Ergebnisse eines Fütterungsversuches bei Ratten, die überimpfte Tumoren trugen / von F. Medigreceanu.

Contributors

Medigreceanu, Florentin. Royal College of Surgeons of England

Publication/Creation

Berlin : August Hirschwald, [1910?]

Persistent URL

https://wellcomecollection.org/works/e7sk6gwt

Provider

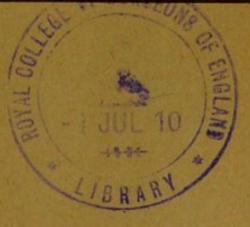
Royal College of Surgeons

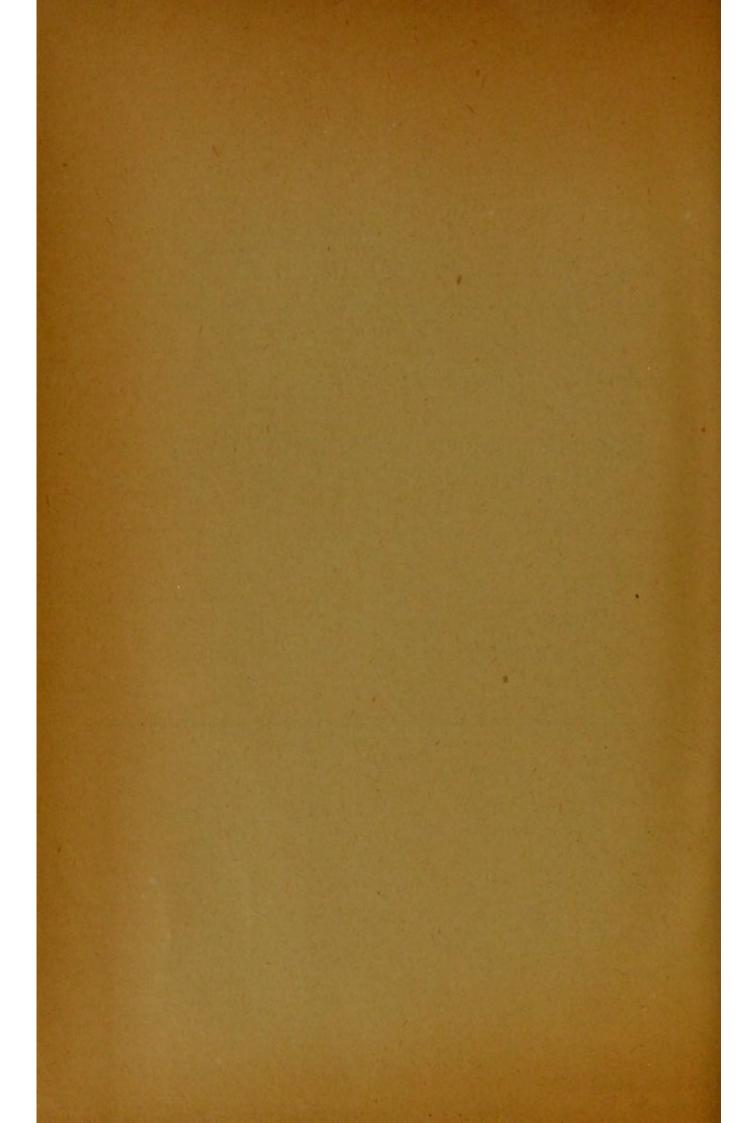
License and attribution

This material has been provided by This material has been provided by The Royal College of Surgeons of England. The original may be consulted at The Royal College of Surgeons of England. where the originals may be consulted. Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

Aus dem Imperial Cancer Research Fund London. (Direktor: Dr. E. F. Bashford.)


24


Ergebnisse eines Fütterungsversuches bei Ratten, die überimpfte Tumoren trugen.

Von

Dr. F. Medigreceanu-Bukarest, Volontärassistenten des Institutes.

