De quelques constantes physiques de l'urine : thèse présentée et publiquement soutenue à la Faculté de médecine de Montpellier le 19 juillet 1902 / par Henri Malosse.

Contributors

Malosse, Henri. Royal College of Surgeons of England

Publication/Creation

Montpellier: Impr. centrale du Midi, 1902.

Persistent URL

https://wellcomecollection.org/works/zfhnw54j

Provider

Royal College of Surgeons

License and attribution

This material has been provided by This material has been provided by The Royal College of Surgeons of England. The original may be consulted at The Royal College of Surgeons of England. where the originals may be consulted. The copyright of this item has not been evaluated. Please refer to the original publisher/creator of this item for more information. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use.

See rightsstatements.org for more information.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org DE QUELQUES

CONSTANTES PHYSIQUES DE L'URINE

PERSONNEL DE LA FACULTE

MM. MAIRET (*)..... Doyen

FOR	GUE	Assesseur
)	PROFESSEURS	3
		MM. BERTIN-SANS(*)
Clinique chirurgicale		TEDENAT.
Clinique obstétricale et g	VALLOIS. (ch. du cou	GRYNFELTT.
Thérapeutique et matière Clinique médicale	médicale	HAMELIN (*).
Clinique des maladies mei	ntales et nerveuses	MAIRET (*).
Physique médicale	alla médiant	IMBERT.
Botanique et histoire natur	elle medicale	GRANEL.
Clinique chirurgicale		FORGUE.
Clinique ophtalmologique. Chimie médicale et Pharm		TRUC.
Physiologia	lacte	VILLE.
Physiologie		HEDON VIALLETON.
Pathologie interne		DUCAMP.
Anatomie		GILIS.
Opérations et appareils		ESTOR.
Microbiologie	AUDIO DUTY	RODET.
Médecine légale et toxico	logie	SARDA.
Clinique des maladies des	enfants	BAUMEL.
Anatomie pathologique	AND THE RESERVE	BOSC.
	HONORAIRE : M. VIAI	
	RAIRES: MM. JAUME	
CHARGES D	E COURS COMPL	ÉMENTAIRES
Accouchements	MM	. PUECH, agrégé.
Clinique ann. des mal. syph		BROUSSE, agrégé.
Clinique annexe des maladi		VIRES, agrégé.
Pathologie externe		DE ROUVILLE, agrégé.
Pathologie générale		RAYMOND, agrégé.
	ÉGÉS EN EXER	
MM. BROUSSE	MM, VALLOIS	MM. L. IMBERT
RAUZIER	MOURET	
MOITESSIER	GALAVIELL	E VEDEL
DB ROUVILLE	RAYMOND	JEANBRAU
PUECH	VIRES	POUJOL
	M. H. GOT, secrétain	re.
	/ MM VII	LE précident
EXAMINATEUR	S IMP	LE, président. ERT.
	,	TESSIER.
DE LA THÈSE :		TIN-SANS.
	(DEN	THE DATE OF

La Faculté de médecine de Montpellier déclare que les opinions émises dans les Dissertations qui lui sont présentées doivent être considérées comme propres à leur auteur; qu'elle n'entend leur donner ni approbation ni improbation.

CONSTANTES PHYSIQUES

DE L'URINE

THÈSE

Présentée et publiquement soutenue à la Faculté de médecine de Montpellier
LE 19 JUILLET 1902

PAR

Henri MALOSSE

Né à Montpellier (Hérault)

PHARMACIEN DE ^{1 re} CLASSE CHEF DES TRAVAUX A L'ÉCOLE DE PLEIN EXERGICE DE MÉDECINE ET DE PHARMACIE D'ALGER

POUR OBTENIR LE GRADE DE DOCTEUR EN MÉDECINE

- 200000

MONTPELLIER
IMPRIMERIE CENTRALE DU MIDI
(HAMELIN FRÈRES)

1902

PERSONNEL DE LA FACULTE

CONSTANTES PHYSIOUES

DE LURINE

THESE

Presents along the second of a present to the party of a present to the second of the

Heart MALOSSE

THE RESIDENCE OF THE PERSON OF

RESIDENCE OF REPORT OF REAL PROPERTY AND ADDRESS.

DELTARATION TO SECURE

1902

A MA MÈRE

A MON PÈRE

Le docteur Théodore MALOSSE

AGRÉGÉ DES FACULTÉS DE MÉDECINE ET DES ÉCOLES SUPÉRIEURES DE PHARMACIE PROFESSEUR A L'ÉCOLE DE MÉDECINE ET DE PHARMACIE D'ALGER.

A MA FIANCÉE

A MON PRÉSIDENT DE THÈSE

MONSIEUR LE DOCTEUR JULES VILLE

PROFESSEUR DE CHIMIE
A LA FACULTÉ DE MÉDECINE DE MONTPELLIER

A MES MAITRES

DE LA FACULTE DE MÉDECINE ET DE L'ÉCOLE SUPÉRIEURE

DE PHARMACIE DE MONTPELLIER

ET DE L'ÉCOLE DE PLÉIN EXERCICE DE MÉDECINE

ET DE PHARMACIE D'ALGER.

MEIS ET AMICIS

AVANT-PROPOS

Sous cette dénomination, je me propose de passer en revue dans autant de chapitres distincts :

contrains on codiange des plus complexes, dont la composi-

La densité,

L'extrait urinaire,

Le coefficient de la dilatation,

L'indice de réfraction,

en m'efforçant de donner à chacune de ces questions un développement proportionné à son importance pratique.

En passant, je relaterai dans un cinquième chapitre, quoique encore fort incomplètes, quelques déterminations sur la cohésion de l'urine et sur les qualités des gouttes que ce liquide fournit.

Enfin, dans un sixième chapitre, je formulerai le résumé et les conclusions de ce travail. Celui-ci n'est, du reste, que le commencement et l'état actuel d'un travail plus étendu en cours d'exécution et que je complèterai ultérieurement.

Quand il s'agit d'un corps chimique bien spécifié, rien de plus simple que la définition des constantes physiques : on les rapporte à la substance pure; on les détermine avec toute l'exactitude possible. Les nombres qui les représentent sont des caractéristiques que l'on peut ensuite utiliser pour individualiser les corps, s'assurer de leur pureté, apprécier leur degré d'impureté, procéder même quelquefois à de véritables dosages, etc.

Mais l'urine est loin d'être un corps chimique, c'est au contraire un mélange des plus complexes, dont la composition, même à l'état normal, n'est point immuable, sinon, en général dans la nature, du moins dans la proportion des éléments constituants. Or, toute variation dans la composition qualitative ou quantitative de l'urine doit avoir pour conséquence une variation concomitante des constantes physiques du liquide. Aussi, pour établir ces constantes avec un certain degré d'utilité, importe-t-il de partir d'un état moyen de l'urine pris pour état normal. On compare alors dans chaque cas particulier les nombres qui représentent les résultats des mesures que l'on a effectuées aux nombres qui caractérisent l'état normal. Des différences constatées, on cherche ensuite à remonter aux causes de ces différences, en se gardant prudemment contre toute extrapolation exagérée.

DE QUELQUES

CONSTANTES PHYSIQUES

DE L'URINE

CHAPITRE I

LA DENSITÉ

Généralités. — Division de la question

Parmi les constantes physiques de l'urine, la densité est celle dont l'application pratique est la plus immédiate.

On l'utilise couramment en effet pour l'évaluation approximative de l'extrait urinaire et on conçoit sans peine qu'on pourrait en tirer parti pour le dosage approximatif de tout principe solide que l'urine contiendrait, anormalement, dissous en proportion suffisante.

C'est au reste, ce qui a été tenté avec plus ou moins de succès pour le glucose et pour l'albumine.

Le terme densité devrait toujours correspondre à une idée parfaitement nette et précise. Or, il suffit de consulter les traités courants d'urologie, pour se convaincre qu'il en est rarement ainsi.

La densité étant fonction de la température, il convient de la déterminer à une température conventionnelle ou de ramener à cette température, par une correction, les déterminations faites à d'autres températures. C'est une condition nécessaire pour que les résultats puissent être rigoureusement comparables. Or, si les traités d'urologie s'accordent à dire qu'il faut ramener à 15°, par exemple, les indications de tout uromètre qui a été gradué pour cette température, ils sont généralement muets sur la nécessité qu'il y a pareillement de ramener à la température conventionnelle toute densité prise à une température différente de celle-ci, quel que soit d'ailleurs le procédé que l'on ait employé. Pourtant, la correction à faire subir à une densité prise à to par la méthode du flacon, par exemple, pour la remener à 15°, est supérieure à la correction à faire subir, pour les mêmes limites de température, à l'indication fournie par un uromètre. Car le terme correctif comprend, dans le premier cas, le coefficient de dilatation absolue de l'urine, tandis que, dans le second cas, il ne comprend que le coefficient apparent de ce liquide.

Des données numériques absolument certaines manquent du reste, même quand il ne s'agit que de faire subir aux indications d'un uromètre les corrections relatives à la température. Pour ces corrections, en effet, on renvoie généralement à deux tables dressées par Bouchardat, l'une pour les urines non sucrées, l'autre pour les urines sucrées, ou bien on indique, d'après certaines observations de Siemon, d'ajouter à l'indication de l'uromètre le terme correctif 0,33 \(\theta\), dans lequel \(\theta\) est la différence, positive ou négative, entre la température de l'urine au moment de l'observation et la température conventionnelle. Or les tables de Bouchardat sont insuffisantes et le coefficient de Siemon est généralement inexact.

Les procédés d'ailleurs les plus préconisés pour prendre la densité d'une urine sont celui du flacon, celui de la balance aréothermique et celui de l'uromètre.

Dans l'espèce, je me propose :

- 1° De rappeler le sens précis qu'il convient, avant tout, d'attacher au mot densité;
- 2° D'étudier expérimentalement les variations de la densité en fonction de la température et d'établir ainsi les données numériques qui permettent de ramener aussi exactement que possible à une température conventionnelle toute détermination faite à une température quelconque;
- 3° De critiquer le procédé urométrique ordinaire et d'appeler l'attention sur celui que Lohnstein a décrit et préconisé dans l'Allgemeine medizinische Centralzeitung, 1894, n° 31;
- 4° D'exposer les déductions que l'on peut tirer de la densité relativement à l'urine normale, à l'urine diabétique et aux urines albumineuses.

1º DÉFINITIONS

La densité de l'urine, à la température t, est le rapport du poids d'un volume donné d'urine à t° au poids d'un égal volume d'eau distillée à 4°.

La densité est donc, si l'on veut, le poids en grammes du centimètre cube d'urine, ou, d'une manière plus générale, le poids de l'unité de volume de l'urine à t°.

Je représente cette constante par le symbole d₄.
Soient donc, dans les conditions d'une détermination,

- v le volume de l'urine et le volume de l'eau,
- p le poids apparent de l'urine,
- p' l'eau,
- x la densité d'4 de l'orine,

e la densité de l'eau,

de l'air par rapport à l'eau (en moyenne 0,0012)
 d des poids échantillonnés (8,4 pour le laiton),
 l'égalité entre les poids apparents dans chacune des pesées donne :

$$p\left(1 - \frac{a}{d}\right) = vx - va$$

$$p\left(1 - \frac{a}{d}\right) = ve - va$$

d'où :

$$x = \frac{p}{p'} e - \frac{p - p'}{p'} a$$

ou en désignant par · la différence 1 — e entre la densité de l'eau à 4° de la densité de l'eau à t°.

$$x = \frac{p}{p'} (1 - \epsilon) - \frac{p - p'}{p'} a = \frac{p}{p'} - \frac{p}{p'} \epsilon - \frac{p - p'}{p'} a$$

Le premier terme $\frac{p}{p'}$ du deuxième membre de la dernière équation représente la densité brute non corrigée;

Le deuxième $\frac{p}{p'}$ et le troisième $\frac{p-p'}{p'}$ a, sont de simples termes correctifs.

Pour x = e, d'où $\frac{p}{p'} = 1$ et p - p' = 0, le premier terme correctif se réduit à ε et le deuxième à zéro.

Pour des valeurs croissantes de x à partir de cette limite inférieure, celles des termes correctifs croissent simultanément, tout en restant, celle du premier peu différente de s, celle du deuxième faible sinon négligeable.

Dans la table suivante j'ai calculé un assez grand nombre de valeurs du binôme $\left(\frac{p}{p'}\right) = + \frac{p-p'}{p'}a$ pour permettre de passer de la densité brute $\frac{p}{p'}$ à la densité corrigée x au moyen d'une simple soustraction.

$\frac{p}{p'} =$	1	1.01	1.02	1.03	1.04	1.05	1.06
1	omne.	nl 2002	$\frac{p}{p} \epsilon +$	$\frac{p-p'}{p'}$ a =	- 0.00	ernière	Lan.
0° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35	013 007 003 001 000 001 003 007 011 018 025 035 045 057 071 084 100 116 135 154 174 195 217 240 263 288 313 340 367 395 423 453 453 453 453 548 5582	014 009 004 002 001 002 004 008 013 019 027 036 047 059 073 086 103 118 136 157 178 199 221 244 268 293 319 345 372 403 430 461 491 524 558 591	016 010 006 003 002 003 005 009 014 020 028 038 048 060 075 088 105 121 139 160 182 202 225 248 272 297 323 350 378 407 436 466 497 530 564 602	017 011 007 004 004 005 007 010 015 022 030 039 050 062 076 090 107 123 142 162 184 203 228 251 275 301 327 355 383 412 442 472 503 537 571 604	018 012 008 005 005 006 008 011 016 024 031 040 051 064 078 092 109 125 145 165 187 208 231 255 279 305 332 359 388 417 447 447 478 509 543 578 615	019 013 009 007 006 007 009 013 018 024 032 042 053 066 080 094 111 127 147 168 191 211 234 258 283 309 336 364 392 422 452 483 515 549 585 626	021 014 010 008 007 008 010 014 019 025 034 043 055 067 082 096 114 130 150 172 193 214 237 261 297 313 340 368 397 427 458 488 521 555 591 627

On rapporte quelquesois la densité de l'urine non à celle de l'eau distillée à 4° , mais bien à celle de l'eau distillée à 15° . Or rien n'est plus aisé que de passer de d_4 à d_{15} et réciproquement.

