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DeFOREST'S FORMULA FOR “AN UNSYMMETRICAL
PROBABILITY CURVE”

SHINKISHT HATAT

The Wistar Instilute of Analomy

In presenting a long-forgotten investigation by E. L. DeFor-
est ('82-'83) on ‘‘an unsymmetrical probability curve,” the writer
wishes to call attention to the fact that the first systematic analy-
sis of the subject was attempted by DeForest and as a result he
obtained a formula which is identiecal with that for Professor
Pearson’s ('95) generalized probability curve. DeForest suggests
further that by retaining the higher derivatives a more general
formula, of which the formula already found will be a particular
case, may be obtained from his original differential equation.
Thus DeForest’s investigation is not only interesting from an
historical standpoint, but still more from the fact that the same
formula, though in different terms, has been derived from entirely
different methods of analysis by Professor Pearson. This fact
furnishes good evidence as to the validity of Professor Pearson’s
theoretical assumption.

As the investigation was published a number of vears ago, the
original paper by DeForest is difficult to obtain, and so, for the
reader who is anxious to see the method of mathematieal analysis
adopted by him, I venture to present in the following pages some
of the important points which directly concern the derivation of
his final formula. T shall also add a mathematical process of
transformation of Professor Pearson’s formula to that of DeForest.
For numerous other important and interesting points, the reader
must refer to the original memoirs.

DeForest employed this reasoning:
Let the following be a given polynomial
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Its expansion to the « power may be written

o o ES N B PR R TR e
From the relations
(g Z=™ + ... 42, 2" =0, 24 ... + L Zn=
we have
klog o Z7™ o o A, E87) = log ey, 27 o F L

which holds good for all values of Z. By differentiation with
respect to Z and then clearing of fractions it becomes
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Forming the coefficient of Z~ in the polynomial product, and
remembering also that the rank of the middle [ of this group
reckoned from [, is ¢, we get, by equating the two to each other
by the principle of undetermined coefficients,

Kl=mMh J"u'!lr' o e 'F-Jre}'l.wlrt r.'r.:' — 'ur'-"-'"‘.] }"'J-m'r':'.-.r.'t+ ..... + fi—f"]}'nmi’-"_m.

In the second member, let that part which does not have the eo-
efficient ¢ be transferred to the first member, then
!
_m?\—ml!liﬂ-ar.-_ *oe s om +'r"':~"m!4'—r:.:= l:-}l"—-mlli m+ CRCR +hmll'-—m]l- ‘1'}
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Clearly then any coeflicient [; in the expansion, and the 2m co-
efficients nearest to it, will be connected by the relation
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This is the fundamental prineiple of DeForest’s analysis in his
numerous interesting studies on the theory of probability. Let
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'IH.I, l;.y, ete.,, in (5) be expressed in terms of [; and their
differences. For this DeForest refers to a convenient formula
given by Lacroix (Cal. diff. et intég., Paris, 1819) as follows:
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For brevity let us write also

bo=Xo+ (MFr)+ et+rad+. ... .+ (lm+?~—m‘

b= L (M—=A 42 Me—dol 4+ .... +m (A=A )

o= PE+r)+22(Mthe) - .. MmO — Ay
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Denoting the numerator and denominator in the first member of
(5) by N and D respectively, we get

N = blf'i_ bg.ﬁ1+ibxﬁ2 - .:- (b —liJn-]'_"l.*; + “.F bﬂ.."l.q

1 1 =
= rﬂiﬁ.— 55-1"|"4sz35‘|‘{| 1“3?_ oby +4b3) Ay
okl X

= -1 (ba—8be+ 195, — 12ba) A7+ . .. ... ...

-
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D= bﬂf;— b;ﬂl+_igﬁzig —'r-:r“ﬂ.‘l_ b|]ﬂa+41r{b+—b2J Ay
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When « becomes infinite, and the successive values of [ are re-
garded as consecutive ordinates to a limiting curve, we have

li=y Ay =dy Ag=dy Az =d¥y, ete.,
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and at the same time when the ordinates are set close together,
the abscissa x corresponding to any y isx = idx. Thus (8) be-
comes the differential equation of the curve, and by, b, bs, ete.,
are constants, and in fact are the successive moments of the area
bounded by the curve and the axis of absecissas, these moments
being taken about a vertical axis. Since any given polynomial
may be reduced to one in which =(\) = 1, by dividing it through-
out by the sum of its coeflicients, we therefore consider b, = 1.
If a constant number is added to or subtracted from all the ex-
ponents of z in (1), it will not alter the value of [ in (2). Hence
by making Z° the absecissa of the center of gravity, b, becomes
zero. Then any constant b, in (7) will denote the sum of the
products formed by multiplying each X into the nth power of its
abscissa reckoned from the new origin, if the common interval
Ax between the abseissa is regarded as unity. With the above
transformations, we may now write (8) in the following forms:

bady — Sbsd®y+3 (by— bo)dPy —ete. . —x

- (9
i+ dhadd2y — Lbyd®y + ete. (x=+1)dx

In the denominator of the first member let d%y, d®y, ete., be
neglected in comparison with ¥ and in the numerator let d®y, diy,
ete., be neglected in comparison with dy. Sinee « is infinitely
large, we may write « instead of « +1.

