Der Bronchialbaum der Säugethiere und des Menschen : nebst Bemerkungen über den Bronchialbaum der Vögel und Reptilien / von Chr. Aeby.

Contributors

Aeby, Chr. 1835-1885. Royal College of Surgeons of England

Publication/Creation

Leipzig : Wilhelm Engelmann, 1880.

Persistent URL

https://wellcomecollection.org/works/kn92y4ud

Provider

Royal College of Surgeons

License and attribution

This material has been provided by This material has been provided by The Royal College of Surgeons of England. The original may be consulted at The Royal College of Surgeons of England. where the originals may be consulted. This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

DER BRONCHIALBAUM

DER

SÄUGETHIERE UND DES MENSCHEN.

NEBST

BEMERKUNGEN ÜBER DEN BRONCHIALBAUM DER VÖGEL UND REPTILIEN.

VON

PROF. DR. CHR. AEBY

MIT 6 LITHOGRAPHISCHEN, 4 LICHTDRUCK-TAFELN UND 9 HOLZSCHNITTEN.

LEIPZIG,

VERLAG VON WILHELM ENGELMANN.

1880.

DER BRONCHIALBAUM

Alle Rechte vorbehalten.

Inhaltsverzeichniss.

	Seite
Einleitung	1
I. Der Bronchialbaum der Säugethiere	3
A. Allgemeine Formverhältnisse	3
B. Spezielle Formverhältnisse	14
1. Lagerungsverhältnisse des Bronchialbaums	
a. Stammbronchen	14
b. Seitenbronchen	16
a) Längenabstände der hyparteriellen Seitenbronchen	18
β) Längenabstände der eparteriellen Seitenbronchen	29
2. Kaliberverhältnisse des Bronchialbaums	35
a. Einzelkaliber der Bronchen	36
b. Gesammtkaliber des Bronchialbaums	43
C. Lappenbildung der Lunge	48
II. Der Bronchialbaum des Menschen	52
A. Allgemeine Formverhältnisse	52
B. Spezielle Formverhältnisse	56
1. Lagerungsverhältnisse des Bronchialbaums	56
a. Stammbronchen	56
b. Seitenbronchen	61
2. Kaliberverhältnisse des Bronchialbaums	66
a. Einzelkaliber der Trachea und der Bronchen	
a) Trachea	67
β) Stammbronchen.	69
γ) Seitenbronchen	72
b. Gesammtkaliber des Bronchialbaums	
C. Lappenbildung der Lunge	81
D. Zur feinern Architectur der Lunge	
III. Der Bronchialbaum der Vögel und Reptilien	
Erklärung der Tafeln	
and the second s	97

Inhaltsverzeiciuuss.

*

and showing the other of the

H. the fleenshielbann des Manschon . . .

Einleitung.

Unsere bisherigen Vorstellungen von der Lunge des Säugethieres beruhen auf der Voraussetzung einer dichotomischen Verzweigungsweise ihrer Luftwege. Besonders förderlich für das Verständniss des Organes hat sich dieselbe nicht erwiesen und ich befürchte keinen Widerspruch, wenn ich das betreffende Kapitel als eines der ödesten und undankbarsten der vergleichenden Morphologie bezeichne. Schwächlich, hülflos in eigener Gestaltungskraft erscheint die Lunge wie ein Spielball ihrer Umgebung und ihre jeweilige Gestaltung kaum mehr denn als ein Werk des Zufalles. Die Beziehungen der ungelappten zur gelappten und der an Lappen armen zu der an Lappen reichen liegen völlig im Dunkel, ja es ist kaum noch der Versuch gemacht worden, solche herzustellen. Der empirischen Form fehlte eben der bewusste Inhalt, ihrem fortwährenden Wechsel der Halt eines leitenden Prinzipes. Das Dogma des dichotomisch getheilten Bronchialbaums trug die Schuld. In seinem Banne lag selbst die Entwicklungsgeschichte, die sonst wohl zu andern Ergebnissen hätte führen können, gefangen. Gelegentliche Beobachtung weckte in mir die ersten Zweifel an seiner Berechtigung, systematische Forschung machte es sofort zum Phantasiegebilde. Dafür gewann der träge Gewebeklumpen in überraschender Weise an Leben und verwandelte sich das bisher charakterlose Gebilde zu einem Organe von wundersam strengem und einheitlichem Gefüge. Jetzt bin ich im Stande, den Nachweis zu liefern, dass trotz allen, oft so auffälligen, äussern Verschiedenheiten die sämmtlichen Säugethierlungen auf ein und demselben architectonischen Boden stehen. Darin liegt aber nicht allein für das Verständniss eines einzelnen Organes, sondern wohl auch für das Gesetz der continuirlichen Formentwicklung in der Thierwelt ein erheblicher Gewinn.

Die Darstellung der Hauptäste des Bronchialbaums stösst weder an frischen, noch an in Weingeist aufbewahrten Lungen auf wesentliche Schwierigkeiten. Oft gelingt sie sogar überraschend leicht, indem sich das umhüllende Gewebe beinahe ohne die Nachhülfe schneidender Instrumente zurückstreifen lässt. Am besten ist es, vom Hilus aus den Bronchialstämmen nachzugehen, da sie der Mediastinalseite des Organs am nächsten liegen. Auf diese Weise ist nicht

Aeby, Bronchialbaum.

allein die Arbeit am raschesten gethan, sondern es leidet auch die Gesammtform des oft nur schwer zu ersetzenden Präparates am wenigsten¹).

In solcher Art gewonnene Bronchialbäume geben zwar über Vieles, doch keineswegs über Alles, was gewünscht werden kann, Aufschluss. Sie liefern naturgemäss nur Zerrbilder mit verschobenen Linien und bedürfen daher, sobald es sich um die ursprüngliche Topographie handelt, der Berichtigung. Ich habe eine solche dadurch zu erzielen gesucht, dass ich die Luftwege völlig unversehrter menschlicher und thierischer Leichen von der Luftröhre aus mit dem leicht schmelzbaren Rose'schen Metallgemische ausgoss und das entstandene Metallgerippe durch Maceration von den umhüllenden Weichtheilen befreite. Ich glaube nicht, dass diese Methode in der möglichst getreuen und zuverlässigen Wiedergabe der natürlichen Verhältnisse von irgend einer andern erreicht oder gar übertroffen wird2). Freilich sind es in der Regel, um das Wort eines berühmten Meisters in der anatomischen Technik zu gebrauchen, nur »nackte Bronchialbäume«, die man erhält³), aber diese entsprechen, weil an Ort und Stelle und in engem Anschlusse an die normale Sachlage gewonnen, unsern Zwecken doch ungleich besser als unstreitig feinere Erzeugnisse der Injectionskunst, die von ihren natürlichen Existenzbedingungen entrückten Organen erhalten werden. Dem hohen Werthe der letztern nach andern Richtungen hin soll damit kein Abbruch geschehen. Es wäre unverständig, von Einer Methode Alles zu verlangen. Gerade die Lunge bietet in dieser Hinsicht

1) Eine grosse und ausgezeichnete Auswahl schwer zu beschaffender Lungen aus dem anatomischen Museum zu Breslau wurde mir durch den derzeitigen Vorstand, Hr. Prof. HASSE, in liebenswürdigster Weise zur Verfügung gestellt. Hrn. Prof. SELENKA in Erlangen verdankte ich die Möglichkeit, den für die Gruppe der Perissodactylen wichtigen Tapir zu untersuchen. Es sei mir gestattet, beiden Herren an dieser Stelle ein herzliches Dankeswort zuzurufen.

2) Ich betrachte als Vortheile der Methode, dass die Masse ohne allen künstlichen Druck, nur durch die eigene Schwere geleitet, einfliesst und der Luft ein Entweichen nach aussen gestattet, ferner, dass sie in sehr widerstandsfähiger und deshalb beständiger Form erstarrt. Theoretisch könnte vielleicht das hohe spezifische Gewicht des Gemisches Bedenken erwecken, indessen lehrt die Schönheit und Regelmässigkeit der erhaltenen Bronchialbäume, dass in allfälligen Verschiebungen und Verrückungen eine wesentliche Fehlerquelle nicht bestehen kann. Schlimmer ist der Umstand, dass sehr dünnwandige und wenig befeuchtete Luftröhren durch die Hitze des Metalles der Quere nach sich etwas zusammenziehen und daher enger werden. Aufmerksamkeit und genaues Zusehen thut daher immer noth. Eine bei niedrigerer Temperatur verwendbare Masse, welche im Uebrigen an Tugenden der von mir gewählten gleich käme, ist mir leider nicht bekannt. Uebrigens kommt der gerügte Uebelstand nur bei einer allfälligen Bestimmung des absoluten Kalibers in Betracht.

3) Welch reiche Belaubung denselben indessen auch zukommen kann, mag durch den auf Taf. VII. Fig 13 nach photographischer Aufnahme dargestellten Bronchialbaum des Pferdes bewiesen werden. Selbst von kleineren Thieren (Affe, Kaninchen) habe ich wiederholt Präparate von überraschender Zierlichkeit und Vollendung erhalten, zu andern Malen freilich wieder unter anscheinend ganz gleichen oder selbst günstigeren Verhältnissen nur eine Füllung des allergröbsten Astwerkes zu erzielen vermocht. Offenbar hängt der jeweilige Erfolg von dem Zusammentreffen einer Reihe von Bedingungen ab, die man nicht alle in der Hand hat und daher auch nicht willkürlich zu erstellen vermag.

A. Allgemeine Formverhältnisse.

ganz besondere Schwierigkeiten und es dürfte kaum je gelingen, ihre feinsten und gröbsten Structurverhältnisse neben einander in gleicher Vollendung fest zu halten. Wir geben daher bereitwillig preis, was für die Lösung unserer Hauptfrage von gar keinem oder nur von untergeordnetem Werthe ist.

Die Lunge des Menschen verlangt aus nahe liegenden Gründen eine eingehendere Prüfung und gesonderte Besprechung. Wir lassen sie daher vorläufig ausser Acht, um zunächst das allgemeine Gestaltungsgesetz der Säugethierlunge zu entwickeln und damit auch für die richtige Beurtheilung jener den unentbehrlichen Hintergrund zu gewinnen. Vögeln und Reptilien sei es schliesslich vorbehalten, unsern Sinn vom Besondern wieder auf das Allgemeine zu lenken und unsern Gesichtskreis über die Säuger hinaus auf alle mit Lungen versehenen Wirbelthiere auszudehnen.

I. Der Bronchialbaum der Säugethiere.

the distance was and the second state of the local state of the state of the

A. Allgemeine Formverhältnisse.

Der Grundplan des Bronchialbaums ist für alle Säugethiere derselbe und ungeachtet mannigfacher Abänderungen überall ohne Schwierigkeit nachzuweisen. Von einem dichotomischen Zerfalle der beiden Luftröhrenäste ist nirgends die Rede und es muss in dieser Hinsicht mit der Ueberlieferung ein für allemal gründlich gebrochen werden. Weit davon entfernt, sich beim Eintritte in die Lungensubstanz aufzulösen, bewahrt ein jeder von ihnen seine volle individuelle Selbständigkeit, indem er, ohne seine Richtung wesentlich zu ändern, das betreffende Organ gestreckten Verlaufes unter allmäliger Verjüngung nach unten hin durchzieht, um erst in dem Winkel zwischen Zwerchfell und Wirbelsäule unweit der Oberfläche zu enden. An diesen Punkt ist somit das untere Lungenende zu verlegen¹). Jede Lunge besitzt ein grundlegendes Achsengebilde, das wir den Stammbronchus nennen wollen. Soweit es unverhüllt zu Tage tritt, um mit demjenigen der andern Seite zum Stamme der Luftröhre zu verschmelzen, entspricht es dem Bronchus oder Luftröhrenaste im herkömmlichen

1*

¹⁾ Um für menschliche und thierische Lungen, wie es doch wünschbar ist, eine einheitliche, jedes Missverständniss ausschliessende Ausdrucksweise zu gewinnen, orientire ich alle Bronchialbäume nach einer senkrecht gedachten Körperachse, obgleich eine solche in Wirklichkeit nur dem Menschen zukommt. Es ist dies ja auch die Stellung, die wir unwillkürlich jedem Bronchialbaum zu geben pflegen. Das Trachealende wird dabei zum obern, das Zwerchfellende zum untern, die ventrale Seite zur vordern, die dorsale zur hintern. Wo von einer äussern Seite die Rede sein wird, ist die laterale gemeint. Dadurch wird die mediale von selbst zur innern.

Sinn. Dieser ist also kein selbständiges Organ, sondern nur Theil eines solchen. Der zugehörige, im Innern der Lunge verborgene Theil hat sich bisher der Beachtung entzogen. Beide Stammbronchen ergänzen sich zu einer spitzwinkligen, meistentheils asymmetrischen Gabel, deren Höhlung das Herz aufnimmt.

In seinem Verlaufe durch die Lungensubstanz ist der Stammbronchus leicht zu verfolgen. Er durchsetzt sie etwas excentrisch nach innen und hinten zu. Vom Hilus ab entsendet er zahlreiche, in der Mehrzahl spitzwinklig absteigende Seitenäste, die in ihrer Gesammtheit das Gerippe des Bronchialbaums ausmachen. Dieser ist nicht, wie die fälschlich angenommene dichotomische Verzweigungsweise glauben liess, polypodisch, sondern streng monopodisch. Gleiches gilt für die weitere Verzweigung dieser Seitenäste. Abweichungen von dem strengen Gesetze kommen im allgemeinen erst in weiter vorgeschobenen Bezirken dadurch vor, dass der Gegensatz zwischen Stamm und Zweig sich verwischt, indem beide an Stärke einander gleich werden und so äusserlich das Gepräge gleichwerthiger Theilstücke eines gemeinschaftlichen Ganzen annehmen. In den Endverzweigungen dürfte dies wohl zur Regel werden, doch fehlen mir darüber eigene Erfahrungen. An der Hand der von mir befolgten Methode waren solche nicht zu gewinnen. Auch liegt das ganze Gebiet jenseits des Zieles, das ich mir gesteckt hatte. Die Annahme der Dichotomie findet anscheinend eine Stütze in dem Verhältniss zwischen dem Stamme der Luftröhre und ihren beiden Aesten. Solches ist indessen in Wirklichkeit nicht der Fall. Die Luftröhre ist eine selbständige Bildung, welche in unpaarer Grundlage den paarigen Bronchialbaum zusammenfasst. Dabei ist es für unsere Zwecke völlig gleichgiltig, ob solches durch theilweise Verschmelzung zweier anfänglich völlig getrennter Anlagen oder aber, wie solches Kölliker 1) vertheidigt, durch Abschnürung eines ventralen Abschnittes des Darmrohrs geschieht.

Von Wichtigkeit ist das Verhalten der Blutgefässe, namentlich der im Vergleiche zu den venösen überhaupt strenger disciplinirten arteriellen. Der Arterienbaum ist eine einfache Wiederholung des Bronchialbaums. Auch in ihm nichts von Dichotomie, sondern ruhige monopodische Entfaltung in unmittelbarem Anschluss an die Luftwege. Die Venen gestatten sich grössere Freiheit, ohne jedoch das Grundprincip völlig zu verleugnen. Ihre Stämme verlaufen vor dem Hauptbronchus. Die immer einfache Hauptarterie dagegen hält sich an dessen Rückseite und sieht sich daher, um zu dem Herzen zu gelangen, gezwungen, ihn nach vorn hin zu überkreuzen²). Es geschieht dies immer lateral in der Nähe seines oberen Endes. Er zerfällt in Folge davon, und

¹⁾ KÖLLIKER, Entwicklungsgeschichte des Menschen und der höhern Thiere. Leipzig 1879.

²⁾ Eine abweichende Anordnung der Gefässe fand ich bei Bradypus (Taf. I. Fig. 2). Der Arterienstamm zerfiel in zwei Aeste, von denen der eine allerdings nach Abgabe eines Zweiges an das Gebiet des obersten Seitenbronchus an gewohnter Stelle den Stammbronchus nach hinten zu überkreuzte, der andere dagegen an seiner Vorderseite gegen das freie Ende der Lunge herabzog. Letzterer muss wohl als eine zur Herrschaft gelangte Collateralbahn angesehen werden. Da sich zwei verschiedene Exemplare durchaus übereinstimmend verhielten, kann es sich nicht wohl um einen Zufall handeln. Anderwärts ist mir ähnliches nie begegnet.

A. Allgemeine Formverhältnisse.

das ist für die ganze weitere Gestaltung des Bronchialbaums von entscheidender Bedeutung, in einen eparteriellen und einen hyparteriellen Abschnitt (Fig. 1).

Die Anordnung der primären Seitenäste oder der Seitenbronchen, wie sie zum Unterschiede vom Stammbronchus von nun an heissen sollen, erfolgt

mit grosser Regelmässigkeit; sie ist eine durchaus typische. Nur wenige gehören dem eparteriellen, die meisten dem hyparteriellen Bezirke an. Erstere können selbst vollständig fehlen, letztere sind immer vorhanden und bilden unter allen Umständen den Grundstock des Bronchialbaums. Das hyparterielle Bronchialsystem der rechten und der linken Lunge ist bis auf Störungen untergeordneten Ranges immer symmetrisch, das eparterielle oft in hohem Grade asymmetrisch ausgebildet. Dieses bezieht seine Arterien vor, jenes erst nach der Kreuzung des Hauptgefässes mit dem Stammbronchus. Es giebt also der Punkte genug, welche die beiden Systeme in einen gewissen Gegensatz zu einander bringen und eine gesonderte Behandlung nicht allein als gerechtfertigt, sondern selbst als nothwendig erscheinen lassen.

Die hyparteriellen Seitenbronchen treten immer in zwiefacher Längsreihe, einer dorsalen und einer ventralen, auf. Sie machen das Astwerk des Bronchialbaums zu einem doppelt gefiederten und legen den Grund zur seit-

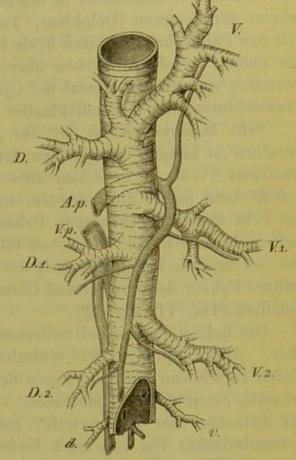


Fig. 1. Halbschematische Darstellung der Verzweigung des Bronchialbaums. V, V¹, V², Ventrale, D, D¹, D^2 , dorsale Seitenbronchen. V und D im eparteriellen Gebiet zu einheitlichem Stamme vereinigt, im hyparteriellen getrennt. — v, Ventraler, d, dorsaler Nebenbronchus. — A. p, Lungenarterie. — V. p, Lungenvene.

lichen Abplattung des Lungenkörpers mit einer Aussen- und einer Innenfläche. Jene folgt in einheitlicher Wölbung der Seitenwand des Brustkorbes. Diese trifft oben auf das Mediastinum, unten auf das Zwerchfell, springt in den von beiden gebildeten Winkel kantig vor und zerfällt dadurch in zwei gesonderte, zu flachen Gruben vertiefte Felder, ein oberes, mehr vertikales und ein unteres, mehr horizontales. Dieselben setzen sich in sehr verschiedener Bestimmtheit von einander ab, im allgemeinen aber um so schärfer, je ausgesprochener die Stellung des Zwerchfells zur queren geworden ist. Der systematischen Anatomie ist es nicht zu verdenken, wenn sie einem jeden dieser Felder Selbständigkeit zuerkennt. Um so mehr muss im Interesse einer richtigen Würdigung der Lungenarchitectur betont werden, dass sie in Wahrheit nichts sind als durch Anpassung an die Nachbarschaft entstandene Differenzirungsproducte einer an und für sich einheitlichen Fläche. Demgemäss hat die Lunge auch nur zwei typische Ränder, einen hintern, ziemlich geraden, wulstig gerundeten, an dem die beiden Seitenflächen ohne deutliche Grenze in einander übergehen, und einen vordern convexen, scharfkantig zugeschnittenen und durch die Kante der Innenfläche winklig abgeknickten.

Dorsale und ventrale Bronchen stehen gewöhnlich alternirend zu einander. Den letzteren kommt dabei in der Regel die höhere Lage zu. Das Gegentheil scheint für Cetaceen (Delphinus, Taf. II. Fig. 3) charakteristisch zu sein. In seltenen Fällen habe ich auch beide Lagerungsweisen combinirt getroffen, indem die ersten dorsalen Bronchen über, die nachfolgenden unter den zugehörigen ventralen standen; so einmal bei Cynocephalus babuin. Vielleicht sind diese Vorkommnisse von nur individueller Bedeutung.

Sehr bemerkenswerth ist die grosse Beständigkeit, womit die Seitenbronchen in Lungen der gleichen Art der Zahl nach auftreten. Es sind ihrer höchstens 8 - 9, nicht selten aber auch nur 5 - 6 vorhanden. Der Ausfall betrifft dann immer die untersten, während die obersten unter allen Umständen das Feld siegreich behaupten. Uebereinstimmende Zahlenverhältnisse in beiden Reihen herrschen vor. Daneben fällt wohl hier wie dort ein Glied bisweilen aus, so dass die Regelmässigkeit der Alternation zu Schaden kommt. Beiderseitiges Fehlen der zwei ersten Dorsalbronchen ist dem Stachelschweine eigenthümlich (Taf. VI. Fig. 12).

Die beiden Reihen der Seitenbronchen liegen sich niemals gerade gegenüber. Die Ursprünge der ventralen Bronchen sind immer nach aussen und hinten verschoben und denjenigen der dorsalen so weit genähert, dass nur ein schmaler Streif des Stammbronchus zwischen beiden zurückbleibt. Dieser dient zur Aufnahme der Hauptarterie, nachdem sie in steilem Bogen den ersten Ventralbronchus von vorn nach hinten umgriffen. Die grössere Peripherie des Stammbronchus bleibt frei nach innen und vorn hin, und dies um so mehr, als die Ventralbronchen nur ausnahmsweise, ähnlich den Dorsalbronchen, eine sagittale Richtung einhalten, viel öfter dagegen lateralwärts von derselben abweichen. Dadurch wird naturgemäss die Hauptmasse der Lungen nach aussen verlegt und erklärt sich in einfachster Weise die verhältnissmässig oberflächliche Lage des Stammbronchus an deren Innenseite. Der Stammbronchus bildet gewissermassen die Kante eines dreiseitig prismatischen, von den beiden Reihen der Seitenbronchen in Verbindung mit der benachbarten Brustwand begrenzten Raumes.

Seine dorsalwärts excentrische Lage macht es erklärlich, dass die Dorsalbronchen durchgängig kürzer und schwächer sind als die Bronchen der vertralen Seite. Im allgemeinen sind jene als die Träger des stumpfen Randabschnittes in ihren Verzweigungen auch gedrungener und in der Kronenbildung gerundeter, als diese, die schlanke, nach den Enden hin zugeschärfte Formen anstreben. Nach unten hin nehmen die Glieder beider Reihen bald rascher, bald langsamer an Umfang und damit auch an Mannigfaltigkeit in den secundären Verzweigungen ab. Dafür steigert sich ihre Neigung zur Abgabe von Seitenästen an den Stammbronchus. Die betreffenden Uebertragungen lassen sich häufig genug Schritt für Schritt auf das Deutlichste verfolgen. Sie geschehen immer nach innen hin und dann überdeckt sich das vorher kahle Gefild

A. Allgemeine Formverhältnisse.

des Stammbronchus mit dorsalen und ventralen Nebenbronchen, die, wo sie reichlich und kräftig vorhanden sind, mit ihrem üppigen Geäste die strengen Hauptlinien des Bronchialbaums verschleiern und das Auge täuschen. Der sicher geschulte Blick wird sich durch sie nicht irre führen lassen. Ihrem Stammvater bleiben sie dicht zur Seite oder, und das ist der häufigere Fall, sie wandern nach abwärts.

Für den untergeordneten Rang dieser Nebenbronchen spricht namentlich auch die ausserordentliche Unbeständigkeit ihres Auftretens. In manchen Lungen fehlen sie ganz oder sie sind nur zu wenigen vorhanden (Cetaceen), in andern ist beinahe jeder Seitenbronchus mit ihnen beglückt (Artiodactylen, Pferd). Die ventralen erfreuen sich einer weitern Verbreitung als die dorsalen und kommen oft genug auch ohne solche vor, während das Umgekehrte nicht stattzufinden scheint. Auffällig ist die Thatsache, dass ihre Entwicklung in der linken Lunge fast immer erst tiefer unten beginnt, als in der rechten. Ihre Stärke ist eine sehr wechselnde. Sie sind in dieser Hinsicht selbst befähigt, ihren Urhebern ebenbürtig zur Seite zu treten. Namentlich gilt dies für den ersten ventralen Nebenbronchus der rechten Seite, der zudem dadurch noch ganz besonders hervortritt, dass ihm sehr häufig die Bildung eines besondern, hinter dem Herzen liegenden Lappens (Lobus infracardiacus) 1) übertragen wird. Er verdient daher wohl den Sondernamen eines Herzbronchus (Bronchus cardiacus). Ich habe ihn nur bei Delphinen, Seehunden und Zahnlosen, sowie auch beim Stachelschweine vermisst. Bisweilen hält er seine verwandtschaftlichen Beziehungen zu dem zugehörigen Seitenbronchus aufrecht, indem er von dessen Wurzel entspringt (Phascolomys Wombat, Taf. III. Fig. 6; Antilope gutturosa). Einen ähnlichen Entwicklungsgang habe ich den entsprechenden Nebenbronchus der linken Lunge nur bei einem einzigen Thiere (Coelogenys Paca) nehmen sehen.

Sehr selten und auf die tiefern Stockwerke beschränkt ist der Fall, dass ein Seitenbronchus sich gänzlich in Nebenbronchen auflöst und somit als solcher in der Reihe seiner Genossen eine Lücke lässt. Wohl aber verschwindet im allgemeinen der anfängliche Grössenunterschied zwischen beiden Gruppen gegen das Ende des Bronchialbaums hin immer mehr, bis zuletzt in dessen Wipfel eine Scheidung der typischen von den blos accessorischen Bestandtheilen bisweilen mit Schwierigkeiten zu kämpfen hat. Diese sind es, die, wie schon früher angedeutet worden, das wirkliche Zahlenverhältniss der Seitenbronchen in Frage stellen können.

Eparterielle Bronchen kommen immer nur in der Einzahl vor. Nebenbronchen bleiben ihnen völlig fremd. Sie entspringen ausnahmslos mit einfacher Wurzel aus dem seitlichen Umfange des Stammbronchus, ziemlich genau in einer Mittelstellung zwischen den dorsalen und ventralen Aesten der hyparteriellen Zone, also vor jenen und hinter diesen. Vermittelnd zwischen beiden ist auch ihr weiteres Verhalten. Ihre Verzweigung ist eine beiderseitige

¹⁾ OWEN (On the Anatomy of Vertebrates. London, 1868. Vol. III. p. 576) nennt ihn Lobulus impar (*azygos lobe*).

I. Der Bronchialbaum der Säugethiere.

und greift in gleicher Weise in das dorsale wie in das ventrale Gebiet ein. Man könnte daher den ganzen Bronchus einen dorso-ventralen nennen. In ihm hat offenbar die Scheidung des hyparteriellen Gebietes in zwei streng geschiedene Bezirke noch nicht stattgefunden, ein Thatbestand, der wohl damit in Verbindung gebracht werden darf, dass die Lungenarterie nicht sondernd einzugreifen vermocht hat. Ist solches richtig, so kann folgerichtig von einem principiellen Gegensatze zwischen eparteriellem und hyparteriellem Bronchialsystem nicht die Rede sein. Nichtsdestoweniger behält die Verschiedenheit ihrer Gestaltung, angesichts der strengen und unabänderlichen Gesetzmässigkeit, womit sie auftritt, einen unbestreitbaren morphologischen Werth¹).

Trotz seiner Einfachheit spielt gerade dieses eparterielle Bronchialsystem in dem jeweiligen Lungentypus eine nicht allein hervorragende, sondern geradezu entscheidende Rolle. Eine bedeutsame Differenzirung des Bronchialbaums ist sein Werk. Sie besteht darin, dass das eparterielle System, das bei voll ausgebildetem Bronchialbaum beiden Lungen zukommt, für die eine, und dann ausnahmslos für die linke, oder aber für beide verloren geht. Daraus erwachsen drei Hauptformen des Bronchialbaums. Sie fanden sich bei den Lungen, die mir vorlagen, in folgender Weise vertreten²).

- a) Lungen mit eparteriellem Bronchialsystem auf beiden Seiten.
 - 1. Monotremata: 0.
 - 2. Marsupialia: 0.
 - 3. Edentata (*): Bradypus tridactylus.
 - 4. Cetacea: Delphinus delphis u. phocaena.
 - 5. Perissodactyla (*) : Equus caballus.
 - 6. Artiodactyla (*): Auchenia lama.
 - 7. Proboscidea: Elephas africanus.
 - 8. Rodentia (*): 0.
 - 9. Insectivora: 0.
 - 10. Pinnipedia: Phoca vitulina u. groenlandica.
 - 11. Carnivora: 0. 12. Chiroptera: 0. 13. Prosimiae: 0. — 14 Primates: 0.
- b) Lungen mit epartiellem Bronchialsystem nur auf der rechten Seite.
 - 1. Monotremata: Ornithorhynchus paradoxus; Echidna hystrix.
 - 2. Marsupialia: Phascolomys Wombat; Macropus gigas u. penicillatus; Hypsiprimnus marinus; Perameles fusciventer; Didelphis virginiana.
 - 3. Edentata (*): Myrmecophaga jubata u. didactyla; Dasypus niger.

¹⁾ Ich verweise bezüglich der morphologischen Stellung der beiden Systeme zu einander auf das Schlusskapitel.

²⁾ Ich lege der Aufzählung die natürlichen Ordnungen zu Grunde. Diejenigen unter ihnen, welche Vertreter in mehr als einer der drei aufgestellten Kategorien zählen, sind durch einen Stern (*) kenntlich gemacht.

4. Cetacea: 0.

4

- 5. Perissodactyla(*): Tapirus americanus.
- 6. Artiodactyla(*): Dicotyles torquatus; Sus scrofa; Cervus dama u. elaphus; Antilope gutturosa u. rupicapra; Ovis aries; Capra hircus; Bos taurus.
- 7. Proboscidea: 0.
- 8. Rodentia (*): Lepus timidus u. cuniculus; Cricetus frumentarius; Mus musculus u. decumanus; Myodes lemmus; Arctomys marmotta; Sciurus vulgaris; Coelogenys Paca.
- 9. Insectivora: Erinaceus europaeus; Talpa europaea.
- 10. Pinnipedia: 0.
- 11. Carnivora: Ursus arctos; Mustela foina u. putorius; Viverra genetta; Herpestes galera; Lutra vulgaris; Canis familiaris, vulpes u. lupus; Felis leo, domestica u. lynx; Cynailurus guttata; Meles taxus.
- 12. Chiroptera: Plecotus auritus.
- 13. Prosimiae: Lemur catta u. mongoz.
- 14. Primates: Cebus capucinus u. apella; Cynocephalus sphinx u. babuin; Inuus cynomolgus, nemestrinus u. ecaudatus; Cercopithecus sabaeus, cephus u. mona; Pithecus satyrus; Troglodytes niger.
- c) Lungen ohne eparterielles Bronchialsystem.
 - Monotremata: 0. 2. Marsupialia: 0. 3. Edentata(*): 0. — 4. Cetacea: 0. — 5. Perissodactyla(*): 0. — 6. Artiodactyla(*): 0. — 7. Proboscidea: 0.
 - 8. Rodentia (*): Hystrix cristata.
 - 9. Insectivora: 0. 10. Pinnipedia: 0. 11. Carnivora: 0. — 12. Chiroptera: 0. — 13. Prosimiae: 0. — 14. Primates: 0. —

Wie wenig auch die vorgenannten Thiere darauf Anspruch erheben können, als Vertreter der gesammten Säugethierwelt angesehen zu werden, so sind sie doch hinwiederum zahlreich genug, um das von ihnen Gebotene für mehr als das Werk des blossen Zufalles erscheinen zu lassen. Auffallend vor allem ist das entschiedene Uebergewicht der Formen mit bloss rechtseitigem eparteriellen Gebiete. Die meisten Ordnungen sind diesen allein zugethan (Monotremata, Marsupialia, Insectivora, Carnivora, Chiroptera, Prosimiae, Primates), andere wählen sie wenigstens für einen Theil ihrer Angehörigen (Edentata, Perisso- und Artiodactyla, Rodentia). Unter diesen Umständen bleibt für den eparteriellen Bronchus in beiden Lungen nur ein beschränkter Wirkungskreis mit den Walen, Elephanten und Robben als Mittelpunkt. Der dritte Typus des Bronchialbaums ist auf einen einzigen Nager (Hystrix) beschränkt. Von besonderem Interesse sind diejenigen Ordnungen, deren Glieder verschiedenen Lagern angehören. Hier ist wohl auch für weitere Forschungen in erster Linie der Hebel anzusetzen, um zu erfahren, in welcher Vertheilung und mit welchen Abänderungen der Anschluss an die eine oder andere Seite erfolgt. So lange dies nicht geschehen, erscheint es verfrüht, in allfällige phylogenetische Erwägungen einzutreten, und muss es bei der einfachen Thatsache sein Bewenden haben, dass Pferd und Tapir unter den Perissodactylen nicht einig

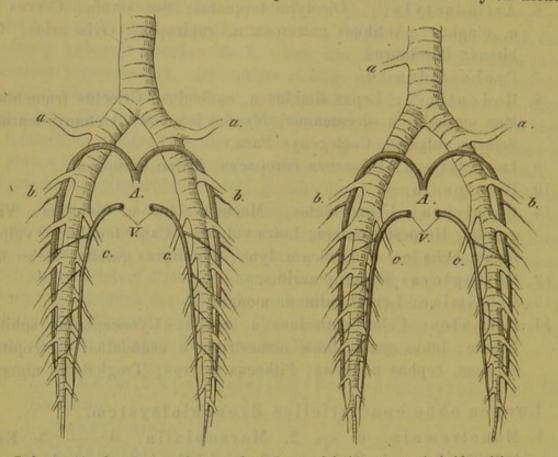


Fig. 2. Schematische Darstellung des Bronchialbaums mit beiderseitigem, rechts wie links bronchialem und links bronchialem, rechts trachealem, eparteriellen Bronchus. — Buchstaben wie in Fig. 4.

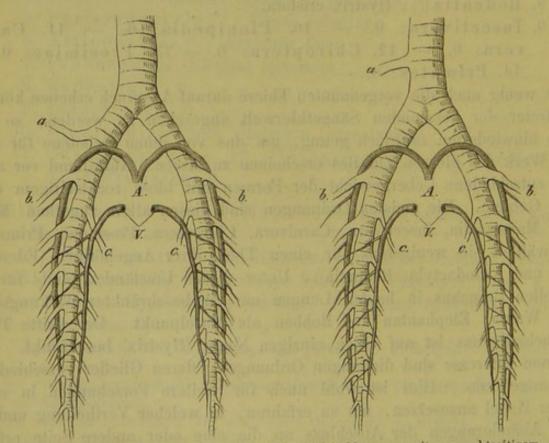


Fig. 3. Schematische Darstellung des Bronchialbaums mit nur rechtseitigem, bronchialem und trachealem, eparteriellen Bronchus. — Buchstaben wie in Fig. 4.

gehen und dass das Lama gegenüber den andern Artiodactylen, das Stachelschwein gegenüber den Nagern, das Faulthier gegenüber seinen zahnlosen

Genossen eine Sonderstellung einnimmt. Leider ist es mir trotz vielfacher Bemühungen nicht gelungen, nach dieser Seite hin mein Untersuchungsmaterial zu erweitern.

Das eparterielle System gibt im Bronchialbaum noch zu weiteren als den bereits erwähnten Differenzirungen Anlass. Bei ein- wie beiderseitigem Vorkommen besitzt es die Fähigkeit, seine Stellung am Stammbronchus mit einer solchen an der Trachea selbst zu vertauschen. Merkwürdigerweise geschieht solches auch dort, wo ein linker Bronchus vorhanden ist, immer nur auf der rechten Seite. Man hat diesen verschobenen Bronchus bisher für einen überzähligen oder accessorischen gehalten 1). Cetaceen und Artiodactylen folgen diesem Typus. Ausserdem kommt er hin und wieder bei Raubthieren (Cynailurus) und Affen (Cynocephalus sphinx) vor. Soweit also rechterseits ein eparterieller Bronchus vorhanden ist. muss zwischen dessen bronchialer und trachealer Stellung unterschieden werden. Demgemäss zerfallen die beiden ersten der von uns aufgestellten Haupttypen in je zwei Unterabtheilungen

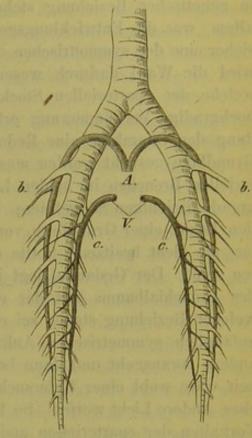


Fig. 4. Schematische Darstellung des Bronchialbaums ohne eparteriellen Bronchus. — a, Eparterieller Bronchus. — b, Reihe der hyparteriellen Ventral-, c, der hyparteriellen Dorsalbronchen. — A, Arterie. V, Vene.

und erheben die Zahl der im Bronchialbaum vertretenen Gestaltungsformen von drei auf fünf (Fig. 2-4).