En effet, la densité de l'eau étant de 1 à 4° et 0,99916 à 15°, on a:

$$d \, {\stackrel{\mathfrak{t}}{}}_{4} = { \frac{v \, x}{v \times 1} } = x$$

$$d_{15}^{t} = \frac{vx}{v \times 0,99916} = \frac{x}{0,99916}$$

La dernière égalité peut se mettre sous la forme :

$$d_{15}^{t} = \frac{x}{1 - 0,00084}$$

on en déduit:

$$x = d_{15}^{t}(1 - 0,00084) = d_{15}^{t} - d_{15}^{t} \times 0,00084$$

ou, avec une approximation suffisante:

$$d_{15} = x (1 + 0,00084) = x + x \times 0,00084$$

d'où l'on voit qu'on passe de la densité d_{15}^{t} à la densité d_{4}^{t} en retranchant de la valeur de la première, le produit de cette valeur par le coefficient 0,00084, et qu'on passe de la densité d_{4}^{t} à la densité d_{15}^{t} , en ajoutant à la valeur de la première le produit de cette valeur par le même coefficient 0,00084.

En admettant pour les valeurs extrêmes des densités de l'urine les nombres 1 et 1,06, on obtient pour les valeurs extrêmes du produit correctif, les nombres 0,00084 et 0,00089, moyenne 0,00086.

On peut donc, sans erreur sensible, simplifiant l'énoncé qui précède, dire: on passe de d_{15}^t à d_4^t ou réciproquement de d_4^t à d_{15}^t , respectivement par soustraction ou par addition addition du nombre 0,00086.

Les uromètres et les plongeurs des balances aérothermiques sont généralement établis pour la température de 15°.

Aussi, quand un uromètre de poids p flotte dans H²O à 15° et en déplace un volume v, on a, en désignant par e la densité du liquide:

d'où:

$$\frac{100000 + 1000 p}{u} = e^{1000 + 1}$$

et, en divisant les deux membres par e:

$$\frac{p}{ue} = \frac{e}{e} = 1$$

le point d'affleurement, généralement marqué 1000, indique la densité relative prise pour unité.

Quand ensuite le même uromètre, à la même température de 15°, flotte dans une urine de densité x et déplace un volume v de liquide, on a:

succeeds which the state of
$$x$$
 of $y = q$ r pour température son

ventionnelle celle de f5º, Il (aut done pouvoir oaks: vo'b

$$\frac{p}{v} = x$$

et après division des deux membres par e:

transformations accessible
$$\frac{P_{v}}{v} = \frac{q}{v}$$
nsissance do coefficient de distation absolu de l'urine.

Le nombre n, inscrit au point d'affleurement, indique précisément $\frac{x}{e}$, c'est-à-dire d_{15}^{15} . On a donc :

negatif, comprise ontrol 15 of
$$\frac{1}{15}$$
 of $\frac{1}{4}$ $\frac{x}{e}$ is $\frac{x}{e} = n = d$ of $\frac{1}{15}$

De même, quand le plongeur d'une balance aréothermique est équilibré dans H²O à 15° par le cavalier correspondant placé au bout du bras divisé du fléau, on a:

$$p = ue$$

Quand ensuite, à la même température de 15° , le même plongeur est équilibré dans une urine de densité x par une somme de cavaliers de divers ordres occupant respectivement les divisions marquées m, m', m'', on a:

$$ue + 0.01 m ue + 0.001 m' ue + 0.0001 m'' ue = u x$$

d'où:

$$\frac{x}{e} = 1 + 0.01 m + 0.001 m' + 0.0001 m''$$

La somme représentée par le deuxième membre de cette dernière équation donne encore $\frac{x}{e}$ à 15°, c'est-à-dire d_{15}^{15}

Les densités désignées sous le symbole d_4 ne sont pas tout d'abord rigoureusement comparables entre elles, pas plus que celles désignées sous le symbole d_{15} ; elles ne le deviennent, dans chacune des deux séries, qu'après avoir été ramenées par le calcul à une même valeur de t. On s'accorde généralement à adopter pour température conventionnelle celle de 15°. Il faut donc pouvoir passer de

$$d_4$$
 à d_4^{15} ou de d_{15} à d_{15}^{15} .

Pour les déterminations faites à l'aide du picnomètre, ces transformations nécessitent la connaissance du coefficient de dilatation absolu de l'urine.

Car en désignant par de le coefficient moyen de dilatation absolu de l'urine pour l'intervale de température 0, positif ou négatif, compris entre 15° et la température t de l'expérience, on a :

$$d_{4}^{15} = d_{4}^{1} (1 + \delta \theta) = d_{4}^{1} + d_{4}^{1} \delta \theta.$$

ou, avec une approximation suffisante:

$$d_{15}^{t} = d_{4}^{t} + \delta \theta.$$

on a de même :

$$d_{15}^{15} = d_{15}^{1} + \delta \theta.$$

Pour les déterminations faites à l'aide de l'uromètre ou de

la balance aréothermique, c'est le coefficient de dilatation apparent de l'urine qui entre en facteur dans le terme correctif.

En effet, quand on opère à te avec un uromètre gradué à 15°, le résultat brut N que fournit la lecture du point d'affleurement a besoin d'abord, à cause de la dilatation du verre, de subir une correction pour devenir égal à d_{15} . Car le volume apparent V qui correspond à la division d'affleurement N et qui serait réellement $\frac{p}{Ne}$ à 15°, est en réalité $\frac{N}{pe}(1+\gamma\theta)$ à te, γ étant le coefficient de dilation du verre. On a donc, x' représentant le poids du centimètre cube d'urine à te :

$$\frac{p}{N_{\theta}} (1 + \gamma \theta) x' = p.$$

d'où :

$$\frac{x'}{e} = \frac{N}{1 + \gamma \theta} = N(1 - \gamma \theta) = N - N \gamma \theta.$$

ou avec une approximation suffisante:

$$\frac{x'}{e}$$
 = N - γ 0.

ou

$$d \frac{t}{15} = N - \gamma 0.$$

ce qui signifie que quand un uromètre affleure à la division N dans une urine à t°, pour obtenir la densité d 15 du liquide, il faut retrancher du nombre N, le produit 70 du coefficient de dilatation du verre (en moyenne 0,00025) par la différence 0 entre t et 15°.

De même, quand on opère à to avec une balance aréothermique dont le flotteur est établi pour 15°, on a, en désignant par μ, μ', μ", les divisions du fléau occupées par les cavaliers de divers ordres, au moment où le plongeur est équilibré;

$$u (1 + \gamma 0) x' = u e (1 + 0.01 \mu + 00.01 \mu', + 0.0001 \mu'').$$

d'où, avec une approximation suffisante:

$$\frac{x'}{e} = 1 + 0.01 \,\mu + 0.001 \,\mu' + 0.0001 \,\mu'' - \gamma \,\theta.$$

ce qui signifie qu'il faut encore ici retrancher γ 0 du résultat brut de l'expérience pour obtenir d

La table suivante donne entre 0° et 35° les valeurs de γ0, additives de 0° à 15°, soustractives de 35° à 15°.

0 1 2 3 4 5 6 7	375 350 325 300 275 250 225	9 10 11 12 13 14 15	150 125 100 075 050 025 000	18 19 20 21 22 23 24 25	70=-0 000 075 100 125 150 175 200 225	27 28 29 30 31 32 33	300 325 350 375 400 425 450
6 7 8	225	15	000	24	225	33	450
	200	16	025	25	250	34	475
	175	17	050	26	275	35	500

Mais une fois en possession de d_{15}^{t} , il reste encore à passer de d_{15}^{t} à d_{15}^{15} . Or on a :

avec l'uromètre:

$$d_{15}^{15} = N - \gamma 0 + \delta 0 = N + (\delta - \gamma) 0.$$

et avec la balance aréothermique:

$$d_{15}^{15} = 1 + 0.01 \,\mu + 0.001 \,\mu' + 0.0001 \,\mu'' - \gamma \,0 + \delta \,0$$
$$= 1 + 0.01 \,\mu + 0.001 \,\mu' + 0.0001 \,\mu'' + (\delta - \gamma) \,0.$$

ce qui signifie que pour avoir d15, il faut au résultat brut

urométrique ou aréothermique ajouter le produit du coefficient de dilatation apparent $(\delta - \gamma)$ de l'urine par la différence δ , positive ou négative, entre t° et 15°.

2° ÉTUDE EXPÉRIMENTALE DE LA VARIATION DE LA DENSITÉ DE L'URINE EN FONCTION DE LA TEMPÉRATURE ENTRE 0° ET 35°.

J'ai opéré par la méthode du flacon.

Toutes les pesées ont été faites avec une balance Becker's Sons, de haute précision, série 4 n° 22, par substitution, sous une charge constante de 100 grammes et après un séjour de trente minutes dans la cage de la balance desséchée par CaCl².

L'affleurement du liquide dans le picnomètre a été chaque fois déterminé après trente minutes d'exposition dans une grande masse d'eau maintenue soigneusement, à 0°,1 près, à la température voulue.

Le flacon dont je me suis servi mesurait 50° à la température de 28°. C'est un flacon tel que ceux dont on sert officiellement en Allemagne pour la détermination de la richesse alcoolique du vin (1).

Tout d'abord j'ai mesuré les capacités de mon picnomètre en fonction de la température entre 0° et 100°. Pour cela, j'ai pris, à diverses températures, à 0,1 milligramme près, les poids d'H²O le remplissant jusqu'au trait d'affleurement. Des poids trouvés p', j'ai déduit les volumes v correspondants, en appliquant la formule :

$$p'\left(\frac{1-0.0012}{8.4}\right) = v \; (e-0.0012)$$

⁽¹⁾ Dr Karl Windisch, Die chemische Untersuchung und Beurtheilung des Weines, S. 48.

e étant la densité de l'eau à la température de l'expérience. J'ai d'ailleurs pris pour e les valeurs calculées par Rosetti, d'après ses propres expériences et celles de Kopp, Despretz, Hagen et Matthiesen (1).

Les poids trouvés p' et les volumes calculés v sont consignés dans la deuxième et dans la troisième colonne de la table suivante. La première colonne, marquée t, indique les températures correspondantes.

t	p'	v	t	p,	v
0° 12 14.7 15.4 15.6 17.5 18 25.2 35	grammes 49.90835 49.902 49.8907 49.8850 49.8848 49.8735 49.8685 49.798 49.6612	centim, cubes 49.967 49.978 49.983 49.983 49.982 49.989 49.989 49.998 50.005	38.4 39.4 40 41 45.4 60 81.5 99.8	grammes 49.6044 49.5871 49.599 49.5651 49.4809 49.1716 48.582 47.9858	centim. cubes 50.009 50.01 50.036 50.015 50.023 50.056 50.0872 50.105

Sur une seuille de papier millimétriquement quadrillée, j'ai ensuite tracé le graphique de ces résultats, en portant les températures en abscisses et les volumes en ordonnées. Dans ce graphique, les extrémités des ordonnées se sont très sensiblement trouvées sur une droite faisant avec l'axe des températures un angle a tel que

$$tg \ \alpha = \frac{dv}{dt} = 0,0014$$

d'où, pour le coefficient de dilatation cubique 7 du verre constituant la matière du picnomètre.

$$\gamma = \frac{dv}{v \ dt} = \frac{0.0014}{49.9615} = 0.000028.$$

La table suivante donne les valeurs de v, déduites du gra-

⁽¹⁾ Lehrbuch, Der Physik und Metereologie, von J. Muller, L. Pfaundler, viertes Buch, S. 82, 83. — 1878.

phique précédent, par interpolation, pour toutes les températures, par degrés, entre 0° et 35°.

t	υ	t	v	t	v	t	v
0	49.962 49.963	9	49.974 49.976	18	49 987 49 988	27 28	49.999 50.001
2 3 4	49.964	11	49.977	20	49.990	29	50.002
	49.966	12	49.978	21	49.991	30	50.004
	49.967	13	49.980	22	49.992	31	50 005
5 6 7 8	49.969	14	49.981	23	49.994	32	50.006
	49.970	15	49.983	24	49.995	33	50.008
	49.971	16	49.984	25	49.997	34	50.009
	49.973	17	49.985	26	49.998	35	50.011

Grâce à cette table, la détermination d'une densité ne nécessite plus, au point de vue expérimental, qu'une pesée. Celle-ci faisant connaître le poids p d'un volume connu d'urine à t°, on a:

$$p(1-\frac{0.0012}{8.4}) = vx - 0,0012 v$$

d'où:

$$x = \frac{p}{v} (1 - 0,0001428) + 0,0012$$

ou, avec une approximation suffisante:

$$x = \frac{p}{v} + 0,001057.$$

Il suffit donc, pour avoir d_4^t , de diviser le poids p d'urine qui remplit le flacon à t° par la capacité de ce dernier à la même température et d'ajouter au quotient le nombre 0,001057.

Comme v diffère très peu de 50, on facilite le calcul en multipliant par 0,02 les deux termes du rapport $\frac{p}{v}$, et en remplaçant ensuite 0,02 v, qui est très peu différent de 1, par 1- ε , ε étant le complément de 0,02 v, cela donne:

$$\frac{p}{v} = \frac{2 p}{1-\varepsilon} = 2 p (1+\varepsilon)$$

ou, avec une approximation suffisante, 2p ne différant pas trop de 1,

$$\frac{p}{v} = 2p + \varepsilon$$

par suite,

$$d_4^i = 2p + \epsilon + 0,001057$$

ou, après addition du nombre 0,00086,

$$d_{15}^{t} = 2p + \varepsilon + 0,001917$$

En procédant de la sorte sur 15 urines occupant des degrés divers dans l'échelle des densités, j'ai expérimentalement déterminé, pour chacune d'elles, huit densités à des températures croissant par 5° entre 0° et 35°.