Therefore
dy—3(bs+by)d'y —=x
Uy i whodz

Invert both members of this equation, subtract 1(b;=b.) from
each and invert them both back again. This gives

_ _f..!'y— Libs+ bo) iy _ = (10)
y—3(bs+ do)dy + 1 (bs + o)y wbadz+ 3(bs = bz

Thus far we have carried on our treatment on the assumption
that the origin of Z® in the expansion is located at the center of
gravity for the coefficient ! in (2), which became the ordinate y
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to the limiting curve. Now in (10) let the origin be transferred
from the center of gravity to another convenient point by put-
ting
Ly
I_-;.b,d:r 1)

b
in place of x. This gives

dy— §(bs+bo)dy  dxbadr—2(by+ bo)x

= = - (12)
y— %(ba= ba) ey (bs = ba)2x

In the firet member, the numerator is the differential of the denom-
inator. Without any further change of origin, we can write
approximately as follows:

y =y + 3 + bdy, z =@+ 3(bs + bo)de

Neglecting dfy in the numerator and d2y in the denominator, we
. get
dy  4xbedz — (bs + bo)%dz — 2(bs + bo)z
y (b= b)¥dx + 3(bs + bo)dz]

Since the denominator y in the first member is supposed to be
infinitely greater than the numerator dy, the denominator in the
second member must be infinitely greater than its numerator,
so that in the demominator we may neglect dr in comparison
with #. Further let the constants be expressed by means of the
fwo new constants

o 2bu(de)?
bx{dﬂi'}a

Sinee « 1s supposed to be an infinity of the second order, b rep-
resents a finite area. The equation will now stand

: b = ibs(dx) (13)

dy
¥
and integration gives

= dx{ﬂﬂh — 1) — adz, (14)
x

log ¥ = (a*b — Vlogz — ax + log € ’
all—1 —gz (15)
F

.y =0Crx

It now remains to determine the constant ¢ in (15). Since
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=(A) =1 in the given polynomial and Z(l) = 1 in its expansion, we
shall have Z(y) = 1 in the formula (15). The y which DeForest
uses, represents an elementary area, so that it should be under-
stood to mean ydr in modern notation. Thus equation (18),
omitting dx, gives the equation of the eurve. Thus we have in
DeForest’s notation:

1

dr

C I
J ydr=1.". [ (azx) e **dlaz) = 1,

a “-hrlr_i' Jo
which gives at onee the value of ¢ and we have

adx (ap) @®—1p—a= (16)

r —
Y= Tlan)

the complete equation of the curve sought.,
If we now transfer the origin of codrdinates to the center of

: . Qb dx | )
gravity by putting x + 5 (11) or x + ab in place of x
¥ -
in (16), we have
i 'ath\** r \oh—1
= ﬁ(” J) (1 +- n) gt (17)
abT'(a*h) \ e . ab

Applyving a known formula for I'(n)

et L G 1 1
['(n) = il B e L + ﬂlﬂ.)
(- r) \ ( 12n 2881

L

(17) 18 reduced to

ilx o e —azx
= ( 14 e (18)
KV 2zh ith
1
where x=1-4 : + + ete.

12a%b  288(a%h)*
Returning to the meaning of the constants, @ in (13) may be writ-
ten

5

e J{ fﬁz“f.‘i"]rr) iy Hf}gh.li_i'.l") l:_lﬂ'j

B (dr)d) \xbyldx)?

This shows that the part within the parenthesis may be regarded
as the square of the quadratic radius divided by the cube of the
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cubic radius, either in the first power of the polynomials or in
its expansion to the « power,

The value of @ and b may thus be eipressed by means of the
coefficients A in the given polynomial, or by means of the ordi-
nates y to the limiting curve. When the A's and y’s are all pos-
itive xb.(dx)? is the square of the quadratic mean error "¢ and
kbs(dx)® 1s the cube of what DeForest ecalls the eubie mean in-
equality “¢.” :

The constants in (13) will then be

a =2e |3 h=¢

It will be seen then that the constants ¢ and {* are respectively
the second and third moments of Pearson and therefore can be
advantageously determined by his method. The above sketch
should enable the reader to get an idea of the method of DelForest's
" analysis, and this was my object in presenting it. The proper-
ties of the formula as well as the method of transformation of
the present formula to the normal probability form are adequately
treated in the original paper of DeForest. However, regarding
these points, the reader will get still better information from
Pearson's diseussion on his eurve of Type I111.

