren Dampfe schwebenden Tröpfchen sind für das bloße Auge nicht wahrnehmbar; daß sie aber vorhanden sind, beweisen die Erfahrungen bei Gewinnung des ätherischen Öls aus der Pflanze und ebenso bei der Rektifikation stark gefärbter Öle. Trotz langsamster Destillation ist es außerordentlich schwierig, ein Destillat zu erhalten, das von Staub oder anderen nicht flüchtigen gefärbten Teilchen nahezu frei ist.

Denken wir uns in dem Raum, der Dampf und Flüssigkeit enthält, die Erwärmung und Verdampfung unter konstantem äußeren Druck weitergeführt, so wird ein Moment eintreten, wo eben das letzte Flüssigkeitsmolekül in Dampf umgewandelt ist. In diesem Augenblick ist der Dampf noch gesättigt, trocken gesättigt. Durch weitere Wärmezufuhr kann eine Zunahme der Dampfteilchen nicht mehr erfolgen, nur eine Erhöhung der Temperatur des Dampfes und eine Vergrößerung des Volumens tritt ein. Der Dampf ist nun überhitzt. Überhitzter Dampf hat also höhere Temperatur, größeres Volumen und geringere Dichte als gesättigter Dampf von gleichem Druck.

Da die Überhitzung eines Dampfes als eine über die Sättigung hinausgeführte Erwärmung aufgefaßt werden kann, so muß ein gesättigter Dampf, mit überhitztem von gleicher Temperatur verglichen, das Maximum an Masse enthalten, das höchste spezifische Gewicht und das geringste spezifische Volumen haben, denn das spezifische Volumen ist der reziproke Wert des spezifischen Gewichts.

Eine Abkühlung erniedrigt die Temperatur überhitzen Dampfes, ohne daß, wie bei dem gesättigten Dampfe, sofort Kondensation eintritt. Erst wenn die Abkühlung so weit fortgesetzt wird, daß der Sättigungszustand erreicht ist und nun überschritten wird, kondensiert sich ein der Wärmeentziehung entsprechender Teil des Dampfes. Die in der Atmosphäre sehr häufig auftretende Erscheinung einer Verzögerung der Kondensation des Wasserdampfes, so daß die Luft mit Wasserdampf übersättigt ist, mit der auch bei experimentellen Untersuchungen mit Glasapparaten zu rechnen ist, wird in der Fabrikpraxis mit den rauhen vielkantigen Metallapparaten wohl kaum vorkommen.

Vergleicht man beide Dampfarten bei gleicher Temperatur, so hat überhitzter Dampf einen kleineren Druck als gesättigter. Ein gesättigter Dampf äußert den für seine Temperatur höchsten Druck. Es ist der Maximaldruck, den der Dampf bei dieser Temperatur überhaupt haben kann.

Wird überhitzter Dampf wieder mit seiner Flüssigkeit, aus der er entstanden ist, in Berührung gebracht, so nimmt er von ihr soviel dampfförmig auf, bis er gesättigt ist. Dieses Mittel, einen ungesättigten Dampf in einen gesättigten überzuführen, kann man z. B. benutzen, wenn man untersuchen will, wieviel von einem flüchtigen Körper bei seiner Destillation mit Wasser im Maximum unter einem bestimmten Druck verdampfen kann. Die hierzu nötige Sättigung des Wasserdampfes mit dem Dampfe des flüchtigen Körpers wird am sichersten durch die Destillation des Körpers mit Wasser in einer Fraktionierkolonne mit Dephlegmator erreicht, im Laboratorium in einem Siedekolben mit Fraktionieraufsatz. Der aus der Blase aufsteigende Mischdampf wird in dem Dephlegmator partiell kondensiert. Hierbei wird zuerst von dem gesättigten Dampfbestandteil, also dem Wasser, soviel kondensiert, daß das Dampfgemisch bei der nun niedrigeren Temperatur total gesättigt ist; erst dann tritt Kondensation von Wasser und Öl ein und zwar in demselben Verhältnis, wie beide sich im Dampfe befinden, so daß der in den Kühler übergehende Dampf beide Bestandteile im gesättigten Zustande enthält. Der aus der Blase weiter entwickelte Mischdampf findet auf seinem Wege in die Höhe jetzt reichlich Gelegenheit, sich an dem herunterrieselnden flüchtigen Öle zu sättigen. Als einzige Vorsichtsmaßregel, die besonders bei Destillationen im Vakuum zu beachten ist, muß die Destillationsstärke und die Kühlung des Dephlegmators möglichst gemäßigt werden, damit der aufsteigende Mischdampf nicht mit zu großer Geschwindigkeit durch die Kolonne getrieben wird. Zur Berechnung der Dichte eines Dampfes ist die Kenntnis von Druck und Temperatur erforderlich. Ist von einem gesättigten Dampfe für jede Temperatur durch Untersuchungen der zugehörige Druck festgestellt, so braucht vorkommenden Falls nur der eine dieser beiden Werte bestimmt zu werden, während der andere aus der Dampftabelle abgelesen werden kann. Von einem

überhitzten Dampfe müssen aber in jedem Falle Temperatur und Druck beobachtet werden, denn beide sind gegenseitig variabel.

Überhitzungsgrad. Wünscht man den Überhitzungsgrad zu erfahren, d. h. die Temperaturdifferenz, um welche der überhitzte Dampf wärmer als ein gesättigter von gleichem Drucke ist, so muß man noch die Temperatur kennen, welche derselbe Dampf in gesättigtem Zustande bei demselben Drucke haben würde.

Von gesättigtem Wasserdampf von 100° weiß man, daß sein Druck 760 mm betragen muß; überhitzter Wasserdampf von 100° kann aber jeden Druck unter 760 mm haben, nur nicht 760 mm oder darüber. Hat man andrerseits den Druck eines Wasserdampfes zu 760 mm ermittelt und weiß, daß er seiner Bildung nach gesättigt ist, so muß er die Temperatur von 100° haben; ist er aber überhitzt, so kann nur das sicher behauptet werden, daß er wärmer als 100° sein muß.

Hat man von überhitztem Wasserdampf einen Druck von 52 mm und eine Temperatur von 60° beobachtet, so beträgt sein Überhitzungsgrad 60°—39° = 21°, denn gesättigter Dampf von 52 mm hat eine Temperatur von 39°.

Spezifisches Gewicht des überhitzten Dampfes. Von dem gesättigten Wasserdampf war gesagt worden (S. 322), daß er bis etwa 350 mm Druck ziemlich genau den Gasgesetzen folgt, daß z. B. sein beobachtetes spezifisches Gewicht mit dem aus der Zustandsgleichung für Gase berechneten übereinstimmt. Erst bei 760 mm Druck beträgt die Abweichung von dem beobachteten Wert 2,8%, bei 2000 mm 4,5%.

Als Grund der unvollständigen Übereinstimmung der nach den Gasgesetzen berechneten und der wirklichen Dampfdichte ist das Vorhandensein von Molekülaggregaten im Dampfe anzunehmen. Eine Temperaturerhöhung wirkt spaltend auf Molekülaggregate, eine Druckerhöhung dagegen steigert die Neigung zur Vereinigung der Gasmoleküle. Da nun ein überhitzter Dampf einen niedrigeren Druck als gesättigter von gleicher Temperatur äußert, so trifft diese Übereinstimmung zwischen der berechneten und der experimentell ermittelten Dampfdichte für überhitzte Dämpfe bis zu noch höheren Temperaturen zu. Zur Berechnung des spezifischen Gewichtes von überhitzten Dämpfen ist deshalb die für gesättigte Dämpfe aufgestellte Gasgleichung noch innerhalb weiterer Grenzen benutzbar, die S. 321 lautete:

also für Wasserdampf
$$G = \frac{P}{T} \text{ Mol. 0,01605},$$

$$G = \frac{P}{T} 18,016 \cdot 0,01605 = \frac{P}{T} 0,289.$$

Bei einem absoluten Druck von mehr als einer Atmosphäre läßt jedoch die Genauigkeit der so erhaltenen Werte auch für unsere Zwecke viel zu wünschen übrig, weshalb dann empirische Formeln zu verwenden sind, die eine Zusammenfassung der experimentell gemachten Bestimmungen darstellen. Derartige Formeln sind zahlreich aufgestellt, worunter besonders zwei hervorzuheben sind, die Zeunersche, die aus den Regnaultschen Bestimmungen konstruiert ist und die auch zu den weiteren Berechnungen hier benutzt wurde, und die Tumlirzsche, auf den Beobachtungen von Batelli¹) fußende Formel.

¹⁾ Mem. dell' Accad, di Torino 41 (1891), 33 und 43, (1892), 1.

Die Zustandsgleichung von Zeuner für Wasserdampf lautet:

 $p \ v = B T - C p^{\pi i}$

Hierin sind B, C und n konstante Größen; T ist die absolute Temperatur; v, das spezifische Volumen, bezieht sich auf Kubikmeter von einem Kilogramm. Gilt die Druckangabe p als spezifischer Druck, d. h. in Kilogramm auf 1 qm, so sind die Werte für die drei Konstanten

B = 50,933, C = 192,50, n = 1/4 = 0,25.

Ist p aber in Atmosphären (1 Atm. = 10333 kg auf 1 qm) angegeben, so sind $B=0,0049287,\ C=0,187815,\ n=1/4.$

Bei Angabe schließlich von p in Millimeter Quecksilbersäule sind

B = 3,74616, C = 27,1876, n = 1/4.

Zum Beweise, wie gut die mit seiner Formel berechneten spezifischen Volumen mit den beobachteten übereinstimmen, gibt Zeuner die folgenden Vergleichstabellen, die erste für gesättigten Wasserdampf, die zweite für überhitzten Wasserdampf; die dritte Tabelle enthält einige für die Praxis brauchbare Werte des spezifischen Volumens von verschieden überhitztem Wasserdampf von einer Atmosphäre Druck. In der vierten Kolumne der ersten Tabelle sind zur Erleichterung der Benutzung der Zeunerschen Formel diejenigen Werte für C p n/B angegeben, die den in der ersten Kolumne angeführten Atmosphärendrucken entsprechen; die Formel würde hierzu die Form

 $p \ v = B \ (T_0 - \frac{C}{B} \ p^n)$

erhalten.

Vergleich der nach Zeuners Formel berechneten Werte für das spezifische Volumen des gesättigten Wasserdampfes mit den von Regnault beobachteten.

Druck in Atmosphären zu	Spezif, Volum Wasser	en des gesättigten dampfes	Werte von
10333 kg.	nach Regnault Tabelle Seite 329.	nach Zeuners Formel berechnet.	$\frac{\overline{B}}{B} p^n$ $(n = 1/4)$
0,1	14,533	14,677	21,429
0,2	7,543	7,583	25,483
0,5	3,172	3,181	32,043
1	1,6505	1,6506	38,106
2	0,8599	0,8583	45,316
3	0,5875	0,5861	50,151
4	0,4484	0,4474	53,891
5	0,3636	0,3630	56,982
6	0,3064	0,3060	59,640
7	0,2652	0,2650	61,983
8	0,2339	0,2339	64,087
9	0,2095	0,2096	66,002
10	0,1897	0,1900	67,764
11	0,1735	0,1739	69,398
12	0,1599	0,1604	70,924
13	0,1483	0,1489	72,357
14	0,1383	0,1383	73,711

¹⁾ G. Zeuner, Technische Thermodynamik, 2. Aufl., 1900, Bd. 2, S. 221.

Vergleich der nach Zeuners Formel berechneten Werte für das spezifische Volumen des überhitzten Wasserdampfes mit den von Hirn beobachteten.

Druck in	Temperatur	Spez. Volumen in cbm von 1 kg		
Atmosphären.	tº C.	von Hirn beobachtet.	nach d. Formel berechn	
1	118,5°	1,7400	1,7417	
1	141	1,8500	1,8526	
3	200	0,6970	0,6947	
4	165	0,4822	0,4733	
4	200	0,5220	0,5164	
4	246	0,5752	0,5731	
5	162,5	0,3758	0,3731	
5	205	0,4140	0,4150	

Einige für die Praxis brauchbare Werte für das spezifische Volumen des überhitzten Wasserdampfes von 760 mm Druck.

t ° C (T = 273 + t)	spez. Volumen (p = 1 Atmosphäre).	t ° C (T = 273 + t)	spez. Volumen (p = 1 Atmosphäre).
100°	1,6506 cbm	160°	1,9463 cbm
110	1,6999	170	1,9956
120	1,7492	180	2,0449
130	1,7984	190	2,0942
140	1,8477	200	2,1435
150	1,8970	210	2,1927

Die Formel von Tumlirz1) lautet:

p (v + 0,008402) = 3,4348 T, also v = 3,4348
$$\frac{T}{p}$$
 - 0,008402,

worin v das Volumen in Kubikmetern von einem Kilogramm Wasserdampf bedeutet, T die Temperatur nach absoluter Zählung und p den Druck in Millimetern Quecksilberhöhe.

Expansion von gespanntem Wasserdampf. Außer der gewöhnlich bekannten Methode der Gewinnung von überhitztem Wasserdampf durch einen Überhitzer, wobei der Kesseldampf durch in Feuer liegende Rohre geleitet wird, gibt es noch zwei Möglichkeiten, mit überhitztem Wasserdampf zu destillieren, die in ihrer Anwendung und auch in ihrer Wirkung schon lange bekannt sind, aber wohl weniger in ihrer Ursache und eigentlichen Bedeutung.

Das eine Verfahren zur Destillation mit überhitztem Wasserdampf beruht darauf, daß durch die zu destillierende Flüssigkeit, die indirekt über die Temperatur des gesättigten Wasserdampfes geheizt wird, Wasserdampf von irgendwelcher Spannung hindurchgeleitet wird (s. S. 304), das andere Ver-

¹⁾ Ber. d. Wiener Akad. IIa, 108 (1899), 1058.

fahren, das wir jetzt besprechen wollen, ist in der Verwendung von gespanntem Wasserdampf an und für sich schon gegeben.

Bei der Destillation mit direkt in das Destillationsmaterial einströmendem Wasserdampf wird der gespannte Kesseldampf innerhalb der Blase sofort seinen Überdruck verlieren und den in der Blase herrschenden Druck annehmen, den Atmosphärendruck, wenn die Blase mit der äußeren Luft in freier Verbindung steht, oder den gerade vorhandenen Minderdruck, wenn die Blase mit einer Luftpumpe vereinigt ist. Diese Druckverminderung des eintretenden gespannten Wasserdampfes entsteht durch seine Expansion in der Blase. Der nun expandierte Dampf ist aber nicht mehr gesättigt, sondern überhitzt, denn die Temperatur des Dampfes fällt zwar ebenfalls mit der Expansion und mit der Druckreduktion, aber nicht soweit, wie dem Maximaldruck eines gesättigten Dampfes entspricht. Die Dampftemperatur bleibt höher, um so höher, je größer zuvor die Spannung des gesättigten Dampfes war. Diese Eigenschaft, bei der Expansion in überhitzten Dampf überzugehen, teilt der Wasserdampf mit allen Dämpfen, im Gegensatz zu den sog. permanenten Gasen, die bei der Expansion ihre Temperatur konstant erhalten.

Die Größe dieser Überhitzung läßt sich aus der Zustandsgleichung für gesättigten und überhitzten Wasserdampf ableiten. Nehmen wir unter Benutzung der Zeunerschen Gleichung an, der gespannte Kesseldampf habe vor der Expansion folgende Druck- und Volumenverhältnisse gehabt:

$$p_1 v_1 = B T_1 - C p_1^n = B (T_1 - \frac{C}{B} p_1^n),$$

nach der Expansion:

$$p_2 v_2 = B (T_2 - \frac{C}{B} p_2^n).$$
Nun ist $p_1 v_1 = p_2 v_2$,
also $B (T_1 - \frac{C}{B} p_1^n) = B (T_2 - \frac{C}{B} p_2^n)$
oder $T_1 - T_2 = \frac{C}{B} p_1^n - \frac{C}{B} p_2^n = t_1 - t_2$,

denn es ist $T_1 - T_2 = t_1 - t_2$.

Ein Beispiel zeige die Berechnung. Kesseldampf von 10 Atm. ströme in eine Blase, worin ein Destillationsdruck von 1 Atm. herrsche. Die Temperatur des Dampfes vor dem Eintritt in die Blase ist nach der Tabelle S. 331 $180,31^{\circ}=t_1$. Der Wert von C $p_1^{\circ n}/B$ von Wasserdampf von 10 Atm. Druck ist nach der Tabelle S. 398 67,764 und von 1 Atm. 38,106. Hiernach lautet die Gleichung:

$$180,31 - t_2 = 67,764 - 38,106 \text{ oder}$$

 $t_2 = 150,65^\circ$.

Die Temperatur des Dampfes von 10 Atm. von 180,3° ist also nach der Expansion bis zu 1 Atm. auf 150,65° gefallen. Ein gesättigter Dampf von 1 Atm. hat aber eine Temperatur von 100°, mithin beträgt die Überhitzung:

$$150,65 - 100 = 50,65^{\circ}$$
.

Oder ein anderes Beispiel. Wieder werde Kesseldampf von 10 Atm. in den Destillationsraum einer Blase geleitet, in dem aber der Druck von nur 0,1 Atm. herrsche. Die Gleichung würde dann heißen:

$$180,31 - t_2 = 67,764 - 21,429$$
 oder $t_2 = 133,98^{\circ}$.

Da ein gesättigter Wasserdampf von 0,1 Atm. nur 46,21° warm ist, so würde der expandierte Dampf um

$$133,98 - 46,21 = 87,77^{\circ}$$

überhitzt sein.

Es sei noch ein Beispiel der Expansion eines gespannten Dampfes gegeben. Es soll angenommen werden, gesättigter Dampf von 10 Atm. werde durch einen Überhitzer geleitet und darin auf 300° erhitzt. Der Überhitzer ist durch Rohrleitung mit vollständig geöffnetem Ventil mit einer Vakuumblase verbunden, so daß der Druck in der Vakuumblase — er sei 0,1 Atm. — ebenfalls in den Rohren des Überhitzers herrsche, wobei eine derartig verlangsamte Durchströmung des Dampfes in dem Überhitzer vorausgesetzt ist, daß darin soweit als möglich nur eine geringfügige Drucksteigerung stattfindet. Zur Berechnung des Überhitzungsgrades gilt dann die Gleichung:

$$300 - t_2 = 67,764 - 21,429$$
 oder $t_2 = 253,655^{\circ}$,

wonach der expandierte Dampf um

$$253,665 - 46,21 = 207,45^{\circ}$$

überhitzt ist.

Diese durch Rechnung gefundene Tatsache, daß gespannter, trocken gesättigter Dampf durch die Expansion in den überhitzten Zustand übergeht, wurde auch experimentell durch interessante Versuche von Hirn¹) festgestellt.

Bei geringem Überhitzungsgrade wird die Wirkung durch Wärmeentziehung bei der Destillation wieder aufgehoben. Besonders stark wird aber die Überhitzung durch Nässe des Dampfes herabgesetzt. Wie wichtig deshalb eine Entfernung des flüssigen Wassers aus dem Dampfe durch Wasserabscheider ist, möge ein Beispiel lehren.

Gesättigter Dampf von 10 Atm. Spannung werde auf 1 Atm. Druck expandiert. Es ist also derselbe Vorgang wie in unserem erst gegebenen Beispiel, wobei die Temperatur des expandierten Dampfes zu 150,65° berechnet wurde, also 50,65 Überhitzungsgrad hatte. Jetzt soll der Dampf kein theoretisch angenommener trockener, sondern nasser sein, wie er es mehr oder weniger in der Praxis immer ist, und zwar soll der Gehalt an mitgerissenem flüssigem Wasser nur 5°/0 betragen. Diese 5°/0 flüssiges Wasser würde der expandierte Dampf sofort verdampfen und danach nur noch 105,62° heiß sein. Er wäre also nur noch um 5,62° überhitzt.

Die nachstehende Tabelle gibt die Temperatur an, welche der expandierte Wasserdampf annimmt, je nach der Tension, die der trocken gesättigte Dampf vor seinem Einströmen in den Destillationsraum hatte und je nach dem Druck, der in dem Destillationsraum herrscht. Um die Tabelle dem Be-

¹⁾ Hirn, Exposition analytique et expérimentale de la théorie mécanique de la chaleur. Paris 1865, tome I. p. 290.

dürfnisse in der Praxis anzupassen, wurde in deren erstem Teil angenommen, daß unter Atmosphärendruck destilliert wird, in deren zweitem Teil, daß die Destillation unter Minderdruck geschieht.

Temperatur von trocknem, gesättigtem Wasserdampf nach seiner Expansion.

P ₁ Anfangsdruck	t ₁	p ₂	t ₂	t ₃	t2-t3
des trocknen, ge- gesättigten Wasserdampfes vor dem Einströmen in den Destillations- raum.	Temperatur des Dampfes unter dem Anfangsdruck P ₁	Enddruck des expandierten Dampfes. Druck im Destillations- raum.	Temperatur des expandierten Dampfes unter dem Drucke P ₂	Temperatur des expandierten Dampfes, wenn er unter dem Drucke p ₂ gesättigt wäre.	Über- hitzungs grad.
1,5 Atm.	111,740	1Atm. = 760 mm	108,1 0	100 °	8,1 0
2	120,60	do.	113,4	do.	13,4
3	133,91	do.	121,9	do.	21,9
4	144,00	do.	128,2	do.	28,2
5	152,22	do.	133,3	do.	33,3
6	159,22	do.	137,7	do.	37,7
7	165,34	do.	141,4	do.	41,4
8	170,81	do.	144,8	do.	44,8
9	175,77	do.	147,9	do.	47,9
10	180,31	do.	150,7	do.	50,7
1 Atm.	100,000	0,1Atm.=76 mm	83,3 0	46,20	37,10
1,5	111,74	do.	91,4	do.	45,2
2	120,60	do.	96,7	do.	50,5
3	133,91	do.	105,2	do.	59,0
4	144,00	do.	111,5	do.	65,3
5	152,22	do.	116,6	do.	70,4
6	159,22	do.	121,0	do.	74,8
7	165,34	do.	124,7	do.	78,5
8	170,81	do.	128,1	do.	81,9
9	175,77	do.	131,2	do.	85,0
10	180,31	do.	133,9	do.	87,7

Die Tabelle zeigt, wie die Temperatur des expandierten Dampfes und damit sein Überhitzungsgrad mit der Tension des gespannten Dampfes steigt. Dann erkennt man auch, wie außerordentlich der Überhitzungsgrad gesteigert wird, wenn im Vakuum, statt unter Atmosphärendruck destilliert wird. Es ist das eine Tatsache, die sich auch in der Praxis auffallend bemerkbar macht, sowohl bei der Dampfdestillation von Pflanzenmaterial als auch von Öl.

Destillation flüchtiger Flüssigkeiten durch überhitzten Wasserdampf.

Berechnung der Dampfzusammensetzung. Wie die Zusammensetzung eines total gesättigten Dampfgemisches zweier gegenseitig unlöslicher Körper zu berechnen ist, wurde Seite 316 erklärt. Möglich ist noch das Vorkommen eines Dampfgemisches, von dem nur eine Komponente gesättigt und die andere überhitzt ist, und schließlich eines total ungesättigten Dampfgemisches.

Ein derartig in seinen beiden Bestandteilen überhitzter Dampf wird am einfachsten erhalten, wenn der Dampf von seiner Flüssigkeitsquelle entfernt auf höhere Temperatur gebracht wird. Er kann aber auch gelegentlich einer Destillation entstehen, wenn überhitzter Wasserdampf z. B. durch Pflanzenmaterial, das flüchtige Substanzen enthält, geleitet wird, oder wenn man durch eine Lösung flüchtiger Flüssigkeiten überhitzten Wasserdampf so schnell hindurchtreibt, daß sich der Wasserdampf mit dem flüchtigen Körper nicht zu sättigen vermag. Die Zusammensetzung eines total überhitzten Dampfgemisches läßt sich aus Druck und Temperatur allein nicht berechnen.

Auch ein partiell überhitztes Dampfgemisch kann sich in mehrfacher Weise bilden. Die Destillation von Pflanzenteilen, die flüchtige Stoffe enthalten, durch gesättigten Wasserdampf ist ein Beispiel hierfür. Denn in der Regel nimmt der Wasserdampf, wie früher gezeigt wurde, nicht bis zur Sättigung ätherisches Öl auf. Auch die Wasserdestillation flüchtiger Flüssigkeiten liefert bei stürmischer Verdampfung ein nur in seiner Wasserdampfkomponente gesättigtes Dampfgemisch. Die gleiche partielle Sättigung entsteht noch leichter durch die Dampfdestillation eines ätherischen Öls.

In den genannten Fällen ist das ätherische Öl überhitzt und der Wasserdampf gesättigt. Wertvoll für die Destillationspraxis ist dagegen das umgekehrte Verfahren, nach dem das Öl gesättigt und der Wasserdampf überhitzt ist. Diese Dampfgemische sollen uns hier beschäftigen.

E. Charabot und J. Rocherolles 1) haben Untersuchungen darüber angestellt, welches Mengenverhältnis in dem Dampf-

¹⁾ Compt. rend. 138 (1904), 497; Bull. Soc. Chim. III. 31 (1904), 533.

gemisch vorhanden ist, wenn Wasserdampf durch ein flüchtiges Öl geleitet wird, das durch eine indirekte Wärmequelle über die Temperatur erhitzt wird, bei der ein Gemenge von Wasser

mit demselben Öl unter dem gleichen Druck siedet.

Auf Grund von drei Destillationsversuchen mit rektifiziertem Terpentinöl bei vermindertem äußeren Druck stellten die genannten Verfasser den Satz auf, daß in dem eben geschilderten Falle in dem aus dem Öle aufsteigenden Dampfgemische der Wasserdampf den Druck habe, der in dem Destillationsapparate über dem Öle herrscht und der Öldampf den Druck, welcher der Temperatur des Dampfgemisches entspricht.

Daß diese Behauptung irrig ist, folgt schon aus der Erwägung, daß der in der Blase herrschende Druck doch aus den beiden Dampfdrucken resultiert, durch beide entstanden ist, also unmöglich nur einen, den des Wasserdampfes darstellen kann.

Wird irgend ein reiner chemischer Körper, der in Wasser unlöslich ist - wir wollen eine Flüssigkeit annehmen - in einem Destillierapparat durch geschlossene Schlange oder Doppelboden indirekt geheizt, und wird nun Wasserdampf von irgend welcher Spannung in die Flüssigkeit eingeleitet, so wird der Wasserdampf die Temperatur der heißen Flüssigkeit in dem Destillationsapparate annehmen. In jedes langsam nach oben steigende Bläschen von Wasserdampf läßt der flüssige Körper alsbald seinen Dampf einströmen, bis schließlich das Wasserdampfbläschen mit dem fremden Dampfe entsprechend der Temperatur des flüssigen Körpers in der Blase bis zur Sättigung erfüllt ist. Voraussetzung hierbei ist aber, daß der Wasserdampf nicht zu schnell durch die fremde Flüssigkeit gejagt wird, daß er im Gegenteil durch Heizschlangen, Siebböden oder durch schnell rotierendes Rührwerk daran gehindert wird; andernfalls würde der Öldampf ungesättigt sein.

Der in der Blase gemessene Dampfdruck ist die Summe der Partialdrucke¹) des Wasserdampfes und des Öldampfes.

¹) Bildet ein Dampf ein Gemisch mehrerer Dämpfe, so setzt sich der gemessene Druck des Dampfgemisches aus den Drucken dieser Einzeldämpfe zusammen. Man spricht dann von einem Totaldruck, dem gemessenen Drucke des Dampfgemisches, und den Partialdrucken, womit man diejenigen Anteile des Totaldruckes meint, die den einzelnen Komponenten des Dampfgemisches je nach den Verhältnissen zukommen. Der Totaldruck ist eine reale direkt meßbare Größe; die Partialdrucke sind aber Größen, die nur berechnet werden können.

Bei einer Destillation unter Atmosphärendruck ist er gleich dem äußeren Luftdruck, wenn Übersteigrohr und Kühler hinlänglich weit sind, so daß jede Zunahme der Dampfmenge in der Blase, die durch vermehrte Dampfzuführung oder verstärkte indirekte Heizung entstehen könnte, durch freies, stärkeres Abströmen des Dampfgemisches ohne Drucksteigerung sofort verhindert wird. Bei einer Destillation unter stark verringertem Druck darf bei exakter Bestimmung der Druck des Mischdampfes nicht an der Vorlage gemessen werden, sondern an der Blase, denn zwischen beiden wird stets Druckdifferenz bestehen, es müßte denn die Destillation sehr langsam geführt werden.

Der Partialdruck des Wasserdampfes ist jedenfalls gleich der Differenz zwischen dem beobachteten Totaldruck und dem Dampfdrucke der fremden Flüssigkeit. Ist die Flüssigkeit höher erhitzt als der Temperatur eines gesättigten Wasserdampfes unter dem eben erwähnten Partialdruck entspricht, so ist der Wasserdampf überhitzt.

Hiermit sind nun alle Unterlagen gegeben, um ein partiell überhitztes Dampfgemisch, das aus zwei sich gegenseitig nicht lösenden chemisch reinen Körpern besteht, aus seinem Drucke und seiner Temperatur zu berechnen.

Ist das Dampfgemisch in seinen beiden Komponenten gesättigt, so sind die Partialdrucke, die zusammen den Totaldruck ausmachen, die der Temperatur des Dampfgemisches entsprechenden normalen Drucke für gesättigten Dampf. Das Mengenverhältnis im Dampfgemisch resp. im Destillat läßt sich dann durch die Formel

$$g:g_1=Mp:M_1p_1,$$

berechnen (s. S. 318), worin g und g_1 die Gewichte, M und M_1 die Molekulargewichte und p und p_1 die Partialdrucke der beiden Komponenten bedeuten.

Ist ein aus zwei Komponenten bestehendes Dampfgemisch in einem dieser Komponenten ungesättigt, so hat der ungesättigte Dampfanteil den Druck, welcher sich nach Abzug des Druckes des gesättigten Dampfes von dem Druck des Dampfgemisches ergibt. Hiernach ist

 $g: g_1 = Mp: M_1 (P-p)$ oder $g: g_1 = M (P-p_1): M_1 p_1$, worin P den Totaldruck bezeichnet. Bei Benutzung dieser

Formel muß außer dem beobachteten Totaldruck der Partialdruck des gesättigten Dampfanteils für die ebenfalls beobachtete Destillationstemperatur bekannt sein.

Eine Reihe von Destillationsversuchen, die von dem Verfasser zusammen mit W. Weißwange¹) ausgeführt wurden, bestätigten die Auffassung, daß bei dem Durchleiten des Dampfes von einem Körper durch einen höher erhitzten flüssigen Körper ein partiell überhitztes Dampfgemisch entwickelt wird, dessen Zusammensetzung nach den oben gegebenen Formeln berechnet werden kann.

Wert der Überhitzungsdestillation mit Wasserdampf. Die praktische Bedeutung der Destillation mit überhitztem Wasserdampf läßt sich am besten durch einige Beispiele erkennen, die der Wirklichkeit angepaßt sind. Des Vergleichs halber soll ein hochsiedender Körper durch Wasserdestillation, also durch gesättigten Wasserdampf verdampft werden, anderseits durch Überhitzungsdestillation.

In die Blase werden Isocapronsäure und Wasser gegeben. Durch indirekte Heizung, durch Doppelboden oder Heizschlange, wird das Flüssigkeitsgemenge unter dem Drucke einer Atmosphäre zur Dampfentwicklung und Destillation gebracht. Wir wollen die Voraussetzung machen, daß die geringe Löslichkeit der Isocapronsäure im Wasser keinen merkbaren Einfluß auf den Druck und das spezifische Volumen des Dampfes ausübt, und daß die Destillation so geführt wird, daß keiner der beiden Dampfbestandteile im Mischdampfe ungesättigt ist. Es handelt sich also um eine Wasserdestillation der Isocapronsäure mit total gesättigtem Mischdampfe.

Nach der Tabelle S. 344 hat das unter einem Drucke von 760 mm entwickelte Gemisch von gesättigtem Wasserdampf und gesättigtem Isocapronsäuredampf eine Temperatur von 99,5%. Der Partialdruck der Isocapronsäure in diesem Dampfgemisch beträgt 12,7 mm, derjenige des Wassers 746,7 mm, wonach sich das spezifische Dampfgewicht der Säure zu 0,0635 und das des Wassers zu 0,5961 berechnet. Nach dem Verhältnis dieser beiden spezifischen Dampfgewichte enthält das Dampfgemisch 9,6% Isocapronsäure, denn es ist

¹⁾ Journ. f. prakt. Chem. II. 72 (1905), 478.

$$\frac{0,0635 \cdot 100}{0,0635 + 0,5961} = 9,6.$$

Statt der Wasserdestillation soll nun die Säure durch überhitzten Wasserdampf unter Atmosphärendruck destilliert werden. Hierzu wird die Säure ohne Wasser in eine mit einer starken Schicht von Wärmeschutzmasse bekleidete Blase gegeben, die durch Doppelboden und geschlossene Heizschlange in vielen Windungen geheizt wird. Der Dampf für die indirekte Heizung des Öls habe eine Tension von 10 Atm. nach absoluter Rechnung, seine Temperatur beträgt also 180,3%. Mittels eines auf dem Boden der Blase liegenden ringförmigen Rohres, das mit zahlreichen feinen Öffnungen versehen ist, wird ein mäßiger Strom von Wasserdampf derselben Spannung in die Isocapronsäure geblasen. Die Tension dieses Dampfes fällt alsbald bis auf den in der Blase herrschenden Druck, und seine Temperatur würde bis auf 150,7° sinken (s. Tabelle S. 402). Da aber das Öl durch die indirekte Heizung heißer erhalten wird, so wirkt der eingeblasene Dampf in geringem Maße kühlend auf das erhitzte Öl. Wegen der niedrigen spezifischen Wärme des Wasserdampfes ist dies von geringer Bedeutung. Bei weitem stärker wird dagegen die Erreichung einer hohen Destillationstemperatur durch die große Temperaturdifferenz des Dampfgemisches in der Blase und der äußeren Luft erschwert. Durch vermehrte indirekte Heizung soll es trotzdem gelingen, die Temperatur des in den Kühler übergehenden Dampfgemisches auf 160° zu erhalten. In diesem Gemische befindet sich der Isocapronsäuredampf in dem der Temperatur 160° entsprechenden gesättigten Zustande. Der Wasserdampf dagegen, der die Wärme des heißen Öls annimmt, wird überhitzt, weil in der Blase kein flüssiges Wasser vorhanden ist, aus dem ihm neue Dampfmoleküle zur Erreichung des Sättigungszustandes zuströmen könnten.

Die Wasserdestillation der Isocapronsäure war durch folgende Daten gekennzeichnet:

	Partialdruck.	Totaldruck.	Temperatur des Mischdampfes.	spez. Gewicht 1 cbm = kg.	Zusammen- setzung des Mischdampfes
Ö1 Wasser	12,7 mm 746,7 "	759,4 mm	99,5°	0,0634 0,5961	9,6°/ ₀ 90,4 ,,

Die entsprechenden Zahlen der Destillation mit überhitztem Dampf sind:

Öl	200				
Wasser	206,5 mm 553,5 "	760 mm	160°	0,8880 0,3717	70,5%

Diese Zahlen für die Überhitzungsdestillation sind durch folgende Rechnung erhalten:

Bei 160° ist der Druck des gesättigten Dampfes der Isocapronsäure 206,5 mm. Die Zustandsgleichung für Dämpfe (S. 20) lautete:

$$G = \frac{P}{T} \text{ Mol} \cdot 0,01605.$$

Werden in dieser Gleichung die entsprechenden Werte eingesetzt, so erhalten wir als spezifisches Gewicht des Isocapronsäuredampfes bei der Temperatur 160° unter dem Drucke 206,5 mm

$$G = \frac{206,5}{273 + 160} 116 \cdot 0,01605 = 0,8880.$$

Da der Totaldruck des Mischdampfes 760 mm beträgt und davon die Isocapronsäure einen Dampfdruck von 206,5 mm ausübt, so bleibt als Partialdruck des Wassers in dem Mischdampfe 760 — 206,5 = 553,5 mm. Aus diesem Druck und der Temperatur 160° berechnet sich nach der Zeunerschen Formel das spezifische Gewicht des Wasserdampfes zu 0,3717, denn

$$p \ v = B \ (T - \frac{C}{B} p^n) \ oder \ in \ Zahlen$$

 $0,728 \cdot v = 0,00493 \ (433 - 33,425), \ oder$
 $v = 2,692 = \frac{1}{G}, \ also \ G = 0,3717$

Da hiernach 1 cbm Dampfgemisch 0,8880 kg Isocapronsäure und 0,3717 kg Wasser enthält, so ergibt sich, daß 100 kg des Dampfgemisches aus 70,5 kg Isocapronsäure und 29,5 kg Wasser zusammengesetzt sind.

Zum Vergleich soll nun die Isocapronsäure in gleicher Weise, aber im Vakuum mit überhitztem Wasserdampf destilliert werden. Der Destillationsdruck in der Blase sei 76 mm, und die Temperatur des Dampfgemisches sei 130°. Statt des Kesseldampfes von 10 Atm. könnte hierzu auch solcher von 4 bis 5 Atm. Druck

verwendet werden. In Wirklichkeit würde man, wenn Vakuumdestillation zur Verfügung steht, besser die reine Vakuumdestillation mit nur indirekter Heizung benutzen und die Isocapronsäure ohne Wasser überdestillieren, vorausgesetzt daß nicht größere Mengen schwer flüchtiger Verunreinigungen den Dampfdruck erheblich erniedrigen, denn die Siedetemperatur der Isocapronsäure ist 93,6° unter 10 mm Druck und 101,4° unter 15 mm Druck.

Die Daten für diese Destillation sind dann:

Öl	61,8 mm	76,0 mm	130°	0,2855	96,4%
Wasser	14,2 ,,	70,0 111111	150	0,0107	3,6 ,,

Um zu zeigen, daß die Destillation mit überhitztem Wasserdampf auch bei niedriger Destillationstemperatur noch gut anwendbar ist, soll angenommen werden, daß die zu destillierende Flüssigkeit sehr leicht zersetzlich ist, oder daß das Destillationsmaterial eine Lösung bildet, deren nicht oder sehr schwer flüchtiger Destillationsrückstand ohne jede größere Erhitzung gewonnen werden soll.

Ein derartig ausgedachter Destillationsfall ist durch die folgenden Zahlen wiedergegeben. Die Rechnung ist wieder an der Isocapronsäure ausgeführt.

Öl	1 mm	38,0 mm	66,50	0,0055	14,90/0
Wasser	37 ,,	36,0 11111	00,0	0,0315	85,1 ,,

Trotz der niedrigen Destillationstemperatur und des geringen Druckes ist die Isocapronsäure im Destillat in größerer Menge als bei der gewöhnlichen Wasserdestillation unter Atmosphärendruck enthalten.

Man erkennt schon aus diesen wenigen Beispielen, daß zur Destillation von flüchtigen Flüssigkeiten, einheitlichen oder gemischten, die Destillation mit überhitztem Wasserdampf der gewöhnlichen mit gesättigtem Wasserdampf in vielem überlegen ist. Besonders wertvoll ist diese Destillationsart in zwei Fällen, erstens für sehr hochsiedende Flüssigkeiten, die ihres hohen Siedepunktes wegen auch im Vakuum nicht unzersetzt rein ohne Wasserdampf destilliert werden können und die mit gesättigtem Wasserdampf in zu geringer Menge verdampft werden, zweitens für solche Flüssigkeiten, die ihrer Zersetzlichkeit wegen nur unter

geringem Druck und bei sehr niedriger Temperatur destilliert werden können.

In der nachstehenden Tabelle sind die von der Isocapronsäure berechneten Zahlen noch einmal zusammengestellt, ferner von vier hochsiedenden Körpern, von denen Dampfdruckbestimmungen bei für unseren Zweck passenden Temperaturen vorhanden sind, die analogen Destillationsdaten.

Die Siedetemperaturen unter 760 mm von diesen Körpern sind

für Isocapronsäure, $C_6 H_{12} O_2$, Mol. 116, 199,7° α -Chlornaphthalin $C_{10} H_7$ Cl, Mol. 162,45, 259,3° α -Bromnaphthalin $C_{10} H_7$ Br, Mol. 206,96, 281,1° Myristinsäure $C_{14} H_{28} O_2$, Mol. 228, ca. 318° Schwefel S_8 , Mol. 256, 444,5°

Die Destillationstemperaturen, d. h. die Temperaturen des Mischdampfes, sind absichtlich nur so hoch gewählt, daß die indirekte Heizung noch mit gespanntem Dampf bis zu 10 Atm. ausgeführt werden kann, also ohne Feuerheizung der Blase; ebenso genügt noch für den direkt eingeführten Wasserdampf eine Spannung bis 10 Atm., ohne daß er durch einen Überhitzer überhitzt zu werden braucht. Bei jedem Körper sind in der ersten Horizontalreihe zum Vergleich die Daten einer Wasserdestillation unter Atmosphärendruck angeführt.

Verdampfung durch überhitzten Wasserdampf.

Partialdrucke vom Öl (obere Reihe), vom Wasser (untere Reihe).	Total- druck in der Blase.	Temperatur des Dampf- gemisches.	Spez. Gew. des Dampfes vom Öl (obere Reihe), vom Wasser (untere Reihe).	Zusammen- setzung des Dampf- gemisches in Gew. %.	Überhitzungs-Grad des Wasserdampfes im Dampfgemisch.
		Iso	capronsäur	e.	
12,7 mm 747,3	760 mm	99,5°	0,0634 0,5962	- 9,6°/ ₀ 90,4	0%
206,5 553,5	760	160	0,8880 0,3717	70,5 29,5	$160 - 91,37 = 68,6^{\circ}$
61,8 14,2	76	130	0,2858 0,0107	96,4 3,6	$130 - 16,8 = 113,2^{\circ}$
1,0 37,0	38	66,5	0,0055 0,0315	14,9 85,1	$66,5 - 32,8 = 33,7^{\circ}$

Maria Salara					
Partialdrucke vom Öl (obere Reihe), vom Wasser (untere Reihe).	Total- druck in der Blase.	Temperatur des Dampf- gemisches.	Spez. Gew. des Dampfes vom Öl (obere Reihe), vom Wasser (untere Reihe).	Zusammen- setzung des Dampf- gemisches in Gew. %00.	Überhitzungs-Grad des Wasserdampfes im Dampfgemisch.
		a-Ct	lornaphtha	lin.	
3,8 mm 756,2	760 mm	99,85 °	0,0314 0,5861	5,1 º/o 94,9	0 º
3,8 72,7	76	99,85	0,0314 0,0564	35,8 64,2	99,85 - 45,35 = 54,5°
3,8 35,2	38	99,85	0,0314 0,0273	53,5 46,5	99,85 – 31,95 = 67,9°
		a-Br	omnaphtha	lin.	
2,28 mm 757,72	760 mm	99,910	0,0203 0,6050	3,2°/ ₀ 96,8	0 °
2,28 73,72	76	99,91	0,0203 0,0571	26,2 73,8	99,91 – 45,62 = 54,3°
2,28 35,72	38	99,91	0,0203 0,0277	42,3 57,7	99,91 – 32,19 = 67,7°
ca. 0,4 37,6	38	80	0,0038 0,0308	11,0 89,0	80,0 – 33,1 = 46,9°
		M	yristinsäure		
_	760 mm	99,90	= /	ca. 0,2°/o 99,8	00
5 mm 755	760	168,5	0,0415 0,4994	7,7 92,3	168,5 — 99,81 = 68,7°
5 33	38	168,5	0,0415 0,0216	65,7 34,3	168,5 - 30,8 = 134,7°
			Schwefel.		
	760,9 mm	100°	_	0,012°/ ₀ 99,988	0 0
-	761,5	155	-	0,58 99,42	55 °
	761	169	-	1,09 98,91	69 0
-	752	194,5	_	3,76 96,24	94,5°
_	38	194,5	-	43,4 56,6	160,5°

Die Verdampfungswerte des Schwefels sind experimentell gewonnen, 1) indem durch fein gepulverten Schwefel gesättigter und überhitzter Wasserdampf geleitet wurde. Nur der Verdampfungswert durch Überhitzungsdestillation unter Minderdruck in der untersten Zeile ist durch Rechnung erhalten. Gerade bei einem so hochsiedenden Körper war es sehr erwünscht, die Wirkung des Vakuums bei der Überhitzungsdestillation zu zeigen. Weil die Rechnung ohne Benutzung eines Dampfdruckes des Schwefels ausgeführt werden mußte, sei sie im folgenden wiedergegeben.

Ruff und Graf fanden experimentell, daß 77,4 g Wasserdampf bei 194,5° unter 752 mm Totaldruck 2,911 g Schwefel verdampften. Aus dieser Verdampfung läßt sich genau berechnen, wieviel Schwefel ein überhitzter Wasserdampf bei derselben Temperatur, aber unter einem Totaldrucke von 38 mm zu verdampfen vermag. Da der Schwefeldampf gesättigt war und er bei der Reduktion des Druckes wieder als gesättigt angenommen werden soll, so bleiben bei Beibehaltung der Destillationstemperatur auch sein Partialdruck und seine Verdampfungsmenge gleich groß. Nur die Gewichtsmenge des mitverdampften Wassers ändert sich. Zu deren Berechnung ist daran festzuhalten, daß das Dampfvolumen der 77,4 g Wasser, das zugleich die Volumengröße der 2,911 g Schwefel ausdrückt, konstant bleibt. Infolge der Druckänderung von 752 mm auf 38 mm enthält dasselbe Dampfvolumen aber eine andere Gewichtsmenge Wasser. Es handelt sich also zuerst darum, von den 77,4 g Wasserdampf von 194,5° und 752 mm Druck das Volumen zu berechnen. Wir wollen hierzu die Gasgleichung benutzen, was bei dem niedrigen Druck gegenüber der hohen Temperatur für unsern Zweck keinen Fehler von Bedeutung verursacht. Die Gleichung war (s. S. 322):

 $g = \frac{p}{T} \cdot 0,289$ oder in Ziffern

 $g = \frac{752}{273 + 194,5} \cdot 0,289 = 0,4782 \text{ kg}.$

Da 0,4782 kg Wasserdampf von 194,5° und 752 mm den Raum von 1 cbm einnehmen, so nehmen 0,0774 kg den Raum von 0,1618 cbm ein.

Hierauf ist zu berechnen, welches Gewicht die 0,1618 cbm Wasserdampf von 194,5° und 38 mm Druck haben.

$$G = \frac{38}{273 + 194,5} \cdot 0,289 = 0,0235 \text{ kg}.$$

1 cbm eines derartigen Wasserdampfes enthält hiernach 0,0235 kg Wasser, also 0,1618 cbm 0,00380 kg.

Das Ergebnis der Rechnung lautet also, daß die 3,80 g Wasserdampf von 194,5 $^{\circ}$ unter einem Drucke von 38 mm 2,911 g Schwefel verdampfen. Im Destillat sind demnach 43,4 $^{\circ}$ / $^{\circ}$ Schwefel und 56,6 $^{\circ}$ / $^{\circ}$ Wasser enthalten.

¹⁾ Otto Ruff und Hugo Graf, Chem. Zentralbl. 1907, I. 2922.

Die Tabelle S. 411 zeigt überzeugend den großen praktischen Wert der Überhitzungsdestillation, besonders derjenigen unter Minderdruck, für hochsiedende Körper. Die einzige große, aber nicht unüberwindbare Schwierigkeit bei ihrer Anwendung liegt darin, daß die gewünschte hohe Temperatur des in den Kühler übersteigenden Dampfgemisches trotz der abkühlenden Wirkung der äußeren kalten Luft wirklich erreicht wird.

Man erkennt auch, daß eine Überhitzungsdestillation nicht notwendig mit einer hohen Temperatur verbunden zu sein braucht. Von der Isocapronsäure z. B., deren normaler Siedepunkt 199,7° beträgt, sind bei einer Destillation mit hindurch geleitetem Wasserdampf unter einem Destillationsdruck von 38 mm und mit einer Temperatur des Mischdampfes von nur 66,5° 14,9°/° im Destillat enthalten.

Ferner erhellt aus der Tabelle, daß nicht nur die Destillationstemperatur, sondern auch der Destillationsdruck die Verdampfungsgröße des Öls beeinflußt. Der Ausdruck für diese beiden Faktoren, das ist der Überhitzungsgrad, ist für den Nutzeffekt der Destillation maßgebend. Der Überhitzungsgrad kann durch Erhöhung der Temperatur des Dampfgemisches oder durch Erniedrigung des Druckes in der Blase gesteigert werden. Beide im Verein erzielen den höchsten Ölgehalt im Destillat.

Eine Überhitzung des Wasserdampfes außerhalb der Blase durch Überhitzer ist nicht so wirksam wie innerhalb durch das indirekt geheizte Öl; sie läßt sich auch schwieriger regulieren. Die zur Verdampfung des Öls erforderliche Wärme ist freilich gering, um so größer ist aber der Wärmeverlust durch die Abkühlung der Blase, der durch überhitzten einströmenden Dampf nicht hinlänglich ersetzt werden kann. Man ist dann geneigt, die Überhitzungstemperatur des Wasserdampfes zu steigern, was für das Destillationsmaterial vom Übel ist, oder man ist gezwungen, mehr Wasserdampf durch das Öl zu jagen. Hierdurch wird viel Blaseninhalt mit übergerissen, das Öl wird unrein, außerdem sinkt der Ölgehalt im Destillat, weil sich der Wasserdampf mit dem Öle nicht sättigen kann.

Einige Beispiele aus der Praxis seien hier wiedergegeben. Die Destillation geschah unter Minderdruck. Das ätherische Öl wurde indirekt mit Dampf von 5 bis 6 Atm. Spannung geheizt, und Dampf gleicher Spannung wurde hindurchgeleitet. Außer

der geschlossenen Heizschlange befand sich in der Blase keine besondere Vorrichtung, die den einströmenden Wasserdampf im Öl verteilte und so für seine innige Vermischung mit dem Öle sorgte. Die Blase war jedoch so gewählt, daß die Ölfüllung in hoher Schicht in der Blase lag; außerdem wurde die Destillation sehr gemäßigt geführt. Von dem Destillate wurden Öl und Wasser gewogen.

Zu den Versuchen diente Carvon, nachdem der noch etwas limonenhaltige Vorlauf abdestilliert war.

1. Versuch: In 10 Minuten wurden als Destillat 0,385 kg Carvon und 0,850 kg Wasser erhalten; im Destillat waren also $31,3^{\circ}/_{\circ}$ Carvon. Die Temperatur des Dampfgemisches in der Blase betrug $64,2^{\circ}$, der Destillationsdruck 19 mm. Hiernach war der Überhitzungsgrad $64,2^{\circ}-20,6^{\circ}=43,6^{\circ}$. $20,6^{\circ}$ würde nämlich die Temperatur sein, bei welcher der Wasserdampf im Mischdampfe unter seinem Partialdruck nach der Dampfdrucktabelle des Wassers gesättigt wäre. Dieser Partialdruck wird durch Rechnung nach der Formel erhalten:

$$\frac{G_1}{G_2} = \frac{\text{Mol.}_1 \ p_1}{\text{Mol.}_2 \ (P-p_1)}.$$

In dieser Gleichung ist außer p1, dem Partialdruck des Carvons im Mischdampfe, alles bekannt. Werden die Ziffern dieses Versuches eingesetzt, so lautet die Gleichung:

$$\frac{0,385}{0,850} = \frac{150 p_1}{18 (19 - p_1)},$$

wonach $p_1=0.98$ mm ist, und p_2 der Partialdruck des Wassers im Mischdampfe = $19-p_1=18$ mm. Diesem Drucke entspricht nach der Dampfdrucktabelle eine Temperatur von 20.6° für gesättigten Dampf.

- 2. Versuch: In 10 Minuten 0,355 kg Carvon und 0,760 kg Wasser als Destillat, d. h. $32,2^{\circ}/_{\circ}$ Carvon im Destillat. Destillationstemperatur $66,7^{\circ}$, Destillationsdruck 19 mm, Überhitzungsgrad $66,7^{\circ}-20,0^{\circ}=46,1^{\circ}$.
- 3. Versuch: In 10 Minuten 0,570 kg Carvon und 1,170 kg Wasser erhalten, also $32,2^{\circ}/_{\circ}$ Carvon im Destillat. Destillationstemperatur 67,5°, Destillationsdruck 20 mm, Überhitzungsgrad 67,5° 21,5° = 46,0°.
- 4. Versuch: In 5 Minuten 0,905 kg Carvon und 0,175 kg Wasser erhalten, also $84,0^{\circ}/_{\circ}$ Carvon im Destillat. Destillationstemperatur $104,5^{\circ}$, Destillationsdruck 22 mm, Überhitzungsgrad $104,5^{\circ}-16^{\circ}=88,5^{\circ}$.
- 5. Versuch: In 5 Minuten 1,18 kg Carvon und 0,23 kg Wasser als Destillat, gleich $83,7^{\circ}/_{\circ}$ Carvon im Destillat. Destillationstemperatur $106,75^{\circ}$, Destillationsdruck 22 mm, Überhitzungsgrad $106,75^{\circ}-16^{\circ}=90,75^{\circ}$.

Bei drei andern Versuchen wurde reines Carvon mit Wasser destilliert und im Destillat Carvon und Wasser gewogen. Hier

lag also keine Überhitzungsdestillation vor; Wasser und Carvon waren im Dampfgemisch als gesättigter Dampf vorhanden. Die nachstehend wiedergegebenen Daten dieser drei Versuche bilden das Mittel aus je drei Bestimmungen. Wie bei den ersten fünf Versuchen wurden Temperatur und Druck des Dampfgemisches in der Blase festgestellt. Alle acht Versuche sind zum besseren Vergleiche in der folgenden Tabelle, nach der Höhe des Überhitzungsgrades geordnet, zusammengestellt.

Zusammensetzung des Destillates bei Destillation von Carvon mit gesättigtem und überhitztem Dampfe.

Versuchs- Nummer.		isch in der ase	Carvon- Gehalt im	Über- hitzungs-
	Druck.	Temperatur.	Destillat.	grad.
8.	20,5 mm	23,2 0	2,9%	0
7.	43,1	34,6	3,6	0
6.	755,1	99,4	9,7	0
1.	19	64,2	31,3	43,60
2.	19	66,7	32,3	46,1
3.	20	67,5	33,3	46,0
4.	22	104,5	84,0	88,5
5.	22	106,75	83,7	90,75

Die Differenzen in der Zusammensetzung des Destillats bei den Versuchen 2 und 3 und bei 4 und 5 erklären sich wohl durch ungenaue Feststellung der Temperatur, die wegen unvollständiger Wärmeabgabe des in seinen Komponenten ungleich warmen Dampfgemisches an das Thermometer nur schwer exakt bestimmt werden kann.

Destillation von wasserlöslichen Flüssigkeiten durch überhitzten Dampf. Sehr wertvoll erweist sich die Überhitzungsdestillation für alle in Wasser teilweise löslichen Flüssigkeiten, weil wegen der geringen Wassermenge, die mit der zu verdampfenden Flüssigkeit in Berührung kommt, die Flüssigkeit sich bei ihrer Verdampfung fast wie ein in Wasser unlöslicher Körper verhält. Deshalb ist die Destillation mit Überhitzung des Wasserdampfes innerhalb der Blase sehr geeignet für Buttersäure, Karbolsäure, Anilin, von höher siedenden Körpern für

Anisaldehyd, Benzylalkohol, Phenyläthylalkohol, Zimtalkohol usw., zumal wenn sie noch schwerflüchtige Beimengungen enthalten.

Reinheit der Destillation. Werden besondere Anforderungen an die Reinheit des Destillates gestellt, so muß die Destillationsstärke, d. h. die Menge des eingeleiteten Wasserdampfes, verringert werden. Besonders wichtig ist die Mäßigung der Destillationsstärke bei der Vakuum-Überhitzungsdestillation. Um z. B. von α-Bromnaphthalin 0,0038 kg im Destillat zu erhalten, ist bei einer Temperatur des Mischdampfes von 80°, wenn darin der Dampf des Bromnaphthalins gesättigt ist, die Entwicklung von 1 cbm Dampfgemisch erforderlich. Wäre das die Produktion in einer Sekunde, so daß also in einer Stunde 13,68 kg Bromnaphthalin abdestillierten, so würde das aus der Flüssigkeit in der Blase entwickelte Dampfgemisch mit einer Geschwindigkeit von 1 m in 1 Sek. in die Höhe getrieben werden, wenn der mittlere Querschnitt des von der Füllung freien Dampfraumes in der Blase 1 qm beträgt. 1 m Geschwindigkeit der Dampfentwicklung in der Blase verursacht aber, zumal wenn die Destillation durch direkt eingeleiteten Wasserdampf bewirkt wird, eine nicht unerhebliche Verunreinigung des Destillates durch mitgerissenen Blaseninhalt. Eine Mäßigung der Dampfgeschwindigkeit innerhalb der Blase ist übrigens schon deshalb notwendig, damit sich der Wasserdampf mit dem Öldampf sättigen kann.

Partielle Kondensation des Dampfgemisches. In dem Dampfgemisch der Überhitzungsdestillation ist, wie schon hervorgehoben wurde, der Öldampf gesättigt, der Wasserdampf ungesättigt. Jede partielle Kondensation eines derartigen Dampfgemisches scheidet also nur Öl ab und zwar solange, bis die Temperatur des Gemisches so weit gesunken ist, daß auch der Wasserdampf gesättigt ist. Dann enthält jedes weiter entstehende Kondensat beide Komponenten in dem gleichen Gewichtsver-

hältnisse wie in dem total gesättigten Dampfe.

Entwässerung des Destillates. Das Wasser im Destillat bildet mit der überdestillierten Substanz entweder ein Gemenge oder eine homogene Lösung. Will man das Destillat von dem Wasser befreien, so braucht es nur indirekt unter Atmosphärendruck oder im Vakuum erhitzt zu werden. Da das Wasser der leichter flüchtige Körper und sein Anteil im Destillat gering ist, geht es bei der Dampfentwicklung zuerst mit über. Sehr

gut läßt sich auch die Entwässerung des Destillats mit der Überhitzungsdestillation vereinigen. Man kühlt den Mischdampf nur so weit, daß die hochsiedende Substanz kondensiert wird, das Wasser aber dampfförmig bleibt. Die Vorlagen sind durch geschlossene Heizschlange oder Doppelboden heizbar. Aus diesen Vorlagen wird der Dampf durch einen zweiten Kühler geführt, aus dem das nun kalt gehaltene Kondensat in eine Vorlage fließt, die mit der Luftpumpe verbunden ist.

Derartige Anlagen für Überhitzungsdestillation, verbunden mit Entwässerung des Destillats, sind in etwas anderer Ausführung z. B. bei der Gewinnung des Rein-Glycerins aus dem Roh-Glycerin in Anwendung, unter Atmosphärendruck und auch unter Minderdruck, stets aber unpraktischer Weise noch mit Heizung über freiem Feuer.

Anwendung der Überhitzungsdestillation in der Technik. Schon seit einer Reihe von Jahrzehnten wird die Destillation von ätherischen Ölen mit überhitztem Wasserdampf unter Atmosphärendruck angewendet. Als man statt der alten Wasserdestillation über Feuer die Dampfdestillation für die Pflanzenmaterialien einzuführen begann, änderte sich auch die Beschaffenheit der Rohöle. Die ersten Dampfkessel, die aufgestellt wurden, hatten nur sehr geringen Überdruck, so geringen, daß die Druckdifferenz zwischen dem Dampfe und der äußeren Atmosphäre gerade hinreichte, bei Öffnung eines Ventils am Dampfrohr den Dampf nachströmen zu lassen. Die mit solchem Dampfe gewonnenen Destillate ähnelten noch den Wasserdestillaten, die zwar gefärbt waren, aber ziemlich rein rochen, wenn man es verstand, die Destillation über Feuer so zu führen, daß die Füllung nicht anbrannte.

Für die Ölrektifikation war das Verfahren der Wasserdestillation bekannt. Sehr bald fand man, daß eine andere Rektifikationsart besser förderte, bei der erheblich mehr Öl mit der gleichen Wassermenge überdestilliert. Hierzu wurde das ätherische Öl allein in die Blase gegeben, die durch Doppelboden oder geschlossene Heizschlange mit gespanntem Dampf von mehreren Atmosphären Druck geheizt wurde. Zur Destillation leitete man Wasserdampf von derselben Spannung durch das heiße Öl. Es ist das die Destillation unter Atmosphärendruck mit überhitztem Wasserdampf, deren Effekt oben ziffernmäßig festgestellt ist.

Durch die neueren Destillationsverfahren für die Pflanzenmaterialien ist die Notwendigkeit der Ölrektifikation jetzt geringer geworden. Unter den hierzu benutzten Rektifikationsmethoden erfreut sich die Überhitzungsdestillation unter Atmosphärendruck oder unter Minderdruck besonderer Beliebtheit.

6. Kapitel.

Die chemisch-physikalischen Vorgänge bei der Pflanzendestillation.

Zur Beantwortung der Frage, in welcher Weise die Verdampfung des ätherischen Öls aus der Pflanze vor sich geht, ist noch keine Untersuchung vorhanden. Für gewöhnlich wird wohl angenommen, daß der an das Pflanzenmaterial herantretende Wasserdampf alle flüchtigen Substanzen darin verflüchtigen muß, so daß die vollständige Gewinnung des ätherischen Öls aus den Pflanzenteilen ein sehr einfacher Vorgang ist, der nichts weiter als eine genügende Dampfmenge verlangt.

Wie wir erkennen werden, spielen sich jedoch bei der Pflanzendestillation mit Wasser oder Wasserdampf mehrere chemisch-physikalische Prozesse ab. Zu deren Besprechung wollen wir nicht von der Wasserdestillation, sondern von der Dampfdestillation ausgehen, weil bei ihr die ursächlichen Kräfte klarer hervortreten, und auch deshalb, weil die Dampfdestillation in den mittleren und großen Betrieben am meisten angewendet wird. Die Wasser- und Dampfdestillation ist im wesentlichen der Dampfdestillation gleich.

Die Destillationstemperatur. Gegeben und feststehend ist der äußere Druck, unter dem die Destillation je nach Wahl des Druckes (Atmosphären-, Über- oder Minderdruck) erfolgt. Wechselnd dagegen ist im Verlauf der Destillation die Temperatur des Dampfgemisches, das sich aus der Destillationsfüllung erhebt. Zu Beginn der Destillation ist die Temperatur am niedrigsten, weil dann die Ölverdampfung am stärksten ist, und weil von dem flüchtigen Substanzgemisch, das durch die Zerkleinerung der Pflanzenfüllung freigelegt ist, die niedriger siedenden Bestandteile sich zuerst verflüchtigen. Mit der Zunahme der schwerer siedenden Ölbestandteile, besonders aber mit der Abnahme des ätherischen Öls im Dampfgemische, steigt die Temperatur, bis sie zuletzt die Höhe erreicht, die der gesättigte Wasserdampf unter dem Destillationsdrucke besitzt.

Das ätherische Öl in der Pflanzenfüllung. Ist das Pflanzenmaterial unzerkleinert, so ist sein ätherisches Öl durch Zellmembranen eingeschlossen. Ist es zerkleinert, so ist ein Teil des Öls freigelegt, ein mehr oder minder großer Rest ist eingeschlossen geblieben oder durch die Art der Zerkleinerung wieder durch Pflanzenmaterial zugedeckt.

Alles freiliegende ätherische Öl wird durch den einfachen Prozeß der Verdampfung von dem darüber hinziehenden Wasserdampf verflüchtigt und mitgenommen. Anders verhält es sich aber mit dem in dem Pflanzengewebe noch eingeschlossenen oder durch dichtes Zudecken der unmittelbaren Berührung mit dem Wasserdampf entzogenen ätherischen Öl.

Wirkung von Feuchtigkeit und Hitze auf die Pflanzengewebe. Das zur Destillation in die Blase eingefüllte Pflanzenmaterial hat einen gewissen Wassergehalt; auch lufttrockene Pflanzenteile besitzen immer noch 10 bis 20 % Feuchtigkeit. Wird nun gesättigter Wasserdampf von nicht zu hoher Spannung in die Füllung eingeführt, so tritt zuerst Kondensation des Dampfes ein, bis sich die Füllung auf die Temperatur des Dampfes erwärmt hat.

Feuchtigkeit und Wärme veranlassen sehr bald eine Quellung der Pflanzengewebe unter Erweiterung der Zellen und Poren und unter Vergrößerung des ganzen Volumens. Sämereien können bei vollständiger Quellung gegen ein Viertel ihres Volumens zunehmen. Bei der Destillation wird diese Volumenvergrößerung durch Quellung auf Kosten der Zwischenräume in der Füllung durch den Druck der weicher und nachgiebiger gewordenen Massen teilweise oder ganz wieder aufgehoben.

Ein Zerbersten von Zellen, ein Zerreißen von Membranen findet hierbei wohl nur in geringerem Maße statt. Das zeigen die Erfahrungen bei der Spiritusfabrikation beim Dämpfen der Kartoffeln ohne Druck. Nur die in der Hauptsache aus Pentosanen und Hemicellulosen bestehende Intercellularsubstanz wird durch das Dämpfen zum Teil aufgelöst. Die zuvor in der Zelle schwimmenden Stärkekörner sind unter Aufsaugung der Zellflüssigkeit aufgequollen und nehmen nun den Zellraum vollständig ein. Die Zellwände jedoch sind intakt geblieben. Energischere Wirkungen übt dagegen das jetzt allgemein übliche Dämpfen der Kartoffeln unter "Hochdruck" (3 bis höchstens 4 Atm.) aus. Die Intercellularsubstanz ist vollständig aufgelöst, und das Stärkemehl ist verflüssigt und teilweise durch die Zellmembranen hindurch in die umgebende Flüssigkeit ausgetreten. Die einzelnen Zellen sind gegenseitig gelockert, so daß sie bei der geringsten Berührung auseinanderfallen, haben an Volumen zugenommen, sind aber nicht zerrissen. Die ganze Masse hat durch die größere Hitze (gegen 140°) und durch den höheren Druck eine braune Farbe angenommen. Durch das einfache Dämpfen gerinnen die koagulierbaren Eiweißsubstanzen; durch das "Hochdruckdämpfen" wird aber ein Teil von ihnen durch Spaltung in Amidokörper wieder gelöst.

Diese Vorgänge sind für die Destillation lehrreich. Hieraus kann man schließen, daß der Einwirkung des heißen Dampfes jedenfalls eine für die Verdampfung des eingeschlossenen ätherischen Öls wertvolle vorbereitende Tätigkeit zukommt, daß sie aber für sich allein nicht ausreicht, das durch resistente Zellhäute geschützte Öl in den Bereich des Wasserdampfes zu ziehen.

Druckdifferenz innerhalb und ausserhalb der Öl enthaltenden Zelle. Der durch die Blasenfüllung in die Höhe ziehende Wasserdampf verdampft zuerst alles ätherische Öl, das in seinem Bereiche liegt, wobei er für jeden Teil dampfförmig aufgenommenen ätherischen Öls eine entsprechende Menge Wasser in flüssiger Form abscheidet, falls er gesättigt und nicht überhitzt ist. Die Folge hiervon ist, daß seine Temperatur auf die Destillations-

temperatur des Wassers mit dem ätherischen Öle zurückgeht. Mit dem Verschwinden des freiliegenden ätherischen Öls steigt die Temperatur des Dampfes wieder bis zur Temperatur des gesättigten reinen Wasserdampfes, wie sie dem in der Füllung herrschenden Drucke entspricht. Ist die Füllung einigermaßen dicht gelagert, so wird sich je nach der Destillationsstärke mit dem fallenden Dampfdrucke von unten nach oben eine entsprechende Temperaturskala des Dampfes einstellen, mit der höchsten Temperatur in den unteren Füllungsschichten und der niedrigsten Temperatur in den oberen Schichten. Diese Dampftemperatur teilt sich dem gesamten Destillationsmaterial mit und dringt trotz der schlechten Wärmeleitung in das Innere aller Partikel.

Wo sich nun ätherisches Öl mit Wasser eingeschlossen befindet, entsteht in diesen Behältern ein gewisser Überdruck, denn die Siedetemperatur des Wasser-Ölgemenges ist niedriger als die des vorbeiziehenden Dampfstromes. Das Wasser darin entwickelt einen Dampfdruck, der gleich dem Drucke des außerhalb vorbeiziehenden gesättigten Wasserdampfes ist, denn beide haben gleiche Temperatur. Dazu tritt aber noch der Dampfdruck des ätherichen Öls bei derselben Temperatur, der in seiner ganzen Größe als Überdruck gegen den Druck außerhalb der ölhaltenden Zellen auftritt.

In der nachfolgenden Tabelle sind diese Drucke verschiedener flüchtiger Körper wiedergegeben. Kolumne 1 der Tabelle gibt die Werte für den Druck des gesättigten Dampfes der Substanzen bei 120,6°. Für die Zahlen dieser Vertikalreihe ist angenommen, daß durch ein Drosselventil im Übersteigrohr der Blase zum Kühler ein Druck von zwei Atm. (absolut gerechnet) im Destillationsraum hergestellt ist. Die Temperatur des gesättigten Wasserdampfes von solchem Drucke beträgt 120,6%. Diese Temperatur überträgt sich auf den Inhalt des Pflanzengewebes, erteilt dem dort eingeschlossenen Wasser die gleiche Temperatur, so daß es mit dem gleichen Dampfdrucke verdampfen möchte, während sich der Dampfdruck des ätherischen Öls bei der Temperatur 120,60 vollständig als Überdruck äußert, dessen Wert für jede der beistehenden Substanzen in der Vertikalspalte angegeben ist.

Die zweite Kolumne enthält die Dampfdrucke, also Überdrucke, für die Temperatur 106,35°. Der dieser Temperatur entsprechende Dampfdruck des Wassers (1,25 Atm.) kann sich bei einer Destillation unter Atmosphärendruck in der unteren Schicht einer etwas dichter liegenden Pflanzenfüllung bilden. Kolumne 3 gibt die Werte für Atmosphärendruck, und Kolumne 4 die für Vakuumdestillation und zwar für einen Druck von 0,1 Atmosphäre in dem Destillationsraum der Blase.

Überdruck des im pflanzlichen Gewebe eingeschlossenen ätherischen Öls während der Hydrodestillation des Pflanzenmaterials.¹)

	Siedepunkt bei	1.	2.	3.	4.	
	Atmosphären-			ruck bei	1	
	druck.	120,6°.	106,35°.	100°.	46,2°.	
Benzol	80,20	2265,5 mm	1591,5 mm	1335 mm	235,4 mm	
Toluol	110,4	-	699	643	82	
Cineol	176	-	-	ca. 80	ca. 5	
Benzaldehyd	178,3	136,2	78,9	61,9	3,9	
Benzoes. Methyl	199,2	68,6	38,6	29,3	1,3	
o-Toluidin	199,7	63,4	34,0	25,4	1	
Isocapronsäure	200,0	40	20	14,1	< 1	
m-Kresol	200,5	49,5	26	18,7	1	
Benzylalkohol	205,0	42	21	15	-	
o-Nitrotoluol	220,4	32	17,3	12,9	-	
Carvon	223,5	ca.31	ca. 16	10	-	
Anethol	233,5	ca.22	ca.11	ca. 8	-	
p-Nitrotoluol	237,5	20,3	10,4	7,5	-	
Chinolin	237,5	21,6	11,6	8,5	-	
Benzoesäure	249,0	5,1	ca. 2,5	ca. 1,5	-	
Zimtaldehyd	250,0	ca.11	ca. 5,5	ca. 4	-	
Eugenol	253	ca. 6	ca. 3	ca. 2	-	
Caryophyllen	259	ca. 10	ca. 5	3-4	-	
a-Chlornaphthalin	259,3	11	5,4	3,9	-	
Cadinen	274,5	ca. 8	ca. 4	са. 3	-	
«-Bromnaphthalin	281,1	5,7	3,2	2,3	-	

Aus diesen Zahlen lassen sich sehr interessante Folgerungen ziehen; zuerst die allgemeine, daß diese Druckdifferenzen innerhalb und außerhalb der Ölzellen für die Verdampfung des äthe-

¹⁾ Literaturnachweise siehe im Kapitel "Siedetemperaturen und Dampfdrucke einheitlicher Körper."

rischen Öls durch die Zellwandungen hindurch in der Tat von

einiger Bedeutung sein können.

Betrachten wir zuerst die Atmosphärendruck-Destillation, also die Werte in der dritten Vertikalreihe, so finden wir, daß nicht nur für die niedrig siedenden Bestandteile der ätherischen Öle, sondern selbst für solche von 200° Siedetemperatur und noch etwas darüber die Druckdifferenz eine nicht unerhebliche Höhe erreicht. Ein Überdruck des Benzols von 1335 mm Quecksilberhöhe, d. h. von beinahe zwei Atm., vermag selbstverständlich zerstörend und bahnbrechend in dem durch Hitze und Feuchtigkeit erweichten Pflanzengewebe zu wirken und deckende Pflanzenmassen zu lockern. Aber mit Benzol haben wir es bei der Gewinnung von ätherischen Ölen nicht zu tun. Auch Körper vom Siedepunkte bis 150° sind nur selten natürliche Bestandteile der ätherischen Öle. Aber Druckdifferenzen von 60 mm und mehr bei über 150° siedenden Substanzen sind ebenfalls noch imstande, nicht zu stark cuticularisierte Zellhäute zu sprengen oder sie wenigstens auszudehnen und in ihren Poren zu erweitern, aufeinandergelagerte, zusammenballende Teilchen der Füllung zu lockern und dem Wasserdampfe neue Zugänge zu schaffen.

Je mehr nun der Überdruck sinkt, um so mehr verliert er für sich allein als Lockerungsmittel an Bedeutung, behält aber trotzdem für die Ölgewinnung noch Wert, indem er die Hydrodiffusion (siehe unten) in ihrer Wirkung unterstützt.

Bei der Vakuumdestillation sind diese Druckdifferenzen nur bei niedrig siedenden Substanzen von einiger Größe, bei der Überdruckdestillation steigen sie dagegen allgemein zu erheblichen Werten.

Zu beachten ist übrigens, daß dieser Überdruck in den Ölbehältern vorzugsweise bei dem Anheizen der Blasenfüllung zur Wirkung gelangt, dann aber im Verlauf der Destillation besonders bei Druck- und Temperaturschwankungen in der Blase auftreten wird. Notwendig für seine Bildung ist die Gegenwart des flüssigen Wassers, das bei dem Anheizen durch die partielle Kondensation des Dampfes genügend reichlich in die Pflanzengewebe geschickt wird.

Verdampfung des eingeschlossenen ätherischen Öls durch Vermittlung der Hydrodiffusion. Unter Diffusion versteht man das ohne äußere Mitwirkung, allein durch die lebendige Kraft der Moleküle erfolgende gegenseitige ineinander Eindringen verschiedener Körper bis zur Erreichung des Gleichgewichtszustandes in dem System. Sind beide Körper voneinander durch keine Zwischenwand getrennt, so erfolgt eine freie Diffusion. Sind aber beide Körper durch eine durchlässige Scheidewand getrennt, so entsteht eine Diffusion durch Scheidewände, eine Diosmose. Hierbei kann die Scheidewand für beide Körper durchlässig sein oder nur für den einen.

Diffusions- und zwar hauptsächlich diosmotische Vorgänge treten auch bei der Destillation von Pflanzenmaterial auf. Hier sind die Pflanzenmembranen die Scheidewände, die durch Wasser in einen gequollenen Zustand übergeführt sind.

In der Art, wie imbibitionsfähige feste Körper Flüssigkeiten aufnehmen, lassen sich zwei Modalitäten unterscheiden. Eine Gipstafel z. B. oder eine Tafel von gebranntem, unglasiertem Ton saugt lebhaft Wasser auf, alle Poren damit erfüllend, ohne daß ein Quellen der Tafeln eintritt, ohne daß sie ihr Volumen vergrößern. Sie bleiben bei der Wasseraufnahme ein starres vielmaschiges Gerippe, dessen Poren sich nach dem Abdunsten des Wassers wieder mit Luft füllen und im trocknen Zustande für Dämpfe und Gase durchlässig sind. Eine Leimtafel dagegen quillt bei dem Einsaugen des Wassers auf, bleibt jedoch nach dem Abdunsten des Wassers nicht in diesem lockeren, kolloidalen Zustande, sondern ihre Maschen schließen sich wieder vollständig und sind auch im trocknen Zustande für trockne Dämpfe und Gase undurchlässig.

Derartig imbibitions- und quellungsfähig wie die Leimtafel sind auch im allgemeinen die organisierten Stoffe, aber in sehr verschiedenem Grade. Die geringste Quellungsfähigkeit zeigen von den pflanzlichen Gebilden die cuticularisierten und die verkorkten Zellen, aber trocken sind auch sie für Gase praktisch undurchlässig. Daran ändern auch nichts die bei der Destillation vorkommenden erhöhten Temperaturen. Ein freies Strömen des Wasserdampfes durch die trocknen Zellmembranen hindurch findet bei der Dampfdestillation von Pflanzenmaterial nicht statt. Das folgt auch aus Destillationsversuchen von Pflanzenteilen mit überhitztem Wasserdampf. Die schließlich vollständig ausgetrocknete Pflanzenfüllung gab das in Zellräumen eingeschlossene ätherische Öl an den Wasserdampf erst ab, als sie danach mit

feuchtem Dampf destilliert wurde. Die trocken geführte Dampfdestillation von trocknem Pflanzenmaterial ist nur dann anwendbar und zwar mit Erfolg, wenn alles ätherische Öl durch die Zerkleinerung freigelegt ist.

Anders werden aber die Verhältnisse, wenn die pflanzlichen Gewebe mit Wasser getränkt sind. Im Leben der Pflanze beruht der ganze Gasaustausch innerhalb der Gewebe in der Hauptsache auf deren Durchlässigkeit im gequollenen Zustande. Die wassergetränkte Membran nimmt das Gas in Lösung auf der einen Seite auf und gibt es auf der andern Seite wieder ab. Für das ätherische Öl dagegen findet nach den physiologischen Beobachtungen eine derartige Gasdiffusion nicht statt. Nicht nur im trocknen, sondern auch im gequollenen Zustande sind die Membranen bei den im pflanzlichen Leben vorkommenden Temperaturen nicht permeabel. Tschirch nimmt nach seinen mikroskopischen Untersuchungen eine absolute Undurchlässigkeit an und gründet darauf die Entstehung des ätherischen Öls in den die Ölbehälter einschließenden Membranen und nicht innerhalb der umgebenden Zellen. Pfeffer dagegen läßt nur eine relative Undurchlässigkeit gelten. Gegen eine absolute Undurchlässigkeit spricht in der Tat die einfache Erwägung, daß Pflanzenteile, deren Ölräume geschlossen und vollkommen geschützt sind, z. B. die Umbelliferenfrüchte, lufttrocken wie feucht sehr merkbar ätherisches Öl verdunsten lassen. Freilich kann die Diosmose des ätherischen Öls bei Lufttemperatur nur sehr gering sein, wie aus den folgenden Versuchen geschlossen werden kann.

77 kg unzerkleinerte Stengel von Gewürznelken wurden 16 Stunden in Wasser von etwas über 20° gelegt. Sie wogen danach 161,5 kg, hatten also 109% Wasser aufgenommen. Die ca. 80 kg Wasser aber, die von den Nelkenstengeln abgegossen und abgetropft waren, gaben nach vollständiger Aufarbeitung durch Destillation nur 4 g Öl, deren größere, wenn nicht ganze Menge sicherlich von den Bruchstellen der Stengel mit offen gelegten Ölbehältern herrührten.

Bei einem andern Versuche wurden 101,4 kg Bruchabfälle von Ceylon-Zimtrinde 39 Stunden in Wasser von etwa 20° gelegt. Ihr Gewicht betrug nach sorgfältigem Abtropfen des Wassers 243 kg; das entspricht einer Wasseraufnahme von 139,6%. Das Wasser, worin der Zimt zwei Nächte und einen Tag gelegen hatte, gab bei der Destillation überhaupt kein ätherisches Öl. Selbst der erste Vorlauf war klares Wasser, das nicht den geringsten süßen Geschmack nach Zimtaldehyd hatte, der zu etwa 70% in dem Zimtöl enthalten ist. Der Zimtaldehyd besitzt eine gewisse Löslichkeit in Wasser. Eben wegen dieser Löslichkeit können trotzdem wenige Gramm des Öls in den etwa 200 Litern Wasser gewesen sein und sich der Destillationsbestimmung entzogen haben, die aber wieder von offen liegenden Ölzellen herrühren können.

Die 77 kg Nelkenstengel enthalten etwa 5 kg ätherisches Öl. Die Ölmengen, welche dem Wasser dargeboten wurden, waren also reichlich vorhanden, aber in Zellen eingeschlossen. Daß ein in Wasser liegendes, ölhaltiges Material Öl an das Wasser abgibt, auch wenn die Löslichkeit des Öls im Wasser sehr gering ist, vorausgesetzt nur daß es durch die Zerkleinerung aus den Zellen freigelegt ist, zeigt ein Versuch mit geraspeltem westindischem Sandelholz.

409,5 kg von diesem Holze wurden in Wasser von Lufttemperatur eingelegt und wie bei den vorigen Versuchen, ohne jedes Umrühren, 12 Stunden darin liegen gelassen. Von den 1250 Liter Einweichwasser wurden 100 Liter destilliert, die ca. 40 g Öl gaben, wonach also in das gesamte Wasser ca. 500 g Öl übergetreten waren.

Bei der Destillation liegen die Verhältnisse für die Diosmose günstiger; höhere Temperatur und Wasserströmungen durch Temperatur- und Druckdifferenzen beschleunigen die Diffusionsvorgänge in so erheblicher Weise, daß sie für die vollständige Gewinnung des Öls durch die Destillation mit maßgebend sind. Die weiterhin mitgeteilten Destillationsversuche von unzerkleinerten Pflanzenteilen liefern hierfür den Beweis.

In welcher Weise allein eine Temperaturerhöhung die Diffusionswirkung zu steigern oder zuvor vorhandene Hindernisse in der diosmotischen Stoffbewegung zu beseitigen vermag, zeigen zwei Versuche mit Kümmelsamen.

- 1. 97,5 kg Holländer Kümmelsamen wurden unzerkleinert in Wasser von etwa 12° eingelegt. Nach 6 Stunden wurde das nur 16–17° warme Wasser unten abgezogen und wieder auf den Kümmel gegossen. Nach weiteren 12 Stunden wurde das Wasser vom Kümmel abgezogen; es wog 140 kg, war braun und roch lebhaft nach Carvon. Zur Entfernung von Kümmelkörnern wurde es durch ein Tuch geseiht und destilliert; 1,75 g nach Carvon riechendes Öl wurden erhalten, d. h. 0,0012°/o vom Samen.
- 2. Auf den in der Blase zurückgebliebenen Kümmel wurde von neuem Wasser gegossen, das aber diesmal kochend heiß war, bis der Samen wieder ganz im Wasser lag. Das Gemisch hatte eine Temperatur von 70—80°. Am Abend gegen 6 Uhr, etwa 8 Stunden nach dem Aufgießen des Wassers, wurde das Einweichwasser einmal abgezogen und wieder darauf gegossen; es war noch 57° warm. Am andern Morgen wurde das Wasser abgezogen, durch ein Tuch geseiht und destilliert. Es war braun, schäumte stark und roch stark nach Carvon; es war noch 40° warm. Die Destillation gab 36 g Öl von sp. G. 0,9587, das also in der Hauptsache Carvon (sp. G. 0,965) war. Die 36 g Öl entsprechen 0,037°/o vom Samen, dessen normaler Gehalt etwa 5,7°/o war. Danach erscheint die Extraktionsmenge gering und man fragt

sich vielleicht, wieviel Zeit dazu gehören müßte, ehe auf diesem Wege das ganze Öl aus dem Samen durch die Exosmose ausgetreten ist. Es ist jedoch zu berücksichtigen, daß die Diffusionsgeschwindigkeit von dem Diffusionsgefälle abhängig ist, d. h. von der verschiedenen Konzentration des diosmierenden Körpers in den beiden durch die Membran getrennten Flüssigkeiten. Außerdem wird die Diffusionsgeschwindigkeit ceteris paribus noch durch die Weglängen bestimmt, die bei den Versuchen hier außerordentlich groß sind, während bei der Dampfdestillation die wässrige Öllösung nur einige Zellenschichten zu durchwandern hat.

Wir können uns diesen Diffusionsvorgang bei der Destillation von Pflanzenmaterial in folgender Weise denken. Indem sich ein Teil des ätherischen Öls in den Zellräumen in dem darin befindlichen Wasser löst und durch die heißgequollenen Membranen diosmiert, gelangt es in den Bereich des Wasserdampfes, von dem es sofort dampfförmig mitgenommen wird. An Stelle des verdampften Öls gehen neue Ölteilchen in Lösung, die, wieder von dem Wasser getragen, durch die Membranen wandern, während zugleich neue Wasserteilchen in die Zellräume eintreten. So geht das Spiel weiter, bis alle flüchtigen Substanzen aus den Zellen heraus diffundierend verdampft sind.

Man erkennt, daß bei dieser Diffusionsdestillation weniger die geringere oder größere Flüchtigkeit, mit anderen Worten Siedepunktsunterschiede, für die Verdampfungsgeschwindigkeit der Ölbestandteile maßgebend sind, als vielmehr der Grad der Löslichkeit in Wasser. Es müßte also vorkommen können, daß aus einem in Pflanzengewebe eingeschlossenen ätherischen Öle höher siedende aber leichter in Wasser lösliche Bestandteile vor niedriger siedenden aber schwerer löslichen überdestillieren. Das tritt auch in Wirklichkeit ein, wie die folgenden Destillationsversuche mit zerkleinertem und unzerkleinertem Pflanzenmaterial zeigen.

1. Versuch: 20 kg Norweger Kümmel wurde, unzerkleinert, lufttrocken in eine Blase gefüllt und mit Dampfdestillation unter Atmosphärendruck destilliert. Das Öl wurde in Fraktionen aufgefangen, und von jeder das spezifische Gewicht bei 150 bestimmt.

1.	Fraktion	124 g	Öl,	spez.	Gew.	0,953
2.	"	146 ,,	"	"	"	0,949
3.	"	150 ,,	"	"	"	0,930
4.	"	158 ,,	"	11	"	0,912
5.	"	132 ,,	"	11	11	0,867
6.	"	123 ,,	"	11	11	0,851
tio	newasser					0.047

Öl aus dem Destillationswasser 285 "

Im Destillat erschien kein Öl mehr; die Destillation hatte 24 Stunden gedauert und 1,118 kg Öl gegeben = 5,59% vom Samen. Die sehr feucht gewordene Füllung wurde aus der Blase genommen, an der Luft getrocknet, zerquetscht und von neuem destilliert. Noch 122 g Öl mit dem spezifischen Gewicht 0,849 wurden erhalten, so daß also im ganzen 1,24 kg Kümmelöl entsprechend 6,22% erhalten wurden.

Das Kümmelöl besteht, wenn man von den wenigen Prozenten Dihydrocarvon und Dihydrocarveol absieht, ziemlich zu gleichen Teilen aus Limonen (Sdp. 176°, spez. Gew. 0,847), und Carvon (Sdp. 233°, spez. Gew. 0,965). Aus den spezifischen Gewichten der einzelnen Fraktionen sehen wir, daß trotz des um 57° höheren Siedepunktes in der Hauptsache zuerst Carvon und zuletzt das in Wasser schwerer lösliche Limonen überdestillierte. Die Destillation war in ihrem ganzen Verlauf eine Diffusionsdestillation. Das für den Diffusionsvorgang notwendige Wasser wurde teils durch den Feuchtigkeitsgehalt des lufttrocknen Kümmels, teils durch das Kondensat bei dem Anheizen der Füllung und schließlich überreichlich durch die kühlende Wirkung der äußeren Luft auf die kleine Füllung geliefert. Durch die Abkühlung wurde zuletzt der Kümmel so naß, daß die Wege für die Diffusion des schwer löslichen Limonens zu lang wurden, und daß der Rest von Limonen erst nach dem Abtrocknen des Kümmels abdestilliert werden konnte.

Die weiteren zwei Destillationsversuche bestätigen diesen ersten.

2. Versuch: 20 kg von demselben Norweger Kümmel wurden wiederholt mit Wasser benetzt und 24 Stunden darauf unzerkleinert destilliert. Wieder Dampfdestillation.

1. Fraktion 185 g Öl, spez. Gew. 0,950 186 ,, ,, ,, ,, 2. ,, 3. ,, 158 ,, ,, ,, 0,921 4. ,, 134 ,, ,, ,, ,, 0,887 121 ,, ,, ,, 0,863 70 ,, ,, 6. ,, 0,852 " Öl aus dem Destillationswasser 248 " " " 0,945 Zusammen 1,102 kg = 5,51%

Als kein Öl mehr kam, wurde die nasse Füllung herausgenommen, wie bei dem ersten Versuche an der Luft getrocknet, zerquetscht und wieder destilliert. Es wurden noch 63 g Öl erhalten, mit dem spez. Gew. 0,850 und der opt. Drehung + 100 $^{\circ}$ 45'. Im Ganzen betrug also die Ölausbeute 1,165 kg = 5,82 $^{\circ}$ / $_{\circ}$.

3. Versuch: 10 kg desselben Kümmels wurden unzerkleinert in derselben Blase, aber in Wasser liegend, unter Rücklauf des Destillatwassers in die Blase, destilliert. Die Blase wurde mit Doppelmantel geheizt.

```
1. Fraktion 164 g Öl, spez. Gew. 0,944
2. ,, 139 ,, ,, ,, 0,937
3. ,, 133 ,, ,, ,, 0,916
4. ,, 133 ,, ,, ,, ,, 0,886
```

Als nur noch klares Wasser überdestillierte, wurde der Kümmel in der Blase durch Aufgießen auf ein Tuch von dem ölfreien Wasser getrennt, an der Luft getrocknet, dann zerquetscht und wieder destilliert. 40 g Öl mit

dem spez. Gew. 0,852 und der opt. Drehung + 100°42' wurden noch gewonnen. Im ganzen war die Ausbeute 0,609 kg Öl, entsprechend 6,09%.

4. Versuch: Zum Vergleich wurde nun eine Destillation des zerquetschten Kümmels vorgenommen. 20 kg desselben Kümmels wurden zerquetscht und lufttrocken mit Dampf destilliert.

1.	Fraktion	140 g	Öl,	spez.	Gew.	0,861
2.	"	107 ,,	,,	. ,,	11	0,872
3.	"	94 ,,	"	"	"	0,874
4.	,,	104 ,,	"	,,	"	0,895
5.	,,	106 ,,	,,	,,	,,	0,917
6.		119 ,,	,,	,,	"	0,931
7.		105 ,,	11	"	,,	0,946
8.		104 ,,	*,,	"	,,	0,947
9.	"	120 ,,	"	,,	,,	0,935
Öl aus dem Wasser	,,	90 ,,	,,	"	,,	0,932

Zusammen 1,089 kg = $5,45^{\circ}/_{\circ}$

Die Destillation dauerte 10 Stunden. Jetzt, als das Kümmelöl zu einem großen Teil durch das Zerquetschen freigelegt war, destillierte es auch in normaler Weise nach den Siedetemperaturen seiner Bestandteile über, zuerst vorwiegend das leichter siedende Limonen, dann das schwerer siedende Carvon. Daß zuletzt in der neunten Fraktion wieder etwas mehr Limonen im Destillat erscheint, läßt erkennen, daß neben der einfachen Verdampfungsdestillation wegen der unvollständigen Zerkleinerung die Diffusionsdestillation noch mitwirkt, durch die zuletzt noch etwas mehr Limonen herangezogen wird.

Die Destillation der unzerkleinerten Kümmelfrüchte dauerte doppelt solange wie die der zerquetschten. In der Praxis ist die erhebliche Beschleunigung der Destillation durch Zerkleinerung des Pflanzenmaterials wohl bekannt. Die Erklärung liegt darin, daß die Diffusion langsam arbeitet und bei der Destillation des unzerkleinerten Pflanzenmaterials alles Öl erst durch Diffusion aus den Zellen herausgeschafft werden muß.

Eigentümlich fallen die verschiedenen Ölausbeuten auf, und daß sogar der zerquetschte Kümmel die geringste Ölmenge gegeben hat. Die Destillation desselben Kümmels im Großen in Füllungen von je 2000 kg lieferte 6,7% Öl. Die Differenzen betragen also über ein Prozent.

Ausbeutebestimmungen sollten die Versuche nicht sein; zur Verfügung stand gerade eine kupferne Blase von etwa 100 l Rauminhalt, die nicht mit Wärmeschutzmasse bekleidet war. Die äußere Abkühlung mußte also erhebliche Dampfkondensation in der Blase und für die Destillation sehr ungünstige Durchnässung der Füllung verursachen, so daß die Füllung nicht mehr in all ihren kleinsten Partikeln locker lag, sondern zusammenballte. Die Destillation des zerquetschten Kümmels war leider nicht wie bei den anderen Versuchen nach Trocknung des Kümmels noch einmal wiederholt worden, sonst hätte sie zweifellos mehr Öl als die anderen Versuche gegeben. Übrigens ist gerade dieser Versuch sehr lehrreich, weil er zeigt, wieviel auf die Kontrolle und auf die Führung einer Destillation ankommt. An

und für sich liegt nämlich der unzerkleinerte Samen für die Dampfdurchströmung günstiger als der zerkleinerte; die Zwischenräume sind fast gleichmäßig groß und werden auch in der Kochhitze durch die lastende Füllung nur wenig kleiner, besonders aber haben die Körner, auch wenn sie naß werden, sehr viel geringere Neigung zusammen zu ballen als das zum Teil pulverige Gemisch des zerkleinerten Samens.

Um zu erfahren, ob das Nichtzerkleinern unter allen Umständen die Ölausbeute verringert, wurde ein besonderer Kümmeldestillationsversuch in einer mit Wärmeschutzmasse gut gegen Abkühlung geschützten Blase angestellt.

5. Versuch: 100 kg Tilsiter Kümmel wurden in einem Fasse mit lauwarmem Wasser übergossen, so daß der Kümmel vollständig im Wasser lag. Er blieb solange darin liegen, bis das Korn zerreiblich weich gequollen war, wurde dann sorgfältig vom Wasser getrennt und mit Dampfdestillation destilliert. Der eingeleitete Dampf war gesättigter Dampf von 5 Atm., der also schon eine gewisse Abkühlung erfahren kann, ehe er Wasser abscheidet; daß die Abkühlung nicht zu groß wurde, dafür sorgte die sehr starke Umkleidung der Blase mit Wärmeschutzmasse. Es wurden 5,85 kg Öl von spez. Gew. 0,908 erhalten; die Destillationsdauer betrug ein und einen halben Tag, gegen 18 Stunden. Der herausgenommene Kümmel gab nach Trocknen, Zerquetschen und erneuter Destillation kein Öl mehr.

Von demselben Kümmel wurden in derselben Blase ebenfalls mit Dampfdestillation zwei weitere Destillationsversuche gemacht, wobei aber der Kümmel zuvor zerquetscht war.

a) 100 kg Kümmel = 6,18 kg Öl, spez. Gew. 0,904
b) 100 ,, , =
$$\frac{5,92}{6,05}$$
 ,, , , , , $\frac{0,906}{0,905}$

Nimmt man 6,05% als Vollausbeute an, so hat die Destillation des unzerkleinerten Samens nur 3,3% des Ölgehalts weniger Öl gegeben. Der Verlust besteht nur in Carvon, das durch die längere Destillationszeit verharzt ist; Carvon ist ziemlich empfindlich gegen längere Erwärmung.

Früher, als in Deutschland die Gewinnung der ätherischen Öle noch Nebenbetrieb der Apotheken oder sonstiger Kleingewerbe war und aus Mangel an gespanntem Dampf ohne Dampfmaschine, also auch ohne maschinelle Zerkleinerungsvorrichtungen gearbeitet werden mußte, vertrat das Einquellen, "das Macerieren", des Destillationsmaterials vor der Destillation gewissermaßen die Zerkleinerung. Für die Sämereien mit nicht schwerflüchtigem ätherischem Öl, z. B. Kümmel, Anis, Fenchel, Coriander erscheint das Verfahren nicht einmal sehr ungünstig, es kostet allerdings mehr Dampf und mehr Zeit, also auch mehr Dampfkessel und mehr Blasen, aber die Ölausbeute ist, wie wir bei dem Kümmelversuche gesehen haben, bei sorgfältiger Ausführung

nur wenig niedriger. Dabei muß noch berücksichtigt werden, daß der gesättigte, ungespannte Dampf bei mangelnder Sachkunde sehr leicht eine gründliche Durchnässung der Füllung herbeiführt, die, wie schon hervorgehoben wurde, für die zerkleinerte Füllung viel verhängnisvoller als für die unzerkleinerte ist.

In dem alten, vortrefflich geschriebenen Werke von Zeller¹), das von scharfer Beobachtungsgabe und geschickter, kritischer Auswahl Zeugnis ablegt, sagt der Verfasser:

"In Beziehung auf die Frage, ob die auf ätherische Öle zu destillierenden Pflanzenstoffe zuvor und in welchem Grade verkleinert werden sollen, ist die Antwort sehr einfach, da kein Fall gedenkbar erscheint, wo diese Operation nicht an und für sich vorteilhaft sein sollte, und es handelt sich bei dieser Beantwortung nur darum, ob spezielle Erfahrungen den Grad der Verkleinerung, die Größe der dadurch erreichten Vorteile, ob sie die Notwendigkeit oder auch die teilweise Entbehrlichkeit in einzelnen Fällen nachweisen. Es ist klar, daß auch hier alles von der Individualität der Pflanzensubstanz abhängt, sowohl von der Beschaffenheit ihres Gewebes, als von der Art, wie die Öle in ihr niedergelegt sind."

Nach einigen weiteren Bemerkungen fährt er dann fort:

"Auf der anderen Seite muß jedoch auch der Vorteil, welcher durch Verkleinerung entsteht, seine Grenze finden in den Fällen, in welchen die Kosten derselben und die Verluste dabei den Aufwand für eine länger dauernde Destillation und den Wert des Mehrertrags vom Öl kompensieren; diese Fälle werden wohl selten bei der Darstellung im Kleineren zutreffen, desto häufiger aber bei der im Größeren, und lassen sich der Natur der Sache nach nicht spezialisieren. Nur über eine Klasse von Körpern geben die vorliegenden Beobachtungen in dieser Beziehung einigen Nachweis: über die Früchtchen der Umbelliferen; indem es daselbst gezeigt worden, wie die vielen Destillationen mit Kümmel in sehr großen Quantitäten durchaus mit ungestoßenem angestellt worden, und wie dieser auch bei Anis und Fenchel, wenn die Samen zuvor mit warmem Wasser maceriert worden, geschehen kann. Jedenfalls dürfte bei diesen, wie bei anderen fettes Öl haltigen Samen davor zu warnen sein, daß die Pulverisation nicht solange und so weit fortgesetzt werde, daß die beiderlei Öle Gelegenheit finden, sich inniger mit einander zu verbinden, und so die Verflüchtigung des ätherischen Öls zu verlangsamen."

Damals wurde entweder über Feuer destilliert, wobei die Pflanzenteile in Wasser lagen, oder mit gering gespanntem und deshalb nässendem Dampf.

¹⁾ G. H. Zeller, Die Ausbeute und Darstellung der ätherischen Öle. Stuttgart, 1855, S. 222.

Da nun der Kümmel meist in unzerkleinertem Zustande destilliert wurde — auch Zeller selbst destillierte ihn in ganzer Form nach Macerierung in warmem Wasser — so entging ihm auch nicht die Tatsache, die ihm sehr merkwürdig erschien, daß der schwerere, sauerstoffreichere Teil des Öls zuerst überdestillierte, der leichtere, sauerstoffärmere aber zuletzt. Er sucht sich das so zu erklären, daß durch die Einwirkung des atmosphärischen Sauerstoffs der sauerstoffreichere in den Kümmelfrüchten mehr die nach außen liegenden Ölstriemen einnehme, und der weniger oxydierte, leichtere dagegen die inneren, deren Inhalt erst gegen das Ende der Destillation völlig verflüchtigt werde. Er setzt aber gleich hinzu, daß es schwer sei, sich solches bei den verhältnismäßig kleinen Ölbehältern vorzustellen. Es anders zu erklären, wüßte er jedoch nicht.¹)

In gleicher Weise wie mit dem Kümmel wurden noch Destillationsversuche mit Dill, Ajowan, Fenchel, Gewürznelken und Nelkenstengeln ausgeführt. Alle Versuche bestätigen, daß sich von den unzerkleinerten Pflanzenmaterialien die Bestandteile ihres ätherischen Öls nicht nach der Höhe der Siedetemperaturen, sondern nach dem Grade der Wasserlöslichkeit verflüchtigen: bei den Dillfrüchten zuerst das Carvon, dann das Limonen, bei dem Ajowan zuerst das Thymol, dann das Gemisch aus Pinen, Dipenten und Cymol, bei dem Fenchel zuerst das Anethol, dann das Fenchon, bei den Nelken ist die Reihenfolge Methylamylketon, Eugenol, Caryophyllen, und bei den Nelkenstengeln Eugenol und Caryophyllen.

Nur 2 Ajowandestillationen seien noch mitgeteilt, weil bei diesen die Zusammensetzung der Fraktionen durch die Phenolbestimmungen noch besser als nur durch das spezifische Gewicht gekennzeichnet ist.

6. Versuch: 30 kg Ajowansamen wurden lufttrocken, unzerkleinert durch Dampfdestillation destilliert.

	1.	Fraktion	147,5	g	ÖI	mit	spez.	Gew.	0,955	unc	188	0/0	Phenol
Öl aus dem Wasser von	1.))	14	"	"	33	"	99	0,956	,,	80	,,	,,
	2.	"	120	,,	11	"	"	"	0,943	"	69	"	"
	3.	"	129	"	,,	,,	,,	"	0,921	,,	54	"	"
	4.	"	113	"	"	,,	"	"	0,896	,,	23	,,	. ,,
	5.								0,885				"
Öl aus dem Wasser 2-	-5.	"	145	11	"	11	99	33	0,975	"	95	"	99

¹⁾ G. H. Zeller, Studien über die ätherischen Öle, Stuttgart. 1855, II, S. 44.

Der Blaseninhalt wurde, als kein Öl mehr im Destillat erschien, an der Luft getrocknet, zerquetscht und von neuem destilliert, wodurch noch 69 g Öl mit dem spez. Gew. 0,871 und 11% Phenol erhalten wurden. Die Ausbeute im ganzen betrug also 0,818 kg Öl, entsprechend 2,73% vom Samen.

7. Versuch: 28,5 kg von demselben Ajowan wurden zerquetscht und wie oben destilliert.

```
1. Fraktion 160 g Öl mit spez. Gew. 0,868 und 9% Phenol
                                                0,869 ,, 10 ,,
                2.
                          103 ,, ,, ,, ,,
                     ..
                          106 ,, ,, ,, ,, ,, 0,874 ,,
                                                        12 ,,
                          114 ,, ,, ,, ,, 0,909 ,,
                                                         40 ,,
                                       "
                                            ,, 0,960 ,,
                5.
                                                         80 ,,
                          111 ,, ,, ,,
                          106 ,, ,, ,,
                                       ,, ,, 0,975 ,,
                                                         94 ..
                7.
                          30 ,, ,, ,,
                                       ,, ,, 0,977 ,,
Öl aus dem Wasser
                                       ,, ,, 0,977 ,,
                          152 ,, ,, ,,
```

Zusammen 0,882 kg $\ddot{0}l = 3,09^{\circ}/_{\circ}$.

Die Destillation der unzerkleinerten Samen dauerte doppelt solange wie die der zerkleinerten und gab, wenn man die erneute Destillation nicht rechnet, 0,59 % weniger Öl auf den Samen bezogen oder 19,1% aufs Öl.

Das Phenol (Thymol) wurde in den Ajowanölen durch Ausschütteln mit 5-prozentiger Natronlauge bestimmt. Die physikalischen Konstanten der Bestandteile des Ajowanöls sind:

> d₁₅₀ 0,8615, Sdp. 1560 Dipenten d₁₅₀ 0,847 ,, 1750 ., 174,30 Cymol d₁₅₀ 0,860 Thymol d₂₄° 0,969 ,, 231,8°

Druckdifferenzen in der Blase. Jeder strömende Dampf verdankt seine Bewegung Druckunterschieden, deren Größe in der Dampfgeschwindigkeit ihren Ausdruck findet. Bei der Dampfdestillation einer Pflanzenfüllung kann der in die Blase eintretende Dampf, durch die Blasenfüllung in seiner vollen Ausdehnung gehemmt, nicht sofort auf den äußeren Luftdruck heruntergehen. Es bildet sich unterhalb der Füllung ein Überdruck mit allmählichem Ausgleich nach oben. Die Größe dieses Überdrucks wird durch die Destillationsstärke und durch die Zwischenräume in der Füllung bestimmt. Je nach der Höhe einer Füllung und je nach der Anzahl der Füllungsschichten kann er bis zu 0,3 Atm. und darüber gesteigert werden. Übersteigt er eine gewisse Grenze, die durch Art und Gesamthöhe der Pflanzenfüllung gezogen ist, so schafft sich der Dampf durch mehliges Material hindurch feine, kaum sichtbare Kanäle, gröbere Massen reißt er auseinander oder schleudert sie in die Höhe. Sind das Übersteigrohr oder die Kühlrohre für das Dampfvolumen zu eng, so

ist eine dritte Ursache zur Drucksteigerung im Destillationsraum gegeben.

Da der gespannte Dampf aus dem Ventil des Dampfleitungsrohres zur Blase stoßweise ausströmt, und da die Spannung des Kesseldampfes durch ungleichmäßiges Heizen der Kessel, durch Schwankungen in dem allgemeinen Verbrauch und besonders durch An- oder Abstellen benachbarter Destillationsapparate fortgesetzt kleineren und größeren Änderungen unterworfen ist, so sind auch Druckschwankungen im Destillationsraum der Blase unausbleiblich. Für die Destillation einer Pflanzenfüllung können solche Druckschwankungen nur günstig wirken, weil durch sie auch dichter liegende Teile der Füllung, wo der Dampf sonst leicht in einem gewissen Ruhestand verharrt, von Zeit zu Zeit durchdampft werden.

Wasserdestillation von Pflanzen. Ebenso wie für die Dampfdestillation und für die Wasser- und Dampfdestillation muß auch für die Wasserdestillation betont werden, daß nur das ätherische Öl unmittelbar verdampft werden kann, das von dem Dampfe direkt berührt wird, daß aber alles in dem Pflanzengewebe eingeschlossene Öl erst durch Diosmose dem Wasserdampfe zugeführt werden muß. Da nun die Diffusion bei längerem Wege außerordentlich langsam arbeitet, und diese Wege bei der Wasserdestillation naturgemäß länger sind, so ist für Wasserdestillation eine möglichst weitgehende Zerkleinerung im allgemeinen noch mehr erwünscht. Auch für die Wasserdestillation ist es erforderlich, daß alle Zwischenräume, die hier mit Wasser erfüllt sind, dauernd von dem Dampfe durchströmt werden.

Gewöhnlich wird bei der Wasserdestillation von Pflanzenmaterial angenommen, daß während der Destillation die ganze Füllungsmasse in der Blase in allen Teilen in siedender Bewegung begriffen sei. Das ist aber ein Irrtum. Die Bildung von Dampfblasen findet nur von den geheizten Metallwänden aus statt; von dort erheben sich die Blasen und streben auf dem kürzesten Wege, und wo ihnen am wenigsten Hindernisse geboten werden, nach oben. Liegt das Destillationsmaterial sperrig und bleibt es während des Kochens locker aufeinander liegend, so kann man annehmen, daß die Dampfblasen ziemlich gleichmäßig alle Pflanzenteile berühren und das ätherische Öl von ihnen verdampfen.

Holzige Pflanzenstengel können eine derartig lockere und in der Hitze locker bleibende Masse in der Blase bilden.

Zartwandige Epidermiszellen lassen ihr flüchtiges Öl leicht diffundieren. Es brauchen sich aber nur mehrere Blättchen von dem im Wasser liegenden Kraute oder von den Blüten zusammenzulegen, so wird die Diffusion gehemmt. Da nicht erwartet werden kann, daß der Dampf gleichmäßig durch alle Zwischenräume hindurchstreicht, so ist die Destillation so zu steigern, daß die einzelnen Teilchen der Pflanzenfüllung von den in die Höhe geschleuderten zerrissenen Dampfblasen in fortwährende Bewegung versetzt werden; die Dampfblasen müssen wie ein Rührwerk wirken. Hiernach ist die Art der Zerkleinerung, die Größe der Füllung und die Konstruktion der Blase einzurichten.

Früher, als noch vorzugsweise über Feuer destilliert wurde, bildete die Wasserdestillation die Regel, die Dampfdestillation die Ausnahme. Dabei wurde denn auch die Erfahrung gemacht, daß sich manche Pflanzenstoffe sehr schwierig vollständig ausdestillieren ließen. Besonders scheinen die Gewürznelken in dieser Hinsicht ein Schmerzenskind gewesen zu sein. Alte Vorschriften vor 50 Jahren geben zur Darstellung des Nelkenöls an, daß die Nelken nur durch eine sehr oft wiederholte Destillation erschöpft werden können. Das kann nur so zu verstehen sein, daß die Blase geöffnet, der Inhalt umgerührt und der Wasserverlust in der Blase durch Destillationswasser ersetzt wurde. So wurden dieselben Nelken dreimal oder fünfmal oder achtmal, in einem Falle wurden 5 kg Nelken sogar sechzehnmal destilliert. Zeller1), nach dem ich diese Angaben mitteile, bemerkt hierzu, daß ein derartiges Verfahren unvollkommen sei; er meint, daß die Nelken wohl ungenügend zerkleinert gewesen seien und besser in kleinerer Menge hätten genommen werden müssen. Dieser letztere Rat ist freilich im Großbetriebe schlecht anwendbar. Wahrscheinlich ist in diesem Falle, wie überhaupt damals, die Blase zu klein, resp. die Füllung für die Blase zu groß gewesen, so daß, um das bei der Wasserdestillation von Nelken sehr leicht eintretende Überschäumen zu vermeiden, mit zu schwachem Feuer destilliert wurde. So mußten denn unter

¹) Zeller, Die Ausbeute und Darstellung der ätherischen Öle aus offizinellen Pflanzen. Stuttgart 1855, S. 31.

wiederholtem Umrühren die wenigen Kilogramm Nelken mehrere Tage gekocht werden.

Zeller selbst zerkleinerte 1 kg Gewürznelken zu grobem Pulver, macerierte sie 12 Stunden lang und destillierte eine Apparatfüllung in 10 Stunden fertig, wobei er gegen 23 Liter Wasser abdestillierte, von denen er 15 Liter während der Destillation wieder zurückgoß. Die zuletzt übergegangenen 2 Liter Wasser erschienen nur noch wenig getrübt, hatten schwachen Geruch und Geschmack und schieden kein Öl ab; auch der Rückstand in der Blase war fast ganz geruchlos. Die Ausbeute betrug 17,6%, ein normales Resultat.

Im Großbetriebe wird die Wasserdestillation von Pflanzenteilen jetzt nur noch in einzelnen Fällen angewendet. Sie kostet viel Dampf und teures Blasenmaterial; unzerkleinert oder zerkleinert werden die Pflanzenteile häufig unvollständig ausdestilliert, und hochsiedende Ölbestandteile mit einiger Löslichkeit in Wasser können aus den großen Wassermengen überhaupt nicht vollständig verdampft werden oder sie verdampfen mit soviel Wasser, daß sie aus dem Destillat nur teilweise gewonnen werden. Enthält die Blasenfüllung trotz Zerkleinerung noch gröbere Partikel, die während des Kochens nicht derartig erweichen, daß sie zerrissen werden, so bleiben in ihnen auch hochsiedende wasserunlösliche Ölbestandteile zurück, weil deren Diffusion durch die stark gequollenen Zellschichten hindurch zu langsam vor sich geht. Die durch Wasserdestillation und die durch Dampfdestillation aus demselben Pflanzenmaterial gewonnenen ätherischen Öle sind deshalb nicht nur häufig nach Menge, sondern meist auch nach Zusammensetzung verschieden, zuweilen sogar sehr stark.

Im Kleinbetriebe, besonders bei der Wanderdestillation auf dem Lande, wird die Wasserdestillation unter Heizung der Blase über Feuer fast allgemein noch angewendet. Hierbei wird häufig der Fehler begangen, nur soviel Wasser in die Blase zu geben, daß der vom Feuer erhitzte Boden der Blase bis zum Schluß der Destillation vom Wasser bedeckt ist. Soll die Füllung wirklich ausdestilliert werden, so weit das durch Wasserdestillation betreffendenfalls überhaupt möglich ist, so darf die Blase mit Kräutern oder dem Blütenmaterial nicht vollgefüllt werden, und das Wasser muß soweit über der Füllung stehen, daß sie auch

nach beendeter Destillation noch völlig im Wasser liegt, oder das verdampfte Wasser der Blase muß im Verlauf der Destillation durch Destillationswasser ersetzt werden. Was sich von den Pflanzenteilen außerhalb des Wassers befindet, legt sich während der Destillation dicht und für den Dampf schwer durchdringlich aufeinander und wird nur teilweise ausdestilliert. Auch hier ist dabei die Regel zu beachten, die Destillation möglichst lebhaft zu führen.

Schwierigkeiten bei der Destillation. Die Flüchtigkeit und die Empfindlichkeit der ätherischen Öle gegen Hitze machen es begreiflich, daß man nie mit Bestimmtheit behaupten kann, ob man durch die Destillation wirklich alle flüchtigen Substanzen aus dem betreffenden Pflanzenteil erhalten hat. Dazu machen sich bei vielen Materialien noch besondere Destillationserschwerungen geltend, die weniger die Verdampfung des freiliegenden ätherischen Öls, als vielmehr die Diffusionsdestillation betreffen. Wird der Blaseninhalt vollständig trocken, dann ruht die Diffusion, wird er naß, dann arbeitet sie zu langsam, so daß ein Teil des Öls verharzt, ein anderer in den pflanzlichen Geweben zurückbleibt. Destillationsart und Destillationsführung haben sich den Eigenheiten eines jeden Pflanzenmaterials anzupassen.

Wegen dieser Destillationsschwierigkeiten und besonders auch wegen der zuweilen hohen Dampfkosten hat man in einzelnen Fällen die Destillation der Pflanzenteile durch eine Extraktion mit einem leicht flüchtigen Lösungsmittel mit nachfolgender Destillation des Extraktes ersetzt. Ob diese Verarbeitungsmethode vorteilhaft ist, läßt sich nicht allgemein beantworten. Derartige Extraktöle sind zuweilen daran kenntlich, daß sie infolge eines geringen Harzgehaltes die Eigenheit haben, sich in einer gewissen Menge eines verdünnten Alkohols klar zu lösen, aber sich bei Mehrzusatz des Lösungsmittels wieder zu trüben.

Abhängigkeit der Beschaffenheit des ätherischen Öls von der Art seiner Gewinnung. Da die ätherischen Öle Destillate von Naturprodukten sind, so ist es erklärlich, daß die Zusammensetzung eines Öls innerhalb gewisser Grenzen schwankt. Nicht minder wichtig ist es aber, bei der Beurteilung eines Öls auch die Gewinnungsart zu berücksichtigen.

Auf die Unterschiede der Destillate von frischen, welken oder lufttrocknen Pflanzenteilen wurde schon Seite 279 hingewiesen. Ebenso notwendig ist es, zu wissen, ob das Destillationsmaterial zerkleinert oder nicht zerkleinert wurde. Überblickt man z. B. die Ölausbeuten von Kümmelsamen, die Zeller in seinen schon mehrfach erwähnten "Studien über die ätherischen Öle" nach den Angaben verschiedener Beobachter zusammengestellt hat, von 3% bis zu 7,8%, so rühren die niedrigen Zahlen sicher von unvollständigen Destillationen her. Die meisten Ölausbeuten beziehen sich nämlich auf deutschen wildgewachsenen Kümmel, dessen Ölgehalt wir stets über 6%, meistens gegen 7%, sogar bis zu 8% gefunden haben. Der Zweifel an der Richtigkeit jener Ausbeuten wird zur Gewißheit, wenn man die an anderer Stelle von Zeller angeführten spezifischen Gewichte der gewonnenen Kümmelöle damit vergleicht. Die Zahlen sind meistens höher als 0,930, sogar in einzelnen Fällen über 0,950, während normale Destillate die spezifischen Gewichte 0,905 bis 0,917 haben. Die Öle sind zu carvonreich, ganz wie sie eine unvollständige Destillation von unzerkleinerten Kümmelfrüchten liefert. Es sind Namen von Klang unter diesen Beobachtern, z. B. Trommsdorff, Liebig; auch Zeller selbst hat nur das Carvon vollständig überdestilliert, während er einen Teil, beinahe die Hälfte des Limonens, im Samen zurückließ.

Auch durch die Destillationsführung kann die Beschaffenheit des Öls mehr oder weniger stark beeinflusst werden. Nicht nebensächlich ist die Destillationsdauer, also ob große oder kleine Pflanzenmengen auf einmal destilliert werden, ferner ob man das Destillationswasser fortlaufen läßt oder das Öl daraus gewinnt und zu dem Hauptöl gibt.

Von großer Bedeutung ist die Wahl des Destillationsprinzips. Wasserdestillation, Dampfdestillation, Destillation mit Überhitzung oder mit Überdruck, sie alle geben verschiedene Destillate. Durch die beiden letzteren Verfahren entstehen harzige, schwer lösliche Substanzen, die zum Teil verdampft werden. Das Öl verliert an Löslichkeit in verdünntem Spiritus und erhält eine Eigenschaft, die für eine geringe Beimengung hochsiedender, sehr schwer löslicher Bestandteile charakteristisch ist, daß es sich nämlich in einer bestimmten Menge von ver-

dünntem oder stärkerem Spiritus zwar klar löst, aber bei Mehrzusatz desselben Spiritus eine geringere oder stärkere Trübung gibt. Daß durch höhere Überhitzungstemperatur und durch stärkeren Destillationsdruck auch tiefer einschneidende Veränderungen des Öls verursacht werden, darauf ist schon früher

hingewiesen worden.

Im Vergleich mit der hydrolytischen Wirkung der Dampfdestillation ist die der Wasserdestillation größer. So werden in Südfrankreich die Lavendelblüten allgemein mit Wasser über Feuer destilliert (distillation à feu nu). Der Estergehalt (Linalylacetat) des so gewonnenen Lavendelöls beträgt 34 bis 40 %. Als die Firma Schimmel & Co. für die Verarbeitung dieser Blüten in Barrême in Südfrankreich eine eigene Fabrik einrichtete, wurden in der Erkenntnis, daß Ester durch Sieden mit Wasser leichter gespalten werden, als wenn der Wasserdampf durch das Öl hindurchgeleitet wird, nur Blasen für Dampfdestillation aufgestellt. Weil der Umfang der Esterspaltung, wie jede nicht momentan eintretende chemische Reaktion, auch von der Zeitdauer abhängt, wurden die Blasen klein gebaut und mit verhältnismäßig großen Kühlern ausgestattet. Der Estergehalt des Destillates stieg dadurch bis über 50%.

Zuweilen sind es anscheinend nur kleine Änderungen im Destillationsverfahren, die trotzdem bedeutende Wirkungen auf die Zusammensetzung des Öls ausüben können. Ein interessantes Beispiel hierfür liefert die Destillation des Wurmsamenkrautes in Maryland in den Vereinigten Staaten. Dort wird aus Kraut und Samen von Chenopodium ambrosioides L. var. anthelminticum Gray durch Wasserdestillation das Wurmsamenöl als ein gelbes Öl erhalten, das bei 15° ein spezifisches Gewicht von 0,96 bis 0,98 hat und sich in 10 Volumen 70-prozentigen Alkohols klar löst. Auf einmal kamen vielfach Öle in den Handel, die sich nur in 80-prozentigem Alkohol lösten, und deren spezifisches Gewicht nur 0,93 bis 0,95 betrug. Die Untersuchung konnte in diesen Ölen keine Verfälschung nachweisen, es mußte daher angenommen werden, daß diese Differenzen in der Beschaffenheit der Öle durch Einführung einer von der früheren abweichenden Destillationsart hervorgerufen wurden. Die Lieferanten der Öle teilten auf eine Anfrage der Firma Schimmel & Co. mit, daß auch die neuen Öle in der gleichen Weise hergestellt wären, nach der man

schon seit Jahrzehnten das Wurmsamenöl gewänne. Sie hätten aber auf die Anfrage hin das Verfahren mehrfach geändert, ohne indessen Öle von der früheren Beschaffenheit erhalten zu können. Im Laboratorium von Schimmel & Co. wurde inzwischen durch Versuche festgestellt, daß normales Öl schon bei ein- bis zweistündigem Kochen mit Wasser am Rückflußkühler durch Zersetzung eines in dem Öle enthaltenen Körpers spezifisch leichter und schwerer löslich wird.

Da nun alle Destillationsversuche in Maryland und auch besondere daraufhin in einer Neuvorker Fabrik angestellte Destillationsversuche resultatlos geblieben waren, wurde die Frage durch eigene Destillationen des Krautes in der Fabrik von Schimmel & Co.1) zu klären versucht. Hierbei wurde das überraschende Ergebnis erhalten, daß in der Hauptsache eine zu gute Kühlung des Destillates an seiner abweichenden Beschaffenheit die Schuld trägt. Das Öl enthält nämlich Bestandteile (zu denen wahrscheinlich der leicht zersetzliche Körper gehört), die schwerer als Wasser sind und zusammen mit spezifisch leichteren Ölteilen in dem Wasser als feine, kaum sichtbare Tröpfchen schwebend bleiben, wenn das Destillat kalt aus dem Kühler abläuft. Sie erheben sich aber über dem Wasser und gesellen sich dem übrigen Öl zu, wenn das Destillat heiß den Kühler verläßt. Läßt man nun bei guter Kühlung das Destillationswasser fortlaufen, so geht das schwerere Öl verloren, und das in der Vorlage zurückbleibende Öl wird spezifisch leichter. Leitet man das Destillationswasser in die Blase zurück oder hebt man es zur nächsten Destillation auf, um es auf die neue Blasenfüllung zu gießen, so geht es durch Zersetzung größtenteils ebenfalls verloren. Die Chenopodium-Destillation ist eine Wanderdestillation, die an einem Bache auf dem Felde zeitweilig eingerichtet wird. Es ist ganz erklärlich, daß die Kühlung der Dämpfe im allgemeinen hierbei unzureichend sein wird, wenn nicht absichtlich besondere Maßnahmen getroffen werden. So erhielt man die früheren spezifisch schwereren und leichter löslichen Öle. In der Absicht, die Ölgewinnung rationeller zu gestalten, traf man dann zur Vermeidung von Ölverlusten durch Verdunstung besondere Vorkehrungen, die

¹⁾ Bericht von Schimmel & Co. April 1908, 108.

Dämpfe besser zu kühlen, wodurch die spezifisch leichteren und schwerer löslichen Öle gewonnen wurden. Die geringere Ölausbeute, die ebenfalls hierdurch eintrat, beachtete man nicht, oder man meinte vielleicht, daß sie durch eine für das Kraut ungünstige Witterung verursacht sei.

Ein sehr beachtenswerter Unterschied besteht zwischen der Wasserdestillation und der Dampfdestillation darin, daß bei ungenügender Zerkleinerung des Pflanzenmaterials hochsiedende Bestandteile des ätherischen Öls durch Wasserdestillation unvollständig verdampft werden. Selbst Blätter geben flüchtige Substanzen von hohem Siedepunkte durch Wasserdestillation unvollständig ab.

Von denselben Patchouliblättern gaben 400 kg durch Wasserdestillation 2,98%, 714 kg durch Dampfdestillation 3,27% Öl. Beide Öle waren dem großen Ausbeuteunterschiede entsprechend auch verschieden. Die spezifisch schweren hochsiedenden Ölanteile waren bei der Wasserdestillation nur zum geringen

Teil übergegangen.

Ölbestandteile, die eine wenn auch beschränkte Löslichkeit in Wasser besitzen, z. B. Phenole, Säuren oder Alkohole, werden von dem Wasser in gewisser Menge zurückgehalten, so daß bei geringem Ölgehalt des Pflanzenmaterials Wasserdestillat und Dampfdestillat sehr verschieden ausfallen können.

7. Kapitel.

Kleinbetrieb und Wanderdestillation.

In vielen Ländern haben sich mitten in den Gegenden, wo wohlriechende Pflanzen wild oder kultiviert wachsen, zur Gewinnung des ätherischen Öls kleine Destillationsbetriebe gebildet. häufig als Wanderdestillationen, die sich von den stabilen größeren Destillationseinrichtungen in mehrfacher Hinsicht unterscheiden. Dienen sie nur für bestimmte Pflanzen während der Erntezeit und bleiben sie die übrige Zeit des Jahres unbenutzt, so muß die Destillationsanlage einfach sein und darf kein großes Kapital beanspruchen. Werden sie zur Ersparung von Transportkosten des Destillationsmaterials, oder weil dieses einen längeren Transport nicht verträgt, von Feld zu Feld überführt, so müssen die Apparate durch Menschen- oder Tierkraft leicht transportierbar sein. Außerdem dürfen sie keine besonderen Anforderungen an die Bedienung stellen. So einfach wie die Apparate muß auch die Destillationsführung sein.

Durch Wort und Bild sind in dem zweiten Bande dieses Werkes bei den betreffenden ätherischen Ölen diese Destillationsstätten geschildert. Hier soll nur das Gewinnungsverfahren in

seinen Grundzügen besprochen werden.

Vielfach ist diese Kleinindustrie alt; sie ist rein empirisch entstanden und hat sich ohne besondere Weiterentwicklung von Generation zu Generation fortgeerbt. Man ist vielleicht geneigt, allgemein absprechend über diese primitive Industrie zu urteilen; mit Unrecht, denn in manchen Fällen entspricht das angewendete Destillationsverfahren ausgezeichnet den vorhandenen Verhältnissen, eine Änderung wäre vielleicht eine Verschlechterung. Andererseits kommen freilich auch entschieden fehlerhafte Methoden vor, die ohne die Einfachheit zu beeinträchtigen leicht geändert werden könnten.

Die Destillation geschieht entweder durch Heizung des Destillationsapparates mit Feuer, oder es wird der Dampf aus einem Dampfkessel in den Apparat geleitet. Im ersteren Falle wird entweder Wasserdestillation oder Wasser- und Dampfdestillation angewendet. Die Dampfdestillation bildet schon den Übergang zu den größeren Betriebsanlagen, weil sie nur rationell ist, wenn der Dampfentwickler mit mehreren Destillationsapparaten verbunden wird.

Wasserdestillationsbetriebe.

Lavendelblüten. In mehreren Départements Südfrankreichs werden außer Thymian, Spiklavendel und anderen Kräutern auch die Blütenähren von Lavandula vera in zahlreichen kleinen und kleinsten Destillationsstätten destilliert. Es gibt auch stabile Betriebe mit Wasser- und Dampfdestillation über Feuer und

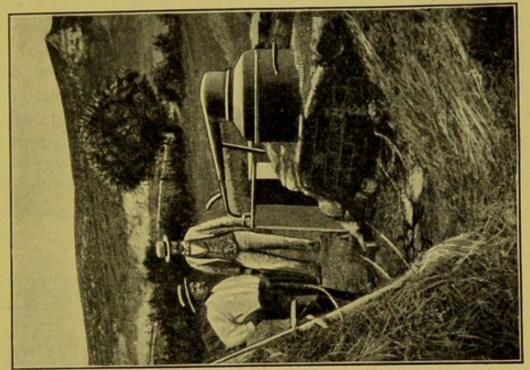


Fig. 71.

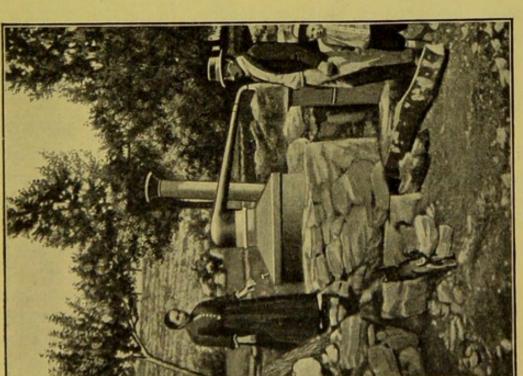
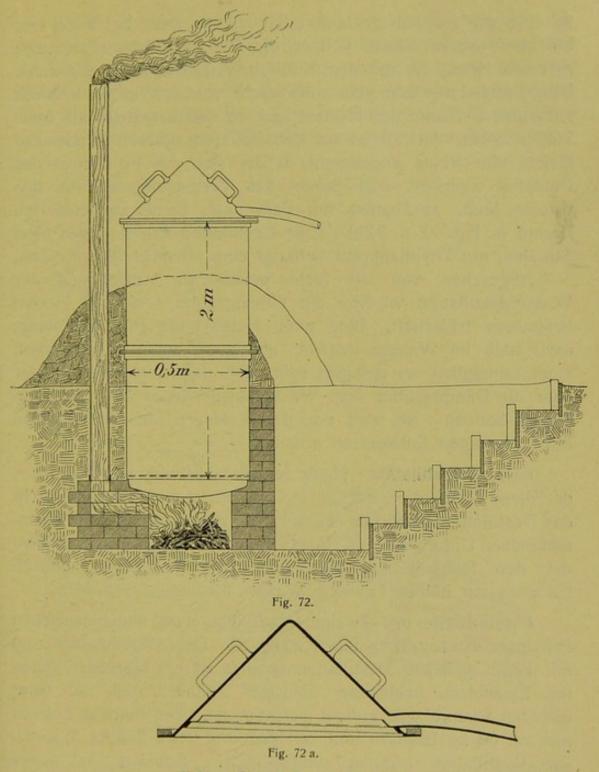


Fig. 70.

Lavendeldestillation in Südfrankreich.

auch mit Dampfdestillation durch Kesseldampf, jedoch im allgemeinen wird die Wanderdestillation in Form der Wasserdestillation mit Feuerheizung (Fig. 70 u. 71) des Destillationsapparates bevorzugt. Im Juli, dem Beginn der Lavendelblütenernte, werden die niedrigen kupfernen Zylinder mit der Kühlschlange und dem Kühlwasserbottich in die Berge geschafft und in der Nähe einer Quelle oder eines Baches auf einem von Feldsteinen gebauten Herde aufgestellt. Ist die Nachbarschaft ringsum abgeerntet, so wird weiter gewandert. Gegen 60 kg Lavendelblüten mit etwa 60 l Wasser werden jedesmal in den Apparat gefüllt, wovon ca. 15 l Destillat aufgefangen werden. Ein Siebboden befindet sich nicht auf dem Boden des Zylinders, die Blüten liegen also unmittelbar auf dem vom Feuer geheizten Boden.


Statt der Ester zersetzenden und für die Ölgewinnung sehr ungünstig arbeitenden Wasserdestillation würde die Wasser- und

Dampfdestillation entschieden vorteilhafter sein.

Kräuterdestillation in Spanien, nach persönlichen Mitteilungen eines Destillateurs. Seit etwa 15 Jahren ist in Spanien, im Gebirge und an der Küste, eine umfangreiche, im Kleinen ausge- übte Industrie entstanden, die sich damit beschäftigt, alle einigermaßen brauchbaren, wildwachsenden, riechenden Kräuter in tragbaren Blasen an Ort und Stelle zu destillieren. Verarbeitet werden Rosmarin, Spiklavendel, Majoran, Salbei (eine von dem Dalmatiner Salbei abweichende Varietät), Thymian, Polei und Myrte.

Die Kräuter werden mit der Sichel geschnitten, also Blätter mit Stielen, möglichst ohne zuviel von dem blätterlosen, holzigen Stengel mitzunehmen. Frisch wie sie geschnitten sind, kommen sie ohne weitere Zerkleinerung in die Blase. Falls sie nicht sofort eingefüllt werden können, werden die Vorräte neben den Blasen auseinandergebreitet, damit sie sich nicht erhitzen.

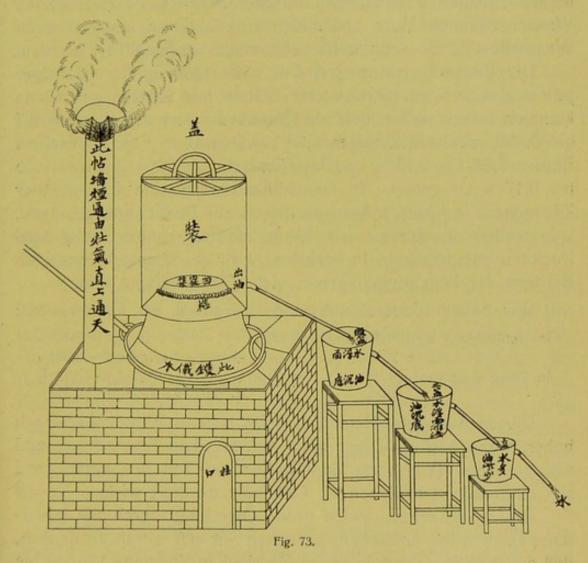
Die Destillation geht Tag und Nacht. Die Blasen (Figur 72) mit etwa 500 l Rauminhalt bestehen aus einem eisernen Zylinder von ca. 2 m Höhe und 0,5 m lichtem Durchmesser. Des Transportes wegen kann der Zylinder in der Mitte auseinandergenommen werden. Wenig über dem eigentlichen vom Feuer geheizten Boden befindet sich ein Siebboden, auf dem die Pflanzen zu liegen kommen, damit sie nicht anbrennen können. Die Blase steht auf der von einigen Steinen gebildeten

Kräuter-Destillation in Spanien.

Feuerung und ist zu drei Viertel mit Erde bedeckt, teils eingegraben, teils mit Erde beworfen. Zur Feuerung dient vorwiegend das ausdestillierte Pflanzenmaterial, im übrigen Holz.

Zur Destillation wird die Blase knapp halb voll Wasser gefüllt, dann kommen die Kräuter hinein, die mit den Füßen so fest wie möglich gestampft werden, so daß die Blase fast bis zum oberen Rande voll wird. Danach wird der konisch geformte Helm, der mit dem Kühlrohr verbunden ist, aufgesetzt. Dies Verbindungsrohr geht aber nicht von der Spitze, sondern vom untern Rande des Helmes aus, so daß der Helm als Luftkühler wirkt. Hierzu ist an dem inneren unteren Rande des Helms eine Rinne angebracht, in der sich das Kondensat des Dampfes sammelt und durch das Verbindungsrohr in den Kühler läuft, zusammen mit dem noch nicht kondensierten Dampf (s. Fig. 72 u. 72a). Eine Destillation dauert gegen zwei Stunden, nur Thymiankraut verlangt eine erheblich längere Zeit.

Abgesehen von der nicht praktischen Anwendung der Wasserdestillation ist hier die Füllungshöhe von zwei Metern besonders fehlerhaft. Eine zwei Meter hohe Pflanzenfüllung, dazu halb im Wasser liegend, und auch noch festgestampft, kann unmöglich so gelagert sein, daß das kochende Wasser oder die Dämpfe über dem Wasserspiegel jedes Blättchen umspülen können. So wird von den Kräutern nur ein Bruchteil ihrer flüchtigen Substanzen erhalten.


Cajeput-Destillation. Nach der Beschreibung von Martin,¹) der diese Destillation auf der Molukkeninsel Ceram sah, besteht das Destillationsgefäß aus einem Fasse, das (jedenfalls mit einem metallenen Untersatz) auf einem Feuerherd steht. Das Faß wird mit den festgedrückten Cajeputblättern vollgefüllt, wonach bis etwa zur halben Faßhöhe Wasser hineingegossen wird.

Cassia-Blätter und -Zweige, Destillation in den südchinesischen Provinzen Kwang-Tung und Kwang-Si. Der eingemauerte und mit Feuer geheizte Destillationsapparat ist ein hölzerner, innen mit Eisenblech bekleideter niedriger Zylinder, der auf einer eisernen Pfanne wasserdicht befestigt ist. Die Füllung besteht aus ca. 60 kg Blättern und Zweigen und etwa 180 kg Wasser. Die Destillation erfordert ungefähr 2½ Stunden und liefert 60 bis 80 g gleich 0,10 bis 0,13% Öl, wenn nur Blätter verarbeitet werden, oder 90 bis 100 g gleich 0,15 bis 0,17% Öl, wenn ein Gemisch aus 70% Blättern und 30% Zweigen destilliert wird.

¹⁾ Reisen in den Molukken. Leiden 1894, S. 259.

²⁾ Bericht von Schimmel & Co. Oktober 1896, 11.

Die Dämpfe werden nur durch den Helm kondensiert, der aus einem großen, mit Kühlwasser berieselten Zylinderaufsatz aus Blech besteht (Fig. 73). Die notwendige Dichtung zwischen Zylinder und Blase wird durch einen feuchten dazwischen liegenden Lappen hergestellt. Im Innern des Zylinderaufsatzes befindet sich unten eine Rinne, wie an dem Helm der Kräuter-

Cassiaöl-Destillation in China.

Destillationsapparate in Spanien, aus der das ölhaltige Kondensat nach außen geführt wird und dort in kaskadenförmig aufgestellte Vorlagen fließt.

Das milchige Destillationswasser, das reichlich Öl enthält, wird zur nächsten Füllung in die Blase gegeben. Das Cassiaöl ist schwerer als Wasser. Ist nun das Destillat noch heiß, wie es bei dieser unzureichenden Kühlanlage nicht anders sein kann, so wird

ein Teil des Öls emulsionsartig in dem Wasser des Destillates schweben. Das ölhaltige Wasser wird zwar wieder der Destillation zugeführt, was aber jedesmal mit Ölverlust verbunden ist.

Das ist nur ein geringer Fehler gegenüber der großen Öleinbuße, die durch die Anwendung der Wasserdestillation entsteht, oder richtiger gesagt, durch die Art, wie diese Destillationsmethode ausgeführt wird, denn die lederartigen, auch im siedenden Wasser ziemlich starr bleibenden Cassiablätter können durch Wasserdestillation sehr wohl vollkommen ausdestilliert werden.

Die Firma Schimmel & Co. hatte sich in den neunziger Jahren des vorigen Jahrhunderts Blätter und Zweige aus China kommen lassen und erhielt als Ölausbeute aus den Blättern 0,7 bis 0,8%, aus den Zweigen 0,2%, während in China dieselben Blätter 0,10 bis 0,13% und im Gemisch mit 30% Zweigen 0,15 bis 0,17% Öl geben. In Deutschland waren die Cassiablätter lufttrocken, in China mögen sie frisch zur Destillation gelangen. Wir wollen annehmen, daß 100 kg frische Blätter 50 kg lufttrocknen entsprechen. In Wahrheit wird bei diesen lederartigen Blättern der Feuchtigkeitsgehalt sicherlich niedriger sein.

Wir haben hiernach folgenden Vergleich der Ölausbeuten:

Dieser Ausbeuteunterschied stellt sich in Wirklichkeit noch höher, wenn berücksichtigt wird, daß bei dem Eintrocknen und während des Transports der Blätter ein Teil des vorwiegend aus Zimtaldehyd bestehenden Cassiaöls oxydiert wird.

Um zu erkennen, welch große Ölverluste durch die fehlerhafte Destillation entstehen, brauchen wir nur daran zu denken, daß die jährliche Produktion an Cassiaöl in Südchina 120000 bis 180000 kg im Werte von einer bis anderthalb Millionen Mark beträgt. Mindestens das doppelte dieser Ölmenge geht also jährlich verloren und bleibt in den weggeworfenen oder als Brennmaterial dienenden ausdestillierten Blättern zurück.

Die Wasserdestillations-Methode an und für sich ist an diesem großen Verlust nicht schuld, denn eine in der Fabrik von Schimmel & Co. ausgeführte Wasserdestillation von Cassiablättern gab dasselbe Resultat wie die Dampfdestillation.

Der Ölverlust wird durch folgende Erwägung erklärlich. Wegen der ganz unzureichenden Kühlung der Dämpfe kann nur sehr schwach destilliert werden. In dem Apparate wird zwar durch die, wenn auch schwache, Bodenheizung eine gewisse Bewegung des Wassers von unten nach oben bewirkt, die aber die Füllung fast unberührt läßt und besonders die zwischen den zusammenliegenden Blättern befindlichen Wassermengen nicht fortbewegt. Das durch Diffusion aus den Blättern austretende, in Wasser gelöste ätherische Öl bleibt zwischen den enger zusammenliegenden Blättern, ohne emporgenommen zu werden, und hemmt die weitere Diffusionstätigkeit. Die Diffusion kann nur bei Konzentrationsunterschieden arbeiten, sie verläuft um so schneller, je größer der Konzentrationsunterschied ist, je schneller also die ausgetretene Öllösung entfernt oder das Öl daraus verdampft wird.

Sehr bald wird in der Füllung ein Gleichgewichtszustand eintreten; das Destillat wird ölarm oder fast ölfrei werden, trotzdem noch reichlich Öl in den Blättern vorhanden ist.

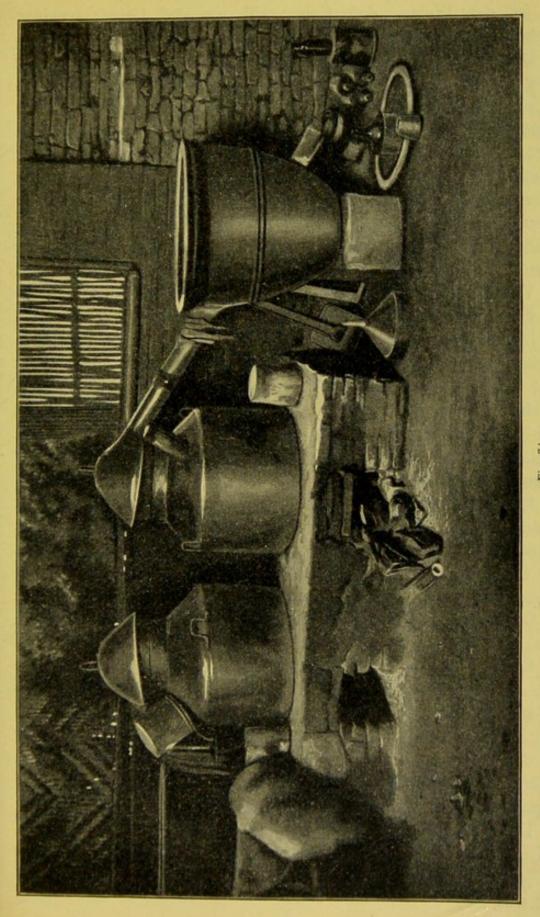
Daraus erklärt sich auch die in Rücksicht auf die schwache Verdampfung zu kurze Destillationszeit, und daher auch das eigentümliche Resultat, daß die Beimischung von Zweigen, deren Ölgehalt doch nur ein Viertel von dem der Blätter beträgt, die Ausbeute erhöht statt erniedrigt. Die Füllung liegt durch die Zweige sperriger; die Zwischenräume sind teilweise größer. Und aus diesen Zwischenräumen werden selbst durch das schwach bewegte Wasser die aus den Blättern ausgeschiedenen Ölteilchen etwas besser in die Höhe genommen und von der Wasseroberfläche verdampft.

