Manuel pratique de diagnostic bactériologique et de technique appliquée à la détermination des bactéries / par R. Le Blaye ; H. Guggenheim.

Contributors

Le Blaye, René, 1881-Guggenheim, Henri.

Publication/Creation

Paris: Vigot, 1914.

Persistent URL

https://wellcomecollection.org/works/srtzucbb

License and attribution

Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org R. Le Blaye et H. Guggenheim

Manuel Pratique

de

Diagnostic Bactériologique et de Technique Appliquée

à la Détermination des Bactéries

VIGOT FRÈRES ÉDITEURS

Med K16228 6.14. Wenyon_

MANUEL PRATIQUE

DE

DIAGNOSTIC BACTÉRIOLOGIQUE

ET DE

TECHNIQUE APPLIQUÉE

A LA DÉTERMINATION DES BACTÉRIES

THE PARTY OF THE P BERDIN TO BOLVADE

MANUEL PRATIQUE

DE

DIAGNOSTIC BACTÉRIOLOGIQUE

ET DE

TECHNIQUE APPLIQUÉE

A LA DÉTERMINATION DES BACTÉRIES

PAR

R. LE BLAYE

Ancien interne des Hôpitaux de Paris Professeur suppléant et chef des travaux de bactériologie à l'École de médecine de Poitiers

H. GUGGENHEIM

Ancien înterne des Hôpitaux de Paris

SERVICE DE PRESSE

PARIS
VIGOT FRÈRES, ÉDITEURS
23, PLACE DE L'ÉCOLE-DE-MÉDECINE, 23

WELLCOME INSTITUTE
LIBRARY

Coll. well/Omec

Call
No. QVV

MANUEL PRATIQUE

DE

DIAGNOSTIC BACTÉRIOLOGIQUE

ET DE

TECHNIQUE APPLIQUÉE

A LA DÉTERMINATION DES BACTÉRIES

INTRODUCTION

Un ouvrage de bactériologie, même s'il est destiné à des médecins, ne doit pas se borner à une étude descriptive des bactéries pathogènes. Le diagnostic bactériologique, fondé sur la détermination méthodique des bactéries, doit y occuper une place considérable. Or, dans nos traités classiques, ce chapitre dont l'importance pratique ne paraît pas discutable, est à peine ébauché quand il ne fait pas complètement défaut.

De tels livres peuvent être d'excellents ouvrages de vulgarisation, mais ils constituent des guides insuffisants pour les travaux de laboratoire et même pour les examens bactériologiques courants que tout médecin doit savoir pratiquer. Au point de vue diagnostique, le lecteur y trouve bien quelques indications générales, mais dès le début de la recherche il est livré à lui-même. Il a peu de chances d'atteindre au but alors qu'il ignore et les fausses routes auxquelles il est exposé et les éléments de diagnostic différentiel, variables selon les circonstances, dont la connaissance lui permettrait de surmonter les difficultés et d'éviter les erreurs.

En tant qu'ouvrages de vulgarisation, on peut reprocher à de tels livres de donner de nos connaissances une idée non seulement incomplète, mais inexacte. Un ouvrage, dont le plan aurait été conçu sans qu'il soit tenu aucun compte des bactéries dites saprophytes supposerait par cela même qu'une distinction nette peut être établie entre les espèces pathogènes et les espèces inoffensives.

Or, les faits nous enseignent que la virulence est le plus variable des caractères de l'espèce; aussi l'étude des bactéries pathogènes nous paraît-elle inséparablement liée à celle des bactéries non pathogènes.

Cette proposition qui s'impose de par la biologie — la virulence pour les différents animaux apparaissant comme un cas particulier de l'adaptation au milieu — est tout aussi vraie au point de vue de la médecine pratique.

D'une part, parmi les bactéries inoffensives, il en est qui semblent constituer des races « dénaturées » ou « dégénérées » d'espèces très virulentes : leur connaissance est d'un haut intérêt au point de vue prophylactique. D'autre part, il n'est guère possible de faire une recherche en vue de l'isolement d'un germe pathogène pour l'espèce humaine sans rencontrer dans les tubes de culture des « saprophytes » parfois très voisins des bactéries précédentes par leurs caractères botaniques et même par leurs propriétés chimiques. On conçoit que l'erreur soit inévitable si l'on ignore quelles sont ces bactéries

saprophytes susceptibles de prêter à confusion et si l'on n'étudie pas les signes différentiels qui permettent de séparer des espèces qui présentent un si grand nombre de caractères communs.

Il ne suffit donc point, pour qu'un livre de bactériologie soit de quelque utilité au cours des examens de laboratoire, que l'on y trouve la description du plus grand nombre possible des bactéries de la nature, il faut encore, dans un tel ouvrage, que les microrganismes soient soumis à une étude méthodique et comparée.

Telles sont les considérations qui nous ont engagés à

écrire ce livre.

Les obstacles auxquels on se heurte lorsqu'on tente un essai de détermination méthodique des bactéries sont considérables; ils relèvent de plusieurs causes.

Une première difficulté est due aux descriptions incomplètes qui abondent dans la littérature bactériologique.

Ces bactéries insuffisamment caractérisées peuvent être rangées en deux catégories. Les premières sont soit des espèces communes qu'il est facile d'isoler à nouveau, soit des espèces plus rares mais dont on peut trouver des échantillons dans les collections. Il fallait les redécrire et procéder à la revision comparée du groupe auquel elles se rattachent, à l'exemple de ce que Chester, Weber, Holzmüller ont fait pour les groupes subtilis, proteus et mycoïdes. Une deuxième catégorie comprend les bactéries incomplètement étudiées dont il n'existe plus de cultures dans les collections des différents laboratoires et dont les descriptions originales ne répondent avec quelque netteté à aucun des microrganismes que l'on isole communément. De telles descriptions ne servent qu'à encombrer les livres de bactériologie systématique: plusieurs d'entre elles pourraient se rapporter - plus ou moins vaguement - à une seule et même espèce bactérienne, aucune ne permet une détermination précise. Nous les considérons donc comme inutilisables et nous les rayons du cadre des tableaux de diagnostic 1.

Nous ne pouvions cependant les passer complètement sous silence car, dans le nombre, il se trouve certainement des bactéries distinctes des espèces bien connues, ne seraient-ce que les nombreux ferments qui n'ont guère été étudiés au point de vue systématique et qui parfois même n'ont pas été cultivés sur les milieux solides. Ces microrganismes figurent dans un Appendice où nous les rangeons, pour faciliter la recherche, en liquéfiants, mobiles, sporulés ou non.

Mais la difficulté principale résulte de la variabilité des caractères morphologiques et des propriétés chimi-

ques des espèces.

En effet, il n'est pas un caractère qui, dans une seule et même espèce, ne soit susceptible de varier d'une culture à l'autre. Cette variabilité s'observe surtout à la suite d'un séjour prolongé dans les milieux artificiels. On ne saurait trop insister sur ces faits. Nous examinerons donc un à un les éléments qui nous servent à la différenciation des espèces bactériennes. A propos de chacun de ces caractères nous mettrons en relief les erreurs auxquelles nous exposent les variations qu'il peut subir dans les milieux artificiels et dans l'habitat naturel; nous étudierons ensuite dans quelle mesure et par quels moyens on peut éviter les fausses routes.

* *

^{1.} Par bactéries incomplètement décrites nous entendons les bactéries non chromogènes dont le Gram est inconnu, et, dans certains groupes, celles dont le Gram est connu mais qui ne peuvent être comparées à leurs voisines par suite de l'insuffisance des caractères culturaux ou chimiques connus.

S'il est incontestable que le caractère anaérobie ou aérobie n'est pas un attribut de l'espèce (puisque l'on peut obtenir, par des artifices de culture, des races aérobies de bactéries qui sont d'ordinaire strictement anaérobies, et inversement), il ne s'ensuit pas qu'il faille dénier à ce caractère toute valeur indicatrice. Est-il besoin de rappeler le grand nombre de bactéries qui, transportées de leur habitat sur les milieux de culture, se comportent invariablement comme des anaérobies stricts?

Il faut concéder, toutefois, que certaines espèces strictement anaérobies paraissent avoir leur représentant dans le domaine des bactéries facultativement aérobies. Le nombre de ces races facultatives d'espèces habituellement anaérobies est peut-être destiné à s'accroître; actuellement il n'est pas considérable si l'on se borne à retenir

ce qui est bien établi.

La morphologie des bactéries varie selon la nature du milieu de culture. Sans parler des espèces du groupe proteus (Hauser) dont le polymorphisme est presque caractéristique, il en est d'autres qui présentent, à un moindre degré, cette variabilité de longueur et de forme. Tels sont par exemple Bact. prodigiosum, Micr. melitensis qui, suivant le milieu, apparaissent soit comme des microcoques soit sous forme de courts bâtonnets.

La mobilité n'est pas davantage une propriété cons-

tante de l'espèce.

Il arrive qu'une bactérie nettement ciliée et mobile lors de sa description première, se montre par la suite absolument immobile, alors même que l'examen porte sur un échantillon provenant des repiquages de la culture originale. Dans les cas de ce genre, la culture prolongée dans les milieux liquides ne permet pas toujours de restituer à la bactérie sa mobilité perdue.

D'autre part, les recherches de Meyer et Ellis ont montré que certains microrganismes (la presque totalité des sarcines) que tout le monde considérait comme immobiles sont, en réalité, douées d'une mobilité éphémère qui se manifeste vers le troisième jour et qui est due à la présence de cils.

Ainsi apparaît une notion nouvelle dans la biologie des bactéries non sporogènes, celle de la mobilité tran-

sitoire opposée à la mobilité permanente.

La réaction des bactéries à la coloration de Gram est un peu moins sujette à variation. Il est des espèces — peu nombreuses si l'on tient compte des irrégularités de technique qui peuvent être évitées — dont certaines races sont Gram-positives, d'autres Gram-négatives. Citons comme exemples, entre autres : Bact. vulgare (proteus vulgaris) (Hauser), M. mastitidis (Nocard). Il n'est pas rare, par contre, d'observer qu'une espèce qui prenait le Gram dans les premières cultures, ne résiste plus à la décoloration après un séjour parfois peu prolongé dans les milieux de culture. L'inverse se produit rarement.

La variabilité des caractères de cultures est assez considérable.

Le développement ou le défaut de culture d'une espèce sur un milieu donné, n'est pas un fait constant; mais ces différences résultent plus souvent d'un acclimatement artificiellement obtenu que de l'aptitude ou de l'inaptitude spontanée à la végétation sur ce milieu nutritif.

L'aspect de la culture peut présenter d'un échantillon à l'autre, d'un tube à l'autre, d'une colonie à sa voisine des différences sensibles (Exemple: Sarcina variabilis). A la notion des variétés de culture qui peuvent, à coup sûr, dérouter au cours d'une détermination, il convient d'opposer l'existence de certaines races extrêmement voisines, ne différant les unes des autres que par des nuances minimes, différences qui se maintiennent avec une constance remarquable pendant des années. Telles

sont par exemple les quatre races de B. mycoïdes décri-

tes par Holzmüller.

Les propriétés chimiques des bactéries, quoique plus fixes que les caractères botaniques, n'échappent pas à la loi de la mutabilité. La fermentation des différents sucres, propriété d'après laquelle on a établi des espèces nouvelles, même dans ces tout derniers temps, peut varier pour une même espèce bactérienne après acclimatement plus ou moins prolongé à des milieux additionnés d'un sucre donné; certaines bactéries qui étaient sans action sur ce sucre peuvent acquérir la propriété de le faire fermenter. C'est ainsi que des échantillons non coagulants de B. pneumoniae (Friedlænder-Weichselbaum) ont pu être amenés à coaguler le lait après culture prolongée dans ce milieu, se transformant de la sorte en B. lactis aerogenes (Escherich).

Arrivons au pouvoir tryptique des bactéries à l'égard de la gélaline. Certaines espèces parmi celles que nous classons comme « non liquéfiantes » n'attaquent pas la gélatine à 10°/, à 20-22° parce qu'elles ne donnent qu'une culture grêle à la température de la chambre. Quelquesunes d'entre elles, cultivées dans le même milieu à une température plus élevée, seraient susceptibles de peptoniser la gélatine parce qu'elles s'y développeraient plus abondamment 1.

Ce fait montre que les propriétés des bactéries présentent d'une espèce à l'autre des différences d'ordre quantitatif plutôt que des dissemblances absolues. Il ne constitue pas une cause d'erreur au cours de la détermination, car dans toute méthode de diagnostic bactériologique on

^{1.} On peut réaliser cette culture soit en employant une gélatine dure (à 15 %) qui peut-être maintenue solide à 25 ct au-delà soit en ensemençant sur gélatine liquide, placée à l'étuve; l'attaque est misc en évidence par l'impossibilité de solidifier le milieu par refroidissement.

a soin de préciser les conditions de milieu et de tempé-

rature, ainsi que le moment de l'observation.

Mais nous allons nous heurter à une réelle difficulté : le pouvoir liquéfiant d'une espèce qui se développe bien sur gélatine à 22° peut varier selon les races alors même

que l'on observe dans les conditions indiquées.

Dans des cas rares les écarts peuvent être considérables : une bactérie peut cesser de liquéfier la gélatine après un certain nombre de repiquages. Lévy a noté le fait pour une race de B. proteus, Macé pour Sarcina aurea, etc. Ce qui est plus déconcertant, c'est qu'il est possible d'isoler de la nature ou de l'organisme animal des races liquéfiantes d'espèces habituellement dépourvues de tout pouvoir tryptique. On connaît ainsi des coli liquéfiants, des streptocoques pyogènes liquéfiants. Burri a trouvé une race liquéfiante de M. (streptococcus) acidi lactici (Grotenfeldt).

Ces écarts énormes sont heureusement exceptionnels; ils rendraient tout diagnostic bactériologique impossible. Habituellement il s'agit de différences de degré, certaines races liquéfiant plus ou moins fortement, plus ou moins rapidement. Certes, il arrive souvent qu'un échantillon ne liquéfie pas du tout, alors qu'un autre de la même espèce attaque un peu la gélatine. Nous verrons au chapitre suivant que la difficulté qui résulte de ce fait n'est pas insurmontable.

Le pouvoir de produire de l'indol par fermentation des matières protéiques peut varier dans des proportions considérables pour une même espèce micro-

bienne.

La réaction indol-nitreuse que Koch avait considérée comme constante dans la culture du vibrion cholérique, s'est montrée, par la suite, très variable selon les échantillons: nette après vingt-quatre heures avec certains vibrions, faible et tardive avec d'autres, négative avec le vibrion cholérique authentique de Rome (du moins dans

les premières cultures).

L'exemple de B. coli, var. anindolicum montre la variabilité du phénomène de la production d'indol après addition de nitrites.

Le pouvoir pathogène pour les animaux de laboratoire

est le plus inconstant des caractères de l'espèce.

D'une part, des cultures très virulentes peuvent perdre leur virulence par un séjour parfois peu prolongé dans les milieux artificiels. D'autre part, il est d'observation courante que l'on peut isoler de la nature ou de l'organisme animal tantôt des races virulentes, tantôt des races avirulentes d'une même espèce : l'exaltation de la virulence par passages en série permet de démontrer cette identité. L'action pathogène des espèces dites saprophytes est soumise aux mêmes variations; tel échantillon se montre pathogène pour les animaux d'expérience alors que par tous ses autres caractères il répond exactement à une espèce qui, habituellement, ne se multiplie pas dans l'organisme animal. La virulence élective, « spécifique » d'une bactérie pour une espèce animale déterminée est également sujette à variations. L'observation de Knorr est très instructive à ce point de vue. Cet auteur a constaté qu'en exaltant la virulence d'un streptocoque pyogène pour la souris il avait affaibli son action pathogène pour le lapin.

Rappelons enfin qu'il n'y a pas de rapport entre la virulence d'une bactérie pour les animaux d'expérience

et son pouvoir pathogène pour l'homme.

La variabilité des espèces diminue la valeur diagnostique des caractères que l'on considère, à juste titre, comme les plus importants pour la détermination des bactéries.

Une classification est cependant nécessaire. Aucun

bactériologiste n'osera préconiser le retour au chaos sous prétexte que l'on arrivera un jour, par des artifices de culture, à transformer les unes dans les autres des espèces très distinctes en apparence.

L'utilité d'un plan de diagnostic méthodique des bactéries n'est pas plus contestable que la nécessité d'une systématisation, et quelque grandes que soient les difficultés que présente cette étude systématique, elles ne sont pas de nature à défier toute détermination métho-

dique.

Disons, tout d'abord, qu'un diagnostic méthodique n'est possible que si l'on opère avec des cultures fraîchement retirées de l'habitat naturel. Ainsi se trouveront éliminées les erreurs innombrables qui résulteraient des modifications que subissent les caractères morphologiques et biologiques des espèces sous l'influence du séjour dans les milieux artificiels. Il est bien exceptionnel, d'ailleurs, que l'on ait à procéder à la détermination de vieilles cultures.

De la sorte, le bactériologiste ne se trouve aux prises qu'avec les causes d'erreur qui résultent de la mutabilité que les bactéries subissent spontanément dans leur habitat naturel.

Cette variabilité spontanée ne se manifeste pas, habituellement, par les écarts déconcertants dont nous avons cité quelques exemples : il s'agit, en général, de différences de degré et non de contrastes essentiels. L'erreur devient inévitable, par contre, lorsque des propriétés radicalement opposées se rencontrent dans différents échantillons d'une même espèce, à moins, toutefois, qu'il ne s'agisse d'une race aberrante bien connue et décrite. Dans ce cas on arrive à déterminer la race atypique sans plus de difficulté que n'en comporte le diagnostic des races typiques.

Enfin, le fait qu'au cours de toute recherche ayant pour

but un diagnostic d'espèce on s'astreint à observer dans des conditions rigoureusement déterminées et toujours les mêmes réduit, dans une notable mesure, les causes d'erreur qui résultent de la mutabilité des bactéries.

Il n'en est pas moins vrai qu'un essai de diagnostic des espèces bactériennes qui ne tiendrait pas compte de cette variabilité serait un ouvrage qui ne s'appuierait sur aucun fondement solide et ne fournirait que des indications

trompeuses.

Il importait donc d'éviter l'erreur commise par les auteurs qui s'occupèrent de bactériologie systématique à l'époque peu reculée où régnait le dogme de l'immuabilité des espèces. Ces auteurs juxtaposaient, sans aucun effort critique, comme s'il s'agissait invariablement d'espèces distinctes, toutes les bactéries décrites, alors même que l'insuffisance des caractères relevés les rendaient inaptes à la détermination. Or, les seules bactéries qui doivent figurer dans le cadre d'un tableau de détermination sont : 1° celles dont les cultures ont pu être réétudiées d'une manière comparée et 2° celles dont on ne trouve plus d'échantillons dans les laboratoires mais dont les descriptions fournissent tous les éléments de comparaison nécessaires à la revision critique.

Parmi ces bactéries complètement ou suffisamment étudiées il en est qui peuvent être assimilées les unes aux autres; d'autres ne diffèrent entre elles que par un caractère fragile et doivent être considérées comme des variétés facilement réductibles, c'est-à-dire susceptibles de se transformer l'une dans l'autre au cours d'une série de cultures. En effet, ce qui oppose l'espèce et la race, d'une part, à la variété bactérienne, de l'autre, c'est la fixité relative des caractères propres à travers les géné-

rations successives.

Mais une grande difficulté subsiste : elle résulte de l'impossibilité où nous sommes, à l'heure actuelle, de

fixer les caractères distinctifs nécessaires et suffisants à l'établissement d'une espèce, en d'autres termes, de donner une définition de l'espèce et de la race en bactériologie. Les expressions « espèces très voisines » et « races d'une même espèce » n'ont pas de signification précise; elles recouvrent les mêmes faits.

Si la variabilité des bactéries est un phénomène général, elle n'apparaît pas au même degré dans toutes les espèces. C'est ainsi, par exemple, que la fixité relative du bact d'Eberth ou de la bactéridie charbonneuse s'oppose à l'extrême mutabilité du vibrion cholérique ou du coli.

La plupart des espèces semblent reliées par une chaîne ininterrompue de formes de passage — races atypiques ou espèces secondaires — dérivées par mutation d'une espèce principale originelle. D'autres bactéries, beaucoup moins nombreuses, paraissent constituer, au contraire, des espèces bien distinctes de leurs voisines, plus nettement individualisées que les précédentes parce que moins sujettes à variation.

En présence de la nécessité d'enfermer dans le cadre d'un tableau synoptique des espèces reliées entre elles par des degrés de parenté si divers, il fallait éviter l'écueil de les mettre toutes sur le même plan, de les jux taposer sans faire ressortir que des distances très inégales séparent les unes des autres les bactéries qui s'y succèdent.

Aussi avons-nous pensé qu'il était rationnel de réunir en groupes certaines bactéries voisines—celles dont on ne peut dire si ce sont des espèces proches parentes ou des races d'une même espèce. Les membres constituants d'un tel groupement, reliés entre eux par un certain nombre de caractères communs, s'agencent autour d'une espèce principale dont ils pourraient bien dériver par des modifications successives. Le groupe ainsi formé ap-

paraît bien comme un groupe naturel.

En d'autres endroits de ce livre on verra, au contraire, se suivre dans un même tableau de détermination des espèces qui diffèrent foncièrement l'une de l'autre tant par l'importance que par la fixité héréditaire relative des caractères distinctifs. En ne rattachant de telles espèces à aucun groupe nous avons voulu indiquer au lecteur la distance qui les sépare : de pareilles bactéries ne se trouvent juxtaposées que par le hasard et l'artifice inévitable de toute classification.

Il nous reste à expliquer sur quelles bases nous avons établi les groupes bactériens. L'idéal serait, à coup sûr, de ne réunir en groupe que les bactéries transformables l'une dans l'autre par acclimatement à des milieux divers. (C'est ce qui a été fait, par exemple pour B. coli immobile, B. pneumoniæ et B. lactis aerogenes.) Mais une homologation aussi parfaite n'a pu être réalisée, à l'heure actuelle, que pour un petit nombre de microrganismes. Habituellement la base du groupement sera fournie par la constatation d'un faisceau commun de caractères morphologiques et culturaux, de propriétés chimiques et surtout de réactions biologiques (réactions d'immunité, recherche de sensibilisatrices par la méthode de Bordet-Gengou, etc.). Enfin, quand il s'agira de bactéries incapables de fournir un immun-serum expérimental, nous nous contenterons de l'analogie étroite de la morphologie et des cultures jointe à celle des propriétés chimiques.

La détermination de l'espèce ne constitue pas toujours un problème facile ; la solution reste souvent imprécise en dépit des recherches les mieux conduites. Or, un travail tel que celui que nous nous sommes proposé, loin de masquer les difficultés, doit refléter, autant que possible, les incertitudes du diagnostic bactériologique.

Nous signalerons donc, chemin faisant, les cas où la différenciation des espèces comportera des difficultés particulières qui pourront obliger le lecteur à renoncer à la détermination précise et à se contenter d'un diagnostic d'orientation. Dans certains cas, il est impossible, en l'état actuel de nos connaissances, de poursuivre les recherches au delà du diagnostic du groupe auquel appartient la bactérie étudiée; il en est ainsi par exemple des B. du groupe paratyphosum-enteritidis qui ne peut pas être démembré même à l'aide des réactions biologiques les plus sensibles. Il est permis de s'arrêter à la détermination du groupe lorsque l'espèce étudiée n'est exactement superposable à aucune des bactéries qui constituent le groupe, mais ne se distingue que par des nuances ou par des caractères fragiles. Souvent, en effet, la culture que le lecteur aura en mains sera non pas une bactérie rigoureusement identique à telle espèce classique, mais une variété de celle qui servit à la description originale.

Pour conclure à l'existence d'une espèce nouvelle, il ne suffit pas d'avoir trouvé des caractères distinctifs importants, il faut en avoir vérifié la fixité par une longue série de cultures. Il serait très désirable que l'on renonçât enfin à l'habitude détestable qui consiste à édifier des « espèces nouvelles » fondées sur des particularités fragiles. Bon nombre de ces descriptions de bactéries soi-disant nouvelles — certaines même sont très récentes — ne s'expliquent que par l'absence de tout

effort d'identification.

Quelque convaincus que nous soyons de la possibilité de réaliser la détermination méthodique — exception faite pour les cas où la variabilité des espèces se manifeste par des écarts énormes qui rendent l'erreur inévitable — nous espérons n'avoir négligé aucune considération qui soit de nature à mettre en relief les difficultés d'un tel essai et les faiblesses inévitables de toute systématisation bactériologique.

Le lecteur devra donc corriger par une saine interprétation ce qu'a de trop schématique la forme d'un ouvrage de ce genre, alors même que les auteurs se sont efforcés de ne pas sacrifier la vérité à la clarté. Jamais on ne perdra de vue cette notion que les espèces sont reliées entre elles par des formes de passage qui apparaissent comme l'expression actuelle de la mutabilité des caractères morphologiques et culturaux ainsi que des propriétés biologiques des bactéries.

PREMIÈRE PARTIE

MARCHE A SUIVRE POUR LA DÉTERMINATION MÉTHODIQUE DES BACTÉRIES

PREMIÈRE PARTIE

MARCHE A SUIVRE POUR LA DÉTERMINATION MÉTHODIQUE DES BACTÉRIES

Pour que le lecteur soit à même d'utiliser les tableaux de détermination qui suivent, il nous paraît nécessaire de lui fournir quelques éclaircissements au sujet de la marche à suivre pour l'étude des éléments du diagnostic différentiel.

Il est un certain nombre de caractères dont la recherche est indispensable au cours de toute détermination bactérienne; il en est d'autres, au contraire, dont l'étude n'est utile que dans des cas particuliers.

Nous allons passer en revue les uns et les autres ; chemin faisant, nous mettrons en relief ceux dont la recher-

che est indispensable dans tous les cas.

Chacun de ces caractères sera étudié d'une manière complète et suivant une méthode invariable. Le lecteur doit s'y conformer rigoureusement; l'exactitude du diagnostic bactériologique est à ce prix.

Plan d'étude. — La détermination d'une bactérie isolée en culture pure repose sur l'étude minutieuse des ca-

ractères suivants:

- 1° Recherche des conditions nécessaires à la culture : influence de l'oxygène, de la température, de la composition du milieu nutritif sur le développement de la bactérie à déterminer.
 - 2º Examen des cultures sur les différents milieux.
- 3° Etude des caractères morphologiques, de la mobilité, de la colorabilité de la bactérie; étude de la sporulation.
 - 4° Etude des produits formés dans les cultures.

5° Recherche des propriétés biologiques in vivo.

Les erreurs d'observation constituent la grande cause de fausses routes au cours des essais de détermination bactériologique. Aussi estimons-nous qu'il n'est pas inutile d'attirer l'attention du lecteur — de celui, tout au moins, qui n'est pas rompu de vieille date aux travaux de microbiologie — sur les difficultés et sur les causes d'erreur qu'il pourra rencontrer dans l'appréciation et dans l'interprétation des caractères morphologiques et des réactions biologiques. En bactériologie comme en clinique, la connaissance parfaite de la sémeiologie constitue la base indispensable de la diagnose.

- 1° Recherche des conditions de milieu et de température nécessaires au développement de la bactérie.
- a) Influence de l'oxygène. Un premier élément de diagnose nous est fourni par la notion de l'influence de l'oxygène sur le développement de l'espèce isolée : il est donc nécessaire de poursuivre l'obtention de cultures pures parallèlement par le procédé des plaques et par celui des dilutions successives dans la gélose glucosée profonde en tubes de Liborius-Veillon (voir Technique).

On notera avec soin le niveau auquel se développent les colonies dans ce dernier milieu. La culture peut se faire uniquement à la surface; dans d'autres cas, les colonies, tout en se développant à la surface du milieu, se forment également dans les couches sous-jacentes de la gélose, à un ou plusieurs centimètres, parfois à quelques millimètres seulement au-dessous de la surface. Dans ces deux ordres de circonstances, il s'agira de bactéries aérobies. Elles sont strictement aérobies dans le premier cas, facultativement dans le second.

Seules les bactéries qui ne présentent aucun développement à la surface des milieux aérés et qui, dans les tubes de gélose glucosée à haut culot (10 à 12 centimètres) ne se développent que dans les couches profondes, devront être considérées comme strictement anaérobies. Avant de se décider à entreprendre la détermination d'une espèce à l'aide des tableaux que nous réservons aux anaérobies, le lecteur fera bien de vérifier le caractère exclusivement anaérobie de la bactérie étudiée en l'ensemençant comparativement à la surface de milieux aérés et à la surface de milieux privés d'air (Voir Technique).

De très rares espèces [ex. Bact. abortus (Bang)] ne se développent ni à la surface des milieux aérés, ni dans les milieux totalement privés d'air, mais seulement en présence d'une proportion déterminée d'oxygène, inférieure à celle de l'air. De telles bactéries, ensemencées par piqûre dans de la gélose glucosée profonde, ne se développent qu'à une certaine distance au-dessous de la surface aérée et sur une hauteur limitée : aucune colonie

n'apparaît au-dessous et au-dessus de ce niveau.

b) Influence de la température. Recherche des températures limites et de la température optima. — En vue de toute détermination bactérienne, on ensemencera plusieurs séries des milieux nutritifs. Une première série (gélatine, gélose, pomme de terre, bouillon, lait) sera exposée à la température de 20°-22°. Une deuxième série [gélose, pomme de terre, milieux liquides (bouillon, gélatine, lait), milieux albumineux et sanglants] sera placée à l'étuve à 37°. Une troisième série de milieux de culture (quelques tubes de gélose) sera maintenue à la température de 56°-60°. Ces trois séries de cultures suffiront, dans un premier temps, à orienter la recherche; souvent il sera nécessaire de compléter ces renseignements par l'étude de l'optimum; parfois même il faudra déterminer les températures minima et maxima.

L'immense majorité des bactéries se développent à 20° et à 37°, l'optimum étant tantôt à la température de la chambre, tantôt à l'étuve à 37°, tantôt à une température intermédiaire. Les limites de la végétation sont,

dans ce cas 15° et 42° en général.

A côté de ces bactéries mésophiles, il existe quelques

espèces qui se développent fort bien à 0.

La limite supérieure de ces espèces dites *psychro-philes*, peut être 20° et même 15°. Exemple : Bact. phosphorescens Færsteri.

Il est une troisième catégorie de microrganismes qui ne peuvent être cultivés sur aucun milieu à 20°-22° et

qui se développent bien à 37°.

L'étude de la limite supérieure de leur végétation permettra de ranger ces espèces, à leur tour, en deux sous-classes: 1° celles qui ne se développent pas au-dessus de 42° et 2° celles qui pullulent encore au-delà de 45°.

Parmi ces dernières, les unes ont leur optimum à 37°; le registre thermique de leur végétation est particulière ment étendu, la température maxima pouvant dépasser 55° et atteindre 60° (bactéries thermo-tolérantes).

Les autres se développent à partir de 37° mais leur optimum est notablement plus élevé, à 45°, 50 ou 60° (bactéries facultativement thermophiles).

Une dernière catégorie de bactéries ne présentent aucun développement à 37° quelque soit le milieu nutritif employé; elles ne peuvent être cultivées qu'à une température plus élevée (bactéries obligatoirement thermophiles).

c) Influence de la composition chimique du milieu. Étude des milieux nutritifs nécessaires au développement de l'espèce. — Toute détermination nécessite la

culture du germe isolé à l'état pur :

1º Dans les milieux liquides (bouillon, lait).

2° Sur les milieux solides usuels (gélatine, gélose, pomme de terre) et spéciaux [milieux glycérinés (gélose et pomme de terre glycérinées) milieux albumineux (gélose additionnée de liquide d'ascite ou de sérum, sérum coagulé), milieux sanglants (gélose au sang)].

(Pour la préparation de ces milieux, voir *Technique*.) La culture-mère devra être ensemencée simultanément sur quatre tubes au moins de chaque milieu nutritif : deux de ces tubes seront exposés à 20°-22°, deux à 37°.

En outre, on ensemencera deux tubes de gélose ordinaire à l'étuve à 56°.

Tous ces tubes seront examinés quotidiennement. On notera le moment où la culture devient apparente à l'œil nu et la rapidité de l'extension des colonies sur les différents milieux. Cet examen comparé mettra en évidence le milieu de choix de l'espèce bactérienne; dans certains cas, il montrera qu'il est des milieux impropres au développement de la bactérie étudiée. Il est de toute nécessité de prolonger cet examen pendant un temps suffisant avant de conclure qu'un germe ne peut être cultivé sur un milieu donné ¹. Cette remarque s'applique surtout

^{1.} Quand nous disons d'une bactérie qu'elle ne se « développe pas » ou qu'elle « ne présente pas de culture apparente » sur tel ou tel milieu, nous n'entendons parler que des cultures premières. Beaucoup d'espèces peuvent devenir moins exigeantes à la suite d'un nom-

aux espèces qui ne présentent qu'un développement lent et grêle sur tous les milieux : dans ce cas, il est parfois nécessaire d'attendre deux et même plusieurs semaines avant de se prononcer.

Supposons que la bactérie qui est l'objet des investigations ne se développe pas sur les milieux solides usuels ; la recherche se trouve d'emblée localisée à une catégorie de bactéries dont le nombre est relativement restreint.

L'action favorisante de la glycérine, celle des substances albuminoïdes sur le développement du germe mettra en évidence son degré d'exigence en substances nutritives. C'est là une des notions qui orienteront de la façon la plus sûre la marche de la détermination. Lorsqu'il s'agira de bactéries dont la culture nécessite un milieu albumineux, on trouvera des indications utiles en recherchant si la présence d'hémoglobine est indispensable (bactéries dites strictement hémoglobinophiles) ou non (bactéries sérophiles).

Supposons au contraire, que la bactérie étudiée, peu exigeante en substances nutritives, se développe sur les milieux dits usuels : dans ce cas, il y a de précieuses indications à tirer du fait qu'elle peut être cultivée sur tous les milieux usuels ou qu'elle ne se développe que sur certains d'entre eux.

Le développement d'une espèce sur plaques de gélatine ordinaire, exposées à la température de 20°-22°, ou son défaut de culture sur ce milieu sont, en général, fonction des conditions thermiques nécessaires à la multipli-

bre variable de repiquages et s'acclimater à des milieux nutritifs primitivement impropres à leur multiplication.

Au moment où l'on constate cet acclimatement la détermination sera déjà faite, sauf dans quelques cas particulièrement délicats.

Dans ces derniers cas, la notion de la possibilité ou de l'impossibilité d'acclimater une bactérie à un milieu donné pourra fournir des indications qui mettront tardivement sur la voie d'une diagnose qui restait hésitante. cation du germe. Lorsque dans le cours de cet ouvrage nous parlerons de culture sur gélatine ordinaire cela signifiera culture sur plaques de gélatine à 10 °/., solide à 20 -22°. Le lecteur qui, ayant recours aux tableaux de détermination de ce livre, n'aurait pas pris soin de faire ses cultures dans les conditions de température et de milieu sus-indiquées, s'exposerait à des erreurs.

En esfet, un certain nombre de bactéries que nous rangeons parmi celles qui ne « se développent pas sur gélatine ordinaire » donneraient des cultures nettement apparentes sur des milieux contenant de plus grandes quantités de gélatine, sur de la gélatine dure à 15 °/. qui

reste solide à 25°.

Le défaut de développement d'une bactérie sur gélatine peut être dû à un autre facteur qu'à son caractère plus ou moins psychrophobe. Il est des espèces qui ne peuvent être cultivées ni sur gélatine solide à 20°, ni sur gélatine solide ou liquide à des températures plus élevées, mais fort bien sur gélose à la température de la chambre.

C'est alors le milieu qui est impropre au développement de l'espèce. De même, certains microrganismes ne se développent pas sur pomme de terre. Ce caractère négatif ne présente pas, au point de vue de la détermination bactériologique, une valeur indicatrice comparable à celle que nous avons attribuée au fait qu'une espèce ne peut être cultivée sur la gélatine ordinaire. Souvent, en effet, le développement d'une bactérie ou son défaut de culture sur la pomme de terre dépend de la réaction de ce milieu. Or, la pomme de terre naturelle présente une réaction variable suivant les échantillons. Souvent elle est un peu acide et cette légère acidité suffit à empêcher le développement de bon nombre d'espèces. Ainsi s'explique le fait qu'un seul et même spécimen d'une espèce bactérienne puisse donner, entre les mains de différents opérateurs, les résultats les plus opposés, tel bactériologiste obtenant

une culture abondante sur pomme de terre alors que tel autre ne constate aucun développement apparent sur ce milieu. L'exemple de Bact. diphteriæ avium (Loir et Ducloux) est très démonstratif à ce point de vue : la culture originale qui avait fourni un revêtement abondant sur pomme de terre fut revue par Guérin qui n'obtint pas le moindre développement sur ce milieu.

L'absence de culture sur pomme de terre constitue, par contre, un caractère différentiel d'une haute valeur dans les cas où il est établi qu'une espèce est incapable de se multiplier sur le tubercule alors même qu'il a été

préalablement alcalinisé.

L'influence de la réaction du milieu sur le développement d'une bactérie peut, dans certains cas, fournir au diagnostic des renseignements intéressants. L'immense majorité des espèces ne se développent pas en milieu nettement acide, aussi prend-on soin d'alcaliniser légèrement les milieux nutritifs habituels. Il est cependant un groupe de bactéries (B. dites acidophiles) qui se développent bien dans le bouillon acétique à 0,5-1 % et qui résistent même à une acidité beaucoup plus forte (jusqu'à 6 °/o et 8 °/o). Le bouillon acidifié permet ainsi la sélection des espèces acido-tolérantes.

Il peut être utile, dans certaines circonstances, d'étudier l'influence de l'humidité du milieu sur le développement de la bactérie à déterminer. Ainsi, Bact. ulceris cancrosi (Ducrey) ne se développe d'une manière appréciable que dans le liquide de condensation de la gélosesang. Stein a même réussi à le cultiver sur plaques de gélose au sang en maintenant dans l'étuve une atmos-

phère humide.

Il existe quelques rares espèces dont le développement est, au contraire, favorisé par la sécheresse du milieu. [Exemple: M. xerophilus, M. pulcher (Glage).]

2° Examen des cultures

Relevé méthodique de leurs caractères morphologiques.

L'examen des cultures en vue d'une détermination microbienne ne saurait consister en un vague relevé des principaux caractères des colonies. Une analyse méthodique et complète est indispensable. Nous allons énumérer les caractères qui doivent être notés; à propos de certains d'entre eux nous conviendrons avec le lecteur de la signification à attribuer aux termes employés dans nos tableaux.

A) De la propriété chromogène

Nous dirons qu'une culture est dépourvue de propriétés chromogènes quand il s'agira de colonies blanches ou grises. Nous appellerons chromogènes les microbes qui donnent des colonies colorées sur gélatine ou sur gélose.

De cette définition, il résulte que les bactéries qui, se développant en colonies blanches ou grises sur gélatine et sur gélose, n'élaborent de pigment que sur la pomme de terre ou sur tout autre milieu nutritif, devront être recherchées parmi les espèces non chromogènes.

Par contre, une espèce sera dite chromogène lorsque ses colonies, non colorées par elles-mêmes, élaborent un pigment qui diffuse dans la gélatine ou la gélose ambiante. Une espèce est-elle susceptible de produire deux ou plusieurs pigments différents, c'est le plus rare d'entre eux qui servira d'indicateur dans la marche de la détermination. Les pigments élaborés par les bactéries 28 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE sont, par ordre de fréquence: p. jaune, p. brun, p. vert, p. rouge, p. violet, p. bleu.

[Exemple: une bactérie donne-t-elle une culture grisâtre sur gélatine, jaune sur gélose, c'est dans les tableaux des chromogènes jaunes qu'il faudra poursuivre la détermination.

Autre exemple: une espèce donne-t-elle des colonies jaunâtres sur gélatine, jaunes sur gélose avec coloration verte du milieu environnant, c'est parmi les B. élaborant un pigment vert qu'il faudra chercher.]

Convenons encore que les cultures très faiblement teintées (blanc-jaunâtre, blanc bleuâtre ou à reflets nacrés) seront considérées comme non chromogènes. Ce n'est donc qu'en présence d'un pigment de quelque intensité que le lecteur cherchera parmi les bactéries chromogènes. Certaines bactéries douées de propriétés chromogènes faibles peuvent donner lieu à des hésitations; pour prévenir les erreurs qui auraient pu résulter de ces différences d'appréciation, nous leur avons ménagé une place dans les deux ordres de tableaux, ceux des B. chromogènes et ceux des B. non chromogènes.

Il est entendu, enfin, qu'une culture ne sera pas considérée comme chromogène parce que le milieu (gélatine, gélose) brunit à la longue. Ce caractère s'observe trop fréquemment quand les cultures vieillissent pour que l'on en puisse faire un signe distinctif.

B) Description des cultures sur les différents milieux

I. — Gélatine. — 1º Ensemencement par piqure dans des tubes à culot droit. Etude de la liquéfaction. — Dans un nombre de cas assez restreint la propriété liquéfiante peut varier selon les races d'une même espèce; mais, en règle générale, on peut déduire de ce phénomène une indication très importante pour la détermination de l'espèce bactérienne.

L'appréciation du caractère liquéfiant ou non d'une espèce est habituellement très facile 1. Mais il y a des degrés dans l'action peptonisante. Convenons, pour éviter des longueurs inutiles dans le corps de ce livre que la liquéfaction sera qualifiée de très rapide, si elle se fait 24-48 heures après l'apparition de la culture; de rapide, si elle se fait 2, 5 ou 6 jours après l'apparition de la culture; de lente, si elle se fait plus d'une semaine après l'apparition de la culture; de très lente, si elle se fait plusieurs semaines après l'apparition de la culture.

Lorsque la liquéfaction se fait avec une extrême lenteur, le phénomène peut être d'une appréciation peu aisée : le liquide s'évapore au fur et à mesure de sa production; il en résulte une dépression sèche, généralement cupuliforme. La rétraction que subit à la surface du culot une gélatine vieille et desséchée ne devra pas être prise pour une liquéfaction lente, faute que bon nombre de bactériologistes ont commise dans leurs descriptions. Nous espérons mettre le lecteur à l'abri d'erreurs de détermination grossières en l'avertissant que notre classification est établie de telle sorte que, dans les cas où la peptonisation est assez minime pour que la gélatine liquéfiée s'évapore complètement au fur et à mesure de la liquéfaction, laissant une cupule sèche, c'est dans la catégorie des bactéries non liquéfiantes qu'il devra continuer ses recherches.

On notera la date d'apparition de la liquéfaction, son évolution quantilative (notez, le cas échéant, le moment où elle a envahi le fond du tube), sa forme enfin, la liquéfaction pouvant être en cupule, en sphère, en entonnoir, en doigt de gant ou cylindrique (atteignant les parois du tube).

^{1.} Cette recherche se fera de préférence avec des cultures en piqure dans des tubes à culots droits. On y perçoit les particularités du phénomène plus aisément qu'avec des cultures sur plaques.

S'agit-il de bactéries qui ne liquéfient pas la gélatine ou d'espèces qui la liquéfient lentement, on pourra noter quelques détails de culture. On verra si le développement se fait également bien à la surface et dans le trait (culture en clou à tête plate ou bombée) ou s'il se fait plus abondamment dans l'une des deux zones. La culture de la surface est lisse, ridée ou plissée. Du trait de piqûre peuvent irradier en tous sens des arborisations latérales par lesquelles la culture avance dans la gélatine ambiante. Aux termes « trait ramifié ou arborisé », nous opposerons celui de « trait filiforme ». Suivant la direction et la longueur (égale ou inégale) des arborisations latérales du trait, on dira que la culture est « en échelle » « en sapin renversé », « en racine ».

2° Culture sur plaques de gélatine. — On relèvera la date d'apparition de la culture, les dimensions acquises par les colonies au bout de vingt-quatre et quarante-huit heures.

Pour les bactéries liquéfiantes on se contentera de relever : 1° la forme et l'aspect que présentent les colonies avant le début de la liquéfaction (surtout la présence ou l'absence de prolongements périphériques); 2° l'aspect de la colonie entourée de sa zone de liquéfaction ; la gélatine liquéfiée peut être claire, uniformément troublée ou floconneuse.

La description détaillée des colonies des bactéries liquéfiantes sera faite d'après l'examen des plaques de gélose.

Au contraire, quand il s'agira d'une espèce non liquéfiante, on devra décrire avec soin les caractères morphologiques macro-et microscopiques des colonies sur plaques de gélatine. (Voir *Technique*.)

II. — Culture sur gélose. — La bactérie à détermi-

ner sera ensemencée :

a) Sur gélose inclinée, par strie;

b) En gélose à culot droit, par piqure; c) En gélose coulée en boîtes de Pétri.

On notera l'aspect de la colonie à l'œil nu et son aspect au faible grossissement. Les détails à relever sont les suivants:

Les colonies peuvent être transparentes, opalescentes ou opaques; minces, pelliculaires ou épaisses. Leur consistance, éprouvée avec une anse de platine, peut être molle ou dure, cohérente ou facile à dilacérer, adhérente au milieu ou facile à détacher. On notera le relief de la colonie. Sa forme est ronde (punctiforme ou « en goutte » selon les dimensions) ou irrégulière. La surface apparaît lisse, ridée (chagrinée) ou plissée, brillante ou mate, sèche ou humide (quelquefois même diffluente).

Au microscope (voir *Technique*) on examinera la structure de la colonie (granuleuse, grossièrement grenue, structure radiée ou disposition en cercles concentriques). L'attention portera ensuite sur le pourtour de la colonie.

Certains auteurs recommandent d'en dessiner avec grand soin le contour car ils estiment que l'on peut établir la détermination de certaines espèces bactériennes d'après les différences relevées dans les détails de structure de leurs colonies. Il nous semble que l'on a beaucoup exagéré dans ce sens : le dessin microscopique des colonies d'une espèce est sujet à bien des variations. Nous demanderons au lecteur de se contenter de noter : « colonies à contour net (orbiculaire ou sinueux) sans prolongements » ou « colonies présentant à leur pourtour des prolongements périphériques plus ou moins longs ». Ces prolongements sont rectilignes ou onduleux (en forme de mèches bouclées); ils sont enchevêtrés (en touffe de poils) ou ramifiés (en radicelle), isolés ou anastomosés.

III. — Culture dans le bouillon. — On notera les caractères suivants:

a) Le bouillon reste clair, avec ou sans flocons nageant dans le liquide, avec dépôt plus ou moins abondant;

b) Le bouillon présente un trouble plus ou moins mar-

qué.

Trouble uniforme ou non, persistant ou suivi d'éclaircissement avec formation d'un dépôt;

c) Le dépôt est faible ou abondant, cohérent, granu-

leux, pulvérulent;

- d) La bactérie ne présente pas de développement à la surface du bouillon ou bien elle y forme un voile (mince ou épais, lisse ou plissé, cohérent ou facile à dilacérer) ou un simple anneau adhérent aux parois du tube;
 - e) Le bouillon a été décoloré ou non ;

f) La culture peut être odorante. Elle peut rendre le bouillon visqueux.

IV. — Culture sur pomme de terre. — Ce milieu présente habituellement une réaction un peu acide '. Or, certaines espèces ne se développent que sur la pomme de terre alcaline; d'autres ne peuvent être cultivées sur ce milieu en dépit de l'alcalinisation.

Le fait sera signalé chemin faisant.

- a) A côté des bactéries qui ne se multiplient pas sur la tubercule, il en est d'autres qui s'y développent si faiblement que les colonies ne deviennent pas visibles à l'œil nu. L'expression de culture non apparente répondra à ces deux catégories de faits;
 - b) D'autres espèces donnent une culture qui, au pre-

^{1.} Selon l'échantillon de pomme de terre, l'acidité du milieu peut être plus ou moins marquée; elle peut même faire défaut. C'est cette variabilité de la réaction qui explique l'inconstance du développement sur le tubercule de certaines bactéries particulièrement sensibles à l'acidité. Il n'est pas très rare, en effet, de voir une espèce se multiplier assez bien sur telle pomme de terre et ne présenter aucun développement sur telle autre pomme de terre. Dans les cas de ce genre nous avons évité, bien entendu, de prendre comme critérium de la détermination la culture sur pomme de terre.

mier abord, se confond avec la surface du milieu; en regardant de plus près et à jour frisant on aperçoit comme un mince vernis ou glacis: c'est à un tel aspect que s'appliquera l'expression de culture peu apparente sur pomme de terre;

c) Lorsque l'aspect des cultures sera décrit sans mention spéciale il s'agira de colonies nettement apparentes;

d) On notera les différents degrés que la culture peut présenter dans son extension en surface :

1º Colonies isolées (leur forme, leurs contours sont

à décrire);

2° Bande s'étendant le long de la strie d'ensemencement. Les détails à relever sont : l'aspect des bords (plats ou surélevés) et celui de la surface (lisse, poudreuse, ridée ou plissée, sèche ou humide, brillante ou mate);

3° Couche étalée envahissant la totalité ou la plus

grande partie de la surface de la pomme de terre.

e) La constatation de la couleur et de l'odeur de la

culture compléteront cet examen;

f) On étudiera enfin les conditions thermiques qui favorisent la culture en exposant certains tubes à 20°-22°, d'autres à 37°.

V. Cultures dans le lait. — C'est là une recherche indispensable pour toute détermination; elle devra porter sur les caractères suivants:

a) L'espèce est ou n'est pas cultivable dans le milieu.

b) L'aspect du lait est ou n'est pas modifié.

a) par une propriété chromogène de l'espèce étudiée ;

c) par l'éclaircissement du milieu qui devient transparent, jaunâtre. Ce changement d'aspect qui souvent ne se manifeste que dans le courant de la deuxième semaine, indique une peptonisation de la caséine. Ce fait devra être vérifié par l'analyse chimique (recherche des peptones).

c) Odeur butyrique, aigrelette, fétide.

d) Réaction. — La réaction normale du lait est amphotère au tournesol. On déterminera s'il y a eu acidification ou alcalinisation.

La culture dans le lait tournesolé doit toujours être faite conjointement avec la culture dans des milieux lactosés tournesolés, car une espèce bactérienne qui est sans action sur le lactose peut acidifier le lait. En effet, le lait contient, en très faible proportion, un corps qui se comporte comme le glucose au point de vue fermentatif (Th. Smith). Exemple: B. paratyphosum A acidifie le lait sans

attaquer le lactose.

e) Coagulation du lait. — La recherche de ce phénomène est d'une grande importance pour la détermination des bactéries. Son appréciation est habituellement facile. Il y a cependant des degrés dans le pouvoir coagulant. A côté des cas où l'on voit un caillot compact surmonté d'un lacto-sérum transparent, il en est d'autres où la coagulation, moins intense, se fait par petits grumeaux caséeux qui flottent d'abord près de la surface et tombent plus tard au fond du tube. Un examen attentif est donc nécessaire.

Certaines espèces ne paraissent pas modifier le milieu;

cependant si l'on chausse le tube, le lait se caille.

Il est des cas enfin où la coagulation du lait par une espèce bactérienne dépend du degré d'aération du milieu [c'est ainsi que le Bact, putidum septicum ne coagule le lait que s'il est en couche mince au contact de l'air et ne le coagule pas s'il est en tubes].

Ce détail sera d'ailleurs signalé toutes les fois que sa constatation permettra d'éviter une erreur de détermina-

tion.

On notera la date d'apparition du caillot, le degré de la coagulation, la présence ou l'absence de gaz.

Il ne faut pas se contenter de l'enregistrement pur

et simple du fait grossier que le lait a été coagulé. L'analyse du phénomène est nécessaire: elle conduira à la constatation de propriétés fermentatives très diffé-

rentes selon les cas.

1° Lorsque le lait coagulé présente une réaction acide (constatée par l'ensemencement dans un lait tournesolé), la coagulation indique la fermentation du lactose, cette fermentation s'étant faite en quantité suffisante pour que l'acidité produite fasse passer la caséine à l'état insoluble.

2° La coagulation avec réaction amphotère, neutre ou alcaline indique que l'espèce dont on poursuit la détermination, sans action notable sur le sucre du lait, exerce

un pouvoir coagulant direct sur la caséine.

Ce pouvoir est comparable à l'action coagulante du fer-

ment lab.

Dans le premier cas, le précipité de caséine ne subit souvent aucune modification ultérieure. En effet, en pareille occurrence, l'acidité produite est souvent telle que la culture meurt. Plus rarement, l'acidité, suffisante pour amener la coagulation du lait, est trop faible pour arrêter la culture. La réaction acide peut alors faire place à une réaction neutre puis alcaline: la bactérie, après avoir fait fermenter le lactose, s'attaque en second lieu aux matières protéiques et l'on voit le caillot se redissoudre (peptonisation secondaire).

Dans le second cas, le coagulum peut ou persister ou subir une redissolution, suivant que l'espèce bactérienne n'attaque pas les protéides ou qu'elle exerce sur la ca-

séine une action tryptique.

Ainsi, l'interprétation précise du fait grossier de la coagulation et des modifications ultérieures de la caséine coagulée aiguillera, suivant les cas, vers une bactérie ferment du lactose, vers une espèce ferment coagulant de la caséine ou vers une bactérie protéolytique.

Mais, ainsi que nous venons de le voir, une espèce peut

réunir plusieurs propriétés fermentatives: nombre de bactéries sont tout à la fois des ferments lab et des ferments caséolytiques. D'autre part, certaines bactéries coagulent le lait par production simultanée de lab et d'acides (ferments lab-lactiques de Gorini). Dans ce dernier cas, la réaction du lait est, en général, faiblement acide.

3° Etude des caractères morphologiques, de la mobilité, de la colorabilité de la bactérie. Etude de la sporulation.

Les caractères morphologiques des bactéries sont, en général, d'une appréciation facile; dans certains cas, cependant, leur grande variabilité de forme ainsi que l'existence de types de transition entre les genres micrococcus, bacterium, spirillum pourront devenir une cause d'hésitation au cours de la détermination bactérienne. Si les formes de passage qui relient ces genres sont susceptibles d'entraver, dans quelques cas assez rares, la marche de la détermination méthodique, la division plus artificielle encore des coccacées en microcoques et streptocoques, celle des spirillacées en vibrions et spirilles eût ouvert la voie à des erreurs nombreuses : nous avons donc renoncé à faire reposer la détermination sur une classification qui, dans bien des cas, n'eût pas été réalisable. Par contre, il est rare que l'on éprouve de la difficulté à ranger la bactérie à déterminer dans l'un des genres suivants : sarcina, micrococcus, bacillus, bacterium, spirillum.

Une première distinction est à établir entre les bactéries allongées c'est-à-dire celles qui sont au moins deux fois aussi longues que larges et les éléments en forme de grains, arrondis ou irréguliers dont la longueur n'atteint

pas le double de l'épaisseur. Or il arrive qu'une seule et même bactérie présente à la fois des formes coccoïdes et

des éléments allongés.

Nous n'envisageons en ce moment-ci, bien entendu, que les faits dans lesquels — vu les conditions de culture — on ne peut considérer comme forme d'involution l'un de ces deux types morphologiques. Ces cas sont heureusement assez rares car — il ne faut pas se le dissimuler — ils opposent de sérieuses difficultés à la bonne marche de la détermination. Il suffira, pour s'en convaincre, de se rappeler l'historique de M. (Strept.) acidi lactici (Grotenfeldt) qui était considéré comme un « brachy-bacterium » (Bact. Güntheri, Bact. acidi lactici (Grotenfeldt) jusqu'aux recherches de Kruse qui montrèrent que cette bactérie devait être rangée à côté des microcoques se divisant suivant une seule direction (genre Streptococcus des auteurs).

L'exemple de M. melitensis rend également compte de l'obstacle que crée à la systématisation bactériologique l'existence de ces formes de passage entre les genres bac-

terium et micrococcus.

Pour faciliter la solution de ces problèmes d'interprétation fort délicats, il nous semble malaisé d'établir une règle générale. Nous dirons cependant : ce qui doit décider, dans les cas où la détermination du genre d'une bactérie donne lieu à des hésitations, c'est la forme qui prédomine à la température optima dans le milieu optimum (qui sera, en général, l'habitat naturel du microrganisme).

a) Les bactéries en forme de grains (Coccacées) peuvent être rondes, ovalaires ou irrégulières. Si elles se groupent en paquets cubiques — dans les milieux liquides au moins — elles rentrent dans le genre Sarcina; ce groupement particulier est dû au fait que la multiplication s'opère dans les trois directions de l'espace.

Toute bactérie en forme de grain qui ne présente pas

le groupement caractéristique des sarcines sera rangée dans le genre micrococcus.

Nous diviserons les microcoques dans le seul but de

facilitér la détermination, en deux catégories :

1° Microcoques habituellement disposés en chaînettes (genre Streptococcus des auteurs, dénomination que nous abandonnons ¹) ou susceptibles de présenter cette disposition dans les milieux liquides.

2º Microcoques isolés, groupés par deux (diplocoques des auteurs) ou en amas, mais non réunis en chaînettes.

Conformément à cette division, un microcoque que l'on trouve habituellement isolé, par deux ou en amas, mais qui peut parfois se présenter sous forme de chaînettes (dans le bouillon surtout) figurera dans les deux catégories de tableaux. Les chances de fausse route sont ainsi diminuées.

Les dimensions moyennes des microcoques sont de 0,8 μ-1,2 μ. Par le terme gros microcoques nous entendons désigner les éléments d'un diamètre supérieur à 1,2 μ; quand nous parlerons de petits microcoques, nous aurons en vue des microcoques d'un diamètre inférieur à 0,5 μ.

b) Une bactérie de forme allongée sera qualifiée de bâtonnet lorsque les éléments sont rectilignes; elle sera rangée parmi les spirilles s'ils sont incurvés en virgule

^{1.} Si l'on envisage le nombre considérable des espèces qui, classées par la plupart des auteurs dans le genre micrococcus (par opposition au genre streptococcus), peuvent néanmoins se grouper parfois en chaînettes vraies dans les milieux liquides, on comprendra que nous ayons évité de mettre le lecteur aux prises avec les difficultés qu'eût présenté, dans des cas nombreux, la nécessité de décider si un microcoque donné appartient à l'un ou à l'autre des genres sus-cités. Il est des divisions théoriques qui deviendraient la source d'erreurs innombrables si on les adoptait comme clé de diagnose dans la pratique des examens de laboratoire. Nous avons cherché à en débarrasser ce livre autant que possible.

ou en parenthèse ou s'ils décrivent un demi, un ou plusieurs tours de spire. Toutefois un bacterium peut, en s'allongeant, s'incurver et même devenir onduleux. On reconnaîtra qu'il n'appartient pas au genre spirillum par les caractères suivants : 1° l'incurvation des éléments n'est pas constante; elle ne se produit que dans certaines conditions de culture et il est toujours possible de restituer au microrganisme sa forme restiligne originelle en le réensemençant sur d'autres milieux; 2° les set que ce sont des éléments régulièrement incurvés et que cette incurvation est constante.

Comme la plupart des auteurs actuels, nous appellerons bacillus les bâtonnets des espèces sporogènes, bac-

terium ceux des espèces non sporogènes.

Les dimensions d'une espèce varient selon les races et surtout selon les milieux nutritifs. Pour s'en convaincre il suffit de considérer les divergences considérables des bactériologistes qui se sont appliqués à préciser en micron les dimensions des espèces ¹.

Nous préférons donc renoncer à des précisions qui ne sont qu'apparentes et de peu d'utilité au cours des déterminations bactériologiques courantes. En général, nous nous contenterons d'indiquer qu'un bâtonnet est grêle, d'épaisseur moyenne ou épais. C'est là une imprécision intentionnelle qui nous paraît conforme à la réalité des faits. Nous dirons d'un bâtonnet qu'il est mince, lorsque sa largeur ne dépasse pas $0,5\,\mu$; nous le qualifierons d'épais s'il dépasse $1\,\mu$. Nous appellerons moyenne une épaisseur de $0,6\,$ à $1\,\mu$.

^{1.} Un autre facteur explique ces divergences: certains auteurs mesurent les bactéries vivantes en suspension dans l'eau ou le bouillon; d'autres font porter l'examen micrométrique snr les bacilles tués et colorés dont le corps a été rétracté par la fixation.

La largeur est moins sujette à variation que la longueur. Aussi estimons-nous que la longueur d'un élément bactérien est le dernier élément à faire entrer en ligne de compte au cours d'une détermination méthodique des espèces. Nous n'y avons eu recours, en tant que critérium diagnostique, que lorsque toute la gamme des signes différentiels avait été utilisée. C'est dire qu'il s'agira, dans ces cas, de bactéries très voisines, sinon identiques et que la confusion à laquelle on sera exposé aurait bien peu d'importance.

Mobilité. — Pour juger de la mobilité d'une bactérie

nous avons deux procédés à notre disposition.

1° L'examen à l'état vivant. Une goutte de culture en bouillon sera étudiée au microscope ou à l'ultramicroscope;

2º La recherche des cils après coloration spéciale (Voir

Technique).

Ces deux recherches devront être faites conjointement au cours de toute détermination car, si la mobilité est en général l'attribut des bactéries ciliées, il n'est pas très rare de constater une mobilité nette alors qu'aucun cil ne peut être mis en évidence. L'étude de la mobilité d'une bactérie doit toujours être faite avec des cultures en milieu liquide.

Juger de la mobilité d'un microrganisme n'est pas toujours chose facile : il faut savoir distinguer la mobilité vraie des mouvements browniens qui sont communs aux

microrganismes et aux particules inertes.

La mobilité vraie, active, se traduit par des mouvements de translation plus ou moins rapides et plus ou moins étendus. Les mouvements browniens, au contraire, consistent en un tremblotement vibratoire sur place et, lorsqu'il s'agit de bâtonnets de quelque longueur, en oscillations sur place ou même en mouvements rotatoires de court rayon. Jamais il ne s'agit de translation franche. Avec un peu d'habitude on arrivera à faire cette distinction, assez importante au point de vue du diagnostic bactériologique. En cas de doute, il est bon de recourir au procédé de contrôle indiqué dans la partie technique. Une bactérie qui ne présente que des mouvements browniens est une bactérie immobile.

La mobilité d'une bactérie étant reconnue il convient d'en noter le degré et de chercher à préciser si elle est permanente ou transitoire. Certaines espèces sont douées de mouvements d'une vivacité et d'une brusquerie remarquables : dans le corps de ce livre nous les qualifierons de très mobiles (Exemple : B. typhosum). D'autres (ex. : B. coli commune) présentent une mobilité faible et lente (nous dirons qu'elles sont peu mobiles). Il est des espèces, enfin, comme B. mycoïdes, qui paraissent immobiles à première vue; ce n'est que par un examen attentif et patient que l'on découvre quelques éléments présentant une très lente mobilité.

Seules les espèces non sporogènes sont susceptibles de présenter une mobilité permanente; les bactéries mobiles sporogènes passent par une phase de repos qui répond à la période de la sporulation : il en résulte que l'on aperçoit dans un champ microscopique des éléments mobiles à côté d'éléments immobiles. Toutes ces modalités de la mobilité bactérienne devront être notées avec soin. Lorsqu'une bactérie ne se montre animée d'aucun mouvement, on se gardera de conclure avant d'avoir vérifié que l'immobilité persiste après plusieurs repiquages dans le bouillon.

Spores.—La recherche des spores devra être faite dans tous les milieux artificiels, à la température de la chambre, à celle de l'étuve, en milieu aérobie et à l'abri de l'air car beaucoup d'espèces ne sporulent que dans des conditions déterminées de température et de milieu. Parmi les bactéries facultativement anaérobies, il en est qui ne

forment de spores que dans les cultures à l'abri de l'air; d'autres ne sporulent qu'en milieu aéré.

Pour conclure à l'existence de spores dans une préparation, il faut avoir observé très nettement la réaction des spores (voir Technique) qui met en évidence une résistance à la décoloration par les acides beaucoup plus forte

que celle des bâtonnets eux-mêmes.

Ainsi sera évitée l'erreur qui consiste à prendre pour des spores les aspects granuleux ou vacuolaires ou les formes d'involution coccoïdes que présentent fréquemment un grand nombre d'espèces. L'épreuve de la pasteurisation (voir Technique) permet, en cas de doute, de vérifier le pouvoir sporogène de l'espèce bactérienne.

On notera le nombre de spores par élément bactérien ; généralement il n'y en a qu'une, mais on peut en trouver deux et plus dans certaines espèces. Le siège des spores servira quelquefois à la détermination; elles sont médianes, terminales ou intermédiaires au centre et à l'extrémité, plus près de cette dernière, par abréviation nous dirons qu'elles sont situées vers l'extrémité (spores paeneterminales).

La forme des spores est arrondie, ovalaire ou même quadrangulaire [Bac. ruminatus (Meyer et Neide) p. ex.].

Le mode de groupement sera noté. La plupart des espèces donnent des spores isolées, quelques-unes des chaînes de spores très remarquables [Ex. : B. alvei (Cheyne) B. geniculatus (Duclaux).

Les dimensions des spores devront être comparées à

celles des bâtonnets correspondants.

a) Lorsque la largeur des spores est inférieure à celle des bâtonnets, les bacilles ne subissent aucune déformation lors de la sporulation. Ce fait est constant dans certaines espèces (Ex.: B. anthracis).

b) Lorsque la largeur des spores est égale ou supérieure à celle des bâtonnets, le bacille peut n'être point déformé par la sporulation: c'est ce qui arrive en cas de spore terminale. Il en résulte une figure dite « en baguette de tambour » [Ex.: B. tetani]. Les bacilles seront déformés, par contre, si leur spore est médiane ou paeneterminale, déformation en fuseau dans le premier cas (ancien genre clostridium), en massue dans le second. Enfin, la déformation au moment de la production des spores, au lieu d'être partielle, peut porter sur l'ensemble du corps bacillaire qui s'épaissit uniformément.

Pour déterminer avec précision certaines espèces très voisines [Ex. : groupe subtilis-mesentericus-megathe-rium], il est nécessaire d'examiner, sur la spore devenue libre, si la membrane de la cellule sporogène, ou une partie de cette dernière est restée adhérente à la membrane propre de la spore, ou bien, au contraire, si aucun vestige n'est resté attaché à la spore [spores nues (Chester)].

Les indications diagnostiques que l'on peut tirer du mode de la germination des spores sont peu nettes. En cas de spore ovalaire on se rendra compte si la germination de l'élément jeune se fait aux extrémités du grand ou du petit diamètre (germination polaire ou équatoriale).

Ainsi les spores de B. subtilis germent équatorialement, celles de B. anthracis près du pôle. Mais très souvent les deux modes s'observent dans une même préparation; l'un des deux prédominant ou non.

A. Meyer et ses élèves ont essayé de trouver un trait caractéristique de l'espèce dans le degré de résistance à la chaleur que présentent les spores. Nous ne croyons pas que cette dernière recherche puisse être utilisée dans un but diagnostique. Par contre, l'étude des détails de la sporulation est indispensable si l'on veut arriver à séparer les unes des autres les espèces très voisines de certains groupes. [Les travaux de Meyer, Gottheil, Neide, Chester, etc. ont montré que c'était là le seul moyen de mettre de

l'ordre dans le chaos des bacilles liquéfiants, mobiles,

sporulés, gram-positifs.]

Coloration par la méthode de Ziehl-Neelsen. — La constation de l'acido-alcoolo-résistance, en limitant le champ des recherches, hâtera considérablement la détermination.

Coloration par le Gram. — La méthode de Gram est un des plus précieux et des plus sûrs parmi les éléments de diagnose dont nous disposons. En effet, un nombre considérable d'espèces prennent le Gram constamment et très nettement; un grand nombre d'autres espèces se décolorent toujours avec la même netteté.

Il est cependant des espèces dont certaines races se montrent Gram-positives (le plus souvent, il est vrai, elles gardent faiblement le Gram), alors que d'autres races de la même espèce ne résistent pas à la décoloration. L'erreur de détermination qui pourrait résulter de cette variabilité sera évitée quand il s'agira d'espèces dont la colorabilité inconstante est d'observation courante. [Ex.: Bact. vulgare (proteus vulgaris)] (Hauser), M. mastitidis (Nocard-Guillebeau).]Le lecteur trouvera de telles bactéries dans les tableaux Gram-positifs ainsi que dans les tableaux Gram-négatifs.

Dans tous les cas, d'ailleurs, une bactérie qui ne reste que faiblement colorée par la méthode de Gram et qui ne résiste pas à la décoloration si l'on prolonge tant soit peu l'action de l'alcool, doit être considérée comme ayant un Gram douteux. On en poursuivra la détermination successivement dans les deux catégories de tableaux (Gram + et Gram —), et on arrivera parfois à réaliser le dianostic en se fondant sur les autres caractères de l'espèce.

Ces faits de résistance plus ou moins marquée à l'action décolorante de l'alcool montrent la nécessité de se conformer rigoureusement aux moindres détails de la technique exposée plus loin.

Lorsque, dans une même préparation, certains éléments prennent le Gram, alors que d'autres ne le prennent pas, le lecteur poursuivra la détermination dans les tableaux des bactéries prenant le Gram. Il agira de même dans les cas où le corps de chaque élément garde le colorant

inégalement dans ses différentes parties.

Nous nous contenterons de mentionner que bon nombre de microrganismes, après avoir gardé le Gram dans les premières cultures, perdent cette propriété plus ou moins rapidement au cours de leur séjour dans les milieux artificiels. Comme il ne saurait être question de déterminer de vieilles cultures (voir Introduction) le lecteur est à l'abri de ces causes d'erreur.

* *

4° Étude des produits formés dans les cultures

L'étude des produits élaborés par la culture dans différents milieux artificiels apporte souvent une contribution importante à la détermination de l'espèce :

1º On étudiera les caractères du pigment, s'il s'agit

d'une espèce chromogène;

2° On cherchera à mettre en évidence la production de

toxines solubles, d'hémolysines bactériennes;

3° Il faudra caractériser les produits chimiquement définis formés dans les divers milieux.

Pigments

Nous avons vu précédemment tout le parti que l'on pouvait tirer, dans un but diagnostique, des propriétés chromogènes des espèces. Dans certains cas (que nous indiquerons chemin faisant) il est nécessaire, pour différencier deux espèces, d'étudier de plus près les propriétés physiques du pigment bactérien, en particulier sa solubilité dans les divers dissolvants ordinaires (alcool, éther, sulfure de carbone, chloroforme, benzine) et dans l'eau.

La plupart des pigments microbiens sont insolubles dans l'eau. On recherchera les modifications (virages) qu'ils subissent sous l'influence des acides et des alcalis.

Toxines solubles

Lorsqu'on est en présence de cultures virulentes pour les animaux d'expérience, on cherchera si les filtrats contiennent ou non des toxines et si ces toxines sont thermolabiles ou thermostabiles.

Hémolysines bactériennes

(Pour la technique, voir Deuxième partie.)

On a beaucoup exagéré le parti que l'on peut tirer de l'étude des hémolysines élaborées par certaines espèces dans les milieux solides et liquides.

On a soutenu que les microcoques du groupe M. pyogenes aureus (Rosenbach) et ceux du groupe M. (Streptococcus) pyogenes produisaient des hémolysines même quand il s'agit d'échantillons avirulents, alors que les bactéries saprophytes voisines par leurs caractères botaniques n'élaboraient pas de substances hémolytiques. Mais ce caractère n'a pas de valeur diagnostique, car il y a de nombreuses exceptions à la règle. De même, on a voulu différencier les vibrions pseudo-cholériques des

vibrions cholériques vrais par la production d'hémolysines. Mais, là encore, nous n'avons pas en mains un critérium absolu car il existe des races hémolytiques de vibrions cholériques; ainsi les vibrions El Tor (Gottschlich), bien que produisant des hémolysines en quantité notable, doivent être considérés comme des spirilles cholériques authentiques ainsi que le démontrent les réactions d'immunité et de déviation du complément.

· Produits chimiquement définis

I

Fermentation des hydrates de carbone

1) Fermentations rares. — Il est des fermentations exceptionnelles comme celle de la cellulose qui constituent le seul moyen de déterminer les espèces douées de cette propriété fermentative, ces bactéries (B. methanii, B. hydrogeni) n'ayant pu être cultivées sur les milieux usuels. [Pour la préparation du milieu spécial nécessaire à cette culture, voir Technique.] Certaines espèces bactériennes font fermenter la pectine: la recherche de cette fermentation est indispensable pour arriver au diagnostic de ces microrganismes. [Voir à la partie Technique la préparation des milieux à la pectine.] Les espèces qui font fermenter la glycérine sont rares. Plus nombreuses sont celles qui attaquent l'amidon.

Les propriétés fermentatives d'une bactérie à l'égard des hydrocarbones que nous venons d'énumérer ne sont à rechercher que dans des cas particuliers qui seront indi-

qués au lecteur en lieu utile.

une grande importance diagnostique.

Sauf indications particulières on se contentera d'étudier l'action de la bactérie sur les sucres suivants : glucose, maltose, lactose, saccharose. Il faut avoir soin de vérifier, avant l'addition du sucre chimiquement pur, que le milieu nutritif a été débarrassé du glucose de la viande. Si l'on omettait de prendre cette précaution, la fermentation de cette petite quantité de glucose pourrait faire croire à tort à la fermentation du sucre ajouté au milieu nutritif (lactose, maltose, saccharose, etc.). [Voir Technique, la préparation des milieux désucrés.] Il est préférable d'employer la gélatine désucrée que la gélose désucrée qui, par le fait même de la stérilisation, contient toujours une petite quantité de glucose. On ajoute 0,5-1,5 % de substance hydrocarbonée au bouillon ou à la gélatine désucrée. Ce dernier milieu permet de se rendre compte de la production de bulles gazeuses; le bouillon additionné de teinture de tournesol sert surtout à mettre en évidence la production d'acides.

La fermentation des sucres se manifeste par l'acidification du milieu sucré associée ou non à la production

de gaz.

a) Acidification. — Souvent on pourra se contenter de l'apprécier en ensemençant de la gélose ou du bouillon sucré et tournesolé, le milieu virant du bleu au rouge. On peut se servir également de milieux sucrés additionnés de craie; la production de bulles de CO² indique la formation d'acides.

Si l'acidité produite n'est pas suffisante pour arrêter la culture, elle peut faire place à une *alcalinité secon*daire : tout le sucre ayant subi la fermentation, la bactérie peut alors attaquer les substances protéiques. Parfois il est utile de titrer l'acidité en prenant comme témoin un milieu non ensemencé. Ce titrage d'acidité est utilisé pour le diagnostic différentiel de B. diphteriæ et des B. pseudo-diphtériques.

b) Production de gaz. — La production de gaz aux dépens des différents sucres sera mise en évidence par l'ensemencement dans un tube de gélose additionnée du sucre à étudier : le milieu est disloqué; parfois même le bouchon d'ouate est projeté. Un procédé plus précis consiste à cultiver la bactérie dans du bouillon sucré contenu dans un tube à fermentation (voir Technique). Il permet d'apprécier le volume des gaz produits. Ce dispositif permet, en outre, de procéder à l'analyse qualitative des gaz, mais habituellement on pourra se passer de cette dernière recherche.

Cette étude très simple de la fermentation des sucres et des modalités de cette fermentation facilite bien souvent la détermination : certaines espèces, en présence d'un sucre donné, produisent à la fois de l'acide et des bulles de gaz, d'autres espèces acidifient le milieu sans jamais provoquer de dégagement gazeux.

En général, on peut se borner à ces recherches d'une exécution facile; quelquefois il est nécessaire, pour préciser la détermination, de savoir quels sont les produits

de fermentation.

Analyse qualitative des produits non gazeux de la fermentation des hydrates de carbone

On recherchera:

1º Les produits volatils non acides (alcools, aldéhydes, acétones);

2º Les produits volatils acides (acides formique, acétique, propionique, butyrique, valérianique);

3° Les acides fixes (acide lactique, acide succinique).

Pour l'isolement de ces produits et les réactions simples qui permettent de les caractériser, voir *Technique*. Il est exceptionnel que l'on ait à étudier, dans un but diagnostique, quel est ou quels sont, d'une manière précise, les acides volatils produits; dans ce cas, il faudrait avoir recours à la méthode de Duclaux (V. *Technique*).

Bon nombre de bactériologistes admettent que cette analyse précise des produits de fermentation des sucres est parfois utile au diagnostic : certaines espèces (M. halensis [Kozaï]) produisent uniquement de l'acide lactique aux dépens du lactose, d'autres espèces de l'acide lactique et des acides volatils [M. pyogenes aureus, M. (str.) pyo-

genes (Rosenbach), par exemple].

Toutefois, l'édification d'espèces bactériennes fondée sur la présence simultanée d'acides fixes et d'acides volatils dans les produits de fermentation ou sur la production exclusive d'acides fixes, n'est pas à l'abri de toute critique, à plus forte raison la différenciation de deux espèces, suivant que c'est tel ou tel acide qui prédomine dans les produits élaborés, est-elle sujette à caution. La nature de l'acide formé paraît dépendre non seulement de l'espèce bactérienne mais aussi de conditions de milieu encore mal élucidées. De pareils signes différentiels manquent de fixité.

II

Produits de fermentation des substances protéiques

Il faut étudier systématiquement le pouvoir fermentatif de l'échantillon bactérien sur les substances suivantes:

- 1º Albumines naturelles (on se servira de fibrine);
- 2º Albumines modifiées (on se servira de peptones);

3º Protéides (caséine).

(Pour la préparation de ces milieux, voir Technique.) En étudiant l'action d'une bactérie comparativement sur la fibrine et sur les peptones, on arrive à établir une distinction importante entre les espèces qui attaquent les albumines naturelles (ferments protéolytiques de Tissier) et celles qui ne font fermenter que les albumines hydrolysées (ferments peptolytiques du même auteur).

Il est exceptionnel que l'on ait à analyser, dans un but diagnostique, qualitativement et quantitativement tous les produits de fermentation des substances albuminoïdes; par contre, cette analyse complète doit être faite quand il s'agira de décrire une espèce nouvelle. (Voir à la partie *Technique* la recherche et le dosage méthodique des produits de fermentation des protéiques.)

Pour les déterminations courantes on pourra se contenter, en général, de la recherche des produits suivants:

hydrogène sulfuré, ammoniaque, indol.

Hydrogène sulfuré. — Un très grand nombre d'espèces produisent ce corps dans les milieux albuminoïdes, si bien que cette recherche ne fournit que des indications très peu importantes.

Ammoniaque. — La recherche de l'ammoniaque permet de caractériser les bactéries ferments de l'urée. Une partie de l'urée se transformant en ammoniaque par le seul fait de la stérilisation, le dosage comparé du milieu avant et après l'ensemencement est indispensable. (Voir Technique.)

INDOL. — La production de ce corps dans les milieux peptonés donne des indications utiles dans un grand nombre de circonstances.

La réaction indol-nitreuse ' peut, conjointement avec

1. Voir Technique.

d'autres caractères, mettre sur la voie de la détermination des spirilles cholériques; mais, considérée en ellemême, elle n'a pas la valeur diagnostique que Koch lui avait primitivement attribuée. Elle n'est ni exclusive aux spirilles cholériques (certains spirilles des eaux non pathogènes pour l'homme pouvant donner la réaction du « cholerarot ») ni constante. (Sp. romanum, spirille cholérique authentique, ne donnait pas la réaction pendant les huit premiers mois de culture.) La mutabilité remarquable des spirilles cholériques ne permet plus, à l'heure actuelle, d'étayer une détermination d'une telle importance sur la seule recherche des épreuves chimiques et expérimentales: l'étude des anticorps spécifiques est indispensable dans tous les cas.

La réaction de l'indol obtenue après addition de nitrite présente une valeur indicatrice très variable selon les groupes bactériens. Ainsi, Bact. typhosum ne donne jamais cette réaction. Bact. coli est presque toujours, mais non pas constamment indologène (Bact. coli anindolicum). Certaines espèces du groupe des septicémies hémorragiques (Bact. suisepticum, par exemple) ne donnent pas, habituellement, la réaction de l'indol; cependant certaines races de cette espèce font exception à la règle.

Il y a donc des cas où la valeur indicatrice de cette réaction est considérable et d'autres où l'inconstance de cette épreuve la rend inutilisable au point de vue de la détermination. Nous avons eu soin de ne pas faire intervenir la recherche de l'indol comme clé dichotomique dans les cas où la variabilité de cette propriété chimique d'une race à l'autre eût ouvert la voie à des erreurs.

Quand nous disons d'une bactérie qu'elle produit de l'indol, nous entendons par là que l'on obtient un résultat positif par le procédé classique de Salkowski (voir Technique). Le réactif d'Ehrlich ', que l'on doit employer pour décrire des espèces nouvelles, ne sera pas utilisé dans un but diagnostique. En effet, les résultats obtenus par les deux méthodes ne concordent pas toujours, le réactif d'Ehrlich étant beaucoup plus sensible que l'ancien. Or, l'ancien procédé est celui que la plupart des auteurs ont employé dans leurs descriptions. C'est là une considération importante si l'on songe au nombre des bactéries bien étudiées qui ne peuvent être revues, les cultures originales étant perdues.

Lecture des résultats. — Convenons qu'une culture sera considérée comme non indologène lorsque la réaction reste négative après le huitième jour. La réaction positive peut se manifester dès les vingt-quatre ou quarante-huit premières heures; elle peut être tardive, n'apparaissant que du cinquième au huitième jour. On notera, en cas de réaction tardive, si la coloration est forte ou

faible.

5° Inoculation aux animaux

Recherche des propriétés biologiques in vivo

L'inoculation aux animaux devra être pratiquée dans tous les cas. On se bornera d'ordinaire à injecter la cul-

1. L'indol est décelé, d'après la méthode d'Ehrlich, par la coloration rouge obtenue en ajoutant à la culture en bouillon:
5 centimètres cubes de la solution suivante:

puis 5 centimètres cubes d'une solution aqueuse saturée de persulfate de potassium.

ture à déterminer aux animaux de laboratoire usuels (cobaye, lapin, rat, souris). Dans certains cas particuliers que nous signalerons chemin faisant, l'expérimentation portera en outre sur d'autres animaux (chien, chat, singe, oiseaux, etc.). Rappelons que la recherche de la virulence d'une bactérie doit toujours être faite avec des cultures fraîchement retirées de l'habitat naturel et avec des cultures jeunes (de 24 à 48 h. sauf pour les espèces à développement lent).

Il n'est pas un caractère qui soit soumis à des variations aussi considérables que la virulence d'une espèce bactérienne. Il adviendra que l'on isole une bactérie qui se montre dépourvue de virulence à l'égard des animaux de laboratoire mais qui, par tous ses caractères morphologiques, culturaux et chimiques, se superpose à une espèce classique pathogène. Dans les cas de ce genre, il est de toute nécessité de rechercher par l'une des méthodes indiquées au chapitre Technique s'il n'est pas

possible d'exalter la virulence de la culture.

La maladie expérimentale de l'animal inoculé sera suivie avec soin ; certaines d'entre elles sont assez caractéristiques pour que leur observation puisse contribuer à résoudre le problème de la détermination. [Exemple : té-

tanos expérimental, botulisme |.

L'autopsie des animaux d'expérience peut fournir des éléments de diagnostic importants : bon nombre d'espèces bactériennes déterminent des lésions caractéristiques par exemple B. ædematis maligni (Koch), B. Chauvei, B. pestis (Yersin), les bacilles du groupe des septicémies hémorragiques, etc.]. On cherchera toujours s'il y a eu septicémie; à cet effet, le sang du cœur et celui des viscères sera examiné.

La mort de l'animal est-elle survenue sans septicémie, on verra si la bactérie s'est multipliée au voisinage du point d'inoculation.

Dans quelques cas particuliers qui seront mentionnés en temps utile, deux espèces bactériennes très voisines ne pourront être distinguées que grâce à l'absence d'immunité croisée. Exemple: B. pestis et B. pseudo-tuberculosis rodentium (Pfeiffer).

Dans l'immense majorité des cas, l'étude systématique des caractères morphologiques, culturaux, chimiques et expérimentaux que nous avons passés en revue permet

de mener à bien la détermination bactérienne.

Si la culture étudiée est susceptible de fournir un immun-sérum, la recherche des réactions biologiques (agglutination, bactériolyse, déviation du complément) ne fera que corroborer un diagnostic bactériologique déjà fait. Mais il est des espèces très voisines qui ne peuvent être différenciées les unes des autres sans le secours des réactions biologiques. L'attention du lecteur sera attirée sur ces faits dans le cours de cet ouvrage.

Plan d'une Fiche Bactériologique

Fiche Nº

Origine de la bactérie isolée. Forme et mode de groupement. Influence de l'air.

FORMULE CHIFFRÉE (1)

Tempé- rature	Milieux	Propr. chromo.	Spores	Colora- bilité	Lait	Lactose	Glucose

OBSERVATION

1º Conditions de culture.

Influence de l'air.

Températures | Limite. Optima.

Milieux nutritifs nécessaires (2).

- 2º Propriétés chromogènes (3).
- 3º Caractères des cultures.

Gélatine (4).

Gélose.

Bouillon.

Pomme de terre (5).

Lait (6).

Milieux spéciaux.

4º Morphologie. Dimensions.

Forme et groupement des cellules.

Spores (7).

- 5º Colorabilité (Gram).
- 6º Mobilité (8).
- 7º Propriétés fermentatives.
 - a) Sucres (9).

Lactose.

Glucose.

Maltose.

Saccharose.

b) Autres substances hydrocarbonées.

Amidon.

Glycérine.

Pectine.

Cellulose.

c) Substances protéiques.

Albumines Sérum coagulé.

Blanc d'œuf cuit.

Caséine.

Urée (Production d'ammoniaque).

Production d'indol

d'hydrogène sulfuré.

- 8º Toxines (10).
- 9° Hémolysines (11).
- 10° Propriétés pathogènes.

Maladie expérimentale (12).

Lésions anatomiques.

11º Réactions d'immunité (1º).

Observations particulières.

Notes de la Fiche Bactériologique

Tempéra- ture	Ne se développant pas à 22°. Se développant à 37°. Ne se développant pas à 37°. Cultivables à 45° et au-dessus.
Milieux	Cultivables en gélatine ordinaire à 22° Liquéfiants
Propriétés chromo- gènes	Cultures non chromogènes sur gélatine ou sur gélose
Spores	{ Pas de spores
Colorabi- litė	Colorables par la méthode de Ziehl-Neelsen
Lait	Coagulant le lait { Peptonisant la caséine
Lactose	Ne faisant pas fermenter le lactose
Glucose	Ne faisant pas fermenter le glucose

[Ainsi, la formule chiffrée: Bacterium aérobie 11.113.222 (qui répond à celle d'un bact. du groupe de B. coli commune) remplacera une longue énumération de caractères. Autre exemple: Micrococcus aérobie 11.112.233 correspond à un microcoque du groupe de M. (str.) pyogenes (Rosenbach).]

2. Indiquer les milieux appropriés, si la bactérie ne se développe

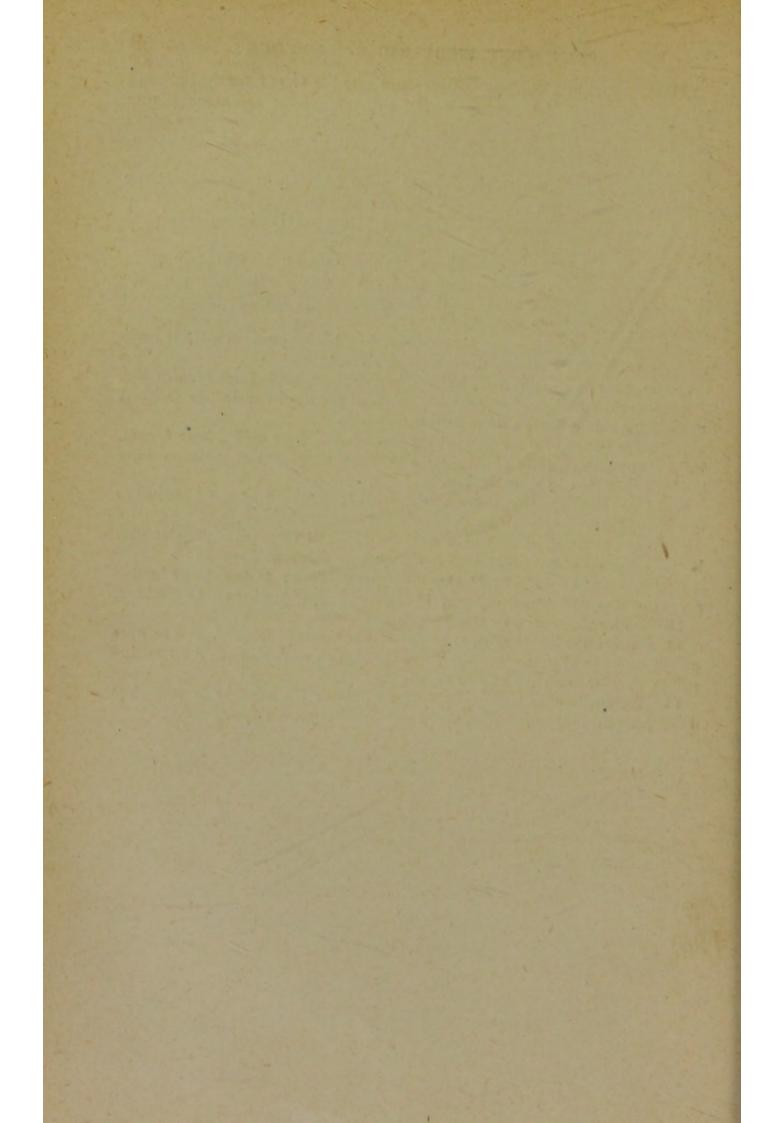
pas, ou se développe mal sur les milieux usuels.

3. Etudier les caractères du pigment, et en particulier sa solubilité

dans l'eau, l'alcool, le chloroforme, etc.

4. Noter avec soin les caractères des cultures en gélatine; le mode et la rapidité de la liquéfaction. Cultiver dans la gélatine même les bactéries qui exigent pour leur développement une température à laquelle la gélatine se liquéfie.

5. Noter si la culture est nulle, ou si le développement a lieu, mais


ne donne lieu qu'à une culture non apparente.

Cultiver sur pomme de terre naturelle et sur pomme de terre alcalinisée.

- 6. Noter les modifications du lait pendant plusieurs semaines. On doit aussi faire des cultures dans le lait tournesolé.
- 7. Noter le mode de germination des spores, leur siège, leur forme, eurs dimensions, leur résistance à la chaleur, et les conditions dans lesquelles a lieu la sporulation.
 - 8. La mobilité de certaines espèces est transitoire et peut n'exister

que pendant une très courte période de leur développement.

- 9. Noter le degré d'acidité à partir duquel la fermentation s'arrête. Rechercher en outre quels sont les acides de fermentation.
- 10. Etudier la toxicité: 1° Des cultures filtrées; 2° des corps bactériens; 3° des cultures entières; 4° résistance des toxines à la chaleur.
 - 11. Etudier leur résistance à la chaleur.
- 12. Expérimenter avec des cultures récemment isolées, sur le plus grand nombre d'animaux possible. On devra expérimenter au moins sur la souris, le cobaye et le lapin.
- 13. Rechercher dans le sérum des animaux immunisés la présence des agglutinines, sensibilisatrices et bactériolysines spécifiques.

DEUXIÈME PARTIE

TECHNIQUE

DEUXIÈME PARTIE TECHNIQUE

CHAPITRE PREMIER

MILIEUX DE CULTURE

Pour l'étude méthodique des espèces microbiennes il est nécessaire de préparer toute une série de milieux nutritifs. Grâce à eux on constate les particularités du développement de chaque bactérie, sa vitalité, l'aspect de ses colonies, les modifications qu'elle fait subir aux substances dont elle se nourrit et les produits de nouvelle formation qui résultent de ses actions fermentatives.

On doit étudier successivement les particularités du développement de la bactérie sur des milieux liquides et solides, sur des milieux contenant ou non de la gélatine, sur des milieux contenant ou non des albumines coagulées, des sucres, etc...

Nous indiquerons le mode de préparation des seuls milieux nécessaires à la détermination des bactéries.

Bouillon. — Le bouillon de viande est le plus fréquemment employé des milieux de culture artificiels. Il se prête particulièrement bien à l'étude de la mobilité des bactéries qui s'y développent, sa préparation exige les opérations suivantes :

- 1º Faire macérer pendant plusieurs heures 500 grammes de viande de veau dégraissée et hachée dans un litre d'eau ordinaire.
- 2° Passer la macération obtenue à travers une pièce de toile propre. Lorsque la filtration est terminée on enveloppe le hachis de viande restant dans la toile filtrante et on l'exprime aussi complètement que possible.
- 3º Mettre le liquide obtenu dans une capsule de porcelaine ou dans une capsule émaillée ; ajouter 10 grammes de peptone de bonne qualité et 5 grammes de sel marin.

Chauffer à feu doux, en agitant constamment jusqu'à l'ébullition.

4º Laisser refroidir. Lorsque la température du liquide est suffisamment abaissée on le filtre sur un filtre de papier préalablement mouillé.

(Il est nécessaire de mouiller le filtre pour que toutes les gouttelettes de graisse soient retenues.)

5° Les bouillons de viande ont toujours une assez forte acidité. On neutralise cette acidité avec une solution de soude caustique à 40 °/, que l'on verse goutte à goutte en surveillant la réaction du liquide à l'aide d'un fragment de papier bleu de tournesol. Dès que le papier bleu cesse de virer rapidement au rouge, on opère avec prudence et l'on cherche si le papier rouge de tournesol bleuit.

Un bouillon de bonne qualité doit être très légèrement alcalin c'est-à-dire que le papier rouge de tournesol plongé dans le liquide doit virer au bleu lentement, mais nettement. L'alcalinisation est le temps le plus délicat de la préparation des milieux nutritifs à base de viande.

6° Ajouter au liquide de l'eau ordinaire en quantité suffisante pour rétablir le volume primitif (un litre).

7° Porter le bouillon à 120° dans l'autoclave pendant

vingt minutes. Au sortir de l'autoclave le bouillon est fortement troublé.

8° Filtrer sur papier.

9° Répartir le bouillon dans les vases où il doit être définitivement conservé (ballons, tubes à culture, etc...). Les récipients destinés à recevoir le bouillon ont été préalablement bouchés au coton (coton cardé ordinaire) et stérilisés au four à flamber.

10° Stériliser à l'autoclave à la température de 115°

pendant vingt minutes.

Le bouillon ainsi préparé constitue un bon milieu de culture pour les bactéries. Toutefois il ne convient pas pour certaines recherches délicates telles que la recherche de la production d'indol, ou même l'étude de la fermentation des sucres.

Bouillon Martin. — Le bouillon préparé suivant la formule de L. Martin ne contient pas de sucres.

On procède de la manière suivante :

1° Bouillon d'estomacs de porc. — Broyer et hacher ensemble des estomacs de porc. Pour éviter autant que possible les variations qui pourraient survenir par suite de la quantité inégale de pepsine de chaque estomac, prendre cinq estomacs pour une opération. Placer le hachis dans l'eau acidulée à 50° dans les proportions suivantes :

Hachis d'e							200	grammes.
Acide chlo	rhy	dri	ique	e p	ur		10	_
Eau à 50°							1.000	_

L'eau doit être maintenue à 50° car à cette température la pepsine de la muqueuse stomacale digère plus activement les tissus et les transforme en peptone. Maintenir à l'étuve à 50° pendant douze à vingt-quatre heures.

Puis chauffer le bouillon à 100° pour détruire la pep-

sine en excès ; passer au tamis, ou mieux sur une couche de coton hydrophile peu serrée.

Chauffer le liquide filtré à 80° et l'alcaliniser à ce mo-

ment.

Porter ensuite à 120° à l'autoclave et filtrer sur papier.

On obtient ainsi une eau peptonée.

2° Macération de viande. — D'autre part, on fait une macération de viande que l'on prépare de la manière suivante : Mettre 500 grammes de viande de veau hachée et dégraissée à macérer dans un litre d'eau. Porter le tout à l'étuve à 35° pendant vingt heures. Au bout de ce temps on passe le liquide dans un linge et l'on exprime la viande. Au liquide recueilli, on ajoute 5 grammes de sel marin.

Pour obtenir le bouillon définitif on mélange la macération de viande de veau fermentée à 35° et additionnée de sel marin, par parties égales avec la solution de peptone (bouillon d'estomacs) déjà alcalinisée et filtrée comme il a été dit plus haut. Quand on a mélangé par parties égales la macération de viande à 35° et le bouillon d'estomacs, on chauffe le mélange à 70° jusqu'à coagulation des matières albuminoïdes et l'on stérilise par filtration sur bougies.

Il est toutesois plus simple de porter le liquide à 120°, de le filtrer ensuite sur papier et de le stériliser après répartition, par chauffage à l'autoclave à 115° comme le bouillon ordinaire.

Eaux peptonées (ou bouillons de peptone). — Les solutions de peptone constituent des milieux très favorables au développement des bactéries. Elles doivent toujours être employées de préférence pour certaines recherches telles que celle de la production d'indol. Mais beaucoup de peptones commerciales ne conviennent pas et il faut s'assurer par ensemencement d'un échantillon connu de Bact. coli commune que la peptone employée

permet la production d'indol. On trouve dans le commerce des peptones préparées dans ce but. L'eau peptonée se

prépare d'une manière très simple :

1º Faire dissoudre 20 à 25 grammes de peptone sèche et 5 grammes de sel marin dans un litre d'eau ordinaire. La dissolution s'effectue aisément en chauffant à feu doux et en agitant constamment. On porte à l'ébullition.

2º Alcaliniser (s'il y a lieu) à l'aide d'une solution de soude, comme il a été dit plus haut. (Certaines peptones étant suffisamment alcalines, ce temps de la préparation

peut être supprimé.)

3º Ramener le volume à 1.000 grammes, s'il y a lieu. Porter à l'autoclave à 120º pendant un quart d'heure.

4° Au sortir de l'autoclave, le liquide est fortement troublé. On le laisse froidir et on le filtre sur papier.

5° Le bouillon de peptone filtré est réparti dans des vases bouchés à l'ouate (préalablement stérilisés au four à flamber), puis stérilisé à l'autoclave à 115° pendant vingt minutes.

Gélatine. — Pour obtenir des milieux nutritifs solides à base de gélatine on commence par préparer une macération de viande à laquelle on ajoute de la peptone et du sel marin. La marche à suivre est celle que nous avons indiquée pour le bouillon de viande (jusqu'au temps 4 inclus). (Voir plus haut.) Les opérations ultérieures sont les suivantes :

6° Au bouillon de viande on ajoute 10 à 12°/, de gélatine. On doit se servir d'une gélatine de très bonne qualité, « pour usage bactériologique ». (Les gélatines de qualité inférieure ne supportent pas le chauffage au-dessus de 100°.)

La dissolution est obtenue à chaud au bain-marie en agitant constamment. Il faut s'assurer que la fusion de la gélatine est bien complète avant de procéder à l'alcalinisation.

7° Alcaliniser. Les gélatines commerciales étant toujours très acides, il est nécessaire de procéder avec exactitude à l'alcalinisation, comme pour la préparation du bouillon. Il est bon de savoir qu'une alcalinité trop prononcée favoriserait les altérations de la gélatine par les chauffages ultérieurs et que dans ces conditions, le milieu préparé pourrait avoir perdu la propriété de se solidifier par refroidissement.

8° Après alcalinisation lorsque la température de la solution est tombée au-dessous de 60°, on procède au collage : on ajoute au liquide préparé un blanc d'œuf soigneusement battu dans 100 grammes d'eau. Bien

mélanger.

9° Chauffer à l'autoclave pendant une demi-heure à 110°.

10° Filtrer sur papier Chardin.

La filtration se fait aisément si l'on a eu soin de réchauffer le filtre et l'entonnoir en y versant à plusieurs reprises de l'eau bouillante. Il est plus sûr cependant de filtrer dans un entonnoir à filtration chaude, ou dans l'autoclave sans pression.

11° Répartir aussitôt dans des tubes bouchés à l'ouate,

préalablement stérilisés au four à flamber.

12° Stériliser à l'autoclave à 105° pendant une demiheure. On laisse au sortir de l'autoclave les tubes refroidir soit en les plaçant verticalement, soit au contraire en les couchant inclinés sur une baguette de verre. Dans le premier cas la gélatine se solidifie dans le fond du tube en culot, dans le second cas la gélatine solidifiée présente une large surface oblique propre à l'ensemencement.

Note. — Lorsqu'on fait usage de gélatines de qualité

^{1.} On pourrait également préparer des gélatines en partant du bouilon Martin ou de l'eau peptonée.

inférieure, les chauffages auxquels le milieu est soumis ne doivent pas dépasser la température de 100°. Dans ces cas, on doit avoir recours à la stérilisation par chauffage discontinu. Il faut alors porter trois ou quatre jours de suite la gélatine à 100° (dans l'autoclave sans pression), pendant une demi-heure ou une heure chaque fois. Ces précautions sont nécessaires, car les gélatines commerciales contiennent toutes de très nombreuses spores bactériennes très résistantes à la chaleur.

Gélose. — Les milieux nutritifs solidifiés à l'aide de gélose ou agar-agar sont d'un usage courant. Ils n'ont pas comme la gélatine l'inconvénient d'être fusibles à 23 ou 25°. Pour les préparer on fait un bouillon de viande peptonisé suivant la technique indiquée plus haut jusqu'au temps 5 inclusivement. On procède ensuite de la manière suivante :

6° Au bouillon alcalinisé on ajoute 18 à 20 grammes de gélose par litre. La gélose doit être coupée en menus fragments et mise à macérer dans l'eau froide pendant plusieurs heures avant d'être ajoutée au bouillon.

7° Porter à l'autoclave à 120° pendant vingt minutes. La dissolution de la gélose s'effectue complètement pen-

dant le chauffage.

8° Laisser refroidir le liquide jusqu'au voisinage de 60°. Ajouter alors un blanc d'œuf battu dans environ 100 grammes d'eau. Bien mélanger.

9º Porter à 120° à l'autoclave pendant un quart d'heure.

10° Filtrer sur papier Chardin après avoir eu soin de réchauffer l'entonnoir et le filtre. Il est plus sûr de se servir d'un entonnoir à filtration chaude ou de filtrer dans l'autoclave sans pression.

11° Répartir rapidement dans les tubes à culture préalablement bouchés à l'ouate et stérilisés au four à flamber.

12° Stériliser à l'autoclave à 115° pendant une demiheure. On laisse la gelée se solidifier dans les tubes après les avoir inclinés sur une baguette de verre de manière à obtenir une surface oblique propre à l'ensemencement.

Lait. — Pour préparer des milieux au lait il faut recueillir du lait très frais que l'on écrème partiellement. Le lait doit être de réaction neutre. S'il avait subi un commencement defermentation il serait devenu plus ou moins acide et ne conviendrait pas. Pour l'épreuve de la coagulation du lait on se contente de répartir en tubes du lait neutre préalablement filtré.

On stérilise par chauffages répétés à 100° et le milieu

est dès lors prêt à l'emploi.

Pomme de terre. — Pommes de terre ordinaires.

1° Découper une pomme de terre bien pelée en demicylindres à l'aide d'un emporte-pièce. A défaut d'emportepièce, on découpera la pomme de terre au couteau en longs parallélipipèdes.

Les fragments taillés sont mis à tremper, pendant une

heure au moins dans de l'eau distillée.

2° Introduire les demi-cylindres de pommes de terre dans des tubes spéciaux dont la partie inférieure est étranglée pour empêcher les fragments de tomber jusqu'au fond du tube (Tubes de Roux). Le fond du tube est rempli d'eau jusqu'au niveau de l'étranglement pour empêcher la dessication trop rapide de la pomme de terre. Les tubes à culture ainsi préparés sont chauffés à l'autoclave à 120° pendant une demi-heure.

Note. — Il est nécessaire d'atteindre la température de 120° et de la maintenir pendant au moins vingt minutes, car la surface de la pomme de terre est riche en

spores résistantes à la chaleur.

Pommes de terre alcalines. — Pour les préparer on laisse tremper les morceaux pendant plusieurs heures dans de l'eau additionnée d'environ 3 °/... de soude caustique.

Sérum coagulé. — Le plus souvent on se sert de

sérum de bœuf recueilli à l'abattoir avec les précautions d'asepsie habituelles. On pourrait aussi se servir de sérosités pathologiques (liquide d'ascite par exemple).

Le sérum est réparti en tubes, comme on répartit le bouillon ou la gélatine liquide puis les tubes sont couchés dans une étuve plate à fond incliné. L'inclinaison doit être telle que le milieu après solidification présente une surface oblique convenable. On chauffe lentement l'étuve jusqu'à une température de 68° à 70° à laquelle le sérum se coagule. Pour obtenir un milieu transparent, il faut éviter de dépasser cette température, il suffit de la maintenir pendant deux ou trois heures, jusqu'à ce que la solidification soit complète.

Si le sérum n'a pas été recueilli avec des précautions d'asepsie très minutieuses on devra le stériliser par chauffage discontinu. On le portera pendant quatre jours consécutifs à 68° pendant une heure en le laissant dans l'in-

tervalle à la température du laboratoire.

Sérum de Læffler. — C'est un mélange de une partie d'un bouillon de viande glucosé à 1 °/. avec trois parties de sérum liquide stérile.

On coagule à l'étuve à 70° à 75° et l'on stérilise par

chauffage discontinu.

Sérum liquide. — Ce milieu doit être stérilisé par chauffage discontinu à 58. Il convient pour l'étude des capsules. Il convient également à la recherche du groupement qu'y affectent certaines espèces (m. pyogenes;

m. lanceolatus, etc...) (Bezançon et Griffon.)

Gélose-ascite. — A un tube de gélose contenant 20 pour 1000 au moins d'agar-agar, on ajoute un tiers environ de son volume de liquide d'ascite recueilli aseptiquement. La gélose est tout d'abord liquéfiée au bainmarie. (Il faut dépasser la température de 80° environ) puis on la laisse refroidir jusqu'à 45 ou 50°, et c'est à cette température que le liquide d'ascite devra être

mélangé à la gélose liquide. On recommande, pour obtenir un mélange homogène, de ne pas secouer les tubes, mais de les rouler vivement entre les doigts, et de leur imprimer des mouvements successifs d'inclinaison et de redressement. On laisse le mélange faire prise, les tubes étant couchés dans une inclinaison convenable.

Gélose au sang. — Certaines bactéries exigent la présence d'hémoglobine pour se développer. On prépare les milieux favorables à leur culture en ajoutant à un tube de gélose ordinaire un centimètre cube environ de sang prélevé aseptiquement. On se sert le plus souvent de sang de lapin.

Le mélange se fait comme pour la gélose ascite.

On peut remplacer le sang pour la préparation de ces milieux, par des solutions commerciales d'hémoglobine. (Hémoplase Lumière par exemple.)

On peut enfin se contenter d'étaler quelques gouttes de sang à la surface d'un tube de gélose ordinaire; (gé-

lose sanglante.)

Note. — Par suite de la facilité avec laquelle des contaminations peuvent se produire pendant le prélèvement du sang, on doit vérifier la stérilité de ces milieux par un séjour préalable de deux ou trois jours à l'étuve à 38. Pour certains microbes il est nécessaire que le tube renferme encore de l'eau de condensation.

Milieu de Bordet

1º Eau glycérinée à 4 º/o		. 200	cc.
Pommes de terre en tranches		. 100	gr.
Faire cuire à l'autoclave et filtrer.			pré-
paré un extrait glycériné de pommes	de teri	re.	

2 Extrait	glycériné de por	nm	es o	le t	err	e.		50	cc.
	physiologique.								
Gélose.								5	gr.
Fondre	à l'autoclave.								

- 3º Répartir en tubes à raison de 2 à 3 centimètres cubes par tube.
 - 4° Stériliser.
- 5° Recueillir aseptiquement du sang d'homme (préférable) ou de lapin.

Défibriner.

6° Ajouter à chaque tube de gélose liquide égale quantité de sang défibriné; mélanger, laisser refroidir les tubes inclinés.

Ce milieu permet la culture du gonocoque, du méningocoque, du B. de Pfeiffer et de celui de la coqueluche.

Ne contenant pas de peptone il est peu favorable à la

culture des saprophytes.

Milieux colorés. — Pour diverses recherches, en particulier pour l'étude de la fermentation des sucres il est nécessaire d'ajouter aux milieux de culture des substances colorées (réactifs indicateurs). La teinture de tournesol est ordinairement employée à cet usage.

Les milieux colorés ne doivent jamais être préparés d'avance. La teinture conservée en tubes stérilisés est ajoutée aux milieux nutritifs au moment de l'emploi ; s'il s'agit de milieux solides on les liquéfie préalable-

ment au bain-marie.

La teinture de tournesol se prépare de la manière suivante :

1º Le tournesol en pains est pulvérisé au mortier.

2° On y ajoute 5 à 6 volumes d'alcool à 90° et l'on porte à l'ébullition au bain-marie.

3° On décante, et sur la bouillie bleue restante, on verse 6 à 8 parties d'eau distillée. On porte à l'ébullition et on laisse refroidir. On divise la teinture obtenue en deux portions. On rougit très légèrement la première portion par l'acide sulfurique dilué. A cette teinture, presque rouge, on ajoute la teinture bleue restante peu à peu jusqu'à retour à la teinte bleue initiale. On a ainsi

74 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE obtenu une teinture sensible. On filtre sur papier après refroidissement.

La teinture bleue est répartie en tubes bouchés à l'ouate, et stérélisée à l'autoclave à 115°. Elle est alors prête à l'emploi et peut être longtemps conservée.

Cultures anaérobies

L'emploi de méthodes spéciales permet de cultiver les microbes anaérobies à l'abri de l'oxygène. Nous décrirons les procédés les plus simples, ceux qui n'exigent qu'un matériel peu compliqué et qui suffisent à toutes les recherches.

- 1° CULTURES EN MILIEUX LIQUIDES.
- a) Cultures dans le vide. Le tube à culture ensemencé est étranglé à sa partie supérieure, puis le bouchon de coton est repoussé contre l'étranglement de manière à permettre l'adaptation à l'orifice d'un bouchon de caoutchouc traversé par un tube de verre. Le tube étranglé muni de son bouchon et de sa tubulure est adapté à une trompe à eau. Toutefois la trompe à eau utilisée dans tous les laboratoires ne permet pas d'obtenir un vide suffisamment complet. On y remédie en mettant le système en communication avec un appareil générateur d'hydrogène.

Lorsque le vide (incomplet) a été obtenu par l'action de la trompe à eau, on ouvre le robinet d'admission d'hydrogène; puis on fait le vide de nouveau aussi complètement que possible. On renouvelle cette manœuvre deux ou trois fois. Ces dépressions successives combinées à cette sorte de lavage d'hydrogène permettent une

élimination complète de l'oxygène. Lorsque les opérations sont terminées on scelle le tube à la lampe au niveau de

l'étranglement préparé dans ce but.

b) Cultures en tube cacheté. — Avant la stérilisation du milieu de culture à l'autoclave, on verse à sa surface dans le tube une couche d'huile de vaseline ou une couche de lanolide liquide et stérilisée, épaisse de 1 à 2 centimètres. La couche d'huile isole le milieu parfaitement et le met ainsi à l'abri du contact de l'air. Il est aisé d'ensemencer en plongeant une pipette effilée chargée de quelques gouttes du culture à travers la couche huileuse.

c) Absorption de l'oxygène par un corps réducteur.

— On se sert de tubes à culture ordinaires. Après avoir ensemencé, on repousse le bouchon d'ouate non hydrophile jusque vers le milieu du tube. Puis on introduit au-dessus de ce premier bouchon un deuxième bouchon d'ouate hydrophile peu serré que l'on enfonce moins que le précédent mais assez cependant pour laisser libre l'ouverture du tube. Sur le bouchon d'ouate hydrophile on verse deux centimètres cubes d'une solution d'acide pyrogallique à 20 °/o, puis deux centimètres cubes d'une solution de potasse à 20 °/o. On bouche aussitôt après le tube à culture avec un bouchon de caoutchouc bien adapté, assurant une fermeture hermétique.

2º CULTURES EN MILIEUX SOLIDES.

La culture des bactéries anaérobies peut s'effectuer dans le vide ou en présence d'un corps réducteur suivant les méthodes que nous venons d'exposer. Toutefois la méthode suivante plus simple peut être appliquée aux milieux solides.

Tubes de Liborius-Veillon. — Cette méthode est actuellement la plus usitée. On prépare une gélose au bouillon à 10 pour 1000 d'agar-agar suivant les procédés habituels mais on y ajoute en outre 1,5 pour 100

de glucose. Le milieu doit être récemment préparé. Des tubes à culture assez longs sont remplis, jusqu'à la moitié environ de leur hauteur, de gélose qu'on laisse se solidifier en culot. Pour l'ensemencement on liquéfie la gélose au bain-marie. Les tubes doivent être maintenus plongés dans l'eau bouillante pendant au moins vingt minutes, afin de chasser complètement l'air en dissolution. Aussitôt après, on doit plonger les tubes dans l'eau à 40° de manière à abaisser leur température aux environs de 45°. A cette température la gélose est encore en fusion On l'ensemence soit avec une pipette, soit avec un fil de platine chargé de matériel d'ensemencement. Aussitôt après, le tube doit être roulé vivement entre les mains (sans secousses) pour opérer le mélange, puis il est plongé de nouveau dans l'eau froide de manière à assurer la solidification rapide du milieu. On ensemence successivement plusieurs tubes sans recharger le fil de platine afin d'obtenir dans les derniers tubes le développement de colonies de moins en moins nombreuses. Dans les tubes ainsi ensemencés les microbes anaérobies se développent dans la profondeur du culot, à l'abri de l'air. La couche la plus superficielle de la gélose seule a pu dissoudre de l'oxygène, aussi les espèces strictement anaérobies ne se développent-elles que dans le fond du tube, à partir d'un ou deux centimètres au-dessous de la surface.

