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Examples of Distributions.

(2) CONTINUOUS VARIATION.

Stature
in
Inches.

51-58
a8-59
29-60
6G0-61
61-62
62-63
6G3-64
6G4-65
65-66
66-67
67-68
68-69
69-70
70-71
71-72
72-73
73-T4
74-75
75-76
76-77
77-78

Totals,

SYMMETRICAL
IMSTRIBUTION.

Stature in Man.®

Mos. in each
Class.

= L

29
14
83 F 294
169 |
394
GGY
990
1223
1329
1230
1063]
646
392
202)
79"
32|
16
5t 23

2

2003

3782

2101

313

| SLIGHTLY ASYMMETRICAL.

Weight in Man. §

8388

Weight in
L.bs.

90-100
L1O0-110
110-120
120-130
150-140
140-150
150-160
160-170
170-180
180-190
190-200
200-210
210-220
220-230
230-240
240-2350
220-260
260-270
270-280
280-290

Nos. in
each Class.

s
34
152
390
BGT
1623
1559
1326
787
476
263
107
85
41
16
11

7749 |

Age.

1-2
2-3
3-4
4-5

| 5-6

| 6-7
7-8
8-9

| 9-10

110-15

15-20

20-25

25-35

| 85-45

| 45-

|
' 041
!

t
|

Age Distribution. §
Cases of 3carlet Fever. |

i

No. of

Cases,

246
7ia
1399
1874
2009
1931
1704
1553
1236
1014
2921
921
417
327
85
32

MARKEDLY ASYMMETRICAL.

Rental of Houses. §

Rent No. of Houses
under in Thousands.
£10 3175
£10-20 1451
' £20-30 442
£30-40 260
£4D-§D 151
| £50-60 90
£60-80 104
L£80-100 47
Above
£100 110

® Report B.A, 13883, p. 256.

T Keport B.A. 1883,

e

I Manchester Health Reporis.

§ Goschen, quoted by Pearson, Phil. Trams. Roy. Soc. vol. 186 A, pp. 343-414.



" () DISCRETE VARIATION.

NUMBER OF SEPALS IN FLOWERS OF
Ancwone nemoresa.”

NusmBeer oF PETALS In
Ranunculus Hulboseore. T

No. of Sepals.

No. of Instances.

No. of Instances.

No. of

MNo. of

Example (). Example (). Petals, Instances,
4 ok 3 9 133
] 7 31 6 25
6 ald 657 7 23
7 419 271 8 7
8 49 35 9 2
9 13 2 10 2
10 1 1 11
11
12 e .

o ?ut'!l Mﬂ’ﬂd. 'Fﬂ-l. il P. 3&.

t De Vries, quoted by Pearson, foc. cit.




Constants of Distributions.

(1) Mean. If there be a number of quantities of definite measurement, then the -
term mean is used to denote the sum of these measurements divided by the total number
of the quantities, or if X, .X,,... X, be the measurements, » in number, and M the -mean,

1 , ,
JII: 7 {Il+.:"l..=+;r3+...+xiin:|.

The term medn as used in statisties is m|ui\'a||:|1t. to the term arithmetical mean

in algebra.

(2) Median. The median is the central value of the group when the measurements
are arranged in order of magnitude, so that the number of instances above the median
15 equal to that below the median. If the groups are at all numerous, it is most easily
calculated by simple proportion. Thus, taking the weights of British adults, we find
7749 instances, Of these 3068 are under 150 pounds, a defect of 5065 below the median,
and 3122 above 160 pounds, so that the median will be very approximately given by
8065
1559

The first number is the weight at which the group begins: the multiplier 10 is the
value of the group difference, and the fraction the proportional number of the group
1559 to be expected.

Median = 1504 10=1552 lbs.

(3) Mode. This is the most frequent group in asymmetrical distributions, and in
symmetrical distributions coineides with the mean and the median. The group in which
the mode is situated can usually be easily seen, and if the middle point of this be denoted
by zero, the distance of the mode from this can be ealeulated approximately by the formula
== e g

2(m, — 2, +m,)

where i, m,, n, are the numbers included in the successive groups, m, being that of

Mod

the group in which the mode is expected.
More accurately, the median in general lies between the mode and the mean, so that

its distance from the former is twice that from the latter, that is
2(Mean — Median) = Median — Mode,
or Mode =3 x Median — 2 x Mean
=150'8 lbs. in the case previously considered.

—T792

—5x 823 % 10=1492 1bs,,

By the formula given, Mode=145+

or one per cent. of difference.



(4) Standard deviation. This expresses the degree of scatter in the distribution :
thus, take two distributions («) and (b), as shown in the table below, of equal numbers,
having the same mean. Let the measurements be 1, 2, 3, 4, 5.

|  No. xsqr. of

Hize. i Deviations. Deﬁ:t?:?ons.
a b | (a) (b)

I | e V| 4
2 4 | 4 =1 4 4
3 LA T 0 0 0
4 4 | 4 1 4 4

5 . it el 2 4
Totals, | 16 | 16 | 8 16

Both these groups have the same mean measuring 3, but the variation in the latter
is much greater than in the former. This difference is measured by the standard deviation,
which is defined as the square root of the mean of the squares of all the deviations, the
latter being measured from the mean value of the quantity. In the above example the
mean is at 3, therefore the deviations are as given in the fourth column. In the fifth
and sixth columns the square of the deviations are multiplied by the number of each
group occurring. The sums are 8 and 16, so that the respective standard deviations ave

8 e L
,\/ﬁ and ,f7e or - and 1.
The standard deviation is usually denoted by .

(5) Skewness. This measures the degree of asymmetry of a distribution, and is
defined as the ratio of the distance between the mode and the mean divided by the
standard deviation,

Mode — Mean d

1.6 Sk;Stu.}i P T T the usual notation.
(6) Coefficient of Variation. This coefficient is defined as 100 times the ratio of the
standard deviation to the mean and is denoted by v, so that
v=lﬂﬂ§-f.
This coefficient allows comparisons to be made; for a variation of 2 inches above or

below the mean is very much greater when the mean is equal to 10 inches than when
it is equal to 40 inches,



Method of Calculating the Mean and Standard Deviation
of a Series of Observations.

ExampPLE. Theoretical number of aces where three cards, one of which i1s an
ace, are dealt in groups of seven.

'\:;" ‘_” 5 .3"' U].- e f:'zll:lizh:::‘:::lt O _f' 1 .f_f-"' la i .f.f-'; o .!-4
SAGES, Illhiqtlll'i.'h = Y FET J,-_

o | 123 — — 236 512 | —1024 2048

] TR sy —dqg e | — 448 448

2 G72 0 =704 | 960 - 1472 24496

3 560 ] 560 i 560 560 560

4 250 2 560 1120 2940 | 4450

5 54 3 252 756 2268 | 6304

G 14 4 56 | 224 S96 | 3584

7 1 5 5 25 125 625

i R 1433 | 2685 G089 | 16053

Total, - 2187
- 704 | 960 — 1472 |4 2490
729 3645 4617 | 18549

First choose by inspection an origin at a point as near as possible to the mean.
Then v, vy, v, v, denote the first, second, third, and fourth moments round this
chosen origin, so that

: _Zoxf

M N FI"'=_J,'1T ) et ¥
where N denotes the total number of instances.
In this case,
729 1 _3_'@1:':-__5 _ 4617 _ 19 _ 18549 230
o187 3 tT 2187 3 T 9187 9’ MT iy — a7

| : : I o
Here »;=;, 1.e. the Mean is at a distance +_ from the chosen origin, or at

3 |
243 or 2% units from the real zero.
The moments about the mean are the most important, and are denoted by
Mys My fbge fys py being equal to zero by definition. These are obtained from the
preceding moments by the formulae:

pe=r,—u;%, (very important)
,i:.!-s = J:"a_' 3"']"'2"" 2|-":i.

In this case, ﬁg=§_(;)g=%1
e %_ é;+ ('2;) i:-m
) s ()1

The standard deviation « is equal to the v/u,.