- a) Bronchialbaum mit beiderseitigem eparteriellen Bronchus (Fig. 2).
- α) eparter. Bronchus beiderseits bronchial: Bradypus, Equus, Elephas, Phoca (Taf. I. Fig. 1 u. 2):
 - β) eparter. Bronchus links bronchial, rechts tracheal: Delphinus, Auchenia (Taf. II. Fig. 3 u. 4):
- b) Bronchialbaum mit nur rechtseitigem eparteriellen Bronchus (Fig. 3).
 - α) eparter. Bronchus bronchial: Monotremata, Marsupialia, Edentata (ausser Bradypus), Rodentia (ausser Hystrix), Insectivora, Carnivora, Chiroptera, Prosimiae, Primates (Taf. III-VI. Fig. 6-11).
- β) eparter. Bronchus tracheal: Artiodactyla (ausser Auchenia) (Taf. III, Fig. 5).
 - c) Bronchialbaum ohne eparteriellen Bronchus (Fig. 4): Hystrix (Taf. VI. Fig. 12).

¹⁾ CUVIER, Leçons d'anatomie comparée. Paris, 1840. Tome VII, p. 59.

I. Der Bronchialbaum der Säugethiere.

Auf dem jetzigen Standpunkte der Morphologie erscheint es wohl kaum als zweifelhaft, dass die verschiedenen Formen des Bronchialbaums zu einander in genetischer Beziehung stehen. Welche von ihnen ist die primäre? Nach allem, was die Entwicklungsgeschichte der Organe bisher zu Tage gefördert, sicher eine der symmetrischen. Zwischen den beiden, die zur Verfügung stehen, wird die Wahl dadurch wesentlich erleichtert, dass in der einzigen Lunge, welche der eparteriellen Stockwerke entbehrt, auch die hyparteriellen eine hochgradige Verkümmerung erlitten haben. Dadurch gewinnt die ganze Bildung den Charakter eine Reductionsform, deren Ausgangspunkt auf breiterer Grundlage gesucht werden muss. Eine solche ist der Bronchialbaum mit eparteriellen Bronchen in beiden Lungen. Auffällig bleibt dabei immerhin, dass gerade diejenigen Säugethiere, bei denen man am ehesten geneigt sein möchte, den Besitz einer Grundform vorauszusetzen, nämlich die Monotremen und Beutler, sie nicht besitzen. Sollte da nicht von der Ontogenie Aufschluss zu erwarten sein? Der Gedanke liegt ja ohnedies nahe genug, dass die Asymmetrie des Bronchialbaums mit der entgegengesetzten des Aortensystems in irgendwelcher Beziehung stehe, sei es, dass beide neben und mit einander aus einer anfänglich symmetrischen Anlage herauswachsen, sei es, dass die eine der andern vorausgeht und dann bestimmend auf sie zurückwirkt. Die Angelegenheit wäre wohl einer Untersuchung werth. Eine solche dürfte noch auf manches Andere Licht werfen. So liegt es beispielsweise nahe, das so verschiedene Verhalten der eparteriellen und hyparteriellen Bronchialzweige auf die Lungenarterie zurückzuführen. Gewissheit in dieser Sache ist indessen nur von der Entwicklungsgeschichte zu erwarten. Einige Anhaltspunkte sind bereits geboten. KÖLLIKER¹) verlegt die ersten Anfänge der Bronchialverzweigung in die fünfte Woche und bezeichnet bei einem menschlichen Embryo von 35 Tagen die Arteria pulmonalis ausdrücklich als in der Bildung begriffen. Daraus folgt mit grosser Wahrscheinlichkeit, dass die Arterie bei der Entstehung der ersten Bronchialzweige noch ohne Einfluss ist und einen solchen erst den spätern gegenüber gewinnt. Dabei verdient auch hervorgehoben zu werden, wie sich die Lunge anfangs tief unter dem Herzen befindet und die Arterie gestreckten Verlaufes zu ihr herabsteigt. Ein später eparterieller Bronchus muss somit so lange hinter ihr liegen, als nicht in Folge des höhern Aufsteigens des Organs eine bogenförmige Ablenkung derselben über den ersten Ventralbronchus hinweg nach vorn hin stattgefunden.

Die bisherige Entwicklungsgeschichte der Lunge bewegt sich fast gänzlich im Rahmen einer dichotomischen Verzweigungsweise der Bronchialwege. Sie bedarf daher einer vollständigen Revision. Von dieser wird gerade darauf ein besonderes Gewicht zu legen sein, was noch vor Kurzem Kölliker (a. a. O. S. 863) als ohne Interesse für die Verfolgung im Einzelnen erklärt hat, nämlich die Verästelung des anfänglich einfachen Epithelrohres. Wie sich dabei die Ergebnisse gestalten werden, bleibt für mich um so weniger zweifelhaft, als

¹⁾ KÖLLIKER, Entwicklungsgeschichte des Menschen und der höhern Thiere. Leipzig, 1879. S. 864 und 865.

bereits durch KÜTTNER¹) das Wachsthum der Lungen genau in der Weise, wie es durch den Bau des fertigen Organs gefordert werden muss, geschildert worden ist. Er betont mit aller Entschiedenheit, dass dasselbe nur monopodisch erfolge, indem das Epithelrohr an seiner Spitze ungetheilt fortwachse, während seitliche Sprossen rechtwinklig, und zwar in Form paariger Seitenröhren, aus dem Stamme hervorbrechen. Erst nachträglich wird ihre Stellung zu letzterem eine spitzwinklige.

Vor Allem tritt jetzt wieder die Angelegenheit der ersten Lungenanlage in den Vordergrund. Ob diese paarig oder unpaar, ist bekanntlich eine alte Streitfrage. KÖLLIKER hat dieselbe früher²) unentschieden gelassen, dagegen in seiner vor Kurzem erschienenen Entwicklungsgeschichte³) dahin beantwortet, dass die Lungen als zwei rundliche seichte Grübchen oder Blasensegmente am untern Ende eines Halbkanales erscheinen, der auf eine Abschnürung vom Darmrohre zurückzuführen und durch vollkommene Schliessung die Luftröhre zu bilden berufen ist. Hiernach wäre die Lungenanlage in der That eine paarige, da die Luftröhre ja auf ganz anderm Wege entstünde und nichts mit der Sprossung des Epithelrohres zu schaffen hätte. Der so eben ausgegebene Grundriss der Entwicklungsgeschichte⁴) macht es indessen wieder zweifelhaft, ob KÖLLIKER wirklich eine solche Ansicht hegt. Wenigstens lässt er die Lunge als eine hohle Ausstülpung aus dem Vorderdarme entstehen, die kurze Zeit nach ihrem Auftreten zwei seitliche Ausbuchtungen, die eigentlichen Lungen, treibt, während der Rest zur Luftröhre wird. Uebrigens fehlt es nicht an neuern Beobachtern⁵), die einer paarigen Lungenanlage entschieden das Wort reden. Ich stehe daher nicht an, zu Gunsten dieser Ansicht das Gewicht der fertigen Lungenarchitectur in die Wagschale zu werfen. Ein Organ, das in seinem ganzen, so ungemein consequenten Ausbau nichts von Dichotomie weiss, kann unmöglich einer solchen in seinem ersten grundlegenden Vorgang huldigen und damit seinen spätern Charakter verleugnen. Wenigstens werden wir uns ohne zwingende Gründe, die bei dem Widerstreit der Meinungen vorläufig noch nicht vorhanden sind, nicht zu einer derartigen Annahme entschliessen dürfen. Geht die Trachea aus einer Abschnürung des Oesophagus als unpaare Bildung hervor, so lässt sie die Entwicklung der eigentlichen Lunge völlig unberührt. Sie ist dann ein besonderes Organ, das mit der letztern in Verbindung tritt, ohne deren eigenartiges Wachsthum irgendwie zu beeinflussen. Freilich scheint es mir, als ob man damit keineswegs für alle Fälle ausreiche und wenigstens für die Lungen mit trachealen Seitenbronchen ausserdem eine theilweise Ver-

1) KÜTTNER, Studien über das Lungenepithel. Virchow's Archiv, Bd. 66.

2) KÖLLIKER, Entwicklungsgeschichte des Menschen und der höhern Thiere. Leipzig 1861. S. 373.

3) Derselbe, Dasselbe. Zweite ganz umgearbeitete Auflage. Leipzig 1879. S. 859.

4) KÖLLIKER, Grundriss der Entwicklungsgeschichte des Menschen und der höhern Thiere. Leipzig 1880. S. 332.

5) STIEDA, LUDWIG, Einiges über Bau und Entwicklung der Säugethierlunge. Zeitschrift für wissenschaftliche Zoologie. Bd. 30. Supplement. — KÜTTNER, Studien über das Lungenepithel. Virchow's Archiv. Bd. 66.

I. Der Bronchialbaum der Säugethiere.

schmelzung der beiden Hauptbronchen zu einfachem Trachealstamme zu fordern habe. Dabei wäre es immerhin, wenigstens bei Artiodactylen und Cetaceen, denkbar, dass eine solche in die frühesten Entwicklungsperioden falle und vielleicht sogar vorübergehend das Bild einer unpaaren Ausbuchtung darböte. Leider finde ich über das erste Auftreten der trachealen Seitenbronchen nirgends eine Angabe. Möchte es den vorstehenden Bemerkungen gelingen, recht bald einen Embryologen zur erneuten Bearbeitung dieses jedenfalls noch nicht hinreichend erforschten Abschnittes der Lungenentwicklung zu veranlassen.

Ich fasse die hauptsächlichsten Merkmale des Bronchialbaums der Säugethiere, wie sie sich aus meinen Untersuchungen ergeben, zum Schlusse in wenig Worten zusammen: Paarige Anlage; monopodischer Hauptbronchus; doppelt gefiederte Krone mit ventralem und dorsalem Astwerk; gemeinsamer Ursprung beider Astreihen im eparteriellen, getrennter Ursprung im hyparteriellen Gebiete. Typische Differenzirung erfolgt durch ein- oder beiderseitiges Ausfallen der obersten (eparteriellen) und untersten (hyparteriellen) Seitenbronchen.

B. Spezielle Formverhältnisse.

Formverhältnisse finden nur in Maass und Zahl einen objectiven Ausdruck. Ich habe mich bemüht, für den Bronchialbaum einen solchen bezüglich der Lagerung und des Kalibers seiner Bestandtheile zu gewinnen, wird doch naturgemäss sein individuelles Gepräge hauptsächlich durch diese beiden Momente bestimmt. Soweit thunlich, sollen Stamm- und Seitenbronchen gesondert zur Sprache gebracht werden.

1. Lagerungsverhältnisse des Bronchialbaums.

a. Stammbronchen.

Für die Lagerung der Stammbronchen kommt ihr Neigungswinkel zur Trachea und die Richtung ihrer Längsachse in Betracht. Jener wie diese lässt sich nur an sorgfältig erstellten Ausgüssen mit Sicherheit erkennen. Gewöhnliche Präparate geben darüber keinen Aufschluss. Es liegen mir daher nur für eine verhältnissmässig kleine Anzahl von Thieren entsprechende Erfahrungen vor. Da sie indessen von sehr verschiedenen Ordnungen herrühren, so dürften sie immerhin ausreichen, um wenigstens im Ganzen und Grossen die bestehenden Verhältnisse zum Ausdruck zu bringen.

Beginnen wir mit dem Neigungswinkel. Ich glaubte denselben für jeden Stammbronchus besonders aufsuchen zu sollen, um gleichzeitig über vorhandene Symmetrie oder Asymmetrie Aufschluss ertheilen zu können. Die Summe beider Neigungswinkel liefert den Divergenzwinkel beider Bronchen. Der Messung wurde mit Rücksicht auf häufig vorhandene locale Verbiegungen die ideelle Achsenlinie zu Grunde gelegt.

B. Spezielle Formverhältnisse.

diev indentud order ilde	Neigungswinke bronchus zur L Trac	ängsachse der	Differenz des linken zum rechtenNei-	Divergenzwin kel beider Stamm- bronchen.	
	rechts	links	gungswinkel	bronchen.	
1) (Decaledates signs	. 350	350	00	700	
1) Troglodytes niger	300	00	-300	300	
2) Cercopithecus sabaeus	00	340	$+34^{0}$	340	
 3) Cynocephalus babuin . 4) Lepus cuniculus 	200	220	+ 20	420	
5) - timidus	220	110	-110	330	
5) Coelogenys Paca	210	220	+ 10	430	
Mustela foina	00	320	+320	320	
8) - putorius	110	190	+ 80	300	
) Felis catus	290	90	-200	380	
)) Canis familiaris	90	500	+410	590	
	260	330	+ 70	590	
Phoca vitulina	290	320	+ 30	610	
B) Capra hircus	130	350	+220	480	
4) Equus Caballus	00	480	+480	480	

Also fast durchweg ausgesprochene Asymmetrie für den Ursprung der beiden Stammbronchen aus der Trachea! Zwei völlig gleiche Winkel lieferte nur Troglodytes, indessen sind auch bei Lepus cuniculus, Coelogenys Paca und Phoca vitulina die Unterschiede zu gering, als dass von wirklicher Asymmetrie gesprochen werden dürfte. Um so mehr berechtigen dazu die übrigen Thiere. In nicht weniger als vier Fällen (Cercopithecus sabaeus, Cynocephalus babuin, Mustela foina und Equus caballus) ging die Abweichung von der Symmetrie sogar soweit, dass der eine Bronchus in die geradlinige Fortsetzung des Trachealstammes zu liegen kam und den andern beinahe als secundären Nebenzweig erscheinen liess. Gewöhnlich ist der rechte Bronchus der steilere, doch kann auch der linke von diesem Schicksal betroffen werden (Cercopithecus sabaeus, Lepus timidus, Felis catus). Für die spezielle Anatomie der betreffenden Arten sind dies unstreitig wichtige Verhältnisse. Nichtsdestoweniger lassen sie die Grundzüge des Bronchialbaums völlig unberührt, da sie nicht in diesem selbst, sondern in dem Verhalten der benachbarten Organe, zumal des Herzens, ihre Erklärung finden. Dass auch die Individualität eine Rolle spielt, beweisen die beiden Hunde, die bei gleichem Divergenzwinkel ganz verschiedene Neigungen der beiden Stammbronchen darbieten. Auch einander sehr nahe stehende Thiere gehen ihre eigenen, denjenigen ihrer Verwandten zum Theil gerade entgegengesetzten Wege. So vertheilt Troglodytes seinen Divergenzwinkel gleichförmig auf beide Körperhälften, Cercopithecus verlegt ihn ausschliesslich nach rechts, Cynocephalus ebenso ausschliesslich nach links. Inwiefern derartige Unterschiede beständig sind oder nicht, lässt sich natürlich nach den wenigen vorstehenden Beobachtungen nicht entscheiden. An wirklich typische Verschiedenheiten ist indessen wohl kaum zu denken.

Der Divergenzwinkel beider Stammbronchen ist überall ein spitzer. Bis auf 70 Grad bringt es nur Troglodytes; Cercopithecus begnügt sich mit weniger als der Hälfte (30^o). Zwischen diesen beiden nehmen die übrigen Thiere in verschiedenen Abständen Stellung. Hund und Robbe erreichen noch beiläufig 60, Ziege und Pferd gegen 50 Grad. Alle andern stehen erheblich tiefer.

Der Verlauf der Stammbronchen ist ein gestreckter, bisweilen nahezu gerad-

I. Der Bronchialbaum der Säugethiere.

liniger. In der Regel beschreiben sie indessen im Anschlusse an die Wölbung des Herzens flache, medianwärts concave Bögen. Mit der Luftröhre verbleiben sie nur ausnahmsweise in ein und derselben Ebene. Meistens lenken sie von derselben entweder gleich am Ursprung oder erst später in flachem Winkel dorsalwärts ab. Eine etwas stärkere, doch nur vorübergehende Biegung begegnete mir bloss beim Schafe und auch hier nur auf der linken Seite. Ausgedehntere Untersuchungen werden gewiss auf diesem Boden noch zahlreiche Einzelheiten und Besonderheiten theils individueller, theils artlicher Natur zu Tage fördern. Solchen weiter nachzuspüren, lag weder in meinem Willen noch in meiner Macht. Für den eigentlichen Typus der Bronchialverzweigung sind sie bedeutungslos.

Ausgegossene Bronchialbäume lassen den Stammbronchus regelmässig mit überraschender Deutlichkeit in den Vordergrund treten (Taf. VII und VIII). Uebrigens verstehen sie auch sonst, wenn nur die Luftwege in einer gewissen Breite frei gelegt werden, ihr Recht sehr wohl zu wahren. Der Inhalt von Taf. I-VI giebt dafür beredtes Zeugniss.

b. Seitenbronchen.

Wer den Bronchialbaum nur von frischen oder von in Weingeist aufbewahrten Lungen her kennt, hat keine Vorstellung von der zierlichen Regelmässigkeit, womit die Seitenbronchen dem Stammbronchus aufsitzen (Taf. VII und VIII). Mit Ausnahme etwa der obersten verlaufen sie nebst allfällig vorhandenen Nebenbronchen sämmtlich in absteigender Richtung. Ihr Neigungswinkel zum Stammbronchus ist daher vorherrschend ein spitzer. Nur ausnahmsweise sind die Bronchen einer Reihe annähernd unter einander parallel. Meistentheils nimmt ihre Steilheit nach unten hin unter entsprechender Verkleinerung des Abgangswinkels vom Hauptbronchus zu, bisweilen so sehr, dass die obersten und untersten um 50 und mehr Grade unter sich divergiren. Eine mehr oder weniger ausgesprochene fächerförmige Entfaltung der ganzen Reihe nach der Peripherie hin ist die nothwendige Folge. Ich füge einige Zahlenbelege bei.

	Timer	Recht	e Lung	e	E al	and some of	Link	e Lung	е	Gurra .
	epar-				epar-	Hyparterielle Ventralbronchen				
olden-tiget Laterachinde	terieller Bronchus	1	2	3	4	terieller Bronchus	1	2	3	4
1) Troglodytes niger .	60	50	50	35	30	1.1.1.1	60	50	40	40
2) Cercopithecus sabaeus	70	50	60	50	40	-	?	?	?	?
3) Cynocephalus babuin	60	60	40	40	30		50	40	30	40
4) Lepus cuniculus .	50	70	60	60	.50	12511-+5	50	50	50	40
5) - timidus	70	60	45	40	25	A com	60	50	40	40
6) Coelogenys Paca .	60	40	35	60	60		50	50	40	50
7) Mustela foina	50	50	40	30	25	1 77 - 1	50	50	40	40
8) - putorius .	80	40	30	30	30		50	30	30	30
9) Felis catus	50	60	50	40	40	The second	40	30	40	?
0) Canis familiaris .	70	40	30	25	20	11 4-14	60	50	30	20
1) Phoca vitulina	70	60	60	40	25	70	60	50	40	?
(2) Capra hircus	30	90	40	15	10	100 P	50	40	30	30
(3) Equus caballus .	90	50	30	40	35	70	50	40	40	40

Neigungswinkel der Seitenbronchen zum Stammbronchus in Graden.

Eigenartig ist die Verlaufsweise des ersten Ventralbronchus, gleichgültig ob derselbe der eparteriellen oder hyparteriellen Zone angehört. Unweit des Ursprunges schlägt er als Stamm selbst oder doch mit starken Seitenzweigen in eine aufsteigende Richtung um und wird so zur Grundlage für das obere Lungenende, welches neben den Trachealstamm zu liegen kommt. Das Maass des Aufsteigens und demnach auch die Ausdehnung dieser frei emporragenden Kuppe ist bei verschiedenen Thieren sehr verschieden. Die äussere Aehnlichkeit, welche in diesem Verhalten zwischen Angehörigen der eparteriellen und hyparteriellen Strecke waltet, kann leicht zu Irrthümern Veranlassung geben und der Annahme einer Gleichwerthigkeit, die in Wirklichkeit nicht vorhanden ist, Vorschub leisten.

Schon früher wurde darauf hingewiesen, dass dorsale und ventrale Seitenbronchen in verschiedenen Ebenen liegen. Jene gehen gewöhnlich ziemlich gerade nach hinten, diese verhalten sich weniger gleichförmig. Sie haben nur das gemeinsam, dass sie zunächst alle von der Wurzel ab nach aussen streben. Dann aber umgreifen die obersten in median concavem Bogen das Mediastinum steil nach vorn, während die folgenden flacher nach aussen über die Wölbung des Zwerchfelles hinweggehen. Beide Bronchialbäume ergänzen sich zu einem schräg nach vorn aufsteigenden, im untern Theile flacheren, im obern von den Seiten her stärker eingerollten Gewölbe von gewöhnlich ziemlich symmetrischer, bisweilen aber auch sehr asymmetrischer Gestalt. Letztere beruht darauf, dass die Ventraläste des rechten Bronchialbaums in eine mehr sagittale Stellung vorrücken, diejenigen des linken in eine mehr transversale zurückgedrängt werden, wie ich solches beim Hasen gesehen habe. Die mittlern Partien des Gewölbes fallen den Nebenbronchen anheim und namentlich spielt der Herzbronchus bei der Schliessung desselben eine hervorragende Rolle.

An Länge sind immer die Ventralbronchen allen andern überlegen, obgleich wiederum bei verschiedenen Lungen in verschiedenem Grade. Den Vorrang behauptet ausnahmslos der erste oder auch der zweite der hyparteriellen Ventralbronchen, dem die Aufgabe zufällt, die vorderste Ecke des Lungenkörpers zu bilden. Von ihnen aus erfolgt die Verkürzung der übrigen Bronchen in auf-, wie absteigender Richtung. Oft ist sie eine sehr rasche, so zu sagen sprungweise, andere Male wiederum wächst sie ganz allmälig und stätig. Ein allgemeines Gesetz lässt sich dafür aus den vorliegenden Beobachtungen nicht ableiten.

Von besonderer Wichtigkeit ist die räumliche Vertheilung der Seitenbronchen auf den Stammbronchus. Dass hier beträchtliche Verschiedenheiten vorkommen, muss auch dem oberflächlichsten Beobachter sofort klar werden. Es ist indessen wünschenswerth, sie zu einem objectiven Maassausdrucke zu gestalten und so dem Bereiche des individuellen Gefühles zu entrücken. Ich habe solches durch directe Messung der Abstände zu erreichen gesucht. Sie geschah in der Längsrichtung des Stammbronchus und ging also jeweilen von einer Querebene desselben zur andern. Sie hielt sich ausschliesslich an den untern Rand der Seitenbronchen, da dieser unter spitzem Winkel den Stamm verlässt und demnach dem messenden Instrumente weitaus bessere Anhalts-

Aeby, Bronchialbaum.

punkte gewährt als der obere Rand, der nicht allein stumpfwinklig, sondern häufig geradezu bogenförmig von dem Stamme abgeht. Jedes Längensegment des Stammbronchus beginnt somit frei unterhalb eines Seitenbronchus und schliesst mit einem solchen ab. Bei der so ausserordentlich verschiedenen Grösse der untersuchten Lungen haben die absoluten Maasse für uns keinen Werth, da sie doch nicht unter einander vergleichbar sind. Ich beschränke daher die bezüglichen Angaben auf die Gesammtlänge der Stammbronchen in Millimetern und berechne alle innern Gliederungsverhältnisse in Prozenten derselben. Wem an der Uebersetzung dieser relativen Werthe in das absolute Maass gelegen ist, mag eine solche selbst bewerkstelligen. Es ist nicht zu leugnen, dass sich das freie Ende des Stammbronchus nicht überall mit voller Genauigkeit feststellen lässt, indessen ist die zweifelhafte Strecke nie so gross, dass durch sie die Gesammtlänge anders als in ganz untergeordneter und für die procentischen Werthe unschädlicher Weise beeinflusst würde. Auch die Dehnbarkeit der Bronchen richtet bei einiger Vorsicht weniger Schaden an, als man vielleicht anzunehmen geneigt sein möchte. Ich habe es mir durchweg zur Regel gemacht, jede gewaltsame Zerrung zu vermeiden, dagegen durch leichten Zug an beiden Enden eine möglichst geradlinige Achsenrichtung herbeizuführen. Etwelche Ungleichartigkeit wird sich dabei schlechterdings nicht vermeiden lassen, ein gewisser, durch Uebung erworbener Takt indessen auch hier, wie noch in so vielen andern Dingen, seinen ausgleichenden Einfluss nicht verleugnen. Bei alledem verhehle ich mir nicht, dass Messungen an so weichen, zudem oft noch unter nichts weniger als für die Erhaltung günstigen Bedingungen herumgeschleppten Organen keinen Anspruch auf volle Zuverlässigkeit erheben können. Fehler laufen unvermeidlicher Weise genug mit unter. Wir werden uns daher darauf beschränken müssen, kleinere Unterschiede überhaupt gänzlich ausser Acht zu lassen und auch grösseren erst dann einen entscheidenden Werth beizulegen, wenn sie innerhalb natürlicher Gruppen mit einer gewissen Beständigkeit wiederkehren.

Da die Entwicklung dorsaler und ventraler Seitenbronchen im allgemeinen parallel geht, so habe ich die Messungen nur an den letztern durchgeführt. Eparterielles und hyparterielles Gebiet verlangen getrennte Behandlung.

α) Längenabstände der hyparteriellen Seitenbronchen.

Das hyparterielle System ist das grundlegende des ganzen Bronchialbaums und soll daher zuerst behandelt werden. Sein Schwerpunkt liegt im Bereiche der vier obern Seitenbronchen; der Rest bildet mehr einen Anhang von sehr wechselnder Ausdehnung. Wir halten somit passend beide gleich von vorn herein auseinander und zerlegen den Stammbronchus nicht allein in einen eparteriellen und hyparteriellen, sondern letzteren ausserdem noch in einen obern und untern Abschnitt. Ich erinnere daran, dass der erste hyparterielle Bronchus nach der von uns angenommenen Messungsweise im eparteriellen Abschnitte enthalten ist und der hyparterielle erst unterhalb desselben beginnt. Es ist dies ein kleiner Uebelstand, der durch anderweitige Vortheile mehr als aufgewogen wird und sich eben nicht anders denn auf Kosten der Genauigkeit der Messung beseitigen liesse.

Maassverhältnisse des Stammbronchus in Procenten seiner Stammlänge.

	18 11 10		Recl	hte Lunge	a della della	Linke Lunge			
	Stammbr	Länge des onchus in m	eparte- rieller Ab- schnitt	hypart Absc	erieller hnitt	eparte- rieller Ab- schnitt	hypart	erieller mitt	
	rechts	links	Trachea bis 1. Ventral- bronchus	1.—4. Ven- tralbron- chus	4. Ventral- bronchus bis Ende	Trachea bis 1. Ventral- bronchus	14. Ven- tral- bronchus	4. Ventral bronchus bis Ende	
1. Monotremata.		1.75	1,01 A. T.	Le Contra	24		- FUILT	plents	
Ornithorhynchus pa-		2.045		11	14	4	minerud	1. Car	
radoxus	106	101	33.0	37.8	29.2	45.5	31.7	22.8	
Echidna hystrix .	64	60	25.0	54.7	20.3	28.3	45.0	26,7	
2. Marsupialia.		8.81F		21	147		- surpris	-	
Phascolomys Wombat	127	126	18.9	34.6	46.5	21.4	40.5	38.1	
Macropus gigas	78	80	19.2	41.1	39.7	25.0	40.0	35.0	
- penicillatus	90	× 98	21.1	40.0	38.9	20.4	41.8	37.8	
Hypsiprimnus murinus Perameles fusciventer	37 29	$\frac{43}{27}$	$21.6 \\ 25.8$	43.2	35.2	$-\frac{23.3}{25.9}$	37.2	39.5	
	20		20.0			20.9		and the	
3. Edentata.		1 - 1 - 1						The state	
Bradypus tridactylus	79	81	34.2	15.2	50.6	34.6	30.8	34.6	
Dasypus niger	70	69	15.6	-	-	20.3			
4. Cetacea.					in the		.ROADA	LITT IN	
Delphinus delphis .	232	232	32.3	33 5	34.2	34.9	34.9	30.2	
- phocaena	183	191	21.8	26.3	51.9	26.2	26.6	47.2	
5. Perissodactyla.		1.14			22	R 12	plomoures		
Equus caballus	481	401	11.8	57.9	20.2				
Tapirus americanus .	31.5	33	9.4	49.3	30.3 41.3	17.2 12.1	50.6 45.5	$32.2 \\ 42.4$	
E Anticlastela		1.15. 11		RE CONTRACT	11.0	12.1 ado	40.0	42.4	
6. Artiodactyla.		115			231	111	SKYINS MIL	Pithed	
Auchenia lama Dicotyles torquatus .	100	100	19.0	33.0	48.0	24.0	28.0	48.0	
Sus scrofa	$\frac{63}{252}$	$\frac{70}{238}$	$ \begin{array}{r} 12.7 \\ 7.5 \end{array} $	$42.8 \\ 46.1$	44.5	17.1	41.5	41.4	
Cervus elaphus	275	280	6.6	39.0	46.4 54.5	12.6 12.8	35.3 34.0	52.1	
- dama 5	178	187	5.6	51.1	43.3	14.0	33.1	53.2 52.9	
Antilana - juv.	70	81	11.4	41.5	47.1	14.8	35.8	49.4	
Antilope gutturosa . Ovis aries	166 144	169 151	11.4	38.6	50.0	11.8	45.0	43.2	
Capra hircus juv.	116	131	9.0 7.7	$ 40.3 \\ 42.3 $	50.7 50.0	18.5	33,1	48.4	
Bos taurus juv	213	207	7.5	42.3	50.2	$13.7 \\ 14.0$	43 4 39.1	42.9	
7. Proboscidea.	a sun a	werden		e vertin	nenkren	ionere Pop	55.1	46.9	
Elephas africanus juv.	990	909	Milleylatin	and den	TUN I		esome		
marathmosticam	280	262	25.0	32.8	42.2	27.4	22.6	50.0	
8. Rodentia	o in i	enb 1		Hall or	tiktra a		-		
Hystrix cristata	94	93	18.1	52.1	29.8	18.3	45.1	20.0	
Arctomys marmotta	58	58	25.9	44.8	29.3	25.8	45.1 39.7	$36.6 \\ 34.5$	
Coelogenys Paca Lepus cuniculus	$\frac{90}{40.5}$	$90 \\ 42.0$	18.9	33.3	47.8	24.4	34.4	41.2	
- timidus	54.0	42.0 54.0	14.8 14.8	43.2	42.0	19.0	35.7	45.3	
			11.0	46.3	38.9	16.6	44.4	38,9	
9. Insectivora.	100	10000		and a state of	Whater	Cart Land			
Erinaceus europaeus	42.5	43.5	20.0	56.5	23.5	28.9	45.8	95.9	
Talpa europaea	18.0	18.0	30.6	39.0	30.4	33.3	36.1	$25.3 \\ 30.6$	

19

2*

fürgenickeit der	Tup and	no si to	Rec	hte Lunge	n usdol	Link	e Lunge	NP.
	Absolute I Stammbro m	onchus in	eparte- rieller Ab- schnitt	hyparterieller Abschnitt		eparte- rieller Ab- schnitt	hyparterieller Abschnitt	
Fauke Lauren	rechts	links	Trachea bis 1. Ventral- bronchus	14. Ven- tralbron- chus	4. Ventral- bronchus bis Ende	Trachea bis 1. Ventral- bronchus	14. Ven- tral- bronchus	4. Ventral- bronchus bis Ende
10. Pinnipedia.	14	Pladen 1		A R B T P T				
Phoca vitulina - groenlandica .	194 141	193 141	22.2 27.7	$37.1 \\ 36.8$	40.7 35.5	19.7 22.7	38.3 34.8	$42.0 \\ 42.5$
11. Carnivora.	S.T. BALLER	Margaret 1	Remainst Sciences	Safet and	CALLS	THE ALL STORY	In the State	
Lutra vulgaris Mustela foina - putorius	129 58	130 58	19.3 20.7	46.5 51.7	$\begin{array}{c} 34.2\\ 27.6\end{array}$	9.2 12.1	47.7 51.7	43.1 36.2
Viverra genetta Herpestes galera	51 61 64	$\begin{array}{c} 51 \\ 60 \\ 63 \end{array}$	$ \begin{array}{r} 19.6 \\ 16.4 \\ 15.6 \end{array} $	41.1 47.5 40.6	$39.2 \\ 36.1 \\ 43.8$	11.8 15.3 17.4	52.9 41.4 43.9	$35.3 \\ 43.3 \\ 38.7$
Canis familiaris – lupus Felis leo	118 155 256	$ \begin{array}{r} 113 \\ 147 \\ 253 \end{array} $	15.3 18.1 19.1	39.0 35,4	$\begin{array}{r} 45.7\\ 46.5\end{array}$	$\begin{array}{c} 14.1 \\ 21.1 \end{array}$	$36.3 \\ 35.4$	49.6 43.5
- domestica - lynx	82 145	235 81 140	19.1 18.3 17.9	$37.1 \\ 40.2 \\ 35.1$	43.8 41.5 47.0	$20.9 \\ 14.8 \\ 12.1$	34.0 40.7 38.5	45.1 44.5 49.3
Cynailurus guttata .	170	156	13.5	41.2	45.3	13.4	46,9	39.7
12. Chiroptera.	-	-	THE S	-	12-10	a - herer	the state of the state	and so the
13. Prosimiae.	an Subally			of Alexander		and see our		
Lemur catta - mongoz	56 58	57 57	$\begin{array}{c} 25.0 \\ 25.8 \end{array}$	41.4 41.6	$\begin{array}{c} 33.6\\ 32.6\end{array}$	$\begin{array}{c} 24.5\\ 33.3\end{array}$	$\begin{array}{c} 43.9\\29.9\end{array}$	$\begin{array}{c} 31.6\\ 36.8 \end{array}$
14. Primates.							and the second	
Cebus capucinus Cynocephalus sphinx	47.5 99	50 90	$\begin{array}{c} 21.0\\ 15.2 \end{array}$	$\begin{array}{c} 44.4\\ 40.3\end{array}$	$\begin{array}{c} 34.6\\ 44.5\end{array}$	$\begin{array}{c} 16.0\\ 21.1\end{array}$	36.0 37.8	$48.0 \\ 41.1$
Inuus cynomolgus . - nemestrinus .	96 88 126	99 88 127	$17.4 \\ 21.6 \\ 19.0$	40.9 45.4 46.8	$ \begin{array}{r} 41.7 \\ 33.0 \\ 34.2 \end{array} $	20.2 19.2 18.8	$42.4 \\ 44.4 \\ 39.5$	$37.4 \\ 36.4 \\ 41.7$
Cercopithecus sabaeus, - cephus	85 49	85 49	$\begin{array}{c} 21.1 \\ 20.4 \end{array}$	37.7 51.0	41.2 28.6	18.8 18.4	$35.3 \\ 40.8$	45.9 40.8
- mona . Pithecus satyrus - troglodytes	$\begin{array}{r}92\\119\\68\end{array}$	$95 \\ 128 \\ 74$	$ \begin{array}{r} 18.5 \\ 22.7 \\ 28.0 \\ \end{array} $	39.1 37.8 35.2	42.4 39.5 36.8	$23.2 \\ 28.1 \\ 31.1$	33.6 25.1 33.8	$ \begin{array}{r} 43.2 \\ 46.8 \\ 35.1 \end{array} $

Die Zahlenunterschiede sind auffällig genug. Nichtsdestoweniger erweisen sich die meisten Ordnungen bei genauerer Betrachtung als in sich hinreichend gleichartig, um die Berechnung einheitlicher Mittelwerthe zu gestatten. Bei andern (Edentata, Artiodactyla, Rodentia, Carnivora, Primates) erscheint eine Auflösung in Unterabtheilungen geboten, da sich ihre Angehörigen augenscheinlich auf mehrere Formenkreise vertheilen. Wir werden uns in unsern Schlussfolgerungen wesentlich nur von den Mittelzahlen leiten lassen. Ist das specielle Verhalten der einzelnen Art schon an und für sich von mehr untergeordnetem Interesse, so kommt in unserm Falle noch hinzu, dass wir es fast überall mit einzelnen Individuen zu thun haben, die, wie alle solche, keine Gewähr für getreue Wiedergabe ihres artlichen Typus zu bieten vermögen.

