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XXX]—On Inheritance of Hair and Eye Colour.
By John Brownlee, M.D., D.Se.

(MS, received June 17, 1912, Read same date. )

SOME time ago, in a paper published by the Royal Anthropological Institute,
[ applied a Mendelian analysis to that part of the observations made by the
late Dr Beddoe (1) which refers to the colour of the hair. In that paper (2)
I showed that these observations obeyed in a highly remarkable degree
the law referred to, and that this result held from the north of Scotland,
through the whole of England, Ireland, France, and Germany, to the south
of Italy. At that time I was unable to make any application to the
observations on eye colour also published in the same work, but I have now
succeeded in completing the analysis.

The whole depends on a theorem of population stability which may be
easily proved.

Let the population consist of a mixture of two races having two
characters such as hair colour and eye colour inherited according to the
Mendelian law of segregation. Let these qualities be denoted by (BB),
(bb) for the hair, and (DD), (dd) for the eyes. Then the population may
be considered given by

DD | D | DD Dd | | D |
2 ) 2 | ( 2be) |
it BR + 2ab BY + b L3z + 2ar B | +(2ad + b:}: B |
| Ded | el | efed ad | #
2 E| - d dﬂ .
Ead | | +e Bt i (1)

If this population mate freely, and if all matings possess equal fertility,
the relationship of the constants required for a stable population depends
on whether coupling exists or not.

The meaning of the term “ coupling ” may be easily seen from a considera-
tion of the different units in the above expression. It will be noticed that
every term of the expression except that in the middle has either two eye
units or two hair units the same. It is thus impossible when division takes

# The factors outside the brackets are the proportional numbers of each variety. The
simple case is: if 2(A, A)mate at random with itself and with y(e, a) and all subsequent
matings are equally probable, the stable population is given

(A, A)+2au(A, a)+y¥(a, a).
Cf. p. 462.
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place for anything else to oceur than that two constantly linked pairs are

’ can only divide into imu] |:}).

given off in equal numbers. Thus
iy

g other things may easily happen.

b

But when we consider the case of

If D have a greater affinity for B than for &, then we may have more of the

: ) -
element | B oiven off than of the element | :‘T .* But here also there is a
i ; | &

necessary arithmetical relationship between the different elements resulting,

it follows that there will also be
¥

b
and if n L elements oceur for one

T f for one | i even although the attraction of D for B might be different

from that of d for b,

If the population (1) mate freely and if m I :': occur with {l'} {(where
| »
m+n=5 and 2(ad+be) is denoted by k) the next generation will be

given by

. D
(@ + ab + ac + mh)* BB + 2(a* + ab + ac + mh )P + ab + bd + nli) B )
5 DD Did
+ (0 + ab + bd + nh)* | + 2(a® + ab + ac + mh)(c* + ac + de + nh)
b | BB
{ 2(a +ab + ac+ mh)( + db+ed +mh) | | Dd | (2)
+3(b% + ab + bd + nh)(c* + ac + ed +uk) || Bb =
Did |
+ 2(0° + ab + b 4+ nh)(d% + bd + de + mbh) F; |+ (2 + ac+ cd + nh)? ;_;é
b
a : | dd 5 .| dd
+ 2(e* + ac + ed + nh)(d* + dh + ed + mh) B | + (a® + db 4 ed + imh)® " /
i

This has exactly the same form as that from which it is derived, but
the relative proportions of the different classes may be different. If the
population is stable we have as the sufficient eonditions,

(a®+ab+ac+mh)* (B2 +ba+ bd +nh)? (2 +cd + cw+nh)*  (d* 4 db + de + mh)?
at b b* [k PR e NG

as all the similar relationships hold if these are true.
Taking the first equation

(@° +ab+ac+mh)y (8% + ba+ bd + nh)®
at = L T ,

* The assumption made here is that there is no special mortality or instability among
the pairs which are actually formed.
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we have, since the positive root must be taken,

a+b+et ?ih =T +d+ﬂk :
I [/
or
g+f{*?‘;d+ﬂi’,
@ h
or
abe + 2mabd + 2mbe = abd + 2na®d + 2nabe,
since i = 2(ad + be) ;
= abd + (1 — 2m)a®d + (1 — 2m)abe,
since 2(m4+n)=1 ;
or
Zim(abd + b + a®d + alic) = abd + ad,
or
Imia + b)(ad + be) = (a + b)ad
2mlad + be) = ad
2mbe = (1 - 2m)ad
= Dnad.
The other equations also reduce to this, so that
axa m
Be w

is the criterion of stability if coupling exists. If there is no coupling,
m=n and ad=be

Some remarks may be made in this place concerning the meaning of
coupling. It has two forms: either each unit has a special attraction for
the corresponding unit originally associated with it, or on the other hand
for the one with which it has come in contact when hybridisation oceurs.
The theory at present advanced by Mendelian biologists makes in my

notation %L=ﬂ‘“—1 when p is a positive integer. I confess that I cannot

follow the arguments on which this is based. The facts seem to me much
more in line with the conditions of stability in chemical solutions, If
there be a solution, say, of Na,S0, and HCI, the relative proportions of the
four possible substances depend on the rate at which the reactions between
Na,S0, and HCI and between NaCl and H,S0, take place. Denoting these
respectively by » and m, if the amount of these four substances be respee-
tively a, d, b, ¢, equilibrium will exist if nad =mbe. Or, in other words, the
equation of chemical equilibrium is the same as that of the stability of the
population considered. The advantage of this method of looking at the
matter is that it implies no special values of m and n. Short, therefore, of

some fundamental reason for the value -2{7:2'“— 1, it is better to consider

that other values may be possible and that facts on one side or the other
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are at present of more importance than theories. The only difference in
: : - D |d ) B . o
this case is that either B + i or ; + ; must exist; thus four different
3 i
compounds cannot all appear together, but if an average of a large number
of examples is taken the result must be the same.

Referring back to the expression for a freely mating population, we see
that the fact that it forms a perfect square is not a suflicient criterion of
stability. All that is stable is the relation of the eyes alone or of the hair
alone. Thus, taking formula (2) and summing each line as regards number,

we have for the total of the first line, or the terms containing (DD),

(0* + ab + ac + ml)* + 2(a® + ab + ac + mh) (12 + ab + bd + nh) + (07 + ab + bd + nh)?,

or

(a2 + ab + ac + mh + b + ab + bd + nh)?,
o

(a* + ab+ ac + ad + b* + ab + be + Id )2,

ginee w4 n="5

and k= Qad + 2he :
or
(a+b)a+b+c+d);

the second line, i.e. the terms containing (Dd), is equal to
Aae+d)e+d)at+bre+d),
and the third to
(e+d)(a+b+c+d),
and the proportions of the original population (1) are exactly maintained.
Shortly written as before shown, the general formula may be denoted by

! D D |d | d)*

“a + 0 +c | +'!r

| |B b a1 i
This is the typical stable Mendelian population without coupling if
: ‘,J m- is the criterion, and :_ztub-ilit}' in the
population is only established after many generations.

Suppose equal numbers of two populations mix and mating is free:

suppose also that the coupling ratio is 7, one actually found by Bateson
and Punnett (3). Then if mating is free the first generation will be given

by the ratio

ad=be; if coupling exists

DD 9 Dl i el
| BB Byl " | w
With a ratio of 7 the next generation will be represented by
I | D D 7 i nfl z
8 | +7 \ + +7
B B l B ] 5 i
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Or
J | D | I i af, #
156 | + + +15 :
i b B b |
which when expanded gives
55 Total
; DD |
925 5
5|pp | +30| DD 4 | | 256
Dd | Dd | Dd
30 452 | §1¢
BB + 42 | Bb +30 | B 212
| dd ad | .| dd |
1] 30 22 2
| BB i ! Bh :+ - | il ag
Total 256 512 956

Hence 2 — 225 in place of 7.
-n
The subsequent matings ean be easily caleulated by the application of

the form in expression (2). The first term is (225+ 15+]5+ 7 452)" and

the rest are found likewise.
Applying the process seriatim with suitable approximations we have

the suceessive values of ﬂi given in Table I

he
TarerLe L.
| i
T
‘ Value of he OF
‘_ Wt 2, |
| After first generation . 3 : Dah
» second 5 : ; : 56
,» third T ] \ . 27
. Tourth i : ; 19
. ffth it . i ; 14
» Sixth ,, : X 3 11
n Beventh : : ¢ 96
,» eighth 2 1 . % &6 I
,, minth i : : : 83

It is thus seen that stability is attained only after a considerable number
of generations in a free-mating population if coupling exists.