Tannenzapfendestillation in der Schweiz¹). In einigen Gegenden des Kantons Bern werden die grünen Zapfen der Edel- oder Weißtanne (Abies pectinata D. C.) in kleinen Betrieben destilliert. Vor der Destillation werden sie mit einem Hammer zerschlagen, damit die Samen freigelegt werden, was die Ölausbeute erhöht.

Ein kupferner Zylinder mit Helm, der mit Lehm aufgedichtet wird, bildet die Blase. Die zerschlagenen Tannenzapfen werden hineingefüllt und dazu soviel Wasser, wie gerade für eine De-

¹⁾ Lüdy, Oleum Templinum und seine Darstellung. Schweizerische Wochenschrift f. Chem. u. Pharm. 45 (1907), 818.

v. Rechenberg, Gewinnung und Trennung der äther. Öle.


stillation zur Verdampfung hinreicht. Geheizt wird die Blase mit Holzfeuer. Eine Füllung von 60 kg liefert gegen 400 g Öl gleich 0,67 %. Die Dämpfe werden in einem kupfernem Schlangenkühler kondensiert, der in einem Holzbottich steht. Wie sich aus dem Berichte ergibt, wird nicht immer darauf geachtet, wieviel von dem eingefüllten Wasser verdampft ist, so daß die Tannenzapfen auf dem heißen Boden trocken liegen und das Öl einen brenzligen Geruch erhält. Es wäre deshalb gut, wenn auf der Blase ein Tubus zum Nachfüllen von Wasser, am besten Destillationswasser, angebracht würde. Hiervon abgesehen dürfte an dem Verfahren nichts zu ändern sein, denn bei diesem Destillationsmaterial bietet die Wasserdestillation keine Schwierigkeiten.

Canangablüten-Destillation auf Java.¹) Die Betriebe sind stabil und gehören Eingeborenen und Chinesen. Die Blasen sind kurze, ziemlich breite Zylinder, die oben einen Tubus zum Nachfüllen des Wassers während der Destillation haben. Der ebenfalls kupferne Helm, der mit einem Stück Leinwand auf die Blase aufgesetzt ist, geht mit einem 15 cm weiten Rohr durch einen größeren irdenen Topf hindurch. Dieser Topf, mit Wasser gefüllt, das nach Abdunsten durch frisches Wasser ersetzt wird, dient als Kühler.

Zur Destillation werden die Blüten zuvor zerstampft und dann mit Wasser zusammen in die Blase gefüllt, die eingemauert ist und mit Feuer geheizt wird. Das beistehende Bild (Fig. 74) zeigt eine solche Destillationsanlage von zwei Apparaten. Die Kühlung der Dämpfe ist so unzureichend, daß in Folge der gezwungenermaßen schwachen Verdampfung zwei Tage an einer Füllung destilliert, und trotzdem mit dem heiß ablaufenden Destillat, wegen des zu weiten, ohne jede Biegung durch den Wassertopf hindurchgehenden Kühlrohres, fortwährend Dampf mit ausgestoßen wird.

Canangaöl von Java und Ylang-Ylangöl von Réunion und Manila stammen von den Blüten desselben Baumes, und doch hat letzteres einen fünfzehn- bis zwanzigmal höheren Verkaufswert als das Canangaöl. Chemisch unterscheiden sich beide

¹⁾ De Jong, Tijdschrift Teysmannia, Batavia 1908, 578. Bericht von Schimmel & Co. April 1909, 26.

Canangablüten-Destillation auf Java.

Öle in der Weise, daß Canangaöl weniger Ester, weniger Alkohole und mehr Sesquiterpen enthält.

De Jong¹) untersuchte die Frage, ob aus Java-Canangablüten Ylang-Ylangöl bereitet werden kann. Auf Grund der chemischen und physikalischen Unterschiede beider Öle und nach mehreren eigenen Destillationen von Java-Canangablüten kommt er zu dem Ergebnis, daß klimatische Verhältnisse in der Hauptsache maßgebend sind. Auch auf Java kommen Canangabäume vor, deren Blüten einen etwas verschiedenen und zwar besseren Geruch haben. De Jong konnte sich Blüten von diesen Bäumen verschaffen, die Canangadedes genannt werden, die ihm auch ein Öl von etwas höherem Estergehalt gaben. Aber der Estergehalt des Ylang-Ylangöls wurde nicht entfernt erreicht.

Klimatische Verhältnisse mögen mitsprechen, aber von entscheidender Bedeutung für die Verschiedenheit der beiden Öle ist aller Wahrscheinlichkeit nach das Gewinnungsverfahren. Fest steht jedenfalls, daß das auf Java eingeschlagene Destillationsverfahren zu einem Öle führen muß, das arm an Estern und reich an Sesquiterpen ist. Es ist das wieder ein Beispiel dafür, welch abweichende Beschaffenheit ätherische Öle je nach der

angewandten Destillationsmethode haben können.

Erstens dürfen die Blüten nicht zur Destillation zerstampft werden. Nicht viele Blüten gibt es, bei denen unbeschadet der Qualität des ätherischen Öls eine Zerkleinerung gestattet ist. Von fleischigen, saftreichen Blüten erhält das Öl dadurch leicht einen krautigen Beigeruch. Die Zerkleinerung erleichtert freilich die Destillation, sie wird auch die Ausbeute an Öl erhöhen, aber in diesem besonderen Falle auf Kosten des Wohlgeruchs des Öls. Weil durch das Zerstampfen der Blüten das ätherische Öl aus den Zellgeweben freigelegt wird, können auch die wasserunlöslichen, hochsiedenden Bestandteile des Öls, so besonders das Sesquiterpen, leichter verdampfen, deren Verflüchtigung aus den unverletzten Blüten nur schwer möglich ist. Hierdurch erklärt sich der höhere Gehalt des Canangaöls an hochsiedenden Terpenen.

Dann ist die Wasserdestillation für dieses Öl ein Fehler, weil sie zersetzend auf die Ester einwirkt und weil dadurch die

¹⁾ Militair Tijdschrift, Batavia 1908, 1. Bericht von Schimmel & Co. April 1909, 26.

Verdampfung der wasserlöslicheren Bestandteile des Öls gehemmt wird. Das betrifft besonders Isoeugenol, Kreosol, Benzylalkohol und andere geringer wasserlösliche aber höher siedende Substanzen, die für das Aroma des Öls wertvoll sind.

Vermehrt wird die Esterzersetzung noch durch die lange Destillationsdauer, denn infolge der unzureichenden Kühlung kann nicht flott destilliert werden.

Ferner darf das Destillatwasser nicht wieder zu den Blüten gegeben werden. Das Wasser enthält Essigsäure von den zerstörten Estern, die noch stärker als kochendes Wasser auf Ester zersetzend wirkt. Das ölreiche Destillationswasser muß für sich destilliert werden, und das verdampfte Wasser in der Blase ist durch reines Wasser zu ersetzen.

Schließlich wird durch die schwache Destillation die Masse in der Blase Dampf entwickeln, ohne dabei durchgreifend bewegt zu werden. Es ist deshalb zu vermuten, daß sich auf dem Boden der Blase Blütenteile festsetzen und festbrennen, was für das Aroma des Öls wenig günstig ist.

Sehr wahrscheinlich würde man auch auf Java aus den Canangablüten Ylang-Ylangöl erhalten, wenn die Blüten nicht zerkleinert werden, und wenn statt der Wasserdestillation Wasser- und Dampfdestillation angewendet würde, wie z. B. die Chinesen auf Formosa das Campherholz und die Siamesen in Tongkin die Sternanisfrüchte destillieren. Dabei ist lebhafte Destillation und infolgedessen gute Kühleinrichtung erforderlich. Die Destillation einer Füllung darf nur einige Stunden dauern.

Rosen-Destillation in Bulgarien. Das umstehende Bildchen veranschaulicht vorzüglich das Destillationsverfahren, das aus Wasserdestillation über Feuer besteht (Fig. 75). Die kupferne, konisch geformte Zylinderblase hat einen Fassungsraum von etwa 110 l. Sie wird mit 10 kg Rosen, die mit dem Kelch gepflückt werden, und 75 l Wasser gefüllt, wovon 10 l Destillat aufgefangen werden.

Nach der Destillation wird die Blase an den Henkeln vom Herde genommen und über ein grobes Leinen oder ein Weidengeflecht entleert. Das durchgelaufene Wasser gießt man zur nächsten Rosenfüllung. Es wird dadurch an Heizung gespart und vielleicht auch die Ölausbeute etwas vermehrt, jedoch auf Kosten des Wohlgeruchs des Öles.

Die Wasserdestillation ist für Rosen notwendig, aber die Feuerheizung der Blasen wäre im Interesse der Qualität des Öls besser durch Dampfheizung zu ersetzen, denn ein geringes Anbrennen der Rosen ist wohl kaum vermeidbar.

Alle diese Destillationsmängel sind übrigens Nebensächlichkeiten gegenüber der allgemein bestehenden Unsitte der Verfälschung des Rosenöls mit Palmarosaöl, woran die Rosenölindustrie in Bulgarien krankt. Wirklich reine Destillate, die

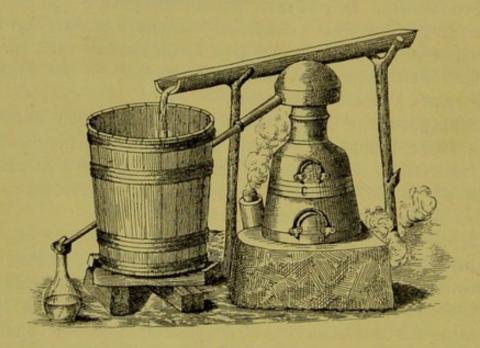


Fig. 75.

zuweilen auf Ausstellungen anzutreffen sind, riechen sehr verschieden von dem handelsüblichen bulgarischen Rosenöl.

Linaloeholz-Destillation in Mexiko. Wir schließen die Reihe der Wasserdestillations-Betriebe mit der Beschreibung der Destillationsanlage für Linaloeholz in Mexiko, die von einem Geschäftsvertreter der Firma Schimmel & Co. eingehend besichtigt wurde.¹) Die Destillateure sind meist Indianer. Der zylinderförmige Apparat war aus galvanisiertem Eisenblech angefertigt, nur der Kegel im Helm war aus Kupfer.

In den Figuren 76 und 77 ist A der Destillationsapparat, J ein eisernes Abflußrohr, aus dem nach beendeter Destillation das Wasser abgelassen wird; es ist bei K mit einem mit Lehm ver-

¹⁾ Bericht von Schimmel & Co. Oktober 1907, 55.

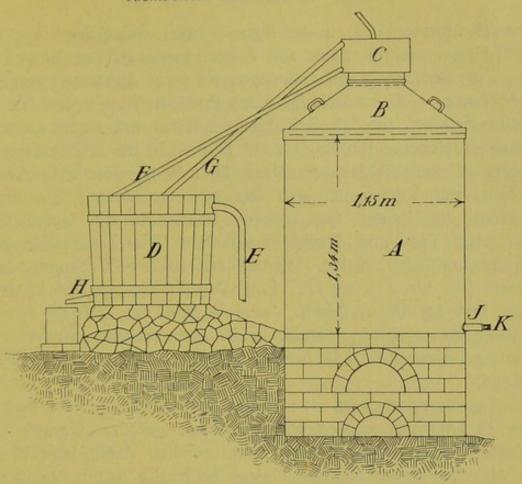


Fig. 76.

schmierten Holzkeil verschlossen. In dem Helm C der Blase findet, wie aus der Figur 77a ersichtlich ist, schon eine teilweise Kühlung

des Dampfes statt. Das dort einlaufende Kühlwasser fließt durch das Rohr G in den Kühler ab, den es dann in dem Rohre E wieder verläßt. F ist das Übersteigrohr für den Dampf von der Blase zum Kühler, H ist das Auslaufrohr für das Destillat, das (Öl und Wasser) einfach in einem Eimer oder einem Petroleumkanister aufgefangen wird.

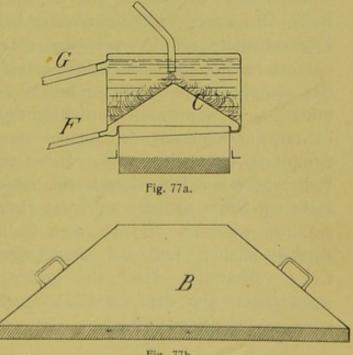


Fig. 77b.

Die schraffierten Teile in den Figuren 77a u. b werden eingefügt, mit Lehm verschmiert und mit dünnen Leinenstreifen umwickelt.

Zur Bedienung einer Anlage von zwei Apparaten gehören 7 Indianer, 4 davon schlagen das Linaloeholz mit der Axt in kleine Stücke, so daß Scheiben wie etwa mit einem Gurkenhobel entstehen. Ein Mann kann täglich 70 bis 100 kg Holz in dieser Weise zerkleinern. Das Holz wird sofort in Säcke gefüllt, um Verdunsten des Öls zu verhindern. Ein Mann bedient das Feuer, ein anderer überwacht die Destillation. Es wird Tag und Nacht destilliert. Eine Destillation von durchschnittlich 250 kg Holz dauert 18 bis 20 Stunden und liefert 1½ bis 2½ kg Öl. Eine Destillation von 256 kg Holz gab 1,64 kg Öl = 0,64%, eine andere von 250 kg lieferte 2,40 kg Öl = 0,96%. Diese beiden Destillationen wurden vollständig überwacht. Die Ausbeute soll selten mehr als 2% betragen.

Der Apparat wird zuerst mit den Scheiben und Spänen bis 25 cm vom oberen Rand entfernt gefüllt. Darauf wird Wasser zugegossen, bis das Holz ziemlich damit bedeckt ist.

Die Zerkleinerung des Holzes ist völlig unzureichend und außerdem ist die Anwendung der Wasserdestillation fehlerhaft. Beides zusammen verursacht die geringe Ölausbeute, denn dasselbe Holz gab in verschiedenen kleinen und großen Destillationen in der Fabrik von Schimmel & Co. 6 bis 11% Öl. Beide Öle waren erklärlicherweise bei diesen großen Ausbeuteunterschieden sehr verschieden. Das mexikanische Öl war nämlich reicher an Linalool, das deutsche reicher an hochsiedenden Bestandteilen. Diese abweichende Zusammensetzung der Öle erklärt sich, wenn man berücksichtigt, daß wegen der mangelhaften Zerkleinerung in Mexiko nur wenig Öl für die Verdampfung frei gelegt war. Die Destillation war also in der Hauptsache eine Diffusionsdestillation, die vorwiegend die wasserlöslichen Ölbestandteile aus dem Holze dem kochenden Wasser zuführte während die schwerer löslichen in den Holzstücken zurück blieben und bei der langen Destillationsdauer teilweise verharzten. Nach der geringen Ausbeute zu schließen, wurde auch von dem im Holze enthaltenen Linalool nur der kleinere Teil verdampft.

Die Wasserdestillation ist in den Kleinbetrieben das verbreitetste Destillationsverfahren. Wie es früher in den Apotheken fast ausschließlich angewendet wurde, so finden wir es nach den eben mitgeteilten Beispielen auch in vielen Ländern, in Europa, Asien und Amerika, fast allgemein als Basis primitiver Anlagen. Das ist erklärlich, denn das Kochen der in Wasser liegenden Pflanzenteile drängt sich der oberflächlichen Erwägung sofort als einfachstes Mittel zur Gewinnung des Aromas auf. Die Ausführung verlangt eigentlich nichts weiter, als einen auf einigen Steinen, der Feuerstelle, stehenden Kochtopf und einen helm- oder trichterförmigen Aufsatz darauf, der die Dämpfe auffängt und ableitet.

Im allgemeinen muß man die Wasserdestillation als das am wenigsten rationelle Verfahren bezeichnen. Gerade für Kleinbetriebe und auch für die Wanderdestillation erweist sich die Wasser- und Dampfdestillation bei weitem geeigneter. Wiederholen wir kurz das Prinzip dieses Verfahrens. Die auf einem Siebboden liegenden Pflanzenteile sind von dem ebenfalls in der Blase befindlichen Wasser durch einen freien Zwischenraum getrennt, so daß das durch eine Heizquelle zum Kochen gebrachte Wasser die Pflanzen nicht berührt. Die gleichmäßig von der ganzen Oberfläche des Wassers entwickelten Dämpfe steigen in die Höhe, durchziehen die Füllung und nehmen aus ihr die flüchtigen Stoffe mit.

Die Eigentümlichkeiten der Wasserdestillation sind schon früher besprochen worden. Sie verlangt mehr Sachkenntnis und Erfahrung als jede andere Destillationsweise. Bei ihr ist es ganz besonders wichtig, die richtige Entscheidung zu treffen, ob und wie das Material zerkleinert wird. Es muß rasch destilliert werden, so daß nicht eine einfache Verdampfung von der Wasseroberfläche stattfindet, sondern der ganze Blaseninhalt in fortwährender durchgreifender Bewegung erhalten wird. Das ist bei der Wanderdestillation schwer zu erreichen, weil es meist an Kühlwasser mangelt. Aber auch wo es vorhanden ist, wird aus Unverstand auf das Kühlen wenig Wert gelegt. Lieber wird langsamer destilliert.

Außer der zu schwachen Destillation wird noch allgemein ein anderer Fehler bei der Wasserdestillation begangen. Es wird zu wenig Wasser in die Blase gefüllt, oder wenn anfangs das Pflanzenmaterial wirklich mit Wasser bedeckt ist, so wird es im Verlaufe der Verdampfung nicht ersetzt. Die Füllung muß aber dauernd vollständig in Wasser liegen. Alles was sich von ihr oberhalb des Wassers befindet, ballt sich zusammen und bildet eine von Wasser triefende Masse, die der Dampf nicht oder je nach der Sperrigkeit der Pflanzenteile nur teilweise durchdringen, und von der das Öl nur oberflächlich abdampfen kann. Bei derartiger Destillationsweise kann kein Material vollständig ausdestilliert werden.

Pflanzenteile, deren ätherisches Öl hochsiedende Bestandteile in größerer Menge enthält, geben ihr Öl durch Wasserdestillation nur dann vollständig ab, wenn sie zuvor so fein zermahlen sind, daß all ihr Öl freigelegt ist; das gilt selbst für Kräuter und Blätter. Flüchtige Stoffe von höherem Siedepunkte, die in kochend heißem Wasser wenn auch nur gering löslich sind, lassen sich durch Wasserdestillation trotz Zerkleinerung der Pflanzenteile nur unzureichend verdampfen, weil sie von der großen Wassermenge zurückgehalten werden.

Für Wanderdestillationen und auch für stabile kleinere Anlagen ist die Wasser- und Dampfdestillation meistens geeigneter; sie bedarf weniger Heizung, ihre Destillationsdauer ist kürzer und ihr Effekt ist selbst bei schwacher Verdampfung günstiger. Ist aber das Pflanzenmaterial, wie z. B. Rosen, derartig beschaffen, daß sich die heiße, gequollene Masse fest aufeinander legt, so daß die Zwischenräume verschwinden und der Wasserdampf nicht alle kleinsten Teile der Füllung umspielen kann, so muß Wasserdestillation angewendet werden.

Beide Verfahren sind aber begreiflicherweise in der Anwendung beschränkt. Pflanzenteile, deren ätherisches Öl in seiner Gesamtheit hochsiedend ist, z. B. Sandelholz, Vetiverwurzel, Patchouliblätter, sind für Kleinbetrieb überhaupt nicht geeignet.

Betriebe mit Wasser- und Dampfdestillation.

Sternanisfrüchte. Destillationsanlagen in Tongkin und im Südwesten von China. Die wohl etwas idealisierende Zeichnung der Figur 78 gibt den tongkinesischen Destillationsapparat wieder. Der Apparat besteht aus einem Holzfasse oder einem eisernen Zylinder mit vielfach durchlöchertem Boden. Er ruht fest eingefügt auf einem halbkugelförmigen Kessel, der durch Feuer geheizt wird.

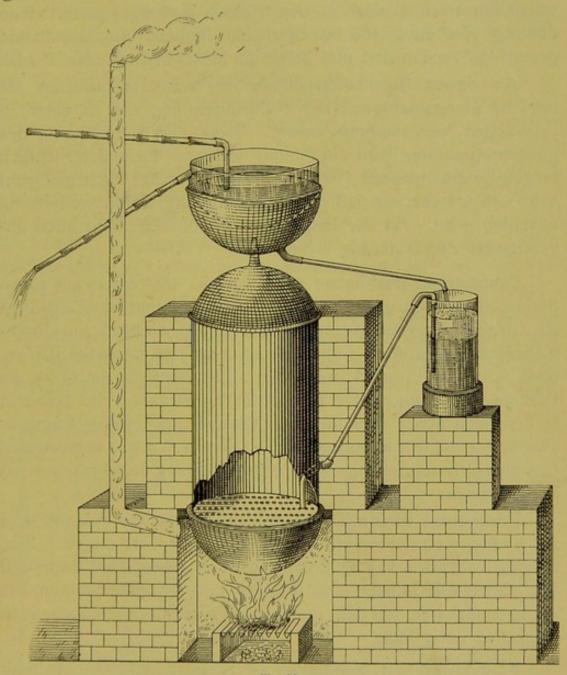


Fig. 78.

In dem halbkugelförmigen Kessel befindet sich Wasser, dessen Dämpfe die aus zerkleinerten Sternanisfrüchten bestehende Füllung durchziehen und in dem eigenartig zum Kühler ausgebildeten Helm kondensiert werden. Die Konstruktion ist aus der Zeichnung leicht verständlich. Das Destillationswasser

fließt in den Kessel zurück, wo das Rücklaufrohr bis auf den Boden geführt ist. Bei den chinesischen Apparaten findet kein dauernder Rücklauf statt; das Destillationswasser wird wahrscheinlich nach Bedarf in den Kessel zurückgegossen. Eine Füllung von etwa 180 kg Sternanis braucht zur Destillation gegen 45 Stunden Zeit und liefert im Mittel $5^{1/2}$ kg oder 3^{0} /0 Öl.

An dieser Destillationsanlage ist nichts auszusetzen als nur die Mangelhaftigkeit der Kühleinrichtung, die zu einer zu schwachen Verdampfung zwingt. Trotz der Einmauerung des ganzen Apparates wird die Füllung während der außerordentlich langen Destillationszeit (10 Stunden müßten eigentlich genügen) sehr naß werden, so daß die Ölverdampfung wohl unvollständig ausfallen wird. An der langen Destillationszeit kann auch ungenügende Zerkleinerung schuld sein.

Campherholz-Destillation auf Formosa. Auf einem aus rohen Steinen 1 m hoch gebauten Ofen von 0,7 m innerer Weite liegt ein flacher eiserner Kessel, auf dem ein Holzfaß mit durchlöchertem Boden dicht aufgesetzt ist. Das Faß ist unten 0,87 m, oben 0,3 m weit und 1,15 m hoch. Ein Bambusrohr führt die Dämpfe zum Kühler. Die eigenartige Konstruktion des Kühlers, in dem sich außer dem flüssigen Ölanteil auch fester Campher abscheidet, ist in dem speziellen Teil dieses Werkes beim Artikel Campheröl beschrieben. Auch eine Abbildung des Apparates ist dort gegeben.

Der Kessel wird mit Wasser gefüllt, und das Faß mit dem zu Spänen zerkleinertem Holze des Campherbaumes. Eine Füllung von etwa 112 kg Spänen wird in 24 Stunden destilliert. Wir haben hier wieder eine Wasser- und Dampfdestillation, die an und für sich gut ist, nur in der Ausführung manches zu wünschen übrig läßt.

Pfefferminzkraut-Destillation in Japan.¹) Die Verarbeitung des Pfefferminzkrautes ist in mehrfacher Hinsicht interessant und trotz der einfachen Arbeitsweise rationeller als die der Lavendelblüten und des Thymiankrautes bei der Wanderdestillation in Südfrankreich und als die Kräuterdestillation in Spanien.

¹⁾ Naojiro Inouye aus Harima in Japan. Japanische Pfefferminze. Bericht von Schimmel & Co., Oktober 1908, 205.

Allgemein wird in Japan, ebenso wie in England, das Pfefferminzkraut vor der Destillation getrocknet. Man vergrößert hierdurch nicht nur die Ölproduktion einer Blasenfüllung, sondern man sichert sich auch damit eine größere Ausbeute. Weniger praktisch ist aber, daß man von den zwei Jahresernten des

Krautes die Sommerernte vielfach bis zur Verarbeitung der Herbsternte aufbewahrt, wodurch ein nicht unbeträchtlicher Ölverlust durch Verdunstung entstehen dürfte.

Die in der zitierten Abhandlung angeführten, in Japan üblichen Destillationsverfahren stimmen alle in der Anwendung der Wasser- und Dampfdestillation über-

ein, gleichen sich auch im wesentlichen in der Art der Destillationsanlage.

Auf einer Feuerung ruht, im Mauerwerk versenkt, ein Kupferkessel (Fig. 79) von ca. 1 m lichtem Durchmesser und 270 l Fassungsraum. Er wird teilweise mit Wasser gefüllt und liefert den Dampf für die Destillation. Auf diesen Dampf-

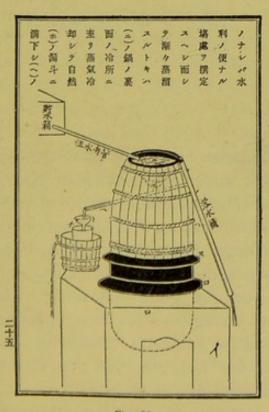


Fig. 80.

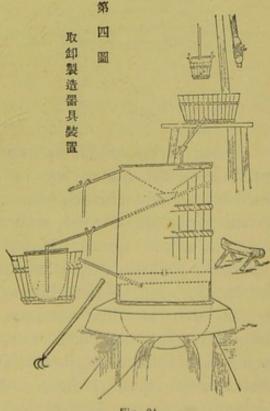
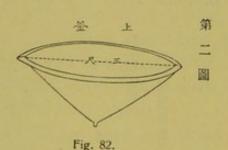
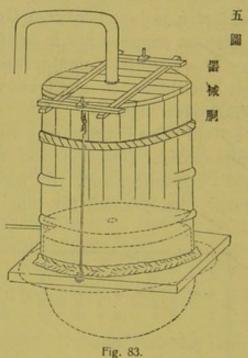
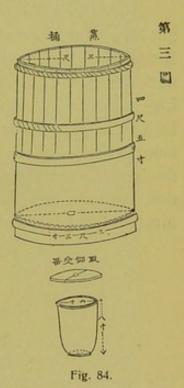




Fig. 81.

kessel wird ein Holzbottich mit durchlöchertem Boden gesetzt, der das trockene Pfefferminzkraut aufzunehmen hat (Fig. 80 und 81). Die Höhe des Bottichs beträgt 1,03 m, sein unterer Durchmesser 1,09 m, sein oberer 0,91 m. Da der obere Teil der Feuerung in der Höhe des Erdbodens liegt, so kann der zu ebener Erde stehende Holzbottich leicht gefüllt und durch Umkippen entleert werden. Figur 80 ist in diesem Sinne aufzufassen. Bedeckt ist der Bottich mit einem trichterförmigen Kupferkessel (Fig. 81 und 82), der in eigenartiger Weise

als Kühler für die Pfefferminzöldämpfe dient. Der Kessel wird
außen durch fließendes Wasser gekühlt. Der in dem Bottich in die
Höhe ziehende Dampf trifft auf die
kalte Kupferwandung, und das Kondensat fließt an ihr herunter in
einen Becher und aus diesem durch
ein Bambusrohr nach außen in die
Vorlage.


第

Diese Art der Dampfkondensation in dem Destillationsapparate selbst haben wir in den zuvor beschriebenen Kleinbetrieben schon mehrfach gefunden. Nur fließt dort das Kondensat in eine Rinne des Helms, während es hier an dem umgestülpten Helm in einen Becher fließt. Diese Anordnung ist weniger praktisch, weil sie dem Destillationsapparate viel Fassungsraum nimmt, der der Pflanzenfüllung verloren geht. Im übrigen ist die in den Destillationsapparat verlegte Dampfkondensation auch wenig rationell, nicht nur weil die gebotene Kühlfläche sehr gering ist, sondern weil der Teil der Dämpfe, der den Helmkühler nicht berührt hat, unkondensiert nach außen in die Vorlage gelangt. Aus diesem Grunde hat der beschriebene

Apparat in dem sogenannten "Maschinenbottich" von K. Tase in Uruschiyama Mura eine Verbesserung erfahren (Fig. 83), nach der der obere Kupferkessel fortfällt. Der Bottich ist mit einem ebenen Holzdeckel dicht zugedeckt, aus dessen Mitte ein Rohr zu einem in einem zweiten Holzbottich stehenden Schlangenkühler führt. Beträgt die Füllungsmenge des anderen Bottichs gegen 56 kg Pfefferminzkraut, so kann dieser über 90 kg aufnehmen, ohne daß seine Dimensionen größer sind.

Die Vorlage (Fig. 84), ein Porzellangefäß, steht in einem kleinen Holzfaß und wird ebenfalls durch Wasser gekühlt. Sie ist 0,24 m hoch und 0,18 m weit und zum Schutz gegen Staub mit einem Holzdeckel zugedeckt, in dem ein Trichter zum Einlauf des Destillats eingesetzt ist. Ist die Vorlage voll, so wird das Öl abgenommen und das Wasser in den Kessel unter dem Bottich zurückgegeben.

Eine Destillation von 56 kg Kraut dauert 3 bis 4 Stunden, so daß im Verlauf eines Sommertages 4, an einem kürzeren Herbsttage 3 Füllungen verarbeitet werden können. Die etwa 94 kg Kraut einer Füllung des Maschinenbottichs liefern gegen 0,75 kg bis 0,86 kg Öl. Das trockene Kraut der

Sommerernte gibt gegen 1% Öl, das der Herbsternte etwa 1,6% Öl.

Nach der Destillation wird der Bottich nach Abnahme des Deckels umgekippt, auf einem Holzbock gelagert und mit einer Harke entleert. Bock und Harke sind in Fig. 81 abgebildet. Zur Erleichterung der Entleerung und Füllung benutzt man auch Winden, mit denen der Bottich von der Feuerstelle gehoben und bei Seite gestellt werden kann.

Die Pfefferminzölindustrie hat im letzten Jahrzehnt in Japan einen großen Aufschwung genommen und wird von der Regierung mit großem Interesse verfolgt und auch unterstützt. Der Charakter des Kleinbetriebes in zahlreichen Destillationsstätten ist wohl durch die Verhältnisse gegeben. Das einzige, was an der herrschenden Methode geändert werden könnte, womit freilich der erste Schritt zur Vergrößerung einer Betriebsanlage getan würde, wäre der Ersatz der Wasser- und Dampfdestillation mit Feuerheizung durch Dampfdestillation unter Aufstellung eines kleinen Dampfentwicklers, wie z. B. bei der Rosmarindestillation in Dalmatien (siehe unten). Es genügt eine ganz einfache Konstruktion des Kessels. Die Spannung des Dampfes braucht nur ½ Atm. über dem Luftdruck zu betragen. Mit dem Dampfentwickler wären dann mehrere Destillationsbottiche zu verbinden.

Die Benutzung von Holzfässern als Destillationsapparate, gilt im allgemeinen als charakteristisches Merkmal eines primitiven Betriebes. Für Kleinbetriebe der Wasser- und Dampfdestillation und der Dampfdestillation haben sie aber eine sehr wertvolle Eigenschaft. Wegen der schlechten Wärmeleitung des Holzes bedürfen sie keiner besonderen Umhüllung mit einem Wärmeschutzmittel, deren ein eiserner Apparat, ein kleinerer sogar noch mehr als ein größerer, unbedingt bedarf, weil sonst die an den Wänden liegenden Teile der Füllung naß werden und nicht ausdestilliert werden können.

Dampfdestillations-Betriebe.

Eine Verbesserung kann der Kleinbetrieb noch dadurch erfahren, daß unter Aufstellung eines einfachen Dampfentwicklers mit Dampfdestillation gearbeitet wird. Die Destillation läßt sich besser regulieren, als wenn die Blase mit direktem Feuer geheizt wird. Da man mehrere Blasen mit dem gemeinsamen Dampfentwickler verbinden wird, so erhält auch die Anlage eine größere Leistungsfähigkeit; Heizung und Arbeit stellen sich für die gleiche Ölmenge billiger.

Rosmarin-Destillation in Dalmatien. Als Muster einer kleinen Anlage für Dampfdestillation kann die Destillation von Rosmarin bezeichnet werden, wie sie vereinzelt in Dalmatien (Insel Lesina) ausgeführt wird. Die photographische Aufnahme eines solchen Betriebes ist in dem beigefügten Bilde wiedergegeben (Fig. 85). Der Dampfentwickler ist ein stehender Zylinder mit Wasserstandsrohr und Vorrichtung zum Nachfüllen von Wasser, wozu das von Kesselstein freie Destillationswasser

benutzt werden kann, vorausgesetzt, daß es nicht sauer ist. An dem Dampfentwickler ist ein Sicherheitsventil angebracht, das schon bei ½ Atmosphäre Überdruck abbläst.

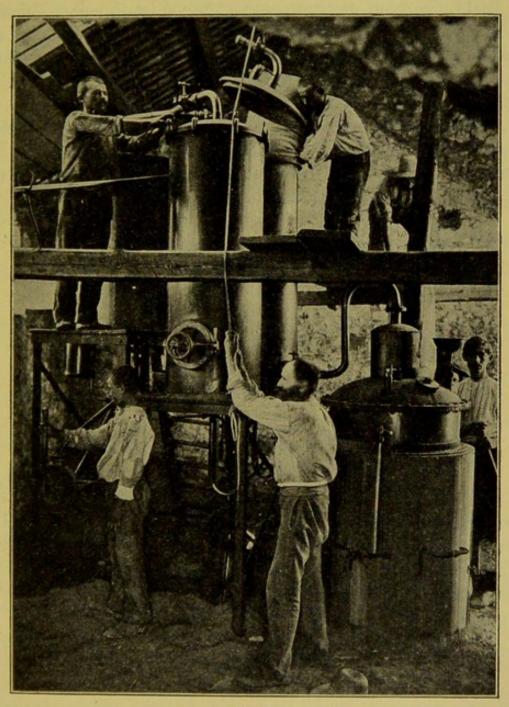


Fig. 85.

Aus dem Kessel führt oben ein Dampfrohr zu den zwei Destillationszylindern, das sich vor den Zylindern gabelt und in den Gabelstücken durch Ventile geschlossen werden kann.

v. Rechenberg, Gewinnung und Trennung der äther. Öle.

Für jeden Zylinder kann so der Dampf nach Belieben an- und abgestellt werden. Auf der Abbildung sehen wir unten am Destillationszylinder den Verschluß für die Öffnung zum Entleeren der ausdestillierten Füllung.

Dicht unterhalb der Entleerungsöffnung ist in jedem Zylinder ein zur Reinigung herausnehmbarer Siebboden angebracht, auf dem die Blätter liegen, und unter dem der Dampf einströmt. Aus einem Hahn am Boden der Zylinder kann von Zeit zu Zeit das Kondensationswasser abgelassen werden.

Beide Destillationsapparate haben einen gemeinsamen Kühler. Die Destillationsführung ist so gedacht, daß immer nur ein Zylinder im Dampf steht, während der andere entleert und gefüllt wird.

8. Kapitel.

Molekulare Assoziation und Dissoziation, ihr Einfluß auf die Verdampfung.

Die Bildung von Aggregaten gleicher Moleküle und der Zerfall solcher homogener Molekülaggregate hat für die Destillation eine große Bedeutung, weil Dampfdruck und Destillationstemperatur dadurch beeinflußt werden. Eine kurze Besprechung dieser erst in neuerer Zeit eingehender untersuchten Vorgänge ist deshalb wohl gerechtfertigt.

Über die Natur des flüssigen und festen Aggregatzustandes bestehen verschiedene Auffassungen. Früher nahm man an, daß die flüssigen und festen Körper Komplexe vielfacher Dampfmoleküle enthalten; dann drang die Ansicht durch, daß Gasund Flüssigkeitszustand sich im Aufbau nicht unterscheiden, daß sozusagen kein qualitativer, sondern nur ein quantitativer Unterschied, nämlich der der verschiedenen Dichte bestehe. Es wären nicht andere Moleküle als im Dampf- oder Gaszustande, sondern sie schwingen nur näher aneinander. Zur Begründung und Befestigung dieser Auffassung trugen besonders die geistvollen Deduktionen van der Waals bei.

Die Untersuchungen der Oberflächenspannung an Säuren, Alkoholen und am Wasser ergaben aber dann ein stark abweichendes Verhalten von dem der Ester, Äther und Kohlenwasserstoffe, das sich nur durch molekulare Assoziation der hydroxylhaltigen Körper erklären ließ. Die ebullioskopischen und kryoskopischen Untersuchungen von Lösungen führen ebenfalls zu der zwingenden Annahme der Existenz von Molekülaggregaten in den Lösungen. Und die neuerdings mit großem Interesse verfolgten Beobachtungen der Eigenschaften der Kolloide lassen folgern, daß alle flüssigen und festen Körper aus umfangreichen Molekülaggregaten bestehen.

Dazu kommt, daß die Zustandsgleichung van der Waals

$$\left(p + \frac{a}{v^2}\right) (v - b) = R T,$$

eine Modifikation der bekannten Gasgleichung

$$pv = RT$$
,

die für Dämpfe und Flüssigkeiten unter der Voraussetzung der Abwesenheit von Molekülaggregaten gelten sollte, trotz aller Bemühungen für keine untersuchte Flüssigkeit die Versuchsresultate zutreffend zusammenzufassen vermag.

So beginnt jetzt die alte Anschauung, aber in etwas geklärterer und besser begründeter Form, wieder Raum zu gewinnen, daß die Moleküle der flüssigen und festen Körper Assoziationen von Gasmolekülen sind, und daß auch die bekannten Abweichungen der Gase und besonders der gesättigten Dämpfe vom Boyle-Gay-Lussacschen Gesetze derartige homogene Molekularverbindungen zur Ursache haben.¹)

Außer den nachfolgend kurz beschriebenen Untersuchungen über die Oberflächenspannung, die für die Komplexität von Flüssigkeitsmolekülen sprechen, seien noch interessante aus der Höhe von Siedetemperaturen gezogene Folgerungen mitgeteilt. H. M. Vernon²) stellte folgende Erwägungen an. Vergleicht man die Siedepunkte verschiedener chemischer Körper, so wird man finden, daß eine Erhöhung des Molekulargewichts den Siedepunkt

¹⁾ Petru Bogdan, Über die Polymerisation der Flüssigkeiten. Zeitschr. f. physik. Chem. 57 (1907), 349.

²) Chem. Zentralbl. 1891, II. 518.

steigert, eine Verdoppelung etwa um 100°, denn C₂H₄ siedet bei — 105°, C₄H₈ bei — 5°, C₈H₁₆ bei 126° und C₁₆H₈₂ bei 274°. Das Wasser sollte einen Siedepunkt von — 110° besitzen, weil der Ersatz von Schwefel durch Sauerstoff in vielen organischen Verbindungen den Siedepunkt um 50° vermindert und H₂S bei — 61,8° siedet. Das Wasser siedet aber 200° höher, wonach seine Zusammensetzung (H₂O)₄ sein würde. Alle anorganischen und organischen Verbindungen mit Hydroxylgruppen haben im flüssigen oder festen Zustande polymerisierte Moleküle, weil der Ersatz des Wasserstoffs im Hydroxyl durch Alkyl- oder Säureradikale den Siedepunkt erniedrigt, während doch die Vergrößerung des Moleküls eine Erhöhung des Siedepunktes verursachen müßte. Es tritt aber eine Erniedrigung ein, weil das zuvor polymerisierte Molekül durch die Substitution in Einzelmoleküle oder jedenfalls in kleinere Molekülaggregate zerfällt.

Die Untersuchungen von Eötvös¹) und besonders die von Ramsay und Shields²) über die Beziehungen der Oberflächenspannung von Flüssigkeiten zu ihrem Molekularvolum haben das Bestehen solcher Molekülaggregate in interessanter Weise bestätigt.

Einen ziemlich gleich hohen Temperaturkoeffizienten für die molekulare Oberflächenspannung haben z. B. folgende organische Körper.

Schwefelkohlenstoff, Normaloctan, Tetrachlorkohlenstoff, Jodäthyl, Mercaptan, Äthyläther, Chloral, Paraldehyd, Methylformiat, Äthylacetat, Äthylchlorocarbonat, Methylpropylketon, Acetessigester, Essigsäureanhydrid, Äthylsulfocyanat, Äthylsenföl, Allylsenföl, Benzol, Chlorbenzol, Benzaldehyd, Nitrobenzol, Anilin, Benzonitril, Guajacol, Pyridin, Chinolin und zahlreiche andere untersuchte Körper.

Niedrigere Temperaturkoeffizienten haben dagegen die in der nachstehenden Tabelle angeführten chemischen Verbindungen. Der Grad der Assoziation dieser Flüssigkeiten wurde durch den Vergleich mit der Oberflächenspannung der eben genannten Kohlenwasserstoffe, Äther, Ester etc., berechnet. Es sind also nicht absolute, sondern relative Zahlen. M bezeichnet in der Tabelle das nach der chemischen Konstitution angenommene Molekulargewicht und x den Assoziationsfaktor, der, mit M multipliziert, das aus der Oberflächenspannung sich ergebende komplexe Molekül liefert.

	16 — 46° x · M	46 — 78° x · M	78 — 132° x · M	132 — 185° x · M
Methylalkohol	3,43 · 32	3,24 · 32	2,89 · 32	
Äthylalkohol	2,74 · 46	2,43 · 46	1,97 · 46	
Propylalkohol	2,25 · 60	2,31 · 60	_	Contract to
Isopropylalkohol	2,86 · 60	2,72 · 60	_	
Butylalkohol	1,94 · 74	1,72 · 74	1,76 · 74	
Isobutylalkohol	1,95 · 74	1,86 · 74	1,64 - 74	

¹⁾ Wiedemanns Annalen 27 (1886), 452.

²) Zeitschr. f. physik. Chem. 12 (1893), 433. Siehe auch P. Walden, Ausdehnungsmodulus, spezifische Kohäsion, Oberflächenspannung und Molekulargröße der Lösungsmittel. Zeitschr. f. physik. Chem. 65 (1908), 129.

	16-460	46 — 780	78 — 132°	132-1850
	x · M	x · M	x · M	x·M
Amylalkohol	1,97 · 88	1,69 · 88	1,57 - 88	
Allylalkohol	1,88 - 58	1,86 · 58	-	
Glycol	2,92 · 62	2,48 - 62	2,12 · 62	
Ameisensäure	3,61 - 46	3,13 · 46	100 - NO.	
Essigsäure	3,62 - 60	3,32 · 60	2,77 · 60	
Propionsäure	1,77 - 74	1,78 - 74	1,88 - 74	
Buttersäure	1,58 · 88	1,73 - 88	1,69 - 88	
sobuttersäure	1,45 · 88	1,82 - 88	1,73 - 88	
Valeriansäure	1,36 - 102	1,37 - 102	1,70 · 102	1,48 · 102
Isocapronsäure	1,49 - 116	1,47 · 116	1,43 - 116	
Aceton	1,26 · 58	1,26 - 58		
Propionitril	1,77 · 55	1,57 · 55		
Nitroäthan	1,46 · 75	1,41 - 75	1	

Das Wasser hat bei 0° die Formel von annähernd (H₂O)₄, bei höherer Temperatur hat es folgende Molekulargewichte:

to	x · M	10	x · M
30°	3,44 · 18	90°	2,79 · 18
40°	3,18 · 18	100°	2,66 - 18
50°	3,13 · 18	110°	2,61 · 18
60°	3,00 · 18	120°	2,47 - 18
70°	2,96 · 18	130°	2,47 · 18
80°	2,83 · 18	140°	2,32 · 18

Die Assoziation verursacht eine Verkleinerung der Molekülzahl, muß also eine Verringerung des Dampfdruckes und Erhöhung der Siedetemperatur zur Folge haben; die Dissoziation, d. h. die Trennung der Molekülaggregate, führt dagegen eine Vergrößerung der Molekülzahl, also Steigerung des Dampfdruckes und Erniedrigung der Siedetemperatur herbei. Wenn also die aus dem Verhalten der Oberflächenspannung gezogenen Schlußfolgerungen hinsichtlich der Komplexität der Moleküle von hydroxylhaltigen Körpern gegenüber den hydroxylfreien richtig sind, so müssen auch die Dampfdrucke der Hydroxylverbindungen bei fallender Temperatur merkbar stärker abnehmen. Das ist in der Tat auch der Fall, denn die erheblich geringere Verdampfung der Hydroxylverbindungen mit Wasser bei dem Sinken der Temperatur beruht nur auf dem stärkeren Zurückweichen des Dampfdruckes dieser Verbindungen. Noch deutlicher zeigt sich dieser Unterschied beider Körperklassen, wenn nicht die Verdampfungswerte mit Wasser, sondern die Dampfdrucke selbst miteinander verglichen werden (s. die Siedepunktstabelle im Kapitel "Siedetemperatur und Dampfdruck"). Aus diesen Dampfdrucken folgt weiter, daß sich die hydroxylfreien und hydroxylhaltigen Verbindungen nicht ohne Verbindungsglieder gegenüberstehen, sondern daß zwischen den Säuren auf der einen Seite und den Kohlenwasserstoffen auf der anderen Seite die anderen Körperklassen Übergänge bilden. Ferner erhellt auch, daß die

affinitätäußernde Wirkung der Hydroxylgruppe durch Art und Größe des Molekülrestes mit beeinflußt wird, und daß die durch chemische Konstitution veranlaßten Unterschiede in der Polymolekularität bei den hochsiedenden Körpern mit ihren komplexen Molekülen mehr und mehr geringer werden.

Ein treffendes Beispiel für Molekularassoziationen ist übrigens in den in einem späteren Kapitel beschriebenen Additionsverbindungen ungleichartiger Moleküle gegeben. Auch hier haben sich nicht nur chemisch ungesättigte, sondern auch solche Moleküle zu labilen Aggregaten vereinigt, die nach allgemein chemischer Auffassung in ihren Affinitäten gesättigt sind. Hier wie dort wirkt Wärme dissoziierend, und hier wie dort, was besonders interessant ist, tritt auch partielle oder totale Spaltung ein, wenn der molekular assoziierte Körper in einer fremden Flüssigkeit gelöst wird.

Die Tatsache, daß die hydroxylhaltigen Verbindungen im flüssigen und jedenfalls auch im festen Aggregatzustande polymerisierte Moleküle enthalten, wirft auch ein Licht auf die Deutung des Verhaltens mancher Lösungen mit Minimumsiedepunkt. Denn wenn bei der Lösung ein Zerfall von Molekülkomplexen eintritt, muß der Dampfdruck erhöht, der Siedepunkt erniedrigt werden. Daß im geeigneten Falle der Siedepunkt der Lösung selbst unter den Siedepunkt der niedrigst siedenden Komponente fallen kann, ist nicht ausgeschlossen. Daraus erklärt es sich auch, warum gerade vorzugsweise die Lösungen von Verbindungen mit freiem Hydroxyl einen Minimumsiedepunkt haben.

Es erübrigt nun noch, die Dampfphase molekularassoziierter Flüssigkeiten zu betrachten. Abgesehen von der Ameisen- und Essigsäure, besteht im allgemeinen der Dampf der Hydroxylkörper bei niedrigen und mittleren Drucken aus Einzelmolekülen. Bei Übergang der Flüssigkeitsphase in die Dampfphase tritt also Dissoziation und bei der Rückkehr in die Flüssigkeitsphase Assoziation ein, so daß man also bei dem Wasser, den Alkoholen und auch den Säuren — denn auch von der Ameisensäure und Essigsäure ist der Assoziationszustand in beiden Phasen verschieden — von einem Dissoziationssiedepunkt reden kann, ebenso wie bei den Additionsverbindungen.

Die gesättigten Dämpfe von Methylalkohol, Äthylalkohol, Propylalkohol und von Äthyläther bestehen bei 0° aus den Molekülen CH₃OH, C₂H₅OH, C₃H₇OH und (C₂H₅)₂O. Mit der Erhöhung des Druckes und der Dampfsättigung beginnen sich allmählich Doppelmoleküle im Dampfe zu bilden, so daß schließlich, aber erst unter sehr hohen Drucken, der Dampf nach der Rechnung nur noch Doppelmoleküle, event. auch ein entsprechendes Gemisch von Mono- und Polymolekülen enthält. Nach den Dampfdichtebestimmungen berechnet sich nämlich das Molekulargewicht des gesättigten Dampfes

vom	Methylalkohol	Einzelmolekül	32	bei	220°	zu	62,2
"	Äthylalkohol	,,	46	"	240°	"	92
"	Propylalkohol	,,	60	"	250°	,,	120
"	Äthyläther	"	74	"	180°	,,	148

Sehr eigentümlich verhält sich die Essigsäure bei der Verdampfung. Während das Molekulargewicht der chemischen Formel CH₃ CO₂ H 60 beträgt, ist nach der Dampfdichtebestimmung das Molekulargewicht des bei

20° und 11,8 mm Druck gesättigten Essigsäuredampfes 120, also doppelt so groß wie nach der chemischen Konstitutionsformel. Dann tritt aber bei Zunahme von Temperatur und Druck wieder Dissoziation ein, die bei 150° und 1846 mm Druck mit dem Molekulargewicht 100 ihren höchsten Grad erreicht. Danach nimmt die Assoziation wieder zu, so daß bei 270° und 21060 mm Druck der gesättigte Essigsäuredampf wieder aus Doppelmolekülen besteht.

Der Essigsäure ähnlich verhält sich nach Binau¹) der gesättigte Dampf der Ameisensäure, dessen Dichte bei 216° dem Molekulargewicht 46 entspricht, so daß also bei dieser Temperatur der Dampf nicht molekular assoziiert ist, während unter 20 bis 24 mm Druck die Dichte fast doppelt so groß ist.

Um die Möglichkeit eines derartigen Verhaltens der gesättigten Dämpfe von Ameisensäure und Essigsäure zu verstehen, muß berücksichtigt werden, daß bei einem gesättigten Dampfe mit jeder Änderung der Temperatur auch eine gleichsinnige seines Druckes verbunden ist, und daß die molekulare Beschaffenheit eines Körpers sowohl in seinem flüssigen als auch in seinem dampfförmigen Zustande nicht nur von der Temperatur sondern auch von dem Drucke des eignen Dampfes beeinflußt wird. Dieser Einfluß von Temperatur und Druck ist aber entgegengesetzt. Temperaturerhöhung bewirkt Spaltung von Molekülaggregaten oder hemmt deren Bildung, Drucksteigerung dagegen begünstigt das Entstehen solcher Aggregate und wirkt erhaltend auf schon vorhandene. Denkt man sich nun, was sicher der Fall ist, daß die Dampfdichte, d. h. also die molekulare Beschaffenheit des Dampfes, nicht nur in entgegengesetztem Sinne, sondern auch in verschiedenem Grade von den beiden Faktoren Druck und Temperatur beeinflußt wird, so läßt sich die merkwürdige Anomalie des Essigsäure- und Ameisensäure-Dampfes ungezwungen erklären. Bei gesättigten Dämpfen anderer Stoffe entzieht sich die Unregelmäßigkeit im Verhalten des Dampfes der Beobachtung, weil die Polymolekularität bei ihnen geringer ist.

¹⁾ Ann. de Pharm. 60 (1846), 160; s. auch E. Grimaux, Chem. Zentralbl. 1873, 312.

9. Kapitel.

Siedetemperaturen und Dampfdrucke einheitlicher Körper.

Methoden der Dampfdruckbestimmung.¹) Regnault,²) dessen klassische Untersuchungen noch immer maßgebend sind, führte seine Dampfdruckbestimmungen nach zwei Methoden aus, die er die statische und die dynamische nannte, zu denen Andrews noch die Isothermenmethode fügte. Letztere ist besonders durch die wertvollen Untersuchungen von Ramsay und Young³) bekannt geworden. Auch Amagat⁴) und Batelli⁵) arbeiteten nach der Isothermenmethode.

1. Statische Methode. In die Toricellische Leere eines mit Quecksilber gefüllten Barometerrohres bringt man in geeigneter Weise die Flüssigkeit, deren Dampfdruck bestimmt werden soll. Der Dampf, den die Flüssigkeit entwickelt, drückt das Quecksilber herunter, bis nach einiger Zeit die Quecksilbersäule einen festbleibenden Stand eingenommen hat. Ein Vergleich mit einem anderen, ebenfalls mit Quecksilber, aber ohne die Flüssigkeit gefüllten Barometerrohr zeigt aus der Niveaudifferenz beider Quecksilbersäulen den Betrag des Dampfdruckes der Flüssigkeit. Beide Rohre befinden sich in einem Wärmebade, dessen Temperatur während der Versuchszeit konstant erhalten wird.

Die so einfach erscheinende Methode ist ungemein schwierig in der Ausführung. Die Substanz oder das Substanzgemisch man hat die Methode gern zur Untersuchung des Druckes von

¹) L. Graetz in A. Winkelmanns Handbuch der Physik, 2. Aufl., III. Bd., S. 905, Leipzig 1906. — J. P. Kuenen, Theorie der Verdampfung und Verflüssigung von Gemischen, Leipzig 1906, S. 2. — S. Young, Fractional Distillation, London 1903, S. 72. — W. Ostwald und R. Luther, Physiko-Chemische Messungen, Leipzig 1902.

²⁾ Mémoires de l'Institut 21 (1847) und 26 (1862).

⁵⁾ Phil. Trans. 178 A (1887), 57.

⁴⁾ Ann. de Chim. et Phys. VI. 29 (1893), 1.

⁵) Mem. Accad. Torino II. 41 (1891), 33; 43 (1892), 1.

Flüssigkeitsgemischen benutzt — müssen vollkommen rein sein, reiner als nur analysenrein. Die geringste Beimengung einer niedriger siedenden Substanz, z. B. einer Spur von Feuchtigkeit bei ätherischen Ölen, machen die Resultate vollständig wertlos. Auch das Einbringen der Substanz in das Barometerrohr ohne jedes Luftteilchen ist schwierig. Diesem Übelstande begegnet man, wenn ein einheitlicher Körper untersucht werden soll, dadurch, daß an dem oberen Ende des Barometerrohres ein Hahn angebracht wird, durch den der zuerst gebildete Dampf entfernt wird. Bleibt bei mehrmaliger Wiederholung der Dampfdruck konstant, so läßt sich daraus auf Reinheit der Substanz schließen, denn ein unreiner Körper bildet seinen Dampf als Mischdampf mit wechselnder Zusammensetzung, also auch wechselndem Druck. Dabei hat man gefunden, daß absolut reine Substanzen überhaupt nicht herstellbar sind.

Eine weitere Fehlerquelle der statischen Methode, die selbst geübten Experimentatoren zuweilen verhängnisvoll werden kann, liegt in der langen, bei sehr schwerflüchtigen, festen Körpern außerordentlich langen Zeit, bis sich zwischen dem festen Körper und der Dampfphase ein vollständiger Gleichgewichtszustand eingestellt hat. Das ist erklärlich, wenn man erwägt, daß die Verdampfung von der kleinen Oberfläche des Körpers stattfindet, und daß die zur weiteren Dampfentwicklung notwendige Verteilung des Dampfes in dem Dampfraum nur durch Diffusion bewirkt wird.

Eine Abart der statischen Methode ist das von Lord Kelvin¹) angewendete Verfahren der Dampfdruckmessung. In einem besonders konstruierten Apparate wird der Stand der Flüssigkeit, deren Dampfdruck untersucht werden soll, mit dem einer anderen, genau untersuchten Flüssigkeit verglichen.

2. Isothermenmethode. Der von seiner Flüssigkeit getrennte Dampf wird in einem kalibrierten Rohre überhitzt. Bei gleichbleibender Temperatur wird nun durch äußeren Druck das Dampfvolumen verkleinert, wobei jedesmal Druck und Volumen beobachtet werden, bis schließlich bei weiterer Verringerung des Volumens der Dampfdruck konstant bleibt, weil sich der Dampf partiell kondensiert. Werden diese für eine

¹⁾ Nature 55 (1897), 273 u. 295; Zeitschr. f. Instrumentenkunde 17 (1897), 122.

bestimmte Temperatur gewonnenen Zahlen für Volumen und Druck in ein Koordinatensystem eingetragen, so erhält man eine Kurve, die Isotherme genannt wird, weil sie in ihrem ganzen Verlauf für eine und dieselbe Temperatur gilt. Die Form dieser Kurve ist eine Hyperbel, die an einem Punkte in eine Gerade übergeht. Der Knickpunkt gibt den Druck für gesättigten Dampf an, der der Temperatur entspricht, bei der die Beobachtungen angestellt wurden. Für jede andere Temperatur des gesättigten Dampfes ist wieder eine Anzahl von Versuchen auszuführen. Hat man so für verschiedene Temperaturen die Drucke für gesättigten Dampf erhalten, so werden die Daten mathematisch durch eine Interpolierungsformel oder graphisch durch Wiedergabe in Form einer Kurve vervollständigt.

Die Isothermenmethode beansprucht viel Zeit, aber übertrifft, soweit zu beurteilen ist, die übrigen Verfahren an Genauigkeit

der Resultate.

3. Dynamische Methode. Die Flüssigkeit wird unter einem gegebenen äußeren Druck zum Sieden erhitzt und die Temperatur des Dampfes festgestellt. Es ist das bekannte Verfahren einer Siedepunktsbestimmung.

Bei Anwendung der statischen Methode befindet sich der Dampf des Körpers, abgesehen von der molekularen Bewegung, in Ruhe, bei der dynamischen dagegen in Bewegung. Kahlbaum und andere Chemiker hatten deshalb gemeint, beide Methoden müßten verschiedene Resultate geben. Regnault hielt sie für gleichwertig. Ramsay und Young¹) wiesen durch besondere Versuche nach, daß beide Methoden zu dem gleichen Ergebnis führen, wenn sorgfältig verfahren wird, und zeigten, daß die oft konstatierten Unterschiede in den Resultaten auf die Schwierigkeit in der exakten Ausführung der statischen Methode zurückzuführen seien. Dem schloß sich Kahlbaum an. Bei der Ausführung der dynamischen Methode ist sehr schwache Verdampfung geboten und für ein weites Verbindungsrohr des Siedekolbens mit dem Kühler zu sorgen.

Allen drei Bestimmungsverfahren des Dampfdruckes ist eigen, daß sie versagen, wenn sehr niedrige Drucke, d. h. unter 0,1 mm, bestimmt werden sollen, weil dann ein genaues Ablesen

¹⁾ Berl. Berichte 19 (1886), 2107.

der Höhe der Quecksilbersäule nicht mehr möglich ist. Zur Messung kleiner Drucke benutzte deshalb Speransky¹) das Tensimeter von Bremer-Frowein, in dem der Druck nicht auf Quecksilber, sondern auf hochsiedendes Paraffinöl über-

tragen wird.

4. Indirekte dynamische Methode. Zur Ermittlung sehr niedriger Dampfdrucke eignet sich eine Abart der dynamischen Methode. Man kann sie die indirekte dynamische Methode nennen. Durch die Flüssigkeit oder durch den fein gepulverten festen Körper wird ein indifferentes Gas oder auch Wasserdampf geleitet. Die Menge des in Dampfform mitgenommenen Körpers wird durch Wägung, bei Gemischen durch das spezifische Gewicht, durch Lichtbrechung oder chemische Analyse festgestellt.

Unter Benutzung von Wasserdampf hat A. Naumann²) dies Verfahren zuerst vorgeschlagen, das nach ihm mehrfach

angewendet wurde.

Da alle Fehler der Gas- oder Dampfmessung, der Bestimmung des verflüchtigten Körpers und der Temperaturbeobachtung sich auf dem berechneten Wert des Dampfdruckes häufen, kann diese indirekte Bestimmungsmethode strenge Anforderungen auf Genauigkeit nicht erfüllen. Bei Benutzung des Wasserdampfes muß noch berücksichtigt werden, daß der betreffende Körper sich nicht merklich in Wasser lösen darf, weil sonst der Dampfdruck nicht der normale für gesättigten Dampf ist.

Linebarger³) stellte nach dieser Methode die Dampfdrucke von Flüssigkeitsgemischen fest, indem er durch die Gemische getrocknete Luft in feinen Bläschen leitete. Ebenso verfuhr L. Pfaundler,⁴) um den Dampfdruck des Quecksilbers zu be-

stimmen.

Gruener,5) ferner Ruff und Graf6) stellten so den Dampfdruck des Schwefels fest. Die Zahlen beider Untersuchungen stimmen leidlich gut überein. Nach einer Beobachtung von

²) Berl. Berichte 10 (1877), 1421, 1819, 2014, 2099; 11 (1878), 33.

5) Chem. Zentralbl. 1907, II. 2021.

¹⁾ Zeitschr. f. physik. Chem. 46 (1903), 76.

³) Journ. Americ. chem. Soc. 17 (1895), 615 u. 690. — Chem. Zentralbl. 1895, II. 585.

⁴⁾ Wiedemanns Annalen 63 (1897), 36.

⁹⁾ Berl. Berichte 40 (1907), 4199. - Chem. Zentralbl. 1907, II. 2022.

Gruener verdampften 100 g Wasserdampf unter dem Drucke von 740 mm (also bei 99,3°) im Mittel mehrerer Versuche 0,01344 g Schwefel. Ruff und Graf benutzten zur Berechnung der Werte die Formel

 $p = B \frac{D}{k + D},$

worin p den gesuchten Dampfdruck des Schwefels, B den äußeren Druck, D die Moleküle Schwefel, k die Moleküle Kohlensäure oder Wasser bedeuten. Als Molekulargewicht des Schwefeldampfes nahmen sie S₈ an.

Derselben Methode zur Messung kleiner Partialdrucke bediente sich Dolezalek.¹) Zur Bestimmung des Dampfdruckes von Flüssigkeitsgemischen benutzten unter anderen auch Gahl²) und Winkelmann³) die Methode.

Nicht um exakte Bestimmungen wiederzugeben, sondern nur zur Erläuterung der Methode seien einige Untersuchungen des Dampfdruckes von Carvon mitgeteilt. Reines, mit Natriumsulfit und Essigsäure aus Kümmelöl gewonnenes Carvon wurde mit Wasser unter verschiedenem Drucke destilliert.

Destillation von Carvon mit Wasser.

Druck in der Blase,	Temperatur des Dampfgemisches.	Carvongehalt im Destillat.	Partialdruck des Carvons im Dampfgemisch, berechnet aus der Zusammen- setzung des Destillats.
755,1 mm	99,4 °	9,7 °/ ₀	9,61 mm
43,1 ,,	34,6 °	3,6 °/ ₀	0,20 ,,
20,5 ,,	23,2 °	2,92 °/ ₀	0,08 ,,

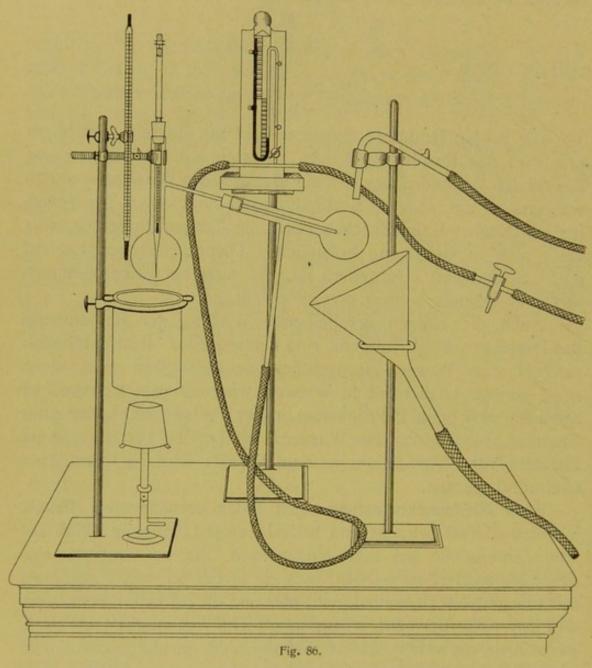
Bei diesen Versuchen sind Temperatur, Druck und Zusammensetzung des Dampfgemisches festgestellt. Von diesen drei Werten sind nur zwei zur Berechnung des Dampfdruckes des Carvons nötig. Demnach hat man die Wahl. Am einfachsten wäre es, wenn man nur die Zahlen für Druck und Temperatur benutzte. Bei 99,4° ist nach der Wasserdampftabelle der Dampfdruck des Wassers 744,0 mm. Wird dieser von dem beobachteten, auf 0° reduzierten Barometerstand des äußeren Luftdruckes, 755,1 mm,

¹⁾ Zeitschr. f. physik. Chem. 26 (1898), 327.

²⁾ Zeitschr. f. physik. Chem. 33 (1900), 179.

³⁾ Wiedemanns Annalen 39 (1890), 1.

abgezogen, so bleibt für den Dampfdruck des Carvons 11,1 mm bei 99,4° übrig. Soll dagegen der gewünschte Partialdruck aus dem Totaldruck und der Zusammensetzung des Destillates berechnet werden, so lautet die Formel hierzu


oder in Ziffern
$$\frac{\frac{g_1}{g_2} = \frac{M_1 p_1}{M_2 (P - p_1)}}{\frac{9,7}{90,3} = \frac{150 \cdot p_1}{18 (755, 1 - p_1,)}; \quad p_1 = 9,61 \text{ mm.}}$$

Die beiden Resultate stimmen nicht gut überein. Richtiger erscheint das Resultat 9,61 mm, das sich auf die Beobachtung des totalen Dampfdruckes und die Wägung des Destillates stützt, während zu der anderen Bestimmungsmethode außer der Kenntnis des totalen Dampfdruckes noch die Temperaturbestimmung eines sich in Bewegung befindlichen Dampfgemisches bis auf 0,01° Genauigkeit erforderlich ist, die sich bei einem Gemisch mehrerer Dämpfe schwer erreichen läßt.

Auch die einfach erscheinende Wägung der Bestandteile des Destillates birgt übrigens eine Fehlerquelle. Besitzt nämlich die mit dem Wasser zu destillierende Flüssigkeit eine, wenn auch geringe Löslichkeit in Wasser, wie z. B. das Carvon, so scheiden sich beide Flüssigkeiten in der Vorlage nicht klar voneinander ab, sondern das Wasser bleibt gering milchig. Trotz Zusatzes von Chlornatrium zu dem Wasser wird es kaum ganz carvonfrei werden.

Über Siedepunktsbestimmungen unter vermindertem Druck. Die Methode ist bekannt und bedarf keiner Darlegung. Nur auf eine Fehlerquelle sei hier hingewiesen, die es verdient, eingehender erörtert zu werden, weil sie in der Tat wohl allgemein nicht beachtet wird, selbst nicht hier und da bei Untersuchungen, die den Anspruch auf wissenschaftliche Genauigkeit erheben. Es ist mehr als wahrscheinlich, daß die in der nachfolgenden Siedepunktstabelle angeführten Siedepunkte unter wenigen Millimetern Druck, soweit sie gelegentliche Laboratoriumsbestimmungen sind, größeren Teils unrichtig sind, und zwar aus dem Grunde, weil der Destillationsdruck fehlerhaft beobachtet ist.

Umstehende Figur 86 gibt die Apparatur zu einer Siedepunktsbestimmung unter vermindertem Druck wieder. Das Bild ist der bekannten, vortrefflich geschriebenen Broschüre von Anschütz entnommen. Wir sehen darin das Glaskölbehen mit dem eingesenkten Haarröhrehen, in dem sich das Thermometer befindet. Das Ansatzrohr am Siedekölbehen führt zu der Vorlage für das De-

Minderdruck-Destillation nach Anschütz. 1/s natürl. Größe.

stillat, die durch Schlauch mit dem Quecksilbermanometer und weiterhin mit der Luftpumpe verbunden ist. Die Anordnung gilt für Siedepunktsbestimmungen hochsiedender Flüssigkeiten.

Hiernach wird die Temperatur der Dämpfe im Siedekolben, der Druck aber nicht ebenfalls dort, sondern außerhalb des Dampfraumes beobachtet. Diese Trennung von Thermometer und Manometer ist allgemein üblich. Jedenfalls nimmt man hierbei an, daß im Siedekolben und am Manometer der gleiche Druck herrschen müsse, weil beide in freier, wenn auch mittelbarer Verbindung stehen, und weil sich jede etwa entstehende Druckdifferenz augenblicklich ausgleiche.

Das ist nur bedingt richtig, genau genommen nie. Denn da im Destillationskolben ein in die Höhe Strömen von Dampf stattfindet, das durchaus nicht die Erscheinung der freien Diffusion bietet, sondern nichts anderes als das Einströmen eines Dampfes aus einem Raum mit höherem Druck zu einem anderen mit geringerem Druck darstellt, so müssen Druck und Temperatur des Dampfes im Siedekolben in verschiedener Höhe über der Flüssigkeit verschieden sein. Bei mäßiger Verdampfung und ungehindertem Abzug der Dämpfe sind diese Unterschiede minimal, bei lebhafter Verdampfung können sie aber ziemlich groß werden. Praktisch merkbar werden diese innerhalb des Siedekolbens auftretenden Druck- und Temperaturgefälle nur bei der Destillation von hochsiedenden Flüssigkeiten unter stark vermindertem Druck werden.

Dieser Fall, daß selbst die Weite des Siedekolbens nicht mehr ausreicht, um die entwickelte Dampfmenge ohne Drosselung des Dampfes aufzunehmen, wird seltener vorkommen. Sehr häufig wird aber der Dampf im Siedekolben eingeengt, - bei Siedepunktsbestimmungen unter wenigen Millimetern Druck kann man sagen in der Regel -, weil das Verbindungsrohr zwischen Kolben und Vorlage zu eng ist. Es bildet sich dann eine Druckdifferenz, die während der Destillation konstant bleibt, solange sich die Verdampfung nicht ändert. Sie wächst bei lebhafter Dampfentwicklung unter entsprechender Erhöhung der Temperatur, ohne daß aber das Manometer, das von der Dampfbewegung nicht berührt wird, die Drucksteigerung angibt. Von diesem Druckunterschied kann man sich leicht überzeugen, wenn man außer dem in üblicher Weise an der Vorlage angebrachten Quecksilbermanometer den Siedekolben mit einem zweiten Manometer unmittelbar verbindet. Der Druck im Siedekolben wird ein, zwei auch mehr Millimeter höher sein.

Die Druckdifferenz ist durch die Geschwindigkeit, mit der der Dampf von der Flüssigkeitsoberfläche in die Höhe und in den Kühler hineinströmt, gekennzeichnet und ihrer Größe nach bestimmt; sie hängt also von der Destillationsstärke ab, wenn die Weite des Destillationskolbens und des Verbindungsrohrs mit dem Kühler gegeben ist. Dieses Ansatzrohr ist meistens an dem Siedekölbehen so eng, daß trotz schwacher Verdampfung eine Hemmung der Dampfbewegung mit Rückstoß in den Destillationskolben hinein stattfindet.

In der Fabrikpraxis ist die Drosselung des aus der Blase in den Kühler übergehenden Dampfes besonders bei der Minderdruck-Destillation gut bekannt, denn das Mißverhältnis zwischen dem gebildeten Dampfvolumen und der Weite des Übersteigrohres oder der Kühlrohre und die hierdurch verursachte Erhöhung des Druckes in der Blase wird häufig unangenehm empfunden.

In einer kleinen kupfernen Zylinderblase von etwa 251 Rauminhalt wurde Wasser durch indirekte Heizung unter Atmosphärendruck und unter verringertem Druck zum Sieden erhitzt. Durch Veränderung der Destillationsstärke und durch Verengerung des Übersteigrohres mit Hilfe eines eingelegten Rohres konnte die Dampfgeschwindigkeit im Übersteigrohr beliebig gesteigert werden.

Die Strömungsgeschwindigkeit eines Dampfes in einem Rohre wird bekanntlich durch das Verhältnis des Dampfvolumens, das in einer Sekunde durch das Rohr befördert wird, zum Querschnitt des Rohres bestimmt:

$$c = \frac{v}{q}$$

Hierin bedeutet c die Geschwindigkeit in Metern in 1 Sek., v das Dampfvolumen in Kubikmetern und q den Querschnitt des Dampfrohres in Quadratmetern.

Die Größe des Dampfvolumens wurde bei den Versuchen aus dem in einer gegebenen Zeit aufgefangenen Destillat nach der Wasserdampftabelle festgestellt. Bei der Destillation unter Luftdruck wurde der Überdruck in der Blase durch das Steigen des Quecksilbers in einem beiderseitig offenen, U förmig gebogenen Glasrohr festgestellt, das an der Blase angebracht war. Bei der Destillation unter vermindertem Druck war die Blase mit einem Quecksilbermanometer verbunden und ebenso die Vorlagen. Die Differenz zwischen den Angaben dieser beiden zuvor verglichenen Manometer gab den Überdruck in dem Dampfraum der Blase an. Die für den Überdruck gefundenen Werte nebst den

Dampfgeschwindigkeiten, durch die diese Überdrucksgrößen verursacht wurden, sind nachfolgend wiedergegeben.

```
Dampfgeschwindigkeit 1 m = 0,5 mm Überdruck.

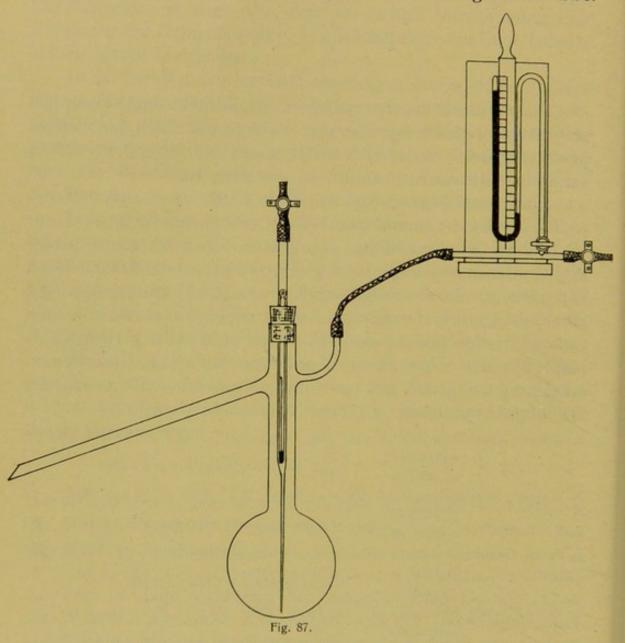
" 2 " = 1 " " "

" 6 " = 2 " " "

" 12 " = 3 " " "

" 22 " = 4 " " "

" 34 " = 9 " "


" 49 " = 12 " "
```

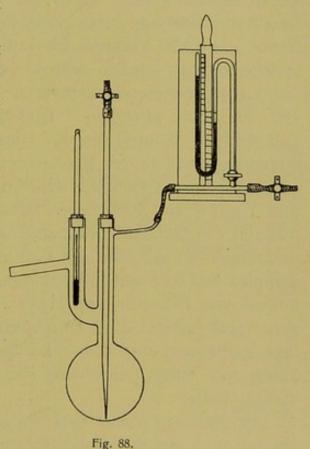
Diese Beziehungen zwischen Überdruck und Dampfgeschwindigkeit sollen nun benutzt werden, um einen Einblick zu gewähren, unter welchen Verhältnissen und in welcher Höhe ein Überdruck im Siedekolben zu erwarten ist.

Die Siedekölbchen, wie man sie in Größe von 50 bis 100 ccm zu Siedepunktsbestimmungen benutzt, haben ein Ansatzrohr zur Verbindung mit dem Kühler von gewöhnlich 4 bis 6 mm lichter Weite, also im Mittel von 5 mm gleich 0,196 qcm oder 0,0000196 qm Querschnitt. Zur Verringerung des etwaigen Überdruckes soll eine sehr geringe Destillationsstärke angenommen werden, und zwar 1 Tropfen alle 2 Sekunden gleich etwa 0,015 g Destillat in einer Sekunde. Um einen Begriff von der Größe der Drucksteigerung zu geben, sei an einigen Destillationsbeispielen die Dampfgeschwindigkeit in diesem Ansatzrohr berechnet.

- 1. Wasser, Destillationsdruck 760 mm, Temp. 100° , 1 kg = 1,65 cbm Dampf, $c = \frac{0,00002475}{0,0000196} = 1,2$ m Geschw.; Überdruck 0,5 mm.
- 2. Wasser, Destillationsdruck 50 mm, Temp. 38,3°, 1 kg = 21,616 cbm, $c = \frac{0,00032425}{0,0000196} = 16,5$ m Geschw.; Überdruck 3–4 mm.
- 3. Pinen, Destillationsdruck 760 mm, Temp. 159,2° (Regnault), 1 kg = 0,26 cbm, $c = \frac{0,0000039}{0,0000196} = 0,2$ m Geschw.; Überdruck 0.
- 4. Pinen, Destillationsdruck 5 mm, Temp. 22,3°, 1 kg = 27,1 cbm, $c = \frac{0,0004065}{0,0000196} = 20,7 \text{ m Geschw.; Überdruck 3 bis 4 mm.}$
- 5. Ölsäure, Destillationsdruck 4 mm, Temp. 199°, 1 kg = 26,11 cbm, $c = \frac{0,0003915}{0,0000196} = 20,0 \text{ m Geschw.; Überdruck 3 bis 4 mm.}$

Hieraus folgt, daß bei einer Destillation unter Atmosphärendruck in dem Siedekolben kaum eine merkbare Drucksteigerung entstehen wird, wenn man sehr schwach verdampft (1 Tropfen Destillat in 2 Sekunden). Jedoch empfiehlt es sich, Siedekölbehen mit weiterem Ansatzrohr zu verwenden. Bei der Minderdruckdestillation ist aber die Druckdifferenz zwischen Siedekolben und Vorlage ziemlich erheblich, um so mehr als man wohl gewöhnlich mehr wie einen Tropfen der Flüssigkeit in zwei

Siedekolben mit direkt am Kolben angebrachtem Manometer.


Sekunden verdampfen wird. Dabei ist zu bedenken, daß bei der Destillation von Flüssigkeiten, die unter Atmosphärendruck höher als 200° sieden, eine fehlerhafte Beobachtung des Dampfdruckes von 5 statt 6 mm oder von 4 statt 5 mm für diesen einen Millimeter einen Fehler von 3 bis 4° in der Siedepunktsbestimmung ausmacht.

In den Figuren 87 und 88 ist die Einrichtung eines Siedekolbens mit Manometer wiedergegeben. Figur 87 zeigt einen einfachen Siedekolben mit dem Rohransatz für das Manometer, Fig. 88 einen solchen mit Trennung des Thermometers von der Luftkapillare. Mit dem Ablesen der Thermometerangabe warte man, bis für einige Momente Temperaturkonstanz eingetreten ist. Dampfkondensation in dem Manometer ist nicht zu befürchten. Die darin eingeschlossene Luft gibt zwar den vom

Dampfe empfangenen Druck an das Quecksilber wieder, ohne aber den Dampf selbst sofort aufzunehmen. Eine minimale Undichtigkeit des Kautschuk-Verschlusses am Manometer verhindert auch dann den Dampfzutritt zu dem Quecksilber, wenn die Destillation längere Zeit dauern sollte. Zur Sicherheit kann man auch das Manometer mit dem Glashahn nach jeder Beobachtung abschließen.

Daß die Kapillare zur Luftzuführung sehr fein auszuziehen ist, damit möglichst wenig Luft durch die Flüssigkeit gesogen wird, ist eine selbstverständliche Vorsichtsmaßregel.

Sehr wahrscheinlich stellen die meisten der gewöhnlichen

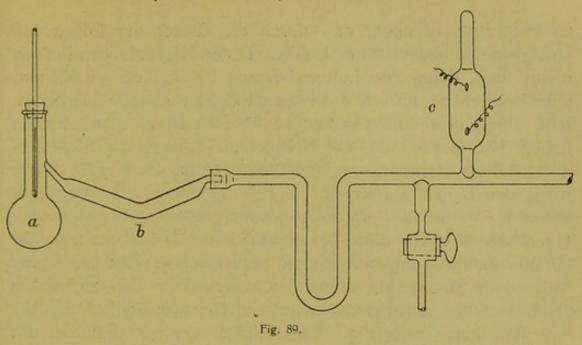
Siedekolben mit direkt am Kolben angebrachtem Manometer.

Siedepunktsbestimmungen unter niedrigen Drucken um mehrere Grade zu hohe Werte dar. Das Schlimmste ist, daß die Höhe des eventuellen Fehlers von reinen Zufälligkeiten abhängt, von der Weite des Rohransatzes und von der gerade beliebten Destillationsstärke, daß sie also selbst bei demselben Beobachter ziemlich verschieden ausfallen kann. Gegenüber diesem Fehler in der Druckbestimmung kommt es meist weniger in Betracht, ob sich der Quecksilberfaden ganz oder nur größerenteils im

Dampf befindet. Für gewöhnlich werden Abweichungen in den Siedetemperaturen bei niedrigen Drucken, wenn sie von verschiedenen Beobachtern ausgeführt wurden, durch Unreinheit der Substanz erklärt. Sehr oft werden sie ihren Grund in der

unrichtigen Beobachtung des Dampfdruckes haben.

E. Fischer und C. Harries1) haben es mit einer besonders wirksamen Luftpumpe nach Geryk nach ihrer Meinung erreicht, unter 0,25 mm Druck zu destillieren. Nach der Zeichnung in der Veröffentlichung ihrer Arbeit ist das Manometer weit ab vom Destillationskolben, durch viele Rohre und Hähne von ihm getrennt, zwischen Vorlage und Luftpumpe angebracht. Die Temperaturangaben können deshalb nicht dem beobachteten Dampfdruck entsprechen, sie werden bei einem derartig niedrigen Druck viel zu hoch ausfallen. Für Glycerin fanden die Verfasser z. B. 143° bei 0,2 mm Druck. Diese Angabe läßt sich mit der Bestimmung eines andern Beobachters vergleichen. Richardson²) (s. die Siedepunktstabelle) stellte mit dem Apparate von Ramsay und Young an einer unter Minderdruck destillierten Glycerinfraktion von konstantem Siedepunkte eine Reihe von Dampfdruckmessungen an und fand als Temperatur des gesättigten Glycerindampfes von 0,23 mm 118°. Hiernach würde in dem Destillationskolben von Fischer und Harries ein Druck von etwa 3 mm geherrscht haben. Eine Druckdifferenz von 0,2 mm, an der Vorlage gemessen, und 3 mm im Siedekolben steht ganz im Einklang mit einer Bemerkung der Verfasser, daß sie flott destilliert hätten.


In gleicher Weise sind die Bestimmungen der Siedetemperaturen im Vakuum des Kathodenlichtes von Krafft³) und seinen Mitarbeitern zu bewerten, deren Arbeiten als praktische Destillationsergebnisse von hochsiedenden Körpern sicherlich Interesse beanspruchen, aber als Siedepunktsbestimmungen nicht verwertbar sind.

Die Verfasser arbeiteten mit der Sprengelschen Quecksilberluftpumpe mit der v. Baboschen Kombination der gewöhnlichen Wasserluftpumpe. Zwischen Destillationsvorlage und

¹⁾ Berl. Berichte 35 (1902), 2158.

²⁾ Journ. chem. Soc. 49 (1886), 764.

³) Berl. Berichte 28 (1895), 2583; 29 (1896), 1316 u. 2240; 32 (1899), 1623; 33 (1900), 3207; 36 (1903), 1690, 4339, 4344; 38 (1905), 242, 254, 262; 40 (1907), 4775, 4779; 42 (1909), 202, 206, 210.

Apparatur zur "Destillation im Vakuum des Kathodenlichtes" nach Krafft.

Luftpumpe schalteten sie eine Hittorfsche Röhre ein (s. Fig. 89 und 90). Fig. 89 zeigt die einfachere Apparatur mit der zuerst gearbeitet wurde, Fig. 90¹) die später benutzte Konstruktion nach Krafft und Hansen. Es gelang ihnen in dieser Röhre die Luft

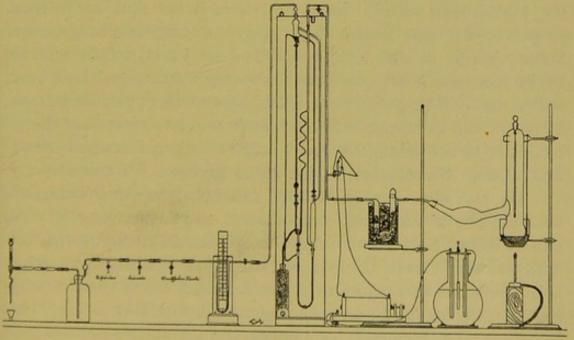


Fig. 90.

Apparatur zur "Destillation im absoluten Vakuum" nach Krafft-Hansen.

¹⁾ Entnommen dem Werke von Th. Weyl, die Methoden der organischen Chemie. 1909, S. 258.

so weit zu verdünnen, daß durch die Gläser der Röhre das apfelgrüne Kathodenlicht erstrahlte. In den Hittorfschen Röhren nimmt man dann eine Luftverdünnung bis auf etwa 0,001 mm Quecksilberhöhe an. Die Verdampfung im Destillationskolben muß aber unter einem bedeutend höheren Druck stattgefunden haben. So wurde, um ein Beispiel zu nennen, die Siedetemperatur des n-Heneicosans unter 0 mm Druck, wie Krafft diesen minimalen Druck bezeichnet, zu 129° gefunden. Bei Vergleich mit den Werten des unter Atmosphärendruck gleichsiedenden Quecksilbers würde diese Temperatur einem Druck von ungefähr 0,5 mm entsprechen, wenn man berücksichtigt, daß nach der Tabelle die Siedetemperaturen des Quecksilbers bei sinkendem Druck stärker abnehmen als die des Heneicosans.

Man kann jedoch die Unrichtigkeit der "im Vakuum des Kathodenlichtes" beobachteten Siedetemperaturen auch durch den Nachweis darlegen, daß unter 0,001 mm Druck eine Destillation praktisch unmöglich ist. Der Dampf ist unter diesem Druck so verdünnt, daß so gut wie kein Destillat erhalten wird.

Nach der Gasgleichung, die man bei diesen verdünnten Dämpfen fast fehlerlos anwenden kann, würde 1 cbm des Dampfes von Heneicosan bei 129° unter 0,001 mm Druck 0,0118 g wiegen. Angenommen der Siedekolben ginge mit Beibehaltung seiner lichten Weite in den Kühler resp. in die Vorlage über und die Weite betrüge 8 cm, also der Querschnitt 0,005 qm, so würde, wenn die 0,0118 g Destillat entsprechend dem Kondensat von 1 cbm Dampf in einer Sekunde erhalten worden wären, der Dampf mit einer Geschwindigkeit von 1/0,005 = 200 m innerhalb dieser Zeit in dem Siedekolben in die Höhe gerissen worden sein.

Da nun oben gezeigt wurde, daß bei 1 m Geschwindigkeit noch ein Überdruck von 0,5 mm entsteht, und da hier verlangt wird, daß zwischen Siedekolben und Vorlage keine Druckdifferenz auftritt, so würde auch 0,1 m Geschwindigkeit noch eine zu große Druckdifferenz verursachen. Ich will jedoch 0,1 m Geschwindigkeit der Rechnung zu Grunde legen. Da sich für die 0,0118 g Substanz eine Dampfgeschwindigkeit von 200 m in einer Sekunde berechnet, so wird dieselbe Substanzmenge bei einer Dampfgeschwindigkeit von 0,1 m in 2000 Sekunden erhalten. Es ergibt sich also, daß bei einem Drucke von 0,001 mm aus einem Destillationsapparate, dessen Kolben und Übersteigrohr 8 cm lichte

Weite hat, von dem Heneicosan im Maximum 0,0118 g Substanz in 0,556 Stunden oder 1 g Substanz in 44,7 Stunden überdestillieren würden.

Diese Substanzmenge auf 44,7 Stunden Verdampfungszeit verteilt ist so minimal, daß sie als Dampf nicht einmal Glas und Quecksilber des Thermometers bis zur Dampftemperatur erhitzen und darin erhalten kann; d. h. der ganze Dampf wird kondensiert.

Außer dieser relativ geringen Wärmeentnahme des Dampfes ist aber noch der große Wärmeabfluß zu berücksichtigen, der durch die äußere Abkühlung des Siedekolbens veranlaßt wird. Man kann behaupten, daß zur Gewinnung einer bestimmten Menge Destillat eines derartig hochsiedenden Körpers wie des Heneicosans die vielfache Gewichtsmenge an Dampf entwickelt werden muß, denn solch unglückseliger Glaskolben ist in seinen nicht von der Flüssigkeit bespülten Teilen ein Luftkühler, und die Destillation selbst ist eigentlich eine Rücklaufdestillation, bei der nur ein Bruchteil des entwickelten Dampfes in die Vorlage gelangt. Selbstverständlich hat aber die hierdurch notwendige Verstärkung in der Verdampfung auch eine gleich große Erhöhung des Dampfdruckes zur Folge. Wir sehen, man kommt mit der Annahme von 0,001 mm Dampfdruck zu lauter Unmöglichkeiten in der Destillation.

Es ist also praktisch nicht möglich, Destillat zu erhalten, wenn der Dampf hierzu nur einen Druck von 0,001 mm äußert. Krafft hat bei seinen Siedepunktsbestimmungen im Vakuum des Kathodenlichtes und ebenso bei seinen früheren Arbeiten bei vermeintlich 0,2 oder 0,3 mm Druck in Wirklichkeit unter einem bei weitem größeren Drucke gearbeitet.

Diese vermeintlich im Vakuum des Kathodenlichtes ausgeführten Siedepunktsbestimmungen haben die Verfasser als Bestimmungen im absoluten Vakuum oder unter Null Millimeter Druck bezeichnet. Unter diesem Ausdruck sind die Daten auch in Beilsteins Handbuch aufgenommen, als ob es physikalische Konstanten wären.

Die Bezeichnung eines Siedepunktes unter keinem Druck ist eine contradictio in adjecto. Denn wird eine Dampftemperatur gemessen, so muß wohl auch Dampf da sein und dieser Dampf muß auch einen Druck äußern, sonst ist es kein Dampf.

Unter diesem Druck des eigenen Dampfes vollzieht sich eine jede Verdampfung.

Auch der leider eingebürgerte Ausdruck "Vakuumdestillation" ist aus demselben Grunde nicht wissenschaftlich zu nennen. Dem Ausdruck liegt die irrtümliche Auffassung zu Grunde, daß man eine Verdampfung ohne Druck erzielt, wenn der Raum über dem verdampfenden Körper völlig luftleer gemacht wird. Man erhält zwar eine Verdampfung ohne Luftdruck aber nicht ohne Druck. Maßgebend für die Größe der Verdampfung eines Körpers ist nur der Druck des eigenen Dampfes. Die Gegenwart eines fremden Dampfes oder Gases beeinflußt die Schnelligkeit der Verdampfung, von ihr ist auch die Erscheinung des Siedens abhängig, aber das Endresultat, der Gleichgewichtszustand zwischen der Flüssigkeit und seinem Dampfe wird von einem fremden Gase nur soweit berührt, als sich Löslichkeits- oder chemische Affinitäten geltend machen.

Die örtliche Trennung des Manometers vom Thermometer ist auch die Ursache, daß man vielfach von den Vorgängen bei dem Sieden einer Flüssigkeit keine richtige Vorstellung hat. Man sieht wohl am Thermometer die Schwankungen der Dampftemperatur, ohne zu erkennen, daß sich konform diesen Temperaturschwankungen auch der Druck des Dampfes ändert.

Taucht der Siedekolben nicht vollständig in das Heizbad ein, so daß er teilweise als Luftkühler wirkt, so kann man bei der Destillation hochsiedender Flüssigkeiten unter geringem Druck im Innern ein nach oben strebendes Dunstgebilde sehen, das deutlich durch eine dunstfreie Zone von der Glaswand getrennt ist. Durch die Dampfentwicklung aus der von unten geheizten Flüssigkeit entsteht eine vertikale Dampfströmung nach oben, die so stark ist, daß fein zerstiebte Flüssigkeitsteilchen mit in die Höhe gerissen werden; daher rührt die Sichtbarkeit dieser Dampfsäule. Die auf die kühlere Glaswand treffenden Dampfmoleküle werden sofort zur Flüssigkeit und der Dampfatmosphäre entzogen. Um den Betrag dieses Kondensats sinken Temperatur und Druck an dieser Stelle. Da in dem Raume, in dem sich die Kondensation abspielt, infolgedessen ein entsprechend starker Minderdruck entsteht, stürzen aus dem Innern des Siedekolbens, wo ein höherer Druck herrscht, sofort Dampfmoleküle zum Ausgleich des Minderdrucks an die Wandung, um dort ebenfalls zu

Flüssigkeit zu werden. Außer der sichtbaren vertikalen Dampfströmung ist also noch eine zweite unsichtbare vorhanden, die von der ersteren nach den Glaswandungen zu gerichtet ist.

Dieser andauernden Dampfentziehung kann die Dampfentwicklung aus der siedenden Flüssigkeit, wenn der Druck sehr niedrig und der Dampf infolgedessen sehr verdünnt ist, nur schwer nachkommen. Die Dunstwolke steigt in die Höhe und fällt anscheinend teilweise wieder zurück. Die Wärmezufuhr durch die Heizung und der Wärmeverlust durch die Abkühlung kämpfen miteinander. Es sieht dann aus, als ob die Wolke zu schwer wäre, um sich erheben zu können, und doch ist das Gewicht dieses verdünnten Dampfes außerordentlich gering.

Welch große Temperatur- und Druckschwankungen innerhalb des Siedekolbens während einer Destillation auftreten können, das zeigt eine Untersuchung Kraffts. Er fand, daß die Temperatur der erwähnten Dunstwolke im Innern des Kolbens von unten nach oben abnimmt. Die Ursache glaubt er unrichtigerweise in der Schwere des Dampfes suchen zu müssen1). Um diese Erscheinung besser studieren zu können, konstruierte er besonders hohe Siedekolben, in die das Thermometer verschieden tief eingesenkt werden konnte. In diesem verlängerten Destillationsapparate bestimmte er unter anderen Substanzen auch den Siedepunkt des Quecksilbers im sogenannten Vakuum des Kathodenlichtes. Tauchte das Quecksilbergefäß des Thermometers in das siedende Quecksilber eben ein, so zeigte das Thermometer 174º an. Als dann das vertikal verschiebbare Thermometer höher und höher eingestellt wurde, nahm auch die Temperatur des Dampfes fortdauernd ab, bis es 195 mm von der Oberfläche des siedenden Quecksilbers entfernt, an der Übergangsstelle der Dämpfe in die Vorlage, nur noch 152° angab, also 22° weniger.

Der Dampfdruck des Quecksilbers ist sehr genau untersucht von Regnault, Ramsay und Young, Hertz, auch von Kahlbaum. Wählen wir die Bestimmungen von Hertz²), so hat ein gesättigter Quecksilberdampf von 174° einen Druck von 7,5 mm und ein solcher von 152° einen Druck von 3,2 mm. Während

¹⁾ Krafft, Berl. Berichte 32 (1899), 1623; Krafft und Lehmann, Molekulargewichtsbestimmung durch Siedepunktserhöhung im Vakuum des Kathodenlichtes. Berl. Berichte 38 (1905), 242.

²⁾ Wiedemanns Annalen 17 (1882), 193.

also abseits vom Siedekolben in der Hittorfschen Röhre nahe an der Luftpumpe ein Druck von etwa 0,001 mm herrschte, geschah die Destillation in Wahrheit unter einem Drucke von 3,2 bis 7,5 mm. Das Temperaturgefälle der Dunstwolke im Siedekolben von 22° entsprach einem Druckgefälle von 4,3 mm.

Wir haben hier ein lehrreiches Beispiel dafür, zu welch falschen Resultaten Siedepunktsbestimmungen führen können, wenn Thermometer und Manometer örtlich getrennt angebracht werden, wenn also das Manometer der unmittelbaren Berührung

mit dem Dampfe entzogen wird.

Das Destillationsbeispiel des Quecksilbers ist übrigens noch in anderer Beziehung für Siedepunktsbestimmungen beachtenswert. In diesem Falle, wo sogar innerhalb des Siedekolbens Dampftemperatur und Druck schwanken, würde auch ein unmittelbar am Kolben angefügtes Manometer nicht den Druck angeben, welcher mit der beobachteten Temperatur korrespondiert. Krafft benutzte eines besonderen Zweckes wegen ein 20 bis 30 cm langes Siederohr, in dem bei einer Dampftemperatur von 150 bis 170° außerordentlich viel Dampf kondensiert wird, ehe ein kleiner Bruchteil in das Kühlrohr übergeht. In einem der sonst verwendeten kürzeren Siedekolben ist natürlich die Abkühlung und Verflüssigung des Dampfes geringer. Immerhin sind Temperaturschwankungen des Dampfes auch bei diesen keine ungewöhnliche Erscheinung, zumal bei dem Sieden unter Minderdruck. Bei Siedepunktsbestimmungen unter Luftdruck werden sie nur bei sehr hohen Dampftemperaturen beobachtet, weil unter Luftdruck der Temperaturwert eines Millimeters Druckänderung noch nicht ein Zehntel Grad beträgt. Bei Bestimmungen des Siedepunktes unter Minderdruck ist es aber sehr anzuraten, die Dampfkondensation durch Eintauchen des Siedekolbens in ein Wärmebad soweit wie irgend möglich einzuschränken.

Regeln zur Berechnung des Dampfdruckes eines Körpers aus den bekannten Dampfdrucken eines anderen Körpers. Wenn wir die weiterhin gebrachte Kurventafel ansehen, in der von einer Reihe von Körpern die Beziehungen zwischen Druck und Temperatur ihrer gesättigten Dämpfe wiedergegeben sind, so finden wir darunter kein einziges Paar Kurven, die von Anfang bis zu Ende parallel gehen. Selbst die Kurven homologer Körper zeigen Divergenz. Andere Kurven schneiden sich bei niedrigen oder

höheren Drucken, so z. B. Pinen mit Propionsäure, Äthylalkohol mit Benzol und mit Tetrachlorkohlenstoff, Methylalkohol mit Chloroform. Mit Recht hebt Ostwald¹) hervor, daß sich die Beziehungen in der Verdampfung zweier Körper mit sich schneidender Kurve überhaupt nicht durch eine Formel ausdrücken lassen, denn unterhalb des Schnittpunktes hat der eine Körper größere Druckwerte, oberhalb der andere.

Die sich schneidenden Kurven gehören, wie wir sehen, sehr ungleichartigen chemischen Verbindungen an, jedesmal einem Hydroxylkörper und einem Nichthydroxylkörper. Wie weiterhin nachgewiesen werden wird, stehen sich diese beiden Körperklassen auch allgemein in ihrer Verdampfung am schroffsten gegenüber.

Von den vielen Regeln zur Berechnung des Dampfdruckes, resp. des Siedepunktes durch Vergleichung mit dem äquivalenten Werte eines anderen in seiner Verdampfung untersuchten Körpers gilt die vielgenannte Daltonsche Regel

$$t_a - t'_a = t_b - t'_b$$

nur für die nächste chemische Verwandschaft und innerhalb nicht zu weiter Druckgrenzen. a und b bedeuten die beiden zu vergleichenden Körper, t und t' sind die zwei verschiedenen Dampfdrucken entsprechenden Temperaturen.

Weitergehende Giltigkeit besitzt die Formel von Dühring²). Nur die von Ramsay und Young³) konstruierte Regel soll hier näher erörtert werden. Sie ist eine Erweiterung der Dühringschen Regel und gibt in der Tat gut stimmende Resultate, jedoch nicht allgemein, wie die Verfasser meinen, sondern nur dann, wenn bei der Wahl des Vergleichskörpers berücksichtigt wird, daß er ebenfalls ein Hydroxyl- oder Nichthydroxylkörper ist, wie der Körper, dessen Siedetemperatur man berechnen will. Man ist dann sicher, nicht gerade zwei Körper in ihrer Verdampfung zu vergleichen, deren Druckkurven sich innerhalb der benutzten Temperaturen schneiden.

Die Formel lautet:

$$\frac{T'_1}{T'_2} = \frac{T_1}{T_2} + c (T'_1 - T_1).$$

¹⁾ Allgemeine Chemie, II. Aufl., 1. Bd., S. 323.

²⁾ Neue Grundgesetze zur rationellen Physik und Chemie, Leipzig 1878, S. 70.

⁹⁾ Phil. Magaz. 21 (1886), 33 und 22 (1886), 37.

$$\frac{422,8}{400} = \frac{353,2}{351,2} + c (422,8 - 353,2); c = 0,000737,$$

$$\frac{353,2}{351,2} = \frac{284,45}{x} + 0,000737 (353,2 - 284,45),$$

$$x = 297,9 = 273^{\circ} + 24,9^{\circ} \text{ statt } 273^{\circ} + 20^{\circ}.$$

Die Rechnung hat also ein um 4,9° zu hohes Resultat gegeben.

Tabelle der Temperaturen und Drucke gesättigter Dämpfe. Das Verlangen, die Beziehungen zwischen Druck und Temperatur gesättigter Dämpfe kennen zu lernen, war für mich die Veranlassung zu einer Sammlung von Dampfdruckbestimmungen an reinen Körpern. Als sich dann von neuem die Erfolglosigkeit ergab, aus diesen Beziehungen ein Gesetz oder wenigstens eine allgemein gültige Regel zur Berechnung des einen dieser Werte aus dem anderen zu gewinnen, wurde zur Erklärung dieser Tatsache die Sammlung erweitert und schließlich über diesen Zweck hinaus soweit vervollständigt, daß sie auch für die Destillationspraxis nutzbar wurde.

Geordnet wurde das Zahlenmaterial nach der Siedetemperatur unter Atmosphärendruck. Die Nummer vor jeder Verbindung weist auf die Literaturangabe hin, die der Tabelle nachfolgt. Der Kopf jeder Vertikalreihe gibt den Druck in Millimetern Quecksilberhöhe an, unter dem die Siedetemperaturen in der Vertikalreihe bestimmt sind, so daß also jede Vertikalreihe die Siedepunkte unter demselben Druck enthält. Zwischen je zwei solcher Reihen ist eine Reihe eingeschoben, die den mittleren Temperaturwert für 1 mm Druck anführt. Z. B. ist die Siedetemperatur von Methylformiat 31,8° unter 760 mm, — 13,5° unter 100 mm, so daß zwischen diesen beiden Druckgrenzen der mittlere Temperaturwert für 1 mm

$$\frac{31.8 - (-13.5)}{760 - 100} = 0.068^{\circ}$$

beträgt. Diese Differenzwerte sind nur dann berechnet und in der Tabelle angegeben, wenn die zugehörigen Siedetemperaturen Ergebnisse sorgfältiger Untersuchungen bilden und nicht gelegentliche Laboratoriumsbestimmungen sind. Horizontalreihen von Siedetemperaturen einer Verbindung mit diesen Differenzzahlen sollen also den Wert besonderer Genauigkeit beanspruchen. Die erste Vertikalreihe der Temperaturwerte für ein Millimeter Druckänderung vor den Siedepunkten unter 760 mm Druck gilt für den Druckbereich 700 bis 760 mm. Diese Zahlen sind unmittelbar verwendbar, wenn ein unter Luftdruck beobachteter Siedepunkt auf genau 760 mm reduziert werden soll. Wie dies zu geschehen hat, wird weiterhin angegeben.

Die Temperaturen in der Tabelle sind für die Drucke 760, 100, 50, 30, 20, 10 und 5 mm angegeben. Auf andere Drucke sich beziehende Temperaturbeobachtungen wurden durch Vergleichung mit den Siedetemperaturen ähnlich siedender und ähnlich konstituierter Verbindungen umgerechnet, also z. B. Temperaturen bei 12 mm Druck auf solche bei 10 mm und Temperaturen bei 15 mm auf solche bei 10 und bei 20 mm.

Nicht ausschließlich, aber vorzugsweise wurden bei der Aufnahme in die Tabelle alle Verbindungen berücksichtigt, die für die Industrie der ätherischen Öle nur einigermaßen Interesse haben, so daß die Tabelle nach der Umrechnung der beobachteten Siedetemperatur auf den in der Tabelle angeführten Druck auch zur Identifizierung oder allgemeinen Rekognoszierung eines gefundenen chemischen Körpers dienen kann.

Eins freilich ist bei Benutzung der Tabelle zu berücksichtigen. Sie wird manche unrichtige Bestimmung enthalten, wenn auch die Auswahl möglichst kritisch geschah. Besonders die Siedepunktsbestimmungen unter dem Drucke weniger Millimeter, soweit sie gelegentliche Laboratoriumsbestimmungen sind, werden wohl größeren Teils einige Grade zu hoch ausgefallen sein, weil der Druck an der Vorlage und nicht am Siedekolben beobachtet wurde.

Siedepunkte, die von den Daten ähnlich siedender Körper auffallend abweichen, wurden mit einem Fragezeichen versehen. Die Dampfdruckbestimmungen Woringers¹) von Benzolkörpern, die die Tabelle um eine Reihe sehr wichtiger aromatischer Kohlenwasserstoffe bereichert haben würden, konnten nicht aufgenommen werden, weil sie bei Vergleich mit analogen Daten der Tabelle ganz unmögliche Zahlenwerte darstellen. Die Untersuchungen geschahen nach der statischen Methode.

¹⁾ Zeitschr. f. physik. Chem. 34 (1900), 261.

Zusammenstellung von Siedetemperaturen geordnet nach der Siedetemperatur

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							ı
Acetaldehyd	Literatur- Nachweis.	Chemischer Körper.	Chemische Formel.	zwischen	760 mm	zwischen	
Acetaldehyd	-	Trimethylamin	N (CH _e) _e		020		ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Acetaldehyd					П
2. Methylather		Isopentan		0.0380		0.0739	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Methylformiat	HCO ₂ CH ₃	100000000000000000000000000000000000000			
4. n-Pentan C ₅ H ₁₂ 0,038 36,3 0,075 Methylal C ₂ H ₃ Br 0,039 38,2 0,074 — Methylal CH ₂ (OCH ₃) ₂ 0,041 42,4 — 6. Schwefelkohlenstoff C S ₂ 0,041 42,4 — 6. Pentamethen (Cyclopentan) (CH ₂ CH ₂) ₂ CH ₂ — 50,5 — 7. Actorn Si Cl ₄ 0,042 56,9 0,073 7. Chlorsilicium Si Cl ₄ 0,048 57,1 — 7. Aceton CH ₃ COCH ₃ 0,048 57,1 — 2. Methylacetat CH ₃ CO ₂ CH ₃ 0,040 57,1 0,073 2. Methylacetat CH ₃ CO ₂ CH ₃ 0,040 57,1 0,073 3. Diisopropyl C ₈ H ₁₄ 0,041 58,0 0 4. Diisopropyl C ₈ H ₁₄ 0,041 58,1 0,081 5. Dimethylacetal CH ₁₅ CH(OCH ₃) ₂ — 64,4 — 6. Chloroform-Methylacetat 2 CHCl ₃ CH		Athyläther			The Contract of the Contract o	The state of the s	ı
Bromāthyl			C ₅ H ₁₂			0.000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.	Bromäthyl	C ₂ H ₅ Br		CONTRACTOR OF THE PARTY OF THE		П
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Methylal	CH ₂ (OCH ₃) ₂		The Park of the Pa		П
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Jodmethyl	CH ₃ J	The second secon	A STATE OF THE STA	-	П
Pentamethen (Cyclopentan) CH2 CH2 CH2 CH2 CH3	2000	Schwefelkohlenstoff	CS ₂	0,041	46,0	0,061	ı
7. Chlorsilicium 7. Aceton 8. Methylacetat 9. Diisopropyl 10. Chloroform 10. Chloroform 10. Chloroform-Methylacetat 11. Chloroform-Methylacetat 12. Methylalkohol 13. n-Hexan 15. Jodäthyl 15. Jodäthyl 16. Tetrachlorid 17. Phosphortrichlorid 18. Dispospopyl 19. Chloroform-Methylacetat 19. Methylalkohol 10. Chloroform-Methylacetat 11. Chloroform-Methylacetat 12. Methylalkohol 13. n-Hexan 15. Jodäthyl 16. Chloroform-Methylaceta 17. Phosphortrichlorid 18. Chloroform-Methylacetat 19. Chloroform-Aceton, labile Verbindg, labilate Verbindg, labilat		Pentamethen (Cyclopentan)	(CH ₂ CH ₂) ₂ CH ₂	-	50,5		П
7. Aceton	1000	Athylformiat	HCO ₂ C ₂ H ₅	0,038	54,3	0,073	E
Methylacetat	10000			0,042	56,9	0,079	ı
— Äthylidenchlorid CH₃ CH Cl₂ 0,041 58,0 0,075 8. Diisopropyl Ch₃ CH Cl₂ 0,041 58,0 0,081 9. Brom Br₂ 0,040 58,75 0,077 10. Chloroform CH Cl₃ 0,042 61,2 — — Dimethylacetal CH₃ CH (OCH₃)₂ — 64,5 — 11. Chloroform-Methylacetat 2 CH Cl₃ CH₃ CO₂ CH₃ — 64,5 — 12. Methylalkohol CH₃ OH 0,034 64,7 — 0,067 11. Chloroform-Aceton, labile Verbindg. 2 CH Cl₃ CH₃ CO CH₃ — 64,7 — 0,067 13. n-Hexan C₀H₁₄ 0,045 69,0 0,081 — 64,7 — 64,7 — 64,7 — 64,7 — 64,7 — 64,7 — 64,7 — 64,7 — 0,067 — 64,7 — 0,067 — 64,7 — 0,067 — 64,7 — 0,067 — 64,7 — 0,067 — 64,7 — 0,068 0,083 7 0,	2 200	Aceton		0,038	57,1	-	
8. Diisopropyl		Methylacetat		0,040	57,1	0,0731	
9. Brom		Athylidenchlorid	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	0,041	58,0	-	Н
10. Chloroform		Disopropyl		0,041	58,1	0,081	п
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100000	Chlorifo			58,75	0,077	1
11. Chloroform-Methylacetat 2 CH Cl ₃ · CH ₃ CO ₂ CH ₃ — 64,5 — 12. Methylalkohol 0,034 64,7 0,0677 11. Chloroform-Aceton, labile Verbindg. 2 CH Cl ₃ · CH ₃ CO CH ₃ — 64,7 0,0677 13. n-Hexan C ₆ H ₁₄ 0,045 69,0 0,081 5. Jodäthyl <td< td=""><td></td><td>Chloroform</td><td></td><td>0,042</td><td></td><td>-</td><td></td></td<>		Chloroform		0,042		-	
12. Methylalkohol		Chlarafa M. II.	The state of the s	-	0000000	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10000	Mathedalladal				-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 200		The state of the s	0,034	00 0000	0,0677	ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	190000			. —		-	
7. Phosphortrichlorid PCI3 0,043 73,8 0,082 14. Tetrachlorkohlenstoff CCI4 0,043 76,8 0,083 2. Äthylacetat CH3CO2C2H5 0,038 77,2 0,078 15. Äthylalkohol C2H5OH 0,035 78,2 0,067 2. Methylpropionat C2H5CO2CH3 0,040 79,7 0,078 14. Benzol C6H6 0,043 80,2 0,082 16. Hexamethylen C6H12 0,044 80,9 0,084 2. Propylformiat HCO2C3H7 0,041 80,9 0,078 10. Äthylenchlorid CH2C1CH2CI 0,044 83,5 — 17. Fluorbenzol C6H5 F 0,043 84,9 0,082 18. Methylpropylketon CH3COC3H7 — 88,9 —	200	Indition			The state of the s	A CONTRACTOR OF THE PARTY OF TH	E
14. Tetrachlorkohlenstoff CCI_4 0,043 76,8 0,083 2. Äthylacetat $CH_3CO_2C_2H_5$ 0,038 77,2 0,0788 15. Äthylalkohol C_2H_5OH 0,045 78,2 0,067 2. Methylpropionat $C_2H_5CO_2CH_3$ 0,040 79,7 0,0788 14. Benzol C_6H_6 0,043 80,2 0,082 16. Hexamethylen C_6H_{12} 0,044 80,9 0,084 2. Propylformiat $HCO_2C_3H_7$ 0,041 80,9 0,078 10. Äthylenchlorid CH_2CICH_2CI 0,044 83,5 - 17. Fluorbenzol C_6H_5F 0,043 84,9 0,082 18. Methylpropylketon $CH_3COC_3H_7$ - 88,9 -	1000	Dhashbartrishlarid				- 100000000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22/3/2		Control of the contro			THE RESERVE OF THE PERSON NAMED IN	
15. Äthylalkohol C_2H_5OH $0,035$ $78,2$ $0,067$ 2. Methylpropionat $C_2H_5CO_2CH_3$ $0,040$ $79,7$ $0,078$ 14. Benzol C_6H_6 $0,043$ $80,2$ $0,082$ 16. Hexamethylen C_6H_{12} $0,044$ $80,9$ $0,084$ 2. Propylformiat $HCO_2C_3H_7$ $0,041$ $80,9$ $0,078$ 10. Äthylenchlorid CH_2CICH_2CI $0,044$ $83,5$ $0,043$ 17. Fluorbenzol C_6H_5F $0,043$ $84,9$ $0,082$ 18. Methylpropylketon $CH_3COC_3H_7$ $CH_3COC_3H_7$ $0,043$ $0,082$	10000	4	100000000000000000000000000000000000000			COLUMN TO SERVICE STREET	ı
2. Methylpropionat $C_2H_5CO_2CH_3$ 0,040 79,7 0,078 14. Benzol C_6H_8 0,043 80,2 0,082 16. Hexamethylen C_6H_{12} 0,044 80,9 0,084 2. Propylformiat $HCO_2C_3H_7$ 0,041 80,9 0,078 10. Äthylenchlorid CH_2CICH_2CI 0,044 83,5 17. Fluorbenzol C_6H_5F 0,043 84,9 0,082 18. Methylpropylketon $CH_3COC_3H_7$ $CH_3COC_3H_7$ $CH_3COC_3H_7$ $CH_3COC_3H_7$	1000			100000000000000000000000000000000000000		AND PROPERTY.	
14. Benzol C_6H_6 $0,043$ $80,2$ $0,082$ 16. Hexamethylen C_6H_{12} $0,044$ $80,9$ $0,084$ 2. Propylformiat $HCO_2C_3H_7$ $0,041$ $80,9$ $0,078$ 10. Äthylenchlorid CH_2CICH_2CI $0,044$ $83,5$ 17. Fluorbenzol C_6H_5F $0,043$ $84,9$ $0,082$ 18. Methylpropylketon $CH_3COC_3H_7$ $CH_3COC_3H_7$ $CH_3COC_3H_7$	5 (2) (2)		CONTROL OF THE PARTY OF THE PAR			AND ADDRESS OF THE PARTY OF THE	
16. Hexamethylen	100000						
2. Propylformiat HCO ₂ C ₃ H ₇ 0,041 80,9 0,0788 10. Äthylenchlorid CH ₂ ClCH ₂ Cl 0,044 83,5 — 17. Fluorbenzol C ₆ H ₅ F 0,043 84,9 0,082 18. Methylpropylketon CH ₃ COC ₃ H ₇ — 88,9 —	20.00						E
10. Äthylenchlorid				A STATE OF THE PARTY OF THE PAR	The second secon	STATE OF THE PERSON NAMED IN	1
17. Fluorbenzol	10000	the second of th		TO STATE OF THE PARTY OF THE PA	Committee of the last of the l	0,070	1
18. Methylpropylketon CH ₃ COC ₃ H ₇ - 88,9 -	1000000				Maria Carlotte	0.082	
	1990	Matter				1939	1
- Propionitril		D		COMPANIE OF THE PARTY OF THE PA	The second second		

unter verschiedenen Dampfdrucken, unter Atmosphärendruck.

	1000												
11 1 1 11	100 mm	1 mm rwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
-	-	-	-	_	_	_	-	_	-	_	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	1	-
A. o. Carlotte	- 20,00	0,240 °	- 32,0 0	-	-	-	100	-	-	-	-	1000	1.
1000	-13,5	-	-	-		-	-	-	-		-	-	2.
1000	-11,1	0,258	-24,0	-	-	-	-	-	-		-	-	3.
	-13,2	0,258	-26,1		-	-	-	-	-	-	-	-	4.
THE	-10,4	0,260	- 23,4	-	-	-	-	-	-	-	1000	-	5.
	-	750	179	-	70,700	-					-		-
2000		0044	10.0	0.0050	20.50	-	20.50	-		1000	-	-	-
U,MIR	- 5,8	0,244	-18,0	0,285 °	-23,70	0,285	- 26,5 °	0,285 °	- 29,4 0	-	1000		6.
0.00	1.50	0.262					-	-	-		-	-	124.
100	+5,8	0,262	- 7,3	0.460	100	0.00	910	-		_	-		2.
U.S.	4,6	0,272	- 9	0,460	-18,2	0,660	- 24,8	1700		11 - 17 - 1	11/100	I STORE	7.
1.00	8,9	0,268	- 4,5			-	1	1	1	-	1		7.
	0,0	0,200	- ±,0	-							-	-	2.
1.50	4,6	0,264	- 8,6	The same of						To the			-
-	8,2	0,265	- 5,05	0.348	-12,0	0,465	-16,65				-		8.
CARL DE	-,-	0,200	- 0,00	0,540	-12,0	0,405	- 10,00		200		1000	1878	9.
	1	_			A Page								10.
	-	_			_								11
100	20,62	0,250	+8,13	0.299	+ 0,16	0.665	- 6,81	0.066	-16,47	1,7060	-25,00	The same of	11. 12.
the s		_	-		- 0,20	0,000	0,01	0,900	10,21	1,700	- 25,0		11.
100	15,6	0,282	+1,5	0,470	- 7,9	0,710	-15,0	1,07	-25,7	1,68	-34,1		13.
0.5	17,5	0,288	3,1	_	-	-		1,01		1,00	- JI,1		5.
150	19,8	0,30	4,8	-	-		-			_			7.
130	22,1	0,290	7,6	0,490	- 2,2	0,704	- 9,2	1,13	- 20,5		_		14.
1	25,9	0,270	12,4	0,465	+3,1	0,690	- 3,8	1,04	-14,2	1,94	- 23,9	_	2.
18	33,9	0,242	21,8	0,445	12,9	0,660	+6,3	1,06	- 4,3	2,08	-14,7	_	15.
1	28,1	0,280	14,1	0,465	4,8	0,660	- 1,8	1,08	-12,6	1,94	- 22,3	-	2.
100	25,8	0,284	11,6	0,490	1,8	0,610	- 4,3	0,93	-13,6	1,70	-22,1	_	14.
18	25,2	0,284	11,0	0,485	1,3	-	-	_	-	_		-	16.
1	29,0	0,286	14,7	0,475	5,2	0,66	- 1,4	1,12	-12,6	-	- 23	-	2.
1		_	-	-	-	-	-	-	-	-	-	-	10.
10	30,8	0,296	16,0	0,500	6,0	0,70	- 1,0	1,2	-13,0	1,82	-	-	17.
	900		32,1	-	23,2	-	+17,9	-	+11,9	-	-	-	18.
0	38,8	0,292	24,2	0,480	14,6	0,69	7,7	1,13	- 3,6	2,04	-13,8	-	2.
8	Daniel B	-	-	-		-	-	-	-	-	-	-	-
		V. Re	chenber	rg, Gewi	nnung und	Tronnu	ng der ätt	er. Öle.			32		

=	1				
Literatur- Nachweis,	Chemischer Körper.	Chemische Formel.	1 mm zwischen 760—700	760 mm	1 mm zwischen 760—100
19.	n-Propylalkohol	C ₃ H ₇ OH	0.0350	05.40	
20.	Chloralhydrat	C Cl ₃ CHO · H ₂ O	0,035°	97,40	0,069
20.	Chloral	C CI ₃ CHO · H ₂ O	-	97,5	-
21.	Isobutylformiat	HCO ₂ C ₄ H ₉	0012	97,7	-
22.	n-Heptan	C ₇ H ₁₆	0,043	97,9	0,083
145.	Heptylen	C ₇ H ₁₆	0,045	98,4	0,086
2.	Äthylpropionat	C ₂ H ₅ CO ₂ C ₂ H ₅	0,041	98,5	0.000
-	Wasser	H ₂ O	0,037	99,0	0,082
23.	Ameisensäure	H CO ₂ H	0,044	100,0 100,8	0,073
2.	Propylacetat	CH ₃ CO ₂ C ₃ H ₇	0,044	101,6	0,082
18.	Diäthylacetat	CH ₃ CH (OC ₂ H ₅) ₂	0,044	102,2	0,083
2.	Methylbutyrat	C ₃ H ₇ CO ₂ CH ₃	0,045	102,8	0,083
24.	Dimethyläthylcarbinol	(CH ₃) ₂ C ₂ H ₅ COH	0,041	102,9	0,000
-	Methylpropylketon	CH ₃ CO C ₃ H ₇	0,046	103,3	
25.	Chloral-Methylalkohol	CCI ₃ CHO · CH ₃ OH	-	106	
18.	Piperidin	CH ₂ (CH ₂ CH ₂) ₂ NH	_	106,0	
26.	Ameisensäure-Hydrat	HCO ₂ H · H ₂ O	_	107,6	
27.	Isobutylalkohol	C ₄ H ₉ OH	0,036	107,9	0,070
8.	Diisobutyl	C ₈ H ₁₈	0,047	109,2	0,088
21.	Äthylisobutyrat	C ₃ H ₇ CO ₂ C ₂ H ₅	0,044	110,1	0,086
28.	Toluol	C ₆ H ₅ CH ₃	0,046	110,4	0,089
29.	Zinnchlorid	Sn Cl ₄	0,047	114,2	0,090
28.	Pyridin	C ₅ H ₅ N	-	114,5	0,095
10.	Nitroäthan	C ₂ H ₅ NO ₂	0,045	114,9	-
31.	Chloral-Allylalkohol	CCI ₃ CHO · C ₃ H ₅ OH	-	116	
21.	Isobutylacetat	CH ₃ CO ₂ C ₄ H ₉	0,044	116,3	0,086
30.	Chloral-Äthylalkohol	CCI ₃ CHO · C ₂ H ₅ OH		116,4	
21.	Methylvalerianat	C ₄ H ₉ CO ₂ CH ₃	0,045	116,7	0,087
28.	n-Butylalkohol	C ₄ H ₉ OH	0,035	117,6	0,073
18.	Isoamylbromid	(CH ₃) ₂ CH CH ₂ CH ₂ Br	_	118,6	_
9.	Essigsäure	CH ₃ CO ₂ H	0,042	118,7	0,084
21.	Äthylbutyrat	C ₃ H ₇ CO ₂ C ₂ H ₅	0,045	119,9	0,087
24.	Isobutyljodid	C ₄ H ₉ J		120	-
32.	Isopropylisobutyrat	C ₃ H ₇ CO ₂ C ₃ H ₇	0,045	120,2	0,088
21.	Propylpropionat	C2 H5 CO2 C3 H7	0,045	122,2	0,086
24.	Caprylen (Octylen)	C ₈ H ₁₆		123	-
10.	Paraldehyd	(CH ₃ CHO) ₃	0,042	123,1	
21.	Amylformiat	HCO ₂ C ₅ H ₁₁	0,046	123,3	0,089
33.	n-Octan	C ₈ H ₁₈	0,047	125,8	0,091
18.	Picolin	CH ₃ C ₅ H ₄ N	-	126,2	-
18.	Mesityloxyd	(CH ₃) ₂ C CH CO CH ₃	-	129,5	-
-			Service L		- 31

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1000	-							_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 mm	zwischen	50 mm	rwischen	30 mm	zwischen	20 mm	zwischen	10 mm	zwischen	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51,80	0,2460	39,50	0,4350		0,690	The second second	1,070	The second second	1,940	+ 3,50	_	0.5000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		-		-	28,2	-	18,2	-	-	-	10000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					4 0 0		-	-	-		-		18070
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				200000000000000000000000000000000000000			0.5	1.16	91				100000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41,6	0,304	26,4	0,501	16,5	0,08	9,9	1,10	- 2,1				CONTRACT OF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119	0.282	20.8	0.485	91.1	0.75	18.6	1 15	±21		- 78		150.51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						The second second	1000000	and the same of th		1000			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				TO THE RESERVE OF THE PARTY OF	The state of the s						1 2,0		23.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Control of the contro		TOTAL COLOR				_			Contract of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				The state of the s				_	-		100000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The second secon	0,300		0,490		0,760	30.007.70	1,14	4,2	2,06	- 6,1		2.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	_		_		-		_	19		_	10000	24.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	-	-	-	-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		-		-	-	-	-	-	25.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42,2	-	30,4		22,1	-	17,2	-	-	-	-	-	0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	-		-	-	_		_	-	_	=	THE RESERVE OF THE PARTY OF THE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A THE RESERVE TO SERVE TO SERV		And the second second		0.000			170000000000000000000000000000000000000	2,05	100000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MINISTER 100			100000	24,5		16,9	1,12	5,7		- 6		111000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THE RESERVE OF THE PARTY OF THE				95.5		17.0		-				1000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THE RESERVE OF THE PARTY OF THE		The state of the s						75.000		9.0		100000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BONDON CO.			The state of the s	100000000000000000000000000000000000000		The state of the s				- 3,2		11755316
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			-,50		0,70		-	10,0				1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-	_	_	_	_	_	_	_				200000000000000000000000000000000000000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59,7	0,32	43,7	-	-	_	-	_		_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	54,1	0,62	47,9	0,75	40,4	1,52	32,8	24,7 2,0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DECEMBER OF THE PARTY OF THE PA	The second second	45,4	-	-	-	-	_		_	_	[20,001,2]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	69,8	0,258	1000000	0,445		0,65	41,5	1,05	31,0	1,86	21,7	-	28.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									17,6	_		-	18.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000000000				36,6	0,73	29,3	1,25	16,8	2,26	5,5	003,3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02,0	0,330										-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62.3	0.310					100000000000000000000000000000000000000						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			40.00				1000000		100000				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65,4	0,352											
- 550 - 270 200 10.	65,6						A STATE OF THE PARTY OF THE PAR		1000000			00	
- 550 - 270 207	1					300.000000				Action Control of the		2,94	
18.	1	-	55,0	-		10-1						-	
										4	,	1	10.

7. Pr. 34. Isa 5., 10. Ät 17. Cl 21. Pr. 21. Ät 18. Es 35. Ät 21. Isa 24. Al 35. pr. 146. Pe 35. mr. 24. Di 34., 36. Pr. 28. Pr. 35. or 27. Sty 21. Isa 24. An 18. All 38. nr. 18. All 38. nr. 18. Bra 39. Me 34. Isa 79. Me 34. Isa 79	dipinketon yrrol oamylalkohol thylenbromid hlorbenzol ropylisobutyrat thylvalerianat ssigsäure-Anhydrid thylbenzol obutylpropionat llylsulfid Xylol entamethenylalkohol -Xylol iisobutylamin ropionsäure ropylenbromid ropylbutyrat Xylol yrol obutylisobutyrat nylnitrat	(CH ₂ CH ₂) ₂ CO (CH CH) ₂ NH C ₅ H ₁₁ OH CH ₂ Br CH ₂ Br C ₆ H ₅ Cl C ₃ H ₇ CO ₂ C ₃ H ₇ C ₄ H ₉ CO ₂ C ₂ H ₅ (CH ₃ CO) ₂ O C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂ C ₆ H ₄ (CH ₃) ₂ C ₆ H ₄ (CH ₃) ₂	0,039 ° 0,047 0,050 0,046 0,047 — 0,050 — 0,050 — 0,038 0,043 0,048 0,051	131,5 131,8 133,9 134,3 136,4 136,6 136,8 138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,076° 0,093 0,093 0,091 0,091 0,095 0,089 0,095 0,080 0,095 0,095 0,092 0,095
5., 10. Ät 17. Cl 21. Pr 21. Ät 18. Es 35. Ät 21. Iso 24. Al 35. Pr 24. Di 34., 36. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. All 38. n-1 18. Bro 39. Me 34. Iso On 147. Tri 28. Ön	thylenbromid hlorbenzol ropylisobutyrat thylvalerianat ssigsäure-Anhydrid thylbenzol obutylpropionat llylsulfid Xylol entamethenylalkohol -Xylol iisobutylamin opionsäure topylenbromid ropylbutyrat Xylol yrol obutylisobutyrat	C ₅ H ₁₁ OH CH ₂ Br CH ₂ Br C ₆ H ₅ Cl C ₃ H ₇ CO ₂ C ₃ H ₇ C ₄ H ₉ CO ₂ C ₂ H ₅ (CH ₃ CO) ₂ O C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,039 ° 0,047 ° 0,050 ° 0,047 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	130,1 131,5 131,8 133,9 134,3 136,4 136,6 136,8 138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,093 0,093 0,091 0,091 0,095 0,089 0,095 0,094 0,080 0,095 0,092
5., 10. Ai 17. Cl 21. Ai 18. Es 35. Ai 21. Iso 24. Al 35. p-2 146. Pe 35. m-2 24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 39. Me 34. Iso 39. Me 34. Iso 39. Me 34. Iso	thylenbromid hlorbenzol ropylisobutyrat thylvalerianat ssigsäure-Anhydrid thylbenzol obutylpropionat llylsulfid Xylol entamethenylalkohol -Xylol iisobutylamin ropionsäure ropylenbromid ropylbutyrat Xylol yrol obutylisobutyrat	CH ₂ Br CH ₂ Br C ₆ H ₅ Cl C ₃ H ₇ CO ₂ C ₃ H ₇ C ₄ H ₉ CO ₂ C ₂ H ₅ (CH ₃ CO) ₂ O C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,047 0,050 0,046 0,047 0,047 0,050 0,038 0,043 0,048	131,5 131,8 133,9 134,3 136,4 136,6 136,8 138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,093 0,093 0,091 0,091 0,095 0,089 0,095 0,094 0,080 0,095 0,092
17. Ci 21. Pr 21. Ät 18. Es 35. Ät 21. Iso 24. Al 35. p- 146. Pe 35. m- 24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-l 18. Bro 39. Me 34. Iso 07. Tri 28. Ön	hlorbenzol ropylisobutyrat thylvalerianat ssigsäure-Anhydrid thylbenzol obutylpropionat llylsulfid Xylol entamethenylalkohol -Xylol iisobutylamin opionsäure topylenbromid ropylbutyrat Xylol yrol obutylisobutyrat	C ₆ H ₅ Cl C ₃ H ₇ CO ₂ C ₃ H ₇ C ₄ H ₉ CO ₂ C ₂ H ₅ (CH ₃ CO) ₂ O C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,050 0,046 0,047 - 0,047 - 0,050 - 0,038 0,043 0,048	131,8 133,9 134,3 136,4 136,6 136,8 138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,093 0,091 0,091 0,095 0,089 0,095 0,094 0,080 0,095 0,092
21. Ät 18. Es 35. Ät 21. Iso 24. Al 35. p-2 146. Pe 35. m-2 24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	ropylisobutyrat thylvalerianat ssigsäure-Anhydrid thylbenzol obutylpropionat llylsulfid Xylol entamethenylalkohol -Xylol iisobutylamin ropionsäure opylenbromid ropylbutyrat Xylol yrol obutylisobutyrat	C ₃ H ₇ CO ₂ C ₃ H ₇ C ₄ H ₉ CO ₂ C ₂ H ₅ (CH ₃ CO) ₂ O C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,046 0,047 0,047 0,050 0,038 0,043 0,048	133,9 134,3 136,4 136,6 136,8 138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,091 0,091 0,095 0,089 0,095 0,094 0,080 0,095 0,092
21. Ät 18. Es 35. Ät 21. Iso 24. Al 35. p-2 146. Pe 35. m-2 24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	thylvalerianat	C ₄ H ₉ CO ₂ C ₂ H ₅ (CH ₃ CO) ₂ O C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,047 0,047 0,050 0,038 0,043 0,048	134,3 136,4 136,6 136,8 138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,091 0,095 0,089 0,095 0,094 0,080 0,095 0,092
18. Es 35. Ät 21. Iso 24. Al 35. p-146. Pe 35. m-24. Di 34., 36. Pr 28. Pr 21. Iso 24. An 18. All 38. n-1 18. All 38. n-1 18. Bro 39. Me 34. Iso 747. Tri 28. Ön	ssigsäure-Anhydrid thylbenzol obutylpropionat llylsulfid Xylol entamethenylalkohol -Xylol iisobutylamin opionsäure opylenbromid opylbutyrat Xylol yrol obutylisobutyrat	(CH ₃ CO) ₂ O C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,047 	136,4 136,6 136,8 138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,095 0,089 0,095 0,094 0,080 0,095 0,092
35. At 21. Iso 24. Al 35. p-2. 146. Pe 35. m-24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-2. 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 747. Tri 28. Ön	thylbenzol obutylpropionat llylsulfid Xylol entamethenylalkohol Xylol isobutylamin opionsäure opylenbromid opylbutyrat Xylol yrol obutylisobutyrat	C ₆ H ₅ C ₂ H ₅ C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,047 0,050 0,038 0,043 0,048	136,6 136,8 138,6 138,9 139 139,2 139,5 140,3 141,0 142,7 144,0	0,089 0,095 0,094 0,080 0,095 0,092
21. Iso 24. Al 35. p- 146. Pe 35. m- 24. Di 34., 36. Pr 28. Pr 21. Iso 27. Sty 21. Iso 28. An 18. Ali 38. n- 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	obutylpropionat Ilylsulfid Xylol entamethenylalkohol Xylol iisobutylamin opionsäure opylenbromid opylbutyrat Xylol yrol obutylisobutyrat	C ₂ H ₅ CO ₂ C ₄ H ₉ (C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,050 	136,8 138,6 138,9 139 139,2 139,5 140,3 141,0 142,7 144,0	0,089 0,095 0,094 0,080 0,095 0,092
24. Al 35. p- 146. Pe 35. m- 24. Di 34., 36. Pr 28. Pr 21. Pr 35. o- 37. Sty 21. Iso 24. An 18. All 38. n-N 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	Ilylsulfid	(C ₃ H ₅) ₂ S C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,050 0,038 0,043 0,048	138,6 138,9 139,2 139,5 140,3 141,0 142,7 144,0	0,095 0,094 0,080 0,095 0,092
35. p-146. Pe 35. m-24. Di 34., 36. Pr 28. Pr 21. Iso 24. An 18. All 38. n-18. Bro 39. Me 34. Iso Ön 147. Tri 28. Ön	Xylol	C ₆ H ₄ (CH ₃) ₂ (CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,050 0,038 0,043 0,048	138,9 139 139,2 139,5 140,3 141,0 142,7 144,0	0,094 0,080 0,080 0,095 0,092
146. Pe 35. m- 24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	entamethenylalkohol -Xylol	(CH ₂ CH ₂) ₂ CH OH C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,050 0,038 0,043 0,048	139 139,2 139,5 140,3 141,0 142,7 144,0	0,094 0,080 0,080 0,095 0,092
35. m- 24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	-Xylol	C ₆ H ₄ (CH ₃) ₂ (C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,050 0,038 0,043 0,048	139,2 139,5 140,3 141,0 142,7 144,0	0,080 0,095 0,092
24. Di 34., 36. Pr 28. Pr 21. Pr 35. o-3 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	iisobutylamin	(C ₄ H ₉) ₂ NH C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,038 0,043 0,048	139,5 140,3 141,0 142,7 144,0	0,080 0,095 0,092
34., 36. Pr 28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	opionsäure	C ₂ H ₅ CO ₂ H CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,043 0,048	140,3 141,0 142,7 144,0	0,095 0,092
28. Pr 21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	opylenbromid	CH ₃ CH Br CH ₂ Br C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,043 0,048	141,0 142,7 144,0	0,095
21. Pr 35. o-2 37. Sty 21. Iso 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	opylbutyrat	C ₃ H ₇ CO ₂ C ₃ H ₇ C ₆ H ₄ (CH ₃) ₂	0,048	142,7 144,0	0,092
35. o-2 37. Sty 21. Iso 24. An 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	Xylol	C ₆ H ₄ (CH ₃) ₂	100000000000000000000000000000000000000	144,0	
37. Sty 21. Iso 24. An 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	yrol		0,051		0,095
21. Iso 24. An 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	obutylisobutyrat	C6115 CH CH2		4 4	
24. An 24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	nylnitrat	CHCOCH	-	145,5	-
24. An 18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön		C ₃ H ₇ CO ₂ C ₄ H ₉	0,048	146,6	0,092
18. All 38. n-1 18. Bro 39. Me 34. Iso 147. Tri 28. Ön	nyljodid	NO ₃ C ₅ H ₁₁		147,5	-
38. n-ñ 18. Bro 39. Me 34. Iso 147. Tri 28. Ön		C ₅ H ₁₁ J	-	148,2	- 11
18. Bro 39. Me 34. Iso 147. Tri 28. Ön	lylsenföl	C ₃ H ₅ NCS	-	148,2	-
39. Me 34. Iso 147. Tri 28. Ön	omoform	C ₉ H ₂₀	-	149,5	-11
34. Iso 147. Tri 28. Ön	ethyl-n-Amylketon	CH CO C H	1	150,5	-
147. Tri 28. Ön	buttersäure	CH ₃ CO C ₅ H ₁₁	0044	151	
28. Ön	imethylamin-Acetat	C ₃ H ₇ CO ₂ H	0,044	100000000000000000000000000000000000000	0,084
35. Iso	nanthaldehyd (n-Heptyl.)	(CH ₃) ₃ N · 4 CH ₃ CO ₂ H CH ₃ (CH ₂) ₅ CHO		154,3 155	0.110
00. 100	ppropylbenzol		0,050	Charles and the contract of th	0,110
	ombenzol	C ₆ H ₅ CH (CH ₃) ₂			0,098
	enolmethyläther (Anisol)	C ₆ H ₅ Br	0,052		0,099
	opylvalerianat	C ₆ H ₅ OCH ₃ C ₄ H ₉ CO ₂ C ₃ H ₇	0.040	155,5	2001
54/9 (784 Mark 1999)	nen (Terpentinöl-Fraktion)		0,049	155,9 156	0,094
	butylbutyrat	C ₁₀ H ₁₆ C ₃ H ₇ CO ₂ C ₄ H ₉	0,037	The state of the s	0,094
- n-h	dexylalkohol	C ₆ H ₁₄ O	0,049	157	0,094
	Propylbenzol	C ₆ H ₅ C ₃ H ₇		158,8	
		C ₂ H ₅ CO ₂ C ₅ H ₁₁	0,049		0,095
	IVIDIODIAL	C2 1 15 CO2 C5 1 111	and the same of	160,5	0,090
18. p-C	mylpropionat	C10 H16			

	The same of	211-1-11-								_	_		
10 10 10	100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwisohen 30—20	20 mm	1 mm zwisohen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
	-	-	-	_	_	_	1 1		_	-	_	=	_
1	80,70	0,2720	66,90	0,4250	58,40	0,690	51,50	1,120	40,30	2,050	30,20	100	34.
	70,4	0,346	53,1	0,575	41,6	0,89	32,7	1,41	18,6	2,84	4,4	-200, 72	5., 10.
	70,4	0,332	53,7	0,550	42,7	0,82	34,5	1,27	21,8	2,70	10,4	0 0 2,56	17.
	73,9	0,307	58,7	0,504	48,5	-	-	-	-	-	-	-	21.
	74,4	0,268	61,0	-	51	-	-	-	_	-	-	-	21.
	104?		66,4	-	55,6	-	49,2	-	39,9	-	-	-	18.
2	74,2	0,336	57,4	-	46,2		-	-	30	-	-	-	35.
	77,8	0,250	65,3	-	1	-	41	-	90	_	_		21.
	70 A	0 220	505	0.575	48,0	_	41	_	28	_	-		24.
	76,4	0,338	59,5	0,575	±0,0			200		_	-	_	35. 146.
0	76,9	0,334	60,2	0,590	49,1			_	30	_		_	35.
		0,554		0,090			43	_	31				24.
8	87,6	0,314	71,9	0,575	60,4	0,71	53,1	1,10	42,1	2,50	29,5	[20°3,0]	34.,36.
100	78,4	0,332	61,8	0,560	50,6	0,81	42,5	-,	29			100,1,5	28.
NO.	81,9	0,330	65,4	0,520	55,0		_	_	_	-	_	_	21.
N	81,2	0,370	64,1	0,575	52,6	0,81	44,5	-	_	-	-	-	35.
	-		-	-	-	-	49	-	36	-	-	_	37.
9	85,8	0,352	68,2	-	56	-	-	-	-	-	-	-	21.
	-	-	-	-	-	-	-	-	40		-	-	24.
	-	-		-	_	-	-	-	35	-	-	- 11	24.
1	91,0	-	72,2	-	60,7	-	53,8	-	41,5	-	-	-	18.
	86	-	70	-	59	-	49	-	38	-	-	-	38.
			66,0	-	56,7	-	49,9	-	40,9	-	= 1	-	18.
10	97,6	0,308	82,2	0,540	71,4	0.00	69 9	1 20	51.0	241	900	2001,5	39.
	-	-,000		0,540	76-77	0,82	63,2	1,20	51,0	2,44	38,8	1000,7	34.
	82,4	0,244	70,2	0,415	61,9	0,77	54,2	0,89	45,3				147. 28.
1	90,1	0,352	72,5	0,585	60,8	0,88	52,0	-		_	_	(00.00.)	35.
	90,0	0,340	73,0	0,590	61,2	0,84	52,8	1,22	40,6	2,16	29,8	[22,3 %]	28.
	-	-	-	-	_	-	-	-	42,5	_	-	10,9%	24.
	93,9	0,288	79,5	-	-	-	-	-	-	-	-		21.
	92	-	79	-	63	-	53	-	38	-	22	-	5.
	94,7	0,368	76,3	-	-	-	-	-	-	-	-	-	21.
	7	_	-	-	-	-	-	-	-	-	-	-	-
	97,4	0,340	80,4	0.52	70.0	1.06	57	-	45	-	-	-	24.
	-	0,540	-	0,52	70,0	1,06	59,4	1,35	45,9	3,32	29,3	-	21.
	1-	_	77,7		66,5	_	62 59,6		46	-	-	-	40.
	1				30,0		30,0		48,9	-			18.
										1000			

100 mm	1 mm zwiechen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
_	_	_	_	_	_		_	_	_	_	_	148.
		1	_		_	_	_	460	_	_	[40°3,0]	24.
106,40	0,31 0	90,90	0,530	80,30	0,830	72,00	1,240	59,6	2,440	47,40	(30°, E)	34.
_	_	-	-	_	-	81	-	67	-	-	2000,76	24.
-	-		-	-	-		-	-	-	-	-	41.
99,4	0,348	82,0	0,58	70,4	0,88	61,6	-	48	-	-	-	28.
-		_	-		-		-	49	-	-	-	24.
	_	86,7		77,4	-	70,4		59,0	-	-	-	18.
104,8	0,390	85,3	-	76	-			-				21.
104,4	0,362	86,3		76				-	-	1		21.
	_						E		_			149.
	=	-	_		_	81	_	68				42.
				_		_	_	60	_			24.
	_	_				67		_		_		43.
-		_	/=		_	_	_	69	_	_	_	24.
_	-	87,7	_	76,4	-	70	-	59	-	-		44.
107	-	88	-	_		68	-	54	-		-	45.
-	-	-	-	-	-	-	-	56	-	-	-	24.
107	-	90	-	78	-	68	-	55	-	-	-	38.
-	-		-	-	-	- 1	1,-	-	-	-	-	-
110,1	-	92,4	-	80,7	-	74,1	-	62,3	-	-	-	18.
-	-	-	-	-	-	-	_	57	-	_	(40° 1,5)	28.
118,2	0,314	102,5	0,545	91,6	0,83	83,3	1,24	70,9	2,44	58,7	20 0,37	34.
	-	-	-								0,37	1
-	-	-	-	-			-	$\left\{\begin{array}{c} \alpha \ 59 \\ \beta \ 55 \end{array}\right\}$	-	47	-	47.
-	-	-	-	-	-	-	-	61	-	-	-	40.
-	-	-	-	-	-		-	54	-	-	-	24.
97	-	-	-	-	-	71	-	58	-	-	-	24.
3	-	Z	-	-		00	-		-	65		49.
			_			86	-	73	-		-	24.
112,5	0,344	95,3	0.50	92.5		66	1.22	54	2.10	50.1	(42,5° 3)	48.
			0,59	83,5	0,83	75,2	1,32	62,0	2,48	50,1	$\left(\begin{smallmatrix}42,5 & \circ & & \\ 29,3 & \circ & & \\ 29,3 & & & 1\end{smallmatrix}\right)$	28.
106,0	-	94,4	-	86,6	-	82,3	-	75,4	-	-	-	18.
113,1	0,378	94,2	-	84	-	-	-		-	-	-	21.
	-	94,5	-	-	-		-	66,1	-	-	-	18.
2	-			-	-	100,3	-	87,7	-	-	-	147.
195		-	-	-	-	-	-		-	-	-	150.
		1			1						The second	

				And the same								
100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
120,20	0,310°	95,5° 104,7 95,1	0,545°	88,0° 93,8 85,6	0,80°	80,3° 85,8 79,1	1,23°	67,2° 73,5 68,8	2,5°	62,5 °	$\begin{bmatrix} 55,8{}^{\circ}{}_{3} \\ 44,8{}^{\circ}{}_{1} \end{bmatrix}$	18. 28. 18.
		95,7	-	83,0	_	- 75,2		63,4	-	_	-	30. 18.
-	-	-	-	-	-	80	-	68	-		[51,8° ₃]	24.
119,4	0,350	101,9	0,550	90,9	0,81	82,8	1,36	69,2	2,26	57,9	43,10,	28.
128,3 118,1	0,324 0,354	112,1 100,4	0,570 0,595	100,7 88,5	0,77 0,88	93,0 79,7	1,22 1,35	80,8 66,2	2,42	70,5 54,1	$\begin{bmatrix} 65\ ^{\circ}_{3,1} \\ 55\ ^{\circ}_{1,0} \\ 45\ ^{\circ}_{0,1} \end{bmatrix}$	28. 28.
		I						65	_		- 0,1)	24.
-	-	-	-	-	-	93	-	80	-	-	-	24.
117,0	0,296	102,15 $113,2$	0,500	92,2 103,3	0,720	85,0 96,5	1,26	72,4 83,9	2,28	61,0	-	50.
		98		- 100,0	Z	-	_					18. 145.
-	-	-	1	-	-	87	-	69	_	-	_	40.
-	- 4	-	-	-	-	-	-	68	-	-	-	151.
118,1	0.260	00.7	-	-	-	-	-	96,5	-	_	[40°2,73]	152.
132,0	0,368	99,7 115,0	0,635	87,0 104,6	0,90	78 96,9	1,47 1,22	63,3 84,7	2,56 2,66	50,5 71,4	30 0 1,48	17. 28.
127,4	0,342	110,3	0,575	98,8	0,87	90,6	1,30	77,6	2,42	65,5	36,6%	28.
121,3	0,348	103,9	0,590	92,1	0,90	83,0	1,39	69,1	2,44	56,9	${50,0}^{\circ}{3\atop 38,4}^{\circ}{1\atop 1}$	28.
-	-	-	-	-	-	-	-	-	-	_	- 1)	150.
		-	-	-	-	85	-	72	-	-	-	51.
125,7	0,350	108,2	0,595	96,3	0,88	83 87,5	1,44	69	220	-	41.10	52.
129,8	0,366	112,5	0,57	101,1	0,85	92,6	1,34	73,1 79,2	2,30	61,6 67,7	41,1° ₁ 46,8° ₁	28. 28.
-	-	102,8	-	93,4	_	86,6	_	71,0		_	- 1	18.
127	-	108,5	-	96,5	-	87	-	72	-	-	-	38.
	_	_	_		-	86	-	74	-	-	-	53.
		-		-			_	74				24.
-	-		-	-	-	-	-	-	_	_		153.
128,0 140,6	0,372	109,4	0,610	97,2	0,90	88,2	1,44	73,8	2,66	60,5	38,6%	28.
130,8	0,318	124,7 112,6	0,605	100,5	0,89	91.0	1.12	89	-	-	10.00	54.
-	_	-	-	101	0,09	91,6 93	1,43	77,3 81	2,58	64,4 68	43,0 °1	28. 40.
1	-	-	-	-	-	-	-	-	-	_	_	150.
1	-	-	-		-	-	-	97	-	-	-	24.
						Will the last				1		

_					
Literatur- Nachweis.	Chemischer Körper.	Chemische Formel.	1 mm zwischen 760—700	760 mm	1 mm zwischen 760—100
154. 28.	Methyl-n-Heptylcarbinol o-Toluidin	CH ₃ (CH ₂) ₆ CHOH CH ₃ C ₆ H ₄ CH ₃ NH ₂	0,048	198-200° 199,7	0,101 0
28. 28.	p-Toluidin	C ₆ H ₄ (CH ₃) NH ₂ C ₆ H ₄ (CH ₃) OH	0,058	200,4 200,5	0,101
28. 35.	Isocapronsäure	(CH ₃) ₂ CH (CH ₂) ₂ CO ₂ H C ₁₀ H ₁₆ O	0,046	200,5 201	0,090
28. 28.	p-Kresol	C ₆ H ₄ (CH ₃) OH C ₆ H ₅ CO CH ₃	0,043	201,1 201,5	0,096 0,103
155. 156. 28.	Isopulegon	C ₁₀ H ₁₆ O C ₁₀ H ₁₈ O	=	_	- -
28.	m-Toluidin	C ₆ H ₄ (CH ₃) NH ₂ C ₆ H ₅ NH C ₂ H ₅ HCO ₂ CH ₂ C ₆ H ₅	0,058	203,3 204,0	0,101 0,102
157. 150.	Hydratropaaldehyd	C ₆ H ₅ CH (CH ₃) CHO C ₇ H ₁₅ CO ₂ C ₂ H ₅	_	204 204 204–206	-
56. 58.	Citronellal	$C_{10}H_{18}O \\ C_{10}H_{16} \cdot H_{2}O$	_	205 205	-
57. 28. 24.	n-Hexyl-n-butyrat	C ₃ H ₇ CO ₂ C ₆ H ₁₃ C ₆ H ₅ CH ₂ OH C ₆ H ₄ (OCH ₃) OH	0,054	205,0	0,097
28.	n-Capronsäure	C ₅ H ₁₁ CO ₂ H	0,048	205,1 205,7	0,090
59. 10.	Campher	C ₁₀ H ₁₆ O C ₁₀ H ₁₈ O	0,056	206,0 207	0,102
60.	n-Decylaldehyd	CH ₃ (CH ₂) ₈ CHO CH ₂ CH (CH ₂) ₉ CH ₃	-	208 208	-
28. 28. 28.	Nitrobenzol	C ₆ H ₅ (NO ₂) C ₆ H ₄ CI NH ₂	0,054	208,3 208,8	0,103
62. 38.	Terpineol, Schmelzp. 32—33° n-Methyloctylketon	C ₆ H ₄ (CH ₃) N (CH ₃) ₂ C ₁₀ H ₁₈ O C ₈ H ₁₇ CO CH ₃	0,045	209,5 209,5 211	0,105
18.	m-Xylidin	C ₆ H ₃ (CH ₃) ₂ NH ₂ C ₁₀ H ₁₈ O	=	211,5 212	-
24. 154. 24.	Propionamid	C ₂ H ₅ CO NH ₂ CH ₃ CO ₂ C ₉ H ₁₉	_	213 213–215	
63.	Athylbenzoat	C ₆ H ₅ CO ₂ C ₂ H ₅ C ₉ H ₁₉ OH C ₁₀ H ₂₀ O	0,059	213,4 213,5 213,6	=
40. 38.	Bornylformiat	HCO ₂ C ₁₀ H ₁₇ C ₁₂ H ₂₆		ca. 214 214,5	-

3	300												
200	100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
													154.
19	133,00	0,3580	115,10	0,575°	103,60	0,870	94,90	1,350	81,40	2,420	69,3 0	(61,403)	28.
ı	133,7	0,358	115,8	0,530	104,3	0,87	95,6	1,33	82,3	2,44	70,1	46,2° 1 46,9° 1	28.
	138,0	0,344	120,8	0,565	109,5	0,82	101,3	1,35	87,8	2,36	76,0	55,90	28.
	The state of	1	The state of the s	alle and	114,9	0,81	106,8		93,9	and and	82	700 1,5	22.00
ı	141,3	0,340	125,3	0,520	114,5	0,01	93	1,29	80	2,32	02	(60° 0,3	28. 35.
	138,4	0,342	121,3	0,560	110,1	0,83	101,8	1,32	88,6	2,42	76,5	55,70	28.
	133,2	0,370	114,7	0,615	102,4	0,90	93,4	1,44	79,0	2,80	65,0	_	28.
ł	-	-	-	-	-	-/	-	-	87	-	-	-	155.
l	-	_				-		-	87	_	-	_	156.
	136,6 136,8	0,358	118,7 119,1	0,580	107,1 106,7	0,86	98,5	1,32	85,3	2,54	72,8	49,80	28.
	190,0	0,554	110,1	0,020	100,4	0,91	97,6	1,38	83,8	2,36	72,0	49,001	28.
ı		-	_			1		_	91				157.
ł	-	-	-	-	-	-	_	_	_	_	_	_	150.
ı	-	-	-	-	106	-	96	-	84	_	-	-	56.
	-	-	-	-	-	-	-	-	-	-	-	-	58.
1	141,3	0,338	124,4	0,550	113,4	001	107.0	1.07	-	-	-	(72,903)	57.
	-	0,556	124,4	0,550	110,4	0,81	105,3	1,27	92,6 92	2,36	80,8	160 9 ° . 1	28.
	146,0	0,322	129,9	0,535	119,2	0,82	111,1	1,21	99,0	1,72	90,4	80 ° 2,5	24.
۱								-,		.,	00,2	(05 0,9)	20.
	138,7	0,398	118,8	0,740	104,0	0,82	95,8	1,22	82,6	2,30	71,1	65 ° 3,4 55 ° 1,85	59.
H	-	_	_	_		_	-			2,00		45 0,90	10.
ı	-	-	-	-	-	-	_	_	92	_	_	- 0,90)	60.
į	100.0	-	_		_	-	102	-	89			[64,9°3]	61.
	139,9 139,5	0,394	120,2	0,600	108,2	0,91	99,1	1,37	85,4	2,50	72,9	53,101	28.
1	140,3	0,370	120,7 121,8	0,615 0,625	108,4 109,3	0,92	99,2 100,4	1,44	84,8	2,50	72,3		20.
	_	-	_	-	100,0	0,09	100,4	1,37	86,7 90	2,48	74,3	_	28. 62.
ł	142	-	-	-	_	_	_	_	_		_	_	38.
		-	125,8	-	114,2	-	107,6	-	93,0		-		18.
	-	-	-	-		-	_	-	_	+ 9	-	-	_
	_	_	-	-	-	-	119	-	104	-	-	-	24.
			_	_	_			-	- 90	-	-	-	154.
	-		_	_	_		114	_	86 99		_	_	24. 63.
	-	-	-	-	_	-	_	_	96	_			64.
	145 -	-	-	-	-	-	104	-	90	-	-		40.
	145,5	-	126	-	113,8	-	103	-	88	-	-	-	38.
										-			Colonia .

