Tables of chemical formulae / arranged by William Odling.

Contributors

Odling, William, 1829-1921. Royal College of Surgeons of England

Publication/Creation

London: Taylor and Francis, 1864.

Persistent URL

https://wellcomecollection.org/works/t9nbwrjt

Provider

Royal College of Surgeons

License and attribution

This material has been provided by This material has been provided by The Royal College of Surgeons of England. The original may be consulted at The Royal College of Surgeons of England. Where the originals may be consulted. This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

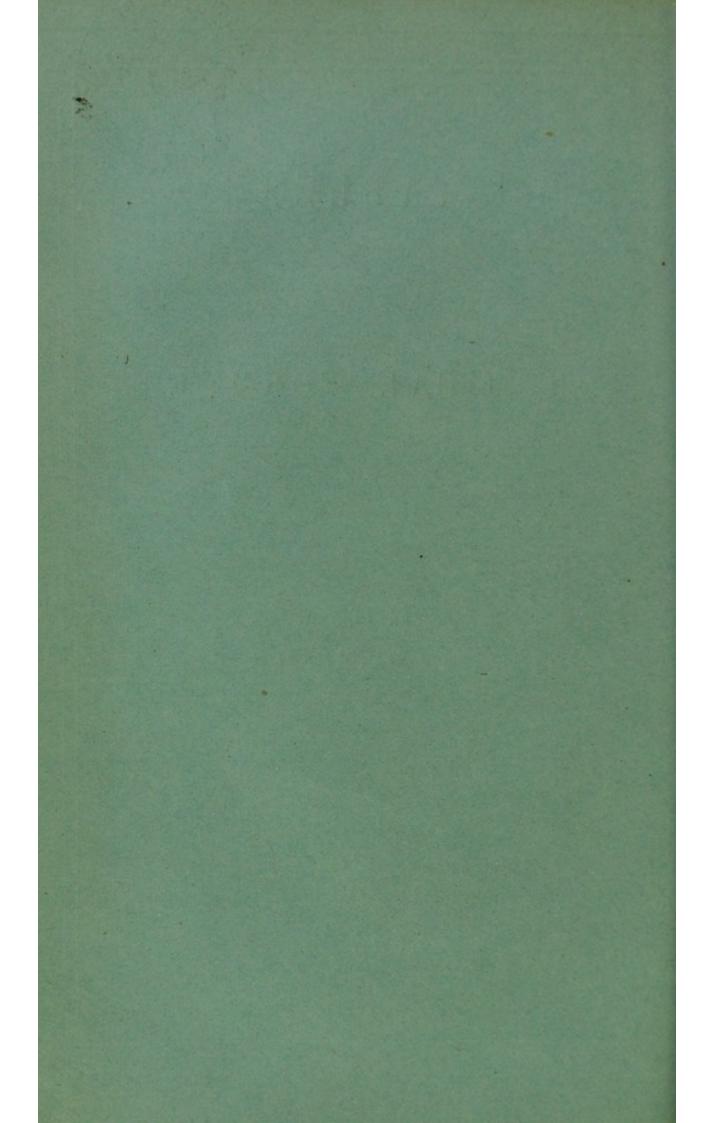
You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

TABLES

OF

CHEMICAL FORMULÆ.


ARRANGED BY

WILLIAM ODLING, M.B., F.R.S.,

FELLOW OF THE ROYAL COLLEGE OF PHYSICIANS,
AND LECTURER ON CHEMISTRY AT ST. BARTHOLOMEW'S HOSPITAL.

LONDON:

TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET.
1864.

TABLES OF CHEMICAL FORMULÆ.

TABLE I.

ATOMIC WEIGHTS AND SYMBOLS.

Class I. Perissad Elements and Chlorides.

	Symbol.	Atomic weight.	Element.	Monochloride, X Cl.	Trichloride, X Cl _{3*}	Pentachloride, X Cl ₅ .
	Н	1	Hydrogen	H Cl	-	
si si	F Cl Br I	35.5 80 127	Fluorine Chlorine Bromine Iodine	Cl Cl Br Cl? I Cl	I Cl ₃	Br Cl ₅
Monads.	Li Na K Rb Cs	7 23 39 85 133	Lithium Sodium Potassium Rubidium Cæsium	Li Cl Na Cl K Cl Rb Cl Cs Cl		
	Ag Au	108	Thallium Silver Gold	Ag Cl Au Cl	Tl Cl ₃ Au Cl ₃	
Triads.	N P As Sb Bi	14 31 75 122 210	Nitrogen Phosphorus Arsenic Antimony Bismuth	General State of the State of t	$\begin{array}{c} \text{N Cl}_3 \\ \text{P Cl}_3 \\ \text{As Cl}_3 \\ \text{Sb Cl}_3 \\ \text{Bi Cl}_3 \end{array}$	NH ₄ Cl P Cl ₅ — Sb Cl ₅
	B Al	27'5	Boron Aluminum	Toursell of	B Cl ₃ Al Cl ₃	

TABLE II.

ATOMIC WEIGHTS AND SYMBOLS.

Class II. Artiad Elements and Chlorides (Dyads).