L'emploi de la méthode de Liborius-Veillon est surtout utile pour l'isolement des bactéries anaérobies. Veillon conseille de procéder de la manière suivante : On choisit dans la série des tubes ensemencés un de ceux dans lesquels les colonies se sont développées en petit nombre, restant assez éloignées les unes des autres. Avec une pipette effilée dont on a cassé et flambé l'effilure, on pique le culot de gélose en visant la colonie que l'on désire prélever. Si l'on a bien opéré, la colonie pénètre dans l'effilure. Il suffit alors de retirer la pipette que l'on vide dans une boîte de Petri stérile du petit cylindre de gélose qu'elle contient et où se trouve la colonie cherchée.

On peut appliquer la méthode de Veillon à la gélatine. Pour cela on verse à la surface du culot de gélatine liquéfiée, purgée d'air, ensemencée et refroidie, une couche de gélose glucosée que l'on refroidit rapidement. La gélose remplit l'office de bouchon.

Milieux destinés à l'étude des propriétés fer-

mentatives.

Pour l'étude précise de certaines actions chimiques des bactéries il est nécessaire d'avoir recours à des milieux préparés spécialement pour la recherche des propriétés fermentatives. La plupart de ces milieux sont à base de bouillon, ou de solutions de peptone; on y ajoute certaines substances afin de pouvoir étudier les modifications qu'elles subissent sous l'influence du développement des bactéries.

1º Pour l'étude de la fermentation des hydrates de carbone, il faut se servir de bouillons préalablement désucrés ou de gélatines préparées avec eux. On ne doit pas employer de gélose. Le bouillon Martin ou l'eau peptonée conviennent à cet usage. On peut aussi désucrer le bouillon ordinaire en y ensemençant des colibacilles et en les laissant se développer pendant deux jours à 37°. Il suffit ensuite de porter la culture à 115° puis de la filtrer sur bougie de porcelaine et de stériliser le liquide clair restant pour obtenir un bouillon désucré. Pour l'emploi, on y ajoute de 0,50 a 2 °/o de la substance à éprouver. On prépare ainsi des milieux avec : 1° Des sucres: glucose, lactose, maltose, saccharose, etc...; 2° des alcools : mannite, glycérine ; 3° des sels d'acides organiques : lactates, succinates, etc...

Pour l'étude de la production des gaz on peut se con-

tenter des cultures en culot de gélatine, mais si l'on veut faire des recherches quantitatives, il faut faire la culture dans des tubes à fermentation (tubes de Smith); l'appareil étant rempli de bouillon stérilisé, puis ensemencé, les gaz produits s'il s'en dégage, s'accumuleront dans la branche verticale. Cet appareil permet un dosage suffisamment précis pour les recherches bactériologiques.

2º Pour l'étude de la fermentation des matières protéiques, il est nécessaire de préparer un certain nombre de milieux contenant : de la fibrine, de la caséine, du

blanc d'œuf cuit.

α) Fibrine. — Un peu de fibrine lavée est mise dans un milieu nutritif quelconque. On stérilise à 100° pendant

trois jours consécutifs.

Pour le dosage des produits de digestion de la fibrine, on ajoure cette substance au liquide suivant dans la proportion de 30 grammes pour 250 de liquide (Tissier).

Liquide d'Utchinsky

Eau distil		100 cc.
Glycérine		3 à 4 —
Lactate d'ammonium.		0 gr. 60 à 0 gr. 70
Asparaginate de soude		0 gr. 30 à 0 gr. 40
Chlorure de sodium.		
Phosphate bipotassique		0 gr. 20
Sulfate de magnésie .		0 gr. 02 à 0 gr. 04
Chlorure de calcium.		0 gr. 01

La culture se fait suivant les cas en milieu aérobie ou à l'abri de l air.

β) Caséine. — On prépare la caséine par action du ferment lab ou par l'action des acides sur un lait écrémé. Laver avec soin dans ce dernier cas pour éliminer l'acide

aussi complètement que possible. On ajoute un peu de la caséine ainsi préparée à un milieu liquide convenable.

γ) Blanc d'œuf cuit. — Il suffit d'ajouter au milieu liquide employé un petit cube de blanc d'œuf cuit.

Milieux spéciaux.

1º Milieux d'enrichissement (Voir chap. II).

2º Milieux d'isolement spéciaux.

Gélose au lait. — Ce milieu est employé pour l'étude des ferments lab et lactique. On peut se servir soit de gélose ordinaire (au bouillon), soit de gélose à l'eau (3 °/°). On répartit en tubes la gélose d'une part, le lait d'autre part, car la gélose et le lait doivent être stérilisés séparément, si l'on veut éviter la précipitation du lait. La gélose et le lait sont alors chauffés à 50° et coulés dans des boîtes de Petri stérilisées et préalablement chauffées. On réalise le mélange en imprimant à la plaque des mouvements appropriés. Le mélange géloselait peut se faire à parties égales. Lœhnis utilise de préférence le milieu suivant:

Gélose	au	bou	illo	n .				90
Lait .								10

Selon la quantité d'acides produite on voit se former le long du trait d'ensemencement soit une zone d'éclaircissement soit une traînée opaque; un peu d'acide rend la caséine soluble (en milieu salé), une plus grande quantité d'acide la précipite.

Gélose au moût de bière. — Ce milieu sert à l'isolement de certaines bactéries acidophiles qui ne peuvent

être cultivées sur les milieux usuels.

On prépare ce milieu en ajoutant 1,5 % de gélose à du

moût de bière ; on a soin de ne pas neutraliser.

Gélose nitratée. — On ajoute à de la gélose au bouillon 0,1 °/° de nitrate de potasse. On coule en plaques. Ce milieu favorise l'isolement des bactéries dénitrifiantes

80 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

préalablement multipliées dans le bouillon nitraté ou dans la solution de Giltay (Voir chap. II, milieux d'enrichissement). Les espèces dénitrifiantes pourront être cultivées ensuite sur les milieux usuels (à 37°).

CHAPITRE II

ISOLEMENT DES BACTÉRIES

Plusieurs méthodes peuvent être employées pour isoler les différentes bactéries d'une culture impure, d'un produit pathologique, etc. Le plus employé consiste à diluer le produit à étudier et à l'incorporer à un milieu solide préalablement préparé, de telle manière que les germes du mélange s'y trouveront peu nombreux, séparés les uns des autres, ce qui permettra le développement de colonies distinctes, isolées ¹. Un autre procédé consiste à ensemencer avec le produit impur des milieux spéciaux particulièrement favorables à la culture de l'espèce qu'on veut isoler. Un troisième procédé utilise l'aptitude des bactéries pathogènes à végéter dans l'organisme animal.

La manière de recueillir le matériel à étudier et le mode d'ensemencement varient beaucoup suivant les cas.

L'étude des bactéries de l'eau, de l'air, du sang, etc... comporte en effet l'emploi de techniques propres à chacun de ces milieux.

Eau. - Pour les analyses il faut recueillir une cer-

^{1.} Une colonie isolée obtenue dans ces conditions n'est pas nécessairement une culture pure, car plusieurs cellules microbiennes peuvent être restées accolées, groupées en amas dans le mélange. D'où la nécessité habituelle de faire au moins deux isolements successifs.

taine quantité d'eau dans un flacon stérile et procéder aux ensemencements sans retard. Pour cela on laisse tomber une goutte d'eau dans un tube de gélatine liquéfiée qu'on agite; puis on recueille quelques gouttes de la gélatine du premier tube pour la reporter dans un second tube qui servira à son tour à en ensemencer un troisième; enfin, après avoir légèrement agité les tubes, on coule la gélatine dans des boîtes de Petri stérilisées (Voir plus loin; isolement sur plaques de gélatine).

Quand on recherche au contraire dans une eau la présence seulement de certains germes pathogènes, on fait précéder l'isolement sur plaques de gélatine par une culture plus ou moins prolongée, sur des milieux spéciaux (milieux d'enrichissement) particulièrement favorables à

ces germes.

Air. — Pour l'isolement et la culture des microbes de l'air, on peut se contenter d'exposer à découvert des boîtes de Petri dans lesquelles on a coulé le contenu d'un tube de gélatine (ou de gélose).

La chute des poussières de l'atmosphère contamine le

milieu.

Ce procédé très simple manque cependant d'exactitude et renseigne mal en particulier sur la richesse réelle de l'air en microbes. Un procédé plus précis consiste à faire passer un volume d'air connu à travers une bourre constituée par une poudre soluble et non antiseptique (sulfate de soude desséché). On fait ensuite tomber cette poudre dans du bouillon où les germes se répartissent par agitation. On utilise ce bouillon pour ensemencer des plaques de gélatine ou de gélose. Si les recherches portent sur certaines bactéries déterminées on fait des passages par les milieux d'enrichissement qui leur conviennent avant d'ensemencer les plaques.

Terre. Fumier. — Les bactéries du sol peuvent être recherchées directement dans une eau de lavage après

sédimentation grossière. On procède parfois par inoculation sous-cutanée pour l'isolement des espèces pathogènes (B. tetani. B. œdematis maligni).

Matières fécales. — Elles doivent être recueillies dans un vase stérilisé.

On prélève avec le fil de platine une très petite quantité des matières à étudier que l'on porte dans un tube de bouillon. On agite le liquide puis on laisse sédimenter les grumeaux. Le liquide qui surnage sert aux ensemencements, suivant les recherches qu'on se propose de faire. S'il s'agit de matières solides on fait le prélèvement en plein bol fécal, ou l'on recueille au contraire les sérosités, le pus ou les mucosités qui se trouvent à sa surface.

Urine. — On pratique les ensemencements directement en partant de l'urine à examiner, mais celle-ci doit être recueillie dans la vessie par un cathétérisme aseptique.

Crachats. — Par suite de leur viscosité les crachats se prêtent mal à l'expérimentation. Il est bon de les broyer avec un peu d'eau stérilisée pour que l'ensemencement des plaques ou l'inoculation des animaux soit facilitée.

Sérosités. Sang, etc. — Ces liquides de l'organisme doivent être recueillis par ponction avec une rigoureuse asepsie. Le sang se recueille dans une veine du pli du coude. On aspire le liquide à l'aide d'une seringue stérilisée et l'on procède aussitôt aux ensemencements. Dans la plupart des cas (méningites, pleurésies, septicémies) l'infection résulte du développement d'un seul germe et l'isolement est réalisé d'emblée. Aussi ensemence-t on le plus souvent directement des milieux liquides dans lesquels le germe présumé pathologique se développe à l'état de pureté. Dans le cas d'infections associées, on ferait des isolements sur plaques. On a dans certains cas recours également à la culture dans des mi-

84 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE lieux d'enrichissement, ou bien on pratique directement des inoculations.

Lait. — Les laits commerciaux sont toujours très riches en germes, aussi doit-on les diluer dans 10 à 1.000 fois leur volume d'eau stérilisée avant d'ensemencer les plaques de gélatine. On procède ensuite à l'isolement des germes par les procédés ordinaires.

1° Isolement sur plaques

Pour réaliser l'isolement, dans les recherches qui portent sur des produits riches en germes, on se sert le plus souvent de dilutions dans la gélatine que l'on coulera ensuite dans des boîtes de verre (Boîtes de Pétri).

Pour cela, on liquéfie au bain-marie plusieurs tubes de gélatine en les chauffant à la température de 40° environ. On prélève d'autre part un peu du liquide dont on veut isoler les germes soit avec une pipette, soit avec le fil de platine dont on a recourbé l'extrémité en anse et l'on ensemence ainsi le premier tube ¹.

Pour assurer le mélange du produit ensemencé et de la gélatine on roule vivement le tube entre les mains, mais il ne faut jamais le secouer pour éviter la production d'une mousse persistante qui gênerait la confection des plaques. Le deuxième tube préparé est ensemencé dans les mêmes conditions avec quelques gouttes de gélatine du premier tube receuillies à la pipette, et l'on doit ainsi ensemencer trois ou quatre tubes. Si l'on s'est servi du fil de platine pour ensemencer le premier

^{1.} Les recherches portant spécialement sur des bactéries sporulées, qui résistent bien à la chaleur sont simplifiées si l'on a soin préalablement de porter le produit impur qui est supposé les contenir pendant quelques minutes à la température de l'ébullition.

tube, après l'y avoir plongé on le porte dans le deuxième tube sans le recharger, puis dans le troisième et le quatrième tube, toujours sans le recharger si bien qu'on aura ensemencé un grand nombre de bactéries dans le premier tube, et très peu au contraire dans le dernier.

Avant que la gélatine se soit refroidie et par conséquent qu'elle ait fait prise, on verse le contenu de chaque tube dans une boîte de Petri préalablement stérilisée au four à flamber. Les boîtes sont enveloppées dans un papier avant d'être mises au four afin d'empêcher leur contamination ultérieure par les poussières atmosphé-

riques.

Lorsqu'on coule la gélatine dans les boîtes on court quelque risque de voir les poussières se mêler aux milieux. Pour éviter cette contamination dans la mesure du possible il faut ne soulever le couvercle de chaque boîte que juste autant qu'il est nécessaire pour permettre de verser le contenu des tubes. On doit opérer à l'abri des courants d'air dans une pièce propre dont l'air soit en repos depuis assez longtemps. Les boîtes de Petri après avoir reçu la gélatine ensemencée sont déposées sur une surface horizontale et froide, afin que la gelée fasse prise aussitôt. On laisse les boîtes à la température de 22° à l'étuve ou plus simplement à la température du laboratoire. Après un ou deux jours on voit apparaître les premières colonies dont on surveille le développement à la loupe ou au microscope. Parmi les colonies qui se développent ainsi, on choisit celles dont on veut poursuivre l'étude et pour cela on les repique sur un milieu neuf. On ferait le cas échéant des plaques de gélose, de gélose ascite, etc..., comme on fait des plaques de gélatine.

Un procédé plus simple d'isolement couramment employé dans les laboratoires bien qu'il soit moins bon que celui des dilutions successives, consiste à ensemencer un tube de gélatine ou de gélose inclinée en strie sinueuse. Après avoir ensemencé un premier tube, on reporte le fil sans le recharger dans un second tube et l'on en ensemence ainsi cinq ou six successivement. Les colonies se développent nombreuses et confluentes dans le premier tube; elles sont au contraire peu nombreuses et isolées dans les derniers.

Anaérobies. — Nous avons déjà indiqué en étudiant les milieux de culture convenant au développement des microbes anaérobies comment on leur applique cette même méthode d'isolement. (Tubes de Liborius-Veillon.)

Notons ici que l'isolement est rendu difficile par le fait que les colonies des bactéries les plus différentes se ressemblent presque toutes dans les cultures en gélose glucosée. Le développement abondant de gaz que produisent certains microbes vient encore parfois, en fragmentant le cylindre de gélose, gêner la récolte des colonies que l'on désire repiquer. Veillon recommande pour empêcher le développement gazeux l'addition de 1 °/. de nitrate de potasse au milieu.

2º Milieux d'enrichissement

Les milieux d'enrichissement varient avec l'espèce microbienne que l'on se propose d'isoler. L'emploi de cette technique suppose qu'on ne s'intéresse qu'à la recherche d'une bactérie déterminée dans le produit impur.

Les milieux les plus usités sont le milieu de Metchnikoff, le milieu de Dieudonné, le milieu de Conradi, etc. Les deux premiers sont destinés à faciliter et à hâter l'isolement du spirille du choléra et des spirilles voisins.

Sp. cholerae. — a) Milieu de Metchnikoff. — Sa formule est la suivante (Gélo-pepto-sel) :

Peptone Chapoteaut		10	grammes
Sel marin	1	5	-
Gélatine blanche .		20	-
Eau		1.000	1111
Alcaliniser.			

Pour l'utiliser on procède de la manière suivante:

1° Préparer des flacons à large ouverture, les ensemencer avec une trace des matières suspectes et les mettre à l'étuve à 37°;

2º Après six ou sept heures de séjour à l'étuve, il se forme un léger voile à la surface. Toucher la surface du liquide avec l'anse de platine. Ensemencer ensuite un second flacon, et le laisser de même sept heures à l'étuve à 37°. Dans ces conditions la plupart des bactéries n'ont pas eu le temps de se développer avec abondance. Au contraire le léger voile est formé presque uniquement de spirilles;

3° On termine par un isolement sur plaques de gélose

où le développement est très rapide.

Pour effectuer l'isolement dans une eau suspecte, on modifie légèrement la technique. Dans ce cas, c'est l'eau suspecte elle-même qui constituera le milieu de culture. On augmente ses qualités nutritives en ajoutant pour trois parties d'eau une partie de la solution suivante:

Eau								,	50 gr	ammes
Peptone	Ch	apo	tea	ut					2	
Sel mari	n.								2	200
Gélatine										
Solution	de	S01	ude	Q.	S.	po	ur	alca	aliniser	. 11

b) Milieu de Dieudonné. — Ce milieu est également destiné à l'isolement de Sp. Choleræ par culture élective. On mélange à parties égales du sang de bœuf défi-

briné avec une solution normale de potasse caustique, 30 parties de ce mélange stérilisé sont ajoutées à 70 parties de gélose peptonée à 3 %. Vérifier la neutralisation au tournesol.

Sp. choleræ se développe sur ce milieu en colonies très abondantes, grises, transparentes. B. coli, B. fæcalis alcaligenes, n'y cultivent presque pas; les spirilles pseudo-cholériques, le bacille pyocyanique s'y multiplient assez bien.

Bact. typhosum. — Pour la recherche dans le sang (hémoculture) du bact. de la fièvre typhoïde, les milieux de choix sont ceux qui contiennent de la bile ou des sels biliaires. Ils favorisent tout particulièrement son développement et conviennent mal au contraire à B. coli commune.

a). — Milieux à la bile ou aux sels biliaires. — La technique de Conradi consiste à ajouter à la bile de bœuf 10 °/°, de peptone et 10 °/°, de glycérine. On stérilise à 100° et l'on obtient ainsi un milieu particulièrement utile pour le diagnostic de la fièvre typhoïde par hémoculture. On peut remplacer la bile par le glycocholate de soude (1 °/°, d'après Roosen Runge) ou mieux par le taurocholate de soude (2,5 °/° d'après Dünschmann).

Ce dernier auteur recommande d'ailleurs pour l'isolement sur plaques de B. typhosum, l'emploi d'une gélose peptonée et lactosée contenant 2 % de taurocholate de soude.

Pour la recherche de B. typhosum dans l'eau, on peut se servir des milieux à la bile. On se sert aussi de mi-

lieux phéniqués ou caféinés.

b) Milieux phéniqués (Chantemesse). — On emploie des bouillons contenant 1 à 1,25 °/00 d'acide phénique. Vincent a remarqué que le développement du B. de la fièvre typhoïde se faisait sur ce milieu d'une manière particulièrement élective à la température de 41 à 42°.

c) Milieux caféinés (Roth). — On se sert de milieux renfermant 1 % de caféine. Ils conviennent bien à la culture de B. typhosum et empêchent au contraire com-

plètement le développement de B. coli commune.

Bactéries acidophiles. — Elles se développent bien dans les milieux sucrés additionnés de 1 °/° d'acide acétique. La plupart des autres microbes ne s'y multiplient pas. On devra mettre quelques tubes à l'étuve à 50°, car certaines bactéries acidophiles sont en outre thermophiles. L'isolement des espèces acidophiles se termine sur plaques de gélose acétique à 1 °/° ou de gélose au lait, ou de gélose au moût de bière (Voir chapitre I).

Bactéries fixant l'azote libre. — Le milieu d'enrichissement qui leur convient est un extrait de terre

mannité (Læhnis).

Ce milieu se prépare de la manière suivante :

1° Chauffer à l'autoclave à 120° pendant une demiheure 1 kilogramme de terre ferfile avec un litre d'eau;

2º Décanter, filtrer le liquide trouble sur un papier

épais après avoir ajouté un peu de talc;

3° Ajouter à l'extrait de terre ainsi préparé cinq centigrammes de phosphate bipotassique et 1 gramme de mannite pour 100 centimètres cubes;

4º Stériliser.

Le liquide est réparti dans des flacons d'Erlenmeyer que l'on ensemence avec de la terre. Les flacons sont placés pendant une dizaine de jours à l'étuve à 25°. Le liquide se trouble puis apparaît un voile plissé d'abord blanc grisâtre, puis brun.

L'isolement des bactéries multipliées sur ce milieu se

poursuivra sur plaques de gélose mannitée.

Gélose mannitée. — Ce milieu sert à l'isolement des bactéries fixant l'azote libre. Il est nécessaire de multiplier préalablement la culture en organismes assimilateurs d'azote dans l'extrait de terre mannité.

Les plaques de gélose mannitée seront préparées de la manière suivante (Lœhnis):

On ajoute 1,5 % de gélose à un liquide ainsi composé:

La gélose mannitée est filtrée puis répartie en tubes et stérilisée.

Bactéries nitrifiantes. — Pour isoler les ferments nitrificateurs, on ensemence la terre à étudier dans des fioles d'Erlenmeyer de 250 centimètres cubes à demi remplies de scories concassées, dans lesquelles on ajoute environ 50 centimètres cubes du liquide d'enrichissement.

Le liquide d'enrichissement qui convient à l'isolement des ferments nitreux a la formnle suivante (Oméliansky):

Le liquide d'enrichissement qui convient à l'isolement des ferments nitriques a la formule suivante (Oméliansky):

Nitrite de soude	1	gr.	
Carbonate de soude (calciné).	1	gr.	
Phosphate bipotassique	0	gr.	50
Chlorure de sodium	0	gr.	50

Sulfate ferreux		0	gr.	40
Sulfate de magnésie		0	gr.	30
Eau distillée		1000	gr.	

Les fioles ainsi ensemencées doivent être agitées plusieurs fois par jour, et il convient de faire plusieurs repiquages successifs sur ces milieux d'enrichissement avant de procéder à l'isolement. La culture se fait à la température de 25 à 30°.

L'isolement se poursuivra sur plaques au plâtre et à la magnésie pour les ferments nitreux, ou sur gélose au

nitrite pour les ferments nitriques.

Gélose aqueuse au nitrite. — Ce milieu a été indiqué par Winogradsky pour l'isolement des ferments nitriques.

Phosph	ate	bip	ota	assi	que			0,5
Carbon	ate	de	so	ude				1
Nitrite	de	sou	de					. 2
Gélose								15
Eau .								1.000

On ensemence ce milieu avec les cultures enrichies

dans un liquide électif.

Plaques de plâtre additionné de sels de magnésie (Omélianski). — C'est là le meilleur des nombreux milieux qui ont été préconisés pour la culture pure des ferments nitreux dont l'isolement est si difficile.

Ces bactéries auront été multipliées, au préalable, dans un milieu d'enrichissement approprié (Voir plus haut).

On prépare une décoction au quart de terre riche en humus dans l'eau ordinaire. Ce liquide servira à gâcher du plâtre additionné de 1 °/0 de carbonate de magnésie et de 1 °/0 de phosphate ammoniaco-magnésien. Cette masse est ensuite étalée en galette d'un demi-centimè-

92 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

tre d'épaisseur environ et découpée en rondelles. Cellesci sont introduites dans des plaques de Petri et stérilisées. On humecte les plaques avec la solution suivante :

Phosphate bipotassique	3.		0,10
Sulfate de magnésie.			0,05
Chlorure de sodium.			0,20
Sulfate ferreux			0,04
Eau distillée			100

Les plaques seront ensemencées avec des cultures enrichies.

Bactéries dénitrifiantes. — a) Bouillon nitraté. — On prépare ce milieu en ajoutant 10 centigrammes de nitrate de potasse à 100 centimètres cubes de bouillon ordinaire.

b) Solution de Giltay.

Solution A

Eau distillée			25 cc.
Nitrate de potasse			0,2
Asparagine			0,1

Solution B

Eau distillée		50 cc.
Acide citrique		0,5
Phosphate monopotassique		
Sulfate de magnésie .		0,2
Chlorure de calcium .		0,02

Mélanger les deux solutions et compléter à 100 centimètres cubes.

Les tubes contenant le liquide d'enrichissement sont ensemencés, puis mis à l'étuve à 37° pendant deux ou

trois jours. Quand un dégagement abondant de gaz se produit, on réensemence un autre tube. On poursuit l'isolement sur plaques de gélose nitratée à 0,1 °/. puis sur les milieux usuels.

Bactéries faisant fermenter la cellulose. — Pour multiplier ces bactéries on se servira du milieu d'Omélianski.

Eau distil		100 cc.
Sulfate d'ammoniaque.		0 gr. 10
Phosphate bipotassique		0 gr. 10
Sulfate de magnésie .		
Carbonate de calcium.		2 gr.
Chlorure de sodium .		traces.

On introduit dans un tube quelques centimètres cubes de ce liquide et un fragment de papier filtre ou d'ouate. On ensemence ensuite avec le produit à étudier.

Par chauffage à 75°, on peut isoler les bacilles produc-

teurs d'hydrogène (sporulés).

Pour isoler les bacilles producteurs de méthane, il faut au contraire faire des réensemencements au début de la fermentation sans pasteuriser. La décomposition de la cellulose peut être produite par des germes aérobies ou anaérobies. Ces derniers ne sont que difficilement cultivables sur les milieux solides.

Bactéries faisant fermenter la pectine. — Le milieu d'enrichissement qui sert à multiplier les bactéries qui décomposent la pectine est le suivant : (Löhnis.)

Eau ordinaire		100 cc.
Carbonate de calcium.		2 grammes.
Sulfate d'ammonium .		0 gr. 05
Phosphate bi-potassique		0 gr. 05

On prépare une série de tubes contenant chacun quelques centimètres cubes de ce liquide et 10 centigrammes de pectine. On les ensemence après stérilisation et l'on cultive à l'abri de l'air. Des réensemencements successifs permettent l'isolement des bactéries sur la gélose au moût de bière dilué légèrement acide (Löhnis).

Hauman se sert du milieu suivant :

Pectine .					10 gr.
Peptone.					1 gr.
Phosphate	d'an	nmon	iaq	ue	1 gr.
Sulfate de	pota	sse.			0 gr. 50
Sulfate de	mag	nésie			0 gr. 50
Eau					

Il constate la disparition de la pectine par l'abaissement du degré polarimétrique.

3° Isolement par inoculations

Si l'on désire isoler d'un produit impur une bactérie électivement pathogène pour une espèce animale, l'inoculation à cette espèce est un bon procédé d'isolement: le virus végétera seul dans l'organisme. Ce mode d'isolement ne convient qu'aux espèces pathogènes, c'est surtout au pneumocoque qu'il s'applique. On inocule les crachats suspects à la souris blanche, et s'ils contiennent des pneumocoques virulents, l'animal inoculé meurt de septicémie en douze à trente heures. On trouve le microcoque à l'état de pureté dans le sang du cœur, d'où il est facile de l'ensemencer sur des milieux artificiels. Ce mode d'isolement est encore utile dans d'autres circonstances. Il est le seul qui permette d'isoler avec quelque certitude le B. de la tuberculose des produits pathologiques où il est associé à diverses bactéries. Il convient à la recherche de B. tetani, B. œdematis maligni, etc...

CHAPITRE III

PAR L'EXAMEN DES CULTURES

La forme, les dimensions, la couleur des colonies microbiennes développées sur les milieux nutritifs artificiels fournissent des renseignements nécessaires à la classification des bactéries.

Le trouble produit dans les milieux liquides, la formation d'un dépôt, d'une pellicule doivent être indiqués. On doit noter l'aspect que présentent les colonies, sur plaques de gélatine, sur gélose, sur pomme de terre, et éventuellement sur des milieux spéciaux. Les colonies sur plaques de gélatine surtout doivent être bien décrites car dans un essai d'isolement on sera guidé dans le choix des colonies à repiquer par leur seul aspect. Sur plaques de gélatine les colonies profondes, développées dans la gelée sont le plus souvent arrondies et présentent en tout cas des aspects moins caractéristiques que les colonies superficielles étalées. On notera la couleur, les dimensions, la forme, les contours des colonies. On notera aussi la liquéfaction du milieu si elle se produit.

On a voulu cependant croyons-nous, pousser trop loin l'analyse de ces caractères macroscopiques. On a distingué des colonies à bords sinueux ou lobés, ou découpés, créant ainsi toute une classification. Se fier à ces carac-

tères expose à de nombreuses erreurs, car les colonies microbiennes n'affectent pas des formes géométriques parfaitement fixes. Au contraire, si l'on se contente de tenir compte des caractères distinctifs importants, l'aspect macroscopique des cultures sur plaques est capable de fournir des éléments de classification très utiles. C'est ainsi qu'aucune confusion ne risque de s'établir entre des colonies dont les contours sont nettement tracés et d'autres qui au contraire émettent à leur pourtour des prolongements ciliés ou bouclés, plus ou moins longs ou irréguliers.

Les principaux caractères morphologiques des colonies sur plaques peuvent être appréciés à l'œil nu. Toutefois une bonne description doit toujours être appuyée au moins sur l'examen à l'aide d'une forte loupe. On se sert généralement du microscope pour cet usage avec une combinaison donnant un grossissement très faible (30 diamètres environ). Un objectif n° 1 combiné avec un oculaire n° 1 convient à cette étude. Rappelons aussi que la forme d'une colonie varie avec son âge, et qu'il faut par conséquent examiner attentivement les plaques de gélatine tous les jours depuis le moment de leur ensemencement jusqu'à ce que les colonies microbiennes aient pris un assez grand développement.

Ce n'est pas seulement l'aspect des colonies sur plaques de gélatine qui devra être noté mais aussi celui des cultures en strie et en piqure. L'ensemencement en piqure dans la gélatine est surtout intéressant pour les espèces liquéfiantes. La forme que prend la partie liquéfiée, la rapidité de la liquéfaction sont autant de caractères à noter quand on fait un essai de détermination. C'est ainsi que l'on distingue des liquéfactions en entonnoir, en bulle, en cylindre, en doigt de gant (ou en tuyau).

La culture le long du trait de piqure avant liquéfaction ou en l'absence de liquéfaction présente aussi des aspects assez variables: tandis que certaines bactéries se développent seulement le long du trait d'ensemencement, d'autres poussent des ramifications autour du trait dans la gelée, donnant des aspects d'écouvillon, ou de sapin renversé, de racine, etc... Les bactéries qui ne se développent pas dans la gélatine peuvent être étudiées d'une manière analogue sur des plaques de gélose, de gélose ascite, etc...

Les cultures sur les autres milieux doivent aussi être examinées tous les jours attentivement. Pour le lait, il faut chercher avec soin la coagulation, le temps qu'il lui a fallu pour se produire, et noter si les grumeaux de caséine se redissolvent, se transformant en un liquide

clair et jaunâtre.

Pour le sérum coagulé, il faut noter la liquéfaction du milieu.

Pour la gélose sucrée profonde (anaérobie), la production de bulles de gaz doit être notée car elle constitue

un caractère important de diagnostic.

Toutes ces recherches doivent se poursuivre assez longtemps car certaines actions chimiques, la peptonisation des albumines naturelles en particulier peuvent être lentes à se produire. Cette remarque s'applique du reste à toutes les fermentations. Toutefois les substances hydrocarbonées sont en général plus rapidement attaquées et il est rare que cette fermentation ne se manifeste pas dès les premiers jours par l'acidification des bouillons sucrés.

Pour certains milieux plus rarement employés, il faut noter l'éclaircissement ou la décoloration produite autour des cultures.

C'est ainsi que les milieux solides sucrés tenant en suspension du carbonate de calcium s'éclairciront sous l'influence d'un ferment producteur d'acides ; qu'un milieu solide mêlé de sang s'éclaircira autour des colonies 98 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

d'un germe producteur d'hémolysines; qu'un milieu contenant diverses substances colorantes pourra se décolorer sous l'action d'un ferment réducteur.

Enfin la production de pigment, les conditions de temps, de température, d'aérobiose nécessaires à sa production doivent être recherchées sans préjudice de l'étude de ses caractères chimiques.

CHAPITRE IV

COLORATIONS

L'examen direct des bactéries peut se faire soit dans les sérosités organiques prélevées sur un malade ou sur un animal en expérience, soit dans les liquides de culture. Ce n'est guère que dans ces derniers que l'étude peut être conduite avec précision et d'une manière complète. Les recherches peuvent se faire avec ou sans coloration.

Dans le premier cas on examine la bactérie vivante dans des conditions favorables à sa conservation et à son développement.

Dans le second cas on examine les bactéries fixées et colorées, tuées par conséquent. Mais l'avantage de cette dernière méthode est de permettre une visibilité plus nette et de mettre en évidence des détails qui sans coloration passeraient inaperçus.

L'examen sans coloration est destiné principalement à l'étude de la locomotion des bactéries. L'examen de préparations fixées et colorées sert surtout à étudier les détails de leur structure.

1º Examen sans coloration. — Sans coloration il est difficile dans un pus et même dans un liquide séreux de reconnaître les bactéries, surtout les microco-

ques. On peut cependant les distinguer plus aisément quand elles sont volumineuses et nombreuses, et mieux encore quand elles sont mobiles.

Pour cet examen, on se contente de déposer une goutte du liquide à étudier. (Pus, sérosités pathologiques, liquides de culture, etc...) sur une lame. On recouvre aussitôt d'une lamelle. La goutte de liquide s'étale alors d'elle-même en couche mince entre lame et lamelle. La préparation ainsi obtenue est placée sur la platine du microscope et l'on met au point. Cette mise au point présente parfois, surtout entre les mains des débutants, une certaine difficulté, aussi recommande-t-on, pour plus de commodité, de chercher tout d'abord les fines bulles de gaz facilement visibles qui se trouvent presque toujours en un point quelconque de la préparation. Il est aisé ensuite de passer à une région plus favorable à l'observation des bactéries en déplaçant la lame sans être obligé de modifier la mise au point.

Il vaut mieux pour cet examen se servir d'un objectif à sec donnant un fort grossissement (n° 7 de Leitz) par exemple plutôt que d'employer un objectif à immersion. Il faut en outre avoir soin d'enlever le condensateur de la sous-platine et de diaphragmer pour éviter un éclai-

rage trop intense.

Quand on opère comme nous venons de dire il arrive très habituellement que le liquide placé entre lame et lamelle est agité par des courants qui gênent l'observation. On y remédie dans une certaine mesure en lutant à la paraffine les bords de la lamelle. Cette précaution empêche en outre une évaporation trop rapide du liquide à étudier; mais il est encore préférable de se servir de lames à cellule creusées d'une concavité sur laquelle viendra se placer la lamelle. On dépose une gouttelette du liquide à examiner sur une lamelle qu'on retourne aussitôt pour la poser au-dessus de la cellule ménagée

dans la lame creuse. La gouttelette de liquide demeure ainsi « suspendue » au-dessus de la cellule et si l'on a eu soin d'enduire ses bords d'un peu de vaseline il ne se produira aucune évaporation. Il est évident que l'examen en goutte pendante ne convient pas aux bactéries anaérobies. C'est surtout pour l'examen des cultures en milieux liquides que l'étude des bactéries vivantes, non colorées fournira d'intéressants renseignements en montrant quelle est la nature et le degré de leur mobilité. Il ne faut pas confondre avec la mobilité vraie les mouvements de rotation et d'oscillation sur place que présentent les microbes immobiles. On les voit s'agiter en tous sens d'un mouvement tremblottant très rapide (mouvements browniens) sans pour cela se déplacer, sans traverser le champ du microscope, sans présenter en un mot de mouvements de translation. Une bactérie vraiment mobile se déplace dans le champ du microscope indépendamment des courants qui peuvent s'établir dans la préparation, si bien que l'on y voit les éléments se mouvoir en divers sens chacun pour son propre compte. Il est rare que la mobilité ne soit pas évidente mais ce qui est fréquent c'est que dans une préparation la plupart des éléments demeurent immobiles tandis que cependant quelques autres se déplacent manifestement (Mobilité partielle).

Aussi ne faut-il pas se contenter d'un examen rapide pour déclarer qu'une bactérie n'est pas mobile. Il faut en outre savoir que certaines espèces n'ont au cours de leur développement qu'une mobilité transitoire. Par conséquent suivant l'âge de la culture la mobilité peut exister encore ou avoir disparu. De là la nécessité absolue d'examiner des cultures jeunes et de répéter pendant les heures et les jours suivants cet examen. Le degré de la mobilité est également variable: certaines espèces se déplacent très rapidement; d'autres n'ont

102 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

qu'une faible mobilité qui exige un examen attentif.

Pour distinguer la mobilité vraie des mouvements browniens, Lehmann et Neumann conseillent d'examiner la bactérie dans une goutte d'une solution de phénol à cinq pour cent ou de sublimé à un pour mille. Si les mouvements continuent à se produire c'est qu'il s'agit de mouvements browniens.

Une méthode très ingénieuse a été proposée pour mesurer le degré de la mobilité. Elle est basée sur cette constatation que les bactéries traversent un filtre de sable d'autant plus vite que leur mobilité est plus grande (Carnot et Garnier). L'appareil est essentiellement constitué par un tube en U dont l'une des branches est aux deux tiers remplie de sable, les deux branches reçoivent du bouillon neuf; on ensemence le bouillon au-dessus du filtre de sable. L'apparition d'un trouble de ce liquide dans l'autre branche annonce que la traversée est effectuée.

Ultra-microscope. — Lorsqu'on fait l'examen microscopique sans coloration d'une culture, la visibilité des cellules est médiocre. Elles ne se distinguent que par leur réfringence plus grande que celle du milieu dans lequel elles se trouvent. On a cherché à améliorer leur visibilité par un artifice dont le principe consiste à soumettre le liquide à examiner à un éclairage très intense, tout en évitant qu'aucun rayon direct ne parvienne à l'œil de l'observateur. L'œil ne perçoit par conséquent que les rayons réfractés par les corpuscules dont l'indice de réfraction diffère de celui du milieu liquide. On comprend que des particules même très petites ainsi vivement éclairées, sources lumineuses à leur tour, deviennent aisément visibles. De là le nom d'ultra-microscope donné aux appareils qui réalisent ce dispositif.

L'éclairage ultra-microscopique est réalisé au moyen d'un condensateur à fond noir sur lequel on place la prépa-

ration à étudier ; il en existe plusieurs modèles dans le commerce ; tous reposent sur le même principe qui est de concentrer en un point des rayons lumineux obliques. Ce point d'éclairage maximum se trouve situé environ à un millimètre au-dessus de la surface du condensateur, de manière à correspondre à l'espace situé entre la lame porte-objet et le couvre-objet de la préparation, l'épaisseur courante des lames de verre employées étant d'environ un millimètre. Pour procéder à l'examen ultra-microscopique il est nécessaire de posséder une source de lumière assez puissante. (Les lampes de Nernst conviennent bien à cet usage.) Une lentille convenablement placée dirige le faisceau lumineux sur le miroir plan de la sous-platine dont le diaphragme doit être entièrement ouvert : le condensateur à fond noir doit être centré suivant les indications du constructeur; un ou deux cercles sont ordinairement tracés à sa surface pour servir de repères et permettre un centrage exact. Ils doivent être disposés concentriquement par rapport au champ microscopique.

La préparation se fait très simplement en déposant une goutte du liquide à examiner entre lame et lamelle, mais il est nécessaire de se servir de lames et de lamelles rigoureusement propres. La préparation est placée sur le condensateur à fond noir à la surface duquel on a préalablement déposé une goutte d'huile de cèdre (huile à immersion). Il est nécessaire de régler l'éclairage de la préparation en abaissant ou en élevant le condensateur de manière à ce que le point d'éclairage maximum se trouve situé entre la lame et la lamelle. Lorsque la préparation a été ainsi disposée et que l'éclairage a été réglé, on procède à l'examen microscopique de la manière habituelle, si l'on se sert d'objectifs à sec ; il faut au contraire un diaphragme spécial dans les objectifs à immersion. L'ultra-microscope permet d'examiner très bien les microbes contenus dans un liquide, particulièrement ceux qui sont mobiles; ils apparaissent sous forme de points ou de lignes brillantes, ou bien leurs contours sont dessinés par une

mince ligne brillante, argentée.

Encre de Chine (Procédé de Burri). - Des images assez comparables à celles que donne l'ultra-microscope sont fournies par le procédé à l'encre de Chine. Mais cette fois l'examen porte non plus sur des cellules vivantes en liberté dans un liquide, mais au contraire sur une préparation desséchée. La méthode d'examen à l'encre de Chine est d'ailleurs d'exécution très simple. On dépose sur une lame très propre, côte à côte, une petite gouttelette de culture liquide et une petite gouttelette d'encre de Chine que l'on mélange aussitôt et que l'on étale en couche très mince comme s'il s'agissait d'une préparation de sang sec. La dessication se fait rapidement et l'on peut aussitôt après procéder à l'examen microscopique avec l'objectif à immersion. Il n'est pas nécessaire de monter la préparation. Sur une lame ainsi préparée, il arrive très souvent que l'étalement soit irrégulier, très mince en certains points, trop épais en d'autres. Les parties qu'il convient d'examiner ont une coloration grise, non opaque. Au microscope les éléments figurés contenus dans le liquide étudié apparaissent en négatif sur le fond gris ou noirâtre de la préparation. Ces éléments ne sont bien entendu nullement colorés par l'encre de Chine. aussi la méthode ne peut-elle être appliquée à l'étude de la structure des bactéries.

Il est nécessaire de se servir d'encre de Chine de très bonne qualité conservée en tubes scellés et stérilisés car dans l'encre ordinaire exposée à l'air il peut se développer de nombreuses bactéries.

2° Examen des préparations colorées. — L'étude d'une bactérie exige toujours l'examen de préparations fixées et colorées, d'autant plus que certaines réactions de coloration sont nécessaires pour le classement des

espèces. Les opérations successives que l'on doit prati-

quer sont l'étalement, la fixation et la coloration.

Etalement. — Il se fait très simplement si l'on se sert d'une culture en milieu liquide. Il suffit dans ce cas de prélever avec l'anse de platine ou avec l'effilure d'une pipette une gouttelette de culture que l'on dépose à la surface d'une lame propre bien essuyée. On étale en couche mince la gouttelette de culture en promenant l'anse de platine à la surface de la lame dans une étendue plus ou moins grande selon l'épaisseur que l'on désire donner à l'étalement. En général on a tout avantage à ne déposer qu'une très petite quantité de culture sur la lame et à l'étaler en couche très mince, puis on laisse sécher, et la préparation doit ensuite être fixée.

Si au lieu d'examiner une culture en bouillon il s'agissait d'une culture en milieu solide, on déposerait tout d'abord une fine gouttelette d'eau distillée sur la lame. Puis on préléverait avec le fil de platine une très minime parcelle de culture qu'on délayerait dans la goutte d'eau. On ferait ensuite l'étalement sur la lame en promenant le fil de platine à sa surface. La dessication suffit à assurer la conservation durable des cellules microbiennes si bien que des préparations simplement desséchées peuvent être conservées en vue d'une coloration ultérieure.

Fixation. — Il est nécessaire de procéder à la fixation avant de colorer. Cette fixation a un double but. D'une part elle assure l'adhérence des cellules à la lame, les empêche d'être entraînées par les lavages ou par le passage dans les solutions colorantes aqueuses. D'autre part, elle tue les cellules en les fixant sans modification de leur forme, en leur assurant ainsi une certaine inaltérabilité. De tous les agents de fixation usités en bactériologie, la chaleur est le plus souvent employé et le plus simple; il suffit (après étalement et dessiccation) de promener la lame à plusieurs reprises dans la flamme

d'un bec Bunsen, la face préparée regardant en haut. Il est nécessaire de passer cinq ou six fois la lame dans la flamme de manière à la porter en une température de 110° degrés environ. On ne saurait d'ailleurs formuler de règles fixes, car l'épaisseur des lames porte-objet est assez variable et l'échaussement des lames minces est évidemment plus rapide que celui des lames épaisses. (C'est aux étalements sur lamelles que s'applique l'ancienne règle de passer trois fois dans la flamme du bec Bunsen.)

La fixation par la chaleur donne des résultats généralement satisfaisants. Toutefois, il est assez difficile de se rendre compte de la température à laquelle est portée la lame, et l'on risque, soit de fixer insuffisamment la préparation, soit au contraire, de la porter à une température trop élevée à laquelle les cellules perdent leurs affinités de coloration.

Les fixateurs chimiques, d'un emploi, très simple n'exposent pas à cet inconvénient. Le plus employé est le mélange à parties égales d'alcool absolu et d'éther. Il suffit de verser quelques gouttes de ce réactif à la surface de la lame placée bien horizontalement. Cinq minutes de contact suffisent. L'alcool absolu convient également.

L'acide chromique est d'un emploi très simple : on plonge la lame préparée dans une solution d'acide chromique à un pour cent, pendant deux ou trois secondes puis on lave à l'eau courante pendant quelques secondes.

L'acide osmique est un fixateur excellent. Il suffit de placer la lame pendant trente secondes, la face préparée regardant en bas, sur un verre de montre contenant quelques gouttes d'une solution d'acide osmique. Mais après cette fixation les bactéries perdent leur affinité pour certains colorants.

On obtient encore de bonnes fixations en plongeant

les lames dans une solution saturée de sublimé, dans le liquide de Bouin ou dans un liquide chromo-acéto-osmique (Flemming). Après une fixation de quelques minutes dans ces derniers liquides il convient de faire subir à la lame un lavage à l'eau courante avant de procéder à la coloration.

Coloration. — Les colorations appliquées à l'étude des bactéries servent d'une part à préciser la morphologie, la structure des cellules, et d'autre part à rechercher comment elles se comportent à l'égard de réactions spéciales, méthode de Gram par exemple.

I. — Colorations simples par les couleurs d'aniline.

Ce sont les colorants dits basiques par lesquels les bactéries se colorent. Elles se comportent donc à cet égard, non comme le cytoplasme, mais comme les noyaux cellulaires. Des différentes couleurs basiques, nous ne citerons que quelques-unes, les plus usitées en bactériologie: le bleu de méthylène, la fuchsine basique, le violet de gentiane, la thionine. On peut employer ces substances, soit en simples solutions hydro-alcooliques, soit en solutions mordancées.

On a remarqué en effet que le pouvoir tinctorial de ces colorants était accru par l'addition de certaines substances dont les plus usitées sont : l'acide phénique et l'huile d'aniline.

a) Bleu de méthylène. — Le bleu de méthylène s'emploie le plus souvent en solution simple non mordancée. Il convient mal selon nous, aux recherches courantes, car ses affinités basiques ne sont pas aussi énergiques que celles de certains autres colorants (bleu polychrome de Unna, thionine phéniquée, fuchsine). Le bleu de méthy-

108 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

lène en solution aqueuse simple est surtout employé, comme nous l'exposerons plus loin, pour fournir une coloration de contraste dans la méthode de Ziehl-Neelsen. La solution colorante de bleu de méthylène a pour formule :

On fait dissoudre le bleu de méthylène dans l'alcool et l'on obtient ainsi une solution concentrée. Pour obtenir la teinture définitive on verse la solution mère dans 100 centimètres cubes d'eau distillée, en agitant constamment. La solution hydro-alcoolique se conserve assez longtemps, mais il convient cependant de la filtrer avant l'emploi.

Le pouvoir tinctorial du bleu de méthylène est accru quand on alcalinise la solution. La formule de Loeffler est la suivante:

Bleu de méthylène en solution alcoolique concentrée, 1 volume.

Solution de potasse à 1 pour 10.000, 2 volumes.

Le bleu de méthylène polychrome (de Unna) est maintenant d'un emploi courant et se substitue avantageusement aux teintures précédentes. Il fournit une coloration métachromatique avec certaines substances (mucine, granulations basophiles des leucocytes, matszellen) qui prennent une teinte violet-pourpre contrastant avec la coloration bleue des autres éléments cellulaires. Cette métachromasie est identique à celle que fournit la thionine.

Les fixations par l'acide chromique en solution aqueuse à un pour cent permettent d'obtenir les meilleures colorations avec le bleu de Unna. Par suite du pouvoir tinctorial très énergique de cette substance les préparations sont quelquefois surcolorées, même par

une action peu prolongée du liquide.

Il est utile dans ce cas de décolorer par l'alcool absolu, ou par l'essence de girofle, ou par la substance préparée spécialement dans ce but par Grübler sous le nom

de « glycerinaethermischung ».

b) Fuchsine. — On peut se servir dans le même but de solutions hydro-alcooliques de fuchsine basique qui donnent des colorations plus satisfaisantes que le bleu de méthylène. La formule est analogue à celle qui a été indiquée pour la préparation des solutions de bleu de méthylène:

c) Thionine. — La thionine ou violet de Lauth donne des colorations assez électives. Elle est particulièrement recommandable pour la recherche des bactéries dans les

coupes histologiques.

La thionine colore plus lentement que les teintures précédemment indiquées, mais ne surcolore qu'après un contact prolongé. Elle fournit les mêmes métachromasies que le bleu polychrome de Unna. Il est préférable de l'employer en solution phéniquée dont la formule est:

Thionine .			1	gramme
Acide phénique			2	grammes
Alcool à 90°			20	cc.
Eau distillée			100	cc.

II. - Méthodes spéciales de coloration.

a) Méthode de Gram. — Bien qu'assez simple, l'exécution d'une coloration suivant cette méthode exige une

110 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

technique bien réglée, faute de laquelle on s'expose à des erreurs d'interprétation qui conduiraient à des erreurs graves dans la détermination des bactéries.

L'emploi d'une teinture d'un pouvoir colorant trop faible ou une décoloration trop prolongée dans l'alcool pourraient faire croire à tort à une réaction négative.

Les solutions qu'il faut employer pour réaliser la coloration de Gram sont : une solution mordancée de violet de gentiane et une solution aqueuse iodo-iodurée. La formule de ces liquides est la suivante:

1º Violet phéniqué:

Violet de gent	ia	ne		1	gramme
Acide phéniqu					grammes
Alcool absolu				10	cc.
Eau distillée				100	cc.

On triture au mortier le violet de gentiane et l'acide phénique jusqu'à obtention d'une bouillie homogène, puis on ajoute l'alcool absolu; la dissolution est immédiate et il suffit d'ajouter l'eau distillée en agitant constamment pour obtenir un colorant qui peut être utilisé aussitôt et qui peut se conserver pendant plusieurs semaines. Il convient de le filtrer avant l'emploi et de vérifier chaque fois si son pouvoir tinctorial n'a pas diminué, ce qui se produit toujours au bout de quelques semaines.

2º Solution iodo-iodurée:

Iode		1 gramme
Iodure de potassium		2 grammes
Eau distillée		300 cc.

La dissolution de l'iode se fait assez aisément en présence de l'iodure de potassium. Cependant, il est bon de broyer préalablement au mortier l'iode métalloïdique pour

obtenir une dissolution plus rapide.

Pour exécuter la méthode de coloration de Gram sur la préparation desséchée et fixée, on verse quelques gouttes de la solution phéniquée de violet de gentiane qu'on laisse agir pendant environ une minute. Puis on incline la lame de manière à rejeter l'excès de colorant et aussitôt, sans procéder à aucun lavage préalable, on verse quelques gouttes de la solution iodo-iodurée. La lame qui était colorée en violet foncé prend une coloration d'un brun noirâtre sous l'action de l'iode. On laisse agir la solution iodo-iodurée pendant une minute environ puis on lave à l'eau courante. Il reste à décolorer par l'alcool absolu, c'est le temps délicat de la préparation. On verse l'alcool absolu goutte à goutte sur la lame inclinée et l'on voit aussitôt se régénérer la couleur violette que l'alcool entraîne avec lui. Au bout de quelques secondes d'action l'alcool entraîne déjà moins de matière colorante, puis bientôt n'en entraîne plus du tout. C'est à ce moment qu'il faut interrompre la décoloration. Il suffit pour cela de plonger la lame dans un verre d'eau; puis on sèche et l'on examine la lame à l'immersion, sans monter la préparation.

Dans un frottis ainsi traité, seules les bactéries qui prennent le Gram sont colorées en violet foncé, les

autres éléments sont décolorés ou très pâles.

Mais il est utile pour faciliter la lecture des préparations de faire une double coloration, soit avec l'éosine ou la vésuvine, soit mieux encore avec la solution hydroalcoolique de fuchsine ou plus simplement avec le liquide de Ziehl que l'on dilue dans 5 à 10 volumes d'eau distillée. On obtient ainsi une coloration de contraste très heureuse. Les bactéries qui ne prennent pas le Gram se

112 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

colorent en rouge plus ou moins foncé; celles qui prennent le Gram restent colorées en violet noirâtre.

Les techniques proposées par les différents auteurs pour l'application de la méthode comportent d'assez nombreuses variantes. Nous en signalerons quelques-unes pour l'intérêt qu'elles peuvent présenter dans des cas particuliers: on peut substituer au violet de gentiane le « Crystallviolet » (Grübler) qui donne en solution phéniquée des teintures un peu moins énergiques mais un peu plus stables.

Quand on a rarement à pratiquer la réaction de Gram, il vaut mieux, plutôt que de préparer à l'avance une solution de violet de gentiane qui s'altérerait assez vite, se servir du violet aniliné d'Ehrlich que l'on prépare extemporanément de la manière suivante : on a préparé d'avance une solution mère de violet de gentiane au dixième dans l'alcool à 95°, et d'autre part de l'eau d'aniline.

L'eau d'aniline se fait en agitant dans un flacon quelques centimètres cubes d'huile d'aniline avec de l'eau distillée. L'huile en excès reste à l'état de gouttelettes ou forme une couche jaunâtre au fond du flacon. Le mélange peut être conservé à l'abri de la lumière, mais il vaut mieux le préparer au moment de l'emploi. Pour faire la solution colorante définitive, on filtre sur papier préalablement mouillé quelques centimètres cubes d'eau d'aniline que l'on recueille dans une petite éprouvette graduée, et l'on ajoute deux gouttes par centimètre cube de solution alcoolique de violet de gentiane. On obtient ainsi une teinture excellente mais qui doit être utilisée très peu de temps après sa préparation, car elle ne se conserve guère plus de quelques heures. Quelques auteurs

^{1.} Il est nécessaire de mouiller préalablement le filtre à l'eau distillée pour que toutes les gouttelettes d'huile soient retenues.

ont proposé de substituer à l'alcool absolu comme agents décolorants un mélange d'alcool et d'acétone, d'autres l'huile d'aniline, mais ces modifications à la méthode de Gram n'ont d'intérêt que pour les recherches histologiques et sont inutiles pour l'étude des frottis sur lames.

b) Méthode de Ziehl-Neelsen.— Cette méthode s'applique à la recherche et à la détermination du bacille de la tuberculose, de la lèpre, et des bacilles acido-résistants. Nous verrons également qu'elle s'applique à la coloration des spores bactériennes. Comme celle de Gram elle comporte l'emploi d'un liquide colorant et d'un liquide décolorant. La formule de la teinture employée est la suivante :

On broie au mortier la fuchsine, puis on ajoute l'acide phénique et l'on triture, toujours au mortier le mélange jusqu'à production d'une pâte homogène. Ensuite on verse l'alcool absolu qui dissout aisément le mélange et l'on ajoute l'eau distillée en agitant constamment. On obtient ainsi une teinture très énergique qui se conserve assez longtemps sans altération mais qu'il convient cependant de filtrer avant l'emploi. La coloration du bacille de Koch se fait suivant des techniques extrêmement variées qui pour la plupart sont peu recommandables. Philibert a fait récemment une critique très soigneuse de ces diverses méthodes. Il conclut au retour à la technique rigoureuse de Ziehl-Neelsen telle qu'elle a été primitivement employée.

La coloration est obtenue par l'action à chaud du rouge de Ziehl pendant dix minutes. Puis on décolore la pré-

114 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

paration en faisant agir à froid pendant deux minutes l'acide nitrique au tiers, dont la formule est la suivante 1:

Acide nitrique pur . . . 1 partie Eau distillée 3 —

On lave ensuite à l'eau pour chasser l'excès d'acide et l'on achève la décoloration en faisant agir l'alcool absolu

pendant trois à cinq minutes.

Dans une préparation ainsi traitée les bacilles acidorésistants vrais restent colorés en rouge vif, tandis que les autres éléments sont décolorés entièrement. Il est utile pour faciliter la lecture et l'interprétation des préparations, surtout s'il s'agit de produits organiques contenant des bacilles acido-résistants, de faire une coloration de contraste. On recommande pour cela de recolorer avec la solution de bleu de méthylène qu'il est bon d'étendre de son volume d'eau distillée. Dans les frottis colorés par cette méthode les bacilles acido-résistants vrais sont colorés en rouge vif, les autres éléments se colorent en bleu pâle.

Nous ne citerons que très peu des innombrables variantes de la méthode de Ziehl-Neelsen; quelques-unes cependant méritent d'être signalées. On peut remplacer l'acide nitrique au tiers par l'acide sulfurique au quart. Ce procédé a un avantage, c'est qu'il évite l'emploi de l'acide nitrique souvent impur, mélangé de produits nitreux dont l'action décolorante pourrait être brutale.

Un procédé recommandé par certains auteurs fait intervenir l'action de l'acide picrique, c'est le procédé de Spengler. On colore avec le rouge de Ziehl à chaud comme précédemment, puis on fait agir sur la lame surcolorée la solution suivante :

^{1.} On voit qu'il s'agit en réalité d'une solution d'acide nitrique au quart.

Eau picriquée saturée . 60 parties Alcool absolu . . . 40 —

On fait ensuite un premier lavage à l'alcool à 60°, puis on décolore dans une solution d'acide nitrique pur à 15°/. Cette décolration se fait rapidement et ne doit pas être prolongée. On l'arrête par lavage à l'alcool à 60°. Ce lavage doit être continué jusqu'à décoloration complète. La lame peut être ensuite lavée à l'eau, séchée et examinée à l'immersion, sans montage de la préparation. Les bacilles acido-résistants sont rouge vif, les autres éléments sont décolorés. Il est bon cependant de faire une coloration de contraste, et Spengler la réalise très simplement en faisant agir une dernière fois pendant un temps très court la solution picriquée qui colore la préparation en jaune, et facilite ainsi la mise au point.

Une méthode qui s'éloigne par beaucoup de points des précédentes est celle de Kühne, vulgarisée par Borrel. On la trouve décrite par différents auteurs avec de grandes variations. On devra procéder de la manière

suivante:

La préparation étant fixée, on la colore avec la fuchsine de Ziehl à froid pendant cinq minutes. (Il ne faut pas prolonger ce temps de coloration.) Puis après avoir lavé à l'eau, on ajoute quelques gouttes d'une solution aqueuse de chlorydrate d'aniline à 2º/o qu'il suffit de laisser agir pendant dix secondes. Enfin après avoir rejeté l'excès de chlorhydrate d'aniline, et sans aucun lavage à l'eau, on verse goutte à goutte de l'alcool absolu sur la lame tenue légèrement inclinée, de manière à décolorer peu à peu la préparation. Cette décoloration est obtenue assez rapidement si l'on n'a pas prolongé la coloration au delà du temps indiqué.

La méthode de Kühne, d'exécution très simple, peut être souvent substituée à la méthode de Ziehl. Elle est utile à titre de contrôle. Elle est enfin la meilleure pour les recherches histo-bactériologiques que l'on peut avoir à faire chez les animaux inoculés.

c) Méthode de Much. — Une autre méthode encore devra être quelquesois employée dans le même but pour les résultats positifs qu'elle permet d'obtenir là où les autres méthodes auraient échoué. Elle ne colore pas les bacilles dans leur continuité mais les fait apparaître sous l'aspect de granules : C'est la méthode de Much.

On colore les préparations avec une solution alcooli-

que de violet de méthyle phéniqué:

Solution alcoolique saturée de violet de méthyle. 10 cc. Solution de phénol à 2 pour 100 90 cc.

soit à froid par un séjour de vingt-quatre heures, soit à chaud en renouvelant 4 à 5 fois le colorant. Puis on fait agir la solution iodo-iodurée comme pour la méthode de Gram, mais pendant dix minutes. On décolore par l'acide nitrique à 5 °/. pendant une minute, puis par l'acide chlorydrique à 3 °/. pendant dix secondes, enfin par l'alcool-acétone à parties égales.

Dans les préparations ainsi traitées on peut reconnaître les formes dégénérées du b. de la tuberculose que la méthode de Ziehl-Neelsen ne colorerait pas. Ces formes dégénérées ne présentent pas une teinte uniforme mais n'ont que quelques grains colorés (granulations de Much).

Les formes granuleuses du b. de la tuberculose, grampositives mais non acido-résistantes possèdent, de même que le b. de Koch typique, la propriété de résister à l'action dissolvante de l'antiformine.

Antiformine-résistance. — La technique de cette épreuve est la suivante :

La pièce à examiner sera triturée au mortier avec une solution à 10 ou 15 pour 100 d'antiformine dans l'eau distillée stérilisée. (L'eau ordinaire peut contenir des bactéries acido-résistantes; c'est là une cause d'erreur sur laquelle Beitzke a attiré l'attention.) Le mélange est placé à l'étuve jusqu'à clarification; celle ci se manifeste en général, au bout d'une ou deux heures. On centrifuge; mais il est nécessaire d'ajouter au préalable de l'alcool ou de l'acétone afin de modifier la densité du mélange. Si l'on omettait de prendre cette précaution, les éléments ayant résisté à l'antiformine ne seraient pas précipités au fond du tube. Après la centrifugation le liquide surnageant le culot doit étre parfaitement clair. Le dépôt sera étalé sur lames et coloré par la méthode de Ziehl ou par celle de Much.

d) Méthode de coloration des cils des bactéries.

— On peut admettre que la mobilité des bactéries est fonction de l'existence de cils vibratiles. Aussi est-il nécessaire à bien des points de vue de pouvoir mettre en évidence l'existence de ces cils.

L'examen sans coloration ou les méthodes de coloration usuelles que nous venons d'énumérer ne permettent pas de distinguer les cils vibratiles, aussi doit-on recourir à d'autres techniques. Deux sont à recommander et doivent être employées concurremment pour se contrôler mutuellement. Ce sont l'imprégnation à l'argent suivant Van Ermenghem, et la méthode à l'encre de fuchsine de Loeffler modifiée par Nicolle.

a) Encre de fuchsine. — Cette méthode fait intervenir avant la coloration un mordant particulier. La coloration se fait ensuite avec le liquide de Ziehl à chaud. Il est nécessaire de prendre de minutieuses précautions si l'on veut réussir cette coloration délicate.

Les cultures sur lesquelles seront prélevés les échantillons à examiner doivent être des cultures jeunes développées sur des milieux solides. Pour la recherche des cils sur les bactéries du groupe B. coli, B. typhosum, les cultures de vingt-quatre heures sur gélose conviennent parfaitement. On se borne à toucher la surface de la culture avec l'extrémité du fil de platine que l'on porte de là dans un petit tube à hémolyse contenant quelques gouttes d'eau distillée. On laisse la parcelle de culture recueillie sur le fil de platine se dissocier dans l'eau, sans agiter ou en agitant très doucement. L'émulsion bactérienne ainsi obtenue doit être à peine opalescente.

On prépare d'autre part les lames nécessaires qui doivent être rigoureusement propres. Pour cela, on se sert de lames bouillies dans une solution de potasse, rincées à l'eau puis lavées à l'alcool. Elles doivent être en outre flambées à haute température dans la flamme du bec Bunsen pour détruire toute trace de matière organique. On a soin pendant toutes les manipulations de ne pas toucher la lame avec les doigts qui déposeraient nécessairement des débris organiques. Il faut de toute nécessité ne saisir les lames qu'à l'aide d'une pince métallique propre et flambée également à haute température.

Pour préparer les lames on recueille un peu de l'émulsion dans l'effilure d'une pipette et l'on en dépose de très fines gouttelettes à la surface de la lame, ou bien on laisse s'étaler une gouttelette sur la lame légèrement inclinée. On laisse sécher, puis on fixe. Les divers fixateurs conviennent. Si l'on emploie la chaleur on s'expose à porter la lame à une trop haute température, aussi vaut-il mieux fixer à l'alcool absolu ou à l'alcool-éther. Pendant toutes ces manipulations, il ne faut pas toucher des doigts la préparation, mais la tenir avec la pince seulement; on procède ensuite à la coloration.

Le bain mordant (encre de fuchsine) a la formule sui-

Solution aqueuse de tanin à 25 %.				10	partie
Solution aqueuse saturée à froid de ferreux	e sı	ına •	te .	5	_
Alcool absolu saturé de fuchsine				1	-

Ces différentes solutions doivent être filtrées séparément, mais on ne doit pas filtrer le mélange malgré les précipités qui se forment. On ne filtrera qu'au moment de l'emploi. L'encre ainsi obtenue peut être utilisée de suite pour la coloration des cils de certaines espèces. Il est préférable cependant de se servir d'une encre préparée depuis plusieurs jours ou même plusieurs semaines.

Pour procéder à la coloration, on verse quelques gouttes de l'encre de fuchsine filtrée sur la lame que l'on porte sur la table chauffante jusqu'à émission des premières vapeurs. Il faut procéder rapidement, chauffer très peu pour éviter la moindre dessiccation de l'encre. Aussitôt après ce léger chauffage, on renverse l'excès d'encre et on lave la préparation dans deux bains successifs d'eau distillée. On doit recommencer deux ou trois fois ce mordançage à température peu élevée suivi d'un lavage soigneux à l'eau distillée. Pendant tout ce temps on tient la lame avec la pince et non avec les doigts et l'on évite que la pince soit souillée d'encre.

Lorsque les trois mordançages sont terminés on peut se départir des précautions sur lesquelles nous venons d'insister, et manier la lame à son gré. On termine par une coloration de quelques minutes à chaud avec le li-

quide de Ziehl (Voir plus haut).

Une préparation bien faite présente à l'œil nu une couleur rosée très pâle et uniforme dans les parties où a été fait l'étalement. Les bactéries apparaissent par cette méthode en rouge foncé et leurs cils en rose ou rouge.

β) Imprégnation au nitrate d'argent. — Dans cette méthode qui repose sur des principes tout différents de

120 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

ceux de la précédente, les cils se colorent en noir par précipitation de l'argent réduit. La technique indiquée par Van Ermenghem donne d'excellents résultats.

Son application exige les précautions minutieuses que nous avons indiquées à propos de la méthode à l'encre de fuchsine dans le nettoyage et la manipulation des lames.

On procède au prélèvement des bactéries et à leur étalement sur les lames comme dans la méthode précédente. Après dessication il est inutile de faire agir un fixateur préalable, et l'on peut immerger immédiatement les lames dans le premier bain qui fait l'office de fixateur. Ce bain a la composition suivante :

Solution aqueuse	d'a	cide	osm	niqu	e à	2 .	10	8 cmc.
Solution aqueuse	de	tan	in à	25	0/0.			16 cmc.
Acide acétique.								I goutte

Maintenir les lames plongées dans ce bain pendant une demi-heure. Laver à l'eau distillée, puis à l'alcool absolu. Toutes ces manipulations doivent être faites sans toucher la lame avec les doigts.

Après lavage, on place la lame pendant une ou deux minutes dans une solution aqueuse de nitrate d'argent à un pour deux cents, puis sans laver on porte pendant une ou deux minutes dans un bain réducteur qui a pour formule :

Acide gallique.					5	grammes
Tanin					3	-
Acétate de soude	fe	ondi	1.		10	-
Eau distillée					350	cmc.

On pourrait substituer à ce bain divers réducteurs employés en photographie.

Au sortir du bain réducteur, on lave à l'eau distillée,

puis on porte de nouveau dans la solution de nitrate d'argent et encore dans le bain réducteur.

Laver, sécher, examiner à l'immersion.

On obtient ainsi de très belles préparations.

e) Coloration des spores. - On peut distinguer les spores avec ou sans coloration. Cependant les grains réfringents observés dans un bâtonnet par exemple peuvent être autre chose qu'une spore. Ces dernières, quelle que soit l'espèce à laquelle elles appartiennent, présentent un ensemble d'affinités tinctoriales communes qui permettent de les reconnaître sûrement. Les spores se teignent mal ou ne se teignent pas par les solutions ordinaires de couleurs d'aniline.

Dans ce cas, si elles sont encore contenues dans la cellule qui leur a donné naissance, elles apparaissent très nettes, incolores dans la cellule colorée. Mais les spores

devenues libres sont peu ou pas visibles.

Pour les colorer, il faut recourir à des artifices qui ont pour but d'affaiblir cette imperméabilité qui empêche la teinture de pénétrer la spore. On y parvient, soit par le chauffage, soit par l'action d'acides minéraux forts. Mais si les spores sont difficiles à colorer, elles retiennent en revanche énergiquement la teinture qu'on est arrivé à leur faire prendre, résistant à l'action des substances décolorantes. C'est ce qui permet d'obtenir assez aisément la double coloration des spores et des cellules bactériennes.

a) Colorations simples. — Les colorations simples teignent uniformément les cellules végétatives et les spores. Deux méthodes peuvent être recommandées pour

l'obtention de ces colorations.

Procédé du chauffage. - Passer la lame dans la flamme du bec Bunsen, comme pour une simple fixation, mais au lieu de passer cinq ou six fois la lame dans la flamme on l'y passe dix ou quinze fois pour la porter à une température élevée. Colorer ensuite avec le liquide de Ziehl pendant une demi-heure au moins. Laver, sécher, examiner à l'immersion.

Procédé à l'acide chromique. — Sans fixation préalable, plonger la lame préparée dans une solution d'acide chromique à 5 % pendant cinq minutes. Puis laver soigneusement à l'eau. On termine comme dans le procédé précédent par une coloration prolongée dans la fuschine ou le violet phéniqué.

β) Doubles colorations. — Basées sur la résistance des spores colorées à l'action des agents décolorants, elles consistent à faire agir une substance assez active pour décolorer les cellules végétatives, mais pas assez

pour décolorer les spores.

On traite tout d'abord comme nous venons de l'indiquer pour les méthodes simples. Puis on fait agir soit une solution d'acide nitrique au quart ou un peu plus étendue, soit une solution au vingtième d'acide sulfurique pur, soit même l'alcool. Lorsque la décoloration est devenue presque complète on lave à l'eau, puis on fait une coloration de contraste avec la solution de bleu de méthylène à 0,50 ou à 1 o/°.

Note. — Toutefois les techniques doivent varier légèrement suivant les espèces en expérience. En effet toutes les spores ne sont pas également résistantes et suivant les cas ce peut être l'alcool ou les acides dilués ou une solution à 2 % de chlorydrate d'aniline qui fourniront

les meilleurs résultats.

f) Coloration des capsules. — C'est dans les sérosités pathologiques ou sur les cultures dans des milieux liquides contenant de l'albumine que peuvent être mises en évidence les capsules qui entourent certaines bactéries. Sur des frottis traités par les méthodes usuelles, les bactéries encapsulées apparaissent fortement colorées, séparées du fond faiblement teinté de la prépara-

tion par une zone périphérique claire, incolore. La capsule apparaît en négatif. Il ne faut point, pour affirmer l'existence d'une capsule, se contenter de la constatation de ces capsules négatives. On comprend en effet qu'après l'étalement sur les lames, pendant la dessication et surtout pendant la fixation par la chaleur, il puisse se produire une rétraction de l'élément bactérien, capable de déterminer autour de lui un vide qui peut simuler une capsule. Aussi doit-on recourir à des méthodes de coloration spéciales pour confirmer la réalité des capsules observées « en négatif ».

a) Méthode de Ribbert. — Elle consiste à colorer les lames préparées et fixées dans la solution suivante :

β) Violet acétisé. — Colorer une lame préparée et fixée avec le mélange suivant :

Acide acétique. . . 1 gramme.

Solution alcoolique de
violet de gentiane. 5 centimètres cubes.

Eau distillée. . . 100 — —

Laver à l'eau, sécher, examiner à l'immersion.

Dans ces divers procédés, la capsule apparaît faiblement teintée autour de la bactérie qui est au contraire énergiquement colorée.

g) Action colorante de l'iode. — Certaines bactéries examinées après coloration dans une solution iodo-iodurée (liquide de Gram) présentent des granulations

intra-cellulaires. La coloration des grains est bleue s'il s'agit d'amidon ; elle est rouge-brunâtre s'il s'agit de glycogène. C'est à cette réaction de coloration que quelques auteurs donnent le nom de « réaction de la granulose. »

Mensuration des bactéries

Bien que les caractères morphologiques et les dimensions des bactéries puissent varier dans des proportions parfois considérables suivant les conditions dans lesquelles elles se sont développées, il est cependant nécessaire dans une description de fournir au moins les dimensions moyennes des éléments. L'unité des mesures est le millième de millimètre ou micron (µ).

Dans une détermination cependant un bactériologiste expérimenté pourra souvent se passer d'une mensuration exacte, d'autant plus que beaucoup d'espèces n'ont pas été mesurées avec une précision suffisante. Une bactérie dont l'épaisseur est de moins de six dixièmes de p. est dite de petites dimensions ; si le diamètre dépasse 1 p., elle est dite de grandes dimensions. Le diamètre des bactéries de dimensions moyennes oscille entre 0,6 à 1 µ.

Malgré leur peu de précision, ces conventions de langage méritent d'être conservées pour leur utilité prati-

que.

On peut faire la mensuration des bactéries avec ou sans coloration. Sur les préparations non colorées les bactéries sont visibles par leur seule réfringence, et dans ces conditions leur diamètre apparent est plus grand que sur des préparations colorées.

Les auteurs n'indiquant pas la technique qu'ils ont suivie, c'est là sans doute l'explication des divergences

parfois considérables que l'on constate entre les mesures fournies par des auteurs différents pour une même espèce. Il résulte de ce fait que les dimensions que nous indiquons nous-mêmes dans nos tableaux de détermination doivent être considérées comme une indication approximative plutôt que comme une mesure rigoureusement précise.

La mensuration peut se faire soit à la chambre claire,

soit au micromètre oculaire.

- a) Mensuration à la chambre claire. -- Il faut disposer d'un micromètre objectif, c'est-à-dire d'une lame de verre portant une division micrométrique et destinée à être examinée sous l'objectif comme une préparation ordinaire. Il est préférable pour la mise au point de se servir d'un objectif à sec defort grossissement. Lorsqu'on a mis au point, on dispose la chambre claire de Malassez et l'on incline le microscope à 45 degrés de manière à dessiner la graduation sur un papier placé sur la table en arrière du pied du microscope. Lorsqu'on a dessiné sur le papier la graduation micrométrique à la chambre claire, on remplace le micromètre objectif par la préparation à examiner, sans rien changer au reste du dispositif. On dessine plusieurs des bactéries à examiner sur le papier porteur de la graduation micrométrique dont les dimensions réelles sont connues, et l'on a soin, en particulier de choisir pour les dessiner les éléments les plus grands et les plus petits de manière à noter les dimensions extrêmes qui auront été observées. Il suffit de comparer les éléments dessinés à la graduation pour calculer leurs dimensions réelles.
 - 3) Mensuration au micromètre oculaire. Ce procédé exige l'emploi de deux micromètres, objectif et oculaire. On examine le micromètre objectif en même temps que le micromètre oculaire et pour le système optique choisi, on tire plus ou moins le tube du microscope de

126 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

manière à amener une division du premier à couvrir exactement un certain nombre de divisions du second.

On a ainsi établi pour un système optique et une longueur de tube déterminés la valeur d'une division du micromètre oculaire. Il suffit dès lors de remplacer le micromètre objectif par la préparation à examiner. On détermine les dimensions réelles des bactéries en les comparant aux divisions de l'oculaire micrométrique.

Supposons par exemple que le micromètre objectif soit divisé en centièmes de millimètre. Si 5 divisions de l'oculaire répondent exactement à une division de l'objectif, on en déduit qu'une division de l'oculaire micrométrique répond pour le système optique employé à 1/500 de

millimètre, c'est-à-dire à 2 µ.

Si après avoir substitué une préparation bactériologique au micromètre objectif, on constate que la longueur d'une bactérie correspond à une division et demie du micromètre oculaire, on en conclut que la bactérie examinée a pour longueur : $2 \mu \times 1,5 = 3 \mu$.

CHAPITRE V

PRODUITS FORMÉS DANS LES CULTURES

Le développement des bactéries dans les milieux de culture ne se fait pas sans qu'il survienne des modifications plus ou moins profondes de leur composition chimique. D'une part, pour sa nutrition le microbe utilise et transforme certaines substances dont il s'alimente, et pour cette transformation il secrète des ferments plus ou moins énergiques et plus ou moins nombreux. D'autre part certaines des substances nouvelles produites par l'activité digestive des microbes et non utilisées s'accumulent; ce sont des déchets dont l'abondance peut à son tour nuire à la vie des bactéries et empêcher leur multiplication de se poursuivre : ainsi agit la production d'acides dans les milieux contenant des hydrates de carbone. Enfin certains microbes sécrètent des produits solubles dont les propriétés bien spéciales ne correspondent à celles d'aucune substance chimique définie connue, telles sont les toxines et les hémolysines bactériennes.

A. - Toxines

Les toxines sont des produits de sécrétion des microbes exerçant sur l'organisme animal une action toxique plus ou moins énergique. Leur production et leur mise en liberté joue un rôle capital dans l'action physiologique de la plupart des bactéries pathogènes.

Il est rare que la recherche des toxines soit nécessaire à la détermination, car le nombre des espèces qui élaborent une toxine déterminant une maladie expérimentale

très caractéristique est très limité.

Des substances toxiques élaborées, les unes diffusent dans le milieu de culture (toxines solubles ou ectotoxines), les autres, non diffusibles, adhèrent à la cellule bactérienne (endotoxines). Ces faits expliquent que le résultat des inoculations diffère suivant qu'on injecte le liquide de culture filtré, ou les corps microbiens tués, centrifugés et lavés.

Pour beaucoup d'espèces, ces recherches n'ont pas été faites d'une manière complète et lorsqu'on parle de la toxicité de leur culture, il s'agit des bouillons filtrés sur

bougie de porcelaine et non chauffés.

Les ectotoxines sont des toxines labiles, ayant les propriétés des diastases; leur action pathogène est spécifique. Les toxines thermostabiles sont représentées par les endotoxines et les protéines bactériennes (tuberculine, malléine); leur action pathogène n'est pas spécifique; seules les réactions anaphylactiques mettent en évidence la spécificité des toxoprotéines.

Ce sont donc les toxines solubles qui présentent le plus d'intérêt au point de vue de la détermination bac-

tériologique.

Pour isoler une ectotoxine on ensemence une série de ballons de bouillon. Après un séjour plus ou moins long (variable selon l'espèce), on filtre la culture sur bougie de porcelaine. On concentre par évaporation dans le vide. On précipite alors cette toxine brute par le sul-

^{1.} Celles-ci peuvent d'ailleurs être rattachées aux endotoxines.

fate d'ammoniaque; on se débarrasse de l'excès de ce sel par dialyse. On concentre à nouveau par évaporation dans le vide, puis on précipite par l'alcool absolu. On obtient ainsi ce qu'on appelle la « toxine vraie ». Toutefois il n'est pas certain que les produits ainsi obtenus soient eux-mêmes entièrement purs. Il est probable que les toxines vraies sont de nature colloïdale et que, non albuminoïdes elles-mêmes, elles imprègnent seulement les substances albuminoïdes auxquelles elles adhèrent pour ainsi dire.

B. - Hémolysines bactériennes

Un certain nombre d'espèces fournissent en dehors des toxines solubles, des substances exerçant une action hémolysante sur les globules rouges des animaux de laboratoire. La plupart des hémolysines microbiennes diffèrent absolument des hémolysines des sérums.

Elles sont:

1º Thermolabiles (détruites par le chauffage à 50-55°) ;

2º Instables (disparaissant en peu de jours à la température ordinaire dans les filtrats de culture);

3° Actives à la température de la glacière.

Les hémolysines microbiennes les mieux étudiées sont les staphylolysines, les tétanolysines, les streptolysines et les hémolysines des spirilles pseudo-cholériques. On peut employer deux techniques pour la recherche des hémolysines microbiennes:

a) Celle de Neisser et Wechsberg, qui consiste à mettre une goutte d'hématies lavées dans 2 centimètres cubes d'eau physiologique et à ajouter des quantités croissantes

^{1.} Toutefois il existe des hémolysines bactériennes qui résistent à la chaleur (Pyocyanéolysine).

de cultures filtrées. On laisse le mélange pendant deux heures à 37° puis vingt minutes à la glacière et on note

l'absence ou le degré de l'hémolyse;

b) Celle d'Eijkmann et Kraus consiste à ajouter une goutte de sang de mouton ou de chèvre défibriné à un tube de gélose liquéfiée qu'on verse dans une boîte de Pétri qui sera après refroidissement encemencée par strie. Si l'espèce ensemencée fournit des hémolysines, la gélose s'éclaircit au voisinage de la strie d'encemencement par suite de la dissolution de l'hémoglobine des globules rouges.

C. - Produits chimiquement définis

1º Recherche des produits de fermentation des hydrates de carbone

L'analyse — qui sera presque toujours purement qualitative quand il s'agira de déterminer une espèce bactérienne — comprend la recherche méthodique successive : a) des produits volatils non acides; b) des acides volatils;

c) des acides fixes.

L'analyse quantitative ne sera que très exceptionnellement utile à la solution du problème de la détermination, car si la nature des actions chimiques des espèces bactériennes est sujette à des variations sur l'importance desquelles nous avons insisté précédemment, le degré de leur pouvoir fermentatif est soumis à des oscillations encore plus considérables.

a) Produits volatils non acides. — La culture est soumise à la filtration. Le filtrat neutre ou neutralisé, est ensuite distillé: l'acétone, les alcools et aldéhydes distillent — si ces corps existaient dans la culture. On les caractérise globalement par la réaction de l'iodoforme.

Pour cette recherche on ajoute au liquide qui a distillé, dans un tube à essai, quelques gouttes d'eau de chaux à 10 % et quelques gouttes de liqueur iodo-iodurée. On perçoit alors l'odeur caractéristique bien connue et l'on constate au microscope la présence de cristaux hexagonaux d'iodoforme.

b) Acides volatils. — On acidifie fortement par un acide fixe en léger excès, l'acide phosphorique par exem-

ple. Ainsi les acides volatils sont mis en liberté.

Pour caractériser les acides volatils avec quelque précision et pour les doser, il faudrait avoir recours à la méthode de Duclaux dont le principe consiste à titrer l'acidité d'une série de prises du liquide qui passe à la distillation (prises de 10 cc. chacune) et de faire la courbe de l'acidité des prises successives. Chaque acide a sa courbe de distillation et s'il y a deux acides mélangés, chacun se comporte comme s'il était seul et suit les lois de sa distillation propre¹.

Pour la détermination de l'espèce bactérienne, il suffit habituellement de savoir s'il y a ou non production d'acides gras volatils. On pourra donc se contenter du procédé suivant, très grossier, mais suffisant au point de vue où nous nous plaçons. On distille après avoir déplacé

les acides volatils par un acide fixe.

Les acides valérianique et butyrique sont faciles à ca-

ractériser par leur odeur.

Lorsqu'il ne se dégage pas d'odeur bien particulière, on étend d'eau le liquide qui a distillé et, après l'avoir neutralisé exactement par la soude, on ajoute du nitrate d'Ag. On obtient ainsi un précipité blanc. On chauffe. Le précipité persiste et noircit s'il s'agit de formiate d'Ag, se redissout s'il s'agit d'acétate.

^{1.} Voir la technique in Bertrand et Thomas; Guide pour les manipulations de chimie biologique.

Dans ce dernier cas la présence d'acide acétique pourra être confirmée par la réaction de l'oxyde de cacodyle qui est très sensible et spécifique; à cet effet, le liquide de distillation neutralisé exactement par la soude, est chauffé avec un excès d'anhydride arsénieux. La présence d'acide acétique se révèle par une odeur d'ail caractéristique de l'oxyde de cacodyle.

Cette réaction permet de caractériser l'acide acétique lorsqu'il se trouve mélangé à d'autres acides volatils

reconnus à leur odeur propre.

c) Acides fixes. — Dans le résidu de la distillation se trouvent habituellement de l'acide lactique et, dans quelques fermentations bactériennes seulement, de l'acide

succinique.

Pour extraire ces acides, on chauffe au bain-marie le résidu de distillation étendu d'eau distillée, on ajoute de l'acide oxalique en quantité aussi exacte que possible pour précipiter le calcium dissous. On jette sur un filtre et après avoir lavé le précipité on concentre le liquide à consistance de sirop.

On reprend ensuite par l'éther qui dissout aussi bien

l'acide lactique que l'acide succinique.

Ce dernier cristallise de sa solution éthérée en prismes fusibles à 185°. Ces cristaux, chauffés dans une capsule au-dessus de cette température, se volatilisent en

produisant des vapeurs blanches très irritantes.

Pour extraire l'acide lactique du filtrat précédent concentré à l'état sirupeux, on l'épuise par une série d'agitations avec de l'éther saturé d'eau: à 5 ou 6 reprises on agite 1 volume du liquide sirupeux avec 4 à 5 volumes d'éther. La solution éthérée filtrée est ensuite distillée. Dans ces conditions on obtient toujours l'acide lactique à l'état sirupeux.

Les acides lactique et succinique pourront être carac-

térisés par les réactions suivantes :

Acide lactique. — I. — Réaction d'Uffelmann. — Si l'on verse quelques gouttes d'une solution diluée de chlorure ferrique dans une dizaine de centimètres cubes de solution aqueuse de phénol à 1 °/0 on obtient une coloration bleue intense. Cette coloration passe du bleu au jaune si l'on ajoute une trace d'acide lactique. Il est à remarquer que les acides minéraux décolorent le liquide bleu; mais une plus forte quantité est nécessaire pour produire cette décoloration.

II. — Réaction de Hopkins. — Dans un tube à essai sec on met :

Quelques gouttes de la solution à essayer,

5 centimètres cubes d'acide sulfurique concentré;

III gouttes d'une solution saturée de sulfate de cuivre.

On agite; on chauffe pendant cinq minutes au bain-marie à 100°, après refroidissement rapide on verse II gouttes d'une solution alcoolique de thiophène (solution à 2/1000).

On obtient, après agitation et chauffage, une coloration rouge-cerise si le liquide contenait de l'acide lactique.

Dans les mêmes conditions, l'acide succinique ne donne aucune coloration. L'acide tartrique une teinte violette; aussi convient-il, pour déplacer les acides gras volatils dans un liquide de culture, d'employer, non l'acide tartrique, mais un autre acide fixe (l'acide phosphorique, par exemple).

Acide succinique. — Pour caractériser l'acide succinique dans un liquide, on l'additionne de quelques gouttes d'eau ammoniacale. On évapore à sec et on reprend par l'eau. Quelques gouttes de chlorure ferrique versées dans cette solution produisent un précipité de couleur ocre et de consistance gélatineuse.

2° Recherche qualitative des principaux produits de fermentation des substances protéiques 1.

Une culture de deux ou trois semaines dans un milieu qui, avant l'ensemencement, ne contenait que des albumines naturelles (fibrine par exemple) sera soumise à l'analyse.

1. Il est exceptionnel qu'il soit nécessaire de procèder, dans un but diagnostique, au dosage des produits de fermentation des substances albuminoïdes. Dans ce eas, on aurait recours à la méthode d'analyse de Bienstock, modifiée par Tissier et Martelly. Voici cette méthode d'après ces derniers auteurs (Annales de l'Institut Pasteur, 1895, p. 870).

On choisit la fibrine, en raison de la facilité de sa préparation. Cette fibrine, soigneusement lavée, est mise dans du liquide d'Utschinsky-Frænkel légèrement alcalin. 30 grammes de fibrine seront ajoutées à 250 grammes de ce liquide contenu dans un ballon. Pour avoir un milieu anaérobie, il suffit de verser à sa surface une couche d'huile de vaseline. Le tout est stérilisé à 120° ou mieux à 100° pendant trois jours.

Le ballon ensemencé est ensuite mis à l'étuve à 37° pendant un temps variable, quinze jours à un mois au plus. On procède ensuite à l'analyse.

On ajoute à la culture entière 100 centimètres cubes d'eau distillée froide et on laisse en contact vingt-quatre heures à la glacière, on filtre et on pèse.

A. - Le filtrat obtenu est divisé en cinq parties :

1º La première sert à l'examen des gaz, à la recherche d'H.S. On ajoute de l'acide chlorhydrique et on distille. Le produit est recueilli dans un liquide contenant de l'acétate de plomb qui se colore en brun du fait de ce gaz. On contrôle par la réaction au nitroprussiate de soude en faisant une nouvelle distillation dans un liquide contenant 1°/o de ce corps;

2º La deuxième portion sert à doser les acides volatils, par le procédé de Duclaux ; les acides fixes restant dans la cornue sont carac-

térisés par les méthodes appropriées ;

3° Cette partie du filtrat sert à doser les bases volatiles. On additionne de magnésie et on distille. Le produit est recueilli dans des vases fermés. Les amines y sont caractérisées par la réaction d'Hoffmann, l'ammoniaque par ses réactions d'identité. On fait ensuite un dosage

On recherchera: 1° si l'albumine a été attaquée par l'espèce bactérienne; 2° jusqu'à quel point la désintégration de la molécule albuminoïde aura été poussée. En général, il suffira d'établir si la fermentation s'est arrê-

alcalinimétrique et le tout est évalué en AzH3. Il ne faut pas oublier que le milieu de Frænkel est ammoniacal; on déduira de la quantité

obtenue, l'ammoniaque du milieu qui est connue ;

4° La quatrième portion du filtrat primitif sert à doser les corps entraînés par la vapeur d'eau, l'indol, le scatol et les phénols. On acidule avec l'acide acétique, on distille jusqu'à ce que le liquide ne précipite plus avec l'eau de brome. On neutralise avec de la soude et on ajoute de l'éther. La solution éthérée décantée est abandonnée à l'évaporation. Le résidu huileux se prend en une masse cristalline. On dissout à l'eau bouillante, on filtre et on obtient les cristaux de scatol. Le liquide séparé de ces cristaux abandonne ensuite l'indol par évaporation. La liqueur, débarrassée de ces deux corps, contient encore des phénols, on les précipite par la potasse et on distille. Les phénates restés dans la cornue sont mis en liberté par HCl, on distille à nouveau, et le produit traité par l'eau de brome laisse déposer le tribromophénol que l'on pèse;

5° On étudie alors les produits fixes. Denaeyer a montré que si l'on traitait un produit de digestion par l'alcool à 95° en excès, on obtient un précipité (albumines, protéoses, peptones), l'alcool dissout les principes extractifs (carnine, créatine, créatinine), les produits de décomposition des protéoses (leucine, tyrosine, acide aspartique) et des gélatoses (alanine, glycocolle, acide amino-butyrique) Cette réaction nous sera d'une grande utilité, car le rapport entre le précipité formé surtout de protéoses et les substances solubles (poids d'extractif) nous renseignera sur l'intensité de la destruction de la matière

albuminoïde.

On additionne donc cette partie du filtrat de carbonate de soude et on évapore au bain-marie, on traite par l'alcool en excès et on laisse déposer pendant vingt-quatre heures. On décante la solution alcooli-

que, on évapore et on pèse.

La leucine et la tyrosine seront facilement décelées au microscope. Le précipité est repris par l'eau qui dissout les protéoses et les albuminoïdes solubles. On porte à l'ébullition, puis on filtre, on a le poids de ce dernier corps. Les protéoses en solution sont évaporées, séchées et pesées. Pour en séparer les peptones, on précipite par le sulfate d'ammoniaque et on dialyse.

B. — Le résidu solide de la culture filtrée est séché et épuisé pendant douze heures par l'éther bouillant pour obtenir les graisses. On traite ensuite ce résidu par l'eau distillée bouillante, la liqueur obtenue est filtrée, évaporée. Ce dernier produit séché et pesé est considéré accurate la la considéré accurate la considéré de la culture filtrée est séché et épuisé pendant douze heures par l'éther bouillant pour obtenir les graisses. On traite ensuite ce résidu par l'eau distillée bouillante, la liqueur obtenir produit séché et pesé est considéré accurate la considéré accurate la considéré des la considéré de la considéré de la considéré des la considéré de la considéré de la considéré des la considéré de la considéré d

déré comme de la gélatine.

tée au stade albumose-peptone, ou bien s'il y a eu production non seulement de peptones, mais d'acides aminés, d'indol, d'hydrogène sulfuré, d'ammoniaque.

a) Albumoses et peptones. — On prélève quelques centimètres cubes de la culture; on acidule avec quelques gouttes d'acide acétique et l'on chauffe : seules les albumines non modifiées sont coagulées. On filtre.

On ajoute au liquide du sulfate d'ammonium pulvérisé en agitant jusqu'à ce que la présence d'une petite quantité de sel non dissous indique que la saturation est complète. Les albumoses sont alors précipitées. On filtre. Dans le liquide les peptones seront caractérisées par la réaction du biuret.

Dans ce but, le liquide qui filtre est étendu d'eau. Puis on ajoute, à quelques centimètres cubes de cette solution, 1 centimètre cube de soude à 10 °/. pour alcaliniser puis, goutte à goutte, une solution de sulfate cuivrique à 1 °/. Une teinte rose violacé puis violet bleu après addition de quelques gouttes indique la présence de peptones.

b) Acides aminės (leucine, tyrosine). — Čes produits seront facilement décélés par l'examen microscopique.

La tyrosine est caractérisée par ses cristaux, faciles à reconnaître a un fort grossissement. Une goutte de la culture à examiner est placée sur une lame de verre et abandonnée à l'évaporation spontanée. Les cristaux de tyrosine se présentent sous la forme de très fines aiguilles blanches, groupées en gerbes ou en rosaces. On vérifiera leur solubilité dans l'acide chlorhydrique concentré et dans l'ammoniaque.

c) Recherche de l'indol. — Dix centimètres cubes de culture en eau peptonée sont additionnés d'un centimètre cube d'une solution de nitrite de sodium à 2/10.000. Puis on verse en agitant 4 à 5 gouttes d'acide sulfurique pur Le milieu prend une teinte rose ou rouge. Comme la couleur de l'eau peptonée peut masquer cette teinte, il faut

toujours chercher à la mettre en évidence en agitant le liquide avec un peu d'alcool méthylique qui dissout la matière colorante et la rassemble à la surface.

Certaines bactéries donnent la réaction rouge avec l'acide sulfurique sans addition de nitrites, c'est la réaction indol-nitreuse (réaction du rouge de choléra).

Nous avons indiqué plus haut les raisons pour lesquelles il importe, au cours d'une détermination, de ne pas recourir à d'autres procédés pour caractériser l'indol. Il est indispensable de s'assurer, avant de rechercher la réaction, du fait que les peptones employées sont susceptibles de donner de l'indol. On les éprouve avec une culture de Bact. coli commune.

d) Recherche de l'hydrogène sulfuré. — Bien que l'on observe des différences quantitatives considérables non seulement d'une espèce, mais aussi d'une race à l'autre, c'est là un produit de culture trop fréquent pour que sa constatation puisse fournir des indications diagnostiques. Aussi peut-on se contenter pour le caractériser, du procédé très rudimentaire qui consiste à introduire dans le tube en même temps que le bouchon d'ouate un papier humide, imprégné d'acétate de plomb. Sous l'influence du dégagement d'hydrogène sulfuré, il prend une coloration brunâtre puis noire. Il faut avoir soin de boucher le tube avec un capuchon de caoutchouc ne contenant pas de soufre.

La recherche de ce corps se fait dans les milieux peptonisés; de très rares espèces produisent H²S dans les milieux ne contenant que des albumines naturelles.

L'addition d'une petite quantité de soufre pulvérisé à l'eau peptonée ou au bouillon rend la réaction plus nette. Il importe d'examiner les cultures tous lés jours car la teinte brune peut être éphémère par suite d'une oxydation secondaire.

e) Recherche de l'ammoniaque. — L'ammoniaque peut

être caractérisée par les réactions suivantes:

1º On ajoute un volume de réactif de Nessler à dix volumes de culture. On obtient une coloration jaune-brun en présence de traces d'ammoniaque, un précipité brun rougeâtre s'il y en a une quantité notable. La réaction est encore sensible avec des dilutions d'ammoniaque à 1/300.000;

2º On ajoute un volume d'iodure de potassium à 10 º/.
à dix volumes de culture, puis quelques gouttes d'une solution d'eau de Javel: on obtient un précipité noir si

le milieu contient de l'ammoniaque;

3º Après addition d'hypobromite de sodium, on observe

un dégagement d'azote gazeux.

Les réactions 1 et 2 se produisent également avec un certain nombre d'amines; l'épreuve 3 n'est pas donnée par les amines mais par l'urée, les acides urique et hip-

purique, la créatinine.

On évitera les erreurs si l'on a soin de rechercher les réactions précédentes non dans le milieu de culture luimême, mais dans le liquide obtenu en distillant en présence d'un peu de magnésie récemment calcinée. Cette solution ammoniacale recueillie dans un tube contenant quelques gouttes d'acide sulfurique à 10 % sera éprouvée par les réactifs 1, 2 et 3.

Dosage de l'ammoniaque. — Ce dosage se fait en distillant en présence de magnésie calcinée qui, à la température de l'ébullition, n'attaque l'urée résiduelle que très faiblement et proportionnellement à la durée du chauffage. A 5 centimètres cubes de culture (milieux à l'urée ou à l'urine) on ajoute 150-200 centimètres cubes d'eau distillée et quelques grammes de magnésie récemment calcinée. On arrête la distillation lorsque la quantité d'ammoniaque qui passe est très faible et proportionnelle à la durée de l'ébullition (à partir de ce moment l'am-

moniaque provient de l'hydrolyse de l'urée résiduelle). On titre l'ammoniaque qui distille par l'acide sulfurique

en présence d'orange.

Mieux vaut encore doser tout l'ammoniaque qui passe à la distillation avant et après ensemencement du milieu; la différence représente la quantité d'ammoniaque formée par la fermentation des matières azotées.

CHAPITRE VI

Inoculations

Parmi les méthodes de diagnostic bactériologique, les inoculations expérimentales tiennent une place importante, malgré la constatation faite pour la plupart des espèces que la virulence et l'action pathogène sont des caractères variables et transitoires.

Les inoculations d'épreuve doivent être faites, au cours de toute détermination aux animaux dits de laboratoire, faciles à manier et d'un emploi courant. Il est nécessaire lorsqu'on étudie une bactérie, de l'inoculer au moins au lapin, au cobaye, au rat blanc et à la souris blanche.

Ce n'est que dans des cas particuliers et lorsqu'on soupçonne la bactérie étudiée d'être douée d'une action pathogène à l'égard d'autres espèces qu'on doit étendre le champ des expériences. C'est donc rarement qu'on aura à pratiquer des inoculations aux oiseaux, au singe, au chat, etc., et ce n'est qu'exceptionnellement qu'on devra inoculer des animaux à sang-froid : grenouilles, poissons, etc.

On se propose de rechercher, pour une bactérie donnée, quelles sont les espèces animales réceptives et quelle est la nature des accidents que provoque l'inoculation. Il est donc nécessaire d'essayer la virulence sur les animaux les plus divers en raison de l'immunité naturelle absolue ou relative de certaines espèces animales à l'égard d'une bactérie déterminée. Si l'on se contente en général, malgré l'intérêt qu'il y aurait à s'adresser au plus grand nombre d'espèces possible, d'expérimenter sur les animaux de laboratoire, ce n'est pas seulement en raison de la facilité de leur maniement, c'est surtout parce qu'ils sont précisément réceptifs pour la plupart des microbes pathogènes.

I. - Technique

a) Matériel d'inoculation. — C'est en général aux cultures sur bouillon qu'on a recours et l'on se sert le plus souvent d'une culture de vingt-quatre heures dans ce milieu. On comprend toutefois que pour les bactéries à croissance plus lente on soit obligé d'utiliser des cultures plus anciennes. L'inoculation des cultures en milieux liquides se fait aisément à la seringue ou à la pipette.

Les cultures sur milieux solides doivent tout d'abord être émulsionnées dans l'eau ou mieux dans le sérum physiologique. Pour cela, on prélève une anse de culture que l'on porte dans un tube contenant quelques centimètres cubes d'eau. L'émulsion se fait par agitation avec une rapidité très variable suivant les bactéries. Les unes s'émulsionnent aisément sans agitation. D'autres exigent une agitation plus prolongée. Enfin les colonies compactes ne s'émulsionnent pas dans ces conditions. Il faut alors leur faire subir un léger broyage qui s'effectue sans difficulté au fond d'un tube à essais stérilisé, à l'aide d'un tube de verre dont on a soufflé l'extrémité en boule.

Pour les cultures faciles à émulsionner un autre procédé très simple consiste à verser quelques centimètres cubes d'eau stérilisée dans le tube de gélose inclinée sur lequel la culture s'est développée. Il suffit d'agiter le tube à plusieurs reprises pour obtenir une abondante émulsion au bout de quelques minutes.

On comprend qu'en injectant une culture en bouillon on inocule à l'animal non seulement le microbe mais aussi les produits solubles qu'il a sécrétés (toxines) et des produits de fermentation. En injectant au contraire une émulsion de culture sur milieux solides, on inocule la bactérie et non les toxines. Chacune de ces manières de procéder peut avoir son intérêt, mais il conviendra dans les épreuves destinées à la détermination des bactéries d'injecter de préférence une culture en bouillon, chaque fois qu'il n'aura pas été donné d'indications contraires.

L'animal choisi doit être immobilisé pour permettre de pratiquer l'inoculation aisément et sans danger.

b) Mode d'inoculation. — Les deux voies d'inoculation les plus usitées sont la voie sous-cutanée et la voie

péritonéale.

Pour toutes ces injections, on se sert de seringues qui doivent répondre aux exigences suivantes : être entièrement stérilisables à l'autoclave, et posséder un piston bien étanche. Les aiguilles doivent être de préférence un peu grosses, en platine iridié ou en nickel. L'animal en expérience est maintenu de différentes manières suivant les espèces. Le lapin et le cobaye doivent être fixés par les quatre membres à un plateau métallique dont les bords sont percés de trous servant de points d'attache. Ces animaux sont d'ailleurs assez dociles pour qu'on puisse se contenter souvent de les faire maintenir par un aide. Quant aux petits animaux, ou pour ceux dont le maniement est dangereux (rats, souris, etc...), il est bon de les suspendre par la peau de la nuque à une pince que l'on fixe à un crochet ou que l'on confie à un aide. L'opérateur saisit l'animal par la queue et peut ainsi l'inoculer sous la peau sans risquer de se faire mordre.

Nous ne pouvons d'ailleurs entrer dans les détails de la

technique qui varie suivant les espèces.

Inoculations sous-cutanées. — Il faut choisir une région où la peau soit mobile sur les plans profonds, l'épiler ou tout au moins couper les poils aux ciseaux et désinfecter soigneusement la région où la piqûre doit être faite. Une application de teinture d'iode de quelques minutes suffit à cette désinfection. Puis l'inoculation proprement dite s'effectue en enfonçant l'aiguille montée sur la seringue à la base d'un pli fait à la peau. L'aiguille doit être dirigée très obliquement de manière à ne pas pénétrer profondément dans les plans musculo-aponévrotiques.

Les régions d'élection varient suivant les espèces. Pour le lapin on peut faire l'injection sous la peau de la région dorsale ou abdominale. Pour le rat et la souris, à la base de la queue. Pour le cobaye à une des pattes postérieures. Il est bon pour ce dernier de se munir de fortes aiguilles à cause de la très grande résistance de ses téguments. Pour les injections sous-cutanées on peut se servir d'une simple pipette à courte effilure dont on introduit l'extrémité sous la peau. On chasse en souf-flant le liquide contenu dans la pipette. Lorsqu'on fait l'injection à la pipette, il est bon d'entamer préalablement la peau pour faciliter sa pénétration. Une petite

incision au bistouri suffit à lui frayer passage.

Les inoculations intrapéritonéales exigent une bonne contention de l'animal. Deux techniques peuvent être suivies. La plus simple consiste à faire pénétrer l'aiguille d'un mouvement brusque à travers la paroi abdominale. L'animal favorise lui-même la pénétration de l'instrument par une brusque contraction réflexe de ses muscles abdominaux. Toutefois cette méthode offre une médiocre sécurité car on risque de pénétrer dans l'intestin. Mieux vaut faire un pli à la paroi abdominale en la pinçant en

masse entre le pouce et l'index gauches. L'aiguille transfixe la double paroi ainsi maintenue. Il suffit alors de laisser s'étaler le pli. On retire un peu l'aiguille et l'on pousse l'injection quand on sent la pointe jouer librement dans l'abdomen.

Les inoculations intra-péritonéales exigent les mêmes précautions d'asepsie que les inoculations sous-cutanées. Dans l'un comme dans l'autre cas, si l'on avait à inoculer des fragments de tissus ou d'autres matières solides, non émulsionnables, il faudrait pratiquer au bistouri une incision de la peau ou de la paroi abdominale.

Les autres voies d'inoculation sont plus rarement em-

ployées:

L'inoculation cutanée est utile dans certains cas en particulier pour le diagnostic de la peste. Il suffit de frictionner légèrement la surface de la peau préalablement rasée avec un agitateur humecté de culture. Tantôt on se contente d'inoculer ainsi la peau simplement rasée (peste); tantôt on l'inocule après l'avoir scarifiée.

L'inoculation intraveineuse se fait autant que possible dans une veine superficielle aisément accessible. Chez le lapin on choisit la veine marginale de l'oreille, chez le cobaye la jugulaire externe, chez le chien la veine

saphène, chez les oiseaux, la veine axillaire.

L'inoculation dans la chambre antérieure de l'œil se fait après anesthésie par une instillation de quelques gouttes d'une solution de cocaïne à 2 °/₀. On fixe le globe oculaire entre le pouce et l'index gauches, et l'on fait pénétrer l'aiguille à l'union de la cornée et de la sclérotique.

L'inoculation intracranienne exige, après incision des parties molles, la trépanation des os du crâne. On se sert de petits trépans spéciaux qu'on applique dans la région frontale près de la ligne sagittale. Il faut éviter de blesser la dure-mère que l'aiguille seule doit perfo-

rer. Celle-ci doit être enfoncée très obliquement de manière à ce que sa pointe reste superficielle, ou au contraire perpendiculairement, suivant que l'on veut faire une inoculation intracranienne ou intracérébrale.

II. - Examen des animaux

Les inoculations aux animaux peuvent être suivies de phénomènes locaux et généraux. Localement il peut se produire de la rougeur, de l'inflammation, un abcès ou

un foyer gangréneux.

Les phénomènes généraux, variables suivant les cas, témoignent ordinairement de l'état septicémique de l'animal en expérience. Ils entraînent le plus souvent la mort de l'animal dans des délais variables. Tantôt la mort est rapide et peut survenir moins de vingt-quatre heures après l'inoculation, tantôt elle est tardive et peut ne se produire qu'après plusieurs semaines.

Après l'injection de la culture ou des produits supposés virulents, l'animal doit être observé avec soin. On doit noter les troubles de l'état général, son habitus extérieur, le peser et prendre avec soin sa température '. On doit enfin noter les troubles de ses fonctions digesti-

ves, urinaires, etc ...

Autopsie. — On peut attendre que l'animal inoculé

ait succombé spontanément.

On le sacrifie s'il ne succombe pas pour rechercher s'îl existe des lésions imputables à l'inoculation. Il est nécessaire, en faisant l'autopsie, de recueillir du sang du cœur aux fins d'ensemencement et d'examen direct. On recueille en outre du liquide péritonéal si l'inoculation a

^{1.} La température du lapin et du cobaye est d'environ 39° à l'état normal.

été pratiquée par cette voie. Tous ces prélèvements destinés à l'examen direct sont particulièrement intéressants pour l'étude des bactéries munies d'une capsule. On sait en effet qu'elle n'existe ordinairement ou n'est apparente que dans les liquides de l'organisme.

Il peut être nécessaire pour compléter les renseignements fournis par l'examen microscopique de pratiquer un examen histologique des organes malades.

Les réactions locales simplement inflammatoires s'observent très fréquemment à la suite d'injections souscutanées, mais elles ne suffisent pas à classer une bactérie dans les espèces pathogènes.

III. — Valeur diagnostique des inoculations

Vitalité. — Un certain nombre d'espèces perdent sur les milieux artificiels non seulement leur virulence mais même leur vitalité.

Les unes restent vivantes à condition d'être repiquées très souvent sur des milieux neufs (toutes les semaines ou tous les deux jours. (Méningocoque.)

D'autres meurent après quelques générations même quand on les transplante chaque jour sur un milieu neuf

(Pneumocoque).

Il y a d'ailleurs de grandes différences dans la vitalité d'une même bactérie suivant les milieux dans lesquels on la cultive. C'est ainsi que le Pneumocoque conserve longtemps sa vitalité et sa virulence dans le sang de lapin gélosé (plus d'un an d'après Bezançon), tandis qu'il perd l'une et l'autre en quelques jours dans les milieux usuels.

Il faut toujours tenir compte de ces données pour

mener à bien la recherche de la virulence d'une bactérie et ne pas perdre de vue qu'elle est à son maximum au sortir de l'organisme malade.

Virulence. — La virulence d'une bactérie est un caractère extrêmement variable suivant les espèces. Pour les unes elles est assez fixe (B. tetani) pour d'autres elle est inconstante et peu durable M. pyogenes (Rosenbach).

C'est particulièrement par la culture dans les milieux artificiels que la virulence disparaît. Une culture ancienne peut avoir perdu sa virulence mais être capable encore de la récupérer très rapidement par repiquage sur un milieu neuf. On dit d'une telle bactérie que sa virulence est affaiblie.

Cet affaiblissement n'est pas un caractère héréditaire.

Dans d'autres circonstances la perte de virulence se transmet héréditairement et le repiquage sur de nouveaux milieux artificiels ne parvient pas, même après de nombreuses générations, à restituer à la bactérie sa virulence. Il en est même beaucoup dont le pouvoir pathogène décroît progressivement dans ces conditions. On dit de telles bactéries que leur virulence est atténuée.

Dans ce cas il faut pour leur faire récupérer leur virulence originelle les inoculer à des animaux très sensibles, très jeunes, nouveau-nés, dont l'organisme n'oppose à l'envahissement microbien que de faibles réactions défensives. Les sérosités pathologiques ou le sang de cet animal sensible jeune qui a succombé à l'infection sont ensuite inoculés à des animaux plus âgés de même espèce; puis on continue à faire des passages sur des espèces animales de plus en plus résistantes. Ainsi la virulence s'accroît progressivement jusqu'à une constante.

On peut favoriser l'action pathogène et par conséquent exalter la virulence d'une bactérie :

Soit en inoculant de grandes quantités de culture

(bouillon). L'exaltation est attribuée à l'action des produits élaborés dans le milieu par la végétation de la bactérie.

Soit en inoculant en même temps que la culture peu virulente une culture d'une bactérie saprophyte (B. prodigiosum, B. fluorescens, etc...) ou une substance chimique telle que l'acide lactique.

Il se peut qu'une culture très atténuée ne puisse plus récupérer sa virulence, aussi ne doit-on pas tarder trop longtemps à faire ces recherches lors de la détermination d'une bactérie.

Réactions d'immunité. Immunité croisée. — Les inoculations pratiquées dans un but de diagnostic bactériologique peuvent servir non seulement à apprécier le pouvoir pathogène de l'espèce inoculée, mais aussi à rechercher les réactions d'immunité.

Dans certains cas on se propose de mettre en évidence les anticorps qui se forment dans le sérum de l'animal inoculé. Nous décrirons plus loin les techniques qui se rapportent à ces recherches. D'autres fois on inocule une bactérie, virulente pour l'animal neuf, à un animal immunisé à l'égard d'une espèce connue. Si le microbe à déterminer est de même espèce que celui qui a servi à l'immunisation, l'animal immun survit. Dans le cas contraire l'action pathogène du microbe inoculé s'exerce sur l'animal préparé aussi bien que sur l'animal neuf.

Pour la distinction de certaines espèces très voisines par leurs caractères biologiques et par leurs actions fermentatives, mais ne conférant d'immunité que pour elles-mêmes, cette recherche a une grande importance 'en ce qu'elle démontre l'absence d'immunité croisée d'une espèce à l'autre.

^{1.} Ainsi la recherche de l'immunité réciproque est souvent nécessaire pour différencier entre elles des cultures des bactéries du groupe des septicémies hémorragiques, de B. pestis et des B. pseudo-pesteux, etc.

CHAPITRE VII

Étude des anticorps formés dans l'organisme des animaux immunisés

1º Agglutination

Depuis que la réaction agglutinante a été utilisée pour le diagnostic clinique de la fièvre typhoïde, on a cherché à étendre à d'autres maladies cette méthode de diagnostic. Les résultats obtenus en clinique ont été peu encourageants, mais la bactériologie expérimentale a tiré de cette

méthode des applications nombreuses :

Le sérum d'un animal inoculé à plusieurs reprises avec certaines bactéries acquiert, après plusieurs inoculations successives, la propriété d'agglutiner les bactéries vivantes ou mortes de même espèce. Il se développe dans ce sérum en même temps que des substances agglutinantes, d'autres substances (sensibilisatrices, bactériolysines) qui jouent un rôle important dans le mécanisme de l'immunité. De là le nom d'immun-sérums. On peut donc se servir d'un sérum ainsi préparé pour le diagnostic d'une espèce microbienne. Toutefois un sérum agglutinant pour une espèce déterminée peut exercer aussi, bien qu'à un degré moindre, une action analogue sur les espèces très voisines. (Agglutination de groupe par opposition à l'agglutination spécifique.) D'autre part un sérum neuf d'un

animal non inoculé peut exercer sur certaines bactéries une action agglutinante quand on l'emploie pur ou insuffisamment dilué et non chauffé. Aussi les sérums employés doivent-ils toujours être actifs au moins à 1/50.