Sonderabdruck aus der Berliner klin. Wochenschr., 1910, No. 17. (Verlag von August Hirschwald in Berlin.)

Sonderabdruck aus der Berliner klin. Wochenschr., 1910, No. 17.

at SURGE

Aus dem Imperial Cancer Research Fund London. (Direktor: Dr. E. F. Bashford.)

Ergebnisse eines Fütterungsversuches bei Ratten, die überimpfte Tumoren trugen.

Von

Dr. F. Medigreceanu-Bukarest, Volontärassistenten des Institutes.

In einer vorherigen Mitteilung wurde gezeigt, dass tumortragende Mäuse und Ratten, sowohl mit Krebs geimpfte als auch spontan an Krebs leidende Tiere hypertrophierte Leber gegenüber normalen Individuen derselben Arten haben. Der Magendarmkanal dagegen behält normale Werte.

Nach der Ursache dieser Lebervergrösserung weiter forschend war zunächst die Frage zu entscheiden, ob dieselbe nicht durch eine vermehrte Nahrungszufuhr bedingt ist. Die einfachste Vorstellung ist die, dass der wachsende Tumor dem Wirtstiere die Nahrung entzieht. Dadurch befindet sich der Organismus in einem Hungerzustande; logischerweise folgt daraus eine vermehrte Fresslust der Tiere, eine grössere Nahrungsaufnahme, um sowohl zu den Bedürfnissen des Organismus, wie auch denen des wachsenden Tumors auszureichen.

Somit wäre es erklärlich, warum ein so wichtiges Organ, wie die Leber, in den Tumortieren hypertrophiert: es hat mehr zu verarbeiten.

Um mich von der Richtigkeit dieser Annahme zu überzeugen, habe ich einen systematischen Fütterungsversuch mit Ratten angestellt.

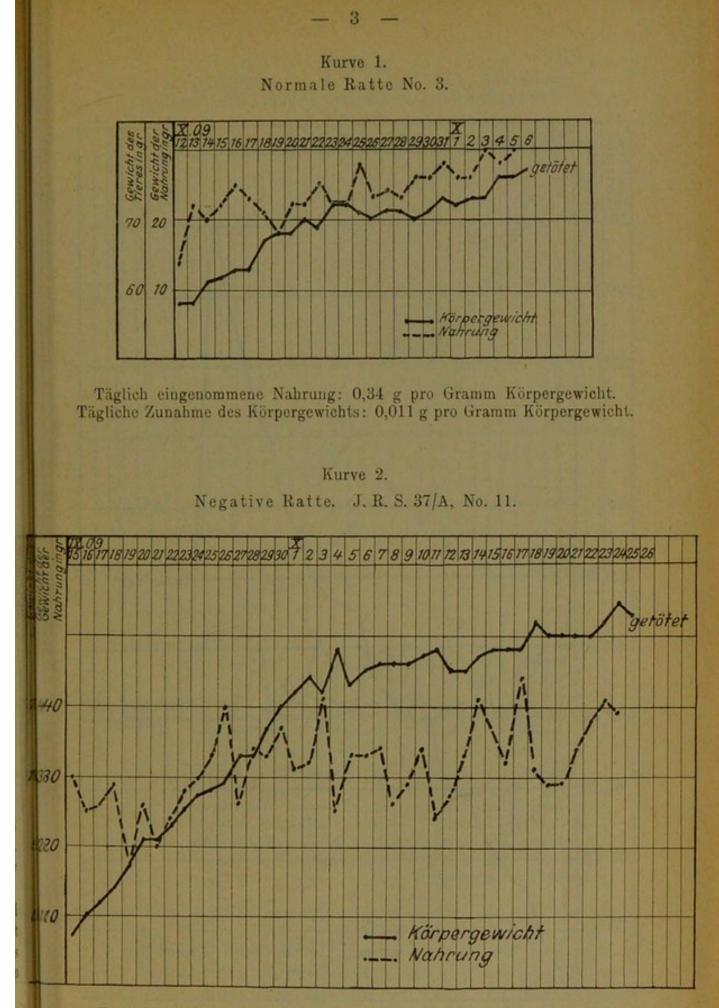
Es wurden im ganzen 40 kleine (60-80 g schwere) und grössere (120-150 g schwere), darunter 25 tumortragende Ratten¹), mehrere Wochen und Monate mit einer gleichmässigen Nahrungsmischung von 150 ccm Milch, 350 g Reis- oder Haferbrei²) (ab-