Mittlere Maassverhältnisse	des Stammbronchus in Procenten	seiner
	Stammlänge.	

nated Ventrationentos ven	R	echte Lun	ige	I	linke Lun	ge
	Eparte- rieller Abschnitt	Abas	erieller hnitt	Eparte- rieller Abschnitt	41.00	erieller hnitt
Robhen and civingen flamb-	Trachea bis 1. Ventral- chus	14. Ven- tralbron- chus	4. Ventral- bronchus bis Ende	Trachea bis 1. Ventral- bronchus	14. Ven- tralbron- chus	4. Ventral- bronchus bis Ende
1. Monotremata	29.0	46.2	24.7	36.9	38.3	24.7
	(25-33)	(38-55)	(20-29)	(28-45)	(32-45)	(23-27)
2. Marsupialia (ohne Pe- rameles)	$\begin{array}{c c} 20.2 \\ (19-22) \end{array}$	39.7 (35-43)	40.1 (35-46)	22.6 (20-25)	39.9 (37-42)	37.6 (3539)
3. Edentata.	110-221	(00-40)	(00-10)	(20-20)	(01-12)	(00-00)
a) Bradypus	34.2	15.2	50.6	34.6	30.8	34.6
b) Dasypus	15.6	Report of	in the side	an - Init	at Introl	and the day
4. Cetacea	27.0	29.9	43.0	30.6	30.7	38.7
	(22-32)	(26 - 33)	(34-52)	(26-35)	(27-35)	(30-47)
5. Perissodactyla	10.6	53.6	35.8	14.6	48.0	37.3
6. Artiodactyla.	(9-12)	(49-58)	(30-41)	(12-17)	(45-51)	(32-44)
a) Auchenia	19.0	99.0	10.0	94.0	90.0	10.0
	10.1	$\begin{array}{c} 33.0\\ 44.4\end{array}$	$48.0 \\ 45.4$	$24.0 \\ 14.8$	$28.0 \\ 38.4$	48.0 46.7
b) Dicotyles, Sus	(7-13)	(43-46)	(45-46)	(13-17)	(35-41)	(41-52)
c) Cervus, Antilope, Ovis,	8.5	42.2	49.3	14.2	37.7	48.3
Capra, Bos	(6-11)	(39-51)	(43 - 54)	(12-18)	(33-45)	(43-53)
7. Proboscidea	25.0	32.8	42 2	27.4	22.6	50.0
8. Rodentia.	00.0	a builden	ab tim	nine ko ti	Estray work	
a) Hystrix, Arctomys	22.0	48.4	29,5	22.0	42.4	35.5
	(18-26) 16.2	(45-52)	(29-30)	(18-26)	(40-45)	(34-37)
b) Coelogenys, Lepus	(15-19)	40.9 (33-46)	42.9	20.0	38.2	41.8
9. Insectivora	25.3	47.7	(39-48) 26,9	(17-24) 31.1	(34-44) 41.0	(39-45) 28.0
and a loose in deal banks	(20-31)	(39-56)	(23-30)	(29-33)	(36-46)	(25-31)
10. Pinnipedia	25.0	37.0	38.0	21.2	36.5	42.3
11. Carnivora.	(22-28)	(37-37)	(35-41)	(20-23)	(35-38)	(42-43)
THE REPORT OF A STREET, A STREET, AS A STREE	10.0	in na .1	ferendhiel	- sololies	option o	L annes
a) Lutra, Mustela	19.9	46.4	33.7	11.0	50.8	38.2
b) Viverra, Herpestes, Ca-	(19-21) 16.8	(41-52)	(28-39)	(9-12)	(48-53)	(35-43)
nis, Felis, Cynailurus	(13-19)	39.5 (35-47)	43.7 (36-47)	16.1	39.6	44.3
12. Chiroptera	NO_10	100 11)	100 41	(12-21)	(34-47)	(39-50)
13. Prosimiae	25.4	41.5	33.1	28.9	36.9	34.2
	(25-26)	(41-42)	(33-34)	(24-33)	(30-44)	(32-37)
14. Primates.	10.0					100 011
a) Cebus, Cynocephalus,	19.3	43.2	37.5	19.5	38.7	41.8
Inuus, Cercopithecus	(15-22) 25.3	(38-51)	(29-44)	(16-23)	(34-44)	(36 - 48)
b) Pithecus	(23-28)	36,5	38.1	29.5	29.4	41.0
and all the state	(20 20) 1	(35-38)	(37-39)	(28-31)	(25-34)	(35-47)

Das hyparterielle Gebiet umfasst stets den grössern Bruchtheil des Stammbronchus. Am günstigsten stellt es sich bei den Perisso- und den meisten Artiodactylen, wo ihm 85-90 Längenprocente zufallen, am ungünstigsten bei Bradypus und den Monotremen, wo es sich mit etwa 65 Proc. und weniger (Ornithorhynchus) begnügen muss. Für die übrigen Ordnungen liegt die mittlere Grenze etwa bei 80 Proc., immerhin so, dass nur wenige (Carnivora) sie nach oben hin überschreiten und weitaus die meisten (Cetacea, Proboscidea, Insectivora, Prosimiae und unter den Primates die Anthropomorphen) entschieden hinter ihr zurückblieben. Bemerkenswerth ist die Ausnahmsstellung, welche Auchenia in der sonst so homogenen Gruppe ihrer Verwandten einnimmt.

Bei manchen Ordnungen ist der Abstand des ersten Ventralbronchus von der Theilungsstelle der Trachea in beiden Lungen ungefähr derselbe. So bei Bradypus und einem Theile der Nager, der Raubthiere und der Affen. In der Regel übertrifft indessen der eine den andern um ein weniges. Das Uebergewicht fällt gewöhnlich auf die linke, nur bei den Robben und einigen Raubthieren (Lutra, Mustela) auf die rechte Seite. Dort ist somit die beiderseitige Symmetrie zu Gunsten des rechten, hier des linken hyparteriellen Bronchialgebietes aufgehoben.

Durch die geschilderten Verhältnisse wird der allgemeine Eindruck, den der Bronchialbaum auf den Beschauer macht, in sehr entschiedener Weise beeinflusst und seine Krone bald dicht an den Stamm der Luftröhre herangeschoben, bald wieder weit davon abgerückt. Nichtsdestoweniger kann ich ihnen keine höhere morphologische Bedeutung zuerkennen, handelt es sich doch dabei um die verchiedene Raumentfaltung einer für die Lunge grösstentheils unproductiven Strecke, innerhalb deren sich der Stammbronchus, wenigstens zum Theil, in ähnlicher Weise wie die Luftröhre selbst den durch die benachbarten Körperorgane geschaffenen Raumverhältnissen anzupassen hat. Dafür spricht auch das ganze Verhalten der in ihr wurzelnden eparteriellen Seitenbronchen.

Anders verhält es sich mit den beiden Unterabtheilungen, in welche wir das hyparterielle Gebiet zerlegt haben. Ihre relative Ausdehnung kann uns zu einem Massstabe werden für die innere Gliederung des Bronchialbaums und für das Verhältniss zwischen der Ausdehnung seines grundlegenden Massives und des schlanker aufgesetzten Gipfels. Je mehr jenes in den Vordergrund tritt, um so gedrungener und am Ende abgestutzter wird der Bronchialbaum. Je weniger solches geschieht, zu um so schlankerer und spitzerer Form zieht er sich aus. Auf dieser Grundlage lassen sich aus dem Inhalt unserer Tabelle drei, freilich nichts weniger als streng geschiedene, Gruppen bilden, je nachdem die beiden Abschnitte sich annähernd das Gleichgewicht halten oder aber der eine das Uebergewicht über den andern erreicht.

	Re	echte Lung	ge	Linke Lunge		
	Eparte- rieller Abschnitt	rieller Abschnitt		Eparte- rieller Abschnitt	Hypar Abs	teriəller chnitt
	Trachea bis 1. Ventral- bronchus	14. Ven- tralbron- chus	4. Ventral- bronchus bis Ende	Trachea bis 1. Ventral- bronchus	14. Ven- tralbron- chus	4. Ventral- bronchus bis Ende
I. Unterer Abschnitt dem obern überlegen.	enie zuta i mit et drigen ()	igenpron o es sic Fur dic 1	men, w	Monotre begutiger	und der und der	rtiodaetj naiz pas traithar
Edentata: Bradypus. Cetacea Proboscidea Artiodactyla: Auchenia	$ \begin{array}{r} 34.2 \\ 27.0 \\ 25.0 \\ 19.0 \\ \end{array} $	15.2 29.9 32.8 33.0	50.6 43.0 42.2 48.0	$34.6 \\ 30.6 \\ 27.4 \\ 24.0$	$30.8 \\ .30.7 \\ 22.6 \\ 28.0$	$34.6 \\ 38.7 \\ 50.0 \\ 48.0$

B. Specielle Formverhältnisse.

Links Lungo	R	echte Lun	ge	L	inke Lung	е	
	Eparte- rieller Abschnitt	Abe	erieller chnitt	Eparte- rieller Hyparte Abschnitt Absch		terieller chnitt	
and a second sec	Trachea bis 1. Ventral- bronchus	14. Ven- tralbron- chus	4. Ventral- bronchus bis Ende	Trachea bis 1. Ventral- bronchus	14. Ven- tralbron- chus	4. Ventral- bronchus bis Ende	
THE REAL PROPERTY OF THE PARTY	1.121 100 200	101111111111			1462	a gre	
II. Unterer Abschnitt	11 6 21		1.2.08	1.62-1.91	A LL PLAN		
dem obern gleichwerthig.	00.0	20.7	40.1	22,6	39,9	37.6	
Marsupialia	20.2	39.7	40.1	22.0	00.0	01.0	
Sus.	10,1	44.4	45.4	14.8	38.4	46.7	
Artiodactyla: Cervus etc.	8.5	42,2	49.3	14.2	37.7	48.3	
Rodentia: Coelogenys, Le-	Instanta	0 800 2	mumi olisa	A DOOD	20.0		
pus	16.2	40.9	42.9	20.0	$38.2 \\ 36.5$	$41.8 \\ 42.3$	
Pinnipedia	25.0	37.0	38.0	$\begin{array}{c} 21.2 \\ 16.1 \end{array}$	39.6	44.3	
Carnivora: Viverra etc	16.8	39.5 41.5	43.7 33.1	28.9	36.9	34.2	
Prosimiae	$25.4 \\ 19.3$	41.5	37.5	19.5	38.7	41.8	
Primates: Cebus etc - Pithecus	25.3	36.5	38.1	29.5	29.4	41.0	
III. Oberer Abschnitt dem					And Address of		
untern überlegen.				1.14	1000		
Monotremata	29.0	46.2	24.7	36.9	38.3	24.7	
Perissodactyla Rodentia: Hystrix, Arcto-	10.6	53.6	35.8	14.6	48.0	37,3	
mys	22.0	48.4	29.5	22.0	42.4	35.5	
Insectivora	25.3	47.7	26.9	31.1	41.0	28.0	
Carnivora: Lutra, Mustela	19.9	46.4	33.7	11.0	50.8	38.2	

Völlig gleichartig ist der Inhalt dieser drei Gruppen nicht und es lässt sich wohl denken, dass eine breitere thatsächliche Grundlage vielleicht überhaupt eine etwas andere Eintheilung verlangen wird. Ich mache in dieser Hinsicht namentlich auf das ungleiche Verhalten aufmerksam, das sich da und dort zwischen der rechten und linken Lunge (z. B. bei Bradypus und Elephas) oder zwischen Angehörigen ein und derselben zoologischen Ordnung (z. B. bei Carnivoren) kund giebt. Einen typischen Werth kann dasselbe so lange nicht beanspruchen als nicht die Beständigkeit seines Vorkommens nachgewiesen ist. Vor der Hand wäre es verfrüht, darauf ein besonderes Gewicht zu legen. Welcher Art indessen allfällige Abänderungen auch sein und welcherlei Verschiebungen sich möglicherweise als nothwendig herausstellen werden, das allgemeine Umbildungsgesetz des Bronchialbaums, wie es aus unseren Zahlen hervorgeht, bleibt davon unberührt. Wir tragen daher, um letzteres zu möglichst markigem Ausdruck zu bringen, auch kein Bedenken, den Inhalt unsrer drei Gruppen zu einheitlichen Mittelwerthen zu verschmelzen.

	link	Rechte Lung	e mileodi -	Linke Lunge			
	Eparte- rieller Abschnitt	Hyparteriell	er Abschnitt	Eparte- rieller Abschnitt	Hyparteriell	ler Abschnitt	
market mark	Alexander .	Oberer	Unterer		Oberer	Unterer	
I. Gruppe	26.3 (19.0-34.2)	27.7 (15.2-33.0)					
II. Gruppe	(8.8 - 25.4)		$ \begin{array}{r} 40.9 \\ (31.1 - 48.5) \\ 20.4 \end{array} $		37.0 (29.4-39.9)	A REAL PROPERTY OF A REAL PROPERTY.	
III. Gruppe	$ _{(10.6-29.0)}^{21.4}$	$ \begin{array}{c} 48.5 \\ (46.2-53.6) \end{array} $	$\begin{array}{c} 30.1 \\ (24.7 - 35.8) \end{array}$	23.1 (10.6-36.9)	(38.3 - 50.8)	32.8 (24.7-39.6)	

In ihrer absoluten Höhe sind die Zahlen des hyparteriellen Abschnitts noch durch die verschiedene Ausdehnung des eparteriellen beeinflusst und deshalb nicht streng unter sich vergleichbar. Sie werden es, wenn wir sie in Procente der eigenen Strecke allein umwandeln.

	Rechte	Lunge	Linke	Lunge
	Hyparteriell	terieller Abschnitt Hyparterieller Absch		er Abschnitt
	Oberer	Unterer	Oberer	Unterer
I. Gruppe	37.6	62.3	39.5	60.5
II. Gruppe III. Gruppe	50.0 61.7	50.0 38.3	47.6 56.0	$52.4 \\ 44.0$

Die vorstehenden Zahlen bedürfen eigentlich kaum eines Commentars. Sie bezeugen in klarster Weise die Rückbildung des Bronchialbaums vom freien Ende her, so dass eine völlige Umkehr der anfangs bestehenden Verhältnisse eintritt. Nur bei 3 Ordnungen (Edentata, Cetacea und Proboscidea) fallen zwei volle Dritttheile des Bronchialbaums über dessen Massiv hinaus in das Gipfelgebiet. Bei vieren (Marsupialia, Pinnipedia, Prosimiae und Primates) erfolgt annähernd Halbirung nach beiden Seiten hin. Bei dreien (Monotremata, Perissodactyla, Insectivora) verbleibt dem Endabschnitte nur noch ein Dritttheil der Stammlänge. Drei Ordnungen (Artiodactyla, Rodentia, Carnivora) halten sich überhaupt nicht an einen einheitlichen Typus, sondern vertheilen ihre Angehörigen auf verschiedene Gruppen. Im allgemeinen ist die rechte Lunge typisch schärfer ausgeprägt als die linke, ohne jedoch bei einzelnen Arten mannigfache Schwankungen auszuschliessen.

Die in allen Theilen mehr gleichförmig ausgebildete, gestreckte Lungenform ist wohl unstreitig als die primäre, die in ihren Endabschnitten mehr oder weniger geschädigte als die secundäre anzusehen. Ebenso dürfte es kaum einem Zweifel unterliegen, dass der Anstoss zur Rückbildung nicht vom Organ selbst, sondern von dessen Umgebung aus stattgefunden hat. Nichts liegt näher, als an mechanische Wirkungen von Seiten mächtig vordringender Inhaltsmassen des Bauchraums sowie eigenartiger Entwicklungsverhältnisse des Brustkorbes und des Zwerchfelles zu denken, doch ist der Beweis dafür erst noch zu liefern.

Die Zugehörigkeit der verschiedenen Ordnungen zu den drei Haupt-

B. Specielle Formverhältnisse.

gruppen giebt in dieser Hinsicht keinen Aufschluss. Fleisch - und Pflanzenfresser, gedrungene und gestreckte Thierformen reichen sich brüderlich die Hand, was dafür zu sprechen scheint, dass die Ursache der Rückbildung nicht überall ein und dieselbe, überhaupt keine einfache, sondern aus verschiedenen Factoren zusammengesetzt ist. Wie noch in so manchen andern Punkten der Lungenarchitektur bleibt es auch hier der Zukunft vorbehalten, Licht zu schaffen. Vor allem wird das Bestreben dahin gehen müssen, die Zahl der Beobachtungen möglichst zu vermehren, um auf breiterer Grundlage als der unsrigen das Gebahren der einzelnen Ordnungen und innerhalb derselben allfällige Wandlungen festzustellen. Möglicherweise kommen wir auf diesem Wege, wenn auch nicht ganz zum Ziele, doch immerhin einen guten Schritt weiter. Was mich in dieser Meinung bestärkt, ist namentlich der Umstand, dass in der Abtheilung der Nager und der Fleischfresser die meisten derjenigen Glieder, die sich durch eine verschiedenartige Ausbildung des Endabschnittes ihres Bronchialbaums auszeichnen, auch in andrer, zum Theil bereits erörterter Weise von einander abweichen. Auf andere Eigenthümlichkeiten werden wir später stossen. Vielleicht ist es nicht bloss Zufall, sondern eben auch eine Folge der bestehenden mechanischen Verhältnisse, dass der Endabschnitt der rechten Lunge in der Mehrzahl der Fälle zwar nicht viel, doch immerhin merklich stärker verkürzt ist, als der der linken. In auffallender Weise huldigt das Faulthier dem Gegentheil. Gemässigter verhalten sich die Wale.

Wir haben die beiden Hauptstrecken des hyparteriellen Gebietes bisher als geschlossene Einheiten behandelt. Lösen wir nun wenigstens die wichtigsten derselben in ihre einzelne Segmente auf. Da wir einmal daran sind, dem Gesetze der Bronchialverzweigung nach allen Richtungen hin nachzuspüren, so darf die Entfernung, worin sich die Seitenbronchen folgen, nicht ausser Acht gelassen werden. Die grosse Regelmässigkeit im Aufbau der Bronchialbäume macht es von vornherein wahrscheinlich, dass auch sie durch bestimmte Normen geregelt sei. Ich stelle, dies nachzuweisen, die in Procenten der Stammlängen berechneten Abstände vorerst tabellarisch zusammen.

	. F	Rechte Lung	çe	Linke Lunge			
e al fonda de Ser a of the series ant	Bronchus 1-2	Bronehus 23	Bronchus 3-4	Bronchus 1-2	Bronchus 2-3	Bronchus 3-4	
1. Monotremata.	page 3 al	5.0.E	1 MA 1 10-	LER CAR	time filling	Cudata Ca	
Ornithorhynchus pa-	1.51	1.61 5 3	1.11	101.	widow splay	6:vnoony25	
radoxus	16.1	12.2	9.5	10.0	10.9	10.9	
Echidna hystrix	23.4	15.7	15.6	15.0	15.0	15.0	
2. Marsupialia.	1.31	1.01	1.0	1.00	Straidens	10.0	
Phascolomys Wombat	14.2	10.2	10.2	13.5	13,5	13.5	
Macropus gigas	15.4	15.4	10.3	10.0	15.0	15.0	
- penicillatus	18.9	12.2	8.9	14.3	12.2	15.3	
Hypsiprimnus murinus	13.7	12.8	16.7	13.9	14.0	9.3	
Perameles fusciventer		-	10.1	10.0	14.0	0.0	

Gegenseitiger Abstand der vier ersten Ventralbronchen in Procenten des Stammbronchus.

I. Der Bronchialbaum der Säugethiere.

brude Helich die Hand	Rechte Lunge			Linke Lunge			
exhibiting nicht thee	Bronchus 12	Bronchus 23	Bronchus 3-4	Bronchus 1-2	Bronchus 2-3	Bronchus 3-4	
3. Edentata.	mbinne a		1576 3	i ixiaami	rimunan a	mulden	
Bradypus tridactylus Dasypus niger	5.0 18.7 ·	5.1	5.1	12.3	9.9	8.6	
4. Cetacea. Delphinus delphis .	12.1	9.9	11.5	10.4	11.1	13.4	
- phocaena . 5. Perissodactyla.	9.8	7.7	8.8	8,9	9.4	8.3	
Equus caballus	14.3	24.0	19.6	10.8	23.5	16.3	
Tapirus americanus . 6. Artiodactyla.	12.8	15.9	20.5	12.2	15.1	18.2	
Auchenia lama	14.0	12.0	7.0	8.7	8.7	10.6*	
Dicotyles torquatus .	11.1	14.9	16.8	17.2	12.8 11.0	11.5	
Sus scrofa	14.3 8.8	$15.1 \\ 12.7$	16.7 17.5	12.6 7.2	11.0	15.4	
- dama 5 · ·	25.3	12.3	13.5	9.0	11.2	12.9	
juv	14.3	11.4	15.8	9.9	13.6	12.3	
Antilope gutturosa .	7.3	13.8	17.5	12.4	20.8	11.8	
Ovis aries	10.2	14.1	16.0 9.5	6.7 10.0	12.5 19.8	13.9 13.6	
Capra hircus juv Bos taurus juv	13.0 7.5	19.8 9.4	25.4	8.7	13.1	17.3	
7. Proboscidea.	A manastro	puttions.	thrunding and	1 2010 038	11.1 2002		
Elephas africanus .	7.1	12.2	13.5	7.3	7.7	7.6	
8. Rodentia. Hystrix cristata	21.3	14.9	15.9	21.5	14.0	9.6	
Arctomys marmotta	20.7	10.3	13.8	15.6	10.3	13.8	
Coelogenys Paca	16.7	6.7	10.0	14.4	8.9	11.1	
Lepus cuniculus	16.1	$ \begin{array}{r} 12.3 \\ 16.7 \end{array} $	14.8 16.7	11.9 13.0	11.9 16.7	14.8	
- timidus 9. Insectivora	13.0	10.7	10.1	10.0	12	1 demand	
Erinaceus europaeus	23.5	16.5	16.5	15.9	14.9	15.0	
Talpa europaea	10. s el 3	ton	poil mains	10. (D. (all an and the	The states	
0. Pinnipedia.	12.9	10.3	13.9	11.5	10.8	16.0	
Phoca vitulina - groenlandica .	11.3	12.7	12.8	11.3	10.7	12.8	
II. Carnivora.	11.0	Charles I.	17		Inner all	10.2	
Lutra vulgaris	21.8	9.3	15.4	22.3	13.1 10.3	12.3 15.5	
Mustela foina	22.4	15.5	13.8 13.7	25.8 21.6	12.7	18.6	
- putorius	$\begin{array}{c} 14.7 \\ 24.6 \end{array}$	12.7 11.4	11.5	18.0	11.7	11.7	
Viverra genetta Herpestes galera	15.6	11.0	14.0	19.1	11.1	13.7	
Canis familiaris	13.5	10.1	15.4	10.6	9.3 8.8	16.4	
- lupus	20.0	6.2	9.2 7.4	13.6	6.3	14.2	
Felis leo	20.3 19.5	9.4 11.0	9.7	21.0	9.9	9.8	
- domestica - lynx	19.5	10.3	10.3	17.8	11.4	9.3	
Cynailurus guttata .	18.3	11.9	11.0	20,5	10.3	16.1	
12. Chiroptera.		1-220	at antonit	-	-		
13. Prosimiae.	10.1	10.7	14.6	12.3	15.8	15.8	
Lemur catta - mongoz	16.1 15.3	14.1	12.2	8.8	10.5	10.6	
- mongoz 14. Primates.	10.0	and the second second		00.0	0.0	8.0	
Cebus capucinus	17.8	12.8	13.8	20.0 13.3	8.0	13.3	
Cynocephalus sphinx	16.1	11.1	13.1 16.6	10.1	17.2	15.1	
mat - dan -	14.9 18.2	9.4 14.7	12.5	17.2	14.7	12.5	
Inuus cynomolgus . - nemestrinus .	20.3	9.9	16.6	16.0	11.7	11.8	
Cercopithecus sabaeus		9.3	9.5	15.3	9.4 14.3	12.3	
- cephus	18.4	16.3	16.3	14.2	7.4	13.6	
– mona .	17.4	9.7	12.0 9.2	6.3	8.5	10.3	
Pithecus satyrus troglodytes	16.8	11.8	7.3	14.9	5.4	13.5	

Von einer strammen Ordnung ist in diesen Reihen freilich keine Rede, aber auch ebensowenig von eigentlicher Unordnung. Der Blick, der sie durchgeht, weckt sofort die Ueberzeugung, dass hier leitende Regeln ihre Wirksamkeit geübt haben. Auf einem Boden, wo der Individualität offenbar ein besonders weiter Spielraum gelassen ist, kann es sich noch weniger, als es bereits früher der Fall war, darum handeln, Einzelheiten Bedeutung beizulegen. Viel eher ist auf Gewinn zu hoffen, wenn wir sie zu wenigen Strichen zusammenschmelzen. Der Gleichartigkeit wegen wählen wir die früher angenommene Gruppirung.

	Rechte Lunge			Linke Lunge		
nit special interesting in the	Bronchus 1-2	Bronchus 23	Bronchus 3-4	Bronchus 1-2	Bronchus 2-3	Bronchus 3-4
1. Nonotromoto	19.7	13.9	12.5	12.5	13.0	13.0
1. Monotremata	(16-23)	(12-16)	(9-16)	(10-15)	(11-15)	(11-15)
2. Marsupialia (ohne Pe-	15,4	12.6	11.5	12.9	13.7	13.3
rameles)	(14-19)	(10-15)	(9-17)	(10-14)	(12-15)	(9-15)
3. Edentata.	a loose o			10.0	0.0	0.0
a) Bradypus	5.0	. 5.1	5.1	12.3	9.9	8.6
A SALE OF A	11.0	8.8	10.1	9.6	10.2	10.8
4. Cetacea	(10-12)	(8-10)	(9-11)	(9-10)	(9-11)	(8-13)
5 Designed astals	13.5	20.0	20.1	11.5	19.3	17.2
5. Perissodactyla	(13-14)	(16-24)	(20-20)	(11-12)	(15-23)	(16-18)
6. Artiodactyla.	dinit.	a la composition				
a) Auchenia	14.0	12.0	7.0	8.7	8.7	10.6
b) Dicotyles, Sus	12.7	15.0	16.7	14.9	11.9	11.6
	(11-14)	(15-15)	(17-17)	(13-17)	(11-13)	(11-12)
c) Cervus etc	12.3 (7-25)	13.4	16.5	9.2	14.6	13.9
7. Proboscidea	7.1	(9-20) 12.2	(9-25) 13.5	(7-12) 7,3	(11-21)	(12-17)
8. Rodentia.	a there are a	12.2	10.0	OW Strength	7,7	7.6
a) Hystrix, Arctomys	21.0	12.6	14.8	18.5	12.1	11.7
a) Hystilx, Arctomys.	(21-21)	(10-15)	(14-16)	(16 - 21)	(10-14)	(10-14)
b) Coelogenys, Lepus	15.3	11.9	13.8	13.3	12.5	12.6
	(13-17)	(7-17)	(10-17)	(12-14)	(9-17)	(11 - 15)
9. Insectivora: Erinaceus	23.5	16.5	16.5	15.9	14.9	15.0
0. Pinnipedia	12 1	11.5	13.3	11.4	10.7	14.4
1. Carnivora.	(11-13)	(10-13)	(13-14)	(11-12)	(10-11)	(13-16)
	19.6	12.5	14.3	23.2	12.0	15 -
a) Lutra, Mustela	(15-22)	(9-15)	(14-15)	(22-26)	(10-13)	15.5 (12-19)
b) Viverra etc.	18.8	10.1	11.2	16.6	9.6	13.6
and the state of the	(13-25)	(6-12)	(7-15)	(13-21)	(6-12)	(10-16)
2. Chiroptera.	and the Tax of the	00 <u>-</u>	10000 10	Do Zund	AT	1.0 10/1
3. Prosimiae	15.7	12.4	13.4	10.5	13.1	13.2
4. Primates.	(15-16)	(11-14)	(12-15)	(9-12)	(10-16)	(11-16)
	17.7	11.6	12.0	44.0	and a second sec	and and
a) Cebus etc	(15-20)	(9-16)	13.8 (9-17)	14.9	11.7	12.2
b) Pithecus	15.0	13.2	8.2	(10-20) 10.6	(7-17)	(8-15)
b) r meeus	(13-17)	(12-15)	(7-9)	(6-15)	7.0 (5-8)	11.9 (10-13)

Da der Gesammtwerth der in Betracht kommenden Strecke bei verschiedenen Lungen ungleich ausfällt, so sind die vorstehenden Zahlen natürlich nur in soweit direct unter einander vergleichbar, als sie der gleichen Reihe angehören. Mehr ist aber auch nicht von ihnen zu verlangen. Die gegen-

I. Der Bronchialbaum der Säugethiere.

seitigen Abstände der Seitenbronchen zeigen in absteigender Richtung ein dreifaches Verhalten. Sie bleiben sich gleich, sie nehmen zu oder sie nehmen ab. Zu- und Abnahme combiniren sich nicht selten in der Weise, dass in der zunehmenden Reihe durch das mittlere Zahlenglied eine vorübergehende Abnahme (Pinnipedia), in der abnehmenden durch das Endglied wiederum eine Zunahme, doch nicht bis auf die Höhe des Anfangsgliedes, veranlasst wird (z. B. Carnivora). Da es nicht leicht ist, diesem Gange der Dinge durch die Zahlentabelle hindurch zu folgen, dürfte die nachfolgende Uebersetzung nicht unerwünscht sein. Die Combinationsformen von Zu- und Abnahme sind durch Klammern hervorgehoben.

	nach unten hin					
ibilitie on lot at - or	zunehmend	abnehmend	gleichbleibend			
1. Monotremata.	1 201-011	rechts	12.1			
2. Marsupialia.		rechts	links links			
3. Edentata.	1 1 2 2	reents	IIIKS			
Bradypus.	1.000	links	rechts			
4. Cetacea.	links	(rechts)	Toonts			
5. Perissodactyla.	beiderseits		_			
6. Artiodactyla.	CONTRACT OF	10.01				
a) Auchenia.		rechts	links			
b) Dicotyles, Sus.	rechts	links				
c) Cervus etc.	beiderseits	-	1 - C. M			
7. Proboscidea.	rechts	-	links			
8. Rodentia.	1 1 1 1					
a) Hystrix, Arctomys.	and the second	(rechts) links	- 519			
b) Coelogenys, Lepus.		(rechts)	links			
9. Insectivora.	(haid and it)	rechts	links			
0. Pinnipedia.	(beiderseits)	21.0				
1. Carnivora.		(haid an aite)				
a) Lutra, Mustela.b) Viverra etc.	1 OII	(beiderseits)				
2. Chiroptera.	1705	(beiderseits)	andore when			
3. Prosimiae.	rechts	(links)	Binha Brink			
4. Primates.	reents	(IIIKO)				
a) Cebus etc.	1 Manuella 1	(beiderseits)	-			
b) Pithecus.	_	rechts (links)	1			

Gegenseitige Abstände der ventralen Seitenbronchen

Ziemlich in der Hälfte aller Fälle stimmen die beiderseitigen Lungen in ihrem Verhalten ganz oder wenigstens der Hauptsache nach unter einander überein, in der zweiten thun sie es nicht, sei es, dass die eine Lunge sich mit der neutralen Form der gleichförmigen Abstände begnügt, sei es, dass sie der typisch differenzirten ihrer Genossin die entgegengesetzte zur Seite stellt (Cetacea, Dicotyles und Sus, Prosimiae). Als weitaus überwiegend erweist sich der Typus mit Abnahme der Bronchialabstände nach unten hin. Ausschliesslich combinirt verwerthen ihn die Robben, die Fleischfresser und ein Theil der Affen. Theilweise combinirt, und zwar ohne Vorliebe für die eine oder andere Seite, kommt er den Walen, Nagern, Halbaffen und einigen Primaten zu. Die stärkere Annäherung des 2. und 3. Ventralbronchus ist nicht selten eine geradezu auffällige. Der Typus mit wachsenden Abständen ist weitaus sel-

B. Spezielle Formverhältnisse.

tener. Eine ziemlich schwächliche Combination mit dem entgegengesetzten kennzeichnet die Robben. Wir müssen uns vorläufig mit der Constatirung dieser Thatsachen begnügen. Zu einem Gesetze lassen sie sich zur Zeit noch nicht zusammenfassen. Eine Beziehung zu anderweitigen Formverhältnissen des Bronchialsystems ist nicht nachzuweisen. Namentlich besteht eine solche nicht zu der wechselnden Längenentfaltung des Stammbronchus. Trotzdem ist die Thatsache an und für sich von Bedeutung, weil sie auf einem Boden, wo man vielleicht am wenigsten daran denken möchte, auf das strenge Walten bestimmter, wenn auch vorläufig noch unbekannter, gestaltender Kräfte hinweist. In dieser Hinsicht darf namentlich auch die verhältnissmässig grosse Gleichartigkeit hervorgehoben werden, wie sie sich zwischen den Gliedern der einzelnen Ordnungen kund giebt. Es liegt darin ein Beleg dafür, dass wir es mit Erscheinungen zu thun haben, die über der Individualität stehen und von allfälligen Aenderungen, welche an den einzelnen Arten durch weitere Beobachtungen sich ergeben werden, keine Einbusse zu befürchten haben.

β. Längenabstände der eparteriellen Seitenbronchen.

Wir bemessen die Stellung des eparteriellen Bronchus gleichfalls nach seiner Entfernung von der Theilungsstelle der Trachea. Nur wird hier zwischen oberhalb und unterhalb derselben zu unterscheiden sein. Auf ersteres beziehen sich die Zahlen mit negativem Vorzeichen. Zur Orientirung ist es erwünscht, gleich auch den Abstand des eparteriellen Bronchus von dem ersten hyparteriellen und denjenigen dieses letzteren von dem zweiten beizufügen. Damit sind dann alle Momente gegeben, welche für das Verständniss der aus ep- und hyparteriellen Elementen combinirten Reihenbildung erforderlich sind. Die Zahlen entsprechen wiederum Procenten des Stammbronchus.