1º Préparation des immun-sérums. — Pour obtenir un sérum agglutinant pour une espèce, il faut injecter la bactérie correspondante vivante ou tuée par des procédés qui détruiront le moins possible les produits qu'elle a élaborés. Peu virulente pour l'animal inoculé, on peut l'injecter vivante. S'il s'agit d'une espèce virulente, on l'injectera après l'avoir tuée par l'addition d'une petite quantité d'une substance chimique (formol, acide phénique), ou par le chauffage à 60°. On injecte en général pour un petit animal (cobaye) 1/5 à 1/20 d'une culture de quarante-huit heures sur gélose. Pour des animaux plus grands, lapins, chiens, on peut injecter 1/2 à 2 cultures. Au bout de huit à quinze jours on fait une nouvelle injection d'une dose double. L'accroissement du pouvoir agglutinant commence après une période de latence de quatre à cinq jours. 4 ou 5 injections à doses croissantes suffisent en général. Les propriétés agglutinantes du sérum des animaux préparés persistent pendant des mois et quelquefois des années.

2° Technique de la réaction. — Pour l'emploi, le sérum agglutinant doit être dilué avec du sérum artificiel; on peut faire des dilutions de titres divers, par exemple des

dilutions à 1/50, 1/100, 1/200, etc.

D'autre part on prépare une suspension des bactéries à éprouver en mélangeant une anse de platine d'une culture de vingt-quatre heures en milieu solide avec 1/2 centimètre cube de sérum artificiel. L'émulsion doit être parfaitement homogène.

On mélange à parties égales dans un petit tube, l'émulsion et le sérum agglutinant convenablement dilué. Le tube est porté à l'étuve à 37°. Si la réaction est positive

on doit au bout de quelques heures voir le liquide contenu dans le tube s'éclaircir. L'émulsion a perdu son aspect homogène, et il s'est formé de petits flocons qui tendent à se sédimenter. Certaines bactéries immobiles ont une tendance spontanée à se sédimenter, aussi doiton toujours faire un tube témoin contenant l'émulsion sans sérum expérimental pour éviter une erreur d'interprétation.

Le phénomène de l'agglutination peut aussi s'observer au microscope. On procède aux mélanges suivant la technique que nous venons d'indiquer et on en dépose une gouttelette sur une lamelle que l'on renverse sur une lame creuse pour faire l'examen en goutte pendante. L'agglutination s'effectue rapidement, en quelques minutes ou au plus tard au bout d'une heure si la réaction

est positive.

On doit, dans toutes ces recherches, ne tenir compte que des réactions positives à 1/50. Si la réaction est positive à ce taux on fera de nouvelles dilutions à 1/100, 1/200, 1/500 pour établir le degré de l'agglutination.

Les sérums très actifs sont employés aux dilutions indiquées par un titrage préalable; ceux qui sont encore actifs à une dilution considérable (1/1.000) donnent plus de sécurité au point de vue du diagnostic. Pour l'étude de la réaction agglutinante on emploie le plus souvent des bactéries vivantes. Toutefois on peut également se servir de bactéries tuées par la chaleur ou par l'addition d'antiseptiques, car l'agglutination n'est pas un phénomène biologique mais un phénomène d'ordre physico-chimique 1.

3º Difficultés et causes d'erreur. — Toutes les bac-

^{1.} En ensemençant la bactérie à éprouver dans un bouillon contenant du sérum agglutinant correspondant, la culture ne trouble pas le bouillon, elle forme des amas, des flocons, et l'on peu vérifier l'agglutination au microscope.

téries ne fournissent pas des agglutinines spécifiques avec une égale abondance. Certaines espèces (Sp. choleræ, B. typhosum, B. dysenteriæ, B. pestis) fournissent aisément des sérums énergiquement agglutinants. D'autres espèces (B. pneumoniæ, etc...) ne fournissent que très peu ou pas d'agglutinines. Il faut savoir aussi que pour une même bactérie des races de diverses origines donnent des résultats très différents. C'est ainsi qu'avec B. coli, rien n'est plus variable que le degré de l'agglutination obtenue. Même la spécificité de la réaction n'est pas absolue. Un sérum préparé avec une espèce déterminée peut agglutiner d'autres espèces, mais il s'agit en général d'espèces proches parentes (agglutinations de groupe dues aux coagglutinines). Toutefois des bactéries assez éloignées par leurs caractères culturaux et chimiques paraissent voisines par leur agglutinabilité commune. Înversement des bactéries à action fermentative identique peuvent n'avoir aucune agglutinabilité commune.

Mais il y a une distinction à établir entre les agglutinines spécifiques et les coagglutinines contenues dans un sérum. Les bactéries voisines de l'espèce qui a servi à préparer le sérum fixent les coagglutinines seules, elles

n'épuisent pas l'agglutinine spécifique.

Au contraire, l'espèce elle-même qui a servi à la préparation du sérum fixe non seulement l'agglutinine spécifique mais aussi les coagglutinines. On dit qu'elle « épuise » les agglutinines contenues dans le sérum. Cette constatation a été appliquée au diagnostic du gonocoque et du méningocoque (Dopter, R. Koch)¹.

Remarque. — Très souvent les bactéries récemment isolées de l'organisme ne se laissent pas agglutiner par

^{1.} En ce qui concerne le méningocoque, Kütscher a montré que certains échantillons non agglutinables à 37° étaient agglutinables à 55°.

l'immun-sérum. Elles acquièrent progressivement la faculté de se laisser agglutiner après un certain temps de culture en milieux artificiels.

2º Bactériolyse

On peut obtenir par inoculations répétées d'une bactérie à un même animal, la formation d'anticorps bactériolytiques spécifiques pour l'espèce inoculée. Cette constatation a été utilisée pour le diagnostic bactériologique.

1° Technique. — La préparation d'un sérum bactériolytique se fait de la même manière que celle d'un sérum

agglutinant.

La technique de la réaction peut varier suivant l'espèce microbienne. Celle que nous indiquons s'applique à Sp. choleræ. La recherche de l'action bactériolytique peut se faire in vitro ou in vivo (réaction de Pfeiffer).

a) In vitro. — La réaction s'effectue en mélangeant le sérum bactériolytique avec une émulsion de la bactérie correspondante et en portant le mélange pendant deux heures à l'étuve à 37°.

L'émulsion microbienne se prépare en diluant une anse de culture en milieu solide, âgée de vingt-quatre heures, dans un centimètre cube de sérum artificiel. On ajoute à cette émulsion 1 centimètre cube de sérum bactériolytique dilué (ces sérums doivent être actifs à une dilution de 1/300). Le sérum bactériolytique doit être employé frais et non chauffé. Toutefois on peut se servir d'un sérum recueilli depuis longtemps à condition de le réactiver par l'addition d'une petite quantité de sérum frais de cobaye neuf destiné à fournir l'alexine nécessaire.

Remarque. — La bactériolyse s'effectue d'une manière très variable suivant les espèces, soit que certaines bac-

téries ne donnent lieu qu'à une quantité insuffisante d'anticorps, soit que ces bactéries peu fragiles résistent à leur action. D'après Büchner, le spirille du choléra, B. typhosum, B. coli commune sont très sensibles; B. anthracis, B. rhusopthiæ suis sont moins sensibles; B. pyocyaneum est très résistant.

D'autre part, les sérums normaux jouissent à l'égard des espèces les plus fragiles d'une action lytique appréciable. Aussi importe-t-il, dans le cas du spirille du choléra par exemple, de ne se servir que de choléra-sérum

dilué à 1/300 au moins et actif à ce taux.

β) In vivo. — La réaction de Pfeisser, telle que l'a décrite cet auteur, s'effectue dans le péritoine du cobaye. Elle exige l'emploi de cultures vivantes et virulentes. Si la culture n'était pas virulente, la bactériolyse pourrait avoir lieu sans addition de choléra-sérum.

On injecte dans le péritoine d'un cobaye neuf par une petite incision faite à la paroi abdominale, un mélange d'un centimètre cube d'émulsion microbienne préparée comme nous venons de l'indiquer et d'un centimètre cube de sérum bactériolytique dilué. On peut employer un sérum recueilli depuis longtemps car le liquide péritonéal du cobaye est riche en alexine.

Pour suivre la marche de l'expérience il suffit de recueillir avec une pipette à travers la boutonnière faite à la paroi abdominale quelques gouttes de liquide péritonéal que l'on examine sans coloration, entre lame et lamelle ou en goutte pendante. On fait ainsi un prélèvement toutes les dix minutes pendant une demi-heure ou une heure. Si la réaction est positive, on voit peu à peu s'altérer la forme des spirilles qui finissent par se transformer en granules en même temps que le liquide péritonéal devient visqueux. Si la réaction est négative les spirilles conservent leur forme et restent mobiles.

Lorsqu'on fait cette expérience il est nécessaire de

prendre pour témoin un cobaye auquel on injecte avec l'émulsion de spirilles virulents, du sérum non cholérique dilué à 1/100. La bactériolyse ne doit pas s'effectuer chez le cobaye témoin, car les sérums non cholériques ne sont lytiques qu'à des dilutions inférieures à 1/100.

3º Réaction de fixation

Les anticorps spécifiques qui se développent dans le sérum des animaux inoculés avec une bactérie donnée peuvent, nous venons de le dire, être parfois constatés directement par leur action destructrice sur le corps bactérien qui se dissout ou se résout en granules. Mais dans un grand nombre de cas et en particulier pour les bactéries peu fragiles qui ne sont pas attaquées, l'action des anticorps spécifiques ne peut évidemment pas être constatée directement. Bordet et Gengou ont imaginé, pour étudier indirectement l'action des anticorps, une méthode

très ingénieuse, la réaction de fixation.

Nous avons indiqué (Voir Bactériolyse) que les bactéries soumises à l'action du sérum bactériolytique correspondant n'étaient attaquées que si l'on employait ce sérum à l'état frais, que les sérums bactériolytiques vieillis ou chauffés perdaient cette action, mais la récupéraient aussitôt par l'addition d'une petite quantité de sérum d'un animal neuf. On conclut de ces constatations qu'il existe dans un immun-sérum frais deux substances, l'une spécifique, stable, résistant à la chaleur; l'autre non spécifique, existant dans tous les sérums frais, instable, détruite par le chauffage à 56°. La substance spécifique est appelée sensibilisatrice ou ambocepteur; la substance non spécifique est appelée alexine ou complément. La collaboration des deux substances est nécessaire à l'accomplissement de la bactériolyse.

D'autre part, si au lieu d'injecter des bactéries à un animal, on lui injecte des globules rouges provenant d'un animal d'une autre espèce, on constate après un nombre d'injections suffisant que le sérum de l'animal inoculé a acquis des propriétés nouvelles, et qu'il est capable de dissoudre les globules rouges de même espèce que ceux qui ont servi à préparer l'animal. On a obtenu par conséquent dans le sérum de l'animal inoculé la formation d'anticorps spécifiques (hémolysines) analogues aux bactériolysines. Les propriétés des sérums hémolytiques sont les mêmes que celles des sérums bactériolytiques. Ils contiennent une substance spécifique, stable, non détruite par le chauffage à 56° (hémolysine, ou ambocepteur hémolytique) et une substance indifférente contenue dans tout sérum frais, thermolabile (alexine ou complément). La présence de cette dernière est nécessaire pour l'accomplissement de l'hémolyse.

Ces faits permettent de comprendre le mécanisme de

la réaction de Bordet et Gengou:

Si l'on fait un mélange d'une bactérie, d'un immunsérum correspondant, et d'un sérum frais de cobaye neuf, et qu'après deux heures de séjour à l'étuve à 37° on recherche la présence de la substance indifférente non spécifique, thermolabile, on constate que cette substance a disparu; elle a été fixée par la bactérie (antigène ¹). C'est la manière de rechercher la présence ou l'absence de la substance non spécifique (alexine) qui fait l'originalité de la méthode de Bordet et Gengou.

- Technique. - Il faut pour exécuter la réaction de

fixation préparer:

1º Un sérum hémolytique;

2º Un immun-sérum;

^{1.} Antigéne se dit de la substance (Bactérie, etc...) dont l'injection a déterminé la formation d'anticorps.

3° L'émulsion de la bactérie à éprouver;

4° Un sérum frais d'animal neuf;

5° Des globules rouges correspondant au sérum hémo-

lytique dont on doit se servir.

1º Sérum hémolytique (ambocepteur). — Pour la préparation de l'ambocepteur on se sert généralement d'hématies de mouton dont on injecte à un lapin 5 centimètres cubes sous la peau en répétant les injections tous les trois ou quatre jours. Les hématies employées doivent être soigneusement lavées. On procède au lavage en centrifugeant le sang de mouton défribriné; les globules tombent au fond du tube et le sérum clair surnage, On décante et on remplace le sérum par une égale quantité d'une solution de chlorure de sodium fondu à 8 gr. 1/2 pour 1000. On doit recommencer deux ou trois fois la centrifugation et la décantation. Grâce au lavage des globules ainsi réalisé on se débarrasse du sérum dont les injections répétées au lapin donneraient lieu au bout de trois ou quatre piqures à des accidents anaphylactiques graves.

On peut injecter les hématies dans le péritoine ou dans les veines de l'oreille du lapin. Il est plus simple et plus

sûr de se contenter d'injections sous-cutanées.

Le sérum du lapin convenablement préparé (cinq ou six injections suffisent) est recueilli par saignée de la carotide, en ayant soin de procéder à toutes les opérations nécessaires avec une méticuleuse asepsie. Le sérum recueilli est mis en tubes scellés, chauffé pendant une demi-heure à 56° au bain-marie et il se conserve en général pendant des mois sans subir aucune diminution de son pouvoir hémolytique.

2º Immun-sérum (voir Bactériolyse). — Un immunsérum se récolte avec les mêmes précautions et se con-

serve aussi bien qu'un sérum hémolytique.

3° Emulsion bactérienne. — Elle se prépare en diluant

une culture de vingt-quatre heures sur milieu solide dans une petite quantité de sérum artificiel. Il est bon de se servir d'émulsions assez concentrées qu'il faudra diluer ensuite, suivant les indications du titrage. Ces émulsions doivent être chauffées préalablement à 60° afin de détruire les substances hémolytiques que certaines espèces produisent.

4° L'alexine ou complément nécessaire à l'accomplissement de la réaction est en général fournie par du sérum de cobaye que l'on recueille par ponction du cœur quel-

ques heures seulement avant d'opérer.

5° L'émulsion de globules correspondant au sérum hémolytique dont on doit se servir se prépare en centrifugeant le sang défibriné et en diluant un centimètre cube de globules rouges dans 20 centimètres cubes de sérum artificiel.

Remarque. — Comme les quantités d'hémolysines, de sensibilisatrices, etc... contenues dans les sérums préparés sont extrêmement variables, il faut les titrer. Les titrages nécessaires sont ceux du sérum hémolytique, de l'immun-sérum et de l'émulsion microbienne. Le titrage du sérum de cobaye n'est pas nécessaire. Il est certain toutefois que le pouvoir alexique de ces sérums est très variable et qu'il vaut mieux procéder à ce titrage. On opère comme pour l'ambocepteur.

a) Titrage du sérum hémolytique (ambocepteur). — Il consiste à chercher quelle est la quantité de sérum nécessaire pour dissoudre le volume d'hématies qu'on se propose d'employer dans la réaction définitive. On dispose une série de tubes dans lesquels la quantité d'alexine et de globules rouges est fixe et la quantité de sérum hémolytique variable. On pourra disposer l'expérience de la

manière indiquée dans le tableau I.

Tableau I

Nos	Solution chlo- rurée à 8/1.000	Sérum de cobaye dilué à 50/100 (Ale- xine)	Sérum hémoly- tique dilué à 1/100	Glo- bules rouges dilués à 5 °/ _°		RESULTATS
1	0,95	0,1	0,05	1	ses, es	Pas d'hémolyse.
2	0,9	0,1	0,1	1	ats après minutes	Hémolyse partielle.
3	0,8	0,1	0,2	1	résultats de 30 mi 37°.	Hémolyse totale.
4	0,5	0,1	0,5	1		Hémolyse totale.
5	-	0,1	1	1	les our ve	Hémolyse totale.
6	1	0,1	7	1	Lire un séji à l'étu	Tube témoin (Pas d'hémolyse).

Supposons que dans l'hypothèse indiquée dans le tableau I, l'hémolyse soit complète, dans les tubes 3 et 4 on devra considérer comme juste suffisante à la bonne marche de la réaction la quantité d'hémolysine contenue dans le tube n° 3 et il sera préférable d'en employer une quantité plus forte (tube 4). Cette quantité est 0,5 centicubes d'une dilution au centième du sérum hémolytique. On devra donc si l'on désire n'employer que 0,1 centicube de liquide se servir d'une dilution cinq fois plus concentrée de sérum hémolytique c'est-à-dire d'une solution au vingtième, puisque $1/100 \times 0,5 = 1/20 \times 0,1$.

b) Titrage de l'emulsion microbienne. — Ce titrage se fait suivant les mêmes principes que celui du sérum hémolytique (voir tableau II). On se sert en général de bactéries tuées par un chauffage à température peu élevée (1 heure à 60° pour la plupart des espèces non sporogènes) ou d'autolysats.

Tableau II

Nºs	Solution chlo- rurée à 8/1.000	Sérum de cobaye dilué à 1/2 (Ale- xine)	Sérum hémoly- tique suivant titrage	Emul- sion de bacté- ries à déter- miner		Glo- bules rou- ges à 5 °/°	RÉSULTATS après 15 à 20 minutes à 37°
1	0,95	0,1	0,1	0,05	500	1	Hémolyse totale.
2	0,9	0,1	0,1	0,1	heures	1	Hémolyse totale.
3	0,8	0,1	0,1	0,2	2 h	1	Hémolyse partielle.
4	0,5	0,1	0,1	0,5	370,	1	Pas d'hémolyse.
5	-	0,1	0,1	1	re à	1	Pas d'hémolyse.
6	1	0,1	0,1	-	Étuve	1	Tube témoin. (Hé molyse totale).

Supposons que dans l'hypothèse du tableau II l'hémolyse soit complète après vingt minutes dans le tube n° 2, et incomplète dans le tube n° 3; c'est que dans ce dernier tube la quantité d'antigène est suffisante à elle seule à entraver l'action des substances hémolytiques, trop forte par conséquent et qu'il ne faudra pas dépasser la quantité contenue dans le tube n° 2.

c) Titrage de l'immun-sérum. — Pour procéder au titrage des anticorps contenus dans un sérum préparé par des injections répétées d'émulsions d'une bactérie on se sert de sérum hémolytique et d'émulsion bactérienne que l'on emploie aux doses indiquées par les précédents titrages. Dans cette troisième opération on procède comme pour une réaction de fixation définitive, à cela près qu'on multiplie le nombre des tubes de manière à varier dans une grande étendue les doses d'immun-sérum employé. On se sert comme antigène d'une bactérie connue (de même

espèce que celle dont on s'est servi pour immuniser l'animal).

On opère de la manière suivante : On met d'abord en présence dans chacun des tubes où doit s'opérer la réaction, le sérum antibactérien, la bactérie qui a servi à le préparer, et du sérum frais destiné à fournir l'alexine.

Les anticorps (ou sensibilisatrices) du sérum se fixent (sensibilisation) aussitôt sur l'antigène (l'émulsion microbienne) et font appel à la collaboration de l'alexine (du sérum frais) qui est utilisée entièrement si l'abondance des anticorps est suffisante. Cette fixation de l'alexine demande certaines conditions de température et de temps: Une à deux heures de séjour à l'étuve à 37°. Si l'alexine est entièrement utilisée, elle disparaît du mélange non par destruction (?) mais par fixation sur l'antigène sensibilisé. L'alexine devient en tous cas dès lors inutilisable.

Dans le titrage, on cherche quelle est la quantité d'immum-sérum suffisante pour assurer la fixation complète de l'alexine (Voir tableau III).

Tableau III

Nºs	Eau chlo- rurée	Anti gène sui- vant ti- trage	Sérum frais de cobaye 50 %	Im- mum- sérum dilué		Sé- rum hé- moly- tique	Glo- bules rou- ges 5 %	RÉSULTATS après 1/2 heure à 370
1	0,95	0,2	0,1	0,05	es	0,1	1	Hémolyse.
2	0,9	0,2	0,1	0,1	heures	0,1	1	Hémolyse.
3	0,8	0,2	0,1	0,2	67 .0	0,1	1	Hémolyse partielle.
4	0,5	0,2	0,1	0,5	à 37°	0,1	1	Pas d'hémolyse.
5	-	0,2	0,1	1	Eluve	0,1	1	Pas d'hémolyse.
6	1	0,2	0,1	-	Ett	0,1	1	Hémolyse.

On voit d'après le tableau III que dans les tubes 1 et 2, la quantité de l'immun-sérum est insuffisante pour assurer la fixation de l'alexine. A partir du tube n° 4, on voit que les quantités de sérum sont suffisantes.

Réaction de fixation (Réaction de Bordet et Gengou).

— Ces notions étant acquises, et les différents titrages que nous venons d'indiquer étant terminés, la réaction de Bordet et Gengou est facile à exécuter. On procède de la manière suivante :

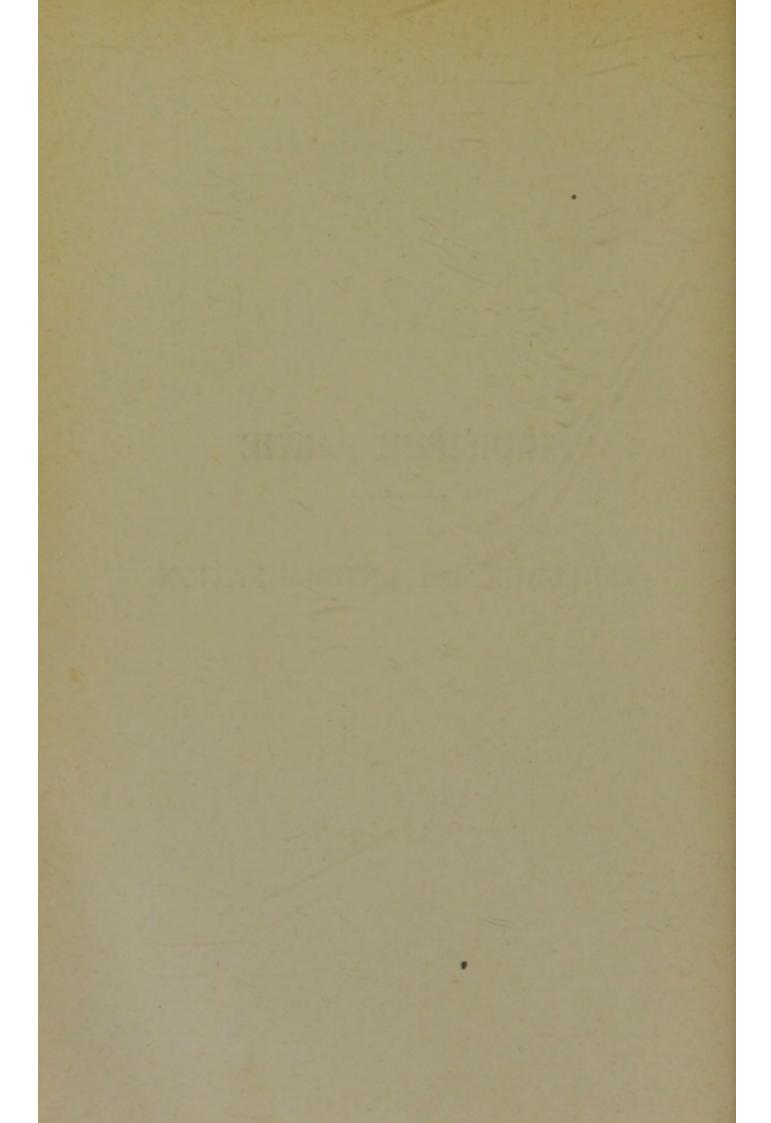
Dans une série de tubes, tubes I et II du tableau IV, on mélange l'antigène, l'immun-sérum, et du sérum frais de cobaye. Ces tubes sont placés à l'étuve à 37° pendant deux heures La sensibilisatrice de l'immun-sérum va se fixer sur l'antigène spécifique (bactérie qui a servi à préparer l'immun-sérum) et grâce à cette sensibilisation, l'antigène va pouvoir à la température de l'étuve, absorber l'alexine (ou complément) du sérum frais.

Dans cette série de tubes, il ne restera donc pas d'alexine capable de dissoudre les globules rouges sensibilisées par l'addition de sérum hémolytique; et dans ces con-

ditions il ne se produira pas d'hémolyse.

A cette série de tubes, on ajoute comme contrôle une série de témoins. Le tableau IV permet de se rendre compte du dispositif et de la marche de la réaction.

On comprend que si la bactérie dont l'émulsion a été mise en expérience n'avait pas été identique à la bactérie qui a servi à préparer l'immun-sérum, il n'y aurait pas eu sensibilisation de l'antigène et fixation de l'alexine qui serait alors demeurée libre et aurait pu être utilisée pour produire l'hémolyse.


Tableau IV

Nos	Eau chlo- rurée à 8/1000	(Bac- térie à	Sérum frais de cobaye dilué à 50 °/°	Im- mun- sérum dilué suivant titrage		Sérum hémo- lytique sui- vant titrage	Glo- bules rou- ges à 5 °/°	RÉSULTATS après 1/2 heure de séjour à l'étuve à 37°
1	1	0,1	0,1	0,1	cs	0,1	1	Pas d'hémolyse.
2	0,9	0 2	0,1	0,1	heures	0,1	1	Pas d'hémolyse.
3	1,1	-	0,1	0,1	21	0,1	1	Hémolyse.
4	1,1	0,1	0,1	-	à 37°,	0,1	1	Hémolyse.
5	1	0,2	0,1	-	2000	0,1	1	Hémolyse.
6	1,2	-	-	0,1	Étuve	0,1	1	Pas d'hémolyse.

TROISIÈME PARTIE

TABLEAUX DE DÉTERMINATION

TABLEAU A

1. Certaines bactéries non isolables sur gélatine ordinnire en première culture peuvent cependant donner sur ce milieu une culture grêle

TABLEAU B

Bactéries aérobies, liquéfiant la gélatine, non chromogènes

Éléments en forme de grains arrondis ou irréguliers (Microcoques et Sarcines).

- Prenant le Gram.

1º Microcoques

Tableau I.

2° Sarcines.

B. - Ne prenant pas le Gram. - Liquéfaction habitue lement lente, optimum 37°. 1° Sarcine. - Paquets sur tous les milieux. Diplocoques gonocciformes dans le pus.

Aérobie strict. Cultivable sur tous les milieux sauf le lait et la pomme de terre; colonies blanc-grisâtre. Le milieu optimum est la gélose-sang. Pathogène à hautes doses seulement pour la souris ; abcès local chez le lapin .

(Trouvée dans le pus d'un abces salpingien).

Microcoques. - M. groupés en diplocoques gonocciformes extra cellulaires (dans la sécrétion conjonctivale). Anaérobie facultatif. Cultivable à 20° et à 37°. Colonies grisatres ou gris-jaunatre. Trouble marqué du bouillon, Hémolyse sur plaques au sang. Coagulant le lait avec réaction acide; liquéfiant le sérum. Faisant fermenter le glucose, le lactose, le maltose, le saccharose, la mannite et l'inuline. Pathogène pour la souris et le cobaye, non pour le lapin . . . 50

(Ce M. a été isolé par Verderame de la sécréfien d'une conjonctivite catarrhale

et désigné par le terme Stamm Reichenbach.)

complète que le précédent. Il s'en rapproche par le groupement en diploco-M. (dipl.) trouvé par van Harrevelt à l'état de culture pure dans la viande faction de la gélatine (lente, il est vrai) et par la coagulation du lait. Ce M. se développe beaucoup mieux à 37° qu'à 20°. Colonies sur plaques de gélatine très petites comme celle de M. (strept.) pyogenes; sur gélose à 37º d'un cheval abattu pour entérite n'a pas été étudiée d'une manière aussi ques (constant sur tous les milieux), la décoloration par le Gram, la liquécolonies rondes, opaques, nacrées. Acidifiant les milieux glucosés sans produire de gaz. Tue le lapin en quelques heures par injection intra-péritonéale. Non pathogène en injections sous-cutanées et par ingestion.

Sarcina pseudogonorrheae (NA-GANO).

M. (Dipl.) conjunctivae (Vende-RAME).

	Tableau III. Tableau IV.	Tableau V. Tableau VI. Tableau VII.	B. malacofaciens (Von WAHE).	B. leguminiperdus (Von Oven.	B. agilis (Tchistowitsch).	B. vernicosus (Zinmermann). B. liquefaciens (Klamann).	B. aerophilosimilis (Matzuschita).	Tableau VIII. Tableau IX. Tableau X.
II Éléments allongés en forme de bâtonnets rectilignes ou Incurvés.			 a) Mobiles. a) Donnant sur pomme de terre une culture blanchâtre. La pomme de terre se ramollit avec production de bulles de gaz. La culture devient pâteuse, blancjaunâtre et répand une odeur aromatique, 3 μ/0,7 μ. Souvent deux spores par bâtonnet. Fermentation du bouillon de légumes et des légumes cuits. Trouvé dans des conserves de légumes. 	b) Cultures ressemblant à celles de B. mesentericus vulgatus. Agent d'une altéra- Cultures ressemblant à celles de B. mesentericus vulgatus. Agent d'une altéra- tion des écosses de légumineuses tion des écosses de légumineuses Cultures sèches, non adhérentes à la gélose. Membrane gris-jaunâtre sur la pomme	de terre. Le milieu brunit. Bacilles grêles et sieurs. Non pathogène.	c) Culture non plissee sur gelose. Culture mince, gris-bleu, vernissée, à reflets métalliques sur gélose. Grisâtre puis brûnâtre sur pomme de terre. Culture blanche sur gélose, gris-jaunâtre sur la pomme de terre qui brunit.	g) Immobiles. Bacilles gros et épais, légèrement courbés, coagulant le lait, donnant de l'indol.	a) Mobiles. a) Bâtonnets droits ou irrégulièrement infléchis. b) Eléments courbés, en forme de virgule, de parenthèse, ou décrivant un ou plusieurs tours de spire (spirilles). c) Immobiles.

-01

TABLEAU C

se		fluc
Bactéries aérobies liquéfiant la gélatine, Chromogènes sur gélatine ou sur gélose		Microccocus fætidus rescens (Klamann). Tableau XVII Tableau XVIII Tableau XIX Tableau XX Tableau XX Tableau XX Tableau XX
s n	_ = , _	IS THE
0	X X XX XX	XV XV XXX XXX XXX XXX XXX XXX XXX XXX X
tine	Tableau XI Tableau XII Tableau XIII Tableau XIV Tableau XIV Tableau XV	Microccocus rescens (Kı Tableau XVIII Tableau XIX Tableau XIX Tableau XIX Tableau XIX Tableau XX
géla	Tab Tab Tab Tab	Mic Tab Tab Tab Tab Tab
s sur	PIGMENT JAUNE. - Bactéries en forme de grains arrondis ou irréguliers. 1º Microcoques isolés ou groupés en amas, en diplocoques, ou en chaînettes 2º Microcoques groupés en paquets (Sarcines : Division se faisant suivant les trois dimensions) - Bactéries de forme allongée en bâtonnets. 2º Ne formant des spores. 2º Ne formant pas de spores. - PIGMENT BRUN OU NOIR. - Bactéries en forme de grains arrondis ou irréguliers. - Bactéries allongées en forme de bâtonnets.	Bactéries en forme de grains arrondis ou irréguliers. Diplocoques. Colonies sur gélatine grises ou brunes à pourtour vert ou violet. Colonies brunes sur gélose, brun verdâtre sur pomme de terre. Liquéfiant le sérum. Bactéries de forme allongée en bâtonnets. PIGMENT ROUGE. Bactéries de forme allongée en bâtonnets. Formant des spores. Ne formant pas de spores. PIGMENT VIOLET. PIGMENT BLEU
gène	égu ues, faisa	ises ou brunes à pourtour vert orun verdâtre sur pomme de ter e en bâtonnets
gom	in se	pourt pomrt S S
hro	s oudiple	s ou sur linets ou nets
0	en : D : tonr	rune latre
tine	arro cines r bâ	ou b verd n bé
géla	ns an	brun s se e e e e e e e e e e e e e e e e e
la	yrai és es nets ngé 	grain ose, l ngé grai
iant	de coupont paque allo allo en en en	de gelati
quéf	me en cons) me ees ées	sur g
5 Jic	for in the state of the state o	for time. for
bie	en isole isole de de spo	en de de spo
iéro	JAU jies tes tues trois trois trois ant BR BR ies	es. (es. Colon lint les ies ant la ant les
es s	PIGMENT JAUNE. — Bactéries en forme de grains arrondis ou ir chaînettes 2º Microcoques isolés ou groupés en amas, en diploco chaînettes 2º Microcoques groupés en paquets (Sarcines : Division se vant les trois dimensions) — Bactéries de forme allongée en bâtonnets. 1º Formant des spores 2º Ne formant pas de spores. 2º Ne formant pas de spores. - PIGMENT BRUN OU NOIR. — Bactéries en forme de grains arrondis ou ir programment pas allongées en forme de bâtonnets.	- Bactéries en forme de grains arrondis ou i Diplocoques. Colonies sur gélatine grises ou brunes à pou violet. Colonies brunes sur gélose, brun verdâtre sur po Liquéfiant le sérum. - Bactéries de forme allongée en bâtonnets. - PIGMENT ROUGE. - Bactéries de forme allongée en bâtonnets. 2º Ne formant des spores. 2º Ne formant pas de spores. - PIGMENT VIOLET. - PIGMENT BLEU
téri	GME Ba Micr cha Wicr van Van Van Van Van Ba Forr Ne f IGM.	Pigle Pigle Pigle Ne f
Вас	A. – PIG 2° M 2° M 2° M B. – PIG A. – PIG B. – PIG	A
	I. II.	IV. VI.

asale

TABLEAU D

Bactéries aérobies ne liquéfiant pas la gélatine, non chromogènes

			na
Tableau XXIII	Tableau XXIV Tableau XXV Tableau XXVI		Sp. (Vibrio) na (Weibel).
I. — ÉLÉMENTS EN FORME DE GRAINS ARRONDIS OU IRRÉGULIERS. A. — Réunis en paquets (sarcines) dans les milieux liquides usuels ou dans leur milieu naturel	B. — Ne présentant pas cette disposition. Microcoques. 1º Microcoques prenant le Gram. a) Eléments isolés ou agminés, mais non disposés en chaînettes. b) Eléments disposés en chaînettes ou susceptibles de présenter cette disposition dans les milieux liquides.	2º Microcoques ne prenant pas le Gram	blanche delicate le long du dans de produit le bouillon en quelques moins transparente sur gélose que sur gélatine. Troublant le bouillon en quelques heures à 36°. Ne se développant pas sur pomme de terre

(Isolé du mucus nasal chez des sujets sains).

- ÉLÉMENTS ALLONGÉS EN FORME DE BATONNETS RECTILIGNES A. - Prenant le Gram.

1. Bact. denitrificans Nº 2 (Burri et Stutzer) sera aisémént différencié des autres bact. de cette catégorie par sa propriété de produire un abandant dégagement de gaz dans le bouillon nitraté (par réduction des nitrates en azote) et par sa culture rose-chair ou rouge sur pomme de

TABLEAU D (Suite)

Tableau XXVII	Tableau XXVIII Tableau XXIX	Bacillus stellatus (Zimmermann)	Bact. helixoïdes (Muro).	Tableau XXX Tableau XXXI Tableau XXXII
	B. — Ne prenant pas le Gram. 1º Formant des spores. Bâtonnets mobiles courts	nies en étoile sur plaques de gélatine	 a) Ne se développant pas dans le lait. Bact. d'une épaisseur moyenne de 0,6 μ, les uns longs (surtout à la périphérie des colonies) les autres coccoïdes. Optimum 30°. Colonies sur plaques de gélatine présentant des arborisations souvent terminées en crosse. Culture sur gélose dégageant une odeur particulière. Revêtement mince, d'un jaune brunâtre sur pomme de terre. Se nuageux ou floconneux; ne produisant pas d'indol. Non pathogène. (Isolé de la salive). 	c) Coagulant le lait. f) Immobiles. Tableau XXX Tableau XXXI Tableau XXXI Tableau XXXII

TABLEAU E.

Bactéries aérobies ne liquéfiant pas la gélatine. Chromogènes sur gélatine ou gélose

TABLEAU F

Bactéries aérobies, non cultivables sur gélatine à 10 % à 20-22°. Cultivables sur gélose peptonee ordinaire à une température plus élevée

I. — CULTIVABLES A 37° SUR GELOSE.

A. — Bactéries se développant sur gélose ordinaire à 20-22°, mais non sur gélatine à cette même temperature.

1º Microcoque souvent en tétrades. Culture brun clair sur pomme de terre. Non pathogène.

cultivable à partir de 20° sur gélose, mais ne se développant ni sur gélatine ni sur pomme de terre. Pathogène pour le cobaye, 2º Bâtonnets. Petit bâtonnet grêle analogue à B.choleræ gallinarum,

sur gélatine ni sur gélose.

B

1° Ne se développant pas à des températures supérieures à 43-45°. ») Microcoques.

res à 34°. Pas de spores sur les autres milieux où les bâtonnets $2-4\mu/1-2\mu$ sont granuleux comme Bact. diphteriæ et présentent des formes en massue dans les vieilles cultures. La gélose, ensemencée par strie, est envahie sur toute sa surface en 48 heures a) Formant des spores dans le lait et sur pomme de terre en 48-60 heuà 37°. Revêtement blanc, humide sur pomme de terre. Le lait n'est pas coagulé. Non pathogène.

mophiles facultatives)

a) Chromogenes sur gelose.

TEMPERATURES PLUS ELEVEES (Bact. obligatoirement thermophiles). Tableau NLIN 8) Non chromogenes sur gélose.
II. — NE SE DÉVELOPPANT PAS A 37°, MAIS CULTIVABLES A DES

subflavus M. tetragenus (Besser).

Bact. cuniculicida (Lucer).

Tableau XLV

Bac.pseudodiphteriticus sporogenes (DE SIMONI). Tableau XLVI

Tableau XLVIII Tableau XLVII

TABLEAU G

Bactéries aérobies ne se développant(1)ni sur gélatine ordinaire, ni sur gélose ordinaire, quelle que soit la température. Cultivables seulement sur des milieux spéciaux.

Tableau L		Tableau LI	Tableau LII	Tableau LIII
I. — BACTÉRIES SE DÉVELOPPANT BIEN DANS LE BOUILLON ADDI- TIONNÉ DE 0,50 A 1 % D'ACIDE ACÉTIQUE	II. — BACTÉRIES NE SE DÉVELOPPANT PAS DANS LE BOUILLON AGÉ- TIQUE A 0,50 A 1 %.	A. — Ne se décolorant pas par la méthode de Ziehl-Neelsen B. — Se décolorant par la méthode de Ziehl-Neelsen.	1º Ne se développant que sur des milieux additionnés de sérosités ou de sang, à la température de 37° · · · · · · · · · · · · · · · · · · ·	2º Ne se développant sur aucun des milieux précédents. Exigeant des mi- lieux spéciaux.

1. Plus exactement : ne donnant pas de culture apparente à l'œil nu.

LLERR .

TABLEAU H

Bactries strictement anaérobies

	Spirillum rugula (Mur Tableau LIV. Tableau LV. Tableau LVI.	Tableau LVII.	Tableau LVIII.	Tableau LX.	Voir tableau LXII.
 I. — Cultivables en gélatine à 10 % ordinaire ou glucosée à 20-22%. A. — Liquéfiant la gélatine. 1° Éléments en virgule ou en S, ou décrivant plusieurs tours de spire, mobiles (Spirilles). 	Gros spirille prenant le Gram, liquéfiant le sérum, ne coagulant pas le lait. 2) Bâtonnets droits ou irrégulièrement infléchis. 2) Formant des spores. a) Prenant le Gram. b) Ne prenant pas le Gram. §) Ne formant pas de spores.	 B. — Ne liquéfiant pas la gélatine. 1° Éléments en forme de grains arrondis ou irréguliers (Microcoques). 2° Eléments allongés. 	 a) Elements en forme de bâlonnels droits ou irrégulièrement infléchis. a) Formant des spores. b) Ne formant pas de spores. I. — Prenant le Gram 	 II. — Ne prenant pas le Gram. β) Éléments incurvés en virgule ou en S, ou décrivant plusieurs tours de spire (Spirilles. Spirille mince, ne prenant pas le Gram, présentant un grain noir à l'union d'un 	tiers avec les deux autres tiers. Colonies noires dans la profondeur des tubes de gélose. Ne se développant qu'à partir de 22° II. — Non cultivables en gélatine à 10 °/° ordinaire ou glucosée à 20-22°

	Tableau LXII. Tableau LXIII.	Tableau LXIII. Tableau LXIV. Tableau LXV.	
A. — Se développant en gélose peptonée ordinaire ou glucosée à 37°.	1º Eléments en forme de grains arrondis ou irréguliers (Microcoques). 2º Eléments en virgule ou en S, ou décrivant plusieurs tours de spire. Mobiles (Spirilles)	3° Bâtonnets droits ou irrégulièrement infléchis. x) B. ne se développant pas à 22° dans la gélatine, mais cultivables à partir de 20. 22° en gélose peptonée ordinaire ou glucosée	 B. — Ne se développant ni en gélatine ni en gélose ordinaires ou glu- cosées.

Ne se développant que dans des milieux additionnés de sérum ou de sérosités . . Tableau LXVI.

TABLEAU

Microcoques aérobies, liquéfiant la gélatine, non chromogènes, prenant le Gram

- Microcoques groupés en chaînettes ou susceptibles de présenter cette disposition dans les milieux liquides. A. — Les cultures fraîchement retirées de l'organisme sont pathogènes

pour les animaux de laboratoire.

rentes, liquéfiant lentement le milieu à partir du 6° jour. Donnant sur gélose à 37º en 48 heures des colonies de 0,5 millimètres de diamètre, blanches, cohédeviennent jamais confluentes. Ne coagulant pas le lait, même au bout de 3 semaines. Tuant, par inoculation sous-cutanée la souris, le cobaye, le lapin, 1. M. mobiles ¹ (Petits mouvements de godille, mais pas de cils), en dipocoques, pouvant former de courtes chaînes de 6 à 8éléments dans le bouillon. Le développement se fait assez bien sur les milieux usuels, mais il est nettement favorisé par l'addition de sang. Production d'hémolysines. Formant sur plaques de gélatine, après 3 jours, de très petites colonies blanches, très apparentes, pouvant se fusionner et devenir jaunâtres en vieillissant; sur pomme de terre en 36 heures, des colonies grisâtres, puis d'un jaune brunâtre qui ne aux doses respectives de 0,5,2 et 4 centimètres cubes par septicémie avec lésions exsudatives sans abcès au point de l'injection . .

(Trouvé dans le sang d'enfants atteints de diphtérie maligne.)

37° en 48 heure rentes, pouvant terre en 36 heure deviennent jan 3 semaines. Tu aux doses resp lésions exsudat lésions exsudat (Trouvé dans x) M. se disposan M. ayant con peut se faire des. Forman liquéfaction egresse lenter

peut se faire dans deux plans, d'où figures de diplocoques en série ou de tétrades. Formant sur plaques de gélatine et sur gélose des colonies rondes. La liquéfaction de la gélatine ne commence que vers le 7° ou 8° jour; elle progresse lentement mais finit par être complète avec voile et dépôt. Donnant a) M. se disposant en chaînettes même sur les milieux solides. Non encapsulés. M. ayant comme dimensions moyennes 0,8-1 µ, mais très inégaux; la division virulentes pour les animaux de laboratoire, mais à un degré variable (septisur pomme de terre une bande jaunâtre limitée à la strie. Les cultures sont cémie ou lymphangite-adénite)

Le streptocoque trouvé par Vincenzi dans une bulle de lymphangite humaine est identique ou très voisin.

M. (diploc.) hemophilus albus (Drouv et Le Gros). M (str.) septicus liquefaciens (Babis).

- Ces races de streptocoques pyogènes liquéfiants qui aboutissent à la liquéfaction totale de la gelée sont très rares. Il est moins exceptionnel, par contre, d'avoir en mains des cultures de M. (str.) pyogenes qui peptoni-

sent la gélatine d'une manière peu marquée et très lente.

3) Diplocoques en flamme de bougie, encapsulés dans l'organisme animal, et dans logiquement et en culture à M. (str.) lanceolatus, mais liquéfiant la gélatine complètement en 3 ou 4 jours et donnant sur pomme de terre une culture apparente, quoique mince et sèche. Tuant la souris blanche par septicémie, non pathogène pour le lapin. le serum liquide; courtes chainettes dans le bouillon. Ressemblant morpho-

faciens = Pacumocoque liquéfiant. (KINDBORG, KRUSE, EYRE et WASH-

Les cultures ne sont pas pathogénes pour les animaux de labora-

α) Petit microcoque de 0.2 à 0,4 μ, liquéfiant rapidement la gélatine en doigt de gant. Coagulant le lait lentement. Autres caractères de culture comme M. (str.) nyogenes; se développant faiblement sur gélose et sur pomme de terre. Nou pathogène pour le cobaye (Hôte normal de l'intestin du nourrisson) . β) M. de dimensions moyennes 0,6 à 1 μ ayant les particularités morphologiques et culturales de M. (str.) acidi lactici (Grotenfeldt) [Voir tableau XXV], coagulant le lait tout à la fois par production d'acide aux dépens du lactose et par ferment lab, puis le peptonisant (Trouvé dans une variété de « logue » des

Cheddar est également un ferment lab-lactique ; il doit être identifié au précédent d'après Löhnis. D'après le même auteur Brachy-bacterium 19 et 20 (Troili-Petersson) serait un streptocoque liquéfiant voisin du précédent; mais Le streptocoque trouvé par Boekhout et de Vries dans un fromage de

il coagule le lait avec réaction alcaline.

Microcoques non disposés en chaînettes ²

A. - M. mobiles 1, souvent groupés par deux. La gélatine commence à se liquéfier

1. Dans le cas où un microcoque, tout en étant nettement mobile (mobilité propre, vraie, voir Technique) ne répondrait pas à cette description, il faudrait, avant de conclure que l'on a affaire à une espèce nouvelle, poursuivre la détermination dans la suite du tableau car il est possible d'après Ellis) que bon nombre de microcoques réputés immobiles — et trouvés tels dans la presque totalité des cas — puissent présenter, dans certaines conditions, une mobilité transitoire (due à la présence de cils).

2. Un assez grand nombre de microcoques saprophytes n'ont pas été suffisamment étudiés au point de vue de leur action chimique pour que

M (str) lanceolatus, var. lique-BOURN). M (str.) gracilis = Str. coli gracilis (Escherich). M. (str.) acidi lactici var. liquefacions (BURRI et MULLER).

Groupe de M (Str.), acidi lactici (Races liquéfiantes)

ENREIGH).

(Випснапр),

DENREIGH).

du lait amer,

TABLEAU I (Suite)

M. neoformans (Dove	M. lactis viscosi (Grun	M. amarificans (= M CONN).	M casei amari (Freud	M. n° 2 var. c. (Freud	M. ureae liquefaciens		M. aerogenes (Miller,	M. radiatus (Flugge).		M. coralloides (Zimmerm
le quatrième jour. Tronvé dans des fumeurs. L'inoculation aux animaux de laboratoire donne des résultats négatifs. Rôle pathogène pour l'homme non démontré. 1. Agents d'altération du lait.	a) Le lait devient filant et il est peptonisé. L'optimum pour la production de la viscosité est à 15°-20°. M. Freudenreichii (Guillebeau) est identique au précédent.	β) Rendant le lait amer.	gements périphériques. (Cesdeux derniers microcoques appartiennent probablement à la même espèce).	2. Faisant fermenter l'urée Les colonies font virer au bleu une gélatine	(Ce M. doit être considéré comme une race de M. pyogenes plus particulièrement adaptée à la fermentation de l'urée.	3º Produisant des gaz dans les milieux glucosés. M. liquéfiant lentement la gélatine; formation d'un voile à la surface. Cultures	4º Ne présentant pas ces propriétés fermentatives.	a) Trait de piqure non ramifié	raît après le début de la l'ation du lait avec réaction	11. — Sur plaques de gélatine les colonies présentent des prolongements ramifiés avant même que la liquéfaction soit apparente. β) Coloniessur plaques à confour net ou dentelé, sans prolongements périphériques.
								ədn	CIO	

Groupe

	TABLEMO			
 M. butyri (= M. b. aromafaciens, Keirн). M. liquefaciens acidi n° 2 (Соки). M. cremoïdes (Zimmenmann). 	M ovis (Nocard).	M. vesicosus (R. Weiss).	M. n° 2 var. b. (Frrudenreich). M. n° 2, var. c. (Freudenreich).	
le lait. dans le lait d'une odeur agréable, aigrelette. Colonics ction d'odeur. M. du lait. hâtres. Acidification légère du lait sans coagulation	b) Coagulant le lait. — Très petits microcoques (0,2 \u03ba), isolés, en têtrades ou en petits amas. Colonies sur gélatine rondes, blanches, puis brûnâtres, rapidement liquéfiantes (dès le 2º jour). Liquéfiant le sérum coagulé. Coagulant le lait en fiantes (dès le 2º jour). Liquéfiant le sérum coagulé. Coagulant le lait en 24 heures avec réaction acide. Quelques gouttes de culture fraîche injectées dans le trayon d'une brebis déterminent une mammite mortelle. (Les cultures ne gardent leur virulence que si elles sont repiquées tous les jours.) L'inoculation sous-cutanée ne provoque que des accidents locaux (œdème, abcès) chez les animaux de laboratoire. Agent de mam-	mite gangreneuse de la brobis (mai de pis). — Très petits microcoques (0,3 \(\pi\)) coagulant le lait après une douzaine de jours avec réaction neutre — Microcoques de dimensions moyennes ou grandes (0,6 \(\pi\) à 1,5 \(\pi\)).	A. — Coagulant le lait avec réaction amphotere neutre ou alcanne. A. — M. coagulant le lait avec réaction alcaline puis le peptonisant. B. — M. coagulant le lait avec réaction amphotère. Le lait prend un goût de savon.	rattaché au précédent. M. varians lactis (Conn) est identique au staph. de Guillebeau d'après Weigmann. II. — Coagulant le lait avec réaction acide. A. — Anaérobie de prédilection.
M butyri		ques ab.	microco ments l	səp

'on puisse les identifier d'une manière rigoureuse. On peut cependant les classer en groupes où se rangent des bactéries extrêmement voisines. . . . M. glandulosus (R. Weiss). Microcoque provoquant la coagulation en une dizaine de jours avec réaction faiblement acide

I. - Des microcoques arrondis ou ovalaires, environ deux fois plus gros que M. pyogenes albus, liquéfiant lentement la gélatine.

Ce sont : M. albescens (Henrich: M. albidus (Henrich: M. albus liquefaciens (Besser); M. rpidermidis albus (Welch) = Staph. cutis communis Sabouraud) = Morocoque (Unna); M. fætidus (Klamann); M. lacteus (Henrich); M. N° f. Siebert; M. Reesii (Rosenthal). Ce sont: M. N. 2 (Siebert): M. N. 21 Lembke : M. N. 22 (Lembke, M. cristatus (Glage), caractérisé par le développement remarquable qu'il II. - Des microcoques plus petils, morphologiquement analogues à M. pyogenes albus, ou parfois disposés en courtes chaînettes:

HI. — Des diplocoques, — M. No 25 (Lembke); M. No 27 Lembke,; M. foliatus [Diplococcus blanc à colonies foliacées (Legrain)]. présente sur les milieux secs (pomme de terre surtout)

Groups

Groupe

M. zymogenes (Mc. Cannum et Has-

TABLEAU I (Suite)

B. - Aerobies de prédilection.

Coagulant le fait plus rapidement à 22° qu'à 35°-37°. M. de 1 à 1, 5 p, isolès, en diplocoques ou en tétrades; dissolution du caillot vers le quinzième jour avec odeur de colle d'amidon. Non pathogene.

M. acidi lactis (Kruger).

(M. nº 4 a. (Freudenreich) isolé du fromage est probablement iden-M. Fokkeri d'après Löhnis. Ce dernier m. est lui-même très voisin de M. acidi lactis d'après Fokker. Enfin, d'après Löhnis, Staphylococcus 30 et 31 (Troili-Petersson) [ce dernier peptonise inconstamlique au précédent d'après Weigmann. M. nº 4 b (Freudenreich) = ment] doivent également être assimilés au microcoque de Krüger.)

- Coagulant le lait plus rapidement à 35°-37° qu'à 20°-22°.

le tube pour se redécolorer au repos; au bout de 30 heures il est coagulé avec réaction acide faible. Par la suite le coagulum se redissout (peptonisation). Microcoques ayant les dimensions de M pyogenes; habituellement en diplocoques, formant sur gélatine a) Decolorant en 4 h. le lait tournesole. Le milieu rougit si l'on agile et gélose de petites colonies d'un blanc-grisatre, liquéfiant rapidement (dès 48 h.) la gélatine ; cultivant mal sur pomme de terre. Virulence variable. Souvent très pathogène pour la souris et le lapin septicémie avec abcès, endocardites infectiouses.)

Trouvé dans des maladies infectieuses humaines (endocardites infectieuses, etc.). Ce m. groupé en diplocoque et parfois en courtes chaînettes, est peut-être à rapprocher des races liquéfiantes du M. (str.) lanceolatus. [Voir plus haut dans ce même tableau]. Mais M. zymogenes n'est pas encapsulé.

3) Ne reduisant pas le lait tournesolé, liquéfiant lentement la géla-

tine. Non pathogène.

Microcoques encapsulés sur gélose et sur pomme de terre. Cultures faibles, colonies grisâtres n'atteignant jamais les dimensions d'une lentille ni à 22° sur gélatine, ni à 37° sur gélose. Le lactose est transformé exclusivement en acide lactique dextrogyre.

2º Pas de peptonisation secondaire de la caseine precipitée (le caillot

n'est pas redissous et la réaction demeure acide).

M. halensis = M. acidi paralactici liquefaciens halensis (Kozai). (M. nº 4 (Ferguson) est très voisin du précédent d'après Löhnis.)

Groupe des microcoques ferments lactiques ou groupe de M. acidi lactis

M. liquefaciens acidi nº 1 (CONN).

M. pyogenes albus (Rosenbach).

α) Μ. liquéfiant lentement et faiblement la gélatine. Non pyogène.

Microcoque du lait. assez volumineuses d'un blanc de porcelaine. Production d'acide lactique et d'acides gras volatils aux dépens du lactose. Action pyogène très variable selon les races. .

sont: M. liquefaciens conjunctivæ (Gombert), M. salivarins pyogenes ment devoir lui être assimilés, différant surtout par leur virulence. Ce (Biondi), M. decalvans (Thin) et M. pyosepticus (Richetet Héricourt). M.p. aureus (Rosenbach) et M. p. citreus (Passet) sont des varietés chromogènes du précédent. D'autres microcoques semblent égale-

suffisent pas. Les dimensions plus grandes des espèces saprophytes (1-2 μ) ne constituent pas un élèment de différenciation suffisant. Si l'on ne constate aucun pouvoir pyogène expérimental, on devra Note - Il est difficile de différencier les races non virulentes de M. pyogenes albus des microcoques analogues saprophytes de l'air, de l'eau, de la peau, etc Les caractères de cultures et la morphologie ne

étudier la production d'hémolysines et d'agglutinines.

qu'il y a des exceptions à cette règle, et que ces recherches, très délicates elles-mêmes ne donnent pas et ne sont pas agglutinées par un immun-sérum staphylococcique. Encore devons-nous faire remarquer pondants et même avec un M. pyogenes (R.) quelconque. On n'obtient rien de semblable avec les espèces saprophytes qui ne produisent pas d'hémolysines, ne peuvent pas fournir de sérum agglutinant Les microcoques pyogènes ou peu virulents de ce groupe produisent des hémolysines thermolabiles dans les cultures, et sont agglutinables par le sérum expérimental obtenu avec les microcoques corres-

retirés en grande partie du lait obtenu par traite aseptique, méritent à coup sûr d'être séparés au point de riologique, ils ne constituent pas, comme le voulait Gorini, un groupe d' «espèces» bien distinctes des espèces ferment lab d'une part, ferments lactiques d'autre part. Des races de différentes espèces peucompte en ajoutant le filtrat de leur culture (neutralisées) à du lait stérilisé. Ces ferments lab-lactiques vue chimique (rôle dans la maturation des fromages). Mais au point de vue de la systematisation bacté-Dans le groupe des microcoques forments lactiques, il est certaines races qui tout en produisant de l'acide (en faible quantité) élaborent simultanément du ferment lab ainsi que l'on peut s'en rendre une sécurité absolue.

vent présenter ou acquérir cette double propriété fermentalive.

Groupe des m ferments lactiques (suite)

S. candida 'Reinke). S. albida (Gruben).

TABLEAU II

Sarcines liquéfiant la gélatine, non chromogènes, prenant le Gram

100
0
0
_
-
7.33
-
~
10
sis
100
100
0
pores
(1)
-
9
0
S
S
des
~
0
7
7
ıa
ma
-ma
rma
orman
Forma
Forma
- Forma
- Forma
- Forma
- Forma
Forma
I Forma

S. pulmonum (Vinchow, Hauser). Paquets petits et peu réguliers sur les milieux solides et liquides liquéfiant très tardivement (vers la 3° semaine). Culture grêle, brûnâtre sur pomme de terre.

II. - Ne formant pas de spores.

A. - Ne formant de paquets typiques que dans les milieux liquides.

β) Paquets dans le bouillon seulement. a) Paquets dans Uinfusion de foin seulement.

B. - Formant des paquets typiques sur les milieux liquides et solides.

S tion assez rapide. Paquets volumineux, bien réguliers S. alutacea et S. incana (Gruber) paraissent toutes deux se rapporter à l'espèce 1º Colonies sur plaques de gélatine assez grossièrement grenues, liquéfac-

S. alba (ZIMMERMANN) 2º Colonies sur plaques de gélatine très finément granuleuses, liquéfaction très lente et très faible. Paquets formés d'un petit nombre de microcoques.

Canescens (SIUBENRATH).

FABLEAU III

Bâtonnets aérobies, liquéfiant la gélatine, non chromogènes, prenant le Gram, formant des spores, présentant des arborisations autour du trait de piqûre dans la gélatine ou la gélose. Immobiles.

chaînettes. Pathogènes pour le cobaye qu'ils tuent en 24 à 36 heures par septicémie. Spores centrales, non déformantes. Liquéfiant la gélatine lentement (liquéfaction cylindrique). Les colonies sur plaques émettent à leur pourtour des prolongements Bâtonnets volumineux, à extrémités rectangulaires se disposant en Ce bacille peut présenter une capsule (dans le sang des animaux inoculés). onduleux bouclés.

Bâtonnets non pathogènes (non déformés par la sporulation). Bactéries très

Λ. — Gros bacilles (2,5 μ/1,1 à 1,2 μ) troublant le bouillon avec formation d'un voile, donnant sur gélose en surface une culture qui se plisse. En piqûre sur gélatine, la liquéfaction est rapide et du trait partent de longs prolongements filamenteux. Les cultures sur pomme de terre envahissent toute la surface du milieu en

10 à 12 jours. Le B. radicosus (Zimmermann) ne paraît s'en distinguer que par des caractères de détail. Il serait un peu plus mince. Le voile formé sur le bouillon serait moins sent être des variétés immobiles. Le B nº 3 (Pansini) trouvé dans des crachats paraît épais. Ces deux bactéries doivent être rapprochées de B. mycoïdes dont elles parais-

voisin du précédent. (Insuffisamment décrit.)

trouve des spores libres groupées en chainettes. En piqure dans la gélatine, longs - Gros bacilles (larges de 1 \mu a 1 \mu 1/2) sans action sur les sucres, coagulant rapidement le lait à 37°, l'alcalinisant et le peptonisant en produisant de la leucine, 1º Les filaments que l'on trouve dans le lait sont enchevêtrés et coudés. On de la tvrosine, du carbonate, du valérianate d'ammoniaque 'Tyrothrix de Duclaux 1.

filaments partant du trait de piqure. Production d'une substance amère dans le lait. lesquels se forment les spores. En piqure dans la gélatine, les colonies ont un aspect floconneux. Elles émettent autour du trait, de distance en distance, des bouquets de prolongements radiés. La liquéfaction est lente, cylindrique, avec voile. 2º Les filaments que l'on trouve dans le lait particulièrement dans les vieilles cultures sont formes d'articles très courts à peine plus longs que larges dans

B. anthracis (DAVAINE).

B implexus (Zimmermann).

geniculatus = tyrothrix gen. B.

B. turgidus = tyrothrix turg. (Du-

1. Il faut rapprocher de ces tyrothrix des bacilles trouvés par Henrici dans les fromages. B. tomentosus, B. pseudolomentosus, B. rugosus' B. setosus; dont les caractères sont insuffisamment décrits, et un bacille décrit par Adametz : B. casei.

TABLEAU IV

des spores, présentant des arborisations autour du trait de piqure dans la gélatine ou Bâtonnets aérobies, liquéfiant la gélatine, non chromogènes, prenant le Gram, formant la gélose. Mobiles.

Bacille cultivant aussi bien ou mieux en milieu anaérobie qu'en milieu aérobie.

pomme de terre. Les cultures répandent une odeur fade, urineuse. Pathogène, par Bâtonnets ayant (2,5 à 5 u/0.8 u) à extrêmités souvent effilées, déformes lors de la Les spores devenues libres se montrent disposées en chainettes. De longs prolongements en gerbes rayonnent autour du trait de piqure. Sur plaques de gélatine et de gelose les colonies présentent des prolongements périphériques longs et irréguliers. Cultures blanches sur gélose et sur sérum, couche jaunâtre, un peu écailleuse sur sporulation par des spores médianes beaucoup plus volumineuses que les bacilles. ingestion, pour les abeilles. Agent de la « loque », maladie des larves d'abeilles. (Les réactions biologiques établiraient l'identité de B. alvei et de B. mesentericus

II. - Bacilles se développant mal à l'abri de l'air.

grisâtre, nuageuse au milieu. Sur plaques, colonies nuageuses. Liquéfaction très lente, 1/2 cm. en 3 semaines. Culture sur pomme de terre, mince, grisâtre, puis A. — Bâtonnets trapus $2\mu/0,941,3\mu$) très mobiles, peu ou pas déformés lors de la sporulation. Spores presque terminales: leur diamètre (1.3 p.) est generalement superieur, en tout cas au moins égal à celui du bâtonnet, d'où aspect en baguette de tambour. Bacilles généralement isolés. En piqure, couche blanc-

B. alvei (Watson-Cheyne et Ches-

B sphaericus 1 (Meyen et Neide).

bâtonnets. Ceux-ci ne se déforment pas lors de la sporulation. Bacilles volumineux 6 à 12 µ/1,2 à 1,5 µ en longues chaînes. La spore (1,5 à 2 µ) reste entourée - Le diamètre d'épaisseur des spores est plus petit que celui des par la membrane de la cellule sporogène ou bien une partie de cette membrane reste attachée à la spore. Germination polaire. Formation d'un voile à la surface

du bouillon et de la gélatine liquéfiée.

ments irreguliers « en radicelles » ou ressemblant à un jeune mycelium de moisissure. Mobilité des cellules végétatives partielle et lente. Le bouillon contient des flocons mais reste clair. Liquéfaction lente de la gélatine. a) Colonies sur plaques de gelose et de gelatine, en forme de racine à prolonge-

s'éclaireit. Liquéfaction souvent rapide de la gélatine, Filaments pluricellules colonies de B. anthracis. Ramifications autour du trait de piqure plus courtes qu'au B. mycoïdes. Mobilité plus nette. Le bouillon est trouble puis 3) Colonies à prolongements assez réguliers en forme de mèches bouclées comme laires moins longs que ceux de B. mycoïdes

mation d'un voile et d'un dépôt. Ses caractères morphologiques et de culture de suite par sa mobilité nette en bouillon. Il diffère du B Ellenhachensis par des arborisations beaucoup plus longues autour du trait de piqure (en arbre de Saturne), la liquefaction plus lente, sa virulence pour le cobaye, faible d'ailleurs (simple ædème local). Le B. anthracoides (Hueppe-Wood n'est que très faiblement mobile, ses cultures sont analogues à celles des B. anthracis et trouve assez fréquemment dans les poudres de viande est voisin du présent devoir être identifiés au précédent). B. pseudanthracis (Burri que l'on le rapprochent toutefois davantage du B. anthracis dont il se distingue tout Note. - (B. cereus (Frankland) et B. ramosus liquefaciens (Flügge) paraiscédent; comme lui il trouble le bouillon qui s'éclaircit ensuite avec forpseudanthracis, mais il n'est pas pathogène.

B. mycoides 2 (Fruege

B. Ellenbachensis Sturzen (B. de Lalinite), I. D'après Neide, les descriptions insuffisantes des B. suivants se rapportent peut-être à B. sphaericus : Plectridium palludosum (Fischer)

var. α-β-γ-δ Holzmüller. Ce même auteur a isolé en outre des bacilles très voisins qu'il considère comme étant des espèces distinctés (?, Ce sont : B. effusus (Holzmüller) ; B. olfactorius (H.) ; B. nanus (H.); B. dendroïdes (H.). 2. D'après Chester, Lehmann et Neumann, les bactèries suivantes devraient être identifiées à B. mycoïdes. Ce sont : B. figurans (Crookshank); B. ramosus Eisenberg) ; B. implexus Zimmermann) ; B. casei n° 16 Adametz) ; B. intricatus (Russell); B. brassicae Pommer. D'après Holzmüller, on peut distinguer dans le groupe de B. mycoïdes, quatre races, grâce à des caractères constants mais de peu d'importance. Ce sont : B. mycoïdes

B. mesentericus vulgatus Flugge).

TABLEAU V

Bâtonnets aérobies, liquéfiant la gélatine, non chromogènes, prenant le Gram, formant des spores, ne présentant pas d'arborisations autour du trait de piqûre. Mobiles.

Groupe de Bac. Subtilis

Bâtonnets ne se déformant pas lors de la sporulation (Le diamètre d'épaisseur de la cellule en voie de sporulation est le même dans toute la longueur du bâtonnet). Dans toutes les espèces qui suivent, aucun vestige de la membrane de la cellule sporogène ne reste adhérent à la membrane propre de la spore libre,

Colonies sur plaques de gélose présentant des prolongements périphériques. Le bouillon se trouble uniformément et ne s'éclaireit pas. Sur gélose inclinée et sur Bacilles de dimensions movennes (2 à 7 μ/0,8 μ), isolés ou par deux; spores ovales, plus petites (1 à 1,2 µ/0,6 µ) que les bâtonnets. Germination surtout équatoriale. pomme de terre la culture envahit rapidement toute la surface, adhère au milicu et se soulève en plis contournés, vermiformes ; elle pénètre dans la pomme de terre et fait fermenter l'amidon du tubercule . .

Selon la coloration de la culture sur pomme de terre qui, au lieu de blanc-grisatre (B. pumilus (Gottheil) est identique au précédent d'après Chester).

peut être jaune-brun ou brun-noir, ou rose-rouge, on a décrit comme autant d'es-pèces distinctes : B. mesentericus fuscus (Flügge), B. mesentericus niger (Lunt), B mesenfericus ruber Globig . Ce ne sont là guère que des races de B. mesenfericus vulgatus. Bien plus, toutes ces soi-disant espèces pourraient bien n'être que des variétés réductibles. Nous pouvons affirmer qu'il en est ainsi pour Bac. mes. ruber.

- Bacilles ne présentant pas ces caractères (moindre extension à la surface des milieux, pas de persistance du trouble dans le bouillon.

1° Colonies sur plaques de gélose à contour irrégulier, présentant des prolongements periphériques; donnant à la surface du bouillon un voile membraneux, Spores ovales (1,7-2 \pm/0,8 \pm), plus petites que les bâtonnets (3-9/0,8-0,9 \pm) ou de B. jequirity. B. leptosporus et B. sessilis (Klein) doivent être identifiés à B. subcohérent, épais. Bâtonnets habituellement réunis en chaînes de 2 à 10 éléments.

2º Colonies sur plaques de gélose rondes, à contour net, sans prolongements;

subtilis 1 (COHN).

ne donnant pas de voile membraneux à la surface du bouillon, tout au plus un anneau pelliculaire fragile.

disposé en chaines de 2-10 éléments ou en longs pseudo-filaments. Spores ovales tion par un agent retracteur (alcool ou teinture d'iode), bacille droit ou courbé. (1,8-2/0.9 µ) de même largeur que les bâtonnets. Donnant une culture brunâtre sur pomme de terre. Réduisant les nitrates en nitrites . B. cohaerens (Meyer et Gottheil) est identique au précédent d'après Chester. 2) Bâtonnets dont le protoplasme apparait non cloisonne quand on traite la prépara-

B. simplex ! (Meyer et Gottheil.)

1. Les B. subtilis et simplex trouvent leur place dans les deux parties (I et II) du tableau, car l'endospore, suivant son volume déforme ou ne déforme pas la cellule sporogène. Le diamètre de la spore libre est souvent ézal (B. subtilis) ou même un peu supérieur (B. simplex) à celui du

2. Un certain nombre de bacilles appartenant au groupe du B. subtilis sont insuffisamment étudiés et difficiles à déterminer si l'on ne tient

compte de leurs propriétés fermentatives spéciales. Ce sont : L. — Des agents d'altérations spontanées du lait.

1º B. pseudobutyricus (Hueppe), peptonisant le lait, transformant la caseine en leucine, tyrosine, ammoniaque. Il serait capable de transformer les lactates en butyrates. Cette espèce serait d'après Lehmann, intermédiaire entre B. mesentericus et B. megatherium.

2º B. albus (Læffler), considéré par Kruse comme très voisin des B. subtitis et assimilé par Meyer et Gottheil à B. teres.

3º B. amarificans (Bleisch), rapproché-par Lehmann et Neumann du B. pseudobutyricus.

5º B. teres (Meyer et Gottheil), retiré d'un lait acide et rapproché par Lehmann et Neumann du B. mesentericus vulgatus. 6º B. Hessii (Guillebeau), agent d'une altération visqueuse du lait et peul-être identique au B. silvaticus de Meyer et Gottheil, (d'après ces

II. - Des agents de maturation des fromages, transformant la caséine en produisant de la leucine, de la tyrosine, des carbonates, acétates et valérianates d'ammoniaque.

A. — Spore plus grosse que le bâtonnet qu'elle déforme en fuseau ou en massue. 2º Sans action sur le sucre de lait.

de terre une culture grise, puis jaune brunâtre, vernissee la caseine du lait à la température de 37° en produisant beaucoup de gaz. Donnant sur pomme α) Donnant des bulles de gaz en piqure dans la gélatine. Coagulant, puis peptonisant lentement

B. (tyrothrix) urocephalus (Duclaux).

B. (tyrothrix) filiformis (Duclaux'

β) Ne donnant pas de bulles de gaz en piqure dans la gélatine, mais pouvant en donner parfois dans les vieilles cultures en gélatine lactosée. Dans le lait à 37° la caséine est coagulée et peptonisée complètement sans production de gaz. Sur pomme de terre en 24 heures, culture abondante, épaisse, à surface finement ridée blanc de neige, puis jaunâtre.

- Spore plus petite que le bâtonnet qui n'est pas déformé.

un dépôt abondant, floconneux. Culture rapide, abondante, d'un gris-jaunâtre, plissée sur Les cultures dans le lait à 20° sont peptonisées sans coagulation et après un mois présentent a) Donnant sur plaques de gélatine ordinaire des colonies orbiculaires presque transparentes, rapidement liquefiantes. Le lait à 37° est très faiblement coagulé et rapidement peptonisé.

B. (tyrothrix) tennis (Duclaux) (variété peptonisante de Winkler).

5) Donnant sur plaques de gélatine des colonies irrégulières (pellicules minces plissées,

B. ruminatus (Meyer et Gottheil).
B. megatherium (De Barr).

TABLEAU V (Suite)

diamétraux ; chacun des segments du bâtonnet peut élaborer une spore. Bacilles par l'alcool ou la teinture d'iode apparaissent divisés en segments souvent isoépais (1,2-1.5 µ', plus larges que les spores, souvent courbés, réunis en courtes Bâtonnets cloisonnés : un certain nombre des bacilles d'une préparation traitée chaînes. Donnant sur pomme de terre des cultures d'un blanc grisâtre ou jaunâtre. Ne réduisant pas les nitrates.

B. tumescens (ZOPF). Spores de dimensions moyennes 1,5-2 $\mu/0$,8-1 μ elliptiques; germination surtout équatoriale. Bâtonnets de longueur moyenne (3-5 μ). Culture peu abondante

sur pomme de terre.

B. graveolens (Meyer et Gottheil) est identique au précédent d'après Chaster, peut-etre aussi B granulosus (Russell) d'après Lehmann.

b) Spores volumineuses (2-2, 7 μ/1-1, 3 μ), non elliptiques; germination équatoriale et polaire. Bâtonnets longs (plus de 5 µ'.

lius (Deetjen est voisin d'après Lehmann.

Bâtonnets déformés lors de la sporulation (en fuseau ou en massue) ou susceptibles de présenter cette déformation.

- Spores rondes, de dimensions moyennes (1 µ) plus larges que les bâtonnets Le diamètre des spores libres est égal ou supérieur au diamètre des bâtonnets.

Germination surtout polaire. Cellules végétatives isolées ou par deux. Colonies sur plaques de gélose minimes, punctiformes. La gélatine est lentement liquéfiée (1/2 cm. (0,8 µ), entourées d'une mince enveloppe sporulaire. Une partie de la cellule (c'esten 3 semaines). Ne coagulant pas le lait. Ne réduisant pas les nitrates. La déformaà-dire du bâtonnet) sporogene reste adhèrente à la membrane propre de la spore.

1° Spores très grosses (1,7-2,5 μ/1-1,5 μ) plus larges que les bâtonnets (0,8 μ): la deformation de la cellule sporulante est habituelle. Spore entourée d'une épaisse membrane propre; une partie de la membrane de la cellule sporogène reste adhé-

rente à la membrane propre de la spore. Germination surtout polaire. Bâtonnets végétatifs isolés ou par deux, droits ou légèrement courbes. Liquéfaction de la

B. fusiformis (Meyer et Gotthen!).

La gélatine est liquéfiée plus rapidement que par B. fusiformis. Bactéries réduisant les nitrates en nitrites. B. (tyrothrix) distortus (Duclaux).

de terre, blanche, saillante. Produisant des bulles de gaz dans les bouillons dexgelatine d'abord comme Sp. choleræ, puis cylindrique, rapide. Culture sur pomme

Spores de diamètre moyen (0,8-1 µ), à peu près égal au diamètre des bâtontrosés, lactosés, saccharosés . å

Spore n'ayant qu'une mince enveloppe propre. Aucun vestige de la membrane de nets: la déformation de la cellule en voie de sporulation n'est pas habituelle.

a) Colonies sur plaques de gélose présentant des prolongements périphériques. la cellule sporogène ne reste attaché à la spore Espèces ne donnant pas de gaz dans les bouillons sucrés. Bâtonnets droits ou courbes, en chaînes de 2 à 10 articles.

Peptonisant le lait et liquéfiant le sérum. La déformation fusiforme de la cellule Donnant un voile membraneux très marqué dans les milieux liquides. Culture sur pomme de terre blanche, poudreuse ou grenue, verruqueuse, parfois plissée. sporulante est fréquente. . .

terre, lisse, épaisse, brillante, brunâtre. Ne peptonisant pas le lait; ne liquéfiant pas le sérum. La déformation fusiforme de la cellule en voie de sporulation est rare. riques. Ne donnant pas de voile à la surface du bouillon. Culture sur pomme de Colonies sur plaques de gelose rondes, à contour net, sans prolongements periphé-

B. asterosporus (MIGULA).

B. subtilis (COHN)

B. simplex (Meyer ct Gotthen).

rosettes avec prolongements onduleux. Le lait subit une coagulation compacte à 37° puis une liquéfaction lente. A 20° la peptonisation a l'eu sans coagulation. Il n'y a pas de dépôt dans les vieilles cultures. Culture en gouttes de cire, blanc-jaunâtre, puis brunâtre poudreuse.

Des agents d'une altération visqueuse du pain:

B. mesentericus panis viscosi nº 2 de Vogel (à rapprocher de B. m. vulgatus).

Des agents de diverses altérations alimentaires :

la pathogénie de la pellagre. Il est pathogène pour la souris(accidents paralytiques ; B. peptonificans (Lubenau) aurait déterminé une épidémie de gastro-entérite (A rapprocher du B. sublilis.) B. maidis (Cuboni) cause d'une altération du mais qui d'après Lombroso aurait un rôle dans

Lehmann, B. levaniformis (Smith agent d'une fermentation acide spontanée du sucre de

canne est à rapprocher du précédent.

Un bacille rencontré dans une conjonctivite par Michalski, et dont le rôle pathogène est problématique. C'est un bacille qui fait fermenter le sucre de lait, forme un voile jaunatre sur le bouil-VI.

D'autres sont considérés par Lehmann et Neumann comme intermédiaires entre B. mesentericus et B. megatherium. Ce sont : B. lacteus (Lembke, B. aureus (Pansini), B. agglomeratus Pansini), B. cylindrosporus (Burchard), B. geniosporus (Burchard), B. lutulentus (Kern),

B. oxalaticus (Zopf), etc. (Voir l'Appendice). Ces bactéries n'ont pas été assez étudiées pour que, en l'absence d'une action fermentative particulière, leur classement rigoureux puisse s'effectuer.

B. gummosus (Ritsert et Happ).

lon et une pellicule brunâtre sur pomme de terre qui brunit elle-même. B.subtiliformis conjunctivitidis (Michalski) Des bacilles saprophytes divers, pour la plupart incomplètement étudiés. Les uns trouvés dans les crachats par Pansini. Ce sont : B. aureus (Pansini, B. coccineus (Pansini), B. nº 6 (Pansini). D'autres trouvés dans les matières fécales: B. sublilis similis (Sternberg). Gertains autres doivent être rapprochés de B. mesentericus. Ce sont: B. mesentericus liodermus (Flügge). B. mesentericus ruber (Globig). rmicularis (Frankland).

angulans (BURCHARD).

TABLEAU VI

des spores. Pas d'arborisations autour du trait de piqûre dans la gélatine ou dans la Bâtonnets aérobies, liquéfiant la gélatine, non chromogènes, prenant le Gram, formant gélose. Immobiles.

0
:05
200
20
2
0
-
0
-
e
2
-
9
7
d)
-
-
0
=
шшо
×
-
L
Sur
S
1000
e
-
I
-
-
9
1
1
-

		1	trates
		4	Ď
6.	en	30.	
H	iés	à 18	
E	orn	re	
nse	déf	ter	
E	es,	de	*
Nir.	lair	me	
chi	iicu	nou	
pomme de terre épaisse, couleur chair musculaire.	2-3 u/1 u), souvent en pseudo-filaments vermiculaires, déformés en	sporulation. Chainettes de spores sur la pomme de terre à 18º.	
leu	SV	IL I	
noa	ent	s sı	
3, 6	lam	ore	
SS	in-0.	sp	
pa	end	de.	
e é	ps 1	ttes	
FF	t er	ine	
te	ven	Cha	
de	nos	n.	
ne	(7)	atic	
m	11	rul	
00	-3 1	spic	ates
an	6) 8	la	nitr
S	Dai	de	es
ure	ts i	lors	nt]
1	nne	au,	uisa
9 -	Bâtonnets épais (2-	useau, lors de la s	tédi
1	1	F	-
Y	-		

	m
	H
	100
0	
-	- 34
0	
2.7	
di	
-	
S	
2	
AS	
-	
9	2.00
-	-
de t	
0	
-	
-	
1	
0	
-	
	-
	-
-	
0	
No.	Mar. 11
-	
-	
-	
S	
100	
(3)	
-	
-	
	2
\blacksquare	
-	
100	
-	
1	-
150	
	1
-	100
No.	
55	-
-	100
(2)	
1	-
78	4
4 40	-
	-
No.	BET.
C	Ja
orpi	Dalle
(0)	
-	
100	1
	-
400	0
1	
	1 3
-	All of
Culture	-
1	en violet
100	
-	
-	4

-
9
gene
,00
0
=
шо
9
=
-
9
-
=
поп
0
1
4
terr
-
0
7
2
=
опши
0
D
L
sur
S
365
0
-
3
Itun
3
U
1
1
1
00

Batonnets dont l'epaisseur est inierieure ou egale a 0,9 p.	1º B. strictement aérobie, ne se développant qu'à la surface des milieux. Liquéfiant	rapidement la gélatine en doigt de gant. Colonies sur plaques à contour net.	Batonnets greles, quelquefois encapsulés, isolés ou en chaîncttes (Habitat: air) I
1	-		

B. aerophilus (Frugge, Liborius).

B. + Bâtonnets dont l'épaisseur est supérieure ou égale à 1 ν .

I A M / A M / A	B. nº 17 (ADAMBTZ).	Treates (December)	B. plicatus (DeelJen).
Ç	P	4	4
		ner-	
		en	
		plis en	
		les	
		e présentant des	
		Sute	
		rėsi	•
		e p	
	ie .	los	,
	igu	ture sur gélos	
	ityi	sui	-
	r bu	ire	
	leur	ultr	
	00	0.	
	10).	an	
d	à 3	Jue	
) x1	visi	
0	uei	ail	
-	visa	3) Ne rendant pas le lait visqueux. (108
000	ait	oas	Sinil
2	le 1	nt	o f
1	nt	rda	2 2
1	nda	rei	Out
2	Rei	Ne	2
)	(2)	3	-
1			

B. gracilis (ZIMMERMANN). pas de voile. Bâtonnets de dimensions moyennes (2,5 à 3,5 $\mu/0,7$ à 0,8 μ) formant des chaînes sinueuses. Spores elliptiques, presque terminales (Habitat : eau) . . du trait, il se forme une série de disques superposés. La liquéfaction est lente ; 2º B. se développant peu à la surface des milieux, alors que dans la profondeur légère et superficielle après 3 à 5 semaines. Le bouillon est faiblement troublé

(VOGEL).

3º Cultures sur gelose et sur pomme de terre non plissées.

 \(\text{Colonies sur plaques de gélâtine présentant des prolongements périphériques. } \)

 \(\text{Colonies sur pomme de terre blanc-grisâtre, pou \)
 vant brunir au centre. Pathogène pour la souris

3) Colonies sur plaques de gélatine sans prolongements périphériques (Bactéries (B. nº 4 (Pansini), isolé des crachats de phtisiques, et B. monstrosus (Henrici), trouve dans le fromage, tous deux incomplètement décrits, paraissent se rattacher au précédent. Leur pouvoir pathogène n'a pas été recherché.)

a) Colonies sur plaques dont le centre apparaît comme percé de trous; surface difficiles à différencier).

c, Colonies à centre surélevé, à contour denté. Formant un voile à la surface du bouillon. Coagulant le lait avec odeur putride (Habitat : eau) . d, Colonies à centre nuageux, à périphérie grenue. Odeur butyrique des cultures.

épaisse, muqueuse, jaunâtre sur pomme de terre. Bâtonnets de 2 à 4 μ/1 à 1,2 μ formant des spores ovales, médianes, résistant à la température du four. Agent d'une altération visqueuse de la mie de pain (produisant une odeur plutôt e) Colonies liquéfiant rapidement la gélatine. Culture mince, blanc-jaunâtre sur gélose,

B. liquefaciens pyogenes (MAT-ZUSCHUTA .

B. carotarum (Koch).
B. hirtus (Henrici).

B. filiformis (Tils). B. nº 15 (ADAMETZ). B. panis (FURHMANN).

TABLEAU VII

Bâtonnets aérobies, liquéfiant la gélatine, non chromogènes, prenant le Gram, ne formant pas de spores.

I. - Mobiles ..

A. - Ne se développant pas sur pomme de terre.

tonisé. Le glucose ne fermente pas. Pas de production d'indol. Dimensions 2 à 3 µ/1 µ. Couche maigre sur gelose. Faible trouble en bouillon. Le lait est lentement pep-Filaments dans les vieilles cultures.

B. - Cultivables sur pomme de terre.

1º B. très courts, ovoïdes. coccoïdes, par deux, encapsulés dans leur habitat naturel, donnaut sur plaques de gélatine des colonies orbiculaires d'un blanc jaunâtre; sur pomme de terre une culture jaunâtre envahissant progressivement toute la tranche, Optimum 37° . . . 2º B ne présentant pas ces caractères : non encapsulés, moindre extension à la surface de la pomme de terre.

α) B. ne resistant pas à des températures inférieures à 15°. Optimum 37°. B. courts et épais (2 μ/1μ. souvent par deux ou en courtes chaînes. Formant sur gélose une bande grisâtre, ridée, puis porcelanée, brillante; sur pomme de terre un enduit gris, plat. Coagulant le lait avec réaction acide. Non pathogène

Optimum 200-24°.

B. très polymorphes, leur longueur variant de 1,25 à 4 µ; filaments pouvant atteindre 80 µ; formes d'involution sphériques dans les vieilles cultures. Prenant souvent le Gram dans les premières cultures si on ne prolonge pas l'action de l'alcool, susceptibles de perdre cette propriété par la suite; d'autres races se décolorent d'emblée par la méthode de Gram. Donnant sur plaques de géla-

- Colonies typiques : Centre granuleux ; zone périphérique filamenteuse, porbizarre « en boudin » fusiformes ou en « tentacules »; parfois sur gélatine à 5 % ces prolongements peuvent se détacher complètement de la colonie et former tant en tous sens des prolongements souvent très longs, de forme irrégulière et tine des colonies d'aspect ou très typiques, ou peu caractéristiques.

Bact. proteolyticum = Cocco-bacillus proteolyticus mobilis (Chou-kevitch).

Bact. margarineum = diplococcus capsulatus margarineus (Jolles et Wincklen).

Bact. delicatulum (Jondan).

Caractères communs aux B. du groupe de B. vulgare

11 B. du groupe de Bact. vulgare Proteus vulgaris (HAUSER).

precedée ou non de coagulation. Sans action sur le lactose; action variable sur minoïdes (odeur putride dans les cultures); déterminant la peptonisation du lait le glucose et le saccharose,

Colonies peu caracteristiques, fréquentes après un séjour prolongé dans les

milieux artificiels Colonies minces, grisâtres, transparentes, à contours ondu-

leux, ressemblant aux colonies de B. typhosum, mais liquéfiant rapidement

Agent de fermentations putrides plus ou moins énergiques des matières albu-

Doivent être identifiés à B. vulgare (Hauser) d'après Lehmann : B album cadaveris Strassmann et Strecker) et B. fælidum ozaenae (Hajek) ; B. dysenteriæ liquefaciens, trouvé par Ogata dans quelques cas de dysenterie, parait voisin; ses proprietés chimiques n'étant pas connues on ne peut l'identifier sans réserves. Il en est de même de B destruens (Von Wahl) trouvé dans des conserves altérées. Le B. proleus mirabilis (Hauser) doit être considéré comme une simple variété morphologique de B. vulgare, remarquable par ses formes d'involution sphériques qui peuvent atteindre 7 µ. Diverses races différent du proteus type Hauser et se distinguent entre elles par des propriétés chimiques

la fermentation des sucres pour les races suivantes: Proteus A, B et C (Weber Par la fermentation des albumines naturelles, la production d'indol, de nitrites, 8

(races ne prenant pas le Gram, Proteus (Tissier).

3) Par la production de Has en quantité considérable; tel est le proteus sulfureus (Holschewnikoff, simple forme d'adaptation du proteus vulgaris érigée en

espèce distincte.

Tels l'Urobacillus liquefaciens septicus (Krogius, d'après Lehmann et Neumann et peut-être l'Urobacillus Schützenbergii (Miquel, dont les caraclères n'ont pas été étudiés suffisamment pour qu'on puisse le ranger avec certitude γ) Par la fermentation particulièrement active de l'urée.

qu'un sérum préparé avec la race A (Weber) et agglutinant énergiquement cette dernière est presque sans action sur la race B (Weber). Note. - C'est par la recherche des caractères morphologiques et chimiques groupe proteus (caractères énumérés ci-dessus, et non var la réaction agglutinante que l'on détermine si un bâtonnet liquéfiant, mobile, non sporule doit ou non rentrer dans ce groupe. L'agglutination permettra, par contre, de différencier entre elles diverses races de B. proteus. C'est ainsi dans le groupe proteus. communs au

1. Bactéries insuffisamment décrites à rattacher à ce tableau : B. album putidum (Maschek), Bact. no. 6, 7, 12, 14 (Lembke); B. no. 9, 14, 15

(dès 16-24 h.).

11

TABLEAU VII (Suite)

du Japon se rapproche des bact, du groupe précédent. Toutefois il présente Bact. cypripedii (Hori) qui occasionne une maladie des feuilles d'orchidées quatre cils inserés sur les deux pôles.

II. - Immobiles.

A. — Cultures chromogènes bleues sur lait et sur pomme de terre à 20°. Sur ce dernier mélieu, la culture n'est pas colorée, mais la pomme de terre bleuit. L'eau peptonée verdit. Production d'indol. Bâtonnets très courts, souvent coccoïdes. Parfois formes en massue. Pas d'action pathogène.

- Pas de pigment bleu dans les cultures.

1º L'inoculation intrapéritonéale au cobaye produit un sarcocèle qui res-B mallei, trouvés dans les mêmes conditions que celui-ci; mais cu!tivant bien semble à l'orchite morveuse expérimentale. Batonnets grêles ressemblant à sur gélatine à 20°, et donnant une culture blanche et sèche sur pomme de terre.

2º Pathogène pour les canaris, le moineau, la souris (septicémie) et non pour la poule, le pigeon, le cobaye et le lapin Bâtonnets courts 1 à 1,5/0,5 µ à extrémités arrondi s. Cullive sur milieux usuels. Liquéfie la gélatine assez lentement

et ne donne pas de gaz dans les milieux glucosés. Agent d'une épizootie de canaris. Batonnets courts. Cultures blanches, puis brunâtres sur pomme de terre. Patho4. Batonnets longs, variqueux, à extrémités arrondies, déterminant des phénomènes inflammatoires sur la cornée du lapin.

5. Batonnets courts. Cultures blanches sur tous les milieux, Non pathogène.

Bact. coelicolor (R. Muller).

B. Pseudo-mallei.

Bact. canariense (FREESE).

Bact. pneumonicum liquefaciens bovis (Arloing).

Bact. varicosum conjunctivæ (Gombert).

Bact. candidum lique faciens (Mar-

Bact. candidum lique faciens / Marzuschita) = B. candidus (Galli-Valerio).

TABLEAU VIII

Bâtonnets aérobies, liquéfiant la gélatine, non chromogènes, ne prenant pas le Gram, ne formant pas de spores, mobiles

- B. dont les cultures en gélatine ensemencée par piqure présentent de fines arborisations radiaires perpendiculaires au trait.

roitant, puis gris-jaunatre. Cullivant lentement au contraire (à partir du 3º jour seulement) sur pomme de terre : bande plate jaune brunâtre. Acidifiant le bouillon a) Culture sur gelose de 24 heures sous forme d'un revêtement mince, incolore, mi-

Cullures sur pomme de terre et sur gélose ressemblant à celles de B. coli. Culactivement le glucose avec gaz, ne coagulant pas le lait, produisant peu d'indol, beaucoup d'H2 S. Pathogène pour le veau. (Agent d'une dysenterie épizootique tures sur pomme de terre répandant une odeur fécaloïde. Faisant fermenter

II. — B. dont les cultures en gélatine ensemencée par piqure produisent

des colonies assez grandes, liquéfiant rapidement en creusant des cupules à contenu grisâtre. En pique, liquéfaction rapide en doigt de gant (Habitat:eau). B. très polymorphe (à côté de formes allongées d'autres éléments rappellent des tout le long du trait des bulles de gaz dans la gélatine encore solide.

levures) Cultivant mal sur gélatine ordinaire, En piqure, étroit entonnoir de liquéfaction dû à la lenteur de la culture. Se développant très bien sur gélatine à l'eau de mer où les colonies ressemblent à celles de Spirillum choleræ. Réaction indol-nitreuse négative (Habitat : vase marine). .

Cultures en gélatine ne présentant autour du trait de piqure ni arborisations, ni bulles gazeuses dans la gélatine solide

 A. — Ne se développant pas sur pomme de terre.
 B. courts (0,9-1,2 μ/0,7 μ), isolés ou groupés par 2, rarement davantage, donnant en piqûre dans la gélatine, en 2 ou 3 joursun trait blanc surmonté d'une bulle de gélatine liquéfiée. Liquéfiant très lentement mais nettement, le trait se creusant en un canal dont la largeur atteint le demi-diamètre du tube. Envahissant toute la sur-

Bact. lucidum (Lembre)

Bact. vitulinum (Weissenberg'.

Bact. gasoformans (EISENBERG).

Bact. halophilum (RUSSELL).

Bact. devorans (ZIMMERMANN).

1. A ce tableau appartiennent des b. incomplètements décrits : B. fatidum liquefaciens (Tavel), B. pneumonicum agile (Schon), B. pseudo-melanosis (Frnst), B. piscicidum hæmolyticum (Marks).

TABLEAU VIII (Suite)

B. grêles (1,2) à (1,2) à (1,2)blanchâtre ; de même sur gélose-ascile à 37°. Elaborant sur gélose ascite à 22° un pigment vert soluble dans l'alcool, virant au rouge par l'acide azotique Coagulant le lait en 3 jours. Pathogène pour la souris . . 50

Culture sur pomme de terre nettement apparente. Trouvé dans une eau sulfureuse croupissante.)

1º Culture sur pomme de terre brune ressemblant à celle de B. mallei. Pathogène pour les animaux à température variable (grenouille, lézard) et pour les animaux à température constante (souris, lapin, cobaye). Déterminant chez la grenouille une senticémie par injection dans le sac lymphatique, des gangrènes mulilantes par inoculation dans les pattes. (Trouvé dans l'eau) . . .

Le B. ranicida (Ernst), le bacille de la septicémie gangréneuse des grenouilles (Legrain) sont identiques au précédent.

2º Ne présentant pas ces caractères. Donnant sur pomme de terre une culture qui s'étend à toute la surface de la tranche.

comme B. proteus vulgaris, rapidement liquéfiantes. Sur gélose, bande blanche d'abord limitée, puis envahissant rapidement toute la surface. Troublant uniblanc. Sur pomme de terre, culture blanc-grisâtre, alcalinisant le milieu ne le a, B. polymorphe, présentant dans les vivilles cultures, à côté de longs bâtonnets, coagulé). Colonies sur plaques de gélatine présentant des prolongements formément en 2 jours le bouillon qui s'éclaireit avec formation d'un dépôt colorant pas. Odeur désagréable, douceâtre, butyrique de la gélatine liquéfiée, du bouillon et de la gélose. Pathogène pour la souris blanche qui meurt en 24 heures de septicémie (injection sous-cutanée) et pour le lapin. La souris des éléments ovoïdes et des formes pseudo-spirillaires surtout dans le sérum

transparente, opalescente, puis blanc-crème, mais toujours transparente, s'éten-dant bientôt à toute la surface. Trouble persistant du bouillon. Donnant sur liquéfiant la gélatine assez lentement mais complètement. Sur gélose, bande B. très court, coccoïde, très mobile, isolé, par deux ou enchaînes de 10 à 15 et plus, pomme de terre une couche épaisse, jaune clair, puis jaune brunâtre. Odeur ammoniacale, urineuse des cultures. Déterminant chez le lapin une pseudotuberculose (nodules caséeux dans l'hypoderme) chez la souris une septicémie (q

Bact. virescens (Daugeand).

Bact, hydrophilum fuscum (SA-NARELLI.

Bact. pleomorphum murisepti-

Bact coli var. albido-liquefaciens

(LEHMANN) ..

Bact. stomato-fætidum (Fischen'.

Bact. cloacae (Jondan).

Bact. pseudo-tuberculosis liquefaciens (CAZAL ET VAILLARD). mortelle en 2 ou 3 jours. Le cobaye est réfractaire. B. grèles 1-3 µ/0,5-0,7, mais pouvant former de longs filaments de 6-8 µ, donnant

sur gélose une bande assez large, d'un blanc vitreux, puis à reflets irisés ou nacrés. Le bouillon, troublé en 24 heures s'éclaireit ensuite en formant un dépôt épais, visqueux. Le milieu optimum est la pomme de terre, à 37° surtout : revetement épais, envahissant, jaune-citron avec bulles de gaz; le milieu bru-

sur plaques de gélatine des colonies punctiformes très rapidement liquéfiantes;

Bact. pyogenes fætidum liquefanit. La culture dépasse ensuite largement la tranche du tubercule. Odeur fétide

ciens (LANZ. de toutes les cultures, surtout de la gélatine. Pyogène pour le lapin par injec-

B. pestis) sur gélose à 37°, la culture, dès son apparition, envahit toute la sur-Strepto-bacterium fætidum (Jacque et Masay) ne diffère du précèdent que par sa virulence plus grande et par des détails de culture. C'est un court bâtonnet, souvent en longues chaîncites dans le bouillon (ressemblant beaucoup à face du milieu en couche continue, épaisse. De même sur sérum et pomme de terre. Virulent pour tous les animaux de laboratoire, méme le rat blanc, qui meurt en quelques heures, par injection sous-cutanée.

tion intra-veineuse : mort en 24 jours par polyarthrite purulente.

Trouvé dans des crachats et des sérosités pathologiques.

I. - Liquefaction de la gélatine remarquablement tardive, commençant vers le 10° jour ou même après la 3° semaine. Morphologiquement comme B. coli. 3. Donnant sur pomme de terre une culture limitée au voisinage de la str'e a) Faisant fermenter le lactose. Coagulant le lait par formation d'acide. d'ensemencement.

Court bâtonnet, aérobie strict. Agent de putréfaction énergique, liquéfiant la fibrine et le blanc d'œuf.

B. - Faisant fermenter le glucose et non le saccharose. A. - Faisant fermenter le glucose et non le saccharose.

1º Bâtonnets assez épais (0,7-1 µ), se développant très malen milieu anaérobie, donnant sur pomme de terre une culture abondante, blanc-jaunatre,

pomme de terre une culture minime, jaune-brunâtre. Pathogène par inoculation intramusculaire (mort en 24 h.) et par ingestion pour les écre-2º Batonnets très grêles (0,25 p. d'épaisseur); anaérobie facultatif, donnant sur visses et un certain nombre de poissons. L'injection intra-péritonéale de fortes doses est nécessaire pour tuer le cobaye et le lapin. La grenouille

Bact. astaciperda HOFER.

1. B. cacosmus (Harrison et Streit), trouvé dans le « roup » des poules, doit être rattaché à cette catégorie.

TABLEAU VIII (Suite)

b) Ne faisant pas fermenter le lactose.

- Batonnets encapsules dans l'organisme, ressemblant morphologiquement à B. pnenmoniæ (Weichselbaum-Friedlander), donnant sur plaques de gélatine des colonies rondes, liquéfiant lentement ; sur pomme de terre, culture muqueuse, jaune-orangé, ne coagulant pas le lait . Trouvé dans une sécrétion du sinus maxillaire.

A. - Les cultures sont pathogènes pour les animaux de laboratoire (action pathogène peu caractéristique : par inoculation sous-cutanée, abcès putrides chez le lapin et le cobaye; de très forles doses déterminent des acci-Batonnels non encapsules.

1° B. de forme très constante, même dans les vieilles cultures, petit, ova-

dents toxiques. Des septicémies sont difficiles à obtenir).

laire (long de 0,6-1 µ), donnant sur plaques de gélatine des colonios rondes, d'abord à contour net, puis avec prolongements floconneux. Le ait, en couche mince (dans un ballon plat) est peptonise sans coagulation, devient visqueux et dégage une odeur fétide. En tubes, le lait est coagulé en 24 à 48 h. avec réaction neutre ou faiblement alcaline ; cette cul-

lure est inodore alors que toutes les autres dégagent une odeur putride. B. remarquablement polymorphe, longueur variant de 1,25-4 µ, filaments alteignant 80 µ droits, onduleux et même spiralés, formes d'involution sphériques dans les vieilles cultures. Donnant sur plaques de gélatine des colonies d'aspect typique ou peu caractéristique :

Colonies typiques : centre grenu; de la zone périphérique filamenteuse partent en tous sens des prolongements souvent très longs, de forme irrégulière, bizarre, « en boudin », fusiformes ou « en tentacules »; parfois, sur gélatine à 5 °/0, ces prolongements peuvent se détacher complètement de la colonie et former des ilôts mobiles. longé dans les milieux artificiels. Colonies minces, grisatres, transparentes, à contour onduleux, ressemblant aux colonies de B. typhosum, mais liquéfiant rapidement (dès la 16°-24° h.).

Colonies peu caractéristiques, fréquentes surtout après un séjour pro-

(Certaines races gardent le Gram dans les premières cultures, si on ne prolonge pas l'action de l'alcool). Agents de fermentation putride plus ou moins énergique des matières albuminoïdes (odeur putride des cultures). Déterminant la peptonisation du lait précédée en général de coagulation. Action variable sur'le glucose et le saccharose.

HEL Bact. Herrmanni (HERZFBLD HERRMANN).

Bact. septicum putidum (Rogen,

B. du groupe de Bact. vulgare = Proteus vulgaris (HAUSER).

tés chimiques d'une assez grande fixité à travers les générations. Ce sont : tères communs ci-dessus énoncés et différant entre elles par des proprié-Il existe un certain nombre de races de proteus présentant les carac-

- Peptonisant la fibrinc.

- Faisant fermenter le glucose avec production d'acide et de gaz. - Faisant à peine fermenter le glucose (n'acidifiant pas nettement

et ne produisant pas de gaz) N'attaquant pas la fibrine.

Faisant fermenter glucose et saccharose, ne donnant pas la réaction de l'indol, réduisant les nitrates en nitrites, faisant fermen-

ter l'urée. Faisant fermenter le glucose et non le saccharose, ne donnant pas la réaction de l'indol, ne réduisant pas les nitrates, ne faisant

la réaction de l'indol, ne réduisant pas les nitrates en nitrites. pas fermenter l'urée. Ne faisant fermenter ni glucose, ni saccharose, ni urée, donnant

bâtonnet liquéfiant, mobile, non sporulé, doit ou non rentrer dans ce chimiques communs au groupe proteus et non par la réaction agglutinante avec un sérum protéo-bacillaire que l'on déterminera si un Note. - C'est par la recherche des caractères morphologiques et

elles diverses races de B. proteus. C'est ainsi que l'on peut corrobogroupe. L'agglutination permettra, par contre, de différencier entre rer par l'agglutination, la détermination des races A, B et C (Weber). B. - Les cultures ne sont pas pathogènes pour les animaux de laboratoire.

Agents de fermentation putride des matières albuminoïdes a) B. très polymorphe, munis de cils nombreux implantés sur tout le corps bactérien. Colonies sur plaques souvent caractéristiques prolongements).

a') Colonies sur plaques de gélatine à surface ponctuée, à contour net, den-(3) B. monomorphes, munis d'un seul cil polaire.

telé puis frangé, liquéfaction en cupule, donnant beaucoup d'H2 S. B. aquatilis liquefaciens (Flügge), B. liquidus (Frankland), sont iden-

tiques au précédent.

ne liqueliee . . . d et f (Zörkendörfer) et deux B. des eaux : (5) Colonics liquéfiant la gélatine d'une manière très particulière : aspect de trou creusé à l'emporte-pièce; colonic annulaire au pourtour de la spumosum (Zimmermann) et B. liquefaciens (Tataroff) paraissent voisins des précédents. Ils ne sont pas assez complètement décrits pour zone liquéfiée .

pouvoir être déterminés,1

B. (proteus) vulg. (type Hausen).

B. (proteus) vulg. (type Tissien).

B. (proteus) var. A (Weben).

B. (proteus) var. B (Weber).

B. (proteus) var. C (Weben).

qn Echantillons avirulents des B. groupe de Bact. vulgare

Bact punctatum (Zinmenmann

Bact. annulatum (ZIMMERMANN).

TABLEAU IX

Spirilles aérobies, liquéfiant la gélatine, mobiles, ne prenant pas le Gram.

- Gros spirilles de plus d'un a d'épaisseur, décrivant ordinairement plusieurs tours de spire. Non pathogènes.

1. - Spirilles épais de 1 u en moyenne; troublant le bouillon en formant un voile. Couche bianche, humide sur pomme de terre. Un bouquet de cils à chaque

(Sp. giganteum (Migula) parait identique au précédent.)

sur gélose dans une gangue protéique où ils vivent en zooglées. Sur ce milieu, la cul-- Spirilles petits, décrivant plusieurs tours de spire, se développant ture est blanche, très superficielle, filante, muqueuse et élastique. Pas d'action fermentative sur le sucre de lait. Pas de production d'indol

III. — Spirilles présentant un à cinq tours de spire, ayant en moyenne 0,8 µ d'épaisseur; un bouquet de cils à chaque extrémité. Liquéfiant lentement la gélatine, ne cultivant pas sur pomme de terre. Non pathogènes.

thèse, ou en forme d'S; se réunissant rarement pour former plusieurs tours de spire. . - Petits spirilles, habituellement en forme de virgule ou de paren-

Ces spirilles présontent sur plaques de gélatine des colonies dont l'aspect se rapproche plus ou moins de celui des colonies de Sp. choleræ. Les différences dans l'aspect pour fournir un élément de diagnostic. Les propriétés pathogènes et la réaction indol-Epaisseur moyenne 0,5 µ. (Groupe de sp. choleræ et des vibrions pseudo-cholériques.) des cultures de Sp. choleræ et des Sp. pseudo-choleriques ne sont pas assez frappantes nitreuse n'ont rien non plus de caractéristique ainsi que l'on pourra s'en rendre compte par le tableau s nivant dans lequel nous classons les spirilles les mieux étudiés.

1. - Ne se développant pas à 37° (en premières cultures).

1. Sp. romanum, qui est un cholérique vrai non virulent pour les animaux et ne donnant pas d'indol (dans les premières cultures). Ce groupe comprend:

2º Des spirilles des eaux : Sp. marinum (Russell), Sp. de Sanarelli (Bercy Iel II,

Sp recti physeretis (Beaumegand).

Sp. volutans (Kurschen).

Sp. serpens (MULLER),

Sp. tenue (EHRENBERG).

Type: Sp. romanum (Celli et San-

(SANA	
IV	
Tune Sn. de Suresnes	
	•
	•
	•
	*
	-
es à 37°.	oppant pas dans le bouillon
aples	vel
tiv	de
Cult	Se
1	Ne
-	10
series.	

2. Se développant dans le bouillon.

a) Réaction indol-nitreuse négative le huilième jour.

a) Palhogènes pour le cobaye (en injection intrapéritonéale).

Les uns ont été trouvés dans les selles: Sp. Vogleri (Vogler), Sp. Zorkendorferi (Zörkendörfer), Sp. de Lisbonne (Pestina). Ce dernier a été trouvé dans une épidémie cholérique bénigne. D'autres ont été trouvés dans les eaux: Sp. de Billancourt I (Sanarelli), Sp. d'Asnières II (Sanarelli), Sp. de Levallois-Perret I (Sanarelli), Sp. de Gennevilliers II (Sanarelli), Sp. de Versailles

(étangs) (Sanarelli).

Réaction indol-nitreuse faible ou tardive, positive le huilième jour.

pigeon en injection intramusculaire (à dose inférieure à une öse de platine de

outre un spirille qui pourrait donner des abcès par injection sous-cutanée à la

so mis (Sp. helcogenes) (Fischer).

a) Sp. pathogènes pour le cobaye en injection intrapéritonéale, et non pour le pigeon en injection intramusculaire (à dose inférieure à une öse de platine de γ) Reaction indol-nitreuse positive en vingt-qualre heures.

A ce groupe appartiennent des spirilles cholériques authentiques: (Sp. de Hambourg, Sp. de Courbevoie, etc., et des spirilles des eaux de fleuves: (Sp. Læffleri, Sp. Blachstein, Sp. Danubicum, Sp. Dunbar, Sp. Ivanoff... Sp. pathogènes pour le cobaye et pour le pigeon (q

A ce groupe appartiennent en dehors du précédent : Un spirille cholérique authentique : Sp. d'Angers et des spirilles des eaux de fleuve : Sp. de Saint-

Type: Sp. I (Bonnor).
Type: Sp. de Lisbonne (Pestana).

Tyne: Sp. de Massaouah.
Type: Sp. Finkleri (Finkler et Prior). Type: Sp. romanum (Celli-San-

TORI) (après le 8° mois).

Type: Sp. choleræ (Косн) = indicum.

Type: Sp. Metschnikoffi (Gama-

TABLEAU IX (Suite)

Cloud (Sanarelli), Sp. du Point du Jour (Sanarelli), Sp. de Gennevitliers V Sanarelli), Sp. de Versailles (eau de Seine) (Sanarelli). (Ces quatre derniers

il nécessaire d'avoir recours aux réactions biologiques. La recherche des hémosont inconstamment pithogènes pour le pigeon). Note. - Le tableau précéde it montre que ni l'étude des cultures et des pro luits qui s'y forment, ni les inoculations expérimentales ne fournissent des caractères absolument spéciaux au spirille cholérique authentique. Aussi, estysines et des sensibilisatrices donne des résultats moins constants que celle des réactions d'immunité qui renseignent plus surement.

que les cholériques vrais n'en produisent pas. Mais iln'y a rien la d'absolu, sou-Hemolysines. - D'une manière générale, les sp. pseudo-cholériques produisent des hémolysines thermolabiles dans les milieux liquides et solides, tandis vent c'est une question de degré, car il y a des races de sp. cholèriques vrais

d'intensité variable suivant les races. En tout cas il faut opérer avec des cul-Sensibilisatrices. - La méthode e-t d'application difficile, car la fixation est qui élaborent des hémolysines.

tures chauffées ou des autolysats pour éviter l'action hémolytique possible. Réactions d'immunité.

es résultats en sont résumés dans le tableau suivant :

			t
Hémolysines	quelquefois +	+	D'après Neufeld et Haendel.
Déviation du complément	+	+	0
Agglutination par cholera-sérum	+	+	D'après Kolle
Réaction de Pfeiffer	+	+	0
	Sp. cholériques authentiques	Sp. d'El Tor. (non cholérigène)	Sp. pseudo-cholériques

Bact. viscosum sacchari (Knamer).

Bâtonnets aérobies liquéfiant la gélatine, non chromogènes, ne prenant pas le Gram,

ne formant pas de spores, immobiles.

I. - Optimum de 10°-15°. Ne se développant pas au-dessus de 20°. La liquéfaction de la gélatine se fait souvent avec une telle lenteur qu'elle ne se manifeste que par la formation d'un entonnoir sec. Ne cultivant pas sur pomme de terre. Par inoculation et par ingestion les cultures sont mortelles pour les truites (septicémie) . .

Bact. salmonicida (B. de la peste des truites) (EMMERICH, LEHMANN ET NEUMANN)

II. - Se développant au-dessus de 20°.

A. - Rendant visqueuses les solutions neutres ou légèrement alcalines de saccharose. Ne se développant pas dans les solutions acides.

1. Bâtonnets courts et grêles 0.3.1,4 µ/0,3-0,4 µ/. Colonies sur plaques ressemblant à celles de Bact. coli. Liquéfaction infundibuliforme de la gélatine après 48 h. : les colonies présentent alors un pourtour cilié. Culture abondante, blanc-grisâtre sur la gélose qui parfois brunit un peu. Bande jaune-brunâtre, humide sur pomme de terre, coagulant puis peptonisant le lait. Produisant des gaz dans les milieux glucosés. Optimum 25°. Seumann, Bacillus disciformans et B. azureus (Zimmer-D'après Lehmann et Neumann, Bacillus disciformans et B. azureus (Zimmer-B. — N'ayant pas ees caractères.

mann), sont identiques au précédent. Gros bâtonnets. Colonies sur gélatine à prolongements ramifiés en racine. Culture

jaune ocre sur pomme de terre. Bâtonnets grêles. Colonies orbiculaires à plis rayonnants sur gélatine. Liquéfaction tardive. Sur pomme de terre, pellicule gris sale.

Bact disciformans (ZOPF).

Bact. aquatile radiatum (Frügge).

Bact. glaucum = B. canus (MA-

TABLEAU XI

Microcoques aérobies, chromogènes jaunes, liquéfiant la gélatine

	100.00
	m.
	10
	de
	No.
	79
	-
	plagnes
	-
	C
	-
	-
	-
	200 m
	7.0
	-
	F
	(0.3 u. forman
	60
	-
	No.
	93
	W-
~	300
***	600
	000
No.	-
	-
-	
0	
le	
le	
le	
s le Gram.	
is le	
as le	
as le	
)a	Porme
)a	
)a	Porme

M. chromidrogenus citreus aune-soufre mat, liquéfiantes. Ne coagulant pas le lait, ne faisant pas fermenter gélatine des colonies d'un les sucres, liquéfiant lentement le sérum coagulé, ne produisant pas d'indol. Pigment insoluble dans tous les dissolvants usuels

Trouvé dans un cas de chromidrose de l'homme.

(TROMMSDORFF).

Microcoques de dimensions moyennes ou grandes (0,6-1,5 u).

a) M groupes en diplocoques gonococciformes ou en petits amas, donnant des colonies d'un jaune d'or. Action pyogène expérimentale

M. (Staph.) meningitidis aurantiacus (Wyssokowitsch). M. citrous rigensis (Bazarewsky). soufre sur gelose et sur la gélaline qui est lentement liquefiée. Culturcs d'un jaune plus foncé sur pomme de terre, Ne troublant pas le bouillon. Tuant la Isolé du liquide céphalo-rachidien au cours d'une méningite otique humaine, 3) Gros microcoques de 1,2-1,5 u donnant des cultures peu abondantes, d'un jaunesouris. M. citreus granulatus (Freund) est très voisin du précédent.

Prenant le Gram.

1º Formant en 5 ou 6 jours des spores résistant 1/2 heure à 100º. 2º Ne formant pas de spores.