I. Correlation.

Exampre. Typical Correlation Table showing the relationship of the stature of
Fathers and Sons in inches.®

STATURE OF FATHER.

| . - - 0 Iu--n--.- W - - —Ha—l—a—.—ll- Fia
58-5-615  61-5-64-5 |'F-l-'r'}_E]-l":}l 67:5-70'0 | T0-5-T3'6 73-5-T6"0 Tlotals
|
|

i -8 -3 o 3 6 9
| = 15 2 i o — | a5
i | 589-613| o8 36 120 1'32 "50 03
: ' | R e B o I b &
_ | 36 | 19 33 | 55 | 1'5 — 62'5
(615645 .84 | eso | a2r7s | 2387 902 ‘56
R R | =T | I [T a2 i@ B
.| | 85 |5375| 148 | 8056 | 826 | — | 299 |
| & |649-67'3| ao2 | 3107 10403 l na1s | 4314 264 :
rE ﬂ_ = | —= = !l & | o | 0 i
i 25 | 3325 14925 20225 60256 35 | 451
'_nj 670=70D 607 | 4e'm6 156'90 | 1727 65'06 397 |
‘ = |[F e g e D || i e o _'_I
0 e - | 35 39'75 | 10425 | 620 35 213
! 10-5-735 2:87 22413 7410 | 813 | 3073 188 |
G il win oigs |l 2 PO (T '
Al [ 3 | 145 | 206 | 25 415
T39-763| .56 | a3 | 1844 1584 | 599 -37 '
[ ' 3 | ] | 3 L ’ ] Tk W |
moe | : — (| 48 | 30 - 7'5
16:2-793| -9 77 2'59 2°84 107 07

Totals | 145 1z 375 411-56 : 155'5 9-5 1078

Nore., The numbers above the figures in the middle of each sguare are the products of the

deviations from the chosen origin,

2 : Ll : Zay R
Coefticient of Correlation is defined by r==2Y where Zay 18 equal to the sum

of all the observations multiplied by the produet of their deviations from the mean
in the vertical and horizontal directions. It is termed the product moment.

If ki, be the distances of the mean from the chosen origin, and Za'y" the
product moment round that origin, Xey=2Zz'y'— N h,.

#* Pearson, Kiomelrike, vol. ii. p. 415



II. Contingency.

In the above table, beneath each figure is printed in smaller characters a figure
which shows the number of cases to be expected if there were no relationship
hetween the stature of fathers and sons. These are obtained by taking the total of
each horizontal series and dividing it in the same proportions as are given in
the hormzontal series Hllm\'illg the trpl;ﬂ.]ﬁ in each column,

To obtain the coefficient of contingency, take the difference of each theoretical
number from the corresponding actual number, square this difference, and divide
by the theoretical number.

Thus, in the first row and third column, the theoretical number is 120 and
{;:}=ﬁ&

All the numbers found in this way are summed. The total 1s denoted by 2
This total divided by N, the total number of observations, is further denoted by g2,
whence we have the coefficient of contingency

¢"£
14¢°

the actual i1s 2, whence we have

I —

III. Fourfold Division Method.

FKxasmprre, Smallpox and Vaccination. Sheflield, 1887-88.*

| Recoveries. Deaths, Totals, !
! Vaccinated o T | 200) 4151 !
| Unvaccinated - | 278 274 hoZ 4+
. . = |—— e L
: Totals - 4220 | 474 4703

If the same method as is shown in paragraph 1 above is used, and if the
fourfold division be

ad —be

T {(atbyb et dyd+a)t

No method, however, applied to this fourfold division is satisfactory.
Pearson’s fourfold division method gives

r="TT.

*Macdonell, Biometrika, vol. i. p. 376



Examples of Correlation.

Mean No. of Glands :

right leg = 3-55 ; left leg = 3:54.
Correlation :

Standard Deviation :

r=0-792

right leg=1-72; left leg=1-73.

- 0n &S

II. AGES AT MARRIAGE OF BACHELORS AND SPINSTERS,
ENGLAND AND WALES, 1901.
| R e = = T 7 5 = = | =
AGES OF SPINSTERS. i
1520 | 2025 2530 3035 35-40 | 40-45 | 4550 5055 5560 | 6065 6570 7075 ?aan‘ Totals umn
| | 1520 | 2,606 | 1,356 | 75 i 2| — | — | - | — | ‘ 1,043 | 1939 |
20-25 |14,821 (73,430 12,989 | 1,110 | 123 20| 4 | R | 102,497 | 22-54
| 25.30 | 2,785 (37,317 (33,229 | 5,249 ] (R 1 — | | 79,315 | 25-2
| 3035 | 482) 6,657 (10,184 | 5,908 |1,217| 182 24 | 4| — L | 24,659 | 277
| 3540 | 103| 1,317 | 2,545 | 2,246 |1,432| 326 57T | 3 2 1| 8,032 | 305
4045 15| 322 | 594 726 | 631| 427| 96 | 17 3| = | - 3,830 | 3360
| 45-50 | 3| 67| 158 | 921 | 250| 206) 112 | 19 6 I 1,043 | 36:28
50-55 3 3 85| 78 | 86| 87| 67 ! 39 | 11 2 | 406 | 40-31 |
5560 — | — 22 | 32| 24| 30| 17| 14| 5| 153 [43-25 |
| 6065 | — ! PR D S T T 67 | 4550
65-70 2 el R S - 23 | 47-50
"‘?{I-Tﬁ — | = Sl — 1 1 W R | 86135
7580 — | 1 | — 1| — 1| - — | — 1 | 5 | 5450
| o L. | e — — P — E F— Pree —mid. e 1 = = —
iTutals 20,818 [120,47059,827 |13, 569 [4,431[1,363 415 | 110 | 49 21 3| 8| 2 1223,081 2456
‘Maan 478 I 2791 | 3236 |35'EB|4'D-H 45°59 [50-36 [35°76 | 594 |57-1 [67-3 | 750 2638 |
[I. CORRELATION OF NUMBER OF MULLERIAN GLANDS ON THE RIGHT
AND LEFT LEGS OF 2000 SWINE (DAVENPORT).
_1 NUMBER OF GLANDE ON RIGHT LEG. |
|
T R | e | g I =) T T |
0 ‘ 1 ‘ o[ R ) S T !Tul;a]a|
S| 0 # | ¢ 2| — | — [ e 14
o 1 5 | 151 | 65 141 B ] = 7
E 2 2 | 68| 16¢ | 88 | 27 T — — | — | | 336
- | 8 — 9| 96 | 175 | 119 | 24 8 1 = [
| — ! 5| 28 | 128 | 153 | 92 | 18 8 1 — | 429
E 5 =0 [ S g a7 | a0 | be | 20 3 i | 295 |
31 6 | (A== 1| 6| 26| 52| 8 | 18 5 T (RS T
S = e gl | 16 | 1w o3 | 3 — | es
Sl | —|—|—-1|- 1 T PR (T S T T T
g s P | | e R e 5 2 2 1 10 |
E | [ G RS T gl e 1 s 3
| = = I =
Tatals} 16 [ 225 | 353 | 437 | 411 | 297 | 165 | 78 | 16 | 12 1| 2000
i e e
Mean | 60 | 136 | 231 320 | 3-89 | 478 | 531 | 614 | 650 | 733 | 900 ,






Partial Correlation Coefhcients.

IF there be three variables which are all correlated with one another, and if + .,
Tu s T 5 denote the correlations of each pair, the partial correlation coefficients

are given by
Py o= g X7 5

JL=17 % 1=k

= ete. ;

whenee =, .., denotes the correlation between the first and second variables

when the third is constant.

Examere.  Correlation between the amount of Summer Diarrheea, the Mean

Temperature in July and the Rainfall in the same month.

TABLE I.—Death rate from Diarrheea per million per year in London,
and the Mean Temperature of July (Greenwich).

|
; TEMPERATURE—JULY [
| & TR S B _1 B
E 57-59° 59'-61° 61-63" 63'-65° 65-67° Totals.
| = TN I L s e R L I = e =
=) : ' -
| = | 300-500 | - 2 2 | i | 4
= | | |
£ 500-700 2 o e R R [N 12
g 00900 ° = | 1 | o Rl 4 8
w | 900-1100 - LR . 5 4 11
= |
b S — — N — —_—
- |
S0 Totals; = 2 0 | 8 8 8 35
|

T-T. I -_— -ljaﬂ..



TEMPERATURE.

TABLE 11.—Correlation between Temperature and Rainfall

RAINFALL IN INCHES.

Totals.

DEATH ERATE FROM DIARRH@EA. |

= = 'l]T{h
650 —( —-295)( —395)

"'LIJ.T;H.Z_:I,II'-"__ G507 Jl —-395°

= 643,

o-1l|. 122 2=a¢(5al [ 45 ‘ 56 | 67
57°—50° ‘ = = = 1 = = 1 2
59°—61% [l S S| 2 2 3 1 - - 9
ey Bt o | (S 4 = 1 = 8
6365" | 3 2 1 = 1 = 8
65°—67° | 2 3 2 - i il 1 8
Totals, | 6 8 7 9 1 ? P 33

T'TJH:—iaﬁ-ﬁ'.
TABLE III1.—Correlation Diarrhcea and Rainfall
RAINFALL IN INCHES.

01| 12|23 |34|45 |56 |67 |Totals
300-500 1 & = 3 4 o & 4
500=700 1 9 3 3 1 1 1 12
700-900 I 4 1 2 I = 4 8
900=1100 | 3 9 3 1 = 1 1 11

6 | 8 7 9 1 9 9 35

ipr= ‘—"EBEL
ParmiaL GUI"I]EELLTE'DHS.
=295 (650) x (—395)
DR T 5507 /1 895"




Probable Error.