100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp, unter niedrigeren Drucken,	Literatur- Nachweis.
-	-	-	-	_	-	_	_	93 0	-	81 0		65.
-	-	-	-		-	1040		92	-			24. 158.
147,30	0,3740	128,60	0,610 °	116,40	0,920	107,2	1,530	91,9	2,520	79,3		28.
-	-		-		-	-	_	_		_	-	66.
-	-	_	-	-	-	-	-	101	-	-	[700 202]	72.
1000	_	125,8	0,660	112,6	1,07	101,9	1,5	86,9	-	75,0	05 0 2,92	67.
		1000	0,000		1,01		1,0	The same of		10,0	000 1,92	1
	-	126,6	-	114,6	-	106,2	-	91,2	-	-	1,24	18.
		7	-			110		98 90				68. 69.
					_		_	99				159.
	_	_	_	120	_	112		96	-	-	_	40.
150,6	0,378	131,7	0,625	119,2	0,96	109,6	1,48	94,8	2,60	81,8	_	28.
-	-	126	-	-	-	106	-	-94	-	-	-	40.
	-	-	-	-	-	111	-	98	-	-	-	-
1-	-	-	-		-	114-116	-	102-104	-	-	(000	160.
160,0	0,320	144,0	0,555	132,9	0,78	125,1	1,19	113,2	1,54	105,5	$\left\{ \begin{array}{c} 90^{\circ} \\ 80^{\circ} \\ 0.7 \end{array} \right\}$	28.
-	-	-	_	_	_	118	_	105		94	0,7	70.
	-	-	-	-	-	-	-	99	-	7	-	40.
-	-	-	-	-	-	-	7	105	-	-	-	24.
	-	-	-	T.	-	106	-	108	-	-		71.
		_	_			113		98				40.
		-				_		95				73.
1	-	_	-	_	-	106,5	_	90,5	_	_	_	74.
-	-	-	-		1	122	_	111		99	-	40.
	-	-	-	128,7	-	120,3	-	_	-	-	-	161.
	_	-	-	100 105	-	114	-	102	-	-	-	40.
	_	_	_	123-125	_	114-116 118		106	_		_	161.
-	-	_	-			_		100		_		40.
158,0	0,384	138,8	0,630	126,2	0,94	116,8	1,48	102,0	2,44	89,8		28.
	-	-	-		-	-	4	98	-	-	-	24.
	-	-	-	-	-	-	-	106-107	-	-	-	163.
10	-	-	-	_	-	-	-	97–100	-	-	(D1 =0)	164.
	-	137	+	125	-	-	-	102	-	90	(34,5° _{0,192})	75.
-	-	-	-	-		124	-	-110	_	101	122,6°0,069	40.
	-	-	-	-	-	120	-	108	-	95	-	76.

=					
Literatur- Nachweis.	Chemischer Körper.	Chemische Formel.	1 mm zwischen 760—700	760 mm	1 mm zwischen 760—100
					100-100
74.	n-Decylalkohol	C ₁₀ H ₂₁ OH	_	2310	
154.	Methyl-n-Nonylcarbinol	CH ₃ (CH ₂) ₈ CH OH CH ₃	_	231-233	
18.	Athylsalicylat	C ₆ H ₄ (OH) CO ₂ C ₂ H ₅		231,5	
77.	Thymol	C ₆ H ₃ (CH ₃) (C ₃ H ₇) OH		231,8	_
-	Thymochinon	C ₁₀ H ₁₂ O ₂	-	232	
40.	Diosphenol (Buccocampher)	C ₁₀ H ₁₆ O ₂	-	232	-
28.	Cuminaldehyd	C ₆ H ₄ (C ₃ H ₇) CHO	-	232	0,1090
40.	Safrol	C ₆ H ₃ (O ₂ CH ₂) C ₃ H ₅	-	233	
-	Isobutyloxalat	(CO ₂ C ₄ H ₉) ₂	-	233	-
24.	Heptylbenzol	C ₆ H ₅ C ₇ H ₁₅	-	233	-
165. 38.	Phenylessigsäurenitril	C ₆ H ₅ CH ₂ CN	-	233,5	-
24.	n-Tridecan	C ₁₃ H ₂₈	-	234	-3
40.	Pseudocumidin	C ₆ H ₂ (CH ₃) ₈ NH ₂	-	234,5	-
24.	Propions. Bornyl	C ₂ H ₅ CO ₂ C ₁₀ H ₁₇	-	235	-
78.	Anethol	C ₆ H ₄ (OCH ₃) C ₃ H ₅	-	235	-
166.	Phenylpropylalkohol	C ₆ H ₅ (CH ₂) ₂ CH ₂ OH	-	235	-
161.	Geranylformiat	HCO ₂ C ₁₀ H ₁₇	-	-	-
79.	Nerylacetat	CH ₃ CO ₂ C ₁₀ H ₁₇	-	-	
24.	p-Isobutylphenol	C ₆ H ₃ (CH ₃) (C ₃ H ₇) OH	-	237	- 1
80.	Chavicol	C ₆ H ₄ (C ₄ H ₉) OH	-	237	-
18.	Isobutylbenzoat	C ₆ H ₄ (OH) C ₃ H ₅	-	237	-
	isobatylochzoat	C ₆ H ₅ CO ₂ C ₄ H ₉		237	-
28.	n-Caprylsäure	C ₇ H ₁₅ CO ₂ H	0,0520	237,5	0,096
28.	p-Nitrotoluol	C ₆ H ₄ (CH ₃) NO ₂	0,048	237,7	0,112
81.	Chinolin	C ₀ H ₇ N	0,059	237,8	0,108
167.	Äthyl-p-Tolylketon	CH ₃ C ₆ H ₄ CO C ₂ H ₅		238-239	_
69.	Menthylpropionat	C ₂ H ₅ CO ₂ C ₁₀ H ₁₉	-	_	-
82.	Linalylpropionat	C ₂ H ₅ CO ₂ C ₁₀ H ₁₇	-	-	-
83.	HydrozimtaldDimethylacetal	C ₆ H ₅ (CH ₂) ₂ CH (OCH ₃) ₂	-	240	-
84.	Citronellylacetat	CH ₃ CO ₂ C ₁₀ H ₁₉	-	-	-
85.	Bornylisobutyrat	C ₃ H ₇ CO ₂ C ₁₀ H ₁₇	-	243	-
=	Benzylsenföl	C ₆ H ₅ CH ₂ NCS	-	243	-
69.	n-Butters. Menthyl	C ₃ H ₇ CO ₂ C ₁₀ H ₁₉	-	-	-
86.	Tetradecylen	CH ₂ CH (CH ₂) ₁₁ CH ₃	-	243	-
87.	n-Octyl-n-butyrat	C ₃ H ₇ CO ₂ C ₈ H ₁₇	-	244	-
74.	n-Nonyljodid	C ₉ H ₁₉ J	-	_	-
154.	Methyl-n-Nonylcarbinolacetat	CH ₃ CO ₂ C ₁₁ H ₂₃	-	245	-
88.	Geranylacetat	CH ₃ CO ₂ C ₁₀ H ₁₇	-	245	-
24.	Brenzcatechin	C ₆ H ₄ (OH) ₂	-	245,5	-111
1					1

	1000												
211	100 mm	1 mm zwisohen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis,
	-												
	-	-	-	-	-	-	125°	-	1120	_	-	-	74.
	-	-	_	-	-	-	126	-	115	-	-	-	154.
7	-	-	139,10	-	127,10	-	119,0	-	104,8	-	-	-	18.
7	-	-	-	-	-	-	-	-	109	-	-	-	77.
~	-	-	-	-	-	-	-	-	-	-	-	-	-
100	-	_	_	_		_	-		109	_	-	-	40.
0,100	158,00	0,3980	138,1	0,6300	125,5	0,76°	117,9	1,440	103,5	2,50°	91,00		28.
	-	-	-	-	-		123	1	107		93	-	40.
		-					_	-	106		-	-	-
		-	-	T				-	108			-	24.
	100 -		140.5	-	190.0		120		100			-	165.
1	162,5	-	142,5	-	130,0	-	120	-	106 109	-		-	38.
	1	7			-		100					-	24.
		T	-				123		108	-		-	40.
			-	-	-			-	106				24.
			I			-	118-119	_	116	-		-	78.
					137,5		The state of the s		102-103	-	The state of	-	166.
	Sec.				191,9	-	129,5		113	A STATE OF			161.
8			_					=	116				79.
i.						_		_	110	1			24.
1			146,0	I	133,0		124,4		109,5	_		_	80.
1									1000			[105° _{2,6}]	The state of the s
0,08	174,0	0,352	156,4	0,575	144,9	0,83	136,6	1,20	124,6	2,18	113,7	95 0,8	28.
0.111	164,0	0,404			130,4	1,01	120,3	1,47	105,6	2,66	92,3	-	28.
112	166,7	0,484	142,3	0,665	129,0	1,00	119,0	1,40	103,0	2,80	89,0	_	81.
-	-	-	-	+	129	-	121,5	-	_	-	_	-	167.
-	-	-	-	-	-	-	-	-	110	-	-	-	69.
-		-	-	-	-	-	-	-	115	-	-	-	82.
-		/	-	-	-	-	120	-	105	-	-	-	83.
		-	-	-	-		126	-	113	-	-	-	84.
2		-	-	-	-	-	-	-	-	-	-		85.
1		-	-		-	-		-	_	-	-	-	-
-				-	-		400	-	121	-	-	-	69.
1	_	-		-	-	-	133	-	120	-	-	-	86.
			_	-	-	-	100	-	-	-	-	-	87.
	4	_			-	-	123	-	109	-	-		74.
	-		=		-	-	100	-		-	-		154.
6	-			I			133	-	119	-	-		88.
				-	-	-	-	-	.119	-			24.
	Te					1000					No. of Concession, Name of Street, or other Persons, Name of Street, or ot		

_					1
Literatur- Nachweis.	Chemischer Körper.	Chemische Formel.	1 mm zwischen 760—700	760 mm	1 mm zwischen 760—100
-	n-Hexylcapronat	C ₅ H ₁₁ CO ₂ C ₆ H ₁₃		2460	
38.	Methyldecylketon	C ₁₀ H ₂₁ CO CH ₃		246,5	
24.	Chinaldin	C ₁₀ H ₉ N	-	246-247	
24.	Cuminalkohol	C ₆ H ₄ (C ₃ H ₇) CH ₂ OH		246,6	
40.	Bornyl-n-butyrat	C ₃ H ₇ CO ₂ C ₁₀ H ₁₇	_	247	
89.	Zimtaldehyd	C ₆ H ₅ CH CH CHO	_	247	
-	Methylpseudocumylketon	(CH ₃) ₃ C ₆ H ₂ CO CH ₃	-	247-248	-
90.	Methyleugenol	C ₆ H ₃ (OCH ₃) ₂ C ₃ H ₅	-	248	
91.	Anisaldehyd	C ₆ H ₄ (OCH ₃) CHO	-	248	-
92.	Dodecylamin	C ₁₂ H ₂₅ NH ₂	-	248	-
93.	Benzoesäure	C ₆ H ₅ CO ₂ H	0,0580	249	0,0969
168.	Octylvalerianat	C ₄ H ₉ CO ₂ C ₈ H ₁₇		249-251	
94.	Ionon	C ₁₃ H ₂₀ O		ca. 250	
95.	Eugenol	C ₆ H ₃ (C ₃ H ₅) (OCH ₃) OH		250,5	_
24.	n-Propylsuccinat	(CH ₂ CO ₂ C ₃ H ₇) ₂	_	250,8	
96.	Geranylisobutyrat	C ₃ H ₇ CO ₂ C ₁₀ H ₁₇	-	ca. 251	-
38.	n-Tetradecan	C ₁₄ H ₃₀	1	252,5	-
-	Pyrogalloldimethyläther	C ₆ H ₃ (OH) (OCH ₃) ₂	-	253	- 1
	α-Santalen	C ₁₅ H ₂₄	-	253	-
_	Indol	C ₆ H ₄ $\langle \stackrel{\text{NH}}{\text{CH}} \rangle$ CH	-	253-254	-
28.	n-Pelargonsäure	C ₈ H ₁₇ CO ₂ H	0,053	253,4	0,0999
100.	Isosafrol	C ₆ H ₃ (O ₂ CH ₂) C ₃ H ₅		254	
24.	Styroldibromid	C ₆ H ₅ CH Br CH ₂ Br	-	254	-
97.	Diphenyl	(C ₆ H ₅) ₂		254	
95.	Betelphenol	C ₆ H ₃ (C ₃ H ₅) (OH) OCH ₃	_	254	
45.	Decylenglykol	C ₁₀ H ₂₀ (OH) ₂		255	-
98.	Bornylisovalerianat	C ₄ H ₉ CO ₂ C ₁₀ H ₁₇	-	_	-
99.	Salicylsäure	C ₆ H ₄ (OH) CO ₂ H	-	ca. 256	-
169.	Citronellsäure	C ₁₀ H ₁₈ O ₂	-	257	-3
100.	Zimtalkohol	C ₆ H ₅ (CH) ₂ CH ₂ OH	-	257,5	-
100.	Methylcinnamat	C ₆ H ₅ (CH) ₂ CO ₂ CH ₃	-	258	
28.	a-Chlornaphthalin	C ₁₀ H ₇ Cl	0,063	259,3	0,119
96.	Geranyl-n-butyrat	C ₃ H ₇ CO ₂ C ₁₀ H ₁₇	-	-	-
45.	Decylendibromid	C ₁₀ H ₂₀ Br ₂	-	-	
94.	Iron	C ₁₃ H ₂₀ O	-	-	-
40.	Caryophyllen	C ₁₅ H ₂₄	-	260	-
74.	n-Decyljodid	C ₁₀ H ₂₁ J	-	-	-
101.	Bernsteinsäureanhydrid	(CH ₂ CO) ₂ O	-	261	-
40.	Isoeugenol	$C_6 H_3 (C_3 H_5) (OCH_3) OH$	-	261	7111
3					

		And the Late										_
100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp, unter niedrigeren Drucken.	Literatur- Nachweis.
1===0	_			-		1						38.
177,50	_						=	1180		_		24.
					- 12_11	1		127	_	1000	1020	24.
						1330	_	120				40.
	_		_	_	_	138	-	121	-	_	_	89.
	-		_	05	- 4	137-138	_	-	-	-	_	_
		_	_	_	-	-		127	_	-	-	90.
10-	-219	_	-	_	-	100	-	118?	-	94 0	11003,74	91.
	-	-	-	_	-	140	-	125	-	-	11000, 401	92.
185,9	0,3740	167,20	0,5850	155,50	0,900	146,5	1,400	132,5	3,220	116,2	90°0,60 80°0,30	93.
1 12	-	_		_	-	_		1		-	60 0 10	168.
-	-	-	_	-		-	-	123	_		60 0,16	94.
	-	-	- 3	146	-		-	125	-		- 0,11)	95.
-	-	-	-	-	-	-	-	123	-	-	-	24.
-	-	1	-	-	-	-	-	133	-	-	-	96.
178,5	-	158	-	145,5	-	136	-	121	-	-	-	38.
1 -	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-		-	-	-	-	-	-	-	[120° ₃]	-
188,0	0,354	170,3	0,665	159,0	0,90	150,0	1,31	136,9	2,06	126,6	1100,1,2	28.
			72		_		_			107,5	100 0,3	100.
-	200	_		-	-	_	_	129	_		(- 0,3)	24.
10-	_	_	-		1	-	_	117			1	97.
-	_	_	_		-4	-	-	127		1		95.
-	-	-	_	_	-	151	-	137	-	1		45.
-	-	_	_	_	-	_	-	138	_			98.
193,4	-	177,2	-	164,7	-	156,2	-	143,9	_	135,5	-	99.
	-	-	-	10-	-	154	-	143,5		_	-	169.
	-	-	-	-	-	-		117?	-			100.
1 100 1		_	-	_		_	-	123	-	-	-	100.
180,4	0,422	159,3	0,71	145,1	1,04	134,7	1,61	118,6	2,76	104,8	80,60	28.
	-	-	-	-	-	_	-	139	-	-	-	96.
	-	-	-	-	-	151	-	137	-	-	-	45.
			-	-		149	-	133	-	-	-	94.
		_			-	100	-	120	_	-	-	40.
189		169			_	138		124	-	-	-	74.
193						145 150	_	130	-	117	-	101.
						GERGE!	1000		-	117	-	40.
v. R	echenb	erg, Ge	winnung	und Treni	nung der	äther. Öld				33		

_					
Literatur- Nachweis.	Chemischer Körper.	Chemische Formel	1 mm zwischen 760—700	760 mm	1 mm zwischen 760—100
170.	Laurinaldehyd	C ₁₂ H ₂₄ O	-		
171.	Geraniumsäure	C ₁₀ H ₁₆ O ₂			
172.	Phenylpropionsäurenitril	C ₆ H ₅ (CH ₂) ₂ CN		2610	-
18.	Isoamylbenzoat	C ₆ H ₅ CO ₂ C ₅ H ₁₁		262	_
38.	Methylundecylketon	C ₁₁ H ₂₃ CO CH ₃	1	262,5	
24.	Piperonal	C ₆ H ₃ (O ₂ CH ₂) CHO		263	
102.	Methylisoeugenol	C ₆ H ₃ (OCH ₃) ₂ C ₃ H ₅		263	
-	β-Santalen	C ₁₅ H ₂₄		263	
-	Cedren	C ₁₅ H ₂₄	-	263	120
41.	Diphenylmethan	(C ₆ H ₅) ₂ CH ₂	0,0670	265	
			0,001	200	
-	Skatol	$C_6H_4 \left\langle \begin{array}{c} NH \\ C(CH_8) \end{array} \right\rangle CH$	-	265 - 266	-
24.	Phenylessigsäure	C ₆ H ₅ CH ₂ CO ₂ H		265,5	
103.	n-Dodecylalkohol	C12 H25 OH			-
40.	Methylanthranilat	C ₆ H ₄ (NH ₂) CO ₂ CH ₃	_	100	-
28.	n-Caprinsäure	C ₉ H ₁₉ CO ₂ H	0,053	268,4	0,1010
104.	Methylanthranils. Methyl	C ₆ H ₄ (NH CH ₃) CO ₂ CH ₃	_	_	
38.	n-Pentadecan	C ₁₅ H ₃₂	_	270,5	-
173.	Phenylhexylketon	C ₆ H ₅ CO C ₆ H ₁₃	_	271,3	-
24.	Äthylcinnamat	C ₆ H ₅ (CH) ₂ CO ₂ C ₂ H ₅	_	271	-
-	Dihydrocumarin	C ₉ H ₈ O ₂	_	272	-
-	Styrolenglykol	C ₆ H ₅ CH OH CH ₂ OH	-	273	-
105.	Hexadecylen (Ceten)	CH ₂ CH (CH ₂) ₁₃ CH ₃	_	274	_
40.	Cadinen	C ₁₅ H ₂₄	1	274	-
106.	Undecylensäure	CH ₂ CH (CH ₂) ₈ CO ₂ H	_	275	-
174.	Propionylacetophenon	C ₆ H ₅ CO CH ₂ COC ₂ H ₅	_	276-277	-
24.	Resorcin	C ₆ H ₄ (OH) ₂	-	276,5	-
24.	as-Diphenyläthylen	(C ₆ H ₅) ₂ C CH ₂	-	277	-
24.	m-Phenylendiamin	C ₆ H ₄ (NH ₂) ₂	-	277	-
24.	Acenaphthen	C ₁₀ H ₆ (CH) ₂	-	277,5	-
38.	Methyldodecylketon	C12 H25 CO CH3	-	278	-
24.	Diacetylresorcin	C ₆ H ₄ (O CO CH ₃) ₂	-	278	-
168.	Dioctyl	C ₈ H ₁₇ C ₈ H ₁₇	-	278	-
107.	Eugenolformiat	HCO ₂ C ₆ H ₃ (OCH ₃) C ₃ H ₅	0=0	-	-
108.	Sesquiterpen im Citronellöl	C ₁₅ H ₂₄	-	-	-
24.	Hydrozimtsäure	C ₆ H ₅ (CH ₂) ₂ CO ₂ H	-	280	-
24.	Traubens. Äthyl	(CH OH CO ₂ C ₂ H ₅) ₂	-	280	-31
24.	m-Toluylendiamin (1 CH ₃ :2:4) .	C ₆ H ₃ CH ₃ (NH ₂) ₂	-	280	-10
38.	Undecylsäure	C ₁₀ H ₂₁ CO ₂ H	-	-	-
24.	Äthyl-d-tartrat	(CH OH CO ₂ C ₂ H ₅) ₂	-	280	-
175.	n-Octyläthyläther	C ₈ H ₁₇ O C ₂ H ₅	5	280-282	-
		S and on manufacture part		o dinaste s	4.8

100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
101 1070	73										_	170.
184-1850		-			_		_	147,50	_	1_	_ 1	171.
			_						-	_	-	172.
		165,80		148,20	_	138,40	-	124,8	_	-	-	18.
191,5		_	_	_	-	-	-		-	-	-	38.
	_	_	_	-	-	149	-	135	-	-	-	24.
	_	-	-		-	-	-	-	-	-	-	102.
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	1	-	-	-	-	-	-	-	-
-	-	-	-	-	-	1000	-	-	-	-		41.
-	_	_	_	_	-	-	-	1	-	-	-	-
_	_	-	1644	-	_	-	-	141	-	-	-	24.
-	_		-	_	-	149	-	135	-	-	10-	103.
-	-	_	-	-	-	141	-	124	-	-	135 %	40.
202,0	0,3440	184,8	0,5650	173,5	0,850	165,0	1,300	152,0	2,140	141,30	125 %	28.
-	-			-	-		-	125	-		(1)	104.
194	-	173	-	160	-	150	-	135	-	-		38.
-		-	-	-	-	161	-	145,5	-	-	_	173.
	-	-	10-	-	-	-	-	134	-		-	24.
-		-			-							
		-				161		144				105.
						101		133		131		40.
213,5		_				171		159				106.
210,0		-		169-171			_	100	_	-		174.
					_	167		152		_	-	24.
_	_	_	-		_	_	_	135	_	-	-	24.
4	_	_	-	-	_	-	-	145,5	-	-	-	24.
_	-	_	-	-	_	150	-	133,5	-	-	-	24.
206		-	-	-	-	-	-		-	-	-	38.
-	-	-	-	-	-	163	-	145	-	-	-	24.
	-	-	-		-	_	-	-	-	-	- 19	168.
	-	-		-	-	150	-	-	-	-	_	107.
-	-	-	-		-	163	-	150	-/	-		108.
	-			-	-	-	-	149	-	-		24.
	-	-		-	-	-	-	147		-		24.
212,5	_		-			_	_	151	_	_		24. 38.
-12,0					_	_	_	147			_	24.
	100							141				175.
	1						1					1.0.

					-							_
100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 тип	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
198,80	0,434 0	177,10	0,740	162,3 °	1,100	151,30	1,730	134,00	3,300	117,50	-	28.
	-	_			_	_	-	149	_	132	_	109.
-	-	_	_	_	_	_	-	144,5	-	-	-	24.
	_	_	_	-	-	-	-	143	-	-	-	24, 112.
216,7	-	196,0	-	183,9	-	175,1	-	162,8	-	152	-	110.
-	1-	-	-	-	-		-	159,5	-	-	-	176.
-	-	-	-	-	-	-	-	155	5	-	-	24, 100
-	1-5	-	-	10-0	-	-	-	-	-	=	-	41.
-	-	-	-	-	=	-	-	134	-	-	-	112.
-	3-	-	-	-	-	-	-	144	-10	-	-	24.
-	-	-	-	-	-	-	-	150	-	-	10	24, 101.
-	-		-		-	-	-	157	1	10000	-	24.
208,5		187,5	-	174	7-17	165	-	149	- 00	1		38.
		-		_	-	1		169		1	-	24.
TO THE	-		-		-		-	146.			80 0 0,03	113.
		-	1		-		_	148		Notice of	San Charles	114.
		-				170	_	153				92.
		1	1			1.0						A STATE OF THE PARTY OF THE PAR
								144		The second second		1 2/1
220.1	0.333	203.5	0.585	191.8	0.96	182 2	1.50	144	240	155.5	1180	24.
220,1	0,333	203,5	0,585	191,8	0,96	182,2	1,50	167,2	2,40	155,5	118 0 0,23	115.
220,1 	0,333	203,5	0,585	191,8	0,96	182,2 158	-	167,2 142	2,40	155,5 —	118° _{0,23}	115. 116.
220,1 _ _ _		203,5	0,585	191,8 — — —	-			167,2 142 160	2,40	155,5 — — —	118° _{0,23}	115. 116. 24.
220,1 — — — —		203,5	0,585	191,8 — — — —	-			167,2 142 160 152	2,40 - - -		118° _{0,23}	115. 116. 24. 24.
220,1 - - - - - 214–215	1111		0,585	-		158 — — —	-	167,2 142 160	-	155,5 — — — —	118° _{0,23}	115. 116. 24. 24. 177.
	1111			-		158 — — — — — 166–167		167,2 142 160 152 157	-		118° _{0,23}	115. 116. 24. 24. 177. 170.
	1111			-		158 — — —		167,2 142 160 152 157 — 145				115. 116. 24. 24. 177. 170. 117.
- - - 214–215	111111	11111	11111	11111	11111	158 — — — — 166–167 162	11111	167,2 142 160 152 157 — 145	-		118° _{0,23}	115, 116, 24, 24, 177, 170, 117, 38,
- - - 214–215	111111	111111	111111	111111	111111	158 — — — 166–167 162 —	111111	167,2 142 160 152 157 — 145		111111		115. 116. 24. 27. 170. 117. 38. 178.
214-215 219 -	1111111		1111111	- - - - - - - 177	1111111	158 — — 166–167 162 —	11111111	167,2 142 160 152 157 — 145 — 156				115, 116, 24, 24, 177, 170, 117, 38, 178, 24,
214-215 219	11111111	11111111	11111111	177	11111111	158 — — 166–167 162 — —	1111111	167,2 142 160 152 157 — 145 — 156 168		111111111		115. 116. 24. 24. 177. 170. 117. 38. 178. 24. 24.
214-215 219 -	111111111	11111111	111111111	177	111111111	158 — — 166–167 162 — — —	111111111	167,2 142 160 152 157 — 145 — 156 168 167	11111111	11111111		115, 116, 24, 24, 177, 170, 117, 38, 178, 24,
214-215 219 -	11111111111	1111111111	1111111111	177	111111111	158 — — 166–167 162 — — — — 181	11111111111	167,2 142 160 152 157 — 145 — 156 168		111111111		115. 116. 24. 177. 170. 117. 38. 178. 24. 24.
214-215 219 - 227,5 -	11111111111	1111111111	11111111111	177	1111111111	158 — — 166–167 162 — — — — 181 —	11111111111	167,2 142 160 152 157 — 145 — 156 168 167 147		11111111111		115. 116. 24. 24. 177. 170. 117. 38. 178. 24. 24. 118.
- - - 214-215 - 219 - - 227,5 - - -	1111111111111		11111111111	177	11111111111	158 — — 166–167 162 — — — 181 —	11111111111	167,2 142 160 152 157 — 145 — 156 168 167 147 161–162	1111111111	11111111111		115. 116. 24. 177. 170. 117. 38. 178. 24. 24. 118. 119. 179.
214-215	1111111111111111	11111111111111	111111111111	177	111111111111	158 — — — 166–167 162 — — — — — 181 —	111111111111	167,2 142 160 152 157 — 145 — 156 168 167 147 161–162		111111111111		115. 116. 24. 177. 170. 117. 38. 178. 24. 24. 118. 119.
214-215 	1111111111111111		11111111111111	177	1111111111111	158 — — 166–167 162 — — — 181 — —	1111111111111	167,2 142 160 152 157 — 145 — 156 168 167 147 161–162	111111111111			115. 116. 24. 177. 170. 117. 38. 178. 24. 118. 119. 179. —
- - - 214-215 - 219 - - 227,5 - - - - -	111111111111111111		1111111111111111	177		158 — — 166–167 162 — — — 181 — — —	11111111111111	167,2 142 160 152 157 — 145 — 156 168 167 147 161–162 —				115. 116. 24. 177. 170. 117. 38. 178. 24. 118. 119. 179. —
214-215 219 - 227,5 - - - - - -	111111111111111111	111111111111111111	11111111111111111	177		158 — — 166–167 162 — — — 181 — — — — —	111111111111111	167,2 142 160 152 157 — 145 — 156 168 167 147 161–162 — 154 155		11111111111111		115. 116. 24. 177. 170. 117. 38. 178. 24. 118. 119. 179. — 168. 24. 24.
214-215 	11111111111111111111	111111111111111111	111111111111111111	177		158 - - - 166–167 162 - - 181 - - - - -	111111111111111	167,2 142 160 152 157 — 145 — 156 168 167 147 161–162 — 154 155 173	111111111111111	1111111111111111		115. 116. 24. 177. 170. 117. 38. 178. 24. 118. 119. 179. — 168. 24. 24. 24.
214-215 219 	111111111111111111	111111111111111111	11111111111111111	177		158 — — 166–167 162 — — — 181 — — — — —	11111111111111111	167,2 142 160 152 157 — 145 — 156 168 167 147 161–162 — 154 155 173 153				115. 116. 24. 177. 170. 117. 38. 178. 24. 118. 119. 179. 168. 24. 24. 24. 24.

-					
Literatur- Nachweis,	Chemischer Körper.	Chemische Formel.	1 mm zwischen 760—700	760 mm	1 mm zwischen 760—100
120.	Octadecylen	CH ₂ CH (CH ₂) ₁₅ CH ₃			
121.		C ₁₅ H ₂₄ O		9010	
122.		C ₁₄ H ₂₄ O ₂	-	301 0	
24.		(C ₆ H ₅) ₂ CH OH		301	
24.		(C ₆ H ₅) ₂ NH	-	301	-
123.		CH ₂ (CH ₂ CO ₂ H) ₂		302	
38.		C ₁₇ H ₃₆	-	303	-
	ACCOUNT OF THE PARTY OF THE PAR	CH ₃ CO NH C ₆ H ₅		303	-
	Petersilienisoapiol	C113 CO1111 C6115	1 3	303,8	-
110.		C ₆ H(CHCHCH ₃)(OCH ₃)(O ₂ CH ₂)(OCH ₃)	1	904	
40	Menthylbenzoat	C. H. CO. C. H	100000	304	
124.			1		1
24.				204	-
168.				304 305–306	-
125.			0,064		=
	Äthyl-a-naphthylketon		Section 1	305,8 305–307	
126.					-
24.				306	-
38.				306 ca.307	
100000000000000000000000000000000000000	β-Santalol	C ₁₄ H ₂₉ CO CH ₃		309	
117.	The second secon			310	
	p-Oxybenzaldehyd		1955	ca.310	
12/06/20/20/20	i-Propyl-β-naphthylket.	The state of the s		312-314	
10000000	Phenylsalicylat (Salol)			ca.313	
7500000	Phenylbenzoat	The state of the s	1000	314	0-1
	n-Octadecan			317	
_		C ₁₈ H ₄₀ C ₆ H ₅ CH ₂ CO ₂ CH ₂ C ₆ H ₅		318	
SANTE PRODUCTION	Myristinsäure			ca.318	
THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Methylpentadecylketon			319	
100000000000000000000000000000000000000	Isobutyl-a-naphthylket.			319-321	
100000000000000000000000000000000000000	Palmitinaldehyd				102501
W. 2017 (1970)	Phenylbenzylketon			320-322	-
181.				323 324	_
100000000000000000000000000000000000000	Isobutyl-d-tartrat			324	-
100000000000000000000000000000000000000	Pentadecylsäure	The first country of the country of		_	_
2000	Muskon		_	_	-11
100000000000000000000000000000000000000	Adipinsäure	The state of the s			_
F 100 CO	Pimelinsäure		_	_	-11
77120000	n-Nonadecan			330	-8
100000000000000000000000000000000000000	Hexadecylamin		_	330	-
0.0000000000000000000000000000000000000	Dibenzylketon		0,069		0,127
150.	Dibenzyiketon	(00.10 01.2/2 00		-	

100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
						1070		1000				120
-	-	-	-	-	-	1850	-	169° 160	_			120. 121.
-				-				153	_			122.
								162			1	24.
							_	157	1	_	_	24.
	_			_	-	_	_	196	_	-	_	123.
2230	_	201,50		187,50	-	177	-	161	_	-	-	38.
_	_	-	-	_	-	_	_	162	-	-	-	24.
												178.
-	-	-	-	186,5	-	-	-	-	-	-	-	
-	-	-	-	-	-	188	-	170	-	-		40.
236	-	-	-	-	-	-	-	_	-	-		124.
-	-	-	_	-	-	-		175	-	-		24.
-	-	-	-	-	-	-		4-0				168.
	-				-			158	-	To the same of the		125.
	-					174	=	170–172 159	-		_	179. 126.
	-	-			-	174		161	_		_	24.
230,5					_		_	101	1			38.
200,0					_		-	168			_	127.
		_		_	_	197		180				117.
144	-		_	1	_	_	-	_	-	_	-	24.
-	-	-	-	-	1	-	-	181		-	-	179.
-	-	-		=	-	1/2	_	167	-	-	-	24.
-		-	-	-	-	-	-	158	-	-	-	24.
160-	-	214,5	-	200	1	189		172	-	-	-	38.
-	-	-	-	1	-	-	-	-	-	-	-	-
250	-	-	-	-	-	-	-	187	-	-	-	24, 118.
242	-	-	-	-	-	-	-	-	-	-	-	38.
239-240	-	-	-	-	-	400	-	183-185		-	-	179.
		-	-		-	190	-	105	-		-	170.
		-		-	-	-	-	173,5	-			180.
-	_	_	_	-	-	-	-	169	-	-		181.
257	-				_		_	109	_	_	-	24. 38.
		40	_		_	_	_	170		1530		128.
265	-	244,5	_	_	_	223	_	205,5	-	_		131.
272	4	251,5	-	_	_	231	-	212	-	_		131.
248	-	226,5	-	212	-	200	-	138	-1	_	-	38.
-	-	-	. =	-	-	194	-	177	-	-	_	129.
246,6	0,442	224,5	-	-	-	-	-	-	-	-	-	130.
	1		13 00		100	1		1		1		

_					
Literatur- Nachweis.	Chemischer Körper.	Chemische Formel.	1 mm zwiechen 760—700	760 mm	1 mm zwischen 760—100
38.	Methylhexadecylketon	CH ₃ COC ₁₆ H ₃₃			
24.	Phenanthren	(C ₆ H ₄ CH) ₂	-	-	-
132.	Palmitinsäure	C ₁₅ H ₃₁ CO ₂ H	-	340 °	-
38.	Methylheptadecylketon	CH ₃ COC ₁₇ H ₃₅		1	
133.	n-Hexadecylalkohol (Cetylalk.)	C ₁₆ H ₃₅ OH		244	-
38.	Margarinsäure	C ₁₆ H ₃₃ CO ₂ H		344	-
38.	n-Eicosan	C ₂₀ H ₄₂			
182.	Benzil	(CO C ₆ H ₅) ₂		940 940	-
131.	Korksäure	C ₈ H ₁₄ O ₄	-	346-348	
-	Benzylcinnamat (Cinnamein)	C ₆ H ₅ (CH) ₂ CO ₂ CH ₂ C ₆ H ₅	_	350	
134.	Geranylbenzoat	C ₆ H ₅ CO ₂ C ₁₀ H ₁₇		990	
135.	Anthracen	(C ₆ H ₄ CH) ₂	0,0680	351	0.1530
136.	Triphenylmethan	(C ₆ H ₅) ₃ CH	0,069	353	0,1530
24.	Diäthylhexadecylamin	$C_{16}H_{33}N(C_2H_5)_2$	0,009	355	
137.	Quecksilber	Hg	0,075	356,83	0,145
		8	0,015	990,00	0,145
183.	Nitroglycerin	C ₃ H ₅ (ONO ₂) ₃		_	_
131.	Azelainsäure	(CH ₂) ₇ (CO ₂ H) ₂			
170.	Stearinaldehyd	C ₁₈ H ₃₆ O		_	
38.	n-Heneicosan	C ₂₁ H ₄₄	_	ca. 358	
24.	Benzoes. Anhydrid	(C ₆ H ₅ CO) ₂ O	_	360	_
138.	Ölsäure	C ₁₇ H ₃₃ CO ₂ H		ca. 360	
129.	Elaidinsäure	C ₁₇ H ₃₃ CO ₂ H		ca. 362	
139.	Stearinsäure	C ₁₇ H ₃₅ CO ₂ H		ca. 362	-
38.	n-Docosan	C22 H48	_	ca. 370	_
140.	Anthrachinon	(C ₆ H ₄ CO) ₂	0,075	377	0,138
131.	Sebacinsäure	(CH ₂) ₈ (CO ₂ H) ₂			
41.	Sulfobenzid	(C ₆ H ₅) ₂ SO ₂	0,068	379	-
38.	n-Tricosan	C ₂₃ H ₄₈	_	ca. 383	-
133.	Octadecylalkohol	C ₁₈ H ₃₇ OH		ca. 384	-
38.	n-Tetracosan	C24 H50	-	ca. 395	-
101.	Erucasäure	C21 H41 CO2 H	-	_	- 0
101.	Brassidinsäure	C21 H41 CO2 H	_	-2	-
184.	Geranylpalmitat	C ₁₅ H ₃₁ CO ₂ C ₁₀ H ₁₇	-	-	-
141.	Schwefel	S ₈	0,082	444,5	-
38.	n-Heptacosan	C ₂₇ H ₅₆	-	ca. 430	-
142.	n-Dotriacontan	C ₃₂ H ₆₆	- 1	ca. 485	-
38.	n-Pentatriacontan	C ₃₅ H ₇₂	-	ca. 535	-
143.	Natrium	Na	-	742	-
144.	Cadmium	Cd	-	770	0,203
144.	Zink	Zn	-	932	0,264

								-			Name of Street, or other Designation of the last of th		
	100 mm	1 mm zwischen 100—50	50 mm	1 mm zwischen 50—30	30 mm	1 mm zwischen 30—20	20 mm	1 mm zwischen 20—10	10 mm	1 mm zwischen 10—5	5 mm	Siedetemp. unter niedrigeren Drucken.	Literatur- Nachweis.
	2510	4	-	-	-	-	-	-		-	-	-	38.
п	-	-	-		-			-	173° 207	-	No.		24. 132.
ı	271,5								201	NE CO	1		38.
1	262,5	-					1960	_	179		_		133.
ı	277	_	-	_	_	_	_	_	_	_	_	-	38.
П		-	-	_	-	-	215	-	196	-	-	-	38.
П	-	-	-	-	-	-	-	-	183	-	_	-	182.
۱	279	-	258,50	-	-	-	237	-	219,5	-	-	125 0 1,0	131.
п	-	-	-		-	-	-	-	-	-	-	111100 =	-
	-	-	-		-	-	101.1	1 0700	190	2 2400	15050	93 0,2	134.
1	250,2	0,5100	224,7	0,890	206,90	1,250 °	194,4	1,970°	174,7 197	3,240°	158,50	81 0,1	135. 136.
п									194		-	46°0,01 16°0,001	24.
ı	261,3	0,520	235,3	0,840	218,5	1,45	204	2,05	183,5	3,82	164,4	0 0,00019	137.
п	,-	0,020	200,0	0,010		.,.0		2,00	200,0	0,02	202,2	70 0,0019	
н	-	-	-	=	-	-	-	=	-	-	-	1800,001	183.
1	286,5	-	265	-	-	-	244	-	225,5	-	-	(0,001)	131.
1	259-261	-	-	-	-	-	210-212	-	-	-	-		170.
П		-	-	-	-	-	224		205	-	-	-	38.
п	000			-	2105		240	-	198	-	-	-	24.
1	286 288	_	264 266	- 0	249,5 251,5	_	240 242	-	223 225	-			138. 129.
ı	291		200		201,0		242		225				139.
ı				_	_		232	-	213				38.
Ł	286,2	0,358	268,4	0,600	256,4	0,870	247,7	1,47	233,0	3,00	218,0		140.
ı	294,5	-	273	-	-	_	251	-	232	_	_		131.
н	-	-	-	-	-	14	-	1	_	1	_	-	41.
н	-	-	-	-	-	- 1	242	-	223	-		-	38.
ı	-	-	-	-	-	-	220	-	202	-	-		133.
п		-	-	-	281	-	271		231	-	-	1 4040	38.
н	-	_	_		282		271	-	254	-	-	181 0	101.
1	_	-			-	_	273	_	256 256	_	_	135 ° 0,1 104 ° 0,01	101. 184.
-	330,7	-	303,2	_			1	_	245		/_	100 0,007	141.
1	-	-	-	-	1000	_		_	270,5	-	-	0 0005	38.
1	-	-	-	-	-	-	-	-	310,5	-	_	UV a aggard	142.
1	-	-	-	-	-	-	-	-	331,5	-	-	20 0,000005	38.
1	000	-	563,6	-	559,4	-	540,6	-	507,4	-	471,6	-	143.
1	636 758	0,86	593	1,10	571	2,40	547		-	-	-	-	144.
1	100	0,76	720	1,60	688	2,70	661	-	-	-	-	-	144.
1				1			1	1	1		1		

Literaturnachweise zur Siedepunkts-Tabelle.

- 1. Young, Zeitschr. f. physik. Chem. 29 (1899), 139.
- 2. Young u. Thomas, Journ. chem. Soc. 63 (1893), 1191, 1207, 1211, 1216, 1219, 1222, 1226, 1232, 1234.
- Batelli, Annal. de Chim. et Phys. VI. 25 (1892), 38, nach Graetz in Winkelmanns Handbuch der Physik, 2. Aufl., Bd. III, S. 962. Beckmann u. Fuchs, Zeitschr. f. physik. Chem. 18 (1895), 495.
- 4. Young, Journ. chem. Soc. 71 (1897), 446.
- Regnault, Rél. des exp. 2, 440, 455, 462, nach Graetz u. Jahresber. d. Chem. 7 (1854), 58. Beckmann u. Fuchs, s. Nr. 3.
- Batelli, Mem. Acc. di Torino 41 (1890), 1 u. 42 (1891), 1, nach Graetz.
 Ramsay u. Shields, Zeitschr. f. physik. Chem. 12 (1893), 461.
- 7. Regnault, Rél. des exp. 2, 470, 474, 477, nach Graetz.
- 8. Young u. Fortey, Journ. chem. Soc. 77 (1900), 1126.
- 9. Ramsay u. Young, Journ. chem. Soc. 49 (1886), 453.
- 10. Beckmann u. Fuchs, Zeitschr. f. physik. Chem. 18 (1895), 495.
- 11. Ryland, Americ. chem. Soc. 22 (1899), 384.
- 12. Ramsay u. Young, Phil. Trans. 178 A (1887), 313.
- 13. Young u. Thomas, Journ. chem. Soc. 67 (1895), 1071.
- 14. Young, Journ. chem. Soc. 59 (1891), 626 u. 911.
- 15. Regnault, Mém. de l'Acad. 26 (1862), 339.
- 16. Young u. Fortey, Journ. chem. Soc. 75 (1899), 873.
- 17. Young, Journ. chem. Soc. 55 (1889), 483 u. 486.
- 18. Kahlbaum, Siedetemp. u. Druck. Leipzig, 1885.
- 19. Ramsay u. Young, Phil. Trans. 180 (1889), 137, nach Graetz.
- 20. Moitessier u. Engel, Jahresber. d. Chem. 1880, 142.
- 21. Schumann, Wiedemanns Annalen 12 (1881), 40, nach Graetz.
- 22. Young, Journ. chem. Soc. 73 (1898), 675.
- 23. Richardson, Journ. chem. Soc. 49 (1886), 762 u. 765, nach Graetz. Schmidt, Zeitschr. f. physik. Chem. 7 (1891), 433.
- 24. Anschütz u. Reitter, Die Destillation unter vermind. Druck. 2. Aufl. 1895. Für die Siedep. Diff. von 1 mm bei 760 mm s. No. 10.
- 25. Jacobsen, Liebigs Annalen 157 (1871), 244.
- 26. Kahlbaum, Zeitschr. f. physik. Chem. 13 (1893), 14. Konowalow, Wiedemanns Annalen 14 (1881), 34.
- 27. S. No. 23 und Schmidt, Zeitschr. f. physik. Chem. 7 (1891), 433 u. 8 (1891), 641.
- 28. Kahlbaum, Studien über Dampfspannkraftmessungen, Bd. I (1893), Bd. II (1897); im Auszug, Zeitschr. f. physik. Chem. 13 (1894), 14 u. 26 (1898), 577.
- 29. Young, Journ. chem. Soc. 49 (1891), 911; Phil. Mag. V. 34 (1892), 512.
- 30. s. Kapitel "Additionsverbindungen".
- 31. Oglialoro, Berl. Berichte 7 (1874), 1462.
- 32. Young u. Fortey, Journ. chem. Soc. 81 (1902), 783.
- 33. Young u. Thomas, Journ. chem. Soc. 77 (1900), 1145.
- 34. Schmidt, Zeitschr. f. physik. Chem. 7 (1891), 433 u. 8 (1891), 641.

- 35. C. Mangold, Wiener Akad. Ber. 102, II A (1893), 1071.
- 36. Richardson, Journ. chem. Soc. 40 (1881), 766, nach Graetz.
- 37. H. Biltz, Liebigs Annalen 296 (1897), 274; s. No. 24.
- 38. F. Krafft, Berl. Berichte 15 (1882), 1687.
- 39. Schimmel & Co., Bericht April 1897, 50.
- 40. Semmler, Die ätherischen Öle, Leipzig 1906 u. 1907.
- 41. J. M. Crafts, Berl. Berichte 20 (1887), 709.
- 42. Ernst Erdmann, Berl. Berichte 35 (1902), 1855,
- 43. Power u. Kleber, Pharm. Review 13 (1895), 60. Semmler, Berl. Berichte 34 (1901), 3126.
- 44. Anschütz, Berl. Berichte 17 (1884), 1245.
- 45. L. Grosjean, Berl. Berichte 25 (1892), 478.
- 46. s. No. 24.
- 47. Wallach, Liebigs Annalen 336 (1904), 12 u. 42.
- 48. Schimmel & Co., unveröffentl. Beobachtung. Siehe No. 24.
- 49. Schimmel & Co., Bericht Oktober 1908, 78. Tiemann u. Semmler, Berl. Berichte 26 (1893), 2720. Tiemann, Berl. Berichte 31 (1898), 2989. Wallach, Liebigs Annalen 275 (1893), 171.
- Ramsay u. Young, Journ. chem. Soc. 49 (1886), 453. v. Richter, Berl. Berichte 19 (1886), 1060. K. Stelzner, Über den Dampfdruck fester Körper, Dissert., Erlangen 1901.
- 51. Schimmel & Co., Bericht Oktober 1900, 56.
- 52. Bertram u. Helle, Journ. f. prakt. Chem. II. 61 (1900), 298.
- 53. Power u. Lees, Journ. Soc. chem. Industry 21 (1902), 1585. Houben, Berl. Berichte 35 (1902), 3587.
- 54. de Forcrand, Compt. rend. 132 (1901), 688.
- 55. Wallach, Berl. Berichte 28 (1895), 1965; Liebigs Annalen 336 (1904), 263. Semmler, Berl. Berichte 25 (1892), 3343 u. 27 (1894), 895.
- 56. Tiemann u. Schmidt, Berl. Berichte 29 (1896), 904 u. 32 (1899), 818.
- 57. Gartenmeister, Liebigs Annalen 233 (1886), 270.
- 58. O. Aschan, Berl. Berichte 41 (1908), 1092.
- Allen, Journ. chem. Soc. 77 (1900), 400 u. 413. Ramsay u. Young, Phil. Trans. 175, I (1884), 37.
- 60. Stephan, Journ. f. prakt. Chem. II. 62 (1900), 523.
- 61. Krafft, Berl. Berichte 16 (1883), 3018.
- 62. Stephan u. Helle, Berl. Berichte 35 (1902), 2147.
- Stephan, Journ. f. prakt. Chem. II. 62 (1900), 523. Krafft, Berl. Berichte 19 (1886), 2218.
- 64. Siehe No. 48. Power u. Kleber, Arch. der Pharm. 232 (1894), 647 u. 653. Siehe No. 10.
- 65. Tiffeneau, Compt. rend. 139 (1904), 481. Schimmel & Co., unveröffentl. Beobachtung.
- 66. Hesse u. Müller, Berl. Berichte 32 (1899), 565.
- 67. Allen, Journ. chem. Soc. 77 (1900), 400 u. 413. Siehe No. 116. Speranski, Zeitschr. f. physik. Chem. 46 (1903), 74.
- 68. Hesse u. Zeitschel, Journ. f. prakt. Chem. II. 66 (1902), 497. Stephan u. Helle, Berl. Berichte 35 (1902), 2147.

- 69. Tschugaeff, Berl. Berichte 31 (1898), 364.
- 70. Schimmel & Co., Bericht April 1905, 51. Tschugaeff, Berl. Berichte 33 (1900), 735.
- 71. Siehe No. 24. Hentschel, Berl. Berichte 23 (1890), 2394.
- 72. Walbaum u. Stephan, Berl. Berichte 33 (1900), 2301. v. Soden u. Rojahn, Berl. Berichte 33 (1900), 1723 u. 3065.
- 73. Siehe No. 24; Ramsay u. Young, Zeitschr. f. physik. Chem. 1 (1887), 247.
- 74. Krafft, Berl. Berichte 16 (1883), 1714 u. 19 (1886), 2218.
- 75. Brühl, Berl. Berichte 32 (1899), 1224. Harries, Berl. Berichte 34 (1901), 1928. Schimmel & Co., Bericht April 1905, 50 u. nach unveröffentl. Bestimmungen.
- Houben, Berl. Berichte 35 (1902), 3590. Power u. Lees, Journ. chem. Soc. 81 (1902), 1585.
- 77. Siehe No. 24. Pinette, Liebigs Annalen 243 (1888), 46.
- 78. Schimmel & Co., unveröffentl. Beobachtung. Thoms u. Biltz, Zeitschr. d. allg. österr. Apoth. Ver. 43 (1904), 943.
- 79. Brühl, Berl. Berichte 32 (1899), 1224. Semmler, Berl. Berichte 25 (1892), 3353.
- 80. Eykman, Berl. Berichte 22 (1889), 2739.
- 81. Young, Journ. chem. Soc. 55 (1881), 483.
- 82. Bertram u. Walbaum, Journ. f. prakt. Chem. II. 45 (1892), 590.
- 83. Walbaum u. Hüthig, Journ. f. prakt. Chem. II. 66 (1902), 52.
- 84. Tiemann u. Schmidt, Berl. Berichte 29 (1896), 907.
- 85. Minguin u. de Bollemont, Compt. rend. 134 (1902), 609.
- 86. Krafft, Berl. Berichte 16 (1883), 3018.
- 87. van Renesse, Liebigs Annalen 166 (1873), 80.
- 88. Bertram u. Gildemeister, Journ. f. prakt. Chem. II. 49 (1894), 188.
- 89. Peine, Berl. Berichte 17 (1884), 2110. Perkin, Journ. chem. Soc. 69 (1896), 1247; Schimmel & Co., unveröffentl. Beobachtung. Siehe No. 24.
- 90. Bertram u. Gildemeister, Journ. f. prakt. Chem. II. 39 (1889), 353.
- 91. Perkin, Journ. chem. Soc. 55 (1881), 551. Siehe No. 24.
- 92. Krafft, Berl. Berichte 23 (1890), 2360.
- 93. Siehe No. 28. G. Niederschulte, Über den Dampfdruck fester Körper, Dissert., Erlangen 1903.
- 94. Tiemann u. Krüger, Berl. Berichte 26 (1893), 267.
- 95. Bertram u. Gildemeister, Journ. f. prakt. Chem. II. 39 (1889), 349.
- 96. E. Erdmann, Berl. Berichte 31 (1898), 356.
- 97. Schultz, Liebigs Annalen 174 (1874), 205. Siehe No. 24.
- 98. Schimmel & Co., Bericht April 1893, 62.
- 99. K. Stelzner, Über den Dampfdruck fester Körper, Dissert., Erlangen 1901.
- 100. Schimmel & Co. unveröffentl. Beobachtung.
- 101. Krafft u. Noerdlinger, Berl. Berichte 22 (1889), 816.
- 102. Ciamician u. Silber, Berl. Berichte 23 (1890), 1164.
- 103. Krafft, Berl. Berichte 16 (1883), 1714.
- 104. Walbaum, Journ. f. prakt. Chem. II. 62 (1900), 136.
- 105. Krafft, Berl. Berichte 16 (1883), 3018.
- 106. Brunner, Berl. Berichte 19 (1886), 2218.

- 107. Einhorn u. Hollandt, Liebigs Annalen 301 (1898), 113.
- 108. Schimmel & Co., Bericht Oktober 1899, 20; April 1900, 11.
- 109. E. Erdmann, Journ. f. prakt. Chem. II. 56 (1897), 143.
- 110. K. Stelzner, siehe No. 99.
- 111. Ciamician u. Silber, Berl. Berichte 29 (1896), 1799.
- 112. Siehe No. 24. Krafft u. Schönherr, Berl. Berichte 22 (1889), 821.
- 113. Siehe No. 24 u. 112. Speranski, Zeitschr. f. physik. Chem. 46 (1903), 76.
- 114. Wallach, Liebigs Annalen 279 (1894), 395. Schimmel & Co., Bericht April 1892, 42.
- Richardson, Journ. chem. Soc. 49 (1886), 764. Fischer u. Harries, Berl. Berichte 35 (1902), 2158.
- 116. Semmler, Berl. Berichte 23 (1890), 1803. Thoms, Berl. Berichte 36 (1903), 3447.
- 117. Krafft u. Vorster, Berl. Berichte 26 (1893), 2813. Krafft u. Lyons, Berl. Berichte 27 (1894), 1761.
- 118. Krafft, Berl. Berichte 12 (1879), 1664 u. 1668; 15 (1882), 1687; 16 (1883), 1714. Siehe No. 48.
- 119. Fittig u. Schwitz, Liebigs Annalen 193 (1878), 134. Siehe No. 48.
- 120. Krafft, Berl. Berichte 16 (1883), 3018.
- v. Soden, Arch. der Pharm. 238 (1900), 353. Schimmel & Co., Bericht April 1899, 43.
- 122. Bertram u. Gildemeister, Arch. der Pharm. 228 (1890), 483.
- 123. Krafft u. Noerdlinger, Berl. Berichte 22 (1889), 816.
- 124. Wislicenus, Liebigs Annalen 275 (1893), 327.
- 125. Callender u. Griffiths, Chem. News 63 (1891), 1; s. No. 48 u. 116.
- 126. Krafft, Berl. Berichte 16 (1883), 1714.
- 127. Siehe No. 121.
- 128. Walbaum, Journ. f. prakt. Chem. II. 73 (1906), 488.
- 129. Krafft u. Noerdlinger, Berl. Berichte 22 (1889), 811; 23 (1890), 2360.
- 130. Young, Journ. chem. Soc. 59 (1891), 626.
- 131. Krafft u. Noerdlinger, siehe No. 123.
- 132. Krafft, Berl. Berichte 12 (1879), 1664; 15 (1882), 1687; 16 (1883), 1714; 25 (1892), 478. Siehe No. 48.
- 133. Krafft, Berl. Berichte 16 (1883), 1714.
- 134. Erdmann u. Huth, Berl. Berichte 31 (1898), 358.
- 135. Schweitzer, Liebigs Annalen 264 (1891), 195. Siehe Nr. 41. K. Stelzner, Über den Dampfdruck fester Körper, Dissert., Erlangen 1901. G. Niederschulte, Über den Dampfdruck fester Körper, Dissert., Erlangen 1903.
- 136. Callender u. Griffiths, Chem. News 63 (1891), 1. Siehe No. 41.
- Hertz, Wiedemanns Annalen 17 (1882), 193. Ramsay u. Young, Zeitschr.
 f. physik. Chem. 1 (1887), 252. Callender u. Griffiths, Chem. News 63 (1891), 1. Pfaundler, Wiedemanns Annalen 63 (1897), 36.
- 138. Siehe No. 109; Fischer u. Harries, Berl. Berichte 35 (1902), 2158.
- 139. Siehe No. 38, 129 u. 132. Siehe Fischer u. Harries in No. 138.
- 140. v. Recklinghausen, Berl. Berichte 26 (1893), 1515. Siehe No. 41. K. Stelzner, Über den Dampfdruck fester Körper, Dissert., Erlangen 1901.

- 141. Callender u. Griffiths, Chem. News 63 (1891), 1. Regnault, Rél. des exp. 2, 526. C. Barus, Phil. Mag. V, 29 (1890), 141.
- 142. Krafft, Berl. Berichte 19 (1886), 2218.
- 143. Carnelly u. Williams, Journ. chem. Soc. 37 (1880), 126. Gebhardt, Dissert., Erlangen 1904; Beibl. zu Wiedemanns Annalen 29 (1903), 945, nach Graetz. H. Gruener, Chem. Zentralbl. 1907, I. 2021. O. Ruff u. H. Graf, Chem. Zentralbl. 1907, I. 2022.
- 144. Barus, Phil. Mag. V, 29 (1890), 141.
- 145. Venable, Berl. Berichte 13 (1880), 1650.
- 146. Wislicenus u. Hentschel, Liebigs Annalen 275 (1893), 322.
- 147. André, Compt. rend. 126 (1898), 1107.
- 148. Schiff, Liebigs Annalen 220 (1883), 103.
- 149. Schimmel & Co., Bericht April 1903, 42; Oktober 1903, 42.
- 150. Zincke, Liebigs Annalen 152 (1869), 1. Möslinger, Berl. Berichte 9 (1876), 998; Liebigs Annalen 185 (1877), 51.
- 151. Harries, Berl. Berichte 31 (1898), 43.
- 152. Pelouze u. Cahours, Jahresber. d. Chem. 1863, 529. Lemoine, Bull. Soc. Chim. 41, 164. Stephan, Journ. f. prakt. Chem. II. 62 (1900), 523.
- 153. Schimmel & Co., Bericht Oktober 1904, 91.
- 154. Power u. Lees, Proceed. chem. Soc. 18 (1902), 102. Mannich, Berl. Berichte 35 (1902), 2144. Houben, Berl. Berichte 35 (1902), 3587.
- 155. Tiemann u. Schmidt, Berl. Berichte 30 (1897), 22.
- 156. Tiemann u. Schmidt, Berl. Berichte 29 (1896), 913.
- 157. Tiffeneau, Compt. rend. 134 (1902), 846.
- Bayer & Co., Chem. Zentralbl. 1898, II. 952; 1899, I. 462. Bouveault, Bull. Soc. Chim. III. 17 (1897), 369.
- 159. Nef, Liebigs Annalen 310 (1900), 318.
- 160. Haller u. Martine, Compt. rend. 140 (1905), 1303.
- Hesse u. Zeitschel, Journ. f. prakt. Chem. II. 66 (1902), 501; Chem. Ztg. 27 (1903), 897.
- 162. Siehe No. 154.
- 163. Harries, Berl. Berichte 33 (1900), 857.
- 164. Tiemann u. Schmidt, Berl. Berichte 29 (1896), 907. Walbaum u. Stephan, Berl. Berichte 33 (1900), 2306. Schimmel & Co., Bericht Oktober 1904, 82.
- 165. Perkin, Journ. chem. Soc. 69 (1896), 1244.
- 166. Tiemann u. Schmidt, Berl. Berichte 29 (1896), 907.
- 167. Klages, Berl. Berichte 35 (1902), 2252.
- 168. Zincke, Liebigs Annalen 152 (1869), 6.
- Tiemann u. Schmidt, Berl. Berichte 30 (1897), 33. Semmler, Berl. Berichte 26 (1893), 2255. Tiemann, Berl. Berichte 31 (1898), 2899.
- 170. Krafft, Berl. Berichte 13 (1880), 1414; 16 (1883), 1717; 23 (1890), 2361.
- 171. Semmler, Berl. Berichte 23 (1890), 3556.
- 172. A. W. Hofmann, Berl. Berichte 7 (1874), 520.
- 173. Krafft, Berl. Berichte 19 (1886), 2987.
- 174. Stylos, Berl. Berichte 20 (1887), 2181.
- 175. Möslinger, Liebigs Annalen 185 (1877), 57.

- 176. Ciamician u. Silber, Berl. Berichte 29 (1896), 1799.
- 177. Schimmel & Co., Bericht Oktober 1899, 40.
- 178. Ciamician u. Silber, Berl. Berichte 21 (1888), 913.
- 179. Rousset, Bull. Soc. Chim. III. 15 (1896), 59.
- 180. Anschütz u. Berns, Berl. Berichte 20 (1887), 1392.
- 181. Kraut u. Claisen, Berl. Berichte 20 (1887), 647. v. Pechmann, Berl. Berichte 31 (1898), 2645.
- 182. Wittenberg u. V. Meyer, Berl. Berichte 16 (1883), 501. Krafft u. Weilandt, Berl. Berichte 29 (1896), 1326.
- 183. Marshall, Journ. chem. Soc. 89 (1906), 1371.
- 184. E. Erdmann, Berl. Berichte 31 (1898), 358.

In der beigegebenen Tafel sind von einigen Körpern die Beziehungen zwischen Druck und Temperatur in Form von Kurven wiedergegeben. Auf der Abszissenaxe sind die Temperaturen, auf der Ordinatenaxe die Dampfdrucke eingetragen. Die Tafel zeigt anschaulich die Divergenz der Kurven. Bei manchen von ihnen kann man sehen, daß sie besonders bei höheren Temperaturen teilweise parallel verlaufen, aber bei niedriger Temperatur divergieren.

Theoretische und praktische Schlussfolgerungen aus der Siedepunktstabelle. In der Siedepunktstabelle sind die beiden, einen gesättigten Dampf wesentlich bestimmenden Eigenschaften, Temperatur und Druck, angeführt. Die Zahlen sind nach den zuvor erklärten Methoden gewonnen. Nur bei einer dieser Methoden wird zur Erzeugung des gesättigten Dampfes der Vorgang des Siedens benutzt, so daß der Ausdruck "Siedepunktstabelle" für die Daten in dieser Tabelle eigentlich ungenau ist. Er ist nur der Kürze halber gewählt und weil er dem organischen Chemiker sofort verständlich ist. Betont möge aber sein, daß es für die beiden korrespondierenden Bestimmungswerte Druck und Temperatur eines gesättigten Dampfes ganz gleichgültig ist, ob der untersuchte Dampf durch Sieden oder Sublimieren nach der dynamischen Methode, durch Oberflächenverdampfung nach der statischen Methode, durch Kondensation eines überhitzten Dampfes nach der Isothermenmethode oder sonstwie entwickelt ist. Nur eine Voraussetzung muß unter allen Umständen erfüllt sein, daß er vollkommen gesättigt ist; er muß sich mit seinem flüssigen oder festen Körper im Gleichgewichtszustand befinden.

Die Tabelle gewährt durch die Art ihrer Anordnung sehr interessante Einblicke in die Dampfbildung eines Körpers. Sie gibt auch einigen Aufschluß über die Unterschiede in der Dampfbildung von verschiedenen Körpern, je nach deren Flüchtigkeit und je nach deren chemischer Konstitution.

Ausnahmslos nimmt die Dampfentwicklung bei jedem Körper mit der Temperatur zu; der Druck steigt mit der Temperatur. Aber die Zunahme des Druckes vollzieht sich nicht proportional der Temperatursteigerung, sondern er wächst progressiv. Bei dem Äthylalkohol z. B. sind im Mittel 2,08° Temperaturerhöhung nötig, um zwischen 5 und 10 mm Dampfdruck die Dampfentwicklung soweit zu vermehren, daß sich der Druck um einen Millimeter erhöht, während zwischen 700 und 760 mm eine Temperatursteigerung von nur 0,035° für dieselbe Druckvergrößerung genügt.

Das progressive Anschwellen der Dampfentwicklung durch Temperaturerhöhung bei jedem Körper läßt sich so erklären, daß zwischen den gleichartigen Molekülen des Körpers eine Affinität besteht, die durch Temperaturerhöhung gelockert wird, was eine größere Dampfentwicklung verursacht. Kommen wir auf die schon früher gefolgerte Annahme zurück, daß alle flüssigen und festen Körper molekular assoziiert sind, so würde sich aus dieser Annahme heraus auch das Verhalten der Körper bei der Verdampfung erklären, indem sich die Molekularaggregate durch Temperatursteigerung in ihrem Umfange verringern und leichter bis zur Größe der Dampfmoleküle gespalten werden.

Vergleichen wir ferner die Körper untereinander. Als Beispiel mögen Wasser und Quecksilber dienen. Um Wasser unter einem Druck von 5 mm zum Sieden zu bringen, genügt eine Temperatur von 1,3°, während Quecksilber hierzu einer Erhitzung bis auf 164,4° bedarf. Jedes Millimeter Druckerhöhung innerhalb der Druckgrenzen von 5 bis 10 mm verlangt bei dem Wasser, um es im Sieden zu erhalten, nur eine Steigerung der Temperatur um 1,98° im Mittel, während unter den gleichen Verhältnissen für Quecksilber 3,82° nötig sind. Zwischen den Dampfdrucken 700 bis 760 mm sind die mittleren Temperaturwerte für ein Millimeter Druckänderung bei Wasser 0,037°, bei Quecksilber 0,075°.

Mit dem Sinken des äußeren Druckes nimmt die Siedetemperatur bei verschiedenen Körpern ungleich ab. Maßgebend hierfür ist einerseits die Höhe des normalen Siedepunktes, andererseits die chemische Konstitution.

Thermisches Verhalten von Körpern verschiedener chemischer Konstitution. Wenn Temperatur und Druck eines gesättigten Dampfes beobachtet werden, so ist damit die Größe einer Dampfentwicklung festgestellt; denn durch die Höhe eines Dampfdruckes wird ausgedrückt, wieviel Dampfmoleküle sich bis zu der bestimmten Temperatur von dem flüssigen oder festen Molekülkomplexe losgelöst oder, nach der anderen Anschauung, die Molekularattraktion des flüssigen oder festen Zustandes überwunden haben und, sich frei im Raume bewegend, durch ihre Stöße auf die Wände den Dampfdruck äußern. So ist also ein Siedepunkt, resp. Sublimationspunkt mit seinem zugehörigen Dampfdruck der Zahlenwert für die Dampfbildung des betreffenden Körpers.

Aus der Siedepunktstabelle erhellt nun, daß die Dampfbildung durch die chemische Konstitution in sehr bemerkenswerter Weise beeinflußt wird. Klar tritt dieser Einfluß hervor, wenn das Siedeverhalten verschieden zusammengesetzter Verbindungen von gleichem, normalem Siedepunkt verglichen wird.

In der nachstehenden Übersicht sind einige Gruppen von Körpern mit annähernd gleich hohem, normalem Siedepunkte aus der Haupttabelle zusammengestellt.

Temperaturabfall ähnlich siedender, aber verschieden konstituierter Verbindungen bei abnehmendem Druck.

		Siedetem	peratur un	ter dem Di	rucke von
		760 mm	30 mm	10 mm	5 mm
1	Methylalkohol	66,50	+1,30	- 14,6°	- 23,5°
•	n-Hexan	69,0	-7,9	— 25,7	- 34,1
	n-Propylalkohol	97,4	30,8	+13,2	+ 3,5
	Chloralhydrat	97,5	36,0	+ 18,2	_
2	Chloral	97,7	16,0		_
2	n-Heptan	98,4	16,3	- 2,1	-12
	Äthylpropionat	99,0	21,1	+ 2,1	- 7,8
	Wasser	100,0	29,0	+11,4	+ 1,3
	Chloral-Äthylalkohol	116,4	54,1	40,4	32,8
3	n-Butylalkohol	117,6	48	31,0	21,7
	Isopropylisobutyrat	120,2	36,4	16,4	7

v. Rechenberg, Gewinnung und Trennung der äther. Öle.

		Siedetemperatur unter dem Drucke von			
		760 mm	30 mm	10 mm	5 mm
	p-Xylol	 138,9	48,0	26	_
4	Propionsäure	 140,3	60,4	42,1	29,5
-	Propylenbromid	 141,0	50,6	29	15,5
	Propylbutyrat	 142,7	55,0	24	-
	Isobuttersäure	 153,3	71,4	51,0	38,8
	Önanthaldehyd	 155	61,9	45,3	_
5	Isopropylbenzol	 155,1	60,8	40	_
	Brombenzol	 155,5	61,2	40,6	29,8
	Pinen	 156	63	38	22
	Jod	 185,3	92,2	72,4	61,0
	Jodbenzol	 188,2	87,0	63,3	50,5
6	Monochloressigsäure	 188,9	104,6	87,7	71,4
0	o-Kresol	 190,1	98,8	77,6	65,5
	Benzonitril	 190,6	92,1	69,1	56,9
	Undecan	194,5	96,5	72,0	-
	n-Caprylsäure	237,5	144,9	124,6	112
7	p-Nitrotoluol	237,7	130,4	105,6	92,3
	Chinolin	237,8	129,0	103,0	89,0
	Benzoesäure	249,0	155,5	132,5	116,2
8	n-Tetradecan	252,5	145,5	121	102
0	n-Pelargonsäure	253,4	159,5	136,9	120
	α-Chlornaphthalin	259,3	145,1	118,6	104,8
9	«-Bromnaphthalin	281,1	162,3	134,0	117,5
1	Glycerin	290,0	191,8	167,2	155,5

Durch die Untersuchungen der Oberflächenspannung ist nachgewiesen, daß gewisse chemische Körperklassen (vorzugsweise sind es die Verbindungen mit freiem Hydroxyl) im flüssigen resp. festem Zustande aus lockeren Molekülaggregaten bestehen, die beim Erwärmen in kleinere Aggregate zerfallen. Eben dieselben Verbindungen zeigen auch bei Erhöhung der Temperatur eine größere Steigerung des Dampfdruckes, also eine stärkere Dampfbildung, denn wenn man verschieden zusammengesetzte Körper mit gleichem Siedepunkte unter einem bestimmten niedrigen Drucke vergleicht, so beginnen die genannten Verbindungen bei Erhöhung des Destillationsdruckes früher zu sieden als die anderen Verbindungen. Oder geht man umgekehrt von der Ver-

dampfung unter höherem Drucke aus, z. B. unter Atmosphärendruck, so ist der Siedepunkt dieser Hydroxylverbindungen bei niedrigem Drucke höher als der der anderen. Hiermit ist der polymolekulare Zustand der Hydroxylkörper und ebenso dessen labile Beschaffenheit bestätigt. Nun unterscheiden sich aber im Siedeverhalten nicht nur die Hydroxylkörper von den Nichthydroxylkörpern, sondern in dieser Hinsicht gleicht keine der verschiedenen chemischen Körperklassen der anderen. Die größte Steigerung des Dampfdruckes zeigen beim Erwärmen die labilen Additionsverbindungen. Als Vertreter dieser heterogenmolekularen Assoziationen sind in der Zusammenstellung Chloralhydrat und Chloraläthylalkoholat angeführt. Ihnen folgen die homogenmolekularen Assoziationen in der nachstehenden Reihenfolge.

Säuren der Fettreihe, Alkohole der Fettreihe, Wasser, Säuren der aromatischen Reihe, Phenole, Alkohole der aromatischen Reihe, Nitrokörper,

Ammoniakderivate,
Ketone,
Aldehyde,
Ester,
Äther,
Halogenderivate der KohlenwasserKohlenwasserstoffe. [stoffe,

Gemäß dieser Assoziationsskala bestehen die Säuren und Alkohole aus den labilsten Molekülkomplexen, die Kohlenwasserstoffe aus den stabilsten.

Für die Destillationspraxis folgt hieraus, daß es bei der Fraktionierung eines Flüssigkeitsgemisches von wesentlicher Bedeutung sein kann, unter welchem Druck destilliert wird. Jodbenzol und Monochloressigsäure z. B. sieden unter Atmosphärendruck fast gleich, unter 5 mm oder 10 mm dagegen mit 21° Temperaturdifferenz. Andererseits sieden Isoamylbenzoat und n-Caprylsäure unter 10 mm Druck bei 124,8° und 124,6°, aber unter Atmosphärendruck bei 262° und 237,7°. Ein Gemisch dieser beiden Verbindungen ließe sich unter Minderdruck nicht fraktionieren, wohl aber unter Atmosphärendruck. Ebenso ist es mit Benzoesäure, Pelargonsäure und Bromnaphthalin, die unter 10 mm Druck bei 132,5°, 136,9° und 134,0° sieden, unter 760 mm bei 249,0°, 253,4° und 281,1°. Hat man im Verlauf der fraktionierten Destillation eines homogen Körpergemisches, das nicht mit Minor- oder Majorsiedetemperatur (s. weiterhin) verdampft, eine Fraktion erhalten, die wegen des annähernd konstanten

Siedepunktes trotz wiederholter Destillation nicht weiter zu trennen ist, so wird die Fraktion bei Destillation unter einem Druck, der von dem ersteren möglichst weit abweicht, sei es unter einem höheren oder einem niedrigeren Druck, mit stark abweichenden Siedetemperaturen verdampfen, wenn die Fraktion neben Hydroxyl- auch Nichthydroxylkörper enthält.

Thermisches Verhalten von Körpern verschiedener Flüchtigkeit. Die Höhe des Siedepunktes eines Körpers hängt nicht nur von der Art der chemischen Konstitution, sondern auch von der Anzahl der Atomgruppen im Molekül ab, mit anderen Worten, von dem Umfang des Moleküls, wenn auch in viel geringerem Maße. Die Substitution eines Wasserstoffatoms in einem Molekül durch eine Hydroxylgruppe erniedrigt den Dampfdruck, resp. erhöht den Siedepunkt des Körpers sehr stark, weil die entstandenen Moleküle mit freiem Hydroxyl sich zu größeren Komplexen vereinigen. Methan hat den normalen Siedepunkt —164°, Methylalkohol dagegen +64,7°, Äthan —93° und Äthylalkohol +78,2°, schließlich Wasserstoff -253° und Wasser + 100°. Dem gegenüber steigt der Siedepunkt eines Körpers durch Eintritt der Gruppe CH, sehr viel weniger. Erst durch eine größere Anzahl von CH,-Gruppen wird der Siedepunkt stärker erhöht.

Vergleichen wir die Tensionskurven von Körpern mit sehr abweichendem Siedepunkte, so fällt als interessantes Ergebnis auf, daß die Siedetemperatur mit der gleichen Abnahme des Druckes um so schneller fällt, je höher der normale Siedepunkt ist. Als Beispiel mögen zwei Kohlenwasserstoffe und zwei Alkohole dienen. Unter 760 mm Druck siedet Jodbenzol bei 188,2%, α-Bromnaphthalin bei 281,1%, unter 5 mm dagegen ersterer Körper bei 50,5°, letzterer bei 117,5°. Bei Jodbenzol fällt die Siedetemperatur um 137,7 Grade, bei Bromnaphthalin aber um 163,6 Grade. Dasselbe Bild geben n-Propylalkohol (Sdp. 97,4°) und Glycerin (Sdp. 290°), deren Temperaturabfall von 760 mm bis herab zu 5 mm Dampfdruck 93,9 und 134,5 Grade beträgt. Der Dampfdruck, d. i. die Dampfbildung, der unter normalem Druck höher siedenden Körper nimmt also bei gleichem Temperaturabfall nicht so stark ab als bei den niedrig siedenden. Zwischen den Siedetemperaturen unter 760 mm und 5 mm Druck fällt der Dampfdruck bei dem Jodbenzol für jeden Temperaturgrad um

5,48 mm im Mittel, bei dem α-Bromnaphthalin nur um 4,61 mm und — um noch einen Hydroxylkörper heranzuziehen — bei der Monochloressigsäure um 6,42 mm. Analog also dem Verhalten der Hydroxylkörper im Vergleich mit den Nichthydroxylkörpern verdampfen die niedriger siedenden Verbindungen bei gleicher Temperatursteigerung reichlicher als die höher siedenden, zum Zeichen, daß ihre Polymolekel weniger fest zusammenhalten.

Für die Praxis folgt hieraus, daß eine Destillation unter Minderdruck ein homogenes, nicht mit Minor- oder Majorsiedetemperatur verdampfendes Flüssigkeitsgemisch gleich oder ähnlich konstituierter Verbindungen von verschiedenem Siedepunkte besser trennt, als dies ceteris paribus eine Destillation unter Atmosphärendruck vermag.

Wird z. B. ein äquimolekulares Gemisch von Benzol (Sdp. 80,2°) und α-Bromnaphthalin (Sdp. 281,1°) unter Atmosphärendruck destilliert, so hat das direkt aus der Flüssigkeit sich erhebende Dampfgemisch eine Temperatur, die annähernd dem Mittel der beiden Siedetemperaturen der rein für sich destillierenden Körper entspricht, d. i. gegen 180°. Das Dampfgemisch wird dann ungefähr 1,97 Gew. °/° Bromnaphthalin enthalten. Dagegen sind nur gegen 0,29 Gew. °/° Bromnaphthalin in dem Dampfgemisch vorhanden, wenn unter Minderdruck mit 90° Dampftemperatur destilliert wird. Die Werte sind die Verhältniszahlen aus den Produkten von Dampfdruck und Molekulargewicht.

$$\frac{56 \cdot 207 \cdot 100}{56 \cdot 207 + 7617 \cdot 78} = 1,97 \text{ und } \frac{1,1 \cdot 207 \cdot 100}{1,1 \cdot 207 + 1008 \cdot 78} = 0,29$$

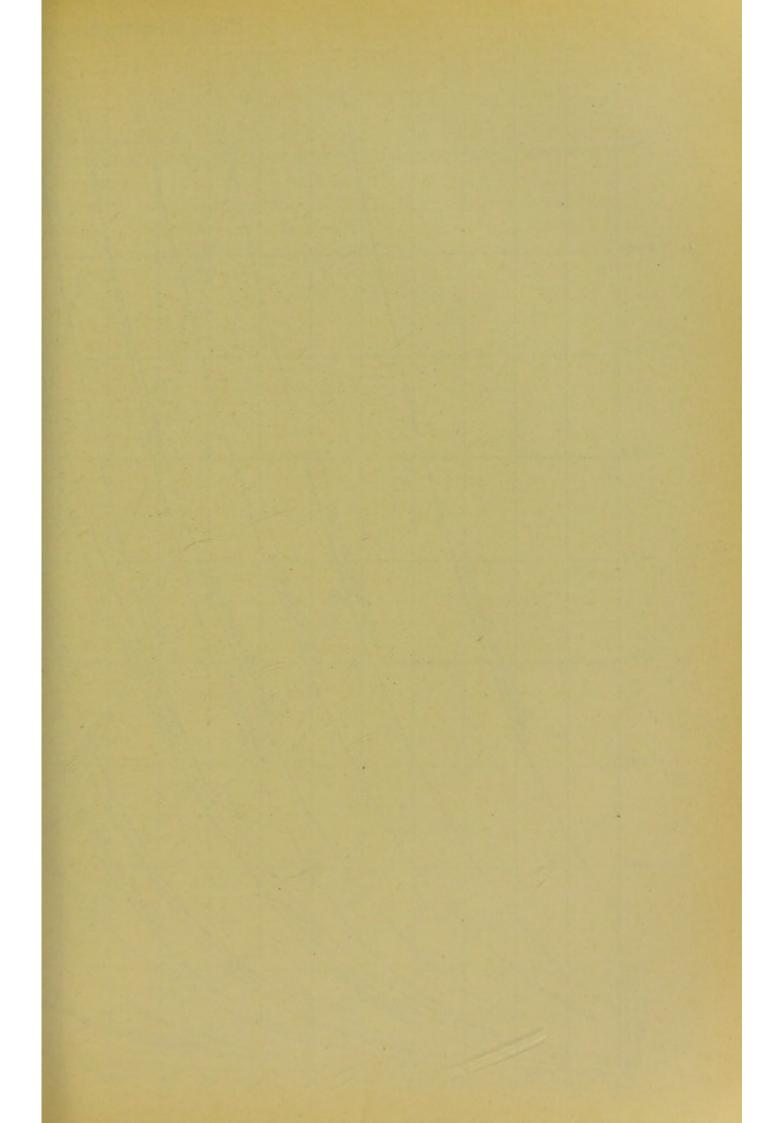
Weil die Verdampfungstemperatur bei der Verdunstung an der Luft noch niedriger als bei einer Minderdruckdestillation ist, läßt die bekannte Geruchsprobe, nach der man einen Papierstreifen mit der Flüssigkeit tränkt und von Zeit zu Zeit daran riecht, die Bestandteile erfahrungsgemäß im allgemeinen besser erkennen, als wenn man die durch eine Minderdruck-Destillation gewonnenen Fraktionen nach ihrem Geruch prüft.

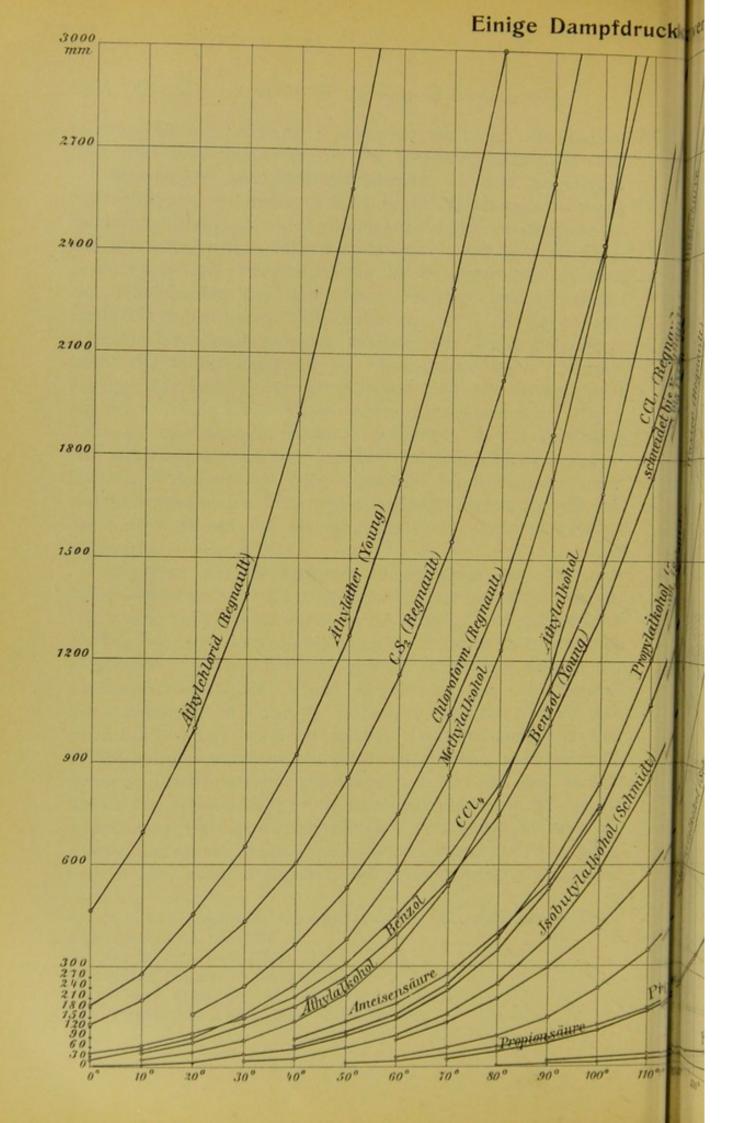
Ameisensäure und Essigsäure bilden eine Ausnahme im Siedeverhalten der Säuren. Ihre Siedetemperatur fällt mit sinkendem Destillationsdrucke wenig anders als die von Nichthydroxylkörpern. Der Grund liegt darin, daß die Dampfmoleküle dieser beiden Säuren nicht nur bei höherer Temperatur und

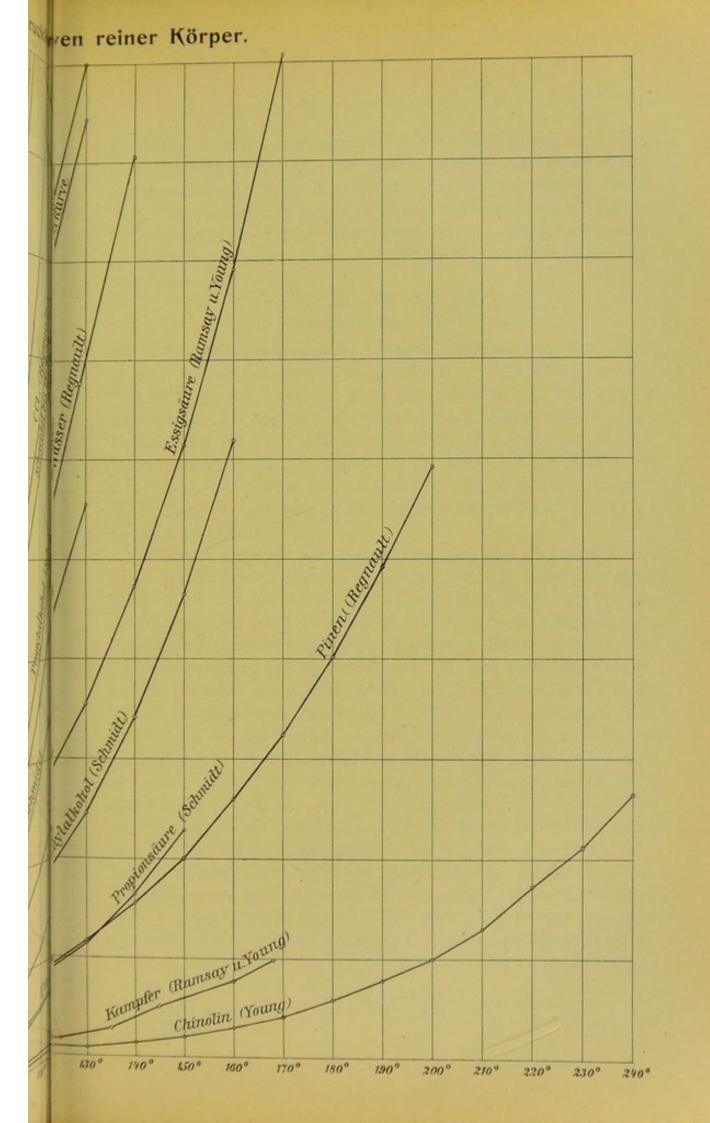
höherem Drucke, wie ganz allgemein bei allen chemischen Individuen, sondern auch bei niederer Temperatur assoziiert sind.

Siedepunkts- und Dampfdruckkurven. In dem beigefügten Kurvenbild sind von mehreren Körpern die Beziehungen zwischen Temperatur und Druck ihres gesättigten Dampfes wiedergegeben. Auf der Abszissenaxe eines Koordinatensystems sind die Temperaturen, auf der Ordinatenaxe die Drucke aufgetragen. Werden die Schnittpunkte der von diesen Punkten aus errichteten Senkrechten durch eine Linie verbunden, so zeigt die so entstandene Siedepunktskurve in anschaulicher Weise die Änderungen der Dampftemperatur bei variierendem Druck. Werden dagegen die Drucke auf der Abszisse und die Temperaturen auf der Ordinate vermerkt, so wird die so konstruierte Kurve Tensions- oder Dampfdruckkurve genannt1). In der Zeichnung läßt sich das verschiedene Verhalten der Hydroxylkörper gegenüber den Nichthydroxylkörpern erkennen. Die Kurven der labiler molekularassoziierten Hydroxylverbindungen schneiden die benachbarten Kurven der stabiler assoziierten Nichthydroxylverbindungen.

Reduktion des beobachteten Siedepunktes auf 760 mm Quecksilberhöhe. Für die Umrechnung eines innerhalb der gewöhnlichen Luftdruckschwankungen ermittelten Siedepunktes auf 760 mm haben Ramsay und Young²) zuerst die leitenden Ideen aufgestellt. Crafts³) hat eine größere Reihe von Werten der Siedepunktänderung für 1 mm Abweichung von dem Normaldruck bestimmt, die Young⁴), Beckmann und Fuchs⁵) um eine beträchtliche Zahl vermehrt haben. Das Rechnungsverfahren beruht auf der Annahme, die zwar nicht genau aber innerhalb geringer Druckintervalle annähernd zutrifft, daß bei ähnlich konstituierten Verbindungen die Siedepunktsänderung für gleiche Abweichung von dem Normaldruck proportional mit dem absoluten Siedepunkt steigt. Eine besondere Quelle der Ungenauigkeit ist aber dadurch gegeben, daß Verbindungen verschiedener


¹) In dem beigefügten Kurvenbild muß die Überschrift lauten: "Einige Siedepunktskurven reiner Körper".


²) Phil. Mag. V. 20 (1885), 515.


⁸) Berl. Berichte 20 (1887), 709.

⁴⁾ Journ. Chem. Soc. 81 (1902), 777.

⁵) Zeitschr. f. physik. Chem. 18 (1899), 495.

Konstitution auch abweichendes Siedeverhalten zeigen. Nach Young nehmen besonders die Säuren, Alkohole und Phenole eine Sonderstellung in dieser Hinsicht ein. Zugleich bemerkt er, daß es nicht möglich ist, eine genaue und allgemein verwendbare Formel zur Reduktion des beobachteten Siedepunktes auf den normalen zu geben¹). Young stellt zwei Formeln zur Berechnung der Korrektion auf:

1.
$$C = 0,00010 (760 - p) (273 + t),$$

2. $C = 0,00012 (760 - p) (273 + t),$

worin C den Korrektionswert bedeutet, welcher der unter dem Drucke p beobachteten Siedetemperatur t hinzuzuzählen ist. Formel 1 gilt für Wasser, Säuren und Alkohole der fetten Reihe und Phenole, Formel 2 für alle übrigen Verbindungen, einschließlich Ketone, Sesquiterpenalkohole, aromatische Alkohole und Säuren. Unterscheidet sich der Luftdruck, bei dem der Siedepunkt bestimmt ist, nicht über 25 mm von dem Normaldruck, so wird die Fehlergröße nur ausnahmsweise ein Zehntel Grad des Siedepunktes erreichen.

Ebenso einfach und genau läßt sich die Korrektion mit Hilfe der Siedepunktstabelle anbringen. In der ersten Vertikalreihe nach der Spalte mit den chemischen Formeln sind die Werte der Temperaturkorrektion für 1 mm Abweichung des Barometerstandes von dem normalen Druck 760 mm angegeben. Soll ein beobachteter Siedepunkt auf 760 mm reduziert werden, so ist zunächst die Korrektur für die Temperatur des Quecksilbers im Barometer anzubringen. Wir wollen annehmen, daß es sich um den Siedepunkt von n-Pentan handle, der bei 745 mm (auf 0° korr.) zu 35,7° gefunden sei. 1 mm Abweichung vom normalen Druck bei n-Pentan entspricht, wie in der betreffenden Spalte angegeben ist, einer Siedepunktsänderung von 0,038°; es sind also 0,038 (760-745) = 0,57° der beobachteten Siedetemperatur von 35,7º hinzuzuzählen, wonach der korrigierte normale Siedepunkt des n-Pentans 36,27° beträgt. Ist für die fragliche Substanz der Temperaturkoëffizient für 1 mm Druckdifferenz nicht angeführt, so ist der Wert des nächst höher oder niedriger siedenden Körpers in der Tabelle zu benutzen, der nach der Assoziationstabelle die gleiche Konstitution mit dem Versuchskörper

¹⁾ S. Young, Fractional Distillation 1903, S. 14.

hat. Ist dies nicht möglich, ohne einen Körper mit sehr weit abliegendem Siedepunkt wählen zu müssen, so halte man wenigstens an der oben genannten Unterscheidung des Wassers, der Säuren und Alkohole der fetten Reihe von allen übrigen Verbindungen fest. Beispielsweise ist für 1 mm bei Limonen 0,057°, bei Guajacol 0,054° oder bei Borneol 0,059° zu berechnen.

Reduktion eines unter Minderdruck beobachteten Siedepunktes auf einen anderen Minderdruck. Soll zur Identifizierung einer Verbindung ein unter Minderdruck ermittelter Siedepunkt auf irgend einen anderen niedrigen Druck umgerechnet werden, so wird, wie oben angegeben ist, verfahren, unter Benutzung der in der Siedepunktstabelle vermerkten Differenzwerte des Siedepunktes für 1 mm Druckänderung. Als Vergleichskörper wähle man einen solchen, dessen Siedepunkt von dem des Versuchskörpers nicht sehr, d. h. nicht etwa über 50° darunter oder darüber abweicht, und der nach seiner Konstitution mit dem Versuchskörper übereinstimmt oder von ihm in der Reihenfolge der S. 531 aufgestellten Assoziationsskala nicht zu weit abliegt. Hat man z. B. von Menthylformiat (S. 508) unter 7 mm Druck eine Siedetemperatur von 82º beobachtet und will die Siedetemperatur unter 10 mm berechnen, so würde als Temperaturänderung für 1 mm im Mittel zwischen 10 und 5 mm der S. 504 bei Methylbenzoat angeführte Wert 2,58° zu nehmen sein, so daß 3.2,58 = 7,7° den unter 7 mm beobachteten 82° zuzuzählen wären, um 89,7° als Siedetemperatur unter 10 mm zu geben, oder es würden zur Berechnung des Siedepunktes unter 5 mm Druck 2.2,58 = 5,2 von 82° abzuziehen sein, wonach 76,8° der Siedepunkt des Menthylformiats unter 5 mm Druck wäre.

Umrechnung eines Siedepunktes von Minderdruck auf Atmosphärendruck oder umgekehrt. Zuweilen kann es von Interesse sein, den normalen Siedepunkt aus einem unter Minderdruck bestimmten zu berechnen oder aus dem normalen Siedepunkt den Siedepunkt abzuleiten, der einem bestimmten Minderdruck entspricht. Eine wirklich befriedigende Regel gibt es für diese Berechnung nicht. Am besten benutzbar ist noch die von Ramsay und Young¹) aufgestellte Formel:

¹) Phil. Mag. 21 (1886), 33 und 22 (1886), 37, ferner Zeitschr. f. physik. Chem. 1 (1887), 250.

$$\frac{\mathsf{T}_1}{\alpha_1} = \frac{\mathsf{T}_2}{\alpha_2} + \mathsf{c}(\mathsf{T}_1 - \alpha_1).$$

die Seite 491 näher erklärt ist. Hierin ist c eine sehr kleine Größe und wird für zwei chemisch nahe verwandte Stoffe, besonders für Homologe, fast gleich 0, so daß für diese der Teil der Formel c $(T_1-\alpha_1)$ fortfällt. Wenn man daher aus der Siedepunktstabelle zur Berechnung die Siedepunkte eines im Sinne der Assoziationsskala näher verwandten Körpers anwendet, so kann man meistens auf ein leidlich richtiges Resultat rechnen. Jedoch werden in manchen Fällen Abweichungen von mehreren Graden vorkommen. Wie sehr selbst Körper von gleichem Siedepunkt und gleicher oder jedenfalls sehr ähnlicher Konstitution in ihrer Siedepunktskurve voneinander abweichen können, zeigt das Beispiel von Dimethylanilin und Methylanilin S. 504. Der Fehler wird bei der Umrechnung geringer, wenn man einen höheren Minderdruck benutzen kann, nicht gegen 5 mm sondern besser gegen 50 mm.

10. Kapitel.

Allgemeines über Lösungen.

In der Industrie der ätherischen Öle bildet die Kenntnis von dem Verhalten der Lösungen den Grund und Boden, auf dem sich jede Praxis der Destillation entwickeln muß, wenn sie nicht zur rohen, erfolglosen Empirie herabsinken will. Alles, was destilliert wird, sind Lösungen, konzentrierte und verdünnte Lösungen. Selbst die Reinigung einer einheitlich zusammengesetzten Flüssigkeit durch Destillation ist nichts anderes als die Verdampfung des Lösungsmittels aus einer verdünnten Lösung.

Die Lösungen und die Vorgänge innerhalb der Lösungen stehen in der physikalischen Chemie seit den letzten Jahrzehnten im Vordergrunde der Forschung. Ein großes Tatsachenmaterial hat sich angesammelt, ohne daß eine Brücke der Erkenntnis die einzelnen, dogmatisch aufzunehmenden Beobachtungen sinngemäß verbindet. Nur nächste, eng an das Experiment sich anlehnende deduktive Schlußfolgerungen sind sichergestellt. Für die Induktion fehlt die gemeinsame Basis. Die Vorgänge, die sich bei dem Auflösen eines Körpers in einem anderen abspielen, sind ihrem Wesen nach noch unbekannt.

Trotz v. d. Waals geistreicher Untersuchung über die Kontinuität der drei Aggregatzustände ist doch das eine klar, daß damit der flüssige und feste Aggregatzustand nicht zweifelsfrei erklärt sind. Solange man sich noch mit Recht streiten kann, ob sich im flüssigen oder festen Aggregatzustande die Gasmoleküle nur in engeren Bahnen um die Schwingungszentren bewegen, wie unter anderen Ramsay und Young und v. d. Waals annehmen, oder ob die größere Dichte und das abweichende Verhalten eines flüssigen oder festen Körpers von dem dampfförmigen in der Zusammenlagerung der Gasmoleküle zu Polymolekülen ihre Ursache findet, solange fehlt eine sichere Grundlage, von der aus der Auflöseakt erklärt und das Siedeverhalten der Lösungen gefolgert werden kann.

Die Ansicht, daß der Akt des Auflösens das Spiel chemischer Affinität sei, wurde vielfach ausgesprochen, so z. B. von Berthelot, von Young, von Guldberg und Waage. Dieser Auffassung treten Kremann und Ehrlich 1) bei. Jedoch ist nach Ansicht Letzterer zwischen den einfachen Lösungsaffinitäten und denjenigen Affinitätswirkungen, die sich bei der Bildung eigentlicher chemischer Verbindungen äußern, nicht nur ein gradueller, sondern auch ein prinzipieller Unterschied vorhanden.

Gehen wir von der Annahme aus, daß alle flüssigen und festen Körper aus Komplexen der Gasmoleküle bestehen, so läßt sich der Prozeß der Bildung einer homogenen Lösung in drei Akte zerlegt denken:

¹) Über die Fortexistenz von Molekülverbindungen und Kristallwasserhydraten im flüssigen Zustande. Monatsh. f. Chemie 28 (1907), 831.

- a) Trennung der aus gleichartigen Molekülen bestehenden Molekülaggregate der Komponenten in Molekülaggregate kleineren Umfanges oder in die Gasmoleküle oder in die Ionen. Durch Wärme wird die Trennung gefördert. Als Folge der Trennung tritt eine Erhöhung des Dampfdruckes ein, denn die Spaltungsprodukte müssen einen höheren Dampfdruck haben als die molekulare Verbindung zuvor. Außerdem ist eine Wärmeabsorption zu erwarten, und das Volumen muß zunehmen.
- b) Verteilung der dissoziierten Polymoleküle des gelösten Körpers und des Lösungsmittels in dem Raume der Lösung, analog dem Vermischen eines Gases mit einem anderen Gase. Variation der Temperatur beeinflußt diese Phase des Auflöseaktes wenig, nämlich nur insofern, als die Differenz zwischen Anfangs- und Endvolumen dadurch geändert wird.
- c) Vereinigung der entstandenen ungleichartigen Spaltungsprodukte der Komponenten zu verschieden großen und verschieden stabilen Molekülaggregaten. Für diesen Vorgang ist Wärme ein Hindernis. Als Resultat muß der Dampfdruck verringert resp. die Siedetemperatur erhöht werden, das Volumen wird verringert und die Wärmetönung bei diesem Vorgange muß positiv sein.

Die Dissoziation a und die Assoziation c spielen sich hiernach in jeder Beziehung im entgegengesetzten Sinne ab. Der Effekt dieser beiden Phasen ist durch die algebraische Summe beider Wirkungen gebildet. Hinsichtlich der Änderung des Dampfdrucks überwiegt aber stets die Assoziationswirkung, denn die Partialspannungen der Komponenten eines homogenen Gemisches sind erfahrungsgemäß immer kleiner als die Spannungen derselben Körper im unvermischt reinen Zustande bei der gleichen Temperatur.

In dem gegenseitigen Verhalten zweier zusammengegebener Körper kann man, abgesehen von der eigentlichen chemischen Reaktion, folgende Möglichkeiten unterscheiden:

- 1. Gemenge nicht merkbar löslicher Körper. Siedetemperatur und Zusammensetzung des Dampfgemisches sind konstant und unabhängig von dem Mengenverhältnis des Gemenges. Die Siedetemperatur liegt tiefer als die der niedriger siedenden Komponente. Beispiel: Wasser und Benzol.
- 2. Gemenge begrenzt löslicher Körper. Siedetemperatur und Zusammensetzung des Dampfgemisches sind begrenzt

konstant, sie sind teilweise abhängig von dem Mengenverhältnis des Gemenges. Je nach diesem und je nach dem Dampfdruck liegt die Siedetemperatur tiefer oder höher, meist tiefer als diejenige der flüchtigeren Komponente, aber nie höher als die der schwerer flüchtigen. Beispiel: Wasser und Phenol.

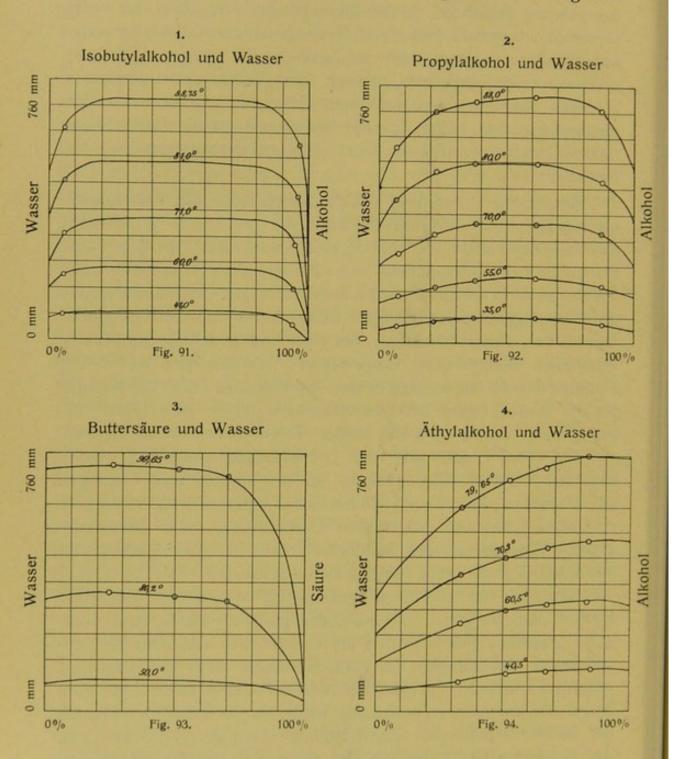
- 3. Homogene Gemische mit Minorsiedepunkt. Siedetemperatur und Druck sind variabel und werden durch das molekulare Mengenverhältnis des Gemisches bestimmt. Bei den meisten Konzentrationen dieser Lösungen und bei den meisten Destillationsdrucken ist die Siedetemperatur höher als die der flüchtigeren Komponente. Es gibt aber von jeder dieser Körpergruppen eine kleinere oder größere Anzahl von Konzentrationen, zuweilen nur eine bestimmte, deren Siedepunkt unterhalb desjenigen der flüchtigeren Komponente liegt. Beispiel: Äthylalkohol und Wasser.
- 4. Homogene Gemischemit Zwischensiedetemperatur. Siedetemperatur und Druck sind variabel und werden durch das molekulare Mengenverhältnis des Gemisches bestimmt, bei einzelnen Körperpaaren so genau, daß aus den Dampfdrucken der Komponenten derjenige der Lösung aus deren Konzentration berechnet werden kann. Die Siedetemperatur liegt stets zwischen den Siedepunkten der Komponenten. Beispiel: Benzol und Xylol.
- 5. Homogene Gemische mit Majorsiedetemperatur. Je nach dem Mengenverhältnis ist die Siedetemperatur variabel und liegt bei dem betreffenden Gemisch teils tiefer, teils höher als die der höher siedenden Komponenten. Das Gemisch enthält außer der etwa im Überschuß vorhandenen Komponente eine labile Additionsverbindung, die je nach Temperatur und Konzentration mehr oder weniger dissoziiert ist. Beispiel: Chloral und Wasser.

Für die Praxis der Destillation ist es wichtig, zu wissen, ob eine Lösung flüchtiger Körper mit Minor-, Major- oder Zwischensiedetemperatur vorliegt, denn nur die Lösungen mit Zwischensiedepunkt sind durch fraktionierte Destillation in die reinen Bestandteile zu trennen.

Gewöhnlich werden die Lösungen der dritten Klasse als solche bezeichnet, die unter bestimmten Verhältnissen einen Minimumsiedepunkt resp. Maximumdampfdruck haben, und die der fünften Klasse als solche mit einem Maximumsiedepunkt resp. Minimumdampfdruck. Die Benutzung der Superlative

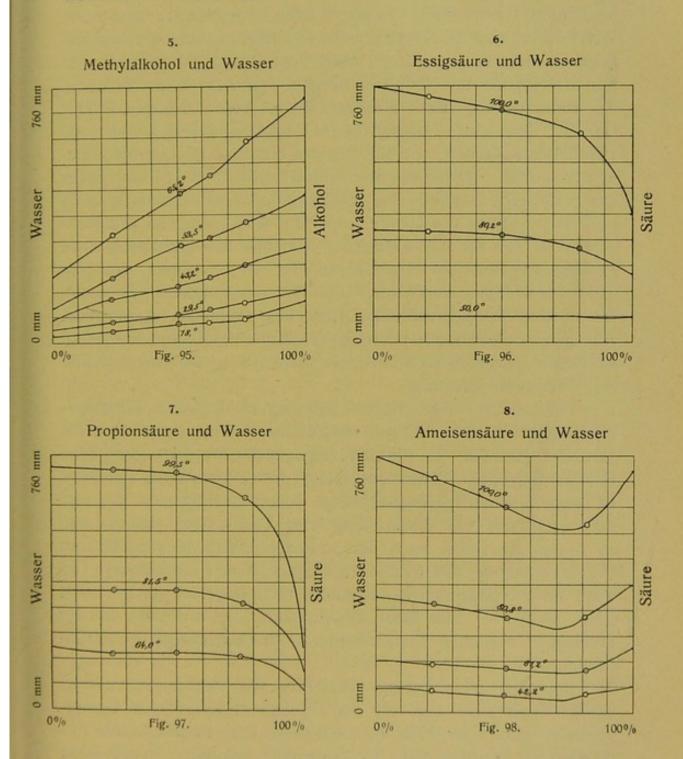
drückt nur die tiefste Erniedrigung oder die höchste Erhöhung, also nur eine einzige Temperatur oder einen einzigen Druck aus, die sich auf eine einzige bestimmte Konzentration der Lösung beziehen. In Wirklichkeit existiert aber von vielen Gemengen begrenzt löslicher Körper, besonders aber von vielen homogenen Lösungen ein kleinerer oder größerer Konzentrationsbereich, innerhalb dessen die Siedetemperaturen verschieden und alle niedriger resp. höher als die der Lösungsbestandteile sind. Für diese Temperaturen ist die Bezeichnung "Minorsiedetemperaturen" resp. "Majorsiedetemperaturen" zutreffender.

Graphische Darstellung des Siedeverhaltens von Flüssigkeitsgemischen. Sehr anschaulich zeigt die graphische Wiedergabe das Siedeverhalten von Flüssigkeitsgemischen. In den nachstehenden, der Abhandlung von Konowalow¹) entnommenen Tafeln sind in einem Koordinatensystem auf der Abszissenaxe die Prozentgehalte der flüssigen Gemische und auf der Ordinatenaxe die von diesen Gemischen bei einer und derselben Temperatur erhaltenen Dampfdrucke aufgetragen. Werden nun von diesen Punkten Parallelen zu den beiden Axen gezogen und die Schnittpunkte dieser Ordinaten und Abszissen durch eine Linie verbunden, so erhält man die in den Tafeln gezeichneten Kurven.


Fig. 91, S. 542 gibt die Dampfzusammensetzung zweier begrenzt löslicher Flüssigkeiten, 92, 93 und 94 von Lösungen mit Majordampfdruck resp. Minorsiedetemperatur, 95, 96 und 97 von Lösungen ohne konstanten Dampfdruck resp. ohne konstanten Siedepunkt und schließlich 98 von einer Lösung mit Minordampfdruck resp. Majorsiedetemperatur.

Würden die Gemenge gegenseitig unlöslicher flüchtiger Körper zum Vergleich mit herangezogen, so würde zum deutlichen Zeichen, daß bei ihnen der Dampfdruck von dem Mengenverhältnis unabhängig ist, die Konstanz des Dampfdruckes graphisch durch eine gerade, der Abszissenaxe parallele Linie zum Ausdruck kommen. Diese Linie würde in der Höhe der Summe der beiden Drucke der reinen Komponenten gelegen sein. Von der Höhe des Dampfdruckes der einen Komponente würde sich die Linie sofort zur Höhe des Summendruckes erheben, dann

¹⁾ Wiedemanns Annalen 14 (1881), 34.


horizontal weiter verlaufen, um zuletzt im scharfen Abfall zum Dampfdruck der anderen Komponente zu fallen.

Diesem Typus der unlöslichen Gemenge sind die begrenzt

löslichen Gemische (Fig. 91) am ähnlichsten, nur daß sich Aufstieg und Abfall mehr allmählich vollziehen, und die Kurve nicht mehr die Höhe des Summendruckes erreicht. Einen Anklang

hieran sehen wir in den Figuren 92, 93 und 94, die die Lösungen mit Majordampfdruck wiedergeben. In Figur 92 erhebt sich noch ein beträchtlicher Teil der Kurve über jeden der beiden

Dampfdrucke der reinen Komponenten, während in Figur 93 und noch mehr in 94 ein die Dampfdrucke der reinen Komponenten überragender Gipfelpunkt gerade noch zu erkennen ist. Bei diesen beiden Lösungen beschränkt sich die Konstanz des Dampfdruckes auf ein sehr eng begrenztes Mischungsverhältnis. Fig. 95, 96 und 97 zeigen die Verdampfung von Gemischen ohne konstanten Dampfdruck. In dem letzten Bilde, Ameisensäure und Wasser, ist das Siedeverhalten eines Körpergemisches wiedergegeben, dessen Dampfdruck tiefer liegt als die Dampfdrucke der reinen Komponenten. Es ist ein Beispiel einer Additionsverbindung.

Untersuchung des Siedeverhaltens von Lösungen. Der Dampf, den eine Lösung bildet, ist ein Gemisch von so vielen Bestandteilen, wie die Lösung merkbar flüchtige Komponenten enthält. Ist bei einem einheitlichen Körper die Temperatur des gesättigten Dampfes nur eine Funktion des Druckes, so wird bei einer Lösung die Dampftemperatur außerdem von der Konzentration der Lösung bestimmt. Um das Siedeverhalten eines Flüssigkeitsgemisches klarzulegen, ist die Kenntnis der Zusammensetzung der Lösung und des Dampfgemisches nötig, ferner sind Temperatur und Druck des Dampfes festzustellen. Aus dem molekularen Mischungsverhältnis des Dampfes ergeben sich dann durch einfache Proportionsrechnung die Partialdrucke der Dampfkomponenten.

Von den im vorigen Kapitel dargelegten Methoden zur Untersuchung des Siedeverhaltens einheitlicher Körper eignet sich die statische Methode für Flüssigkeitsgemische weniger gut. Eine Bestimmung der Zusammensetzung des entwickelten Dampfes ist wegen seiner geringen Menge kaum ausführbar. Begnügt man sich mit der Ermittelung von Temperatur und Druck, so zeigen die vielen nach der statischen Methode ausgeführten Untersuchungen, daß trotz sorgfältigster Arbeit eine sichere Gewähr für die Exaktheit der Resultate nicht gegeben werden kann. Eine Spur von Luft oder Feuchtigkeit, die vielleicht in der Flüssigkeit enthalten sind, machen die Beobachtungen völlig unbrauchbar.

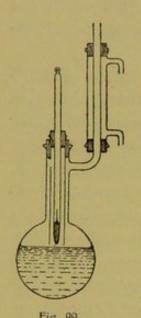
Bei dem dynamischen Verfahren ist vor allem zu vermeiden, daß sich das von der Flüssigkeit entwickelte Dampfgemisch durch partielle Kondensation und Redestillation des Kondensats an den von der Außenluft gekühlten Wandungen des Destillationsapparates und des Übersteigrohrs entmischt, so daß eine andere Temperatur beobachtet wird, als sie der direkt aus der Flüssigkeit entwickelte Dampf gehabt hat.

Der Dampfraum in dem Destillationsapparate muß im Verhältnis zur Flüssigkeitsmenge möglichst klein gehalten werden, denn der Dampf, den das Flüssigkeitsgemisch entwickelt, weicht in seiner Zusammensetzung im allgemeinen sehr von der der Flüssigkeit ab, so daß sich die Konzentration der Flüssigkeit mit der Dampfentwicklung ändert.

Man kann an dem Siedekolben einen Rücklaufkühler anbringen, so daß das möglichst wenige Kondensat während der Beobachtung der Temperatur fortgesetzt in den Siedekolben zurückläuft. In dieser Weise verfährt S. Young1). Hierdurch wird freilich der Dampfraum etwas vergrößert und auch die Zusammensetzung der Flüssigkeit durch den Betrag des Kondensates etwas verändert.

Oder man verbindet den Siedekolben mit einem Ablaufkühler. Dann gilt die beobachtete Siedetemperatur für das Mengenverhältnis des eingeführten Flüssigkeitsgemisches unter Berücksichtigung der Zusammensetzung des Destillats, dann nach der Temperaturbeobachtung untersucht werden muß. Hierbei hat man den Vorteil, daß ein geringer Feuchtigkeitsgehalt der Flüssigkeit, der die Dampftemperatur wesentlich beeinflußt, entfernt werden kann, und außerdem den anderen Vorteil, daß man in einer fortlaufenden Destillation eine Reihe von Temperaturbestimmungen verschiedener Konzentrationen der Lösung ausführen kann. Man hat nur nach jeder Temperaturbeobachtung die Vorlage zu wechseln, um dann aus der Untersuchung der Destillate die jeweilige Konzentration der Lösung zu erfahren.

Besonderer Überlegung bedarf die Frage, wie alle kühlenden Einflüsse von dem Dampfgemische für die Temperaturbestimmung fernzuhalten sind. Young sucht diese Schwierigkeit in der Weise zu beseitigen, daß er sowohl die Temperatur des Dampfes als auch die der siedenden Flüssigkeit beobachtet und, da jene etwas zu niedrig und diese etwas zu hoch ist, als richtige Dampftemperatur das Mittel aus beiden Ablesungen annimmt. Andere erwärmen die Apparatwände durch ein Dampf- oder Flüssigkeitsbad.


Figur 99 zeigt den Youngschen Siedeapparat für Flüssigkeitsgemische. Er besteht aus einem Rundkolben von ungefähr

¹⁾ Fractional Distillation, S. 58.

v. Rechenberg, Gewinnung und Trennung der äther. Öle.

155 ccm Inhalt mit weitem Halse, an dem seitlich ein enges Rohr angeschmolzen ist, das mit Wasser gekühlt wird, damit das Kondensat zurückläuft. Das obere Ende des Seitenrohres ist mit einer Luftpumpe und mit einem Manometer verbunden. Der Kolbenhals ist mit einem gut schließenden Kork versehen, durch den ein engeres Rohr geht, an dem unterhalb des Korkes ein Loch geblasen ist. Im Inneren dieses engeren Rohres ist das Thermometer befestigt.

Die nach der Kondensation von dem Rücklaufkühler zurückkommende Flüssigkeit kann bei dieser Konstruktion des Apparates

nicht an das Thermometer treten, und die Dampfmenge, die sich an dem Thermometer kondensiert, ist sehr gering. Andererseits ist bei der großen Flüssigkeitsmenge und der kleinen zu seiner Erwärmung erforderlichen Flamme eine Überhitzung des Dampfes nicht zu befürchten.

Es ist möglich, die Temperaturablesungen sowohl vom Dampfe als auch von der Flüssigkeit vorzunehmen, ohne die Lage des Thermometers zu verändern. Denn wenn sich der Gasbrenner direkt unter der Mitte des Kolbens befindet, kocht die Flüssigkeit in das innere Rohr hinein und über das Quecksilbergefäß des Thermometers hinweg. Wenn aber der Brenner etwas seitwärts aufgestellt wird, wird die Flüssigkeits-

oberfläche unmittelbar unter dem inneren Rohr nicht bewegt, und die Flüssigkeit kommt mit der Thermometerkugel nicht in Berührung.

Von den übrigen Siedeapparaten für Flüssigkeitsgemische erscheint der von Brown¹) konstruierte besonders geeignet, eine partielle Kondensation des Dampfgemisches im Inneren des Apparates zu verhüten (s. Fig. 100).

Er besteht aus einem kupfernen, zylinderförmigen Gefäß s mit langem Hals a. Der obere Teil des Zylinders mit dem Halse hat doppelte Wandungen, so daß die in dem Apparate entwickelten Dämpfe aus dem inneren Halse heraus zuerst in den

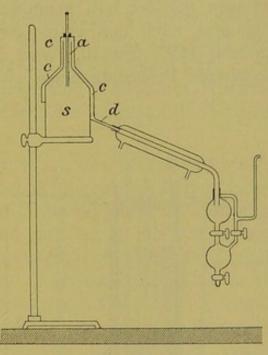
¹) Journ. chem. Soc. 37 (1880), 49 u. 39 (1881), 517. Nach Young, Fractional Distillation. London 1903, S. 73.

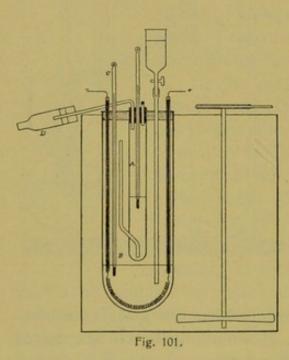
Doppelmantel c treten und dann bei d erst in den Kühler übertreten. Hierdurch werden die inneren Apparatwandungen, auf die das Dampfgemisch trifft, durch den Dampf selbst heiß erhalten, so daß eine Kondensation nicht stattfinden kann. Auf dem geneigten Boden des Doppelmantels kann das Kondensat in den Kühler abfließen. Der Apparat wird bis wenig über den unteren Rand des Doppelmantels mit der Flüssigkeit gefüllt, deren Menge gegen 900 bis 1000 ccm beträgt, wovon bei jedem

Versuch etwa ein Viertel, in vier Fraktionen aufgefangen, abdestilliert wird. Das allererste, wenige Kondensat, das bei dem Anheizen des Apparates mit Luft zusammen aus dem Kühler tritt, wird zwar von der Flüssigkeitsfüllung in Abzug gebracht, aber nicht als Versuch gerechnet.

Die Form der Vorlage wurde gewählt, um die Verdunstung und daraus folgende Veränderung in der Zusammensetzung der Fraktionen zu vermeiden, und auch um Destillationen unter vermindertem Druck zu ermöglichen.

Brown benutzte den Apparat zum Studium des Siedever-




Fig. 100.

haltens von Mischungen von Schwefelkohlenstoff und Tetrachlorkohlenstoff. In einer Reihe von Bestimmungen wurden zuvor die spezifischen Gewichte von Mischungen dieser Substanzen festgestellt, so daß nach diesen Daten die Zusammensetzung jeder Fraktion aus dem spezifischen Gewichte ermittelt werden konnte. Zu den Destillationen unter vermindertem Drucke wurde die Vorlage mit einem großen Luftreservoir und weiter mit Manometer und Luftpumpe verbunden.

Ein interessantes, eigenartiges Verfahren wendeten Rosanoff, Lamb und Breithut¹) zur vollständigen Untersuchung der Dampfbildung von binären Flüssigkeitsgemischen an. Wird

¹⁾ Zeitschr. f. physik. Chem. 66 (1909), 349.

durch ein derartiges Gemisch ein Dampf von derselben Zusammensetzung geleitet, wie sie der Dampf des Flüssigkeitsgemisches besitzt, so muß zwischen der flüssigen und der dampfförmigen Phase ein Gleichgewichtszustand eintreten, der durch die Konstanz der Dampftemperatur gekennzeichnet wird. Sind die Komponenten der Flüssigkeit in dem durchgeleiteten Dampf in etwas anderem Verhältnis als in der Flüssigkeit vertreten, so wird sich allmählich die Flüssigkeit in ihrer Zusammensetzung ändern, bis sich wieder ein Gleichgewichtszustand der beiden Phasen gebildet hat, kenntlich daran, daß die Temperatur des Dampfes nach den ersten Schwankungen wieder eine unveränderte Höhe festhält. Wird dann das Destillat in aufeinanderfolgenden Probeentnahmen untersucht, so hat jede Probe die-

selbe Zusammensetzung. Wird danach auch eine Probe von der siedenden Flüssigkeit untersucht, dazu Temperatur und Druck des Dampfes beobachtet, so erfährt man als Resultat des Versuches, daß unter dem gegebenen Drucke das Flüssigkeitsgemisch von der Zusammensetzung a einen gesättigten Dampf von der Zusammensetzung b und der Temperatur c entwickelt.

Bei diesem Verfahren ist zweifellos anzunehmen, daß die ermittelten Daten, Druck, Temperatur, Konzentration der Lösung

und Mischungsverhältnis des Dampfes sich wirklich entsprechen, was von keinem der übrigen Verfahren zur Feststellung des Siedeverhaltens eines Flüssigkeitgemisches mit Sicherheit behauptet werden kann.

In der Figur 101 ist der Apparat wiedergegeben, dessen sich die genannten Verfasser bei ihrer Arbeit bedienten. In dem inneren, unten geschlossenen Glasrohr A befindet sich die Flüssigkeit, deren Siedeverhalten ermittelt werden soll. Es ist von einem anderen Glasrohr B umgeben, in dem der Dampf von konstanter Zusammensetzung entwickelt wird. Das geschieht

in der Weise, daß zu dem in B befindlichen siedenden Flüssigkeitsgemisch durch einen Hahntrichter fortgesetzt in abgepaßten Mengen die niedriger siedende Komponente zugegeben wird. Dieser Zulauf wird so bemessen, daß ein empfindliches Thermometer, das in die Flüssigkeit in B eintaucht, in seiner Temperaturangabe stationär bleibt.

Zur Vermeidung von Siedeverzügen wird die Flüssigkeit in B nicht von außen, sondern auf elektrischem Wege von innen geheizt. Der aus den beiden Glaszylindern bestehende Siedeapparat ist vollständig in einem Thermostaten versenkt, dessen Temperatur etwas höher als die im Destillationsapparate gehalten wird. Zur Vervollständigung der Beschreibung wäre noch zu erwähnen, daß zwei gegenüberstehende Wände des Thermostaten aus Glasplatten bestehen, damit die Vorgänge im Apparat beobachtet werden können.

Nachdem der Versuch eingeleitet ist, das Thermometer in B konstante Temperatur zeigt und der in B gebildete Dampf durch das Röhrchen in die Flüssigkeit in A eintritt und in Bläschen in die Höhe steigt, wird kurz darauf auch in A die Temperatur konstant werden. Durch das Übersteigrohr entweicht der Dampf aus A und wird in dem Kühler D kondensiert. Daß in A zwischen der flüssigen und dampfförmigen Phase ein Gleichgewichtszustand eingetreten ist, wird nicht nur durch die Konstanz der Temperatur des Dampfes bewiesen, sondern auch durch die unveränderte Zusammensetzung des ablaufenden Destillates während der Dauer des Versuches.

So wurde ein Gemisch aus Tetrachlorkohlenstoff und Toluol mit einem Gehalt von 64,48% Tetrachlorkohlenstoff unter allmählichem Zusatz dieses Körpers destilliert, wobei der Siedepunkt leicht bis auf ½0% unverändert erhalten werden konnte. Vier nacheinander entnommene Proben des Destillates von je 25 g enthielten 86,38, 86,43, 86,39 und 86,41% Tetrachlorkohlenstoff.

Berechnung des Siedeverhaltens von Lösungen. Der Wunsch, aus den bekannten Eigenschaften zweier gegenseitig löslicher Körper das Siedeverhalten ihrer Lösung ableiten zu können, ist für die Praxis der Destillation sehr berechtigt. Für diesen Zweck kann auch eine rein empirische nur für ein bestimmtes Körperpaar geltende Formel nützlich sein. Für die Wissenschaft aber

kann eine Formel zur Berechnung einer Dampfzusammensetzung nur dann wirklichen Wert haben, wenn sie den mathematischen Ausdruck einer theoretischen Auffassung über die Bildung von Lösungen darstellt, so daß die Formel nur die Bestätigung von der Richtigkeit der angenommenen Lösungstheorie liefern soll. Von den zahlreichen, bis jetzt unternommenen Versuchen einer mathematischen Behandlung des Lösungsproblems kann man nur sagen, daß sie diesen Zweck noch nicht erfüllen. Problem ist komplizierter, als im allgemeinen angenommen wurde. Fest steht, daß die Dampfzusammensetzung eines homogenen Gemisches nicht nur von der Natur der Komponenten und von deren Mengenverhältnis im Gemisch, sondern auch von der Temperatur abhängt. Ein und dieselbe Lösung entwickelt je nach der Destillationstemperatur ein verschieden zusammengesetztes Dampfgemisch. In welcher Weise die Partialdrucke einer Lösung von der Temperatur beeinflußt werden, haben interessante Untersuchungen von Mangold gezeigt. Sie sind im 13. Kapitel näher besprochen. Dort ist an dem Beispiel eines Gemisches von Benzol und Toluol zu sehen, daß die Summe der Partialdrucke zu der Summe der Sättigungsdrucke der Komponenten bei Temperaturänderung nicht in konstantem Verhältnis bleibt; $p/(p_1 + p_2)$ nimmt von 0,620 bei 15° bis zu 0,494 bei 70° ab. Im allgemeinen ist bei der Aufstellung von Gleichungen zur Berechnung der Partialdrucke oder der Dampfzusammensetzung eines Gemisches die Temperatur nicht entsprechend berücksichtigt worden.

Ferner ist es wichtig zu wissen, wenn das Siedeverhalten einer Lösung durch eine Gleichung ausgedrückt werden soll, aus welchen Molekülaggregaten die Komponenten vor dem gegenseitigen Vermischen und aus welchen die Lösung und sein Dampf zusammengesetzt sind. Diesem Umstande haben v. Zawidzki¹) und Dolezalek²) sorgfältig Rechnung getragen. Auf Grund der molekularen Konstitution unterscheidet Dolezalek drei Haupttypen homogener Gemische.

Ideale Gemische. Sie entstehen, wenn sowohl die Komponenten vor dem Lösen als auch das homogene Gemisch nur aus Monomolekeln bestehen. Da keine Differenz in der mole-

¹⁾ Zeitschr. f. physik. Chem. 35 (1900), 129.

²⁾ Zeitschr. f. physik. Chem. 64 (1908), 727.

kularen Kostitution vor und nach dem Auflösen vorhanden ist, ist die Berechnung der Partialdrucke einfach. Jeder Partialdruck in dem binären Gemisch ist gleich dem Produkte aus dem Sättigungsdruck der Komponente und ihrem molekularem Mengenverhältnis im Gemisch.

Gemische mit erniedrigter Siedetemperatur. Diese Lösungen bilden sich, wenn eine oder beide Komponenten vor dem Vermischen aus Polymolekeln zusammengesetzt sind und zwar aus größeren als etwa die Lösung enthält. Durch den Zerfall der Molekülkomplexe bei dem gegenseitigen Lösen wird die Dampfentwicklung im Vergleich zu derjenigen der reinen Komponenten vermehrt, so daß der Siedepunkt der Lösung niedriger wird, als sich nach den Dampfdrucken der reinen Komponenten aus der Konzentration der Lösung berechnet.

Gemische mit erhöhter Siedetemperatur. Ihre Bildung wird veranlaßt, wenn die heterogenen Moleküle in der Lösung zu einer Additionsverbindung zusammentreten. Die Dampfentwicklung der Lösung wird hierdurch geschwächt, der Siedepunkt erhöht.

Für ideale Lösungen stellt Dolezalek die nachstehenden einfachen Gleichungen auf. Enthält das homogene binäre Gemisch auf ein Molekül des einen Körpers v Moleküle des anderen und ist p der Partialdruck des ersten Körpers und π der des zweiten in dem Gemisch, so berechnet sich die Größe der beiden Partialdrucke zu

$$p = k \frac{1}{1+v}$$
 und $\pi = \kappa \frac{v}{1+v}$

worin k und » die Drucke des gesättigten Dampfes der beiden reinen Komponenten sind. Das Mengenverhältnis einer jeden Komponente in dem Gemisch ist hier durch den sogenannten Molenbruch ausgedrückt:

$$\frac{1}{1+v}$$
 und $\frac{v}{1+v}$

Als Beispiel sind nachstehend für zwei binäre homogene Gemische die nach Dolezalek berechneten Partialdrucke zu den von v. Zawidzki experimentell gefundenen nebeneinander gestellt. Die Übereinstimmung erstreckt sich über das ganze Konzentrationsgebiet.