1) Die meisten Ratten waren mit einem raschverwachsenden Sarkom geimpft, welches verhältnismässig sehr wenig Nekrose zeigt.

2) Die Nahrungsmischungen enthielten nach wiederholten Bestimmungen in 100 g Trockensubstanz mit Reis 0,4225 g N, mit Hafer 0,499 g N. wechselnd den einen Tag Reis-, den anderen Haferbrei), und 60 g Brot 2 mal am Tage zu genau derselben Zeit gefüttert und die Einnahme durch Wiegen der Tiere vor und nach jedem Mahl bestimmt. Die Tiere verweilten nur so lange in den Käfigen mit Futter, bis sie vom Fressen satt waren. Dafür genügten 1/2 bis 3/4 Stunden.

Nach den erhaltenen Zahlen konstruierte ich Kurven für die täglich eingenommene Nahrung und für das Verhalten der Tiergewichte nach den Morgenwerten im nüchternen Zustande, wie sie in den nachstehenden Tabellen zu sehen sind. Bei den tumortragenden Tieren gibt es noch eine dritte Kurve, "des Körpergewichtes ohne Tumor". Diese letztere ist nach Zahlen konstruiert, die ich in einer einfachen Schätzungsweise vom Gewicht des herausgenommenen Tumors mittels sorgfältiger wöchentlicher Chartierungen der wachsenden Geschwulst erhielt.

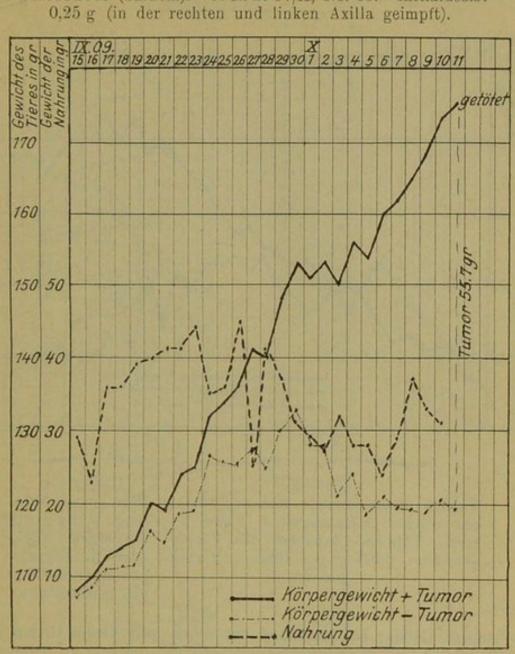
Die Resultate sind eindeutig. Einige Beispiele mögen sie illustrieren. Betrachtet man zunächst die Verhältnisse bei normalen oder negativen (in denen die geimpften Tumoren nicht gewachsen sind) Ratten (T. 1, 2), so sieht man die Nahrungs- und Körpergewichtskurven zusammen auf und ab steigen oder auf derselben Stufe bleiben. Beide Kurven laufen im wesentlichen parallel. Nun beobachte man die Nahrungskurve und diejenige des Körpergewichts – Tumor bei den geschwulsttragenden Tieren (T. 4,5,6,7). In den Anfangsstadien der Tumoren, besonders bei jüngeren Ratten, verfolgt man auch aufsteigende Nahrungs- und Tiergewichtskurven. Nach wenigen Tagen aber scheiden sie sich: die Nahrung bleibt auf derselben Stufe oder nimmt später eher ab, während das Gesamtgewicht (Tier mit Tumor) immer steigt. Trifft man einen regelmässig schnellwachsenden Tumor (T. 4), so entsteht ein dem rechtwinklichen Kreuze nahes Bild.