Example of the variation in growps of small wuwmbers. Number of deaths in
parallel series of fifties among the admissions of patients suffering from
seavlet fever to Belvidere Hospital, 1900-1908,

= 2 i 3, 2 2, 1 i 2, 1
i 5, 4 3.8 1, 2 L |
1, 3 1, 3 1, 4 3, 2 3, 2 |, 5
1, 3 3 2 3, 3 B 2 3 7, 4
i 1, 4 1, 2 2, 6 = 2.1
g L e 2, 1 9, 9 9, 9 9 1
1 Bad 3, 3 = 1 ] 1, 2
ki = %7 3, 4 9 4 L, 1

Table showing the distributions of these figures when classified.

| e " : Difference squared
No. of Times Theoretical ; rinrhis x
No. of Deaths, | e ) | e mhan Difference. ’[‘h.;l:;::q_:_liz;ilﬁ‘tlﬂ]:mm-_
0 10 | 104 4 , 00
1 25 234 16 ' ‘11
2 23 358 2'8 -30
3 22 187 3-3 59
4 9 4-8 5 07
b 2 40 2-0 1-00
| :
RS0 ST 13 | 100
| |
Total - | 94 93-8 — 307 =x*
| | S .
M=216 deaths, o=1437, = - ="148,
VN

If a quantity be measured, then the probable error of that quantity is defined
by the limits within which it is equally likely that the quantity would in a long
series of measurements be found to lie inside and outside, -

If = be the standard deviation of the quantity, the limits above defined are
given by +°G740.

It is better to take, however, & itself and eall it the “ standard error.”

If + 27 are taken as the limits of error, then the odds are 21 to 1 that the real
value of the quantity lies between these limits.

Standard Errors.

(1) Of the mean & of a number N of quantit.iusz;;%r.
1—p2

(2) Of a correlative coefficient » when N observations has been made =
ad



Test of Goodness of Fit between Theory and Observation.

Take each group, subtract the actual from the theoretical value, square, divide by -
the theoretical value, and sum. The sum is denoted by X i

Find 7 or the probability that in a certain number of trials more difference
between theory and observation would be found. A short table of this function
civing the values of x* and the number of groups eompared, N is printed below.

EXAMPLE.

Tuble showing Days of Sickening in 907 Cuses of Scarlet Fever.

i Difference)®,
- Theosretical : p P
No. of Caszes, Value. Difference. (Difference)®. Thisoretiol
Value.

Sunday - - - 124 | 1296 — 56 31-36 24
Monday . = 143 | 129:6 13-4 179-56 1-38
Tuesday - - 117 1296 - 126 15876 1-22
Wednesday - - 134 126-6 4-4 19-36 ‘15
TI{ursdn_',r . - 120 1296 - 96 92-16 Tl
Friday - - 143 129-6 13-4 179-56 1-38
Saturday - . 126 1296 - 36 12-96 10
Total - - | 907 907 67372 518

Thus y*=3518 or P=-522 or in half the trials made as much divergence would
be found.

Table showing the Values of x* for certuin Values of P and N.

N Values of P.

| 9 | B gl e 2 ]
1 | O e ] 10 12| 18] 24| 84| 26
4 | = | 100 24 | 19| 24 | 29 | 36 449 |“61
5 | 10| 17 |.22 | 28 | 34 |41 | 49| B9 | 77
6 | 16| 23| 30| 36| 43| 51| 60| 73 | 92
T | 22|80 | 38| 46| 58| 62| 72| 86 |106
8 | 29| 38 | «7 | 54| 63| 73 | 84 | 97 [120
9.} 85| 46 |55 | 64174 |: &4 | 55| 10:0,) 15:2
10 | 42| 54 | 64 | 74 | 84 | 94 | 106 [ 122 | 146
12 | 56 | 70 |82 | 93 | 104 | 1155 | 128 | 145 | 172
14 | 70 | 87 | 99 |11-1 | 128 | 136 | 151 | 169.| 196
16 | 86 | 103 |11-8 | 130 | 144 | 157 | 163 | 193 | 22:8
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THE THEORY OF CHANCE DISTRIBUTION
AS APPLIED TO BIOLOGY.

In recent years a large amocunt of work has been done
regarding the forms of distribution which occur in biological
measurements, but most of this work has been inductive and
most of the methods proposed, though permitting elegant math=
ematical developments, throw little light on the causation
of different types of distribution. The points which are
epecially important from the biological side have been much
neglected. Few atteapts have been made to enquire into the
reagsons which detercine the distributions observed, to es-
timate how far they represent some real vital factor or to

ascertain the extent to which they are "artefacto", that is,

the result of the application of some particular standapd of

measurement.

I propose, then, in this paper to discuss frequency
distributions with a view to ascertain how types of distrib=
ution arise and, when such types have arisen, to see how far
they conform to the results of biological observation and to
examine how far the reverse problem of reasoning from a
curve to a biological process can be justified.

Chance distributions have, for a couple of centuries,
been the aubjeét of much discussion. The theory was first
put on a scientific basis by Laplace and Gauss. Both of

these reached by somewhat different processes the curve now






-2-

Xnown as the normal curve of error, a curve which has been

found to give an adequate description to many of the measure-

mentﬁuads in the organic and inorganic world. Further
developments to allow for asymmetry have been made by
McAllister, Edgeworth and Pearson in this country, and by
Kapﬁgﬁ, Fechner and Thiele abroad. These in different ways
arrive at forms of curves which in many cases very closely
describe groups of statistics which have asymetrical dis-
tributions. 1In spite of this fact, 1 feel that the initial
reasoning shows far too little consideration to the require=-
ments of biology. Though the mathematics is fascinating, it
cannot bue be felt, that no clear idea can be formed as to th

the meaning the initial hypotheses have in the world of life.

In seeking a foundation hypothesis I think that one can d

do no better than choose the simple binomial (p+q)?, the
form selected by Laplace as the starting point of his invest-
igation. Its meaning is always clear. If p a q this form

is indistinguishable from the normal curve of error even
though n be comparatively small. If R be greater than g the
normal curve also results is n be large, but if n be small

the resulting curve taked the form known as Pegr son's TypelIIl
If p = q positive and negative errors are equally probable.
In all cases variation is independent of the other, although

a small amount of correlatiop as shown by Edgeworth does

f

|
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not effect the ultimate form of the curve to any great
extent. In biology, if p = q, such a condition as is seen
in the inheritance of stature, where the mean stature of

the offspring is determined by the means of the elements

derived from the parents and the distribution of both is

equally normal, is represented. On the other hand, if p 2z q,

sucha condition as dominance is described. As an example of

this in the same range it may be stated that if certain tall

varieties of pea be mated with certain dwarf varieties all

the offspring in the first generaltion are tall and in the ﬂ
stable population there are ultimately three tall plants to

one dwarf. This is represented by the form (p q)' where 1

P = ¢ and q = 4. If tallness depend: upon a number of factors
the variation of the mixed race would in the simplest case 1
correspond to (%+ %)M, where n denotes the number of pairs {

of qualities on which stature depends, assuming that all the |

pairﬁa determining tallness and shortness come originally framé

the same plants. Allowing for such a condition as partial L

dominance where the offspring takes more markedly after one '

:
parent than after the other and also for coupling where

definite pairs of elements seem to have some special affinity,

it can be shown that all the different distributions which
have been biologically found are adequately expressed as direci

derivatives of one or other of the two expressions given above.







Before proceeding further the basis of the theories of

asymmetrical distribution as developed by Profs. Edgeworth
and Pearson, which may be taken as representative of all, will I
be briefly outlined. The former calls his first method, "the
method of translation" of the normal curve. (1) In this the
normal curve is taken as the general law and the frequency of
gome quality assumed to vary in this manner. The frequency
corresponding to a particular element of abscissa in this

curve, is:=

X
e
If now X= :»"@7 so that \%. varies as fﬁﬂ the

corresponding frequency of 25 is equal to
“_
f g @J
2t
Biele  af

or _ﬁ%}:l
e

is the equation of the new distribution. This is evidently
quite somnd reasoning, provided a justification for the

application of the process can be found., The formula, however,






will cover almost any distribution. In general for practical
purposes Lﬁﬁ; is assumed to converge rapidly. Later
Prof. Edgeworth arrives at a more general formula derived

from the interaction of many factors. (2) (3) "The rationale
of this method consists not merely, and not principally, in
ite exactly representing those cases in which each member of
the frequency group under consideration is a definite functior
of some member of a2 group distributed according to the normal

law of error. ZFor instance, if the velocities of winds, or

of any other objects, are distributed normally, then the

corresponding energies will be distributed according to a

frequency curve which is am exact translation of a normal i
curve. So if the diameters of oranges or other spherical |
bodies vary normally, the solid contents are proportionate to |
the cubes of the diameters". He says further, "The cases in é

which translation ig the formula are doubtless not uncommon

(compare "Journal of teh Statistical Society", Vol. LXI, 1898,
ps 678) but the reason of the method lies deeper. It consists |
in the affinity of the formula to that universal law which is
ever and everywhere approximately fulfilled through the whole
realm of Statistics = Statistics propee as distinguished from
arithmetic by sporadic or fortuitous dispersion".
Prof. Pearson on the other hand takes as his basis the

differential equation:= & 7/

»%
a flx écxt

=

- 44
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This he obtains from the differential equation of the
L x

normal curve F‘%@ix = by substituting a function

of x for the constant in the denominator. This function is
considered sufficiently given by the first three terms of

ite expansion by Maclaurin's theorem. He criticises

Prof. Edgeworth's method of translation by asking what is the
character that obeys the normal law, and atates that this

had no real existence as & biological entity. To thie

Prof. Edgeworth makes the following reply, "This objection
might be applicable if the proposed form was advocated as a pa
particular real curve related to some real attribute dis=
tributed normally, say, as enery is to velocity. But the
cbjection is not equally applicable to the position now taken.
The best defence of this poedition is that it is the same as
Prof. Karl Pearson's. For his Types, as here interpreted,

are but particular representative. curves formed by a judicious
divergence from the normal law of error ( a divergence well
indicated by himself)".

