The mathematical theory of random migration and epidemic distribution /
by John Brownlee.

Contributors

Brownleeg, John, 1868-1927.
Royal Society of Edinburgh.
University of Glasgow. Library

Publication/Creation
Edinburgh : Robert Grant & Son ; London : Williams & Norgate, 1911.

Persistent URL

https://wellcomecollection.org/works/weahr628

Provider

University of Glasgow

License and attribution

This material has been provided by This material has been provided by The
University of Glasgow Library. The original may be consulted at The
University of Glasgow Library. where the originals may be consulted.
Conditions of use: it is possible this item is protected by copyright and/or
related rights. You are free to use this item in any way that is permitted by
the copyright and related rights legislation that applies to your use. For other
uses you need to obtain permission from the rights-holder(s).

Wellcome Collection

183 Euston Road

London NW1 2BE UK

T +44 (0)20 7611 8722

E library@wellcomecollection.org
https://wellcomecollection.org










Digitized by the Internet Archive
in 2016

https://archive.org/details/b24931123



XIV.—The Mathematical Theory of Random Migration and
Epidemic Distribution. By John Brownlee, M.D., D.Se.

{:';lf'i. received May 16, 1910. Read same date.)

Tue general theory of epidemic disease I have already considered in a
communication to this Soeiety.®* In that communication I showed that
the course of epidemics of all forms of infectious disease obeyed certain
very definite laws. In the same paper it was also shown that the distri-
bution of epidemic disease in a uniformly populated area obeyed a law
essentially similar. Certain reasons were given why the normal curve of
a2

error Y=y, ** might be expected to give an approximate solution in
both the cases eonsidered, but why the distribution actually found (type iv.)
should be the common form was not at all elear. I think, however, I have
now arrived at the solution.

The distribution of an epidemic in space is evidently a problem in
chance. If there is an infective group in the middle of a uniformly dis-
posed population, then the distance from which friends come to visit a sick
person or the distance a sick person travels while developing the disease
determines the subsequent distribution of cases—a distribution, therefore,
obeying some law on the average. This problem has since been attacked
and solved by Professor Pearson under the title of “The Problem of
Random Migration.” The case which he considers refers specially to the
prevention of malaria, which is now known to be spread through the
agency of mosquitoes. The mathematical theory, which is very complex,
leads to the determination that the normal surface of error gives a very
close representation of this distribution. For epidemiological purposes
the result is quite sufficiently close. To make the matter perfectly clear,
the conditions of the problem solved are given in Professor Pearson's
own words:—

“(1) Breeding grounds and food supply are supposed to have an
average uniform distribution over the district under considera-
tion. Therve is to be no special following of river beds or forest
tracks.

“(2) The species seattering from a centre is supposed to distribute
itself uniformly in all directions. The average distance through
which an individual of the species moves from habitat to habitat

% Proc. Roy. Soc. Edin., June 1906.
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will he :-}[_u_}l{un of as a ¢ I!igllf,,’ and there may be 7 such ° ﬂig‘]lt.’-i'
from locus of origin to breeding ground, or again from breeding
ground to breeding ground, if the species reproduces more than
once, A flight is to be distinguished from a ‘ flitter,” a mere to-
and-fro motion associated with the quest for food or mate in the
neighbourhood of the habitat.

“(3) Now, taking a eentre, reduced in the idealised system to a point,
what would be the distribution after random flights of N indi-
viduals departing from this centre? This is the first problem.
I will eall it the ‘ Fundamental Problem of Random Migration.

“(4) Supposing the first problem solved, we have now to distribute
such points over an area bounded by any contour, and mark the
distribution on both sides of the contour after any number of
breeding seasons. The shape of the contour and the number of
seasons dealt with will provide a series of problems which may
be spoken of as ‘ Secondary Problems of Migration.””

The proof of the theory given by Professor Pearson contains also im-
plicitly the proot that if the normal surface of error deseribes the distribution
at any moment, it will at all subsequent times. This can be seen, however,

g
quite easily otherwise. Thus if =y, ** be the distribution of disease
where y, 1s the number of cases per unit area at origin and o .;:f-|-_ﬂ"-* 15 the
distance of any point from the origin, then the amount of disease at any

ST

o=

point &', ¥’ is y.e This element gives rise to a new normal surface

_ - Py -y iy

Yo 2o **  due to the infection at «'y". If these several surfaces

be integrated from —eo to 4+ with respect to " and ¥ successively, we
get the new distribution

w pw (E-TRi-wR ey
Y=Y J‘_m f_mv i 2= da'dy’

St
£ -

= y,Toe

so that the standard deviation & is multiplied by / 2—that is, that the slope

of the surface is flattened. In other words, the longer the disease is present

in a town the more uniformly, other things being equal, it will tend to
distribute itself.