In mancher Beziehung analoge Verhältnisse traf ich wiederholt auch bei trächtigen Ratten. Im Falle aus der T. 3 z. B. behält die Nahrungskurve die ganze Zeit der Trächtigkeit dieselben Werte, obgleich in den letzten Tagen vor dem Wurfe der Fötus bis 67 g des Gesamtgewichtes ausmachte.

Es ist nun die Frage, ob die gewöhnlich gefütterten Tumortiere sich mit der Nahrungsaufnahme gleichfalls so verhalten.

Erstens liegt kein befriedigender Grund vor, zu glauben, dass die Tiere unter gewöhnlichen Bedingungen mehr gefressen hätten. Ich konnte sogar beobachten, dass bei der oben erwähnten Pflege die Ratten besser genährt waren, als gewöhnlich gefüttert.

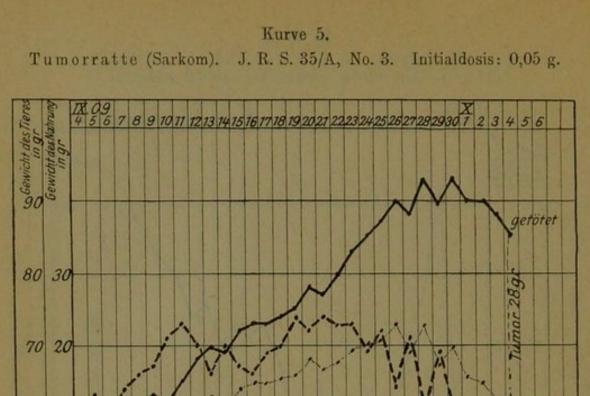
Die normalen Individuen nehmen rascher zu als sonst, und die Tumoren wuchsen im allgemeinen auch besser; ich erhielt maximale Ausbeuten: 45-56 g schwere Geschwülste von 60 bis 100 g schweren Ratten in 20-26 Tagen aus Initialdosen von 0,25 g (mit der Spritze geimpft).


Zweitens lege ich Wert auf den Befund, dass die Tumortiere in den späteren Stadien die Fresslust verloren haben, ohne dass irgend eine äussere Komplikation wie Ulceration und Infektion

Täglich eingenommene Nahrung: 0,29 g pro Gramm Körpergewicht. Tägliche Zunahme des Körpergewichts: 0,010 g pro Gramm Körpergewicht.

- 4 -

Kurve 4. Tumorratte (Sarkom). J. R. S. 37/A, No. 15. Initialdosis:


I. Periode.

rung: 0,30g pro Gramm Kör- Nahrung: 0,24 g pro pergewicht (ohne Tumor). Tägliche Zunahme des Kör- - Tumor. Tägliche Abpergewichts: 0,014 g pro nahme des Körpergew .: Gramm Körpergewicht.

II. Periode. Täglich eingenommene Nah- Täglich eingenommene Gramm Körpergewicht 0,008 g pro Gramm Körpergew. - Tumor.

dafür verantwortlich gemacht werden konnte. Es war also Raum im Magen für mehr Futter, die Tiere nahmen es aber nicht ein.