Symbol.	Atomic weight.	Element.	Dichloride, X Cl ₂ .	Tetrachloride, X Cl ₄ .	Hexachloride, X Cl ₆ .
0	16	Oxygen	O Cl ₂	_	
S	32	Sulphur	S Cl ₂	S Cl ₄	S O ₂ Cl ₂
Se	79'5	Selenium	1-	Se Cl ₄	Se O ₂ Cl ₂
Te	129	Tellurium	Te Cl ₂	Te Cl4	Te O2(HO)2
Mo	96	Molybdenum	Mo Cl.	Mo Cl	Mo O2 Cl2
V	137	Vanadium		V Cl	V Cla
W	184	Tungsten	-	W Cl	W Cle
Ca	40	Calcium	Ca Cl.		
Sr	87.5	Strontium	Sr Cl.		ATTENDED OF
Ba	137	Barium	Ba Cl ₂		
Mg	24	Magnesium	Mg Cl.		
Zn	65	Zinc	Zn Cl.	1	-
Cd	112	Cadmium	Cd Cl ₂	100	
Hg	200	Mercury*	Hg Cl.	3.83	
Pb	207	Lead	Pb Cl ₂	Pb Et ₄	
Cr	52.5	Chromium*	Cr Cl	_	Cr O ₂ Cl ₂
Mn	55	Manganese*	Mn Cl	Mn Cl, ?	Mn O2 (HO)2
Fe	56	Iron*	Fe Cl ₂		Fe O2 (HO)2
Co	59	Cobalt	Co Cl ₂		
Ni	59	Nickel	Ni Cl ₂	1000	
Cu	63.2	Copper*	Cu Cl ₂	1	
G	9	Glucinum	G Cl ₂	1000	
Yt	64	Yttrium	Yt Cl ₂	1	The state of the s
Ce	92	Cerium*	Ce Cl ₂		
La	92	Lanthanum	La Cl ₂		
Dy	96	Didymium	Dy Cl ₂	100000	100
U	120	Uranium *	U Cl ₂		-

TABLE III.

ATOMIC WEIGHTS AND SYMBOLS.

Class II. Artiad Elements and Chlorides. (Tetrads.)

Symbol.	Atomic weight.	Element.	Dichloride, X Cl ₂ .	Tetrachloride, X Cl ₄ .	Hexachloride X Cl ₆ .
C	12	Carbon	C Cl ₂ ?	C Cl.	a de la constanta
Si	28	Silicon	Si Cl. ?	Si Cl.	
Sn	118	Tin	Sn Cl ₂	Sn Cl4	THE REAL PROPERTY.
Ti	50	Titanium		Ti Cl.	
Zr	89.5	Zirconium		Zr Cl	William O. A
Ta	138	Tantalum	1.000	Ta Cl	
Cb	195	Columbium	950	Cb Cl	
Th	238	Thorinum	34431	Th Cl	Alt Ca
Ro	104	Rhodium*	Ro Cl.	8 2 2	
Ru	104	Ruthenium*	Ru Cl	_	
Pd	106.2	Palladium	Pd Cl	Pd Cl	
Pt	197	Platinum	Pt Cl	Pt Cl.	
Ir	197	Iridium	Ir Cl	Ir Cl	Ir Cla
Os	199	Osmium	Os Cl.	Os Cl	Os Cl

TABLE IV.

ATOMIC WEIGHTS AND SYMBOLS.

Periss-artial Elements and Chlorides.

Symbol.	Atomic weight.	Element.	Monochloride, (X Cl).	Dichloride, X Cl ₂ .	Trichloride, (X Cl ₃).
Hg	200	Mercury	(HgCl)	Hg Cl ₂	
Cu	63.2	Copper	(CuCl)	Cu Cl ₂	-
Cr	52.2	Chromium		Cr Cl ₂	(Cr Cl ₃)
Mn	55	Manganese	PARTY GE	Mn Cl ₂	(Mn Cl ₃)
Fe	56	Iron	TOTAL TO	Fe Cl ₂	(Fe Cl ₃)
Ce	92	Cerium	1000	Ce Cl ₂	(Ce Cl ₃)
U	120	Uranium	1 - 1 - 5	U Cl ₂	(U Cl ₃)
Ro	104	Rhodium	100	Ro Cl	(Ro Cl ₃)?
Ru	104	Ruthenium	5 10 3 10	Ru Cl.	(Ru Cl ₃)?

TABLE V.

ILLUSTRATIVE SIMPLE OXIDES.

Type	X20.	X O or X ₂ O ₂ .	X ₂ O ₃ .	$X \Theta_2$ or $X_2 \Theta_4$.	X ₂ O ₅ .	X O ₃ or X ₂ O ₆ .	X2 O7.	X O ₄ or X ₂ O _{8*}
	Monoxide.		Trioxide.	FIRE	Pentoxide.		Heptoxide.	
Perissads.	H ₂ O Cl ₂ O Cl ₂ O Tl ₂ O Au ₂ O N ₂ O —	(H_2O_2) (K_2O_2) (N_2O_2)	Cl ₂ O ₃ Tl ₂ O ₃ Au ₂ O ₃ N ₂ O ₃ P ₂ O ₃ Bi ₂ O ₃ B ₂ O ₃	(Cl ₂ O ₄) (K ₂ O ₄) (N ₂ O ₄)	- Cl ₂ O ₅ ? I ₂ O ₅ ? - Cl ₂ O ₅ ? - Cl ₂ O ₅ P		$Cl_2 O_7$? $I_2 O_7$	
		Isoxide.		Diploxide.		Triploxide.		Tetraplox-
Artiads.				S O ₂ Te O ₂ Mo O ₂ W O ₂ Ba O ₂ - Pb O ₂ C O ₂ Sn O ₂ Pd O ₂ Ir O ₂ Os O ₂		S O ₃ Te O ₃ Mo O ₃ W O ₃ — — — — Ir O ₃ Os O ₃		Os O ₄
Peris-artiads.	$\begin{array}{c} (\mathrm{Hg_2O}) \\ \\ (\mathrm{Cu_2O}) \end{array}$	Hg O Cr O Mn O Fe O Cu O Ce O U O	$\begin{array}{c} (Cr_2O_3)\\ (Mn_2O_3)\\ (Fe_2O_3)\\ (Cu_2O_3)\\ (Ce_2O_3)\\ (U_2O_3) \end{array}$	Cr O ₂ ? Mn O ₂		Cr O ₃ Mn O ₃ ? Fe O ₃ ?	(Mn ₂ O ₇)?	