It%is possible to introduce a shortened notation. In all circumstances
these populations after one generation consist of numbers which are those
of a perfect square. If we write this in the following way we can at onece
proceed to the full expression with little trouble.
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Thus
D
iE
| B
o
£ |
| B
denotes
=
e r L
o
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6 |

il

]31|g |
h |
b |
or more shortly
i I
”f | [
b | |
DD . DIy | - 131
T M T
| D Pad | Dd Viud Dd |
BB | +2c | Bb |~ | bb
el ol
i | =
Tl A

Each of the four sides of the complete expression is the square of the
corresponding terms of the contracted expression, and the term in the
middle the sum of twice the product of the diagonal elements.

One or two other examples of the rate at which stability is approached
in one generation are shown in the following table .—

Tasre II, sHOWING RATE OF APPROXIMATION TO A STABLE POPULATION.

Form of Population.
9 b r
1
11 B
1 1
10 1 |2
1 1|
\/10 e
1 /10
t B 1 |%
1 1
| 5 1%
ik 1 1
4 1|2
1 1 |

e || T
n = Cumm!:ncﬂmﬂlt-
9 =
5 11
- 10
9 10
9 G
3 5
9 4

|
Value of

Value of

':.u? after
b

One Generation.

156
L5
| 976 |
287
O-46

4-1
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Before quoting any examples of Dr Beddoe's figures it will be well to
state clearly his hair and eye categories. He recognises five types of hair
colour. The meanings of these types seem to me as follows:—

(1) Jet black.—This is a true single hue, and persons possessing this
colour of hair are with few exeeptions those who possess two distinet pure-
black elements in the gametes. The exceptions, so far as I have seen, are
a few persons who have one red and one jet-black element. In manhood
this may resemble jet black very closely, but the colour of the hair on the
body usually shows some trace of the ruddy pigment. These are, however,
so few in number that they do not disturb the caleulation.

(2) Dark hair—This is really a mixture consisting of one jet-black
element and one element of either medium hair or fair hair. Black is
thus imperfectly dominant.

(3) Brown hair.—This consists of those who are true brown or medium
and of those who possess one brown element and one fair element.

(4) Fuir hair—This again is a pure pigment, the person possessing it
having two fair elements.

(5) Red hair—In this group are included the pure reds, the mixtures
of red and fair hair, and the mixtures of red and brown hair.

For purposes of analysis it is necessary to combine the last three classes.

Eyes are more difficult.* Dr Beddoe recognises three classes:—

(1) Light eyes—This includes, in my opinion, the pure blue, the grey
or pale yellow, and the mixture of these. All are distinet varieties, and ean
be distinguished with fair accuracy after a certain amount of practice.

(2) Mixed eyes—This class contains a certain proportion of those eyes
which are a mixture of the shades of eye just mentioned and of the
chocolate and dark-yellow eyes.

(8) Davk eyes—This class contains all the pure-dark eyes and I think
the pure-yellow eyes, as, on account of the manner in which the dark
pigment of the hack of the iris frequently shows both internally and
externally, these may look dark except on careful inspection. It also
contains many eyes which a moment’s careful inspection would show to be
either mixed dark and grey or dark and blue eyes. The latter types of
eye are much more common than the true dark or chocolate eye. That
they have not been more definitely distinguished is somewhat surprising.

It is obvious from what has been said that the last two classes must at
least in the first instance be placed together.

We thus have six equations to determine four unknown quantities,
The success of this fitting must be the test of the truth of these statements.

# See Appendix.
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As an example, the figures Dr Beddoe obtained by observation in the
town of Caen are given. The numbers are as follows:—

|
‘I-Iefll.um - |
| Light, Dark Hair. |Jet-black Hair.| Total,
| and Red Hair. . |
i = s o | ,
A - 149°5% 27 1-5%
Light eyes . : { (149°5) (27°15) (1-11) } e i
| Mixed and dark eyes . . 51-5% 93:5% 16 | 161 |
I |
: =7|= | |
e 201 120-5% 17:5% c
Dotad™ . ... . { (201) (120°0) (17-9) }. 438 ;
| ! |

e — ——— =

In this case a*=1495 and (e+b)*=178. This gives on solution & =12-23
and h=1-11, so that we obtain 2ab=27-15 as against 27 found and $*=1-23
as against 1°5 found. Whether we regard the 15 as really one individual or
two, the fit is exceedingly good. The same process applied to the total gives
(2+¢)=201 and (a+b+c+d)*=339, so that (a+c)=14"18 and (b+d)=
423, which give 2(a+c¢) (b+d)=120 as against 120-5 and (b4d) =179 as
against 17-5 found.

This example illustrates how the race mixture can be analysed and the
closeness with which the numbers accord with such distribution of the
population as is given by the Mendelian theory. Such complete correspond-
ence 18 of course rare. Another example almost equally good is that of
Bradford. Here the numbers are even larger, the sample of the population
observed numbering 1400 persons. In this case the theoretical numbers are
printed in brackets above the actual :—

Light, Medium| 1,y Hair. [Jet-black Hair.| Total
B (663) arre) | (529) BT
Light eves . Pt .I{ 663 117 a } 86 |
|
968 392-4 396
Rt - { (36 i e } et

The method of testing the suitability of such fitting is that given by
Professor Pearson (4). The differences are taken between each theoretical and
actual number ; these are squared, divided by the corresponding theoretical
(54) | (54)
396 " 3924

number, and summed. In the case of the totals this is equal to
or "81.

* Where ‘5 oceurs, the indications were so nearly equal that the individual was recorded
half in one class and ha.lf in another,
VOL. XXXI11, 30
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This sum is denoted by the symbol x*; the value of P or the probability
that the fit might be worse is then obtained from the published tables (5).
For the ahove figures P=-67; that is, if 1400 persons were observed by
random sampling 100 times, in 67 of these a worse fit might be expected
than that found. In the case of the upper line the fit is practically
perfect.

In what follows, the figures relating to Scotland are chiefly used. Con-
cerning the suitability of these it may be remarked that (excluding Glasgow
and Edinburgh, where the recent Irish immigrations have introduced a
large element unassimilable on account of the difference in religion, and
which therefore fulfil none of the conditions necessary to the application
of the present theory), Dr Beddoe made observations in 43 localities in
which the characteristics of the hair and eyes were noted in more than
150 persons.

If 43 cases are noted at random, the number of good fits and bad fits
may easily be calculated from the probability table already referred to.
We find y* should be less than unity in 393 of the cases; greater than
unity and less than two in ‘239 ; greater than two and less than three in
'125; and greater than three in the remainder, namely, 223. The
following table is divided into two classes—the towns with the larger
districts, and the country districts. It is seen that the number expected not
only is realised but largely exceeded; in other words, except for the fact
that the number of towns and large districts in which y® is greater than
three is twice that expected, the number of small values of x* is much in
excess of that required. The exception is to be expected as into these
towns specially the immigration has been much the greatest in recent
years.

TasLe 111, sHowi¥G THE DISTRIBUTION OF THE FORTY-THREE DISTRICTS

IN SCOTLAND ACCORDING TO THE Acroal FINDINGS AXD THE
THEORETICAL PROPORTIONS EXPECTED BY THE THEORY oF UHANCE.