At the present point it will perhaps be well to recapitulate the method

by which it was considered likely that the normal curve of error should

represent the course of an epidemic in time. If there be an amount of
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infectious disease a: if such element infect pa persons, and if g be the rate
of loss of infectivity per unit time, as has already been shown to be probable,
the number of each group of infected persons (supposing the supply of
susceptible persons large) is a : ap : ap X pg : apq x pg® : ape® x pgd, ete.,

=1 (E-1z=-2

or, in general, if # denote the unit time, y=ap ¢ = , which, as ¢ is
necessarily less than unity, is the normal curve of error. If, instead of
finite, infinitesimal differences are employed, the result is expressed by the
formula
y = ap=ghe.

That the normal curve is to be taken as that from which variation is to be
expected both when the space and time distributions of epidemies are
examined then seems clear, and it remains to discover in what manner the
natural process differs from that so far developed theoretically.

It is, in the first place, to be noted that if the distribution is from a
central area instead of a point, a disturbing influence on the shape of the
curve comes into play. This can be allowed for at once. For purposes of
eonvenience a two-dimensional solution is given, such a solution being easily
extended to three dimensions in any particular case. If we consider the
modification of the normal curve produced when the mosquitoes start from
an area and not from a point, the moments of the resulting distribution will
not be those of the normal curve, that is, not

L
_Lm.r:“e 2o 1,

but.

o i

a o
f da f (x + a)e *dx;
o= = o

or, for the even moments, since the odd moments are zero,

=

=
o= Ha 3
: o2 YT o
,,.:._‘=P_|+..f£ H'}E-,
s0 that
4
4 Dty -
g =F.| o
ot =
F'_! 3
a.*
R T
.F'.".;"ﬂ 4 el 'I'.l..-_,. ﬂ_

3 9

since for the normal curve pu, = 3u,”
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The latter is always less than 3, so that if the centre of distribution is
extended, that is, if the original mosquitoes are uniformly dispersed over a
space bounded by two parallel lines, the subsequent distribution will
resemble a eurve of type ii. rather than the normal eurve. But, as has been
said, type iv. almost uniformly occurs. Some other modification is therefore
necessary. This may be found in the fact that & is not eonstant. In the
simplified problem of Professor Pearson 2= nl® where » is the number of

the flights and [ the length of the mean flight. The curve is thus given by

=2

N

Y=_ "t TIf I, however, vary, we do not get the normal curve at all,
" :

but a derivative. The fl‘E'.t’|':]l?l1(::,.-' of any value of [ or =« may be taken as

given by fle) when the limits of # are g and 3. The surface of distribution
: ; N ﬂﬂa}:? 3 : TR S
derived from this y= = f s¢ " da.  Further, if the distribution take place
a i (@ 1

from a definite area as above deseribed, the final form of the distribution of
the organism becomes
X4 g, = il
Y=, l‘ chazel.x !‘_.f (r)e 2% _4:: ; : . ot 6 )
gL Ja o
when ¢ denotes the mode of distribution in the area. This, if the forms of
¢(x) and (fo) are known, I take to be the fundamental epidemic or random
migration equation.
To return for a moment to the form found for the time distribution of
an epidemie
o b
y=ap'q
This may be put in form

zlog p+422 log g

¥=ae
 oEpy? (log pE
floggl z+ 58] 4
= e " log ':]I “loga
B

T =0

e e ot

£ e
—C= i - s a g
=ae - changing the origin of » | Ay
: 2 log p
if logg= -~ and 98P ¢,
s log 4

From the symmetry of the epidemic ¢ must in general be a constant, so that
we have the relation

¢log g =log p
or

P=q
as the relationship between the infectivity and the rate of loss of infectivity.
As q is less than unity ¢ will be negative in sign, so that we have as the
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general rule that as p increases ¢ decreases, or the greater the infectivity
the more rapidly it is lost.

In the case of the epidemic the frequency of each value of & is quite
unknown. As log g= _E-z and as ¢ must from the initial assumption lie
o

between O and 1, the limits of ¢ are evidently —se and 0. The situation of
the commonest value of & is therefore between these limits, and must in
general lie nearer zero than infinity. In choosing an arbitrary form for &
s0 as to get an approximation, it must be of such a form that (2) will be
integrable and expressible in a form suitable to caleulation.

E i.'
The equation obtained by integrating (2)is y= j PR fode. It is

obvious that if this be finite when =0 that the term n3+”_“1|1ust, disappear,

& ot
so that part of f(o) must be ¢ **: the other part may be taken as ¢ ¥

2 g7
The function e *° * has a maximum when o= fek. The constant ¢ is

quite unknown, nor does it seem ascertainable from the method of analysis,
but it disappears. and as k is at our disposal it is evident that the maximum
value of & can be placed where the statistics to be examined demand. We
thus have as a possible form of the epidemic equation

reo. B o8
II',|'=J o ot By
il

To increase the variety of the distribution we might take s

I
=

as

representing the variation of ¢: in this case the final integral becomes
ot
Y= J‘ ate T By
[