TABLE VI.

ATOMIC HEAT.

Element.	Atomic weight.	Specific heat.	Sp. heat × at. weight.	Atomic heat.
Bromine	80	*08432	6.7456	1.0956
Iodine	127	'05412	6.8732	1,1193
Lithium	7	94080	6:5856	1.0696
Sodium	23	1 29340	6.7480	1.0959
Potassium	39	16956	6.6128	1'0740
Thallium	203 .	'03355	6.8106	1.1001
Silver	108	'05701	6.1570	1.0000
Gold	196.5	.03244	6.3744	1.0353
Phosphorus	31	18870	5.8497	0.9501
Arsenic	75	.08140	6.1020	0.9912
Antimony	122	.05077	6.1939	1.0000
Bismuth	210	.03084	6.4764	1.0218
Aluminum	27.5	21430	5.8730	0.9239
Sulphur	32	17760	5.6832	0'9234
Selenium	79'5	'08270	6.6541	1.0807
Tellurium	129	*04737	6.1102	0.9925
Tungsten	184	'03342	6.1492	0.9987
Magnesium	24	'24990	5.9976	0'9741
Zinc	65	'09555	6.2588	1.0165
Cadmium	112	.05669	6.3482	1.0310
Mercury	200	'03192	6.3849	1.0370
Lead	207	'03140	6.4999	1.0556
Manganese	55	*12170	6.6934	1.0821
Iron	56	11379	6.3722	1.0349
Cobalt	59	10696	6.3106	1.0249
Nickel	59	.10863	6.4090	1.0409
Copper	63.2	.09512	6.0419	0.9813
Fin	118	*05623	6.6356	1.0777
Rhodium	104	105803	6.0583	0.9849
Palladium	106.2	.05927	6.3122	1.0252
Platinum	197	'03243	6.3887	1'0376
Iridium	197	'03259	6.4202	1'0427
Osmium	199	.03113	6.1948	1.0061

TABLE VII.

EQUIVALENT NOTATION.

Atomic weights of metals.	Atomic formulæ.	Chlorides.	Equivalent formulæ.	Equivalent weights of metals.
1	H Cl	Chlorhydric acid	H Cl	1
196.2	Au' Cl	Aurous chloride	Au Cl	196.5
"	Au''' Cl ₃	Auric chloride	au Cl	65.5
118	Sn" Cl	Stannous chloride	sn Cl	59
,,	Sn'''' Cl	Stannic chloride	stn Cl	29'5
197	Pt" Cl.	Platinous chloride	pt Cl	98.5
"	Pt'''' Cl.	Platinic chloride	ptn Cl	49'2
200	Hg' Cl	Mercurous chloride	Hg Cl	200
"	Hg" Cl	Mercuric chloride	hg Cl	100
63.5	Cu' Cl	Cuprous chloride	Cu Cl	63.5
"	Cu" Cl	Cupric chloride	cu Cl	31.7
56	Fe" Cl2	Ferrous chloride	fe Cl	28
,,	Fe''' Cl ₃	Ferric chloride	ffe Cl	18.7
52.2	Cr" Cl,	Chromous chloride	er Cl	26.2
,,	Cr''' Cl ₃	Chromic chloride	ccr Cl	17'5

TABLE VIII.

NORMAL VAPOUR-DENSITIES.

Molec. for- mulæ.	Gas or vapour.	Molec. weight, 2 vols.	Specific gravity, 1 vol.	Molec. formulæ.	Gas or vapour.	Molec. weight, 2 vols.	Specific gravity, 1 vol.
H ₂	Hydrogen	2	1	(CN) ₂	Cyanogen	52	26
Cl ₂	Chlorine	71	35.5	CNH	Prussic acid	27	13.5
Br ₂	Bromine	160	80	CNCI	Cyan. chloride	61.5	30'7
I ₂	Iodine	254	127	CO	Carbonic oxide	28	14
Ú2	Oxygen	32	16	C Cl, O	Phosgene gas	99	49'5
S ₂	Sulphur	64	32	CH, 0,	Formic acid	46	23
Se ₂	Selenium	159	79'5	CO.	Carbonic anhyd.	44	22
N ₂	Nitrogen	28	14	CS.	Carbon disulph.	76	38
HCl	Chlorhyd. ac.	36.5	18.2	CH,	Marsh-gas	16	8
HgCl	Calomel	235.5	117.7	CHCL,	Chloroform	119'5	59'7
HBr	Bromhyd. ac.	81	40.2	CH,O	Wood-spirit	32	16
HI	Iodhydric ac.	128	64	CH, N	Methylamine	31	15.2

TABLE IX.

NORMAL VAPOUR-DENSITIES (continued).