My position in this paper is quite distinct from either
of these. It is much more close to Prof. Edgeworth's first
method of tranmslation. I do not object at all to the use of
a graduation formula for special purposes. But graduation
formulae such as those of Prof. Pearson and Edgeworth tell
us nothing about the biological processes which determine the

variations and it is these specially which we wish to







invettigate., Further, as will be seen, neither of these
methods completely account<for certain curves which arise
directly in biological meaBurements. _at

The modes in which the normal curve /=
ariees are of specizl interest. A full treatment is im=-
possible here and from the point of biclogy has yet to be
written. The curve is usually deduced by taking the limit
of (¥ + %)" when n is great, but as shown by Prof. Pearson,
(6), even when n is comparatively small the approximation is
very close. The same proof holdes when (p + q)" is taken
ags the basis of the development, if p is nearly ecgual to g
and if n is large. The reasoning on which the theorem is
based can be easily extended to three dimension K space when
a "normal" surfacre results.

The normal curve or surface, however, arises in mapy
different ways. For instance, the solution of the "random
walk" problem by Prof. Pearson is an example of how even a
considerable assumption leads to the normal surface.

If again, two races differing is a up%?ic quality mix,
sc long as the mean of the two elements determining a quality
in the parents represents the average value of that quality
in the offspring, then the curve of distribution of the
hybrid will be much nearer the normal curve than that of
either race, and if guality depend on several elements may

be almost indistinguishable from it. This is easily seen

from a proof given in a former paper ((7) where it was whown
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thaét if the moments of the two freguencies round their res-
pective centres of gravity were known, those of & frequency
which was the distributed product of these round its own
centre of gravity could be at once written down. As the
problem here considered from the assunption made is equivalent
to the distributive multiplication of two curves, that proof
applies. Denoting the moments resPEiti?ely of the original
distribution by 5; , 5‘;: i ‘1’-‘“‘5_}5} ';; and those of
the product by fﬁ! fﬁf:‘““ we have
y

b 8 5

b =5 5

- ; L s

This enables us at once to see how the normal curve arises;

letting for simplicity S = 5'; etc.
/&a = Z ;
gt 2 S
ﬁn— e 2§ +( ;

go that if ,ﬁf: . /}1 be Pearson's constants for the first
distributions and ff T ﬁg for the derived distribtiticn

respectively

or the curve of distribution of the hybrid is much nearer the
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normal than that of the parent, since for the normal curve
4/:'3- /-(r. =3
Further when free mating between the original races
themselves and of the hybrid tﬁakea place the normal surface
results if the quality depends on more than one element. To
show how rapidly this takes place a series of diagrams of a
stable mixture of two races of different mean quality, when
the quality depends on one, two and three elements respect-

ively, is given for one of the simplest cases.
Diagram here.

This derivation of the normal curve is expressible
perhaps more ezsily dn terms of Mendelism when the average
quality in the offspting is assumed to be equal to the
average quality of their parents. If two races with a
quality depending on two elements mix, we may denote the two

pure races by

A ﬂ‘ la &l

BEE: rbh

These will form a stable race with the proportions

A A |A a‘ A al e \a'ﬂ
1 2| 4l | 2 e
EZB" B BIl B b \‘bbl lb b\
AA\ 18 3/ ia al
2 A |

B b A A B b |
b : '
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Hence by our assumption that A a ie of mean stature

between A A and a a etc., the resulting proportions are:-
1 4 6 4 1

or (1 'f"l}4 which is the expression which most easily gives
rise t¢ the normal curve of error. The grouping with any
number of pairs of elements can easily be deduced from the
above. Even when cuupliné a marked feature this distribution
may be fairly maintained if the number of elements deter=-
mining the quality be large.

Lastly the normal curve may arise in time through the
fact that some quality varies in time according to the inverss
exponential. This i# which holds with regard to a large numbe¢
number of precesses in physico~biclogical chemistry. Thus I
find diseases wh;ch attack about the mean age of life have
often an approximately normal distribution (cf. setc. IX)
and many epidemics seem to run a similar course. c¢f. (5) 1In
this case as I have before shown (16) but repeat here for :
the sakeof completeness, if p be the value of the infectivity
at the beginning of the period and g the fraction determining
the rate per unit time at which the infectivity is lost the
resulting curve #ill be of the form = ﬁﬁg/f{z A

which as g 1s less than unity is the normal curve of error.

- S T e

N
B. PFrequencies derivable from Effgﬂ

.

The different methods by which asymmetrical distribution
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and also symmetrical but not normal distributions may

arise will now be considered seriatim, by the selection pf

2 number of typical cases in which the causes of the
departure from the form (p + q)® can be easily seen. The
The asymmetrical as much the most important will be discussel

in the first place.






T
(a) Asymmetrical or Skew Distributions.

I. Skew distributions arise simply from the method of

measurement. Two methods of measurement may often be equally

probable a priori; for example, notes in music may be measured :

either by their position on the ecale or by the number of

their vibrations. It is obvious that if the distribution be
under

syametrical feither of these conditions it cannot be symmetrical

under theé other.

II. They arise when areas or masses are taken as units of |

measurement if the variation of linear dimensions is symmet= i

rical.

II1I. They arieewhen ratios are used in place of direct
measurements, if the direct measurements are syumetrically
disributeds The typical variation of ratios is skew, marked

degrees of skewness being readily obtainable. Symmetry is

really accidental.,

IV. They arise again when the quality which is being

|
measured has some inverse ratio to the quality which actually Y

varies.

V. They arise when the variation of the quantity

measured is due indirectly to symmetrical variation. This

is very coumon.

VI. They arise when unequal numbers of races mix freely
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though the original race may have varied in a symmetrical

mannel s

VII. They arise from the fact that many gualities in
life vary so as to be easily graduated by the terms of a

geometrical progressicne.

VIII. They arise when frequency distrib@itions have time

as the independent variable.

IX. They arise in such distributions as represent the

frequency of disease at different ages.

I. As an example of the dianges made by the choice of a
scale of measurement, the number of notes of definite pitch |
eccurring in the soprano song@ of Schubert has been chosen. ﬁ
Ag in any song of definite key, certain notes, the tonic,
the medianf.eta., tend to occur with much greater frequency

than others; one soprano song in each of the twelve keys

has been taken and the first fifty notes of that song :

|
apportioned to their proper pitch. In this case we have %
i
i

the method adopted in musical notation, and that by vibration |

|

which is the method iniscience. In the first case, the 5

two obvious modes of measurement, that by octaves, which is

number of octaves above and below the mean pitch is theor- %
etically infinite in number, though but a few are audible {

as music. In the second case, the actual number of l
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vibrations extends from zero to infinity. It is obvious
that the logarithm of the independent variable of the latier
scale is the independent vardable of the former. The re-
lationship between the frequencies on these two scales is
therefore immediately determined. If the normal curve fifs
the distribution of netes as measured by octaves, the dig=
tribution measured by the scale of vibrations will be the
Galton-Macalister curve. For if we take F 3 %, e =+
to represent the distribution on the first supposition with

X a8 the independent variable, the complete change is
cbtained by making K  equal to Log. X. As the amonfit
present gn each element of abscissa in the first case

Sf, thétfix in the transformed curve, the amount rest=-

%4

This is the Galtone=Macalister curve which is thus seen to be

ing on the new element is

8 simple case of "translation" of the normal curve. If on
the other hand the musician's ear really estimates the
nunber of vibrations, only using octaves for convenience of
ngtation, a normal curve might be reasonable expected to
represent the frequency on the scale of vibrations. The
curve of feequency on the scale of cectaves will be obtained
by substituting e” for X

It is obvioubly o

far g 0 e
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The example chosen suffers under various defects. It is
exceedingly difficult to get twelve characteristic songs
upon twelve different keys. This was fé%ﬁ especially with
regard to the songs on the keys of C sharp and G flat.
These songs have an undue nuumber of repetitions of the same
notes and when the notes are grouped for calculation it is
found that out of one hundred notes taken from these keys,
thirty=nine fallin one group at a low point of the scale.
As, however, it seems impossible to select sufficient songs
on different keys frem any other composer I have not tried
to repeat the experiment. The frequencies have been fitted
to the normal curve on both hypotheses. The observed
values and the values obtained on the two different hypoth-
es#s are tabulated in parellel columns with the wvalues
of /{"Lf 7} 4 ek /741 added for comparisaon.
In neither case is the fit a good one, but in the case where
the vibrations are taken as the independent variable there
is very little divergence between the facts and theory,
except at the point already referred to, whieh accounts for
two=thirds of the value of k.; » Where the octaves are
the independent variable the fit is not nearly so good on
the whole.