	K	Cechte Lung Abstand des	ge	Linke Lunge Abstand des			
	eparteriellen Bronchus			eparteriellen Bronchus		anoquit.	
	von der Theilungs- stelle der Trachea	vom 1. hyp- arteriellen Ventral- bronchus	1. hyparte- riellen Bron- chus vom zweiten	von der Theilungs- stelle der Trachea	vom 1. hyp- arteriellen Ventral- bronchus	1. hyparte- riellen Bron- chus vom zweiten	
1. Monotremata.	1	-1 0	21 6		latter ante	(Lessal)	
Ornithorhynchuspara-	-	-				ANTIN DE	
doxus	29.2	3.8	16.1	+	- The second	a contraction of the	
Echidna hystrix	20.0	5.0	23.4	1 + -	C Blann	Manhow	
2. Marsupialia.	10.0	0.7	110	1	- megalour	TANDAGA	
Phascolomys Wombat	10.2	8.7	14.2	-		Suriet II	
Macropus gigas	11.5	7.7	15.4		A TRANSPORT	second the second	
- penicillatus	15.6	5.5	18.9	- 20	des and allow	Summer to B	
Hypsiprimnus murinus	13.5	8.1	13.7				
Perameles fusciventer	20.7	5.1	21 - 11		PARTICIPACITY OF PARTY	Commentering of the	
3. Edentata.	07.0	0.0	01 10	the second second	atterin harold series		
Bradypus tridactylus	27.9	6.3	5.0	27.2	7.4	12.3	
Dasypus niger	4.3	11.3	18.7	S	1000		
	17.0	10.5	El E.	- marken M	Total Constant	-	
Delphinus delphis .	-17.2	49.5	12.1	14.7	20.2	10.4	
- phocaena	+ - 9.3	31.1	9.8	8.4	17.8	8.9	

I. Der Bronchialbaum der Säugethiere.

Jon Constations: dieser	R	echte Lung Abstand des	ge	Linke Lunge Abstand des			
Composibilitations des	eparterielle	mature for	amotots	eparterielle	Particular 1		
are Trobalan ist die	von der Theilungs- stelle der Trachea	vom 1. hyp- arteriellen Ventral- bronchus	1. hyparte- riellen Bron- chus vom zweiten	von der Theilungs- stelle der Trachea	vom 1. hyp- arteriellen Ventral- bronchus	1. hyparte- riellen Bron- chus vom zweiten	
5. Perissodactyla Equus caballus Tapirus americanus	$2.9 \\ 4.7$	8.9 4.7	14.3 12.8	8.8	8.4	10.8 -	
6. Artiodactyla. Auchenia lama	-10.0	29.0	14.0	12.5	11.5	8.7	
Dicotyles torquatus Sus scrofa	-17.4 -20.6	30,1 28,1	11.1 14.3	quality uz	noguncia	down34 finn	
Cervus elaphus - dama 5	-36.4 -37.1	43.0 42.7 54.2	8.8 25.3 14.3	n Toda	reduces a	allimiter.	
Antilope gutturosa . Ovis aries	-42.9 -33.7 -40.3	54.3 45.1 49.3	7.3	-	-	` _	
Capra hircus juv.	-37.9 -30.0	45.6 37.5	13.0 7.5	base mib	A STATISTICS	-177-	
7. Proboscidea. Elephas africanus	17.8	7.2	7.1	20,2	7.2	7,3	
8. Rođentia. Hystrix cristata . Arctomys marmotta	13.8	12.1	20.7	Kahilin	sing dials	colien obo	
Coelogenys Paca . Lepus cuniculus	4.4 4.9	14.4 9.8	16.7 16.1	mo <u>r</u> den.	a doi <u>ata</u> -	Hosattions	
9. Insectivora.	5.5	9.3	13.0	lie Mount	d dana u	ti panerie Unmit ein	
Erinaceus europaeus Talpa europaea	16.5	3.5	23,5	Den-Elenn	dinal segu	I have	
10. Pinnipedia. Phoca vitulina . - groenlandica	$9.3 \\ 12.1$	12.9 15.6	12.9 11.3	10.4 12.1	9.3 10.6	11,5 11,3	
11. Carnivora. Lutra vulgaris	- 7.7	11.6	21.8	_	-	=	
Mustela foina	$5.2 \\ 7.8 \\ 6.6$	15.5 11.8 9.8	$ \begin{array}{r} 22.4 \\ 14.7 \\ 24.6 \end{array} $		-	Ξ	
Viverra genetta Herpestes galera . Canis familiaris	6.2 5.9	9.4 9.3	15.6 13.5	-	-	=	
- lupus Felis leo	11.6 12.8	$\begin{array}{c} 6.5 \\ 6.3 \end{array}$	20.0 20.3		-	=	
- domestica - lynx	8.5 3.4 	9.8 14.5 17.0	19:5 14.5 18.3	-	-		
Cynailurus guttata . 12. Chiroptera. 13. Prosimiae.			an Tre	an T d	and a martin	hpdin 	
Lemur catta Lemur mongoz	14.3 12.1	10.7 13.7	16.1 15.3	E	-	T -	
14. Primates. Cebus capucinus	4.2	16.8 15.2	17.8	-	T	「四十二	
Cynocephalus sphinx Inuus cynomolgus	6.3 9.1	11.1 12.5	14.9 18.2	1 -		thepson	
- nemestrinus . Cercopithecus sabaeus	8.7 9.4	10.3 11.7	20.3 18.9	I I	an et al and	- Andrew	
cephus - mona	10.2	10.2 15.3	18.4 17.4 16.8	E		ŦŦ	
Pithecus satyrus . - troglodytes	5.9 17.7	16.8 10.3	13.2		al man	the the	

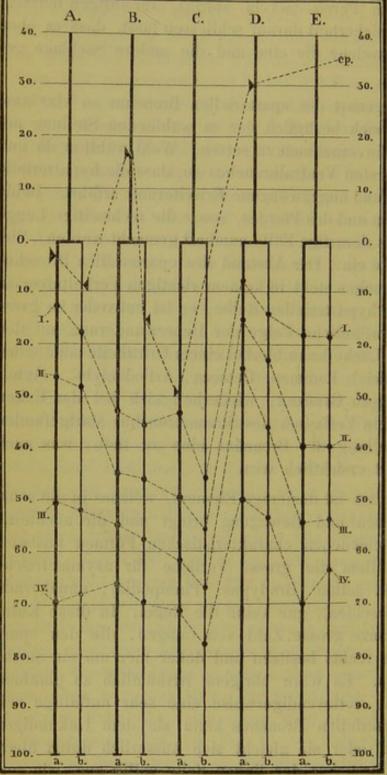
Schaffen wir durch die Berechnung von Mittelwerthen eine einfachere Grundlage. Dass das Unternehmen berechtigt ist, zeigt der erste Blick auf die Zahlenreihen.

	tion not	Rechte Lun Abstand des	We TEADLOR	Linke Lunge Abstand des			
	eparteriellen Bronchus			eparteriell	noidT au		
	von der Theilungs- stelle der Trachea	vom 1. hyp- arteriellen Ventral- bronchus	1. hyparte- riellen Bron- chus vom zweiten	von der Theilungs- stelle der Trachea	vom 1. hyp- arteriellen Ventral- bronchus	1. hyparte- riellen Bron- chus vom zweiten	
1. Monotremata .	24.6	4.4	19.7	pla. Imregor	and the second	Cophani	
2. Marsupialia (ohne Perameles)	$ \begin{array}{c c} (20-29) \\ 12.7 \\ (10-16) \end{array} $	(4-5) 7.5 (5-9)	(16-23) 15.4 (14-19)		solo-selos	ini dono	
3. Edentata. a) Bradypus	27.9	6,3	5.0	27.2	7.4	12.3	
b) Dasypus 4. Cetacea	4.3	11.3 40.3	18.7 11.0	11.5	19.0	9.6	
5. Perissodactyla	(-9-17) 3.8 (3-5)	(31-49) 6.8 (5-0)	(10-12) 13.5	(8-15) (8.8)	(18-20) (8.4)	(9—10) (10.8)	
6. Artiodactyla. a) Auchenia	-10.0	(5-9)	(13-14)	12.5	11.5	8.7	
b) Dicotyles, Sus	-19.0 (-17-21)	29.1 (28-30)	12.7 (11—14)		11.5 —	september	
c) Cervus etc.	-37.0 (-30-43)	47.6 (37-54)	$ \begin{array}{c} 12.3 \\ (7-25) \end{array} $	Contraction of the	in an data	in an and	
7. Proboscidea 8. Rodentia.	17.8	7.2	7.1	20.2	7.2	7.3	
a) Arctomys b) Coelogenys, Lepus	13.8 4.9	12.1 11.2	$\begin{array}{c} 20.7 \\ 15.3 \end{array}$	THE ACTOR	Catal <u>a</u> Israel	Stelling	
9. Insectivora. Erinaceus	(4—6) 16.5	(9—14) 3,5	(13—17) 23,5	einse <u>s</u> feiter	million as	krat sch	
0. Pinnipedia	10,7 (9—12)	14.2 (13-16)	12.1 (11-13)	11.2	10.0	11.4	
1. Carnivora a) Lutra, Mustela,	octuaritaria	ulen, dena	framil nos	(10-12)	(9—11)	(11	
Viverra, Herpes- tes, Canis, Felis	7.6 (3—13)	$9.0 \\ (6-16)$	$ \begin{array}{c} 18.6 \\ (13-25) \end{array} $	ulor-dug	destration of	had	
b) Cynailurus 2. Chiroptera	-3.5	17.0	18.3	mahum so	adlaster of	mallaine)	
3. Proŝimiae 4. Primates	$\begin{array}{c} 13.2 \\ (12-14) \end{array}$	12,2 (11—14)	15.7 (15—16)	ungth door	Tan not	in mondi	
a) Cebus, Cynoce- phalus, Inuus, Cer-	6.4 (0—10)	12.9 (10-17)	17.7 (15—20)	at stell	a Mailak a	gleichen die 11 au	
b) Pithecus	11.8	13.5	15.0 (13—17)	and any	appan of	-documents	

Was in dieser Zusammenstellung sofort in die Augen springt, ist der weite Spielraum, welcher dem eparteriellen Bronchus in der Wahl seiner Lage gelassen ist. Nicht allein der eparterielle Abschnitt des Stammbronchus, die Trachea selbst hat seiner Wanderlust Genüge zu leisten. Seine Stellung wird dadurch im Rahmen des Bronchialbaums zu einer durchaus eigenthümlichen, bis zu einem gewissen Grade unabhängigen. Während er in den einen Fällen so dicht an das hyparterielle Gebiet heranrückt, dass seine Eigenart für den Unkundigen völlig verloren geht, lässt er in andern zwischen sich und ihm eine so weite Lücke, dass man ihn für einen überzähligen, bloss accessorischen Bestandtheil ansehen konnte. Wir sind vor der Hand nicht im Stande, eine Erklärung für diese Erscheinung abzugeben. Sie kommt, wie wir später vom Menschen nachweisen werden, auch individuell bei Angehörigen derselben Art in sehr ausgesprochener Weise zur Geltung. Einige wenige Beobachtungen an Thieren lassen mich glauben, dass es bei diesen nicht anders ist.

Sonderbarer Weise ist es nur der Bronchus der rechten Lunge, der hiervon betroffen wird. Derselbe besitzt überhaupt, auch wo er am Stammbronchus verbleibt, gegenüber seinem Genossen Vorliebe zu einer höheren Lagerung (Pferd, Elephant). Er verleugnet sie nur bei Faulthier (Taf. I. Fig. 2) und Robbe (Taf. I. Fig. 1). Am weitesten nach oben rückt er bei den Wiederkäuern, weniger weit bei den Schweinen, dem Lama (Taf. II. Fig. 4) und den Delphinen. Bei den letzteren wird trotzdem die Erscheinung wegen der beträchtlichen Kürze der Trachea am allerauffälligsten. Der Bronchus entspringt aus deren Mitte, um in steilem Verlaufe zur Lungenspitze herabzulaufen (Taf. II. Fig. 3). Bei den Artiodactylen geht er mehr quer nach aussen zum hoch emporreichenden Lungenende (Taf. III. Fig. 5). Auch ein Raubthier (Cynailurus) bietet entschieden tracheale Stellung des eparteriellen Bronchus. Sonst habe ich nur noch bei Affen (Cynocephalus, Taf. V. Fig. 9), doch nicht beständig, sondern offenbar unter dem Einflusse der Individualität unzweideutige Hinneigung dazu gefunden. Dabei ist indessen nicht zu vergessen, dass wir den Stand der Seitenbronchen durch den untern Rand bestimmt sein lassen und dass somit unsere Tabellen eine tracheale Stellung erst dann verzeichnen, wenn dieser untere Rand mit dem Ende der Trachea zusammenfällt oder darüber zu liegen kommt, während sie in Wirklichkeit schon früher eingeleitet wird. Die beiden Lagen gehen ganz unmerklich in einander über. Sie würden es auch dann thun, wenn wir einen beliebigen andern Punkt unserer Messung zu Grunde gelegt hätten.

Während wir unter diesen Umständen dem eparteriellen Bronchus am obersten Ende des Stammbronchus oder gar darüber begegnen, treffen wir ihn anderwärts in einer ganz entgegengesetzten Stellung. Er rückt dann dem ersten hyparteriellen Ventralbronchus so nahe und so unmittelbar auf den Leib, dass zwischen ihnen eben nur noch Raum für die Arterie bleibt und selbst diese bisweilen gleichsam Mühe hat, sich einen Weg zu bahnen. Das Höchste hierin leisten die Monotremen (Taf. IV. Fig. 8). — Ueberblicken wir die sämmtlichen Ordnungen, so finden wir, dass der eparterielle Bronchus ungefähr ebenso oft von der untern, wie von der obern Hälfte der eparteriellen Bronchialstrecke ausgeht. Jenes pflegt, soweit meine Erfahrungen reichen, den Monotremata, Marsupialia, Edentata, Proboscidea, Rodentia, Insectivora und Prosimiae, dieses den Cetacea, Perissodactyla, Artiodactyla, Pinnipedia, Carnivora und Primates eigen zu sein. Eine Ausnahme scheint unter den letztern der Chimpanzé zu machen, wie ich an zwei verschiedenen Exemplaren zu beobachten Gelegenheit hatte. Der Orang folgt seinen Stammesgenossen (Taf. V. Fig. 11).


Man möchte vielleicht geneigt sein, den verschiedenen Sitz des eparteriellen

Seitenbronchus in der obern oder untern Hälfte des bezüglichen Stammabschnittes mit der verschiedenen relativen Länge dieses letzteren in Verbindung zu bringen. Indessen ist doch nur soviel richtig, dass solches für deren grössten (Monotremata) und kleinsten Werth (Perissodactyla) zutrifft. Im übrigen herrscht völlige Unabhängigkeit, was mit Sicherheit darauf schliessen lässt, dass es eben verschiedene Bedingungen sind, welche die eine und die andere Sachlage geschaffen haben.

In nichts spricht sich die Eigenart des eparteriellen Bronchus so klar aus, wie in seiner geringen Neigung, sich bezüglich der zu wählenden Stellung mit den hyparteriellen Bronchen ins Einvernehmen zu setzen. Wohl wählt er da und dort seine Entfernung von dem ersten Ventralbronchus so, dass die hyparterielle Reihe durch ihn eine harmonische und ungezwungene Erweiterung erfährt. Beide Lungen der Robbe, des Elephanten und des Pferdes, sowie die rechtseitige Lunge von Lama und Faulthier können als derartige Fälle namhaft gemacht werden. Viel häufiger tritt das Entgegengesetzte ein. Der Abstand des eparteriellen Bronchus von dem benachbarten Ventralbronchus steht in keinem richtigen Verhältnisse zu den gegenseitigen Abständen der hyparteriellen Reihe; er ist entweder zu gross oder zu klein. Jenes ist die gewöhnliche Folge der Ueberwanderung auf den Trachealstamm. Die entstehende Lücke kann hierbei einem Dritttheile oder selbst der Hälfte des Stammbronchus gleich kommen (Cetacea, Artiodactyla). Aehnliches, wenn gleich in viel engern Grenzen, wiederholt sich bei der linken Lunge der Cetaceen, ohne dass ein Verlassen des Stammbronchus stattgefunden hätte. Sonst ist überall die Stellung des Bronchus eine zu tiefe, was auch dem weniger geübten Auge sofort ersichtlich wird.

Das eparterielle Bronchialsystem ist dasjenige Element, welches in die sonst ziemlich träge Lungenmasse Leben und Bewegung bringt und die nüchterne hyparterielle Grundlage zu verschiedenen charakteristischen Formen ausbaut. Bemerkenswerth ist dabei vor allem die grosse Vorliebe für asymmetrische Bildungen. Volle Symmetrie ist selten (Bradypus, Pinnipedia), annähernde nicht viel häufiger (Equus, Proboscidea), gar keine die Regel. In diese Kategorie fällt ja naturgemäss die ganze grosse Zahl von Lungen, die den eparteriellen Bronchus überhaupt nur rechts besitzen und daher hier um ein Stockwerk höher aufragen, als links. Es wäre übrigens irrthümlich zu glauben, dass die Störung der Symmetrie nothwendigerweise eine sehr auffällige sei. Bei sehr tiefer Lage des eparteriellen Bronchus kann sie dem Unkundigen leicht entgehen (Taf. IV, Fig. 8) oder sie gleicht sich äusserlich durch überhohe Stellung des ersten Ventralbronchus der linken Seite völlig aus, wie solches beispielsweise bei Lutra zu sehen ist. Wer sich in solchen Fällen nur vom allgemeinen Eindruck leiten lässt und eine genauere Analyse versäumt, wird unausbleiblich dem Irrthum zum Opfer fallen und Symmetrie, natürlich mit entsprechender Missdeutung der Seitenbronchen, annehmen, wo eine solche gar nicht vorhanden ist.

Wir sind mit den Lagerungsverhältnissen des Bronchialbaums zu Ende. Aeby, Bronchialbaum.

Ich glaube bei Erörterung derselben keinen für die allgemeine Morphologie irgendwie bedeutungsvollen Punkt übergangen, keine Beziehung, die der Lücken-

haftigkeit und Unvollstän-

digkeit des Materiales zu

trotzen vermochte, ausser

Acht gelassen zu haben.

Reich und mannigfach sind

die Abstufungen, welche das Bild des Bronchialbaums

durch Verkümmerung, durch Ausfall, durch Verschiebung

einzelner Theile an unserm Auge vorübergeführt hat.

Ich glaube dieses Kapitel

nicht besser schliessen zu können, als indem ich sie

in einzelnen charakteristi-

schen Vertretern der fünf

Haupttypen wie in ebenso

vielen Brennpunkten zusam-

menfasse. Wir erhalten dadurch auch Gelegenheit zu

erfahren, was Zahl, gra-

phische Darstellung und Bild im Vereine zur Klar-

legung derartiger Verhält-

nisse zu leisten vermögen,

Trachea.

Fig. 5. Graphische Darstellung der auf gleiche Länge der Stammbronchen reduzirten Bronchialbäume von Equus Caballus (A), Delphinus delphis (B), Ornithorhynchus paradoxus (C), Bos taurus (D) und Hystrix cristata (E). Oberhalb des Nullpunktes die Trachea, unterhalb desselben, a, der rechte, b, der linke Stammbronchus. - ep., eparterieller Seitenbronchus. - I, II, III, IV, erster, zweiter, dritter und vierter hyparterieller Ventralbronchus.

und wie jedes Glied dieser Trias durch die andern gehoben und an klar bewusstem Inhalte gefördert wird. Der einheitlichen Darstellung wegen berechne ich die Lage sämmtlicher Punkte in Abständen von der Theilungsstelle der Die graphische Wiedergabe (Fig. 5) befolgt dasselbe Prinzip.

34

	bib. Tue.	Recht	e Lun	ge		nileiten	Link	e Lun	ge	
	Eparteri- eller	Hyp	arteriell bron	er Vent chus	tral-	Eparteri- eller	Нур	arteriel bron	ler Ven chus	tral-
national and and and an	Bronchus	1	2	3	4	Bronchus	1	2	3	4
A. Eparterieller Bronchus beider- seitig.	alter H actor of	abrea Mago		an d	alel 10.78	i disson gabop i	ann a suuite			alah Sulk
1. Beiderseitig bronchial.	ellern so			ban ⁵	10/43	8				Riv.
Equus Caballus (Taf. VII. Fig. 13)	2.9	11.8	26.1	50.1	69.7	8.8	17.2	28.0	51.5	67.8
2. Links bronchial, rechts tracheal.	.aoston				(undi	1 .A				
Delphinus delphis (Taf. II. Fig. 3)	-17.2	32.3	44.4	54.3	65.8	14.7	34.9	45.4	56.5	69.8
B. Eparterieller Bronchus nur recht- seitig.					2					
1. Bronchial.					100					
Ornithorhynchus para- doxus (Taf. IV, Fig. 8)	29,2	33.0	49.1	61.3	70.8	_	45.5	55.5	66.4	77.3
2. Tracheal.		176	1 -		-11					
Bos taurus (Taf. III. Fig. 5)	-30.0	7.5	15.0	24.4	49.8	-	14.0	22.7	35.8	53.1
C. Kein eparte- rieller Bronchus.	the T		1		15.0	- Te				
Hystrix cristata (Taf. VI Fig. 12)		18.1	39,4	54.3	70.2		18.3	39.8	53.8	63.4

Abstände von der Theilungsstelle der Trachea in Längenprocenten des Stammbronchus.

2. Kaliberverhältnisse des Bronchialbaums.

Ein Blick auf die Luftröhrenverzweigung verschiedener Thiere lehrt sofort, dass in dem Kaliber derselben sehr beträchtliche Verschiedenheiten sich geltend machen. Gedrungene und schlanke Formen, gleichförmig nach dem Ende hin verjüngte und stellenweise angeschwellte Gestalten folgen sich in bunter Reihe. Ich habe versucht, auch diese Verhältnisse in bestimmte, leicht vergleichbare Zahlenausdrücke zu bringen, und zwar dadurch, dass ich die peripherischen Abschnitte des Bronchialbaums auf die Stammweite der Luftröhre als einheitliches Grundmaass berechnete. Da das Verhalten des Stammbronchus in engem Zusammenhange mit demjenigen der Seitenbronchen steht, ja vielfach, wenigstens der Hauptsache nach, geradezu durch letzteres bedingt wird, so bestimmte ich ausser der Anfangsweite der ventralen Seitenbronchen die zugehörige Weite des Stammbronchus dicht unter der bezüglichen Abgangsstelle. Für die Weite

3*

eines Rohres giebt der einfache Querdurchmesser keinen genügenden Maassstab. Ich habe daher überall den Quadratinhalt des Querschnittes berechnet. Wie mancherlei, schlechterdings nicht zu vermeidende, Fehlerquellen dabei auch unterlaufen mögen, so dürfte doch an der allgemeinen Verwendbarkeit der Ergebnisse nicht zu zweifeln sein. Ich verzichte auf die Wiedergabe der absoluten Werthe. Dieselben können uns um so weniger von irgend welchem Vortheile sein, als sie nicht allein Thieren von sehr verschiedener Grösse an und für sich, sondern zu gutem Theile auch solchen von ganz unbestimmter Altersstufe entnommen sind. Wir haben es ja überhaupt nur mit der Form als solcher zu thun und dieser leisten die relativen Werthe vollauf Genüge. Ichschicke die Werthangaben der einzelnen Bronchen voraus, um schliesslich das Gesammtkaliber der auf einander folgenden Stockwerke des Bronchialbaums zur Sprache zu bringen. Stamm- und Seitenbronchen sollen wiederum den Inhalt besonderer Tabellen bilden.

a. Einzelkaliber der Bronchen.

Relative Weite des Stammbronchus in Procenten der Stammweite der Luftröhre.

	1		rechts						links			
	an der Ab-	ur	ter der	Abgan	gsstelle	3	an der Ab-	un	ter der	Abgan	gsstell	e
	gangsstelle von der	des	der	hypart	. Bront	hen	gangsstelle von der	des	der	hyþart	. Bronc	hen
	Trachea	epart. Br.	1	2	3	4	Trachea	epart. Br,	1	2	3	4
					6						2.19	
. Monotremata. Ornithorhynchus pa-												
radoxus	57.0	57.0	57.0	35.7	25.0	10.7	35.7	_	46.4	46.4	35.7	25.0
Echidna hystrix	71.4	71.4	57.0	35.7	17.8	10.7	46.4	_	46.4		17.8	7.2
2. Marsupialia.					1				24.67		1963	1
Phascolomys Wombat	59.4	37.6	37.6	28.6	15.0	9.8	48.1	-	28.6		9.8	5.3
Macropus gigas	72.1	63.3	48.1	35.4	16.5	8.8	63.3	-	48.1		16.5	8.8
- penicillatus	59.4	59.4	43.8	31.4	10.9	4.7	59.4	-	31.4	20.3	10.9	4.7
Hypsiprimnus murinus	100.0	?	46.4	1-01	-	-	100.0	-	46.4	-	-	-
Perameles fusciventer	65.0	-	-	-	-	-	35.0	-	-	-	-	-
3. Edentata.	1 Marche		1	War East	123.3.3	1.1.1.2.2	Prilling .	12.30		1		
Bradypus tridactylus	46.4	71.4	100.0	85.7	35.7	25.0	46.4	71.4	85.7	46.4	17.8	10.
Dasypus niger	178.5	71.4	57.2	-	12-1	-	71.4	-	-	-		-
1. Cetacea.	ALC: ALLER		Sec. 1	Jack M	1	Lel d'	M. Linn &	R. P. H.				1
Delphinus delphis .	57.8	-	36.1	23.1	16.1	10.2	64.1	41.0		19.4	10.2	5.
- phocaena.	40.5	-	35.0	32.4	20.8	16.8	52.9	35.0	20.8	16.8	16.8	13.
5. Perissodactyla.	AL STREET	Surger and	- Start	and the	Level 2.	1 1.1	DER DOT				0.0	-
Equus caballus	56.9	50.2	36.5	19.2	11.1	7.3	50.2	50.2		21.0	9.8	5.
Tapirus americanus .	100.0	71.4	28.6	15.7	11.4	2.9	71.4	-	28.6	11.4	5.7	2.9
6. Artiodactyla.	A STORE	Stor H	in all	12. 3		A. Star	A DESCRIPTION OF	1.1.1	20 -			-
Auchenia lama	52.6	-	29.5	21.1	7.4	5.3	67.4	40.0	29.5	7.4	7.4	5.
Dicotyles torquatus .	63.2	-	52.7	42.1	26.3	18.4	52.7	-	42.1	18.4	18.4	13.
Sus scrofa	73.2		51.0	32.6	27.4	11.0		1000	51.0		22.7	14. 8.
Cervus elaphus	45.8	-	25.0	19.5	17.0	8.7	45.8	-	38.2		17.0	9.
- dama Q	54.0	-	26.9	15.2	9.0	4.7	54.0	-	31.9		15.2	
Antilope gutturosa .	67.2	n seed of	38.3	22.7	18.4	8.1	67.2	10000		22.7	10.9	8. 12.
Ovis aries	56.4		42.4	30.3	25.2	16.0	42.4	-	36.0	25.2	20.4	12.

36

B. Specielle Formverhältnisse. .

	1 mar		recht	18					links	3		
		u	nter de	er Abga	ngsstel	le	an der Ab-	u	nter de	r Abgan	ngsstell	e
	an der Ab- gangsstelle von der	des		er hypar	rt. Bron	chen	gangsstelle von der	des	de	r hypar	t. Brone	chen
	Trachea	epart. Br.	1	2	3	4	Trachea	epart. Br.	1	2	3	4
Capra hircus	60.4		60.4	52.2	37.2	14.9	60.4	Sec. 1	69.4	44.3	30.9	14.9
Bos taurus	56.4	-	42.4				56.4	=	42.4	25.2	20.4	14.9
7. Proboscidea.	50.4	-	42.4	00.0	20.2	10.0	50.4	_	42.4	20.2	20.4	12.1
Elephas africanus .	79.5	61.7	61.7	91 6	12.8	8.1	61.7	56.3	51.0	51.0	200	10.9
8. Rodentia.	10.0	01.7	01.7	21.0	12.0	0.1	01.1	00.0	51.0	51.0	36.8	18.3
Hystrix cristata .	203.9		51 2	10.9	10.4	3.2	902.0		51.9	91.4	10.9	0.4
Arctomys marmotta	73.7	63.2	51.3		10.4		203.9	-	51.3	21.4	18.2	8.4
Coelogenys Paca .	62.0	53.5	42.1 53.5	$ \begin{array}{r} 34.2 \\ 33.8 \end{array} $	$18.4 \\ 22.2$	13.2	52.7	-	34.2	26.3	13.2	7.9
Lepus cuniculus .	70.0	34.0			and the second se	14.1	46.5	-	46.5	27.9	18.3	10.0
	78.1		30.0		30.0	20.0	50.0	-	30.0	30.0	30.0	20.0
9. Insectivora.	10.1	43.8	43.8	37.5	37.5	31.4	59.4		43.8	31.4	31.4	31.4
	81.2	01.0	120	01.0	100	10.0	00 -		00 -	0.0	10 -	
Erinaceus europaeus 10. Pinnipedia.	01.2	81.2	43.8	31.2	18.8	18.8	62.5	-	62.5	31.2	12.5	12.5
Phoca vitulina	00.7	20 5	07.4	00 7	100				00-			
	82.7	32.5	27.4	22.7	10.9	5.7	82.7	40.3	32.5	22.7	10.9	5.7
- groenlandica	62.5	40.0	33.6	28.0	17.7	7.1	62,5	40.1	33.6	28.0	17.7	9.9
	00.0			10.0		10 -						
Lutra vulgaris	83.2	83.2	52.6	40.0	29.5	13.7	67.4		40.0	29.5	21.1	13.7
Viverra genetta.	100.0	57.2	57.2	17.9	10.7	7.2	57.2		46.4	17.9	10.7	7.2
Herpestes galera .	76.0	48.0	40.0	26.0	14.0	6.0	40.0		40.0	26.0	14.0	10.0
Canis familiaris	88.2	53.7	44.6	36.2	21.5	11.3	53.7		44.6	28.2	15.8	11.3
- lupus	74.8	60.7	36.7	15.2	9.0	9.0	54.0	-	36.7	18.8	11.9	6.6
Felis leo	63.0	28.2	13.0	7.7	6.5	4.5	48.5		20.0	8.8	7.7	2.9
- domestica	73.7	73.7	52.7	34.2	18.4	13.2	52.7		52.7	42.1	34.2	18.4
- lynx	100.0	56.6	33.6	24.8	24.8	17.7	56.6		33.6	24.8	24.8	17.7
Cynailurus guttata	50,1	-	50.1	44.4	44.4	15.2	44.4		39.1	39.1	24.9	11.0
2. Chiroptera	-			-	-	-	-					
3. Prosimiae.					1 amount	-						
Lemur catta	60.6	60.6	21.2	9.1	6.1	6.1	60.6		39.4	9.1	2.4	2.4
- mongoz	71.4	71.4	25.0	10.7	7.1	7.1	57.2		46.4	10.7	10.7	7.1
4. Primates.	and and a state						Sec.					
Cebus capucinus .	80.0	65.0	35.0	25.0	15.0	10.0	65.0	-	35.0	25.0	25.0	15.0
Cynocephalus sphinx	67.4	-	40.0	21.1	13.7	7.4	40.0	_	and the second s	21.1	13.7	5.3
	59.4	51.5	51.5	37.5	25.0	10.9	43.8	-	and the second s	31.3	20.3	10.9
Inuus cynomolgus .	56.0	40.0	26.0	26.0	10.0	6.0	56.0	-		32.0	10.0	6.0
- nemestrinus .	56.6	56.6	50.4	33.6	24.7	11.5	44.2	_		33.6	24.7	14.0
Cercopithecus sabaeus	59.4	43.8	43.8	25.0	20.3	7.8	43.8	-	and the second sec	and the second se	and the second se	10.9
- cephus	100.0	50.0		35.0	10.0	4.0	65.0	-	and the second se	and the second se	and the second	
- mona .	56.6	33.6		24.7	17.7	11.5	44.2	_	the second se		and the second se	10.0
Pithecus satyrus .	63.8	44.6	21.5	7.5	3.8	2.8	36.2	_	and the second se		and the second se	11.5
- troglodytes	73.7		18.4		7.9	5.3	63.2	and the second second	00.2	28.2	15.8	11.3

Relative Weite der Seitenbronchen in Procenten der Stammweite der Trachea.

	Eparteri- eller	Нуг	arteriel broi	ller Vent ichus	tral-	Eparteri- eller	Hyj	arteriel broi	ler Ven ichus	tral-
the set of the	Bronchus	1	2	3	4	Bronchus	1	2	3	4
 Monotremata. Ornithorhynchus para- doxus Echidna hystrix Marsupialia. Phascolomys Wombat 	7.2 7.2 15.0	25.0 25.0 9.8	7.2 25.0 5.3	10.7 7.2 15.0	7.2 2.8 5.3		10.7 25.0 15.0	7.2 25.0 15.0	10.7 10.7 15.0	10.7 7.2 5.3

I. Der Bronchialbaum der Säugethiere.

etail	Eparteri- eller	Нура	rterielle bronc	er Ventr hus	al-	Eparteri- eller	Нура	rterielle bronc	er Ventra hus	al-
Territoria Coles	Bronchus	1	2	3	4	Bronchus	1	2	3	4
Macropus gigas	25.3	25.3	16.5	6.3	3.8	and the second	48.1	35.4	16.5	2.5
- penicillatus	31.4	31.4	7.8	4.7	3,1	-	31.4	10.9	4.7	3.1
Hypsiprimnus murinus	46.4	-	-	-		-	46.4	-	-	
Perameles fusciventer		-	-	-	-		10-01	-	10000	
3. Edentata. Bradypus tridactylus	17.8	17.8	17.8	17.8	10.7	17.8	17.8	17.8	7.0	0.7
Dasypus niger	11.0	-								-
4. Cetacea.									1. 1. 1. 1.	
Delphinus delphis .	19.4	13.1	7.8	5.7	4.1	23.1	10.2	7.8	7.8	4.1
- phocaena	20.0	7.4	7.4	5.2	5.2	16.8	7.4	7.4	5.2	5.2
5. Perissodactyla.		1 5 1		1.1	11 - 11	A SHC		5700		
Equus caballus	9.7	12.5	9.7	7.3	5.2	12.5	14.1	11.1	6.2	3.5
Tapirus americanus	11.4	11.4	11.4	4.3	,2.9		11.4	11.4	2.9	2.9
6. Artiodactyla.	21.1	13.7	13.7	7.4	0.9	7.4	13.7	. 7.4	0.9	3.2
Auchenia lama	18.4	18.4	13.2	5.3	5.3	1.2	7.9	5.3	2.1	2.1
Dicotyles torquatus Sus scrofa	.22.7	22.7	18.4	14.4	8.1	<u></u>	18.4	14.4	8.1	8.1
Cervus elaphus	28.1	10.5	14.6	10.5	3.1	-	16.9	14.6	10.5	3.1
- dama Q	15.2	11.9	4.7	3.1	1.7		15.2	6.6	3.1	3.1
Antilope gutturosa .	22.7	14.4	10.9	8.1	3.7	-27	14.4	14.4	8.1	2.0
Ovis aries	25.2	12.1	12.1	12.1	8.8		16.0	12.1	12.1	8.8
Capra hircus	14.9	14.9	14.9	7.8	?	- 1	14.9	14.9	19.2	7.8
Bos taurus	42.4	12.1	6.4	4.1	2.2		30.3	12.1	6.4	6.4
7. Proboscidea.	1 1 1	10.0	0.9	6.2	3.3	18.3	18.3	10.4	8.1	6.5
Elephas africanus .	15.4	12.8	6.2	0.2	0.0	10.0	10.0	10.4	0.1	0
8. Rodentia.	121-12	41.6	18.2	4.5	2.0	-	51.3	13.0	6.5	4.5
Hystrix cristata Arctomys marmotta	18.4	18.4	18.4	18.4	7.9		18.4	13.2	7 9	2.
Coelogenys Paca .	10.0	10.0	10.0	4.2	7.0	-	27.9	9.9	7.0	4.3
Lepus cuniculus .	20.0	20.0	8.0	8.0	4.0	+ 6	20.0		8.0	4.
- timidus	20.3	15 6	11.0	11.0	11.0		20.3	15.6	11.0	11.
9. Insectivora.				1	1		10.0	10.0	19.5	19
Erinaceus europaeus	18.8	18.8	12.5	12.5	5.0	-	18 8	18.8	12.5	12.
10. Pinnipedia.		100	0.1		5.7	27.4	14.4	14.4	8.1	2.
Phoca vitulina	32.5	10.9		5.7		The second s	13.4			7.
- groenlandica	22.6	13.4	13.4	10.4	1.1	22.0	10.1	10.1		
11. Carnivora.	40.0	21.1	21.1	13.7	7.4	_	29.5	7.4	7.4	7.
Lutra vulgaris	46.4	17.9					46.4			2.
Viverra genetta Herpestes galera .	20.0	14.0	and the second sec	COLUMN AND A REAL	10 million (100 million)		26.0			4.
Canis familiaris .	28.2	15.2		7.4			21.4			7.
- lupus	. 26.9	18.8					26.9			4.2.
Felis leo	20.0	11.6					23.9		and the second second second	Contraction of the second
- domestica	52.7	34.2					33.6		and the second second	2 C C C C C C C C C C C C C C C C C C C
- lynx	44.2	21.2					29.4		the second second second	1.24
Cynailurus guttata .	.14.1	14.1	11.0		21.0	the second s		_	-	-
12. Chiroptera	In The	11 11 11	1	100	1 11 2 1	108 200	1280	1 33	Contra Contra	10
13. Prosimiae.	39.4	15.5	6.1	2.4	0.6	3 -	39.4			
Lemur catta	46.4	17.8		a state of the sta	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		46.	1 7.1	2.9	0
- mongoz 14. Primates.	10.1				in the			100	100	1
Cebus capucinus	15.0	15.					25.			
Cynocephalus sphinx	21.1	13.	7 10.				29.			
	25.0	25.					43.3	24 1 C C 2 C 2		
Inuus cynomolgus .	40.0	14.					24.	and the second s	the second s	
- nemestrinus .	33.6	14.					25.		the second second second	4
Cercopithecus sabaeu	18 20.3	20.					35.	0 10.	0 4.0	4
- cephus	05.0	15.					24.	7 8.5		
- mona	33.6 21.5	36.		and the second sec	and the second se	25. I I I I I I I I I I I I I I I I I I I	36.		and the second second	
Pithecus satyrus . - troglodytes		18.	and the second second	and the second second			52.	7 18.	4 13.2	2 5

B. Specielle Formverhältnisse.

Um einen Ueberblick zu gewinnen, ist es unerlässlich, diese Zahlenreihen in eine einfachere Form zu bringen und dabei nicht allein den Vergleich zwischen gleichwerthigen Punkten der rechten und linken Seite, sondern auch denjenigen einer jeden Strecke des Stammbronchus mit dem zugehörigen Seitenbronchus zu ermöglichen. Ich wähle zu diesem Zwecke Mittelzahlen, soweit solche aus annähernd gleichartigem Materiale gewonnen werden können. Erscheinen sie individuell auch vielfach abgeschwächt, so weisen sie doch immerhin auf die allgemeine Tendenz hin, die in den einzelnen Ordnungen jeweilen vorherrscht.


