Remarks on the diagnosis and treatment of diseases of the brain: delivered at a meeting of the Worcestershire and Herefordshire, Bath and Bristol, and Gloucestershire branches / by J. Hughlings Jackson.

Contributors

Jackson, John Hughlings, 1834-1911. Royal College of Surgeons of England

Publication/Creation

[London]: Printed at the office of the British Medical Association, [1888]

Persistent URL

https://wellcomecollection.org/works/v7t4j4q4

Provider

Royal College of Surgeons

License and attribution

This material has been provided by This material has been provided by The Royal College of Surgeons of England. The original may be consulted at The Royal College of Surgeons of England. where the originals may be consulted. This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org The concelions were made by

the author SBB

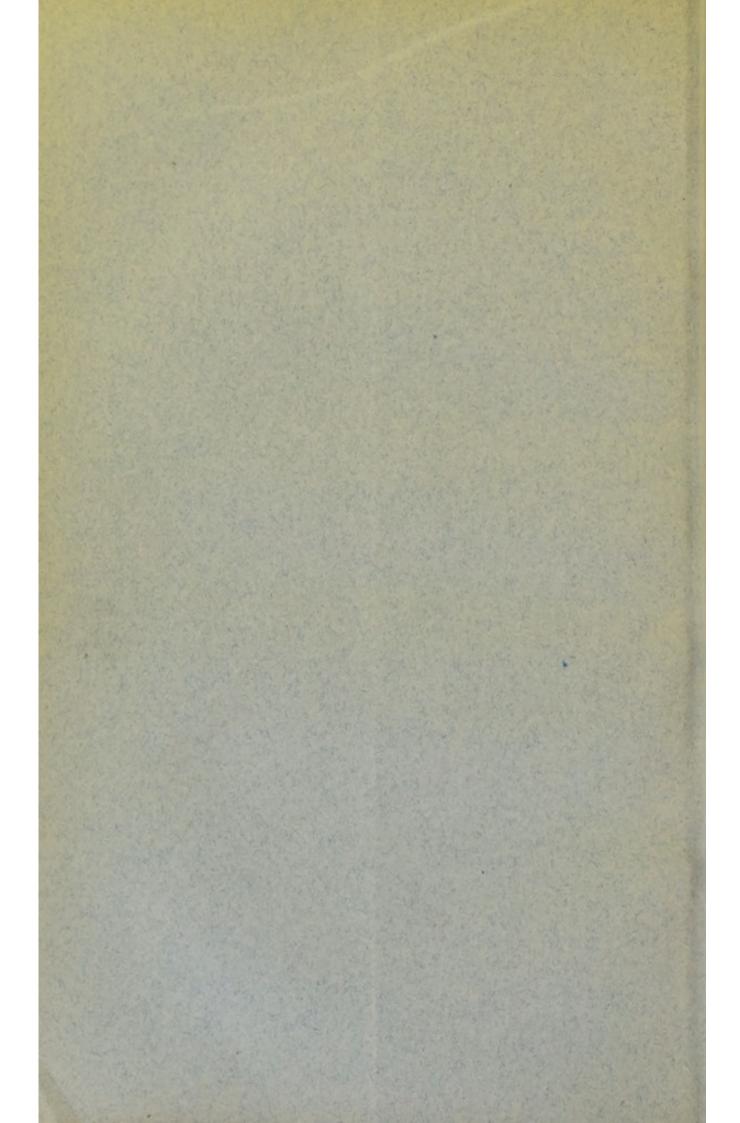
REMARKS ON THE DIAGNOSIS

AND TREATMENT OF

DISEASES OF THE BRAIN.

Delivered at a Meeting of the Worcestershire and Herefordshire,

Bath and Bristol, and Gloucestershire Branches.


BY

J. HUGHLINGS JACKSON, M.D., F.R.C.P., LL.D., F.R.S.,

Physician to the Hospital for Epilepsy and Paralysis; and Physician to the London Hospital.

[Reprinted for the Author from the BRITISH MEDICAL JOURNAL, July 14 and 21, 1888.]

PRINTED AT THE OFFICE OF
THE BRITISH MEDICAL ASSOCIATION, 429, STRAND, W.C.

REMARKS ON THE DIAGNOSIS AND TREATMENT OF

DISEASES OF THE BRAIN.

Delivered at a Meeting of the Worcestershire and Herefordshire, Bath and Bristol, and Gloucestershire Branches.

BY

J. HUGHLINGS JACKSON, M.D., F.R.C.P., LL.D., F.R.S.,

Physician to the Hospital for Epilepsy and Paralysis; and Physician to the London Hospital.

[Reprinted for the Author from the BRITISH MEDICAL JOURNAL, July 14 and 21, 1888.]

PRINTED AT THE OFFICE OF
THE BRITISH MEDICAL ASSOCIATION, 429, STRAND, W.C.

Digitized by the Internet Archive in 2015

REMARKS

ON THE DIAGNOSIS AND TREATMENT OF DISEASES OF THE BRAIN.

It is a very great honour to be asked by the President of this important Branch of our great Medical Association to deliver an address. It is a particularly pleasant thing to deliver it at the request of my friend, Dr. Currie. The only other preliminary is to ask you to believe that, poor as the address may be, I have

taken very great pains in the preparation of it.

For some years I have urged, and I hope to have opportunities of urging it again and again, that for the scientific study of nervous (and of all other) diseases, we should investigate and classify on the principle of Evolution, that we should consider them as reversals of evolution, in other words, as dissolutions, a term Spencer has employed for at least twenty years as the antithesis of evolution. But I have urged equally strongly that we should not follow this plan for direct practical purposes, but that we should for these purposes have empirical arrangements, arrangements of cases by Type. (In no part of this address do I use the term scientific as implying superiority, nor do I ever use the term empirical with its conventional evil connotations.) I have particular reasons for speaking of the two different classifications, the empirical being properly merely an arrangement.

I have been supposed to put forward the principle of evolution as of value in the classification of cases for practical purposes. I have been asked to go into an asylum and show how the cases of patients in it could be classified on that principle. But what I really said was "the classification [on the principle of evolution], valuable as a means of extending our knowledge would be useless, or of little use, for direct practical purposes" (Syphilitic Affections of the Nervous System, Journal of Mental Science, July, 1875). I wish to urge both methods, and can do so without inconsistency. A man as a biologist classifies plants one way in his botanical garden for scientific purposes, but he arranges them as everybody else does in his common garden, on the plan most convenient for practical purposes. Moxon said long ago (Introductory Address, Guy's Hospital, 1868-9): "You must know diseases, not as the zoologist knows his species, and his genera, and his orders, by descriptions of comparative characters, but as the hunter knows his lions and tigers." I thoroughly agree with this in so far that we should try to know diseases as the hunter knows his lions and tigers, but I think that we should endeavour to know them also as the zoologist knows his species, etc.

Whilst as a physician I study this and that particular disease empirically, as it approaches or reaches a clinical type, I keep, as an evolutionist, a line of thought on the comparative study, on

the homology of diseases. For example, I study miners' nystagmus, writers' cramp, and dancers' cramp, and all other "professional or occupation spasms," separately and quite empirically; and yet, without in any way overlooking their vast differences, I also think of each of them as a member of one homologous series, as being a disease (having the same pathology) of a different part of the same system, of a different motor centre on the lowest level of evolution. (Vide infra.) Whilst I should, for medical care of patients, for their safety and their treatment, arrange cases of insanity in any good empirical way I could find, I should also endeavour to classify them as they are different degrees of dissolution of different regions of the highest level of evolution (highest cerebral centres), and should seek their homologues in diseases of the lower levels. Such a comparative study of diseases, that on the wide basis supplied to us by evolution, is of great indirect value for practical purposes. There is but one process of evolution, just as there is but one law of gravitation. Evolution, popularly supposed to apply only to biology, applies to astronomy, biology, psychology (or rather, to anatomy and physiology as corresponding to psychology), and to sociology; or, to use Huxley's words, to the "whole physical cosmos." It would then be very marvellous if it did not apply to the whole nervous system and all its diseases. I believe that it simplifies our empirical studies, and gives harmony to what, without it, are crude heaps of facts. Let no one fear that the study of diseases as dissolutions will take him out of the practical field. Empirical work must come first; it is necessary for daily practice, it is forced on us. The scientific, the comparative study comes later. Before we can make rational generalisations we must have made empirical observations and generalisations. On leaving this part of my subject I give a quotation from Spencer (Data of Ethics, p. 61): "Every science begins by accumulating observations, and presently generalises these empirically; but only when it reaches the stage at which its empirical generalisations are included in a rational generalisation does it become developed science." I submit that on the principle of evolution we have the widest basis for rational generalisations of diseases. I submit that the same principles apply to the symptomatology of a case of paralysis of an external rectus, the simplest, and to insanity, the most complex of all nervous diseases; both are flaws, but each in a very different part of an evolutionary whole. I hope that in time we shall be able to apply the doctrine of evolution for direct practical purposes. I shall now and then try to show how our empirical studies may be made less empirical by availing ourselves of this doctrine.

I now take up the subject of the study of diseases by Type, urging once more that, for practical purposes, we should know diseases "as the hunter knows his lions and tigers." An illustration is easily given, and I shall, I hope, be excused for giving one that does not come under the title of my address. When anyone speaks of a case as one of tabes "complicated" with ophthalmoplegia externa or with glycosuria, he is tacitly asserting that there is a type, tabes, one with a complication. On the clinical nomenclature of the set of diseases of which tabes is one, and on the empirical arrangement it implies, I have some criticisms to make. Our knowledge of these diseases by "cases" is becoming so minute and extensive that our present nomenclature and our empirical arrangements by type almost break down. We have types, and then these types become so complicated that they almost cease to be typical. Beginning with locomotor ataxy, we have at length

tabes with an almost universal symptomatology—pupillary affections of several kinds, optic atrophy, gastric crises, bladder troubles, glycosuria, lightning pains, etc. A case of tabes may, indeed, be looked on as a series of different diseases, provisionally for the thorough investigation of each, before we consider them together as α disease owing to the same kind of morbid changes in different parts of the lowest level of evolution of one patient.

Nowadays ataxy is not considered to be a necessary symptom of tabes; when present, it is a subordinate, although a very striking one; it is a less serious trouble than tabetic amaurosis, and is far less serious to life than the bladder disorder in this disease. Frequently cases of what are called tabes are reported as being complicated with symptoms from other types, progressive muscular atrophy, lateral sclerosis, etc. There is what Gowers well calls "ataxic paraplegia." We have under the name of Friedreich's disease a series of cases which at one extreme merges into tabes, and at the other into disseminated sclerosis.1 These remarks show that the set of diseases spoken of are studied by type; one hears such expressions as "a typical case of tabes," this expression implying that there are also atypical cases (subtypical and supertypical). They show, too, that the types are arbitrary. Some may say that they dislike arbitrary divisions; but when we cannot distinguish, we must, for purposes of practice, divide; even in purest science arbitrary definitions are necessary; the mathematician's line has no breadth.

Fully believing that we must continue to study diseases by type, I wish some one with great authority would endeavour to define our types of the "progressive" diseases involving the spinal system more narrowly. I submit a plan which will, I hope, help us to a less empirical arrangement of some of these cases. Indeed, I think we may, aided by the doctrine of evolution, make a beginning of a rational generalisation of them which will serve us in

practical ways.