As far as this one example goes it may be taken to

show that the musician's ear is attuned more to vibraiions






than to octaves. Exactly the same kind of remark must
apply to such problems: as guessing at tints. We do not
know a priori what mixture of influences afe at play. The
biological question is to find the scale which most nearly

measures our psychical processes.
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Table I showing the concordance of fact and theory

when the notes of Schubert's songe are fitted to the Normal

Curve when the pitch is measured by oc{aes and by vibrations.

Notes.

A. Bb
G. AP
¥. F§
E) E.
cf# .

Actual
Numbers.

1

7
28
90
105
127
96
65
56
K

Theoretical Numbers
Scale of Qctaves.

3474
12.60
3232
64.58

102.51
120.66
113497
79.83
44.86
18, 69

6.27

2,57
24,03

.013
075
2.920

Theoretical Numbere
Scale of Vibrations

« 04
6.10
31.36
79.53
119.81
128,31
98.89
64.28
36.90
19.11
9.04
4.5
19.38
131
062

2.746

'J

k.

{
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II and III. Frequencies of Products and Indices.

Asymmetrical curves arise when ratios or products are
chosen as independent variables. The area of a leaf or the
ratio of two lengths will not be normzl in distribution, if
the linear measurements on which they are based are normal.
For an examination of the principles it will be clearer to
begin with a first approximation by taking the frequency

distribution of the primary qualities, as that of Type III.
-yx
1= gte”
Th& curve apptoaches very cloeely in form to the normal curve
when n is large and is chosen on account of the ease with %
which it can be dealt with mathematically. The error of the

results is small and easily allowed for. Let the measure=

ments ¢, € have frequencies
x ~K§ r M2 -Xﬂq
% e @ I

For products and ratios new independent variables m and p
are introduced so that fﬁ""-‘ v and 3-43 —'-"f" -

A. The first case considered is that of the frequency

distribution of m where &7 = » and where § and @

are assumed quite uncorrelated. The surface which represents

fi e ‘a"“‘-/""‘“”"':’h _ys -
&ﬂ J;?‘:fw e é !
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The integral desired is obviously the volume resting on
the strip between &¢ =m and S = m+d m contained
between the plane of & and & and the surface given
above. Thes frequency is most easily obtained by summing
all values up to the curve &¢ = and then taking the
differential of that sum. The expression for this is easily
seen to be % g ;:, i
-¥ »
fol e T T

(.

2

from which volume resting on strip of area required namely

Ak
;f-'?: 5{?'-‘ is found.

;M =My = =YD
A 5 Am [ 5 €
1ls@s 1. ¢ E;‘ - 3{1‘? Z at ‘ﬁ(s’

so that the frequency of each value of m is given by
~

i

Pis

Vi
N-m-l ~ W=
Q gﬂ’ss

an integral which is a solution of Bessel's equation. To
illustrate the variation on this curve we may take
Ry2ny, awt Y =)

Denoting the frequency of each value of m by §'
] _}/f..?'.iy
= &
2 el s
a8

g0 that T e /a‘

P P S ————
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and likewise for the integrals
- o
- 1
(3]
o

Whence the moments rcund the origin are
(;l[ -Hgl
2

| 14_‘!1
K= @”ﬁ ;

etc.

giving
Ousr)(2xs3)
fie
Vs

A-f A (ﬁg.-n)'*/fdx‘-ﬁ 7% + 2¢)
S0 E

){% = -"(l*f):(’4h Y o 4dnd 4 /179n '+ 224 -H.r:f)

?P

whence (f, et /;1 are easily obtained. In the case of
volume where a third variable 7 comes in and fﬁ"f:,p’

the corresponding curve 15 - ey
~y5- S
?:7 ﬁ € AG dr-

B. The case when and (¢ are completely correlated

is more simple.= There is little less generality if we

. -

assume them always directly proportional so that § = /-

g cf. (1} page 670, note V.
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becomes the limiting equation. Here the frequency of

o
L =

4 is the same as that of § , nemely, 4.5 ¢ " de
But this element is transferred to a different distance

on the axis and placed on a different element of abscissa.

The relation is by assumption

20dg = Ax
y G
a &g - 3 ;=

s0 that the curve of frequency of each value m is

e
¥ - -—;mgfe

The moments are easily obtained and are

= ¢ )(ee) (Gutco)
e Qetisl
f‘-.} = (ﬁir/{’jufﬁpﬁl—lﬁﬁh 42?{)
fﬁ

/‘{; = hﬁ”f/’fk*ﬂ("“*r*Hn}—‘i’??ﬂniﬁﬂ-#m;f)
T8

5

5
7
same way but more easily otherwise B

C. The case of the ratio can be sol¥ed in the

Let e =y b Ay 2V

B cf. (8) & (9) where either is treated quite
differently.

ey
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Then the element is

2 2 —-Kéfbﬁ#}éﬁ*?)f
%1;?’““‘7" §prf e > Ay ibb

If 4 be constant so that -,;g- = B = YuP all
that is necessary is to integrate from 0 to o@ with

reference to » . For each value of # we have the fre-

z.z ’ﬁ’mﬁmhé/;’ md#l#t
d
7,6 " p b Thn)

-Z‘_ﬂ_ MR FT
(Vb + 4 ¥ )
S %’ mﬂl Z‘;ﬁ‘f"‘-‘u*l )

G e

or the curve in Pearson's Type VI. Let }/‘,f = }/z e

gquency

(1, erb € Yy pr-b)
(? o

h

Ay

]

and the equation becomes
X
}",._gr;u [+t
; . ;/f“ﬂ{ffmjzﬂﬂ'

The moments of this are known. The degree of asymmetry

introduced by tabulating areas or indices can now be seen.
The values of 1 are given in the annexed table for
values of n from O to 1000 for the curve Type III. and for

the three instances worked out above.






indices are tabulated.

o o = ol

10
20
50
100
1000

-
el

(3

Type III. Area: no
Correlation
g e, A
4 9 25.037 50.333
2 6 9.248 19,68
1.53 5 b.4v4 12,84
.67 4 2,403 7.394
36 3.581.231 5.099
.19 3.29 .621 4.052
«08 3.12 249 3.426
.04 3.06 .126 3.210
004 3.008.00125 3.021

Table showing how asymmetry arises when areas or

Area: perfect Index: no
Correlation Correlation.
dh o e
43.808 87.750 Sk et
18.507 37.408 ssss  sess
11.268 23.488 sees  sess
4,978 11,766 7.784 204485’
2.526 T.364 2,493 7.297
1.262 5.153 1.047 4.670
«503  3.850 « 381 3.661
« 261 3423 «185 3.281
«025  3.042 ,018 3.027
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Ds The general theorem of a ratio when the fre-
quencies of the two variables are given by a normal surface
ls as simple as that given, but the expressions are more
complex, The ordinary element of volume of a normal correl=-
ation surface is given by

g ;
& [‘z?ﬁ'“i: - 8- =

,r".-t|I ~pL A

. W W,

Changing to polar co=ordinates and transferring the origin

to distances x=a , # =( which correspond to the |

means of the qualities measured, we have

% o
o [P st (b B
f

Gy

‘(55 oA ]

AB regards the integration, consider first

o 1
F-<)
//.f'e Ay
I

Yl e

which equals

. ¢ 1 £
A A







Now since a is never less than 10 in practice this last

- a7 , 80 that for all practical purposes we may take t

the limite of the first integral as - oo and o .
For then, % =m zfa.Bwe may integrate between -~ oo
and o with regard to ¥ so that for (4

constant the amount on each element,when the origin is

changed as above, is A-ﬂl—-‘ z}.ﬂ*f’m ) CL‘"A’J—A d-:-aﬁ-ﬁd-:
dng'* Jﬁﬁﬁaﬂfﬁaﬁu gﬁuﬂt ™ é ﬁJf

= — Za_ = *)5@1 s o

&dﬂ a 2 M ﬁ'-lﬂ 1 £ 1_&
-Ffi' s ol 4 ’; 9 Edﬁmg#d&
b 2 cf" & nzsfﬁmﬁsﬂ-ﬁﬂ‘}iﬁ'
d@é $(@hi 640c.6) 4 bt A - Las *G,
= Fﬁfé G 43 j gi};,fﬂ -2870; m&ﬁ}"ﬁuw
G _ 18¢bel ﬁ-‘ﬂ
f s lif2 ;*L ; En-LT >

