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In Mereh, 1903, the |]":H'.¢.-fr.r:;;,|"}rf f'mn;mn_:f of nr'ﬂ],'}m'x announced their intention

of granting £1,000 fo the {niversity of London to be devoted to the furtherance of

J'F-’.\'l”nfi'r'ullll ﬁ'H‘ﬂf JFH‘-_II,I'J'IH"J" H,"F.if".l(‘. it !'IF!II‘I”."HHI},T 1"‘(}.”[-:;’;!’4_ 'I,.‘Ir?pr F‘!‘jj!‘.\'!iﬁﬁ.ﬁ';ﬂu JIJI'.“H"E’FH. ff.'{:"

University and College authorities, the [ Jrapers’ Company presented £1,000 to the

Universily to assist the statistical work and higher teaching of the Department of

Applied Mathematics. [t seemed desivable to commemorate this—probably, first
oceasion on which a great Cily Company has divectly endowed higher vesearch work
J.” 'fj!‘{ff.f‘:!f.i'”ﬂ'“’f'”f .\'F'E‘I!"H‘I"-P" —"h.{lf .r‘JF!‘{" ﬂl.\'.‘h'ﬂlf" ff}r i ..'i'lllil,ll""[,"ﬂ‘.lﬁl"‘ll .-‘{-l":'.l";{".\' I"fl||r- ?H["H‘fﬂi}'ﬁ ;H' E‘.l:.f{',"
preparation of which the Department has been largely assisted by the grant,  Such

is the aim of the present series of * Drapers’ Company Research Memoirs.”

K. P
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(1.) lutvoduction.

Ix dealing with the problem of the relationship of attributes, not ecapable of
quantitative measurement, it has been usual to classify the two attributes into a
number of groups, A, A,, A, ... A, and B, B, B,. ... B. In this manner a table
has been formed containing s columns and f rows, or & X ¢ eompartments. The total
frequency of the population, or of the “universe” under consideration, to use the
logician’s phrase, is then distributed into sub-groups corresponding to these s x ¢
compartments. In simple cases of assoeciation, as in that of the presence of the
vaceination eicatrix and the recovery from an attack of smallpox, = and t are hoth
equal to two, and we have a simple four-fold division of the universe. In other cases
we have higher numbers, as when we classify the human eve into eight eolonr elasses
and corvelate these classes with six or more classes for hair colour. We may even
run up to as many as 18 to 25 classes for each attribute when we table the coat
colours of thoroughbred horses or pedigree dogs in the case of pairs of hlood relatives.
A2
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Hitherto, in order to obtain a measure of the degree of correlation or association, we
have proceeded on the assumption that it was necessary to arrange the system of
classes like A\, A, . .. A, in some order, which corresponded to a real quantitative
seale in the attribute, although we were unable to use this scale direetly. Thus one
arranged eyve-colours in what appeared to correspond to a seale of varving amounts
of orange pigment ; the coat colours of horses were arranged in an order corresponding

fairly to what an artist would eall their

value.” T even analysed hair tints by
photographie processes. In all such eases the order seemed of vital importance.
Once this order was settled, the methods of my memoir* on the correlation of
characters not quantitatively measurable could be apphed—the actual seale corre-
sponding to the classification could be deduced, and we were able, on the assumption
of normal frequency, to actually plot the regression lines for the correlation of a
variety of attributes.t The econception, however, of order in the classification was
at times very hampering. Take three broad classes like these for human temper

giick tempered, good natwred, and swllen ; it is diffienlt to grasp the exact meaning
of a quantitative seale at the basis of this classification, and it is not obvious that the
right order is necessarily that with good-natured in the middle. Or, again, take the
sise of human hair ; omitting the brown reds, we ean get a practically eontinuous series
of shades from .i“'t black to flaxen, and from flaxen with illCI'ﬁuﬁin{_{ red up to the
4lPH|JuS-;I, reds, {:'[It}' the brown reds eome in and upset the Si"l,'z-it{'ﬂ'l: We seem,
therefore, foreed to take a double seale, first one of hlack, and then one of red
pigment.  Or, again, take the coat eolour of grevhounds; these are eclassified into as
many as 40 fairly narrow groups, and we ecan arrange these groups in ascending
order of red, or black, or other Inigmpntuﬁnn, We have more than one prw-:ilﬁe seale,

Now in recent work on such things as temper in man, eyve colowr in man, and hair
colour in man or other animals, I have proceeded to arrange my groups in two or
three different orders, and to ecaleulate the comrelation on the basis of these
different. orders,  The results for the different orders came out in rather striking
agreement, and the first sort of conclusion that one was tﬁl‘ll[]tﬂ{l to draw was, for
example, that the inheritance of pigmentation was strikingly alike for all pigments.
But the agreement was in some cases far closer than one is accustomed to find when
one compares the inheritance of directly measurable charaeters, and 1 soon heeame
convineed that owing to some important theoretical law hitherto overlooked, the
order of the groups by which we classify our attributes is a matter of no importance
when we arve determining corvelation.  The group order is all important for variation,
it has practically no influence on corvelation. We may put sullen tempers where we
please in regard to quick and good-natured ; we may place the shades of red hair at
etther end of the hair seale or in the middle, and the inheritance coethicient will come

* tFhil. Trans.,” A, vol. 195, pp. 1-47.

i For example, for health and ability and for the corvelation of the peyehieal and physical characters,
see the * Fourth Annual Huxley Lecture,” * Journal of the ;'Lnt.hmrm!rq;imll Institute,” vol. 33, pp. 194-195.
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out nearly the same in value. Nay, we may go further, and classify finger prints
like Mr. 'IE}AI.THN into ** tents,” © arches,” * whorls,” * croziers,” &e., &e., and still be
able to find a numerieal value of the degree of resemblance between two blood
relatives, although any arrangements of such groups into a possible quantitative
scale may be inconceivable, The object of this present paper is to deal with this
novel coneeption of what I have termed contingency, and to see its relation to our
older notions of association and normal correlation. The great value of the idea ot
contingency for economic, social. and biometric statistics seems to me to lie in the
fact that it frees us from the need of determining seales before elassifying our
attributes. I shall endeavour to illustrate the importance of this freedom in the
illustrations which follow the theoretical treatment of the subject.

(2.) On the Conception of Coutingency.

In mathematical treatises on algebra a definition is usually given of independent
probahility. If p be the probability of any event, and g the probability of a second
event, then the two events are said to be independent, if the probahility of the
combined event he p x . Now let A be any attribute or character and let it be
classified into the groups A, A, ... A, and let the total number of individuals
examined be N, and let the numbers which fall into these groups be w, u,, ... =,

|'I:le-.[=ti1.'ﬁl_1.'. Then the probability of an individual fh"ing into one or other of these

groups 18 given by w0 /N, w,/N, ... 0,/N respectively. Now suppose the same
population to be classified by any other attribute into the groups B, B,. .. . B, and
the group frequencies of the N individuals to be e, m,, . . . m, respectively.  The

probability of an individual falling into these groups will be respectively wi, /N, w, /N,
my /N, ... my/N.  Accordingly the number of combinations of B, with A, to he
expected on the theory of independent probability if N pairs of attributes are
examined is

B M Tty T o TR
N » X == = V.., BAY.

N N N £

Let the number ilﬂt-ll-illl:," observed be i, Then, JLIlt:u'illg tor the errors of random
sampling,
Figlit
T e R T
N

is the deviation from independent probability in the oceurrence of the groups A., B.
Clearly the total deviation of the whole classifieation system from independent
probability must be some funetion of the s, — p,. quantities for the whole table, |
term any measure of the total deviation of the classification from independent
probability a measure of its contingency. Clearly the greater the eontingency, the
greater must be the amount of association or of correlation between the two
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attributes, for such association or correlation is solely o measure from another
standpoint of the degree of deviation from independence of occurrence.

Now it must be quite clear that if we make our measurement of contingeney any
funetion whatever of such quantities as ., — v, its magnitude will be absolutely
independent of the order of classification, v.e., its value will be unehanged if we
re-arrange the A's and the B's in any manner whatever, This is the fundamental
gain of this new conception of contingeney. But precisely as we can measure
position or acceleration in a great variety of ways, so it is possible to measure
contingency. We must try to select out of these ways those which : () bring
contingeney into line with the customary notions of correlation and association : and
(b) permit of not too laborious caleulations leading to the required measure,

We will consider these points at some length. T have shown in a paper,* “ On
Deviations from the Probable in a Correlated System of Variables,” that if w',
m'y, ... ow'y be any system of observed frequencies and . my, . . . m, be any system

of theoretieal frequencies known @ periors, then f

[ 2
& o) M — [ .
® = Bum (m'y — my) trom g = 0 tow
X 1
'ﬂf!y )
be caleulated, we can deduce a guantity P from y* which is the probability that in
any trial a system wm", ", ... w", of observed frequencies will oceur, which
deviates more from my, Mg, - . . M than the uctu;:"_‘; nhserved system does.  Tables
have been worked out by Mr. Panix Erperrvox giving the value of P, for a
considerable range of values of x* and », and have been published in * Biometrika.'
Now it will be obvious that if we want to measure coutingeney, we really want to
measure the deviation of the obzerved results from iII{IEIh-'!III:IHIIt- i)mhﬂhi]il}', and
therefore it we take we,, #,, . . . i, to correspond to the system »,, and m';, m', .. . w',

to corvespond to the actually observed system u,,,

x=,=5{{ri..,—v..r}":} N e,

Pap

will be a proper quantity to ealeulate, and P would measure how far the observed
system is or is not compatible with a basis of independent probability. If P he large
the chances are in favour of the system arising from independent probability ; if P be
small there is certainly association between the attributes. Hence I — P would be a
proper measure of the eontingency. 1 propose to call 1| — P the contrngeicy grade.
Further, it is convenient to have a name for a function elosely related to y° I shall
call

7 =S INEEREREEE e i (1.}

tl]i'! HiLeEn .'1"4_[.1 PRI 1'1,!.fr|r|'l_r¢!ﬁ_"r!t'lfl|f.

* ¢ Phil. Mag.,” July, 1900, pp. 157=175.
t Yol L, p. 155,




RELATION T0O ASSOCIATION AND NORMAL CORRELATION. ¥

It will be seen that, in the method }:_'u.' which we have .'llJ!Jt'c:.'l['Ju'l] the itl'n'l]l.*lll, we
have not had to consider the question of the sign of the contingeney like w,, — v,
onr mean square contingency is hased on a summation of squares extending to all the
5 X t compartments of the table. But if we treat now of quantities like .. — v,
their total sum must be zero, sinee for the whole table

B () = N = ™ (1),

Let us sUppose that the .f-:._\-'mlm] ® refers to a summation of all the ;Jrnﬂi'm‘f
cuntingem:igﬁ, and let

s e R et

then 1 shall be spoken of as the mean contingency. Clearly any funetions of either
$° or  would serve to measure the contingeney, We shall be guided in our choice
of such functions by considering what ave the values of ¢* and  in the case of normal
correlation.

(3.) On the Relation between Meren Square Contingency and Novimal Corvelation.

Let & and y denote the deviations from their respective means of two characters or
attributes, of which o, o, are the standard deviations and + 18 the correlation. Then
if we assume a normal distribution of frequeney, z, 8x 8y would be the frequency o
individual pairs falling between » and & 4+ 82, y and y 4 8y, where

g Ry e,

2ro,o, -
on the assumption of 'uult-.p[-'mh*,rlt |:1'u1m|1't|ity, and z 8x &y, where

N

T 2] —_.l"*'{.rf-cr_\,

2 Uviw W@

.r*'gu-lpt(.? u-,.,_',,=:' SRR R

on the '.m"mpti:m of conti ngent pl‘u]]::l.hi]it}'.
We then have at once

pi=ie { Nz, &x 8y = N- B EH}’

and we have only to insert the values of z and z,, given by (iv.) and (v.), and integrate
all over the plane of , y, to find the mean square contingeney.
Now, if ae > I*, we know that

+®m rw
; [ I {‘--! (o =Dy -+ pth ‘EJ.: {Iy — I
LT —m

— e ()
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¥

This iz all we need, for if « = oo, y =o' :

- L [** = & ,.';-: "'II
=l | (0 2t a|dddy
e e R )
| { | ii " 1-4 B gl ey Lo 1y
= - ¢ Y I=7j-A 1= ot e
Lf.‘]" | = l": o - 'f

o Fe e _pfa L ¥y  acll
R | [ M ) g dy

o W —g

e[

-

bl }

1 1 2 1
= i el — — - e - = 1 . {¥ii),
N (R (1=~ (1=
1 =

= — I =
]_.j--'z + I_Ju.

Thus the mean square contingeney is simply »2/(1—43). O,

?'=i”\/:1ii¢‘?' IR

Thus the Iu]:ntiull.‘ship between mean Bquare r.:-unllrlgetu{:}‘ and correlation in the case
of normal frequency is of an extremely simple character.
We see at onee 1 —

(i.) That since the mean square contingency is absolutely independent of the
arrangement of our classes, the coeflicient of correlation is also entively
independent of the arrangement of our classes on the hasis of any assumed
order or scale.

(ii.) Provided our classes are sufficiently small to allow of us legitimately
replacing by groupings over small areas the theoretical integrations, the
coefliclent of correlation ean be found from the mean square eontingency.

We have thus an entirely new method of finding correlation in the case of’
quantitatively non-measurable characters. It assumes, however, that our classification-
groups are sufficiently numerous and their contents sufficiently small to justify us in
.‘sl:l]lpuﬁillg that the Cfllliillgmm}' has reached a definite limit. Jlﬁ'ﬂ-l‘lf in wm'king in
the future by the contingeney method, we shall have to adopt rather more numerous
elasses, and they should not eontain too wregular plﬂiml“f:-inllﬂ of individuals, but we
ean then afford to drop any question of seale or order of grouping.

It may be asked whether this method of deriving the corvelation from the
“-H]!IIHL,'.EE’IH‘-}' cannot ]'Eljlilt:&! the earlier method of dElhtﬂllllg the correlation h}' the
fourfold division of the material. The answer is that in some cases it can do so very
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advantageously, but it is very far from doing so in all.  The contingeney found from
a fourfold table is a perfectly rveal and very proper measure of the deviation of its
material from independent probability. But if this mean square contingency be
substituted in equation (viii.). it will not give us the correlation. The proper mean
suare contingency to ;En- us the correlation must be based on a suthciently large
number of classes.  When, however, we take, say, 20 classes for each attribute, we
have 400 terms to deal with in ealeulating °, and although the result might then
possibly oive a more aceurate value for the eorrelation than that found from a fourfold
division, yet the labour of determining it is far greater and may be excessive.
Further, the simple elassifieation into two or three groups may be all we are able to
make at all, or all we can eonveniently make. Hence the new eonception of
contingeney, while illuminating the whole subject—especially as demonstrating that
the correlation is independent of seale or grouping, does not do away with the older
method of the fourfold division. I propose to eall the expression

N
L+

the first coefficient of contingency.

We note that with small enough classes the coeflicient of contingency becomes the
coeflicient. of correlation.  Accordingly, with a view of lessening the number of
coeflicients in use, | adopt the following ecouvention: Any expression or function of
either the mean square contingency (¢°) or the mean contingency (yr) (or indeed of
any other measure of the contignency}, which, when the grouping is sufficiently small,
i5 theoretically equal to the coeflicient of correlation—on the hypothesis of normal
frequency—shall be termed a coeflicient of contingency.  All such coeficients of
contingency must, on the same hypothesis, become equal on a sufficiently small
grouping, and they will searcely differ widely from each other when the frequency is
not absolutely normal and the grouping is merely moderately small. These points
will be illustrated later.

(4.) On the Relation of Mean Contingency to Normal Corvelation,

A great deal of the labour of finding either the evefficient of eontingency or the
coefficient of correlation by the method of mean square contingeney when the groups
are numerous, depends upon the squaring of the contingencies and dividing by the
frequeney to be expected on the basis of independent probabilities. The whole of
this labour is escaped, if we work with the mean contingency instead of the mean
square contingency ; further, since in this case we only sum for the positive con-
tingencies, neglecting the negative, we have usually to deal with only, or often less
than, a moiety of the terms involved in ealeulating ¢°. On the other hand, there is no
simple relation between the eorrelation and the mean contingeney such as we have
found between correlation and mean square cuutingﬁnﬁy in equation (vii.) above.

| 33
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The relation is far more complex and is only expressible in the form of integrals
reducible by guadratures.  Still, for practical purposes we rarely want the coefficient
of contingeney to more than two decimal places.  Hence, if the integral be evaluated
for the eceflicient proceeding by equal intervals, we ean plot a eurve giving the value
of the coefficient of contingeney in terms of the mean contingeney, and this will he
Hll.”'il:'!il:.‘lil'l_'l.-' accurate to enable us to vead off the former in terms of the latter to the
required degree of accuracy. The enquiry also brings out some other points not
without interest,*

To investigate the curve which in o wormal corvelation swrface separates on the
plane of wy arveas of positive from aveas of negative contingency.

The frequeney due to independent probalility will e equal to that due to the
actual contingent probability when

N e o0 N0 T et 5

.rr_ LI

2ro,.o, 2q0,0, /1 — 12

where i is the coeflicient of corvelation, or of contingeney.
Clearly
i R T e a® _ 2oy y* | :
{ i :] nw.l: 10} — il {D}__\ e +#¥E} et R I:m.}.

Sinee r is always less than unity, this curve is clearly a hyperbola, which possesses
several interesting propertiecs.  We see at once that all the contingeney of one sense
is grouped into the space between the two branches of this hyperbola, and that the
eontingency of the other sense 18 grouped into the two separate spaces inside the two
branches,  Thus contingeney of either sense is for normal correlation eontinnous, and
abrupt changes of sign in the contingeney—hbevond the limits of random sampling
are not to be expected.

By testing on actual eorrelation tables I find this hyperbola comes out in a fairly
marked manner, in fact, quite as significantly as the elliptic contours of equal
frequency.

| propose to consider the properties of this zere eontingency hyperbola—it forms
the curve along which two really contingent events have a frequency identieal with
their independent probability.

Consider the two families of curves :

a s =
= L — &l - 4 e o e e {x.},
el e
ol T L R B
o, r ooy Oy

* 1 have to heartily thank my assistant, Dr. L. N. G. Fiuox, for the substance of the first part of the
i!l".':"ﬁligill-inn "-_:ii'tr: Ilt]q}wl down to eruul_.inn {x:iii_}. 1 owe the calenlation amd |:I|l::lt-t.il'|g of the curves
o= p=e B i my assistant, Mr. J, G M. GARNETT.
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Sinece » i1s always < 1, the « family form a set ot concentrie, similar, and similarly-
situated ellipses, and the B family a set of concentrie, similar, and similarly-situated
hﬂmr}mlag_ Any conic having double contact with the hyperbola B, of zero
contingeney defined by (ix.), at the ends of a diameter y = wnzx, has for its equation

x|
H

A ) y* a
=2 L Y4 (y — ma) = B,
LEg 7 " G‘.l"r'r_-v {r.\l‘

If this be identical with an ellipse «, we have, by comparing coefficients and

eliminating A and m,
k- gt
Botfe = 1%

Consequently « = 4 #8,, the sign being determined from the fact that « must
a,lw:;_'l,-'.-\- he ]‘Jf'-"-iti‘-'ﬁ for real ellipses.
Wow the ordinate = of the normal ﬁ'ﬁqllﬁ:m}f aurfice 1z given by

S 2 Ferw, w13
— N ¢ '-"'|"-"IEJ." gy at S 1
&

dno,o, V1 —
N a

e r—';'l_]—.-"l

Ino.o, =

and to find the mean contingency we must determine the whole volume lying inside
the two branches of the above hyperbola, integrating on both sides of the line of
contact of the families of hyperbolas and ellipses.®

5

We have n

= gl tf;rj over this area

N

=l = e L = r e {M Al 3,

Al o IR e
where
e 8 (=, B) i d (1 — ?’}(.L‘ i yﬂ)
B (i, ) reoy \o. o)
from (x.) and (xi.).
But from (x.) and (xi.)

a

[(E+8)-S5la-rr=@-pma-n

(- sl i e )

'I..]I', l:'.ill]lll']illg t-l![’. Higllh’ Lo Illilkt! rI Ilfii‘i]ti'l-'l'. W IIH\"{‘

1= 4/l —r? Vet — g

1o,

* The ellipses and hyperbolas hiave conmon pairs of conjugate diamelers ; one ling of contact is one
- W ] fll.:
of the asymptotes of the hyperhola © - . = |
ety
family of ellipses with any of the family of hyperbolas are respectively parallel to conjugate diameters of
this hyperbola,  These geometrical properties, however, need nob detain us here,

B 2

« and langents at an interseetion point of any of the
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Thus the required integral 1s

Zr " L I—r*!-
= i I )
417{1—?'}[ &2 -./d."—ﬁﬂﬂ .
i F t 3 1By -
= 3#“ = ?,g) F%ms = £ =i iy elex,
To simplify put, using (ix.),
a=Brsech k= ._{lﬁi 5= solog (=19 . . . (xii)

where & will ll.l‘rrii}'ﬁ by puﬁlli\'{!, sinee * < 1.
We have
[E= & j* e~ f gee @ tan A dP,
w il
or, integrating by parts,
1 =" :
[, = it AR B B L s (T
TI'JH { }
The eurves w = ¢ were then plotted with our eoordinatograph for a series of
values of k or » on a large seale, drawn in with a spline and integrated with a Coradi
compensating planimeter. The values of I, resulting are tabled on p. 15.
We have next to investigate what 1s the volume NQQ, of the surface of independent
probability
MO | -1 (Z+
e et ait d‘-*
Iro,oy
which falls within the same hyperbola of eontingency.  We shall then have in , = 1,
the required value of v, the mean contingeney on the basis of normal corvelation.  We
have :
r 2 o
= — Lt Il[w';{,..-*,,-.-}d.u: ily

ireo.o,

taken over the space inside the two branches ot the hyperbola

* a
o L =
— —— J + J‘J — B"_‘
G',;' fﬂ';ﬂ'_.- tr_gl‘

Write & = oo, y = y"a'_,,, and we have

o
— 2 =
=

Transtorm to polars, peos @ = &/, psin# =y, ‘

\ B,

P"= = sin 28’
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. - ™ i
This shows us that the axes are given by 8 = j and | + g orarea and b, where

a* = ra (1 + ), B =ra/(1l —r)

P Take these axes as axes of coordinates. Then we have to integrate

Q= :_“ e~ ¥+ don oy,

over the area inside one branch of the h}'perlm]u

(L — (1 =P =r8y - - - - = . . (xIv).
Let

x4 y‘f %
} (v

- Li[.l'.: <+ r {.e.": + ye] — ;-IE

and let us transfer the integrations to « and S.
We have

= ._,{.-x_—'.r'i:ft —£H1

I

gt =f{a 4 vz — B)},
and
L2 (fe
Q=" “ j d=dB,

over one-halt one braneh of the |I_‘}.’}}H1'}H}L1.

] ol e .:I,S ol [fﬁ 0 H_rjr.i_: _ 4

| = Sad — (% — B).

ST dyds T dedy T v
Thus we have

T btr
Q= eleee’ "‘(' L) I e e

Eﬂ'-‘ I.-f':' i »,l.ffg_: — i'.: [u -— ﬁ}: I

The limits are obtained from the eonsideration, easily seen on a figure, that for a

; . ’ . l o
owven o« we must integrate from B = B, the given 111']:“‘.!'1]”'1‘[, Loy ﬁ = i e, the
P
touchtng hyperbola ; and then for & we must take every eirele from that touching 8,

t.e, @ = rB,/(1 4 ) up to infinity. -
We will first integrate with regad to 8, and put

r(e — B) = — asin ¢

This gives, when 8 = (1 4+ v)&/r, ¢ = 4r; and when

e — sin~ (B — ) — q[.

i
3
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Thus we find

L e [ Bt r (B, — )
‘. o= - Ir 2 = 'I e =il LU {:. ot 1 =l
: ‘-}"'T'[nlﬁ. o L. oy Q. ﬁ“:m e etda . . (evi).
Take
cos y = (8, — w)lu,
then
"= o, COS X = — ¥,
a=rFf(1 4 ), cosyxy=1.
Henee
B el o I SR T e
"}r = ]l' L il L) x -
: Eﬂ'L X Tk vosiyg)? X
1

e L T
- [1 € oy dy,
observing that the term between the limits vanishes at both.
Take
cos B = (r =+ cos y)/(v 4+ 1).
Then
¥ =0 f =0

y=cos ' (—2), #=1z

Thus we find finally, after some reduetions,

i A 14 f
Q= }” e E-_-l_-gi--&nfﬂ e e RN (T

where

£ = {] — -r*}J.’{l <+ i'},

L e ) ! : rlug,,{] — )

SET

= (1 = r) &, of the integral L.

(xix.),

Tables were now formed of e and « and the ordinates of the eurves
= = T T e A {:x:{.}

caleulated.®  These ordinates were plotted on a large seale by aid of a Coradi
coordinatograph and the resulting eurves integrated as before, the values of Q. thus
found are given with the values of 1, and ¢ in the table below. 1 believe this table
ives the mean contingency in terms of the correlation true to at least three places of
decimals.  The o and » curves are both interesting analytically and subject to rather
curious changes of type. We were aided in plotting them by ealeulating, where

* 1| owe the caleulation of these opdinates to Dre. ALice LEe.
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<o el dv . )
needful, T and 6" Finally, the values of » were plotted by my demonstrator,
i

My, L. W. ArcaeRLEY, to the corresponding values of . Thus a eurve was obtained,
which enahles us to read off the correlation from the [*uii‘ri]:g{*!tr‘}' eorrect to at least

two places of decimals—sufficient for nearly all practieal purposes.

Taere LL—Table of Integrals 1, (), and the Contingency  for Values of o

¥ 1,-_ t?, 1,!-
(- 00 = 500 = a0 = (00
i 4620 4762 0142
10 4342 4602 0310
=20 i ] B QTR
=30 10 | A40s G
40 i L S HE) ClARD
gl L2EA0 SAG4S <1813
Q] ‘24RO ‘4514 r2335
=i ~2]128 - B 1K - 2075
=850 1700 0024 i fabis
=0 1156 ~G2TY a0as
=05 0796 =009 6213
1 -0 - (000 L - 0000 1 - 000G

Ihagram L at the end of this memoir will therefore serve for most purposes of
interpolation, and it will be seen that now that the integrals have been evaluated and
the diagram constructed, the correlation ean be very easily found from mean con-
tingency. But the method seems to me distinetly inferior to that of mean squave
contingeney, and this for much the same reasons that mean ervor ealeulations arve
inferior to mean square error work in eurve fitting. Further, the grade of contingeney
can be found at once from a knowledge of mean square contingency, and whatever be
the distribution is a significant and interpretable constant. This is only true of the
correlation deduced from mean contingeney if' the distribution he normal.

(3.) To sum up our results so far :

We have, if

t, be the actual frequeney of a group in the population, N which combines the
characters A, and B,, w»,. be the frequeney of this group on the hypothesis of
independent probability, then

Ty — v, 18 simply a sub-contingeney.

= {{ﬁ“" i p"’}h]. — xﬂ may be termed the s uare c.nnt{ugﬂucﬁ_.',
L 3

- Rope = Por I - - i
S {»{—1‘— " Vir) } = ¢ is the mean square contingeney,

Tigr = Wia e P ol i =)
E{. N =1, where X is the sum for positive (or negative) sub-
contingencies only, is the mean contingency,




— ———

Lii PROFESSOR K. PEARSON ON THE THEORY OF CONTINGENCY AXD ITS

Any one ol these expressions is a measure of the deviation of the system from
independent probability, and therefore of the amount of association or correlation
between the characters or attributes involved.  But any funetion of these expressions
is also a proper measure.  Such funetions arve —

(et.) The contingency grade,  This is 1 — P, where P is to be found from x* by aid

of the tables for © goodness of fit.”  See * Biometrika,” vol, 1, pp. 155, ef seq.
(h.) The mean square contingeney coeflicient = C,, where

r::-_-/\/l_"f:"’-‘i;__-,. R i,

(c.) The mean contingeney eoefficient = (', where €', is to he found from the table
on p. 1 or from Diagram L. at the end of this memoir,
In the ease of sufficiently small grouping and normal eorvelation we have

C, = U, = coeflicient of corvelation,

ut it must not be forgotten that this is essentially a limiting, not a general ecase.
Nevertheless the approach to equality of the two contingency coefficients will be a
grrm['rnn:n-:un- of the normality of the distribution and the suitability as to smallness
of our elements of grouping,

(6.) A little experience of actual working, however, shows that in practice it is
perfectly easy to overshoot the mark in fineness of grouping.  Suppose that in
dealing with 1000 eattle we find a single instance of a calf inseribed as “mulberry,”
say the offspring of a red cow by a dark fawn bull.  Now if there be 30 dark fawn
bulls, the independent probahility of a dark fawn bull having a mulberry offspring
is ‘03,  Henee the sub-contingency for a & parent-offspring table = 1 — 03 = 97,
and the ("T'IE"I'I."H]HI-IIIHH]_': contribution to the BOjuare C(J'tjti!lj_{l'.llﬂ_}' will he {'EJTF..-"(J!‘L or
is upwards of 31, The fact is, that when we come to very fine groupings we get at
once into difficulties owing to our having to record by wmaits only. Suppose
“mulberry " ealves aetually had no relation to any special parentage, but were rare
anomalies ocenrring once among 1000 calves, or perhaps were merely an odd breeder's
fancy description, then a unit eannot be divided in the proportions of the colour
parentage, it must fall into some one eolowr parentage group. The result is
that a few isolated individuals will give large contributions to the mean square
contingeney.  The above example is purely hypothetical, but similar cases have
:H'tll:lu}' ocenrred in llE*u“ilg with eolour 1111:h|[-‘-]|lﬁ h_".-‘ the ﬂﬂ-lltfﬂ;__;&ltﬂ}’ method. Thi:}'
ave exactly similar to those which oceur when dealing with outlving individuals by
the test for condness of fit.” Ina frequency distribution we ]mme:] 1’:]‘11_}' 'h_r units,
bt the theory gives fractional values of the frequeney ; hence in forming the value of
X to measure goodness of fit, one or two unit * outliers,” although not improbable as
far as the whole of the tail of a curve is concerned, may be exeeedingly improbable if
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considered from the standpoint of the actual group in which they do aceur. This
point must be carefully borne in mind in actual practice, for by sufficient refinement
of grouping, i.e., till we reduce certain groups to a single individual or two, the mean
square contingenev ean be inereased in a remarkable manner.

(7.) Of course this is merely saving that the probable errors of the sub-
contingencies increase largely when we make »,. verv small. Unfortunately I have
not vet succeeded in determining the probable errors of the eontingenev coefficients.
If ¢, be the contingency, determined by

L [
C =M, = g

and =, its standard deviation for random sampling, 1 find

Er‘_ —_ H.-.—':I-I- e ji&l.-'] T_i;q-?; l:! + L if;ﬂ, | sl o J;\..', l:.'”u + e :“é{rﬁu :L ,{xxii,],

so that the probable ervor of any individual contingency = ‘67449 X, is determined.
Further, if R. ... be the correlation between errors due to random sampling in two
contingencies ¢, and ¢ ., nof belonging to either the same row or eolumn,

S Mgty M, = i,
L*.pz'r.,,‘Rn.r.'. = N + ..'} bur -;I'- i b

+ L g Tttt
N2 o T AR

[xxiii,].

Similarly we find for the ecorrelation of ervors of two contingencies of the same
column, R, ., the result

E,E,,‘I{R == ili,,fg,,'. R § Wt I:IJI - .'2{_“ :|

+”--'1§:;,-ﬂ'-*-ff1—4ﬁ”y_ o S R

and for errors of two cuui_'ltlg_[&'ll-nif-s-t of the same row,

S H,:,[.'::",,-.. A, :l.; i ,:44,,..( SH,.]

+Hrhf':4_( {:;‘l e e N (R )

Results (xxil.) to (xxv.) enable us to find the probable errors and the ervor
correlations for any individual contingencies which will arise from random E-:umpl[ug,
and are so far of value ; but when we attempt to find the general expression for the
probable error of either the mean or mean square contingency, it becomes so complex

¢




18 PROFESSOR K. PEARSON OXN THE THEORY OF CONTINGENCY AND ITS

that there appears little hnpu of rleduciug a sirnp]e result. ﬁ,rithmetica]]y the
problem might be solved at the expense of rather troublesome numerical calculations
if’ the number of sub-groups was not very large. A general and simple expression for
the probable error of W or ¢* invelving ¢ or ¢* only does not appear likely to exist,
and an expression involving all the sub-group frequencies would be very troublesome
for computation. Practically the errors of the contingency coefficients may be fairly
reasonably taken to lie between the probable errors of » as found by a fourfold
division of a table and by the product method, approaching the latter morve closely as
the number of sub-groups is sufficiently inereased. With the experience of probable
errors of fourfold tables before us we may, 1 think, safely take the probable error of a |
contingeney coefficient C for rongh judgments to be less than
2 x 67449 L=C,
V'

r.e., double the probable error of a correlation coefficient found from the product
moment. At the same time we must distinetly be cautious, remembering the difficulty
as to isolated units referved to in the previous section.

We may look at the probable errvor of the contingeney from another standpoint.

Taking the mean squared contingency, we have

1
c e g S
144 e

Therefore
2r

B = s

and aceordingly, if =, X, be the standard deviations in errors of ¢* and »,

o Loy s 2r 1 — = *
ST R = A W
20 Vet (1 + ¢2).

VN1 — 'l'i V;N

Hence if we were to determine ¢* from r, the probable error of ¢ would be
given by

Probable error of ¢* = 67449 V(1 + ¢%) ¢

J M
U, we can put it into the more useful form,

s hal :34393 1+ & ;

Percentage probable error of ¢° = /\/ + o il

Thus the percentage probable error increases mpidl}' as the cuntmgenc}f gets smaller.
* < Phil. Trans.,” A, vol. 191, p 242,




RELATION TO ASSOCIATION AND NORMAL CORRELATION. 149

Of eourse, the prulml]ll_: error of ¢ as found from # is not necessarily the same as
the probable error of ¢* found directly, but it may serve as a guide to its approximate
value.

If it were the same, the probable error of # as found from ¢* would be
67449/{(1 4+ ¢*) 4/ N}, a result, as indicated in the previous paragraph, much too
small, except possibly for very suceessful systems of grouping,

(4.) To find under what other condition than normal correlation small changes in
the order of grouping will not affect the value of the correlation.

Let us assume the unit of gronping to be very small, but not necessarily the same
for all groups. Let the two characters or attributes be = and y, and suppose n, to
be the total frequency of individuals in the range ¥, — e to 4, + ¢, and n,,, to be the
total frequency in the vange v,,, — ¢ to .., + €. Let ., —y, =+ =h be so
small that its square may be neglected. Let x, » be the mean values of the
characters, N the total frequency. We will find the changzes in the moments and
constants supposing the array », and u,,, interchanged in position.

Clearly &z = 0 and 8o, = 0.
N h_a’ + a{_lr.} = {_"Jr!“:} + i {”a E '”:+]}:-

or,
Sy = I (n, — n,,,) N.
N (o, + do,) = S (y5w) + 24 (o, — oy y00yy) — N (g + 5y)°.*
2o, doy = 2h (3, — ¥, 0,) — 2Ny 8y,
day, B (e — )ity — (1o — y) 0y, ;
L N
Next if
* =5 (wy) — Ny,
]'—' + 51’ o H [:1;;} + I I:H.;.’:_', - .ri“_i."l_",_”) — NE{T — NE BT)’
Or,

n e ( . = =
sl =i 2 Ty l:.l_. —_ .r‘}l — Mgy {.i,,H —_ .:}J'-,
where &, and x,,, are the means of the arrays », and n,, .

But if » be the correlation coeflicient of & and » characters,

I;‘
"~ Neowo,
Therefore
& A 8P _ 8o, _ dm,

TR T
* It must be noted here that the squares of the change in y and o, are neglected. Hence the changes
must not be so great that dy and ér, are sensibly as compared with y and .
o 2
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and substituting the above values,

b {2E = A= s B =3 _ (=T (0= P
: P o2 :
¥

T
It this is to vanish for any value of s and &, it will be suflicient, since
== - ND’,U’,.,

s b o !
gy =— & = = U,

il )
anid

= = AT
Eepp T L= r'[ﬂul = 3"}'
Ty
Or, if the mean &, of any y.-array of individuals be determined hy

- = —
i —_— O =

I (1f — ). b
¥
But this is the condition for linear rEgTessIon.

Hence we conclude that in any correlated system of variables, obeying the law of
linear regression, we ean, withont sensibly modifying the correlation, interchange two
adjacent y-avrays (e.g., two rows of the corvelation table), provided the grouping be
fine. But if we can interchange any two adjacent y-arrays, we ean, by a repetition
of such changes, interchange any two y-arrays whatever; and a precisely similar
statement must be valid for any two w-amays (eq., two columus of the correlation
table). Hence, given a sufhiciently small system of grouping, we may state that in all
cases of linear regression the actual orvder of the seales is tmmaterial as far as the
determination of the eorrelation is coneerned.

The practical importance of this vesult would appear to be great, for it frees us
when dealing with seale orders from the need for supposing normal frequency ; the
indifference of the scale order when determining correlation is still true, provided the
regression is linear ; and this lineavity of regression is not only found from observation
to he very geneml —for [»:h;mnjn]e, in inheritance ]}l'uhlein:-::”—lmt. follows from theor}'
itself in the case of various hypotheses. ¥

In actual practice, of course, the degree of fineness of the grouping is limited by
many considerations, and hence it will often be better to proceed by the fourfold
division method, taking that division where possible at a very distinet classifieation.
But the general prineiple now demonstrated will enable us in future to pay much less

* See “The Laws of Inheritance in Man.—I. Inheritance of the Physical Characters,” * Biometrika,'
vol. 2, pp. 362-3; aleo * Inheritance of Mental and Moral Characters in Man,” ‘ Huxley Memorial
Lecture,” 1903, Jowrnal of the Anthropological Institute,” vol. 33, pp. 185-7.

T “Contributions to  the Thcur}- of Ewolution.—XI1I. On a2 Generalizsed ThEﬂr}r of Alternative
Inberitance, with special reference to MeENDELS Laws.” ¢ Phil. Trans,” A, vol. 203, p. 85.
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attention to the actual order chosen for the scales if we are dealing with a class of
characters for which we may reasonably presume the regression to be sensibly linear.

(9.) It we take the erudest possible division of our material into only four groups,
thus :—

1] (. | [
! . |
-.II [ | ||I £ fi
|
[T S i FR ] | x

::::L*re.‘almnrling to what Mr. Yone has termed the association of two attributes, we

have at onee
'_: L"f-flrj _— 11!"'

:q'_"

b= {(xxvii.),
[rifl — gl )
(e 4= ) (e 4 B) (e 4= ) (el 4 1)

& = (xxvi ).

Now 1t 15 clear that mm this case ¢ reduces to iy’ where i 15 the correlation
between errors in the position of the means of the two characters under consideration,
as determined by a fourfold table, and L is in this simple case what 1 have defined
as the transfer per unit of total frequency.® Both are expressions intimately
connected with the conception of association, and have already been discussed in
relation to it.T The coeflicients, | and C,, of contingency—either of which might
serve as a measure of the association—will not in this simple ease, however, be
necessarily even approximately equal to each other, still less to either the coefficient
of correlation or Mr. YULE's coefficient of association.}

It 1s worth while illustrating this on a numerical example. Taking the small-pox
returns for the epidemie of 1890, we have :(—

Cicatrix. Recoveries, Iheaths, Totals.
Present . . . | S 42 1604
!
Absent . . . a3 HE | 477 1
- |

Totals. . . . 1945 1356 2081

* ¢ Phil. Trans.," 4, vol. 195, pp. 12 and 14.
T Thid,, p. 15 ef seg.
1 ‘Bhil. Trans.,” A, vol. 154, p. 272,
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These give us $* = 0845, x* = 17576, y = "0604. From these we find

C, =278, Co = 190

YuLe's coefficient of association = -803.

Coeflicient of correlation by fourfold division = -595.
Grade of (:t:ttiihgunf:y =1—P* where P = 718/10%.

Now so far as numerical values go these things are all totally different. C,, C,,
and the coeflicient of association depend very largely on where the fourfold division is
taken.t It is extremely difticult to use them thevefore for comparative purposes. On
the other hand, the ecoefficient of correlation with the assumption, however, of
normality 15 free of this restriction : it brings us inte line with other things for
comparative purposes.  The grade of contingeney is also independent in a sense of
the division, .e., it has a definite physical meaning.  What it tells us is this, that the
deviation from independent probahlality in the relation between result, a case of
small-pox and presence or absence of cieatrix is such that the above table could only
arise 718 times in 1OY cases if the two events were .'1|:|ﬁn|utte]:|.' inﬂi—*]:eudent.

If, instead of a table like the above, we take a number of alternative possibilities
for each attribute, the coeflicient of association loses its unigueness of meaning ;
€, and €, still retain their significance, and as the number of alternatives become
greater, merge in the coefficient of corvelation. The grade of contingency, on the other

hand, retains the same perfectly definite meaning throughout. | think this statement
may serve as some warning of the cantion needful in using the coeflicients now
introduced.  The degree of approach of both € and €, to the correlation must be
studied for each speeial elass of cases, and only when this has been done will their

use be rveally legitimate and effective,

(10.) O the Relation between Multiple Contingency and Multiple Normal

Clorrelalion.

Hulh]mm- instead of a Hill,:_{h' corvelation table we have a Itl'l!]tf.lpli‘. Enrl'l.":]:lt-inll ijﬁ-tEmL
Such a svstem is well illustrated by the cabinet at Seotland Yard, which contains the
measurements of habitual eriminals on the old system of body measurements, now
disearded in favour of a finger-print index. We have in this ease a division of the
eabinet into 3 compartments, which mark a threefold division of long, medium, and

* When the number of groups = 4, we have {f Phil. Mag.," vol. 50, p. 157 of 20q.) :—

P -\,/ E |

" I calinad _15}
wi B ll“'-"“{1_:,‘.L:"'xa. xr."'xx .

5
.-"h’rfx 4 '\.rf-r":x"x.
m

=
X

whence P is ensily found if y* I "‘“'i-.'-'-"
i YULE, b il p. 276
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short head lengths. FEach of these vertieal divisions is then sub-divided horizontally
into three divisions giving the eorresponding divisions for head breadth ; each of these
head-breadth divisions has three drawers for large, moderate, and small face breadths.
Each drawer iz sub-divided into three sections for three finger groups, and these again
into compartments for cubit groups, and so on.  If this be earried out for the seven
characters dealt with, we should have ultimately 37 sub-groups forming a multiple
correlation system of the 7" order.®™ We may ask what 15 the mean square
contingency of such a system and to what extent does it diverge from an independent
probability system ! Of course, for an ideal anthropometric index svstem the
divergence should be very slight,

Let ), &, . .. x, be the n variables of a multiple normal correlation surface, to which

the equat-iﬂu s

z = S expt. — } { S, (R %) 4 98, (Do T
{Eﬂ}hﬂlﬂ'ﬂ.-.ﬂtv’{[i y \ H i_l'_‘,_.g i IL D'},ﬂ-!l,'l
Here o, o, . . . o, are the standard deviations of the i variables; 8, denotes a sum

of all values of p from 1 to u, 8, a sum of all unlike values of p and ¢ from 1 to u;
while R is the determinant

IGE e T R e T

Taq s T

Ay S e ST S

Tule T, Tagn = = o . 1

and R, 1s the minor (‘ﬂt'l‘t!HE]:liH]l!lg to the constituent +,. and the +'s are the
correlation coeflicients.
Now if ¢* be the mean square contingency, we have

4:'2 = I;J-:tji: J‘-HL‘ i ]‘ha Lz _- zn}g d’l"'.! rf;;;f 3 "I'r-n

— —_— =i

where 2, = value of 2z when all the s are zero, or

N

L {217}!" 'ITIU'-.J sas Fu

expt. — 4 {H,[-I*'EI\II ].