Molecular formulæ.	Gas or vapour.	Molec. weight.	Specific gravity.		Gas or vapour.	Molec. weight.	
H ₂ O	Water	18	9	C, H,	Klumene	26	13
H ₂ S	Sulphydric ac.	34	17	$C_2 H_4$	Ethylene	28	14
H, Se	Selenhyd. acid	81.2	40'7	C, H, O	Aldehyd	44	22
H ₂ T	Tellurhyd.acid	131	65.5	C, HCl,O	Chloral	147'5	73'7
Cl ₂ Sn	Stannous chlo.	189	94.5	C2 Cl4 O	Perchloral	182	91
Cl2 Hg	Corrosive sub.	271	135.5	C, H, O,	Acetic acid	60	30
Et, Cd?	Cadmium-eth.	170	85	C2 HCl3O2	Trichloracetic	163.2	81.7
Et. Zn	Zinc-ethyl	123	61.5	C ₂ H ₆	Ethene	30	15
H ₃ N	Ammonia	17	8.5	C. H. Cl	Ethyl chloride		32.2
H ₃ P	Phosphine	34	17	C ₂ H ₄ Cl ₂	Ethylene dichl		49'5
H, As	Arsine	78	39	C, H, O	Alcohol	46	23
H ₃ Sb	Stibine	125	62.5	C H S	Mercaptan	62	31
Cl _a Bi	Bismuthchlor.	316.5	158.2	C ₂ H ₆ O ₂	Glycol	62	31
Cl ₃ B	Boron chloride		58.7	C ₂ H ₇ N	Ethylamine	45	22'5
Cl, Si	Silicon chlor.	170	85	C, H, N,	Ethylen-diam.	60	30
Cl, Sn	Stannic chlor.	260	130	C ₃ H ₆ O ₁	Acetone	58	29
Cl, Ti	Titanic chlor.	192	96	C4 H8 O2	Acetic ether	88	44
Cl, Ta	Tantalic chlor.	280	140	C4 H10O	Ether	74	37
Cl, Cb	Columbic chl.	337	168.5	C4 H10S	Ethyl sulphid.		45
SO ₂	Sulphurous an.		32	C4 H10S2	Ethyl disulp.	122	6r
SO3	Sulphuric anh.	80	40	C H10	Amylene	70	35
SO ₃ Cl ₂ S ₂	Chlorine disul.	135	67.5	Ce He	Phenene	78	39
Cl.SO.	Sulph. oxychl.		67.5	C H O	Phenol	94	47
Cl_CrO_	Chrom. oxych.	155.5	77.7	C ₈ H ₇ N	Aniline	93	46.5
N _o O	Nitrous oxide		22	C, H, O	Benzoic ald.	106	53
N _o O _s	Nitric peroxid.		46	C7 H O2	Benzoic acid	122	61
HNO3	Nitric acid	63	31.5	C10H8	Naphthalene	128	64
CINO	Chlornitrous		32.7	C10H16	Turpentine	136	68
Cl ₃ PO	Phosph.oxych.		76.7	C10H16O	Camphor	152	76

TABLE X.
Anomalous Vapour-densities.

Molecular formulæ.	Gas or vapour.	Molec. weight, 1 vol.	Spec. grav., 1 vol.	Molecular formulæ.	Gas or vapour.	Molec. weight, 4 vols.	Spec. grav., 1 vol.
$\begin{array}{c} P_2 \\ As_2 \\ As_2O_3 \\ Al\ Cl_3 \\ Cr\ Cl_3 \\ Fe\ Cl_3 \end{array}$	Phosphorus Arsenicum White arsenic Aluminic chl. Chromic chlr. Ferric chlor.	62 150 198 134 159 162.5	62 150 198 134 159 162.5	Hg ₂ Cd ₂ N ₂ O ₂ Cl ₂ O ₄ H ₂ SO ₄ NH ₄ Cl	Mercury Cadmium Nitric oxide Perchloric oxide Sulphuric acid Ammon. chlorid	53.2 98	100 56 15 34 24.5 13.4
HgS Cl ₂ O ₃	Cinnabar Chlorous ahd.	232 119 3 vols.	77'3 39'7 1 vol.	NH ₄ CN NH ₅ S P Cl ₅ V Cl ₈	Ammon. cyanid. Amm. sulphyd. Phosph.petach. Vanadic hexach.		52.1 84.2

Most of these anomalies are explicable or removeable.

TABLE XI.
PRIMARY HYDRIDES.

Molecular weight.	Formula.	Hydride.	Derivatives.			
2	H ₂	Hydrogen	Cl H	Cu H	Et H	
20 36·5 81 128	H F H Cl H Br H I	Fluorhydric acid Chlorhydric acid Bromhydric acid Iodhydric acid	Cl Cl Cl Br ? Cl I	K F K Cl K Br K I	Et F Et Cl Et Br Et I	
18 34 81.5 131	${ m H_{2}^{2}O} \\ { m H_{2}^{2}S} \\ { m H_{2}^{2}Se} \\ { m H_{2}^{2}T}$	Water Sulphydric acid Selenhydric acid Tellurhydric acid	$\begin{array}{c}\operatorname{Cl_2O}\\\operatorname{Cl_2}'S\\ -\\\operatorname{Cl_2}T\end{array}$	NaCl O Na H S Na ₂ Se Ag ₂ Te	Et Me O Et Ag S Et H Se Et ₂ Te	
17 34 78	H_3 N H_3 P H_3 As H_3 Sb	Ammonia Phosphine Arsine Stibine	$\begin{array}{c}\operatorname{Cl}_3\operatorname{N}\\\operatorname{Cl}_3\operatorname{P}\\\operatorname{Cl}_3\operatorname{As}\\\operatorname{Cl}_3\operatorname{Sb}\end{array}$	$\begin{array}{c} \operatorname{KH_2N} \\ \operatorname{Ag_3P} \\ \operatorname{Ag_3As} \\ \operatorname{Ag_3Sb} \end{array}$	MeEtPhN Me ₃ P Me ₂ ClAs Me ₃ Sb	
16 32	H ₄ C H ₄ Si	Marsh-gas Silic. hydrogen	Cl ₄ C Cl ₄ Si	NaH ₃ C Mg' ₂ Si	Et ₄ Si	

TABLE XII.