The epidemic due to an organism instantaneously becoming infective
and thereafter losing its infectivity at a rate corresponding to the geo-
metrical progression should at least approximately fit the above curve if
the distribution of ¢ has been at all closely guessed. When we turn to
Professor Pearson's approximate form of solution of the random migration
problem we find that it also has a term with ¢ in the denominator. The

distribution is given by
N =

g
Y= 9ng? =

where N is the total number of mosquitoes starting from the point of origin
and o =3nl% n being equal to the number of flights and I to the length of
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the average flight. Now, if & vary from 0 to = for a first approximation,
(=3

its frequency might be represented by type iii. or, say, y=g" ¥, in which
case the migration form would be
‘I."‘i- o -—

e
_q--I
This form is very intractable as a working integral, and as %% ¥ gives

2IAGCRAM T

AMALLLOX AOERTHS
HRRRINGCGTON

a somewhat similar series of ecurves, the latter may be substituted with
much simplification of the caleulation, so that the distribution of a species

might be represented by
= -::12_{—"
[ antle of Eday
L]

a form easily reducible for any wvalue of n. This is the same surface
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as was deduced as a possible one for the epidemic time wave. What has
preceded is to a certain extent hypothetieal in so far as the assumption of
a form for the frequency of o is connected ; otherwise it is directly deduced
in the case of the epidemic from the consideration of a large number of

DIAGRAM L

SCARLET FEVER
MUK EDIOHEMIC CLASGHW

typical epidemies, and in the second place by Professor Pearson by a rigid
mathematical result from the assumptions already referred to.

The next assumption is the rate at which infective organisms are evolved.
This may be taken as represented by (), so that at any point x the
ordinate will be represented by the integral of the curve taken hetween
x—¢ and x+c.  We then, finally, obtain as the form of the epidemie

X e _.#f_."f:'.
Y=, m_ﬁ{:v}f“ i

It will be shown later that good agreement of theory with fact is
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obtained if n =0 and ¢(x) =¢ (a constant), so that, in the first instance, the form

] & qﬁ

ERs -— =
JIJI:ai fl'l.i" - L "'J-r_l'

Jr-¢ n
will be considered.
Az 1z well known

£ a? 2z

T

5T B e
" e © “dom  frke
ol ]

the positive sign referring to the negative branch of @ and the negative
sign to the positive branch.
Hence the equation of the curve is

- gt
.If——{sﬁ‘i —ake ¥ cosh = from =10 to x=e¢,

_2x :
= I
St
y=ake * sinh = from x=¢ to x= 0.

The curve is symmetrical. Examples of this are given in Diagrams 1.
and II. When these are compared with Ihagrams VII and XXIIL re-
spectively of my former paper,* it is seen how much better the fit now
obtained is.

MATHEMATICAL ForMULE oF CURVES WHICH REPRESENT POSSIBLE
EripEmic ForMs.

Equations and formule which might deseribe more or less approxi-
mately epidemic or migration forms will now be considered in detail. The
following symbols are used throughout . —

(1) Let x=j(x) be the curve of distribution

[-2]
= f el area of the curve
—
rI:D
1 ; :
g = — e, where the axis of y is taken through the centre
"1_, = of gravity
]
1 2
iy = o ayedr, ete. ;
o -3
FrE
1
and T == aprelie,
(b aydie
il

When the origin is not in a line through the centre of gravity the moments
are denoted by .
phys fhoy g eLC.
* Proc. Roy. Soc. Edin., vol. xxvi. pp. 491 and 507.
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To complete the symbols
ol
,I|31 = f‘l—zg ﬁ2= Ji*._}
Mz i
The fundamental forms which have been chosen for investigation are
i o Ty

iy = rr,J oe o Fde and ys= ﬂ.‘r a'e
(1]

i

These are symmetrical round the origin. On the hypothesis before
mentioned they are integrated for each value of @ from xz—¢ to x+e,
multiplying each term by a suitable funetion ¢(x), so that for the working
equations we have,

I o _'f,'“'f

y=r1! :,{-.wi':::f o'e = By : : . (M)
Je-e b
(Xt = _f—yu-

,‘,f=£l-j @u?..-.f a'e ° ; ) L « ()
L= 1]

(2) The first of these forms is much easier to evaluate, and in addition
gives the closest, representation of the facts. Considering it in the first
instance and assuming that ¢(x)=a (a constant), we have the curve of
distribution in time or space given by

[a46 [ B e
.r.r=,z1j f!.rJ e ot By,
x—g 0
This form implies either that the rate at which infective organisms are
given off is constant or that the distribution of organisms before migration
begins is uniform.

In the application required m is in general zero. The areas and

moments of the first three curves, however, are given in the following

table :—

jii== () n=1. =2,
A el W el ek 7
k 3k 154
"1 2 4 16
k2 g2 L e o
e 33 e D
o5y ap2, O i oo, & spe, ©
ey z-ﬁ + 2k +5 ?ﬁ.q-dc -[-5 9 + Gtk =

From the value of &4 obtained from the statistics %; can be easily caleu-
e

lated, and thence k. The latter value may be compared with value of k

deduced from the value of v, and the nearest value of n ascertained. The

equation of the curve corresponding to n=0 is as follows :—
=2 p o
y=ak—ake ¥ cosh ¥ from x=0toxr=¢
-2x Dy
y=ake ¥ sinh— from z=ctox=c0.
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Those for higher values of % may be obtained by differentiating the above
values with respect to ,rlr

(3) To find k and ¢ from the moments is easy, but for convenience a
table is given by which the values nf% may be obtained when the value

1 e
3., i.e. - 4 has been calculated.