Benzol und Äthylenchlorid bei 49,990

Molbruch.	Partialdruck Benzol		Partialdruck Äthylenchloric	
C ₂ H ₄ Cl ₂	gemessen	berechnet	gemessen berechn	
0	268,0	_	0	
0,150	230,2	228,0	33,6	35,4
0,295	188,8	188,8	70,4	69,6
0,657	92,4	91,9	154,9	155,0
0,920	21,3	21,5	216,7	216,8
1,000	0	-	236,2	

Äthylenbromid und Propylenbromid bei 85,050

Molbruch.	Partialdr. Äthylenbromid		Partialdr. Propylenbromic	
C ₃ H ₆ Br ₂	gemessen	berechnet	gemessen	berechnet
0	172,6	-	0	
0,072	158,6	160,2	10,2	9,1
0,412	101,4	101,5	52,9	52,4
0,720	48,0	48,3	92,5	91,6
0,935	10,1	11,2	120,1	119,0
1,000	0	0	127,2	_

Und doch ist diese genaue Übereinstimmung nur eine zufällige. Sie würde nicht vorhanden sein, wenn die Gemische bei anderen Temperaturen untersucht würden.

Bei diesen Dampfdruckbestimmungen wurde, wie es in der Regel geschehen ist, die Temperatur konstant erhalten, die Konzentration aber geändert. In der nachstehend wiedergegebenen Berechnung, zu der Bestimmungen von Mangold¹) benutzt wurden, ist der Einfluß der Temperatur auf die Dampfzusammensetzung zu erkennen. Bei diesen Versuchen variiert die Temperatur, und die Konzentration blieb konstant. Es ist ein Gemisch zweier Homologen, des Benzols und des Toluols, die ebenfalls nach üblicher Auffassung monomolekular sind, keine Additionsverbindung bei dem Vermischen bilden und aus dem Gemisch monomolekularen Dampf entwickeln. Die Partialdrucke dieses "idealen homogenen Gemisches" müßten sich also nach den Gleichungen von Dolezalek genau berechnen lassen. Das Mengenverhältnis der Komponenten im Gemisch ist:

$$47,10 \text{ Gew.}^{0/0} \text{ Benzol} = 51,2 \text{ Mol.}^{0/0} = 0,512 \text{ Molenbruch}, 52,90 , Toluol = 48,8 , = 0,488 ,$$

¹⁾ Wiener Akad. Ber. 102, II A (1893), 1071.

Tempe- ratur	Partialdrucke Benzol p	, berechnet Toluol π	Dampfdruck of berechnet p + π	d. Gemisches gemessen
30°	61,5 mm	18,3 mm	79,8 mm	87,3 mm
40	94,0	29,2	123,2	129,5
45	114,8	36,6	151,4	156,2
50	139,3	45,3	184,6	188,0
55	168,0	55,7	223,7	224,9
60	206,7	68,1	274,8	268,8
70	283,8	99,7	383,4	374,6

Nur bei 55°, genauer bei 56°, stimmen Rechnung und Messung überein. Unter dieser Temperatur sind die experimentell bestimmten Zahlen höher, über dieser Temperatur sind sie niedriger. Der Grund, daß die Formel zur Berechnung unzureichend ist, teilweise richtige, teilweise nur Näherungswerte liefert, liegt in der irrtümlichen, übrigens wohl noch vorwiegend geteilten Auffassung, daß es monomolekulare Flüssigkeiten gebe.

Wir haben schon früher, Seite 467, darauf hingewiesen, daß viele Erfahrungen, so das Verhalten einheitlicher Körper bei ihrer Verdampfung bei verschiedener Temperatur, ferner die Bildung und Eigenschaften der Kolloide und hier das Verhalten von Lösungen, zu der Annahme drängen, daß alle flüssigen und festen Körper polymolekular zusammengesetzt sind, aber in verschiedenem Grade.

Das gegenseitige Auflösen verschiedener Körper zu einer homogenen Lösung besteht hiernach im wesentlichen in dem partiellen Zerfall von Aggregaten gleichartiger Moleküle unter Bildung von Aggregaten ungleichartiger Moleküle. Jede Temperaturerhöhung vermindert den Umfang der Molekülkomplexe in der Lösung, jede Temperaturverminderung vergrößert ihn. Deshalb kann auch eine Formel zur Berechnung der Dampfzusammensetzung eines Gemisches oder, was dasselbe ist, der Partialdrucke der Komponenten, keine zuverlässigen Resultate liefern, wenn sie nur das molekulare Mengenverhältnis berücksichtigt aber den Einfluß der Temperatur auf die Molekularbeschaffenheit des Anfangs- und Endzustandes außer acht läßt.

Mit diesem Vorbehalt sind auch die vielen Versuche, die Dampfbildung von Lösungen mathematisch auszudrücken, zu beurteilen. Die wichtigere Literatur sei hier angeführt.

Berthelot, Compt. rend. 57 (1863), 430.

Brown, Journ. chem. Soc. 35 (1879), 547; 37 (1880), 49; 39 (1881), 304.

Margules, Wiener Akad. Ber. 104 (1895), 1243. Lehfeldt, Philos. Mag. 46, V (1898), 42.

v. Zawidzki, Zeitschr. f. physik. Chem. 35 (1900), 129.

Duhem, Journ. of physic. Chem. 1 (1897), 273; 5 (1901), 91; Zeitschr. f. physik. Chem. 36 (1901), 227.

Young, Fractional Distillation 1903, S. 99.

Dolezalek, Zeitschr. f. physik. Chem. 64 (1908), 727.

Kurz aber klar hat S. Young die Berechnung binärer homogener Gemische in seinem schon zitiertem Buche "Fractional Distillation" S. 113, behandelt. Eine vollständige Literatur ist in dem 1906 erschienenen Werke von J. P. Kuenen "Verdampfung und Verflüssigung von Gemischen" zu finden.

11. Kapitel.

Destillation von Gemengen gegenseitig begrenzt löslicher Flüssigkeiten.

Man kann annehmen, daß jeder Flüssigkeit eigentümlich ist, in wenn auch praktisch gänzlich unmerkbarer Weise Dampf zu entwickeln. Wenn daher zwei Flüssigkeiten in gegenseitige Berührung treten, so werden auch die beiderseitigen Dämpfe je in die andere Flüssigkeit diffundieren, d. h. sich darin lösen. Hiernach ist die Löslichkeit eine allgemeine Eigenschaft, nur der Grad der Löslichkeit ist verschieden.

Hier sollen Gemenge von Flüssigkeiten besprochen werden, die ein größeres gegenseitiges Lösungsvermögen besitzen, ohne daß es aber zu einer in allen Verhältnissen stattfindenden Mischbarkeit kommt. Es sind Gemenge zweier Flüssigkeiten, die innerhalb bestimmter Mengen- und Temperaturverhältnisse in zwei Schichten gesondert bleiben.

Solche begrenzt löslichen Substanzpaare sind z.B. Wasser und Isoamylalkohol, Wasser und Anilin, Wasser und Phenol, Methylalkohol oder Äthylalkohol und die höheren Fettsäuren usw.

Druck und Temperatur des Dampfgemisches. Die Gemenge gegenseitig begrenzt löslicher Substanzen bilden den Übergang von den Gemengen gegenseitig unlöslicher Substanzen zu den in allen Verhältnissen miteinander mischbaren. Im allgemeinen verhalten sie sich bei ihrer Dampfentwicklung um so mehr abweichend von den Gemengen gegenseitig praktisch unlöslicher Substanzen, je größer die gegenseitige Löslichkeit ist; es trifft aber durchaus nicht streng zu.

Der Dampfdruck ist zwar stets gleich der Summe der Partialdrucke der Komponenten, aber diese Partialdrucke sind nicht mehr die Drucke von gesättigtem Dampf. Stellt man die der Dampftemperatur entsprechenden Maximaldrucke der beiden Komponenten fest, so ist der Totaldruck des Dampfgemisches stets geringer als die Summe dieser Maximaldrucke, zuweilen fällt er sogar zwischen beide Maximaldrucke.

Je größer die gegenseitige Löslichkeit der Komponenten eines solchen Gemenges ist, um so mehr beeinflußt das vorhandene Mengenverhältnis Druck, Temperatur und Zusammensetzung des Dampfes. Stets gibt es aber einen gewissen, meistens größeren Konzentrationsbereich, innerhalb dessen das Gemenge einen höheren Druck äußert, als jede der Komponenten bei derselben Temperatur für sich allein entwickeln würde, oder innerhalb dessen unter einem bestimmten äußeren Druck eine Siedetemperatur herrscht, die tiefer als die Siedepunkte der Komponenten bei demselben Druck liegt.

Im Folgenden sind Dampfdruckbestimmungen Regnaults1) von einem Gemenge von Wasser mit Äthyläther wiedergegeben.

Temperatur.	Dampfdruck des Gemenges.	Dampfdruck des Wassers allein.	
15,36°	362,95 mm	13,16 mm	361,4 mm
20,40	440,32	17,83	440,0
24,21	510,08	25,30	510,0
26,73	562,79	26,09	563,6
27,99	589,38	28,08	590,0
33,08	710,02	27,58	711,6

¹⁾ Compt. rend. 39 (1854), 397.

Bei den niedrigen Temperaturen besteht, wie wir sehen, ein geringes, aber deutlich erkennbares Dampfdruckmaximum, das sich aber mit dem Steigen der Temperatur vollständig verliert. Gerade in dieser Hinsicht ist dies Beispiel interessant. Viele andere Gemenge von Substanzen von begrenzter gegenseitiger Löslichkeit entwickeln bei dem Verdampfen ein höheres Druckmaximum, das bei den gering löslichen Flüssigkeitspaaren, wie z. B. Eugenol und Wasser, Carvon und Wasser, fast den Summendruck der beiden Komponenten erreicht.

Regnault hat nach der statischen Methode gearbeitet. Wären es isobarische Destillationen, d. h. Destillationen unter konstanten äußeren Drucken, so würde sich ergeben, daß unter niedrigem Druck Minorsiedepunkte erhalten würden, wie bei Gemengen gegenseitig unlöslicher Substanzen, unter höherem Druck dagegen Zwischensiedepunkte. Diesem verschiedenen Siedeverhalten homogener Gemische flüchtiger Körper je nach der Höhe des äußeren Druckes werden wir noch mehrfach begegnen.

Werden zwei Flüssigkeiten von begrenzter gegenseitiger Löslichkeit zusammengegossen, so werden sie sich in zwei Schichten trennen, von denen eine jede der Temperatur entsprechend eine gesättigte Lösung der einen Flüssigkeit in der anderen darstellt. Sobald die Temperatur erhöht wird, ändert sich das Mengenverhältnis in jeder Schicht in dem Sinne, daß sich beide Schichten in ihrer Zusammensetzung ähnlicher werden, bis sie schließlich gleich werden und zusammenfließen.

Die Temperatur, bei der das homogene Gemisch entsteht, die sogenannte kritische Lösungstemperatur, liegt je nach der Art der beiden Komponenten verschieden hoch, häufig so hoch, daß sie mit der kritischen Verdampfungstemperatur zusammenfällt. Zuweilen sind sogar zwei kritische Lösungstemperaturen vorhanden, eine untere und eine obere. Eine Lösung z. B. von Methyläthylketon in Wasser¹) trübt sich beim Erwärmen und wird beim weiteren Erhitzen wieder klar.

Im allgemeinen gilt die Regel, daß die Löslichkeit mit der Temperatur zunimmt. Außer der eben erwähnten Ausnahme des Methylketons mit zwei kritischen Lösungstemperaturen gibt es auch

¹⁾ V. Rothmund, Zeitschr. f. physik. Chem. 26 (1898), 459.

Ausnahmen von dieser Regel mit nur einer kritischen Lösungstemperatur. Hierher gehören unter anderen die Mischungen Triäthylamin mit Wasser und Diäthylamin mit Wasser.1) So lösen sich z. B. Triäthylamin und Wasser bei 18,5° in allen Verhältnissen. Wird aber die Lösung erwärmt, so trübt sie sich und sondert sich in zwei Schichten, ohne wieder bei weiterer Erwärmung ein homogenes Gemisch zu bilden. Diese Erscheinung läßt sich erklären, denn die beiden Körperpaare vermögen sich additionell zu labilen Verbindungen zu vereinigen, so daß also bei niedriger Temperatur ein Gemisch von Triäthylamin- (resp. Diäthylamin-) Hydrat und Wasser vorliegt, bei höherer Temperatur aber ein Gemisch der freien Basen und Wasser.

Überträgt man diese Erklärung auf das Gemisch Methyläthylketon mit Wasser, so wäre anzunehmen, daß es bei niedriger Temperatur eine gleich den meisten Hydraten in Wasser lösliche Additionsverbindung bildet, die beim Erwärmen in die Komponenten zerfällt, die in Wasser weniger löslich sind. Das zuvor homogene Gemisch trennt sich demnach in zwei Schichten, die jedoch bei stärkerer Erwärmung wieder verschwinden, weil dann vollständige Lösung eintritt.

In dem Zustande, wo zwei gegenseitig begrenzt lösliche Flüssigkeiten in zwei Schichten aufeinander liegen, stellt das Gemenge ein Dreiphasensystem dar, gebildet aus den zwei verschieden zusammengesetzten Flüssigkeitsschichten und dem darüber befindlichen Dampf. Wird der Dampfraum nach außen abgeschlossen, so daß sich das System in Ruhe befindet, so muß sich nach einiger Zeit ein Gleichgewichtszustand zwischen den drei Phasen einstellen, so daß in logischer Folgerung jede der drei Phasen gleichen Dampfdruck und gleiche Temperatur besitzt. Experimentell bestätigte dies Konowalow²) in eingehender Weise.

Man kann jedoch gleichen Dampfdruck der beiden Flüssigkeitsschichten nicht erwarten, wenn das System in Bewegung ist, wenn die Schichten z. B. in einem Destillationsapparate durch indirekte Heizung des Apparatbodens erwärmt werden, und die gebildeten Dämpfe aus dem Apparate entweichen können. Siedeverzüge und das Gewicht der Flüssigkeit bewirken, daß die

¹⁾ Guthrie, Philos. Mag. V, 18 (1884), 495; Lattey, Philos. Mag. VI, 10 (1905), 397.

²) Wiedemanns Annalen 14 (1881), 34,

Flüssigkeit heißer ist als ihr Dampf und zwar am heißesten in der Nähe des geheizten Bodens.

In der Technik können sehr erhebliche Drucksteigerungen durch das Gewicht der Flüssigkeiten auftreten, denn die Ölfüllung einer Blase kann mehrere Tausend Kilogramm und die Höhe der Füllung mehrere Meter betragen. Muß aus besonderen Gründen das Öl mit Wasser destilliert werden, so daß Öl und Wasser in zwei Schichten übereinander liegen, so wird die Destillation sehr erleichtert, wenn man das Flüssigkeitsgemenge mit einem Rührwerk durcheinander arbeitet. Stellt man das Rührwerk ab, so läßt alsbald die lebhafte Destillation nach, trotzdem an der Heizung nichts geändert worden ist. Statt des Rührwerkes kann man auch direkten Wasserdampf anwenden. Der in die Höhe wirbelnde Dampf wirkt gleich dem Rührwerk Temperatur und Druck verteilend. Noch einfacher und leichter wird die Druck- und Temperatursteigerung in den unteren Schichten der Blasenfüllung vermieden, wenn man den Dampf der einen Flüssigkeit in die andere einleitet, mit anderen Worten wenn das ätherische Öl durch Dampfdestillation destilliert wird.

Der am Boden der Blase eintretende Dampf hat zwar trotzdem den Druck der darauf lastenden Flüssigkeit zu überwinden, doch teilt sich die höhere Temperatur durch die Dampfbewegung sofort der ganzen Flüssigkeit mit, die darauf mit verstärkter Verdampfung und entsprechender Temperaturerniedrigung antwortet. A. Kundt¹) hatte durch einen Versuch im Kleinen beobachtet, daß in diesem Falle Dampf und Flüssigkeit die gleiche Temperatur haben. Bei der Destillation größerer Flüssigkeitsmengen sind jedoch auch bei Dampfdestillation in der Flüssigkeitssäule Temperaturunterschiede zu beobachten.

Zusammensetzung des Dampfgemisches. Die Zusammensetzung des Dampfes bei der Destillation gegenseitig begrenzt löslicher Flüssigkeiten zeigt die Tendenz der Konstanz und der Unabhängigkeit von dem Mengenverhältnis der Komponenten, ähnlich aber nicht so streng wie bei der Destillation von Gemengen gegenseitig unlöslicher Flüssigkeiten. Die Berechnung der Dampfzusammensetzung nach dem Summengesetz für gesättigte Dämpfe stimmt nicht mehr genau mit der Beobachtung überein.

¹⁾ Poggend. Annalen 140 (1870), 489.

Die folgende Tabelle enthält drei solcher binärer Gemenge. Der Dampfdruck ist der Atmosphärendruck.

Siedetemperatur des Gemisches.		Siedetemperatur	der flüchtig	Gehalt des Dampfes an er flüchtigeren Substanz in Gew. ⁰ /0	
Beobachtet.	Berechnet.	reinen Substanze	en. Beobachtet.	Berechnet.	
	W	asser- und Isoamylal	lkohol. 1)		
960		100° 130,1		41,0%	
	W	asser und Amylvaler	rianat.º)		
100,10	-	1000 190	0 68,5%	1 -	
	W	asser und Isobutylall	kohol.º)		
89,80	85,70	100° 105°	0 33,2%	25,2%	

Von Isobutylalkohol löst sich nach Duclaux³) 1 Teil in 10,5 Teilen Wasser bei 18°. Bei 116 bis 123° ist nach Alexejew⁴) Isobutylalkohol mit Wasser in allen Verhältnissen mischbar.

Über die Löslichkeit des Amylvalerianats ist nichts Näheres bekannt.

Die gesättigten Lösungen 1. von Isoamylalkohol in Wasser und 2. von Wasser in Isoamylalkohol enthalten folgende Prozente an Isoamylalkohol.

Hiernach nimmt die Löslichkeit des Amylalkohols in Wasser bis etwa 50° ab, um dann wieder zu steigen.

Anilin und Wasser. Eine bemerkenswerte Untersuchung über Druck und Zusammensetzung des Dampfes von Anilin mit Wasser hat S. Young in seinem Werke "Fractional Distillation" mitgeteilt. Die gegenseitige Löslichkeit dieser beiden Flüssigkeiten ist gering.

¹⁾ Pierre und Puchot, Compt. rend. 73 (1871), 599 u. 778.

²) Konowalow, Wiedemanns Annalen 14 (1881), 34 u. 219, ferner S. Young, Fractional Distillation, London 1903, S. 53 u. 91.

³⁾ Annal. de Chim. et Phys. V. 13 (1878), 91.

⁴⁾ Berl. Berichte 10 (1877), 410.

Nach Alexejew1) enthält eine gesättigte Lösung von Anilin in Wasser bei 16° 3,11°/o, bei 82° 5,18°/o Anilin, eine gesättigte Lösung von Wasser in Anilin bei 80 4,580/0, bei 68,60 6,040/0 Wasser.

50 ccm Anilin mit 200 ccm Wasser im Gemenge siedeten unter 746,4 mm Druck nahezu konstant bei 98,75°. Mit der Abnahme des Wassers stieg die Temperatur langsam bis auf 99,65°, wobei aber Anilin und Wasser immer noch zwei Schichten in dem Siedekolben bildeten. Sobald dann Wasser nachgefüllt war, sank die Destillationstemperatur wieder auf 98,9°. Selbst erhebliche Änderung des Mischungsverhältnisses beeinflußt also die Siedetemperatur nur wenig. Die Dampfdrucke von Anilin und Wasser sind bei 97° bis 99° die folgenden.

Destillations-	Dampfdr	Summe der	
temperatur.	Anilin.	Wasser.	Dampfdrucke
970	40,5 mm	682,0 mm	722,5 mm
980	42,2 "	707,3 "	749,5 ,,
990	44,0 "	733,3 "	777,3 ,,

Nach diesen Siedetemperaturen der reinen Bestandteile würde ein Gemenge von Anilin und Wasser, falls sich beide gegenseitig nicht lösten, unter dem Drucke von 746,4 mm bei der Temperatur 97,9° sieden, denn

$$97 + \frac{746,4-722,5}{749,5-722,5} = 97,9^{\circ}.$$

Die nach dem Summengesetz für gesättigte Dämpfe, d. h. unter der Annahme der gegenseitigen Unlöslichkeit der Bestandteile berechnete Siedetemperatur des Gemenges ist also 0,85° niedriger als die beobachtete, für einige Zeit konstante, und 1,75° niedriger als die Temperatur am Schluß der Destillation, als neben dem Überschuß von Anilin immer noch eine mäßige Menge Wasser zugegen war.

Die oben angeführte Formel für die Temperaturberechnung 97,9° wurde in folgender Weise erhalten.

Die Drucke des gesättigten Dampfes für reine Flüssigkeiten sind:

¹⁾ Berl. Berichte 10 (1877), 709.

Der Druck 746,4 mm, für den wir die entsprechende Temperatur berechnen wollen, ist um 746,4 - 722,5 = 23,9 mm höher als der der Temperatur 97° entsprechende Summendruck. zwischen 97° und 98° eine Druckgröße von 27,0 mm einem Grade Temperaturdifferenz entspricht, so haben 23,9 mm einen Temperaturwert von 0,88°. Hiernach würde ein Gemenge von Anilin und Wasser unter dem Drucke 746,4 mm bei der Temperatur 97° + 0,88° oder rund bei 97,9° sieden.

Für das unter diesen Verhältnissen siedende Gemenge soll weiter die Zusammensetzung des Dampfes berechnet werden.

Bei der Temperatur 97,90 entwickelt das Wasser einen Dampfdruck von 704,75 mm nach der Dampfdrucktabelle, wonach für das Anilin ein Druck von 746,4 — 704,75 = 41,65 mm verbleibt.

Aus diesen beiden Partialdrucken für gesättigten Dampf von 97,90 berechnen sich folgende spezifische Dampfgewichte für Anilin, Mol. 93,04, und für Wasser, Mol. 18:

Für Anilin
$$41,65 \cdot 93,04$$
 $\frac{0,01605}{273 + 97,9} = 0,1672$ kg pro 1 cbm, für Wasser $704,75 \cdot 18$ $\frac{0,01605}{273 + 97,9} = 0,5489$ kg pro 1 cbm.

1 cbm des Dampfgemisches enthält also 0,1672 kg Anilin und 0,5489 kg Wasser, denn für jeden der beiden Dämpfe in dem Gemisch ist der vom anderen Dampf erfüllte Raum wie ein leerer Raum, beide erfüllen also denselben Raum. Hiernach enthalten also 100 kg Dampfgemisch oder Destillat

$$\frac{0,1672 \cdot 100}{0,1672 + 0,5489} = 23,3 \, ^{0}/_{0}$$
 Anilin und $100 - 23,3 = 76,7 \, ^{0}/_{0}$ Wasser.

In den beiden Gleichungen zur Berechnung der spezifischen Dampfgewichte von Anilin und Wasser ist beide Male der Temperaturquotient 0,01605/(273° + 97,9°) enthalten, für die Berechnung der Dampfzusammensetzung kann er daher ohne Änderung des Resultates fortfallen; es genügt, die beiden Produkte 41,65 · 93,04 und 704,75 · 18 gegeneinander zu vergleichen. Wenn also bei der Destillation von Anilin mit Wasser unter dem Drucke von 746,4 mm statt der für gesättigte Dämpfe berechneten Destillations-

temperatur 97,90 in Wirklichkeit die Temperatur 98,750 beobachtet worden ist, so müßte nach der Rechnung die Zusammensetzung des Mischdampfes doch die gleiche bleiben, denn statt des Quotienten 0,01605/(273° + 97,9°) würde dann in beiden Gleichungen der Quotient 0,01605/(273° + 98,75°) auftreten. Da aber die Beobachtung eine andere Dampfzusammensetzung nachgewiesen hat, so müssen von dem Gesamtdruck 746,4 mm die auf die beiden Dämpfe entfallenden Anteile andere sein, als oben für gesättigten Dampf berechnet wurde. In Wirklichkeit ist durch die partielle Löslichkeit der beiden Flüssigkeiten das Dampfgemisch, das sie entwickeln, in beiden Bestandteilen überhitzt, denn die für gesättigten Dampf berechnete Destillationstemperatur ist 97,9°, während 98,75° beobachtet wurden. Es kann aber nicht in gleichem Verhältnis seiner Bestandteile überhitzt sein, weil sonst die Dampfzusammensetzung, wie wir eben gesehen haben, die gleiche geblieben wäre. Diese verschiedene Überhitzung der beiden Dampfbestandteile läßt sich berechnen.

Nennen wir bei einer Dampfzusammensetzung von $80,1^{\circ}/_{\circ}$ Wasserdampf und $19,9^{\circ}/_{\circ}$ Anilindampf x den zu berechnenden Partialdruck des Anilindampfes und y den Partialdruck des Wasserdampfes, so ist x + y = 746,4 mm; andererseits ist

$$\frac{y \cdot 18 \cdot 100}{x \cdot 93,04 + y \cdot 18} = 80,1.$$

Wird nun aus diesen zwei Gleichungen mit zwei Unbekannten zuerst y berechnet, so ergibt sich

$$\frac{y \cdot 18 \cdot 100}{(746,4-y) 93,04+y \cdot 18} = 80,1,$$

also y = 712,1 mm und x = 746,4 — 712,1 = 34,3 mm. Durch die teilweise gegenseitige Löslichkeit von Anilin und Wasser wird also ein total überhitztes Dampfgemisch entwickelt; es ist ungleichmäßig überhitzt, weil seine Zusammensetzung eine andere ist, als sie sich für ein total gesättigtes Dampfgemisch berechnet, und zwar ist in diesem Dampfgemisch der Anilindampf stärker überhitzt als der Wasserdampf, denn der Druck des Anilindampfes ist durch den partiellen Lösungsakt gesunken, von 41,65 mm auf 34,3 mm, während der des Wasserdampfes gestiegen ist, von 704,75 mm auf 712,1 mm. Immerhin ist auch der Wasserdampf in dem Dampfgemisch nicht gesättigt, denn bei der beobachteten Destillationstemperatur 98,75° müßte er

nach der Dampfdrucktabelle einen Druck von 726,8 mm ent-

wickeln, wenn er den Maximaldruck hätte.

Bei dem wechselseitigen Auflösen von Anilin und Wasser hat also der Lösungseffekt die Dampfentwicklung des Anilins stärker herabgedrückt als die des Wassers. Es entspricht das einer allgemeinen Erfahrungstatsache bei der Hydrodestillation und erklärt sich daraus, daß bei dem Auflösen ein Zerfall der Molekülaggregate beider Komponenten eintritt. Da nun die Molekülkomplexe des Wassers in der Regel größer sind als die der organischen Körper, so ist auch ihr Zerfall größer, also auch die Dampfentwicklung der Zerfallsprodukte stärker. Auf die Beeinflussung des Siedeverhaltens von Lösungen durch die Molekularkonstitution der Komponenten vor dem Auflösen kommen wir später bei Untersuchung der homogenen Gemische zu sprechen.

Phenol und Wasser. Das Gemenge von Phenol und Wasser gehört nach seiner gegenseitigen Löslichkeit zu den Gemengen, die den Übergang zu den eigentlichen Lösungen bilden. In der folgenden Tabelle sind nach Rothmunds1) Untersuchungen die Sättigungstemperaturen verschiedener Gemische von Phenol mit Wasser angegeben. Bei diesen Temperaturen und darüber findet Lösung statt, unterhalb dieser Temperaturen Trübung und Schichtenbildung. Es sind also die kritischen Temperaturen für den Übergang des Dreiphasensystems (zwei Flüssigkeitsphasen und eine Dampfphase) zu dem Zweiphasensystem (eine Flüssigkeitsphase und eine Dampfphase).

Gew.º/o Phenol	Kritische Lösungstemp.	Gew.º/o Phenol	Kritische Lösungstemp.	
8,26 %	17,80°	35,52 %	68,95°	
9,20	32,90	46,79	65,50	
10,43	34,75	55,11	61,35	
13,93	55,40	62,96	49,90	
18,76	62,0	68,91	32,70	
33,95	68,67	74,05	12,30	

Oberhalb 690 sind hiernach Phenol und Wasser in allen Verhältnissen mischbar. Bei der Destillation unter Atmosphärendruck bildet also Phenol mit Wasser stets eine homogene Flüssigkeit.

Die Zusammensetzung des Dampfes verschiedener Gemenge und Lösungen von Phenol und Wasser hat F. A. H. Schreinemakers2) untersucht.

¹⁾ Zeitschr. f. physik. Chem. 26 (1898), 452.

²⁾ Zeitschr. f. physik. Chem. 35 (1900), 461.

Gew.º/o an Phenol in den beid. Schichten.		Dampfdruck des Gemenges.	Dampf- tempe- ratur.	Gew.º/o Phenol im Dampfe.	Siedetemperatur d. reinen Substanzen unter dem Dampfdruck d. Gemenges. Wasser. Phenol.		Dampfdrucke Substanzen i peratur des	Gemenges.
8 0/0	70 %	29 mm	29,80	E 060/			Wasser.	Phenol.
700000000000000000000000000000000000000	100 To 10		0.200.000	5,96%	28,6 °	93,1 °	-	-
9,5	67	48	38,2	6,98	37,52	103,8	49,8 mm	0,6 mm
10	66	62	42,4	6,91	42,3	109,0	62,33	0,85
12	63	94	50,3	7,28	50,43	118,64	93,38	1,75
14,5	60	126	56,5	7,83	56,45	125,8	125,3	3,2
17	57	150	60,1	8,06	60,16	131	149,6	4,2
22	48	182	64,4	8,66	64,38	136,12	182,2	5,7

Solange noch zwei Flüssigkeitsschichten vorhanden sind, erfolgt die Destillation unter konstanter Temperatur mit konstanter Zusammensetzung des Dampfes. Der Phenolgehalt im Dampfe sinkt mit fallender Destillationstemperatur. Nach der Tabelle enthält der Dampf stets weniger Phenol als die wässrige, phenolarme Schicht.

Unter der Voraussetzung gegenseitiger Unlöslichkeit berechnet sich die Dampfzusammensetzung eines Gemenges von Phenol mit Wasser bei 46,0° zu 7,5°/0 Phenol, während in Wirklichkeit nach der Tabelle in dem Mischdampf von 50,3° 7,28°/0 Phenol gefunden wurden, im Dampf von 46° ca. 7,1°/0, Die Zusammensetzung des Dampfgemisches ist also durch den Lösungseffekt nur wenig geändert. Aber wieder ist wie bei der Verdampfung des Anilins mit Wasser nicht das Wasser, sondern der organische Körper im Dampfgemisch zurückgegangen, jedoch nur gering, weil Phenol zwar weniger als Wasser aber mehr als Anilin assoziiert ist.

Merkwürdig ist, daß trotz der Trennung des Gemisches in zwei Schichten die Temperatur des Dampfgemisches mit der Siedetemperatur des flüchtigeren Bestandteils so gut wie zusammenfällt, denn die Unterschiede betragen noch nicht einen Grad. Zu erwarten wäre eigentlich ein Minorsiedepunkt, aber nur unter den höheren Drucken ist eine Neigung hierzu vorhanden.

Jedenfalls folgt aus der Temperatur des Dampfgemisches, daß eine Trennung von Phenol und Wasser aus dem Gemische durch Destillation nur für den im Überschuß vorhandenen Bestandteil in reiner Form möglich ist, andernfalls müßte die Dampftemperatur mehr zwischen den beiden Siedetemperaturen der reinen Bestandteile liegen, wie bei Lösungen von Substanzen, die in allen Verhältnissen homogene Gemische bilden.

Wie wir aus den folgenden Tabellen erkennen, verdampfen homogene Lösungen von Phenol und Wasser ebenso wie heterogene Gemenge.

Dampfbildung von Lösungen von Phenol und Wasser.

Gew.º/o Phenol in der Lösung.	Dampf- tem- peratur.	Dampfdruck.	Gew. ⁰ / ₀ Phenol im Dampfe.	Substanzen b	e der reinen ei der Dampf- der Lösung. Phenol.
0 %	75°	289 mm	0 %	289 mm	11 mm
2,43	75	293	3,44	289	11
4,15	75	293	5,21	289	11
7,51	75	294	7,41	289	11
16,82	75	294	9,11	289	11
22,53	75	294	0.26	289	11
24,18	- 75	294	9,36	209	11
44,44	75	294	9,85	289	11
49,2	75	294	9,00	209	11
60,47	75	292-293	10,43	289	11
65,67	75	289	10,45	209	11
76,7	75	280	12,63	289	11
82,4	75	259	12,00	209	11
88,06	75	218	21,37	289	11
91,7	75	177	21,07	207	
0 %	90°	525 mm	0 %	525 mm	24,75 mm
2,36	90	528	3,64	525	do.
7,0	90	531	7,69	525	do.
8,29	90	531	8,30	525	do.
9,74	90	530	8,96	525	do.
17,4	90	530	10,4	525	do.
20,4	90	530	10,4	323	uo.
33,6	90	530	10,78	525	do.
35,0	90	530	10,78	323	uo.
42,2	90	530	10,87	525	do.
44,2	90	530	10,07	323	uo.
56,3	90	530	11,42	525	do.
58,0	90	530	11,42	020	uo.

Die durch eine Klammer verbundenen Versuche bilden einen einzigen Destillationsfall; die erstere Zahl bezeichnet die Anfangskonzentration der Lösung, die zweite die Endkonzentration nach der Destillation.

In dieser Doppeltabelle umfaßt der eine Teil die Untersuchungen bei 75°, der andere Teil die bei 90°. Geordnet sind die Siedeversuche nach der Konzentration. Die Dampfdrucke der reinen Komponenten bei der Versuchstemperatur sind beigefügt.

Der erste kleine Phenolzusatz zu dem Wasser steigert sofort, wie ersichtlich, den Dampfdruck; die Tendenz des Maximumdampfdruckes macht sich bei diesen Lösungen geltend. Geschähe das Sieden unter konstantem Drucke, so würde die Siedetem-

peratur durch den Phenolzusatz erniedrigt werden.

Wie bei einem Gemenge eines unlöslichen Körperpaares zeigt sich fast Konstanz des Dampfdruckes und annähernd auch Konstanz der Zusammensetzung des Dampfes. Aber der Einfluß des gewöhnlichen Auflösungsvorganges (Dissoziation der Molekülaggregate und Assoziation der heterogenen Spaltungsprodukte innerhalb der Lösung), der unter anderem von dem Mischungsverhältnis abhängt, macht sich doch geltend; mit der Zunahme des Phenols in der Lösung steigt auch merkbar, wenn auch keineswegs in entsprechendem Maße, der Phenolgehalt im Dampfe.

Bei der Siedetemperatur von 75° und dem Dampfdruck von 294 mm enthält der Dampf gegen 9 bis 10% Phenol und bei 90° und 530 mm gegen 9 bis 11,5%. Wird aus einfacher Blase ohne Fraktionierungskolonne eine wasserreiche Phenollösung destilliert, so enthält der Dampf weniger Phenol, aus einer wasserarmen Lösung mehr Phenol. Wird dagegen eine Phenollösung aus einer Blase mit einer leistungsfähigen Fraktionierkolonne destilliert, so erhebt sich aus einer nicht allzu phenolarmen Lösung, wenn wie gewöhnlich unter konstantem Druck destilliert wird, sofort ein Dampf von der dem Minimumsiedepunkt entsprechenden konstanten Zusammensetzung, d. h. mit etwa 9,5% Phenol unter 294 mm Druck und mit etwa 10% Phenol unter 530 mm Druck. Temperatur und Dampfzusammensetzung bleiben im Verlaufe der Destillation konstant. Nach einer Übergangsfraktion erscheint zuletzt reines Phenol oder reines Wasser, je nachdem die eine oder andere Substanz im Überschuß vorhanden gewesen war.

Es seien noch die Untersuchungen über das Siedeverhalten zweier binärer Gemische mitgeteilt, die Marshall1) ausgeführt hat. Die Bestimmungen sind deshalb interessant, weil sie sowohl unter konstantem Druck, also der Destillationspraxis entsprechend, als auch unter konstanter Temperatur ausgeführt wurden.

¹⁾ Journ. chem. Soc. 89 (1906), 1375.

Methyläthylketon und Wasser. Das sorgfältig gereinigte Methyläthylketon hatte unter 760 mm Druck den Siedepunkt 79,6°. Oberhalb 150° sind beide Flüssigkeiten gegenseitig unbegrenzt löslich.

Siedepunkte der Gemische von Methyläthylketon und Wasser unter 760 mm Druck.

Keton im	Gemisch		Keton im	Keton im Gemisch		
Mol. º/o	Gew. 0/0	Siedetemperatur.	Mol. º/o	Gew. 0/0	temperatur.	
100 %	100 %	79,56°	4,93%	17,20/0	73,95°/o	
97,41	99,08	77,61	4,81	16,9	74,05	
93,06	98,17	76,42	4,77	16,6	74,06	
89,14	97,28	75,54	4,61	16,3	74,23	
84,29	95,54	74,49	4,53	15,9	74,35	
77,03	93,06	73,82	4,51	15,9	74,37	
67,36	89,19	73,64	3,90	14,0	75,26	
65,71	88,45	73,63	3,24	11,9	76,47	
62,64	87,02	73,66	3,50	12,9	76,1	
59,98	85,64	73,67	3,10	11,5	77,1	
57,30	84,29	73,67 Gemisch trübe	2,60	9,9	78,7	
20,0	50,0	73,70 do.	2,20	8,2	80,7	
6,30	21,3	73,74 do.	1,70	6,4	83,2	
5,73	19,6	73,74 do.	1,20	4,6	87,3	
5,50	18,8	73,76 do.	0,70	2,7	93,0	
5,28	18,2	73,77 do.	0,30	1,2	97,2	
5,16	17,8	73,83	0,10	0,4	99,2	
5,12	17,8	73,88	0	0	100,0	
5,04	17,5	73,86				

Die niedrigste Siedetemperatur von dieser Reihe von Destillationsversuchen hat das Gemisch mit 88,45 % Keton, dessen Siedetemperatur 73,63° unter 760 mm beträgt. Mehrere besondere Destillationsversuche zeigten, daß ein Gemisch von 88,62% Keton wie eine einheitlich zusammengesetzte Substanz mit dem konstanten Siedepunkt 73,57° unter 760 mm überdestilliert.

Einige Dampfdruckbestimmungen des Ketons bei verschiedenen Temperaturen, die Marshall ausgeführt hat, geben die Möglichkeit, Destillationstemperatur und Dampfzusammensetzung eines Gemisches von Methyläthylketon mit Wasser unter der Annahme zu berechnen, daß beide Flüssigkeiten unter einem Drucke von 760 mm als gegenseitig unlösliche Substanzen destillieren.

Bei einer Temperatur von 69,14° ist der Druck des gesättigten Ketondampfes 535,2 mm, der des Wasserdampfes 224,8 mm, also zusammen 760 mm. Danach wäre die Destillationstemperatur des Gemisches 69,14° gegen die experimentell gefundene Zahl 73,57°. Der Lösungsakt hat also die Siedetemperatur um fast 4,5° erhöht.

Werden die beiden Dampfdrucke je mit dem Molekulargewicht des betreffenden Körpers multipliziert, so drückt das gegenseitige Verhältnis der beiden Produkte zugleich das Verhältnis beider Flüssigkeiten in der Dampfzusammensetzung aus.

$$\frac{535,2 \cdot 72 \cdot 100}{535,2 \cdot 72 + 224,8 \cdot 18} = 90,5$$

Nach der Rechnung, unter Annahme der Unlöslichkeit, enthält hiernach das Dampfgemisch 90,5% Methyläthylketon, während in Wirklichkeit 88,62% gefunden wurden. Werden diese Gewichtsprozente in Molekularprozente umgerechnet, so enthält das Dampfgemisch

Der Lösungsakt hat also den Dampfdruck des Ketons mehr als den des Wassers herabgedrückt, weil das Wasser aus größeren Molekülaggregaten besteht als das Keton.

Dampfdrucke der Gemische von Methyläthylketon mit Wasser bei 73,6°.

Mol. º/o vom Keton	Total-	Partialdruck			
im Gemisch.	Dampfdruck.	des Ketons.	des Wassers		
100 º/o	619,7 mm	619,7 mm	0		
95	680,0	590,0	90,0		
90	714,0	568,0	146,0		
85	735,0	547,0	188,0		
80	748,0	532,0	216,0		
75	757,0	519,0	238,0		
70	760,4	508,0	252,4		
66,06	760,9	502,7	258,2		
65	760,9	501,6	259,3		
60	759,8	497,0	262,8		
58,72	759,4	495,8	263,6		
5,20	759,4	495,8	263,6		
0	273,0	0	273,0		

Methylacetat und Wasser. Das gereinigte Methylacetat hatte unter 760 mm den Siedepunkt 56,85° bis 57,05°.

Siedetemperaturen von Gemischen von Methylacetat mit Wasser unter 760 mm Druck.

Mol. º/o von Ester im Gemisch.	Siedetemperatur.	Mol.º/o von Ester im Gemisch.	Siede- temperatur.
100 %	56,98°	9,14%/0	57,33°
85,1	56,48	9,01	57,35
74,1	56,83	8,75	57,40
65,7	57,08	8,38	57,48
65,6	57,10	7,61	57,84
65,3	57,12	6,82	58,47
64,7	57,16	6,01	59,37
64,1	57,21 Gemisch trübe	5,20	60,74
63,4	57,21	4,37	62,8
58,8	57,22	3,53	65,7
53,3	57,22	2,67	69,9
17,2	57,30	1,79	75,9
10,62	57,29	0,91	86,9
9,59	57,30	0	100
9,30	57,32	BI SHEET STATE OF THE SHEET STAT	

Dampfdrucke von Gemischen von Methylacetat mit Wasser bei 57°.

Mol. º/o von	Total-	Partialdruck		
Ester im Gemisch.	Dampfdruck.	des Esters.	des Wassers.	
100°/o	760,5 mm	760,5 mm	0	
90	776	698	78	
85	774	678	96	
75	765	654	111	
65	.754	633	121	
9,2	754	633	121	
5,0	660	535	124	
0	129	0	129	

Praktische Nutzanwendung. Die Eigenschaft der gegenseitig begrenzt löslichen Substanzen, daß sie bei fraktionierter

Destillation mit konstanter Dampfzusammensetzung unabhängig destillieren, liefert ein praktisch wertvolles Mittel der Reinigung des hauptsächlich vorhandenen Stoffes von seiner Beimengung.

Es gilt z. B. Isoamylalkohol, der bis zur Sättigung Wasser gelöst enthält, wasserfrei zu gewinnen. 1000 ccm Wasser vermögen bei Zimmertemperatur 33 ccm Isoamylalkohol zu lösen, und 1000 ccm Isoamylalkohol nehmen 22 ccm Wasser auf.¹) Wird nun Isoamylalkohol unter Atmosphärendruck mit Wasser oder Wasserdampf destilliert, so enthält das Dampfgemisch, wie weiter oben erwähnt wurde, 54,9 % von dem Alkohol. Im Destillat scheidet sich also der 2,2 Vol. % Wasser enthaltende Isoamylalkohol von dem überschüssigen Wasser ab, das 3,3 Vol. % von dem Alkohol aufgelöst hat.

Wird dann der wässrige Alkohol von neuem destilliert, so geht in den Vorläufen das gesamte Wasser mit Isoamylalkohol über, worauf wasserfreier Isoamylalkohol abdestilliert, in dem selbst Petroläther keine Trübung erzeugt. Andererseits kann durch wiederholte Destillation aus dem alkoholhaltigen Wasser der Alkohol gewonnen werden.

Oder es soll wasserhaltiger Essigäther vollständig von seinem Wassergehalte befreit werden. Gewöhnlich wird hierzu als Mittel Ausschütteln mit Chlorcalciumpulver angegeben, das allgemein bekannte Verfahren der Wasserentziehung. Aber selbst dann, wenn der Essigäther möglichst kalt mit Chlorcalcium durcheinander gearbeitet wird, um durch die Abkühlung sein Wasserlösungsvermögen möglichst zu verringern, behält er doch noch einen geringen Wassergehalt.

Wird nun derartig behandelter und durch Absetzen sorgfältig von dem wasserhaltigen Chlorcalcium getrennter Essigäther durch indirekte Heizung destilliert, so geht das Wasser in den ersten Vorläufen mit über, in dem Verhältnis von annähernd 92,8 Teilen Essigäther zu 7,2 Teilen Wasser, während der nachfolgende Essigäther vollständig wasserfrei ist.

Bei Verarbeitung größerer Mengen kann man auch von der unbequemen Behandlung mit Chlorcalcium absehen und ohne weiteres den wasserhaltigen Essigäther destillieren.

¹⁾ Herz, Berl. Berichte 31 (1898), 2671.

Ein bei Zimmertemperatur mit Wasser gesättigter Essigäther enthält gegen 3,5% Wasser. Da nun der Wassergehalt im Dampfe von wässrigem Essigäther 7,2% beträgt, so werden nach der Rechnung 45 + 3.5 = 48.5 kg wassergesättigter Essigäther von 100 kg Einlage abdestillieren, wonach dann reiner Essigäther überdestilliert. In Wirklichkeit beträgt die erstmalige Ausbeute an reinem Essigäther etwa 40%. Der wässrige Essigäther wird jedesmal von neuem destilliert. Die Benutzung einer Fraktionierkolonne ist vorzuziehen, weil der Mittellauf dann kleiner wird, sie ist aber in diesem Falle nicht unbedingt notwendig.

Bei dem Gemisch von Isoamylalkohol und Wasser und ebenso bei dem von Essigäther und Wasser ist der Gehalt der Flüssigkeitsphase an Isoamylalkohol resp. Essigäther erheblich niedriger als

in der Dampfphase, weshalb die Reingewinnung dieser Substanzen aus ihren wässrigen Lösungen wenig Schwierigkeiten bereitet.

Enthält aber die wässrige Lösung eines in Wasser begrenzt löslichen flüchtigen Körpers sehr wenig von diesem Körper, und ist dieser zugleich erheblich schwerer flüchtig als Wasser, z. B. Benzylalkohol, Phenyläthylalkohol, Zimtalkohol oder dergleichen, so wird teils durch die relativ geringe Flüchtigkeit, teils durch die Auflösung in der großen Wassermenge nur wenig von dem Körper in den Dampf übergehen, und das Destillat wird dann wieder eine klare Lösung darstellen. Erst die wiederholte Destillation des jedesmal an dem Körper mehr angereicherten Destillates wird schließlich eine Ölabscheidung im Destillat zur Folge haben. Alsdann ist die Benutzung einer leistungsfähigen Fraktionierkolonne notwendig. Versagt auch diese, dann kann noch ein anderes Verfahren erfolgreich sein, nämlich der Zusatz eines Stoffes, der sich in Wasser leicht löst, zu dem aber der in dem Wasser gelöste Körper kein Lösungsvermögen besitzt. Man wählt hierzu am besten einen wenig flüchtigen Stoff, z. B. Chlornatrium, Chlorcalcium oder schwefelsaures Natrium.

Soll ein in Wasser partiell löslicher flüssiger Körper von darin gelösten schwerflüchtigen Beimengungen getrennt werden, und ist eine trockene Destillation selbst im Vakuum nicht ratsam. so kann trotz der Wasserlöslichkeit des Körpers die Destillation mit Wasserdampf vorteilhaft sein; aber es muß dann Überhitzungsdestillation unter vermindertem Druck angewendet werden.

12. Kapitel.

Destillation homogener Gemische mit Minorsiedetemperatur.

An der Hand einer Reihe von Beispielen soll das Siedeverhalten der Lösungen besprochen werden, deren Siedetemperatur tiefer liegt als die Siedepunkte der reinen Komponenten. Wir beginnen mit dem interessantesten binären Gemisch dieser Gattung, nämlich mit dem von Äthylalkohol und Wasser.

Gew. ⁰ / ₀ Alkohol in der Lösung.	Dampfdruck der Lösung.	Siedepunkt der Lösung.	Gew. % Alkoho im Dampf.
95,57 0/0 1)	760 mm	78,150	95,57%
85,7 0/02)	760 mm	78,79°	_
68,12	760	80,16	Marin The State of
50,4	760	82,17	ALTERNATION IN
33,13	760	85,05	-
4,003)	-	_	29,7%
8,1	- 100	-	43,4
12,1		_	53,7
16,3	_		58,4
20,5	-	-	60,3
24,7	_	_	61,7
33,4	_		64,6
37,9		1000-100	66,2
42,5			67,9
47,2	_	-	69,5
52,2	-	-	71,5
57,2	_	_	73,4
67,9		-	78,3
73,5	-	-	81,3
79,4	-	-	84,4
85,7	-	-	88,0
92,4	-	-	93,7
96,2		_	96,2

¹⁾ S. Young, Fractional Distillation. London 1903, S. 67.

²⁾ D. Konowalow, Wiedemanns Annalen 14 (1881), 34.

³) M. E. Sorel, Compt. rend. 116 (1893), 693.

Nach Sorel bildet ein wässriger Alkohol von 96,2 Gew. % einen Dampf von gleicher Zusammensetzung, nach Young ein solcher von 95,57 Gew. % In Anbetracht der Schwierigkeit einer exakten Bestimmung, ist der Unterschied beider Zahlen geringfügig. Nehmen wir die Youngsche Beobachtung an, so erfahren wir noch, daß ein wässriger Alkohol mit 95,57 Gew. % Alkohol bei 78,15% siedet, also um eine Kleinigkeit niedriger als reiner Äthylalkohol, dessen Siedepunkt unter 760 mm Druck 78,3% beträgt.

Hier ist also die Grenze gezogen, über die hinaus auch eine wiederholte Destillation die Trennung des Gemisches nicht bewerkstelligen kann. Gemische, deren Dampf die gleiche Zusammensetzung wie das Gemisch selbst haben, können durch Destillation nicht weiter zerlegt werden. Ein wässriger Alkohol mit weniger als 95,57% Alkoholgehalt kann durch wiederholte Destillation in reines Wasser und einen Alkohol von 95,57% getrennt werden, ein wässriger Alkohol mit mehr als 95,57% in reinen Alkohol von 100% und einen wässrigen Alkohol von 95,57%, eine vollkommene Kolonne vorausgesetzt.

Berechnet man Siedetemperatur und Dampfzusammensetzung des Gemisches von Alkohol mit Wasser unter der Annahme eines Gemenges zweier gegenseitig unlöslicher Flüssigkeiten, so kommt man zu folgendem Ergebnis:

Die Siedetemperatur dieses angenommenen Gemenges von beliebiger Zusammensetzung — denn die Annahme der gegenseitigen Unlöslichkeit schließt auch die Unabhängigkeit des Siedeverhaltens von dem Mengenverhältnis ein — würde 69,2° sein, und der Dampf würde 85,6 Gew. % Alkohol) enthalten.

Der Lösungsakt zwischen Äthylalkohol und Wasser beeinflußt hiernach das Siedeverhalten dieses Gemisches in folgender Weise: Ein jedes Alkohol-Wassergemenge, also auch das von 95,57% Alkohol und 4,43% Wasser, würde unter der Voraussetzung der Unlöslichkeit bei 69,2% sieden und ein Destillat von 85,6% Alkohol geben. Infolge der gegenseitigen Löslichkeit der genannten Flüssigkeitsmengen siedet aber das homogene Gemisch bei 78,15%, also 8,95% höher, und liefert ein Destillat von 95,57% Alkoholgehalt, d. h. von 8,87% mehr Alkohol. Wir

¹⁾ Siehe Seite 337.

kommen auf die Besprechung dieses Lösungseffektes noch zurück.

Nach der Mischdampftabelle B, Seite 349, nimmt bei der Hydrodestillation des Alkohols unter der Voraussetzung der Unlöslichkeit in Wasser der Alkoholgehalt im Dampfe mit sinkendem Destillationsdrucke zu. Es ist zu vermuten, daß der Lösungsakt dies Verhalten bei der Verdampfung nicht ändert. In der Tat fand auch H. Masing¹) eine Alkoholanreicherung im Dampfe, wenn er unter Minderdruck destillierte. Der Gewinn ist jedoch zu klein, als daß sich eine Fraktionierung von Alkohol-Wassergemischen unter Minderdruck lohnen würde.

Es seien noch einige Beispiele von Lösungen mit Minorsiedetemperatur angeführt.

H. Jackson und S. Young²) stellten die Siedetemperaturen von Gemischen von n-Hexan und Benzol verschiedener Konzentration unter 760 mm Druck fest. Die beiden Präparate waren sorgfältig gereinigt. Benzol siedete unter 760 mm bei 80,2°, n-Hexan bei 68,95°.

Gew. ⁰ / ₀ Hexan der Lösung.	Siede- punkt.	Gew.% Hexan der Lösung.	Siede- punkt.	Gew. ⁰ • Hexan der Lösung.	Siede- punkt.
94,5%	69,00	53,4%	70,70°	14,8%/0	76,120
93,5	68,96	52,7	70,70	11,1	76,91
88,4	69,0	47,0	71,42	9,9	77,20
82,8	69,14	35,1	72,70	8,0	77,75
72,7	69,47	32,7	73,01	6,0	78,49
68,4	69,72	22,0	74,67	4,7	78,80
60,5	70,17	21,2	74,75		

Es ist bemerkenswert, daß der Siedepunkt des Hexans durch einen Zusatz von Benzol bis zu 10% nur sehr wenig beeinflußt wird, während andererseits ein Zusatz von 10% Hexan zu Benzol die Siedetemperatur des letzteren um 3% ändert. Hieraus läßt sich für die Praxis der Fraktionierung schließen, daß es relativ leicht ist, Benzol von geringen Beimengungen von Hexan durch fraktionierte Destillation zu befreien, während es sehr schwierig sein wird, reines Hexan aus einem Gemisch mit mehreren Prozenten Benzol

¹⁾ Chem. Ztg. 32 (1908), 745.

²⁾ Journ. chem. Soc. 73 (1898), 922.

zu gewinnen. Eine Lösung von Hexan mit etwa 10% Benzol hat hiernach einen konstanten Siedepunkt, ist also durch Destillation nicht zu trennen.

Von D. Konowalow¹) wurde der Siedepunkt von Gemischen von n-Buttersäure mit Wasser unter 740 mm Druck bestimmt. Der Siedepunkt der Buttersäure war unter 760 mm Druck 163,5°.

in der	Dampfdruck der Lösung.	Siedepunkt der Lösung.	Siedepunkte der reinen Kompo- nenten unter dem Dampfdruck der Lösung.		
Lösung.	Losung.	Losung.	Wasser.	Buttersäure.	
74,52%	740 mm	98,440	99,260	162,10	
50,0	740	98,95	99,26	162,1	
29,9	740	99,97	99,26	162,1	

Der Minorsiedepunkt beschränkt sich hier nicht auf eine Lösung mit bestimmtem Gehalt, wie bei der Alkohol-Wasserlösung, sondern erstreckt sich innerhalb weiterer Konzentrationsgrenzen. G. Ryland²) stellte durch wiederholte Destillation der Destillate fest, daß ein Gemisch von 20% Buttersäure und 80% Wasser einen Dampf von gleicher Zusammensetzung entwickelt, d. h. durch Destillation nicht weiter zu trennen ist. Die Siedetemperatur dieses Gemisches unter einem Destillationsdruck von 763 mm war 99 bis 99,5%. Diese Temperatur ist also das Siedepunktsminimum der Gemische von Buttersäure mit Wasser unter Atmosphärendruck.

Unter der Annahme der Unlöslichkeit berechnet sich aus den gesättigten Dämpfen der beiden Komponenten für den Destillationsdruck von 760 mm eine gemeinsame Siedetemperatur von 97,5° und ein Wassergehalt im Dampfe von 69,0°/° (s. S. 342). Also infolge des Lösungseffektes zwischen Wasser und Buttersäure ist wieder, wie zuvor, der Siedepunkt erhöht und der Gehalt des Mischdampfes an dem flüchtigeren Bestandteil vermehrt.

Interessant ist das Siedeverhalten der Gemische von n-Propylalkohol mit Wasser, das ebenfalls von Konowalow untersucht wurde.

¹⁾ Wiedemanns Annalen 14 (1881), 34.

²) Americ. chem. Journ. 22 (1899), 384.

Gew. ⁰ / ₀ Wasser in der Lösung.	Dampfdruck der Lösung.	Siedepunkt der Lösung.	Siedepunkte der reinen Lösungs bestandteile unter dem Dampf drucke der Lösung.		
	8		Wasser.	n-Propylalkohol.	
93,6%	25 mm	19,270	26,00	28,490	
78,2	25	19,30	26,0	28,49	
64,1	25	18,99	26,0	28,49	
47,2	25	19,87	26,0	28,49	
37,73	25	19,40	26,0	28,49	
11,2	25	22,56	26,0	28,49	
93,6%	740 mm	88,500	99,25°	96,640	
78,2	740	88,32	99,25	96,64	
64,1	740	87,79	99,25	96,64	
47,2	740	87,34	99,25	96,64	
37,73	740	87,26	99,25	96,64	
11,2	740	90,17	99,25	96,64	

Die Lösungen von 93,6% bis 37,73% Wassergehalt haben Konstanz der Siedetemperatur sowohl bei Destillationen unter niederem als auch unter höherem Druck. Die Lösung mit 11,2% Wasser zeigt wieder ein Anschwellen der Siedetemperatur, die aber immer noch unter der Siedetemperatur der beiden reinen Komponenten bleibt.

Bemerkenswert ist, daß n-Propylalkohol unter niedrigem Druck bei höherer Temperatur als Wasser siedet, unter höherem Drucke bei niedrigerer Temperatur. Die Siedekurven der beiden Flüssigkeiten schneiden sich.

Bei der Destillation des n-Propylalkohols mit Wasser ist die Siedetemperatur und damit auch die Zusammensetzung des Dampfes innerhalb sehr verschiedener Konzentrationen unabhängig von dem Mengenverhältnis der Lösung, trotzdem sich beide Flüssigkeiten in allen Verhältnissen gegenseitig lösen. Das binäre homogene Gemisch Wasser-Propylalkohol bildet somit in seinem Siedeverhalten einen Übergang zu den Gemengen begrenzt löslicher Körper. Es verhält sich wie diese Gemenge, nur daß die wirkliche Dampfzusammensetzung von der aus den Drucken für gesättigten Dampf berechneten stärker abweicht.

Unter der Annahme der Unlöslichkeit würde das Gemenge von Propylalkohol und Wasser unter 760 mm bei 80,9° sieden, und der Dampf würde 78,0°/o von dem Alkohol enthalten. Dagegen wurde von Young und Fortey¹) ein Siedepunktsminimum von 87,7° unter 760 mm festgestellt, wobei Flüssigkeitsgemisch und Dampf 71,69°/0 Propylalkohol enthielten. Nach den Bestimmungen von G. Ryland²) war unter dem Drucke von 770 mm das Siedepunktsminimum 87 bis 87,5°, und der Gehalt des Dampfes an Propylalkohol betrug 72°/0.

Weitere Untersuchungen über die Dampfzusammensetzung dieses Gemisches bei steigender Temperatur hat A. Winkelmann³) ausgeführt.

1. Mischung: 6,2% Propylalkohol und 93,8% Wasser.

Temperatur des Dampfes 31,5°, Alkohol im Dampf 52,3 Gew. $^{0}/_{0}=24,7$ Mol. $^{0}/_{0}=24,7$ Mol. $^{0}/_{0}=24,7$ Mol. $^{0}/_{0}=28,8$, $^{0}/_{0}=28,8$

2. Mischung: 88,8% Propylalkohol und 11,2% Wasser.

Temperatur des Dampfes 27°, Alkohol im Dampf 75,8 Gew. $^{0}/_{0} = 48,4$ Mol. $^{0}/_{0}$, , , , , $^{0}/_{0} = 50,7$, $^{0}/_{0} = 50,7$, $^{0}/_{0} = 50,7$, $^{0}/_{0} = 50,7$, $^{0}/_{0} = 50,7$, $^{0}/_{0} = 50,7$

Mit steigender Temperatur findet hiernach sowohl bei den alkoholarmen wie bei den alkoholreichen Gemischen eine Zunahme des Alkohols im Dampfe statt, ganz entsprechend dem unter Voraussetzung der gegenseitigen Unlöslichkeit berechneten Verhalten der beiden zusammengemengten Komponenten (s. S. 349). Also auch in der Lösung sucht jede der Komponenten ihre individuelle Dampfbildung möglichst zu bewahren.

Fraktionierte Destillation von Lösungen mit Minorsiedepunkt. Wird ein Flüssigkeitsgemisch in einem Kolben mit Fraktionieraufsatz oder in einer Blase mit Kolonne und Dephlegmator destilliert, so findet zwischen dem aufwärts steigenden Dampfstrom und dem abwärts rieselnden Kondensat ein steter Austausch statt. An jeder Stelle der Kolonne wird aus dem flüssigen Kondensat durch den je nach der Konstruktion der Kolonne darüber hinziehenden oder durch das Kondensat hindurch strömenden Dampf immer wieder von neuem Dampf entwickelt.

Hierbei werden von dem Dampfgemisch die höher siedenden Bestandteile abgegeben und die leichter siedenden aus dem Kondensat mitgenommen, so daß zuletzt Dampf und Kondensat gleich zusammengesetzt sind und beide allein aus dem niedrigst siedenden Bestandteil des anfänglichen Flüssigkeitsgemisches bestehen; es

¹⁾ Journ. chem. Soc. 81 (1902), 717 u. 739.

²) Americ. chem. Journ. 22 (1899), 384.

³) Jahresber. d. Chem. 1890, 181.

folgen dann die übrigen Bestandteile genau nach der Höhe ihrer Siedetemperaturen. Hiernach ist es erklärlich, daß bei der Destillation eines Flüssigkeitsgemisches in einer Kolonnenblase das nach der vielfachen Kondensation und Redestillation schließlich in den Kühler übergehende Dampfgemisch von dem Mengenverhältnis des anfänglichen Flüssigkeitsgemisches in der Blase unabhängig ist.

Existiert nun zwischen den Komponenten des Flüssigkeitsgemisches ein Mengenverhältnis, bei dem das Gemisch mit einer niedrigeren Temperatur siedet als jede der Komponenten unter demselben Destillationsdrucke, so muß bei einer beliebigen Mischung der Komponenten aus einer Kolonnenblase zuerst dies Gemisch mit dem niedrigsten Siedepunkte als Destillat erscheinen. Da ein derartiges Gemisch eben wegen des Minorsiedepunktes auch bei wiederholter Destillation immer wieder in gleicher Zusammensetzung übergeht, so hatte man früher die irrtümliche Auffassung, daß hier eine chemische Verbindung der Komponenten vorläge.

Liegt der Minimumsiedepunkt nahe an dem Siedepunkt der flüchtigeren Komponente, so wird bei einfacher Destillation die Dampftemperatur von Beginn der Destillation an bis zum Schluß eine steigende Tendenz zeigen, ohne daß auch nur für kurze Zeit Konstanz der Temperatur oder ein einziges Mal eine Minorsiedetemperatur beobachtet werden kann. Erst bei vielfach wiederholter Destillation zeigt es sich, daß je nach der Zusammensetzung der Anfangsmischung eine kleinere oder größere Fraktion übrig bleibt, die nicht weiter zu trennen ist und deren Siedetemperatur tiefer als die Siedepunkte der Komponenten liegt.

Bei großer Annäherung des Minimumsiedepunktes an den Siedepunkt der niedriger siedenden Komponente, wie es z. B. bei dem Gemisch Äthylalkohol und Wasser der Fall ist, wird es übrigens selbst mit einem guten Fraktionieraufsatz kaum gelingen, in einer einzigen Destillation den wahren Minimumsiedepunkt zu erreichen.

Bei der vergleichenden Untersuchung verschiedener Fraktionieraufsätze wird gewöhnlich die Trennung eines Gemisches von Benzol und Toluol als Gradmesser benutzt¹). Besser eignet

¹⁾ H. Kreis, Vergleichende Untersuchungen über die Methoden der fraktionierten Destillation. Liebigs Annalen 224 (1884), 259. — S. Young, Fractional Distillation. London 1903, S. 173.

sich hierzu eine etwa 20 prozentige wässrige Lösung von Äthylalkohol. Die Aufgabe würde dann lauten, aus diesem Gemisch in einer Destillation einen möglichst hochprozentigen Alkohol zu erhalten. Die Gewinnung eines Alkohols von 90 Gewichtsprozenten gelingt verhältnismäßig leicht und auch 94 prozentiger Alkohol muß mit einem gut konstruiertem Fraktionieraufsatz erhalten werden können. Ein Alkohol von 95 Gewichtsprozent wird aber durch eine einzige Destillation selten gewonnen. Als Flüssigkeitsmenge für den Versuch sind hierbei 100 bis 200 ccm angenommen.

Soll untersucht werden, ob ein Flüssigkeitsgemisch mit Minorsiedetemperatur siedet, so sind die Komponenten zu gleichen Teilen gemischt in einem Kolben mit gut arbeitendem Fraktionieraufsatz zu destillieren. Der Dampfdruck und das Ansteigen der Temperatur werden beobachtet, und ferner wird die Zusammensetzung der einzelnen Fraktionen festgestellt, was bei drei Komponenten zuweilen sehr schwierig ist. Man muß sich dann

mit der Temperaturbeobachtung begnügen.

Schon bei der ersten Destillation wird bei der Existenz eines Minorsiedepunktes zu Beginn der Destillation eine Neigung zur Temperaturkonstanz bemerkbar sein, die noch deutlicher hervortritt, wenn diese Fraktion noch einmal mit Fraktionieraufsatz destilliert wird. Anderenfalls steigt die Siedetemperatur, die von Beginn der Destillation an über der Minimaltemperatur¹) der niedrigst siedenden Komponente liegt, stetig bis zur Minimaltemperatur¹) der höchst siedenden Komponente. Dann liegt ein durch Destillation trennbares Flüssigkeitsgemisch mit Zwischensiedetemperatur vor. Schließlich kann auch der Nachlauf höher sieden als jede der reinen Komponenten, wodurch die Existenz eines Gemisches mit Majorsiedetemperatur nachgewiesen wäre.

Das Destillationsverfahren ist unter Atmosphärendruck und unter Minderdruck auszuführen, denn bei großen Druckunterschieden können die Resultate verschieden ausfallen. Es gibt Flüssigkeitsgemische, die unter Atmosphärendruck mit Minor-, unter Minderdruck mit Majorsiedetemperatur destillieren.

Änderung des Minimumsiedepunktes mit dem Destillationsdruck. Bei der Destillation von Gemengen gegenseitig unlöslicher Flüssigkeiten ändert sich, wie wir gesehen haben, die Zu-

¹⁾ Temperatur des gesättigten Dampfes der reinen Komponente.

sammensetzung des Destillats mit dem Destillationsdruck. Dasselbe findet bei der Destillation von Gemengen gegenseitig begrenzt löslicher Flüssigkeiten statt. Von Lösungen mit Minimumsiedepunkt ist es nicht anders zu erwarten, wie es auch die Untersuchungen von G. Ryland¹) bestätigt haben.

Dampfzusammensetzung von Lösungen mit Minimumsiedepunkt bei Destillationen unter verschiedenen Drucken.

Komponenten der Lösung.		Siedep. unter dem Druck der Lösung von A von B		Dampfdruck der Lösung beobachtet. Siedepunkt der Lösung beobachtet.		Siedepunkt der Lösung berechnet.	Gew. % B in der Lösung beobachtet.	Gew. % B in der Lösung berechnet.
Benzol	Methylalkohol	80,2°	64,7°	760 mm	57,5-58,5 °	52,51 °	39 º/₀	38,8 °/0
do.	do.	60,7	49,6	400	40	37,51	36,8	36,9
do.	do.	44,0	36,2	223	25	24,92	33,2	35,4
Benzol	Äthylalkohol	80,2°	78,2°	760 mm	67-68°	60,6°	32,3 º/₀	34,8 °/ ₀
do.	do.	62,1	66,2	422	50-51	46,18	27,9	31,9
do.	do.	45,8	51,7	242	34,5-35	33,93	23,4	29,3

Die berechneten Zahlen sind unter der Voraussetzung der gegenseitigen Unlöslichkeit der Komponenten erhalten, so daß also die Abweichung zwischen Beobachtung und Rechnung durch den Lösungseffekt verursacht ist.

Fassen wir zuerst die berechneten Werte ins Auge. Die Tabelle gibt das Siedeverhalten zweier Gemische mit Minimumsiedepunkt wieder, des Benzols, eines Kohlenwasserstoffes, und zweier Alkohole, von denen bekannt ist, daß sie im Vergleich zu den Kohlenwasserstoffen im flüssigen Zustande aus größeren Molekülaggregaten bestehen. Da nun nach den Dampfdrucken der reinen Komponenten mit sinkender Temperatur die molekulare Assoziation der Alkohole stärker zunimmt als bei den Kohlenwasserstoffen, also die Dampfbildung stärker abnimmt, so ist es erklärlich, daß mit dem Sinken der Temperatur der Alkoholgehalt im Dampfgemisch gegenüber dem Benzolgehalt zurückgeht. Aus den beobachteten Werten ergibt sich, daß sich die Lösungen ebenso verhalten. Der Lösungseffekt ändert also an den Assoziationsunterschieden nichts. Es ist, als ob die Assoziation der homogenen Moleküle in der Lösung noch partiell weiter existiert.

¹⁾ Americ. chem. Journ. 22 (1899), 384.

Minimumsiedepunkt und Dampfzusammensetzung von binären, homogenen Flüssigkeitsgemischen.

S. C.		des Comission	4.	Sie	edetempera		an der	. Dampf. niedriger	
Literatur- Nachweis,	Komponenten	des Gemisches.	Destillat. Druck.	des Ge-	der reinen h	Componenten Hationsdruck	siedend	en Kom- i. Gew.%	
Liter	A	В	Des	misches.	A	В	The second second	Berechn.	
				°C.	°C.	°C.	0/0	0,0	
1 2	Wasser	Äthylalkohol	760	78,15	100	78,3	95,57	86,7	
1, 2.	Wasser	Isopropylalkohol	760	80,35	100	82,45	87,9	_	
1,3,4.	do.	n-Propylalkohol	760	87,7	100	97,2	71,7	77,8	
1,5,6.		Tert. Butylalkohol	760	79,9	100	82,55	88,2		
1,22.	do.	Allylalkohol	Atm.	10,0	_	-	-		
5.	do.	n-Buttersäure	763	99-99,5		159-160	68	69,1	
6.	do.	Chloracetaldehyd		85,0-85,5	100	85,5	_	-	
7.	do.	Chloral	740	94,9	99,25	97,4	92-94		
9.	do.	Pyridin	Atm.	92,5	100	115	41	-	
100	Methylalkohol	Benzol	760	58,35	64,7	80,2	39,5	38,7	
1.	do.	do.	760	57,5-58	64,5-65	79-79,5	38,4	38,8	
6.	do.	do.	400	40	49,6	60,7	36,8	36,9	
6.	do.	do.	223	25	36,2	44,0	33,2	35,4	
10.	do.	n-Hexan	760	50	64,7	68,95	00,2	55,4	
\$3,000,000 C	do.	Tetrachlorkohlenst.	CO. 100	55,7	64,7	76,75	20,6	21,7	
10, 11.	do.	Bromäthyl	765	35-36	64,5-65	37,5-38,5	95	91	
6.	do.	Jodäthyl	770	54,5-55,5	64,5-65	The state of the s	17	18,9	
6.	do.	Chloroform	100 mm	53,5-54,5	64,5-65	72,3-72,5	88		
12.	do.	do.	746,2			A CONTRACTOR OF	90	84,1	
13.	do.	do.	770,2	100000000000000000000000000000000000000	64,8	61,45	87,5		
14.			Atm.		610	016	77		
6.	do. do.	Cyanmethyl	1/2/2013	63,7	64,8	81,6 118–119	70	-	
6.	do.	Isobutyljodid Methylacetat	DESCRIPTION OF THE PARTY OF THE				82	70	
6.	do.	Äthylacetat	Resident.	53,5-54,5	64,5-65	55,5-56,5		78	
13.	do.	Aceton	757	61,7-62,5	64,5-65	75,5–76,5	47 87–88	34,2	
12.	do.		765 Atm.	55,9	65.5	E6 6		7.	
1.	Äthylalkohol	do. Benzol	NAME OF STREET	55,95	65,5	56,6	86,5	74	
6.	do.	do.	760	68,25	78,2	80,2	32,4	34,8	
6.	do.	do.	769	67-68	77,5–78	79-79,5	31,4	34,8	
6.	do.	7200	421	50-51	66,2	62,1	28,2	31,9	
15.	do.	do.	241	34,5–35,5	51,7	45,8	23,3	29,3	
15.	do.	do.	760	67,8	78,2	80,2	32,0		
15.	do.	do.	712	66,0	76,2	78,3	30		
15.	do.	do.	570 380	60,0	70,7	71,3	28	-	
15.	do.	do.	200	49,9	61,5	59,3	26	The same	
10.	do.	Toluol	760	34,8	47,8	42,2	22	1000	
10.	do.	n-Hexan		76,7	78,3	110,6	70.0	76-	
6.	do.	Bromäthyl	760	58,65	78,3	68,95	79,0	76,5	
	40.	Bromatny	102	36,5-37,5	77,5–78	37,5–38,5	ca. 97	-	

ur											
# 5	Komponenten des Gemisches.				edetemper		an der	Dampf.			
Literatur- Nachweis.			Destillat Druck.	des Ge-	der reinen h	Componenten Ilationsdruck	siedend	en Kom-			
ZZ	A	В	De	misches.	A	В		Berechn.			
			mm	°C.	°C.	. ° C.	0.0	0/0			
6.	Athylalkohol	Jodäthyl	761	62,5-63,5	77,5-78	71,5-72,5	86	83,7			
6.	do.	Isobutyljodid	760	76,5-77,5		118-119	70	_			
14.	do.	Cyanmethyl	Atm.	72,6	78,4	81,6	55	-			
6.	do.	Chloroform	759	58,5-59,5	77,5-78	60-61	94	87,1			
15.	do.	Tetrachlorkohlenst.	789	66,0	79,2	77,9	80				
15.	do.	do.	760	64,9	78,1	76,4	84	_			
15.	do.	do.	637	60,0	73,2	70,7	84				
15.	do.	do.	430	50,0	64,4	59,0	88	_			
15.	do.	do.	380	46,9	61,5	55,4	88				
15.	do.	do.	200	32,0	47,8	38,5	90	-			
6.	do.	Schwefelkohlenst.	755	41,5-42,5	The second secon	45,5-46	91	88,4			
6.	do.	Äthylacetat	765	71-72	77,5-78	75,5-76,5	69	-			
16.	do.	Methyläthylketon	763	75,0	78,3	79,8	_	-			
1.	n-Propylalkohol	Benzol	760	77,1	97,2	80,2	83,1	75,0			
6.	do.	do.	762	76-77	95,7	79-79,5	83,5	75,0			
6.	do.	Toluol	765	91-92	95,7	108,7-109,3	53	-			
10.	do.	n-Hexan	760	65,65	97,2	68,95		-			
6.	do.	Jodäthyl	768	69,5-70,5	95,7	72,3-72,5	93	-			
6.	do.	Isobutyljodid	753	92,5	95,7	118-119	45	-			
1.	Isopropylalkohol	Benzol	760	71,9	82,45	80,2	66,7	-			
6.	do.	do.	758	71-72	81-82	79-79,5	70	-			
6.	do.	Jodäthyl	764	65,5-66,5	81-82	71,5-72,5	87	-			
6.	do.	Isobutyljodid	761	81-82	81-82	118-119	70	-			
6.	do.	Äthylacetat	770	74-75	81-82	75,5-76,5	74	-			
6.	do.	Schwefelkohlenst.	761	43,5-44,5	81-82	45,5-46	91	-			
1.	Isobutylalkohol	Benzol	760	79,85	105,05	80,2	90,7	77,91			
6.	do.	Toluol	764	100	105,3-106,3	108,8-109,3	43	-11			
10.	do.	n-Hexan	760	68,1	105,05	68,95	-	-			
6.	do.	Isobutyljodid	765	101-102	105,3-106,3	118-119	-	-			
6.	do.	Äthylendibromid	763	104,5-105,5	105,3-106,3	129-130	62	-			
17.	do.	Amylbromid	Atm.	103,4	105,0	118,1	63,6	-			
17.	do.	Amyljodid	Atm.	104,7	104,8	146,5	95	-			
1.	Tert. Butylalkohol	Benzol	760	73,95	82,55	118,5	63,4	-			
6.	Amylalkohol	Isobutyljodid	765	115-116	128-129	118-119	ca. 80	-			
17.	do.	Amylbromid	Atm.	116,15	129	117,9	87,3	-			
17.	do.	Amyljodid	Atm.	127,3	128,9	146,5	52,0	-			
6.	do.	Äthylendibromid	760	121-122	128-129	129-130	30	32			
17.	do.	Amylacetat	760	129,1	129,3	137,5	97,4	-			
6.	do.	Orthoxylol	760	125-126	128-129	136-137	52	-			
6.	do.	Metaxylol	760	125-126	128-129	137-137,5	52	48,93			
6.	do.	Paraxylol	760	127-128	128-129	140-141	< 52	47,99			

	Literatur- Nachweis.	Komponenten des Gemisches.		misches unterd.Destillationsdi				omponenten lationsdruck	Gehalt d. Dampf. an der niedriger siedenden Kom ck ponentei. Gew.% Beobacht. Berechn.	
	JZ	A	В							
	136			mm	°C.	° C.	°C.	0/0	0/0	
	6.	Allylalkohol	Benzol	760	76–77	95-96	79–79,5	< 80	-	
	6.	do.	Toluol	756	91-92	95-96	108,8-109,3	ca. 50		
	18.	Essigsäure	Benzol	750	80,05	118,5	80,2	98	-	
	6.	do.	Toluol		103,5-104,5	117-118	108,8-109,3	70	1	
	19.	do.	do.	333,3	80,05	-	-	69,6	-	
ı	19.	do.	do.	225,8	69,94	-	-	68,2	-	
	6.	do.	Metaxylol	761	113,5-114,5		136-137	27	-	
3	6.	Buttersäure	Brombenzol	748	147-148	159-160	152-153	81	_	
	10.	Aceton	Schwefelkohlenst.	760	39,25	56,4	46,2	66	66	
H	6.	do.	do.	766	38,5-39,5	55,5-56,5	45,5-45,7	74	66	
4	19.	do.	do.	655	35,17		-	72,6	-	
Į	6.	do.	Methylacetat	Atm.	55-56	55,5-56,5	55,5-56,5	-	-	
1	16.	do.	Diäthylamin	Atm.	51,3	56,1	55,6	61,8	-	
1	6.	do.	Äthyljodid	770	55-56	55,5-56,5		60		
	10, 20.	Schwefelkohlenst.	Äthyläther	760	34,5	34,6	46,2	-	-	
1	6.	do.	do.	768	34,5-35,5	45,5-46	34,5-35,5	59	-	
H	6.	do.	Bromäthyl	770	37-38	45,5-46	45,5-45,7	32	35	
-	6.	do.	Methylacetat	756	39-40	45,5-46	55,5-56,5	71	-	
	10.	do.	Methylal	760	37,25	46,2	42,05	Too	-	
ł	19.	do.	do.	703,5	35,17	-	-	40,1	-	
ł	6.	do.	Äthylacetat	768	45,5-46,5	45,5-46	75,5-76,5	92	-	
-	10.	Tetrachlorkohlenst.	do.	760	74,8	76,75	77,15	-	-	
1	19.	do.	do.	318,8	49,99	-		67,2	-	
-	6.	Äthylacetat	Jodäthyl	762	69,5-70,5	75,5-76,5	71,5-72,5	78	-	
-	19.	do.	do.	363,5	49,99	-	-	83,4	-	
1	21.	n-Hexan	Benzol	-	-	68,95	80,2	-		
				1	harries and the same of the sa		L. Millian Bridge	1	1	

Literatur-Nachweis.

- 1. Young u. Fortey, Journ. chem. Soc. 81 (1902), 717 und 739.
- 2. Noyes u. Warfel, Journ. Americ. chem. Soc. 23 (1901), 463.
- 3. Linebarger, Journ. Americ. chem. Soc. 17 (1895), 615 und 690.
- 4. Linnemann, Liebigs Annalen 136 (1865), 40.
- 5. Konowalow, Wiedemanns Annalen 14 (1881), 34.
- 6. Ryland, Americ. chem. Journ. 22 (1899), 384.
- 7. Beilsteins Handbuch. III. Aufl. Bd. 1, S. 927.
- 8. van Rossem, Zeitschr. f. physik. Chem. 62 (1908), 681.
- 9. Goldschmidt u. Constam, Berl. Berichte 16 (1883), 2976.
- 10. Young, Journ. chem. Soc. 83 (1903), 717 und Fractional Distillation, S. 67-69.

- 11. Thorpe, Journ. chem. Soc. 35 (1879), 544.
- 12. Pettit, Journ. of physic. Chem. 3 (1899), 349.
- 13. Haywood, Journ. of physic. Chem. 3 (1899), 317.
- 14. Vincent u. Delechanel, Compt. rend. 90 (1880), 747.
- 15. Schreinemakers, Zeitschr. f. physik. Chem. 47 (1904), 445.
- 16. Marshall, Journ. chem. Soc. 89 (1906), 1375.
- 17. Holley, Journ. Americ. chem. Soc. 24 (1902), 448 und 457.
- 18. Nernst, Zeitschr. f. physik. Chem. 8 (1891), 129.
- 19. von Zawidzki, Zeitschr. f. physik. Chem. 35 (1900), 129.
- 20. Guthrie, Phil. Magaz. V, 18 (1884), 512.
- 21. Jackson u. Young, Journ. chem. Soc. 73 (1898), 176.
- 22. Butlerow, Liebigs Annalen 162 (1872), 229.

Die bis jetzt bekannten Lösungen mit Minorsiedepunkt. Für die Destillationspraxis ist es sehr wichtig, solche Lösungen mit Minorsiedepunkt, die sich trotz idealer Kolonnenkonstruktion nicht vollständig trennen lassen, zu kennen. Die bis jetzt bekannten sind mit ihrem Minimumsiedepunkt und mit der Zusammensetzung des Dampfgemisches in der vorstehenden Tabelle wiedergegeben.

Die chemische Konstitution der Körper, die Gemische mit Minorsiedepunkt bilden. Im Verlauf der bisherigen Darlegungen wurde schon mehrmals auf das verschiedene Verhalten der hydroxylhaltigen und der hydroxylfreien Verbindungen hingewiesen. Sie weichen in der Oberflächenspannung voneinander ab. Der Dampfdruck der hydroxylhaltigen Körper nimmt mit sinkender Temperatur stärker ab; infolgedessen geht auch ihr Anteil im Mischdampf bei der Hydrodestillation mit sinkender Destillationstemperatur stärker zurück. Ihre Löslichkeit untereinander ist größer als mit hydroxylfreien Verbindungen. Das ebullioskopische und kryoskopische Verhalten ihrer verdünnten Lösungen zeigt ebenfalls einen gewissen Gegensatz zu den Lösungen der hydroxylfreien Körper. Als Grund dieses bemerkenswerten verschiedenen Verhaltens wurde erkannt, daß die Hydroxylkörper im allgemeinen stärker molekularassoziiert sind als die hydroxylfreien.

Aus der Tabelle, welche die binären homogenen Gemische mit Minorsiedepunkt wiedergibt, erhellt nun, daß bei diesen Gemischen vorwiegend hydroxylhaltige Körper beteiligt sind. Man gewinnt also den Eindruck, als ob die Molekularassoziation an dem Vorkommen der homogenen Gemische mit Minorsiedepunkt irgendwie ursächlich beteiligt ist¹).

Wenn man erwägt, daß der Minorsiedepunkt die charakteristische Eigenschaft von Gemengen unlöslicher und partiell löslicher Körper ist, so möchte man andererseits schließen, daß diese homogenen Gemische mit Minorsiedepunkt gleichsam den Übergang zu den eigentlichen Lösungen mit Zwischensiedepunkt bilden, da sie zwar in der homogenen Beschaffenheit vollständig den eigentlichen Lösungen gleichen, aber in der Dampfbildung noch einen Rest des Unlöslichkeitscharakters haben. Und in dieser Ansicht wird man bestärkt, wenn man sich daraufhin die Körper näher ansieht, die homogene Gemische mit Minorsiedepunkt bilden. Es sind nämlich im allgemeinen solche, bei denen man vermuten möchte, daß sie sich zwar nicht bei Zimmertemperatur, wohl aber bei stärkerer Erniedrigung der Temperatur in zwei Schichten trennen werden, also gegenseitig nur teilweise löslich sind.

Fassen wir z. B. die Gemische von Wasser mit den gesättigten aliphatischen Alkoholen ins Auge.

Wasser und Methylalkohol: mischbar, Zwischensiedepunkt,

" " Äthylalkohol: " Minorsiedepunkt,

" " Propylalkohol: " " " " " "

" Cetylalkohol: unlöslich,

Hieraus ergibt sich unzweifelhaft, daß gleiche Eigenschaften der Körper, die für das Lösungsvermögen bedingend sind, auch die Ursache für das Zustandekommen des Minorsiedepunktes bilden. Und diese Grundursache, die sowohl Löslichkeitsverhältnisse wie Siedeverhalten bestimmt, ist eben der Umfang der Molekularassoziation.

Es erübrigt noch, die Abhängigkeit des Lösungsvermögens von der molekularen Assoziation festzustellen.

V. Rothmund²) hat in seiner Abhandlung über die gegenseitige Löslichkeit von Flüssigkeiten die Haupttypen der chemischen Substanzen nach ihrer Löslichkeit in Wasser geordnet. Aus dieser Reihe lassen sich auch die gegenseitigen Löslichkeitsbe-

2) Zeitschr. f. physik. Chem. 26 (1898), 489.

¹) Auf diese Tatsache hat zuerst wohl S. Young in seinem Werke Fractional Distillation, London 1903, S. 65 hingewiesen.

ziehungen der organischen Verbindungen entnehmen. Je weiter in dieser Reihe zwei Verbindungen voneinander getrennt stehen, um so weniger vermögen sie sich gegenseitig zu lösen.

Nachstehend sind diese Rothmundsche Löslichkeitsreihe und die nach dem Siedeverhalten der Körper von mir aufgestellte Assoziationsreihe (S. 533) zum Vergleich nebeneinander gestellt.

Löslichkeitsreihe.

Assoziationsreihe.

Niedere Fettsäuren Niedere Alkohole Niedere Ketone Niedere Aldehyde Nitrile

Phenole Aromatische Aldehyde

Äther
Halogenderivate d. KohlenwasserSchwefelkohlenstoff [stoffe

Kohlenwasserstoffe.

Säuren Alkohole Wasser Phenole Nitrokörper Ammoniakderivate

Ketone Aldehyde

Ester Äther

Halogenderivate d. Kohlenwasser-Kohlenwasserstoffe. [stoffe

Beide Reihen können keinen Anspruch auf Vollständigkeit erheben, auch nicht auf Genauigkeit in bezug auf die Reihenfolge der Glieder. Die Reihen unterscheiden sich nur in den Mittelgliedern, zwischen denen die Unterschiede im Verhalten geringer sind. Die allgemeine Übereinstimmung genügt jedoch, um das Gesagte zu bekräftigen. Der erste Akt des Lösevorganges besteht in dem Zerfall der Molekülaggregate der Komponenten. Hierdurch erhöht sich der Dampfdruck, was aber in der Regel durch die Dampfdruckverminderung mehr als ausgeglichen wird, die durch den darauffolgenden Zusammentritt der ungleichartigen Spaltungsprodukte zu neuen Molekülaggregaten entsteht. Da sich nun die Verbindungen mit freiem Hydroxyl durch einen größeren Umfang iher Molekülkomplexe auszeichnen so kann es bei ihnen leichter dazu kommen, daß das Dampfdruck erhöhende Moment den Ausschlag gibt, und das Gemisch mit Minorsiedetemperatur siedet. Das wäre die Ursache für die Bildung von Gemischen mit Minorsiedepunkt, wie man mit einiger Sicherheit annehmen kann. Ein weiteres Eingehen auf die Lösungstheorie würde verfrüht sein, denn mehr als unbegründete Hypothesen lassen sich nicht geben.

Für die Destillationspraxis sei noch erwähnt, daß die in der Tabelle zusammengestellten, bis jetzt beobachteten homogenen Gemische mit Minorsiedepunkt wohl nur einen kleinen Bruchteil der wirklich vorkommenden darstellen.

Die Zusammensetzung der konstant siedenden Mischung. Die Zusammensetzung des Dampfes, der sich aus den homogenen Gemischen mit Minorsiedepunkt entwickelt, steht unter dem Einfluß der Lösungsaffinität und ist infolgedessen von dem Mengen-

verhältnis des Gemisches abhängig.

Zugleich aber liegt in dem Vorkommen von Fraktionen mit Minorsiedepunkt ausgedrückt, daß sich diese Fraktionen in ihrem Siedeverhalten den Gemengen gegenseitig unlöslicher und partiell löslicher Körper nähern, und zwar wird diese Annäherung bei der Fraktion des Gemisches am größten sein, die mit der niedrigsten Temperatur siedet, d. h. also bei derjenigen mit dem Minimumsiedepunkt.

Hiernach ist zu erwarten, daß die Zusammensetzung des Dampfgemisches, das bei der Minimumsiedetemperatur entwickelt wird, annähernd mit der Dampfzusammensetzung übereinstimmt, die unter der Voraussetzung der gegenseitigen Unlöslichkeit der Komponenten des Gemisches berechnet ist. Diese beiden Gehaltszahlen, die experimentell bestimmte und die unter der genannten Voraussetzung berechnete, sind in den letzten beiden Vertikalspalten der Tabelle angegeben.

Die erwartete annähernde Übereinstimmung ist in der Tat in der Mehrzahl der Fälle vorhanden. Die Ausnahmen gehören Gemischen an, deren Minimumsiedepunkt fast durchgehends mit dem Siedepunkt der flüchtigeren Komponente nahezu zusammenfällt. Es sind also Gemische, die sich schon denen mit Zwischen-

siedetemperatur nähern.

Enthalten die Alkohol-Wassergemische Hydrate? Die Eigenschaft der wässrigen Lösungen vieler Säuren und Alkohole, in einer bestimmten Fraktion wie ein einheitlich zusammengesetzter Körper mit konstanter Temperatur und Dampfzusammensetzung zu destillieren, hat zu der früher wohl allgemeinen Anschauung geführt, daß in diesen durch fraktionierte Destillation nicht weiter trennbaren Fraktionen Hydrate vorliegen. Besonders hatte man dabei den wässrigen Äthylalkohol im Auge, den bekanntesten Vertreter der Gemische mit Minorsiedetemperatur. Die bei dem

Vermischen von Wasser mit Äthylalkohol unter Wärmeentwicklung entstehende Volumkontraktion läßt sich in der Tat nur durch eine Affinitätsäußerung erklären, wenn nicht durch die einer chemischen Verbindung, so wenigstens durch eine sehr starke Lösungsaffinität. Die Dampfzusammensetzung bei dem Minimumsiedepunkt eines 95,6 gewichtsprozentigen Äthylalkols entspricht ziemlich genau dem Verhältnis von 9 Mol. Alkohol zu 1 Mol. Wasser.

Auf Grund von umfangreichen, interessanten Untersuchungen der Viskosität von Flüssigkeiten kam A. E. Dunstan¹) wieder zu der Ansicht, daß zwischen Alkoholen und Wasser eine chemische Affinität bestehe, und zwar schloß er aus den Viskositätskurven auf folgende Verbindungen:

1 Mol. Methylalkohol mit 2 und 3 Mol. Wasser,

1 " Äthylalkohol mit 2, 3, 4 und 6 Mol. Wasser,

1 " Propylalkohol mit 2 Mol. Wasser.

Die Änderung der Viskosität mit der Konzentration scheint durch die Unstetigkeit der betreffenden Kurve einen gewissen Einblick in die Assoziations- und Dissoziationsverhältnisse eines homogenen Körpergemisches zu geben. Aber die von Dunstan gezogenen Folgerungen sind wohl zu weitgehend, bedürfen jedenfalls noch weiterer Begründung.

Das Siedeverhalten dieser wässrigen Alkohole spricht jedenfalls gegen die Existenz von Hydraten bei der Versuchstemperatur. Die Viskositätsbestimmungen wurden bei 250 ausgeführt Vom Methylalkohol gibt es keine Mischung mit Wasser mit konstanter Dampfzusammensetzung, auch nicht bei niedriger Temperatur. Die Siedetemperatur liegt stets zwischen denen der Komponenten. Methylalkohol und Wasser lassen sich durch fraktionierte Destillation völlig trennen. Die beiden anderen Alkohole destillieren zwar im Gemisch mit Wasser bei gewissen Konzentrationen mit konstanter Dampfzusammensetzung und konstanter Temperatur; aber diese Temperatur liegt unter gleichem Druck tiefer als die Siedetemperaturen der Komponenten, während die Siedetemperatur einer Additionsverbindung höher sein müßte. Die durch die Assoziation der ungleichartigen Moleküle bewirkte Dampfdruckerniedrigung ist also nicht einmal so groß wie die Dampfdruckerhöhung, die bei dem gegenseitigen

¹⁾ Zeitschr. f. physik. Chem. 49 (1904), 590; 51 (1905), 732; 56 (1906), 370.

Löseakt durch die Dissoziation der Molekülaggregate des Wassers und des Alkohols entsteht.

Ternäre Lösungen mit Minimumsiedepunkt. Young¹) hat die interessante Tatsache nachgewiesen, daß auch ternäre Lösungen mit Minimumsiedepunkt vorkommen, die also mit konstanter Dampfzusammensetzung destillieren. Die Zahlen in der nachstehenden Tabelle bilden die Endergebnisse sorgfältig durchgeführter fraktionierter Destillationen, bis sie zu dem nicht weiter trennbaren Gemisch gelangt sind.

temp der Dampi-		binären	Siedetemperatur d. binären ternären Gemisches.		Zusammensetzung des Dampfes des binären ternären Gemisches.		
Benzol Äthylalkohol	80,2° 78,3 100	760 mm 760 760	68,25°	64,85°	67,64°/ ₀ 32,36	74,1 °/0 18,5 7,4	
Benzol	80,2° 82,45 100	760 mm -760 760	71,9°	66,5°	} 66,7°/₀ 33,3	73,8°/ ₀ 18,7 7,5	
Benzol tert. Butylalkohol Wasser	80,2° 82,55 100	760 mm 760 760	} 73,95°	67,30	63,4°/ ₀ 36,6	70,5% 21,4 8,1	
Benzol n-Propylalkohol . Wasser	80,2° 97,2 100	760 mm 760 760	77,10	68,5 °	83,1°/ ₀ 16,9	82,4°/ ₀ 9,0 8,6	
n-Hexan Äthylalkohol Wasser	68,95° 78,3 100	760 mm 760 760		56,60			
n-Hexan n-Propylalkohol . Wasser	68,95° 97,2 100	760 mm 760 760		59,95°			

Aus der Tabelle läßt sich erkennen, wie sich die Dampfzusammensetzung ändert, wenn zu dem binären Gemisch, das jedesmal aus einem Kohlenwasserstoff und einem Alkohol be-

¹⁾ Fractional Distillation, London 1903, S. 68.

steht, Wasser hinzutritt. Es wird der Dampfdruck derjenigen Komponente erniedrigt, zu der der hinzugefügte dritte Körper, in diesem Falle das Wasser, die größere Lösungsaffinität äußert. In dem Mischdampf des ternären Gemisches ist deshalb jedesmal der Alkoholgehalt geringer als in dem des binären Gemisches.

Über die Trennung homogener Gemische mit Minorsiedetemperatur. Änderungen des Destillationsdruckes eines homogenen Gemisches beeinflussen auch die Zusammensetzung des entwickelten Dampfes und zwar in dem Sinne, daß mit sinkendem Drucke der Gehalt an dem Bestandteil abnimmt, der in reinem Zustande stärker molekularassoziiert ist. Bei einem Gemisch von hydroxylfreien und hydroxylhaltigen Körpern und einer Druckänderung von wenigstens einer Atmosphäre kann der Unterschied in der Dampfzusammensetzung auch praktisch von Bedeutung werden. Durchgreifender aber, sogar bis zur reinen Trennung der Komponenten, kann der Zusatz eines geeigneten fremden Körpers zu dem Gemisch wirken.

Eine umfangreiche, sehr interessante Untersuchung über den Druck und die Zusammensetzung der Dämpfe von Lösungen nicht flüchtiger Substanzen in wässrigem Äthylalkohol haben Iw. Kablukow, A. Salomonow und A. Galine1) ausgeführt. Als Zusatzmittel benutzten sie Chlorkalium, Chlornatrium, Bromnatrium, Jodnatrium, Jodkalium, Weinsäure, Traubenzucker und Quecksilberchlorid. Sie wiesen an wässrigem Alkohol von verschiedenem Gehalte nach, daß entweder der Alkohol oder das Wasser bei der Verdampfung zurückgehalten wird, je nachdem der zugesetzte Körper sich in der ersteren oder der letzteren Komponente leichter löst, daß die Dampfzusammensetzung so gut wie unverändert bleibt, wenn der Zusatz, wie z. B. Weinsäure, in beiden ziemlich gleich löslich ist. Außer von der Natur der zugefügten Substanz ist die Änderung des Dampfdruckes der Lösung auch von der Konzentration abhängig. Die durch den Zusatz erfolgende Erhöhung des Dampfdruckes ist ungefähr proportional der molekularen Konzentration des Salzes in der Lösung.

¹⁾ Zeitschr. f. physik. Chem. 46 (1903), 399.

Änderung in der Verdampfung von wässrigem Alkohol nach Zusatz eines fremden Körpers.

The state of the s					
Zu- gesetzter Körper.	Menge des Zu- satzes in Gramm- Molekülen auf 1 Liter.	Mol.% Alkohol im Dampf nach dem Zusatz.	Gew. % Alkohol im Dampf nach dem Zusatz.	Zunahme der Mol.% Alkohol im Dampf durch den Zusatz.	Die v. 1 Gramm- Molekül des Zusatzes verur- sachte Zunahme der Mol. % Al- kohol im Dampf.
10,06 gew	%iger Äthylal	kohol, im Dan	npf: 28,77 Mol	.º/o == 50,80 Ge	w.º/o Alkohol.
КСІ	0,5 Mol.	31,23 Mol.º/₀	53,70 Gew.º/o	2,46 Mol.º/o	4,92 Mol.º/o
	1,0 "	33,86 "	56,66 ,,	5,09 ,,	5,09 ,,
	2,0 "	39,39 "	62,37 ,,	10,62 ,,	5,31 ,,
NaCl	0,5 Mol.	31,03 Mol.º/o	53,62 Gew.º/o	2,26 Mol.º/o	4,52 Mol.º/o
	2,0 "	38,98 "	62,02 "	10,21 "	5,10 "
КВг	0,5 Mol.	30,7 Mol.º/o	53,27 Gew. ⁰ / ₀	1,93 Mol.º/o	3,86 Mol. ⁰ o
	1,0 ,,	32,96 ,,	55,78 ,,	4,19 ,,	4,19 ,,
	2,0 ,,	37,38 ,,	60,40 ,,	8,61 ,,	4,30 ,,
КЈ	0,5 Mol.	30,23 Mol.º/o	52,71 Gew. ⁰ / ₀	1,46 Mol.º/o	2,92 Mol.º o
	1,0 "	31,81 ,,	54,53 ,,	3,04 ,,	3,04 ,,
	2,0 "	35,30 ,,	58,28 ,,	6,53 ,,	3,26 ,,
C ₄ H ₆ O ₆ Weinsäure	0,5 Mol. 1,0 " 2,0 "	28,70 Mol.º/o 28,84 " 28,82 "	50,84 Gew. ⁰ / ₀ 50,86 ,, 50,99 ,,	- 0,07 Mol.º/o + 0,07 "	- 0,14 Mol.º o + 0,07 "
Hg Cl ₂	0,25 Mol.	28,19 Mol.º/o	50,19 Gew.º/o	- 0,58 Mol.º/₀	- 2,4 Mol.º/o
	0,33 "	27,96 "	49,92 "	- 0,81 "	- 2,44 "
49,65 gew. KCI	-⁰/₀iger Äthyla 0,5 Mol.			1.º/o = 76,9 Ge 3,01 Mol.º/o	w.º/o Alkohol. 6,02 Mol.º/o
NaCl	0,5 Mol.	59,34 Mol.º/o	78,93 Gew.º/o	2,84 Mol.º/o	5,68 Mol.º/o
	1,0 "	62,30 "	80,89 "	5,80 "	5,80 "
KBr	0,5 Mol.	58,93 Mol.º/º	78,64 Gew.º/o	2,43 Mol.º/o	4,86 Mol.º/o
	1,0 "	61,20 "	80,12 "	4,70 "	4,70 "
КЈ	0,5 Mol. 1,0 ,, 2,0 ,,	58,30 Mol.º/o 59,90 ,, 63,33 ,,	<u>-</u>	1,80 Mol.º/d 3,40 ,, 6,83 ,,	3,60 Mol.º/o 3,40 ,, 3,41 ,,
C ₄ H ₆ O ₆	1,0 Mol.	57,17 Mol.º/o	77,40 Gew.º/o	0,67 Mol.º/o	0,67 Mol.º/o
	2,0 "	57,92 "	77,94 "	1,42 "	0,71 "
Hg Cl ₂	0,25 Mol.	55,65 Mol.º/o	76,29 Gew.º/c	- 0,85 Mol.º/o	- 3,40 Mol.º/o
	0,50 "	54,90 "	75,81 "	- 1,60 "	- 3,20 "

Beobachtungen von M. Roloff¹) führten zu demselben Ergebnis. Zu einer Lösung von 29,51 g reiner Essigsäure in 74,49 g Wasser, die unter 742,2 mm Druck bei 100,9%, mit 21,4% Essigsäure im Dampfe, siedete, wurden 8,52 g Chlorkalium gefügt, wonach der Siedepunkt auf 102,39% und der Essigsäuregehalt im Dampfe auf 26,0% stieg. Ebenso wurde durch den Zusatz von 7,07 g Chlorkalium zu einer Lösung von 61,2 g Essigsäure in 38,8 g Wasser der Siedepunkt von 101,9% auf 103,93% und der Essigsäuregehalt im Dampf von 49,2% auf 55,1% gesteigert; der Dampfdruck war 743,4 mm. Chlorkalium ist in Essigsäure unlöslich, setzt also in deren wässriger Lösung den Dampfdruck des Wassers herab, wodurch der Dampf an Essigsäure angereichert wird.

Dieser Einfluß der Lösungsaffinität auf die Dampfentwicklung eines Gemisches ist übrigens bei allen Körpergemischen festgestellt, bei den Gemischen gegenseitig begrenzt löslicher Körper sowohl wie bei allen homogenen Gemischen. Selbst Gemische mit Maximumsiedepunkt, also Additionsverbindungen, können durch den Zusatz eines geeigneten Lösungsmittels dissoziiert und dann durch Destillation getrennt werden. Die oben angeführte Untersuchung Roloffs über die wässrige Essigsäure betrifft ein Gemisch ohne Konstanz der Siedetemperatur.

Man nennt diese Verwendung der Lösungsaffinität zur Trennung von Körpergemischen "eine Destillation unter Benutzung der auswählenden Löslichkeit". In der Destillationspraxis kann sie vielfach vorteilhaft benutzt werden. Sie ist sehr modifikationsfähig. In den mitgeteilten Beispielen wurde Wasser durch Zusatz von Chlornatrium oder Chlorkalium, Äthylalkohol durch Zusatz von Quecksilberchlorid in der Verdampfung gehemmt, d. h. also in einem Falle durch einen nicht flüchtigen, im anderen durch einen schwer flüchtigen Körper. Ebenso läßt sich auch die verschiedene Löslichkeit in Wasser benutzen, um ein Gemisch mit konstanter Siedetemperatur zu zerlegen, indem das Gemisch mit Wasser zusammen destilliert wird.

Immer aber bleibt diese Trennung begrenzt. Vollständige Zerlegung durch Destillation kann man erst erreichen, wenn man, statt der Benutzung der Lösungsaffinität, dem Gemisch einen

¹⁾ Zeitschr. f. physik. Chem. 11 (1893), 22.

Körper zufügt, der mit einem der Bestandteile des Gemisches eine chemische Verbindung eingeht, sei es eine stabile Kondensations- oder eine labile Additionsverbindung (s. das Kapitel über

Additionsverbindungen).

Ein besonderer Fall der Reingewinnung eines Bestandteils aus einem homogenen Gemisch mit Minorsiedepunkt ist noch zu erwähnen. Wenn in einem solchen Gemisch eine Komponente in großem Überschuß enthalten ist, so bleibt dieser überwiegende Anteil bei der Destillation des Gemisches in der Blase zurück, nachdem die Mischung mit dem Minimumsiedepunkt überdestilliert ist. Die Benutzung eines Fraktionsaufsatzes im Kleinen oder einer Kolonne im Großen vergrößert die Ausbeute an diesem Bestandteil und läßt ihn auch völlig rein gewinnen, wenn die Differenz zwischen dem Minimumsiedepunkte der Vorlauffraktion und dem Siedepunkte der restierenden Komponente einigermaßen erheblich ist. Ist diese Differenz aber gering, so ist eine Reingewinnung des im Überschuß vorhandenen Bestandteils trotz der besten Fraktionierung kaum möglich. In diesem Falle kann der Zusatz eines leicht flüchtigen Körpers zu dem Gemische von Vorteil sein, der mit der Verunreinigung ein Gemenge gegenseitig begrenzt löslicher oder besser unlöslicher Körper bildet.

Young¹) hat z. B. durch Zusatz einer geringen Menge von Benzol zu hochprozentigem Äthylalkohol und Destillation des Gemisches absoluten Alkohol erhalten. Als Vorlauf verdampfte ein Gemisch von Benzol mit Wasser und Äthylalkohol. Auf diese eigenartige Darstellung von absolutem Alkohol nahm er ein Patent, das praktisch wohl brauchbar sein kann, denn der Vorlauf kann jedesmal zu einer neuen Fabrikation absoluten Alkohols aus hochprozentigem Spiritus verwendet werden.

¹⁾ Young, Journ. chem. Soc. 81 (1902), 707; Young u. Fortey, ibid. 739.

13. Kapitel.

Destillation homogener Gemische ohne konstanten Siedepunkt.

Die Lösungen ohne konstanten Siedepunkt und infolgedessen ohne gleichbleibende Zusammensetzung des Dampfes sieden bei allen Konzentrationen der Lösung zwischen den Siedepunkten des leichtest und des schwerst flüchtigen Bestandteils.

Bei der Destillation dieser Gemische unter konstantem Druck ist ihre Siedetemperatur, bei der Destillation unter konstanter Temperatur ist ihr Druck und im übrigen ihre Dampfzusammensetzung außer von der Natur der Komponenten auch noch von der Konzentration der Lösung abhängig.

Da Dampfdruck und Dampfentwicklung gewissermaßen ein- und dasselbe sind, so wird der Dampf stets mehr von dem Bestandteil des Gemisches enthalten, der den höchsten Dampfdruck äußert, das heißt also, der die niedrigste Siedetemperatur besitzt, es sei denn, daß nach der Konzentration der Lösung die Bestandteile mit geringem Dampfdruck weit überwiegen. Immer verläuft die Destillation bei diesen Gemischen ohne konstanten Siedepunkt nach der Regel, daß die Bestandteile nach der Höhe ihrer Siedetemperatur im reinen Zustande verdampfen, die niedrigst siedenden zuerst und weiter die höher und höher siedenden, so daß die Destillationstemperatur ein andauerndes einmal schnelleres, einmal langsameres Steigen zeigt, je nachdem die Lösung zusammengesetzt ist.

Eine Lösung ohne konstanten Siedepunkt ist durch wiederholte Destillation trennbar, vorausgesetzt daß die Siedepunkte der Komponenten nicht zu nahe zusammenliegen.

Nehmen wir an, wir haben eine binäre Lösung ohne Konstanz der Dampfzusammensetzung, aus der der leichter flüchtige Bestandteil durch wiederholte Destillation rein gewonnen werden soll. Von Destillation zu Destillation wird der schwerer flüchtige Bestandteil im Dampfe mehr und mehr zurückgedrängt;

jedesmal wird die Dampfzusammensetzung durch die Summe der Produkte aus Dampfdruck und molekularer Lösungskonzentration bestimmt. Je öfter man den Vorlauf von neuem fraktioniert, um so mehr nimmt infolge des geringeren Dampfdruckes der höher siedende Bestandteil im Dampfe ab; aber diese Abnahme ist unbegrenzt, sie findet theoretisch kein Ende.

Die Reingewinnung der leichter flüchtigen Komponente aus einer Lösung ohne Konstanz der Dampfzusammensetzung stellt hiernach einen Grenzprozeß dar, ebenso wie eine Extraktion oder wie die Reinigung eines festen Körpers durch fortgesetztes Umkristallisieren. Alle diese Methoden der Reindarstellung sind, genau genommen, endlos, sie führen nie zur vollkommenen Reinigung.

Daher erklärt es sich, daß es erfahrungsgemäß je nach der Differenz der Siedepunkte mit mehr oder weniger großen Schwierigkeiten verbunden ist, aus einer solchen Lösung den leichter flüchtigen Bestandteil durch Destillation praktisch rein zu gewinnen. Geduld und eine leistungsfähige Fraktionierkolonne sind die zwei notwendigen Erfordernisse hierfür.

Anders steht es mit der Reingewinnung des schwer flüchtigen Lösungsbestandteils. Er kann durch fraktionierte Destillation vollkommen rein erhalten werden, reiner als es je durch ein Extraktionsverfahren oder durch Kristallisieren möglich ist.

Fallen die Siedepunkte der Bestandteile solcher Lösungen zusammen oder nahezu zusammen, so sind sie gleich den homogenen Gemischen mit Minor- oder Majorsiedetemperatur ohne Zusatz eines entsprechend gewählten fremden Körpers durch Destillation nicht trennbar. Das Gemisch siedet von Anfang bis zum Schluß mit nahezu konstanter Temperatur und Dampfzusammensetzung.

Beispiele des Siedeverhaltens und der Dampfzusammensetzung von Lösungen ohne konstanten Siedepunkt. C. Mangold¹) untersuchte den Dampfdruck von fünf Gemischen von Benzol mit Toluol bei verschiedenen Temperaturen nach der statischen Methode. In der nachstehenden Tabelle sind die Dampfdrucke des Gemisches wiedergegeben, das aus

¹⁾ Wiener Akad. Ber. 102, II A (1893), 1071.

	Da	mpfdruck o				
Tempe- ratur.	Gemisches p mm	reinen Benzols p ₁ mm	reinen Toluols p ₂ mm	p ₁ + p ₂ mm	$\frac{p}{p_1+p_3}$	
15°	47,7	59,8	17,2	77,0	0,620	
20	58,1	76,1	22,5	98,6	0,589	
25	68,8	96,1	29,2	125,3	0,557	
30	87,3	120,2	37,4	157,6	0,554	
35	106,7	149,1	47,5	196,6	0,543	
40	129,5	183,5	59,9	243,4	0,532	
45	156,2	224,3	75,0	299,3	0,522	
50	188,0	272,1	92,8	364,9	0,522	
55	224,9	328,1	114,1	442,2	0,509	
60	268,8	393,0	139,5	532,5	0,506	
65	317,0	468,0	169,2	637,2	0,499	
70	374,6	554,2	204,2	758,3	0,494	

Der Dampfdruck des Gemisches liegt, wie man sieht, stets zwischen den Dampfdrucken der reinen Komponenten. So wie für dieses hat Mangold auch für die übrigen Konzentrationsverhältnisse nachgewiesen, daß sich das Verhältnis des Summendruckes zu dem Dampfdruck des Gemisches mit der Temperatur ändert; und

zwar nimmt dieser Quotient $\frac{p}{p_1+p_2}$ mit steigender Temperatur

stets ab. Mit der Temperaturzunahme steigt also der Dampfdruck des Gemisches weniger als die Einzeldrucke der reinen Substanzen. Durch die Erwärmung entsteht eine partielle Spaltung, eine Verringerung des Umfanges von Molekülaggregaten, und diese Spaltung ist hiernach bei den aus heterogenen Molekülen bestehenden Aggregaten des Gemisches geringer als bei den aus homogenen Molekülen bestehenden Aggregaten der reinen Komponenten. Mit anderen Worten, die Affinitätsäußerung zwischen den heterogenen Molekülen ist stärker als zwischen den homogenen. Das ist begreiflich, denn anderenfalls hätten sich die beiden flüssigen Körper überhaupt nicht gelöst.

In der nachfolgenden Auswahl von Untersuchungen über die Dampfzusammensetzung homogener Gemische ohne konstanten Siedepunkt ist jedesmal die nach der Formel

$$x_{1} = \frac{100 \ p_{1} \ Mol._{1}{}^{0/o}}{p_{1} \ Mol._{1}{}^{0/o} \ + \ p_{2} \ Mol._{2}{}^{0/o}}$$

berechnete Zusammensetzung des Dampfes zum Vergleich neben die experimentell bestimmte gesetzt.

Dampfdruck und Dampfzusammensetzung von homogenen Gemischen ohne konstanten Siedepunkt.

Zusammensetzung des Gemisches.	Siedetem- peratur d. Gemisch.	Dampf- druck des Gemisch.	Zusammensetzt beobachtet.	berechnet.			
Tetrachle	orkohlensto	ff (Mol. 15	4) und Benzol (Mo	1. 78).1)			
0 Mol. % C Cl4	49,990	268,0 mm	0 Mol. % CCI				
E 07	49,99	271,6	6,70 ,, ,,	5,78 Mol. % C Cl4			
17,45 , ,	49,99	281,3	21,14 " "	19,5 " "			
55,61 , ,	49,99	301,3	58,60 " "	59,0 ,, ,,			
76,58 , ,	49,99	306,9	77,83 " "	78,9 " "			
100	49,99	308,0	100 " "	- 1013			
Benzol (Mol. 78) und Äthylenchlorid (Mol. 99). 1)							
0 Mol.º/o C ₆ H ₆	49,990	236,2 mm					
0.11	49,99	238,3	9,28 " "	9,1 Mol.º/o C6 H6			
47 OE	49,99	251,3	51,0 " "	50,7 ,, ,,			
95.00	49,99	263,3	88,48 " "	86,6 ,, ,,			
100	49,99	268,0	100 , ,	- "			
Äthyljodid (Mol. 155,86) und Tetrachlorkohlenstoff (Mol. 154). 1)							
0 Mol.º/o C ₂ H ₅ J	49,990	306,3 mm	The second second second				
3,64 " "	49,99	311,1	4,92 ,, ,,	4,2 Mol.º/o C ₂ H ₅ J			
49,83 " "	49,99	351,2	52,19 ,, ,,	53,4 " "			
100 " "	49,99	354,0	100 " "	-			
Äthylenbromi	id (Mol. 187	7,92) und P	ropylenbromid (M	ol. 201,92).1)			
0 Mol. % C2 H4 Br2			0 Mol.º/o C2 H4 B				
1,76 " "	85,05	127,3	0,61 " "	2,4 Mol.º/o C2 H4 Br2			
47,37 ,, ,,	85,05	149,6	54,72 ,, ,,	54,3 " "			
97,98 " "	85,05	171,0	98,15 ,, ,,	98,5 ,, ,,			
100 " "	85,05	172,6	100 ,, ,,				
Benzol	(Mol. 78) u	nd Monoch	nlorbenzol (Mol. 1	12.5). º)			
0 Mol.º/o C ₆ H ₆	34,80	20,3 mm					
20,79 ,, ,,	34,8	47,0	59,36 ,, ;,	65,3 Mol.º/o Ca Ha			
34,94 " "	34,8	63,6	80,66 ,, ,,	79,4 ,, ,,			
84,82 ,, ,,	34,8	126,3	98,65 ,, ,,	97,6 ,, ,,			
100 " "	34,8	145,4	100 ,, ,,	-			
Benzol	(Mol. 78) u	nd Monobr	ombenzol (Mol. 15	66.96).°)			
0 Mol.º/o C ₆ H ₆	34,80	8,0 mm					
69,67 ,, ,,	34,8	105,7	97,5 ,, .,	97,6 Mol.º/o Ca Ha			
100 ,, ,,	34,8	145,4	100	-			
	1		,, ,,				

¹⁾ v. Zawidzki, Zeitschr. f. physik. Chem. 35 (1900), 129.

²⁾ C. E. Linebarger, Chem. Zentralbl. 1895, II. 585.

Zusammen des Gem	-	Siedetem- peratur d. Gemisch.	Dampf- druck des Gemisch.		mensetzui	ng des Dampfes, berechnet.
	Chlo	roform (Mo	ol. 119.5) u	nd Benzol	(Mol. 78)	1)
0 Mol.º/o	CH Cl ₃	34,80	145,4 mm	The second second second	% CH CI	
16,97 ,,	,,	34,8	163,1	212	. No or other	
50,53 ,,	,,	34,8	205,0	620		28,9 Mol. % CH Cl ₃ 67,0 ,,
100 ,,	,,	34,8	289,2	100	100	07,0 ,, ,,
		(Mol. 92) u		"	" (Mal 112) E\ 1\
0 Mol.º/o	C ₆ H ₅ CH ₃					
22 27		34,8	20,3 mm	22.2	C ₆ H ₅ CH ₃	The state of the s
59 10	11	34,8	25,7 35,7	32,3 ,,	"	41,1 Mol.º/o C ₆ H ₅ CH ₃
81.04	"	34,8	42,5	77,3 ,,	. 11	76,2 ,, ,,
100	"	34,8	46,8	89,9 ,,	39	90,8 ,, ,,
100 ,,	"			the same of	"	
		roform (Mo				
	CH Cl ₃	34,80	46,8 mm		% CH Cl3	-
28,74 ,,	"	34,8	99,1	65,3 ,,	"	71,4 Mol.º/o CH Cl ₃
60,43 ,,	"	34,8	180,4	89,2 ,,	"	90,4 ,, ,,
100 ,,	"	34,8	289,2	100 ,,	"	-
	Tetrachle	orkohlensto	ff (Mol. 15	4) und To	luol (Mol.	92).1)
0 Mol.º/o	CCI4	34,80	46,8 mm	0 Mol	.º/o CCI4	_
30,69 ,,	,,	34,8	88,5	58,2	, ,,	61,6 Mol. % CCI4
53,85 ,,	11	34,8	100,6	77 5	, ,,	80,8 ,, ,,
91,87 ,,	11	34,8	159,6	07.2	, ,,	97,6 ,, ,,
100 ,,	"	34,8	169,4	100	, ,,	
Schw	efelkohlen	stoff (Mol.	76) und Te			(Mol. 154).2)
0 Mol.º/o (76,50	Atm.	0 Mol.		
5 ,,	,,	73,8	"	13,2 ,,	,,	
20 ,,	"	66,8	"	42,4 ,,	"	
50 ,,	"	55,8	"	74,2 ,,	"	
80 ,,	"	49,0	,,	90,6 ,,	",	
95 ,,	,,	47,0	,,	97,6 ,,	,,	
100 ,,	"	46,6		100 ,,	,,	
		Mol. 155,86)				ol. 154).8)
	C ₂ H ₅ J	49,990	306,3 mm		0/0 C2 H5 J	
3,64 ,,	"	49,99	311,1	4,9 ,,	"	4,2 Mol.º/o C ₂ H ₅ J
49,83 ,,	"	49,99	351,2	52,2 ,,		53,4 ,, ,,
100 ,,	"	49,99	354,0	100 ,,	1)	-
"	. "			,,		

¹⁾ Linebarger, l. c.

²⁾ Fr. D. Brown, Chem. Zentralbl. 1882, 75.

³⁾ v. Zawidzki, l. c.

14. Kapitel.

Destillation labiler Additionsverbindungen.")

(Homogene Gemische mit Majorsiedetemperatur.)

Nach der Höhe der Siedetemperatur lassen sich, wie früher gezeigt wurde, drei Klassen homogener Gemische unterscheiden:

- 1. Gemische mit Minorsiedetemperatur,
- 2. Gemische mit Zwischensiedetemperatur,
- 3. Gemische mit Majorsiedetemperatur.

Praktische Gründe rechtfertigen diese Einteilung, denn durch sie ist ausgedrückt, ob ein Körpergemisch durch fraktionierte Destillation ohne besondere Maßnahmen trennbar ist oder nicht. Nur die Gemische der zweiten Klasse können in dieser Weise in die Komponenten zerlegt werden, während von den übrigen Gemischen der Gemengeteil mit dem Minimum- oder Maximum-siedepunkt mit konstanter Zusammensetzung des Dampfes destilliert.

Bevor wir auf die Erörterung der Eigenschaften der Gemische mit Majorsiedetemperatur näher eingehen, soll erst untersucht werden, was der Grund der geringeren Flüchtigkeit ist.

Die umstehende Tabelle enthält die bis jetzt bekannten Flüssigkeitsgemische mit Majorsiedetemperatur und zwar jedesmal das Mengenverhältnis der betreffenden Komponenten, das durch den höchsten Siedepunkt ausgezeichnet ist.

¹) Unter Additionsverbindungen sollen hier, ohne Rücksicht auf ihre nähere Zusammensetzung, alle labilen und stabilen Zusammenlagerungen ungleichartiger Moleküle zu neuen Verbindungen verstanden sein, die ohne Austritt von Molekülteilen erfolgen. Die Additionen gleicher Moleküle zu chemischen stabilen Verbindungen, die sogenannten Polymerisationen, z. B. Metaldehyd, Paraldehyd etc. blieben unberücksichtigt.

Homogene Gemische mit Maximumsiedepunkt.

(Additionsverbindungen).

Gemisch.			Siedepunkt des Ge- misches.	Siedepunkte der reinen Komponenten.		Gehalt des Dampfes	
A	В	Dampfdruck des Ge- misches.	Sied	A	В		1 A Mol. %
Wasser	Salpataraäura (1)	mm	°C.	° C.	°C.	0/0	0/0
do.	Salpetersäure (1)	Atm.		100	86	32	65,8
do.	Chlorwasserstoff (1) Bromwasserstoff (1)	Atm.		100	ca80		98,9
do.	Jodwasserstoff (1)	Atm.	100000	100	ca73		83,6
do.	Fluorwasserstoff (1, 2)	Atm.	10000000	100	ca35		84,5
do.	Überchlorsäure (1)		200000	100	19,4	63	65,4
do.	Hydrazin (9)	Atm.	The state of the s	100	ŝ	28,4	68,9
do.	Ameisensäure (1)	Atm.		100	113,5		ca. 50
do.	Chloral (13)	Atm.		100	100,6	23	43,3
do.	do. (13)	323,2		77,66	70,6	-	-
do.	do. (13)	166,2	1 2000	62,4	52,4	-	-
do.	do. (13)	58 33	46,2	41,0	25,6	-	-
Chlorwasserstoff	Ammoniak (10)	0.000	37,1	30,8	17,0	-	
do.	do. (10)	Atm.	360 1)	ca80		-	50
Essigsäure	Triäthylamin (3)	Atm.	2801)	ca80	- 38,5	-	50
do.	Pyridin (3, 4)	Atm.	162	118	89	68,7	78,7
do.	do. (4)	Atm.	> 118	118	114,5		ca. 60
do.	Picolin (3)	84,6	80,1	52,7	121	58,7	-
Ameisensäure	Pyridin (3)	Atm.	1000000	118	134	-	ca. 60
do.	Picolin (3)	Atm.	149 156–159	100,6	117,5	-	ca. 75
Propionsäure	Pyridin (3)	Atm.	1 5 1 5 1 1 1 1 1 2 2 5 B	2777 2070	134	-	ca. 75
Chlorwasserstoff	Methyläther (5)	Atm.	149	140	117,5	-	ca. 75
Chloroform	Aceton (14)	Atm.	-2 170°)	ca80		61	55,4
do.	0.00 0.000		570 50 50	61,2	56,4	-	50
do.	do. (4, 7, 8) do. (4)	Atm. 284,8	64,73)	61,2	56,4	80	66
do.	Methylacetat (7)	Atm.	35,28)	33,6	30,3	70	56,3
Phenol	Anilin (6)	Atm.	64,5	61,2	56	78	68,8
do.	Campher (12)	14	182,5 92	181,4	182 85	-	ca. 50
Acetaldehyd	Ammoniak (11)	Atm.	100	79,2 20,8	- 38,5		ca. 50
Chloral	Methylalkohol (11)	Atm.	106	97,7	64,7	-	
do.	Äthylalkohol (11)		115-117	97,7	78,3	-	-
do.	Amylalkohol (11)		145-147	97,7	131,6	_	
do.	Allylalkohol (11)	Atm.	116	97,7	96,6		_
40,	Milylaikollol (11)	Attill.	110	91,1	90,0	-	

¹) 360° ist der Siedepunkt der sorgfältig durch besondere Maßnahme getrockneten Verbindung, 280° der Siedepunkt des in gewöhnlicher Weise getrockneten Salmiaks.

²) Stabile Verbindung.

³⁾ Labile Verbindung.

Literatur zur Tabelle.

- 1. Roscoe, Liebigs Annalen 116 (1860), 205; 125 (1863), 320.
- 2. E. Deußen, Zeitschr. f. physik. Chem. 49 (1906), 297.

3. J. A. Gardner, Berl. Berichte 23 (1890), 1587.

4. v. Zawidzki, Zeitschr. f. physik. Chem. 35 (1900), 129.

5. Friedel, Bull. Soc. Chim. 24 (1875), 160.

6. W. Alexejew, Berl. Berichte, Referate, 17 (1884), 38.

7. Ryland, Americ. chem. Journ. 22 (1899), 384.

8. S. Young, Fractional Distillation, London 1903, S. 69.

9. Gmelin-Krauts Handb. d. Anorg. Chem., 7. Aufl., Bd. I, S. 193.

Baker, Journ. chem. Soc. 65 (1894), 611 und 73 (1898), 422; Johnson,
 Zeitschr. f. physik. Chem. 61 (1908), 457.

11. Beilsteins Handbuch.

12. Bredt, Liebigs Annalen 314 (1900), 378.

13. Moitessier u. Engel, Jahresber. d. Chem. 1880, 142.

14. s. das Kapitel "Destillation labiler Additionsverbindungen", No. 430.

Greifen wir aus der Tabelle zwei gut untersuchte Körperpaare heraus, Chloral mit Wasser und Chloral mit Äthylalkohol. Beide stellen, wie bekannt, wohl charakterisierte, bei Lufttemperatur kristallisierte Körper dar; es sind chemische Verbindungen, die additionell aus den Komponenten entstanden sind. Die Verbindungen sind labiler Natur, denn ihr Dampf enthält nach den Dampfdichtebestimmungen die Komponenten unverbunden. Daß bei dem Zusammenlagern zweier Körper zu einem über die Lösungsaffinität hinaus zusammenhaltenden chemischen Gebilde der Dampfdruck erniedrigt wird, ist verständlich. So sehen wir denn auch in den beiden Beispielen die Dampfbildung des Produktes stark vermindert, sogar soweit, daß das Produkt höher siedet als die zusammentretenden Körper.

Die meisten in der Tabelle angeführten Gemische mit Majorsiedetemperatur sind als gut charakterisierte Verbindungen bekannt; von den übrigen, die bei gewöhnlicher Temperatur flüssig sind, können wir wegen ihres erhöhten Siedepunktes annehmen, daß auch sie chemische Verbindungen darstellen. Bei diesen ist nur eine stärkere Abkühlung erforderlich, um sie in kristallisierte Verbindungen überzuführen. So kristallisiert z. B. aus Salpetersäure und Wasser bei — 18° die Verbindung NO₃ H · 3 H₂ O aus, bei — 45° die Verbindung NO₃ H · H₂ O. Wäßrige Salzsäure scheidet bei — 18° Kristalle von der Zusammensetzung Cl H · 2 H₂ O aus.

Bisher hat man die homogenen flüssigen oder festen Gemische mit Majorsiedetemperatur als eine besondere Gruppe von Lösungen hingestellt, ohne irgend eine Erklärung für ihre relativ geringe Flüchtigkeit zu geben. Sie gehören zu den Additionsverbindungen, von denen die organische Chemie schon eine sehr große Menge kennt. Wegen des lockeren Zusammenhaltes, der schon durch geringe Temperatur- und Druckänderungen beeinflußt wird, bilden diese chemischen Gebilde den Übergang von den homogenen Gemischen zu den stabilen chemischen Verbindungen.

Als solche Additionsverbindungen sind, unter vielen anderen, besonders folgende Körperklassen bekannt:

die Hydrate von Säuren,

die Doppelsalze,

die Kristallwasserverbindungen,

die Verbindungen der Säuren mit Ammoniak oder mit organischen Basen zu Ammoniumsalzen,

die Verbindungen der Aldehyde mit Ammoniak oder mit organischen Basen, wenn sie ohne Austritt von Wasser entstanden sind,

Verbindungen von Aldehyden oder Ketonen mit Blausäure,

Verbindungen der schwefligen Säure und ihrer sauren und neutralen Salze mit Aldehyden, Ketonen und ungesättigten Kohlenstoffverbindungen,

Verbindungen der Orthophosphorsäure, der Ferround Ferricyanwasserstoffsäure,

Anlagerungsprodukte an Di- und Trinitrokörper,

Additionen von organischen Basen und von vielen sauerstoffhaltigen Körpern an Phenole.

Die weiterhin im einzelnen gegebene Aufzählung, die aus der Literatur zusammengestellt wurde, zeigt, wie außerordentlich viele derartige Doppel-, Tripel- und Quadrupelverbindungen schon nachgewiesen sind.

Die Additionsverbindungen sind Vereinigungen selbständig bestehender Körper, so daß die konstante Wertigkeit der Atome nicht mehr Giltigkeit hat. Infolgedessen hat man eine schwankende Valenz angenommen, den Kohlenstoff zu zweiund vierwertig, den Stickstoff zu drei- und fünfwertig, den Sauer-

stoff zu zwei- und vierwertig.

Soweit Kristalle vorliegen, die nach der Analyse nach einfachen stöchiometrischen Verhältnissen zusammengesetzt sind, kann ihr Charakter als selbständige chemische Verbindung nicht angezweifelt werden. Strittig war aber bis jetzt, ob diese chemischen Gebilde auch in Lösungen, z. B. im Überschuß der einen Komponente, als Verbindungen existieren, und ferner ob auch die bei gewöhnlicher Temperatur flüssigen Gemische, auch wenn sie einfache stöchiometrische Verhältnisse in ihrer Zusammensetzung vermissen lassen, als chemische Verbindungen anzusprechen sind.

In der 1909 erschienenen Neuauflage seines Grundrisses der Allgemeinen Chemie sucht W. Ostwald durch folgende Gründe nachzuweisen, daß die erwähnten flüssigen Additionsverbindungen nur Lösungen und keine chemischen Verbindungen

sind, weil

1. sie nicht nach einfachen stöchiometrischen Verhältnissen zusammengesetzt sind,

2. ihr Dampf nach der Bestimmung nicht aus einer Ver-

bindung, sondern aus den freien Komponenten besteht,

3. ihre Zusammensetzung mit der Temperatur variabel ist. Es sind das dieselben Einwände, die schon Roscoe¹) nach seiner Untersuchung der Säurehydrate gegen deren Auffassung als Verbindungen erhoben hat.

Alle diese Einwände fallen durch den Hinweis, daß wir es hier in der Regel mit sehr locker zusammenhaltenden Molekularverbindungen zu tun haben. Sie befinden sich eigentlich stets in einem kleineren oder größeren Dissoziationszustande, so daß meistens ein Gemisch aus Verbindung und Komponenten vorliegt. Temperaturerhöhung vermehrt die Dissoziation, Druckerhöhung steigert dagegen die Assoziation. Hiernach ist es sehr erklärlich, daß die Analyse nicht immer eine einfache molekulare Zusammensetzung nachweist, daß sich die Zusammensetzung mit der Temperatur ändert, und daß der Dampf die freien Komponenten enthält.

¹⁾ Über die Zusammensetzung der wäßrigen Säuren mit konstantem Siedepunkte. Liebigs Annalen 116 (1860), 203 und 125 (1863), 319.

Gerade der labile Zustand vieler Additionsverbindungen, deren Zusammenhalt durch Änderung der Temperatur- und Druckverhältnisse, durch Mehrung oder Minderung eines lösenden Zusatzes nach Belieben verstärkt, geschwächt oder selbst aufgehoben werden kann, macht diese Zwischenglieder zwischen Lösung und stabiler Verbindung wissenschaftlich und praktisch sehr interessant. Ausgezeichnet lassen sie sich zur Trennung von Flüssigkeitsgemischen verwenden. Aus diesem Grunde sind die Additionsverbindungen hier eingehender behandelt.

Feststellung der molekularen Konstitution einer Flüssigkeit, Nachweis von Additionsverbindungen. Außer durch Vergleichung des Siedepunktes des Gemisches mit dem der Komponenten kann der Nachweis einer Additionsverbindung auch dadurch geführt werden, daß beobachtet wird, in welcher Weise der Dampfdruck durch Änderung der Temperatur beeinflußt wird.

Geht man von der Temperatur des gesättigten Dampfes unter niedrigem Druck aus, so wird mit Erhöhung der Temperatur der Dissoziationszustand einer lockeren molekularen Verbindung zunehmen; mehr und mehr der Doppel- oder Polymoleküle werden gespalten. Da nun die Einzelmoleküle, die Spaltungsprodukte, zusammen einen größeren Dampfdruck äußern als das Polymolekül vor der Spaltung, so wird der Dampfdruck rapider wachsen, als dies bei einer stabilen Verbindung geschieht, die erst durch sehr hohe Temperaturen zersetzt wird.

Die Tatsache eines verstärkten Wachsens des Dampfdruckes bei Erhöhung der Temperatur oder einer verminderten Zunahme der Siedetemperatur bei Steigerung des äußeren Druckes hatten wir schon früher (S. 534) bei den Hydroxylkörpern gegenüber den Nichthydroxylkörpern nachgewiesen. Dort handelte es sich um die Dissoziation von Aggregaten gleichartiger Moleküle, hier um die Dissoziation von Aggregaten ungleichartiger.

In der nachstehenden Zusammenstellung aus der großen Siedepunktstabelle (S. 496) sind die beiden labilen Additionsverbindungen Chloralhydrat und Chloral-Äthylalkohol mit stabilen Verbindungen verglichen, wozu Hydroxylkörper und Nichthydroxylkörper genommen wurden. Die Zahlenreihe einer jeden Verbindung beginnt mit den Dampfdrucken 5 und 10 mm und schließt mit 760 mm. Von den stabilen Verbindungen wurden

solche ausgewählt, die mit dem Chloralhydrat und dem Chloral-Äthylalkohol unter dem niedrigen Druck einen ähnlichen Siedepunkt haben.

Siedeverhalten von labilen Verbindungen im Vergleich zu stabilen.

	5 mm	10 mm	20 mm	30 mm	50 mm	100 mm	760 mm
Chloralhydrat	-	18,20	28,20	36,00	48,30	53,20	97,50
Dimethyläthylcarbinol	-	19	-	-	-	-	102,9
Isobutylalkohol	-	21,2	33,9	40,2	47,3	61,7	107,9
Pyridin	-	18,3	27,0	34,0	41,6	51,9	114,5
Isoamylbromid	-	17,6	27,0	33,4	43,5	_	118,6
n-Octan	-	19,1	31,3	39,3	50,2	65,6	125,8
Äthylenbromid	-	18,6	32,7	41,6	53,1	70,4	131,5
Chloral-Äthylalkohol	32,80	40,40	47,90	54,10	_	-	116,40
Isoamylalkohol	30,2	40,3	51,5	58,4	66,90	80,70	130,1
Propionsäure	29,5	42,1	53,1	60,4	71,9	87,6	140,3
Brombenzol	29,8	40,6	52,8	61,2	73,0	90,0	155,5
Amylpropionat	29,3	45,9	59,6	70,0	80,4	97,4	160,2

Bei vollkommenen Gasen wächst der Druck von der absoluten Temperatur an Grad für Grad um die gleiche Größe. Der Dampfdruck flüssiger oder fester Körper steigt jedoch progressiv. Man erklärt dies verschiedene Verhalten gewöhnlich dadurch, daß die Moleküle der flüssigen oder festen Körper eine größere Affinität zueinander äußern, die durch Steigerung der Temperatur geschwächt wird. Geht man dagegen von der Annahme aus, daß diese Aggregatzustände durch molekulare Polymerisation verschiedenen Umfanges entstanden sind, so wäre die progressive Druckzunahme dadurch veranlaßt, daß die locker zusammenhaltenden Molekülkomplexe durch Temperatursteigerung nach und nach gespalten werden und alle Siedepunkte wären demnach Dissoziationssiedetemperaturen. Dann ist es verständlich, warum zwei flüssige oder feste Körper, die unter einem bestimmten Druck denselben Siedepunkt haben, unter anderem Druck bei verschiedenen Temperaturen sieden. Wenn durch Temperaturerhöhung die Dissoziation gesteigert und dadurch der Dampfdruck entsprechend der Dissoziationsgröße vermehrt wird, so wird bei Spaltung größerer Molekülkomplexe auch eine größere Druckzunahme eintreten oder bei Vergleich unter konstantem Druck das Sieden bei niedrigerer Temperatur stattfinden.

Diese Tatsache finden wir auch in der Tabelle bestätigt, wenn wir die drei Gruppen chemischer Verbindungen mit einander vergleichen, die hydroxylfreien Verbindungen, die Hydroxylverbindungen und die Additionsverbindungen. Dem größeren Dissoziationseffekt entsprechend, nehmen mit wachsendem Druck die Siedepunkte des Chloralhydrats und des Chloralalkoholats am wenigsten zu. 34° beträgt unter 760 mm Druck die Differenz zwischen den Siedepunkten des Chloralhydrats und des Äthylenbromids und 53,8° zwischen denen des Chloralalkoholats und des Amylpropionats. Korrigieren wir beide Werte unter der Voraussetzung von genau gleichen Anfangstemperaturen unter niedrigem Druck, so lauten die Differenzen 33,6° und 47,3°.

Das Chloralhydrat schmilzt bei 57° und das Chloraläthylalkoholat bei 56°. Die in der Tabelle angeführten Siedepunkte dieser beiden Körper sind also, soweit sie unterhalb dieser Schmelzpunkte liegen, Sublimationspunkte.

Das kleine Kurvenbild (Fig. 102) gibt die Beziehungen

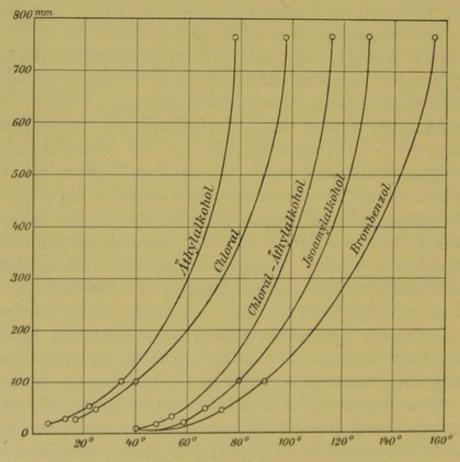


Fig. 102.

zwischen Druck und Temperatur des gesättigten Dampfes des Chloralalkoholats und seiner Komponenten, ferner zweier unter niedrigem Druck gleich siedender Verbindungen wieder. Ein Blick darauf zeigt, daß die Additionsverbindung unter jedem äußeren Druck höher als ihre Komponenten siedet, und daß die Siedepunkte der Additionsverbindung, des Isoamylalkohols und des Brombenzols, die unter niedrigem Druck zusammenfallen, unter 760 mm stark voneinander abweichen.

Außer diesen beiden auf die Vergleichung der Dampfentwicklung gegründeten Methoden gibt es nur noch zwei Verfahren, um über die molekularen Assoziationen und Dissoziationen in einer Flüssigkeit Aufschluß zu geben. Das eine ist die Untersuchung der Oberflächenenergie, das andere die der Viskosität oder der Reibungsenergie.

Bei der Bestimmung der Temperaturkoeffizienten der molekularen Oberflächenenergie wird von der Voraussetzung ausgegangen, daß dieser Wert für 10° bei einmolekularen Körpern 2,1 beträgt, und daß eine geringere Zahl auf entsprechende Polymolekularität, also auf Additionsverbindung gleicher oder ungleicher Moleküle schließen läßt.

Dies Verfahren wendeten Kremann und Ehrlich¹) auf flüssige Additionsverbindungen an.

Auch durch die Bestimmung der inneren Reibung lassen sich die molekularen Verhältnisse eines Flüssigkeitsgemisches erkennen. Man macht hierbei die wohl berechtigte Annahme, daß zwei gegenseitig gelöste Flüssigkeiten weniger zähflüssig sein werden, als wenn dieselben Körper zu einer flüssigen, chemischen Verbindung zusammengetreten sind. Aus der Gestalt der Viskositätskurven lassen sich, besonders nach den Arbeiten Dunstans²), Rückschlüsse auf die Entstehung und Beschaffenheit eines homogenen flüssigen Gemisches ziehen, ob das Auflösen mit Assoziationserscheinungen oder ohne Änderung des molekularen Zustandes der Komponenten verbunden ist, oder ob bei dem Auflösen ein Zerfall assoziierter Moleküle stattgefunden hat.

¹⁾ Die Fortexistenz von Molekülverbindungen und Kristallwasserhydraten im flüssigen Zustande. Monatsh. f. Chemie 28 (1907), 831.

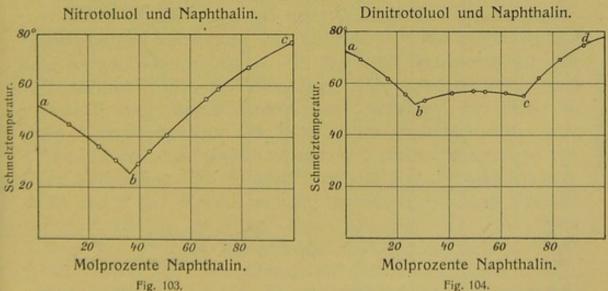
²) Zeitschr. f. physik. Chem. 49 (1904), 590; 51 (1905), 732; 56 (1906), 370.

Ebenso läßt die Abnahme der Viskosität bei dem Vermischen von Benzaldehyd mit Äthylalkohol auf einen Zerfall zuvor vorhandener komplexer Gruppen schließen.