2
.'Er_p J

Thus we have, writing X, = op’,, Bt

o Eﬂai}i*i E: !-:.{: S :'E S i..]l._} di do'y. . . da',,

* See MACDONELL, “On Criminal Anthropometry,” * Biometrika,” vol. 1, p. 205 sy
t *Phil. Trans.” A, vol. 157, p. 302, or Ihid., A, vol. 200, pp. 3-8.



24 PROFESSOR K. PEARSON ON THE THEORY OF CONTINGENCY AND ITS

whers
|
= expt. — 445, "".’1’" Z"':[/ 2ol )0,
{ 1’P‘,—"R | { ‘ :I‘I‘ g
L= expt. — 1 {8, (2,)}.
Now
*x 4@ @ ol
. I ".1 .r_'_”’l'rll""'flr"',-"“"'+r:"1’!rl"|' ..i“l-r_lll l:l,ﬂ.,-ga s d.‘-.l'n
- — = - —
P e e i)
where
4 = O Oe G o L wn Oy
Copy  Cpmy Cogp - . . Ly,
Caps Cpy Cam - - - Cag
r.:h 'ﬂ.r'!! Caas . . . Con

We are now in a position to find all the integrals involved in the equation for ¢2

we have
1 1 : 1

= —_— = 2 = —re— 1
*SRas
where
ﬁ' = | ER" e EB}'E ER" g'ﬂln
5 e e R RS e 1
2R, ERH =] 2R, 2R,
R * 3 R ¥ E e 2 R
H_ 3 [{. j R 2 ki i ¢ ]{v
2R,  2R. 2R 2B 4
H B He Rl i

To evaluate this determinant, we notice that sinee r,, = 1, we have, if p and g be

difterent,
Rovsy + Bootpy + Bogrs + - - - + R = R.

Royrgt + Beavye + Rgrs + - - - 4 Rt =

Henece
2} ﬂl{
{ }rl"' -R H+Eﬁmfﬂ+... (ER”—]) +. ""’.F'F,,=l
and
21 2R, - ) 2R
—;’“13'?] R *‘+£E ?$+"'+{%&J_I)"‘w+-“+ _:RHTF=_TIF'
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Now multiply the determinant A’ by the determinant R, we find, using the above

relations,
I — e - ey,
ﬂ I{- —_— ].1 — J'|-_::, — F]_” . . . Vi
—— ?'-1::], I., erm! i'ﬂ.. . . - = rﬁ..
AL Sl L o e o =il
—_—0y, =P, = T 1,

= IV, say.
Here IV is R with the sign of all the correlations ehanged.  Hence it follows that

: 1
qB—=JIH-_{;~—1. S S B

Specual Cases.
{1.) Simple correlation

R=R=1—r,% and 4° = r."/{1 — "), as hefore.
(i.) Triple correlation
R=1—#;—r"— . 4 2rg,r.
R' =1 = ry) = 0y = it = 2y e

= — 1.
¢ V(1 = gt = 1yt = 1) = gt Bt

(i) Quadruple correlation
] [ a @ [ i & & & 5] - a c p i L i
RR ={1—r =y’ — ) — v’ — )’ — 7 v it 0y e — 2(reh s

ek e b T e TR
+ e ey T Ty ) | 4§ Pagagtny T Va1 ¥y T Vel oy T Tyt st

and so on.
Clearly a condition has to be satisfied among the correlation coefficients, or the

process by which we have deduced ¢° is not legitimate. We must have A positive for
equation (xxix.) to be true. Now, for nermel correlation R must be real and positive,
or the equation to the multiple correlation surfaces become imaginary. Hence it
follows that A’ must be positive, and therefore Y must be positive. This seems to
gh’? a definite condition to be safisfied i)}‘ the corvelation coefficients, and in some
cases rather narrow limits arve enforeed.  For L*J-:ulnph*, in the ease of fl‘ilrha correlation

we must have

A SRR WL o e
1 Fay L Fla ol Fya

.II.
positive, and this appears to reduce very considerably the possible values for the
0
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correlationship of three characters.®  The source of this novel condition appears to lie
in the integration of the term £ ¢, and this is only possible by use of equation (i.),
provided the surface Z = /L, has * ellipsoidal ™ contours. If' it has not, we may get
the subject of integration becoming infimte with one or other of the a’s, and
eonsequently, although both £ and £, vanish at oo, 5/, may not do so, i.e., the mean
square contingency tends in certain tracks to hecome indefinitely large.  In fact, our
method of deducing multiple contingeney from the normal corvelation coeflicients is only
valid provided the system is not only a possible corvelation system with the wiven values

of the coefficients, but also when these coeflicients all have their Higns‘. reversed,

(11.) Lllustrations. A.—Statwre in Father and Son.

Table 1. gives the distribution of 1078 cases of stature in father and son.f The
correlation r, as found from the produet moment in the usual way, is ‘514

I propose to consider the approach of C; and C, to r as we increase the fineness of
the grouping. Clearly it would involve extreme labour to work out the contingencies—
especially the mean square contingeney—for the table as it stands.

To begin with [ classed in three inch groups and got the following table, in which

tlhl# ﬁ;_:ill"t'!."] i]] II!II'HL’.!'LHtH Aale thﬂ iIlllHl]Hil{]ﬂﬂL EI]?]‘IJE[IIEHHH&.

TapLe 111 —5tature of Father and Son in Inches.

—— S — e ——

Stature of Father.

[ i : i o '_: : Totals. Chanees,
I % = I-; E = e
= k2 & o &
| - - ey
= = = = = =
loeisosn| — 15 2 ' §:5 | -0033
{-05) (- 38) {120y (1-32) £:B0Y | (:D3)
G1-5-64-5 | 3-5 14 a5 5-5 1-5 25 G2-5 (380
(-84) | (6-50)| (21-T5)| (23:87)| (9-02%| (-55)
z G4-5-BT:5H 85 53-75 | 148 a0-5 g-95 : ) AT
o (4:02) | (31-07) | (104-03) | (114:15) | (4514} (2:64)
= B7-5-T0-5 | 2-5 33-05 | T49-25 | =S02-95 | 60-25 | 3-5 451 J184
@ (6-07) | (46-26) | (156-00) | {172-17) | (G5-06}  (3-97)
= T0-5=T35 3-5 3075 | 104-25 32 30 213 1976
5;‘_ (2-87) | (22-13) | (74-10)  (81:31) | (30°73) | (1-28)
: 73-5-76-5 = 1 ] 145 20-5 2-5 41-5 (385
(=56) | (4-31) | (14-44)| (15-84)| (5-99)| (*37)
| 765795 — it 4i-5 3 70 (0G0
{(-10) (-77) (2-50) (2-5id) 1-07) | (-07)
| |
Totalz , .|14:5 |112 375 $11:5 1555 05 1078 1 - 0000

* For example, if *5 be the value of parental eorrelation, then the correlation of two brothers conld not
exceed -5 withont making 1Y negative.
T Bee  Biometrika,” vol 2, p £15,
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The independent probabilities were found by multiplying the *chances” of a son
occurring in each group by the totals for each group of fathers. Taking the difference
of the observed sub-group frequencies and the independent probability frequencies, we
have N % i = 205°62 from the positive and = — 20566 from the negative differences,
a quite good agreement. Hence we find § = 1908,

Using Diagram I we have

Cy= 522

Proceeding now to the mean square contingeney obtained by squaring all the above
found contingencies, dividing each by the independent probability frequency and
summing, we find

¢* = 2755,
whence
C, = 465,

The value of C, is clearly too small. We must infer that our grouping was not
fine enough. Accordingly in Table IV. T have re-arranged the matter in 2-inch
groupings, and have then in the same manner proceeded to find v and ¢°  In this
case | found ¢ = 2013, and thus

¢, = 542,
while
¢* = 3568,
and
! = 513,

I thus conclude that the grouping is now fine emough to give C, and (),
approximately equal to the correlation.®

* ie, within the probable error of that result,
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TarLe IV.—Stature of Father and Son in Inches.

Stature of Futher.

Totals, Chanees.

i [ e 1 4 4 <
| 2 | & | 3 3 2 7 S
s.=a = nli.- s.'1. 1.1,- w3 el = it
2 g 2 z & z = i =
I
A6l h | — - 15 1 1 - = = : 33 003
(ozy| (os)| (A1) (I sy | By (4 (-An)) (02
Gl "5-63 5 b | Z 70 ey -5 B N arn - — LY M e 1]
| {14y [ (56} (2-00) | (6-20)| (649) | (5-73) | (283 (-F2) (1%
| 63 5-055 4 | il ) 41 -5 17 25 H-Ih 125 - - 10Kk T
[ (60) | (2-82) | (8-81) | (22-03) | (27 -04) | (23 -80)  (11-F8) (3-001)  (-6L)
: 65 '5-67:5 | 2 | 10 a2 i RS | 35 725 | 1 — 237 5 e
= (1-83) [ (5-51) | (20-03) | (52-33) (G 56 (27 -08) (7 -16) | (1-21)
£ gregetps | — | 45 | 2@is | 65 sy Ea s nen 20063
= (U-85Y | (7 -49) | (28-46) | (T1-06) | (57 38) | (77 15) | (385080 (D-T48) | (165
z £t 5-71 5 i | = G:7h | 3825 | 6l i) ELa ) 11 2 236 218402
2 (0 -42) | (5 47) | (20-80) | (61 -09)  (G3 82) (56 -4F) | (27800 (7 11) | (1 20)
E | 7167856 | — - 25 | 575 | 2475 | 345 | 8226 7 5 | 105 AT A
= (63) | (Z-44) (0-5) | (23-13) | (28 -30) | (2608) | (12-3F) (317} | (50 S
I TEH-7E5 | — — 1 i 625 | 476 | 13 55 2 275 40
| (-28) | (87)| (3-31)| (8-26) | {10-14) | (B-H6) (4-42) (1-13)| (1M
| T5:5-F7 5 e ] T | = 25 | 15 15 ¥'3 - H AT 4R
08y | (18 (-Poy | (u-Fe) | (Z-aG) | (L) (BB (2B (ol
Tra-fo8 | — — - - TR 5 1 [ sl ooger
{ (o) | (08) ()| (FT)| (95)| (B4 ()| (1D} | (r02)|
{ |
Totals. . 6% |23 a5 237 5 291 -5 25T 5 127 25 | 55 1175 1 ARRHHD

To show the effect of too fine a grouping, I worked out the mean contingency for
the inch grouping in Table 1I.  There resulted

¢ = 2309, giving C, = *597.

[ therefore conclude that with sufficiently fine grouping the new methed of
contingency will give contingeney coefficients sensibly equal to the eorrelation
coeflicient. But that with over fine grouping, the effect of individual units seattered
here and there at random over the table, becomes influential and exaggerates the
value of the correlation, Hence, when a correlation table can be formed and worked
in the old ways, there is little doubt that it is safer to do so, and the labour will
hardly be sensibly greater, at least when compared with the method of mean square
contingeney. 1 have not faced the labour required to determine the mean square
contingeney of the table with 340 sub-groups. Dr. Lk has worked out the mean
square contingeney for a table with 400 sub-groups, and we do not think it desirable
to deal with a table of more than 10° to 15° entries agalir:l, Still the mean srpuare
contingeney coefficient will hardly be as great on the full table as the mean
contingeney coefficient,

The following table gives the results —
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ComparisoN of Methods of Finding Correlation.

No, of Mean Mean square Founrfold Corvelation |
ErOlpings. comtingeney. | contingency. | division. [ talile.

o ! =g sy aidveen oe L | =

| | ||

42 R ] | { Mean of six divisions)® | — |

90 “542 -513 =550 5 - i

G40 «HOT — | — | Hld '

Thus the first contingency method approaches the fourfold, the second, the
ordinary correlation method.

Diagram I1 at the end of this memoir gives the hyperbola of zero contingeney for
this case, caleulated on the basis of the eorrelation coeflicient being 514, The means

amd standard deviations are :—

Father . . & G7TYROR, 27-T048,
e e B s GETRG1, ke 8

and the equat ton to the h}'pE!l'h‘.ﬁlﬂ. referved to the means as the ﬂrigill is
at — 38522y + 98017 = 62510,

The shaded squares are those of positive contingency. It will be seen that the
hyperhola separates fairly well aveas of positive, from areas of negative contingeney.
In most cases where there is an invasion across the boundary, the eontingencies
hardly differ from zero by amounts greater than the probable errors due to random

F;.‘.ll'll}]].i]]g.

HMustretion B.—Date from Colowr Inheritance in Greyhounds.

In the previous example we have dealt with material in which contingeney methods
were direetly comparable as to result with the correlation found by the * hest " or
product method process.  In this illustration I deal with matter which can only
provide a correlation to be found hy the fourfold division process for comparison with
the contingeney coefficients.  The data from which this illustration is drawn were
extracted by Miss A. Barrixorox from the * Greyhound Studbook.’ We deal with
the inheritance of red and black pigmentﬂ in the eoat colour. I have selected six
cases of the resemblance of brethren from different litters to compare the methods on.
Tabies were formed giving 16 to 25 contingency sub-groups of varying degrees of
pigment, and these were worked out («) by Miss BarrixgTox herself for the mean
sqquare contingeney, (b) by myself for the mean contingency, and (c) by Dr. A. Le

* Bec * Phil. Trans.,' A, vol. 195, p. 42,  The values range from -521 to 504, or almost the same range
as we obtain from the mean contingency results,
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for the fourfold corvelation results. The results reached are given in the accompanying
table. It is desirable to state that the number dealt with was about 1000 pairs of
brethren in each case.

Tapre V.—Fraternal Resemblance of Grevhounds from Different Litters

: Cp. Mean Square Cs, Mean Porirtold Tuble
Character. Contingeney., Conmtingency. r, Fourfold Table.
Ited in brothers . . . . . . . ~47H R = 456
BRI 11277 T e e e D28 ‘612 =620
o gister and brother . . . . 58 "G15 el
Black inm brothers . . . . . . . 012 Gla
T N T e i e i b "3 g
gister amd brother. . . . gt [ SH2a =503
T e e R LT i “h3s
Mean deviation from mean . . 016G 32 -057

We see at once from this table that the method of mean square contingency zives
far morve uniform vesults than either the mean contingency method or the fourfold
division method. The average given by it is close to what we have found for
fraternal resemblance, i.e., "3, in other cases, and within fairly close limits, all six
cases now give 'd.  The mean contingency gives results more divergent among
themselves, but less so than those of the fourfold division method ; their average,
however, diverges most from what we have found in other cases.

The lesson, I think, to be learnt from this is: That the mean sguare lft}llliltt_‘f’l']][“l'
coeflicient, :ﬂtlluugll more laborious to find, is better than the mean 1:4mtiugl_-.||{-._1..-
coeflicient.  That even with ::111_\’ 16 to 25 u::m]f,ingﬂm:_',‘ mlh-gruu]]:-e W Iy deduce
results comparable with those obtained by fourfold divisions.  But that it is probably
always necessary to check a series by a certain number of fourfold division workings,
for such are the only test that we have not got too crude a grouping reducing the
contingency coeflicient below the correlation value, or too fine a grouping introducing
the ditficulty alveady referred to (see p. 16), of magnifying the contingency coeflicient
owing to anomalous units.

Husivation C.—Hair Colowr e M.
1 take the suhject of hair colour because it 15 one i which doubts have been raised

as to the order of pigments in a scale,
The following table gives the resemblance of pairs of brothers in hair colour :—
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TasLe VI.
First Brother.
e - Totals.
Iedd Fair, Brown. Diark. Jet Black.

o Red S0-5 i 16 12 — g5

= o Pinse s wf =t a5 116 | 1538 T=Th a5 G650
7 :g Brown, . . .« . 16 158 [ 394 O8-35 #-25 [
j'E Dhacple-c o op o i 12 GV-T3 98- 25 3385 19 DEh:h
Jot Black . . . - =20 8-35 149 10 375

Taotals . 815 GG [ 674-5 o250 75 1984

The correlation found by taking the mean of four four-fold table divisions was “621.*
This result is based on the above scale order. We will now see what difference will
arise if we work by contingency, so that the seale order is absolutely tudifferent, e.q.,
red might follow jet black.
We find
$* = 603896,

and accordingly C); = ‘614, a result within the limits of the probable error identical
with the value of # found from the four-fold division method.

This illustration eonfirms the opinion I have already expressed, i.e., that if the
contingeney be caleulated for 16 to 36 sub-groups we shall obtain by the method of
mean square contingeney satisfactory results, <., values close to the coeflicient of
correlation as found by product moment or four-fold division methods, In this case,
as in others, I find the mean contingeney far inferior to the mean square contingeney.

My experience seems to show that about 25 sub-groups is the distribution to he
aimed at; 9 is too few.  Thus I worked out the relationship of temper in sisters for
three-fold division—sullen, good-tempered, quick-tempered—or for 9 sub-groups.
The method of mean contingeney gave 44 and of mean squared contingency -36.
Baoth far too small, as T find from each of four four-fold divisions a result of ahout 5.

Hustiation D.—0n Ocenpational or Professioncl Correlation between Relatives.

I take as a final illustration a case in which any idea of seale is praetically
neoneeivable, and yet one in which it iz of consideralble interest to measure the
deviation from independent probability. It belongs to a class of problems in which 1
hope this new method of contingeney will be fruitful of result.  In classifying men
into Hl.‘k‘-lllniliflllill and |:1'ut'l:':-5:-1'|u:||4|1 groups, we t;l-:u.rl:-,r cannot do so on the basis of Ay

* 4 Huxley Memorial Lecture,” ¢ Jowrnal of Anthropological Institute,” vol. 35, pp. 197 and 215,
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seale which will put the army, church, and bar in any special order. On the other
hand, it becomes of special interest to determine how far tastes and preferences for
particular callings in life run in families. Miss EmiLy PeErrIN has undertaken a
lengthy investigation of this kind, and has provided me with the pure contingency
table given as Tahle VII. The occupations of 775 fathers and sons arve here classed
in broad general groups, which ean be arranged purely alphabetically. More minute
divisions and data for other series of relatives will be published later by Miss Periix,
and it 1s not my present purpose to anticipate her conclusions, but merely to suggest
the valuable applications which may be made of the novel methods to pure
contingency results. What is the numerical measure of the relationship in pursuit
between father and son, and how far is it removed from a mere chanee relationship ¢

TaprLe VIL—Contingeney between Oeccupations of Fathers and Sons.

DL'I:II]_JiI.t-iL:H of Son,

g iy VE
= | B -
Nature of oecupation. % E 5 ® | b | e E., gi ]
| 3 | Z18| |88« 3|5
o 5| £ | E |5 |8 x | E2
&l |fE|8|E|18|2| |E|E|2|x|E|28 =
| = = | B O RIS |A R0 | R K& |« =
1
| e S | || A e 18
Army . .| 28 1= = | N R 5| 2 |50
‘:\rb = Ry o e R 1 1 1 2| — ! 1 D= = — 1 1 | G2
Teacher, Clerk,) | i - ; 2 [F b
| Civil Servant, | wll e ne il i i i =L ) e DR [0 B (et IR R
2 | Crafte . . .| — 12| — b D= F— 0 LT Ll 3 ==t —| 107 | 44
-é | [}Ivirllity y 5 L] a2 b E e | L= (] 9| &£ (12 3 1| 13 :]]."1
= | Agriculture . — 2 J |—| 3/ =!=| 1| 4| 1 Bl S b R
| Landownership 17 1 T P S [ ] |t | I 5| (17| 7 [Bs
= | Law E ) I T [ S BT 218 | 13 1 1 5 B | 62|
£ | Literature — 1 1 - 4 —- 1 i 4 | — 2| 1 1 | 19 |
Z ’ Commerce 12 | 16 4 1|15 — | = 5005010 & 1] 7| 15 los |
£ | Medicine. ! L) el | S [ e == | 3| — 2 - | & 6 | 41 |
= i\’a;-:,r. ko s W B TR (e e Sy = S (B TR il (R T 0 1
Politics and i o [
T, 0T | = b | £ | 1 = 2 323 | 1. | a1 |
Scholarship Sl - : ' ! |
nlldﬁm'murve} e e R R e i BT R
I - ' [ |
| ' . | i TR =
Totals . .| 84 108 i i 11 22 | 1|15 | 64 | 60 | 24 | 57 [(23 T4 | B6 [T7d
IEae | | | |

Miss PERRIN has extracted this first series from the * Dictionary of National
Biography” ; hence she has, as a rule, tabled the distinguished, or at least moderately
distinguished, sons of less distinguished fathers. 1t is, for example, not easy to win
any form of distinetion in agriculture. For this reason the distribution of oceupations

E



54 PROFESSORE K. PEARSON ON THE THEORY OF CONTIKGENCY AND ITS

for sons differs widely from that of the occupations for fathers. There has aecord-
ingly been selection of the second generation, which undoubtedly must influence the
result, i.e., tend to weaken the observed relationship.

Working out the 196 contingencies, squaring, dividing by the independent

1:-:-:1]}%1115]5’(_}' frequencies, summing and averaging, I find for the mean square
contingency
#* = 1299206,

/(1 + ) = 393794,

whence

and "the coefficient of mean square contingeney = '6275. This would correspond to
the correlation in oceupation between father and son. Now if occupation were settled
solely by fitness or taste, and these characters were inherited as other human faculties,
we should expect the correlation between father and son to he about “46.* Or,
roughly, the hereditary relationship is inereased by about ! in the matter of
u-c{:lllmtimi, Hemﬁmhl*t‘ing what we have noted as to selection above, the real
increment is probably somewhat larger than this. Roughly, however, we may
conclude from Miss Perrix's data that about # of the observed resemblance in
occupation between father and son is due to hereditary influences, and the remaining
4 to environmental effeet.  These numbers are subjeet to revision when Miss PERRIN'S
data are more ample and have been more fully analysed and diseussed,

(12.) General Conelusions. "

The general conception of contingeney developed in this memoir I consider in the
tirst place of theoretical importance.  Its practical applications are not negligible, but
are, for reasons given below, of less importance than might & pieori be supposed.

(a.) In the first place, the conception of contingency enables us at once to generalise
the notion of the association of two attributes developed by Mr. Yure. We can class
individuals not into two alternate groups, but into as many groups with exclusive
attributes as we please, and either the mean econtingency or the mean square
contingency will enable us to see the extent to which two such systems ave contingent
or non-contingent.

(2.) This result enables us to start from the mathematieal theory of independent
probability as developed in the elementary text books, and build up from it a
generalised theory of association, or, as I term it, confingency. We reach the notion
of a pure contingeney table, in which the order of the sub-groups is of no importance
whatever.

(c.) We then investigate the relation of contingency to normal corvelation, and
find that with normal frequeney distributions both contingeney coeflicients pass with
sufficiently fine grouping into the well-known correlation coeflicient. Sinee, however,

# ¢ Biometrika,' vol. 2, p. 370,
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the contingeney is independent of the order of grouping, we conclude that when we
are dealing with alternative and exclusive sub-attributes, we need not insist on the
importance of any particular order or seale for the arrangement of the sub-groups.

(p.) This conception ean be extended from normal correlation to any distribution
with linear regression ; small changes (i.e., such that the sum of their squares may
be ueg]uc:tﬁr] as Ci‘.l]ili]u'll"t‘!d with the s uare of mean or standard []{"'\'iiﬂiﬂll} iy TS
made in the order of grouping without affecting the correlation coeflicient.

(£.) The results (¢) and (p) are not so fruitful for practical working as might at
first sight appear, for they depend in practice on the legitimaey of replacing finite
integrals by sums over a series of varying areas, where no quadrature formu 4 is
available. If we, to meet the tﬁﬂ"t!}l'llt-_}', make a very great number of small elasses,
the ecaleulation, especially of the mean square contingeney, becomes excessively
laborions, Further, since in observation individuals go by units, casual individuals,
which may fairly represent the total frequency of a considerable area, will be found
on some one or other isolated small area, and thus inerease out of all prulmrt[nn the
contingency. The like difficulty oceurs when we deal with outlyving individuals in
the case of frequency curves, only it is immensely exageerated in the case of
frequency surfaces,

(F‘_:l It 15 thus not desirable in actual l]l'ilﬂt[ﬂl": to take too many or too fine sub-
grﬁuljings, It is found, under these conditions, that the correlation coeflicient as
determined by the produet moment or fourfold division methods is approximated to
more closely in the case of the contingency coefficient found from mean square
contingeney than in the case of that found from mean contingency. Probably
16 to 25 contingency sub-groups will give fairly good results in the case of mean
square eontingeney, but for each particular type of investigation it appears desirable
to check the number of groups proper for the purpose by comparison with the results
of test fourfold division correlations. Under such conditions it appears likely that
very steady and consistent results will be obtained from mean square contingency.

(¢.) Finally, contingeney may be applied—of course, at first tentatively and with
eaution—in the consideration of a whole elass of [JI'uhIﬁ!'lIE-] in whieh no attempt at a
seale or order of sub-groups is possible, in short, where alphabetical order is as good
as any other. For example, it would seem to be available in a vast range of problems
of exclusive and alternative inheritance,
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Diagram II.  Illustrating areas of positive and negative Contingency and the Hyperbola of Zero-

Contingeney.
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N.B.—Owing to an oversight on the part of the engraver, the alisolute squareness of the elements in the
original drawing has been disregarded in this reproduction.
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Mathematical Contributions to the Theory of Evolution.—XIV. On the GGeneral
Theory of Skew Correlation and Non-linear Regression.

By Kari Prarson, F.R.S.
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(1.} Introductory.

Ix a series of memoirs presented to the Royal Society I have endeavoured to show
that the Gaussian-Laplace normal distribution is very far from being a general law of
frequency distribution either for errors of observation® or for the distribution of
deviations from type such as oceur in organic populations.¥ It is quite true that the

* “On Errors of Judgment, &c.,” * Phil. Trans.,,’ A, vol. 198, pp. 235-299.
f *On Skew Varintion, &c.,” ¢ Phil. Trans.,” A, vol. 186, pp. 343-414.
A 2




4 PROFESSOR K. PEARSON ON THE GENERAIL THEORY OF

normal distribution applies within certain fields with a remarkable degree of accuracy,
notably in a whole series of anthropometric, particularly eraniometric, observations,*
In other fields it is not even approximately correct, for example in the distribution of
barometric variations,t of grades of fertility and incidence of diseasef For such
cases | have introduced a series of skew frequency curves which serve the purpose of
deseribing the frequency of innumerable skew distributions well within the errors of
random sampling. An exact test for * goodness of fit” in the case of frequency
distributions has also been now provided.§

In dealing with frequency which diverges more or less conspicuously from the
normal law we require to bear in mind at least three important points :—

(i.) Any expression for frequency must be a graduation formula. It is not a
disadvantage, but a fundamental requisite that it should smooth off * Scheingipfeln,”
so far as these are irregularities within the limits of random sampling.

Hence formul like those provided by THieLE|| and Woxpt's pupils,¥ which depend
upon tzlt{ing em:u;__;h “moments” to mpmduue the l.'.'.ﬂl'l'l]l]t}tlj frequency, are @ In'r'ori.'
fallacions.  Many interpolation formule would do this completely, but such inter-
polation formulse are not graduation formulee.

(1.) The graduation formula must not depend upon the ealeulation of constants
having such a high probable error that their value is practically worthless.

Now, the probable error of high moments and produets increases rapidly with their
dimensions ; hence there is, beyond the labour of arithmetic, a practical limit to the
number of moments or products which can be effectively used in a graduation
formula.

(i1i.) There must be a systematic method of approaching frequency distributions,
which ean be applied to all eases with reasonably practical ease.

Now the immense majority, if’ not the totality, of frequeney distributions in homo-
geneous material show, when the frequency is iudﬁﬁuitﬁly inereased, a tendency to
give a smooth curve characterised by the following properties :—

(i.) The frequency starts from zero, increases slowly or rapidly to a maximum, and
then falls again to zero—probably at a quite different rate—as the character for which
the frequency is measured is steadily increased. This is the almost universal
unimodal distribution of the frequency of homogeneous series. Homogeneity may

* ¢ Biometrika,’ vol. I, p. 443 ; vol. 11, p- 344 ; vol IIL., p. 230.

t ‘Phil. Trans," A, vol. 190, pp. 423-469,

§ - Phil, Trans.,' A, vol. 192, pp. 257-330 ; © The Chances of Death,” vol. L, pp. 69, ef seq. ; * Biometrika,’
vol. [, P 134 and po 208 amd for disease, * Phil. Tranz,” A, vol. 186, pp. 390 and 407 ; A, vol. 197,
P 1569,

§ ‘Phil. Mag.' vol. 50, 1900, pp. 167-174, and * Biometrika,” vol. L, pp. 154-163.

|| *Forelaesninger over Almindelig Iagttagelslaere,” Kjobenhavn, 1889; ‘Theory of Observations,’
London, 1903,

i WuxpT, * Philosophische Studien.” A whole series of papers, by (3 F. Lirrs and others, secms to me
to quite miss the point of (i.) and (ii.) above.
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for practical purposes be taken to imply unimodality, although the converse is very
far from true.

(ii.) In the next place there is generally contact of the frequency curve at the
extremities of the range. These characteristics at once suggest the following form of
frequency eurve, if yde measure the frequency falling between @ and w48 . —

For in this case we have one mode only of the frequency, ie., at a=—a, and
dy/dx will vanish when y=0.

But the assumption of this form, as long as F(x) is general, is itself extremely
general, and it includes eases in which dy/dr may not be zero, but take any values
from 0 to =< , when y=0.%

Now let us assume that F(x) can be expanded by Macraveix’s theorem, and
equals b,+be+ba* b4 .. .. Then our differential equation to the frequency
will be

l dy _ x4+a =
ydr bydbaetbaxibady ., 0 77 T L

There is now absolutely no difficulty in determining the unknown constants in
terms of the moments of the system.  Multiply up and also by 2, and then integrate
throughout the range of frequency, we have

]'.r--{iﬂ,+h,.-c+£;5,-cf+hﬁ.ﬁ+...):jga.;;: jy{.{;-pu]mf.u S ey T

Or, noting that y=0, at the ends of the range we have, with the usual notation for a
total frequency N, e,

Ny, = J-H.'ﬂ"f.f..t: 5 R e s S [ 2 B
the result by integration by parts
nbgpls oy (1) byp's + (042) bop' oy + (0 43) b+ . . =—pl—aps (V).

Hence, if we write u=0, 1, 2, 3 . . . s successively, we have s+ | equations to find
tb, by, by, by .. b, in terms of the moments. For example, it we stop at b, we
require two moments, at b, three moments, at b, four moments, at by six moments, at
b, eight moments, and at b,_,, s>>2, 25—2 moments.

* For example, cases in which there is a minimum frequency or antimode at £ = — a, and dy/dz infinite at
one or two values for which y =0, as in the frequency distributions discussed in * Phil. Trans.,’ A, vol. 186,
pp. 645, and * Roy. See, Proc.,’ vol. 62, P 287, * Cloudiness, a Novel Case of Frequency.”
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There is no difficulty whatever in finding the b's; we have the system of equations ;
where p',=1

wor+0X b+ piob +2p" by +3p'byHap'sb+ . . . ==y
phat @byt 2p' b+ 3pbt 4+ 5p' b+ . . . ==l
wont 2p by 3pab Hap by +5p by HOp D+ . L L ==y
30 3 shy+ 4p'yh B by + 6 by +Tplb+ . . . =—p,
ot A+ 5 by 6 B+ Tplehy +8ub . L =—y
A G R B e e S e s e s o s  (E

Hence, a, by, b, by, by, .. . are at once given in terms of the determinant A and
its minors, where :

¥

= ¥y 0, o 2p) 3”‘191- dply, . . . |
,li-"p Hop 2#111- 3y, ‘1ﬁ",3! 51‘!4:
F"az ' EF-!], . 1T 4#’31 T T
Mo 3ps  dply By, 6, T
Fo Apy BWy 6p T Buh,

(vil.).
The results may be simplified slightly by taking the origin at the mean, and the
moments about the mean, indicating this by dropping the dashes and putting p',=0.
Thus we have the following series of frequency curves, the m'igh] ]n;ing the
mean :—
(i.) Keeping b, only
= i fpes s 0 R LR S T

This is the Laplace-Gaussian normal form.
(ii.) Keeping &, b, only

.E!+F'3
1dy _ L TR S o O

ydx_—_ _EE.
4 Ly
pato

This is the Type 111 eurve of my memoir on skew variation.®
(ii.) Keeping by, b, b, only
el
l_dy=_ 10pqpe,—18p"— 120" (x.).
y dx Py (dptape,—3ps) o (pat3ps®) 4 Zpap—3ps—0pt
10pgp, — 18py"— 12p* * 10pgpe,—1 Bpg'—12pg* L0papey— 184y — 12p2°

# i Phil. Trans.,' A, vol. 186, p. 373,
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This equation gave Types L-VL of my two memoirs on skew variation,* and
provides at once the expressions

d = distance from mode to mean = 2'::;;;8'_{&55?-_1;‘:} Bl = XL
skewness = VB, (B:+3) S T SRR [ | B

2 (58— 68,—9)

where o = v/, B, = ps¥/p’s Ba = py/ite?, given in my memoir on the theory of errors
of ohservation without proof.t

There is no theoretical limit, however, to this process; we can from (vi.) and (vii.)
express the « and I's at once in terms of determinants, and pr:‘lllding obtain forms
which, like the formulsm of TaHieLe, will fit ecloser and closer to the ohserved
distribution of frequeney, the more moments we take. But there are three fundamental
practical objections to this.  These are the ﬂ":-“ﬂwirlg p—

(«e.) Experience shows that the form (x.) suffices for certainly the great bulk of
frequency distributions, i.e., it deseribes them effectively within the limits of random
snmlﬂing.

If the distribution be even appmx{mntely normal, the series in the denominator
CONVErges very |'.'1,|1Erﬂ:|.r, for the coefficients of every power of x vamsh for moments
obeying the relationships :—

ey =0, po, = (25— 1) popia, s,

which hold for a normal series.

(b.) The labour of arithmetic and of analysis becomes very great, if we desire to
keep higher moments, If we go to 5, we should have to caleulate the first eight
moments of the observations about their centroid —a by no means easy task. Further,
the classification of the resulting curves and the eriteria for the right one to use in a
special case, although not absolutely prohibitive, if we only go as far as by, are for
practical purposes idle in the case of taking into account b,

(e.) The probable errors of the higher moments are so large that the values found
for p., pg, &e., arve quite untrustworthy, and even that for p, is doubtful ] unless we
have frequency series far larger than usually oceur in aetual observations, This is a
strong argument against the utility of any descriptions of frequency, such as those
suggested by THieLe or Lipps, which depend upon moments higher than the fifth
or sixth.

* ¢ Phil. Trans.,' A, val. 186, pp- 343-414, and ¢ Phil. Trans.," A, vol. 197, pp. 443-459.

t ¢ Phil. Trans.," A, vol. 198, p. 277.

{ In *Phil. Trans.," A, vol. 185, pp. T1-110, I have given a method of hrlla]{!ing up a frequency
distribution into two normal series. I obtained long ago the criterion for determining whether such a
resolution is possible or not.  But it involves moments higher than the fifth, and the prohable error of the
eriterion is thus so great that for practical purposes it is worthless.
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The question of the probable deviations of the higher moments can be illustrated as
follows, by finding the standard deviation of the moment when we take a number of
random samples from a general population. Let ¥, be the standard deviation of p,,
then 100 %, /u, is the percentage variability of p, due to random sampling. The table
helow shows the inerease of these percentages in the ease of the moments of normal
distributions, which, quite as well as any other, will illustrate the rapid increase in
probable error as we use higher and higher moments. The general values of the
gtandard deviations of some of the moments were first given by Czurggr,* then
far more completely by Smerparp,i and a wdsumé of all the results recently in
* Biometrika.'}

PercesTAGE Variability in Moments due to Random Sampling when the Series
18 supposed to be Normal.

Moment. 500 in series. | 1000 in series.
: 63 45
1y 146 10-3
™ 30-1 21-3
s , 60- 6 42-9

Precisely the same rapid increase takes place when we find the variabilities of the
ratios p,/po®, e/’ wo/pst, &e., which are the forms in which the moments actually
oceur in our coefficients. In this case we have to remember that errors in the
moments are correlated, but the correlations are given in the papers cited above.§ I
find in this case the following series, which is almost as suggestive as the previous
table.

PErcENTAGE Variabilities in Ratio of Moments due to Random Sampling, the
Series being Normal.

f Ratio, 500 in series, ‘ 1000 in series.
praf pes’ 73 | 5-2
peaf g 23-3 | 16-5
paf s 55-1 ; 39-0

The order of this increase of percentage variability, and therefore of probable error,
is the same for skew as for normal variation, and it seems therefore, with the length

* «Theorie der Beohachtungsfehler,” 5. 130, of seq.
t 'Phil. Trans.,' A, vol. 192, pp. 123, & seq.

{ Vol 1L, pp. 273-281.

& Ihd, p 277,

]
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of the series in customary use, idle to use the 7" or 8" moments; these have
variabilities \ra,r}ring from 30 to 60 per cent. of their values, and z‘ll:t!nr:lin;__{l_}' we lnight
easily on a random sample reach a 7" or 8" moment having half, or double the value
it actually has in the general population. Clonstants based on these high moments
will be practically idle. They may enable us to deseribe closely an individual random
sample, but no safe argument can be drawn from this individual sample as to the
weneral population at large, at any rate so far as the argument is based on the constants
depending upon these high moments.

[t seems to me accordingly obvious that, bearing in mind the object of a theory of
frequency (i.e., the description of the distribution in the general population by aid of
a graducted sample, agreeing with the general population within the probable errors
of random sampling), we can dismiss from practical use all theories which call upon
us to use moments as high as the seventh or eighth. Any use of the general form
(ii.) beyond by, indirectly or directly, involves such higher moments. Personally I am
inclined to doubt whether the continental series using higher moments are, from the
standpoint of graduation, nearly as good as my form (ii.).

Hence we seem driven to the skew curves embraced in (x.) as a practical frequeney
series. 1f we have a frequency not described by (x.) we may, perhaps, use p, and pg.*
but 1t 18 datticult to see how its descriptinu can possibly be bettered by the use of
still higher moments. This may seem a counsel of despair; but it is very far from
being so in reality when we remember that (x::l has proved its efficiency now—I might
almost say, without exeeption in a wide range of economie, physical, biometrie, and
hﬂtlli‘ll‘iﬂi d':l.t-':l..

In this memoir on skew correlation 1 shall :u!m—n'ditlg]}' confine my attention, for the
most part, to constants the discovery of which does not involve the wse of moments
or produets of higher than six dimensions, judging all above this limit to be, as a rule,
disqualified for practieal service by the magnitude of their probable errors,

{E,} Fereralized [dec -bf Clorrelation.

Given any two variables or characters A and B, we say that L}]E_‘J.’ are correlated
when, with different values x of A, we do not find the same value y of B equally likely
to be associated. In other words, certain values of B are relatively more likely to
oceur with the value a than others. The distribution of B's associated with a given
value = of A is termed an z-array of B's. If N pairs of A and B are taken, and n, of
these have the character A = &, these u, form the z-arvay of B's. This array, like any
other frequency distribution, will have its mean, which we will denote by 7., and its

* Referring to equation (ii.), I propose to call eurves which stop at & skew curves of the ¢ order.
Thus the normal curve is a skew curve of zere order; curve of Type 1L is a skew curve of the 1* order;
Types 1., IL, V., and VL are of the 2" order. [ hope shortly to publish a discussion of skew curves of the
3" order to complete the practically legitimate range of such curves.

B
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standard deviation, which we will denote by o,. The mean of all the B characters
shall be 7 and their variability given by the standard deviation o,. Similarly Z, o,
will denote the mean and standard dewiation of the A's, and =, &, and o, the
number of individuals, the mean and the standard deviation for a y-array of A's.

Now clearly a l-.‘.mm'hdgE of 7. and e, will not fix the B's which will be found
associated with a given A, but it will define the limits of probable or even possible
B's. The eurve obtained by plotting #. to x is termed the regression eurve of y on .
A curve in which the ratio of o, to the standard deviation e is plotted to # may be
termed a scedastic® curve. Since the standard deviation is always a positive
quantity, this eurve always lies on one side of the axis; it is a horizontal line in the
case of normal correlation—i.e., the Gauss-Laplacian distribution of deviations—and
coineides with the axis, in any case where correlation passes into causation, z.e., when
one value of B u:ml:,r is associated with each A.

The mean ordinate of this eurve would elearly be a sort of general measure of the
degree of correlation between A and B, but it seems for many reasons better to base
our measure on the mean square of the weighted standard deviations of the arrays, or

e I3=Bine N . . o o ()

o, will thus measure the average variability in B to be found associated with any A,
its vanishing will mean that the scedastic curve as defined above will coincide with
the axis. Now let a new quantity », defined by

ol = (L=l e et

be introduced.. Then elearly % must lie between 41, because o, cannot be negative,
being the sum of a number of positive squares. I term 5 the correlation ratio, to
distinguish it from the corvelation coefficient represented by . When »p=41 the
correlation is perfect or we have causation. Further we have by a well-known

property of moments, it ;
o= Simo(yr—aFHNL L s e

IT,E = o'.n.2+ o'l,gr
or X
DI G R B A e

This shows us that the correlation ratio is the ratio of the variability of the means
of the ax-arrays to the variability of B's in general. If y=0, it follows that o, is
zero, or from (xv.) that every y, =4, i.e., there is no association of B's with special
A's at all, or correlation is zero. Thus the correlation ratio #, as defined by either
(xiv.) or (xvi.), is an excellent measure of the stringency of correlation, always lying
numerically between the values 0 and 1, which mark absolute independence and

* [e., acurve which measures the * scatter " in the arrays.
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complete causation respectively. Further, remembering the definition ot », the
coefficient of correlation, i.e.,
No.o,xr = S{n,, (2—7)(y—g)i,
= B (z= 2=} - - . . . . (avid)
we have, from (xv.) and (xviL),

N (=) 0 = 8 [ s (.= ) (g = "% (0=} |
Now let
Y= §+f;;‘-i’r|[x—5~}| e n oy el )
then (xviii.), as is well known, gives the best fitting straight line to the series of
points ¥, loaded with their respective #.. We can now write

N (=) 0,2 = S, (g = V) 4 S, (Y= ) (. V).
But, using (xviiL),
S {ne (Y—7)(gn—Y)} =’_;’;ra I:n_.[x—-.ﬁ}{y,,—— g— ’E{m_;r;;.}] :

1T, Ty
— ¥ L\N?‘a’,u’,— *N r:rﬁ) ’
ﬂ‘: FI

=,
Thus the last summation vanishes, and we have
Nint=tod=0in . —XPrF = . . . . . (z=x}

The right-hand side must always be positive, unless 4, =Y, when it is zero. Hence
we conclude that n is always greater than », or the correlation ratio greater than the
correlation coefficient, except in the special ease when the means of the w-arrays of y's
all fall on a straight line, t.e., we have linear regression, and then the two correlation
constants are equal.

Thus the expression (n°—1%) o,® has an important physieal meaning ; it is the mean
square deviation of the regression curve from the straight line which fits this curve
most closely.* We have now freed our treatment of correlation from any condition
as to linearity of the regression, and it remains to consider the probable errors of the
various quantities dealt with.

(3.) Probable Errors of Constants of Correlation.

We shall first prove a number of general propositions relating to the probable
errors of correlation constants. We first note that if n and »’ be the frequencies in

* The properties of the correlation ratio were briefly noted in a footnote to a paper by the author in
* Roy. Soc. Proc.,’ vol. 71, pp. 303-4. It has been systematically used in my laboratory for some years
and determined longside r for many distributions.
B 2
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any two sub-groups of a total N, for which no member of » is a member of #’, then
the standard deviation of n due to random sampling is given by

P A
2. —?1[:1 N;] S s P R T
and the correlation between deviations in » and n’ due to random sampling is given
by
: nn' :
R332, =— R (xxi.).

Problem 1.—To find the correlation in deviations due to random sampling between
the number w, wn the x-arvay of y's and the number n,, in the y-array of «'s.