OXIDES OF PRIMARY HYDRIDES.

Formula.	Oxhydrate, &c.	Deriv	ratives.
	Monobasic.		
H Cl	Chlorhydric	K Cl	Et Cl
H ClO	Hypochlorous	KClO	_
H ClO.	Chlorous	K Cl O.	- 17
H ClO3	Chloric	K Cl O ₃	_
H ClO4	Perchloric	K Cl O4	Et Cl O4
	Dibasic.		545
H ₂ S	Sulphydric	KHS	Et ₂ S
$H_2 S O$		Cl ₂ SO	Et SeO
H_2SO_2		Cl ₂ S O ₂	-
H, S O3	Sulphurous	KHSO3	Et ₂ S O ₃
H ₂ S O ₄	Sulphuric	K ₂ S O ₄	EtH S O4
	Tribasic.	7 3 10 11	113
H ₃ P	Phosphine	Ag ₃ P	Et ₃ P
$H_3 P O$		Cl ₃ P O	Et P O
H ₃ P O ₂	Hypophosphorous	KH ₂ PO ₂	-
H ₃ P O ₃	Phosphorous	K ₂ H P O ₃	Et ₃ P O ₃
H ₃ P O ₄	Phosphoric	K ₃ P O ₄	EtH ₂ P O ₄
	Tetrabasic.		
H, S	Silic. Hydrogen	Mg'' Si	Et, Si
H, SiO		-	-
$H_4 SiO_2$		-	-
$H_4 SiO_3$		-	-
H, SiO,	Silicic acid	K, Si O,	Et, Si O,

TABLE XIII.

ORTHO- AND META-COMPOUNDS.

Ortho-acid.	Formula.	Formula.	Meta-acid.
Phosphoric Orthonitric	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H P O ₃ H N O ₃	Metaphosphic Nitric
Silicie Orthocarbonic	$ \begin{array}{c c} H_4 & Si & O_4 & (-H_2 & O =) \\ H_4 & C & O_4 & (-H_2 & O =) \end{array} $	H ₂ Si O ₃ H ₂ C O ₃	Metasilicic Carbonic

TABLE XIV.

TRI- AND TETRA-OXYGEN ACIDS.

Formula.	Tri- oxacid.	Formula.	Tetra- oxacid.
H Cl O,	Chloric	H Cl O,	Perchloric
H Br O3	Bromic	H I O	Periodic
HIO3	Iodic	H MnO	Permanganic
H N O	Nitrie		- or man Bunto
HPO3	Metaphosphic	H2S O4	Sulphuric
and the same		H2 Se O4	Selenic
H,S O,	Sulphurous	H, Te O	Telluric
H, Se O	Selenious	Ha Mo O	Molybdic
Ha Te Oa	Tellurous	H2 V O4	Vanadic
H ₂ V O ₃	Vanadous	H ₂ W O ₄	Tungstic
H, C O	Carbonic	H, Cr O	Chromic
Hasi Oa	Metasilicic	H ₂ MnO ₄	Manganic
H2 Sn O3	Stannic	H ₂ Fe O ₄	Ferric
HaTi O	Titanic	11210 04	TOTAL
HaTa Oa	Tantalic	H ₃ N O ₄	Orthonitric
2 3		H ₃ P O ₄	Phosphoric
H ₃ P O ₃	Phosphorous	H ₃ As O ₄	Arsenic
H ₃ As O ₃	Arsenious	H ₃ Sb O ₄	Antimonic
H ₃ Sh O ₃	Antimonious	113 00 04	Zutimonic
H ₃ Bi O ₃	Bismuthous?	H, C O,	Orthocarbonic
H_3 B O_3	Boracic	H Si O	Silicic

TABLE XV.
CHLORO-DERIVATIVES.

Formula.	Compound.	Mono-chlor.	Di-chlor.	Tri-chlor.	Tetra-chlor.
H ₂ C H ₄ C ₂ H ₆ C ₃ H ₈ C ₄ H ₁₀	Hydrogen Marsh-gas Ethene Propene Butene	$\begin{array}{c} H & Cl \\ C & H_3 & Cl \\ C_2 & H_5 & Cl \\ C_3 & H_7 & Cl \\ C_4 & H_9 & Cl \end{array}$	$\begin{array}{c} & \text{Cl}_2\\ \text{C} & \text{H}_2 & \text{Cl}_2\\ \text{C}_2 & \text{H}_4 & \text{Cl}_2\\ \text{C}_3 & \text{H}_6 & \text{Cl}_2\\ \text{C}_4 & \text{H}_8 & \text{Cl}_2 \end{array}$	C H Cl ₃ C ₂ H ₃ Cl ₃ C ₃ H ₅ Cl ₃ C ₄ H ₇ Cl ₃	$\begin{array}{c} {\rm C\ Cl_4} \\ {\rm C_2H_2Cl_4\ \&c.} \\ {\rm C_3H_4Cl_4\ \&c.} \\ {\rm C_4H_6Cl_4\ \&c.} \end{array}$
$\begin{array}{c} {\rm C_2H_4} \\ {\rm C_2H_4O} \\ {\rm C_2H_4O_2} \end{array}$	Ethylene Aldehyd Acetic acid	$\begin{array}{c} {\rm C_2H_3Cl} \\ {\rm C_2H_3ClO} \\ {\rm C_2H_3ClO_2} \end{array}$	$\begin{array}{c} {\rm C_2H_2Cl_2} \\ {\rm C_2H_2Cl_2O} \\ {\rm C_2H_2Cl_2O_2} \end{array}$	$C_{2} H Cl_{3}$ $C_{2} H Cl_{3}O$ $C_{2} H Cl_{3}O_{2}$	C ₂ Cl ₄ C ₂ Cl ₄ O

TABLE XVI.