Values of = 0-1. 1-8 -3 3-.
Towns and | Actnal . : o [l 2 | e 5
large districts | Theoretical | 2 | 18 29
T !
s Actual . . - 3 2 3
Small districts { ppCilvicn | 17 | Ta | 44 | ex
Actual . . .| 28 | b 2 8
Total { Theoretical . .| 117 | 103 63 97
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For comparison of hair and eyes a further selection has been made.
Only those towns and districts in which x* is less than unity have been
analysed, as it is only in those we can expect sufficient freedom of mating
to allow of the degree of coupling being determined.

These number twenty-seven in all. An analysis has been made in the
manner already indicated. The values of « and b have been determined
from the nmumbers showing the combinations of hair and light eyes, and
the values of a+4¢ and b+ similarly from the totals of each colour of hair
when all eyes are grouped together. The four elements of the population
are thus found, and «, b, ¢, « being thus known, the ratio of ad to be may
be ealeulated and the degree of coupling of the eyes and hair known.

In the adjoining table these values are given. The numbers of persons
observed and the probable proportions in which the present population is
derived from the three great races of Europe are given for ecomparison :—

TAELE IV., sHOWING THE UoNSTITUTION oF THE PorvraTioN IN IMFFERENT DISTRICTS
1¥ Scorpasn, witH Dr BEppok's REFERENCE NUMBELS,

s [
—lr—lml—lr—ln—ll—-""t'_'ul—ll—-b-l-—-.—-r--

No. of [Teutonic| Alpine Mediter-| \ jy |\ p [ g | (g /o m x
Persons, | Race. | Race. | p " " | |B | |3 B | |l& | <1
15. Beauly, ete. .| 170 47 a2 21 78 18 | 7 T B8 | <
16. Inverness town R 32 | 4 a6 G5 14 q 12 G2 o
18. L district 400 38 | 38 23 70 B IR 1:0 Fibri <
19. Keith, ete. 5 200 511 40 24 67 1:18 B2 | 1713 9-8 <
20p. Forres . b 210 ar 48 17 74 g H ‘B ¥ 3 <
30. Kirkealdy, ote. 300 44 29 17 7d '] 9 B i3 <
34. Perth : s i) 42 S 22 i 1 i Sl 9-3 <
37. Auchterarder . 180 43 e 24 65 11 & 128 20 | 2
83. Forteviot . i 200 42 35 25 "4 & 1-37 143 83 | 1°
40, Callander, i 150 o [ 26 0| G 4 140 10:8 | =
47. Breadalbane . 195 41 30 29 (i 60 172 B8 =
51. Athel 5 £ 200 80 | 39 22 il 1°1 T 107 95 n
67, Grest Glen , 200 M | & 18 e e b ‘B B4 | 60 | <
72. Ayr. g 2 500 42 | 35 2% 7 e 1-2 B 04 81 2
T4 ?-I&j'h-nle . - 250 1) 41 20 Fil 1 v A3 | 1G-3 =
74. Sanquhar. S 200 36 . | 23 857 | I0W | 1:2E | 176 | TR | =<
76. Upper Galloway 250 LR R 2] 608 117 093 | 0l 5B | =
78. Dumfries . : 200 | 53 42 18 fi 9 9 125 05 4§ | =1
86. Leith, ete. . 200 46 | &7 17 78 it 48 | 102 | 2538 =1
88. Dunbar . £ 150 42 44 14 a6 ! 59 86 | 10:2 | 12
8. Midlothian . 300 54 | 82 14 | 78| 8 | 76| 64 | 82 | <1
80, Newhaven s 176 02 E S 15 a-7 -5 148 | 132 | 10:2 i
100. Dunz . . 230 48 42 10 74 5 | 1'6b 1] 4-1 £ |
108. Jedburgh . . 150 a4 3 | 17 8-8 6 | 127 | 1557 | 1811 | =1
115. Rulewater, ete. . 180 47 58 15 10:1°| & 152 | 12 114 | =1
116, Toviotdala .| 272 | 44 | 4o 16 | 745 7 |1 3 | 88 | <1
117. Langholm o 200 44 | 43 14 7‘33| ‘61 | 124 L 78 | =1

It is seen on inspection that in these twenty-seven cases the degree of
successful fitting when the persons with light eyes are considered is ex-
ceedingly good. In twenty-two cases x* is less than unity as against 106
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expected; but as there must be some correlation between the two sets of
results, the great excess is not unexpected. In two cases y* is between
1 and 2, and in two between 2 and 3. In two of the latter cases
the presence of a single individual would make the fit good, and only one
individual could be expected considering the small numbers observed.
It may be taken, then, that in these twenty-seven districts at the present
moment the conditions for the applications of the theory may be held
to exist.

In the table just given the value of the ratio ad:bc is stated in each
case. For convenience it will in future be noted by the letter B It has
a wide range of variation in value. The lowest value is 41 and the
highest 23:3: but of the twenty-one different values eighteen lie between
T and 11. The mean is 914, and the probable error of this Z="48.
A number, however, such as the ratio at present considered has for each
individual observation a very high probable error. I have been unable to
evaluate the expression for the probable error of R in terms of the frequencies,
and it is difficult to make a reliable estimate of this: but by an application
of the formula given by Mr Udny Yule (6) for the probable error of the same
ratio in the fourfold division, it must be large. The average number of
observations in each case does not much exceed two hundred, and, taking
this value and making a rough estimate, it would seem that the probable
error when R=9is 2. That is to say, that in half the cases R should lie
between 7 and 11. As we have just seen, two-thirds lie in this interval.
When these ratios are considered from the point of view of the median it
is found that the latter lies almost exactly in the same place. As small
values of the ratio are just as likely to arise from emigration as large
values from immigration, it therefore seems probable that the number 9
approximately represents the value of the ratio. The only value which
is possible on the current theory of Mendelism is 7, namely 2°-1. The
ohservations do not favour this value, so that the latter cannot be taken with
reasonable probability.

Leaving Scotland for further verification, it seems best to take only
large numbers. Dr Beddoe gives eight instances in which the ecriteria
demanded in Secotland approximately hold, and in which the numbers
observed are upwards of four hundred. These are collected in Table V.,
p. 469.

The mean value of R in the case of these towns is 94, with a probable
error of 467, so that they show no certain difference from the result
obtained. If anything, they render the wvalue 7 obtained by the
Mendelians less probable, In the absence of other evidence we may take
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it that R=9, and that if it differs much from that, it is in excess rather
than in defect.

As the result of these ealculations it is seen that if we take collectively
all those with light eyes and distribute them according to the colour of the
hair, the number of those with dark hair is always equal to twice the
product of the square roots of the numbers of those possessing light hair

TasLe V., sHOWING THE VALUES oF R 1N sEvERAL Larce Towxs
A¥D IMsTRICTS.

Reference to Number of
Races of Britain. Flace. Observations, R.
. "
Page 162 Manchester 175 9
w 178 St Austell Bl 56
» 180 Truro a0 103
w183 Gloucester a00 10
LT Chippenbam G0 68
w103 Bradford 1400 B4
. 199 Bourges 420 10°8
LT Vienna 1700 108

and black hair. The proportions in which the eyes are divided among the
different types of hair show also that something mathematically equivalent
to coupling takes place with apparent uniformity. This is the Mendelian
law, and the evidence seems to me sufficient to prove that something at
least analogous to segregation takes place. Whether the actual mechanism
is Mendelian or not, it is evident that any other theory which seeks support
must lead to the same numerical relationship.

We now come to the discussion of mixed and dark eyes. Light eves
have been shown to fulfil the necessary conditions for Mendelian inherit-
ance, but the other groups evidently have some different significance. This
is best understood by referring again to Expression (1). or

| bb o] | 2
e :np S0 | oy “| DD
| ﬂ'tl fjh’ nlr.n‘-l!r
2 2ad + 2be i
ac | by ‘ (Eatatelt oeh | 1% oy
« | dd 5nid el 7 dd |
(= e | |
BB “* | BD DD |

which is stable if R=—g§ .
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The ratios of mixed eyes to dark eyes in each class of hair are therefore

2ac 2ad + 2be  2bd

&' T Hed '
or
[/ [
3. a0 a0
ad  ad
cancelling and multiplying by -; :
or

2R, R+1, 2.