M. ochroleucus (Prove).

M. Biskra (Duchaux). a Pathogène pour le lapin (gangrène cutanée au point d'injection et septicémie). fiant rapidement la gélatine; odeur eireuse, Alcalinisant le lait sans le coaguler. 2 cils au moins. Petites colonies rondes, blanches, puis jaune de chrome, liqué-

(Isolé du sang de l'homme).

Non pathogenes.

de la piqure. Mince bande grise sur pomme de terre. Liquéfiant le sérum coagulé. Gros m. 2 u à 2,3 u), groupés en diplocoques gonococciformes. Colonies rondes, aunâtres puis jaune ocre. Liquéfaction en cupule; pas de culture dans le canal (Isolé des voies urinaires, de suppurations.)

M .Cryptococcus) xanthogenicus M. (Diploc.) subflavus (BUMM). (DOMINGOS FREIRE)

Le Diplocoque jaune orange de Steinschneider doit être identifié au m. pré-

- Immobiles.

M ascoformans (= ascococcus equi) de 10 à 100 µ dans le tissu pathologique (botryomycome du cheval) et dans le pus qui s'en écoule. (Amas entourés d'une masse gélifiée. Dépourvus de capsule 1º Microcoques entourés d'épaisses capsules et groupés en amas zoogléiques dans les milieux artificiels sauf parfois dans le sérum liquide, et se groupant alors par deux ou par quatre. Cultures ne présentant aucune différence essentielle avec celles de M. pyogenes aureus liquéfaction plus lente, développement beaucoup plus grêle sur gélose, odeur de fraise des cultures sur gélatine et pomme de terre). Virulence très variable pour le cobaye et le lapin (accidents locaux ou généraux). Agent du « champignon de castration » du cheval, transmissible à l'homme.

Synonymes: Discomyces equi (Rivolta), Botriomyces (Bollinger), Botryococcus

ascoformans (Kitt, Micrococcus bolryogenes (Rabe).

sule même dans les milieux artificiels et ascococcus cantabridgensis (Hankin) (retiré de la bouche). Ce dernier M. a des capsules moins nettes; il donne sur Neumann, on peut rattacher au M précédent : ascococcus Billrothii qui est encap-Note. - Les différences qui séparent l'agent du botryomycome de M. pyogenes Rosenbach), sont presque exclusivement d'ordre biologique. D'après Lehmann et gélose un revêtement visqueux, étalé, transparent.

2º Microcoques groupés en chaînettes ou susceptibles de présenter cette disposi-

tion dans les milieux liquides.

a) Liquefaction tardive et incomplète (simple ramollissement) de la gélatine. Pigment aune-brunâtre à la surface des milieux usuels; colonies non colorées dans le canal de la piqure. Petits microcoques groupés par deux ou en courtes chaînettes.

- a) Petit m. (0,3 µ) groupés en courtes chaînes même sur les milieux solides. Colonies sur plaques jaunes ou verdâtres. Liquéfaction cylindrique. Coagulation
- ques d'un jaune franc à structure radiée (aspect de roue), à contours nets. Epais revêtement jaune brillant sur pomme de terre. Coagulation rapide du lait. Gros diplocoques pouvant se disposer en courtes chaînettes. Colonies sur pla-3° Microcoques ne se disposant pas en chainettes. Coagulant le lait. Action protéolytique. (Habitat : air (9

M. donnant sur pomme de terre à moițié desséchée des colonies caractérisa) Culture favorisée par la sécheresse du milieu artificiel

M. flavus desidens (Flugges).

(Streptococcus) coli brevis ESCHERICH).

M. flavus liquefaciens (Flugge).

TABLEAU XI (Suite)

liques, deux fois plus épaisses que celles qu'ils forment sur la pomme de terre humide, en forme de pyramide ou de coupole, d'aspect crayeux. M. n'ayant aucun pouvoir fermentatif a l'égard des hydrates de carbone. Optimum 22º.

Cultivant de 5º à 40°.

gélatine des colonies à contours nets d'un jaune ocre. Liquéfaction rapide cupuiforme, puis cylindrique avec dépôt jaune; coagulant le lait en quelques aune ocre, plat, à bords sinueux ; sur pomme de terre préalablement dessé-M. de 0,9 μ, isolés ou par deux et souvent en amas, formant sur plaques de ours. La culture sur pomme de terre humide consiste en un faible enduit ches (par un sejour à l'étuve) les colonies, deux fois plus saillantes, ont l'as-

pect de petites pyramides, sèches, poudreuses, d'un blanc de chaux. M. isolès ou par deux, rarement en amas, colonies sur plaques analogues à celles du M. précédent, mais liquéfiant lentement la gélatine (après deux semaines, Liquéfaction « en bulle » puis voile. Le laif devient jaune, puis il est lentement coagulé (en quelques semaines'. La culture sur pomme de terre humido est faible, d'un jaune orangé; sur le tubercule sec, les colonies, saillantes, affectent la forme de coupoles blanches, sèches

Note. - Ces microcoques, trouvés sur de la viande sèche, conservée à basse température, dont la surface s'était recouverte d'un enduit blanchâtre,

sont inoffensifs pour les animaux (per os).

1. - Coagulant le lait avec réaction amphotère (Ferment lab) b) Ne presentant pas ces particularités cullurales.

11. - Coaquiant le lait avec réaction acide. (Trouvé dans le fromage).

 α) M. de dimensions moyennes (0,8 μ), habituellement en amas, par deux ou isolés, coagulant le lait en 1-8 jours. Trouble intense, uniforme du bouil-

lon. Optimum 37°. Action pyogène variable. Liquéfaction rapide (dès le 2° ou 3° jour), infundibuliforme puis cylin-

- Colonies de couleur jaune orangé. .

Colonies de couleur jaune pâle.

Note - Ces trois microcoques ne représentent que des variétés transformables d'une même espèce. Doivent être rattachés également au Liquéfaction très lente. Colonies de couleur jaune-orangé .

M. pyogenes var. citreus (Passer). M. pyogenes var. aureus (Rosen-M. salivarius pyogenes (Blonbi).

M. xerophilus (GLAGE),

M. pulcher (Gragg).

M. (staphyl.) nº 32 (Troili-Peters-

M. Inteus Groupe de M. pyogenes

lococcus mastitidis aureus (Guillebeau) et d'après Lehm. et Neumann : groupe de M. pyogenes d'après Löhnis : M. fulvus (R. Weiss), Staphy-M. flavus conjunctivæ (Gombert). Ce dernier toutefois. n'a pas donné, de culture apparente sur pomme de terre M. strobiliformis (Lembke)

incomplètement décrit, appartient également à ce groupe.

Ne troublant pas le bouillon. Cultures aussi abondantes à 20° qu'à 37°. Non M. de dimensions moyennes (0,4 à 1,2 µ), habituellement par deux ou par quatre. Coagulant le lait lentement (vers le 20° jour) et incomplètement. 02

nuleuses). M. cupularis (Lembke) et M. corrugatus (Dyar), incomplètement décrits, mais qui ne troublent pas le bouillon, paraissant identiques Note. - M. flavus (Flügge) ne diffère du précédent que par des détails : moindre tendance à la formation de tétrades, colonies plus finement graà M. luleus.

4º Microcoques ne se disposant pas en chainettes Ne coagulant pas le lait a) Ne cultivant pas sur pomme de terre Ne modifiant pas le lait.

- Ne modifiant pas le lait. Colonies sur plaques les unes jaunes, les autres blanches. - Donnant au lait un gout désagréable. b) Cultivant sur pomme de terre.

(M. cremoïdes (Zimmermann) est très voisin du précédent.)

M. n. 1 var. a (Freudenheich M. bicolor Zimmenmann).

M. nº 1 var. b FREUDENBEICH).

M. luteus (Lehmann et Neumann).

(snife) pyogene Groupe M ab

TABLEAU XII

Sarcines liquéfiant la gélatine, chromogènes jaunes.

S. flavescens (Henrici). S. aurantiaca (Koch).	S. aırantiaca (Fuügge).	S. lutea (Frügge).		S. equi (Stubbunath).		S. flava (de Bary).
α) Matière colorante d'un jaune soufre; liquéfaction lente. β) Matière colorante d'un jaune orangé; liquéfaction rapide.	1. Colonies d'un jaune orangé sur gélose et gélatine. Culture sur pomme de terre abondante, orangée, brillante puis verruqueuse. (S. aurea (Macé) et S. aurescens (Gruber) ne diffèrent de l'espèce précédente que par des caractères peu importants.)	 aâtre. Trois sarcines voisines: α) Colonies sur plaques grossièrement grenues, pigment jaune-soufre; culture sur pomme de terre surélevée puis étalée, jaune-soufre ou jaune citron, tomenteuse. Paquets volumineux 	(D'après l'aspect des colonies sur plaques, Stubenrath distingue deux variétés fortement liquéfiantes (var. typique et var. diffluente) et une variété peu liquéfiante (var. compacte). 3) Colonies sur plaques moyennement grenues; cultures d'un gris-jaunâtre sur tous les mailieux.	Peuvent être considérées comme des variétés de l'espèce précédente : S. livido- latescens (Stubenrath) qui n'en diffère que par la culture sur pomme de terre (gris- rougeâtre, ne devenant jaune-brunâtre que vers la 3º semaine). S. variabilis Stuben-	S. mobilis (Maurea) dont les colonies sur gélatine et gélose présentent parfois une fluorescence jaune-verdêtre (La mobilité ne constitue plus un signe différentiel spécifique depuis que les travaux de Meyer et Ellis ont montré que toutes les sarcines traversaient une phase de mobilité).	chrome; paquets peu volumineux. (Paraissent se rapporter à l'espèce précédente un certain nombre de sarcines qui ont été individualisées d'après des caractères distinctifs trop fragiles: S. superba, S. olens Henrici, S. liquefaciens) Frankland, S. bicolor, S. gigantea (Kern).

TABLEAU XIII

Bâtonnets aérobies, liquéfiant la gélatine, chromogènes jaunes,

	B. piscicidus agilis (Sieber)	B. annulosporus (Сноикеугл	
formant des spores.	 I. — Mobiles. A. — Bacille pathogène pour les animaux de laboratoire usuels, mais non pour les oiseaux Agent de maladies spontanées des poissons. Bâtonnets courts. Coagulation du lait. Fermentation du glucose. Le filtrat des cultures est toxique. B. — Bacilles non pathogènes. 	1° Spores rondes terminales. Batonnets longs et grêles (0,5 μ/4 à 7 μ). Filaments dans les vieilles cultures. Lait peptonisé sans coagulation. Dissolvant le blanc d'œuf. Ne faisant fermenter ni le lactose ni le glucose. Ne produisant pas d'indol	2° Spores allongées. α) Batonnets épais (1,2 à 2 μ/2 à 3 μ), isolés ou en courtes chaînes. Optimum 22°. Strie jaune sale, visqueuse sur la gélose qui brunit (Spores 0,8 à 1,2 μ/1,7 à 2,2 μ). Le jaune sale, visqueuse sur la gélose qui brunit (Spores 0,8 à 1,2 μ/1,7 à 2,2 μ). Le jaune sale, visqueuse sur la gélose qui brunit (Spores 0,8 à 1,2 μ/1,7 à 2,2 μ). Le jain est tardivement et partiellement coagulé puis peptonisé. Ne produisant ni

B. petasites (Meyer er Gotthen?

indol ni gaz. Liquéfiant la gélatine comme Sp. choleræ (48 heures). Culture sur

pomme de terre visqueuse, jaune (Habitat : plantes). D'après Gottheil, B. lactis (Lembke) serait identique

B. parvus (Meyer by NRIDB).

Bâtonnets grêles et courts (1,9 μ/0,5 à 0,7 μ). Spore cylindrique (0,3 μ/1,1 μ). Liquéfaction lente de la gélatine. Culture jaune, devenant ridée sur gélose et sèche, pelliculaire sur pomme de terre (Habitat : fumiers) B. leptodermis (Burchard), B. lævis (Frankland), B. coccoïdeus (Pansini), B. geniculatus (de Bary), B. leptosporus (Klein, B. (tyrothrix, tenuis (Duclaux) et B. intermedins (Flügge).

- Immobiles.

A. — Colonies sur gélatine non chromogènes.

Bâtonnets épais, trois fois plus longs que larges; culture grise, muqueuse sur la gélatine

TABLEAU XIII (Suite)

B. n° 14 (ADAMETZ).	B. subanaerobius = B. butyricus	Щ	B. Tricomii (Tricomi).	de chrome; sur plaques, colo- B. villosus liquefaciens (TATA- ROFF).	B. viscosus ochraceus (Freund).
qui est rapidement liquéfiée. Culture épaisse, plissée, blanc sale, puis d'un jaune rougeâtre sur la gélose. Ce bacille prend le Gram; peptonise le lait	B. — Colonies chromogènes jaunes sur gélatine. 1º Bacilles déformés en fuseau par la sporulation (qui n'a lieu qu'en présence d'air: anaérobie facultatif). Produisant de l'acide butyrique et de l'alcool butylique dans les milieux hydrocarbonés	2º Bacilles ne présentant pas cette propriété fermentative. α) Non cultivables pas sur pomme de terre; ne cultivant qu'au-dessousde 30°. Bátonnets disposés en longs filaments onduleux. Colonies jaunâtres sur gélatine avec prolongements en pattes de crabe.	3) Cultivables sur pomme de terre. a) Bacilles gréles, pathogènes pour le cobaye, le lapin, la souris grise, mais non pathogènes pour la souris blanche. B. Tricomii (Tricomi).	Colonies sur pomme de terre humides, jaune de chrome; sur plaques, colonies à contours irrégulièrement dentelés	- Colonies sur pomme de terre d'un brun-verdatre, sur plaques de gelatine, jaune de chrome à contours lobulés.

TABLEAU XIV

-
S
0
7
de spores
0
-01
9,
N
_
0
01
pas
0
-
-
7
=
22
=
0
<u>~</u>
9
ne forman
1
(0)
jaunes
16
-
7
a
100
63
2
=
-0
00
0
romogènes
=
7
9
=
-
0
-
0
Ë
tin
atin
Slatin
gélatin
gélatin
n gélatin
la gélatin
la gélatin
t la gélatin
nt la
juéfiant la gélatin
nt la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
nt la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la
es, liquéfiant la

ne formant pas de spores.		Bact. septicum ulceris gangræno-si cutis (Babès.		Bact. herbicola aureum Bunn er Duggeni).		Bact. squamosum (Pansini).	Bact. ramificans (B. n° 9) (Pansini). Bact. radiatum (Zimmenmann).	Bact. diffusum (Frankland).
Bâtonnets aérobies, liquéfiant la gélatine, chromogènes jaunes, ne formant pas de spores.	. – Mobiles. A. – Bactéries pathogènes pour les animaux de laboratoire.	 Prenant le Gram. Culture jaune sur pomme de terre Liquéfiant le sérum. Pathogène pour le lapin. Ne prenant pas le Gram. Culture brune sur pomme de terre. Petits bâtonnets à extrémités arrondies. Donnant des bulles de gaz dans la gélatine. Colonies rondes, nettement circonscrites, d'un gris-jaunâtre, transparentes sur la gélose. Pathogène pour la souris, le cobaye et le lapin	Trouvé dans un cas mortel d'ulcérations multiples de la peau. B. — Bâtonnets réunis en amas entourés d'une gangue muqueuse sur les milieux solides. Bâtonnets courts et à 3 n/0.6 à 0.70, ne prenant pas le Gram. Colonies d'un jaune	d'or sur gélatine, gélose et pomme de terre. La gélatine lentement liquéfiée devient visqueusc. Le lait n'est pas coagulé. Pas de production de gaz dans les milieux glucosés.	Note. — Ascobacillus citrens (Unna et Tommasoli) et ascobacterium luleum (Babès) [= Ascobacillus sacchari (Smith) d'après Macé] imparfaitement décrits, paraissent voisins du précédent.	a) Non cultivables pas sur pomme de terre. Bâtonnets petits et fins. Colonies jaunâtres écailleuses sur gélatine et sur gélose. Dépôt jaune orangé dans la gélatine liquéfiée.	1. Bactéries ayant sur pomme de terre des propriétés chromogènes spéciales. a) La pomme de lerre est colorée en vert. 3) Les cultures sur pomme de terre ont une coloration d'un rouge-brun. 2) Bactéries ayant des propriétés chromogènes particulières sur gélose ou	gélatine. a) Culture jaune-verdâtre sur gélatine, couleur crème ou jaune-verdâtre sur gélose et pomme de terre.

Bact. rhenanum (Burri).

courbés, formant parfois des filaments de (5 à 10 µ). Un voile jau-nâtre se forme à la surface du lait qui n'est coagulé qu'à la partie

supérieure du tube.

TABLEAU XIV (Suite)

Bact. turcosa (Zimmermann).	Bact. arborescens (Frankland) = B. n° 1 Breunic . Bact. rhizopodicum margarineum (Jolus).	Bact. liquefaciens lactis amari (Freudennerch).	Bact. flavum (Fuhrmann).		Bact. aureum liquefaciens (MATZUSCHITA).	Bact. coli var. luteoliquefaciens (Lehmann et Levy).
 β) Culture sur gelatine jaune verdâtre (couleur turquoise). Liquéfaction très lente, sur gélose culture assez épaisse, brillante, d'une couleur jaune-soufre verdâtre intense. B. très court et très grêle (0,3 à 1,5 μ/0,2 à 0,3 μ). Liquéfaction lente. Gertains échantillons ne liquéfient guère la gélatine (simple dépression) 3° B. chromogènes jaunes sur gélatine ou gélose ne présentant pas les caractères précédents. α) Colonies sur plaques de gélatine, présentant des prolongements périphériques fins. Bacilles grêles. 	 a) Liquefiant lentement la gélatine b) Liquéfiant rapidement la gélatine c) Colonies sur plaques de gélatine ne présentant pas de prolongements périphériques a) Coambant le lait 	I - Agents d'altération spontanée du lait. Rendant le lait amer	 Prenant le Gram Ne prenant pas le Gram. Ne produisant pas d'indol. Ne produisant pas de gaz dans les milieux sucrés B. — Chromogènes jaunes sur gélatine. 	gulant énergiquement le lait; produisant de l'indol. Ne prenant pas le Gram.	— Ne produisant pas de gaz dans les milieux glucosés. (B. tremelloïdes (Tils) se distingue du précédent par ses colonies nuageuses sur plaques de gélatine et sèches, d'un jaune d'or sur gélose.) — Produisant des gent de gélatine et sèches, d'un jaune d'or sur gélose.)	. 0

Bact. nubilum (Frankland-Zimmer-Bact. graveolens (Bordon: UFFRE-Bact lactis saponacci (Weighann Bact. saliphilum (MATZUSCHITA). Bact. ochraceum (Zimmermann). Bact. plicatum Zimmenmann). Bact. angustum (Lembre). Bact. nº 12 (ADAMETZ). Bact. nº 5 (Sirbert). ET ZIRN. b) Prolongements périphériques pointus. Culture sur gélose sèche, argentée, puis humide, d'un jaune ambré. Culture jaune, humide sur pomme de terre. Odeur a) Colonies sur plaques muriformes, d'un gris jaunatre. En piqure dans la gélatine, liquéfaction lente ; formation à la surface d'une culture blanc-jaunatre ridée, qui s'enfonce quand apparaît la liquéfaction.

2) Colonies sur plaques de gélatine entourées de prolongements périphériques.

a) Prolongements périphériques courts. Colonies sur gélose tomenteuses, en chougélose, culture d'un jaune-brunâtre pâle. Culture blanchâtre, puis d'un jaune-Bâtonnets très courts, donnant une culture grise sur pomme de terre, liquéfiant a) Non chromogènes sur gélatine. Chromogènes jaunes sur gélose.

1º Bâtonnets courts coagulant le lait sans l'acidifier; culture formant une coua) Les colonies sur plaques de gélaline, sont rondes, à contours nets (colonies en forme de goutte); culture sur gélose de couleur crème ; sur pomme de terre jaune citron ou orangé, abondante. Le milieu optimum est une gelose conte-Prenant le Gram. Bâtonnets courts (1,2 à 3,6 µ/0,5-0,8 µ). Cils terminaux. Troublant faiblement le bouillon avec voile léger. Produisant de l'indol. Déga-. - Bâtonnets rendant le lait visqueux sans le coaguler et lui communiquant une odeur et un goût de savon. Culture ridée sur gélose. Optile sérum coagulé.
c) Colonies sur gélatine chromogènes jaunes ou jaunatres.
1° Cultures sur plaques de gélatine présentant des caractères particuliers. groupe: B. cuticularis (Tils), B. aquatilis et B. aquatilis villosus (Tataroff). b) Colonies sur gelatine d'abord d'un blanc grisâtre, puis d'un jaune verdâtre. B. - Bâtonnets ne présentant pas ce caractère. 2º Bâtonnets grêles ne coagulant pas le lait, prenant le Gram. b) Ne coagulant pas le luil. lécaloide. Groupe de B.fulvum

TABLEAU XIV (Suite)

orangé ou jaune-brun sur gélose et sur pomme de terre Le lait n'est pas c) Prolongements périphériques en forme de franges. Culture humide, jaune coagulé, mais jaunit. Bâtonnet grêle (0,3 à 0,5 u) prenant le Gram.

Groupe de B. fulvum (suite)

Prolongements périphériques fins et ramifiés (aspect de canaux de Havers', En piqure dans la gélatine, fincs arborisations nuageuses partant du trait. Cul-(p

ture jaune, brillante sur gélose. Bâtonnet court et grêle . Colonies sur plaques de gélatine rondes ou irrégulières, non ciractéris-

a) Prenant le Gram.

la gélatine culture en clou, jaune citron; la liquéfaction est lente. Sur gélose a) Batonnets courts (1-3,6 µ/0,8-1,2 µ'. Se développant mieux à 18°. En piqure dans et pomme de terre la culture est épaisse et jaune . . . Bact. n° 8 Choukevitch) paraît identique au précédent.

b) Bâtonnets courts, coccoïdes. La gélatine est liquéfiée lentement. Sur gélose en strie, il se développe une bande étroite, jaune; sur pomme de terre, une couche seche janne citron .

Bacl. endolhrix (Guéguen', trouvé dans les cheveux dans un cas d'alopécie pseudo-peladique, doit être rapproché des deux bact. précédents.

c) Bâtonnefs polymorphes; colonies sur plaques lobulées, culture visqueuse jaune de chrome sur gelose. Culture incolore, lentement liquéfiante sur sérum, Odcur désagréable.

3) Ne prenant pas le Gram.

a) Bâtonnets grêles, donnant une culture jaune d'or sur gélatine avec liquéfaction

b) Batonnets grêles, petits, donnant une cullure jaune soufre sur gélatine avec lente; jaune paille sur gélose ; jaune sale, peu abondante sur pomme de terre. liquéfaction lente ; jaune ou jaune-brun sur gélose ; humide, jaune foncé sur pomme de terre

(B. pseudo-conjunctivitidis (Kartulis) ayant les dimensions et l'aspect de Batonnets polymorphes; colonies sur plaques lobulées. Culture visqueuse, B. murisepticum parait identique au précédent.) 0

Bact. fulvum (ZIMMERMANN, LEH-MANN ET NEUMANN).

Bact. coronatum (Keck).

Bact. helvolum (ZIMMERMANN).

Bact. citreum cadaveris (Srnass-MANN ET STRECKER). Bact. chromicolor no 1 (FREUND'.

Bact. flavum (Lusrig).

Bact, flavo-fuscum (Lembre).

Bact. chromicolor no 2 (FRBUND). jaune de chrome sur gélose; culture incolore, lentement liquéfiante sur sérum. 1. Plusieurs bactéries insuffisamment décrites pour être classées appartiennent en outre à ce groupe. Ce sont : B. flavus (Macé), B. aureus Frankland), B. sulfureus (Kern), B. nitens liquefaciens (Kern)

TABLEAU XV

Microcoques et sarcines aérobies, liquéfiant la gélatine, chromogènes bruns ou noirs.

- Paquets réguliers. Culture lente. Colonics sur gélatine et sur gélose d'un jaune brunâtre ou brun-rougeâtre; liquéfiant lentement. Cultivant très mal sur pomme I. - Eléments groupés en paquets (sarcines).

A. - Culture incolore. Le pigment rouge-brun diffuse dans le milieu. Liquéfaction - Microcoques ne présentant pas ce groupement.

tat: Air) M. badius (Lehmann er Neumann). 2º Se développant dans le lait. 1º Ne se développant pas dans le lait. Liquéfaction lente. Éléments ronds. (Habi-B. – Culture colorée.

a) Liquéfaction lente; le liquide présente une consistance muqueuse. En piqure, il se forme une masse gluante, d'un jaune brun, à la surface, et une masse blana) Colonies brunes sur tous les milieux.

D Liquéfaction rapide; le liquide se recouvre d'un voile sépia, et la culture répand

une odeur de pourriture.

3) Colonies petites, brunes sur gélatine, grises puis jannes sur les autres milieux.

7 Colonies grises ou brunes à pourtour violet sur gélatine. En piqure le voile est violet. Sur gélose, les colonies sont brunes. Elles sont d'un brun-verdâtre sur pomme de terre. Le sérum est liquéfié. Diplocoque.

8) Pigment noir sur gélatine; les colonies superficielles seules noircissent. Se développant mieux sur gélose glucosée que sur gélose ordinaire. Ne modifiant pas le

Trouvé dans des cas de trichomycose de l'aisselle avec sueurs noires).

Sarcina fulva (Stubenbath).

Sarcina cervina (Stubenrath)

M subgriseus (MASCHEK).

M. flavus desidens (Frugge).

M. fuscus (Maschur).
M. hemorrhagicus (Klein).

M. fætidus fluorescens (Klamann).

M. nigrescens (Castellant).

TABLEAU XVI

Bâtonnets aérobies, liquéfiant la gélatine, chromogènes bruns

Formant des spores. Mobiles.

1º Bacille ayant les caractères généraux de B. mesentericus vulgatus. - Pigment brun sur gélatine, gélose et pomme de terre.

est lentement liquéfiée en doigt de gant (4 semaines). En culture sur gélose, le milieu Bacille épais (2 4/1,2 à 1,6 4), isolé ou en filaments. Spores 1,7/1,1 4. La gélatine

devient brun-noirâtre. Culture brunâtre, coliforme sur pomme de terre. Pigment noir sur gélatine, gélose et pomme de terre.

senfericus vulgatus. Elaborant un pigment noir qui diffuse dans la gelose et dans la gélatine liquéfiée. Sur pomme de terre révêtement plissé, brun ou brun-noir. B. ressemblant morphologiquement et en cultures sur gélatine et gélose à B. me-

Culture épaisse, coulante, blanchâtre, plissée sur gélose. Non cultivable sur pomme de terre à 37º. Sur ce milieu, il donne à la température ordinaire une culture rose - Colonies blanchâtres dans la gélatine qui devient jaune-brunâtre.

puis brune ; la pomme de terre brunit.

— Cultures non chromogènes sur la gélatine, chromogènes brun-noir sur gelose et sur la plupart des autres milieux solides. La pomme de terre noircit. 1º Culture plissée, d'un brun-noir sur gélose et pomme de terre.

2º Culture lisse, d'un brun-noir sur gélose et pomme de terre . - Ne formant pas de spores. Mobiles.

une finorescence verte dans le bouillon. Les échantillons qui ont perdu la propriété - B. pouvant donner des colonies brunes, mais produisant ordinairement de produire des pigments bleus ou verts sont susceptibles de la récupérer après passage par le cobaye. Pathogène. (Voir le tableau des B. chromogènes verts.)

Sur gélatine en piqure, la liquéfaction est rapide à 6º. Des flocons bruns nagent dans un liquide teinté de bleu dans sa partie supérieure. La gélatine liquéfiée est - B. élaborant à la fois un pigment brun et un pigment bleu.

recouverte d'un voile bleu. Dans l'eau peptonée, le liquide prend une coloration - Colonies non chromogenes sur gélatine. verte, puis bleue, puis brune . . .

α) B. pathogènes pour le lapin, et surtout pour la grenouille qui meurt en 24 heures de septicémie après injection dans le sac lymphatique, et chez laquelle on produit des gangrènes mutilantes des membres après injection intramusculaire. Bâtonnets grêles de longueur inégale. Culture sur pomme de terre jaune, puis brune, pouvant ressembler à celle du Bact. de la morve. 1º B. pathogènes pour les animaux de laboratoire.

B. mesentericus fuscus (Flugge),

B silvaticus (Meyer et Neide).

B. aterrimus tschitensis Keimenko)

B. dermoïdes (Tataroff).

B. aterrimus (LEHMANN BT NEUMANN) = B. mesentericus niger (Lunr) lactis niger (GORINI).

Bact pyocyaneum (Gessard).

Bact. cyaneo-fuscum (Beijerinck).

Bact, hydrophilum fuscum (SANA-

0		on Drun nour.
nigrica	Ract	T) Colonies sur gelose, grises, puis noirâtres à bords franges; le milieu se colore Ract nigrie;
annura	Bact	tible, grisatre sur pomme de terre. To Optima 20°
	-	3) Colonies sur gelose, brunes et brillantes. Couche très mince, à peinc percep-
orunin.	Bact	brunâtre, épaisse sur pomme de terre
A	-	a) Colonies sur gelose d'un blanc pur. Le milieu brunit. Culture jaune sale puis
		2º B. non pathogènes pour les animaux de laboratoire.
racuso	Daci	pomme de terre épaisse, devenant brun-rouge
tochart	Doct	3) B. pathogenes seulement à fortes doses pour la souris et le cobaye. Cuiture sur

très lentement et faiblement la gélatine, donnant sur gélose une mince couche d'un blanc grisâtre, humide. Non pathogène 1. Ne cultivant pas sur pomme de terre B ne prenant pas le Gram, liquéfiant - Colonies brunes sur gelatine.

2º Cultivant sur pomme de terre.

rapidement liquéfiée. Bande grise sur la gélose Culture épaisse, étalée, rougeâtre ou chamois sur pomme de terre, mince et grise sur sérum. a) Bact. pathogène pour le lapin et la souris. Elèments courts, coccoïdes. Cultures brunatres avec couronne de prolongements rayonnants dans la gelatine qui est

3) Bact. non pathogenes (Bacteries voisines).

a) Colonies épaisses de couleur brune sur gélatine, gélose, pomme de terre et

c) Colonies sur gélatine jaune-brun, présentant des prolongements pointus. Cul-

Bâtonnets de 1,7 å 2,5/0,7. Colonies coliformes sur plaques de gélatine. En piqure, liquéfaction en doigt de gant avec dépôt brun. Voile sur le bouillon qui est alcalinisé. Culture jaune puis brune, humide sur pomme de terre. Le pigment est so-- Cultivant sur pomme de terre.

au-dessus de 20°.

Bâtonnets courts. Colonies sur plaques, ressemblant à celles de M. (strep.) pyoensuite le milieu brunit. Le bouillon reste clair (flocons. Agent d'une infection genes; puis la culture s'enfonce. Bande gris-jaunâtre devenant brunâtre sur gélose; spontanée des truites ; pathogène pour certains poissons. . .

ture brune sur pomme de terre, Lehmann et Neumann n'ont pas obtenu de culture (Cette espèce a été décrite par Emmerich et Weibel qui avaient obtenu une cul-

tonum (Fischen).

icans (Marzuschita).

atum (ZIMMERMANN).

ans (Kenn).

Bact. littorale (Russel).

Bact. pneumonicum agile (Schou).

Bact. ferrugineum (RULLMANN).

Bact. tuberigenum no 3 (GONNER-MANN.

Bact. acutangulum (Lembke).

Bact.bruneum rigense(Bazarewski)

BT Bact. salmonicida (Lehmann NEUMANN).

Bact. fluorescens liquefaciens (Flugge) = B. fluorescens nivalis

TABLEAU XVII

Bâtonnets aérobies, liquéfiant la gélatine, chromogènes verts

I. - Mobiles. Ne formant pas de spores.

1º Les cultures en bouillon alcalin donnent la réaction de la pyocyanine (Pigment bleu, soluble dans le chloroforme, virant au rouge en présence des acides A. - Pigment vert fluorescent diffusant dans le milieu environnant.

B. ne prenant pas le Gram ; provoquant de l'hémolyse sur plaques de gélose au sang (Schuster, ; réduisant les nitrates et nitrites en azote ; se multipliant dans l'organisme animal : pathogène pour le cobaye (abcès par injection sous-cutanée ; 2º Ne donnant pas la réaction de la pyocyanine (Groupe de bactéries très voisines) l'inoculation intrapéritonéale de races virulentes peut tuer le cobaye'. .

Bact pyocyaneum (Gressand).

, a) Cultures non plissees sur gelatine et gelose.

a Ne prenant pas le Gram.

 Cultures analogues à celles de B. pyocyaneum; ne produisant pas d'hémo-lyse sur plaques de gélose au sang (Schuster; habituellement sans pouvoir dénitrifiant (exceptions assez nombreuses). Non pathogène pour les animaux de laboratoire : ne se multipliant pas dans l'organisme animal. B (pseudomonas) chlorophaena (Migula), B. pseudo-gracilis (Migula), B. aeruginosum (Schröter), B. oogenes fluorescens (Zörkendörfer) paraissent tres voisins du précédent, sinon identiques. Le B. fluorescent des eaux de Montpellier (Ducamp et Planchon) en diffère par la production d'un voile épais et plissé à la surface du bouillon; son optimum est 37°.

- Colonies en feuille de fougère. Pathogène pour le lapin (on trouve des - Bactéries pathogènes pour les animaux de laboratoire, nodules dans les viscères des lapins morts)

— Colonies sur gélatine ressemblant d'abord à celles de B. typhosum puis à celles de B. vulgare. La liquéfaction est lente en doigt de gant. Sur pomme de terre, la culture est jaune brune, le milieu gris de plomb. Lou-

Prenant le Gram. Pathogène pour la souris gueur extrêmement variable.

de jasmin. Pathogène pour le lapin. Optimum 37°.

Bact. leucæmiæ canis (Lucer).

Bact. (JAEGER), fluorescens (JAEGER),

Bact. smaragdino fœtidum (REI-

Groupe du Bactérium fluorescens liquefaciens

liquefaciens. Les vieilles cultures sur gélatine ont une odeur putride. . . très tardive et minime; la gélatine se colore en vert Sur gélose, culture blanche, Les milieux de culture se colorent en vert. Le sérum est liquéfié. Le lait n'est de 20°. Non pathogène. Les cultures ressemblent à celles des B. fluorescens Cullures plissées sur gélatine et sur gélose. Petits bâtonnets. Colonies brunes, plissées sur gélatine. La liquéfaction est tomenteuse, puis plissée. Sur pomme de terre culture brune, lisse puis plissée. b) Bâtonnets courts, ne formant pas de chainettes, cultivant mieux au-dessous Auorescens (suite, du Bacterium

Bact. termo-fluorescens (Duran-

Bact fluorescens mesentericum (TATAROFF). Bact. polychromogenes (THIRK).

Bact. chlorinum (MACE).

C. - Pigment vert non fluorescent.

identiques au précédent.)

Bact. verdissant la gélatine et formant à sa surface un voile blanchâtre. Sur

fonce. En piqure, la gélatine est vert-émeraude avec dichroïsme rouge. La géla-

tine liquéfiée devient brun-rouille ou rouge, bleue, violette. Sur pomme de terre

1. - Pigment vert, puis rouge, bleu, violet dans la gélatine liquéfiée.

Bact chromo-aromaticum (GALgélose, la culture est blanche, le milieu devient gris. Sur pomme de terre la culture est brune. Odeur aromatique des cultures. B. de dimensions moyennes

TIER).

Bacillus chlororaphis (GUIGNARD).

II. — Immobiles.

pathogènes pour le lapin.

A. - Formant des spores. Pigment vert émeraude. Optimum 25 à 30°, se colorant difficilement par le Gram. Le bouillon prend une consistance glaireuse.

B. - Ne formant pas de spores.

terre, culture gris-jaunâtre. L'ammoniaque augmente l'intensité de la couleur verte. 2° Colonies grises sur gélatine, verdissant à peine la gélatine liquéfiée, dégageant une odeur très fétide. Non chromogène sur pomme de terre. 1º Colonies brunes sur gélatine. La gélatine et la gélose verdissent. Sur pomme de

Bact. chlorinum (FRANKLAND).

Bact. graveolens (Bordon UFFRE-

DUZZI).

Bact. viridans (Symmens'.

les cultures sont d'un jaune-verdâtre. Le bouillon est légèrement troublé avec dépôt 3º Colonies verdâtres brillantes sur gélatine; la liquéfaction est lente. Sur gélose,

TABLEAU XVIII

Sarcines ou Microcoques, aérobies, liquéfiant la gélatine, chromogènes roses ou rouges.

Présentant le groupement en sarcines sur la gélose aqueuse seulement.

Les paquets ne se forment que dans l'infusion de foin. Sur gélose, la colonie ne rougit qu'au centre. Sur les autres milieux, coloration rose ou carmin

(Sarcina rubra (Menge) est identique à la précédente d'après Lehmann.)

1º Cultures non chromogènes, sur plaques de gélatine ressemblant à la culture de B. typhosum. Gélatine lentement liquéfiée (culture en clou au début). Culture lisse et

Cultures roses sur plaques de gélatine. La liquéfaction, extrêmement lente, ne commence qu'après plusieurs semaines (en piqure et par strie); elle peut faire défaut sur plaques. Culture sur gélose inclinée tantôt rose, tantôt rouge-carmin, tantôt rouge-orangé Non chromogène à 37°. Diplocoques de dimensions moyennes.

(M. corallinus Catani) est à rapprocher de cette espèce; il en est de même de M. cinnabarens Flügge) = M. cinnabarinus (Zimmermann) qui ne diffèrent guère de M. (dipl.) roseus que par la teinte rouge-brique ou rouge-cinabre de leurs cul-

Note. — Lchmann et Neumann rapprochent M. agilis, S rosea et M. roseus, tous très lentement liquéfiants des microcoques non liquéfiants ayant des propriétés chromogènes identiques.

1. Appartiennent à ce groupe : 1º Quatre espèces très voisines décrites par Kern, isolées par lui du tube digestif des oiseaux et produisant un pigment rose. Ce sont : M. cumulatus, M. carnicolor, M. rubiginosus; 2º deux espèces isolées de l'air par Frankland, produisant également un pigment rose. Ce sont : M. rosaceus et M. carnicolor. Ces microcoques, incomplètement décrits, n'ont pu être éétudiés d'une

M. agilis (ALI-COHEN).

Sarcina rosea (Schroeter).

M. typhoideus (M. A.) (Fourin).

M. (dipl.) roseus (Bonn).

TABLEAU XIX

Bâtonnets aérobies, liquéfiant la gélatine, chromogènes roses ou rouges, formant des spores, mobiles.

1º Spore terminale. Liquéfaction lente. Longs b. pouvant atteindre 4, 10 et 12 u; formes en baguettes de tambour plus épaisses que celles de B. tetani. Non chromogène sur bouillon. S. développant mal sur pomme de terre. Optimum 10 à 15°. . . A. - Bacilles longs.

B. Danteci (KRUSE) ou Bac rouge de Terre-Neuve (Le Dantec).

> (Agent d'une altération de la morue dite « morue rouge ».) 2º Spore centrale. Ce sont des b. qui prennent le Gram.

a) Culture chagrinée, janne, puis rougeatre sur gélose, peu ou pas chromogène sur

B. apicum (CANESTRINI). gelatine. Colonies roses puis membrane plissée sur pomme de terre.

3) Non chromogène sur gélose. Rouge, lentement liquéfiant sur gélatine, rouge vineux sur pomme de terre. Pathogène pour les abeilles, non pour le cobaye et la souris.

humides, carminées puis d'un rouge violacé sur gélose et pomme de terre . . Dépôt rouge carmin au fond de la gélatine liquéfiée. Cultures épaisses, muqueuses,

B. coccineus (Pansini).

B. ruber (ZIMMERMANN).

Bact. roseum (B. mesentericus ro-

seus) (KRAL).

Bact. rubidum (Eisenberg).

TABLEAU XX

Bâtonnets aérobies, liquéfiant la gélatine, chromogènes roses ou rouges,

ne formant pas de spores.

I. — Mobiles. A. — Ne se dévelonnant an'aux

- Ne se développant qu'aux environs de 18° à 20°.

Bâtonnets de dimensions moyennes, souvent en longs filaments. Liquéfiant lente-ment la gélatine et le sérum coagulé Pigment rouge-brun sur gélatine, gélose et

- Ne se développant pas sur pomme de terre. pomme de terre. Non pathogène

Colonies à contour net, d'un rose-clair sur gélatine et gélose. Ne liquéfiant la gélaline qu'après plusieurs semaines

C. - Présentant de longues arborisations latérales autour du trait de piquire en gélatine (comme B. Anthracis).

2,5 μ/0,8 à 0,9 μ), plus courts, coccoïdes sur pomme de terre. Ne prenant pas le Gram. Aérobies de prédilection. Optimum 18°; s3 développant mal au-dessus de 35°. Culrouge-brun (après 15 jours), liquéfiant rapidement le milieu qui prend une teinte d'un vert bleuâtre. Culture sur gélose blanc-jaunatre puis rouge brique, fluorescente ture sur gélatine (piqure) rose-jaunâtre, puis rouge-brique (après 8 jours) enfin sur les bords. Troublant le bouillon; pas de voile. Produisant de l'indol. Coagulant le lait en quelques jours, Odeur d'abord aigrelette puis putride des cultures. Pathotuant les poissons rouges (carassius auratus) à la dose de I à II gouttes de culture gene pour le lapin (inoculation sous-cutanée) à la dose de quelques centimètres cubes, fraiche (septicémie, ulcerations du tégument)

(Agent d'une épizootie des poissons rouges.)

D. — Ne présentant pas ces caractères.

Bact. carassisepticum (Ceresole).

Ce sont des bact, qui se décolorent par la méthode de Gram.

α) L'inoculation sous-cutanée des cultures est pathogène pour les animaux de laboratoire. Pigment insoluble dans l'éther. a) Batonnets courts, coccoides, facultativement anaérobies, n'élaborant pas de pigment à 37°. Pigment insoluble dans le chloroforme. Tuant rapidement par septicémie les animaux de laboratoire usuels, le chien et les oiseaux. (Isolé au cours d'épizooties de poulaillers.)

tures rouges à 37°. Faible solubilité du pigment dans le chloroforme. Tuant les animaux de laboratoire jeunes, surtout le cobaye et la souris, faiblement Bâtonnets grêles (2,5 µ/0,3 µ), strictement aérobies, pouvant donner des cul-

(Isolé de la surface de linges de corps.)

3 L'inoculation sous-cutanée des cultures n'est pas palhogène pour les animaux de laboratoire.

culture abondante, saillante, carmin puis pourpre. Coagulant le lait sans ferpas le Gram, strictement aérobies. Pigment soluble dans le chloroforme, décoa) Culture non chromogène à 37°, rose puis carmin sur gelose à 20°-22° et sur la gélatine qui se liquéfie vers le troisième jour. Liquéfiant le sérum coagulé plus rapidement à 37° qu'à 25°. Donnant sur pomme de terre à 28° en 24 heures, une mentation du lactose. Bâtonnets courts ou coccoides (0,5 à 0,6 \u03b4), ne prenant loré par l'éther. Une parcelle de culture déposée sur le tégument d'un papillon

filante sur gélose. Bacterium très court, coccoïde (0,8 à 1 µ, souvent 2 par 2, b) Culture chromogène à 37° sur gélatine et pomme de terre, incolore, blanchâtre, parfois en filaments. Liquéfaction rapide. Toutes les cultures sont extrême-. ment gluantes, s'étirant en longs fils .

(Agent d'une altération dite « rouge » de la sardine.) Le Microbe rouge de la sardine (Dubois Saint-Sévrin) doit être identifié au

précédent.

Synonyme: Bact. piscatorum (Lehmann et Neumann).

Le pigment rouge est insoluble dans l'eau.

Bâtonnets généralement très courts, ne prenant pas le Gram, aérobies de prédicaséine. Liquéfiant rapidement la gélatine et le sérum coagulé. Faisant fermenter lection. Coagulant le lait avec réaction légèrement acide, peptonisant ensuite la le glucose. Le pigment, de couleur pourpre, est insoluble dans l'eau, soluble dans l'alcool et dans l'éther. Pathogène pour le cobaye à la dose de 2 ou 3 centimètres cubes en injections intra-péritonéales. De petites doses ne sont pas virulentes. . Sont identiques ou très voisins : Groupe de Bacterium prodigiosum

Bact Santorii.

Bact. pyosepticum [Erythro-bacillus pyosept] (Fortineau). Bact. Broqueti = B. du rouge des papillons de ver à soie (Broquer). Bact. sardinæ = Cocco-bac. rouge de la sardine (Auche).

Bact. prodigiosum (Ehrenberg).

Bact. indicum [= B. ruber indicus] (Koch), isolé du contenu de l'estomac d'un

TABLEAU XX (Suite)

singe. Il ne diffère de Bact, prodigiosum que par la teinte rouge-brique de pigment. Il est faiblement pathogène (par la voie intraveineuse seulement).

B. rouge de l'eau (Lustig) ne diffère de Bact. prodigiosum que par des nuances minimes dont la constance est plus que douteuse. Il est également faiblement

Bact. plymouthense [= B. ruber plymouthensis] (Fischer), isolé de l'eau, liquéfie la gélatine plus lentement que Bact. prodigiosum (en 15 à 20 jours) ; ses cultures

sont filantes; il n'est pas pathogène.

de Bacterium prodigiosum

Bact. kieliense [= B. ruber balticus] (Breunig), isolé de l'eau, se distingue de Bact. prodigiosum par sa longueur (2,5 à 5 et même 10 μ), par la couleur rouge-brique ou rouge-orangé de ses cultures et par une très faible solubilité de son pigment dans l'eau

B subhieliensis (Petrof), isolé de l'air qui se rapproche du précédent par ses cul-

tures, élabore un pigment nettement insoluble dans l'eau.

que le Bact. prodigiosum, tuant le cobaye (en 10 à 14 heures par inoculation sous-cutanée, de 1 centimètre cube), le lapin, la souris, le rat. L'optimum pour la pro-Le bacille rouge pathogène de Thevenin, isolé du pus d'un abcès du foie, est strictement aérobie. Il donne des cultures d'un rouge cramoisi. Il est plus virulent duction du pigment est à 37°, alors qu'à cette température le Bact, prodigiosum perd rapidement ses propriétés chromogènes.

Groupe

- Colonies sur gélatine dépourvues de pigment rouge. Le pigment rouge disfuse dans le milieu. (B. se développant spontanément dans le lait qu'ils colorent.

puis rouge foncé. Colonies jaune soufre sur gelatine, gélose et pomme de terre. 1º Lait coagulé lentement avec réaction alcaline; le lacto-sérum devient rose Batonnet court, prenant le Gram. Pigment insoluble dans l'eau, l'alcool, le chloroforme et l'éther.

2º Lait non coagulé, mais devenant visqueux et rose. Colomes blanches sur géla-. tine et gélose . .

1º Colonies sur plaques de gélatine d'un rouge clair. Liquéfaction assez rapide, complète en 3 jours. La gélatine liquéfiée est de couleur framboisée. Se dévelop-B. - Colonies sur gélatine rouges. Pigment à peu près insoluble dans l'eau.

Bact. erythrogenes lactis (Huepper-GROTENFELT). Bact. lactorubefaciens (GRUBER).

	E
	1 (Воекноит
	Bact. fuchsinum
1	Bact.
1e	
em	
103	
11	
e). B courts, a epaisseur	s l'alcool et le chloroforme.
ıne	00
FB	l'a
ca	us
186	da
roug	le
H	lub
9	So
re	nt
It ca	me
(cn	Pig
86	-
élo	7 10
500	0
su	5 3
GID	10,
bie	2 1
nt	1,
Da	亡

T DE

(Isolé de l'eau.)

(B. pyocinnabareum (Ferchmin) se distingue du précédent par ses propriétés pathogenes pour le lapin, B. mycoïdes roseus (Scholl) par ses grandes dimensions

(comme B. anthracis).

Liquéfaction très tardive (complète en 4 à 6 semaines) Sur gélose, colonies pâles developpement assez lent. Pigment soluble dans l'alcool, insoluble dans le chlo-2º Colonies sur gétatine grisatres puis d'un rouge carminé à reflets métalliques. roforme.

Bact. rosaceum métalloïdes (Dow-

B. miniaceus (Zimmermann) paraît identique au précédent

1. B. carnosus (Tils) et B. tuberigenus nº 4 (Gonnermann) se rattachent à ce groupe, mais ils n'ont pas été décrits d'une manière suffisante.
2. B. rubiginosus (Kern) et B. tuberosus (Kern) insuffisamment décrits appartiennent à ce groupe.

TABLEAU XXI

Bâtonnets aérobies, liquéfiant la gélatine, chromogènes violets.

u/3 u. Ne prenant pas le Gram, coagulant le lait et le peptonisant ensuite. Pas de pigment en l'absence de peptone ou d'air. Donnant de l'acétone dans les solutions de - Bâtonnets courts et épais, ovales. Espace central clair, à extrémités colorées, proptone. Faisant fermenter le saccharose. Réduisant les nitrates en nitrites sans gaz. Formant des spores. Batonnets mobiles, spores rondes. Pigment violet noir.

B. violaceus acetonicus (Breaudar)

B. violaceus (Macé), dont les dimensions seraient un peu inférieures à celles du précédent, et qui serait immobile paraît très voisin. Ne formant pas de spores.

1° Ne se développant pas à 37°.

B. très long et très grèle. Colonies sous forme de pellicules violettes sur plaques do gélatine. En piqure, liquéfaction lente avec voile. Culture brune sur pomme de terre.

2° Se développant à 37°.

α) Colonies coloress en vert puis en violet. B. polymorphe produisant sur gélatine en pique du pigment vert qui virs tardivement au violet. Les colonies sur plaques de gélatine sont vertes, entourées d'une zone d'un vert foncé.

Colonies colorées en blanc-jaunatre, puis, suivant les races, plus ou moins tardi-vement en violet. Ce sont dos b. grêles, de longueur variable, ayant leur optimum à 20°, elaborant un pigment violet soluble dans l'alcool, insoluble dans l'eau, l'éther, le chloroforme (Groupe du Bact violaceum).

Ce groupe comprend différentes races qui ne se distinguent que par des détails

Groupe de B. violaceum

tine liquéfiée est d'un gris-violet; le pourtour de la colonie est cilié. Sur pomme a) Colonies sur plaques de gélatine d'un blanc-jaunâtre puis assez rapidement violettes, liquéfaction habituellement rapide dans les premières cultures; la gélade terre, culture abondante, humide, violet clair puis foncé, mais pouvant être brun-verdâtre . .

b) Colonies sur plaques de gélatine non chromogènes ou tardivement violettes; culture sur gélose blanchâtre puis violette. Liquéfiant peu ou pas dans les (B.violaceum Laurenlium (Jordan) est identique au précédent d'après Lehmann. premières cultures.

Bact. membranaceum amethystinum mobile Germano'. Bact. polychromogenes (THIRK).

Bact. violaceum (Schroeter, Len-

Bact. janthinum (Zope, Mace).

pseudo-violaceum [pseudomonas pseudo-violacea] (Migula) ne diffère du précédent que par la culture sur pomme de terre qui, de violette, devient verdâtre puis noirâtre; le milieu verdit.

Ces quatre dernières bactéries violettes doivent être considérées comme

appartenant à une seule espèce.

B. - Immobiles

1º Cultures violettes sur gélatine et sur gélose.

blanc-jaunatre puis violet fonce vers le quinzième jour. Liquéfaction lente. Sur gélose la culture est crémeuse, puis violette, ridée. Sur pomme de terre, jaunea) En gélatine, ensemencée par piqure, la culture en surface est une large pellicule

lescent, puis lilas clair. Liquéfaction très lente en cupule. Sur pomme de terre, culture d'un rouge lie de vin foncé. Sur sérum coagulé, culture muqueuse, d'un En gélatine, ensemencée par piqure, la culture en surface forme un disque opa-

(Isolé des eaux'.

2º Culture non chromogène sur gélatine, d'un gris violet sur gélose.

- En piqure sur gélatine, il se produit un entonnoir de liquéfaction, le liquide

contient des flocons blanchâtres, sur gélose la culture est gris-violet, plissée perpendiculairement au trait d'ensemencement.

C'est un petit bacille, court, parfois coccoïde, dont la température optima est 20%.

Bact, lilacinum (MACE).

Bact membranaceum amethysti-

num (Jolles, Eisenberg).

Bact centrale ZIMMERMANN.

TABLEAU XXII

Bactéries aérobies liquéfiant la gélatine, chromogènes bleues.

Bact. cyaneofuscum (Вегленгиск	Bact. lividum (Plagge er Pro	Bact, coeruleum (Voges).	B. pseudolividus (Zimmermann).
 Bâtonnet ayant son optimum à + 6°. Formant des flocons d'un brun noirâlre dans la gélatine liquéfiée. Le milieu bleuit, Pellicule bleue sur les milieux liquides. C'est un très petit bâtonnet, mobile, aérobie strict (0,15 à 0,3 μ/0,3 à 0,6 μ). Peptonisant la caséine et le blanc d'œuf. Agent du « bleu » des fromages de Hollande. 	 II. — Bâtonnets ne présentant pas ces caractères. A. — Mobiles sans spores, lentement liquéfiants. 1º Colonies sur gélose d'un bleu foncé; sur pomme de terre, culture grêle, limitée au trait d'ensemencement, violette. 	2. Colonies sur gélose d'un bleu ciel clair; sur pomme de terre, culture abondante bleu clair puis foncée. La matière colonante est soluble dans l'eau et l'alcool; le milieu verdit parfois. Cool; le milieu verdit parfois. B. cæruleum (Kral, Lehmann) s'en distingue en ce que son pigment est insoluble dans l'elect de dernier qu'il faut	B. — Immobile, formant des spores. Culture sur gélose, mince, grise, puis bleue. Sur pomme de terre, d'un brun blenâtre

Sarcina nivea (HENRICE).

Sarcina Lœwenbergi (Lœwen-

BERG).

a) Colonies laiteuses sur plaques, jaunissant un peu en vieillissant. Cultivant mieux à

2º Formant des paquets dans le bouillon.

37° qu'à 22°. Sarcine facultativement anaérobie, Pathogène pour la souris blan-

che (Mort en 24 heures par septicémie), le cobaye et le lapin.

La sarcine pathogène de Schlaefrige trouvée également dans un cas d'ozène

3) Non pathogène. Gros microcoques. Colonies sur gélatine rondes brillantes, blanc

paraît identique.

de neige).

AL-

TABLEAU XXIII

Sarcines aérobies, ne liquéfiant pas la gélatine, non chromogènes.

Sarcina Samesae (Sames).	Sarcina pulmonum (Virchow, HA	Sarcina lactea (GRUBER). Sarcina vermicularis (GRUBER).	Sarcina ventriculi (Goodsin, F.
I. — Mobilité très marquée et permanente, due à la présence constante de cils nombreux et longs. Culture grise	dans les cultures jeunes (à partir du 2° ou 3° jour). A. — Formant des paquets sur les milieux liquides et solides. 1° Formant des spores résistant à 110° (Liquéfiant habituellement la gélatine mais après la 3° semaine seulement). Culture grêle, brunâtre sur pomme de terre.	 2º Ne formant pas de spores. En piqure sur gélatine le développement n'a lieu que dans la profondeur du trait. Deux sarcines très voisines: x) Troublant l'infusion de foin. Cultivant très lentement sur gélose (bande blanche, mince, lisse). Optimum 35°. 3) Ne troublant pas l'infusion de foin. Cultivant dès le 2º jour sur gélose (bande grisatre, verruqueuse, puis pellicule sèche, avec rides vermiculaires après le 5º jour). (S. pulchra (Henrici) très incomplètement étudiée est, peut-être, à rapprocher 	B. — Formant des paquets dans les milieux liquides seulement. 1. Ne formant de paquets que dans l'infusion de foin (glucosée de préférence).

TABLEAU XXIV

Microcoques aérobies, ne liquéfiant pas la gélatine, non chromogènes,

M. tetragenus mobilis ventriculi M. albicans amplus (Bunn, LE-(MENDOZA). prenant le Gram, non disposés en chaînettes. 1º Faisant fermenter l'urée très énergiquement. M. de 0,8 µ à 1,5 µ. Les vieilles cultures sur gélatine répandent une odeur fade de colle d'amidon.
2º Rendant le lait très visqueux et filant 1º M. groupés en tétrades, ressemblant morphologiquement et en cultures à M. tetradent une odeur de scatol. Optimum 20°. genus (Gaffky), mais très mobiles et ciliés. Les vieilles cultures sur gélatine répan-2º M. volumineux groupés én diplocoques: chaque couple mesure 3 µ à 3,5 µ. Optimum 35º. Assez fréquent dans les sécrétions vaginales. Susceptible de liqué-A. - Microcoques présentant des propriétés fermentatives partieulières. I. - Éléments mobiles. Cultivables sur pomme de terre. fier tardivement la gélaline. Eléments immobiles *.

M. (Karphococcus) pituitoparus M. ureae Coun. (Нонг. 3º Produisant des gaz dans les milieux glucosés. M. de 0,5 µ, cultivant lentement sur gélatine ordinaire. mieux sur gélatine glucosée.

B. — Microcoques ne présentant pas ces propriétés fermentatives.

M. fervitosus (ADAMRTZ.

a) Ne donnant pas de culture apparente sur pomme de terre. a) rlements habituellement disposes en tetrades.

1º Microcoques présentant un groupement caractéristique dans leur habitat

des filaments de l'urine gonorrhéique). Après 4-6 jours, les filaments tombent au fond; le sédiment nuageux qui en résulte se laisse étirer en fils. Culture Tétrades de 4 à 6 p. Formant dans le bouillon, en 18-24 heures, de fins filaments qui s'élèvent du fond du tube vers la surface pour se recourber (aspect gris-perle sur gélatine; couche blanche, brillante sur gélose et sur sérum. Optimum 30°-34°, Non pathogene .

lodzensis (Barroszewicz er M. (tetradiplococcus) filiformis SCHWARZWASSER).

		TAB	LEAUX	DE DET	ERMINAIN	214		
M. tetragenus septicus (Koch Er	M. tetragenus (GAFFEKY). M. tetragenus albus (Boutron).		M. Pasteuri = M. (str.) lanceolatus (Gamalera) [Races atypiques de	M. salivarius septicus (Biondi).		M. (diplococcus) albicans tardissimus (Bumm).	M. tardus [= dipl. blanc-grisatre de l'urètre (Legrain)].	
b) Donnant une culture apparente sur pomme de terre. I. — M. pathogènes tuant la souris blanche par septicémic en 24 heures. — Coagulant le lait.	II. — M. non pathogènes	a) Diplocoques en forme de lance ou de flamme de bougie, groupes bout à bout, encapsulés dans l'organisme animal et dans le sérum liquide, formant souvent des chaînettes dans le bouillon. Colonies transparentes très petites, en gouttes de rosée sur gélose. Optimum 37°. Pas de culture apparente sur pomme de terre. — Cultivant dans le lait et le coagulant habituellement. Dans la gélatine, la culture de parties de la culture de la congral de la congral de la congral de la culture de la congral de la culture de la congral de la congral de la culture de la congral de la con	très sensible à l'inoculation de cultures virulentes	- Ne cultivant pas dans le lait. Pans la gélatine la culture ne se fait pas à la surface, mais elle se développe le long du trait de piqure. De fortes doses de culture sont nécessaires pour tuer la souris blanche	gonocciforme dans l'organisme). I. — M. morphologiquement semblable à M. gonorrhae, cultivable sur gélatine avec une lenteur extrême : après plusieurs semaines, la culture ne forme qu'une mince bande de 1 millimètre le long de la strie. Se développant mieux sur le sérum coagulé à 37°. Pas de culture apparente sur pomme de terre.	Hôte des voies uro-génitales	0 .	$M.$ trachomatis (Sattler et Michel), $M.$ n° 18 (Lembke) sont très voisins du précèdent.

1. A ce tableau il faut rattacher une série de microcoques insuffisamment décrits qui ne peuvent être déterminés.

— Les uns se disposent en diplocoques : M. albicans tardus (Unna-Tommasoli), M. coryzae (Hajek), M. minimus (Besser), M. n° 5 (Pansini), M. n° 15, 16, 17, 28 (Lembke).

— Les autres isolés ou en amas : M. succulentus (Henrici), M. n° 2 (Adametz), M. n° 4 (Adametz), M. n° 1 (Fischel).

TABLEAU XXIV (Suite)

M. plumosus (Adametz, Eisenberg). M. viticulosus (Katz).	M. nubilus (Coccus B.) (Fouris).		M. lactis acidi (Manrmann),		M. griseus non liquefaciens (Trs-sien et Mantelly).
2. Microcoques ne présentant pas de groupement caractéristique. (Ce sont des M. isolés ou disposés en amas irréguliers.) x) Ramifications autour du trait de piqure dans la gelaline. - Prolongements en aiguilles à la surface et autour du trait de piqure - Prolongements en vrille autour du trait de piqure M. cirrhiformis (Maschek) est voisin, sinon identique. - Ramifications très fines autour du trait de piqure, apparaissant tardivement et donnant à la gelée un aspect nuageux rappelant la culture de Bact. murisep-	 β) Pas de ramifications autour du trait de piqure. β) Pas de ramifications autour du trait de piqure. a) Très petits microcoques (θ,3 μ) donnant sur plaques de gélatine des colonies rondes, hémisphériques, d'un blanc de porcelaine; sur pomme de terre, une culture assez rapide, blanche, humide (Habitat: intestin) 	 M. aquatilis (Bolton), isolé de l'eau, paraît très voisin. b) Microcoques de dimensions moyennes ou grandes (θ,6 μ ά 2 μ). I. — Coagulant le lait. M. se développant lentement dans la gélatine en colonies grêles, d'un blanciannatre ne cultivant programment. 	and the state of t	mann) ne diffère du ferment lactique de Marpmann que par son optimum qui est plus élevé. II. — Ne coagulant pas le lait. A. — Pas de culture apparente sur pomme de terre. Gros microcomes grounds pas le lait.	facilement, dans les cultures, des formes d'involution allongées ou ren- flées. Donnant sur gélatine et sur gélose de petites colonies rondes, blanc- grisâtres, transparentes, n'attaquant pas les albumines naturelles, mais produisant de l'indol aux dépens des peptones. Fréquent dans les viandes en putréfaction.

M. nº 4 (Siebert) et M. cumulatus tenuis (Besser) paraissent voisius, mais ils n'ont pas été étudiés au point de vue chimsque.

- Culture apparente sur pomme de terre.

Gros microcoques $(1,2\,\mu)$, ayant peu de tendance à donner des formes d'involution. Colonies rondes, d'un blanc pur, opaques, plus ou moins épaisses. Culture sur pomme de terre épaisse, d'un blanc de porcelaine, brillante, à bords sinueux, ne produisant pas d'indol. Très répandu . . . Note. — Les microcoques suivants paraissent très voisins de l'espèce

loppe plus lentement sur les milieux usuels; M. cereus albus (Passet), la gélatine; M. rosettaceus (Zimmermann), culture en rosette à la surface de la gélatine (en piqure). Il ne se développe rien dans le trait de piqure; M. concentricus (Zimmermann) sur tous les milieux, cultures minces bleuâprécédente. Ils sont un peu plus petits: M. candidus (Cohn) (0,7 μ) se dévedonne une culture grisâtre sur pomme de terre, et une culture grêle dans centriques (au microscope), culture d'un gris-jaunâtre sur pomme de terre; tres, irisées. Les cultures sur plaques paraissent formées de zones con-M. nº 21 (Lembke).

M. candicans (Flugge).

TABLEAU XXV

Microcoques aérobies, ne liquéfiant pas la gélatine, non chromogènes, prenant le Gram, se disposant habituellement en chaînettes.

Chaînettes de microcoques s'entourant d'une gangue très épaisse (15 µ de largeur et davantage) dans les cultures additionnées de glucose ou de saccharose. Les streptocoques sont dépourvus de capsules dans les milieux non sucrés. Agent d'une altération gélatineuse des résidus de la fabrication du sucre

M. mesenterioides (Cienkowski = Streptococcus mesenterioides (Migula) = Leuconostoc. mes. (Van Tieghfm) = Ascococcus mcs. (Cienkowski).

A. - Cultures sur pomme de terre nettement apparentes. Chaînettes ne présentant pas ces caractères.

a) Se développant constamment et souvent exclusivement sous forme de chaînettes dans le bouillon et dans le sérum liquide de lapin jeune. Diplocoques ouchaînettes dans l'organisme animal. Culture grêle sur gélatine; sur plaques petites colonies transparentes ne dépassant pas un millimètre; en piqure, petite colonie, grosse comme une tête d'épingle à l'entrée du canal; colonies isolées et très grêles dans le trait, Vitalité faible (une à quelques semaines au plus). a) Chaînettes encapsulées.

b) Chaînettes non encapsulées. Non pathogènes pour les animaux de laboratoire (Il est difficile de dire si ces bactéries sont des races du streptocoque pyogène ou des espèces distinctes).

Se développant dans le bouillon sans groupement régulier, en chaînettes, en amas, ou isolés. Tétrades encapsulées caractéristiques dans le sérum de lapin jeune (d'après Bezançon et Griffon) et dans l'organisme animal. Se développant bien dans la gélatine

M. pyogenes (Streptocoque) du type Le Roy des Bannes et Wein-

M. pyogenes Streptocoque) du type: Str. de la salive (Veillon), Str. de la bouche (Manor), Str. saprophyte (Noury).

22°; donnant sur plaques des colonies superficielles atteignant 1 à 2 millimètres, saillantes, d'un blanc de porcelaine; en piqure, culture en clou à tête bombée ou

M. tetragenus (GAFFEY).

duit de râclage de la surface ensemencée, on constate qu'il y a eu développement. B. - Cultures sur pomme de terre non apparentes, mais en examinant le pro-

1º Faisant fermenter le lactose avec acidification (faible ou forte), mais sans dégagement de gaz.

a) Les cultures en bouillon de 24 heures, ne sont pas bactériolysées quelques minutes après l'addition d'un volume égal d'une solution de taurocholate de soude à 5 ou 10 %, ou après l'addition de bile (La bactériolyse doit être vérifiée au mi-

niques. Longue vitalité. Polymorphisme remarquable : aspect de pneumocoque dans le sang de la souris; aspect de streptocoque dans les cultures de quelques a) M. se développant faiblement sur les milieux additionnés de liquide d'ascite, et dans le sérum liquide de lapin jeune où ils apparaissent sous form : de chaimilieux pen nutritifs, et même dans des milieux dépourvus de matières organettes et de diplocoques encapsulés. Culture assez abondante, même sur des jours. Virulence inconstante et très variable.

b) M. se développant bien sur les milieux additionnés de liquide d'ascite ou de sérum. Faible vitalité dans les milieux aérobies dépourvus d'albumines natu-

- Chaînettes et diplocoques encapsulés dans les cultures en sérum de lapin jeune;

difiant faiblement les milieux glucosés et lactosés; n'y produisant pas de gaz. que sur tous les autres milieux de culture et dans l'organisme animal. Aci-Chainettes de M. sans capsules dans les cultures en sérum de lapin jeune ainsi Pathogène pour le lapin. Virulence variable selon les races . .

(Entéro-(Еѕснвиси) coque de Thiercelin). M. ovalis

= Streptococcus M. pyogenes

pyogenes (Rosenbach,

M. meningitidis = Streptococcus

m. (BONOME).

1. Un certain nombre de streptocoques ne différant que par la modalité ou le degré de leur action pathogène ou par des différences fragiles et peu importantes dans l'aspect des cultures doivent être assimilés à M. pyogenes (Rosenbach). Ce sont :

Str. erysipelatos (Fehleisen), Str. septicus (Nicolaier), Str. pyogenes malignus (Flügge), Str. articulorum (Löffler), Str. sentatinosus (Biondi), Str. de Neumann, Str. diphteriæ (Prudden), Str. A et B (Barbier), Str. de Méry, Str. de Holst (trouvé dans une endocardite infectieuse, ce streptocoque a conservé sa virulence pendant des années), Str. conglomeratus (Kurth) ayant tendance à former des amas), Str. longus (Lingelsheim), Str. mittor (Schottmuller), M. (str.) rheumaticus (Walker et Beaton), trouvé dans

TABLEAU XXV (Suite)

3) Les cultures en bouillon de 24 heures subissent la bactériolyse immédiatement, ou quelques minutes après l'addition d'une quantité egale d'une solution de taurocholate de soude à 5 ou 10 %, ou de bile.

a) Colonies nettement apparentes quoique très minces et transparentes (en gouttes de rosée) sur la gelose ordinaire à 37°; plus abondantes sur gelose ascite. La Les milieux lactosés sont faiblement acidifiés. Diplocoques en forme de flamme culture n'est pas plus abondante si l'on ajoute un sucre au milieu de culture.

de bougie dans l'organisme.

sules en serum non coagule de lapin jeune; groupement variable, sans cap- I. - Microcoques se développant mal sur la gélatine à 20°. Diplocoques encapsules, sur les autres milieux artificiels. Pathogène pour la souris blanche

milieux. Les cultures sur plaques sont visqueuses, transparentes, granuleuses au centre, atteignant 2 millimètres, pouvant confluer en une couche vischaînettes encapsulées en sérum non coagulé de lapin jeune et dans les autres II. - Microcoques se développant très bien sur la gélatine à 20°. Diplocoques et queuse, muqueuse. Pathogène pour la souris blanche.

(Doivent être rapprochés de M. mucosus : M. (Strept) aggregatus (Seitz),

M. (Strept.) involutus (Kurth).

tion). Ferment lactique habituel du lait abandonné à la température ordinaire. b) Colonies à peine visibles sur les milieux ordinaires ou additionnés de sérosités, nellement apparentes sur les milieux additionnés de lactose et de craie (auréole d'éclaircissement autour des colonies). Les milieux lactosés sont fortement acidifiés. Microcoque allongé pouvant ressembler à un très court bâtonnet ; non pathogène pour les animaux de laboratoire ni pour l'homme (par inges-

Synonymes: Str. lactis (Lister) Löhnis, Str. lacticus (Kruse), Bacterium lactis acidi (Leichmann), Bacterium lactis (Günther et Thierfelder), Bacillus acidi paralactici (Kozai). Certains M. en chaînettes du lait, qu'il est impossible de différencier par leur morphologie ou leurs cultures de M. (str.) acidi lactici

M. Pasteuri (Pasteur) = Strepto-coccus lanceolatus (Gamaleia) (races atypiques de Weichselbaum).

M. mucosus = Streptococcus mucosus Howard et Perrins) = S.
m. capsulatus (Buerger) = S.
lanceolatus var. mucosus Park et Williams).

M (Strept.) acidi lactici 1 (GRO-IENFELDT).

(Burri a trouvé dans le lait et le fromage des races produisant de la vis-cose. D'après Lehmann et Neumann, il faut probablement leur rattacher le Grotenfeldt) s'en distinguent par l'absence totale de fermentation (tant gazeuse qu'acide) dans les milieux lactosés et glucosés [M. (str.) lactis innocuus (Löhnis)].

Strept. hollandicus (Scholl).

Faisant fermenter le lactose avec forte acidification, et production

des chèvres, donnant une coloration jaune et une réaction acide au lait qui coa-Microcoque ayant comme dimensions 0,9 à 2 µ, formant dans le lait des chaînes courtes ou très longues, formées de 100 à 400 éléments, souvent plus larges que longs, prenant le Gram à condition de ne pas faire agir longtemps l'alcool. Milieu optimum: bouillon sucré. Agent de mammites contagieuses des vaches et

des cas de rhumatisme articulaire aigu (rôle pathogène très hypothétique) se distinguerait de M. (str.) pyogenes par la production d'acide formique en quantité beaucoup plus considérable. La constance de pareils signes différentiels est plus que douteuse.

1º Des streptocoques non pathogènes, différant des streptocoques typiques avirulents par des particularités morphologiques ou culturales: D'autres présentent certaines particularités qui ne permettent pas de les assimiler sans réserves à M. (str.) pyogenes. Ce sont :

a) Différant par leurs dimensions et le défaut de développement sur gélatine : Str. giganteus urethræ (Lustgarten et Mannaberg).

8) Différant par les caractères des cultures : Str. de Libman, Str. compactus (Lewkowicz), Str. aerophilus (Lewkowicz), Str. penetrans (Lewkowicz). 2º Des streptocoques agents supposés de maladies des animaux qui diffèrent de M. pyogenes par des détails de morphologie ou de culture.

Str.equi (Schütz): Str. de la gourme du cheval, se distinguerait (?) du Str. pyogenes par sa faible culture sur gélatine à 22°, Str. peritonitidis equi (Hamburger), Str. bombycis (Pasteur-Macchiati), Str. radiatus (E. Klein), retiré de l'exsudat séro-fibrineux d'une mammite de la vache, formant des chainettes sur tous les milieux, donnant sur plaques de gélatine à 20°-22° des colonies assez particulières, de structure radiée, se développant surtout dans le canal du trait de piqûre. Acidifiant légèrement le lait en 48 h. sans le coaguler. Déterminant un abcès local par inoculation sous-

streptocoques extrêmement voisins les uns des autres, races d'une même espèce, ou espèces dérivées par mutation d'une espèce originelle principale. Ils n'ont pas été éprouvés par la réaction bactériolytique des sels biliaires (sauf M. acidi lactici (Grotenfeldt). Quand on se trouvera en 1. M. (str.) acidi lactici est l'un des principaux agents de la fermentation lactique à la température ordinaire. Mais il existe une série de streptocoques differant du précédent par des caractères secondaires et constituant le groupe des streptocoques ferments lactiques. Ce sont des présence d'un streptocoque ferment lactique, on pourra essayer de le déterminer par la recherche des caractères suivants : 1º Ferments ne coagulant pas le lait malgré la formation d'acides (Streptocoque isolé du képhir). M. (str.) B. (Freudenspreich).

2º Ferments coagulant le lait.

a) Se développant mieux à l'abri de l'air qu'en milieux aérobies.

M. (str.) acidi lactici (Grotenfeldt).
M. (str.) Laxa. a) Microcoques ovoïdes, allongés (1 $\mu/0,5$ à 0,6 μ), simulant de courts bâtonnets joints bout à bout (Ferment lactique très répandu) . .

c) Gros microcoques 0,9 \u00e4/2,3 \u00fc) se présentant dans le lait soit en courtes, soit en très longues

chaînes de 100 à 400 éléments, souvent sous un aspect très particulier, en palissade (grand axe perpendiculaire à la direction de la chaine). Faisant fermenter le lactose avec forte acidifica-

TABLEAU XXV (Suite)

gule peu de temps après la traite. Virulence variable en injection dans le trayon. Non pathogène pour les animaux de laboratoire.

M. mastitidis (Streptococcus mastitidis) (GUILLEBEAU).

> Synonymes: M. de la mammite contagieuse de la vache (Nocard et Mollereau', Streptococcus agalactiae (Adametz), Strept. agalactiae contagiosae (Kitt), Strept. mastitidis sporadicae (Guillebeau et Hess).

Note. - Il est difficile de savoir si un streptocoque isolé d'un lait par exemple peut être considéré comme inoffensif ou rattaché au groupe des streptocoques pyogenes, car il n'y a aucune corrélation entre l'action pathogène chez l'animal et la virulence chez l'homme, et d'autre part les procèdés biologiques renseignent insuffisamment. L'agglutination, souvent difficile à apprécier, donne des résultats inconstants. La recherche de l'action hémolysante et des sensibilisatrices a encore moins

· · · · · · · · · M. (str.) mastitidis (Nocard-Gullebeau). tion et production de gaz. Se trouve dans la mamelle et dans le lait de vaches et de chèvres atteintes de mammite contagieuse.

Se développant aussi bien en milieux aérobies qu'à l'abri de l'air.

Microcoques ovoides, allongés, simulant de courts batonnets, ne cultivant pas dans le bouillon. M. (str.) A. (Freudennerch). Trouvés dans le képhir.

Microcoques arrondis.

M. (str.) Hagenberg (Weigmann). - Colonies sur plaques présentant des prolongements en forme de languettes ou de flamme. Trouvés dans une creme acide.

Colonies sur plaques a contours nets.

Note. -- Ce dernier caractère différencierait l'espèce précédente du M. (streptococcus) pyogenes (Rosenbach) qui est tantôt aérobie, (HASHIMOTO).

tantôt anaérobie de prédilection et qui produit toujours des acides gras volatils en même temps que de l'acide lactique aux dépens

A ce groupe il convient de rattacher deux microcoques en chainettes dont la détermination ne peut être effectuée que par la constatation de leurs propriétés fermentatives très particulières. Ce sont :

W. (str.) hollandicus (Scholl), W. (str.) brassica = B. brassica (Wehmer), agent de fermentation de la choucroute. Il produit peu d'acide au dépens du lactose, d'où l'inconstance de la coagulation du lait. Quant aux microcoques en chaînettes trouvés par Henrici dans le fromage, Str. albidus, granulatus, pallens, pallidus, tyrogenus, leurs propriétés biologiques n'ont jamais été étudiées. Il est impossible de les déterminer.

TABLEAU XXVI

Microcoques aérobies, ne liquéfiant pas la gélatine, non chromogènes. Ne prenant pas le Gram.

1. — Microcoques disposés en chaînettes ou susceptibles de présenter cette disposition dans les milieux liquides.

M. (Str.) melanogenes (Schlegell). A. - Streptocoques formés d'éléments très volumineux, cultivables sur les milieux usuels. Les milieux au sang noircissent autour des colonies. Pathogène pour

la souris Isolés de la pie-mère, de la rate, des reins de chevaux abattus, atteints de myélite aiguë. (Serait, d'après Schlegel, l'agent d'une myélite infectieuse septicémique du

Ce sont des microcoques de dimensions petites ou moyennes, ayant leur opti-- Streptocoques ne présentant pas ces caractères.

mum à 37°. Ce groupe comprend:

1. Des streptocoques agents de maladies spontanées des animaux, se développant sur gélatine à 20°-22°, mais lentement et faiblement.

iées dans le trayon. Agent de mammites contagieuse; des vaches et des chèvres. a) Très longues chaînettes encapsulées dans le lait (100 à 400 éléments ovoïdes, à grand axe souvent transversal). Développement lent et grêle sur gélatine, faible egalement sur gélose. L'addition d'ascite ne favorise pas la culture. Le milieu optimum est la gélose sucrée (lactosée surtout) ou la gélose au lait. Coagulant le lait. Faisant fermenter le lactose avec acidification et production de gaz. Non pathogène pour les animaux de laboratoire. Virulence variable des cultures iniec-(Synonymes: M. de la mammite contagieuse de la vache (Nocard et Mollereau), Strept. agalactiae (Adametz), Strept. agalactiae contagiosae (Kilt), Strept. mastitidis sporadicae (Guillebeau et Hess).

Diplocoques on tetrades dans le liquide céphalo-rachidien et dans les milieux artificiels solides, chaînettes de six à neuf éléments dans le bouillon et le liquide

M (Str) mastitidis 1 (GUILLEBRAU).

1. Certaines races de M. (Strept.) mastitidis ne se décolorent pas par le Gram si l'on ne prolonge pas l'action de l'alcool (voir Tableau XXV).

TABLEAU XXVI (Suite)

de condensation de la gélose. Se développant faiblement en première culture sur Le bouillon est uniformément troublé. Pathogène pour le cheval, le mouton, la gélose et, à plus forte raison, sur gélafine), mieux après quelques repiquages. chèvre, non pour les bovidés et les animaux de laboratoire . .

On trouve ce microcoque dans le liquide céphalo-rachidien des chevaux

atteints, non dans les autres organes : Pas de septicémie.]

d'emblée sur gélose, moins bien sur gélatine à 20°. Pathogène pour les bovidés Microcoques groupés par deux dans les sécrétions de l'organisme animal (écoulement vaginal des vaches), en chainettes dans le bouillon, se développant bien (vaginite), non pour la jument. Les cultures ne sont pas virulentes pour les animaux de laboratoire usuels . .

Note. - Ostertag a décrit un microcoque qui diffère du précédent surtout par la virulence et qu'il considère comme l'agent de l'avortement contagieux des

2º Des streptocoques trouvés dans l'organisme humain, ayant, sauf le Gram, les caractères de M. (Str.) pyogenes (Roscubach, mais non pathogènes pour les animaux de laboratoire.

neuses) se rattache un groupe de microcoques en chainettes qui ne peuvent être distingués du précédent. Ce sont : Strept, de Doléris et Bourges (provenant d'un Note. - Au M. (Strept.) du type d'Espine et Marignac (isolé d'angines scarlatiet Tissier (voies urinaires; selles d'entérite), Strepto-diplocoque de Barbier (angine abcès pelvien', Strept. d'Etienne (angine pseudo-membraneuse, Strept. de Cottet

pseudo-membraneuse).

- Microcoques habituellement groupés par deux, parfois en tétra-des, jamais en chaînettes. Les diplocoques présentent l'aspect de M. gonorrheae. Culture souvent lente et grêle sur la gélatine à 20°. Culture sur pomme de terre grêle, transparente. Ne coagulant pas le lait. Ne faisant fermenter aucun sucre. Non pathogène pour les animaux de laboratoire. (Saprophyte des voies Microcoques ne se disposant pas en chaînettes. respiratoires supérieures'.

M. (Str.) meningitidis equi = Streptoc. de la maladie de Borna (OSTERTAG).

M. vaginitatis = M. de la vaginile contagieuse de la vache (Oster-

M. (Strept.) pyogenes, type d'Espine et Marignac.

M. catarrhalis (Pfriffer).

sermann dans l'urine d'un homme atteint d'urétrite postérieure paraît très voisin de surface. Diplocoques de 0,3 à 0,5 µ, non réniformes, surtout extra-cellulaires. L'étude M. catarrhalis. Il en diffère par ses cultures plus abondantes, sur gélose surtout : sur ce milieu une couche épaisse, blanchâtre, humide envahit en 24 heures toute la des propriétés chimiques n'ayant pas été faite, il n'est pas possible de faire rentrer ce microcoque dans le cadre de la systématisation. Schütz a isolé un diplocoque encapsulé et Gram négatif dans des cas de pneumonie contagieuse du cheval (Diplococcus pleuro-pneumoniae equi), qui diffère de M. catarrhalis par sa virulence pour la souris, le lapin, le cobaye et le pigeon. Son rôle causal dans la pleuro-pneumonie du Note. - Diplococcus mucosus et M. pharyngis cinereus (v. Lingelsheim) doivent être identifiés au précédent. Le pseudo-gonocoque trouvé par Noguès et M. Was cheval est très douteux.

- Microcoques ne présentant pas un groupement analogue à celui de M. gonorrheae.

sur gélatine. Non pathogène 2º Microcoque très mobile, pourvu de deux cils. Se développant bien sur la gélablanche sur pomme de terre. Le lait est coagulé. Pathogène pour le lapin, la soutine (en piqure, aspect chevelu dans le canal. Cultivable dans le bouillon. Culture 1º Microcoque immobile, ne cultivant pas dans le bouillon. Se développant bien ris, le cobaye. (Trouvé dans une septicémie du lapin.)

M. agilis albus (CATTERINA).

M. parvus (M. XIV) (Lembre).

B. bronchitidis putridae (Lum-

NITZER).

B tenuis non liquefaciens Chou-

TABLEAU XXVII

Bâtonnets aérobies, ne liquéfiant pas la gélatine, non chromogènes, prenant le Gram, formant des spores.

. - Mobiles.

- Ne se développant pas à 37°, mais se développant bien à 20° dans les milieux aérobies ; se développant bien à 37° dans les milieux privés d'air. Ressemblant par sa forme et par l'aspect de ses cultures, à B. tetani. Non pathogène .

B. pseudo-tetanicus aerobius (KRUSE).

B. — Ne se développant pas sur pomme de terre.

Cultivant mal sur gélatine, cultures punctiformes, grisâtres, d'odeur putride sur gélose. Sur sérum coagulé, la culture est blanc-grisâtre et se développe rapidoment. Bâtonnets assez longs un peu courbés ; pathogène en injections intrapulmonaires pour le cobaye et la souris Abcès et nécroses localement et à distance).

Ne coaguiant pas le lait.

Colonies sur gélose ressemblant à celles de M. (Str.) pyogenes. En strie, membrane grisâtre très mince. Odeur d'huile à brûler Batonnet très mince 3 à 5 μ / 0,3 μ . Spores le plus souvent terminales. Chaînettes et formes d'involution dans les vieilles cultures. Non pathogène .

peu plus gros (0,5 à 0,6 μ/3 à 5 μ). Les spores sont plus volumineuses et médianes.) Ces deux bactéries ont été trouvées dans l'intestin du cheval. C. — Se développant bien à 37° et sur pomme de terre. (B. tardus (Choukevitch) présente les mêmes propriétés biologiques. Il est un

1º Pathogènes pour la souris, le lapin et le cobaye.

blanc-jaunâtre sur gélatine, grisâtre sur gélose, sèche et brune sur pomme de terre. Bacille assez long et grele, souvent en filaments. Culture ronde transparente, d'un

a) Les cultures dans le lait répandent une odeur agréable (odeur d'ananas) due à la production d'éthers aromatiques. Bâtonnets polymorphes; spores volumineuses 2º Non pathogènes pour les animaux de laboratoire.

septicus vesicae (CLADO). 8

B. limbatus butyri (Klecki). B. polymyxa (Prazmowski). B. esterificans (MAASSEN). facultativement aérobie. Faisant fermenter les solutions de lactate de chaux, le (3) Les cultures dans le lait ne présentent pas ce caractère.

a) Spore centrale déformant le bâtonnet en fuseau, ressemblant à B butyricus, mais glucose, la glycérine, en produisant de l'acide butyrique. Odeur butyrique sur jaunatres muqueuses sur gélatine, blanches sur gélose; épaisses, d'un blanc tique. Il en est de même de Glycobacter peptolyticus (Wolmann) qui présente la Bacille polymorphe, ne coagulant pas le lait. Colonies blanches légèrement 2,7 à 3,1 µ/1,2 à 1,4 µ. Coagulation du lait inconstante. propriété d'attaquer énergiquement l'amidon.) b) Spore terminale.

B. viscosus lactis (ZIMMERMANN).

1. - Cocco-bacilles encapsulés. Rendant le bouillon et le lait visqueux. Ne coa-

- Immobiles.

Ne peptonisant pas le lait. Produisant de l'indol. Spores terminales dans les milieux

sâtres, étalèes, transparentes, d'odeur putride sur plaques de gélatine . . .

des cultures sur plaques de gélatine.

B. lacticus (Pastreur).

B. coprogenes feetidus (Lydrin ET SCHOTTELIUS) sucrés (Ferment lactique).

C. — Bâtonnets un peu plus courts que ceux de B. subtilis. Colonies gri-On doit en rapprocher les B. fæcalis I et II de Bienstock, différents par l'aspect

TABLEAU XXVIII

Bâtonnets aérobies ne liquéfiant pas la gélatine, non chromogènes, prenant le Gram, ne formant pas de spores, mobiles.

A. - Bâtonnets encapsulés dans l'organisme animal.

lantes un peu jaunâtres. Très virulent pour la souris, le lapin, le cobaye chez lesquels 1. Petits bâtonnets courts, presque coccoïdes. Colonies sur gélatine granuleuses et d'un gris jaunâtre, d'un blanc grisâtre sur gélose. Sur pomme de terre, colonies brilil détermine une maladie tétaniforme. La poule et le pigeon sont réfractaires.

lantes, blanchâtres, transparentes, puis à prolongements ramifiés. Culture épaisse jaunâtre sur gélose; couche épaisse, humide, brunâtre sur pomme de terre. Très présenter des formes filamenteuses et d'autres en massue. Sur gélatine, colonies sail-2º Bâtonnets polymorphes, habituellement épais, trapus, encapsulés, mais pouvant virulent pour la souris et le lapin. Le cobaye est assez résistant . . .

(Isolé d'une gangrène pulmonaire humaine.)

Bâtonnets non encapsulés; ne se développant pas sur pomme de

Bâtonnets longs et épais présentant souvent des formes d'involution. Ne coagulant pas le lait, Pathogènes seulement à fortes doses pour le cobaye.

(Coccobacillus mobilis non liquefaciens (Choukevitch) isolé de l'intestin du cheval ne diffère du précédent que par ses dimensions moindres.)

Bact accidentale tetani (Belfanti er Pescarolo). Bact. lethale = B. proteus letha-

Bact. aquatile album (MATZUS-

Bâtonnets non encapsules; se développant sur pomme de terre.

Arborisations autour du trait de piqure en gélatine ou en gélose. Ce sont des ramifications filamenteuses, parallèles entre elles, plus

B. présentant un polymorphisme remarquable. Colonies sur plaques bordées de prolongements irréguliers, bizarres, en forme de tentaculongues à la partie supérieure du culot de gélatine.

Provoquant sur les milieux albumineux une fermentation putride ques se présentent tantôt avec des prolongements caractéristiques et gris jaunâtres, ou bien encore transparentes, typhiformes à condépôt peu abondant. Le lait n'est pas coagulé Sa réaction n'est pas modifiée. Les milieux albumineux subissent une fermentation putride a) Bactérie très polymorphe (1,6 à 4 µ/ 0,4 à 0,5 µ en moyenne), mais sur tous les milieux on observe à côté des bâtonnets typiques des formes coccoudes, filamenteuses ou spiralées. Les colonies sur plade B. vulgare ou de B Zopffii, tantôt sous forme de colonies rondes tours sinueux. Le bouillon est fortement troublé. Il se forme un les. Au centre de la colonie, masses zoogléïques contournées en sauavec ou sans formation d'indol. Non pathogène. dépôt abondant. Le lait est habituellement coagulé en 2 ou 3 jours. cisson. Le bouillon reste clair ou est peu troublé, et il se forme un peu intense. Action pathogène variable, faible ou nulle .

Ces deux espèces constituent le groupe de Bact. Zenkeri, caractérisé par : la grande mobilité, le polymorphisme, le peu d'exigence au point de vue nutritif, thermique et au point de vue du besoin d'oxygène. Ce sont des agents de putréfaction plus ou moins actifs.

(Ce n'est pas une espèce distincte, mais une race non liquéfiante du Bact, vulgare. Löhnis a décrit une forme intermédiaire entre les

deux bactéries précédentes.)

a) Batonnets epais (1 p. 1/2 d'épaisseur). 3) Bâtonnets de morphologie assez fixe.

Culture blanche avec odeur putride sur la gélose. Coagulant le lait. Par injection trachéale, chez le lapin, produisant une bronchopneumonie, et par injection sous-cutanée, des abcès

b) Bâtonnets d'épaisseur moyenne ou grêle (0,6 µ environ).

Les bact, de ce groupe ne se distinguent que par leur action pathogène; leurs cultures se ressemblant, et leur action fermentative n'avant pas été étudiée pour tous, il est impossible d'établir exactement leur degré de parenté.

- Pathogènes pour la souris, le lapin, le cobaye, le pigeon. B. I. - Pathogenes pour les animaux de laboratoire.

Bact. Zopfii (Kürth).

keri (Hauser)

Bact Zenkeri = B. proteus Zen-

Bact, putidum splendens (Ben-NABEL). Bact. vesicae (Deeleman).

TABLEAU XXVIII (Suite)

Bact. muripestifer (LASER). courts donnant des colonies lobulées, finement granuleuses. Coagulant le lait, faisant fermenter le glucose, et donnant H2S. Pathogènes pour la souris et le lapin et peu pour le cobaye. B. ressemblant à B. lactis aerogenes, présentant sur gélatine et gélose une culture grise assez épaisse. . . Culture brunâtre sur pomme de terre

(B. cuniculicida havaniensis (Strassberg) est identique.)

Bact. coli colorabile (NAUNYN).

ture blanc-grisatre limitée à la strie. Bâtonnets de 0,5 à 2 µ/0,3 à 0,4 µ. Souvent coccoïdes. Pas de production de gaz dans les milieux lactosés, glucosés, saccharosés. Non pathogène pour la souris, et peu pour le cobaye en injection intrapéritonéale. Coagulant le lait, produisant de l'indol. Colonies sur gélatine très légèrement le petit lait tournesolé. Courts bâtonnets de 0,8 à 1 u/ 0,4 à 0,5 u, par deux ou en courtes chaînes. Coloprésentant un réseau en nervures de feuille. Sur gélose, cul-Ne coagulant pas le lait. Ne produisant pas d'indol. Acidifiant nies sur gélose en gouttes de rosée. Non pathogène. Non pathogènes pour les animaux de laboratoire 1.

Bact, intestinale gallinarum (Jöst).

1. Des bactéries insuffisamment décrites appartiennent à ce groupe ; ce sont : B. sublyphosus, (Lustig), B. spuligenum (Kreibohm), B. cystitidi

TABLEAU XXIX

t le Gram,

la gélatine, non chromogènes, prenant le Gram,		Bact. tuberculosis (Type pisciaire).		Bact. sputigenum tenue (PAN-SINI).		Bact. casei nºs 1 à 3 Leichmann et Bazarewski).		MANN).		Bact. lactis viscosi (Adametz).
Bâtonnets aérobies, ne liquéfiant pas la gélatine, non chrome	ne formant pas de spores, immobiles.	 B. restant colorés par la méthode de Ziehl-Neelsen. Ne cultivant pas à 37°. Optimum 20-25°. Culture sèche, blanc-jaunâtre sur plaques de gélatine. Culture épaisse, plissée sur gélose. Voile sur le bouillon qui reste clair. Pathogène pour les vertébrés à sang froid	 II. — B. ne restant pas colorés par cette méthode. A. — Coagulant le lait. 1º Bâtonnets encapsulés dans l'organisme animal. Pathogènes pour le lapin et le patronnets encapsulés dans l'organisme animal. Pathogènes pour le lapin et le patronnets encapsulés dans l'organisme de la loreneur très variable. Colonies minces 	sur fous les milieux.	Eléments de longueur très variable. A côté de formes ovoïdes et de courts bâtonnets en chaînettes ressemblant à M. (str.) acidi lactici (Grotenfeldt), on trouve de longs bâtonnets et même des filaments. Pas de gaz dans les milieux sucrés. Le sacchalongs bâtonnets et même des filaments. Pas de gaz dans les milieux sucrés. Le sacchalongs bâtonnets et même des filaments.	des traces d'acides volatils. Optimum 33°. Maximum 42°.	B. — Ne coagulant pas le lait à froid, bien qu'il soit légèrement acidifié. La coagulation apparaît si l'on chauffe le tube.	Cultures ressemblant a celles de b. tactis aerogenes	1 · Rendant le lait visqueux. α) La réaction du lait n'est pas modifiée, ou devient alcaline. Pas de production de	a) Rendant visqueux le bouillon ordinaire. Culture ressemblant à celle de B. lactis aerogenes. Cultivable sur pomme de terre.

c.

et

B.

lactis longi A.

(TROÏLI ET PETERSSON).

Bact. lactis pituitosi (Loeffgen).

Bact. capsulatum septicum (Bon-

DONI-UFFREDUZZI).

Bact salivarium septicum

(BIONDI).

TABLEAU XXIX (Suite)

	Bact.
cul-	
de sal	
Pas	
ire.	
lina	
ord s m	
llon	
ooui s at	
le la	
non es sa	
ais	
é m Cul	
e sur pomme de terre. Cultures sur les autres milieux moins abon- lles du B. précédent	
n g	-
ux le bouillon glussur pomme de te	-
bou	
k le	
e su	
rent e ce	
ppa g du	-
Renda fure a	
b) 1	

3) Le lait est légèrement acidifié.

Bâtonnets se fragmentant en éléments coccoïdes. 2° Ne rendant pas le lait visqueux.

a) Bâtonnets encapsules dans l'organisme animal.

a) Faisant fermenter le glucose. Gros bact. polymorphes ressemblant à Bact. pneumoniæ. Pathogènes pour la souris et le chien.

(B. endometritidis (Emanuel et Wittkowsky) paraît identique).

b) Court bâtonnet ne faisant pas fermenter le glucose. Se développant mieux sur les milieux légèrement acidifiés. (Pathogène pour la souris et le lapin).

3) Bâtonnets non encapsules.

a) Petits bâtonnets très grêles, rectiliques, mononorphes, ne se déformant jamais (pas de renflements du corps bactérien).

I. - Pas de culture apparente sur pomme de terre.

B. très grêle au moins dans l'organisme animal (0,2 μ d'épaisseur). Il peut atteindre 0,4 à 0,6 μ dans les cultures. Se développant bien dans la gélatine à 20°. En piqure, il se développe de fins prolongements partant du trait en tous sens, aussi abondants dans la partie profonde que dans la partie superfi-(B. murisepticum est très virulent pour la souris, le pigeon. B. rhusopacielle du culot, et donnant au milieu un aspect nuageux très caractéristique. La gélatine se creuse lentement en entonnoir par liquéfaction lente et évaporation. Ne se développant pas mieux sur sérum que sur gélose, Tuant la souris blanche par septicémie en 2 ou 3 jours par injection sous-culanée. Anaérobie facultatif .

thiæ suis (Kitt), agent causal du rouget du porc, ne diffère du précédent que B. morphologiquement analogue au précédent, mais se développant faiblement par sa virulence pour le porc.)

. . Bact. acnes contagiosæ (Dir-cherhoff et Grawitz).

Bact. murisepticum (Koch) 1.

Serait l'agent de l'acné contagieuse du cheval (?),

sur gélatine ou gélose. Le milieu de choix est le sérum coagulé à 37°.

1

Bact. plicatum = Coccobacillus Couche assez épaisse, ridée sur gélose, ne faisant pas fermenter le glucose; ne produisant pas d'indol. Non pathogène. Bâtonnet court et grêle, ressemblant à B. choleræ gallinarum. Aérobie strict.

Isolé de l'intestin du cheval.

bâtonnets colorés par les solutions aqueuses de couleurs basiques d'aniline présentent une structure nettement granuleuse. A 22° sur la gélatine, ils ne se dèverenflès aux extrémités en massue. Les renflements atteignent 1 µ d'épaisseur. Les loppent que très peu ou pas du tout. La température optima est 37°. Le milieu Batonnets de dimensions moyennes, courts ou allongés, parfois courbés, souvent

cutanée de 1/2 centimètre cube de culture en bouillon de 24 heures. Le cobave meurt après 24 à 60 heures sans septicémie, présentant de l'ædème au point d'injection. La souris et le rat blancs sont presque réfractaires. Il existe des races non virulentes de B. diphteriæ, ayant tous les caractères du b. typique, Mais on trouve, chez l'homme et chez les animaux à l'état normal (yeux, nezpharynx) et à l'état pathologique (conjonctivites, angines de l'homme, mammites de la vache, etc), des b. avirulents qui diffèrent du bact, typique par leurs culures plus abondantes sur la gélose ordinaire ou glycérinée et sur la pomme de ierre, par la moindre acidification du bouillon, par l'absence de structure granuleuse des bâtonnets, et par la rareté des formes longues. On admet alors communément qu'il s'agit de bact. « pseudo-diphtériques ». Mais les rapports de ces derniers avec le b. dipht, authentique ne sont pas nettement établis.

Bact. diphteriæ (Klebs-Loeffler).

plicatus (Choukevirch).

1. B. murisepticum peut provoquer une liquéfaction tardive et faible de la gélatine.

TABLEAU XXX

Bâtonnets aérobies, ne liquéfiant pas la gélatine, non chromogènes, ne prenant pas le Gram, ne formant pas de spores, mobiles, ne coagulant pas le lait 1.

I. - Présentant des propriétés fermentatives ou pathogènes très spé-

A. - Assimilant les nitrates. Optimum 20.,

opalescentes et un peu gélatineuses; les nitrates disparaissent complétement en moins d'une semaine, sans production d'azote gazeux, assimilés à l'état de combinaisons organiques. Court bâtonnet (1-2 u/0, 7 u), à coloration bi-pôlaire, pourvu de cils implantés tout autour du bâtonnet, se disposant rarement en chainettes ou en filaments. Se développant mal à 37°, bien à 20°. Sur plaques de gélatine, les colonies ne dépassent pas 1 à 2 millimètres de diamètre; elles sont rondes, à centre surélevé, à périphèrie claire, de structure arquée. Sur gelose, l'aspect des colonies rappelle également celui des cultures de Bact. pestis, mais la limite entre le centre opaque granuleux et la périphérie claire est moins nette. En piqure, clou à tête plate. Le bouillon n'est troublé qu'à 20°; la réaction de l'indol est positive. Sur pomme de terre, culture blanche, étalée, transparente, Les solutions de salpêtre (solution d'extrait de terre glycérinée + salpêtre) deviennent puis verruqueuse. Le lait devient un peu filant. Le glucose et le lactose ne fermentent

pas. Bactérie du sol .

B. — Produisant des gaz inodores dans tous les milieux. Rendant visqueux le bouillon, le lait et l'urine.

Bâtonnets courts. Se développant bien en milieu fortement acide (suc gastrique du chien). Donnant à la surface du bouillon un voile blanc, visqueux, filant, Culture jaunâtre sur pomme de terre

C. - Agent d'une altération spontanée du lait qui prend un goût dou-ceâtre, répugnant, et répand une odeur fétide.

- Déterminant par inoculation sous-cutanée une pseudo-tuberculose nodulaire chez le cobaye, le lapin, la souris. Bâtonnets grêles et relativement longs . . .

Bact, agreste (Logunis.

Bact. gliserogenum (Malenna ET

Bact, lactis foetidum Jensen).

couronne d'aiguilles cristallines. Sur pomme de terre, culture généralement peu abon-dante, quelquefois épaisse, brunâtre, rappelant la culture de B. mallei. Délerminant, en injections sous-cutanees, une pseudo-tuberculose nodulaire avec caséification prédominant dans les organes abdominaux ; pathogène pour le cobaye.le lapin, la souris ; le campagnol est assez résistant; le rat est réfractaire. Agent de la pseudo-tubergélatine incolores (comme B. typhosus); les superficielles sont souvent entourées d'une culose spontance des rongeurs.

(Le B. tuberculosis zooglaeicæ (Malassez et Vignal), le B. pseudo-tuberculosis (Eberth) sont probablement identiques.)

qu'il ne se présente jamais groupé en chainettes, que ses éléments, isolés, sont toujours Le B. pseudo-tuberculosis similis (Courmont) se distingue du précédent par le fait

très mobiles et par les caractères particuliers de son pouvoir pathogène. [Il est à remarquer que Dieterlen a identifié à B. paratyphosum B. un agent de

pseudo-tuberculose des rongeurs.

II. - Ne présentant pas ces caractères.

Bact. très court (cocco-bacille, se développant aussi bien dans les milieux privés d'air que dans les milieux aérés. Cultures d'un blanc-grisâtre, s'obtenant à 18.20° ou à 37° sur gélatine et sur gélose, mais jamais très riches; le bouillon est troublé en 24 heures puis il s'éclaircit très rapidement avec formation de dépôt; odeur spéciale des cultures agées. Pathogène en injections sous-cutanées pour la souris et le moineau; pour le pigeon seulement en injections dans le tissu cellulaire sous-palpébral (mort en 36-48 h.). En injections sous-cutanées, le pigeon, la poule, le lapin et le cobaye sont - Non cultivables sur la pomme de terre naturelle (non alcalinisée).

Décrit comme étant un agent de diphtérie aviaire (En réalité celle-ci est due

habituellement, sinon toujours - à un virus invisible, filtrant).

B. diphteriæ avium (Galli-Valerio) est identique au précédent, quoique moins virulent (ne donnant que des accidents locaux (ulcérations) par injection sous-muqueuse au lapin, au cobave, à la poule.

B. diphteriæ avium (Loir et Ducloux) donnait une culture apparente sur pomme de terre; il appartenait donc probablement aux B. du groupe paratyphosum B, mais

Bact pseudo-tuberculosis rodentium (Preiffer).

Bact, diphteriæ avium (Guénin).

1. A ce tableau se rattachent un certain nombre de bactéries incomplètement décrites : B. Schafferi (Freudenreich), cause de hoursouflure des fromages, B. denitrificans agilis (Ampola et Garino), B. pneumoniæ caviarum (Strada et Traina), B. loxiacida (Tartakowsky).

TABLEAU XXX (Suite)

l'étude clinique et biologique (agglutination) est restée incomplète, si bien que l'on ne peut l'identifier d'une façon précise à aucune bactérie de ce groupe paraty-

Note. - La culture est peu apparente simple vernis); elle n'est alors visible - Se développant faiblement sur la pomme de terre naturelle.

que si l'on examine le milieu à jour frisant. Les bact. groupés sous B, C et D ont tous sur plaques de gélatine un aspect à peu près semblable : colonies petites (1-3 millim. de diamètre) blanches, blanc-bleuatres ou blanc-grisatres, transparentes ou opaques, mais toujours incolores, à surface lisse ou plus ou moins vallonnée (en montagne de glace), à contour plus ou moins irrégulier. - Les différences que l'on peut noter dans l'aspect de ces colonies sont des nuances trop fragiles pour servir a la détermination de l'espèce qui sera fondée sur la recherche des propriétés chimiques et biologiques.

1. Donnant la réaction de l'indol (souvent faiblement).

couleur bleue d'une gelose lactosée tournesolée vire peu à peu au rouge). Colonacré (en sceau de cire à cacheter) si, après 24 heures, on porte la culture de 37º à 20º. Sur gélose inclinée, la culture devient coulante Réaction de l'indol très a) Faisant fermenter le glucose énergiquement (avec gaz), le lactose faiblement (la nies sur plaques transparentes puis opaques. Sur gelose, colonies à bourrelet faible. Pathogène pour le chien, la souris, le lapin, le cobaye.

Le B. icterogenus (Guarnieri, trouvé dans un cas d'ictère grave (sang, foie), (Décrit comme agent de la fièvre jaune ; n'est plus admis comme tel.)

Bact. icteroïdes (Sanangull).

doit être rapproché du précédent).

3) Faisant fermenter le glucose faiblement et non le lactose, co-agglutiné (faiblement) par un immum-sérum typhique et fortement agglutiné par un Gaertner-sérum. Pathogène pour la souris, le rat, le lapin, le cobaye, le veau (diarrhée et septi-

(On le trouve dans le sang, le foie, la rate des veaux.) 7) Ne faisant fermenter ni le glucose ni le lactose.

de B. typhosum, donnant sur pomme de terre un glacis difficile à voir, étendu à toute la surface; cette culture a un tout autre aspect lorsque sur le même tuber-cule on cultive parallèlement B. typhosum: elle est alors limitée à la strie d'en-Bacille ayant des caractères morphologiques et culturaux très analogues à ceux

Bact. de la septicémie des veaux (THOMASSEN).

(Isolé dans un cas de dysenterie gangréneuse de l'hommé ; ne joue aucun rôle dans l'étiologie de cette maladie.)

2º Ne donnant pas la réaction de l'indol. Faisant fermenter plus ou moins le glu-

α) Rougissant légèrement le lait tournesolé sans alcalinisation ultérieure. Les cultures récemment isolées de l'organisme sont virulentes pour le cobaye. La dose mortelle est de 4 centimètres cubes d'une culture en bouillon de 24 heures

3) Ne modifiant pas le lait tournesolé. Le cobaye n'est pas tué par injection sous-

cutanée de cultures à la dose de 4 centimètres cubes. Les B. pseudotyphosum I à V (Loesener) ne se distinguent du précédent par aucun caractère de culture; ils sont agglutinés par l'Eberth-sérum, et doivent par conséquent être identifiés à B. typhosum. Il en est probablement de même pour B aquatilis sulcatus IV (Weichsellbaum), mais l'agglutination

n'a pas été recherchée.

guer d'une manière certaine. (Coagglutination.) Par contre, B. paratypho-sum A se différencie aisément des Bact, du groupe de B. paratyphosum B par l'action agglutinante obtenue à l'aide d'immun-sérums expérimentaux. Gengou. L'épreuve de l'agglutination ne permet pas davantage de les distin-Note. - Bact. paratyphosum A et Bact. typhosum fixent les mêmes sensibilisatrices, et ne peuvent pas être différenciés par la réaction de Bordet et

Se développant bien sur la pomme de terre naturelle (culture très apparente) et donnant la réaction de l'indol (souvent faiblement).

α Cultivables à 37°. Bande brunâtre, coliforme sur pomme de terre. Caractères morphologiques et culturaux comme B. coli commune. Pathogène pour le cobaje. Le R. cerevisiæ (Fuhrmann) doit être identifié au précédent, bien qu'il soit

Cultivables seulement au-dessous de 23º-25º. Culture sur pomme de terre d'un blancgrisâtre puis café au lait, d'aspect gras, brunissant le milieu; non pathogène.

D. - Se développant bien sur la pomme de terre naturelle. Ne donnant pas la réaction de l'indol.

(La fermentation du lactose est insuffisante pour provoquer la coagulation du 1º Faisant fermenter le glucose et un peu le lactose.

Bact. paratyphosum A (Schorr-MULLER, BRION-KAYSER). Bact. typhosum (EBERTH-GAFFEY).

(MATZUproximum Bact. coli SCHITA). Bact. aquatile solidum (Lusnig er

TABLEAU XXX (Suite)

lait, mais suffisante pour faire virer au rouge la couleur bleue d'une gélose lactosée tournesolée et pour produire des bulles de gaz nettes dans le tube de fermentation.) B. très court et très mobile, muni, en général, d'un seul cil pôlaire, donnant sur pomme de terre une culture coliforme, ne faisant pas fermenter le saccharose; non pathogène pour la souris. . . .

Bact. monadiforme (B. coli mobilis) (MESSEA).

(Isolé des selles d'un typhique).

Ne faisant fermenter ni le lactose ni le glucose (ni dégagement de gaz, ni acidiffication).

cultures à Bact. typhosum, sauf sur pomme de terre; sur ce milieu se lation intrapéritonéale de cultures fraiches. (Hôte normal de l'intestin de La culture dans les milieux glucosés, tournesolés n'en modifie pas la colora-I. - Alcalinisant nettement le lait. B. ressemblant morphologiquement et en développe lentement une culture assez épaisse, brunissant le tubercule. Non agglutiné par un sérum typhique. Le cobaye peut être tué par l'inocution bleue.

[Bact. mariense (Klimenko) ne peut guère être différencié du précédent que par l'agglutination, ce qui ne prouve pas qu'il constitue une espèce distincte, différentes races de Bact. alcaligenes étant agglutinées à des taux très divers par un Petruschky-sérum donné (Berghaus), 1

.

l'homme). . .

II. - Ne modifiant pas la réaction du lait. Non pathogènes.

A. - B. ressemblant morphologiquement et en culture à Bact. typhosum, sauf sur pomme de terre où se développe une bande jaune vif, jaunâtre ou couleur crème. B. isolés de l'air et de l'eau.

- Culture jaune vif sur pomme de terre. Pas de développement à 37°.

Culture jaunâtre puis jaune sur pomme de terre. . . Culture grise puis gris-jaunatre sur pomme de terre .

- Culture sur pomme de terre très mince. Se développant à partir de 7º. - Bactérium ressemblant morphologiquement et en cultures à Bact. coli, répandant une odeur de truffe dans tous les milieux. . B

Bact. alcaligenes (Bac, fæcalis alca-

ligenes) (Petruschery).

Bact. sulcatum nº 5 B. aquatilis B. aq. sulc. n° 2 (Weichselbaum).
B. aq. sulc. n° 2 (Weichselbaum).
B. aq. sulc. n° 1 (Weichselbaum). sulcatus nº 5 (Weichselbaum. sulc. nº 1 (Weichselbaum).

Bact. olens (Matzuschita).

3. Ne faisant pas fermenter le lactose; faisant fermenter le glucose très nettement (acidification et dégagement de gaz) (Groupe de Bact, paratyphosum B

- Bact, enteritidis).

caractères communs : colonies sur plaques rappelant tantôt celles de Bact. typhosum, tantôt celles de Bact. coli, souvent intermédiaires aux deux comme duisent pas d'indol et en général elles alcalinisent le lait au cours de la 2° semaine après l'avoir faiblement acidifié dans les premiers jours. Leur morpho-Note. - Les bactéries qui constituent ce groupe ont un grand nombre de abondance et comme opacité. Culture sur pomme de terre très facile à voir, aunâtre ou jaune-brunâtre, plus ou moins nettement coliforme. Elles ne prologie, leur mobilité, la disposition de leurs cils ne diffèrent pas d'une espèce à l'autre. Les réactions d'agglutination et de fixation ne permettent que de les ranger en trois sous-groupes 1.

échantillon à l'autre d'une même espèce bactérienne (alors même qu'il s'agit de cultures fraîchement retirées de l'organisme). L'inoculation aux différentes La virulence de ces bactéries se perd vite dans les cultures; elle varie d'un espèces d'animaux d'expérience ne met en évidence aucune particularité qui soit de nature à caractériser des espèces bactériennes. L'action pathogène ou non des cultures administrées par ingestion aux animaux de laboratoire per-

En réalité, à l'heure actuelle, il n'est guère possible de caractériser les met, dans une certaine mesure, d'orienter la recherche.

membres du groupe B. paratyphosum-enteritidis si l'on n'a pas la notion de leur provenance. Leur action pathogène dans les conditions naturelles, et elle seule, différencie nettement ces espèces si voisines.

- Les cultures fraichement retirées de l'organisme sont virulentes pour une ou plusieurs espèces d'animaux de laboratoire.