Were I writing a book on diseases of the nervous system, I should not have in it distinct sections on diseases of the spinal cord, medulla oblongata, and pons Varolii, but one section including diseases of all these parts, the three morphological divisions being considered together as making up one anatomico-physiological unity. This unity I have called the lowest level of evolution of the central nervous system; it is, I think, pretty much what Marshall Hall named the true spinal system. It is a division of the nervous system complete in itself, in the sense that it represents all parts of the body. It is to a large extent complete by itself; the organic centres on this level are considerably, if not in some cases quite, independent of the higher levels.2

A case of bulbar paralysis "complicated" with ordinary progressive muscular atrophy is, so to put it, half in and half out of a section on diseases of the spinal cord; it is well within one on diseases of the lowest level, and, considered as a disease of several motor centres of the same series of this level, is not "complicated." Whilst the anatomist speaks of segments (sensori-motor), we, as medical men, must speak of centres motory and sensory of this level, because, for example, disease may "attack" the motor elements alone of segments. Taking the spinal anterior horns and their higher homologues (nuclei of motor cranial nerves) as

¹ See a valuable paper by Dr. Judson Busy, Brain, July, 1886.
² I refer here to the organic centres, as they do menial work, regulating digestion, circulation, and respiration. These centres have a large share in emotional manifestations, and are, as so serving, quite subordinate to the highest centres.

making up one homologous series of lowest motor centres all along the lowest level, we have an homologous series—I do not say as yet a complete one—of progressive muscular atrophies, from ophthalmoplegia externa downwards, each owing to atrophy of cells of different lowest motor centres.³ (I have already spoken of another homologous series of "lowest level diseases," that is,

different "professional spasms.")

Some diseases are spoken of as diseases of the spinal cord when their symptomatology is of far wider origin. Tabes, often enough with a symptomatology from morbid pupillary affection to bladder trouble, is not a disease of the spinal cord only, but a disease of many different parts of the whole level. Taking many cases, we may say without much exaggeration that this clinical entity, tabes, has a universal symptomatology. Further, tabes, which pays no respect to the morphological divisions, in most cases "keeps to" the level and to nerves given off by its centres; although here again we have sometimes "complications" with symptoms of general paralysis

(disease of the highest level).

The plan I suggest is different from a mere grouping of the three morphological divisions. Thus the deep part of the lateral column in the cord is just as much out of the level (extrinsic upwards) as are the motor nerve-fibres from the anterior horns going on to the anterior roots (extrinsic downwards); so that lateral sclerosis—I speak of it as far as it is limited to the deep part of the lateral column—whilst it is a "disease of the cord," is not a disease of the lowest level of all, but of part of a strand of fibres connecting some lowest motor centres and all middle motor centres (so-called "motor region" of the cortex). In the same way of speaking hemiplegia from lesion of the internal capsule, since it is also owing to (a different kind of) lesion of the pyramidal tract, is not strictly a cerebral disease, but is one of a continuation of the very same strand, morbidly affected in lateral sclerosis, of a plexus inter-connecting all lowest and all middle motor centres. I will speak of such fibres, although integral parts of the cord, medulla, and pons, as being-if you will pardon the awkwardness of the expression-"extrinsic fibres of the level" (not really of it, but connected with it). In the same way fibres in the cord during their long course from the great vasomotor centre and from pupillary centres, are out of the level (extrinsic downwards) as certainly as their continuations after their emergence from the cord are. The really intrinsic fibres, those properly of the level itself, are fibres inter-connecting its several centres, across and up and down.

Again, if we limit attention to one of the three morphological divisions we cannot work our symptomatology of some of the diseases of that one division. I give an example: complete transverse lesion of the lower cervical cord, say on fracture dislocation of the spine. This lesion pays no respect whatever to evolutionary distinctions; the symptoms are many and various, and careful analysis is required, even disregarding evolution. There is cutting across of intrinsic elements of the level, and of elements of it which are extrinsic upwards and downwards. Some symptoms, owing to lesion of the intrinsic elements of the level, demand for their explanation a very particular consideration of activities of healthy parts above the cord, as well as of the part of the cord below the lesion; we have to consider the very local lesion of the cord as a flaw in one small part of the whole level. Let us speak

³ As "lowest centre" is used as a proper name to signify evolutionary rank in contrast to centres on the middle and highest levels of evolution, it is correct to speak of more than one lowest centre.

only of the symptom constipation. We must first consider normal defecation, or rather the normal state of the nervous arrangements on the lowest level, for that operation. No doubt the higher levels have influence on these nervous arrangements of the lowest level as in preventing or delaying defecation, and also in assisting in the operation, partly by putting in action abdominal and other accessory muscles; this implies that in the transverse lesion spoken of there is cutting across of (inhibitory and motor) fibres, which are extrinsic upwards. I here, as my object is only to illustrate one thing, confine attention to elements of nervous arrangements concerned in defæcation which are undoubtedly intrinsic parts of the level, and to the visceral parts of the nervous arrangements for that operation. These elements, in three morphological divisions, are all within the level, and are found in three regions of it (sacral, dorsal, and bulbar). We shall neglect Stilling's (sacral nucleus) which is for the hind gut (and for other parts we are not concerned with) in this illustration. There is a motor (viscero-motor) centre in the medulla, and a controlling (viscero-inhibitory) centre in the dorsal region of the cord. From the former pass polio-enteric fibres by way of the vagus, to make the intestines contract, and from the latter leucenteric fibres to keep them dilated; both sets of fibres are fibres of the level extrinsic downwards-both in their short course before their emergence from the medulla and cord and afterwards. But we must suppose that there are intrinsic fibres, fibres in and belonging to the level itself, connecting the two centres bulbar and dorsal; by these in quiescence there is amicable antagonism between the bulbar and dorsal centres. When the operation of defæcation is started by some afferent impulse, the medulla centre, we shall suppose, inhibits the inhibitory splanchnic centre by the intrinsic fibres, and acts positively by the extrinsic fibres (in the vagus) on the intestine. Thus there is, positively, forcing, and there is, the intestine. negatively, yielding. The constipation is, in the case instanced, owing to cutting across of the intrinsic fibres between the bulbar and dorsal centres; there is no longer amicable antagonism; each centre "pursues its private ends;" the inhibitory dorsal centre over-acts and over-antagonises the motor bulbar centre.

The plan suggested—that of studying diseases of the cord and of the other morphological divisions as diseases of the level—cannot be carried out fully, because our anatomico-physiological knowledge of its elements is not as yet complete. But I hope that besides looking on a case of tabes, to take that example, as a type often "complicated," we shall soon regard it as a disease of the level, and that we shall have a rational formula of cases of the class of diseases to which tabes belongs and a nomenclature corresponding-a nomenclature analogous to that in chemistry, one telling us in the name of this or that patient's disease, the several particular elements of the lowest level morbidly affected, and declaring what other symptoms in this or that case are owing to lesion of extrinsic elements of, so to say, the level. I hope we shall have names somewhat after the style of "amyotrophic lateral sclerosis;" I say somewhat, because this name is partly after a symptom, or peripheral condition at least, and partly after a central lesion. In this disease one of the lesions, atrophy of cells of anterior horns, is of intrinsic elements of the level, some of its motor centres; the sclerosis of fibres of the lateral cortex is of part & column of a plexus between some lowest and the middle motor centres. After this somewhat of a digression I return to studies by type.

The next illustration is by a cerebral disease. Epilepsy (I mean epilepsy proper) is nowadays considered by most medical men to

be a disease of the brain. We should have two types of this morbid affection. I find, however, that many medical men have but one type-loss of consciousness with severe universal convulsion. But the great thing in the diagnosis of epilepsy is not the "quantity" of the symptomatology, but paroxysmalness. A sudden transitory loss of consciousness with very little physical manifestation, often enough suffices for the diagnosis of epilepsy. It may be said that there are "all degrees" of epileptic seizures, from slightest to severest. My experience is that a patient, long subject to les petits maux only, has a very severe, perhaps a severest, fit some one unfortunate day, and afterwards is subject to them, and often to the slight fits too, without having fits of "all degrees." The two things, les petits maux and les grands maux, differ in compound degree; they deserve to be considered separately as types for diagnostic purposes. That epileptic fits are often very slight and transient is so very old a story that I will speak of one very important variety of le petit mal to which very little attention has been paid. I must premise that loss of consciousness is not essential for the diagnosis of a slight fit of

epilepsy; there may be defect of consciousness only.

There are cases of very slight epileptic fits in which occurs what is commonly called an "intellectual aura;" I call it "dreamy state." One variety of it is the feeling of "reminiscence" which many healthy people have. Now, if with the "dreamy state" occurring suddenly, there be a "warning" of smell or of taste or a sensation referred to the epigastric region, there is certainly epilepsy; there is always defect of consciousness, but loss of consciousness does not always follow. These seizures are often so slight, so odd, so short, so little incapacitating, and are sometimes, strange to say, positively agreeable, that the patient may disregard them until a severe fit comes to tell him what they mean. Medical men, until the diagnosis is made by a severe, and, so to say, an ordinary fit, may not recognise the epileptic nature of these quasi-trifling seizures, and may put them down to hysteria, indigestion, malaria, etc. The diagnosis of slight fits of epilepsy from accounts given by patients or their friends is often so difficult that we cannot afford to neglect quasi-trifling symptoms. In some of the cases of the sub-variety of epilepsy just remarked on, there is very seldom a warning of taste, but there are not rarely movements and noise of chewing, or tasting, or smacking the lips, or there may be spitting, implying, I submit, discharge of central gustatory elements. If, with defect of consciousness and the "dreamy state," there are such movements, I should conclude confidently for epilepsy.

I submit that such groupings of symptoms are of value as types. As yet there have been but two necropsies in the

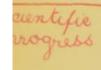
⁴ The law of continuity-that things increase and decrease by insensible gradations—is, I think, in many medical matters applied without due thought. I never nowadays use the expression "all degrees" in relation to any cases of nervous disease. Slight fits of epilepsy, les petits maux, do not pass into severe fits, les grands maux, by there occurring fits of all or even of many, intermediate degrees between slightest and most severe. There are not only simple degrees, but compound degrees of increase and decrease in cases of disease of degrees, but compound degrees of increase and decrease in cases of disease of the nervous system. Increasing evolution is not a process of increase by insensible gradations; there are, as the expression "levels of evolution" implies, occasional "stoppages," which are "re-beginnings." The division into le petit mal and le grand mal, although I speak of these two degrees in the text as types, is, in my opinion, a natural division. I mean that it is one answering to the evolutionary constitution of the nervous system. Le petit mal passes suddenly into le grand mal when the discharge beginning in some part of the highest centres has become strong enough to overcome the resistance of lower (middle) centres.

cases of patients who have been subject to such fits; both cases are very complicated. The only one published, so far as I know, is recorded by Dr. James Anderson (Brain, October, 1886) (taste warning and "dreamy state"); another observed by myself and Dr. Beevor (warning of smell and "dreamy state"), has not yet been published; in each, tumour in the temporo-sphenoidal lobe was found. It is by cases like these two, cases of gross local organic disease, and by the investigations of Ferrier, that we shall ultimately be able to consider all "varieties" of epilepsy (using that name just now generically), not only as each is a type, but on a rational basis also, as each points to a "discharging lesion" of this or that part of the cerebral cortex. In most cases of the variety of epilepsy I have been remarking on, there is no

evidence of gross local organic disease.