If the symbol dn dencte the error or deviation in n, we have with an obvious
subseript notation®

Sn, =dn,, +8n., 400, ,+4...+8n,,

if there be ¢ groups of 4's, and again
5!‘.‘.-_.‘.|= are’!,_&+3njﬂ,+$jil-;'¥‘+- :: .-I-Eiu,;.,.‘,

if there be ¢ groups of s,
Multiply the expressions for &n, and 8n,, together and we have

&n, én, = (8n,, )48 (8n, #_Bn,_ al

where the summation is for every pair of values of u and », differing from s and p.
Htul]iniltg all such Imim of values for every random B:unj:le and rlivir]ing h}r the
number of samples taken, we have the usual definition of correlation

R
5 % — ( — Pr | g Ty Tlry | |
""'-F"-R'*;"*-_ P 11 N b( AN : ) t

E.__*E,!_ ._*,“: n_,nj,‘— ﬂ? ﬂ-"-" F i 1 {xxu}
This gives R,, ., the required eorrelation, sinee £, and X, are known from (xx.).
Problem 11.—To find the correlation between deviations in the total n, of any array

and in any sub-growp w,, of this array.

We have at once
Bii g Bty = (Bt ) 45 (8114, 60, )

where u is to be taken every value other than s in the summation term. Summing

for all random samples and dividing by their number, we have, after using results

like (xx.) and (xxi.),

1,
R,,?,,FT_}( Zn, Zu,, = nf___,.(l - I—q!) o S - (L
which gives R, , .

* nyy = frequency of groups with characters z and y.
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Proposition 1IL—There is no correlation between deviations in the mean of an
z-aorray Y., and the total number in that array.
ey X Yy =S (R )
i, 89, =S (Srtr ) — Y, 800
ey 8, S0, = — Y (S0 VS (B B 42

Hence as before, using (xxu.), &e.,

?e.,_Ey_'E,,F]{L'," = =, (l - .’%:] +5 {?e.,,ﬂ.([ o i';;)y.}

= =1, R, (l - ?;r) +|1— ?ﬁt) g Y,
=0
which proves that R’._ﬁ 18 Zero.
Proposition IV.—There is no correlation between deviations in the mean of an
x-array and in the total number in any other array.

Proof as before.
Proposition V.—There s no corvelation between deviations wn the mean of one

x-arvay and in the mean of a second w-array.
We have
Tig, Oty =85 (S1ip y W) — s O,
Tir Difr =5 {3:;,,.,3,}—;_;#&1_,;,

Multiply these two expressions together, sum for all random samples, and divide
by the number of such samples. We find

it
7 s

" T
ﬂ"rl'n'rl"z.!'rrzﬂ':*-' R.Frr.!'rr-' = —y-" iy oy N

+:5 (110530 N
+ y:,’s, {ﬂ' ;-Fl'ﬂ' r .],I'Tq-
g S { nfl_l'l-ﬂrr?'yl“z}f:N
-5 {ﬂ:nn;_n.-r ‘_u.‘yvyl‘}fm

P

7 Tig tors g by s
==Yl iq- . +E||'zF fq Yy

:lil;,di',r_ o S 5{“:,_..3!-} X S [ﬂ’:'.?-'y_""_} .
+F:,' N y"r N

The last term is -"-’-ry-‘r%w‘f , and thus the right-hand side is identically zero. It

thus appears that there is no eorrelation between errors made in finding the means of
two arrays. This result is not at once obvious, although a very little consideration
shows it must be true.
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Proposition VIL.—To prove that the standard deviation of the mean y,, of any

i G-H.
x-cerray due to vandom sampling equals 7 .
7,

We have

g, By, =8 (8n.,20.)—y. dn

Square, sum for all random samples, and divide by the number of such samples,

We have
”rrzgﬂ'rpq =yfneﬂ"r (1 i ;'_&} T Eyﬂ'& { I"‘v'(l ¥ %" }yﬂ}

+8 {ran (1500}
— s { 'nriqfﬂ F-J-}

— g"“"l'-EH Ty (!‘ - %’) _gyz,gﬂ:, (1 —_ T;;r}
+8 (mey gut) = 5 () 8 (R )

=5 (04 ) =14,

— u,.rg-"’ﬁ.
Henece

hj.,,=ﬂ',rjv"’ﬂ,; SR e e e e |

Thus the probable error of the mean of an array has exactly the same form as the
probable error of the mean of a random sample of a definite number of individuals.
The array may have a variable number of individuals, but we have seen in
Proposition III that there is no correlation between errors in its mean and errors in
the total number of individuals contained n it.

Problem VIL—To find the probable ervor of the standard deviation of any array.

By a precisely similar investigation to that of the previous proposition we find

"_\/dn,_-mg PR e e R

where

m,= _E]'I" S { {F--Hr.}' ﬂ"l!'ri-‘

*p

This is identical with the probable error we should have if the array were a random
sample of constant size.

In many cases it will be sufficiently approximate to put m,=3m,* and we then
have

67449 E.n" ="67449 (xxvi),

T,
v iy, -
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the well-known form for the probable error of the standard deviation of a normal
distribution of a definite number of individuals.
Problem VIII.—To find the standard deviation of the standard-deviation oy of the

means of the arrays due to random sampling.

Since
Naw =5 {n,, (., —7)°}

EHF“ EFH=H {Ei‘,:l {.yfr_.!?:'e.s +EH {Sj;_r-'”';' {HJ"_.{?} }_gaﬁbl t”-:p {ylf_j?} E ¥
the last term of which vanishes, since
Nj=38 (n.,y.,)

Square the above relation, sum for all random samples, and divide by the number

of such samples.
We find

dNay ', =8 { i, ( 1 —%}'J} (Yo, —3) }
—28 { " (0, = 3 (1o~}
+48 {5, 3, R ,. (4, —3)'}
+484{%, 3, R, ;. (¥—3) (vo—3)}
+45 15, 2 By o, (e, = 5) (42— )
+48 {Zy.*n.? (v, — 7

But R,, s H.__,_.,’, and R, . vanish by Propositions IIL, IV, and V. Further, by

VL, 3, *=0., %/n,,. Hence we have
4Ny E, P=8 { Ty, (\ 1 —-T;,') (¥, — ) }

—28 {""’-"j}‘f’-" (=) (=30}
+48 {100 (v =)'}
=8 {n,(y.,— i)} — [ﬁﬂ{aﬁ"— IRF
+45 {10, * (Y-, — 7 }-
NA,=8 {n,, (y,— )}

be the #*™ moment of the means of the arrays about their mean. Then clearly
M=ay’. Further, since S t:n.,,n-.hf] = No,* (1—%%), we can write

S ‘[“f:,':"'--,s (4, =3V} =Nea,* (1—7°) o’ X x,

Now let
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where y, is a purely numerical constant, which is equal to unity for those ecases in
which there is no correlation between the standard deviation of an array and the
square of its mean’s deviation from the mean. Thus ﬁrml'[}r we find

oo A=At o (1 —y° o
3= _*i--NiE---i-x' -"N 7’) P - -1 |

This enables us at onee to find the probable error of the standard deviation of the
means of the arrays.
Proposition IX.—To find the correlation between the deviations due to random

sampling in the values of o, and oy

We have
Ne /i =S{n, (y—7)*},

2Noba,=5{8n, (y,— 7P} —2878{n, (y.—7)! ;
the last term vanishes because 8 (n, 1,)=Nj.

Thus
2Na, 8o, =8{8n,, (1,—7)*}.

But from the previous proposition
ENG—-“ at}l"” =5 ‘j' a”-ﬁ {y-ﬁ _ﬁ}ﬂ } + 25 ' Ey‘;n‘? {.{F‘-‘; u-'?:. .E -

Multiply these two expressions together, sum for all random samples and divide by
the number of such samples; we find
4N%0,043, 5, Rou, =S1E, 50, (=) (U= ) Rurn. )}
+28(n,%, %, R, (0.—3) (4, =)}

To evaluate this, we require to find the two correlations expressed by R..I.,,_ and

We will consider the two summation terms separately.

R

Ay ¥
First Term. 8n,,=8n,, 80,5+ ... +80,,+...
iy, =0y, + Bty .o Byt

&t Oy, = (Stgy,) 15 (814,001 ),

where in the summation p’ and & are not equal to p and s
Proceeding in the usual manner we find

Eﬂ:'Elr, R‘."_‘=ﬂ"¥l ( 1 _H‘:};‘. ;I — ik { H:Ji:;h,'."'- }
_ S () X8 (n)
N ]

=,
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where in the first sum 5’ is to take all possible values, and in the gecond p’ is to take
all possible values, Thus we have

1 j! sEa
s 5 E R, = Pry,— Mayly, (xxviil.).

Substituting we find
Fivst Term = 8, {n,, (4,— i) (4., —i)}

P {“:,“y {y,— #} {i';":," {.r}lg}

Here both the summations are really double summations; fixing our attention on
any x,, t.e., on any array of y's for a given value of x, we have first to sum for all y's
in this array, and then we have to sum for all arrays. This is the meaning of 5, In
8, we are to associate every array of #'s with every array of y's; hence this term will
break up at once inte two factors, 1.e.,

1 . =18 —
NS s, (U, =3P} XS{n, (4, — )}
=ay' X S8{n,, (s, — 7V}
=No,’ X oy*.
Keeping x, constant first in S,, we see that
S{n.y. (v, —=7F}
is the 2" moment of the y'= in the &, array about the mean of the system

=y, {0 + (¥, —FF}

Combining we have
First Term = 8in,, (y,,— i)'} +8{n.,0u 2 (Y, =} —=Noou’
=N{\htoio (1 =) x—oiow®} . . . . . . (xxix)
We now turn to the second term which involves the discovery of R, ,
By, 81y, = (8nyr 4811y . ..+ 8ny . ) By,
P8, — s B0, +S (B )
Mg, 01y, 8iy, = —1y, (8, 480, + ... +8n,.+...)8n,
+ (81, +8ny 4 . . . 0 .. ) B (3n,,,00).

Sum for all random samples and divide by the number of such samples ; we have

Ny, E'llr. E.F'Jp R'r Y ( e L ﬂi:;!h)

S (g
N

Hence

M)

']" ﬂrJ. G

R A T R R |- - - -
c
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Substituting we have
Seeond Term = 28§, , (o= y.) (1,— 7V (4. —5) }.

Here again the summation is of a double character.
Let us first take o, as constant and sum for every value of 5. We may write
1= d=(y,— 1. +y. — 7). and our first summation will be

2 (=) X 8 [0y, (=2, 42 (=10 (e, — D+ (v =1, (e, — 7Y} ]
=2 (i, —7) 1 g+ 4 (g, — 3P w2 (g, — 7P S o, (n—u.)%,
if
n i, =8 {n,, (.= ).

The last term vanishes for S (n, , v, )=n. y. by the definition of the mean.
Hence

Second Term = 28 {n.m; (y,— 7} +48 {n,0. * (3., — 7))

Here m, is the third moments of the x, array of #'s, which will probably be very
small if the arrays are nearly symmetrical and the first term clearly depends on the
existence of a correlation between the skewness of the arrays and the magnitude
of their means.

We may write the first term then :

=2No,oyX xs
=2N{F}3 { | _'Tlg}reﬂ':.[ K:{'g-.

where y, is a purely numerical quantity, which for most cases will probably be very
small or even zero.
Thus we find :

Second Term = 2Na,* (1 —9*)  ayye+ N loy * (1—9)x, . - (xxxi).

We can now return to p. 16 and write down the full correlation between deviations
in the values of a, and oy due to random sampling. Remembering that ey=ya,*
we find :

%R g [ M= )x—1)]
+'-2'Nﬂ'rﬂ“ i}k'}{ﬂ'l' ’?{I_VFE}M

=% et (=== (i)

* It should be remembered that this definition of 5 gives it invariably the posifice sign.
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Proposition X.—-To find the standurd deviation of the values of the covrelation
ratio 3 due to random sampling, ie., to find the probable errov of the correlution

rretio .
We have
n=oulo,
Hence
& _ Soy b 3.'?'.@

n Ty "T,y
Squaring, summing for all random samples and dividing by the number of such

samples, we have : ) A :
B b BA 23 R

oo oy Ty,
2, Lis given (xxvii.), £, 2, R, . by (xxxii.) and i"l:=41"1 Ee=H" by a well-known
I s 5
formula.*
Substituting, we have the complete value of £ given by :

5 A=A x (1= 1?}_|_1.u¢—fh

G I e o g
._1_ h 1 (1=97) ",

or, after re-arranging,

]- & a }L —_ £ & =
E.,”=H{{l-— i e P'f” M TN g (1— 2

ahg
+tx.—u{1—vﬂ(l—aﬁ—xmt—n*r'~} C o (xxxiii),

For normal correlation, Py =3py". Further
y-r.;_.‘.'?= T:’ {x‘,—a:"j,_

and
Y gy - O e
N.L*:Eli'h;’ {yﬁ_—'uf‘r} i= D}." h{ﬂ"'- (xﬁ'_w} I

+
="'%" % N80 $=3NA..
Hence the second and third terms vanish. Further y,=1 and x,=0, while y=r.
Hence we have
: 1—2)
b3 3=Ef"={ Nj },

which agrees with the special result.

* ¢ Biometrika,” vol. 11, p. 276.
o
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In any other ease, ya, x;—1, (py—3ps") 1", (Ay—3A?)/A2 will probably be small and
thus

i

1 F
-y — N {1 -‘3'}2-
Probable error of
="67449 (1 —9*)/v/N, nearly . . . . . ., (xxxiv.).

This simple form suffices for many practical cases.

It greater exactitude is wanted, there is, however, no great labour in using
(xxxiii.).  We find the means and standard deviations of each array.

Then NA;, and NX, are the 2™ and 4" moments of the means of these arrays
about their mean.

Ny, and Ny, are the 2™ and 4™ moments about the mean of the y-characters, and
will always be known for skew variation.

x; 18 defined by
— S{n0..2 (¥, — 3’}

NG'JE (l —*TI#} .:r,."’ {KKK‘L".}:

A1
and can be easily found when the means and standard deviations of each array have

been found.
The most troublesome expression 1s y, defined by

—_ ::I' {Ti‘-_,_-r:l'ﬂa {y-"g_.’}.}} 1
¥ = Ne il o e N

But as we do not take usually more than 10 to 20 arrays, the discovery of their
3" moments is not an extremely difficult task. As a rule, however, y, is very small
and may be fairly neglected, even when we must find x;—1. All these points will
be dealt with in the numerical illustrations given later in this paper. At present
we note that the pmi:;nhh? error of 5 has been determined, and that its value for the
general case is not really more complex than the value of the probable error of + in
the general case, which requires the determination of product moments of the 4™

Hl'l.le'l'. *

* Let Nppo=8 {ngy (- &) (y — ¥}, then the probable error of r is given by
wa P IP2=3pn" e 3pape  po- 3Pt pe— e’ pn-3pups Pa- 33!‘"3’"«.'} i
=il i T Zpwpe T dpe® T A PP Pupo: o Wk
This agrees with the value given by SHEPPARD (* Phil. Trans.,,’ A, val, 192, po 128), except that the
faccor has been dropped by a printer’s error in his paper. For the special case of a normal distribution, we
have easily from the equation to the normal surface
| Pae=3pa®s pa=3pe® pa=dpupe. = 3pnfes (Pu- SpnEipn® = (1 — )y
BT

= 3psa : :
}&-2;@.;::};&- =8 =1, whenee E,=(1-r%)/ VN,

the well-known form (* Phil. Trans.,” A, vol. 191, p. 245).
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(4.) On the Higher Types of Regression.

We have already seen how the introduetion of the correlation ratio 5 enables us to
drop the limitations associated with the Gauss-Laplacian form of frequency, and the
Bravais correlation formule. The fundamental step towards this advance was
undoubtedly taken by G. U. YULE in his paper in the ‘ Roy. Soc. Proc.,’ vol. 60,
pp. 477 et seq., wherein he shows that if the regression be linear, the Bravais type of
formula applied to multiple correlation is still true, although we make no assnmption
as to the form of the frequency surface. It would undoubtedly be a gain to have
skew frequency surfaces which would deseribe skew correlation for the great mass of
cases as effectivly as the series of skew frequency curves describe skew variation, but
although a eonsiderable amount of progress has been made in the consideration of
these surfaces, their full theory has not yet been worked out owing to difficulties
of analysis, and their complete discussion must still be postponed. YuLr's method
of approaching the problem from the form of the regression curves is, however,
available and capable of very great extension. Its chief advantage is that it
makes little or no assumption as to the distribution of frequency ; its chief defect
lies even in this advantage of generality: it does not enable us to prediet the
probability of an individual with a given combination of characters. This follows at
once from the fact that we make no assumption as to the form of the distribution
within an array. Without some theory as to variation within the array, we are
reduced to the laborious process of ealeulating the standard deviation. skewness, and
other general characters of each array, a lengthy and troublesome proecess compared
with a theory which would, like the Bravais theory, give these at once in terms of a
few constants determined from the data as a whole.

In the great bulk of biometrical and economical enquiries, however, the regression
does not diverge very markedly from the linear form. In the cases of non-linear
regression that I have hitherto had to deal with, I find that parabole of the 2
or 3™ order will suffice as a rule to deseribe the deviation from linearity. If
they did not, we could, of eourse, use eurves of higher orders, but the difficulty
referred to in the first section of this paper at once arises: we then need to use
in the determination moments and product-moments of such high orders that the
probable errors of the constants are so high as to render valueless their ealeulation
from such statistical data as we can hope for in most actual inquiries, In the great
bulk of investigations it is practically impossible to increase our random samples
from 500 to 1,000 individuals up to 30,000 to 100,000. Nor in the great
bulk of statistical cases is any such increase even desirable, for a fairly wide
experience shows that 2" and 3" order parabolee amply suffice to deseribe the
skewness of the regression line. [ shall accordingly classify skew correlation in the
following manner : —
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(a.) Linear Regression :

The mean of an z-array of s, i.e., .. 18 given by

e =1y +at TSR os i R R {!\'. xxviii. }.
(b.) Parabolic* Regression :

The mean of an w-array of s, ie., y., is given by

Y=g tomtax . . . . . . . (xxxix).
(e.) Cubical®* Regression :

The mean of an a-array of y's, i.e., y.,, is given by
Y=t oZtax4azt . . . . ., . (xL).

[t is eonceivable —in fact, from unpublished work alveady done, highly probable—
that the theory of skew variation will give regression curves, not of the exact form
involved in (xxxix.) or (xL), but containing product terms in & and y. The most
general equation to a vegression curve may be taken to be of the type

Yo —§= [, —7),

and what experience shows us is: that for the great bulk of vital phenomena it is
sufficient to expand by Macravris’s theorem and keep the first three or four terms.
Indeed, in the large majority of cases, (xxxviil.) alone suffices. Henee, if (xxxix.)
or (x1.) fit the data within the limits of random sampling, we are not injudiciously
circumseribing future developments of the theory of skew correlation by easting our
regression curves into the above forms. [ shall deal first with the theory of cubical
regression, for we can then obtain from this the conditions necessary for parabolic
-ﬂ.ll{] IiI!E‘jl'l' I'Eg'!'ﬂﬁi'!iﬂllﬁ.

I must remind the reader, however, that the form of the l'egrea.aiml line does not in
any way limit the nature of the distribution of the array about its mean; the
variability of an array, i.e., the standard deviation of an array, having for its mean
value g, /1 —»%, may or may not be the same for all arrays. If it is the same, or all
arrays are equally scattered about their means, 1 shall speak of the system as a
homoseedstic system, otherwise 1t 18 a heteroscedastic system. The Gaum-Laplaciun
correlation surface gives a homoscedastic linear system. Mr. YULE's linear regression
18 not necessarily homoscedastic ; it may, however, be homoscedastic without being
normal, and then the scatter of each array is measured by o,+/1—1. When a
system is homoscedastic, but not linear, then o, *=0,*(1—%°), and consequently the
xi of (xxxv.) is equal to unity. y;=1 is a necessary result of homoscedasticity.

Lastly, we want a word to express the idea of all the arrays having equal skewness,

* ¢ Parabolic” and *cubical” are here used in the narrower sense of regression curves corresponding to
ordinary parabole of the 24 order and of the 3 order respectively: in both cases the axis of the

parabiols being parallel to the axis of the ychameter.
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or being asymmetrical in an equal degree about their means. I shall express this by
the term homoclitic ; generally the arrays will not be equally asymmetrical round their
means, and in this case we shall speak of them as heteroclitic. If there were no
skewness in any of the arrays, then my of (xxxvi.) would be zero for all of them.
I term arrays of no skewness isocurtic, and skew arrays allocurtic.  If we supposed
that a curve of Type IIL would sufficiently express the skewness of an array, we

should have
Sk.=4my/e,, *,

JS{H, oy, E(Sk ]{J fﬁ’}}
%= N (1—7")on

and therefore from (xxxvi.)

(x0i.).

For a homoscedastie system we have a-,,,r=a:r#x/ 1—%°, and therefore

= 28{n,(Sk.) (v, =)}
= 'N{r“
and for a homoelitic system
(k) 8,0, (g =)}
g = Ncr,.a{f —?}2}”

For a homoelitic homoscedastic system, whether isocurtic or allocurtic,

o E{Sk.] 3‘: e, [yfr_ﬁ_}_} =0.

N-Cl':q

Xa

Thus ¥, is to a certain extent a measure of both homoseedasticity and homoelisy.
But as the correlation between o, and y, — 7 is in most cases extremely small, while
the skewness of the array can well change its sign with arrays above or below the
mean, we can fairly consider the smallness of y, to be a measure of the approach to
homoelisy. Tam thus inelined to speak of y; —1 and y, as measures of heteroscedasticity
and heteroclisy. When they both vanish we have a homoscedastic homoelitie system.
For such systems 5, the correlation ratio, tells us effectively the scatter of any array,
and as a rule all we want to know, in addition, is the form of the regression line,

(3.) Cubical Regression.

We have already used the following notation
Np,=8{n, (z—&0 (y=7F} . . . . . . . (zhi)
We shall shorten our formule if we write
r=pylle.o,), e=py/lele), {=palleie,) O=py/foie,) . (xlii).

We have already used p, to denote p,,, and we shall use v, for p,, Further, we
write

Bi=wi?, Bua=vu) Bi=veafint, Bi=wevd. . . . (xliv.).
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v B,=vy/a.® will be of the same sign as »,, These constants 8 have been previously
used in the theory of skew variation.®
We shall further put

i=e—r /By [={—1By O=0—1B/VB . . . . (xlv)

The regularity of the forms & { 8, is rather sereened by the above notation, which |
is imtrodueed for '|J-|'t:vit-}' ] llﬁing the pﬂ* notation, we have

= Hn F!us_!“lif-'xn ﬁ" Pqu_Fll?’m f= g“n.f’m-i"‘llj“ ; {xlvi.]
ol oo, oo, :

whenee the law of formation of these eonstants is easily seen.
The regression eurve may now be conveniently put into the form

Y= Xy =i Xy (&= ax
==t waj.+r,a(. }+b [ ) e T

L

Or, multiplying by «, and summing for all arrays,
0=Nb,+b.N+b,N/B,,

the 5i;_:|| of /3, ]ueir]g always that of the 3™ moment. Hence, measuring from
the means of the two charncters, 1.0, X,=x,—#, Y, =y, — 7, we may re-write (xlvii.)

Y, le, =0 (X o )b (Ko P =11+ 0 (X o =By} . . (xlviii).
Now multiply by #, X,/e, and sum for all arrays, remembering that

Nro.o,=5(n, XY)=8(n, X, Y. ),
we find

=b,+byv/ B+ Dy
This enables us to get rid of b, and write (xlviii.)
Y, Joy=rXJo. bl (Xp/of =/ By (Xofo) =1}
by (Xefo =B (Xpfo) =B} - - - (xlix).
Now multiply by n, (X,/e.)* and sum for all arrays. We have
e=r/ B+ (By—B,— 1)+, (B/v/By—Bov/ Bi— VB)),
E=bapobbydy ool e e o T (L),

'f"z=.33_ﬁi_l } ; {]i.},
¢a={ﬁs—ﬂtﬂe—ﬂ1”1f|&|—

*  Phil. Trans.," A, vol. 186, p. 368, and A, vol. 198, p. Z78.

ar

where
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Eliminating b,, we can write (xlix.)
¥y =r (S )+ (Ko P =/ By (K ) =1}

15[ (X 0P =B (X )= VB =B (X fo = B (Ko fr)=11 ] . (i)

Now multiply by n, (X,/o.)? and sum for all arrays; we find
{=rf,+ ;ﬂ%+f;,}'{¢+~—-¢nf-’¢i},

or

bl BBt =ty . = o o e o (L),
SEBBASB s e e,
be=(eb— LM bsby—dD) . . . . .. .. (v

We can thus write the cubic regression curve in either of the forms*

where

It follows from (]] that

* The method iz perfectly easy of extension, if we choose to use higher products and moments, to a
regression curve of any order, aq.,

Yo forg by + by (Xpfors) + Bo (X joraP .+ By (Rl 4,

For let : Neg = B{ng Y, X0 (oo, and oy = v fo =5 {0, X )/ (Nert),
we have: 0= b +0xb + b + b + + yaba +
{"—ﬂxﬁln-l- !’1 + }'r’l,' + ';‘lﬁ:s 4= +'}l"|t|-L'r’rI+
iy = hg -+ }fg'q + ‘;’J-'g + '}".'JI:'! = + ¥a +i'i"n +
1= Yo + yparh + ypedat ypenbs + +¥ntpat+

Heneca writing < for 0, yp=1, 33 =0, yo=1, we have

bo=(eo1 Bon + 1 At Endon+. o o Gadpm+. . )[4,

where & = T The T Kl LR T
T T Vo T = e . Ya+ls
T T Yia ¥ T Y4
Yo Yeels  Yepem  Ypeh o - - Ypem

and Ag, is the minor of the constituent in the (7+1)* row and (n+1)* column. As we have already
noted, however, solutions invelving anything beyond ye are hardly likely to be of practical valus.

The value above for b, is the type equation given by the method of least squares, when we strike the
best fitting curve to all the entries in the correlation table. I have already pointed out that the method
of moments becomes identical with that of least squares, when we fit parabol® of any order (* Biometrika,”
vol. L, p. 271).  The retention of the method of moments, however, enables ns, without abrupt change of
method, to introduce the needful 3, and to grasp at once the application of the proper SHEPPARD'S correc-
tions. The extension of the method of least squares to confinua in space has not yet, as far az [ am aware,

heen fully considered.
D
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¥ e —r X o }+ {}( fo.)? \f’,ﬁ'.{}{,ja‘,}_l}

+j’;f} % [{K .Y = Ba (Xylo) =~ ﬁ;—?;;{{x,fmr— Jﬂ_]{x,,,ra,}—l}] i)

(il g

Y, Joy=1(X,/o.)+ f’; ﬁi{xﬁmmﬂ VB (X,j0.)—1}

+ 28— (X o By (Xyfe) = VB - . (Ivi)bis.
S,

The former arrangement of the solution, while it is apparently more eumbersome,
18, perhaps, the better, for it gives us at once the measure of the deviation from

parabolie or 2 order regression, i.e., the approach of {p,—éd; to zero. In the case
of normal eorrelation both € and { vanish, and neglecting higher terms the condition
for linear regression is that é=0, and [p,—&p,=0, or, again, € and {=0. For
material in which the z-variability is isocurtie, B,=8;=¢,=0, and the regression
curve takes the simple form

Y, fo,=r(X, "u;r,}-l— (X, /o) =1]+ & (X =B (X [} - (i) ter

We now turn to express these relations in terms of the correlation ratio 7.
Multiply (Ivi.) by #,Y, /o, and sum for all arrays, we obtain

{ps—é, L D
nr=ri4 - {e_»jﬁli}-l_-@,qﬂ Eﬁ}g{ — By :IE:'Z{E V”Blg}}’

whenee results

bs (i =7Y) == (L — ey ) (etpy—?) . . . . . (Ivii).

(Ivii.) is a necessary condition of cubieal regression.

It is of eourse not a sufficient condition, as we ought to show that by, b;, &e., all
vanish, and thus any number ot conditions may be found. For example, multiply by
i, Xt e} and sum for all arrays, then

_ib—lds (g _n_pyy lbe—its B=BB—BB: uim
e |l e raens i gl

is also a necessary condition, Here 8;=w»,/c.'". But the high as well as complicated
value of the probable errors of sueh expressions renders it idle to consider them m
pract 0e,
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Substituting (lvii.) in (Ivi.) we have :
Y. Joy=r (Ko )+ (/0 =/ By (ol =1}
£ A/ BN SE (KoY =Py (sl = B
—E{{x},;m}f-qﬁ{}{ﬂ,@,}— 1] - dix),

Which sign is to be given to the root will often be visible on inspection of the
observations. Otherwise the sign of the root must be the same as that of

{ps— s,
(lix.) will save the caleulation of £ if the root-sign ean be found by inspection.
Finally there is a thivd form into which we may put the cubic. Eliminate ¢y,¢, — s’
from (lix.) by aid of (lvii.) and it becomes

Y, foy=r (o)t 0 ) (X, By () 1)

S| R
+ P X o =, (Koo )= VB . . (Ix)
by —edy

At first sight this might appear to be the best form of the cubie, because it does
not involve the 6" moment of the variable @. But this is very far from being the
case in actual practice. The reason is simply this, é { and %°—+* are in most cases
very small—they vanish in normal corvelation—uvelatively to ¢, and ¢,. Hence both
numerators and denominators of the coefficients of the square and eubic terms are
the ratio of small l{l]!tlltitiiiﬂ, and :umnnlingt_}r suhjt't:t o ]ur;_,rﬁ l!l‘EII}ELI:IIH errors. For
this reason (lx.) was found in aetual practice to be of no service. Of the other twe
forms (Ivii.) and (lix.), which neither suffer from this defect, ¢.dp,—,* being always
large relative to the numerators, (lix.) while involving a 6™ moment does not
involve a 4" product, {, and experience shows that the former is on the whole
easier to determine and more exact than the former. Hence (lix.) seems the prefer-
able form, even if it be needful in certain cases to determine { in order to fix the
sign of the radical. The cubie regression eurve thus demands a knowledge of the
correlation ratio n, of the ““ cubic Pmduct " € and the sign by inspection or ealeulation
of ttﬁg—élﬁa. Besides this, we require the first six moments of the independent
variable & Of course if the |~(~g|'cs-;3inn of @ on y be required, as well as that of
i on &, the second correlation ratio and eubie product as well as the first six moments
of y must be found. It is rare, however, that both regression curves are needed for

a single enquiry.
As to the general form of (lix.), we note that there will always be a real point of

inflexi iven b
e T o=k (bubs=bd) - . . . . ... (i),
D 2
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where

b= (o (° =) =& (ahy— b7,

and further that there may be two points of horizontality given by a certain quadratic.
Thus, in general, the regression line will tend to be part of an S-shaped eurve. The
horizontal points may be imaginary, or, if real, either they or the point of inflexion
may bhe far |}E_~.'un{1 the |Jnl*t-i1m of the earve which crosses the ohserved field of
frequency. If we consider, however, the slope of the regression curve to measure
the regression in the neighbourhood of any point, we note that the regression is a
maximum at the point given by (Ixi.), and grows smaller and smaller towards the two
points of hovizontality, i.r., points of complete local independence of the two
characters. These are not unfamiliar features in certain practical cases of skew
correlation,® and accordingly the cubic regression curve provides us with a ready
means of |1t:Hcri'|:i11g l‘egl*ﬁ.‘isinn 1}|1{+11u||m1|;|, which eannot be dealt with by the simple
line or the parabola.

It may of course be suggested that a quartie or quintie curve would give a
hetter result than a cuble.  The answer to this is: Possibly, but the high moments
and produets required render it impossible to deal even superficially with the probable
errors of the eonstants involved. The ealeulation of the |:1'uhﬂhlﬂ error of n 18 a
sufticiently stiff’ task in the general case. To test the probable error of a condition
like (lvii.), to say nothing of one like (lviii.), would involve an immense amount of
work, since we should want the eorvelation of ervors in %, & £, and f.  Speaking with
some experience of practical statistical possibilities, [ think, the tendeney to use very
high moments or Eu‘ﬂduﬁt-mnmmltﬂ must be curtailed to the minimum of actual needs,
We cannot deny the existence of skew variation, nor of the sensible curvature of
regression lines.  We must admit their existence as the result of statistical experience.
This existence involves a great widening of the old frequency notions and the need
for a new means of {luﬁl:riI:rtiml. But we must remember that statisties are e.‘-cﬂt.-nti:l"}'
a practieal study, the art of deseribing by a few numerical constants observational
experience, and we must eurtail at every turn the desire to run riot in mathematieal
formulwe, which eannot be generally applied in actual practice.¥  Still I propose Iater
in this paper to deal with the general formulee for quartic regression.

(6.) Parabolic Regression.
For a parabolic system b, must vanish, or nearly vanish. Hence we have from
(lii.) and (lvid).
Fb—=aie= D, SR Lo R (ETEN

delt—r=e=0 et o . . o ciEni

* Compare for example the regression line of age of mean age of bridegroom for actual age of hride,
which gives a typical Sshaped eurve.  See * Biometrika,” vol. IL, p. 20.
t These remarks have special reference to the points dealt with on p. 6.



SKEW CORERELATION AND NON-LINEAR REGRESSION. 29

From these eonditions we find
by=¢&/Py= =/ (7°—1%)/ebs.
These give for the form of the parabolie regression curve

Y o = (K)o e = B (o =) o . . sz,

.\

ar

Y;JLF_,:v-{'YPW.-',}-’}:t '\/nigigf(ﬁpfﬂ}}t“\zﬁl{Xﬂ"lﬂ}}_i:' i {val}‘

The latter form, besides the correlation coefticient and correlation ratio, requires only
a knowledge of the skew variation constants 8, and B,, and is therefore very easy to
determine. Except for very nearly linear regression, there can be no doubt as to the
sign of v'n'—i?, as we can tell at once whether the parabola ought to be concave or
convex to the w-axis. In other cases the 3igu of Jq*—rﬂ must be taken to coineide
with that of ¢ which must therefore be found. It will then be as easy to use (lxiv.)
as (lxv.), although probably 5 and # can be found with less error than &

It is thus quite easy to allow for such curvature of the regression line as can be
expressed by a parabola of the 2* order of the type considered.

We notice at once that the regression curve does not pass through the mean of the
two characters.  Or, an individual with the mean of one character will most probably
not have the mean of a second character. This is a rather mmportant result, which
follows at once for nearly all types of skew correlation,

It will be seen, for example, that QUETELET'S ** mean man,” defended by Professor
Epceworth as theoretically justifiable, depends entirely on human characters giving
linear regression curves. Such linear curves are certainly given by many pairs of
characters, e.q., cranial and body measurements, but there are certainly other
characters for which regression ceases to be sensibly linear, and the conception of the
“mean man’ in this case fails. For example, it age be considered as a character,
then the regression is certainly not linear, and the individual of mean age will not
necessarily have either the mean physical or psychical characters. This seems of
some importance for the general coneeption of  type,” if by type we denote the mean,
for probably there are other characters than age for which regression is skew.

The regression, i.e., dY, [dX, will be zero, for a point Xy ..., for which

e VR—rA/BSBSIL L (i)

the sign of the root being determined as before. Clearly, therefore, unless » be very
small, or % diverges very sensibly from +?, this point of zero regression may correspond
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to a very large abscissa, and in some cases will lie entirely outside the range of
observable frequency.

The parabola of regression cuts the line of regression, t.e., the line of best fit to
the series of I‘Egl‘(‘.‘iﬂiml ;.H;ril'ltrFS, or to the means of the x-arrays, in two points
determined by the quadratic equation

(%)= v/8 Xrm1=0,
or

SR (/B L VBT (oA e o

These points are always real, and correspond, if regression be truly parabolie, to
the same values of the w-character, whatever be the y-character of which we are
considering the correlation. In the case of normal variation of the a-character
only; these are the points of inflexion of the x-distribution.

(7.) Linear Regression.

In this case it is necessary that both b, and b, vanish within the limits of random
sampling, and, although these are not theoretically sufficient—for a whole series of
relations between the higher product-moments could be written down®—they are for
practical purposes sufficient.

Henee we have the following conditions for linear regression :—

et - L G L e s I v
or, the coefficient of correlation, without regard to sign, should be equal to the
correlation ratio.  Further & should be zero, or

PaPu—PuPep=0 . . . . . . . . (lxx)

The theory of linear regression is so familiar that it need not be further discussed
here. In the actual pl'acl.im of statistics, the determination of the means of the
r-arrays and the drawing of the regression line will often suffice to show the fairly
trained eye whether the deviations from it are random or not. If they are not
random, then we must proceed to the determination of % and of the higher produet-
moments.

The following are numerieal e:.‘.:uupll:s of skew correlation, selected to illustrate the
theory developed above.

¥ For example, it is necessary in most cases that ¢ should vanish. In the instance of that very special

. -

case of linear regression, the Gauss-Laplacian normal frequency, it is easy to show that the constants 7, {
both vanish as well as 5 s o2,
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BTATISTICAL [LLUSTRATIONS.

(8.) Hlustration A.—On the Skew Correlation between Number of Branches to the
Whorl and Position of the Whorl on the Spray in the case of Asperula odorata.

In this case the material was collected in a lane near Horsham, Sussex, at
Whitsuntide, 1903, by Miss M. Raprorp. There were 150 independent sprays, the
woodruff had just flowered, and the whorls were counted from the flower downwards.
Being early in the season, the maximum number of whorls was five, and, in some
cases, not even as many were available. The material was counted and tabled by
the author, and the results are exhibited in the table below :—

Tarre I.—Correlation of Whorl- Branches and Position ot Whorl.

[ Number of branches in whorl. [
| |
| z. | Wherl. b ST T M | W | o | e |
- 4. 5. 5. | T 8.
| ! |
= # | First . — 3 | 66 | 42 | 3% | 160 ﬁ*?snu: --em.—':::l 7816 | -1535 |
5% @ | Second S 3 | 61 | 47 | 39 | 1560 | G-8133 | -8437 | 7117 | -0985 |
| 2 S | x| Third. — 6 | 60 | 40 | 44 | 150 | 6-8133 | -9047 | -8185 | ‘0383 |
| 8% | z | Fourth ! 12 | 68 | 39 | 22 | 142 | 6-4859 | 87RO | -7709 | -1347 |
|& | |Fifth. .| 1 | 13 [ 53 | 10 | 10 | 87 |6-1724 | -8605 | 7404 | 4049 |
! fa S R ST (TS § SO0 8 - 3 |
Totals. A o2 | 87 |soe !1?3 | 154|619 |6-e854| — | — i

We require the regression curve giving the probable number of branches for a
given whorl.

Dealing first with the skew wvariation in position, a I]-l,]l'l_‘..l}' arbitrary system
depending solely on the number of whorls dealt with in each position, we find, not
using SHEPPARD'S correction,™

Mean=2802,651, v,=1'787,268, v,= 2:799,638,
o.=1'336,887, vo= ‘311,783,  »,=22:678,308.

¥, =5B41,682.
Henece we determine

By= 017,027, $.= ‘811,740,
B,=1828,767, ¢s= 286,465
By= 085,545, $,= 610,879,

B8,=38972,295, and +/B,=+130,487.

* The numbers are tabulated to six places, hecause we cannot Le sure that the final caleulations are for
the data true to two places, which is all we finally retain unless this is done. Any number of figures can
really be rotained with perfect ease when the work is done on a calculator.
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We now turn to the skew variation in the number of branches to the whorl, and
get the following constants :—

Mean=6"655,375, pa= 806,124,
a,= "B07.842, ps= "132,090,
g+“;1'133,4lﬂ.

The values of y,,, m,, and m; are given in table above. Using them we find

ou="224,377, n="249,911, o, =o/1—n' = 869,355,
hﬂ=vjtﬂ='ﬂ50,345, A, ="007,474, ¥, ="990,862, Xo=—"059,851.

These give by (xxxiii.), showing the numerieal contribution of each term,
E"E::}J {878,991 — 010,323 — 000,888 — 007,231 +013,578},

or the probable error of n = 0242,

Had we ealeulated the probable error of 5 from (xxxiv.), we should have found for
its value "0243. Tt is clear that for this special case the simple formula (xxxiv.) is
amply suflicient, the small terms almost cancelling,

We see that y, is almost unity, and the graph of o, /o, shows indeed that the system
is sensibly homoscedastic. y, is small, but a glance at the graph of the elitic eurve
on Diagram I. shows that we can hardly treat the system as homoclitic, the changes
in the skewness forming a fairly uniform curve.®

For practical purposes, we may treat the variability of the number of branches in
any array as Sllﬂ'\lciﬁlltl“f’ ci{mel}' givuu i;}' oy v 1=

We now turn to the product-momentst and find

Pu=—"240160,  p,=— 896,415,
pn=—"236,289, p,==—-1210,225.

* Thmughmlt. these illustrations the elitic earve is plotted by fﬂl{:llhtt—illg the skewness of the arrays
from &mig/(mg)®t  See p. 23

t In caleulating these products referred to the cemtroid from those referred to any axes, generally
corresponding to whole numbers in the table, the following reduction formule will be found uwseful
We take NIl =8 (g 09'7), =" and 5 being measured from any axes, further, &, # are the distances of the
means from these axes, and vy, vg, vy the moments of the s-character about its mean as tabled above,

pu=lly - #lly,  po=Hy- 228U, + &1y - §Frs
Py =gy = 32y 4 32200y, - 22005 - §'vs,
j.'" = II.”. - -l.r-"'j]ﬂ + ﬁ'i_-*:l I?. e -I-.E.":;.I” -+ .l'.:ul]m - lﬁ"’t"_

The p's should be further corrected for grouping by SHEPPARD'S corrections (given on my p. 36), provided
there be high contact at the contour of the surface of frequency. SHEPPARD'S corrections have not in this
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These lead to
p=—-207,579, e=—'120,164, [=—'038241, #=—-285890.

Thus all the constants are determined.

We find
"?,3_};;___, 1] ﬂ’ﬂﬂ?.

B, (n—1%)—E="001,281,
o (7% —1%) =& —(Tby—éhs )/ (hoshy — bs*) = "000,276.

These should be respectively zero for linear, parabolie, and cubical regressions. It
will be seen that they are satisfied with inereasing closeness; we might well be
satisfied even with the parabolic regression curve. The following are the regres-
sion curves determined, e heiug the actual number of branches in the whorl
{=ﬁ'555‘3?5+¥‘1}' and @, the actual position of the whorl :

(a.) Straight line :
y‘,_=?'ﬂ4ﬁ,937—'139~4”5 X

() Parabola from (Ixv.) :
Y., =6"794,052—"125,872 Ey=—"077,092 2,7 ;
or,
¥, =6'853,561— 077,592 (,—1'991,535)%,

This eclearly gives a maximum number of branches, 6-8336 corresponding to
#,=19915, a value within the limits of observation,
(¢.) Cubic from (lix.):
Y. =6799,399—"192,439 X, —084,230 X,*+-020,915 X%

Here X, is measured from the mean position=x,—2-802,651, and y, is, as before,
the total number of branches for the given position.

Condition (lvii.) is so closely satisfied that we shall here get sensibly as good
results from (lix.) as from (lvi.).

In the table below and in the curves of Diagram I the values of the mean of
the arrays, as found from line, parabola, and cubie, are given and compared with

observation.

casé been used, as this condition is not fulfilled. The axes «, " actnally taken for woodrff were those
through the third whorl and through six branches.

An obvious warning about the signs of the sams of the products may be given which may save
computators some trouble. The axes being taken positive, as in the accompanying
figure, then the sums of the products for ITy; and Ily are positive in the 1" and
3™, negative in the 2% and 4™ quadrants. For Ily and Iy they are positive
in the 1" and 4™ quadrants and negative in the 2* and 3" quadrants, In
the figure the axes are taken so0 as to suit the x and y-directions of the table on
p. 31. Care must, of course, be paid to this point. The products may also
he found from the ;'g,'s in the manner mdicated on p. 33, footnote. Thc_'r wore thus verified in this caze,

E
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TapLe II.—Mean Branches to each Whorl.

o R ‘ 2, 3. ‘ 4. B flinie
o, fromline . . . .| [7'046] | 6-907 | 6-767 6528 | 6:488 | 6349 | 6-210
¥z, » parabola . G-546] | 6777 | 6-854 | 6-77H | 6541 | 6:151 | 5-607
¥, o cubic . . [6:117] | 6-780 | 6-889 | 6-7B8 | 6-443 | 6-192 | &-007
Observed . . . .| — | 6780 | 6-813 6-813 | 6-486 G-172 1 |
|

I think we may safely say that in the relationship of branches to position of the
whorl in woodruff we have a case of homoscedastic correlation, which is effectively
described by a parabolic regression eurve. Thus, in a case of this kind, it is only
needful, besides the moments up to the fourth of the w-character, to find the
correlation coefficient  and the correlation ratio 7.