+4 )
= [Tdm (54"} tegagia ) -ifit" *_gbo,1.) 1,;}-’;.‘ ~29Gi03m +3
Inst- lgman 40317

which is seen at once to be a "translation form" of the

normal curve

. N, e b
e A T G Lsnom W

since the factor of the exponential is the differential of

this latter expression with respect to m
From this general equation some light can be thrown
on the degree of skewness of ratio curves. Assuming

a =) ; £ 205 and € = p the curve becoues

e -
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The larger > where a is the mean value and ¢

the standard deviation of the variables the more symmetrical
the curve becomes and in addition the more nearly normal

it is. To compare with our former approximation in which
Type III., was used Mt Kaes $1ice fﬂ Mk Cune A 4 eyt
afamﬂ,zz‘ e frn M Quct ‘!;{ 4 Oyl

Vg AV N ﬁmfnnﬁih.n.ﬁymﬂu-quﬁﬁ Ltniae Aotcadn

b webes Commpodey &2 5 L2 0 B
Shd f N Prde by gy e a2~ 1= F

In the table given below we see that for the cephalic
index :% ‘2 30, whenie . a 1000, and for the eacral
index ; e 10, or A = 100. From Table II. it is thus
geen that the distribution curve of the former ratio would
in the case first ocnsidered be practically normal and the
last curve have a skewness lying between the values given
in the table for no correlation and perfect correlation,
namely, {% = 126 and .261 add 4, = 3.21 and 3.423

respectively. Bkewness, however, may be much increased if

2 :!;5 and ¢ 0y .+ The actual values found by

observation are given in Table 1IV.
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Showing values of constants regarding the dimensions

of the human skull and the human sacrum in the female.,

Skullﬂ#Length L 189.06 6.267 30.16 .001 2,958
» 180.36 64218 29.01 .047 3.109
Breadth B 140487  B.270 26.64 026 4,312
" 134,68 4,773 B6.22 .002 2.683
Height H 132.04 5,560 23.75 .092 2,802
" 124,56 4,933 25.25 .032 3.282
B
Index I 74.34 64520 11.40 .001 3.473
" " 74,73 5.963 12.53 .004 2,609
H
Index I 69.97 6,448 10.85 .006 3.815
» " 69.13 5.668 12,19 .167 2,792
Sacrum Length 10.00 1,093 9.15 ,.,0184 3.189
Bregdth . 11.50 +707 16426 .0044 2.835

Index T 116.11 13,679 8.49 7251 4.480
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Note on Ratios and Inverse Laws.

The dietributions of ratios are themselves so inter=
esting that a few remarks on the subject may not be out of
place. The simplest case is that of the distribution of
the ratios.which the two parts of a straight line divided
at random bear to one another, Here, if the one part be
denoted by X and the other be a = X the ratio ie

so that

-
. ——— - : m

a — x

am adrm

A = e aus dx= Ay
The frequency of each value m of this ratio when x is the
independent variable is equal, whence the frequency of each
value of m when m is the unit of abscissa is given by

a dmnm a
(T¢m)™ or ¥ = (L +m)* is the curve of fre-

guency. This result in itself is neither new or specially
interesting. But the process is interesting when it is
noticed that the above equation is the simplest case of
pearson's Type IV., and corresponds to the case regarding
the ratio already calculated for Type III. ]:: 14¥'—FI
when n = 0. It is nné of the many instances of curves
which may be called "Bymmetrical" tatio-curves. The
symnetry is at once apparent ii&ih independent wvariable
be changed to f where m =ﬁ’{"fur instance, the
=3

b vat)

abéve curve takes the fornm . Sy
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The group of such curvee is large. The Galton=-
Macalister curve is one; Type VI. wherem = 2n 2

is another. Any curve of the form
y- 4 3 £~ %)

obviously fulfils the conditions and for even functions

y=4 2, f(7-7)

The curve just discussed is
a

=y __"1.
y iﬂ(}i.*iét) ;
One such form occurred lately in connection with

Mendelian coupling and is noted specially. 1In this case
the the number of instances is too small to allow of much
discussion. The development will be found in a previous
paper. The main facts are that from a fourfold division
a, b, ¢, 4, the value of the ratio %7% was specially

required. This ratio had the following frequency

Value of ratio
duf B=6 _6=7 - T7=8 8«9 9=10 10=-11 1l=12 18-19 23=24
No. of instances

2 2 2 3] 5 3] 4 1 1 1

Bhe mean of these M

9.14 48. The median lies some=

where nearer 9 than 8. When 81 4s taken as the square

of the constant of inversion, and the curve inverted, the
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new mean has an abscissa of 8.96, the median lying

slightly on the opposite side of 9; so as far then as

the figures go, it may be taken as a symmetrical ratio airve,
a result which might be expected. When the distribution

is fitted to one of Peatson's curves the constants give
Type 1., but the particular variety which starts with an
infinite ordinate; in this case at a distance of 1.7 units
from zero. In view of the previous points it has therefore
no biological significance. This example was hardly worth
much additional statistical labour, but as it was an

actual cogplex ratio it seemed better to verify whether

the curve might not be a solution of

: &

1
ot 4cx 4dX

g
=

"?;.m

A trial was made to obtain a better fit by this means, but

the type of curve found was identical,
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IV. Asymmetry may arise when the inverse of the
quantity is measured rather than its direct value. For
instance, if in GéEEE of myxoedema the weights of the
patients were measured, a distribution would be obtained
probably more or less in inverse relationship to the
anount of active secretion of the thyroid gland. The
cases of asymmetry, however, due to inversion which are of
most inportance occur in indices. It is either a matter
of chance or of accidental convenience whether the index
or its inverse is chosen and the degree of skewness will
almost certainly be different in the two cawmes. The
mathemnatics of inverse curves is very simple. Take, for
instance, Type Q?I which is found to represent approximately
the indeX curve to distributions which are normal in
character. The element of area corresponding to a definite

abscissa is in this case

i
a
i r= I: the element of the new curve corresponding

to the abscissa Iﬁ is
=t
b A 4 dx
éﬁutx:)h‘

These are equivalent if m = 2n+2, a form which may be

termed a symmetrical index curve. If A 5 2n+42 then

the index curves will have different degrees of skewness.

1]
o
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For instance, if m s 20 and n = 8, the curve has a
skewness of .5352 and int inverse one of .5490, while
that of the symmetrical form whenm = 20 n = 9 is
+8410. The skewness of the index curve can thus be taken
as having little or no biological significance. It is ,
interesting to note in this connection that Type V. is the
inverse of Type I1II. For Type III. thed;}ement of area is f
x, 1‘1‘-@"}(‘2;, which becomes 9{, _;...E-_;' dx’ ;6’ X = 1!-,

Type V. is a rare curve in biology and it is guite possible

that on some of the occasions in which it appears it is
due to the gquantity measured being dependent upon defect

of a quality rather than on its presence. As Type V. is

deduced from Type III., so an inverse curve can be obtained |
from the normal curve. In this case, if the equation of |

the latter be taken

———————

L B

5: %ﬁ-%z

the origin being the point of inversion, we obtain the

equation of the inverse as {

ag, —ayr)’

T

It is noted that that portion of the normal curve corres=- .
ponding to a negative abscissa has no biological significance;

Time symmetry is also probably of inverse origin, but i
from a reason which will be considered under the appropiate |

heading.,
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V. In biology o great variety of shapes of curves
may occur directly as the result of norual variation. This ce
can be perhaps most easily illustrated by discussing a
gspecific instance. Such a structure as the human pelvie
affords a good example for an approximate solution of some
of these problems. The inlet of the pelvis is practically
a circular opening bounded by a chord corresponding to the
sacrum which occupies a large part of the circumference.
From observation the breadth of the sacrum varies very
closely according to the normal curve of error.