Les résultats de ces expériences, exprimés en d_{15} sont consignés dans la table ci-après :

t=	1.	5"	10*	150	50*	250	30"	35°
Urines	d o	d 5	d 10	d ¹⁵	d 20	d 25	d ³⁰	d 35
1 11 11 11 11 11 11 11 11 11 11 11 11 1	1.00999 1.01111 1.01140 1.01793 1.021748 1.02175 1.02295 1.02305 1.02456 1.02515 1.02710 1.02984	1.01096 1 01122 1.01773 1.02149	1.02199 1.02352 1.02420 1.02614	1.00850 1.00967 1.00992 1.01650 1.019914 1.02129 1.02118 1.02276 1.02319 1.02522 1.02753		1.00597 1.00711 1.00735 1.01391 1.01730 1.01730 1.01865 1.01835 1.01946 1.02049 1.02251 1.02501	1 00145 1 005 t0 1 0056 1 01235 1 01570 1 0 571 1 01788 1 01678 1 01788 1 02103 1 02344	1.00265 1.00351 1.00377 4.01053 1.01386 1.01387 1.01523 1.01523 1.01529 1.01701 1.01914 1.02161
	1 03257 1.04624 1.07087	1.03230	1.03136	1.03056 1.04371 1.06781	1.02930 1.04237 1.06635	1.02781 1.04031 1.06173	1 02521 1.03916 1.06301	1 02429 1 03736 1 06084

Les urines X, XI, XII, XIII, XIV étaient des urines diabétiques. L'urine XV était une urine normale à laquelle j'avais ajouté de la glucose. J'ai construit le graphique de ces résultats expérimentaux, en portant les températures en abscisses et les densités en ordonnées, puis, procédant par interpolation, j'ai dressé la table suivante, qui fournit aisément le nombre $\hat{\sigma}$ à ajouter ou à retrancher à la densité de d_{15}^{t} , pour la transformer en densité d_{15}^{15} pour des valeurs de d_{15}^{t} comprises entre 1 et 1,06.

La valeur numerique de 30 qui convient à chaque cas particulier se trouve au point où la verticale passant par le

d t =	1.00	1.005	1.010	1.015	1,020	1.025	1.030	1.035	1-010	1.045	1-050	1.055	1.060
t		80 = 0.00											
0° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	071 078 081 083 084 083 081 077 073 067 050 039 027 014 000 016 032 051 070 091 111 133 156 180 204 230 258 331 340 369 399 431 464	113 113 113 112 110 108 104 099 091 082 070 058 044 030 015 000 017 040 061 086 109 137 163 192 223 250 281 312 341 369 401 435 467 548	145 143 140 137 134 130 123 114 105 096 080 064 048 032 016 000 018 049 112 140 167 196 226 255 286 318 347 375 408 442 475 518 556	160 157 153 149 145 140 132 122 112 102 085 068 058 034 017 000 019 043 065 092 115 143 171 200 230 260 291 323 355 382 415 449 483 526 564	175 171 166 161 156 150 141 130 119 108 090 072 054 036 018 000 020 044 1067 094 117 175 175 204 234 265 296 328 362 389 421 456 491 534 572	190 185 179 173 167 160 150 138 126 114 095 076 057 038 019 000 021 015 07 122 151 178 203 238 270 301 333 369 428 463 499 580	205 199 192 185 178 170 159 146 133 120 080 080 040 020 000 022 047 072 099 126 154 183 212 242 275 306 338 376 403 435 470 550 588	220 213 205 197 189 180 168 154 140 126 105 084 063 042 021 000 023 049 074 103 129 158 187 216 245 280 311 343 381 442 477 515 558 596	235 227 218 200 200 190 177 162 147 132 110 088 066 014 022 000 076 105 132 161 190 219 285 316 348 388 417 449 485 523 566 605	250 241 231 221 211 200 186 170 154 138 115 092 069 046 023 000 025 052 079 108 136 165 194 224 223 290 321 353 395 424 456 492 531 574 613	265 255 242 233 222 210 195 178 161 144 120 096 072 048 024 000 026 053 081 410 139 167 198 238 257 295 326 358 401 431 463 463 490 532 621	280 269 255 245 233 220 204 186 168 150 075 050 025 000 027 055 083 114 142 171 202 232 260 300 331 363 408 438 470 506 547 590 630	295 283 268 257 244 230 213 194 175 156 130 104 078 052 026 000 028 056 085 117 146 175 206 236 336 368 415 445 477 513 555 598 638

nombre qui représente d₁₅ rencontre l'horizontale passant par le nombre qui représente t.

Les signes — et + de la 2^{mc} colonne verticalé signifient que la correction est soustractive pour les températures comprises entre 0° et 15°, et additive pour les températures comprises entre 15° et 35°.

En combinant ensuite cette table avec celle des valeurs de γ 0 (p. 18), j'ai dressé la table ci-après des valeurs de $(3-\gamma)$ 0 pour permettre de ramener à la température de 15° une den-

N	=	1-000	1.005	1.010	1.015	1-020	1-025	1.030	1.035	1.040	1-015	1.050	1,055	1.060
ı	1					(ō-γ)	0 =	0.00					
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 27 28 29 30 31 31 32 33 33 34 34 34 34 34 34 34 34 34 34 34	+	03 04 05 06 06 06 06 06 06 05 05 04 03 04 06 08 10 12 14 16 18 20 23 25 28 30 33 36 39 42 45	08 08 08 08 08 08 08 08 08 08	11 11 11 10 10 09 09 08 07 65 04 02 01 00 02 04 06 08 10 13 15 18 20 23 26 29 31 34 47 54	12 12 12 12 12 12 12 11 10 09 09 07 06 05 03 01 00 02 04 06 08 10 13 16 18 21 23 26 29 32 35 35 35 35 35 35 35 36 36 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	14 14 13 13 13 13 13 13 13 12 11 10 09 08 06 05 03 02 00 02 04 06 08 10 13 16 18 21 24 27 30 33 35 45 45 45 45 45 45 45 45 45 45 45 45 45	15 15 15 14 14 13 12 11 10 08 07 05 03 02 00 02 04 06 09 11 14 16 19 22 25 27 30 42 46 50 53 57	17 16 16 16 15 15 14 13 12 11 09 07 05 04 02 00 02 04 06 09 11 14 17 19 22 25 28 31 34 37 40 40 40 40 40 40 40 40 40 40 40 40 40	18 18 17 16 16 15 13 12 11 09 07 06 04 02 00 02 04 07 09 12 14 17 20 22 25 36 38 41 41 47 55 59	20 19 19 18 17 16 15 14 13 12 10 08 06 04 02 00 02 05 07 10 12 15 17 20 23 26 29 32 35 35 41 44 48 56 66 66 66 66 66 66 66 66 66 66 66 66	21 21 20 19 18 17 16 15 14 12 10 08 06 04 02 00 02 05 07 10 12 15 18 20 23 26 29 32 42 45 49 61	23 22 21 20 19 18 17 16 14 13 11 09 06 04 02 00 02 05 07 10 13 15 18 21 27 29 33 36 40 40 43 46 56 56 56 56 56 56 56 56 56 56 56 56 56	24 23 22 21 20 19 18 17 15 13 11 09 07 05 02 00 02 05 08 10 13 16 19 21 24 27 30 33 37 40 43 47 50 50 50 50 50 50 50 50 50 50 50 50 50	26 25 24 23 22 20 19 17 16 14 12 09 07 05 00 03 05 08 11 13 34 38 41 44 47 51 55 64

sité prise à une température t entre 0° et 35° au moyen de l'uromètre ou de la balance aréothermique.

La rangée horizontale supérieure, marquée N, représente 13 résultats bruts d'observations urométriques ou aréothermiques. La première colonne verticale, marquée t, représente la température au moment de l'observation; la deuxième colonne verticale par les signes — et +, indique que la correction est soustractive de 0° à 15° et additive de 15° à 35° . Les colonnes verticales suivantes donnent les valeurs numériques de $(\delta - \gamma)$ θ .

Pour chaque observation particulière, la valeur de la correction se trouve au point où l'horizontale, passant par le nombre qui indique la valeur actuelle de t, rencontre la verticale passant par le nombre qui indique la valeur actuelle de N.

Exemples:

1º L'uromètre marque	1.025
Le thermomètre marque	5°.
La correction est	0.0014

$$d_{15}^{15} = 1,025 - 0,0014 = 1,0236$$

2° La balance aréothermique donne 1020 Le thermomètre marque 30° La correction est 0.0038

$$d_{15}^{15} = 1,020 + 0,0038 = 1,0238$$

Pour soumettre ce tableau au contrôle de l'expérience, j'ai déterminé, à des températures diverses, des densités d_{15} , tantôt par l'uromètre, tantôt par la balance aréothermique, avec l'aide de la table de la p. 22, sur cinq urines pour chacune desquelles j'avais au préalable mesuré d_{15}^{15} au moyen du picnomètre.

Dans ces expériences, je me suis servi d'un viseur pour faire les lectures urométriques, après avoir eu soin de placer derrière l'éprouvette qui contenait l'urine à essayer un carton présentant une moitié noire et une moitié blanche séparées par une ligne horizontale qui se trouvait un peu plus bas que la surface libre du liquide.

Les résultats trouvés sont consignés dans la table suivante. J'y ai joint les résultats calculés au moyen de la table qui précède. La comparaison montre une concordance aussi satisfaisante que possible.

d 15 =	10112	10	139	10	164	10	197	103	256
Honfor	700/87	dani	but i	d	15	el	109 4	Terror	i olis
8 11 12 17 18 19 20 21 22 23 24 25 26 27 30 32 34	1011 101	21 1015 10145 1 10137 1 10125 2 10115	10148 10146 10135 10126	10175 1017 1016 1015	10173 1017 10158 10148	1020 10192 1019 1018 10172	10203 10195 10189 10179 10173	1027 1026 1028 10247 10235	10267 10267 10261 10252 10231 10231

3° DESCRIPTION ET CRITIQUE DU PROCÉDÉ UROMÉTRIQUE. — UROMÊTRE A POIDS DE LOHNSTEIN.

Description. — Le procédé urométrique est celui que l'on emploie le plus couramment pour prendre la densité de l'urine. Mais il est essentiel, cela va sans dire, de ne faire usage que

d'instruments qu'un contrôle sérieux a montré irréprochables. Ceux de Niemann m'ont donné toute satisfaction; ils sont généralement disposés, les uns pour les densités allant de 1000 à 1020, les autres pour les densités allant de 1020 à 1040; les divisions sont convenablement espacées; des traits noirs indiquent le chiffre des millièmes, et des traits rouges les demi-millièmes; on peut, à vue d'œil, apprécier les quarts de divisions. La partie renflée porte un thermomètre dont le réservoir sert de lest à l'uromètre.

La manipulation exige certains soins. Les voici résumés: Opérer à l'abri de toute vapeur pouvant influencer la pression moléculaire de l'urine. Choisir une éprouvette à parois lisses et transparentes, bien cylindriques, d'un diamètre au moins double du plus grand diamètre de l'uromètre; la remplir de telle sorte qu'après immersion de l'uromètre, le niveau de l'urine reste encore à quelques centimètres au-dessous des bords; la placer sur une surface horizontale. Saisir alors par le sommet de la tige l'uromètre, qui doit toujours être parfaitement propre à immerger doucement dans l'urine. Enlever soigneusement, à l'aide de papier buvard, la mousse autour de la tige de l'aéromètre et des parois de l'éprouvette. Lire à l'œil nu ou à la loupé le point d'affleurement déterminé par la ligne suivant laquelle la surface horizontale de l'urine coupe la tige de l'uromètre.

La lecture directe du point d'affleurement est gên le par le ménisque que la capillarité détermine autour de la tige de l'uromètre. Mais on tourne la difficulté et on arrive à obtenir exactement la ligne d'intersection cherchée en utilisant un point de repère que fournit le bourrelet capillaire lui-même quand on regarde le niveau de l'urine un peu obliquement et de bas en haut. On aperçoit, en effet, dans ces conditions, vers le milieu de la surface libre du liquide, de forme elliptique, juste au-dessus du ménisque, tout autour de la tige de

l'uromètre, une petite ellipse qui, pour une position convenable de l'œil, se change en un trait transversal, parfaitement net. On place l'œil de manière à bien distinguer ce trait et on lit la division densimétrique correspondante N.

En cas de non-coïncidence exacte, on apprécie à vue d'œil la distance entre le trait de repère et la division la plus voisine.

Critique. — Les indications qui précèdent reposent sur l'hypothèse que l'équation:

$$p = vx$$

représente toutes les conditions d'équilibre de l'uromètre flottant dans une urine de densité x à la température de 15°. Or, il n'en est pas rigoureusement ainsi, puisque l'équation qui précède ne tient aucun compte de l'action perturbatrice due à la capillarité.