(9.) Illustration B.—On the Correlation between Age and Head Height in Girls.

The data for this are taken from my School Measurement series, and involve the
auricular heights of 2272 girls between the ages of 3 and 22. There was considerable
paucity of material at the extreme ends of the range, and accordingly as our correlation
eurves are all obtained by weighting the observations, we can hardly expect good fits
near 3 or 22 years of age. The actual correlation table is given as Table IIL
SHEPPARD'S corrections were applied throughout, and the unit of height is 2 millims.

In the first place the means, standard deviations, and 3™ moments of all the arrays
of heights for different years of age were determined. These are given at the foot of
Table IIL, but in actually ealculating the constants more places of decimals were
used. Then the first six moments of the frequency of the ages were found and the
first four moments of the height frequencies. These are the x and y-frequencies.
They give us :—

I}
'
%
{
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Height Constants. Age Constants.
124°0467 millims, Mean age = 127007
o= 3064819 )

Mean height =

ay= 3'454,125 b= 9:893,110 |
pe= 11930977 ‘ n v= 1051882 | "
- 2 millim. ___ » year
py= 5°206,247 1 SEa vy= 239°157,055 | ° ..
pe= 438'639,683 | v,= 104:298,702
v, =9536"265,059 !
B= ‘015,960, gi= 001,335,
8.=  3081,454, 8= 2710,593,
B,= ‘014,093,
Further B,= 11-506,681,
= 2-093,366 millims. v B=+ 0363538,
A=  4'882,181 | in 1 millim. $= 1709258,
A= 52~399,135} units. y= 250,123,
Hence
(A,—3A2)/(4A )= ‘062,340, =  4'158,032,

In the next place the products were worked out and referred to the means with
the following results :—*

= 3113,712, whence r=-204,128,
Ppa=— 1'957,022, é= —"071,065,
Pg=  T4'447,616, {=—"048,576,
pu=—108701,559, = —"470,126.

Further, from 2,, »='303,024,
In deducing the product-moments wfter they head been referred to the merns, the

* These products were in this case (as in all other cases) verified by ealenlating from the means of the
Arrays yr,, the expressions

s{warg-—_ﬂ}, s{n:y:,g?.—--v}f}, H{g:nyr_n;p—m}“} H{y_,,y,,ﬁp-i;.}_

OFf course it is easiest to calenlate these |JT‘|.H1III’.'1-S about some ll.rhit.mr"l.' m-igin L'i.'l-]'lluidi:ng with tha
abscissa of one array. If these products be then p'y, p'a, Pay play and & be the mean, we have

P=pun

Pa=Fa -2,

P =pa— 3Epn + 355,

Pa=pa-4Ep'y + 62y - 4%, . ...
E 2
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proper SHEPPARD'S corrections were introduced, These arve, if fpuls {pals {pals
1Py b represent the uncorrected moments ;-

Pu={pnl Pa=1ipyi.
Pa=1{pai—=4ipnl Pu=ipn} -\H:Pm}:
the units of grouping being the units throughout.
From the eonstants for the arrays, I found

x1—1=—"000,673, xa=—'007,198,
Whenece the probable ervor of n was determined by (xxxiii.). Its value was*
Probable error of y="012,913.

If found from the simple formula 67449 (1 —»*)/N, the value is ‘012,851, We
aceordingly are again forced to the conelusion that y may for practical purposes be
found from this simple formula, instead of the complicated result (xxxiii.). Although
hoth y,—1 and y, are small, iv is very doubtful whether we can legitimately consider
the system as homoscedastic.  The dotted line ab of Diagram IL would fairly well
represent increasing variability with age. The skewness of the arrays is relatively
small and changes sign so frequently, that we can certainly not attribute any law to
such heteroelitie tendencies as there are.  They are probably due to ervors of random
sampling from truly isocurtic material.

It will be seen that the height frequencies with 8,=0160 and 8',=30815 do not
differ very much from a normal distribution ; in fact, we can lay no stress on the
heteroclisy of the system at all.  But the values of the standard deviations of the
arrays, or the graph of , /o, certainly shows inereasing variation with inereasing age,
a phenomenon with which one is familiar in a variety of other human characters.

This heteroscedasticity, due to inereasing variation with growth, would hardly have
heen anticipated from a mere inspection of the smallness of y,: it is somewhat
obseured by the irregular values of the standard deviations of the small arrays at
the adult end of the age range. The mean value of the standard deviation of the
weighted arrays is o, e — ' =32992 in 2-millin. units.

We now turn to the regression curves to see how far the conditions for the
different types arve satisfied. We have

n—ri="005,312,
s (p* =) — & ="004,030,

b (p* = 17)— & —(Lpy— by )* [ Pap, — obs”) = 000,604
* The contributions of the successive terms of (xxxiii.) are in fact given by

o =,’~, {*824,785 + 001,870 + 004,673 — 000,472 + 001,888 .

T Bee Prapsox : *The Chances of Death and other Studies of Evolution,’ vol. 1., pp. 296, 307,
F10, 314,
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But the first should be zero, if the regression be linear; the second, if it he
parabolic ; and the third, if it be cubieal.

We see increasing approximation to fulfilment of the several conditions. Referred
to axes throngh the mean age and head height, the following are the regression
curves® :—

(ee.) Straight line :

Y, ="662,979 X,.

(b.) Pearabola (from equation (Ixv.)):
Y, =055,749 667,570 X,— 041,001 X,*.
(e.) Cubie (from equation (lvi.)) :
Y. ='280,1944 722,886 X,— 029,580 X,2— 002,223 X%,
(") Cubic (from equation (lix.})):
Y, =296,0764+812,249 X, — 028,004 X,2— 005,740 X,%.

(¢') will not give as good resulis as (c), for it depends on a use of the condition
(lvii.) which is not absolutely fulfilled.
The following table gives the values in the case of the four curves ;(—

TapLe IV.—y,=Mean Auricular Height of Girl's Head at Given Age.

r,=age. | Regression line. l;iﬁ{m:ﬂ} Cubie (). Cubic (7). i Obzerved. |

- 1Ly ' !
35 117 -5 114-49 i 116+ 90 ' 118-84 ' 115-25
4-5 118-61 { 115-87 . 11766 118-94 11696
5-5 118 -27 | 117-17 118-42 119-16 117-47
L] 119-94 [ 11839 119-24 119-57 11910
T-h ! 12060 | 119-52 120-08 120-14 12030
&-5 131-36 i 12057 120-33 120-24 | 121-63
9-5 131-92 121-55 121-78 121-62 121-72
10-5 122-58 . 122-43 , 132-62 122-45 122-82
11-5 123- 25 I 12324 i 123-42 123 26 123-14
12-5 123-01 123-97 124-18 124-15 1235-89
13-5 124 -58 ! 124 -61 124-88 12495 124-86
14-5 125-24 ' 125-17 125-52 125 -G5 135-71
| 155 125-90 | 125-65 I 126-07 126-22 126-16
165 12657 | 12605 | 126-52 12668 12653
175 12733 [ 126 38 | 12687 | 126 =93 12601
18-5 127-89 | 12659 127-09 | 126 -96 137-02
195 128-55 | 126- 75 127 -18 [ 12674 12956
205 129-22 | 126-81 127-11 , 126-22 123-82
215 129-88 12680 12688 [ 125-38 126 -50
[ 23-5 I 130-54 [ 126-71 12648 [ 124-38 | 12525

* Y. is here measured in millimetres and X, in pears.
T The maximum ordinate is at vertex of parabola, i.e., 2=81409, or age 2084 ; its magnitude = 126-82.
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An examination of this table and the graphs on Diagram 11, seem to show :—

(1.} That cubic (¢) 18 considerably better than cubie ().

(ii.) That we do get a sensible betterment in passing from parabola to cubie, and,
rl{:[:ul'diugl}r, that we must use in this the cubie to effectively deseribe the regressiuu
within the range of observation. Probably neither cubic nor parabola would cﬂ'f:ct{"-'el}'
serve for extrapolation even close to the limits of observation.

Thus the eubic (¢') starting at 3-4 with its point of inflection is eclearly
inadmissible, and the drop after 20 or 21 years of age, shown by both parabola a,u‘ﬂ
eubie, is, of course, only due to the anomalous character of the few girls over 18 left
in the schools.  Actually the shrinkage of measurements does not begin till at least
26 years, and is then far more gradual than these curves indicate.

But, as in all fitting of this kind, we obtain the best fit we can within the range,
entirely at the expense of what may oecur just outside the range. For this reason,
as E. PERRIN® has pointed out, a good interpolation eurve is usually a bad extra-
polation curve.

We might sum up our results for auricular height with age in girls by saying :
That the correlation is non-linear, effectively cubie; heteroscedastie, there being
increasing variability with growth ; that while the total height frequency is not very
far from normal the array frequencies are slightly heteroclitic, but so very irregular in
sign, that probably we are dealing with a case of isocurtic homoelisy, to which the
sparsity of data in the extreme arrays gives an appearance of anomic heteroclisy,

(10.) Illustration C—On the Skew Correlation between Size of Cell and Size of Body

i I};L]:Imiﬂ A,

Dr. E. Warkex has dealt with this point in a memoir published in * Biometrika,’
vol. 1L, pp. 235-9. The resulting regression eurve of size of cell for given size of
body is very far from linear, and it is quite clear that the correlation is skew. It
has already been noted in * Biometrika’ that the relationship is eonsiderably obscured
by the irregularities produced by eedysis. Our object at present, however, is purely
theoretical, namely, to show how a certain system of constants and of curves deseribes
the actual correlationship, and for this purpose Dr. WARREN'S observations form as
aood material for graduation as we could expect to find. The following Table V.
gives the observations with the working scales attached. I must refer to
Dr. WarreN's paper (p. 256) for the relation between the units of grouping on the
working seales and those of the actual measurements on body and cell lengths. As
far as corvecting the raw moments is concerned, SHEPPARD'S corrections were used
for the cell sizes, but not for the body lengths, because the number of individuals in
the latter case was perfectly arbitrary and there is no approach to high contact. The

* ¢ Biometrika,' vol. 1IL, p. 99,
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product moments were also uneorrected. The product moments were found in both
ways {see p- 35, ﬁ_‘l:lt-ll{,}t.ﬂ} and the results thus verified.

Table V. gives the means, standard deviations, and third moments of the Arrays ;
the latter are all small and Hll]jﬁ_‘:!'ﬁﬂiﬂli}' il'rﬁgul:ir in s-ﬁgn_ [ think we may say that
there is no marked and continuous heteroclisy. On the other hand, I think we may
say that while the clitic eurve deviates to and fro from a zero base, the scedastic
curve would fit better to a parabolic curve than to the straight line which is its
mean. In other words, the variability of the cells increases with size of body (i.e.,
growth) up to a certain stage and then decreases again. This result is ohscured by
the fall of the variability after each ecdysis. Roughly the ecdyses produce a rhythm
in all three curves, the regression curve, the scedastic curve, and the clitic curve,
When the means of the arrays are above the regression eubie, then the ordinates of
the scedastic curve are above their mean and those of the elitic eurve show positive
skewness; when they are below the regression curve, we have lessened variability
and ncgutive skewness. In other words, the Ecd}'SE'E-: are ;me(:—mp:miuci h;n.' lessened
cell variability and negative skewness of distribution. I think we may state that
there is a nomic heteroscedasticity due to growth of body, giving first an inereased
variability with growth and afterwards a decrease with age. There is probably
isocurtic homoelisy. Both of these are, however, obscured by a semi-rhythmic
heteroscedasticity and heteroclisy introduced by the ecdyses.

We now turn to the constants of the cell and body length distributions, merely
noting that all these constants are given in terms of the units of the working scales.

Cell Constants. Body Length Constonts.

Mean cell= 9268657, Mean body length = 8-502,488,
o= 2'541,734, o= 3'864,784,
po= 6°460,410, vy = 14°936,562,
pe= 242,362, b= — 57125806,
p,=123921,496, p= 432°769,533,

v= — 425276,682,
ve= 151925375,

B'= 017,021, Bi= 007,885,

B/= 2'969,111. == 1°939,793,

Further By= 043,796,
B.= 4:559,091,

y= 1'454,600, vBi=  — 088798,

A= 2'115,862, o= 931,908,

A= 15'142,840. $h=  — 232167,

Henece (A, —3AS)/(d4N?)= 095,615, = ‘788,409,
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We have next the product moments referred to the means

pu=  3'892,863, whence r= ‘394,862,
pa=— 12104,322, é=—'281,831,
py= 127°348,064, {= 098,578,
pa=—541433,455, f=—759,344.

Further, from Xy,
n= *572,287.

From the constants for the arrays I deduced
x1—1=—"108,148, x.= 088,323,

These are higher values of x,—1 and x, than we have found in the first two

illustrations.
We now obtain, showing the contribution of each term of (xxxiii.),

s;=5f1 {452,240 —"002,528 4 ‘010,803 — 013,180 — 027,875},
4

Whence probable error of n="67449 £ ,="0097.

Had we caleulated the probable error of % from (xxxiv.), we should have found it
equal to “0101. The difference is greater than in the two previous illustrations, but
is only ‘0004, and this would have no significance in any practical use of the probable
error. We again conclude, therefore, that (xxxiv.) is sufficiently close to replace
(xxxIiil.) in practice.

For the mean standard deviation of the weighl;ed Arrays we have

7, =0y /1 —9*=2'084,358.
If we now examine the criteria for the nature of the regression, we have
' —r*="171,596,
by (9°—1°)—="080,483,
by (?=1%) = & —(Ipa—&bs)*/(Papy— bs”) = "079,457.

We should conclude, therefore, that linear regression is inadmissible, but that
parabolie or cubie will be moderately successtul, the latter not very much better than
the former. Our moderate suceess only in this ease is, of course, due to the irregu-
larity of the results to be graduated, the influence of the ecdyses being so disturbing
that we really need a eurve periodically varying from the graduated regression curve.

We have the following regression eurves :—

() Straight line :

Y., =259,687 X,
F
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(0.} Parabole from (lxv.):
Y., =1097,6904-236,135 X,— 073,490 X *.

The maximum oceurs when X, =1'6066, and is given by Y, =12874, thus occurring
within the limits of observation.®

(e.) Cubic from (lix.):
Y, =752,8564"193,058 X,— 049,817 X,*4001,710 X%,

In all these cases Y, and X, are measured from the means of the cell and body
lengths, or from 9°268,657 and 8'302,488 respectively.

Table VI. gives the caleulated and observed results, and the whole system is
represented in Diagram III.  Either the parabola or cubie graduates quite well the
results, allowing for the periodic deviation, and we may fairly describe the system as
a heteroscedastic cubic regression with isocurtic homoclisy. The correlation ratio is
very sensibly different from the correlation coetficient. The regression cubic does not
ditter 1\'irlt=iy from that givcn in ‘* Biometrika,” which was obtained without w&ighting
the means of the arrays, and by simply striking the best cubic of the given type
through the points.

TasLe VL—y, =Mean Cell Length for Given Body Length in Daphnia.,

|
zpmhbody length, Hegression line. | Regression 1m'i1hc-1;|..| Regression cubic, Ohserved.

1 7320 4458 ' 5047 5300

2 7580 724 6 190 5833

3 T840 G842 7166 7790

. 1 8099 T-813 | T D86 8050
I B 8-350 [ 8-638 | H661 0-473
| 1 861D | 9-315 | a-200 5436
| 7 ] [ 0-B46 9-613 8506
8 9-138 10229 | 9-912 10267

| 9 ( 9-308 10- 466 | 10- 105 10761
| 10 9-658 10-555 10-205 11-027
11 9-917 10- 498 10-220 10 953

12 10177 10-293 10-161 B 100

13 10-437 9-942 | 10-038 @000

14 [ 10696 9443 | 8- B61 10036

15 [ 10- 956 | B-T08 | 9642 10-317

(11.) llustration D.—On the Skew Correlation between Number of Branches to the
Wihorl and Position of the Whorl on the Stem in Equisetum arvense.

I have selected this example not on account of any biological importance, because
the material is—especially with regard to the first and last two whorls—unsatisfactory
either on account of irregularity or of insufficiency of material. It has been taken

¥ Actual values on wurking scales, z,= 101091 and Nz, = 105560,
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purely from its statistical interest, hecause it gives a series with markedly skew
correlation, having a regression curve of a rough S-shaped character. If we omit
the first and last whorls, we get, as 1 have already shown,® a vemarkably close fit
with a eubiecal regression curve. My present objeet, however, is not to consider any
law of growth, but merely a mass of statistical material, to be dealt with by the
processes of the present paper.

We may anticipate that the irregularities of the series, indicated in the memoir
just referred to, will make themselves manifest in a less satisfactory fitting of the
regression curve than occurs when we deal with the more homogeneous group of
equally weighted whorls fitted in the diagram of that paper. Table VIL gives the
data, with the means, standard deviations, and third moments of each array.

The axis of = shall be taken to give the pﬂﬁitiun of the whorl on the stem and that
of i to denote the number of branches. We require the regression curve of y on
or the probable number of branches on a whorl in a given position. We shall not
use SHEPPARD'S corrections for the moments of either the & or y-characters, as high
contact nt-rtailﬂ_v does not hold for both at the low-value ends of their ranges.

We have the following constants . —

Position Constants. Branch Constants.

Mean position = 6-403,315, Mean number of branches = 7°216,851,

o= 3°542,604, Ty= 3°278,499,

w= 12:'650,046, po=  10°748,557,

vy— 8-249,534, py=— 24-313,478,

v,= 319°515,824, p= 245'811,660,

vy= 644095176,

rg=11203"5814,

B= 034,429, = 476,044,

B:= 2:028,625, By= 2-127,658.

By= ‘214,190, Further

B,= 5667,884, o 2°789,949,
v B = ‘185,550, A= 7783,815,

ho= ‘994,196, A= 140°441,685.

b= 592 884, Hence

¢, = 1'518,136. (A —3AM(4AN=  —'170,508.

We have next the product moments referred to the means

* i Proc. Koy. Soc.,’ vol. 71, p. 308.
F 2
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pu= — 8225585, whenece r= —-708,222,
py= — 21'471,321, i= —390,436,
Py = —205084,042, E: +029,738,
pa= —917:084,938, f= —960,212.

Further, from X,
7="850,984,

From the constants for the arrays we deduee
xi—1=—'856,367,  x,=—'312,952.
We now obtain, showing the contribution of each term of (xxxii.},
Ef:l.'q {076,080 — 157,932+ 055,359+ 079,662 + 038,579 }.

Whence probable error of y="67449 £,="0054.

Had we caleulated the probable error ot % from (xxxiv.) we should have found it
equal to '0049. The difference 0005 is not of importance for practical purposes.
Yet in this case it is clear that the values of y,—1 and y, are very sensible. Thus we
see that a very marked heteroscedastic and heteroclitic system with continuously
changing standard deviation and skewness scarcely affects for practical purposes
(i.e., to three significant figures) the probable error of . All four of our illustrations
therefore confirm the eonclusion that :

For pnwﬁicai PUrposes the jii'ﬂ?m:bf& ervor of the corvelation ratio, 1, Y be talen
as 67449 (1 —x»*)/N.

Our Diagram IV. gives the values of the relative standard deviations of the arrays,
or, o, [a,, the horizontal line giving v/'1—5*="5252, or the mean value of the relative
standard deviations of the weighted arrays. We have also the elitic curve giving
1/ B,, for each array.® The remarkable smoothness of these scedastic and clitic curves
in this ease indicates how far certain types of correlation surfaces diverge from pure
normality of distribution, the divergence being obviously nomic.

We now turn to the regression curves and write down the conditions for the
different types; the three expressions should be zero for linear, parabolie, and
cubieal regression respectively

7 —r*="222,596,
by (n* —1*) —E="068,864,

s (2 =12) — &= (Thy— by (bathy— %) = 010,127
* %J,ﬂ. = difference between mode and mean divided by standard deviation = skewness in the case of
skew-curves of Type IIL (* Phil. Trans.,’ A, vol. 186, p. 373), and may be taken as a reasonable measure of
the skewness for those cases in which the fuller form involving B; would involve too lahorions caleulations.
If in equation (xii.) of the present memoir we put 8; = 3+ a small quantity, and remember that [3; is itself
a small guantity, we sgec that the more correct formula for the skewness involving . reduces, r:ug]_uu[iug
terms of 2* order, to § Jﬂ:
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We see at once that the straight line is inadmissible, the parabola will not be very
good, and the cubie only moderately appropriate.  The conditions are not nearly so
closely fulfilled as in the eases of woodruft and head heights ; the last two are hevt ter
than in the ecase of Daphnia ecells, but while the deviations in the ease of Daphnia
were irregular, there heing no approximate smoothness in the secedastic or elitic
curves, we shall find here more uniform deviations which would probably be partially
allowed for by a quartie regression eurve.

The following are the regression curves :—

(ee.) Streeight line
Y, =—655423 X,.

(b.) Parabole from (lxv.) :
Y, =1551,307 — 574,171 X,— 123,610 X,2,

The maximum ordinate is at the position X =—2-3225 or x,=4'0808, with
maximum number of branches y,=9-435,

(e.) Cubic from (lvi.):
Y., =1'590,413— 987,694 X,—-137,641 X,*+ 016,605 X,°.

In all eases X, and Y, are measured from the mean position and the mean number
of branches, i.e., 6:403,315 and 7'216,851 respectively.
The following table contains the ealculated and observed results :—

TapLe VIIL—Mean Number of Branches to each Whorl in Equisetum.

v i s shocs st Regression Regression | | Regression cubic
Pombion. | Regression Ime.l parabola. cubic. | Ume |wit.hmrsb whorl.
1 10768 8-262 T-B06 ! T-G19 [8-207]
2 10-103 8-900 9-070 9-204 §-929
3 G- 447 9-29] 9-920 | 9-627 9869
4 8-792 9-434 10156 | 0730 10-161 |
b 8-137 9-330 0-BiG [ 9-643 9-9811
6 7-481 8980 | 9182 |  g4m 9-224
) G- 826 £-382 | 8172 | 8-732 | 8205
8 G170 7536 [ G047 [ 7297 I 6962
8 5-516 { G444 | 5605 ' HR T G-599
10 4-859 | 5-104 4847 | 8964 4-223
11 4-204 I 3517 2-971 2443 2-939
12 3-549 1-683 1-879 1-866 1254
13 2-893 - 0399 1-069 1462 1-072
| 14 2-238 —-2-727 0-641 1-353 0-700
| 15 1-582 | —5-303 0-694 1-250 0-844
[ 16 0-927 | =8:126 1-328 1000 1-G10
| |

In the last column I have placed the results of re-working the whole system,
omitting the first whorl as [m‘gel}' influenced by the grmlll-'] condition at the foot of
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the stem.™ The improvement of fit is not sufficiently great to justify a publication of
all the constants for the distribution in this modified ease. But there is improvement
for the higher whorls, which are so few in number as to be wholly insignificant when
compared with the weight of the first few low whorls.

It will be noticed at once that the line and the parabola (which gives at the top of
the stem negative numbers!) are absolutely unsuitable for representing the facts of
the case. The cubie is better and certainly gives the general trend of the observa-
tions, but in this our last illustration we have clearly reached the limit of material to
which such cubical regression can be satisfactorily applied. See Diagram V.

(12.) Quartic Regression.

It seemed of some interest in this case of Eyuisetum to ascertain whether any real
improvement in deseription would be reached by considering the quartic regression
eurve. I briefly indicate the theory in this case as developed from the general
method in the footnote, p. 25. We shall now have

Y. oy =by+by (Xpfo)+ by (X /o4y (Xpf0.) +0, (X, o)

Eliminating b, and b, by the processes familiar to us from the case of cubical
regression, we have

Y. joy=r (Xpfo)+ba{(Xp/0.)' = /By (Xpfor) — 1}
+bs (X0 ) — B, (Xpfor)— V(E-I-:’
+byd {Kn'ﬂ'a—]h_‘(ﬁm'f 'I.J";.Ilg |.} {XH'IU';) = Oy il © (lxx.).

Henee as before

e=byhy+byhs+b,,
(=byps+bspy by = . . . . . . . (Ixxi),
O="byp,+bshs+ by,

where ¢y, ¢, and ¢, are given as before by (li. and liv.), while

=g == R . . . .. [IxEL)
be=(B;—B:B:—=BB)VB, . . . . . . . (Ixxiii),
- =8B —B’—BBB - . . . . . . (Ixxiv),
=yl Bemlat . o R (lxxv.).

Solving, we have

b+ — E('f’:',ﬁ{’i — s’ ) —é(hyb; _‘f’ﬂ'ﬁ'n} = H'ﬁg'ﬁu— 'if’sif)s)
'f’i.']!'i‘f-'r = 'i’:"f*’a-ﬂ BE 'f’-;‘#'ﬁ* = *‘r"i'ﬁ'ﬁe + 2¢S¢i¢ﬂ

* 'Roy. Soc. Proc.," vol. 71, pp. 308-310.

(lxxvi.),
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and
E-du—;—'f’: E, '#'ﬁf’.s ‘ﬁ'ﬁ'ﬁ'ﬁ \l
dbi—d® b= | )

E%_E‘i’ﬁ L‘r %‘f-’u 4’1% r
3 ﬂ-‘i'l"‘#‘i 'i'-a'i' ""-'ﬁ";i

Substituting in (Ixx.), the solution is completed. The advantage of this form is that
we see clearly the modifications made in b, and b, as we pass from cubical to quartic
regression, On the other hand, ¢; and ¢,, as shown by (lxxv.), involve the 7 and
8" moments of the &-character. These are not only very laborious to caleulate, but,
as we have already shown, are as a rule very untrustworthy.

If we proceed as on p. 26, equation (lvii.), we find

pP—=r=bit+bl+0f . . . . . . . (lxxviii).

b,=

Using this and not the third equation of (lxxi.), we replace (Ixxvi.) by

r=r=gsiaamsn)
E)': b L ;|.f 2 PANE Y 1
s }E{QEE‘IE"-I — s’ ) —&(Pups— Ppachy) — L{paps— huh:)

This eglqmtinm for b, only involves the 7" and not the 8™ moment, but like the
corresponling  form (lx.) suffers from being a ratio of small quantities. (lxxvii)

completes the solution as before.
(lxxvii.) and (lxxix.) in conjunction give us a necessary condition for quartic

We ean indeed now write the whole series of conditions as follows :—

(lxxix.).

regression.
Linear regression : ;
1?:1_ =},
Parabolie regression :
[N IREC 3 i
=1ty =1

(*ubieal regression :

7 =1 — & feby=(Lepy— &by '/ pal hapy—hs") } =0

Quartic regression :

— i ) ”‘[‘ﬁ'ﬂ’\; ) —éleh b, *ﬁglﬁ'ﬂ]_z{f#ﬂ‘ﬁn_fﬁu‘ﬁa}}z =0

=1 &fehy— (. ; = i
T (b —y) T (pahy— b W bbb — Dy — buby’ —butb + 2. y)
: (lxxx.).

We now have a third possibility : we can get rid of the fourth produet moment #
from the value of b, and write it :
NOVA et o (e NV AT X R )
=

hyhs —athy oty — b, SRR - T
'1*-':_':{'54'#_.#'3 —lﬁg¢2¢ qbf
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While this value of b, does not suffer like (Ixxix.) from being the ratio of small
quantities, and would a priori appear to save the caleulation of @, yet the right sign of
the root may not be ovious on inspection, so that an actual determination of # to find
the sign of b, may after all be needful. It (lxxx.) were absolutely satisfied, (lxxxi.),
(lxxix.) and (Ixxvi.) would lead to identical results; but this will rarely be true in
practice. In any of the three cases b, and b; will be given by (Ixxviii.). On the
whole, I consider that (lxxxi.) and (lxxvi.) will give the better results. and probably
the former the best, but it will generally require as much arithmetic as the latter.

(13). Hlustration E.—Calculation of the Quartic Regression Cwrve in the Cuse
of Equisetum arvense.

The only new eonstants required are :
»,=43,207 386, whence B,=1'144 882,
v, =507,649°540, B,=20463,633,
and :
b, =58"425,069, e ="5452,046,

¢T=15‘015,T92,
These lead us to :

bibs—dubs _ 9703384  Pbe—Fbs _ 1511 94,

bupy— b’ Potpy— s’
A= | ¢ ¢y & | =1745622
LT TP
'#5: ¢E—l '#T

Our sueceessive conditions are therefore :
i —r2="222,596,
P 12— &b, ="069,266,
0= =&y —(Lpy— &)/ | b2 (dothy — %)} ="010,186,
=1 — &y — ({bo—ihs)*/ { 4 (osps— ")}
— (0($py— ') — f(iiis: E%L,?"—_Z(%aﬁ_-_aﬁsﬁ}} * =1007,200,

whence we see the suecessive approximations to the fulfilment of the conditions.
Clearly great gains arise when we pass from linear to parabolie, and from parabolic
to cubic regression, but the advance is not so conspicuous when we pass to quartic
regression.

G
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We have :—

From (lxxvi.): 5 ="044,517, and b,=—-648,122, b,="171,260,

From (lxxix.): 5,="151,842, and b,=—"940,410, b;=041,981

From {lxxxi.): h,=-025999, and b,=—-597,691, h,="193,688.

The equations to the three corresponding quartics are :
(a). Y,=1724,611—913.208 X,—169,311 X,*4-'012,629 X,3-}:000,927 X3,
(B). Y, =2:047,717—"734,966 X,—245,667 X,°4003,096 X,*4003,161 X,
(). Y,=1668788—944,192 X,—156,137 X,*4-014,283 X,*4-000,541 X
The values of Y, and X, are as before measured from the means, or 7°216,851 and
6:403,315 respectively.

The values of the observed and caleulated ordinates are given in Table IX., and
the graph of the results in the lower half of Diagram V.

TapLe IX.—Mean Number of Branches to Whorl in EKquisetum deduced from Quartie

Regression.
Position. | Quartic {a). Quartic (5). Quartic (). | Ohserved.

| e =
1 : T-731 2269 T-637 T.6149
- i 8950 2682 9000 9-394
3 : 9-7156 9221 9-800 9-G27
4 ! 10-014 9-674 10-073 G750
] 4-AGH 9-816 9866 9643

| [ 9-261 9-521 G- 240 9- 427

| ) 8-3349 B-T740 B 270 B-732
B 7109 T 498 7042 7-297
9 6-692 H-898 5606 H-555
10 | 4200 4-1186 4-225 3-964
11 [ 2-816 2-407 2875 D443
12 | 1-651 1- 100 1-745 1866
13 | 0930 0 GO0 (- 987 1-462
14 (- 857 1-389 0 ThE 1-333
15 1-6G65 4-022 1-259 1-250

| 16 3600 9-133 54T 1000

|

From these results we deduce the following eonclusions :—

(i.) That the use of a quartic instead of a cubic regression curve has not very
markedly bettered the fit. The failure to get a closer fit lies largely in the nature of
the material. The number of plants with more than 13 whorls is very few, and their
contribution allows little weight to the tail of the regression eurve. Further, all our
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attempts to fit a smooth regression curve show that the observed data ave unduly
flattened at the top. If we confine ourselves to a homogeneous series of 110 plants
with ten whorls apiece, we get a remarkably good fit.* The S-shape of the
regression line as indicated in both cubic and quartic does, however, appear to be
characteristic of the nature of the plant, and I take it that more ample material
would allow of a closer analytical description by a simple cubie. T doubt whether for
practical statistics the use of the quartic will often be requisite.

(ii.) The comparative failure of the quartic (b) shows us that a formula like (lxxix.)
is of small service. This eorresponds fully to our experience in the use of (lx.) in the
case of the cubic. In both cases we get rid of a high moment by making a certain
constant the ratio of two small quantities, and experience shows us that the result 1s
unsatisfactory. It is accordingly preferable to use formule invelving high moments
of one variable in preference to those with a ratio of small quantities,

(iii.) The quartic (c) appears as good, if not slightly better, than quartic (a). In
(¢) we have got rid of a high product moment, #, by supposing the quartic condition
(lxxx.) rigidly fulfilled. This of course is not the case. It is clear that produect
moments like @ of the 5™ order are far from advantageous, and this is the same prineiple
which was in evidence when we found (lxv.) giving better results than (lxiv.) for
parabolic regression. Hence we must further conclude that the use of third, fourth or
fifth product moments is disadvantageous as compared respectively with fifth to eighth
moments of one variable. Or, a moment two degrees higher is preferable to a product
moment in caleulating correlation values. This is, T think, consonant with our
knowledge of the relative magnitude of the probable errors in the two cases,

(14.) General Conclusions.

(i.) The present paper provides us with a general method of dealing with the
regression line and the va‘nrialbﬂit}f of arrays in the case of skew correlation, without
any assumption as to the analytical form of the skew correlation surface,

(ii.) It provides a nomenclature and classification of the types of array variability
WIIicI] m:l}" ll'e ﬂr Hﬁl“?iﬁﬂ.

Arrays are either homoclitic or heteroclitic, according as their skewnesses are of
equal magnitude or not. Arrays are further homoscedastic or heteroscedastic,
aceording as their standard deviations are alike or different. Skew arrays are termed
allocurtic; if arrays are symmetrical about their mean, they are isocurtic,

A heteroclitic system of arrays may be nomic or anomic, according as the skewness
of the arrays changes continuously or irregularly with the position of the array.

A heteroscedastic system of arrays is also either nomie or anomic, according as the
standard deviation of the arrays changes continuously or irregularly with the

* ' Roy. Soe. Proc.,’ vol. 71, p. 308.
G 2
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position of the arrays. Anomic heteroclisy and anomie heteroscedasticity probably only
signify that our material is either heterogeneous or too sparse to free us from the
large errors of random sampling in the extreme arrays. Still the terms will be
found of use in deseribing the actual data.

The curve in which the skewness of the array is plotted to its position is termed
the elitic curve; the eurve in which the ratio of the standard deviation of the array
to the standard deviation of the character in the population at large is plotted to
position 18 termed a scedastie eurre,

(ii.) The types of regression have been classified into linear, pavabolic, cubic and
quartic.  For most practical purposes the first three suffice. Necessary eriteria
have been given for each case. But as in the case of the skew frequency of one
character, an indefinite number of conditions ought theoretically to be fulfilled.
Practically in dealing with frequency, no criteria are absolutely fulfilled, and the
probable errors of the expressions used become unmanageable as we ascend in the
scale.  'We must therefore be content to estimate the degree of approximation with
which one or two necessary criteria are satisfied.

The fundamental test of deviation from the familiar form of linear regression is the
inequality of the correlation coefficient » and the newly introduced correlation
ratio . The probable error of this latter is determined. It is shown that
o, +/1 — 4° is the mean standard deviation of a system of arrays in skew correlation.
The ease with which % can be caleulated suggests that in many cases it should
accompany, if not replace the determination of the correlation coefhicient.

In the determination of the constants of the regression curve we must use
moments and produet moments. The limitations to the order of the curve used
depend : (@) on the labour of the arithmetie, (b) on the increasing probable ervors of
the higher moments and produet moments.  For these reasons it seems idle to propose
going beyond the 6" to 8™ moments, or the 3™ to 5" product-moments. Practieal
experience suggests that little is to be gained by using moments beyond the 6", or
product moments beyond the 3™ A quartic regression curve may be useful
occasionally, but it has yet to justify its necessity. As our object is not to repro-
duce the given data, but to provide a graduation for them, which smooths down the
errors of random sampling, we believe that any legitimate and practical theory must
diseard the high moments and high product moments with which TuieLe and Lirrs
propose to deal.

(iv.) There is one point to which reference ought to be made. Some reader may
enquire why the method of my paper on curving fitting™ should not be applied
to these regression curves in general, as we have in practice once or twiee
:uh-um'[}r 1L|1piir.-.!d it. It would seem that that method 1s the easier, invulving in the
case of the quartic only quantities analogous to our », e, { and . The answer is

¥ %0n the Systematic Fittings of Curves to Observations a d Measurements.” * Biometrika,’
vol. L, pp. 265-303, and vol. II,, pp- 1-23, aapar.‘iﬂ“y the latter, pp. 11-135.
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straightforward : that process supposes every y, to have equal weight, or u, to he
the same for each array. Hence the higher moments of the x-character, which are
really involved, can be written down without caleulation once and for all® The
complexity of our present investigation arises from the introduction of the weighting
into the ealeulation of the moments of the x-character, as well as into that of the
product moments v, e, {, #. Our results therefore, although they might not look so
good on a graph of the regression curve, would be markedly better, if due weight
were given to the frequency of each array. The difference of the two conceptions is
comparable to the determination of the regression on the one hand from the
correlation ecoefficient, and on the other from merely striking a line through the
plotted means of the arrays. The method of moments in the present case, if we
except the use of %, is identical with that of fitting a curve to a continuum in space
by the method of least squares.

(v.) No stress whatever is laid on the actual instances here selected for illustration of
the methods of this paper. I have merely chosen out of available material cases in
which I had come across skew !'l:gl‘-[:‘:!-}.‘-l-i{}'ll of various types. Thus we find -

(«.) The correlation of the number of branches and position of the whorl in
Asperula odovata is practically parabolic, homoscedastie and of nomie heteroclisy.

(i) The correlation between auricular height of head and age in girls is cubieal,
of nomic heteroscedasticity and of anomic heteroclisy. It is probably really a case
of isocurtosis,

(¢:) The eorrelation of size of cell and size of body in Daphnia magne, allowing
for the irregularities produced by the ecdyses, is parabolic or eubie, of nomic
heteroscedasticity, and probably, but for the above-mentioned irregularities, of
isocurtic homoelisy.

(d.) The correlation of the number of branches and position of the whorl in
Equisetum arvense is cubical or possibly even quartie, of markedly nomic hetero-
scedasticity and markedly nomic heteroclisy.

It is not impossible that slips have occurred in the lengthy arithmetic involved, but
every important piece of work has been done independently twice, once by Dr. Arice
Lee, whom I have most heartily to thank for her unwearying assistance, and once
by myself. To preserve uniformity of working, the constants have in each case
been carried to six figures. This involves little or no additional trouble, using as we
do mechanical caleulators. The final results are of course of no value beyond their
probable errors, which will be in the second or third place of figures. H‘u doubt [
shall be told that there is a show of accuraey in the number of decimal figures
retained, which does not really exist. It does not exist (and I am as fully conscious
of its non-existance as any would-be eritie) so far as our results fit the actual
population, of which we have but a random sample. The figures, however, are of
importance, as far as testing accuracy of fit of result to actual sample goes. The

* i Biometrika,” vol. IL, p. 12,
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cubic or quartie curves may have coefficients insensible before the third or fourth
figure of decimals, and these coefficients have to be multiplied occasionally by
abscissie of the third or fourth powers of 7 to 9. Hence to get ordinates true, as

Sar as the sample goes, to the second or third figure, we require to work to a fairly

high number of figures. There is no magie in six figures, four or five would probably
satisfy another worker, but they are easily read off' the caleulator we use, and if the
constants had been tabled only to four or five, no reader would have been able to
agree exactly, it he wished to test any of our results, even to three figures, with the
final ordinates.
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Mathematical Contributions to the Theory of Evolution.

XV. A MATHEMATICAL THEORY OF RANDOM MIGRATION. By
KarL Pearsow, F.R.8., with the assistance of Joux Braxemax, M.Se

(1) Iutroductory. In dealing with any natural phenomenon,—especially one
of a vital nature, with all the complexity of living organisms in type and habit,—
the mathematician has to simplify the conditions until they reach the attenuated
character which lies within the power of his analysis®. The problem of migration
is one which is largely statistical, but it involves at the same time a close study
of geographical and geological conditions, and of food and shelter supply peculiar
to each species. Some years ago the late Professor Weldon started an extensive
study as to the distribution of various species and local races of land snails, but
he was struck by the absence in several cases of any definite change of environ-
ment at the boundaries of the distribution of a definite race. It oceurred to me
in thinking over the matter that such boundaries, where they exist, may possibly
not be permanent. To take a purely hypothetical illustration: A species is pushed
back to a certain limit by a change of environmental conditions—say, an ice age.
Does it follow that if the environment again becomes favourable, that it will
rapidly oceupy possible country? What is the rate of infiltration of a species
into a possible habitat? It depends, of course, on a whole series of most complex
conditions, the rate of locomotion, the channels of communieation, the distribution
of food areas and breeding grounds in the new country, and the connecting links
between all these. Every detail must be studied by the field naturalist in relation
to each species. All the mathematician can do is to make an idealised system,
which may be dangerous, if applied dogmatically to any particular case, but which can
hardly fail to be suggestive, if it be treated within the limits of reasonable application,
The idealised system which I proposed to myself was of the following kind :

(i) Breeding grounds and food supply are supposed to have an average uniform
distribution over the district under consideration. There is to be no special following
of river beds or forest tracks.

* This is of course a perfectly familiar process to every mathematical physicist, but its unfamiliarity
leads the biologist to suspect or even discard mathematical reasoning, instead of testing the result
as the physicist does by experiment and observation.

1—2
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(i1) The species scattering from a centre is supposed to distribute itself
uniformly in all directions. The average distance through which an individual of
the species moves from habitat to habitat will be spoken of as a “flight,” and there
may be u such “flights” from locus of origin to breeding ground, or again from
breeding ground to breeding ground, if the species reproduces more than once.
A flight is to be distinguished from a * flitter,” a mere two and fro motion associated
with the quest for food or mate in the neighbourhood of the habitat.

(i) Now taking a centre, reduced in the idealised system to a point, what
would be the distvibution after # random ﬂig]]ts of N individuals dep:u‘ting from
this centre ! This is the first problem. I will call it the Fundamental Problem of
Random Migration.

(iv) Supposing the first problem solved, we have now to distribute such points
over an area bounded by any contour, and mark the distribution on both sides
of the contour after any number of breeding seasons. The shape of the contour and
the number of seasons dealt with provide a series of problems which may be spoken
of as Secondary Problems of Migration.

A little consideration of the Fundamental Problem showed me that it presented
considerable analytical difficulties, and I was by no means clear that the series of
hypotheses adopted wounld be sufliciently close to the natural conditions of any
species to repay the labour involved in the investigation. At this stage the matter
rested, until last vear Major Ross put before me the same problem as being of
essential importance for the infiltration of mosquitoes into cleared areas, and asked
me if I could not provide the statistical solution of it. He considered that we
might treat a district as approximately *equi-swampous,” and thus my conditions
(i), (i) above could be applied to obtain at any rate a first approximation to
the solution.

Starting on the problem again I obtained the solution for the distribution after
two flights, an integral expressing the distribution after three flights, which 1
carelessly failed to see could be at once reduced to an elliptic integral, and the
general functional relation between the distribution after successive flights, At this
point I failed to make further progress, and under the heading of “The Problem
of the Random Walk " asked for the aid of fellow-mathematicians in Nature*. The
reply to my appeal was threefold. Mr Geoffrey T. Bennett sent me in terms of
elliptic integrals the solution for three flights. Lord Rayleigh drew my attention
to the fact that the *problem of the random walk” where the number of flights
is very great becomes identical with a problem in the combination of sound amplh-
tudes in the case of notes of the same period, which he has dealt with in several
paperst. Lastly Professor J. C. Kluyver presented a paper to the Royal Academy

* July 27¢h, 1906,
+ Phil. Mag., August, 18580, p. 75; February, 1899, p. 246,
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of Sciences of Amsterdam, entitled “A local probability problem.”®  Professor
Kluyver obtains the general solution in terms of the integral of a product of
Bessel's functions of the zero and first orders. He deduces Rayleigh's solution for
# large, he shows that the Bessel funetion int:::gml represents a series of different
analytic functions in different intervals, and proves a number of special problems
of very considerable interest. Referring to his general solution, he writes, however :

“ From this result we infer that the probability sought for is of a rather intricate
character. The # + 1 funetions .J are oscillating functions, and have their signs
altering in an irregular manner as the wvariable u increases. Hence even an
approximation of the integral is not easily found, and as a solution of Pearson's
problem it is little apt to meet the requirements of the proposer.”t

Kluyver's solution is of extreme suggestiveness for the analytical theory of
discontinuous functions. In the endeavour to express it in a form suited to my
special purposes 1 have come across a long series of Bessel function properties,
some at least of which seem to me novel, but have unfortunately no bearing
on the problem of migration. If we turn to Rayleigh's solution for = large, I
must confess at once to being unconvinced of the adequacy of the proofs used to
deduce it, especially that in the Theory of Sound]. Kluyver's proof of Rayleigh's
solution § appears to me to also require much strengthening, and in neither case do
we have any practical measure of what the number of flights must be before we
have in practice a reasonable accordance between the discontinuous Bessel's function
integral expression and the Rayleigh solution of Gaussian frequency type.