HYDROCARBONS.

§ I. Fatty Class.

Primary terms.		Secon	Secondary terms.		iary terms.
$\begin{array}{c} H_2 \\ C H_4 \\ C_2 H_6 \\ C_3 H_8 \\ C_4 H_{10} \\ C_5 H_{12} \\ C_6 H_{14} \\ C_7 H_{16} \\ C_8 H_{18} \end{array}$	Hydrogen Marsh-gas Ethene Propene Butene Eupione Caprene Œnanthene Octene	C H ₂ C ₂ H ₄ C ₃ H ₆ C ₄ H ₈ C ₅ H ₁₀ C ₆ H ₁₂ C ₇ H ₁₄ C ₈ H ₁₃	Methylene? Ethylene Propylene Butylene Amylene Caproylene Œnanthylene Octylene		Klumene Allylene
$\begin{array}{c} C_9 & H_{20} \\ C_{10} & H_{22} \\ C_{11} & H_{24} \\ C_{12} & H_{26} \\ & - \\ C_x & H_{2x+2} \end{array}$	Decatene Laurene Paraffin	$\begin{array}{c} C_9 & H_{18} \\ C_{10} & H_{20} \\ C_{11} & H_{22} \\ C_{12} & H_{24} \\ C_{16} & H_{32} \\ C_{27} & H_{54} \\ C_{30} & H_{60} \end{array}$	Nonylene Diamylene Laurylene Cetylene Cerylene Melissene	C ₁₀ H ₁₈	Menthene

§ II. Aromatic Class.

P	rimary terms.	S	econdary terms.
C ₆ H ₆ C ₇ H ₈ C ₈ H ₁₀ C ₉ H ₁₂ C ₁₀ H ₁₄	Phenene Benzoene Xylene Retinene Cymene	C ₆ H ₄ C ₈ H ₈	Phenylene Cinnamene

§ III. Miscellaneous.

	Furpentines.		Pyrogens.
C ₅ H ₈	Isoprene	$\begin{array}{c} C_{10} \ H_8 \\ C_{12} \ H_8 \\ C_{14} \ H_{10} \\ C_{15} \ H_{12} \end{array}$	Naphthalene
C ₁₀ H ₁₆	Terebene		Chrysene
C ₁₅ H ₂₄	Cubebene		Anthracene
C ₂₀ H ₃₂	Colophene		Pyrene

TABLE XVII.

SERIES OF ORGANIC FAMILIES.

	Monatomi	ic alcohols.	Monaton	nic acids.	Diatom	ic acids.
Patty	C H ₄ O C ₂ H ₆ O C ₃ H ₈ O C ₄ H ₁₀ O C ₅ H ₁₂ O C ₆ H ₁₄ O C ₇ H ₁₆ O C ₉ H ₂₀ O — C ₁₂ H ₂₆ O — C ₁₂ H ₂₆ O — C ₁₆ H ₃₄ O C ₉ H ₃₀ O — C ₁₆ H ₃₄ O — C ₁₆ H ₃₄ O — C ₁₇ H ₅₆ O C ₃₀ H ₆₂ O	Methylic Ethylic Propylic Butylic Amylic Hexylic Anthylic Octylic Nonylic Laurylic Cetylic Melylic	$\begin{array}{c} C H_2 O_2 \\ C_2 H_4 O_2 \\ C_3 H_6 O_2 \\ C_4 H_8 O_2 \\ C_5 H_{10} O_2 \\ C_5 H_{10} O_2 \\ C_7 H_{14} O_2 \\ C_7 H_{14} O_2 \\ C_9 H_{18} O_2 \\ C_9 H_{18} O_2 \\ C_{10} H_{20} O_2 \\ C_{11} H_{22} O_2 \\ C_{12} H_{24} O_2 \\ C_{13} H_{28} O_2 \\ C_{14} H_{28} O_2 \\ C_{15} H_{30} O_2 \\ C_{16} H_{32} O_2 \\ C_{17} H_{34} O_2 \\ C_{18} H_{38} O_2 \\ C_{19} H_{38} O_2 \\ C_{21} H_{24} O_2 \\ C_{21} H_{24} O_2 \\ C_{21} H_{34} O_2 \\ C_{22} C_{23} H_{34} O_2 \\ C_{24} H_{34} O_2 \\ C_{25} C_{35} H_{36} O_2 \\ \end{array}$	Formic Acetic Propionic Butyric Valeric Caproic Cannthic Thetic Pelargic Rutic Euodic Lauric Cocinic Myristic Benic Palmitic Margaric Stearic Balenic Arachidic Nardic Cerotic Melissic	C ₂ H ₂ O ₄ C ₃ H ₄ O ₄ C ₄ H ₆ O ₄ C ₅ H ₈ O ₄ C ₆ H ₁₀ O ₄ C ₇ H ₁₂ O ₄ C ₈ H ₁₄ O ₄ C ₉ H ₁₆ O ₄ C ₉ H ₁₆ O ₄ C ₁₀ H ₁₈ O ₄	Oxalic Malonic Succinic Pyrotartric Adipic Pimelic Suberic Anchoic Sebacic
Aromatic	$\begin{array}{c} C_6 \ H_6 \ O \\ C_7 \ H_8 \ O \\ C_8 \ H_{10} \ O \\ C_9 \ H_{12} \ O \\ C_{10} \ H_{14} \ O \end{array}$	Anilic Benzylic Xylylic Retylic Cymylic	$\begin{array}{c} C_6 \\ C_7 \\ C_7 \\ H_6 \\ O_2 \\ C_8 \\ H_8 \\ O_2 \\ C_9 \\ H_{10} \\ O_2 \\ C_{10} \\ H_{12} \\ O_2 \end{array}$	Collic Benzoic Toluic Deltic Cuminic	$\begin{array}{c} - \\ C_8 H_6 O_4 \\ C_9 H_8 O_4 \\ - \end{array}$	Phthalic Insolinic?