			-	a. Stam	mbro	nch	us.	aulth	b. S	eite	nbro	nche	n.
			an der Ab-	unt	er der J	Abgang	sstelle						
	,		gangsstelle von der	des epart.	der hy	parteri	ellen Br	onchen	Epart. Bronch.	Нура	rteriel	le Bron	cher
-diality-	interfacent	a sin his	Trachea	Bronchus	1	2	3	4	S .ustai	1	2	3	4
. Monotremat	a) rechts) links	$64.2 \\ 35.7$	64.2		35.7 41.0	$21.4 \\ 26.7$	10.7 16.1	7.2	25.0 17.8	16.1 16.1	$9.0 \\ 10.7$	59
. Marsupialia		rechts links		53.4	43.2 36.0	31.8	$14.1 \\ 12.4$	$7.7 \\ 6.3$	27.2	$22.2 \\ 31.5$	$9.9 \\ 20.4$	$\frac{8.7}{12.1}$	4
. Edentata {	Bradypus	rechts links	$\begin{array}{r} 46.4 \\ 46.4 \end{array}$	71.4 71.4	100.0 85.7		35.7 17.8	$\begin{array}{c} 25.0 \\ 10.7 \end{array}$	17.8 17.8	17.8 17.8	17.8 17.8	$17.8 \\ 7.0$	10
) and a large state	Dasypus	{ rechts links	$\begin{array}{c} 178.5\\71.4\end{array}$	71.4	57.2	T		_		-	=	E	-
. Cetacea		{ rechts } links	49.1 58,5	38.0	$35.5 \\ 28.5$	$\begin{array}{c} 27.7\\18.1 \end{array}$	$\begin{array}{c} 18.4 \\ 13.5 \end{array}$	$\begin{array}{c} 13.5\\9.5\end{array}$	$\begin{array}{c} 19.7 \\ 20.0 \end{array}$	$ \begin{array}{r} 10.2 \\ 8.8 \end{array} $	$7.6 \\ 7.6$	$5.4 \\ 6.5$	4
. Perissodact		rechts links	56.9 50.2	$\begin{array}{c} 50.2\\ 50.2\end{array}$	36.5 36.5	21.0	$ \begin{array}{c} 11.1 \\ 9.8 \end{array} $	$7.3 \\ 5.2$	$\begin{array}{c} 9.7\\ 12.5\end{array}$	$\begin{array}{c} 12 \ 5 \\ 14.1 \end{array}$	$9.7 \\ 11.1$	$7.3 \\ 6.2$	
	Tapirus	rechts links	100.0 71.4	71.4	28.6 28.6	11.4	$11.4 \\ 5.7$	$2.9 \\ 2.9$	11.4	$11.4 \\ 11.4$	$11.4 \\ 11.4$	$ \begin{array}{c} 4.3 \\ 2.9 \end{array} $	2
Artiodactyl	a ∫ Auchenia ohne	rechts links rechts	52.6 67.4	40.0	29.5 29.5	7.4	7.4	5.3 5.3	21.1 $\overline{7.4}$	$ \begin{array}{c} 13.7 \\ 13.7 \end{array} $	$ \begin{array}{r} 13.7 \\ 7.4 \end{array} $	$7.4 \\ 0.9$	0 3
Reil	Auchenia	links rechts	59.5 54.6 79.5		$42.4 \\ 45.3 \\ 61.7$		23.2 19.4	12.2 11.6	23.7	$14.6 \\ 16.7$	11.9 11.8	8.1 8.7	4 40
Proboscidea		links rechts	61.7 203.9	56.3		51.0	$12.8 \\ 36.8 \\ 10.4$	8.1 18.3	$\begin{array}{c} 15.4 \\ 18.3 \end{array}$	12.8 18.3	6.2 10.4		
Rodentia	lystrix hne Hystrix	links rechts	203.9	48.6		21,4	10.4 18.2 27.0	$3.2 \\ 8.4 \\ 19.7$	-	41.6 51.3	18.2 13.0	4.5	
	US MAR	links rechts	52.1 81.2	81.2	38.6	28.9 31.2	23.2 18.8	17.3 18.8	17.2 	$16.0 \\ 21.6 \\ 18.8$	$11.8 \\ 11.7 \\ 12.5$	10.4 8.5	
Insectivora Pinnipedia	(Erinaceus)	i links rechts	$62.5 \\ 72.6$	36.2	62.5	31.2 25.3	12.5 14.3	12.5 6.4	27.5	18.8 18.8 12.1	12.5 18.8 10.7	$ \begin{array}{r} 12.5 \\ 12.5 \\ 9.5 \end{array} $	1
Carnivora) links) rechts	72.6 78.7	40.2 57.7	33.0 42.3	25.3	14.3 19.9	7.8	25.0 32.5	13.9	13.9 10.5	9.0 9.0 8.7	
Chiroptera) links	52.7	od the la	39.2	26.1	18.3	10.9		32.2	11.3	8.7	
Prosimiae		rechts links	66.0 58.9	66.0	$23.1 \\ 42.9$	9.9 9.9	6.5 6.5	$6.5 \\ 4.7$	42.9	$ \begin{array}{r} 16.5 \\ 42.9 \end{array} $	6.6 8.1	$\frac{2.6}{2.6}$	
Primates		rechts links	67.3 50.1	46.6	34.6		$14.8 \\ 19.4$	7.7	30.1	18.3 32.6	12 5	7.9	1

Relative Weite in Procenten der Stammweite der Luftröhre.

Nur ausnahmsweise geht das Kaliber der Trachea unverändert auf den einen der Stammbronchen (Tapirus, Viverra, Cercopithecus cephus) oder gar auf beide über (Hypsiprimnus). Noch seltener vergrössert sich dasselbe einer- (Dasypus) oder beiderseits (Hystrix) in erheblichem Grade. In der Regel ist jeder der beiden Stammbronchen für sich ansehnlich enger als die Luftröhre, doch so, dass beide zusammen derselben mehr oder weniger überlegen sind. Von gleicher Weite sind sie im allgemeinen nur bei symmetrischer Ausbildung des eparteriellen Systems, sei es, dass ein solches dem Stammbronchus überhaupt beiderseits fehlt (Hystrix, Artiodactyla ohne Auchenia), oder aber dass es rechts wie links demselben angehört (Bradypus, Equus, Pinnipedia). Asymmetrie ist freilich auch hier nicht völlig ausgeschlossen (Proboscidea), doch erreicht sie bei weitem nicht den Höhegrad derjenigen Bronchialbäume, die nur einseitig mit eparteriellen Bestandtheilen am Stammbronchus ausgestattet sind, links bei den Cetaceen und dem Lama, rechts bei all den übrigen, noch nicht aufgezählten Ordnungen. Die mit dem überzähligen Bronchus ausgestattete Seite besitzt immer das stärkere Kaliber.

Die meisten Stammbronchen verengern sich, sobald sie anfangen, Seitenäste abzugeben, wenn gleich mit sehr verschiedener Energie. Vorherige Erweiterungen kommen nur ausnahmsweise vor (Bradypus, Ornithorhynchus). Häufiger bleibt das Kaliber von dem eparteriellen Seitenbronchus unberührt, so dass seine Abnahme erst durch die hyparterielle Zone eingeleitet wird. Dafür tritt sie dann bisweilen so plötzlich und gewaltsam auf, dass ein auffälliger Gegensatz zwischen dem geräumigen Anfangsstücke und der kümmerlichen Fortsetzung entsteht. Die Lemuren (Taf. IV, Fig. 7) und das Stachelschwein (Taf. VI, Fig. 12) sind hierfür in erster Linie zu nennen. Gerade das Gegentheil bietet Cynailurus, bei welchem der Stammbronchus auch fernerhin eine auffällige Weite behauptet. · Von solchen mehr vereinzelten Vorkommnissen abgesehen, vollzieht sich der Abfall im allgemeinen ziemlich gleichförmig, wenn auch keineswegs immer beiderseits symmetrisch. Offenbar spielen hierbei mancherlei individuelle, mehr oder weniger zufällige Verhältnisse mit, die sich vor der Hand nicht übersehen lassen. Ein durchgreifender Unterschied nach Ordnungen oder nach Lebensweise scheint nicht vorhanden zu sein. Das Maass der eintretenden Verengerung ist ein sehr verschiedenes. Selbst einander nahe verwandte Thiere, wie Löwe und Hauskatze oder wie Kaninchen und Hase, können in auffälliger Weise von einander abweichen. Wie weit wir es dabei vielleicht nur mit individuellen Thatbeständen zu thun haben, müssen vermehrte Messungen entscheiden. Soviel steht aber schon jetzt fest, dass der Bronchialbaum hinsichtlich seines Kalibers einer auffälligen Differenzirung zugänglich ist, die, wo sie auftritt, nicht zufällig sein kann, sondern mit anderweitigen Eigenschaften des Respirationsapparates im Zusammenhange stehen muss. Ein noch völlig jungfräuliches Gebiet liegt hier der Forschung offen.

Zur Veranschaulichung der hauptsächlichsten Typen stelle ich einige besonders charakteristische Einzelfälle zusammen, indem ich, um dem störenden Einfluss des verschiedenen Weitenverhältnisses zwischen den beiderseitigen

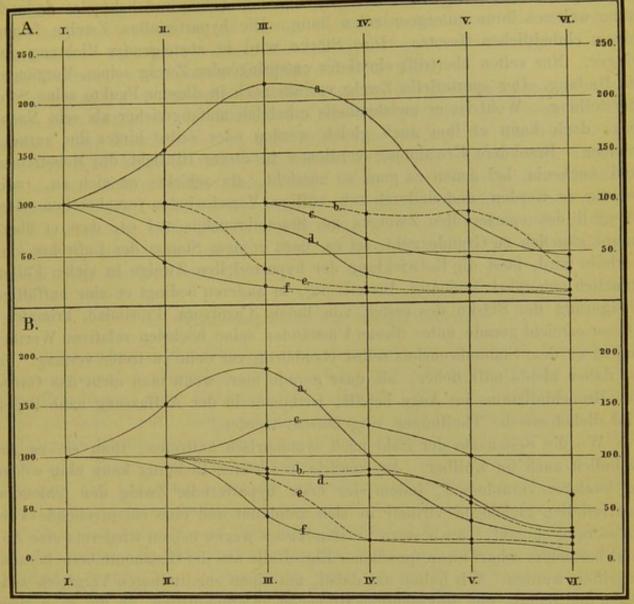


Fig. 6. Kaliber des rechten (A) und linken (B) Stammbronchus in Procenten ihres Anfangswerthes. I, Wurzel des Stammbronchus; II, eparterieller Seitenbronchus;
III-VI, erster bis vierter Ventralbronchus. — a. Bradypus tridactylus; b, Cynailurus guttata; c, Ornithorhynchus paradoxus; d, Elephas africanus; e, Lemur mongoz; f, Felis leo.

	a Jarra La La	Recht	ter Star	mmbron	chus			Link	er Stan	nmbron	chus	
	T		unter	dem Ursp	runge			Contra -	unter	dem Urs	orunge	
	am Ur- sprunge aus der	des ep-	der 1	yparterie	llen Broi	nchen	am Ur- sprunge aus der	des ep- arteri-	der h	yparterie	llen Bron	chen
	Trachea	ellên Bron- chus	1	2	3	4	Trachea	ellen Bron- chus	1	2	3	4
Bradypus tridacti- lus Ornithorhynchns	100	153.9	215.5	184.7	76.9	43.1	100	153.9	184.7	100.0	38.3	23,1
paradoxus Cynailurus guttata	100 100	100.0	100.0	62.6 88.7	43.8 88.7	18.8 30.3	100 100	-	130,0 88,1	$\begin{array}{c}130.0\\88.1\end{array}$	$\begin{array}{c}100.0\\56.1\end{array}$	61.0 24.8
Lemur mongoz . Elephas africanus Felis leo	100 100 100	$100.0 \\ 77.6 \\ 44.8$	$35.0 \\ 77.6 \\ 20.6$	$ \begin{array}{r} 15.0 \\ 27.2 \\ 12.2 \end{array} $	9.9 16.1 10.3	$ \begin{array}{c c} 9.0 \\ 10.2 \\ 7.1 \end{array} $	100 100 100	91.2	$81.1 \\ 82.3 \\ 41.2$	18.7 82.3 18.2	18.7 59.6 15.9	12.4 29.8 5.9

I. Der Bronchialbaum der Säugethiere.

Für die Seitenbronchen haben wir einige bemerkenswerthe Erscheinungen zu verzeichnen. Ihr Kaliber ist mit wenigen Ausnahmen ansehnlich geringer als dasjenige der zugehörigen Strecke des Stammbronchus und bekundet dadurch ohne weiteres ihren untergeordneten Rang. Die hyparteriellen Zweige folgen einem einheitlichen Gesetze. Ihre Stärke wird in absteigender Richtung geringer. Nur selten übertrifft ein tiefer entspringender Zweig seinen Vorgänger an Umfang. Der eparterielle Zweig verräth auch in diesem Punkte seine Sonderstellung. Wohl ist er meistentheils erheblich umfangreicher als sein Nachbar, doch kann er ihm auch gleich werden oder selbst hinter ihm zurückbleiben. Besondere Erwähnung verdienen in dieser Hinsicht die Monotremen und Auchenia, bei denen es ganz so aussieht, als schickte er sich an, rudimentär zu werden, und dadurch sein völliges Verschwinden vorzubereiten. Der Wegfall des eparteriellen Zweiges am Stammbronchus, sei es, dass er überhaupt gänzlich zu Grunde geht, sei es, dass er dem Stamm der Luftröhre einverleibt wird, lässt die Entwicklung der hyparteriellen Zweige in vielen Fällen gänzlich unberührt (Rodentia, Insectivora), in anderen bedingt er eine auffällige Steigerung der Stärke des ersten von ihnen (Carnivora, Prosimiae, Primates). Dieser erreicht gerade unter diesen Umständen seine höchsten relativen Werthe, indem er dem Stammbronchus selbst ebenbürtig zur Seite zu treten vermag. Es ist daher nichts natürlicher, als dass gerade hier, wenn man nicht das Ganze des Bronchialbaums im Auge behält, Irrthümer in der Auffassung nahe liegen und dichotomische Theilungen vorgetäuscht werden.

Wo die Seitenäste der Zahl nach symmetrisch auftreten, thun sie es gewöhnlich auch im Kaliber. Asymmetrie in ersterer Richtung kann eine solche in letzterer veranlassen, indem der erste hyparterielle Zweig den fehlenden eparteriellen gleichsam virtuell in sich aufnimmt und eine entsprechende Vergrösserung eingeht. Des bessern Verständnisses wegen mögen wiederum eine Anzahl besonders scharf ausgesprochener Einzelfälle aus der Gesammttabelle herausgegriffen werden. Wir halten uns dabei, um einen unmittelbaren Vergleich zwischen den rechts- und linksseitigen Bronchen zu ermöglichen, an die nach einer gemeinsamen Grundzahl, der Weite des Trachealstammes, berechneten Werthe.

	al.T	Rec	hte Lu	nge		12.14	Li	nke Lui	nge	
	Epart.	Hy	parteriel	le Bronch	en	Epart.	Hу	parteriel	le Bronch	len
	Bron- chus	1	2	3	4	Bron- chus	1	2	à	4
Bradypus tridactylus	17.8	17.8	17.8	17.8	10.7	17.8	17.8	17.8	7.1	0.7
Phoca groenlandica .	22.6	13.4	13.4	13.4	7.1	22.6	13.4	13.4	9.9	7.1
Delphinus delphis .	19.4	13.1	7.8	5.7	4.1	23.1	10.2	7.8	7.8	4.1
Auchenia lama	21.1	13.7	13.7	7.4	0.9	7.4	13.7	7.4	0.9	3.2
Ornithorhynchus para-				-						
doxus	7.2	25.0	7.2	10.7	7.2	-	10.7	7.2	10.7	10.7
Antilope gutturosa .	22.7	14.4	10.9	8.1	3.7	-	14.4	14.4	8.1	2.0
Erinaceus europaeus	18.8	18.8	12.5	12.5	5.0		18.8	18.8	12.5	12,5
Felis leo	20.0	11.6	5,5	2.2	1.6		23.9	3.6	4.5	2.9
Lemur mongoz	46.4	17.8	7.1	2.9	0.7	-	46.4	7.1	2.9	0.7
Pithecus satyrus .	21.5	36.2	11.3	0.5	0.5	-	36.2	21.5	15.8	11.3
Hystrix cristata	-	41.6	18.2	4.5	2.0		51.3	13.0	6.5	4.5

Relative Weite der Seitenbronchen in Procenten der Stammweite der Trachea. Alle diese Fälle bedürfen nicht erst der Erläuterung. Sie sprechen an und für sich deutlich genug. Nur darauf sei besonders hingewiesen, wie bei Lemur, Satyrus und Hystrix die eigenartige Gestaltung des Stammbronchus in der auffälligen Betonung der ersten Seitenbronchen ihren Widerhall findet. Man könnte füglich von einer örtlichen Hypertrophie des Anfangstheiles des Bronchialbaumes auf Kosten des Endabschnittes reden.

Ich habe noch an einige andere Bronchen den Maassstab gelegt, glaube mich aber bezüglich der Erfolge auf einen Gesammtbericht beschränken zu dürfen. Der Herzbronchus ist gewöhnlich schmächtiger als sein hyparterieller Stamm, doch kann er ihm völlig ebenbürtig werden. Beim Orang nimmt er an dessen ungewöhnlicher Ausweitung Theil. Die dorsalen Seitenbronchen kommen bei den Delphinen und auch sonst wohl hin und wieder den ventralen an Wurzelumfang völlig gleich. In der Regel stehen sie indess mindestens um $\frac{1}{4}$ oder $\frac{1}{3}$ hinter ihnen zurück. Weiter in Einzelheiten einzutreten bietet nach keiner Seite hin Interesse.

b. Gesammtkaliber des Bronchialbaums.

Wohl mehr aus theoretischen Voraussetzungen als auf Grund thatsächlicher Erfahrungen wird angegeben, dass mit der Verzweigung der gröbern Luftwege eine Erweiterung ihrer Gesammtbahn verbunden sei. In welchem Umfange dies geschehen soll, finde ich nirgends verzeichnet. Wir besitzen in wohl gelungenen Metallausgüssen ein erwünschtes Material, um diese jedenfalls nicht unwichtige Frage einer Lösung entgegenzuführen. Aus dem Kaliber der Seitenbronchen und aus demjenigen der zugehörigen Abschnitte des Stammbronchus lässt sich für jedes beliebige Segment des Bronchialsystems das Verhältniss zwischen dem Anfangs- und dem Endkaliber feststellen. Halten wir uns dabei an die natürlichen Stockwerke, wie sie durch die ventralen Seitenbronchen geschaffen werden, so ist bei einem jeden von ihnen zwischen der obern und untern Weite zu unterscheiden. Jene wird durch den vom höher gelegenen Stockwerke herabziehenden Stammbronchus, diese durch dessen Fortsetzung zum tiefern Stockwerke und sämmtliche vom eigenen Stockwerke gelieferten Seitenzweige bestimmt. Wir betrachten die verschiedenen Stockwerke zuerst einzeln für sich, indem wir sie auf ihr absolutes Anfangs- und Endkaliber in Quadratmillimetern sowie auf den jeweiligen Werth des letztern in Procenten des erstern untersuchen. Die Differenz beider Grössen soll in den Tabellen gleichfalls namhaft gemacht werden.

-fabril finder		arterie ockwe		Imu	pdfage	10/21	H	yparte	erielle	e Stoo	ekwer	ke	IRNU	NA TH	-
			0.000		1	- Invester		2	math		3	Contractor	Tati	4	
and a printer	Oben	Unten	Diff.	Oben	Unten	Diff.	Oben	Unten	Diff.	Oben	Unten	Diff.	Oben	Unten	Diff.
I. Rechte Lunge.	11-1	el o fisio		Deck.		No. 1	112.		1.14	als		2349		ales h	u
Equus caballus .	1031	1085	+ 54	908	1065	+157	661	683	+22	347	615	+268	201	394	+193
Capra hircus	-	_		154	212	+ 58		191	+37	133	166	+ 33	95	117	+22
Lepus timidus	50	41	- 9	28	51	+ 23		34	+ 6		35	+ 11	24	33	+ 9
Coelogenys Paca .	44	48	+ 4	38	48	+ 10	38	49	+11	24	22	- 2	16	20	+ 4
Phoca vitulina	95	129	+ 34	79	115	+ 36	87	95	+ 8	57	69	+ 12	44	67	+ 23
Canis familiaris .	154	145	- 9	95	107	+ 12		132	+53	64	58	- 6		43	+ 5
Felis catus	16	20	+ 4	13	16	+ 3	13	17	+ 4	10	7	- 3	3	5	+ 2
Cynocephalus ba-	ACCOUNTS OF	in all a	ren en el a	122	and the	at real	and a	100 M	Inst	115215		11. S	1 10		
buin	33	32	- 1	22	33	+ 11		18	- 2		10	0	-	-	-
Troglodytes niger	28	33	+ 5	20	23	+ 3	16	30	+14	13	19	+ 6	13	16	+ 3
II. Linke Lunge.	A PARTY	1 Million				1 .	100					100		Section 1	
Equus caballus .	908	1189	+281	962	1011	+ 49		683	+22		532	+152		267	+ 90
Capra hircus	-	1 1	-	154	215	+ 61		171	- 6	and the second second	152	+ 39		84	+ 5
Lepus timidus	38	38	0	38	41	+ 3		37	+ 9		32	+ 12		31	+ 11
Coelogenys Paca .	33	33	0	33	53	+ 20		47	+14		21	+ 1	13	14	+ 1
Phoca vitulina	87	123	+ 36	79	107	+ 28		93	+14		59	+ 9		38	+ 10
Canis familiaris .	95	95	0	95	117	+ 22		88	+ 9		55	+ 5		43	+ 15
Felis catus	13	13	0	13	14	+ 1	7	12	+ 5	7	9	+ 2	5	7	+ 2
Cynocephalus ba-	E. E	Ling		1 1 1	and the		1	2.2	1.100	1	-		1	10	
buin	24	24	0	24	33	+ 9			+ 3	2	10	- 3		10	+ 3
Troglodytes niger	24	24	0	24	33	+ 9	0 20	28	+ 8	8 16	18	+ 2	1	1	-

Absolutes Anfangs- und Endkaliber der einzelnen Bronchialstockwerke in Quadratmillimetern.

Relatives Anfangs- und Endkaliber der einzelnen Bronchialstockwerke in Procenten des Anfangskalibers.

I. Rechte Lunge. Equus Caballus . Capra hircus Lepus timidus	100 	$\begin{array}{c c} 105 + 5 \\ \hline 82 - 18 \end{array}$	$\frac{100}{100}$	$ 137 \\ 182 $	+ 37 + 82	100	$\begin{array}{c} 124 \\ 122 \end{array}$	+ 3 10 + 24 10 + 22 10 + 29 10	$ \begin{array}{c c} 0 & 125 \\ 0 & 146 \end{array} $	+ 46	100	123	+ 96 + 23 + 38 + 25
Coelogenys Paca . Phoca vitulina . Canis familiaris . Felis catus	109 100 100 100	$ \begin{array}{r} 109 + 9 \\ 136 + 36 \\ 94 - 6 \\ 125 + 25 \end{array} $	100 100		+25 +46 +13 +23	100 100	109 167	+23 + 9 + 9 + 10 + 67 + 10 + 31 + 10	$ \begin{array}{c c} 0 & 121 \\ 0 & 91 \end{array} $	$+ 21 \\ - 9$	100 100 100	152 117 167	+ 52 + 17 + 67
Cynocephalus ba- buin Troglodytes niger	100 100	$\begin{array}{c c} 97 & - & 3 \\ 118 & + & 18 \end{array}$	A Date of the set of		$^{+50}_{+15}$			-10 10 +88 10		$+ \frac{0}{46}$	100	123	+23
II. Linke Lunge. Equus Caballus Capra hircus Lepus timidus	100 100	$\begin{array}{c c} 131 + 31 \\ - & - \\ 100 & 0 \end{array}$	100 100	105 139 108	+ 39 + 8	100 100	96 132	$+ 3 10 \\ - 4 10 \\ + 32 10 \\ + 42 10 \\ + 42 10 \\ + 42 10 \\ + 42 $	$ \begin{array}{c c} 0 & 135 \\ 0 & 160 \end{array} $	+40 + 35 + 60 + 5	100	150 107 155 108	+ 50 + 7 + 55 + 8
Coelogenys Paca . Phoca vitulina . Canis familiaris . Felis catus	100 100 100 100	$\begin{array}{c cccc} 100 & 0 \\ 142 & + 42 \\ 100 & 0 \\ 100 & 0 \end{array}$	100 100 100 100	$ \begin{array}{r} 161 \\ 136 \\ 123 \\ 108 \end{array} $	+ 36 + 23	100 100 100 100	118 111	+43 10 +18 10 +11 10 +71 10	$ \begin{array}{c c} 0 & 118 \\ 0 & 110 \end{array} $	+ 18 + 10	100 100 100	136 154 140	+36 +54 +40
Cynocephalus ba- buin Troglodytes niger	100 100	100 0 100 0	100 100	137 137	A REAL PROPERTY OF	100 100		$+15 \\ +40 \\ 10$	7. A	$\begin{vmatrix} - & 23 \\ + & 13 \end{vmatrix}$		143	+ 43

Es wäre entschieden thöricht, auf jede dieser Zahlen als solche ein absolutes Gewicht legen und aus allfälligen Verschiedenheiten sofort bindende Schlussfolgerungen ziehen zu wollen. Sie beanspruchen keinen andern als einen relativen Werth. Bei verschiedenen Individuen werden sie sicherlich nicht wenig verschieden lauten. Trotzdem geben sie uns in ihrer Gesammtheit über denjenigen Punkt, auf dessen Erledigung es uns allein ankommt, untrüglichen Aufschluss. Sie zeigen uns, wie, bis auf sehr wenige, vielleicht nur zufällige Ausnahmen, jedes Stockwerk des Bronchialbaums nach unten hin eine oft nur geringfügige, oft aber auch sehr ansehnliche Erweiterung eingeht und somit in seinen räumlichen Verhältnissen einem aufrechten Kegel verglichen werden kann. Schon aus der Idee des Bronchialbaums ist mit Wahrscheinlichkeit abzuleiten, dass die aufeinanderfolgenden Stockwerke in absteigender Richtung allmählich, wenn gleich nicht in ganz regelmässiger Weise, an Umfang verlieren. Die Zahlen erheben diese Wahrscheinlichkeit zur Gewissheit. Es bedarf daher der Bronchialbaum, wenn der besondere Gang seiner Erweiterung nach der Peripherie hin verständlich werden soll, noch einer besonderen Berechnung. Wir erhalten eine solche, wenn wir die Gesammtheit der unterhalb einer bestimmten Stelle des Stammbronchus entstehenden Verzweigungen mit jener hinsichtlich der Weite der Luftbahn in Beziehung bringen. Den natürlichen Vergleichungs- und Ausgangspunkt liefert der Ursprung aus der Trachea. Von ihm aus lässt sich, wenn wir von Stockwerk zu Stockwerk weiter schreiten, leicht nachweisen, ob und welcherlei Veränderungen die Weite der Luftwege nach der Peripherie hin erleidet. Die Rechnung ist eine einfache. Es sei a die anfängliche, a1, a2, a3 u. s. w. die spätere, den einzelnen Stockwerken entspresprechende Weite des Stammbronchus, und b, b1, b2, b3 u. s. w. die Summe aller von einem Stockwerke gelieferten Seitenbahnen, so ergeben sich für die gesuchten Grössen folgende Formeln:

Centrale oder anfängliche Weite der Luftbahn: a. Peripherische Weite bis zum epart. Bronchus: $a^1 + b$.

-

- 1. hypart. Ventralbronch. : $a^2 + b^1 + b$.

- 2. hypart. Ventralbronch. : $a^3 + b^2 + b^1 + b$. 3. hypart. Ventralbronch. : $a^4 + b^3 + b^2 + b^1 + b$.
- 4. hypart. Ventralbronch.: $a^5 + b^4 + b^3 + b^2 + b^1 + b$.

Mit andern Worten, um für eine beliebige Strecke des Bronchialbaums die Luftweite kennen zu lernen, hat man weiter nichts zu thun, als den bezüglichen Querschnitt des Stammbronchus mit den Querschnitten aller über ihm entspringenden Seitenäste zusammenzuzählen. Ausser der Wurzel beider Stammbronchen ist auch die dem eparteriellen Stockwerke der rechten Lunge links entsprechende Strecke meistentheils ohne Seitenast und daher an diesen Stellen die Weite des Bronchialbaums gleichbedeutend mit derjenigen des Stammbronchus. Die Rechnung liefert nachfolgende Werthe.

	The au	Re	chte	Lung	e		Bei	Li	inke I	Lunge		
	Central		Periph	erisch	bis zu	112-4	Central	1. 1210	Periph	orisch	bis zu	Jul a
	am Ur- sprunge aus der	dem eparte- riellen	den	hypart	t. Brone	hen	am Ur- sprunge aus der	dem eparte-	den	hypart	. Brone	hen
tom thought gaue	Trachea	Bron- chus	1	2	3	4	Trachea	riellen Bron- chus	1	2	3	4
Equus caballus	1031	1085	1242	1264	1532	1725	908	1189	1238	1260	1508	1502
Capra hircus	154	100000	212	249	282	304	154		215	209	248	253
Lepus timidus	50	41	64	70	81	90	38	38	41	50	62	73
Coelogenys Paca .	44	48	58	69	67.	71	33	33	53	67	68	69
Phoca vitulina	95	129	165	173	185	208	87	123	151	165	174	184
Canis familiaris	154	145	157	210	204	209	95	95	117	126	131	146
Felis catus	16	20	23	27	24	26	13	13	14	19	21	22
Cynocephalus ba-	R BRAN		unieu	1 700	I IIII	10	reali		1	1 -		
buin	33	32	43	41	41	-	24	24	33	36	33	36
Troglodytes niger .	28	33	36	50	56	59	24	24	33	41	43	00

Absolutes Kaliber des Bronchialbaums in Quadratmillimetern.

Relatives Kaliber des Bronchialbaums in Procenten seines Anfangskalibers.

Equus caballus .	.	100	105.2	120.4	122.6	148.6	167.3	100	131.0	136.4	138.7	166.1	165.4
Capra hircus		100	- 1	137.7	161.7	183.1	197.6	100				161.0	
Lepus timidus .		100	82.0	128.0	140.0	162.0	180.0	100	100.0	107.9	131.6	163.2	192.1
Coelogenys Paca		100					161.3	100	100.0	160.6	203.0	206.1	209.1
Phoca vitulina .		100					219.0	100	141.4	173.5	188.5	200.0	211.5
Canis familiaris .		100	94.2					100	100.0	123.2	132.6	137.9	153.7
Felis catus		100	125.0	143.7	168.7	150.0	162.5	100	100.0	107.7	146.1	161.5	169.2
Cynocephalus ba-				13. 3			lane.						
buin		100		130.3				100	100.0	137.5	150.0	137.5	150.0
Troglodytes niger		100	117.8	128.5	178.5	200.0	210.7	100	100.0	137.5	170.8	179.2	Total State

Das Kaliber des Bronchialbaums wächst nach der Peripherie hin. Nur wenige Thiere (Hase, Hund und Affe) beginnen im eparteriellen Stockwerke der rechten Seite mit einer geringen Verengerung. Sonst geschieht die Veränderung gleich von Anfang an im Sinne einer fortschreitenden Zunahme. Das Tempo des Fortschrittes ist freilich kein gleichmässiges und fällt auch für die verschiedenen Bronchialbäume verschieden aus, ohne dass sich dafür bestimmte Gesetze formuliren liessen. Er kann selbst in einem oder zwei Stockwerken gänzlich zum Stillstand kommen. Von einem ausgesprochenen und bleibenden Rückschritte ist indessen nirgends die Rede. Ein typischer Unterschied zwischen rechter und linker Lunge ist nicht nachzuweisen.

Wir haben noch einen letzten Schritt zu thun, bevor wir die Kaliberfrage des Bronchialbaums als völlig abgeschlossen betrachten dürfen. Es gilt, die beiderseitigen Bronchialbäume in Eins zu verschmelzen und auf den einheitlichen Trachealstamm¹) zu beziehen. So erst erhalten wir ein volles Bild der gesammten Luftbahn als Grundlage des Athmungsapparates.

¹⁾ Es ist darunter immer das unterste Ende der Trachea dicht oberhalb der beginnenden Theilung verstanden. Es erscheint diese Stelle schon deshalb für unsere Zwecke am geeignetsten, weil sie unter denselben äussern Verhältnissen, wie die Anfänge der Stamm-

hon adiate anderen	Kruft J	Central am	Peripherisch bis zu						
massion in the second	Stamm der Trachea	Ursprunge aus der	dem eparteri-	the second	den hyparteri	ellen Bronche	on		
homitonen and safe and		Trachea	ellen Bron- chus	1	2	3	4		
Equus caballus	1810	1939	2274	2480	2524	3040	3227		
Capra hircus ¹).	255	308		427	458	530	557		
Lepus timidus	64	88	79	105	120	143	163		
Coelogenys Paca	71	77	81	111	136	135	140		
Phoca vitulina	154	182	252	316	338	359	392		
Canis familiaris	177	249	240	274	336	335	355		
Felis catus	28	29	33	37	46	45	48		
Cynocephalus babuin	57	57	56	76	77	74	-		
Troglodytes niger .	38	52	57	69	91	99			

Gesammtkaliber des Bronchialbaums in Quadratmillimetern.

Gesammtkaliber des Bronchialbaums in Procenten der Trachea.

Equus caballus	100	107.1	125.6	137.0	139.5	168.0	178.3
Capra hircus	100	120.8		167.3	179.6	207.8	218.4
Lepus timidus	100	137.5	123.4	164.1	187.5	223.4	254.7
Coelogenys Paca	100	108.4	114.1	156.3	191.5	190.1	197.2
Phoca vitulina	100	118.2	163.6	205.3	219.5	233.1	219.5
Canis familiaris	100	140.6	135.6	154.8	189.8	189.3	200.6
Felis catus	100	103.6	117.8	132.2	164.3	160.7	171.4
Cynocephalus babuin	100	100.0	98.2	133.3	135.1	129.8	and the second
Troglodytes niger .	100	136.8	150.0	181.6	239.5	260.5	1100000000

Ich habe diesen Zahlen kaum etwas beizufügen. Sie erfüllen in vollem Umfange die Erwartungen, welche das rechte und linke Bronchialsystem ein jedes für sich geweckt haben. Die gesammte respiratorische Luftbahn gewinnt in ihrer peripherischen Entfaltung an Weite. Gewöhnlich geschieht solches gleich von der Theilung der Trachea an. Nur Cynocephalus verschiebt den Vorgang auf etwas später. Lepus, und obwohl nur schüchtern auch Canis, lässt dem Schritte vorwärts einen solchen rückwärts folgen, freilich nur, um den entstehenden Ausfall an Raum sofort wieder und ausgiebig zu ersetzen. Das Gesetz der zunehmenden Erweiterung wird durch diese Besonderheiten nicht beeinträchtigt. Es besteht in vollem Umfange und widerlegt die Angaben von SÉE², wonach, wie er an einem Hunde und einem Schafe bestätigt zu haben glaubt, die Luftwege in ihrer Gesammtform nicht einem Trichter, sondern einem Cylinder entsprechen sollen.

bronchen steht und daher auch von allfälligen formverändernden Einwirkungen des heissen Metalls in ähnlicher Weise wie diese betroffen werden muss. Das relative Kaliber bleibt unter solchen Umständen natürlich unverändert.

1) Der Bronchialbaum der Ziege ist in Wirklichkeit um den Werth des eparteriellen Bronchus geräumiger. Letzterer musste, weil überall erst von der Theilungsstelle der Trachea an gerechnet wurde, unberücksichtigt bleiben. Bei einigen Artiodactylen (Rind, Hirsch) verjüngt sich die Luftröhre unterhalb des eparteriellen Bronchus bis zu ihrer Theilungsstelle sehr merklich. Bei andern verändert sich ihr Kaliber nicht.

2) SÉE, MARC, Du calibre de la trachée et des bronches. Bulletin de l'Acad. de médecine. 2. Série. T. 7. No. 17. Alle unsere bisherigen Mittheilungen über die Weite der Bronchialwege beschränken sich auf die primären Bronchen, wie sie aus dem Stammbronchus herauswachsen. Es ist wohl an und für sich wahrscheinlich, dass der von ihnen befolgte Typus auch für die weitere Verzweigung in Kraft bestehen bleibe und die Zunahme des Kalibers eine dauernde sei. Gewissheit erlangen wir indessen erst auf dem Boden der thatsächlichen Prüfung. Ich habe eine solche für eine Anzahl von Bronchialästen vorgenommen und stelle die Ergebnisse zusammen.