Sollte man auch finden, dass in einzelnen Fällen Tumortiere mehr Nährmaterial als normale Kontrollen einnehmen, beweisen meine Fälle doch, dass ein Plus an Futter für das Zustandekommen der Leberhypertrophie nicht nötig ist. Alle tumortragenden Ratten dieses Fütterungsversuches besassen bedeutend

Körpergewicht + Tumon Körpergewicht - Turnor

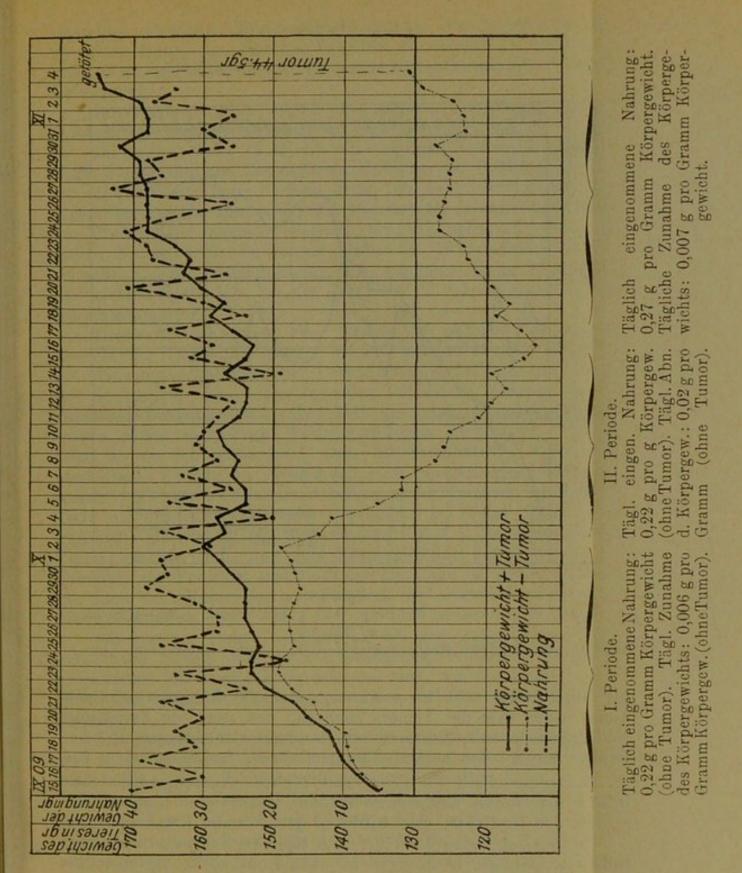
Nahrung

I. Periode.

60 10

Täglich eingenommene Nahrung: 0,31g Tägl. eingen. Nahpro Gramm Körpergewicht (ohne Tu- rung: 0,19g pro g mor). Tägliche Zunahme des Körper- Körpergew. Tägl. gewichts: 0,015 g pro Gramm Körper- Abn. d. Körpergewicht.

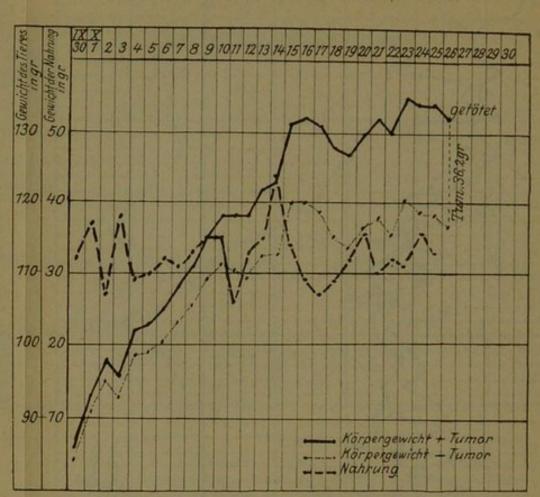
II. Periode. gewichts: 0,029 g pro g Körpergew.


vergrösserte Leber; bei manchen derselben war dieses Organ fast doppelt so schwer als normal.

Eine vermehrte Nahrungseinnahme¹) bildet also keine endgültige Erklärung der Lebervergrösserung. Dieselbe ist nach anderen Richtungen zu suchen. Da Toxine im Sinne der gewöhnlichen infektiösen Krankheiten bei uninfizierten tumortragenden Individuen nicht bewiesen sind, so denke ich vor allem an Stoffwechselstörungen sensu strictiori als Ursache dieser Leberhypertrophie - sei es, dass nur quantitative Verschiebungen der normalen Produkte durch die Anwesenheit der Tumoren entstehen, sei es, dass auch Veränderungen qualitativer Art vorliegen.