A. — Agents de maladies spontanées de l'homme.

1º Très virulent, en injections sous-cutanées pour le cobaye (qui meurt en

1. Par la réaction agglutinante pratiquée avec des immum-sérums expérimentaux, par l'étude des propriétés bactéricides des sérums et par la recherche des sensibilisatrices, on arrive à distinguer trois sous-groupes (de Nobele, Sacquépée). Les procédés biologiques les plus sensibles que l'on possède à l'heure actuelle ne permettent donc point la différenciation des Bact. de ce groupe paratyphique. La modalité de leuraction pathogéne, dans les conditions naturelles, et elle seule, individualise les membres de ce groupe. I.— Sous-groupe du type B. enteritidis (Gaertner). — B. de la septicémie des veaux (Thomassen), B. d'intoxication par la viande, B. de Fran-kenhausen (Gaertner), B. de Morseele et de Gand (Van Ermenghem), B. de Brugge, de Bruxelles, de Willebrock (de Nobele), B. de Rumfleth, B. de

II. — Sous-groupe du type paratyphosum B-Aertrych. — B. paratyphosum B (Schottmüller), B. psittacosis (Nocard), B. du Hog-cholera (Salmon et Smith), B. typhi murium (Loeffler), B. morbificans bovis (Basenau), B. de Ventérite infectieuse des veaux (Malvoz), B. d'intoxication par la viande: B. d'Aertrych, de Meischbeck (de Nobele), B. de Ganstad (Holst), B. de Breslau (Flügge, Känsche), B. de Posen (Günther), B. de Hatton Hanstedt (Fischer), Bact. ratti (Danysz, Neumann, Isatschenko, Dunbar), Bact. nodulifaciens bovis (Langer). et de Chadderton (Durham), B. de Sirault, de Calmphout (Van Ermenghem).

III. - B. paratyphosum C (Uhlenhuth).

TABLEAU XXX (Suite)

xième semaine le lait qui présente une réaction alcaline et prend une teinte pour la souris. Donnant sur plaques de gélatine des colonies habituellement opaques et visqueuses, sur pomme de terre une bande généralement épaisse, visqueuse, brunâtre (coliforme). Eclaircissant vers la deu-B. typhosum et de B. paratyphosum A, faiblement sur les milieux vaccinés aune-brunâtre. Se développant normalement sur des cultures râclées de Pathogène, par ingestion, pour le cobaye et le veau, irrégulièrement 24 heures avec 1/2 à 1/40 de cc. de culture) moins virulent pour le lapin.

(Agent d'intoxications par la viande et de maladies typhoïdiques de l'homme (paratyphoïdes). On le trouve dans les matières fécales et dans e sang des malades. Il est agglutiné, mais à un moindre degré que Bact. typhosum par un typho-sérum expérimental.)

pyohémiques, septicémie); par ingestion, pour le cobaye, la souris et le veau (gastro-entérite aigué, mort). Donnant sur plaques de gélatine des Virulent, en inoculation pour le cobaye, le lapin, la souris, le singe (foyers cultures moins épaisses que Bact, paratyphosum B, plus ou moins trans parentes

Agent d'intoxication par la viande (on l'isole des matières fécales des malades et de la viande suspecte). Ce b. est agglutiné, mais à un moindre

par ingestion pour le cobaye et la souris. Donnant sur pomme de terre une culture bien visible, brunâtre; se développant sur les cultures râclées par un immum-sérum préparé avec l'un quelconque des b du groupe de à l'injection intrapéritonéale, intraveineuse et intratrachéale; pathogène de Bact. typhosum. Agglutiné (faiblement par un typho-sérum, fortement 3º Peu virulent pour le cobaye en injection sous-cutanée, très virulent pour le perroquet et la perruche, la poule, le pigeon, la souris qui succombent degré que Bact. typhosum, par un typho-serum expérimental.

On le trouve dans les déjections, dans les viscères et dans la moelle (Agent de la psittacose, maladie des perroquets transmissible à l'homme. - Agents d'épizoolies des rongeurs (paraissant susceptibles d'infecter les osseuse des oiseaux; chez l'homme, on l'isole par hémoculture). animaux domestiques et même l'homme).

Bact. paratyphosum B. - Bact. Aertryck .

1. Virulent par ingestion pour le cobaye, le veau et le cheval, irrégulièrement

nour la souris (mns musculue et mne

trop of to lanin of le nore sont

Bact. paratyphosum В (Schorr-MULLER).

Bact. enteritidis (GARTNER

Bact. psittacosis (Nocard).

et Bact. enteritidis (Suite). Bact. paratyphosum B өр Groupe

jours; effets locaux chez les autres animaux. Petits bâtonnets comme Bact. typhosum cultivables comme ce dernier sur la gélatine, donnant sur pomme de terre une culture grisâtre, pas très abondante; le milieu environnant se colore en gris-bleu. Le lait est généralement très légèrement acidifié. réfractaires. Par injection sous-cutanée, la souris meurt en quelques

B. typhispermophilorum (Mereshkowsky) et B. murium (Mereshkowsky) sont identiques au précédent d'après Toyama.

maux de ferme (gorêts, veaux. Bâtonnet ovoïde à coloration souvent Virulent par ingestion pour le rat, parfois également pour les jeunes anibipòlaire; cultures ressemblant à celles de Bact. typhi murium. (Agent du produit « Ratin » pour la destruction des rats).

d'après Xylander, Bact. ratti (Isatschenko) et Bact. ratti (Dunbar). D'après Mühlens, Dahm et Fürst, tous ces agents de destruction des rongeurs présentent les mêmes caractères morphologiques et culturaux Bact. Trantmanni diffère des précèdents par le fait qu'il n'est pathogène et les mêmes propriétés biologiques que Bact. enteritidis (Gärtner). Doivent être identifiés au bacterium précédent : Bact. ratti (Danysz)

que pour le rat blanc. C.

Agents de maladies des animaux de ferme. Ne paraissant pas susceptible d'infecter l'homme.

pour la souris et le lapin, ne le sont pas du tout pour le cobaye et le porc. Agglutiné par un immum sérum préparé avec l'une quelconque des Bâtonnet court, à coloration parfois bipôlaire. Colonies sur plaques de gélatine transparentes, bleuâtres, analogues à celles de Bact. typhosum; culture assez épaisse, gris-jaunâtre ou brunâtre sur pomme de terre. pathogène, mais non mortelle. Par ingestion, des cultures virulentes Alcalinisation secondaire du lait (comme Bact. paratyphosum B). Culle cobaye (mort en quelques jours par septicémie). Le pigeon est assez bactéries du groupe de Bact. paratyphosum B. - Aertryck (voir note). tures très virulentes par injection sous-cutanée pour la souris, le lapin, résistant. Chez le porc, l'inoculation intravenneuse - et elle seule - est

Synonymes: B. cholerae suum (Migula), B. de la pneumo-enlerite Agents de maladies infectieuses des bovides dont le pouvoir pathogene Salmonellose) du porc (Lignières). (On trouve ce b. dans le sang, la rate, les ganglions des porcs atteints de Hog-choléra, mais également dans l'infestin du porc sain dont il est l'hôte normal. Très contesté en tant qu'agent du Hog-choléra, épizootie qui paraît causée par un virus filtrant. Le Bact, de Salmon paraît jouer un rôle secondaire dans cette infection). pour l'espèce humaine est encore inconnu.

Bact. typhi murium (Loefflen).

Bact. ratti (Ratinbacillus) (Neu-MANN). Bact. intestinale suis (B. du Hogcholera) (Salmon-Smith)

stalk disease (Billings).

TABLEAU XXX (Suite)

Bact. morbificans bovis (Basenau). les b. des intoxications par la viande), par ingestion, pour la souris, le cobaye, le rat.le veau (gastro-entérite mortelle). Bâtonnets courts comme Bact. typhosum, donnant sur plaques des colonies ressemblant à celles de Bact. coli, mais plus grenues que celles-ci; sur pomme de terre, une bande humide, jaunâtre ou jaune. Co-agglutiné par un immum-sérum anti-Aertryck ou anti-paratyphosum B. Les cultures ne sont pas toxiques. Agent de septicémie des bovidés. Virulent (mais à plus fortes doses que (Trouvé dans les organes d'une vache atteinte d'infection puerpérale). Agent de septicémie et de broncho-pneumonie du bœuf. Virulent (inoculation intrapéritonéale et sous-cutanée) pour la souris, le cobaye, le lapin et même pour le veau, le bœuf et le cheval. Le rat, le chien

pulmonaire détermine une broncho-pneumonie et ure pleurésie mor-Jelles en 48 heures. Bâtonnets courts, à coloration Lipôlaire, donnant sur gélatine et sur gélose des colonies analogues à celles de Bact. tyet le porc sont réfractaires. Chez le veau et le bœuf l'injection intraphosum; sur pomme de terre, culture facile à voir, grise, humide, mince, limitée à la strie.

souris (mort par septicémie en 7 à 8 jours après l'inoculation sous-cutanée) et pour le cobaye(mort en 7 jours avec péritonite fibrineuse). Par ingestion les cultures ne sont pathogènes qu'après exaltation de la par Billings dans une septicémie des bœufs avecentérite, infection attri-Agent d'une affection nodulaire du foie chez le veau. Virulent pour la Ce b a été trouvé par Nocard dans une broncho pneumonie du bœuf seraitidentique, d'après Billings, à B. zeae = B. secalis (Burrill), considèré comme étant l'agent de cette allération des jeunes plantes de maïs.) virulence. Les réactions biologiques sont celles du sous-groupe de Bact. buée par ce dernier auteur à l'ingestion de tiges de maïs altérées. Il

enteritidis (Gärtner) (Pitt). Les cultures ne sont pas pathogènes pour les animaux de laboratoire. Races non virulentes des bact. du groupe de B paratyphosum.

de pain et que cet auteur considère comme identique à B. enteritidis (Gaertner). premières cultures. C'estle cas d'une bactérie trouvée par Lehmann dans la pâte Il peut s'agir soit d'échantillons ayant perdu leur virulence par le séjour dans les milieux artificiels, soit d'échantillons dépourvus de virulence dès les Note. - La détermination des bactéries précédentes ne peut se faire avec certitude que par l'épreuve de l'agglutination, On essayera en outre d'exaler leur virulence par des passages,

Bact. Billingsi = B. de la Corn-

Bact. nodulifacions bovis (Langer

Bact. levans (Lehmann).

(EHRENBERG.

synxanthum

Bact.

SCHRÖTER).

TABLEAU XXXI

Bâtonnets aérobies, ne liquéfiant pas la gélatine, non chromogènes sur gélatine et gélose, ne prenant pas le Gram, ne formant pas de spores, mobiles. Coagulant le lait 1

A. - Coagulant le lait avec réaction amphotère, neutre ou alcaline (par

Pas de dégagement de gaz dans les milieux lactosés.

1º Elaborant un pigment jaune d'or dans le lait cuit.

coagulé; le caillot se redissout par la suite et le milieu devient jaune d'or. Le pigment, insoluble dans l'alcool et dans l'éther, est soluble dans l'eau. Cause d'une colo-Bâtonnets courts et greles. Cultures coliformes sur les milieux solides. Le lait est ration jaune que peut prendre spontanément le lait cuit.

trouve des formes coccoïdes. Dans la gélatine, des ramifications, grosses et courtes, partent du trait de piqure Sur gélose inclinée, les colonies, nacrées, confluent 2. Ne produisant pas de pigment dans le lait.

a) B. polymorphe facilement cultivable sur les milieux usuels. Virulent pour le cobaye, le pigeon, la souris blanche. Bâtonnets ayant en moyenne 1-3 µ/0,7-0,9 u, mais on en une couche grise, luisante. Le bouillon à 35° présente rapidement un trouble uniforme intense, persistant, puis un voile bientôt opaque, épais. Le lait dont la réaction ne se modifie pas, est coagulé en flocons. Culture sur pomme de terre humide, grise, puis jaune pale ou orangé. Le cobaye meurt en 6 à 8 jours; l'injection intrapéritonéale détermine une orchite qui rappelle le sarcocèle morveux expérimental. Le cobaye peut être infecté par ingestion. Le lapin, la poule, le chien, le chat résistent

3) B polymorphe, culture lente et grêle sur gélatine et gélose, beaucoup plus abondante sur gélose mannitée. Assimilant l'azote libre. Non pathogène.

Daus la gélatine, culture en surface minime, à peine perceptible dans le trait de

piqure. Sur gélose ordinaire, culture assez grêle, plate, grisâtre. Le bouillon est peu troublé; pas de voile. Le lait est coagulé en fins flocons après deux semaines; Sur gélose mannitée, la culture est abondante, saillante, visqueuse; l'eau de condensation est troublée et présente un dépôt. Bâtennet ayant en moyenne 1-2 µ/0,7 µ réaction alcaline. Sur pomme de terre, couche plate blanc-jaunâtre, puis brunâtre. mais on trouve des formes gréles (0,4 à 0,5 µ d'épaisseur). Bactérie du sol

Bact. pseudotuberculare phlogogenes (CAGNETTO).

Bact. radiobacter (Beijerinck).

1. A ce tableau se rattache Bact. ventriculi (Raczinski), trouvé dans l'estomac du chien. Il est incomplètement décrit,

TABLEAU XXXI (Suite)

B. - Coagulant le lait avec réaction acide (par fermentation du lactose) Dégagement de gaz dans les milieux lactosés.

1º Rendant le lait visqueux avant de le coaguler. Cause de boursouflure des fro-

2º Ne rendant pas le lait visqueux.

Bâtonnets d'épaisseur moyenne (0,7 µ), de mobilité variable, ordinairement faible, à cils courts et peu nombreux, donnant sur gélatine et sur gélose des cultures opaques, d'un gris sale, présentant au faible grossissement un dessin en réseau rappelant les nervures d'une feuille; sur pomme de terre une culture abondante, humide, jaunâtre, puis jaune-brunâtre, virulence très variable. a) Donnant la réaction de l'indol.

Faisant fermenter le saccharose . . .

(B. chologenes (Stern), très voisin du précédent, n'en diffère que par la production de nombreuses bulles de gaz dans les cultures sur pomme de terre et par sa virulence beaucoup plus marquée pour la souris, le lapin, le cobaye.

La variabilité de B. coli est considérable. Le groupe de B. coli comprend un grand nombre de races et formes d'adaptation. Ne faisant pas fermenter le saccharose.

tive à l'égard des sucres ou par leur propriété indol-formatrice (voir ce A côté des races qui diffèrent du B. coli typique par leur action fermentaciales : [Fermentation de la choucroute avec production de méthane]. . . même tableau), il en est d'autres douées de propriétés fermentatives spé-

Production de gaz dans la gélatine ordinaire: B. coli lymphaticum aero-

genes (Jager).

Une race qui ne diffère du B. coli typique que par la présence constante d'un cil unique à l'une ou aux deux extrémités du bâtonnet Des races morphologiquement distinctes.

Une race qui ne diffère de B. coli commune que par des dimensions un peu supérieures et l'absence de développement à basse température.

taines de ses colonies d'élaborer un pigment rouge au bout de 48 heures, Il faut en rapprocher B. coloïdes rubescens (Deeleman) qui donne sur Une variété culturale caractérisée essentiellement par la propriété de cergélatine des colonies d'un blanc-grisâtre à reflets rougeâtres alors que d'autres demeurent non chromogènes

Bact. mammitidis (GUILLEBBAU).

Bact. coli communior (DURHAM).

Bact. coli commune (Escherice).

Bact. brassicæ acidæ (Lehmann er CONRAD).

BT Bact. coli 3 polaris (Lehmann NEUMANN)

Bact. equi intestinale (Dyan er KRITH!

Bact. coli mutabile (Massini).

Groupe de Bact. coli (Races et formes d'adaptation)

	Bact. mustelæ septicum (Евентн ет Schimelensch). Bact. cuniculicida mobile (Евентн ет Mandry).	Bact. canariense (Rieck). Bact. phasiani septicum (Keen).		Bact. monachae (Tubeur). Bact. Hofmanni.	Bact. coli anindolicum.	Bact glaciale (Vaughaner Perkins).	Bact.colofdes virescens (Deblemann)	
III. — Des races douées d'une virulence élective pour certaines espèces de rongeurs ou d'oiseaux. Bâtonnets souvent plus petits, plus grêles (0,4 µ d'épaisseur) et surtout beaucoup plus mobiles que B. coli commune, coloration habituellement bipolaire; donnant sur pomme de terre une culture d'un blanc grisâtre. Ce sont :	a) Agent de la peste des furets	(c) 1	a) Un bact, qui différerait de B. colt développer en milieu anaérobie e	b) N	(a) Identique par tous les caractères à B. coli commune (sauf la production d'indol). (b) Morphologiquement et en cultures analogue à B. coli, mais coagulant le lait beaucoup plus rapidement que B. coli (en 12-24 h.) avec formation de gaz et en dégageant une odeur agréable, acide, d'éther butyrique. Les cultures sur pomme de terre (muqueuses, épaisses, jaunâtres) et sur carotte (beaucoup plus	abondantes que celles de B. coli) ont la même odeur. Plus virulent que B. coli pour les animaux suivants : souris, lapin, cobaye, rat, chien, chat. Agent d'empoisonnement par la crème glacée et le fromage.		de B. coli identiques par leurs caractères morphologiques et culturaux et par leurs propriétés fermentatives, les unes sont agglutinées par un colisérum douné, alors que les autres ne le sont pas.

Bact. coli immobile (Gilbert BT

Bac. de Skrzynski est voisin du précédent, mais il en diffère par l'absence de production d'Il2S et par ses cultures plissées sur pomme de terre. En outre, il est Bact. cavicida (Brieger) également voisin de B. coli immobile, se distingue par la propriété de transformer le glucose en acide propionique et acétique. Il peut

virulent pour le chat et produit une toxine soluble.

donner à la gélatine une consistance visqueuse,

TABLEAU XXXII

Bâtonnets aérobies, ne liquéfiant pas la gélatine, non chromogènes, ne prenant pas le Gram, immobiles, sans spores.

Bact. aceti (Pasteur, Brijerinck) Bact. pasteurianum (HANSEN). Bact. rancens 1 (Beijeringk), Bact. xylinum (Brown I. - Agents de la fermentation acétique des solutions alcooliques surface d'un liquide formé de: eau 100 p. alcool 3 p. phosphate d'ammoloppant mal sur gélatine additionnée de bière, très bien si l'on ajoute 10 º/º de saccharose. Fermentation rapide.

B. - Ne se développant pas sur le milieu liquide précédent, for-- Se développant abondamment sous forme d'un voile épais à la niaque 0,05, chlorure de potassium. 0,01. Voile très mince sur la bière. Se déve- x) Voile ne se colorant pas par l'iode. Ferment acétique de la bière.
 y) Voile se colorant en bleu par l'iode.
 b) Donnant sur gélatine une culture sèche, dure, d'une consistance de cuir. L'adqueux, puis épais et consistant comme du cuir, présentant la réaction de a) Donnant sur gélatine une culture blanche, molle. L'addition de saccharose ne Bact. ne différant de Bact. coli commune (Escherich) que par l'absence de mobilité dition de saccharose active la culture. A la surface de la bière voile mu-1º Donnant la réaction de l'indol (très marquée). Produisant en grande quantité Cultures sur les milieux usuels comme B. coli ou B. pneumoniæ. mant un voile épais à la surface de la bière. Bactéries ne présentant pas ces caractères. H'S dans les milieux peptonés. (Groupe de bactéries très voisines.) favorise pas la culture. - Coagulant le lait. la cellulose. Clet proposée par Lehmann et Neumann d'après les tra-vaux de Beijerinck.

U2	
28	
O.	
00	
0	
+	
2	
200	
+==	
-	
=	
2	
e pro	
DE.	
2	
-	
-	
1	
(0)	
-	
0	
-00	
-	
CD	C
(0)	10
.0	
	1
+	
d	B
_	Ľ
0	n
**	В
+	
0	3
ದ	٠,
100	
9	83
H	88
-	6
2	-
on	1
lou	
olou	1:
olou	1:
dolou	1
nolobi	1:
nolobu	1:
'indoloui	1:
l'indol ou	1:
l'indol ou	1
le l'indol ou	1:
de l'indol ou	1
del'indolou	1
n de l'indol ou réaction très faible. N	1:
on de l'indol ou	1: 1
ion del'indol ou	1
tion del'indol ou	1
ction del'indolou	1
ction del'indol ou	1
action del'indol ou	1
éaction de l'indol ou	1
réaction de l'indol ou	1
réaction de l'indol ou	1 1 1 mondo
a réaction de l'indol ou	
la réaction de l'indol ou	
s la réaction de l'indol ou	
as la réaction de l'indol ou	
oas la réaction de l'indol ou	
pas la réaction de l'indol ou	1
t pas la réaction de l'indol ou	1
nt pas la réaction de l'indol ou	1
nt pas la réaction de l'indol ou	1
ant pas la réaction de l'indol ou	1
nant pas la réaction de l'indol ou	1
mant pas la réaction de l'indol ou	1
unant pas la réaction de l'indol ou	1
onnant pas la réaction de l'indol ou	1
Jonnant pas la réaction de l'indol ou	
donnant pas la réaction de l'indol ou	
e donnant pas la réaction de l'indol ou	1
Te donnant pas la réaction de l'indol ou	
Ne donnant pas la réaction de l'indol ou	
· Ne donnant pas la réaction de l'indol ou	
2. Ne donnant pas la réaction de l'indol ou	
2. Ne donnant pas la réaction de l'indol ou	

a) Ne produisant pas de gaz dans les milleux glucoses. a) Rendant le lait visqueux et filant.

b) Ne rendant pas le lait visqueux.

 Les cultures sont très virulentes; elles déterminent chez les animaux sensibles des lésions de septicémie hémorragique caractéristiques. Il s'agit alors de races coagulantes des b. du groupe de Bact. septicemiæ hemorra-

- Les cultures ne sont pas pathogènes pour les animaux (ou bien elles déterqicæ. (Eventualité peu fréquente.)

minent simplement un abcès local).

A. — Culture extrêmement lente sur gélatine et sur gélose. Dans la gélatine ensemencée par piqûre, il ne se développe rien à la surface, même après deux mois; dans le trait on voit après trois ou quatre semaines de petits points blancs. Bátonnets trois fois plus longs que larges, à extrémités tronquées, formant parfois de courtes chaînettes . . .

Trouvé dans le fromage.

pement se fait mieux en surface, sous forme d'une couche plate, irrégupiqure, il se développe une culture très grêle le long du trait. Le dévelop-- Culture lente sur gélatine et sur gélose. Dans la gélatine ensemencée par lière, blanc-jaunâtre. Bâtonnets courts, épais, souvent par deux.

Trouvé dans le lait.

- Culture rapide et abondante sur gélatine (comme B. pneumoniæ). Dans la gélatine ensemencée par piqure, il se développe une colonie hémisphérique à la surface, et rien le long du trait de piqure. La gélatine brunit ture épaisse, blanche, humide, ne produisant pas de gaz. Propriétés pyogènes. après trois à quatre semaines; sur pomme de terre, en 24 heures à 37°, cul-Ü

Bact. acidi lactici.

Groupe de Bact, pneumoniæ

 Culture nettement apparente sur pomme de terre. 3) Produisant des gaz dans les milieux glucoses.

- Coagulant le lait rapidement et énergiquement (agents de fermentation lactique). Parmi les produits de la fermentation du lactose on trouve d'une

- De l'acide lactique dextrogyre. Colonies sur plaques généralement plates, manière prédominante:

- De l'acide succinique et acétique. Colonies sur plaques généralement saillantes, hémisphériques. Virulence pour l'animal faible ou forte. De l'acide lactique lévogyre. Colonies sur plaques de structure radiée

Sont identiques à Bact. lactis aerogenes d'après Löhnis: Bact. margaritcomme deux éventails accolés). Non pathogène

B. lactis acidi III (MARPMANN).

MI-(ADAMETZ, gulderight b. XIX (Adambtz). Bact. truncatum

Bact. limbatum = Bac. limbatus acidi lactici (MARPMANN). Bact. pseudo-pneumonicum (Pas-

Bact. acidi lactici (HURPPE).

Bact. lactis aerogenes (Escherich).

Bact. loculosum = Facherbazillus (CLAUSS).

1. B. Kützingianum (Hansen), B. acetosum et B. oxydans (Henneberg) sont des variétés de cette espèce.

B. nebulosum gazogenes (Jacob-

TABLEAU XXXII (Suite)

taceum (Migula) = Perlschnurbazillus (Maschek), trouvé dans l'eau, Bac. oxytocus perniciosus (Flügge), isolé d'un vieux lait, Bact. tholoeideum (Gessner) qui est pathogène, Bac. Guillebeau a et b (Freudenreich), agent de mammite et cause de boursouflure des fromages.

Sont identiques à Bacl. loculosum d'après Utz: B. acidi lævolactici (Schar

dinger et B. acidi lævolactici halensis (Kozaï).

Bact. pneumoniæ (Friedlænder), priété coagulante qu'après plusieurs passages dans le lait). Colonies sur - Coagulant le lait lentement (certains échantillons n'acquièrent la proplaques saillantes, hémisphériques, d'aspect porcelané. Virulence pour 'animal faible ou forte

Note. — Bact, lactis aerogenes n'est qu'une variété de Bact, acidi lactici (Hueppe) produisant plus de gaz et moins d'acide. Bact. pneumoniæ et Bact. lactis aerogenes sont des bactèries très voisines, sinon iden-

Races coagulantes

tiques : elles peuvent être ramenées l'une à l'autre (Grimbert).

Pas de culture sur pomme de terre. Pas de développement apparent sur le milieu de Læffler. Odeur butyrique des cultures en bouillon. Longueur moyenne 3 à 5 µ. Formes longues dans les vieilles cultures. Non pathogène. Isole des selles d'un nourrisson.

- Ne coagulant pas le lait.

1º Produisant des gaz dans les milieux glucoses.

a) Rendant le lait visqueux.

Bact. capsulatum mucosum (FA-B. mucosus tenax (de Simoni) ne diffère du précédent que par la consisa) Pathogène pour les animaux de laboratoire, et conservant cette propriété dans les milieux artificiels En piqure, culture blanc-grisatre dans le canal; à la surface, culture plate, étalée, coulante. Odeur de malt en fermentation.

tance plus ferme des cultures.

b) Non pathogènes pour les animaux de laboratoire. Culture sur gélatine en piqure identique à celle du précédent

Bact. Nicolafleri (Migula).

SCHING).

rique d'un blanc de porcelaine sur gélatine ensemencée par piqure. Cultures y) Ne rendant pas le lait visqueux.
 a) Bâtonnets encapsulés dans le lait et dans l'organisme animal. Longueur variable. Epaisseur 0,5 µ à 0,8 µ. Cultures en clou à tête hémisphécoulantes sur gélose; cultures crèmeuses, jaunâtres souvent avec bulles de gaz sur pomme de terre. Virulence faible ou forte pour les animaux de laboratoire

B. pneumoniæ: B. icterogenes capsulatus (Banti), B. ozenæ (Abel), B. en-

docarditis capsulatus (Weichselbaum).

Bact. pneumoniæ (Friedlender).

Les bactéries suivantes, voisines ou identiques doivent être rattachées à

acidi lactici (Snile). Bact. Groupe de Bact. pneumoniæ

tine des colonies ressemblant à celles de Bact, fluorescens. Bande jaunebrunâtre sans production de gaz sur pomme de terre. Non pathogène. Hab) Batonnets non encapsules, courts et trapus 1 à 1,5 µ. Donnant sur géla-

bitat : sol.

α) Cultures sur pomme de terre, abondantes, gris-jaunâtre, brunissant le milieu qui devient brun-chocolat ou brun-noîrâtre. Colonies sur plaques de gélatine demi-transparentes, blanc-bleuatre, de structure concentrique.

3) Cultures sur pomme de terre ne brunissant pas le milieu.

tures ressemblant à celles de Bact. pneumoniæ. Capsules très épaisses Propriétés pathogènes variables pour les animaux de laboratoire. Cul-(Son rôle dans l'étiologie du rhinosclérome est contesté). a) Capsules très apparentes en culture dans le lait. dans les produits pathologiques

b) Pas de capsules dans le lait.

Longues chaînes d'éléments ovoïdes dans le bouillon. Culture peu apparente, grisâtre, mince, humide sur pomme de terre. I. - Non pathogènes pour les animaux de laboratoire.

(B. lactis innocuus (Wilde) est voisin du précédent. Il a été isolé du lait et des selles d'un nourrisson.)

II. - Pathogènes pour un ou plusieurs des animaux d'expérience

Ce sont des bâtonnets se colorant plus énergiquement à leurs extré-

friction cutanée. Bâtonnets groupés en longues chaînettes dans le bouil-lon. Courts bâtonnets isolés, à coloration bipolaire sur les autres milieux. Le bouillon n'est habituellement pas troublé; il contient des flocons adhérents aux parois ou tombant au fond du tube. A l'autopsie des animaux d'expérience, on trouve des bubons multiples et des A. - Cultures très virulentes pour le cobaye, tuant cet animal même par nodules dans les viscères. 1º Pathogènes pour le rat :

tions. Pathogène pour le cobaye dans les mêmes conditions. Le pigeon est réfractaire Agglutiné par le sérum antipesteux. Culture - Par injection sous-cutanée et par friction cutanée sans scarifica-

Bact. tartaricum (Löhnis).

Bact. concentricum = $B \cdot n^{\circ}$ (Huber-Armin).

Bact. rhinoscleromatis (Frisch).

Bact. coli non fervore (Matzu-schita).

Bact. pestis(Yersin).

TABLEAU XXXII (Suite)

péritonéale. Non agglutiné par le sérum antipesteux. Agent d'une septicémic spontanée du rat Note. — Un assez grand nombre de bactéries pseudo-pesteuses, non agglutinées par le sérum antipesteux ont été décrites comme tachent a l'un ou à l'autre des types suivants : Bact, pseudo-pestis agents de septicémie des rats et d'autres rongeurs. Elles se rat-

Pathogènes pour le cobaye par friction cutanée (comme Bact, pestis), Neumann', Bact. de Kister et Schmidt, Bact. bristolense (Klein), 2º Non palhogènes pour le rat.

- Non agglutiné par le sérum antipesteux Trouvé dans une épizootie de furets.

détermine chez la plupart des rongeurs (le rat excepté) des nodules aples. Administrées par os. les cultures déterminent également une pseudo-tuberculose chez le cobaye et le lapin surtout). Cul-Agglutiné par le sérum antipesteux. L'inoculation sous-cutanée oseudo-tuberculeux dans les viscères ainsi que des adénites multure sur pomme de terre membraneuse, jaune-clair (Agent d'une pseudo-tuberculose spontanée des rongeurs) . . Bact. opale agliaceum (Vincenzi) n'est qu'une variété du précédent. Il n'en distère que par sa culture sur gélatine mince, opalescente, bleuâtre, humide (celle du bact. de Pfeisser est épaisse, blanc-jaunâtre, sèche) et par l'odeur alliacée de ses cultures à la température de la chambre.

(Le streptobacille de la pseudo-tuberculose du surmulot (Sa-

B. - Ne tnant pas le cobaye par friction cutanée (voir Technique). Ne formant pas de longues chainettes dans le bouillon. Ce milieu prébrazès) est très voisin des bact, précédents,

sente, en général, un trouble uniforme.

a Culture sur pomme de terre abondante, saillante, humide, avec bulles 1° Se développant bien sur gélatine à 20-22°.

Bâtonnets ovoïdes à coloration pôlaire comme Bact pestis, mais plus gros que ce dernier. Donnant sur gélatine et sur gélose des cultures ressemblant à celles de Bact. coli. Le cobaye, la souris, le rat blanc sont sensibles (injection sous-cutanée et péritonéale.

Bact. pseudo-pestis (Neumann).

Bact, pseudotuberculosis rode

Bact. Kisteri (KISTER ET SCHMIDT).

Bact. pseudotuberculosis rodentium (Pfeiffen).

Bact. bristolense (E. KLEIN).

Culture sur pomme de terre peu apparente (simple glacis visible à Mort après un à quelques jours). Le lapin est réfractaire. (Agent d'une épizootie de rats).

jour frisant).

Bâtonnets un peu plus épais que Bact. typhosum, ayant des caractères de culture analogues et les mêmes propriétés fermentatives que ce dernier. Par injection sous-cutanée au lapin de 3 à 4 centimètres cubes d'une culture de 24 heures, la mort survient en 4 à 6 jours avec des lésions caractéristiques de l'intestin et quelquefois une hypertrophie des ganglions mésentériques. Pas d'épanchement sanguins dans les séreuses. On trouve le bact, au point d'inoculation et dans la muqueuse intestinale, mais jamais dans le sang du cœur. Agent de la dysentérie épidémique 1

Bact. dysenteriæ (Shiga-Kruse)

1. Il existe plusieurs types de B. dysenteriæ qui diffèrent par certains caractères morphologiques ou biologiques. B. dysenteriæ type Flexner produit de l'indol; les types Strong et Y de Hiss n'en produisent que d'une manière inconstante. Le type Flexner diffère du type Shiga par son action pathogène faible pour les animaux de laboratoire. Il n'est pas virulent pour le lapin, et il faut 5 ou 6 centimètres cubes d'une culture en bouillon de 24 heures pour tuer le cobaye. Les quatre types décrits diffèrent par leur action sur es sucres et par les résultats de l'épreuve de l'agglutination. Nous résumons ces caractères dans les tableaux suivants :

1. - Fermentation des sucres.

	Type Shiga	T. Flexner	T. Y. Hiss	T. Strong
Lactose	0	0	0	0
Mannite	0	+	+	+
Maitose	0	+	0	0
Saccharose	0	+	0	.+.

Epreuve de l'agglutination.

	Type Shiga	T. Flexner	T. Y. Hiss	T. Strong
Shiga-serum	+000	0++0	0++0	0000

Groupe de Bact. dysenteriæ.

TABLEAU XXXII (Suite)

2º Culture minime sur gélaline à 22º Bact. se développant difficilement en première culture sur les milieux artificiels, plus abondamment après

quelques repiquages.

Les bâtonnets sont très petits, ne sont presque jamais plus de deux fois plus longs que larges. Ceci, joint à leur coloration bipolaire, leur donne souvent un aspect de diplocoques. Il ne se produit jamais tinales avec épanchements sanguins multiples, pleurésie double, pas ques gouttes de culture (injection intramusculaire) en 12 à 30 heures. Le lapin, très sensible, meurt rapidement sans grandes lésions intesde formes d'involution, ni de formes filamenteuses. B. très virulent pour la poule et la plupart des oiseaux. La poule est tuée par queld'adénopathies. On retrouve le bact, dans le sang du cœur. A Bact. choleræ gallinarum doivent être rattachés une série de bactéries qui constituent le groupe des septicémies hémorragiques des animaux (Hueppe). Lignières décrit à ces diverses bactéries des pomme de lerre, pas de coagulation du lait, pas de formation d'in-dol. En réalité, il existe des races de b. des septicémies hémorraeur attribue les caractères suivants : Cultures non apparentes sur giques qui produisent de l'indol et d'autres qui donnent une culture apparente sur pomme de terre. Ces bactéries si voisines différent par leur virulence élective pour telle ou telle espèce animale. Ce cine = B. de la Schweineseuche allemande (Löffler-Schütz) = B, de Oreste-Armanni), B. vitulisepticum (Schirop), B. septicamia (Kochcaractères de culture et des propriétés fermentatives identiques. Il sont: B. suisepticum = Bact, suicida (Migula) = B. de la peste porswine-plague américaine = pasteurellose porcine (Lignières). B. pneumo-enteritidis ovis (Lignières , B. pneumoniæ capræ (Nicolle et Refik-bey), B. bovisepticus (Kruse) = Bact. multocidum Kitt) = B. de la Wildsenche (Bollinger) = B. de la septicémie hémorragique des bovidés et des animaux sauvages, B. du barbone des buffles Gaffky). B. cuniculicida (Gaffky). B. cuniculi pneumonicus (Beck), B. de la septicémie hémorragique du cheval (Lignières), B. pneumo-

 $= B. \ avicidum \ (Kirt) = B. \ avisep$ B. choleræ gallinarum (Pasteur) ticus (Perrongito) = B. septicemiæ hemorragicæ (HUEPPE).

chiens (Lignières) = B. der Hundestaupe (Wunschheim), Bact. phasianicida (Klein), B. anatum = B. du choléra des canards (Cornil et Toupet). Bact. cavisepticum (Schwer). Bact. pneumoniæ caviarum (Strada et Traina). Ces 3 dernières bactéries différent des autres b. du groupe par leur culture sur pomme de terre qui est nettement apparente.

Note. — Les bactéries des trois dernières groupes sont difficiles à distinguer par leurs caractères de culture et leur morphologie. La distinguer par leurs caractères de culture et leur morphologie. La recherche des réactions agglutinantes, des sensibilisatrices et de

l'immunité croisée est souvent nécessaire (Voir Technique).

Gr. des Bact. des septicem. hem. (Suite).

TABLEAU XXXIII

romogènes jaunes.	M. citreus agilis (Menge). M. aurantiacus (Schroeier).	M. cupuliformis (Lembre).	M. diffluens (Schroeter). М. Hauseri (Rosenthal).	M. Manfredii (Manyredi).	M. jaune non liquéfiant de l'urè- tre (Legrain).	 M. cereus flavus (Passer). M. claviformis (Besser). M. flavus tardigradus (Fuüges) = M. sulfureus β. tardigradus (Lehmann et Neumann).
Microcoques aérobies, ne liquéfiant pas la gélatine, chromogènes jaunes.	 I. — Microcoques mobiles. α) Très mobiles. Se développant lentement sur pomme de terre. Jaune citrin sur gélose. β) Diplocoques faiblement mobiles. Donnant sur gélatine et gélose des colonies assez épaisses, jaune orangé Mince pellicule jaune sur bouillon. II. — Microcoques immobiles. 	A. — Diplocoque ne se développant pas dans le bouillon. Colonies jaune soufre, sèches sur gélose. B. — Microcoques se développant dans le bouillon. 1. Colonies non colorées; le pigment diffuse dans le milieu de culture.	dâtre (3) Le milieu ne se colore que tardivement en jaune. Pas de développement dans le lait. Odeur désagréable 2º Colonies colorées en jaune.	a) Felit microcoque. Colonies d'un jaune sale sur gélatine. Pathogène pour la souris grise, le cobaye, le lapin et le chien. Produirait une lymphomatose progressive chez ces animaux 3) Diplocoques ressemblant morphologiquement au gonocoque (saprophytes de l'urètre) (Microcoques très voisins).	 Colonies sur gélatine jaune orangé foncé. Culture jaune de chrome, mamelonnée sur pomme de terre. Colonies sur gélatine en gouttes de cire jaune citron sombre. En diplocoque dans le rue par le rue. 	 γ) Diplocoques ressemblant morphologiquement au pneumocoque. Prenant le Gram. Culture jaune, limitée à la strie sur les milieux usuels δ) Microcoques arrondis, isolés ou groupés en amas. a) Se développant très lentement sur gélatine. Cocci assez gros (Habitat : air).

	2
-	R
=	
2	ĸ
2	Ę
2	6
ö	B
0	
п	B
7	3
Les colonies ont une coule	
6	ı
co	K
0	
2	8
0	,
0	B
0	ľ
00	Ķ
3	ĸ
7	K
S	H
.=	6
20	1:-1-0
9	
-03	
H	ľ
Z	
atine.	
e	
. E.	
él	
0.5	
H	
SU	
bien	
bie	
ant	
8	
Ď.	
OF	
7	
>	
ė.	
C	
20	
-	

M. viridis flavescens (GUTTMANN). M. versicolor (Frügge). surélevées, jaune-verdâtre à reflets nacrés (Habitat : air). aurens. Colonies jaune-verdâtre sur gélose et gélatine. sur gélatine et gélose grandes, polygonales, visqueuses, Eléments ressemblant morphologiquement à M. pyogenes Petits cocci ronds en diplocoques ou en amas. Colonies Janne-verdälre.

M. citreus (List).
M. aurantiacus sorghi (Bruyning). Gros microcoques. Jaune citrin sur gélose. Couleur crème sur Serait l'agent de la brûlure du sorgho gélatine. Jaune d'or. -Janne citron.

1. Les microcoques de ce groupe paraissent très voisins les uns des autres. Lehmann et Neumann les réunissent sous la dénomination de M. ulfureus (Zimmermann), dont M. flavus tardigradus ne serait qu'une variété à développement particulièrement lent.

TABLEAU XXXIV

Sarcines aérobies ne liquéfiant pas la gélatine, chromogènes jaunes.

	DERAME).	Sarcina sulfurea (Henrici).	Sarcina gasoformans.	Sarcina meliflava (Gruber). Sarcina intermedia (Gruber).	Sarcina luteola (Gruber).	Sarcina striata (GRUBER).
I. — Ne prenant pas le Gram. Cultivables sur tous les milieux usuels, y compris le lait et la pomme de terre, à 20° et à 37°. Elaborant un pigment jaune-citron sur tous les milieux. Liquéfiant le sérum coagulé; ne coagulant pas le lait; faisant fermenter le maltose, le glucose, le lactose et le saccharose. Facultativement anaérobie. Non pathogène pour le cobaye, le lapin et la souris	(Isolés d'une sécrétion conjonctivale de l'homme.) II. — Prenant le Gram 1.	A. — Ne formant de paquets que dans les milieux liquides.	de la fermentation gazouse.	- Ne formant de paquets que dans l'infusion de foin Formant des paquets dans lous les milieux liquides B Formant des paquets dans les milieux liquides et solides.	a) Colonies jaune citron, grossièrement grenues . (S. vermiformis et S. citrina (Gruber), individualisées à l'aide de nuances trop fragiles doivent être identifiées à l'espèce précédente.)	3) Colonies d'un jaune canaris vif, poudreuses sur gélatine, transversalement striées sur gélose.

1. Les sarcines de ce tableau ne se distinguent pas les unes des autres par des caractères assez constants et assez importants pour que l'on puisse les considérer comme des espèces différentes. Nous pensons, avec Stubenrath, que ce sont des variétés qui, toutes, peuvent être rattachées à une race non liquéfiante de Sarcina flava (de Bary).

TABLEAU XXXV

Bâtonnets aérobies, ne liquéfiant pas la gélatine, chromogènes jaunes, formant des spores.

B. — Bâtonnets très courts. Colonies rondes, jaunes, avec des points saillants sur géla- tine. Pathogène pour le cobaye (abcès sous-cutanés). II. — Immobiles. Gros bacille déformé par la spore qui est centrale. Couleur jaune d'or sur gélatine. B. luteus (Frügge).

ticum hominis (MIRO-

ibei = B. nº 4 (Leube).

ale = B. protens letha-

ninecrobiophilum (AR-

 \mathfrak{B} (Arcangeli) = B. oleo-

B.

TABLEAU XXXVI

Bâtonnets aérobies, ne liquéfiant pas la gélatine, chromogènes jaunes, ne formant pas de spores, mobiles.

Bact. lethale = B. protens leth lis (Banks). Bact. heminecrobiophilum (A	Bact. septicum hominis (Mu	д д	Bact. phaseoli (SMITH). Bact. oleæ (Arcangell) = B . ole tuberculosis.	Bact. subflavum (Zimmermann).
A. — B. encapsulés, épais et courts; colonies blanchâtres sur gélatine, jaunes sur gélose, brunâtres sur pomme de terre	 C. — Ne présentant pas ces caractères. 1° Colonies sur gelatine faiblement chromogènes ou non chromogènes sur ce milieu. α) Non chromogènes sur ce milieu. Colonies jaunes sur gélose. Bacterium court, pathogène pour le lapin et la souris. 	 g) Faiblement chromogènes (gris-jaunâtre ou jaune pâle). a) Faisant fermenter l'urée. Bâtonnet assez court. Les cultures sur gélatine sont d'un gris jaunâtre, très brillantes, rondes, à contours nets; sans odeur. b) Bâtonnets, agents probables de maladies des plantes (très voisins). I. — Bâtonnets courts, agents probables d'une maladie des vignes (Gummose de la vigne). 	 II. — B. courts, strictement aérobies, faisant fermenter légèrement l'amidon; agents probables d'une maladie des haricots. III. — Bâtonnets un peu plus longs que les précédents; serait l'agent de la tuberculose de l'olivier. 	c) Bact. sans actions fermentatives spéciales et n'ayant pas de propriétés pathogènes. Deux bact. appartiennent à ce groupe: L'un court, présentant souvent des formes diplobacillaires. L'autre de dimensions moyennes L'autre de dimensions moyennes Colonies sur gélatine fortement chromogènes, jaune d'or ou jaune de chrome

,Bact.

Bact. aurantiacum (Franklan	Bact. chryseum (Adametz), I flavescens (Pohl).	Bact. chrysoglæa (Zope).	Bact. aureo-flavum (Frügger), aureum (Adametz).
orangé sur gélatine jaune orangé ou jaune rougeâtre. B. courts. Colonies sur plaques discoïdes, régulières, à développement lent, jaune orangé B. lactis flavus (Peters) ressemble au précédent. Il en diffère par la formation d'un voile visqueux à la surface des milieux à l'eau de levure additionnés de sucre. 3) Colonies sur gélatine jaune d'or, jaune de chrome ou jaune ocre (variétés voisines). a) B. grêles, se développant très lentement, ne donnant sur gélatine que des colonies punctiformes jaune d'or, brillantes (Cette description correspond à deux	bact, probablement identiques)	 b) B. grêles, se développant bien sur gélatine. I. — Culture sur pomme de terre jaune ocre ou orangée. Largeur 0,3 à 0,5 μ. Longueur variable. Prenant le Gram. B. luteum pallescens (Losski est probablement identique au précédent. II. — Culture sur pomme de terre d'abord jaune de chrome, puis brun-rouge. 	Bâtonnets se groupant en filaments

Bact.

Bact. spiniferum (UNNA ET TOMMA-

Ascobacil-

Bact, ascoformans = ins aquatilis (Moreno).

TABLEAU XXXVII

Bâtonnets et spirilles aérobies, ne liquéfiant pas la gélatine, chromogènes jaunes, ne formant pas de spores, immobiles.

Éléments incurvés.

Sp. (Vibrio) aureum (Weibel). Eléments en forme de virgule (1 fois 1/2 plus épais que Sp. choleræ), en forme d'S ou décrivant plusieurs tours de spire. Ne prenant pas le Gram. Colonies sur plaques de gélatine discoïdes, jaune d'or. Cultures épaisses, d'un blanc sale puis d'un jaune d'or sur gélose et sur pomme de terre. Troublant le bouillon sans former de voile. . . (Isolé de boue d'égouts.)

Sp. (Vib.) flavescens (Weibel) et Sp. (Vib.) flavum (Weibel) ne sont que des variétés

du précédent.

II. — Eléments rectilignes.

A. — Bâtonnets colorés en rouge par la méthode de Ziehl-Neelsen!
B. — Bâtonnets réunis en zooglées par une épaisse capsule muqueuse.
Jaune citron sur gélatine. Les zooglées se colorent en jaune par l'iode.

C. -- Bâtonnets non acido-résistants.

1. Colonies sur plaques de gélatine à contours épineux (aspect d'oursin). Colonies rosées sur gélatine, jaune-verdâtre sur gélose, jaunes à développement lent sur pomme de terre. .

pomme de terre.
2° Colonies sur plaques de gélatine à contours nets.
α) En piqure dans la gélatine, des prolongements en radicelles partent du trait. Le

Bact. citreum (FRANKLAND). Bact. cavatum (Kenn). bouillon est troublé; voile très mince.

3) B. longs, gréles, en courles chainettes. Petits prolongements donnant au trait de piqure un aspect denté. En surface, faible culture foliacée, blanche puis jaune vif. Bouillon non troublé. Dépôt jaune et voile.

a) B. ne se développant pas au-dessus de 30°. B. longs. Colonies petites, d'un jaune brillant sur gélatine. I. - Colonies faiblement chromogenes sur gélatine (jaunatres) b) B. cultivables au-dessus de 30°.

Bâtonnets petits et courts, 0,5 à 0,8 µ d'épaisseur. Longueur double. Prenant le Gram. Donnant sur gélatine des colonies en disques jaunâtres. Couche humide couleur creme sur gélose. Le bouillon reste clair; il se forme une

Bact. constrictum (ZIMMERMANN).

Bact. cremoïdes (Lehmann er Neupellicule; faible dépôt. Le lait n'est pas coagulé. Il ne se forme pas de gaz dans les milieux glucosés (Habitat : eau) . . .

Bâtonnets très grèles ressemblant à B. murisepticum (non pathogènes) . margarineum (Jolles et Winkler) paraît très voisin.)

Bact. pyogenes minutissimum (KRUSE).

II. - Colonies fortement chromogènes sur gélatine (jaune, jaune-brun ou jaune

Bâtonnets courts, avec formes d'involution possibles. Colonies sur gélatine sèches, épaisses et jaunes. Jaune soufre sur pomme de terre. (B. lutens (Dobrzyniecki) paraît très voisin du précédent, ainsi que B. Colonies jaunes sur gélaline.

Bact. striatum flavum (Bessen).

cerinus (Henrici)

- Colonies jaune-brun sur gélatine. Bâtonnels assez longs. En piqure dans la

Bact. fuscum (Frügge). gélatine, il se forme en surface une culture plissée jaune de chrome foncé. Colonies jaune orangé sur gélatine.

lantes, en goutte, jaune orangé. Pas de culture apparente dans le trait de piqure on gelatine. Prenant le Gram, Coagulant le lait. Ne produisant pas de gaz dans les milieux sucrés. Peu d'indol ... Variétés voisines : Bact. Inteum (List) (Bâtonnets courts. Optimum 30°. Lait coagulé . Bact. aurescens (Frankland) Bûtonnets longs et grêles, ne trou-B. de longueur très variable, On trouve des formes coccoïdes et des formes filamenteuses. Epaisseur 0,3 à 0,5 µ. Colonies d'abord coliformes, puis brilblant pas le bouillon. Culture sèche et ridée, jaune orangé sur gélose).

Bact. tremelloides (TLLS).

1. Ces Bactéries forment le groupe des acido-résistants : Bâtonnets colorables par la méthode de Ziehl-Neelsen, et conservant cette propriété

héréditairement sur les milieux usuels. Chromogènes jaunes ou rouges. Prenant le Gram. Ils sont en général faiblement pathogènes pour le cobaye auquel ils donnent des péritonites pseudo-membraneuses ou caséeuses, et parfois des lésions pseudo-tuberculeuses généralisées. Ils peuvent tuer la souris par septicémie. Ce sont:

1º Des B. du lait ou du beurre : B. de Petri, B. de L. Rabinowitsch, B. de Coggi, B. I et II de Korn, B. I, II et IV de M. Tobler, B. de Markl, B. de Binot, B. de Moeller (Milchbacillus) et les bact. décrites par Benvenutti, Aujewski, Beck, Herbert, Herr et Beninde, Grassberger, Carmevali.

2º Des B. des plantes et du fumier : B. I et II (Mœller) (Grasbacillus) et Timotheebacillus), Mistbacillus (Mœller).

3. Un B. trouvé dans un cas de tuberculose bovine (Mæller)

On en a décrit un grand nombre : Ils sont désignés sous le nom de pseudo-acido-résistants, ou acido-résistants accidentels. Nous n'en citerons que quelques-uns. On les rencontre : dans des sécrétions de la peau et des muqueuses (smegma, cerumen, sébum, tartre dentaire, etc...) Tels sont les Les B. qui ne résistent pas à la décoloration par l'alcool, ou dont l'acido-alcoolo résistance n'est pas héréditaire ne rentrent pas dans cette classe B. décrits par Laales, Lustgarten, Gottstein, etc... dans des produits pathologiques : crachats (Pappenheim, etc.), lèpre (Lévy-Czaplevski,, dans 4º Des B. trouvés chez l'homme: B de la gangrène pulmonaire (L. Rabinowitsch), Smegmabacillus (Mœller), B. de Beck, B de Mironescu),

Il faut rapprocher des bactéries acido-résistantes, le type pisciaire de Bact. tuberculosis qui en diffère par son pouvoir pathogène à l'égard des vertébrés à sang froid et par l'absence de culture à 37°. Il diffère des autres B. tuberculeux par ce dérnier caractère et par son attitude à se développer à des températures inférieures à 26-28°. des liquides organiques, dans les cadavres, etc.

TABLEAU XXXVIII

Bactéries aérobies, ne liquéfiant pas la gélatine, chromogènes brunes.

Eléments arrondis. Sarcines.

Sur milicux liquides il ne se forme que des paquets. Sur milieux solides, tétrades

et paquets. Culture lente et blanche sur gélatine, brune sur gélose B. - Microcoques.

S. fusca (GRUBER).

M. casei (ADAMETZ) 20 Microcoques arrondis, isoles, immobiles. Colonies sur gélatine étoilées, brun-1. Diplocoques mobiles. Colonies brunes à bordure dentée ou en brosse sur gélatine; colonies blanches visqueuses sur gélose. Ne coagulant pas le lait .

M. stellatus (MASCHEK). jaune. En piqure prolongements rayonnants très ramifiés. Eléments allongés.

Sp. choleræ, Colonies sur gélatine non colorées. Un pigment brun-noir distuse dans - Eléments incurvés en virgule, mobiles, ressemblant morphologiquement à

B. — Bâtonnets rectilignes.

1. Mobiles. Ne formant pas de spores.

a Les colonies elles-mêmes sont colorées en brun; la gélatine n'est pas colorée. a) Production de pigment brun sur gélatine.

I. - Colonies jaune-brunâtre, granuleuses sur plaques. Cultures rouge-jaunâtre sur pomme de terre. Non pathogène. II. - Sur plaques de gélatine, les colonies profondes seules sont brunâtres. Sur nâtres. Pathogène pour la souris, le lapin, le cobaye et le pigeon b) Les colonies sur plaques de gélatine ne sont pas colorées. Le pigment diffuse gélose les colonies sont grisatres. Sur pomme de terre les colonies sont bru-

- Colonies sur gélose très caractéristiques. Du centre partent des tractus rayonnants emettant des ramifications onduleuses. La colonie atteint 2 à 3 centimètres de diamètre. Culture sur pomme de terre blanc sale (Habitat ; dans le milieu.

Sp. nigricans (Weiber) (Vibrio nigricans).

Bact. muripestifer (LASER).

Bact. tuberigenum nº 7 (GONNER-

Bact. stolonatum (ADAMETZ).

	Pa	Ba
II. — Bâtonnets grêles, trois fois plus longs que larges. En piqure sur gélatine, culture brunâtre, brillante à la surface. Peu de développement dans le trait de piqure. Le milieu se colore en brun-rouge foncé dans sa partie supérieure	seulement. III. — Bâtonnets courts, en chaînettes. En piqûre dans la gélatine, culture faible à la surface. Le trait est marqué par une tige à très courts prolongements latéraux. Aspect denté du trait. La gélatine se colore en brun autour du trait	de piqure. Sur pomme de terre la culture est brune et le milieu se colore en brun foncé

(Isolé d'œufs pourris'.

3) Il ne se produit pas de pigment brun dans les cultures sur gélatine. Pigment brun (B. resinaceus (Tataroff) paraît identique au précédent.)

dans les cultures sur gélose. (Trois B. voisins ne coagulant pas le lait, appartiennent à ce groupe)

2º Immobiles.

a) Formant des spores.

gélatine épaisses, blanches, puis grises, puis brunes. Se développant lentement. Ne prenant pas le Gram a) Colorant la gélatine en brun autour du trait de piqure. Colonies sur plaques de

Sur gélatine, cultures superficielles grisâtres, plissées. Prolongements rayonnants autour du trait de piqure. Ne brunissant pas la gélatine, mais brunissant la gélose. Culture ridée, rouge-brun sur pomme de terre

3) Ne formant pas de spores.

a) Produisant des bulles de gaz dans la gélatine ensemencée par piqure. Petites colonies brunâtres sur plaques de gélatine. Donnant sur gélose une culture mince, grisatre, irisée; snr pomme de terre, une culture mince, d'un gris bru-

- Colonies sur gélatine étalées, minces, à bords sinueux. La gélatine se colore

- Colonies sur gélatine rondes, jaunes, puis brunes, de plus en plus foncées.

Bact. aquatile fuscum (BREUNIG).

Bact. fuscum limbatum (Scheibenzuber) = Bact. brunificans (Lehmann et Neumann).

Bact. n° 5 (Lembers', Bact. XVIII (Adametz, Bact. solanacearum (Smith)

B. brunneus (ADAMETZ).

B. subepidermidis (Rosenthal).

Bact. bullescens (ZIMMERMANN).

Bact. brunneum (Breung).

Bact. fuscum (Frügge).

TABLEAU XXXIX

Bactéries aérobies, ne liquéfiant pas la gélatine, chromogènes vertes.

- Eléments arrondis.

Microcoque prenant le Gram. Culture verte limitée à la strie sur gélose, Pathogène

I. - Eléments allongés.

A. - Formant des spores. Mobiles.

tures. Coagulation du lait rapide par fermentation lactique. Peu pathogène pour a) Colonies sur plaques verdâtres. Sur pomme de terre la culture recouvre toute la surface d'une couche vert sale, luisante, grasse. Odeur fade, désagréable des cul-

les animaux de laboratoires (3) Colonies non colorées en vert. Le pigment vert diffuse dans le milieu.

Colonies sur gélatine blanchâtres; le milieu se colore rapidement. Culture d'un rouge brun sur pomme de terre. Le bouillon présente non pas un voile épais, a) Bâtonnets grêles, souvent en chaînettes. Spores grosses, ovales, rougeâtres.

mais des écailles libres dont le centre devient rouge brun Bâtonnets épais et courts. Les cultures ont une odeur d'urine putréfiée. La gélatine et la gélose prennent une fluorescence verte. La culture devient brunâtre (q

sur pomme de terre. Bâtonnets épais et longs. La gélatine n'acquiert une fluorescence jaune verdâtre qu'au bout de 3 semaines. Sur pomme de terre, culture blanc sale puis brune. 0

B - Ne formant pas de spores.

1° Mobiles.

 \(\alpha \)
 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \)

 \(\alpha \) inorescens pulidus (Tataroff) .

3) Petit bact, faisant fermenter le bouillon nitrite avec production de bulles de sâtres sur gélatine et gélose. Fluorescence verdâtre sur gélatine, plus marquée gaz. Les nitrites sont complètement détruits, transformés en azote. Colonies grigélose. Preduisant de l'indol (Habitat : sol).

7) Bact, causant une alteration spontanée du lait qui prend un goût de savon. Fluorescence verte de la gélatine.

a) Prenant le Gram, fluorescence verte ou vert-janne de la gélatine. Bact, ne présentant pas ces caractères.

- Bâtonnets très longs et minces. Verdissant la gélose. Les colonies verdissent en vieillissant. Culture brunâtre sur la pomme de terre qui se colore en violet

M. gingivæ pyogenes (Miller),

B. viridis (B. de la diarrhée verte) (Lesage).

B. erythrosporus (Cohn).

B. fluorescens putidus (Tatanoff).

B. aquatilis fluorescens (Tatanoff),

Bact. fluorescens capsulatum (Mr-

Bact. denitrificans nº 1 (Burr er Stutzer) = Bact. denitrofluores-cens.

Bact. sapolacticum (Егснноид).

Bâtonnets de longueur variable et longs filaments. Sur gélose culture peu épaisse, le milieu devient gris-jaunâtre. Sur pomme de terre culture mince

b) Ne prenant pas le Gram. Bâtonnets grêles, formant souvent des filaments de 5 µ. Fluorescence verte ou vert-jaune sur gélatine. Mobilité très active, due à la présence d'un ou de deux cils terminaux. Colonies sur plaques ressemblant à celles de Bact, coli. Cultures sur les autres milieux identiques à celles de Bact, fluorescens liquefaciens (Bactéries très voisines, races d'une même espèce.)

Colonies colorées sur gélatine.

. II. - Colonies non colorées sur gélatine.

- Odeur urineuse des cultures surtout en bouillon et sur pomme de terre.

(B. fluorescens putidus (Flügge) est identique). - Pas d'odeur urineuse des cultures.

- B. ne se développant pas à 37° (3 var. présentent ces caractères).

- B. cultivables à 37º (Ce groupe comprend plusieurs bact. .

a) Rendant visqueux le bouillon et le lait. 2º Immobiles. B. ne prenant pas le Gram.

ques hémisphériques; fluorescence verte de toute la gélatine après quelques queux. Sur pomme de terre, culture jaune puis caramel, sans viscose et sans Bâtonnets de 1 µ/0,8 µ, encapsulés (surtout dans l'organisme animal, mais aussi dans les cultures). Pas de culture à 37°; optimum 10º-20°. Colonies sur plajours. Le bouillon et l'eau de condensation de la gélose deviennent très visqueux (on peut les étirer en longs fils). Le lait n'est pas coagulé mais il devient viscapsules. Pas de fermentation des sucres. Pathogène pour certains poissons.

3) Ne produisant pas de viscose. Pas de capsules. Non pathogènes. Bactéries très (Agent d'une septicémie contagieuse des carpes)

a) Cultures sur plaques de gélatine analogues à celles de B. coli commune. Les autres caractères de culture sont ceux du Bact, putidum.

Probablement identiques: Bact. fluorescens non liquefaciens (Eisenberg) et Bact. scissum (Frankland).

Bact. fluorescens longum (ZIMMER-MANN).

Bact fluorescens aureum (Zimmermann)

Bact. fluorescens nº 44 (LEMBKE).

. Bact.putidum (Lehmann er Neumann) = B. fluorescens non liquefaciens.

(ZÖRKENDÖRFER), Bact. fluorescens (Zörkendörfen), Bact. fluorescens 7 Bact. oogenes fluorescens B et D Bact. oogenes fluorescens C et 8, 9, 10 (Lемвке).

Bact. cyprinicida (PLEHN).

Bact. fluorescens immobile (Frügge). Bact.fluorescens crassum (Frügge) b) Cultures sur gélatine épaisses, coulantes, comme celles de B. lactis aerogenes.

anoi liquefaciens Auorescens de Bact.

M. rubescens = $M. n^{\circ} 20$ (Lembre).

- Ce dernier micr. doit être assimilé à M. (dipl.) roseus (Bumm) qui liquéfie

Cultures roses, brillantes sur les milieux usuels.

SQUALE-

TABLEAU XL

ochromogènes roses ou rouges.	haînettes ou susceptibles de présenter	A. — Microcoques de petites dimensions, en longues chaînettes. Les colonies sont d'un rouge vermeil très intense	sont petites, ron-
ohromogèr	 A. — Microcoques. I. — Éléments disposés en chaînettes ou susceptibles de présenter cette disposition. 	A. — Microcoques de petites dimensions, colonies sont d'un rouge vermeil très intense.	B. — Microcoques de dimensions moyennes. Les colonies sont petites, rondes, humides, roses ou d'un rouge chair musculaire. II. — Éléments le plus souvent groupés en diplocoques.

la gélatine avec une extrême lenteur (après plusieurs semaines). Souvent même le pouvoir peptonisant de M. roseus ne se manifeste qu'en piqure ou en strie : les M. cerasinus lactis Keferstein).

A. — Colonies roses sur gélatine. Rouges sur gélose. 1° Ne se développant pas à 37°. Cultivable à 20°. Agent d'une altération du lait. 2° Cultivable à 37°. (La trouge.)

III. - Microcoques isolés ou en amas.

colonies sur plaques ne liquéfient point.

2 variétés répondent à ces caraclères; ce sont: M. coccineus (Adametz); M. rhodochrous (Zopf).

- Colonies rouges sur gélatine.

M. erythromyxa (Zimmermann).
M. bicolor (Kern). Se développant très lentement sur gélaline. Pas de culture apparente sur pomme de terre

3) Colonies d'un rouge brique en milieu aéré, d'un jaune clair à l'abri de l'air .

7) Microcognes ne présentant nas cos connectés. Microcoques ne présentant pas ces caractères.

M. carneus (Zimmermann).	M. latericeus (Freunn).	Sarcina persicina (Gruber). Sarcina erythromyxa (Kral). Sarcina carnea (Gruber).	
1º Microcoques de dimensions moyennes (0,8 µ). Culture sur gélatine en strie, rouge chair devenant violacée. Culture abondante, rouge sur pomme de terre. Optimum 20 à 22º	(Le coccus rouge de Maschek parait etre lucuique). 2º Gros microcoques. Culture sur gélatine rouge chair ou rouge brique. Sur pomme de terre, culture jaune de cire. Optimum 37°	B. — Sarcines. I. — Ne formant de paquets typiques que dans les milieux liquides. A. — Paquets dans le bouillon. B. — Paquets dans l'infusion de foin seulement. II. — Formant des paquets dans les milieux liquides et solides	

TABLEAU XLI

Bâtonnets et spirilles aérobies ne liquéfiant pas la gélatine, chromogènes roses ou rouges.

- Formant des spores. A. - Eléments mobiles.

a)Spirilles courts (4 µ de longueur au maximum), à spores rondes ou un peu ovoïdes; colonies sur gélose en forme de gouttes de cire rouge. Le bouillon reste clair;

il se forme un voile rosé.
3) Spirilles deux fois plus gros que spirillum choleræ; plus longs encore dans le bouillon qu'ils troublent et où ils peuvent présenter 30 à 40 tours de spire. En piqure dans la gélatine le trait est rouge et la colonie superficielle est moins co-

a) Prenant le Gram.

a) Bâtonnets petits et grêles. Colonies rondes, roses sur tous les milieux usuels.

 b) B. de 0,5/4-10 μ. Spores rondes, terminales. Culture grise sur gélose; le milieu devient d'abord rosé puis prend une teinte foncée. Sur pomme de terre, couche iaune peu abondante. Pas de modification du lait tournesolé. Pas de fermentation du glucose, ni du lactose. Pas d'indol

Batonnets grêles. Colonies d'un rouge brique ou rouille sur gélatine, gélose et pomme de terre. Optimum 22 à 31°. Pas de propriétés chromogènes à 37°. 3) Ne prenant pas le Gram.

B. – Eléments immobiles.

B. subrubeus (Kern) rougeâtres. Sur gélose, culture épaisse, humide. rose pâle ou rouge 2º Bâtonnels courts et trapus. Colonies rouges et grenues sur plaques. Petite membrane 1º Bâtonnets grêles et petits. Sur plaques, colonies à contours dentés, jaunâtres, puis plissée, rose pale, puis rouge carmin sur gélose. . .

B. rosaceus margarinicus (Jolles

Sp rubrum (Esmanch).

Sp. roseum (MACE).

et WINKLER).

B. rosescens (Choukevitch).

B. rubiginosus (Catiano).

B kermesinus (B. rouge carmin

		apc	
		d'	
		Eléments grêles, ressemblant à Sp. choleræ. Colonies sur gélatine d'abo	humides, puis sèches et d'un brun rouge, parfois ridées
		S.e	
		sur	·S.
		onies	ridée
		Col	rfois
		eræ.	pai
		.chol	onge,
es.		à Sp	run r
II Ne rormant pas de spores.		plant	q un
de :		seml	et d'i
SEC		, res	hes (
d IL	ves.	ėles.	humides, puis sech
mai	a) Elements incurves.	is gr	puis
TOL	uls i	men	des,
Ne	emei	Elé	umi
1) El		h
11.	8		2

Sp. (Halibact.) roseum (Fischer).

ord roses et

A. - Bâtonnets mobiles. can himman companion of d

1º Production de pigment rouge sur gélatine

a) Les colonies elles-mêmes sont colorées en rose ou en rouge. La gélatine n'est pas

a) Colonies roses ou rouge pale sur gelatine.

bande brillante blanche puis rougeatre, couche épaisse, verruqueuse, rouge pale sur pomme de terre. Le bouillon n'est pas troublé, il se forme un voile à la surface et un dépôt. Il se forme de l'hydrogène sulfuré. Optimum - Courts bâtonnets. Colonies sur plaques blanches puis rougeâtres; sur gélose,

Cours bâtonnets. Petites colonies rouge pâle sur plaques de gélatine, culture assez large, rouge vermillon sur pomme de terre. Trouble léger du bouillon

b) Colonies rouge fonce ou rouge brun sur gelatine.

sur gélose Bâtonnets longs et grêles. Colonies brun-rouge, lisses, puis plissées sur gélatine - Bâtonnets courts et épais. Colonies rouge cinabre sur gélatine; rouge intense

et sur gélose. Couche muqueuse brun-rouge puis plissée sur pomme de terre. lieu se colore tardivement en rouge clair. Culture gris-blanchâtre sur gélose; gris-5) Les colonies sur plaques de gélatine sont jannes ou légèrement rougeâtres. Le mijaunâfre, puis brun-rouge sur pomme de terre; la pomme de terre se teinte en Colonies sur gélatine non colorées. Sur tous les milieux, les colonies sont blanches

2° Il ne se produit pas de pigment rouge sur gélatine.
α) Colonies sur plaques de gélatine volumineuses, rondes, blanches, puis brunalres.
Membrane blanche, puis ridée, rouge chair musculaire sur gélose. Culture de même couleur sur pomme de terre. Chaînettes assez longues. Bact, mesurant

4 µ/0,9 µ, ne prenant pas le Gram, ne coagulant pas le lait . . . Elaborant du pigment rouge sur gélose seulement. Sur gélatine, colonics rondes, jaunatres. Colonies d'un jaune orangé sur pomme de terre. Diplobact, courts souvent coccoïdes. Prenant le Gram, coagulant le lait . . .

Bact erubescens (= B.oogenes hydrosulfureus X) (Zörkendörfer).

Bact. ruber ovatum (BRUYNING).

Bact. rubrum (MIGULA).

Bact subrubiginosum (MASCHEK).

Bact.rubefaciens pyogenes(Mar-Bact. rubefaciens Zimmenmann).

MUSCHITA).

Bact. rubescens (Jordan).

Bact. coccineum (Catiano).

TABLEAU XLI (Suite)

par la méthode de Ziehl-Neelsen (Voir ta-1º Bâtonnets colorés en rouge B. - Bâtonnets immobiles. bleau XXXVII).

2º Batonnets non acido-résistants.

a) Cultures roses ou rouge clair.

d'un rouge intense sur gélose. Se développant mal sur pomme de terre. Bouillon a) B. courts, coccoïdes. Colonies petites, d'un rouge clair sur gélatine, sèches et

3. B. courts et minces. Colonies petites, rondes, blanc de lait, puis roses sur gela-

au précédent).

coagulant pas le lait, ne faisant pas fermenter le glucose. Ne troublant pas le Courts bâtonnets prenant le Gram, se développant mal sur pomme de terre, ne Cultures rouge-cinabre ou rouge brun.

Bact. erythromyxa (Zour) = M. erythromyxa Zope,

Bact. subcarnosum (Kern).

Bact, latericium (Anamerz).

TABLEAU XLII

Bactéries aérobies, ne liquéfiant pas la gélatine. Chromogènes bleues ou violettes.

es М. violaceus (Сони).	roupe. L'un donne sur les milieux usuels un pigment bleu	
I. — Microcoques. A. — Pigment violet. Cocci ovoïdes souvent en chaînettes. B. — Pigment bleu. Deux microcoques incomplètement décrits appartiennent à ce	groupe. L'un donne sur les milieux usuels un pigment bleu. L'autre donne un pigment verdâtre, puis bleu-verdâtre	II. — Bâtonnets (Mobiles. Sans spores).

A. - Colonies sur plaques de gélatine non colorées. Le pigment diffuse dans

ou en bleu-verdâtre. Synonymes: Vibrio syncyaneus (Ehrenberg); Bacillus cyanogenus (Flügge). Synonymes: Vibrio syncyaneus (Ehrenberg); Bacillus cyanogenus (Flügge). 2º Bleuit le lait alcalin, tardivement mais d'une manière intense; ne bleuit pas le raître le pigment en acidifiant. Courts bâtonnets. La gélatine se colore en gris-bleu 1º Bleuit le lait en milieu acide. Le lait neutre ne bleuit pas, mais on fait appa-

B. - Colonies sur plaques de gélatine colorées en bleu.

Colonies sur plaques gris bleu, bleu azur par transparence. Sur gélose, colonies blanches ou d'un gris bleuâtre, lisses.
 Colonies sur plaques blanc-grisâtre, puis bleu indigo. Culture rapide, épaisse, humide, bleu-noirâtre sur gélose. Culture bleu indigo foncé sur pomme de terre. (B. indigoferus (Voges) doit être considéré comme identique au précédent).

Bact. cyaneo-fluorescens (Zagen-

MEISTER).

Bact. syncyaneum (Ehrenbeng).

Bact. azureum (Zimmermann).

Bact indigonaceum (CLARSSEN).

TABLEAU XLIII

Bactéries phosphorescentes.

. - Liquéfiant la gélatine '.

A. - Ne se développant pas au-dessous de 12°. Optimum 20-30°.

lon avec formation d'un voile; liquéfiant le sérum coagulé; ne se développant ni sur la pomme de terre ni dans le lait. Emettant à l'obscurité une lumière blanc-Bâtonnets courts et minces donnant sur plaques de gélatine des colonies orbiculaires bleuâtres ou brunâtres et liquéfiant rapidement le milieu ; troublant le bouil-

(B. cyaneo-phosphorescens (Katz) est identique au précédent). B. - Se développant bien au-dessous de 10°.

1. Eléments très petits et très grêles (1 u/0,1-0,3 µ) liquéfiant la gélatine plus rapidement que Sp. phosphorescens balticum, en quelques jours; ne se développant ni dans le bouillon, ni sur sérum, ni dans le lait, ni sur pomme de terre.

Non phosphorescent sur la viande. Lumière orangée.

2º Eléments de dimensions moyennes (0,5 à 0,7 μ d'épaisseur). Ce groupe comprend des spirilles des eaux très voisins les uns des autres. Leurs caractères différentiels sont peu importants et leur constance est douteuse (rapidité de la liquéfaction, phosphorescence plus ou moins vive, prolongements ciliés variables

Sp. albense (vibrion phosphorescent de l'Elbe) (Kutscher). Ressemble morphologiquement et en culture à Sp. choleræ. Liquéfaction rapide, voile snr le bouillon. Réaction de l'indol forte. Parfois les colonies sur plaques de gélatine présentent des prolongements ciliés. Forte phosphorescence. autour des colonies sur plaques de gélatine). Ce sont :

Sp phosphorescens (Dunbar et Rumpel) paraît être identique au précédent. Sp. luminosum = Photobacterium luminosum Beijerinck), Liquéfiant rapidement la gélatine, se colorant faiblement; éléments souvent associés en filaments, donnant sur plaques de gélatine des colonies radiées à prolongements ténus; odeur putride dans les milieux contenant moins de 0, 5 °/° de matières azotées. Phosphorescence très pale, d'un blanc argenté.

B. argenteo-phosphorescens liquefaciens (Katz) paraît être identique au précé-

Sp. phosphorescens indicum = Photobacterium indicum (Beije-RINCK) = Bac. phosphorescens (FIS-

Photobacterium Fischeri (Beije-Sp. phosphorescens Fischeri =

Ressemble morphologiquement et en culture à Sp. choleræ. Se développant dans Sp. phosphorescens balticum (Fischer) = Photobacterium balticum (Beijerinck). le bouillon et sur le sérum coagulé. Phosphorescence vive, bleuâtre. B. phosphorescens coronatus (Fischer) paraît voisin du précédent.

II. - Ne liquéfiant pas la gélatine.

1º B. non cultivables à 10º

Bâtonnets mobiles, courts et trapus. Pathogène pour les poissons. Donnant une lumière bleu-verdâtre. a) Optimum 23° à 33°.

Ne se développant que de 12° à 31°.

laire). Produisant des gaz en gélatine glucosée. Se développant bien dans le lait salé et sur la pomme de terre salée. Emettant une lueur très forte. Bact. très polymorphe (formes arrondies et allongées), très mobile (1 cil pô-

2° B. cultivables à 10° et au-dessous. A. - Bâtonnets mobiles.

α) Tuant la souris (septicémie). Courts bâtonnets, rarement incurvés. Se développant entre 5° et 37°5. Donnant une lumière verdâtre, vive.

a) Prenant le Gram, Courts bâtonnets. Emettant une lumière pâle, d'un blanc 8. Non pathogenes.

.

mobiles. Se développant entre 0° et 30°. B. gliscens (Molisch) et B. luminescens (Molisch) sont voisins et doivent être b) Ne prenant pas le Gram. Bâtonnets droits ou un peu incurvés en (ou en S, très rattachés au précédent.

B. - Bâtonnets immobiles.

a) B. pathogène pour certains crustacés (talitres et orchesties). Prenant le Gram.

3) B. non pathogènes. Courts et trapus ou même coccoïdes.
a) Se développant de 0 à 20°. Tués par la température de 37°. Produisant une

Bact. phosphorescens javanense (Elikmann) = Photobacterium javanicum (E.).

Bact. luciferum (Mollsch).

Bact phosphorescens caraibicum (FISCHER). Bact. argenteo phosphorescens no 1 et 3 (Karz).

Bact. Sp. ?)photogenum (Моызсн)

Giardi Bact. phosphorescens (GTARD et BILLET). Bact. phosphorescens Fœrsteri.

Bact. phosphorescens(B. Fischer).

4. La plupart des bactéries phosphorescentes et liquéfiantes paraissent appartenir au genre spirillum (genre vibrio de certains auteurs).

TABLEAU XLIV

Bactéries liquéfiant la gélose.

1º Optimum 35º à 38º; se developpant faiblement à 20º.

très variable : coccoïdes sur milieux au jos de raisin, atteignant 5 µ dans certaines Petils bâtonnets à extrémités arrondies (1,25-2 µ/0,8 µ en moyenne, mais de longueur cultures sur pomme de terre). Anaérobie facultatif. Non sporogène ; immobile ; ne prenant pas le Gram; batonnets entourés d'une capsule muqueuse dans les préparations non colorées. Sur plaques de gélatine ordinaire, petites colonies saillantes, non liquéfiantes, grenues, d'un blanc jaunatre; plus abondantes et d'aspoct muqueux sur gélatine glucosée à 2-5 1/0. Sur gélose ordinaire ensemencée par strie, le développement se fait très bien à 37° (faiblement à 20°); les colonies d'un blanc-grisâtre s'enfoncent après vingt-quatre heures puis coulent au fond du tube. En piqure, liquéfaction en forme de bulle. Sur gélose glucosée et surtout lactosée ou saccharosée (à 10 %) la culture, plus abondante, est visqueuse et répand une odeur de fruit. Fermentation gazeuse de presque tous les sucres. Dans le lait, dépôt visqueux sans coagulation de la caséine. Non pathogène pour le lapin, le cobaye, la souris .

(Isolé de raisins de Malaga secs).

Isolable sur gélose (à la chair de poisson) après enrichissement sur le milieu suivant: eau 1 litre, NaCl 30 grammes, gélose, phosphate de potassium, chlorure d'ammonium, an 2 gr. Il se forme des flocons que l'on réensemence sur gélose. La gélose est liquéfice dans une zone de plusieurs millimètres autour des colonies. .

(Isolé de l'eau de mer).

Bact. betæ viscosum (Panek) élabore éga'ement de la gélase (ferment lytique de la gélose). Il serait l'agent d'une fermentation anormale des betteraves. Les caractères de cette espèce n'ont pas été étudiés avec assez de précision pour permettre une détermination rigoureuse.

B. gelaticus (GRAN).

Bact. Nenckii (BIERNACKI).

TABLEAU XLV

Microcoques aérobies, ne se développant pas sur gélatine à 10 °/° à 20-22°. Cultivables sur gélose à 37°.

- Prenant le Gram.

chaînettes dans le bouillon. Colonies transparentes très petites, en gouttes de rosée En bouillon, très léger trouble; faible dépôt. Le développement se fait micux dans les milieux additionnés de sérosités ou de sang. La souris blanche est très sensible 1. Diplocoques en forme de lance ou de flamme de bougie, groupés bout à bout, encapsulés dans l'organisme animal et dans le sérum liquide, formant souvent des sur gélose. Se développant à partir de 25°. Culture non apparente sur pomme de terre.

cobaye, parait être une variété du précédent, formant de longues chaîneltes dans le bouillon. Streptococcus tenuis (Veillon), morphologiquement analogue au pneumocoque, mais jamais encapsulé et non pathogène pour la souris, est identique par Streptococcus capsulatus (Binaghi trouvé dans un cas de broncho-pneumonie du ses autres caractères à M. Pasteuri).

M. ne présentant pas ces caractères.

a) Se développant d'abord mal sur gélose ordinaire, puis s'y habituant et y poussant bien. Diplocoques en grain de café, analogues à M. intracell. (Weichselbaum) (mais plus gros). Se développant à partir de 20° sur gélose-ascite. Faisant fermenter glucose, maltose et lévulose. Coagglutine par le sérum antiméningococcique. Trouvé dans certaines épidémies de méningile cérébro-spinale .

Se développant seulement dans l'eau de condensation, pas à la surface de la gélose, très mal ou pas sur les milieux solides non sucrès. Diplocoques en longues chaînes.

L'inuline fermente cultures d'a surface de la gélose dès la première culture.

a) Colonies sur gélose, rondes, à contours nets, blanches apparaissant au bout de vingtquatre heures, devenant grisâtres et ridées après une semaine. En strie, colonies grises et isolées en culture aérobie; confluentes, grises, puis ridées en milieu anaerobie. La culture ne se développe qu'à partir de 37º. Culture faible sur pomme de terre: colonies d'un blanc grisatre, isolées. Gros m. (dimension de M. pyogenes aureus), le plus souvent en diploc., parfois isolés ou en amas. .

M. Pasteuri = Streptoc, lanceolatus GAMALEIA).

M. (dipl.) crassus (Jæger

M. (strept.) buccalis (H. Roger).

M. endocarditis rugatus (Weich-SELBAUM).

TABLEAU XLV (Suite)

Le développement ne se fait qu'à partir de 32°. Voule sur gélatine liquide. Diplocoques assez gros (0,8 à 1,4 µ) souvent en amas. Pathogène pour le cobaye. (Trouvé ques assez g) Colonies sur gélose (48 h.), rondes, laiteuses, saillantes; plus tard en rosette ou en feuilles de trêfie. En piqure dans la gélose, courtes excroissances stalactiformes. dans une bulle de pemphigus aigu)

- Ne prenant pas le Gram.

1. Microcoques isolés et parfois formes bacillaires courtes en proportions va riables selon les conditions de température et de milieu. Culture généralement nulle à 22° sur gélatine. (Parfois très faible développement). Aisément cullivable sur

gélose ordinaire à 37°. Agglutinable par le sérum d'animaux immunisés, chauffe à 56° (Agent de la fièvre de Malte).

2º Diplocoques en grains de café, gonococciformes, intracellulaires dans le pus, ou encore en tétrades. (Le diagnostic bactériologique se présente de façons différentes

a) Il s'agit de premières cultures, faites avec des matériaux fraichement retirés de suivant les conditions dans lesquelles on procède à la détermination).

l'organisme.

a) Faisant fermenter glucose, maltose et lévulose. Dipl. ressemblant au méningo-coque. Colonies légèrement jaunâtres sur gélose

ment, sur gélatine à 22, Mirchner), diplocoque encapsulé, non cultivable à 22° est peut-être b) Ne faisant fermenter aucun sucre. Diplocoques. Souvent très faible développe-

identique au M. précédent.

3) Il s'agit de cultures ayant été déjà repiquées un certain nombre de fois sur les milieux artificiels.

a) Faisant fermenter le glucose et le maltose, pas le lévulose .

b) Ne faisant fermenter aucun sucre. Note. — Un sérum antiméningococcique agglutine énergiquement M. intracellularis meningilidis. Dans les mêmes conditions, M. calarrhalis n'est pas, ou est très faiblement agglutiné. (Agglutination de groupe). M. phar. flavus nº

M. pemphigi (DEMME).

M. melitensis (BRUGE).

M. (dipl.) pharyngis flavus nº 1 (V. Lingelsheim).

M. catarrhalis (Preiffen).

M. intracellularis meningitidis M. catarrhalis (Perferen) (WEIGHSELBAUM).

TABLEAU XLVI,

ne se développant pas à des températures supérieures à 43°-45°, sans spores. Bâtonnets aérobies ne se développant pas sur gélatine à 10 °/º à 20º-22º. Cultivables sur gélose peptonée ordinaire à 37°

des renslements en massue, état granuleux plus ou moins marqué, colorabilité inégale (aspect tacheté ou strié) Les bactéries qui figurent dans ce tableau ont certains caractères morphologiques communs : fréquence et présence possible d'éléments ramifiés actinomycétiformes.

. - Ne prenant pas le Gram.

u/0,3-0,4 en moyenne), mais pouvant être presque coccoïdes dans les cultures. Ne se développant pas au-dessous de 25°. Donnant sur gélose des colonies peu caractéris-Bâtonnets granuleux, souvent aussi longs et plus épais que Bact. Inberculosis (3-4 tiques, demi-transparentes, ressemblant à celles de B. typhosum. Cultures plus abondantes devenant blanches et opaques sur gélose glycérinée et sérum coagulé. Culture caractéristique sur pomme de terre (alcalinisée de préférence à 37º : enduit épais, visqueux, apparaissant après 48 heures, d'abord jaune, brunissant et s'étendant les jours suivants pour prendre finalement une coloration chocolat; le milieu devient brun-fonce.

de l'animal survient après 5-15 jours. Pathogène pour le cobaye et le campagnol, moins L'inoculation d'une quantité variable (une anse de platine à 2 cm3) d'une émulsion de culture fraiche dans le péritoine d'un cobaye mâle détermine un sarcocèle morveux caractéristique (orchi-vaginalite nodulaire) qui apparaît au bout de 2-3 jours. La mort pour le lapin. La souris domestique et le rat sont presque réfractaires. Les cultures tuées confiennent une endotoxine (malléine) qui résiste à 120°.

II. - Prenant le Gram.

Bâtonnets habituellement plus courts et plus épais que B. diphteriæ, se développant plus rapidement et plus abondamment que ce dernier. Sur gélose glycérinée, la culture A. - Donnant une culture apparente sur pomme de terre.

Bact. mallei (Löffler-Schutz).

TABLEAU XLVI (Suite)

blanc-grisâtre, humide, s'étend en 3-4 jours à toute la surface du milieu. Sur pomme de terre, elle est assez épaisse, tomenteuse, sèche. Non pathogène pour le cobaye .

Bact, pseudodiphteriticum (Hor-

MANN-WELLBNHOF.

minée : il représente le type d'un groupe de races bactériennes qui diffèrent entre elles par des détails de culture et par le degré de la virulence pour l'animal. Cette virulence, toutefois, reste toujours faible; elle se réduit dans les cas les plus nets, à un - Bact, pseudo diphteriticum ne représente pas une espèce nettement déterædème passager au point d'inoculation. Les cultures filtrées ne sont pas toxiques

1º Pathogènes pour un ou plusieurs des animaux de laboratoire. Culture nulle ou non apparente sur pomme de terre.

a) L'inoculation intraveineuse détermine une pseudo tuberculose généralisée chez

le cobaye et le lapin

massue, groupés en amas, souvent intracellulaires. Ne se développant bien qu'à 37°. Ne troublant pas lebouillon. Les cultures sur gélose et sur sérum de cheval coagulé sont grêles et sèches. Sur le sérum de bœuf, milieu de choix, il se développe souvent en colonies d'un beau jaune-orangé. Se frouve à la périphérie des foyers caséeux. Agent de pseudo-tuberculose du mouton, de l'acné conta-Bâtonnets plus courts et plus grêles que Bact. diphteriæ, souvent renflés en gieuse du cheval, de la lymphangite ulcéreuse des équidés . . .

B. pseudoluberculosis murium (Kutscher), agent d'une maladie nodulaire

des souris, est voisin du précédent.

Les inoculations ne déterminent pas de lésions nodulaires généralisées, a) Les cultures sont pyogènes chez le rat blanc (adulte).

Bátonnets ressemblant en tous points à B. diphteriæ par leur morphologie et leurs caractères culturaux, acidifiant le bouillon comme ce dernier. L'injection contient le bact, en abondance ; pas d'accidents généraux. L'antitoxine diphtésous-cutanée détermine chez le cobaye et le rat blanc adulte un abcès local qui rique ne neutralise pas le pouvoir pyogène des cultures . Isolé du poumon hépatisé d'un rat blanc.

b, Les cultures ne sont pas pathogènes pour le rat blanc adulte.

tne le cobaye en 24-60 heures avec un cedème souvent étendu autour du point de l'injection, sans septicémie. Le filtrat est toxique. Le lapin est beaucoup moins sensible que le cobaye; le rat et la souris blanche sont presque réfrac-I. - L'inoculation sous-cutanée d'un 1/2 cm3 de culture en bouillon de 24 heures

Bact. pseudotuberculosis ovis (PREISZ, GUINARD).

Bact. muris (E. KLEIN).

en haltère, de structure granuleuse, de longueur variable $1,5-2~\mu/0,4-0,5~\mu$ en moyenne). Se développe en colonies très grêles sur gélatine à partir de 23 , développement est beaucoup plus rapide sur gélose-ascite, sérum coagulé ou sérum de Löffler à 37°. Après 20-24 heures on voit de petites colonies rondes, transparentes, d'un blane grisàtre. Le bouillon se trouble en 20 heures, assez lentement sur gélose en formant des colonies blanches, opaques. Le puis il s'éclaircit et il se forme un dépôt floconneux. Se développant bien taires. - Bâtonnets grêles, souvent un peu courbés, déformés en massue ou

II. - L'inoculation sous-cutanée produit un abcès local chez la souris et chez le cobaye. Les effets restent exclusivement locaux.

Bâtonnets de 2-3 μ/0,7 μ, souvent un peu courbés, groupés en amas, ne se développant bien qu'à 37°, pas à l'abri de l'air. Donnant sur gélose des colonies Formant un dépôt dans le bouillon sans le troubler. Ne se développant pas dans le lait. Se trouve dans l'urine des bœufs atteints de pyélonéphrite punctiformes, sur sérum coagulé de petites colonies rondes, minces, grises. hématogène)

2º Non pathogènes pour les animaux de laboratoire au point de l'inoculation il ne se produit aucune réaction, tout au plus un ædème fugace. Pas de symptômes

généraux).

dans les milieux glucosés. Non cultivable sur le sérum de Læffler. Acidifiant légè-Bâtonnets ressemblant morphologiquement à Bact. diphteriæ, se développant faiblement sur la gélose et dans le bouillon ordinaires, beaucoup plus abondamment a) Produisant des gaz dans les milieux glucoses. rement le lait sans le coaguler. .

Isolé des selles d'un nourrisson.

nuleux, acidifiant le bouillon beaucoup plus faiblement que Bact. diphteriæ. Se Bâtonnets souvent courts, mais on observe des formes longues, rarement gratrouve fréquemment sur la conjonctive et dans le nez. Ne joue aucun rôle dans 3) Ne produisant pas de gaz dans les milieux glucoses a) Culture très lente, très grêle et sèche sur gélose et sur le sérum coagulé. la pathogénie du xérosis conjonctival.

Bact. septatum (Gelpke) doit être identifié au précédent.

Note. - Dans ce cas, il peut être très difficile de différencier une race avirulente de Bact. diphteriæ d'avec une des nombreuses bactéries « pseudodiph-Culture rapide, plus ou moins humide sur gelose et serum coagule.

Bact. diphteriæ (Klebs-Loeffler.

Bact pyelonephritidis bovis (En-DERLEN, HOFFLICH, Bact. pseudodiphtericum gazo-genes (Jacobson).

Bact. xerosis (Neisser et Kusch-

TABLEAU XLVI (Suite)

yeux, nez, pharynx) et a l'état pathologique (conjonctivites, angines de l'homme, tériques » que l'on rencontre chez l'homme et chez les animaux, à l'état normal

mammites de la vache, etc.).

échantillon non pathogène peut être qualifié de bact. pseudo-diphtérique s'il diffère du Bact, diphteriæ typique par ses cultures plus abondantes (souvent apparentes sur la pomme de terre, voir plus haut dans ce même tableau) par a moindre acidification du bouillon, par l'absence de structure granuleuse des bâtonnets et par la rareté des formes longues. Au contraire, quand la morphologie et les caractères des cultures (peu abondantes) se superposent à ceux du b. de Klebs-Læffler typique, il est classique de dire qu'il s'agit d'un Bact. diphteriæ avirulent. Mais les rapports des B. pseudo dipht, avec les B. dipht. Faute d'un moyen d'appréciation plus sérieux, on admet communément qu'un authentiques ne sont pas nettement établis. - B. diphterioïdes (Klein), Corynebacterium vaccinæ, variolæ (Galli-Valerio) ne sont que des bact, pseudodiphtériques ayant reçu - à tort - des noms particuliers. B. cylindricus (A. Meyer et Blau).

TABLEAU XLVII

Bâtonnets aérobies, ne se développant pas à 20-22°.

Cultivables sur gélose à 37°, et mieux à 45° et au-dessus. Chromogènes sur gélose.

A. - B. formant des spores, mobiles, se développant mieux vers 57°. I. - Colonies brunâtres ou jaunâtres sur gélose. 1º Ne se developpant pas sur pomme de terre.

Batonnets courts entourés de cils; spores volumineuses (1/8 à 3 $\mu/0.7$ à 1 μ), terminales, le plus souvent cylindriques ou elliptiques ou incurvées en forme de haricot, résistant 19 heures à 100°. Germination équatoriale. Formant sur gélose à 60° en 20 heures un revêtement jaunâtre qui devient jaune-brunâtre vers le deuxième ou troisième jour. Se développant encore un peu (colonies isolées) à 35°. Maximum

2º Cultivables sur pomme de terre.
Ce sont des bacilles qui prennent le Gram et qui ne coagulent pas le lait.

nâtre, de consistance visqueuse; sur pomme de terre une couche jaunâtre, non α) Bátonnets longs et grêles; spores grosses, ovales, déformantes. B. ne se développant pas au-dessous de 37°. Maximum 70°. Ne produisant pas d'indol; ne faisant pas fermenter le glucose. Formant sur gélose une culture abondante jau-

B. thermophilus aquatilis angui-

nosus (MICHAELIS).

3) Longs bâtonnets et filaments droits ou flexueux; spores terminales. A 37° la culture, toujours faible, peut faire défaut. Optimum 56° à 62°. Produisant de l'indol. Culture sur gélose inclinée abondante, brun-jaunâtre, muqueuse. Sur pomme de terre, enduit mince, grisâtre, peu apparent.

à 62° B.thermophilus reducens (Ofrescu) 1. Ne se développant pas sur pomme de terre. Bâtonnets minces, quelquefois incurvés, spores terminales. En bouillon, trouble et dépôt. Ne coagulant pas le lait, ne faisant pas fermenter le glucose, ne produisant pas d'indol. Se développant de B. - E. formant des spores, immobiles.

B. thermophilus no 1 (SAMES).

1. Voir au bas du tableau XLVIII la note concernant l'habitat des bactéries qui ne se développent qu'à de hautes températures.

TABLEAU XLVII (Suite)

B. saccharip!ilus (Laxa). 2º Cultures jaunâtres ou brunâtres sur pomme de terre. Les milieux sucrés ou 14 % .. Bacille de longueur variable, ressemblant à B. Zenkeri. Spores elliptiques. Colonies gris-verdâtre sur gélose. Bâtonnets formant des spores, alcaliniglycérinés conviennent mieux. Le milieu de choix est le bouillon saccharosé à 10 à Faisant fermenter le glucose. Cultivable de 25 à 59°. sant le bouillon, se développant de 36 à 75°.

L'un présente sur gélose des colonies gris-verdâtre entourées de fins prolongements. B.thermophilusn. 2(Rabinowirsch). L'autre présente sur gélose des colonies gris-verdâtre à centre grenu et à périphérie Deux bacilles, très voisins ou identiques répondent à ces caractères :

III. - Colonies non chromogenes sur gelose. Mais l'eau de condensation prend

Bacilles grêles, mobiles, prenant le Gram, présentant des spores terminales, troublant le bouillon avec formation d'un voile épais; ne se développant pas sur pomme de terre, ne coagulant pas le lait, ne faisant pas fermenter le glucose, ne produisant pas d'indol une teinte brun-rouge nelte.

B. thermophilus nº 1 (BRUINI). 1V. — Colonies rosées sur gélose à 37°.

Repiqué à 37°, on n'obtient plus de développement. Culture blanche sur gélose à 58°. (Voir tableau XLVIII).

B. thermophilus aquatilis chromogenes (Michaelis).

B.thermophilus nº 6 (Rabinowitsch

ועחדרשה ערוווו

Cultivables sur gélose à 37°, à 45° et au-dessus. Non chromogènes sur gélose. Bâtonnets aérobies, ne se développant pas à 20-22°.

Bact. thermophilum aquatile	Bact. thermophilum no 13 (BRUING .	B thermophilus lacmus (Sames).	B. thermophil is nº 4 (Sames).	B. thermophilus n° 10 (Bruint).	
 Bâtonnets ne formant pas de spores, immobiles. Ce sont des bact. prenant le Gram et se développant bien à 37°. Cultivable sur tous les milieux sauf sur la pomme de terre. Bâtonnets courts. Non liquéfiant. Protéolytique. Cultivable jusqu'à 69°. 	2° Cultivable sur pomme de terre. II. — Bâtonnets formant des spores, mobiles; prenant le Gram. A. — Ne se développant pas sur pomme de terre. Bâtonnets courts, en chaînettes. Spores centrales déformantes. Production d'indol.		 α) Culture jaune paille où orange sur pomme de terre. Batonnets longs, ou courts filaments. Spores terminales. Colonies rondes, blanches sur gélose, à prolongements périphériques courts et ténus. Le développement est faible ou nul à 37°. (Voir aussi tableau XLIX). ξ) Culture gris-brunâtre sur pomme de terre. 	Bâtonnets droits ou courbes (2 à 3 µ/0,6 µ) souvent en filaments. Spores ovales généralement libres Culture étalée, incolore sur gélose. Pas de développement sur sérum coagulé. Se cultive bien à 37°. 2° Ne coagulant pas lé lait. x) Produisant de l'indol.	Deux bacilles thermophiles très voisins répondent à ces caractères. Ils se déve- loppent lentement à 37°, donnent sur gélose des colonies entourées de prolon-

1. B. robustus (A. Meyer et Blau) appartient à ce groupe. Ses températures limites sont 35° et 67°.

gements périphériques, sur pomme de terre une culture brunâtre.

aerobius Orrescu)

B. thermophilus II (TSIKLINSKY),

- Bâtonnets assez épais, à extrémités arrondies ou renflées; parfois en filaments.

Températures limites : 37-62°. Acidifie un peu le bouillon sucré

3) Culture blanche ou grise sur pomme de terre.
I. — Bouillon acidifié.

Bacille souvent en longs filaments Snovas ovalas tarminalas Ontimum

s aquatilis lique-

is aquatilis lique-

TABLEAU XLVIII (Suite)

B. thermophilus n° 8 (Sames). B. thermophilus n° 7 (Sames).	B. thermophilus aquatilis lique	B thermophilus aquatilis lique	ractons (michabins).	B. erythematis (Demme).		B. thermophilus aerobius Orarscu	B thermophilus aquatilis n°; (TSIKLINSKY).
a) Bacille à spores centrales, déformantes, isolé de la terre. Le lait peut devenir jaune ou orange. Optimum 56° à 60°. b) Bacille à spores centrales ou terminales, isolé de l'air. Optimum 56° à 60°.	a) Spores centrales. Longs bâtonnets. Sur gélose, culture plate en feuille de fougère, gère. Sur pomme de terre, culture grise, sèche, à bords en feuille de fougère, envahissant toute la surface. Ne faisant pas fermenter le glucose. Liquéfiant la gélatine, Aérobie strict.	b) Spores terminales. Bâtonnets grêles. Colonies rondes, épaisses, brillantes sur gélose. Culture grasse, luisante, jaunâtre, puis brunâtre sur pomme de terre. Pas de culture dans le lait. Faisant fermenter le glucose. Liquéfiant la gélatine. Aérobie facultatif	I. — Bâtonnets formant des spores, immobiles.	Bâtonnets grêles, groupés en amas. Prenant le Gram Sur gélose et sur sérum, colonies blanches, brillantes comme de la paraffine. (Isolé d'un cas d'érythème noueux terminé par gangrène.)	a) Ne se développant pas sur pomme de terre. (Trois bacilles très voisins, se développant faiblement à 37°, appartiennent à cette catégorie. — Bâtonnets grêles, spores terminales. Colonies irrégulières, très minces, transparentes sur gélose. Le bouillon est troublé faible dépôt : pas de rellique ou	timum 60°. Bâtonnets courts. Spore à petite distance du bout qui paraît alors pointu, se	Prend le Gram

(RABINO-	
1	
nº	
thermophilus	TTSCH).
B.	N
440.	
à	
de 33	
e de	
, se développe	
e de	
8, 8	
anaérobies,	
milieux	Rouillon alcalin
En	Him
70°. En	D
70	
	1

II. - Bouillon alcalin.

a) Culture s'étendant rapidement à toute la surface de la gélose.

- Bacilles courts, prenant le Gram, encapsulés, spores ovales. Coagulant le

lait. Couche plissée sur gélose. Se développe abondamment à 37°. Bacilles prenant le Gram, formant des spores ovales généralement médianes. Culture grêle, mince, grisâtre sur pomme de terre. Le lait n'est pas coa-

. gulé. Culture grêle et lente à 37°. Aérobie strict.

- Bacilles formant souvent des filaments; spores ovales, terminales. Tempéb) Culture n'envahissant pas toute la surface de la gélose. rature optima 60° . .

y) Culture chromogène sur pomme de terre.

ovoïdes. Ne modifie vas le lait, ne produit pas d'indol. Prend le Gram. Cultivable Bâtonnets assez gros, à bouts arrondis, isolés, ou par 2 ou 4; longs filaments dans les vieilles cultures. Ne sporule pas à une température élevée. Spores de 22 à 65°. En gélose, la culture n'envahit pas toute la surface. Ne peptonise

Rouge ou rouge-brun.

Pigment rougeâtre en présence du glucose. Bâtonnets grêles, souvent filaliquéfiant la gélatine et le sérum, coagulant le lait, ne faisant pas fermenter le glucose, ne produisant pas d'indol. Aérobie facultatif, mais ne produit pas a) Membrane mate, plissée sur la pomme de terre qui devient rouge-brunâtre. ments; spores centrales non déformantes. Troublant le bouillon avec voile, de spores à l'abri de l'air. Cultivable de 25 à 70°. Optimum 36 à 41° . . Culture rouge sur pomme de terre. Ne se développant sur ce milieu que de 55 à 65°. Bacille souvent en longs filaments. Spores rondes, centrales. Sur gélose, colonies incolores à prolongements multiples, déliés . .

III. - Brune ou jaunatre.

a) Spores centrales.

Colonies transparentes comme de l'eau sur gélose. Légère acidification du bouillon. Optimum 60°

b) Spores terminales.

1º Culture rosée sur gélose à 37º, mais après repiquage, ne se développe plus

B. thermophilus nº 6 (BRUINI),

B. thermophilus nº 2 (BRUINI).

B. thermophilus nº

B. thermophilus no 8 (TSIKL NSKY).

B. thermophilus liquefaciens aerobius (OPRESCU). B. thermophilus nº 4

8 (RABINO-B. thermophilus no WITSCH).

TABLEAU XLVIII (Suite)

rosée, devenant ensuite brunatre sur pomme de terre. Bacilles à extréà cette température. Non chromogène à 58°. Culture d'un blanc gris, ou mités arrondies, isolés ou par deux; filaments dans les vieilles cultures. Prend le Gram. Le lait n'est ni coagulé ni acidifié

2º Colonies rondes, transparentes, en gouttes de rosée sur gélose. Culture lente sur pomme de terre; pellicule mince, gris-brunâtre. Bouillon légèrement acidifié. Batonnets épais; filaments. Optimum 60°

que. Culture brune sur pomme de terre. Acidification du bouillon. Bacille 3º Colonies petites, rondes, blanc-grisâtre, ressemblant à celles du streptocoassez épais 4º Colonies en gouttes granuleuses, plates, d'un brun très clair sur gélose. Enduit très épais, brun-jaunâtre sur la pomme de terre qui brunit. En bouillon ou eau peptonée, pas de culture. Le lait n'est pas coagulé. Bacilles grêles. Température minima 35°; optima 60°. . . .

d'eaux de puits et de rivière; celles de l'siklinsky et celles de Bruini ont été trouvées dans les matières fécales d'adultes et de nourrissons. Les bactéries que nous désignons par les termes b. thermophil. aquat. (Tsipar Blau et une partie de celles étudiées par Rabinowitsch ont été isolées de la terre; les bactéries décrites par Miquel, par Michaelis ont été isolées Note. - Les bactéries thermophiles étudiées par Sames, par Oprescu, klinsky) ont été refirées de sources thermales.

B. thermophilus nº 1 (BRUINI).

B. thermophilus n° 5 (RABINO-WITSCH).

B. thermophilus nº 3 (RABI WITSCH).

B thermophilus aquatilis (Opnescu).

B. thermophilus Nº 2 (SAMES).

IRS).

ES).

AU).

TABLEAU XLIX

à une température supérieure à 37°, mais non à 37° (Thermophiles obligatoires). Bâtonnets aérobies, ne se développant pas à 20-22°. Cultivables sur gélose

B. thermophilus N° 2 (Sam	quées de tétanos.) — Bátonnets à spores terminales. Cultures sur pomme de terre devenant brunes et — Bátonnets à source, répandant une odeur de fruit.
D. uncermopmins M. 4. Orange	
P +hormonhilus Nº 4 (S.v.	
B. thermophilus N° 3 (Same	re ou gris-jaunâtre sèche, surêlevée sur
	 2° Cultivables sur pomme de terre. a) Coagulant le lait. α) Culture sur gélose envahissant rapidement toute la surface du milieu.
B. calidus (A. Meyer et Bla	blanc-grisâtre ou gris-jaunâtre.
D. Words (41. merch et plan	b) Courts b. entourés de cils; spores ovoïdes ou cylindriques, tuées en 8 heures à 100°. Racille se développant jusqu'à 70° à 73°. Formant sur gélose un enduit mince.
D toutes (A Manual D.	
	A. — B formant des spores, mobiles, prenant le Gram. 1º Ne se développant pas sur pomme de terre.
55-57°. Colo- B. Ludwigi (Kareinski).	ous de 50°; optimum ur pomme de terre.
	I Cultures chromogenes sur gélose.

quelquefois pourpre, répandant une odeur de fruit.

TABLEAU XLIX (Suite)

B. thermophilus radiatus (CATTE-B. ilidzensis capsulatus (KARLINSKI) B. thermophilus N. 5 (BRUINI). B. thermophilus No 3 (BRUINI). B. thermophilus No 4 (BRUINI). B. thermophilus No 7 (BRUINI). B. thermophilus Nº 6 (SAMES). 1 µ). Spores libres ovales 1 µ/1 µ 5. Couche blanchatre sur pomme de terre. sur gélose. Bâtonnet droit et épais, parfois coccoïde (1,3 à 2,6 μ/0,5 à 1 μ). cultures en bouillon sont caractérisées par un trouble uniforme, sans voile, Petites colonies blanches sur sérum. Couche mince. étalée, transparente irradient vers les parois du tube, plus nombreux et plus longs, dans les Bacille à extrémités arrondies, 2 à 3 µ/0,6 à 0,7, formant des filaments iné-A. - Culture brunâtre sur pomme de terre. Bâtonnets isolés ou filaments. Les Pas de culture sur sérum coagulé. Bâtonnet droit, assez grand (4 à 7 µ/0,7 à Colonies sur gélose rondes, blanches, à prolongements ramifiés. En piqure dans la gélose, prolongements autour du trait de piqure. Culture gris foncé ou bru-Ne se développant pas au-dessous de 50°. Culture blanche, brillante sur pomme contour polyédrique, bordées de prolongements périphériques ténus. Formant en gelose ensemencée par piqure des prolongements filamenteux qui couches superficielles. Donnant sur pomme de terre à 60° des colonies rondes, galement colorés dans les vieilles cultures; ne se développant pas sur sérum. Donnant sur pomme de terre des colonies blanches, humides, devenant Batonnets à spores centrales ou terminales, ovoïdes; souvent en chainettes. rifères « en clou » Optimum 60 à 70°; minimum 40°, maximum 72°. Formant sur plaques de gélose à 60° des colonies saillantes, d'un blanc de cire, à Batonnets mesurant 2 \u03bc, prenant bien les couleurs d'aniline; formes spo-Spores médianes, ovales, déformant les bâtonnete « en clostridium ». à centre saillant, de couleur lie de vin. puis il se forme un dépôt. Le bouillon est alcalin. . Ce sont des bacilles qui acidifient le bouillon glucosé, de terre. a) Se développant sur pomme de terre, coagulant le lait. - Culture blanche sur pomme de terre. ensuite coulantes. B. - B. formant des spores, immobiles. nâtre sur pomme de terre. . I. - Ne prenant pas le Gram. II. - Prenant le Gram. Spores terminales. Isolé de l'eau). a) Bacilles encapsulés.

b) Ne se développant pas sur pomme de terre. Ne rendant pas la gélatine insolidi-

Aérobie facultatif.

Ce bacille, aérobie facultatif, végète (lentement) dans une atmosphère d'hydrogène. Bâtonnets courts, le plus souvent isolés. Spore à petite distance d'une extrémité qui a l'aspect pointu.

Aérobies stricts.

loré. Couche nacrée couvrant toute la surface de la gélose, légèrement adhé-A. - Petit bacille à spores rondes, terminales, (comme B. tetani), inégalement corente. Légère acidification du bouillon sucré. Cultivable de 50 à 68°. Opti-

mum 50° - Colonies sur gélose à centre épais émettant des prolongements radiaires paraissant faits d'une agglomération de cristaux. Bâtonnets assez gros, isolés ou par deux ou filaments. Spores ovales, terminales. Cultivable de 50 à 67º. B.

Optimum 57-58°.

jours. Bâtonnets assez gros, isolés ou par deux. Spores ovales, terminales. Se développant aux mêmes températures que le précédent.

— Colonies rondes, légèrement translucides, à centre épais sur gélose. Pel-- Culture sur gélose couvrant toute la surface. Se développant dans le bouillon en formant des flocons qui tombent au fond au bout de quelques o

licule glaireuse sur le bouillon. Bâtonnets ordinairement isolés. Spores 0

C. — B. ne formant pas de spores, immobiles.

1° Cultivables sur pomme de terre. Ne rendant pas la gélatine insolidifiable, prenant le Gram, souvent d'une manière inégale.

a) Coagulant et peptonisant le lait.

Bâtonnets parfois assez longs ou filaments. Pellicule épaisse, glaireuse sur le bouillon. Cultivable entre 55 et 71°, optimum 68°. Formes d'involution à 58°.

b) Ne coagulant pas le lait. Aucun pouvoir fermentatif.

I. - Culture sur gélose abondante, adhérente, couvrant toute la surface. Longs

fois assez longs ou filaments. Se développant de 55 à 70°. Optimum 68°. - Colonies sur gélose transparentes, uniformément minces. Bâtonnets par-Formes d'involution à 58°.

B. thermophilus N. 4 (TSIKLINSKY). = B. th. aquatilis Nº 2 (Tsi-KLINSKY).

B. thermophilus No 18 (TSIKLINSKY).

B. thermophilus No 15 (TSIKLINSKY).

B. thermophilus No 13 (TRIKLINSKY).

B. thermophilus No 3 (TSIKLINSKY).

aquatile thermophilum No 3 (TSIKLINSKY). Bact.

Bact. thermophilum aquatile Nº 1 = B, th. filiformis (Tsiklinsky).

aquatile Bact. thermophilum Nº 4 (TSIKLINSKY).

TABLEAU XLIX (Suite)

2º Non cultivables sur pomme de terre. Ne rendant pas la gélatine insolidifiable,

prenant le Gram, souvent d'une manière inegale.

I. - Gros batonnet, droit, comme le pneumobacille, ordinairement isolé. Couche paque sur gélose. Léger trouble et pellicule friable dans le bouillon. Acidifie légèrement le bouillon sucré. Pas de culture à 37°. Optimum 57°. Maximum 68°. a) Culture sur gelose convrant toute la surface. Ne produisant pas d'indol.

- Petits bâtonnets (paraissant très voisins), ne se développant pas à 37°, cul-

tivables jusqu'à 70°. Optimum 57°.

mince couche uniforme, légèrement transparente. Ne change pas la réaction Développement possible dans une atmosphère d'hydrogène. Sur gélose,

- Aérobie strict. Enduit bleuâtre sur gélose. Le bouillon sucré est légèrement

Culture sur gélose ne couvrant pas toute la surface, formant des flocons dans le bouillon et la gélatine liquide, acidifiant légèrement le bouillon glucosé.

Il semble que B. thermophilum Nº 4 (Tsiklinsky) (dont les colonies sur sérum sont saillantes comme celles de B. diphteriæ), et B. thermophilum Nº 17 (Tsiklinsky) qui forme sur gélatine liquide une pellicule épaisse, ne diffèrent de B. th. No 1 que par des détails minimes. Ces trois bact, ne se développent pas à 37°, ont leur optimum vers 57°, et végètent jusqu'à 64 ou 68°.

Bact. thermophilum N. 6 (Tsr-

Bact, thermophilum N° 16 (Tsr-KLINSKY).

Bact, thermophilum N° 5 (Tsr-KLINSKY.

Bact. thermophilum N° 1 (Tsr KLINSKY).

TABLEAU L

Bactéries facultativement aérobies non cultivables sur gélatine ou gélose ordinaires 1; se développant bien dans le bouillon sucré additionné de 0,50 à 1 º/º d'acide actique, à la temprature de 37°.