For the purposes of a first approximation the pelvis
may be imagined as circular in all its parts, excepting the
sacral chord denoted by CD d@n the disgram. Let the middle
point of this chord be dencted by B, and let a diameter be
drawn at right angles through this point. Let this meet
the circle again in A; for the approximation the arcs A C
and A D may be imagined as rigid and hinged together at A.
This gives a rough mechanism by which the normal variation
of the chord C D may be examined. As a further construction
a second diameter is drawn through the center 0 at right
angles to the first. This meets the circle in F and H, ¥ H

is thus the transverse diameter of the pelvis and A B the

anteroposterior dimmeter. If now the chord C D vary

according to the normal curve of error, there will be

corresponding variations in the anteroposterior diameter
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A B and in the transverse diameter F H. (From the assumed
condition tha transverse diameter will not really be F H

but the distane between the points at which the tangents
patellel to A B touch the curve). Now if A C and A D are
joined these are obviously constant lengths which may be
denoted by p. We may denote A B by b and its variation by
X. In the same way we may denote C B by a and ite variation

by r« We have then, since A B C is a right angled triangle
1 > =
pt e /ai-r) + (b#x)
which reduces to

0 = 26x+x* +2av 47"

b being negative when a is positive and vice versa. This

A= =0 + Jé6 zar-r*

gives

The positive sign of the root being taken since when

A=y Pr=za This gives the value of x in terme of
. VWhen the egquation of the frequency of x is given with
X as the independent variatle

i dlen o fcran )

e

‘?_ - ;{:l!—j,‘t +x7

It is obvious at once that if the variation of I is normal

that the veriation of x ia skew, the skewness increasing






.
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as the standard deviation of r increases. A complete )
golution of the varigtions of the transverse dismeter will
also be givne, but if we consider that the vertical distance
from the diameter A B of every given point of the chord A C

varies normally, it will be seen that the variation of the

trangverse diameter must be symmetrical and not deviate so
much from the normal curve of the anteroposterior, this is
in fact what is found. The actual figures give the constants

of the variation of the pelvis as followe:=-

Sacral Breadth » 00445 2.8351
Transvere Diameter «06395 3.0386
Anteroposterior Diameter .1452 3.D5988

One further development can be made to show how a one-gided
frequency descending from an infinite quantity zero is

dertimined by the normal variation of the chord C D. If the

-
= T T T

tangentisl transverse dismeter cuts A B at the point of P
then the frequency of egch value A P varies with this
extreme shewness. This investifgation is directly allied "
with that of the true variations of the transverse diameter
according to our mechanical hypothesis,

The true transverse diameter is the distance between
two tangents parellel to the diameter A B. As A is fixed

each arc A C or A D will totate according to the hypothesis

an equal angle in opposite directions which we may term .
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It is obvious then that whether the variation of the chord

C D is positive or negative the centre of the centre of the
new ciredie will. lie on:the side of O opposite to C D since

A ig fixed and A 0 is constant. If A 0O = a the new centre

will be at the point %= a8 7= dﬁ-.ﬂ, if A is taken as the
origin of the co-ordinates. The equatiocn of this circle

is thus obviously

(k-2 8) +(r ~4 pb) =a”

For pusposes of calculation C D may be supposed. to subtend
an angle of 60° at the circumference of the circle. As a

is the radius of the circle

/ 3
'E+Cﬁ" é;**

O B C being a right angled triangle with the angle C 0 B =
60°. A C is thus equal to /32 and AB to /¥4 , The
types of variation can now be evaluated. If P is the point
on the axis where the line joining the tangents parasllel
to A B cuts the abscissa A P is obviously equal to 248

2a(l+ da-ﬁ) The Angle 9' is the angle between

the mean position of A C and its varistion x

; o Bc+x -1 B¢
¢ f- b7 ST A i

= - b1 x 7
= A -]






For the variation of the transverge diameter if a he

the actual wvariation

Y= amh pce §= & (1#0B)

80 that

o't = Z
but &_{{*g)_g=£

or
ol+3) - LT
a 1= Biymymped
similarly
4 M=% «a6
g0 that

T .}gg‘-ﬁﬁ“ﬁ'}‘""’}

If we take as found by observation the frequency of the

variation of x to be normal »n

L
i A il

e A —
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we have the frequency of wvariation for the new curves
riven bys (a) for the transverse diameter by the ordinary
Lo ’ v i

"translation formula®

V= aj3iz-

and for AP
3': a%{){ --ljf'

By observation = ?{; CP = 086 ? 4 a=

= = £ {97 - W-'}w

) N
e = T

and by hypothesis ﬁ 3 xa : ;’-732 ,;‘/ =1

The first curve is nearly a normal curve tha seconfl has

a form given in the subjoined table

¥ 3

1.000
0682 +099 19,463
0932 .098 10.219
.1126 997 84394
.1455 .995 2 .755
.2020 .090 «410
2458 . 085 211

2812 «980 0287







It is not pretended that the above description holds

rigidly, it is a mere mathematical first approximation
resulting in a serlies of translated normal curves of
which the origin can be at once shown. It might be
further extended if itlwas worth while to include the
fact that the variation in the circumference of the

iliac bones also obeyed the normal law but the discussion

given is quite sufficient for the present purpose.
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B Under the category of asymmetry due to the mixture of
races I have not been able to find any figures which will
repay the trouble of analysis. Adequate statistice of the
mixture of two races which are symmetrically disposed with
regard to some quality in the offspring is the meancdofithe
parents, do not seem to exist at present. Experiments
will require to be made.

Such & case would however come under the ordinary

foemula for a stable race namely

ﬂ:'(A,A] 2mn (A,a) n (a,a)

The solution is nearly identical with that Prof. Pearson
gives in hie first memoir on the mathematice of evolution.
There Prof. Pearson analyses an asvmmetrical distribution
into the sum of two symmetrical distributions each of which
obeys the normal law. His chief example however referas to a
ratio distribution which as we have sesn is essentially
assymmetric-and therefore not a suitable case for the
application of this method. Further I think that it is.
exceedingly unlikely that two races of the same species can
exist commingled in nature witlout breeding together. - The

distribution will not thus be expressed by hf:(l) F n[;{l}

but é’? Ihﬁ“ _*hj{;,‘,jﬁ . This' 'is practically






- =

an application of distributed multiplication. there

fore 5,, ’3'3 el be the moments of “‘J [{UJHfﬂihT=d ﬁz’ﬁfﬁq-

the moments of the distributed square of this, we have
;11 - 35‘1

Ly = 253 .
fy = 25, # 5,

fag- = 25 425,5;
From the actual observations f“f*l etc.; are determined
and thence ;_1 .3':, etc., The problem is thus reduced

to that solved by Prof. Pearson.






VII. Apparently as a result of the process of
physical chemistry the geometrical progression describes
many phenomina of 1life. The well known example given by

de Vries of the number of flowers of Ranunculus Bulbosus

wit]j each number: of petals will illustrate this. It 1s
an almost perfect example of s geometrical progression.
A —YX

Prof. Pearson has fitted it to the curwe }&; ax e
but the latter formula does not give nearly so close a fit.
As the geometrical progression is itself a spécial casé of
Type II1. this example shows incidently the difficulty of
applying the method of moments to cases discrete variates
when the curve terminatesabruptly. A table of the numbers
theoretical and actual with thecorresponding values of
K‘Iﬂand ? is annexed. It 1s semn that the geometrical
progression has a probability ID-'-*" «25 whereas Typelll.
has & probability only Pz .67.

Firther examples of the geometrical progression
are seen in the decline of the death-rate with each year
of life with children suffering from measles, scarlet
fever, etc. This subject is only mentioned at present.
Along with the subject matter of the next two sections it

will be dealt with separately at a later date.
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Table I showing number of Petals in flowers

of Ranunculus Bulbosus | {de Vries).

No. of Petals. Prof. Pearson's Fitted to |
fitting. ﬁgometrical Progerasion}
'f’jt";""":“ i t”ﬁi»ﬂ 4 f
5. 153 136.9 (281 1338134 .37 /335 |
!.I
8. 55 48.9 §7-3 530 53,32 s34 {
s 23 _ 22.6 20:4 118 21.16 245  f
8., 7 9.6 £.26¢ 8.40 £-5
2 2 0«4 J-g 31# Dead 6"({
I' I
10. 2 oF L3 1% 1.32 /4
! 1 o 1,84
11. 0 .0 T ok oy
"..
2/31 .
Total 222 222.0 208,42 1920410
KL
\ 3.27 [-4% 1.09
| .67 480 bR -
o P ?
]
25!
7 Ky
,liél!'.jz - : : g‘w 3
e i s pJL ol
¥ e
9 w0 19
:;J. ...-""I" .b 5_:__,_
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VIII. In this connection that asymmetry which

ariges when time is tha independent variable in the curve

of distribution is considered. When observations are made
in such a matter as the date of flowering of a large number

of plants, it is uniformly found that a skew distribution
resultas. This is what would te expected a priori from -
such limited knowledge of the physiology of the plants
which we at persent possess.