Although I have not given the process of transformation of
the formula to the normal form, DeForest’s statement in this
connection will be worth noting. He states that he would have
obtained the normal form directly from the equation (9) if he
had neglected d*y. If instead of retaining only dy and d* he
should also retain d*y, the resulting equation, provided such is
integrable, would doubtless give a limiting curve of a still more
general form, of which the curve derived from (18) is but a par-
ticular ease. Thus he thought that the probability curve and
his curve (18) are only the first and second approximations to
the actual form of an expansion to a high power.

From the foregoing discussion the reader will notice a close
similarity between DeForest’s formula, and Pearson’s formula
for the curve of Type III. For convenience, I shall enumerate
some of the similar properties in these two curves,
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(1) Both are the skew binomial eurves.

(2)  The eurve is limited on one side the mean.

(3) The analytical eonstants are determined from the first
three moments.

(4) Both ean be reduced to the normal form.

()  Eaeh 1s a particular caze of a more general formula.

It will be demonstrated in the following pages that although
these two formulas show no more apparent similarity yet the
formulas are identical:

L
- e : ; oy M,
From the differential equation - o -
Y dx u
g pgt — &
2u,

Professor Pearson obtained his formula for the eurve of Type TIT
which is usually written in the following form:

" }p += 1 | T M
= { ] _I & AN ('I _|_ ) g I [:2['}
i1 F’F;Il[_]r.il-l—lﬁ-' y s
The following relations are also given
1 2, 4 m -
ju_=‘”+ P = le';',|'.== I'—l:u.-—-‘”.
= 2 M y

Sinee the distance of the centroid vertieal from the axis of y or
= F: . 3 - -
maximum ordinate is 3 ﬁ by changing the value of x, that is,

L.
putting

u!|
.r'=.r-|--.1;-'Lk

(200 15 reduced into the following

s 8T *
§ b \ S e
a e : & L € 2 { x+~:‘:l :.
W= o ] T My 2u,
i l’"ll‘ll'jl'.'l“—lJ" 2u _ ™
By 2y
VI - } ' 4’.1' 1
Pl {p + 1 e SRRl _ =u-
_a f . _,_.r,(l"f'z',- ‘! ),u: IE MJI
I(p41) (1 - ) et

4 u /
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Ee .lxﬂwmaw 1 g=(pH1) hay ) e 1 - :ff‘r
- el | | ( P )T’ 2u. + u,
][.'P""I} S
: ' - e, 2,
- lnE Rl R P
al 27”_;2 F{F""I] Jr_pi;' 2, piy
Nip=EllE

and finally, as the result of transferring the origin to the centroid
vertical, we obtain

V9 ~(p+1) P/ : 5 ol Do
y — P/ m._ _-"TE-_{?:_'_ l}c P {p+lj (l+ ..'11 ) .“: 1 o

2y T'(p+1) (21)
If we now apply to the above (21) DeForest’s notation, that is,

20 +

pe=20 and 2ps + pz =«

we obtain at once

yﬂyl(]_-}-._) ﬁ"ﬂJﬂ'

ah)
where
a lfi’?r{p—F— 1) e ~let1} (p41)7,

V2 e I'(p+41)
It only remains to see whether or not ¥, in Pearson’s formula is
identical with DeForest's (.

{1

We have
o= e 1 2x(ah) e “Pab®"!
1 — - - —_—— -
V' 2xb I'(ah)
—ret b e Pl e
1'(a2h)

Using the approximation formula for I'ln) which DeForest uses
(18) we have

— adf =l
ae” "at’
= —

(a:bjﬂ-'hvr (;Z)h
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oK aV a2 ¥

kV 2p a2l KV 2xh

P T R T L
12ah ~ 288(a%h)?

where « = 1
Since o 1s unity in Delorest’s formula, thus Pearson’s formula
tor the curve of Type III immediately reduces to DeForest’s.
That is

1 f 2 hath -1
Yy = - 14 —{E,
: il 2q4h { ( h} :

Thus DelForest’s formula presents several interesting points
which I herewith enumerate as the conclusion of the present
report.

(1) DeForest’s investigation gives an additional proof for
the theoretical basis of Pearson’s generalized probability curve.

(2}  DeForest’s investigation is interesting from an historical
standpoint since he actually obtained one of Pearson’s curves
many vears ago, and his work suggests a more generalized curve.

(3) Since DeForest’s formula (see (18), p. 286) retains an ele-
mentary character, the curve fitting can be accomplished with
comparatively small labor, and it can advantageously be used in
place of the formula of Pearson for the curve of Type I11.
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