	Absolutes Ka milli	liber in Quadrat- imetern	Summe der Sei-	
the state of the s	Stamm	Summe der Seitenäste	tenäste in Proc. des Stammes	
Eparterieller Seitenbrochus des Pferdes	177	359	203	
Herzbronchus des Pferdes	177	258	-146	
Zweig vom hypart. Ventralbronchus des Pferdes.	64 .	83	130	
Eparterieller Seitenbronchus des Hundes	50	66	132	
1. hyparterieller Ventralbronchus des Hundes	28	81	289	
Eparterieller Seitenbronchus der Robbe	44	98	223	
2. hyparterieller Ventralbronchus der Robbe	33	55	167	
3. hyparterieller Ventralbronchus der Robbe	24	41	171	

Es ist überflüssig, die Zahlen zu vermehren, ist doch die Sachlage völlig klar. Der Bronchialbaum folgt in seinen secundären wie in seinen primären Verzweigungen denselben Gesetzen, im Kaliber nicht weniger als in der allgemeinen Form. Verbreiterung der Luftwege nach der Peripherie hin ist das Ziel, das unentwegt festgehalten wird. In derselben Richtung muss daher auch die Lebhaftigkeit der Luftströmung geringer werden, doch ist hier nicht der Ort, weiter auf physiologische Schlussfolgerungen einzutreten.

C. Lappenbildung der Lunge.

Die Lappenbildung war von jeher eine der auffälligsten, bei der bisherigen Lage der Dinge aber auch eine der undankbarsten Seiten der Lunge. Ein bestimmtes Prinzip schien dabei kaum in Frage zu kommen und die Herrschaft beinahe dem Zufalle überlassen zu sein. Die Kenntniss des Bronchialbaums führt uns auf einen ganz andern Standpunkt und verschafft uns die Möglichkeit, auch dieses anscheinend so launenhafte Getriebe thierischer Organisation auf ein allgemeines architectonisches Grundgesetz zurückzuführen. Es ist seit langem nachgewiesen, dass bei Säugethieren die verschiedenen Astbezirke des Bronchialsystems unter einander nicht anastomosiren, sondern völlig unabhängig neben einander bestehen. Damit verliert die Lappenbildung überhaupt jede prinzipielle Bedeutung. Sie tritt in dem morphologischen Aufbau des Organs gegenüber der Bronchialverzweigung gänzlich in den Hintergrund, ist es doch schliesslich von nur untergeordnetem Belange, ob zwei in sich gänzlich abgeschlossene Gewebemassen äusserlich durch einen neutralen Kitt zusammengehalten werden oder nicht. Dafür sprechen nicht allein theoretische, sondern auch thatsächliche Gründe. Bei verschiedenen Individuen stehen benachbarte Lungenbezirke auf den allmähligsten Uebergangsstufen von völliger Freiheit bis zu vollständigstem Verschmolzensein und es ist daher überhaupt nicht selten fraglich, ob und von welchem Punkte an eine Lappenbildung soll angenommen werden. Dann ändern sich diese Zustände auch häufig unter dem Einflusse des Alters. Die Wiederkäuer zeigen uns, wie in der Jugend nur lose verbundene Abschnitte später zu äusserlich durchaus einheitlichen und schwer trennbaren Massen zusammensintern.

Der Entwicklungsgeschichte wird es vielleicht in Zukunft gelingen, die Bedingungen nachzuweisen, von denen eine grössere oder geringere Concentrirung des Lungengewebes abhängig ist. Zur Zeit liegt darüber tiefes Dunkel. Wir lassen uns vor der Hand an der Thatsache genügen, dass der Typus des Bronchialbaums durch die Lappenbildung in keiner Weise berührt wird und dass es sich, wo eine solche stattfindet, fürs Erste um weiter nichts handelt, als um eine durchgreifende Sonderung der einzelnen Seitenbronchen zugetheilten Gebiete.

Zwei Punkte verdienen bei diesem Zerstückelungsprocesse vor allem hervorgehoben zu werden. Derselbe beginnt ausnahmslos am obern Lungenende und bleibt hyparteriell stets auf die ventrale Seite beschränkt. In der überwiegenden Mehrzahl der Fälle wird auch nur der erste ihrer Bronchen in Mitleidenschaft gezogen. Mir ist kein Fall bekannt, wo ein dorsaler Zweig eine derartige Rolle übernommen hätte. Diese blieben dem eigentlichen Lungenstamme ausnahmslos getreu und daher reicht derselbe dorsalwärts stets bis dicht an das eparterielle Gebiet hinan. Der Lungenstamm ist dasjenige, was man bisher den untern Lappen genannt hat. Er verdient indessen diese Bezeichnung in keiner Weise. Ein wirklicher Lappen stützt sich auf nie mehr als einen einzigen Seitenbronchus und schliesst namentlich auch keinen Theil des Stammbronchus ein. Beides trifft bei dem sogenannten untern Lappen nicht zu. Derselbe umspannt 'ausser dem Endstücke des Stammbronchus immer eine Mehrzahl von Seitenbronchen.

Von den Nebenbronchen erscheint nur der erste der ventralen Seite und auch dieser fast ausschliesslich in der rechten Lunge zu selbständiger Lappenbildung befähigt. Dafür macht er freilich von dieser seiner Eigenschaft einen recht auffälligen Gebrauch. Selbst bei sonst geringer Neigung zum Zerfalle hat die rechte Lunge viel häufiger die Anwesenheit als die Abwesenheit eines derartigen Lappens (Herzlappen, Lobus infracardiacus, Lobus impar) zu verzeichnen.

Als zungenförmiger Fortsatz des Lungenkörpers ist er nicht selten wenigstens virtuell vorhanden, zum Beispiel bei Elephas und Auchenia (Taf. II, Fig. 4). Einer kleinen Anzahl von Thieren fehlt er vollständig (Bradypus, Delphinus, Phoca, Hystrix, Pithecus, Troglodytes). Doppelseitig, rechts wie links, besitzt ihn in freiem Zustande, soweit meine Erfahrung reicht, nur Coelogenys Paca.

Es hat bei der Abspaltung von Lungensubstanz auf Grundlage von Seitenbronchen nicht immer sein Bewenden. Der Bezirk des einzelnen Bronchus kann dasselbe Prinzip wiederholen und den primären Lappen in secundäre, ja selbst tertiäre Abschnitte mehr oder weniger vollständig auflösen. Neben einander

Aeby, Bronchialbaum.

4

I. Der Bronchialbaum der Säugethiere.

bestehendeLappen sind daher nicht nothwendiger Weise gleichwerthig und die bisher übliche einfache Zahlenangabe ist morphologisch absolut werthlos. Die Natur des zu jedem Lappen gehörigen Bronchus ist allein maassgebend. Unterziehen wir von diesem Gesichtspunkte aus die von mir beobachteten Lungen einer Prüfung, indem wir diejenigen Seitenbronchen, von denen eine wirkliche Lappenbildung ausging, durch ein Kreuz hervorheben, die andern, die dem Lungenstamm verblieben, unbezeichnet lassen. Der Herzlappen gehört morphologisch zum ersten hyparteriellen Ventralbronchus. Seine Anwesenheit soll daher bei diesem durch einen Stern (*) hervorgehoben werden. Ich trage in die Liste nur völlig freie Lappen ein und lasse alle wenn auch nur in kurzer Strecke verwachsenen ausser Acht.

the state in the same in the state of the		a data	L	appen	bild	lung de	er	-	1	
	re	chter	1 Lu	nge	3.1	lir	nken	Lui	nge	
	Eparte- rieller Bron-	Н	ypart. Brone	erielle chen	UR	Eparte- rieller Bron-	H	parte	eriell chen	6
Newtonshipserprisesses for allons here	chus	1	2	3	4	chus	1	2	3	4
 Monotremata: Ornithorhynchus paradoxus, Echidna hystrix Marsupialia: Phascolomys Wombat, Macropus gigas, Hypsiprimnus leporinus, Macropus penicillatus Perameles fusciventer Edentata: Bradypus tridactylus Dasypus niger Cetacea: Delphinus delphis und phocaena Cetacea: Delphinus delphis und phocaena Ferissodactyla: Equus Tapirus americanus Artiodactyla: Auchenia, Ovis aries Cervus dama adult., Antilope Jux Dicotyles torquatus; Cervus elaphus Sus scrofa, Capra hircus juv., Bos taurus juv. Proboscidea: Elephas Rodentia. Arctomys marmotta Arctomys Paca Hystrix cristata In sectivora: Erinaceus 	chus 	$\begin{array}{c} 1 \\ x^{(*)} \\ - \\ x^{(*)} \\ x^{(*)} \\ x \\ - \\ x \\ x^{(*)} \\$	2		4 1 111111111111111111					
 Pinnipedia: Phoca vitulina und groenlandica Carnivora: Lutra vulgaris, Viverra genetta, Herpestes galera, Mustela foina und putorius, Canis familiaris und lupus, Felis leo, domestica und lynx, 						x				
Cynailurus guttata 12. Chiroptera: Plecotus auritus 13. Prosimiae: Lemur catta und mongoz 14. Primates: Pithecus satyrus	x	x(*)	-		1 - +		x	-	1-1-+	
- troglodytes	- - x	x('	-	1-1 - 1		11 - H	x			

C. Lappenbildung der Lunge.

Da die Art und Weise der Lappenbildung individuell nicht völlig unveränderlich ist, so kann der Inhalt der vorstehenden Uebersicht uns zunächst nur Beispiele liefern. Ich bin daher auch weit davon entfernt, in denselben den Ausdruck des für jede Art giltigen Typus erblicken zu wollen. Einige allgemeine Erwägungen lassen sich nichtsdestoweniger davon ableiten. Vor allem muss es auffallen, dass die Lappenbildung gerade dort die stärkste Beschränkung erleidet, wo der Bronchialbaum durch beiderseitige Entwicklung eparterieller Anhängsel die grösste Ausdehnung besitzt (Cetacea, Equus, Pinnipedia), und hinwiederum dort die geringste, wo diese eparteriellen Bestandtheile völlig verloren gehen (Hystrix). Die asymmetrische Mittelform sieht sich gewöhnlich im Besitze mehrerer Lappen, ist aber auch lappenlosen Ausnahmen nicht unzugänglich (Plecotus, Satyrus). Fehlen die Lappen bloss einer Seite, so ist es fast immer die rechte. Nur die Robben machen eine Ausnahme. Indessen scheint selbst diese nicht constant zu sein, da CUVIER¹) ein gegentheiliges Verhalten angiebt.

Das eigentliche Lappengebiet reicht rechts wie links in der Regel nur bis zum ersten hyparteriellen Bronchus. Hystrix allein dehnt es weiter aus, rechts bis zum zweiten, links gar bis zum vierten Ventralbronchus. Meines Wissens ist dies der einzige Fall, wo die linke Lunge mehr als einen Hauptlappen aufzuweisen hat. Er ist eparteriell bei Phoca, sonst überall hyparteriell.

Sehr selten besitzt die rechte Lunge einen einzigen Lappen. Derselbe scheint dann immer hyparteriell, nie eparteriell zu sein (Macropus, Equus, Troglodytes, Tapirus). Gewöhnlich ist daneben wenigstens noch ein Herzlappen vorhanden (Ornithorhynchus, Echidna, Perameles, Dicotyles, Erinaceus). Einen besondern eparteriellen Lappen bringen neben den vorigen sehr viele Lungen zum Vorschein. Es ist sehr bemerkenswerth, dass dessen Verwachsung mit dem Lungenstamm oder dem fälschlich sogenannten untern Lappen hinter dem ersten hyparteriellen Lappen nicht nur bei sehr tiefer Lage des bezüglichen Bronchus (Monotremata, Erinaceus), sondern selbst dort stattfindet, wo dieser hoch oben an der Trachea wurzelt (Artiodactyla).

Der hyparterielle Lappen der rechten Seite liegt immer weit nach vorn geschoben. Nie reicht er bis zum Dorsalrande des ganzen Organs. Dieser gehört ausschliesslich dem eparteriellen Lappen und dem Stammtheile der Lunge an. Gleichviel, ob beide bloss zusammenschliessen oder wirklich unter einander verwachsen, so erzeugen sie eine keilförmige, nach vorn offene Nische zur Aufnahme für den hyparteriellen Lappen, während sich der Herzlappen hinter das Herz vorschiebt.

Ich verzichte darauf, in die secundäre Lappenbildung einzutreten. Sie ist sehr ausgeprägt bei Hystrix. Sonst pflegt sie namentlich dem ersten hyparteriellen Lappen der linken Seite eigen zu sein. Zweitheilung kennzeichnet ihn bei Raubthieren und Affen. Anfänge einer secundären Lappenbildung sind mir selbst dort vorgekommen, wo von einer primären keine Spur vorhanden war. Ich nenne in dieser Hinsicht die Beutelthiere (Taf. III. Fig. 6, links).

4*

51

¹⁾ CUVIER, Anatomie comparée, Tome VII, p. 159. Paris 1840.

Im Ganzen und Grossen stimmen die Angehörigen der einzelnen Ordnungen bezüglich der Lappenbildung so ziemlich unter sich überein. Indessen kommen auch auffällige Verschiedenheiten vor. Man werfe nur einen Blick auf die Nagethiere und Primaten.

Die herkömmliche topographische Eintheilungsweise der Lungenlappen hat keinen morphologischen Werth. Die Lage ist eben kein Maassstab für die Stellung des einzelnen Lappens zum ganzen Organe. Die sogenannten obern Lappen entsprechen einander nur bei Hystrix, indem beide gleichwerthigen Ventralbronchen angehören. Sonst thun sie solches nirgends mehr, da der rechtseitige einem eparteriellen, der linksseitige einem hyparteriellen Bronchus aufsitzt und dieser somit erst in dem zweiten oder mittlern Lappen der rechten Seite seinen wirklichen Gegenpart findet. Der sogenannte untere Lappen gehört, wie schon früher hervorgehoben wurde, überhaupt nicht in die Reihe der Lappen. Er entspricht vielmehr den nach der Abbröckelung von solchen zurückgebliebenen Resten des Lungenstamms.

Der Lappenbildung weiter nachzugehen, hat für uns nichts Verlockendes. - Es handelte sich ja wesentlich nur darum, das dabei leitende Prinzip klar zu legen. Das spezielle Gepräge, womit sie auftritt, ist ohne allgemeines Interesse und mag in einigen seiner wichtigsten Formen den Abbildungen auf Taf. I bis VI entnommen werden.

II. Der Bronchialbaum des Menschen.

Die Lunge des Menschen besitzt keinen eigenen Typus; sie gehört zu der bei den Säugethieren weit verbreiteten Formenreihe der Primaten (Taf. VI. Fig. 10). Die spezielle Wichtigkeit des Organs erfordert es, dass wir es gesondert behandeln und eine möglichst umfassende Vorstellung seiner Gestaltungsverhältnisse zu gewinnen suchen. Es ist dies um so nothwendiger, als die vergleichende Untersuchung in wichtigen Punkten die bisher geübte Anschauungsweise Lügen gestraft hat. Zudem hat auch diese auf dem ihr zugänglichen Boden keineswegs alle Arbeit gethan. Einige Wiederholungen mögen dem Bestreben, die Darstellung so viel als möglich abzurunden, zu Gute gehalten werden.

A. Allgemeine Formverhältnisse.

Wie bei den Säugethieren, so reichen auch beim Menschen die Stammbronchen nicht, der herkömmlichen Auffassung gemäss, bloss bis zur Lungenpforte, um sich dort in Aeste aufzulösen, sondern sie durchsetzen das Organ bis zu seiner untersten, zwischen Wirbelsäule und Zwerchfell eingekeilten Spitze. Die übliche Dreitheilung der Lungenoberfläche ist daher wohl von empirischem, nicht aber von wissenschaftlichem Werth. Nach der Anordnung der Seitenbronchen sind nur zwei wirklich verschiedene Flächen vorhanden, eine äussere und eine innere. Jene kommt der seitlichen Brustwand, diese dem Mediastinum und dem Zwerchfelle gegenüber zu liegen. Sie zerfällt in Folge davon durch eine vorspringende Kante in die beiden bekannten Abschnitte.

Wir werden später die Gründe kennen lernen, welche beim Menschen den Stammbronchus in seinem Verlaufe weniger deutlich hervortreten lassen, als dies bei den meisten Thieren der Fallist, und dadurch die völlig unrichtige Lehre von der dichotomischen Verzweigung der Luftwege verschuldet haben. Wer einmal den wahren Sachverhalt erkannt hat, wird ihn auch beim Menschen in jedem einzelnen Falle mit Sicherheit nachzuweisen vermögen (Fig. 7). Ein eparterieller Seitenbronchus kommt nur der rechten Lunge zu: der linken fehlt er. Es wäre von Interesse zu erfahren, ob bei Situs inversus auch hierin eine Umkehr der Dinge stattfindet. Die Angabe, dass dabei die linke Lunge dreilappig, die rechte

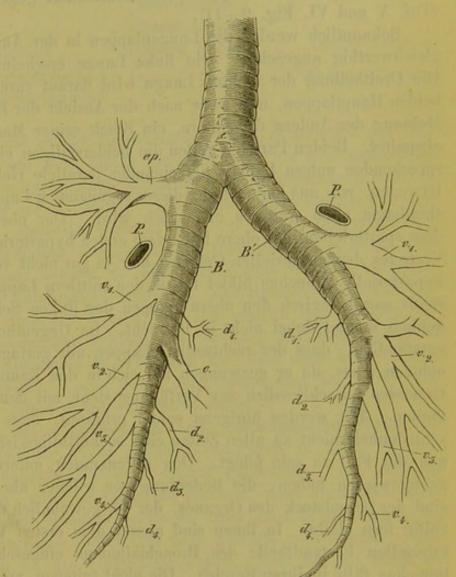


Fig. 7. Bronchialbaum des Menschen, halbschematisch nach einem Metallausguss. Trachea und Stammbronchen leicht schattirt, die Seitenbronchen hell. *B*, Rechter, *B'*, linker Stammbronchus. *ep.*, eparterieller Seitenbronchus. — v^1 , v^2 , v^3 , v^4 , erster bis vierter hyparterieller Ventralbronchus. — d^1 — d^4 , erster bis vierter hyparterieller Dorsalbronchus. — c, Herzbronchus. — *P*, Arteria pulmonalis.

nur zweilappig ist, scheint allerdings dafür zu sprechen, bietet indessen doch keine volle Gewähr. Das hyparterielle System ist immer beiderseitig symmetrisch. Rechts wie links umfasst es vier grössere Ventralbronchen, über deren untersten die Spitze des Stammbronchus mit kleinen unregelmässigen Seitenästen hervortritt. Die dorsalen Seitenbronchen bieten nichts Absonderliches. Sie sind verhältnissmässig schwach und stehen in der Regel tiefer als die ventralen. Nebenbronchen spielen nach Zahl und Umfang eine sehr bescheidene Rolle. Ein einziger wird durch Beständigkeit des Vorkommens und Ausmaass des Kalibers bemerkenswerth. Er gehört der rechten Seite an und entspricht in jeder Beziehung genau dem Bronchus, der bei vielen Thieren den Herzlappen entwickelt. Er muss daher diesem als gleichwerthig angesehen werden, um so mehr als auch bei Orang und Schimpanse ähnliche Verhältnisse bestehen und Zweifel über die Aehnlichkeit ihres Bronchialbaums mit demjenigen von Affen mit selbständigem Herzlappen der Wirklichkeit gegenüber nicht Stand halten (Taf. V und VI. Fig. 9-11).

Bekanntlich werden die Lungenlappen in der Anatomie als unter einander gleichwerthig angesehen. Die linke Lunge erscheint gewöhnlich zweitheilig. Die Dreitheilung der rechten Lunge wird darauf zurückgeführt, dass einer der beiden Hauptlappen, und zwar nach der Ansicht der Einen der obere, nach der Meinung der Andern der untere, ein Stück seiner Masse zum mittleren Lappen abspaltet. Beiden Parteien gelten die beiderseitigen obern, sowie auch die entsprechenden untern Lappen als einander parallele Gebilde. Beide wandeln auf Irrwegen, wie aus der Stellung dieser sogenannten Lappen gegenüber dem Bronchialbaum ohne weiteres ersichtlich wird. Der obere rechte Lappen gehört dem eparteriellen, der obere linke dem ersten hyparteriellen Bronchus an, da ein Vertreter des eparteriellen Gebietes hier ja gar nicht vorhanden ist. Der gleiche hyparterielle Bronchus bildet rechts den mittlern Lappen und dieser wiederholt somit morphologisch den obern Lappen der linken Seite. Die Grössenverschiedenheit kommt dabei nicht in Betracht. Im Gegentheil ist es beinahe selbstverständlich, dass der rechtseitige Lappen mit geringeren Dimensionen vorlieb nehmen muss, da er gezwungen ist, sich in den Raum, der seinem linkseitigen Genossen ausschliesslich zur Verfügung steht, mit dem eparteriellen Lappen zu theilen. Wir werden übrigens später erfahren, dass selbst diese Grössenverschiedenheit nicht zu allen Zeiten eine so auffällige ist, wie es beim Erwachsenen der Fall zu sein pflegt. Den sogenannten untern Lappen geht, wie wir nachgewiesen haben, die Bedeutung von solchen überhaupt gänzlich ab. Sie sind der Grundstock des Organes, der für gewöhnlich der Zerklüftung in Lappen völlig fern bleibt. In ihnen sind ausser dem ersten Ventralbronchus alle hyparteriellen Bestandtheile des Bronchialbaums eingeschlossen. Auch der Herzbronchus fällt in ihren Bereich. Die nicht seltenen, von der Regel abweichenden Lappenbildungen erklären sich vom Standpunkte des Bronchialbaums aus von selbst und es ist überflüssig, darauf besonders einzugehen. Nur möchte ich nochmals mit aller Entschiedenheit betonen, dass eine richtige Auffassung und ein wirkliches Verständniss der Lappen ohne die Kenntniss ihrer Beziehung zum Bronchialbaum völlig undenkbar ist und dass es keinen anderen, als einen rein empirischen Werth hat, schlechtweg von ihrer Vermehrung oder Verminderung zu sprechen. Die Aehnlichkeit einer bloss zweilappigen rechten Lunge mit einer linken ist eine durchaus äusserliche und die wirkliche morphologische Unähnlichkeit um nichts geringer als bei einer dreilappigen. Ganz dasselbe gilt für eine dreilappige linke Lunge gegenüber einer rechten. Alle bezüglichen Angaben über Herstellung einer bilateralen Symmetrie sind daher für den Kern der Frage ohne Werth und dies um so mehr, als allem Anscheine

A. Allgemeine Formverhältnisse.

nach überzählige Lappen nicht einmal durch das Freiwerden gewöhnlich im untern Lappen eingeschlossener Gebiete von Seitenbronchen, sondern durch secundäre Parzellirung normaler Lappen entstehen. Sichere Aufschlüsse hierüber sind freilich nur von eigens darauf gerichteten Untersuchungen zu erwarten. Sie anzustellen, fehlte mir bisher die Gelegenheit. Die normale Lappenbildung der Lungen lässt sich in folgender übersichtlichen Formel darstellen.

	Rechte Lunge	Linke Lunge
eparterieller Bronchus	Oberer Lappen	-
1. hyparterieller Ventralbronchus	Mittlerer Lappen	Oberer Lappen
Rest der hyparteriellen Ventralbronch.,) sämmtliche Dorsal- und Nebenbronchen	Unterer Lappen	Unterer Lappen

Wir schöpfen hieraus die sichere Ueberzeugung, dass es sich bei den beiden Lungen nicht bloss, wie man bisher geglaubt hat, um eine äusserliche Asymmetrie durch ungleiche Parzellirung gleichwerthiger Grundmassen, sondern um eine Asymmetrie dieser selbst handelt. Die rechte Lunge enthält ein Element mehr als die linke. Dasselbe entfaltet sich auf Kosten derjenigen Bestandtheile, die auch in der linken Lunge enthalten sind, und da es höher oben als diese dem Stammbronchus aufsitzt, so wird daraus ohne Weiteres verständlich, wesshalb der astlose Anfangstheil desselben, der Bronchus oder Luftröhrenast im herkömmlichen Sinn des Wortes, auf der rechten Seite kürzer ist, als auf der linken. Die bisherigen Erklärungen, wonach der linke Bronchus seine grössere Länge dem Umstande zu verdanken hat, dass seine Lunge durch das Herz (BICHAT⁴), RÜDINGER²) oder durch den Aortenbogen (MEYER³) seitlich zurückgedrängt wird, fallen damit von selbst dahin.

In der Stellung der grossen Gefässstämme zum Bronchialbaum scheint den Anatomen bisher der wichtigste Punkt gänzlich entgangen zu sein. Wenigstens hat keiner die gebührende Rücksicht darauf genommen. Ich halte es daher nicht für überflüssig, ganz besonders zu betonen, dass auch beim Menschen die Lungenarterie den Stammbronchus an einer ganz bestimmten Stelle seiner Aussenseite überkreuzt, um hinter ihm nach abwärts zu verlaufen, während sich die Hauptvenen an die Vorderseite halten. Erst in den seitlichen Abzweigungen schwindet die Strenge dieses Gesetzes. Daraus erklärt sich die von verschiedenen Schriftstellern hervorgehobene, von Rüddinger (a. a. O. S. 43) mit Unrecht bestrittene Thatsache, dass in der rechten Lungenwurzel der Bronchus höher liege, als die Art. pulmonalis. Letztere muss in der That von oben her durch den ersten Seitenbronchus gedeckt werden und es ist nur der für den obern Lappen bestimmte Arterienzweig, nicht aber der Arterienstamm selbst, der mit ihm in gleiche Höhe zu liegen kommt.

Mein Streben, in bisher noch ziemlich unbekannte Gebiete der Lungen-

- 2) RÜDINGER, Topographisch-chirurgische Anatomie des Menschen. Stuttgart, 1873. S. 69.
- 3) H. MEYER, Lehrbuch der Anatomie des Menschen. 2. Aufl. Leipzig, 1861. S. 639.

55

¹⁾ BICHAT, Anatomie descriptive. Paris, 1829. T. IV. p. 46.

Anatomie beim Menschen vorzudringen, verfolgte zwei Richtungen, einmal die genaue Topographie des Bronchialbaums nach Form und Anordnung seiner einzelnen Abschnitte festzustellen, dann aber auch über die Massenvertheilung des Organs auf verschiedenen Altersstufen Auskunft zu erhalten. Für die Anordnung des Stoffes behalte ich die bei den Thierlungen angenommene Reihenfolge bei.

B. Spezielle Formverhältnisse.

Auf die spezielle Gestaltung ihres Bronchialbaums sind von mir 12 Erwachsene (3 Weiber, 9 Männer) und zwei Neugeborne untersucht worden. Als Grundlage dienten sorgfältig erstellte und, soweit sich solches beurtheilen liess, fehlerfreie Metallausgüsse.

1. Lagerungsverhältnisse des Bronchialbaums.

a. Stammbronchen.

Der Verlauf der Stammbronchen ist beim Menschen nur ausnahmsweise ein einigermassen geradliniger. Meistentheils erscheint er bogenförmig mit medianwärts gerichteter Concavität, offenbar in Anpassung an die gewölbte Oberfläche des benachbarten Herzens. Der Bogen ist einfach Cförmig für den rechten, dagegen meistens deutlich Sförmig für den linken Bronchus, da hier oberhalb der Abgangsstelle des ersten Seitenbronchus gewöhnlich eine sehr rasch sich vollziehende, stärkere Ablenkung von der Medianebene nach links auftritt. Die typische Concavität nach rechts wird daher oberhalb des ersten Seitenbronchus gemeiniglich in die entgegengesetzte umgewandelt. Dem Grade nach zeigen diese Biegungen eine sehr grosse individuelle Mannigfaltigkeit und es ist sicher, dass dabei der Zustand des Herzens nach Lage und Umfang eine wesentliche, ja wohl in der Hauptsache entscheidende Rolle spielt. Ziemlich häufig gesellt sich zu dieser frontalen Biegung der Stammbronchen noch eine sagittale mit hinterer Concavität. Einer solchen erscheint besonders der linke Bronchus zugänglich, wie denn im allgemeinen bei ihm die Biegungen ein schärferes und ausgesprocheneres Gepräge besitzen, als bei seinem Genossen. Die in den Tafeln IX und X vorgeführten Fälle liefern hierzu die Belege und klären über den Thatbestand überhaupt wohl rascher auf, als dies die eingehendste Schilderung zu thun vermöchte.

Wir haben schon im Charakter der Biegungen wahrgenommen, dass zwischen den beiderseitigen Stammbronchen keine volle Symmetrie herrscht. Noch weniger ist dies der Fall, wenn wir die Neigung ins Auge fassen, mit der sie sich nach ihrem Ursprunge seitlich von der Medianebene entfernen. Es stehen mir darüber Messungsresultate zu Gebote, die gleichzeitig Aufschluss über den Divergenzwinkel der beiderseitigen Stammbronchen geben. Aus nahe liegenden Gründen beschränken wir uns auf die Anfangsstrecke vom Ursprunge aus der Trachea bis zur Abzweigung des ersten hyparteriellen Ventralbronchus,

B. Spezielle Formverhältnisse.

also links des Bronchus für den obern, rechts desjenigen für den mittlern Lappen. Wo dieses Stück nicht gerade, sondern gebogen ist, sind natürlich zwei Bestimmungen, eine für den Neigungswinkel der obern, eine andere für denjenigen der untern Hälfte erforderlich. Aus beiden zusammen lässt sich eine mittlere Neigung construiren.

	Neigu	Neigungswinkel		des Stammbronc ebene in Graden.	chus zur a.	des Stammbronchus zur Median- ebene in Graden.	Diffe	Differenz des lin- ken zum rechten	s lin- hten	Diverge	Divergenzwinkel beider	beider
		- rechts		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	links	ayod	Nei	Neigungswinkel	nkel	BIC	Stammoronchen	en
	Oben	Unten	Mittel	Oben	• Unten,	Mittel	Oben	Unten	Mittel	Oben	Unten	Mittel
1) Weib von 36 Jahren	1 31	31	31	43	43	43	+ 12	+ 12	+ 12	74	74	74
2), 51 Jahren	1 20	20	20	52	52	52	+32	+32	+ 32	72	72	72
3) Mann unbekannten						101	-		×		1	
Alters	28	28 .	28	28	28	28	0	0	0	56	. 56	56
4) Manh von 35 Jahren	1 40	40	40 .	50	50	50	+ 10	+10	+ 10	06	06	06
5) Weib von 30 Jahren	1 21	21	21	33	40	36.5	+ 12	+ 19	+ 15.5	54	61	57.5
6) Mann unbekannten Alters	24	24	24	33	47	40	6 +	+ 23	+ 16	57	11	64
7) Mann unbekannten					110	1 1					No in	opt
Alters	16	16	16	23	60	41.5	۲- +	+ 44	+ 25.5	39	56	57.5
8) Mann von 34 Jahren	23	23	23	41	78	59.5	+ 18	+ 55	+ 36.5	64	101	82.5
9) 38 Jahren	23	23	23	41	49	45	+ 18	+ 26	+ 22	64	72	68
10) 44 Jahren	18	18	18	32	62	.47	+ 14	+ 44	+ 29	50	80	65
11) 42 Jahren	46	19	32.5	46	68	57	0	+ 49	+ 24.5	. 92	87	89.5
12) 53 Jahren	25	18	21.5	32	99	49	2 +	+ 48	+ 27.5	57	84	70.5
Mittel.	26,3	23,4	24,8	37,8	53,6	• 45,6	+11,5	+30,2	+ 20,8	64,1	0,77	70.4
	(16-46) $(16-40)$	(16 - 40)	(16 - 40)	(23 - 52)	(28-78)	(28-59,5)	(0-32)	(0-55)	(0-36,5)	(39-92)	(56 - 101)	(56 - 90)
13) Neugebornes Kind	6	6	6	24	24	24	+ 15	+ 15	+ 15	33	33	33
14)	15	15	15	27	65	46	+ 12	+ 50	+ 31	42	80	61

57

II. Der Bronchialbaum des Menschen.

Wir ersehen aus dieser Tabelle, dass für den rechtseitigen Bronchus die gerade, für den linkseitigen die gebogene Form die vorherrschende ist. Jener tritt nur zweimal (No. 11 und 12), dieser dagegen nicht weniger als 9 mal (No. 5—12 und No. 14) gekrümmt auf. Die Richtung dieser Krümmung ist dabei für beide Bronchen eine gleichsinnige mit der Concavität nach links, also im Widerspruche mit dem Gesetze der bilateralen Symmetrie. Die Neigung des rechten Bronchus zur Medianebene nimmt durch die Krümmung ab (um 27° in No. 11, um 7° in No. 12), diejenigen des linken dagegen zu (um 7° in No. 5, 8° in No. 9, 14° in No. 6, 30° in No. 10, 37° in No. 7 und 8, 38° in No. 14, 41° in No. 12 und 49° in No. 11). In beiden Fällen kann der grössere Winkel den kleinern um das Doppelte oder noch mehr seines Werthes übertreffen. Je grösser der Unterschied, um so stärker natürlich die Krümmung des Bronchialrohres.

Eine Vergleichung der beiderseitigen Winkel lehrt, dass Symmetrie der beiden Bronchen nur ausnahmsweise vorhanden ist. Ein einziger Fall (No. 3) folgt diesem Typus in voller Strenge. Ein anderer (No. 11) hält ihn nur eine Strecke weit ein, um dann um so entschiedener in den asymmetrischen umzuschlagen. Die Differenz beträgt für den Anfangswinkel 7—32, im Mittel 11,5, für den Endwinkel 10—55, im Mittel 30,2°. Für die gerade gedachten Bronchen stellt sich dieselbe auf 0—36,5 oder im Mittel 20,8°. Diese Werthe sind sicherlich schon an und für sich nicht zu unterschätzen, ihre Bedeutung tritt aber erst dann ins volle Licht, wenn wir sie mit der Grösse der Winkel selbst und mit dem Divergenzwinkel beider Bronchen in Verbindung bringen. Solches geschieht am zweckmässigsten in der Weise, dass wir den grössern Neigungswinkel in Prozenten des kleinern und die Differenz zwischen ihnen in Procenten des Divergenzwinkels beider Stammbronchen berechnen.

		ken Sta Mediane des Neig	mmbrond	chus zur rocenten kels des	Differenz des linken zum rechten Neigungswinkel in Procenten des Diver- genzwinkels beider Stamm- bronchen.				
	and the second	Oben	Unten	Mittel	Oben	Unten	Mittel		
1)	Weib von 36 Jahren	139	139	139	16.2	16.2	16.2		
2)	51 Jahren	260	260	260	44.4	44.4	44.4		
3)	Mann unbekannten	1 5 5 6		1 3 A 19					
	Alters	100	100	100	0	0	0		
4)	Mann von 35 Jahren	125	125	125	11.1	11.1	11.1		
5)	Weib von 30 Jahren	157	190	174	22.2	31.1	27.0		
6)	Mann unbekannten	1 2 2 2		3 3 3	- 1 -				
	Alters	138	- 196	167	15.8	32.4	25.0		
7)	Mann unbekannten	A COLORED ON THE REAL PROPERTY OF	and the second second	1.300.000					
	Alters	144	-375	259	17.9	57.8	44.4		
8)	Mann von 34 Jahren	178	340	259	28.1	54.4	44.2		
9)	38 Jahren	178	213	196	28.1	36.1	32.3		
10)	44 Jahren	178	344	261	28.0	55.0	44.6		
11)	42 Jahren	100 .	358	175	0	56.3	27.5		
12)	53 Jahren	128	367	228	12.3	57.2	39.0		
	Mittel	144	229	184	17.9	39.5	29.5		
		(100 - 260)	(100 - 375)	(100-261)	(0-44.4)	(0-57.8)	(0-44,6)		
13)	Neugebornes Kind	267	267	267	45.4	45.4	45.4		
14)		180	433	306	28.6	62.5	50.8		

59

Die Zahlen sprechen deutlich genug. Der linkseitige Neigungswinkel erscheint individuell auf beinahe das Vierfache des rechtseitigen ausgeweitet und ihm durchschnittlich fast um das Doppelte (84%) überlegen. Der Divergenzwinkel beider Bronchen kann über die Hälfte seines Werthes asymmetrisch nur der linken Körperhälfte zu Gute kommen lassen, so dass der rechtseitige Stammbronchus nahezu in die unmittelbare Verlängerung der Trachea zu liegen kommt. Ein derartiger Befund ist um so überraschender, als die anatomische Literatur im allgemeinen mit grosser Zuversicht in Wort und Bild die Behauptung verficht, dass der rechte Bronchus weniger steil verlaufe als der linke. HUSCHKE, CLOQUET, HYRTL und LUSCHKA ertheilen ihm eine mehr quere oder wagrechte, QUAIN-HOFFMANN und BEAUNIS et BOUCHARD 1) eine fast horizontale Richtung. In Wirklichkeit ist aber, wie aus unsern Zahlen mit Bestimmtheit hervorgeht, gerade das Gegentheil der Fall und muss es auch sein, sobald wir uns den Zusammenhang des empirischen Bronchus mit dem Stammbronchus und die Stellung dieses letztern zum Herzen vergegenwärtigen. Man braucht nur an der ersten besten Leiche das Mediastinum durch Entfernung der beiden Lungen von den Seiten her blosszulegen, um sich zu überzeugen, dass die Dinge sich so gestalten müssen, wie wir es dargethan haben, und dass der linke Bronchus eines viel weitern und steilern Bogens zur Umgehung des vom Mediastinum ihm gesetzten Hindernisses bedarf als der rechte. Die Erklärung für das Zustandekommen des so auffälligen Irrthums liegt wohl darin, dass einerseits bei der gewöhnlichen Präparationsweise der wirkliche Thatbestand überhaupt nicht gewahrt wird, andrerseits die höhere Lage der rechten Lunge unwillkürlich an eine entsprechende Höherstellung des bezüglichen Bronchus hat denken lassen. Zwar hebt schon HENLE²) hervor, dass der rechte Bronchus wohl nur scheinbar der Kürze wegen weniger geneigt sei als der linke; indessen trifft diese Erklärung nicht zu gegenüber dem von uns gelieferten Nachweise, dass schon in diesem kurzen Stücke des empirischen Bronchus dexter die steilere Richtung ebenso deutlich und zweifellos zur Geltung kommt wie in dessen Fortsetzung bis zum ersten hyparteriellen, dem mittlern Lappen angehörigen Seitenaste. Uebrigens ist die Wahrheit nicht völlig verborgen geblieben, wenn gleich die anatomische Welt keine Notiz davon gewonnen hat. Vor allem ist da ENGEL³) zu nennen, der es mit aller Bestimmtheit ausgesprochen hat, dass der rechte Bronchus mehr in der Richtung der Luftröhre verlaufe, während der linke mit ihr den grössern Winkel bilde. Ebenso hebt FÖRSTER⁴) hervor, wie stumpfwinklig der erstere von der Trachea abgehe und wie dadurch das Eindringen von Fremdkörpern erleichtert werde. Endlich nennt auch BRAUNE⁵) bei der Erklärung einer Tafel seines topographischen Atlas den linken Bronchus den weniger steilen, ohne dass jedoch aus der

3) J. ENGEL, Compendium der topografischen Anatomie. Wien 1859. S. 288.