- Le produit de fermentation prédominant est de l'acide lactique. Il ne se forme que des traces d'acides volatils (valérianique et acétique le plus souvent).

longs et grêles 2-3 $\mu/0.5-0.7$ μ , mais leur polymorphisme est considérable ; on trouve des formes filamenteuses et des forment mes coccoïdes lls sont immobiles, ne forment pas de spores. Ils prennent le Gram. Ils ont souvent une structure granu-Les bactéries de ce groupe ont un certain nombre de caractères communs. Ce sont généralement des bâtonnets assez

Anaérobies de prédilection; ils ne se développent guère qu'à partir de 25° Leur optimum est, en général, entre 40° et 50°. Les milieux de choix sont variables selon les espèces: lait, petit lait additionné de peptone ou d'extrait de levure (Löbnis), milieux sucrés, milieux (gélose) au moût de bière. Ces bactéries qui peuvent être isolées de tous les autres germes par la culture dans le bouillon glucosé acidifié à 1 % (acide acétique ou lactique), résistent même à une acidité

les seuls auteurs qui aient soumis à un examen comparé les b. de ce groupe on peut essayer de différencier les types Leur détermination est difficile, car les caractères distinctifs des espèces sont peu connus. D'après Löhnis et Kuntze, principaux en s'aidant de la clef suivante

A. — Ne se développant pas dans le lait.

Bact. (Bac.) Delbrücki (Leichmann). Milieu optimum : gélose au moût de bière. Colonies souvent bordées de pro-longements périphériques rappelant celles de Bact. Zopfii. Optimum 45°-50°.

(Isolé du malt et de l'orge).

Se développant dans le lait.

a, Produisant des gaz dans les milieux sucrés.

Bact. (Bac.) casei y (FREUDENREICH).

Bact. (Bac.) casei & (FREUDENREICH).

Bact. (Bac.) casei a (FREUDENREICH).

de poils). Opt. 35°-42°.

α) Colonies rondes, sans prolongements peripheriques. Optimum 42°. D'après Löhnis, Bac. lactis ærobans (Conn), Bact. 15 (Troïli-Petersson), Bact. curvatum (T.P.) sont très voisins du précédent, sinon identiques.

1. C'est-à-dire non sucrées et alcalines.

Bact. (Bacillus) lebenis (Rist

KHOURY).

Bact. caucasicum (Beijerinck).

TABLEAU L (Suite)

Bact. (Bac.) casei & (FREUDENRRICH). 3) Colonies présentant des prolongements périphériques enchevêtrés. Optimum 35º-42º Bacillus lactis acidi (Leichmann) est voisin du précédent, d'après Löhnis. Rodella estime qu'ils sont identiques.

casei e les bact. suivants, isolés des laits fermentés à température élevée : D'après Kuntze on peut également considérer comme identiques à Bact. Bact. Mazoun Weigmann, Gruber et Huss, trouvé dans le Mazoun arménien. identique lui-même au ferment lactique long de Düggeli.

Bact. Yoghourt (Kuntze) dont Bact. granulosum (= Körnchenbazillus) Streptobacillus lebenis (Rist et Khoury), isolé du leben égyptien est voiet Bac. bulgaricus (Luerssen et Kühn) ne seraient que deux variétés.

sin des précédents.

a) Produisant des gaz. Optimum 370. Acidifiant le lait (faiblement) . 2° Ne coagulant pas le lait. (Isolé du képhir.)

Lacto-bacillus fermentum (Beijerinck) est voisin. b) Ne produisant pas de gaz.

Colonies en gouttes de rosée sur les milieux lactosés ou glucosés. Acidifiant le lait (faiblement).

(Isolé du leben égyptien).

Le produit de fermentation prédominant est de l'acide acétique 1.

sont des bact. très polymorphes, prenant le Gram, cultivables dans les milieux sucrés, facultativement aérobies, faisant fermenter activement le glucose et le lac-Les bactéries de ce groupe ont un certain nombre de caractères communs. Ce tose sans produire de gaz. Odeur acétique des cultures dans les milieux sucrés. Optimum 37°.

Elles coagulent le lait lentement et souvent incomplètement. Elles se développent sur la pomme de terre en dégageant une odeur acétique, mais la culture ne devient pas apparente à l'œil nu.

C'est un bâtonnet assez épais, à extrémités arrondies, de longueur très variable On peut, avec Distaso, distinguer dans ce groupe plusieurs variétés: Bact. acetogenum α (Distaso) identique à B. acidophilus (Moro) = B. N° 2 (Mereschowsky). (4-5 µ à 12 à 15 µ), habituellement courts en milieu aéré, filamenteux en milieu privé d'air. Donnant sur plaques de gélose glucosée des colonies profondes à contour

Groupe de Bact, acetogenum.

acetogenum, Groupe de Bact.

ou groupe des ferments lactiques thermophiles (suite) de Bact, caucasicum - Bact, casei ou groupe des ferments

glucosée profonde en dégageant une odeur acétique. Se développant lentement dans le lait qui se coagule après 3 jours. Produisant de l'ammoniaque aux dépens des peptones; pas d'indol. Faisant fermenter l'urée. Se développe un peu sur gélatine net, orbiculaire, des colonies superficielles toujours chevelues. Troublant la gélose sucrée à 22°.

(Isolè des fèces de nourrissons).

Syn. : Streptobacillus faecalis (Blühdorn).

Bact. acetogenum β (Distaso) = B. N° 1 (Mereschowsky) n'est pas cultivable sur gélatine sucrée à 22°; coagule le lait en une semaine.

Bact. acetogenum proteiforme (Distaso), isolé des matières fécales du chien, est un bâtonnet généralement trapu, à extrémités arrondies, mais il est très polymorphe dans la gélose sucrée profonde. Il n'est pas cultivable sur la gélatine sucrée.

La coagulation du lait est inconstante.

plète. Sa vitalité n'est que de 10 à 15 jours, beaucoup plus courte que celle des court, à extrémités carrées (jamais effilées), ne donnant pas de culture apparente sur gélatine. Colonies comme des pointes d'aiguilles, à peine visibles sur gélose ordinaire, beaucoup plus volumineuses sur gélose sucrée. Coagulation du lait incom-Bact, exile = B. exilis (Tissier) = B. acetogenus exilis (Tissier) Distaso, isolé des fèces du nourrisson, de l'homme adulte, du chien, est un bâtonnet mince et trois variétés précédentes.

acetogenes et les bactèries acido-tolérantes lactiques. C'est un microcoque habituellement groupé en diplocoque ou en courtes chaînes, parfois en amas. Il trouble la gélose glucosée profonde en dégageant une odeur acétique très marquée. Il se développe sur la pomme de terre en produisant la même odeur, mais la culture n'apparaît pas à l'œil nu. Le lait est coagulé beaucoup plus rapidement que par les autres acétogènes (en 24 h.) en une masse compacte. Ce microque fait fermenter le glucose, le lactose et le saccharose. Il ne produit pas d'indol. 1. Coccus banani (Distaso), isolé des matières fécales, représente, d'après cet auteur un type de transition entre les bactéries acido-tolérantes

Groupe de Bact. acetogenum (suile). tuberculosis ! (Koch).

TABLEAU LI

Bactéries aérobies non cultivables sur la gélose peptonée ordinaire, cultivables sur pomme de terre et sur les milieux glycérinés; colorables par la méthode de Ziehl-Neelsen.

Note. - Le B. de la tuberculose comprend plusieurs races d'adaptation aux animaux, ou « types ». Les mieux étudiés sont les types : humain, bovin, aviaire, chélonien, pisciaire. Mais ce dernier se développe sur les milieux usuels, ce qui le rapproche des b. acido-résistants (Voir tableau XXIX). On peut ainsi classer ces

se développant à des températures inférieures à 28°. Optimum 37°. Pathogène pour les vertébrés à sang froid 2. B. ne se développant pas à une température inférieure à 28°.

Type chelonien (Friedmann).

Type aviaire.

a) Cultivable jusqu'à 450; très bien à 430. Cultures humides, grasses et molles. Pathogène pour la poule et le pigeon, et non pour le cobaye

a) Faiblement pathogène pour le veau et le lapin. Culture abondante à développe-3) Non cultivable à une température supérieure à 42°. Cultures sèches, écailleuses. Pathogènes pour le cobaye, non pathogènes pour la poule et le pigeon.

ment assez rapide (3 semaines). Voile épais sur bouillon glycériné. b) Très pathogène pour le veau et le lapin. Culture grêle à développement plus lent. Voile mince à la surface du bouillon glycériné.

Type humain.

Type bovin.

1. Nous n'avons pas voulu rayer le germe de la tuberculose du cadre de ce manuel de diagnostic bactériologique. A vrai dire, il ne saurait rentrer dans le genre bacterium. Par ses cultures, par sa morphologie (formes ramifiées) il se rapproche des actinomycètes; d'où les dénomina-tions suivantes proposées par les auteurs contemporains: Sclerothrix Kochii (Metschnikoff, Mycohacterium Inherculosie II ahmann at Normann) I ABLEAU LII

Bactéries aérobies ne se développant ni sur gélatine ni sur gélose peptonée ordinaire, quelle que soit la température. Ne se développant que sur des milieux additionnés de sérum, de sérosités ou de sang, à la température de 37°.

- Assez gros bâtonnets d'une épaisseur moyenne de I u, long de 2.3 u, habituellement grouvés par deux, parfois en courtes chaînettes, immobiles, ne formant pas de spores, ne prenant pas le Gram. Cultivables sur le sérum coagulé qui subit une faible liquéfaction), sur gélose-ascite et gélose au sang. Les colonies présentent l'aspect de gouttelettes transparentes. Agent de conjonctivile subaiguë angulaire . . .

Bac. involutus (Wälsch), isolé d'une sécrétion préputiale, est très voisindu précédent. - Diplocoques réniformes ou en grains de café, souvent intra-cellu-

Ne pouvant être isolés, en première culture, que sur gélose-sang ou gélose-ascite. Les colonies sont grèles grisatres, translucides, se détachant souvent mal de la surface du milieu. Leur vitalité, très faible, nécessite de fréquents repiquages. Ce groupe comlaires dans le pus. Ne prenant pas le Gram. Dimensions du couple 0,6-0,8 µ/0,8-1,6 µ.

A. - Faisant fermenter le maltose. Pouvant s'acclimater à la gélose ordinaire après plusieurs générations. Pouvant former des tétrades dans les cultures, Capsules dans le sérum liquide. Agent de la méningite cérébro-spinale épidémique. . prend deux microcoques très voisins, difficiles à différencier.

M. (dipl.) pharyngis flavus nos 2 et 3 et M. (dipl. pharyngis siccus (v. Lingelsheim), pseudo-méningocoques du rhino-pharynx, se distinguent du précédent en ce qu'ils ne sont pas agglutinables par le sérum antiméningococcique et par l'aspect des colonies : celles des deux premiers m. sont jaunes, celles du troisième sont sèches, compactes, non émulsionnables.

- Ne faisant pas fermenter le maltose. Ne s'acclimatant pas à la gélose ordinaire. Ne

l'épuisement des agglutinines qui permet de distinguer l'agglutination spécifique de se disposant pas en tétrades. Agent de la blennorrhagie. Note. — La recherche des réactions biologiques est scuvent nécessaire pour arrisérum vient encore augmenter la difficulté. Il faudrait alors recourir à l'épreuve de ver à séparer ces deux espèces. La présence de co-agglutinines dans l'immuml'agglutination de groupe (Voir Technique)

A. - Bactéries ne se développant que sur les milieux additionnés de III. - Bâtonnets de petites dimensions, mais faciles à voir avec les grossang et ne s'acclimatant pas aux autres milieux albumineux. sissements usuels (500 à 1.000 diam.).

= diplobacille de Morax.

Bact duplex (Morax) Lehm et

M. intracellularis meningitidis

gonorrheæ (Neissen).

TABLEAU LII (Suite)

duits pathologiques, à côté de formes longues, nettement cylindriques, des formes courtes auxquelles les colorants donnent souvent un aspect diplococcique par suite gues, est fréquente. Cultures difficiles à obtenir: ne se développant ni sur géloseascite (ou bouillon-ascite), ni dans le sérum liquide, cultivables sur gélose au sang. Encore faut-il — pour la première culture — qu'il y ait du liquide de condensation dans le tube et que ce liquide ait été ensemencé en même temps que la surface 1° Petits bâtonnets (1,5-2 μ/05-1μ), ne prenant pas le Gram, présentant dans les prode la coloration bipolaire du bactérium. La disposition en chaînettes, parfois lonsolide de la gélose-sang inclinée.

le liquide de condensation sanglant, sous forme de longues chaînettes; après repiquage, ils forment de petites colonies blanches sur la partie solide du milieu. L'isolement sur plaques de gélose au sang ne réussit que si l'on maintient dans En première culture les b. ne se multiplient d'une manière appréciable que dans l'étuve une atmosphère humide. L'inoculation cutanée produit chez l'homme et

chez le singe un chancre mou typique. Très petits bâtonnets (1-1,2 μ/0,4 μ), habituellement cocco-bacillaires, présentant bancs de poissons, souvent intracellulaires dans les produits pathologiques. Cultivables sur gélose sous forme de goultelettes de rosée à la limite de la visibilité parfois une coloration bipôlaire, ne prenant pas le Gram; groupés en amas, en

sence de tout caractère distinctif tiré de l'étude des cultures et des propriétés chidans les premières cultures, un peu plus volumineuses par la suite, mais ne devenant jamais confluentes. Non pathogènes pour les animaux de laboratoire. En l'ables espèces qui constituent ce groupe ne peuvent être différenciées que grâce à la miques, en l'absence d'effets pathogènes pour les animaux de laboratoire usuels, notion de leur provenance.

Trouvé chez l'homme atteint d'influenza, mais aussi dans d'autres affections (sur-Sont identiques: B. pseudo-influenzæ (Pfeiffer); la propriété de former des filaments tout respiratoires) .

dans les cultures donné comme caractère différentiel par Pfeiffer appartient aussi bien à B. influenzæ.

Bac. A et B de Grassberger, Coccobacille hémophile (Rosenthal). B. pertussis Eppendorf que Jochmann et Kraus considéraient comme l'agent de la coqueluche.

(Le coccobacille de la coqueluche (Vincenzi) est identique au précédent d'après Vincenzi.)

Bact. ulceris cancrosi (Ducner),

Bact. influenzæ (Pfriffer).

Bact. haemoglobinophilum meningilidis spinalis (Carini-Paran-B. meningitidis cerebro-spinalis (Cohen).

aux animaux de laboratoire restèrent sans résultat, sauf chez hos) est peut-être identique au précédent. Les inoculations

un pigeon inoculé par la voie intra-cérébrale.

aiguë contagieuse de l'homme

B. de Weeks = B ægyptiacum (Koch', agent d'une conjonctivite

b) Très près des b. hémophiles humains se placent les b. hémoglobinophiles renque par leur action palhogène particulière ou par leurs réactions biologiques. B. hémophile rencontré par Wolff dans le mucus bronchique d'un rat (pathogène contrès chez les animaux ; comme les précédents ils ne différent de B. influenzæ pour la souris, à fortes doses seulement.

B. hemoglobinophilus canis (Friedberger) que l'on trouve dans l'écoulement prépu-

tial; son rôle pathogène n'a pu être démontré.

B. septicæmiæ canis (Paranhos), peu pathogène pour le chien dans les conditions expérimentales.

milieux au sang, mais pouvant s'acclimater, après plusieurs repi-Bactéries ne se développant, en première culture, que sur les quages, aux milieux albumineux non sanglants (gélose-ascite)

que Bact. influenzæ, mais pouvant s'acclimater à la gélose-sérum. Détermine, par 1º Très petit bâtonnet ayant mêmes caractères morphologiques et culturaux noculation intrapéritonéale chez le cobaye jeune une péritonite peu caractéris-

Trouvé dans les voies respiratoires de l'homme.

apparentes, blanches et épaisses sur gélose-sang de pigeon et sur le milieu de Bordet, toujours plus abondantes que celles de Bact. influenzæ qui restent bleuâtres et influenzæ). Mais, au cours des repiquages, les colonies deviennent de plus en plus lées. La culture réussit, après acclimatement, sur gélose-ascite, alors que le b. de quement à Bact, influenzæ (Il est un peu plus court et un peu plus épais et ne forme pas de pseudo-filaments comme le bact, de Pfeiffer). Les premières cultures ne réussissent que sur des milieux au sang (de préférence sur le milieu de Bordet, voir Technique). La première culture n'est pas apparente, la deuxième difficile à voir sous forme de gouttes de rosée à la limite de la visibilité (comme Bact. diaphanes. Sur le milieu de Bordet, les colonies finissent même par se réunir en un revêtement confluent, alors que celles de Bact. influenzæ restent toujours iso-Très petit bâtonnet ovoïde, à coloration polaire ressemblant morphologi-Pfeiffer est toujours strictement hémoglobinophile. Les cultures, fraîchement retirées de l'organisme, inoculées au cobaye par voie péritonéale peuvent tuer l'ani-200

Bact. Elmassiani.

Bact pertussis = B. de la coque-

luche (Border-Gengou).

TABLEAU LII (Suite)

mal en 24 heures par infoxication. Donnant la réaction de fixation avec le serum des coquelucheux convalescents Note. - Par l'agglutination et par la recherche de la déviation du complétement, on arrive, d'après Odaira, à distinguer les espèces suivantes dans le groupe des bactéries strictement et facultativement hémoglobinophiles :

1° Bact influenzæ (Pfeister) et Bact, hæmoglobinophilus canis (Friedberger) qui présentent les mêmes réactions biologiques.

3º Bact. pertussis (Bordet). Ces deux derniers sont spécifiquement distincts du pre-20 Bact. meningitidis cerebro-spinalis septicamicum (Cohen'. mier et distincts entre eux.

dépourvus de sang, tout en se développant mieux en présence de C. - Bactéries se développant d'emblée sur les milieux albumineux

Bâtonnets de morphologie différente de celle des b. du groupe de Bact influenzæ: des formes longues (longueur = 0,3 - 2 \pm) raphelant l'aspect de Bact. muriseptib. très gréles (0,2 µ d'épaisseur), mais à côté de formes coccoïdes on voit toujours cum. Présentant une réaction limite à la coloration par le Gram Donnant une culture grele (petites colonies restant isolées) sur gélose-sérum et sur le sérum coa-Culture beaucoup plus abondante sur les milieux contenant de l'hémoglobine où elle devient confluente. Ne se développant ni sur gélaline, ni sur gélose, ni dans gulé; la culture est suffisante, cependant, pour liquéfier les milieux au sérum. le bouillon, ni sur pomme de terre; très bien, par contre, dans le lait qui est coa-Sont identiques au b. précédent : B. polyarthritidis (Poels), B. pyogenes bovis gulé et s'éclaireit par la suite. Peu pathogène pour les animaux de laboratoire

abondance dans le pus et dans les foyers récents de broncho pneumonie. Syn. = Le B. du « Mal de Lure » (Carré', agent d'infection secondaire dans l'agalaxie contagieuse de la brebis et de la chèvre, parait devoir être rapproché du précédent. Ce sont également de petits bâtonnets greles comme Bact, murisentienm de lon Bact. hyopyogenes (Grips), Lehm. et Neumann.

Bact. pyogenes suis (GRIPS.

broncho-pneumonies chroniques et des arthrites multiples. On trouve le b. en

(Künnemann, B. pyogenes capræ (Dammann et Freesc). Ge bactérium est l'agent

d'une infection (très répandue en Allemagne) qui sévit sur les jeunes animaux

porcs, bovidés, mouton, chèvre). Elle est caractérisée par de la diarrhée, des

serum, sérum liquide de mouton ou de chèvre, mais pas sur sérum coagulé. Le lait est coagulé en 24 heures avec réaction acide. Vitalité de deux mois. L'inoculation intrapéritonéale tue le cobaye en 5-8 jours; l'inoculation sous-cutanée provoque mais le développement se fait aussi, quoique plus grêle, sur gélose-sérum, bouillonon aux deux extremites. Le mineu de choix pour risonement est la genost-sang de l'ædème puis un abcès.

- Bactéries extrêmement petites, difficiles à voir même avec les plus torts grossissements (à la limite de la visibilité). Difficiles à colorer (em-

ployer le colorant de Giemsa).

- Points très petits ou minuscules bâtonnets en amas zoogléiques dans les cultures. Donnant sur gélose au sang de lapin défibriné une strie à peine visible, perceptible surtout par le noircissement du milieu; dans le bouillon-sérum de lapin des amas compacts qui tombent au fond du tube. Pathogène pour la poule par inoculation des cultures dans la membrane nictitante ou dans la muqueuse buccale après scarification; non pathogène par voie sous-cutanée

on voit des formes coccoïdes (isolées, par deux ou en courtes chaîncttes, puis des formes spirilloïdes, des formes astéroïdes, finalement des formes d'involution volu-- Bactérie très polymorphe. Dans le bouillon-sérum de bœuf qui devient opalescent, mineuses. Cultivable également sur gélose au sang de lapin. Agent de la péri-pneumonie du bœuf . . .

Microbe de la diphtérie des poules (Border et Palix).

Coccobacille de la péripneumonie (Nocard et Roux).

Azotobacter chroococcum (BEI-

TABLEAU LIII

Bactéries aérobies, ne se développant pas ou se développant mal dans les milieux usuels ne pouvant être isolées qu'à l'aide de milieux spéciaux. et dans les milieux glycérinés ou albumineux,

I. — Isolables (après enrichissement préalable dans des liquides mannités 1), sur plaque de gélose mannitée

- Eléments d'un volume remarquable (4 à 7 µ), arrondis ou en forme de batonnets courts et trapus.

Ce sont des bactéries qui ne donnent qu'une culture grêle sur gélatine et gélose ordinaires, cultivables dans le lait. Bactéries du sol. Les différents échantillons appartenant à ce groupe peuvent être rangées en trois catégories :

Elements arrondis et courts bâlonnets présentant une mobilité partielle et lente dans les milieux liquides. Cultures sur gélose glucosée ou mannitée devenant brunâtre ou gris-noirâtre.

ché à ce dernier. Cependant certaines races d'Az. Beijerincki, remarquables par Azotobacter Beijerincki (Lipman) est voisin du précédent; il peut être ratta-

la constance de leur groupement en sarcines, se distinguent de l'Az. chroococ-Eléments arrondis et courts bâtonnels; tous les éléments sont très mobiles. Colocum typique par leurs cultures jaune soufre.

Groupe des Azotobacter

nies sur gélose présentant une fluorescence verte Azotobacter Vinelandii (Lipman) peut être assimilé au précédent d'après Löh-

Azotobacter agile (Bellerinck).

Eléments toujours arrondis (jamais de formes allongées), toujours immobiles. Cultures muqueuses, transparentes, vitreuses sur tous les milieux B. — Eléments allongés en forme de bâtonnets grêles (1-2 $\mu/0,7 \mu$), quelques-uns mobiles, les autres immobiles, se développant très mal sur les mineux usuels à la viande, se développant dans le lait et sur la pomme de terre. Bac-II. — Isolables (après enrichissement préalable dans des solutions minérales totalement térie des nodosités des légumineuses .

dépourvues de matières organiques ?) :

Bact. radicicola (Beijeninck).

WESTERMANN).

Azotobacter vitreum (Löhnis

Bact. Schroederi (Schroeder BT

COTTON).

2
-
20
2
ಜ
-
3
2
100
2
0
23
3
2
8
3
2
100
S
3
3
3
≋ .
26
6
20
~
22
3
-
90
-
9
-
-
=
~
-
2
7
20
0
=
10
10
-
9
=
1
bladnes o
0
H.
U.
77
-
2
TO.
- Sur
=
=
1
1 .
1 .
-
-

Très petits bâtonnets courts et grêles (0,3 à 0,4 $\mu/1$ μ) groupes en amas plus ou moins denses, prenant mal les colorants ordinaires, d'où la nécessité d'employer la fuchsine pheniquée à chaud. Petites colonies grenues, à contour net n'apparaissant qu'après plusieurs semaines. Bactérie du sol (Jerments nutriques.)

Bact. nitrificans = Bact. nitro bacter (WINGGR.), LEHM. et NEUM. = Nitrobacter (Winogradsky).

- Sur plaques de plâtre préparées selon le procédé d'Omelianski

Transformant l'ammoniaque en nitrite 5 ferments nitreux).

Bactéries ovales (1 $\mu/1, 1-1, 8$ μ) souvent en courtes chaînettes. Eléments mobiles et ciliés à côté d'éléments immobiles réunis en amas, englobés dans des masses de carbonates de magnésie; faciles à teinter par les colorants ordinaires (non mordancés). Colonies sur plaques d'Omelianski petites, d'un jaune brun. Bactérie du sol . . .

trosomonas (Winoga,), Lehm. et NEUM. = Nitrosomonas Bact. nitrosoformans = (WINGGRADSKY).

- Isolable sur gelose glycerinee à 6 °/° additionnée de 5 °/° de bile.

Optimum 37-39°. Le cobaye est le seul animal de laboratoire sensible. Ses lésions apparaissent tardivement (6 semaines) : adénopathies, splénomégalie, orchite etc... Ha-B. de la dimension de B. tuberculosis, prenant le Gram. Se développant à la surface de l'eau de condensation en formant un voile. En piqure, le développement n'a lieu qu'à la surface. La pomme de terre est peu favorable. Le développement est lent. bitat : lait de vaches en apparence sames Le milieu habituellement employé est l'extrait de terre mannité dont on dose l'enrichissement en azote,

1. Le milieu habituellement employe est l'extrait de terre mannice uour ou uose ronnomissement en agorc.
2. Voir Technique pour la préparation de ce milieu.
3. On se servira, comme milieu d'enrichissement propre tout à la fois à la culture des ferments nitreux et à celle des ferments nitriques, de la 0,10 Phosphate dipotassique. Sulfate d'ammoniaque . Sulfate de magnésie. solution minérale suivante :

Après stérilisation on ajoute à cette solution un excès de carbonate de calclum.

Chlorure de sodium. Sulfate ferreux. .

5. Voir au chapitre Technique les réactions qui permettent de caractériser l'ammoniaque, les nitrates et les nitrites. 4. Voir Technique pour la préparation de milieu.

TABLEAU LIII (Suite)

IV. - Isolables sur des milieux contenant de la cellulose (ouate, papierfiltre). Ne se développant ni sur gélose, ni sur gélatine, ni sur pomme de terre. Eléments en forme de grains, ovales, immobiles, sans cils.

Dissolvant la cellulose.

mucus. Nattaquant ni le bois, ni le liège, ni les membranes des champignons. . . a) Cuttures jannâtres (sur papier-filtre ou ouate). Eléments englobés par une sorte de

'Agent d'une altération des feuilles de l'Elodea).

Cullures elaborant un pigment rouge sombre devenant noir au bout d'un certain temps. Eléments réunis en petites masses et pourvus d'un pigment sombre visible mème sous le microscope. Produisant sur la cellulose des zones concentriques, noires, qui la corrodent légèrement. Pigment virant au bleu par l'acide sulfurique, au vert

- Eléments d'un extrême polymorphisme. Colonies blanc-grisâtre, rondes V. - Bactéries ne se développant que sur les milieux à l'eau de mer. à contours nets, à stries concentriques. Sur gelose cultures épaisses, muqueuses. par l'iodo-chlorure de zinc.

B. - Bacterium de dimensions moyennes, de longueur variable, très polymorphe. Colonies blanc-grisatre puis rouge brunatre

M. cytophagus (Merker).

M melanocyclus (Menker).

Bact. polymorphum = Halibacterium polymorphum (Fischer).

Bact. rubrofuscum = Halibacterum rubrofuscum (Fischer).

ABLEAU

Bâtonnets strictement anaérobies, liquéfiant la gélatine, formant des spores, prenant le Gram.

Chromogenes.

Batonnets analogues comme dimensions à B. ædematis maligni, mobiles, à spore terminale, en baguette de tambour. Sur gélose, les colonies d'abord blanches rougissent vers le 5° jour. La gélatine est liquéfiée et rougit, le bouillon troublé rougit. Isolé de la terre.

sentant les mêmes propriétés chromogènes, liquéfiant le sérum, peptonisant la caséine, B. anaerobius chromogenes (Ghon et Mucha), isolé d'un abcès périnéphrétique, préparaît très voisin du précédent.

- Non chromogènes.

1° Les cultures sont pathogènes pour les animaux de laboratoire.

a) L'inoculation sous-cutanée tue le cobaye sans déterminer de lésions au

point d'inoculation (le lapin est moins sensible).

a) Bacilles greles (épaisseur: 0,3 à 0,5 μ). Spores rondes, trois fois plus épaisses que les batonnets, tonjours terminales tuées seulement après 20 minutes à 100°. Production de gaz dans la gélose sucrée profonde. Coagulant et peptonisant le lait. L'inoculation sous-cutance de 1/50 de centimètre cube de culture au cobaye détermine mort survient en 36 à 40 heures sans septicémie. Les cultures filtrées sont très dès la 12° ou la 20° heure des contractures débutant par la région inoculée. La

bacilles assez épais (0,9 à 1,2 \mu). Tués en 15 minutes à 85°. Spores ovales, un peu duction de gaz dans la gélatine et la gélose. Odeur butyrique des cultures. To optima 20 à 30°. Le pouvoir fermentatif disparaît rapidement à 38°. Le cobaye, le lapin sont tués par de petites quantités de culture filtrée. Les cultures non filtrées tuent ces animaux par infoxication, les bacilles étant rapidement détruits dans l'organisme. Les cultures filtrées sont très toxiques. Les phénomènes toxiques sont caractéristiques chez le chat : on constate du prolapsus de la langue, plus grosses que les bâtonnets, généralement terminales, parfois médianes. Prode la mydriase, du ptosis, de l'aphasie, etc. (Agent du botulisme) .

Bac. rubellus (Okada).

B. tetani (NICOLAIER).

B botulinus (Van Ermenghem),

11

В œdematis maligni (Косн)

TABLEAU LIV (Suite)

3) L'inoculation sous-cutanée produit une lésion locale importante et caractéristique (OEdème gélatineux contenant la bactérie inoculée).

a) Les animaux sensibles sont tués par de très faibles doses de culture (fractions de

centimètre cube).

I. - B. mobiles, ciliès, sporulant dans les milieux sucrès et dans l'organisme des animaux morts après inoculation.

Spores terminales, parfois médianes, grosses, déformantes (en massue ou en barillet). B. attaquant le glucose.

ouaté Production de gaz. Le cobaye et le lapin sont très sensibles aux inofiltrées sont toxiques. B. à caractères assez stables (Agent de gangrène gazeuse mal le Gram. Dans le lait, la caséine est d'abord précipitée en fins grumeaux, sans acidification du milieu, puis elle est peptonisée et le milieu s'éclaireit. Le lactose n'est pas attaqué. Le sérum coagulé et le blanc d'œuf cuit sont culations sous-cutanées (1/100 de cc.) (phlegmons gazeux, mort). Les cultures Batonnets très mobiles, formant de longs filaments dans l'organisme, prenant peptonisés. Colonies en gélatine ou gélose glucosée, d'aspect floconneux, chez l'homme) .

B. sporogenes var. B (Metchnikoff) est une variété non coagulante du

Bâtonnets mobiles, ayant peu de tendance à former de longs filaments dans l'ædème, et prenant bien le Gram.

Colonies lenticulaires ou rondes, de structure granuleuse. Production de de quelques gouttes de culture jeune (phlegmon gazeux). Le lapin injecté dans gaz. Attaque faible du lactose, attaque très inconstante du blanc d'œuf cuit. Coagulation, puis digestion de la caséine. Le cobaye est tué par l'inoculation

difficile et la recherche de la réaction agglutinante peut être nécessaire : Le sérum des animaux immunisés contre B. ædematis maligni agglutine ce Mutabilité marquée des cultures dans les milieux artificiels (Agent du char-

les mêmes conditions meurt rarement. Le rat et le chien sont réfractaires.

B. enteritidis sporogenes (Klein), représente une forme de transition entre le b. précédent et B. perfringens. Ses propriétés fermentatives se modifient bacille et n'agglutine pas B. Chauvæi,

B. Chauvæi (Arrong).

B. perfringens (ACHALME).

facilement selon le milieu de culture. Il tue le cobaye et la souris en 18 à is h. par septicémie avec phlegmon gazeux par inoculation sous-cutanée de

II. - B. immobile et non cilié, ne formant jamais de spores dans les milieux sucrés ni dans l'organisme animal.

épaisseur égale ou supérieure à 1 µ, habituellement encapsulés dans l'organisme animal et pouvant y former des filaments; ne formant de spores que dans les milieux non sucrés, spores ovales, situées près d'une extrémité, très petites, non déformantes. B. ne se développant bien qu'en milieux sucrés où ils le lait en 24 heures avec réaction acide. Ne peptonisant complètement la caséine Gros bâtonnets de dimensions analogues à celles de B. anthracis, ayant une forment des colonies sphériques ou lenticulaires à contour net. Disloquant la gélose glucosée en deux ou trois jours. Faisant fermenter le lactose. Coagulant coagulé. Attaquant lentement le blanc d'œuf avec production d'un pigment noir. Faisant fermenter l'urée et l'amidon. Le cobaye, inoculé par voie sousprécipitée que si l'on ajoute de la craie au lait ensemencé. Liquéfiant le sérum cutanée, présente un phlegmon gazeux au point de l'injection et meurt de sep-

de l'homme (Silberschmidt)]. B. aërogenes capsulatus (Welch), B. phlegmonis emphysematosæ (E. Fraenkel), B. du rhumatisme articulaire aigu (Achalme) B. saccharobutyricus immobilis (Grassberger et Schattenfroh) sont identiques

au précédent.

D'après Meyer et Bredemann, ce b. doit être considéré comme une forme atypique, « dénaturée » de B. Chauvæi.

I. - Bacilles mobiles, présentant d'ordinaire deux spores terminales ovales, non déformantes. Eléments souvent capsulés, prenant irrégulièrement le Gram. b) Les animaux sensibles ne sont tués que par de fortes doses de culture.

(B pseudo-ædematis est pathogène pour le lapin, le cobaye et la souris quand on injecte une notable quantité de culture. Abcès gazeux.)

Isolé du sol.

- Coaqulant le lait. Liquéfiant le sérum coaqulé. Bacilles ne présentant pas ces caractères.

Bâtonnets mobiles, de 3 à 7 µ/0,6 µ. La souris est sensible, le cobaye moins La caseine du lait, coagulée en 4 jours, se redissout après 5 à 6 semaines. sensible ; le lapin est réfractaire.

Trouvé dans une péritonite.

B. pseudo-ædematis (Liborius), SAN FELICE.

B. Nº 1 (GHON et MUCHA).

B. pectinovorus & Granulobacter

pectinovorum (Beijerinck).

B. pseudobutyricus = B. butyri.

cus (Botkin,

TABLEAU LIV (Suite)

La caséine coagulée ne se redissout pas. Bâtonnets mobiles, ciliés, un Non pathogène pour la souris et le cobaye ; pathogène parfois pour le peu plus grêles que B. perfringens, parfois incurvés ; spores médianes. - Coagulant le lait. Ne liquéfiant pas le sérum coagulé. Isolé d'un abcès gazeux du foie. B.

B. N. 1 (GHON et SACHS).

2° Les cultures ne sont pas pathogènes pour les animaux de labora-

a) Saccharifiant l'amidon.

a) Spores le plus souvent médianes, déformant le bâtonnet. Bâtonnets grêles mais inégaux (1 à 4 $\mu/0.5$ μ). Spores volumineuses (2 à 3 $\mu/1$ μ). Le lait est coagulé, la caséine digérée, il se produit des gaz et de l'acide butyrique.

Groupe de В. атулорасtег (А. Метек сі Вверьмам)

Très répandu : lait, poussière, etc. (Les B. Nº 1 à 4 de Flügge sont peut-être des races différant du B. précédent par certaines propriétés fermentatives.)

présence de peptone, mais faisant fermenter la pectine même quand il n'y a Spores terminales, ovoïdes. Le lait est coagulé et la caséine est digérée. Bâtonnet souvent très long, épais de 0,8 µ; ne faisant fermenter les sucres qu'en en présence qu'un sel ammoniacal. Agent du rouissage du lin .

3) Ne saccharifiant pas l'amidon.

a) Liquefiant le serum coagule et le blanc d'œuf cuit.

I. - Spores terminales.

d'acides et de gaz. Allaque des hydrales de carbone prédominant sur celle des proteiques dans les milieux mixtes. Perdant ses propriétés protéo-- Faisant fermenter activement, le glucose et le lactose avec production lytiques par culture prolongée dans les milieux sucrés (mutabilité mar-

Bâtonnets ressemblant morphologiquement à B. putrificus (Bienstock) 0,8 µ d'épaisseur, aspect en baguette de tambour. Provoquant en quelques heures la coagulation massive du luit; un sérum clair, acide surnage; pas de modification ultérieure de la caséine précipitée. Formant des gaz et des acides lactique, butyrique et acétique aux dépens du glu-(Hôte normal de Vintactin de Manue cose et du lactose

B paraputrificus (Bienstock).

= B. putrificus coli

B. putrificus BIENSTOCK).

- Sans action sur le qlucose et le lactose ou allaque insignifiante (légère acidification tout au plus.)

- Sporulant facilement dans tous les milieux d'où fréquence des formes = Bâtonnets ayant environ 0,8 µ d'épaisseur; extrémités arrondies.

en baguette de tambour.

Ne coagulant pas le lait.

d'acide butyrique aux dépens du glucose. Dissolvant le blanc d'œuf B. très mobile (5 à 6 μ/0,8 μ). Produisant peu ou pas de gaz dans la gélose glucosée. Les colonies en gélose glucosée sont formées par un noyau central épais autour duquel rayonnent des filaments semés de granulations foncées. Cultivable dans le lait auquel il donne une parent par digestion de la caséine sans coagulation. Le glucose est égèrement acidifié; le lactose n'est pas attaqué. Ne produisant pas conservant son pouvoir proteolytique malgre une culture prolongée dans les milieux sucres. Milieu d'isolement électif : albumine non coagulée (urine albumineuse) qui est intégralement peptonisée en couleur jaune-ocre et une odeurputride, puis le milieu devient transcuit avec odeur putride. Espèce à caractères chimiques assez stables, quelques jours .

Sont identiques: B. pseudotetanus (Tavel) et B. à spores termi-Très répandu : intestin, terre.)

nales (L. Roux)

les spores sont ovales (au lieu d'être rondes). Il diffère surtout de B. putrificus (Bienstock) par l'attaque du lactose, insuffisante d'ailleurs pour entrainer la coagulation du lait, et par son action beau-B. putrificus ovalaris (Debono), isolé de l'intestin de l'homme, est une race qui doit être étroitement rattachée à l'espèce précédente. coup plus rapide sur la gélatine (liquéfaction complète en trois jours).

terminales longtemps adhérentes, d'où aspect en baguette de tambour habituel). Faisant fermenter très faiblement le glucose - B. mobile, ressemblant morp ologiquement a B. putrificus spores Coagulant le lait.

et le lactose.

B. cadaveris sporogenes (Klein) doit être rangé auprès du prè-(Isolé des matières fécales, du fumier, de la terre.)

B. immobile, petit et mince, isolé ou en chaînettes de 4 à 8 éléments. Spores presque toujours libres dès le premier jour; celles

B. putrificus coagulans (Distaso).

B. putrificus filamentosus (Distaso)

TABLEAU LIV (Suite)

B. putrificus immobilis (Distaso). puis dissolvant la caséine. Liquéfiant la gélatine en quelques heures et attaquant rapidement le blanc d'œuf cuit (odeur puqui adhèrent sont terminales, ovalaires et petites Ne faisant fermenter aucun sucre (mais poussant cependant dans les milieux sucrés). Ne produisant pas de gaz en gélose profonde. Coagulant tride des cultures). Ne produisant pas d'indol. .

(Isolé de l'intestin de la roussette.)

Sporulant rarement dans la gélose profonde glucosée, mieux dans le

gélose glucosée profonde; peu ou pas de gaz. Dissolvant le blanc Spores terminales, très petites. Colonies en flocons d'ouate dans la d'œuf cuit. Peptonisant la caseine (coagulation inconstante). N'attaquant ni le lactose, ni le saccharose; attaquant très faiblement le glu-Bâtonnets très grêles, mobiles; formes filamenteuses fréquentes. cose. Légère odeur de scatol dans les milieux liquides .

non arrondies. B. mobiles, souvent groupés en chaînettes. Spores très Bâtonnets épais (ressemblant à B. Bifermentans sporogenes); extrémilés N'attaquant ni le lactose ni le saccharose; attaquant très faiblement le rares dans la gélose glucosée profonde; spores terminales, ovales, volumineuses. Colonies discoïdes en gélose glucosée; jamais de gaz. (Isolé des matières fécales de l'homme.)

glucose. Coagulant lentement, puis peptonisant le lait. Atlaquant le blanc d'œuf cuit et y formant une masse zoogléique surmontée d'un iquide clair. . .

A. - Ne formant jamais de spores dans la gélose profonde glucosée. Ce sont des b. mobiles, coagulant (en 2 à 4 jours) puis peptonisant le lait. - Spores centrales ou situées près d'une extrémité du bâtonnet.

- B. à extrémités coupées, rectilignes ou incurvés, souvent plus gros à une extrémité (en forme de spatule). Donnant dans la gélose glucosée profonde de petites colonies rondes, transparentes; gaz peu abondants; odeur de scatol. N'attaquant ni le lactose ni le saccharose; attaquant faiblement le glucose.

tité; pas d'odeur. Attaquant le lactose et le glucose, pas le saccharose. gros, trapus ou très irrégulièrement incurvés. Donnant dans la gélose glucosée profonde des colonies lenticulaires, opaques; gaz en grande quan-(Isolé des selles du chien.) Isolé des selles du chien.)

B. sporogenes zoogleicus (Distaso)

B. tenuis spatuliformis (Distaso).

multiformis (Distase). B

B. sporogenes regularis (Distaso).

B. - Formant des spores dans la géloseprofonde glucosée Ce sont des bacilles qui provoquent la coagulation puis la peptonisation de la caséine du lait.

- Bâtonnets non déformés par la sporulation.

sant pas fermenter le lactose. Attaquant énergiquement le glucose lait après 5 jours en fins grumeaux et la peptonisant ensuite. Ne faien produisant des gaz, de l'acide acétique et butyrique. Dans le bouil-- Abondante production de gaz dans la gélose glucosée. Gros bâtonnets (5 à 6 μ/0,9 à 1 μ), immobiles, ressemblant à B. perfringens, souvent en chaînettes, mais ne formant jamais de longs filaments. Donnant Ne liquéfiant la gélatine que très lentement. Coagulant la caséine du lon sucré, il se forme un dépôt très adhèrent aux parois du tube. rapidement des spores même dans les milieux sucrés (dès les 24 h.). Non pathogène pour les animaux de laboratoire .

Isolé de la viande de boucherie en putréfaction.)

B. radiatus (Lüderitz) et B. nº 4 (Choukevitz) sont voisins du pré-

cédent. Ils sont mobiles.

Ne produisant pas de gaz dans la gélose glucosée. Bâlonnets mobiles, assez longs, à extrémités arrondies. Spores très petites, subter-Attaque insignifiante du glucose, du lactose et du saccharose (odeur minales. Coagulant le lait après 8 jours puis le peptonisant lentement. de scatol et d'acide valérianique dans les milieux sucrés. Attaquant très faiblement le blanc d'œuf cuit

- Bâtonnets déformés par la sporulation.

d'œuf en 2 ou 3 jours. Faisant fermenter le glucose avec production B. monomorphe, non disposé en chaînettes, formant, dans tous les milieux des spores subterminales ou médianes, ovales, plus grosses que les bâtonnets (aspect de clostridium). Donnant dans la gélose glucosée des colonies qui atteignent 2 à 3 millimètres; le milieu, disrépand une odeur de putréfaction. Attaquant et dissolvant le blanc d'acides et de gaz; n'attaquant pas les autres sucres. La caséine, coaloqué, reste clair. Liquéfiant rapidement la gélatine qui se trouble et épais, ressemblant à B. anthracis, mais mobiles et à bouts arrondis. - Lait coagulé en 24 h. Gélose glucosée disloquée par des gaz. Bâtonnets gulée en 24 heures est redissoute par la suite . .

B. magnus liquefaciens (Lüderitz) qui n'est d'ailleurs qu'une race protéolytique de B. fætidus clostridiiformis semble devoir être rap-(Isolé de l'intestin de l'homme normal.) porté au bacille précédent

B. bifermentans sporogenes (Tissien).

B. sporogenes coagulans (Debono).

TABLEAU LIV (Suite)

B. sporogenes saccharolyticus Lait coagulé après quatre jours. Très peu de gaz en gélose glucosée. Bâtonnets mobiles, courts, à bouts arrondis, isolés ou en courtes chaînes. Spores médianes, très grosses, déformant le bâtonnet. Donnant dans la gélose glucosée des colonies de 1 à 2 millimètres, lentilentement le blanc d'œuf cuit. Faisant fermenter faiblement le gluculaires à contours nets. Liquéfiant rapidement la gélatine. Attaquant cose et d'une manière insignifiante le lactose et le saccharose. (Isolé des selles du chimpanzé.)

b) Ne liquestant pas le sérum coagulé et le blanc d'œuf cuit, [. - Spores centrales.

(DISTASO).

Spores volumineuses. Bâtonnets mobiles, assez épais (1 µ), déformés par la spore généralement médiane, parfois située près de l'extrémité Longueur variable; pouvant former des filaments. Ne présentant pas la réaction de la granulose. Dans la gélose sucrée, colonies brunâtres, irrégulières, à courts prolongements. Dans tous les milieux, dégagement de gaz d'odeur butyrique

B. fætidus clostridiiformis Clostridium fætidum (Libonius). filaments droits ou irrégulièrement incurvés. Formes renflées en poire dans les milieux glucosés. Présentant la réaction de la granulose au moment de la sporulation. Spores médianes. Dans la gélose sucrée, colonies blanc-grisâtre, opaques, rondes ou irrégulières. Produisant des gaz dans les milieux glucosés Bâtonnets mobiles, un peu plus grêles que B. perfringens, formant parfois des lactique. Produisant de l'indol. Le lait est coagulé; la caséine n'est pas peptonisée. ainsi que de l'alcool éthylique, de l'acétone, des acides acétique, butyrique et Isolé du foie d'un malade atteint de gangrène gazeuse.

B. Nº 1 (GHON et SACHS).

B. Kedrowskii,

vement (deux semaines). Sur pomme de terre, petits cônes gris, humides, de Spores habituellement terminales. Le lait est coagulé et se peptonise tardila dimension d'une tête d'épingle, B. mobile.

bifermentans s o r o g o r o q s (suite) Gr de Bacillus

TABLEAU LV

Bâtonnets strictement anaérobies, liquéfiant la gélatine, formant des spores, ne prenant pas le Gram.

Ce sont des bacilles mobiles, non pathogènes pour les animaux de laboratoire.

A. - Cultivables en milieux glucosés ou non glucoses. Agents de maturation des fromages Pouvant peptoniser le lait sans coagulation.

1º Cultures en gélose profonde rondes ou étoilées, produisant peu de gaz; sur le bouillon il se forme un voile consistant très épais et le milieu s'éclaireit. Le sérum coagulé est liquéfié avec production d'un pigment noir .

2. Cultures en gélose profonde d'aspect ouaté. Le bouillon est troublé en deux jours, et il se forme un dépôt abondant au fond du tube. B. - Cultivables seulement en milieux sucrés, avec abondant dégagement de gaz. Le lait est coagulé en 4 jours, puis peptonisé. Spores terminales . .

Trouvé dans le fromage.

Bac. anaérobie du groupe de l'acide capronique (Rodella). B anaérobie du groupe de l'acide baldrianique (Rodella).

B. anaerobius feetidus = Para-plectrum fætidum (Weigmann).

TABLEAU LVI

Bâtonnets strictement anaérobies, liquéfiant la gélatine, ne formant pas de spores.

- Prenant le Gram.

seur inégale. Sculs les éléments jeunes prennent le Gram. Se colorant en brun par l'iode, aux extrémités. Produisant un peu de gaz dans les milieux glucosés. Ne coagu-A. - Batonnets mobiles, polymorphes (formes coccoudes et formes filamenteuses), d'épaislant pas le lait qui est cependant acidifié (faiblement). Déterminant peu de réaction inflammafoire au point d'inoculation chez le cobaye. .

Trouvé dans un exsudat de méningite.

gélose glucosée, peptonisant le lait après l'avoir coagulé ou sans coagulation préalable. Cultures tuant le cobaye (celles de Bact. nº IV en moins de 24 h.) après inocu-- Bâtonnets immobiles, très épais, à extrémités arrondies. Bactérium disloquant la lation sous-cutanée de 3 cc. (météorisme, congestion intense des parois intestinales), Un petit groupe de bact, très voisins répondent à ces caractères B

Isolés des fèces au cours de diarrhées infantiles). Ne prenant pas le Gram.

- Bâtonnets mobiles assez gros, à extrémités arrondies, réguliers, souvent grou-pés par deux, se colorant bien par les teintures mordancées. Produisant peu de gaz. Pathogène pour le lapin, la souris et le cobaye. Ce dernier animal meurt vers le 7. ou 8. jour après avoir présenté un abcès fétide au point d'inoculation . Isolé d'un abcès appendiculaire.

Batonnets immobiles.

Petits bâtonnets de forme ovalaire 1,5 µ/0 5 µ) plus colorables aux extrémités. Les colonies en gélose glucosée peuvent devenir plus grosses qu'un pépin de raisin. Il n'y a pas de production de gaz. Coagulant le lait sans le peptoniser. Ne liquéfiant pas le sérum coagulé. Ne produisant pas de gaz dans les cultures. En inoculation on n'obtient qu'une inflammation locale. Trouvé dans un abcès du cerveau.

liquéfaction commençante. Peu vivace; meurt en 8 à 10 jours 3º Bàtonnets à bouts effilés, granuleux après quelques repiquages. Colonics analogues à cel-les de B. bifermentans. Se développant très abondamment dans le bouillonacétique à 1º/6 Bâtonnets épais et courts, à coloration souvent bipolaire, donnant sur gélose glucosée des colonies blanchâtres à peine visibles. Sur gélatine sucrée, le développement se fait mieux, les colonies paraissent formées de deux ou trois couches concentriques, émettent des prolongements courts donnant l'aspect « en oursin ». Vers le 5° ou le 6° jour les colonies s'entourent d'une atmosphère nuageuse de

Bact. No 1 (GHON, MUCHA et MULLER),

Bact. anacrobium n° IV, V et VI (RODELLA).

Bact. serpens (Vention).

Bact. Nº 2 (GHON, MUCHA, MULLER).

Bact. radiiforme (Rist).

Bact. granulosum, var. acidophi-

TABLEAU LVII

Microcoques strictement anaérobies ne liquéfiant pas la gélatine.

I. - Prenant le Gram.

A. — Production de gaz dans la gélose glucosée.
1º Microcoques un peu plus gros que M. pyogenes aureus, isolés ou en diplocoques, rarement en amas, se développant plus rapidement à 37º qu'à 22º en bouillon, gélose et gélatine sucrées en dégageant des gaz fétides. Virulence inconstante.

diffant. Cultures sans odeur. Faisant fermenter le glucose, le lactose, et le maltose. 2º Microcoques isolés ou en amas, se développant dans les milieux sucrés en les aci-Isolé de suppurations fétides.

Non pathogène. Isolé d'un pus d'appendicite.

B. – Pas de gaz dans la gélose glucosée.

raissent en 5 ou 6 jours en gélatine à 22°, en 2 ou 3 jours dans la gélose glucosée à 37°. Le bouillon est troublé en 36 heures. Pathogène pour le cobaye et le lapin. 1º Microcoques de très petites dimensions, habituellement en amas, n'attaquant ni les sucres ni le blanc d'œuf cuit; les colonies petites, rondes, transparentes, appa-Trouvé dans des cystites et dans les matières fécales de l'homme.

2° Gros microcoques.

- Eléments habituellement en diplocoques, mais pouvant être isolés, en amas ou en courtes chaînettes. M. troublant le bouillon qui s'éclaireit vers le 4° ou 5° jour par formation d'un dépôt visqueux. Ne faisant pas fermenter le glucose; n'attaquant pas la fibrine. Dédoublant l'urée Trouvé dans la viande de boucherie putréfiée.

forme un dépôt abondant En gélose glucosée, petites colonies rondes, irrégulières. Eléments groupés en chaînettes formées de grains deux ou trois fois plus gros que les streptocoques aérobies pyogènes, ne troublant pas le bouillon où il se

II. — Ne prenant pas le Gram.

. — Pétit diplocoque ressemblant au gonocoque, acidifiant le lait légèrement sans le coaguler. Pas de gaz aux dépens du glucose. Cultures sur gélose incliment sans le coaguler. née ressemblant à celles du streptocoque pyogène. Vitalité assez grande . Isolé d'un abcès urineux.

B. - Petit microcoque, se disposant en amas ou en diplocoques, ne modifiant pas le lait, faisant fermenter le glucose . Isolé d'un pus d'appendicite.

M. gazogenes alcalescens anaerobius (Lewkowicz) parait identique au précédent).

M. foetidus (Verteon

M. A (GRIGOROFF).

M. Jungani (Jungano).

M. sputigenus anaerobius (Stern-M. magnus anaerobius (Tissier).

M. reniformis (Correr).

M. parvulus (Veillon et Zuber).

TABLEAU LVIII

Bâtonnets strictement anaérobies, ne liquéfiant pas la gélatine, formant des spores, prenant le Gram.

I. - Ne se développant pas dans le lait.

B. ressemblant morphologiquement à B. amylobacter, déformés en clostridium par la sporulation: la membrane de la cellule sporogène reste entièrement adhérente à la azote. Assimilant l'azote libre. Faisant fermenter les hydr. de carbone (sauf l'amidon, le spore mure; germination polaire. B. ne se multipliant que dans les milieux pauvres en lactose, la mannite et la glycérine) en produisant de l'acide butyrique et des traces d'acide lactique.

B Pastorianus = Clostridium Pastorianum (Winogradsky).

(Isolé du sol.)
— Cultivables dans le lait.

A. - Peptonisant la caséine tout en ne liquéfiant pas la gélatine (Le lait s'éclaircit en 5 ou 6 jours et devient rose).

les dimensions d'un pois. Dans ce même milieu, ensemencé par piqure, la culture forme un trait continu avec courtes ramifications dans le canal à partir d'un niveau situé à Bâtonnets droits, plus rarement incurves, ayant tendance à former des filaments; les formes sporulées sont courtes. Spores centrales ou terminales, rondes ou ovales En gélose profonde, les colonies « en flocons d'ouate » peuvent atteindre en deux semaines 1 cent. 5 au-dessous de la surface. La gélose glucosée est disloquée par des gaz répandant une odeur pénétrante de scatol. Dans la gélatine, les colonies, toujours isolées le long du trait de piqure, présentent des prolongements radiés onduleux. Le bouillon est fortement troublé, puis il s'éclaireit avec formation d'un dépôt; odeur de scatol nette. Cette odeur est encore plus marquée dans le lait qui est peptonisé même en culture le lapin, le cobaye qui meurent une semaine env. après l'inoculation sous-cutanée de tion intestinale, néphrite aiguë. Hôte inconstant de l'intestin du nourrisson normal. aérée, grâce à la couche de crème qui se forme à la surface. Pathogène pour la souris, 2 centimètres cubes de culture en bouillon en présentant un ædème local apparaissant en 5-6 heures et envahissant près de la moitié du corps de l'animal; (à l'autopsie : conges-B. - Ne peptonisant pas la caseine,

1. Coagulant le lait.
a) Faisant fermenter l'amidon,

B. anaerobius nº 1 (Rodella.)

evolution) des granulations colorables par Piode. Spores volumineuses, ovales 1.8-2,3 μ/1,3-1,7 μ terminales ou médianes, se formant dans les milieux liquides ou solides. Les colonies sur gélose glucosée émettent des prolongements, leurs contours ne sont pas nels, et la gelose présente un aspect trouble autour de la colonie. Il se produit des gaz en abondance. Le lait est rapidement coagulé et acidifié. B. perfringens, souvent encapsulés, so déformant au moment de la sporulation (en clostridium ou en massue). B. présentant (du moins à certains moments de leur Bâtonnets très polymorphes, en général plus longs et moins épais (0,6-1 p.) que en aboudance des gaz et des acides parmi lesquels prédomine l'acide butyrique. B. mobiles et ciliés, mais perdant facilement leur mobilité dans les cultures, Les b. de ce groupe font fermenter les mono- et les disaccharides en produisant

B. amylobacter (van Tieghem Groupe de B. butyricus (Aur.) = emend. A. MEYER et BREDEMANN!

(Très répandu : sol, eaux, fromages, fèces, elc.)

Les uns [Vibrion butyrique (Pasteur), B. amylobacter (van Tieghem), Clostri-A cette espèce doivent être rattachés les b. décrits sous les noms suivants :

de lactate de chaux. D'autres échantillons ne font pas fermenter le lactate, telles les variétés décrites sous les noms de B. amylozine (Perdrix), B. mobile de l'acide butyrique (Grassberger et Schattenfroh), B. orthobutylicus (Grimbert). — Appartient également à ce groupe : Clostridium butyricum (Prazmowski', B saccharo-butyricus (v. Klecki), Clostridium è et e (Haselhoff et Bredemann), Clostridium des diam americanum (Pringsheim) produisent de l'acide bulyrique dans les solutions nodosites des légumineuses (Rodella).

a) Coagulant le lait avec réaction acide. B. mobiles. 3) Ne faisant pas fermenter l'amidon.

lières; gaz abondants. Attaquant les sucres plus faiblement que B. butyricus; aussi le lait n'est-il coagulé qu'au bout d'une dizaine de jours. N'attaquant pas le blanc d'œuf cuit. Produisant de l'indol dans les milieux peptonés. 24 heures ans la gélose. B. longs, de l'épaisseur de Bact. diphteriæ, très mobiles; formes filamenteuses très rares; spores terminales, ovoïdes, plus larges que les bâtonnets. Ne prenant plus le Gram au moment où commence la sporulation. Colonies en gélose glucosée profonde petites, rondes, régu-I. - Ne formant pas de spores dans les milieux liquides. Sporulant dès les Non pathogene. .

variable à bouts habituellement arrondis, parfois carrés; formes incurvées; II. - Formant des spores dans tous les milieux. B. assez grêles, de longueur (Isolé du contenu du gros intestin d'une roussette.)

filaments et chaînettes fréquents même dans les cultures jeunes. Spores sub-

B. sporogenes non liquefaciens (JUNGANO).

amylobacter Groupe de B. amylo

B. anaerobicus alcaligenes (Dr-

TABLEAU LVIII (Suite)

B. fissus (Debono). terminales, ovales, déformant légèrement les bâtonnets. Formes longues présentant parfois deux spores. Dans la gélose glucosée profonde, les colonies sont petites, opaques, blanchâtres; production de gaz. Le glucose fermente en donnant en forte quantité des acides et des gaz; le lactose et le saccharose fermentent en ne produisant que des acides. Le lait, coagulé après 3 jours, présente une acidité nette. Troublant uniformément le bouillon peptoné; ne donnant pas d'indol. Toutes les cultures répandent une odeur (Isolé des selles d'enfants.) d'acide butyrique.

b) Coagulant le lait avec réaction alcaline. B. immobile.

Bâtonnets grêles à spores rondes, généralement terminales (formes en baque ce dernier. B. de longueur variable, isolés ou en courtes chaînettes, sporulant dans tous les milieux. Colonies en gélose glucosée irrégulières, atteiguette de tambour) ressemblant à B, nº 3 (Ro lella), un peu plus épais cependant gnant 2 à 3 millimètres. Se développant dans la gélatine ordinaire ou sucrée à acides et gaz en faible quantité; le saccharose ne fermente pas. Dans le lait, bouillon peptoné est uniformément troublé; forte production d'indol. Odeur 37°, moins bien à 22°. Faisant fermenter le glucose et le lactose en produisant le sérum jaunâtre qui surnage le coagulum présente une réaction alcaline. Le valérianique des cultures. .

(Isolé des selles de l'homme normal.)

2º Ne coagulant pas le lait.

a) Produisant des gaz dans les milieux glucosès.

a) Cultures non palhogènes pour les animaux de laboratoire.

dans les vieilles cultures. Ne prenant plus le Gram dans les vieilles culterminales, peu nombreuses après 24 heures en gélose glucosée. Dans ce milieu, la culture, abondante, apparaît dès la douzième heure, formée de Bacilles grêles (0,5 μ) à spores terminales (aspect « en baguette de tambour »). B. mobile, de longueur variable, 4 à 5 µ en moyenne, filaments de 15 à 25 µ tures et dans les milieux devenus acides, Spores assez grandes, rondes, colonies blanches, plates; la gélose est fragmentée par des gaz. Le bouillon glucosé est fortement troublé; il y a production de gaz puis formation d'un dépôt grisâtre. Le lait tournesolé est décoloré en 10 à 20 heures; il

se produit des gaz et des acides et le milieu se désagrège lentement B. disn'est pas coagulé ou seulement après 1 ou 2 mois. Sur pomme de terre, il solvant l'amidon. Ne donnant pas d'indol

В. gazogenes parvus (Сноики-

VITCH).

(Isolé de l'intestin du cheval.)

neuses (1,5 µ de diam.) restant longtemps fixées à l'extrémité du bâtonnet. Dans la gélose profonde glucosée, les colonies sont petites; la production de gaz est faible. Le lait n'est pas modifié macroscopiquement. Dans la dans la gélose profonde ensemencée par piqure. Le bouillon est un peu troublé puis il s'éclaireit après deux jours; dépôt blanc; il dégage une trouve de longs filaments flexueux et des formes courtes. Spores volumigélatine, il se produit le long du trait de piqure un chapelet serré de colonies floconneuses « en touffe d'ouate ». Aspect de sapin renversé, tronqué, B. immobile, très mince, ayant en moyenne 4 à 7 µ de longueur, mais on faible odeur de fromage. Pas d'indol.

(Hôte inconstant de l'intestin du nourrisson normal.)

ment en chaînettes. La gélose glucosée est disloquée dès le 1°r ou le 2° jour par des gaz abondants. Dans la gélatine et dans la gélose, ensemencées par rulation; puis, bâtonnets et filaments de longueur variable (sur les milieux solides), plus rarement formes d'involution en poire (dans le bouillon surtout). B. habituellement isolés, parfois parallèlement juxtaposés, rarepiqure, les colonies rondes, blanches, bientôt nuageuses sont toujours espa-- B. polymorphe: bâtonnets courts, à extrémités arrondies, pendant la spocées les unes des autres. Le bouillon est faiblement troublé; dépôt fari-Bacilles grêles à spores médianes. Immobiles.

atteindre 30 et 40 µ. Spores très petites, rondes, centrales (exceptionnellement terminales); une ou deux spores dans les formes filamenteuses. Bapas le blanc d'œuf cuit. Formant sur pomme de terre (plongeant dans une cille difficile à isoler en première culture à l'aide des milieux anaérobies solution minérale) un revêtement plissé; il se forme des acides et des gaz B. d'épaisseur variable (0,5 à 0,8 µ en moyenne); longs filaments pouvant usuels; facile à isoler sur pomme de terre baignant dans une solution minérale. Donnant dans la gélose glucosée profonde, après 24 heures, des colonies petites, blanches, floconneuses, produisant un peu de gaz. Faisant fermenter le glucose et le lactose (gaz et acides) et faiblement le saccharose (acides seulement). Acidifiant le lait sans le coaguler. N'attaquant en petite quantité; la pomme de terre ne se brise pas. (Hôte inconstant de l'intestin du nourrisson normal.)

B. anaerobius nº 3 (Rodella).

B. anaerobius n. 2 (Rodella).

B. regularis filiformis (Debono).

B. carnis (KLEIN).

TABLEAU LVIII (Suite)

B. lactopropylbutyricus (Tissien). de gaz dans la gélose glucosée où ses colonies, lenticulaires, peuvent atteindre 2 à 3 millimètres de diamètre. Attaquant le glucose et le saccharose en pro-- Bacille plus volumineux que B. perfringens, très mobile, déformé lors de la sporulation par des spores ovalaires, médianes ou subterminales. B. ne donnant jamais la réaction de la granulose. Produisant une grande quantitle duisant des acides butyrique, propionique et lactique. N'attaquant ni le lactose, ni l'amidon, ni le lactate de chaux. . . . (Isolé du lait.)

b) Les cultures fraichement retirées de l'habitat naturel tuent la souris et le cobaye en 10 heures par inoculation sous-cutanée.

bâtonnets (2 $\mu/0.8 \mu$). Se développant très lentement à $20^{\circ}-22^{\circ}$, très bien à 37° dans tous les milieux. Ne liquéfiant pas le sérum coagulé. Cultures sans odeur. B. mobile, d'épaisseur moyenne $(0,6 \mu)$, de longueur variable $(1,5 \mu$ à $2,5 \mu)$, à extrémités arrondies, donnant des spores terminales plus grandes que les (Isolé de la viande de bœuf en putréfaction.)

3) Ne produisant pas de gaz dans les milieux glucoses.

Spores terminales,
 Bâtonnets minces (épaisseur 0,5 μ). Mobiles.

lution effilées ou en massue et filaments parfois spirales au bout de quel-- B. polymorphe (aspect fréquemment pseudo-diplococcique, formes d'invoques jours). Formant à 37°, en petite quantité, des spores terminales ou médianes, déformantes. Troublant uniformément le bouillon glucosé;

dépôt visqueux; pas d'indol. Acidifiant las milieux glucosés Bâtonnets de 5 à 7 $\mu/0,5$ μ formant après 2 à 3 jours des spores rondes et terminales ressemblant à celles de B. tetani ou à B. III (Rodella). Se développant mal dans le bouillon glucosé (faible dépôt granuleux) ; pas d'indol. Ne faisant pas fermenter le glucose.

semblent constituées par des paquets de filaments enchevêtrés. Faible Bâtonnets épais (épaissour 1 µ à 1 µ 5. Immobiles. — Colonies floconneuses en gélose glucosée, ressemblant à des houppes nombreuses, se forment seulement dans la gélatine. Elles sont arrondies et terminales. Les bâtonnets se disposent souvent en chaînettes. Non développement dans le bouillon ordinaire ou glucosé. Les spores, peu d'ouale, grisâtres, translucides. Ces colonies à un faible grossissement

B. irregularis (Choukevirch).

B. Nº 5 (CHOUKEVITCH).

:	B. anaerobius magnus = san. mag (Choukevitch).
ne	
=	
ņ	
X	
en	
les milieux où il	
les	
s) dans l	
jours)	
68	
elqu	
1 b)	
irte	
201	
ė.	
italit	
2	50
pathogène.	sporule pa

uniformément troublé. Spores volumineuses, rondes, terminales, apparaissant vers le 3º jour, occupant souvent la plus grande partie de la cellule bactérienne. Pathogène pour le cobaye en injection intrapérito-Fines colonies lenticulaires à bords nets dans la gélose. Le bouillon est néale. Non pathogène pour le lapin en injection sous-cutanée.

Spores medianes.

- Bâlonnets immobiles, d'épaisseur moyenne (0,8) à extrémités carrées, disposés deux par deux ou en chaînettes. Spores allongées, non déformantes, bientôt mises en liberté. .

Les cinq derniers bacilles ont été isolés de l'intestin du cheval.

fermenter très faiblement le glucose en provoquant une odeur fétide. Ne (Tissier), parfois filiformes ou chaînettes de dix éléments et plus. Capsule très nette. Spores rondes, bien plus grandes que les batonnets. Faisant Batonnets mobiles greles, longs et rectilignes, ressemblant à Bact. minutum modifiant pas le lait. Ne produisant pas d'indol. . . (Isolé des matières fécales de l'homme.)

anaerobius magnus = streptob.

B megalosporus (Choukevirch).

B. anaerobius rectus = Streptob. an. rectus (CHOUKBVITCH).

B anaerobius tenuis (Distaso).

TABLEAU LIX

Bâtonnets strictement anaérobies, ne liquéfiant pas la gélatine, ne formant pas de spores, prenant le Gram.

A. - Coagulant le lait, sans digestion de la caseine.

semblant à des flocons d'ouate, mais très transparentes, à peine visibles dans la gélose profonde. Bact. attaquant les mono- et les disaccharides. N'attaquant pas le blanc 1º Bact. immobile, mince, long, souvent infléchi, parfois renflé au centre. Colonies resd'œuf cuit ; donnant des traces d'indol

Bact. inflatum (Distaso).

(Isolé de l'intestin de la roussette.)

nant le Gram irrégulièrement (par points seulement). Donnant en gélose glucosée profonde des colonies ressemblant à des grains de sable fin, à bords nets, et pouvant présenter en confluant un aspect mûriforme; ne produisant pas de gaz. Faisant fermenter très faiblement le glucose et le lactose. Coagulant le lait après quelques jours. N'attaquant pas le blanc d'œuf cuit, Produisant de l'indol dans les milieux peptonés. Bact. mobile, polymorphe (tantôt court et régulier, tantôt filaments flexueux); pre-(Isolé de l'intestin de l'homme).

Bact. variegatum (Distaso).

- Ne coagulant pas le lait.

1º Produisant des gaz en gelose glucosée.

Ce sont des bact, immobiles, ne se développant que dans les milieux sucrés, non

Donnant une grande quantité de gaz en gélose glucosée. Dans le lait, odeur fétide. Ne dissolvant ni la caséine, ni le sérum coagulé. (Isolé au cours d'une infection de l'homme due à du jambon avarié.) α) Rendant la gélatine sirupeuse au bout de plusieurs semaines. Optimum 20°. Odeur fetide des cultures. Bâtonnets minces (0,4 μ), de longueur variable 3 à 14 μ), souvent disposés en longues chaînettes, parfois en filaments non segmentés, incurvés.

3) Ne modifiant pas la gélatine. Optimum 37°. Culture très grêle à 22°. Donnant très peu de gaz en gélose glucosée. Attaquant le glucose, le saccharose et le lactose. Acidifiant le lait, mais pas assez pour précipiter la caséine. Bâtonnets rectilignes à extrémités arrondies ressemblant à Bact. diphteriæ, pouvant former de longues chainettes flexueuses.

2. Pas de gaz en gélose glucosée.

(Isolé des selles de l'homme normal,)

Bact. oviforme = Coccob. ovifornile blanc d'œuf cuit, ni la caséine, ni la fibrine. Non pathogène. Vitalité courte, 5 à 6 jours. veloppant bien \$20° et \$37°. Attaquant faiblement le glucose. N'attaquant ni le saccharose Bâtonnets immobiles, courts ou ovoïdes, souvent deux par deux ou en chaînettes. Se de-

Bact. foedans (KLEIN).

Bact. tortuosum (Debono).

præacutus (Tissien).

TABLEAU LX

Bâtonnets strictement anaérobies, ne liquéfiant pas la gélatine, ne formant pas de spores, ne prenant pas le Gram.

Peptonisant la caséine tout en ne liquéfiant pas la gélatine.

Васт. п° З (Gном, Мисна et Müllen). à des spirilles. Donnant sur gélose profonde des colonies ovalaires entourées d'une zone nébuleuse. Coagulant le lait et peptonisant la caséine. Ne liquéfiant pas le sérum Bacterium mobile, polymorphe, pouvant même présenter des formes ressemblant

(Isolé d'une méningite fibrineuse purulente.)

Ne peptonisant pas la caséine et ne coagulant pas le lait.

Bact. mobiles, ne faisant fermenter que le glucose (ni le lactose, ni le saccharose), ne produisant pas d'indol. Vitalité courte (7 à 10 jours). Donnant en gélose pro-1º Produisant des gaz dans la gelose glucosée.

a) Bacterium très peu polymorphe: Court bâtonnet en navette à extrémités pointues, parfois en chainettes de 8 à 10 éléments; ne présentant de formes renflées que dans les vieilles cultures. Se développant mal dans la gélatine bien qu'aisément fonde glucosée des colonies lenticulaires ou en grain de sable.

Bact. præacutum cultivable à 22°. Gaz abondants, inodores, dans les milieux glucosés.

(Isolé de selles d'enfants à alimentation mixte.)

Bact. bullosum (Distaso). milieu ou à l'extrémité) ainsi que des formes sphériques ou oblongues uniformé-ment colorées et parfois, des formes bifurquées. B. acidifiant le lait, mais pas Bacterium polymorphe: très petit bâtonnet rectangulaire à coloration bipolaire, mais on voit aussi des formes longues et minces à renflement volumineux (au assez pour le coaguler. (Isolé de l'intestin de l'homme adulte.)

2º Ne produisant pas de gaz dans la gélose glucosée.

Petit bâtonnet $(3-4 \mu/0,5 \mu)$ droit, à extrémités arrondies, difficilement colorable, même à chaud, par les couleurs d'aniline qui ne teignent guère que ses extrémités. Se développant très bien dans la gélatine où il donne au bout de 18 jours à 22° des (Isolé des voies urinaires.)

Bact. Albarrani (Jungano).

utidum (Tissien).

ides (Roccur).

TABLEAU LX (Suite)

Bact, gracile putidum (Tiss	Bact. cylindroïdes (Rоссии)	Bact. capillosum (Trssien).
a) Dissolvant la fibrine en dégageant des gaz abondants (tout en n'attaquant ni la caséine ni la gélatine). Odeur putride des cultures. N'attaquant pas les sucres. Bâtonnet petit, plus grêle que B. putrificus, se disposant en chaînettes Bact. gracile putidum (Tisse de la viande de boucherie en putréfaction.)	b. Ne dissolvant pas la fibrine. Attaquant un peu le glucose. Faible vitalité (2 sem.). — Gros bâtonnets assez longs, de largeur inégale, formant des filaments granuleux et inégalement colorables. Ne se développant qu'à 18°-20°. Attaquant un peu le saccharose	— Gros bact. polymorphes se développant bien à 37°, formant souvent des filaments enchevêtrés pouvant présenter des formes spiralées irrégulières. N'atments enchevêtrés pouvant présenter des formes spiralées irrégulières. N'atments enchevêtres pouvant présenter des formes spiralées irrégulières. Bact. capillosum (Trssien). (Isolé des matières fécales de l'enfant.)

TABLEAU LX

Microcoques strictement anaérobies, ne se développant pas à la température de 20º à 22º. Cultivables à 37° en gélose et en gélatine.

I. - Microcoques cultivables dans la gélatine à 37º qu'ils rendent insolidifiable par refroidissement.

Petit microcoque disposé en chaînettes, coagulant le lait en 4 jours, se développant lentement dans la gélose glucosée (4 jours). Ne se développant qu'à 37°.

(Isolé d'un abcès du cou.)

II.—Nerendant pas la gélatine insolidifiable après y avoir été cultivés à 37°

A. - Prenant le Gram.

1. Très petits microcoques de forme et de disposition irrégulière, parfois allongés, lancéolés. Colonies punctiformes dans la gélose glucosée. Ne coagulant pas le lait. (Isolé de la bouche de nourrissons). Faible vitalité (2 à 3 semaines)

2° Gros microcoques. Ne coagulant pas le lait.

Choukevitch a isolé de l'intestin du cheval deux microcoques très voisins présena) Faisant fermenter le glucose avec production de gaz. Faible vitalité (8 à 15 jours).

L'un atteignant 5 \mu, disposé souvent en tétrades et rarement en paquets de 8.

- L'autre de 2 µ de diamètre, en diplocoque ou en courtes chaînes .

Microcoque deux fois plus volumineux que M. (staph.) Jungani, disposé en gros amas, en diplocoques ou en chaînettes de 4 à 8 éléments, ayant, à part les conditions thermiques nécessaires à sa culture, des propriétés biologiques analogues à celles de M. Jungani. N'attaquant pas le blanc d'œuf; formant dans ce milieu des zooglées de consistance visqueuse. Colonies en gélose glucosée en grain de sable, transparentes au microscope. Produisant de l'indol dans les milieux peptonés. 3) Ne faisant fermenter aucun sucre. (Isole de l'intestin de l'homme).

B. – Ne prenant pas le Gram.

Ne coagulant pas le lait, faisant fermenter le glucose, mais non le saccharose. Pas de gaz dans la gélose profonde. Pas d'indol. Non pathogène 1º Gros microcoques, gonococciformes, peu vivaces (6 à 8 jours).

Isole des selles du nourrisson.)

Ne coagulant pas le lait, faisant fermenter le glucose, le maltose et le lactose. Production de gaz dans la gélose glucosée. Faiblement pathogène. 2º Petits microcoques, isolés, ou par deux, ou en amas. Difficiles à colorer. (Isolé d'un abcès péri-utérin.)

M. (Str.) Schwarzenbecki (Graff et WITTNEBEN).

M. anaerobius micros (Lewro-

M. tetragenus anaerobius = Tetracoccus anaerobius (Choukevitch). M gazogenes (Choukevitch).

M. (staph.) asaccharolyticus (Dis-

M. orbiculus (Tissier).

M. (staph.) minimus (GIOBLEI);

TABLEAU LXII

Spirilles strictement anaérobies, non cultivables en gélatine à 10 °/0 ordinaire ou glucosée à 20-22°, cultivables en gélose ordinaire ou glucosée à 37°. Ne prenant pas le Gram.

I. - Cultures noires en gélose et en gélatine.

Spirillum nigrum (Rist). Eléments petits et minces, présentant en un point un grain noir au niveau duquel le d'un noir opaque. La gélatine (à 23°) n'est pas liquéfiée. Odeur fétide des cultures. Pathomicrobe paraît épaissi. En gélatine et en gélose, les colonies grises, deviennent bientôt gène pour le cobaye

II. — Cultures rougeâtres ou rosées en gelose.

Eléments assez épais (plus de 1 µ) à extrémités rondes ou pointues, de 10 à 15 µ de longueur moyenne, ne présentant pas de cils colorables par la méthode de Læffler. Difficile à colorer. Le liquide de Ziehl le colore bien à chaud. Le Giemsa colore en son l'axe; au repos il est en virgule ou en S, mais quand il se déplace, il présente des spimilieu un point ovoïde en bleu intense. Mouvements de translation par rotation sur res régulières, parallèles, très nombreuses. Colonies en gélose glucosée d'aspect variable, sans production de gaz. Faible odeur de putréfaction des cultures. En injection souscutanée, il donne une petite eschare ou un abcès au cobaye qui guérit.

III. — Cultures jaune-safran en gélose.

Eléments de longueur assez uniforme (10 µ en moyenne sur 0,7 à 1 µ d'épaisseur).

Cils assez nombreux, péritriches. Deux à quatre tours de spires peu serrées et peu Colonies discoïdes à bords nets en gélose, sans production de gaz; développement presque nul en bouillon sucré. Odeur légèrement fétide des cultures. Non pathogène. profondes, simplement ébauchées. Se teignant faiblement par les colorants ordinaires. - Cultures non chromogènes. Ne produisant pas de gaz en gélose glucosée.

A. — Eléments assez courts en forme de virgule ou en S, rarement en spirales. Cultures nuageuses dans la gélose glucosée à 37%. (2 à 3 µ en moyenne). Très mobiles; on voit des éléments immobiles qui brusquement se détendent comme un ressort et se déplacent avec une grande rapidité. Cils 1º Spirilles de dimensions moyennes, en fuseaux et incurvés, assez courts longs. Vitalité courte (4 à 5 jours). Peu pathogène : donnant des abcès gangréneux au cobaye qui succombe quelquefois.

Sp. D (REPACI) '.

p. C (REPACI).

Sp. crassum (Veillon et Repact).

Sp. tenue = Vibrio tenuis (Ven-2º Spirilles très petits et extrêmement fins, en virgule ou en S. Présentant les mêmes caractères de mobilité que le précédent. Un seul cil, long, très fin. Odeur fétide des cultures. Vitalité courte (10 jours environ). Très peu pathogène .

- Eléments assez longs, spiralés.

1º Pathogène pour le cobaye; l'inoculation produit une nécrose très superficielle avec nettement hélicoïdales assez profondes. Colonies petites, blanchâtres, à bords nets en gelose glucosée; nuageuses en gélose-sérum de cheval, mais se développant éga-Odeur putride des cultures. Vitalité 5 à 6 jours à 37°; un peu plus longue à 20°. abcès. Eléments formant 4 à 8 tours de spire, ou des virgules, ou des S. spirales lement bien sur ces deux milieux; ne se développant presque pas en bouillon sucré. So

Non pathogène. 2 à 20 tours de spires, profondes de 1 µ, longues de 1 à 2 µ. Spirale complète. Eléments très longs dans les vieilles cultures. Mobilité en ressort spiralé; passant de l'état de repos à l'état de mouvement par saccades; mouvecroissance lente en gelose glucosée, se developpant un peu plus tôt (4 à 5 jours) dans les repiquages. Après quelques repiquages, les colonies deviennent discoïdes, ments latéraux et de translation par rotation sur l'axe. Colonies translucides à luisantes, à centre de teinte saumonée. Faible développement dans les milieux liquides. Faisant fermenter faiblement le lactose, mais ne faisant fermenter ni le glucose, ni le saccharose, ni la dextrine. Ne coagulant pas le lait, mais l'acidifiant lentement. N'attaquant pas le blanc d'œuf cuit. Vitalité à 37° environ 20 jours. Odeur légèrement acétique des cultures

1. En raison de leur multiplication par division transversale, nous considérons ces microbes spiralés comme appartenant au genre spirillum et Sp. A (REPACI) 1. non au genre spirochaeta.

Sp. B (REPACI) 1.

LON et REPACI).

Bact. nivosum (Jungano).

Bact. anaerobium VIII (RODELLA).

TABLEAU LXIII

Bâtonnets strictement anaérobies ne se développant pas dans la gélatine (ordinaire ou glucosée) à 20°-22°, mais se développant à partir de 20°-22° dans la gélose glucosée. Immobiles 1

I. - Prenant le Gram. Ne formant pas de spores.

1. - Non cultivable dans les milieux liquides.

En 24 heures, colonies blanches finement arborescentes, ressemblant à des flocons de sulé, se développant en gélose glucosée profonde, lentement à 22°, rapidement à 37°. Très gros batonnet (comme B. perfringens à extrémités un peu arrondies, encapneige. Pas de gaz. Pathogène pour le cobaye et le rat blanc .

(Trouvé dans des cas de cystite.)

B. — Cultivables dans les milieux liquides.

1° Ne coagulant pas le lait.

Bâtonnets très fins, de longueur très variable, souvent filamenteux, se colorant par le Gram, mais inégalement, d'où leur apparence de streptocoques; donnant en gélose profonde des colonies punctiformes sans dégagement de gaz; par piqure, un filament continu dans le canal; se développant dans le bouillon qui reste clair; ne liquéfiant pas le sérum. Non pathogène.

(Isolé des selles au cours de diarrhées infantiles).

B. anaerobium VII, très voisin du précédent, donne des cultures très grêles sur tous les milieux, même dans le bouillon.

2º Coagulant le lait sans attaquer la caseine.

par deux (placés parallèlement) parfois en chaînettes, se développant en gélose sucrée profonde après 15 jours à 22°, en 2-3 jours à 37°; ne se développant pas dans la gélatine, quelle que soit la température ; troublant uniformément le bouillon. Paa) Tres petits batonnets minces, un peu plus épais que B. murisepticum, isolés ou thogène pour le cobaye et le lapin . . (Isolé de suppurations fétides).

Bact. ramosum (Veillon et Zuber).

B. A. (Grigoroff) doit être identifié au précédent, ainsi que B. poeciloïdes (Roger

et Garnier)

3) Bâtonnets à extrémités effilées, assez minces (beaucoup moins grêles cependant que Bact. ramosum), de longueur variable (4 u en moyenne), habituellement groupès en diplobacterium dans les cultures jeunes, très polymorphes dans les cultures plus vieilles où l'on trouve des formes longues, des formes en massue, des formes

B. pseudo coli anaerobius Jun-

GANO).

rapidement compactes, cohérentes; pas de gaz]. Ne se développant ni à 20° ni à 37° dans la gélose ordinaire profonde, ni dans la gélatine profonde glucosée, à 20°-22°. Troublant le bouillon glucosé qui ne s'éclaircit pas; se développant dans le bouillon glucosé acétique à 1 % (à l'abri de l'air). Faisant fermenter très activement le glucose, le lactose et le saccharose en produisant de l'acide lactique inactif bout de 3 jours, colonies lenticulaires de 2 mm. avec un prolongement sur l'une des faces ou même sur les deux (aspect de graine d'ombellifère), colonies devenant et de l'acide acétique. N'attaquant ni les albumines naturelles ni le blanc d'œuf pant dans la gélose sucrée profonde : très lentement à 20°-22°; très bien à 37° [au géniculées et des formes bifurquées (à l'une ou aux deux extrémités). Se dévelopcuit, mais transformant les protéoses en donnant de l'ammoniaque, sans produire ni H2S ni indol. Non pathogène pour les animaux de laboratoire.

Bact. bifidum = B. bifidus communis (lissier).

> (Hôte normal de l'intestin du nourrisson au sein.) Ne prenant pas le Gram.

- Formant des spores.

situées près d'une extrémité. Colonies petites, presque transparentes dès la 15º heure bacillaires dans les milieux liquides, encapsulés dans le péritoine du cobaye; spores dans le milieu de Veillon (sans gaz) ; trouble uniforme du bouillon. Ne coagulant pas le lait. Bacille vivace, très pathogène pour le cobaye qui meurt en 24 heures de Bacilles peu polymorphes: coccobacilles dans les milieux solides, formes nettement

(Isolé des selles au cours de diarrhées infantiles).

Ne formant pas de spores.

Bâtonnets fins dans l'organisme, irrégulièrement renflés (très polymorphes) dans milicu (6 grec) parfois aux extrémités seulement. Donnant en gélose sucrée profonde dès 36 à 48 heures des colonies petites, punctiformes, jaune clair. Pas de gaz. les cultures, prenant mal et inégalement les couleurs d'aniline, ne se teintant qu'au Vitalité ne dépassant pas un mois. Pathogène pour le cobaye Trouvé dans des foyers et crachats de gangrène pulmonaire, dans le vagin, etc.

1. A ce groupe appartient un B. anaérobie qui ne se développe pas dans la gélatine, B. cadaveris (Sternberg', qui a été incomplètement êtudie. Il est immobile et ne forme pas de spores.

et Bact. funduliforme (Ventron

Zuber) = B. tethoïdes (Halle).

B. angulosus (Distaso).

TABLEAU LXIV

à 37° dans la gélatine ou dans la gélose (ordinaires ou glucosées). Prenant le Gram Bâtonnets strictement anaérobies, ne se développant pas à 20-22°; se développant

1. - Formant des spores.

- Bacille immobile, entouré d'une capsule très nette.

en V; ressemblant à Bact. nivosum (Jungano). Formant des spores rondes, très petites, presque terminales. Cultivable à 37º dans la gélatine sucrée (pas en gélatine ordinaire), et dans la gélose glucosée où les colonies deviennent volumineuses, opaques, blanc-jaunâtre Faisant fermenter le glucose, le lactose et le saccharose avec Bâtonnets rectilignes, trapus, à extrémités arrondies, souvent groupés par deux gaz et odeur d'acide butyrique. Coagulant le lait après 14 jours. N'attaquant pas les albumines naturelles. Dans le bouillon peptoné, odeur de scatol et réaction de l'indol

(Isolé du contenu de l'intestin de l'homme).

B. - Bacilles mobiles.

1º Bâtonnets de la dimension de B. perfringens, à bouts arrondis, isolés ou parfois en courtes chaînettes de deux ou trois éléments. Présentant des spores petites, terminales, très résistantes à la chaleur. Ne se développant bien qu'à 37°. Rendant la gélatine insolidifiable après y avoir été cultivé à 37°. Transformant le lait en un liquide sirupeux, jaune clair, à la surface duquel nagent des blocs caséeux. Peptonisant le blanc d'œuf, la fibrine, la caséine; produisant de l'ammoniaque et de l'hydrogène sulfure; faisant fermenter le glucose et le lactose; ne faisant fermenter ni le saccharose,

ni l'amidon. Non pathogène 2° Bâtonnets ressemblant à B. Chauvei (2-6 μ/1 μ). Spores médianes ou terminales. Ne se développant guère à 20°-22°; cultivables à 37° sur les milieux usuels et mieux sur Ne se développant guère à 20°-22°; les milieux au sérum. Fermentation gazeuse du glucose. L'inoculation sous-cutanée est virulente pour la souris, le cobaye (mort en 1 à 2 jours avec œième hémorragique au point de l'injection), la poule et le pigeon. Le rôle pathogène dans l'infection spontanée du mouton reste douteux . . .

B. colicogenes (Tissier).

B. gastromycosis ovis (J. Nielsen) = Bradsotbacillus.

(Le bacille peut être isolé de la caillette et des reins des moutons infectés.) Ne formant pas de spores, immobiles.

- Ne se développant pas dans le lait.

Bact. tuberculosis, mais assez polymorphes, présentant des formes en massue et souvent des ramifications; prenant le Gram inégalement (espaces clairs). Le bouillon s'y développe sous forme de colonies blanches, opaques, irrégulières puis lenticulaires, respectant la zone aérobie. Vitalité : au moins 15 jours. Non pathogène des, mais il se développe un peu dans les milieux liquides. Bâtonnets ressemblant à glucosé anaérobie est acidifié. Le milieu de choix est la gélose glucosée profonde. Il Anaerobie peu exigeant; il n'est pas cultivable à la surface des milieux aérobies soli-

Isolé des selles du nourrisson sain.)

(La culture en gélatine à 37° ne paraît pas avoir été étudiée. L'auteur signale l'analogie et même l'identité possible avec Bact, bifidum.)

B. - Coagulant le lait.

puis opaques dans la gélose glucosée où il ne se produit pas de gaz. Le blanc d'œuf cuit, le saccharose, la dextrine ne sont pas attaqués. Pas d'indol. Vitalité considérable : plusieurs mois Pathogène pour le cobaye, mais les cultures filtrées ne sont ment courbés (ressemblant à Bact. bifidum). Colonies petites, rondes, transparentes Petits bâtonnets, parfois très courts, parfois ramifiés, polymorphes, irrégulière-1º Rendant la gélatine insolidifiable après y avoir été cultivés à 37º. pas toxiques .

2° Ne rendant pas la gélatine insolidifiable. (Isole des matières fécales de l'adulte.)

α) Pathogène pour le cobaye et le lapin.

caséine, saccharifiant l'amidon, intervertissant le saccharose; faisant fermenter Bâtonnets très minces, rectilignes ou un peu courbés. Ne peptonisant pas la le glucose, le lactose et la mannite; dans cette fermentation, il se produit un développement abondant de gaz, des acides volatils (acétique et butyrique) et

(Isolé de l'estomac de l'homme.)

3) Non pathogène.

sucrée. Ne se développant pas en gélatine non sucrée. Faisant fermenter fai-blement le glucose, le lactose et le saccharose en donnant une légère odeur tol et réaction de l'indol positive dans le bouillon peptoné extrémités effilées, réunis en V ou en courtes chaînes. Cultivables à 370: bien en gélose glucosée (colonies petites, rondes, opaques), faiblement en gélatine a) Petits batonnets minces ressemblant à Bact. ramosum, souvent flexueux et à d'acide butyrique. Coagulant le lait lentement (après un mois). Odeur de sca-(Isolé du contenu intestinal de l'homme adulte.)

Bact. intestinale tuberculiforme (JACOBSON). Bact. parvum liquefaciens (Jun-GANO). Bact. gracile ethylicum (ACHALME et ROSENTHAL) Bact. pseudoramosum (Distaso).

TABLEAU LXIV (Suite)

 b) Petits bâtonnets (0 5 μ/1,5 μ), souvent par deux ou en courtes chaincites. Le protoplasme de la cellule bactérienne se désagrège après quelques jours en 2 à 5 articles qui la font ressembler à un streptocoque. Se développant bien en gélatine glucosée; donnant en gélose glucosée de petites colonies gris-blanchâtre, sphériques, sans dégagement de gaz. La coagulation du lait est lente(20 à 25jours).

(Isolé de l'infestin d'un poulain nourri au lait stérilisé.)

C. - Ne coagulant pas le lait.

1º Ne produisant jamais de gaz en gélose glucosée.

a Faisant fermenter le lactose.

fermenter le glucose, mais sans action sur le saccharose et sur la dextrine. Vitalité assez courte (environ 15 jours). Se développant dans la gélatine à 37° sans Bâtonnets devenant nettement granuleux après quelques repiquages. Faisant la rendre insolidifiable. Non pathogène . . (Isolé de l'intestin du rat.)

3) Ne faisant pas fermenter le lactose.

les éléments provenant de cultures jeunes. Cultures rondes très régulières dans teuses, formes parfois renflées ou ramifiées. Ne se colorent par le Gram que la gélose glucosée. Se développant dans la gélatine à 3.º sans la rendre insoa) Batonnels plus grands que B. perfringens, à bouts arrondis. Formes filamenlidifiable. Ne faisant pas fermenter le saccharose ni la dextrine. Vitalité courte (10 jours environ) Non pathogene.

(Isolé de l'intestin du rat.) b) Balonnets minces et greles.

- Bâtonnets fins, droits, isolés ou par deux ou trois, se disposant parfois en centre en « peloton de jardinier ». Se développant dans la gélatine à 37° sans la peptoniser. Vitalité très courte (4 à 5 jours). Non pathogène. longues chaînes sur les milieux solides. Formes d'involution renflées au de longues chaînes et ne présentant pas de formes d'involution. Colonies en gélose au bout de 6 jours, très petites, régulières, blanchâtres, presque transparentes. Se développant dans la gélatine sucrée à 37° sans la rendre insoli-Bâtonnets minces, souvent disposés deux par deux, mais ne formant

Les deux dernières bactéries ont été isolées de l'intestin de l'homme

Coccobacillus anaerobicus pareus Bact. anaerobicum parvum (CHOUKEVITCH).

Bact. granulosum (Jungano).

cille filamenteux (Jungano). Bact. filamentosum

Bact. ventriosum (Tissien).

Bact. minutum = B. anaerobius minutus (Tissien).

vant former des filaments. Colonies en gélose profonde entourées de prolonge-2º Produisant des gaz en gélose glucosée. — Gros bâtonnets de dimensions égales ou supérieures à celles de B. anthracis. Pou-

ments floconneux Les cultures ont une odeur de beurre rance. L'injection sous-. cutanée donne de petits abcès au lapin .

Bact helmintholdes (Lewkowicz).

(Isolé de la bouche d'un nourrisson.)

tingue du précédent par la forme souvent bifurquée de ses filaments dans les B. bifurcatus gazogenes (Choukevitch', isolé de l'intestin du cheval, se dis-

rondes en gélose glucosée. Se développant dans la gélatine à 37° sans la rendre insolidifiable. Ne faisant fermenter ni le saccharose ni la dextrine, n'attaquant vieilles cultures. Il n'est pas pathogène. Bâtonnets de la dimension de B. diphteriæ auquel ils ressemblent. Colonies petites, pas le blanc d'œuf cuit. Donnant de l'indol. Non pathogène . . . (Isolé des matières fécales du rat.)

Bact. diphteroides (Jungano).

Bact. (Sp. ?) gracile == B. anaerobius gracilis (Lewkowicz).

TABLEAU LXV

Bâtonnets strictement anaérobies ne se développant pas à 20-22°, cultivables à 37° en gélatine ou en gélose (ordinires ou glucosées). Ne prenant pas le Gram. Ne formant pas de spores.

Bâtonnets lancéolés ou fusiformes, longs de 2 à 3 µ, parfois en courtes chaînettes de deux à quatre éléments. Produisant beaucoup de gaz dans la gélose glucosée, mais pas terre, ni dans le lait. Mobile pendant les 24 premières heures de son développement. dans la gélose ordinaire. Cultures sans odeur. Pas de développement sur pomme de

Bact. clostridiiforme, var. mobilis (CHOUKBVITCH).

Isolé de l'intestin du cheval.

- Eléments très grêles (0,2 à 0,25 $\mu/1$ à 4 $\mu)$ en forme de virgules ou d'S ou décrivant plusieurs tours de spires.

Colonies rondes ou muriformes en gélose glucosée. Culture très minime, presque nulle dans le bouillon glucosé ou non glucosé. Se colorant faiblement par les couleurs d'aniline. Vitalité courte (moins de 15 jours) .

B. - Batonnets ne présentant pas ces caractères.

1º Ne se développant pas dans le lait.

B. toujours immobiles, mais identiques pour le reste à la variété mobile. (Voir

(Isolé des matières fécales de bovidés.

Coagulant le lait avec acidification. Culture grêle sur les milieux usuels, favorisée par l'addition de serum.

Epaisseur 0,7 à 1 µ. Certaines formes renflées atteignent 2 µ. En piqure dans la gélose au bouillon Martin, il se forme une ligne grisatre d'où partent des prolon-Bâtonnets parfois courts, mais le plus souvent allongés en filaments présentant un protoplasma non colorable et des granulations chromatiques. Gram négatif. gements boursouflès irréguliers, lichénoïdes. Abondant dégagement de gaz dans les milieux glucosés. Culture en piqure dans le sérum coagulé arborescente. Pas de développement sur pomme de terre. Les formes courtes se voient surtout dans les vieilles cultures par division des filaments; elles se colorent mal. Aucun pouvoir protéolytique. Faisant fermenter le glucose et le lactose, mais non le saccharose

Bact. clostridiiforme (Bunn et ANKERSMIT).

et la glycérine. La vitalité n'est que d'une semaine à 37º. Elle est très longue à 20º. L'injection sous-cutanée d'une culture de 24 heures en bouillon produit une escharre chez le lapin, la souris et le cobaye, mais tandis que le lapin et la souris meurent après quelques jours ou quelques semaines, le cobaye survit généralement. . .

Bact. necrophorum = Nekrose bazillus (BANG) = B. de la diphtérie des veaux (Lobfferer) = Strepto-

thrix cuniculi (Schmone).

(Agent de nécroses multiples (peau, muqueuses, foie, rate, intestin) des bovidés, des équidés et du porc.)

3° Ne coagulant pas le lait.

a) Donnant des gaz en gelose glucosée. Non pathogènes.

gélose glucosée. Produisant dans les milieux sucrés des acides lactique et acétique, mais pas d'acide butyrique. Vitalité courte (8 jours). a) Produisant de l'indol dans les milieux peptones.

- Bâtonnets un peu plus grands que le B. de l'influenza (Pfeiffer), parfois en chaînettes, pouvant donner des filaments et des formes d'involution très variées, et en particulier des formes renflées, parfois géantes. Peu de gaz en (Isolé d'un exsudat péritonéal.)

vable à 37° en gélatine sucrée, pas en gélatine ordinaire. En gélose glucosée les gaz, pas très abondants, disloquent cependant le milieu. Les cultures en milieux glucosés, lactosés, saccharosés, répandent une légère odeur d'acide vent renflès et courbés à une extrémité, ne se disposant jamais en chaînettes, mais pouvant former de longs filaments. Ne se développant pas à 22°; culti-Bâtonnets petits et très courts à bouts arrondis, entourés d'une capsule, sou-(Isolé du contenu de l'intestin de l'homme). butyrique. Vitalité courte (dix jours)

b) Ne produisant pas d'indol.

 Odeur fétide des cultures en gélose glucosée.
 Bâtonnets courts, coccoïdes, ovales (0,8 à 1 μ), isolés ou par paires. Pas de formes d'involution. Donnant beaucoup de gaz fétides dans la gélose glucosée. Note. - Tissier en décrit deux variétés : La variété A, qui attaque seulement le glucose et le saccharose, et la variété B. qui attaque le glucose, le lactose et le saccharose; cette dernière pousse (quoique faiblement) à 20°.

(Isolé au cours de diarrhées infantiles.)

Bâtonnets monomorphes, très fins et courts, à peine plus longs que larges (0,3 à 0,5 μ), groupés en grappes, formant dans le bouillon sucré des grumeaux cohérents, difficiles à dissocier. En gélose glucosée profonde, colonies blanches, opa-

Bact. nº 2 (GHON et SACHS).

Bact. variabile (Distaso).

Coccobac. anaerobius perfætens (Tissien) Bact. perfeetens

TABLEAU LXV (suite)

E.A. 0	. Bact. minutissimum = Coccobac minutissimus gazogenes Jacobson		Bact. nebulosum (Haris).	ED EL MA	Bact. furcosum (Veilleon),		Bact, naviforme (Jungano).
ques, très irrégulières. Produisant des gaz inodores dans les milieux sucrès et non sucrés. Anaérobie peu exigeant : poussant dans les milieux liquides sans anaé- robiose, mais ne se développant sur les milieux solides qu'en anaérobiose. Non	pathogène	(Isolé de l'intestin du nourrisson sain.) 3) Ne donnant pas de gaz en gélose glucosée. a) Colonies nuageuses ou floconneuses en gélose glucosée. Petits bâtonnets très grêles, comparables à B. murisepticum. Faiblement	(Isolé du pus de bartholinites.)	- Bâtonnets minces, à peinc plus gros que B tuberculosis. Dans les cultures beaucoup d'éléments se divisent en Y en deux ramifications terminées par un renflement; les branches peuvent elles-mêmes se subdiviser. Cultures	légèrement fétides. Pathogène pour le cobaye	arrondis, d'autres en coccobact. réunis par deux par leur grosse extrémité, d'autres fusiformes. Se développant dans la gélatine sucrée à 37° sans peptoniser ce milieu. Attaquant un peu le glucose. N'attaquant ni la dextrine, ni	le lactose, ni le saccharose; sans action sur le blanc d'œuf cuit. Non patho- gène.

11

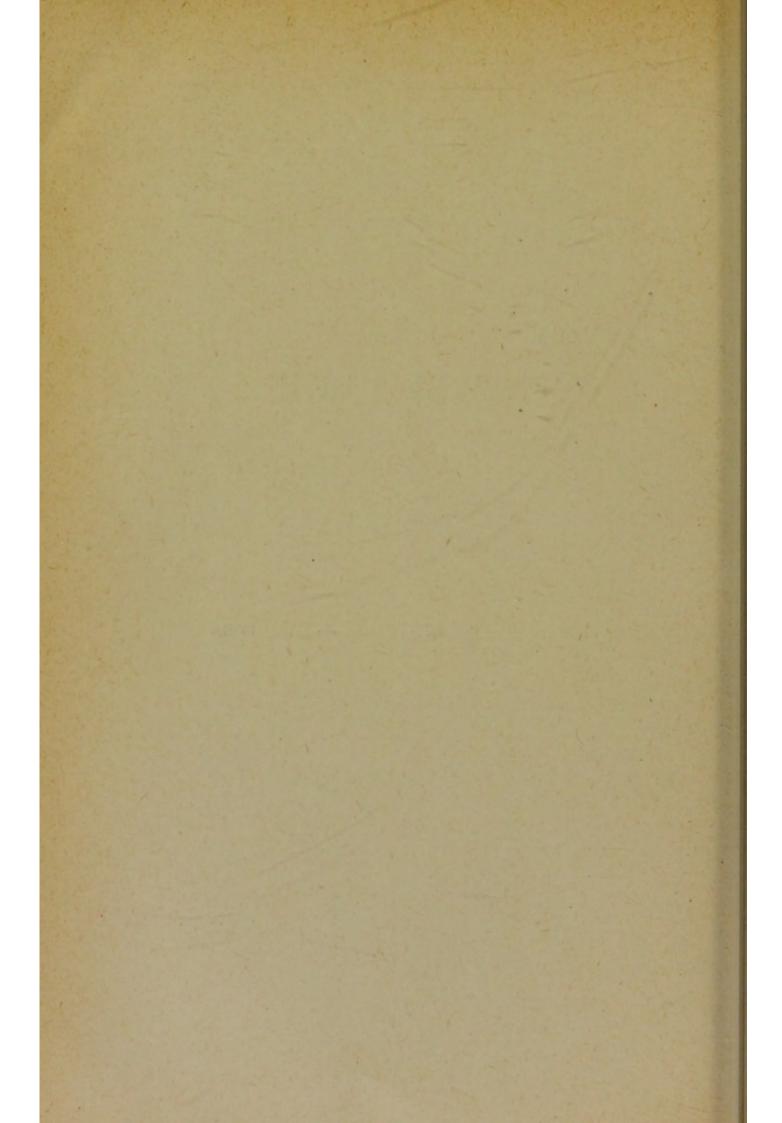
TABLEAU LXVI

e dans des milieux		Bact. iogenum (Baumgartner) Iodococcus vaginatus (Miller).	Sp. Rouxi.	Sp. sputigenum (Millen).	Sp. fusiforme. (Miller-Vincent) Bacille fusiforme (Vincent).	
Bactéries strictement anaérobies, ne se développant que dans des milieux à l'ascite ou au sérum.	 I. — Bâtonnets rectilignes. A. — Bâtonnets de structure granuleuse à extrémités amincies, fusiformes. Certains éléments sont incurvés .Voir Spirilles). B. — Bâtonnets présentant des granulations colorables en bleu par l'iode. Ne formant pas de spores. Dimensions 5 à 25 μ/0,8 à 1,7 μ. Se développant dans la gélose sérum ou la gélose ascite et dans le bouillon, mais pas en gélose ordinaire ou 	sucrée	A. — Prenant le Gram. Se développant bien en gélosc-sérum; coagulant et peptonisant le lait. B Ne prenant pas le Gram. Bactéries difficilement cultivables, exigeant l'emploi de sérum faiblement coagulé (sérum de cheval chauffé jusqu'à consistance de	1. Eléments en virgule ou en S, plus petids que Sp. choleræ	2º Eléments à incurvation inconstante, plus grands que Sp. choleræ. Les formes courtes ont leurs extrémités arrondies; les formes longues, en fuseau, ont leurs extrémités effilées. Structure granuleuse	(manitar , noutre, rigent de diverses anochons dicero-parisons)

TABLEAU LXVII

Bactéries ni aérobies ni anaérobies; ne se développant qu'en présence d'une proportion déterminée d'oxygène.

mais leur longueur est variable (les plus longs comme B. tuberculosis), parfois ramifiés; ne prenant pas le Gram; formes d'involution coccoïdes. Dans les tubes de gélose progelose-serum, les colonies, punctiformes, blanc-grisatre, apparaissent 1 centimètre audessous de la surface sur une hauteur de 1 cent. 5 environ; au-dessus et au-dessous de ce niveau il ne se fait aucun développement apparent. Optimum 37°. En gélatine à 20coagulation); non cultivable sur pomme de terre. Pas de gaz, même dans les milieux sucrés. Très vivace (2 ans). Dans la muqueuse utérine et dans les membranes ovulaires fonde ordinaire et mieux dans la gélose profonde glucosée ou glycérinée ou dans la 22°, développement très lent (3 semaines). Cultivable dans le bouillon et dans le lait (sans Bâtonnets souvent granuleux, ayant souvent les dimensions de Bact. choleræ gallinarum, des vaches atteintes on trouve ces bact. soit libres, soit en amas intracellulaires. Les cultures fraîches inoculées par voie veineuse, péritonéale ou sous-cutanée peuvent provo-quer l'avortement chez la chèvre, la brebis et la vache.


Bact. abortus = Abortusbazillus (Bang et Stribolt) = Corynebact. abortus endemici (Pabisz).

(Agent de l'avortement épizootique des vaches.)

QUATRIÈME PARTIE

APPENDICE

BACTÉRIES INCOMPLÈTEMENT DÉCRITES

APPENDICE

Bactéries incomplètement décrites

I

Bacilles liquéfiant la gélatine, non chromogènes, formant des spores, mobiles, prenant le Gram. (Groupe de B. subtilis.)

```
B. lactis no 13 (Flügge).
B. aerobius (v. Wahl).
B. amylolyticus (Choukevitch).
                                     B. lævis (Frankland).
B. arachniformis (Choukevitch).
                                     B. nº 11 (Lembke).
                                     B. nº 13 (Lembke).
B. asiaticus (Sakharoff).
B. bernensis (Lehm. et Neumann).
                                     B. loxosus (Burchard).
                                     B. lutulentus (Kern).
B. botriosporus aromaticus (Chou-
     kevitch).
                                     B. (urob.) Maddoxi (Miquel).
B. Nº 6 (Choukévitch).
                                     B. malabarensis (Löhnis).
B. circulans (Jordan).

 B. mesentericus liodermos (Flüg-

B. Comesii (Rossi).
B. crassus aromaticus (Tataroff).
                                     B. mesentericus ruber (Globig).
B. danicus (Löhnis et Wester-
                                     B. mucilaginosus (Happ).
                                     B. nitri (Ambroz).
     mann).
B. daucorum (v. Wahl).
                                     B. natans (Kern).
B. dessicans (Choukévitch).
                                     B. nephritidis interstitialis (Let-
B. disciformis (Gräfenhahn).
                                          zerich).
B. filamentosus (Cozzolino).
                                     B. oleae (Schiff).
                                     B. oxalaticus (Zopf).
B. fœtidus albus (Choukévitch).
B. (urob.) Freudenreichii (Mi-
                                     B. no 5 (Pansini).
                                     B. nº 6 (Pansini).
     quel).
B. hastiformis (Choukévitch).
                                     B. nº 8 (Pansini).
B. inflatus (A. Koch).
                                     B. phaseoli (v. Wahl).
B. kefir (Kuntze).
                                     B. pseudobutyricus (Matzuschita)
                                     B. Rosenthalii.
B. lacca (Kern).
B. lacteus (Lembke).
                                     B. Sattleri (Jequirity bacillus (S.).
B. lactimorbi (Jordan et Harris).
                                     B. solaniperda (Kramer).
                                     B. subtilis similis (Sternberg).
B. lactis nº 1 (Flügge).
B. lactis nº 3 (Flügge).
                                     B. terrestris (Matzuschita).
B. lactis n° 6 (Flügge).
                                     B. uvæformis (Kern).
B. lactis nº 7 (Flügge).
                                     B. vacuolosus (Sternberg).
B. lactis nº 9 (Flügge).
                                     B. virgatus (Kern).
B. lactis n°10 (Flügge).
                                     B. viscosus bruxellensis
B. lactis nº 11 (Flügge).
                                          Leer).
```

B. no 1 (Weiz).

B. lactis no 12 (Flügge).

II

Bacilles liquéfiant la gélatine, dépourvus de propriétés chromogènes, formant des spores, mobiles (Gram inconnu).

B. armoraciae (Burchard). B. bipolaris (Burchard).

B. cursor (Burchard). B. gelatinosus (Glaser).

B. goniosporus (Burchard).
B. Hartlebi (Stutzer et Hartleb).

B. idosus (Burchard).

B. mesenterioïdes (Deetjen).

B. myxodens (Burchard).

B. paucicutis (Burchard).

B. plicatus (Deetjen).

B. odoratus (Burri).

B. retiformis (Maschek).

B. rugosus (Henrici).

B. sporogenes vini nº 3 (Kramer).

B. sombrosus (Kern).

B. nº 3 (Grüber).

B. nº 2 (Weigmann et Zirn).
B. nº 3 (Weigmann et Zirn).

III

Bactéries liquéfiant la gélatine, non chromogènes, ne formant pas de spores, mobiles.

1º Gram inconnu.

B. actinobacter = Actinobacter polymorphus (Duclaux).
B. albatus (Kern).
B. arboreus (Maschek).
B. aromaticus (Pammel).
B. Arthuri (Arthur et Golden).
B. dendriticus (Bordoni - Uffreduzzi).
B. defessus (Kern).
B. ethaceticus (Frankland).

B. floccosus (Kern).
B. gracilesceus (Henrici).
B. gracilior (Kern).
B. incanus (Pohl).

B. incanus (Pohl).
B. inunctus (Pohl).
B. nº 15 (Lembke).
B. nº 16 (Lembke).
B. lentiformis (Kern).

B. membranacens (Kern).

B. mitidus (Henrici).
B. odorificans (Maschek).

B. pannosus (Kern).
B. pellucidus (Kern).

B. pestifer (Frankland).

B. plumbeus (Keck).
B. promissus (Kern).

B. propellens (Zimmermann).

B. putidus (Kern).

B. sporogenes vini no 1 (Kramer).

B. sporogenes vini nº 2 (Kramer). B. sporogenes vini nº 3 (Kramer).

B. sporogenes vini no 3 (Krai B. siticulosus (Kern).

B. stoloniferus (Pohl).

B. sulcatus liquefaciens (Kruse).

B. superficialis (Jordan).

B. Trambustii (Trambusti et Galeotti).

B. tuberigenus nº 1 (Gonnermann).

B. tuberigenus nº 2 (Gonnermann).

B. vegetus (Kern).
B. b (Vignal).
B. n° 2 (Weisz).

2º Ne prenant pas le Gram. Propriétés fermentatives insuffisamment étudiées.

B. (pseudomonas) destructans (Potter et Foster).

IV

Vibrions et spirilles liquéfiant la gélatine.

Vibrio albis no 1 (Wernicke).	V. Kutscheri, groupe V, nº 3.
V. albis nº 2 (Wernicke).	V. Kutscheri, groupe V, nº 4.
V. banillensis (Kamen).	V. Kutscheri, groupe V, nº 5.
V. havelensis (Wernicke).	V. Kutscheri, groupe V, nº 6.
V. Kutscheri, groupe II, nº 1.	V. Kutscheri, groupe V, nº 7.
V. Kutscheri, groupe II, nº 2.	V. Kutscheri, groupe V, nº 8.
V. Kutscheri, groupe III, nº 1.	V. Kutscheri, groupe V, nº 9.
V. Kutscheri, groupe III, nº 2.	V. spermatozoïdes (Löffler).
V. Kutscheri, groupe III, nº 4.	Sp. Maasei (van t'Hoff).
V. Kutscheri, groupe III, nº 6.	Sp. Kutscheri nº 1.
V. Kutscheri, groupe V, nº 1.	Sp. Milleri:
V. Kutscheri, groupe V, no 2.	

V

Bacilles liquéfiant la gélatine, non chromogènes, formant des spores, immobiles. (Gram inconnu.)

B. articulatus (Kern).

B. brachysporus (Burchard).

B. concentricus (Kern).

B. filamentosus (Klein).

B. giganteus (Kern).

B. glutinosus (Kern).
B. implectans (Burchard).

B. perittomaticus (Burchard).

B. petroselini (Burchard).

B. pituitans (Burchard).

B. pseudo - epidermidis similis (Rosenthal).

B. rusticus (Kern).

B. spissus (Kern).

B. tenax (Kern).

B. turgescens (Burchard).

B. tuberigenus nº 5 (Gonnermann).

B. viscosus margarineus (Jolles et Winkler).

VI

Bactéries ne liquéfiant pas la gélatine, non chromogènes, ne formant pas de spores, mobiles, ne prenant pas le Gram.