Alcohol Glycol	$ \begin{vmatrix} C_2 H_6 O (-H_2 + O =) \\ C_2 H_6 O_2 (-H_4 + O_2 =) \end{vmatrix} $	$\begin{array}{c} \mathbf{C}_2 \ \mathbf{H}_4 \ \mathbf{O}_2 \\ \mathbf{C}_2 \ \mathbf{H}_2 \ \mathbf{O}_4 \end{array}$	Acetic acid Oxalic acid
-------------------	--	---	----------------------------

TABLE XVIII.

Homologous Fatty Groups.

-				
4	Prin	nary terms.	Secon	dary terms.
amily.	$\begin{array}{c} \mathrm{C} \ \mathrm{H_4} \\ \mathrm{C} \ \mathrm{H_4} \end{array} \mathrm{O}$	Methene Methylic alcohol		
Formic family.	$ \begin{array}{c} {\rm C} \ \ {\rm H_2O} \\ {\rm C} \ \ {\rm H_2O_2} \\ {\rm C} \ \ {\rm H_2O_3} \end{array} $	Formic aldehyd? Formic acid Carbonic acid		
ily.	$\begin{array}{c} \mathbf{C_2 H_6} \\ \mathbf{C_2 H_6 O} \\ \mathbf{C_2 H_6 O_2} \end{array}$	Ethene Alcohol Glycol	${f C_2 \atop C_2 \atop H_4} {f H_4}$ O	Ethylene Elaylic alcohol
Acetic family.	$\begin{array}{c} C_2 H_4 O \\ C_2 H_4 O_2 \\ C_2 H_4 O_3 \\ C_2 H_4 O_4 \end{array}$	Aldehyd Acetic acid Glycolic acid Glyoxylic acid	of state of	Para in
	$C_2 H_2 O_4$	Oxalic acid	Dea BEARING	18 18 18 18 18 18 18 18 18 18 18 18 18 1
nily.	C ₃ H ₈ O C ₃ H ₈ O C ₃ H ₈ O ₂ C ₃ H ₈ O ₃	Propene Propylic alcohol Propylic glycol Glycerin	C ₃ H ₆ O C ₃ H ₆ O	Propylene Allylic alcohol
Propionic family.	$\begin{array}{c} C_3 \ H_6 \ O \\ C_3 \ H_6 \ O_2 \\ C_3 \ H_6 \ O_3 \\ C_3 \ H_6 \ O_4 \end{array}$	Propionic aldehyd Propionic acid Lactic acid Glyceric acid	$\begin{array}{c} {\rm C_3H_4O} \\ {\rm C_3H_4O_2} \\ {\rm C_3H_4O_3} \\ \hline - \end{array}$	Acrolic aldehyd Acrolic acid Pyruvic acid
	$ \begin{array}{c} C_3 & H_4 & O_4 \\ C_3 & H_4 & O_5 \end{array} $	Malonic acid Tartronic acid	$C_3 \overline{H}_2 O_5$	Mesoxalic acid

TABLE XIX.

Homologous Fatty Groups (continued).

	Prin	nary terms.	Seco	ndary terms.
ly.	$\begin{array}{c} C_4 \overset{\mbox{\bf H}_{10}}{C_4 \overset{\mbox{\bf H}_{10}}{H_{10}}} O \\ C_4 \overset{\mbox{\bf H}_{10}}{H_{10}} O_2 \end{array}$	Butene Butylic alcohol Butylic glycol	C ₄ H ₈	Butylene
Butyric family.	$ \begin{array}{c} {\rm C_4H_8\ O} \\ {\rm C_4H_8\ O_2} \\ {\rm C_4H_8\ O_3} \end{array} $	Butyric aldehyd Butyric acid Butilactic acid	C ₄ H ₆ O ₂	Crotonic acid
But	$\begin{array}{c} C_4 {H}_6 & O_4 \\ C_4 {H}_6 & O_5 \\ C_4 {H}_6 & O_6 \end{array}$	Succinic acid Malic acid Tartaric acid	$\begin{array}{c} {\rm C_4H_4O_4} \\ {\rm C_4H_4O_5} \\ \end{array}$	Fumaric acid Metatartric acid
nily.	$\begin{array}{c} \mathbf{C}_5 \ \mathbf{H}_{12} \\ \mathbf{C}_5 \ \mathbf{H}_{12} \ \mathbf{O} \\ \mathbf{C}_5 \ \mathbf{H}_{12} \ \mathbf{O}_2 \end{array}$	Eupione Amylic alcohol Amylic glycol	C ₅ H ₁₀	Amylene
Valeric family	$\begin{array}{c} \mathbf{C_5} \ \mathbf{H_{10}} \ \mathbf{O} \\ \mathbf{C_5} \ \mathbf{H_{10}} \ \mathbf{O_2} \\ \mathbf{C_5} \ \mathbf{H_{10}} \ \mathbf{O_3} \end{array}$	Valeric aldehyd Valeric acid Phocic acid	$\begin{array}{c} \mathbf{C_5} \mathbf{H_8} \mathbf{O} \\ \mathbf{C_5} \mathbf{H_8} \mathbf{O_2} \\ \end{array}$	Angelic aldehyd Angelic acid
	C ₅ H ₈ O ₄	Pyrotartric acid	C5 H6 O4	Itaconic acid
۸.	C ₆ H ₁₄ O	Caprene Hexylic alcohol	C ₆ H ₁₂	Caproylene
Caproic family.	${f C_6 \ H_{12} \ O_2 \atop C_6 \ H_{12} \ O_3}$	Caproic acid Leucic acid	C ₈ H ₁₀ O ₂	Pyrotrebic acid
aproi	C ₆ H ₁₀ O ₄	Adipic acid	-	
0	C ₆ H ₁₀ O ₈	Mucic acid	C ₈ H ₈ O ₇	Citric acid