This ratio is evidently independent of the relative proportions of the
different elements of the population. If R=9, which is the value it ap-
proximates to in the majority of cases, this ratio becomes 9 :5:1. Nine
districts in Scotland have values of R approximating to 9; they range from
82 to 99. The relative proportions of mixed and of dark eyes are given
in the following table :—

TaBLE V]I —PERcENTAGE MIXED AND Dark EYES ASSOCIATED WITH
EacH Crass or Hain,

|
Light Hair. Dark Hair. Black Hair.
Eyes. ——— = :

Mi.x'ed.i Dark. | Mixed. | Dark. | Mixed. ‘ Dark.
- =
Selected distriets . : R 687 T3 115 | "4 314
All districts . : : | 69 ‘ 63 | B3 12'6 | 256

|

It is a matter of observation that many mixed eyes are classed as dark,
and it seems reasonable to suppose that a fixed proportion are so classed ;
but the figures given by the selected districts cannot be adapted to the
ratios given above by transferring the same proportion from each group of
mixed eyes to the corresponding group of dark eyes which we have shown
takes place. The numbers, however, in the last group, that of black hair,
are small, and the error of the ratio, which is approximately 1 in 4,
may be large.

The second group of ratios—i.e. that for the whole twenty-seven groups—
is more nearly in accord with the supposition that a fixed proportion of the
mixed eyes arve called dark; but it would seem probable that with each
change of the constitution of the gamete as regards hair colour a mixed
eye tends to assume a darker hue to the casual observer, though it may
well be that this is due as much to the colour of the eyelashes as of the
eye itself. In fact, the difference to be explained is not so great but that
it might be accounted for on this supposition.
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One other point requires to be considered. In this paper fair-haired
and medium-haired persons have been classed together, and the question
arises as to the effect this may have on the relative proportions of mixed
and dark eyes, as it might well be that a mixed grey and chocolate eye and
a mixed blue and chocolate eye would impress an observer differently.
Personal observation renders it probable that the latter is more often
classed as dark, and the figures bear out this observation. The proportions
are shown in the accompanying table

TasLe VII.
| Ratio of Light Hair. Dark Hair, Black Hair.
Fairto |- = | ' Batio.-|T = | Batio: | ¢ | Ratio.
Medium Alix : | 3ixas : Mixed "
Haitt Mixed | Dark . Mixed | Dark 1 Iﬂl."-:t.*{ Dar
Eyes. | Eyes | Eyes. | Eyes. Eyes, | Eyes
|
=12 58 il 1-13 i 115 47 -5 260 27
>1<l2 6D 65 | 106 56 112 50 84 Lt O
=1 62 fi-8 | 01 57 112 =50 T4 291 L

It is to be noted that the ratio of mixed to dark eyes tends in the
groups of light hair and black hair to decrease with the decrease of light
hair and to remain constant in the group of dark hair. From such facts
no certain inferences can be drawn, but the suggestion is that a mixed blue
and chocolate eye is somewhat darker on the average than a mixed grey
and chocolate eye.

CONCLUSIONS.

(1) Many of Dr Beddoe’s populations are stable in a Mendelian sense.
Though this does not necessarily imply that the theory as stated by Mendel
is the only explanation of the arithmetical proportions found, any other
theory claiming to explain the facts of heredity must also explain these
relative proportions.

(2) That linkage between hair colour and eye colour exists. The
coupling factor is more likely to be 9 than 7, and therefore does not agree
with the present Mendelian theory. It is quite possibly to be explained
on the analogy of chemical equilibrinm.

(3) That it is possible that the colour of the hair has, in addition to this,
some other effect in altering the colour of the eyes; but the evidence is not
sufficient to prove this, and it may be only due to the fact that dark eye-
lashes tend to lend a darker appearance to eyes than would be found
justified on a more careful examination.
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(4) A further result of the analysis made in this paper is that Dr
Beddoe’s figures give no suggestion of the presence of any race in this
country which had different hair and eye relationships from those pertain-
ing to the three races generally considered to form the basis of the
European population. This, of eourse, does not exclude the possibility of
an older race surviving in sufficient numbers to form a considerable part of
the British population; but, so far as the survey is valid, this race must
have had a hair and eye complex closely allied to one or other of the hair
and eye complexes considered in this paper.

APPENDIX,

Ox THE Carecories oF Eve Corour, wira o Recorp or Oxe OBSERVATION,

Eye colour is the subject of much controversy. I am personally of the opinion that
all categories that have been described are very imperfect. In the first place, apart
from actual colour, the pigment of the posterior layer of the iris may be seen at
times with more or less prominence along the inner and outer edges of the iris, often
causing the eye to appear darker than the colour alone would permit.

Again, mixed eyes are of two kinds—those in which the pigment is (1) diffuse and
(2) discrete, that is, in spots ; but as far as my observations go, I have never seen pig-
ment in the eyes of children which was not present in the eyes of one or other of the
parents. In mixed eyes the pigment tends to collect more markedly near the inner
edge of the iris, so that in a mixed chocolate and grey eye we may have both the
chocolate and the grey pigment in the inner part, and the outer edge simulating a
blue eye.

Of actual types of pure as distinet from mixed eyes I recognise four :(—

(1) The pure blue eye, in which there is no pigment in the iris, such grey
as appears being due to strands of connective tissue.

(2) The grey or pale yellow, in which there is always visible pigment present
in little masses, quite distinet from definite strands of connective tissue.

(3) The deep yellow eye, a more or less rare form, not much exceading 1 per
cent. of the adult population as seen in Glasgow.

(4) The dark-brown or chocolate eye, of which the shades vary, but in all of
which the iris is sensibly the same colour from the inner margin to the
outer.

All these types of eyes may be found mixed, and as regards eyes the population
may be taken as given by

m*(a, a)+n(b, b) + p*(e, &) + ¢*(d, d) + 2mn(a, b) + 2mp(a, ¢)
+ 2mg(a, d)2np(b, )+ Zng(l, d) + 2pgle, d).
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Now, some of these types are very difficult to distinguish, especially in children.
Of the varieties which are very difficult to distinguish are: (1) the mixture of yellow
and grey from the mixture of chocolate and grey, a small amount of chocolate pig-
ment being not unlike yellow ; and (2) the mixture of chocolate and grey from the
mixture of chocolate and blue, the connective tissue of the latter simulating grey
pigment when asked by a veil of chocolate pigment.

Last summer I examined a school of nearly one hundred children in Skye, a
school where the population may be considered free-mating and uncontaminated by
immigration. As each child was shown to me I stated to an amanuensis my decision
concerning the eye colour, and the numbers are as follows :—

Class 1. Pure blue . . . ; : 12
, 2. Puregrey . - : : T

. 4. Dark yellow 1
» 4. Chocolate 4
»» 9. Mixed blue and grey . : : 5 3

,» 6. Blue and yellow . : : : g
ww 7. Blue and chocolate : : : T |
8. Grey and yellow . : : . w18

» 9. Grey and chocolate : : : . 1B
. 10. Yellow and chocolate : . i 3

The difficulties above mentioned show themselves at once; but if classes 3, 4
and 10 be combined, and if classes 6, 7, 8, and 9 be also combined, we have the
following figures :—

Actual | Theoretical # |

Figures. | Proportions. |
P — - diee e o ] [ -
Pure blue . : ; : 12 12:39
Mixed grey and blue . | 23 21:54 |
Pure grey . - - , 9 936
Mixed blue or grey and 39 ' 3895

chocolate or yellow o

Chocolate and yellow . . 8 876

. Pure and mixed . 4 . | a1 Q1+
|

These results are too close to be wholly chance, but as it is a solitary instance
they are advanced with diffidence. They are, however, in complete accordance with
those given in the preceding notes on * Inheritance of Hair and Eye Colour.”