After a good many failures I have succeeded in obtaining a solution in series
of the Bessel function integral, but this not of a character to be of service for
Jfrequent arithmetical caleulations. It serves, however, to test the approximation
~of the Rayleigh solution and the accuracy of the solutions for few Hights obtained
by other processes. At this stage I realised that the functional equation between
the distributions for # and « + 1 flights could be solved graphically, and that starting
with the known distributions for n=2 or # =3, we could by very great labour,
but absolutely straightforward graphical work and the use of mechanical integrators,
build up in succession the solutions for n=4, 5, 6, 7, etec. I proposed that this
process should be continued until the graphically found distribution coineided with
the plotted values obtained from the above solution in series. This was achieved
for n=7. For n=06 and n=7, the solution in series approaches to the Rayleigh
solution, with which for all practical purposes it may be asserted to evincide for
n=10. We have thus reached a continuous graphical illustration of the transition
of a series of discontinuous and, in many respects, remarkable analytical functions,
step by step with the increase of n into a normal curve of errors. The relation-

* Honinklijhe Akademie van Velanschappen te Amsterdam, Proceedings, Oct, 25, 1905, pp. 341—50.
t loe. cit. p. 343, ¥ 2nd Edition, § 43a. % Kluyver, foc. eif. p. 345,

+
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ship is a noteworthy one, and not without suggestion for other branches of
imvestigation.

The exact method of gl':lphllmli solution will be deseribed later ; the whole labour of
it, involving many weeks' work, was due to my assistant, Mr John Blakeman, M.Se.

(2) General Analytical Solution of the Fundamental Problem. Let the origin
be taken at the centre of dispersion and » be the distance of any small elementary
area a from the centre of dispersion. Let ¢,(+). a be the frequeney of individuals on
a after the wth flight, and ¢, (") their frequency on the same element after
the (n+ 1)th flight. Let { be the length of the flight. Then only those individuals
who were on a cirele of radius ! round the centre of a after the nth flight ean reach a
with the (n+ 1)th flight, and only those individuals of these who take their flight
in one definite direction. Let © be the centre of dispersion, C' the centre of a,
P a point on the circle of radius ! round C, [ PCO=#, then the frequency per
unit area at I is ¢, (1"+F=2rlcosd), and the amount which goes in directions
between @ and 0+80 is df/2m. Hence the frequency per unit area at C' after the
(rn+ 1)th flight is given by:

$...(17)= ‘.}:Jg:h (20— Eilcosillydll il (i).

This is the equation, which I shall speak of as the general functional relation between

the densities at successive flights. Now assume : ¢, (%)= C, .J, (ur), where C, is any

undetermined function of #, { and #, and u is at present an undetermined variable.
Then by Neumann's Theorem *:

I, (1 7+ F=2rl cos 8) = J, (ur) J, (ul) + 2 s S (ur) o (1el) cos t6.
1

Hence : _,lﬂ -'C’M o S+ F— 2l cos 0) dft = C, T, (wr) J, (ud)
~ [1]
=, ., (ur), by (i).
Therefore [BRSEE e T (8

It follows that C, = D{J, (ul)}", where D may be any function of /, but not of x.
Thus we have : ¢ (#7) = D T (ur) LS, (ud)},

where we may sum for any or all values of w.

Now when # =1, ¢, (+*) must be zero, for all values of » except »=I!to [+ 7 and it
then equals N/(2wl7), v being very small and N the total number issuing from
the centre of dispersion. We know, however, that *:

[ e[ o ) T ) . ) dp =), i g <7<
: - =0, ifr>por <y

# (0, Wenmann, Theoriz der Besselschen Funclionen, 8. 65,
t Gray and Mathews, Treatise on Bessel's Functions, p. 80,
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- ‘Hh"
Now take 1=, = f, p= {471 and f{lﬂ} =EE .
] :r
then we have : [ wl 5=F S, (wl) o, (1) 7l =, (1),
- “ = g
i *
or, ¢, {17)= i}#J‘ PR L Y T R (ii).
i (1]
This determines the form of D and the summation of » ; for, if we take
N[
Pa () == J' T T T W R e R 11
=T f o

we satisfy the general funetional relation (i) and further the initial equation (ii).
Let P, () be the probability that an individual after » flichts will be a distance »
or less from the centre of dispersion. Then clearly

T

2. =21 v dr ()

= Nfri' {FrJ. w oS, () S, (0d) ) .
i 1]

But*® w3 .f:. {’HT} = g {{}IE;;:?]?“.}:
hence P, (r)= NJ:JH, f I:In' (1) d L{:{E‘Hi‘f} i/ {:"r}' s

N EP J, (ur) 7, (),

: iy L™ .
or if v=ur: =NL J, (v) I(T’) T sl B 0 (iv).

(iv) 18 Kluyver's fundamental solution, which he reaches by a very different
and more general analysis. (iii) is the form of it which best suits my present
investigation.

(3) On an expansion in series of the expression for ¢, (") By straight-
forward but somewhat laborions multiplication it can be shown that:

{1 (2Vy) et =1- i‘“ff—fﬂw‘+{ﬁ“ l_f.j';'lgj}ﬂ’.!""

- I - B B195 2 : K
(50n—57)n . (1892 __31_--'{“*_"_'_:?13‘.*]'_'3,*, ete.

1800 4 103,680

® Gray and Mathews, loe. eit. p. 13
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Hence putting 2/y=¢2

20 = ,‘J?‘::_I LT (E?L—-}l}n =
)= =@ s e e o e
(50n—=>57)n 2  (1892—2125n+270n%)n 2" :
1800 1024 103,680 4096 —tey (V)

— jus? 3
=g A {'! .._,|_r1l_dg‘—q'.|'l.;2IE - ﬂhz." — rcmz“’—r:,l_.ﬂ'— E't.l'_'a},

let us write, for brevity. The a’s are then known coefficients.
Now by (iii)

Bl = f :1-; J, () {7, ()} .

But we know that* :

J we " VT () du = E Pt e b e (vi).
o il

Write : N e e (wii).

Thus : f we ™ YT () e grAe S e e (wiii).
0 o’

Differentiate (viii) s times with regard to o*:

e "?'J.',u+1‘—lm3rr= : . o _!_ —}rda?
{ -._%_}J'ﬂ by Jn{-m}du—d{aﬂ}a{ﬂ':ﬂ }

Hence, if 8= —2¢%/+*, we have:
® rrr
fu=J Tkl P T (ur) du
i

1
S LA
2 dgt \ B
ae
= e A

‘We have therefore :

: - - d* /1
where it remains to evaluate 3._.,2‘:?13—‘ Tl

We find :

s

=LY el 0
. m(&,}[ (h Ja""+4cl" g%’

T\ et (oy 4 = g 1 ’J)
)L (-'1 4Bﬂ“u+laﬂ"l -u‘b+ 164}"&__ '

* Gray amnd AMathews, foc. el Eqﬂ. (162), p. 78
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P\E . ¥ 2540 1 g
( ) ket (1 ?'D—SEIU +Iaﬂ e
'\. r ] [ e
2 | 7 3] Dt ! I'-'- L III.l l"ﬂ ‘__.JI] ’ 1' |.')
S el PSSR AT !
7 '.I'.*.‘E(rr){ (720-2160 " 1350 "~ 300 4 =2 L ( ) :,4(

Remembering that by (vii) I*=2¢%n, we have from (ix)

i’

N _,5_.4,2]’ 1 L L ) 1 g, 2t i"'\J
#) = el a0 e liean S e
¢ () :3-:|'.|'|e:ll':{u | -:1:-4.( +4cr Eilre"(' +4u’ B o

II":L—I[( p J" 1 *
34—43 IE
19207 \ + ‘+H§ u"‘)

.:-{}:ra—-a:( 3 B LT ] ¢

20 — 1 -25 — -

1800+ |20 Sma-*"' “"" i tie s a2 )

1892 =21 2504 27007 i S L LT L £ g0 1 il"'")
i 720 —2160— b= T

e (; 0-21607+1350 - —300 4 “° L — 2004 270

This is the general expansion for the distribution of the individuals emcrging
from a centre of d[E-]}lEl’EiO]l after # random ﬂightﬂ. (Jlmu‘ly if we want to o as

. 1 : i ;
far as — we must retain terms up to (+/o’)”, and the convergence is small for «
T

small. Thus for the first two or three flights, (x) as far as I have calculated the
terms gives poor results, even if they are nutwlth:atanding better than the Rayleigh
solution. The arithmetical work required to caleulate the ordinates is also severe.
If we put n=c, we have

N e ,
e = 0 e e (xi),

2o

Lord Rayleigh's expression. Now o'= ]/’ hence unless ! becomes indefinitely small
as 7 becomes indefinitely large the population becomes widely scattered. If the
single flight { be very small, but the total flight #/ be finite, then Lal* tends to
become vanishingly small, or the population remains close to the centre of dispersion.
This is really the “flitter” as distinet from the flight.

Examining the solution found it is clear that it may be looked upon as the
sum of products of two factors, one series of factors not involving /o but only =
and the other not involving n but only #/o. Thus we may write

(7)) =N (v, 00, + vy00, + v, + vy, + ... ),
where

= 1 ‘#_érﬁ"ﬁi i 1,

dwe”

o SRR 1o L *
“= e (1 2o 40
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il 1 r_—g,: ot 9 a6 1
L ol ‘\ L L Bi 4’
BIew & LH = 5
o, = 1 -I”—%-I"'_i:l'" rlﬂ—ﬂ i-_ .—Jj‘l—l-j p:—i
2ra \ o 4¢g' 8& e On?

The w-functions form a series of such special interest that a few of their
remarkable ]:t'upei‘ties will be stated in the next section,

(4) Properties of the w-functions.

Let us consider the pth moment round the origin of the 2sth w-function taken
over all plane space. We will denote it by Wiy . LThen

tx w
My, 0 = j dd j rdire,r?
o 0

Eznrwﬂrwm- i R S
1]
Now o, = (=B)y* g eli® (xiv)
:'a' zrf ;;ﬁ B fTrTrEEREANITTEREEEEEE A AN £l
and by 8= —2¢"/+* we have EE,S=:1-;- .

Hence writing p=2¢ we find

gy o= (= 114571 (20°)" f o ;;,f;* (3 ) dB v e

Integrate by parts and we have

“‘Wr.u={'i}“+"l{3ﬂ:]T[{ '“'"{;:;:, I{!"'B)}_:—{?—-q—l}f ‘B‘-"*E;’;‘:I( l.ln)urﬁ]

The part in curled brackets vanishes at the limits and thus

7”;;.:«:{ ol 1}“"‘_2{20’2_}4{3"1 - 1}"':: '&"‘!"'1 ri- (IB 1|'.B) {1}-8

dget
=ity .. (5 =g =1).
Repeating this process we find
M= (5= 1=q) (=2 =) (s=3 =) ... (~1)

x (= 1)1 x (20%)1 % J'j:ﬁ"?"”c"'ﬂ{fﬁ ..................... (xvi).

The mtegral is finite and known ; hence it ¢ be less than s we find for integer
values

My, o = U, (S8 tivniiiiieiii i {!':‘u"ll}

Now consider w, as made up of two parts,

i l il

= RN g et~ - ik van i SRR (xviii).
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Then it is clear that y., if g be less than s, consists of powers of + less than
s, and thevefore

fr iy, Xag 01 = 0.
0

Accordingly a remarkable property holds for the y-function part of the w-function,
namely, if x,, and yx., be two such functions, then it follows that

J‘ E‘ij-i..lqixwxw.f'(lf-i'zﬂj if ¢ and ¢ be different, ............(xix).
L]

Returning to (xvi), let us put ¢=s, then

My 0= = I:Eﬂ"}' IfJ B-’_Q "?wffﬁ

=

_ (2|

5 = % i
= {—1}°J' el 'y
- “
or, = o TR RN XX,
Let us now consider the integral over the plane
1 =531:J 0y, X AT
0

Except for the last term in y,, it will consist of a number of terms having for
factors m,, ., with g <s and these all vanish. The last term in Xor 13

-1y (L)

o 2r(=1) 1 r"
_E o e - Y i1 5
I= 'rrL' @By Xy Tl = o = w,, 7y

or by (xx) W L e T 4]

and accordingly

Hence we have the following properties :
(#) The integral all over the plane of distribution of one produet of a

x-function into an w-function of a different order is zero.

(b) The integral all over the plane of distribution of the product of a
x-function into an w-function of the same order is, if 2s be the order, equal

to (Js).
These properties enable us—as in the case of Bessel's functions or Legendre’s

functions—to expand any function symmetrical round a centre and a function
only of the square of the distance from that centre in w-functions.

Thus let (7)== ] (Do),
=ik
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multiply by y., and integrate all over the plane,

e o
oy ( o {;—“} X il = f';._“ S f ﬂiﬂxu?'di‘ i F}H { .~.‘}"'.
40 0 =

a} w
Henee bu=1m | F(r)on it oeiesiineissens ool xxit),
{_"}' 0

T ' " - - - j“" r -
Now ., consists of an algebraic series in ( ) I'hus the discovery of the
o

value of the integral f F () yurile depends solely on the determination of the
0

odd moments of F (+*) between 0 and =. We conclude therefore that an
expansion in w-functions involves merely the determination of moments, such as
every statistician has bheen aceustomed for years to caleulate, This 12 not the
proper occasion to deal fully with the properties of the w-functions, nor to
generalise them for odd powers of #, and to consider the convergency of
expansions in terms of w-functions. They will be diseussed on another oceasion,
but the present writer believes that they will be found of not inconsiderable
service, not only in statistical problems, but in certain physical problems where
intensity round an axis diminishes with the distance.

(5) Two further problems are of serviee for the theory of dispersion.

Buppose
F(r)= 8 (byw,)
g=il
Integrate over the plane and remember that x,=1,
::‘*rrJ' F(ryrdr="S 2w [ " bo.xrdr
L1} L S
Thus the first coeflicient is merely the total volume of the surface z=F(+%),

taken over the plane.
Next consider the second moment

3 : = =
27| #F@)rdr=8 27| by.wy. " rdr
0 a=10 0

Every term of the summation vanishes except for s=0 and s=1, and the left-
hand side is the second moment of the function about the axis perpendicular
to the plane through the centre = volume x (swing-radius)'=b, x A% say. Thus:

= e - - | i - i 1+ X
byx K= 12 f,e /ey 4 = l.e ¥ (] -= ) rdr
o o o Jo o

=2+ b (2—4)a*=2(b,—b) o,

or b= b, {1 = L K at}icniiiniiiiintone T el (xxiv).
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Thus far no choice has been made of ¢'. If we take ¢*=4A" we have h,=0,
or if o® be taken half the square of the swing-radius about the axis of the
solid of revolution z=F (i), that is if o be the swing-radius of the solid about
any plane through its axis, then the second term in the expansion of F (i)
in w-functions disappears.

We are now able, [ think, to grasp the relation of the Hu_'fleigh solution
to the complete solution of the random scatter round a centre of dispersion.
If ¢,(*) be the function giving the distribution after # flights, then ¢, (+%)
can be expanded in a series of w-functions, i.e.

¢, (F)=bo+bo+be +.. +he,+....

By choosing the o' of the o-functions=3}A" this becomes, since b, the
volume = NV,
\T L (gt

'#'lt_{r-l} = _3;._ A

= M+ b+ + by, + .0

Lord Rayleigh's solution provides the first term of this series, or is the
correct solution to two terms in the expansion by w-functions. It possesses
the properties () that its volume is the same as that of the complete solution,
and (b) the mean square deviation from the centre of dispersion is the same,
i.e. 2g%, as for the complete solution.

The latter depends upon the fundamental property of the w-funetions that

&
[ aw,dr=>0, if § be > 1.
J0

The expansion in w-functions shows us at onee that, whatever be the magnitude
of n, the mean square deviation from the centre of dispersion is Jul, and this
gives us readily a rough measure of the range of habitat of any species for
which # and [ are approximately known.

Another point may be noted here as to the Rayleigh solution. That selution
is the best fitting Gaussian error surface to the distribution, i.e. its volume and
its standard deviation are the same as those of the actual distribution, whatever
#w may be. If we take the section, however, of the distribution through its
axis the standard deviation of this according to the Rayleigh solution is & =+1nl,
but this is not the standard deviation of the section of the actual distribution,
t.e. the Rayleigh solution does not give the best fitting normal curve to the
section. It gives only the standard deviation corvesponding to w, It is of
some value to note what are the standard deviations of other component
., terms.

To obtain this we must determine the area and even moments corresponding
to any e, term. Let

o [ o AP [T gk & /] "

T
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whenece integrating by parts:

d,=— =

¥ g 2 2

1 1 3 i) 1 —dat
T 2na {:1 _JJ fh _':EH\‘._:;}"'_.’J’.. " da
Il 1 8\ 5) I
T (.:.. — 3/] (z- — 3) {;\ — EJ E .............................. {xx\'},
= or =1
If s=0, A= Ii - con{XXVI)
JZmwo 2
n
[ now take: ‘um‘._‘=J' w1 dr
(1
1 de /1
- app o QY e 1) [t oS
‘.’m:r"‘jn (= 8) :-ﬂﬂ"(ﬁﬂ )n_r-_’:,
and find, reducing in the same manner,
1 ov lj / e |} 2 h s
h,.ﬁ—q,é;m 5 (ﬂﬁ‘“-g: (#-Ej_ﬂ:]"'[-._}H-g x1.8.5...(2p—1)...(xxvii).
ﬂ 0
My 00 = EWJ‘{I (T dr

Clearly :
=2y o

Dr, Wty y,0p =

by (xiii), hence :

w18 B (p =Ly e aa;

Thus the odd moments of the w., funetions are known®.

For the particular case when p=1:

L ot BN l) 2
PE'-.‘_;FETTU' ‘.’-( -_23] (ﬁ_é:ll'r s " R (i),

Hence by (xxv)

if &, be the swing-radius round the axis of the function w,.
o | = o
= (=%) = - ey S S L et A (xxxiii).

z .h'—f_,- Ze—1

* If x=v/c the following finite difference and differential equations are fundamental in the

theory of the w-functions:
aaes = (28 4 3= o)y + (e + 1P o, =0..... RS e kol
ﬁrm._..
Wypery) = (8 + Lo, + L '“rj.‘ e R s

. [xxX),

:’I'm:' . r I"-.g!lnad.‘ o &
—5 * (.r—x) =3 +Bila Mmoo e e (XXX,

But the fuller treatment of the o-functions must be deferred.
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This is also true for s=0, as well as any integer value. It follows accordingly
that while the total area of any w-function from 0 to = is positive, its Lk is
negative for values of s=1. In other words the negative parts of » are on the
whole furthest from the axis. Again the absolute value of L, decreases as

J?I : when s increases, or the higher the w-function the less it contributes relative
D3 —
to its area to the total mean squarve deviation of the curve.

Applying these results to the curve of scatter given by (x), te.

= 2 1 1 Gn—11 H0n — 57
2 __,gp( e p—11 ~ 50% :
(%) W= n & g @t TToons et eanaT e

1892 — 21250+ 270%°
103,6801°

we have if 4 be the whole area and L the radius,

N 1 3 1 5 1 25 b6n=11 21 50n-—=57
A= = — =41 =— — = — 4 —— + —
Vaima 2 l6n 24n* 1024 #» 1280 0!
77 1892—2125n+270nR° ]
~ 19158 = -utc,} T 2.2
Al = N a {1 +“1 l-l— 1 l. _.3 r=11 ¥ -30n—57
\."rf!?m' 2 16 % 24 n° 1024 i 3840 it
¥ 1892 —-2125n+4+270n° ]|’ :
RETT T o - +etc.‘ e g |

“ . 1 : 5
Hence if we even neglect terms of order i We see that the Rayleigh solution

gives too large an area for the curve of section and too small a  swing-radius;
these values are

Rayleigh area, i {,.:;\:;{r, Rayleigh swing-radius, o,

Trae area to l; 1 *_‘F ([ i f I-); True swing-radius to 1, a(l+—|—),
n'  2J2rw0 16G i Bn

Accordingly for » small the graph of the Rayleigh solution tends to exaggerate

the concentration, 7.e. using it as an approximation we shall somewhat reduce the

extreme parts of the eurve at the expense of exaggerating those near the centre
of dispersion.

While there is no difficulty about determining the curve of distribution when

n is large from (xxxiv), beyond the great labour of dealing with hitherto untabled

functions, the investigation becomes very troublesome when #n is small. The

functions w are suited in this case to represent the discontinuous functions which

actually form the values of ¢, (%), but the extreme discontinuity of ¢, (+*) for n
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small, compels us to use a very great number of w-functions, and the convergency
of (xxxiv) is then small,

Another method of determining the distribution of the dispersed population has
then to be applied to the case of % small.

(6) Graphical Solution of the Fundomental Problem for n small.

Let us consider the general functional relation (i)

o
Bo ()= f $, (1*+—2rl cos ) do.
&7 Jo

Suppose the graph of ¢, from 0 to #f known, This may be any discontinuous funetion.
From ni to e, it will be zero. Let ABD be the graph of ¢, and Od4 the axis.

Ar———— 8
|

OP=r. Round P describe a circle of radius I, take the radius P@, so that the
angle OPQ =0 ; then clearly, O =+ +F—2rl cos #; rotate OQ round O down into
line 0D, as ON; draw the ordinate of the graph Ny, then we have

Ng=d, (#*+F—2¢l cos 8)
l g'- -
and . (0P = qﬂ_'f Ny 8.
27 | o

Hence if we divide the circle up into a number of equal parts, and determine the
ordinates Ny, corresponding to each of them, we can plot a curve to the base 2w,
of which the mean ordinate will be ¢, ., (0OF), or the ordinate at » of the new
curve of dispersion for n+ 1 flights. This can be done for a series of values of
» from 0 to n+ 11 and thus ¢,,,(+*) will be determined as a new graph. The area
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of the plotted curve which gives any new ordinate can be found mechanically.
It will be seen that the process is theoretically straightforward, but very laborious.
Thus for the dispersion curve after the fourth flight some 43 points had to he
found, and this involved the construction of 43 subsiciary curves and their integmtiml.

There were, of course, graphical difficulties in the construction of the subsidiary
curves in the neighbourhood of the asymptotes and varions devices had to be used, but
at almost every point there were tests of the accuracy of the work. Some of these
I shall now notice.

Case (i). The solution for two flights is:

J.\r l
()= « ] |
A e [ S (xxxvii).
= r>2l |

The reader will find no difficulty in deducing this directly from the case of n=1,
which corresponds to a narrow zone of radius +=/, the rest of the plane being
unoccupied. Thus:

=

¢,=2:&f’mm r={—1detor=I+1Le

=0 from r=0to!{—{e and r={+Le to =
€ l:eing taken imleﬁnite]}' small.

%

} {:.'x:-:vii bz's],

By distributing each element of ¢, on the zone round a circle of radius ! we
obtain (xxxvii).

The result may be obtained also from (iii) by putting n=2, i.e.

e
b, (1) = éi:!'fu w o, (ur) S, (1l dlu, :
_ N[(2i47)r(2-9)r]}
“2r Jeeom(-))
=0 from r=2[to =,
from a theorem of de Sonin by putting a=# b=c¢=/ Compare Gray and
Mathews, p. 239, Ex. 52.

Case (ii). The solution for three flights may be obtained from that for two,
by distributing analytically the density given by ¢, round ecivcles of radius I about
each point. The resulting double integral is then expressible in elliptic integrals®,
We find :

from » =0 to 21,

: N 1 T
$0I= 5 7 < F (5%):

where «* = 1687/{(r+1} (3l —r)},
r=0and <I; |
_ N R }- e e T &
=5 (5 :

where «*= (r+1)" (3] - »)/(16r),

r>land <3I;

=10 r=>=3tor=o |
* This solution, or its equivalent, was first sent me by Mr Geoffrey T. Bennett.
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We have here at r=1 a typical instance of the discontinuity.

In Table I. columns (i) and (ii) the ealeulated ordinates of ¢, and ¢, are given,
the latter having been determined by the use of Legendre’s Tables of the Elliptie
Integral #. In these cases, as in the later values of the ordinates of the dispersion
curves, N is taken as unity. The dispersion curves are plotted in Diagrams I.
and II. The Rayleigh solution is given in broken line; it will be noticed how
very far it is from representing the facts at this early stage of the number of
flights. One of the most interesting features of the investigation is to mark the
gradual approximation of the discontinuous series of functions to the Gaussian normal
curve of errors as the value of n increases.

The first test of the graphical method of dealing with the problem was to
start. from the curve for n=2 and construct the graph of ¢. The result was
found to be extremely close to the elliptic integral solution obtained by analysis
and caleulated from Legendre, and this gave us every confidence in the correctness
within reasonable limits of the graphieal solution, where no sueh divect verification
was possible.  After the ordinates of any graph had been found their differences
were ]:luttcd, and these difference curves submitted to most ecareful inspection.
Larger irregularities led to a reinvestigation of the points, smaller irregularities were
smoothed with the spline, and from the final smoothed difference curve the ordinates
were corrected.

ab
Another test was now possible. In every case 2 f ¢, (#°) rer ought to be unity.
(1]

Each ordinate was now multiplied by its  and a quadrature formula used to find the
integral. The integral would usually differ very slightly from unity. Its reciprocal
was then used as a factor to each ordinate and the ordinates so modified were
the final corrected ordinates of the corresponding graph. The graphs were made
on a large scale, and the accompanying Table L., columns (iii)—(vi), gives the
ordinates of the dispersion eurves from four to seven fights.

Additional tests were as follows :

Sinee Besa (77) = ;ﬂj:{.“ (#* 4 I*— 20 cos 6) db,

it follows that Paal(0)= _.’ir j j'¢, () dB =, (I,

or: The axial ordinate of the n+ 1th dispersion curve is the ordinate at a distance /,
or a flight, from the centre of the nth dispersion curve. Table IV. illustrates
the degree of accuracy reached here.

The ordinate at r=1 of the seventh curve given by the expansion in w-functions is
‘0375, and this is precisely the value of the central ordinate of the eighth eurve given
by the same expansion. Thus the graphical method runs with surprising accuracy
into the analytical. The Rayleigh solution gives '0398 for the central ordinate of
the eighth curve as against the 0375 of the m-sxpmminn, or the 0378 of the
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TapLe II.  Values of the w-functions.

Py a7 ey | wluy ‘ oy | Ca™ TE ey
— e ———— — — B — — . | T o e | _I
+159,1550 | + -159,1350 | +:318,3100 | 4 054, 9300 : + 58197200  + 19008 6000 |+ 114-591,6000
+-158,3611 | +-157,5693 | +-313,5580 | 4+ 9359497 | + 3-724,0378 | + 18-530,6202 |+ 110-620.7235
+:156,0035 | +-152,8834 | + -299,5801 | +-880,4201 | + 3-449,0302 | + 16:885,5699 |+ 99-177,8011
+°152,1517 | +-1453049 | +-277,2242 | +-792,4264 | + 3:016,3079 | +14:332,2150 |+ 816017164
+146,9185 | +-135,1650 | + -247,7634 | + 6783356 | + 2-464,2124  + 11-127,4046 |+ 59-9059470
| +-140,4537 | +-122,8970 [ +212,8751 | + 546,1784 | + 1-830,0009 | 4+ 7-583,1582 |4+ 36-489 3471
[ +-132,9374 | +-109,0087 | + 1744670 | + 404,8065 | + 1-191,1906 | + 4-027,9574 |+ 13-802,7339
+°124,5713 | + 0940513 | +-134,5401 | + 2635330 i+ -569.3039 | + 7677288 (- 59756743
+°115,5702 | + 0785877 | + 0050449 | +°130,4593 | + 0160640  — 1947,9139 |- 21-205,3207
+ 06,1526 | + -063,1608 | + -057,7497 | + 0127166 | — -4358815 | — 39498656 |- 30:951,7904
+°096,5323 | + 048,2662 | + -024,1331 | — 0844658 | — -766,2251 | — 51614614 |- 35-039,7166
+ 0774690 | +-021,6913 | — 0280128 | — 206,6600 | - 1-045,7098 | — 5:351,9170 |- 28-874,9613 |
4+ 058,7326 | +-000 1947 | - 057,3194 | —-235,2026 | — -000,0451 | — 24551198 (- 12-119,1731 |
| +°044,2510 | —-012,3903 | - 065,5623 | —-194,3306 | - -521,5103 | — -916,7705 |+ 4-126,7483
+ 03,4966 | —-019,5279 | — 0584451 | —-119,4328 | — -116,5429 | + 1-050,8301 |+ 12-770,4428
+021,5393 | — 0215393 | — 0430786 | — 0430786 | + -172.3144 | 4 1-895, 4584 |+ 12:751,2656
+014,1523 | — 020,0963 | - 0358081 | + 0138001 | + 2054776  + 17234411 |+ 7-400,1858
+-008,9341 | —-016,7961 | —-010,9496 | + -043,9712 | + -279,7081  + 10082741 |+ 1°194,4811
+ 0054188 | —-012,8067 | —-000,5180 | +-050,7478 | + -188,3602 + -246,6700 - 2-8296050
+:008,1578 | - -009,2208 | + 0053253 | +-042,6344 | + 0833863 - -258,5489 |- 39151831
+ 01,7680 | — -006,1880 l + 007,5140 | + 0285000 | + D03,6465 | — 4307348 (- 2949 4384
| +000,9511 | —-003,9185 | + 007,3562 | +-014,7914 | - 0383979 - -3856461 |— 1-308,1481
| + 0004916 | —002,3498 | + 006,0410 | +-004,6874 | — 0486501 | - -231,6523 |+ 0070283
I i

I owe this preliminary table of w-functions to the kindness of Dr Alice Lee. Much more
elaborate tables will have to be calenlated, if as 1 anticipate the w-functions are found valuable for
other purposes, The present table suffices to indicate their goneral numerical charneter, and enables
one to caleulate some of the quantities needed in the present memoir.

graphical construction. The fact that the central ordinate of the sixth curve is
almost identical with the ordinate of the fourth curve at »=1, seems conclusive as to
the general accuracy of the process.

The above test of the general accuracy of Mr Blakeman's graphical work is only a
part of the still more sufficient test that in the seventh eurve the graph and the
w-expansion practically ecoincide. See Diagram VI. After =35/ the two curves
cannot be distinguished, and between r=0 and 3/ the deviation is probably as much
due to the neglect of higher w-functions as to errors in the graphical treatment.

Another method adopted by Mr Blakeman for testing the accuracy of his
graphical work, especially at the end of the range, was to obtain expansions to
¢, (+*), when r does not differ much from nl, =nl—§ say, where £ is supposed small
It £, (&)=, ((#l = £)°), then generally for & small :

— N i i XXX
SR F{J:&}"”aﬂ'*ﬁi(l) FBL...0 i o (EXTEE),

where I= j':jgcos“‘ 0dO=T (} (n+ 1)) T (F)/T (& (n +2)).

T
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ABLE . LRV EC e COTELIETLLE.
Tapte TII.  Table of th tants
- I e
m=1 n=0 =T n=§8
=
i__ -
¥y — 041, G66,6GT — (356,714,286 — 031,250,000
Ve — Q03,086,420 — 002,267,574 = 001,736,111
v | 000,602,816 000,470,724 000,376,383
o 000,104,167 000,067,796 000,046,522
¥i3 + 000 001,412 — Q00,000,142 — (00,000, GF9
able of the N constoanls.
Table of the N
mi=0 =0 =T n=8
N, — 008,335,333 - 07,142 857 — (MG, 250,000
=L — 0, 1 235,457 — O, O, T0S — ML OGD, 444
N OO 32 GO0 DO 024,174 W0 08 G306
N | QOO 90 00,000, 62T 000, (0, 422
N = Q00,000,078 | — 000 000047 — (0, QO O3
———— T —_—
m=10 u= n=T7 n=8
N, — 0, 166, 66T = 571,429 — (03,125,000
N, — 00,030, 264 — 0(H, 022,676 = 000,017,361
N 000,008, 415 00,006, 21 1 000,004,771
N, 000,000,126 000,000,082 000,000,053
Mg — 000,000,011 = 00000 00T — =00, D00, (06
|
_l__ : —— g
m=20 | ) n="T =8
N, ‘ — 002,085,335 | — 001,785,714 = 001,562,500
N, — 000,007,716 = (00, 005, 66D — D00, 004, 540
Ny 00,002, 137 A0, 000,57 4 000,001, 207
No | 000,000,016 000,000,010 000,000,007
iy = 000, 00001 4 | = 00,000 0000 | = 000, 00, B0 6
|

TaerLe IV. Central ordinates ond ordinates at »=1,

Ko, of Flights

Contral ardinate

Ordinate at r=1

0585

0537
0538
0415

“0BES

0637
0537
415
D378

21
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Fenco: i o N
Hence : Jul€)= (V..-:!“}"Jriff;ﬁ P

This can be proved by induction.

voes(xxXXIX B2S).

For most of the cases more approximate formulae still were deduced. Thus:

A= g7 (1 b 26 (1),
£(®= m\a;m/ (1:2L £ 57 (xi),
£8)= 7 (f) (1+2 = jf{.:"ﬂf;) AT
£ (8) = Jw,l — (f)1 (1 aa ) ........................ (i),

after which the first term only as given by (xxxix) is sufficient. It will be observed
that after ¢, (#*), the curve touches at »=nl or £=0, and the contact becomes higher
and higher as n increases. Thus, although short of 1= e, there is no real asymptot-
ing to the axis, still ¢, (+*) for n > 5 not only vanishes for »=nl, but has increasingly
higher contact as n increases. This explains how the Gaussian curve can fairly well
represent the state of affairs towards the end of the dispersal range, if n 15 = 5.

Mr Blakeman found that the ends of the range for the various cases ran closely
into the curves (xl) to (xlii), and they were tested and, if needful, corrected by
these formulae.

Thus the whole graphical work was kept in check, and, I think, we may be
confident that the true forms of the dispersal curves for n=4 to 7 are really
given by our diagrams and tables.

(7) We may note a few features of these curves.

Dispersal Curve for Two Flights (Diagram L).

There is no discontinuity in the solution from »=0 to 2I, the range within
which all individuals fall. The curve asymptotes to the vertical at the axis and
at r=2I. Of course, while the density becomes infinite, the number on any small
area near r=0 or r=2I, is finite. Thus the number between the circles of radii
v, and 7, is

2N : —:“".'._l)
= (sm zi —sin™ 55 ).

If #,=0 and 7, =¢, where ¢, is small, the number », within the small circle of radius
at the centre of dispersion= Ne/(ml). If .= +¢, the number lying on the zone of

Ne f piyd N ety
breadth e, is *:r% (x 1 -::E:f‘ ) , and this if r, =2l —¢, is »,= = ;’. At the position of
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minimum density , =2/, and the number on the zone », to 7, +¢, is v,= NeJ(wl/1]2).
Hence it follows that the numbers on narrow zones €, €, €, in breadth, of equal areas

me=mile, =mw2/2le, are given by
Nef(wl), NJef(wd), and Ne2Zj(wl),
or in the ratio

Ne,/(wl) : } Ne(wl), 3 Ne[(wl) x ‘J

Thus the total population on a small area at the centre of dispersion is twice that on
an equal area at the periphery of the distribution, and at both indefinitely greater
than on an equal belt at the distance of minimum density. The same point can
be indicated in another way. From r=0 to r=3! is ¢ of the total area occupied
after dispersion, it contains "16N or about § of the total population ; from r=4§ to
»=2l is 4 of the total area, it contains "534 N. In other words the half of the
area nearest and farthest from the centre of dispersion contains % of the dispersed
population; the “middle” half of the area contains only ¢ of the population.
The nature of the distribution is thus extremely different from that given by the
rotation of the Gaussian curve about its axis for this small number of flights.
For in the Gaussian case if the central area we’=27wre, the area of the zone at
distance r,, the population on the centre patch is §Ne'/o” and on the zone is

% LH?E]TII'T’ = E_ éJ-'E'I.'w.!‘n
which is always less and diminishes continuously with inerease of »,. Thus the
Rayleigh solution fails in this, as in the next three cases, not only to give the

form of the curve at dispersion, but to indicate that the dispersed populations on
zones of equal area round the centre do not deerease uniformly in number.

Dispersal Curve for Three Flights (Diagram IL).

The solution is discontinuous at #=I[. The density is here infinite, but has
become finite at the origin. There is no discontinuity at »=2I, but at the end
of the range the fll’:".ll:i[t._}" drﬂps RU('I(IE:LI_)" from a finite value to zero. Thus the in-

tﬁgl‘:ﬂ of the Bessel function Ill“ﬂlfllﬂt- ll:saﬁ I*l:]n, {ij.i:” 15 digcontinuous at two pcints,
The Hﬂ,}rlﬁigh solution 1= still witlely tiivarg&nl; from the true curve of diﬂpﬁrsu].

Dispersal Curve for Four Flights (Diagram IIL).

By the rule already referred to (p. 18) the infinite density has returned to
the origin. There are only two points of discontinuity, e, at r=7land r=4]
the end of the range, at both of which there iz an abrupt change in the slope of
the curve. The density at the end of the range is now zero and will remain so,
but the dispersal curve rises at right angles to the axis. The true dispersal curve is
bending round somewhat to the Rayleigh curve, but the latter is not even yet a
rough approximation to the facts.
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Dispersal Curve for Five Flights (Diagram IV.),

All infinite densities have now finally disappeared. The density vanishes at
the end of the range, but the dispersal curve makes a finite angle with the horizontal
axis. There is a warked discontinuity of slope at r=1I; a still more noteworthy
feature is that from r=0 to r={[ the graphical construction, however carefully
reinvestigated, did not permit of our considering the curve to be anything I;.u*t
a straight line. If this could be verified from the analytical expression

b

¢, () = i‘.rr J{: w oS () LT, (ul))* du

by showing that the integral is independent of + from 0 to / it would be of much
interest. Kven if it be not absolutely true, it exemplifies the extraordinary power
of such integrals of ./ products to give extremely close approximations to such simple
forms as horizontal lines.

The approach of the Rayleigh curve to the result is now more noticeable.

Dispersal Curve for Ste Flights (Diagram V.).

There is contact now of the first order at the end of the range. From r=0
to =1 the curve of dispersal appears to be a sloping straight line tangential to
the continuous curve from »=1I to »=6/. No other discontinuity of a low order
is now visible. The curve, except for the finite slope at r=0, is becoming much
more of the Gaussian form. It runs fairly closely to the solution in e-functions up

to w,, in fact is not separable at the extreme part of the range, where the Rayleigh
curve still gives finite ordinates beyond the possible range.

Dispersal Curve for Seven Flights (Diagram VL)

All sign of discontinuity has gone, the curve is horizontal at the centre of
dispersion and might be easily mistaken for a normal curve of errors. The expansion
in e-functions represents the result within the limits almost of constructional error.
[t was not thought necessary to continue the graphical work beyond this stage.
We may conclude that:

The devintion of the Rayleigh solution for seven and morve flights from the
true dispersal ewrve is practically the swme as its deviation from the solution in
w-functions when five terms of that scries ave rvetained.

This I think completes the full solution of the fundamental problem. The dispersal
curves for the cases of 2 to 7 flights are given in the Table I. of ordinates and the
Diagrams L. to VI. For higher values the w-function series gives the solution. This
solution could be applied to caleulate the ordinates of the dispersal curve for fewer
flights than 6 or 7, but several more w-functions would have to be used and the
arithmetical work—especially while these functions are as yet untabled*—then
becomes somewhat severe.

* Table IT1. pm'ridm: o preéliminary series of values of the wfunctions.
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L]

(8) Secondary Migration Problems.

Problem 1. On one side of a straight line there is supposed to be a uniform
distribution of habitats ; on the other at starting no habitats. To investigate the
distribution in the unoccupied area after one migration. Each individual is supposed
to take n-flights to the new habitat,

hi
A
P
““H""r
\
B —— —— ()
G
b

Let Y'Y be the straight line and O a point at distance ¢ from it on the unoceupied
side of it. Let N be the average density per unit of area on the occupied side. Then
after an a-flight migration, the contribution from P (co-ordinates » ) at O will
be Nidydrd, (+*), and integrating this all round a cirele of radius + from 4 to C
within the oceupied area, we have for the quantity F, (e} at O

% roos ™ befr
F, {1!]=2;VJ' f o, () v dyedr
e Jo
x5
—oN J i e
Lo

Hence

dF, (¢} _ _ oN " {*“} rdr B g‘?\"j:gf,ﬂ (E+)dy ... (xliv).

e ¥ \.l"],.= -

The evaluation of this integral needs a further consideration of the w-functions.

By (xiv)
i [
o, = — #{—ﬁ}‘“ f:'_ﬂ’(% e:”‘“), where 8= — 2¢%/i".
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Transfer the differentiations from 8 to o® and we have:

o= S 0 s (L)

=(=1) (o) o o et i (xlv),

or, all the w-functions ean be found by differentiating the first w-function with regard
to the standard-deviation squaved. Then b}? (xii) we have

¢'N {:-.r"j:.{ {T} JE:J} =Ty {'T} II{G"!]I +.. +{ l} Pﬂl{a‘j}‘d{ﬂgla }

...... (x1vi)

Thus, if we put o*=t:

d‘Fﬂ{"-:} 1 d* 3 d* ) o ! 2 7

= _—EE‘;T(I-*{- t pr —pt P + .. +'|: 1}'1-'_,! E!' : .)Kfnmff+y}dy.

> s 1 B (A+yN/es 1 By A S
But : L a, (¢ + ) dy= Z*rr_u-”L Pl bl (EF:mE de O
1 —ic’m’
fll?'i'rﬂ'

L T T L e -
Now I [ dﬂ=u’J‘ & i"e‘_:n]',:]:', and this lntegrﬂ] vanishes when c=s., Hence
L o el

-

N & e dr R T
.f" {L}-— - F(l'i‘lﬁf {_'&— _l-"gs fﬂ;'i' +( 1} Mg Hﬂﬂ! )J:-,lg.ﬂ i [EJ.T

Since [, (¢) clearly vanishes for ¢ infinite, it is not needful to introduce a
constant.

It remains accordingly to determine the successive differentials of the integral
with regard to ¢ Call the integral ¢; then, if n=cle=¢//t,

di ey 1_{ — 3t

C
—— = F— —_ = T |'|Ii:'.
ot g o e wly

By (xlv) we know that d*w,/di*=(—1)w,/t. Henece differentiating s—1 times
we have :

d% _ we (d* 7w, dt= a.r,, [s— 1)(s—2) d* 7w, 1.3 1 )

ar Wi ('}1;-?-‘ —lo= s e 21 e s.op o

—1p s=1)(s—2 1.3

{ } = (“':cr-u‘l‘{s‘ 1) wg-nd + { }{r - ) @a-3 979
{3—1}{3 ‘2}{3—3] 1.8.5

1.2.8 o S
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e 1 s=1)(s—2).
TI'IIJH- H‘l‘_'f; _{—1}" IFE_(G'DJ 2(a- “'{"{11 }}ﬂ’! -fI—EF { ﬂ‘:{ﬂi }].Srﬂ'j{ﬂgf,_n
FO=DCoR o) 5.5 oty g et v (alvil)
Substituting in (xlvil) we have, if E{"?}:‘;% J’mr'{'ﬁ{ﬂr ............... (xlix),

F@=N3(%)- N R IR S R L PR TR
+ o, (v, + v, + v, + v, + 50 r)
+ ujma. {I"l + % My + g’ Hig + 1.:[5 l"I.:‘}
+ oo, (v + 2oy, + P 0y

T o (r )k i }} ........................ ),

as far as coeflicients of the order », and functions of order w,,.