In ähnlicher Weise wäre ferner auch die Hypertrophie der Nieren bei den sarkomtragenden Ratten zu erklären.

Im folgenden will ich einige weitere Ergebnisse des ange-


¹⁾ Unter Nahrungseinnahme verstehe ich nicht das aus dem Darmkanal resorbierte Futter, sondern die im Magendarmkanal eingenommene Nahrung.

stellten Fütterungsversuches andeuten, die mir nicht ohne Interesse zur Frage nach der Beziehung der Ernährung zum Tumorwachstum zu sein scheinen.

Wie erwähnt, habe ich in möglichst genauer Weise geschätzt, was aus dem Gesamtgewicht, Körper – Tumor, dem Tumor allein zukommt, und welche Schwankungen das Körpergewicht des Tieres während des Tumorwachstums durchmacht. Es hat sich folgendes herausstellen lassen. Zu Anfang, in einer ersten Periode, als

7 -

Tumorratte (Carcinom). F. R. C. 37/A No. 5.

Kurve 7.

I. Periode.

Täglich eingenommene Nahrung: 0,29 g pro Gramm Körpergewicht ohne Tumor.

Tägliche Zunahme des Körpergewichts: 0,011 g pro Gramm ohne Tumor.

die Geschwülste noch klein waren, nahm das Körpergewicht des Tieres neben dem des Tumors auch zu, und zwar im Verhältnis zum eingenommenen Nährmaterial, durchaus nicht langsamer, oder weniger als bei den normalen Kontrolltieren. So finden wir z. B.:

Im ersten Falle (T. 4) für eine tägliche Nahrungsration von 0,30 g pro Gramm Körgergewicht (ohne Tumor) eine tägliche Zunahme des Gewichts von 0,014 g pro Gramm Körpergewicht.

Im zweiten Falle (T. 5) für eine tägliche Nahrungsration von 0,31 g pro Gramm Körpergewicht (ohne Tumor) eine tägliche Zunahme des Gewichts von 0,015 g pro Gramm Körpergewicht.

Im dritten Falle (T. 6) für eine tägliche Nahrungsration von 0,22 g pro Gramm Körpergewicht (ohne Tumor) eine tägliche Zunahme des Gewichts von 0,006 g pro Gramm Körpergewicht.

Im vierten Falle (T. 7) für eine tägliche Nahrungsration von 0,29 g pro Gramm Körpergewicht (ohne Tumor) eine tägliche Zunahme des Gewichts von 0,011 g pro Gramm Körpergewicht. Es sei bemerkt, dass solche Zahlen für normale Ratten desselben Gewichts Minimumwerte waren; sie frassen im allgemeinen mehr, um dieselbe Zunahme zu zeigen. So sehen wir unter den angeführten Beispielen von normalen Ratten bei derselben Berechnung:

Im ersten Falle (T. 1) für eine tägliche Nahrungsration von 0,34 g eine tägliche Zunahme an Gewicht von 0,011 g.

Im zweiten Falle (T. 2) für eine tägliche Nahrungsration von 0.29 g eine tägliche Zunahme an Gewicht von 0.010 g.

Die Dauer dieser Periode fand ich sehr verschieden von einem Individuum zum anderen. Die Grösse, welche der Tumor vor Eintritt der nächsten Periode erreicht, wechselt auch mit jedem Falle; z. B. im ersten Falle (T. 4) erreichte die Geschwulst $1/_6$ des Rattengewichts, im nächsten Falle (T. 5) bei der kleinen Ratte $1/_4$, bei der grösseren (T. 6) dagegen $1/_{14}$ des Körpergewichts.