5 0 e

of -

: - K i :
Table showing the values of = for different values of
¢

2R 2

A3 L 1p ¢
i G
+-E'_-.|-++ F'

gl gle2 0
i: i é.ﬂg . Differences.
Al 4314
237
50 4541
230
i) 4771
232
it =500
230
=0 Ha33
226
“TH 5459
223
B0 G670
212
A5 DHO2
205
) "GOST
19063
05 6293
185
100 G478
346
1-10 "GEZ6
310
1-20 7136
475
130 Td411
244
144 ity
216
150 7871

(4) A special ease arises in random migration if the area to he invaded
18 bounded by a straight boundary on the one side of which there is an
infinite field uniformly stocked with the organism which is migrating. In
the case of animals actually migrating this form has been found by Pro-
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fessor Pearson, but it is much simpler in the ease of plant life. We have to
deal with the integral

w —Hztd)
y'—af g
i}

—2r
Jil-ﬂ'. _k =
y=e

-

Application of this will be given,
(5) Secondly, the form

i ®  -E oy
y=a n*:rf ore *  do
=g i

may be considered. In this the distribution of frequency of & is taken as
a"*%¢~17.  The moments are easily calculated, and are given by

A=2./= Pin+2)

N--:-ﬂ
1 n4+2
L 3\...-.“_— ¥ E
o e (n+3)(n+2)
=g By
oy xS 2) Aud et g Sl

These equations are solved most easily if ¢ and # be eliminated. This
gives, if 2 J;rul is denoted by ¢,

‘:‘f'+ EI +(1-‘§3+ )i.},+('§—FEE+%F~J?—%§’—H)=U~

The rest of the sn]utmn iz easy. I have not been able to arrive at the
curve without mechanical quadrature. In the instance in which it has
been fitted (Diagram I1L) it proves exceedingly unsuitable, and it is there-
fore evident that the form discussed eannot IEPI'ES[-:Ht- the distribution of

o even appr oximately.

Asymmetry.

(6) Asymmetry in the epidemic curve deserves some notice. As we

found before, h}_g{j} must in general be equal to a constant, as the epidemic

loe

=]

is symmetrical. If, however, lﬂﬁ? is a function of & it may, on account of

the near symmetry of the epidemiec, be assumed that it can be expanded in
terms of o of a rapidly convergent nature so that all the terms in the

expansion except that of o may be neglected.
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o e R
ﬂf c:’:a:f e o K,
IT=8 0 ,

becomes on this hypothesis

The expression

= [E=aglF o=

Tte it i
Ef d;ﬂf @il e Hrfrr.
-2 il
In this ease
J‘L = \.'II.':'l".lfJ"!
F-FL = '\."IITT'II;E
e g
et 212
Moo= 3 + 9 + a A

e Pl e 3 -
Mg= g \-"Irrtﬂ:*i-ﬂ NrahE e ek

- e
Pe=35 (4at + 1222 + 3) + K5c*(1 + 2a®) +5

when u';, w, 'y ete., are the moments round the origin, which gives

=24 if a2=0
g hig i

O
Fa a_«.-"lwaflis

3 :
== +.Fc2u*~‘+;_:

For the form of the curve

e o _(x-acf ot
y=a f e L e = By,
x-r

LA I A5 oF o @ _I_:_E_ﬂ
—ae { d:ar{ g o "“(l —f)ﬂ’ﬂ'
Jr=c 20 i

—al [Ete = -f_':_‘ﬂ; —n? [EHE -.:.i-,-:,:,
= @e de | ¢ = Sdo—aos o | —e = g
Tz Jo - LN

the solution of the first part is already givens
The second is equal to

- o ol
- ,227'_ . {1} 7is
—imagy = H ™ (ix)de®
=] L
T=0

This method for accounting for symmetry has likewise not been suecessful
in representing the statisties.

(7) When the distribution is symmetrical around a centre it is evident
that we have to deal with a similar integration of Professor Pearson's form

and that a distribution of # —ae "k results.

* A table of this function is given in Jahnke und Emde, Funktionentafeln, p. 135,
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This can be fitted by radial moments, or, in general, more easily by first
reducing the statistics so that the numbers per unit zone is taken as a
basis of caleulation.