This is the solution in w-functions. Table I1L., p. 21, gives the values of the v's for
certain values of n, and Table 1L, p. 20, is a preliminary table of the w-functions.
These will enable us to readily find the values of F, (¢). I have done this for the case
of n=6 and n=7, which will suffice to illustrate the character of these curves.
Y (¢/e) can be found at once from Tables of the probability integral. It is drawn
with a broken line in Diagram VII. and is the Rayleigh solution for this ease. I term
F.(¢) an “infiltration curve” of the first order.

Substituting the values of the v's from Table III., we have for n=6:
F, {L},w_q-( )+ 026,712,414 (o'w,) + 053,325,539 (ow,)

4 002,114,303 (ow,) — 001,029, 898 (o*w,)
— 000,134,978 (0%w,) — 000,001,770 (@) + ...},
and for n="7:
F,(c)/N =¥ (;) + £{1022,850,925 (o%0,) + 045,644,347 (¢°x)

++001,578,008 (0°w,) — 000,758,570 (c’w,)
— 000,084,525 (0°w) + 000,000,178 (0w, + ...},

The first term @(E_) is the ogive curve already drawn corresponding to the

Rayleigh solution. We see at once that the term o’w, will not affect the
fourth place of decimals.
43
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TapLe V. Ordinates of Infiltration Curve over straight Bowndary.

+ e re == n=7 n=an =cfe =1 u=7 n=ax
0 =00 L =500 - — o s
1q 4614 4612 4602 —eoil 5386 5388 5398
2 4231 4228 4207 - 2 5769 BTT2 5793
3 3854 | 3850 3831 e 6146 6150 G179
't 3488 | 3483 3446 = 4 6512 6517 B554
5 -3135 3128 3085 = BEGS GET2 69135
5 9707 2790 2743 - 6 7203 7210 7257
i 2478 2469 2490 =i 7522 7531 “THE0
8 2177 2169 2119 | - 8 | 7823 7831 | 7881
-0 ‘1898 1889 1841 -9 ‘8102 111 | 8159
1-0 1640 1632 1587 10 8360 B3GR 8413
12 1193 ‘1186 ‘1151 -12 B80T 8814 B840
1-4 i 30 (508 - 14 B166 G170 192
16 0558 0557 0548 -146 0442 0443 0452
18 ‘35 R LEHIH 05549 - 18 DG4 4 D644 G411
20 0215 0214 D238 —24) G785 7RG 9772
2.2 0121 0124 0139 -29 9RTD 9876 0861
24 0064 0066 0082 -2 9936 0934 9918
2: 0030 0033 0047 -2:6 9970 0067 0953
28 0015 0013 0026 - 28 9985 QY87 0974
1 30 | 0046 QOG0 135 — 30 00054 | 0940 RS
| 32 00012 00020 00069 | -39 Q0088 Q9980 99931
| 34 ! Q0000 | 00004 00034 — 34 1-00000 00996 0966

= is used to denote the Rayleigh solution.

This table suggests some interesting points. The curves for n=6 and =7 are
fairly close together, but differ sensibly from the Rayleigh solution, perhaps
4 or 5 per cent., where the density is at all material. For many practical
purposes this might be close enough, and we see that for infiltration as distinct
from dispersal enrves, the Rayleigh solution—owing to integration over an area
—gives fairly close results. The greatest percentage deviations from the Rayleigh
solution are to be found in the tail. Now no individual can be found beyond
the range % from the boundary, and o=inl; thus the maximum range is NET
or, for w=6 and 7, the maximum range is 3'46c and 374c respectively. The
w-function expansion brings this out well. For n=6 at 3'4¢ there is not one in
100,000 individuals, while the Rayleigh solution gives 34. For n=7 there are
still 4 in the 100,000, because we arve a little distance still from the limit of
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the range. The Rayleigh solution continues to give sensible densities beyond
the range, although they may be sufficiently small to be neglected in practice.

For rough purposes a first approximation to the infiltration curves may be found
from the Rayleigh solution, they will err on the side of safety if we are con-
sidering the effect of a clearance at a considerable distance from the boundary.
But with the aid of the tables of the w-functions and the wv-coeflicients, it is
not difficult to obtain the actual form of the infiltration eurves as I have done
in the present case. Diagram VII. compares the Rayleigh approximation and the
infiltration curve for n="7.

It will be seen that an infiltration eurve of the first order gives not only the
density of the population after a first migration into cleared or unoccupied arvea
ACTOSS stmight. hDLIIIdHI‘:,-’,, but also the diminution of f.lemait_}' on the Fﬂlllllﬂtﬂ{l
side of the area, when we put ¢ negative, i.e. it gives both the ‘depopulation’
and ‘repopulation.’ The reduced density at the boundary is 1.V, and if we take
the point where the infiltration curve cuts the vertical through the boundary as
origin, we see that it is centrally symmetrical; or the loss of population at a
given distance from the boundary is exactly equal to the gain at the same
distance on the opposite side of the boundary.

If we require an infiltration curve of the second order, we must now multiply
the ordinates of the curve of the first order by (i) the average fertility of the
species, say p, and (ii) the survival rate 4. If the environment be the same on
either side of the boundary, and neither p nor A affeeted by the density of the
population, then pA may be treated as a constant and the infiltration curves of
higher orders can be found with moderate ease for simple cases. We thus have
the distributions after two, three or more migmtiﬂns accgm}mniﬂ] l-:',"" 1~e|:m-r]uutiun
and death. On the other hand both g and A may be functions of the ;!cngit}r
of the population, and in this case the ordinates of the infiltration eurves of the
second and higher orders can only be determined when the nature of p and A
18 known. On the whole it is probable that the average fertility depending
on the mating frequency will be highest where the density is greatest, as mating
opportunities will then be most frequent, but in such cases the survival rate
A may be lower, as more enemies are likely to be present and the food supply
is also likely to be less, where the population is densest. Thus pa as a whole
may not be very different on the depopulated and repopulated sides of the
boundary. We shall only consider in this memoir cases in which this product
is (i) supposed constant throughout, or (ii) constant for each migration season ; but
supposing uniform environment on both sides of the boundary, it is conceivable
that pA will be correlated with the population density and this will modify the
basis of the distribution from which the second and later migrations start.
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(9) Problem II. To investigate the distribution afier m migrations from uni-
Jormly densely occupied space across a straight boundary into wnoeccupied space.

Let the axis of x be taken perpendicular to the boundary and the axis of
¥ be the boundary. Let us consider the density at x=¢, on the originally
uncccupied side of the boundary. Then the density at a distance & from the
boundary is given by (xlvii), or if we write the operator as @, we have

T ¥ 1 = - i
F, (x)=NgQ, = jmt: ¥ e =, ARy, I Eersa(li)

Here ), involves only n and o and not .
Now the distance » from the point x, y to the point ¢, 0 at which we
want the density after the next migration is given by :
=i+ (x—c),

and pA heing the Fertilit.‘l.?-sm‘vi'-'al factor, we have for the d-ensit:; at e,

{0 —f J paug, () dady.
Now d’n {-i' } Qn.w.u QI o -i FEJI.FE.

2o
To mark that this @, operates only on this part of the expression, write it
@/ and suppose it to operate on ¢’ written for o. After the operations are com-
plete we can put ¢’ again =o. Let
'l + o8 o =
U= j & 1"”’:3::.
\".‘.-'.’.'?T
Then if pA be constant (see p. 29):
N EEAES Ol e
Q:Qr J =€ bl c}i+‘ﬂ"lﬂﬁd$dy.
- o

-— Ll

Completing the integmti:m with regard to y we have:

*”"“’ = QU f 0, e e F gy,

Differentiate with regard tr:n e
du, = v R S R T
i ?ﬂ @t{l:}! J_:n ’-‘1; = { —e }d.i:.

Integrate by parts, and notice that the part between limits vanishes at both
of them and we have:

i, _.u.:i.N- 0, Q{,J*"fﬁrﬁ, 1 E'H-"-'“’:"-"""* T

T aE e Gz o
f‘L‘ 1 i ]
B dv, o~ Hele,
o de= " Jamo'

? {.z—-c]i
hence : ‘f;i: -E"&N 0,0, l:r-:r"J‘ ‘i(;i o )u&
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This is integrable and gives:

ff;:r  aANQ.O! ﬁ oo delloteo)
Integrate with regﬂ,rd to ¢, and remember that w,=0 if ¢e=w; thus:
1 =pANQQ/ f r _mbelietten g
=pANQ .r__"__. = —fa T -
=pANQ,Q, s f S ﬂr ol S (lit).

Comparing this with (li) we see that wu, differs from #, by () the introduction of
the factors () and [TIY and {l':] the |'ep]u:‘:ement of o in the lower limit b}r Jot+ o
The process can therefore be repeated as often as we please, and we have for
#,, the value:

1 i U
= (A" 'NQ,Q/Q,... to m terms —— e ¥ do,
. J2r ) ez
where =g+o'+o™+... to m terms.
After the operations indicated by the (s are completed, we are to put
a_ = o__H' a__l'l'f =T,

Now it is clear that a differentiation with regard to any o is precisely the
same as one with regard to E. We can therefore write for all the ¢'s the
simple expression

e __IFF = ) _EF L IE d‘_
l+pi{f-"} d{z} Pd{u-} d{zﬂ}s++[ I}J{F} J{Ei}'-'-
understanding that d/d(2) operates only on £ and that after the operation is
completed we can put £=vmo. Thus the complete solution is

p f S ()
T

This is true for ¢ positive or negative, e.e. whether the density be considered
at a point on the originally occupied or originally unoccupied side of the boundary.

Up to terms of order 1/#’ we have for the operator the value

L+m (v — v +vg' — v’ +vug)

m{m— 1) (m—2)

g v'q', where ¢ stands for o'd/d (%),
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Now exactly as on p. 26 we may show that:

- ’_J'av =l ) -,';.,:F{_?*i}t S S

A .-|1T =
e e
= Jon Zmf I " Yaten 00

—1) —1)(s—
11 2 + Xais—n (ﬂm}-l'- i_]lrE'J 3 1 3. Nt ﬁ(’:‘lﬂ

(s= 1}'[;1-;”"‘3}1 +3.5. Xoua (B} + 1.0,

Tw=c¢/(me), and y, is defined on p. 10, Equation (xviii).
Thus

= (13" 1§ () = § 2

where:  y,y (7.) = Xeun (7m) +

+

...TF

Tt *( vl () + v, (1)

v, g {m—1)p? ae, + e (e — 1
+ { - %_WE‘ ] } lh {?J'M:l + L"',::n; _}!_l_"_ﬂ-".; ‘;'a {ﬂm}

o T +m (m—1)rp, -;Em (m—1) {m_‘jlp"iﬁm {’?m))}
We see that this expression converges much more rapidly than that for ¢, (+),
if m be at all large.

The result (liv) might have been reached in a different manner. We might
have supposed the (pA)"'Na individuals to have started from any element a
on the populated side of the houndary and taken ma flights without multiplying
to their final resting-place. The effect of this would be that ¢'=3mnP, and that
in the values of the »'s we must write mn for n. But doing this gives us
precisely the coefficients of the ¢'s in (liv). Thus (liv) is deduced directly
from (xlix). The proof becomes then much shorter, but it is more artificial;
the fact that we may suppose all the unborn individuals to scatter from the
original centre is not so easily realised, and further it does not in the process
picture what takes place until the final arrangement after the mth breeding cycle
is attained. Ip the method I have adopted we see the exact process of each
breeding multiplication, its increase of the operating factor by an additional @,
and its increase of the square of the standard deviation by an additional o
Lastly the final form (liv) enables us, without recaleulating the v's for each
breeding cyele, to see very easily the effect in the case of any n-flight species, of
taking any number of breeding cycles.

So long as we keep pA constant of course our result for m breeding ecycles
with #n flights will be the same as for a simple scattering for mn flights of a
larger number of individuals. If pA varies, however, we must adopt the method
mdicated in the above proof, and work out each migration successively. The
same method must be adopted if a pateh be rendered permanently sterile, because
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in such a case p is not constant for all parts of the integrated area, and we
eannot suppose the whole final population to scatter from the original centres.

If we neglect the 4, ¢... terms in (liv) we have the value which would
follow from the Rayleigh solution of the fundamental problem, and this can he
very readily expressed in geometrical terms. For we mark at once that u, and u,,
are in type identical curves. Take u, and stretch it vertically in the uniform ratio
of pwa™™" to 1, and horizontally in the ratio of Jm to 1, and it becomes wu,.
In other words the broken line on Diagram VII. represents the approximate solution
in this case after m migrations provided we read N (pA)** for N on the vertical
scale and 2=vmo for ¢ on the horizontal scale. The Table on p. 33 gives the
chief’ results.

The unit of this table is the length 7 of “ flight.” It will be desirable to illustrate
its application. Any such application ean be of course only a suggestion, and on
this account the above Table has been caleulated to only a few places of decimals.
But such suggestions may not be without value. They will become more than
suggestions when our knowledge is greater of the migratory habits of different
species. At present only rough approximations can be made as to the values
of # and /, and these admittedly are of small weight.

Qllustration 1. In captivity 1 have noted that I, asperse will live for five
years, For two years it does not usually lay eggs, and then it will generally,
but not invariably, reproduce twice in the year. This is of course subject to
claustral conditions, and while these seem in some cases unfavourable, in others
they may be advantageous both in matter of longevity and—owing to the constant
food supply—in number of broods. This snail, as far as my observation goes,
appears to return to the same shelter after seeking its food. Leaving such
“flitters” on one side, I think we might look upon thirty to forty yards as a
maximum “flight” for such a snail and regard seven or eight such flights between
its egr layings as on the average an exaggeration.

We might therefore take /=40 yards, n=8, and an average during life of one
brood a year as being quite possible approximations in the case of some snails.

This indicates that the progress across a houndary into unoceupied country
would be such that 1 per cent. of the density at the boundary and, therefore,
possibly 4 per cent. of the density in the fully-occupied country, would only be
reached at 2061 yards from the boundary after 100 migrations. In other words,
such a species would only progress a mile or two at most in a century. Such
progress would hardly be noted in any studies hitherto made of distribution ; the
limits of a species a hundred years ago were certainly not closely defined to a mile
or two, even if they have been recently. Of cowrse there are many other ways in
which a slow moving species can be transported than by its own “flights,” and
further no special stress is laid on the above case, but a study of Table VI. shows
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that the advance of a slow scattering species® may be comparatively small. The
inference can accordingly be made that the existing boundaries of the geographieal
distribution of certain forms of animal and plant life which are not marked by
natural barriers, and which do not correspond to obviously changing environ-
mental conditions, need not after all be associated with subtle physical differences
which have escaped the observation of the naturalist. The species may be pro-
gressing into an unoccupied area, but at a rate hardly observable in the time during
which accurate distribution observations are available. If this view be correct
we should expect such boundaries with no apparent environmental change in
the case of species for which we might reasonably prediet a small # and £

fllustvation I1. 1 have endeavoured to apply the above theory to the im-
migration of mosquitoes into a cleared area. We will suppose in the present
treatment that the area bounded by a straight line (some attempt to allow
for eurvature of the boundary will be considered later) has been cleared but is
not kept sterile to the species. 1 shall speak of a district as rendered sterile
to a species when it is made impessible for it to breed there, and kept sterile
when the breeding possibilities are persistently destroyed. The distinetion is an
important one, especially in the mosquito case. For in the latter case all mos-
quitoes are immigrants, and in the former case we have not only immigrants,
but their produce.

Major Ronald Ross, who has most kindly provided me with information as
to mosquito habits, makes the following remarks:

(¢) That the number of mosquitoes produced varies roughly (ceteris paribus)
as the extent of surface breeding area.

(0) That the breeding area can be taken as consisting of numerous isolated
small pools or vessels of water scattered fairly uniformly over the country.

(¢) That the feeding places (houses, stables, birds, etc.) may be taken as
scattered pretty uniformly between the breeding pools.

(f) That abundance or scarcity of food can scarcely influence the question
much. A single man or bird will yield enough food for many mosquitoes, and
if they starve it is not because the food is not there, but because they cannot
reach it. They are therefore not likely to be drawn in general by special abun-
dance of food in any special direction. Wind tends to make mosquitoes **sit
tight,” rather than allow themselves to be scattered.

It would thus appear that on the average an “equi-swampous” condition of
the environment and random *flights” of the mosquito will not be very wide
of the truth. The difficulty is to form some estimate of n and I On these
points again Major Ross came to my help, but naturally the statements he made
were with great reservation,

* OF course any more quickly moving species that depends on this for food would have the same

boundary, but in its case the boundary would be environmentally defined.
5—2
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(a) From egg to egg (i.e from laying of eggs, hatching, larval and pupal
stages, to laying of eggs again) takes roughly about a fortnight in hot countries
with most mosquitoes. In England, gnats may have only one generation or two
in a summer, but in the tropics they may go on breeding throughout the year.
In cool countries the egg to egg cycle may be prolonged to a month or two.
In certain very hot and dry countries, l:l'ﬂﬁding may be checked entirely except
during the rainy season. 1 have accordingly taken 20, 10 and 5 breedings to
the yvear to represent roughly these conditions.

(B) Major Ross distinguishes between * minor vicissitudes,” which an insect
makes when it hovers round its vietim or mate, and ‘“ major vieissitudes” which
it makes when it passes from feeding place to pool for egg laying. These cor-
respond to my “flitters” and “flights.” He considers that they go back to
water every four or five days, so that a “major vicissitude” oeccurs every two
days or so. We might therefore take, excluding flitters, the average number
of flights to be six or seven. Of course this is the roughest approximation, but still
not an unreasonable estimate of what probably takes place in the mosquito's life.

(y) As to the magnitude of I we have less definite data. Mosquitoes of a
rare kind have been said to have been found two or three miles from their breeding
place.  Major Ross thinks that Anopheles will exceptionally, when no houses
are near, probably travel § mile for their food, or perhaps further, but he supposes
the average distance scarcely to exceed | mile, and it may, as houses and suitable
pools often abound not more than 50 yards apart, be not greater, perhaps, than
100 yards.

I have accordingly taken 100 yards and 500 yards as likely values for I, and
considering 1 per cent. of the boundary value of the mosquitoes’ density as a
limit to their existence and 5 per cent. as objectionable, we have the following
table :

TapLe VI  Distances from the Boundary of a cleaved but not stevile area at
which 1 per cent. aid 5 per cent, qf the Emu:-:.u’u—rg,r u’b*n.‘;ﬂy of Jfﬂﬂqumes il
be found in the couwrse of u Year.

Supposed number of Breeding Cyeles in Year

3 : 10 || 20
, Number of Flights............ 6 ) “_u L -|_ o e
| Density 1 per cent. | £ =100 : 098 1078 ‘ 1411 1524 : 1995 2155
W w w | =500 | 4990 | 5390 | 7085 | 7620 | o975 | 10775
Density 5 per cent. | =100 | 759 | 820 | 1074 | 1160 | 1518 | 1640

b i Ca et =500 | 3745 | 4100 [ 5370 | 5800 || 7590 | 8200
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The distances are all given in yards.

Thus we see that the least of these distances for 1 per cent. is greater than
half a mile, or, if an area be cleared but not rendered sterile, we might expect
within a year the mosquitoes to reappear within half a mile of the boundary,
and to reach an objectionable frequency even at this distance for most of the
cases considered.

As far then as these rough numbers can be taken to indicate the state of
affairs, it is needful not only to clear an area but to maintain it sterile. The
clearance radius may be only 4 mile and is hardly likely to exceed a mile, and
the above results only mark the progress of immigration in the course of one
year after the clearance. Further the results would be accentuated if the
boundary were curved or an approximately circular clearance made.

It does not appear to me that any substantial difference would be made in the
main result by reducing n to 3 or 4, all.hnug]: some difference would oceur if {
were reduced to 20 or 30 yards.

(10) Problem IIL To determne the distribution after m n-flight migrations
starting with a centre of population Na.

The previous two problems indicate the nature of the general solutions to which
I now proceed. I shall adopt the longer process of proof in this first case as being
the more suggestive.

By (xii) and (xlvi), calling the operator as before ¢),, we have for the distribution
at X, ¥ due to a centre at the origin :

L¢'n {Xr F}I - 1.:;: Qr (%ﬂ_éf‘w*_ ]'3}._',-;!) I B v I[h}

Hence the distribution at (&, k) after a second migration of n flights is
o~ HIX - BP+(F- Epe?

b (A, &)= ;mJ' f b (X, ”JQ’——— —— dXdY.

Call the @, in this ¢, and write the o® on which it operates ¢?; call the ¢, in
B (X, Y), @, and the o* on which it operates o, we have :

{': X =R+ (¥ {J— w}

ﬁ‘l‘- 0'1-' ﬂ'ti - -
B W=t 00, [ [T e AXdY.
The integrations can be performed and giw:: us
AN, S W Ly T ]
b (i &) =E—% Q,Q, o bRl (Ivi).

2+::|"1

This only differs from ¢, (X, ¥) by the introduction of &'+ a. for ¢ and of the
factor wAG).
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We can accordingly repeat the process as often as we like and we have:

) _ (8)"Ne L .
mql’n ("Ir!l "1':' = E'IT_ Qr',{l?-l', @.‘- Eﬁc 2 {:]'ﬂi}-
where Y=o'toitait.to)
and after the operations have been performed we are to put all the ¢'s equal
to o or 2*=me’. But no operator @, affects any o in any other operator, and

d Thus (&) it

i [ id r
T3 = T5° d(ary 8y be put =|{:;r"}*fﬁ--—-* and this makes all the

EEJJ
operators identical in form and we may write

S e R
Q-‘.Qr’r“‘@tnz{l+"4{a} {E_{ﬁ'_';ji_!"ﬁ {ﬂj} rf{z:}a—rp‘i{g} fﬁﬁ

4.+ (= 1Yr, () "{ Ez_’]’-l- ...}m

e AT 3 d* a ' T ava !
=1+ 0 gy Ml gt o) o
= i
+ oo +(=1YN, () 7 EEE},+,,, .

In this form of the operator we can now write at once u-‘=$ 2 and eall

the expression Q"
o
d (Z!)

rlall“s Q‘.“ =1 + Jr': {E':}: ui Eg-:}: e J_'\Tﬁ (1‘-:‘}: ﬁg{_i + ;\J’u {E=}l

)
+ ... +{=1)N, () JE;}# Sev e (lviii),

i

oy I.l"_.

where N=—0p N, =
Gl * m

vyt Sm(m—=1) e} AL i (m—1) v,
3 RN = 1 3 e e’ ;

N,

_ vyt (m—=1) vy 4 Fm(m—1) (m—=2)p}
T m*

N, - |~ S ) (lix).

These values of the N's rapidly converge and their values are given in Table ITL.
on p. 21 of this paper with those of the »'s for a few values of # and m. As
we have seen on p. 32, they are the »'s obtained by using values of nm for z.

We now have the gﬁnelﬁl agolution of distribution from a centre :

)= (pay- Yo om L @i
mPa {‘F‘h "l} _{F"'l} Do ) E,«E' i

=(pA)" " 'Na (0,+ N O+ N2 +...+ N, 0. +...) ...(Ix).

This is absolutely identical with (xii), except that the constants » are replaced
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by other constants N of known value, and in every w-function we are to replace
o* by mo® or %, that is to say a uniform stretch in the ratio of Jm to [ is
given to any surface z=w, parallel to the axes of 2 and y This is denoted by
writing 2, for w,.

If we confine our attention to the Rayleigh part of the solution—which will be
more and more nearly exact as m increases, for the N's rapidly decrease in value—
then we have

P | A P N e T e L e (1xi},
and we see that every density gradient curve for the successive migrations is to
be obtained by a streteh from the first migration density curve.

In general, however, this result is not absolutely true because the different
components of the true solution are mixed in different proportions, the N's being
funetions of m. We see, however, that the stretching rule becomes more and
more accurate, as we increase either the number of flights or the number of
migrations.

(11) Problem IV. To find the form of the general solution for the distribution
into swrrownding space after . wigrations of any population initially spread
uniformly over any given pateh with density N.

The density at A, £, after m migrations due to a centre Ndledy, is by (Ivii)
above

ooy Ndxedy 1 3 e Bty - B st
= (pa) : 4 Q; Tk Tt dr by = RIE

To give the patch let = be integrated from v, to v, where v, and w», will
usually be functions of y, and then let y be integrated from wu, to w,.

."‘."Ir'e find :
= m-iiﬂ’_'_{??f"l i o~ Hlr— AP+ y—Rpys 5 o
whn (B k) =(pa) Do 1; n!'.u?y ...... {lel}.

This is the general form of the mlutmn when the population spreads from a
uniform pateh into non-sterile swrrounding country.

If on the other hand we want the distribution after m migrations starting
with a cleared pateh, which is not kept sterile, we have

o (b, By=(pA)* N = o Fo (b ) ... Gt (Ixiii),

for the whole district would have had a uniform density of (pA)"='N had there
been no clearance. Hence

mf..'rn “‘h k}: (M}n‘l— LA fm L et f J"* L -i flar=RR (v — £ s’(f“g{hjl) {]:._'n.

ar

Now  F,(h B)=NQ/

3 ]_ _* {(xr— R+ (y = )2 "gn:f:c-:i
2
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Hence the rule: If the solution can be found for a single migration, replace o
by mo?, and each » by the proper N, multiply by the factor (pa)"', and the solution
for m migrations is deduced.

It will thus be clear that, if the solution ean in any case be found for one
migration fully, we can at once extend it to the case of any number of migrations,
with constant fertility-survival factor,

{[‘3} Problem V. To determine the distribution after a _ﬁi'.ﬁ:t mig‘ﬁs!iﬂn wnto o
cleared rectangular aren,

Let the area be the rectangle 2a x 2h, and the origin be taken at its centre
and axes of x and y parallel respectively to the sides 2a and 2b. Then the density
at any point A, k, after a single migration F, (k, k) is given by the principle of
the last problem by

Filh By =N— ., By s e (Ixv),

where F, (h, k) is the distribution from a uniformly occupied rectangular area
into surrounding unoceupied space.

+ax [+b
But F,(h, =N f J' b {(@ =Y + (y — by} deedly
{v': --"r:’ = IF}

—u—# NG, I j daedy
1 - 1 *0 — 4z =h)fot +b —§ (y— kot
o s =¥ ) Lt B
on V& ,I_ai da % f-br_," dy

Let P,(e) stand for the probability integral
1 st
—— e -

- .
o 2 o

la—k}/e .-

1 e Y LY 1
Then : —=- e Lol =J__J’

W S —"u-l--ill.l'-r

[az - B} fur b )
= (J' J ) e~ ¥ gy
J2r
) p (et ""f)
il
I|].“].1115:,} s

7. (h, k)= NQ, P, {(“ ;‘.‘.'*') +p, (4 :’*)} {P ( = ) + P, (‘T’ ”‘)} ik

Now consider the differentiation of P, (E) with regard to o

o (7 o 1 [v _3.2 L# 1 - (o)
P, (* )}=_ Lt T L
i!rﬂ"{ ode J2m o & 2 o 2m o
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Writing o*=t as before, we find

it { (u,)} = (lxvii).
Hence

AL (E';)} o *mi: (%)

A ey g ).
; { (2 )} (O T WA L (Lxviii),
the expression being the same as that on p. 32
Now let us write the following for brevity where y=u/o:
)=y =7 G ()b )+ o+ vt () )
L, {ﬂ}_a 1 ﬂﬂ_h (2 + Bveh () + o+ 0o (1) +..),
L.{'-':-]—E : :—m_ﬁ”’ (.-iv‘-!-bh'«ff (n)+ .. ’;{f___;];-ﬂt;-._.,,_m{q} +)
7 (n}=é L gt (.u,‘.,. I{}v“tpgl:'l?}vi-...+S{S:Ili“:;_g}vul#_.,,_,: I[-rj}+...>...{]:~:ix},

and so on. All these functions are directly expressible in w-functions as
on p. 27,
Further lot P, (m)=(= 1/ 40 Pufn)=" ey (1) covrrrnes(x3).
Then we have, if
n= {n: — f.l«},-"a', N, = I[ﬂ! +h)e, e=(u=A)o, e=(a+ fe._]ll.-’o',
F, {‘F"s ﬂ= i'“l';r[{"frllw {‘?J + 'Pu {’Tt}} {Pu {EI}+ P, {fc}} -i-{L, {ﬂl}'l'Ll {'ﬂ'—.}} {Pﬂ' {fl} + -'HJ I:E-*}}
+ {‘nu {7'.';} + P, {"']'zl_:} {L: {'Eu} + L, {E;.'} 15 {‘Fl {'51} ek ('L}} {L:{‘.'I'l}'l' L, {’?r}}
+{P,(e) + P (e {Lesa () + Lpir ()} +..]  cenenennns i (1xxid),

The L-functions involve the rapidly converging v-coeflicients, and the first few
terms will suffice to get an idea of the distribution. If we retain only the Rayleigh
terms we find :

Fully B) = N[1—{Py () + Py (1)} Po (&) + Pole)}] -oevvre. (Ixxii),
which can be ascertained for given values of a, b, &, k and o from the ordinary
tables of the probability integral.

i
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If we make b infinite, then P,(¢) and P,(e)=0 for s>0, and L (&) and
L(e)=0, P,(e)="P,(e)=14, and
Full, By=N{1=Py()=Poi(n)= L (p) =L, (n)} ......... (lxxiii).
This could be deduced directly from (xlix) and it represents the first migration
distribution into an indefinitely long cleared strip or belt. This is a result of
some interest as it might approximately apply to the migration into a zone cleared
by a flood or a fire of certain types of animal or vegetable life.

(13) Problem VI. To determine the distribution after m migrations into a
cleared but not sterile rectongulor arec,

By the general proposition on p. 39 we have only to write E=mo for o,
and the N's for the #'s in the L's. Let us put

o =la=~)E=n//m, 3/=n//m, & =¢flfm, & =¢lfm.
Let

L’ {”‘?L,} —

and so forth, then we have for the full solution :
ooy 1) = () N [{Py (0/) + Py (I} Pu () + Po(eD)
FLL () + L P (6)+ Po (D} Py () + Pon) AL () 4 B (&)
HP) + PeDHE (1) + L ()
+ .o H{P, (&) + P& VL o () F Dfa () £ 0] e, (lxxiv).
The terms here will very rapidly converge for any fairly large value of m,

b S O s :
£ :frﬁ T‘I:E‘ o {JF“I"-' {’:‘1I-}+P‘.41!!'4 {T_]‘I }+ R l‘ruaﬁﬂa’—l]{?}.’] S -.L},

so that for many purposes we may write the solution:
wdiy (hy £)=(pa)" N {Py (%) + P (0. ) { P (&) + Py (&)} -..... (Ixxv),

which ean be found at once from the usual tables of the probability integral.

Tustration 1. A rectangular pateh 2 miles long and 1 mile broad is cleared of
mosquitoes, but not retained sterile. What would be the central density at the
end of the year? BSuppose 10 breeding eyeles with their scatter migrations, each
of 6 flichts, to take place in the year. Then if we take 200 yards as a possible
round value for the flight we have:

m=10, n=6, {=200 yds.,, o=Linl*=120,000 or o=34641 yds,

o= SE{} _}Tds-r I.r-l‘ = ITGD }'(]-".i... -'\?I- =Tl.-' —_ il'ﬁ'ﬂ:}: EI; =E;4 = 5.{}3 [:
2 =100 =109544 .T{IH‘-r 1?Lj="'?-.-f= ‘803, e =¢'=1607.
Hence = -!"'.;. m? {H — {#5}’41’.1 {'E'DE:J Pﬂ { I‘ﬁﬂ?} ‘:“‘TJ

or, using Sheppard’s Tables:
W (0, 0) = (pA) 4 x 2890 x 4460N,
=(pA)’ % 5156,
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Thus wFe (0, 0)=(pAY (1--5156) N

={;.1.ﬁ]l”'-’:5ﬂr"'.

We see accordingly that if the fertility and the death-rate were the same in
the clearance and in the populated district outside, the density at the centre
of the cleared pateh would at the end of the year be almost 50 per cent. of
that in uncleaved country. It is thus obvious that clearance can be of small
use, unless it is followed by permanent preservation of sterility. Even if one
annual clearance were made it is very unlikely—if the actual values of the
constants are at all near those assumed—that the mosquitoes would not by the
9th or 10th breeding cycle within the year before the annual clearance was
repeated have reached a very substantial density even at the centre of the
patch. We have thus an additional argument in favour of rendering a district
not only sterile, but keeping it so. In such a case since », and w, ¥, , are
negative we shall have a density somewhat less than:

F. (0, 0)=N {1 —4P,(2:540) P,(5:081)} = N (1 —-9889) about.

Thus : Fo (0, 0)="01N approximately.

It follows that in the centre of such a rectangular pateh, there would roughly
be only about 1 mosquito for every 100 in uncleared country.

But while this shows that such a sterile patch would be a great improvement
for a denizen at the centre it is well to enquire what happens in such patches
some way from the centre. I accordingly add the tollowing illustration.

Hiustration 1. A square area of one mile side is eleared and kept permanently
sterile. What will be the density at the centre and a quarter of a mile from
the centre on the same assumption as before ?

Here a="b=880 yds.
At the centre Mm=nN=¢=6=204 and :
Fol0, 0)=N[1-4{P(254)}'| =N {1 — (9889} = 022N ;
or, we find one mosquito for every fifty in uncleared country. Taking our
quarter of a mile directly towards one of the boundaries, we have A= 440,
k=0, and:
m=127, #n,=38l, ¢=¢=254.
Thus : 1Fo (440, 0)=N[1—{F,(127) 4+ P, (3°81)} {2P,(2'54)}]
=N {1 — (3980 + "4999) ("9889)} =112V

Thus at } mile from the centre (or from the edge) of the clearance, the
density is 11 per cent. of that in uncleared country. It may be doubted whether
this is a sufficient reduetion, and, supposing the above assumptions to be any-
thing like roughly correct, it may be needful to render more than a square

mile permanently sterile to protect a pateh of one square half-mile,
G—2
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On the other hand a cleared but not permanently sterile square mile would
after a year have a densit:; at the same point—} mile from the centre—of':

wFo (440, 0) = (pAPN[1 —{P, (-402) + P, (1-205)} {2P,(-803)}] = (pA) 69N,
or of 69 per cent. of that in uncleared country.

Another point seems of some interest. What is the density at the boundary
after the first migration?

At the middle point of the edge it is
£ (880, 0)= N[1—{P,(0)+ P, (5:08)} {2P, (2:54)}]
=N (1 ="5000 x "9889)
="506.N.
This is almost the { N of an indefinitely long straight boundary.
At the corner it is
Fo (880, 880)=N[1—{P,(0)+ P, (5:08)}]=75N nearly,
or, as we should expect, has risen much beyond the 1N value.

There is no difficulty in tracing the contour lines of the population density
in this case.

If we consider a cycle of 10 breedings in a non-sterile patch we have:

wfa (880, 0) = (pAPN[1 —{P,(0)+ P, (1:607)} {2P, (-808)}]
= '?42.?{.“.&}’,
and wf s (880, 880) = (pAYN[1 =P, (0)+ P, (1:607)}]
=801V (pA).

Thus if the patch were not sterile, the effect of the clearance would at the
boundary after the lapse of a year be marked by a 20 to 25 per cent. reduction.
The illustrations I have given are of course dependent on the values of the
constants selected. Such constants have at present been little studied, and
accordingly small weight can be laid on the actual numerical results. But the
theory appears to indicate useful lines of inquiry, even if its results will of
course need to be controlled everywhere by local facts. In a general way there
can be little doubt that a theory like the present will not only lead to a more
systematic classification of local facts and to fuller observation of the habits of

local species, but that this knowledge itself will in its turn test the applicability
of the theory, or suggest the directions in which it may need meodification.

(14) Problem VII. o determine the distribution after a first migration into
a cleaved cireular wrea.

Let the radius of the ecleared area be ¢. Then at distance ¢ from the centre,
inside or outside the circle of radius @, the distribution F,(c) is given by:
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@ [P
F,,{r:}=NL L (17 =2rccos @) rdBdr e ieesrarannnere e (lxxvi)

N @ (w1 2 gl ot
@:f J‘ e et +ri)o? , —(recosdlfo® gy
]

2r
AT —3c%o® ro row ; A fa\™
=‘.f‘-_ Qre = f J’ r‘*’g’“grg nli_f (;_) (;) cos™ Bcd B,
(1]

2
Nﬁwj cos™fd@ =0, if m be odd, and = el-J‘ cos™ Bd
(1]

i}
(2s—1)(2s—13) .. = 25!
A ). - 27 s
if m be even and =2s.
Hence :
=delfo? ro (g, Avg fom e
Fu(e)=NQ.° f S {("_) (‘“)[ ' r}*} dr.........(1xxvii).
s 2 ETES 22 " e
Now J‘n e ,~ 7o :_HH o (;) :J'd:‘af'. k: ol

o b T T T S (lxxviii).

M., (a/o) is thus the 25+ 1th moment of the “tail’ of a normal or Gaussian
curve of errors (multiplied by v2#) about its axis. Its values have been tabled
for s=1, 2, 8 and 4

Thus we have :

0 N

F.(c)=NQe "% ( 5) oalala)l ()

But it iz easy to see that:

—ha?fo? Logk il " 1 fa’\*
_11r:r+:'[:ﬂ,l'lﬂ'}=2’3!f i {I+E:_J+é"4 (::) +...+2.$:(%)},
Accordingly :

e 1 P VR 1 a® (a*\"] 1
)= NQe~ ¥+’ fj 1 1)
o (el=No.e bn =) +5 = +g = +.. +3, 1Lﬂ"' (3751 (lxxx)

The successive differentiations of this expression with regard to ¢=¢” involved
in the operator ¢),, which are needful if we wish to give the corrections to
the Rayleich solution, are straightforward but extremely laborious. We ecan
throw the solution into other forms.

Write : =4, e=4a'/o,
then we have :

Falo)=NQ,e=+9§ E'{r(1+ +t )
mG) = LN 2] R RO

=J’@,¢"IH{ % a:‘f'*dﬂ: ........................... (lxxxi).
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HereJ' a'e”*dw is the incomplete T-function for an integer value of s. This

L

can be found fairly easily from the above series, or may be determined from tables
of the incomplete I-function which it is hoped may be shortly published.

Again : JJEM:}=E’£N
0 {31}
hence we have:
x
Fo(e)=NQ,e f J(Zdem) e . (lxxxii),
Li]

a very concise form, which does not, however, simplify the caleulations. TIntegrate
by parts and we have:
b ﬂi t!hr o o
Fo(c)=NQe t+o8 = LT (2i/qe,))
o de;

= f* :
= :E'T ¢ -_{!=+r=.:li e * : . 2 \"II .
Qe EEF d {'E:“Ef}! {fﬂ{ : E:Er}}
e i J, (2i./z)
aei S =8 _——_ e p
But = Jo(2142) ::q! (g + 3)! L
P P
or : d".'“ (ff} — *‘I*'Ljr{-_,— inte) O {'EL, hr_, l:al-::'\ ELErIJ}
0 (ivee)*
__"."?Qf{’_lll-h“% (J-3) "-‘r; {ﬂi\-"ra:l srsseneas H*U.‘Ex}ﬁii}.

This is the solution in Bessel's functions, and inside the cleared area, where
e, is greater than ¢, would give fairly good results if tables of the higher
Bessel's functions for imaginary values of the argument were available.
We can also express the solution in terms of e-functions as follows:
2
Write I, (a)= f j (

B

1 ,j_’.‘)a'c_ir:‘-l.d_‘, j,."l_?.

2o o
1 l = £|-_:'J'I|'£|-1: I. f.?l‘ 2
£ (0)= e (o )
g T D: I nl
I'hen F.(c)=NQ,S o 1, (a) E,(c).
0 *a
. 1 —prie 1N - 40
Now E,(r) =i H (,J: El") = :!mﬂqu,m@,

the s being undetermined constants, for dividing by the exponential factor we
have an integer algebraic expression in #*/¢* on both sides. Multiply both sides
by yuidr and integrate between 0 and =, p being = or <s. Then:

1 ™ _18 15 oot ; i o
5 ju o T Xap (2 E”) weli =2-n'o-"bq‘,j“ Xop @ 0,

Boo” [ gy . i :
T fﬂ Y% ey =2mc’b,, (p!), by (xix) and (xxi).
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Therefore by {xvi} :

b= s (= 1=8) (D=2 =8) e (=8) (=1 [ Be-teinap
(=1t 1 “{}} P*‘”f wetdm, if = —1/8,
=(-1pl=tlatopl)
Thus E’{,_..}ﬂwz{ wﬁﬂ(‘-:}l} ~*(“-{1§!_§f;2? m$+...}...{|x:'cxiv}

=2za’ U, (r)*, say.

J? m”_ —(=1) (o) 3 E:_T j‘jwn?'di'

d:
=(=1)*(o*y a{y (@)
i R o S R (lxxxv).

We can now express [, () in terms of w-functions.

We have:
L)=[ st B, )"
L fn {%_m! s{s—I} S{?—I]{s_é}} 4+...}?—“'§37

Now consider :

:di

: SRS E o

= 5! Ew*{s+l}{w, lﬁm:1+§gﬁ[;#w‘ 5{3_311};::'—-3} o }
=gl 2xa® (s+ 1)V, (v).
Thus F.(c) =N@;4fau§ (RSN A LA (Lxxxvi),
where : L;{-r}zmu-““’,} et '[{";“'}”w.—”(““{g!j.f‘g}mu+...
A § s(s—1) (s=1)(s—2)
Vol =on—qygi ot 373 = giar Mt

a result which allows of fairly rapid determination from tables of o'w,..

There is, perhaps, less difficulty in this form in allowing for the first term
or two of the operator @,, for U, (r) and V,(») can be at once differentiated with
regard to of, but even then the final result has considerable complexity.

* This result involves the expression of any power of +* in y-functions,



48 KARL PEARSON

The Rayleigh solution value is easily found by putting @,=1 in any of the
forms of (lxxix), (Ixxx), (Ixxxi), (Ixxxiii) or (lxxxvi),

A case of peculiar interest arises when c¢=0, or we take the density at the
centre of the clearance. In this instance we have:

F.(0)=N@Q,e™ 2,

New
Al it p I
Q=1+w (o) (o~ (o) EE{¢=},+...+{—1}*u,,{a-}‘d;ﬁ,+
and E_%"H"d!='2ﬂ‘ﬂ'umnr
her r a e EF —iu?_,g“ 1 dlwﬂ {IF_IW“ 3
therefore (o) t{{ﬂ_._,},{r; )=2ro J 114:}_M}ﬁ,+.~: d (@ ()
=2ma* {( = 1), +5 (= 1Y '@, )
Z{J—étr;d" {_ ]:'g .{}{g,—”:{:u_.:}-
Thus
Fo(0)=Ne™ 29701 — 20y, (v,= 30) X (= 40) X+ (03— 50) X+ .}
= 2 N (w, — 2v 0, + (v, — v ) o, + (v, — 4w, ) o0, + (v, — 5w ) e, + .. ). (Lxxevi ),

We are also able to consider the secondary problem :

What 15 the distribution into mm:i::!ept't?r.f Bppice xim‘rmmfﬁﬂﬁr (i) u*.rﬂ;fm-mly
ﬂr::r:?;pii?cl cirenlar area due to o ﬁr:;& mfywm'nuf"

Let the radius of the area be @ and let the density at any distance ¢ be
F,(c) after the first migration. Then clearly, if all space were uniformly filled,
we should have uniformity after the first migration, or:

F,(e)+F,(c)=N,
hence~ Fle)=N—-F_(¢)iciiiana TR, (Ixxxwviii).

The solution is thus thrown back on the solution obtained for the previous
problem. In partieular at the centre of the populated area we have:

B (0= A= F (0 e e e e (Ixxxix).