For many diseases each man will have to make his own types; everybody does so consciously or unconsciously, but I submit that we should make them consciously and definitely. Taking for next illustration migraine: I make three types, or rather consider cases of it as they are, (1) typical, (2) sub-typical, and (3) super-typical. (1) A typical case is one in which there is "visual projection," the well-known zigzag or "fortification" outline is most common, with, in most cases, a hemianopic area; then comes headache, most often frontal and one-sided, and lastly vomiting. (2) There are sub-typical cases, visual projections and nothing more, or headache unpreceded by visual projections, and not followed by vomiting. (3) There are super-typical cases deserving very particular consideration. In these there is in addition, so to say, to the other symptoms, numbness of one side of the body, and when the numbness is of the right side there may be also considerable aphasia. To the inexperienced these cases look far more serious than they are; they do not point to any gross local disease. Some of the symptoms of migraine, the headache among others, are, I think, after-effects of the discharge pro-

ducing the paroxysm.


Here once more I stay to show that the arbitrary study of cases by type does not prevent us from making at other times and for other purposes rational generalisations. Using for the moment the term epilepsy generically I should class migraine, epilepsy proper, and epileptiform seizures as epilepsies, on the basis that in each there is a "discharging lesion" of some part of the cerebral cortex. Their differences are sufficiently accounted for by the different "seats" of those lesions. Observe the opinion expressed is that there is a persistent, although varying, hyper-physiological (crude physiological) lesion in each of the three. But in so classifying them for scientific purposes, I no mere overlook their vast differences, no more undervalue the study by type, than I confound whales, bats, and hedgehogs when I say that all these animals are mammals. One reason for the scientific classification is that I have seen cases intermediate in type between migraine epileptiform seizures and epilepsy proper ("missing links"). I have seen a case indistinguishable from what I have called super-typical migraine, except for the fact that the ailment followed a blow on the head leaving a depression on the left side of the skull; the limb-symptoms were right-sided, and there was partial aphasia (both, of course, temporary). I treat all three epilepsies (still using the word generically to cover epilepsy, epileptiform seizures, and migraine) on the same general principles, of which more further on; also treating each patient according to the peculiarities of his case; dyspepsia is often an exciting cause of a paroxysm of migraine; there is of course special treatment for

the relief of the headache in cases of migraine, antipyrin for one

remedy.

It may be said that classification of the three different diseases on the basis mentioned is purely hypothetical. It is not so far as epileptiform seizures are concerned, and is now not for the two cases of the variety of epilepsy proper completed by necropsy I recently mentioned. I should, however, be sorry to have it implied from this remark that I repudiate hypotheses in scientific research. For the sake of argument, let it be granted that the whole classification is altogether hypothetical. The use of hypotheses is the method of science. To suppose that we can make discoveries by the Baconian method is a delusion. No discovery, we are told by good authority, has been made on that method. An hypothesis, otherwise a supposition, is not a conclusion,⁵ it is only the starting point for methodical observation and experiment, the endeavour being not only to prove it, but to disprove it. I have not concluded that migrane, epileptiform seizures, and epilepsy proper are alike, in that in each there is a "discharging lesion" of some part, in each of a different part, of the cerebral cortex. Such an hypothesis is the beginning of hard work; its only use is to give order to that work. Huxley writes (article "Science" in the Reign of Queen Victoria, vol. ii): "As a matter of fact, Bacon's 'via' has proved hopelessly impracticable, while the 'anticipation of Nature' by the invention of hypothesis based on & & incomplete inductions, which he specially condemns, has proved itself to be a most efficient, indeed an indispensable, instrument of research." He writes too (op. cit., p. 336-7), "It is a favourite popular delusion that the scientific inquirer is under a sort of moral obligation to abstain from going beyond that generalisation of observed facts which is absurdly called 'Baconian' induction. But anyone who is practically acquainted with scientific work is aware that those who refuse to go beyond fact rarely get as far as fact; and anyone who has studied the history of science knows that almost every great step therein has been made by the 'anticipation of Nature,' that is, by the invention of hypotheses, which, though verifiable, often had very little foundation to start with; and, not infrequently, in spite of a long career of usefulness, turned out to be wholly erroneous in the long run." I imagine that the saying of a great man will occur to most of us "hypotheses non fingo." It may be well to mention Newton's "Corpuscular Theory of Light," which, Huxley says, "was of much temporary use in optics, though nobody now believes in it." The plain fact is that no one dislikes hypotheses; some of those who think they do have no clear notion of what the term means, and are *supposing* something all day long. In what is to come I shall use the term hypothesis, and I submit correctly, for some current explanations, which are not commonly considered to be hypothetical at all. What all of us dislike is the complex. We may easily err in taking the subjective confusion produced in us to be in the objective thing contemplated, which is really only very complex.

To come back to the study of diseases by type. I fear I should in some ways carry this method to what may seem an extravagant extent, as in chorea. I confess I make an arbitrary division of these cases—have two types, "slight" and "severe," although

⁵ Those who make the mistake that a supposition is a conclusion forget what they were told at school, that Newton put aside his theory of gravitation for many years because it was discrepant with certain observations, was, it temporarily seemed, disproved.

there may be no scientific distinction. The slight type: a girl who has slow, infrequent movements, of comparatively limited range, of the face and limbs, especially if they are almost limited to one side, who could get about if permitted, whose appetite is normal, and who sleeps well, recovers soon in most cases by good food. tonics (quinine or arsenic), aperients, and rest—would very likely recover without medicines. The other type—"severe" chorea—is practically a very different thing: a girl with incessant, frequent,7 and very wide movements of all parts, who has to be kept from bruising herself by various expedients (packing hands and joints in cotton-wool, etc.), is to be looked on as requiring very different treatment. The tendency is to death. There are few cases of nervous diseases in which we can do so much good. We give food in large quantities, solid if possible. Brandy is a most excellent remedy; in very severe cases we may give twelve ounces in twenty-four hours. If ordinary means of feeding are impossible, we should put the patient under ether and feed by a tube. Our main object is to keep the patient alive. But I think brandy and in severe cases etherisation are of curative value-indirectly, at any rate. There is certainly very often rapid improvement after their administration. I never think of "specifics" in this type of chorea. Beyond aperients, the only drug I give is chloral, and

that only when food has been taken. I never give opium.

It would save a great deal of trouble if we had an orderly series of types of cases in which vertigo is a prominent symptom. I make four: (1) ocular; (2) auditory; (3) epileptic; and (4) gastric. This is the order of their simplicity, and therefore the order in which they should be studied; it is not the order of their seriousness. (1) Anyone can learn very much that is of great value in the diagnosis of other, more difficult, cases of vertigo in five minutes, if he will first properly investigate a case of recent paralysis of ocular muscles. It may seem that recognition of the cause of the vertigo is easy by the strabismus. Most often so, no doubt; but in cases of paralysis of the superior oblique the strabismus is far from being obtrusive, and the real cause of vertigo in such cases may be easily overlooked, and often is. (The vertigo is not owing to double vision.) In these cases we find vertigo in its simplest form. The treatment of ocular vertigo is, of course, that of the lesion causing the local paralysis, and this, excluding tabes, is mostly caused by syphilis. I have never been able to verify the hypothesis that this paralysis is of rheumatic or gouty pathology. (2) The next simplest vertigo is auditory. Very often indeed ear disease causes-or, rather, is a factor in the causation of-paroxysms in which, with many other symptoms, there is vertigo, "swimming of external objects," etc. The diagnosis is very easy if we find ear disease in patients who have attacks of giddiness, with reeling, sickness, intense depression, and often perspiration. It is very important to recognise the causation, otherwise one might think there was serious brain disease, or mistake the case for mere stomach vertigo. Digestive derangement and other causes of lowered general health are often excitants of the paroxysm, and this guides us in an important part of our treatment. We try to cure the ear disease, but often we cannot. Quinine in large doses is praised by Charcot. The

will help.
7 The pairs of words "slow and quick," "infrequent and frequent," are used after the manner of their use clinically for alterations of the pulse.

⁶ The status epilepticus or epileptiformis, practically an acute disease, requires a very different kind of treatment from that of epilepsy or epileptiform seizures in the ordinary course of cases. For the status, food and some stimulant; chloral is the best drug; and, if the fits are very frequent, etherisation

best remedies are lessened work and bracing air. (3) Epileptic vertigo is often used as a name for a slight fit of epilepsy, even when there is no vertigo at all, no apparent movement of external objects, and no feeling of the patient turning. I use it as a name for vertigo at the onset of epileptic attacks; sometimes it is for a time almost the whole of a seizure, and is afterwards the "warning." This is the most serious form of vertigo; the treatment is for epilepsy. (4) I have slender respect for the hypothesis that a stomach disorder sometimes produces a paroxysm of vertigo. If there be such a thing as stomach vertigo, it is the most difficult of the four kinds of vertigo to explain. The question is, "How does a dyspeptic attack produce a sudden attack of vertigo?" Hence I put it last on the list for particular study. When a man has a paroxysm in which objects seem to move to one side (when the vertigo is, as Gowers puts it, "definite"), I certainly do not believe that any kind of digestive disorder is the real cause of the paroxysm; the hypothesis is then too heavy for practical purposes. No doubt most cases of so-called "stomach vertigo" are cases of aural vertigo, the attacks being sometimes brought on by dyspepsia. As to treatment, one of course treats dyspepsia in whatever association one finds it. I now start from a new line of thought-not, however, altogether leaving the subject of study

of diseases by type.

I have just been urging that we should take up for particular study cases in the order of their simplicity. Were I to write a book I should follow this plan; for the ambitious aim of the work would be to help people in practice to examine for themselves in scientific ways for practical ends. We cannot learn for ourselves if we begin with complex problems; if we do, we shall run the risk of making vague, and often verbal, explanations. Cases of gross organic brain diseases (such, I mean, as tumours, masses, "lumps") are among the simplest of all cerebral diseases. Simple and serious are not, as I have recently been urging and trying to illustrate, convertible terms. Cases of gross organic disease of the brain are far simpler for diagnosis, prognosis, and even, in some ways, for treatment, than are cases of what are called the "neuroses" (chorea, epilepsy proper, neuralgia, etc.). Of the former we know a great deal and speculate too little; of the pathology of the latter we know nothing certain and speculate much. Very confident opinions—really hypotheses—are expressed as to the causation and pathology, in particular cases, of the "neuroses" when we are diffident in the diagnosis of intra-cranial tumour in very many cases. But before we speak confidently of the causation and pathology of cases of hysteria, epilepsy, chorea, neuralgia, cases without a known morbid anatomy, we should discipline ourselves by a study of cases in which necropsy is likely to confront us. A post-mortem examination tells us candidly what our powers of clinical investigation are worth in the case examined. I am speaking of the anatomy, physiology, and pathology of the neuroses (vide infra). I have small faith that any great good will come of the studies of these diseases by those who have not previously disciplined themselves by careful work on what I may be permitted to call the coarser diseases of the nervous system, and who have not before that a good knowledge of recent physiology.