On sait:

1º Que dans la zone du ménisque une molécule liquide est soumise, de bas en haut, à la somme H des actions de la pesanteur et des composantes verticales C cos 45º de la cohésion C; latéralement, aux composantes horizontales 2 A cos 45º de l'adhésion A et aux composantes contraires C cos 45º de la cohésion, soit à la force (2 A — C) cos 45º qui tend à rapprocher la molécule liquide de la tige de l'uromètre; que la résultante R de ces forces verticales et horizontales a pour intensité:

$$V \overline{H^2 + (2A - C)^2 \cos^2 45}$$

et pour direction une droite satisfaisant à l'équation :

$$tg \alpha = \frac{(2 \text{ A} - \text{C}) \cos 45}{\text{H}}$$

que par suite, au contact de la paroi, R et a ont leur plus grande valeur, qu'à partir du contact R et a diminuent progressivement, et qu'à la distance de la tige où l'adhésion A cesse de se faire sentir, a égale zéro et R agit suivant la verticale; qu'en conséquence la surface libre du liquide, pour être en tous points normale à R, doit former autour de la tige de l'uromètre un ménisque à concavité supérieure;

2º Que la pression moléculaire qui a une certaine valeur P là où la surface libre du liquide est horizontale, a une valeur $p-\frac{k}{r}$ là où la surface présente une courbure de rayon r;

3° Que le déficit de pression moléculaire $\frac{k}{r}$ dû à la concavité du ménisque, produit pour réaliser l'équilibre hydrostatique une ascension équivalente de l'urine le long de la tige de l'uromètre.

Or il est évident que le ménisque est comme appendu à la tige de l'uromètre dont le poids p se trouve augmenté d'autant.

L'équation d'équilibre de l'uromètre dans l'eau et dans une urine à 15° est donc, en tenant compte de l'action capillaire :

$$p = ue - \frac{k}{r} = vx - \frac{k'}{r'}$$

d'où :

$$\frac{x}{e} = \frac{u}{v} + \frac{1}{ve} \left(\frac{k'}{r'} - \frac{k}{r} \right);$$

la graduation de l'uromètre basée sur l'équation

$$\frac{x}{e} = \frac{u}{v}$$

ne serait donc exacte qu'à la condition que

$$\frac{k!}{r'} - \frac{k}{r} = 0$$

c'est-à-dire, que le déficit de pression moléculaire dû au ménisque adhérent à la tige urométrique serait le même pour l'eau et pour toute urine de composition qualitative et quantitative quelconque. Cette condition ne saurait réellement exister, et on n'a d'ailleurs pas ici, comme pour l'alcoomètre, le moyen de vaincre la difficulté en déterminant, par autant d'expériences distinctes, un nombre suffisant de points de la graduation.

C'est que deux mélanges d'alcool et d'eau, par cela seul qu'ils ont même densité, sont forcément identiques dans toutes leurs autres propriétés, ont donc même composition, même valeur numérique pour le terme $\frac{k}{r}$, et doivent donc affleurer à la même division de l'alcoomètre.

Mais deux urines qui ont même densité ne sont pas pour cela forcément identiques pour tout le reste, n'ont pas pour cela forcément même composition, partant même valeur numérique pour le terme $\frac{k}{r}$ et partant ne marquent pas forcément même degré à l'uromètre.

Par conséquent, l'erreur due à la capillarité ne saurait jamais être absolument éliminée des observations urométriques. Mais cette erreur, cependant, ne sera jamais ici du même ordre de grandeur que celle qui intervient quand on emploie, en général, un même densimètre pour des liquides quelconques. L'erreur due à la capillarité peut, dans ce cas, suivant Duclaux, affecter le chiffre des centièmes.

Toujours est-il que l'influence du terme $\frac{k}{r}$ impose une limite à la sensibilité de l'uromètre, comme à celle de tout aréomètre analogue qu'il serait puéril de vouloir rendre en quelque sorte indéfiniment sensible en diminuant le diamètre de la tige.

Les influences diverses qui peuvent affecter le terme $\frac{k}{r}$ sans même affecter sensiblement la densité de l'urine, expliquent l'importance qu'il y à à tenir toujours l'uromètre et l'éprouvette excessivement propres, à éviter de toucher avec les doigts la partie graduée de la tige, à opérer loin des acides volatils et à se prémunir contre les erreurs qui peuvent résulter de l'emploi de certaines substances (chloroforme, thymol, etc.) pour la conservation des liquides en attendant l'analyse.

Uromètre à poids de Th. Lohnstein. — En vue d'éliminer l'erreur capillaire, le D^r Th. Lohnstein a imaginé un uromètre à poids (Gewichts-urometer) dans lequel la manipulation a pour terme la disparition de tout ménisque et la formation d'une surface libre absolument plane autour de la tige de l'instrument.

C'est, en quelque sorte, un uromètre dont la tige, à 20^{mm} de la partie renflée, aurait été coupée par une section droite parfaitement nette, polie et à bords tranchants. Une tige métallique de 16^{mm}, fixée au moyen d'ébonite, dans la courte tige de verre, s'élève suivant l'axe de l'instrument et se termine par un petit plateau, également métallique, de 25^{mm} de diamètre. L'ébonite forme avec les bords du tube de verre un petit disque parfaitement plan, du centre duquel émerge la tige portant le plateau.

L'appareil a environ 15^{cm} de longueur totale. Il est lesté de manière à ce que, plongé à la température de 15° dans un liquide ayant pour densité 1 (solution de Na Cl à 0,12 pour 100), il ait tout son petit disque de verre-ébonite sur un plan exactement horizontal avec la surface libre du liquide, sans aucune apparence de ménisque.

Dans un liquide de densité plus grande, l'affleurement a lieu en un point inférieur au précédent, sur la petite tige de verre; il y a alors autour de celle-ci, comme à l'ordinaire, un ménisque à concavité supérieure.

On charge le petit plateau de poids marqués exactement suffisants pour amener la disparition exacte de tout indice de ménisque. La somme de ces poids représente la partie décimale de la densité; il suffit de faire précéder de l'unité cette partie décimale, pour avoir la densité elle-même.

Les poids qui accompagnent l'uromètre forment les trois séries suivantes :

$$1^{\text{re}}$$
 série 0.05 0.02 0.02 0.01 2^{e} — 0.005 0.002 0.002 0.001 3° — 0.0005 0.0002 0.0002 0.0001

Soit, à 15°, une urine de densité d_4^{15} égale à 1,0465.

Pour amener le liquide et le disque sur un plan horizontal unique, il aura fallu déposer sur le plateau :

Le 2° et le 3° poids de la 1° série, soit
$$0.02 + 0.02 = 0.04$$

$$1^{er} - 4^{e} - 2^{e} - 0.005 + 0.001 = 0.006$$

$$1^{e} - 3^{e} - 0 - 0.0005$$

$$Total...... 0.0465$$

d'où.....
$$d_4^{15} = 1 + 0,0465 = 1,0465$$

Si la température eut été t au lieu de 15, il y eut eu à ajouter le terme correctif $(\delta - \gamma)\theta$ (table p. 24) pour transformer la densité brute en densité d_4^{15}

Le niveau du liquide dans l'éprouvette doit être tel que l'extrémité inférieure de l'uromètre ne soit qu'à 1 ou 2^{mm} du fond du vase. On évite par là l'irruption du liquide par dessus le petit disque par suite d'une surcharge accidentelle du pla-

teau. Un trait gravé sur l'éprouvette indique la quantité de

liquide à employer.

L'uromètre de Lohnstein m'a donné de bons résultats. La dextérité nécessaire à sa manipulation s'acquiert vite. Son principal avantage est de dispenser d'une balance de précision; mais, dans un laboratoire outillé, il est plus précis et presque tout aussi rapide de recourir au procédé du picnomètre.

4º DÉDUCTION A TIRER DE LA DENSITÉ

A. - Urine normale

Quand il n'y a pas de principes anormaux, la densité de l'urine est surtout sous la dépendance des proportions relatives d'eau, d'urée et de chlorure de sodium.

Influence de NaCl. — D'après les tables de Gerlach, une variation de 0,001 dans la densité à 15° des solutions de NaCl correspond à une variation de 0,138 dans le tant pour 100 de sel dissous.

D'où, pour représenter le tant pour cent Q d'une solution aqueuse de NaCl en fonction de sa densité à 15° l'expression

$$Q = 138 (d - 1)$$

Influence de CH^{*}Az²O. — Pour déterminer cette influence, j'ai commencé par établir la courbe des densités des solutions aqueuses d'urée en fonction des concentrations. Pour cela, j'ai pris les densités de cinq solutions de concentrations différentes. J'ai opéré à la température de 25°. Les résultats sont consignés dans la table de la page suivante.

J'ai porté sur un papier millimétriquement quadrillé, les densités en abscisses et les tant pour cent d'urée, c (tant

eli altinaun al	.25	GRAMMES D'URÉE DANS				
EXPÉRIENCES	d ²⁵	100 grammes	100 centimètr. cubes			
I II III IV V	1.056265 1.036851 1.023943 1.017355 1.010617	22.1805 15.0639 40.1692 7.7786 5.1516	23.4245 15.6190 10.4127 7.8095 5,2063			

pour 100 °c) en ordonnées. J'ai joint les extrémités des ordonnées et obtenu ainsi une droite répondant à l'équation :

$$tg \alpha = \frac{c - c'}{d' - d'} = 399$$

Une variation de 0,001 dans la densité correspond donc à une variation de 0,399 dans le procédé d'urée contenu dans 100° de solution.

De là, pour exprimer la concentration c d'une solution aqueuse d'urée en fonction de sa densité à 25°, la relation :

$$c = 399 (d - 1)$$

D'après Bourget (1), quand il n'y a ni sucre, ni albumine, ni diminution anormale de NaCl:

Une densité de	accuse environ
1014	d'urée dans 100 d'urine
1020 à 1024	2 à 2,5 — —
1028 à 1030	(1-3)801=0 -

En d'autres termes, le nombre formé par le chiffre des centièmes et par le chiffre des millièmes de la densité représenterait approximativement le poids en grammes d'urée par litre d'urine.

La table suivante résume mes expériences personnelles en ce qui concerne Alger.

⁽¹⁾ Manuel de chimie clinique, p. 5.