* Fitted by the method of least squares.
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The Theory of Probable Error and its Application to Vital Statistics,
by Jonx Browxreg, M.D., D.Sc,, Physician Superintendent, City
of Glasgow Fever Hospital, Ruchill.

NJITH the increase of the use of statistics in public health it is
LY becoming inereasingly important that an aceurate knowledge of
the processes by which results are arrived at should be in the hands of all
working with figures. The theory of error was originally developed in
connection with games of chance, further (]t:".'i:h]l‘]ud to suit the ]'t*qllfl‘L-v
ments of astronomy, and contemporaneously applied from a different point
of view to the construction of life tables. In recent years these two
applications have converged, till it is now possible to apply many results
deduced from the theory of chance to the discussion of problems which
could formerly only be attacked by the method of finite differences.

2. Modern mathematical analysis has developed very specially three
branches. It has greatly extended the application of the method of curve-
fitting to smooth observations. It has brought into use a large number of
methods for calenlating the correlation between different qualities, It
has also concerned itself largely with the discussion of probable error. It
is this last branch I intend to treat chiefly to-day.

8. This subject falls naturally into four divisions :

I. The error due to random selection ;
II. The assumptions on which the mathematical proofs are
based and the modifications required ;
III. The influence of experimental error; and
IV. The method of testing how far theory and observation
agree.
L.

4. The subject of probable error due to random sampling is as a rule
dismissed in public health text books with a simple statement of Poisson’s
Formula, or with a treatment which almost wholly neglects the limitations
of its application. The actual mathematics, however, required for its under-
standing is not very advanced. The general theorem which is of most
importance can be found proved in any elementary text book of Algebra,
and is as follows. If p be the chance of an event happening and 4
that of it failing to happen so that (p 4 ¢)=1, that is, either the event
happens or it fails, then in n trials the chance of its happening (n — m)
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times and failing m times is given by the (m+41)® term of the binomial
expansion

: of (p+ )"
or of p* + np™lg +ﬂ{’;—;} el e "{71_1_1;.;"_2]}*“‘3 g% e
A o
thﬂ-t iE h{?“ } 1 a} {?:u i + 1}‘pll—ll‘l I|;I!Illll.

If p = ¢ this expression is symmetrical, and the chanees of the event
happening m times is the same as that of it failing m times, the formula
in this case becomng
+3)r

It is to be noted that as p 4 ¢ is equal to unity (p + ¢)* is also equal to
unity, and that if we have M cases the distribution is given by M(p + ¢)"

5. Many distributions are described very approximately by one or
other of these formule. Thus stature, head breadth, head length,
cephalic Index, etc., are very closely represented by

G+

while such cases as the number of persons suffering from enteric fever
at each age period, ete, are described by the formula (p 4 4)" But
these distributions are not as a rule used in the forms above given.
Certain curves which can be calculated much more simply have been
found to represent these formule very closely.

Thus (3 + )" is represented

x=
= u
by v = y,e , commonly ecalled the ¢ Normal Curve

of Error,”
and (p + g)" by y = vz Pe ™" known to statisticians as Type I1L.

6. The method in which the form (4 4 })* arises is of special interest.
It is commonly derived from the analogy of coin tossing.  Only heads or
tails can occur, and the chance of either is equal. Thus, if we toss a
single coin a large number of times, in the end approximately equal
proportions of heads and tails will ensue. If we toss two coins together a
Jarge number of times, two heads or two tails will each occur once, and a
head and a tail twice, approximately, out of every four times the coins are
spun. If » coins be spun the chance of each combination of heads and
tails is given by the terms of the binomial expression

&+
It is to be noted here that the chances are quite independent of each
other, as a head or a tail is equally probable at each separate experiment.
If a head in execess denote a positive error, and a tail a negative, we find
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that not only are the errors independent, but positive and negative errors
of like size occur with equal frequency. But there is no necessity in
nature for the odds to be equal on both sides. If we take a six-sided
die, for instance, six can only be thrown once on the average for five
times the other numbers are thrown. If we take n dice, then the
proportion in which the sixes will turn up are given by the terms of the
expression

(& + &)
n sixes turning up only once in 6 times,

7. Certain quantities are specially important. The mean of the obser-
vations is one of these, this being regularly used in all statistical work for
purposes of comparison. The next most important is the standard devia-
tion, which is the square root of the second moment taken round a vertical
line through the mean, and which is equivalent in dynamics to the radiuos
of gyration.

The mean may be defined as the average value of the quantitics con-
sidered. It is obtained by multiplying the size of each unit by the
number of times it occurs, taking the sum of all such values and dividing
this sum by the total number of units considered. Thus, if the size a
oceurs m times, and the size &, n times, the mean is given by

ma 4 nb

n == "
If more sizes exist, and the sum be denoted by = as usual, then the mean
is given b 2 ma
& y E-m -

8. In the case of (p 4 ¢)" the mean can readily be found. Suppose
the expression expanded as before, and suppose that the frequency value p*
corresponds to the value of the size &, and p" 14 to the value (& + a), ete.,
where @ is the increase of value in passing from one term to the next,
then we have at once, as mrrcapﬂnding tu the expression Zimna,

o gl +a) + 20D 2 g2 (g 20) + ..
which equals
Pl npr ‘f;*’a+"{”‘ Dp2grng . ...

+ nap®lg + n(n—1)ap™2¢? + ““"11};"'"‘” POy e

=Mp+qg" + naq(p + q)"!
; Mp+ g+ nag(p+4 g
. Mean =
ean R
=h+nag since (p4q) =




4 Theory of Probable Error, uls Application fo Vital Statistics.

The mean may obviously be caleulated as a distance from any origin;
it is nsnal, however, in practice, to calculate it from some point in the
middle of the series of observations, as will be presently shown.

9. In a similar way the second moment is caleulated. This is usually
denoted by p,.  In this case we multiply the terms by A2, (h 4 a)2, . ...

instead of by b, h 4. . ... This gives for the separate terms
nn—1)
pol(p + q)" = prh2 + np*lg(h 4 a)2 + 139 PP iglh 4+ 2a)2 + . ...
= 2(p + 9"

+ 2ahng(p + g)*?
+ anyg {p“‘l + (n—1)2p"2g E_-l?lf;_ﬂl 3pr g+ ..

As the last expression is equal to

a®ng (p + ¢)*!
+ a®n(n—1)¢%(p + q)"°
po = h?* + 2aln g + a®ng + aZn(n—1)g2
This is the second moment taken about a vertical line at distance h +nag
from the centre of gravity.

10. Supposing now that the origin is at the centre of gravity instead
of the position formerly assumed, it follows that & 4 nag = 0. If we
substitute then & = —mnag in the formula for the second moment, we
have as the value of that moment round a vertical line through the

centre of gravity or the mean
- A2 4+ 2akng 4+ a?ng + a®n2¢? — a2nq* when k= —ang
= ang —a?ng?
= a®ng(l—q)
= a‘npg

The standard deviation, usnally denoted by o, is equal to the square root -

of this, and is therefore ay/ npg, or v/ npg if a be taken as unity, as is
usnally dome. In general to caleulate the second moment round the
ordinate through the centre of gravity, which for shortness is called
“centroid verticle,” the distance of the mean from some suitable origin
and the second moment round the same origin are caleulated. If these
are denoted by », and v, respectively, then o2 = v, — v, 2, which is
easily seen to be the case by a modification of the proof given above,
for if the last formula hold
o2 = h2? 4 2ahng + a?nq? + a?n(n—1)g2 — (k + ang)?
= a®ng(l—yg)
= a®npq, as already found.
11. As an example, take the number of deaths in each series of

S

i ——
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one hundred cases of scarlet fever. Here out

deaths l'mlgud from 0 to 6, as seen below.