Dieser Periode folgte eine zweite, in welcher das Körpergewicht der Tumortiere sank. In der zweiten Periode stimmten die Nahrungsverhältnisse bei Tumortieren nicht mehr mit denen der Kontrollen. Die tumortragenden Individuen nahmen ab bei derselben Nahrungsration. Ein Teil des eingenommenen Futters wurde sicher nicht vom Rattenorganismus verbraucht. Gleichzeitig konnte ich beobachten, dass die Fresslust der Tiere während dieser Periode in verschieden stark ausgeprägter Weise abnahm. Mit raschwachsenden progressiven Tumoren gehen die Tiere in dieser Periode bald zugrunde. In einem Falle (T. 6) geriet die Geschwulst im Wachstumsstillstand. Die Fresslust des Tieres erhöhte sich, und sein Körpergewicht nahm wieder zu. Erhöhung der Fresslust und als Folge Zunahme an Gewicht konnte ich auch nach Resorption von Tumoren des untersuchten Stammes öfters feststellen.

Ob nun der Tumor sich direkt aus den eingeführten Nährsubstanzen bildet, oder ob die Ernährungsverhältnisse zwischen Organismus und Tumor kompliziertere sind, wäre es beim jetzigen Stand des bekannten Tatsachenmaterials verfrüht, entscheidend zu diskutieren.

Die Unterscheidung zweier Perioden betreffs der Schwankungen des Körpergewichts bei Ratten mit progressiven Geschwülsten dürfte mit Cramer's Beobachtungen an demselben Material übereinstimmen. In seinen Fällen hatten die tumortragenden Ratten in einer Phase, als die Geschwülste noch relativ klein waren, sogar mehr als die Kontrolltiere desselben Wurfs an Körpergewicht zugenommen. Dagegen zeigten die Tiere, bei denen die Tumoren 1/4—1/3 des Körpergewichts erreicht hatten, eine Abnahme.¹)

Ueber die Beziehungen zwischen Ernährung und Tumorwachstum hat Moreschi²) im Ehrlich'schen Institut Untersuchungen mit Mäusen durchgeführt. Er unterernährte einen

¹⁾ Vgl. Third scient. Report, Imperial Cancer Research Fund, 1908, p. 428.

²⁾ Zeitschr. f. Immunitätsforsch., Originale Bd. II, No. 6.

Teil der Tumortiere, liess alle sterben und verglich die Endresultate. Dabei fand er, dass die unterernährten stets schlechter entwickelte Tumoren zeigten als die gewöhnlich gefütterten Tumormäuse. Alle Tiere hatten zur Todeszeit an Körpergewicht abgenommen. Merkwürdigerweise lebten die nicht allzu unterernährten Tumortiere länger als die mit beliebigen Mengen Nährmaterial gefütterten Tumormäuse.

Auch hier finde ich eine angenehme Gelegenheit, dem Executive Committee meinen aufrichtigsten Dank zu zeigen. Dem Herrn Dr. E. F. Bashford, Direktor des Instituts, und seinen Assistenten, Herren Dr. Murray, Dr. Haaland, Dr. Russel und Dr. Cramer, bin ich ebenfalls sehr verpflichtet für ihr geschätztes Entgegenkommen.

Schlussfolgerung.

Ein systematisch mit tumortragenden Ratten durchgeführter Fütterungsversuch ergab:

1. keine vermehrte Nahrungseinnahme seitens der Tumortiere im Vergleich zu normalen Kontrollratten;

2. dass das Körpergewicht der Tumortiere eine Zeitlang in einer ersten Periode neben dem Gewicht des Tumors wie bei normalen Kontrollratten zunahm, um dann in einer zweiten Periode zu sinken:

3. eine Abnahme der Fresslust der tumortragenden Ratten während der zweiten Periode.

Die Hypertrophie der Leber bei den Tumortieren konnte nicht durch eine vermehrte Nahrungseinnahme erklärt werden.