Zwischen Äthylalkohol und Wasser weist die Viskositätsuntersuchung eine ganze Reihe von Hydraten nach. Es scheint, daß dieses Verfahren derartig scharf ist, daß nach ihm noch Affinitätsäußerungen gekennzeichnet werden, die sowohl der Untersuchung der Dampfentwicklung als auch derjenigen der Oberflächenenergie entgehen. Die Resultate sind wissenschaftlich interessant, sind aber für die Destillationspraxis nur mit Vorbehalt annehmbar. Erkennt man zwischen der Lösungsaffinität des Gemisches und der chemischen Affinität einer labilen Verbindung keine wesentlichen Qualitätsunterschiede, sondern nur Gradunterschiede an, so ist es erklärlich, daß Körpergemische existieren, bei denen man im Zweifel sein kann, ob sie als homogene Gemische oder als sehr labile Verbindungen aufzufassen sind. Zu diesen Übergangsgemischen kann man vielleicht die vielfach behaupteten und viel bestrittenen Alkoholhydrate rechnen. E. Bose¹) kommt im Verlauf seiner Untersuchung der Alkoholhydrate zu der Ansicht, daß weder die Beweise für deren Existenz völlig stichhaltig noch die Gründe dagegen gänzlich abzuweisen sind.

Im allgemeinen kann angenommen werden, daß die festen Additionsverbindungen unmittelbar nach ihrer Darstellung praktisch undissoziiert sind, nur daß bei sehr labilen Verbindungen eine Reinigung zur Analyse vielfach schwierig oder unmöglich ist, weil die Dissoziation zu schnell verläuft.

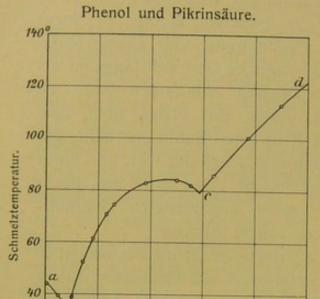
Jedenfalls können Kristallausscheidungen nach genügend starker Abkühlung des Gemisches als sicherer Nachweis einer Verbindung der Komponenten gelten, wenn man sich nicht durch das Auskristallieren einer einzelnen Komponente oder durch homogene Kristallisation beider Komponenten nach Art der Guthrieschen Kryohydrate täuschen läßt. Ein sicheres und auch mehr umfassendes Urteil über Art und Grad der Verbindungsfähigkeit zweier Körper erhält man jedoch durch eine systematische Ausführung von Schmelzpunktsbestimmungen wechselnder Mischungen beider Körper.

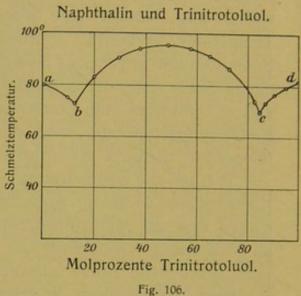

¹⁾ Zeitschr. f. physik. Chem. 58 (1907), 612.

Die ausgedehntesten Untersuchungen dieser Art hat Kremann¹) ausgeführt. Er verfuhr in folgender Weise: In einem Beckmannschen Apparat zur Bestimmung von Erstarrungspunkten wurde unter Rühren das fragliche Gemisch langsam erwärmt und, sobald eine klare Lösung entstanden war, die Temperatur vermerkt. Danach wurde die etwas über dem Schmelzpunkt erwärmte Flüssigkeit in einen Raum gebracht, der einige Grade unter der Schmelztemperatur gekühlt war, und unter stetem Umrühren zum Erstarren gebracht. Das Mittel aus dieser Erstarrungstemperatur und der zuvor beobachteten Schmelztemperatur benutzte Kremann zu seinen Kurven.

Werden die Schmelzpunkte wechselnder Gemische desselben Körperpaares in einem Koordinatensystem als Ordinaten aufgetragen und die Molekülprozente des Gemisches als Abszissen, so wird durch Verbindung der Endpunkte eine ein- oder mehrfach gebrochene Kurve erhalten. Der oder die Schnittpunkte, in denen das Gemisch in seinen beiden Komponenten erstarrt, werden nach Guthrie eutektische Punkte genannt.

Nachstehend sind einige charakteristische Schmelzpunktdiagramme von Körpergemischen wiedergegeben. Sie sind den Abhandlungen von Kremann (Fig. 103 bis 107)²) und von van Rossem (Fig. 108)³) entnommen.


Schmelzpunktkurven.



¹) Monatsh. f. Chem. **25** (1904), 1215, 1271, 1311; **27** (1906), 91, 109, 125; **28** (1907), 831.

²) Monatsh. f. Chem. 25 (1904), 1243, 1247, 1277, 1351.

³⁾ Zeitschr, f. physik, Chem. 62 (1908), 681.

60 Molprozente Pikrinsäure.

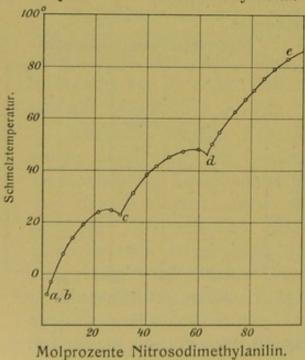

m-Xylidin und Nitrosodimethylanilin.

Fig. 105.

40

20

20

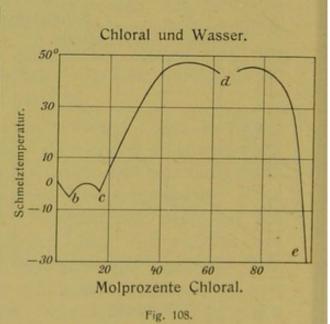


Fig. 107.

Figur 103 gibt die Schmelzpunktkurve von Nitrotoluol und Naphthalin wieder, die in keinem Mischungsverhältnis zu einer Verbindung zusammentreten. Es liegt nur eine Lösung vor. Die Linie ab enthält die Schmelzpunkte von Naphthalin in Nitrotoluol und die Linie bc die Schmelzpunkte von Nitrotoluol in Naphthalin. Beide kaum gekrümmte Linien schneiden sich in dem einen eutektischen Punkte von 27°, bei welcher Temperatur sich die Komponenten der Lösung homogen ausscheiden. Das homogene Kristallgemisch besteht aus 38 Mol. % Nitrotoluol und 62 Mol. % Naphthalin.

Die übrigen Figuren zeigen die Schmelzpunktdiagramme labiler Verbindungen. Wir sehen hier zwei eutektische Punkte, b und c, in Figur 107 drei, b, c und d und in der letzten vier, b, c, d, e.

Die Kurve zwischen den eutektischen Punkten ist entweder flach (Fig. 104), zum Zeichen daß die Affinitätsäußerung gering und die Verbindung größerenteils dissoziiert ist, oder sie ist etwas steiler (Fig. 106), wodurch eine größere Stabilität, ein geringerer Dissoziationsgrad der Schmelze gekennzeichnet ist, oder noch steiler, wie cd und ed in Fig. 108.

Zwischen Dinitrotoluol und Naphthalin umfaßt die Verbindung nur den geringen Konzentrationsbereich der Lösung von 28 bis 69 Mol. %, zwischen Trinitrotoluol und Naphthalin dagegen von 12 bis 85 Mol. %.

In den Figuren 104, 105 und 106 liegt das Schmelzpunktmaximum der Verbindung bei 50 Mol. %. Die Verbindungen sind hiernach äquimolekular. In Figur 107 bemerken wir den interessanten Fall, daß zwischen Nitrosodimethylanilin und m-Xylidin zwei Schmelzpunktmaxima existieren, das eine von einer Verbindung aus 25 Mol. % des Anilinderivates oder 1 Molekül von ihm und 3 Molekülen Xylidin, das andere von einer Verbindung, die 60 Mol. % oder 3 Mol. Nitrosodimethylanilin und 2 Mol. Xylidin enthält. Erstere Verbindung schmilzt bei 26,0%, letztere bei 48,0%. Figur 108 zeigt, daß Chloral und Wasser zu dreierlei Verbindungen zusammentreten können: 7 Mol. Wasser auf 1 Mol. Chloral mit dem Schmelzpunkt — 1,4%, 1 Mol. Wasser auf 1 Mol. Chloral (Smp. 47,4%) und schließlich 1 Mol. Wasser auf 2 Mol. Chloral (Smp. 49%).

Eigenschaften der Additionsverbindungen. Gleich den Kondensationsverbindungen sind die Additionsverbindungen in allen drei Aggregatzuständen bekannt. Im gasförmigen Zustande kommen sie jedoch seltener vor. In der Regel enthält der Dampf einer derartigen Verbindung die freien Komponenten, z. B. besteht der Dampf von Chloralhydrat aus Chloral und Wasser, die sich im Kondensat wieder zur Verbindung zusammenschließen, der Dampf von Chlorammonium, das in gewöhnlicher Weise über Schwefelsäure getrocknet ist, aus Chlorwasserstoff und Ammoniak. Absolut trocknes Chlorammonium verdampft dagegen undissoziiert.

Im allgemeinen sind die Additionskörper sehr labiler Natur. Viele von ihnen befinden sich schon bei gewöhnlicher Temperatur in einem partiellen Dissoziationszustande, der durch Erwärmen gesteigert, durch Abkühlen verringert wird. Meistens ist schon der Schmelzpunkt ein Dissoziationsschmelzpunkt, der wenig scharf eintritt. In diesem Falle ist der kristallisierte Körper schon unterhalb der eigentlichen Schmelztemperatur partiell zersetzt.

Bei dem Erhitzen spalten sich viele in die Komponenten, oder es bilden sich unter Abspaltung von Molekülteilen stabile Kondensationsprodukte. Verharzungen oder andere tiefergreifende Zersetzungen können auftreten. Ungesättigte Aldehyde und Ketone, auch Phenole mit mehreren Hydroxylverbindungen, ferner Stickstoffverbindungen neigen hierzu. Die Additionsverbindungen von Di- und besonders von Trinitrokörpern, ferner die organischen Magnesiumverbindungen erhitzen sich, wenn sie in einiger Menge vorhanden sind, bei ihrer Bildung vielfach derartig stark, daß die Zersetzungen zu sehr starken Explosionen führen, wobei die Masse in Brand gerät.

Der Siedepunkt eines Additionskörpers ist meistens, auch wenn unter vermindertem Drucke destilliert wird, eine Dissoziationstemperatur. Nicht die Verbindung als solche verflüchtigt sich hierbei, nicht der Dampfdruck der Verbindung überwindet den äußeren Druck, sondern die Steigerung der Verdampfungstemperatur hat den Grad erreicht, bei dem sich die Verbindung in solchem Umfange zersetzt, daß die Summe der Dampfdrucke der Spaltungsprodukte dem äußeren Drucke gleich geworden ist. Würde der Zusammenhalt der Verbindung größer sein, so daß sie unzersetzt sieden würde, so wäre diese eigentliche Siedetemperatur höher als die beobachtete, unter Dissoziation ent-

standene. Das gleiche gilt von der Schmelz- oder Erstarrungstemperatur, je nachdem sie mit Dissoziation verbunden ist oder nicht.

Wie groß dieser Unterschied in den Siedetemperaturen einer Additionsverbindung sein kann, wenn sie mit oder ohne Zersetzung verdampft, zeigt das Beispiel des Salmiaks, der im gewöhnlichen getrockneten Zustande bei 280° siedet, während sich der vollkommen getrocknete Salmiak bei etwa 360° als gesättigter Dampf unzersetzt verflüchtigt.¹) Es ist einleuchtend, daß sich allgemeine Gesetzmäßigkeiten aus Dissoziationsschmelz- und Dis-

soziationssiedepunkten nicht ableiten lassen.

Ist bei der Siedetemperatur die Additionsverbindung vollständig gespalten, so kann sie ein Gemenge unlöslicher oder partiell löslicher Körper bilden, sie kann auch ein homogenes Gemisch mit Minorsiedetemperatur oder Zwischensiedetemperatur darstellen. Das Chloralhydrat z. B. verdampft unter niedrigem Druck als Additionsverbindung. Besteht auch der Dampf aus den Spaltungsprodukten, so ist doch die Temperatur des gesättigten Dampfes höher als die der Komponenten der Verbindung. Unter niedrigem Druck destilliert also das Gemisch als Additionsverbindung mit Majorsiedetemperatur. Bei der Siedetemperatur unter Atmosphärendruck bildet dagegen die geschmolzene Masse eine Lösung der getrennten Komponenten mit Minorsiedetemperatur. Von der Additionsverbindung ist nichts mehr vorhanden. Da der Siedepunkt tiefer als die Siedepunkte der Komponenten liegt, verdampft die Flüssigkeit teilweise ebenfalls mit konstanter Zusammensetzung des Dampfes wie eine Additionsverbindung, aber die Dampfzusammensetzung ist eine andere.

Wenn ein homogenes Gemisch verschieden siedender Körper in einem bestimmten Mengenverhältnis mit konstanter Temperatur und Dampfzusammensetzung siedet, so war man früher geneigt, das betreffende Gemisch für eine chemische Verbindung zu halten. Indessen läßt sich leicht einsehen, daß ein jedes Gemisch mit Minor- oder Majorsiedetemperatur allein aus diesem Grunde wie ein einheitlicher Körper verdampfen muß.

Von den homogenen Gemischen mit Minorsiedetemperatur war nachgewiesen, daß sie keine Verbindungen sind, sondern daß im Gegenteil eine relativ geringe Affinität der ungleichartigen

¹⁾ Siehe S. 621.

Moleküle die Ursache ihres niedrigen Siedepunktes ist. Von den Gemischen mit Majorsiedetemperatur kann man dagegen sicher annehmen, daß sie aus einer Verbindung bestehen, während man umgekehrt nicht schließen darf, daß jede Additionsverbindung bei einer höheren Temperatur als die Komponenten destillieren muß, denn ein hoher Dissoziationsgrad kann eine relativ niedrige Siedetemperatur veranlassen. Andrerseits läßt sich behaupten, daß eine chemische Verbindung vorhanden sein muß, wenn zwei flüchtige Körper mit verschiedenen Siedepunkten im homogenen Gemisch bei einer Zwischensiedetem peratur mit konstanter Dampfzusammensetzung überdestillieren, denn ein derartiges Siedeverhalten läßt keine andere Erklärung als die einer Verbindung zu.

Die Verbindung a-Naphthol-Diphenylamin siedet unter Atmosphärendruck bei einer Temperatur, die zwischen den Siedepunkten der reinen Komponenten liegt. Sie destilliert wie ein einheitlicher Körper mit konstanter Zusammensetzung des Dampfes, so daß eine Trennung durch fraktionierte Destillation nicht möglich ist. Die niedrige Siedetemperatur beweist, daß die Verbindung in hohem Maße zersetzt ist.

Nach Kreis¹) destillierte ein Gemisch von 25 g α-Naphthol (Sdp. 275—280°) und 25 g Diphenylamin (Sdp. 310°) in folgender Weise:

```
Von 275 bis 278° gingen 0,9 g über,
" 278 " 281 " 1,0 " "
" 281 " 284 " 8,1 " "
" 284 " 285 " 27,7 " "
" 285 " 287 " 6,6 " "
" 287 " 290 " 3,0 " "
```

Die Fraktion 284 bis 285° wurde nochmals destilliert, wobei der größte Teil konstant bei 284° überging und der Rest bei 284 bis 285°. Der konstant siedende Teil behielt nun auch nach wiederholter Destillation den Siedepunkt 284° (unkorr.) bei und ließ sich nicht weiter zerlegen. Durch Zusatz von Natronlauge konnte die Verbindung leicht getrennt werden. Wegen dieser Trennungsmöglichkeit meinte Kreis, daß hier wohl keine Verbindung vorliegen könne, mit Unrecht, denn es ist gerade eine sehr allgemeine Eigenschaft dieser labilen Verbindungen,

¹⁾ Liebigs Annalen 224 (1884), 268.

daß sie durch geeignete Zusätze in ihre Komponenten zerlegt werden können. Aus der weiterhin mitgeteilten Zusammenstellung von Additionsverbindungen ist zu sehen, daß Phenole ganz allgemein Neigung haben, mit Aminen, freilich vorzugsweise mit primären, Anlagerungsprodukte zu bilden, wobei sich in der Regel ein Molekül eines monohydroxylierten Phenols mit einem Molekül Amin verbindet. Hiernach würde die fragliche Verbindung die Zusammensetzung $C_{10}H_7$ OH. $(C_6H_5)_2$ NH haben, d. h. 25 g Diphenylamin hätten sich mit 21,3 g Naphthol verbunden. Die Stickstoffbestimmung der konstant siedenden Fraktion stimmte auf die Zusammensetzung $2C_{10}H_7$ OH. $3(C_6H_5)_2$ NH. Die Untersuchung von Destillationsfraktionen ist aber ein schlecht geeignetes Mittel zur Feststellung der molekularen Konstitution von Verbindungen, die schon unterhalb der Siedetemperatur partiell dissoziiert sind.

In dem vorliegenden Beispiel ist es übrigens sehr wahrscheinlich, daß ein Majorsiedepunkt beobachtet werden würde, wenn unter genügend vermindertem Druck, also bei erheblich

niedrigerer Temperatur destilliert würde.

Additionsverbindungen mit Zwischensiedetemperatur und trotzdem mehr oder weniger konstanter Zusammensetzung des Dampfes werden wohl häufiger vorkommen. Liegen die Siedepunkte der reinen Komponenten weit auseinander und ist die Destillationstemperatur sehr hoch, so kann man nur von einer ausnahmsweise sehr stabilen Additionsverbindung erwarten, daß sie mit Majorsiedetemperatur siedet; meistens wird die teilweise oder je nach der Temperaturhöhe vollständig dissoziierte Schmelze zwischen den Siedepunkten der reinen Komponenten überdestillieren, immer noch geschlossen wie eine Verbindung, wenn noch ein erheblicher Teil von der Verbindung vorhanden ist, anderenfalls als einfaches homogenes Gemisch, das nach den Siedepunkten der Komponenten getrennt werden kann.

Wirkung der Wärme auf Additionsverbindungen. Von den Additionskörpern existieren einzelne nur bei sehr niedrigen Temperaturen, viele bestehen noch teilweise bei Zimmertemperatur, andere sind stabiler und werden erst durch stärkere Erhitzung gespalten. Die festen Verbindungen schmelzen meistens unter Dissoziation, so daß der Schmelzpunkt wenig scharf eintritt und deshalb schwierig genau zu bestimmen ist. Die Dissoziation

ist jedoch selten vollständig; neben den getrennten Komponenten enthält die Schmelze noch einen mehr oder minder großen Teil der Verbindung. Ebenso ist der Sublimations- oder Siedepunkt meistens ein Dissoziationspunkt, an dem die Spaltung in größerem Umfange einsetzt, zumal wenn unter Atmosphärendruck erhitzt wird. Mit wenigen Ausnahmen besteht der Dampf aus den freien Komponenten. Ein Teil der Additionsverbindungen spaltet sich, wenn sie bis zur Dissoziationstemperatur erhitzt werden, in die Komponenten, andere aber, besonders Anlagerungsprodukte an ungesättigte Aldehyde, Ketone und Amine, bilden hierbei unter Austritt von Wasser oder von anderen Molekülgruppen stabile Kondensationsverbindungen, oder es treten tiefergehende Zersetzungen durch die Wirkung der Hitze ein.

Sorgfältige Untersuchungen über die Wirkung der Wärme auf die Additionskörper haben Kremann und Ehrlich ausgeführt. Aus dem Vergleich der nach der Schmelzwärme berechneten Schmelzpunktkurve mit der experimentell festgestellten schloß Kremann¹), daß der Dissoziationsgrad der Verbindung Phenol-Anilin in der Schmelze 20⁰/₀ beträgt, der Verbindung Phenol-Pikrinsäure 27⁰/₀ und der Verbindung Phenol-Nitrosodimethylanilin 15⁰/₀. Wie die nachstehenden Untersuchungen zeigen, ist diese Methode zur Bestimmung der molekularen Beschaffenheit von Flüssigkeiten nicht sehr zuverlässig.

Nach der Bestimmung des Temperaturkoeffizienten der molekularen Oberflächenenergie stellten Kremann und Ehrlich²) fest, daß das geschmolzene Phenol-Anilin (Smp. 31,0°) bei 40° noch etwa zur Hälfte als Verbindung besteht, aber zwischen 60 und 73° vollständig in die Komponenten zerfallen ist. Ähnlich verhält sich die Verbindung m-Kresol-Anilin (Smp. — 14,6°), die zwischen 15 und 30° noch zur Hälfte vorhanden, über 60° aber fast ganz gespalten ist.

Hiermit stimmen die Dissoziationsuntersuchungen aus der Kurve der inneren Reibung gut überein. Nach ihnen bestand die Verbindung Phenol-Anilin bei 33° in der Schmelze noch großenteils, bei 54° war schon größerer Zerfall zu konstatieren, während sie bei 74° vollständig in die Komponenten getrennt

¹⁾ Monatsh. f. Chem. 25 (1904), 1269.

²⁾ Zeitschr. f. physik, Chem. 28 (1907), 831.

war. Die Reibungskurve der geschmolzenen Verbindung m-Kresol-Anilin zeigt bei 0° ein ausgesprochenes Maximum, woraus hervorgeht, daß die Verbindung bei dieser Temperatur noch größerenteils besteht. Bei 76,3° nähert sich das Bild der Kurve dem eines homogenen Gemisches, bei 95,5° ist kaum noch ein Rest der

Verbindung vorhanden.

Ein schönes, sehr anschauliches Beispiel von dem Einflusse der Temperatur auf die Bildung und auf den Bestand labiler Additionsverbindungen giebt das Verhalten von Chlorwasserstoff auf Dibenzylidencyclopentanon. Bei Zimmertemperatur verbindet sich dies ungesättigte Keton nicht mit dem trocknen Chlorwasserstoff, es bleibt beim Überleiten des Gases gelb. Taucht man aber das Rohr mit dem gepulverten Keton in Eiswasser oder in eine Kältemischung, so entsteht sogleich das zinnoberrote

 $\begin{array}{c} \text{Hydrochlorid} \\ < \overset{\text{CH}_2\text{C}(\text{CHC}_6\text{H}_5)}{\text{CO}_2\text{CIH}}, \end{array}$

das aber beim Erwärmen auf Zimmertemperatur trotz fortgesetztem Überleiten von Chlorwasserstoff wieder zerfällt und in

das gelbe Keton übergeht.1)

Ich habe die Wirkung der Wärme auf die Additionsverbindungen etwas ausführlicher besprochen, weil ihre Kenntnis bei der Verwendung dieser labilen chemischen Körper zur Trennung homogener Gemische notwendig ist. Aus dem gleichen Grunde ist nachfolgend auch der dissoziierende Einfluß von Lösungsmitteln eingehender behandelt worden.

Einwirkung von Lösungsmitteln auf Additionsverbindungen. Den Zerfall additioneller Verbindungen in Lösungsmitteln haben Behrend²) an der Verbindung Pikrinsäure-Anthracen in Alkohol und Kurilow³) an der Verbindung Pikrinsäure-Naphthol in Wasser beobachtet. Ausführlichere Untersuchungen stellte Kremann¹) an, indem er die Erniedrigung des Schmelzpunktes nach Zusatz verschiedener Lösungsmittel beobachtete. Er gewann hierdurch ein vergleichendes Urteil über die Größe des Zerfalls der Verbindung in der Lösung je nach Art und Menge des Zusatzes.

Als Beispiel sei die Verbindung Phenol-Anilin, C₆H₅OH · C₆H₅NH₆ angeführt. Die Zusätze waren Anilin, Toluol, Xylol,

3) Zeitschr. f. physik. Chem. 23 (1897), 90.

¹⁾ Vorländer u. Mumme, Berl. Berichte 36 (1903), 1470.

⁹ Zeitschr. f. physik. Chem. 10 (1892), 265; 15 (1894), 183.

Benzol, Nitrotoluol, Nitrophenol, Nitrobenzol, Amylalkohol und Äthylalkohol. Hierbei wurde gefunden, daß mit steigendem Zusatz auch der Zerfall der Verbindung zunimmt, daß im übrigen aber die Größe des Zerfalls auch sehr wesentlich von der Art des Lösungsmittels abhängt. Die geringste Dissoziation entstand, wenn Anilin, also eine der Komponenten, im Überschuß vorhanden war. Eine geringe Zumischung veränderte den Schmelzpunkt kaum merklich; auch durch größere Mengen des Anilins wurde die Verbindung nur wenig dissoziiert. Bei weitem stärker wirkte aber der Zusatz eines jeden fremden Lösungsmittels und zwar in steigendem Maße in der Reihenfolge, wie oben die einzelnen Lösungsmittel angeführt sind. Die größte Dissoziation der Doppelverbindung verursachte der Äthylalkohol und danach der Amylalkohol. Analoge Resultate gab die Untersuchung von Pikrinsäure-Phenol, Pikrinsäure-Naphthalin und Nitrosodimethylanilin-Anilin. Auch bei diesen wurde der Bestand der Verbindung durch den Zusatz einer Komponente der betreffenden Verbindung am geringsten beeinflußt. Relativ beständige Doppelverbindungen, wie z. B. Trinitrotoluol-Naphthalin, wahrten die Eigenschaft des festeren Zusammenhalts auch in der Lösung. m-Xylol, Nitrobenzol, o-Nitrophenol und o-Nitrotoluol vermochten den Schmelzpunkt der genannten Additionsverbindung nur wenig zu erniedrigen.

Interessant und wichtig ist auch das allgemeine Resultat dieser Untersuchungen, daß die Doppelverbindungen auch in der Lösung als solche existieren, sogar in großem Umfange. Rothmund²) wies auf chemischem, kryoskopischem und elektrischem Wege nach, daß die bekannten Verbindungen zwischen Aceton und dem neutralen und sauren Alkalisulfit auch in Lösungen in Form der Verbindung vorhanden sind.

Kerp³) studierte den Dissoziationsgrad der Verbindungen von Natriumbisulfit mit Formaldehyd, Acetaldehyd, Benzaldehyd, Glucose und Aceton in wäßriger Lösung verschiedener Konzentration. Er titrierte die Lösungen mit Jod, wobei er von der als richtig nachgewiesenen Voraussetzung ausging, daß nur das abgespaltene, also nicht mehr gebundene Natriumbisulfit durch

¹⁾ Monatsh. f. Chem. 25 (1904), 1269.

²) Monatsh. f. Chem. 26 (1905), 1545.

³) Arbeiten a. d. Kaiserl. Ges. Amt 21 (1904), 180; 26 (1907), 231 u. 269.

Jod oxydiert wird. Er stellte fest, daß sich die genannten Additionsverbindungen noch als solche in wäßriger Lösung befinden, daß aber ein Teil von ihnen in die Komponenten zerfallen ist. Der Dissoziationsgrad ist in der Hauptsache von der Affinitätsstärke zwischen den Komponenten abhängig, aber auch von der Temperatur und der Konzentration der Lösung. Untersucht wurden folgende Additionsverbindungen:

- 1. Formaldehydschwefligsaures Natrium HCH(OH)SO3Na,
- 2. Acetaldehydschwefligsaures Natrium CH3CH(OH)SO3Na,
- 3. Benzaldehydschwefligsaures Natrium C₈H₅CH(OH)SO₃Na,
- 4. Acetonschwefligsaures Natrium (CH3)2 C(OH) SO3 Na,
- 5. Glucoseschwefligsaures Natrium C₆H₁₂O₆·SO₃HNa.

Diese Verbindungen wurden in Wasser gelöst, so daß, auf wasserfreie Verbindung bezogen, Normallösung, ½ Normal- und ½ Normallösung erhalten wurden. Nur von No. 3 wurde statt der Normallösung ¼ Normallösung verwendet.

Demnach waren in einem Liter der Lösung wasserfreie

Verbindung enthalten:

	Normal-Lösung	1/10 N. L.	1/so N. L.
1.	134,13g	13,413g	4,471 g
2.	148,15	14,815	4,471
3.	52,54 (1/4 N. L.)	21,017	7,006
4.	162,166	16,217	5,406
5.	284,214	28,421	9,474

Die nachfolgende Tabelle gibt an, wieviel Gewichtsprozente von dem Anfangsgewichte der wasserfreien Verbindung in der wäßrigen Lösung bei einer Temperatur von 15 bis 22° zersetzt enthalten sind.

	Normal-Lösung	1/10 N. L.	1/80 N. L.
1.	0,0340/0	0,097%	0,155%
2.	0,17	0,45	0,71
3.	2,07 (1/4 N.L.)	2,98	4,90
4.	5,73	14,58	23,67
5.	42,32	74,61	81,89

Die Unterschiede in der Spaltung der gebundenen schwefligsauren Salze sind, wie man sieht, sehr groß. Am geringsten, eben noch bestimmbar, ist das formaldehydschwefligsaure Natrium in der Lösung gespalten, sehr weitgehend dagegen die Glucose-Verbindung dissoziiert, sogar schon in konzentrierter Lösung. Im übrigen lassen die Untersuchungen die Zunahme in der Dissoziation mit der Zunahme des Lösungsmittels erkennen. Sie geben ein interessantes Bild von dem verschiedenartigen Verhalten von Additionsverbindungen im allgemeinen und von der Einwirkung von Lösungsmitteln auf derartige Verbindungen.

Kerp stellte ferner fest, daß sich der in der Lösung beobachtete Dissoziationsgrad dauernd in gleicher Höhe erhält, so lange die Temperatur und die Konzentration nicht geändert wird. Noch nach wochenlangem Stehen besitzt die Lösung das gleiche Verhältnis zwischen intakter Verbindung und Spaltungsprodukten, das sie kurze Zeit nach ihrer Herstellung gezeigt hat. Wird aber das abgetrennte Natriumbisulfit mit Jod oxydiert und dadurch das Gleichgewicht in der Lösung gestört, so bildet sich, entsprechend dem Massenwirkungsgesetz, nach einiger Zeit eine neue Menge Natriumbisulfit, bis wieder das Gleichgewicht erreicht ist. So läßt sich durch stete Beseitigung des ausgeschiedenen Bisulfits schließlich die ganze vorhandene Menge der Doppelverbindung zerlegen, was bei hohem Dissoziationsgrade, wie z. B. bei der Glucoseverbindung, nur kurzer Zeit bedarf, dagegen bei geringem Dissoziationszustande, wie z. B. bei dem formaldehydschwefligsauren Natrium, einen langen Zeitraum beansprucht.

Hieraus erklärt sich die bekannte Erfahrung, daß sich eine labile Additionsverbindung an der Luft liegend, z. B. beim Trocknen über Schwefelsäure, sehr bald zersetzt, wenn sich beide Spaltungsprodukte oder eins von ihnen verflüchtigen können, zumal wenn noch eine Luftpumpe die eben entstandenen Spaltungsprodukte absaugt. Andrerseits haben die Darsteller bei manchen Verbindungen von sehr lockerem Zusammenhalt hervorgehoben, daß sie sich sehr lange intakt erhalten, wenn sie unter Abschluß von Luft aufbewahrt werden. Ebenso wird die Tatsache begreiflich, daß ziemlich fest zusammengefügte Additionsverbindungen durch Destillation doch allmählich bis zum letzten Rest gespalten werden.

Über die trennende Wirkung von Lösungsmitteln auf labile Additionsverbindungen läßt sich nach den Erfahrungstatsachen folgende praktische Regel aufstellen.

Eine Additionsverbindung wird von demjenigen Lösungsmittel am leichtesten zerlegt, das mit einer der Komponenten selbst eine Additionsverbindung zu bilden vermag. Deshalb werden die Anlagerungsprodukte von Alkoholen mit Chlorcalcium durch Wasser sehr schnell dissoziiert. Von indifferenten Lösungsmitteln wirken diejenigen stärker trennend auf eine Additionsverbindung, die zu einer ihrer Komponenten eine erheblich größere Löslichkeit besitzen als zu der anderen. Es ist die Lösungsaffinität, die je nach der Menge des Zusatzes und der Höhe der Temperatur die molekulare Bindung lockert und trennt.

Aus den Untersuchungen Kremanns ging hervor, daß die geringste dissoziierende Wirkung auf die molekulare Verbindung die freien Komponenten äußern; es stimmt diese Tatsache mit der bekannten Eigenschaft sehr vieler, vielleicht der meisten Additionsverbindungen überein, in einem Überschuß einer ihrer Komponenten schwer löslich zu sein. Aus der nachfolgenden Zusammenstellung der Additionsverbindungen erhellt, daß die überwiegende Mehrzahl von ihnen unter Benutzung dieser Schwer-

löslichkeit dargestellt wurde.

Welch weitgehenden Einfluß die Gegenwart selbst minimaler Mengen eines Lösungsmittels auf den Bestand einer molekularen Additionsverbindung haben kann, zeigt die Dampfbildung des Chlorammoniums. Früher war bekannt und durch Ramsay und Young 1) bestätigt, daß Chlorammonium in gewöhnlicher Weise über Schwefelsäure getrocknet schon bei 280° sublimiert, und daß sein Dampf fast vollständig dissoziiert ist. Baker2) stellte dann fest, daß sorgfältig über Phosphorpentoxyd getrocknetes Chlorammonium bei 360° unzersetzt als Additionsverbindung verdampft, wenn der Zutritt von Luft, mit wenn auch geringem Feuchtigkeitsgrad, vermieden wird. Untersuchungen von Johnson3) ergaben darauf das eigentümliche, der Theorie widersprechende Resultat, daß der dissoziierte Dampf ziemlich den gleichen Druck äußert wie der nicht dissoziierte. In der lebhaften Diskussion hierüber wies van Laar4) durch eingehende Berechnungen nach, daß es so, und nicht anders zu erwarten sei. Dagegen erwiderte R. Abegg⁵), unter dessen Leitung die Arbeit von Johnson ausgeführt war, daß durch neuere Versuche von Johnson 6) an Jodammonium, ganz der Theorie entsprechend, eine Erhöhung des

¹⁾ Zeitschr. f. physik. Chem. 1 (1887), 237.

²) Journ. chem. Soc. 65 (1894), 611; 73 (1898), 422.

³⁾ Zeitschr. f. physik. Chem. 61 (1908), 455.

⁴⁾ Zeitschr. f. physik. Chem. 62 (1908), 678.

⁵) Zeitschr. f. physik. Chem. 63 (1908), 623.

⁶⁾ Dissert. Breslau, 1908, S. 35.

Dampfdrucks von gesättigtem, dissoziiertem gegenüber nicht dissoziiertem Dampf festgestellt wurde, wenn das sich sehr langsam herstellende Dissoziationsgleichgewicht abgewartet wurde. Wahrscheinlich sind also die von Johnson nach der statischen Methode bestimmten Dampfdrucke des dissoziierten Chlorammoniums zu niedrig ausgefallen, weil er der Dampfentwicklung nicht genügend Zeit gegönnt hatte. Hieraus erhellt wieder, wie außerordentlich schwierig es ist, mit der statischen Methode der Dampfdruckbestimmung richtige Werte zu erhalten. 1)

Benutzung von Additionsverbindungen zur Trennung von Flüssigkeitsgemischen. Die bekannte Eigenschaft der Aldehyde und vieler Ketone, mit Bisulfiten der Alkalien feste Verbindungen einzugehen, die der Regel nach in einem Überschuß der wäßrigen Lösung des Alkalibisulfits schwer löslich sind, wird schon allgemein zur Reindarstellung von Aldehyden und Ketonen benutzt. Auch sonst wird die Fähigkeit vieler chemischer Körpergruppen, mit geeigneten Zusätzen additionell kristallisierbare Verbindungen zu bilden, vielfach angewendet, um aus einem Flüssigkeitsgemisch einen Bestandteil rein zu gewinnen.

Scheidet sich die Verbindung nicht in fester Form, sondern als Flüssigkeit ab, so daß sich zwei Schichten bilden, so ist die Trennung ebenfalls einfach. Ein Beispiel hierfür bietet ein von der chemischen Fabrik Griesheim-Elektron²) zur Reingewinnung von Benzaldehyd ausgearbeitetes Verfahren.

Kremann, Monatsh. f. Chem. 25 (1904), 1215; 27 (1906), 91;

Kremann u. Rodinis, ibidem 27 (1906), 125;

Kremann u. Ehrlich, ibidem 28 (1907), 831;

Kremann, ibidem 28 (1907), 893;

Kremann u. Decolle, ibidem 28 (1907), 917;

Kremann, ibidem 28 (1907), 1125;

Kerp, Arbeiten a. d. Kaiserl. Ges. Amt 21 (1904), 180;

Kerp u. Baur, ibidem 26 (1907), 231 u. 269;

Kerp u. Wöhler, ibidem 32 (1909), 89.

Auch die umfangreichen Arbeiten Dunstans sind hier zu vermerken, die aus den Änderungen der Viskosität mit der Konzentration einen Einblick in die Assoziations- und Dissoziationsverhältnisse von Körpergemischen gegeben haben. Zeitschr.f. physik. Chem. 49 (1904), 590; 51 (1905), 732; 56 (1906), 370.

¹) Grundlegend für die Erkenntnis der Additionsverbindungen sind die Arbeiten von Kremann und Kerp.

²) D. R. P. Nr. 154499 Kl. 12 o vom 13./12. 1902 (15./9. 1904).

Durch Oxydation von Toluol mit Bleisuperoxyd und Schwefelsäure wird ein Rohprodukt gewonnen, das ca. 60% unverändertes Toluol und 40% Benzaldehyd enthält. 100 kg hiervon werden bei 15% mit 400 kg Wasser innig verrührt. In die entstandene Emulsion werden 25 bis 30 kg schweflige Säure eingeleitet. Nach Klärung des Gemisches bilden sich zwei Schichten, die obere enthält das Toluol, die untere die Benzaldehydschwefligsäure-Verbindung in wäßriger Lösung. Wird diese Lösung auf 100% erhitzt, so beginnt schon bei 30% die schweflige Säure zu entweichen, die ohne viel Benzaldehyd abdestilliert werden kann. Die schweflige Säure ist in der wäßrigen Lösung wieder zur nächsten Arbeit verwendbar, ebenso das von dem Aldehyd schließlich getrennte Wasser mit seinem aufgelösten Benzaldehyd, so daß nichts verloren geht. In gleicher Weise ist in der Patentschrift die Trennung des o-Nitrobenzaldehyds von o-Nitrobenzylalkohol und des Anisaldehyds aus oxydiertem Anisöl angeführt.

Weniger bekannt ist die Trennung von Lösungen flüchtiger Substanzen, deren Siedepunkte nahe zusammenliegen, durch Destillation der Lösung, nachdem ein Körper hinzugefügt worden ist, der mit einem der Lösungsbestandteile eine nach Belieben wieder zerlegbare Additionsverbindung eingeht. Das Verfahren ist vielfacher Anwendung fähig. Es setzt da ein, wo mangels einer festen Abscheidung das Kristalltrennungsverfahren nicht anwendbar ist, und gründet sich darauf, daß durch den Zusatz zu der Fraktion mit konstantem Siedepunkt die eine Komponente, die mit dem Zusatzkörper eine additionelle Verbindung einzugehen vermag, im Siedepunkt erhöht wird und nun von der übrigen Flüssigkeit durch fraktionierte Destillation getrennt werden kann.

An der Hand der Tabelle der Additionsverbindungen ist ein passender Körper auszuwählen. Hierbei ist mehreres zu beachten.

Am besten ist derjenige Bestandteil der Fraktion in der Verdampfung zurückzuhalten, der rein gewonnen werden soll. Verfährt man umgekehrt, so läßt sich der gewünschte Körper kaum vollständig rein erhalten, denn wenn die Beimengung in der Fraktion durch den Zusatz zur höher siedenden Doppelverbindung umgewandelt ist, so werden gewisse Mengen von ihr trotz guter Fraktionierkolonne mit überdestillieren und den niedriger siedenden nicht gebundenen anderen Bestandteil der Fraktion verunreinigen. Vorbedingung für die Heranziehung gerade des Körpers zur Additionsverbindung, dessen Reindarstellung verlangt wird, ist, daß die betreffende Fraktion von allen höher siedenden Beimengungen zuvor gut befreit ist.

Selbstverständlich sind nur solche Additionsverbindungen brauchbar, die ohne besondere Schwierigkeit und ohne erheblichen Verlust wieder in ihre Komponenten zerlegt werden können. Bedenklich sind in dieser Hinsicht viele ungesättigte Verbindungen, besonders ungesättigte Aldehyde.

Feste Additionsverbindungen, deren Schmelzpunkt höher liegt als die Destillationstemperatur, sind schlecht verwendbar, weil die in der Blase ausgeschiedene Kristallmasse die flüssigen Beimengungen so dicht umschließt, daß ein Abdestillieren dieser Verunreinigungen nicht vollständig gelingt.

Soll nun das Flüssigkeitsgemisch, das die Additionsverbindung enthält, von den nicht gebundenen Flüssigkeiten durch Destillation befreit werden, so ist zu berücksichtigen, daß eine sehr niedrige Destillationstemperatur die beste Gewähr für einen geringen Dissoziationsgrad der Additionsverbindung gibt und deshalb die größte Siedepunktdifferenz zwischen ihr und dem unverbundenen Anteil des Flüssigkeitsgemisches erwarten läßt. Folgende Destillationsverfahren, geordnet nach der Destillationstemperatur, stehen zur Verfügung:

- 1. Destillation unter Atmosphärendruck,
- 2. Destillation unter Minderdruck,
- 3. Hydrodestillation unter Atmosphärendruck,
- 4. Überhitzungshydrodestillation unter Minderdruck,
- 5. Hydrodestillation unter Minderdruck.

Bei der Hydrodestillation ist zu beachten, daß für viele molekulare Verbindungen Wasser ein Trennungsmittel ist; zuweilen ist aber selbst dann eine Wasserdestillation möglich, wenn sie unter Minderdruck bei einer Temperatur von 30 oder höchstens 40° erfolgt.

Je niedriger man übrigens die Destillationstemperatur im Interesse der Erhaltung der Additionsverbindung hält, um so schwächer wird auch die Dampfentwicklung, nicht nach Volumen, sondern nach Gewicht. Durch gesteigerte Heizung läßt sich dieses Nachlassen des Destillats bei schwerer flüchtigen Körpern nicht annähernd ausgleichen, so daß in diesem Falle auf eine niedrige Destillationstemperatur verzichtet werden muß.

Liegen die Siedepunkte nicht so weit auseinander, daß der unverbundene Anteil nur von der schwer flüchtigen Additionsverbindung abdestilliert zu werden braucht, also mit Kolonne fraktioniert werden muß, so eignet sich eine Hydrodestillation weniger gut zur Trennung als eine trockne Destillation. Schließlich ist eine Hydrodestillation unter Minderdruck zur Verdampfung schwer flüchtiger Substanzen kaum brauchbar, weil die Destillation zu lange dauern und von der Additionsverbindung zu viel abspalten und verdampfen würde.

Tabelle der Additionsverbindungen. Die nachstehende Zusammenstellung von Additionsverbindungen weist nach, welche Verbindungen als solche schon festgestellt sind, und besonders auch, welche Verbindungsmöglichkeiten danach noch zu erwarten sind. Aus den Literaturnachweisen und auch aus einzelnen zugefügten Erklärungen sind die Darstellungsverfahren und die Eigenschaften der Verbindungen zu ersehen. Um die Tabelle nicht allzusehr anschwellen zu lassen, mußte in der Anführung von Verbindungen eine gewisse Beschränkung innegehalten werden. Nicht berücksichtigt wurden die Verbindungen der Säureanhydride mit Wasser oder anderen Körpern, die Verbindungen ungesättigter Körper mit Halogenen, sowie die Grignardschen Magnesiumverbindungen. Nur teilweise wurden angeführt Hydrate und Kristallwasserverbindungen, ferner Anlagerungsprodukte der Säuren und Salze von Ammoniakderivaten und Verbindungen von Nitrokörpern. Von den Chinolinen und Chinolinderivaten wurden nur die Verbindungen des Chinolins selbst erwähnt. Auf Vollständigkeit soll die Tabelle keinen Anspruch erheben.

Die Anordnung geschah nach der nachstehenden Reihenfolge, wobei der besseren Übersicht wegen jede Doppelverbindung in jeder Gruppe angeführt wurde, zu der eine ihrer Komponenten gehört, so daß z. B. Phenol-Anilin sowohl in der neunten Gruppe der Phenole als auch in der fünfzehnten der Ammoniakderivate angeführt ist.

- 1. Wasser,
- 2. Schweflige Säure,
- 3. Orthophosphorsäure,
- 4. Ferro- u. Ferricyanwasserstoffsäure,
- 5. Verschiedene Mineralsäuren,
- 6. Anorganische Salze und Basen,
- 7. Kohlenwasserstoffe und Äther,
- 8. Alkohole,
- 9. Phenole und Phenoläther,

- 10. Aldehyde,
- 11. Ketone,
- 12. Oxyde,
- 13. Chinone,
- 14. Organische Säuren, Salze u. Ester,
- 15. Ammoniakderivate,
- 16. Halogenverbindungen,
- 17. Nitro- und Nitrosokörper,
- 18. Schwefelverbindungen.

626

Die erste Vertikalreihe der Tabelle verweist auf die Literatur und etwaige nähere Erklärungen, die zweite enthält die Angabe der Additionsverbindung, die dritte deren chemische Formel.

Nicht alle angeführten Verbindungen sind sicher festgestellt, zweifelhafte sind mit einem Fragezeichen versehen. Auch der Zusatz "keine Verbindung" ist nicht immer zweifelsfrei. Zu diesem Schluß ist der betreffende Autor oft nur gekommen, weil er keine feste Ausscheidung erhalten konnte. Sie wäre vielleicht bei einem anderen Mischungsverhältnisse oder einem anderen Lösungsmittel oder ohne Lösungsmittel erhalten worden. Viele Additionsverbindungen bilden sich auch nur bei sehr niedriger Temperatur, z. B. die Säurehydrate.

Von umfassenden praktischen und theoretischen Untersuchungen über die Art der chemischen Bindung bei additionell entstandenen Körperkomplexen sind besonders die folgenden bemerkenswert:

- H. Thiele, Zur Kenntnis der ungesättigten und aromatischen Verbindungen. Liebigs Annalen 306 (1899), 87.
- A. Michael, Über einige Gesetze und deren Anwendung in der organischen Chemie. Journ. f. prakt. Chem. II. 60 (1899), 286, 409.
- E. Knoevenagel, Thieles Theorie der Partialvalenzen im Lichte der Stereochemie. Liebigs Annalen 311 (1900), 194.
- D. Vorländer, Kohlenstoffdoppelbindung und Carbonyl. Liebigs Annalen 320 (1902), 66.
- A. v. Baeyer u. V. Villiger, Über die basischen Eigenschaften des Sauerstoffs. Berl. Berichte 34 (1901), 2679, 3612; 35 (1902), 1201.
- D. Vorländer, E. Mumme u. M. Hayakawa. Über die Addition von Säuren an α, β-ungesättigte Ketone. Berl. Berichte 36 (1903), 1470, 3528.

Zusammenstellung molekularer Additionsverbindungen.

	1. Additionsverbind	ungen von Wasser.
1. 1. 1. 1. 1. 1. 2. S. 587. S. 587. S. 587. 3. 4. 5. 6. 7. —	## Schwefelsäure ## Schwefelsäure ## Salpetersäure ## Salzsäure ## Sal	H ₂ SO ₄ ·H ₂ O; H ₂ SO ₄ ·2 H ₂ O; H ₂ SO ₄ ·4 H ₂ O HNO ₃ ·H ₂ O bei −45°; HNO ₃ ·3H ₂ O bei −18,2° HCI·2H ₂ O bei −18° Additionsverbindung do. (HFI) ₂ ·4 H ₂ O HCIO ₄ ·2 H ₂ O CO ₂ ·8 H ₂ O; CO ₂ ·9 H ₂ O Additionsverbindung? do. do. do. 2 C(CH ₃) ₃ C(CH ₃) ₂ OH·H ₂ O (CH ₃) ₂ COHCOH(CH ₃) ₂ ·6 H ₂ O (C ₂ H ₅) ₂ O·2 H ₂ O? 2 C ₆ H ₅ OH·H ₂ O Additionsverbindung?
_	,, + Alkoholate	do.
8.	" + Önanthol	2 CH ₃ (CH ₂) ₅ CHO·H ₂ O
9.	,, + Ameisensäure	$HCO_2H\cdot H_2O$ $(CO_2H)_2\cdot 2H_2O$
10.	Diäthylandiamin	$(C_2H_4)_2(NH)_2 \cdot H_2O$
-	, + Hydrazin	N ₂ H ₄ ·H ₂ O
-	" + Alloxan	CO (NH) ₂ (CO) ₃ ·H ₂ O u. 4 H ₂ O
11.	" + Piperidin	C ₅ H ₁₁ N·H ₂ O
-	" + Chinolin	2 C ₉ H ₇ N·3 H ₂ O 2 CH ₃ J·H ₂ O
12. 13.	,, + Methyljodid	CH Cl ₃ ·18 H ₂ O
14.	+ Chloracetaldehyd	2 CH ₂ C1CHO·H ₂ O
15.	,, + Dichloracetaldehyd	CHCl ₂ CHO·H ₂ O
-	" + α-Chlorpropanal	CH3CHCICHO·2H2O
16.	" + Chloral	CCl ₃ CHO · H ₂ O; 2 CCl ₃ CHO · H ₂ O; CCl ₃ CHO · 7 H ₂ O
17.	" + Bromal	CBr ₃ CHO·H ₂ O
-	" + Tribrompropanal	CH ₂ Br CBr ₂ CHO·2 H ₂ O
18.	" + Schwefelkohlenstoff	2 CS ₂ ·H ₂ O
19.	2. Additionsverbindungen von sch	hwefliger Säure und ihren Salzen.
20.	HNaSO ₃ + Styrol	C ₆ H ₅ CHCH ₂ keine Additionsverbindg.
21.	HKSO ₃ + Allylalkohol	CH ₂ (SO ₃ K) CH ₂ CH ₂ OH
22.	HNaSOs+Citronellol	(CH ₃) ₂ C (SO ₃ Na) (CH ₂) ₃ CH (CH ₃) CH ₂ CH ₂ OH
22.	, + Geraniol	
18		40*

-	H Na SO ₃ + Menthol	Keine Additionaverhind
23.	,, + Thymomenthol	Keine Additionsverbindung
-	" + Androl	do.
22.	" + Zimtalkohol	C ₆ H ₅ CH(SO ₃ Na)CH ₂ CH ₂ OH
24.	SO ₂ + Phenol	4 C ₆ H ₅ OH·SO ₂ ; 5 C ₆ H ₅ OH·SO ₂
25.	,, + Hydrochinon	3 C ₆ H ₄ (OH) ₂ ·SO ₂ ; 4 C ₆ H ₄ (OH) ₂ ·SO ₂
19, 26.	Alkalibisulfite + Aldehyde	5 C6.14 (011)2 5 C2, 4 C6114 (011)2.5 C2
27.	HNaSO ₃ + Formaldehyd	HCH(OH)SO ₃ Na·H ₂ O
19.	Na ₂ SO ₃ + ,,	2 Mol. Na ₂ SO ₃ + 1 Mol. HCHO, Kondensationsverb. ?
28.	Alkalibisulfite + Acetaldehyd	Additionsverbindungen
29.	HNaSO ₃ + Chloracetaldehyd	CH ₂ CICH(OH)SO ₃ Na·2H ₂ O
30.	Alkalibisulfite + Chloral	Additionsverbindungen
	" + Bromal	do.
-	HNaSO ₃ + Propionaldehyd	C ₂ H ₅ CH(OH)SO ₃ Na
-	" + n-Butyraldehyd	CH ₃ (CH ₂) ₂ CH(OH)SO ₃ Na
-	" + Isobutyraldehyd	(CH ₃) ₂ CH CH (OH) SO ₃ Na
-	,, + Isovaleraldehyd	(CH ₃) ₂ CH CH ₂ CH (OH) SO ₃ Na
-	,, + Methylpropylacetaldehyd .	CH ₃ (CH ₂) ₂ CH(CH ₃)CH(OH)SO ₃ Na
-	,, + Dibrommethylpropylacetaldehyd .	CH3 CH2 CHBr CBr (CH3) CH (OH) SO3 Na
-	" + Önanthaldehyd	CH ₃ (CH ₂) ₅ CH(OH) SO ₃ Na·3H ₂ O
-	" + Octylaldehyd	CH ₃ (CH ₂) ₆ CH(OH)SO ₃ Na
-	,, + Äthylbutylacetaldehyd	C ₄ H ₉ CH(C ₂ H ₅)CH(OH)SO ₃ Na
-	,, + Nonylaldehyd	C ₈ H ₁₇ CH(OH)SO ₃ Na
19.	Na ₂ SO ₃ + "	Kondensationsverbindung?
10	HNaSO ₃ + Decylaldehyd	C ₉ H ₁₉ CH(OH)SO ₃ Na
19.	Na ₂ SO ₃ + "	Kondensationsverbindung?
	HNaSO ₈ + Isocaprinaldehyd	C ₁₀ H ₂₀ O keine Additionsverbindung
_	" + Myristinaldehyd	C ₁₃ H ₂₇ CH(OH)SO ₃ Na
31.	Acroloiu	C ₁₅ H ₃₁ CH(OH)SO ₃ Na
32.	M-0-1991 1 1 9	CH ₃ CH(SO ₃ Na) CH(OH) SO ₃ Na
33.	,, + Methylathylacrolein	C ₂ H ₅ CHC(CH ₃)CHO Additionsverbind.
33.	H ₂ SO ₃ + "	CH ₃ (CH) ₂ CHO·SO ₃ Na H CH ₃ (CH) ₂ CHO·SO ₃ H ₂
34.	HNaSO ₃ + Dichlorcrotonaldehyd	C ₄ H ₄ Cl ₂ O·SO ₃ NaH·x H ₂ O
35.	" + Tiglinaldehyd	CH ₃ CHC(CH ₃)CHO·SO ₃ NaH
36.	H ₂ SO ₃ + ,,	CH ₃ CH(SO ₃ H) CH(CH ₃) CHO
36.	, + ,	CH ₃ CH(SO ₃ H) CH(CH ₃) CH (OH) SO ₃ H
37.		
	HNaSO ₃ + Tetramethylenaldehyd	CH ₂ < CH ₂ > CH CHO · SO ₃ Na H
_	" + «-Diisobutylenaldehyd	C ₈ H ₁₄ O Additionsverbindung
- 20	" + Diisovaleraldehyd	Keine Additionsverbindung
38.	, + Diönanthylenaldehyd	C ₁₄ H ₂₆ O Additionsverbindung
_	" + Ölsäurealdehyd	C ₁₈ H ₃₄ O Additionsverbindung
39.	,, + Triönanthylenaldehyd	C ₂₁ H ₄₀ O keine Additionsverbindung
39.	,, + Citronellal	C ₉ H ₁₇ CH(OH)SO ₃ Na labil
	" + "	C ₀ H ₁₈ (SO ₃ Na) CHO stabil

39.	HNaSO ₃ +Citronellal	C ₉ H ₁₈ (SO ₃ Na)CH(OH)SO ₃ Na stabil
39.	Na ₂ SO ₃ + ,,	C ₉ H ₁₈ (SO ₃ Na) CHO + Na OH
40.	HNaSO ₃ + Citral	C ₉ H ₁₅ CH(OH)SO ₃ Na labil
40.	, + ,	C ₉ H ₁₇ (SO ₃ Na) ₂ CHO stabil
40.	, + ,	C ₉ H ₁₇ (SO ₃ Na) ₂ CHO labil
40.	", + ",	C9H16(SO3Na)CHO labil
40, 19.	$Na_2SO_3 + \dots $	C ₉ H ₁₇ (SO ₃ Na) ₂ CHO+2NaOH
41.	HNaSO ₃ + Phellandral	C ₉ H ₁₅ CHO·SO ₃ Na H
42.	" + Glyoxal	(CHO)₂·2 SO₃NaH
42.	" + Methylglyoxal	CH₂(CHO)₂·2 SO₃NaH
_	" + Furfurol	C ₄ H ₃ O CHO·SO ₃ NaH
	" + Pentanonal	CH ₃ CO CH ₂ CH ₂ CHO Additionsverbdg.
43.	" + Glucose	C ₆ H ₁₂ O ₆ ·SO ₃ NaH
44.	SO ₂ + Benzaldehyd	C ₆ H ₅ CHO Additionsverbindung
45.	Alkalibisulfite + Benzaldehyd	C ₆ H ₅ CH(OH)SO ₃ Na · ¹ / ₂ H ₂ O
19.	Na ₂ SO ₃ + Benzaldehyd	1 Mol.+1 Mol., Kondensationsverbindg.?
44.	SO ₂ + o-Nitrobenzaldehyd	C ₆ H ₄ (NO ₂)CHO Additionsverbindung
_	HNaSO ₃ + Nitrobenzaldehyd	C ₆ H ₄ (NO ₂)CH(OH)SO ₃ Na
2-	" + Phenylacetaldehyd	C ₆ H ₅ CH ₂ CH(OH)SO ₃ Na
	" + Hydrozimtaldehyd	C ₆ H ₅ CH ₂ CH ₂ CH(OH)SO ₃ Na
46.	" + Zimtaldehyd	C ₆ H ₅ CH CH CH (OH) SO ₃ Na
46.	,, + ,,	C ₆ H ₅ CH (SO ₃ Na) CH ₂ CH (OH) SO ₃ Na · 2 H ₂ O
46.	,, + ,,	C ₆ H ₅ CH(SO ₃ Na)CH ₂ CHO
46, 19.	Na ₂ SO ₃ + ,,	C ₆ H ₅ CH (SO ₃ Na) CH ₂ CH (OH) SO ₃ Na + 2 Na OH
46.	H ₂ SO ₃ + ,,	C ₆ H ₅ CHCHCH(OH)SO ₃ H
46.	,, + ,,	C ₆ H ₅ CH(SO ₃ H)CH ₂ CH(OH)SO ₃ H
-	HNaSO ₃ + Nitrozimtaldehyd	C ₆ H ₄ (NO ₂)CHCHCH(OH)SO ₃ Na
-	" + Methylzimtaldehyd	C ₆ H ₅ CHC(CH ₃)CH(OH)SO ₃ Na
-	" + Benzoylpropionaldehyd	C ₆ H ₅ COCH ₂ CH ₂ CHO keine Additionsverb.
-	" + Cuminaldehyd	(CH ₃) ₂ CH C ₆ H ₄ CH (OH) SO ₃ Na
19.	Na ₂ SO ₃ + ,,	1 Mol.+1 Mol., Kondensationsverbindg.?
47.	HNaSO ₃ + Dihydrocuminaldehyd	C9H13CHO Additionsverbindung
	" + Äthylphenylacetaldehyd .	C2H5C6H4CH2CHO Additionsverbindg.
-	" + Diphenylacetaldehyd	(C ₆ H ₅) ₂ CHCH(OH)SO ₃ Na
-	" +Diphenylmethylbenzaldehyd	$(C_6H_5)_2CHC_6H_4CH(OH)SO_3Na$
756	" + Naphthaldehyd	C ₁₀ H ₇ CH(OH)SO ₃ Na
19.	Na ₂ SO ₃ + Salicylaldehyd	1 Mol. + 1 Mol., Kondensationsverbindg.?
48.	HNaSO ₃ + "	C ₆ H ₄ (OH) CH(OH) SO ₃ Na
77.	,, + Glykosalicylaldehyd (Helicin)	C6H4(OC6H11O5)CHO · SO3NaH
-	,, + Chlorsalicylaldehyd	C ₆ H ₃ CI(OH)CH(OH)SO ₃ Na
- N	" + Bromsalicylaldehyd	C ₆ H ₃ Br(OH)CH(OH)SO ₃ Na
-	" + Nitrosalicylaldehyd	C ₆ H ₃ (NO ₂)(OH)CH(OH)SO ₃ Na
49.	" + Thymotinaldehyd	[CH ₃ C ₆ H ₂ CH(CH ₃) ₂] (OH) CHO keine Additions verbindg.
50.	,, + Anisaldehyd	CH ₃ OC ₆ H ₄ CH(OH)SO ₃ Na
19.	Na ₂ SO ₃ + ,,	1 Mol. + 1 Mol., Kondensationsverbindg.?
-	H_2SO_3 + , ,	CH ₃ OC ₆ H ₄ CH(OH)SO ₃ H

-	HNaSO ₃ + 2, 5-Dioxybenzaldehyd	C ₆ H ₃ (OH) ₂ CHO Additionsverbindung
-	,, + Protocatechualdehyd	C ₆ H ₃ (OH) ₂ CHO do.
-	$Na_2SO_3 + ,$	1 Mol. + 1 Mol., Kondensationsverbindg.?
-	HNaSO ₃ + 2, 4-Resorcylaldehyd	C ₆ H ₃ (OH) ₂ CHO Additionsverbindung
-	" + Methylhydrochinonaldehyd	C ₆ H ₃ (OCH ₃)OHCHO do.
-	" + Methylresorcylaldehyd	C ₆ H ₃ (OCH ₃)OHCHO do.
-	" + Orcylaldehyd	C ₆ H ₂ (CH ₃)(OH) ₂ CHO keine Additionsv.
_	" + Ferulaaldehyd	C ₆ H ₃ (OH) ₂ CH CH CHO Additionsverb.
-	" + Piperonal	CH ₂ O ₂ C ₆ H ₃ CHO do.
-	" + Vanillin	C ₆ H ₃ (OH)(OCH ₃)CHO do.
19.	Na ₂ SO ₃ + ,,	1 Mol. +1 Mol., Kondensationsverbindg.?
	HNaSO ₃ + Isovanillin	C ₆ H ₃ (OCH ₃)(OH) CHO Additionsverb.
-	" + Pyrogallolaldehyd	C ₆ H ₂ (OH) ₃ CHO do.
_	" + Apiolaldehyd	(CH ₃ O) ₂ CH ₂ O ₂ C ₆ HCHO do.
_	" + Resorcyldialdehyd	$C_6H_2(OH)_2(CHO)_2$ do.
-	" + α- u. β-Oxyisophthalaldehyd	C ₆ H ₃ (OH)(CHO) ₂ do.
51.	" + Aceton	(CH ₃) ₂ CO · SO ₃ NaH
52.	SO ₂ + "	(CH ₃) ₂ CO · SO ₂
	HNaSO ₃ + Methyläthylketon	(CH ₃) ₂ C (OH) SO ₃ Na
-	,, + Methylpropylketon	CH ₃ C(OH)(SO ₃ Na)C ₃ H ₇
_	Disthuttenton	C ₂ H ₅ C(OH)(SO ₃ Na)C ₂ H ₅
-	1 M 41 11 11 11 11	CH ₃ C (OH) (SO ₃ Na) CH (CH ₃) ₂
_	Ä411: 11 /	
	Made that the	C ₂ H ₅ COCH(CH ₃) ₂ keine Additionsverb.
_		CH ₃ C(OH)(SO ₃ Na)(CH ₂) ₃ CH ₃
	,, . Hethylisobutylketon	CH ₃ C(OH)(SO ₃ Na)CH ₂ CH(CH ₃) ₂
-	" — Methylpseudobutylketon .	CH ₃ COC(CH ₃) ₃ keine Additionsverb.
_	" + Methyliannylketon	CH ₃ (OH) (SO ₃ Na) (CH ₂) ₄ CH ₃
	" + Methylisoamylketon	CH ₃ CO(CH ₂) ₂ CH(CH ₃) ₂ Additionsverb.
	" + Methylpseudoamylketon .	CH ₃ CO CH ₂ C (CH ₃) ₃ keine Additionsv.
	" + Methyl-α-äthylpropylketon .	CH ₃ CO CH(C ₂ H ₅) ₂ Additions verbinding
	,, + Dipropylketon	(C ₃ H ₇) ₂ CO keine Additionsverbindung
	" + Diisopropylketon	[(CH ₃) ₂ CH] ₂ CO keine Additionsverbdg.
-	" + Methylisopropylaceton	CH ₃ CO CH (CH ₃) CH (CH ₃) ₂ keineAdditionsv.
-	" + Methylhexylketon	CH ₃ CO C ₆ H ₁₃ Additions verbinding
-	" + Athylamylketon	C ₂ H ₅ CO C ₅ H ₁₁ keine Additionsverbdg.
-	" + Propylisobutylketon	C ₃ H ₇ CO CH ₂ CH (CH ₃) ₂ keine Additionsverb.
-	" + Isoamylaceton	CH ₃ CO (CH ₂) ₅ CH (CH ₃) ₂ Additions verb.
-	" + Methyl-n-heptylketon	CH ₃ CO C ₇ H ₁₅ Additions verbinding
-	" + Diisobutylketon	[(CH ₃) ₂ CH CH ₂] ₂ CO keine Additionsvbd.
-	" + Methylnormaloctylketon .	CH ₃ COC ₈ H ₁₇ Additionsverbindung
-	" + Propylhexylketon	C ₃ H ₇ CO C ₆ H ₁₃ keine Additionsverbdg.
-	" + Isopropylhexylketon	(CH ₃) ₂ CH CO C ₆ H ₁₃ keine Additionsverb.
-	" + Methylnonylketon	CH ₃ COC ₉ H ₁₉ Additionsverbindung
-	" + Diamylketon	[CH ₃ (CH ₂) ₄] ₂ CO keine Additionsverbdg
-	" + Diheptylaceton	CH ₃ CO CH (C ₇ H ₁₅) ₂ Additions verbdg.
54.	SO ₂ + Mesityloxyd	(CH ₃) ₂ C CH CO CH ₃ Additions verbindg.

		20.00
55.	HNaSO ₈ + Mesityloxyd	(CH ₃) ₂ C(SO ₃ Na) CH ₂ CO CH ₃
56.	+ Acetessigester	CH ₃ CO CH ₂ CO ₂ C ₂ H ₅ Additions verbdg.
57.	H ₂ SO ₃ + Äthylidenacetessigester .	CH ₃ COC(SO ₃ H)(CH ₂ CH ₃)CO ₂ C ₂ H ₅
58.	HNaSO ₃ + Allylaceton · ·	CH ₃ CO CH ₂ (C ₃ H ₅) · 2 SO ₃ NaH
59.	H ₂ SO ₃ + " · · · · ·	CH ₃ C(OH)(SO ₃ H) CH ₂ CH ₂ CH CH ₂
59.	, + ,	CH ₃ CO CH ₂ CH ₂ CH(SO ₃ H) CH ₃ CH ₃ CO CH ₂ CH ₂ CH C(CH ₃) ₂ ·SO ₃ Na H
53.	HNaSO ₃ + Methylheptenon	keine Additionsverbindung.
-	$Na_2SO_3 + \cdots$	(CH ₃) ₂ C (SO ₃ Na) CH ₂ CO CH ₂ C (SO ₃ Na) (CH ₃) ₂ . 2 ¹ / ₂ H ₂ O
60.	HNaSO ₃ + Phoron	[(CH ₃) ₂ C CH] ₂ CO Additionsverbindung
61.	SO ₂ + " · · · · · ·	(CH ₀) CH ₀ C(CH ₀) CH
62.	H_2SO_3 + Isophoron	$CH_3C(SO_3H)$ CH_2 CH_2 CH_2 CH_3
63.	$HNaSO_3 + Adipinketon$	CH ₂ —CH ₂ CO Additionsverbindung
64.	" + Dichloradipinketon	keine Additionsverbindung
69.	" + Pimelinketon	C ₅ H ₁₀ CO · SO ₃ NaH
65.	,, + Cyclohexanon	$CH_2 < (CH_2)_2 > CO$ Additionsverbindung
-	" + Suberon	CH ₂ CH ₂ CH ₂ CO Additions verbindg.
-4	" + Cyclooctanon	CH ₂ (CH ₂) ₃ CO Additions verbindung
-	" + Methylcyclohexanon	CH ₃ CH (CH ₂) ₂ CO Additions verbdg.
-	" + Dimethylcyclohexanon	$CH_2 < CH(CH_3)CH_2 > CO$ Additionsverb.
67.	" + Methylcyclohexenon	$CH_3C \stackrel{CH_2-CH_2}{\hookrightarrow} CH_2$ Additions verb.
	, + ,	CH ₃ C CH-CH ₂ CH ₂ keine Additionsverb.
66.	SO ₂ + Dimethylcyclohexenon	CH ₃ C(SO ₃ H) CH ₂ CO CH ₂ CH(CH ₃) CH ₂
68.	$HNaSO_3 + Methylcyclopentenon$	$CH_2 - CH_2$ $CH = C(CH_3)$ $C(OH)SO_3$ Na labil
68.	, + ,	$\langle CH_2 - CH_2 \rangle CO \text{ stabil}$
-	" + Thujon (Tanaceton)	C ₀ H ₁₆ CO Additionsverbindung
-	" + Pseudojonon	$C_{13}H_{20}O$ do.
70.	" + Jonon	C ₁₃ H ₂₀ O do.
	" +Iron	C ₁₃ H ₂₀ O keine Additionsverbindung
71, 19.	H ₂ SO ₃ + Carvon	CH ₃ CH CO CH ₂ CHC CH ₂ stabil
71, 19.	Na ₂ SO ₃ + "	C ₉ H ₁₄ (SO ₃ NaH) ₂ CO +2 NaOH stabil
71, 19.		C9H14(SO3NaH)CO stabil
72.	" + Dihydrocarvon	C ₉ H ₁₆ CO·SO ₃ NaH
73.	" + Tetrahydrocarvon	C ₉ H ₁₈ CO·SO ₃ NaH
-	" + Thujon (Tanaceton)	C ₉ H ₁₆ CO·SO ₃ NaH
-	" + Pulegon	
19.	$Na_2SO_3 + \dots \dots$	
-	HNaSO ₃ +Isopulegon	C ₉ H ₁₆ CO keine Additionsverbindung

- Transport		
_	HNaSO ₃ + Campher	C.U. CO. I.
- 19.	Na ₂ SO ₃ + "	
_	HNaSO ₃ +Fenchon	
19.	Na SO +	
74.	Na ₂ SO ₃ + " HNa SO ₃ + Umbellulon	keine Additionsverbindung.
_	- Menthon	C ₀ H ₁₄ CO keine Additionsverbindung
19.	,, + Menthon	
75.		- Indiana
1	HNaSO ₃ + sym. Menthon	
25-10	" + Acetophenon	
	" + Äthylphenylketon	C ₆ H ₅ COC ₂ H ₅ keine Additionsverbdg.
-	" + Methylbenzylketon	C ₆ H ₅ CH ₂ COCH ₃ ·SO ₃ NaH
	" + Propylphenylketon	C ₆ H ₅ COC ₃ H ₇ keine Additionsverbdg.
	" + Äthylbenzylketon	C ₆ H ₅ CH ₂ COC ₂ H ₅ keine Additionsverb.
	" + Isobutylphenylketon	C ₆ H ₅ COCH ₂ CH(CH ₃) ₂ keine Additionsverb.
-	" + Methyl-phenyläthylketon .	C ₆ H ₅ CH ₂ CH ₂ COCH ₃ ·SO ₃ NaH
_	" + p-Methylbenzylaceton	CH ₃ C ₆ H ₄ CH ₂ COCH ₃ ·SO ₃ NaH
76.	" + Anisketon	1, 4-C ₆ H ₄ (OCH ₃)CH ₂ COCH ₃ ·SO ₃ NaH
76.	" + Anisylketon	1,4-CoH4 (OCH3) CO CH2 CH3 keine Additionsverbdg.
-	" + Benzophenon	C ₆ H ₅ CO C ₆ H ₅ keine Additionsverbdg.
77.	H_2SO_3 + Methylphenylcyclohexenon.	C ₆ H ₅ C(SO ₃ H) CH ₂ CO CH ₂ CH(CH ₃) CH ₂
78.	,, + Benzylidenaceton	CH ₃ CO CH CH C ₆ H ₅ Additions verbdg.
79.	HKSO ₃ + "	CH ₃ CO CHCH C ₆ H ₅ Additionsverbdg.
79.	SO ₂ + Dibenzylidenaceton	(C ₆ H ₅ CH CH) ₂ CO Additionsverbindung
79.	НҚSO ₃ + "	(C ₆ H ₅ CH[SO ₃ K]CH ₂) ₂ CO
79.	SO ₂ + Benzylidenacetophenon	C ₆ H ₅ CHCHCOC ₆ H ₅ keine Additionsv.
120.	HKSO ₃ + "	C ₆ H ₅ CH(SO ₃ K)CH ₂ COC ₆ H ₅
79.	H ₂ SO ₃ + Piperonylidenaceton	CH ₂ O ₂ C ₆ H ₃ CHCHCOCH ₃ ·SO ₃ H ₂
79.	HKSO ₃ + "	C ₁₁ H ₁₀ O ₃ ·SO ₃ KH
79.	H ₂ SO ₃ + p-Methoxybenzylidenaceton	CH ₃ OC ₆ H ₄ CHCHCOCH ₃ ·SO ₃ H ₂
79.	HKSO ₃ + "	C ₁₁ H ₁₂ O ₂ · SO ₃ KH · H ₂ O
79.	H ₂ SO ₃ + Cinnamylidenaceton	C ₆ H ₅ CHCHCHCHCOCH ₃ ·SO ₃ H ₂
79.	HKSO ₃ + " · · ·	C ₁₂ H ₁₂ O · SO ₃ KH
79.	" + Cinnamylidenacetophenon .	C ₆ H ₅ CHCHCHCCC ₆ H ₅ ·SO ₃ KH
79.	" + Cinnamylidenbenzylidenaceton	C6 H5 CH CH CH CH CO CH CH C6 H5 · 2 SO3 KH
79.	SO ₂ + Dipiperonylidenaceton	$C_{19}H_{14}O_5$ Additions verbinding
79.	111100	C ₁₉ H ₁₄ O ₅ · 2 SO ₃ KH
79.	SO ₂ + Dicuminylidenaceton	(C ₉ H ₁₁ CHCH) ₂ CO Additionsverbindung
79.	, , , , , , , , , , , , , , , , , , , ,	C ₂₃ C ₂₆ O · 2 SO ₃ K H
79.	" + Benzylidenfurfurylidenaceton .	CO CH CH C ₈ H ₅ ·2SO ₃ KH · 2H ₂ O
80.	K ₂ SO ₃ + Fumarsäure	$C_2H_2(CO_2H)_2 \cdot SO_3K_2$
81.	" + Maleïnsäure	$C_2H_2(CO_2H)_2 \cdot SO_3K_2$
82.	+ Itaconsäure	$2C_3H_4(CO_2H)_2 \cdot 3SO_3K_2$
83.	" - + Citraconsäure	$2 C_3 H_4 (CO_2 H)_2 \cdot 3 SO_3 K_2$
82.	, + Mesaconsäure	$2 C_3 H_4 (CO_2 H)_2 \cdot 3 SO_3 K_2$

451.	HNaSO ₃ + camphersaures Natrium .	C ₁₀ H ₁₅ O ₄ Na keine Additionsverbindung
83.	HKSO ₃ + Zimtsäure	C ₆ H ₅ CH(SO ₃ K)CH ₂ CO ₂ H
83.	K ₂ SO ₃ + " · · · · ·	C ₆ H ₅ CHCHCO ₂ H·SO ₃ K ₂
83.	HNaSO ₃ + zimtsaures Natrium	C ₆ H ₅ CH(SO ₃ Na)CH ₂ CO ₂ Na
66.	SO ₂ + Zimtsäure - Äthylester	C6 H5 CH CH CO2 C2 H5 keine Additionsverbindung
66.	HKSO ₃ + " " ···	C ₆ H ₅ CH (SO ₃ K) CH ₂ CO ₂ C ₂ H ₅ · 1 ¹ / ₂ H ₂ O
66.	SO ₂ + Äthylidenmalons. Ester	CH ₃ CH C (CO ₂ C ₂ H ₅) ₂ Additions verbinding
66.	HKSO ₃ + "	CH ₃ CH(SO ₃ K)CH(CO ₂ C ₂ H ₅) ₂
66.	SO ₂ + Benzylidenmalons. Ester .	Co H5 CHC (CO2 C2 H5)2 keine Additionsverbdg.
66.	HKSO ₃ + " " .	$C_6H_5CH(SO_3K)CH(CO_2C_2H_5)_2.1^{1/2}H_2O$
66.	SO ₂ + Cuminylidenmalons. Ester.	C ₁₇ H ₂₂ O ₄ Additionsverbindung
66.	HKSO ₃ + " " .	C ₁₇ H ₂₂ O ₄ · SO ₃ KH · 1 ¹ / ₂ H ₂ O
84.	SO ₂ + Ammoniak + Acetaldehyd	NH ₃ · CH ₃ CHO · SO ₂
85.	$H_2SO_3 + \dots + Aceton \dots$	$NH_3 \cdot (CH_3)_2 CO \cdot SO_3 H_2$
85.	Bisulfite von Ammoniakderivaten + Al-	
00.	dehyde oder Ketone	
86.	SO ₂ + Propylamin + Benzaldehyd	C ₃ H ₇ NH ₂ · C ₆ H ₅ CHO · SO ₂
87.	" + Isobutylamin+Benzaldehyd	C ₄ H ₉ NH ₂ · C ₆ H ₅ CHO · SO ₂
88.	H ₂ SO ₃ + Amylamin + Valeraldehyd.	C ₅ H ₁₁ NH ₂ · C ₄ H ₉ CHO · SO ₃ H ₂
88.	" + " + Önanthol	C ₅ H ₁₁ NH ₂ · C ₇ H ₁₄ O · SO ₃ H ₂
88.	", + ", + Benzaldehyd.	C ₅ H ₁₁ NH ₂ · C ₆ H ₅ CHO · SO ₂
89.	SO ₂ + Äthylendiamin + ,,	C ₂ H ₄ (NH ₂) ₂ · C ₆ H ₅ CHO · SO ₂
90.	" + " . + Anisaldehyd.	C ₂ H ₄ (NH ₂) ₂ · C ₆ H ₄ (OCH ₃) CHO · SO ₂
91.	", + ", +Zimtaldehyd.	$C_2H_4(NH_2)_2 \cdot C_6H_5CHCHCHO \cdot SO_2$
92.	", + ", + Salicylaldehyd .	C ₂ H ₄ (NH ₂) ₂ · C ₆ H ₄ (OH) CHO · SO ₂
93.	,, + Trimethylendiamin + Benzaldehyd	(CH ₂) ₃ (NH ₂) ₂ · C ₆ H ₅ CHO · SO ₂
93.	" + " + Anisaldehyd .	(CH ₂) ₃ (NH ₂) ₂ · C ₆ H ₄ (OCH ₃) CHO · SO ₂
93.	" + " +Zimtaldehyd .	(CH ₂) ₃ (NH ₂) ₂ · C ₆ H ₅ C ₂ H ₂ CHO · SO ₂
93.	" + " + Salicylaldehyd	(CH ₂) ₃ (NH ₂) ₂ · C ₆ H ₄ (OH) CHO · SO ₂
466.	HKSO ₃ + Alloxan	CO (NH) ₂ (CO) ₃ · SO ₃ KH · H ₂ O
94.	H ₂ SO ₃ + Amidoessigsäure + Önanthol	CH ₂ (NH ₂)CO ₂ H · C ₆ H ₁₃ CHO · SO ₃ H ₂
94.	,, + ,, + Benzaldehyd .	CH ₂ (NH ₂) CO ₂ H · C ₆ H ₅ CHO · SO ₃ H ₂
94.		.00
		The state of the s
94.	,, + ,, + Helicin	Additionsverbindung
94.	" + Leucin + Önanthol	
94.	" + " + Helicin	
94.	,, + m-Amidobenzoes. + Benzaldehyd.	
94.	,, + ,, + Önanthol.,	
95.	SO ₂ + Anilin	$C_6H_5NH_2 \cdot SO_2$; $2C_6H_5NH_2 \cdot SO_2$
96.	HNaSO ₃ + Anilin + Formaldehyd	
96.	" + " + Acetaldehyd	
88.	SO ₂ + ", + ",	
88, 96.	,, + Anilin + Chloral	
96.	,, + ,, + Propylaldehyd	
96.	$ HNaSO_3 + " + " $	Kondensationsverbindung

-	_		
96.	SO ₂	+ Anilin + Isobutylaldehyd .	Kandanastianassali
88, 97.	,,	+ Valoraldshad	Kondensationsverbindung
97, 98.	H ₂ SO ₃		
97, 98.	SO ₂		2 C ₀ H ₅ NH ₂ · C ₄ H ₉ CHO · SO ₃ H ₂
99.	H ₂ SO ₃		2 C ₆ H ₅ NH ₂ · C ₄ H ₉ CHO · SO ₂
100.	SO ₂	, , , , ,	2 C ₆ H ₅ NH ₂ · C ₆ H ₁₃ CHO · SO ₃ H ₂
		+ " + "	2 C ₆ H ₅ NH ₂ · C ₆ H ₁₃ CHO · SO ₂
101.	"	+ " +Propylamin	
100		+ Benzaldehyd	C ₆ H ₅ NH ₂ · C ₈ H ₇ NH ₂ · C ₆ H ₅ CHO · SO ₂
102.	"	+ ,, + Isobutylamin	
400		+ Benzaldehyd	C ₆ H ₅ NH ₂ · C ₄ H ₉ NH ₂ · C ₆ H ₅ CHO · SO ₂
103.	"	+ " + Amylamin	
22 112		+ Benzaldehyd	C6H7NH2 · C5H11NH2 · C6H5CHO · SO2
88, 107.	"	+ " + Aceton	C ₆ H ₅ NH ₂ · CO(CH ₃) ₂ · SO ₂
88.	33	+ " + Acroleïn	Zersetzung
88.	11	+ " + Campher	Keine Additionsverbindung
88.	"	+ " + Phenol	do. do.
105.	,,	+ " + Benzaldehyd	2 C ₆ H ₅ NH ₂ · C ₆ H ₅ CHO · SO ₂
105.	H ₂ SO ₃	+ , + ,	2 C ₆ H ₅ NH ₂ · C ₆ H ₅ CHO · SO ₃ H ₉
105.	,,	+ " + "	C ₆ H ₅ NH ₂ · C ₆ H ₅ CHO · SO ₃ H ₂
98.	SO ₂	+ " + Salicylaldehyd	2 C ₆ H ₅ NH ₂ · C ₆ H ₄ (OH) CHO · SO ₂
96, 98.	,,	+ ", + ",	C ₆ H ₅ NH ₂ · C ₆ H ₄ (OH) CHO · SO ₂
98.	H ₂ SO ₃	+ ", + ",	2 C ₆ H ₅ NH ₂ · C ₆ H ₄ (OH) CHO · SO ₃ H ₂
98.	"	+ ", + ",	$C_6H_5NH_2 \cdot C_6H_4(OH)CHO \cdot SO_3H_2$
96.	SO ₂	+ " + m-Nitrobenzaldehyd .	C ₆ H ₅ NH ₂ · C ₆ H ₄ (NO ₂) CHO · SO ₂
106.	,,	+ ", +α-Naphthylamin	C611611112 C6114(1102/C110 302
	"	+ Benzaldehyd	C6H5NH2 · C10H7NH2 · C6H5CHO · SO2
108.		+ p-Toluidin + Benzaldehyd .	2 CH ₃ C ₆ H ₄ NH ₂ · C ₆ H ₅ CHO · SO ₂
109.	"	+ Dimethylanilin + Aceton .	C ₆ H ₅ N(CH ₃) ₂ · (CH ₃) ₂ CO · SO ₂
110.	"	+ Äthylanilin + Aceton	$C_6H_5NH(C_2H_5) \cdot (CH_3)_2CO \cdot SO_2$
	"		
110.	33	+ Äthenyltoluylenamidin + Aceton .	CH ₃ C ₆ H ₃ NH CCH ₃ · (CH ₃) ₂ CO · SO ₂
111.	"	+2-Amino-1, 3,5-Trimethyl-	
	"	benzol + Benzaldehyd	2 (CH ₃) ₃ C ₆ H ₂ NH ₂ · C ₆ H ₅ CHO · SO ₂
112.		+5-Amino-1, 2, 4-Trimethyl-	2 (01.3/3 041.12.11.12 041.13 01.10 002
	"	benzol + Benzaldehyd	2 (CH ₃) ₃ C ₆ H ₂ NH ₂ · C ₆ H ₅ CHO · SO ₂
104.		+as.m-Xylidin+Benzaldehyd	2 (CH ₃) ₂ C ₆ H ₃ NH ₂ · C ₆ H ₅ CHO · SO ₂
113.	"	+ ,, +Anisaldehyd	2(CH ₃) ₂ C ₆ H ₃ NH ₂ · C ₆ H ₄ (OCH ₃)CHO · SO ₂
114.	"	+ Pseudocumidin + Benzaldehyd .	2(CH ₃) ₃ C ₆ H ₂ NH ₂ · C ₆ H ₅ CHO · SO ₂
115.	"		2 (CH ₃) ₃ C ₆ H ₂ NH ₂ · C ₆ H ₅ C ₁ H ₂ CHO · SO ₂
116.	"	+ ,, + Zimtaldehyd . + p-Amidophenol+ Benzaldehyd .	C ₆ H ₄ (OH)NH ₂ · C ₆ H ₅ CHO · SO ₂
117.	"	1	C ₆ H ₄ (OH) NH ₂ · C ₆ H ₄ (OCH ₈) CHO · SO ₂
118.	"	7 imtaldehud	$C_6 H_4 (OH) NH_2 \cdot C_6 H_4 (OCH_3) CHO \cdot SO_2$ $C_6 H_4 (OH) NH_2 \cdot C_6 H_5 C_2 H_2 CHO \cdot SO_2$
	"		
118.	"	+ ,, + Salicylaldehyd .	$C_6H_4(OH)NH_2 \cdot C_6H_4(OH)CHO \cdot SO_2$
483.	HNaSO:	+ Indol	C ₆ H ₄ CH Additionsverbindung
119.	SO ₂	+ α-Naphthylamin + Benzaldehyd.	2 C ₁₀ H ₇ NH ₂ · C ₆ H ₅ CHO · SO ₂

```
C10 H7 NH2 · C6 H5 CHO · SO3 H2
                    + α-Naphthylamin + Benzaldehyd.
         H.SO3
120.
                                                            C10 H7 NH2 · C6 H5 CHO · SO2
                    +β-Naphthylamin +
121.
         SO<sub>2</sub>
                                                            Additionsverbindung
                    + α-Naphthylamin + Anisaldehyd .
         H<sub>2</sub>SO<sub>3</sub>
122.
                                     - Cuminaldehyd
                                                                       do.
122.
           11
                                       - Salicylaldehyd
                                                                       do.
122.
                                                                       do.
                                       +Zimtaldehyd .
122.
                                                            C3H5NCS · SO3KH
         HKSO<sub>3</sub> + Senföl . . . . . . . .
123.
                      3. Additionsverbindungen von Orthophosphorsäure.
145.
                                                             C6H5CN keine Additionsverbindung
          124.
                                                             CH3 C6 H4 CN keine Additionsverbindung
                  + Cyantoluol . . . . . . .
124.
                                                             C6H5CH2OH keine Additionsverbindg.
                  + Benzylalkohol . . . . . .
124.
                                                             CNC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>OH keine Additionsverb.
                  + Cyanbenzylalkohol . . . .
124.
                                                             C6H5OH · PO4H3
                  +Phenol . . . . . . . .
486.
                                                             C6H4BrOH · PO4H3
                  + p-Bromphenol . . . . . .
486.
                                                             C6H4(OH)2 · PO4H3
                  + Hydrochinon . . . . . .
486.
                                                                         keine Additionsverbindung
                                                             HCHO
                  + Formaldehyd . . . . . .
124.
             11
                                                                            do.
                                                                                           do.
                                                             CH<sub>8</sub> CHO
                  + Acetaldehyd . . . . . .
124.
                                                             C4H9CHO do.
                                                                                           do.
                  + Valeraldehyd . . . . . .
124.
                                                                                           do.
                                                             C6H13CHO do.
                  + Önanthaldehyd . . . .
124.
             11
                                                             C<sub>6</sub>H<sub>5</sub>CHO · PO<sub>4</sub>H<sub>3</sub>
                  + Benzaldehyd . . . . . .
125.
                                                             C<sub>6</sub>H<sub>4</sub>(OCH<sub>3</sub>)CHO · PO<sub>4</sub>H<sub>3</sub>
                  + Anisaldehyd
125.
             440
                                                             C6H5CHCHCHO keine Additionsverb.
                  + Zimtaldehyd
124.
                                                             (CH<sub>3</sub>)<sub>2</sub> CH C<sub>6</sub> H<sub>4</sub> CHO keine Additionsv.
                  + Cuminaldehyd . . . . . .
124.
                                                             C<sub>6</sub>H<sub>4</sub>(OH) CHO
                                                                                                   do.
                                                                                        do.
                  + Salicylaldehyd . . . . . .
 124.
                                                             CH<sub>3</sub>O C<sub>6</sub>H<sub>3</sub>(OH) CHO · PO<sub>4</sub>H<sub>3</sub>
                  + Vanillin . . . . . . . . .
                                                             C10 H18 O · PO4 H3
                  126.
             11
                                                             C<sub>6</sub>H<sub>5</sub>COCH<sub>3</sub>·PO<sub>4</sub>H<sub>3</sub>
                  + Acetophenon . . . . . .
 128.
                                                             C4H3SCOCH3 · PO4H3
                  + Acetothienon . . . . . .
 127.
                                                             C<sub>6</sub>H<sub>5</sub>COC<sub>2</sub>H<sub>5</sub>·PO<sub>4</sub>H<sub>3</sub>
                  + Phenyläthylketon . . . . .
 129.
                  + Phenylpropylketon . . . .
                                                             C<sub>6</sub>H<sub>5</sub>COC<sub>3</sub>H<sub>7</sub> · PO<sub>4</sub>H<sub>3</sub>
 129.
                                                             (CH<sub>3</sub>)<sub>3</sub> C<sub>6</sub>H<sub>2</sub> CO CH<sub>3</sub> · PO<sub>4</sub>H<sub>3</sub>
                   + Acetopseudocumol 1:2:4 .
 130.
                                                             (CH<sub>3</sub>)<sub>3</sub> C<sub>6</sub> H<sub>2</sub> COC<sub>2</sub> H<sub>5</sub> · PO<sub>4</sub> H<sub>3</sub>
 132.
                  + Propionylpseudocumol 1:2:4
                                                              CH3C6H4COCH3 · PO4H3
                   + p-Acetotoluol . . . . .
 133.
             11
                                                             (CH<sub>3</sub>)<sub>2</sub>-1,2-C<sub>6</sub>H<sub>3</sub>COCH<sub>3</sub>·PO<sub>4</sub>H<sub>3</sub>
 134.
                   + Acet-o-xylol . . . . . .
                                                             (CH<sub>3</sub>)<sub>2</sub>-1,3-C<sub>6</sub>H<sub>3</sub>COCH<sub>3</sub>·PO<sub>4</sub>H<sub>3</sub>
                   + Acet-m-xylol . . . . . .
 135.
                   + Acet-p-xylol . . . . . .
 136.
                                                             (CH<sub>3</sub>)<sub>2</sub>-1, 4-C<sub>6</sub>H<sub>3</sub>COCH<sub>3</sub>·PO<sub>4</sub>H<sub>3</sub>
                                                              C2H5C6H4COCH3 PO4H3
                   + p-Acetoäthylbenzol . . . .
 137.
              11
                                                              C2H5OC6H4COCH3 · PO4H3
 138.
                   + p-Acetophenetol . . . .
                                                              CH3OC6H4COCH3 PO4H3
 139.
                   + p-Acetoanisol . . . . .
                                                              C2H5COC6H4COCH3 keine Additionsv.
                   + p-Propionylanisol . . . . .
 140.
              95
                                                                                                     do.
 140.
                   + Acetomesitylen . . . .
                                                              CH3 CO C6 H2 (CH3)3
                                                                                          do.
                   + p-Diacetobenzol . . . . .
                                                              C6H4(COCH3)2 · 2PO4H3
 141.
                   + Diaceto-m-xylol . . . . .
 142.
                                                              (CH3)2 C6 H2 (CO CH3)2 · PO4 H3
                   + Diacetomesitylen . . . . .
 142.
                                                              (CH<sub>3</sub>)<sub>3</sub> C<sub>6</sub>H(COCH<sub>3</sub>)<sub>2</sub> keine Additionsv.
```

Samuel		
142.	H ₃ PO ₄ + Acetodurol	CH COC HIGH
142.	" + Acetoisodurol	CH COC HIGH
142.	" + Diacetodurol	ICH COLO (CITA)
142.	" + Benzoylmesitylen	CH COCH (OIL)
142.	" + Benzophenon	CH COCH
142.	" + Benzoyl-m-xylol	uo. uo.
143.	" + Benzoyläthylacetat	CH COCH CO CH
142.	" + Triäthylbenzophenon	The state of the s
142.	" + p-Propionyldurol	A COLUMN TO THE PARTY OF THE PA
142.	" + Dipropionyldurol	(C H CO) C (C)
143.	,, + Cineol	
124.	Danner M. C.	
124.		- Taditionor Cibinug.
124.	", + ", Athylester	The state of the s
124.		-0-0-0-2-3-1, do. uo.
124.	" + Salicyls. Methylester	C ₆ H ₄ (OH)CO ₂ CH ₃ keine Additionsverb.
124.	" + " Äthylester	$C_6H_4(OH)CO_2C_2H_5$ do. do.
124.	" + Benzoylchlorid	
124.	" + Benzylchlorid	
1000000	" + Benzylidenchlorid	
124.	" + Benzotrichlorid	
144.	" + Trimethylamin + CS_2	2 (CH ₃) ₃ N · 2 CS ₂ · PO ₄ H ₃
Mary Mary		
145,150.	4. Additionsverbindungen von Fe	rro- und Ferricyanwasserstoffsäure.
146.	H ₄ Fe(CN) ₆ + Methylalkohol	
146.	1 74 174	
146.	1 1 1 1 1 1 1	
147.	1 1-1 + 1 11 + 1	3 C ₂ H ₅ OH · Fe (CN) ₆ H ₄
147.	T	
147.	Amulanhudeat	
147.	Parmant	(CH ₃) ₂ C(C ₂ H ₅) OH do.
148.	Äthadäthaa	C ₁₀ H ₁₇ O do.
147.		$(C_2H_5)_2O$ do.
147.	,, + Diisoamyläther	(C ₅ H ₁₁) ₂ O keine Additionsverbindung
147.	, a	(CH ₃ CHO) ₃ Additionsverbindung
147.		C ₆ H ₁₃ CHO keine Additionsverbindung
146.	" + Benzaldehyd	C ₆ H ₅ CHO Additionsverbindung
147.	, + Aceton	(CH ₃) ₂ CO · Fe (CN) ₆ H ₄
	, + Diäthylketon	(C ₂ H ₅) ₂ CO Additionsverbindung
147.	" + Dipropylketon	(C ₃ H ₇) ₂ CO do.
147.	, + Suberon	(C ₃ H ₆) ₂ CO do.
147.	" + Mesityloxyd	(CH ₃) ₂ C CH CO CH ₃ do.
147.	" +Phoron	[(CH ₃) ₂ CCH] ₂ CO do.
147.	,, + Dimethylpyron	$OC_4H_2(CH_3)_2CO$ do.
147.	" + p-Diketohexamethylen	Additionsverbindung
147.	" + 1,3-Methylcyclohexanon.	C ₇ H ₁₂ O Additionsverbindung
147.	" + Menthon	C ₁₀ H ₂₀ O do.
The second second		-10.020

147.	H ₄ Fe(CN) ₆ + Fenchon	C ₁₀ H ₁₆ O Additionsverbindung
147.	, + Campher	C ₁₀ H ₁₆ O do.
147.	" + Carvon	C ₁₀ H ₁₄ O do.
147.	" + Dihydrocarvon	C ₁₀ H ₁₆ O do.
147.	" + Tetrahydrocarvon	C ₁₀ H ₁₈ O do.
147.	" + Carvenon	$C_{10}H_{16}O$ do.
147.	" + Caron	C ₁₀ H ₁₆ O do.
147.	" + Acetophenon	C ₆ H ₅ COCH ₃ do.
147.	" + Benzophenon	(C ₆ H ₅) ₂ CO keine Additionsverbindung
147.	" + Benzylidenaceton	C ₆ H ₅ C ₂ H ₂ CO CH ₈ Additions verbinding
149.	" + Cineol	2 C ₁₀ H ₁₈ O·Fe(CN) ₆ H ₄ ·1/ ₂ H ₂ O
147.	" + Pinol	C ₁₀ H ₁₆ O Additionsverbindung
147.	" + Essigs. Äthylester	CH ₃ CO ₂ C ₂ H ₅ keine Additionsverbindg.
147.	" + Benzoes. " · · ·	$C_6H_5CO_2C_2H_5$ do. do.
147.	" + Oxals. "	(CO ₂ C ₂ H ₅) ₂ · Fe (CN) ₆ H ₄
147.	" + Epichlorhydrin	C ₃ H ₅ OCl keine Additionsverbindung
150.	" + Triäthylamin	$(C_2H_5)_3N \cdot Fe(CN)_6H_4$
150.	" +Anilin	2 C ₆ H ₅ NH ₂ ·Fe(CN) ₆ H ₄
150.	" + Methylanilin	C ₆ H ₅ NHCH ₃ ·Fe(CN) ₆ H ₄
150.	" + Dimethylanilin	$C_6H_5N(CH_3)_2 \cdot Fe(CN)_6H_4$
150.	" + Chinolin	C ₉ H ₇ N Additionsverbindung
147.	H ₃ Fe(CN) ₆ + Isoamylalkohol	$C_5H_{12}O$ do.
147.	" + Menthol	C ₁₀ H ₁₉ OH do.
147.	" + Tetrahydrocarveol	C ₁₀ H ₂₀ O do.
147.	" +Borneol	C ₁₀ H ₁₈ O do.
147.	" + Äthyläther	$(C_2H_5)_2O$ do.
147.	" + Diisoamyläther	$(C_5H_{11})_2O$ do.
147.	,, + Anisol	C ₆ H ₅ OCH ₃ do.
147.	" +Phenetol	$C_6H_5OC_2H_5$ do.
147.	,, +Önanthol	C ₆ H ₁₃ CHO do.
147.	,, + Benzaldehyd	C ₆ H ₅ CHO do.
147.	,, + Aceton + Cineol	$(CH_3)_2 CO \cdot 2 C_{10} H_{18} O \cdot Fe(CN)_6 H_3 \cdot 3 H_2 O$
147.	,, +Dipropylketon	(C ₃ H ₇) ₂ CO Additionsverbindung
147.	,, + Mesityloxyd	(CH ₃) ₂ C CH CO CH ₃ Additions verbindg.
147.	,, +Diäthylketon	$(C_2H_5)_2CO$ do.
147.	,, + Suberon	$(C_3H_6)_2CO$ do.
147.	,, + Methylcyclohexanon	$C_7H_{12}O$ do.
151.	" + Dimethylpyron	$OC_4H_2(CH_3)_2CO$ do.
147.	,, + Carvon	C ₁₀ H ₁₄ O do.
147.	" + Menthon	C ₁₀ H ₁₆ O do.
147.	" + Fenchon	C ₁₀ H ₁₆ O do.
147.	,, + Campher	$C_{10}H_{16}O$ do.
147.	" + Dihydrocarvon	$C_{10}H_{16}O$ do.
147.	" + Tetrahydrocarvon	C ₁₀ H ₁₈ O do.
147.	,, + Carvenon	- C ₁₀ H ₁₆ O do.
147.	, + Caron	C ₁₀ H ₁₆ O do.

147.	$H_3Fe(CN)_6$ + Acetophenon	C ₆ H ₅ COCH ₃ Additionsverbindung
147.	" + Benzylidenaceton	O II O II OO OO
147.	" + Benzophenon	
147.	, + Cineol	
147.	, +Pinol	
152.	" + Dihydropinol	2
147.	" + Äthylacetat	The state of the s
147.	,, + Isoamylvalerianat	
147.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$C_5H_9O_2C_5H_{11}$ do.
147.	,, + Athyloxalat	(CO ₂ C ₂ H ₅) ₂ do.
147.	,, + Äthylbenzoat	C ₆ H ₅ CO ₂ C ₂ H ₅ do.
141.	" + Epichlorhydrin	C ₃ H ₅ OCl keine Additionsverbindung
212		
145.	5. Additionsverbindungen v	verschiedener Mineralsäuren.
1.		
153.	H ₂ SO ₄ +Wasser	
154.	" + Piperonal	2 CH ₂ O ₂ C ₆ H ₃ CHO · 3 SO ₄ H ₂
155.	" + Vanillin	CH ₃ O C ₆ H ₃ (OH) CHO · SO ₄ H ₂
1500000	" + m-Acetoxylol	(CH ₃) ₂ -1,2-C ₆ H ₃ COCH ₃ ·SO ₄ H ₂
251.	" + Dibenzylidenaceton	(C ₆ H ₅ CHCH) ₂ CO·SO ₄ H ₂
251.	" + Dianisylidenaceton	(CH ₃ OC ₆ H ₄ CHCH) ₂ COmit10d.2Mol,SO ₄ H ₂
156.	" + Benzil	(C ₆ H ₅ CO) ₂ ·SO ₄ H ₂
165.	,, + Trimethylamin + CS ₂	Additionsverbindung
1.	HNO _s + Wasser	NO ₃ H·H ₂ O; NO ₃ H·3H ₂ O
157.	" + Camphen	C ₁₀ H ₁₈ ·NO ₃ H
158.	" + Onanthol	C ₆ H ₁₃ CHO Additionsverbindung
159.	,, + Benzaldehyd	C ₆ H ₅ CHO·NO ₃ H
160.	,, + Zimtaldehyd	C ₆ H ₅ C ₂ H ₂ CHO·NO ₃ H
158.	" + Methylnonylketon	CH ₃ CO C ₀ H ₁₀ Additionsverbindung
161.	" + Dimethylpyron	C ₇ H ₈ O ₂ ·NO ₃ H
162.	", + Campher	C ₁₀ H ₁₆ O·NO ₃ H; 2 C ₁₀ H ₁₆ O·NO ₃ H
163.	,, + Benzophenon	$(C_6H_5)_2CO \cdot NO_3H$
164.	, + Phenanthrenchinon	(C ₆ H ₁₅) ₂ CO·HO ₃ H (C ₆ H ₄ CO) ₂ ·NO ₃ H
165.	" + Trimethylamin + CS ₂	(CH ₃) ₃ N·CS ₂ ·NO ₃ H
1.	+ Halogenwasserstoff $+$ Wasser	Additionsverbindungen
166.	Dinon	C ₁₀ H ₁₆ ·ClH; C ₁₀ H ₁₆ ·BrH
167.	+ Camphan	C ₁₀ H ₁₆ ·ClH; C ₁₀ H ₁₈ ·BrH
168.	Dipenten ad Limonen	
168.		C ₁₀ H ₁₆ ·2ClH; C ₁₀ H ₁₆ ·2BrH; C ₁₀ H ₁₆ ·2JH
169.	" + " " "	C ₁₀ H ₁₆ ·ClH; C ₁₀ H ₁₆ ·BrH; C ₁₀ H ₁₆ ·JH
000000000000000000000000000000000000000	+ Terpinen	C ₁₀ H ₁₆ ·2ClH; C ₁₀ H ₁₆ ·2BrH; C ₁₀ H ₁₆ ·2JH
170.	,, + Phellandren	C ₁₀ H ₁₆ Additionsverbindungen
171.	,, + Sylvestren	C ₁₀ H ₁₆ ·2 ClH; C ₁₀ H ₁₆ ·2 BrH
172.	,, + Carvestren	C ₁₀ H ₁₆ ·2 ClH; C ₁₀ H ₁₆ ·2 BrH
173.	- Pinolen	C ₁₀ H ₁₆ ·ClH
174.	,, + Thujen	C ₁₀ H ₁₆ ·ClH; C ₁₀ H ₁₆ ·2 ClH
174.	, + Sabinen	C ₁₀ H ₁₈ ·ClH; C ₁₀ H ₁₈ ·2 ClH
175.	,, + Menthen	C ₁₀ H ₁₈ ·CIH

Carlotte Comment		
175.	Halogenwasserstoff + Carvomenthen .	C ₁₀ H ₁₈ ·ClH
176.	- Carvonhyllen	C ₁₅ H ₂₄ ·2 ClH
177.	→ Cadinen	C ₁₅ H ₂₄ ·2 ClH, resp. 2 BrH od. 2 JH
178.	" - Limen	C ₁₅ H ₂₄ ·3 ClH
179.	- 7 ingiheren	C ₁₅ H ₂₄ ·ClH
181.	HCI + Methyläther	(CH ₃) ₂ O·C1H
101.	Halogenwasserstoff + Geraniol	C ₁₀ H ₁₇ OH Kondensationsprodukte
	+ Linalool	C ₁₀ H ₁₇ OH do.
180.	" + Borneol	2 C ₁₀ H ₁₇ OH·BrH; 2 C ₁₀ H ₁₇ OH·JH
182,485.	+ Anethol	C ₆ H ₄ (OCH ₃)CHCHCH ₃ ·ClH od. BrH
183,291.	" + Isosafrol	C ₆ H ₃ (O ₂ CH ₂)CHCHCH ₃ ·C1H
184.	" + Zimtaldehyd	C ₆ H ₅ CHCHCHO·CIH
161.	" + Diacetylaceton .	(CH ₃ CO CH ₂) ₂ CO · CI H
252.	" + Mesityloxyd	(CH ₃) ₂ C CH CO CH ₃ · Cl H u. JH
185.	" + Dimethylpyron .	OC ₄ H ₂ (CH ₃) ₂ CO·ClH, resp. Br H od. JH
252.	, + Phoron	[(CH ₃) ₂ CCH] ₂ CO·2 ClH u. 2 Br H
188.	" + Methylhexanon.	Kondensationsverbindung
189.	,, + Menthon	C ₁₀ H ₁₆ O·ClH
186.	" + Campher	C ₁₀ H ₁₆ O·ClH; C ₁₀ H ₁₆ O·JH
190.	" + Campherpinakon	C20 H34 O2 Kondensations- u. Spaltungsprodukte
191.	" + Carvon	C ₁₀ H ₁₄ O·CIH; C ₁₀ H ₁₄ O·BrH
192.	, + Eucarvon	C ₁₀ H ₁₄ O·BrH
193.	" + Dihydroeucarvon	C ₁₀ H ₁₆ O·BrH
194.	" + Pulegon	C ₁₀ H ₁₆ O Additionsverbindungen
252.	" + Anisylidenaceton	CH ₃ OC ₆ H ₄ CH CH CO CH ₃ Additionsverbdg.
252.	" + Cinnamylidenaceton	C ₆ H ₅ CHCHCHCHCOCH ₈ do.
252.	" + Benzylidenpinakolin	C ₆ H ₅ CHCHCOC(CH ₃) ₃ ·ClH u. BrH
252.	" + Benzylidenacetophenon.	C ₆ H ₅ CHCHCOC ₆ H ₅ ·CIH
252.	" + Cinnamylidenacetophenon	C _e H ₅ CH CH CH CH CO C _e H ₅ mit 1 od. 2 Mol. Cl H
187.	" + Dibenzylidenaceton	(C ₆ H ₅ CHCH) ₂ CO·ClH u. BrH
252.	, + , ,	(C ₆ H ₅ CHCH) ₂ CO·2 ClH u. 2 BrH
252.	" + Dicuminalaceton	(C ₃ H ₇ C ₆ H ₄ CHCH) ₂ CO·2BrH u. 4BrH
252.	" + Dianisylidenaceton	(CH ₃ O C ₆ H ₄ CH CH) ₂ CO · 2 Cl H u. Br H u. 2 Br H
252.	" + Dibenzylidendiäthylketon	[C ₆ H ₅ CHC(CH ₃)] ₂ CO keineAdditionsverbdg. (C ₆ H ₅ CHCHCHCH) ₂ CO·2CIH
252.	" + Dicinnamylidenaceton .	
252.	" + Dibenzylidencyclopentanon .	$CH_2 C(CHC_6H_5)$ CO · 2 CIH
252.	,, + Dianisylidencyclopentanon	CH ₂ C[CHC ₆ H ₄ (O CH ₃)] CO-2 CIH
252.	" + Dicinnamylidencyclopentanon.	CH ₂ C(CHCHCHC ₆ H ₅) CO-2 CH II. 2 Br H
195.	" + Cineol	C10H18O·ClH; 2C10H18O·ClH; C10H18O·BTH
165.	HCI + Trimethylamin + CS ₂ .	(CH ₃) ₃ N · CS ₂ · HC1; (CH ₃) ₃ N · 2 CS ₂ · 3 HC1
196.	+ Anilin + Furfurol	2 C ₆ H ₅ NH ₂ ·C ₅ H ₄ O ₂ ·HCl
197.	,, + ,, + Benzaldehyd .	C ₆ H ₅ NH ₂ ·C ₆ H ₅ CHO·HCI
198.	,, + ,, + p.Oxybenzaldehyd	C ₆ H ₅ NH ₂ ·C ₆ H ₄ (OH)CHO·HCI

```
+ Anilin + Salicylaldehyd . .
 199.
           HC1
                                                            C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>(OH)CHO·HCI
                   + Diphenylamin + Furfurol . .
 424.
           11
                                                            2 (C6H5)2NH · C5H4O2 · C1H
                   +m-Nitranilin + " · ·
 424.
                                                            C6H4(NO2)NH2 · C5H4O2 · C1H
                   + Wasser . . . . . . . .
   1.
          HF1
                                                            4 H2 O · (HFI)2
                  + Hydrochinon . . . . . .
 200.
          CNH
                                                            3 C6 H4 (OH)2 · CNH
                  + p-Nitrosodimethylanilin + Benzol.
201.
                                                            2 C<sub>6</sub>H<sub>4</sub>(NO) N(CH<sub>3</sub>)<sub>2</sub>· C<sub>6</sub>H<sub>6</sub>· CNH
201.
                                       + Nitrobenzol
                                                            2 C<sub>6</sub>H<sub>4</sub>(NO) N (CH<sub>3</sub>)<sub>2</sub> · C<sub>6</sub>H<sub>5</sub> NO<sub>2</sub> · CNH
201.
                                       + Toluol . .
                                                            2 C<sub>6</sub>H<sub>4</sub>(NO) N(CH<sub>3</sub>)<sub>2</sub> · C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub> · CNH
                                "
201.
                                       + Anilin . .
                                                            2 C<sub>6</sub>H<sub>5</sub>(NO)N(CH<sub>3</sub>)<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>·CNH
          HClO_4 + Wasser \dots \dots
  1.
                                                            2 H2 O · CIO4 H
202.
          CrO_3 + Santalol . . . . . . . .
                                                            C15 H24 O Additionsverbindung
202.
                  + Maalialkohol
                                                            2 C15 H26 O · Cr O3
202.
                  + Sesquiterpenalkohol aus Ol
                      von Eucalyptus Globulus. .
                                                            C15 H26 O Additionsverbindung
202.
                  + Patchoulialkohol . . . . .
                                                            C15 H28 O
                                                                                 do.
202.
                  + Kessoalkohol . . . . . .
                                                            C14 H24 O2 keine Additionsverbindung
                  + Ledumcampher . . . . .
202.
                                                            C<sub>15</sub>H<sub>26</sub>O Additionsverbindung
          Phosphorwolframsäure+Dimethylpyron
147.
                                                            OC4H2(CH3)2CO do.
                                                            CO CH2 CH2 CO Additionsverbindg.
147.
                                 - p-Diketohexamethylen
147.
          H_3 Co(CN)_6 + Borneo1 \dots \dots
                                                            C10 H17 OH Additionsverbindung
147.
                       + Athyläther. . . . .
                                                            (C2 H5)2 O
147.
                       + Diisoamyläther . . . .
                                                            (C_5H_{11})_2 O \cdot Co(CN)_6H_8
                       + Benzaldehyd . . . . .
147.
                                                            C6 H5 CHO Additionsverbindung
147.
                       + Dimethylpyron . . . .
                                                            C7 H8 O2
                                                                                   do.
                       + Campher . . . . .
204.
                                                            2 C<sub>10</sub>H<sub>16</sub>O · 2 H<sub>2</sub>O · Co (CN)<sub>6</sub>H<sub>3</sub>
                       + Cineol . . . . . . .
203.
                                                           3 C10 H18 O · C0 (CN)6 H3
                99
                       + Cineolsäure . . . .
203.
                                                           3 C10 H16 O5 · CO (CN)6 H3
161.
         H2PtCl6
                      + Dimethylpyron . . . .
                                                           2 C7 H8 O2 · Pt C16 H2
147.
                       + Benzylidenaceton . . .
                                                           2 C6 H5 C2 H2 CO CH3 · 2 H2 O · Pt C16 H2
                      + Cineol . . . . . .
205.
         Ha As Oa
                                                           C<sub>10</sub>H<sub>18</sub>O Additionsverbindung
206.
                       + Acetophenon . . . .
                                                           2 C<sub>6</sub> H<sub>5</sub> CO CH<sub>8</sub> · As O<sub>4</sub> H<sub>8</sub>
  2.
         CO2
                       + Wasser . . . . . .
                                                           8 H<sub>2</sub> O · CO<sub>2</sub>; 9 H<sub>2</sub> O · CO<sub>2</sub>
                       + Methylalkohol . . . .
207.
                                                           CH3 OH · CO2?
                       + Athylalkohol . . . . .
209.
                                                           C2H5OH·CO2?
           ,,
208.
                       + Propylalkohol . . . .
                                                           C3H7OH·CO2?
           11
210.
                       + Phenol . . . . . . .
                                                           8 Co Ho OH · CO2
                       + Äthylalkohol . . . .
208.
         H2CO3
                                                           3 C2 H5 OH · 17 CO2 · H2 O?
                       + Äthyläther. . . . . .
208.
                                                           (C2 H5)2 O · CO2 · 4 H2 O
                   6. Additionsverbindungen anorganischer Salze und Basen.
         Wasserfreie Salze + Alkohole
211.
212.
         Alkalische Erden + Glycerin
         Salze + Phenole u. Phenolderivate
213.
         CaCl<sub>2</sub> + Methylalkohol . . . . . .
                                                         4 CH<sub>8</sub> OH · Ca Cl<sub>2</sub>
214.
            " + Äthylalkohol.... 3 C<sub>2</sub>H<sub>5</sub>OH·CaCl<sub>2</sub>; 4 C<sub>2</sub>H<sub>5</sub>OH·CaCl<sub>2</sub>
215.
```

-			
216.	Ca Cl ₂	+ Isopropylalkohol	(CH ₃) ₂ CHOH Additionsverbindung
217.		+ Isobutylalkohol	3 (CH ₃) ₂ CH CH ₂ OH · Ca Cl ₂
217.	"	+ Isoamylalkohol	3 (CH ₃) ₂ CH (CH ₂) ₂ OH · Ca Cl ₂
218.	11	+ Ester der Milchsäure	Additionsverbindungen
210.	"	+ Citronellol	C ₁₀ H ₁₀ OH keine krist. Verbindung
219.	"	- Geraniol	C10 H18 O · Ca Cl2; 2 C10 H18 O · Ca Cl2
213.	"	+ Guajacol	CH ₃ O C ₆ H ₄ OH · Ca Cl ₂
213.	"	+ Kreosol	CH ₃ O C ₆ H ₃ (CH ₃) OH · Ca Cl ₂
220.	11.	+ Benzaldehyd	2 C ₆ H ₅ CHO · 3 Ca Cl ₂ ?
221.	"	+ Aceton	(CH ₃) ₂ CO Additionsverbindung
222.	"	+ Äthylacetat	2 CH ₃ CO ₂ C ₂ H ₅ · Ca Cl ₂
223.	Mg Cl ₂	+ Methylalkohol	6 CH ₃ OH · Mg Cl ₂
		+ Äthylalkohol	6 C ₂ H ₅ OH·Mg Cl ₂
211, 223. 219.		+ Geraniol	C ₁₀ H ₁₈ O krist. Verbindung
224.	"	+ Äthylacetat	2 CH ₃ CO ₂ C ₂ H ₅ · Mg Cl ₂
219.	Ca(NO.)	+ Geraniol	C ₁₀ H ₁₈ O krist. Verbindung
225.) ₂ + Äthylalkohol	6 C ₂ H ₅ OH · Mg (NO ₃) ₂
219.	Mg (110 ₃	+ Geraniol	C ₁₀ H ₁₈ O krist. Verbindung
226.	Metallek	nloride + Äthyläther	010.1130
227.	Sb Cl ₅		$(C_2H_5)_2O \cdot SbCI_5$
	Sb Cl ₃	+ Äthylalkohol	C ₂ H ₅ OH·SbCl ₃
_	Sn Cl ₄	+ Isoamylalkohol	2 (CH ₃) ₂ CH (CH ₂) ₂ OH · Sn Cl ₄
228.	Section 19	+ Äthyläther	2(C ₂ H ₅) ₂ O · Sn Cl ₄
	"	+ Äthyloxalat	(CO ₂ C ₂ H ₅) ₂ ·Sn Cl ₄
229.	Li Cl	+ Äthylalkohol	4 C ₂ H ₅ OH·LiCl
230.	Zn J ₂	0: -1	2 C ₁₀ H ₁₈ O·ZnJ ₂
231.	CdJ ₂	+ Cineol	2 C ₁₀ H ₁₈ O · CdJ ₂
241.			Kondensation
241.	K ₂ CO ₃	+ Phenol	do.
232.	"	+ Nresol	Additionsverbindungen
233.	"	+ Guajacol	2 CH ₃ O C ₆ H ₄ OH · CO ₃ K ₂
234.	"	+ Kreosol	2 CH ₃ OC ₆ H ₃ (CH ₃) OH · CO ₃ K ₂
235.	"	+ Eugenol	2 CH ₃ O C ₆ H ₃ (C ₁ H ₅) OH · CO ₃ K ₂
236.	"	+ Hydrochinonmethyläther .	
232.	"	+ Orcin · · · · · · ·	C ₆ H ₃ (CH ₃)(OH) ₂ Additionsverbindung
237.	кон	+ Aceton	(CH ₃) ₂ CO·KOH
-	Ca(OH)	-	
238.	Ba (OH)		
239.	BaO		
161.	1	+ Allylalkohol	
101.	"	+ Dimethylpyron	C ₇ H ₈ O ₂ ·BaO
	1	7. Additionsverbindunger	von Kohlenwasserstoffen.
166.	Pinen	+ Halogenwasserstoff	CooHearCIH: CooHearBrH
242.	" "	+ Formaldehyd ,	
244.	"	+ Trichloressigsäure	
		enberg, Gewinnung und Trennung der	A CONTRACTOR OF THE PROPERTY O
		and fremming and fremming der	and one

-		
247.	Pinen + Mercuriacetat	Oxydationsprodukt
157.	Camphen + Salpetersäure	C ₁₀ H ₁₆ ·NO ₈ H
167.	+ Halogenwasserstoff .	C ₁₀ H ₁₆ ·ClH
245.	+ Trichloressigsäure .	Kondensationsprodukt
247.	+ Mercuriacetat	C ₁₀ H ₁₆ O (Hg C ₂ H ₃ O ₂) ₂
168.	Dipenten resp. Limonen + Halogenw	C10H18 · CIHTESP.BrH0d.JH; C10H18 · 2HX.
240.	,, ,, — Trichloressigs	C ₁₀ H ₁₆ ·2 CCl ₃ CO ₂ H
242.	_ " " " +Formaldehyd	Additionsverbindung
169.	Terpinen + Halogenwasserstoff.	C ₁₀ H ₁₆ ·2ClH resp. 2 Br H od. 2 JH
170.	Phellandren + "	C ₁₀ H ₁₆ Additionsverbindungen
171.	Sylvestren + ,.	C ₁₀ H ₁₆ ·2 ClH; C ₁₀ H ₁₆ ·2 BrH
172.	Carvestren +	C ₁₀ H ₁₆ ·2 ClH; C ₁₀ H ₁₆ ·2 BrH
173.	Pinolen + "	C ₁₀ H ₁₆ ·ClH
174.	α -Thujen + ,,	C ₁₀ H ₁₆ ·ClH; C ₁₀ H ₁₆ ·2 ClH
174.	Sabinen + "	C ₁₀ H ₁₆ ·ClH; C ₁₀ H ₁₆ ·2 ClH
175.	Menthen + ,,	C ₁₀ H ₁₈ ·CIH
246.	+ Trichloressigsäure .	Kondensationsprodukt
175.	Carvomenthen + Halogenwasserstoff .	C ₁₀ H ₁₈ ·C1H
243.	Sesquiterpene + Formaldehyd	Additionsverbindungen
176.	Caryophyllen + Halogenwasserstoff .	C ₁₅ H ₂₄ ·2 ClH
243.	+ Formaldehyd	C ₁₅ H ₂₄ ·HCHO
177.	Cadinen + Halogenwasserstoff .	C ₁₅ H ₂₄ ·2 ClH resp. 2 BrH od. 2 JH
243.	+ Formaldehyd	C ₁₅ H ₂₄ ·HCHO
178.	Limen + Halogenwasserstoff .	C ₁₅ H ₂₄ ·3 ClH
179. 243.	Zingiberen + ,,	C ₁₅ H ₂₄ ·ClH
248.	Cloven + Formaldehyd Benzol + Triphenylmethan	C ₁₅ H ₂₄ ·HCHO
249.		$C_6H_6 \cdot CH(C_6H_5)_3$
250.	,, + Diamidotriphenylmethan ,, + Tetraphenylmethan	C ₆ H ₆ ·CH(C ₆ H ₅)(C ₆ H ₄ NH ₂) ₂
253.	1 Triphenylmethyl	$C_6H_6 \cdot C(C_6H_5)_4$
254.	1 & Nanhthal	C ₆ H ₆ ·2 C (C ₆ H ₅) ₃ Keine Additionsverbindung
255.	⊥ Azohenzol	C ₆ H ₆ ·(C ₆ H ₅ N) ₂
256.	, + p-Nitrosodimethylanilin.	C ₆ H ₆ ·2 C ₆ H ₄ (NO)N(CH ₃) ₂
257.	", + ", + CNH	C ₆ H ₆ ·2 C ₆ H ₄ (NO)N(CH ₃) ₂ ·CNH
258.	" + s-Trinitrobenzol	C ₆ H ₆ · C ₆ H ₃ (NO ₂) ₃
259.	" + «-Trinitrotoluol	Keine Additionsverbindung
260.	" +Pikrinsäure	C ₆ H ₆ ·C ₆ H ₂ (NO ₂) ₃ OH
261.	,, +Pikramid	C ₆ H ₆ · C ₆ H ₂ (NO ₂) ₃ NH ₂
262.	,, + Pikrylchlorid	C ₆ H ₆ · C ₆ H ₂ (NO ₂) ₃ CI
124.	Cyanbenzol + H ₃ PO ₄	C ₆ H ₅ CN keine Additionsverbindung
253.	Toluol + Triphenylmethyl	C ₆ H ₅ CH ₃ ·2C(C ₆ H ₅) ₃
264.	" + p-Nitrosodimethylanilin + CNH	C ₆ H ₅ CH ₃ ·2 C ₆ H ₄ (NO) N (CH ₃) ₂ ·CNH
263.	" +Pikramid	C ₆ H ₅ CH ₃ ·C ₆ H ₂ (NO ₂) ₃ NH ₂
124.	Cyantoluol + H ₃ PO ₄	C ₆ H ₄ (CH ₃)CN keine Additionsverbdg.
21.	Styrol + HNaSO ₃	C ₆ H ₅ CHCH ₂ do. do.
254.	Diphenylmethan + Naphthalin	$CH_2(C_6H_5)_2$ do. do.