(Propriétés fermentatives insuffisamment étudiées.)

- B. cuniculi septicus (Lucet).
- B. gasoformans pyogenes (Gärtner).
- B. indigogenus (Alvarez).
- B. trouvé dans le melæna neonatorum (Gärtner).
- B. meleagridis (Mac-Fadyean).
- B. oogenes hydrosulfureus g (Zörkendörfer).
- B. oogenes hydrosulfureus h (Zörkendörfer).
- B. oogenes hydrosulfureus i (Zörkendörfer).
- B. pneumosepticus (Klein).
- B. tracheiphilus (Smith).
- B. ventriculi (Raczynski).

VII

Bactéries ne liquéfiant pas la gélatine, non chromogènes, ne formant pas de spores, immobiles. (Gram inconnu.)

B. acetosus (Henneberg).

B. albus gasoformans (Tataroff).

B. ascendens (Henneberg).

B. castellus (Henrici).

B. cocciformis (Severin).

B. colloïdeus butyri (Lafar).

B. nº 41 (Conn).

B. nº 2 (Fulles).

B. industrius (Henneberg).

B. leucæmiæ bovis (Lucet).

B. (micrococcus) mucilaginosus (Schütz).

B. multiformis trichorrhexidis (Hodara).

B. pallens (Henrici).

B. pallidus (Henrici).

B. nº 18 (Pansini).

B. A et B. (Peters).

B. polymorphus (Frankland).

B. profusus (Frankland).

B. squamosus (Kern).

B. septicus keratomalaciæ (Babės).

B. tuberigenus n° 6 (Gonnermann).

B. ubiquitus (Jordan).

B. verrucosus (Kern).

B. vesiculosus (Henrici).

B. virulentissimus (Perroncito).

B. xylinus (Brown).

VIII

Bactéries ne liquéfiant pas la gélatine, non chromogènes, ne formant pas de spores, mobiles. (Gram inconnu.)

B. albus (Eisenberg).

B. (micrococcus) amylovorus (Burrill).

B. apii (Brizi).

B. A (Busse). B. B (Busse).

B. corvi (Kern).

B. crassus pyogenes bovis(Lucet).
B. emulsinus (Fermi et Monte-

B. ethacetosuccinicus (Frankland)

B. nº 1 (Fulles).

B. griseus (Keck).

B. nº 5 (Lembke).

B. nummorum (Matzuschita).

B. pellucidus (Halibacterium pel.) (Fischer).

B. sericeus (Tataroff).

B. sordidus (Kern).

B. stolonatus (Adametz et Wichmann).

B. testudiniformis (Matzuschita).

B. Utpadeli.

B. vesiculiformans (Henrici).

IX

Bactéries ne liquéfiant pas la gélatine, non chromogènes, ne formant pas de sproes, immobiles, ne prenant pas le Gram. (Propriétés fermentatives insuffisamment étudiées.)

B. aceticus (Peters).

B. albicans pateriformis (Unna et Tommasoli).

B. aphtosus (Siegel).

B. canalis capsulatus (Mori).

B. canalis parvus (Mori).
B. candicans (Frankland).
B. coli similis (Sternberg).

B. compactus (Kruse).

B. crassus sputigenus (Kreibohm).

B. euniculicida immobilis (Smith). B. cuniculi pneumonicus (Beck).

B. diphteriæ cuniculi (Ribbert).

B. dysenteriæ vitulorum (Jensen).B. fungoïdes (Tschistowitsch).

B. hæmorragicus (Kolb).

B. hæmorragicus nephritidis (Vassale).

B. hæmorragicus velenosas (Tizzoni et Giovannini).

B. nº 6 (Lembke).

B. minutus (Zimmermann).

B. multipediculus (Flügge).

B. mycogenes (Eduards).

B. nacraceus (Tataroff).

B. ovatus minutissimus (Unna et Tommasoli).

B. pallescens (Henrici).

B. pneumosepticus (Babès).

B. pseudokeratomalaciæ (Loeb).

B. profusus (Frankland).

B. pseudomurisephicus (Bien-stock).

B. pyogenes pulveris (Ogata).

B. salivæ minutissimus (Kruse).
B. Schimmelbuschi (= B. nomae).

B. Selanderi (B. de la peste porcine dano-suédoise (Selander).

B. sycosiferus fœtidus (Tomma-

B. umbilicatus (Zimmermann).

B. ureae (Leube).

B. Vaillardi (Kelsch et Vaillard).

B. Zurnianus (List.).

IX bis

Bactéries facultativement aérobies, isolables dans le bouillon acide à 1 % et cultivables sur gélatine ou sur gélose ordinaire (non glucosée) à 20%-22%. Ne formant pas de spores, prenant le Gram. Immobiles.

Se développant dans la gélatine ordinaire à 22°.

B. butyricus pseudobulgaricus (Distaso) = bac. (Distaso).

(Distaso).

B. dimorphus (Distaso) = bac. acidophile des selles du nourrisson (Rodella, 1901).

Ne se développant pas en gélatine (ordinaire ou sucrée), cultivable dans la gélose ordinaire inclinée.

B. paraexilis (Distaso),

X

Bâtonnets aérobies très incomplètement décrits.

B aroideae (Köck).

B. Bütschlii (Schaudinn).

B. Cubonianus (Köck).

B. hyacinthi septicus (Köck).

B. morocarneus (Köck).

B. oligocarbophilus (Beijerinck et van Delden).

B. (Clostr.) persicæ tuberculosis (Köck).

B. Solmsii (A. Fischer).

B. sporonema (Schaudinn).

B. uveæ (Köck).

Bact. acaciæ (Greig Smith).

Bact. (Bac.) atrosepticum (Van Hall).

Bact. (Bac.) betæ (Busse).

Bact. (pseudomonas) campestre (Pammel) E. Smith.

Bact. (Bac.) carotovorum (Jones).

Bact. (pseudomonas) fluorescens exitiosa (Köck).

Bact. (pseudomonas) iridis (Van Hall).

Bact. metarabicum (Greig Smith).

Bact. mori (Köck).

Bact. (Bac.) omnivorum (Van Hall).

Bact. pararabicum (Greig Smith).

Bact. (Bac.) phytophthorum (Appel).

Bact. solanicola (Delacroix).

Bact. solanisaprum (Harrison). Bact. (pseudomonas) Stewarti (E.

Smith).

Bact.(pseudom.) syringæ (V.Hall). Bact. (pseudomonas) vascularum

(E. Smith).

XI

Bâtonnets strictement anaérobies, insuffisamment décrits

- 1º Bâtonnets liquéfiant la gélatine.
 - a) Prenant le Gram et formant des spores.
 - B. spinosus (Lüderitz).
 - B. Cincinnati (Gerstner).
 - B. funicularis (Gerstner).
 - B. fibrosus (Gerstner).
 - B. pinicœlatus (Gerstner).
 - B. diffrangens (Gerstner).
 - B. granulatus (Gerstner).
 - B. nebulosus (Veillon),
 - b) Gram inconnu.
 - B. anaerobius liquefaciens (Sternberg).
 - B. liquefaciens parvus (Lüderitz).
 - B. Severini (B. soriferus [Severin]).
- 2º Bâtonnets ne liquéfiant pas la gélatine.
 - a) Ne formant pas de spores,
 - a) Gram inconnu.
 - Bact. cadaveris butyricum (Buday) = B. Budayi.

- β) Ne prenant pas le Gram.
- B. fragilis (Veillon et Zuber).
 B. stellatus anaerobius (Vincent).
- b) Formant des spores. (Gram
 - B. muscoïdes (Liborius).
 - B. polypiformis (Liborius).
 - B. solidus (Lüderitz).
- 3º Bactéries non cultivables en gélatine.
 - B. cadaveris (Sternberg).
 - B. angulosus (Garnier et Simon).
- 4º Bactéries ne se développant pas à 22°.
 - B. pyogenes anaerobius (Fuchs).
- 5 Bactéries dénitrificatrices.
 - B. sphaerosporus (Beijerinck)
 B. nitroxus (Beijerinck).
- 6° Très incomplètement décrits.
 - B. de la balanite (Vincent).

XII

Microcoques strictement ou facultativement aérobies liquéfiant la gélatine

M. albatus (Kern).
M. albidus (Losski).
M. albus (Matzuschita).
M. annulatus (Kern).

M. Beckeri = M. der osteomyelitis (Becker).

M. beri-beri (Peckelhäring).

M. casei liquefaciens.
M. cerinus (Henrici).
M. chlorinus (F. Cohn).
M. chryseus (Frankland).

M. (dipl.) citreus conglomeratus (Bumm).

M. (dipl.) citreus liquefaciens (Unna et Tommasoli.

M. confluens (Kern).

M. M. dissimilis (Dyar).

M. exiguus (Kern).

M. flavescens (Henrici).

M. flaveus (Henrici). M. flavidus (Henrici).

M fragilis = Merismopedia frag. (Dyar).

M. galbanatus (Zimmermann).

M. gigas (Frankland).

M. influenzæ = M. II (Fischel).

M. lacteus faviformis (Flügge) = milchweisser diplococcus (Bumm).

M. lardarius (Krassiltschik).

M. liquefaciens tardus = diploc. flavus liq. tardus (Unna et Tommasoli).

M. lobatus (Siebert).
M. luteolus (Henrici).
M. lutosus (Kern).
M. nitidus (Kern).

M. obscenus (Kern).

M. olens (Henrici).
M. osteomyelitidis (Becker) = M.

Beckeri). M. ovalis (Kern).

M. pultiformis (Kern). M. rhenanus (Burri). M. Nº 1 (Rosenthal).

M. roseopersicinus = roter coc-

M. saprogenes vini I (Kramer).
M. saprogenes vini II (Kramer).

M subcretaceus = kreideweisser verflüss. Mikrococcus (Keck).

M. vermiformis (Maschek).

XIII

Microcoques strictement ou facultativement aérobies; ne liquéfiant pas la gélatine

M. achrous = M. No 16 (Lembke).

M. acidi paralactici (Nencki et Sieber).

M. albus (Maschek).

M. bovinus = M. der Lungenseuche der Rinder (Poels).

M. bovis = M. der seuchenhaften Hæmoglobinurie des Rindes (Babès).

M. butyri = Tetracoccus butyri (V. Klecki).

M. canescens = M. N° 4 (Adametz).

M. canus = M. bei infektiösen Tumoren (Manfredi).

M. casei = M. Nº 3 (Adametz).

M. cerasinus siccus (List).

M. (Pediococcus) cerevisiæ (Balcke).

M. (dipl.) claviformis (Besser).
M. (dipl.) commensalis (Turro).

M. cretaceus (Henrici).
M. cyclops (Henrici).
M. eburneus (Henrici).
M. excavatus (Kern).

M. fulvus (Cohn). M. b. (Foutin).

M. gelatinogenus (Bräutigam).

M. gilvus (Henrici).
M. gilvus (Losski).
M. globosus (Kern).
M. granulosus (Kern).
M. grossus (Henrici).
M. gummosus Happ).

M. helvolus (Henrici).

M. humidus = M. Nº 2 (Adametz).

M. inconspicuus (Henrici).

M. iris (Henrici).

M. licheniformis (Kern).

M. luridus (Kern). M. luteus (Cohn).

M. madidus = M. Nº19 (Lembke).

M. nacreaceus = perlmutterglänzender Diploc. (Tataroff).

M. (strept.) nasalis (Hack).

M. niveus (Henrici).

M. ochraceus (Rosenthal).

M. odoratus (Henrici). M. odorus (Henrici).

M. pallens (Henrici).

M. pallidus (Henrici). M. pannosus (Kern).

M. pellucidus (Kern).

M. polypus (Migula).

M. pseudocerevisiæ = Pediococcus acidi lactici (Lindner).

M. resinaceus (Kern).

M. roscidus = M. Nº 1 (Adametz)

M. rubellus (Migula). M. sarcinoïdes (Migula).

M. siccus = M. nº 5 (Adametz).

M. similis (Dyar).

M. sordidus (Schröter). M. Sornthalii (Adametz).

M. tetras (Henrici). M. vesicæ (Heim).

M. zonatus (Henrici).

XIV

Microcoques aérobies non cultivables sur la gélatine à 20°-22°

M. hæmatodes (Babès). M. (str.) hollandicus (Scholl).

XV

Microcoques strictement anaérobies

M. Nº 2 (Rosenthal).

XVI

Microcoques dont la description est tout à fait insuffisante au point de vue systématique

M. Beigelii, Hyalcoccus Beigegelii (Schröter). M. chinicus (Emmerling et Ab-

derhalden).

M, dendroporthos (Ludwig).

M. progrediens - M. der progressiven Abzessbildung bei Kaninchen (Koch).

M. pyæmiæ cuniculorum (Koch).

M. tritici (Köck).

INDEX BIBLIOGRAPHIQUE

INDEX BIBLIOGRAPHIQUE

Liste des abréviations employées dans l'index

I, II, etc. Numéros correspondant aux tableaux de détermination.

A. B. I. K. Arbeiten aus dem bakteriologischen Institut der

technischen Hochschule zu Karlsruhe.

Adametz. — Die Bakterien der Nutz-und Trinkwässer. Wien, 1888.

A. f. H. Archiv für Hygiene.

A. K. G. Arbeiten aus dem kaiserlichen Gesundheitsamt. Berlin. Springer.

A. I. P. Annales de l'Institut Pasteur.

Arch. de M. e. Archives de médecine expérimentale.

Babès. — Bakt. Untersuchungen der septischen Prozesse des Kinderalters. Leipzig, 1889.

Besson. Besson. Technique microbiologique. Paris, 1912.

B. I. P. Bulletin de l'Institut Pasteur.B. k. W. Berliner klinische Wochenschrift.

Bumm. — Der Mikrorg. d. gonorrh. Schleimhauterkr. Wiesbaden, 1887.

C. f. B. Centralblatt für Bakteriologie.

D. m. W. Deutsche medizinische Wochenschrift.
D. m. Z. Deutsche medizinische Zeitschrift.

Eisenberg. — Bakt. Diagnostik, 3° éd. Hamburg, 1891. Escherich. — Die Darmbakterien des Sänglings. Stuttgart, 1886.

Fischer. — Die Bakterien des Meeres, 1894.

Flügge. — Die Mikroorganismen. Leipzig, 1886 (2° éd.) et 1896 (3° éd.).

Frankland. Grace and Percy Frankland. - Philos. Transact. of

the Royal Society of London.

Glage. Glage. Handbuch der techn. Bakteriologie für Tierärzte. 376 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

H. et M. Hutyra, u. Marek. — Spezielle Pathologie u. Therapie der Haustiere. III. Aufl. 1910. Iena.

J. D.
 Jungano et Distaso. — Les anaérobies. Paris, 1910.
 K. et W.
 Kolle u. Wassermann. — Handbuch der pathogenen

Mikroorganismen. Iena. 1902-1904-1906.

Kramer. — Die Bakteriologie in ihren Bezichungen

zur Landwirtschaft. Wien, 1890.

L. et N. · Lehmann u. Neumann. — Atlas u. Grundriss der Bakteriologie. München, 1912.

Lafar. - Handbuch der techn. Mykologie.

Löhnis. — Handbuch der landwirtschaftlichen Bak-

teriologie.

Lustig. — Diagnostik der Bakterien des Wassers.

Iena, 1893.

Macé. — Traité pratique de Bactériologie. Paris,

1912-1913.

Maschek. — Bakt. Untersuchungen d. Leimeritzer Triukwässer, 1887.

Matz. Matzuschita. — Bakteriologische Diagnostik. Iena, 1902.

Mig. Migula. — System der Bakterien. Iena, 1900.

Miller. — Die Mikroorganismen d. Mundhöhle, 710 Aufl., 1892.

Or. Originaux : Originale. P. M. Presse médicale. Paris.

Ph. T. R. S. Philos. Transact. of the Royal Society of London.

p. page. R. Referate.

S. de B. Bulletin de la Société de Biologie. Paris.

Schröter. — Kryptogam. Flora von Schlesien, Pilze, 1886.

S. m. H. Société médicale des Hôpitaux de Paris.

T. Tome.

- Henrici.

Th. Thèse: Inaug. Dissertation.

- Bräutigam. Leipzig, 1886.

- Breunig. Kiel, 1888. Bakt. Untersuchung des Triukwassers der Stadt Kiel.

- Clauss. Würzburg, 1889. Bakt. Untersuchung der Milch.

- Deetjen. Würzburg, 1893. Uber Bakterien der Wurst.

- Fortineau. Paris, 1904. Erythrobacillus pyosepticus.

Gräfenhahn. Halle, 1891. Beitrag. z. Keuntniss der Wasserbakt.
Happ. Berlin, 1893. Bakt. u. chem. Unters. über die schlei-

mige Gärung. Basel, 1894. Beitr. z. Bakterienslora des Käses.

- Keck. Dorpat, 1890. Uber das Verhalten der Bakterien in Grundwasser Dorpats.

Th. Kreibohm. Göttingen, 1889. Uber d. Vorkommen pathogener Mikroorganismen im Mundsekret.

- Legros. Paris, 1900. Monographie des streptocoques.

 Leipzig, 1885. Untersuchungen über die in u. auf dem Körper d. gesunden Schafes vorkommenden niederen Pilze.

Losski. Dorpat, 1893. Die Mikrorg. des Bodens.

 Rosenthal. Berlin, 1893. Beitr. z. Kenntniss d. Bakterienflora der Mundhöhle.

- Siebert. Würzburg, 1894. Uber einige Mikr. des Haarbodens.

- Tataroff. Dorpat, 1891. Die Dorpater Wasserbakterien.

- Tissier. Paris. 1900. Rech. sur la flore intestinale du nourrisson.

Trait. Traités.

Z. f. H. Zeitschrift für Hygiene.

Ziegl. Beitr. Ziegler's Beiträge : Beiträge z. allg. Pathologie u.

pathol. Anatomie.

Zimm. — Die Bakterien unserer Nutz-und

Trinkwasser. Chemnitz, 1890, 1894 et 1900.

Z. M. Zeitschrift für klin. Medizin.

Zopf. Zopf. — Spaltpilze, 3'c Aufl., 1885.

Note. — Dans cet index bibliographique les noms des espèces adoptées dans notre ouvrage (les « bonnes espèces ») figurent en égyptiennes; ceux des bactéries identifiées ou rattachées aux espèces types sont imprimés en caractères romains ordinaires; les italiques ont été réservées aux bactéries insuffisamment connues et non déterminables.

INDEX BIBLIOGRAPHIQUE

Acido-résistants. Voir Bacterium.

Actinobacter polymorphus (Duclaux). Voir B. actinobacter.

Ascobacillus aquatilis (Moreno). Voir Bact. ascoformans.

- citreus (Unna et Tommasoli) XIV. Unna et Tommasoli, Monatschr. f. prakt. Dermat., T. IX, p. 60. - Eisenb.

— sacchari (Sмітн) XIV.

Ascobacterium luteum (Babès) XIV. Cornil et Babès, Les Bactéries, 3° éd., p. 155. — Macé, T. II, p. 586.

Ascococcus (Voir Micrococcus).

- Billrothii. Voir M. ascoformans (Johne).

- cantabridgensis (Hankin). Voir M. ascoformans (Johne).

mesenterioïdes (CIENK.). Voir Micr. mesenterioïdes.

Azotobacter agile (Beijerinck) LIII. C. f. B., 2° s., T. 7, 1901, p. 561.

Beijerincki (Lipman) LIII. Ann. report of the New-Jersey agric exp. station, 1904, p. 235 et 1905, p. 254.

chroococcum (Beijerinck) LIII. C. f. B., 2° s., T. 7, 1901,
 p. 561.

Vinclandii (Lipman) LIII. Ann. report of the New-Jersey agric. exp. station, 1904, p. 235 et 1905, p. 254.

vitreum (Lôhnis et Westermann) LIII. C. f. B., 2° s. T. 22,
 p. 234.

Bacillus (Voir aussi Bacterium).

— aceticus (Ретекs) Ap. IX. Peters, Botan. Zeitung.

- acetogenus α (Distaso). Voir Bacterium acetogenum.

- acetogenus β (Distaso).

acetogenus exilis (Tissier). Distaso.
 acetogenus proteiformis (Distaso).

acetosus (Henneberg) Ap. VII. C. f. B., 2° s., T. 3, p. 223;
 T. 4, p. 14.

- de l'acide butyrique (Grassberger et Schattenfron) LVIII. A. f. H., T. 37, 42, 48, 60.

acidi paralactici (Коzлї) XXV. J. f. H., Т. 31, р. 372; Т. 38,
 p. 386.

Bacillus acidophilus (Moro) L. Jahresber. für Kinderheilk., T. 52, 1900, p. 38.

- Nº 1 (Mereschowsky) L.
- Nº 2 (MERESCHOWSKY) L.
- acido-résistants. Voir Bacterium.
- actinobacter (Duclaux) (Actinobacter polymorphus) Ap. III.
 Annales de l'Institut agronomique, 1882; Chimie biol.,
 p. 155.
- nº 14 (Adametz) XIII. Landwirtschaftliche Jahrbücher, T. 18 1889, p. 246.
- nº 15 (ADAMETZ) VI. Landwirtschaftliche Jahrbücher, T. 18, 1889, p. 246.
- nº 16 (ADAMETZ) III et IV. Landwirtschaftliche Jahrbücher,
 T. 18, 1889, p. 246.
- nº 17 (Adametz) VI. Landwirtschaftliche Jahrbücher, T. 18, 1889, p. 246.
- aerobius (v. Wahl) Ap. I. C. f. B., 2° s., T. 16, p. 489.
- aerogenes capsulatus (Welch) LIV. V. B. perfringens.
- aerophilosimilis (Matzuschita) Tabl. B. A. f. Hyg. T. 35,
 p. 268.
- aerophilus (Flugge) VI. Flüg., T. 2.
- agilis (Tschistowitsch) Tabl. B. Berl. kl. W. 92, p. 512.
- agglomeratus. = B. nº 5 (Pansini) V. Virchow's Archiv, T. 122,
 1890, p. 441. L. et N.
- albatus (Kern) Ap. III. A. B. I. K., T. 1, p. 408.
- albicaus pateriformis (UNNA ET TOMMASOLI) Ap. IX. Monatschr. f. prakt. Dermat., T. 9, p. 58.
- albus (EISENBERG) Ap. VIII. Eisenb., p. 140.
- albus (Loeffler) V. Flügge, T. 2.
- albus gasoformans (Tataroff) Ap. [VII. Th., Dorpat, 1891, p. 35.
- albus liquefacieus. Voir Bact. termo fluorescens (Dujardin).
- alvei (Cheshire et Watson Cheyne) 1V. Journ. of the Royal Microscopical Society, 2° s., T. V. Mig, T. 2, p. 520.
- amarificans (Выстен) V. Z. f. H., Т. 13, 1893, р. 81. Mig., Т. 2, р. 584.
- amylobacter (A. Meyer et Bredemann). LVIII. C. f. B., 2° s., T. 23, p. 384-566.
- amylobacter (VAN TIEGHEM) LVIII. Comptes rendus del'Acad. des Sc., T. 83, 1879.
- amylolyticus (Сноике́viтсн) Ар. I. А. I. Р., 1911, р. 247.
- amylovorus (micrococcus) (Burrill) Ap. VIII. Flüg., T. 2, p. 328.
- anaerobicus alcaligenes (Debono) LVIII. C. f. B., 1^{re} s.
 Or., T. 62, p. 229.
- anaerobius chromogenes (Ghon et Mucha) LIV. C. f. B. T. 42, p. 406 et 495.

Bacill	us anaerobius foetidus (Weigmann) (Paraplectrum foetidum)
	LV. C. f. B., 1898, 2° s., p. 820.
-	anaerobius gracilis (Lewkowicz) voir Bact. gracile.
-	du groupe de l'acide baldrianique (RODELLA)
	LV. C. f. B. 20 s., T. 10 et 13.
-	du groupe de l'acide capronique (Rodella) LV
	C. f. B. 2 s., T. 10 et 13.
-	_ liquefaciens (Sternberg) Ap. XI. Flüg., T. 2,
	p. 241. — J. D.
-	— magnus (streptobacillus) (Сноике́vітсн). А. І. Р.,
	1911, p. 345.
-	minutus (Tissier) voir Bact. minutum.
_	- perfoetens (Tissier) voir Bact. perfœtens.
_	_ rectus (streptobacillus) (Сноике́viтсн) LVIII,
	A. I. P., 1911, p. 345.
-	_ I (RODELLA) LVIII. Zeitschr. f. Hyg. T. 39,
	fasc. 3.
_	_ II (RODELLA) LVIII. Zeitschr. f. Hyg. T. 39,
	fasc. 3.
-	_ III (RODELLA) LVIII. Zeitschr. f. Hyg. T. 39,
	fasc. 3.
_	_ IV (RODELLA) Voir Bact. anaerobium nº 4 (Rod.)
_	_ v nº 5 _
	_ VI nº 6 _
	_ VII nº 7 _
	_ VIII nº 8 _
	- tenuis (Distaso) LVIII. C. f. B., 1re s., Or.,
	T. 62, p. 443.
	angulans (Burchard) VI. A. B. I. K., T. 2, p. 43.
	angulosus (Distaso) LXIV. C. f. B., 1 . s., Or., T. 62, p. 442.
1000	angulosus (Garnier et Simon) Ap. XI. Soc. méd. des hôpit. de
	Paris, 18 octobre 1907. — J. D., p. 151.
-	annulosporus (Choukévitch) XIII. — A. I. P., 1911, p. 247.
	anthracis (Davaine) III. Trait.
	anthracoïdes (Hueppe et Wood) IV. B. k. W, 1889, nº 16.
	Mig.
	aphtosus (Siegel) Ap. IX. D. M. W., 91, 1326; 94, 426.
	apicum (Canestrini) XIX. Flügge, T. II.
	apii (Brizi) Ap. VIII. C. f. B., 2° s., T. III, p. 575.
_	
_	aquatilis a (TATAROFF) XIV. Th., Dorpat, 1891, p. 44.
-	aquatilis fluorescens (TATAROFF) XXXIX. Th., Dorpat,
	1891.
	aquatilis graveolens (TATAROFF) XVII. (Voir Bact. chlorinum
	Macé). Th., Dorpat, 1891.
	aquatilis liquefaciens (Frugge) VIII. Flüg., T. II.
-	aquatilis sulcatus (Weichselbaum). Voir Bacterium.
-	aquatilis villosus (TATAROFF) XIV. Th., Dorpat. 1891.
-	arachniformis (Сноике́viтсн) Ар. І. А. І. Р., 1911, р. 247.

Bacillus arboreus (MASCHEK) Ap. III. Maschek.

- argenteo-phosphorescens liquefaciens 1 et 3 (KATZ) XLIII.
 C. f. B., T. 9, p. 156 et T. 11, p. 157.
- Armoraciae (Burchard) Ap. II. A. B. I. K., T. II, p. 46.
- aroïdeae (Köck) Ap. X. Monatshefte f. Landwirtschaft., 1909, p. 247.
- aromaticus (Pammel) Ap. II. C. f. B., 2° s., T. II, p. 20.
- asiaticus (Sakharoff) Ap. I. A. I. P., 1893, p. 550.
- asterosporus (Migula) V. Chester, C. f. B., 2° s., T. XIII, p. 737. L. et N.
- Arthuri (ARTHUR ET GOLDEN) Ap. III. Smith, American Naturalist, 1896, sept., p. 723.
- articulatus (Kern, Ap. V. A. B. I. K., T. I, p. 445.
- ascendens (Henneberg) Ap. VII. Deutsche Essigindustrie, 98, 12-23.
- asterosporus (Migula) V. Mig., T. 2, p. 528. Chester. C. f. B. 2° s., T. XIII, p. 737.
- aterrimus (Biel) (Lehmann et Neumann. XVI. C. f. B., 2° s.,
 T. 2, p. 137. (= B. mesentericus niger.)
- aterrimus tschitensis (KLIMENKO) XVI. C. f. B., 20 s., T.20,p.1.
- aureus (Frankland) XIV. Ph. T. R. S., 1887, B., p. 272.
- aureus (Pansini) V. Virchow's Archiv., CXXII, 1890, p. 436. L. et N.
- avisepticus (Perroncito) Voir Bact. cholerae gallinarum (P.).
- azureus (Zimmermann) X. Zimm. L. et N.
- de la balanite (Vincent) Ap. XI. Ann. de dermat. 1904.
- bernensis (Lehmann et Neumann) Ap. I. L. et N., p. 460.
 (= Aromabild. Bac. aus Emmenth. Käse (Burri), C. f. B.,
 2* s., T. 3, p. 608.
- berolinensis (Claessen) voir Bact. indigonaceum (Cl.).
- bifermentans sporogenes (Tissier) LIV. A. I. P., 1902,
 p. 865. J. D.
- bifidus communis (Tissier). Voir Bacterium bifidum.
- bifurcatus gazogenes (Сноике́viтсн) LXV. A. I. P., 1911,
 p. 345. Voir Bact. helminthoïdes (Lewkowicz).
- bipolaris (Burchard) Ap. II. A. B. I. K., T. II, p. 34.
- Botkini. Voir Bac. butyricus (Botkin).
- botriosporus aromaticus (Сноике́vітсн) Ар. І. А. І. Р., 1911,
 p. 247.
- botulinus (VAN ERMENGHEM) LIV. K. et W.
- bovisepticus (KRUSE).
- brachysporus (Burchard) Ap. V. A. B. I. K., T. II, p. 19.
- brassicae (POMMER) IV. Voir B. mycoïdes.
- bronchitidis putridae (Lumniczer) XXVII. Wien. mediz. Presse, 1888. Eisenberg. Mig. T. II, p. 641.
- bruneus (Adametz) XXXVIII. Adametz, 1888, no 1, p. 51. Eisenb.
- de Buday. Voir Bact. cadaveris butyricum.

- Bacillus bulgaricus (Luerssen et Kühn) L.C.f. B., 2° s., T. 20, p. 241.
 - A (Busse) Ap. VIII. Zeitschr. f. Pflauzenkr., 7, 74.
 B (Busse) Ap. VIII. Zeitschr. f. Pflauzenkr., 7, 74.
 - Bütschlii (Schaudinn) Ap. X. Archiv. f. Protistenkunde, T. 1 et 2.
 - butylicus (Fitz). Deutsche chem. G., 1882.
 - butyricus (Botkin). Voir B. pseudobutyricus.
 - butyricus (Aut.) = Bac. amylobacter (Meyer et Bredemann)
 LVIII. J. D. L. et N.
 - butyricus nº 3 (GRUBER). (Voir B. subanaerobius).
 - butyricus pseudobulgaricus (Distaso). Ap. IX bis. C. f. B.,
 1^{ro} s., Or., T. 59, p. 48.
 - cadaveris (Sternberg) Ap. XI. Flüg., T. 2, p. 244.
 - cadaveris sporogenes (KLEIN) LIV. C. f. B., T. 29, p. 991.
 - caducus (HALLÉ). Th., Paris, 1898.
 - calidus (A. MEYER ET BLAU) XLIX. C. f. B., 2° s., T. 15, 1906,
 p. 97.
 - canalis capsulatus (Mori) Ap. 1X. Z. f. H., T. 4, p. 52.
 - canalis parvus (Mori) Ap. IX. Z. f. H., T. 4, p. 53.
 - candicans (Frankland) Ap. IX. Z. f. H., T. 6, p. 397.
 - candidus (Galli-Valerio). Voir Bact. candidum (Matz.).
 - caniperda (Galli-Valerio) Ap. I. C. f. B., 1 . s., T. 19, p. 694.
 - canus = grauer Bacillus (Макснек) X. Voir Bact. glaucum (Араметz). Untersuchung der Leitmeritzer Trinkwässer, Leitmeritz, 1887.
 - carnis (Klein) LVIII. C. f. B., T. 35.
 J. D., p. 170.
 - casei (Adametz). Voir B., nº 16 (Ad.).
 - casei α, γ, δ, ε (FREUDENREICH) voir Bact. casei.
 - carnosus (Tils) XX.Z. f. H., T. 9, p. 294. Zimm., II, nº 4.
 - carotarum (A. Koch) VI Botanische Zeitung, 1888. Mig., T. 2, p. 293.
 - castellus (Henrici) An. VII. Th., Bâle, 1894, p. 38.
 - cereus (Frankland) IV. Ph. T. R. S., T. 178, B, 1887, p. 279.
 - cerinus (Henrici) XXXVII. Th., Bâle, 1894, p. 50.
 - Chauvæi (ARLOING) LIV. Trait.
 - chlorinus (Macé). Voir Bacterium.
 - chlororaphis (Guignard et Sauvageau) XVII. Lasseur, Th. (sciences), Nancy, 1911.
 Macé, T. 2, p. 418.
 - п° 4 (Сноике́vітсн) LIII. А. І. Р., 1911, р. 247 et 345.
 - nº 5 (Сноике́vітсн) LVIII. А. І. Р., 1911, р. 247 et 345.
 - nº 6 (Сноике́vітсн) Ар. І. А. І. Р., 1911, р. 247 et 345.
 - cincinnati (Gerstner) Ap XI. A. B. I. K., T. 1, 1894. Matzu.
 circulans (Jordan) Ap. I. Flüg., T. 3, p. 202. Mig., T. 2, p. 551.
 - clostridiiformis (Burri et Ankersmit) LXVI. J. D., p. 178.
 - cocciformis (Severin) Ap. VII. C. f. B., 2° s., T. 1, p. 160.
 - coccineus (Pansini) V. Virchow's Archiv., T. 122, 1890, p. 437. Mig., T. 2, p. 856.

- Bacillus coccoïdeus nº 6 (Pansini) XIII. Virchow's Archiv. T. 120, 1890, p. 442. Mig., T. 2, p. 558. Meyer et Neide, C. f. B., 2° s., T. 12, p. 350.

 cohaerens (Meyer et Gottheil) V. C. f. B., 2° s., T. 7.

 colicogenes (Tissier) LXIV. A. I. P., 1912, p. 522.

 coli mobilis. Voir Bacterium monadiforme (Messea).

 coli-similis (Sternberg) Ap. IX. Flüg., T. 2, p. 340.
 - colloïdeus butyri (LAFAR) Ap. VII. A. f. H., T. 13, p. 17.
 colorabilis (KRUSE). Voir Bact. coli colorabile (Naunyn).
 - Comesii (Rossi). Ap. I. Arch. di farmacol. speriment. e scienze affini. T. 3, fasc. 10.
 - compactus (KRUSE) Ap. IX, Flüg., T. 2, p. 353.
 - concentricus (Kern) Ap. V. A. B. I. K., T. 1, p. 437.
 - nº 41 (CONN) Ap. VII. C. f. B., 2º s., T. I., 385.
 - coprogenes fœtidus (Lydtin et Schottelius) XXVII. Flüg.,
 T. II, p. 305. Mig., T. II, p. 327.
 - de la coqueluche (Bordet-Gengou). Voir Bact. pertussis.
 - cornutus (Distaso). C. f. B., 1 ° s., Or., T. 62, p. 443.
 - corvi (Kern) Ap. VIII. A. B. I. K., T. 1, p. 394.
 - crassus aromaticus (ΤΑΤΑΒΟΓΓ) Λρ. I. Th., Dorpat, 1891, p. 27.
 crassus pyogenes bovis (Lucet) Αρ. VIII. A. I. P., 1893,
 - p. 330.
 crassus sputigenus (Квывонм) Ap. IX. Th., Göttingen, 1889.
 Cubonianus (Коск) Ap. X. Monatshefte f. Landwirtschaft, 1909, p. 247.
 - cuniculicida immobilis (Sмітн) Ap. IX. Baumgarten's Jahresber., Т. 1, р. 155.
 - cuniculi pneumonicus (Beck) Ap. IX. Z. f. H., T. 15, p. 363.
 - cuniculi seuticus (Luceт) Ар. VI. А. І. Р., 1892, р. 558.
 - cursor (Burchard) Ap. II. A. B. I. K., T. 2, p. 25.
 - cuticularis (Tils) XIV. Z. f. H., 1890.
 - cyaneus (Schröter) XLII. L. et N., p. 256.
 - cyanogenes (Flugge). Voir Bact. syncyaneum (Ehrenberg).
 - cylindricus (A. MEYER ET BLAU) XLVII. C. f. B., 2° s., T. 15, 1906, p. 97.
 - cylindrosporus (Burchard) V. A. B. I. K., T. 2, p. 31. L. et N.
 danicus (Löhnis et Westermann) Ap. I.
 - Danteci (LE DANTEC) XIX. A. I. P., 1891, p. 656.
 - daucorum (V. Wahl) Ap. I. C. f. B., 2° s., T. 16, p. 489.
 - defessus (KERN) Ap. III. A. B. I. K., T. I, p. 397.
 - der driticus (Bordoni-Uffreduzzi) Ap. III. Lustig, p. 99.
 - dendroïdes (Holzmuller) IV. Voir B. mycoïdes.
 - denitrificans agilis (Ampola et Garino) XXX. C. f. B., 2° s., T. 2, 1896.
 - dermoïdes (TATAROFF) XVI. Th., Dorpat, 1894, p. 19.
 - dessicans (Сноике́viтсн) Ар. І. А. І. Р., 1911, р. 247.
 - destruens (v. Wahl) VII. C. f. B., 2° s., T. 16, p. 489.
 - diffrangens (Gerstner) Ap. XI. A. B. I. K., T. 1, 1894. Matzu.

- Bacillus dimorphus (Distaso). Ap. IX bis C. f. B., 10 s., Or., T. 59,
 - dimorphus, var. longa (Distaso). C. f. B., 1^{re} s., Or., T. 62,
 p. 440.
 - disagregans cellulosae (Distaso). S. de B., 1911.
 - de la diarrhée verte (Lesage). Voir B. viridis (L.).
 - diphteriae cuniculi (RIBBERT) Ap. IX. D. M. W., T. 87, p. 14.
 - disciformis (GREFENHAHN) Ap. I. Th., Halle, 1891.
 - distortus (Tyrothrix) (Duclaux) V. Duclaux, Le lait. Paris, 1889. — Winkler, C. f. B., 2° s., T. 1, 1895.
 - dysenteriae vitulorum (Jensen) Ap. IX. Baumgarten's Jahresber., T. 8, p. 308.
 - effusus (Holzmuller) IV. (Voir B. mycoïdes). C. f. B., 2° s.,
 T. 23, p. 304.
 - Ellenbachensis (STUTZER) IV. Stutzer et Hartleb, C. f. B., 2° s., T. 4, p. 31. Stutzer, C. f. B., 2° s., T. 7, p. 540.
 - emulsinus (FERMI ET MONTESANO) Ap. VIII. C. f. B., T. 15, p. 722.
 - endocarditis capsulatus (Weichselhaum) XXXII. Beiträge z. pathol. Anatomie und z. allgem. Pathologie, T. 4. Mig., T. 2, p. 359.
 - endometritidis (Kauffmann, Emmanuel et Wittkowsky). Zeitschr. f. Gynækol., T. 32.
 - enteritidis sporogenes (KLEIN) LIV. C. f. B. T. 18, p. 737,
 T. 22, p. 114 et 576, T. 25, p. 278.
 - erythematis (Demme) XLVIII. Eisenb.
 - erythrosporus (Соня) XXXIX. Schröter, p. 158. Mig., T. 2, p. 913.
 - esterificans (Maassen) XXVII. Arb. aus. d. kaiserl. Gesundheitsamte. T. 15, p. 500.
 - esterificans stralauensis (Maassen). Arb. aus d. kaiserl. Gesundheitsamte. Berlin, T. 15, p. 500.
 - esterificans fluorescens (MAASSEN). Arb. aus. d. kaiserl. Gesundheitsamte. Berlin, T. 15, p. 500.
 - ethaceticus (Frankland) Ap. III. Mig., T. 2, p. 695.
 - -. ethacetosuccinicus (Frankland) Ap. VIII. Mig., T. 2, p. 803.
 - fibrosus (Gerstner) Ap. XI. A. B. I. K., T. 1, 1894. Matzu.
 - filamentosus (Cozzolino) Ap. I. Z. f. H., 33, 36.
 - filamentosus (Klein) Ap. V. A. B. I. K., T. 2, p. 22.
 - filiformis (Henrici) III. Th. Bâle, 1894, p. 41.
 - filiformis (Tils) VI. Z. f. H., 1890. Mig., T. 2, p. 296.
 - filiformis (Tyrothrix) (Duclaux) V. Duclaux, Le lait, 1889.
 Winkler, C. f. B., 2° s., T. 1, 1895.
 - fissus (Debono) LVIII. C. f. B., 1 . s., Or., T. 62, p. 229.
 - flavescens (Ронг). Voir Bact. chryseum (Ad.).
 - flavus (Macé) XIV. Macé, T. 2, p. 429.
 - floccosus (Kern) Ap. III. A. B. I. K., T. 1, p. 424.
 - nº 1, 2 et 3 (FLUGGE) LIV. Flügge.

Bacillus nº 10 (FLUGGE). Voir B. intermedius.

- fluorescens nivalis (Eisenberg). Voir Bact. fluor. liq. (Flügge).
- fluorescens putidus (Flugge) XXXIX. Voir Bact. putidum (L. et N.).
- fluorescens putidus (TATAROFF) XXXIX. Th., Dorpat, 1891.
 Mig., T. 2, p. 914.
- fæcalis alcaligenes (Реткизсику). Voir Bacterium.
- fœtidus. (Paraplectrum f.) (Weigmann). C. f. B., 2° s., 1898,
 p. 820. J. D., p. 131.
- fœtidus (Clostridium f.) (Liborius) LIV. Sanfelice, Z. f. H.,
 T. 17. J. D., p. 87.
- fætidus albus (Сноике́уітсн) Ар. І. А. І. Р., 1911, р. 247.
- fœtidus clostridiiformis (Liborius) LIV. Z. f. H., T. 17.
 J. D., p. 87.
- Freudenreichii (Urobacillus) (MIQUEL) Ap. I, Flüg., T. 2,
 p. 210. Miquel, annales de micrographie, 1889, 1892.
- nº 1 (Fulles) Ap. VIII. Z. f. H., T. 10, p. 250.
 nº 2 (Fulles) Ap. VII. Z. f. H., T. 10, p. 250.
- fungoides (Tschistowitsch) Ap. IX. B. K. W., 1892, p. 513.
- funicularis (Gerstner) Ap. XI. A. B. I. K., T. 1, 1894. Matzu.
- fusiformis (MEYER ET GOTTHEIL) V. C. f. B., 2° s., T. 7. p. 725. Chester, C. f. B., 2° s., T. 13, 1904, p. 737. L. et N
- fusiformis (Veillon et Zuber). Voir Bacterium.
- fusiformis (voir spirillum fusiforme) (Vincent) LXVI. Lew-kowicz, C. f. B., 1906. Mühlens, Z. f. H., 1906, T. 55, p. 81.
- gasoformans pyogenes (GERTNER) Ap. VI. C. f. B., T. 15, 1.
 gastromycosis ovis [= Brad sotbacillus (J. Nielsen)] LXIV.
 - gastromycosis ovis [= Bradsotbacillus (J. Nielsen)] LXIV. Glage, p. 171.
- gazogenes parvas (Choukévitch) LVIII. A. I. P., 1911,
 p. 247.
- gelaticus (Gran) XLIV. Bergens Museum Aarbog, 1902, n° 2.
 gelatinosus (Glaser) Ap. II. C. f. B., 2° s., T. 1, p. 879.
- geniculatus (DE BARY) XIII. Meyer et Neide. C. f. B., 2° s. T. 12, p. 350.
- geniculatus (Tyrothrix) (Duclaux) III. Annales de l'Institut agronomique, 1882.
 Winkler, C. f. B., 2° s., T. 1, 1895.
- n° 1 (Ghon et Mucha) LIV. С. f. В., Т. 39, р. 497, Т. 40, р. 37. J. D.
- nº 2 (Ghon et Mucha). С. f. В., 1° s., Т. 42, р. 406, 495. J. D.
- nº 1, 2, 3 (GHON, MUCHA, MULLER). Voir Bacterium.
- nº 1 (GHON ET SACHS) LIV. C. f. B., 1903, p. 6. J. D., p. 84.
 nº 2 (GHON ET SACHS). Voir Bacterium.
- giganteus (KERN) Aρ. V. A. B. I. K., T. 1, p. 453.
- gliscens (Molisch) XLIII. Sitz. d. k. Akad. d. Wissensch in Wien CXIII, 1904, p. 513.
- glutinosus (Guillemot, Guillemot, Hallé et Rist, Archiv. de Méd. expérim., 1904. — J. D., р. 180.
- glutinosus (KERN). Ap. V. A. B. I. K., T. 1, p. 440.

Bacillus gracilis (ZIMMERMANN) VI. Zimm.-Eisenb.

- granulatus (Gerstner) Ap. XI. A. B. I. K., T. 1, 1894. Matzu.

- gummis (Comes). Voir Bact. vitivorum (Baccarini).

haemoglobinophilus canis (FRIEDBERGER) LII. C. f. B., 1^{re} s.,
 Or., T. 33, p. 401.

- a et b (Grassberger) (= Bact. influenzae).

- haemorragicus (Kolb) An. IX. A. K. G., T. 7, p. 60.

haemorragicus nephritidis (Vassale) Ap. IX. Ziegler's Beiträge. T. 6, p. 312.

haemorragicus velenosus (Tizzoni et Giovannini) Ap. IX. Ziegler's Beiträge. T. 6, p. 314.

— Hartlebii (Stutzer et Hartleb) Ар. И. А. f. H., Т. 30, р. 372.

— hastiformis (Сноике́viтсн) Ар. І. А. І. Р., 1911, р. 247.

- hastilis (Seitz). Z. f. H., T. 30, p. 46 (= B. fusiformis (Vincent).
- helminthoïdes (Lewkowicz) **LXV**. J. D., р. 181. Arch. de méd. expérim., 1901.
- Hessii (Guillebeau) V. Schweizer Archiv fur. Tierheilkunde,
 1892. Mig., T. 2, p. 585.

- hirtus (Henrici) VI. Th., Bâle, 1894, p. 44.

- hyacinthisepticus (Köck) Ap. X, Monatshefte f. Landwirt-schaft., 1909, p. 247.
- icterogenes (Guarnieri) XXX. Vincent, Semaine médicale,
 1893. Flüg., T. 2, p. 372.
- icterogenes capsulatus (Banti) XXXII. V. Lohnis. C. f. B.,
 2° s., T. 18.

- idosus (Burchard) Ap. II. A. B. I. K., T. 2, p. 47.

- ilidzensis capsulatus (Karlinski) XLIX. Hygienische Rundschau, T. V, 1895. Mig., T. 2, p. 340.
 - implexus (ZIMMERMANN) III et IV. Chester, C. f. B., 2° s., T. 13, p. 737. L. et N.
- impleetans (Burchard) Ap. V. A. B. I. K., T. 2, p. 29.
- incanus (Ронь) Ап. III. С. f. В., 1^{се} s., Т. 2, р. 142.
 indigoferus (Voges) XLII. С. f. В., Т. 14, р. 391.

- indigogenus (ALVAREZ) Ap. VI. Eisenb., p. 304.

- industrius (Henneberg) Ap. VII, Deutsche Essigindustrie, 14, 15.
- inflatus (A. Koch) Ap. I. Botanische Zeitung, 1888.
- influenzae similis (Russ) LVI. C. f. B., T. 39, 1905.
- intermedius (Flugge) XIII. Z. f. H., T. 17, 1894, p. 296.
- intricatus (Russell) IV. Z. f. H., T. 11, 1892, p. 191. Mig.,
 T. 2, p. 546.
- inunctus (Ронь) Ар. III. С. f. В., 1^{ге} s., Т. XI, 1892, р. 143, Mig., Т. 2, р. 701.
- involutus (Wælsch) LII. C. f. B., 1" s., Or., T. 28, p. 645.
- irregularis (Сноике́viтсн) LVIII. А. І. Р., 1911, р. 345.
- Jequirity (Flugge) V. Flüg., T. 2.
- Kedrowskii LIV. Z. f. H., T. 16, 1894.

Bacillus kefir (Kuntze) Ap. I. C. f. B., 20 s., T. 24, p. 117.

— kermesinus (Татавогг) XLI. Th., Dorpat, 1891. — Mig., Т. 2, р. 858.

- nº 13 (KRUSE ET PASQUALE) Voir Bact. paradoxum.

- lacca (Kern) Ap. I. A. B. I. K., T. 1, p. 419.

- lacteus (Lembre) V. A. f. H., T. 29, 1897, p. 323. - L. et N.

- lacticus (Pasteur) XXVII. Macé, T. 2, p. 452.

lactimorbi (Jordan et Harris) Ap. I. C. f. B., 1⁵⁰ s., R.,
 T. 42, p. 474.

- lactis nº 1 à 13 (Flugge) V. Z. f. H., T. 17, p. 294.

- lactis acidi (Leichmann) L. Löhnis, C. f. B., 2° s., T. 18, p. 97.

lactis aerobans (Conn) L.

lactis niger (Gorini) XVI. C f. B., T. 20, 1896, p. 94.

lactopropylbutyricus non liquefaciens (Tissier) LVIII,
 Tissier et Gasching, A. I. P., 1903.

laevis (Distaso). C. f. B., 1^{ro} s., Or., T. 62, p. 444.

- laevis (Frankland) XIII. Meyer et Neide, C. f. B., 2° s.,
 T. 12, p. 350.
- leguminiperdus (von Oven) Tabl B. C. f. B., 2° s., T. 16,
 p. 74.
- n° 5 (Lемвке) Ар. VIII. А. f. H., Т. 29, р. 313.
- nº 11 (Lемвке) Ар. І. А. f. H., Т. 29, р. 306.
- no 13 (Lемвке) Ap. I. A. f. H., Т. 29, р. 308.
- nº 15 (Lемвке) Ap. III. A. f. H., Т. 29, р. 321.
- nº 16 (Lемвке) Ар. III. А. f. H., Т. 29, р. 322.
 lentiformis (Kern) Ар. III. А. В. І. К., Т. 1, р. 418.
- leptodermis (Burchard) XIII et XXXV. A. B. I. K., T. 2,
 n° 1, p. 33. Meyer et Neide, C. f. B., 2° s., T. 12, p. 350.
- leptosporus (Klein) V et XIII. C. f. B., T. 6. 1889. Meyer et Neide, C. f. B., 2° s., T. 12, p. 350.
- leucaemiae bovis (Lucet) Ap. VII. Baumgartens Jahresber.
 T. 7, p. 319.

levaniformis (Sмітн) V. С. f. В., 2° s., Т. 8, р. 596.

limbatus butyri (Klecki) XXVII. C. f. B., T. XV, 1894,
 p. 359. — Mig., T. 2, p. 621.

lineatus (Weigmann et Zirn) XXVII. C. f. B., T. XV, 1894,
 p. 467.

- liodermus (FLUGGE) V. B. K. W., 1887, p. 630 (= B. mesentericus liodermus.)
- liquefaciens (Distaso) (Coccobacillus). C. f. B., 1^{re} s., Or., T. 59, p. 102.
- liquefaciens (Klamann) Tabl. B. Allg. med. Centralzeit. 87,
 p. 1346.
- liquefaciens (TATAROFF) VIII. Th. Dorpat, 1891. Mig. T. 2.
 liquefaciens parvus (Luderitz). Ap. XI. Z. f. H., T. V, 1889.

J. D., p. 97.

liquefaciens pyogenes (MATZUSCHITA) VI A. f. H., T. 35,
 p. 270. — Matz.

Bacillus liquidus (Frankland) VIII. Z. f. H., T. 6, 1889, p. 382.

- lividus (ZIMMERMANN) XXII. Zimm., II, p. 18.

- longus (Distaso) (streptobacillus). С. f. В., 1^{го} s., От., Т. 62, р. 439.
- longus lactis (Duggeli) XLIX. C. f. B., 2° s., T. 15, 1906,
 p. 577.

- loxosus (Burchard) Ap. I. A. B. I. K., T. 2, p. 37.

- Ludwigi (Karlinsky) XLIX. Koch's Jahresb. über Gärungsorg. T. 5, p. 685.
- luminescens (Molisch) XLIII. Sitz. d. k. Akad. d. Wissensch. in Wien. CXIII, 1904, p. 513.
- luteus (v. Dobrzyniecki) **XXXVII**. С. f. B., T. 21, p. 835.

luteus (Flugge) XXXV. Flügge, T. 2.

lutulentus (Kern) V. A. B. I. K., T. 1, no 4, 1896, p. 402. L. et N.

- macerans (Schardinger). C. f. B., 2° s., T. 22, p. 98.

- Maddoxi (Miquel) (Urobacillus) Ap. I. Annales de micrographie, 1889, 1892.
- magnus liquefaciens (Luderitz) LIV. Z. f. Hyg., T. 5, 1889.

maïdis (Cuboni) V. Eisenb. — Mig., T. 2, p. 654.

du mal de Lure (CARRÉ) voir Bacterium. LI. A. I. P., 1912,
 p. 281.

— malabarensis (Löhnis) Ap. I. Löhnis. — L. et N.

- malacofaciens (v. Wahl) Tabl. B. C. f. B., 2° s., T. 16,
 p. 489.
- megalosporus (Сноике́viтсн) LVIII. А. І. Р., 1911, р. 345.

— megatherium (DE BARY) V. Chester, C. f. B., 2° s., T. 13, p. 737. — L. et N.

- meleagridis (Mac Fadyean) Ap. VI. Baumgarten's Jahresber.,
 T. 9, p. 142.
- membranaceus (KERN) Ap. III. A. B. I. K., T. 1, p. 407.
- mesentericus fuscus (Flugge) V. Eisenb. Flüg., T. 2.

- mesentericus liodermus (Flugge). Voir B. liodermus.

- mesentericus niger (Lunt) V. C. f. B. 2° s., T. 2, 1896, p. 572.
- mesentericus panis viscosi nº 1 (Vogel) VI. Z. f. H., T. 26, 1897, p. 404.
- mesentericus panis viscosi nº 2 (Vogel) V. Z. f. H., T. 26,
 1897, p. 404.
- mesentericus ruber (Globig) V. Z. f. H., Т. 3, 1888, р. 323. Tataroff, Th. Dorpat, 1891, р. 21.
- mesentericus vulgatus (Flugge) V. Chester, C. f. B., 2° s.,
 T. 13, p. 737. L. et N.
- mesenterioïdes (Deetjen) Ap. II. Th. Würzburg, 1893.
- minutus (ZIMMERMANN) Ap. IX. Zimm., II, p. 56.
- mitidus (Henrici) Ap. III. Th. Bâle, 1894, p. 29.
- mobile de l'acide butyrique (Grassberger et Schattenfroh) LVIII. A. f. H., Т. 37, 42, 48, 60.
- mori (Köck). Monatshefte f. Landwirtschaft, 1909, p. 247.

Bacillus morocarnens (Kôck) Ap. X. Monatshefte f. Landwirtschaft, 1909, p. 247.

- mucilaginosus (HAPP) Ap. I. Th., Berlin, 1893.

- mucilaginosus (micrococcus) (Schutz) Ap. VII. Arch. f. Tierheilk., Т. 12.
- mucosus tenax (de Simoni) XXXII. V. Lohnis, C. f. B., 2° s.,
 T. 18.
- multiformis (Distaso) LIV. C. f. B., 1^{re} s., Or., T. 59.
 p. 101.
- multiformis trichorrhexidis (Hodara) Ap. VII. Monatschr. f. prakt. Dermat., T. 19, p. 173.

— multipediculus (Flugge) Ap. IX. Flüg., T. 2, p. 319.

- multipediculus flavus (ZIMMERMANN) XIII. Zimm., II, 1894,
 p. 42.
- murinus (Schröter). Voir Bact. murisepticum (Koch.).
- muscoïdes (Liborius) Ap. XI. Z. f. Hyg., T. 1. J. D., p. 176.
- mycoïdes (Flugge) IV. Holzmüller, C. f. B., 2° s., T. 23, 1909, p. 304. — Trait.
- myxodens (Burchard) Ap. II. A. B. I. K., T. 2, p. 41. Mig., T. 2, p. 529.
- nacraceus (Татакоff) Ар. IX. Zimm., II, р. 34. Мід., Т. 2.
 р. 426.
- nanus (Holzmuller) IV (Voir B. mycoïdes). C. f. B., 2° s.,
 T. 23, 1909, p. 304.
- natans (Kern) Ap. I. A. B. I. K., T. 1, p. 413.
- nebulosus (Vincent). A. I. P., 1907, p. 62.
- necroseos (Salomonsen). Voir Bact. necrophorum.
- nephritidis interstitialis (Letzerich) Ap. I. Z. M. T. 13, p. 33,
 nitens liquefaciens (Kern) XIV. A. B. I. K., T. 1. Matzu,
- nitri (Ambroz) Ap. I. C. f. B., 1re s., T. 51, p. 194.
- nitroxus (Beijerinck) Ap. XI. C. f. B., 2° s., T. 25, p. 30.
- des nodosités les légumineuses (RODELLA) LVIII. C. f. B., 2° s., T. 18, 1907, p. 455.
- nomae (Schimmelbusch) Ap. IX. D. m. W., 1889, p. 26.
- питтогит (Матzuschita) Ар. VIII. С. f. В., Т. 29, р. 387.
- odoratus (Burri) Ap. II. C. f. B., 2° s., T. 3, p. 609.
- odorificans (Maschek) Ap. III. Maschek.
- œdematis maligni (Косн) (Vibrion septique) LIV. Trait.
- oleae (Schiff) Ap. I. C. f. B. 2' s., T. 15, p. 200.
- oleotuberculosis (SAVASTANO). Voir Bact. oleae (ARCANGELI).
- olfactorius (Holzmuller) IV (V. B. mycoïdes). C. f. B., 2° s.,
 T. 23, 1909, p. 304.
- oligocarbophilus (Beijerinck et van Delden) Ap. X. C. f. B., 2° s., T. 10, p. 33, T. 11, p. 594.
- oogenes fluorescens α (Zorkendörfer) XVII. A. f. H., T. 16.
 p. 392.
- oogenes hydrosulfureus g (Zörkendröfer) Ap. VI. A. f. H.,
 T. 16, p. 389.

Bacillus oogenes hydrosulfarens h (Zörkendröfer) Ap. VI. A. f. H., T. 16, p. 390.

- oogenes hydrosulfurens i (Zörkendörfer) Ap. VI. A. f. H.,

T. 16, p. 390.

- orthobutylicus (Grimbert) LVIII. A. I. P., 1893, p. 353.

- ovatus minutissimus (Unna et Tommasoli) Ap. IX. Monatschr. f. prakt. Dermat., T. 9, p. 59.

oxalaticus (ZOPF) V. A. B. I. K., T. 1, p. 139.

- oxytocus perniciosus (Wyssokowitch) **XXXII**. (Voir B. lactis aerogenes). Flüg., Т. 2, р. 268.
 - pæciloïdes (Roger et Garnier) **LXIV** (Voir Bact. ramosum). S. de B. 1906.
- pallens (Henrici) Ap. VII. Th., Bâle, 1894, p. 36.
- pallescens (Henrici) Ap. IX. Th. Bâle, 1894, p. 35.
- pallidus (Henrici) Ap. VII. Th.. Bâle, 1894, p. 36.
- pannosus (KERN) Ap. III. A. B. I. K., T. 1, p. 409.
- nº 4 (Pansini). Virchow's Archiv, T. 122, p. 439.
 nº 5 (Pansini) Ap. I (Voir B. agglomeratus), ibid.
- nº 6 (Pansini) Ap. I (Voir B. coccoïdeus), ibid.
- nº 8 (Pansini) Ap. I, ibid.

- nº 9 (Pansini), ibid.

- nº 18 (Pansini) Ap. VII, ibid.

- paraexilis (Distaso). Ap. IX bis C. f. B., 1re s., Or., T. 59, p. 48.

- paraputrificus (Bienstock) LIV. A. I. P., 1899. p. 854.

- parvus (Meyer et Neide) XIII. C. f. B., 2° s., T. 12, p. 350.
- pastorianus (Clostridium pastorianum) (WINOGRADSKI) LVIII. C. f. B., 2° s., T. 9, p. 43.

— paucicutis (Burchard) Ap. II. A. B. I. K., T. 2, p. 27.

- pectinovorus (Granulobacter) (Beijerinck) LIV. Arch. néerl., s. 2, T. 9, 1902, p. 3.
 - pedunculatus (CLADO) XXXV. Bul. de la Soc. Anat., Paris. 1887, p. 339.
- pellucidus (Fischer) (Halibacterium) Ap. VIII. Fischer, p. 22.

- pellucidus (Kern). A. B. I. K., T. 1, p. 404.

- peptonificans (Lubenau) V. C. f. B. 110 s., Or., T. 40, p. 435.
- perfringens (Achalme) (B. Welchi) LIV. Korentchevsky, A. I. P., 1909, p. 91. J. D., p. 65.
- perittomaticus (Burchard) Ap. V. A. B. I. K., T. 2, p. 11.
- (Clostr.) persicae tuberculosis (Köck) Ap. X. Monatshefte f. Landw. 1909, p. 247.
- pertussis (Eppendorf) LII. Jochmann et Krause, Z. f. H.,
 T. 26, 1901, p. 193.
- pestifer (Frankland) Ap. III. Z. f. H., T. 6, p. 386.

- pestis astaci (Hofer). Voir Bact. astaciperda.

- petasites (Meyer et Gottheil) XIII. C. f. B., 2° s., T. VII, p. 535.
- A et B (Peters) Ap. VII. Botanische Zeitung, T. 47.
- petroselini (Burchard) Ap. V. A. B. I. K., T. 2, p. 39.

Bacillus phasianicida (Klein) XXXII. (Voir Bact. chol. gallin.). C. f. B. 1^{re} s., Or., T. 31, p. 76.

- phaseoli (v. Wahl) Ap. I. C. f. B., 2° s., T. 16, p. 489.

- phlegmonis emphysematosae (E. Eraenkel). Voir B. perfringens.
- phosphorescens coronatus (FISCHER) XLIII. C. f. B., T. II,
 p. 89.
- pinicoelatus (Gerstner) Ap. XI. A. B. I. K., T. 1, 1894. Matzu.
- piscicidus agilis (Siebert) XIII. C. f. B., T. 17. p. 888.

- pituitans (Burchard) Ap. V. A. B. I. K., T. 2, p. 9.

— plicatus (Deetjen) VI. Th. Würzburg, 1893. Mig., Т. 2, р. 576.

— plumbeus (Кеск) Ар. III. Th., Dorpat, 1890, р. 54.

- plymouthensis (Fischer XX. Z. f. H., T. 2, p. 74. Mig., T. 2, p. 849.
- pneumoniae felis (Gærtner). XXXII. C. f. B., 1^{ro} s., Or.,
 T. 51, p. 232.

— pneumosepticus (Babès) Ap. IX. Eisenb., p. 283.

- pneumosepticus (Klein) Ap. VI. C. f. B., 1. s., 1889, T. 5, p. 623.

- polyarthritidis (Poels) LII. Voir Bact. pyogenes suis.

- polymorphus (Frankland) Ap. VII. Ph. T. R. S., 1887, B,
 p. 275. Mig., T. 2, p. 420.
- polymyxa (Prazmowski) XXVII. С. f. B., 2° s., Т. 14, р. 359.
 polypiformis (Liborius) Ар. XI. Z. f. H. Т. 1. J. D., р. 176.
- praepollens (Maassen). Arb. aus d. kaiserl. Gesundheitsamte. Berlin, T. 15, p. 500.
- profusus (Frankland) Ap. VIII et IX. Ph. T. R. S., 1887, B,
 p. 276. Mig., T. 2, p. 421.
- promissus (Kern) Ap. III. A. B. I. K., T. 1, p. 420.
 propellens (Zimmermann) Ap. Zimm. 3° s., 1900, p. 18.
- proteus fluorescens (JEGER) XVII. Voir Bact. fluorescens.
- proteus vulgaris. Voir Bact. vulgare (Hauser).
 pseudanthracis (Burri) IV. C. f. B., II, 3-81.
- pseudobulgaricus (Distaso). Ap. IX bis S. de B., 1911.
- pseudobutyricus (Воткім) LIV. Z. f. H., 1891 et 1892, p. 421. J. D. [= B. butyricus (Botkin)].

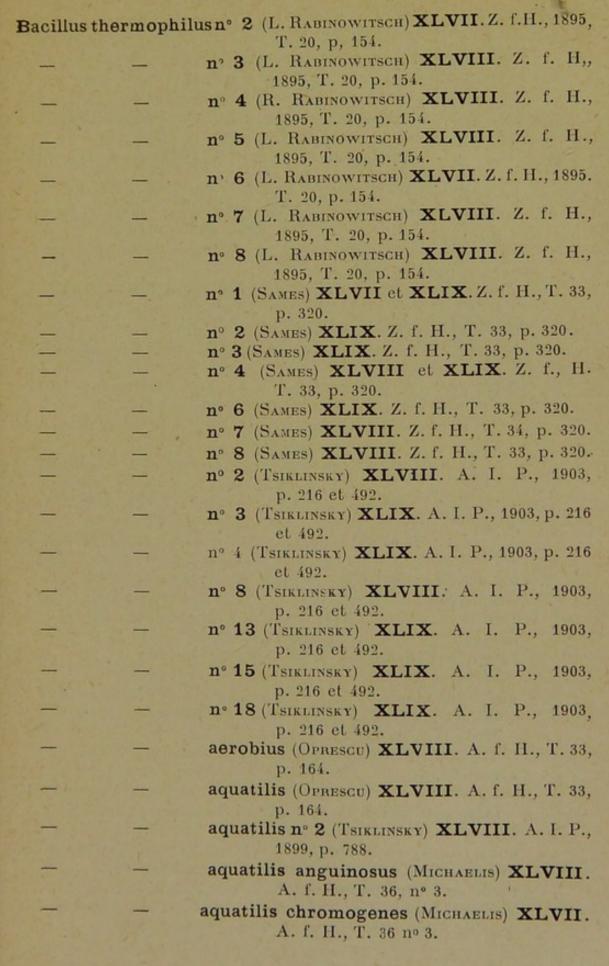
pseudobutyricus (Hueppe) V. M. K. G, 2, 309.

- pseudobutyricus (Matzuschita) Ap. I. A. f. H., T. 36, p. 270.
- pseudocoli anaerobius (Jungano) LXIII. J. D., p. 162.
- pseudoconjunctivitidis (KARTULIS) XIV. C. f. B., 110 s., T. 1, 289.

- pseudocyaneus (Cohn).

- pseudogracilis (Migula) XVII (Pseudomonas). Mig., T. 2, p. 888.
- pseudokeratomalaciae (Lœв) Ap. IX. С. f. B., 1° s. Т. 10, p. 369.
- pseudoepidermidis similis (Rosenthal). Ap. V. Z. f. H., T. 5, p. 166.
- pseudolividus (ZIMMERMANN) XXII. Zimmermann, II, p. 18.

- Bacillus pseudomurisepticus (Bienstock) Ap. IX. Zeitschr. f. klin. Med., 8, 1.
 - pseudoœdematis (Liborius) LIV. San Felice, Z. f. H., T. XVII, 1893. J. D., p. 97.
 - pseudoramosus (Distaso). C. f. B., 1^{re} s., Or., T. 62, p. 441.
 - pseudotetanicus aerobius (Kruse) XXVII. Flüg., T. 2, 1896,
 p. 267.
 - pseudotetanus (TAVEL) LIV. C. f. B., T. 23, p. 538.
 - pseudotomentosus. Voir B. filiformis (Henrici).
 - putidus (KERN) Ap. III. A. B. I. K., T. 1, p. 400.
 - putrificus (Вієньтоск) LIV. A. І. Р., 1889, р. 854. Korentchevsky, A. І. Р., 1909, р. 91.
 - putrificus coagulans (Distaso) LIV. C. f. B., 1^{re} s., Or., T. 59, p. 97.
 - putrificus coli (Віємутоск) = В. putrificus (В.)
 - putrificus filamentosus (Distaso) LIV. C. f. B., 1^{re} s., Or.,
 T. 59, p. 97.
 - putrificus immobilis (Distaso) LIV. A. I. P., 1909, p. 954.
 - putrificus ovalaris (Dеволо) LIV. С. f. В., 1^{re} s., От., Т. 62,
 p. 229.
 - pyocyaneus (Gessard). Voir Bacterium pyocyaneum.
 - pyogenes anaerobius (Fuchs) Ap. XI. J. D., p. 69.
 - pyogenes bovis (Künnemann). = Bact. pyogenes suis (Grips).
 - pyogenes caprae (Dammann et Freese). = Bact. pyogenes suis (Grips).
 - pyogenes pulveris (OGATA) Ap. IX. C. f. B., T. 9, p. 442.
 - quercifolius (Deetjen) V. Th., Würzburg, 1890. Mig., T. 2,
 p. 309.
 - radiatus (Lüderitz) LIV. Z. f. H., T. 5, 1889.
 - radicosus (ZIMMERMANN) III. Zimm., I, p. 30.
 - ramosus (Eisenberg) IV. Eisenb.
 - ramosus (Veillon et Zuber). Voir Bacterium ramosum.
 - ramosus liquefaciens (Flugge) IV. Flüg., T. 2.
 - regularis filiformis (Debono) LVIII. C. f. B., 1^{re} s., Or., T. 62, p. 229.
 - retiformis (Maschek) Ap. II. Maschek.
 - du rhumatisme articulaire aigu (ACHALME). Voir B. perfringens.
 - robustus (A. Meyer et Blau) XLVIII. C. f. B., 2° s., T. 15, 1906, p. 97.
 - nº 1 (Rodella) LIX. Voir Bacillus anaerobius.
 - nº 2 (RODELLA) LIX.
 - nº 3 (Rodella) LIX.
 - nº 4, 5 et 6 (Rodella). Voir Bacterium.
 - nº 7 et 8 (Rodella). Voir Bacterium.
 - rosaceus margarinicus (Jolles et Winkler) XLI. Z. f. H., T. 20, 1895.
 - Rosenthalii, Ap. I. Rosenthal, Th., Berlin, 1893, p. 37.


394 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE Bacillus rosescens (Choukévitch) XLI. A. I. P., 1911, p. 345. rouge de l'eau (Lustig) XX. C. f. B., VIII, 1890, p. 33. rouge de Terre-Neuve (LE DANTEC). Voir B. Danteci. rouge de la sardine (Du Bois ST-SÉVRIN). XX. A. I. P., 1894, p. 152. rouge de la sardine (Aucнé). Voir Bact. sardinæ. rouge pathogène de Thévenin. Voir Bacterium. rubellus (Okada) LIV. C. f. B., T. 11, 1892. - J. D., p. 101. Voir B. nº 2 (Ghon et Mucha). ruber (ZIMMERMANN) XIX. Zimm., I, p. 24. Mig., T. 2, p. 850. ruber balticus (Breunig). Voir Bact. kieliense (Br.). ruber indicus (Косн). Voir Bact. indicum (К.). ruber plymouthensis (FISCHER). Voir Bact. plymouthense (F.). rubiginosus (Catiano) XLI. Cohn's Beiträge zur Biologie. T. VII, 1896, p. 538. — Mig., T. 2, p. 854. rubiginosus (Kern) XX. A. B. I. K., I. - Matzu. rugosus (Henrici) III. A. B. I. K., T. 1, p. 28. ruminatus (MEYER ET GOTTHEIL) V. C. f. B., 2º s., T. 7, p. 485. — Chester, C. f. B., 20 s., T. 13, p. 737. — L. et N. rusticus (KERN) V. A. B. I. K., I, p. 440. sacchariphilus (LAXA) XLVII. C. f. B., 2° s., T. 4, 1898. saccharobutyricus (Klecki) LVIII. saccharobutyricus immobilis (Grassberger et Schattenfroh) LIV. Voir Bac. perfringens. salivae minutissimus (KRUSE) Ap. IX. Flüg., T. 2, p. 440. saprogenes vini nº 1 (Kramer, Ap. III. Kramer, T. 2, p. 235. saprogenes vini nº 2 (Kramer) Ap. III. Kramer, T. 2, p. 136. saprogenes vini nº 3, nº 4 (KRAMER) Ap. II. Kramer, T. 2, p. 203. saprogenes vini nº 5 (KRAMER) Ap. III. Kramer, T. 2, p. 138. Sattleri (Icquirity-B.) Ap. I. Flüg., T. 2, p. 203. scaber (Tyrothrix) (Duclaux) V. Duclaux, Le lait, Paris, 1889. Winkler, C. f. B., 2° s., T. 1, 1895. Schafferi (Freudenreich) XXX. Landwirtschaftl. Jahrb. der Schweiz, T. 4, 1890. - Koch's Jahresbericht, 1890, p. 97. Schimmelbuschi. Voir B. nomae. de Schmorl voir Bact. abortus (Bang). secalis (Burrill). Voir Bact. zeae (B.) Selanderi (B. de la peste porcine dano-suédoise) Ap. IX. septicaemiae canis (PARANHOS) LII. C. f. B. 110 s. septicaemiae hemorragiae (HUEPPE). XXXII. Tagbl. d. Naturf.-Vers. Wiesbaden, 1837. de la septicémie gangréneuse de la grenouille (LEGRAIN). Voir Bact. hydrophilum fuscum. septicus keratomalaciae (Babès) Ap. VII. Bakt. d. sept. Proz. d. Kind., Leipzig, 1889.

- septicus vesicae (Clado) XXVII. Th., Paris, 1887.
- sericeus (Tataroff) Ap. VIII. Th., Dorpat, 1891, p. 26.

- sessilis (KLEIN). C. f. B., T. 6, 1889, p. 10.

- Bacillus setosus (HENRICI) III. Th., Bâle, 1894, p. 46.
 - de Severin (= B. soriferus) Ap. XI. C. f. B., 2° s., T. 1, 1895; T. 3, 1897.
 - silvaticus (Meyer et Neide) XVI et V. C. f. B., 2º s., T. 12, p. 161.
 - simplex (Meyer et Gottheil) V. C. f. B., 2° s., T. 7, p. 685. Chester, C. f. B., 2° s., T. 13, 1904, p. 737. — L. et N.
 - siticulosus (Kern) Ap. III. A. B. I. K., T. I, p. 22.
 - Skrzynski LI. A. I. P., 1908, p. 682.
 - smaragdino-phosphorescens (KATZ) XLIII. C. f. B. T. 9. 160.
 - solaniperda (Kramer) Ap. I. Oesterr. landwirtsch. Centralbl.,
 nº 1, p. 11. Flüg., T. 2, p. 203.
 - solidus (Luderitz) Ap. XI. Z. f. H., T. 5, 1889. J. D., p. 177.
 - Solmsii (A. Fischer) Ap. X. Vorles. über Bakt., Iena, 2º éd.
 - sombrosus (Kern) Ap. II. A. B. I. K., T. 1, p. 429.
 - sordidus (Kern) Ap. VIII. A. B. I. K., T. 1, p. 496.
 - soriferus. Voir B. de Severin.
 - sphaericus (Meyer et Neide) IV. C. f. B, 2° s., T. 12, p. 350.
 - sphaerosporus (Beijerinck) Ap. XI. C.f. B., 2° s., T. 25, p. 30.
 - spinosus (Luderitz) Ap. XI. Z. f. H., T. 5, 1889. J. D., p. 88.
 - spissus (Kern) Ap. V. A. B. I. K., T. 1, p. 446.
 - splendens (Bernabei). Voir Bact. putidum splend. (B.).
 - à spores terminales (L. Roux) LIII. V. B. putrificus.
 - sporogenes (Metschnikoff) LIV. Berthelot. A. I. P., 1909,
 p. 85.
 - sporogenes coagulans (Debono) LIV. С. f. B., 1^{го} s., Ог., Т. 62, р. 229.
 - sporogenes non liquefaciens anaerobius (Jungano) LVIII.
 J. D., p. 154.
 - sporogenes regularis (DISTASO) LIV. C. f. B, 1^{ro} s., Or., T. 59, p. 99.
 - sporogenes saccharolyticus (Distaso) LIV. C. f. B., 1^{ro} s., Or., T. 59, p. 100.
 - sporogenes zoogleicus (Distaso) LIV. C. f. B., 1^{ro} s., Or.,
 T. 59, p. 100.
 - sporonema (Schaudinn) Ap. X. Arch. f. Protistenkunde, T. 2, 1903.
 - spumosus (ZIMMERMANN) VIII. Zimm., II, p. 28.
 - squamosus longus (Kern) XIII. A. B. I. K., T. I, p. 436.
 - stellatus anaerobius (VINCENT) Ap. X. Voir Bacterium stellatum.
 - stolonatus (Adametz et Wichmann) Ap. VIII. Mitteil. d. österr.
 V. f. Brauerei, 88, 44.
 - stoloniferus (Ронь) Ар. III. С. f. В., Т. 2, р. 142.
 - subanaerobius (B. butyricus nº 3) (GRUBER) XIII. C. f. B., T. 1, p. 371.
 - subepidermidis = B. Nº 7 (ROSENTHAL) XXVIII. Z. f. H.
 5. 168.
 - subrubeus (Kern) XLI. A. B. I. K., T. 1, 1896.

Bacill	us subtiliforn	nis conjunctivitidis (MICHALSKI) V. C. f. B., 100 s.
	Or., T. 36	
	subtilis (Co Traités.	OHN) V. Chester, C. f. B., 2° s, T. 13, 1904, p. 737
19.15		ilis (Sternberg) V. Flügge, T. 2, p. 216.
		(Lustig) XXVII. Lustig, p. 18.
	suinestifer (KRUSE) = Bact. intestinale suis.
_		uefaciens (KRUSE) Ap. III. Flüg., T. 2, p. 318.
	sulfurens (K	KERN) XIV. A. B. I. K., T. 1. — Matzu.
-		(JORDAN) Ap. III. Mig., T. 2, p. 724.
		fætidus (Tommasoli). Ap. IX. Monatschr. f. prakt
		T. 8, p. 483.
-) Ap. V. A. B. I. K., T. 1, p. 443.
-		othrix) (Duclaux) V. Duclaux, Le lait, Paris, 1889.
		C. f. B., 2° s., T. 1, 1895. — Meyer et Neide, C. f.
		Г. 12, р. 350.
1 -		liquefaciens (Choukevitch) XXVII. A. I. P.
	1911, p. 34	
-	tenuis spat	culiformis (Distaso) LIV. C. f. B., 1re s., Or.,
	T. 59, p. 1	01.
-	teres (MEYE	R ET NEIDE) V. C. f. B., 2° s., T. 12, p. 161.
_	terrestris (N	IATZUSCHITA) Ap. I. C. f. B., 1 . s., T. 29, p. 379.
_	testudinifori	mis (MATZUSCHITA) Ap. VIII. C. f. B., 10 s., T. 29,
	p. 387.	
11 -		LAÏER) LIV. Traités.
_		ALLÉ). Voir B. funduliforme (V. ET Z.).
100		as (Russell) LIV = B. sporogenes (Metschnikoff),
		. 11, 1892, p. 190. — J. D., p. 132.
		lus nº 1 (BRUINI) XLVII et XLVIII. C. f. B.,
	· · · · · · · · · · · · · · · · · · ·	1re s., Or., T. 38, p. 177 et 298.
		nº 2 (BRUINI) XLVIII. C. f. B., 1re s., Or.,
		T. 38, p. 177 et 298.
		nº 3 (Bruini) XLIX. C. f. B., 10 s., Or., T. 38,
		p. 177 et 298.
		n' 4 (BRUINI) XLIX. C. f. B., 10 s., Or., T. 38,
1997		
		p. 177 et 298.
1		nº 5 (Bruini) XLIX. C. f. B., 1º s., Or., T. 38,
		p. 177 et 298.
-	-	nº 6 (BRUINI) XLVIII. C. f. B., 1º s., Or.,
		T. 38, p. 177 et 298.
-	-	nº 7 (BRUINI) XLIX. C. f. B., 110 s., Or., T. 38,
		p. 177 et 298.
-	-	nº 8 (Bruini) XLVIII. C. f. B., 1º s., Or.,
		T. 38, p. 177 et 298.
-	1-	n" 10 (BRUINI) XLVIII. C. f. B., 1" 2., Or.,
		T. 38, p. 177 et 298.
11-	_	nº 1 (L. RABINOWITSCH) XLVIII. Z. f. H.,
		1895, T. 20, p. 154.

Bacillus thermophilus aquatilis liquefaciens (MICHAELIS) XLVIII. A. f. H., T. 36, n° 3. aquatilis liquefaciens aerobius (MICHAELIS) XLVIII. A. f. H., T. 36, no 3. lacmus (Sames) XLVIII. Z. f. H., T. 33, p. 320. liquefaciens aerobius (Oprescu) XLVIII. A. f. H., T. 33, p. 164. reducens (Oprescu) XLVII. A. f. H., T. 33, p. 164. tomentosus (Henrici) III. Th., Bâle, 1894, p. 40. tostus (A. MEYER ET BLAU) XLIX. C. f. B., 2° s., T. 15, 1906, p. 97. tracheiphilus (SMITH) Ap. VI. C. f. B., 2° s., T. 1, p. 364; et T. 7, p. 80 et 190. Trambustii (Trambusti et Galeotti) Ap. III. Kruse, C. f. B., 1r° s., T. 2, p. 717. Tricomii XIII. Eisenb., p. 274. tuberigenus nº 1 (Gonnermann) Ap. III. Landwirts. Jahresber., T. 23, p. 656. tuberigenus n, 2 (Gonnermann) Ap. III. Landwirts. Jahresber., T. 23, p. 656. no 3 (Gonnermann). Landwirts. Jahresber. T. 23, p. 656. nº 4 (Gonnermann) XX. Landwirts. Jahresber. T. 23, p. 656. nº 5 (Gonnermann) Ap. V. Landwirts. Jahresber., T. 23, p. 656. n. 6 (GONNERMANN) Ap. VII. Landwirts. Jahresber., T. 23, p. 656. tuberosus (Kern) XX. A. B. I. K. - Matzu. tumescens (ZOPF) V. C. f. B., 2° s., T. VII, p. 534. - Chester, C. f. B., 2° s., T. XIII, 1904, p. 737. — L. et N. turgescens (Burchard) Ap. V. A. B. I. K., T. 2, n. 1, p. 16. turgidus (Tyrothrix) (Duclaux) III. Duclaux, Le lait, Paris, 1889. — Winkler, C. f. B., 2° s., T. 1, 1895. ubiquitus (JORDAN) Ap. VII. Experimental investigations by the state board of health of Massachussetts, 1890, p. 830. -Mig., T. 2, p. 424. umbilicatus (ZIMMERMANN) Ap. IX. Zimm., II, p. 6. ureae (Leube) Ap. IX. Virchow's Archiv, T. 100, p. 558. urocephalum (Tyrothrix) (Duclaux) V. Duclaux, Le lait, Paris, 1889. — Winkler, C. f. B., 2° s., T. 1, 1895. Utpadeli. Ap. VIII. A. f. H., T. 6, p. 359. uveae (Коск) Ap. X. Monatshefte f. Landwirtschaft, 1909, p. 247. uvaeformis (Kern) Ap. I. A. B. I. K. T. 1, p. 415. vacuolosus (Sternberg) Ap. I. Flüg., T. 2, p. 216.

Vaillardi (Kelsch et Vaillard). A. I. P., T. IV, 1890, p. 276.

vegetus (Kern) Ap. III. A. B. I. K., T. 1, p. 399.

Bacillus DE VEILLON ET MORAX. Annales d'oculistique, 1900. J. D.

- ventriculi (RACZYNSKI) Ap. VI. Eisenb., p. 161.
- vermicularis (Frankland) VI. Z. f. H., T. 6, 1886, p. 384.
- vernicosus (ZIMMERMANN) Tabl. B. Zimm., T. 2, p. 46.
- verrucosus (KERN) Ap. VII. A. B. I. K., T. 1, p. 59.
- vesiculiformans (Henrici) Ap. VIII. Th., Bâle, 1894, p. 25.
- vesiculosus (Henrici) Ap. VII. Th., Bâle, 1894, p. 37.
- b (Vignal) Ap. III. Archiv. de physiol., 1886.
- villosus liquefaciens (TATAROFF). Zimm., T. 2, p. 38.
- violaceus (Lustig) XXII. Lustig, p. 75.
- violaceus (Macé) XXI. Macé.
- violaceus acetonicus (Bréaudat) XXI. A. I. P., T. 20, 1906,
 p. 874.
- virgatus (Kern) Ap. I. A. B. I. K., T. 1, p. 416.
- viridis (Lesage) XXXIX. Archiv. de Physiol., 1889. Macé.
- virulentissimus (Perroncito) Ap. VII. Baumgarten's Jahresber, T. 5, p. 387.
- viscosus bruxellensis (VAN LEER) Ap. I. C. f. B., 2° s., T. 23, p. 159.
- viscosus ochraceus (Freund) XIII. Th., Erlangen, 1893. Mig.
- viscosus lactis (ZIMMERMANN) XXVII. Landwirt. Jahr., 1891,
 p. 185. C. f. B., T. 9, p. 698.
- viscosus margarineus (Jolles et Winkler) Ap. V. Z. f., H.,
 T. 20, p. 104.
- nº 2 (Weigmann et Zirn) Ap. II. C. f. B., 2° s., 15, p. 466.
- nº 3 (WEIGMANN ET ZIRN) Ap. II. C. f. B., 2 s., 15, p. 466.
- no 1 (Weiz) Ap. I. Z. f. H., T. 2, p. 153.
- n' 2 (Weiz) Ap. I. Z. f. H., T. 2, p. 153.
- Welchi. Voir B. perfringens.
 - zürnianus (List) Ap. IX. Th., Leipzig, 1885, p. 36.

Bacteridium. Voir Bacillus.

Bacterium abortus (Corynebacterium abortus endemici) = Abortus bazillus (Bang) LXVII. Glage.

- acaciae (Greig Smith) Ap. X. С. f. В., 2° s., Т. 10, р. 61; Т. 11,
 p. 678; Т. 15, р. 380.
- accidentalis tetani (Belfanti et Pescarolo) XXVIII. C. f. B., 1888, T. 4. — Flüg., T. 2, 1896.
- aceti (Pasteur, Beijernick) XXXII. C. f. B., 2° s., T. 4, p. 211 et 867. L. et N.
- acetogenum (Groupe) L.
- acetogenum α (Distaso) L. C. f. B, 1^{ro} s., Or., T. 59, p. 48.
- acetogenum β (Distaso) L.
 acetogenum proteiforme (Distaso) L.
- acidi lactici n' 1 (Hueppe) XXXII. Mitteil. aus dem kaiserl. Gesundheitsamte, T. 2, 1884. Mig., T. 2, p. 327.
- acidi laevolactici (Schardinger) XXXII. Koch's Jahresber., 1890, p. 85.

400 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

Bacterium acidi laevolactici halensis (Kozai) XXXII. C. f. B., 2° s., T. 11, p. 735. acido-résistants XXXVII (POTET), Th., Lyon, 1902. - Philibert, Th., Paris, 1908. acido-résistant de Aujewski. XXXVII. de Beck XXXVII. Arb. aus dem kaiserl. Gesundheitsamte, 1905, T. 3, p. 145. de Benvenutti XXXVII. de Binot XXXVII. Archiv. de parasitologie. 1903. — Borrel, B. I. P., 1904. de CARNEVALI. de Coggi XXXVII. Giornale d. reale Sozieta italiana d'Igiene, 1899. de la gangrène pulmonaire (L. Rabinowitsch) XXXVII. D. m. W., 1900, nº 16. de Grassberger XXXVII. de Herbert XXXVII. C. f. B., 1900, T. 27, p. 390. de Herr et Beninde XXXVII. Z. f. H., 1901, p. 182. de Korn XXXVII. C. f. B., 1899, T. 25, p. 532, 1900, T. 27, p. 480. de MARKL XXXVII. W. k. W., 1901. de Mironescu XXXVII. Z. f. H., XXVII, 1901, p. 497. de Moeller XXXVII. D. m. W., T. 28, juin et juillet 1902. de Petri XXXVII. Arbeit. aus dem kaiserl. Gesundheitsamte. T. XIV, 1898, p. 1. de L. Rabinowitsch XXXVII. Z. f. H., 1897, p. 90. de M. Tobler XXXVII. Z. f. H., T. 36, 1901, p. 120. acnes contagiosae (Dieckerhoff et Grawitz) XXIX. Virchow's Archiv., T. 102. - Eisenb. acutangulum (Lembre) XVI. A. f. H., T. 29, p. 319. nº 12 (Adametz) XIV. Landwirtschaftliche Jahrbücher, 1889, p. 245. nº 18 (Adametz) XXXVIII. Landwirtschaftliche Jahrbücher, 1889, p. 245. nº 19 (Adametz) XXXII. Landwirtschaftliche Jahrbücher, 1889, p. 245. aegyptiacum (Косн) LII. С. f. В., Т. 25, р. 457. aeruginosum (Schroeter) XVII. Cohn's Beiträge zur Biologie, T. 1, 1872, nº 2, p. 126. Voir Bact. pyocyaneum. d'Aertryck (Groupe paratyphosum B.) XXX. K. et W. agglomerans (Beijerinck). Botan. Zeitung, 1888, p. 749. = Bact. herbicola aureum (B. et D.).

- 401 INDEX BIBLIOGRAPHIQUE Bacterium agreste (Lohnis) XXX. C. f. B., 100 s., Or., T. 40, p. 177. Albarrani (Jungano) LX. J. D. p. 175. album cadaveris (Strassmann et Strecker) VII. Eisenb. -L. et N. album putidum (MASCHEK) VII. Adametz. alcaligenes (Petruschky) XXX. C. f. B., 1896, T. 19. amylozyma (Perdrix) LVIII. A. I. P., 1891, p. 287. anaerobicum parvum (coccobacillus) (Choukévitch) LXIV. A. I. P., 1911, p. 345. anaerobium nº 4, 5 et 6 (RODELLA) LVI. Z. f. H., T. 41, f. 3. anaerobium no 7 (Rodella) LXIII. Z. f. H., T. 41, fasc. 3. anaerobium nº 8 (RODELLA). LXIII. Z. f. H. T. 41, fasc. 3. anatum. Voir Bact. du choléra des canards. angustum (Lembre) XIV. A. f. H., T. 26, no 4, p. 305. annulatum (ZIMMERMANN) VIII et XVI. Zimm., II, p. 30. aquatile album (Matzuschita) XXVIII. Matzu. aquatile commune (KRUSE) = Bact. punctatum (Zimmermann). aquatile fuscum (Brennig) XXXVIII = Bact. 5 (Br.) Brennig, Th. Kiel, 1888, p. 33. aquatile radiatum (Flugge) X. Flüg., T. 2, p. 315. aquatile solidum (Lustig et Carle) XXX. Lustig, p. 67. aquatile sulcatum no 1 (Weichselbaum) XXX. Das österreichische Sanitätswesen, 1889, nº 14, p. 23. -Eisenb. nº 2 (Weichselbaum) XXX. Das österrei
 - chische Sanitätswesen, 1889, n° 14, p. 23. Eisenb.
 - n° 3 (Weichselbaum) **XXX**. Das österreichische Sanitätswesen, 1889, n° 14, p. 23. Eisenb.
 - n°4 (Weichselbaum) **XXX**. Das österreichische Sanitätswesen, 1889, n° 14, p. 23. Eisenb.
 - n° 5 (Weichselbaum) XXX. Das österreichische Sanitätswesen, 1889, n° 14, p. 23. —
 Eisenb.
 - arborescens (Frankland) XIV. Z. f. H., T. 6, 1889, p. 379.
 argenteo phosphorescens nº 1 (Katz) XLIII. C. f. B., T. 9, p. 156; T. 11, p. 157.
 - argenteo phosphorescens nº 3 (KATZ) XLIII. C. f. B., T. 9,
 p. 156; T. 11, p. 157.
 - ascoformans (Moreno) XXXVII. C. f. B., 1901, T. XXX, p. 111.
 - astaciperda (Hofer) VIII. Handbuch der Fischkrankheiten, Stuttgart, 1906.
 - atrosepticum (VAN HALL). Ap. X. C. f. B., 2° s., T. 9, p. 381 et 642.
 - aurantiacum (Frankland) XXXVI. Z. f. H., T. 6, 1889.

Bacterium auratum (HARZ) Ap. X. C. f. B., 1re s., Or., T. 35, p. 153.

- aureo flavum (Flugge) XXXVI. Flüg., T. II. = B. aureum.
- aurescens (Frankland) XXXVII. Ph. T. R. S., T. 178, 1887.
 Mig., T. 2, p. 466.
- aureum (ADAMETZ) XXXVI. Adametz. = Bact. aureo-flavum.
- aureum liquefaciens (Matzuschita) XIV. A. f. H., T. 35, p. 268. Matzu.
- avicidum (Кітт). Voir Bact. cholerae gallinarum.
- azotobacter (Beijerinck) LIII. Azotobacter rhodochrous.
- azureum (ZIMMERMANN) XLII. Zimm., II, 1894.
- du Barbone des buffles (Oreste, Armanni). XXXII. C. f. B.,
 T. 20, p. 288; T. 23, p. 32.
- Belfantii. Voir Bact. accidentale tetani.
- betae (Busse) Ap. X. Zeitschr. f. Pflanzenkrank., 1897, T. 7.
- betae viscosum (PANER) XLIV. Acad. des sc. de Cracovie, janvier 1905.
- bifidum (Bac. bif. communis) (TISSIER) LXIII. Tissier, Th. Paris, 1900. — A. I. P. 1909, p. 189.
- Billingsii XXX. Baumgarten's Jahresber., T. 5, p. 184.
- brassicae (Wehmer). Voir Micrococcus.
- brassicae acidae (Conrad) XXXI. A. f. H., 1897, T. 39, p. 56.
- de Breslau (Groupe paratyphosum) (Flugge, Kaensche) XXX. K. et W.
- bristolense (Klein) XXXII. C. f. B., 1^{re} s., Or., T. 32,
 p. 674.
- Broqueti. XX. A. I. P., 1910, p. 529.
- de Bruges (Groupe paratyphosum) (DE NOBELE) XXX. K. et W.
- bruneum (Breunig) XXXVIII. Th., Kiel, 1888.
- bruneum rigense (BAZAREWSKI) XVI. C. f. B., 2° s., T. 15, p. 1.
- brunificans (Matzuschita) XVI. A. f. H., T. 35, p. 264.
 Matzu.
- brunificans (Lehmann et Neumann) XXXVIII. L. et N.
- de Bruxelles Groupe paratyphosum) (DE NOBELE) XXX. K. et W.
- Budayi. Voir Bact. cadaveris butyricum (Buday) Ap. XI. C. f. B.,
 T. 26, p. 369.
- bullosum (Distaso) LX. C. f. B., 1 to s., Or., T. 59, p. 101.
- bullescens (ZIMMERMANN) XXXVIII. Zim., III, 1900, p. 14.
- cadaveris butyricum (Buday). Ap. XI. C. f. B., T. 26, p. 369.
- campestre (E. Smith). Ap. X. C. f. B., 2° s., Т. 3, р. 284. Zeitschr. f. Pflanzenkrank, 1898, р. 134.
- de Calmphout (Groupe paratyphosum) (VAN Евменднем) XXX. K. et W.
- canariense (Freese) VII. Deutsche Zeitschr. f. Tiermedizin,
 89. Glage, Bakt. f. Tierärzte, 1910, p. 178.
- canariense (Rieck) XXXI. Deutsche Zeitschr. f. Tiermedizin, 89. Flüg., T. 2.

Bacterium candidum liquefaciens (MATZUSCHITA) VII. Matzu. — Galli-Valerio. C. f. B., 1ro s., Or., T. 17, 18. canisepticum (Lignières). Voir B. cholerae gallinarum. capillosum (Tissier) LX. A. I. P., 1909, p. 189. capsulatum mucosum (Fasching) XXXII. Mig., T. 2, p. 355. capsulatum septicum (Bordoni Uffreduzzi) XXIX. Z. f. H., T. 3, p. 333. carassisepticum (Ceresole) XX. C. f. B., T. 28, 1900, p. 305. carnosum (Kern) XLI. A. B. I. K., T. 1, nº 4. carotovorum (Jones) Ap. X. C. f. B., 2° s., T. 7. casei α (Freudenreich) L C. f. B. 2° s., T. 4, 1898, p. 170. Löhnis, C. f. B., 2° s., T. 18, p. 97. Kuntze, C. f. B., 2° s., T. 21, p. 737. β (FREUDENREICH) L id. γ (FREUDENREICH) L id. δ (FREUDENREICH) L id. ε (FREUDENREICH) L id. nº 1 (Leichmann et Bazarewski) XXIX. Löhnis, C. f. B., 2° s., T. 18, p. 97. nº 2 (Leichmann et Bazarewski) XXIX. Löhnis, C. f. B., 2° s., T. 18, p. 97. nº 3 (Leichmann et Bazawerski) XXIX. Löhnis, C. f. B., 2° s., T. 18, p. 97. caseolyticum (Lochmann). C. f. B., 1ro s., Or., T. 31, p. 388. caucasicum (Lactobacillus c.) (Beijerinck) L. Archiv. néerland. des sciences. T. 23, p. 428. cavatum (Kern) XXXVII. A. B. I. K., T. 1, 1896, no 4. cavicida (Brieger) XXXII. B. k. W., 1884, no 14, cavisepticum (Schwer). C. f. B., 10 s., Or., T. 33, p. 41 et T. 37, p. 42. centrale (ZIMMERMANN) XXI. Zimm., II, 1894, p. 10. cerevisiae (Fuhrmann) XXX. C. f. B., 2° s., T. 19, p. 117, 233. de Chadderton (Groupe paratyphosum) (Durham) XXX. K. et W. du chancre mou = Bact. ulceris cancrosi. chlorinum (Frankland) XVII. Ph. T. R. S., T. 178, 1887, B, p. 274. chlorinum (Macé) XVII. Macé, T. 2, p. 416. du choléra des canards (CORNIL ET TOUPET). XXXII.C. f. B., T. 4, p. 333. cholerae gallinarum (PASTEUR) XXXII. Lignières, Contribution à l'étude et à la class. des sept. hémor., Buenos-Ayres, 1900. - Besson. - Macé. - K. et W. cholerae suum (MIGULA) = B. intestinale suis. chologenes (Stern) XXXI. D. m. W., 1893, p. 613. - Flüg., T. 2, p. 374. chromicolor nº 1 (FREUND) XIV. Th. Erlangen, 1893. chromicolor no 2 (FREUND) XIV. Th. Erlangen, 1893.

- Bacterium chromo-aromaticum (Galtier) XVII. Compte-rendus de l'Acad. des sc. de Paris, T. 106, p. 1368.
 - chryseum (Adametz) XXXVI. Adametz. Pohl, C. f. B., T. XI, 1892.
 - chrysoglea (Zopf) XXXVI. Zimm., II, 1894, p. 12. Mig-T. 2, p. 832.
 - citreum (Frankland) XXXVII. Ph. T. R. S., T. 178, B. 1887, p. 272.
 - citreum cadaveris (Strassmann et Strecker) XIV. Zeitschr.
 f. Medizinalbeamte, 1888, no 3. Eisenb.
 - cloacae (JORDAN) VIII. Experim. investig. by the State Board of Health of Massachusetts, 2° partie, 1890, p. 836. Mig., T. 2, p. 722.
 - clostridiiforme (Burri et Ankersmit) LXV. C. f. B., 2° s., T. 15, p. 115.
 - clostridiiforme var. mobilis (Сноике́viтсн) LXV. А. І. Р., 1911, р. 345.
 - coccineum (Сатіано) XLI. Cohn's Beiträge zur Biologie,
 T. VII, 1896.
 - cœlicolor (R. Muller) VII. C. f. B., 1re s., Or., T. 46, p. 195.
 - cœruleum (Kral, Lehmann) XXII. L. et N., p. 406.
 - сœruleum (Sмітн) XXII. Medical News, 1887, Т. 2.—С. f. В.,
 1888, Т. 3.
 - cœruleum (Voges) XXII. C. f. B., T. 14, 1893, p. 303. Mig., T. 2, p. 945.
 - coli, var. albido-liquefaciens (Lehmann et Lévy). F. Lévy,
 A. f. H., T. 49.
 - coli anindolicum (Matzuschita) XXXI. A. f. H., T. 41,
 p. 13. Matzu.
 - coli colorabile (NAUNYN) XXVIII. D. m. Zeitschr., 1891.
 - coli commune (Escherich) XXXI. Traités.
 - coli communior (Durham) XXXI. Tissier, A. I. P., 1909, p. 189. K. et W.
 - coli immobile (Gilbert et Lion) XXXII. Semaine méd., 1893, p. 130.
 - coli var. luteo-liquefaciens (Lehmann et Lévy) XIV. F. Levy, A. f. H., T. 49.
 - coli lymphaticum aerogenes (Jæger) XXXI. Archiv. f. Tierheilk, T. 32, nos 4, 5.
 - coli mutabile (Massini) XXXI. A. f. H., T. 61, p. 250.
 - coli non fervoris (MATZUSCHITA) XXXII. Matzu.
 - coli β polaris (Lehmann et Neumann) XXXI. L. et N., p. 381.
 - coli proximum (Matzuschita) XXX. Matzu.
 - coloïdes rubescens (Deeleman) XXXI. C. f. B., 1^{ro} ser., Or.,
 T. 26, p. 542.
 - coloïdes virescens (Deeleman) XXXI. C. f. B., 1 s., Or., T. 26, p. 542.

- Bacterium concentricum (B. nº 1 (Huber-Armin) XXXII. Virchow's Archiv., T. 134, p. 216.
 - de la coqueluche (Bordet et Gengou). Voir Bact. pertussis.
 - constrictum (ZIMMERMANN) XXXVII. Zimm., I, 1890, p. 42.
 - de la cornstalk disease (Billings). Voir Bact. Billingsi.
 - coronatum (Keck) XIV. Th. Dorpat, I, 1890. Mig., T. 2,
 p. 826.
 - des crachats verts (FRICK) XXXIX. Virchow's Archiv., T. 116, p. 266.
 - cremoïdes (Lehmann et Neumann) XXXVII. L. et N., p. 392.
 - cuniculicida (GAFFKY) Voir Bact. cholerae gallinarum.
 - cuniculicida (Luceт) Tabl F. Flüg., Т. 2, р. 418.
 - cuniculicida mobile (EBERTH ET MANDRY) XXXI. Fortschr.
 d. Medizin., 1890, nº 14. Virchow's Archiv., T. 121, p. 340.
 Flüg., T. 2, p. 408.
 - curvatum (Troïli Petersson) L. Z. f. H., T. 32, p. 368.
 - cuticulare = B. cuticularis (Tils).
 - cyaneo-fluorescens (ZAGENMEISTER) XLII. C. f. B., 1895,
 T. 18.
 - cyaneo-fuscum (Beijerinck) XVI et XXII. Botan. Zeit.,
 1891. Macé, T. 2, p. 405.
 - cyanogenes. Voir Bact. syncyaneum (Ehrenberg).
 - cylindro iles (Roccні) LXI. J. D., р. 161.
 - cyprinicida (Рьень) **XXXIX**. С. f. В., 1^{го} s., Ог., Т. 35, р. 461.
 - cystitidis (Schow) XXVIII. С. f. B., Т. 12, 1892, р. 745. —
 Мід., Т. 2, р. 771.
 - decalvans (Thin) Voir Micrococcus.

p. 599.

- Delbrücki (Leichmann) L. C. f. B., 2° s., T. 2, p. 896. Lœhnis, C. f. B., 2° s., T. 18, p. 97. Kuntze, C. f. B., T. 21, p. 737.
- delicatulum (JORDAN) VII. Experim. investig. by the State Board of Health of Massachusetts, 2° partie, 1890, p. 837.
 Mig., T. 2, p. 721.
- denitrificans (nº 1) (Burri et Stutzer) XXXIX. C. f. B., 2º s., T. 1, p. 356.
- denitrofluorescens. Voir B. denitrificans nº 1 (B. et S.).
- dermatitidis epidemicae exfoliativae (Russel) Ap. C. f. B.,
 T. 15, p. 324.
- destructans (Potter) Ap. III. С. f. B., 2° s., Т. 7, р. 282 et 359.
 desulfuricans (Salter) Ap. С. f. B., 2° s., Т. 6, р. 698.
- devorans (ZIMMERMANN) VIII. Zimm., I, 1890, p. 48. Mig., T. II, p. 783.
- diatrypticum casei (BAUMANN) XXIX. Landwirtschaftliche Versuchsstationen, T. 42, 1893. — Mig., T. 2, p. 404.
- diffusum (Frankland) XIV. Z. t. H., t. 6, 1889, p. 396.
- diphteriae (Klebs, Loeffler) XXIX et XLVI. Traités.
 diphteriae avium (Loir et Ducloux) XXX. A. I. P., 1894,

Bacterium diphteriae avium (Galli-Valerio) XXX. C. f. B., 1^{ro} s., Or., T. 36, 1904, p. 467.

- diphteriae avium (Guérin) XXX. A. I. P., 1901, p. 941.
- diphteriae columbarum (Loeffler) XXX = B. dipht. avium (Loffler). Mitth. a. d. k. Gesundheitsamte, T. 2, 1884, p. 421.
- diphteroïdes (Jungano) LXIV. J. D., p. 166.
- diphteroïdes (E. Klein) XLVI. C. f. B., T. 28, p. 416.
- disciformans (ZOPF) X. Zimm., II, p. 48. L. et N., p. 385.
- duplex (Morax) LII. A. I. P., 1896, p. 337.
 L. et N.
- dysenteriae (Shiga) XXXII. Kruse, D. m. W., 1900. K et W.
- dysenteriae liquefaciens (Одата) VII. С. f. В., 1892, Т. 11,
 p. 264. Flüg., Т. 2, р. 284.
- Elmassiani LII. A. I. P., 1899, p. 621.
- endothrix (Guéguen) XIV. Acad. des Sc., 1908, 27 janvier.
- de l'entérite infectieuse des veaux (Groupe paratyphosum)
 (Malvoz) XXX. K. et W.
- enteritidis (Gartner) XXX. Correspondenzbl. des allg.
 Aerzt. Vereins von Thüringen, 1888.
- equi intestinale (DYAR ET KEITH) XXXI. C. f. B., 1^{re} s.,
 T. 16, p. 838.
- erodiens (Becker) Ap. C. f. B., 2° s., T. 14, p. 140.
- erubescens (B. oogenes hydro. z) (Zörkendörfer) XLI. A. f. H., T. 16, p. 391.
- erysipelatos suum (Löffler) Migula. Voir Bact. rhusiopathiae
- erythrogenes lactis (Hueppe, Grotenfeldt) XX. Fortschr. der Med., 1899, p. 41. — Baginski, D. m. W., 1899, no 11.
- erythromyxa Micrococcus) (Zopf) XLI. Mig., T. 2, p. 487.
- europaeum = Nitrosomonas europaea (Winogradsky). Voir Bact. nitrosoformans.
- febris exanthematici manchurici (Horinchi) Ap. C. f. B., 1^{re} s.,
 Or., T. 46, p. 594.
- ferrugineum (Rullmann) XVI. C. f. B., T. 24, 1898, p. 465.
- filamentosum (Jungano) LXIV. J. D., p. 167.
- flavo fuscum (Lembke) XIV. A. f. H., Т. 26, р. 304.
- flavum (Fuhrmann) XIV. C. f. B., 2° s., T. 19, p. 217, 233.
 L. et N., p. 392.
- flavum (Lustig) XIV. Lustig, p. 78.
- fluorescens (B. proteus fluorescens) (Jeger) XVII. Z.f. H., T. 12, 1892, p. 525.
- fluorescens n° 7 (Lembre). Voir B. oogenes fluorescens γ et ε
 (Zörk.).
 - nº 8 (Lembke). Voir B. oog. fluoresc. β et δ (Zörkend.).
- n° 9 (Lembre). Voir B. oog. fluoresc. β et δ
 (Zörkend.).

Bacter	ium fluores	cens nº 10 (Lembre). Voir B. oog. fluoresc. β et ? (Zorkend.).
		nº 11 (Lемвке) XXXIX. A. f. H., Т. 29, р. 317.
A Trans		album (ZIMMERMANN) = Bact. putidum (L. et N.).
		aureum (ZIMMERMANN) XXXIX. Zimm., I, 1890,
		p. 24. — Mig., T. 2, p. 931.
	_	capsulatum (Pseudomonas) (MIGULA) XXXIX.
		Mig., T. 2, p. 915.
_	-	crassum (Flügge) XXXIX. Flüg., T. 2, p. 294.
-	4 -	exitiosum [Pseudomonas] (Köck) Ар. Х. Мо-
		natshefte f. Landwirtschaft., 1909, p. 247.
-	-	immobile (Flügge) XXXIX. Flüg., T. 2, p. 294.
-	-	liquefaciens (Flügge) XVII. Flüg., 2º éd.,
		T. 2, p. 289.
-	_	longum (ZIMMERMANN) XXXIX. Zimm., I, 1890.
		= Bact. putidum (d'après L. et N.). mesentericum (Tataroff) XVII. Th., Dorpat,
	-	1891.
	_	nivalis (EISENBERG) = B. fluor. liquef. (Flug.).
		Eisenb., p. 77.
_	- 7	non liquefaciens. Volr B. putidum (L. et N.).
-	_	non liquefaciens (Eisenberg) XXXIX. Eisenb.
		Voir Bact. scissum (Fr.).
-		igenes (Petr.) = Bact. alcaligenes.
		EIN) LIX. J. D., p. 101.
-		nz). = B. pyogenes fæt. liquef. (Lanz).
-		ief. (Tavel) VIII. L. et N., p. 384.
7		enae (HAJEK) VII. B. k. W., 1888. — Eisenb.
	1898.	LON ET ZUBER) LXI. Archiv. de Méd. experim.,
-	The second secon	(KORN) XXXVII. C. f. B., T. 25, p. 540.
		(BOEKHOUT ET DE VRIES) XX . C. f. B., 2° s., T. 4, Macé, T. 2, p. 442.
-	fulvum (LE	HMANN ET NEUMANN) XIV. L. et N.
-	funduliforme	(HALLÉ) LXIII. Veillon et Zuber. Archiv. de
		rim., 1898. — Tissier, A. I. P., 1909, p. 189. — J. D.
-		EILLON) LXVI. Archiv. de Méd. expérim., 1898.
	- J. D., 1	
		ügge) XXXVII. Flüg., 2° Ed., T. 2, p. 290.
-		batum (Scheißenzußer) XXXVIII. Allg. Wien. ing., T. 34, p. 171.
-	fusiforme (V	EILLON ET ZUBER). Archiv. de Méd. expérim., 1898.
-		VINCENT) LXVI. Lewkowicz, C. f. B., 1906. —
		Zeitschr., f. Hyg., 1906, T. 55, p. 81.
-		roupe paratyphosum) (VAN ERMENGHEM) XXX.
	K. et W.	(Channa nanaturhacian) (III)
		(Groupe paratyphosum) (Holst) XXX. K. et W.
	gasororman	is (Eisenberg) VIII. Eisenb.

Bacterium nº 1 (GHON, MUCHA, MÜLLER) LVI. C. f. B., T. 41.

- n° 2 (Gном, Мисна, Müller) LVI. С. f. В., Т. 41.
- nº 3 (Gном, Мисна, Müller) LX. С. f. В., Т. 41.
- nº 2 (GHON ET SACHS) LXV. C. f. B., T. 34 et 35. J. D., p. 174.
- glaciale (Vaughan et Perkins) A. f. H., T. 27, p. 308.
 glaucum (Adametz) X. = B. canus (Maschek) Adametz.
- gliserogenum (Malerba et Sanna Salaris) XXX. Giornale internazion. delle scienze med., nº 2, Naples, 1883. Eisenb., p. 175.
- gracile (B. anaerobius gracilis) (Lewkowicz) LXV. Archiv. de Méd. expérim., 1901. — J. D., p. 181.
- gracile ethylicum (Achalme, Rosenthal) LXIV. S. de B., 1906.
- gracile putidum (Tissier) LX. Tissier et Martelly. A. I. P.,
 T. 16, p. 865.
- granulosum. (Lehm. et Neum.) = Kornchenbacillus (Luerssen et Kühn) L. C. f. B., 2° s., T. 20, p. 234.
- granulosum (Jungano) LXIV. J. D., p. 165.
- granulosum var. acidophilum (Distaso) LVI. A. I. P., 1909, p. 954.
- graveolens (Bordoni Uffreduzzi) XIV et XVII. Fortschritte der Medizin., 1886, p. 157. — Eisenb.
- a (Grassberger) LI. Z. f. H., T. 25, 1897, p. 453.
- b (Grassberger) LI. Z. f. H., T. 25, 1897, p. 453.
- A (GRIGOROFF) (= B. ramosum) LXIV. Th., Paris, 1905.
- A (Guillebeau) Annales de micrographie, T. 2, 1890.
- B (Guillebeau) Annales de micrographie, T. 2, 1890.
- haemoglobinophilum meningitidis spinalis (Carini-Paranhos)
 LII. C. f. B., 1¹⁰ s., T. 50, p. 607.
- hæmoglobinophilum canis (Friedberger) LII. C. f. B., 1^{re} s.,
 T. 33, p. 401.
- halophilum (Russell) VIII. Z. f. H., T. 11, 1892, p. 200.
- de Hanstedt (Groupe paratyphosum) (FISCHER) XXX. K. et W.
- de Hatton (Groupe paratyphosum) (Durham) XXX. K. et W.
- helixoïdes (Muto) Tabl. D. C. f. B., 1re s., Or., T. 37, 1904.
- helminthoïdes (Lewkowicz) LXIV. Archiv. de Méd. expér.,
 1901. J. D., р. 181.
- helvolum (ZIMMERMANN) XIV. Zimm., I, 1890, p. 52.
- heminecrobiophilum (Arloing) XXXVI. Compte-rendus de l'Académie des Sciences, Paris, T. 106 et 108.
- hemophilum (Wolff) LII. C. f. B., 1re s., Or., T. 33, p. 407.
- herbicola aureum (Burri et Düggeli) XIV. C. f. B., 2° s., T. 12 et 13. L. et N.
- Hermanni VIII. Hygienische Rundschau, T. 5, 1895, p. 642.
- Hoffmanni XXXI. Baumgartens Jahresber., 1891, p. 326.
- du Hog-Choléra. Voir Bact. intestinale suis.
- hydrophilum fuscum (Sanarelli). XVI. C. f. B., T. 9, p. 193.