The distribution may also be summed parallel to one axis and compared

with a table of the integral
o _\-{;;LH |_-||:.' 3
i [ir k r..rl,r'_
S
In some eases, especially when an epidemic occurs in a locality where a
disease is more or less uniformly endemie, it is useful to have the means of
separating the epidemie portion of the disease from that which is endemie,
Such a eombination is very common in the case of such diseases as scarlet
fever, enteric fever, diarrhoea, ete.  Suecessive approximations are necessary
to obtain a solution, but a first approximation ean be obtained by using the
normal eurve to represent the statisties of the course of the epidemie.
Let the whole amount of the disease be as represented in the diagram

2L

The endemic prevalence of the disease is represented by the rectangular
base and the epidemic portion by the curve above. In general the parts
of the curve beyond the limits may be neglected as only affecting the
result to a small extent. Taking the middle of the rectangle as origin,
denoting its height by o and its length 2{, where [ is known and d un-
known, we have for the area and for the moments of the rectangle round
an axis through the middle,

A=2ld

A w204
- .3

Ap =204

For the normal curve the equation is
< Gl
Y=
and its area and moments become
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A= o ‘\-'fi_l'!}'

Ap'i=u, e
) = I'.rﬁ
Ap o =Yg S U Amac®

Sp 3
oo ={FL:
Ap's =Yy o= b Yo N7 G

Adding the corresponding portions of the moments, we have the following
equations for determining the four unknowns, d, o, ¢, and y,,

A+ A =2ld+y =D, ; : : : : LTy
A =y nfmoe=B, . . .. .
G 23d 3 =
Apa+ Apy = _"3: + ¥, ""1_'-% + Yy Vmoel=B, . : - (e)
, 3e —och
Apﬂ=yn\'lr1_r{% +yn\f7r€ﬂ=ﬂ-‘ = - " . {d}

where B, B,, ete., denote the area and moments obtained from the statisties.
By using (b) the equations (a), (¢), and (d) become
B

?‘-’+EF:."=B1 - ! - : - . (a)
2B, Ll
:rgl:r_'l" Bﬂﬂ'l‘gi— — Bg . - . 2 . {Iﬁ}
2 A
_2_B3+?]3‘.,_.—Bi : : : : ; - ()
From a and 3
2 B2 iz
;_H:EE —3§+qu=133 fnp

or

9B,e? — (3B, — 2B, )e + 3B, — B,l2 =0,
which gives c.
Henee immediately we have

B =
e T
(i s Bﬂ 3(.‘
_ B
My
2ld=B, - D2,

c
which eomplete the solution.

When the theory just deseribed is applied to the elucidation of epidemic
processes it is found to be fairly satisfactory. It gives a very good fit to
many epidemies, as will be shown. It is also capable of expressing the
moment relationships of epidemics satisfactorily. Thus it is generally
found that u,>B3u,: this is explained, but the form also allows of w,<3u,
without a change of theory.
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Where this theory fails, however, is in its application to seasonable
epidemics such as enteric fever when averaged over a number of years.
This might be expected. Though the hypothesis that the infectious
organism is given out for a definite time at a constant rate may be
sufficiently accurate when applied to a single epidemie, it can hardly be
expected to hold when an average of years is considered. An early ora
late epidemic of the disease is the product of special weather conditions
which will oceur very seldom. So that though the epidemics oecurring at
the usual time will tend to have their irregularities smoothed, the beginning
and the end of the compound curve will be framed on a different law from
the middle. An endeavour has been made to frame an approximate formula
to meet this, but none has been found fitting the facts.

To test the likelihood of a curve fitting, Professor Pearson’s method is
used throughout. To do this the actual and theoretical numbers are differ-
enced, the difference squared and divided by the corresponding theoretical
number. These are summed. The sum is denoted by y® The table for
testing curve fitting * is then consulted, and the value of P obtained.

Thus if P =8 it signifies that in testing the matter over again a worse fit
might be expected eight times out of ten, so the fit is good. The opposite
interpretation is given when P is small, say =2, when a worse fit might
be expected only in two out of ten trials.

PracuE I8 HonG-Koxe.
The epidemies of plague in Hong-Kong are typical of the great majority
in all the East. They are nearly bilaterally symmetrieal; they spring from

TABLE SHOWING THE NUMBER OF Pracug Cases, AcTuan axp THEORETICAL, IN
THE EripeEMics oF Pracue v Hoxe-Koxe 1 1902 axp 1804,

1902, 1904,

Number of Cases, MNumber of Cases,

\Actual Figures cor-
rected so as to

Actual. | Theoretical, Actual. | correspond with Theoretical,
. the Mean.
e ——— . - I - e JE—

March : 2 38 4 | 36 7-0
April . 2 =7 AR 44 344 5

May . : 157 14710 135 1220 1264

June . 3 194 1787 194 156410 1805 I
July . . 131 | 1470 96 1092 1264 |
August i a0 385 19 20-3 35-1 |
September . £ | 3-8 0 113 70

* He'r.rr;r.'frl'f.'rl, vol. i. p- 154,
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a zero line where the disease is nearly completely absent. The only point
of difficulty in treating them mathematically is in settling how far the
caleulation of the moments is to be carried into the interepidemic period.
In general good fits are obtained if the interepidemic cases are neglected.

Two epidemics are shown in the figures given in the table.