248.	Triphenylmethan + Benzol	CH (C ₆ H ₅) ₃ · C ₆ H ₆
253.	Triphenylmethyl + Kohlenwasserst.	2 (C ₆ H ₆) ₃ C·1 Mol. Kohlenwasserstoff
253.	+ Äther	$2(C_6H_5)_3C\cdot(C_2H_5)_2O$
253.	, + Ester	2 (C ₆ H ₅) ₃ C·1 Mol. Ester
253.	$+ CS_2 \cdot \cdot \cdot \cdot$	(C ₆ H ₅) ₃ C Additionsverbindung
250.	Tetraphenylmethan + Benzol	$C(C_6H_5)_4 \cdot C_6H_6$
254.	Naphthalin + Diphenylmethan	C ₁₀ H ₈ keine Additionsverbindung
254.	,, + Anthracen	C ₁₀ H ₈ do. do.
254.	+ Phenanthren	C ₁₀ H ₈ do. do.
265.	,, + Campher	C ₁₀ H ₈ Additionsverbindung?
266.	,, + o-, m- od. p-Chlornitrobenzol	C ₁₀ H ₈ keine Additionsverbindung
266.	" + o-Dinitrobenzol	$C_{10}H_8$ do. do.
267.	" + m-Dinitrobenzol	
268.	,, + p-Dinitrobenzol	
269.	,, + Trinitrobenzol	
270.	" + Dinitrotoluol	C ₁₀ H ₈ ·CH ₃ C ₆ H ₃ (NO ₂) ₂
266.	,, (1, 2, 6)	
266.	" + " (1, 2, 4) .	C ₁₀ H ₈ ·CH ₃ C ₆ H ₃ (NO ₂) ₂
266.	", $+$ $"$, $(1, 3, 4)$.	
266.	" + $"$ (1, 3, 5) .	
271.	$+\alpha$ -, β - od. γ -Trinitrotoluol	C ₁₀ H ₈ ·CH ₃ C ₆ H ₂ (NO ₂) ₃
272.	" + o-Nitrophenol	C ₁₀ H ₈ keine Additionsverbindung
273.	,, + Dinitrophenol (2, 4)	$C_{10}H_8 \cdot C_6H_3(NO_2)_2OH$
274.	" + Pikrinsäure	$C_{10}H_8 \cdot C_6H_2(NO_2)_3OH$
275.	" + β - od. γ -Trinitrophenol.	C ₁₀ H ₈ ·C ₆ H ₂ (NO ₂) ₃ OH
276.	" + Trinitrokresol	
277.	" + Pikramid	
278.	+ Pikrylchlorid	C ₁₀ H ₈ · C ₆ H ₂ (NO ₂) ₃ Cl
254.	Anthracen + Naphthalin	C ₁₄ H ₁₀ keine Additionsverbindung
279.	" + Trinitrobenzol	C ₆ H ₄ (CH) ₂ C ₆ H ₄ Additionsverbindung
279.	$+\alpha$ -Trinitrotoluol	$C_6H_4(CH)_2C_6H_4$ do.
280.	,, + Pikrinsäure	$C_6H_4(CH)_2C_6H_4\cdot C_6H_2(NO_2)_3OH$
281.	, + Pikramid	$C_6H_4(CH)_2C_6H_4\cdot C_6H_2(NO_2)_3NH_2$
254.	Phenanthren + Naphthalin	
282.	$+\beta$ -Trinitrophenol	0 11 (010) 011
283.	,, + Pikrinsäure	
284.	" + Pikrylchlorid	. (C ₆ H ₄ CH) ₂ ·C ₆ H ₂ (NO ₂) ₃ Cl
285.	Fluoren + " · · · ·	. (C ₆ H ₄) ₂ CH ₂ ·C ₆ H ₂ (NO ₂) ₃ Cl
286.	Stilben + " · · · ·	$C_6H_5CHCHC_6H_5\cdot C_6H_2(NO_2)_3CI$
	8. Additionsverbindungen vo	n Alkoholen und Alkoholäthern.
S. 587.	Alkohole + Wasser	discounts to the
177.	,, + wasserfreie Salze	· · · · · · · · · · · · · · · · · · ·
287.	,, + Chloral	the same of the sa
288.	,, + Alkalialkoholate	
289.	,, + Chinolin-Derivate	The state of the s
		41*

145.	Organische S	Sauerstoffverbindungen	CONTRACTOR OF THE PARTY OF THE
	and the same of	+ Mineralsäuren	THE REPORT OF THE PARTY OF THE
207.	Methylalkoho	1+CO ₂	CH3 OH · CO2 ?
214.	,,	+ Ca Cl ₂	4 CH ₃ OH·CaCl ₂
223.	,,	+ Mg Cl ₂	6 CH ₃ OH · Mg Cl ₂
290.	,,	+ Chloral	CH ₃ OH·CCl ₃ CHO
485.	,	+ Anethol	CH ₃ OH·C ₁₀ H ₁₂ O
291.	,,	+ Isosafrol	CH ₃ OH·C ₁₀ H ₁₀ O ₂
288.	,,	+ Natriumglykolat	$CH_3OH \cdot C_2H_4(OH)ONa$
146.	,,	+ H ₄ Fe(CN) ₆	CH ₃ OH Additionsverbindung
146.	. "	+ " + Äthyläther	CH ₃ OH · (C ₂ H ₅) ₂ O · Fe (CN) ₆ H ₄
181.	Methyläther	+HCI"	(CH ₃) ₂ O·CIH
208.	Äthylalkohol	+CO ₂	C ₂ H ₅ OH·CO ₂ ?
215.	"	+ Ca Cl ₂	3 C ₂ H ₅ OH·CaCl ₂ ; 4 C ₂ H ₅ OH·CaCl ₂
211, 223.		+ Mg Cl ₂	6 C ₂ H ₅ OH·MgCl ₂
225.	"	+ Mg(NO ₃) ₂	6 C ₂ H ₅ OH·Mg(NO ₃) ₂
-	"	+LiCl	4 C ₂ H ₅ OH·Li Cl
-	,,	+ Sb Cl ₃	C ₂ H ₅ OH·SbCl ₃
146.	,,	+ H ₄ Fe(CN) ₆	3 C ₂ H ₅ OH·Fe(CN) ₆ H ₄
288.	,,	+ Natriumäthylat + Erythrit.	2 C ₂ H ₅ OH·C ₂ H ₅ ONa·C ₄ H ₆ (OH) ₄
288.	"	+ Natriumglykolat	$C_2H_5OH \cdot C_2H_4(OH)ONa$
484, 485.		+ Anethol	C ₂ H ₅ OH·C ₁₀ H ₁₂ O
291.	"	+Isosafrol	C ₂ H ₅ OH·C ₁₀ H ₁₀ O ₂
292.	"	+ Chloracetaldehyd	C ₂ H ₅ OH·CH ₂ CICHO
293.	,,	+Chloral	C ₂ H ₅ OH·CCl ₃ CHO
294.	"	+ " + Campher .	C ₂ H ₅ OH·CCl ₃ CHO·C ₁₀ H ₁₆ O
295.	, ,,	+ Butylchloral	C ₂ H ₅ OH·CH ₃ CHClCCl ₂ CHO
296.	"	+Bromal	C ₂ H ₅ OH·CBr ₃ CHO
297.	,,	+ α, β-Dichlorpropionaldehyd	C ₂ H ₅ OH Additionsverbindung
6.	Äthyläther	+ Wasser	(C ₂ H ₅) ₂ O·2 H ₂ O?
148.	,,	+ H ₄ Fe(CN) ₆	(C ₂ H ₅) ₂ O Additionsverbindung
146.	,,	+ " + Methylalkohol	(C ₂ H ₅) ₂ O·CH ₃ OH·Fe(CN) ₆ H ₄
147.	"	+ H ₃ Fe(CN) ₆	(C ₂ H ₅) ₂ O Additionsverbindung
147.	30	+ H ₃ Co(CN) ₆	(C ₂ H ₅) ₂ O do.
208.	"	+H ₂ CO ₃	(C ₂ H ₅) ₂ O·CO ₂ ·4H ₂ O
226.	,,	+ Metallchloride	
227.		+ Sb Cl ₅	$(C_2H_5)_2O \cdot SbCI_5$
228.	"	+ Sn Cl ₄	2 (C ₂ H ₅) ₂ O · Sn Cl ₄
253.	",	+ Triphenylmethyl	(C ₂ H ₅) ₂ O · 2 (C ₆ H ₅) ₈ C
288.	THE RESERVE AND THE PARTY OF TH		CH ₈ ONa·C ₄ H ₆ (OH) ₄
300.		+ Benzalmalons. Methyl	C ₆ H ₅ CH(OCH ₈)CNa(CO ₂ CH ₈) ₂
300.		+ Piperonalmalons. "	(O ₂ CH ₂)C ₆ H ₃ CH(OC ₂ H ₅) CNa(CO ₂ C ₂ H ₅) ₂
288.	Natriumäthylat		C ₂ H ₈ ONa · C ₄ H ₆ (OH) ₄
288.	,, .	+ ,, +Äthylalk	C ₂ H ₅ ONa · C ₄ H ₈ (OH) ₄ · 2 C ₂ H ₅ OH
300.	,,	- Isopropylidenacetessigester.	(CH ₃) ₂ C(OC ₂ H ₅) CNa(COCH ₃) CO ₂ C ₂ H ₅
300.	",	+ Furfuralmalons. Äthylester .	
	THE RESERVE		

300. Natriumāthylat	2000	The state of the s		
Benzylidenaclessigester Co. H. CCO C. H. S. CO. S. L. H. Annowall	300.	Natriumäthylat -	Benzylidenaceton .	C ₆ H ₅ CHCHCOCH ₈ keine Additionsvbd.
Benzylidemalons. Athylenglykolat			Benzylidenacetessigester	C ₆ H ₅ CHC(COCH ₃)CO ₂ C ₂ H ₅ Kondensation
Priperonalmalons. CaHa(O ₂ CH ₃) CNa(CO ₂ C ₂ H ₆) ₂	PO GO GO		Benzylidenmalons. Äthyl	$C_6H_5CH(OC_2H_5)CNa(CO_2C_2H_5)_2$
Propylalkohol CO₂ C, H₁OH-CO₂ C, H	The second secon			$C_6H_3(O_2CH_2)CH(OC_2H_5)CNa(CO_2C_2H_5)_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	"		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C ₃ H ₇ OH·C ₂ H ₄ (OH)ONa
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		77		
299.			H, Fe (CN)	
216. 288.				(CH ₃) ₃ COH · C ₆ H ₄ (OH) ₂
Sample S				CH3 CHOHCH3 Additionsverbindung
147.				
301.				
147. Isoamylalkohol				
217.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
288.		"		
291. 302. 303. 304. 305. 306. 307. 308. 308. 309. 3		The second second		
302. 147. Diisoamyläther $+H_4Fe(CN)_6$ $+H_3Fe(CN)_6$ $+H_3F$		"		
147. Diisoamyläther $+H_4Fe(CN)_6$ $+H_3Fe(CN)_6$		"		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
304. 4. Pentamethyläthol + Wasser				
4. Pentamethyläthol + Wasser		46.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11	An authorized the second secon	
287. Äthylglykolat $+$ Chloral $+$ Choral $+$ Ca (OH) $_2$ $+$ Ca (OH) $_3$ $+$ Ca (OH) $_3$ $+$ Ca (OH) $_4$ $+$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A COMMENT OF THE PARTY OF THE P		
288. " + Natriumglykolat . C $_2H_4(OH)_2 \cdot C_2H_4OHONa$. C $_2H_4(OH)_2 \cdot C_1$ CHO . C $_3H_5(OH)_2 \cdot OHO$. C $_3H_5(OH)_3 \cdot OHO$. C $_3H_5(OH)_4 \cdot OHO$. C $_4H_6(OH)_4 \cdot C_2H_5(OH)$. C $_4H_6(OH)_4 \cdot OH$. C $_4H_6(OH$	281.			
306.	200			
5. Pinakon + Wasser Glycerin + alkalische Erden + Aldehyde od. Ketone				
212. Glycerin + alkalische Erden 307. ,		The same of the sa		
307. , Aldehyde od.Ketone				[(CH ₃) ₂ C(OH)] ₂ ·6 H ₂ O
287. , , + Chloral C ₈ H ₅ (OH) ₈ Additionsverbindung 239. Allylalkohol + BaO C ₈ H ₅ OH·BaO 287. , + Chloral C ₈ H ₅ OH·CCl ₈ CHO 21. , + HKSO ₈ C ₈ H ₅ OH·CCl ₈ CHO 21. , + HKSO ₈ C ₈ H ₅ (SO ₈ KH)OH 288. Erythrit + Natriummethylat				au on the time
Allylalkohol + BaO 2 C ₃ H ₅ OH·BaO 287.		100	The second secon	
287. ,		1	And the second s	
21. , HKSO ₃ C ₃ H ₅ (SO ₃ KH)OH 208. Propargylalkohol + BaO Erythrit + Natriummethylat Natriumäthylat Natriumäthylat Athylalkohol + Natriumäthylat Natriumäthylat Aldehyde od.Ketone Mannit	The second second	Allylalkohol		
308. Propargylalkohol + BaO				
288. Erythrit + Natriummethylat . C ₄ H ₆ (OH) ₄ ·CH ₈ ONa 288. , Hatriumäthylat . C ₄ H ₆ (OH) ₄ ·C ₂ H ₅ ONa 288. , Äthylalkohol + Natriumäthylat . C ₄ H ₆ (OH) ₄ ·2 C ₂ H ₅ OH·C ₂ H ₅ ONa 307. , Aldehyde od.Ketone Keine Additionsverbindung		The state of the s		
288. " Natriumäthylat C ₄ H ₆ (OH) ₄ ·C ₂ H ₅ ONa + Äthylalkohol + Natriumäthylat C ₄ H ₆ (OH) ₄ ·2 C ₂ H ₅ OH·C ₂ H ₅ ONa Natriumäthylat Keine Additionsverbindung				
288. ,, + Äthylalkohol + Natriumäthylat C ₄ H ₆ (OH) ₄ · 2 C ₂ H ₅ OH · C ₂ H ₅ ONa + Aldehyde od. Ketone Keine Additionsverbindung		The state of the s		
Natriumäthylat C ₄ H ₆ (OH) ₄ ·2 C ₂ H ₅ OH·C ₂ H ₅ ONa 307. ,, Aldehyde od.Ketone Keine Additionsverbindung		"		$C_4H_6(OH)_4 \cdot C_2H_5ONa$
307. ,, Aldehyde od. Ketone Keine Additionsverbindung	288.	"		
307 Mannit da		A PROPERTY OF	Natriumäthylat	$C_4H_6(OH)_4 \cdot 2C_2H_5OH \cdot C_2H_5ONa$
307. Mannit + ,, ,, do. do.			Aldehyde od.Ketone	Keine Additionsverbindung
	307.	Mannit	+ 11 11 11	do. do.

```
Milchsäureester + CaCl<sub>2</sub>. . . . . .
218.
                                                        CH3 CHOHCO2 C2 H5 Additionsverbdg.
147.
         Menthol
                           + H<sub>3</sub> Fe (CN)<sub>6</sub> . . . .
                                                        C10 H19 OH
309.
                           - Hexamethylentetramin . .
                                                        C10 H19 OH keine Additionsverbindung
         Linalool
                           + HCI . . . . . .
                                                        Mischreaktion unt. Hydroxylabspaltung
         Tetrahydrocarveol + H<sub>3</sub>Fe(CN)<sub>6</sub> . . .
147.
                                                        C10 H20 O Additionsverbindung
147.
         Borneol
                           + H4Fe(CN)6 . . . .
                                                        C10 H17 OH
                                                                            do.
147.
                           + H<sub>8</sub>Fe(CN)<sub>6</sub> . . . .
                                                        C10 H17 OH
147.
                           + H<sub>3</sub> Co (CN)<sub>6</sub> . . . .
                                                        2 C10 H17 OH · C0 (CN)6 H3
180.
                           + Halogenwasserstoff.
                                                        2 C10 H17 OH · Br H; 2 C10 H17 OH · JH
310.
                           + Chloral . . . . .
                                                        C<sub>10</sub>H<sub>17</sub>OH · CCl<sub>3</sub>CHO
311.
                           - Bromal . . . . .
                                                        C<sub>10</sub>H<sub>17</sub>OH · CBr<sub>3</sub>CHO
312.
         Isoborneol
                           + Chloral . . . . .
                                                        C<sub>10</sub>H<sub>17</sub>OH · CCI<sub>8</sub>CHO
312.
                           - Bromal . . . .
                                                        C10 H17 OH · CBr3 CHO
313.
                           + Ca Cl<sub>2</sub> . . . . . .
         Geraniol
                                                        C10 H17 OH · Ca Cl2; 2 C10 H17 OH · Ca Cl2
313.
                           + Mg Cl<sub>2</sub> . . . . . .
                                                        C10H17OH Additionsverbindung
313.
                           + \operatorname{Ca}(\operatorname{NO}_3)_2 \cdot \cdot \cdot \cdot
                                                        C10 H17 OH
                                                                              do.
313.
                           + Mg(NO_3)_2 \dots
                                                        C10 H17 OH
                                                                              do.
 22.
                           +HNaSO3. . . . .
                                                        C10 H17 OH - 2 SO3 Na H
314.
                           + HCl od. HBr . . .
                                                        Kondensation unter Hydroxylabspaltung
         Citronellol
                           + Ca Cl
                                                        C10 H19 OH keine krist. Verbindung
 22.
                           + HNaSO
                                                        C10 H19 OH · SO8 Na H
         Androl
                           + HNaSO<sub>3</sub> . . . .
                                                        C10 H19 OH keine Additionsverbindung
202.
         Sesquiterpenalkohole + CrO<sub>3</sub>....
                                                        Additionsverbindungen
287.
         Aromat. Alkohole
                                 + Chloral . . .
                                                        Keine Additionsverbindungen
124.
         Benzylalkohol
                                 +H<sub>8</sub>PO<sub>4</sub> . . .
                                                        C6H5CH2OH keine krist. Verbindung
124.
         Cyanbenzylalkohol
                                + H<sub>3</sub>PO<sub>4</sub> . . .
                                                        C<sub>6</sub>H<sub>5</sub>CH(OH)CN keine krist Verbindung
 22.
         Zimtalkohol
                                 + HNaSO3
                                                        C6H5CH(NaSO3)CH2CH2OH
 23.
         Thymomenthol
                                 -HNa SO3
                                                        Keine Additionsverbindung
215.
         Dihydrocuminalkohol + Jodol . . .
                                                        C10 H16 O . C4 J4 NH
                 9. Additionsverbindungen von Phenolen und Phenoläthern.
  7.
         Phenol + Wasser . . . . . . . . .
                                                        2 C<sub>6</sub>H<sub>5</sub>OH · H<sub>2</sub>O
 24.
                  +SO<sub>2</sub> . . . . . . . . .
                                                       4 C6 H5 OH · SO2; 5 C6 H5 OH · SO2
210.
                  + CO_2 \dots \dots \dots
                                                        8 C<sub>6</sub>H<sub>5</sub>OH · CO<sub>2</sub>
                  + H<sub>3</sub>PO<sub>4</sub> . . . . . . . . . .
486.
                                                        C6H5OH-PO4H3
213.
         Phenole u. Derivate + Salze
         Phenol + K<sub>2</sub>CO<sub>3</sub> . . . . . . . .
241.
                                                       Kondensationsverbindung
                  + Phenolkalium. . . . . .
241.
                                                       3 C<sub>6</sub>H<sub>5</sub>OH · C<sub>6</sub>H<sub>5</sub>OK
325.
                  + o- od. p-Kresol + Chinon .
                                                        C6H5OH · CH3C6H4OH · C6H4O2
326.
                  + Thymol + Chinon . . . .
                                                        C_6H_5OH \cdot C_6H_3(CH_3)(C_3H_7)OH \cdot C_6H_4O_2
                  - Benzaldehyd . . . . . .
327.
                                                        C6H5CH keine Additionsverbindung
328.
                  C6H5OH · C10H16O; 2C6H5OH · C10H16O
329.
                  + Fenchon
                                                       C6 H5 OH Additionsverbindung
330.
                  + Benzochinon . . . . . .
                                                       2 C6 H5 OH · C6 H4 O2
331.
                  +Oxalsäure . . . . . .
                                                       2 C6 H5 OH · (CO2 H)2
333.
         Phenole + Amine
```

The same		
332.	Phenole + Hexamethylentetramin	3 C ₆ H ₅ OH · C ₆ H ₁₂ N ₄
	Hamatoff	2 C ₆ H ₅ OH - CO (NH ₂) ₂
334.	Phenol + Alloxan	C ₆ H ₅ OH · CO (NH) ₂ (CO) ₃ · H ₂ O
316.	Auilia	C ₆ H ₅ OH · C ₆ H ₅ NH ₂
336.	" od n.Nitroanilin	Keine Additionsverbindung
37.	, + o- od. p-Toluidin	$C_6H_5OH \cdot C_6H_4(CH_8)NH_2$
338.	+ Dimethylanilin	$C_6H_5OH \cdot C_6H_5N(CH_3)_2$?
339.	+ p-Nitrosodimethylanilin	C ₆ H ₅ OH · 2 C ₆ H ₄ (NO)N(CH ₂) ₂
335.		C ₆ H ₅ OH · (CH ₃) ₂ C ₆ H ₃ NH ₂
340.	, + m-Xylidin	2 C ₆ H ₅ OH · NH(C ₄ H ₈)NH
341.	" + Diäthylendiamin	C ₆ H ₅ OH · C ₁₀ H ₇ NH ₂
342.	,, +α- od. β-Naphthylamin	C ₆ H ₅ OH · C ₆ H ₃ (NO ₂) ₃ OH
343.	" + Pikrinsäure	$C_6H_5OK \cdot 3C_6H_5OH$
206.	Phenolkalium + Phenol	C ₆ H ₄ ClOH · C ₆ H ₄ O ₂ ; 2C ₆ H ₄ ClOH · C ₆ H ₄ O ₂
344.	Monochlorphenol + Benzochinon	C ₆ H ₄ BrOH·C ₆ H ₄ O ₂ ; 2C ₆ H ₄ BrOH·C ₆ H ₄ O ₂
344.	Monobromphenol + Benzochinon	C ₆ H ₄ BrOH · PO ₄ H ₃
486.	p-Bromphenol +H ₃ PO ₄	
241.	Kresol + K ₂ CO ₃	Kondensation
241.	o-, m- od. p-Kresol + Kresolkalium	3 C ₆ H ₄ (CH ₃)OH · C ₆ H ₄ (CH ₃)OK
345.	o- od. p-Kresol + Benzochinon	
325.	" " + Phenol	C ₆ H ₄ (CH ₃)OH · C ₆ H ₄ O ₂ · C ₆ H ₅ OH
309.	o-, m- od. p-Kresol + Hexamethylentetramin .	Keine Additionsverbindung
347.	""" + Harnstoff	C ₆ H ₄ (CH ₃)OH · CO (NH ₂) ₂
317, 318.	m- od. p-Kresol + Alloxan	$C_6H_4(CH_8)OH \cdot CO(NH)_2(CO)_8$
-	o-Kresol + Antipyrin	Additionsverbindung
348.	o-, m- od. p-Kresol + Anilin	$C_6H_4(CH_3)OH \cdot C_6H_5NH_2$
346.	Kresol + Natriumacetat	C ₆ H ₄ (CH ₃)OH · CH ₃ CO ₂ Na
471.	p-Thiokresol + Benzochinon	C ₆ H ₄ (CH ₃)SH Additionsverbindung
147.	Anisol + H ₃ Fe(CN) ₆	C ₆ H ₅ OCH ₃ do.
147.	Phenetol + " · · ·	$C_6H_5OC_2H_5$ do.
326.	Thymol + Phenol + Benzochinon	$C_6H_3(CH_3)(C_3H_7)OH \cdot C_6H_5OH \cdot C_6H_4O_2$
328.	+ Campher	Additionsverbindung
351.	+ Fenchon	$C_6H_3(CH_3)(C_3H_7)OH \cdot C_{10}H_{16}O$?
309.	+ Hexamethylentetramin .	Keine Additionsverbindung
353.	,, + Bleiacetat	do. do.
353.	Carvacrol + "	$C_6H_3(CH_3)(C_3H_7)OH \cdot (CH_3CO_2)_2Pb$
354.	Anethol Halogenwasserst	C ₆ H ₄ (OCH ₃)CHCHCH ₃ · ClH od. BrH
485.	,, + Methylalkohol	C ₁₀ H ₁₂ O·CH ₃ OH
291.	,, + Äthylalkohol	C ₁₀ H ₁₂ O · C ₂ H ₅ OH
355.	,, + Chloral	Additionsverbindung
356.	,, + Pikrinsäure	C ₁₀ H ₁₂ O · C ₆ H ₂ (NO ₂) ₈ OH
247.	,, — Mercuriacetat	Oxydationsreaktion
247.	Methylchavicol + Mercuriacetat	C ₆ H ₄ (OCH ₃) (CH ₂ CH CH ₂) · (OH) (Hg CH ₃ CO ₂)
124.	Methylsalicylat + H ₃ PO ₄	C ₈ H ₄ (CO ₂ CH ₃)OH keine Additionsvbdg.
124.	Äthylsalicylat + H ₃ PO ₄	$C_6H_4(CO_2C_2H_5)OH$ do. do.
352.	Salol + Campher	C ₆ H ₄ (CO ₂ C ₆ H ₅)OH · C ₁₀ H ₁₆ O
357.	Brenzcatechin + Benzochinon	C ₆ H ₄ (OH) ₂ · C ₆ H ₄ O ₂

-	1		
320.	Brenzcatech	in + Alloxan	CH (OH) COONIN (CO)
358.	,,	+Hexamethylentetramin	C ₆ H ₄ (OH) ₂ ·CO(NH) ₂ (CO) ₃
_	"	+ Antipyrin	2 C ₆ H ₄ (OH) ₂ · C ₆ H ₁₂ N ₄
359.	"		C ₆ H ₄ (OH) ₂ · 2 C ₁₁ H ₁₂ N ₂ O
327.	Resorcin	+ Anilin	C ₆ H ₄ (OH) ₂ · 2 C ₆ H ₅ NH ₂
374.	"	+ Vanillin	C ₆ H ₄ (OH) ₂ keine Additionsverbindung
375.	The same of the sa	+ Vanillin	Kondensation
376.	"		Additionsverbindung
377.	"	+ Campher + Cineol	C ₆ H ₄ (OH) ₂ · C ₁₀ H ₁₆ O; C ₆ H ₄ (OH) · 2C ₁₀ H ₁₆ O
378.	. "		C ₆ H ₄ (OH) ₂ · 2 C ₁₀ H ₁₈ O
_	"	+ Benzochinon	C ₆ H ₄ (OH) ₂ ·C ₆ H ₄ O ₂
379.	"	+ NH ₃	C ₆ H ₄ (OH) ₂ · NH ₃
321.	"	+ Hexamethylentetramin	C ₆ H ₄ (OH) ₂ · C ₆ H ₁₂ N ₄
380.	"	+ Alloxan	$C_6 H_6 O_2 \cdot CO (NH)_2 CO_3$; $C_6 H_6 O_2 \cdot 2 CO (NH)_2 (CO)_3 \cdot H_2 O$
381, 391.	"	+ Anilin	Additionsverbindung
001, 091.	"	+ Toluidin	Keine Additionsverbindung?
382.	-11	+ Antipyrin	C ₆ H ₄ (OH) ₂ · C ₁₁ H ₁₂ N ₂ O
	Hardwood !	+ Chinolin	C ₆ H ₄ (OH) ₂ ·2 C ₉ H ₇ N
25.	Hydrochinon		3 C ₆ H ₄ (OH) ₂ · SO ₂
200.	"	+ CNH	3 C ₆ H ₄ (OH) ₂ · CNH
486.	"	+H ₃ PO ₄	$C_6H_4(OH)_2 \cdot PO_4H_3$
299.	"	+ Trimethylcarbinol	C ₆ H ₄ (OH) ₂ · C ₄ H ₉ OH
308.	"	+ Amylenhydrat	C ₆ H ₄ (OH) ₂ ·C ₅ H ₁₁ OH
360.	"	+ Zimtaldehyd	C ₆ H ₄ (OH) ₂ · 2 C ₆ H ₅ CH CH CHO
361.	"	+ Aceton	$C_6H_4(OH)_2\cdot(CH_3)_2CO$
362.	"	+ Acetonitril	C ₆ H ₄ (OH) ₂ ·CH ₃ CN
363.	"	+ Dimethylpyron	$C_6H_4(OH)_2 \cdot C_7H_8O_2$
328.	"	+Campher	$C_6H_4(OH)_2 \cdot C_{10}H_{16}O$
364.	,,	+ Ameisensäure	4 C ₆ H ₄ (OH) ₂ ·HCO ₂ H
365.	"	+ Diäthyloxalat	C ₆ H ₄ (OH) ₂ ·(CO ₂ C ₂ H ₅) ₂
362.	,,	+ Formamid	Additionsverbindung
368.	,,	+ Diäthylendiamin	C ₆ H ₄ (OH) ₂ · (C ₂ H ₄) ₂ (NH) ₂
366.	11	+ Hexamethylentetramin	C ₆ H ₄ (OH) ₂ · C ₆ H ₁₂ N ₄
-	"	+ Hydrazin	C ₆ H ₄ (OH) ₂ · (NH ₂) ₂
316.	,,	+ Alloxan	C ₆ H ₄ (OH) ₂ · CO (NH) ₂ (CO) ₃
367.	"	+Pyridin	C ₆ H ₄ (OH) ₂ ·C ₅ H ₅ N
-	"	+ Antipyrin	C ₆ H ₄ (OH) ₂ ·2C ₆ H ₅ N CO-CH NCH ₃ CCH ₃
369.	,,	+ Anilin	C ₆ H ₄ (OH) ₂ ·2 C ₆ H ₅ NH ₂
370.	.,	+ o- od. p-Toluidin	C ₆ H ₄ (OH) ₂ · 2 C ₆ H ₄ (CH ₈) NH ₂
371.	"	+ Chinolin	C ₆ H ₄ (OH) ₂ ·2 C ₉ H ₇ N
372.	"	+ «Naphthylamin	Additionsverbindung
373.		+ H ₂ S	3 C ₆ H ₄ (OH) ₂ ·H ₂ S; 4 C ₆ H ₄ (OH) ₂ ·H ₂ S
232.	Orcin"	+ K ₂ CO ₃	C ₆ H ₈ (CH ₈)(OH) ₂ Additions verbinding
309.		+Hexamethylentetramin	Zersetzung
316.	"	+ Alloxan	C ₇ H ₈ O ₂ · CO (NH) ₂ (CO) ₃ ; C ₇ H ₈ O ₂ · 2 CO (NH) ₂ (CO) ₃
	"		07 D 8 02 00 (MM/2 (00/3) 07 M 8 02

350.	Toluhydrochinon	+ Anilin	C ₆ H ₃ (CH ₃) (OH) ₂ · 2 C ₆ H ₅ NH ₂
350.		+ p-Toluidin	C ₆ H ₃ (CH ₃)(OH) ₂ ·2 C ₆ H ₄ (CH ₃)NH ₂
232.	Hydroxylierte Phe	noläther + K ₂ CO ₃	
233.	Guajacol	+ K ₂ CO ₃	2 CH ₃ O C ₆ H ₄ OH · CO ₃ K ₂
213.	"	+ Ca Cl ₂	CH ₈ O C ₆ H ₄ OH · Ca Cl ₂
349.	"	+Fenchon	Additionsverbindung
213.	"	+ Natriumacetat .	CH ₃ O C ₆ H ₄ OH·CH ₃ CO ₂ Na
309.	"	- Hexamethylentetramin	Keine Additionsverbindung
319.	"	+ Alloxan	$CH_3OC_6H_4OH \cdot CO(NH)_2(CO)_3 \cdot H_2O$
236.		$n+K_2CO_3$	2 CH ₃ OC ₆ H ₄ OH · CO ₃ K ₂
213.	Kreosol	+CaCl ₂	CH ₃ OC ₆ H ₃ (CH ₃) OH · Ca Cl ₂
234.	"	+ K ₂ CO ₃	2 CH ₃ OC ₆ H ₃ (CH ₃) OH · CO ₃ K ₂
235.	Eugenol	+ K ₂ CO ₃	C ₆ H ₃ (CH ₂ CH CH ₂) (OCH ₃) OH · CO ₃ K ₂
383.	"	+ Fenchon	Additionsverbindung?
384.	,,	+ Natriumacetat .	Additionsverbindung
385.	,,	- Hexamethylentetramin	$C_{10}H_{10}O_2 \cdot C_6H_{12}N_4$
247.	Methyleugenol	+Mercuriacetat	$C_{6} H_{3} (CH_{2} CH CH_{2}) (OCH_{3})_{2} \cdot (OH) (Hg CH_{3} CO_{2})$
386.		+Pikrinsäure	Keine Additionsverbindung
247.	Methylisoeugenol	+ Mercuriacetat	Oxydationsreaktion
386.	"	+Pikrinsäure	$C_6H_3(CHCHCH_3)(OCH_3)_2 \cdot C_6H_2(NO_2)_3OH$
247.	Safrol	+ Mercuriacetat	CH ₂ O ₂ C ₆ H ₃ (CH ₂ CH CH ₂) · (OH) (Hg CH ₃ CO ₂)
386.	"	+Pikrinsäure	Keine Additionsverbindung
387, 291.		+HCI	C ₆ H ₃ (O ₂ CH ₂)CHCHCH ₃ ·HCI
291.	,,	+ Methylalkohol .	C ₁₀ H ₁₀ O ₂ ·CH ₃ OH
291.	,,	+ Äthylalkohol	$C_{10}H_{10}O_2 \cdot C_2H_5OH$
291.	-11	+Amylalkohol	$C_{10}H_{10}O_2 \cdot C_5H_{11}OH$
247.	,,	+ Mercuriacetat	Oxydationsreaktion
386.	,,	+Pikrinsäure	$C_{10}H_{10}O_2 \cdot C_6H_2(NO_2)_3OH$
374.	Pyrogallol	+Vanillin	C ₆ H ₃ (OH) ₃ Kondensationsverbindung
328.	",	+ Campher	Additionsverbindung
388.	"	+ Cineol	$C_6H_3(OH)_3 \cdot C_{10}H_{18}O$
-	,,	+NH ₃	C ₆ H ₃ (OH) ₃ · NH ₃
389.	"	- Hexamethylentetramin	C ₆ H ₃ (OH) ₃ ·C ₆ H ₁₂ N ₄
323.	",	+Alloxan	$C_6 H_3 (OH)_3 \cdot CO (NH)_2 (CO)_3 \cdot 2 H_2 O$
390.	"	+Anilin	C ₆ H ₃ (OH) ₃ ·2 C ₆ H ₅ NH ₂
391.	"	+ Toluidin	C ₆ H ₃ (OH) ₃ keine Additionsverbindung?
-		+Antipyrin	$C_6H_3(OH)_3 \cdot C_6H_5N \langle \begin{array}{c} COCH \\ N(CH_3) \end{array} \rangle CCH_8$
392.	,,	+Chinolin	C ₆ H ₃ (OH) ₃ · 3 C ₉ H ₇ N
374.	Phloroglucin	+Vanillin	C ₆ H ₃ (OH) ₃ Kondensationsverbindung
393.	"	- Hexamethylentetramin	C ₆ H ₃ (OH) ₃ · C ₆ H ₁₂ N ₄
316.	"	+ Alloxan	C ₀ H ₀ O ₃ · CO (NH) ₂ (CO) ₃ ; C ₀ H ₀ O ₃ · 3 CO (NH) ₂ (CO) ₃
10-	"	+Antipyrin	11(0113)
316.	Oxyhydrochinon	The second second second	$C_6H_3(OH)_3 \cdot CO(NH)_2(CO)_3$
386.	Asaron	+Pikrinsäure	
247.	Apiol	+Mercuriacetat	C ₁₂ H ₁₄ O ₄ Additionsverbindung

-		
386.	Apiol + Pikrinsäure	. Keine Additionsverbindung
247.	Jeogniol Manusiants	. C ₁₂ H ₁₄ O ₄ Oxydationsreaktion
386.	Pikrinsäure	$C_{12}H_{14}O_4 \cdot C_6H_2(NO_2)_3OH$
386.	Dillanial	
386.	Dillisoaniol	Keine Additionsverbindung
254.	8-Nanhthol Banzol	
394, 328.	and B-Naphthal - Camphan	- I maintenance of the state of
395.	F	The state of a state of a state of
396.	10: 1	- I and the state of the state
397.	8 Nanhthal Dileina in	-101
324.	- Nastatat 1 100	. C ₁₀ H ₇ OH · C ₆ H ₂ (NO ₂) ₈ OH
398.		-10-11-1-00 (1111/2(00))
398.		
399.	" + p-Toluidin	- I - I - I - I - I - I - I - I - I - I
400.		The state of the s
401.	,, + Diphenylamin .	- Contract of the contract of
401.	Benzochinon	$C_{10}H_7OH \cdot C_6H_4O_2$; $2C_{10}H_7OH \cdot C_6H_4O_2$
401.	β-Naphthol + "	
	a-Naphthol + a-Naphthochinon	
401.	,, + Phenanthrenchinon	Additionsverbindung
	10. Additionsverbing	dungen von Aldehyden.
19, 26.	Aldehyde + SO ₂ und deren Salze	
307.	,, + Glycerin	Keine Additionsverbindung
307.	" + Erythrit	
307.	,, + Mannit	do. do.
402.	- Glykosa Pohrzuskar	
	Milchzucker	
27.	Formaldehyd + HNaSO ₃	CH ₂ (OH)SO ₃ Na·H ₂ O
403.	⊥ HNa SO ⊥ Anilin	
19.	1 Na SO	Anhydroverbindung 2Mol.SO ₃ Na ₂ +1 Mol. HCHO Kondensation?
124.	_ H DO	
242.	Dinon	Additionsverbindung
242.	⊥ Limonen	do.
242.	Dinenten	do.
243.	Sacquitarnana	A 1 11/1 1 1
243.	1 Carvonhyllan	C ₁₅ H ₂₄ ·HCHO
243.	Cadinan	
243.	Clayen	C ₁₅ H ₂₄ ·HCHO
404.	Diporidin	C ₁₅ H ₂₄ ·HCHO
28.	Anatoldaland Allouth to the	HCHO+C5H ₁₀ NH
88.		CH ₈ CH(OH)SO ₈ Na· ¹ / ₂ H ₂ O
96.	$+SO_2 + Anilin$	CH ₃ CHO · SO ₂ · C ₆ H ₅ NH ₂
124.	,, $+ \text{HNaSO}_3 + \text{Anilin}$	Kondensation Keine Additionsverbindung
402.	$+H_3PO_4$	Keine Additionsverbindung
147.	+ Glykose Paraldehyd $+$ H ₄ Fe (CN) ₈	Kondensation (CH ₈ CHO) ₈ Additionsverbindung
14/		

105	Paraldehyd + Chloral	CH ₈ CH(OH)CH(CHO)CH(OH)CCl ₈
405.	+ Butylchloral	CH ₃ CH (OH) CH (CHO) CH (OH) CCl ₂ CH Cl CH ₃
405.	" + Glykose	CH ₃ CHO · C ₆ H ₁₂ O ₆
402.	"	CH2 CICHO · SO3 NaH · 2·H2 O
29.	Chloracetaldehyd + HNaSO ₈ · · · + Wasser · · · ·	2 CH ₂ CI CHO · H ₂ O
14.		CH2 CICHO · C2 H5 OH
292.	1100	CH Cl ₂ CHO · H ₂ O
15.	Dichloracetaldehyd + Wasser	CCl ₃ CHO · H ₂ O; 2 CCl ₃ CHO · H ₂ O; CCl ₃ CHO · 7 H ₂ O
16.	Chloral + Wasser	Additionsverbindungen
30.	" + Alkalibisulfite · ·	Additionsverbindingen
287.	" + Alkohole	V Additionsverbindungen
287.	" + arom. Alkohole	Keine Additionsverbindungen
290.	,, + Methylalkohol	CCI ₃ CHO·CH ₃ OH
293.	+ Äthylalkohol	CCI ₃ CHO·C ₂ H ₅ OH
294.	", + ", + Campher	CCI ₃ CHO · C ₂ H ₅ OH · C ₁₀ H ₁₆ O ?
406.	, + Chloräthylalkohol	CCI ₃ CHO·CH ₂ C1CH ₂ OH
304.	" + Amylenhydrat	CCI ₃ CHO · C ₂ H ₅ C(CH ₃) ₂ OH
302.	Isoamylalkohol	CCI ₃ CHO · C ₅ H ₁₁ OH
305.	Cetylalkohol	CCI ₃ CHO·C ₁₆ H ₃₃ OH
287.	Allylalkohol	CCI ₃ CHO · C ₃ H ₅ OH
	Äthylenglykol	CCI ₃ CHO · C ₂ H ₄ (OH) ₂
306.	Clycarin	CCl ₃ CHO Additionsverbindung
287.	- Horneol	CCI ₈ CHO·C ₁₀ H ₁₇ OH
310.	1)	CCI ₃ CHO · C ₁₀ H ₁₇ OH
312.	" + Isoborneol	Additionsverbindung
355.	" + Anethol	CH ₃ CH(OH) CH(CHO) CH(OH) CCl ₃
405.	" + Paraldehyd	Keine Additionsverbindung
402.	" + Glykose	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
355.	" + Citral	
355.	" + Citronellal	do.
407.	" + Aceton	
408.	" + " + Chloroform	CCI _s CHO·(CH _s) ₂ CO·CCI _s H
407.	,, + Acetophenon	
409.	, + Campher	CCI ₃ CHO · C ₁₀ H ₁₆ O · H ₂ O
410.	" + Fenchon	
411.	" + Natriumacetat	CCl ₃ CHO · CH ₃ CO ₂ Na
287.	" + Äthylglykolat	CCl ₃ CHO Additionsverbindung
287.	" + Äthyllactat	CCI ₃ CHO Additionsverbindung
*287.	" + Äthyltartrat	
412.	" + Amine	
412.	Anilin	Additionsverbindung
88, 96.	190.	THE PART OF THE PA
412.	n Toluidin	
412.	l n Nitroppilin	
417.	Havamathulantateamin	
418.	Chinalin	CCI ₃ CHO · C ₉ H ₇ N
	Coffe?n	COLCUO CH NO OHO
419.	" + Coffeïn	
413.	, + Formamid	. CCI ₈ CHO·H CONH ₂

_		
414.	Chloral + Acetamid	CCI ₃ CHO · CH ₃ CO NH ₂
414.	Harnstoff	AND AND A SECOND
421.	+ Harnstoff + Bromal.	CCI ₈ CHO·CO (NH ₂) ₂ ·CBr ₈ CHO
415.	+ Äthylurethan	CCl ₃ CHO · CO (NH ₂) OC ₂ H ₅ ; CCl ₃ CH (OH) NH CO ₂ C ₂ H ₅
414.	+ Benzamid	CCI ₈ CHO · C ₆ H ₅ CO NH ₂
416.	,, + Acetoxim	CCI ₃ CHO · (CH ₃) ₂ CNOH
420.	,, + Acetophenonoxim .	001 0110 1011
416.	+ Acetaldoxim	Additionsverbindung
416.	,, + Campheroxim	do.
416.	,, + Benzaldoxim	do.
416.	" + Nitroso-β-Naphthol .	do.
422.	,, + Schwefelwasserstoff	2 CCI ₃ CHO·H ₂ S
17.	Bromal + Wasser	CBr ₃ CHO·H ₂ O
296.	,, + Äthylalkohol	CBr ₃ CHO · C₂H₅ OH
311.	Borneol	CBr ₈ CHO · C ₁₁ H ₁₇ OH
312.	,, + Isoborneol	CBr ₃ CHO · C ₁₀ H ₁₇ OH
415.	,, + Äthylurethan	CBr ₈ CH(OH)NHCO ₂ C ₂ H ₅
-	Propionaldehyd + HNa SO ₈	C ₂ H ₅ CH(OH)SO ₃ Na
96.	,, + Anilin + HNaSO ₃ .	C ₂ H ₅ CHO Kondensationsverbindung
96.	$"$ + $"$ + SO_2	C ₂ H ₅ CHO · 2 C ₆ H ₅ NH ₂ · SO ₂
402.	" + Glykose	C ₂ H ₅ CHO Additionsverbindung
402.	" + Rohrzucker	C ₂ H ₅ CHO do.
297.	α, β -Dichlorpropionaldehyd + Äthylalk.	CH2 CI CH CI CHO · C2 H5 OH
-	n-Butyraldehyd + HNaSO ₃	CH ₃ (CH ₂) ₂ CH (OH) SO ₃ Na
402.	" + Glykose	C ₃ H ₇ CHO Additionsverbindung
402.	" + Rohrzucker	C ₃ H ₇ CHO do.
-	Isobutyraldehyd+HNaSO ₃	(CH ₈) ₂ CH CHO · SO ₈ Na H
96.	" $+$ Anilin $+$ SO ₂	Kondensationsverbindung
295.	Butylchloral + Äthylalkohol	CH ₃ CH Cl CCl ₂ CHO · C ₂ H ₅ OH
405.	" + Paraldehyd	CH _s CH (OH) CH (CHO) CH (OH) CCl ₂ CH Cl CH _s
415.	" + Äthylurethan	C ₄ H ₅ Cl ₈ (OH)NHCO ₂ C ₂ H ₅
301.	Isobutylbromal + Isobutylalkohol	$C_3H_4Br_3CHO\cdot C_4H_{10}O$
124.	Valeraldehyd + H ₃ PO ₄	C4H9CHO keine Additionsverbindung
402.	,, + Glykose	C ₄ H ₉ CHO Additionsverbindung
402.	" + Rohrzucker	C ₄ H ₉ CHO do.
88.	+ Amylamin $+$ SO ₃ H ₂ .	C ₄ H ₉ CHO · C ₅ H ₁₁ NH ₂ · SO ₈ H ₂
88, 97.	,, $+$ Anilin $+$ SO ₂ .	Additionsverbindung
	Isovaleraldehyd + HNaSO ₃	(CH ₃) ₂ CH CH ₂ CHO · SO ₃ Na H
97, 98.	", $+$ Anilin $+$ SO ₂	C ₄ H ₉ CHO · 2 C ₆ H ₅ NH ₂ · SO ₂
97, 98.	" + " +H ₂ SO ₃	C ₄ H ₇ CHO · 2 C ₆ H ₅ NH ₂ · SO ₈ H ₂
-	Methylpropylacetaldehyd + HNaSO ₃ .	CH ₃ CH ₂ CH ₂ CH (CH ₃) CHO · SO ₃ Na H
-	Dibrommethylpropylacetaldehyd + ,,	CH ₈ CH ₂ CH Br CBr (CH ₈) CHO · SO ₈ Na H
8.	Önanthol + Wasser	2 CH ₈ (CH ₂) ₅ CHO · H ₂ O
- 00	" +HNaSO ₈	$C_7H_{14}O \cdot SO_8NaH \cdot H_2O$
88.	" + Amylamin + SO ₃ H ₂	C ₇ H ₁₄ O·C ₅ H ₁₁ NH ₂ ·SO ₈ H ₂
94.	" + Amidoessigsäure + "	C ₇ H ₁₄ O·CH ₂ NH ₂ CO ₂ H·SO ₃ H ₂

-		
100.	Önanthol + Anilin + SO ₂	C ₇ H ₁₄ O · 2 C ₆ H ₅ NH ₂ · SO ₂
99.	LH SO.	C7H14O-2C6H5NH2-SO8H2
94.	m Amidohanzoesäure SO.	$C_7H_{14}O \cdot C_6H_4(NH_2)CO_2H \cdot SO_3H_2$
10000000	I H DO	Keine Additionsverbindung
124.	HNO	Additionsverbindung
1.17	H Fa(CN)	Keine Additionsverbindung
147.	H Fa(CN)	Additionsverbindung
147.	Dehemoker	CH ₃ (CH ₂) ₅ CHO · C ₁₂ H ₂₂ O ₁₁
402.	Anilin	CH ₃ (CH ₂) ₅ CHO · C ₆ H ₅ NH ₂
423.	" Vulidin	CH ₃ (CH ₂) ₅ CHO Additionsverbindung
424. 423.	Nanhthylamin	CH ₃ (CH ₂) ₅ CHO do.
STATE OF THE PARTY	Octylaldehyd +HNaSO ₃	CH3 (CH2)6 CHO · SO3 NaH
-	**	C4H9CH(C2H5)CHO·SO3NaH
-		C ₈ H ₁₇ CHO·SO ₃ NaH
	Nonylaldehyd $+$,, $+$ Na ₂ SO ₃	Kondensation?
19.		C9H19CHO·SO3NaH
	Decylaldehyd $+ \text{HNaSO}_3 + \text{Na}_2 \text{SO}_3$	Kondensation?
19.	Isocaprinaldehyd + HNa SO ₃	C ₉ H ₁₉ CHO keine Additionsverbindung
		C ₁₄ H ₂₈ O·SO ₃ NaH
ME.	Myristinaldehyd + "	C ₁₆ H ₃₂ O·SO ₃ NaH
10 26	Palmitinaldehyd + ,,	0161.32
19, 26.	Ungesättigte aliphatische Aldehyde +SO ₂ oder deren Salze	the state of the state of the state of
88.	$+SO_2$ oder deren Saize $+$ Anilin $+SO_2$.	Zersetzung
31.	1101.00	CH ₃ CH(SO ₃ Na) CH(OH) SO ₃ Na
32.		C_2H_5 CHC (CH ₃) CHO Additionsverbdg.
33.		CH ₃ (CH) ₂ CHO·SO ₃ NaH
33.	LHSO	CH ₃ (CH) ₂ CHO·SO ₃ H ₂
34.	Dichlorcrotonaldehyd + HNa SO ₃	
36.	Tiglinaldehyd + H ₂ SO ₃	
36.		THE COLUMN THE COLUMN COLUMN CO. II
35.	" + " · · · · · · · · · · · · · · · · ·	
37.	Tetramethylenaldehyd + "	CH ₂ CH ₂ CH CHO · SO ₃ Na H
-	«-Diisobutylenaldehyd+ "	
-	Diisovaleraldehyd + Alkalibisulfite	
38.	Diönanthylenaldehyd + HNa SO ₃	
-	Ölsäurealdehyd	
	Triönanthylenaldehyd + HNaSO ₃	
39.	Citronellal + "	
39.	+ ,	
39.	+ ,	
39, 19.		
355.	+ Chloral	
40.	Citral + HNa SO ₃	C ₉ H ₁₅ CH(OH)SO ₃ Na labil
40.	+ ,	C ₉ H ₁₇ (SO ₃ Na) ₂ CHO stabil
40.	+ "	C ₉ H ₁₇ (SO ₃ Na) ₂ CHO labil

40.	Citral	+ HNaSO ₃ :	C ₉ H ₁₆ (SO ₃ Na)CHO labil
40, 19.	,,	+ Na ₂ SO ₃	C ₉ H ₁₇ (SO ₃ Na) ₂ CHO + 2 Na OH
355.		+ Chloral	Additionsverbindung
42.	Glyoxal	+ Alkalibisulfite	(CHO) ₂ ·2 SO ₈ Na H
402.	,,	+ Glykose	Additionsverbindung
402.	,,	+ Rohrzucker	do.
42.	Methylglyon	cal + Alkalibisulfite	CH ₂ (CHO) ₂ ·2 SO ₃ Na H
-	Furfurol	+HNaSO ₃	C4H3OCHO·SO3NaH
402.	"	+ Glykose	$C_5H_4O_2 \cdot C_6H_{12}O_6$
402.	"	+ Rohrzucker	C ₅ H ₄ O ₂ · C ₁₂ H ₂₂ O ₁₁
424.	"	+ m-Amidobenzoesäure.	C ₅ H ₄ O ₂ · C ₆ H ₄ (NH ₂) CO ₂ H
424.	,,	+ Äthylamidobenzoat .	Additionsverbindung
424.	"	+ Amidocuminsäure	do.
196.	,,	+ Anilin + HCl	C ₅ H ₄ O ₂ · 2 C ₆ H ₅ NH ₂ · HCl
424.	,,	+ m-Nitranilin	C ₅ H ₄ O ₂ · C ₆ H ₄ (NO ₂) NH ₂
424.	,,	+ Nitranilin + HCl	C ₅ H ₄ O ₂ ·C ₆ H ₄ (NO ₂)NH ₂ ·HCI
424.	"	+ Diphenylamin	C ₅ H ₄ O ₂ ·2 (C ₆ H ₅) ₂ NH
424.		+ " +HCI.	C ₅ H ₄ O ₂ · 2 (C ₆ H ₅) ₂ NH · HCl
-	Pentanonal	+ HNa SO₃	CH ₃ CO (CH ₂) ₂ CHO Additionsverbindg.
41.	Phellandral	+ "	C ₁₀ H ₁₆ O Additionsverbindung
43.	Glykose	+ "	C ₆ H ₁₂ O ₆ · SO ₃ NaH
402.	" ode	er Rohrzucker + Aldehyde	
		oder Ketone	THE RESERVE OF THE PARTY OF THE
402.	,,	+Paraldehyd	C ₆ H ₁₂ O ₆ · CH ₃ CHO
402.	"	+ Chloralhydrat	Keine Additionsverbindung
402.	"	+ Propionaldehyd	Additionsverbindung
402.	"	+ Butyraldehyd	do.
402.	,,	+ Valeraldehyd	do.
402.	,,	+ Furfurol	$C_6H_{12}O_6 \cdot C_5H_4O_2$
402.	,,	+ Glyoxal	Additionsverbindung
402.	9	+ Benzaldehyd	$C_6H_{12}O_6\cdot C_6H_5$ CHO
402.	"	+ Anisaldehyd	Additionsverbindung
402.	"	+ Zimtaldehyd	do.
402.	"	+ Cuminaldehyd	$C_6 H_{12} O_6 \cdot C_3 H_7 C_6 H_4 CHO$
402.	"	+ Salicylaldehyd	C ₆ H ₁₂ O ₆ ·HOC ₆ H ₄ CHO
402.	"	+ Aceton	Additionsverbindung
402. 402.	"	+ Methylnonylketon	C ₆ H ₁₂ O ₆ ·CH ₈ COC ₉ H ₁₉
402.	"	+ Acetessigester	C ₆ H ₁₂ O ₆ · CH ₃ CO CH ₂ CO ₂ C ₂ H ₅
402.	"	+ Campher	C ₆ H ₁₂ O ₆ · C ₁₀ H ₁₆ O
402.	Rohrzucker	+ Chloralhydrat	Additionsverbindung? Keine Additionsverbindung
402.		10 1 111 1	Additionsverbindung
402.	"	1 0 4 11 4 1	do.
402.	"	+ Valeraldehyd	do.
402.	"	+ Önanthol	C ₁₂ H ₂₂ O ₁₁ · CH ₃ (CH ₂) ₅ CHO
402.	"	+ Furfurol	C ₁₂ H ₂₂ O ₁₁ ·C ₄ H ₃ OCHO
1001	"	Turturor	CHITIZON CTINOCHO

		A LULYbindung
402.	Rohrzucker + Glyoxal	Additionsverbindung
402.	, + Anisaldehyd ·	do.
402.	+ Zimtaldehyd	do.
402.	+ Aceton · · · · ·	do.
402.	+ Campher	$C_{12}H_{22}O_{11}\cdot C_{10}H_{16}O$
402.	→ Alloxan	Additionsverbindung?
402.	Milchzucker + Aldehyde oder Ketone	Keine Additionsverbindung
88.	Helicin + HNaSO ₃ ·	CHO(CHOH) ₄ CH ₂ OC ₆ H ₄ CHO·SO ₈ NaH
88.	→ Amidoessigsäure + SO ₂	Additionsverbindung
88.	Amidocanronsäure + H ₉ SO ₃	C ₁₃ H ₁₆ O ₇ · C ₅ H ₁₀ (NH ₂) CO ₂ H · SO ₃ H ₂
88.	⊥ m-Amidobenzoesäure .	C ₁₃ H ₁₆ O ₇ · C ₆ H ₄ NH ₂ CO ₂ H
88.	Amidocuminsäure	C ₁₃ H ₁₆ O ₇ · C ₃ H ₇ C ₆ H ₃ (NH ₂) CO ₂ H
88.	→ Amidosalicvlsäure 1:2:3	$C_{13}H_{16}O_7 \cdot (CO_2H)C_6H_3(OH)NH_2$
88.	"	$C_{13}H_{16}O_7 \cdot (CO_2H)C_6H_3(OH)NH_2$
45.	Benzaldehyd + SO ₂ und deren Salze	
44.		C ₆ H ₅ CHO Additionsverbindung
45.	⊥ HN2 SO.	C ₆ H ₅ CH (OH) SO ₃ Na · 1/2 H ₂ O
19.		1 Mol. + 1 Mol., Kondensation?
125.		C ₆ H ₅ CHO·PO ₄ H ₃
159.	_ HNO.	C ₆ H ₅ CHO·NO ₃ H
147.	H. Fe(CN)	Additionsverbindung
147.	H. Fe(CN)	do.
147.		do.
220.	+CaCl.	2 C ₆ H ₅ CHO · 3 Ca Cl ₂
327.	- Phenol	Keine Additionsverbindung
327.	_ Pesorcin	do. do.
402.	- Glykose	C ₆ H ₅ CHO · C ₆ H ₁₂ O ₆
89.	Athylendiamin + SO	C ₂ H ₅ CHO · C ₂ H ₄ (NH ₂) ₂ · SO ₂
86.	+ Propylamin + SO ₀	C ₆ H ₅ CHO · C ₈ H ₇ NH ₂ · SO ₂
93.	→ Trimethylendiamin + SO.	
87.	+ Isobutylamin + SO ₂ .	C ₆ H ₅ CHO·C ₄ H ₉ NH ₂ ·SO ₂
88.	Amylamin + H. SO.	C ₆ H ₅ CHO · C ₅ H ₁₁ NH ₂ · SO ₃ H ₂
94.	Amidoesside + H. SO.	C ₆ H ₅ CHO·CH ₂ NH ₂ CO ₂ H·SO ₃ H ₂
425.		
94.	" + H-SO	
197.	" Anilin L HCI	C ₆ H ₅ CHO·C ₆ H ₅ NH ₂ ·HCl
105.		
105.	TH.50	C6 H5 CHO · 2 C6 H5 NH2 · SO3 H2
105.	1 " 1	A II OU O C II NIII CO II
101.	" + " + " · · · · · · · · · · · · · · ·	
102.		C ₆ H ₅ CHO · C ₆ H ₅ NH ₂ · C ₄ H ₉ NH ₂ · SO ₂
103.	" " " " " " " " " " " " " " " " " " "	C ₆ H ₅ CHO · C ₆ H ₅ NH ₂ · C ₅ H ₁₁ NH ₂ · SO ₂
		C ₆ H ₅ CHO · C ₆ H ₅ NH ₂ · C ₁₀ H ₇ NH ₂ · SO ₂
106. 108.	" + "+α-Naphthylamin+"	
	" + p-Toluidin + SO ₂	
111.	+2-Amino-1,3,5-trimethyl-	
	benzol + SO ₂	C6115 C110 - 2 (C113/3 C611211112 - 302

_		
112.	Benzaldehyd + 5-Amino-1,2,4-trimethyl-	
	$benzol + SO_2 \dots$	C ₆ H ₅ CHO · 2 (CH ₃) ₃ C ₆ H ₂ NH ₂ · SO ₂
104.	,, + asym. m-Xylidin + SO ₂	C ₆ H ₅ CHO · 2 (CH ₃) ₂ C ₆ H ₂ NH ₂ · SO ₂ C ₆ H ₅ CHO · 2 (CH ₃) ₂ C ₆ H ₃ NH ₂ · SO ₂
114.	,, +Pseudocumidin + ,,	C ₆ H ₅ CHO · 2 (CH ₃) ₃ C ₆ H ₂ NH ₂ · SO ₂
116.	" + p-Amidophenol + "	C ₆ H ₅ CHO · C ₆ H ₄ (NH ₂) OH · SO ₂
119.	" + «-Naphthylamin + "	C ₆ H ₅ CHO · 2 C ₁₀ H ₇ NH ₂ · SO ₂
120.	" + " + H ₂ SO ₃	C ₆ H ₅ CHO·C ₁₀ H ₇ NH ₂ ·SO ₃ H ₂
121.	$+\beta$ -Naphthylamin $+SO_2$	C ₆ H ₅ CHO·C ₁₀ H ₇ NH ₂ ·SO ₂
426.	" + Naphthenthiol	C ₆ H ₅ CHO · C ₁₀ H ₇ SH
-	Nitrobenzaldehyd + HNaSO ₃	C ₆ H ₄ (NO ₂)CHO Additionsverbindung
44.	o-Nitrobenzaldehyd + SO ₂	Additionsverbindung
96.	m-Nitrobenzaldehyd + Anilin + SO ₂ .	C ₆ H ₄ (NO ₂)CHO·C ₆ H ₅ NH ₂ ·SO ₂
-	Phenylacetaldehyd + HNaSO ₃	C ₆ H ₅ CH ₂ CH(OH)SO ₃ Na
-	Hydrozimtaldehyd + "	C ₆ H ₅ CH ₂ CH ₂ CH(OH)SO ₃ Na
46.	Zimtaldehyd + H ₂ SO ₃	C ₆ H ₅ CHCHCH(OH)SO ₃ H
46.	, + ,	C ₆ H ₅ CH(SO ₃ H)CH ₂ CH(OH)SO ₃ H
46.	,, ⊢HNaSO₃	C ₆ H ₅ CH CH (OH) SO ₃ Na
46.	+ ,	C ₆ H ₅ CH(SO ₃ Na)CH ₂ CHO
46.	+ ,	C ₆ H ₅ CH (SO ₃ Na) CH ₂ CH (OH) SO ₃ Na · 2 H ₂ O
46, 19.	$+ Na_2SO_3 \dots$	C ₆ H ₅ CH (SO ₃ Na) CH ₂ CH (OH) SO ₃ Na + 2 Na OH
124.	,, + H ₃ PO ₄	Keine Additionsverbindung
184.	,, +HCI	C ₆ H ₅ C ₂ H ₂ CHO·HCl
160.	,, +HNO ₃	C ₆ H ₅ C ₂ H ₂ CHO·HNO ₃
360.	,, + Hydrochinon	2 C ₆ H ₅ C ₂ H ₂ CHO · C ₆ H ₄ (OH) ₂
402.	,, + Glykose	Additionsverbindung
402.	+ Rohrzucker	do.
448.	,, + Oxalsäure	2 C ₆ H ₅ CH CH CHO · (COOH) ₂
118.	" + p-Amidophenol + SO ₂	$C_6H_5C_2H_2CHO\cdot C_6H_4(NH_2)OH\cdot SO_2$
91.	" + Athylendiamin + "	$C_6 H_5 C_2 H_2 CHO \cdot C_2 H_4 (NH_2)_2 \cdot SO_2$
93.	" + Trimethylendiamin+ "	$C_6 H_5 C_2 H_2 CHO \cdot (CH_2)_3 (NH_2)_2 \cdot SO_2$
115.	,, +Pseudocumidin + ,,	C ₆ H ₅ C ₂ H ₂ CHO · 2 (CH ₃) ₈ C ₆ H ₂ NH ₂ · SO ₂₅
-	Nitrozimtaldehyd + HNaSO ₃	C ₆ H ₄ (NO ₂) C ₂ H ₂ CHO · SO ₈ Na H
-	Methylzimtaldehyd + "	C ₆ H ₅ CH C (CH ₃) CHO · SO ₃ Na H
-	Cuminaldehyd + ,,	(CH ₃) ₂ CH C ₆ H ₄ CH (OH) SO ₃ Na
19.	$+ Na_2SO_3 \dots$	1 Mol. + 1 Mol., Kondensation
124.	,, + H ₃ PO ₄	Keine Additionsverbindung
402.	,, + Glykose	$C_{10}H_{12}O \cdot C_6H_{12}O_6$
122.	,, $+\alpha$ -Naphthylamin $+$ H ₂ SO ₈	Additionsverbindung
47.	Dihydrocuminaldehyd + HNaSO ₈ .	C ₉ H ₁₃ CHO Additionsverbindung
-	Benzoylpropionaldehyd + " .	C ₆ H ₅ COCH ₂ CH ₂ CHO kelne Additionsybdge
-	Athylphenylacetaldehyd + " .	C ₂ H ₅ C ₆ H ₄ CH ₂ CHO Additionsverbindg
_	Diphenyltolylaldehyd ,, .	$(C_6 H_5)_2$ CH CHO do. $(C_6 H_5)_2$ CH $C_6 H_4$ CH (OH) SO ₃ Na
	Diphenyltolylaldehyd ,, .	$C_{10}H_7CH(OH)SO_3Na$
124.	Naphthaldehyd + "	C ₆ H ₄ (OH)CHO keine Additionsverbdgs.
48.	LHNa SO	C ₆ H ₄ (OH)CHO Refile Additions verbuggs C ₆ H ₄ (OH)CH(OH)SO ₈ Na
40.	" + TinasO ₃ . 1	Certif(Ori) Crif(Ori) SOeria

-		
	Salicylaldehyd + Glykose	C ₆ H ₄ (OH) CHO · C ₆ H ₁₂ O ₆
402.	+ Äthylendiamin + SO ₂	C ₆ H ₄ (OH) CHO · C ₂ H ₄ (NH ₂) ₂ · SO ₂
92.	+ Trimethylendiamin + ,,	C ₆ H ₄ (OH) CHO · (CH ₂) ₃ (NH ₂) ₂ · SO ₂
93.	+ Anilin · · · · ·	C ₆ H ₄ (OH)CHO·C ₆ H ₅ NH ₂
427.	" + Aniin	C ₆ H ₄ (OH) CHO · C ₆ H ₅ NH ₂ · HCI
199.	" + " + IICI	C ₆ H ₄ (OH)CHO·C ₆ H ₄ NH ₂ (OH)·SO ₂
118.	, + p-Amidophenol + SO ₂	Additionsverbindung
122.	+ α Naphthylamin + H ₂ SO ₃	C7 H6 O2 · C6 H7 N · SO2; C7 H6 O2 · 2 C6 H7 N · SO2
96, 98.	,, $+$ Anilin $+$ SO ₂	C7 H6 O2 · C6 H7 N · SO3 H2; C7 H6 O2 · 2 C6 H7 N · SO3 H2
98.	, + , + H ₂ SO ₃	C ₆ H ₃ Cl(OH)CHO Additionsverbindung
-	Chlorsalicylaldehyd + HNaSO ₃	$C_6H_3Br(OH)CHO$ do.
-	Bromsalicylaldehyd + " · · ·	$C_6H_3BI(OH)CHO$ do.
-	Nitrosalicylaldehyd + " · · ·	$C_6H_3(NO_2)(OH)CHO$ $C_6H_4(OH)CHO \cdot C_6H_5NH_2$
428.	p-Oxybenzaldehyd + Anilin	
198.	" + " + HCl .	C ₆ H ₄ (OH) CHO · C ₆ H ₅ NH ₂ · HCl
49.	Thymotinaldehyd + HNaSO ₃	CH ₃ C ₆ H ₂ [CH (CH ₃) ₂] (OH) CHO keine Additionsverbindg.
-	Anisaldehyd + SO ₂	CH ₃ OC ₆ H ₄ CHO Additionsverbindung
19.	$+ Na_2SO_3 \cdot \cdot \cdot \cdot \cdot$	1 Mol. + 1 Mol., Kondensation?
50.	$+ HNaSO_3$	CH ₃ OC ₆ H ₄ CHO Additionsverbindung
125.	$_{,,}$ $+ H_3PO_4$	C ₈ H ₈ O ₂ ·PO ₄ H ₃
402.	,, + Glykose	Additionsverbindung
402.	,, + Rohrzucker	do.
90.	", $+$ Äthylendiamin $+$ SO ₂ .	$C_8H_8O_2 \cdot C_2H_4(NH_2)_2 \cdot SO_2$
93.	,, +Trimethylendiamin+SO ₂	$C_8H_8O_2 \cdot (CH_2)_3(NH_2)_2 \cdot SO_2$
113.	" + asym. m-Xylidin + "	C ₈ H ₈ O ₂ ·2 (CH ₃) ₂ C ₆ H ₃ NH ₂ ·SO ₂
117.	" + p-Amidophenol	$C_8H_8O_2 \cdot C_6H_4(OH)NH_2 \cdot SO_2$
122.	+ α-Naphthylamin+H ₂ SO ₃	Additionsverbindung
	2,5-p-Dioxybenzaldehyd + HNaSO ₃ .	C ₆ H ₃ (OH) ₂ CHO Additionsverbindung
	Methyldioxybenzaldehyd+ " .	C ₆ H ₃ (OCH ₃)(OH) CHO Additions verbdg.
	Protocatechualdehyd + "	C ₆ H ₃ (OH) ₂ CHO do.
19.	$+ Na_2SO_3$	1 Mol. + 1 Mol., Kondensation?
_	2, 4-Resorcylaldehyd + HNa SO ₃ .	C ₆ H ₃ (OH) ₂ CHO Additionsverbindung
_	Methylresorcylaldehyd + "	C ₆ H ₃ (OCH ₃)(OH)CHO do.
	Orcylaldehyd + "	C ₆ H ₂ (CH ₃)(OH) ₂ CHO keine Additionsverbdg.
	Ferulaaldehyd + "	C ₆ H ₃ (OH) ₂ CH CH CHO Additions verbindung
	Piperonal + "	CH ₂ O ₂ C ₆ H ₃ CHO do.
153.	_H.SO.	2 C ₈ H ₆ O ₃ ·SO ₄ H ₂
	Vanillin + HNaSO ₃ .	C ₆ H ₃ (OH)(OCH ₃)CHO Additions verbdg.
19.	- Na. SO.	
	" + H ₃ PO ₄	The first the state of the stat
154.	" + H ₂ SO ₄	0110 00 11
	+ Pyrogallol .	
374.	+ Pyroganor . + Resorcin .	do.
374.		
374.	-Phloroglucin	CHI (OCH) (OH) CHO Additions and de
-	Isovanillin + HNaSO ₃ .	$C_6H_3(OCH_3)(OH)$ CHO Additions verbug. $C_6H_2(OH)_3CHO$ do.
4-	Pyrogallolaldehyd + " .	C6112 (O11)3 C110 do.
	the state of the s	

-	Apiolaldehyd + HNa SO ₃	(CH O) CH O CHOUS
_	Respreydialdehyd	(CH ₃ O) ₂ CH ₂ O ₂ C ₆ HCHO Additionsverb.
	"-U & Ovvicenhthelald-to-d	$C_6H_2(OH)_2(CHO)_2$ do.
	a.p.Oxyisophthalaidenyd + "	$C_6H_3(OH)(CHO)_2$ do.
	11. Additionsverbind	lungen von Ketonen.
		, and the same of
19.	Ketone + SO ₂ und deren Salze	
402.	" + Glycerin	Keine Additionsverbindung
402.	, + Erythrit	do. do.
402.	" + Mannit	do. do.
402.	" + Milchzucker	do. do.
402.	" + Glykose oder Rohrzucker.	Additionsverbindungen
51, 52.	Aceton + SO ₂ und deren Salze	(CH ₃) ₂ CO·SO ₂ ; (CH ₃) ₂ C(OH)SO ₃ Na
146.	" + H ₄ Fe(CN) ₆	(CH ₃) ₂ CO · Fe (CN) ₆ H ₄
221.	" + Ca Cl ₂	Additionsverbindung
237.	" +кон	
361.	Linder-ti-	(CH ₃) ₂ CO·KOH
407.	1 0111	(CH ₃) ₂ CO·C ₆ H ₄ (OH) ₂
429.		CH ₃ CO CH ₂ CH (OH) CCl ₃
408.	" + Butylchloral	CH ₃ CO CH ₂ CH(OH) CCl ₂ CHClCH ₃
402.	" + Chloral + Chloroform	(CH ₃) ₂ CO·CCI ₃ CHO·CCI ₃ H
	" + Glykose	Additionsverbindung
402.	" + Rohrzucker	do.
147.	", + Cineol + H_3 Fe (CN) ₆	$(CH_3)_2 CO \cdot 2 C_{10} H_{18} O \cdot Fe (CN)_6 H_3 \cdot 3 H_2 O$
247.	" + Mercurisulfat	(CH ₃) ₂ CO · 2 Hg SO ₄ · 3 H ₂ O ?
430.	" + Chloroform	(CH ₃) ₂ CO · 2 CCl ₃ H labil, flüssig
430.	,, + ,,	(CH ₃)₂ CO·CCl ₃ H stabil, flüssig
430.	, + ,	(CH ₃) ₂ CO·CCl ₃ H· ¹ / ₂ H ₂ O stabil, fest
85.	" $+NH_3+H_2SO_3$	(CH ₃) ₂ CO·SO ₃ NH ₄ H
88, 107.	" $+$ Anilin $+$ SO ₂	$(CH_3)_2 CO \cdot C_6H_5NH_2 \cdot SO_2$
110.	", $+$ Äthylanilin $+$ SO ₂	$(CH_3)_2 CO \cdot C_6 H_5 NH C_2 H_5 \cdot SO_2$
109.	" + Dimethylanilin + SO ₂	(CH ₃) ₂ CO · C ₆ H ₅ N (CH ₃) ₂ · SO ₂
110.	" + Äthenyltoluylenamidin + SO ₂	$(CH_3)_2CO \cdot CH_3C_6H_3 \stackrel{NH}{\sim} CCH_3 \cdot SO_2$
110.		(C113)2 CO. C113 C6113 N CC113. SO2
-	Methyläthylketon + HNaSO ₃ .	$CH_3C(OH)(SO_3Na)C_2H_5$
-	Diäthylketon + " .	$(C_2H_5)_2C(OH)SO_3Na$
147.	$+ H_3 Fe(CN)_6$.	Additionsverbindung
147.	$+ H_4 Fe(CN)_6$.	do.
-	Methylpropylketon + HNaSO ₃ .	CH ₃ CO C ₃ H ₇ Additionsverbindung
-	Methylisopropylketon + " .	CH ₃ COCH(CH ₃) ₂ do.
_	Äthylisopropylketon + " .	C ₂ H ₅ COCH(CH ₃) ₂ keine Additionsvbdg.
_	Methylbutylketon + " .	CH ₃ CO (CH ₂) ₃ CH ₃ Additionsverbindung
-	Methylisobutylketon + " .	CH ₃ CO CH ₂ CH (CH ₃) ₂ do.
-	Methylpseudobutylketon + "	CH ₃ COC(CH ₃) ₃ keine Additionsverbdg.
-	Methyl-n-Amylketon + " .	CH ₃ CO (CH ₂) ₄ CH ₃ Additions verbindung
-	Methylisoamylketon + " .	CH ₃ CO (CH ₂) ₂ CH (CH ₃) ₂ do.
_	Mathulacoudaamulloton	CH ₃ CO CH ₂ C (CH ₃) ₃ keine Additionsverbdg.
	Methylpseudoamylketon + "	and the same of th

	Methyl-a-Äthylpropylketon + HNa SO ₈ .	CH ₃ COCH(C ₂ H ₅) ₂ Additionsverbindung
	Dipropylketon + H ₄ Fe(CN) ₆	(C ₃ H ₇) ₂ CO Additionsverbindung
147.	+ H _s Fe(CN) ₆	Additionsverbindung
147.	" + HNaSO ₃ .	Keine Additionsverbindung
	Diisopropylketon + " ·	[(CH ₀) ₀ CH] ₀ CO keine Additionsverbdg.
-	Methylisopropylaceton + "	CH ₉ CO CH (CH ₃) CH (CH ₃) ₂ keineAdditionsv.
-	Äthyl-n-Amylketon + "	C. H. CO C. H. keine Additionsverbdg.
-	Methylhexylketon + "	CH ₂ CO C ₆ H ₁₃ Additionsverbindung
	Propylisobutylketon + "	CoHoCOCHoCH(CH3)2 keine Additionsverb.
-	Isoamylaceton + "	CH ₃ CO(CH ₂) ₃ CH(CH ₃) ₂ Additionsverb.
-	Methylheptylketon + "	CH ₂ CO C ₂ H ₁₅ ·SO ₃ NaH
-	Diisobutylketon + "	[(CH ₂) ₂ CH CH ₂] ₂ CO keineAdditionsverb.
	Methyl-n-oktylketon + "	CH ₂ CO C ₂ H ₁₂ Additions verbinding
-		C ₈ H ₇ COC ₆ H ₁₃ keine Additionsverbdg.
		(CH ₃) ₂ CH CO C ₆ H ₁₃ keine Additionsverb.
-		CH ₃ CO C ₉ H ₁₉ · SO ₃ Na H
-	Methylnonylketon + ,, - + Glykose .	CH ₃ CO C ₉ H ₁₉ · C ₆ H ₁₂ O ₆
402.	" 00	CH ₃ CO CH(C ₇ H ₁₅) ₂ Additions verbinding
	Diheptylaceton + HNa SU ₃ . Acetessigester + "	CO ₃ COCH ₂ CO ₂ C ₂ H ₅ do.
56.	+ Glykose .	$C_6H_{10}O_3 \cdot C_6H_{12}O_6$
402.	+ Carvon .	Additionsverbindung
431.	"+Methylcyclohexenon	do.
431.	"+Dibenzalaceton+Diäthylamin	do.
432.	"+Diphenylharnstoff	C ₆ H ₁₀ O ₃ ·CO (NHC ₆ H ₅) ₂
433.	Diacetylaceton + HCl	(CH ₃ COCH ₂) ₂ CO·CIH
161.	Mesityloxyd + SO ₂	(CH ₃) ₂ CCHCOCH ₃ Additionsverbindg.
54.	LHN2SO.	C6H10O·SO3NaH·H2O
55.	⊥H.Fe(CN)₀	Additionsverbindung
147.	H-Fe(CN)	do.
147.	Halogenwasserstoff	(CH ₃) ₂ CCHCOCH ₃ · ClH oder JH
252.	Allylaceton + HNa SO ₃	CH ₃ CO CH ₂ C ₃ H ₅ ·2 SO ₃ NaH
58. 59.	1450	CH3 (SO3H) C (OH) CH2C3H5; CH3CO CH2CH2CH (SO3H) CH3
57.	Äthylidenacetessigester + H ₃ SO ₃	CH ₃ COC(SO ₃ H)(CH ₂ CH ₃)CO ₂ C ₂ H ₅
61.	Phoron + SO ₂ · · · · ·	[(CH ₃) ₂ CCH] ₂ CO Additionsverbindung
60.	I HNaSO	C9H14O-2SO3NaH-21/2H2O
147.	H Fo(CN)	Additionsverbindung
252.	Halaganwaccaretoff	C9H14O·2 ClH oder 2 BrH
127.	Acetothienon + H ₃ PO ₄ · · · · ·	C ₄ H ₃ SCOCH ₃ ·PO ₄ H ₃
	The second secon	CH CH · · · · · · · · · · · · · · · · ·
63.	Adipinketon(Cyclopentanon)+HNaSO ₃	Keine Additionsverbindung
64.	Dichloradipinketon + "	
69.	Pimelinketon (Cyclohexanon) + "	$CH_2 \stackrel{(CH_2)_2}{\stackrel{(CH_3)_2}{\stackrel{(CH)}}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}}{\stackrel{(CH)}{\stackrel{(CH)}}{\stackrel{(CH)}{\stackrel{(CH)}}{\stackrel{(CH)}{\stackrel{(CH)}}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}{\stackrel{(CH)}}{\stackrel{(CH)}{\stackrel{(CH)}}{\stackrel{(CH)}}{\stackrel{(CH)}}{\stackrel{(CH)}}{\stackrel{(CH)}}{\stackrel{(CH)}}{$
-	Methylcyclohexanon + "	$CH_3 CH < (CH_2)_2 < CO$ Additionsverbdg.
147.	,, + H ₄ Fe(CN) ₆	Additionsverbindung
		12*

	1	
147.	Methylcyclohexanon + H ₈ Fe(CN) ₆ .	Additionsverbindung
188.	, +HCI	
-	Dimethylcyclohexanon + HNaSOs .	
62.	Isophoron (Trimethylcyclohexenon) + H ₂ SO ₃	
65.	Suberon (Cycloheptanon) + HNaSO ₃ .	CH ₂ CH ₂ CH ₂ CO Additions verbindg.
147.	" + H ₄ Fe(CN) ₆ .	Additionsverbindung
147.	" + H ₃ Fe(CN) ₆ .	do.
-	Cyclooctanon + HNa SO ₈ .	(011)
68.	Methylcyclopentenon + " .	$CH_2 CH_2$ $CH = C(CH_3)$ $C OH$ $SO_3 Na$ labil
68.		CH ₂ CH ₃ SO ₃ Na
	, + , .	CH ₂ CH ₂ CH ₂ —C(SO ₃ Na)(CH ₃) CO stabil
431.	Methylcyclohexenon + Acetessigester	CH ₃ C CH CH ₂ CO CH ₂ Additionsverbdg.
67.	+ HNa SO ₃ .	CH CO / STEETHAM TO
66.	Dimethylcyclohexenon + SO ₃ H ₂	CO ₂ CH (CH ₃)
53.	Methylheptenon + HNaSO ₃	CH ₃ CO CH ₂ CH ₂ CH C(CH ₃) ₂ · SO ₃ Na H
147.	,, + Na ₂ SO ₃	Keine Additionsverbindung
147.	p-Diketohexamethylen + H ₄ Fe(CN) ₆ .	Additionsverbindung
151.	Dimethylpyron $+ H_4 Fe(CN)_6$ $+ H_3 Fe(CN)_6$	OC ₄ H ₂ (CH ₃) ₂ CO Additionsverbindung
147.	LH Co(CN)	Additionsverbindung do.
185.	,, + HCl, HBr, HJ.	do.
161.	,, +HNO ₃	C ₇ H ₈ O ₂ ·NO ₃ H
147.	" + Phosphorwolframs.	Additionsverbindung
161.	,, + H ₂ Pt Cl ₆	
161.	" +BaO	C7H8O2·BaO
363.		C ₇ H ₈ O ₂ ·C ₆ H ₄ (OH) ₂
434.	,, + Pikrinsäure	
435.	,, + Monochloressigs	
435.	, + Oxalsäure	
435. 70.	,, + Weinsäure	
70.	Ionon + HNaSO ₈	C ₁₈ H ₂₀ O Additionsverbindung
	Pseudoionon + ,,	C ₁₃ H ₂₀ O do.
265.	Campher + Naphthalin	C ₁₈ H ₂₀ O keine Additionsverbindung C ₁₀ H ₁₆ O Additionsverbindung
_	HNaso	Keine Additionsverbindung
19.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	do. do.
147.	" + H ₄ Fe(CN) ₆	Additionsverbindung
147.	H_3 Fe(CN) ₆	do.
204.	$+ H_3 Co(CN)_6$.	

186. Campher + Halogenwasserstoff $C_{10}H_{16}O \cdot JH$; $C_{10}H_{16}O \cdot ClH$ + HNO ₃ $C_{10}H_{16}O \cdot NO_3H$; $2C_{10}H_{16}O \cdot NO_3H$ + Phenol $C_{10}H_{16}O \cdot C_6H_5OH$; $C_{10}H_{16}O \cdot 2C_6H_6$	
160. $C_{10}H_{16}O \cdot NO_3H$; $2C_{10}H_{16}O \cdot NO_3H$ $+ HNO_3 \cdot \cdot$	
102. " C. H. O. C. H. OH: C10 H16 O · 2 C6 H1	1400
- Phenol	ОН
Thymol Additionsverbindung	
328. " " " " " " " " " " " " " " " " " " "	
G. H. O. C. H. O.	
0.7 C. H. O. C. H. OH. 5 C. OH. O. 7 C. OH.	HO,
C. H. O. C. H. (OH) CO. C. H.	
C H O CCI CHO HO	
409. " " State delivered C. H. O. CCI CHO: Co. H. OH	
294. $+ \text{Chloral} + \text{Athylaikohol} \cdot C_{10} H_{16} O \cdot C_{6} H_{12} O_{6}$ + Glykose $+ C_{10} H_{16} O \cdot C_{6} H_{12} O_{6}$	
C H O C H O C	
402. " Koing Additionsyerhindung	
oo. " Additions verhindung	
450. " 3C H O.C.H.(OH)CO.H	
+ Salicylsaure $+$ S	ng
Keing Additioneverhindung	
17. Additionavarbindung	
177.	
141. " 1131 ((11))	
329. "	
331. " Thymos.	
373.	,
300. III	
347. " " danjace"	
C. H. O. CCI CHO	
" to the state of	
" a trop title tildere	
2 1 20 200 N H 2N-OH	
194. , + HCl od. HBr Additionsverbindung + Hydroxylamin	
The state of the s	ng
0 11 0 15 40	
Mention "	
H Fo(CN) Additions verhindung	
1M7 H Fo(CN)	
190 LHCI C.H.O.CIH	
71, 19. Carvon + H ₂ SO ₃ CH ₃ CH CO CH ₂ CH C CH ₃ Stabil	
71, 19. , + HNaSO ₃ C ₉ H ₁₄ (SO ₈ Na H) CO; C ₉ H ₁₄ (SO ₈ Na H) ₂ CO stab	
71, 19. , $+ \text{Na}_2 \text{SO}_3 \dots $ C ₉ H ₁₄ (SO ₃ NaH) ₂ CO labil + 2 Na	OH
147. , + H ₄ Fe(CN) ₆ Additions verbindung	
147. , $+H_8 \operatorname{Fe}(\operatorname{CN})_6$ do.	
191. ,, +HCl, HBr C ₁₀ H ₁₄ O·ClH od. BrH	
431. , + Acetessigester Additionsverbindung	

_	_		
438.	Carvon	$+H_2S.$	2 C ₁₀ H ₁₄ O · H ₂ S
192.	Eucarvon	+ HBr	C ₁₀ H ₁₄ O·BrH
74.	Umbellulon	+HNaSO3	C ₁₀ H ₁₄ O keine Additionsverbindung
147.	Dihydrocarvon	+ H4Fe(CN)6 .	C ₁₀ H ₁₆ O Additionsverbindung
147.	"	+ H ₃ Fe(CN) ₆ .	Additionsverbindung
72.	,,	+HNaSOs	C9H16CO·SO3NaH
439.	,,	+ H ₂ S	2 C ₁₀ H ₁₈ O·H ₂ S
193.	Dihydroeucarvon	+ HBr	C ₁₀ H ₁₆ O · Br H
147.	Carvenon	+ H4Fe(CN)6 .	C ₁₀ H ₁₆ O Additionsverbindung
147.	"	+ H ₃ Fe(CN) ₆ .	Additionsverbindung
147.	Caron	+ H ₄ Fe(CN) ₆ .	C ₁₀ H ₁₆ O Additionsverbindung
147.	,,	+ H ₃ Fe(CN) ₆ .	Additionsverbindung
73.	Tetrahydrocarvon	+ HNaSO3	C ₁₀ H ₁₈ O·SO ₃ NaH
147.	"	+ H ₄ Fe(CN) ₆ .	Additionsverbindung
147.	"	+ H ₃ Fe (CN) ₆ .	do.
190.	Campherpinakon	+HCI	C ₂₀ H ₃₄ O ₂ Kondensation
190.	,,	+HJ	Spaltung
-	Acetophenon	+HNaSO3	CH ₃ CO C ₆ H ₅ keine Additionsverbindung
147.	"	$+H_4Fe(CN)_6$.	Additionsverbindung
147.	"	+ H ₃ Fe(CN) ₆ .	do.
128.	"	+H ₃ PO ₄	CH ₃ COC ₆ H ₅ ·PO ₄ H ₃
206.	,,	$+H_3AsO_4$	2 CH ₃ CO C ₆ H ₅ · As O ₄ H ₃
407.	"	+ Chloral	C ₆ H ₅ COCH ₂ CH(OH)CCl ₃
-	Chloralacetophenon	+HNaSO3	C ₆ H ₅ COCH ₂ Cl keine Additionsverbdg.
_	Bromacetophenon	+ Chinolin	C ₆ H ₅ CO CH ₂ Br · C ₉ H ₇ N; C ₈ H ₇ Br O · C ₉ H ₇ N · H ₂ O
452.	Aminoacetophenon	+ Diäthyloxalat	2 NH ₂ C ₆ H ₄ CO CH ₃ ·(CO ₂ C ₂ H ₅) ₂
141.	p-Diacetobenzol	+ H ₃ PO ₄	(CH ₃ CO) ₂ C ₆ H ₄ ·2PO ₄ H ₃
129.	Phenyläthylketon	+ "	$C_6H_5COC_2H_5\cdot PO_4H_3$
1000	D1 ."	+HNaSO ₃	Keine Additionsverbindung
-	Phenylaceton	+ "	C ₆ H ₅ CH ₂ COCH ₃ Additionsverbindung
122	p-Tolylaceton	"	CH ₃ C ₆ H ₄ CH ₂ CO CH ₃ do.
133.		+ H ₃ PO ₄	CH ₃ CO C ₆ H ₄ CH ₃ ·PO ₄ H ₃
120	Phenylpropylketon	+HNaSO ₃	C ₆ H ₅ CO CH ₂ CH ₂ CH ₃ keine Additionsverbdg.
129.	" A	+ H ₃ PO ₄	C ₆ H ₅ CO C ₃ H ₇ ·PO ₄ H ₃
134–136. 142.	o-, m- od. p-Acetoxylol		CH ₃ CO C ₆ H ₃ (CH ₃) ₂ ·PO ₄ H ₃
140.	Diaceto-m-Xylol	The same of the sa	(CH ₃ CO) ₂ C ₆ H ₂ (CH ₃) ₂ · PO ₄ H ₃
140.	Acetomesitylen	+ " · · ·	CH ₃ CO C ₆ H ₂ (CH ₃) ₃ keine Additionsverbindg.
130.	Diacetomesitylen	+ "	(CH ₂ CO) ₂ C ₆ H (CH ₃) ₅ do. do.
132.	Acetopseudocumol		CH ₃ CO C ₆ H ₂ (CH ₃) ₈ ·PO ₄ H ₃
142.	Propionylpseudocumol Acetodurol		$C_2H_5COC_6H_2(CH_3)_3 \cdot PO_4H_3$ $CH_3COC_6H(CH_3)_4$ keine Additionsverb.
142.	Acetoisodurol	+ "	CH ₃ CO C ₆ H (CH ₃) ₄ do. do.
142.			$(CH_3CO)_2C_6(CH_3)_4$ do. do. do.
143.	Benzoyläthylacetat		C ₆ H ₅ COCH ₂ CO ₂ C ₂ H ₅ keine Additionsverb.
132.	Propionylpseudocumol		C ₂ H ₅ COCH ₂ CO ₂ C ₂ H ₅ keine Additionsvers.
78.	Benzylidenaceton		C ₆ H ₅ CHCHCOCH ₃ Additions verbindg.
10.	Denzynachaecton	1002 1	Caria errerred eris Additionsveromag.

70	Benzylidenaceton	+ HKSO ₈	Additionsverbindung
79.		+ H4Fe(CN)6 .	do.
147.	"	+ H ₃ Fe(CN) ₆ .	do.
147.	"	+ H ₂ PtCl ₆	2 C ₁₀ H ₁₀ O · Pt Cl ₈ H ₂ · 2 H ₂ O
147.	"	- Natriumäthylat .	Keine Additionsverbindung
300.	Benzylidenacetessige:		Kondensation
300.	Isopropylidenacetessi	gester+ "	$(CH_3)_2 C(OC_2H_5) CNa(COCH_3) CO_2 C_2H_5$
300. 79.	Cinnamylidenaceton	+ SO ₃ H ₂	C ₆ H ₅ CHCHCHCHCOCH ₈ ·SO ₈ H ₂
79.	Chinamynachaecten	+ HKSO ₃	C ₁₂ H ₁₂ O·SO ₃ KH
252.	"	+ HCl	Additionsverbindung
142.	p-Propionyldurol	The second secon	C ₂ H ₅ COC ₆ H(CH ₃) ₄ keine Additionsverb.
139.	p-Acetylanisol		CH ₃ CO C ₆ H ₄ O CH ₃ · PO ₄ H ₃
140.	p-Propionylanisol		C ₂ H ₅ COC ₆ H ₄ OCH ₃ keine Additionsverbindg.
138.	p-Acetylphenetol	+ "	CH ₃ CO C ₆ H ₄ O C ₂ H ₅ · PO ₄ H ₃
79.	Benzylidenfurfurylide		C ₆ H ₅ CH CH CO CH CH C ₄ H ₃ O · 2 SO ₃ KH · 2 H ₂ O
79.	p-Methoxybenzyliden	aceton + SO ₃ H ₂ .	CH ₃ O C ₆ H ₄ CH CH CO CH ₃ · SO ₃ H ₂
79.	p Memory on J	+ HKSO₃	$C_{11}H_{12}O_2 \cdot SO_3 KH \cdot H_2 O$
252.	Anisylidenaceton	+HCI	CH ₃ O C ₆ H ₄ CH CH CO CH ₃ · CI H
76.	Anisketon	+HNaSO3	CH ₃ O C ₆ H ₄ CH ₂ CO CH ₃ Additions verbdg.
76.	Äthylanisylketon	+ "	CH ₃ OC ₆ H ₄ COCH ₂ CH ₃ keine Additionsverbdg.
79.	Piperonylidenaceton	+SO ₃	C ₁₁ H ₁₀ O ₃ ·SO ₃ H ₂
79.	"	+ HKSO ₈	C ₁₁ H ₁₀ O ₃ ·SO ₃ KH
252.	Benzylidenpinakolin	+ HCl od. HBr .	C ₆ H ₅ CHCHCOC(CH ₃) ₈ ·ClH od.BrH
_	Benzophenon	+HNaSO ₃	C ₆ H ₅ COC ₆ H ₅ keine Additionsverbindg.
147.	,	$+ H_4 Fe(CN)_6$.	Additionsverbindung
147.	,	+ H ₃ Fe(CN) ₆ .	Keine Additionsverbindung
142.	,,	+ H ₃ PO ₄	do. do.
156.	Benzil	+ H ₂ SO ₄	(C ₆ H ₅ CO) ₂ ·SO ₄ H ₂
441.	Phenylbenzylketon	+ Benzylidenanilin.	C ₆ H ₅ COCH ₂ C ₆ H ₅ ·C ₆ H ₅ CHNC ₆ H ₅
441.	Dibenzylketon	+ "	$(C_5H_5CH_2)_2CO \cdot C_6H_5CHNC_6H_5$
441.		zyliden-p-Toluidin .	
441.		zyliden-m-Nitranilin	
142.	Benzoyl-m-Xylol	$+H_3PO_4$.	C ₆ H ₅ COC ₆ H ₃ (CH ₃) ₂ keine Additionsverbindg.
142.	Benzoylmesitylen		
79.	Benzylidenacetophe	$non + SO_2.$	C ₆ H ₅ CH CH CO C ₆ H ₅ do. do.
120.	"	+HKSO ₃ .	
252.	"	+HC1	
-	Cinnamylidenacetop	henon+HKSO ₃ .	C ₆ H ₅ CHCHCHCHCOC ₆ H ₅ ·SO ₃ KH
252.	"	+HCI	
142.		$n + H_3PO_4$.	(C ₂ H ₅) ₃ C ₆ H ₂ CO C ₆ H ₅ keine Additionsverbdg.
79.	Dipiperonylidenacet		
79.	" "	$+$ HKSO $_3$.	C ₁₉ H ₁₂ O ₅ ·2 SO ₃ KH
142.	Dipropionyldurol		
79.	Dibenzylidenaceton		
79.	,,	+HKSO ₈ .	
440.	"	$+H_2SO_4$.	$(C_0H_5CHCH)_2CO\cdot SO_4H_2$

664

187, 252.	" + Halogenwasserstoff.	C H O CIII D III
442.	" + Anilin	C ₁₇ H ₁₄ O·ClH u. BrH od.2 ClH u. 2 BrH
432.	,, + Acetessigester + Diäthylamin	(C ₆ H ₅ CH CH) ₂ CO · C ₆ H ₅ NH ₂
252.	Dihenzylidendiäthylketon HCI	Additionsverbindung
440.	Dianisylidenaceton	[C ₆ H ₅ CHC(CH ₃)] ₂ CO keine Additionsverbdg.
252.	" + Halogenwasserstoff	(CH ₃ OC ₆ H ₄ CHCH) ₂ CO · SO ₄ H ₂ u.2SO ₄ H ₂
443.	+ Pikrineäura	C ₁₉ H ₁₈ O·2 ClH u. BrH od. 2 BrH
252.		C ₁₉ H ₁₈ O·C ₆ H ₂ (NO ₂) ₃ OH
	Dibenzylidencyclopentanon + HCI	CH ₂ C(CH C ₆ H ₅) CO · 2 CI H
252.	Dianisylidencyclopentanon + "	CH ₂ C[CHC ₆ H ₄ (OCH ₃)] CO·2 CIH
79.	Cinnamylidenbenzylidenaceton + HKSO3 .	C ₆ H ₅ CH CH CH CO CH CHC ₆ H ₅ · 2 SO ₃ KH
252.	Dicinnamylidenaceton + HCl	(C ₆ H ₅ CHCHCHCH) ₂ CO·2CIH
252.	Dicinnamylidencyclopentanon - Halogenwasserst.	CH ₂ C [CH CH CH C ₆ H ₅] CO · 2 Cl H u. 2 Br H
79.	Diguminutidanas de Lac	
79.	LIWOO	(C ₃ H ₇ C ₆ H ₄ CH CH) ₂ CO Additions verb.
252.	LUD	(C ₉ H ₁₁ CHCH) ₂ CO·2SO ₃ KH
-		(C ₉ H ₁₁ CHCH) ₂ CO · 2 BrH u. 4 BrH
77.	Methylphenylcyclohexenon $+ SO_3H_2$.	$C_6H_5C(SO_8H)$ $CH_2CH(CH_3)$ CH_2
	12. Additionsverbing	dungen von Oxyden.
143.	Cineol + H ₃ PO ₄	C ₁₀ H ₁₈ O·PO ₄ H ₃ ; 2 C ₁₀ H ₁₈ O·PO ₄ H ₃
149.	" + H ₄ Fe(CN) ₆	2 C ₁₀ H ₁₈ O · Fe (CN) ₆ H ₄ · ¹/ ₂ H ₂ O
147.	" + H ₃ Fe(CN) ₆	2 C ₁₀ H ₁₈ O·Fe(CN) ₆ H ₃ ·3 H ₂ O
147.	" + Aceton + H ₃ Fe(CN) ₆	2 C ₁₀ H ₁₈ O·(CH ₈) ₂ CO·Fe(CN) ₆ H ₃ ·3H ₂ O
203.	" + H ₃ Co (CN) ₆	3 C ₁₀ H ₁₈ O · Co (CN) ₆ H ₈
195.	" + HCl od. HBr	C10 H1s O · Halogenw.; 2 C10 H1s O · Halogenw.
231.	" + CdJ ₂	2 C ₁₀ H ₁₈ O · Cd J ₂
230.	" $+ZnJ_2$	2 C ₁₀ H ₁₈ O·Zn J ₂
205.	" + H ₂ AsO ₄	Additionsverbindung
377.	" + Resorcin	2 C ₁₀ H ₁₈ O · C ₆ H ₄ (OH) ₂
388.	" + Pyrogallol	C ₁₀ H ₁₈ O · C ₆ H ₃ (OH) ₃
396.	" $+\alpha$ - od. β -Naphthol	C ₁₀ H ₁₈ O·C ₁₀ H ₇ OH
444.	" + Jodol	C ₁₀ H ₁₈ O·(CJ) ₄ NH
445.	" + Oxalsäure	2 C ₁₀ H ₁₈ O · (CO ₂ H) ₂
446.	Salicylid + Chloroform .	(C ₆ H ₄ (CO) ₄ ·2 CH Cl ₃
446.	o-Homosalicylid + " .	(CH ₃ C ₆ H ₃ CO) ₄ ·2 CH Cl ₃
446.	m- u. p-Homosalicylid + " .	Keine Additionsverbindung
147.	Pinol + H ₃ Fe(CN) ₆	C ₁₀ H ₁₆ O Additionsverbindung
147.	LH Fo(CN)	Additionsverbindung
447.	, + Jodol	Keine Additionsverbindung
152.	Dihydropinol + H ₃ Fe(CN) ₆	C ₁₀ H ₁₈ O Additionsverbindung

(CO2H)2 · C7H8O2; (CO2H)2 · 2 C7H8O2

(CO2H)2·2 C10H18O

13. Additionsverbindungen von Chinonen. C6H4O2 · 2 C6H5 OH +Phenol Benzochinon 330. C6H4O2 · C6H5OH · C6H4 (CH3)OH + " + Kresol. 325. $C_6H_4O_2 \cdot C_6H_5OH \cdot C_6H_3(CH_3)(C_3H_7)OH$ + " + Thymol 326. C6H4O2 · C6H4CIOH; C6H4O2 · 2C6H4CIOH + Monochlorphenol 344. $C_6H_4O_2\cdot C_6H_4BrOH; C_6H_4O_2\cdot 2\,C_6H_4BrOH$ + Monobromphenol 344. C6H4O2 · 2 C6H4(CH3) OH + o- od. p-Kresol . 345. C6H4O2 · C6H4(OH)2 + Brenzcatechin . 357. C6H4O2 · C6H4(OH)2 + Resorcin . . . 378. $C_{6}H_{4}O_{2}\cdot C_{10}H_{7}OH; C_{6}H_{4}O_{2}\cdot 2C_{10}H_{7}OH$ +α-Naphthol. . . 401. $+\beta$ -Naphthol. . . C6 H4 O2 · C10 H7 OH 401. C6H4O2 · C6H4(NO2)NH2 + o- od. p-Nitranilin 449. Substitutionsverbindung + m-Nitranilin . . 449. Additionsverbindung + Äthylsulfhydrat . 471. C6H4O2 · 2 C6H5SH + Thiophenol . . 471. Additionsverbindung + p-Thiokresol . . 471. $C_6H_3(CH_3)O_2 \cdot C_6H_4(NO_2)NH_2$ +o-Nitranilin . . Toluchinon 449. α-Naphthochinon + α-Naphthol... C10 H6 O2 · C10 H7 OH 401. Kein bestimmtes Additionsprodukt erhalten β -Naphthochinon + Phenole... 401. (C6H4CO)2 · NO3H Phenanthrenchinon + HNO3 164. Additionsverbindung $+\alpha$ -Naphthol . . . 401. 14. Additionsverbindungen organischer Säuren, Salze und Ester. HCO2H·H2O + Wasser . . . Ameisensäure 9. HCO2 H · 4 C6 H4 (OH)2 + Hydrochinon . 364. + Trimethylamin. 4 HCO2 H · (CH3)3 N 450. + Pyridin . . . 3 HCO2 H. C5 H5 N 450. 3 HCO₂ H · C₅ H₄ (CH₈) N + Pikolin . . . 450. CH3 CO2 H Additionsvnrbindung + Trimethylamin. 450. Essigsäure + Triäthylamin . 4 CH3 CO2 H · (C2 H5)3 N 450. +Pyridin . . . 3 CH3 CO2 H · C5 H5 N 450. 3 CH3 CO2 H · C5 H4 (CH3) N + Pikolin . . . 450. CH2CICO2H·C7H8O2 Monochloressigsäure + Dimethylpyron 435. + Limonen . . . 2 CC13 CO2 H · C10 H16 Trichloressigsäure 240. +1-Pinen . . . 2 CCI₃ CO₂ H · C₁₀ H₁₆ 244. Kondensation + Camphen . . 245. + Menthen . . . do. 246. 450. Propionsäure + Pyridin . . . $3 C_2 H_5 CO_2 H \cdot C_5 H_5 N$ + Wasser . . . (CO2H)2 · 2 H2O Oxalsäure + Phenol . . . 331. (CO₂H)₂·2 C₆H₅OH + Zimtaldehyd . (CO₂H)₂·2 C₆H₅ CH CH CHO 448.

+ Dimethylpyron.

+ Cineol . . .

435.

445.

_			
435.	Weinsäure	+Dimethylpyron .	C ₄ O ₆ H ₆ ·C ₇ H ₈ O ₂ ; C ₄ O ₆ H ₆ ·2 C ₇ H ₈ O ₂
80.	Fumarsäure	+ K ₂ SO ₃	2, 04 06.16 2 07118 09
81.	Maleïnsäure	+ "	C ₂ H ₂ (CO ₂ H) ₂ ·SO ₃ K ₂ C ₂ H ₂ (CO ₂ H) ₂ ·SO ₃ K ₂
82.	Itakonsäure	+ "	2 C ₃ H ₄ (CO ₂ H) ₂ ·3 SO ₃ K ₂
82.	Citrakonsäure	+ ",	2 C H (CO H) 3 CO K
82.	Mesakonsäure	+K.50	-3-4(-0211/2 0 0031/2
203.	Cineolsäure	I H CalCNI	2 C ₃ H ₄ (CO ₂ H) ₂ ·3 SO ₃ K ₂
451.	Camphers. Natrium	+ HNa SO.	3 C ₁₀ H ₁₆ O ₅ ·Co(CN) ₆ H ₃
83.	Zimtsäure	LIKCO	C ₁₀ H ₁₅ O ₄ Na keine Additionsverbindung
83.	,,	$+ K_2 SO_3 \dots$	C ₆ H ₅ CH(SO ₃ K)CH ₂ CO ₂ H
437, 328.		1 Campban	3.12
346.		- Kronal	C ₆ H ₄ (OH) CO ₂ H · 2 C ₁₀ H ₁₆ O
213.			CH ₃ CO ₂ Na · C ₆ H ₄ (CH ₃) OH
384.		+ Guajacol	CH ₃ CO ₂ Na·C ₆ H ₄ (OCH ₃)OH
411.		+ Eugenol	Additionsverbindung
353.		+ Chloral	CH ₃ CO ₂ Na·CCl ₃ CHO
247.		+ Carvacrol	$(CH_3CO_2)_2Pb \cdot C_6H_3(C_3H_7)(CH_3)OH$
247.		+Pinen	Oxydationsprodukt
		+ Camphen	C ₁₀ H ₁₆ O(Hg C ₂ H ₃ O ₂) ₂
247.		+ Methylchavicol.	CH ₃ O C ₆ H ₄ C ₃ H ₅ (OH) (Hg CH ₃ CO ₂)
247.		+ Methyleugenol .	(CH ₃ O) ₂ C ₆ H ₃ C ₃ H ₅ (OH)(HgCH ₃ CO ₂)
247.		+ Safrol	CH ₂ O ₂ C ₆ H ₃ C ₈ H ₅ (OH)(HgCH ₃ CO ₂)
247.		+Apiol	(CH ₃ O) ₂ CH ₂ O ₂ C ₆ HC ₃ H ₅ (OH)(HgCH ₃ CO ₂)
247.	"	+ Anethol	Oxydationsprodukt
247.	,,	- Methylisoeugenol .	do.
247.	"	+ Isosafrol	do.
247.	,,	+ Isoapiol	do.
83.	Zimtsaures Natrium	+HNaSO ₃	C ₆ H ₅ CH(SO ₃ Na)CH ₂ CO ₂ Na
453.	Dimethylsulfat	+ Chininsäure	SO ₄ (CH ₃) ₂ ·2 CH ₃ OC ₉ H ₅ N CO ₂ H
454.	,,	+ α-Phenylcinchonins.	Additionsverbindung
453.		+ Chininsäure	NO ₃ CH ₃ ·CH ₃ OC ₉ H ₅ NCO ₂ H
455.		+ Chloroform	CH ₃ CO ₂ CH ₃ ·CHCl ₃
147.	*	+ H ₄ Fe(CN) ₆	Keine Additionsverbindung
147.		+ H ₃ Fe (CN) ₆	Additionsverbindung
222, 224.		+ Ca Cl2, Mg Cl2 .	2 CH ₃ CO ₂ C ₂ H ₅ · Ca Cl ₂ od. Mg Cl ₂
147.		+ H ₃ Fe(CN) ₆	Additionsverbindung
287.		Chloral	CH ₃ CH(OH)CO ₂ C ₂ H ₅ ·CCI ₃ CHO
147.		H ₄ Fe(CN) ₆	(CO ₂ C ₂ H ₅) ₂ ·Fe (CN) ₆ H ₄
147.	Andrew Commence of the Commenc	H ₃ Fe(CN) ₆	Additionsverbindung
229.		- Sn Cl ₄	(CO ₂ C ₂ H ₅) ₂ ·SnCl ₄
365.		Hydrochinon .	$(CO_2C_2H_5)_2 \cdot C_6H_4(OH)_2$
452.		Aminoacetophenon .	$(CO_2 C_2 H_5)_2 \cdot 2 C_6 H_4 (OH)_2$ $(CO_2 C_2 H_5)_2 \cdot 2 C_6 H_4 (NH_2) CO CH_3$
287.	the state of the s	Chloral	$[CH(OH)CO_2C_2H_5]_2$ Additions verbindg.
124.		- H ₃ PO ₄	Keine Additionsverbindung
124.			do. do.
147.		- ,,	
147.			do. do.
147.	"	H_3 Fe(CN) ₆	Additionsverbindung

1		
-	Propylhenzoat +H ₃ PO ₄	Keine Additionsverbindung
124.	Flopyibelizott	do. do.
124.	ISODULYIDENZOAL	do. do.
124.	Amylbenzoat + " · · · · · · · · · · · · · · · · · ·	do. do.
66.		C ₆ H ₅ CH(SO ₃ K)CH ₂ CO ₂ C ₂ H ₅
66.	+ HKSO₃ ·	Additionsverbindung
66.	Äthylidenmalons. Ester + SO ₂	CH ₃ CH(SO ₃ K)CH(CO ₂ C ₂ H ₅)
66.	" +HKSO ₃ .	
66.	Cuminylidenmalons, Ester + SO ₂	Additionsverbindung
66.	" $+HKSO_3$.	C ₁₇ H ₂₂ O ₄ ·SO ₃ KH·1 ¹ / ₂ H ₂ O
66.	Benzylidenäthylmalonat + SO ₂	Keine Additionsverbindung
66.	$+$ HKSO $_3$.	C ₆ H ₅ CH(SO ₃ K)CH(CO ₂ C ₂ H ₅) ₂ ·1 ¹ / ₂ H ₂ O
300.	, + Natriumäthylat .	$C_6H_5CH(OC_2H_5)CNa(CO_2C_2H_5)_2$
300.	Benzylidenmethylmalonat + Natriummethylat	C ₆ H ₅ CH(OCH ₃)CNa(CO ₂ CH ₃) ₂
300.	Furfuraläthylmalonat + Natriumäthylat .	C ₄ H ₃ OCH(OC ₂ H ₅)CNa(CO ₂ C ₂ H ₅) ₂
300.	Piperonaläthylmalonat + "	$C_6H_3(O_2CH_2)CH(OC_2H_5)CNa(CO_2C_2H_5)_2$
300.	Piperonalmethylmalonat - Natriummethylat	C ₆ H ₃ (O ₂ CH ₂)CH(OCH ₃)CNa (CO ₂ CH ₃) ₂
2000	Ester + Triphenylmethyl	1 Mol. Ester + 2 Mol. Triphenylmethyl
253.	Estel + Implienymenty.	
	15. Additionsverbindunger	n von Ammoniakderivaten.
6		
333.	Amine + Phenole	
-	Ammoniak + Resorcin	C ₆ H ₄ (OH) ₂ ·NH ₃
-	" +Pyrogallol	$C_6H_3(OH)_3 \cdot NH_3$
150.	Amine + H ₄ Fe(CN) ₆	
412.	,, + Chloral	
86.	Propylamin + Benzaldehyd + SO ₂ .	C ₃ H ₇ NH ₂ ·C ₆ H ₅ CHO·SO ₂
87.	Isobutylamin + " + "	C ₄ H ₀ NH ₂ ·C ₆ H ₅ CHO·SO ₂
88.	Amylamin + Valeraldehyd + H ₂ SO ₃	C ₅ H ₁₁ NH ₂ ·C ₄ H ₉ CHO·SO ₃ H ₂
88.	Onanthol	C ₅ H ₁₁ NH ₂ ·C ₇ H ₁₄ O·SO ₃ H ₂
88.	Benzaldehyd + "	C ₆ H ₁₁ NH ₂ ·C ₆ H ₅ CHO·SO ₃ H ₂
432.	Diäthylamin + Acetessigester +	
402.	Dibenzylidenaceton .	Additionsverbindung
90	Äthylendiamin + Benzaldehyd + SO ₂	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
89.		C ₂ H ₄ (NH ₂) ₂ ·CH ₃ OC ₆ H ₄ CHO·SO ₂
90.	,, + Anisaldehyd + ,,	C ₂ H ₄ (NH ₂) ₂ ·C ₆ H ₄ (OH)CHO·SO ₂
92.	" + Salicylaldehyd + "	C ₂ H ₄ (NH ₂) ₂ · C ₆ H ₅ CHCHCHO·SO ₂
91.	,, +Zimtaldehyd + ,,	
456.	$+ CS_2 \dots \dots$	
341.	Diäthylendiamin + Phenol	The second secon
368.	+ Hydrochinon	
-	Trimethylamin + Methyljodid	
450.	,, + Ameisensäure	
450.	+ Essigsäure	
165.	$+ CS_2 \dots \dots$	
165.	$+ CS_2 + HCI$	$(CH_3)_3N \cdot CS_2 \cdot HC1; 2(CH_3)_3N \cdot 2CS_2 \cdot 3HC1$
165.	" + " + H ₂ SO ₄	Additionsverbindung
		THE RESERVE THE PARTY OF THE PA

-	1		
165.	Trimethylamin	$+ CS_2 + HNO_3$	(CH ₃) ₈ N·CS ₂ ·NO ₃ H
165.	"	+ ,, + H ₃ PO ₄	2 (CH ₈) ₈ N · 2 CS ₂ · PO ₄ H ₈
93.	Trimethylendiami	n + Benzaldehyd + SO ₂	(CH ₂) ₈ (NH ₂) ₂ ·C ₆ H ₅ CHO·SO ₂
93.	"	+ Salicylaldehyd+ "	(CH ₂) ₃ (NH ₂) ₂ ·C ₆ H ₄ (OH)CHO·SO ₂
93.	,,	+ Zimtaldehyd + ",	(CH ₂) ₃ (NH ₂) ₂ · C ₆ H ₅ CHCHCHO · SO ₂
93.	,,	+ Anisaldehyd + ",	(CH ₂) ₃ (NH ₂) ₂ · C ₆ H ₄ (OCH ₃) CHO · SO ₂
150.	Triäthylamin	+ H ₄ Fe(CN) ₆	(C ₂ H ₅) ₈ N·Fe(CN) ₆ H ₄
450.	"	+ Essigsäure	(C ₂ H ₅) ₃ N·4 CH ₃ CO ₂ H
457.	Hexamethylentetramin	+ Pikrinsäure	(CH ₂) ₆ N ₄ ·C ₆ H ₂ (NO ₂) ₃ OH
309.	,,	+ Menthol	Keine Additionsverbindung
332.	,,	+Phenol	(CH ₂) ₆ N ₄ ·3 C ₆ H ₅ OH
309.	,,	+ Thymol	Keine Additionsverbindung
309.	"	+ o-, m- od. p-Kresol	do. do.
358.	,,	+ Brenzcatechin .	C ₆ H ₁₂ N ₄ ·2 C ₆ H ₄ (OH) ₂
379.	,,	+ Resorcin	$C_6H_{12}H_4 \cdot 2 C_6H_4(OH)_2$ $C_6H_{12}N_4 \cdot C_6H_4(OH)_2$
366.	"	+ Hydrochinon	$C_6H_{12}H_4 \cdot C_6H_4(OH)_2$ $C_6H_{12}N_4 \cdot C_6H_4(OH)_2$
309.	,,	+ Guajacol	
389.	",	+ Pyrogallol	Keine Additionsverbindung C ₆ H ₁₂ N ₄ ·C ₆ H ₃ (OH) ₃
393.	",	+ Phloroglucin	
309.	",	+ Orcin	$C_6H_{12}N_4 \cdot C_6H_3(OH)_3$ Zersetzung
385.	"	+ Eugenol	
417.		+ Chloral	C ₆ H ₁₂ N ₄ ·C ₆ H ₃ (C ₃ H ₅)(OCH ₃)OH Additionsverbindung
94.	Amidoessigsäure	+ Önanthol+H ₂ SO ₃	
94.		+ Benzaldehyd + "	CH ₂ (NH ₂)CO ₂ H·C ₇ H ₁₄ O·SO ₃ H ₂
94.	"	Instin	C ₂ H ₅ O ₂ N·C ₆ H ₅ CHOH·SO ₃ H ₂ Additionsverbindung
94.	"	Mattata	do.
94.	Leucin "	1 "	do.
362.	Formamid	+ Hydrochinon	HCO NH ₂ Additionsverbindung
413.		+ Chloral	HCONH ₂ ·CCl ₃ CHO
414.	Acetamid	+ "	CH ₃ CONH ₂ · CCl ₃ CHO
362.	Acetonitril	+ Hydrochinon	CH ₃ 'CN Additionsverbindung
_	Alloxan	+ Wasser	CO(NH) ₂ (CO) ₃ ·H ₂ O u. 4 H ₂ O
466.		+ HKSO ₈	CO(NH) ₂ (CO) ₃ ·SO ₃ KH·H ₂ O
316.	. "	+ Phenole	CO(1111)2(CO)3 · SO31(11·112O
316.	"	+ Phenol	CO(NH) ₂ (CO) ₃ ·C ₆ H ₅ OH·H ₂ O
317, 318.	"	+ m- od. p-Kresol .	C ₄ H ₂ O ₄ N ₂ · C ₆ H ₄ (CH ₈)OH
320.		+ Brenzcatechin .	C ₄ H ₂ O ₄ N ₂ · C ₆ H ₄ (OH) ₂
321.	"	+ Resorcin	C ₄ H ₂ O ₄ N ₂ · C ₆ H ₄ (OH) ₂ ; 2 C ₄ H ₂ O ₄ N ₂ · C ₆ H ₆ O ₂ · H ₂ O
316.	"	+ Hydrochinon	C ₄ H ₂ O ₄ N ₂ ·C ₆ H ₄ (OH) ₂
319.	"	+ Guajacol	C ₄ H ₂ O ₄ N ₂ ·C ₆ H ₄ (OCH ₃)OH·H ₂ O
316.	"	+ Orcin	C ₄ H ₂ O ₄ N ₂ · C ₆ H ₃ (CH ₃) (OH) ₂ ; 2 C ₄ H ₂ O ₄ H ₃ · C ₇ H ₈ O ₂
323.	"	+ Pyrogallol	C ₄ H ₂ O ₄ N ₂ · C ₆ H ₃ (OH) ₃ · 2 H ₂ O
316.	"	+Phloroglucin	C ₄ H ₂ O ₄ N ₂ · C ₆ H ₃ (OH) ₃ ; 3 C ₄ H ₂ O ₄ N ₂ · C ₆ H ₆ O ₃
316.	"	+ Oxyhydrochinon.	C ₄ H ₂ O ₄ N ₂ ·C ₆ H ₃ (OH) ₃
324.		+ a-Naphthol	C ₄ H ₂ O ₄ N ₂ ·C ₁₀ H ₇ OH
402.	"	+ Glykose	Additionsverbindung?
	"	, dijilose i i i i i	The state of the s

102	Alloxan	+ Rohrzucker	Additionsverbindung?
402.	Harnstoff	+ Phenol	CO (NH ₂) ₂ · 2 C ₆ H ₅ OH
334.		+ m- od. p-Nitrophenol .	CO (NH ₂) ₂ · C ₆ H ₄ (NO ₂) OH
458.	"	+ o-Nitrophenol	Keine Additionsverbindung
458.	"	+ o-, m- od. p-Kresol : .	CO (NH ₂) ₂ · C ₆ H ₄ (CH ₃) OH
347.	"	+ Chloral	CO (NH ₂) ₂ · CCl ₃ CHO; CO (NH ₂) ₂ · 2 CCl ₃ CHO
414.	"	+ " + Bromal	CO (NH ₂) ₂ · CCI ₃ CHO · CBr ₃ CHO
421.	Thisharnstoff	+ Methyljodid	CS(NH ₂) ₂ ·CH ₃ J
460.		+ Äthyljodid	$CS(NH_2)_2 \cdot C_2H_5J$; $2CS(NH_2)_2 \cdot C_2H_5J$
460.		+ Äthylbromid	CS (NH ₂) ₂ · C ₂ H ₅ Br
460.	Ä (badanathan	+ Chloral	CO (OC2 H5) NH2 · CCl3 CHO; CCl3 CH (OH) NHCOC2 H5
415.		+ Bromal	C ₂ H ₅ OCONH(OH)CHCBr ₃
415.	"	+ Butylchloral	C ₂ H ₅ OCONH(OH)CHCBr ₂ CHBrCH ₃
415.	, "		(CH ₃) ₂ CNOH·CCI ₃ CHO
416.	Acetoxim	+ Chloral	Additionsverbindung
416.	Campheroxin		do.
416.	Acetaldoxim		do.
416.	Benzaldoxim		N ₂ H ₄ ·H ₂ O
-	Hydrazin	+ Wasser	C ₆ H ₄ (OH) ₂ ·(NH ₂) ₂
_	"	+ Hydrochinon	C ₅ H ₅ N·CH ₂ CIOH
461.	Pyridin	+ Chlormethylalkohol .	C ₅ H ₅ N·C ₈ H ₄ (OH) ₂
367.	11	+ Hydrochinon	C ₅ H ₅ N·3 HCO ₂ H
450.	"	+ Ameisensäure	C ₅ H ₅ N·3 CH ₃ CO ₂ H
450.	"	+ Essigsäure	C ₅ H ₅ N·3 C ₂ H ₅ CO ₂ H
450.	11	+ Propionsäure	Keine Additionsverbindung
462.	31	+ s-Trinitrobenzol	La contra a
459.	"	+ Pikrinsäure	CH (CH N 2HCO H
450.	Pikolin	+ Ameisensäure	C ₅ H ₄ (CH ₃)N·3 CH ₃ CO ₂ H
450.	"	+ Essigsäure	
11.	Piperidin	+ Wasser	C ₅ H ₁₀ NH·H ₂ O
404.	"	+ Formaldehyd	C ₅ H ₁₀ NH·HCHO
462.	"	+ s-Trinitrobenzol	Additionsverbindung
465.		iperidin $+ CS_2 \dots$	
462.	Pyrrol	+ s-Trinitrobenzol	
- '	Indol	$+$ HNaSO $_{8}$	C ₆ H ₄ CH Additionsverbindung
462.	,,	+ s-Trinitrobenzol	$C_8H_7N\cdot C_6H_3(NO_2)_3$
463.	11	+ Pikrinsäure	
462.	Skatol	+ s-Trinitrobenzol	
464.	"	+ Pikrinsäure	The state of the s
462.	Brucin	+ s-Trinitrobenzol	
462.	Morphin	+ "	
419.	Coffeïn	+ Chloralhydrat	
462.	Strychnin	+ s-Trinitrobenzol	
-	Antipyrin	+ Kresol	COCH
		+ Brenzcatechin	4.1(0.1.3)
	1 "	Dichectication	01111121120 00114(011)2

	Antipyrin + Resorcin	C H NO CH (OUR
-	,, + Hydrochinon	11 11 11 11 11 11 11 11 11 11 11 11 11
-	,, +Pyrogallol	$C_{11}H_{12}N_2O \cdot C_6H_4(OH)_2$ $C_{11}H_{12}N_2O \cdot C_6H_3(OH)_3$
	" + Phloroglucin	1
467.	Arom. Amine + Benzylidenanilin	$C_{11}H_{12}N_2O\cdot C_6H_3(OH)_3$
468.	" ,, + Trinitro-m-xylol	Keine Additionsverbindung
468.	" , + Trinitrobutylxylol	do. do.
468.	" , + Trinitromesitylen	do. do.
95.	Anilin $+$ SO ₂	CaHaNHa-SO: 2 CaHaNHa-SO
150.	H_4 Fe(CN) ₆	2 C ₆ H ₅ NH ₂ ·Fe(CN) ₆ H ₄
336.	,, + Phenol	C ₆ H ₅ NH ₂ ·C ₆ H ₅ OH
88.	$, + , + SO_2$	Keine Additionsverbindung
348.	" + o-, m- u. p-Kresol	C ₆ H ₅ NH ₂ ·C ₆ H ₄ (CH ₃)OH
359.	,, + Brenzcatechin	2 C ₆ H ₅ NH ₂ ·C ₆ H ₄ (OH) ₂
380.	" + Resorcin	Additionsverbindung?
369.	" + Hydrochinon	2 C ₆ H ₅ NH ₂ ·C ₆ H ₄ (OH) ₂
350.	" + Toluhydrochinon	2 C ₆ H ₅ NH ₂ ·C ₆ H ₃ (CH ₃)(OH) ₂
390.	" + Pyrogallol	2 C ₆ H ₅ NH ₂ ·C ₆ H ₃ (OH) ₃
398.	", $+\beta$ -Naphthol	C ₆ H ₅ NH ₂ ·C ₁₀ H ₇ OH
96.	,, + Formaldehyd + $HNaSO_3$.	Kondensationsverbindung
88.	", + Acetaldehyd $+ SO_2 \dots$	C ₈ H ₅ NH ₂ ·CH ₃ CHO·SO ₂
96.	" $+$ " $+$ HNaSO ₃ .	Kondensationsverbindung
412.	" + Chloral	Additionsverbindung
88, 96.	" $+$ " $+$ SO ₂	Co H5 NH2 · CCl3 CHO · SO2; 2 Co H5 NH2 · CCl3 CHO · SO2
96.	" + Propylaldehyd + "	2 C ₆ H ₅ NH ₂ · C ₂ H ₅ CHO · SO ₂
96.	" $+$ " $+$ HNaSO ₃ .	Kondensationsverbindung
96.	" + Isobutyraldehyd + SO ₂	do.
88, 97.	" + Valeraldehyd + "	2 C ₆ H ₅ NH ₂ ·2 C ₄ H ₉ CHO·SO ₂ ?
97, 98.	" + Isovaleraldehyd + "	2 C ₆ H ₅ NH ₂ · C ₄ H ₉ CHO · SO ₂
97, 98.	$" + " + H_2SO_3$	2 C ₆ H ₅ NH ₂ ·C ₄ H ₉ CHO·SO ₃ H ₂
423. 100.	" + Onanthol	$C_6H_5NH_2 \cdot C_6H_{13}CHO$
99.	$"+"$ $+SO_2$	2 C ₆ H ₅ NH ₂ ·C ₆ H ₁₃ CHO·SO ₂
196.	$" + " + H_2SO_3$	2 C ₆ H ₅ NH ₂ ·C ₆ H ₁₃ CHO·SO ₃ H ₂
197.	" + Furfurol + HCl	2 C ₆ H ₅ NH ₂ ·C ₅ H ₄ O ₂ ·HCl
105.	" + Benzaldehyd + "	C ₆ H ₅ NH ₂ ·C ₆ H ₅ CHO·HCl
105.	$"$ + $"$ + SO_2	2 C ₆ H ₅ NH ₂ ·C ₆ H ₅ CHO·SO ₂
101.	H_2SO_3 .	2 C ₆ H ₅ NH ₂ · C ₆ H ₅ CHO · SO ₃ H ₂ ; C ₆ H ₅ NH ₂ · C ₆ H ₅ CHO · SO ₃ H ₂ ;
102.	" + " + Propylamin + SO ₂	$C_6H_5NH_2 \cdot C_6H_5CHO \cdot C_3H_7NH_2 \cdot SO_2$
103.	" + " + Isobutylamin+ "	$C_6H_5NH_2 \cdot C_6H_5CHO \cdot C_4H_9NH_2 \cdot SO_2$ $C_6H_5NH_2 \cdot C_6H_5CHO \cdot C_5H_{11}NH_2 \cdot SO_2$
106.	", + ", + Amylamin + ", ", + ", + «-Naphthylamin+ ",	$C_6H_5NH_2 \cdot C_6H_5CHO \cdot C_5H_{11}NH_2 \cdot SO_2$ $C_6H_5NH_2 \cdot C_6H_5CHO \cdot C_{10}H_7NH_2 \cdot SO_2$
428.	1 - O-1-1-1-1	C ₆ H ₅ NH ₂ ·C ₆ H ₅ CHO·C ₁₀ H ₇ NH ₂ ·SO ₂ C ₆ H ₅ NH ₂ ·C ₆ H ₄ (OH)CHO
198.	LUCI	C ₆ H ₆ NH ₂ ·C ₆ H ₄ (OH)CHO·HCl
427.	Callandaldaland	C ₆ H ₅ NH ₂ ·C ₆ H ₄ (OH)CHO
199.	1 110	C ₆ H ₅ NH ₂ ·C ₆ H ₄ (OH)CHO·HCI
	" + " +HCI	C611511112 C6114 (O11) C110-11C1

	1			
	96, 98.	Anilin + Salicylalde	hyd + SO ₂	C6 H7 N · C7 H6 O2 · SO2; 2 C6 H7 N · C7 H6 O2 · SO2
	98.		+ H ₂ SO ₃ .	CoH7N·C7H6O2·SO3H2; 2CoH7N·C7H6O2·SO3H2
	100000	1 Aceton	+ SO ₂	C ₆ H ₅ NH ₂ ·(CH ₃) ₂ CO·SO ₂
	88, 107.	Campher		Keine Additionsverbindung
		Dibenzylid	enaceton	C ₆ H ₅ NH ₂ ·(C ₆ H ₅ CH CH) ₂ CO
	442.	Nitrohanzo	1	Keine Additionsverbindung
	469.	Nitrosoher	izol	do. do.
	469.	n Nitrotalu	101	do. do.
	469, 475.	" + p-introtota	p-Chlornitrobenzol .	do. do.
ä	470.	" + o-, iii- ou.]	nol	do. do.
1	469.	l m ad n.N	itrophenol	Additionsverbindung
d	469.	" + m. ou. pri	ophenol	$C_6H_5NH_2 \cdot C_6H_3(NO_2)_2OH$
S	478.	" + 2, 4-Dimitie	Idehyd + SO ₂	C ₆ H ₅ NH ₂ ·C ₆ H ₄ (NO ₂)CHO·SO ₂
i	96.	Nitropodia		C ₆ H ₅ NH ₂ ·2 C ₆ H ₄ (NO)N(CH ₃) ₂
i	469, 477.	" + Mitrosodin	athulanilin L CNH	C ₆ H ₅ NH ₂ ·2 C ₆ H ₄ (NO)N(CH ₃) ₂ ·CNH
S	201.	" + p-Nitrosodim	ethylanilin + CNH	Keine Additionsverbindung
9	470, 475.	" + 0- od. p-Di	initrobenzol	Additionsverbindung
9	470, 475.		penzol	Keine Additionsverbindung
i	470.		(1,2,4); (1,2,6); (1,3,4)	Additionsverbindung
	470.	-11	(1,3,5)	do.
ì	474.	**	nzol	Kondensationsverbindung
i	474.		oluol	C ₆ H ₅ NH ₂ ·C ₆ H ₂ (NO ₂) ₈ CH ₃
H	474.		oluol	C ₆ H ₅ NH ₂ ·C ₆ H ₂ (NO ₂) ₃ NH ₂
	272.			Keine Additionsverbindung
1	337.		in + Phenol	Additionsverbindung
H	412.	p-Nitranilin	+ Chloral	C ₆ H ₄ (NO ₂)NH ₂ ·C ₄ H ₃ OCHO
ı	424.	m-Nitranilin		
ı	424.	Nitranilin	+ " + HCI.	C ₆ H ₄ (NO ₂)NH ₂ ·C ₄ H ₃ OCHO·HCl
ı	449.	o- od. p-Nitranilin	+ Chinon	C ₆ H ₄ (NO ₂)NH ₂ ·C ₆ H ₄ O ₂
H	449.	m-Nitranilin	+ ,	Substitutionsverbindung
ı	449.	o-Nitranilin	+ Toluchinon	C ₆ H ₄ (NO ₂)NH ₂ ·C ₆ H ₃ (CH ₃)O ₂
ı	475.	p-Bromanilin .	+ Trinitrobenzol.	Keine Additionsverbindung
	150.	Methylanilin	$+ H_4 Fe(CN)_6$	C ₆ H ₅ NH(CH ₃)·Fe(CN) ₆ H ₄
	150.	Dimethylanilin	$+ H_4 Fe(CN)_6$	C ₆ H ₅ N(CH ₃) ₂ ·Fe(CN) ₆ H ₄
	339.	"	+ Phenol	C ₆ H ₅ N(CH ₃) ₂ ·C ₆ H ₅ OH
	109.	"	+ Aceton $+$ SO ₂ .	C ₆ H ₅ N(CH ₃) ₂ ·(CH ₃) ₂ CO·SO ₂
	477.	, +1	litrosodimethylanilin	$C_6H_5N(CH_3)_2 \cdot 2 C_6H_4(NO)N(CH_3)_2$
	474.	,,	+ Trinitrobenzol.	$C_6H_5N(CH_3)_2 \cdot C_6H_3(NO_2)_3$
	474.	,,	$+\alpha$ -Trinitrotoluol	$C_6 H_5 N (CH_3)_2 \cdot C_6 H_2 (NO_2)_3 CH_3$
	274.	"	+ Pikramid	$C_6H_5N(CH_3)_2 \cdot C_6H_2(NO_2)_3NH_2$
	338.	o- od. p-Toluidin	+Phenol	C ₆ H ₄ (CH ₃) NH ₂ · C ₆ H ₅ OH
-	381, 391	. Toluidin	+ Resorcin	The state of the s
	370.	o- od. p-Toluidin	+ Hydrochinon .	
	391.	Toluidin	+Pyrogallol	
	399.	p-Toluidin	+α-Naphthol	Additionsverbindung
	398.	"	$+\beta$ -Naphthol	do.

412.	p-Toluidin	+ Chloral	Additionousekind
108.	,,	+ Benzaldehyd + SO ₂	Additionsverbindung
350.	,,	+ Toluhydrochinon.	2 C ₆ H ₄ (CH ₃) NH ₂ · C ₆ H ₅ CHO · SO ₂
477.	o- od. p-Toluidin	+ Nitrosodimethylanilin .	2 C ₆ H ₄ (CH ₃) NH ₂ · C ₆ H ₃ (CH ₃) (OH) ₂
474.		in + s-Trinitrobenzol .	C ₆ H ₄ (CH ₃) NH ₂ · 2 C ₆ H ₄ (NO) N (CH ₃) ₂
475.	""""	+s-Trinitrotoluol .	C ₆ H ₄ (CH ₃) NH ₂ · C ₆ H ₃ (NO ₂) ₃
272.	o- od. p-Toluidin	Dilenomid	C ₆ H ₄ (CH ₃)NH ₂ ·C ₆ H ₂ (CH ₃)(NO ₂) ₃
110.	Äthylanilin	+ Aceton $+$ SO ₂	C ₆ H ₄ (CH ₃) NH ₂ · C ₆ H ₂ (NO ₂) ₃ NH ₂
474, 475.	Dimethyl-p-toluid	lin+s-Trinitrobenzol.	C ₆ H ₅ NH(C ₂ H ₅)·(CH ₃) ₂ CO·SO ₂
475.	"	+ Trinitrotoluol	$C_6H_4(CH_3)N(CH_3)_2 \cdot C_6H_3(NO_2)_3$ $C_6H_4(CH_3)N(CH_3)_2 \cdot C_6H_2(CH_3)(NO_2)_3$
340.	m-Xylidin	+ Phenol	$C_6H_3(CH_3)_2NH_2 \cdot C_6H_5OH$
424.	,,	+ Önanthol	Additionsverbindung
104.	as. m-Xylidin	+ Benzaldehyd + SO ₂	2 C ₆ H ₃ (CH ₃) ₂ NH ₂ ·C ₆ H ₅ CHO·SO ₂
113.	m-Xylidin	+ Anisaldehyd + "	2C ₆ H ₃ (CH ₃) ₂ NH ₂ ·C ₆ H ₄ (OCH ₃)CHO·SO ₂
469.	,,	+ Nitrosodimethylanilin.	Cs H ₁₁ N · 3 Cs H ₁₀ ON ₂ ; 3 Cs H ₁₁ N · Cs H ₁₀ ON ₂
475.	1, 2, 3-o-Xylidin	+ s-Trinitrobenzol .	C ₆ H ₃ (CH ₃) ₂ NH ₂ ·C ₆ H ₃ (NO ₂) ₃
475.	1, 3, 4-m-Xylidin	+ "	Additionsverbindung
475.	1, 3, 2-m-Xylidin	+	do.
475.	1, 4, 2-p-Xylidin	1	do.
475.	1, 3, 4-m-Xylidin	+ s-Trinitrotoluol .	C ₆ H ₃ (CH ₃) ₂ NH ₂ ·C ₆ H ₂ (CH ₃)(NO ₂) ₃
475.	Brom-m-Xylidin	+ Trinitrobenzol .	Keine Additionsverbindung
441.	Benzylidenanilin	- Phenylbenzylketon .	C ₆ H ₅ CHNC ₆ H ₅ ·C ₆ H ₅ COC ₆ H ₅ CH ₂
441.	,,	+ Dibenzylketon .	C ₆ H ₅ CHNC ₆ H ₅ ·(C ₆ H ₅ CH ₂) ₂ CO
467.	,,	+ arom. Amine	0,11,011110,11,011,011,011,01
441.	Benzyliden-m-Nitranili	n + Dibenzylketon .	C ₆ H ₅ CHNC ₆ H ₄ (NO ₂)·(C ₆ H ₅ CH ₂) ₂ CO
441.	Benzyliden-p-Toluidin	+ ,,	C ₆ H ₅ CHNC ₆ H ₄ CH ₃ ·(C ₆ H ₅ CH ₂) ₂ CO
475.	p-Ditolylamin	+ Trinitrobenzol .	(CH ₃ C ₆ H ₄) ₂ NH · C ₆ H ₃ (NO ₂) ₃
114.	Pseudocumidin	+ Benzaldehyd + SO ₂	2 C ₆ H ₂ (CH ₃) ₃ NH ₂ · C ₆ H ₅ CHO · SO ₂
115.	,,	+ Zimtaldehyd + "	2 C ₆ H ₂ (CH ₃) ₃ NH ₂ · C ₆ H ₅ C ₂ H ₂ CHO · SO ₂
475.	"	+ Trinitrobenzol .	C ₆ H ₂ (CH ₃) ₃ NH ₂ ·C ₆ H ₃ (NO ₂) ₃
475.	"	+ s-Trinitrotoluol .	C ₆ H ₂ (CH ₃) ₃ NH ₂ ·C ₆ H ₂ (CH ₃)(NO ₂) ₃
475.	11	+ Trinitrobenzoesäure .	C ₆ H ₂ (CH ₃) ₃ NH ₂ ·C ₆ H ₂ (NO ₂) ₃ CO ₂ H
475.	Mesidin	+ Trinitrobenzol .	$C_6 H_2 (CH_3)_3 NH_2 \cdot C_6 H_3 (NO_2)_3$
400.	Diphenylamin	+ Naphthol	Additionsverbindung
424.	"	+ Furfurol	do.
424.	"	+ " + HCI .	2 (C ₆ H ₅) ₂ NH · C ₅ H ₄ O ₂ · CIH
475.	"	+ s-Trinitrobenzol .	$(C_6 H_5)_2 NH \cdot 2 C_6 H_3 (NO_2)_8$
342.		in + Phenol	C ₁₀ H ₇ NH ₂ ·C ₆ H ₅ OH
372. 423.	«-Naphthylamin	+ Hydrochinon	Additionsverbindung
119.	"	+ Onanthol	do.
120.	,11	+ Benzaldehyd + SO ₂	2 C ₁₀ H ₇ NH ₂ ·C ₆ H ₅ CHO·SO ₂
121.	8-Nanhthylamin	+ " + H ₂ SO ₃	$C_{10}H_7NH_2 \cdot C_6H_5CHO \cdot SO_8H_2$
106.	β-Naphthylamin α-Naphthylamin	+ " + SO ₂	C ₁₀ H ₇ NH ₂ ·C ₆ H ₅ CHO·SO ₂
122.		+ "+Anilin+ " +Anisaldehyd+H ₂ SO ₃	$C_{10}H_7NH_2 \cdot C_6H_5CHO \cdot C_6H_5NH_2 \cdot SO_2$ Additionsverbindung
	"	7111131114CHyu -1123U3	Additionsverbillidding

-	11100	Additionaryashindung
122.	a-Naphthylamin + Cuminaldehyd +H2SO3	Additionsverbindung
122.	" + Zimtaldehyd + "	do.
122.	" + Salicylaldehyd + "	do.
469.	β-Naphthylamin+ Nitrosodimethylanilin	3 C ₁₀ H ₇ NH ₂ ·2 C ₆ H ₄ (NO)N (CH ₈) ₂
473.	α- od. β-Naphthylamin+s-Trinitrobenzol	C ₁₀ H ₇ NH ₂ ·C ₆ H ₃ (NO ₂) ₃
116.	p-Amidophenol + Benzaldehyd + SO ₂	C ₆ H ₄ (OH)NH ₂ ·C ₆ H ₅ CHO·SO ₂
117.	" + Anisaldehyd + "	C ₆ H ₄ (OH)NH ₂ ·C ₆ H ₄ (OCH ₈)CHO·SO ₂
118.	" + Zimtaldehyd + "	$C_6H_4(OH)NH_2 \cdot C_6H_5C_2H_2CHO \cdot SO_2$
118.	, + Salicylaldehyd+ ,,	$C_6H_4(OH)NH_2 \cdot C_6H_4(OH)CHO \cdot SO_2$
94.	m-Amidobenzoes. + Önanthol + H ₂ SO ₃	$C_6H_4(NH_2)CO_2H \cdot C_7H_{14}O \cdot SO_3H_2$
424.	+ Furfurol	$C_6 H_4 (NH_2) CO_2 H \cdot C_4 H_3 O CHO$
424.	,, + Benzaldehyd	$C_6H_4(NH_2)CO_2H \cdot C_6H_5CHO$
94.	,, + ,, +H ₂ SO ₃	$C_6H_4(NH_2)CO_2H\cdot C_6H_5CHO\cdot SO_3H_2$
88.	" + Helicin	$C_6H_4(NH_2)CO_2H \cdot C_{13}H_{16}O_7$
424.	Amidobenzoes. Äthylester + Furfurol .	Additionsverbindung
414.	Benzamid + Chloral .	C ₆ H ₅ CONH ₂ ·CCl ₈ CHO
424.	Amidocuminsäure + Furfurol .	Additionsverbindung
88.	,, + Helicin .	$C_{10}H_{13}O_{2.}N \cdot C_{13}H_{16}O_{7}$
88.	Amidosalicylsäure + " .	$C_6H_3(NH_2)(OH)CO_2H \cdot C_{13}H_{16}O_7$
479.	Damascenin + Jodmethyl	$C_9H_{11}NO_3\cdot CH_3J\cdot H_2O$
479.	Damascenin-S + "	$C_9H_{11}NO_3\cdot CH_3J\cdot H_2O$
476.	Dimethyl-p-amidobenzaldehyd + s - Trinitrotoluol	Additionsverbindung
462.	Tetramethyldiamidobenzophenon — Trinitrobenzol	do.
475.	Tolidin + s-Trinitrobenzol	(CH ₃ C ₆ H ₃ NH ₂) ₂ · C ₆ H ₃ (NO ₂) ₃
249.	Diamidotriphenylmethan + Benzol	CH (C ₆ H ₅) (C ₆ H ₄ NH ₂) ₂ · C ₆ H ₆
433.	Diphenylharnstoff + Acetessigester	CO (NH C ₆ H ₅) ₂ · C ₆ H ₁₀ O ₃
112.	5-Amino-1, 2, 4-trimethylbenzol + Benzaldehyd	
	$+SO_2$	2 (CH ₃) ₈ C ₆ H ₂ NH ₂ · C ₆ H ₅ CHO · SO ₂
111.	2-Amino-1,3,5-trimethylbenzol+ ,, + ,,	2 (CH ₃) ₃ C ₆ H ₂ NH ₂ · C ₆ H ₅ CHO · SO ₂
474, 475.		C ₆ H ₄ (NH ₂) ₂ ·C ₆ H ₃ (NO ₂) ₃
475.	m-Toluylendiamin + "	C ₆ H ₃ (CH ₃)(NH ₂) ₂ ·C ₆ H ₃ (NO ₂) ₃
475.	Xylylendiamin + "	C ₆ H ₄ (CH ₂ NH ₂) ₂ ·C ₆ H ₃ (NO ₂) ₃
475.	Benzidin + "	(C ₆ H ₄ NH ₂) ₂ ·C ₆ H ₃ (NO ₂) ₃
255.	Azobenzol + Benzol	$(C_6H_5N)_2 \cdot C_6H_6$
475.	,, + s-Trinitrobenzol	$(C_6H_5N)_2 \cdot C_6H_3(NO_2)_3$
420.	Acetophenoxim + Chloral	(CH ₃)(C ₆ H ₅)CNOH·CCI ₃ CHO
	Chinolin + Wasser	2 C ₉ H ₇ N · 3 H ₂ O
150.	,, +H ₄ Fe(CN) ₆	Additionsverbindung
382.	,, +Resorcin	2 C ₉ H ₇ N·C ₆ H ₄ (OH) ₂
371.	,, + Hydrochinon	2 C ₉ H ₇ N · C ₆ H ₄ (OH) ₂
-	,, + Alkylhaloide	Additionsverbindungen
	Pongulablasid	C ₉ H ₇ N · C ₆ H ₅ CH ₂ CI · 3H ₂ O
418.	" + Chloral	0 11 11 001 0110
-	Bromacetophenon	
-	- Monochloräthylacetat	
475.	+ s-Trinitrobenzol	
	v. Rechenberg, Gewinnung und Trennung der	

16. Additionsverbindungen von Halogenkörpern.

	Talogenkorpern.		
12.	Methyljodid +Wasser	2 CH ₃ J·H ₂ O	
-	+Trimethylamin.	CH ₃ J·(CH ₃) ₃ N	
479.	+Damascenin		
479.	+ Damascenin-S.	CH ₃ J·C ₉ H ₁₁ NO ₃ ·H ₂ O	
480.	,, +H ₂ S	CH ₃ J·2 H ₂ S·23 H ₂ O	
460.	,, +Thioharnstoff .	CH ₃ J · CS (NH ₂) ₂	
482.	+Dimethylsulfid.	CH ₃ J·S (CH ₃) ₂	
480.	Methylenchlorid +H ₂ S	CH ₂ Cl ₂ · 2 H ₂ S · 23 H ₂ O	
13.	Chloroform + Wasser	CHCl ₃ ·18 H ₂ O	
430.	,, +Aceton	2 CHCl ₃ ·(CH ₃) ₂ CO labil, flüssig	
430.	, + ,	CH Cl ₃ ·(CH ₃) ₂ CO stabil, flüssig	
430.	+ "	CHCl ₃ ·(CH ₃) ₂ CO· ¹ / ₂ H ₂ O stabil, fest	
408.	,, + ,, + Chloral	CHCI ₃ ·(CH ₃) ₂ CO·CCI ₃ CHO	
455.	,, + Methylacetat .	2 CH Cl ₃ · CH ₃ CO ₂ CH ₃	
446.	,, +Salicylid	2 CHCl ₃ ·(C ₆ H ₄ (CO)O) ₄	
446.	" +o-Homosalicylid	2 CH Cl ₃ · (CH ₃ C ₆ H ₃ (CO) O) ₄	
481.	,, +H ₂ S	Additionsverbindung	
480.	Tetrachlorkohlenstoff+H2S	CCI ₄ ·2 H ₂ S·23 H ₂ O	
480.	Äthylchlorid, Bromid od. Jodid + H ₂ S.	Additionsverbindung	
460.	Äthylhalogen + Thioharnstoff.	C ₂ H ₅ Halog. CS (NH ₂) ₂ ; C ₂ H ₅ Halog. 2 CS (NH ₂) ₂	
480.	Äthylidenhalogen + H ₂ S	CH ₃ CH Halog ₂ Additionsverbindung	
480.	Äthylenchlorid + "	CH ₂ CICH ₂ CI do.	
480.	α-Trichloräthan + ",	CH ₃ CCl ₃ do.	
480.	Trichloräthan + ",	CH ₂ CI CH Cl ₂ keine Additionsverbindung	
480.	Tetrachloräthan + ",	Additionsverbindung	
480.	Chlorpropan + ",	CH ₃ CH ₂ CH ₂ Cl Additionsverbindung	
-	Monochloräthylacetat + Chinolin	CH ₂ CICO ₂ C ₂ H ₅ ·C ₉ H ₇ N	
315.	Jodol + Dihydrocuminalkohol	C ₄ J ₄ NH·C ₁₀ H ₁₆ O	
447.	,, +Pinol	Additionsverbindung	
444.	,, + Cineol	C ₄ J ₄ NH · C ₁₀ H ₁₈ O	
461.	Chlormethylalkohol + Pyridin	CH2 CIOH · C5 H5 N	
406.	Chloräthylalkohol + Chloral	CH ₂ CI CH ₂ OH · CCI ₃ CHO	
147.	Epichlorhydrin + H ₃ Fe(CN) ₆ .	C ₃ H ₅ OCl keine Additionsverbindung	
147.	$+H_3Fe(CN)_6$.	Keine Additionsverbindung	
	Tribrompropanal + Wasser	CH ₂ Br CBr ₂ CHO · 2 H ₂ O	
124.	Benzylchlorid + H ₃ PO ₄	Keine Additionsverbindung	
-	,, + Chinolin	C ₆ H ₅ CH ₂ CI·C ₉ H ₇ N·3 H ₂ O	
124.	Benzylidenchlorid + H ₃ PO ₄	C6H5CHCl2 keine Additionsverbindung	
124.	Benzotrichlorid + "	C ₆ H ₅ ·CCl ₃ do. do.	
266.	o-, m-od.p-Chlornitrobenzol-Naphthalin	Keine Additionsverbindung	
470.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	do. do.	
124.	Benzoylchlorid +H ₃ PO ₄	C6H5COCI keine Additionsverbindung	

17. Additionsverbindungen von Nitro- und Nitrosokörpern.

469, 475,		II. Additions eres	
201. 469, 475. 469, 477. 477. 469, 477. 201. 201. 469, 477. 201. 201. 469, 477. 477. 469, 477. 201. 201. 469, 477. 477. 469, 477. 201. 201. 469, 477. 477. 469, 477. 201. 201. 469, 477. 477. 469, 477. 201. 201. 205. 206. 206. 201. 201. 201. 201. 201. 201. 201. 201	160 175	Nitrobenzol + Anilin	C ₆ H ₅ NO ₂ keine Additionsverbindung
469, 475, 469, 475, 469, 469, 469, 469, 469, 469, 469, 469	THE RESIDENCE OF THE PARTY OF T	+p-Nitrosodimethylanilin+CNH	C ₆ H ₅ NO ₂ ·2 C ₆ H ₄ (NO)N(CH ₃) ₂ ·CNH
469, 475. 469. 470. 4	100 March 1997		C ₆ H ₅ NO keine Additionsverbindung
469, 469, 469, 469, 469, 469, 469, 469,			C ₆ H ₄ (CH ₃)NO ₂ keine Additions verbing.
469, 469, 469, 469, 469, 469, 469, 469, 470, 266, 267, 268, 470, 470, 266, 267, 268, 266, 2			$C_6H_4(NO_9)OH$ do. do.
469, 458, 458, 469, 470, 266, 267, 268, 470, 475, 270. 266, 267, 268, 266,	10000000	O	$C_6H_4(NO_2)OH \cdot C_6H_5NH_2$
Harnstoff Har	100000		
## 458. 469, 470. 266. 266. 266. 266. 266. 266. 266. 26	The second secon	O. I HELD DATE.	
469, 470, 266. 0-,m-od.p-Nitrophenol + Pikrinsäure Co-H ₄ (NO ₂) ₂ keine Additionsverbindung Co-H ₄ (NO ₂) ₂ co-H ₅ NH ₂ Keine Additionsverbindung Co-H ₄ (NO ₂) ₂ co-H ₅ NH ₂ Keine Additionsverbindung Co-H ₄ (NO ₂) ₂ co-H ₅ NH ₂ Co-H ₅ (NO ₂) ₂ co-H ₅ NH ₂	100000000000000000000000000000000000000	m. od. p.Nitrophenol + " · ·	C ₆ H ₄ (NO ₂)OH·CO (NH ₂) ₂
266. 267, 268. 470, 475. 470, 475. 50 - od. p-Dinitrobenzol + Anilin	The second secon	or mod p-Nitrophenol + Pikrinsäure .	Keine Additionsverbindung
267, 268. m- od. p-Dinitrobenzol +	100000000000000000000000000000000000000	o-Dinitrobenzol + Naphthalin .	
470, 475. m-Dinitrobenzol		O Dilling of the control of the cont	
470, 475. o- od. p-Dinitrobenzol + "Naphthalin" Reine Additionsverbindung 266. 266. (1, 2, 4) + "Additionsverbindung 266. (1, 3, 4) + " Keine Additionsverbindung 266. (1, 3, 4) + " Keine Additionsverbindung 266. (1, 3, 4) + " Keine Additionsverbindung 470. (1, 2, 4) + Anilin Keine Additionsverbindung 470. (1, 3, 4) + " Keine Additionsverbindung 470. (1, 3, 5) + " do. do. 470. (1, 3, 5) + " do. do. 470. (1, 3, 5) + " Keine Additionsverbindung 470. (1, 3, 5) + " Keine Additionsverbindung 480. (2, 4) + Naphthalin Ceh (CH ₃)(NO ₂) ₂ · Ceh H ₅ NH ₂	AND DESCRIPTION OF THE PARTY OF	- · · · · · · · · · · · · · · · · · · ·	$C_6H_4(NO_2)_2 \cdot C_6H_5NH_2$
Dinitrotoluol	THE RESIDENCE OF THE PARTY OF T	III Dillini	Keine Additionsverbindung
266. 266. 266. 266. 3, (1, 2, 4) + 3, 264. 266. 266. 3, (1, 3, 4) + 3, 364. 266. 266. 3, (1, 3, 5) + 3, 364. 266. 3, (1, 3, 5) + 3, 364. 266. 3, (1, 3, 4) + 3, 364. 266. 3, (1, 3, 5) + 3, 364. 266. 3, (1, 3, 4) + 3, 364. 266. 3, (1, 3, 4) + 3, 364. 266. 3, (1, 3, 4) + 3, 364. 266. 3, (1, 3, 4) + 3, 364. 266. 3, (1, 3, 5) + 3, 364. 273. 478. 273. 478. 273. 478. 273. 478. 273. 478. 273. 478. 273. 478. 273. 478. 273. 478. 274. 275. 476. 276. 476			$C_6H_3(CH_3)(NO_2)_2 \cdot C_{10}H_8$
266. 266. 267. (1, 3, 4) + "	2012000	(1 2 6) +	
266. 266. 470. $(1,3,4) + \dots $ $(1,2,4) + Anilin \dots $ $(1,2,4) + Anilin \dots $ $(1,2,6) + \dots $ $(1,3,4) + \dots $ $(1,3,5) + \dots $ $(1,3,$		(124) +	
266. 470. 470. 470. 470. 470. 470. 470. 470		(134) +	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(135) +	$C_6H_3(CH_3)(NO_2)_2 \cdot C_{10}H_8$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The second secon	(1 2 4) + Anilin	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(126) +	
470. 273. 478. 256. 201. 201. 201. 201. 335. 469, 477. 201. 469, 477. 469. 469. 258. 269. 279. 462. 462. 462. 462. 462. 462. 462. 462		(134) +	
Dinitrophenol (2, 4)		(1 3 5) +	$C_6H_3(CH_3)(NO_2)_2 \cdot C_6H_5NH_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(C)	(2.4) + Anilin	$C_6H_3(NO_2)_2OH \cdot C_6H_5NH_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10000000	p Nitrosodimethylanilin+ Benzol	
201. 201. 335. 469, 477. 201. 469, 477. 477. 469. 469. 258. 269. 279. 462. 462. 462. 462. 462. 462. 462. 462	1000000	+ Benzol+CNH	C ₈ H ₁₀ ON ₂ ·C ₆ H ₆ ·CNH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4 Nitrobenzol +	$C_8H_{10}ON_2 \cdot C_6H_5NO_2 \cdot CNH$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000000000000000000000000000000000000	1 Toluct 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 Phenol	$C_8H_{10}ON_2 \cdot C_6H_5OH$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 4 111	$C_8H_{10}ON_2 \cdot C_6H_5NH_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100000	+ CNH	
477. 469.	469, 477	- o od p-Toluidin	$C_8H_{10}ON_2 \cdot C_6H_4(CH_3)NH_2$
469. 3 C ₈ H ₁₀ ON ₂ ·3 C ₁₀ H ₇ NH ₂ 258. s-Trinitrobenzol + Benzol C ₈ H ₃ (NO ₂) ₃ · C ₈ H ₆ 269. + Naphthalin C ₈ H ₃ (NO ₂) ₃ · C ₁₀ H ₈ 462. + Pyridin Additions verbindung 462. + Piperidin Additions verbindung 463. + Pyrrol	477.	→ Dimethylanilin	C ₈ H ₁₀ ON ₂ ·C ₆ H ₅ N(CH ₃) ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	469.	" + m-Xylidin	3 Cs H ₁₀ O N ₂ · Cs H ₁₁ N; Cs H ₁₀ O N ₂ · 3 Cs H ₁₁ N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	469.	$+\beta$ -Naphthylamin .	
279.	258.	s-Trinitrobenzol + Benzol	
462.	269.	+ Naphthalin	
462.	279.	→ Anthracen	Additionsverbindung
462. $+$ Piperidin Additionsverbindung $C_6H_3(NO_2)_3 \cdot (CHCH)_2NH$ $+$ Indol $C_6H_3(NO_2)_3 \cdot C_6H_4(CH)(NH)CH$	462.	1 Pyridin	
462. $+ Pyrrol C_6H_3(NO_2)_3 \cdot (CHCH)_2NH + Indol C_6H_3(NO_2)_3 \cdot C_6H_4(CH)(NH)CH$	462.	→ Pineridin	Additionsverbindung
462. $+ Indol C6H3(NO2)3·C6H4(CH)(NH)CH$	462.	1 Pyrrol	. C ₆ H ₃ (NO ₂) ₃ ·(CHCH) ₂ NH
43*	462.	+ Indol	$C_6H_3(NO_2)_3 \cdot C_6H_4(CH)(NH)CH$
	1		43*

462.	s-Trinitrobenzol + Skatol	C ₆ H ₃ (NO ₂) ₃ ·C ₉ H ₉ N
462.	" + Chinin	Keine Additionsverbindung
462.	+Brucin	Additionsverbindung
462.	+ Strychnin	Keine Additionsverbindung
462.	,, + Morphin	do. do.
475.	,, +Azobenzol	do. do.
474.	" + Anilin.,	C ₆ H ₃ (NO ₂) ₃ · C ₆ H ₅ NH ₂
475.	" + p-Bromanilin	Keine Additionsverbindung
474, 475.	,, + o-, m- od. p-Toluidin.	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₄ (CH ₃)NH ₂
475.	" + vier Nitro-o-Toluidine	Keine Additionsverbindung
474, 475.	" + Dimethyl-p-Toluidin.	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₄ (CH ₃)N(CH ₃) ₂
475.	" +1, 2, 3-o-Xylidin	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₃ (CH ₃) ₂ NH ₂
475.	,, +1, 3, 4-m-Xylidin	Additionsverbindung
475.	" + 1, 3, 2-m-Xylidin	do.
475.	" + 1, 4, 2-p-Xylidin	do
475.	" + Brom-m-Xylidin	Keine Additionsverbindung
475.	" + Diphenylamin ,	2 C ₆ H ₃ (NO ₂) ₃ · (C ₆ H ₅) ₂ NH
475.	" + p-Ditolylamin	2 C ₆ H ₃ (NO ₂) ₃ · (C ₆ H ₄ CH ₃) ₂ NH
475.	" + Pseudocumidin	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₂ (CH ₃) ₃ NH ₂
475.	., + Mesidin	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₂ (CH ₃) ₃ NH ₂
475.	" + m-Toluylendiamin .	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₃ (CH ₃)(NH ₂) ₂
475.	,. + Xylylendiamín	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₄ (CH ₂ NH ₂) ₂
474, 475.	"+ o-, m- od. p-Phenylendiamin	C ₆ H ₃ (NO ₂) ₃ ·C ₆ H ₄ (NH ₂) ₂
462.	" + Nitrodimethylphenylendiamin	C ₆ H ₃ (NO ₂) ₃ · C ₆ H ₄ NH (NO ₂) N (CH ₃) ₂
475.	" + Benzidin	C ₆ H ₃ (NO ₂) ₃ ·(C ₆ H ₄ NH ₂) ₂
475.	" + Tolidin	C ₆ H ₃ (NO ₂) ₃ ·(CH ₃ C ₆ H ₃ NH ₂) ₂
475.	" + Nitro-o-Toluidin	Keine Additionsverbindung
473.	" α- od. β-Naphthylamin	C ₆ H ₃ (NO ₂) ₃ ·C ₁₀ H ₇ NH ₂
475.	" Chinolin	2 C ₆ H ₃ (NO ₂) ₃ ·C ₉ H ₇ N
462.	" + Tetramethyldiamidobenzophenon.	Additionsverbindung
259.	Trinitrotoluol + Benzol	Keine Additionsverbindung
271.	α-, β-od. γ-Trinitrotoluol + Naphthalin .	$C_6H_2(NO_2)CH_3 \cdot C_{10}H_8$
279.	α-Trinitrotoluol + Anthracen .	Additionsverbindung
	7-Trinitrotoluol + Anilin	Kondensationsverbindung
150000	a-Trinitrotoluol + "	C ₆ H ₂ (NO ₂) ₃ CH ₃ · C ₆ H ₅ NH ₂
474.	, + Dimethylanilin	$C_6H_2(NO_2)_3CH_3\cdot C_6H_5N(CH_3)_2$
	s-Trinitrotoluol + o-, m- od. p - Toluidin	$C_6H_2(NO_2)_3CH_3\cdot C_6H_4(CH_3)NH_2$
475.	,, + Dimethyl-p-Toluidin .	$C_6H_2(NO_2)_3CH_3\cdot C_6H_4(CH_3)N(CH_3)_2$
475.	+1,3,4-m-Xylidin	$C_6H_2(NO_2)_3CH_3 \cdot C_6H_3 \cdot C_6H_3(CH_3)_2NH_3$
475.	,, +Pseudocumidin	$C_6 H_2 (NO_2)_3 CH_3 \cdot C_6 H_2 (CH_3)_3 NH_2$
476.	,, + Dimethyl-p-Amidobenzaldehyd	Additionsverbindung
THE RESERVE AND ADDRESS OF THE PARTY OF THE	Trinitro-m-Xylol + arom. Amine .	Keine Additionsverbindung
	Trinitromesitylen + " " .	do. do.
CARLES AND ADDRESS OF THE PARTY	Trinitrobutylxylol + " " .	do. do.
TEATLE.	Trinitrokresol + Naphthalin	$C_6 H (CH_3) (NO_2)_8 OH \cdot C_{10} H_8$
275.	β - od. γ -Trinitrophenol $+$,,	$C_6H_2(NO_2)_8OH \cdot H_{10}C_8$

202	β-Trinitrophenol + Naphthalin	Keine Additionsverbindung
282.	Pikrinsäure + Benzol	C ₆ H ₂ (NO ₂) ₃ OH · C ₆ H ₆
260.	+ Naphthalin	$C_6 H_2 (NO_2)_8 OH \cdot C_{10} H_8$
274.	+ Anthracen	C ₆ H ₂ (NO ₂) ₃ OH · C ₁₄ H ₁₀
280.	+ Phenanthren	C ₆ H ₂ (NO ₂) ₈ OH·(C ₆ H ₄ CH) ₂
283.	+ Phenol	C ₆ H ₂ (NO ₂) ₃ OH · C ₆ H ₅ OH
343.	+ o, m- od.p-Nitrophenol	Keine Additionsverbindung
	+ Anethol	C ₆ H ₂ (NO ₂) ₃ OH·C ₁₀ H ₁₂ O
356.	11	C ₆ H ₃ (CH ₂ CHCH ₂) (OCH ₃) ₂ keine Additionsv.
386.	,, + Methyleugenol	C ₆ H ₃ N ₃ O ₇ · C ₆ H ₃ (CH CH CH ₃) (OCH ₃) ₂
386.	,, + Methylisoeugenol	CH2 O2 C6 H3 (CH2 CH CH2) keine Addltionsv.
386.	,, + Safrol	C ₆ H ₃ N ₅ O ₇ · CH ₂ O ₂ C ₆ H ₃ (CH CH CH ₃)
386.	,, + Isosafrol	C ₆ H ₃ N ₃ O ₇ · (CH ₃ O) ₃ C ₆ H ₂ (CH ₂ CH CH ₂)
386.	, + Asaron	C ₁₂ H ₁₄ O ₄ keine Additionsverbindung
386.	" + Apiol	C ₆ H ₃ N ₃ O ₇ · C ₁₂ H ₁₄ O ₄
386.	,, + Isoapiol	C ₁₂ H ₁₄ O ₄ keine Additionsverbindung
386.	" + Dillapiol	
386.	" + Dillisoapiol	C ₆ H ₃ N ₃ O ₇ ·C ₁₂ H ₁₄ O ₄
397.	", $+\beta$ -Naphthol	C ₆ H ₂ (NO ₂) ₈ OH·C ₁₀ H ₇ OH
434.	" + Dimethylpyron	C ₆ H ₂ (NO ₂) ₃ OH·C ₇ H ₈ O ₂
457.	" + Hexamethylentetramin	C ₆ H ₂ (NO ₂) ₃ OH·(CH ₂) ₆ N ₄
459.	,, + Pyridin	C ₆ H ₂ (NO ₂) ₃ OH · C ₅ H ₅ N
463.	,, + Indol	C ₆ H ₂ (NO ₂) ₃ OH · C ₈ H ₇ N
464.	,, + Skatol	$C_6H_2(NO_2)_3OH \cdot C_9H_9N$
261.	Pikramid + Benzol	C ₆ H ₂ (NO ₂) ₃ NH ₂ · C ₆ H ₆
263.	,, + Toluol	C ₆ H ₂ (NO ₂) ₃ NH ₂ ·C ₆ H ₅ CH ₃
277.	,, + Naphthalin	
281.	,, + Anthracen	
272, 274.	1 4 444	
272.	,, + o- od. p-Toluidin	$C_6 H_2 (NO_2)_3 NH_2 \cdot C_6 H_4 (CH_3) NH_2$
274.	+ Dimethylanilin	$C_6 H_2 (NO_2)_3 NH_2 \cdot C_6 H_5 N (CH_3)_2$
262.	Pikrylchlorid + Benzol	$C_6H_2(NO_2)_3CI\cdot C_6H_6$
278.	+ Naphthalin	C ₆ H ₂ (NO ₂) ₃ Cl · C ₁₀ H ₈
284.	+Phenanthren	
285.	, + Fluoren	$C_6 H_2 (NO_2)_3 C1 \cdot (C_6 H_4)_2 CH_2$
286.	" + Stilben	The state of the s
475.	Trinitrobenzoesäure + Pseudocumidin.	
436.	Hexanitrocellulose + Fenchon	
436.	,, + Campher	
416.	Nitroso-β-Naphthol + Chloral	da.
		· Annual Control of the control of t
	18. Additionsverbindun	gen von Schwefelkörpern.
400		
480.	H ₂ S + Methylenchlorid	
480.	" + Athylenchlorid	
481.	" + Chloroform	
480.	$+ \alpha$ -Trichloräthan	. do.