We are thus able to caleulate the reduced central density due to a migration
from the area to the surrounding unoccupied district, t.e. the effect on population
of the spread outwards of a colony.

(15) Problem VIIL. [Iadirect solution of the General Problem of the
Reandom Walk. '

It may not be without interest to put on record the distribution density
after n flights in the case of a cleared circular area, if it be expressed in
Kluyver's manner by the integral of a Bessel's function product.
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We have:
B =

and

F =N

I
=

=N

= 1"'|rr

=~

a [or
f J. o (€ 497 = 2ie cos @) vd Bed v,
oo

F, (c)
{ f f J' wo, (e &+ #* — 2er cos B) "rﬂ{id}nﬁlfﬂ':’fgfhh}'
by (iii),
:l _f;: I:-E;J.,{u-r} I, (ue) {5, (ud) ) {['H.,.“r.:.] :

by Neumann's Theorem (see p. 6)

:1 —j: i%”:”" {f:fﬂ (1) werd {w*}} g, (ue) ffu—‘
By j # {_Je_f!’:‘”}f f A, () T, () cm] :

0

by the theorem cited on p. 7,

J {ﬂ.{!ﬂ'}} {,HJ{w}} ‘”"’}‘E”]

1 —J {J, ()} @, (ua) J, (ue) rfu:l s

Or, writing v=au, we have:

This expression is concise.

a distance «

method of evaluating the integral.

ide.nt.-it:,f :

F.(c)=N [1 -EJ, i, (1; :E) {J., (tl {_i)}“.:m] ............... (ze).

The integral expresses the probability that if an
individual start from the origin and take (n+1) flights, the first of magnitude
¢ and the remaining n of magnitude !, at random, he will find himself within
of his starting point. But there does not seem any convenient
Comparing with (lxxxiii) we have the curious

49

@ : M S L A . e :
Ja 01 (o) {7 (v g} o=~ B (i ) (5 ). (e

Write e=I, a=» and n—1 for n, then

FJL{E,-;.
1]

where ¢),_, 18

[ el ,—zm-f'-'n.zm-1:-1-**;"‘-"'E')lr (_J
R (D)

the operator,
o’ ol*

l+u¢('n-.—l]’ - A 1) St (=1 (= 1) sy

=]
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or, by (iv), P,(r), the chance that an individual taking n flights from a centre
should be found within a distance # from that centre, is

P, (r)=N {l = Qﬂ_lp—iﬁ+.!":.'l-’liu— 1}!*}:‘;;(-;‘ ;}.J; (2{ {1-:. _'P_] ]I\J} rrrrrr (xeii).
L P,

Do rfl‘
we have here the complete analytical solution in known functions—i.e, the
Bessel's functions with imaginary arguments—of my original problem of the
random walk. But this formal solution provides no better method for shortly
determining the dispersal curves than that already indicated in these pages.

Since ¢, ()=

(16) Problem IX. To find the distribution after m migrations each of n
Mights, there being oviginally a civenlar eleavance which is not kept stevile.

The solution is found by writing me® for ¢°, putting the N's for the s
¢}, which becomes )", and multiplying by the factor (pA)"' assumed to
be constant. This can be done to any of the forms (lxxix)—(lxxxiii), or (lxxxvi).
If we write:
é,=¢/m and & =e¢fm

We ﬁlld:

e} =N (pA)™ ’Q"'u"rb({sl r ca"u'.a:) ............ (o)
or: wFa () =N(uaA)y* Qe f Jy (2ivEx) e 2dx......... ..(xeiv).
Or again :

m_r,,{t-1=ﬂ-';',m.}m-'r;,ma-ﬁ-ﬂﬂi:( iz f) Tiilae) e (zev),
L]

wFo €)= N (pa) - Q.  dm'm’ 'S ( U, ( ﬂ ) (Jt L) (54 l}) ...... (xevi).

"IHI

Of these, I have found the first quite as convenient as any other to obtain
numerical results from. 1 shall now illustrate the cireular pateh formulae,

Mustration 1. A circular patch 4 mile radius is cleared of mosquitoes but
not kept sterile. To find the density at the centre, at § mile from the centre,
and at the margin after ten breeding cycles.

We shall suppose as before [=200 yards, n=6, and therefore

, o 1 ol ol _ 3007
o’ = 120,000 square yards. =g Sal

The second term in @ will be of the order ;1 of the first and I shall

negleet it. Accordingly the solution may be taken
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HIF:I\{{::}={:_[;I+;I] {Fﬂ}m—::\;(l +E,|:l+éa} +;1|(1 +EJ+§_TD
€’ Y )
+ﬁ!(l+ii+2!+31)+.”__ .
The successive bracketted terms in € are
1:3227, 1'3748, 1*3804, 1'3809 and 1-3809,

which is equal to ™ to our number of decimal places. Hence we may put
T = ] i
wFo(c)=(pa)Ne-tore {l + & (¢ = "0582) + 5\ (¢* —*0061)

Elﬁ.
al
= (pAYNe ®ial (1 — e - ) — 10582¢, — “00308,° — "0001¢.")
=(pAPN {1 —e™™ fe @ (1 — -0582¢, — “0030& — 0001&%)}.

(e = "0005) + S = &
4 5!

+

At centre
wFe (0)=(pAYPN {e=™ (1)} = (pA)'N 7 24.
We ecan test the accuracy of this result by using Equation (lxxvii) which,
if we put »,=N,, gives:
wfe (0)=(pa)Ne = (1 -2N . +...)

and xo=1—6&=(pa)Ne ™= (l + G;Jj::}; + )
= (pA)N730.

The agreement is accordingly good enough for practical purposes, and we
may say that within a year the mosquitoes would at the centre of the pateh
have a density 73 per cent. of what they would have in uncleared country.

I now consider the :1en.‘sit.}r at a quarter of a mile from the centre, €, =-0807,
and using the above formula we find:

wFo (440) = (pAPN (1 —e=" =" % *9953)
= (pA)N75,
or, we see that at a quarter mile, midway between centre and boundary of
the patch, the density is only 2 per cent. more than at the centre.

Finally, at the boundary itself, § ="3227 =¢,

wFe (880) = (pAYN (1 — e 4 = x 9809)
=(pA)YN-T9.

Thus the cleared patch would within the year have filled up with a population
of mosquitoes varying in density from 73 per cent. at the centre to about 80 per
cent. at the boundary, or the clearance without permanent sterility would have
been quite ineffectual with the assumed values of the constants.

T—2
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Hiustration I1. Let us assume precisely the same conditions as in the previous
illustration, except that the area shall be supposed sterile, and we will consider
what happens at the end of the first migration.

At the centre we have by Equation (lxxxwvii):
F(0)=New {1 = 2v,x. 4 (v, = 3u) xo + (v, — du)) x, + ... ).
But — 2p,="083,333, x:le)=1=e=—2227 000,
v,— 3, = — 032,407, x,(&)=2—de,+¢'= — 494,471,
v,—dp,= —"003,498, x.(e)=6—18e+ 9¢°—¢’'=8031,303,
v, — Dy, = 000,082, Xo (€)= 24 — 96e, + T2’ — 16 + &',

€, = 3227, = 34'752,347.
Hence : Lo (0)=Ne ™= (1 —-185,583 + 016,024 — 044,156 + '002,850)
=031.\N.

This three per cent. of the density in uncleared area might possibly prove
a trouble and on our assumptions it may be doubted whether the half-mile
radius is sufficient. If we take the first term only, we find 040N, or four
per cent., not an important practical difference.

The introduction of even the first ulmli!}'ing term when ¢ 18 not zero appears
to lead to such complexity that I content myself with caleulating the approximate
value given by the Rayleigh solution for distances of } and § mile from the
centre of the clearance. In this case e=23227, ¢ ="807 and 3227 respectively
half-way to and at the boundary. I proceed just as before and deduce the
following approximate value for ,F, (¢), t.e.

Fo(e)=(paPN {1l —e +e-* (1 —20°9769¢, — 78851’ — 285 5¢;
— 0228 — 001 6¢. — "0001¢)).
Hence

K. (440) =179 (pAYN, corresponding to g ='807
and

F(880) ="T09 (na)'N, corresponding to ¢ =3-227.

Thus the density at 1 of a mile from the centre of the cleared patch would
be some 18 per cent. of the density in uncleared country. In other words on
our assumptions a clearance of one mile diameter, if kept sterile, would hardly
suflice to keep an area of § mile diameter free of mosquitoes.

Compared with a straight boundary, where the density falls to about one
balf that of uncleared country at the boundary, we see that the bending of
ti]c |:|1_:|1_11|_d:1|;:|,' h:a_s-] A most |||a1'ket’l I}H.F.Bf.!t in 1ts neighhmlrhmd, t]]ﬂ curvature
raising the boundary density from about 50 to 71 per cent. of the uncleared
density. In fact the density is almost equal to the 75 per cent. in the boundary
angle of a square clearance.
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The differences between a square and a circular patch inseribed in it are
notmm::rth}', ind{mi..t{ug the marked influence of the area at the :m;_;les. Thus
at the centre we have only 2 per cent. as against 3 per cent.,, and at 1 mile
from the centre 11 per cent. as against 18 per cent.

As far as the above numerical investigations are to be looked upon as anything
but illustrations of the nature of the ealeulations requisite to apply the theory
of random migration to the mosquito clearance problem, they must be taken:

(i) As merely an incentive to farther study of the manner in which mosquitoes
seatter from the breeding ponds. It would seem possible, if difficult, to experimentally
test this by in some way marking a large number of insects, and determining the
nature and extent of the flight.

(ii)) As indicating that permanent sterility of the protection belt is almost
certainly needful. The 1 to 3 per cent. of mosquitoes at the centre of the clearance
amounting to 6 to 18 per cent. at § mile distance may or may not be serious,
but they certainly would very soon be if they were able to breed.

(iti) As showing that on the rough numbers taken, that a clearance belt
of probably § mile round a settlement would be the winimum desirable sterile zone,
But it is quite possible that, when the requisite constants are better known, it
will be found that smaller belts will suffice. It is possibly rather an exaggerated
view to suppose a mosquite to make six vandom flights of 200 yards between
breeding spot and breeding spot. But certainly many insects I have noted will
fly with great rapidity in one flight 50, 100 or 200 yards, and these flights are
quite distinet from * Hitters.”

(17) Conclusions. The present memoir suffers of course from all the defects which
must accompany a first attempt to develop a mathematical theory of phenomena
which have hitherto not been studied with this development in view. The theory
itself’ suggests hypotheses and constants which have never yet been considered.
How far with a broad average of environment in relation te food supply, breeding
places, shelter, foes, etc. is the spread of a species random? Are any of the
geographical limits to plant or insect or animal life non-environmental and in
course of change? If so, statistical studies of the density gradients of such species
for a few miles either side of the supposed boundary would form most interesting
work for biometricians. Buat, apart from this observational work, a oood deal of
experimental inquiry might be usefully attempted with regard to the constants
of random scatter or flight in the cases of both seeds and insects.

On the theoretical side there are many problems left untouched. The present
memoir has only opened up the outskirts of a very big field. It would be of
value to investigate the number of terms in the expansion in w-functions requisite
to practically reproduce the graphically constructed density distributions for
migrations of 3, 4 or 5 flights. Our expansion to 6 terms is hardly close enough
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for practical work until #=6 or 7. Many other shapes of populated or of cleared
areas wounld provide problems of some interest, especially when the spread of the
colony was limited in one or more directions by environmental barriers, such as sea,
river or mountain range. The problem of sterile areas has been by no means
exhausted, for in such cases I have only dealt with a result of the first
migration, but actually there will be a second and later migrations in which
not only new immigrants will appear but a portion of the first immigrants will
be emigrants and again able to breed when they reach uncleared country. Our
solution thus gives only a minimum limit to the percentages if the immigrants
do not die at the end of the first breeding cyele. Much interest attaches
also to ecases in which the fertility and the death-rate are correlated with the
density, i.e. pA is not to be considered a constant. But in these as in other
problems which suggest themselves, a further preliminary knowledge of some of
the ecological constants suggested by the present enquiry would be an extremely
valuable guide to the divection that research should take.

On the purely mathematical side the problem of the “random walk” may
now be considered as El.irl_}' cumpletl&l}' solved. The distribution eurves have been
determined uantil thﬁ_‘,‘:,." piss into an :umlytical solution expl'eﬂse,{l hj.f a new type
of function. The expansion in these functions shows the limits to the accuracy
of Lovd Rayleigh's solution of a certain allied problem in the theory of sound.
But the w-functions which have arisen in the enquiry have most interesting
properties, and have led me to a whole series of allied functions of one and
two variables which I propose to discuss on another t:liz.misi:m. The expansion
in w-functions will I venture to think be found ultimately to have considerable
importance for mathematical physics, especially in the evaluation of certain
definite integrals which arise there. The possibility of practically carrying out such
expansions depends on the determination of the successive moments (and products)
of the original function, a process with which every statistician is now fairly
familiar. But applied to definite mathematical functions it loses the disadvantage
with which it is burdened in statistical practice—the high relative probable
error of very high moments—and becomes closely allied to the process of deter-
mining the integral of the product of any function and a Legendre’s coefficient
(or solid harmonic). Should the generalised w-functions prove, as I anticipate,
of some mathematical interest, it will be another illustration of how the need
of the applied mathematician has thrust him, almost unawares, into the path
of a novel functional development.
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Mathematical Contributions to the Theory of Evolution.

XVI. ON FURTHER METHODS OF DETERMINING CORRELATION.
By Kann Peamrsoxn, F.R.S.

(1) Introductory. The object of the present paper is to give an account of some
new methods of determining correlation. It is not suggested that they can with
advantage replace the old processes, even when the distribution is approximately
normal ; to my mind the methods of determining the correlation ratio and the
correlation coefficient (n and ) based on moments and product moments stand fore-
most for the information they give and its weighable accuracy. At the same time
there are series which are so short, or cases in which it is desirable to come rapidly
to an approximate result or data which cannot be presented in a form suitable for
product-moment working, where other methods are not only reasonable, but necessary.
To such cases the present new methods apply. I have termed them new methods
and I think this is legitimate. In the case of the first method, I have not seen any
hint of it before. In the case of what I term grade methods, Dr Spearman has
suggested that rank in a series should be the character correlated, but he has not
taken this rank corvelation as merely the stepping stone by which to reach the true
correlation of the variables as dependent magnitudes, and further in the disenssion
he has given of the subject he has, T believe, given erroneous formulae and made
l]_l.lit{;‘. incorrect statements azs to the muguituda of probable errors.

One word must be said as to the use made of the normal distribution. I have
used it here as on many other occasions as a means of suggesting fitting relations
and simple formulae for correlation constants. This does not necessarily mean (i) that
the constants reached may not have a perfectly definite meaning apart from normal
distributions, or (ii) that the formulae obtained may not hold for all forms of
distribution apart from normality. As an illustration of the first case I cite my
mean square coefficient of contingency®. This is a perfectly general measure of the
deviation from independent probability in the case of an nxm fold table, but its

* the the Theory of Qc.rmi-rtyanrr:y_ “ Drapers' Research Memoirs, Biometric Series 1" {Dulau & Co,,
Soho Square, London,

1—2



4 KARL PEARSON

actual form was selected so that it would agree with the coefficient of correlation in
the case of indefinitely fine grouping and normal distribution. As an illustration
of my second point I take the formulae given by me for the influence of selection on
variation and correlation®. These formulae were originally proved for normal dis-
tributions, but for a number of years past the proofs given in my lectures have
been perfectly general, depending only on a more comprehensive definition of what
we are to understand as correlation in the case of a complex of variables.

These points will be considered in the present treatment of correlation.

(2) On Diffevence Methods of finding the Coefficient of Correlation.

Let x and y be two correlated variables, each measured from their means m, and

i, respectively. Then if v=x—y, and o,, o,, o, denote the three standard deviations
o=0+0,—2r, 0.0,
and ra=lot ot — o Soual) sl e e (1).

This method of finding #,, has long been in use as an alternative method to the
product-moment method .

It involves finding the mean-square difference of the wvalues of the pairs of
correlated characters. It is possible, however, to find #,, from about one half
these differences, if we assume the distribution to be normal.

More generally I proceed as follows. Suppose the funetion mx — ny formed, where
i and n are at present indeterminate positive constants, and let the positive values
only of this expression be taken and divided by the total frequency N. Then it will
be possible to determine + from this result.

If z be the ordinate of the surface, then :

N g e :’iﬁ._i"_f-"'....-*""'ﬂ) o

e ——p CI=FAod g 0y -.(11)
2xo, o, J1 =
and we have the above result expressed analytically:
. 1 2 Srxy P

S (wie — ny) 1 1 b (n-a+ .__)

el Ll A e mae—ny)e -1-°\o’ oo o dydx ... (i)
N ETFT-T.F._.J]. T { _,f} Y

The limits to # in order that ma —ny may be positive are y=—c to mx/n, and
the limits of & will then be r=o to — .

Put .TJ"} = ?f."r{r-.' a’'= ‘tl'ra' ?
then
1{': at 1
"'_;: T — 1 1 + = ] -4 —— ("= Trx’
R ] | [ tmow-noyxe =7 T Ry az,

* Phil. Trans. A, Vol. 200, pp. 1—66.
t For example, Phil. Trans. A, Vol, 198, p. 242, and often elsewhere.
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Write ;f’r’:;’_j 2~y

and we have :

Stem)_ L 2e [+ [ pe-brma i (Do)« Goror ) agran

The order of integration can now be changed and we have :

m 0

S(me—ny) 1 neo. i S Ys pra aher ms
= N == -.Jf] _1":_;./"{:| y" o " J e B el :Iy’.

where if e =m0, /(na,),
1 1—=2re(l—e)—1¢ = ST e
u.i_(l —E'J'E—E-E":]-(l _,j,.'r}’ L =
y=¢(1l=7)/(1 —2re+¢).

But the integral with regard to 2’ is /27 8, and

- - * :,||-"'2
f e o dyf =o',
1]
S(mex—ny) 1 noy —
s —_— e = = I'I-'. i
Hence : N o ST =" 2 Ba’.

Or, for the positive summation

—

8 (mx—ny) e (1—1%) Jriel — 2rmue, o, + mia;

N ~ Jog wiel = 2rme, (no, —mao,) — i)

(),

This general value does not appear to be likely to be of much service. If we take
m=1=1, we obtain the result of simply summing the positive differences of paired
variates. It is:

Sz -_:-,r} Lo =) chrf—- Qro,o,+ crf.

N T Joroi=-Zro (o, - a)=ra’

(v) leads to an equation of the 5th order to find + and again does not appear to

be likely to be of any service. The variates must be reduced to a common unit before

they are handled if we are to make (iv) workable. Such a unit is the standard
deviation.

. 1 1
If we write m= — #=—, we have at once :
o, T,

A
S(::r, B -':'.r._.} s /I -7
W TN ;

™

Thus we find : E=rl —-:rl-—,::-—'J ................................. (vi},
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(vi) is an extremely neat formula and might be taken as the definition of a quantity
measuring correlation. But the actual determination of corrvelation in this WAay,
i.e. the reduction of each variate to a deviation from its mean measured in terms
of its .. as unit, would probably be as troublesome as using the product-moment
method.

One special case oceurs, however, in which the above formula may possibly be of
good service. Suppose the two variates have the same mean =m and the same
5D =g, then:

'.rr_{,:':' (= y)}
Nig®
Ur, the coefficient of correlation is the result of subtracting from unity = times the
square of the mean sum of the positive differences of paired variates divided by their

common standard deviation.

S(m4+z—m+ ¥

P T (vit).

=1 — -=1-'ﬂ'

For eases in which both variates are the same, brothers, cousing of the same sex,
homotypes, ete., and especially for some eases of short series, the method may be
of value.

fllustration 1. Resemblance of Length of Little Finger in Male Cousins. 1 take
a short series of 68 male pairs of cousins. The average value of the |{,—mg|;h measured
on the little finger was 51'02 mm. and its standard deviation 2721 mm. There were
33 positive differences of finger length giving S (x—y) =876 mm. Hence we had :

(87+6/68)
T

r=1 =50k

Found by the product-moment method the answer was 287 ; the difference is
well within the probable error of the latter value. The process of taking differences
and summing was considerably shorter than finding a product moment.

Hiustration 1F  Assovtative Mating in the case of Parameciwin, 1 take
[ Pearl’s Table AA3 from Vol. v. p. 295 of Biometrika for the lengths of
conjugating Paramecia.

I choose this purposely because there was no difficulty above about the male
cousins ; there were only two equalities, the actual measurements of each individual
being recorded. But in an ordinary corrvelation table owing to the method of grouping
there will be a very eonsiderable number of ties, and the problem arises how are they
to be distributed. Clearly one half of them will be excesses and one half defects,
if we suppose the odds against an actual tie in measuring to any degree of aceuracy
to be very great. Hence we may say that half the diagonal total is to be treated as
in excess. But at what portion of the base unit are we to set the pair apart? If the
frequency was uniformly distributed over the diagonal cells, we should take the average
interval between a pair to be § the base unit. But the material is almost always
clustered inside the cell, and clearly 4 is too much. The actual value to be taken would
depend upon the value of the correlation and the size of the base unit. In fact we



S el

S

ON FURTHER METHODS OF DETERMINING CORRELATION 7

can only take a rough approximation. [ suggest that } will be found to work
fairly well.  Accordingly we take } of the contents of the diagonal cells, multiplied
by the base unit. The whole process may now be written as follows :

1 1 2 3 4 5 G i g8 9 1 1 12
0 1 1 1 i !l:|- T o e L N - =
S R | [ e
e R 1 U T e S
(R R TR .

30 |25 9 b 1 1 1] - -

FERL ok B S R M TS R
IO R 0 1L, B Ao+ ] 16-3
Tk e S (TS 85
g0 g emgs o gl SRy Sy 76
e (e 1 T 54
& g g e 16
0 0 38 20
0 85 12

98 e=19112%  Six-y)=9798 x10

: 2703 Nt
! T(*Ux na-llz) =Bl

The value obtained by the product-moment method is 588 + 022
The corvelation Table is as follows :

Length of First Conjugant.

| 7 i
[160-9 | 170-0 | 1800 | 190-9 200-0 210-9  2R0_0  230-9 mu-nizm B 260-0 270-0 | 2804 Totala

1

= Ik | | |
g 1609 | — | 1 | I ; S =k
Phameal 1 | 2| 1 2 L T ! g (e N
= 180-9 | 1 1 4| Bl e | ) e S TR | Rl S
S gy | 1 |.— | 3 4 | 14 7 e 1 Tt Bl | = == |

2009 ‘ o i a4 P R el ) RS 1 SR e T
EsEnell e =11 | 7 Fes lee (a6 | s | 5 | =] = o hiEilbg
5 e | R SR T S T 6 T IR 1 L 8 ) G W S )
320 — | — | — 1 5 B |16 |18 4 a — | = | = | &
Saslemgacgle— |~ | g 1 1 ] Ry 4 4 ol (e BT )
oS R O] (S R = T 1 a 5 VI ISl ]S
=7 2609 | — e Sl [ P BT T | pee ] = | =y
= ‘ AN e = | = | = == | T A
= | 280-9 | — | — | = = — |- 1 —_ | - S 1
el o | 4

| |

:Tum.-\. s | 36 | om0 |os2 [ e |caoi | osu | s | ow e | 1 | 400

* Pearl, loe. cit. p. 226, Table IT,
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we proceed thus: Read each column down to and iimluding the diagonal ecell, and
place the total under the corresponding differences in the previous scheme. For
example, take the sixth column; 1, 0, 1, 7, 25, 22, are the corresponding frequencies,
and these numbers will be found, sloping from the column marked 5, i.e. difference
5 % 10, diagonally across the scheme. In this manner the columns of the table can be
disposed in the scheme at once. The scheme columns are then added up and
multiplied by the difference at the top, and, if multiplied again by the base unit,
in this case 10, the total gives S(x—y). The whole can be done with very great
rapidity, and the correlation found in about 10 minutes if & be known,
As other comparisons I give the homotypic results :

Difference method  Prodoet method

Monmouthshire Ashes (65,000) 432 4054011
FPapaver Rhoeas (Quantocks) (19,790) 52T 335+ 013
Ditto (Chilterns' Base) (25,160) 305 400 + 012

These results show that there exists quite a reasonable amount of agreement between
the two metheds, and the difference method is much the shorter when the table
contains thousands of observations as in these cases. At the same time too much
reliance must not be placed upon the difference method, not only because it assumes
normality of distribution but because it involves a somewhat rough method of
approximation in the case of the diagonal cell.

One further point may be noted. Suppose that rank in a series was a true
character which could be dealt with by a difference formula like the above then r the
correlation of the ranks would be given by

Now for such ranks cr"'z{ft{ﬁ'r"— 1), therefore

12 {S (x—y)y’
R L

=1 I:vih]

Dr Spearman has introduced a quantity R which he terms a “correlational
coefficient* " and which he defines without any special justification by :

S({x—y) :
RB=] - = e e ot e i)
FVe-1) tal
We should thus have:
e mE= TS e
l =r= 3N I::l ff_} l:x},
which would give approximately : r=2R— R*

® Jowrnal of Peyehology, Vol 11, p. 96,
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This is, of course, not true, for the distribution of ranks is not normal ; the exact
formula will be given later; but it suffices to indicate that the actual distribution
assumed for @ and y will much influence the relation between » and R, Dr Spearman
from trial gives the empirical formula

= gin (?: ff') .................................... (xi),

=]

which is also incorrect. But the above relation shows that we are not ¢ prior
compelled to suppose that » merely changes its sign, not its numerical value
when [ changes sign.

(3) On the Corvelation of Grades. A method of representing frequency has
been introduced by Francis Galton in which the extent of variation of a character is
expressed by the position of the individual bearing this character in the population.
This method was originally spoken of as that of percentiles hut more recently as that
of grades. A fundamental feature of the method is that the grade is looked upon as
an index to the variate, it is not considered as in itself significant, or treated as an
independent character of the individual. In order, however, to pass from the grade
to the variate it is absolutely necessary to make some hypothesis as to the nature of
the distribution. The hypothesis hitherto made is that the frequency follows, at
least fairly closely, the normal or Gaussian law. On this assumption, tables of the
probability integral enable us to pass at once from the grade to the magnitude of the
variate, and wvice versd. Quite recently, however, Dr Spearman has proposed that
rank in a population for any variate should be considered as in itself the quantitative
measure of the character, and he proceeds to correlate ranks as if they were quanti-
tative measures of character, without any reference to the true value of the variate.
This seems to me a retrograde step; hitherto we. have dealt with grade or rank
(I will distinguish between them presently) as an index to the variate, and to make
rank into a unit itself cannot fail, I believe, to lead to grave misconception. Between
mediocrities the unit of rank treated as a measure of a variate is practically zero,
between extreme individuals, it is very large indeed. To state that two individuals
differ by m ranks carries no meaning at all unless we add, (i) the size of the population
dealt with, (ii) the position in the population of one or both individuals, and (iii) the
nature of the frequency distribution which governs the population. I cannot therefore
look upon the correlation of ranks as conveying any real idea of the correlation of
variates, unless we have a means of passing from the correlation of ranks to the value
of the correlation of the variates, i.e. the correlation of ranks can only be treated as a
step subsidiary to determining the true variate correlation.

The correlation between variates can be made to change widely by preserving
the same system of ranks, but by altering the nature of the frequency distribution.
Thus consider the system :

(%]
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3 sk
5]

i e — Ranks |——| _—

W + 1 + 2 | 1

B
="
.

x ‘ —
Veariates |—- —
i e =1

The correlation of variates is perfect and the correlation of ranks is also perfect. But
we may also have :

Varintes fRanks _| | —

The correlation of variates is now 72, but the correlation of ranks remains perfect
and would indicate nothing of this great difference. I think that it is safe to assert
that until some assumption is made, at least as to the approximate nature of the
distribution, we cannot hope to avoid misconeeptions if we use the method of ranks
without reference to the rank as index of the variate.

In such a case there can hardly be a doubt that the best method is first to
consider to what results normal distribution will lead us, and semndl:,r if the formulae
found turn out to be of a simple character to adopt these as the basis by definition of
the variate correlation constant as found from a method of ranks. This will be
the course adopted in the present memoir.

(4) Let there be a population of N members and let these be under investigation
for two correlated characters, means m,, m,, standard deviations o,, o,, correlation r.
I shall suppose normality of distribution. Let m, +x, m,+y be the deviations of the
two characters in any individual. Then I term:

r

h=4N+ —,ri e o da|
Vima, o e SemnnnnC o !:xii},,
LN N _'%ﬂ;u’ |
L g e L Y
imo,lo

the x- and y-grades of the variates for the individual. It will be obvious that g, and
¢. are mathematical functions of the variates and that accordingly the correlation
between them determines that between x and y, or wice versd.

Obviously g, and g, ean be found from tables of the probability integral as soon as
a and ¥, the deviates, are known.

I term vank the actual position in order of an individual with regard to any
variate in a given series obtained by measurement or observation. If » be the
‘rank’ of an individual for a given character this signifies that in the observed
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population there are », — & individuals with character greater than . If therefore we
were to identify this with the grade we should have

T R AR (xii),

or g, would always differ from a whole number by *5. This, of course, it does not,
and the whole problem of working with ranks really centres on the degree of
approximation which is made when we proceed from ranks to grades by the relation
(xiii). A grade determined from a rank and not from a variate we may term a
spurious grade; actually the real grade often differs by several units from the spurious
grade, and the practical problem is: To what extent does this vitiate the use of ranks
as a subsidiary stage to the determination of variate-correlation ?

I shall first proceed to find the mean and standard deviation of a true grade;
(xi1) shows us at once that §,=g,=4N is the mean value of the grade.

The frequeney of a given variate lying between @ and = + &x

e e
— e “ofde=dg,.
o 2arer,

But the frequency of the variate must also be the frequency of its grade, or:

Noy=| " @-ardn=3| @ -ar]

¥

0

—
s N
=——==—xJN.
3 8 12
= -, a = ATE -
Hence we have : e Y Ay e (xiv).

Now whereas our grades are a continuous series, the spurious grades or ranks are
discontinuous and at intervals h=1. (xiii) shows us at once that

E| = E':=§t + :la ="£ I{-‘h".r-i_ ]'1."
Further o, =, &
the latter ﬂx:-rl‘espﬂnding to the Slleppmﬁ's correction b_}' which we pass from raw to
adjusted moments.

Thus we have : o, =0, =15 (N*— 1}1

;.=§2=£{‘\r+l} ] “{2{%}.

(xv) must be used whenever we are dealing with ranks or spurious grades.

Writing #,=¢,— 7, and i.=g.—7,, | now turn to the determination of the product
moment of the grades. Let us put:

1 1 b fat Yy o
e —¢ 1= o oo " ooy it
2o, o, )1 — ¢ 17 -{ |}J

=) [
then : = J' j i,z dy
' ol

gives the product moment of the grades.
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Differentiate p, , with regard to » which is not contained in either i, or i,; we

have ;
ap. I e B
b= [ 2| i et

But I have elsewhere® shown that :

dz |, 'z =
=T R A (xvii)
Accordingly : 'r';l:‘}.::ur= a, E':J‘-‘-w IHJ 1,1, !, Iv.r dzz .
— -

Integrating twice by parts and noting that the part between limits vanishes in

both cases, we have :
i = f+o ol 5
{'Pﬂ'm:-ﬂ'lﬂ‘g [ z'_t ?t d'rz “rmrhf‘
il Joa ) oa "dzdy :

Substituting for di,/dx and di /dy and u.-rIting x=x'e, y=y'a,, we find:

“’.“n-.::, iy 2 at- By + (2N L,
i T 411;1.;"1 o .;Id/“ J' e { ] ol (fy

N
& Em 1 —:"\/ _*;—?'*'}I‘ __ ® omdd—1®
(| -1 {l __j.-.'}:

Now if p,. be the correlation of grades, we have :

la.. :
- ﬂ]'..[] “ P ——— : lfi'}%"
dr  No,o, dr
Thus remembering (xiv)
chpyy.

dr w33

B
or, .=— sin"~" L + constant.
P . ]

Now p,, and » must vanish together, hence the constant is zero. Accordingly we
have :

=2 sin (:r pn) ................................. (xviil).
il

This remarkably simple formula enables us to determine the value of the true
variate correlation from a correlation of grades on the assumption of the normal law ;
or if grades may be replaced by ranks, a knowledge of the correlation of ranks will
give us the correlation of the actual variates behind the order exhibited in the
ranking. The important idea embodied in the above formula is the basis of the
present memoir, and is as far as T am aware wholly new.

* Phil. Trans. A. Vol 195, p. 25.
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It remains for us to consider methods of finding the rank or grade correlation and
the probable error of such methods.

(5) A convenient method of finding the grade correlation is that of formula (i),

P- 4, we have at once : y
e ::l'."’ + "I.--I -5 {ﬂ'r: _.fl'r=}:."l-1|"
¥ T bl zﬂ'l ':;_ s,

. 1% + i
Ul‘, p!._. =1= i f!{:‘_i: qlh ................................. I:Hl:'-'l

if we use true grades,

but: ] 6.5 (= p‘:}'.—

—':r-{—‘\;;_il ...........................,.....,..{x}:}.
if we use ranks v, and v»,.

If we use ranks the discovery of S (v,—)* or the sum of the squares of the
differences of ranks forms a very easy process of determining p,., due regard being
paid to certain points to be dealt with in the illustrations below. Then (xviii) will
give the variate correlation.

The probable error of p. and of r found in this way will be given in another
section.

Since the determination of p,, by (xx) is algebraically identical with finding p,. by
the product moment, and such produet moment gives the least probable error in the
determination of a correlation coefficient, there must be some fallacy in a statement
which has been propounded among the psychologists that a difference method of
determining the correlation will give p, with about § of the probable error of the
product. moment method. This fallacy will be considered later.

Meanwhile it is of interest to show that the probable error® of

Pu= {S {plyz}."rﬂ T El-j}f{"?ﬂ ﬂ‘v.-}

GT449
PR e (1—C o FCiprs +Cofis + =2)
Jn—1

is of the form :

where ¢,, ¢,, ¢,,-.. are undetermined constants. Or, the probable error of p,, for p,,=0,
or for uncorrelated ranks is
67449/ n -1,
Le. is absolutely identical with probable ervor of a coefficient of correlation of any two
uncorrelated variables, and is not as asserted much smaller.
Since for ranks o, and o, are constant, we havet to find the value of

wWw="= 11'5 (wav) _ {E(n+ I]}”}!.

7
v, and », baillg indellendent, in order to reach the sqiml‘ed standard deviation of
Py Tor 5, =0.

* 5 is here put for A as more convenient for the algebraic work which follows
t T owe the following proof to the kindness of my friend * Student.”
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A 4, (S(rne)\ [+l Sny) m+1)
Now: u—E{l(\ = ,}_3("2 )_-;; +('ﬂ' )}

There being no correlation, ! arrangements of this product occur with equal

s (ri',-:- 1)' - (ﬂ,:z!:_I)*n 1

Next any w,», occurs in (n—1)! of the arrangements, for if », be paired with »,,
the remaining # — 1 pairs may be arranged in (= —1)! ways. Thus

z{fz (“;‘)13{1:1»._.};-?;} -2 (=1 ("'*H)“"*{; )
=2 (-t (B 2R o g (1Y 2DV

=2 (n)! (“_';1)'

Further : b (S{p’ p-*})! =3 i—ig 1S (') + 2 S (nw v'n))),

frequency. Hence

T

where »/, " are different from v, v,.
Now v'v} occurs in (r—1)! arrangements; hence

s (S’{u.*r:}) _(n —ul}l !E ()% {u:}___{f.r_t—- 1) !(ﬂ. (n+1)(2n+ 1:})=

nt i G

G

=(n—1)! {fml}}“

Next vy, oceurs in (n—2)! arrangements.

Thus : p ("S ( Ffu' i ] 2 {n——!i}_' £ (neav))
1 / n
—2)1
= =D s ) (5 (i) =S () =03 () + v,

where », and »" may now take all values.

Thus:

b {33 {:P*:l - }} {” = J} { ) E (1) = {?;+ ) S (vfv+ vt +Sl:=’;ﬁ'1-'==}}
(n—2) {(ra (n+1 }) (f_a (n+ 1_})-‘ n(n41)(2n+1) cr (u, (1) (20 + 1})=}

w 2 G G

....-

= ll-l‘n] 4 1} (s 17 {99 + 3n° — Bn— 4},
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C'-Dllﬂcting the various parts we find ;

w B (A1) (2n+1)  (n-1)!

T i (n+ 1) (9n'+ 30— 8n — 4)

. nl(n+1)(n—1)
bl ) ‘
(n4+1)F(n—=1)

Therefore the mean value of +* is ° e

or, after reducing,

Now the probable error of p,,, for uncorrelated ranks :
=67 449/, o,

(n+ )Wa—1 mt—1
/12

=G7449 12

T O e (xxi).

It thus follows that if the value of p,. be not two or three times the expression
(xxi), there is no significant correlation of ranks, and therefore no significant corre-

lation of the corresponding variates.

(6) Omn the Difference Method of finding the Correlation of Grades.

Exactly as in the first section of this paper we may seek the correlation of grades
by means of the sum S(g,—g.) of all their positive differences. This is slightly
shorter than finding S(g,—g.)°, but only very slightly so, and it may be doubted
whether the increased rapidity of working at all compensates for the decreased
accuracy of the process. Still the result is interesting and throws considerable light
on one or two allied points.

Let ¢ =S8(y,—g.), where the sum S is for all x-grades which are greater than
corresponding y-grades.

Let us put x=0,2', y=o.%, and write

= Jr e—ie dp,

o
T = L I —I— '25,.
21 —1* [ e
R e e ;
Then ; i =:I|II:}_1]' f_ﬂ J’_M{Jr—jy}z:fyffm

o J‘,‘Ti‘ J'+'.D J’IJ e a }Z-Jr’h' ir_';mr
- i I L e



16 KARL PEARSON

ir?_(: }j J (J=Jiv) ";(,,_. ) dy/det

r

Z{éﬂ%fﬂ I_I{J:'—Jy}u,fdy,(-“_*#) dyda’
ﬁ.": + X 'Nrﬂ- et !:.r!,-d v
= (2m)i 1= ,,ﬂf {[Uf =Jv) dm] ‘l‘J'_“t iii;’ Lﬁ, r:t'gf} !

N 5 n;}
T @i 1-r J’ J i 4,., l ){;Wf

Put y'=a'—y"; then after rearranging :
IE'IHLII :il.n & + " " 2 (I + '?"] ﬂ[
"Tr ‘Jﬂ'}*(l J' J‘ 1{1_? -'5}‘_ J ) 3+? J}J

AEF Dy 2 :
co i +r(*” “55¥) *=nEE? ) dy'd.
The order of integration ean now be transposed and if X be written for

'l';'—:3+ L
g4+

the limits of X will also be — = to +2=. Thus:

de _”: - | L) }-4_.“7’-?';.11 .
e IR

But if ¢ have any value :

e L + o
f’i‘.‘iﬂ""“ﬂ'-.’l'=ﬂ, and f c**'""*ffX=J21r3?.

Hence :
di¥ _ N1 2(147) [l4 g o
dr f: jl""J { ?T} 34r 13+j"' ,l‘f ':l F']l._i--l-r:l df
__:'||"" 1 3 .2{]+j} (1_?}[3_*_1}
T o2m (=) (34 2
— s 1 = N 1

Hence integrating :

4 ﬁ."? l 3
¥ = constant + oo cos”! Lt ;
ﬂw

But when =1, (¢ must be zero ; therefore the constant is zero, or inverting :

o

i
"=2 cos ErriTi—L.
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Or, finally *: r=2 cos ?x (h {'({;,.?ﬂ*}) ] (PR

: 4.(‘{\“]

This gives us the correlation of two variates from the corresponding grades by a
difference method.

If » be zero, we must have 2= Eri.-j_} equal to 60°=%/3, or S(g,—g.)=3N"

when there is no correlation of variates. This is easily proved directed, for in this
Case

M AT e
G=8(g.—9,) = f v f {9:—9,) 31:, e I dyfdat
1 (¥ (%

(o= g1,) gy, g,

:i' i i

L (¥t N*
=ﬂ'fn .{Tdyz ST

For ranks the corresponding expression to be used is § (N*—1), or we have:

'.“i{:-r,—v..}‘-
r=%2 cos Zv ,_ | P e S R I AT PPty b 2, ) | 1] [
[:' ‘\i:_] ..':I { }

As before the truth of (xxii) depends on the approximation to normal eorrelation.
If we combine (xx), (xviii) and (xxiii) we have the relation between S (¥, —2,)* and
S (v, —»,) which holds in the case of normal correlation.
Writing K=1-S(y,—2)/3(N*=1), we have:
1'=Esingp,==2 Eos:{] e e A (xxiv).
Dr Spearman gives+ the relation :
pi:=s8in ['\T R) e eet o e e T e et s | XX

(he neither connects p,,, nor R, with ») as apparently an empirical relationship and
apea,ks of it as “all that could be desired.” It is clearly inecompatible with normal

* The relationship of (xxii) to (vii) is easily seen if we expand the cosine as far us the square of the
angle. We have
=1 %4, . = m {5 (5, — g o TAS (0 = g0}
T'—I—F{bl:_[il'l-yE}J':lr:; _,1.}&__ =1 - 14472 ,k—j;r,‘-
(vii) would have given us 1 instead of the factor 1:0472. Thus when there is high correlation, or & (g, —g.)
is small, we see that the difference method with grades leads us to nearly the same result, as the assumption
that the grades themselves form a normal distribution. This suggests that Spearman wonld have got

c - 5 N &, — a0 g
much better results for his “footrule” for measuring correlation had he taken £=1-3 Vi (H v *’)
i Ll g

2a"
variate correlation .
T Jowrnal of Psychology, Vol w. p. 102,

|
instead of 1 — v:) 5 for this value, 1.e. 1 —(S—j:::') in his notation, would have been almost the troe
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correlation, which at any rate is a fairly good guide for general relations of this sort
in the theory of frequency. Table I. gives the values of » and R for each -05 for p,..
Table II. gives the values of » and p, for each ‘05 of R, and in the last column the
value of p, which would arise if (xxv) were correct.

TapLe 1. Corvelation of Variates from Mean Sguare
Difference of Grades.

iz F It Pia ¥ R
{0 000 -000 50 514 323
A5 52 024 55 368 | 361
10 105 059 0 618 400
‘15 157 -0ED G5 -G8 442
-20) 209 120 7 717 486 |
a5 261 152 75 TB5 -533
gl 313 ‘184 80 8135 84 |
85 | -364 217 &5 #61 044 |
40 | 416 5] 0 008 | 708 |
45 467 S 05 954 | 796 |
50 518 323 1-00 1-000 1000 |

TapLe 1. Correlation of Variates from Difference of (frades.

I r Pia Ixxy) | I r Pra (xxv) !
- — o _— |5 - 1
A1) 000 | 000 000 || B0 | 732 l ‘T16 707 ‘
)5 089 | 085 | 078 || 5 T8 TaT 60 |
10 176 163 156 G0 ‘B2T 814 B09
-15 259 | -248% 233 || 65 67 806 | -B53
-2 -338 324 <309 70 02 504 891
25 414 395 ; 383 ) 43z | H26 G234
30 -486 | -460 | 454 80 956 | 952 951
‘i Hh4 536 | 522 25 975 | 73 T3
40 ‘618 GO0 | -DHET gLl 08D 088 g1l
45 BTT BG0 | G449 95 | 097 997 907 |
BTl 153 F16 | 707 1400 | 1-000 1-000 1:000 |
|

Now these Tables bring out several interesting facts. The first is the remarkable
closeness between the correlation of the grades and the true correlation of the
variates, if we suppose the system normal. The maximum difference as shown by
Table I. is *018 and actually the maximum of r—p, ocecurs when p,,="5756 and is
then -0180. Thus, the difference will often be of the order of the probable error,
The formula (xviii) is so simple, that we can always deduce the variate correlation at
once from the grade correlation. I propose to define » as given by (xvii) as the
grade-variate correlation. Whenever the system is normal, or approximately normal,
this will agree with the true variate correlation closely. Next Table I. shows us that
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equal differences of p, give almost equal differences of », ie. the differences only
range from ‘052 to ‘046 of » for differences of 050 of p,,. On the other hand the
differences of r for equal differences ‘050 of R vary from 089 to ‘003, or second
differences become of importance. Clearly for high values of R, + will be found much
more closely than for low values.