It may be objected that the study of cases of gross organic intra-cranial disease is dismally fruitless, as we can do very little for the sufferers from it. I believe that we may do very much, even when the tumour is non-syphilitic. For many of the symptoms of tumour are really symptoms of an encephalitis, or cer-

18

land

tainly of some secondary change, provoked by the tumour in its character as a "foreign body;" such symptoms are headache, optic neuritis (this is strictly speaking a visible pathological condition), and "fits" of different types. If we can do nothing for the tumour, we may do something for the secondary changes it induces; certainly we may rid the patient of optic neuritis when the tumour, which some way caused it, remains; and if the patient is to die, he will live to the end of his shortened life more happily seeing than if blind. Excluding optic neuritis in cases of Bright's disease, in meningitis, and some other obviously exceptional cases, I treat cases of optic neuritis very actively by iodides and mercurials. I do not say that optic neuritis would not pass off without such treatment, but I dare not omit it. Patients have got rid of optic neuritis after removal of brain tumours (Horsley) when no drugs have been given.

There is another thing to be said of treatment in some cases of gross organic brain disease. I believe that some patients die suddenly of intense pain; I am certain that some die after sudden increase of pain, and that too in cases where post-mortem examination discovers no recent changes. In some cases I apply leeches to the temples, as the quickest way of relieving the sudden increases of pain. I do not hesitate to give morphine by hypodermic injection. Not only do we thus diminish misery, but we may, I think, sometimes save life. For more continuous pain (the patient's ordinary pain I may call it) I should try antipyrin. If the patient dies suddenly, as I repeat he not rarely does, his death may be erroneously ascribed to the remedies we use for

allaying his pain.

Then, in some cases of cerebral tumour, the surgeon comes to our aid. To diagnose a brain tumour, and then, if we can, to localise it in certain regions, is a very important thing. Nowadays, a medical man is not thought to be wasting his time when he is anxiously trying to get to know the starting-point of an epileptiform seizure, in the case of a patient who has double optic neuritis -whether the initial spasmodic movement is of the thumb or great toe. Nor is he now thought to be talking nonsense when he insists that with marked double optic neuritis, there may be good sight, rather he is supposed to be repeating an old story. I shall speak only of the surgical case I know most about. Mr. Victor Horsley removed a scrofulous tumour from the right cerebral hemisphere of a patient of mine who was subject to fits, beginning in his left thumb (see Horsley on Brain Surgery, British Medical Journal, vol. ii, 1886, p. 670). The patient is still under my care, suffering now from partial paraplegia, consequent on angular spinal curvature; his left hand is still partially paralysed, but for many months he has had no fit.

There are other reasons for the careful and particular study of these comparatively simple, but yet very serious, morbid affections. Unless we are in the habit of using the ophthalmoscope by routine, when patients, unaccustomed to them, begin to have severe headaches, especially if the pain is in an unusual seat, side of head or occiput, we shall often overlook the real nature of cases of serious brain disease altogether, or we shall miss treating their earliest stages, the stages most amenable to treatment, if treatment is to do any good; we shall misinterpret them as hysterical, as being cases of indigestion, etc. It is thoroughly well known now that marked optic neuritis (the best evidence of an intra-cranial tumour) is very often indeed unattended by defect of sight. I have been told that I say too much of this, that nobody now denies the dictum. But I contend that it is not sufficiently widely

known, and say that the assertion is still received by many medical men with great incredulity. If sight be good in optic neuritis, that important sign does not exist for those who do not use the opthalmoscope, and thus from the headache and vomiting alone the erroneous diagnosis of stomach and liver derangement is easy. (There are cases of intra-cranial tumour without optic neuritis, or for months or years without it. There may be no headache, there may indeed be scarcely any symptoms at all where there is a large cerebral tumour.)

Here I give a caution. Do not take the strange, miserable feelings, "weight," "tension," etc., at the top of the head, and "dragging" at the back of the head and "down the spine," for the pain from gross local intra-cranial disease, such as tumour; the patient complains bitterly of what he calls "headache," although he may qualify the word by saying that "it is not an ordinary headache." These "pains" at the top and back of the head are very common in cases of nervous exhaustion, and do not signify

local gross organic diseases within the cranium.

There is another reason for the particular study of cases of local, gross, organic disease. Patients who have intra-cranial tumour not rarely die suddenly or rapidly, when on our last visit they seem to be in good general health; they die most unexpectedly. Sometimes, as I have said, when speaking of treatment, this occurs during sudden increase of pain. Occasionally in the case of a patient who all along has only had headache, optic neuritis, and vomiting, there ensues hemiplegia or apoplexy, or both; when so, the likelihood is hæmorrhage from a vascular tumour. Sometimes, and this Fagge pointed out, death occurs by respiratory paralysis. If anyone thinks that because there is intra-cranial tumour the ailment must have a slow course, and that the patient or his doctor will be sure to have a definite warning of the approach of death, he is mistaken. I have known a patient, taken seriously ill one morning at his work, die in a few hours of respiratory paralysis, when the tumour was a syphilitic one, of one occipital lobe. A great many times have I seen a speedy ending to the life of patients who, having double optic neuritis, headache, and vomiting, seemed to be, judging only from their general condition, not even seriously ill. Yet this triad of symptoms, if we can exclude chronic Bright's disease, some cases of which are indistinguishable from cases of cerebral tumour, except by the ascertainment of the existence of that morbid kidney affection, is certain evidence of some serious intra-cranial disease, and is the best evidence of intracranial tumour. The assertion that a patient who has double optic neuritis and good sight, only headache now and then, and who for much of her time seems perfectly well, is to be considered as being dangerously ill, at first glance seems absurd. I said "her time," for I am now thinking of the case of a young lady who, shortly before I saw her, had been to a dance, remaining to about 4 o'clock in the morning, and who died rapidly not many days after her visit.

I next speak in some detail of the methodical investigation of particular cases of brain disease, and shall deal with questions of treatment at several stages of the inquiry. The clinical problem of what we call α disease is threefold—anatomical, seat of lesion; physiological, functional nature of lesion; pathological, disorder of the nutritive process. The division into structure, function, and nutrition is, of course, arbitrary, but it is a convenient one. I may now say, once for all, that I use the term functional in its meaning as the adjective of the word function. I do not believe that

18

there can be any kind of symptoms without abnormal changes, however slight they may be in some cases (see an able paper by Dr. Allchin, Westminster Hospital Reports, vol. ii). Hence, when speaking of cerebral and cerebellar tumours, and other masses, I used the expression gross organic disease, not doubting that there is some organic change, however minute it may be, and, as yet undiscoverable, even in epilepsy proper, in chorea, in neuralgia, etc. There are two diametrically opposite kinds of functional changes. 1. Degrees from slight defect to loss of function. 2. Degrees from slight to excessive exaltation of function. The former, negative state of function, exists in cases of paralysis, the latter, positive (super-positive) state of function in cases of epilepsy, chorea, tetanus, etc. I never use the expression "disorder of function," but speak of degrees of negative functional states, and of degrees of states of over-function. The two may co-exist. Some elements of the set of motor nervous arrangements representing a muscular region may have lost function, whilst other elements of the same set may be in over-function. For example, we find not rarely persisting hemiplegia and occasional convulsion of the muscular region paralysed.

One advantage of the scheme of investigation by the triple division is that we learn by it where our knowledge is deficient. Indeed, of some cases of nervous disease it would be commonly said that we know symptoms only. The scheme enables us to separate definitely what we know from what we only suppose. In chorea we know that there is the second kind of functional lesion; at any rate, it is an irresistible inference that the movements depend on unduly high instability of nerve cells." But we do not know the seat of that lesion, nor the pathological processes leading to it. On the anatomy and pathology of chorea all of us have hypotheses only, My speculation is that, anatomically, the lesion is of some convolutions of the motor area, and that the pathology in most cases is plugging of arterioles.

In illustration of the triple method I shall take a case in which our knowledge is fairly complete, an ordinary case of hemiplegia. Before I do this I will once more speak of types. As to range, I make two types of hemiplegia. In most cases the arm suffers more than the leg, in some the leg more than the arm. The division arm-type and leg-type is of practical importance. Were I obliged to be paralysed of the left side I should prefer the ordinary variety of hemiplegia, in which the arm suffers more than the leg, as I could do indifferently well without the use of the left arm, and could get about if the leg were only slightly paralysed. If the paralysis were to be of the right side, I would far rather that the leg suffered more than the arm, particularly because I should, the cerebral lesion being farther back, have little or no defect of speech.

Taking for illustration the arm-type of hemiplegia, we may conveniently make three degrees of it. 1. Paralysis of the face, tongue, arm, and leg. 2. Greater paralysis of these parts, and also turning of the head and eyes from the side of the body paralysed. 3. Universal powerlessness (strictly not a degree of, but one beyond, hemiplegia). I pass over the third degree, as the situation is too complex for illustration. I remark of the second that the additional symptoms, so to call them, betoken a grave lesion. I speak of the first degree only when illustrating the triple method of investigation.

⁸ There is, however, with the over-development of some movements loss of other movements of the same muscles; the two opposite functional lesions, the inference is, co-exist in chorea. In some cases the paralysis (that is, loss of movements) preponderates (see Gowers's Diseases of the Nervous System, vol. ii, p. 554, on "Paralytic Chorea."

From the external region affected we infer, let us say, that there is a lesion of the motor, anterior, part of the internal capsule; that is the anatomical part of the clinical problem. Next, since the phenomena in the muscular region affected are negative, paralytic, we conclude that the function of fibres of the internal capsule is lost; most often they are destroyed. This is the physiological part of the clinical problem.

It may seem a pedantic refinement to distinguish between loss of function and pathological process in cases where, for example, a clot has destroyed fibres, where the function and the fibres are gone together by one blow. Not so, since the hemiplegia depends on loss of function, however produced—by softening, by clot, by tumour, or by mechanical injury; we may be sure of the abnormal physiological state, loss of function, and yet have to wait for the necropsy to tell us the nature of the pathological process which produced it. Again, although in most cases of hemiplegia there is destruction of fibres, there is in the epileptic hemiplegia of Dr. Todd-post-epileptiform hemiplegia, I call it-(temporary) loss of function of fibres and no destruction of them. As some would put it, hemiplegia is "only a symptom;" but it is a symptom always signifying the abnormal physiological state, loss of function, although the pathological processes effecting that loss are various. When we come to consider the other kind of functional change—exaltation of function, hyper-physiological states—the distinction between abnormal (crude) physiological states and the pathological processes producing them is of supreme importance; hence, one reason for insisting now on the distinction in simple cases between loss of function and the pathological processes producing it.