	The state of the s	
480.	H ₂ S + Trichloräthan	Keine Additionsverbindung
480.	" + Tetrachloräthan	Additionsverbindung
480.	" + Tetrachlorkohlenstoff	2 H ₂ S·CCl ₄ ·23H ₂ O
480.	" + Äthylidenhalogen	
480.	" + Chlorpropan	Additionsverbindung
373.	" + Hydrochinon	do.
422.	- Chloral	H ₂ S·3 C ₆ H ₄ (OH) ₂ ; H ₂ S·4 C ₆ H ₄ (OH) ₂
438.	" + Chloral	H ₂ S·2 CCI ₃ CHO
18.	,, + Carvon	H ₂ S·C ₁₀ H ₁₄ O
	CS ₂ + Wasser	2 CS ₂ ·H ₂ O
253.	" + Triphenylmethyl	Additionsverbindung
165.	" + Trimethylamin	CS ₂ ·(CH ₃) ₃ N
165.	, + , +HCI	CS2 · (CH3)3 N · HC1; 2 CS2 · (CH3)3 N · 3 HC1
165.	", + ", +H ₂ SO ₄	Additionsverbindung
165.	" + " +HNO ₃	CS ₂ ·(CH ₃) ₃ N·NO ₃ H
144.	" + " +H ₃ PO ₄	2 CS ₂ ·2 (CH ₃) ₈ N·PO ₄ H ₃
456.	" + Äthylendiamin	CS ₂ ·C ₂ H ₄ (NH ₂) ₂
465.	" + Methylendipiperidin	CS ₂ · CH ₂ (C ₅ H ₁₀ N) ₂
482.	Dimethylsulfid + Jodmethyl	S(CH ₃) ₂ ·CH ₃ J
471.	Äthylsulfhydrat + Benzochinon	
123.	Senföl + HKSO ₈	C ₂ H ₅ SH Additionsverbindung
460.	Thioharnetoff Industrial	C ₃ H ₅ NCS·SO ₃ KH
460.		CS(NH ₂) ₂ ·CH ₃ J
471.	,, + Äthylhalogen	$CS(NH_2)_2 \cdot C_2 H_5 Halog.; 2 CS(NH_2)_2 \cdot C_2 H_5 Halog.$
471.	Thiophenol + Benzochinon	$2 C_6 H_5 SH \cdot C_6 H_4 O_2$
7030.00	p-Thiokresol + "	C ₆ H ₄ (CH ₈)SH Additionsverbindung
426.	Thionaphthol + Benzaldehyd	$C_{10}H_7SH \cdot C_6H_5CHO$
1		

Literatur und Bemerkungen zur Tabelle der Additionsverbindungen.

- 1.— Roscoe, Liebigs Annalen 116 (1860), 205; Pfaundler u. Schnegg, Wiener Akad. Ber. 71 (1875), Febr.; Knietsch, Berl. Berichte 34 (1901), 4099; H. Erdmann, Zeitschr. f. anorg. Chemie 32 (1902), 431; Küster u. Kremann, ibidem 41 (1904), 1; Kremann u. Ehrlich, Monatsh. f. Chem. 28 (1907), 834 u. 836; Pierre u. Puchot, Compt. rend. 82 (1876), 45; Deußen, Zeitschr. f. physik. Chem. 49 (1906), 297; Kremann u. Decolle, Monatsh. f. Chem. 28 (1907), 917.
- 2. Kristalle, bei 2º Zersetzung. v. Wroblewski, Compt. rend. 94 (1882), 954 u. 1355; Hempel u. Seidel, Berl. Berichte 31 (1898), 2997.
- 3. Nach Butlerow, Liebigs Annalen 162 (1872), 229, bildet sich in einer Kältemischung die flüssige Verbindung 2 (CH₃)₃ C OH · H₂ O.

4. - Nadeln, Smp. ca. 83°, in Wasser etwas, in Alkohol und Äther leicht löslich. Der Schmelzpunkt des Hydrats liegt 65° höher als der des Alkohols. Butlerow, Liebigs Annalen 177 (1875), 180.

5. - Krist., durch Destillation Zerfall in die Komponenten. Linne-

mann, Jahresber. d. Chem. 1871, 422.

6. - Tannert, Bull. Soc. Chim. 30 (1878), 505.

7. - Krist. Smp. 17°. Calvert, Zeitschr. f. Chem. 1865, 530; Alexejeff, Wiedemanns Ann. 28 (1886) 305.

8. - Kristalle, die sich bei 5 bis 6° aus feuchtem Önanthol abscheiden.

Beilsteins Handbuch.

- 9. Roscoe, Liebigs Annalen 116 (1860), 205 u. 125 (1863), 320; Zander, Liebigs Annalen 224 (1884), 57; Pettersson u. Eckstrand, Berl. Berichte 13 (1880), 1191; Kahlbaum, Zeitschr. f. physik. Chem. 13 (1894), 14; Konowalow, Wiedemanns Annalen 14 (1881), 34; Kremann, Monatsh. f. Chem. 28 (1907), 893.
 - 10. Kristalle. A. W. Hofmann, Jahresb. 1858, 343.

11. — Kristalle, Smp. — 14°, Beilsteins Handbuch.

12. - Smp. - 4°, de Forcrand, Jahresber. d. Chem. 1880, 472.

13. - Smp. 1,6°. Chancel u. Parmentier, Zeitschr. f. anal. Chem. 25 (1886), 118.

14. — Smp. 43 bis 50°, Sdp. 85,5°. Beilsteins Handbuch.

15. - Smp. 56 bis 57°, Sdp. 118 bis 121°. Beilsteins Handbuch.

16. - A. Naumann, Jahresber. d. Chem. 1876, 106; Moitessier u. Engel, ibidem 1880, 142; Ramsay u. Young, Zeitschr. f. physik. Chem. 1 (1887), 244; Ostwald, Allgem. Chemie, 2. Aufl. 1891, 1. Bd. S. 200; Christensen, Journ. physic. Chem. 5 (1900), 585; van Rossem, Zeitschr. f. physik. Chem. 62 (1908), 681. Siehe auch S. 581 u. 600.

17. - Smp. 53,5°, durch Destillation gespalten. Schäffer, Berl.

Berichte 4 (1871), 366.

18. — Kristalle, die bei — 3° zerfallen. Berthelot, Jahresber. d. Chem. 1856, 293.

19. - Infolge ihrer unvollständigen chemischen Sättigung vermögen sich die schweflige Säure und ihre Salze an gewisse Atomgruppen organischer Körper, vorzugsweise an ebenfalls ungesättigte, anzulagern, und zwar an folgende:

1. An Doppelbindungen von Kohlenstoff mit Sauerstoff, sowohl an ein

Aldehyd-Carbonyl als auch an ein Keton-Carbonyl.

2. An Doppelbindungen von Kohlenstoff mit Kohlenstoff.

3. An Doppelbindungen von Kohlenstoff mit Stickstoff.

4. An Phenole.

Zu dieser Vereinigung sind je nach Fall sowohl die freie schweflige Säure, SO2 und SO3 H2, fähig, als auch die sauren und neutralen schwefligsauren Salze der Alkalien, der primären organischen Basen und der Amidosäuren. Die entstehenden Verbindungen sind entweder Additionsverbindungen, teils labiler Natur, in welchem Falle sie durch freie oder kohlensaure Alkalien oder durch Säuren wieder in die Komponenten zerlegt werden, teils stabiler Natur ohne die Möglichkeit einer einfachen Spaltung. Oder es bilden sich stabile oder labile Kondensationsverbindungen unter Ausscheidung von Wasser.

Von Phenolen sind nur sehr unbeständige Verbindungen von Phenol und Hydrochinon mit SO₂ bekannt, wahrscheinlich läßt sich auch mit anderen Phenolen die gleiche Reaktion erzielen.

Die neutralen Sulfite der Alkalien und wohl auch der organischen Basen vermögen sich nicht einfach additionell anzulagern; in Verbindung tritt vielmehr Bisulfit, wobei Alkalihydrat abgespalten wird. Nur an Säuren addiert sich das Sulfit ohne Spaltung in Bisulfit und Alkalihydrat. Da das Alkalihydrat auf die entstandene Doppelverbindung zersetzend wirkt, so muß, wenn die Reaktion zu Ende geführt werden soll, das Hydrat durch Zusatz von Bicarbonat oder durch Einleiten von Kohlensäure oder durch portionsweisen Zusatz von anderen Säuren fortgesetzt neutralisiert werden. Tiemann nimmt an, daß das neutrale Sulfit nur mit ungesättigten Verbindungen reagieren kann. Nach ihm verläuft z. B. die Umsetzung beim Citral folgendermaßen:

 $C_9H_{15}CHO + 2Na_2SO_3 + 2H_2O = C_9H_{17}(SO_3Na)_2CHO + 2NaOH.$

Sadtler dagegen (Americ. Journ. Pharm. 76 (1904), 84 und Journ. Soc. chem. Industry 23 (1904), 303, ferner Journ. Americ. chem. Soc. 27 (1905), 1321) erklärt den bei der Umsetzung sich abspielenden chemischen Prozeß durch folgende Formeln:

Für Aldehyde: $R \cdot CHO + 2 Na_2SO_3 + 2H_2O = R \cdot CH$: $(NaSO_3)_2 + 2 NaOH + H_2O$.

Für Ketone: $R \cdot CO \cdot R + 2 Na_2 SO_3 + 2 H_2 O = R_2 : C : (Na SO_3)_2 + 2 Na OH + H_2 O$.

Nach Tiemann entsteht eine Additionsverbindung des organischen Körpers unter Anlagerung des Bisulfits an den doppelt gebundenen Kohlenstoff, nach Sadtler entsteht eine Kondensationsverbindung unter Anlagerung des Bisulfits an den Carbonyl-Kohlenstoff und unter Ausscheidung des Sauerstoffatoms im Carbonyl. Nach den Untersuchungen von Sadtler (l. c.) und von Burgess (Analyst 29 [1904], 78) reagieren 2 Mol. Sulfit mit 1 Mol. Citral, Zimtaldehyd, Carvon, Pulegon, Formaldehyd, 1 Mol. Sulfit mit 1 Mol. Benzaldehyd, Salicylaldehyd, Anisaldehyd, Cuminaldehyd, Vanillin, Heliotropin. Eine Reaktion konnte ferner mit Nonylaldehyd und Decylaldehyd erhalten werden, während auf Campher, Menthon, Fenchon und Citronellal keine Einwirkung des Sulfits erreicht werden konnte. Hiernach verläuft die Umsetzung mit organischen Körpern ohne Kohlenstoff-Doppelbindung äquimolekular, also nicht dem oben von Sadtler angegebenen Formelbild entsprechend. Siehe auch Bericht von Schimmel & Co. April 1905, 105.

Nach all dem ist anzunehmen, daß die neutralen Sulfite sowohl mit ungesättigten wie gesättigten organischen Verbindungen reagieren, wobei je nach der Natur dieser Verbindungen und nach den Versuchsbedingungen Additions- oder Kondensationsverbindungen entstehen. Nach den eingehenden Arbeiten Kerps (Arbeiten a. d. Kaiserl. Ges.-Amt 21 [1904], 180) der die Dissoziation von wäßrigen Lösungen der Additionsverbindungen von Aldehyden mit Natriumbisulfit untersuchte, haben die entstandenen Sulfonsäuren der organischen Verbindungen einen stärkeren Säurecharakter als die schweflige Säure, wonach die Spaltung des neutralen Alkalisulfits unter dem Einfluß gebildeter Sulfonsäure erklärlich ist.

Fast alle Aldehyde, sowohl die aliphatischen wie die aromatischen, die gesättigten ebenso wie die ungesättigten, lassen sich mit der schwefligen Säure uud ihren sauren Salzen additionell vereinigen. Nach der Tabelle bilden eine Ausnahme Isocaprinaldehyd, Diisovaleraldehyd, Triönanthylen-aldehyd, Benzoylpropionaldehyd, Thymotinaldehyd und Orcylaldehyd, von denen einzelne aber wohl nicht eigentliche Aldehyde sind. Bei dem Zusammenschluß der beiden Komponenten wird aus der Aldehydgruppe . CH: O die Gruppe . CH (OH) SO₃H, eine aldehydschweflige Säure mit einem Alkoholhydroxyl. Eintritt von Halogenen oder der Nitrogruppe in den Aldehyd hindert die Bildung der komplexen Säure nicht. Auch die aromatischen Oxyaldehyde, z. B. Salicylaldehyd, verbinden sich mit Alkalibisulfiten.

Die Verbindungsfähigkeit der Alkalidisulfite mit Ketonen ist geringer als mit Aldehyden. Bei den aliphatischen Ketonen ist die Carbonylgruppe nur reaktionsfähig, wenn sie einerseits mit der Gruppe CH3 verbunden ist. Bei den aromatischen Ketonen reagiert ebenfalls nur die Gruppe CO·CH3, aber mit der Einschränkung, daß das Ketoncarbonyl nicht unmittelbar an den Benzolkern angelagert sein darf. Acetophenon, C6H5·CO·CH3, vermag sich trotz seiner CO·CH3 Gruppe nicht an Alkalibisulfite anzulagern. Die Verbindungsfähigkeit tritt erst ein, wenn der Benzolkern von dem Carbonyl durch eine aliphatische Atomgruppe getrennt ist, wie z. B. bei dem Methylbenzylketon, C6H5·CO·CH3. Diese Regeln erleiden aber mannigfache Ausnahmen; Diäthylketon, C2H5·CO·C2H5, vereinigt sich mit Natriumbisulfit, während Methylpseudobutylketon, CH3·CO·C (CH3)3, Methylpseudoamylketon, CH3·CO·CH2C (CH3)3, Methylisopropylaceton, CH3·CO·CH(CH3)CH(CH3)2, sich nicht mit Alkalibisulfiten verbinden.

Die aliphatisch-cyclischen Ketone unterliegen in ihrer Verbindungsfähigkeit mit Alkalibisulfiten überhaupt nicht der erwähnten Regel. Nach der Tabelle haben Adipinketon, Suberon, Cyclohexanon, Cyclooctanon, Methylcyclohexanon und Dimethylcyclohexanon in ihrer Konstitutionsformel keine Gruppe .CO·CH₃, haben auch keine Doppelbindung zweier Kohlenstoffe und können sich trotz alledem mit Alkalibisulfit additionell verbinden.

Durch Alkalihydrate, kohlensaure Alkalien und durch Säuren werden die aldehyd- und ketonsulfonsauren Salze in die Komponenten zerlegt, wenn das Bisulfit an das Aldehyd- oder Ketoncarbonyl angelagert ist.

Bei der Anlagerung von Alkalibisulfiten an Doppelbindungen von Kohlenstoff mit Kohlenstoff geht die Gruppe SO₃M an das eine Kohlenstoffatom und das Wasserstoffatom an das andere Kohlenstoffatom. Es wird eine Sulfonsäure oder deren Salze gebildet. Hat der Körper zwei Doppelbindungen, so kann er sich mit zwei Molekülen Bisulfit verbinden; ist er außerdem ein Keton oder Aldehyd, so kann sich eventuell noch ein drittes Bisulfitmolekül an das Aldehyd- oder Ketoncarbonyl anschließen. Solche Additionsprodukte hat man von ungesättigten Alkoholen, Estern, Säuren, Aldehyden und Ketonen erhalten. Ungesättigte Kohlenwasserstoffe und Phenole werden wohl keine Ausnahme machen.

Hat der ungesättigte Körper mehrere Kohlenstoff-Doppelbindungen, so ist im allgemeinen gefunden worden, daß das Schwefligsäurehydrat oder das Alkalibisulfit sich mit demjenigen doppelt gebundenen Kohlenstoffpaar ver-

bindet, das einer CO-Gruppe angeschlossen ist, \cdot C:C·CO, d. h. an Kohlenstoff-Doppelbindungen in α , β -Stellung. Knoevenagel, Berl. Berichte 37 (1904), 4038; Harries, Liebigs Annalen 330 (1904), 185.

Eingehende wertvolle Untersuchungen über den Bestand und die Dissoziation labiler und stabiler Verbindungen von Natriumbisulfit mit gesättigten und ungesättigten Aldehyden und Ketonen in Lösungen wurden von Kerp und seinen Mitarbeitern ausgeführt. Arbeiten a. d. Kaiserl. Ges.-Amt 21 (1904), 180; 26 (1907), 231 u. 269; 32 (1909), 89 u. 120.

Die Additionsprodukte der Körper mit Kohlenstoff-Doppelbindungen lassen sich vielfach nicht mehr in die unveränderten Komponenten spalten.

- 20. Labbé, Bull. Soc. Chim. III. 21 (1899), 1077.
- 21. Allylalkohol wird mit einer konzentrierten Lösung von Natriumbisulfit einige Zeit am Rückflußkühler gekocht. Max Müller, Berl. Berichte 6 (1873), 1441.
- 22. Ein in Methyl- und Äthylalkohol lösliches, in Wasser leicht lösliches Salz. Labbé, Bull. Soc. Chim. III. 21 (1899), 1079.
 - 23. Brunel, Compt. rend. 140 (1905), 792.
- 24. Wird trocknes Schwefligsäure-Gas in wasserfreies, geschmolzenes Phenol geleitet, so destilliert bei 140° die Verbindung als gelbes Öl über, das zu Tafeln erstarrt. Sehr unbeständig. Hölzer, Journ. f. prakt. Chem. II. 25 (1882), 462.
- 25. Wöhler, Liebigs Annalen 69 (1849), 297; Clemm, ibidem 110 (1859), 357; Hesse, ibidem 114 (1860), 300.
- 26. Die Doppelverbindung wird durch Schütteln des Aldehyds mit der konzentrierten wäßrigen Lösung des Bisulfits in der Kälte dargestellt oder durch Einleiten von SO₂ in ein Gemisch des Aldehyds mit der wäßrigen Lösung der Alkalien unter Abkühlen. Bertagnini, Liebigs Annalen 85 (1853), 179 u. 268.
- 27. Verbindung in Wasser und Methylalkohol leicht, in Äthylalkohl schwer löslich. Großmann u. Eschweiler, Liebigs Annalen 258 (1890), 105; siehe auch S. 618; Kerp und Bauer, Arbeiten a. d. Kaiserl. Ges.-Amt 26 (1907) 231.
- 28. Bekannt sind die Verbindungen: CH₃CHO·SO₃NaH·½H₂O; CH₃CHO·SO₃KH; 2CH₃CHO·(SO₃H)₂Ba, CH₃CHO·SO₃NH₄H; CH₃CHO·SO₂NH₅. Bei der Destillation der Ammoniakverbindungen entsteht Dimethylamin. Redtenbacher, Liebigs Annalen 65 (1848), 40; Bunte, Liebigs Annalen 170 (1873), 311. Siehe auch S. 618; Kerp und Bauer s. No. 27.
- 29. Tafeln im Vakuum wasserfrei, kristallisiert aus Alkohol als Pulver mit ¹/₂H₂O. Durch Kochen mit Soda entsteht eine unlösliche gummiartige Masse. Glinski, Zeitschr. f. Chem. 1870, 649.
- 30. Chloral verbindet sich leicht mit Alkalibisulfiten. Beim Erwärmen der Verbindungen auf 80° entstehen Kondensationsverbindungen. Rathke, Liebigs Annalen 161 (1872), 154; Kerp und Bauer s. No. 27.
- 31. Säuren oder Alkalien spalten nur ein Molekül der schwefligen Säure ab. Max Müller, Berl. Berichte 6 (1873), 1441.
- 32 Methyläthylacrolein löst sich unter Erwärmen in Natriumbisulfitlösung, aus der es aber nicht wieder abgeschieden werden kann. Eine Ver-

bindung C2H3CHC(CH3)CHO·(SO3H)2Ba·2H2O wurde festgestellt. Lieben u. Zeisel, Jahresber. d. Chem. 1883, 958; Ludwig, ibidem 1888, I. 1538.

33. - Kristalle, ziemlich löslich, durch Soda wird der Aldehyd nicht wieder abgeschieden. Lieben u. Zeisel, Monatsh. f. Chem. 1 (1880), 821. Verbindung CH3CHCHCHO·SO3H2, Combes, Jahresber. f. Chem. 1883, 650. Verbindungen CH₃CHCH CHO·(SO₃H)₂ Ba·3 H₂O und 2 CH₃CHCHCHO· (SO₃H)₂Ba·3H₂O und 2CH₃CHCHCHO·(SO₃H)₂Ba, Haubner, Jahresber. d. Chem. 1891, 1, 1450.

34. - Natterer, Monatsh. f. Chem. 4 (1883), 540.

- 35. Kristalle; durch Soda wird kein Tiglinaldehyd regeneriert, wohl aber durch unvollständiges Neutralisieren mit Baryt. Herzig, Monatsh. f. Chem. 3 (1882), 119.
- 36. Wird Tiglinaldehyd mit der zehnfachen Wassermenge unter Eiskühlung mit schwefliger Säure gesättigt, so tritt nach dreistündigem Stehen völlige Lösung ein. Wird diese mit Baryumcarbonat neutralisiert, so können aus der Lösung zwei sulfonsaure Salze erhalten werden. Bei dem einen ist die schweflige Säure an den ungesättigten Kohlenstoff im Kern getreten, bei der andern an diesen Kohlenstoff und außerdem an den Kohlenstoff des Aldehyd-Carbonyls. Haymann, Jahresber. d. Chem. 1888, I. 1534.
 - 37. Die Verbindung wird durch HNaCO3 in die Komponenten zerlegt.
- 38 Verbindung mit HNaSO3 bildet sich nach monatelangem Stehen des Aldehyds mit einer konzentrierten Bisulfitlösung. Perkin, Journ. chem. Soc. 43 (1883), 81; Berl. Berichte 16 (1883), 211.
- 39. Die normale Bisulfitverbindung C9H17CH(OH)SO3Na, das citronellalschwefligsaure Natrium, bildet sich, wenn eine konzentrierte Lösung (ca 35 % ig) des Natriumbisulfits, die zuvor durch einen Luftstrom von der überschüssigen freien schwefligen Säure befreit ist, mit Citronellal unter Zusatz von Eisstücken geschüttelt wird. Aus dieser Verbindung ist Citronellal durch Soda regenerierbar. Die Ausbeute ist schlecht, nur einige fünfzig Prozent, weil sich das gebildete Komplexsalz in wäßriger Lösung in Bisulfit und Citronellal partiell spaltet, wobei das abgeschiedene Bisulfit unter Bildung des stabilen citronellaldihydrosulfonsauren Natriums an die doppelte Kohlenstoffbildung des Komplexsalzes angelagert wird. Schließlich kann noch eine andere stabile dritte Form entstehen, bei der das Alkalibisulfit nur an das ungesättigte Kohlenstoffatom gebunden ist. Tiemann, Berl. Berichte 32 (1899), 812; Labbé, Bull. Soc. Chim. III. 21 (1899), 77 u. 1026; Kerp und Wöhler, Arbeiten a. d. Kaiserl. Ges.-Amt 32 (1900), 89.

Wird Citronellal mit einer konzentrierten wäßrigen Lösung von Natriumsulfit und Natriumbicarbonat geschüttelt, so bildet sich die normale Bisulfitverbindung des Citronellals, bei der das Aldehydcarbonyl in Reaktion getreten ist. Von einer verdünnten wäßrigen Lösung von Natriumbisulfit und Bicarbonat wird dagegen Citronellal nicht angegriffen, während Citral hierdurch als labiles dihydrosulfonsaures Natrium gelöst wird. Diese Tatsache stellte Tiemann (Berl. Berichte 32 [1899], 412) fest und gründete darauf ein Trennungsverfahren eines Gemisches von Citral, Citronellal und Methylheptenon. Man schüttelt das Gemisch mit einer verdünnten Lösung von Natriumsulfit und Natriumbicarbonat, wodurch das Citral gelöst wird. Darnach

wird das zurückgebliebene Ölgemisch mit derselben aber konzentrierten Lösung behandelt, wonach das nicht angegriffene Methylheptenon durch Extraktion mit Äther der Salzlösung entzogen werden kann. Das von Flatau und Labbé (Bull. Soc. chim. III. 19 [1898], 1012 und III. 21 [1899], 77 u. 159) angegebene Trennungsverfahren, das auf der verschiedenen Löslichkeit der Baryumbisulfitverbindungen von Citronellal und Citral beruht, führt nach Tiemanns Untersuchung nicht zum Ziel.

40. - Die labile normale Bisulfitverbindung des Citrals, C9H15CH(OH)SO3Na,

wird erhalten, wenn Citral mit einer Natriumbisulfitlösung geschüttelt wird, die eine kleine Menge freier Säure enthält, etwa durch Zusatz von etwas Essigsäure. Die Einwirkung darf nur einige Minuten dauern. Bei Behandlung größerer Citralmengen erhitzt sich die Masse, was durch Kühlung sorgfältig zu verhindern ist. Trotzdem ist die Wiedergewinnung des Citrals aus der Additionsverbindung durch Soda nicht quantitativ (Verlust 10 bis 15 %) weil sich ein Teil der ausgeschiedenen Kristalle unter Auflösung in die stabile Verbindung umwandelt.

Das stabile Dihydrodisulfonsäure-Derivat des Citrals, C9H17(SO3Na)2 CHO,

das nicht wieder trennbar ist, bildet sich quantitativ, wenn man wie bei Darstellung der normalen Verbindung verfährt, aber die Einwirkung mehrere Stunden dauern läßt.

Das labile Dihydrodisulfonsäure-Derivat des Citrals, C9 H17 (SO3 Na)2 CHO,

entsteht beim Schütteln von Citral mit einer 30- bis 40-prozentigen Lösung von neutralem Natriumsulfit, wobei das sich ausscheidende Natriumhydrat von Zeit zu Zeit (als Indikator dient Phenolphthalein) mit so viel zwanzigprozentiger Schwefelsäure oder Essigsäure versetzt wird, daß die Lösung während der Reaktion immer hellrot bleibt. Jeder Säureüberschuß ist zu vermeiden; die Lösung muß gering alkalisch bleiben. Durch Alkalien in etwas konzentrierter Lösung wird aus der Verbindung Citral regeneriert, durch Säuren wird aber die stabile Verbindung gebildet.

Werden 2 Moleküle des labilen citraldihydrodisulfonsauren Natriums mit 1 Molekül Citral in wäßriger Lösung geschüttelt, so geht das Citral in Lösung und es wird als hauptsächliches Produkt das labile citralhydromonosulfonsaure Natrium,

C9 H18 (SO3 Na) CHO.

gebildet, aus dem Alkalihydrat Citral abscheidet. Tiemann, Berl. Berichte 31 (1898), 3297.

- 41. Phellandral, ein dem Citral isomerer im Wasserfenchelöl enthaltener Aldehyd. Bericht von Schimmel & Co., Oktober 1904, 91.
- 42. Glyoxal, Methylglyoxal und die weiteren Homologen verbinden sich mit Alkalibisulfit im Verhältnis von 1 Mol. zu 2 Mol. Soda zersetzt die entstandene Verbindung nicht in die Komponenten, sondern in weitergehende Zerfallprodukte.
 - 43. Darstellung und Dissoziation in Lösung s. S. 618.
 - 44. Bertagnini, Liebigs Annalen 85 (1853), 183.

- 45. Wird Bittermandelöl mit einer konzentrierten Lösung von Natriumbisulfit geschüttelt, so bildet sich alsbald ein Kristallbrei. Die zur Reinigung mehrmals aus etwa fünfzigprozentigem Weingeist umkristallisierte Additionsverbindung bildet weiße Prismen, die in konzentrierter Lösung von Natriumbisulfit schwer löslich, in kaltem Alkohol unlöslich, aber in Wasser leicht löslich sind. Die Verbindung ist als a-oxyphenylmethansulfosaures Natrium zu bezeichnen. Die Kristalle riechen nach Benzaldehyd, befinden sich also selbst bei niedriger Temperatur im Dissoziationszustande. Beim Sieden der wäßrigen Lösung verdampft zugleich mit schwefliger Säure auch Benzaldehyd. Verdünnte Säure in der Kälte wirkt wenig ein. Konzentrierte Säuren oder Kohlensäure und freie Alkalien spalten die Doppelverbindung. Bertagnini, Liebigs Annalen 85 (1853), 183. Über Dissoziation der Lösung s. Kerp, S. 618.
- 46. Das Verhalten des Zimtaldehyds zu den Salzen der schwefligen Säure haben Heusler (Berl. Berichte 24 [1891], 1805) ferner Tiemann (Berl. Berichte 31 [1898], 3278 u. 3302) und besonders Kerp uud Wöhler (Arbeiten a. d. Kaiserl. Ges.-Amt 32 [1909], 89) studiert. Beim Schütteln von Zimtaldehyd mit einer kalten konzentrierten wäßrigen Lösung von Natriumbisulfit entsteht die normale, schwer lösliche Additionsverbindung, bei der das Natriumbisulfit an das Carbonyl der Aldehydgruppe getreten ist. Die Verbindung, die nicht lange haltbar ist, wird durch Soda in die Komponenten zerlegt. Beim Kochen mit Wasser zerfällt sie aber in Zimtaldehyd und in wasserlösliches zimtaldehyddihydrodisulfonsaures Natrium,

C₆H₅CH(SO₃Na)CH₂CH(OH)SO₃Na,

das nicht durch Soda, wohl aber durch Alkalihydrat in Zimtaldehyd und Natriumsulfit zerlegt wird. Wird dagegen das disulfonsaure Salz mit verdünnter Schwefelsäure gekocht, so bildet sich unter Entwicklung schwefliger Säure Phenylpropionaldehydsulfonsäure.

Das zimtaldehydhydrosulfonsaure Natrium,

C₆H₅CH(SO₈Na)CH₂CHO,

bildet sich bei länger dauerndem Schütteln von Zimtaldehyd mit einer 30-bis 40-prozentigen Lösung von neutralem Natriumsulfit (1 Mol. Zimtaldehyd + 2 Mol. Natriumsulfit). Weil das hierbei entstehende Alkalihydrat bei einer gewissen Konzentration das gebildete sulfonsaure Salz wieder zerlegt, so muß es neutralisiert werden, was durch genügenden Zusatz von Natriumbicarbonat oder durch Einleiten von Kohlensäure während der Reaktion oder durch portionsweise Zugabe von 20% iger Schwefelsäure oder durch Essigsäure geschehen kann. Natronlauge regeneriert aus dieser Verbindung kalt oder beim Erwärmen nur 75 bis 80% odes Zimtaldehyds.

Auch mit freier schwefliger Säure reagiert Zimtaldehyd nach Knoevenagel [Berl. Berichte 37 (1904), 4038]. Beim Schütteln mit der zehnfachen Menge etwa 5% iger wäßriger schwefliger Säure löst sich Zimtaldehyd zu einer gelblichen Flüssigkeit, in der die Säure C6H5CHCH(OH)SO3H enthalten ist. Sie ist sehr unbeständig und scheidet den Aldehyd schon beim Erwärmen ab, ebenso beim Zusatz von Alkalilauge oder Alkalicarbonat. Die Säure C6H5CH(SO3H)CH2CH(OH)SO3H bildet sich, wenn die normale Monosulfonsäure, in überschüssiger schwefliger Säure gelöst, 8 bis 10 Tage

stehen gelassen wird. Diese Disulfonsäure ist beständiger und scheidet mit Soda in der Kälte keinen Aldehyd ab.

- 47. Der Aldehyd wurde durch Oxydation von Dihydrocuminalkohol gewonnen. Bericht von Schimmel & Co., April 1905, 36.
- 48. Die Verbindungen der aromatischen Oxyaldehyde mit Alkalibisulfit sind in Wasser meist leicht löslich, auch die Paraverbindungen; in konzentrierter Alkalibisulfitlösung sind sie schwer löslich. Von heißem Wasser werden sie leicht zersetzt.
 - 49. Kobeck, Berl. Berichte 16 (1883), 2097.
 - 50. Bouchardat u. Tardy, Compt. rend. 122 (1896), 198.
 - 51. Limpricht, Liebigs Annalen 93 (1855), 238; s. S. 618.
- 52. Schweflige Säure wird in Aceton eingeleitet, bis die Absorption nachläßt. Es hat dann 1 Mol. (CH₃)₂CO ungefähr 1 Mol. SO₂ aufgenommen. Das entstandene flüssige Produkt sinkt beim Eingießen in Wasser unter und vermischt sich erst allmählich damit beim Durchschütteln. Bössneck, Berl. Berichte 21 (1888), 1906.
- 53. Kristallisierte Verbindung, aus der durch Soda das Keton regeneriert wird.
 - 54. Knoevenagel, Berl. Berichte 37 (1904), 4038.
- 55. Kristalle, Smp. 95°, zersetzen sich langsam beim Kochen mit Wasser; durch konzentrierte Natronlauge wird Mesityloxyd abgespalten. Die Verbindung ist als das Natriumsalz der Methylisobutylketonsulfonsäure aufzufassen. Pinner, Berl. Berichte 15 (1882), 592; Harries, ibidem 32 (1899), 1326.
 - 56. Dicke flüssige Verbindung. Schiff, Liebigs Annalen 210 (1881), 130.
 - 57. Knoevenagel, Berl. Berichte 37 (1904), 4038.
- 58. Amorph, in Wasser sehr leicht löslich, in abs. Alkohol unlöslich.
 O. Hoffmann, Liebigs Annalen 201 (1880), 80.
 - 59. Knoevenagel, Berl. Berichte 37 (1904), 4038.
- 60. Die Verbindung ist als diisobutylketon-disulfonsaures Natrium zu bezeichnen. Pinner, Berl. Berichte 15 (1882), 592.
 - 61. Knoevenagel, Berl. Berichte 37 (1904), 4038.
 - 62. Kerp u. Müller, Liebigs Annalen 299 (1898), 215.
- 63. Weiße Blättchen; durch Soda wird Adipinketon wieder abgetrennt. Fittig, Liebigs Annalen 110 (1859), 21; Hentzschel, Liebigs Annalen 275 (1893), 312.
 - 64. Fittig, Liebigs Annalen 110 (1859), 21.
 - 65. Durch Soda Zerlegung. Mayer, Liebigs Annalen 275 (1893), 356.
 - 66. Knoevenagel, Berl. Berichte 37 (1904), 4038.
- 67. Nach anhaltendem Schütteln löst sich das Methylcyclohexenon in konzentrierter Natriumbisulfitlösung, aus der die Additionsverbindung aber nicht in Kristallform zu erhalten ist. Kohlensaures Kalium regeneriert das Keton. Hagemann, Berl. Berichte 26 (1893), 884.
 - 68. E. Looft, Liebigs Annalen 275 (1893), 377.
 - 69. Durch Soda Zerlegung. Mayer, Liebigs Annalen 275 (1893), 362.

70. - Das Handels-Ionon besteht aus zwei isomeren Körpern, dem α- und dem β-Ionon. Beide geben mit Natriumbisulfit Additionsverbindungen. α -iononhydrosulfonsaures Natrium ist schwerer löslich als die β -Verbindung. Dieser Umstand kann zur Trennung der beiden Ionone benutzt werden, indem in die warme Lösung der Natriumsalze der beiden Sulfonsäuren Chlornatrium eingetragen wird, wodurch sich allmählich die «- Verbindung in Kristallen ausscheidet, während die β-Verbindung gelöst bleibt und schließlich durch Umkristallisieren gereinigt werden kann. Die beiden reinen isomeren Salze werden dann durch Alkalien zerlegt. Chuit, Chemist und Druggist 63 (1903), 1054.

71. - Carvon bildet mit der schwefligen Säure und ihren Salzen keine Additionsverbindung mit seinem Ketoncarbonyl, wohl aber labile und stabile Additionsverbindungen mit seinen beiden doppelt gebundenen

Kohlenstoffpaaren.

Wird Carvon am Rückflußkühler mit konzentrierter wäßriger Lösung von Natriumbisulfit gekocht, in der man zuvor alle freie schweflige Säure durch Natriumbicarbonat neutralisiert hat, so wird das Carvon bald gelöst, wobei das dihydrodisulfonsaure Natrium des Carvons entsteht. Da dies noch mit Semicarbazid reagiert, so kann man schließen, daß das Carbonyl des Ketons nicht angegriffen ist. Labbé, Bull. Soc. Chim. III. 23 (1900), 280.

Die erhaltene Additionsverbindung ist durch Soda zerlegbar. Die gleiche labile Verbindung entsteht, wenn das Carvon mit einer 30- bis 40% igen wäßrigen Lösung von neutralem Natriumsulfit andauernd unter Erhitzen geschüttelt wird, wobei zur Neutralisation des abgeschiedenen Natriumhydrats von Zeit zu Zeit Essigsäure oder Schwefelsäure zugefügt wird. Jedes Auftreten freier schwefliger Säure muß sorgfältig vermieden werden. Siehe No. 19. Die Behandlung eines carvonhaltigen Gemisches mit neutralem Natriumsulfit hat sich als eine gute Bestimmungsmethode des Carvons erwiesen.

Ein stabiles carvonmonohydrosulfonsaures Natrium erhielt Knoevenagel (Berl. Berichte 37 [1904], 4038) durch länger dauerndes Schütteln des Carvons mit ca. 80 % iger wäßriger schwefliger Säure.

72. - Wallach, Liebigs Annalen 275 (1893), 115 u. 132.

73. - Wallach, Berl. Berichte 27 (1894), 443.

74. - Umbellulon, ein ungesättigtes cyclisches Keton, ist der charakteristische Bestandteil des Öls von Umbellularia californica Nutt., der diesem Öl den stechend scharfen, zu Tränen reizenden Geruch verleiht. Lees, Journ. chem. Soc. 85 (1904), 639.

75. - Sym. Menthon, Derivat des symmetrischen Menthols, verbindet sich leicht mit Alkalibisulfiten. Knoevenagel, Liebigs Annalen 297 (1897), 169.

76. - Bouchardat u. Tardy, Compt. rend. 122 (1896), 198; Bericht von Schimmel & Co., April 1896, 7.

77. - Eine gegenseitige Lösung der Komponenten tritt erst nach mehrtägigem Schütteln ein. Knoevenagel, Berl. Berichte 37 (1904), 4038.

78. - Die Verbindung ist schwierig zu erhalten, Knoevenagel, s. Nr. 77.

79. - Die Verbindungen mit schwefliger Säure sind schwierig zu erhalten; s. Nr. 77.

- 80. Kristalle; Verbindung entsteht beim Kochen von Fumarsäure mit neutraler Kaliumsulfitlösung als Kaliumsalz der Sulfofumarsäure. Credner, Zeitschr. f. Chem. 1870, 77.
- 81. Kristalle; Verbindung ist das Kaliumsalz der Sulfomaleïnsäure. Wird Sulfomaleïnsäure bis zum Schmelzen mit Kalihydrat erhitzt, so entsteht Fumarsäure. Messel, Liebigs Annalen 157 (1871), 15.
- 82. Itaconsäure, Citraconsäure und Mesaconsäure geben mit Kaliumsulfit als Additionsprodukte sulfonsaure Salze, von denen nicht festgestellt wurde, ob sie untereinander identisch oder isomer sind. Wielandt, Liebigs Annalen 157 (1871), 34.
- 83. Das phenylsulfopropionsaure Kalium, C₆H₅CH(SO₈K)CH₂CO₂K, wurde erhalten, indem gleiche Moleküle Zimtsäure und Kaliumsulfit mit der zehnfachen Wassermenge 12 Stunden am Rückflußkühler gekocht wurden. Es ließ sich daraus nicht isolieren. Wurde zu der Lösung Essigsäure gefügt, so kristallisierte das saure Salz, C₆H₅CH(SO₃K)CH₂COOH, aus, das durch Neutralisieren mit kohlensaurem Kalium wieder in das neutrale übergeführt werden kann. In gleicher Weise wurden die Natriumsalze dargestellt. Nicht durch Säuren wohl aber durch Alkalien kann die Zimtsäure regeneriert werden. Valet, Liebigs Annalen 154 (1870), 62. Auch durch längeres Kochen der Lösung von zimtsaurem Natrium mit Natriumbisulfit werden die sulfonsauren Salze erhalten. Labbé, Bull. Soc. Chim. III. 21 (1899), 1077.
 - 84. Redtenbacher, Liebigs Annalen 65 (1848), 37.
- 85. Wird eine alkoholische Lösung von Ammoniumbisulfit mit Aceton bis zur bleibenden Trübung vermischt, so erwärmt sich das Gemisch und sehr bald scheidet sich die Additionsverbindung in silberglänzenden Blättchen aus, die zu einer Kristallmasse zusammensinken. Die Verbindung ist in Wasser und Weingeist ziemlich löslich, in Äther unlöslich, zersetzt sich schon beim Aufbewahren an der Luft. Staedeler, Liebigs Annalen 111 (1859), 307.

Diese und die Acetaldehyd-Verbindung ähneln den Aldehyd- und Ketonverbindungen mit Natrium- oder Kaliumbisulfit. Wie die zahlreichen nachfolgenden Additionsverbindungen zeigen, wird die Reaktionsfähigkeit des Ammoniumbisulfits zum Aldehyd- und Ketoncarbonyl nicht gemindert, wenn an Stelle des Ammoniaks organische Derivate des Ammoniaks treten.

- 86. Smp. bei 96°, in Wasser leicht löslich, weniger löslich in Alkohol, unlöslich in Äther. Die sauer reagierende wäßrige Lösung scheidet beim Kochen oder auf Zusatz von Schwefelsäure auch in der Kälte Benzaldehyd ab. Zur Darstellung wird sorgfältig getrocknetes Schwefligsäure-Gas in eine Lösung von Propylamin in wasserfreiem Äther eingeleitet, wobei sich Propylaminsulfit als weißes Pulver abscheidet. Bei Zusatz von Benzaldehyd zur alkoholischen Lösung des Sulfits kristallisiert die Doppelverbindung aus. Michaëlis u. Storbeck, Liebigs Annalen 274 (1893), 194.
- 87. Smp. 116 bis 117°, Darstellung und Verhalten ähnlich wie No. 86. Michaëlis u. Storbeck, Liebigs Annalen 274 (1893) 196.
- 88. Schiff, Liebigs Annalen 140 (1866), 127; 144 (1867), 45; 210 (1881), 128; Eibner, Liebigs Annalen 316 (1901), 89.

- 89. Smp. 169°, weiße Blättchen, in Wasser sehr leicht, in Alkohol schwer, in Äther und Benzol unlöslich. Die Verbindung scheidet sich als weißes Pulver ab, wenn eine Lösung von Äthylendiamin in absolutem Alkohol, die mit getrocknetem Schwefligsäure-Gas gesättigt ist, mit einer äquivalenten Menge Benzaldehyd versetzt wird. Michaelis u. Graentz, Berl. Berichte 30 (1897), 1012.
- 90. Kleine Nädelchen aus heißem Alkohol, Smp. 166°, Darstellung s. No. 89.
 - 91. Smp. 165° unter Zersetzung. Darstellung s. No. 89.
 - 92. Hellgelbes, hygroskopisches Pulver. Darstellung s. No. 89.
 - 93. Darstellung ähnlich, wie No. 89 beschrieben.
- 94. Werden die mit schwefliger Säure gesättigten wäßrigen Lösungen der Amidosäuren mit Aldehyden geschüttelt, so bilden sich Additionsverbindungen, die meist in Wasser außerordentlich leicht löslich sind. Bei der Darstellung darf die von selbst eintretende Erwärmung nicht über 40° steigen, sonst entstehen Kondensationsprodukte. Auch bei langsamem Verdunsten der Lösung erfolgt Zersetzung. Durch Alkalien oder Säuren tritt Zerlegung in die Komponenten ein. Schiff, Liebigs Annalen 210 (1881), 123.
 - 95. Schiff, Liebigs Annalen 139 (1866), 126.
 - 96. Eibner, Liebigs Annalen 316 (1901), 89.
- 97. Eibner (s. No. 96) erhielt nur eine Kondensationsverbindung unter Wasseraustritt.
 - 98. Speroni, Liebigs Annalen 325 (1902), 354.
- 99. Die Verbindung wird erhalten, wenn die drei Komponenten in wäßriger Lösung zusammen geschüttelt werden und jede Erwärmung dabei vermieden wird. Weißes Kristallpulver, fast unlöslich in kaltem Wasser und Alkohol, unlöslich in Äther. Beim Erhitzen wird Önanthylidenanilin gebildet. Die gleiche anhydrische Spaltung bewirken Säuren und Alkalien. Speroni, No. 98.
- 100. Man übersättigt Anilin in wasserfreier ätherischer Lösung mit trockner schwefliger Säure und fügt Önanthol hinzu. Beim Erhitzen und durch Säuren und Alkalien entsteht Önanthylidenanilin. Speroni, No. 98.

Schiff, Liebigs Annalen 139 (1866), 130 u. 210 (1881), 127.

- 101. Farblose Kristalle, Smp. 145°, in Wasser und Alkohol leicht löslich. Durch Mineralsäuren wird die Verbindung gespalten. Sie entsteht auf Zusatz von Anilin zur Verbindung schweflige Säure - Propylamin -Benzaldehyd, s. No. 86. Michaelis u. Storbeck, Liebigs Annalen 274 (1893), 194.
 - 102. Smp. 160°. Michaelis und Storbeck, ibidem S. 196.
 - 103. Smp. 138°; s. No. 102.
- 104. Smp. 98°, in Alkohol leicht, in Wasser schwer löslich, wird von verdünnter Natronlauge unter Abscheidung von Benzaldehyd schnell zersetzt. Beim Aufbewahren, aber auch bei längerem Stehen der alkoholischen Lösung geht die Verbindung unter Abgabe von Xylidinsulfit in Benzylidenxylidin C₆H₃(CH₃)₂N:CHC₆H₅ über, ein gelbes über 300° unzersetzt siedendes Öl. Michaelis u. Siebert, Liebigs Annalen 274 (1893), 235.

- 105. Durch Säuren und Alkalien werden SO₂ und H₂O abgespalten und es entsteht Benzylidenanilin. Siehe No. 88, 95, 96 und 98. Die Schiffschen Formeln sind unrichtig. Michaelis, Berl. Berichte 24 (1891), 750.
- 106. Nadeln aus Alkohol, Smp. 103°. Michaelis u. Buntrock, Liebigs Annalen 274 (1893), 254.
- 107. Löst man das mit schwefliger Säure gesättigte Aceton in der ein- und einhalbfachen Volummenge Weingeist und fügt zu der Lösung Anilin hinzu, so kristallisiert die Doppelverbindung Aceton-Anilinsulfit nach einiger Zeit in centimeterlangen Nadeln aus. Sie ist in Aceton unlöslich, aus absolutem Alkohol umkristallisierbar, an der Luft ziemlich beständig; beim Kochen mit Wasser, durch trocknes Erhitzen und durch Säuren und Alkalien tritt Spaltung in die Komponenten ein. Boessneck, Berl. Berichte 21 (1888), 1906.
- 108. Smp. 119 bis 120°; Michaelis u. Herz, Berl. Berichte 24 (1891), 753; Schiff, Liebigs Annalen 139 (1866), 132.
- 109. Atlasglänzende Blättchen, unlöslich in Aceton, leicht löslich in Wasser und Alkohol, erhalten durch Zusatz von Dimethylanilin zu einer mit schwefliger Säure gesättigten Acetonlösung. Boessneck, Berl. Berichte 21 (1888), 1908.
 - 110. Boessneck, s. No. 107.
- 111. Smp. 88°. Michaelis u. Buntrock, Liebigs Annalen 274 (1893), 254.
 - 112. Smp. 108°. Michaelis, s. No. 111.
- 113. Smp. 111°. Michaelis u. Siebert, Liebigs Annalen 274 (1893), 235.
 - 114. Smp. 108°. Ibidem S. 238.
 - 115. Smp. 68°. Ibidem.
- 116. Farblose Blättchen. Eine alkoholische Lösung von p-Amidophenol wird mit trocknem Schwefligsäure-Gas gesättigt und danach mit der berechneten Menge Benzaldehyd vermischt. Aus der tiefroten Flüssigkeit kristallisieren nach einiger Zeit farblose Blättchen aus, die von der Flüssigkeit getrennt und mit Äther abgewaschen werden. In Wasser und Alkohol leicht löslich, in Äther unlöslich. Beim Erwärmen entweichen SO₂ und H₂O, und es entsteht Benzyliden-p-amidophenol C₆H₅CH=NC₆H₄OH. Michaelis u. Haegele, Liebigs Annalen 274 (1893), 244.
- 117. Weiße Kristalle, Smp. 188°; beim Schmelzen bildet sich Methoxybenzyliden p amidophenol C₆H₄(O CH₅)CH = N C₆H₄OH. Die Verbindung ist in Wasser und Alkohol leicht löslich. Michaelis, s. No. 116.
 - 118. Michaelis, s. No. 116.
- 119. Nadeln, Smp. 84°. Michaelis u. Buntrock, Liebigs Annalen 274 (1893), 255.
- 120. Die Verbindung wird erhalten, wenn schweflige Säure in Wasser, in dem α-Naphthylamin suspendiert ist, im Überschuß eingeleitet wird. Zu dem Gemisch wird dann Benzaldehyd zugefügt. Beim Erwärmen geht die Verbindung in Benzyliden-α-naphtylamin über. Papasogli, Liebigs Annalen 171 (1874), 137.
 - 121. Smp. 112°. Michaelis, s. No. 116.

122. - Kristalle, Darstellung ebenso wie No. 120.

123. - Farblose, perlmutterglänzende Blättchen. Senföl und eine äquimolekulare Menge von saurem schwefligsaurem Kalium in konzentrierter wäßriger Lösung werden am Rückflußkühler gekocht. Nach zwei Stunden ist das Senföl verschwunden. Die auf dem Wasserbade eingedampfte Flüssigkeit scheidet die Doppelverbindung in gelben Kristallen ab. Das Natriumsalz, das in gleicher Weise hergestellt wird, kristallisiert weniger gut. Säuren oder Alkalien regenerieren das Senföl nicht, beim Kochen mit ihnen wird Ammoniak, Schwefelwasserstoff und Allylamin gebildet. Böhler, Liebigs Annalen 154 (1870), 59.

124. - Es wurde keine kristallisierte Verbindung erhalten. Raikow,

Chem.-Ztg. 24 (1900), 367.

125. - Die Kristalle entstehen beim Vermischen der Komponenten in

äquimolekularem Verhältnis. Raikow, s. No. 124.

126. - Smp. 29°. Beim Erwärmen gleicher Molekulargewichte von Campher und o-Phosphorsäure entsteht eine klare Flüssigkeit, die zu großen Kristallen erstarrt. Shukoff u. Kassatkin, Chem. Zentralbl. 1909, I. 1760.

127. - Smp. 92 bis 96°. Klages u. Allendorff, Berl. Berichte 31

(1898), 1298.

128. - Smp. 88 bis 90°. Reines Acetophenon erstarrt beim Vermischen mit sirupöser Phosphorsäure unter starker Erwärmung zu einer festen Kristallmasse. Durch Anilin in ätherischer Lösung wird die Additionsververbindung gespalten, ebenso von Wasser. Klages u. Allendorff, s. No. 127.

Die Doppelverbindungen der Orthophosphorsäure mit den aromatischen Ketonen sind lockere Verbindungen, die durch Wasser oder Alkohol in die Komponenten zerlegt werden. Aus wasserfreiem Äther können sie umkristallisiert werden. Durch trockene Erhitzung werden sie tiefergehend zersetzt und zwar in die Stammkohlenwasserstoffe unter Abspaltung des ganzen Ketonrestes. Einzelne sind sehr widerstandsfähig und bleiben unverändert. Klages, Berl. Berichte 32 (1899), 1550.

129. - Wie die Doppelverbindung mit Acetophenon erhalten, s. No. 128.

130. - Smp. 132 bis 133°. Klages u. Allendorff, Berl. Berichte 31 (1898), 1298.

131. - 10 g des Ketons vom Smp. 57° wurden mit 6 bis 8 g saurem schwefligsaurem Kalium und 40 ccm Wasser eine Stunde lang am Rückflußkühler erhitzt, wobei sich das Keton löste. Nach dem Filtrieren der heißen Lösung kristallisierte beim Erkalten das benzylidenacetophenon-hydrosulfonsaure Kalium aus. Das aus Alkohol umkristallisierte Salz konnte bei 100° bis zur Gewichtskonstanz getrocknet werden. Beim Erhitzen auf 1550 schied sich das Keton ab. Aus der wäßrigen Lösung wird durch Natronlauge das Keton abgetrennt. Knoevenagel, Berl. Berichte 37 (1904), 4038.

132. - Smp. 87°. Klages u. Lickroth, Berl. Berichte 32 (1899), 1563.

133. - Smp. 90°. Bleibt beim Sieden unverändert. Klages, Berl. Berichte 32 (1899), 1560.

134. - Smp. 97°. Beim Erhitzen Verharzung. Klages, Berl. Berichte 32 (1899), 1560.

- 135. Smp. 104 bis 105°. Durch Erhitzen Abtrennung von m-Xylol. Klages, ibidem S. 1562.
- 136. Smp. 82 bis 83°. Durch Erhitzen oder durch Destillation mit Wasserdampf wird p-Xylol abgespalten. Klages u. Allendorf, Berl. Berichte 31 (1898), 1298.
- 137. Smp. ca. 30°, leicht zerfließliche Kristalle; beim Sieden bleibt die Verbindung unverändert. Klages u. Lickroth, Berl. Berichte 32 (1899), 1558.
 - 138. Smp. 81°. Klages u. Lickroth, s. No. 137.
 - 139. Smp. 86°. Klages u. Lickroth, s. No. 137.
 - 140. Klages u. Lickroth, s. No. 137.
- 141. Smp. 156°. Ziemlich beständig, zersetzt sich erst nach längerem Kochen mit Wasser. Klages u. Lickroth, s. No. 137.
 - 142. Klages u. Lickroth, s. No. 137.
- 143. Trockene kristallisierte Phosphorsäure wird mit einem Überschuß von Cineol verrieben. Auf Zusatz von Ligroin verwandelt sich die gelatinöse Masse in ein weißes Pulver. Baeyer u. Villiger, Berl. Berichte 34 (1901), 2689.

Luther Robert Scammel in Adelaide in Australien nahm ein Patent (D. R. P. No. 80118 vom 22. 8. 1894) auf Gewinnung von Cineol aus Eucalyptusöl mit Hilfe seiner Phosphorsäureverbindung. Das Öl wird bei niedriger Temperatur (15 bis 20°) mit konzentrierter Phosphorsäurelösung (spez. Gewicht mindestens 1,750, am besten 1,785) innig durchmischt. Die Mischung läßt man einige Zeit stehen und eventuell völlig abkühlen, wonach sie bei höherem Cineolgehalt vollständig erstarrt. Durch Abpressen und Zentrifugieren und durch Auswaschen wird die Kristallmasse gereinigt und durch heißes Wasser zersetzt.

- 144. Bleunard, Compt. rend. 87 (1878), 1040.
- 145. Analog den längst bekannten Vereinigungen des Ammoniaks und seiner organischen Substitutionsprodukte mit Säuren zu Ammoniumsalzen, in denen der Stickstoff mit fünf Valenzen fungiert, sind auch zahlreiche organische Sauerstoffverbindungen fähig, mit Säuren additionelle Verbindungen einzugehen. Die organische Sauerstoffverbindung verhält sich in diesen Salzen, die nach Collie und Tickle (Journ. chem. Soc. 75 [1899], 710) deshalb Oxoniumsalze genannt werden, wie eine Base. Nach Baeyer (Berl. Berichte 34 [1901], 2679) ist die Verbindungsfähigkeit der organischen Sauerstoffverbindungen so allgemein, daß es nur auf die Wahl der richtigen Säure ankommt, um mit wenigen Ausnahmen immer Sauerstoffsalze zu erhalten.

In diesen Oxoniumsalzen muß der Sauerstoff vierwertig angenommen werden. Es sind labile Verbindungen, empfindlich gegen Wasser, wenn Säure oder Sauerstoffbase große Lösungsaffinität zu Wasser besitzt. Sie zersetzen sich schon bei gewöhnlicher Temperatur an der Luft, wenn der Dampfdruck der Sauerstoffbase erheblich ist.

Die Verbindungen mit Ferro-, Ferri- und Kobalticyanwasserstoffsäure haben Baeyer und Villiger (Berl. Berichte 34 (1901), 2679 und 35 (1902), 1201) eingehend untersucht. Einige organische Sauerstoffverbindungen vereinigen sich mit der komplexen Säure unmittelbar; meist ist jedoch noch ein Salzsäurezusatz erforderlich. In diesem Falle ist eine Lösung von Ferro-, Ferri-

oder Kobalticyankalium anzuwenden, die mit Salzsäure bis zur beginnenden Fällung der komplexen Säure versetzt wird. Hierbei ist zu berücksichtigen, daß Ferricyanwasserstoff bei Gegenwart von Salzsäure ein sehr starkes Oxydationsmittel darstellt. Eine mit viel starker Salzsäure versetzte Lösung von Ferricyankalium entwickelt nach einigem Stehen Chlor, weshalb die Oxoniumsalze der Ferricyanwasserstoffsäure kaum frei von Ferrocyanwasserstoff zu erhalten sind.

Für qualitative Versuche hatten die von Baeyer angewendeten Lösungen folgende Zusammensetzung:

1. 5 g Ferrocyankalium, 25 g Wasser und 25 g Salzsäure von 20 %.

2. 10 g Ferricyankalium, 25 g Wasser und 30 g Salzsäure.

Es wurde die wäßrige Salzlösung in die Säure gegossen, wonach das sich abscheidende Chlorkalium entfernt wurde. Die Ferricyanwasserstoffsäure hat die größere Fähigkeit zur Bildung von Oxoniumsalzen; durch die starke Salzsäure wird aber die Ferricyanwasserstoffsäure leicht reduziert.

3. 3 g Kobalticyankalium, 9 g Wasser und 9 g konzentrierte Salzsäure. Das abgeschiedene Chlorkalium wird von der Lösung durch Filtration getrennt.

Zu Mineralsäuren im allgemeinen, falls die richtige Säure gewählt wird, haben besonders die Ketone große Neigung zur additionellen Verbindung, sowohl die der Fettreihe als auch der aromatischen Reihe, die gesättigten und die ungesättigten, die monocyclischen und die bicyclischen Ketone. Abgesehen vom Acetophenon, ist es nach Baeyer gelungen, von allen untersuchten Ketonen solche Oxoniumsalze darzustellen.

146. — Baeyer u. Villiger, Berl. Berichte 35 (1902), 1203.

147. - Baeyer u. Villiger, Berl. Berichte 34 (1901), 2688.

148. — Wird eine mit Salzsäure versetzte Lösung der Ferrocyanwasserstoffsäure mit Äther vermischt, so fällt die Verbindung als Niederschlag aus. Die Bildung erfolgt auch ohne Salzsäurezusatz. Baeyer u. Villiger, s. No. 147; Etard u. Bémont, Compt. rend. 99 (1884), 972.

Mit organischen Säuren geben Mineralsäuren keine Verbindungen.

- 149. Cineol verbindet sich sehr leicht schon mit einer wäßrigen Lösung der Ferrocyanwasserstoffsäure. Die Verbindung ist gegen Wasser ziemlich beständig. Zur Darstellung wurden 3,5 g Ferrocyanwasserstoffsäure in 20 ccm Wasser gelöst, dazu 50 ccm Salzsäure von 10 % und 15 g Cineol gemischt. Baeyer u. Villiger, s. No. 147.
- 150. Wird die saure Lösung des Salzes einer Aminbase mit Ferrocyankalium versetzt, so erfolgt die kristallinische Ausscheidung einer Additionsverbindung von Ferrocyanwasserstoffsäure mit der Aminbase. Die Anilinverbindung kristallisiert nur bei starker Konzentration der Lösung und einem bedeutenden Überschuß von freier Säure aus, während Dimethyl- und Diäthylanilin auch aus sehr verdünnter wäßriger Lösung als Ferrocyanid gefällt wird. Die Monomethylanilinverbindung steht ihrer Löslichkeit nach in der Mitte. In der Fettreihe liefern nur die tertiären Basen schwerlösliche Verbindungen. Die Verbindungen sind farblos, färben sich aber beim Erhitzen oder beim Umkristallisieren durch die Bildung von Berliner Blau leicht blau. Durch Alkalien werden sie unter Abscheidung der freien Basen ge-

spalten. E. Fischer, Liebigs Annalen 190 (1878), 184. Eisenberg, ibidem 205 (1880), 265.

- 151. Kristallpulver, das sich aus warmem Wasser ohne Zersetzung umkristallisieren läßt, eine für die Additionsverbindungen von Mineralsäuren selten vorkommende Erscheinung. Baeyer u. Villiger, s. No. 147.
- 152. Kristallisierte Verbindung, aus der durch Soda das eine Dihydropinol regeneriert wird. Dihydropinol ist ein cyclisches Oxyd, das aus Dihydrocarveol durch Schütteln mit verdünnter Schwefelsäure entsteht. Rupe u. Schlochoff, Berl. Berichte 38 (1905), 1719.
- 153. Tafeln, Smp. 70 bis 79°. Entsteht durch Auflösen von Piperonal in Schwefelsäure.
 - 154. Smp. 95 bis 102°.
- 155. Hoogewerff u. van Dorp, Recueil des trav. chim. des P.-B. 21 (1902), 355.
 - 156. Smp. 65 bis 70°, s. No. 155.
- 157. Eine Lösung von Camphen in der dreifachen Menge von Chloroform wird in gekühlte rauchende Salpetersäure vorsichtig eingetragen, wonach die Reaktionsmasse in Eiswasser gegossen wird. Die wäßrige Lösung wird von dem Chloroform getrennt, der letzte Rest Chloroform auf dem Wasserbade entfernt. Es entstehen zwei Nitrate, von denen das eine schon im Vakuum oder durch Wasserdampfdestillation zersetzt wird, während das andere unter 10 mm Druck bei 110° siedet und mit Wasserdampf unzersetzt flüchtig ist. Alkoholische Kalilauge spaltet es in die Komponenten. Bouveault, Bull. Soc. Chim. III. 23 (1900), 537.
 - 158. Shukoff u. Kassatkin, Chem. Zentralbl. 1909, I. 1760.
- 159. Benzaldehyd löst sich in wasserfreier Salpetersäure in allen Verhältnissen zu einer klaren Flüssigkeit, die bei starker Abkühlung Kristalle ausscheidet. Smp. 5,4°. Nach der Schmelzpunktkurve ist die Verbindung äquimolekular, s. No. 158.
- 160. Die kristallisierte Verbindung entsteht beim Mischen von Zimtöl mit starker Salpetersäure. Durch Wasser wird sie in die Komponenten zerlegt. Dumas u. Péligot, Liebigs Annalen 14 (1835), 65.
 - 161. Collie u. Tickle, Journ. chem. Soc. 75 (1899), 711.
- 162. Wird ein Mol. Campher in ein Mol. wasserfreie Salpetersäure unter Kühlung eingetragen, so entsteht eine dickflüssige, farblose Masse, die beim Abkühlen zu langen Nadeln erstarrt. Smp. 24°, leicht löslich in Alkohol, Äther, Benzol und Aceton, an der Luft zerfließlich. Die Verbindung von 2 Mol. Campher mit 1 Mol. Salpetersäure wird aus Lösungen beider Komponenten in Petroläther erhalten. Smp. 2,2°. Die Existenz dieser Verbindungen wurde auch durch die Schmelzpunktkurven festgestellt. Wasser trennt die Verbindungen in die Komponenten. Shukoff u. Kassatkin, Chem. Zentralbl. 1909, l. 1760; Kachler, Liebigs Annalen 159 (1871), 283; Baeyer u. Villiger, Berl. Berichte 34 (1901), 2694.
- 163. Shukoff u. Kassatkin, s. No. 162; Berl. Berichte 31 (1898), 1298.
- 164. Rotgelbe Prismen, die von Wasser zerlegt werden. Kehrmann u. Mattisson, Berl. Berichte 35 (1902), 343.

165. - Bleunard, Compt. rend. 87 (1878), 1040.

166. — Die cyclischen Terpene sind imstande, Halogenwasserstoffe anzulagern, wobei jedoch vielfach Reaktionsprodukte entstehen, aus denen das verwendete Terpen nicht unverändert wieder abgespalten werden kann. Deshalb können sich diese Verbindungen wohl zur Identifizierung eignen, weniger aber zur Reindarstellung des Terpens. Vermeidung höherer Temperatur und jeder Feuchtigkeit ist zur Bildung der Additionsverbindung geboten.

C10 H16 · ClH, Kristalle, Smp. 1250, erhalten durch Einleitung von gut getrocknetem Chlorwasserstoff in trocknes und kühl gehaltenes Pinen. Durch Natrium- oder Kaliumacetat oder Anilin oder durch verdünnte Alkalilösung wird die Verbindung gespalten, wobei Camphen entsteht. Die Pinenhaloidhydrate sind identisch mit dem Einwirkungsprodukt von Haloidwasserstoff auf Borneol. Pinenchlorhydrat ist mit Camphenchlorhydrat strukturidentisch, aber stereoisomer. Wagner u. Brickner, Berl. Berichte 32 (1899), 2302; Semmler, Berl. Berichte 33 (1900), 3420; Hesse, ibidem 39 (1906), 1127; Houben, ibidem 39 (1906), 1700 u. 1736.

C10 H16 · BrH, Kristalle, Smp. 900. Darstellung und Verhalten der Ver-

bindung wie bei der CIH-Verbindung.

167. — C10 H16 · Cl H, Kristalle, Smp. 150 bis 1520 nach Reychler (Berl. Berichte 29 [1896], 696) 156 bis 157° nach Kachler u. Spitzer, (Liebigs Annalen 200 [1880], 343). Die Verbindung wird durch Einleiten von trocknem Chlorwasserstoff in eine alkoholische Camphenlösung erhalten. Durch Alkalien oder durch Erhitzen mit Wasser bei 100° wird sie in die Komponenten gespalten. Wird aber das Camphenhydrochlorid bei mäßig erhöhter Temperatur mit Kalkmilch behandelt, so entsteht nach Aschan (Berl. Berichte 41 [1908], 1092) ein neues Borneol, das Aschan Camphenhydrat nennt; weiße Kristalle, Smp. 150 bis 151°, Sdp. 205°. Beim Schütteln mit warmer verdünnter Mineralsäure zerfällt es.

Camphenhydrochlorid ist identisch mit Isobornylchlorid. Hesse 1. c.

und Houben I. c., unter No. 166.

168. - Bei der Behandlung von Dipenten in ätherischer Lösung mit Halogenwasserstoff bilden sich Additionsverbindungen von 1 Mol. Dipenten mit 2 Mol. des Halogenwasserstoffs, und zwar entstehen meist zwei Modifikationen jeder Doppelverbindung, die als cis- und trans-Modifikation unterschieden werden, erstere vorzugsweise in der Kälte, die beständigeren und höher schmelzenden trans-Formen in der Wärme. Baeyer (Berl. Berichte 26 [1893], 2861; 27 [1894], 3485). Die Schmelzpunkte der cis-Verbindungen sind C10 H16 · 2 Cl H 250, C10 H16 · 2 Br H 390, der trans · Verbindungen C10 H16 · 2 Cl H 49 bis 50°, C10H16·2BrH 64°, C10H16·2JH 77 bis 79°.

Bei Abwesenheit jeder Feuchtigkeit läßt sich Dipenten mit Halogenwasserstoff in äquimolekularem Verhältnis zu flüssigen Verbindungen vereinigen. Wallach, Liebigs Annalen 270 (1892), 189. Anilin oder Natriumacetat scheiden aus all diesen Doppelverbindungen wieder Dipenten ab. Spaltung durch Kalilauge liefert neben Dipenten noch a-Terpineol, cis- und trans-Terpin. Wallach, Liebigs Annalen 350 (1906), 141.

169. - Neuere Untersuchungen stellten fest, daß das bisher für einheitlich zusammengesetzt gehaltene Terpinen aus zwei Isomeren, dem \(\triangle 1,3-

- und △1,4-Dihydrocymol, besteht. Wallach, Liebigs Annalen 362 [1908], 285; Semmler, Berl. Berichte 42 (1909), 522. Smp. von C₁₀H₁₀ 2 CIH 51 bis 52⁰, von C₁₀H₁₀ 2 BrH 58 bis 59⁰ und von C₁₀H₁₀ 2 JH 76⁰, Wallach, Liebigs Annalen 350 [1906], 141. Durch Erwärmen mit Anilin wird aus diesen Dihydrohalogeniden das Terpinen-Gemisch regeneriert. Beim Erhitzen mit wäßrigem Alkali entstehen neben Terpinen noch andere Produkte, darunter ein besonderes Terpineol vom Sdp. 212 bis 214⁰, das Terpinenol.
- 170. Phellandren vereinigt sich mit Halogenwasserstoff unter Umwandlung in Dipenten.
- 171. Sylvestrendichlorhydrat schmilzt bei 72°, Sylvestrendibromhydrat ebenfalls bei 72°. Durch Spaltung der Verbindung wird Sylvestren wieder erhalten. Die Verbindung eignet sich zur Reindarstellung und Identifizierung. Wallach, Liebigs Annalen 230 (1885), 241; 239 (1887), 25.
- 172. C₁₀ H₁₆·2 ClH Smp. 52,5°, C₁₀H₁₆·2 Br H Smp. 48 bis 50°. Carvestren verhält sich wahrscheinlich zum Sylvestren wie Dipenten zum Limonen. Baeyer, Berl. Berichte 27 (1894), 3485.
- 173. Pinolenchlorhydrat schmilzt bei 38°, [a]D+9,78°. Geruch menthol- und campherartig, leicht zersetzlich. Schon beim Liegen oder beim Berühren mit Wasser wird Salzsäure abgespalten. Das Pinolen wurde von Aschan (Berl. Berichte 40 [1907], 2750; Ofversigt af Finska Vetenskaps-Societetens Fôrbandlinger 51 [1909], 1. Lfd. A, No. 9; vgl. Bericht von Schimmel & Co., Oktober 1909, 169) im amerikanischen Terpentinöl gefunden.
- 174. Bei der Behandlung von α-Thujen und Sabinen mit Halogenwasserstoff entstehen die Terpinenhalogenwasserstoffe. Analog dem Verhalten des Limonens können ein oder zwei Moleküle Halogenwasserstoff aufgenommen werden, je nachdem unter Ausschluß jeder Feuchtigkeit oder bei Gegenwart einer geringen Feuchtigkeitsmenge gearbeitet wird. Wallach, Liebigs Annalen 350 (1906), 141; Berl. Berichte 40 (1907), 589; Semmler, ibidem 40 (1907), 2959.
- 175. Menthenhydrochlorid ist identisch mit dem Einwirkungsprodukt von Salzsäure auf Menthol, Carvomenthenhydrochlorid mit dem auf Carvomenthol. Beim Zerlegen der Verbindungen mit Chinolin wird Menthen, resp. Carvomenthen regeneriert. Kondakow u. Lutschinin, Journ. f. prakt. Chem. II. 60 (1899), 257; Baeyer, Berl. Berichte 26 (1893), 2270.
- 176. C₁₅ H₂₄·2 Cl H, Smp. 67 bis 70°. Schreiner u. Kremers, Pharmaceutical Archives 2 (1899), 273, 293; 4 (1901), 141, 161.
- 177. Cadinendichlorhydrat, Smp. 117 bis 118°. Die cadinenreiche Fraktion wird mit dem doppelten Volumen Äther versetzt und mit trocknem Salzsäuregas gesättigt. Die Bromwasserstoff- und die Jodwasserstoffverbindungen werden erhalten, indem die Cadinenfraktion in Eisessig gelöst wird und diese Lösung mit einer Eisessiglösung des betreffenden Halogenwasserstoffs versetzt wird. Aus der Additionsverbindung wird das Cadinen durch Erhitzen mit Anilin oder Natriumacetat und Eisessig wieder abgespalten. Schmelzpunkt des Dibromhydrats 124 bis 125°, des Dijodhydrats 105 bis 106°. Wallach, Liebigs Annalen 238 (1887), 84.

178. - Smp. 79 bis 80°. Das Trichlorhydrat eignet sich zur Identifizierung und Isolierung des Bisabolens (Limens). Burgess u. Page, Journ. chem. Soc. 85 (1904), 414; vgl. Bericht von Schimmel & Co., Oktober 1909, 50.

179. - Smp. 168 bis 169°. Schreiner u. Kremers, Pharmaceutical

Archives 4 (1901), 141, 161.

180. - 2 C₁₀ H₁₈ O·Br H. Wird in eine Petrolätherlösung von Borneol Bromwasserstoff geleitet, so entsteht die Verbindung in Form eines dicken weißen Niederschlags, der, von der Lösung getrennt und mit Petroläther abgewaschen, nach Abpressen zwischen Fließpapier und Verdunsten des Petroläthers die Verbindung analysenrein darstellt. Durch Wasser und Alkohol zerfällt die Verbindung wieder. Das weniger beständige Jodhydrat ist ebenso zusammengesetzt. Ein Chlorhydrat konnte nicht erhalten werden. Wallach, Liebigs Annalen 230 (1885), 229.

181. - Friedel, Bull. Soc. Chim. II. 24 (1875), 160.

- 182. Wenig beständige Verbindungen. Halogenwasserstoff verbindet sich mit der Propenylgruppe. Orndorff u. Morton, Journ. Americ. chem. Soc. 23 (1900), 181.
- 183. Durch Einleiten von trockner, gasförmiger Salzsäure in Isosafrol, ohne Lösungsmittel und ohne Abkühlung, entsteht die HCI-Verbindung. Bericht von Schimmel & Co., April 1905, 45.
- 184. Das Hydrochlorid wird durch Einleiten von trocknem Salzsäuregas in Zimtöl unter Vermeidung jeder Erwärmung erhalten. Dumas u.

Péligot, Liebigs Annalen 14 (1835), 65.

- 185. Die Verbindung mit Salzsäure läßt sich aus Wasser umkristallisieren, erleidet aber bei längerem Stehen der wäßrigen Lösung partielle Spaltung. Collie u. Tickle, s. No. 161. Feist, Berl. Berichte 25 (1892), 1067; Baeyer u. Villiger, ibidem 34 (1901), 3614; Vorländer u. Mumme, ibidem 36 (1903), 1470.
- 186. C10 H16 O J H, schwerlösliche rotbraune Kristalle, Smp. 29 bis 30°. Die Verbindung entsteht beim Einleiten von gasförmiger JH in eine Lösung von Campher in Petroläther, wird durch Wasser leicht zersetzt. Shukoff u. Kassatkin, s. No. 162; Kekulé u. Fleischer, Berl. Berichte 6 (1873), 936.

C₁₀H₁₆O·ClH, Smp. 4,2°. Die Verbindung bildet sich in flüssiger Form beim Einleiten von gasförmiger Salzsäure in gepulverten Campher. Shukoff u. Kassatkin, s. No. 162.

187. - Claisen u. Ponder, Liebigs Annalen 223 (1884), 142; Baeyer

u. Villiger, Berl. Berichte 34 (1901), 2696.

188. - Das bei der hydrolytischen Spaltung von Pulegon neben Aceton entstehende Keton, das Methylcyclohexanon, giebt beim Einleiten von trocknem Salzsäuregas ein Salzsäure-Additionsprodukt, aus dem durch kurzes Erwärmen mit Anilin ein dimolekulares Keton C14 H22 O als dickes Öl vom Siedepunkt 143 bis 145° 10 mm entsteht. Wallach, Berl. Berichte 29 (1896), 1595.

189. - C10 H16 O·CIH, Smp. 140°. Wallach, I. c. No. 188.

190. - Durch Behandlung mit Salzsäure entsteht ein Kondensationsprodukt, das Chlorid C20 H31 Cl, bei der Einwirkung von Jodwasserstoff ein Spaltungsprodukt, das Campherpinakonan C₂₀H₃₂, ein fester Kohlenwasserstoff. Beckmann, Berl. Berichte 22 (1889), 92.

- 191. Das Carvonhydrochlorid ist eine flüssige Verbindung. Wird Carvon in Eisessig-Bromwasserstoff eingetragen, so entsteht Carvonhydrobromid, Smp. 32°, aus dem durch alkoholische Kalilauge ein dem Carvon isomeres Keton, das Eucarvon, gebildet wird. Goldschmidt u. Kisser, Berl. Berichte 20 (1887), 487, 2071; Baeyer, ibidem 27 (1894), 810, 1915.
- 192. Aus dem Eucarvonhydrobromid entsteht nach Abspaltung von BrH das dem Ausgangsketon isomere Eucarvon.
- 193. Dihydroeucarvonhydrobromid entsteht in gleicher Weise wie Carvonhydrobromid; mit alkoholischer Kalilauge liefert es nach Abspaltung von BrH Carvon $C_{10}H_{14}O$. Baeyer, s. No. 191.
- 194. Kristallisierte Verbindungen, aus denen durch alkoholische Kalilauge Pulegon regeneriert wird. Beckmann u. Pleissner, Liebigs Annalen 262 (1891), 21; Baeyer u. Henrich, Berl. Berichte 28 (1895), 653.
- 195. C₁₀H₁₈O·Cl H und 2 C₁₀H₁₈O·Cl H. Wird getrocknetes Salzsäuregas in eine Lösung aus gleichen Volumen von trocknem Cineol und Petroläther eingeleitet, so scheidet sich die Verbindung von 1 Mol. HCl und 2 Mol. Cineol in weißen Kristallen aus, die in Petroläther ziemlich löslich ist, daher aus einer verdünnten Cineollösung auch nicht auskristallisiert. Die Verbindung ist sehr locker und trennt sich durch Aufgießen von Wasser sofort in die Komponenten. Trocknes Erhitzen spaltet Wasser aus dem Cineol ab.

Jodwasserstoff, als trocknes Gas eingeleitet, giebt keine Additionsverbindung, sondern spaltet von dem Cineol Wasser ab. Völckel, Liebigs Annalen 87 (1853), 315; Wallach u. Brass, ibidem 225 (1884), 294. Hell u. Strücke, Berl. Berichte 17 (1884), 1975.

C₁₀H₁₈O·BrH, Smp. 56 bis 57°. Die Darstellung der Bromwasserstoffverbindung ist gleich der der Salzsäureverbindung. Sie ist schwerer löslich, so daß sie sich besser zum Nachweis auch kleinerer Cineolmengen in Lösungen eignet. Wallach u. Brass, l. c.; Hell u. Ritter, Berl. Berichte 17 (1884), 2610; Wallach u. Gildemeister, Liebigs Annalen 246 (1888), 280; Bericht von Schimmel & Co., Oktober 1907, 29.

- 196. Werden 46 Teile Anilin und 65 Teile salzsaures Anilin in 400 Teilen warmem Alkohol aufgelöst und mit einer Lösung von 48 Teilen Furfurol in 400 Teilen Weingeist vermischt, so erstarrt die Flüssigkeit in wenigen Minuten zu einer Kristallmasse. Die Kristallnadeln von schöner Purpurfarbe können aus siedendem Alkohol umkristallisiert werden; sie sind an der Luft beständig, in Benzol, Schwefelkohlenstoff, Wasser unlöslich und werden durch siedendes Wasser langsam, schneller durch Alkalien zersetzt. Die Bildung dieser Verbindung wird bekanntlich zum Nachweis von Furfurol benutzt. In gleicher Weise wird salpetersaures, schwefelsaures und oxalsaures Furfuranilin erhalten, ebenso die Toluidinverbindungen. Stenhouse, Liebigs Annalen 156 (1870), 197; Schiff, ibidem 201 (1880), 355.
- 197. Wird zu einer Lösung von Anilin in konzentrierter Salzsäure Benzaldehyd gefügt, so bildet sich ein hellgelber Niederschlag, der sich beim Erwärmen löst und nach dem Erkalten in langen Nadeln auskristallisiert.

Wasser spaltet die Verbindung in die Komponenten. Elbers, Liebigs Annalen 227 (1885), 358.

- 198. Gelbe Nadeln aus 20% iger Salzsäure, Smp. 215 bis 217%. Dimroth u. Zöppritz, Berl. Berichte 35 (1902), 990.
 - 199. Smp. 93 bis 94°. Dimroth u. Zöppritz, s. No. 198.
- 200. Kristalle. Die Verbindung entsteht schon in der Kälte beim Zusammenbringen von wasserfreier Blausäure mit Hydrochinon. Sowohl durch Erhitzen wie beim Übergießen mit Wasser zerfällt sie in die Komponenten. Mylius, Berl. Berichte 19 (1886), 1008.
 - 201. Lippmann u. Fleissner, Monatsh. f. Chem. 6 (1885), 537.
 - 202. Bericht von Schimmel & Co., Oktober 1908, 81.
- 203. Baeyer u. Villiger, s. No. 147; Pickard u. Kenyon, Journ. Chem. Soc. 91 (1907), 897.
- 204. Eine Lösung von Campher in Benzol wurde zwei Stunden mit der salzsäurehaltigen, wäßrigen Lösung von Kobalticyanwasserstoffsäure geschüttelt. Das entstandene Pulver wurde durch Absaugen von der Lösung getrennt, mit Salzsäure von 20 % und Benzol gewaschen und dann getrocknet. Baeyer u. Villiger, s. No. 147.
- 205. Zu cineolhaltigem Eucalyptusöl, das mit dem halben Volumen Petroläther versetzt ist, wird unter starkem Rühren wäßrige Arsensäure von 75° B gemischt. Es scheidet sich alsbald die Cineol-Arsensäure kristallinisch aus. Smp. gegen 95°, in Alkohol und Äther löslich; durch Wasser wird die Verbindung in die Komponenten zersetzt. E. Merck, D. R.-P. 132606 vom 20. 5. 1902,
- 206. Smp. 97°. Die Verbindung wird dargestellt durch Vermischen einer alkoholischen Lösung von Arsensäure mit Acetophenon, Einengen der Lösung im Vakuum und Abwaschen der entstandenen Kristalle mit wasserfreiem Benzol. Durch Wasser wird sie zersetzt. Klages u. Allendorff, Berl. Berichte 31 (1898), 1298.
- \cdot 207. Smp. 60° bis 57°. Hempel u. Seidel, Berl. Berichte 31 (1898), 2997.
 - 208. Hempel u. Seidel, s. No. 207.
 - 209. Smp. —61° bis 57°. Hempel u. Seidel, s. No. 207.
- 210. Smp. 37°. Die kristallisierte Verbindung wird durch Zusammenmischen von Phenol mit flüssiger Kohlensäure erhalten. Sehr lockere Verbindung, die schon an der Luft, schneller durch gelindes Erwärmen oder durch Übergießen mit Wasser oder Alkohol, Äther, Chloroform in die Komponenten gespalten wird. Barth, Liebigs Annalen 148 (1868), 49; Klepl, Journ. f. prakt. Chem. II. 25 (1882), 464.
- 211. In Wasser leicht lösliche Salze, die die Eigenschaften haben, Kristallwasser zu binden; sie sind in wasserfreiem Zustande auch fähig, sich mit Alkoholen additionell zu Alkoholaten zu vereinigen. Die Verbindungen sind hygroskopisch, leicht zerfließlich und werden durch Wasser zersetzt. Graham, Poggendorffs Annalen 15 (1829), 150; Chodneff, Liebigs Annalen 71 (1849), 241; Williamson, Journ. chem. Soc. II. 2 (1864), 463.

212. — In Glycerin lösen sich Kali, Kalk, Baryt, Strontian, Bleioxyd, und bei Gegenwart von Kali auch Eisenoxyd, Kupferoxyd, Wismuthoxyd. Puls, Journ. f. prakt. Chem. II. 15 (1877), 101.

213. — Eine Reihe einwertiger Phenole, z. B. Carvacrol, o-Chlorphenol, Guajacol, Kresol, Eugenol, Kreosol, auch zweiwertige Phenole, haben die Fähigkeit, mit verschiedenen anorganischen und organischen Salzen, bei Ausschluß von Wasser Additionsverbindungen zu bilden. Als solche Salze sind zu nennen Chlorcalcium, Chlorstrontium, Chlorlithium, Natriumformiat, Natrium-Kalium-, Bleiacetat, Natrium succinat, Natrium-, Kaliumbenzoat, Natriumsalicylat, benzolsulfosaures Natrium, xanthogensaures Kalium. Hiermit soll aber nicht gesagt sein, daß jedes dieser Salze mit jedem der genannten Phenole reagieren kann. Die Verbindungen entstehen durch inniges Verreiben der Materialien; sie sind äquimolekular. Es sind farblose, luftbeständige Pulver. Bei der Darstellung muß jede Spur von Wasser ferngehalten werden. Selbst das Auswaschen darf nur mit wasserfreiem Äther geschehen. Zur Gewinnung der Phenole werden die Salzverbindungen mit Wasser übergossen.

Durch diese Methode kann aus dem käuflichen Kresolgemisch ein bestimmter Körper isoliert werden, aus dem flüssigen Guajacol kann kristallisiertes, aus dem Kreosol können die zweiwertigen Phenole und sogar direkt kristallisierendes Guajacol gewonnen werden. Ferner läßt sich Thymol von Carvacrol trennen und Eugenol aus dem Nelkenöl isolieren. Chem. Werke, vormals Dr. H. Byk, D. R. P. 100418 vom 3. 10. 1898.

214. - Kane, Liebigs Annalen 19 (1836), 168.

215. — Chodnew, Liebigs Annalen 71 (1849), 261; Heindl, Monatsh. f. Chem. 2 (1881), 207.

216. — Verfahren zur Reinigung des rohen Isopropylalkohols von nicht alkoholischen Beimengungen und zur Darstellung des reinen Alkohols. mit Hilfe von Chlorcalcium. Linnemann, Liebigs Annalen 136 (1865), 38.

217. - Heindl, s. No. 215.

218. - Schreiner, Liebigs Annalen 197 (1879), 12.

219. — C₁₀H₁₇OH·CaCl₂, feste Verbindung, die in Äthyläther, Petroläther, Benzol, Chloroform unlöslich ist. Durch Wasser wird sie zerlegt. Trocknes, staubfein gepulvertes Chlorcalcium wird mit dem Öl zu gleichen Teilen innig verrieben, wobei Erwärmung eintritt. Nach einigem Stehen der festen Masse im Exsiccator wird sie gemahlen und mit Äther oder Petroläther ausgewaschen. Das durch Wasser vom Chlorcalcium getrennte und mehrmals mit Wasser ausgewaschene Geraniol wird zur letzten Reinigung mit Wasser destilliert.

Bei etwas geänderter Darstellungsweise (andere Temperaturverhältnisse) entsteht eine Verbindung aus zwei Molekülen Geraniol und einem Molekül Chlorcalcium.

Jacobsen, Liebigs Annalen 157 (1871), 232; Bertram u. Gildemeister, Journ. f. prakt. Chemie II. 53 (1896), 233 u. II. 56 (1897), 507.

Wie mit Chlorcalcium verbindet sich Geraniol auch mit Mg Cl₂, Mg (NO₃)₂, Ca(NO₃)₂, zu kristallisierenden Körpern. Bericht von Schimmel & Co., April 1895, 38.

- 220. Kristalle, leicht zersetzlich. Gepulvertes Chlorcalcium löst sich unter Wärmeentwicklung in Benzaldehyd auf. Eckman, Liebigs Annalen 112 (1859), 175.
 - 221. Hlasiewetz, Jahresber. d. Chem. 1850, 394.
 - 222. Allain, Jahresber. d. Chem. 1885, 1159.
 - 223. Simon, Journ. f. prakt. Chem. 20 (1879), 376.
 - 224. Allain, Jahresber. d. Chem. 1885, 1301.
 - 225. Chodnew, Liebigs Annalen 71 (1849), 257.
- 226. Der Äthyläther bildet mit zahlreichen Metallchloriden additionelle Verbindungen, die meist durch Wasser schnell zersetzt werden. Interessant und wichtig ist Grignards Ätherverbindung, die nach Baeyer u. Villiger (Berl. Berichte 35 [1902], 1202), wahrscheinlich die Zusammensetzung (C₂H₅)₂O·Mg J CH₃ hat.
 - 227. Kristallinische Masse, sehr unbeständig.
- 228. Rhombische Tafeln, Sdp. 80°; Verbindung entsteht durch Vermischen von Äther mit wasserfreiem Zinnchlorid, wird durch Wasser zersetzt. Lewy, Compt. rend. 21 (1845), 371.
 - 229. Lewy, Journ. f. prakt. Chem. I. 37 (1846), 480.
- 230. Kleine farblose Prismen aus 75 bis 80° heißer, alkoholischer Lösung von Zinkjodid in Cineol. Smp. 130 bis 131°. Heißes Wasser, oder einfache Erhitzung auf 100 bis 105° spalten die Verbindung. Pickard u. Kenyon, Journ. chem. Soc. 91 (1907), 900.
- 231. Farblose Kristalle, sehr unbeständig. Pickard u. Kenyon, s. No. 230.
- 232. Hydroxylierte Phenoläther, wie Eugenol, Guajacol, Kreosol, Äthylguajacol, Methylhydrochinon haben die Fähigkeit, mit Kaliumcarbonat kristallisierte Additionsverbindungen zu bilden, die an trockner Luft beständig sind und durch Wasser partiell gespalten werden. Die Gegenwart von Kaliumcarbonat verhindert die Zersetzung. In Alkohol und Benzol sind sie in der Wärme unter teilweiser Zersetzung löslich; beim Erkalten kristallisieren sie wieder aus. Sie bestehen aus 2 Molekülen des hydroxylierten Phenoläthers und 1 Molekül Kaliumcarbonat. Statt die Gemische, welche die hydroxylierten Phenoläther enthalten, mit Kaliumcarbonat zu behandeln, können sie auch in Kalilauge gelöst werden, wonach in die Lösung Kohlensäure eingeleitet wird. Lederer, D. R. P. Nr. 94947 vom 27. 9. 1897.

Nach einer nicht veröffentlichten Beobachtung von Schimmel & Co. gibt Orcin mit K₂ CO₃ ebenfalls eine kristallisierte Verbindung. Die Verbindungsfähigkeit des kohlensauren Kaliums ist also nicht nur auf hydroxylierte Phenoläther beschränkt.

Auch die einwertigen Phenole, wie Phenol und Kresol, vermögen sich mit kohlensaurem Kalium und kohlensaurem Natrium zu verbinden, aber nicht einfach additionell, sondern unter Bildung von Phenolkalium resp. Phenolnatrium, wobei doppeltkohlensaures Alkali gebildet wird. Während jedoch die Additionsverbindungen der hydroxylierten Phenoläther auch durch konzentrierte wäßrige Lösungen der kohlensauren Alkalien hergestellt werden können, muß

zum Eintritt der Kondensationsreaktion der einwertigen Phenole sorgfältig jede Feuchtigkeit ferngehalten werden. S. auch No. 241.

- 233. Rohes flüssiges Guajacol und Kaliumcarbonat werden zu gleichen Teilen unter Zusatz von etwas Wasser zusammengerieben. Je nach dem Gehalte an Guajacol bildet sich sofort oder nach einiger Zeit eine ölig durchtränkte Kristallmasse, die mit Äther oder einem anderen Lösungsmittel angerührt und durch Absaugen und Abpressen von der Flüssigkeit getrennt wird. Kohlensäure oder verdünnte Säuren zersetzen die Doppelverbindung. Durch Destillation mit Wasserdampf wird das Guajacol von geringen harzigen Beimengungen befreit. Das so erhaltene Präparat ist absolut rein; es kristallisiert beim Impfen mit einem Guajacolkristall, ohne daß eine besondere Abkühlung nötig wäre. Lederer, s. No. 232.
- 234. 1 Teil Kreosol und 2 Teile konzentrierte Pottaschelösung werden einige Zeit verrührt. Nach dem Absetzen wird der wäßrige Teil von dem Öle getrennt, das mit Äther versetzt wird, wonach sich die Doppelverbindung kristallinisch abscheidet. Das so erhaltene Kreosol ist frei von einwertigen Phenolen. Lederer, s. No. 232 u. 233.
- 235. Gleiche Teile Nelkenöl und Kaliumcarbonat in konzentrierter wäßriger Lösung werden einige Zeit innig durchmischt und danach mit Äther durchrührt. Die weitere Trennung der Lauge etc. s. unter No. 232 u. 233; Lederer l. c.
- 236. Das Gemisch von Methyl- und Dimethylhydrochinon, das man nach Hesse durch Erhitzen von Hydrochinon mit Jodmethyl und Kaliumhydroxyd erhält, wird einige Zeit mit einer konzentrierten Lösung von Kaliumcarbonat durcheinandergearbeitet. Nach dem Ablassen des wäßrigen Teils wird der Rückstand mit einem Gemisch von Benzol und Petroläther verrührt. Die abgeschiedene Kristallmasse wird von dem öligen Anteil gereinigt und schließlich durch verdünnte Säuren zersetzt, wobei das Methylhydrochinon in fester Form erhalten wird. Lederer, s. No. 232.
- 237. Kristalle, wenig beständig. Vaubel, Journ. f. prakt. Chem. II. 43 (1891), 599.
- 238. Die Verbindung, wahrscheinlich BaO·2C₃H₅OH, wird erhalten, wenn Allylalkohol mit Ätzbaryt verrieben wird, wobei sich die Masse erwärmt. Die Verbindung ist in Allylalkohol leicht löslich, bei Erhitzung über 100° Grad zersetzt sie sich unter Bildung eines kohligen Rückstandes. Baryumoxydhydrat löst sich in der allylalkoholischen Lösung der Barytverbindung und kristallisiert daraus als solches wieder aus. Vincent u. Delachanal, Jahresber. d. Chem. 1880, 606.
 - 239. L. Henry, Jahresber. d. Chem. 1873, 330.
- 240. Kristalltafeln aus Alkohol, Smp. 104°, inaktiv, leicht löslich in Chloroform, wenig löslich in kaltem Alkohol und Äther. Reychler, Bull. Soc. Chim. III. 15 (1896), 367; Berl. Berichte 29 (1896), 695.
- 241. Wird eine Lösung von Phenol in Benzol, Toluol, Ligroïn, Chloroform, Schwefelkohlenstoff, Alkohol oder ähnlichen organischen Lösungsmitteln mit völlig wasserfreiem kohlensaurem Kalium vermischt, so bildet sich nach kurzer Zeit unter Erstarren des Gemisches eine Additionsver-

bindung von 3 Mol. Phenol mit 1 Mol Phenolkalium, die aus Benzol umkristallisiert bei 106 bis 108° schmilzt.

 $K_2 CO_3 + 4 C_6 H_5 OH = C_6 H_5 OK \cdot 3 C_6 H_5 OH + HK CO_3.$

So wurden bei einem Versuche 27,6 kg geglühte Pottasche in eine Lösung von 75,2 kg Phenol und 320 kg Toluol eingetragen, wobei unter Temperaturerhöhung von 15° die Masse zu einem dicken Brei erstarrte, aus dem durch Absaugen die Verbindung mit Kaliumbicarbonat vermischt erhalten wurde. Durch Auflösen in warmem Benzol, Filtrieren und Auskristallisieren ließ sich die Verbindung rein gewinnen.

Die Natriumverbindung, deren Darstellung analog ist, hat die Zusammensetzung C₆ H₅ O Na · 2 C₆ H₅ OH. Im Gegensatz zur Kaliumverbindung

ist die Natriumverbindung sehr hygroskopisch.

Statt der kohlensauren Alkalien können auch die Alkalihydrate genommen werden (1 Mol. zu 4 Mol. Phenol gerechnet), indem man die betreffende Alkalimenge in eine Lösung des Phenols in Benzol unter Erwärmung bis zur vollständigen Lösung einträgt. In dieser Weise läßt sich auch von den Kresolen die Doppelverbindung C6 H4 (CH3) OK · 3 C6 H4 (CH3) OH darstellen. Die Doppelverbindung des p-Kresols schmilzt bei 147° und ist in Benzol bedeutend schwerer löslich als die des o- und des m-Kresols, wodurch erstere von letzteren beiden getrennt werden kann. Smp. der m-Verbindung 88°.

Auch ohne Anwendung eines Lösungsmittels können diese Additionsverbindungen gewonnen werden. Es wurden z. B. 22,7 kg festes Kaliumhydrat in 128 kg p-Kresol eingetragen, worauf so lange erwärmt wurde, bis eine vollständige Lösung eintrat. Nach dem Erkalten erstarrte die Lösung zu einem gelben Kristallkuchen, C6H4(CH3)OK·3C6H4(CH3)OH, der durch Waschen mit kaltem Benzol gereinigt wurde.

D. R. P. No. 156761, Kl. 12 vom 18. Juli 1903 und No. 157616, Kl. 12 vom 22. Sept. 1903. Dr. Kurt Gentsch in Vohwinkel, übertragen auf

Lysolfabrik Schülke & Mayr in Hamburg.

242. - Werden Pinen, Dipenten oder Limonen mit Paraformaldehyd in alkoholischer Lösung im geschlossenen Rohr längere Zeit auf 170 bis 1909 erhitzt, so entstehen dickflüssige, wenig gefärbte Verbindungen von hohem Siedepunkt, Pinen-Formaldehyd 232 bis 236°, Limonen-Formaldehyd 246 bis 250°, Dipenten-Formaldehyd 242 bis 248°. In Wasser unlöslich, ziehen sie doch leicht Feuchtigkeit an. Mit Halogenwasserstoff bilden sie kristallisierte Verbindungen. Sie haben den Charakter von alkoholischen Körpern. Ladenburg, Berl. Berichte 31 (1890), 289; Kriewitz, Berl. Berichte 32 (1899), 57.

243. - Die Reaktion der Sesquiterpene mit p-Formaldehyd verläuft in gleichem Sinne wie von den Terpenen (s. No. 242) aber schwieriger und mit schlechteren Ausbeuten. Durch Erhitzen der Komponenten auf 180° unter Druck entstehen Additionsverbindungen, die nach der Formel C18 H28 O zusammengesetzt sind. Es wurden folgende flüssige Verbindungen erhalten, von

Caryophyllen; Sdp. 177 bis 178° 13; d $_{0}$ 0,997; α_{D} $-7^{\circ}40'$ in 4,93°/ $_{0}$ iger ", bei 170°_{12} ; d₀1,001; $\alpha_{\rm D}$ — $7^{\circ}12'$ ", 6,03 ", Cloven: " 180°_{12} ; $d_{\circ}0,993$; $\alpha_{D}-7^{\circ}54'$ " 7,6Cadinen: Genvresse, Compt. rend. 138 (1904), 1228.

244. — Die Einwirkung ist ziemlich heftig und liefert außer der Additionsverbindung noch andere Produkte. Reychler, Berl. Berichte 29 (1896), 695.

245. — Es entstehen Kondensationsprodukte, darunter in guter Ausbeute ein Ester des Borneols. Reychler, s. No. 244 u. 240.

246. - Masson u. Reychler, Berl. Berichte 29 (1896), 1843.

247. — Mercuriacetat giebt mit ungesättigten Körpern entweder Additionsoder Oxydationsverbindungen. Letzteren Falls wird das Mercurisalz zu dem
in Wasser fast unlöslichen Mercuroacetat reduziert; es bildet sich hierbei
Essigsäure, während an die beiden doppelt gebundenen Kohlenstoffatome
Hydroxyl oder Sauerstoff angelagert werden.

$$\begin{array}{l} Hg(CH_3\,CO_2)_2 + H_2\,O = Hg\,CH_3\,CO_2 + CH_3\,CO_2\,H + OH \ oder \\ 2Hg(CH_3\,CO_2)_2 + H_2\,O = 2Hg\,CH_3\,CO_2 + 2\,CH_3\,CO_2\,H + O \end{array}$$

Verbindungen mit einer Propenylgruppe, ·CH:CH·CH₃, geben bei der Behandlung mit Mercuriacetat Oxydationsprodukte in Form von Glykolen der Zusammensetzung R·C₃H₅(OH)₂. Verbindungen aber mit einer Allylgruppe CH₂·CH:CH₂ liefern Merkuriadditionsprodukte, die nach der allgemeinen Formel R·C₃H₅(OH)(HgCH₃CO₂) zusammengesetzt sind und aus je zwei Isomeren bestehen. Die Reaktion bietet in Folge dessen ein gutes Mittel zur Erkennung, ob eine Allyl- oder Propenylgruppe vorliegt. Alle Additionsprodukte geben bei Behandlung mit Schwefelwasserstoff oder bei der Reduktion mit Zink und Natronlauge die ursprüngliche Verbindung zurück; nur Apiol wird hierbei zu einer kristallinischen Verbindung, C₁₂H₁₆O₅, vom Schmelzpunkt 29,5 bis 30,5° reduziert.

Es wird in der Weise verfahren, daß die in Äther oder Benzol gelöste Verbindung oder die betreffende Fraktion mit einer konzentrierten wäßrigen Lösung von Mercuriacetat bei gewöhnlicher Temperatur behandelt wird. Der Oxydationsprozeß, kenntlich durch die Ausscheidung der charakteristischen Kristallblättchen von Mercuroacetat verläuft innerhalb einer Stunde. Die Additionsreaktion bedarf dagegen mehrerer Tage, ehe sich die klaren Lösungen trüben und den Additionskörper ausscheiden. Die Reaktion auf Camphen kann zur Trennung und Identifizierung desselben benutzt werden.

Es wurden Additionsprodukte mit Mercuriacetat dargestellt von Camphen, Methylchavicol, Methyleugenol, Safrol, Apiol; dagegen gaben Oxydationsprodukte (Glykole): Anethol = $CH_3 OC_6 H_4 C_3 H_5 (OH)_2$, Methylisoeugenol = $(CH_3 O)_2 C_6 H_3 C_3 H_5 (OH)_2$, Isosafrol = $(CH_2 O_2) C_6 H_3 C_3 H_5 (OH)_2$, Isosafrol = $(CH_3 O)_2 (CH_2 O_2) C_6 H C_3 H_5 (OH)_2$. Von Pinen wurde ein Ketoalkohol, $C_{10} H_{16} O_2$, erhalten. Balbiano u. Paolini, Berl. Berichte 35 (1902), 2994 u. 36 (1903), 3575.

Aromatische oder cyklische Kohlenwasserstoffe, C_nH_{2n}, reagieren nicht mit einer wäßrigen Lösung von Mercuriacetat, wohl aber alle olefinischen Verbindungen, wobei sie entweder das Mercuriacetat addieren oder dadurch leicht oxydiert werden. Letzterenfalls zeigt die Ausscheidung des schwer löslichen Mercuroacetats das Eintreten der Reaktion an. So läßt sich noch in Benzol mit 0,1% Amylen das Amylen deutlich nachweisen. Balbiano, Gaz. chim. ital. 36 (1906), I. 237.

Auch zur Trennung eines Gemisches von Allyl- und Propenylverbindungen ist die Reaktion gut anwendbar. Läßt man eine bestimmte Menge Merkuriacetat auf das Gemisch einwirken, so bildet sich nur die Additionsverbindung des Merkuriacetats mit der Allylverbindung, während das Propenylderivat unverändert bleibt, sodaß man es durch seine Löslichkeit in Äther und seine Flüchtigkeit mit Wasserdampf aus dem Reaktionsgemisch entfernen kann. Die Allyladditionsverbindung ist dagegen in Äther fast unlöslich und nicht flüchtig; aus ihr läßt sich das Allylderivat durch aus Zink und Natronlauge entwickelten Wasserstoff wieder gewinnen. Balbiano, Berl. Berichte 42 (1909), 1502.

Additions- und Oxydationskörper von Olefinen bei ihrer Behandlung mit verschiedenen Quecksilbersalzen sind von Deniges [Bull. Soc. Chim. III. 19 (1898), 494] und Hofmann [Berl. Berichte 33 (1900), 1353] untersucht.

Beim Schütteln von Aceton mit Merkurisulfatlösung bildet sich ebenfalls eine Additionsverbindung. Denigès, Compt. rend. 126 (1898), 1868 u. 127 (1898), 963; Oppenheimer, Berl. Berichte 32 (1899), 986; Biilmann, Berl. Berichte 35 (1902), 2584; Sand u. Genssler, Berl. Berichte 36 (1903), 3699.

- 248. Große, wasserhelle Kristalle, die sich beim Erkalten einer Lösung von Triphenylmethan in reinem heißem Benzol ausscheiden, Smp. 76°. Anschütz, Liebigs Annalen 235 (1886), 209; Kekulé u. Franchimont, Berl. Berichte 5 (1872), 906. Nach Linebarger (Americ. chem. Journ. 15 [1893], 45) ist die Verbindung bei höheren Temperaturen vollständig dissoziiert. Auch nach den Schmelzpunktbestimmungen wechselnder Mengen beider Komponenten von B. Kuriloff (Zeitschr. f. physik. Chem. 23 [1897], 547) besteht die Verbindung nur bei niedrigen Temperaturen und ist bei 78,2°, der Temperatur des Schmelzpunktes, völlig gespalten.
- 249. Farblose Prismen, Smp. 106°; gegen 110° vollständige Trennung in die Komponenten, wobei das Benzol verdampft. Die Verbindung entsteht beim Umkristallisieren des Diamidotriphenylmethans in Benzol; in Ligroïn schwer löslich. Es scheint eine allgemeine Eigenschaft des Triphenyl- und Tetraphenylmethans und ebenso ihrer Amidoderivate zu sein, sich mit Benzolkohlenwasserstoffen additionell zu verbinden. O. Fischer, Liebigs Annalen 206 (1881), 149.
- 250. Monokline Tafeln, die an der Luft verwittern. Zagomenny, Liebigs Annalen 184 (1877), 176; Anschütz, ibidem 235 (1886), 212.
- 251. Dibenzylidenacetonhydrosulfat und Dianisylidenacetonhydrosulfat sind gefärbte Verbindungen, die mit Wasser in die Komponenten zerfallen. Vorländer u. Mumme, Berl. Berichte 36 (1903), 1470 u. Vorländer u. Hayakawa, ibidem 3528.
- 252. Mumme (s. No. 251) untersuchte eine Reihe ungesättigter Ketone auf das Maximum ihrer Bindungsfähigkeit mit Chlorwasserstoff, der trocken über die fein gepulverte Substanz geleitet wurde, bei Lufttemperatur oder in einer Kältemischung. Die Versuche zeigten, daß die Säure nicht an das Ketoncarbonyl, sondern an die doppelt gebundenen Kohlenstoffatome gelagert wird. Die entstandenen Additionsverbindungen sind sehr labil und verlieren den Chlorwasserstoff schon bei Lufttemperatur oder bei Erhitzen wieder, auch durch kaltes Wasser oder noch schneller beim Sieden mit Wasser.

Die Halogenwasserstoffverbindungen von Mesityloxyd hat Pawlow dargestellt, Liebigs Annalen 188 (1877), 138.

Dibenzylidenaceton vereinigt sich mit Chlorwasserstoff zu einem Monohydrochlorid und einem Dihydrochlorid. Mit Bromwasserstoff sind aber außer einem Monohydrobromid zwei isomere Dihydrobromide herstellbar. Die eine der beiden isomeren Verbindungen ist ein chemisch sehr unbeständiges dunkelrotes Pulver, die andere stellt weiße Kristalle dar und ist eine stabilere Verbindung.

- 253. Triphenylmethyl vermag sich mit Kohlenwasserstoffen, Äthern und Estern zu sehr labilen Additionsverbindungen zu vereinigen. Es entstehen farblose Kristalle, die beim Erwärmen in die Komponenten zerfallen. Die Dissoziationstemperatur liegt je nach der Flüchtigkeit des mit dem Triphenylmethyl verbundenen Körpers verschieden hoch, ist aber im allgemeinen ziemlich niedrig, meist unterhalb der Zimmertemperatur. Folgende Körper haben sich mit Triphenylmethyl vereinigen lassen: Amylen, Petroläther vom Siedepunkte 80 bis 90°, Benzol, Toluol, Äthylbenzol, o-, m-, p-Xylol, Äthyläther, die Ester der Ameisen-, Essig-, Propion-, Butter- und Valeriansäure, der Oxalsäure, Malonsäure, Bernsteinsäure und Benzoësäure, Schwefelkohlenstoff. Keine Verbindung konnte erhalten werden mit Naphthalin, Methyl- und Äthylformiat. Gomberg, Berl. Berichte 34 (1901), 2726; Gomberg u. Cone, ibidem 38 (1905), 1333.
- 254. Nach der Schmelzpunktkurve besteht zwischen β-Naphthol und Benzol keine Verbindung. Kuriloff, Zeitschr. f. physik. Chem. 23 (1897), 682. Auch die Schmelzpunktkurven wechselnder Gemische von Naphthalin mit Phenanthren oder Diphenylmethan oder Anthracen zeigen, daß sich in diesen Gemischen nur Lösungsaffinitäten äußern. Miolati, Zeitschr. f. phys. Chem. 9 (1892), 649.
- 255. Smp. 38°. Verbindung entsteht beim Abdunsten einer Lösung von Azobenzol in Benzol; verliert an der Luft Benzol. Schmidt, Berl. Berichte 5 (1872), 1106.
- 256. Dunkelgrüne Kristalle. Wurster u. Roser, Berl. Berichte 12 (1879), 1824.
- 257. Braune Nadeln aus Benzol, die bei 140° das Benzol verlieren, auch beim Umkristallisieren aus Alkohol teilweise zerfallen. Lippmann u. Fleissner, Monatsh. f. Chem. 6 (1885), 537.
- 258. Harte, glänzende Kristalle, die sich beim Abdunsten einer Lösung von Trinitrobenzol in Benzol in der Kälte bilden; verlieren an der Luft sehr bald ihr Benzol. Hepp, Liebigs Annalen 215 (1882), 376.
 - 259. Hepp, s. No. 258.
- 260. Aus einer in der Siedehitze gesättigten Lösung von Pikrinsäure in Benzol (bei gewöhnlicher Temperatur löst Benzol 8 bis 10 % Pikrinsäure, beim Erwärmen weit mehr) scheidet sich nach dem Erkalten die Verbindung in hellgelben Kristallen aus, die an der Luft sofort Benzol verlieren, so daß zuletzt Pikrinsäure zurückbleibt; löst sich in Alkohol und Äther, jedenfalls unter Zersetzung, denn es ist aus ihnen nicht umzukristallisieren. J. Fritzsche, Liebigs Annalen 109 (1859), 247. Nach der Schmelzpunktkurve

ist die Verbindung bei 84,3° vollständig in die Komponenten gespalten. Kuri-

loff, Zeitschr. f. physik. Chem. 23 (1897), 681.

261. - Pikramid läßt sich in wenig Benzol unverändert umkristallisieren, es scheidet sich in langen, scharf zugespitzten, gelben Nadeln oder Prismen mit schön violettem Reflex aus; läßt man aber die konzentrierte Benzollösung einige Zeit stehen, oder läßt man sie freiwillig abdunsten, so bilden sich hellgelbe breite, durchsichtige Prismen, eine additionelle Verbindung von Pikramid mit Benzol. An der Luft verwittern die Kristalle sehr bald; zurück bleibt Pikramid als gelbes Pulver. Mertens, Berl. Berichte 11 (1878), 843.

262. — Große, breite, blaßgelbe durchsichtige Säulen. Die Verbindung bildet sich leichter als die Pikramidverbindung; ihr Verhalten ist ebenso.

Martens, s. No. 261.

263. - Bräunliche, durchscheinende Nadeln. Mertens, s. No. 261.

264. - Lippmann u. Fleissner, Monatsh. f. Chem. 6 (1886), 537.

265. - Girard (Chem. Zentralbl. 1891, II. 671) hält das flüssige Gemisch von Campher mit Naphthalin für eine Verbindung. Nach den von ihm gemachten Angaben scheint aber nur eine Lösung vorzuliegen.

266. - Durch Schmelzpunktkurven festgestellt. Kremann u. Rodinis,

Monatsh. f. Chem. 27 (1906), 125.

267. - Dicke prismatische Nadeln, Smp. 52 bis 53°, erhalten durch freiwilliges Verdunsten einer Lösung aus gleichen Molekülen beider Komponenten in Benzol. In alkoholischer Lösung bildet sich die Verbindung nicht. Hepp, Liebigs Annalen 215 (1882), 377; s. auch No. 266.

268. - Feine Nadeln, Smp. 118 bis 119°. Im Gegensatz zur m-Verbindung entsteht diese aus alkoholischer Lösung, wodurch p-Dinitrobenzol

von dem m-Dinitrobenzol getrennt werden kann. Hepp, s. No. 267.

269. — Wird zu einer kalt gesättigten alkoholischen Lösung von Trinitrobenzol alkoholische Naphthalinlösung gegeben, so entsteht ein weißer Niederschlag. Wird dieser durch Erwärmen wieder gelöst, so kristallisiert die Verbindung in langen weißen Nadeln aus. Nur unter Zusatz von Naphthalin kann sie aus Alkohol ohne Zersetzung umkristallisiert werden. Beim Liegen an der Luft tritt Zersetzung ein. Smp. bei 152°. Hepp, s. No. 267.

270. - Smp. 60 bis 61°. Hepp, s. No. 267.

271. - a-Trinitrotoluol-Naphthalin, Smp. 97 bis 98° nach Hepp, s. No. 267, 96,5° nach Kremann, Monatsh. f. Chem. 25 (1904), 1246. Die Verbindung wird durch Lösungsmittel nur wenig dissoziiert.

β-Trinitrotoluol-Naphthalin, Smp. bei 100°. Hepp. 7-Trinitrotoluol-Naphthalin, Smp. 88 bis 89°. Hepp.

272. - Nach den Schmelzpunktbestimmungen existiert zwischen beiden Körpern keine Verbindung. Die Schmelzpunktkurve wechselnder Gemische hat nur einen eutektischen Punkt. Saposchnikow, Zeitschr. f. physik. Chem. 49 (1904), 693.

273. - Smp. bei 91,7°. Verbindung sehr labil. Saposchnikow, s. No. 272.

274. - Durch Auflösen von Pikrinsäure und Naphthalin in Alkohol, Äther oder Benzol, kalt oder heiß, goldgelbe Kristallnadeln. Smp. bei 149° unter Verflüchtigung von wenig Naphthalin. Durch Wasser wird die Verbindung in der Kälte nur oberflächlich, beim Kochen unter Verdampfung von Naphthalin langsam vollständig zersetzt. J. Fritzsche, Liebigs Annalen 109 (1859), 248; Bodewig, Jahresber. d. Chem. 1857, 376. Kremann [Monatsh. f. Chem. 25 (1904), 1250] fand das Maximum der Schmelzpunktkurve zu 147°, Saposchnikow [Zeitschr. f. physik. Chem. 49 (1904), 689] zu 149,5°. Die Verbindung ist erheblich stabiler als die Dinitrophenol-Verbindung.

275. — β-Verbindung: gelbe Nadeln, Smp. 72—73°, kann aus Alkohol umkristallisiert werden. γ-Verbindung, goldgelbe Kristalle, Smp. 100°, in Alkohol weit schwerer löslich. Henriques, Liebigs Annalen 215 (1882), 334.

276. — Sehr stabile Verbindung, Smp. 124,5°. Saposchnikow, Zeitschr. f. physik. Chem. 49 1904, 694.

277. — Dicke, orangegelbe Nadeln, Smp. 168—169°. Die Additionsverbindung mit Pikramid eignet sich zur Identifizierung des Naphthalins. Die Darstellung des Pikramids ist von Clemm (Chem. Zeitschr. 1870, 444) und von Pisani [Liebigs Annalen 92 (1854), 326] angegeben. Zur Darstellung der Doppelverbindung werden kochend heiße konzentrierte alkoholische Lösungen der beiden Komponenten zusammengebracht, wobei man sich aber hüten muß, daß das sehr schwer lösliche Pikramid mit auskristallisiert, was am besten durch einen großen Überschuß des Kohlenwasserstoffs vermieden wird; Schmelzpunkt des Pikramids ist 188°. Liebermann u. Palm, Berl. Berichte 8 (1875) 377.

278. - Smp. 95 bis 96°. Liebermann u. Palm, s. No. 277.

279. - Hepp, Liebigs Annalen 215 (1882), 377.

280. — Glänzend rote Nadeln, Smp. 138 bis 139°. Die Verbindung wird durch Eintragen von Anthracen in eine bei 30 bis 40° gesättigte alkoholische Pikrinsäurelösung erhalten. Sie ist leicht löslich in Benzol, löslich in Alkohol, durch den es je nach seiner Menge teilweise oder ganz in die Komponenten gespalten wird. Während alkoholische Lösungen von Phenanthrenpikrat niemals Phenanthren abscheiden, so lange noch Pikrinsäure in wenigstens dem äquimolekularen Verhältnis der Lösung ist, vermag eine alkoholische Lösung von Anthracenpikrat noch freies Anthracen abzusondern, wenn auch mehr als zehnmal so viel Pikrinsäure in der Lösung vorhanden ist, als zur Bindung des Anthracens genügt. Um so viel leichter wird also Anthracenpikrat als Phenanthrenpikrat durch Alkohol zersetzt. R. Behrend, Zeitschr. f. physik. Chem. 10 (1892), 265.

281. — Prachtvolle rote Nadeln, Smp. 165 bis 170°, geeignet zur Identifizierung des Anthracens. Die Additionsverbindungen des Pikramids und Pikrylchlorids sind im allgemeinen viel beständiger als die Pikrinsäure-Verbindungen. Selbst durch Alkalien und Säuren werden sie in der Kälte nur langsam zersetzt, am besten durch Erwärmen mit Alkalien. Liebermann u. Palm, s. No. 277.

282. — Weder aus Alkohol noch aus Benzol war eine feste Verbindung abscheidbar. Henriques, Liebigs Annalen 215 (1882), 332.

283. — Gelbe Nadeln, Smp. 143°, leicht löslich in Äther, Schwefelkohlenstoff, Benzol, löslich in 36 bis 38 Teilen Alkohol von 95°/o bei 15°, Überschuß von Pikrinsäure verringert die Löslichkeit in Alkohol; Beilsteins Handbuch.

In nicht zu konzentrierter Lösung ist die Verbindung fast vollständig dissoziiert. Den Gleichgewichtszustand wechselnder Gemische von Phenanthren mit Pikrinsäure in alkoholischer Lösung hat R. Behrend eingehend untersucht. Zeitschr. f. physik. Chem. 10 (1892), 265 u. 15 (1894), 183; s. auch No. 280.

284. — Citronengelbe Nadeln, Smp. 70 bis 71°. Zur Darstellung der Verbindung sind konzentrierte alkoholische Lösungen von Phenanthren und Pikrylchlorid zusammenzumischen; wenn nötig, ist ein Teil des Alkohols abzudampfen. Beim Erkalten kristallisiert die Verbindung aus. Liebermann u. Palm, Berl. Berichte 8 (1875), 377.

285. — Orangegelbe Nadeln, Smp. 67 bis 70°. Darstellung wie No. 284.
286. — Dunkelgelbe Nadeln, Smp. 70 bis 71°. Darstellung wie No. 284.

287. — Das wasserfreie Chloral verbindet sich wie mit Wasser auch mit Alkoholen, so mit Methylalkohol, Äthylalkohol und den Homologen, auch mit gechlorten Alkoholen, ferner mit Glykol und Glycerin, mit Äthylglycolat, Äthyllaktat, Äthyltartrat. Die Vereinigung geschieht unter Wärmentwicklung. Keins dieser Additionsprodukte ist ohne Zersetzung flüchtig, beim Erhitzen dissoziieren sie. Schwefelsäure zerlegt sie in Chloroform und die betreffende Ätherschwefelsäure; durch Alkalien werden sie in Chloroform und den Alkohol getrennt. Henry, Berl. Berichte 7 (1874), 753. Auch mit Allylalkohol vereinigt sich Chloral nach Oglialoro zu einer bei 116° siedenden, dickflüssigen Verbindung, Smp. 20,5°. In Wasser löst sie sich langsam unter Zersetzung. Berl. Berichte 7 (1874), 1462.

Mit den Alkoholen der aromatischen Reihe verbindet sich Chloral nicht. 288. — Die Alkalialkoholate vermögen sich nicht nur mit ihren eigenen, sondern auch mit fremden Alkoholen zu lockeren Additionskörpern zu vereinigen. Forcrand, Annal. de Chim et Phys. VI. 20 (1890), 442; Compt. rend. 114 (1892), 302; Fröhlich, Liebigs Annalen 202 (1880), 295.

289. - Claus u. Decker, Journ. f. prakt. Chem. 39 (1889), 309;

Claus u. Howitz, ibidem 42 (1890), 222.

290. — Kristallinische, etwas hygroskopische Masse, Smp. 50°, Sdp. 98° nach Martius u. Mendelssohn, Berl. Berichte 3 (1870), 445; Sdp. 106° nach Jacobsen, Liebigs Annalen 157 (1871), 244. Nach Ramsay u. Young [Zeitschr. f. physik. Chem. 1 (1887), 244] ist die Verbindung bei 78° zu ungefähr 78°/0 dissoziiert.

291. — Die Verbindungen von Isosafrol mit Alkoholen sind ölige Körper. Sie wurden durch dreistündiges Sieden von Isosafrolhydrochlorid mit dem betreffenden Natriumalkoholat am Rückflußkühler erhalten. Danach wurde der überschüssige Alkohol abdestilliert und der Rückstand mit Wasserdampf überdestilliert.

Isosafrol-Methylalkohol, Sdp. 110 bis 112^{0} 5 mm, d₁₅ 1,1116, Isosafrol-Äthylalkohol, Sdp. 110 bis 111^{0} 3,5 mm, d₁₅ 1,0796, Isosafrol-Isoamylalkohol, Sdp. 136 bis 137^{0} 3,5 mm, d₁₅ 1,0258.

Die Methylalkohol-Verbindung siedet unter Atmosphärendruck bei 248 bis 256° unter partieller Zersetzung, die übrigen ohne Zersetzung. Mit Wasser auf 200° oder mit Säuren erhitzt, wird aus diesen Verbindungen Isosafrol regeneriert, nicht aber durch Alkalien. Bericht von Schimmel & Co. April 1905, 45.

Die Entstehung dieser Anlagerungsprodukte von Alkoholen an Isosafrol durch Vermittlung des Hydrochlorids von Isosafrol ist ähnlich wie die Darstellung von Anethol-Äthylalkohol. Wird Anetholhidrochlorid mit alkoholischer Kalilauge behandelt, so entsteht ein Anlagerungsprodukt des Äthylalkohols an die Propenylgruppe des Anethols. Die Mischung beginnt sich allmählig zu erwärmen und läßt Chlorkalium ausfallen. Wird das Gemisch mit Wasser ausgewaschen und mit Wasserdampf destilliert, so erhält man im Destillat das Additionsprodukt. Beim trocknen Destillieren unter Atmosphärendruck zerfällt die Verbindung in Alkohol, Anethol und polymeres Metanethol. Orndorff u. Morton, Journ. Americ. chem. Soc. 23 (1900), 181, 486.

292. - Sdp. 95 bis 96°. Jacobsen, Berl. Berichte 4 (1871), 216.

293. - Smp. 56 bis 57°, Sdp. 115 bis 117°. Personne, Jahresber. d. Chem. 1869, 504; Martius u. Mendelssohn, Berl. Berichte 3 (1870), 444; Lieben, Berl. Berichte 3 (1870), 909; Jungfleisch, Zeitschr. f. Chem. 1870, 352. Nach Ramsay u. Young [Zeitschr. f. physik. Chem. 1 (1887), 244] ist die Verbindung bei 78° zu 82,5 bis 83°/0 dissoziiert. G. H. Leopold [Zeitschr. f. physik. Chem. 66 (1909), 359] bestimmte den Dampfdruck von reinem Chloralalkoholat, dessen Schmelzpunkt er zu 46,60 feststellte und fand folgende Zahlen: 116,4° 760, 54,1° 30, 47,9° 20, 40,4° 10, 32,8° 5, 24,7° 2, 20,0° 1,2 mm. Nach diesem Siedeverhalten ist Chloralalkoholat bei der Siedetemperatur unter Atmosphärendruck zu einem erheblichen Teil zersetzt; aber auch bei den niedrigen Temperaturen ist es schon partiell gespalten, trotzdem die Substanz in festen klaren Kristallen vorliegt, das beweisen die niedrigen Temperaturwerte für 1 mm Druckunterschied zwischen 30 und 5 mm Druck. Zwischen 30 und 20 mm fällt die Siedetemperatur für jeden Millimeter um 0,62° im Mittel, zwischen 20 und 10 mm um 0,75° und zwischen 10 und 5 mm um 1,52°. Vergl. die Siedepunktstabelle S. 496.

294. — Flüssige Verbindung mit wechselnder Zusammensetzung. Zeidler, Jahresber. d. Chem. 1878, 645. Ob dies eine Verbindung ist, erscheint fraglich.

295. — Ein Öl, das bei der Destillation in seine Bestandteile zerfällt. Pinner, Liebigs Annalen 179 (1875), 42.

296. — Nadeln, Smp. 44°, in Alkohol leicht, in Wasser schwer löslich, durch Destillation Spaltung in die Komponenten. Schäffer, Berl. Berichte 4 (1871), 367.

297. — Sdp. 150 bis 155°. Aronstein, Liebigs Annalen Suppl. 3 (1864/5), 190.

298. — Als tertiärer Alkohol bildet Trimethylcarbinol mit Baryt keine Additionsverbindung. Menschutkin, Liebigs Annalen 197 (1879), 204.

299. — Unbeständige Verbindung; beim Erhitzen destilliert der Alkohol über. Baeyer u. Villiger, Berl. Berichte 35 (1902), 1210.

300. — Mischt man die ätherischen Lösungen von 1 Mol. Natrium-alkoholat und 1 Mol. der Äthylester von Furfuralmalonsäure, Benzyliden-acetessigsäure, Benzylidenmalonsäure oder Piperonalmalonsäure, so fällt sofort die Additionsverbindung als weißes Pulver aus, in der das Natriumalkoholat an das doppelt gebundene Kohlenstoffpaar des Esters angelagert ist. Durch kaltes Wasser zerfallen die Verbindungen in wäßriges Alkali und in den Oxylester. Liebermann, Berl. Berichte 26 (1893), 1876. Die Verbindung von

Natriumäthylat mit Isopropylidenacetessigester, von Merling u. Welde (Liebigs Annalen 366 [1909], 135) nachgewiesen, ist in Äther, Petroläther, Benzol leicht löslich. Spuren von Wasser scheiden sie aus diesen Lösungen in feinen, anscheinend farblosen Kristallnädelchen aus. Auch in Wasser und Alkohol ist sie löslich, wird aber dabei allmählich unter Abtrennung von Natriumhydrat in die Verbindung (CH₃)₂ C (O C₂ H₅) CH (CO CH₃) CO₂ C₂ H₅ übergeführt.

301. - Hardy, Jahresber. d. Chem. 1874, 305.

- 302. Nadeln, Smp. ca. 56°, Sdp. 145 bis 147°, leicht in Alkohol und Äther löslich, in Wasser fast unlöslich. Beim Erhitzen mit Wasser wird die Verbindung nicht zerlegt, sondern setzt sich als schwere Schicht zu Boden. Jacobsen, Liebigs Annalen 157 (1871), 245.
- 303. Flache Nadeln, Smp. zwischen 90 und 100°. Ziemlich unbeständige Verbindung; die Kristalle verwittern an der Luft. Beim Erhitzen über 100° destilliert der tertiäre Amylalkohol über. Baeyer u. Villiger, s. No. 299.
- 304. Farblose, ölige Flüssigkeit unter dem Namen "Dormiol" als Schlafmittel bekannt. In 166 bis 167 g geschmolzenes Chloralhydrat werden allmählich 88 g Amylenhydrat eingetragen. Nach mehrstündigem Erwärmen auf 60° ist die Reaktion beendet. Das Produkt wird mit kaltem Wasser gewaschen, worin es fast unlöslich ist, und über Chlorcalcium getrocknet. Wird Chloral statt des Hydrates genommen, so verläuft die Reaktion weniger rein. Durch andauerndes Kochen mit Wasser tritt unter Gasentwicklung weitgehende Zersetzung ein. Statt des Amylenhydrates kann auch Amylen mit Salzsäure verwendet werden. Chem. Fabrik Rhenania in Aachen, D. R. P. No. 99469, Kl. 12, 23 2. 98, übertragen auf Kalle & Co., und D. R. P. No. 115251, Kl. 12, 27. 10. 99.
- 305. Wird Cetylalkohol in einem geringen Überschuß von Chloral gelöst, so scheidet die Verbindung nach dem Erkalten in Form von warzigen Gruppen feiner Nadeln aus. Jacobsen, s. No. 302.
- 306. Smp. 42°, aus Glykol und wasserfreiem Chloral erhalten. Henry, Berl. Berichte 7 (1874), 762; de Forcrand, Bull. Soc. Chim. III. 2 (1889), 256.
 - 307. Schiff, Liebigs Annalen 244 (1888), 28.
 - 308. Henry, Jahresber. d. Chem. 1873, 330.
 - 309. Moschatos u. Tollens, Liebigs Annalen 272 (1893), 284.
- 310. Wird Borneol mit wasserfreiem Chloral in äquimolekularem Verhältnis mit geringem Chloralüberschuß erwärmt, so tritt nach einigen Minuten eine Reaktion unter geringer Erwärmung ein. Nach dem Erkalten kristallisiert die Verbindung aus der dickflüssigen Masse aus. Die Kristalle werden mit kaltem Wasser von anhaftendem Chloral abgewaschen und können im Petroleumäther umkristallisiert werden. Sie riechen nach Chloral und Borneol, zum Zeichen ihrer partiellen Dissoziation schon bei Zimmer temperatur. Ihr Schmelzpunkt liegt bei 55 bis 56°. A. Haller, Compt. rend. 112 [1891], 143. - Minguin u. de Bollemont (Compt. rend. 132 [1901], 1574) erhielten sowohl mit Links-Borneol als auch mit inaktivem bei 48° schmelzende Chloral-Verbindungen, die aber verschieden kristallisieren.

- 311. Nach Bertram u. Walbaum (Journ. f. prakt. Chem. II. 49 [1894], 6) schmilzt die Verbindung von Bromal mit d-Borneol bei 98 bis 99°. Minguin u. de Bollemont (Compt. rend. 132 [1901], 1574) erhielten folgende Schmelzpunkte: Bromal-d-Borneol 109°, Bromal-l-Borneol 109°, Bromalinakt. Borneol 82°; die Kristallform ist von der der aktiven Verbindungen verschieden.
- 312. Bertram u. Walbaum (Journ. f. prakt. Chem. II 49 [1894], 7) erhielten durch Erwärmen von 1 Teil Chloral mit 2 Teilen Isoborneol eine flüssige Verbindung und durch Erwärmen von Bromal mit Isoborneol im genannten Verhältnis Kristalle mit dem Schmelzpunkt 71 bis 72°. Durch Alkali wird Isoborneol aus den Verbindungen regeneriert.
- 313. Als primärer Alkohol bildet Geraniol mit Chlorcalcium oder Chlormagnesium, auch mit den entsprechenden Nitraten, kristallisierte Doppelverbindungen. Sie sind in Äthyläther, Petroläther, Benzol, Chloroform unlöslich und können damit durch Auswaschen gereinigt werden. Durch Wasser werden sie zerlegt. Jacobsen, Liebigs Annalen 157 (1871), 232; Bericht von Schimmel & Co. April 1895, 39; Bertram u. Gildemeister, Journ. f. prakt. Chem. II. 53 (1896), 233 u. 56 (1897), 507.
- 314. Bei der Behandlung von Geraniol mit Chlorwasserstoff tritt eine Mischreaktion unter Abspaltung des Hydroxyls ein. Reychler, Bull. Soc. Chim. III. 15 (1895), 365. Von Bromwasserstoff wird ebenfalls Hydroxyl abgespalten. Bei der Einwirkung in Eisessig entsteht ein öliges Dibromhydrat des Geranylbromids, C₁₀H₁₉Br·2BrH, das beim Destillieren Wasser abspaltet. Naschold, Dissert., Göttingen, 1896.
- 315. Smp. 169 bis 170°. Bericht von Schimmel & Co. April 1905, 35. 316. — Alloxan vermag sich mit zahlreichen Phenolen zu stabilen Additionsverbindungen zu vereinigen, die durch Alkalien zersetzt werden, wobei aber meistens nicht einfache Spaltung in die Komponenten eintritt, so daß diese Verbindungen sich eventuell zur Identifizierung bestimmter Phenole eignen, in der Regel aber weniger zur Trennung von Phenolen aus Gemischen. Zu ihrer Herstellung ist bei einzelnen Phenolen der Zusatz eines der bekannten Kondensationsmittel notwendig, z. B. Salzsäure, Schwefelsäure oder Chlorzink; bei anderen tritt aber die additionelle Vereinigung auch ohne jedes Kondensationsmittel ein. Bei der Reaktion treten gleiche Moleküle des Phenols und Alloxans zusammen. Sowohl ein- wie mehrwertige Phenole sind zur Bildung dieser Doppelverbindungen fähig. Bei mehrwertigen scheint die Reaktion sogar leichter und glatter einzutreten; so ließen sich ohne Kondensationsmittel Resorcin, Orcin, Phloroglucin und Oxyhydrochinon mit Alloxan vereinigen, indem die heiß konzentrierte wäßrige Alloxanlösung mit Phenol vermischt wurde. Die Produkte der mehrwertigen Phenole gehen durch Alkalien oder durch stärkeres Erhitzen in Oxyphenyltartronsäure über. Ist bei der Darstellung ein Überschuß von Alloxan vorhanden, so bilden sich Verbindungen von 1 Mol. des Phenols mit 2 oder je nachdem 3 Mol. Alloxan. Die mehrwertigen Phenole neigen selbst bei äquimolekularer Zumischung zu solchen Verbindungen. C. F. Böhringer u. Söhne in Waldhof, D. R. P. No. 107720, 23./10. 99, ferner No. 113722, 9./7 1900 und No. 114904 17./9. 1900.

317. - Alloxan-m-Kresol, Nadeln aus Wasser, bei 270° Zersetzung unter Gasentwicklung; s. No. 316.

318. - Alloxan-p-Kresol, derbe Nadeln aus Wasser, zersetzt sich bei

228°; s. No. 316.

- 319. Derbe Kristalle aus Wasser, schmilzt bei 150° unter Gasentwicklung; s. No. 316.
 - 320. Prismen aus Wasser, zersetzt sich, wenn über 100° erhitzt;
- s. No. 316. 321. - Feine Kriställchen aus Essigäther, zersetzt sich beim Erhitzen über 200°; s. No. 316.

322. - Derbe farblose Kristalle; s. No. 316.

- 323. Nadeln oder Prismen aus Wasser, zersetzt sich gegen 230°; s. No. 316.
- 324. In kaltem und auch in heißem Wasser schwer löslich, in Nadeln oder Blättchen kristallisierend; s. No. 316.
- 325. o-Verbindung: rotbraune Nadeln, Smp. 67°; p-Verbindung: rotbraune, leicht zersetzliche Kristalle, Smp. 48°. Biltris, Chem. Zentralbl. 1898, I. 887.
- 326. Rote Nadeln, die sich allmählich schwärzen, Smp. ca. 127°; erhalten durch Vermischen der ätherischen Lösungen der Komponenten in äquimolekularem Verhältnis. Biltris, s. No. 325.
- 327. Phenol und ebenso Resorcin geben mit Benzaldehyd keine Additionsverbindung, sobald aber den alkoholischen Lösungen der Komponenten einige Tropfen Salzsäure zugefügt werden, entstehen Kondensationsverbindungen.
- 328. Campher-Phenole. Die äquimolekulare Additionsverbindung von Campher mit Phenol schmilzt gegen - 23°. Bei Zimmertemperatur stellt sie eine farblose Flüssigkeit dar, deren optische Drehung $(\alpha)_D = +20^\circ$ ist. Eine kleine Menge Wasser zersetzt sie teilweise, eine größere trennt sie vollständig in die Komponenten.

Die aus 2 Mol. Phenol und 1 Mol. Campher bestehende Verbindung ist eine farblose Flüssigkeit, die selbst bei - 50° nicht erstarrt; ihre optische Drehung (a) beträgt + 10° 5'. Auf Zusatz von 1 Mol. Campher entsteht die äquimolekulare Verbindung. Wird aber der aus 2 Mol. Phenol und 1 Mol. Campher bestehenden Verbindung noch 1 Mol. Phenol zugemischt, so tritt eine teilweise Spaltung ein, denn bei Abkühlung des Gemisches auf -25° scheidet die äquimolekulare Verbindung aus. E. Léger, Compt. rend. 111 [1890], 109 und Bull. Soc. Chim. III. 4 [1890], 725. Es scheint hiernach, daß nur das äquimolekulare Gemisch in Wirklichkeit eine Verbindung bildet, während das andere Gemisch eine Lösung dieser Verbindung in Phenol .

Es sind mehrere Verbindungen des Camphers mit Phenolen festgestellt, mit Phenol, Thymol, Resorcin, Hydrochinon, Salol, Salicylsäure, Pyrogallol, Naphthol etc. Sie werden im allgemeinen in der Weise gewonnen, daß die Komponenten in den bestimmten Mengen grob gepulvert, gemischt und bis zum Schmelzen erhitzt werden. Durch Hitze, durch Lösungsmittel oder

durch Alkalien zerfallen diese labilen Verbindungen in die Komponenten. Trockne Erhitzung verursacht meist Verharzungen. Liegen die Siedepunkte der Komponenten genügend weit auseinander, so lassen sie sich am besten durch Destillation mit Wasser trennen. Desesquelles, Rép. de Pharm. 1889, 289.