1310 cm3	URINE	provene de la	URÉE	
865 1.0246 26.025 22.466 1900 1.0120 10.060 19 113 1250 1.0135 12 664 15.835 1145 1.0135 13.720 15.708 870 1.0220 20.087 17.476 460 1.0210 21.869 13.917 815 1.0230 25.078 20.438 766 1.0189 22.287 18.072 750 1.0194 23.573 17.679 643 1.0135 18.650 11.993 2560 1.0167 9.313 23.841 1010 1.0246 23.170 23.404 2000 1.0145 10.857 21.714 1500 1.0130 11.059 16.588 990 1.0177 17.936 17.757 1050 1.0298 21.671 22.754 1480 1.0200 13.800 20.420 1935 1.0228 20.720 32.500 <t< th=""><td>24 heures</td><th>DENSITÉ A 15°</th><td>PAR LITRE</td><td>PAR 24 HEURES</td></t<>	24 heures	DENSITÉ A 15°	PAR LITRE	PAR 24 HEURES
1900				
1250				
1145	1250			
460 1,0210 21,869 13,917 815 1,0230 25,078 20,438 766 1,0189 22,287 18,072 750 1,0194 23,573 17,679 643 1,0135 18,650 11,993 2560 1,0167 9,313 23,404 2000 1,0145 10,857 21,714 1500 1,0130 11,059 16,588 990 1,0177 17,936 17,757 1050 1,0298 21,671 22,754 1480 1,0200 13,800 20,420 1935 1,0169 15,173 29,360 935 1,0228 20,720 32,500 1740 1,0260 35,550 61,857 1050 1,0216 16,210 17,040 1360 1,0190 14,590 19,842 935 1,0224 24,150 22,945 1510 1,0288 26,766 17,104 <t< th=""><th></th><th>1.0135</th><th>13.720</th><th>15 709</th></t<>		1.0135	13.720	15 709
815 1 0230 25,078 20,438 766 1,0189 22,287 18,072 750 1,0194 23,573 17,679 643 1,0135 18,650 11,993 2560 1,0167 9,313 23,841 1010 1,0246 23,170 23,404 2000 1,0145 10,857 21,714 1560 1,0130 11,059 16,588 990 1,0177 17,936 17,757 1050 1,0298 21,671 22,754 1480 1,0200 13,800 20,420 1935 1,0169 15,173 20,360 935 1,0228 20,720 32,500 1740 1,0260 35,550 61,857 1050 1,0216 16,210 17,040 1360 1,0216 16,210 17,040 1360 1,0216 16,210 17,040 14,590 19,842 24,150 22,945			20.087	17.476
766 1.0184 22.287 18.072 750 1.0194 23.573 17.679 643 1.0135 18.650 11.993 2560 1.0167 9.313 23.841 1010 1.0246 23.170 23.404 2000 1.0145 10.857 21.714 1500 1.0130 11.059 16.588 990 1.0177 17.936 17.757 1050 1.0298 21.671 22.754 1480 1.0200 13.800 20.420 935 1.0216 15.173 29.360 935 1.0228 20.720 32.500 1740 1.0260 35.550 61.857 1050 1.0216 16.210 17.040 1380 1.0190 14.590 19.842 950 1.0224 24.150 22.945 1510 1.0294 24.150 22.945 1510 1.0288 26.766 17.120 <	815	1.0230	25.078	20,438
643 1.0135 18 650 11.993 2560 1.0167 9.313 23.841 1010 1.0246 23.170 23.404 2000 1.0145 10.857 21.714 1500 1.0130 11.059 16.588 990 1.0177 17.936 17.757 1050 1.0298 21 671 22.754 1480 1.0200 13.800 20.420 1935 1.0169 15.173 29.360 935 1.0228 20.720 32.500 1740 1.0260 35.550 61.857 1050 1.0216 16.210 17.040 1360 1.0190 14.590 19.842 950 4.0224 24.150 22.294 950 4.0224 24.150 22.294 950 4.0224 24.150 22.284 915 1.0130 8.010 8.754 1067 1.0236 22.200 22.830 <td< th=""><th>766</th><th></th><th>22.287</th><th>18.072</th></td<>	766		22.287	18.072
1.0167	643			
1010	2560	1.0167	9.313	23.841
1500				23.404
990		1.0145	10.857	
1050 1.0298 21 671 22.754 1480 1 0200 13.800 20.420 1935 1.0169 15.173 29.360 935 1.0228 20.720 32.500 1740 1 0260 35.550 61.857 1050 1.0216 16.210 17.040 1360 1.0190 14.590 19.842 950 4.0224 24.150 22.945 1510 1.0094 12.320 18.603 640 1.0288 26.766 17.120 915 1.0130 8.010 8.754 1067 1.0236 22.200 22.830 1496 1.0195 14.880 22.320 1200 1.0200 14.200 17.040 1738 1.0197 16.790 29.210 950 1.0200 21.930 20.830 1750 1.0185 19.970 20.800 1750 1.0185 19.133 20.140	990	1.0177	17.936	17.757
1935 1.0169 15.173 29.360 935 1.0228 20.720 32.500 1740 1.0260 35.550 61.857 1050 1.0216 16.210 17.040 1360 1.0190 14.590 19.842 950 4.0224 24.150 22.945 1510 1.0094 12.320 18.603 640 1.0288 26.766 17.120 915 1.0130 8.010 8.754 1067 1.0236 22.200 22.830 1496 1.0195 14.880 22.320 1200 1.0200 14.200 17.040 1738 1.0197 16.790 29.210 950 1.0185 19.970 20.830 1950 1.0185 19.970 20.800 1750 1.0161 15.200 26.460 3500 1.0185 19.133 20.140 1500 1.0170 15.730 23.580		1.0298	21 671	22.754
935 1.0228 20.720 32.500 1740 1.0260 35.550 61.857 1050 1.0216 16.210 17.040 1360 1.0190 14.590 19.842 950 4.0224 24.150 22.945 1510 1.0094 12.320 18.603 640 1.0288 26.766 17.120 915 1.0130 8.010 8.754 1067 1.0236 22.200 22.830 1496 1.0195 14.880 22.320 1200 1.0200 14.200 17.040 1738 1.0197 16.790 29.210 950 1.0200 21.930 20.830 960 1.0185 19.970 20.830 1750 1.0161 15.200 26.460 1500 1.0185 19.133 20.140 1500 1.0170 15.730 23.580 1500 1.0177 17.260 25.890 <				20.420
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	935	1.0228	20.720	
1360				61.857
950				17.040
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	950	4.0224	24.150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1510			18.603
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	915		8.010	
1200 1.0200 14.880 22.320 1738 1.0197 16.790 29.210 950 1.0200 21.930 29.210 960 1.0185 19.970 20.830 1750 1.0161 15.200 26.460 3500 1.0076 3.900 13.650 1050 1.0185 19.133 20.140 1500 1.0170 15.730 23.580 1500 1.0310 34.600 18.340 1500 1.0177 17.260 25.890 1180 1.0263 13.866 16.360 1260 1.0240 21.290 26.500 1500 1.0180 16.874 25.311 3000 1.0180 16.874 25.311 2890 1.0160 16.170 48.510 950 1.0270 27.900 26.500 1575 1.0175 18.184 28.640 950 1.0236 22.920 21.972	1067	1.0236	22.200	22.830
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				22.320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1738			17.040
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			21 930	20.830
3500 1.0076 3.900 13.650 1050 1.0185 19.133 20.140 1500 1.0310 34.600 18.340 1500 1.0177 17.260 25.890 1180 1.0263 13.866 16.360 1260 1.0240 21.290 26.500 1500 1.0180 16.874 25.311 3000 1.0050 5.470 16.410 2890 1.0160 16.170 48.510 950 1.0270 27.900 26.500 1150 1.0159 17.999 20.699 1575 1.0175 18.184 28.640 950 1.0225 22.920 21.972 1500 1.0236 22.987 34.481 3015 1.0077 4.154 12.524 1000 1.0254 17.880 17.880 1750 1.0133 12.650 22.138				20 800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3500	1.0076		13.650
530 1.0310 34.600 18.340 1500 1.0177 17.260 25.890 1180 1.0263 13.866 16.360 1260 1.0240 21.290 26.500 1500 1.0180 16.874 25.311 3000 1.0050 5.470 16.410 2890 1.0160 16.170 48.510 950 1.0270 27.900 26.500 1150 1.0159 17.999 20.699 1575 1.0175 18.184 28.640 950 1.0225 22.920 21.972 1500 1.0236 22.987 34.481 3015 1.0077 4.154 12.524 1000 1.0254 17.880 17.880 1750 1.0133 12.650 22.138			19.133	20.140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
1260 1 0240 21 290 26.500 1500 1 0180 16.874 25.311 3000 1 .0050 5 .470 16.410 2890 1 .0160 16.170 48.510 950 1 .0270 27 .900 26.500 1150 1 .0159 17 999 20.699 1575 1 .0175 18.184 28.640 950 1 .0225 22.920 21.972 1500 1 .0236 22.987 34 481 1000 1 .0254 17.880 17.880 1135 1 .0088 5 .240 5.950 1750 1 .0133 12 650 22 .138		1.0177	17.260	
1500 1 0180 16.874 25.311 3000 1.0050 5.470 16.410 2890 1.0160 16.170 48.510 950 1.0270 27.900 26.500 1150 1.0159 17.999 20.699 1575 1.0175 18.184 28.640 950 1.0225 22.920 21.972 1500 1.0236 22.987 34.481 1000 1.0254 17.880 17.880 1135 1.0088 5.240 5.950 1500 1.0133 12.650 22.138		1.0203		16.360
3000 2890 1.0050 1.0160 5.470 16.410 16.410 48.510 950 1150 1.0270 1.0159 27.900 17.999 26.500 26.500 1575 950 1.0175 1.0256 18.184 22.920 28.640 21.972 1500 3015 1.0236 1.0077 22.987 4.154 34.481 12.524 1000 1135 1.0088 1.0088 5.240 5.950 17.880 5.950 1750 1500 1.0133 1.0133 12.650 1.0137 22.138	1500	1 0180		26.500
950 1.0270 27.900 26.500 26.500 1575 1.0175 18.184 28.640 27.972 1500 1.0236 22.920 21.972 3015 1.0077 4.154 12.524 1135 1.0088 5.240 17.880 17.880 17.500 1.0133 12.650 22.138	3000	1.0050	5.470	16.410
1150 1575 950 1500 1			16.170	48.510
1575 950 1.025 1.025 1.025 22.920 21.972 21.972 22.987 34 481 1000 1.025 1.0077 4.154 1135 1.0088 1.00	1150	1.0159	17.999	20.500
1500 3015 1.0077 1000 1.0254 1135 1.0088 1.0088 1.0088 1.0088 1.0133			18.184	28.640
3015 1000 1100 1135 1750 1750 1500 1 10137 1 1007 1 1007 1 10133 1 10133 1 10137 1 101	1500		22.920	21.972
1000 1135 1750 1500 1 10133 1 17.880	3015	1.0077	4.154	12.594
1750 1.0133 12 650 22.138	1135		17.880	17.880
1500 1 0107 1 12 200 1 44,130	1750	1.0133	12 650	5.950
4500 4 0000 23.294	1500	1.0197	15.529	23.294
1910 1.0150 20.719 31.078	1210	1.0220	20.719	31.078
1010 1.0275 26.344 14.865	1010	1.0275	26.344	
1500 1 0200 12.685 9.967			12.685	9.967
1558 1.0175 12.321 18.484	1558			18.484
865 1.0246 13.618 21.108 26.025 22.466				21.108 22.466
1344 1.019 17.441 04.500				
1344 1.019 17.441 21.598	1011	1.019	17.441	1 21.598

On voit, par là, qu'en ce qui concerne Alger, comme moyenne de soixante-deux expériences portant sur des adultes de diverses races, le nombre formé par le chiffre des centièmes et par le chiffre des millièmes de la densité est intermédiaire, à deux unités près, entre le poids en grammes d'urée par litre et le poids en grammes d'urée par vingt-quatre heures.

B. - Urines glucosiques

D'après les tables de Windisch (1), une variation de 0,26 dans le tant pour 100 de glucose fait varier de 0,001 la densité des solutions aqueuses de cette substance.

Si donc il était permis de considérer une urine diabétique, de densité D, comme une urine normale de densité d connue d'avance, simplement additionnée de x gr. pour 1000 de glucose, on aurait:

$$x = \frac{(D-d) 2.6}{0.001} = (D-d) 2,600$$

Mais, comme il y a forcément ici une incertitude sur la valeur numérique de d, on a cherché à tourner la difficulté en détruisant le sucre par la fermentation alcoolique: on a lditionne donc l'urine d'un peu de levure pure; on laisse fermenter un temps suffisant (de six à vingt-quatre heures) à une température voisine de 25°; puis, dès que le liquide est devenu clair, après dépôt de la levure au fond du vase, on en prend la densité d. Il est bon de recourir, pour cela, au picnomètre ou à l'uromètre de Lohnstein.

L'uromètre ordinaire ne saurait être recommandé à cause du changement qui est sûrement survenu dans la pression

⁽¹⁾ Taffel zur Ermittelung des Zuckergehaltes Wässeriger Zuckerlösungen aus der Dichte bei 15°.

moléculaire du liquide par suite de la présence des produits de la fermentation. Comme, du reste, ces produits ne sont pas sans une certaine influence sur la densité elle-même, on a cherché à tenir compte de la perturbation qu'ils causent en substituant, dans la formule ci-dessus, au coefficient 2600 le coefficient empirique 2190.

Je n'ai fait aucune vérification expérimentale de cette méthode qui, d'après les recherches de Neubauer, serait aussi exacte que les autres (1).

Pour calculer approximativement, en fonction de la densité d, la quantité de glucose contenue dans les urines de vingt-quatre heures, Bouchardat (2) a proposé, au début de la maladie, la formule:

$$2000 (d-1) n - 50$$

puis, quand le traitement étant commencé, il se produit une plus grande quantité d'urée :

$$2000 (d-1) n-60$$

Dans la table de la page suivante j'ai réuni sur ce point, à titre comparatif, les résultats de vingt-quatre observations personnelles; la glucose a été dosée par voie polarimétrique.

La comparaison entre les résultats trouvés expérimentalement et les résultats calculés d'après la formule de Bouchardat montre sans doute des divergences quelquefois notables quand on considère isolément chaque expérience; mais, dans l'ensemble des vingt-quatre expériences, il s'est établi une compensation telle que les deux résultats concordent à une unité près.

⁽¹⁾ De l'urine et des sédiments urinaires. — Traduction française par L. Gautier, 1877, p. 269.

⁽²⁾ De la glycosurie, p. xxiv, Paris, 1875.

DE 24 HEURES	DENSITÉ	PAR 24 HEURES	
THE PROPERTY OF		PAR 24 HEURES	CALCULÉE D'APRÈS (1)
1260cm3 1480 3000 4250 1090 3500 930 1990 8500 1590 1600 2000 2850 2930 2715 1304 1546 1600 1166 2560 1295	1.0294 1.0312 1.0271 1.0380 1.0307 1.0320 1.0270 1.0161 1.0367 1.0203 1.0230 1.0230 1.0350 1.0240 1.0350 1.0237 1.0231 1.0231 1.0231 1.0260 1.0195 1.0298	10.975 46.624 101.331 255 100 4.937 183.750 4.787 6.146 662.680 3 220 3.294 115.425 3.465 83.287 157.400 11.599 31.303 3.294 2.400 34.263 8.748	24.088 42.352 112.600 273.000 16.926 174.000 11.5 14.078 573.900 14.554 23.600 82.000 35.500 90.640 140.050 4.768 23.280 23.920 10.632 45.860 27.180
2500 1540 3000	1.0271 1.0360 J.0365	112,215 48 600 185,000	85.500 61.020 169.000
2341cm3	Moy-	ennes 86 66	85.71

C. - UPINES ALBUMINEUSES

Diverses formules ont été proposées pour calculer la proportion d'albumine des urines albumineuses en fonction de leurs densités.

Celles de Lang, Hœbler, Bornhardt (1), basées sur la différence entre la densité D de l'urine avant et la densité d de l'urine après l'élimination de l'albumine par la chaleur, sont de la forme :

$$x = (D - d) k$$

⁽¹⁾ Zeitsch. f. analyt. chem., VII, 510; IX, 149.

où le coefficient k égale 2100 d'après Hæbler et 4150 d'après Bornhardt.

Je n'ai pas soumis ces coefficients au contrôle de l'expérience; mais d'après les recherches de Neubauer (1) confirmées par celles de Stscherlakoff et Schmojakoff (2), le premier serait absolument faux, et le second, même en procédant avec le plus grand soin, ne donnerait des résultats passables que si l'urine ne renferme pas des quantités trop faibles d'albumine.

Rünneberg a indiqué la formule :

$$x = \frac{3}{8}$$
 (D - 1000) - 2,8

comme donnant à 0,001 près le poids en grammes d'albumine par litre d'urine!

M. Arm. Gautier (3) ne cite cette formule que sous les plus expresses réserves.

URINE	MALE AND PERSON	x					
DE 24 HEURES	D	TROUVĚ	CALCULÉ				
643cc 2560 915 1390 915 1164 1590 1870 2930 2000 455 2000 1010	1.0135 1.0165 1.0138 1.018 1.013 1.0137 1.015 1.013 1.024 1.0097 1.023 1.0112 1.0275	1.2 0.6 0.78 1.28 0.71 0.25 0.65 0.4 0.185 2.28 2.4 0.25 0.25	2.26 3.59 2.3 3.95 2.07 2.34 2.83 2.08 6.2 1.34 5.82 1.4 8.4				
	Moye	ennes					
1495	1.0162	0.94	3.43				

⁽¹⁾ De l'urine et des sédiments urinaires, 1877, p. 288.

⁽²⁾ Zeitsch. f. analyt. chem., IX, 537.