TABLE XX.

Homologous Aromatic Groups.

	Prim	ary terms.	Secon	dary terms.
Phenyl-Quinonic family.	C ₆ H ₆ O C ₆ H ₆ O C ₆ H ₆ O ₂ C ₆ H ₆ O ₃	Phenene Phenol Pyrocatechin Pyrogallin Collic acid	C ₆ H ₄	Phenylene
henyl-Quin	$\begin{array}{c} C_6 H_6 O_2 \\ C_6 H_6 O_3 \end{array}$	Hydroquinone Phloroglucin	$\overline{\mathrm{C_6H_4O_2}}$	Quinone
I	$\frac{C_{6} H_{4} O_{5}}{C_{7} H_{8} O \dots \left\{\atop C_{7} H_{8} O_{2}\right.}$	Benzoene Benzylic alcohol Cresylic phenol Benzylic glycol	C ₇ H ₆	Benzylene
Benzyl-Salicic family.	$\begin{array}{c} {\rm C_7H_6O} \\ {\rm C_7H_6O_2} \left\{ \\ {\rm C_7H_6O_3} \end{array} \right.$	Benzoic aldehyd Benzoic acid Saloic acid Ampelic acid, &c.		
zyl-Sa	$C_7H_8O_2\Big\{$	Saligenin Orcin	$C_7 H_6 O_2$	Oreoselin
Ben	$\begin{array}{c} C_7 H_6 O_2 \\ C_7 H_6 O_3 \\ C_7 H_6 O_4 \\ C_7 H_6 O_5 \\ C_7 H_6 O_6 \\ \end{array}$	Salicic aldehyd Salicic acid Hypogal. acid, &c. Gallic acid Pergallic acid?	$\begin{array}{c} {\rm C_7 H_4 O_4} \\ {\rm C_7 H_4 O_6} \\ {\rm C_7 H_4 O_7} \end{array}$	Ellagic acid Chelidonic acid Meconic acid.

TABLE XXI.
PRIMARY TYPES OF DOUBLE DECOMPOSITION.

H.Cl	Chloride or Hydride	C1. C1	Na.Cl	Et.Cl
H } 0	Oxide or Hydrate	C1 } O C1 } O C1 } O	Na H O Na Na O	$\left\{ egin{array}{c} \operatorname{Et} \\ \operatorname{H} \end{array} \right\} \operatorname{O}$ $\left\{ egin{array}{c} \operatorname{Et} \\ \operatorname{Et} \end{array} \right\} \operatorname{O}$
H H H N	Nitride or Amide	H N I I N CI N CI N CI	Na H N N Na Na Na Na	Et H N H N Et N Et N Et N Et N Et
H H H H C	Carbide or Methide	$ \begin{bmatrix} \text{Cl} \\ \text{H} \\ \text{H} \\ \text{H} \end{bmatrix} \text{C} $ $ \begin{bmatrix} \text{Cl}_2 \\ \text{H}_2 \\ \text{Cl}_3 \\ \text{H} \end{bmatrix} \text{C} $ $ \begin{bmatrix} \text{Cl}_3 \\ \text{H} \end{bmatrix} \text{C} $ $ \begin{bmatrix} \text{Cl}_4 \\ \text{C} \end{bmatrix} $	Na H H H H	Et H H H C:

TABLE XXII.
MULTIPLE AND MIXED TYPES.

$\begin{array}{c} H_2 \operatorname{Cl}_2 \\ H_4 \operatorname{O}_2 \\ H_6 \operatorname{N}_2 \\ \end{array}$ $\begin{array}{c} H_3 \operatorname{Cl}_3 \\ H_6 \operatorname{O}_3 \\ H_9 \operatorname{N}_3 \end{array}$	Dichloride Dihydrate Diamide Trichloride Trihydrate Triamide	S"Cl ₂ - B"'Cl ₃ B"'H ₃ O ₃ B"'H ₆ N ₃	$Zn'' Cl_2$ $Zn'' H_2 O_2$ $Zn'' H_4 N_2$ Sb''' Cl ₃ Sb''' H ₃ O ₃ Sb''' H ₆ N ₃	Etn" Cl ₂ Etn" H ₂ O ₂ Etn" H ₄ N ₂ Gly"' Cl ₃ Gly"' H ₃ O ₃ Gly"' H ₆ N ₃
$ \begin{cases} H & \text{Cl} \\ H_2 & \text{O} \\ H & \text{Cl} \\ H_3 & \text{N} \\ H_3 & \text{O} \end{cases} $	Chlorid-hydrate Chlorid-amide Hydrat-amide	$(SO_2)''$ Cl H O	$(S O_2)'' Cl$ $H_2 N$	$(SO_2)''$ N H_3