¹⁾ Es handelt sich bei all diesen Autoren um deren Lehrbücher.

²⁾ HENLE, Handbuch der systematischen Anatomie. Braunschweig, 1866. Bd. H. S. 267.

A. FÖRSTER, Handbuch der pathologischen Anatomie. Leipzig, 1863. Bd. II. S. 308.
 BRAUNE, Topographisch-anatomischer Atlas. Leipzig, 1875. S. 97.

II. Der Bronchialbaum des Menschen.

bezüglichen Stelle zu ersehen wäre, in wiefern er diesem Befunde eine allgemeinere Bedeutung zuschreibt. Den richtigen Thatbestand meldet in neuester Zeit KRAUSE¹). Jedenfalls wird von nun an von einem steilern linken Bronchus bei überhaupt normalen Verhältnissen nicht mehr die Rede sein können, und damit ist eine erwünschte Uebereinstimmung der Anatomie mit der praktischen Medizin gewonnen, deren Erfahrungen bei der Laryngoscopie und beim Eindringen von fremden Körpern in die Luftwege sich wenig mit der bisher herrschenden, nun freilich auch als falsch erkannten Lehre vertragen wollten.

Man könnte vielleicht in die Beweiskraft der von mir verwendeten Metallausgüsse Zweifel setzen wollen. Auch liegt es auf der Hand, dass sie nur dann auf etwelche Glaubwürdigkeit Anspruch zu erheben haben, wenn eine gewisse Gewähr vorhanden ist, dass die bestehenden Verhältnisse durch das Gewicht des einströmenden Metalles entweder gar nicht oder doch nur in ganz unerheblichem Maasse verändert werden. Meines Erachtens liegt eine solche schon an und für sich in dem ganzen Aussehen des Bronchialbaums und in der grossen Regelmässigkeit seines Aufbaues, abgesehen davon, dass sich schwerlich ein Grund dafür finden liesse, weshalb der rechte Bronchus in ganz entgegengesetzter Weise von dem Metallgewichte beeinflusst werden sollte als der linke. Glücklicherweise besitzen wir in dem Bronchialbaum eines Erwachsenen (No. 8 der Zahlentabelle und Taf. IX. Fig. 20) einen Fall, der wohl geeignet ist, die aufgeworfene Frage unmittelbar und mit der wünschenswerthesten Bestimmtheit zu beantworten. Die linke Lunge eines 34jährigen Mannes enthielt in ihrem obern Lappen eine mit mehreren Bronchialröhren zusammenhängende Caverne, welche sich auf das Vollständigste mit Metall gefüllt hatte. Die Ausfüllungsmasse lag entschieden zu tief. Sie war nach vorn übergesunken. Ich lasse es dahingestellt, ob wir es hier mit einem durch den Krankheitsprozess herbeigeführten Zustande oder aber mit einer mechanischen Wirkung des zu einem mächtigen Klumpen angehäuften Metalles zu thun haben. Sei dem, wie ihm wolle, so verliert die Thatsache nicht an Werth, dass der betreffende Stammbronchus ausserhalb der Lunge seine Stellung nicht verändert hatte. Er verlief genau so, wie in den übrigen Lungen und seine in die Caverne eintretenden Nebenäste verliessen ihn in plötzlicher winkliger Abknickung. Darin liegt jedenfalls ein Beleg dafür, dass der Bronchialbaum in der Gegend der Lungenpforte fixirt ist, und zwar wohl offenbar durch jene von v. TEUTLEBEN 1) genauer als Ligg. suspensoria diaphragmatis beschriebenen Bandstreifen des Mediastinum, die beiderseits von den untern Hals- und obern Brustwirbeln in Form verdickter Züge der Fascia praevertebralis entspringen, um seitlich vom Herzbeutel und in inniger Verbindung mit ihm nach abwärts bis zum Zwerchfelle zu ziehen, nachdem sie zuvor die Lungenwurzel gleichsam in sich eingeschaltet haben. Wir sind daher gewiss berechtigt, unsern Ausgüssen bezüglich ihrer Beweiskraft für normal bestehende Verhältnisse ein volles Vertrauen entgegenzubringen.

W. KRAUSE, Handbuch der menschlichen Anatomie. Hannover, 1879. Bd. II. S. 428.
 v. TEUTLEBEN, Die Ligg. suspensoria diaphragmatis des Menschen. Archiv f. Anatomie und Physiologie. Anatom. Abth. 1877.

Verweilen wir schliesslich noch einen Augenblick bei der absoluten Grösse des Divergenzwinkels beider Stammbronchen. Wir begegnen einem Anfangswerthe von 39-92 (Mittel 64,1) und einem Endwerthe von 56-101 (Mittel 77,0) Graden. Der einheitliche Durchschnittswerth umfasst 56-90, im Mittel 70,4 Grade. Die individuelle Schwankung ist somit eine ungemein beträchtliche und wir gehen wohl kaum fehl, wenn wir hierfür wiederum in erster Linie das Herz verantwortlich machen, dessen Umfang nothwendigerweise für den gegenseitigen Abstand der beiden Lungen und somit auch die Divergenz der Stammbronchen von entscheidendem Einflusse ist. Im ganzen dürfen wir annehmen, dass mit der Verkleinerung des Herzens die Grösse des Divergenzwinkels ab-, mit der Vergrösserung zunimmt, abgesehen von andern krankhaften Einflüssen, wie Geschwülsten, Exsudaten u. s. w., die gelegentlich ebenfalls ins Spiel kommen mögen. Es wird Sache der Pathologie sein, darüber weitere Forschungen anzustellen. Auffallend klein ist der Divergenzwinkel bei den beiden Neugebornen. Für den Erwachsenen geht aus den obigen Zahlen jedenfalls so viel hervor, dass der mittlere Theilungswinkel der Luftröhre nicht, wie behauptet worden ist, ein stumpfwinkliger, ja nicht einmal ein rechtwinkliger, sondern ein spitzwinkliger ist, der allerdings dem rechtwinkligen nicht allzu ferne steht. Ein rechter Winkel wird nur individuell erreicht (No. 4, 8 und 11) und vielleicht auch da nur in Folge von Zuständen, die bereits als pathologisch angesehen werden müssen. Wir bewegen uns hier überhaupt auf einem Boden, wo es gerade für den Menschen schwer fällt, das bloss Individuelle von dem nicht mehr ganz Normalen zu scheiden. Auf alle Fälle bedürfte es dazu eines viel ausgiebigeren Materiales, als ein solches von mir konnte benutzt werden. Ausserdem wäre auf die spezielle Beschaffenheit sowie auf allfällige krankhafte Veränderungen der Brusteingeweide Rücksicht zu nehmen, eine Aufgabe, die vielleicht für den einen oder andern unserer pathologischen Anatomen nicht ganz ohne Reiz erscheinen dürfte. Mir ist es aus materiellen Gründen unmöglich, sie zu lösen. Durch glückliche Auswahl besonders charakteristischer Fälle liesse sich die Angelegenheit, wenigstens in ihren allgemeinen Grundzügen, möglicherweise mit verhältnissmässig geringem Aufwande an Zeit und Material erledigen.

Im Vergleiche zu den Thieren ist der bronchiale Divergenzwinkel des Menschen ein grosser zu nennen. Troglodytes allein vermag es ihm gleich zu thun. Alle übrigen bleiben weit zurück. Auffällig spitz war der Winkel des einen Neugeborenen. Ich muss es dahin gestellt sein lassen, ob darin die Andeutung wirklicher Altersverschiedenheiten zu sehen ist oder nicht.

b. Seitenbronchen.

Alle Seitenbronchen besitzen einen absteigenden Verlauf. Da ihre Steilheit nach unten hin zunimmt, so ist ihre Anordnung im allgemeinen eine fächerförmige. Das Anfangsstück des obersten rechts wie links steht nahezu quer, ja bisweilen steigt es selbst etwas nach aussen hin auf, bevor es die absteigende Richtung annimmt. Diese beiden Bronchen sitzen daher steil dem Stammbronchus auf, während alle andern entschieden spitzwinklig von ihm abgehen. Das nachfolgende Zahlenverzeichniss giebt darüber genauern Aufschluss.

Reigungswinkel zwischer	Seitenbronchen	und Stammbronchus	in Graden.
-------------------------	----------------	-------------------	------------

. Journal of the	And a start of the	and the state	Anna Maria	and the second second	and the state	11				1
	Basker -	Re	echte Lu	nge	data area		Linke Lunge			
dife Diversence	Eparter. Bron-	Hyp	arterielle	Ventralbro	nchen	Epart. Bron-	Нур	arterielle 1	Ventralbron	ichen
an distant with	chus	1	2	3	4	chus	1	2	3	4
1) Weib von 30 Jahren	70	40	1	nings -	1112200	Trades V	50	30	20	
2) 36 Jahren 3) Mann unbekannten	50	50	50	40	40	-	60	60	30 30	1
Alters	60	40	40	40	40	-	50	30	30	10-11
4) Mann von 42 Jahren	60	50		The second	-		60	40	-	
5) 34 Jahren	60	50	30	30	30		-			
6) – – 35 Jahren	60	60	40	100.000		1100	70	40	40	40
7) – – 53 Jahren	70	30	30	30			50	20	30	
8) 44 Jahren	70	40	50	40	40	_	50	50	40	- III
9) 38 Jahren	70	50	40	30	30		60	30	30	30
Mittel	63.3	45.6	40.0	35.0	36.0		56.3	37.5	33.0	35.0
.ox many	(50-70)	(30-60)	(30-50)	(30-40)	(30-40)	-	(50 - 70)	(20-60)		(30-40

Hieraus wird sofort ersichtlich, wie die beiden obersten Seitenbronchen trotz der Verschiedenheit ihres morphologischen Werthes bezüglich der Neigung zum Stammbronchus übereinstimmende Verhältnisse darbieten. Der ihnen zugetheilte Winkel beträgt im Mittel ungefähr 60 Grad, während derjenige der übrigen Bronchialäste entschieden kleiner ist. Mannigfache individuelle Schwankungen kommen namentlich bei dem zweiten Seitenbronchus vor, der in den einen Fällen mit dem ersten den gleichen grossen Neigungswinkel theilt, in den anderen in auffälliger Schroffheit von ihm abbiegt (Taf. X, Fig. 22–25). Im ganzen bewegt sich die absolute Grösse der Neigungswinkel innerhalb der Grenzen, welche wir früher bei thierischen Lungen erhalten haben.

Wie die Seitenbronchen mit den Stammbronchen, so sind auch ihre eigenen Seitenäste in der Regel spitzwinklig mit ihnen verbunden. Von diesen verdient nun derjenige besonders hervorgehoben zu werden, der als der erste seiner weitern Genossen rechts von dem eparteriellen, links von dem ersten hyparteriellen Bronchus ausgeht, um in steil aufsteigendem Verlaufe zur Grundlage der beiden Lungenspitzen zu werden. Am eparteriellen Bronchus fällt seine Abgangsstelle meist genau mit dem Ursprunge des dorsalen Bronchialzweiges zusammen. Jener zerfällt daher ausgesprochen dreitheilig nach Art eines flachen Dreifusses, während sich der oberste Bronchus links einfach gablig auflöst, da bei ihm so wenig als bei den übrigen hyparteriellen Ventralbronchen ein bezüglicher Dorsalzweig vorhanden ist, dieser vielmehr als selbständiger Seitenast unmittelbar aus dem Stammbronchus hervorgeht. Der schon früher hinreichend entwickelte Charakter des rechtseitigen eparteriellen Bronchus bringt es mit sich, dass sein Ursprung gegenüber demjenigen der hyparteriellen Zweige etwas verschoben ist. Er kommt immer gerade nach aussen über die Mitte zwischen ihrer dorsalen und ventralen Reihe, also in die geradlinige Fortsetzung des absteigenden Theiles

der Lungenarterie zu liegen. Die Seitenansicht des Bronchialbaums bringt dieses nicht unwichtige Verhältniss am schönsten zur Geltung (Taf. X. Fig. 23 und 25).

Der ungetheilte Stamm der Seitenbronchen ist von verschiedener, individuell übrigens vielfachem Wechsel unterworfener Länge. Im Mittel aus 10 Erwachsenen betrug sie für den eparteriellen Zweig 11,3 (4-16) mm, für den ersten hyparteriellen links ungefähr ebensoviel, nämlich 12,6 (9-18), rechts mit 17 (13-21) mm beinahe die Hälfte mehr. An den übrigen Zweigen habe ich keine Messungen vorgenommen, weil hier ein deutlich abgesetztes Stammstück überhaupt nicht immer vorhanden ist.

Die Seitenbronchen des menschlichen Bronchialbaums liegen ebensowenig als diejenigen des thierischen in ein und derselben Ebene. Es herrschen in dieser Hinsicht beiderseits ähnliche Verhältnisse. Die obersten Bronchen umklammern ziemlich symmetrisch das Mediastinum von beiden Seiten her, die nachfolgenden legen sich flach nach aussen über das Zwerchfell hinweg. Der Bronchialbaum begrenzt somit wiederum die Hälfte eines schräg nach vorn aufsteigenden kegelförmigen Raums.

Wichtig für den Charakter des Bronehialbaums sind die Längenabstände, in denen sich die Ursprünge der Seitenbronchen theils von einander, theils von der Theilungsstelle der Luftröhre befinden. Ich stelle die bezüglichen absoluten Werthe in Millimetern zunächst zusammen, indem ich daran erinnere, dass als Grenzpunkte jeweilen der untere, weil schärfer eingeschnittene Rand der Bronchen gewählt ist. Als Länge der Trachea ist die Strecke zwischen ihrer Theilungsstelle und dem am Metallgusse scharf ausgeprägten Eingange zum Sinus vocalis angenommen. Jedenfalls ist physiologisch dies der Luftröhrenstamm, und zudem war an den Ausgüssen der Anfang der eigentlichen anatomischen Luftröhre nicht deutlich ausgeprägt.

flour svijkilenen Saehvor- gatus irrigij Varstellimkva Architectar des Itranchial	Länge	Abstand von der Theilungsstelle der Trachea in mm						
	der Trachea	manibre	rechts	Jai polo	lin	ks		
	in mm	Epart, Br.		ler Ventral- ichus		ler Ventral- chus		
	in million	anneral	I.	IV.	I.	ÌV.		
1) Weib von 36 Jahren	10/19 10	3	35	83	43	98		
2) 51 Jahren	115	21.5	44.5	9	37	?		
3) Mann unbekannten Alters	?	23	48	?	50	101		
4) - von 35 Jahren	135	20	43	?	53	101		
5) Weib von 30 Jahren	118	19	38	9	53	9		
6) Mann unbekannten Alters	136	24	46	95	51	110		
7)	134	25	47	?	51	?		
8) - von 34 Jahren 9) 38 Jahren	118	20	43 000	102	47	97		
	122	15	36	85	43	105		
10) 44 Jahren 11) 42 Jahren	115	21	44	99	54	107		
(12)53 Jahren .	126	28	56	9	58	?		
Mittel	135	34	51	9	48	109		
MILLEI	125.4	21.1	44.3	(92.2)	49	(103.5)		
	(115-136)	(3-34)	(35-56)	(83 - 102)	(37 - 58)	(97-11)		

Die fast vollständige Symmetrie der beiderseitigen hyparteriellen Gebiete ist ohne Weiteres ersichtlich. Sie wird nur dadurch etwas beeinträchtigt, dass die Seitenbronchen der linken Seite durchschnittlich um wenige Millimeter tiefer stehen, als diejenigen der rechten. Individuell kommen freilich Ausnahmen von dieser Regel vor, so bei dem 51jährigen Weibe (No. 2) für den ersten, bei dem 34jährigen Mann für den vierten hyparteriellen Bronchus. Die Entfernung des 1. Ventralbronchus von der Theilungsstelle der Trachea entspricht etwa dem dritten Theile ihrer Länge. Ein ebenso grosser Zwischenraum trennt ihn von dem vierten.

Am auffälligsten benimmt sich der bloss rechts vorhandene eparterielle Bronchus. Im Durchschnitt sehen wir ihn fast genau die Mitte zwischen der Trachea und dem 1. hypart. Ventralbronchus einnehmen, von beiden um beiläufig 2 cm entfernt. Wir sind um so mehr darauf angewiesen, diese Stellung als die typische anzusehen, als sie von allen Individuen unsrer Tabelle bis auf zwei eingehalten wird. Diese zwei fallen nun freilich gar sehr und dazu noch in entgegengesetzter Richtung ins Extrem. Der eine (No. 12. -Taf. X. Fig. 25) verlegt den betreffenden Bronchus tief nach unten in die Nähe des 1. hyparteriellen Astes, der andere (No. 1. - Taf. IX. Fig. 21) so weit nach oben, dass er mit der Trachea selbst zusammentrifft. Dass beide verschiedenen Geschlechtern angehören, ist wohl nur Laune des Zufalls. Wie verschieden dabei das Gepräge des Bronchialbaums ausfallen muss, liegt auf der Hand. Es kommt also individuell auch beim Menschen jene hohe Wanderungsfähigkeit noch zur Geltung, welche wir als auszeichnenden Charakter des eparteriellen Bronchus in der Thierwelt getroffen haben. Dieser hoch nach oben verschobene eparterielle Bronchus entspricht offenbar dem »accessorischen« Bronchus von HENLE¹) und ist Veranlassung geworden, dass neben der regelrechten Zweitheilung von einer abnormen Dreitheilung²) der Trachea geredet wird. Wie wenig beide Ausdrucksweisen dem wirklichen Sachverhalte entsprechen und wie sie nur geeignet sind, ganz irrige Vorstellungen zu wecken, bedarf nach allem, was bereits über die Architectur des Bronchialbaums gesagt worden ist, keiner weiteren Erörterung. Solche Fälle sind übrigens noch dadurch von besonderem Interesse, dass sie die Symmetrie der beiden hyparteriellen Gebiete auch für das ungeübte Auge mit besonderer Schärfe zur Geltung kommen lassen.

Der gegenseitige Abstand der hyparteriellen Aeste verdient gleichfalls erwogen zu werden. Ich habe dafür folgende absolute Werthe in mm erhalten.

¹⁾ HENLE, Handbuch der systematischen Anatomie. 2. Bd. S. 268. Braunschweig 1866.

²⁾ FÖRSTER, Handbuch der pathologischen Anatomie. 2. Bd. S. 310. Leipzig 1863. »Theilung der Trachea in drei Bronchialstämme, meist zwei rechte und einen linken, bei übrigens normal gebauten Individuen.« Sollte wirklich, wie das »meist« anzudeuten scheint, eine Abweichung von dieser Anordnung jemals vorgekommen sein? — Die Wahrscheinlichkeit ist nicht eben gross.

B. Spezielle Formverhältnisse.

	Gegenseitiger Abstand der hypart. Bronchen in mm							
	define and	Rechts	in the same	ARION-OR	Links	inconsum 1 alia mi		
	1. u. 2. Br.	2. u. 3. Br.	3. u. 4. Br.	1. u. 2. Br.	2. u. 3. Br.	3. u. 4. Br.		
1) Weib von 36 Jahren	22	7	19	23	6	26		
2) Mann unbekannten Alters.	9	?	?	$\frac{30}{24}$	6 8	15 16		
3) - von 35 Jahren 4) - unbekannten Alters .	20 21	9 13	? 15	24 26	7	26		
4) -, unbekannten Alters. 5) - von 34 Jahren.	19	12	28	22	9	19		
6) 38 Jahren	20	16	13	26	17	19		
7) 44 Jahren	23	10	-22	24	6	23		
8) 53 Jahren	25	25	?	27	10	24		
Mittel	21.4	13.1	19.4	25.4	8.6	21.0		
	(19-25)	(7-25)	(15-28)	(22-30)	(6-17)	(15-26)		

Die vier hyparteriellen Bronchen theilen sich nicht gleichmässig in den ihnen zugewiesenen Raum. Die beiden mittleren sind nicht unerheblich näher zusammengerückt, obwohl auch hier der Individualität ein weiter Spielraum gelassen ist. Der mittlere gegenseitige Abstand der beiden obersten hyparteriellen Bronchen rechts ist gleich der Entfernung des ersten von ihnen vom eparteriellen Seitenaste.

An den Metallausgüssen, denen die obigen Mittheilungen entnommen sind, war die absolute Länge der Stammbronchen nicht mit Sicherheit zu erkennen. Wir mussten daher auf die procentischen Berechnungen verzichten, welche wir früher bei Thieren durchgeführt haben. Diese unliebsame Lücke auszufüllen, sollen noch in Kürze die Ergebnisse an einer frischen Lunge im Anschlusse an die für die Primaten gewonnenen mitgetheilt werden.

Maassverhältnisse des S	Stammbronchus in	Procenten	seiner Stammlänge.
-------------------------	------------------	-----------	--------------------

		olute	Rechte Lunge			Linke Lunge		
	Stamm	Länge des Stammbron- chus in mm		Hypart Absc	erieller hnitt 4. Ven-	Epart. Ab- schnitt Trachea		
niado zonal dan mini	rechts	links	Trachea bis 1. Ven- tralbr.	Ventral- bronchus	4. ven- tralbr. bis Ende	bis 1. Ven- tralbr.	14. Ventral- bronchus	4. Ven- tralbr. bis Ende
Mensch	185	192	28.9	32.9	38.2	29.7	33.8	36.5
Primates: Cebusete.	node (- dine	19.3 (15-22)	43.2 (38-51)	37.5 (29-44)	$ \begin{array}{r} 19.5 \\ (16-23) \end{array} $	38.7 (34-44)	41.8
Pithecus	The Berl		25.3	36.5	38.1 (37-39)	29.5	29.4	(30-48) (41.0) (35-47)

Die Uebereinstimmung des Menschen mit den Anthropomorphen (Pithecus) im Unterschiede von den übrigen Primaten ist augenscheinlich. Weniger vollkommen lässt sich eine solche für einige andere Beziehungen nachweisen. So scheint die auffällig gedrängte Stellung der mittlern Ventralbronchen dem Menschen eigenthümlich zu sein. Hinsichtlich des eparteriellen Bronchus haben wir die Anthropomorphen selbst uneins getroffen, indem sich Satyrus dadurch, dass er ihn verhältnissmässig weit nach oben verlegte, den niedern Primaten Aeby, Bronchialbaum.

65

5

II. Der Bronchialbaum des Menschen.

anschloss. In diesem Punkte würde also nur Troglodytes dem Menschen zur Seite stehen. Dieser selbst kann aber hinwiederum, wenn auch nur in seltenen Ausnahmefällen, den übrigen Primaten näher treten, wie solches durch das bereits besprochene 36jährige Weib bewiesen wird.

2. Kaliberverhältnisse des Bronchialbaums.

In der frischen Lunge stösst die Bestimmung des Bronchialkalibers auf ziemliche Schwierigkeiten. Wir sind auch nur in sehr mangelhafter Weise darüber aufgeklärt, und doch handelt es sich hierbei um Verhältnisse, die für das Verständniss des Organs im gesunden wie kranken Zustande keineswegs als bedeutungslos dürften angesehen werden. Unsern Ausgüssen verdanken wir die erwünschte Gelegenheit, wenigstens theilweise die noch bestehenden Lücken auszufüllen und an einem ebenso treuen wie handlichen Materiale von ganz unveränderlicher Form Messungen in beliebiger Weise anzustellen. Der Ausguss führt uns das Lumen der einzelnen Bronchen verkörpert vor. Von einer übergrossen, künstlichen Erweiterung kann bei dem geringen Drucke, unter welchem das Metall einfliesst, wohl kaum die Rede sein und jedenfalls ist eine allfällige, daraus entspringende Fehlerquelle nicht grösser, als diejenige, welche sich aus der Schlaffheit der frischen und leeren Bronchialröhren für die Messung ergiebt. Zudem ist die Ausdehnungsfähigkeit der gröbern Bronchen, um die es sich hier allein handelt, eine sehr beschränkte. Ich habe übrigens nie unterlassen, auf den Zustand der Bronchialwandungen nach dem Ausgiessen ganz besonders zu achten, und dabei in keinem einzigen Falle eine stärkere Spannung derselben vorgefunden. Hinwiederum wurden aber auch nur solche Ausgüsse zur Verwendung gezogen, welche durch die Skulptur ihrer Oberfläche und getreue Wiedergabe der Zeichnung der Bronchialwand sich als vollkommen auszuweisen vermochten. Ich will hier gleich bemerken, dass sich die knorpligen Bronchialringe nur ausnahmsweise deutlicher abzeichnen, gewiss ein Beweis, dass von einem stärkern Drucke und daheriger unnatürlicher Ausweitung nicht die Rede sein kann. Dagegen kommen die Falten der Schleimhaut häufig mit grosser Deutlichkeit zum Vorschein. Nicht selten erschien der Ausguss der Stammbronchen sowohl als auch ihrer Seitenäste, zumal dem unteren Rande entlang, mit oft sehr zahlreichen, unregelmässig vertheilten, auf dünnen Stielen aufsitzenden Metallkügelchen perlenartig besetzt (Taf. X, Fig. 25 und Taf. IX. Fig. 20, besonders schön aber Taf. IX. Fig. 21). An der Trachea selbst habe ich sie nie gefunden und bei Thieren überhaupt gänzlich vermisst. Letzteres, sowie der Umstand, dass ihr Vorkommen auch beim Menschen ein sehr ungleichartiges zu sein pflegt, leistet der Meinung Vorschub, dass wir es hier nicht mit ganz normalen Bildungen zu thun haben. Sie entsprechen jedenfalls cryptenartigen Vertiefungen der Schleimhautoberfläche. Ob diese aber auf Erweiterungen normaler Schleimdrüsen oder auf wirkliche Neubildungen zu beziehen sind, darüber kann erst eine speziell darauf gerichtete Untersuchung Aufschluss verschaffen. Es scheint nicht, als ob man auf diesen Punkt bisher sonderlich geachtet hätte. Kliniker und pathologische Anatomen, denen ich die Präparate vorlegte, waren wenigstens ebensowenig wie ich selbst im Stande, eine sichere Erklärung zu geben.

Der Querschnitt der gröbern Luftwege ist im allgemeinen rundlich oder leicht oval, nur ausnahmsweise in der einen Richtung etwas stärker zusammengedrückt. Ich benutzte daher zu seiner Bestimmung das Mittel, das sich jeweilen aus dem grössten und kleinsten Durchmesser ergab, indem ich mir den Querschnitt selbst auf Grund dieses Mittels kreisförmig dachte und darnach auf seinen Inhalt berechnete. Dass damit eine absolute Genauigkeit nicht erzielt werden kann, ist selbstverständlich, der in der Rechnung eingeführte Fehler aber auch so gering, dass er für unsere Zwecke gar nicht in Betracht kommt. Zudem ist nicht zu vergessen, dass es sich in der ganzen Angelegenheit überhaupt nicht um streng mathematische Zahlenbeweise handeln kann. Eine gewisse ideelle Abstraction wird ein für alle Mal nicht zu vermeiden sein. Bei der praktischen Bedeutung des Gegenstandes glaube ich neben den quadratischen Kalibern auch die einfachen linearen Durchmesser mittheilen zu sollen. Wir halten dabei Trachea, Stammbronchen und Seitenbronchen vorerst auseinander, um schliesslich sämmtliche Ergebnisse zu einem Gesammtbilde zu verschmelzen.

a. Einzelkaliber der Trachea und der Bronchen.

α) Trachea.

Ich habe von der Luftröhre vier Maasse genommen, eines zu oberst, wo sich ihr mehr cylindrischer Stammtheil aus dem kegelförmigen Raum des Kehlkopfes entwickelt, ein zweites zu unterst, wo sie am Ausgusse durch eine vordere und hintere Einfurchung zur Theilung sich anschickt. Zwei weitere Kaliber kommen in gleichen Abständen von einander und von den genannten Endpunkten zwischen diese zu liegen, das eine also an das Ende des ersten, das andere an das Ende des zweiten Drittels des ganzen Organs. Der Umfang desselben ist ein so ansehnlicher, dass es sich schon verlohnt, jeweilen zwei Durchmesser, den frontalen und den sagittalen, als solche zu verzeichnen, während wir uns bei den Bronchen mit dem Mittel begnügen werden. Alle Zahlen beziehen sich auf Millimeter.

	Absoluter linearer Durchmesser der Trachea in mm									
	am obern E						am untern Ende			
of Betraelft. Barcolum	front.	sag.	front.	sag.	front.	sag.	front.	sag.		
Weib von 36 Jahren .	2	?	9	9	19	18	19	18		
Mann unbekannten Alters	16	16	18	20	21	23	20	22		
- von 35 Jahren	14	15	14	14,5	16,5	17	22	18		
Weib von 30 Jahren .	11	13	12	13	15	15	18	14		
Mann unbekannten Alters	12	18	12	16	17	17	18	18		
- von 34 Jahren .	13	16	15.5	18	17	17	20	20		
38 Jahren	13	16,5	15	16,5	16,5	16	22	16		
44 Jahren	13	16,5	17	18	18	18	22	20		
42 Jahren	13	17	17,5	23	22	23	24	24		
53 Jahren	13	15	12	16	19	19	23	21		
Mittel	13,1	16	14.7	17.2	18.1	18.3	20.7	19,1		
	(11 - 16)	(13 - 18)	(12 - 18)	(13 - 23)	(15 - 22)		(18-24)	(14-		

5*

Die Durchmesser der Trachea wachsen stetig von oben nach unten hin und es ist daher nicht richtig, wenn HYRTL sie von der Mitte an wieder abnehmen lässt. Vom zweiten Dritttheile an stehen beide unter einander so ziemlich im Gleichgewicht, weiter oben tritt dagegen der frontale sehr zurück und die weiter unten cylindrische Trachea verschmälert sich zum sagittal gestreckten Ovale. Es ist nicht schwer, darin die Wirkung der Schilddrüse zu erkennen und es wird daher gerade in diesem Theile die Luftröhre in ihrer Form hauptsächlich durch dieses im Umfange so wandelbare Organ beeinflusst werden. Ich will nicht unterlassen, darauf hinzuweisen, welch hohes Interesse eine genaue Untersuchung der Trachea auf Lage, Gestalt und Umfang bei hochgradigerer Entartung, wie namentlich bei Kropfbildung, vermittelst der Ausgussmethode bieten müsste. Die Verringerung des sagittalen Durchmessers gegen den Kehlkopf hin ist eine nur geringe (im Mittel 3 mm, gleich $\frac{1}{6}$ des anfänglichen Werthes), während diejenige des frontalen bis über 7 mm oder $\frac{1}{3}$ des Ausgangswerthes ansteigt.

Der Quadratinhalt der einzelnen Querschnitte gestaltet sich folgendermassen:

unid der Dissochung.	Qua	Quadratinhalt der Trachea in mm							
	am obern Ende	im ersten Drittel	im zweiten Drittel	am untern Ende					
Weib von 36 Jahren	9	?	266	266					
Mann unbekannten Alters	189	284	380	347					
- von 35 Jahren	165	159	220	314					
Weib von 30 Jahren	113	123	177	201					
Mann unbekannten Alters	177	154	227	255					
- von 34 Jahren	165	222	227	314					
38 Jahren	170	191	206	284					
44 Jahren	170	241	255	347					
42 Jahren	177	321	394	453					
53 Jahren	154	154	284	380					
Mittel	165	201	264	316					
hitter	(113-189)	(123-321)	(177-394)	(201 - 453)					

Das Quadrat bringt, wie zu erwarten, die Kaliberverhältnisse der Luftröhre in verschiedenen Höhen noch deutlicher zur Geltung als der lineare Durchmesser. Der grösste Werth fällt auf das untere Ende, immerhin so, dass derselbe bisweilen bereits im zweiten Dritttheil, wenn nicht ganz, doch nahezu erreicht ist. Die geringe Abnahme im zweiten Falle kommt nicht in Betracht. Berechnen wir das Mittel der Querschnitte in Procenten des untersten als des grössten, so erhalten wir ein Verhältniss wie 52,2:63,6:83,5:100 oder in aufsteigender Richtung von Dritttheil zu Dritttheil eine Abnahme um 16,5, 19,9 und 11,4%, im Ganzen also einen Rückgang auf beinahe die Hälfte des anfänglichen Werthes. Die Trachea ist somit kein cylindrisches, sondern ein trichterförmiges Rohr mit nach unten gekehrter Basis.

B. Specielle Formverhältnisse.

β) Stammbronchen.

Die Maasse der Stammbronchen sind genau denselben Stellen wie früher bei den thierischen Lungen entnommen. Für den linearen Durchmesser genügt das Mittel zwischen dem grössten und kleinsten Werthe.

- destinition states -	e and other	Linearer (Querdu	rchm	esser	der	Stammbr	onchen	in mn	1	
	Sin mour	re	chts		links						
	am Ur-	un	ter dem	Urspru	am Ur-	unter	dem Ursp ypart. Br	runge	e des		
	sprunge	des	des h	ypart.	Brone	hus	sprunge aus der		pare. Dr.	, inchus	1
	aus der Trachea	eparter. Bronchus	1	2	3	4	Trachea	1	2	3	4
Weib von 36 Jahren.	16	12	11	8.5	6.5	5	13.5	9.5	8	8	5
Mann unbekannten Alters	18	12.5	9	?	9	?	16	10.5	7	6	6
- von 35 Jahren.	16	13	9	6	5	?	13	10	8	6	5
Weib von 30 Jahren .	13.5	11.5	9	?	?	?	12.5	9	?	?	9
Mann unbekannten Alters	16	13.5	8.5	?	?	?	13	10	7	?	? 6
- von 34 Jahren.	15.5	12	9,5	8	6	4	13.5	12	9	4.5	4
38 Jahren	15	12.5	10	$\frac{6.5}{7}$	5	$3.5 \\ 6$	13 14	10	6.5 7	5.5	9
44 Jahren	17 21	13.5 14.5	9 12	9	6.5 ?	0	14	11	9	9	?
42 Jahren 53 Jahren	21 19	14.5	9	7	6	9	15	10	8	7	6
55 Janren Mittel	16.7	12.8	9.6	the second second second	(5.8)	(4.6)	14.0	10,1	7.7	Contraction of the local division of the	(5.3)
and and an and an a	(13.5-	(11.5-	(8.5-	1	10.01	(110)	(12.5-	(9	(6.5-		
	21)	14.5)	12)	(and	in an	in state	17)	12)	9)	the state	

Wir heben neben der raschen und beträchtlichen Verjüngung des Kalibers zunächst nur den Umstand hervor, dass das Uebergewicht des rechten über den linken Bronchus bereits mit dem ersten hyparteriellen Seitenaste völlig beseitigt ist. Der weitern Besprechung mag die Berechnung der quadratischen Verhältnisse vorausgehen.