Flowering is the result of a completion of a

process to which a certain summation of changes is

necessary. For a first approximation this sum may be taken
a8 expressed by the simple; if }f is the rate at which the

r
change takes place per unit of time 4é willrepresent

the amount of substances negessary to determine flowering
present at any specified time. If then a limit A must
be reached before flowering can proceed, we have the
distribution really the inverse relationship between

d..d w:‘-—'!f L y’f :'ﬂ"

If )! vary normally or according to Type, III.

we have the frequency of flowering on each date given

reapectively by A = .::.Zk-‘f'
J= 2 €
=
atif, j = ..’!"..* e x

X
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A large number of observations will be necessary
to settles the exact form of the rate of increase, but
whatever law is found the resulting distribution can hardly
be anything but asymmetricals

"
(b) Symmetric forms derivable from (p+q)

1055 Symmetric forms are much less interesting
than asymmetric but two forms arise which are of some
importance. An example of one of these is given by lir. Yule
on page 183 of his "Theory of Statistics" (10). In this
example the proportions of male to female births are
tabulated for the registration districts of England both
as regards the ratio and the size of the district. As is
naturally to be expected in the smaller districts, the range
of variation is very considerable, while in districts such
as those containing three hundred thousand inhahitants
ans upwards, the range is very small, Here the theory
of chance permits of easy evaluation of the resulting form
of curve. The chance of the birth of a boy or a
girl (1.04 to 1) being practically equal the asymmetry
which exists may be neglected. The ocurve.formed for each

registration district of definite size will be essentially






n
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normal and the numerical standard deviation will be b X
where n is the number of birthes in the district. The

standard deviation of the ratio will then be %’T/;r,_ OF 9= =

A1l that is therefore necessary is to krnow the distribution
of the registration districts in size. This 'is found to
conform closely to a curve of Type, IIl., where the power
of n is negative but gréater than -/ i.e. the curve starts

from infinity at the distance say ¢ from zero. e have

thue since for asach size of district the distribution is
Jﬁ }

given by e C2f when a is a constant and since the distria

-p Sn
-bution of n is given by & E’f the final distributioh

given by the equation
= CAS

x o~ .,lﬁﬂ.? J z 7-;{#!"
b Fr - E
}{"q/;ze I An = ’b [}/’*i;)ﬁ-ﬁ

This 18 a curve of considerable complexity which does

not lend itself to an easy formula for calculating the
moments. It is allied to Type IV. and it is interesting

to note that Type IV proper arises if the distribution in
place:of being that Form of Type III. found, is the ordinary
f'orm whap the pﬂwér of n is positive. The integral then

becomes a simple Gamma function and gives the symmetrical
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form of Type IV. or
M ) ht
= x* ﬁ-r‘\'
7z )

a
To compare theory with facts the distribution as given by

=

lir. Yule has values of the essential constants ﬂgr.ﬁlﬁ?
Kﬁg?.ﬂlﬁﬁ which givea a curve of Type, IV. The asymmetry
belng slight has been neglected in fitting. On this
hypothesis the actual and theoretical figures of the distri-

-bution are given in the annexed table.

Humber of Registration Districts with different

proportions of Male and Female Births.

465-70 |471-76 W77-82| 483-88|420-04 [495-500
Actual No. 1 1 2 4 10 a5
Theoretical «57 97| "3.01]|10.74 | 40.29
515-18|510-24 [505-20 |531-38 pz7-a2| 547~
135 | 37 5 4 1 1
140061 | 40#29 | 10574| 3.01 o7 .87
This gives ,Yg 5.92 or P=,02







This form is thus very close to that which might be
reasonably expected from the foregoing argument. It may
be objected that this is one of the cases where ths result
might be expected a priori from the method ofProf. Pearson's
proof, since Type, IV. arises when, from a mixture of an
equal finite number of red and white bellg, half are with-
-drawn time after time and the distribution of the results
are tabulated, but in the example given, the number of balls
of the analogy is clearly infinite, and the noemal curve
should be very approximately obeyed.

II. One other form is considsrad. It is &
continuatiorn of a subject discussed in & previous paper.
It concerns that grouping of stature which results if in
inheritance coupling either interhal or external occurs, or
1f dominance is a factor in the herédity. It has been shown
before that if the element determining a quality such as
stature is dominant the stable race for one quality is
(2 24) as is well known; if a second element take part, tle
stable race is either (£ %) or (2 ) (3 2). The latter
is of the form (1 n 1) and if inheritance depend on
numerous such pairs, we have (1 n 1) as tﬁa resulting

form.

Now this form is easily approximated to, if p be






modsrately large. The writing down of the terms of a

distributed multiplication may be done as follows, a method,

f

" I think, not hitherto pointed out. Take for example (a

¢} anfi write the product as follows:-

x| |5 44 10 & & 10 EE-A S
5b Al 4 a’c 5 ata Lo 4
10b | 5,3 z a%o T (}‘1
10D at 2 aq o ci!.

5b a o

b 1 L

The distributed terms are then obtained by adding
together the ‘terms in the vertical columns each multiplied
by the corresponding terms in the first column showing the

expansion of (b 1). Thus the middle term is:=

o

5
8 dx5b 2 a cx10b°41% b

or

A R K P

If a=c each row is approximated to by the normal curve with
2

a standard deviation proportional to the vertical distance

from the polint where the distribution is represented by

unity i.e. where ¢ =0 . The form of resulting distribu-
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-tion can thus be found to be

i
g [0y

For purposes of approximation ¢ may be taken as zero, and we

1ave i
Ja~ ot

s S
fh¥ 4 v

e
or the curve partakes of the moment relationship of the
symmetrical Type IV.
This same form also arises when there is a
coupling as here again distributive multipliegation really

comes in. The ordinary form foe a stable population is

as ghown before

A A A A L A
a ol o b
B B E b b 1
A s A a A a
2 ab 2a 2b 2 ab
BE B B b B 1
a a a a a a
b : 2ab a
B B E b b b
' a : :
Where o or the coupling ratio.

7
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If we consider stature determined by the same
hypothesis as before (p. Y then the above expression
must be summed diagonally, so that we have the distribution

given by

=

Thia is however the same form as for the dominance given

before; for it can be written

5

a 1 2 1k
4 ab ;b 1
4 b° ) 1
8 A ab cate« 4b 4 ab at

A Type IV. curve thus results in general, whether heredity
is dependent on coupling or dominance.

The method of analysis of a complex form such
as of stature can now be indicabed. It requirea the help
of the theory of correlation. If stature depends on a
number of elements inherited independently and if the combi-
-nation of two of these determine a mean condition in the

offapring, the the co=-efficient of correlation between






parent and offspringwill be given by Y= .5 and the
curve of stature will be normal. If the curve approches
Type IV. rather than the normal, this is explained by the
fact that some of the elements are dominant. If all the
elements are dominant ¥ = .%. Taking all distributions
of atature, it is found that though nearly normal, there is
usually a defect of fit shown by the normal curve at the
maximum, This defect meana a deviation in the direction
of Type IV. and suggest a certain measure of dominance.

For correlation figures we find for instance, that the
correlation between father and son is ¥  .514, between
mother and son Y= 494, snd father and mother f'-.r .280

showing that the real correlation between father and son

is given by

1 Sy ~ Ll w282 - _4,5‘
?" dhh—-l —
R e
-Thus the same kind of defect from the theoretical correlation
«0 18 seen as has been observed betwseen the actual and

theoretical distributions.
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CONOLUSIONS..

The examples given in the previous pages will have
explained sufficiently the point of view from which this
paper has been written. I do not think that any advantage
can be obtained from general systems of curve derivation.

In the first place a very small alteration in the walue of
the constants may make a very great difference in the type

of the theoretical curve, and the fipgures at our disposal

are rﬁrely of sufficient worth to zllow of fine distinctions
being drawn between curves obtained on these systems, espe=

= cially when in addition, the differences in the type of

the curve represent really nothing in the facts. But there
is another drawback. Neither Prof. REdgeworth.'s nor

Prof. Pearson's methods account for many curves which arise.

Thus by the former, the independent variable x of the normal

curve is replaced by f%kj and the latter assumad to be
qhickly convergent. In practise this is not s=so. If the

original curves are normal we find the curve of a ratio
given in the simple symmetrical gasa bf

(~x)
m (141 Zt?‘fm
T
éfxﬂ}
; ‘an immediate "translation"
form. The power of the exponential is finite for all
velues of x but it is not convergent in a series. Further

the fact that it is as exact "translation" form, tells us
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nothing biologically; we are left stranded on the "sanda
of surmise”. Derived as shown above (p ) the form:

is perfectly intelligible. The same resulte appiy to the
inverse of a normal curve.

Such forme are also not comprehended by Prof.

Pearson's formula. That just given:=-
EEeE X at {?ix)t
_..-i': {éff — —_ —{' = —a T A

f £x ~ J+E Srut ' @Hﬁﬂ)

while the form for a product o ¥ e
Mz ?‘f"-ﬁj"ﬂ:r .-—}1?"_" b
P

is a derivative of a Besssl sclution. In the same way

others of thederived curves do not satisfy his equation but

more probably an eaquation.

L
e N N e
y I R

ca * Hn —r":/;’*-ﬂ

In conclusion it seems to me that in biology
fregquency distributions are a purely experimental science.
athematical assistance is sssential. The discoveries
of many mathematicians have been most brilliant and
illuminating, and but for their work the present biological
gtatistical knowledge would not exist. But though this

work has been brilliant, it is too much divorced from life.
The real functicn of mathematics is to use nbser%&tionﬂ

and measurements to aid in finding real laws, and to
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test such hypotheses as suggsst themselves. Directly
curves are thus of the first importance. As far as can
judged from the study of heredity, many of the eléments
are inherited independently or according toc laws which
afford easy mathematical expressions. Properly chosen
experiments can easily be made to test thess. But
apart from this there is a great basis of physical
chemistry underlying life with laws of its own, which
determine the subsequent curves of distribution.

Such curves can not be comprehended intelligently eveh

by the most general of the "generalised" curves.

be
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