So far we have dealt expressly with but two elements, anatomical and physiological, of the threefold clinical problem; we have not yet, except incidentally, said anything on the most medically important element, the pathological. Whilst anatomically we say of a case of hemiplegia that the lesion is (1) of the internal capsule, that (2) physiologically it is a negative functional state, we may be able to complete the clinical problem by concluding that (3) the pathology is cerebral hæmorrhage. I speak first of what I may call the rough and immediate pathology of hemiplegia. I say rough and immediate because, for example, to speak of the pathology of a case of hemiplegia as being cerebral hæmorrhage is to speak very inadequately. Destruction of fibres by clot is a quasi-traumatic lesion; cerebral hæmorrhage is often but an incident-a very calamitous one-in an exceedingly wide, indeed universal, pathology. We have two kinds of evidence bearing on the "rough pathology" of hemiplegia: (A) mode of onset; (B) the patient's general pathology. I can only consider

some modes of onset.

(1) If the paralysis begins very locally—say in the hand—increases in degree and in range very slowly, day by day and week by week, there is great likelihood of tumour of the opposite cerebral hemisphere. I confess that I have twice been wrong in the diagnosis of cerebral tumour from "slow hemiplegia." If with such hemiplegia there be also double optic neuritis, we may be confident of tumour or some other kind of adventitious product. Again, if there be no severe headache and no optic neuritis with this "slow hemiplegia," yet if there be with it gradual and "even" degradation of mind, there is most probably a large tumour (or other mass) deep in the white substance of the opposite cerebral hemisphere. (I should not in such a case advise operation.) In young children, when the adventitious product in

one cerebral hemisphere is very large, the head gets bigger, the sutures widening, as happens also in some cases of tumour of the middle lobe of the cerebellum; in the former there is some hemiplegia, in the latter reeling gait. When the motor symptoms are little marked, and when the child is young and very ill or indo-

cile, the differential diagnosis is far from easy.

I should in early stages of "slow hemiplegia" treat for syphilis. But I wish to say very prominently that hemiplegia so coming on is, in my experience, exceedingly rarely owing to syphilis. In an article, "The Syphilitic Affections of the Nervous System," Journal of Mental Science, July, 1875 (also Medical Times and Gazette, May 23rd, 1868, p. 551, et seq.), I put down "slow hemiplegia" as one of three varieties of "syphilitic hemiplegia;" but since that time I have not seen a single case of such hemiplegia owing to a syphilitic tumour—of course I speak of cases completed by necropsy. Two other very common types or varieties of "syphilitic hemiplegia" will be spoken of further on.

(2) If the hemiplegia is found immediately after an epileptiform seizure which began very locally—say in one thumb—I should conclude that there was disease of some part of the cortex in the Rolandic region of the opposite side of the brain. Of course the practical question in diagnosis here is the cause of the fit of which the hemiplegia is a consequence; it is a post-epileptiform hemiplegia. In such cases the disease is most often tumour; it certainly is not always so; there may be plugging of cortical arteries. I say nothing of guessing, but submit that we can only confidently diagnose tumour as the cause of epileptiform seizures if there be also double optic neuritis. I have not yet seen a case followed by necropsy, the two symptoms—the epileptiform seizure and double optic neuritis—co-existing, in which I did not find cerebral tumour.

To ascertain whether epileptiform seizures do or do not depend on cortical tumour is important with regard to surgical interference. Were I subject to frequent epileptiform seizures always beginning in the left thumb, I would have the "discharging lesion" cut out, even if I could know that there was no tumour as an inducing cause of it; if tumour were found, of course that should be cut out too. In the case mentioned (page 63, operation by Horsley) I advised operation, although I could not tell whether or not that patient's fits depended on tumour. Enough of the cortex should, for cure of the fits, be cut out to produce considerable paralysis of the part in which the convulsion begins. I spoke of fits beginning left-sidedly; on account of the "speech centre," operations on the left cerebral hemisphere are more serious than operations on the right.

To return to the hemiplegia. Although post-epileptiform hemiplegia so often depends on tumour, it is transitory; it depends very indirectly on the tumour. We now come to some further

considerations also of practical value.

The tumour causing epileptiform fits is sometimes syphilitic; the sequent hemiplegia is one type or variety of "syphilitic hemiplegia." But to say that syphilis (a syphilitic tumour, gumma, of the cortex) "caused the hemiplegia," is to speak very vaguely. Here we have a most excellent example of the indirect way in which syphilis "causes" nervous symptoms. It is a long

113

⁹ Beever and Horsley find that, in the monkey, the particular part of the cerebral cortex where the thumb, which has a wide representation in the cortex, is most especially represented is about the junction of the lowest and middle thirds of the ascending parietal convolution.

cry from syphilis to this variety of what we call "syphilitic hemiplegia;" let us look at the stages from syphilis to the paralysis. First there is slowly formed a syphilitic tumour; next this causes the cause (the direct cause) of the fits. By some process, there is produced high instability of cells near the growth (presumably in the order from smallest towards largest) a persisting local condition which, although produced by, is secondary to, the syphilitic tumour and is itself not syphilitic. This secondary and non-syphilitic change has become independent of the syphilitic tumour, being established it is automonous; it is then an energetic "hyper-physiological parasite;" there is what I call it a "discharging lesion" or "physiological fulminate," or, sometimes using Horsley's term, an "epileptogenous focus." In still other words there is produced a functional change, in the proper sense of the term functional, one of high instability of nerve cells. This change is not a pathological one, but is an hyper-physiological state, a crude physiological state; it is the result of a pathological process entailing, no doubt, destruction of some cells, but yet increased nutrition (presumably of an inferior kind), and consequently unduly high tension and instability of others. There is, I imagine, an encephalitis provoked by the syphilitic tumour, not in its individual character as a syphilitic product, nor even in its more general character as a tumour, but in its most general character, that of a "foreign body." So to speak between the "foreign body" and the high instability of cells making up the "discharging lesion," comes the active pathological process, a local encephalitis. Putting part of the foregoing otherwise: the secondary change induced is the same, whether the tumour be a glioma or a syphiloma.10 So then the change on which the fits directly depend is post-syphilitic, or, if we take into account the disordered nutritive process, which I imagine to be a local and limited encephalitis, it is post-post-syphilitic. The hemiplegia, on any hypothesis as to the exact nature of the negative central change immediately answering to it, is a still more indirect result of syphilis; I imagine, essentially adopting Todd and Robertson's hypothesis, that it depends directly on loss of function of fibres of the pyramidal tract; they being, it is suggested, exhausted by the excessive discharge in the preceding fit. At any rate there is some negative central change. 11 Here we have in sequence the two opposite kinds of functional, abnormal physiological, change; there is high instability of cells, over-function, and following sudden, etc., discharge of those cells, there is temporary loss of function of nerve

10 Illustrating by another secondary change; optic neuritis from syphilis is

¹⁰ Illustrating by another secondary change; optic neuritis from syphilis is not syphilitic optic neuritis; any sort of tumour or mass in the brain produces just the same kind of change in the optic discs as any other does.

11 I suppose that the negative post-epileptiform change answering to the paralysis is above the anterior horns (except perhaps for exhaustion of inhibitory centres. Gowers's), where there are exaggerated knee-jerk and foot clonus. I published a case of this kind (Medical Times and Gazette, February 12th, 1881, On a Case of Temporary Left Hemiplegia, with Foot Clonus and Exaggerated Knee Phenomenon, after an Epileptiform Seizure beginning in the Left Foot). The estimation of the different conditions of the "deep reflexes" after epileptiform and epileptic fits is very important. (See a very important paper by Beevor, Brain, 1882, On Knee-jerk, and Foot Clonus, Plantar Reflex and Conjugate Deviation of the Eye, after Epileptic Fits.) When there is exaggeration of the "deep reflexes," there is a degree of functional change not spoken of in the text; certain anterior horns are in over-function from, I think, loss of control. This degree of functional change is not the result, not the direct result, of any pathological process; it ought to be most carefully distinguished from the degree constituting a "discharging lesion," or we shall misinterpret some symptomatic conditions, post-epileptic states (mania, etc.), for example. for example.

fibres. Neglecting the hypothetical encephalitis, this type of "syphilitic hemiplegia" is "caused by syphilis" in a triply indirect way.

We have two kinds of treatment for this variety of "syphilitic hemiplegia;" treatment for syphilis, and treatment, for the most part empirical (bromides), for the fits; the post-epileptiform hemiplegia (or, after partial fits, monoplegia) requires no treatment.

3. If the hemiplegia comes on deliberately, say in half-an-hour, or if the patient tells us that he was paralysed on getting up in the morning—hemiplegia without defect of consciousness—the presumption is for local softening from plugging of the middle cerebral artery, or more likely of some branch of that vessel.

4. If the hemiplegia comes on rapidly with loss of consciousness, or if coma soon follows a deliberate onset, the presumption

is for cerebral hæmorrhage.

We have, however, to bear in mind that 3 and 4 are only empirical rules. Strictly, we should speak of degrees of "gravity" of lesions, using that term to include both quantity destroyed and rate of destruction. Comparatively slow blocking of the main trunk of the middle cerebral artery (as in a third type of "syphilitic hemiplegia" I have yet to remark on) may be unattended by what would be commonly called *loss* of consciousness, whereas sudden blocking of that main trunk by an embolon might entail temporary coma. There are other qualifications to the Rules 3 and 4. We have to rely upon the patient's general pathology. I give but one illustration. If the patient have atheromatous arteries, hypertrophy of the left ventricle, and chronic renal disease, we conclude for clot, in whatever way the hemiplegia came on, and whether it be slight and transient or perfect and

permanent.

Omitting much, I make two further remarks on diagnosis between clot and softening. If a patient have double, or even uniocular, optic neuritis (the latter is very rare in physicians' practice), the hemiplegia coming on rapidly with, or even without, loss of consciousness, is probably owing to hemorrhage from a vascular tumour of the opposite cerebral hemisphere. 12 Here we must, however, exclude Bright's disease, it being remembered that sometimes with Bright's disease, and without intra-cranial tumour, we have optic neuritis indistinguishable from that which tumour most often produces. Certain well-known abnormal changes in the fundi in Bright's disease are not always "characteristic," as we used very many years ago to say, of that disease. Again, suppose a patient, say a young patient, has cardiac valvular disease, then, if hemiplegia comes on suddenly with deep loss of consciousness, we must not be sure that there is embolism; there may be cerebral hæmorrhage from rupture of a large aneurysm of some branch of the middle cerebral artery. I do not know how to distinguish bethe two possibilities.

To shorten my subject, I shall now arbitrarily suppose that the lesion causing the hemiplegia is local cerebral softening from plugging of an artery. Some general remarks are needed before going further. Cerebral softening is always local; and (excluding softening about tumours and other obviously exceptional cases), it is localised by vessels, mostly arteries, and, as a matter of fact, the middle cerebral artery, or some branch of it, is nearly always the vessel plugged; thus, the two great symptoms of softening of the

¹² I have spoken, it will be seen, of three very different ways in which hemiplegia may be associated with tumour of the cerebral hemisphere (1) slow hemiplegia from gradual destruction, (2) post-epileptiform hemiplegia, and (3) hemiplegia by hæmorrhage from a tumour.

brain are hemiplegia and aphasia, sometimes both together. There is no such disease as "general softening" of the brain. Some cases so-called are cases of cerebral atrophy, of general paresis, or are cases of cerebral tumour. Reasserting that softening of the brain is local, and that it is practically an affair of plugging of cerebral arteries, the next remark is that there are two processes of plugging-thrombotic and embolic. In the former, the vessel is "crusted up," because the artery, mostly atheromatous, but sometimes the subject of a syphilitic change, is roughened in its interior, or narrowed, or both; here the artery is in fault. In embolism the artery may be, and often is, quite healthy, innocent, and is corked up by something coming from a distance, in most cases, from the valves of the heart. No doubt there is sometimes partial occlusion by an embolon, complete closure of the artery being effected by superinduced thrombosis. We sometimes hear of "extension of softening." I know of none, except possibly by plugging of other arterial branches, supplying parts near the already softened part; this is not, however, properly speaking, extension of, but additional softening. It is common enough to find general mental deterioration slowly following a local cerebral lesion, clot, or softening, which has produced hemiplegia. The patient suffers from defect of memory, and is incapable of sustained intellectual exertion. He is "more emotional" (really there is here loss or defect of the highest ["finest"] with increased manifestation of the lower ["coarser"] emotions). But I presume that the intellectual and emotional deterioration are owing, not to softening nor to extension of softening, but to widespread partial atrophy of convolutions.