No. of Deaths. No. of Instances. Multipliers.
0 1 —3 —3
1 t —2 —12
2 b —1 —06
3 9 0 —21
4 4 1 4
b 3 2 fi
(i 1 5 d
30 13
—21
—3

9
24

(i)

=
12
9
2o
49

G4

a

of thirty instances the

The origin has been taken at 3 deaths and the abscisse measured
positively and negatively from this point.
and second moments are then found and added together, having regard

to sign. So that we have

The '|:|'ﬂ[|ll{'.|!-1 for the first

8
T Y
- 6
25 30
1 ; 4 8 \2
So that «2 = T (-‘iu)
= 2062
or ¢ = 1436
Since v, = —g, the mean number of deaths in each hundred cases
3

is equal to 3 — 55 = 2:73, since 3 deaths has been chosen as the point

of origin. This is in general much the simplest way of calculating

the mean and the standard deviation.

12. The significance of the standard deviation can be best seen
when two normal curves of equal area are compared.

The equation of the first is

. S
e
and of the second,
"*p —.'I'E
o

N
y =2;”2#E

This is shown

in the diagram. Both these curves relate to the same number of cases, N
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The standard deviation of the first is unity, and of the second two.
It is seen at once that a much greater variation of values takes place in
the second than in the first, or that a very much smaller proportion of
cases having the mean properties is found. In other words, the larger the
standard deviation the less likely it is that the mean value obtained from
the observations represents a large proportion of the values,

~

f—— — — —— —

Diagram illustrating the meaning of probable error. The two curves
ghown have the same area, but the standard deviation of the lower is twice
that of the upper. The continuous vertical lines divide the upper curve
into parts so that the centre area is equal to the sum of the two external
portions, and the chain lines do the same for the flatter curve, showing
that the greater the standard deviation the greater the probable error.

13. The definition of the term “probable error™ can now be given,
It has been determined by this use of the “normal” curve to describe the
variations due to error in observation. If we divide the area of the curve
into three portions, viz., one limited by two ordinates each equidistant from
the middle line, and two portions external to these ordinates; so that the
area of the central portion is equal to twice the area of either of the
external portions, it can be ealeulated that the distance of the ordinates
from the middle line is 67449 o. This is termed the probable error, and
it signifies that the chances of an observation falling into the central portion
or into one or other of the external portions are equal.

14, When the curve is asymmetrical, that is, when it is derived from
(p + q)%, where p is not equal to ¢, the standard deviation still has a
significance as indicating the degree of * scatter,” but it can no lonzer be
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used to measure the deviation on both sides of the mean. The mode or
most probable valoe is now no longer coincident with the mean, but lies
more or less to one side of it.

15. The probable error has in itself little practical use, since no infer-
ence can be drawn where the odds are equal. The common rule is to take
three times the probable error as indicating the point at which a conclusion
may be taken as fairly probable, but it is better to avoid using the term
“ probable error” and consider only the standard deviation, which, as twice
the standard deviation is almost exactly equal to three times the probable
error, oceasions no change of argument, and only a small change of
nomenclature. In this connection the standard deviation may well be
called the "‘.st:i,ndar:l error,” as is done ]Jj..' Mz, Yule. Inthe Elﬂ_‘i_‘rrlnpan}'h'lg
table (Table I.) are shown the chances of the observation lying within the
area of the curve limited by distances from the mid-line + 5o, +o, +1+j0,
ete., and the approximate values of the chance of failure in fractions. 1f
the standard deviation itself is nsed the odds are two to one in favour of
the actual figures lying within the area bounded by y = +a; if twice the
standard deviation be taken, the usual limit, these rise to 21 to 1, while
if three times the standard deviation be used they rise to 369 to 1. Even
in the latter instance, however, the odds must not be considered over-
whelming.

TasLe L—Showing the Chances that the Actual Observation lies within

y = & no.
i Chancea of susecss, A'FPI:?:L‘:;':::]“M“
ki 3829 i
10 il P 1
15 “REGE 3
20 & N o'y
2:5 OET6 &h
30 “0u53 Ll

16. Before making application of what has heen said, it will be well to
observe more particularly what happens when samples of a population are
drawn: (1) theoretically, and (2) in actual instances.

The theory of chance gives us two formule. If we draw M samples
of, say, » individuals from the very large population, the proportion p of which
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of the hospital register have been kept separate from the odd numbers.
It is thus possible to compare the mortalities of groups of cases admitted
at the same time and selected from each other only after an interval of
years by a method as absolutely fair as seems possible.

18. Take as a first instance the drawing of samples of 30 from a
general population which is divided into two portions in the proportions
of 18 to 82. The result of .M trials is given by the terms of the expansion

82 1830
‘”(luu 5 m)
BE)M (82149 18 5(}'451’ﬂ2)4"(18“~’
2L {(IGE +“”(ma) 100 T 12 \Tou 0] s

This expansion includes the case of the groups of enteric fever where
the mortality has been on the average 18 per cent. Thirty-eight groups
of fifties occur. The numbers of these groups with each definite number

TasLE IIL.—Showing the Actual Number of Groups of 50 Cases of Enteric
Fever (Beividere and Ruchill Hospitals) which eontain a Definite
Number of Deaths compared with Expectation.

= — — —

Number of Deabe, | NUME G Sioupe v | Nemberof By Expeted
0 = "—
1 < =
2 = 1
3 -~ -4
4 1 10
I 4 2.1
G I 3.5
7 3 45
8 4 54
] 3 5

10 9 50
11 2 40
12 1 2.8
13 i 18
14 3 10
15 2 5
14 = G
17 = 12
5 1 2
i
20 1 g 01
21 | = 00

of deaths are given in the adjoining table and compared with the
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TaBLE VI.—S8carlet Fever, Belvidere Hospital.

| Difference Squared
Number of Doathe, Theoretical. Actual Dilereacs. o lli}'iﬂrﬂi; :::;Lm
| e Orel feal O G TH,
| AT =
0 104 10 4 l 00
1 234 25 16 . ‘11
2 258 23 a8 Ir =30
3 187 22 33 59
4 08 9 2 | 07
g 4+0 2 20 | 1400
13 ; = 1] . ; !
7 af LT 2 )8 L3 100
938 RO L ! 307
|

These fizures show a very fair correspondence between fact and theory,
Possibly the fit might be better or might be worse with larger numbers,
for in the figures as given there is a correlation between high numbers of
deaths or low numbers of deaths in the corresponding fifties or hundreds
to be expected as the fevers vary somewhat in severity from period to
period, but the numbers are not sufficient to determine the amount
definitely.

2(). We are now in a position to explain the proof of the chief theorem
in probable error as applied to vital statistics. The problem is: if we have
a population of N individuals consisting of & groups y,, ¥, . - - ¥, to find
the standard deviation of the group y,. The chance of one individual being

drawn from this group is evidently y'{.. and likewise the chance of his not
being drawn is 1 —% If then m individuals have been selected by

chance the proportional distributions will be represented, as has been seen

before, by the terms of the expansion of %HT" + ( I %’J} the standard

deviation of which is '\/311%‘;(1 _.fi’:} Now we do not know the
i

ratio of y, to N. All that is known is the ratio which the samples of
these quantities bear to each other. We may, however, assume, subject to
subsequent investigation, that these ratios are for practical purposes
identical, keeping in mind that this at present is only an assumption. If
then y', denotes the actual number of y, found, we have the standard devi-
ation of the error of y, since the total number of observations is m, repre-
sented by '\/m 'U-!'-'-(I - i"r—“r) or sup[:rrussing the accents by '\/M

it e m
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21. To make clearer the meaning of the formula just found it is applied
to the example given before (par. 19) regarding the actual groups found
of 4,700 cases of scarlet fever. The mean death-rate and the standard
deviation of these, calculated as in the example (par. 11) are found to be
M = 2:16 and ¢ = 1'475. With the formula just given

o= A216 (50—2-15)
a0
= 1437

It must be noted that the grouping is quite asymmetrie, nearly twice as
many cases oceurring on the one side of the mean as on the other, so that
a smaller value of the death-rate than that given by the mean is twice as
probable as one that is larger. A second application is made to deaths in
each series of 100 cases of scarlet fever seen in Ruchill Hospital. Here,
as we have already seen (par. 11) ¢ = 1-436, the average number of
deaths per hundred is 2'73, so that we have by the formula of standard
error

_ ,273 (100 —2-73)
o= 100

Il

y/ 2°658
or in this case the actual range found is considerably less than that
expected theoretically.