The fit of the first of these is not good as it stands ; but when it is noted
that the symmetry with regard to the first moment is produced from an
unequal distribution with respect to the mean of a kind that the sums of
the equidistant terms on both sides of the mean are nearly equal, we may
put the distribution as follows:—

Aetual, Theoretical.
g2 4 76
27+ 560 7 70
1567 4+ 131 2HR 2940
194 194 1787

This gives x*=383 or P="28.

Thus the variations in the rise cancel those of the fall. This method is
subject to eriticism, but the fit of any individual epidemic can hardly be
expected to be good. With regard to the epidemic of 1904 the fit may be
said to be good. Here y*=596 or P =42,

It is not necessary to give a large number of examples of the way in
which the present theory fits the facts. In many instances better fits are
obtained than those shown in my previous paper, where type iv. was
found to closely represent the epidemic form. Two examples, however,
may be given, that for the smallpox deaths in Warrington, and that for the
milk epidemie of scarlet fever in Glasgow. These are shown in Diagrams
I. and II. In both the correspondence of the facts with theory is very eclose,
much closer than with type iv. Before leaving this part of the subject an
example of the use of the distribution of ¢"e 7 for o may be given. This
is the only example I have thoroughly worked out, but in a number of
others I have obtained the medium value. , In none is there any evidence
that the curve obtained has any resemblance to the facts. It is therefore
very improbable that #"¢~** can represent the variation of #. The example
illustrated is that of smallpox in London in 1902. As will be seen by
referring to my previous paper, type iv. gives a quite different representa-
tion from the eurve shown in this ecase (Diagram IIL).

Examples of the applieation to random migration will now be given ;
those with animal forms will be considered, and those with plant forms
thereafter. With the former it is difficult to secure suitable examples,
Daphnia pulex was used in many experiments. This erustacean does not
move so consistently in one direction as others. It moves by jerks, and,
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moving more or less vertically, fulfils more nearly than any other Professor
Pearson’s eriterion that motion in any one direction is as likely as in any
other. It has also the advantages of being not specially attracted by light
and of being more or less opaque, so that it is easily photographed. Cyelops,
Littorina rudis, ete., were also used as is deseribed.  Of plants only two
species were investigated, an Oscillatorian and dspargio hispida.

IDAPHNIA PULEX.

Experiments were made in two ways with Daphnic puler. In some
experiments a large number of the crustaceans were placed inside a
eylindrieal tube in a large flat dish of white porcelain and then liberated ;
in others the water flea was allowed to take up its position as it liked in
the dish. It usually chose to distribute itself from one corner along one
side of the dish. Examples of the manner in which this happened are
given below. The corner being an impenetrable boundary may be taken as
representing a centre of diffusion, so that the simple fundamental integral
should apply and the grouping should conform to the exponential. This
i1s what takes place (Diagram IV.).

TABLE sHOWING THE NUMEBER oF DAPANITA PER UNIT oF LENGTH ALOXG THE
Marcixn oF THE PLaTE FrROM ONE CORNER.

Unit of Length. | Actual (a). | Theoretical. | Aetual (b). | Theoretical.
0-1 18 18-1 23 207
=2 11 1a-1 11 136
2= 5 a6 i g1
3-4 4 30 f 50
4=25 3 25 o 3-8
5-6 i 15 1 26
6T ] 1:1 1 1-7
-8 1 ] = 1-1
8-9 1 "D

The eurve is given,
o
for (a) by y=18e =8
Sl
for (0) by y=20e =4,

In the first example the fit is excellent (x*=28 P=-9), in the second
not so good (y*=634 P=-6). The want of fit, however, is largely due to
the group of four near the tail end of the distribution, which contributes half
of the divergence. Except for this group a further divergence might be
expected nine times in each ten trials.
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In several instances the Daphnize, instead of grouping themselves along
one edge of the dish, arranged themselves as if one corner of the dish were
the centre of attraction. From this point outwards in all directions of the
quadrant their numbers diminished. This, however, was observed only
once, when the light was good enongh for instantaneous photography. To
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count the numbers of the organism, concentric eircles were drawn on
the plate and the organisms between each pair of concentrie cireles
in the quadrant counted. Some difficulty was experienced, however,
at the greater distances, as in places it seemed that the outlyers of
other groupings were even invading the periphery of this. All the
organisms were counted, however, and none rejected. The figures are given
in the following table :—

' |
| | el
i Total | Number per Unit Area. Calculated
. Numbers. | | Total,
Actual. | Caleulated.
-— -] - _i. |_ f—
Centre quadrant | ; 19 19 184 184
L&t o one . a3 11 11-1 833
2nd e o : T T4 678 339
drd o F 18 2:67 416 2012
4th e - : 24 267 205 2295
Sth o 5, : 19 1:72 167 16:27
Gth P 7 : 7 1-31 96 125
Tth o = . 11 73 59 89
178 46-H0 46°11 | 17714
| i

It is easier to examine this grouping when the numbers are reduced to
the population per unit area. On the hypothesis the grouping should be
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given by y:af_irr (par. 7) and the section of this by the plane of y=0 gives

Ed
y=ae k. The numbers reduced to the population per unit area are given
in column ii. of the table. If we take the area and first moment and
integrate from x=0 to =4, the limit to which a count was made, we get

y=‘2:!'ﬂ4r'*ﬁ':-':ﬁ' This gives y*=6'13 or P='53, a fit as good as could be
expected, when the uncertainty regarding the numbers in the outer zone is
remembered. A large part of the value of ¥? is, as before noted, due to one
zone alome. In all these groupings there seem to be secondary centres
which interfere with results when the numbers are small.