⁽³⁾ Cours de chimie, 1892, III, p. 666.

Dans le tableau de la page précédente se trouvent consignés les résultats de treize expériences personnelles où l'albumine a été dosée par coagulation et pesée.

Que l'on considère les moyennes seules ou chaque expérience isolément, on voit que les résultats de mes dosages sont en désaccord constant avec les résultats déduits de la formule de Rünneberg.

CHAPITRE II

L'EXTRAIT URINAIRE

Sa relation avec la densité

1° L'EXTRAIT URINAIRE

Définition. — L'extrait urinaire est le résidu des matières primitivement dissoutes dans l'urine, après élimination de H²O par évaporation et dessiccation.

Des transformations chimiques interviennent pendant cette opération.

Tant que durent en effet l'évaporation et la dessiccation à chaud, le phosphate monosodique détermine l'hydrolyse partielle, mais continue, de l'urée, d'où dégagement incessant de CO² et d'AzH³, cette dernière substance étant sans doute d'abord fixée à l'état de phosphate sodo-ammonique que la chaleur dissout ensuite au fur et à mesure.

Il y a également perte de CO² par transformation des bicarbonates en carbonates neutres.

Aussi l'extrait trouvé n'est-il pas absolument l'extrait vrai, et sa quantité dépend-elle, à des degrés divers, de toutes les conditions de l'expérience; aussi faut-il, pour avoir des résultats rigoureusement comparables, s'efforcer de rendre ces conditions identiques dans toutes les expériences: aussi la

définition de l'extrait urinaire doit-elle avoir forcément un certain caractère conventionnel.

L'évaporation peut avoir lieu à l'air libre ou dans un espace limité, à la pression ordinaire ou sous pression réduite, à la température ordinaire ou à une autre température, dans un vase quelconque ou dans un vase déterminé, sous une surface quelconque ou sous une surface déterminée, sur une quantité quelconque ou sur une quantité déterminée d'urine.

Dans un travail ultérieur, je me propose d'étudier isolément l'influence de chacune de ces conditions.

Conditions expérimentales. — Pour le moment, voici, bien spécifiées, les conditions sous lesquelles j'ai exécuté les déterminations qui font l'objet de la présente publication.

Ces conditions ne sont pas sans rappeler celles que Windisch a minutieusement décrites pour la détermination de l'extrait du vin (1).

J'opère, du reste, avec le matériel décrit par cet auteur (capsule de platine, étuve, etc.) (2).

. La capsule de platine dont je me suis servi avait en effet 85^{mm} de diamètre, 20^{mm} de hauteur et environ 75^{cm3} de capacité.

Elle pesait exactement		21 gr.	8192
et pouvait être fermée par un	couvercle pesant	14,	0222
	Ensemble	35,	8111

J'ai eu soin d'opérer sur un poids p d'urine susceptible de donner un poids p d'extrait ne dépassant pas 1 gram. 5, soit environ 25°m³ pour une urine de densité ordinaire, propor-

⁽¹⁾ Die chem. Untersuch u. Beurth d. Weines, S, 56 u. s. w.

⁽²⁾ Idem. S. 59.

tionnellement, davantage pour une urine moins dense, moins

pour une urine plus dense.

Je versais au moyen d'une pipette jaugée le liquide dans la capsule de platine; je couvrais immédiatement celle-ci, et pesais le tout le plus rapidement possible. Le poids trouvé, diminué de 35,8414, donnait en grammes la valeur numérique de p.

Je portais la capsule dans l'étuve spéciale fonctionnant comme bain-marie, l'eau étant en pleine ébullition; je la laissais une heure et demie; puis je l'introduisais dans l'une des chambres de l'appareil, entourées sur cinq faces d'eau bouillante ou de vapeur d'eau, et fermées chacune, sur la sixième face, par une porte munie de quatre trous pour la circulation de l'air; je l'y laissais quatre heures, je la retirais alors, la couvrais, la laissais refroidir dans l'exsicateur Dupré, puis la pesais rapidement. Le poids trouvé, diminué de 35,8414, me donnait la valeur numérique de p.

t	d ^t	d415	d 15	p	P	r	R	r d 15-1	r d -1	R d 15 -1	R ds -1
23.7 24 22.1	1.002279 1.003103 1.006468 1.012685	1.005243 1.0077 1.014 3 95	1.006103 1.008568 1.015255	24.8856 25.0456 25.2204	0.3351 0.4276 0.7734	17.073 30.666	10.271 13.537 17.204 31.107	2568 2217 2130	2206 2109 2010	2518 2582 2233 2168	2218 2008 2039
21.7 22.7 22.5 23 23	1.021861	1.023439 1.023121 1.023081 1.023919 1.023921	1.024299 1.023981 1.023941 1.024779 1.024781	25.4166 25.3086 25.432 25.4651 25.4346	1.1983 1.1396 1.2156 1.2621 1.2136	47.146 45.028 47.798 49.5619 47.7184	48.860	2011 1947 2071 2072 1995	1932 1877 1997 2000 1942	2102 2059 1993 2119 2121 2043	1985 1921 2043 2048 1972
24.5 22 22.3 23 23	1.023767	1.024841 1.024356 1.024707 1.025847 1.025847	1.025701 1.025216 1.025567 1.026707 1.026707	25.3851 25.4656 25.4756 25.4806 25.4714	1.3776 1.3386 1.2831 1.4113 1.4084	54.268 52.565 50.366 55.387 55.293	51.399 55.614 53.845 51.610 56.819 56.722	2185 2158 2038 2147 2143	2112 2084 1970 2074 2070	2054 2279 2211 2089 2198 2194	2164 2135 2019 2127 2124
22. 21 22 22	1.026733	1.029065	1.029925	25.5926 23.1096 25.5834	1.6086 1.4106 1.5834	62.854 61.042 61.896	54.796 64.681 62.784 63.691	2163 2139	2100	2112 2225 2200 2200	2162 2139
		1.02118	1.02240	Moy	enne	45.199	46.377	2137	2020	2185	2068

En partant des valeurs numériques de p et de p, je calculais le poids r d'extrait pour 1000 gram. d'urine; puis, multipliant le résultat par la valeur numérique trouvée d'ailleurs pour d_4^{15} , j'obtenais le poids R d'extrait pour 1000 ° m³ de liquide.

La table de la page précédente fournit le résultat de mes déterminations.

Perte d'urée. — Pour tenir compte de l'urée perdue par l'hydrolyse pendant la manipulation, Neubauer a proposé d'opérer sur 2 cm³ d'urine contenus dans une nacelle aux deux tiers remplie de fragments secs de verre et placée dans un tube de verre chauffé à la température de l'eau bouillante et traversé par un courant de gaz sec qui va barboter et se débarrasser d'AzH³ dans une solution titrée de H²SO¹. La diminution du titre de cette solution, fait connaître AzH³ et, par suite, le poids d'urée hydrolysée. Ce poids, ajouté à celui qui se déduit de la pesée de la nacelle qui avait été préalablement tarée ensemble avec les fragments de verre, donne l'extrait total correspondant à 2 cm³ d'urine.

Magnier de la Source a proposé de peser 1 à 2 grammes d'urine entre deux verres de montre, d'éliminer H²O à froid par exposition dans le vide sec pendant vingt-quatre heures et de peser de nouveau : la différence entre les deux pesées donne l'extrait correspondant à la prise d'essai.

J'ai opéré sur la même quantité d'urine qu'à l'ordinaire et avec la même capsule de platine; mais, pour éliminer H²O, je me suis servi, comme Neubauer, de la chaleur et d'un courant d'air parfaitement desséché.

Je me suis servi ici de l'appareil à dessiccation de Lonnes. Dans l'enveloppe extérieure j'entretenais de l'eau en pleine ébullition, tandis que, à l'aide d'une trompe Alvergnat, je faisais passer dans la chambre intérieure, où se trouvait sur le support ad hoc la capsule contenant l'urine, un courant d'air soigneusement desséché. Entre l'appareil de Lonnes et la trompe, j'avais intercalé un vase à azote de Fresenius surmonté d'un tube à boule de Reitmair et Stutzer Le vase à azote contenait 20 cm³ de H²SO¹ N/10 destiné à retenir AzH³ et à permettre ensuite, d'après la diminution du titre, de calculer cette ammoniaque et, par suite, l'urée. L'aspiration était réglée de manière à pouvoir compter aisément les bulles d'air qui se succédaient à peu près de seconde en seconde. L'expérience durait huit heures. Je n'ai fait encore que quatre déterminations, elles sont résumées dans la table suivante, π désigne l'urée hydrolysée pour la prise d'essai p; r' et R' représentent les poids d'extrait corrigés, respectivement pour 1000 grammes et pour 1000 cm³ d'urine.

23 1.0 24 1.0 28 1.0	024841 025847	d 15 1.024779 1.025701 1.026707 1.029925	25.4651 25.4269 25.4714 25.5614	$\frac{1.4034}{1.4084}$	$\pi = 0.00$ $\begin{array}{c} -2123 \\ 2350 \\ 2603 \\ 2609 \end{array}$	49.006 55.4935 55.293	57.011 57.177	1.817	56.565 56.722	52.450 58 427	1.862
1.0	Moye 025918	nnes			.00	56.077	57.816	Moyer	201	59.428	4.784

De ces quatre expériences, insuffisantes il est vrai pour une généralisation irréprochable, il résulterait que, pour tenir compte de la perte d'urée pendant l'évaporation et la dessiccation à 100°, il faudrait ajouter au résidu trouvé après élimination de l'eau, 1,739 pour 1000 gr. d'urine et 1,784 pour 1000 cm³ de ce liquide.

2º RELATION ENTRE L'EXTRAIT URINAIRE ET LA DENSITÉ DE L'URINE

E désignant l'extrait urinaire pour $1000 \,\mathrm{d'}$ urine et d la densité de ce liquide, le rapport:

$$\frac{E}{1000 (d-1)} = 2 \qquad \text{(Trapp)}$$

$$= 2,33 \quad \text{(Heser)}.$$

$$= 2,3295 \quad \text{(Neubauer)}.$$

$$= 2,2 \quad \text{(Rabuteau)}.$$

$$= 2,1 \quad \text{(pour les urines très sucrées, Bouchardat)}.$$

$$= 2,3 \quad \text{chez l'adulte (A. Gautier)}.$$

$$= 1,7 \quad \text{chez l'enfant (id.)}.$$

En raison, sans doute, de ce que cette relation n'est qu'approximative, les auteurs négligent généralement de spécifier si E désigne l'extrait urinaire par 1000 cm³ ou par 1000 gr. d'urine. A chacun de ces deux cas correspond cependant une valeur numérique un peu différente du rapport ci-dessus, la première de ces valeurs égalant, d'ailleurs, le produit de la seconde par la densité de l'urine.

Dans la traduction française de l'ouvrage de Neubauer (Paris, 1877), il est question tantôt de 1000 °m³ (p. 201), tantôt de 1000 gr. (p. 335) pour l'application du coefficient 2,3295.

Dans les Éléments d'urologie de Rabuteau, il est dit que le coefficient 2,2 convient pour 1000 gr. d'urine. Ce serait donc, par exemple, le coefficient 2,24 qui conviendrait pour 1000 cm³ d'une urine qui aurait pour densité 1,018.

La valeur numérique du rapport ci-dessus doit d'ailleurs être fonction de la température au même titre que celle de d, qui figure à son dénominateur. Or l'examen du tableau de la p. 23 montre que l'influence de la température peut porter sur plusieurs unités de la troisième décimale du nombre qui représente la densité. Donc, pour obtenir toute la précision possible et avoir des résultats rigoureusement comparables entre eux, il importe de ramener d'abord toutes les densités à une même température, conventionnellement adoptée. C'est précisément ce que j'ai fait. Le tableau de la page 43 donne les valeurs numériques de ce rapport:

aussi bien pour chaque expérience en particulier que pour les moyennes générales.

En moyenne, mes nombres ne s'écartent pas beaucoup du coefficient de Trapp; mais, coïncidence digne de remarque, si dans les rapports précédents j'introduis en dénominateur la valeur numérique de d_4 (où t est compris entre 22 et 24) j'arrive, en moyenne, à:

$$\frac{\frac{r}{1000 \ (d_4^t - 1)}}{\frac{R}{1000 \ (d_4^t - 1)}} = 2,28$$

nombres qui reproduisent sensiblement ceux de Hæser et de Neubauer.

En tenant compte de la perte d'urée par hydrolyse, je trouve comme moyenne des quatre expériences résumées dans le tableau précédent:

$$\frac{r'}{1000 \ (d_{4}^{15} - 1)} = 2,230 \qquad \frac{R'}{1000 \ (d_{4}^{15} - 1)} = 2,293$$

$$\frac{r'}{1000 \ (d_{15}^{15} - 1)} = 2,159 \qquad \frac{R'}{1000 \ (d_{45}^{15} - 1)} = 2,219$$

CHAPITRE III

LE COEFFICIENT DE DILATATION

En construisant le graphique des résultats expérimentaux consignés dans la table de la page 23, puis en procédant par voie d'interpolation, j'ai dressé la table de la page suivante.

Cette table donne, à partir de la 3^{mo} colonne inclusivement, pour chaque degré de température entre 0° et 35° les densités d't de douze types d'urines dont les densités à 15° croissent, du 1^{cr} au 12° type, par cinq unités de la 3° décimale.

La 2º colonne contient les densités d_{15} de H²O. J'ai obtenu les nombres qui y figurent en transformant par le calcul en densités d_{15} les densités d_{4} données par Rosetti (1).

La 1re colonne indique les températures.