- Bacterium hyopyogenes = Bact. pyogenes suis (Grips).
 - icteroïdes (Sanarelli) XXX. A. I. P., 1897, p. 462.
 - indigonaceum (Claessen) XLII. C. f. B., T. 7, p. 13, et T. 14, p. 391.
 - inflatum (Distaso) LIX. A. I. P., 1909, p. 954.
 - influenzae (Pfeiffer) LII. Z. f. H., T. 13, p. 357. Traités.
 - intestinale gallinarum (Jöst) XXVII. Berl. Tierärztl.
 Wochenschr., 1902, no 16.
 - intestinale suis = B. du Hog-cholera (Salmon, Smith) XXX. Lignières, Contribution à l'étude et à la class. des sept. hémorr., Buenos-Ayres, 1900. — Traités.
 - intestinale tuberculiforme (Jacobson) LXIV. A. I. P., 1908,
 p. 300.
 - d'intoxications par la viande, type Frankenhausen, XXX. K. et W.
 - iogenum (Baumgartner) = Iodococcus vaginatus (Miller)
 LXVI. C. f. B. (Register).
 - iridis (Van Hall) Ap. X. C. f. B., 2° s., T. 9, p. 381 et 642.
 - janthinum (ZOPF) XXI. Mig., T. 2, p. 941.
 - kieliense (Breunig) XX. Th. Kiel, 1888. L. et N.
 - Kisteri (Кізтек ет Schmidt) XXXII. С. f. В., 1^{re} s., От.,
 Т. 36, р. 454.
 - lactis (Günther et Thierfelder) XXV. A. f. H., T. 25, p. 164.
 C. f. B., 2 s., T. 2, p. 777.
 - lactis acidi (Leichmann) XXV. C. f. B., 1^{ro} s., T. 16, p. 826.
 - lactis acidi nº 3 (MARPMANN) XXXII. Voir Micrococcus.
 - lactis aerogenes (Escherich) XXXII. Traités.
 - lactis erythrogenes. Voir Bact. erythrogenes (Hueppe, Gro-TENFELDT).
 - lactis fœtidum (Jensen) XXX. Jensen. Grundr. d. Milchkunde. Enke, Stuttgart.
 - lactis innocuum (WILDE) XXXII. Flüg., T. 2, p. 392.
 - lactis longi A, B, C (Troïli-Petersson) XXIX. Z. f. H., T. 32, p. 368.
 - lactis pituitosi (Loeffler) XXIX. B. k. W., 1887. Eisenb.
 - lactis saponacei (Weigmann et Zirn). C. f. B., T. 15, p. 464.
 - lactis viscosum (Adametz) XXIX. Landwirtsch. Jahrbücher, 1891, p. 185.
 - lactorubefaciens (GRÜBER) XX. C. f. B., 2° s., T. 8, p. 457.
 - lebenis (Rist et Khoury) L. A. I. P., 1902, р. 65.
 п° 5 ((Lемвке) XXXVIII. А. f. H., Т. 26, р. 301.
 - nº 6 (Lемвке) VII. A. f. H., Т. 26, р. 301.
 - no 7 (Lемвке) VII. A. f. H., Т. 26, р. 301.
 - no 12 (Lembre) VII. A. f. H., Т. 26, р. 301.
 no 14 (Lembre) VII. A. f. H., Т. 26, р. 301.
 - leporis lethale (Sternberg) XIV. Textbook of Bacteriology, 1897, p. 478.

Bacterium lethale (B. proteus lethalis) (Babès) XXVIII et XXXVI. Eisenb., p. 296. — Flüg., T. 2, p. 279.

nº 4 (Leube) XXXVI. Virchow's Archiv., T. 100, p. 563.

- leucaemiae canis (Lucer) XVII. Journ. de Méd. vétérinaire,
 T. 42, p. 50.
- levans (Lehmann et Wolffin) XXX. A. f. H., T. 21, p. 279.

- lilacinum (Macé), XXI. Macé, T. 2, p. 416.

- limbatum acidi lactici (MARPMANN) XXXII. Eisenb., p. 161.
- liquefaciens lactis amari (Freudenreich) XIV. Landwirtsch.
 Jahrb. d. Schweiz, T. 8, 1894. Koch's Jahresber., 1894,
 p. 222.

littorale (Russell). XVI. Z. f. H., T. 11, p. 199.

- lividum (Plagge et Proskauer) XXII. Z. f. H., T. 2, p. 443.
- loculosum (Fæcherbacillus) (CLAUSS) XXXII. Th. Würzburg,
 1889. Mig., T. 2, p. 408.
- loxiacida (Tartakowsky) XXX.
- lucidum (Lembke) VIII. А. f. H., Т. 26, 1896, р. 303.
- luciferum (Molisch), XLIII. Sitz. d. k. Akad. d. Wissensch. in Wien., T. CXIII, 1904, p. 513.
- luteum (List) XXXVII. Th. Leipzig, 1885. Adametz, p. 48.

du mal de Lure (CARRÉ) LII. A. I. P., 1912.

- de la maladie des grouses = Bact. scoticum (KLEIN).
- de la maladie des jeunes chiens (Lignières). XXXII. Contribution à l'étude des sept. hém. Buenos-Ayres, 1900.
- mallei (Löffler) XLVI. Traités.

- mammitidis (Guillebeau) XXXI. Flügge, T. 2.

- margarineum (Diplobacillus capsulatus margarineus) (JoL-LES ET WINKLER) VII et XXXVII. Z. f. H., T. 20, p. 103.
- margarittaceum (Perlschnurbacillus) (MASCHEK) XXXII. Maschek. Mig., Т. 2, р. 422.
- mariense (Кыменко) **ХХХ**. С. f. В., 1 · s., Ог., Т. 45, р. 481.

- mediterraneum, voir M. melitensis (BRUCE).

- Mazun (Weigmann, Grüber et Huss) L. C. f. B., 2's., T. 19,
 p. 70.
- trouvé dans le melæna neonatorum (Gærtner) Ap. VI. C. f. B., T. 15, p. 865.

membranaceum amethystinum (EISENBERG) XXI. Mig., T. 2, p. 491.

- membranaceum amethystinum mobile (GERMANO) XXI. C. f. B., T. 12, 1892, p. 516.
- meningitidis cerebro-spinalis (Сонем) LII. L. et N.
- mesentericum roseum (Квал). Zimm., II, p. 26.
 metarabicum (Gвел Sмітн) Ар. Х. С. f. В., 2° s., Т. 10, р. 61;
 Т. 11, р. 678; Т. 15, р. 380.
- miniaceum (ZIMMERMANN) XX. Zimm., I, 1890, p. 46. Mig.,
 T. 2, p. 851.
- minutissimum (Coccobacillus minutissimus gazogenes) (Jacobson) LXV. A. I. P., 1908, p. 300.

Bacterium minutum (B. anaerobius minutus), (TISSIER) LXIV. J. D., p. 169.

monachae (Tubeur) XXXI. Forstlich. naturw. Zeitschr.,

T. 1, 1892, n° 1, 2, 7. — Mig., T. 2, p. 742.

— monadiforme (B. coli mobilis) (Messea). Ziegl. Beitr., T. 12, p. 494.

monstruosum (Henrici) Th., Bâle, 1894. A. B. I. K., T. 1, 1894, p. 47.

— morbificans bovis (Basenau) XXX. A. f. H., T. 20, p. 242. Flüg., T. 2, p. 380.

— mori (Köck) Ap. X. Monatshefte f. Landw., 1909, p. 247.

— de Morseele (Groupe paratyphosum) (VAN Екменднем) **XXX**. К. et W.

multocidum (Клтт). XXXII. Traités.

- isolė de Murex brandatus (GALEOTTI ET ZARDO). C. f. B., 1^{ro} s., Or., T. 31, p. 593.
- muripestifer (LASER) XXVIII et XXXVIII. C. f. B., T. 11, 1892.
- muris (Klein) XLVI. C. f. B., 1re s., Or., 1903, p. 488.

— murisepticum (Косн) XXIX. Flüg., Т. 2.

- mustelæ septicum (EBERTH ET SCHIMMELBUSCH) XXXI. Virchow's Archiv., T. 115, 1889, p. 282. Mig., T. 2, p. 726.
- mustelicida (Heim) = Bact. mustelae septicum (E. et S.).
- mycogenes (Eduards) Ap. IX. C. f. B., 1re s., R., T. 39, p. 465.
- navicula (Reinke) LVIII. Voir B. butyricus.
 naviforme (Jungano) LXV. J. D., p. 166.
- nebulosum (Hallé) LXV. Th., Paris, 1898. J. D., p. 183.
- nebulosum gazogenes (Jacobson) XXXII. A. I. P., 1908, p. 300.
- necrophorum (Nekrosebacillus) (Bang) LXV. Nowak, A. 1.
 P., 1908, p. 541. Glage.
- Nenckii (Biernacki) XLIV. C. f. B., 2° s., T. 29, p. 166.

Nicolaïeri XXXII. C. f. B., T. 16, 1894.

- nigricans (Kern) XVI. A. B. I. K., T. 1, 1896, nº 4.
- nitrificans (Winogradsky) LIII. A. I. P., 1890. C. f. B.,
 2° s., T. 2, 1896, p. 415 et 447. Schlæsing et Müntz, C. R. de
 l'Acad. des Sc., T. 89, p. 301, 891, 1704, 1879.
- nitrobacter (WINOGRADSKY) L. et N. (Voir Bact. nitrificans).
- nitrosoformans (Winogradsky) = Nitrosomonas europæa
 (W.) LIII. Mêmes références que B. nitrificans.
- nivosum (Jungano) LXIII. S. d. B., 1907. J. D., p. 183.
- nodulifaciens bovis (Langer) XXX. K. et W.
- nubilum (Frankland) XIV. Z. f. H., T. 6, 1889, p. 386.
- ochraceum (ZIMMERMANN) XIV. Zimm., I, 1890, p. 60.
- oleae (Arcangeli) XXXVI. Savastano, C. R. de l'Acad. des Sc., Paris, 1886. Prillieux, C. R. de l'Acad. des Sc., Paris, 1889, T. 108. C. f. B., 2° s., T. 15, p. 200.

412 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

Bacterium olens (Matzuschita) XXX. C. f. B., 1 to s., T. 29, p. 383. - Matzu. oleotuberculosis. Voir Bact. oleae. omnivorum (VAN HALL) Ap. X. C. f. B., 2° s., T. 12, p. 507. oogenes fluorescens β (Zörkendörfer) XXXIV. A. f. H., T. 16, 1893. y (ZÖRKENDÖRFER) XXXIX. Ibid. & (ZÖRKENDÖRFER) XXXIX. Ibid. ε (ZORKENDÖRFER) XXXIX. Ibid. opale agliaceum (Vincenzi) XXXII.C. f. B., 1re s., Or., T. 50,p. 2. orchiticum (Kutscher) VII. Z. f. H., T. 11, 1895, p. 156. oviforme (Coccobacillus) (JACOBSON) LIX. A. I. P., 1908. p. 300. — Tissier, A. I. P., 1908. p. 189. ozaenae (ABEL) XXXII. C. f. B., T. 13. 1893, p. 161. nº 4 (Pansini) VI. Virchow's Archiv, T. 122. nº 9 (Pansini) VII. Virchow's Archiv., T. 122. nº 14 (Pansini) VII. Virchow's Archiv., T. 122. nº 15 (Pansini) VII. Virchow's Archiv., T. 122. paradoxum (B. nº 13) (Kruse et Pasquale) XXX. Z. f. H., T. 16, p. 1. pararabicum (GREIG SMITH) Ap. X. C. f. B., 2° s., T. 10, p. 61; T. 11, p. 678; T. 15, p. 380. paratyphosum A (BRION ET KAYSER) XXX. K. et W. paratyphosum B (Schottmuller) XXX. K. et W. paratyphosum C (UHLENHUTH) XXX. C. f. B., 1 s., Ref., T. 42, p. 133. parvum liquefaciens (Jungano) LXIV. J. D., p. 132. pasteurianum (Hansen) XXXII. Beijerinck, C. f. B., 2° s., T. 4, p. 211 et 867. perfoetens (Coccobacillus anaero. perfætens) (Tissier), LXV. Th., Paris, 1900. pertussis (Bordet et Gengou) LII. A. I. P., 1906, p. 731. -Traités. pertussis Eppendorff (Jochmann et Krause) LII. Z. f. H., T. 36, p. 193. — C. f. B., 1^{re} s., Or., T. 32, p. 21. de la peste des furets = Bact. mustelae septicum (E. ET S.). de la peste des poissons rouges (Ceresole) XX. C. f. B., T. 28, 1900, p. 305. de la peste des truites. Voir B. salmonicida (KRUSE). pestis (YERSIN) XXXII. Traités. phaseoli (SMITH) XXXVI. Proceed. of the Amer. Ass. f. the adv. of. Sc., T. 46, 1897. - Mig., T. 2, p. 776. phasianidarum mobile (Enders) XXXI. C. f. B., 1 co s., R., T. 34, p. 384. phasiani septicum (KLEIN) XXXI. Flüg., T. 2, p. 410. phosphorescens caraïbicum (FISCHER) XLIII. Z. f. H., T. 2, p. 89.

- Bacterium phosphorescens (B. FISCHER) XLIII. Z. f. H., T. 2, p. 92.
 - phosphorescens Færsteri XLIII. C. f. B., T. 2, p. 337.
 - phosphorescens Giardi XLIII. C. f. B., 1^{re} s., T. 6, p. 645,
 et T. 8, p. 177.
 - phosphorescens javanense (EIJKMANN) XLIII. C. f. B., 1^{re} s.,
 T. 9, 1892, p. 656.
 - photogenum (Molisch) XLIII. Sitz. d. k. Akad. d. Wissensch. in Wien., T. CXIII, 1904, p. 513.
 - phytophthorum (APPEL) Ap. X. C. f. B., 2° s., T. 20, p. 585.
 - piscatorum (Lehmann et Neumann) XX. L. et N.
 - piscicidum haemolyticum (MARKS) VIII. C. f. B., 1^{re} s., Or.,
 T. 44, p. 370.
 - piscicidum versicolor (Babès et Riegler). VIII. (Groupe proteus). C. f. B., 2° s., T. 33, p. 449.
 - pituitosum (Matzuschita) XIV. A. f. H., T. 35, p. 267.
 - pleomorphum (Karlinski). Voir Bact. pl. murisepticum.
 - pleomorphum murisepticum (Karlinski). VIII. C. f. B.,
 T. 5, 1889, p. 194.
 - plicatum (Coccobacillus plicatus) (Сноике́vітсн) XXIX. А.
 I. Р., 1911, р. 345.
 - plicatum (ZIMMERMANN) XIV. Zimm., I, 1890, p. 54. Mig.,
 T. 2, p. 453.
 - de la pneumo-entérite du porc (Lignières). Voir B. intestinale suis.
 - plymouthense (Fischer) XX. Z. f. H., T. 2, p. 74. Voges,
 C. f. B., T. 14, p. 314.
 - pneumo-enteritidis murium (Schillings). Arb. a. d. kaiserl.
 Gesundheitsamte, T. 18.
 - pneumoniae (Friedlænder) XXXII. Etienne, Archives de Méd. expérim., 1895. — Traités.
 - pneumoniae caprae (Nicolle) XXXII.
 - pneumoniae caviarum (Strada et Traina). XXXII. C. f. B.,
 T. 28, p. 635.
 - pneumonicum agile (Schon) XVI. Fortschritte der Medizin., 1885, n° 15. Eisenb., р. 337.
 - pneumonicum liquefaciens bovis (Arloing) VII. C. R. de l'Acad. des Sc., T. 109, 1889, p. 459.
 - polyarthritidis (Poels) = Bact. pyogenes suis (G.).
 - polychromogenes (Thirry) XVII et XXI. Th., Nancy, 1900.
 Macé, T. 2, p. 406.
 - polymorphum (Halibacterium) (FISCHER) LIII. Fischer. Die Bakt. d. Meeres, p. 36.
 - de Posen (Groupe paratyphosum) (Günther) XXX. K. et W.
 - præacutum (Coccobacillus) (Tissier) LX. A. I. P., 1908, p. 189. J. D., p. 162.
 - prodigiosum (Енгенвенд) XX. Scheuerlen, А. f. H., Т. 26,
 1896, р. 1. Масе́, Т. 2, р. 431.

Bacterium proteolyticum (Choukévitch) VII. A.I. P., 1911, p. 247.

- pseudodiphteriticum (Hoffmann) XLVII. Versamml. deutscher Naturf. u. Aerzte, Wiesbaden, 1887.

pseudodiphtericum gazogenes (Jacobson) XLVI. A. I.
 P., 1908, p. 300.

pseudo-influenzae (Pfeiffer) LI. Voir Bact. influenzae.

- pseudo-mallei. Voir Bact. orchiticum (Kutscher).

- pseudo-melanosis (ERNST) VIII. Virchow's Archiv., T. 152,
 p. 148.
- pseudo-pestis (Neumann) XXXII. Z. f. H., T. 45, p. 452.
- pseudo-pneumonicum (Passet) XXXII. Mig., T. 2, p. 396.
- pseudoramosum (Distaso) LXIV. C. f. B., Or., T. 59, p. 101.
 pseudotuberculare orchiphlogogenes (Cagnetto) XXXI.

A. I. P., 1905, p. 449.

- pseudotuberculosis liquefaciens (Du Cazal et Vaillard)
 VIII. A. I. P., 1891, p. 353.
- pseudotuberculosis ovis (Preicz, Guinard) XLVI. Preicz,
 A. I. P., 1894, p. 231. Nocard, A. I. P., 1896, p. 609.
- pseudotuberculosis murium (Kutscher) XLVI.Z.f. H., T. 18.
- pseudotuberculosis rodentium (Pfeiffer) XXX et XXXII.
 Ueber die bacilläre Pseudotuberkulose bei Nagethieren.
 Leipzig, 1889. Preicz, A. I. P., 1894, p. 231. Macé, T. 2.

pseudotuberculosis similis (COURMONT) XXX. S. de B., 16 mars 1889.

- pseudotyphosum nº 1 à nº 5 (Loesener) XXX. K. et W.

- pseudoviolaceum (pseudomonas pseudoviolacea) (MIGULA) XXI. Mig., T. 2, p. 943.
- psittacosis (Groupe paratyphosum) (Nocard) XXX. K. et W.
- punctatum (ZIMMERMANN) VIII. Zimm., I, 1890, p. 38.
 Mig., T. 2, p. 717.

- putidum (Lehmann et Neumann) XXXIX. L. et N.

- putidum splendens (Bernabei) XXVIII. C. f. B., T. 17, 1895.
- pyelonephritidis bovis (Enderlen, Hoeflich) XLVI. Ernst,
 C. f. B., 1^{re} s., Or., T. 40, p. 90. Glage, p. 157.

— pyocinnabareum (FERCHMIN) XX. С. f. В., 1^{re} s., R., Т. 13, 1893, р. 103.

- pyocyaneum (Gessard) XVI et XVII. Th., Paris, 1882.
 Traités.
- pyogenes (GRIPS) = Bact. pyogenes suis.
- pyogenes bovis (Künnemann) = Bact. pyogenes suis.
- pyogenes caprae (DAMMANN ET FREESE) LII. C. f. B., 1^{re} s., T. 43, p. 575.
- pyogenes fætidum (Passer). Untersuchungen über eitrige Phlegmone. Berlin, 1885.
- pyogenes fœtidum liquefaciens (Lanz) VIII. C. f. B.,
 T. 14, 1893, p. 269.

Bacterium pyogenes minutissimum (Kruse) XXXVII. Flüg., T. 2, p. 447.

pyogenes suis (GRIPS) LII. C. f. B., 1re s., Ref., T. 36, p. 488.

H. et M., 1910, T. 1, p. 145.

- pyosepticum (erythrobac. pyosepticus) (Fortineau) XX. Fortineau, Th. Paris, 1904.

- radiatum (ZIMMERMANN) XIV. Zimm., I, 1890, p. 58. — Mig.,

T. 2, p. 830.

— radicicola (Beijerinck) LIII. Botanische Zeitung, 1888. — Macé, T. 2, p. 528.

- radiiforme (RIST ET GUILLEMOT) LVI. Rist., Th., Paris, 1898.

- Guillemot, Th., Paris, 1898.

- radiobacter (Beijerinck) XXXI. Læhnis, C. f. B., 2° s., T. 14, p. 590.

ramificans (B n° 9) (Pansini) XIV. Virchow's Archiv, T. 122, p. 445.

ramosum (Veillon et Zober) LXIII. Archiv. de Méd. expérim., 1898. — J. D., p. 150.

rancens (Beijerinck) XXXII. C. f. B., 2° s., T. 4, p. 211 et

867, — L. et N.

— ranicida (Ernst) VIII et XVI [= B. hydrophilum fuscum (Sanarelli)]. Ziegler's Beiträge, T. 8, 1890, p. 203.

- ratti (Groupe paratyphosum) XXX. K. et W.

- rhenanum (Burri) XIV. Th., Munich, 1893. Mig., T. 2, p. 713.
- rhinoscleromatis (Fritsch) XXXII. W. m. W., 1889, n° 32.
 K. et W., Т. 3, р. 408.

- rhizopodicum margarineum (Jolles et Winkler) XIV. Z. f. H., T. 20, 1895, p. 105.

rhusioathiae suis (KITT) XXIX. Arb. aus dem kaiserl. Gesundkeitsamte, T. 1, p. 46.
 H. et M., 1900, T. 1, p. 64.

- rigidum (Distaso). C. f. B., 1^{ro} s., Or., T. 59, p. 103.

Nº 7 (RODELLA) LXIV. Z. f. H., T. 39. — C. f. B., T. 29, et
 Nº 8 (RODELLA) LXIV. 1^{ro} s., Or., T. 37.

- rodentiperda (R. Krauss) Lehm. et Neum., Z. f. H., T. 24.

rosaceum metalloïdes (Dowdeswell) XX. Annales de Micrographie, T. 2, p. 310.

- roseum (Fischer) XLI. Die Bakterien des Meeres, 1894. — Mig., T. 2, p. 860.

- rouge de l'eau (Lustig) XX. Lustig.

- du rouge des papillons de vers à soie (Вкодиет) Voir Bact. Вгоqueti.
- rouge pathogène de Thévenin XX. Thévenin, th. Toulouse, 1898.
- rubefaciens (ZIMMERMANN) XLI. Zimm., I, 1890. Mig., T. 2,p. 861.

rubefaciens pyogenes (MATZUSCHITA) XLI. Matzu.

ruber ovatum (Bruyning) XLI. Arch. néerl. des Sciences,
 2° s., T. 1. — Macé, T. 2, p. 394.

- Bacterium rubescens (Jordan) XLI. Experim. investig. by the State board of Health of Massachusetts, Boston, 1890, p. 835.—Mig., T. 2, p. 860.
 - rubidum (Eisenberg) XX. Eisenb.
 - rubro-fuscum (Halibacterium) (FISCHER) LIII. Fischer. Die Bakt. d. Meeres, 1894, p. 36.
 - rubrum (Migula) XLI. Mig., T. 2, p. 488.
 rubrum balticum = Bact. kieliense (Breunig).
 - de Rumpfleth (Groupe paratyphosum) XXX. K. et W.
 - saliphilum (Матzuschita) XIV. С. f. В., 1^{ге} s., Т. 29, р. 385. — Matzu.
 - salivarium septicum (Biondi) XXIX. Z. f. H., T. 2, 1887,
 p. 196.
 - salmonicida (Lehmann et Neumann) X. L. et N.
 - sapolacticum (Ексинока) XXXIX. С. f. В., Т. 9.
 - Santorii XX. Ann. d'Igiene sperim , VI, 1896.
 - de la Schweineseuche (Loeffler et Schütz) **XXXII**. = Bact. suicida (Migula).
 - sardinæ = cocco-bac. rouge de la sardine (Аисне́). S. de B., 1894, s. 10, I, p. 16.
 - Schræderi (Schroeder et Cotton) LIII. Amer. veterin. Rev., nov. 1911.
 - scissum (Frankland) XXXIX. Z. f. H., T. 6, 1889, p. 399.
 - scoticum (KLEIN) XXXI. C. f. B., T. 4, 1889, p. 36 et T. 7,
 p. 81.
 - septatum (Gelpke) (= В. Xerosis) XLVI. А. В. І. К., Т. 2,
 n° 2, 1898.
 - septicaemiae (Koch, Gaffky). Voir Bact. chol. gallin.
 - septicaemiae haemorragicae (Hueppe). Voir Bact. chol. gallin.
 - de la septicémie des canaris. Voir Bact. canariense (RIECK).
 - de la septicémie hémorragique des bovidés. Voir Bact. multocidum.
 - de la septicémie hémorragique du cheval (Lignières) XXXII.
 Contribution à l'ét. d. sept. hém. Buenos-Ayres, 1900.
 - de la septicémie des veaux (Groupe paratyphosum) (Tho-MASSEN) XXX. A. I. P., 1897, p. 523. — Macé, T. 2, p. 219.
 K. et W.
 - septicum putidum (Roger) VIII. Revue de Méd., 1891, p. 10.
 - septicum hominis (Mironow) XXXVI. C. f. Gynæcol.,
 T. 16, p. 817.
 - septicum ulceris gangrænosi cutis (Babès) XIV. Septische Prozesse des Kindesalters, 1889. — Eisenb., p. 328.
 - serpens (Veillon et Zuber) LVI. Arch. de Méd. expérim., 1898. J. D.
 - nº 5 (Siebert) XIV. Th., Würzburg, 1894, p. 13. Mig.,
 T. 2, p. 456.
 - singulare (Losski) XXXVI. Th., Dorpat, 1893, p. 45. Mig., T. 2, p. 819.

Bacterium de Sirault (Groupe paratyphosum) (VAN ERMENGHEM)
XXX, K. et W.

- smaragdino fœtidum (Reimann) Th., Würzburg, 1887. - Eisenb., p. 325.

- smaragdino-phosphorescens (KATZ) XLIII. C. f. B., T. 9, p. 156 et T. 11, p. 157.

- solanacearum (SMITH) XXXVIII. Mig., T. 2, p. 775.

- solanicola (Delacroix) Ap. X. C. f. B., 2° s., T. 19, p. 613.
- solanisaprum (Harrisson) Ap. X. C. f. B., 2° s., T. 17, p. 166.
 spiniferum (Unna et Tommasoli) XXXVII. Monatshefte f.
- praktische Dermatol., T. 9, p. 58. Eisenb.
- sporonema. Voir Bacillus.
- sputigenum (Квеївонм) XXVIII. Th., Helmstedt, 1898. Mig., T. 2, p. 378.

sputigenum tenue (Pansini) XXIX. Virchow's Archiv.,
 T. 122, p. 453.

- squamosum (Pansini) XIV. Virchow's Archiv., T. 122, p. 448.

- stellatum (VINCENT) Ap. X. A. I. P., 1907, p. 62.

- Stewarti (Pseudomonas) (E. SMITH) Ap. X. Mig., T. 2, p. 938.
- stolonatum (Adametz, 1888, p. 44.
- stomatofætidum (FISCHER) VIII. Z. f. H., T. 49, p. 329.
- striatum flavum (Besser) XXXVII. Ziegler's Beiträge, T. 6,
 p. 349.
- subepidermidis (= B. nº 7) (ROSENTHAL) XXXVIII. Z. f. H., T. 5, p. 168.
- subflavum (ZIMMERMANN) XXXVI. Zimm., I, 1890, p. 62.
 Mig., T. 2, p. 823.
- subrub'ginosum (Maschek) XLI. Maschek. Mig., Т. 2, p. 836.
- suicida (Migula) = B. suisepticum, XXXII.
- suipestifer = Bact. intestinale suis.
- suisepticum (Loeffler et Schutz) **XXXII**. A. K. G., Т. 1. Smitz, Z. f. H., Т. 10, р. 481. Mig., Т. 2.
- sulcatum (B. aq. sulc.) (Weichselbaum) XXX. Das Œsterreichische Sanitätswesen, 1889, nos 14 à 23.
- de la swine-plague. Voir Bact. suisepticum.
- syncyaneum (B. cyanogenes) (Ehrenberg, Flugge, Schröter) XLII. Mig., T. 2, p. 904.
- synxanthum (Ehrenberg) XXXI. Mig., T. 2, p. 831.
- syringæ (VAN HALL) Ap. X. C. f. B., 2° s., T. 9, p. 381 et 642.
- tachyctonum (FISCHER) XVI. D. med. W., 94, p. 543.
- tartaricum (Löhnis) XXXII. C. f. B., 2° s., T. 19, p. 87.
 tethoïdes = Bact. funduliforme (Hallé, Veillon et Zuber).
- termo fluorescens (Dujardin) XVII. Macé, T. 2, p. 512.
- thermophilum nº 13 (Bruini) XLVIII. C. f. B., 1^{re} s., Or., T. 38, p. 177 et 298.
 - nº 1 (TSIKLINSKY) XLIX. A. I. P., 1903, p. 216
 et 492.

		- Louis Budient Budient		
Bacterium thermophilum nº 5 (TSIKLINSKY) XIIX. A. I. P., 1903, p. 216, et 492.				
	-	- nº 6 (Tsiklinsky) XLIX. A. I. P., 1903,		
		p. 216 et 492.		
	-	- nº 6 (Tsiklinsky) XLIX. A. I. P., 1903, p. 216 et 492.		
	-	- aquatile nº 1 (Tsiklinsky) XLIX. A. I.		
		P., 1899, p. 788.		
	-	- nº 3 (Tsiklinsky) XLIX. A.		
		I. P., 1899, p. 788.		
	-	- nº 4 (Tsiklinsky) Y LIX. A.		
		I. P., 1899, p. 788.		
	-	- nº 5 (Tsiklinsky) X LVIII. A.		
		I. P., 1899, p. 788.		
	-	tholoeideum (Gessner) XXXII. A. f. H., T. 9, p. 129.		
	-	tortuosum (Debono) LIX. C. f. B., 1re s., Or., T. 62, p. 229.		
	-	tremelloïdes (Tils) XIV et XXXVII. Z. f. H., 1890. — Mig., T. 2, p. 823.		
	-	nº 15 (Troïli Petersson) L. Z. f. H., T. 32, p. 368.		
	-	truncatum (nº XIX) (ADAMETZ) XXXII. Landwirtschaftliche		
		Jahrbücher, 1889. — Mig., T. 2, p. 407.		
	-	tuberculosis (Koch) LI. Traités.		
	-	tuberculosis zooglæicae (Malassez et Vignal) XXX. Archi-		
		ves de physiologie, 1883 et 1884. — Macé, T. 2.		
	-	tuberigenum nº 3 (Gonnermann) XVI, Landw. Jahrb., T. 23, p. 656.		
	_	tuberigenum nº 7 (GONNERMANN) XXXVIII. Landw. Jahrb.,		
		T. 23, p. 656.		
	_	turcosa (Türkisfarbener Bac.) (TATAROFF, ZIMMERMANN) XIV.		
		Zimm., II, 1894. — Mig., T. 2, p. 937.		
	-	typhi murium (Groupe paratyphosum) (LOEFFLER) XXX. C. f. B., T. 11, 1892. — K. et W.		
	_	typhosum (EBERTH, GAFFKY) XXX. Traités.		
	_	ulceris cancrosi (Ducrey) LII. (B. du chancre mou). Traités.		
	_	variabile (Distaso) LXV. C. f B, 1 ^{re} s., Or., T. 59.		
	-	varicosum conjunctivae (Gombert) VII. Th., Montpellier, 1889.		
	_	variegatum (Distaso) LIX. C. f. B., 1re s., Or., T. 59.		
	_	vascularum (Smith) Ap. X. C. f. B., 2° s., T. 13, p. 756.		
	_	ventriculi (Rackzynski) XXXI. Eisenb., p. 192.		
	_	v ntriosum (Tissier) LXIV. A. I. P., 1908, p. 189.		
	_	vesicae (Deeleman) XXVII. C. f. B., 1 . s., Or., T. 26, p. 542.		
	-	violaceum (Schröter, Lehmann) XXI. L. et N., p. 403.		
	-	violaceum laurentium (JORDAN) XXI. Experim. investig. by		
		the State board of Massachusetts, 1890 Mig., T. 2, p. 944.		
	_	virescens (Dangeard), VIII. Billiard. Bull de la Soc. bo-		
		tanique T. 56, 1909, p. 322 et 328. — Macé, T. 2, p. 418.		
	_	viridans (SYMMERS) XVII. Brit. med. Journ., 1891, p. 1552.		

- Bacterium viscosum sacchari (KRAMER) X. Mig., T. 2, p. 447.
 - vitivorum (BACCARINI) XXXVI. Malpighia, T. 6, 1892. -Mig., T. 2, p. 778.
 - vituli-septicum (Schirop) XXXII. C. f. B., 1º0 s., Or., T. 47 p. 307.

vitulinum (Weissenberg) VIII. L. et N., p. 384.

vulgare (Proteus vulgaris) (HAUSER) VII et VIII. Mac é, T. 2 vulgare var. A. B. C (Weber) VII et VIII. Th., Stras bourg, 1903.

de Weeks LII. Archiv. für Augenheilk, XVII, 1887, p. 318. — Morax, Th., Paris, 1895 (= В. aegyptiacum (Косн).)

de la Wildseuche (Bollinger) XXXII. Kitt, Bakterienkunde u. pathol. Mikro. f. Tier., 3° éd., 1899.

de Weischbeck (Groupe paratyphosum) (De Nobele) XXX. K. et W.

- de Willebrock (Groupe paratyphosum) (De Nobele) XXX. K. et W.
- xerosis (Neisser et Kuschbert) XLVI. Bresl.ärztl. Zeitsch., 1883. — Mig., T. 2, p. 501.

xylinum (Brown) XXXII. Beijerinck, C. f. B., 2° s., T. 4, p. 211 et 867.

Yoghourt (Kuntze). L. C. f. B., 2° s., T. 21, p. 737.

- zeae (Burrill) XXX. Billings, The corn-stalk disease in cattle, Investigations, T. III, 1889.
- Zenkeri (Proteus Z. (HAUSER) XXVIII. Die Bakterien der Faulniss, 1885. - Mig., T. 2, p. 816.
- Zopfii (Kurth) XXVIII. Botan. Zeitung, 1883. Mig., T. 2, p. 815.

Botriococcus. Voir Micrococcus.

Brachybacterium, nº 19 (Troïli-Petersson) I. C. f. B., 2° s., T. 11, p. 120.

nº 20 (Troili-Petersson) I. C. f. B , 2º s., T. 11, p. 120. Carphococcus pituitoparus (Hohl). Voir Micrococcus.

Cladothrix intricata (Russel), Voir B. intricatus.

Clostridium. Voir Bacillus.

- americanum (Pringsheim). LVIII. C. f. B., 2° s., T. 16, p. 795.
- butyricum (Prazmowsky) LVIII. Botan. Zeitung, T. 37, 1879, p. 409.

fætidum (Liborius). Voir B. fætidus clostridiiformis.

des nodosités des legumineuses (Rodella). LVIII. C. f. B., 2° s., T. 18, 1907, p. 455.

pastorianum (WINOGRADSKI). LVIII. C. f. B., 2° s., 1902.

persicae tuberculosis (Kock). Ap. X. Monatshefte f. Landwirtschaft, 1909, p. 247.

Coccobacillus. Voir Bacterium.

anaerobicus parvus (Choukévitch). Voir Bact. anaer. parvum.

anaerobius perfœtens (Tissier). Voir Bact. perfœtens.

de la coqueluche (Vincenzi) LI. D. m. W., 1898, nº 40. -C. f. B., 1re s., Or., T. 31, p. 273.

420 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

Coccobacillus hémophile (ROSENTHAL) LI. Th., Paris, 1900.

- minutissimus gazogenes (Jacobson). Voir Bact. minutissimum.
- mobilis non liquefaciens (Сноике́viтсн) XXVIII. А. І. Р., 1911, p. 345.

de la péripneumonie (Nocard et Roux) LI. Traités.

- proteolyticus mobilis (Сноике́vітсн). Voir Bact. proteolyticum.
- rouge de la sardine (Aucнé) = Bact. sardinae.

rouge pathogène de Santorii = Bact. Santorii.

Coccus. Voir Micrococcus.

A (FOUTIN). Voir M. typhoïdeus. (Mig.)

B (FOUTIN). Voir B. nubilus (Mig.).

rouge de (MASCHEK). Voir M. carneus (ZIMMERMANN). Cornstalk disease. Voir Bact. Billingsi.

Corynebacterium. Voir Bacterium.

- vaccinae (Galli-Valerio) XLV. C. f. B., 1re s., Or., T. 36, p. 465.
- variolae (Galli-Valerio) XLV. C. f. B., 1 ** s., O., T. 36, p. 465. Cryptococcus. Voir Micrococcus.

Diplobacillus. Voir Bacterium et Bacillus.

- de la conjonctivite (MORAX) = Bact. duplex. Diplococcus. Voir Micrococcus.
 - capsulatus margarineus (Jolles et Winkler) = Bact. margarineum.
 - jaune orangé de Steinschneider XI. B. k. W., 1890, p. 553.
 - pleuropneumoniae equi (Schutz) XXVI. Glage. pneumoniae (Weichselbaum) = M. Pasteuri.
 - pyogenes (Pasquale). Voir M. sanguineus (Mig.).
 - roseus (Eisenberg). Voir M. roseus (Bumm).
 - ureae non pyogenes trifoliatus (Roysing) = M. ureae trifoliatus.

Discomyces equi (RIVOLTA). Voir M. ascoformans (JOHNE).

Entérocoque (Thiercelin) = M. ovalis (Escherich).

Erythrobacillus pyosepticus (Fortineau) = Bact. pyosepticum XX.

Fächerbacillus (CLAUSS). Voir Bact. loculosum.

Fleischfarbiger Bazillus. Voir B. carnosus (Tils).

Glycobacter peptolyticus (Wolmann). XXVII. A. I. P., 1912, p. 610.

Goldgelber Wasserbacillus (ADAMETZ). Voir Bact. chryseum.

Granulobacter pectinovorum (Beijerinck). Voir B. pectinovorus.

Grauer Bacillus (MASCHEK). Voir Bact. glaucum.

Grauer coccus (MASCHEK). Voir M. subgriseus.

Grüngelber Bacillus (TATAROFF). Voir Bact. chlorinum.

Halibacterium. Voir Bacterium et Spirillum.

Jequirity bacillus (SATTLER). Voir B. Sattleri.

Karminroter Bacillus (Tataroff) = B. kermesinus.

Kornchenbazillus. Voir Bact. granulosum (Luerssen et Kuhn).

Lactobacillus caucasicus (Beijerinck). Voir Bact. caucasicum.

Leuconostoc mesenterioïdes (Van Tieghem). Voir M. (str.) mesenterioïdes (Cienkowski).

Microbe de la diphtérie des poules (Bordet et Fally) LII. A. I. P.,

1910, p. 563.

Micrococcus achrous = M nº 16 (LEMBKE) Ap. XIII. A. f. H., T. 26, p. 310.

- acidi lactici (Streptococcus) (GROTENFELDT) XXV. Fortschritte der Medizin, T 7.

- acidi lactici, var. liquefaciens (Streptococcus) (Burri et Mul-

acidi lactis (KRUEGER) I. C. f. B., T. 7, 1890, p. 464. — Mig.,
 T. 2, p. 112.

- acidificans (Migula). Voir M. acidi lactis (Krueger).

- acidi paralact ci (Nencki et Sieber) Ap. XIII. Sitzungsber,
 d. k. Akad. Wiss. Wien. naturw. Klasse, XCVIII, 2° s.,
 mai 1889.
- acidi paralactici liquefaciens halensis. Voir M. halensis (Kosaï).
- nº 1 (Adametz) Ap. XIII. Landw. Jahrb., 1889, T. 18, p. 239.
- nº 2 (Adametz) XXIV. Landw. Jahbr., 1889, T. 18, p. 239.
- n° 3 (Араметz) Ap. XIII. Landw. Jahrb., 1889, Т. 18, р. 239.
- nº 4 (Араметz) **XXIV**. Landw. Jahrb., 1889, Т. 18, р. 239.
- nº 5 (Араметz) Ар. XIII. Landw. Jahrb., 1889, Т. 18, р. 239.

- nº 6 (Adametz). Voir M. coccineus.

- aerogenes (MILLER) I. D. m. W., 1888, nº 8. Mig., T. 2,
 p. 108.
- agilis (Ali Cohen) XVIII. С. f. В., Т. 6, 1889, р. 33. Мід.,
 Т. 2, р. 275.
- agilis albus (CATTERINA) XXVI. C. f. B., 1⁷⁰ s., Or., T. 34, 1903.
- albatus (KERN) Ap. XII. A. B. I. K., T. 1, p. 479.
- albescens (Henrici) I. A. B. I. K., T. 1, 1894, p. 76.

— albicans amplus (Bumm) XXIV. Bumm. — Flüg.

- albicans tardus (Unna et Tommasoli) XXIV. Monatsch. f. prakt. Dermat. T. 9, p. 49.
- albicans tardissimus (Bumm) XXIV. Arch. f. Gynaekol.
 T. 22, 1884. Macé, T. 1, p. 540.
- albidus (Henrici) I. A. B. I. K., T. 1, 1894, p. 75.
 T, 2, p. 105.
- albidus (Lossкi) Ap. XII. Mig., Т. 2, p, 93.

— albus (Макснек) Ap. XIII. Maschek.

- albus (Matzuschita) Ap. XIII. C. f. B., 1re s., T. 29, p. 382.
- albus liquefaciens (Besser) I. Ziegler's Beiträge, T. 6, n° 4,
 p. 346.
- amarificans (Conn) I. C. f. B., T. 9, 1891, p. 653. Mig. T. 2,
 p. 100.
- amylovorus (Burrill). Voir Bacillus.

Micrococcus anaerobius minimus (Gioelli). Voir minimus (G.). Arch. italiano di Ginecologia, 1907 et 1908.

- anaerobius (Sternberg). Voir M. sputigenus an (St.).

- anaerobius micros (Lewkowicz) \(\preceq \mathbf{X}\). Arch. de med. exper1901. J. D., p. 196.
- annulatus (Kern) Ap. XII. A. B. I. K., T. 1, p. 490.
- aquatilis (Волтом) XXIV. Z. f. H., Т. 1, 1886, р. 94.
- aqueus = M. n° 25 (Lembre). I. A. f. H., T. 26, p 317.
- argenteus = M. n° 27 (Lembre). I. A. f. H., T. 26, p. 318.
 asaccharolyticus (Staphylococcus) (Distaso) LXI. C. f. B.,
 1^{ro} s., Or., T. 62, p. 445.
- ascoformans (Johne) XI (= Ascococcus equi). Bericht über das Veterinarwesen im Konigreich Sachsen f. d. Jahr 1884.
 Mig., T. 2, p. 116.
- asper = M. nº 4 (Siebert) XXV. Th., Würzburg, 1894.
- aurantiacus (Schroeter) XXXIII. Mig., T. 2, p. 119.
- aurantiacus sorghi (Bruyning) XXXIII. Arch. Néerl. des sc., série 2, T. 1.
- baccatus = M. nº 18 (Lembre) XXIV. A. f. H., T. 26, p. 311.
- badius (Lehmann et Neumann) XV. L. et N.
- banani (coccus) (Distaso). C. f. B., 1re s., Or., T. 59, p. 48.
- Beckeri = M. der Osteomyelitis (Becker). Ap. XII. D. m. W., 1883, p. 665.
- Beigelii (Schroeter). Pilze-Flora von Schlesien, 1886, р. 152.
- beri-beri (Peckelharing) Ap. XII. D. m. W., T. 87, p. 845.
- bicolor (Kern) XL. A. B. I. K., T. 1, 1897. Mig. T. 2, p. 175.
- bicolor (ZIMMERMANN) XI Zimm. L. et N., p. 252.
- Billrothii (ascococcus (Соня). Beiträge z. Biol. d. Pflanzen, Т. 3, ou I, 3.
- Biskra (Duclaux et Heydenreich) XI. Annales de dermatologie, juillet 1884.
- blanc à colonies foliacées (Legrain). I* Th., Nancy, 1888.
 Macé, T. 1, p. 539.
- botryogenes (RABE). Voir M. ascoformans (Johne).
- bovinus = M. der Lungenseuche der Rinder (Poels) Ap. XIII. Fortschr. d. mediz., 1886, p. 217.
- bovis = M. der seuchenhaften Hæmoglobinurie des Rindes
 (Babès) Ap. XIII. Virchow's Archiv., T. 115, p. 81.
- brassicae (= Bact. brassicum) (Wehmer) XXV. C. f. B., 2° s.,
 T. 10 et 14.
- huccalis [streptoc.] (ROGER) XLV. P. M., 1909, p. 97.
- butyri (Tetracoccus) (v. Klecki) Ap. XIII. C. f. B., 1. s., T. 15, p. 360.
- butyri (Keith) = M. butyri aromafaciens.
- butyri aromafaciens (Keith) I. C. f. B., 2° s., T. 8, p. 584.
- candicans (Flugge) XXIV. Flüg. Mig., T. 2, p 47.
- candidus (Coun) XXIV. Mig., T. 2.

Micrococcus canecens = M. nº 4 (ADAMETZ) Ap. XIII. Landw. Jahrb., T. 18, p. 240.

canus = M. bei infektiosen Tumoren (Manfredi) Ap. XIII.

Fortschr. der Mediz., T. 86, p. 22.

carneus (List) XL. Th., Leipzig, 1885.
 carneus (Zimmermann) XL. Zimm., I, 1890. — Eisenb. — Mig., T. 2, p. 166.

carnicolor (Frankland) XVIII. Mig., T. 2, p. 183.
carnicolor (Kern) XVIII. A. B. I. K., T. 1, p. 495.

casei = М. n° 3 (Араметz) Ар. XIII. Landw. Jahrb., Т. 18,
 p. 240.

 casei amari (Freudenreich) I. Landwirtsch. Jahrbuch der Schweiz, T. 8, 1894, p. 136.

 catarrhalis (Pfeiffer) XXVI et XLV. Ghon, Pfeiffer et Sederl, Zeitschr. f. klin. Med. 1902. — Bezançon et I. de Jong, P. M., 1905.

cerasinus lactis (Keferstein) XL. C. f. B., T. 21, 1897.
 Mig., T. 2, p. 170.

- cerasinus siccus (List) Ap. XIII. Adametz, Mitteil. d. osterr.
 Versuchstation f. Brauerei. Wien, 1883, p. 33.
- cereus albus (Staphylococcus) (Passet) XXIV. Macé, T. 2,
 p. 451.
- cereus flavus (Staphylococcus) (Passer) XXXIII. Mace, T. 2, p. 452.
- cerevisiae (Pediococcus) (BALCKE) Ap. XIII. Lintner, Th. Berlin, 1888.

- cerinus (Henrici) Ap. XII. A. B. I. K., T. 1, p. 84.

- chinicus (Emmerling et Abderhalden). Ap. XVI. C. f. B,. 2° s., T. 10, p. 337.
- chlorinus (Сонк) Ap. XII. Beiträge z. Biol. d. Pflanzen, Т. 1, р. 155.
- chromidrogenus citreus (TROMMSDORFF) XI. L. et N., p. 250.
- chryseus (Frankland) Ap. XII. Gessner, A. f. H., T. 9, p. 137.

- cinereus (ZIMMERMANN) Ap. XIII. Zim., 1890.

- cinnabareus (Flugge) XVIII. Flüg. Mig. T. 2, p. 163.
- cinnabarinus (ZIMMERMANN) XVIII. Zim., 1890. (= M. cinna-bareus (Flügge).

— cirrhiformis (Maschek) XXIV. Mig., Т. 2, р. 53.

- citreus (List) XXXIII. Th., Leipzig, 1885. Eisenb.
- citreus agilis (Menge) XXXIII. C. f. B., T. 12, 1892.
 Mig, T. 2, p. 271.
- citreus conglomeratus (Diplococcus) (Bumm) Ap. XIII. Bumm,
 T. 2, p. 17.
- citreus granulatus (Freund) XI. Th., Erlangen, 1893, p. 27.
 citreus liquefaciens (Diplococcus) (Unna et Tommasoli) Ap. XII.

Monatsch. f. prakt. Dermat. T. 9, p. 56.

Micrococcus citreus rigensis (Bazarewsky) XI. C.f.B., 2° s., T. 15, p. 5.

- claviformis (Diplococcus) (Besser) XXXIII. Ziegler's Beiträge, T. 6, p. 348.
- coccineus (М. n° 6) (Араметz) XL. Landwirt. Jahrb., 1889.
 Т. 18, р. 239.
- coli brevis (Streptococcus) (Escherich) XI. Die Darmbakterien des Saüglings und ihre Beziehungen zur Physiologie der Verdauung, 1886, p. 86.
- commensalis (Diplococcus) (Turro) Ap. XIII. C. f. B., 1re s., T. 16, p. 1.
- concentricus (ZIMMERMANN) XXIV. Zimm. 1890.
- confluens (KERN) Ap. XII. A. B. 1. K., T. 1, p. 494.
- conjunctivae (Migula). Voir M. liquefaciens conjunctivae (Gомвент).
- conjunctivae (Diplococcus) (Verderame) Tableau B. C. f. B., 1^{re} s., Or., T. 54, p. 543.
- corallinus (CATANI) XVIII. C. f. B., T. 23, 1898, p. 308.
 Mig., T. 2, p. 197.
- coralloïdes (ZIMMERMANN) I. Mig., T. 2, p. 109.
- coronatus (Flugge) I. Flüg., Mig., T. 2, p. 140.
- corrugatus (DYAR) XI. Matz., p. 210.
- coryzae (Најек) **XXIV**. В. к. W., 1888. Eisenb.
- crassus (JAEGER). XLV. D. m. W., 1896, p. 423.
- cremc'i les (ZIMMERMANN) I. Mig., T. 2, p. 145.
- cretaceus (Henrici) Ap. XIII. Th., Bâle, 1894.
- cristatus (GLAGE) I. C. f. B., 1re s., R., T. 23, p. 790.
- cumulatus (Kern) XVIII. A. B. I. K., T. 1, 1897, p. 497.
 Mig., T. 2, p. 180.
 - cumulatus tenuis (Besser) XXIV, Ziegler's Beiträge, T. 6.

 Eisenb.
- cupularis (Lемвке) XI. А. f. H., Т. 29, 1897, р. 331.
 cupuliformis (Lемвке) XXXIII. Мід., Т. 2, р. 213.
- cyaneus (Schröter) XLII. Schreeter, p. 145.
- cyanogenus (Pammel et Combs) XLII. C. f. B., 2° s., T. 2, p. 764.
- cyclops (Henrici) Ap. XIII. Th., Bâle, 1894.
- cystiopœus (Muller-Thurgau). C. f. B., 2° s., T. 20, p. 463.
- cytophagus (Merker) LIII. C. f. B., 2° s., T. 31. N° 23-25.
 decalvans (Bacterium) (Thin) I. Monatshefte für prakt. Der
 - matol., 1885, nº 28.
- decolor (= M. n° 22 (Lемвке) I. A. f. H., Т. 26, р. 314.
- dendroporthos (Ludwig). Ap. XVI. C. f. B., 1^{re} s^{*}, T. 10, p. 1.
 diffluens (Schröter) XXXIII. Schröter, p. 144.
- dissimilis (DYAR) Ap. XII. Mig., T. 2, p. 118.
- eburneus (Henrici) Ap. XIII. A. B. I. K., T. 1, p. 470. Mig., T. 2, p. 71.
- endocarditis rugatus (Weichselbaum) XLV. Beiträge zur Patholog. Anatomie und zur allgem. Pathologie, T. 4, p. 164. — Eisenb.

Micrococcus enteritis = M. ovalis (Escherich).

- epidermidis albus (Welch) I (= Staphylococcus cutis communis (Sabouraud). Macé, T. 1, p. 548.
- erythromyxa (Bact.) (Zopf). Mig., T. 2, p. 487.
- erythromyxa (ZIMMERMANN) XL. Zimm., T. 2, p. 70.
- excavatus (KERN) Ap. XIII. A. B. I. K., T. 1, p. 486.
- exiguus (KERN) Ap. XII. A. B. 1. K., T. 1, p. 470.
- nº 4 (Ferguson) I. Th., Göttingen, 1902. Koch's Jahresber., T. 13, p. 350.
- fervitosus (Adametz) XXIV. Adametz.
- filiformis lodzensis (Bartoszewicz et Schwarzwasser) XXIV. A. I. P., 1908, p. 927.
- nº 1 (Fischel) XXIV. Zeitschr. f. Heilk, T. 12.
- nº 2 (FISCHEL) Ap. XII. Zeitschr. f. Heilk, T. 12.
- flavescens (Henrici) Ap. XII. Th., Bâle, 1894.
- flaveus (Henrici) Ap. XII. Th., Bâle, 1894.
- flavidus (HENRICI) Ap. XII. Th., Bâle, 1894. flavus conjunctivae (Gombert) XI. Th., Montpe'lier, 1888.
- flavus desidens (Flugge) XI et XV, Flüg. Mig., T. 2 p. 143.
- flavus liquefaciens (Flugge) XI. Flüg.
- flavus tardigradus (Flugge) (= M. sulfureus β tardigradus (L. et N.) XXXIII. Flüg. — Eisenb.
- fætidus (Klamann) I. Allg. med. Centralzeitung, 1887, p. 1344 - Eisenb.
- fœtidus (Veillon) LVII. S. de B., juillet 1893
- fœtidus fluorescens (Klamann) T. C, et XV. All. med. Centralzeitung, 1887, p. 1347. — Eisenb.
- Fokkeri I. Z. f. H., T. 9, p. 41.
- foliatus (Legrain) I. Th., Nancy, 1888. Macé, T. 1, p. (= M. blanc à colonies foliacées).
- B (FOUTIN) Ap. XIII. C. f. B., T. 7, p. 373.
- fragilis (Merispodia frag.) (DYAR) Ap. XII. Mig., T. 2, p. 186.
- nº 1, var. A. (FREUDENREICH) XI. C. f. B., 2º s., 1903, p. 340.
- nº 1, var. B. (Freudenreich) XI. C. f. B., 2° s., 1903, p. 340.
- nº 2, var. A., B, C, (FREUDENREICH) I. C. f. B., 2° s., 1903. p. 340.
- nº 4, var. A. et B. (FREUDENREICH) I. C. f. B, 2º s., 1903,
- Freudenreichii (Guillebeau). Voir M. lactis viscosi (Gruber).
- fulvus (Cohn) Ap. XIII. Beitrage z. Biol, d. Pflanzen, T. 1.
- fulvus (R. Weiss) XI. A. B. I. K., T. 2, 1902, nº 3.
- fuscus (Brauner coccus) (MASCHEK) XV. Jahresbericht der. Komm. Oberrealschule zu Leitmeritz, 1887, nº 6. - Eisenb.,
- galbanatus (ZIMMERMANN) Ap. XII. Zimm., T. 2, p. 68.
- gazogenes (Choukévitch) LXII. A I. P., 1911, p. 345.

Micrococcus gazogenes alcalescens (Lewcowicz) LVII = M. parvulus (V. et Z.).

gelatinogenus (Brautigam) Ap. XIII. Pharmaceut. Central.. T. 91, p. 30. — Mig., T. 2, p. 78.

giganteus urethrae (Lustgarten et Mannaberg) XXV. Eisenb.

gigas (Frankland) Ap. XII. Mig., T. 2, p. 157.

gilvus (Henrici) Ap. XIII. Th., Bâle, 1894. gilvus (Losski) Ap. XIII. Mig., T. 2, p. 132.

- gingivae pyogenes (MILLER) XXXIX. Miller. Mig., T. 2, p. 68.
- glandulosus (Weiss) I. A. B. I. K., T. 2, nº 3. globosus (KERN) Ap. XIII. A. B. I. K., T. 1, p. 469.

gonorrheae (Neisser) LII. Traités.

gracilis (Streptococcus coli gracilis) (Escherich) I. Die Darmbakterien des Saüglings., 1886. - Eisenb.

granulosus (Kern) Ap XIII. A. B. I. K., T. 1, p. 433.

A (GRIGOROFF) LVII. Thèse, Paris, 1905.

- griseus non liquefaciens (Tissier et Martelly) XXIV. A. I. P., 1902. — Macé, T. 1, p. 597.
- grossus (Henrici) Ap. XIII. Th., Bâle, 1894, p. 70.

gummosus (HAPP) Ap. XIII. Th., Berlin, 1893.

haematodes (Babès) Ap. XIV. Flüg., T. 2, p. 182. haemorrhagicus (KLEIN) XV. C. f. B., T. 22, 1897, p. 81.

- halensis (Kozaï) I. Z. f. H., T. 31, p. 372 et T. 38, p. 386. Hauseri (Rosenthal) XXXIII. Ernst, Th, Berlin, 1893.
- Mig., T. 2, p. 80. van Harrevelti (Diplococcus) Tableau B. C. f. B., 10 s., Or.

helvolus (Henrici) Ap. XIII. Th., Bâle, p. 77.

hemophilus albus (Diplococcus) (Deguy et Legros) I. Legros, Th., Paris, 1900.

hollandicus (Streptococcus) (Scholl) Ap. XIV. L. et N.

humidus = M. nº 2 (ADAMETZ). Ap. XIII. Jahrb. Landw. T. 18, p. 239.

inconspicuus (Henrici) Ap. XIII. Th., Bâle, p. 64.

- influenzae (= M. nº 2 Fischel). Ap. XII. Zeitschr. f. Heilk., T. 12.
- intracellularis meningitidis (Weichselhaum) XLV et LII.
- involutus (Streptococcus) (KURTH) XXV. A. K. G., T. 8, 1893, nº 3.

iris (HENRICI) Ap. XIII. Th., Bâle, p. 67.

- jaune non liquéfiant de l'urêtre (LEGRAIN) XXXIII. Th., Nancy, 1888. — Macé, T. 1, p. 536.
- Jungani (Staphylocoque) LVII. S. de B., 1907. J. D., p. 194.

lacteus (Henrici) I. A. B. I. K., T. 1, nº 1, 1894, p. 74.

lacteus faviformis (Flugge) (= Milchweisser Diplococcus (Bumm) - Flüg., T. 2, p. 182.

lactis (Streptococcus) (LISTER). Voir M (Str.) acidi lactici

(GROTENFELDT).

Micrococcus lactis acidi (Leichmann) XXIV. Milchzeitung, 1896, p. 67.

- lactis acidi (MARPMANN) XXIV. 128 Erg. Heft d. C. f. allg.

Gesundheitspflege, T. 2.

- lactis viscosi (Gruber) (= М. Freudenreichii (Guillebeau) I, Gruber С. f. B., 1902, p. 785. — Guillebeau, Landw. Jahrbuch der Schweiz, 1891, p. 133.
- lanceolatus (Streptococcus) (Gamaleia). Voir M. Pasteuri.
 lanceolatus var. liquefaciens (Kindborg) I. C. f. B., 1^{r.} s., Or., T. 32, p. 573.

- lardarius (Krassiltschik) Ap. XII. Mig., T. 2, p. 65.

- latericius (FREUND) XL. Th., Erlangen, 1893. Mig., T. 2,
 p. 171.
- n° 14 (Lемвке) XXVI. А. f. Н., Т. 26, р. 317.
- nº 15 (LEMBRE) XXIV. ibid.
- nº 16 (Lembre) XXIV. ibid.
- nº 17 (LEMBKE) XXIV. ibid.
- n° 18 (Lемвке) **XXIV**. ibid.
- n° 19 (Lемвке) Ap. XIII. ibid.
- n° 20 (LEMBKE) XVIII et XL. ibid.
- n° 21 (Lembke) XXIV. ibid.
- n° 22 (Lемвке) I. ibid.
- nº 25 (Lемвке) I. ibid.
- n° 26 (Lемвке). ibid.
- п° 27 (Lемвке) I.
 п° 28 (Lемвке) XXIV.
 ibid.
 ibid.
- licheniformis (KERN) Ap. XIII. A. B. I. K., T. 1, p. 482.

- liquefaciens (MIGULA). Voir M. ureae liquefaciens.

- liquefaciens acidi nº 1 et 2 (CONN) I. 12 Ann. Rep. Storrs.
 Agric. exp. stat., 1899, p. 13.
- liquefaciens aurantiacus (Distaso). C. f. B., 1^{ro} s., Or., T. 59,
 p. 102.
- liquefaciens conjunctivae (Gombert) I. Th., Montpellier, 1888.
- liquefaciens tardus (Diplococcus flavus liquef. tardus) (Unna Et Томмазоц). Monatsch. f. prakt. Dermatol., Т. 9, р. 56.
- lobatus (Siebert) Ap. XII, Th., Würzburg, 1894, p. 10.
- luridus (Kern) Ap. XIII. A. B. I. K., T. 1, p. 480.

- luteolus (HENRIGI) Ap. XII. Th., Bâle, 1894, p. 82.

— luteus (Сонх) Ap. XIII. Beitrage z. Biol. d. Pflanzen, Т. 1, p. 119.

- luteus (Lehmann et Neumann) XI. L. et N.

luteus liquefaciens (ADAMETZ) XI. Mitteilung. d. österr. Versuchst. f. Brauerei in Wien, 1888.

- lutosus (KERN) Ap. XII. A. B. I. K., T. 1, p. 489.

- madidus (nº 19) (Lемвке) Ap. XIII. A. f. H., Т. 26, р. 311.
- magnus (Tissier et Martelly) LVII. A. I. P., 1902, p. 865.

- magnus anaerobius = M. magnus (T. et M.).

- Manfredii XXXIII Fortschritte der Med., 1886, p. 713.

Micrococcus (sta.) mastitidis albus (Guillebeau) I. Macé, T. 1, p. 551.

- (sta.) mastitidis aureus (Guillebeau) XI. Voir Læhnis.

- mastitidis (Streptococcus) (Nocard et Mollereau) XXV et XXVI. Nocard et Mollereau, A. I. P., 1887. Macé, T. 1, p. 551.
- melanocyclus (Merker) LIII. C. f. B., 2° s., T. 31, n° 23-25.

- melanogenes (Streptococcus) (Schlegel) XXVI. Glage.

melitensis (Bruce) XLIV. Traités.

 meningitidis (Bonome) XXV. Arch. per le scienze Med., 1890, T. 13, p. 431.

meningitidis aurantiacus (Wyssokowitch) XI. Rousski

Wratch, 1895, p. 29.

- meningitidis equi (Streptococcus) (OSTERTAG) XXVI. Glage.
- mesenteric Yles (Cienkowski) XXV. Macé, T. 1, p. 641.
- minimus (Besser) XXIV. Ziegl. Beiträge, T. 6, p. 348.
 minimus (Gioelli) LXI. C. f. B., 1^{re} s., R., T. 42, p. 595.
- minor (= Porzellancoccus) (Escherich) XXIV. Die Darmbakterien d. Sauglings, Wien., p. 96.
- mucilaginosus (Schutz) Ap. VIII. Arch. f. Tierheilk., Т. 12, nº 1.
- mucosus (Streptococcus) (Howard et Perkins) XXV. Journ. of med. research, 1901, T. 6.
- nacraceus (= perlmutterglanzender diplococcus) (TATAROFF)
 Ap. XIII. Th., Dorpat, 1891, p. 70.
 - f. Ohrenheilk., T. 21, p. 187.
- neoformans (Doyen) I. Le M. neoformans et les néoplasmes. Paris, 1903. — Macé, T. 1, p. 546.
- nigrescens (Castellani) XV. The British journ. of Dermatology, 1911, T. 23, p. 341.
- nitidus (KERN) Ap. XII. A. B. I. K., T. 1, p. 476.
- nitrosus (WINOGRADSKY). Voir Bact. nitrificans.
- niveus (Henrici) Ap. XIII. Th., Bâle, p. 66.
- nubilus (Migula) XXIV. (= Coccus B (Foutin). C. f. B.,
 T. VII, 1890). Mig., T. 2, p. 60.
- obscænus (Kern) Ap. XII. A. B. I. K., T. 1, p. 473.
- ochraceus (Rosenthal) Ap. XIII. Th., Berlin, 1893, p. 22.
- ochroleucus (Prove) XI. Cohn's Beitrage zur Biologie, T. 4,
 n° 3, 1887, p. 409.
- odoratus (Henrici) Ap. XIII. Th. Bâle, 1894, p. 73.
- odorus (Henrici) Ap. XIII. Th., Bâle, 1894, p. 71.
- olens (HENRICI) Ap. X/I. Th., Bale, 1894, p. 71
- orbiculus (Tissier) LXI. A. I. P., 1908, p. 189. J. D., p. 191.
- osteomyelitidis (Beckeri) (= M. Beckeri).
- ovalis (KERN) Ap. XII. A. B. I. K.. T. 1, p. 500.
- ovalis (Escherich) (Entérocoque) XXV. Beitrage zur Kentniss der Darmbakterien. Stuttgart, 1886. Muench. med. Wochenschr., 1886, p. 43.

- Micrococcus ovis (Nocard) I. A. I. P., 1887, nº 9. Thoinot et Masselin, Précis de microbie, 1889, p. 310.
 - pallens (Henrici) Ap. XIII. Th., Bâle, 1894.
 pallidus (Henrici) Ap. XIII. Th. Bâle, 1894.
 - pannosus (KERN) Ap. XIII. A. B. I. K., T. 1, p. 466.

- nº 5 (Pansini) XXIV. Virchow's Archiv, T. 122.

parvulus (Vehlon et Zuber) LVII. Arch. de méd. expérim.,
 juillet 1898.
 parvus (n° 14) (Lembre) XXVI. A. f. H., T. 26, 1896.

— parvus (n° 14) (Lемвке) **XXVI**. А. f. H., Т. 26, 1896. — Mig., Т. 2, р. 200.

- Pasteuri (= Str. lanceolatus (GAMALEIA) XXIV, XXV, Traités.

- pellucidus (Kern) Ap. XIII. A. B. I. K., T. 1, p. 468.

- pemphigi (Demme) XLV. Congrès de médecine interne,
 Wiesbaden, 1886. Eisenb.
- peritonitidis equi (Hamburger) XXV. C. f. B., T. 19, 1896.
 persicus (Kern) XVIII. A. B. I. K., T. 1, 1897, p. 499. Mig. T. 2, p. 179.

pharyngis cinereus (v. Lingelsheim) XXVI. XIV. Congrès

Intern. d'Hyg. Berlin, 1888.

- pharyngis flavus nº 1 [dipl.] (v. Lingelsheim). XLV. Ibid.
- pharyngis flavus n° 2 [dipl.] (v. Lingelsheim). LII. Ibid.
 pharyngis flavus n° 3 [dipl.] (v. Lingelsheim). LII. Ibid.
- pharyngis siccus [dipl.] (v. Lingelsheim). LII. Ibid.

phosphoreus (Соня). Mig., Т. 2, р. 78.

pituitoparus (Carphococcus) (Нонь) XXIV. С. f. В., 2° s.,
 Т. 9, 1902. — Масе, Т. 1, р. 606.

- plumosus (Eisenberg-Adametz) XXIV. Eisenb.

- pneumoniae (Streptococcus) (Weichselhaum). Voir M. Pasteuri.

- polypus (MIGULA) Ap. XIII. Mig., T. 2, p. 79.

- prodigiosus (Cohn). Voir Bact. prodigiosum (Ehrenberg).
- progrediens = M. der progr. Abcessbildung b. Kaninchen (Косн). Ap. XVI. Flüg.

— pseudocyaneus (Соня) XLII. Schroeter, p. 145.

- pseudocerevisiae (Pediococcus acidi lactici (Lintner) Ap. XIII. Th. Berlin, 1888, p. 26.

- pseudoinfluenzae, voir M. nº 1 (FISCHEL).

- pulcher (GLAGE) XI. C. f. B., 1 to s., R., T. 23, p. 790.

- pultiformis (Kern). A. B. I. K., T. 1, p. 471.

— punctatus, Voir M. nº 18 (Lемвке). А. f. H., Т. 26, р. 324.

— pyaemiae cuniculorum (Косн). Flüg., p. 167.

pyogenes (Streptococcus) (Rosenbach) XXV. Traités. Legros.
 pyogenes (Streptococcus) (Type Le Roy des Barres et Wein-

pyogenes (Streptococcus) (Type d'Espine et Marignac)

XXVI. Voir Legros, Th., Paris, 1900.

- pyogenes albus (Rosenbach) (Staphylococcus) I. Traités.

- pyogenes aureus (Staphylococcus) (Rosenbach) XI. Traités.

Micrococcus pyogenes citreus (Staphylococcus) (Passer) XI. Trait.

- pyogenes tenuis (Rosenbach) = M. Pasteuri.

- pyogenes ureae (Roysing). Voir M. ureae pyogenes

- pyosepticus (RICHET ET HÉRICOURT) I. Archives de méd. expérim., 1889, p. 673. — Macé, T. 1, p. 454.

radiatus (Flugge) I. Flüg., 1886, p. 176.

Reesii (Rosenthal) I. Mig., T. 2, p. 94.

- regularis (Weiss) XXIV. A. B I. K., T. 2, 1902, fas 3/4.
- reniformis (Соттет) LVII. Th., Paris, 1899. J. D., р. 192.

- resinaceus (Kern) Ap. XIII. A. B. I. K., T. 1, p. 487.

- rhenanus (Burri) Ap. XII. Mig., T. 2, p. 109.

- rheumaticus (Walker et Beaton) XXV. C. f. B. 110 s. Reg.
- rhodochrous (ZOPF) XL. Berichte der Deutsch. Bot. Gesellsch.
 T. 9, 1891. Mig., T. 2, p. 162.
- rosaceus (Frankland) XVIII. Frankland. Mig., T. 2, p. 183.
- nº 1 (ROSENTHAL) Ap. XII. Z. f. H., T. 5, p. 166.
 nº 2 (ROSENTHAL) Ap. XV. Z. f. H., T. 5. p. 166.
- roscidus (= М. n° 1 (Адаметz) Ар. XIII. Landw. Jahrb.,
 Т. 18, р. 238.
- rosettaceus (ZIMMERMANN) XXIV. Zim. 1890. Mig., T. 2, p. 48.
- roseo-fulvus (Lehmann et Neumann) = var. de M. roseus (Bumm). L. et N.
- roseopercinicus (Roter Coccus) (van Евменднем) Ар. XII. Mig., Т. 2, р. 184.

roseus (Bumm) XVIII. Bumm. — Flüg.

- rubellus (Migula) Ap. XIII. Mig., T. 2, p. 169.

— rubescens (n° 20) (Lемвке) **XL**. A. f. H., T. 26, 1896. — Mig., T. 2, p. 208.

- rubidus (Hefferan) C. f. B., 2° s., T. 11, p. 319.

- rubiginosus (Kern) XVIII. A. B. I. K., T. 1, 1897, p. 492.
 Mig., T. 2, p. 182.
- saccatus (Migula). Voir M. albus liquefaciens (Besser).
- salivarius pyogenes (Biondi) XI. Z. f. H., 1887, p. 194.
 Eisenb.
- salivarius septicus (Biondi) XXIV. Z. f. H., 1887, p. 194.
 Eisenb.
- sanguineus (Pasquale) XL. Giornale medico del R. esercito e della R. marina, 1890. — Baumgarten's Jahresbericht, 1891.
- saprogenes vini nº 1 (KRAMER) Ap. XII. Kramer, p. 139.
 saprogenes vini nº 2 (KRAMER) Ap. XII, Kramer, p. 140.
- sarcinoïdes (MIGULA). Ap. XIII. Mig., T. 2, p. 168.
- scariosus (M. nº 2) (Siebert) I. Th., Würzburg, 1894.
- scarlatinus (Migula) XL. Mig., T. 2, p. 173.
 scarlatinosus (Klein) = M. (str.) pyogenes.
- Schwarzenbecki (Streptococcus) (Graf et Wittneben) LXI. C. f. B., 1907, p. 97. — J. D., p. 190.
- septicus liquefaciens (Streptococcus) (Babès) Str. septicus (Migula). I. Babès. Mig., T. 2.

Micrococcus septopyaemicus (Bionbi) XXV. Z. f. H., T. 2, p. 194.

- serratus = M. nº 15 (Lembke).

- siceus (M. nº 5) (ADAMETZ) Ap. XIII. Landw. Jahrb., T. 18, p. 241.
- n° 1 (Siebert) I. Th., Würzburg, 1894.
 n° 2 (Siebert) I. Th., Würzburg, 1894.
- nº 4 (Siebert) XXIV. Th., Würzburg, 1894.

- simi is (DYAR) Ap. XIII. Mig., T. 2, p. 86.

- sordidus (Schröter) Ap. XIII. Schröter, p. 145.

- S)rn(halii (Араметz) Ар. XIII. С. f. В., 2° s., Т. 1, р. 465.
- sputigenus anaerobius (Sternberg) LVII. W. k. W., 1900,
 p. 881. J. D., p. 195.

stellatus (Макснек) XXXVIII. Maschek.

- strobiliformis (Lемвке) **XI**. A. f. H., Т. 26, 1896, р. 315. Mig., Т. 2, р. 203.
- subalbidus. Voir M. albidus (Henrici).

- subcanus. Voir M. nº 17 (LEMBKE).

- subcarneus (KERN) XVIII. = M. carnicolor.

- subcretaceus (Kreideweisser verflüssig. Mikroc. (Кеск). Ар. XII. Th. Dorpat, 1890, р. 64. Mig. Т. 2, р. 107.
- subflavus (Diplococcus) (Вимм) XI. Витт.

- subgilvus. Voir M. gilvus (HENRICI).

- subgriseus (Grauer Coccus (Макснек) XV. Jahresber. d Komm. Ober-Realschule zu Leitmeritz, 1887, n° 8.
- sublacteus = M. n° 27 (Lемвке).
 sublilacinus = M. n° 26 (Lемвке).
- subniveus (MIGULA). Voir M. albidus (HENRICI).
- subochraceus. Voir M. n° 30 (Lемвке).

- subroseus. Voir M. roseus (Bumm).

subtilis (Kirchner) XLV. Z. f. H., T. 9, p. 528.

succulentus (Henrici) XXIV. A. B. I. K., T. 1, no 1, 1894.
 Mig., T. 2, p. 71.

sulfureus (ZIMMERMANN) **XXXIII**. Zimm., 1890. Mig., — T. 2, p. 125.

sulfureus β tardigradus (Lehmann et Neumann). Voir M. flavus tardigradus (Flugge).

- tardus (= Dipl. blanc-grisâtre de l'urètre (LEGRAIN) XXIV. Th., Nancy, 1888.

tetragenus (GAFFKY) XXIV et XXV. Traités. — Macé, T. 1,
 p. 490. — Boutron, Th., Paris, 1893.

- tetragenus albus (Boutron) XXIV. Boutron, Th., Paris, 1893.

— tetragenus anaerobius (Сноике́уітсн) (= Tetracoccus anaerobius) LXI. A. I. P., 1911, р. 345.

tetragenus mobilis ventriculi (Mendoza) XXIV. C. f. B.,
 T. 6, 1889.

 tetragenus septicus (Koch, Gaffky) XXIV. Boutron, Th., Paris, 1893. Micrococcus tetragenus subflavus (Besser). Tableau F. Ziegler's Beitrage, T. 6, p. 347.

- tetragenus tardissimus (Altana). C. f. B., 1° s., R., T. 47.
 p. 44 [var. de M. tetragenus (Gaffky)].
- tetras (Henrici) Ap. XIII. Th., Bâle, 1894.
- trachomatis (SATTLER ET MICHEL) XXIV. Baumgarten, Lehrbuch der pathologischen Mykologie, T. 1, 1890.
- nº 32 (Troïli-Petersson) XI. Z. f. H., T. 32, p. 368.
- tritici (Köck). Monatshefte f. Landwirtschaft, 1909, p. 247.
- tuberosus. Voir M. no 23 (LEMBKE).
- typhoïdeus (= M. A. FOUTIN) XVIII. C. f. B., 1^{re} s., R., T. 7, 1890, p. 373.
- ureae (Cohn) XIV. Virchow's Arch., Т. 100, р. 560.
- ureae liquefaciens (Burchard) I. Flüg., 1886, p. 169. Burchard, A. f. H., T. 36.
- ureae non pyogenes trifoliatus (Roysing) XXV. Die Blasenentzündungen, ihre Aetiologie, Pathogenese und Behandlung, 1890.
- ureae pyogenes (Streptococcus) (Roysing) XXV. Id.
- → utriculosus. Voir M. nº 20 (LEMBKE).
- vaginitidis (OSTERTAG) XXVI. Glage.
- varians lactis (Conn) I. Lafar, Technik Mykol, T. 2.
- vermiformis (Streptococcus) (Maschek) Ap. XII. Maschek.
- vesicae (Heim) Ap. XIII. Heim, p. 297. Mig., T. 2, p. 84.
- versicolor (Flugge) XXXIII. Flüg. Eisenb.
- vesicosus (Weiss) I. A. B. I. K., T. 2, nº 3/4.
- vesiculiferus. Voir M. nº 28 (LEMBKE).
- violaceus (Соня) XLII. Maschek.
- viridis flavescens (Guttmann) XX XIII. Virchow's Archiv., T. 107, p. 261.
- viticulosus (KATZ) XXIV. Flügge. Mig. T. 2, p. 53.
- vulgaris (WEISS) XXIV. A. B. I. K., T. 2, 1902, nº 3/4.
- **xanthogenicus** (Cryptococcus) (Domingos Freire) **XI.** Rech. sur la cause de la fièvre jaune. Rio de Janeiro, 1898.
- xerophilus (GLAGE) XI. C. f. B., 1 ** s., R., T. 23, p. 790.
- zonatus (Henrici) Ap. XIII. Th., Bâle, 1894, p. 68.
- zymogenes (MAG CALLUM ET HASTINGS) I. C. f. B., 1" s., T. 25, p. 384 et T. 30, p. 353.

Morocoque (UNNA) = Micrococcus cutis communis (Welch).

Nekrosebacillus (BANG). Voir Bact. necrophorum.

Nitrobacter (WINOGRADSKY). Voir Bact. nitrificans.

Nitrosomonas (WINOGRADSKY). Voir Bact. nitrosoformans.

Paraplectrum fœtidum. Voir Bac. anaerobius fœtidus (Weigmann).

Pasteurella. Voir tabl. XXXII (groupe des sept. hém.).

Pediococcus. Voir Micrococcus.

Perlschnurbacillus (MASCHEK). Voir Bact. margarittaceum.

Photobacterium. Voir Bacterium et Spirillum.

Photobacterium balticum (Beijerinck). Voir Spir. phosphorescens balticum (Fischer),

- javanicum. Voir Bact. phosphorescens javanense.

- luminosum. Voir Spir. luminosun (Beijerinck).

Plectridium paludosum (FISCHER) IV (= B. sphaericus). — Vorlesungen uber Bakterien, Jena, 2° éd.

Pneumobacille de Friedländer = Bact. pneumoniae.

Pneumocoque. = M. Pasteuri.

Porzellancoccus (Escherich) = M. minor.

Proteus. Voir Bacterium.

- mirabilis (Hauser) VII. Ueber Faülniss-bakterien, 1885.
 Eisenb.
- sulfureus (Holschewnikoff) VII. Eisenb.
- (Type Tissier) VII et VIII. Tissier et Martelly, A. I. P., 1902, p. 856.
- A (Weber) VII et VIII. Th., Strasbourg, 1903.
- B (Weber) VII et VIII. Th., Strasbourg, 1903.
- C (Weber) VII et VIII. Th., Strasbourg, 1903.

Pseudo-gonocoque (Noguès et M. Wassermann). Voir M. catarrhalis (Pfeiffer).

Pseudo-influenza-bacillus (Pfeiffer) = Bact. pseudo-influenzae. Pseudomonas. Voir Bacterium.

- capsulata (Migula) = Bact. fluorescens capsulatum.
- chlorophaena (Migula) XVII. Mig., T. 2.

- gracilis = B. pseudogracilis.

Ranken-coccus (Maschek) = M. cirrhiformis.

Ratinbacillus (Neumann). Voir groupe de Bact. paratyphosum. — Bahr, C. f. B., 1^{ro} s., Or., T. 34, 1905. — K. et W.

Rhinosklerombacillus. = B. rhinoscleromatis (v. Fritsch).

Rhodococcus erythromyxa (Zopf). Voir Bacterium.

- rhodochrous (Zopf). Voir Micrococcus.

Sarcina alba (ZIMMERMANN) II. Gruber, A. B. I. K., T. 1, 1895, p. 239.

- albida (GRUBER) II. A. B. I. K., T. 1, 1895, p. 239.
- alutacea (Gruber) II. A. B. I. К., Т. 1, 1895, р. 239.

- aurantiaca (Flugge) XII. Flug. - Mig., T. 2

- aurantiaca (Косн) XII. M. K. G., T. 2. Lintner, Th., Berlin, 1888.
- aurea (MACÉ) XII. Macé, T. 1, p. 634.
- aurescens (GRUBER) XII. A. B. I. K., T. 1, 1895, p. 239.

- bicolor (Kern) XII. A. B. I. K., T. 1, 1897, p. 505.

- candida (Reinke) II. Gruber. A. B. I. K., T. 1, 1895, p. 239.
- canescens (Stubenrath) II, Das Genus Sarcina, Munich, 1897,
- carnea (Gruber) XL. A. B. I. K., Т. 1, 1895, р. 239.

- cerevisiae (LINTNER) Ap. XIII. - Th., Berlin, 1888.

— cervina (Stubenrath) XV. Das Genus Sarcina, Munich, 1897.

Sarcina citrea conjunctivae (Verderame) XXXIV. C. f. B., 1 s., Or., T. 59, p. 377.

— citrina (Gruber) XXXIV. A. B. I. К., 1895, р. 239.

- equi (Stubenrath) XII. Das Genus Sarcina, Munich, 1897.

- erythromyxa (KRAL) XL. L. et N., p. 211.

- flava (DE BARY) XII. Vorlesungen über Bakterien, 1887. - Mig., T. 2.

— flava (Races non liquéfiantes) (DE BARY) XXXIV. Vorlesungen über Bakterien, 1887. — Mig., T. 2.

flavescens (Henrici) XII. A. B. I. K., T. 1, 1894, p. 91.
fulva (Stubenrath) XV. Das Genus Sarcina, Munich, 1897.

- L. et N., p. 203.

- gasoformans (GRUBER) XXXIV. A. B. I. K., T. 1, 1895, p. 239.
- gigantea (Kern) XII. A. B. I. K., T. 1, 1897, p. 508.
- incana (Gruber) II. A. B. I. K., T. 1, 1895, p. 239.
 incarnata (Gruber) XL. A. B. I. K., T. 1, 1895, p. 239.
- intermedia (Gruber) XXXIV. A. B. I. K., T. 1, 1895,
 p. 239.
- lactea (Gruber) XXIII. A. B. I. K., T. 1, 1895, p. 239.

- liquefaciens (Frankland) XII. Mig., T. 2.

- ivido-lutescens (Stubenrath) XII. Das Genus Sarcina, Munich, 1897.
- Lœwenbergii XXIII. A. I. P., 1899, p. 358.

- lutea (Flugge) XII. Schroeter. - Flüg.

- luteola (Gruber) XXXIV. A. B. I. K., T. 1, 1895, p. 239.
 meliflava (Gruber) XXXIV. A. B. I. K., T. 1, 1895, p. 239.
- mobilis (MAUREA) XII. C. f. B., T. 11, 1892, p. 228.
 nivea (Henrici) XXIII. A. B. I. K., T. 1, 1894.

- olens (Henrici) XII. A. B. I. K., T. 1, 1894, p. 94.

persicina (Gruber) XL. A. B. I. K., T. 1, 1895, p. 239.
pseudo-gonorrheae (Nagano) Tableau B. C. f. B., 1^{re} s., Or., T. 82. p. 327.

pulchra (Henrici) XXIII. A. B. I. K., T. 1, 1894, p. 89.

- pulmonum (Vichow) II et XXIII. Hauser, Deutsche archiv f. klin. med., 1887, p. 127. — Gruber, A. B. I. K., T. 1, 1895.

- rosacea. = S. rosea.

- rosea (Schroter) XVIII. Lindner, Th., Berlin, 1888. Gruber, A. B. I. K., Т. 1, 1895, р. 239.
- rubra (Menge) XVIII. C. f. B., 1^{ro} s., T. 6, p. 596.
 Samesae (Sames) XXIII. C. f. B., 2^o s., T. 4, p. 664.
- striata (Gruber) XXXIV. A. B. I. K., T. 1, 1895, p. 239.
- sulfurea (Henrici) XXXIV. A. B. I. K., T. 1, 1894, p. 93.

- superba (Henrici) XII. A. B. I. K., T. 1, 1894, p. 93.

- variabilis (Stubenrath) XII. Das Genus Sarcina. Munich, 1897.
- ventriculi (Goodsir) XXIII. Macé, T. 1, p. 628.

Sarcina vermicularis (GRUBER) XXIII. A. B. I. K., T. 1, 1895, p. 239.

vermiformis (GRUBER) XXXIV. A. B. I. K., T. 1, 1895, p. 239. Sphaerococcus. Voir Micrococcus.

Spirillum albense (Kutscher) XLIII. L. et N., p. 530.

- aureum (Weibel) XXXVIII C. f. B., T. 4, 1888, p. 225-
- de Blachstein IX. A. I. P., T. 7, 1893, p. 689.
- n° 1 (Bonhoff) IX. K. et W.
 cholerae (Koch) IX. Traités.
- de Courbevoie IX. Netter, S. m. H., 1892. Voir sp. cholerae-
- danubicum (Heider) IX. C. f. B., T. XIV, 1893, p. 341. Voir sp. cholerae.
- Dunbari IX. D. m. W., 1893, p. 799. Voir sp. cholerae.
- d'El-Tor (Gоттяснысн) IX. Klin. Jahrb., 15.
- Finkleri (Finkler et Prior) IX. D. m. W., 1884, p. 632. Voir sp. cholerae.
- flavescens (Weibel) XXXVII. C. f. B., T. 4, 1888, p. 225-
- flavum (Weibel) XXXVII. C. f. B., T. 4, 1888, p. 225.
- Fokkeri IX. D. m. W., 1893, p. 162. Voir sp. cholerae.
- giganteum (MIGULA) IX. Voir sp. volutans (Kutscher).
- de Hambourg IX. K. et W.
- helcogenes (Fischer) IX. D. m. W., 1893, p. 575.
- indicum = sp. cholerae (Koch).
- Ivanoffi IX. Z. f. H., T. 15, p. 434.
- Kutscheri nº 1. Ap. IV. Z. f. H., T. 20, p. 55.
- de Lisbonne (Pestana et Bettencourt) IX. C. f. B., 1894, p. 401.
- Loeffleri IX. Dieudonné. C. f. B., T. 16, 1894, p. 363.
- luminosum (Beijerinck) XLIII. C. f. B., T. 8, p. 616.
- Maasei (VAN T'HOFF) Ap. IV. C. f. B., 1° s., T. 21, p. 797.
- marinum (Russell) IX. Z. f. H., 1892, p. 198. Voir sp. cholerae.
- de Massaouah (Pasquale) IX. Giornale med. R. Esercito, 1891. Voir sp. cholerae.
- Metschnikoffi (Vibrion avicide) (Gamaleia) IX. A. I. P., T. 2, 1888, no 19. — Pfuhl, Z. f. H., 1894, p. 234. Voir sp. cholerae.
- Milleri IV. D. m. W., T. 85, p. 138.
- phosphorescens (Dunbar et Rumpel) XLIII. Z. f. H., T. 21,
 p. 295.
- phosphorescens balticum (FISCHER) XLIII. C. f. B., T. 2,
 p. 89. Beijerinck, C. f. B., T. 8, p. 616.
- recti physeretis (Beauregard) IX. S. de B. Juillet 1897.
- A (Repaci). LXII. A. I. P., 1912, p. 536.
- B (Repaci). LXII. A. I. P., 1912, p. 536.
- C (Repaci). LXII. A. I. P., 1912, p. 536.
- romanum (Celli et Santori) IX. Annal. d'Igiene sper., T. 4, 1894, p. 244. Voir sp. cholerae.

Spirillum roseum (Halibacterium) (FISCHER) XLI. Fischer.

- roseum (Macé) XLI. Macé, T. 2, p. 712.

rubrum (v. Esmarch) XLI. C. f. B., T. 1, 1887. — Mig.
 de Sanarelli IX. A. I. P., T. 7, p. 693. Voir sp. cholerae.

- serpens (Muller) IX. Kutscher, Z. f. H., T. 20, 1895, p. 54.
 Mig.
- tenue (Ehrenberg) IX. Kutscher, Z. f. H., T. 20, 1895, p. 56.
 Bonhoff, A. f. H., T. 26, 1896, p. 173.
- Vogleri. IX. D. m. W., 1893, p. 836. Voir sp. cholerae.
 volutans (Kutscher) IX. Z. f. H., T. 20, 1895, p. 58.
- Zorkendorferi. IX. Dieudonné, C. f. B., T. 16, 1894, p. 363. Spirochaeta. A, B et C (Repaci). Voir Spirillum. Staphylococcus. Voir Micrococcus.

- cereus aureus = M. aurantiacus (Schroter).

- cutis communis (Sabouraud) = M. epidermidis albus (Welch).

- de Jungano. = M. Jungani.

Streptobacillus. Voir Bacillus.

- lebenis (RIST ET KHOURY) XLIX A. I. P., 1902, p. 65. Streptobacterium fœtidum (JACQUE ET MASAY) VIII. C. f. B., 1912, 1^{re} s., T. 62, p. 180.

Streptothrix cuniculi (Schmorl) = Bact. necrophorum (Bang). Streptococcus. Voir Micrococcus.

- aerophilus (Lewkowicz) XXV. Arch. de méd. exp., 1901,
 p. 663.
- agalactiae contagiosae (Adametz) = M. mastitidis (Guillebeau)
 aggregatus XXV (Seitz). C. f. B., 1^{ro} s., T. 20, nº 24.

- albidus (Henrici) XXV. A. B. I. K., T. 1, 1894.

- anaerobius (Sternberg) = M. sputigenus anaerobius.

- articulorum (LOEFFLER) XXV. Flüg.

- A (BARBIER) XXV. Archiv. de méd. expér., 1892, p. 827.
 B (BARBIER) XXV. Archiv. de méd. expér., 1892, p. 827.
- de Bækhout et de Vries. I. Voir Lohnis, C. f. B., 2° s. T.XVIII.
- bombycis (Pasteur-Macchiati) XXV. Pasteur, Etudes sur la maladie des vers à soie, Paris, 1879. — Macé.

— de Bonome = M. meningitidis (Воломе).

— de la bouche (Marot) XXV. Arch. de méd. expér., 1893.

buccal (Roger) = M. buccalis (Roger).
 capsulatus (Binaghi) = M. Pasteuri.

- coli gracilis (Escherich) = M. gracilis.

- compactus (Lewcowicz) XXV. Arch. de méd. expér., 1901,
 p. 663.
- conglomeratus (Киктн) XXV. А. К. G., Т. 7, 1891, р. 389.

- de Cottet et Tissier. Voir M. pyogenes.

diphteriae (PRUDDEN) XXV. Amer. Journ. of med. sc., 1889,
 p. 329.

- de Doléris et Bourges XXV. Voir Legros, Th., Paris, 1900.

- erysipelatos (Fehleisen). Voir M. pyogenes.

- Type d'Espine et Marignac XXV. Legros, Th.. Paris, 1900.

Streptococcus d'Etienne XXV. Legros, Th., Paris, 1900.

- B (FRENDENREICH) XXV. C. f. B., 2° s., T. 3, p. 92.
- granulatus (Henrici) XXV. A. B. I. K., T. 1, nº 1, 1894.
- de Holst XXV. Legros, Th., Paris, 1900.
- lacticus (KRUSE) XXV. C. f. B., 1re s., Or., T. 32, p. 737.
- lactis innocuus (Lohnis) **XXV**. С. f. B., 2° s., Т. 1, et Landw. Bakt., р. 198.
- n° 1 (Laxa) XXV. C. f. B., 2° s., T. 5, p. 755, et C. f. B., 2° s., p. 29.
- (Type Le Roy des Barres et Weinberg) XXV. Archiv. de méd. expér., 1899, p. 399.
- de LIBMANN XXV. Legros, Th., Paris, 1900.
- longus (v. Lingelsheim) XXV. Z. f. H., 1892, p. 331.
- mastitidis sporadicae (Guillebeau) = M. mastitidis (Nocard Mollereau).
- de Méry XXV. S. de B., 1896, p. 398.
- mucosus (Howard et Perkins) = Micrococcus mucosus.
- mucosus (v. Ligelsheim XXVI. XIV Congrès Int. d'Hyg., Berlin, 1907.
- de Neumann XXV. Legros, Th., Paris, 1900.
- pallens (HENRICI) XXV. A. B. I. K., T. 1, 1894.
- pallidus (HENRICI) XXV. A. B. I. K., T. 1, 1894.
- penetrans (Lewkowicz) XXV. Arch. de méd. expér., 1901, p. 663.
- peritonitidis equi (Hamburger). Voir Micrococcus.
- pneumoniae (Weichselbaum) XXV. Voir M. pyogenes (Rosenbach).
- pyogenes = M. pyogenes (Rosenbach).
- pyogenes malignus (FLUGGE) XXV. Flüg.
- radiatus (Klein) XXV. C. f. B., 1re s., T, 28, p. 417.
- de la salive (Veillon) XXV. Th., Paris, 1893-1894.
- saprophyte de Noury. XXV. S. de B., 1897, p. 767.
- scarlatinosus (Klein) XXV. Voir M. pyogenes (Rosenbach).
- septicus (NICOLAÏER) XXV. Flüg.
- septicus liquefians (Вавёя) Micrococcus septicus liquefaciens.
- tenuis (Veillon). V. M. Pasteuri.
- trifoliatus (Roysing) = Micrococcus pyogenes ureae (Roysing).
- tyrogenus (Henrici). A. B. I. K., T. 1, 1894.
- ureae (Roysing) = Micrococcus pyogenes ureae (Roysing).
- ureae trifoliatus (Roysing) = Micrococcus pyogenes ureae (Roysing).
- Strepto-diplocoque de Barbier XXV. Arch. de méd. exp., 1892, p. 827.
- Tetracoccus anaerobius (Сноике́viтсн) = M. tetragenes anaerobius.
 butyri (v. Кьескі) = M. butyri.

Trachomcoccus = M. trachomatis.

Türkisfarbener-Bacillus (TATAROFF) = Bact. turcosa.

438 MANUEL PRATIQUE DE DIAGNOSTIC BACTÉRIOLOGIQUE

Tyrothrix (Duclaux). Voir Bacillus. — Duclaux, Le lait, Paris, 1889. — Winckler, C. f. B., 2° s., T. 1, 1895.

Urobacillus. Voir Bacillus.

- liquefaciens septicus (KROGIUS) VII. Voir Bact. vulgare.

Schützenbergii (Miquel) VII. Annales de micrographie, 1889
 et 1892. — Flüg.

Wibrio. Voir Spirillum.

- albis nº 1 (WERNICKE) Ap. IV. A. f. H., T. 21, p. 172.
- albis nº 2 (Wernicke) Ap. IV. A. f. H., T. 21, p. 179.
- banillensis (KAMEN) Ap. IV. C. f. B., 1re s., T. 18, p. 417.

Bonhoffi = Sp. nº 1 (Bonhoff).

- butyrique (Pasteur) = B. amylobacter (M. et B.) = B. butyricus.
- cyanogenus (Fuchs) = Bact. syncyaneum (Ehrenberg).
- havelensis (Wernicke) Ap. IV. A. f. H., T. 21, p. 192.
- Kutscheri (Groupe II) Ap. IV. Z. f. H., T. 19, p. 468.
- Kutscheri (Groupe III). Ap. IV. Z. f. H., T. 19, p. 470.

- Kulscheri (Groupe V). Ap. IV. Z. f. H., T. 19, p. 476.

 nasale (Weiber) Tableau D. C. f. B., II, 1887, p. 465, et IV, 1884, p. 225.

— septique de Pasteur = В. ædematis maligni (Косн).

- spermatozoïdes (Loffler) Ap. IV. C. f. B., 1re s., T. 7, p. 637.

— subtilis (Ehrenberg) = B. subtilis.

- syncyaneus (Ehrenberg (= Bact. syncyaneum).

Violetter coccus (MASCHER) = M. violaceus (COHN).

Virus Danysz (Groupe de Bact. paratyphosum) XXX. A. I. P., 1900, p. 193.

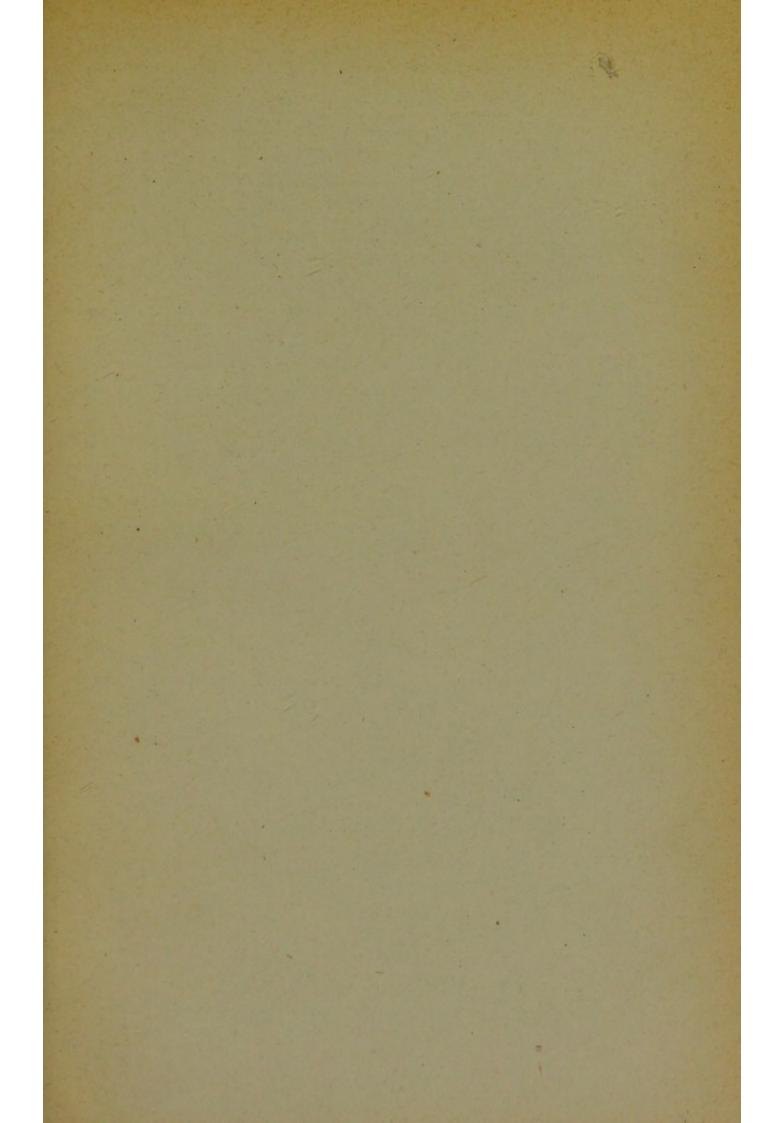
TABLE DES MATIÈRES

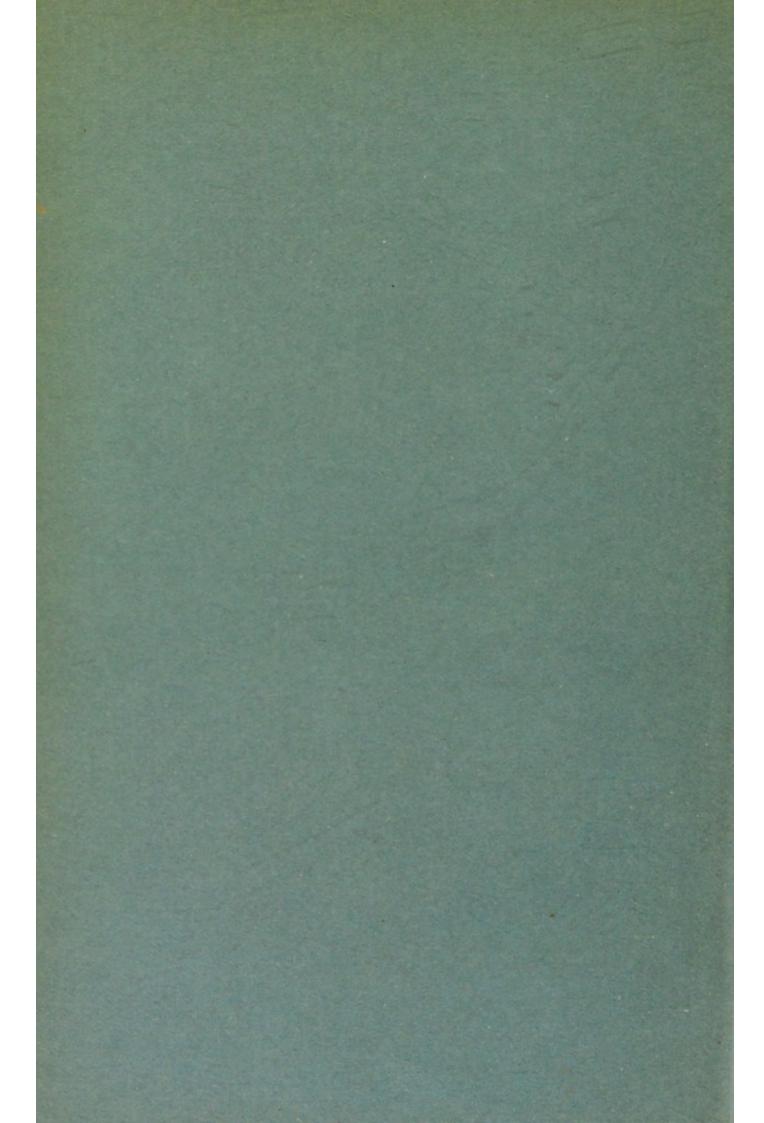
INTRODUCTION												1
PRE	MI	ÈR	E	Р.	AB	TI	Е					
Marche à suivre por des bactéries . Plan d'une fiche ba												19 56
DEU				P			E					
CHAPITRE PREMIE							E 0	UI	TI	JR	E.	61
Bouillon ordinaire												63
Bouillon Martin												65
Eaux peptonées.												66
Gélatine												67
Gélose												69
Lait												70
Pomme de terre.									•			70

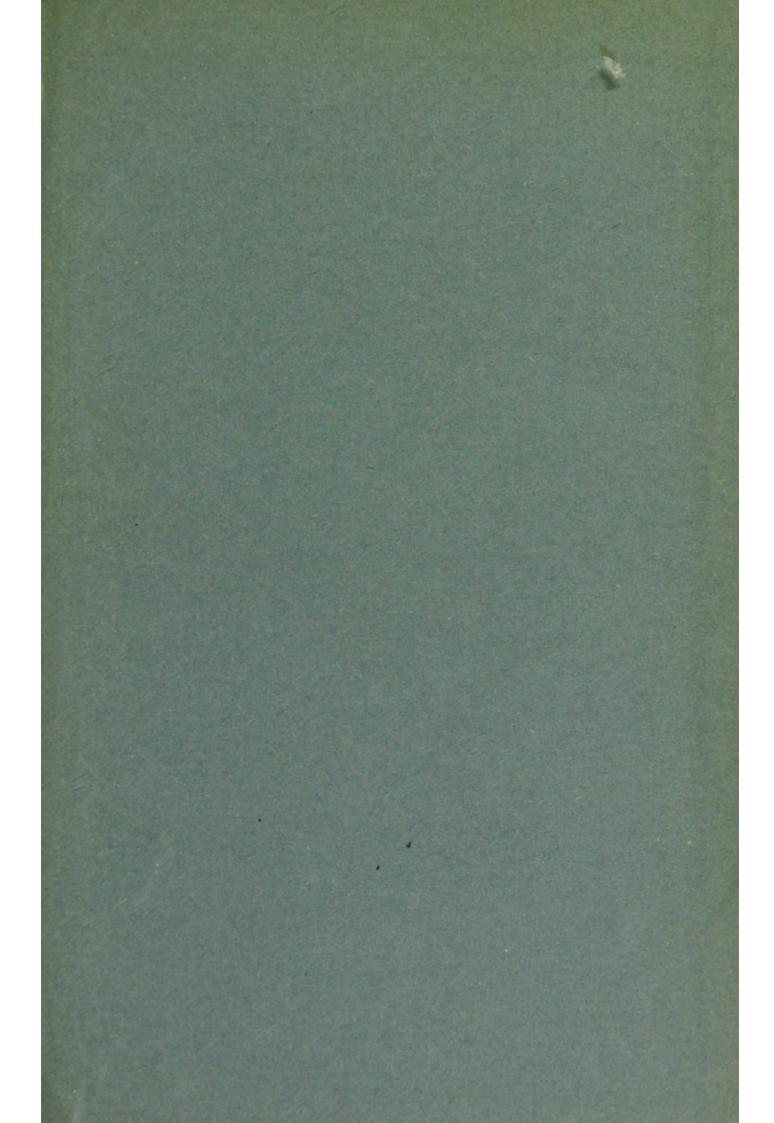
Serum coaguie	70
Sérum de Læffler	71
Sérum liquide	71
Gélose-ascite	71
Gélose au sang	72
Milieu de Bordet	72
	73
Cultures anaérobies	71
1º Cultures en milieu liquide.	
a) Culture dans le vide	74
b) Culture en tube cacheté	75
2º Culture en milieu solide.	
Méthode de Liborius-Veillon	75
Milieux destinés à l'étude des propriétés fermen-	
tatives.	
Milieux destinés à l'étude de la fermentation	
des hydrates de carbone	77
Milieux destinés à l'étude de la fermentation des	
substances protéiques.	
a) Milieux à la fibrine. Liquide d'Utchin sky	78
β) Milieux à la caséine	78
γ) Milieux au blanc d'œuf cuit	7)
Milieux spéciaux	
1º Milieux d'enrichissement (Voir chapitre II,	
p. 86 à 91).	
2º Milieux d'isolement spéciaux	
Gélose au lait	70
Gélose au moût de bière	79
Gélose nitratée	79
Gelose literated	
CHAPITRE II : ISOLEMENT DES BACTÉRIES .	81
CHAPITRE II . ISOLIE III DES BIRGIE	
Mode de prélèvement des malériaux à analyser.	
Eau :	81
Air :	

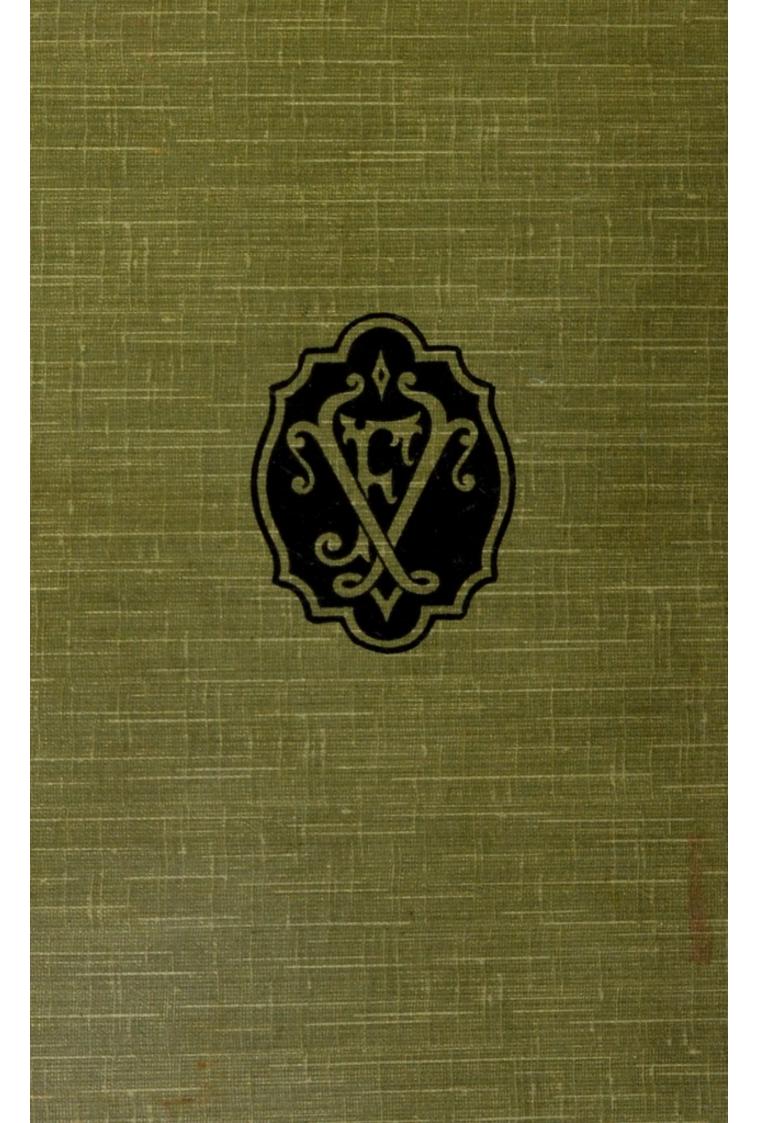
TABLE DES MATIÈRES	441
Terre, fumier	82
Matières fécales	83
Urines	83
Crachats	83
Sérosités, sang	83
Lait	84
1º Isolement sur plaques. Isolement des anaérobies par	
la méthode de Veillon	84
2º Isolement après enrichissement dans des milieux	
spéciaux	86
Isolement de Sp. choleræ.	
a) Gélo-pepto-sel (milieu de Metchnikoff)	86
b) Milieu de Dieudonné	87
Isolement de Bact. typhosum.	
a) Milieux à la bile ou aux sels biliaires	88
b) Milieux phéniqués	88
c) Milieux caféinés	89
Isolement des bactéries dites « acidophiles ».	
Bouillon glucosé acétique	89
Isolement des bactéries fixant l'azote libre.	
Extrait de terre mannité	89
Gélose mannitée	89
Isolement des bactéries nitrifiantes.	
Liquides destinés à l'enrichissement des ferments	
nitreux et nitriques (milieu d'Omeliansky	90
Gélose aqueuse au nitrite (Winogradsky)	91
Plaques de plâtre additionné de sels de magnésie	
(Omeliansky)	91
Isolement des bactéries dénitrifiantes.	
Bouillon nitraté	92
Solution de Giltay	. 92
Isolement des ferments de la cellulose	93
Isolement des ferments de la pectine	93
3º Isolement par inoculation	94

CHAPITRE III: RENSEIGNEMENTS FOURNIS	
PAR L'EXAMEN DES CULTURES	95
CHAPITRE IV: EXAMEN MICROSCOPIQUE. CO-	
LORATIONS.	
1º Examen sans coloration	99
Ultra-microscope	102
Procédé de Burri à l'encre de Chine	104
2º Examen des préparations colorées.	
Fixateurs	105
Colorations simples par les couleurs d'aniline	107
Méthode de Gram	109
Méthode de Ziehl-Neelsen	113
Méthode de Spengler	114
Méthode de Much	116
Coloration des cils	
α) Encre de fuchsine	117
β) Imprégnation au nitrate d'argent	119
Coloration des spores	121
Coloration des capsules	122
Action colorante de l'iode	123
Réaction de la granulose	123
3º Mensuration des bactéries.	
α) Mensuration à la chambre claire	125
β) Mensuration au micromètre oculaire	
CHAPITRE V : PRODUITS FORMÉS DANS LES	
CULTURES.	
A. — Toxines	
B. — Hémolysines bactériennes	129
C. — Produits chimiquement définis.	
1º Recherche des produits de fermentation des	
hydrates de carbone.	
a) Produits volatifs non acides	130


TABLE DES MATIÈRES	1		443
b) Acides volatils			131
c) Acides fixes			132
Acide lactique.			
Réaction d'Uffelmann			133
Réaction de Hopkins			133
Acide succinique			133
2º Recherche qualitative des principaux			
duits de fermentation des substances p			ues.
a) Albumoses et peptones			136
b) Acides aminés (leucine, tyrosine).			136
c) Recherche de l'indol			136
d) Recherche de l'hydrogène sulfuré.			137
e) Recherche de l'ammoniaque			138
CITA DIRECT TO CITY A MICANO			
CHAPITRE VI: INOCULATIONS.			
Technique			
Examen des animaux			
Valeur diagnostique des inoculations			
Immunité croisée			148
CHAPITRE VII : ÉTUDE DES ANTICORPS F	OF	3	
MÉS DANS L'ORGANISME DES ANIMAUX			
MUNISÉS.			
10 Ambutination			149
1º Agglutination			
3º Réaction de fixation			
5- iteaction de mation			100
TROISIÈME PARTIE			
TABLEAUX DE DÉTERMINATION	0		
	•		
Paris:			
Bactéries strictement ou facultativement a			-
Bootópies et ist			
Bactéries strictement anaérobies :	321	à	353


QUATRIÈME PARTIE


APPENDICE


Bac	téries	incomplètement	décrites.			355
INDEX	В	BLIOGRAPH	IQUE .			373