The methods of dispersal from a centre were also investigated. For this
many Daphnize (from 100 to 200) were placed in the centre of the dish
with a depth of water of about % of an inch. They were contained in a
eylindrical tube about } inch in diameter. When the level of the water
was the same on both sides of the tube and when the light was good and
the camera ready, the tube was removed, the dispersal watched, and at a
suitable moment instantaneously photographed. The photographs of course
show no detail, the organisms being simply marked by a paler spot on
the negative. In all cases a few Daphnise were found greatly more
energetic than the rest. These were generally above the mean size and
probably represented an older generation. They were so exceptional that
they possibly should be rejected from the statistics: all, however, have
been included.

The experiments took much time. It was very difficult to manipulate
the organism without damaging a number and thus introducing a new
factor.

In the ease of the negative from which the following table is made the
centre of the group was found by counting the number of organisms in
each half-inch square of the plate and ealeulating the mean. This being
found, eireles were drawn round this of diameter L inch, 1 ineh, 11 inches,
etc., and the organisms in each zone counted.

The numbers in each zone are given in the table, column i.

I
The curve is given by y=239"2¢ 130 hence y*=97, which gives P =4,
In this case, again, one zone gives a large part of the value of ¥ and
it is also to be noted that again it is the third zone. Another fact of
interest in all the experiments of this class is that the centre of the

migration is not the original centre of dispersal: the whole mass has
moved towards the light.
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i. ii. iil. iv.
| Number per Unit Area. r
Total g Wlla;':\ﬂr‘
N ! - — - (-]
Numbers, calculated.
Aectual, I Calenlated.
ey L || : | | P
Centre circle . : 4 28 bidad 278 278
15t zone - - ; 45 14 12:5 375
2nd : ; % 28 56 58 280
REE T R TR B 1S 271 190
4th ., 7 |4 o 2i8 126 11:3
5th . RN (e it 63
| Fi T : : : 5 40 274 A6
. Tl ] F g 4 [ i 128 19
[ ; : : 2 ‘12 06 | 10
oth 1 | 0b 028 53

The dispersion of Daphnia may also be eompared with the formula

r
y=ae k by summing parallel to one axis. A comparison is given below

when the Daphniz were so counted. The numbers are as follows :—

Actual. Theoretical.
2 19
T 94
46 39°h
30 395
11 9-4
1 19

giving y* =234 or P="75.
CycLops.

Cyelops were used in a few experiments but found very unsatisfactory.
Not only did they photograph with great difficulty on account of their
transparency, but they moved on dispersal strongly towards the light.

A sectional count of one instance is given (Diagram V.). It is not
treated as a whole, but it is to be noticed that the advancing edge is very

closely given by the exponential eurve which has been fitted to it.
The values are :

Actual. Calenlated.
B 353
20 19°%
12 107

T o9
7] o3
2 1B

which gives y*=1'61 or P="0, so that the fit is very close.
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OTHER CRUSTACEA.
Some ecopepods were experimented with, but their transparency and
rate of motion unfitted them for this purpose; they were also too strongly
attracted to light. In addition an attempt was made with a fresh-water

arecram ¥V

CYCLoAd i)
Y=465¢  Tyoz

20 | _

£
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isopod, but a sufficiently large dish could not be obtained to make the
experiment of any value,
LITTORINA RUDIS.

Several experiments were made with this molluse. Numbers were
placed in various vessels and their movements observed. It was found
best to put them at the bottom of a deep glass jar with a little salt water

Difxmlme in Numbers Numbers
inches, actinal. theoretical,

- 5 25 Q3ear

b= 1 15 163

1-15 13 11-5

1:5—20 H g2

20— 245 2 ]

25— 340 G 4]

a0 — 35 5 30
30—40 1 9.9

40— 45 1 1-4

45 =500 3 10

| 50 -5 1 i
{ 55 =60 1 5
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in the bottom and leave them to elimb out; this they did, passing the edge
and falling on the floor. Latterly a large number were placed in the jar
one day and next day those on the side of the jar counted. It seems
evident that we are dealing with the tail of a moving mass, and that this
tail should obey the law of the exponential. In one experiment the number
of Littorina in each half inch of the jar, measuring from the top, were as
shown in table on page 283,

This gives a distribution y = 9796 57

As it stands x* =102, so that P =53, but, as before with Daphnia, 40 per
cent. of the value of y* is accounted for by the third last group. If this be
subtracted P=-87. In either case the fit is admissible.
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OTHER MARINE ANIMALS.