It is needless, for my present narrow purpose, to speak of the differential diagnosis between thrombosis and embolism as a cause of the local softening which produces hemiplegia. The commonest condition for the thrombotic process is arterial atheroma. I wish to speak of a rarer cause of thrombosis of the middle cerebral artery—of a third Type or variety of "syphilitic hemiplegia." We shall see another way in which syphilis produces nervous

symptoms indirectly.

I do not deny that syphilis may "attack" proper nervous elements, nerve cells, and fibres, of nervous organs directly, or be an important factor towards their degeneration. I say nothing here on that question. In cases of "syphilitic nervous affections" of which we know the morbid anatomy, the direct "attack" is upon non-nervous ingredients of nervous organs. When there is a syphilitic neuroma, as it is often called, say the trunk of the third nerve is affected, the action of syphilis on nervous elements is indirect, but yet most nearly direct; an overgrowth of connective tissue there and then squeezes nerve fibres. The process by which syphilis produces the type or variety of "syphilitic hemiplegia" I am about to remark on is far more indirect, although not so indirect as is the one whereby the type recently considered (post-epileptiform hemiplegia) is produced. There is first slowly established syphilitic disease of the middle cerebral artery or of some branch of it: so far all may go indifferently well. But the diseased artery becoming narrowed, something happens which is not syphilitic. Thrombosis occurs, and thereupon ensues local softening of the brain, causing hemiplegia of deliberate onset, without loss of consciousness, but, perhaps, if the main trunk be plugged, with considerable stupor. I fear that it is not always realised that in this type of "syphilitic hemiplegia" there is softening of the brain; that there is essentially the same change (I have not yet seen red softening in such cases) as that which occurs when

ianspose

an atheromatous artery is thrombosed, or when a healthy one is corked up by an embolon. The real nervous change, the one on which the paralysis in this type of "syphilitic hemiplegia" directly depends is not a syphilitic change at all; it is post-syphilitic. I have assumed that the arterial disease is syphilitic, have spoken as if we had had the necropsy first. I must next speak generally of the diagnosis of "syphilitic affections of the nervous system," in order methodically to answer the question, "Is this patient's

in order methodically to answer the question, "Is this patient's hemiplegia syphilitic?"

It would be wasting time to speak of such evidence as clear signs of syphilis in visible parts of the patient's body; this is, of course, the best kind of evidence, and no one is likely to ignore it. There is another kind of evidence which is of great value in diagnosis when that just spoken of is not to be had. I must premise that the hemiplegia itself, its kind, degree, and mode of onset do not help us. I submit three dicta on syphilitic nervous affections: (1) No single nervous symptom is characteristic of syphilis; (2) It is the disorderly grouping (random association) of certain nervous symptoms, or the disorderly or random succession of certain nervous symptoms which is most characteristic of syphilis. The third dictum, that syphilis produces nervous symptoms indirectly, has been insisted on when dealing with the two types of "syphilitic hemiplegia." I will give but one illustration of a medley of symptoms often pointing to syphilis. If a man have paralysis of parts supplied by one third nerve and hemiplegia of the same side, there are certainly two lesions, and there is in that "random association" very strong empirical evidence of syphilis. I now speak of treatment of "syphilitic hemiplegia." We must take a realistic view of the situation. Although it is, for many clinical purposes, convenient to use the term "syphilitic hemiplegia," it would be monstrous to think of a case of hemiplegia as "caused by a syphilis," without tacit analysis of the real state of things in

The third type of syphilitic hemiplegia is for direct treatment of the paralysis itself, a case of local cerebral softening, a non-syphilitic change, although produced by thrombosis of a syphilitically diseased artery. What will drugs do towards ridding the patient of his paralysis? Nothing. No drugs can do anything whatever, good or bad, for cerebral softening; softened brain is not brain at all, it is dirt in the brain. More generally, he who is treating by drugs hemiplegia owing to softening, however produced, or to clot, is treating a hole in the brain. Even supposing that vigorous anti-syphilitic treatment had swept away all syphilitic changes from every part of the patient's body, it would have done nothing for the post-syphilitic change, the softening. And if we had drugs which could dissipate the plug in the vessel (I know of none), they would have to do it with marvellous quickness, or the nerve tissue would be dead by starvation before circulation was re-established. And yet, without any inconsistency, I treat actively by mercurials and iodides in early stages of the variety of "syphilitic hemiplegia" under remark; for there is a reasonable probability that other cerebral arteries may be syphilitically diseased, and, by acting on them in early stages of syphilitic growth, we may obviate plugging of them, and thus prevent other local cerebral softenings. We must bear in mind that many syphilitic diseases of the nervous system are post-syphilitic in time. It is only in recent syphilitic changes most nearly directly affecting nervous elements, as when nerve trunks are diseased, that we can hope for very happy results. I imagine that most cortical gummata are well established ("firmly rooted") before they produce

serious symptoms in their character of "foreign bodies;" hence the importance of active treatment of headaches in the syphilitic, especially if the pain be of one side of the head. There is a fallacy as to the effects of treatment of the third type of "syphi-

litic hemiplegia" to be now pointed out.

It may be said that, as a matter of fact, some of the patients who present this type of "syphilitic hemiplegia" get rid of their paralysis on treatment by mercury and iodides. To that I can testify, but I submit that our drugs do not cure them. Why, then, does the patient get well? Not from roundabout supply of blood, by anastomosing vessels, to the part of which the proper artery is blocked, for the central branches of the middle cerebral artery have no, or next to no, anastomosis; the boycotting is effectual. Nor will it do to invoke shrinking or abrogation of the plug; that would occur too late. The fact is that patients recover from hemiplegia when the destruction which caused that paralysis remains, provided the lesion be limited in extent. For after such recoveries we may find when, later on, the patient dies from some non-cerebral disease, that a small part of the brain has been annihilated; there is a hole where nervous elements once were.13 Degree of recovery depends to some extent on the exact position of the lesion; I am speaking of cases of patients who do recover; and I mean what we call recovery, not contending that there is absolute restoration of power in any case. Deficient dexterity may show loss of some "fine" (most special) movements; and too early fatigue of the "recovered" limbs means some paralysis, as does, also, undue slowness of motion of them. Speaking generally of all kinds of destructive lesions, I would suggest (I cannot speak definitely) that if a small quantity of a nervous organ be destroyed, there is recovery; if a large quantity, there is some recovery; if of a very large quantity, scarcely any. Some cases of hemiplegia, where the paralysis is very slight and also transitory, may be explained by the hypotheses that they are "functional," or that they are "owing to gout," or to liver and stomach derangement, or to constipation, and so on. The simplest hypothesis for these cases is, I submit, that there is a local destructive lesion, but a very small one.

The process of recovery is obviously of vast importance for our consideration in regard to rational treatment of some cases of very serious brain disease; for if recovery be spontaneous, we may err in attributing it to the effects of our remedies, and thus our opinions on therapeutics become untrustworthy. Why do patients recover from hemiplegia when the loss of nerve tissue is permanent? The reply is hypothetical. There are, according to degrees of gravity of the destructive lesion, degrees of recovery.

¹³ I here quote from the abstract of the report of a case of a patient of mine published in the Journal, August 30th, 1873, p. 254. A gentleman, aged 38, in apparently good general health, was first seen in July, 1867, for recent (July 14th) paralysis of the parts supplied by the left portio dura nerve, and for recent partial deafness of the left ear. There were also remains of paralysis of the right leg, which had begun in April. He rapidly got rid of all his nervous symptoms after taking iodide of potassium; but he did not continue the drug, because he believed all his ailments to be owing to ague poison. He had been in the West Indies, and still remained subject to slight shivering attacks; he had had primary syphilis fifteen years before. He remained well until March 2nd, 1868, when he became hemiplegic of the left side. He would not take any drugs except aperients. Nevertheless, in about a week he was apparently well again; but on March 21st he was found apoplectic and again hemiplegic—this time of the right side. He died next day. At the necropsy there were found diffluent softening of part of the right corpus striatum, and also softening of the left corpus striatum. There was syphilitic disease of each middle cerebral artery. Thrombosis of each at the part diseased accounted for the two local softenings, and for the two attacks of hemiplegia related to them.

I should put down paralysis at the onset to the destruction effected, and attribute degrees of recovery to degrees of compensation; nervous arrangements near to those destroyed, having closely similar duties, come to serve, not as well, but, according to the degree of gravity of the lesion, next and next as well as those destroyed. Let us take for illlustration the second degree of hemiplegia, supposing it to be owing to hæmorrhage. I should attribute the paralysis which the lateral deviation of the eyes (neglecting that of the head) signifies to the same cause as I should the rest of the paralysis, should say that nervous arrangements14 for some ocular movements had been annihilated, should do so if I could at that time know that the deviation would pass away. I should not explain the recovery from this very definite and most particular symptom by the hypothesis of subsidence of initial shock, or by that of diminished congestion or ædema round about the lesion; these may be slight factors. When the patient recovers from the second to the first degree of hemiplegia, that is, when the lateral deviation of the eyes has gone, the recovery on my hypothesis could not be owing to restoration of lost nervous arrangements for ocular movements. But there are, I contend, innumerable other nervous arrangements for ocular movements remaining, and by them there is compensation for those anni-hilated, so that the patient seemingly moves the eyes as well as ever. I insist strongly that there may be loss of some movements of a parts when there is no discoverable inability in the muscles of that part for all other movements. We must most carefully distinguish between loss of movements and inabilities in muscular regions. As perhaps the two expressions are not clear I give an illustration. Loss of speech, say an ordinary case of perfect aphasia, is a psychical loss, and we have nothing to do with it except as evidence of a correlative physical negative condition. This is destruction of nervous arrangements for certain very complex, etc., movements of the muscles of the tongue, lips, palate, etc. (surely there is loss of those movements the patient can no longer make); but the muscles of those parts are not unable for all other movements; indeed, they may even serve elaborately in articulation when the speechless patient swears. There is here, to my thinking, as certainly paralysis, in the sense of loss of movements, as there is in the same sense in the hemiplegia along with the aphasia, there being greatly more compensation in the former. Let me give what I think is a crucial demonstration of the general truth of the dictum that there may be paralysis in the sense of loss of movements without discoverable muscular inability. Horsley and Semon find that faradaic excitation of a certain part of the cortex of a monkey on either side of its brain puts both vocal cords in activity; this shows that movements of both cords are represented in each of the bilateral centres. Next, ablation of either of the twin centres produces no obvious inability in either of the two cords, although of necessity "half" the movements of them are permanently lost, so to say, have been cut at. There is here immediate and, apparently, absolutely complete compensation. The facts of these experiments are in accord with Broadbent's well-known hypothesis, now just twenty-two years old. I consider that in cases of aphasia there is loss of many movements of the vocal cords, although the patient's voice is not morbidly affected; he may be able to sing. Before leaving this part of my subject I would say that the foregoing remarks on Compensation imply that I do not accept the current hypothesis

¹⁴ Strictly, annihilation of fibres passing between nervous arrangements of the middle and lowest motor centres.

as to the nature of Localisation ("abrupt localisation") any more than I do the one sometimes called Universalisation. I have restated the hypothesis I hold in the third Croonian lecture, 1884 (British Medical Journal, April 12th, 1884). Questions as to the correct principle of localisation are not of mere theoretical interest; their discussion is not out of place in this address if they bear on the process of recovery. I would refer those interested in localisation to a paper, very important in many other ways, by Beevor and Horsley (Phil. Trans., vol. 178 (1887), B. pp. 153—167). Without, of course, committing these able observers to any hypothesis of mine, I may say that the facts of certain experiments they made on part of the cerebral cortex of monkeys seem to me to be in great disaccord with the current doctrine of localisation.