22. The method in which the standard error varies can best be ohserved
by considering actual figures. Inthe two next tables (Tables VIL-VIIL)
two sets of values of the standard error are given. The first values given are
the absolute values. Thus, if from the column showing the number of
cases 5,000 is chosen, the corresponding value of the standard error when
the death-rate is 5 per cent. is seen to be 15-411; a 5 per cent. mortality
in 5,000 cases means 250 deaths. Twice the standard error is 30°8, so

Tasre VIL—Shkowing the Value of the Standard Error of the Number of
Deaths for Different Fercentage Deuth-Rates when the Number

of Cases Increases.

| Fecenage Morialiny.

Nao, of
Cazes.

1pe 2 pe 3 pue. | 4 e, & pe, 10 poo. l 0pe | Z0pe | 40pe | &0 pe.

100 005 | 1400 | 1506| 19600 2-179| 3-000| 4000 40583 4808 5000
500 | 2225 | 3131 | 38l5| 4382 4874 G6FUB| B944| 10:247 | 11045 | 11-180
1,000 | 3146 | 4427 | 6-394| 6197 6892 D487 12649 | 14491 | 15492 | 15811
6,000 | T-056 | 9900 | 120683 | 13586 | 15411 | 21-331 | 28384 | 32-404 | 34641 | 35350
10000 | 995 1400 | 1706 | 1960 | 2179 | 30000 40-000| 4583 | 4899 | 5000
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TaBLE VIII.—Showing the Value of the Standard Ervor of the Percentage
Death-Rate when the Nwnber of Cases Increases.

SE———— —

Percentage Moriality,
No. of

Cuses, T I | o R e o I LA T B
| 1pe. 2 p.a I i poe. | dpe. 5 p.e. 10 pe, | 20 e M pe. | 40 pe. | 50 pe.
100 | 085 | 1400 | 1706 | 1-960 @ 2-179 ] 3000 | 4000 | 4583 | 4899 | 5000
500 345 626 Thad "B72 975 | 1341 | 1988 | 2050 | 2-200 | 2-298
1.000 =316 443 Had G20 GR0 0489 | 1265 | 1449 | 1549 | 1-581
5.000 121 1ys | -241 271 304 426 | -DGG G458 i) wilsy
10,000 100 140 | ‘171 196 | -218 300 [ -400 |58 =490 =500

|

that the odds are 21 to 1 that the real number of deaths lies between 220
and 281. The fizure in the same place in the second table is -308. This is
the standard error of the percentage death-rate, or the odds are again
21 to 1 that the true percentage death-rate lies between 4-352 and 5616
if the death-rate is based on 5,000 cases.

23. Several facts are easily seen in considering these tables. First
the standard error increases with the inereasing percentage mortality,
rising from -995 in the first row when the percentace is unity, to 5000
when the percentage is 50; but relatively to the percentage itself it
steadily decreases. Twice the standard error when the percentage is 3
gives values 3 + 3+4 for the limits, which will be exceeded once in every
22 times, while the same limits when the percentage is 40 are 40 + 9-798,
The first instance tells us little; while the last sugeests that a severe
mortality must be the rule,

24, It is also to be noted that very large numbers give little more
certainty than more moderate numbers. Considering the last two rows in
Table VIII., it is seen that the standard error is only reduced by about
15 per cent. when the mortality is 1 per cent., and about 29 per cent.
when the mortality is 50 per cent. as the numbers inerease from 5,000 to
10,000.

TasLe IX.—Showing the Number of Deaths in each Series of 200 or 400

Cases.

Searlel Faver,® Searlet Foever,® Enteric Faver Diphtheriaf
Balvidero. Ttuchill. Balvidera and Ruchill, Buehill,
Even.  Ohld. Even. Odd. Even. Odd. Even., OJdd,

15" 7 1211 43 30 i 13 16
21 24 12 16 410 a3 | 21 13
19 23 10 4 a8 27 20 22
15 18 11% Gt S i) |
9 17 ‘

* Each (igure is the deaths in 400 casos,

t Each fizare is the deaths in 700 canes,
1 Euch fgure is the deaths in 300 cases.



14 Theory of Probable Error, its Application {o Vitdl Statistics,

25. One more table is given to show how the death-rate may actually
vary in fairly large numbers. In each instance 400 or 200 cases are
compared with 400 or 200 parallel cases, the first the even number in the
registers and the second the odd ; the differences are surprising. 200, in
the case of enteric fever or of diphtheria, is a large number; 400, in the
instance of scarlet fever, not a small number, yet had any treatment been
the subject of investigation and the alternate cases taken, the one for
treatment and the other for control, very erroneous conclusions could
easily have been advanced.

26. One more formula may be given without discussion. It is the
standard error of the mean. The proof invelves principles not diseussed
in this paper, but the result can easily be understood. If 4 be the mean
of the number of observations and o the standard deviation of these

observations, A and o being calculated as described in par. 11, then the
a

standard error of the mean = = when m 15 the total number of
|

observations.
This signifies that if we are comparing the means of two series of ob-
servations, no conclusion can be deemed even moderately definite unless

; 2
the differences between the two means is greater than S

T
IL.

In the proof of the standard error given in par. 20 an assumption was
made, namely, that the proportions of the sample which had been found by
random selection might be considered as equivalent to those existing in the
general population. Now in this case all the information in our possession
can be stated mathematically by saying that an event has happened m
times, and failed » times. From this the probable constitution of the
universe must be deduced. This problem was first considered by Bayes,
and the solution is known as Bayes' Theorem. The proof is difficult, but
the formula is easily understood. If m deaths and n recoveries have taken
place, the different populations from which these may have been drawn

have the relative probabilities given by the areas of the successive strips
of the curve.
- o — pm (1__.;}:1
or if the total chance be denoted by unity, the chance of each type of
population existing
o N i (1—a)*dex

fl;um{l—.r}“ de
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For practical purposes the ordinates at any points roughly give the
relative probabilities. Thus, if 3 represent the number of deaths found in
100 cases, and 97 the number of recoveries, the probabilities that the
general population possesses I per cent., 2 per cent., per cent. death-rates,
ete., are given by substituting these values for m, » and & respectively in
the above formula, and are :—

(-01)8  (1—-01)27
(02)8 (1—-02)97
(03)2 (1—-03)97, ete.

The figures are given in the adjoining table (Table X). For com-
parison the values obtained by the same formula where m=30 and »=970
(figures which express the same death-rate in a larger number of cases)
are arranged in a parallel column :—

TasLe X.—Showing the Chances of FEach Constitution of the Population
when the Sample Contains (1) 3 of one kind (a) to 97 of the vther (b)
and (2) 30 of (a) to 970 of (b).

1
i [#h] (0]
E;;D{?Eﬁ?u?{i{?;? Relative size of | Helatlve s1ze of
the Sll.l.lpll:. Urdinatas of | ODidipmias of
|
|

¥l =11 FR{f—=x) 270

T 0

37T D00
(83

11:28 da342

=

0

1

1

2

2 -- 18-548

3 1406 J0-235

35 - 20711

4 12 37 185

40 -— S 130

a 863 223

G 580 ‘oz

7 301 ==

8 1-62 =

) 8 -
10 31 iy
11 ‘16 —
12 U7 —

It is seen, in the first instance, that a population constituted so as to
possess a four per cent. mortality is about equally as probable as one
eonstituted to possess a three per cent. mortality, and that a two per cent.
mortality is only a little less probable. It is also evident that populations
with mortalities of five and six per cent. will occur once in every seven
and twelve times respectively. Little can therefore be surmised concern-
ing the constitution of the population from information based on one
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Lundred observations. When one thousand cases, however, are considered,
the range is much less, as is seen in the table. The probability rises to
nearly Zrds, but even here a population with a four per cent. constitution
will occur more than once for every three times the sample represents the
population accurately.