If E; be the ervor in » due to an error E, in p,, and E.” be the error due to an
error K, in K, we have:

Bf =; oS E pxE,
E;’=2-3"’sin g (1-R)x E,

if we use differentials. For the special case of p,.=R=0, we have seen that the
probable error of p,=-67449/Jn —1; it will be seen later that the probable error of
R is *4266/Jn—1 nearly, and if E, be the probable error of r=0, as found in the
ordinary product moment way, we have:

6745w 6745  2m. /3 4266

r Lo T L.
T e e ey
6745 ‘7063 7738
“dn=1 Sa=1 Ju=1
Thus we see that, contrary to what has been asserted, the accuracy of the new
methods—when they are measured by the determination of the true correlation—
are less than the old product moment method. In particular it requires about
30 per cent. more observations by the R method to obtain » with the same degree of
certainty. when +=10,. ;
At present we do not know the R factor term in ¥, when R differs from zero,
and accordingly cannot test E,, E'and E" at other values of R or p,, but I have
little doubt of the general truth of the result that F, is at all values as well as for
r=0, sensibly less than F, and still less than X",

ceenses| XXVI).

(7) Remarks on the Probable Evror of K.

The probable ervor of a quantity in which the limits of the summation vary as we
make random variations in the constants is always a troublesome matter, and I have
not yet suceeeded in evaluating the probable ervor of 5(g,—g.) when g, > g. for any
value of ».

Spearman has investigated the probable error of the corresponding expression for
ranks, S (v, —w), when there is no corvelation between the ranks. He finds that for
i observations the probable error of /2 may be taken as *43/./n, and from this result
he has drawn rather sweeping conclusions as that : “twenty cases treated in one of
the ways deseribed furnish as much certitude as 180 in another more usual way”; or
that : “a probable error may at present be admitted without much hesitation up to

3-—2
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0:05; so that by adopting the method of caleulation recommended, two to three
dozen subjects would he sufficient for most purposes®.” Now these statements seem
to me not without grave danger, and accordingly it is well to see where the error has
crept in. '

Spearman gives the value "4266/,/n, but it should be *4266/J/n—11, and accord-
ingly since we have seen that the probable error of p, for p,,=0, is *6745 /\/n—1, the
probable ervor of & would only be about % of the probable error of p., and upon this
Spearman’s statements are based.

Now the probable error of any quantity is conventionally -67449 x standard
deviation /v — 1, and accordingly for the same number of observations the probable
error is less when the standard deviation is less. But there would be no meaning in
asserting that the mean of 20 metacarpal bones could be found with much more exacti-
tude than the mean of 20 humeri, because the latter being a larger hone had a greater
variability. We must either measure the same guantity by different proeesses, or
else be at any rate certain that onr quantities are alike in character and function
hefore we compare their probable errors. The probable error of Y is certainly less
than that of w. Now p,, is a true correlation and ranges from + 1 through 0 to —1
with a symmetrical distribution about 0, if we take the case of a random distribution
of ranks. The quantity R presents nothing of this nature at all ; random distribution
of ranks does not give a symmetrical distribution for F, its range is not from + 1
to —1, and there are certain values it can never take. In order to bring out these
points I take the following table for & negative.

TapLe 1L Negative Correlation of Variates from IDifference of Grades,

R e Pia
= il PR T N.E. It will be observed that when R is
Lk - 093 — 088 11|?g.1t1'1.'r~, the true variate correlation is almost
- ig - 1:75 IJET double the magnitude of &, while if £ be
B W e S positive (Table IL) v is larger than £ but not
_-5F -489 485 to this exaggerated extent. It will be clear
— 30 — 584 — 566 that no estimate of the real correlation can be
— 35 = E:‘;: = %70 hased on R, if it does not allow for this ex-
E 'r;: i:".:l'r = ;-;EI!‘} aggeration.
— -5 — 1-000 1000

* American Journal of Payehology, Vol. xv. pp. 100, 101.  For the proof of the probable ervor cited
see : Hritish Jowrnal of Paychology, Vol n. pp. 1056-8.

¥ Spearman’s resul | F o 108 be writ el n-35 ar neglectin t,emminl
pearman’s result at bottom of p. Ty written .-\.l"u— 1 2 Ty L = n

1 CEE
o oo e does, this gives 4266/ 5% — 1 as we should anticipate.
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Thus we see that while » and p,, run from =00 to =10, £ only runs from —0-0
to —-50.

In order to obtain his probable error for 2 Spearman takes every random arrange-
ment of ranks », and », for which » is greater than »,. He has neglected to observe
that when he does this his & will become tlf!gﬂt.i\"ﬂ, but that it will not range
from — 10 to +1°0. For example, I take the following system of ranks for (2m + 1)
individuals :

¥ = 1 L 5 4 ; : o+ 1
Yy = I+ 1 L Lo = | 2 — 2 1
This gives : Sm=—v, =2 (2mf+(2m—=2F+(2in—df+ ...+ 27
=8 (m+ 1) (2m+1)/6,
_1_{5,.‘:"{#,—;;‘.}"_ _ Bm(m+1)(2m+1) _ l
U R A e
But H{:rl—lf._.}——-ﬁ-i--l S oo +{:3HI—-l_:l+{'_.’.rr!.—:.":}+f3il:ri=iui|:m - [}I.
{-F- — .
Therefore : R=1- i e (k1) — e e

Ni-1

Accordingly when the corvelation is negative and perfect, the number of observations
being odd, R will never take the value — 1, but no greater value than —-5; whereas
if we reckon our second ranks in the negative direction i will equal + 1.

Here the Spearman formula (xxv) leads to the absurd result p.= —1/./2, instead
of —1. On the other hand my formulae (xxiv) for p,=—1 and R=—"5 give
absolutely the correct value r= —1 for the variate corrvelation,

Again take N even =2m and consider the system :

(Em+1yF—1"

| 1 2 3 4 : ; i

|
1
¥ — D P — 1 | 2y — 2 Qg — 3 - : 1

We find : Sy —wf=2{2n—1F+(2m—3)"+ (2m =5+ ... + 1%

-
=5 (4me=1),
6 =" (4= 1)

and this gives Pa— =1,

" Zm(dnf—1)
Again : Sy =v)=1+345+...+(2m=5)+(2m—-3)+(2m—1)

= 71,
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Gin Zmi+ 1 _J' 3 |
: N5 f ] = = e ais
Hence i=1 T P 5 ll s if (xxviii).
Fﬂl"-' ;"li-= 4, .'?= —'Gﬂﬂ; ,T=]{'I', = "-‘515,.

N=20, R=-504; N=100, R=—-500.

Or, again, the limit —'5 is rapidly reached as the number of observations
increases.  In fact solely for the simple case of fwo observations is it possible for R
to reach —1.

If it be objected to (xxiv) that it would now give for values of R, greater than
— 5 values of the variate correlation greater than —1 (= —109 at a maximum for
N =4), this is overlooking the point that (xxiv) is deduced from (xxii) by replacing
true grades by spurious grades or ranks, and that if we retain (xxii) then

S(g.—g.)/N*= E‘E‘ra =1,
and = —1 as it should do.

We have now reached I think the basis of Spearman’s apparent paradox. While
the variation of the true rank correlation p,. lies between +1 and —1 and has
'67449/VN =1 for its probable error, the value of R only ranges between +1
and —-5, and may well have a less value for its probable error.

Now Spearman tells us that large negative values of his R should be avoided®.
There is no necessity whatever for avoiding them if we are seeking the variate
correlation by the formula given in this memoir. But if we are seeking the probable
error of a zero quantity, which may vary on either side of zero (and in this case the
variation is not symmetrical about zero), we cannot negleet the distribution of random
variations below zero. If Spearman wishes his R to be considered always positive,
then he ought to have found the probable error on the assumption that S(v,—u,)
should never be greater than } (N*—1). He has taken a quantity which ranges from
+1 to —*5 and compared its random variations with one which ranges from +1
to —1 for the same frequency. If he had restricted his attention to variations of R
between 0 and +1 and of p, between 0 and + 1 he would not have reached the same
conclusion.

But there is a further very serious indictment to be made against Spearman's R,
For values of N fairly small, which are those for which he proposes to use it, &
retains a constant value for wide variations in p.. We can show this on an
exaggerated scale by writing down the possible values for Spearman’s £ and the true
rank correlation for 4 individuals taken with random ranks. See Table on p. 23.

A little consideration will show to what much better results p, leads us than K.

R in fact remains constant and = — -2 while p,, passes through the values 0, —"2, — 4
and —'6; or r can take values from 0 to —'62, while its value as found from &

* FLoc. cit, footnote, p. 96,
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remains —-%8. This Hilllpllﬁ illustration of how the real rank correlation wvaries
widely while Spearman’s coefficient & remains constant shows how unsuitable the
latter is, when we have to deal with small series.

Another point worth noting is that, if we take the positive values of the
correlation only, the mean value of I is '3818, while the mean value of the corre-
sponding p,'s is 5454 ; the former has a standard deviation of -2622 and the latter
of ‘2573, showing that we are not justified in asserting that & has a smaller probable
error than p,. when we take comparable quantities.

Spearman appears to have an idea that & is veally a coefficient comparable with
P and he attempts to get over some ditficulties which have arisen, by telling us to
reverse one series of ranks when R comes out negative. But reversing the ranks
does not aid us to the right result. Thus if the ranks in the 12th and 13th column
of », above be reversed, we find that /@ still remains negative and of the same
magnitude —-2. In fact it is easy to write down a system of ranks which give a
negative K, and which on reversal give a negative [ six or seven times as big. The
fact is simply that & is not a symmetrieal function of p,. and reversal of ranks does
not necessarily reverse p, in sign.

We see accordingly (i) that the total range of R is only about £ that of p,,, and
that if we make the range the same by any attempt to reverse ranks, the Spearman
method of ecalenlating the probable ervor for £=0 is erroneous. (ii) That the
distribution of & for random rankings has a median which differs from zero, is very
skew, and is in no ways comparable with that for p,.

A point to be borne in mind most cavefully is that for a given value of R, p,, the
true rank correlation may take a great variety of values. It is only when (i) the
number of observations is fairly considerable, and (ii) we assume some distribution of
associated grades such as that of normal ecorrelation, that we are able to assert that
the value of R will fix p,., but such a relationship as that connecting p,., £ and the
variate correlation » can only be fixed, as in this memoir, by the appeal to despised
mathematical analysis.

Thus the advantages cluimed by Spearman for £, namely: (a) that it frees the
discussion from the complexities of mathematical analysis, and () that it gives a less
probable error than more usual ways of approaching the subject, are seen to be
illusory.

The difficulty that p, may take a whole series of values for a single value of R is
only surmounted if we define the character of our frequency distribution, and there
is no doubt that we shall obtain a first approximation by defining it as normal.
Secondly, we cannot reverse ranks with the effect Spearman proposes, and if we could
his probable ervor of R for =0 would be erroneous. Lastly, if we do not reverse
ranks, then the probable error of one and the swme quantity, the variate correlation, is
considerably greater—for the only case yet worked out—i.e. R=0, when found by
Spearman’s method, than when found by the well-known method of squares of
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differences, and still less than if found by the product of the variates directly. The
squares of the differences of ranks can be taken so directly and quickly from a table
of squares, that it does not seem to me that the slight rapidity gained in using positive
differences of ranks is of any weight against its increased inaccuracy for small series,
where indeed it is likely to be chiefly used.

Further no two rank correlations are in the least reliable or comparable unless we
assume that the frequency distributions are of the same general character (see p. 9),
and this general character will, till further advance be made in the theory of skew-
correlation, be undoubtedly that provided by the hypothesis of normal distribution.
On this assumption Spearman’s suggestion of correlation of ranks becomes valid, but
not as he supposes as a Ding an sich, but only as a means of passing at any rate to
an approximation to the variate correlation, and this in the case of quantities where
it is easier to rank individuals than to measure their attributes accurately.

For the grounds stated in this section, I propose to use as a rule p, and not R to
find r. For this reason I have spent my energies in finding the probable error of p,
instead of seeking that of K.

(8) On the Probable Evror of the Corvelation of Grades.

The following investigation is admittedly lengthy, but I have not seen my way to
shorten it, and the main point is to reach by some road the expression for the probable
error. The most general expression for the probable error of a correlation whatever
be the distribution is to be found from 674493 where® :

= i {I.}'_ﬂ + l P + 1 -Iil"*"' 4+ 1 Pa ik ?"“' .y l|i'*’:|:l| l
T ].I)II-“ 2 Pa P 4 f’.«:—: 4 f’--ﬂ:? PuPs  Pu _ri-i-'ﬁ‘l
and Pa=8 o (=T (4 =TPHN -ccrrreinnnnnn e xxix).

Now in our case & and y are to be the grades ¢, and g, and » is to be

P = .:‘*’::J"l""{fjmj."?.-r
which we will write for this investigation p,
We have at once:

= i = N - bt oy
J"'. A Py = {.ﬂl_.{l'r]}m oy (el I ﬂiml
-1 W Zarer,
s NN e
and : g‘l=gl+ 7 f e 'ﬂ'u'{.’..c,
' f'ﬂ'ﬂ'l @
N =3 &
dg, = = e ol
+ 2,

* Mathematical Contributions to the Theory of Evolution, xiv. “ Draper's Research Memoirs,” Biometric
Beries 1n, p. 200 I have omitted certain terms which cancel,



26 KARL PEARSON

-
e Pa= f (9. —F)" dg,=o0, if m be odd,
| Fum g
= (X N)™, if m be even.
Thus Po=Pu=75N" and p,=p,=;N" as before ............ (xxx).

We can now write (xxix) in the form:

wp e 1 {.I”‘f {l P’}_*EP ;::}-1- ‘Fﬁ'F:} ........... ”H...{Kxxi.}.

assuming as we shall show in the sequel (p. 30) that p,=p,. Accordingly we have
now to find p.. and p,,.

First to find : P =jtn' {S(g.=a.) (9.=7.)},

or if we use the notation of p. 11,

{1 s B e Mo .
= .;\T“' f o B e e (xxxii).
al — — =

Now I have not succeeded in integrating this expression, although T have spent
much time over it, but T have expanded it in P-DWEI'H of the variate correlation ».

2 1 -ty
W= J"
and j, and _}} are the same as on p. 15, we can write :

N [+= [+,
P==§;_J' I o9t Udxdy,

ot

But* U=8", vw,e” 7+
Tel
N Pl
L P== g (u:f""‘
- e o
where gk f saehe f AT SR (xxxiii).

If # be odd, v, and w, have odd powers and ¢,=0, hence p.. contains only even
powers of -

First : s ZJ _.'F-;ﬂ_ix: vyl
where we may drop the dashes from the letters now, and »,= 1. Therefore :
. s L T ;
[t idie ol [ ':]+ =\/ﬂr R (xxxiv).
‘!‘“'J_, Ji gz =¥ | s g VBTV

* Pearson: Phil. Trans, A, Vol 195, p. 3
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. e _ 2 ke e,
Now™ : v,.e = ri’:c{i""t ), and Vo=t
Hence: g.= —fi: Jid (v, e ¥)=2 J‘+: je~ %, d
-I—E::r.l ¥ 1 _-r: ¥ —_-‘E +T-|‘ -;}J-'J‘a_-'} P-ﬁ-- L
= nJ_m g.e” % dy = ?if_mt"{c 2ze™"* j,.)dx
= s i r_-"n_gﬁ n’.:-;+i 5 'if"‘cra:r:nd.'r.
1 [ T .,t"?
Butt: mv,,=1'_+L+%§E‘, thus :
L B e o L B i P
g, = -‘-‘_L,[-m e ri'.r+j J‘_mhe q,,ﬂrf.c+” ’:x It dd;"n?'n
oo R 2
_‘HJ‘—a*.nH ﬂh+n fasst Sl
+m
Or: r}-.,+,+.£w-r_;,,=j v M de=8, Ty i S s (xxxv).

Tt now remains to find 8,.

B, =f+m zrne_i'se ffﬁ:=J’ fer, = (n—=1)v,_.} e 3% dx

But

Thus we have

':fn+=

-

dx

= —f;jm d {e':‘g"a‘}lr',_,d,-n—{ﬂ—ljj‘w v, _.e” ¥ dx

n—1[**" _a *m -
s f e ﬂﬂt!n_,dm-—(n-l}f v,_ e~ 1 dy

-

=—%(n— l}ji: Ve Pde= —§(n—-1)8,_,

={—§}i" (n=1)(n—3)(n—>5)...... 1 x B,, n being of course even.
4+ % Al
ﬁﬂ‘:I 'Ltuc'_gla dﬂfzx"r T

the reduetion formula:

+dhng, =(—8)1" (n—1) (n—3) (n—"5) ...... 1 x\/lf ...... (xxxvi).

* Joc. cit. p. 5. t loc. cit p. 4.



28 KARL PEARSON

We can now rapidly calculate the ¢'s.

ol /é?r 'ir *:_\/".?11.' : /21‘1‘-
T8 il A Y g el

3af 3

o 14 [Za o LGE _ 2352 (2=
TN T T Tgunimi e

This is probably more than sufficient for most practical purposes. Evaluating the
coefficients numerically we have from (xxxiii) :

=

j:i =1+ 607,927 1* +-140,7239:"* 4 ‘036,77 58+
o

+DL023877 +:002,9933r" i (xxxvii).
To test the accuracy of this result—obviously correct for r=0—consider »=1.
We have :
(paipaear = 1708 BT SO0 (xxxviii).
But in the case the variate correlation surface becomes a ridge and ¢, =1,, or:

+ ﬁ-" 3 bl

1 (= :
{:pﬂ}r--lz:..i?j“ '!:‘ J*)'i;ra' e o dr

i + ]2 T ,-"'LT'
' di, =

. 80"
] 144
Thus (;:Jni = ;} i b B e S (xxxix).

The difference between (xxxviii) and (xxxix) is only “001,3212 or about 07 per
cent. Thus even if we omit the term in +°, we shall be less than *2 per cent in error
in this extreme case, when the probable errvor itself is zero ; and for lesser values of r,
where the probable error is sensible, we shall not be as much as ‘01 per cent in error.
This is amply sufficient for statistical purposes. I now take p, and find its value in

a different manner.
1 [(+= [+= _ .
= ‘_\,J J 121, zdxdy,

— & —

e Bt R g e R e
dr — J'\I'FJ' - '[ : h ;znfr dedy = N J’_x- J‘—t W dacdy EE:MIHL

This can be integrated twice by parts, and the part between limits vanishes at
each integration. Writing x=e,2', y=0,y" as before, we have:

l!.'F.:"“_#! = -35‘ l,_ i ?.r'* e o ?r;d“:"{ffr'
i {1’:11'}' - o =
o (e e
* Thiz is found at once from G = 2"( L.-.e-ﬁi:,....ffzr or J; = —J Jee™ T, Sinea U, ==, Thus
- =

+ ey |
@s- ,f e e Jﬂ”,._,-':i'

v =
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The integration with regard to 3’ ean now be completed and we find :

Il R e
i f e ter® gt e x )

dr — (J2s)J2—9*

-

where Ta =Jq e 1 dy,
0

and we have dropped the dash on @ as no longer of service,
Write m = (4 —+*)/(2 — %), and we must now find :

"f=f“ i e S R e (xli).
Now :
{L.r = Si g 3 1 +@ A Z
;;;n: - é fhmrl’ﬂ *m‘r’j:‘{1$=ﬁ—,’_1x-?1 f£{13 ém.rﬂ}
= __]-_“ +m = hma? i __i = l. R — & (a4 1) 7.
& Elni'J‘—m{ d(@jc)= 2m m .,n:r-?’f X,
ek 1 R T P
= T imtm (m41) _,c_'?"{”f' ):
- 2l 1 2 —lmeg)s Jor
g dm ™ am= " {m+1:|f.m“” ' L S e
thus : i (mI)= —— b S .
dm (m+1)J(m+1y—1
S y i 1 v
e Jm I=constant —J 2w c08™) ——— rereceeriaeiiieinen (xlii).

m+4+ 1
To evaluate the constant® put m =1, and we have :
constant =1, _, + /27 cos™' }

+% - kT
=f ﬂ_i'ﬁ_jl;{h:*{- J 2w :}

—

+afm2
[ -2

| s
Or finally : I=jm_ {g_m ﬂ.l':+|}

j:r= I:"II..'Ii.:r + \'#2_1.7 1.: = ﬁ:jl."r\-'lrﬂ‘

* Mr L. F. Richardson has shown me that if we put m=0, since the inverse cosine now vanishes :

.-I‘:'
] = 4 ;"-'j"-'d;:r which he has evaluated with the same result.

:fﬁw

constant = Limit o = of u"ﬂi-'f*.d
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Returning now to (x1) we can replace m by its value in terms of r and write

d f-'u‘ _lﬂg 1 s 2= a
”:j,.(lpmt)""ﬂ_: .;.-":1__,?-'5”1 "'{*5__-"‘} {tlw)

This expression I have not succeeded in integrating. I have therefore expanded it
in #* and then integrated. Since p, =0 for r=0, we see the constant is zero after
integration ; thus after some troublesome expansions I find :

.?}" = 54 anpE (Y as " 4 ‘ 3 a ] .
E‘ =", {'339,83697 — 005,4820+" — *003,6798+" —001,1836+°}.......(xlv).
The value of p,, is clearly the same as p, for nothing would be altered if # and y

were interchanged from (xl) onwards. To test the accuracy of the result, suppose
r=1. Then we have from the ‘ridge’:

1EAHEE N : Mo
{Pﬂi}r-]= WTJ’ 'i' !ﬁ = [ !ﬁ'llﬂl f?ﬂ', ﬂ."d =1,

W 2w,

i di, = A
4V - N2 80’
or (P "'A) = 18, again.
.p-n- re] o
But (xlv) gives us:
('”"!) =18 x 100153,
"\.?'i:w- rml
that is a result at a maximum only ‘15 per cent. in error and correct enough for all
statistical purposes. The next step is to determine the powers of r in terms of p, and
substitute in the expressions just found for p./p.” and p,/p.*. 1 find:

D= =14 666,6667p" + 1108, 3084p' + 019,7955p" + 002,7683p"......(xlvi),
.h,
and : Pa = 1:947,1220p—*123,4135p —019,4138p" — -003,81205" ...... (xlvii).

To verify we note that for p=1, these give 17975 and 1-8005 instead of 1°8,—
quite sufficiently close for the purpose in view.
We now substitute in (xxxi) and find as far as p* that :
Si=x {1 - I'H:Z'.?,:':??Hp“+'iiﬂH,4ﬁE?p*+'112.???3,5"-!—‘020.2900;}'} (xclviii).
I throw this, l:l:," dividing by (1 —p'), into the form

2
3= = ,* {1+ 086,2 113_;;3+'l]lIE.Uéﬂﬂp‘+'ﬂﬂi,:!?:’i?p‘+'{lﬂﬂ.ﬂﬁﬂi’p’} ;

or, dropping unnecessary decimals :

: 1 =p .
E = _,‘,,:,] {1+°086p + 018p #0020 .ovvvnvenniinoiminiaiiim it (xlix).
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Thus we see that the distribution of grades being very far from normal, the
probable ervor ‘67 449%, of the correlation of grades exceeds the value *67449(1 —p*)/J/N,
which it would take on the hypothesis of normal correlation by a factor which can
amount to about 10 per cent. at a maximum, but gives 0 per cent. excess when p=0,
then agreeing with our previous result.

I propose now to find the probable error in » as determined by grade methods in
terms of . This involves expressing p and p* in terms of +; these are easily found
from the known expansions for sin™ x and (sin™' x)’. We have:

14 4p° =1+ "455,9453+" + -087,99541" + 005,066 1:% + 000,81 425,
2p= 19098593+ 079,577 5" + "009,2650:* + -001,3322+7,

These must be used in (xxxi), which may be written in the form :
Oz p P |
33 Pa y18)(1+ —18
= (55 #19) (e 420 P19}
Hence using (xxxviii) and (xlv), we deduce after some troublesome multiplications:

,,‘,{1—1 '666,55077° 4 *433,6 130+ 4 '161,83371" + *049,5042:%}

{1 — 1) {1 + "333,44932° + 100,51 167* + 029,076+ + 007,807 8+°),

But sinee : r=2 1-'uru <P

dr= .': pxSp .1nd2._ \/1—--
Thus:

2 -I L
E,.*=% ( ,,Tf ) {1 4+083,4498r° + 017,1493+* + -004,2797+* + -000,4559+°].
Taking tII'E St,ll.'l‘.:i.'l'e I'{]I’Jt. W I]ﬂ'ﬁ.’l} .
|
3, =10472 'L\i {1+ 041,72467° + 007,704 2+* + -001,8184+" + *000,1224+%),

or, for all ljl'aetiuul purposes, the probable error of + found from the grade correlation
1s,
1 — A
P.E. of r="70633 10 {1+ 0420+ 0081 + 0021} rocorvnnvenas (1).
af 4

Clearly for all values of », this is larger than the pmhublt—: error of the correlation

7 found h} the pl'oduct moment method, i.e. 6?449 The maximum difference,

JZ — .
as v approaches unity is 10 per cent. The value can always be found from (1) without
any trouble. The completer value is singularly close to
70633 1=
JN {1—}rP
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but no advantage is gained in ealeulation by using this form, as tables of powers of
up to the 6th exist®,

We see therefore from this section that whatever be the value of », then for
normal frequency the probable error of » found by the product moment method is less
than the value found by the correlation of grades. Further there is no reason for
supposing that the probable error of » found from the difference of grades () is not
greater than the probable error of  found from the produet moment of grades.

We accordingly conclude that the new methods are less accurate than the old.
But they possess some advantages,—when ranks can be easily determined,—in
rapidity of caleulating, and there are undoubtedly cases where they can be used
effectively. In saying this I must reassert that I do not believe there is any advantage
in the knowledge of rank correlation in itself; I look upon it as a mere stage to the
discovery of the variate correlation. For the comparability of rank correlations
depends upon the sameness of type in the frequency distributions, and this assumption
is the weak step in the method. Granted approximately normal distributions, then
the variate correlation flows from the rank correlation, and the whole investigation
gains a rich significance.

My remaining sections will be devoted to illustration of the new methods and
their comparison with the old.

(9) Ilustration LI,  Correlation of National Debt and Population.
The following table iz based on data for the year 1900, and raises no pretence to
exactness, or financial accuracy. It s 1neri-1|_}r illustrative.

TaeLe IV. Population and Indebtedness of Various States 1900.

Papulation Dbt in Popalatien | Dbt | —

State in millions | million £ innk Runk = |
Russia 12020 | 10970 1 2 l 1 1
United States T6-40) 2000 2 5 | - 46
German Empiret 56-34 (LR 3 4 —1 1
Austria 47-01 2367 4 T — 3 | a
Japan 1380 515 ] 15 —10 100
United Kingdom 4 1-60) 7050 G 3 + 9
| France 3864 | 12431 i 1 + 0 a6
[ Ttaly 32-10 S0 & | 5 + 3 9
| Turkey 20-30 162-0 9 9 ] ]
Hpain 1810 ELHE 10 (i + 4 16
Belginm G832 1064 | 11 11 0 0
Rommania TN HE 0 I 12 14 -2 4
| Bweden 514 186 | 13 17 - 16
| Holland 8 ] 56 14 12 +3 f
| Portugal 470 15350 | 1b ] 10 +8 | 2hH
Argentine 4-50 B4 16 | 13 +3 9
Hwitzerland 330 36 | T | 20 -3 H]
Gireece 4y | DE) 18 16 + 2 4
Norway | 290 | 1247 4 508 18 +1 1
[Denmark | 218 1146 | 20 1% +1 1
| 22 —  |30=8(n—r)|290 =5 (n—n)

* Ree Biometrika, Vol, 11, p- 474 t Impgrj,u,] debt and sum of state debta.
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Hence : N =1=399, and p,=1—=6x 290/(20 x 399) ="T820.
Further : R=1-6x30/399 ="5489.
These values are obtained in a few minutes, if the ranks have once been writt&rll

down. If p, only be required, we need not write down the », —v, column at all, the
squares being placed down straight away from the rank columns.

Now applying equations (xxiv) we determine :
r="7962, found from p,,,
=-7810, found from £.
The probable error of » found from p, as given by Equation (1) is ©0596. Thus we
conelude that

=

=80 + 06, found from p,,
=78+ >063, found from R*.

If we turn to the much more laborious method of moments, we find :

Mean Population = 2726 millions; Mean Debt = 2897 million £,
5. D. Population =31'74 millions; 5. D. Debt =3579 million £.

Now these results in themselves should be sufficient to warn us that both distri-
butions are very far from normal ; for the 8. D’s in both cases are greater than the
means, and since in a normal distribution, we might eal,sil:,r have a deviation equal to
the 5. I). we should on that h_}‘|mt.hr:ﬁi:-: expect to get negative debts and negative
populations. The distributions are therefore very skew, or in clubbing together great
and small powers, we have introduced excessive heterogeneity, completely destroying
any approach to normalityt. If we work out the value of # by the product moment
method, we find :

r="68 T 08,

We see at once that the rank method has so exaggerated the corvelation that it
has made the probable error of the less exact methods less than the probable error of
the more exact method! The explanation of this lies simply in the fact that the
system we are dealing with is not normal.  If the ranks of two variables were those
given in Table IV, and the distribution were normal, then the variate correlation
would be ‘80 ; it actually takes the value “68, and this is a very good illustration of
how much the nature of the distribution may affect a judgment from ranks,

TTaR

7
i

* The p. e. is of the form

and this is = 063

t If we confine our attention to the seven “great powers,” Austria, France, Germany, Great Britain,
Ttaly, Russia and the United States, we find pg=—-143, B=—-125, giving r=—"15 and —-23 with a
probable error of -3; this result again emphasises the haterogeneity of the material.

(1 =) (1 + e, + eyr* + co#®), the o' being positive unknown constants,
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Of course it is doubtful whether when we are in ignorance of the character of the
distribution we could say more than

r='8+"1, found from p,,
and r=T7%'l, found by product-moment.

These might then be treated as identical for some purposes of inference. But the
advantage of the longer product-moment method would be that it would have taught
us that the correlation was non-Gaussian, and given us in the process the regression
line. This would probably more than compensate for its greater laboriousness.

(10)  Llustration IV, Correlation between mean Size of Litter in a Generation
andd mean Sex Ratio in the same Generation in the case of Mice.

The following data are taken from a paper in Biometrika, Vol. v., p. 439.

Tarpre V.

- Mean size Mean Sex Litter Sex Ratio o
Generation | ot Litter Hatio Rank Rank LT T N
Ist 206 205 5 3 + 2 4
il 44 491 G 4 + 2 +
And 506 H23 1 2 — 1 1
4th 503 432 3 1 +1 1
5th 553 462 3 6 8] 9
Gith 533 “J 83 I ] 1 1
Thus : Sy, —w)f=20, S{y—w)=5,
and Pu="429, =143,
Whence : » from p.='45+ 23,

r from =254 =-23,
The actual value of » fromn product-moment is
p=-6G3+4-17.
This example serves to show that the correlation found from £ may when the
observations are few, not be definitely significant, while when we proceed in the more
accurate manner it is definitely significant. The R-method is thus shown not to

have special advantages, but rather peeuliar disadvantages for short series. Its merit
really lies in rapidity of working for assay purposes and rough treatment.

(11) fllustration V. Resemblance of Cousins.

(@)  Wudth of Hand. The following table gives the width of the hand in
34 pairs of male adult cousins taken from my series of Cousin Measurements. These
data are being used by Miss Ethel M. Elderton in a forthcoming paper on this
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subject, and I have most heartily to thank her for the exhaustive manner in which
she has dealt with the material in order to illustrate the whole subject of deter-
mining correlation by ranks.

TaeLe VI. Width of Hand in wmm. in Paivs of Male Adult Cousins,

1st cousin | 2nd cousin y! BRank & | Hank B #p =y (#g - ws)? I True Grade of A True Grade of B
B0-T IR 23 1% 17 23 6 a6 [| 23:501 20-v4 2074 2341 |
900 800 [ 68 17 | 17 B8 | 41 1651 hOE-82 2074 | 20.74 5HB-82
807 B4-7 i 23 48| 4¢ 2% —95 | 625 23-51 4066 | 40-66 2351
904 84-7 | 58 4B | 48 58 || 10 | 100 5882 4066 | 40-66 5882
B0 847 | 17 48 | 48 17 _ 31 | T 2074 4066 40-66  20°74 |
T4-5 E1-0 | 3 26| 26 & _ag | L 552 2474 | 2474 - DD3 |
810 200 | 26 17 i 26 H I bl 3474 2074 0 T4 2494
BG0 &#1-0 [ 5% o6 | 26 52 || 26 | 676 4600 2474 | 2474 4600
E07 837 I 23 43 | 45 923 —20 | 400 2351 J36-36 | 3636 2351
940 B2 [ 64 37 | 37 64| 27 T8 Go:26 3109 3199 G526
940 Bl | G4 34 | 34 64 | 3D Q00 65-26 2768 2768 6526
T60 (i (R s i 3 T - 6 a6 844 1000 | 1090 844
Tt;-ﬂ j;‘.;"{' | B 16|16 5 11 lEII 44 1702 1702 B4
TG0 830 3 41 | 41 ] 11 129G 844 3320 3320 544 |
B3 283 [ 83 54 | B4 03 -1 l 47-16 54-16  54-16 457°16
935 B30 60 51 |51 60 9 81 6351 4104 4104 6351
837 817 4% 54 | 34 43 H] 51 &G 36 2768 27-68 2636
837 833 43 42 | 42 43 1 1 || 3636 3462 | 3462 36-36
B3-7 787 [ 43 a5 |13 43 | 28 TE4 || 86:36 16-05 1605 3636
230 81-0 || 836 26|26 36| 10 100 3895 2474 2474 2805
B0 5 800 fl22 a7 (17 22 & ! o5 |l 2271 20-T4 | 20T4 2271
750 160 4 & 5 1 1 || G40 844 | B4 G40
T1-0 TG0 150 5 1 — 4 16 | 170 8-d4d 544 1-7
(R 770 e 1 R 1 1 T -9 a1 345 844 844 34D
g4:5 T80 47 13 | 13 47 || 34 1156 3981 1398 1378 3981
760 T8 R e & G4 44 1378 1378 B4
933 897 || 61 55|55 61 6 36 || 6453 5809 | 5509 6453
93-3 827 [l 61 3737 61| 24 | 576 || 6453 3199 | 3199 6453
987 827 |66 37 |37 66 [ 29 841 || 67-58 3199 381-99 67-38
By B1-0 | a0 3¢ | 26 55 || 290 841 6809 2474 | 2474 5809
810 933 [ 26 61 61 26 35 | 1225 || 2474 6453 G453 2474
827 810 || 37 26 26 37 | 11 121 || 3199 2474 | 2474 3199
987 10 [ 66 26 | 26 66 | 40 1600 . || 67-5R 2474 | 24-T4 6755
987 807 | 66 55 | 65 66 | 11 121 6758 BE-0D | HEOD GY-5H

| | | | —
Meann ] oa. [ Mean) Filn—ra) | T —w) || Mean | o
Sige [0 IR Rk [ ‘ f.-lsnal _ 215023 trade = 3241

The measurements were only read to the millimetre, but since measurements were
taken two or three times in each case the fractions "3, *5 or *7 arise, when averaging,
Since either cousin may be the “first ” eousin, we have for a symmetrical table 68 pairs.
In the third and fourth columns, we have the ranks placed, according as to which
cousin is considered the * first.” It will at once be obvious that many ties arise;
thus no less than eight individuals tie with a width of hand 81 mm. at vank 26. It
is not so clear what rank ought to be given to them. They run from 26 to 33,
we may call them all 29:5. 'We shall speak of this as the mid-rank method. Or, we

| |

=
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might put them all at 26, because this would probably be the result nearest to the
true grade®.  We shall speak of this as the bracket-rank methodf.

The above table illustrates the work for the bracket-rank method in columns
5 and 6, the difterences of ranks A and B being, however, only written down onee, so
that to find S(y,—»), we must sum all quantities in the fifth column as if they had
the same sign, and double the sum of their squares in the sixth column. -

We find : ft=-2148 and p,="3922,
whence r from p,=-4084+ -072,
¢ from K =+361+ =072,
If we now investigate the value of & and p, from the mid-ranks, we find that
8w, —w»)=>588 and S (v, —p,)=29812, Accordingly:
ft=-2369, and p.="4310.
Whence : r from p,=-448+ -069,
v from K='396+ =-069.

Both these values for r are higher than those determined by the bracket-rank
process,  We must then question whether the mid-rank or the bracket-rank method
is the better. Or, indeed is it not possible, that sometimes the one, and sometimes
the other will be the closer according to the nature of the frequency distribution ?

To illustrate this point the actual grades on the basis of normal distribution have
been caleulated by Eqn. (xii). It must be remembered that '5 has to be added to
the gnule to obtain the rank, Etln. {xiii}.

We find : Mean width of hand = 8316 mm.
Standard Deviation = 6:201 mm.

As illustration of the method consider the hand of width 84'7 mm., its deviation
is 154 and the ratio of this to the 5.D. =-248, this corresponds to a value of 4 (1+a),
in the notation of Sheppard’s Tables, =-59793 and multiplied by 68 gives the grade
40°66, r_:m']'cs}mnding toa rank 41°16, as elgitinst. the observed rank 48 or a mid-rank
49! Thus the actual size of organ corresponding to a bracket rank may differ widely
from the size really belonging to the ranked organ, or the true grade in a general
population differ very considerably from the spurious grade or rank in the sample
used. This point again indicates how little can be judged from ranks unless we
associate the rank distribution with some frequeney hypothesis.

Having found the true grades we may correlate them together to find p,,, but in
using the formula

— __-‘5{.5?:*5!1}*
% 2Nxa,'’

* That is, find o, and caleulate g, and g, from Eqn. (xii) p. 10; the true grade in this case is 2474, and

vy =iy + B = 2524 is even below 26, not above it.

T To adopt a term from the examination world, where the place number of the bracket is measured
only by those above,
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we may adopt either the theoretical value {4 N* for o’ or we can actually caleulate
its value. Now (& N'=385} and o,°=365"94, and thus there is a very considerable
deviation from normality in the series® S (g, — . =31153'195, and thus:

p,, found from the true o,’='3740,

p. found from o=, N* =40355.
Whence : » from true o= 3890,
r from o, =y ="4215,

If we might judge from this single case we should conclude that the bracket-rank
method gave a closer result to the grade method than the mid-rank method. But the
question now arises, how close after all are all these grade rank methods to the corre-
lation coefficient in any short series such as the present ?

Accordingly the series was worked out by product moment and the resalt obtained

WS
r="331+ 073,

Thus we see that the actual correlation is considerably lower than that given
by any of the rank or grade processes. It is perfectly true that 33 and 45 are
within double the probable error, and therefore two different random samples of the
real population might have given as widely divergent results. But this is really the
case of two different methods applied to the same sample.  And further the actual
correlation tells us that as far as this sample is concerned the true answer is likely to
lie between “19 and ‘48, but the mid-rank method tells us that it is likely to lie
between 31 and *58%. Now it is clear we might for some extraneous reason hold the
value likely to be *56, and we should find nothing to contradict this in the mid-rank
result. But the proper method of determining » would show us that such a value
was itself very unlikely. Thus the latter method when it diverges less than twice
the probable error from the result of the rank method may yet forbid us to interpret
the results in a manner admissible on the rank method. We cannot argue in like
manner from the grade or rank result becanse that method has assumed an hypothesis,
not made in the product-moment treatment, i.e. that of normal corvelation, which is
here not justified by the results.

But even the amount of agreement here noted is to be considered rather excep-
tional. I owe to Miss Elderton the working out of three other pairs of characters in
the same set of male cousins each in five different ways. 1 have myself done each
of them in three more ways, namely by Variate Differences as in Art, 2, and by the R
method. The results are given in the Table below.

* The mean grade in fact = 32+41 and not 34 also,
t Taking a range of twice the probable ervor on either side the means,
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TasLe VIL  Comparison of Correlation Coefficients found by Various Methods.
Resemblance of Hand in 68 Pairs of Male Cousins.

(Grrades e
I'roduct Variate

Character At Difterence

Bracket-Hank Mid-Rank

from true »

True 171.-:'- '«‘-"g':= |.1-J N BF s Bﬁ' R B" = B!' B

Width of Hand =33 + 0F A7 : Bk 1] 43 41 407 36 4D+ -07 40 |
Width of Wrist 17 + 086 0 o =12 B 07+ 085 06 08+ 085 | 03 |
Length of Index Finger | -19 4+ 08 ‘14 16 13 21 % -08 -39 | <19 +=-085 | 29 |

Length of Little Finger 285+ -075 26 18 11 20 & 05 13 | 24+ 08 21
!
Mean of Four Results 35 25 21 35 G 23 24 23 !
|
Root Mean Square Deviation 053 | 068 | 060 079 |004| 079 |-096

It will, I think, be clear from this table that for series even with as many as
68 pairs—and this is approaching the limit at which any time is gained by using
rank methods—we cannot hope to ascertain the correlation of the sample by such
methods within about °1 of its value, and as the probable error of the sample may he
07, we may well deviate ‘2 from the population value in our estimate. We are
accordingly very unlikely to reach reliable results by rank methods for the 8 to 10
observations to which Dr Spearman proposes to apply his fi-method. We see that
the mean values are fairly elose, although the variate difference and the second grade
methods give the best results. Judged by mean square deviations from product
moment results, the variate difference is easily first, then come the laborious grade
methods, the rank methods by p. about fifty per cent. worse than the variate
difference, and lastly the R methods not quite 100 per cent. worse. Thus we note
that when a series is not fairly long and not approximately normal, the different rank
and grade methods will give very diverse results. But when a series is fairly long,
say 100 or more observations, then there is no advantage in rapidity from the rank
methed ; the formation of a grouped eorrelation table, and the use of the product
moment is just as rapid, and further conveys a great deal more of valuable information.

(12) Conelusions. Three new methods of determining variate correlation have
been given in this paper. The first, that of variate differences, seems likely to be of
some service in the case of symmetrical tables containing large numbers, the frequency
being approximately normal, homotyposis tables may be taken as illustration.

The second that of deducing variate correlation from correlation of ranks, may be
of service when it is not possible to put a quantitative value on the individual
character. Thus it might be easy to form a relative series of intensity of pigment,
and place individuals in rank. But mere correlation of ranks is not in itself a com-
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parable character, as the vaviate correlation may have widely different values for the
same ranking. Justification for the comparability depends upon assuming a wide
spread rule of frequency distribution, and this rule can hardly be other than normality.
The present paper shows how to deduce variate correlation from correlation of ranks.
It shows, however, that such a method of reaching variate corvelation is considerably
less exact than the usual product-moment method. There is no gain in accuracy, but
the reverse in using such a method in the case of short series.

Thirdly, the method proposed by Spearman of deducing the correlation of ranks
from the positive differences of runks is discussed, and the error of the process by
which he has deduced for it an accuracy greater than that of the more usual methods
of finding correlation is indicated. A method for deducing variate correlation from
positive difference of ranks is indicated. The method is very rapid for short series,
say those not exceeding 20 observations, but it is less accurate than the product-
moment method, and considerable changes in the final value reached will be found to
arise according as we use bracket-ranks or mid-ranks in the case of ties. The
comparison with true grades for a few special cases, does not enable us to say which
is the better method ; the deviations from normality sometimes appear to make one,
sometimes the other, the closer to the true correlation.

In conclusion, I think, we may say that variate correlation found by ranks may .
prove to be a useful auwilicry method of dealing with correlation, when it is needful
to give a rough answer to a problem in a brief time, or when the material itself is
incapable of being accurately measured. In all such cases mean square of rank
differences will be more accurate than mean positive rank difference. But both
methods must be used with caution, and their easy application must not lead us to
approve exaggerated statements as to their accuracy.

CAMBRIDGE . PRINTED DY JOHN CLAY, M.A. AT THE UNIVERSITY FREsS.
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