I go on to speak further of the treatment of cases of hemiplegia, or rather, I should say, of the patients who present this symptom, now supposing syphilis to be excluded. In many of them there is an imperious necessity for treatment. This time the illustration shall be hemiplegia owing to cerebral hæmorrhage, the clot being the rough and immediate pathology of the case. Since we can do nothing for the clot (which although in the brain is really out of the body, being to all intents and purposes a "foreign body"), and since the nerve fibres broke up are non-existent, we widen our investigation to find out what we can do for our patient. We examine him all over, our aim being to discover why a diseased cerebral artery burst, in order that, by properly directed treatment, we may prevent bursting of other arteries. Let us take part of a hemiplegia, slight facial monoplegia, sufficiently described for our present purpose by saying that it is of the cerebral type. This paralysis is sometimes very transitory, but when it has disappeared we have often enough serious conditions to treat. If the patient's arteries be unsound (atheromatous and probably then miliary aneurysms of the cerebral vessels), and if he have hypertrophy of the left ventricle and renal disease, the probability is that the facial paralysis is owing to a cerebral hæmorrhage; because of the slightness and transitoriness of it, we conclude that the clot is a very small one. In all cases of cerebral hæmorrhage the condition of the arteries (statical as atheroma, dynamical as degrees of tension) is a thing of first importance; by instinct, so to speak, I feel the pulse first of all in the examination of a case of brain disease; we never fail to examine the urine. If we could imagine a doctor neglecting one part of his patient's case, he had better neglect the paralysis than the evil triad I have mentioned, important parts of the wide universal pathology which is the basis of the incidental pathology, clot, which I call the rough and immediate pathology of some cases of hemiplegia. The wide pathology is the proper field of our treatment. To give "nervous remedies," hypophosphites, strychnine, and so forth, for the cure of paralysis from cerebral hæmorrhage, is really to do nothing of value in a formal way; we have to neglect the paralysis so far as drug-treatment of it goes. Massage and gentle faradisation of the paralysed limbs will be of some service whilst we are waiting for Compensation; they will be useful as an artificial exercise. To diminish the quantity of highly nitrogenised food, to look after the digestion, to keep the patient's bowels free, is the best style of If arterial tension be high we may give small doses of mercury and saline aperients. I forbid cold bathing. I never prescribe strychnine, having no faith in it as a "nervous remedy" for lesions answering to cerebral paralysis; it, among other doings, stimulates the vasomotor centre, and thus will help to increase arterial tension. Our general treatment would be the same if the

Ln

"rough pathology" of a case was epistaxis or retinal hæmorrhage, events of very evil significance in cases of chronic Bright's disease.

The results of the measures one adopts for diminishing arterial tension are not always pleasing to the patient; perhaps sometimes we have too much zeal. A certain degree of arterial tonus is necessary for everybody's well-being; the more blood is in the arteries, the less is in the capillaries, that is, the less is close to the tissues. To an increased degree of arterial tonus the cheering effects of a cold bath are due, a luxury few people after fifty ought to indulge in. I submit that a healthy degree of arterial tonus is kept up by a normal degree of waste nitrogenised products in the blood, the "natural stimulant," I imagine, of the vasomotor centre, as venous blood is the natural stimulant of the respiratory centres.¹⁵ In Bright's disease and in gouty states there is an excess of these "natural" stimulants and very likely presence of some unnatural ones, whereby I suppose the vasomotor centre is over-stimulated; hence excess of arterial tonus, or, as we call it when morbid, high tension. I have heard an eminent medical man say that he felt best when a little gouty; I suppose he had then a slight extra degree of tonus, so that his brain had a better supply of blood; the cerebral arteries, having less muscular tissue than most other arteries, would be less constricted. But in a high degree of tonus, high tension, such a feeling of well-being is more pleasant than safe. I think there is something in the statements we hear about patients who die of apoplexy, that they had felt unusually well just before the onset of their illness, that is, before a fatal cerebral hæmorrhage, that is, before the bursting of a cerebral artery. If we reduce our patient's arterial tension, perhaps sometimes too much, by low diet and purgatives, he "feels weak" and is very naturally dissatisfied until it is explained to him that he had better be safe than have a feeling of well-being from undue arterial tension. Many a man with chronic Bright's disease lives on the brink of cerebral hæmorrhage; the less he lives the longer will he live; but if he tries to get the most out of himself and is careless of his diet and of the state of his bowels he may be high up in a certain kind of health, so to call it, only for a sudden fall to a low level of disability or to death.

I will now speak more generally on the essentially non-nervous nature of many diseases called nervous. For a realistic consideration of the pathology of any case of disease of the brain we have to consider whether or not the morbid change begins in nervous or

tion, so to call it, by natural stimulants in addition to, or rather as an aid to, physiological regulation by nerve centres and nerves, and that some particular morbid effects are the results of excess of those stimulants. I have (Brain, April, 1886) suggested that the convulsion in laryngismus stridulus is owing to supervenosity, to an excess of a "natural stimulant" of the respiratory centres. In the same way I think it likely that rigor is owing to an excess of the natural stimulant of the vasomotor centre, and very likely that some convulsions in kidney disease (not those which are unilateral) are owing to excessive stimulation, primarily of various "regulating centres" in the medulla oblongata, by waste products which the kidneys ought to, but cannot efficiently, eliminate. [Consider in this connection convulsions in animals after injection of the poison absinthe, and especially Dr. George Johnson's researches on convulsions in man consequent on poisoning by camphor. (Medical Lectures and Essays, p. 311.)] Dr. Maclagan, in his work on Fever, makes the very interesting and, as I think, most important remark, that heat is the natural stimulus of the heat-inhibiting function and that accumulation of heat in the system naturally excites that function to increased activity and may at length exhaust it. In some cases of jaundice the pulse is less frequent than normal, possibly by action of bile acids. The mode of action of bile acids on the circulation is not known, and it would be premature, for several reasons, to conclude that there is in such cases an excess of a natural stimulant to the ends of the vagi.

in non-nervous elements of nervous organs. Hemiplegia is not a nervous disease at all in the strict sense; it is in most cases an arterial affair. For my part I do not believe in the existence of "emotional hemiplegia" (or of emotional aphasia either); at any rate, I shall ignore it here, and also cases of so-called hysterical hemiplegia. I go on to say of nearly all diseases of the brain of which there is a known morbid anatomy, that they are not nervous diseases in the strict sense; they are damages of nervous organs, but their pathology is not primarily nervous, that is, the morbid change does not begin in nervous elements of the nervous organ damaged. Here is a very important question regarding fundamental pathological diagnosis and also treatment. A nervous organ, besides what we may call its proper ingredients, nerve cells and fibres, contains connective tissue and blood vessels; the latter for some purposes we may call compound tissues. It may be that in some diseases the nervous elements are the first to go wrong, as in what is called parenchymatous atrophy of the optic nerves, and in the "degenerative diseases" of the nervous system. Saying nothing whatever for or against this hypothesis, I urge again that most nervous diseases of which we know the morbid anatomy are not nervous in the sense that the pathological changes begin in the proper, nervous, elements of nervous organs. This dogma I have already repeatedly illustrated in this address, especially when analysing the state of things in "syphilitic hemiplegia."

There is a class of nervous diseases (often called the "neuroses") in which there is no morbid change. I mean, of course, that there is not one yet for us. There is a morbid change, no doubt a minute one, but we have not discovered it. The term "functional" is sometimes applied to some cases of this class in the sense that there is no morbid change answering to the symptoms. I never use the term functional in that way in scientific exposition (vide supra). In cases of the two neuroses, epilepsy and chorea, there is evidently abnormal function in the true sense of the word (an exaltation of function issuing in strong discharges), implying abnormally increased nutrition (pathological process) from some cause. What we do not know is the pathological process productive of this functional abnormality. Strange to say, confident opinions are expressed that the neuroses are of purely nervous origin and that they occur, in "neurotic" families, interchangeably by inheritance. Is this because they have as yet for us no "morbid anatomy?" Of course, it is quite a legitimate hypothesis that the neuroses are nervous diseases in the sense that nervous elements are primarily in fault. But, as we know nothing of their pathology, it is an hypothesis only. It is equally legitimate for me to put forward another hypothesis as to one of them-epilepsy proper. That hypothesis is that, in most cases of this disease, the pathology is primarily arterial (sometimes, I think, venous) and only secondarily nervous, in the same way that most cases of hemiplegia are primarily arterial and only secondarily nervous. The facts that an epileptic patient's blood relatives had apoplexy, hemiplegia, meningitis, tumour of the brain, etc., supply no evidence whatever towards proving that he inherits a tendency to disease beginning in nervous elements; do not warrant the inference that his epilepsy is strictly a nervous affection—one primarily nervous. On the contrary, such evidence tells quite the other way. If it have any bearing it points to a primarily non-nervous and to only a secondarily-nervous pathology of the epilepsy, because the "nervous diseases" in the patient's family are not nervous diseases at all in the strict sense. although they are damages of nervous organs. The occurrence of chorea and migraine in the patient's blood relatives does not decide the question either way, because we have no certain knowledge of the pathology of these two morbid affections. The hypothesis I put forward as to the pathology of most cases of epilepsy (and for most cases of migraine and chorea too 16) is that it is plugging of small cerebral arteries and its consequences.