This problem is distinetly different from that considered in the previous
pages. It seeks to find the constitution of the general population from the
sample, that previously considered to find the probable constitution of the
sample when the type of the population is known. The standard deviations
are therefore different. In the present instance

g _(m+1) (n+1) (n+n)*
(m—n+3) (m—+n-42)2
which is larger than the corresponding value of the standard error of a
sample, most markedly so when m and n are small, but very closely
approximating when the values are greater. Thus, for m=3 n=47 the
values of the two standard errors are 1-91 and 1:71 respectively, while
for m=30 n="970 the corresponding figures are 5-46 and 5-39.

With 100 cases the limits given by twice the standard error are 3 +
3-8, with 1,000 cases 30 + 1092, giving a range of percentage 0 to 68 in
the former case and 19 to 4-1 in the latter, Such are the limitations of
the assumption on which the proof given in par. 20 depends.

The two theorems may, however, be combined. The proof is given by
Prof. Pearson in the Philosophical Muagazine, Mar., 1907 : the results only
concern us here.

If m and n are the numbers of each kind found in the sample, and
if the next sample number g, then the standard deviation with samples
of number g is given by
—q (m41) (n41) (m4n+q+2)

(m4u+42)2 (m+n+ d}

If g =m + n, ie, if the standard deviation of m or n in samples
numbering m +n is desired, then

o ﬂf:u—l—n]l fm41) (nd1) (m4-n41)
[m-j—u-—|—ﬂ}3 (m=n—+3)

J't—'—!t

similar to Poisson’s is arrived at, thongh the two are not really comparable,
as they have been obtained on quite different premises.
If ¢ be unequal to m4-n, but both numbers large, the formula becomes
o TN 1}
i (m+n)® Ln +u+fﬂ

which i or a formula
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This shows that if m-n be small compared with ¢, the standard
deviation does not become smaller with the increase of g, or we cannot
predict a large from a small sample, but only the opposite, the latter
reason explaining why the standard deviations obtained experimentally mn
the earlier part of this paper (par. 21) are in so close accord with the
ordinary theory.

The formula: in this section, however, are those which should be used
to check the validity of conclusions drawn from figures.

An example will make this easier to understand. Let the first series
of eases be 100, namely, 40 of one elass and 60 of the other, and let it be
desired to find the standard error in a second series of 1,000 cases.

Here m =40, n = 60, ¢ = 1,000
__ 10002 x 40 x 60 { 1 1

f it o = 1002 “100 T OL000 |
2,640
or o al4

In 1,000 cases 400 cases are to be expected if the proportions of the
first sample are preserved so that 400 + 51'4 X 2 are the limits, as before
deseribed.  Were there 1,000 cases in the first sample with 600 of one
type and 400 of the other the standard error would be given by

1,000° x 400 x 600 ¢ 1 , 1 »
Tooe {1,000 T 1,000 §

1l

i
480
21:9
or the standard error is less than one-half of that in the previous instance.

Apart from tables these formule are of difficult application, as the
distributions are so markedly skew or asymmetrical, the variation in one
direction being much greater than in the other, and the mean not giving
the most probable value. Actual caleulation in individual cases is very
laborious.

11

or o

ITI.

The errors due to random selection of the population have been fully
discussed, but there is yet one other type of error which is not usually given
sufficient weight in actual statistical work, that is, the error due to imper-
fection of technique. This appears in a variety of ways, in the case of the
astronomer in the slight difference between one observation and another,
in the case of the marksman in the number of inners or outers he makes
in comparison with the number of bulls eyes. All human measurements
are liable to a certain amount of error variable in different individuals, but



18  Theory of Probable Error, its Application lo Vital Stafistics.

in the end more or less describable in each separate individual by some
definite law.

Public health statistics seem at first sight comparatively free from
such errors.  We have a certain number of deaths and each of these repre-
sents a fact. But even weekly death-rates are far from certain apart
altogether from the random selection of deaths in each week., As five days
are allowed for the certification of a death, a few wet days at the end of a
week may throw many certifications from one week into the next. Even
such a comparatively simple matter as the number of deaths from a disease
has a larce experimental error. Out of the 2,960 cases of scarlet fever
which were treated in Ruchill Hospital as before described, 82 deaths oc-
curred. Of these, 5 could not definitely be ascribed to the fever, ocenrring
associated with conditions which themselves were not likely to be fatal, but
which the double disease made specially dangerous. This is a fair number
as the standard error of 82 deaths in 2,960 cases is 8'Y, so that the
experimental error is more than half of this. On such large numbers,
however, it may be neglected. In the groups each of 200 cases, however,
it appears in the following manner and might easily lead to false reasoning.

Total Deaihs, Experimental Error,
5 1
11 1
4 1
3 1
6 1

I feel convineed that this is an under and not an over estimate,

In some examples which have been before me lately in another branch
of science, the experimental error is for each separate observation very
large, and this case is worth considering. If we have a limited number
of observations, each of which we know is open to a large experimental
error, we may consider the matter in this way. Let the observations have
values @, &, &g .. . &y let the mean be A

So that &k = i (@), +ao +x54 000 a )
let the standard deviation of each term be o, and let it be required to know
the standard deviation of f.

This is found to be

r

T the same result as that given in par. 26:
i

a, however, is not the * standard error” due to random sampling, but the
¢ standard error” of the experimental error, the result being derived by a
different process of reasoning. It is easily seen that a difference exists, for

P i
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if we have two groups of gquantities with the same disposition in statistical
series, one which can be measured exactly and the other only inexactly, the
error of the mean from random sampling will be the same in both cases,
but the experimmental error will greatly differ. This part of the subject
[ intend to develop more fully later when I am in possession of the
requisite public health data.

IV.

The theorem of this section is due to Prof. Pearson and furnishes a very
useful criterion as to whether groups of statistics really fulfil certain con-
ditions with reasonable probability. The proof of the theorem is very
difficult and need not even be ontlined, but the application, given a table
of the function, is very easy. The method of calenlation is as follows : —
If there be an actual distribution and a theoretical distribution, the differ-
ence of the values actual and theoretical of each term iz to be taken,
squared and divided by the corresponding theoretical value. These values
are then summed. This sum i1s denoted h_‘}‘ x®. A table of the function
15 then consulted. In this the value of P is tabulated according to the
values of x* and of » the number of terms compared, P being the proba-
bility that in a certain number of trials a worse fit than the theoretical
values will be found. In paragraph 19 two examples have been given,
In Table V. we find that x*=2-64. The number of terms compared is
seven. We then consult the table and find x*=2 gives P="920 and »?
=3, P="800 whence x*=2-G4 gives approximately I’=-849, or in 849 ran-
dom trials out of one thonsand a worse fit between theorv and observation
would occur. In the second sample x*=3:07. Hence the value of P="3
approximately, or in 8 trials out of 10 a worse result wounld be found.
In other words, theory and observation are in good correspondence.

A third example is taken from one of my old hospital reports, 1903-4.
The question to be ascertained was if there was any special day or series
of days on which children sickened from secarlet fever. The days of the
week on which Y07 children at school ages sickened during the months of
August and September, 1901-1904 were tabulated. These months were
chosen as being the epidemic months, and also the months immediately
after the holidays, when many susceptible children go to the school for
the first time. If there be any special evidence of school infection, it
should be seen in a variation in the numbers sickening on different days,
as the schools do not meet on either Saturday or Sunday. The figures are
given in the adjoining table in which also the application of the method
is shown. The theoretical value to be tested here is obviously the mean
number of all the cases namely 1 x 907 or 1296,