Nach Bredt (Liebigs Annalen 314 [1901], 378) siedet die äquimolekulare Phenol-Campherverbindung unter 14 mm Druck bei 92°. Der Siedepunkt des Phenols unter 14 mm ist 78,4° und der des Camphers unter dem gleichen Druck 87,5°. Hiernach siedet das Gemisch unter 14 mm Druck mit Majorsiedetemperatur, womit nachgewiesen ist, daß bei 92° die Verbindung noch größeren Teils besteht.

- 329. Flüssige Verbindung. Werden gleiche Molekulargewichte beider Komponenten zusammengeschüttelt, wobei das Gemisch in einem Wasserbade bis etwa 60° erwärmt wird, so steigt die Temperatur sofort bis auf 70° . Die optische Drehung im 100 mm-Rohr beträgt $+52^{\circ}$ 28'. Eine alkoholische Lösung von demselben Fenchongehalt wie die Phenolfenchonverbindung hat nur eine optische Drehung von $+41^{\circ}$ 12'. Es hat also mit der Bildung der Verbindung eine Vermehrung der optischen Drehung stattgefunden. Wird das Phenol-Fenchon in Alkohol gelöst, so nimmt mit der Verdünnung der Lösung die Spaltung der Doppelverbindung in gleichem Maße zu. E. Tardy, Bull. Soc. Chim. III. 27 (1902), 603.
- 330. Phenolchinon, 2 C₆ H₅ OH·C₆ H₄ O₂, rote Nadeln mit grünem Reflex, Smp. 71°, erhalten durch Auflösen von 1 Mol. Chinon und 2 Mol. Phenol in siedendem Ligroïn; leicht löslich in Alkohol und Äther, löslich in Ligroïn und kaltem Wasser. Hesse, Liebigs Annalen 200 (1880), 251; Nietzki, ibidem 215 (1882), 134.
- 331. Weiße Kristalle, Smp. 124°. Die Doppelverbindung wird durch Erhitzen von wasserfreier Oxalsäure mit Phenol erhalten. Sie destilliert unter teilweiser Zersetzung zwischen 150 bis 180°. Beim Zusammenbringen mit Wasser, Alkohol oder Äthyläther wird sie in die Komponenten gespalten. Claparède u. Smith, Berl. Berichte 16 (1883), 2517.
- 332. Konzentrierte, abgekühlte, wäßrige Lösungen der beiden Komponenten werden miteinander vermischt. Lange Nadeln, Smp. 115 bis 124°, beim Schmelzen Zersetzung mit starkem Fischgeruch. Moschatos u. Tollens, Liebigs Annalen 272 (1893), 280.
- 333. Es ist wahrscheinlich eine ganz allgemeine Eigenschaft der Phenole, mit Amiden zu additionellen Verbindungen zusammenzutreten. Die Additionsfähigkeit bleibt erhalten, wenn die Gruppe CH3 in beliebiger Stellung eingetreten ist, ebenso wenn die Nitrogruppe in das Phenol eingeführt ist; nur o-Nitrophenol mit Anilin und mit Harnstoff bilden eine Ausnahme. Eine Additionsverbindung entsteht aber nicht, wenn die Nitrogruppe in die Amidgruppe eingeführt ist. Kremann u. Rodinis, Monatsh. f. Chem. 27 (1906), 125.
- 334. Smp. 61,0°. Kremann u. Rodinis ibidem s. S. 138; Eckenroth, Jahresber. d. Chem. 1886, 548.

anilin mit 2 Teilen Phenol unter Zusatz von Wasser vermischt wird, wobei ein brauner Brei entsteht, der, in möglichst wenig siedendem Wasser gelöst, nach dem Erkalten die Verbindung auskristallisieren läßt. Zur Reinigung wird sie mit wenig kaltem Wasser ausgewaschen und getrocknet. Längere wird sie mit wenig kaltem Wasser ausgewaschen und getrocknet. Längere Zeit auf 70° erwärmt verliert die Verbindung alles Phenol. Schraube, Berl. Zeit auf 70° erwärmt verliert die Verbindung alles Phenol. Schraube, Berl. Berichte 7 (1874), 963 u. 8 (1875), 616. — Smp. 91°. Kremann, Monatsh. f. Chem. 25 (1904), 1312; Wurster u. Roser, Berl. Berichte 12 (1879), 1824.

336. — Phenol-Anilin, eine viel untersuchte Verbindung, entsteht nach langem Stehen eines äquivalenten Gemisches der Komponenten ohne merkbare Wärmeentwicklung. Glänzende Tafeln aus Weingeist oder Ligroïn, Smp. 31,0°, kann mit Wasser mehrere Stunden ohne Zersetzung gekocht werden. Bei höherer Temperatur tritt aber Spaltung der Verbindung ein, und es machen sich nur noch Lösungsaffinitäten zwischen Phenol und Anilin geltend, denn der normale Siedepunkt 182,5° des äquimolekularen Gemisches liegt zwischen den Siedepunkten der Komponenten. Dagegen wird bei Destillation unter Minderdruck jedenfalls eine Majorsiedetemperatur zu erwarten sein. Wird Phenol-Anilin mit einem Überschuß von Natron- oder Kalihydrat in verdünnter wäßriger Lösung versetzt, so kann man mit dem Wasserdampf alles Anilin überdestillieren, wobei nur wenige Milligramm Phenol mit übergehen. Schreinemakers, Zeitschr. f. phys. Chem. 35 (1900), 478.

Die Verbindung wurde dargestellt und in ihren allgemeinen Eigenschaften untersucht von Hübner, Liebigs Annalen 210 (1881), 342; Dale u. Schorlemmer, ibidem 217 (1883), 387; Dyson, Journ. chem. Soc. 43 (1883), 466; Alexejew, Berl. Berichte 17 (1884), Ref. 39; Mylius, Berl. Berichte 19 (1886), 1002. Das Lösungsgleichgewicht von Gemischen von Anilin und Phenol studierten Schreinemakers, Zeitschr. f. physik. Chem. 29 (1899), 581, Lidbury, ibidem 39 (1902), 453 und besonders Kremann, Monatsh. f. Chem. 25 (1904), 1215, der den Dissoziationszustand der Verbindung in der Abhängigkeit von der Temperatur und unter der Wirkung verschiedener Lösungsmittel feststellte, s. S. 617; s. auch No. 333.

337. - Kremann u. Rodinis, Monatsh. f. Chem. 27 (1906), 125.

338. — Phenol-o-Toluidin; Smp. 34°, Kremann, Monatsh. f. Chem. 27 (1906), 91. — Phenol-p-Toluidin; Smp. 29°, Kremann I. c., Philip, Proceed. Chem. Soc. 19 (1903), 144; Smp. 31,1°, Dyson, Journ. chem. Soc. 43 (1883), 468; nach der Viskositätskurve im flüssigen Zustande bei 75° schon weitgehend dissoziiert, bei 135° fast vollständig zerfallen. Beck, Zeitschr. f. physik. Chem. 58 (1907), 436.

339. — Die Verbindung ist nicht sicher nachgewiesen, aber ihre Existenz

wahrscheinlich. Kremann, Monatsh. f. Chem. 27 (1906), 106.

340. - Smp. 16°. Kremann, ibidem S. 102.

341. — Werden gleiche Molekulargewichte wasserfreien Piperazins und Phenols in konzentrierten Lösungen, ersteres in absolutem Alkohol, letzteres in Äther gelöst, zusammengemischt, so scheidet sich die Verbindung beider Körper in weißen Nadeln ab, die in Spiritus umkristallisiert dicke glasglänzende Prismen geben. Smp. 99 bis 101°. Leicht löslich in Wasser, verliert an der Luft Phenol. A. Schmidt u. Wichmann, Berl. Berichte 24 (1891), 3242.

- 342. Phenol-α-Naphthylamin: schwierig rein zu erhaltende Verbindung, Dyson, Berl. Berichte 17 (1884), Ref. 70. Im flüssigen Zustande bei 85° schon ziemlich stark dissoziiert, bei 135° fast vollständig; aus der Viskositätskurve geschlossen. Beck u. Ebbinghaus, Zeitschr. f. physik. Chem. 58 (1907), 436. Phenol-β-Naphthylamin: Smp. 83,5°. Kremann, Monatsh. f. Chem. 27 (1906), 104.
- 343. Gelbe Nadeln, Smp. 85°, nach Kremann (Monatsh. f. Chem. 25 (1904), 1215), der auch durch die Schmelzpunktkurve von wechselnden Mengen beider Komponenten feststellte, daß zwischen Phenol und Pikrinsäure nur eine Verbindung in äquimolekularem Verhältnis besteht. Hiernach ist der Befund von Goedecke (Berl. Berichte 26 (1893), 3043), der eine Verbindung von 2 Mol. Pikrinsäure mit 1 Mol. Phenol und dem Schmelzpunkt 53° nachwies, irrtümlich. Philip (Proceed. Chem. Soc. 19 [1903], 144) bestimmte den Schmelzpunkt der äquimolekularen Verbindung zu 83°.
- 341. Die Additionsprodukte von Phenolen mit Chinonen sind lockere Verbindungen, die meist leicht wieder in die Komponenten zerlegt werden können. Die äquimolekulare Verbindung von Benzochinon mit Monochlorphenol bildet orangegelbe Nadeln mit dem Schmelzpunkt 85°; die Verbindung von 1 Mol. Chinon mit 2 Mol. Monochlorphenol kristallisiert in dunkelbraunen Nadeln mit dem Schmelzpunkt 72°, beim Erwärmen mit Benzol zerfällt sie in die äquimolekulare Verbindung. Die analogen Verbindungen des Chinons mit Monobromphenol sind: C₆H₄O₂ · C₆H₄BrOH, orangerote Nadeln, Smp. 77°, und C₆H₄O₂ · 2 C₆H₄BrOH, dunkelrotbraune Nadeln, Smp. 62°. Kurt Meyer, Berl. Berichte 42 (1909), 1149.
- 345. o-Verbindung: rote Nadeln, Smp. 67°, entsteht durch Vermischen der siedenden Lösungen von 2 Mol. o-Kresol und 1 Mol. Chinon in Petroläther. p-Verbindung, intensiv rote Nadeln, Smp. 62°, in Äther, Benzol und heißem Ligroïn löslich, sublimiert unzersetzt. Biltris, Chem. Zentralbl. 1898, I. 887.
- 346. 100 Teile Rohkresol aus dem Steinkohlenteer, das o-, m- und p-Kresol enthält, werden mit 75 Teilen geschmolzenem und feinst gepulvertem Natriumacetat innig verrieben. Die teilweise erstarrte Masse wird mit Petroläther verrührt, abgesaugt und sorgfältig ausgewaschen. Die Verbindung wird durch Wasser zersetzt. Das frei werdende Öl, durch Destillation gereinigt, erstarrt bei mäßiger Abkühlung. Es ist danach frei von dem flüssigen m-Kresol, das nicht an Natriumacetat gebunden wird. Siehe No. 213.
- 347. Aus den Kurven von Schmelzpunktbestimmungen wechselnder Gemische von Kresol und Harnstoff und auch durch analytische Bestimmung wies Kremann (Monatsh. f. Chem. 28 [1907], 1125), nach, daß sich beide Körper additionell vereinigen und zwar im äquimolekularem Verhältnis. Die drei isomeren Kresole unterscheiden sich hierbei derartig, daß die Verbindung mit p-Kresol sehr unbeständig ist; schon über 25° wird sie stark dissoziiert. Die o- und m-Verbindung haben ungleich größere Stabilität.
- 348. o-Kresol-Anilin, Smp. 8,3°; die m-Verbindung hat den Schmelzpunkt 14,6° und die p-Verbindung 19,2°. Kremann, Monatsh. f. Chem. 27 (1906), 91. Aus der Höhe des Temperaturkoeffizienten der molekularen Oberflächenenergie schlossen Kremann u. Ehrlich (Monatsh.

- f. Chem. 28 [1907], 831), daß m-Kresol-Anilin bei einer Temperatur der Schmelze zwischen 15 und 30° im Mittel noch etwa zur Hälfte besteht, über 60° aber nahezu vollständig in die Komponenten zerfallen ist.
- J. C. Philip bestimmte den Erstarrungspunkt von p-Kresol-Anilin zu 21°. Proceed. Chem. Soc. 19 (1903), 144.
- 349. Flüssige Additionsverbindung, erhalten durch Auflösen von Guajacol in Fenchon in äquimolekularem Verhäftnis. Tardy, Bull. Soc. Chim. III. 27 (1902), 603.
- 350. Toluhydrochinon-Anilin, kleine weiße Blättchen aus Wasser kristallisiert, Smp. 82 bis 85°. Toluhydrochinon-Paratoluidin, perlmutterglänzende Blättchen, Smp. bei 90°. Heberbrand, Berl. Berichte 15 (1882), 1973.
- 351. Thymol-Fenchon, flüssige Verbindung, erhalten durch Auflösen des Thymols unter Erwärmung. Nur das abweichende Verhalten der Flüssigkeit gegen den polarisierten Lichtstrahl läßt schließen, daß nicht eine einfache Lösung vorliegt. Tardy, s. No. 349.
- 352. Campher-Salol, farblose Flüssigkeit, Smp. + 7°, erhalten durch Zusammenschmelzen der beiden Komponenten in äquimolekularem Verhältnis. Léger, Compt. rend. 111 (1890), 110; s. auch No. 328.
- 353. Wird ein Gemisch von 50 Teilen Thymol und 50 Teilen Carvacrol mit 80 Teilen kristallwasserfreiem Bleiacetat innig vermengt, und die fein gepulverte Masse mit trocknem Petroläther sorgfältig ausgewaschen, so enthält das Petrolätherfiltrat das Thymol, das mit Wasserdampf abdestilliert werden kann, während das Carvacrol-Bleiacetat durch Wasser zerlegt, fast reines Carvacrol liefert. S. No. 213.
- 354. Der Halogenwasserstoff lagert sich an die Propenylgruppe. Wenig beständige Verbindungen. Orndorff u. Morton, Amer. chem. Journ. 23 (1900), 181.
- 355. Anetholhaltige Öle, wie Anisöl und Sternanisöl, werden von 80 %-iger Chloralhydratlösung in eine gallertartige Masse verwandelt. Citral und Citronellal geben mit Chloralhydrat bei längerem Stehen kristallisierte Verbindungen, die noch nicht untersucht sind. Mauch, Dissert. Straßburg 1898.
- 356. Anethol-Pikrinsäure, rote Nadeln, Smp. gegen 70° unter Zersetzung. Durch Alkalilauge wird Anethol regeneriert. Orndorff u. Morton, Amer. chem. Journ. 23 (1900), 181.
- 357. Brenzkatechin-Benzochinon, aus der ätherischen Lösung der Komponenten beim Abdunsten erhalten, lange dunkelgrüne, im durchfallenden Lichte rote Nadeln, Smp. gegen 100° unter Zersetzung. Kurt Meyer, Berl. Berichte 42 (1909), 1149.
- 358. Brenzkatechin-Hexamethylentetramin, weiße Nadeln, Smp. gegen 156° unter Zersetzung, schon bei 140° Bräunung. Die konzentrierten wäßrigen Lösungen der Komponenten werden miteinander vermischt. Moschatos u. Tollens, Liebigs Annalen 272 (1893), 281.
- 359. Brenzkatechin-Anilin, feste Verbindung. Mylius, Berl. Berichte 19 (1886), 1002.

- 360. Hydrochinon-Zimtaldehyd, schwach gelbliche, spießige Kristalle, Smp. 53 bis 55°, erhalten durch Auflösen von 1 Teil Hydrochinon in 5 Teilen Zimtaldehyd, verhält sich gegen Lösungsmittel wie die Verbindung Hydrochinon-Oxalester. Baeyer u. Villiger, Berl. Berichte 35 (1902), 1210.
- 361. Hydrochinon-Aceton, labile Verbindung, die schon an der Luft Aceton verliert, Kristalle, leicht löslich in Aceton, Alkohol und Äther. Habermann, Monatsh. f. Chem. 5 (1884), 329.
- 362. Hydrochinon-Acetonitril und Hydrochinon-Formamid, lockere Verbindungen. Mylius, No. 359.
- 363. Hydrochinon-Dimethylpyron kristallisiert beim Erkalten einer heißen Lösung von 1 Teil Hydrochinon, 3 Teilen Dimethylpyron und 5 Teilen Wasser in Prismen aus. Smp. 107 bis 109°. In Wasser und Alkohol leicht löslich und darin umkristallisierbar, in Äther und Benzol schwer löslich, durch Chloroform tritt sofort Spaltung ein. An der Luft verwittern die Kristalle. Baeyer und Villiger, No. 360.
- 364. Hydrochinon-Ameisensäure, farblose spießige Kristalle, Smp. ca. 60°, bilden sich beim Erkalten einer heißen gesättigten Lösung von Hydrochinon in kristallisierbarer Ameisensäure. Beim Erhitzen Zerfall, langsam schon bei 100°. Durch Wasser wird die Verbindung vollständig in die Komponenten gespalten. Mylius, No. 359.
- 365. Hydrochinon-Diäthyloxalat kristallisiert beim Erkalten einer heißen Lösung von 1 Teil Hydrochinon in 10 Teilen des Esters. In Alkohol und Äther leicht löslich, Benzol und Chloroform wirken spaltend. Im Vakuum verflüchtigt sich allmählich der Ester. Baeyer u. Villiger, s. No. 360.
- 366. Hydrochinon-Hexamethylentetramin. 3 Teile Hydrochinon in 4 Teile Wasser gelöst, vermischt mit einer Lösung von 4 Teilen Hexamethylamin in 5 Teilen Wasser; es kristallisieren mikroskopisch kleine Sternchen aus. Moschatos u. Tollens, s. No. 358.
- 367. Hydrochinon-Pyridin, Smp. 81 bis 83°. Beim Erkalten einer heißen Lösung von Hydrochinon in überschüssigem Pyridin wird die Doppelverbindung in langen Blättern erhalten. In heißem Wasser leicht löslich, woraus sie sich beim Erkalten als Öl abscheidet, das in Nadeln erstarrt; ebenso in Alkohol und Äther leicht löslich. Durch Chloroform oder Benzol wird sie zersetzt. Baeyer u. Villiger, Berl. Berichte 35 (1902), 1208.
- 368. Hydrochinon-Piperazin, derbe Nadeln, die unter Zersetzung bei 195° schmelzen, erhalten durch Zusammenmischen von alkoholischen Lösungen molekularer Mengen beider Körper. A. Schmidt u. Wichmann, Berl. Berichte 24 (1891), 3242.
- 369. Hydrochinon-Anilin, glimmerähnliche Blättchen, Smp. 89 bis 90°. Wird zu einer heißen wäßrigen Lösung von Hydrochinon Anilin getropft, so scheidet sich die Verbindung aus, die aus Wasser umkristallisiert werden kann. Sie ist in Wasser und Alkohol leicht löslich, wird durch Sieden in Benzol gespalten, verliert an der Luft Anilin; beim Erwärmen auf 100° wird sie vollständig getrennt. Bei höherer Temperatur und höherem Druck bildet sich unter Wasseraustritt Diphenylphenylendiamin, C₆ H₄ (NH C₆ H₅)₂. Die wäßrige Lösung wird leicht, schon durch den Sauerstoff der Luft, zu Chinon-

dianilid oxydiert. Mylius, Berl. Berichte 19 (1886), 1002; Heberbrandt, ibidem 15 (1882), 1973. Zwischen Hydrochinon und Anilin ist nur die eine Verbindung von 1 Mol. Hydrochinon und 2 Mol. Anilin nachweisbar. Kremann u. Rodinis, Monatsh. f. Chem. 27 (1906), 125.

370. — Hydrochinon-Toluidin. Verhalten und Darstellung der p-Verbindung ebenso wie von der Anilinverbindung. Smp. 95 bis 98°. Die o-Verbindung konnte nicht rein erhalten werden, weil sich die Lösungen oxydieren.

Heberbrand, s. No. 369.

371. — Hydrochinon-Chinolin. Flache Prismen mit Smp. 98 bis 99°, erhalten nach dem Erkalten einer heißen Lösung von Hydrochinon in überschüssigem Chinolin, kann aus Alkohol umkristallisiert werden, wird durch Chloroform oder Benzol leicht in seine Komponenten gespalten, ebenso durch verdünnte Salzsäure. Baeyer u. Villiger, s. No. 367; Hock, Berl. Berichte 16 (1883), 886.

372. — Hydrochinon-Naphthylamin. Wegen zu schneller Oxydation der Lösungen war die Verbindung nicht rein zu erhalten. Heberbrand, s. No. 369.

- 373. Wird Schwefelwasserstoff in eine kalte Hydrochinon-Lösung geleitet, so bildet sich die Verbindung mit 3 Mol. Hydrochinon. Sie ist geruchlos, in trockner Luft haltbar, wird durch kaltes Wasser langsam zersetzt, schnell durch kochendes Wasser. Beim Einleiten des Gases in eine auf 40° erwärmte Hydrochinonlösung scheidet sich in langen farblosen Prismen die Verbindung mit 4 Mol. Hydrochinon aus. Wöhler, Liebigs Annalen 69 (1849), 294; Mylius, Berl. Berichte 19 (1886), 1008.
- 374. Resorcin, Pyrogallol, Phloroglucin geben mit Vanillin keine Additions-, sondern Kondensationsverbindungen, in dem sich ein Molekül des Phenols mit zwei Molekülen Vanillin unter Austritt von einem Molekül Wasser verbindet. C. Etti, Monatsh. f. Chem. 3 (1882), 637.

375. — Resorcin-Fenchon, flüssige Verbindung. Tardy, Bull. Soc. Chim. III. 27 (1902), 603.

- 376. Resorcin-Campher. Die äquimolekulare Verbindung stellt Kristalle mit dem Schmelzpunkt gegen 29° dar. Sie ist sehr hygroskopisch, eine kleine Menge Wasser verwandelt sie in eine farblose sirupartige Flüssigkeit, ein größerer Zusatz trennt sie in die Komponenten, wobei der Campher ausgeschieden wird. Die optische Drehung der Verbindung in Alkohol (α)_D + 22° 5′. Die Resorcinbicampher-Verbindung bildet eine sirupartige farblose Flüssigkeit, aus der sich bei 0° dicke hexagonale Kristalle ausscheiden; (α)_D + 25° 9′. Léger, Compt. rend. 111 (1890), 110.
- 377. Resorcin-Cineol. Lange rhombische Blätter, Smp. 80 bis 85°. Die Verbindung kristallisiert aus einer Lösung von 1 Teil Resorcin in 10 Teilen Cineol aus, ist in den gewöhnlichen organischen Lösungsmitteln leicht löslich, in kaltem Wasser schwer löslich. Bei längerem Verweilen im Vacuum werden die Kristalle matt, durch Verflüchtigung von Cineol. Baeyer u. Villiger, Berl. Berichte 35 (1902), 1209. Geeignet zur Bestimmung des Cineols. Bericht von Schimmel & Co. Oktober 1907, 31, April 1908, 44.
- 378. Resorcin-Benzochinon. Fast schwarze, im durchfallendem Lichte granatrote Nadeln mit grünem Flächenschimmer, Smp. bei 90° unter Zersetzung. Die Verbindung wird durch Vermischen gleicher Moleküle von Re-

sorcin und Chinon in heißer Benzollösung erhalten. Löslich in Wasser, Alkohol und Äther, weniger in kaltem Benzol, schwerlöslich in Ligroin. Nietzki, Liebigs Annalen 215 (1882), 136.

- 379. Resorcin-Hexamethylentetramin. Rosagefärbte Nadeln, Smp. 190 bis 200° unter Zersetzung. 2 Teile Resorcin in 3 Teilen Wasser gelöst und 2 Teile Amin in ebenfalls 3 Teilen Wasser werden unter Abkühlen vermischt. Nach dem Abkühlen kristallisiert der Körper aus. Erwärmung führt tiefgreifende Zersetzung herbei. Moschatos u. Tollens, Liebigs Annalen 272 (1893), 281.
- 380. Zwischen Resorcin und Anilin konnten Heberbrand (Berl. Berichte 15 [1882], 1973) und Mylius (Berl. Berichte 19 [1886], 1002) keine feste Verbindung erhalten. Nach den Untersuchungen von Kremann u. Rodinis (Monatsh. f. Chem. 27 [1906], 125) ist dagegen die Additionsfähigkeit von Resorcin zu Anilin wahrscheinlich.

381. - Heberbrand, s. No. 380.

- 382. Resorcin-Chinolin. Aus der Lösung der beiden Komponenten in verdünnter Salzsäure wird die Verbindung durch Sodazusatz ausgefällt, oder beide Komponenten werden bei 100° zusammengeschmolzen. Verdünnte Salzsäure, auch schon längeres Kochen mit Wasser, trennt die Verbindung wieder in die Komponenten. Smp. 102°, in Äther, Alkohol, Chloroform leicht löslich, in 400 Teilen Wasser löslich, in Ligroïn unlöslich. Hock, Berl. Berichte 16 (1883), 886.
- 383. Eugenol-Fenchon. Flüssige Verbindung, erhalten durch Auflösen von Eugenol in Fenchon in äquimolekularem Verhältnis. Tardy, s. No. 375.
- 384. Eugenol-Natriumacetat. Je 10 Teile Nelkenöl und kristallwasserfreies Natriumacetat innig verrieben geben ca. 17 bis 18 Teile der Eugenolverbindung, aus der chemisch reines Eugenol erhalten werden kann. No. 213.
- 385. Eugenol-Hexamethylenamin. Weiße Kristallmasse. 7 Teile Hexamethylen in 8 Teilen Wasser gelöst und 8 Teilen Eugenol vermischt. Nach Abkühlen scheidet sich nach einiger Zeit die Doppelverbindung aus, deren Menge zunimmt, bis das Öl fast verschwunden ist. Das Präparat wird nach dem Trocknen über Schwefelsäure mit Äther ausgewaschen. Es riecht nach Eugenol, ist also sehr locker gebunden, schmilzt zwischen 80 und 85°, löst sich leicht in Wasser, das es in die Komponenten spaltet. Moschatos u. Tollens, Liebigs Annalen, 272 (1893), 285.
- 386. Nach Bruni u. Tornani (Chem. Centralbl. 1904, II. 954) vermögen sich diejenigen aromatischen Verbindungen, die in der Seitenkette eine Allylgruppe CH₂ CH CH₂ enthalten, mit Pikrinsäure nicht zu vereinigen, während sich die mit einer Propenylgruppe CH CH CH₃ mit ihr additionell verbinden.

Methylisoeugenol-P., $C_{11}H_{14}O_2\cdot C_6H_2(NO_2)_3$ OH, rotbraune Nadeln, Smp. 40 bis 45° ,

Asaron-P., $C_{12}H_{16}O_3\cdot C_6H_2(NO_2)_8OH$, braunschwarze Nadeln, Smp. 81 bis 82°,

Isosafrol-P., $C_{10}H_{10}O_2 \cdot C_6H_2(NO_2)_3$ OH, rotglänzende Nadeln, Smp. 73°, Isoapiol-P., $C_{12}H_{14}O_4 \cdot C_6H_2(NO_2)_3$ OH, rotbraune Nadeln, Smp. 89 bis 90°. Dillisoapiol-P., $C_{12}H_{14}O_4 \cdot C_6H_2(NO_2)_3$ OH, rote Prismen, Smp. 81°.

Keine Verbindung mit Pikrinsäure gaben Methyleugenol, Safrol, Apiol

und Dillapiol.

387. — Isosafrolhydrochlorid, äquimolekulare Additionsverbindung. Trocknes Isosafrol wird ohne Lösungsmittel und ohne Abkühlung mit trocknem gasförmigem Chlorwasserstoff gesättigt. Produkt leicht zersetzlich und reaktionsfähig. Bericht von Schimmel & Co., April 1905, 45.

Beim Erkalten, einer heißen Lösung von 388. - Pyrogallol-Cineol. 1 Teil Pyrogallol in 5 Teilen trocknem Cineol kristallisiert die Verbindung in Prismen aus. Sie ist in Alkohol und Äther leicht löslich; von Benzol und Chloroform wird sie in ihre Bestandteile zerlegt. Baeyer u. Villiger, Berl.

Berichte 35 (1902), 1209.

389. - Pyrogallol-Hexamethylenamin. Weiße Kristallblättchen. Die Verbindung entsteht durch Vermischen der kalten konzentrierten wäßrigen Lösungen der beiden Komponenten. Bei 160 bis 170° tiefgreifende Zersetzung, auch sonst Neigung zu weitgehender Zersetzung, Moschatos u. Tollens, Liebigs Annalen 272 (1893), 282.

390. - Pyrogallol-Anilin. Ein Gemisch von gepulverter Pyrogallussäure mit Anilin erstarrt zu einer festen Masse. Smp. der durch Auspressen zwischen Fließpapier gereinigten Substanz 55 bis 56°. Die Verbindung zersetzt sich bei 100° vollständig in die Komponenten. Mylius, Berl. Berichte 19 (1886), 1002.

- 391. Eine Additionsverbindung von Pyrogallol mit Toluidin konnte Heberbrand (Berl. Berichte 15 [1882], 1973) nicht erhalten, jedenfalls weil er nur mit wäßrigen Lösungen der Komponenten operierte. Nach ihm war auch keine Doppelverbindung von Pyrogallol mit Anilin, von Phenol und Resorcin mit Anilin und Toluidin darstellbar, die, abgesehen vom Resorcin-Toluidin, alle von anderer Seite durch Vermischen der Komponenten ohne Lösungsmittel dargestellt wurden. Zweifellos werden auch die Verbindungen Pyrogallol-Toluidin und Resorcin-Toluidin existieren.
- 292. Pyrogallol-Chinolin. Flache Prismen, Smp. 56 bis 57°, leicht löslich in Alkohol, Äther und Chloroform. Benzol wirkt zersetzend. Darstellung wie von der analogen Hydrochinon-Verbindung. Baeyer u. Villiger, Berl. Berichte 35 (1902), 1208.
- 393. Phloroglucin-Hexamethylenamin. 3 Teile Amin in 2 Teilen Wasser gelöst geben mit einer verdünnten wäßrigen Lösung von 2 Teilen Phloroglucin einen in Nadeln kristallisierenden Körper. Die Lösung des Phloroglucins darf nicht zu konzentriert sein, weil es sonst als solches auskristallisiert. Jede Erwärmung verursacht weitgehende Zersetzung, deshalb Schmelzpunkt unkonstant. Moschatos u. Tollens, Liebigs Annalen 272 (1893), 283.
- 394. a-Naphthol-Campher, C10H7OH·C10H16O, eine sirupartige, leicht gefärbte Flüssigkeit, $[\alpha]_D + 10^{\circ}5'$, die noch bei -16° nicht erstarrt. Durch Wasser wird die Verbindung anscheinend nicht zersetzt. a-Naphthol, in der Verbindung gelöst kristallisiert als solches wieder aus.

 β -Naphthol-Campher, $3 C_{10} H_7 OH \cdot 5 C_{10} H_{16} O$, Flüssigkeit, $[\alpha]_D + 22^{\circ} 5'$, worin β-Naphthol leicht löslich ist. Léger, Compt. rend. 111 (1890), 110.

395. - a-Naphthol-Fenchon, Smp. 51°. Wird pulversiertes a-Naphthol in Fenchon in gleichen Molekularmengen verrührt, so tritt sofort starke Erv. Rechenberg, Gewinnung und Trennung der äther. Ole.

wärmung ein und die Masse wird fest. Die gewöhnlichen Lösungsmittel spalten die Doppelverbindung wieder; mit Petroläther z. B. konnte ihr das Fenchon entzogen werden. In einem Überschuß von Fenchon löst sich die Verbindung und kann aus ihm umkristallisiert werden.

β-Naphthol-Fenchon, Smp. 57°. Darstellung und Verhalten ebenso wie von der α-Naphthol-Verbindung. Beide Verbindungen sind sehr leicht zersetzlich, schon an der Luft verlieren sie Fenchon. Eine wäßrige Alkalilösung scheidet das Fenchon ab, während sich das Naphthol in dem Alkali löst. Tardy, Bull. Soc. chim. III. 37 (1902), 603.

 $396.-\alpha$ oder β -Naphthol-Cineol. Gleiche molekulare Mengen beider Komponenten werden unter Rühren bei gelinder Wärme bis zur Lösung zusammengeschmolzen. Die nach dem Erkalten erstarrte Masse kann aus heißem Wasser umgeschmolzen werden. Die Verbindung ist unlöslich in Alkohol, Methylalkohol, Benzol, Äther, Chloroform und heißem Glycerin. Hennig, D. R. P. 100551, 10/10.98.

α-Naphthol-Cineol, Smp. gegen 78°; β-Naphthol-Cineol, Smp. 50°. Durch Wasserdampfdestillation nach Zusatz von Ätznatron werden die Verbindungen in die Komponenten zerlegt. Pickard u. Kenyon, Journ. chem. Soc. 91 (1907), 900.

397. — β-Naphthol-Pikrinsäure. Gelbe, feine Nadeln, Smp. 155°, erhalten durch Vermischen der alkoholischen Lösungen beider Komponenten; leicht löslich in Alkohol, Äther und Chloroform, weniger löslich in Schwefelkohlenstoff, fast unlöslich in Wasser. Beilsteins Handbuch. Die Kurve der Schmelzpunktbestimmungen von wechselnden Gemischen beider Komponenten bestätigt die Existenz der äquimolekularen Verbindung; sie enthält zwei eutektische Punkte, es ist also nur diese eine Verbindung vorhanden. Zugleich zeigt der Verlauf der Schmelzpunktkurve die ziemlich große Beständigkeit der Verbindung. Kuriloff, Zeitschr. f. physik. Chem. 23 (1897), 673.

398. — β-Naphthol-Anilin, Smp. 81,4°, löslich in heißem Ligroïn, aus dem es nach dem Erkalten als kristallinisches Pulver ausfällt. β-Naphthol-Toluidin, Smp. 80,8°. Die Verbindungen bilden sich beim Erwärmen des äquimolekularen Gemisches. Dyson, Berl. Berichte 17 (1884), Ref. 70.

399. — a-Naphthol-p-Toluidin, Nadeln Smp. 83,5°. Philip, Proceed. Chem. Soc. 19 (1903), 144. In der Schmelze weitgehend, bei 140° fast vollständig dissoziiert; aus der Viskositätskurve geschlossen. Beck, Zeitschr. f. phys. Chem. 58 (1907), 436.

 $400.-\alpha$ -Naphthol-Diphenylamin. Kreis, Liebigs Annalen 224 (1884), 268. Siehe S. 614.

401. — α-Naphthol-Chinon, $C_{10}H_7OH \cdot C_6H_4O_2$, dunkelrote Blättchen, Smp. ca 100° unter Zersetzung. Die Verbindung entsteht beim Zusammenmischen der Lösungen der Komponenten in Schwefelkohlenstoff. α-Naphthol-Chinon, $2C_{10}H_7OH \cdot C_6H_4O_2$, dunkelbraune Nadeln, Smp. ca. 120°. β-Naphthol-Chinon, $C_{10}H_7OH \cdot C_6H_4O_2$, fast schwarze, im durchfallenden Lichte rote Blättchen aus der Benzollösung der Komponenten, Smp. 85°. α-Naphthol-α-Naphthochinon, $C_{10}H_7OH \cdot C_{10}H_6O_2$, rote Nadeln aus Benzol, Smp. 97°. α-Naphthol-Phenanthrenchinon, rote Blättchen, Smp. 139°, wird durch Äther oder Alkohol sofort gespalten, wobei Naphthol gelöst wird und das Chinon

zurückbleibt. Alle diese Additionsverbindungen haben lockeren Zusammenhalt und können leicht wieder zerlegt werden. Kurt Meyer, Berl. Berichte 42 (1909), 1149.

402. — Die Additionsverbindungen von Aldehyden und Ketonen mit Glykose oder Rohrzucker sind wohl charakterisierte farblose Verbindungen, nach den analytischen Bestimmungen Anlagerungsprodukte gleicher Molekülmengen. Sie bilden sich, wenn man die Komponenten in Lösungen von Eisessig aufeinander einwirken läßt, wobei die in kaltem Eisessig wenig lösliche Verbindung ausfällt. In heißer Essigsäure von 100% lösen sich Glykose und Rohrzucker reichlich, scheiden sich aber beim Erkalten wieder aus. In Essigsäure von 97 bis 98% sind sie jedoch auch in der Kälte leicht löslich, damit dicke sirupöse Flüssigkeiten bildend.

Zur Reingewinnung kann die gummiartige Verbindung mit Essigsäure und danach mit absolutem Alkohol ausgewaschen werden, wobei die Masse schließlich erhärtet. Die Verbindungen sind sehr hygroskopisch und werden durch Wasser in die Komponenten zerlegt, wonach der Aldehyd oder das Keton abdestilliert werden kann. In absolutem Alkohol und in Äther sind sie unlöslich, in warmem Eisessig löslich, woraus sie beim Erkalten amorph ausfallen; in trockner Luft erhitzt, erfolgt selbst bei 100° nur langsame Spaltung. Wird übrigens eine Lösung von Glykose in Eisessig unter Atmosphärendruck gekocht, so bilden sich allmählich Acetylderivate.

Analytisch bestimmt wurden die Additionsverbindungen von Glykose mit Benzaldehyd, Cuminaldehyd, Methylnonylketon, Furfurol, Acetaldehyd.

Glykose-Acetaldehyd: Wird reiner Acetaldehyd in der Lösung von Glykose in Eisessig gelöst, so erfolgt allmählich partielle Kondensationsverbindung; wird dagegen frisch rektifizierter, aldehydfreier Paraldehyd zu der Glykose-Eisessiglösung gefügt, so wird der Paraldehyd teilweise gespalten und der abgetrennte Acetaldehyd lagert sich an die Glykose an.

Ferner wurden nachgewiesen Verbindungen von Rohrzucker mit Önanthol und Furfurol, von Glykose mit Acetessigester, von Glykose oder Rohrzucker mit Aceton, Propionaldehyd, Butyr-, Valer-, Anis- und Zimtaldehyd mit Campher, Glyoxal und Alloxan.

Glykose-Campher: der Campher vermischt sich selbst mit einer konzentrierten Lösung von Glykose in Eisessig nur langsam unter Bildung einer Gallerte, die bald erstarrt. Ebenso verhält sich die Verbindung von Rohrzucker mit Campher.

Mit Chloralhydrat ging weder Glykose noch Rohrzucker eine Additionsverbindung ein. Glycerin, Erythrit, Mannit oder Milchzucker in Essigsäure gelöst gaben mit Aldehyden oder Ketonen keine additionelle Verbindung. Schiff, Liebigs Annalen 244 (1888), 22.

403. - Eibner, Liebigs Annalen 316 (1901), 89.

404. — Formaldehyd-Piperidin, flüssige Verbindung. Henry, Bull. Soc. chim. III. 13 (1895), 158.

405. — Paraldehyd mit Chloral 6 bis 7 Stunden im Einschmelzrohr auf 140 bis 150° erhitzt, liefert eine Reaktionsmasse, aus der (CH₈ CHO)₂·CCl₈ CHO und CH₃ CHO·CCl₈ CHO isoliert werden konnten. Mit Butylchloral wurde 46*

durch gleiche Behandlung (CH3 CHO)2 · CH3 CHCI CCl2 CHO erhalten. Königs, Berl. Berichte 25 (1892), 792.

406. — Chloral-Chloräthylalkohol. Henry, Berl. Berichte 7 (1874), 763. 407. — Chloral-Aceton, Smp. 75 bis 76°, derbe durchsichtige, etwas gelblich gefärbte Kristalle. Die Verbindung sublimiert unzersetzt bei vorsichtigem Erhitzen; schwer löslich in Ligroïn, leicht in Alkohol und Äther, ziemlich leicht in heißem Wasser. Beim Kochen mit Alkalien oder mit Sodalösung entsteht eine Säure. Die Additionsverbindung wurde durch 15 stündiges Erhitzen von 3,2 g reinem Aceton, 8 g Chloral und 8 g Eisessig im Einschmelzrohr bei 100° erhalten.

Chloral-Acetophenon, Darstellung ebenso, Schmelzpunkt nicht genau bestimmbar gewesen, vielleicht wegen Verunreinigungen, 64 bis 66° und 76 bis 77°, leicht löslich in den gewöhnlichen Lösungsmitteln, wenig in kaltem Ligroïn, noch weniger in kochendem Wasser. Durch Alkalien Zersetzung unter Bildung einer Säure, wahrscheinlich Benzoylakrylsäure, C₆H₅COCHCHCO₂H, durch Kochen mit Wasser wenig verändert. Königs, Berl. Berichte 25 (1892) 792.

408. — Chloral-Aceton-Chloroform, Smp. 65°. 16,55 Teile Chloralhydrat oder entsprechend Chloral werden mit 17,75 Teilen flüssigem oder 18,65 Teilen kristallisiertem Acetonchloroform, s. No. 430, geschmolzen und etwa eine halbe Stunde auf einer Temperatur von 75 bis 80° erhalten. Das erstarrte Reaktionsprodukt wird in der doppelten Gewichtsmenge Benzol, Äther, Alkohol oder Petroläther heiß gelöst. Beim Erkalten kristallisiert die Tripelverbindung in feinen asbestartigen Nadeln aus. Sie ist zu 1°/o in kaltem Wasser, sehr leicht in verdünntem Alkohol löslich. Vorsichtig erhitzt, sublimiert sie unverändert; durch Schwefelsäure wird sie in der Kälte in Chloral und Acetonchloroform gespalten. F. Hoffmann-La Roche & Co. in Basel, D. R. P. 151188, Kl. 12, v. 4. Juli 1903.

409. — Chloralhydrat-Campher. Flüssige Verbindung, sp. Gew. 1,2512, (α)_D±33,45°, erstarrt nicht, bis auf — 20° abgekühlt, mit Äther, Alkohol und Chloroform mischbar, wird durch Wasser oder Wasserdampf in die Komponenten gespalten. Die Verbindung entsteht unter Temperaturerniedrigung von 1 Mol. Campher mit 1 Mol. Chloralhydrat. Ähnliche Additionsverbindung des Camphers mit Chloral, Benzaldehyd, Metaldehyd, Butylchlorhydrat konnten nicht erhalten werden. Zeidler, Jahresber. d. Chem. 1878; 645; Cazeneuve u. Imbert, Bull. Soc. chim. II. 34 (1880), 209 u. Chem. Zentralbl. 1880, 692. Cotton (Chem. Zentralbl. 1887, 441) gelang es, durch monatelanges Stehen des Gemisches an einem kühlen Orte Kristalle zu erhalten. In gleicher Weise wurde Chloralalkoholat-Campher von Zeidler durch gegenseitiges Auflösen der Komponenten dargestellt, ebenfalls als eine Flüssigkeit, die bis auf — 20° abgekühlt nicht erstarrt.

Die Temperaturerniedrigung beim Vermischen der Komponenten und dazu der flüssige Zustand der Gemische lassen die Existenz dieser dreifachen Verbindungen Chloral-Wasser-Campher und Chloral-Äthylalkohol-Campher zweifelhaft erscheinen.

410. — Chloral-Fenchon, Smp. 25 bis 30°. Darstellung ebenso wie von Chloral-Borneol, s. No. 310.

411. - Chloral-Natriumacetat, Kristallpulver, in Wasser unter Zerfall löslich. Durch Zusatz von Alkohol Zerfall unter Bildung von Chloralalkoholat.

Rebuffat, Gazz. chim. ital. 17 (1886), 406.

412. - Wie mit den Säureamiden bildet Chloral auch mit primären Aminen Additionsverbindungen, so mit Anilin, p-Toluidin, p-Nitranilin. Sie entstehen beim Zusammenmischen der Komponenten in äquimolekularem Verhältnis und sind weniger beständig als die Amidverbindungen. Eibner, Liebigs Annalen 301 (1898), 344.

413. - Chloral-Formamid. Moscheles, Berl. Berichte 24 (1891), 1803.

414. - Mit Säureamiden vermag Chloral einfache Additionsverbindungen zu bilden, die von verdünnten Säuren nicht angegriffen, von Alkalien leicht, aber tiefergehend zersetzt werden.

Chloral-Acetamid. Wird Chloral mit Acetamid zu gleichen Molekülen zusammengebracht, so entsteht unter starker Erhitzung zuerst eine farblose Flüssigkeit, die bald zu einer blättrigen Kristallmasse erstarrt. Smp. 158°. Beim Erhitzen zersetzt sich die Verbindung im wesentlichen zu Chloral und Acetamid als Destillationsprodukten. In kaltem Wasser ist die Verbindung schwer, in heißem ziemlich leicht löslich, in Alkohol etwas löslich, in Äther unlöslich.

Chloral-Benzamid. Smp. 146°. Darstellung wie die der Acetamid-Verbindung. Aus Alkohol läßt sich die Verbindung umkristallisieren; in kaltem Wasser fast unlöslich, in heißem Wasser schwer löslich, beim Erhitzen Zer-

fall in die Komponenten.

Chloral-Harnstoff. Die äquimolekulare Verbindung wird durch Vermischen von Chloral mit einer überschüssigen nahezu gesättigten Harnstofflösung als eine kristallinische Masse erhalten. Smp. 150°. Beim Schmelzen zersetzt sich die Verbindung unter Verdampfen von Chloral und Bildung von Cyanursäure. In heißem Wasser ist sie leicht, in kaltem schwer löslich. Die andere Verbindung mit 2 Mol. Chloral entsteht beim Vermischen von überschüssigem Chloral mit einer gesättigten Harnstofflösung. Smp. 190° unter Zersetzung wie oben. Selbst in heißem Wasser fast unlöslich, leichter in Alkohol und Äther.

Jacobsen, Liebigs Annalen 157 (1871), 245.

415. — Chloral-Urethan. Die Verbindung CCl₃ CH(OH)NHCO₂ C₂ H₅ bildet sich, wenn eine Lösung von Urethan in Chloral mit starker Salzsäure versetzt wird. Kristallblätter, Smp. 103°, in Alkohol und Äther sehr leicht löslich, in kaltem Wasser unlöslich, von heißem Wasser in die Komponenten zerlegt, ebenso wenn es für sich bis 100° erhitzt wird. Bischoff, Berl. Berichte 7 (1874), 631.

Eine andere additionelle Verbindung zwischen denselben beiden Komponenten mit Smp. 42° und Sdp. 145° soll nach Radlauer (D. R. P. Juni 1890 versagt) entstehen, wenn gleiche Teile Urethan, Chloralhydrat und 96 % iger Alkohol einige Zeit bis auf 100° erhitzt werden. Das Produkt, Somnal genannt, wird aus Wasser umkristallisiert; es ist in Wasser und Alkohol leicht löslich. Es, scheint nur ein Gemisch zu sein.

Analog der Bildung von Chloral-Urethan hat Bischoff (l. c.) auch Bromal-Urethan und Butylchloral-Urethan dargestellt.

- 416. Chloral-Acetoxim, Smp. 72°. Gleiche Moleküle Chloral und Acetoxim werden mit Petroläther übergossen und vermischt. Es findet zuerst Lösung statt, wonach die Mischung erstarrt. Das Produkt wird durch Filtrieren und Absaugen von allem Flüssigen befreit und aus Petroläther umkristallisiert. In gleicher Weise wurden Verbindungen von Chloral mit Campheroxim, mit Nitroso-β-Naphthol (Smp. ca. 100°), Acetaldoxim (Smp. 74°), Benzaldoxim (Smp. 62°) erhalten. v. Heyden Nachf., Radebeul bei Dresden, D. R. P. 66877 Kl. 12.
- 417. Chloral-Hexamethylentetramin. Wäßrige konzentrierte Lösungen von 16,5 kg Chloral und 14 kg Hexamethylentetramin werden vermischt. Die ausgeschiedenen Kristalle sind in Alkohol und Wasser leicht, in Äther schwer löslich. Smp. 139 bis 140°. Durch Kochen mit verdünnter Mineralsäure wird die Verbindung unter Bildung von Formaldehyd gespalten. An der Luft erhitzt sublimiert sie unter Zersetzung. Farbw. vorm. Meister, Lucius u. Brüning, Höchst a. M., D. R. P. 87933, Kl. 12, 1/9 1895.

Nach einem anderen späteren, aber wieder zurückgezogenen Patent von Lederer, D.R.P. 10631, Kl. 12, 10/8 1896, werden 7 kg Hexamethylentetramin in 18 kg Chloroform gelöst und mit einer Lösung von 25 kg Chloralhydrat in 27 kg Chloroform vermengt. Es entsteht die Verbindung 3 C Cl₈ CHO·C₆ H₁₂ N₄, Smp. 121 bis 122°. Beim Erwärmen ihrer wäßrigen Lösung, sowie bei der Einwirkung von Säuren und Alkalien zerfällt sie.

- 418. Chloral-Chinolin, Stäbchen oder Täfelchen aus Benzol, erhalten durch Vermischen der Komponenten in ätherischer Lösung. Smp. 63 bis 65° unter Zerfall, in Alkohol und Äther leicht löslich, schwer löslich in Petroläther, unlöslich in Wasser. Durch viel Alkohol wird die Verbindung getrennt. Rhoussopulos, Berl. Berichte 16 (1883), 881; Bamberger u. Berlé, Liebigs Annalen 273 (1893), 368.
- 419. Chloralhydrat-Coffeïn. In eine auf ca. 40° erwärmte Lösung von 300 Teilen Chloralhydrat oder entsprechend Chloral in 300 Teilen Wasser werden nach und nach 300 Teile Coffeïn eingetragen. Beim Erkalten kristallisiert die Verbindung in dicken Blättern aus. Sie läßt sich aus Wasser von 30° umkristallisieren. Durch Kochen der wäßrigen Lösung wird sie zersetzt, ebenso durch trockene Erhitzung. Chem. Fabr. auf Aktien, vorm. E. Schering, Berlin, D. R. P. No. 75847, 6/10 1892.
- 420. Chloral Acetophenoxim, Smp. 81°. 14,8 kg Chloral in 10 kg Benzol gelöst werden in kleinen Portionen in die gut gekühlte Lösung von 13,5 kg Acetophenoxim in 15 g Benzol eingetragen. Das Produkt ist in Wasser fast unlöslich, leicht in Alkohol und Äther, schwerer löslich in Benzol und Petroläther. Dr. A. C. Jensen, Frankfurt a. M. D. R. P. 87932, Kl. 12, Patent erloschen 1897.
- 421. Chloral-Bromal-Harnstoff, Smp. 186° unter Zersetzung. 60 g Harnstoff, 299 g Bromalhydrat oder entsprechend Bromal und 165,5 g Chloralhydrat werden im Mörser so lange verrieben, bis die Masse sich verflüssigt, oder sie werden auf dem Dampftisch vorsichtig erwärmt. Zu dem flüssigen Gemisch werden 100 g konzentrierte Salzsäure oder 10 g konzentrierte Schwefelsäure gemischt. Nach einigem Stehen scheiden sich unter Erwärmung einzelne Kristalle aus, bis nach einigen Stunden die zuvor blanke

Lösung zu einer steinharten Masse erstarrt ist. Das Rohprodukt wird mit kaltem Wasser ausgewaschen. Das reine Präparat bildet farblose kleine Kristalle, die in kaltem Wasser unlöslich, in siedendem wenig löslich sind; sie werden davon nicht zersetzt. In Alkohol, Äther, Amylenhydrat sind sie leicht löslich. Durch verdünnte Alkalien wird die Verbindung beim Kochen unter Bildung von Chloroform und Bromoform gespalten. D. R. P. 128462, Kl. 12, 22/12 1900; Liebigs Annalen 157 (1871), 246.

422. - Chloral-Schwefelwasserstoff, Kristalle, Smp. 127 bis 1280 unter

Zerfall.

423. — Önanthol-Anilin. Werden Önanthol und Anilin im äquimolekularem Verhältnis nach und nach vermischt, so entsteht unter starker Erhitzung eine nicht bewegliche Flüssigkeit, die in ungefähr der gleichen Menge Eisessig gelöst und einige Stunden auf dem Wasserbade erhitzt wird. Auf Zusatz einer größeren Menge Wasser fällt die flüssige Additionsverbindung aus, die mit Wasser ausgewaschen und zur Analyse bei 100° getrocknet werden kann. Sie ist sehr beständig und verflüchtigt sich fast unzersetzt. Leeds, Berl. Berichte 16 (1883), 287. Darstellung und Verhalten von Önanthol-Xylidin und Önanthol-Naphthylamin ebenso.

Eine Kondensationsverbindung kann erhalten werden nach Schiff,

Liebigs Annalen, Suppl. 3 (1864/65), 351.

424. - Schiff, Liebigs Annalen 201 (1880), 356.

425. — Benzaldehyd-m-Amidobenzoesäure wird neben Benzylidenaminobenzoesäure, C6H5CHNC6H4CO2H, erhalten, wenn die Komponenten mit Wasser zusammengeschüttelt werden. Kristalle aus Äther. Hantzsch u. Kraft, Berl. Berichte 24 (1891), 3521; Schiff, Liebigs Annalen 210 (1881), 125.

426. — Benzaldehyd-Naphthenthiol, Nadeln aus Äther, Smp. 48 bis 49°,

Colson, Berl. Berichte 28 (1895), 536.

427. - Salicylaldehyd-Anilin entsteht aus dem salzsauren Salz der Doppelverbindung, wenn diese in verdünnte Sodalösung bei 0° eingetragen wird. Im Vacuum bildet sich unter Austritt von Wasser eine Kondensationsverbindung. Dimroth u. Zoep'pritz, Berl. Berichte 35 (1902), 990.

428. - p-Oxybenzaldehyd-Anilin, Smp. 170 bis 175°, zersetzt sich an

der Luft in p-Oxybenzolanilin, Dimroth u. Zoeppritz, s. No. 427.

429. - Aceton-Butylchloral, Darstellung und Verhalten ähnlich wie von

Chloral-Aceton, No. 407.

430. - Aceton bildet mit Chloroform drei verschiedene Additionsverbindungen. Wird ein Gemisch von Aceton und Chloroform destilliert, so geht zuletzt bei 64,7° ein Gemisch von annähernd einem Molekül Aceton und zwei Molekülen Chloroform über. Ryland, Americ. chem. Journ. 22 (1899), 384 und S. Young, Fractional Distillation, London 1903, 69. Dies Gemisch läßt sich durch weitere Destillation nicht trennen, sein Siedepunkt ist höher als der der Komponenten, denn Aceton siedet bei 56,40 und Chloroform bei 61,20. Eingehend hat das Siedeverhalten von Gemischen von Aceton und Chloroform verschiedener Konzentration v. Zawidzki, S. 601, untersucht.

Gegenüber dieser lockeren Additionsverbindung existieren zwischen diesen beiden Komponenten zwei stabile Additionsverbindungen, beide im äquimolekularen Verhältnis, die eine flüssig, die andere fest, von denen die flüssige dadurch erhalten wird, daß man in ein Gemisch von 500 g Aceton mit 1000 g Chloroform innerhalb 2½ Tagen nach und nach 300 bis 350 g gepulvertes Kaliumhydroxyd unter guter Kühlung einträgt. In Berührung mit Wasser oder an feuchter Luft geht die flüssige Verbindung unter Aufnahme von ½ Mol. Wasser in die feste über. Die flüssige Verbindung siedet konstant bei 170°. Willgerodt, Befl. Berichte 14 (1881), 2451; 15 (1882), 2305; 16 (1883), 1585; Willgerodt u. Genieser, Journ. f. prakt. Chem. II. 37 (1888), 361.

431. — An Carvon und an Methylcyclohexanon kann unter dem Einfluß von Natriumäthylat Acetessigester angelagert werden. Rabe, Berl. Berichte 31 (1898), 1896; Rabe u. Weilinger, ibid. 36 (1903), 225; Rabe, ibid. 37 (1904), 1671.

432. - Knoevenagel, Berl. Berichte 35 (1902), 396.

433. — Acetessigester-Diphenylharnstoff, sehr beständige Additionsverbindung. Behrend, Liebigs Annalen 233 (1886), 12.

434. — Pikrinsäure-Dimethylpyron, Smp. 101 bis 102°. Collie u. Tickle, Journ. chem. Soc. 75 (1899), 711.

435. - Collie u. Tickle, s. No. 434.

436. — Tardy, Bull. Soc. chim. III. 27 (1902), 603.

437. — Campher-Salicylsäure, weiße seifenartige Masse von mikroskopisch feinen Nadeln, Smp. gegen 60°. Die Verbindung wird selbst durch siedendes Wasser nur teilweise zersetzt. In Alkohol von $95^{\circ}/_{\circ}$ (½ Mol. in 1 l) [α] $_{\rm D}+27^{\circ}$ 3′. Léger, Bull. Soc. chim. III. 4 (1890), 725.

438. — Schwefelwasserstoff-Carvon. Smp. 210° von der d- und von der l-Carvon-Verbindung, optische Drehung + $5^\circ53'$ bis + $5^\circ44'$ und - $5^\circ55'$. Baeyer, Berl. Berichte 16 (1883), 1387 und 28 (1895), 640; Wallach, Liebigs Annalen 305 (1899), 224.

439. — Schwefelwasserstoff-Dihydrocarvon, Smp. 222 bis 225°, wird durch Alkali in die Komponenten zerlegt. Harries, Berl. Berichte 34 (1901), 1924.

440. — Dibenzylidenaceton-Hydrosulfat, gefärbtes Additionsprodukt, zerfällt mit Wasser in die Komponenten. Ebenso verhält sich das Hydrosulfat des Anisylidenacetons. Vorländer u. Mumme, Berl. Berichte 36 (1903), 1470.

441. — Phenylbenzylketon-Benzylidenanilin, Nadeln aus Petroläther, Smp. 154°. Äquimolekulare Mengen der Komponenten werden zusammen geschmolzen.

Dibenzylketon-Benzylidenanilin, Nadeln aus Alkohol, Smp. 168°.

Dibenzylketon-Benzyliden-m-nitranilin. Nadeln aus Benzol oder Ligroïn, Smp. 134—135°, aus Alkohol oder Aceton unverändert kristallisierbar. Aus den beiden Komponenten bei 7 bis 10tägigem Erhitzen auf 40 bis 50° erhalten.

Dibenzylketon-Benzyliden-p-Toluidin, Smp. 164°, aus den beiden Komponenten bei 60° erhalten. Löslich in Benzol, schwerlöslich in Alkohol. Beilsteins Handbuch.

442. — Bertini, Gazz. chim ital. 29 (1899), II. 24.

443. - Baeyer u. Villiger, Berl. Berichte 35 (1902), 1193.

444. — Cineol-Jodol, gelblich grüne Kristalle, Smp. 112°, erhalten durch Eintragen von Jodol in erwärmtes Cineol und Erkaltenlassen. Hirschsohn, Pharm. Zeitschr. f. Russl. 32 (1893), 49, 67.

445. — Wird wasserfreie Oxalsäure in überschüssigem Cineol bei 50° gelöst, so scheidet sich die Verbindung beider Komponenten nach dem Erkalten der Lösung in Form einer Kristallmasse aus. Die Verbindung ist sehr unbeständig, wird schon durch Erwärmen bis etwa 50° gespalten, verliert an der Luft allmählich Cineol, noch schneller im Vakuum. Durch Wasser, Chloroform und Benzol wird sie augenblicklich zersetzt. Baeyer u. Villiger, Berl. Berichte 35 (1902), 1212.

446. — Salicylid-Chloroform. Durchsichtige tetragonale Kristalle. Salicylid wird in überschüssigem Chloroform einige Zeit gekocht, wobei es sich nicht zu lösen braucht; dann läßt man erkalten. Oder Salicylid wird in dem Chloroform 24 Stunden liegen gelassen, wonach es in die lockere Additionsverbindung übergegangen ist. An der Luft verlieren die Kristalle Chloroform, das bei gelindem Erwärmen vollständig entweicht. In Chloroform sind sie schwer löslich. Die Verbindung kann zur Reindarstellung des Chloroforms benutzt werden.

o-Homosalicylid-Chloroform. Kleine Kristalle, Darstellung und Verhalten wie von der Salicylid-Verbindung. An der Luft ist sie beständiger, verliert erst beim Erhitzen auf 100° Chloroform. Mit m- und p-Homosalicylid wurden keine Doppelverbindungen erhalten. Anschütz, Berl. Berichte 25 (1892), 3507 u. 3512; Aktiengesellsch. f. Anilin-Fabr., Berlin, D. R. P. No. 69708, 13. 4. 1892 und No. 70158, 7. 10. 1892.

447. - Bericht von Schimmel & Co., April 1905, 35.

448. — Zimtaldehyd-Oxalsäure. Wird wasserfreie Oxalsäure in überschüssigem Zimtaldehyd bei ca. 50° aufgelöst, so kristallisiert die Verbindung aus der Lösung in rundlichen Kristallen von 60 bis 62° Schmelzpunkt aus. Durch Wasser, Chloroform, Benzol wird die Additionsverbindung sofort in die Bestandteile zerlegt. Baeyer u. Villiger, Berl. Berichte 35 (1902), 1211.

449. — Benzochinon-p-Nitranilin. Dunkelrote große Kristalle, Smp. 115 bis 120°, erhalten nach dem Erkalten, wenn heiße konzentrierte Benzollösungen des Chinons und Nitranilins zusammen gemischt werden. Je nach dem angewandten Mengenverhältnisse scheint die resultierende Doppelverbindung verschieden zusammengesetzt zu sein. Durch Kochen mit Wasser spaltet sich die Verbindung; längeres Erhitzen der alkoholischen Lösung verursacht tiefergreifende Umsetzungen.

Benzochinon - o - Nitranilin. Große rote nach Chinon riechende Kristalle, Smp. 94 bis 97°. Die Verbindung wird durch Zusammenmischen der heißen Benzollösungen erhalten; sie ist beständiger als die p-Verbindung. Auch durch Vermischen der alkoholischen und Essigsäurelösungen kann sie gewonnen werden. Je nach dem Mengenverhältnisse der Mischung kristallisiert die Verbindung mit einem oder mit zwei Molekülen Nitranilin aus. Beim Kochen mit Eisessig entsteht Dinitranilid.

Beim Zusammenbringen der beiderseitigen Lösungen von Chinon und m-Nitranilin entsteht keine Additionsverbindung, sondern das Chinondimetanitranilid, C₆H₂O₂.2C₆H₄(NO₂)NH.

Toluchinon-o-Nitranilin, Smp. bei 37°. Heberbrand, Berl. Berichte 15 (1882), 1973.

- 450. Über die Verbindungen niederer Fettsäuren mit organischen Basen hat besonders Gardner (Berl. Berichte 22 [1890], 1587) Untersuchungen angestellt. Es sind flüssige Verbindungen, deren Dampf nach den Dampfdichtebestimmungen dissoziiert ist. Das Siedeverhalten der Lösungen von Essigsäure in Pyridin hat v. Zawidzki (Zeitschr. f. physik. Chem. 35 [1900], 153 u. 194) festgestellt. Siehe auch Seite 600.
 - 451. Brühl, Berl. Berichte 25 (1892), 1793.
- 452. Aminoacetophenon Diaethyloxalat. Schwach gelb gefärbte Nadeln aus Ligroïn, Smp. 42°; die Verbindung bildet sich durch Mischen der Komponenten bei gewöhnlicher Temperatur, wird durch Säuren zerlegt. Beilsteins Handbuch.
 - 453. Claus u. Stohr, Liebigs Annalen 276 (1893), 267.
 - 454. Claus u. Büttner, Liebigs Annalen 276 (1893), 282.
- 455. Chloroform-Methylacetat. Flüssige Additionsverbindung mit dem Dissoziationssiedepunkte 64,5°; die Siedepunkte der beiden Komponenten liegen tiefer: Chloroform 61,2°, Methylacetat 56°. Ryland, Americ. chem. Journ. 22 (1899), 384.
- 456. Aethylendiamin-Schwefelkohlenstoff. Säulenförmige Kristalle aus Wasser. Die Verbindung entsteht durch Vermischen der Komponenten bei Gegenwart von Alkohol, unlöslich in Alkohol und Äther; durch Kochen mit Wasser wird sie zersetzt. Hofmann, Berl. Berichte 5 (1872), 241.
- 457. Pikrinsäure-Hexamethylenamin, lange gelbe Nadeln. Moschatos u. Tollens, Liebigs Annalen 272 (1893), 285.
- 458. Nitrophenol-Harnstoff, o-Verbindung existiert nicht, m-Verbindung schmilzt bei 80,5%, p-Verbindung bei 116%. Kremann u. Rodinis, Monatsh. f. Chem. 27 (1906), 138.
- 459. Pyridin-Pikrat, schwerlösliche Nadeln, Smp. 162°. Beilsteins Handbuch.
- 430. Thioharnstoff-Methyljodid. Prismen, Smp. 117°, in Wasser und Alkohol leicht löslich. Ein äquimolekulares Gemisch der beiden Komponenten geht nach einigem Stehen von selbst und vollständig in die Doppelverbindung über. Bernthsen u. Klinger, Berl. Berichte 11 (1878), 493.

Die Äthylbromidverbindung stellt hexagonale Täfelchen dar, die sich schon bei 100° weitgehend zersetzen.

- 461. Pyridin-Chlormethylalkohol, Kristalle, sehr hygroskopisch, beim Erhitzen zersetzt sich die Verbindung in salzsaures Pyridin und Formaldehyd. Hemmelmayr, Monatsh. f. Chem. 12 (1891), 534.
 - 462. Van Romburgh, Rec. trav. chim. Pays-Bas 16 (1897), 67.
- 463. Indol-Pikrat, rote Nadeln, in kaltem Benzol schwerlöslich, leichtlöslich in heißem. Baeyer, Berl. Berichte 10 (1877), 1263 u. 12 (1879), 1314.
- 464. Skatol-Pikrat, rote Nadeln, Verbindung entsteht beim Vermischen der heißen wäßrigen Lösungen der Komponenten. Nencki, Journ. f. prakt. Chem. II. 20 (1879), 468.
- 465. Methylendipiperidin-Schwefelkohlenstoff. Kristalle, Smp. 58°, löslich in Alkohol und Äther, unlöslich in Wasser. Ehrenberg, Journ. f. prakt. Chem. II. 36 (1887), 126.
 - 466. Wuth, Liebigs Annalen 108 (1858), 41.

467. — Benzylidenanilin, C₆H₅CHNC₆H₅, durch Kondensation aus Benzaldehyd und Anilin entstanden, addiert aromatische Amine, deren Para-Stellung unbesetzt ist.

468. - Noelting u. Sommerhoff, Berl. Berichte 39 (1906), 76.

469. — Additionsverbindungen von Nitroso- und Nitrokörpern mit Aminen: Zwischen Nitrosobenzol und Anilin exiistiert keine Verbindung, dagegen scheint es eine allgemeine Eigenschaft des Nitrosodimethylanilins zu sein, mit Aminen additionelle Verbindungen zu liefern. Es treten zu einer Additionsverbindung zusammen: Nitrosodimethylanilin mit

Anilin, 2 Mol.: 1 Mol., stahlblaue Nadeln, Smp. 93,00,

o-Toluidin, 2 Mol.: 1 Mol., Smp. 69,00,

p-Toluidin, 2 Mol.: 1 Mol., Smp. 48,5%,

m-Xylidin, 3 Mol.: 2 Mol., Smp. 48,0° und 1 Mol.: 3 Mol., Smp. 26,0°, β-Naphthylamin, 2 Mol.: 3 Mol., Smp. 86,0°.

Kremann, Monatsh. f. Chem. 25 (1904), 1215. Die Anilinverbindung haben schon Würster u. Roser, Berl. Berichte 12 (1885), 1824, dargestellt.

Wie mit Nitrosobenzol geht Anilin auch mit Nitrobenzol und o-, moder p-Chlornitrobenzol keine Doppelverbindung ein. Kremann u. Rodinis, Monatsh. f, Chem. 27 (1906), 109; Kremann, ibid. 28 (1907), 7. Kremann u. Ehrlich, ibid. S. 840.

Nach Kremanns Untersuchungen bleibt die allgemein vorhandene Additionsfähigkeit der Phenole an Amine erhalten, wenn die Gruppe CH3 in beliebiger Stellung eingetreten ist, ebenso wenn die Nitrogruppe in das Phenol eingeführt ist, nur o-Nitrophenol mit Anilin und mit Harnstoff bilden eine Ausnahme. Eine Additionsverbindung bildet sich aber nicht, wenn das Anilin eine Nitrogruppe enthält.

470. - Kremann u. Rodinis, Monatsh. f. Chem. 27 (1906), 109.

471. - Thiophenol-Benzochinon. Die Ligroïnlösungen der beiden Komponenten werden zusammengemischt. Die anfangs klare gelbe Lösung wird dunkler und es scheidet sich die Additionsverbindung in schönen bronzefarbenen Kristallen aus. Sie ist in kaltem Ligroïn unlöslich, in siedendem etwas löslich. Die meisten üblichen Lösungsmittel wirken spaltend und zugleich teilweise zersetzend. Eine partielle Zersetzung scheint auch einzutreten, wenn die Ligroïnlösung einige Zeit auf dem Wasserbade erwärmt wird. Im lufttrocknen Zustande kann sie sublimiert werden. Die Ligroïnlösungen von Chinon und p-Thiokresol geben ebenfalls eine bronzefarbene Verbindung. Auch Äthylsulfhydrat reagiert mit Chinon und liefert ein dunkles metallischglänzendes Produkt. Troeger u. Eggert, Journ. f. prakt. Chem. II. 53 (1896), 482. Damit eine Oxydationswirkung des Chinons ausgeschlossen wird, darf das Chinon nicht im Überfluß angewendet werden. Posner, Journ. f. prakt. Chem. II. 80 (1909), 271. In hydroxylhaltigen Lösungsmitteln zerfällt Thiophenochinon in seine Komponenten. Michael, Liebigs Annalen 336 (1904), 85.

472. - Mertens, Berl. Berichte 11 (1878), 843.

473. - Sudborough, Journ. chem. Soc. 79 (1901), 522.

474. - Hepp, Liebigs Annalen 215 (1882), 358, 802.

475. - Noelting u. Sommerhoff, Berl. Berichte 39 (1906), 76.

476. - Sachs u. Steinert, Berl. Berichte 37 (1904), 1745.

477. - Schraube, Berl. Berichte 8 (1875), 617; Würster u. Roser, Berl. Berichte 12 (1885), 1824.

478. - Smp. 75°. Kremann, Monatsh. f. Chem. 27 (1906), 627.

- 479. Damascenin und Damascenin-S geben mit Jodmethyl dasselbe Additionsprodukt C₈H₃(OCH₃)(NHCH₃)COH₂. CH₃J. H₂O, wobei sich also Damascenin in das isomere Damascenin-S umwandelt. Schmelzpunkt der Jodmethylverbindung ist 172 bis 173°. Pommerehne, Arch. der Pharm. 242 (1904), 295; Keller ibid. S. 299.
 - 480. de Forcrand, Ann. de Chim. et Phys. V. 28 (1883), 17.
 - 481. de Forcrand, No. 480; Loir, Jahresb. d. Chem. 1852, 560.
 - 482. Cahours, Bull. Soc. Chim. II. 4 (1865), 40.
 - 483. A. Hesse, Berl. Berichte 32 (1899), 2615.
 - 484. Orndorff u. Morton, Amer. Chem. Journ. 23 (1900), 181.
 - 485. Schimmel & Co., unveröffentlichte Beobachtung.
 - 486. Hoogewerff u. van Dorp, Chem. Zentralbl. 1903, I. 150.

Berichtigungen.

Seite 259, Zeile 15 von oben, sind die Worte "in diesem Abschnitt" zu streichen.

8 von oben, statt "allem" lies "allen".

2 von unten, statt "gerade" lies "gleich allen übrigen gesättigten Dämpfen auch." 310,

319, 4 von unten, "bis zu einigen Atmosphären" zu streichen.

10333·1,43011 lies "R = 9 von oben, statt "R = 321. _ 273 273 - 1,43011

327, in der vierten Vertikalkolonne sind die acht Zahlen von "349" an bis herunter zu "874" um eine Dezimalstelle nach links zu rücken, so daß es heißt:

"2,2868" usw. aber nicht 2,2868".

Seite 403, Zeile 9 von oben, lies "überhitztes Dampfgemisch" statt "überhitzten Dampf".

403, " 10 von oben, lies "Wasserdampf" statt "Dampf".

496, 3 von unten, lies "Methylisopropylketon?" statt "Methylpropylketon".

504, " 18 von oben, die Rubrik "n-Nonylalkohol" ist zu streichen.

" 13 von unten, lies "Citronellol" statt "Citronellal".

513, 10 von unten, in der Rubrik Zimtalkohol lies "127?" statt "117?".

528, 20 von oben, das Wort "größere" ist zu streichen.

" 25 von oben, das Wort "leichter" ist zu streichen.

586, der Beginn der Assoziationsreihe lautet: "Säuren der Fettreihe, Alkohole der Fettreihe, Wasser, Säuren der aromatischen Reihe, Phenole, Alkohole der aromatischen Reihe, Nitrokörper usw.

Seite 598, Der Schluß "Äthyljodid und Tetrachlorkohlenstoff" ist zu streichen.

" 606, Zeile 13 von oben lies "460" statt "570".

624, 9 von unten, hinter "übrigens" einschalten "bei der Hydrodestillation".

HaPOa bildet mit Methylbenzoat eine Additionsverbindung, aber mit dem Äthylund Propylester keine.

705, " 12 von oben, ist hinter 1353 einzuschalten 1340, 1358, ferner dem Satze noch anzufügen: "Über Additionsverbindungen von Mercurisalzen mit ungesättigten organischen Verbindungen siehe auch Biilmann, Berl. Berichte 33 (1900), 1641, 35 (1902), 2571, 43 (1910), 573."

ALPHABETISCHES REGISTER.

Die in der Tabelle der Additionsverbindungen enthaltenen Körper sind im alphabetisches Register nicht angeführt. Über Additionsverbindungen oder über additionelle Verbindungsfähigkeit eines Körpers ist deshalb in der Zusammenstellung S. 627 nachzusehen. Dagegen sind die in allen übrigen Tabellen, also auch die in der Siedepunktstabelle angeführten Körper hier mit aufgenommen.

A

Acenaphten, Sdp. 514 Acetaldehyd, Sdp. 496

- - Ammoniak, Maximumsdp. 600
- Schwefligs. Natrium, Dissoz. 619

Acetamid, Siedepunkte 508

Acetanilid, Sdp. 518

Acetessigester, Siedepunkte 504

Aceton, Sdp. 496

- molek. Assoziation 469
- mit Äthyljodid, Minimumsdp. und Dampfzusammenstzg. 583
- mit Chloroform, Maximumsdp. 600
- mit Diäthylamin, Minimumsdp. und Dampfzusammensetzg. 583
- mit Methylacetat, Minimumsdp. u. Dampfzusammenstzg. 583
- mit Methylalkohol, Minimumsdp. u. Dampfzusammenstzg. 581
- mit Schwefelkohlenstoff, Minimumsdp. u. Dampfzusammenstzg. 583
- mit Schwefligs. Natrium, Dissoz. 619 Acetophenon, Siedepunkte 506
- Gehalt im Dampf bei der Hydrodest. 345, 350

Adipinketon, Sdp. 500

Adipinsäure, Sdp. 518

Additionsverb, Eigenschafte n599, 611

- Tabelle 625
 - Literatur zur Tabelle 678
- Nachweis 600
- Benutzung zur Trennung von Flüssigkeitsgemischen 622

Additionsverbindungen, Wirkung von Lösungsmitteln 617

- Wirkung der Wärme 615
- von Aldehyden 650
- von Alkoholen u. Alkoholäthern 643
- von Ammoniakderivaten 667
- anorg. Salze u. Basen 640
- von Chinonen 665
- von Ferro- u. Ferricyanwasserstoffsäure 636
- von Halogenkörpern 674
- von Ketonen 658
- von Kohlenwasserstoffen 641
- von Nitro- u. Nitrosokörpern 675
- von org. Säuren, Salzen, Estern 665
- von Orthophosphorsäure 635
- von Oxyden 664
- von Phenolen u. Phenoläthern 646
- von Schwefelkörpern 677
- von schwfl. Säure u. ihren Salzen 627
- verschiedener Mineralsäuren 638
- von Wasser 627

Ätherische Öle, Beschaffenheit je nach Gewinnungsart 437

- Vorkommen in der Pflanze 272 Äthylacetat, Siedetemperaturen 496
- Gehalt im Dampf bei der Hydrodestillation 337, 349
- Gewinnung von wasserfreiem 570
- mit Äthylalkohol, Minimumsdp. und Dampfzusammensetzg. 582
- mit Isopropylalkohol, Minimumsdp. u. Dampfzusammensetzg. 582

Äthylacetat, mit Jodäthyl, Minimumsdp. und Dampfzusammensetzg. 583

 mit Methylalkohol, Minimumsdp. u. Dampfzusammensetzg. 581

 mit Schwefelkohlenstoff, Minimumsdp. u. Dampfzusammenstzg. 583

 mit Tetrachlorkohlenstoff, Minimumsdp. u. Dampfzusammensetzg. 583
 Äthyläther, Siedetemperaturen 496

- Mol.-Gew. d. gesättigt. Dampfes 470

Dampfzusammensetzg. bei d. Hydrodest. 336, 349

- Siedeverhalten 555

 mit Schwefelkohlenstoff, Minimumsiedepunkt und Dampfzusammensetzg. 583

Athylalkohol, molekulare Assoz. 468

- Siedetemperaturen 496

- Darstellung von wasserfreiem 593

- Mol.-Gew. des gesättigt. Dampfes 470

 wäßriger, Verdampfung nach Zusatz eines fremden Körpers 591

- Hydrate 587, 608

wässriger, graphische Darstellg. d.
 Siedeverhaltens 542

 Gehalt im Dampf bei der Hydrodest. 337, 349, 572

- wässriger, Minimumsdp. 573, 581

 mit Benzol und Wasser, Minimumsiedepunkt 589

 mit n-Hexan und Wasser, Minimumsiedepunkt 589

- mit Äthylacetat 582

- mit Benzol 580, 581

- mit Bromäthyl 581

- mit Chloroform 582

- mit Cyanmethyl 582

- mit n-Hexan 581

- mit Isobutyljodid 582

- mit Jodäthyl 582

- mit Methyläthylketon 582

- mit Schwefelkohlenstoff 582

- mit Tetrachlorkohlenstoff 582

 mit Toluol, Minimumsiedepunkt und Dampfzusammensetzg. 581, 582

— mit Chloral, Maximumsiedepunkt 600 Äthyl-n-Amylketon, Sdp. 502 Äthylanilin, Gehalt im Dampf bei der Hydrodestillation 345, 350

- Siedepunkte 506

Äthylbenzoat, Siedepunkte 506

Hydrodest., Gehalt im Dampf 360
 Äthylbenzol, Siedetemperaturen 500
 Äthylbutyrat, Siedetemperaturen 498
 Äthyl-n-Caprylat, Sdp. 506

Äthylcinnamat, Sdp. 514

Äthylenbromid, Siedetemperaturen 500 — mit Propylenbromid, Siedeverhalten 552, 597

Äthylenchlorid, Sdp. 496

— mit Benzol, Siedeverhalten 552, 597 Äthylendibromid mit Amylalkohol,

Minimumsdp. u. Dampfzusammensetzung 582

- mit Isobutylalkohol, Minimumsdp.

u. Dampfzusammensetzung 582 Äthylenglykol, Siedepunkte 504

Äthylformiat, Siedetemperaturen 496

 Dampfzusammensetzg. bei d. Hydrodestillation 336, 349

Äthylidenchlorid, Sdp. 496

Äthylisobutyrat, Siedetemperaturen 498

 Gehalt im Dampf bei der Hydrodestillation 340, 349

Äthyljodid mit Aceton, Minimumsdp. u. Dampfzusammensetzung 583

 mit Tetrachlorkohlenstoff, Verdampfung 597

Äthyl-a-naphthylketon, Sdp. 518

Äthyloxalat, Siedepunkte 504

Äthyl-m-nitrobenzoat, Sdp. 516

Äthylphthalat, Sdp. 516

Äthylpropionat, Siedetemperaturen 498

 Gehalt im Dampf bei der Hydrodestillation 339, 349

Äthylsalicylat, Siedepunkte 510

Äthyl-a-tartrat, Sdp. 514

Äthyltoluol, p-, Siedepunkte 502

Äthyl-p-Tolylketon, Sdp. 510

Äthylvalerianat, Siedetemperaturen 500

Ajowan, Ölgehalt im Destillat 362

- Diffusionsdestillation 432

- Fettgehalt 369

Alantwurzel, Ölgehalt im Destillate 362

Aldehyde, Additionsverbindungen 650 Alkohol, s. auch Äthylalkohol

- Siedepunkte 496

- Hydrate 587, 608

- mit Benzol, Dampfzusammenstzg. 580

- m. Wasser, Dampfzusammenstzg. 572

Alkohole u. Alkoholäther, Additionsverbindungen 643

Allylalkohol, molekulare Assoziation 469

 mit Benzol, Minimumsdp. u. Dampfzusammensetzg. 583

- mit Chloral, Maximumsdp. 600

 mit Toluol, Minimumsdp. u. Dampfzusammensetzg. 583

 mit Wasser, Minimumsdp. u. Dampfzusammensetzg. 581

Allylsenföl, Siedepunkte 500

Allylsulfid, Siedetemperaturen 500

Ameisensäure, Siedetemperaturen 498

- Mol.-Gew. d. gesättigten Dampfes 471

- molekulare Assoziation 469

Gehalt im Dampf bei der Hydrodest.
 339, 349

- Hydrat, Sdp. 498

- Hydrat, Maximumsdp. 600

- Pyridin, Maximumsdp. 600

Ammoniak-Acetaldehyd, Max.-Sdp. 600 Ammoniakderivate, Additionsverbg. 667 Amylacetat mit Amylalkohol, Minimum-

sdp. u. Dampfzusammensetzg. 582

Amyläther, Siedepunkte 502

Amylalkohol, Iso-, Siedepunkte 500

- molekulare Assoziation 469

- Löslichkeit in Wasser 559

- Gewinnung von wasserfreiem 570

- m. Wasser, Dampfzusammenstzg. 559

mit Äthylendibromid, Minimumsdp.
 u. Dampfzusammensetzg. 582

mit Amylacetat, Minimumsiedepunkt
 u. Dampfzusammensetzg. 582

mit Amylbromid, Minimumsdp. u.
 Dampfzusammensetzg. 582

 mit Amyljodid, Minimumsdp. und Dampfzusammensetzg. 582

- - Chloral, Maximumsdp. 600

mit Isobutyljodid, Minimumsdp. u.
 Dampfzusammensetzg. 582

Amylalkohol, mit o-, m- u. p-Xylol, Minimumsdp. und Dampfzusammensetzg. 582

Amylbromid mit Amylalkohol, Minimumsdp. u. Dampfzusammensetzg. 582

mit Isobutylalkohol, Minimumsdp.
 u. Dampfzusammensetzg. 582

Amylbutyrat, Siedepunkte 502

 Gehalt im Dampf bei der Hydrodest, 342, 350

Amylenbromid, Siedepunkte 502

Amylformiat, Siedetemperaturen 498

 Gehalt im Dampf bei der Hydrodest. 340, 349

Amylisobutyrat, Siedepunkte 502 Amyljodid, Siedepunkte 500

mit Amylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 582

mit Isobutylalkohol, Minimumsdp.
 u. Dampfzusammensetzg. 582

Amylnitrat, Sdp. 500

Amylpropionat, Siedepunkte 500

 Gehalt im Dampf bei der Hydrodest. 342, 350

Amylvalerianat mit Wasser, Zusammensetzung des Dampfes 559

Androl, Sdp. 504

Anethol, Siedepunkte 510

Gehalt im Dampf bei Hydrodest. 360
 Angelikasamen, Ölgehalt i. Destill. 362
 Angelikasäure, Sdp. 504

Angelikawurzel, frische und trockene, Ölunterschiede 279

Ölgehalt im Destillat 362

Anilin, Siedepunkte 504

Löslichkeit in Wasser 560
Gehalt im Dampf bei Hydrodest.

342, 350, 360

- mit Wasser, Siedeverhalten 559

- Phenol, Maximumsdp. 600

- Phenol, Dissoz. durch Wärme 616

Phenol, Dissoziation durch Lösungsmittel 617

Anis, Pflanzenschnitt 275

- Fettgehalt 369

- Ölgehalt im Destillat 362

Anisaldehyd, Sdp. 512

Anisol, Siedepunkte 500 Anisöl, Hydrodest. Ölgeh. im Dampf 364 Anorg. Salze u. Basen, Additionsverbindungen 640 Anschütz, Appar. f. Minderdruckdest. 381 Anthracen, Sdp. 520 - Pikrinsäure, Dissoziation durch Lösungsmittel 617 Anthrachinon, Sdp. 520 - Hydrodest., Gehalt im Dampf 360 Arnikablüten, Ölgehalt im Destillat 362 Arnikawurzel, Ölgehalt im Destillat 362 Asaron, Sdp. 516 Assoziation, molekulare 466 - molekulare, Nachweis 607 Assoziationsreihe 531 Atmosphärendruck 328 Avogadrosche Regel 318 Azelainsäure, Sdp. 520

B

Bayblätter, Ölgehalt im Destillat 362 Benzaldehyd, Siedepunkte 502 — Gehalt im Dampf bei der Hydro-

dest. 342, 350

Schwefligsaures Natrium, Dissoziation 619

Benzhydrol, Sdp. 518 Benzil, Sdp. 520

Benzoesäure, Siedepunkte 512

Hydrodest., Gehalt im Dampf 347, 351
 Benzoesäureanhydrid, Sdp. 520
 Benzol, Siedetemperaturen 496

- mit Wasser, Dampfdrucke des Gemenges 312
- mit Wasser, Siedeverhalten u. Dampfzusammensetzg. 338, 349, 360
- m. Wasser u. Athylalkohol, Minimumsdp. 589
- mit Wasser u. tert. Butylalkohol,
 Minimumsdp. 589
- mit Äthylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 581
- mit Äthylalkohol, Dampfzusammensetzg. 580
- m. Äthylenchlorid, Siedeverhalt. 552
- mit Äthylenchlorid, Verdampfung 597

Benzol mit Allylalkohol, Minimumsdp. u. Dampfzusammensetzg. 583

mit tert. Butylalkohol, Minimumsdp.
 u. Dampfzusammensetzg. 582

- mit Chloroform, Verdampfung 598

— mit Essigsäure, Minimumsdp. u. Dampfzusammensetzg. 583

- mit n-Hexan, Siedeverhalten 574

— mit n-Hexan, Minimumsdp. u. Dampfzusammensetzg. 583

- mit Isobutylalkohol, Minimumsdp.

u. Dampfzusammensetzg. 582

mit Isopropylalkohol, Minimumsdp.
 u. Dampfzusammensetzg. 582

mit Isopropylalkohol u. Wasser,
 Minimumsdp. 589

mit Methylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 580, 581

- m. Monobrombenzol, Verdampfg. 597

- m. Monochlorbenzol, Verdampfg. 597

mit n-Propylalkohol, Minimumsdp.
 u. Dampfzusammensetzg. 582, 589

- m. Tetrachlorkohlenst., Verdampf. 597

- mit Toluol, Siedeverhalten, 552, 595 Benzonitril, Siedepunkte 504

Gehalt im Dampf bei der Hydrodest. 343, 350

Benzophenon, Sdp. 518 Benzoylchlorid, Siedepunkte 504

Benzylacetat, Sdp. 508

Benzyläthyläther, Siedepunkte 504 Benzylalkohol, Siedepunkte 506

Gehalt im Dampf bei der Hydrodest.
 345, 350

Benzylamin, Siedepunkte 504
Benzylbenzoat, Sdp. 518
Benzylchlorid, Siedepunkte 502
Benzylcinnamat, Sdp. 520
Benzylformiat, Sdp. 506
Benzylphenyläther, Sdp. 516
Benzylsenföl, Sdp. 510
Bernsteinsäureanhydrid, Sdp. 512
Betelphenol, Sdp. 512
Blase 265 ff.

- für Dampfdestillation 295
- für Minderdruckdestillation 290
- für Wasserdestillation 288

Blase für Wasser- und Dampfdestill, 293 Borneol, Sdp. 506 Bornylacetat, Siedepunkte 508 Bornyl-n-butyrat, Siedepunkte 512 Bornylformiat, Siedepunkte 506 Bornylisobutyrat, Sdp. 510 Bornylisovalerianat, Sdp. 512 Bornylpropionat, Sdp. 510 Brassidinsäure, Sdp. 520 Brenzcatechin, Siedepunkte 510 Brom, Siedetemperaturen 496 Bromäthyl, Siedetemperaturen 496 - mit Äthylalkohol, Minimumsdp. u.

Dampfzusammensetzg. 581 - mit Methylalkohol, Minimumsdp. u. Dampfzusammensetzg. 581

- mit Schwefelkohlenstoff, Minimumsdp. u. Dampfzusammensetzg. 583

Bromal, Siedepunkte 502 Brombenzol, Siedepunkte 500

- Gehalt im Dampf bei der Hydrodest. 341, 350

- mit Buttersäure, Minimumsdp. und Dampfzusammensetzg. 583

Bromnaphthalin, a-, Sdp. 516.

- α-, Hydrodest., Gehalt im Dampf 347, 351

 α-, Überhitzungshydrodest. 411 Bromoform, Siedepunkte 500 Bromtoluol, Siedepunkte 504 Bromwasserstoffhydrat, Maximum-Sdp. 600

Browns Siedeapparat 546 Buccocampher, Sdp. 510 Buttersäure, n-, Siedepunkte 502

- molekulare Assoziation 469

- Gehalt im Dampf bei der Hydrodest. 342, 350, 360

- mit Wasser, graphische Darstellung d. Siedeverhaltens 542

- mit Wasser, Siedeverhalten 575, 581

- mit Brombenzol, Minimumsdp, und Dampfzusammensetzg, 583

Butylalkohol, n-, Siedetemperaturen 498

- molekulare Assoziation 468

Gehalt im Dampf bei der Hydrodest.

Butylalkohol, Minimumsdp. u. Dampfzusammensetzg, 581

- tert., mit Benzol u. Wasser, Minimumsdp. 589

- mit Benzol, Minimumsdp. u. Dampfzusammensetzg, 582 Butylphenylketon, tert., Sdp. 508

Cadinen, Siedepunkte 514 Cadmium, Siedepunkte 520 Cajeputdestillation 446 Calmuswurzel, frisch und trocken, Olunterschiede 280

 Olgehalt im Destillat 362 Camphen, Siedepunkte 500

- Hydrat, Sdp. 506

Campher, Siedepunkte 506

- Gehalt im Dampf bei der Hydrodest. 345, 350

Campherholz, Destillation 460 Canangablüten, Destillation 450 Capronsäure, n-, Siedepunkte 506

Gehalt im Dampf bei der Hydrodest. 345, 350

Caprinsäure, n-, Siedepunkte 514 Hydrodest., Gehalt im Dampf 347, 351 Caprylen, Siedetemperaturen 498

Caprylsäure, n-, Siedepunkte 510 Gehalt im Dampf bei der Hydrodest.

346, 351 Carvacrol, Siedepunkte 510

Carvon, Siedepunkte 508

- Hydrodest., Gehalt im Dampf 360

Überhitzungshydrodest. 414

Caryophyllen, Sdp. 512

Cassia, Destillation 446

Cedernholz, Ölgehalt im Destillat 362

Cedren, Siedepunkte 514 Ceten, Siedepunkte 514

Cetylalkohol, Sdp. 520

Ceylon-Zimt, Ölgehalt im Destillat 363

Chavicol, Sdp. 510

Chinaldin, Sdp. 512

Chinolin, Siedepunkte 510

 Hydrodest., Gehalt im Dampf 346, 351 Chinone, Additionsverbindungen 665 v. Rechenberg, Gewinnung und Trennung der äther. Öle.

Chloracetaldehyd mit Wasser, Minimumsiedepunkt und Dampfzusammensetzg. 581

Chloral, Siedetemperaturen 498 Chloral-Hydrate, Schmelzpunktkurve 610, 611

- Hydrate, Siedetemperaturen 498

- Hydrate, Maximumsdp. 600

 mit Wasser, Minimumsdp. u. Dampfzusammensetzg. 581

 im Gemisch mit niederen Alkoholen, Maximumsdp. 600

Äthylalkohol, Siedetemperaturen 498

- Allylalkohol, Sdp. 498

- Methylalkohol, Sdp. 498

Chloranilin, o-, Siedepunkte 506

Gehalt im Dampfe bei der Hydrodest. 345, 350

- m-, Siedepunkte 508

Gehalt im Dampfe bei der Hydrodest. 346, 351

Chlorammonium, Siedepunkte 613

- Dampfbildung 621

- Maximumsdp. 600

Chlorbenzol, Siedetemperaturen 500 Chornaphthalin, α , Sdp. 512

- Hydrodest., Gehalt i. Dampfe 347, 351

Überhitzungshydrodest. 411
 Chloroform, Siedepunkte 496

- mit Benzol, Verdampfung 598

 mit Äthylalkohol, Minimumsdp. und Dampfzusammensetzg. 582

mit Methylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 581

- mit Toluol, Verdampfung 598

- Aceton, Sdp. 496, 600

- Methylacetat, Sdp. 496, 600

Chlorsilicium, Siedetemperaturen 496 Chlortoluol, p-, Siedepunkte 500 Chlorwasserstoffhydrat, Maximum-

Sdp. 600

Chlorwasserstoff-Methyläther, Maximumsdp. 600

Cineol, Siedepunkte 502 Cinnameïn, Sdp. 520 Citral, Siedepunkte 508 Citronellal, Siedepunkte 506

Citronellol, Siedepunkte 508 Citronelloldimethylacetat, Sdp. 508. Citronellylacetat, Sdp. 510 Citronellylformiat, Sdp. 508 Citronellsäure, Sdp. 512 Coriander, Fettgehalt 369 - Ölgehalt im Destillat 363 Costuswurzel, Ölgehalt im Destillat 362 Crotonsäure, Siedepunkte 504 Cubeben, Ölgehalt im Destillat 363 Cumarin, Sdp. 516 Cuminaldehyd, Siedepunkte 510 Cuminalkohol, Siedepunkte 512 Cuminsäure, Sdp. 516 Cyanmethyl mit Äthylalkohol, Minimumsdp. u. Dampfzusammensetzg. 582 - mit Methylalkohol, Minimumsdp. u. Dampfzusammensetzg. 581 Cyclopentan, Siedepunkte 496 Cymol, p-, Siedepunkte 502 Cypresse, Ölgehalt im Destillat 363

D

Daltons Diffusionsgesetz 308, 318 Damascenin, Sdp. 516 Dampf, Expansion 399, 402

- überhitzter 395

 Zusammensetzung bei der Hydrodestillation 332 ff., 360, 362

 Zusammensetzung bei der Hydrodest. unter Überhitzung 403, 407

 Zusammensetzung bei begrenzt löslichen Flüssigkeiten 558

Dampfdestillation 295, 298, 299

- ätherischer Öle 303 ff.

ätherischer Öle mit Überhitzung 303

von Pflanzen, chemisch-physik. Vorgänge 418

— mit Überhitzung unter Minderdruck 304

- unter Überdruck 375, 378

Dampfdruck in der Blase, Destillationsverschiedenheiten 283

Dampfdruckberechnung 490 Dampfdruckbestimmung 472

Dampfdruckkurven 534

Dampfdrucktabelle 494

Dampfstrom, Berechnung d. Geschwindigkeit 480

Dämpfe, Berechng. des spez. Gew. 320

Decan, n-, Siedepunkte 502

Decylaldehyd, n-, Siedepunkte 506

Decylalkohol, n-, Siedepunkte 510

Decylen, Siedepunkte 502

Decylendibromid, Sdp. 512

Decylenglykol, Sdp. 512

Decyljodid, n-, Sdp. 512

Destillation, Druckdiffer. i. d. Blase 420

- mit Gasen 265
- unter Benutzung der auswählenden Löslichkeit 592
- unter Minderdruck 284, 381, 382, 396
- unter Überdruck 285, 375, 378
- unter Überhitzung 285
- von Pflanzenteilen, chem.-physik. [setzg. 362 Vorgänge 418
- v. Pflanzenteilen, Dampfzusammen-
- Vorbereitung der Pflanzenteile 277
- Zusammensetzg. d. Dampfgemischs bei der Hydrodest. 332 ff., 360

Destillationsapparat 265 ff.

- für Dampfdestillation 295
- für Minderdruckdestillation 290
- für Wasserdestillation 288
- für Wasser- und Dampfdestill. 293

Destillationsmethoden 283

Destillationsstärke 297

Destillationsverfahren, periodisches und kontinuierliches 286

Destillationswasser, Verarbeitung 270

Diacetamid, Siedepunkte 508

Diacetylresorcin, Sdp. 514

Diäthylacetat, Siedetemperaturen 498

Diäthylamin mit Wasser, Verhalten der

Lösung 557

- mit Aceton, Minimumsdp. u. Dampfzusammensetzg. 583

Diäthylanilin, Siedepunkte 508

- Gehalt im Dampfe bei der Hydrodest. 346, 350

Diäthylhexadecylamin, Sdp. 520

Dibenzylamin, Sdp. 516

Dibenzylidencyclopentanon-HCl, Dissoziation durch Wärme 616

Dibenzylketon, Sdp. 518

Dichlorhydrin, a., Siedepunkte 504

Diffusionsdestillation 423

Diffusionsgesetz, Daltons 308, 318

Dihydrocarveol, Siedepunkte 508

Dihydrocarvon, Sdp. 508

Dihydrocitronellol, Sdp. 508

Dihydrocumarin, Sdp. 514

Dillapiol, Sdp. 516

Diisobutyl, Siedetemperaturen 498

Diisobutyl, Gehalt im Dampf bei der Hydrodest. 339, 349

Diisobutylamin, Siedetemperaturen 500

Diisopropyl, Siedetemperaturen 496

- Dampfzusammensetzg, bei d. Hydrodest. 337, 349

Dimethylacetal, Sdp. 496

Dimethyläthylcarbinol, Sdp. 498

Dimethylanilin, Siedepunkte 504

- Gehalt im Dampf bei der Hydrodest. 343, 350

Dimethylbenzaldehyd, Siedepunkte 508 Dimethylresorcin, Siedepunkte 508

Dimethyl-o-Toluidin, Siedepunkte 504

- Gehalt im Dampf bei der Hydrodest. 343, 350

Dimethyl-p-Toluidin, Siedepunkte 506

- Gehalt im Dampf bei der Hydrodest. 345, 350

Dinitrotoluol mit Naphthalin, Schmelz-

Dioctyl, Sdp. 514 punktkurve 609

Diosphenol, Sdp. 510

Diphenyl, Sdp. 512

Diphenyläthylen, as-, Sdp. 514

Diphenylamin, Sdp. 518

mit α-Naphthol, Verdampfung 614

Diphenylmethan, Sdp. 514

Direkte Heizung 266

Dissoziation, molekulare 466

Ditolyläther, Sdp. 516

Docosan, n-, Sdp. 520

Dodecylalkohol, n-, Sdp. 514

Dodecylamin, Siedepunkte 512

Dodecylen, Siedepunkte 506

Dodecan, n-, Siedepunkte 506

Dolezalek, Berechnung des Siede-

verhaltens von Lösungen 550

47*

Dotriacontan, n., Sdp. 520
Drosselventil für Überdruckdestill. 302
Druckdifferenzen in der Blase bei der
Destillation 420, 433
Dynamische Methode der Dampfdruckbestimmung 474

E

Eicosan, n-, Sdp. 520
Elaidinsäure, Sdp. 520
Esdragonkraut, frisch und trocken, Ölunterschiede 280
Essigester, Siedepunkte 496
— Gewinnung von wasserfreiem 570
Essigsäure, Siedetemperaturen 498
— Gehalt im Dampf bei der Hydrodest.

- 340, 349

 molekulare Assoziation 469
- Molekular-Gewicht des gesättigten Dampfes 470
- wässrige, Verdampfung nach Zusatz eines fremden Körpers 592
- mit Wasser, graphische Darstellung des Siedeverhaltens 543
- mit Benzol, Minimumsdp. u. Dampfzusammensetzg. 583
- Picolin, Maximumsdp. 600
- Pyridin, Maximumsdp. 600
- mit Toluol, Minimumsdp. u. Dampfzusammensetzg. 583
- - Triäthylamin, Maximumsdp. 600
- mit m-Xylol, Minimumsdp. u. Dampfzusammensetzg. 583
- Anhydrid, Siedetemperaturen 500
 Erucasäure, Sdp. 520
 Ester, Additionsverbindungen 665

Eugenol, Siedepunkte 512

Hydrodest., Gehalt im Dampf 360
 Eugenolacetat, Sdp. 516
 Eugenolformiat, Sdp. 514

Expansion von gespanntem Dampf 399, 402

Extraktion von Pflanzenteilen 437

F

Fenchel, Fettgehalt 369

— Ölgehalt im Destillat 363

Fenchon, Siedepunkte 504
Ferro- und Ferricyanwasserstoffsäure,
Additionsverbindungen 636
Fluorbenzol, Siedetemperaturen 496
Fluoren, Sdp. 516
Fluorwasserstoffhydrat, Maximumsdp. 600

Flüssigkeiten, gegenseitig unlösliche, Dampfdrucke 315

- gegenseitig unlösliche, Dampftemperatur 315
- gegenseitig unlösliche, Dampfzusammensetzg. 315
- gegenseitig unlösliche, Destillation 313

Flüssigkeitsgemische, s. Gemische

- Berechnung des Siedeverhaltens 549
- graphische Darstellung des Siedeverhaltens 541
- Untersuchung d. Siedeverhaltens 544
 Flüssigkeitswärme von Wasser 328
 Formaldehydschwefligsaures Natrium,
 Dissoziation 619

Formamid, Siedepunkte 504

Fraktionierung v. Flüssigkeitsgemischen 383, 577

Furfuralkohol, Siedepunkte 502 Furfurol, Sdp. 502

G

Galgantwurzel, Ölgehalt im Destillat 363 Gemenge begrenzt löslicher Flüssigkeiten 554 ff.

gegenseitig unlöslicher Flüssigkeiten,
 Destillation 313

Gemische, Berechnung des Siedeverhaltens 549

- graphische Darstellung des Siedeverhaltens 541
- homogene, Untersuchung des Siedeverhaltens 544
- homogene, Apparate zur Untersuchung des Siedeverhaltens 545 ff.
- homogene, Berechnung des Siedeverhaltens 549
- homogene, mit Majorsiedetemperatur 599

Gemische, homogene, mit Minorsiedetemperatur 572

- homogene, mit Minorsiedetemperatur, Fraktionierung 577

- homogene, mit Minorsiedetemperatur, Trennung 590

- homogene, Minimumsdp. u. Dampfzusammensetzg. 581

homogene, ohne konstanten Sdp. 594

- homogene, ohne konstanten Sdp., Dampfzusammensetzg. 595

Geraniol, Siedepunkte 508

- Hydrodest., Gehalt im Dampf 360 Geraniumsäure, Sdp. 514 Geranylacetat, Siedepunkte 510 Geranylbenzoat, Sdp. 520 Geranyl-n-butyrat, Sdp. 512 Geranylformiat, Sdp. 510 Geranylisobutyrat, Sdp. 512 Geranylpalmitat, Sdp. 520 Geschwindigkeit eines Dampfstroms 480

Gewürznelke, Pflanzenschnitt 275 Ölgehalt im Destillat 363.

Glucoseschwefligsaures Natrium, Dissoziation 619

Glutarsäure, n-, Sdp. 518 Glutarsäure-Anhydrid, n-, Sdp. 516 Glycerin, Siedepunkte 516 Hydrodest., Gehalt im Dampf 347, 351 Glykol, molekulare Assoziation 469 Guajacol, Siedepunkte 506 Guajol, Sdp. 516

Н

Halogenkörper, Additionsverbdgn. 674 Hauptöl 270 Hautdrüsen 272 Heizung, direkte und indirekte 266 Heneicosan, n-, Sdp. 520 Heptacosan, n-, Sdp. 520 Heptadecan, n-, Sdp. 518 Heptan, n-, Siedetemperaturen 498 - Gehalt im Dampf bei der Hydrodest. 339, 349 Heptylaldehyd, n-, Siedepunkte 500 Heptylalkohol, d-, Siedepunkte 502

Heptylbenzol, Siedepunkte 510 Heptylen, Sdp. 498 Heptyljodid, Siedepunkte 504 Heptylsäure, n-, Siedepunkte 508 Gehalt im Dampf bei der Hydrodest. 346, 351 Hexadecan, n-, Sdp. 516 Hexadecylalkohol, n-, Sdp. 520 Hexadecylamin, Sdp. 518 Hexadecylen, Sdp. 514 Hexamethylen, Siedetemperaturen 496 - Gehalt im Dampf bei der Hydrodest. 338, 349 Hexan, n-, Siedetemperaturen 496

 Dampfzusammensetzg, bei der Hydrodest. 337, 349

- mit Äthylalkohol, Minimumsdp. u. Dampfzusammensetzg. 581

- mit Athylalkohol u. Wasser, Minimumsdp. 589

- mit Benzol, Siedeverhalten 574, 583

- mit Isobutylalkohol, Minimumsdp.

u. Dampfzusammensetzg. 582

mit Methylalkohol, Minimumsdp. u. Dampfzusammensetzg. 581

- mit n-Propylalkohol, Minimumsdp. u. Dampfzusammensetzg. 582

- mit n-Propyalkohol und Wasser, Minimumsdp. 589

Hexylacetat, n-, Sdp. 502 Hexylalkohol, n-, Sdp. 500 Hexyl-n-butyrat, n-, Sdp. 506 Hexylcapronat, Sdp. 512 Hydratropaaldehyd, Sdp. 506 Hydrazinhydrat, Maximumsdp. 600 Hydrochinon, Sdp. 516 Hydrodestillation, Vorteile und Nachteile 306

 Zusammensetzg, d. Dampfgemisches Hydrodiffusion 423 [332 ff., 360 Hydrozimtaldehyd, Sdp. 508 - Dimethylacetat, Sdp. 510 Hydrozimtsäure, Sdp. 514

Indirekte Heizung 266 Indol, Sdp. 512

Ingwer, mikrosk. Pflanzenschn. 275

— Ölgehalt im Destillat 362
Intercellulare Sekretbehälter 272
Ionon, Siedepunkte 512
Iron, Sdp. 512

Isoamylalkohol, Siedetemperaturen 500 — Gehalt im Dampf bei der Hydrodest.

341, 349, 360, 559

- Gewinnung von wasserfreiem 570

Löslichkeit in Wasser 559
Isoamylbenzoat, Sdp. 514
Isoamylbromid, Siedepunkte 498
Isoamylisovalerianat, Siedepunkte 504
Isobuttersäure, Siedepunkte 500

Gehalt im Dampf bei der Hydrodest.
molekul. Assoziation 469 [341, 350
Isobutylacetat, Siedetemperaturen 498

Gehalt im Dampf bei der Hydrodest.
 340, 349

Isobutylalkohol, Siedetemperaturen 498

- Löslichkeit in Wasser 559

- molekulare Assoziation 468

 mit Wasser, graphische Darstellung des Siedeverhaltens 542

Gehalt im Dampf bei der Hydrodest.
 339, 349, 360, 559

mit Äthylendibromid, Minimumsdp.
 u. Dampfzusammensetzg. 582

mit Amylbromid, Minimumsdp. u.
 Dampfzusammensetzg. 582

 mit Amyljodid, Minimumsdp. und Dampfzusammensetzg. 582

 mit Benzol, Minimumsdp. u. Dampfzusammensetzg. 582

 mit n-Hexan, Minimumsdp. u. Dampfzusammensetzg. 582

mit Isobutyljodid, Minimumsdp. u.
 Dampfzusammensetzg. 582

 mit Toluol, Minimumsdp. u. Dampfzusammensetzg. 582

Isobutylbenzoat, Sdp. 510

Isobutylbutyrat, Siedepunkte 500

Gehalt im Dampf bei der Hydrodest.
 341, 350

Isobutylformiat, Siedetemperaturen 498 -- Gehalt im Dampf bei der Hydrodest. 338, 349

Isobutylisobutyrat, Siedetemperaturen 500

Isobutyljodid, Siedetemperaturen 498

mit Äthylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 582

mit Amylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 582

mit Isobutylalkohol, Minimumsdp.
 u. Dampfzusammensetzg. 582

— mit Methylalkohol, Minimumsdp. u. Dampfzusammensetzg. 581

- mit n-Propylalkohol, Minimumsdp.

u. Dampfzusammensetzg. 582 Isobutyl-a-naphthylketon, Sdp. 518 Isobutyloxalat, Sdp. 510 Isobutylphenol, p-, Sdp. 510 Isobutylpropionat, Siedetemperaturen 500

Isobutyl-d-tartrat, Sdp. 518 Isobutylvalerianat, Siedepunkte 502 Isocapronsäure, Siedepunkte 506

- molekulare Assoziation 469

Gehalt im Dampf bei der Hydrodest.
 344, 350

Überhitzungshydrodest. 407
 Isocrotonsäure, Siedepunkte 502
 Isoeugenol, Sdp. 512
 Isopentan, Siedetemperaturen 496
 Isopropylalkohol, molekulare Assoziation 468

- Hydrodest., Gehalt im Dampf 360

- mit Wasser, Minimumsdp. 581

 mit Äthylacetat, Minimumsdp. und Dampfzusammensetzg. 582

 mit Benzol, Minimumsdp. u. Dampfzusammensetzg. 582

 mit Benzol und Wasser, Minimumsdp. 589

 mit Isobutyljodid, Minimumsdp. und Dampfzusammensetzg. 582

 mit Jodäthyl, Minimumsdp. u. Dampfzusammensetzg. 582

- mit Schwefelkohlenst., Minimumsdp.

u. Dampfzusammensetzg. 582 Isopropylbenzol, Siedepunkte 500 Isopropylisobutyrat, Siedetemperaturen 498 Isopropyljodid mit Isopropylalkohol, Minimumsdp. und Dampfzusammensetzg. 582

Isopulegol, Siedepunkte 506
Isopulegon, Siedepunkte 506
Isosafrol, Sdp. 512
Isothermenmethode der Dampfdruckbestimmung 473

Isotherme u. isobare Verdampfung 313 Isovaleriansäure, Siedepunkte 502

1

Jod, Siedepunkte 504 Jodäthyl, Siedetemperaturen 496

- mit Äthylacetat, Minimumsdp. und Dampfzusammensetzg. 583
- mit Äthylalkohol, Minimumsdp. und Dampfzusammensetzg. 582
- mit Isopropylalkohol, Minimumsdp. und Dampfzusammensetzg. 582
- mit n-Propylalkohol, Minimumsdp.
 und Dampfzusammensetzg. 582
- mit Methylalkohol, Minimumsdp. u. Dampfzusammensetzg. 581
 lodbenzol, Siedepunkte 504

— Gehalt im Dampf bei der Hydrodest. 343, 350

Jodmethyl, Sdp. 496

Jodwasserstoffhydrat, Maximumsdp. 600

K (Siehe auch C.)

Kamillenblüte, Ölgehalt im Destillat 363
Kessylalkohol, Sdp. 518
Ketone, Additionsverbindungen 658
Kleinbetrieb 441
Kohlenwasserstoffe, Additionsverb. 641
Kohobationsblasen 271
Kohobieren 271
Kolben zu Siedepunktsbestimmung. 482
Kontinuierliche Destillation 286
Koriander, Fettgehalt 369

— Ölgehalt im Destillat 363
Korksäure, Sdp. 520
Kräuterdestillation in Spanien 444

Gehalt im Dampf bei der Hydrodest. 344, 350

Kresol, o-, Siedepunkte 504

- m-, Siedepunkte 506
- Gehalt im Dampf bei der Hydrodest. 344, 350
- p-, Siedepunkte 506
- Gehalt im Dampf bei der Hydro-Kühler 267 [dest. 344, 350

Kümmel, Destillationsversuche 392

- Diffusionsdestillation 427 ff.
- Fettgehalt 369
- Ölgehalt im Destillat 363
 Kümmelöl, Fraktionierung 383
- Hydrodest., Ölgehalt im Dampf 364ff.

L

Lagern der Pflanze, Ölverluste 282 Laurinaldehyd, Sdp. 514 Laurinsäure, Sdp. 516 Lavendelblüten, Destillationsart 442 Liebstockwurzel, frisch und trocken, Ölunterschiede 280

- und -kraut, Ölgehalt im Destillat 363
 Limonen, d-, Siedepunkte 502
- Hydrodest., Gehalt im Dampf 360 Linaloeholz-Destillation 454

Linalool, Siedepunkte 504

- Hydrodest., Gehalt im Dampf 360
 Linalylacetat, Siedepunkte 508
 Linalylpropionat, Sdp. 510
 Lösungen, Vorgang beim Lösen 538
- Allgemeines 537
- Apparate zur Untersuchung des Siedeverhaltens 545 ff.
- Berechnung des Siedeverhaltens 549
- graphische Darstellung des Siedeverhaltens 541
- mit Majorsiedetemperatur 599
- mit Minorsiedetemperatur 572
- mit Minorsiedetemperatur, Fraktionierung 572
- mit Minorsiedetemp., Trennung 590
- ohne konstanten Sdp. 595
- ohne konstanten Sdp., Dampfzusammensetzg. 595
- ternäre, mit Minimumsdp. 589
- Untersuchung des Siedeverhalt. 544
 Lösungsmittel, Dissoziation von Verbindungen durch L. 617

Lösungstemperatur, kritische 556 Lysigene Sekreträume 272

M

Margarinsäure, Sdp. 520
Maximumsdp., homogene Gemische 600
Mentha, Öldrüsen 273
Menthol, Siedepunkte 506
Menthon, Sdp. 506
Menthylacetat, Siedepunkte 508
Menthylbenzoat, Sdp. 518
Menthyl-n-butyrat, Sdp. 510
Menthylformiat, Siedepunkte 508
Menthylpropionat, Sdp. 510
Mesitylen, Siedepunkte 502
Mesityloxyd, Siedetemperaturen 498
Methylacetat, Siedetemperaturen 496

- Dampfzusammensetzg. b. d. Hydrodest. 336, 349, 569
- mit Aceton, Minimumsdp. u. Dampfzusammensetzg. 583
- Chloroform, Maximumsdp. 600
- mit Methylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 581
- mit Schwefelkohlenstoff, Minimumsdp. u. Dampfzusammensetzg. 583
 Methyläther-Chlorwasserstoff, Maximumsdp. 600

Methyläthylketon mit Wasser, Verhalten der Lösung 556 ff., 567

 mit Äthylalkohol, Minimumsdp. u. Dampfzusammensetzg. 582

Methylal, Sdp. 496

 mit Schwefelkohlenstoff, Minimumsdp. u. Dampfzusammensetzg. 583
 Methylalkohol, Siedetemperaturen 496

Dampfzusammensetzg. b. d. Hydrodest. 337, 349, 543

- molekulare Assoziation 468
- Mol.-Gew. des gesättigten Dampfes 470
- mit Aceton, Minimumsdp. u. Dampfzusammensetzg. 581
- mit Äthylacetat, Minimumsdp. und Dampfzusammensetzg. 581
- mit Benzol, Minimumsdp. u. Dampfzusammensetzg. 581

Methylalkohol mit Benzol, Dampfzusammensetzg. 580

 mit Bromäthyl, Minimumsdp. und Dampfzusammensetzg. 581

- - Chloral, Maximumsdp. 600

 mit Chloroform, Minimumsdp. und Dampfzusammensetzg. 581

mit Cyanmethyl, Minimumsdp. und
 Dampfzusammensetzg. 581

 mit n-Hexan, Minimumsdp. u. Dampfzusammensetzg. 581

— mit Isobutyljodid, Minimumsdp. und Dampfzusammensetzg. 581

mit Jodäthyl, Minimumsdp. u Dampfzusammensetzg. 581

 mit Methylacetat, Minimumsdp. und Dampfzusammensetzg. 581

 mit Tetrachlorkohlenstoff, Minimumsdp. u. Dampfzusammensetzg. 581
 Methyl-n-Amylketon, Siedepunkte 500
 Methylanilin, Siedepunkte 504

Gehalt im Dampf bei der Hydrodest. 344, 350

Methylanthranilat, Sdp. 514 Methylanthranils.-Methylester, Sdp. 514 Methylbenzoat, Siedepunkte 504

Gehalt im Dampf bei der Hydrodest. 344, 350

Methylbutyrat, Siedetemperaturen 498 — Gehalt im Dampf bei der Hydrodest. 339, 349

Methylchavicol, Siedepunkte 508
Methylcinnamat, Sdp. 512
Methyldecylketon, Siedepunkte 512
Methyldodecylketon, Sdp. 514
Methyleugenol, Siedepunkte 512
Methylformiat, Siedetemperaturen 496
Dampfzusammensetze hei d. Hydro-

Dampfzusammensetzg, bei d. Hydrodest. 336, 349

Methylheptadecylketon, Sdp. 520
Methylheptenol, Siedepunkte 502
Methylheptenon, Siedepunkte 502
Methyl-n-Heptylcarbinol, Sdp. 506
Methylheptylcarbinolacetat, Sdp. 506
Methylheptylketon, Siedepunkte 504
Methylhexadecylketon, Sdp. 520
Methylhexylketon, Siedepunkte 502

Methylisobutyrat, Siedetemperatur. 496
Gehalt im Dampf bei der Hydrodest. 338, 349
Methylisoeugenol, Sdp. 514

Methyl-α-naphthylketon, Sdp. 516 Methyl-β-naphthylketon, Sdp. 516 Methyl-n-Nonylcarbinol, Sdp. 510

Methyl-n-Nonylcarbinolacetat, Sdp. 510 Methyl-n-Nonylketon, Sdp. 508

Methyloctylketon, Sdp. 504

- n-, Siedepunkte 506

Methyloxalat, Sdp. 502

Methylpentadecylketon, Sdp. 518

Methylpropionat, Siedetemperatur. 496

 Gehalt im Dampf bei der Hydrodest. 337, 349

Methylpropylketon, Sdp. 496, 498, 732 Methylpseudocumylketon, Sdp. 512 Methylsalicylat, Siedepunkte 508

Methylsalicyls.-Methylester, Sdp. 508

Methylstilben, p-, Sdp. 518

Methyltetradecylketon, Sdp. 518

Methyltridecylketon, Sdp. 516

Methylundecylketon, Sdp. 514

Methylvalerianat, Siedetemperatur. 498

Methylzimtsäure, a., Sdp. 516

Mikroskopische Pflanzenschnitte 273 ff.

Minderdruckdestillation 284

- ätherischer Öle, 301, 305, 381, 382

- von Pflanzenteilen 290, 295, 390

Mineralsäuren, Additionsverbindung. 638 Minimumsiedepunkt, Änderung mit dem

Destillationsdruck 579

- Gemische mit, 572

homogener Flüssigkeitsgemische 581

- ternäre Lösungen 589

Minorsiedetemperat., Gemische mit, 572

 Trennung homogener Gemische mit M. 590

Mischdampftabelle 336 ff. 349

Molekulare Assoziation, Nachweis 607 Monobrombenzol mit Benzol, Ver-

dampfung 597

Monochlorbenzol mit Benzol, Verdampfung 597

- mit Toluol, Verdampfung 598

Monochloressigsäure, Siedepunkte 504

Muskon, Sdp. 518
Myrcen, Siedepunkte 502
Myristicin, Sdp. 516
Myristinaldehyd, Sdp. 516
Myristinsäure, Sdp. 518

- Überhitzungshydrodest. 411

N

Naphthalin, Siedepunkte 508

 Gehalt im Dampf bei der Hydrodest. 346, 350, 360

 mit Dinitrotoluol, Schmelzpunktkurve 609

 mit Nitrotoluol, Schmelzpunktkurve 609

 mit Trinitrotoluol, Schmelzpunktkurve 610

Naphthol, a-, Sdp. 516

- mit Diphenylamin, Verdampfung 614

— β-, Sdp. 516

Naphthylamin, «-, Sdp. 516

Natrium, Siedepunkte 520

Nelken, Ölgehalt im Destillat 363

Nelkenstengel, Ölgehalt im Destillat 363

Nerol, Siedepunkte 508

Nerylacetat, Sdp. 510 Nerylformiat, Sdp. 508

Nitroäthan, Siedetemperaturen 498

- molekulare Assoziation 469

Nitrobenzol, Siedepunkte 506

Gehalt im Dampf bei der Hydrodest.
 345, 350, 360

Nitroglycerin, Sdp. 520

Nitrotoluol, o-, Siedepunkte 508

Gehalt im Dampf bei der Hydrodest.
 346, 350

- p-, Siedepunkte 510

Gehalt im Dampf bei der Hydrodest.
 346, 351

 mit Naphthalin, Schmelzpunktkurve 609

Nitrosodimethylanilin mit m-Xylidin, Schmelzpunktkurve 610, 611

Nitro- u. Nitrosokörper, Additionsverbindungen 675

Nonan, n-, Siedepunkte 500 Nonadekan, n-, Sdp. 518

Nonylaldehyd, n-, Siedepunkte 504 Nonylalkohol, n-, Siedepunkte 506 Nonyljodid, n-, Siedepunkte 510

Octan, n-, Siedetemperaturen 498 - Gehalt im Dampf bei der Hydrodest. 340, 349 Octadecan, n-, Sdp. 518 Octadecylalkohol, Sdp. 520 Octadecylen, Sdp. 518 Octyläther, n-, Sdp. 514 Octylaldehyd, n-, Siedepunkte 502 Octylalkohol, Siedepunkte 502 - n-, Sdp. 504 Octylbenzoat, Sdp. 518 Octylbromid, Sdp. 504 Octyl-n-butyrat, n-, Sdp. 510 Octyl-n-caprylat, Sdp. 516 Octylchlorid, Siedepunkte 502 Octylen, Siedetemperaturen 498 Octyljodid, n-, Siedepunkte 508 Octylvalerianat, Sdp. 512 Oldestillation, Betrieb 300

- Beschaffenheit je nach Gewinnungsart 437
- Dampfdestillation 303 ff.
- Wasserdestillation 300 ff.

Ölgehalt im Destillat bei der Pflanzendestillation 362

Ölsäure, Sdp. 520

Öl- und Pflanzendestillation, Wirkung des Wasserdampfes 261 ff.

Ölzellen in der Pflanze 273

Önanthaldehyd, Siedepunkte 500

Orthophosphorsäure, Additionsverbindungen 635

Oxybenzylaldehyd, p-, Sdp. 518 Oxyde, Additionsverbindungen 664

P

Palmitinaldehyd, Sdp. 518 Palmitinsäure, Sdp. 520 Paraldehyd, Sdp. 498 Partialdruck 404 - Daltons Gesetz 308, 318 Patchouli, Pflanzenschnitt 274 Patchouli, Ausbeuteunterschiede je nach Destillationsart 441

- Ölgehalt im Destillat 363

Pelargonsäure, n-, Siedepunkte 512

- Hydrodest., Gehalt im Dampf 347,351

Pentadecan, n-, Siedepunkte 514

Pentadecylsäure, Sdp. 518

Pentamethen, Sdp. 496

Pentamethenylalkohol, Sdp. 500

Pentan, n-, Siedetemperaturen 496

- Dampfzusammensetzg. b. d. Hydrodest. 336, 349

Pentanonal, Siedepunkte 504

Pentatriacontan, n-, Sdp. 520

Petersilienapiol, Sdp. 516

Petersilienisoapiol, Sdp. 518

Pfeffer, Pflanzenschnitt 274

Pfefferminzkraut, Destillation 460

- frisches und trocknes, bei der Destillation 278, 281
- Ölgehalt im Destillat 363
- Pflanzenschnitt 273

Pfefferminzöl, Hydrodest., Ölgehalt im Dampf 364

Pflanze, Dampfdestillation 295, 298, 299 Pflanzendestillation, Betrieb 286 ff.

- Dampfzusammensetzg. 362
- physik.-chem. Vorgänge 418
- frisch u. trocken bei der Destillation 278 ff.
- mikroskopische Schnitte 273 ff.
- Minderdruckdestillation 290
- Ölverluste von der Ernte bis zur Destillation 278
- Überdruckdestillation 293
- Überhitzungsdestillation 299
- Vorbereitung zur Destillation 277
- Vorkommen des ätherischen Öls 272
- Wasserdestillation 286 ff.
- Wirkung des Wasserdampfes bei der Destillation 261 ff.
- Wirkung v. Feuchtigkeit u. Hitze 419 Phellandren, Siedepunkte 502 Phenanthren, Sdp. 520

Phenetol, Siedepunkte 502

Phenol, Siedepunkte 504 [342, 350, 563

- Gehalt im Dampf bei der Hydrodest.

Phenol, Löslichkeit in Wasser 563

- Anilin, Dissoziation durch Lösungsmittel 617
- - Anilin, Dissoziation d. Wärme 616
- Anilin, Maximumsdp. 600
- - Anilin, Sdp. 504
- Campher, Maximumsdp. 600
- mit Phenoläther, Additionsverbindungen 646
- mit Pikrinsäure, Schmelzpunktkurve 610

Phenolmethyläther, Siedepunkte 500 Phenoläthylalkohol, Siedepunkte 508

Phenylbenzoat, Sdp. 518

Phenylbenzylketon, Sdp. 518

Phenyldisulfid, Sdp. 518

Phenylendiamin, m-, Sdp. 514

Phenylessigsäure, Sdp. 514

- - Ämylester, Sdp. 518

Phenylessigsäurenitril, Sdp. 510

Phenylhexylketon, Sdp. 514

Phenylpropionsäurenitril, Sdp. 514

Phenylpropylalkohol, Sdp. 510

Phenylsalicylat, Sdp. 518

Phenylsenföl, Siedepunkte 508

Phenylsulfid, Sdp. 516

Phosphortrichlorid, Sdp. 496

Phosphorsäure, Additionsverbindgn. 635

Phthalid, Sdp. 516

Phthalsäure-Anhydrid, Sdp. 516

Picolin, Siedetemperaturen 498

- Acetat, Maximumsdp. 600

Pikrinsäure-Anthracen, Dissoziation durch Lösungsmittel 617

- mit Phenol, Schmelzpunktkurve 610

Pimelinsäure, Sdp. 518

Piment, Ölgehalt im Destillat 363

Pinen, Siedepunkte 500

Piper, Pflanzenschnitt 274

Piperidin, Siedetemperaturen 498

Piperonal, Siedepunkte 514

Pockholz, Ölgehalt im Destillat 363

Propionamid, Siedepunkte 506

Propionitril, Sdp. 496

- molekulare Assoziation 469

Propionsäure, Siedetemperaturen 500

- molekulare Assoziation 469

Propionsäure, Gehalt im Dampf bei der Hydrodest. 341, 349

 mit Wasser, graphische Darstellung des Siedeverhaltens 543

Propionsäureanhydrid, Siedepunkte 502 Propionsäure-Pyridin, Maximumsdp. 600

Propionylacetophenon, Sdp. 514

Propylacetat, Siedetemperaturen 498

Propylacetat, Gehalt im Dampf bei der Hydrodest. 339, 349

Propylalkohol, n-, Siedetemperatur. 498

- Mol.-Gew. d. gesättigt. Dampfes 470
- molekulare Assoziation 468
- Gehalt im Dampf bei der Hydrodest. 338, 349, 360
- mit Wasser, graphische Darstellung des Siedeverhaltens 542
- mit Wasser, Minimumsdp. u. Dampfzusammensetzg. 575, 581
- mit Benzol, Minimumsdp. u. Dampfzusammensetzg. 582
- mit Benzol und Wasser, Minimumsdp. 589
- mit Isobutyljodid, Minimumsdp. und Dampfzusammensetzg. 582
- mit Jodäthyl, Minimumsdp. u. Dampfzusammensetzg. 582
- mit n-Hexan, Minimumsdp. u. Dampfzusammensetzg. 582
- mit n-Hexan und Wasser, Minimumsdp. 589
- mit Toluol, Minimumsdp u. Dampfzusammensetzg. 582

Propylbenzoat, n-, Siedepunkte 508

Propylbenzol, n-, Siedepunkte 500

Propylbutyrat, Siedetemperaturen 500

Propylenbromid, Siedetemperaturen 500

— Gehalt im Dampf bei der Hydro-

 Gehalt im Dampf bei der Hydrodest. 341, 350

mit Äthylenbromid, Siedeverhalt. 552

- mit Äthylenbromid, Verdampfg. 597

Propylformiat, Siedetemperaturen 496

 Gehalt im Dampf bei der Hydrodest. 338, 349

Propylisobutyrat, Siedetemperatur. 500 Propyl-β-naphthylketon, i-, Sdp. 518 Propylpropionat, Siedetemperaturen 498 Propylsuccinat, n-, Sdp. 512
Propylvalerianat, Siedepunkte 500
Pseudocumidin, Siedepunkte 510
Pulegol, Siedepunkte 508
Pulegon, Siedepunkte 508
Pyridin, Siedetemperaturen 498
Pyridinacetat, Maximumsdp. 600
Pyridinformiat, Maximumsdp. 600
— mit Wasser, Minimumsdp. u. Dampfzusammensetzg. 581
Pyridinpropionat, Maximumsdp. 600
Pyrogallol, Sdp. 516
Pyrogalloldimethyläther, Sdp. 512
Pyrrol, Sdp. 500

Q

Quecksilber, Siedepunkte 520

— Hydrodest., Gehalt im Dampf 347, 351

R

Resorcin, Siedepunkte 514 Röhrenkühler 267 Rosanoffs Siedeapparat 546 Rosen-Destillation 453 Rosmarin-Destillation 464

S

Sadebaum, Ölgehalt im Destillat 363 Safrol, Siedepunkte 510 Salicylaldehyd, Siedepunkte 504 Salicylsäure, Siedepunkte 512 Salmiak, Siedepunkte 613 Salol, Sdp. 518 Salpetersäurehydrat, Maximumsdp. 600 Salze, organische, Additionsverbindungen 665 Sandelholz, ostind., Ölgehalt im Destillat 363 - westind., Ölgehalt im Destillat 363 Sandelholzöl, ostind., Hydrodest., Ölgehalt im Dampf 364 Santalen, a, Sdp. 512 — β-, Siedepunkte 514 Santalol, a-, Sdp. 518 — β-. Sdp. 518 - Hydrodest., Gehalt im Dampf 360 Säurehydrate, Maximumsdp. 600

Säuren, Salze, Ester, organische, Additionsverbindungen 665 Schizogene Sekreträume 272 Schlangenkühler 267 Schwefel, Siedepunkte 520 - Hydrodest., Gehalt i. Dampf 347, 351 Überhitzungshydrodest. 411 Schwefelkörper, Additionsverbdgn. 677 Schwefelkohlenstoff, Siedetemperaturen 496 - mit Wasser, Dampfdrucke des Gemenges 312 - Dampfzusammensetzg. b. d. Hydrodest. 336, 349 mit Aceton, Minimumsdp. u. Dampfzusammensetzg. 583 mit Äthylacetat, Minimumsdp. und Dampfzusammensetzg. 583 - mit Äthyläther, Minimumsdp. und Dampfzusammensetzg. 583 mit Äthylalkohol, Minimumsdp. und Dampfzusammensetzg. 582 mit Bromäthyl, Minimumsdp. und Dampfzusammensetzg. 583 - mit Isopropylalkohol, Minimumsdp. und Dampfzusammensetzg. 582 - mit Methylal, Minimumsdp. und Dampfzusammensetzg, 583 - mit Methylacetat, Minimumsdp. und Dampfzusammensetzg. 583 - mit Tetrachlorkohlenstoff, Verdampfung 598 Schweflige Säure u. schwefligs. Salze, Additionsverbindungen 627 Sebacinsäure, Sdp. 520 Sekretzellen 272 Selleriesamen, Fettgehalt 369 Ölgehalt im Destillat 363 Sesquiterpen im Citronellöl, Sdp. 514 Siedeapparate zur Untersuchung des Siedeverhaltens v. Lösungen 545 ff. Siedekolben zu Siedepunktsbestim-

mungen 482

Druck 534

Siedepunkt, Reduktion auf 760 mm

- unter Minderdruck, Umrechnung auf

anderen Minderdruck 536

Siedepunkt, Bestimmungen unter vermindertem Druck 477

- Kurven 534

- Tabelle 494

Skatol, Sdp. 514

Spezifisches Gewicht von Dämpfen, Berechnung 320

- überhitzten Dampfes 399

Statische Methode der Dampfdruckbestimmung 472

Stearinaldehyd, Sdp. 520 Stearinsäure, Sdp. 520

Sternanisfrüchte, Destillation 458

Stilben, Sdp. 518

Styrol, Siedetemperaturen 500

Styroldibromid, Sdp. 512

Styrolenglykol, Sdp. 514

Succinimid, Sdp. 516

Sulfobenzid, Sdp. 520

Summengesetz Daltons 308, 318

Sylvestren, Siedepunkte 502

T

Tabelle, Additionsverbindungen 627

- Dampfzusammensetzg. b. d. Hydrodest. 332 ff., 349
- Druck, Temperatur und Dichte des Wasserdampfes 323, 329
- Ölgehalt im Dampf bei der Überhitzungsdest. 416
- Ölgehalt im Destillat b. d. Pflanzendestillation 362
- Maximumsiedepunkte 600
- Minimumsiedepunkte 581
- Siedetemperaturen chemischer Körper unter verschiedenen Drucken 494 ff.
- spez. Volumen des überhitzten
 Wasserdampfes 399
- Temperatur des gesättigten Wasserdampfes nach seiner Expansion 402
 Tannenzapfendestillation 449
 Temperatur, kritische Lösungs-, 556
 Tension siehe unter Dampfdruck
 Ternäre Lösungen mit Minimumsdp. 589
 Terpentinöl, Hydrodestillation, Gehalt im Dampf 360

Terpineol, Siedepunkte 506, 508 Terpinolen, Siedepunkte 504 Tetrachlorkohlenstoff, Sdp. 496

 mit Äthylacetat, Minimumsdp. und Dampfzusammensetzg. 583

 mit Äthylalkohol, Minimumsdp. und Dampfzusammensetzg. 582

- mit Äthyljodid, Verdampfung 597

- mit Äthyljodid, Verdampfung 598

- mit Benzol, Verdampfung 597

mit Methylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 581

- m. Schwefelkohlenst., Verdampfg. 598

- mit Toluol, Verdampfung 598

Tetracosan, n-, Sdp. 520

Tetradecan, n-, Siedepunkte 512

Tetradecylalkohol, n-, Sdp. 518

Tetradecylamin, Sdp. 516

Tetradecylen, Siedepunkte 510

Thionaphthol, α - u. β -, Sdp. 516

Thymochinon, Sdp. 510

Thymol, Siedepunkte 510

Thujon, Siedepunkte 506

Toluidin, o-, Siedepunkte 506

— Gehalt im Dampf bei der Hydrodest. 344, 350

- m-, Siedepunkte 506

 Gehalt im Dampf bei der Hydrodest. 345, 350

- p-, Siedepunkte 506

Gehalt im Dampf bei der Hydrodest. 344, 350

Toluol, Siedetemperaturen 498

- Gehalt im Dampf bei der Hydrodest. 340, 349, 360
- mit Allylalkohol, Minimumsdp. und Dampfzusammensetzg. 583
- mit Äthylalkohol, Minimumsdp. und Dampfzusammensetzg. 581
- mit Benzol, Siedeverhalten 552, 595
- mit Chloroform, Verdampfung 598
- mit Isobutylalkohol, Minimumsdp. u.
 Dampfzusammensetzg. 582
- mit Essigsäure, Minimumsdp. und Dampfzusammensetzg. 583
- mit Monochlorbenzol, Verdampfung
 598

Toluol, mit n-Propylalkohol, Minimumsdp. u. Dampfzusammensetzg. 582

— mit Tetrachlorkohlenst., Verdampfg. 598

Toluylendiamin, m-, Sdp. 514

Traubens.-Methylester, Sdp. 516

— -Äthylester, Sdp. 514

Triäthylamin mit Wasser, Verhalten der Lösung 557

Triäthylaminacetat, Maximumsdp. 600 Tribromäthylen, Siedepunkte 502 Tricosan, n-, Sdp. 520 Tridecan, n-, Siedepunkte 510 Tridecylsäure, Sdp. 518 Trimethylamin, Sdp. 496

- Acetat, Siedepunkte 500

- Formiat, Siedepunkte 502

Trimethylenbromid, Siedepunkte 502

 Gehalt im Dampf bei der Hydrodest. 342, 350

Trinitrotoluol mit Naphthalin, Schmelzpunktkurve 610, 611

Triphenylmethan, Sdp. 520

Trockene Destillation ätherischer Öle unter Minderdruck 305

U

Überchlorsäurehydrat, Maximumsdp.600 Überdruckdestillation 285

- ätherischer Öle, 302, 303, 378

- Drosselventil 302

- von Pflanzen 293, 295, 375

Überhitzte Dämpfe 395

Überhitzungsdestillation 285, 395

von Pflanzen 299

Überhitzungshydrodestillation, Dampfzusammensetzg. 403, 410

— in der Technik 417 Überhitzungsgrad 397 Undecan, n-, Siedepunkte 504 Undecylensäure, Sdp. 514 Undecylsäure, Sdp. 514

V

Vakuumdestillation s. u. Minderdruck Valeriansäure, n-, Siedepunkte 504 Valeriansäure, molekulare Assoziation 469

n-, Gehalt im Dampf bei der Hydrodest. 343, 350

Vanillin, Sdp. 516

Verdampfung, isobare 313

- isotherme 313

Verdampfungswärme von Wasser 328 Vetiverwurzel, Ölgehalt im Destillat 363 Vorlage 268

W

Waals, van der, Zustandsgleichung 467 Wacholderbeeren, Ölgehalt im Destillat 363

Wanderdestillation 441

Wasser, molekulare Assoziation 469

- Verdampfungswärme 328

Wasserdampf, Druck, spez. Volumen, spez. Gewicht 322 ff.

- spez. Druck 328

- Überhitzung, Ausführung 304

 Wirkungsart bei der Pflanzen- und Öldestillation 261 ff.

Wasserdestillation äther. Öle 300 ff.

- äther. Öle unter Minderdruck 301

- äther. Öle unter Überdruck 302

- von Pflanzen 286 ff.

von Pflanzen, chem.-physik. Vorgänge 434

- von Pflanzen unter Minderdruck 290

von Pflanzen unter Überdruck 293
 Wasser- und Dampfdestillation 293

Wasseröl 270

Wurmsamenöl 439

X

Xylol, o-, Siedetemperaturen 500

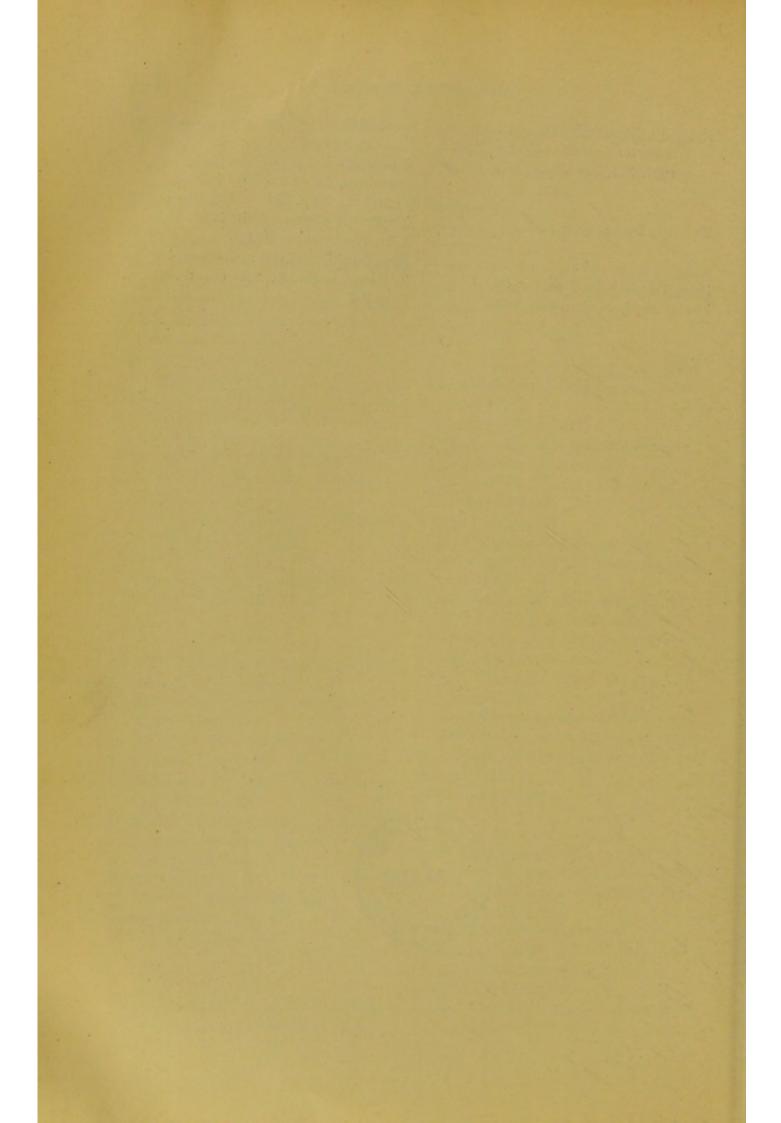
o-, m- u. p-, mit Amylalkohol, Minimumsdp. und Dampfzusammensetzg. 582

- m-, Siedetemperaturen 500

 mit Essigsäure, Minimumsdp. und Dampfzusammensetzg. 583

Xylidin, m-, Siedepunkte 506

- m-, Nitrosodimethylanilin, Schmelzpunktkurve 610, 611 Xylol, p., Siedetemperaturen 500
 Gehalt im Dampf bei der Hydrodest. 341, 349, 360


Y


Youngs Siedeapparat 545

Z

Zimt, Ölgehalt im Destillat 363 Zimtaldehyd, Siedepunkte 512 Zimtaldehyd, Hydrodest., Gehalt im Dampf 360 Zimtalkohol, Sdp. 512 Zimtrinde, Sekretbehälter 276 Zimtsäure, Sdp. 516 Zingiber, Pflanzenschnitt 275 Zink, Siedepunkte 520 Zinnchlorid, Siedetemperaturen 498 Zustandsgleichung, van der Waals 467