It is quite reasonable to consider first simpler cases of "fits," epileptiform seizures, to see if their pathology countenances the hypothetical pathology I have submitted of epilepsy proper. I am not aware that anybody believes that the pathology in any case of epileptiform seizures is primarily nervous; that there is a nervous change (one of exaltation of function) is obvious enough, the occasional nervous discharges (liberations of energy) declare that there is. The nervous change is secondary, and is often determined by tumours and other masses; on this matter I have, in an earlier part of this address, said enough. But in some cases the (secondary) nervous state is a result of plugging of arteries;¹⁷ in these cases the hyper-physiological or functional change, that of the nerve cells ("discharging lesion") is in an arterio-cortical region, and is a very local one. The group of highly over-unstable cells making up the "discharging lesion" is certainly in but one side of the cerebrum, although sudden, etc., discharge of that lesion will, if the discharge be strong enough, produce universal convulsion. The conclusion is that in some cases of epileptiform seizures a local "discharging lesion" is a secondary result of abnormal nutrition consequent on plugging of arterioles; in other words, that the pathology is exactly the same as that of most cases of hemiplegia. The abnormal physiological state of nervous elements (the secondary nervous state) in the two is diametrically opposite; in the former case the change we are concerned with is a plus, in the lattera minus functional change, and is often actual destruction; in both cases the secondary—the nervous—state is persistent; in the former there are occasional excessive developments of movements (convulsions); in the latter there is permanent loss of movements. Why in the former case there is produced high instability of cells (and no doubt destruction of many others) and in the latter destruction only, may possibly depend on differences in the degree of anastomosis of central and cortical branches of the middle cerebral artery; the former having none or next to none, the latter varying in that respect in different persons and in the same brain in different branches. Complete arrest of circulation in an arterio-cortical area would produce destruction of nervous elements; but some anastomosis might lead to a comparative

16 Dr. George Johnson, op. cit., p. 510, writes: "Chorea is sometimes associated with, and apparently caused by, capillary embolism in some portions of the brain near the corpus striatum."

¹⁷ I have never believed that the local high instability of cells directly causative of epileptiform seizures is produced by tumour only. I put forward the speculation that seizures of this kind (I then called them unilateral convulsions) sometimes depend on embolism (London Hospital Reports, 1864, vol. i, pp. 465-6), making the crude and, at that time, the following much too-confident statement: "They are, I am convinced, not infrequently the result of plugging of branches of the middle cerebral, partial occlusion of its main trunk or some of its branches." To the same effect: Med. Times and Gazette, August 13th, 1864, p. 167. I have re-stated the hypothesis I hope more clearly and correctly (St. Andrews Med. Grad. Trans., vol. iii, 1870; Reynold's System of Medicine, vol. ii, second edition, pp. 284-5). I have stated it with regard to both epileptiform seizures and epilepsy proper (West Riding Asylum Reports, 1873, vol. iii, pp. 328 and 329; Med. Press and Circular, January 26th, 1876; Med. Times and Gazette, January, 1879.) Frank and Pitres (Archives de Physiologie, August 15th, 1883, No. 6) found that out of seventy-one cases of what I call epileptiform seizures, there were tumours in thirty-two cases. "ramollisements inflammatoires ou emboliques" in sixteen; in the rest various other lesions. 17 I have never believed that the local high instability of cells directly causa-

restoration of circulation, otherwise to comparative stagnation—to a semi-stagnant patch. Such a condition is likely to cause destruction of cells in the central part of the arterial area, and is one favourable for over-nutrition of an inferior kind of those at its periphery. I have suggested that there is substitution nutrition, a replacement of phosphorus by nitrogen; the nervous matter resulting, although of a different composition and more "explosive," being of the same constitution as in health. I have since my earliest scientific studies of epilepsy (1864) been interested in its arterial pathology, having been so long ago much impressed by the occurrence of convulsions beginning in parts presumably paralysed from the effects of embolism.

In some cases of epileptiform seizures we may carry out the threefold investigation of the clinical problem they present to definite conclusions. Anatomical, the lesion is of this or that part of the cerebral cortex; physiological, it is local high instability of cells of that part; pathological, the disordered nutritive process is a result of occlusion of an artery supplying that part. Here the distinction between functional state and pathological process leading to it is not a pedantic refinement as it may have

seemed to be in the case of hemiplegia.

I think the hypothesis that the primary change in most cases of epilepsy proper is arterial is countenanced by analogy—that there is in some cases of it as well as in some cases of epileptiform seizures a change of high instability of cells consequent on plugging of a small arterial branch—that there is thus produced what I call a "discharging lesion," a change of a few nerve cells of some limited part of the cortex, other than that of the so-called motor region, of one side of the brain; a persisting but yet vary-

ing, very local, hyper-physiological state.

It follows from what I have said that I no more believe that fright, overwork, indigestion, masturbation, etc., "cause epilepsy" than I believe that they cause hemiplegia; all that anybody can know is that such "causes" sometimes precede the first epileptic fit. Taking but one of these so-called causes, fright: if a patient has his first epileptic fit directly after a fright, I should conclude that there had been produced by some pathological process a "discharging lesion," one nearly ready to discharge, and that the physical disturbance during the emotion, fright, was only the determining cause of the first "explosion." Similarly for chorea. It is notorious that chorea frequently follows fright, and the current hypothesis is that fright is one of the causes of this disease; the hypothesis I hold as to the relation is that fright (its physical condition) is but a determining cause of discharge of nerve cells already highly over-unstable. To return to epilepsy. If arterial plugging (cortical) leads to the destruction of some cells and also to over-nutrition and consequent high instability of others, we have to account for loss of movements as well as for convulsion. For the highest centres ("organ of mind") are, I submit, sensorimotor, and the lesion in epilepsy proper is, one must suppose, of these centres. I think we may say that the higher the nervous centres the less serious (as to movements) is a "destructive lesion," and the more serious is a "discharging lesion;" for the higher the centre the more complex, etc., it is, and thus the greater is the compensation for negative functional lesions and also the greater the co-operation in excess for super-positive functional lesions. Compensation and Co-operation in excess will be greatest in the highest centres. The epileptic, so to say, carries about with him a hyper-physiological parasite, a part of his highest centres of no use for normal function (but for which, as a loss, there is nearly

absolute compensation), and which is worse than useless (a "mad part"), for when it discharges it produces widespread or universal convulsion by compelling healthy nervous arrangements to cooperate in its excess. I suppose, however, there is loss of some movements from negative lesions of the highest centres, in spite of there being no discoverable inability in any muscular region

(vide supra).

It follows from the hypothesis I hold as to the physiology and pathology of epilepsy that I do not entertain the hypothesis held by many medical men that there is any relation of community of character between epilepsy proper and insanity. There is, I think, no such relation between the pathological and physiological state of the brain in epilepsy and the pathological and physiological state of it in insanity. There is a relation of sequence often enough; not rarely there is temporary mania after a fit, and sometimes chronic mental failure occurs in epileptics; that relation of sequence is quite a different thing from a relation by community of character.

I will make a few remarks on the treatment of epilepsy proper. For the negative functional state in hemiplegia we can do nothing; nervous elements are in most cases gone, and in post-epileptiform hemiplegia the paralysis needs no treatment. In epilepsy the other, the diametrically opposite, kind of functional state is a very different thing in its therapeutical bearings. It is notorious that our treatment of epilepsy is deplorably unsatisfactory, and if my hypothesis be correct—that there is a persisting local lesion in the highest centres of one side of the brain—there are good reasons for it. The radical cure of epilepsy, as of epileptiform seizures, is for the surgeon to cut out the "discharging lesion;" but in no case of epilepsy proper do we as yet know its exact position; it will differ in different epilepsies. Still we may interfere for good in the local over-active process of nutrition, always going on, which keeps up the high instability of cells of the "dis-

charging lesion."

Apart from any particular hypothesis as to its pathology, the excessive liberation of energy by the "discharging lesion" of necessity implies the taking in of a large amount of materials having potential energy-that is, increased nutrition. Some of the measures found beneficial in cases of epilepsy are presumably owing to reduction of the local nutritive process in the arteriocortical area, so that there is less active nutrition and more stable tissue. It is a very old recommendation that epileptics should eat but little flesh-meat—highly nitrogenised food. On this I insist, excluding obvious exceptions. It is a good plan to name the number of ounces of meat, a guide being that the middle diet at hospitals is four ounces. Epileptics should eat less, regard being had to their work, etc. They must be content "to live on a lower level." They should have much exercise. The presumption is that the empirical remedy bromide, possibly by substitution nutrition, leads to formation of more stable nervous matter. Belladonna has had great repute, and no doubt does some good (I advise it especially in nocturnal epilepsy, a big dose at bedtime). I never give it alone, so can say nothing certain as to its individual value. Speaking very generally, we may say that, experimentally, belladonna induces a negative state of inhibitory and secretory nerves, leucenteric fibres; it stimulates centres which govern those parts of the body by intermediation of motor, polic-enteric nerves.18

¹⁸ Here, once more using Gaskell's terms, I would urge that by aid of his thoroughly practical work and brilliant generalisations our scientific studies of many nervous diseases will be very much facilitated.

18

Its action is, however, very complex. Thus atropine injected into the carotid stimulates the vagus origins and renders the heart's beats less frequent; the latter action is on the vagus ends. In epilepsy we dare not give such large doses of belladonna as the experimentalists can to animals, but we should give the drug until some physiological effect is produced—drying of the mouth, for example. In the doses we can give it will not, I should imagine, influence the "discharging lesion;" but it may act beneficially in that the effects of the epileptic discharge will be less upon important parts of the body as they are supplied by inhibitory nerves, and more on them as they are supplied by motor nerves. I suppose it is better for the currents consequent on excessive cerebral discharge to pass by the accelerator fibres to the heart than by the inhibitory vagus fibres. I submit that the leucenteric fibres are those most affected by the epileptic discharge, and that they are those first exhausted (so during fear). They are presumably later developed (hence great tolerance of belladonna by

young children), and thus fail first in dissolution.

It is well known that in pernicious diabetes sugar disappears from the urine during febrile ailments, the explanation being, I suppose, that the dilated hepatic arterioles do not then get so much blood as when general arterial tension is normal. (If the splanchnic nerves are divided before experimental injury to an animal's "diabetic centre," there is no glycosuria.) It is known, too, that in febrile diseases epileptic attacks usually cease. I suppose that in this condition, arterial tension being relaxed, or during the stage of febrile disease when it is relaxed, the semistagnant patch—"discharging lesion"—in the cortex gets less blood. Is it possible that the good effects of a seton in some cases of epilepsy are owing to the induction of a slight, miniature febrile condition? I suppose that nitroglycerine is given in epilepsy to produce general arterial relaxation. I have as yet but little experience of this remedy. Increase of arterial tension would be another reason for diminishing in an epileptic's diet the quantity of highly-nitrogenised food; for during high arterial tension, which much food of that kind may induce, the "semi-stagnant patch" may get more blood than if the patient has a simpler diet. On the great importance of degrees of arterial tension in epileptics Dr. Broadbent insisted strongly in his Croonian Lectures (1886), and since hearing them I have paid very particular attention to states of the pulse in epileptics. Besides ordinary care of the bowels and dietetics, we may give occasional small doses of blue pill when there is undue arterial tension. We should in such cases not give strychnine.

In cases of epilepsy the patient should "avoid excitement." But in young people we may err in being too strict; we may narrow a young epileptic girl's life too much by forbidding the amusements proper to her age. If she have a fit soon after a hearty game or a dance, it is, I think, only the premature develop-

ment of a fit nearly due.