Résolvant ensuite, pour chacune des 13 colonnes de cette table qui se rapportent à H²O et à l'urine, trois équations de la forme

$$\frac{d_{\circ} - d_{t}}{d_{t} t} = \frac{V_{t} - V_{\circ}}{V_{\circ} t} = x + y t + z t^{2}$$

1 1	ХП	1.06288 2.06288 1.05394 1.053883 1.05388
300	XI	1.05780 1.05686 1.05575 1.05575 1.05586 1.05598 1.05994 1.04870 1.04870
om o	×	1.08983 1.03135 1.03135 1.04989 1.04989 1.0494
de	IX	1.04688 1.04688 1.04688 1.0488 1.0488 1.0404 1.0408
	IIIA	1.04938 1.04090 1.04098 1.08884 1.08885 1.08885 1.08888 1.0888 1.08888 1.08888 1.08888 1.08888 1.08888 1.08888 1.08888 1.0888 1.08888 1.0888
	VIII	1.0858 1.0858
dts	IV.	1.0828 1.0808 1.0808 1.0808 1.0818 1.
	N.	1.02690 1.02595 1.02595 1.0207 1.0207 1.01988 1.01988 1.01988
	IV.	1.01.02.02.02.02.02.02.02.02.02.02.02.02.02.
	Ш	1.019888888901 1.01988888901 1.01988888901 1.01988889999999999999999999999999999999
	П	1.004888 1.0008888 1.0068888 1.0068888 1.0068888 1.0068888 1.0068888 1.0048888 1.00488888888888888888888888888888888888
	I	1.00699 1.00999 1.00999 1.00999 1.00999 1.00999 1.00999 1.00999
	B#0	0.99888 0.9988 0.9988 0.9988 0.9988 0.9988 0.99888 0.99888 0.99888 0.99888 0.99888 0.99888 0.99888 0.9
	+	0-00-40-0-00-14645-0-00-09-488-888-888-88-88-88-88-88-88-88-88-88-

où, je prenais pour t, respectivement les nombres 10, 20 et 30, j'ai obtenu pour H²O et chacun des douze types d'urines, les valeurs numériques des inconnues x, y, z. Au moyen de ces valeurs numériques, il est ensuite facile de calculer, pour chaque cas particulier, le coefficient moyen de dilatation pour un intervalle quelconque de température.

Les treize formules empiriques qui suivent résument mes recherches sur cette question et représentent respectivement les dilatations de H^{*}O et de mes douze types d'urines entre 0° et 35°.

```
H*O V = 1 - 0,000001178(t-4) + 0,0000765(t-4)2 - 0,00000005085(t-4)3
   I V = 1 - 0,000334812 t
                                 + 0,00005077 12
                                                   - 0,0000013013 t3
   II V = 1 - 0,00000061 t
                                 + 0,00000742 t2
                                                   - 0,000000038 t3
      V = 1 + 0.0000040986 t
                                 + 0,000007376 t2
                                                   - 0,000000040986 43
     V = 1 + 0,000101523 t
                                 - 0,000004307 t2
                                                   + 0,0000002481 t3
      V = 1 + 0,00002239 t
                                 + 0,000007547 t2
                                                   - 0.00000005356 t3
  VI V = 1 + 0.00003081 t
                                 + 0,000007709 t2
                                                   - 0,00000006155 t3
 VII V = 1 + 0.00004646 t
                                 + 0,000006793 t2
                                                   - 0,0000000352 t3
VIII V = 1 + 0,000050376 t
                                 + 0,0000076256 t2
                                                  - 0,00000006712 t3
  IX V = 1 + 0,000169998 t
                                 + 0,0000089465 t2
                                                  - 0,00000048295 t3
   X V = 1 + 0,000183353 t
                                 - 0,000009548 t2
                                                   + 0,0000004988 t3
  XI V = 1 + 0,0001960 t
                                - 0,00001001 t2
                                                  + 0,00000051035 13
 XII V = 1 + 0.0002062 t
                                                  + 0,00000051649 t3
```

CHAPITRE IV

L'INDICE DE RÉFRACTION

Résultats expérimentaux. — Pour l'urine, les nombres qui composent l'échelle des indices de réfraction diffèrent beaucoup moins entre eux que les nombres qui composent l'échelle des densités.

C'est ce que montre la table :

Observations	d ¹⁵	n	Différence	R	Jao el	m
OBSCITATIONS.	ph 10	dda'b a	antômo lo	Trouvé	Calculé	reilling.
I II III IV V VI VIII VIII IX X XI XIII XIV XVI XVI	1.0000 1.0041 1 0077 1.0144 1.0193 1.0231 1.0235 1.0236 1.0239 1.0247 1.0249 1.0258 1.0259 1.0260 1.0260 1.0285 1.0290	1.3315 1.3341 1.3346 1.3352 1.3373 1.3488 1.3400 1.3401 1.3404 1.3405 1.3405 1.3405 1.3410 1.3412 1.3414 1.3423 1.3424 1.3424	0.0016 21 27 48 63 75 76 76 79 80 84 85 87 89 98	0.000 10.271 13.537 17.204 31.107 40.631 48.250 48.860 48.901 50.747 51.610 53.845 54.796 55.614 56.722 62.784 63.691 63.729	0 000 10.262 13.469 17.317 30.787 40.408 48.105 48.746 50.671 51.312 53.877 54.519 55.801 57.084 62.847 63.499 63.499	0 5 6.1 9.9 15 20 24 24.3 24.3 25.3 26.3 26.9 27.6 28.2 31.4 31.4

On y voit, du premier au dix-huitième terme, la densité croître de 0,0291, alors que l'indice de réfraction ne croît que de 0,0099.

Les dix-huit indices qui figurent dans cette table sont donc resserrés entre des limites trois fois plus rapprochées que les dix-huit densités correspondantes.

En raison de cela, telle variation qui, dans l'échelle des densités, affectera déjà une décimale, de rang m, pourra, dans l'échelle des indices, n'affecter que la décimale de rang m+1 ou de m+2. Aussi, pour obtenir avec les indices autant de sensibilité pratique qu'avec les densités, faudrait-il par exemple mesurer les premiers avec six décimales, pendant qu'on mesurait les densités correspondantes avec quatre décimales seulement. C'est un désavantage pour les indices; car, pour obtenir dans leur mesure un tel degré de précision, il faudrait disposer de l'outillage et du temps.

Réfractomètres employés. — J'ai opéré avec les réfractomètres d'Abbe, de Fery, de Piltschickof et d'Amagat. Ces appareils ont le mérite de fournir le résultat cherché en un temps très court et avec peu de matière: quelques gouttes suffisent avec les réfractomètres d'Abbe et de Piltschickof.

La graduation du réfractomètre d'Abbe donne directement l'indice avec la troisième décimale; l'opérateur peut apprécier approximativement la quatrième.

Les réfractomètres de Féry, de Piltschickof et d'Amagat sont munis de graduations spéciales.

Avec le premier, j'ai opéré en laissant dans l'air la cuve chargée d'urine. Le zéro de la graduation avait été amené à correspondre à l'indice 1 (cuve pleine d'air); une division m correspondait à l'indice

1 + 1, 1 m.

Avec le Piltschickof, j'avais, au préalable, dressé la courbe des indices en fonction de la graduation de l'appareil.

Je me suis surtout bien trouvé, dans le cas spécial de l'urine,

d'un petit réfractomtère Amagat, construit par Th. Dubosq, pour déterminer la concentration des solutions salines.

La graduation de ce réfractomètre comprenait cent divisions. Le zéro correspondait à l'indice 1,3325 et le point 100 à l'indice 1,3642. Cette recherche embrassait donc tous les cas possibles pour l'urine.

J'ai d'abord observé onze liquides convenablement choisis et noté les divisions correspondantes du réfractomètre. La température a été de 22° à 25°. Voici les résultats:

INDICES	DIVISIONS [DU RÉFRACTOMÈTRE	INDICES	DIVISIONS DU RÉFRACTOMÈTRE
1.3325 1.3333 1.3349 1.3366 1.3399 1.3410	0 3 5 6 8 23.5 27	1.3424 1.3426 1.3487 1.3531 1.3641	30.5 32 51 65 94

J'ai construit le graphique de ces résultats ; j'ai ainsi obtenu une droite satisfaction de l'équation :

$$tg \ \alpha = \frac{n-n'}{m-m'} = 0,000317$$

Une urine marquant m à mon réfractomètre avait donc pour indice :

$$n = 1.3325 + 0,000317 m$$

La septième colonne de la table de la page 51 donne les valeurs de m pour les indices de n consignés dans la troisième colonne. Ces indices sont en général les moyennes d'observations faites avec les divers réfractomètres susmentionnés.

RELATION ENTRE L'INDICE DE RÉFRACTION ET L'EXTRAIT URINAIRE.

Mon premier soin a été de chercher une relation entre l'indice n et l'extrait urinaire R rapporté à $100^{\text{cm}3}$ d'urine.

La comparaison des nombres compris dans les troisième et cinquième colonnes de la table (p. 51) m'a montré qu'à une variation de n égale à 0,0001 correspondait une variation de R égale en moyenne à 0,6414.

D'où, pour exprimer la relation que je cherchais entre n et R, la formule:

$$R = (n - 1,3325) 6414$$

C'est au moyen de cette formule qu'ont été calculés les nombres consignés dans la sixième colonne de la table : (p. 51).

La comparaison de ces nombres avec ceux de la colonne précédente montre entre eux une concordance aussi satisfaisante que possible. Cette concordance aurait été parfaite si j'avais pu compter sur une décimale de plus dans la mesure des indices.

RELATION ENTRE L'INDICE DE RÉFRACTION ET

Une fois en possession de la relation précédente, il m'a suffit d'égaler la valeur de R en fonction de n à la valeur de R en fonction de d_4^{15} pour obtenir une relation très simple entre l'indice de réfraction et la densité de l'urine.

J'ai en effet :

$$(n-1,3325)$$
 6414 = $(d_4^{15}-1)$ 2185

d'où :

$$\frac{d-1}{n-1.3325} = 2,935$$

La variation de la densité égale donc 2935 fois la variation correspondante de l'indice de réfraction. C'est la justification de ce qui a été dit au début de ce chapitre.

Grâce à cette relation, on pourrait à la rigueur se dispenser de mesurer n en mesurant d ou réciproquement se dispenser de déterminer d en déterminant n.

Un simple calcul faisant le reste, permettrait de tirer la valeur de n en fonction de celle de d, ou réciproquement.

Or, avec les réfractomètres pratiques actuels, rien n'est plus simple et plus rapide que la mesure d'un indice de réfraction, et, au surplus, il y a ici l'avantage, qui peut quelquesois être très précieux, de pouvoir obtenir une donnée plus exacte tout en opérant sur une quantité insignifiante de matière.

CHAPITRE V

LA COHÉSION

Les qualités des gouttes

1º LA COHÉSION

Je me suis proposé de mesurer la cohésion de l'urine par la force capable d'en amener la rupture sous la section de 1^{cm2}.

Pour atteindre ce but, je suspendais, dans une position horizontale, des disques de verre au plateau à densité d'une balance aréothermique Becker's Sons fonctionnant comme balance hydrostatique. Après avoir équilibré exactement ces disques, j'abaissais doucement le fléau jusqu'à contact du verre et du liquide contenu dans un petit cristallisoir placé juste au-dessous. Je déposais alors, avec beaucoup de précaution, surtout vers la fin, des poids dans l'autre plateau jusqu'à rupture de la colonne liquide soulevée par adhésion. Je divisais le poids de rupture par la surface du disque exprimée en centimètres carrés: le quotient représentait le nombre cherché.

J'ai d'abord opéré sur H°O. Le thermomètre marquait 23°. Le tableau ci-après résume mes expériences:

DISC	QUES	POIDS DE	RUPTURE
DIAMÈTRE	SURFACE	DISQUE ENTIER	1 cm2
3 ^{cm}	7cm ² 0686 12 5664 19 6350 28 2744	3gr 44 6 103 9 537 13 79	0sr 486 0 486 0 486 0 486

Chose digne de remarque, le nombre 0,486 représente à très peu près le poids de dix gouttes d'eau données par le compte-gouttes normal. Cela signifierait que la section de rupture de l'eau, dans ce compte-gouttes, ne doit pas différer sensiblement de 0^{cm2},1 et que, sous cette section, le poids de la goutte d'eau, à la température de 23°, serait 0 gr. 0486.

Disposant d'un compte-gouttes Abati que je m'étais procuré précisément pour l'étude physique de l'urine et d'autres liquides, j'ai, dans cinq expériences consécutives, pris le poids de vingt gouttes d'eau. J'ai trouvé:

	T.	ab.	on	1216								0,9653
	II	i	10	100	nÀ	100	i	10	6	14	(h	0,9757
	III.	61	111	1	di	in	10	i B	i		1	on Charles of continue
	111.	i i	10	idi	bi	oi	i		in			0,9801
	IV.	31			-				-	1		0,9754
	V.	1										0,9649
				To	tal							4,8654
				Mo	ye	nn	e.	1				0,9731
d'où, poids	d'une	ge	out	te .		116	112	36			11.	0,04865

C'est juste le nombre trouvé plus haut pour représenter le poids de rupture, autrement dit pour mesurer la cohésion de H²O, sous la section de 0^{cm²}1.

Dans ces conditions, j'ai trouvé beaucoup plus simple d'opérer avec le compte-gouttes Abati qu'avec les disques. Ce compte-gouttes me semble d'ailleurs réaliser l'optimum des conditions désirables.*

C'est une sorte de pipette ayant à peu près 10 centimètres de longueur totale; sa partie rensiée est une sphère d'environ 20^{cm_3} de capacité; son tube supérieur, rodé à l'émeri et percé latéralement d'un petit trou, reçoit un bouchon de verre également percé d'un petit trou que l'on peut, par simple rotation du bouchon, amener ou non en coïncidence avec le premier; on a ainsi, la pipette étant garnie, le moyen de permettre ou d'arrêter l'écoulement du liquide.