With regard to large animals few experiments ean be recorded. Some
observations were made on fish. In fish migration the form of the shoal
should be capable of measurement. In this case the tanks in the Millport
Biological Station seemed to afford some chance of suceess. One of the
large tanks contained a small shoal of saithe (Gadus virens). These were
photographed several times, but to get sufficient light for an instantaneous
plate was difficult. In one such photograph the shoal is on the point of
turning. The symmetry is remarkable, the numbers from the left to the
right in each unit of length being as follows:

1,2 25,6, 6,25 1, 1. Total 22.

The numbers are too small to allow of differentiation of the type of curve,
as they can be fitted either to the exponential curve described or to the
normal curve of error.
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Data for the other fish are lacking with the exeeption of herring. The
weekly takes at given stations aftord some guide, but not much. Omne
selected from the Fishery Board Report of the take of herring off Ballantrae
is illustrated in the diagram (Diagram VIL.). Here the elevation at the

beginning of the ascent prevents accurate curve fitting, but the general
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correspondence is good. It was ]1011‘55.1 that with the figures at a fixed
point some better results might be obtained, and the Fishery Board very
kindly furnished me with the figures of the weekly takes in the trammel
nets at Ballantrae. But these figures proved insufficient to determine the
shoal form: in no case were the curves continuous. Factors such as the
end of the open time, storms, ete., interfered with the returns to such an
extent that it was not possible to use the figures®

* Herring catch, Ballantrae, 1903, May-August, Twenty-fifth Ann. Rep. Fish. Board Sc.,
p. 174.
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OSCILLATORIA.

A species of Oscillatorian (not identified) was also experimented with.
This, when put in a mass in the bottom of a test tube, started to elimb the
wall to the surface. After the migration had faken place so that the
beginning and end of the mass was fairly clear, the test tube was carefully

DIRCRAM Y

SLECIES OF OFCIHELRTORIA

A x
jf= E#E'?-Fﬁ-f ?ﬂmé ;-j-g?)
200 x~opx="24p
-~ . S o]
4 oE = gfL2q € FI8Y smh ryeq
\
;I \‘ J‘:i‘i--ﬁfﬂtﬁ'x= o
160) 2 By = 243

emptied and filled with melted gelatine. When this was set the number of
filaments per millimetre of length on the test tube was counted under the
microscope. The numbers in each space of four millimetres were as
follows :—
2. 90, 42, 80, 125, 190, 168, 154, 164, 128, 70, 28, 10, 2.

When fitted to a migration eurve the correspondence is as illustrated in the
accompanying diagram (Diagram VIIL). The fit is not good, but the shape
of the curve suggests that it is made up of two and not one migration
system.
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APARGIA HISPIDA.

In the Belvidere Hospital there are long straight terraces adjacent
to the Clyde constructed as in the diagram (Diagram IX.). It is the
custom to mow the level parts of the terraces with a lawn mower.
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No plant, therefore, of any high habit can ever seed there. It can
only grow herbaceously. On the bank between the terraces, however,
such plants can develop, and a considerable streteh of the bank is
thickly overgrown with Apargia. The seeds of this scatter over the
lower and higher terraces, when they germinate and form plants in
the grass.

This case can easily be considered as one where there is an infinite
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uniform source on one side of a straight line, and therefore may be

represented by y =ue_:'

To obtain the form of distribution the ground on both terraces was
lined with parallel lengths of string two feet apart for a distance of fifteen
yards, and the number of plants in each rectangular space counted. The
numbers are given in this table :—

Nouper oF Praxts,

1'

Distance, | Upper Terrace. | Lower Terrace. |

O0- 2 feat 140 201 I

g . 47 157 |

=8 _ 39 99 -

| 8-10 ., | 24 | 50 |

10-12 ., 17 | 22 '

| 12-14 ., 10 20 |

| 14-16 ,, 9 16 |

| 16-18 ,, 5 4 -

' 18-20 | 7 12 |
. 20-22 3 6
| 99 94 4 3
| 24-26 ,, 3 3
26-28 1 3
' 28-30 ,, 3 4
S0-32 1
S2-34 " 1
Total | 312 605

The equation of the theoretical curves are :—
T
Higher terrace 1y =127e 2458
T
Lower x = 248e " 2uw
The two areas show a practically identical distribution, with the excep-
tion that the seed spreads to twice the extent on the lower than on the
higher terrace. The nature of the fit is shown on the diagram, and as the

soil of the locality is all forced, clay coming to the surface in patches, and
drainage being very irregular, it is as good as might be expected.

CONCLUSIONS.

(1) The general principles which underlie both epidemic distribution in
space and time and random migration are identical.

(2) Both can be deduced almost directly from the laws of chance through
assumnptions which have considerable a priori probability.
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(3) It is found in both cases that the exponential eurve can be taken as
giving a fair representation of most of the facts. The manner in which
this eurve, however, appears is somewhat different in the two instances.
It is doubtful why this formula should express hoth results.

NoTE.
at the laboratory of the Millport Marine Biological Station, and I desire
to thank the Superintendent for much assistanee.

The experimental work recorded in this paper was done chiefly

(Lssued separalely February 25, 1911.)

VOL, XXXI. 14