La pipette peut être reçue dans un tube à peser fermé par un bouchon à l'émeri et présentant un rétrécissement annulaire à partir de son quart inférieur. Une fois en place, la pipette se trouve en position verticale, sa sphère appuyée sur le rétrécissement du tube.

Le tube est d'ailleurs à fond plat, ce qui lui permet de se tenir debout, sans support, sur le plateau de la balance.

Pour opérer, on garnit la pipette; on la ferme en tournant convenablement le bouchon; on l'enferme dans son étui; on met le tout sur le plateau de la balance; on tare exactement; on retire la pipette; on laisse écouler au dehors le nombre voulu de gouttes; on replace le bouchon en position de fermeture; on remet dans l'étui et on rétablit l'équilibre par des poids marqués. Ceux-ci représentent le poids des gouttes écoulées.

Cette façon de procéder a l'avantage d'éviter l'erreur résultant de la perte que l'évaporation occasionne quand on pèse directement le liquide sorti du compte-gouttes.

C'est donc cette méthode que j'emploierai désormais pour étudier la cohésion non seulement de l'urine, mais encore d'autres liquides et dissolutions.

Jusqu'ici le temps m'a manqué pour cette étude et je n'ai actuellement qu'une seule détermination faite, à la tempéra-

ture de 23°, sur une urine pour laquelle $d_4^{15}=1,025$. J'ai trouvé:

Voici maintenant le résumé de quelques déterminations sur l'urine par la méthode des disques.

URINE	DISQUES	POIDS DE RUI	PTURE POUR
d 15	π r ²	π12	1 cm ²
1.0052 1.0077	19cm ² 635 28, 2744	8gr00 11. 50	0.407 0.407
1 0234 1.0248	19. 635 28. 2744	7. 97 11. 48	0.406 0.406
1.0250 1.0258	19. 635 12. 5664	11. 44 7. 945 5. 10	0.405 0.406 0.406

D'après ces résultats, la cohésion de l'urine, dans mes limites expérimentales, serait représentée par un nombre constant, indépendant de la composition et de la densité! Même en me gardant d'extrapoler, je n'oserais formuler une telle conclusion sans réserves expresses de plus ample vérification ultérieure.

La seule chose que confirment sûrement mes expériences, c'est que la cohésion de l'urine est inférieure à celle de l'eau.

2°. LES QUALITÉS DES GOUTTES

Sous ce titre, je me proposais d'étudier le poids, le volume et le nombre des gouttes obtenues, dans des conditions expérimentales bien déterminées, avec des urines de composition qualitative et quantitative quelconques. J'ai dû, faute de temps, renvoyer ce travail à date ultérieure. J'ai cependant fait quelques déterminations sur le nombre des gouttes comparativement avec la densité.

J'ai opéré avec un compte-gouttes Duclaux, venant de chez Ducretet.

Le volume marqué sur la pipette était 5cm3. J'ai opéré à la température du laboratoire; elle a oscillé entre 23° et 24°8.

L'eau m'a fourni 98,5 gouttes.

Voici les résultats avec l'urine :

HUOT.	THOUSAND STORY	- samura	BEING
	d 15	NOMBRE DE GOUTTES pour 5cm3	300
102.0	1.0052 1.0077 1.0235 1.0248	100 102 104 106	2000.1 7000.1 70:0 7 8620.1 8620.1
201.0	1 0250 1.0258 1.0291	107 108 111.5	1 6528

On voit que le nombre des gouttes augmente en même temps que la densité.

Donc, semble-t-il, le poids de la goutte devrait simultanément décroître!

Cette dernière remarque justifie les réserves précédemment formulées. Décrit en détail la méthode employee; Etudié d'abordmon picnomètre, établi son coefficient de ition, donné la table de ses volumes, pour chaque dep

CHAPITRE VI

d = 2p+++0,001917

RÉSUMÉ ET CONCLUSIONS OF THE PARTY OF THE PA

Déterminé pour chacune d'elles huit densités à des tempétures croissant par 5 entre 0 et 35°;

EN CE QUI CONCERNE LA DENSITÉ

Après avoir insisté sur la nécessité de ramener toutes les déterminations à une même température :

1° Sous le titre définitions, j'ai indiqué la signification des symbôles d_4 et d_{15} ; développé la formule :

$$d_{\mathbf{4}}^{t} = \frac{p}{p'} - \frac{p}{p'} \cdot \varepsilon - \frac{p - p'}{p'} \cdot a$$

calculé une table des valeurs utiles du binôme

$$\frac{p}{p'} \varepsilon + \frac{p-p'}{p'} a;$$

montré comment on passe de d₄ à d₁₅ ou réciproquement, par simple addition ou soustraction du nombre 0,00086;

Expliqué la nécessité de ramener les indications urométriques ou aréothermiques à la température à laquelle l'uromètre ou le plongeur de la balance aréothermique ont été établis;

Calculé pour cela une table des valeurs utiles de 70;

2º Sous le titre étude expérimentale de la variation de la densité de l'urine en fonction de la température, entre 0° et 35°, j'ai:

Décrit en détail la méthode employée;

Etudié d'abord mon picnomètre, établi son coefficient de dilatation, donné la table de ses volumes, pour chaque degré de température, entre 0° et 35°, montré par quelle simplification j'arrive ainsi à:

$$d \int_{4}^{4} = 2p + \epsilon + 0,001057$$

$$d \int_{15}^{4} = 2p + \epsilon + 0,001917$$

puis, sur quinze urines occupant des degrés différents dans l'échelle des densités:

Déterminé pour chacune d'elles huit densités à des températures croissant par 5° entre 0° et 35°;

Construit le graphique de ces résultats expérimentaux, interpolé et calculé une table des valeurs du produit $\partial \theta$ pour H²O et pour douze types d'urines dont les densités d 15 croissent d'un type à l'autre par cinq unités de la troisième décimale.

Calculé, par combinaison de cette table avec celle des valeurs de 70, la table des valeurs de (3-7)0;

Montré, par voie expérimentale, la concordance entre les indications urométriques et aréothermiques trouvées directement.

II. — EN CE QUI CONCERNE L'EXTRAIT URINAIRE ET SA RELATION AVEC LA DENSITÉ.

1º Sous le titre extrait urinaire, j'ai :

Montré le caractère forcément conventionnel de la définition de ce terme à cause des modifications variables avec les conditions expérimentales qui se produisent pendant l'évaporation et la dessiccation; Bien spécifié les conditions expérimentales dans lesquelles j'ai opéré;

Consigné dans une table les résultats de mes déterminations, fait quatre expériences en vue de tenir compte de la perte d'urée par hydrolyse pendant l'évaporation et la dessiccation.

2º Sous le titre: Relation entre l'extrait urinaire et la densité, j'ai:

Donné comme moyennes des résultats de mes expériences :

$$\frac{r}{1000 \left(d_{4}^{15} - 1\right)} = 2,137$$

$$\frac{r}{1000 \left(d_{15}^{15} - 1\right)} = 2,020$$

$$\frac{R}{1000 \left(d_{4}^{15} - 1\right)} = 2,185$$

$$\frac{R}{1000 \left(d_{15}^{15} - 1\right)} = 2,068$$

$$\frac{r'}{1000 \left(d_{4}^{15} - 1\right)} = 2,230$$

$$\frac{r'}{1000 \left(d_{15}^{15} - 1\right)} = 2,159$$

$$\frac{R'}{1000 \left(d_{4}^{15} - 1\right)} = 2,293$$

$$\frac{R'}{1000 \left(d_{15}^{15} - 1\right)} = 2,210$$

III. - EN CE QUI CONCERNE LE COEFFICIENT DE DILATATION

Utilisant le graphique qui, par voie d'interpolation, m'avait permis' de dressèr la table des valeurs de δ θ , j'ai calculé pour chaque degré de température entre 0° et 35° les densités d_{15}^{\dagger} de H²O et de douze types d'urine, en densités croissant d'un type au suivant par 5 unités de la 3° décimale;

Calculé pour H²O et pour chaque type d'urine, les valeurs des inconnues qui figurent dans l'équation générale :

$$\frac{d_{\circ} \cdot d_{\circ}}{d_{\circ} t} = x + yt + zt^{2}$$

Établi ainsi pour chacun des douze types d'urine une équation empirique de la forme

$$V = 1 + at + bt^2 + ct^2$$

et pour H2O

$$V = 1 + a(t-4) + b(t-4)^2 + c(t-4)^3$$

IV. - EN CE QUI CONCERNE L'INDICE DE RÉFRACTION

Après avoir dressé la table des résultats de mes expériences, indiqué les réfractomètres dont je me suis servi, dressé la table et établi la formule des indices en fonction de la graduation de mon réfractomètre Amagat, j'ai exposé comment je trouvais entre l'indice n et l'extrait R pour 1000 cm³, la relation :

$$R = (n-1,3325) 6414$$

et, partant, entre la densité d ét l'indice n, la relation :

$$\frac{d-1}{n-1,3325} = 2,935$$

V. — EN CE QUI CONCERNE LA COHÉSION ET LES QUALITÉS
DES GOUTTES.

Mes expériences, encore à leur début et par conséquent tout à fait insuffisantes, confirment ce fait que la cohésion de l'urine est inférieure à celle de H²O et que le nombre des gouttes correspondant à un volume donné augmente avec la densité.

Vu et approuvé :

Montpellier, le 10 juillet 1902.

Le Doyen,

MAIRET,

Vu et permis d'imprimer : Montpellier, le 10 juillet 1902. Le Recteur, Ant. BENOIST.

SERMENT

En présence des Maîtres de cette Ecole, de mes chers condisciples et devant l'effigie d'Hippocrate, je promets et je jure, au nom de l'Être suprême, d'être fidèle aux lois de l'honneur et de la probité dans l'exercice de la médecine. Je donnerai mes soins gratuits à l'indigent, et n'exigerai jamais un salaire au-dessus de mon travail. Admis dans l'intérieur des maisons, mes yeux ne verront pas ce qui s'y passe, ma langue taira les secrets qui me seront confiés, et mon état ne servira pas à corrompre les mœurs ni à favoriser le crime. Respectueux et reconnaissant envers mes Maîtres, je rendrai à leurs enfants l'instruction que j'ai reçue de leurs pères.

Que les hommes m'accordent leur estime, si je suis fidèle à mes promesses! Que je sois couvert d'opprobre et méprisé de mes confrères, si j'y manque!

SERMENT

En presente el devant l'appare d'Hippocrate, je promete el jure, au nom de l'Étre suppréme, d'thre phèle aux lois de l'Alouneur et de la probité dans l'exercice de la midecine. Le donnoirs un saintre suins grafaits à l'indigent, el n'exigerai jamais un saintre suins grafaits à l'indigent, el n'exigerai l'intérieur des muisons mu-desant de mon tracail. Admie dans s'y passe, ma lempué toire les secrets qui me seront pas ce qui s' mon del me seroire pas à correcte qui me seront conflès, d'mon del me seroire pas à correcte qui me seront conflès, de mon del me seroire pas à tenre enjant et meure mi à javoriser le crime. Respectueux et reconnaisement envers par recyge de feure pères.

Que les hommes m'accordant leur estime, et je suis fielle à mes promesses! Que je seis couvert d'opprobre et mepried de mes confrères, et j'y manque; CONTRIBUTION A L'ÉTUDE

DE

LA COQUELUCHE ANORMALE

DU NOURRISSON

PERSONNEL DE LA FACULTÉ

MM. MAIRET (*)....

MM. MAIRET (举)	DOYEN
FORGUE		. Assesseur
PROFESSEURS		
Hygiène		. MM. BERTIN-SANS(*
Clinique médicale		GRASSET (☆).
Clinique chirurgicale		TEDENAT.
Clinique obstétricale et gynéco.	logie	. GRYNFELTT.
M. VALL	ois. (ch. du cours)	
Thérapeutique et matière médic		
Clinique médicale		
Clinique des maladies mentales	et nerveuses	. MAIRET (☆).
Physique médicale		W N C W N N N N N N N N N N N N N N N N
Botanique et histoire naturelle m	édicale	GRANKI.
Clinique chirurgicale		
Clinique ophtalmologique		
Chimie médicale et Pharmacie.		. VILLE.
Physiologie		
Histologie		. VIALLETON.
Pathologie interne		. DUCAMP.
Anatomie		. GILIS.
Opérations et appareils		
Microbiologie		
Médecine légale et toxicologie.		. SARDA.
Clinique des maladies des enfan	ts	. BAUMEL.
Anatomie pathologique		
DOYEN HONORAIRE : M. VIALLETON.		
PROFESSEURS HONORAIRES: MM. JAUMES, PAULET (O. *).		
PROFESSEURS HONORAIRES. MM. ONORIDE, PROFESSEURS		
CHARGES DE COURS COMPLÉMENTAIRES		
Accouchements		
Accouchements	NINI.	BROUSSE, agrégé.
Clinique ann. des mal. syphil. et		VIRES, agrégé.
Clinique annexe des maladies des	vieillards.	DE ROUVILLE, agrégé.
Pathologie externe		RAYMOND, agrégé.
Pathologie générale		na i mond, agrege.
AGRÉGÉS EN EXERCICE:		
	. VALLOIS	MM. L. IMBERT
WIN. DICOCOCC	MOURET	H. BERTIN-SA
RAUZIER MOITESSIER	GALAVIELLE	
DB ROUVILLE	RAYMOND	JEANBRAU
	VIRES	POUJOL
PUECH	1111111	- 8
M. H. GOT, secrétaire.		
(MM. BAUMEL, président.		
EXAMINATEURS	CARR	
	VIRES.	
DE LA THÈSE:	VEDE	
	, LDB	

La Faculté de médecine de Montpellier déclare que les opinions émises dans les Dissertat qui lui sont présentées doivent être considérées comme propres à leur auteur; qu'elle n'en leur donner ni approbation ni improbation.