Strange 14	Qu	adratische	er Quer	durel	hmes	ser d	er Stamn	ibronch	ien in 1	mm	
Antipation and and and	1.1.4	re	chts	links							
and a second sec	am Ur-	unt	ter dem	Urspru	inge	-	am Ur-		lem Ursp		
	sprunge aus der	des	des h	ypart.	Brone	hus	sprunge	hy	part. Bro	onchus	•
	Trachea	eparter. Bronchus	1	2	3	4	aus der Trachea	1	2	3	4
Weib von 36 Jahren .	201	113	95	57	33	20	143	71	50	50	20
Mann unbekannten Alters	255	123	64	?	9	?	201	87	38 -	28	28
- von 35 Jahren	201	133	64	28	20	?	133	79	50	28	20
Weib von 30 Jahren .	143	104	64	?	?	?	123	64	9	?	9
lann unbekannten Alters	201	143	57	?	?	?	133	79	38	?	?
- von 34 Jahren	189	113	-71	50	28	13	143	113	64	50	28
38 Jahren	177	123	79	33	20	10	133	79	33	16	13
44 Jahren 42 Jahren	227	143	64	38	33	28	154	64	38	24	?
53 Jahren	$\frac{347}{283}$	165 133	113	?	?	?	227	95	64	?	?
Mittel	200	129	64 73	38 (41)	28	?	177	79	50	38	28
and the second states and	(143-	(104-	(57-	(41)	(27)	(18)	157	81	46	(32)	(22
Rollinstein automation and	347)	165)	113)		10.00	1	(123 - 227)	(64 - 113)	(33 <u></u> 64)	1.	

Der rechte Bronchus beginnt ausnahmslos mit einer beträchtlicheren Weite als der linke und zwar so, dass beide sich durchschnittlich zu einander wie 3:2 verhalten. Nichts wäre indessen irriger, als daraus überhaupt ein Uebergewicht des rechtseitigen Bronchialsystems über das linke ableiten zu wollen. Davon ist gar keine Rede und was der rechte Stammbronchus anfangs vor dem linken voraus hat, das verliert er schon mit der Abgabe des eparteriellen Seitenastes für den obern Lungenlappen so gründlich, dass er nach derselben seinem Genossen nur mit Mühe das Gleichgewicht zu halten vermag. So bleibt es auch im weitern Verlauf der Dinge und wir dürfen daher wohl sagen, dass wie in der allgemeinen Anordnung, so auch im Kaliber des hyparteriellen Bronchialsystems auf beiden Seiten Symmetrie waltet. Die Ausweitung des rechten Bronchus oberhalb seines eparteriellen Seitenastes geschieht ausschliesslich im Interesse dieses letztern. Der menschliche Bronchialbaum folgt somit in dieser Hinsicht dem schon früher bei den Thieren nachgewiesenen allgemeinen Gesetze.

Ich erinnere an das Verhalten einiger Ausgüsse. Die Bronchialbäume des Pferdes und der Ziege sind unterhalb des Trachealstammes symmetrisch, der eine, weil eparterielle Zweige auf beiden Seiten vorkommen, der andere, weil rechts der asymmetrische Zweig den Stammbronchus gänzlich verlassen hat. Demgemäss beginnen auch beide Stammbronchen mit demselben Kaliber, bei der Ziege mit je 154 \Box mm, beim Pferde rechts mit 1031, links mit 908 \Box mm. Die Differenz von 123 \Box mm ist zu gering, um ins Gewicht zu fallen, und dass sie nur zufällig ist, geht des weiteren daraus hervor, dass unterhalb der eparteriellen Zweige der grössere Durchmesser dem linken Stammbronchus mit 962 gegenüber dem rechten mit bloss 908 \Box mm zufällt. Ganz anders gestalten sich die Dinge beim Hasen und beim Hunde, deren Bronchialsystem im Typus mit dem menschlichen übereinstimmt. Bei beiden ist der rechte Bronchus dem linken, und zwar genau um den Werth des eparteriellen Astes, überlegen. Unterhalb des letztern stellt sich volles Gleichgewicht her. Das Kaliber beträgt in \Box mm:

	Rechter	Bronchus	Linker	Differenz	Eparterieller
	oberhalb des epart. Br.	unterhalb des epart. Br.	Bronchus	beider Bronchen	Bronchus
Hase Hund	50 154	41 95	38 95	12 49	13 50

Beim Menschen decken sich die bezüglichen Zahlen allerdings nicht so genau, da die obersten hyparteriellen Bronchen der beiden Seiten von sehr ungleichem Kaliber sind und der rechte sich ebenso durch Schwäche, wie der linke durch Stärke auszeichnet. Daraus erklärt sich in einfachster Weise, dass erst nach der Abgabe dieser Seitenäste die hyparteriellen Stammbronehen gleichwerthig werden, vorher aber, wie die früher mitgetheilte Tabelle bewiesen hat, der rechte dem linken merklich überlegen ist.

Höchst bedeutungsvoll für die menschlichen Lungen erscheint der starke Abfall, den die Weite der beiden Stammbronchen mit dem Auftreten des ersten Seitenastes erleidet. Sie verliert bei dieser Gelegenheit nahezu die Hälfte ihres frühern Kalibers, eine Thatsache, die um so mehr betont werden muss, als sie durch die gewöhnlich allein berücksichtigten linearen Durchmesser nicht in ihrem vollen Werthe zur Geltung kommt. Aehnliches trat uns, wie wir in Erinnerung zu bringen nicht versäumen wollen, bei Pithecus satyrus und den Lemuren entgegen.

Um den Gang der Verjüngung der Luftwege in für verschiedene Individuen leicht und unmittelbar vergleichbarer Weise darzustellen, habe ich die procentische Reduction sämmtlicher Werthe auf die grösste Weite der Trachea vorgenommen. Diese liefert einen neutralen Maassstab für das rechtseitige, wie für das linkseitige Bronchialgebiet und gestattet daher auch sofortige Zusammenstellung beider. Für jedes einzelne von ihnen könnte allerdings die Weite des eigenen Stammbronchus mit Nutzen verwendet werden. Bei ungleichem Werthe der beiden Stammbronchen müssten aber natürlich auch die nach ihnen berechneten Werthe ungleichwerthig ausfallen und des Vortheiles einer unmittelbaren Vergleichbarkeit verlustig gehen. Ich glaube auch hier, um der individuellen Variation zum Ausdruck zu verhelfen, nicht bloss die abstracten Mittelzahlen, sondern die reellen Werthe der einzelnen Individuen mittheilen zu sollen.

	Relat	ive We	ite de				en in Pro rachea	centen	der ş	grösst	en	
		1	echts				links					
	am Ur-	. u	nter der	n Ursp	runge		am Ur-	unte	r dem l	Jrspru	nge	
	sprunge aus der	des	des h	ypart.	Brone	hus	sprunge aus der	des hypart.		bronchus		
erstan Sullemate in a von 44 Jahren, eine	Trachea	epart. Br,	1	2	3	4	Trachea	1	2	3	4	
Weib von 36 Jahren .	75	43	36	21	12	7	54	27	19	19	7	
ann unbekannten Alters - von 35 Jahren.	73 64	$\frac{35}{42}$	19 20	-9	6	-	58 42	25	11	8	S	
Veib von 30 Jahren	71	52	33		0	=	61	$\frac{25}{33}$	16	9	6	
Iann unbekannten Alters	76	56	22	_			52	31	15			
- von 34 Jahren	60	36	23	16	9	4	46	36	20	16	9	
38 Jahren	62	43	28	12	6	3	47	28	12	6	6	
44 Jahren	65	4.1	18	11	10	7	44	18	11	7		
42 Jahren	76	36	25	-	-		50	21	14	-	-	
53 Jahren	74	35	17	10	7		47	21	13	10	7	
Mittel	70 .(60—	41 (35-	$\frac{23}{(17-)}$	(13)	(9)	(6)	49.3	25.6	15	(10)	(7	
	76)	56)	(11-33)			12 6	(42-61)	(18	(11-20)		- 71	

Wir entnehmen hieraus, dass der linke Bronchus, trotzdem er hinter dem rechten an Umfang zurückbleibt, doch eine volle Hälfte des Trachealwerthes für sich in Anspruch nimmt. Beide Bronchen zusammen müssen somit einen etwas grössern Raum einnehmen als die Trachea. Er wird dadurch gewonnen, dass sie durch ihren schrägen Verlauf nicht bloss unten, sondern auch seitlich an letztere anschliessen.

Die Verjüngung der Stammbronchen geschieht in der Regel sprungweise

an der Abgangsstelle eines Seitenbronchus. Die zwischenliegenden Strecken besitzen im Ganzen Cylinderform. Eine bemerkenswerthe Ausnahme hievon macht der linke Stammbronchus von seinem Ursprunge an bis zum Abgange des ersten Seitenbronchus. Er ist in der Mitte dieser Strecke fast immer merklich verengt. Nach unten hin erweitert er sich wieder, ohne jedoch in der Mehrzahl der Fälle völlig zum anfänglichen Kaliber zurückzukehren. Bisweilen freilich bleibt diese Verengerung gänzlich aus oder sie wird durch das Gegentheil, durch Erweiterung, ersetzt. Ueber die verschiedenen Modalitäten giebt die nachfolgende Tabelle in dreifacher Weise Aufschluss. In ihr sind die Werthe des linken Stammbronchus an den drei bezeichneten Punkten (oben, Mitte, unten) zusammengestellt.

	Lineare	Du	dratise rchmes in mm	sser	RelativerDurchmesse Obere quadratische Weite = 100				
mitaine/ a-Honbirthe	Oben	Mitte	Unten	Oben	Mitte	Unten	Oben	Mitte	Unten
Weib von 36 Jahren .	13,5	11.5	11.5	143	104	104	100	72.7	72.7
Mann unbekannten Alters	16	12.5	14.5	201	123	165	100	61.2	82.1
- von 35 Jahren.	13	11.5	13	133	104	133	100	78.2	100
Weib von 30 Jahren .	12.5	10.5	12	123	87	113	100	70.7	91.8
Mann unbekannten Alters	13	13	14	133	133	154	100	100	115.8
- von 34 Jahren	13.5	14	14.5	143	154	165	100	107.7	115.4
38 Jahren	13	12	13	133	113	133	100	85	100
44 Jahren	14	12.5	13.5	154	123	143	100	79.9	92.8
42 Jahren	17	14	15	227	154	177	100	67.8	78
53 Jahren	15	13	14.5	177	133	165	100	75.2	92.6
Mittel	14	12.5	13.6	156	123	145	100	78.9	93.0
	(12.5-	(10.5-	(11.5-	(123-	(87-	(104-		(61.2-	(72.7-
	17)	14)		and the second sec	154)	177)		107)	115.8)

Der rechte Stammbronchus ist gewöhnlich bis zum ersten Seitenaste in seiner Weite unveränderlich, doch habe ich einmal (Mann von 44 Jahren) eine Abnahme des Durchmessers in absteigender Richtung von 17 auf 16 mm = $227 : 201 \square \text{mm} = 100 : 88,5$, und ein anderes Mal (Mann von 53 Jahren) eine Abnahme von 19 auf 17,5 mm = $283 : 241 \square \text{mm} = 100 : 85.2$ beobachtet.

γ) Seitenbronchen.

Die Dickenmessung der Seitenbronchen bietet beim Menschen insofern einige Schwierigkeit, als nicht selten örtliche Einschnürungen und kolbige Anschwellungen gerade am Ursprunge mit einander abwechseln, so dass der mittlere Durchschnitt nur annähernd geschätzt werden kann. Namentlich beim eparteriellen Bronchus wird auch ein breit kegelförmiger Uebergang in den Stamm angetroffen, oft so hochgradig, dass eine völlige Verwischung der Grenzen die Folge ist. Hier kann dann natürlich nur das schmale Ende als Ausdruck der wirklichen Bronchialweite angesehen werden. Ich begnüge mich mit der Wiedergabe der Maasse für die eparteriellen und ventralen Seitenbronchen. Den andern ist eine entscheidende Rolle bei ihrer geringen Anzahl versagt. Ihr Kaliber erreicht günstigsten Falles 5-7 mm.

to heatings dates vehicle	Li	Linearer Durchmesser der Seitenbronchen in mm											
	ice byp	re	chts	tint 1	ain a	links							
	and the	i and	hypart	eriell	omiele	hyparteriell							
	epart.	1	2	3	4	olis 1000	2	3	4				
Weib von 36 Jahren	9	6.5	6.5	5	4.5	8	7	6	4,5				
Mann unbekannten Alters	10 7	77	5	5		$10.5 \\ 9$	5	5	5				
Weib von 30 Jahren	8.5	6	-	1-	-	9.5	and is	0-0	-				
Mann unbekannten Alters.	10	6	6	5	4.5	10 10.5	7	6	4				
- von 34 Jahren	10 7.5	8	5.5	5.5	4.5	9	6.5	5	4				
44 Jahren	8	- 6	6	5	4	10	5	5	-				
42 Jahren	9.5	7.5	-	-	-	11	8	-	-				
53 Jahren	10	7	7	5	(4.4)	8 9.5		7 (5.7)	$\frac{4}{(4.3)}$				
Mittel	9.0 (7—10)	6.8 (6—S)	(6.0)	(5.1)	(4.4)	(8-11)	(0.0)	(0.1)	(4.0)				

In Uebereinstimmung mit dem Verhalten der Stammbronchen charakterisirt ein entschiedenes Uebergewicht über seine Genossen den obersten der beiderseitigen Seitenbronchen. Darin liegt ein wesentliches Moment für eine fühlbare Beeinträchtigung der sonst so treu durchgeführten Symmetrie des hyparteriellen Bezirkes. Rechts ist es eben der eparterielle Bronchus, der die Herrschaft an sich reisst und den benachbarten hyparteriellen Zweig in die untergeordnete Stellung seiner Nachfolger hineindrängt.

	Querdurchmesser der Seitenbronchen in □mm												
	intalosos iltrano	rec	hts	alg.n	nul. Entite	nu jaki	link	8	11001				
	indularse	aunlis	hyparte	riell		hyparteriell							
digen Echematnise durche	epart.	1	2	3	4	1	2	3	4				
Weib von 36 Jahren	64	33	33	20	16	50	38	28	16				
Mann unbekannten Alters .	79	38	Reteres		-	87	-		-				
- von 35 Jahren	38	38	20	20	-	64	20	20	20				
Weib von 30 Jahren	57	28	11-11-1	122211	and 1	71	- Constant	(mail)	1				
Mann unbekannten Alters .	79	28	-	1 201	11-1-	79	38	-	-				
- von 34 Jahren 38 Jahren	79	38	28	20	16	87	50	28	13				
11 Jahron	44 50	50 28	24	24	16	64	33	20	13				
44 Jahren	71	44	28	20	13	79	20	20	1 311				
53 Jahren .	79	38	38	20	T	95 50	50		-				
Mittel	64	36	(28)	(21)	(15)	71	28 (34)	38 (26)	13				
		(28 - 50)	(-0)	()	(10)	(50-95)	(94)	(20)	(15)				

Das Kaliber des zweiten Bronchus entspricht ungefähr der Hälfte des Kalibers des zugehörigen ersten Bronchus und sinkt selbst hinwiederum auf etwa die Hälfte bis zum 4. hyparteriellen Aste. Es war von vorn herein zu erwarten, dass auf diesem Gebiete individuellen Einflüssen ein weiter Spielraum

gelassen sei. Die Durchgehung der einzelnen Fälle bestätigt diese Voraussetzung, ohne weitere bemerkenswerthe Ergebnisse zu liefern. Nur das sei hervorgehoben, dass zweimal (Mann von 35 und von 38 Jahren) der eparterielle Bronchus genöthigt war, sich mit dem nächsten hyparteriellen in die Herrschaft zu theilen, indem beide zu gleichem Umfange auswuchsen.

Es ist aus verschiedenen Gründen von nicht geringem Interesse, das Kaliber der einzelnen Seitenbronchen mit demjenigen des von ihnen aus weiter ziehenden Stückes des Stammbronchus zu vergleichen. Der spezielle Charakter des ganzen Systems kommt erst dadurch zur vollen Geltung. Wir begnügen uns, um die Zahlen nicht überflüssiger Weise zu häufen, mit den Mittelwerthen, aus denen ja ohnehin das Typische am klarsten hervortritt.

	Line	urer Durc	hmesser i	n mm	Quadratischer Durchmesser in mm						
	rechts		lin	ks	rec	hts	links .				
district for the second	Stammbr.	Seitenbr.	Stammbr.	Seitenbr.	Stammbr.	Seitenbr.	Stammbr.	Seitenbr.			
Ursprung aus der Trachea \cdot \cdot Eparter, Br. \cdot Hypart, Br. 1 \cdot $ 2$ \cdot \cdot $ 3$ \cdot \cdot $ 4$ \cdot \cdot	$ \begin{array}{r} 16.7 \\ 12.8 \\ 9.6 \\ 7.2 \\ 5.8 \\ 4.6 \\ \end{array} $	$ \begin{array}{c} \overline{} \\ 9.0 \\ 6.8 \\ 6.0 \\ 5.1 \\ 4.4 \end{array} $	$ \begin{array}{c c} 14.0 \\ \hline 10.1 \\ 7.7 \\ 6.4 \\ 5.3 \\ \end{array} $		2222 129 73 41 27 18		$ \begin{array}{r} 156\\ \hline 81\\ 46\\ 32\\ 22\end{array} $	71 34 26 15			

Aus diesen Zahlen drängt sich uns sofort die wichtige Thatsache entgegen. dass beim Menschen dem Kaliber nach eine Unterordnung der Seitenbronchen unter die Stammbronchen nur in sehr beschränktem Maasse stattfindet. Links fehlt eine solche sozusagen vollständig, rechts besteht sie nur bis zum ersten hyparteriellen Aste, um dann gleichfalls zu verschwinden. Kein Wunder also, wenn die herkömmliche empirische Auffassung aus dieser Sachlage nur das Bild einer gleichartigen dichotomischen Theilung geschöpft und es nicht vermocht hat, durch Aufstellung eines Stammbronchus zur richtigen Erkenntniss durch-Sie hat aus der Gleichwerthigkeit des Kalibers auf Gleichzudringen. werthigkeit in morphologischer Hinsicht geschlossen und die Gruppirung der Zweige auf Grundlage der Lappenbildung vorgenommen. Sonst wäre jedenfalls dem Bronchus des mittlern Lappens der rechten Lunge niemals die Ehre zu Theil geworden, als dritter Bronchialast angesehen zu werden. Man hätte rechts wie links nur zwei bronchiale Endäste anerkannt, wie denn in der That von manchen Anatomen der mittlere Bronchus zu einem Seitenaste des untern gestempelt wird. Diese irrige Auffassung des menschlichen Bronchialsystems war verhängnissvoll für die Erkenntniss des Bronchialsystems überhaupt. Man übertrug das gefälschte Bild ohne Weiteres auf die Säugethiere und verrammelte sich dadurch den Weg zu einer bessern Erkenntniss. Die unbefangene Prüfung der thierischen Lungen hat dieses Hemmniss nunmehr weggeräumt und deren markiges, kräftiges Gepräge uns in den Stand gesetzt, auch aus den schwächlichen und theilweise verwischten Linien der menschlichen Lunge den

grundlegenden Typus herauszufinden. Wir haben hier wiederum einen sprechenden Beleg dafür, wie, nachdem von der menschlichen Anatomie die Anregung zur genaueren Erforschung thierischer Formen ausgegangen, doch wieder um diese vielfach läuternd und fördernd auf jene zurückwirkt.

b. Gesammtkaliber des Bronchialbaums.

Vor kurzem hat Sée 1), auf Grund einer kleinen Anzahl von Messungen, im Widerspruche mit der herrschenden Annahme die Behauptung gewagt, dass nicht allein das Kaliber der beiden Hauptbronchen im Mittel demjenigen der Trachea ziemlich gleich sei, sondern auch das Gesammtkaliber der Bronchialverzweigung jeweilen dem Kaliber des zugehörigen Stammbronchus entspreche. Die Luftwege würden somit unter normalen Verhältnissen keinen Kegel, sondern einen Cylinder darstellen. Störungen im Gleichgewicht zwischen Trachea und Bronchen nach der einen wie nach der andern Seite hin sollten die Folge pathologischer Vorgänge (Tuberkulose und Emphysem) sein. Auch KRAUSE²) nimmt für die Cylinderform gegen die Kegelform Partei. Wir besitzen in unsern Messungen ein erwünschtes Material, um zu einem Entscheide in dieser jedenfalls nicht unwichtigen Angelegenheit beizutragen. Aus dem Kaliber der Seitenäste und des zugehörigen Abschnittes der Stammbronchen lässt sich für jedes Segment des Bronchialsystems das Verhältniss zwischen anfänglichem und späterem Kaliber mit Sicherheit berechnen. Halten wir uns hierbei in erster Linie an die natürlichen Stockwerke, wie sie durch die Anordnung der Seitenbronchen bedingt werden, und unterscheiden wir gleich früher zwischen einer obern und untern Weite, so gilt also, um uns an einem Beispiele deren Bedeutung ins Gedächtniss zurückzurufen, als obere Weite des eparteriellen Stockwerkes der rechten Lunge das Kaliber des rechten Stammbronchus an seinem Ursprunge aus der Trachea, als untere Weite das Kaliber desselben Stammbronchus unterhalb der Abgangsstelle des eparteriellen Bronchus mitsammt dem Querdurchmesser dieses letztern. Im dritten hyparteriellen Stockwerke treffen wir oben auf das Kaliber des Stammbronchus unterhalb des zweiten hyparteriellen Seitenbronchus, unten auf die Weite des Stammbronchus unterhalb des dritten hyparteriellen Astes, dieses selbst und seiner dorsalen Genossen. Jedes Stockwerk reicht somit vom einfachen Stamme nach abwärts bis zu und mit dem nächsten typischen Verzweigungsbezirke. Da der linkseitige Stammbronchus in der Mitte seines eparteriellen Abschnittes gewöhnlich eine Einschnürung erfährt, so ist es nicht unpassend, auch für ihn ein durch letztere begrenztes eparterielles Stockwerk anzunehmen. Demselben geht natürlich ein Seitenbronchus ab.

¹⁾ SÉE, MARC, Du calibre de la trachée et des bronches. Bulletin de l'Acad. de médecine. 2. Série. T. 7. No. 17.

²⁾ W. KRAUSE, Handbuch der menschlichen Anatomie. Hannover, 1879. Bd. II. S. 428.

Primitors	1.	1	8
guinger	Stockwerk	Diff.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4. hypart. Sto	Unten	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4. h)	Oben	33 28 28 29 29 50 16 16 28 29 50 16 16 28 28 28 29 50 16 16 28 29 20 33 33 20 20 20 20 20 20 20 20 20 20
8	twerk	Diff.	$\begin{array}{c} + & 1 \\ + & 1 \\ 1 \\ - &$
in Dmm	3. hypart. Stockwerk	Unten	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3. hypa	Oben	57 28 28 50 50 50 51 51 51 51 51 51 51 51 51 51
einzelnen Bronchialstockwerke a. Rechte Lunge.	erk	Diff.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
en Bronchialstock Rechte Lunge.	2. hypart. Stockwerk	Unten	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
nen Bre Rech	2. hypart	Oben U	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
einzelı a.	rk	Diff. 0	
der	Stockwerk	1	++++++++++++++++++++++++++++++++++++
Kaliber der	1. hypart. Sto	Unten	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
K	1. hy	Oben	
	twerk	Diff.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Epart. Stockwerk	Unten	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Eps	Oben	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			Weib von 36 Jahren201177-24Mann unbekamten Alters201177-53Tool 35 Jahren201177-53Weib von 30 Jahren201177167-10Wann unbekamten Alters201177-53Wann unbekamten Alters201177-53Wann unbekamten Alters227193-11138 Jahren22719344 Jahren227193-11142 Jahren23610142 Jahren233213-2443 Jahren235193-2443 Jahren236104-23643 Jahren236114-33633 Jahren236104-236133113123123-3471040133133133133-3460133133133-2360133133133-2360133133133

Dass die untern Stockwerke gegenüber den obern an absoluter Weite stetig abnehmen, war nach Allem, was wir über die Grössenverhältnisse der einzelnen Abschnitte des Bronchialbaums erfahren haben, von vornherein zu erwarten. Auffällig dagegen ist das verschiedene Verhalten der einzelnen Stockwerke bezüglich der Stellung ihrer Endweite zur Anfangsweite. Das oberste Stockwerk verengt sich in beiden Lungen nach unten hin, während sich alle untern Stockwerke, vom zweiten hyparteriellen Aste an gerechnet, und unter diesen wiederum hauptsächlich die beiden ersten, in der gleichen Richtung erweitern. Das zweite Stockwerk, das heisst dasjenige des ersten hyparteriellen Astes, folgt rechts dem Beispiele des höher gelegenen eparteriellen, indem es gleichfalls an Umfang abnimmt; links schliesst es sich an die übrigen hyparteriellen Bezirke an und gewinnt gleich ihnen nach unten an Ausdehnung. Der Raum der Stockwerke entspricht daher einem Kegel, dessen Spitze in den obern Partien nach abwärts, in den untern nach aufwärts gekehrt ist. Ein Blick auf die ausführlichen Tabellen zeigt übrigens, dass beinahe in allen Stockwerken einzelne Unbotmässigkeiten vorkommen und dass auch das Maass der kegelförmigen Verjüngung oder Erweiterung innerhalb ziemlich weiter Grenzen schwankt. Ueberall vollzieht sich aber das Gesetz, und das ist für die Beurtheilung der Mittelwerthe und die Zulässigkeit der aus ihnen zu ziehenden Schlüsse von Wichtigkeit, in der überwiegenden Mehrzahl der Individuen.

Die Grösse der einzelnen Stockwerke giebt weder über den Typus der Bronchialverzweigungen in ihrer Gesammtheit noch über die Grössenverhältnisse der peripherischen Bahnen zu den centralen Aufschluss. Einen solchen gewinnen wir erst, wenn wir die Gesammtweite aller unterhalb eines bestimmten Punktes der Stammbronchen entstehenden Verzweigungen mit den letztern in Verbindung bringen. Wie solches zu geschehen hat, wurde bereits bei den thierischen Lungen auseinandergesetzt und wir legen daher der bezüglichen Rechnung einfach die dort aufgestellten Prinzipien zu Grunde.

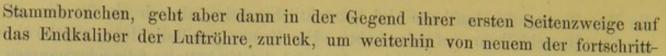
- aspan	central am Ur- prunge		chte L	unge		124		T	nko Lu		11413			
- aspan	am Ur-	1	erinheri			10100	121. 111/	Li	inke Lunge					
- sp av	States of the second		- in the state	sch bis	zum	ior	central							
	us der	epart.	• hypart	erielle	n Bron	chus	am Ur- sprunge aus der	epart.	hypart	erieller	n Bron	chus		
The second second second	Crachea	Br.	I.	II.	ш.	IV.	Trachea	Br.	I.	п.	III.	IV.		
 von 35 Jahren. Weib von 30 Jahren. Mann unbekannten Alters von 34 Jahren. - 38 Jahren. - 44 Jahren. - 42 Jahren. - 53 Jahren. Mittel 	201 255 201 143 201 189 177 227 347 283 222 143—	$\begin{array}{c} 177\\ 202\\ 171\\ 161\\ 222\\ 192\\ 167\\ 193\\ 236\\ 212\\ 193\\ (161-$	$\begin{array}{c} 192\\ 181\\ 140\\ 149\\ 164\\ 188\\ 173\\ 142\\ 228\\ 181\\ 174\\ (140-$	239 	235 	$ \begin{array}{c} 238 \\ - \\ - \\ 246 \\ 192 \\ 2111 \\ - \\ (222) \end{array} $	$\begin{array}{c} 143\\ 201\\ 133\\ 123\\ 133\\ 143\\ 133\\ 154\\ 227\\ 177\\ 157\\ \end{array}$	$104 \\ 123 \\ 104 \\ 87 \\ 133 \\ 154 \\ 113 \\ 123 \\ 154 \\ 133 \\ 123 \\ 123 \\$	$121 \\ 174 \\ 143 \\ 135 \\ 158 \\ 200 \\ 143 \\ 143 \\ 190 \\ 129 \\ 154$	$ \begin{array}{r} 177 \\ - \\ 158 \\ - \\ 175 \\ 221 \\ 150 \\ 175 \\ 209 \\ 156 \\ (177) \end{array} $	199 156 	185 		

Da vom zweiten hyparteriellen Aste an die Messungen lückenhaft sind und nicht mehr alle Individuen umfassen, so lassen sich nur die Mittelzahlen je der drei ersten Kolonnen unmittelbar verwerthen. Sie beweisen für beide Lungen eine vorübergehende Abnahme der Bronchialweite. Ob und in wiefern weiterhin wieder eine Zunahme eintritt, erfahren wir genauer als aus obigen Zahlen, wenn wir für jedes Individuum die Weite des Bronchialbaums nach Procenten seines Anfangswerthes berechnen und durch Beseitigung des störenden Einflusses der verschiedenen absoluten Grösse auch die aus ungleich vielen Individuen gezogenen Mittelwerthe vergleichbar machen.

	-	Walte	De De		1 contraction	·						
namoriound.Sn uot	producion	veite c	les Br	onchial	Daums	in Pro	centen s	eines A	Anfang	(swert	nes.	
mag, Dar Kanta	and a straight of the	R	lechte	Lunge	orch 1	Linke Lunge						
t. Ein Bliek auf	central	ta se	peripherisch bis zum						periphe	erisch bi	s zum	
dien Stockwerken	am Ur- sprunge aus der	epart.	hy	parteriell	len Bronc	hus	am Ur- sprunge aus der	epart.	hyparteriellen Bronchus			
	Trachea	Br.	I.	П.	III.	IV.	Trachea	Br.	I.	П.	III.	IV.
Weib von 36 Jahren .	100	88.0	95.5	118.9	116.9	118.4	100	72.7	94.6	119.6	130.9	129.41
Mann unbekannten Alters	100	79.2	71.0		110.5	110.4	100	61.2	86.6		100.2	
- von 35 Jahren.	100	85.1	69.7	83.6	89.6	-	100	78.2	107.5		117.3	125.0
Weib von 30 Jahren	100	112.6	104.2	10200	1022	non Ta	100	70.7	109.8	-		-
Mann unbekannten Alters	100	110.4	81.6		10-00 110	01-01	100	100.0	and the second se	131.6		-
- von 34 Jahren	100	101.6	99.5		129.6	130,1	100	107.6		154.5		
38 Jahren	100	94.4	97.8		105.1	108.5	100	84.9		112.8		
44 Jahren	100	85.0	62.5		89.4	92.9	100	79.9		113.6		-
42 Jahren	100	68.0	65.7		90.1	TUTTER	100 100	$67.9 \\ 75.2$	83.7			104.5
53 Jahren	100	74.9	63.9 81.1		103.4	112.5	100	79.8	100.4	116 4	126.0	
Mittel	100	(68-	(62-	and the second se	(89-	(93-	100	(61-	(73-	188-	(103-	(104-
	1910 1911	113)	104)	131)	130)	130)	112.18	108)	140)			
	and the state of the			second and a								

Es ist hierdurch bewiesen, dass die Weite der Bronchialbahn rechts wie links von ihrem Ursprunge an erst eine Strecke weit abnimmt, um dann über das ursprüngliche Maass hinaus wieder zuzunehmen. Die Abnahme beträgt etwa 1/5 des anfänglichen Kalibers und erreicht ihren Höhepunkt links im eparteriellen, rechts im ersten hyparteriellen Stockwerke. Dort ist bereits mit dem ersten, hier erst mit dem zweiten hyparteriellen Stockwerke das ursprüngliche Kaliber wieder hergestellt, um mit jedem weitern Stockwerke eine neue Steigerung zu erfahren. Ob sie immer, wie in den von uns geprüften Fällen, links etwas stärker ausfällt als rechts, oder ob dies nur zufällig ist, mag dahin gestellt bleiben. Ich lege auch weniger Gewicht auf das Maass der Kaliberveränderung, als auf die allgemeine Thatsache, dass eine solche, und zwar in entgegengesetzter Richtung, stattfindet. Eine grössere Anzahl von Beobachtungen würde sonder Zweifel in die Zahlen selbst noch mancherlei Veränderungen bringen. Die Erweiterung ist im Ganzen eine auffällig geringe und erreicht nur individuell einen grössern Werth. Sie kommt, wie sofort ersichtlich, ausschliesslich dem Gebiete des sogenannten untern Lappens zu Gute, und wenn wir bedenken, dass der zu ihm tretende Abschnitt des Stammbronchus eine starke Verjüngung erlitten hatte, so muss speziell im Verhältnisse zu diesem

die Erweiterung der Luftbahn viel beträchtlicher sein, als wir sie für den gesammten Bronchialbaum gefunden haben. Für die wenigen Individuen, welche eine vollständige Messung gestatteten, berechnet sich das Verhältniss folgendermaassen.


dieses facility Venery		Bronch	ialbaum d	les untern	Lappens.				
	A	bsolute W	eite in 🗆	mm	Relative Weite des peripherischen En-				
	ree	chts	liı	nks	des in Proc. der Stammweite				
	Stamm- weite	Periphe- rische Weite	Stamm- weite	Periphe- rische Weite	rechts	links			
Weib von 36 Jahren Mann von 35 Jahren	95	141	71 79	135 104	148	190 132			
34 Jahren	71 79	129 98	113 79	139 99	182 124	123 125			
44 Jahren 53 Jahren	64		79	135	208				

Wir haben bisher die beiden Hälften des Bronchialbaums gesondert, betrachtet. Es bleibt uns noch übrig, sie einheitlich verschmolzen der Trachea gegenüber zu stellen, um die beiderseitigen Kaliberverhältnisse kennen zu lernen. Wir wählen zu diesem Behufe wieder den untersten, weitesten Theil der Luftröhre, aus dem ja die Bronchialwege auch unmittelbar hervorgehen. Den absoluten Werthen in □mm füge ich sofort die Berechnung des Bronchialbaums in Procenten der Trachea bei.

horen und bessern schlass als die	Gesam	sammtkaliber des Bronchialbaums in 🗆 mm							Gesammtkaliber des Bronchialbaums der Trachea				
umlichsto Schilde-	Stamm	Central	Р	eripher	isch b	is zun	1.00	Central			bis zum		
f. Init. Illioriasso	der Tra-	am Ur- sprunge aus der	epart.	hypart	erielle	n Broi	ichus	am Ur- sprunge aus der	epart.	hyparteriellen Bronchus			
er joner das Wort	chea	Trachea	Dw	L	п.	III.		Trachea	Br.	, I.	ш.	III.	IV.
eib von 36 Jahren ann unbekannten Alters eib von 35 Jahren eib von 30 Jahren ann unbekannten Alters - von 34 Jahren 	266 347 314 201 255 314 284 347 453 380 316 (201- 453)	$ \begin{array}{r} 344 \\ 456 \\ 334 \\ 266 \\ 334 \\ 332 \\ 310 \\ 381 \\ 574 \\ 460 \\ 379 \\ (266 - 574) \\ 574) \end{array} $	$\begin{array}{r} 281\\325\\275\\248\\355\\346\\280\\316\\390\\345\\316\\(248-\\390)\end{array}$		$\begin{array}{c} 410\\ +\\ 326\\ +\\ 468\\ 325\\ 363\\ +\\ 401\\ (382) \end{array}$	434 336 	423 472 355 (417)	129.3 131.4 106.3 132.3 130.9 105.7 109.2 109.8 126.7 121.1 120.3 (105.7—	105,6 93,6 87,6 123,3 139,2 110,2 98,3 91,1 86,1 90,1 102,1 (86,8-	$\begin{array}{c} 117.7\\ 102.3\\ 90.1\\ 141.3\\ 126.3\\ 123.5\\ 111.3\\ 82.1\\ 92.3\\ 81.6\\ 106.8\\ (81.6-\end{array}$	$\begin{array}{r} 154.1 \\ - \\ 103.8 \\ - \\ 149.1 \\ 114.4 \\ 104.6 \\ - \\ 105.5 \\ (121.9) \\ (103.8 - \end{array}$	163.2 	159.0

SÉE (a. a. O.) will die Gesammtweite der beiden Bronchenwurzeln bald enger, bald weiter als die benachbarte Trachea gefunden haben und schätzt im Mittel beide einander ziemlich gleich. Ich kann dies nicht bestätigen, sondern finde in allen Fällen beide Bronchen zusammen weiter als die Trachea, im Mittel sogar um nicht weniger als ein Fünftel.

Ueberblicken wir die Luftwege in ihrer ganzen Länge, so erkennen wir, wie schon vom obern Ende der Trachea an eine trichterförmige Erweiterung angestrebt wird. Sie schreitet stetig fort bis zur Wurzel der beiden

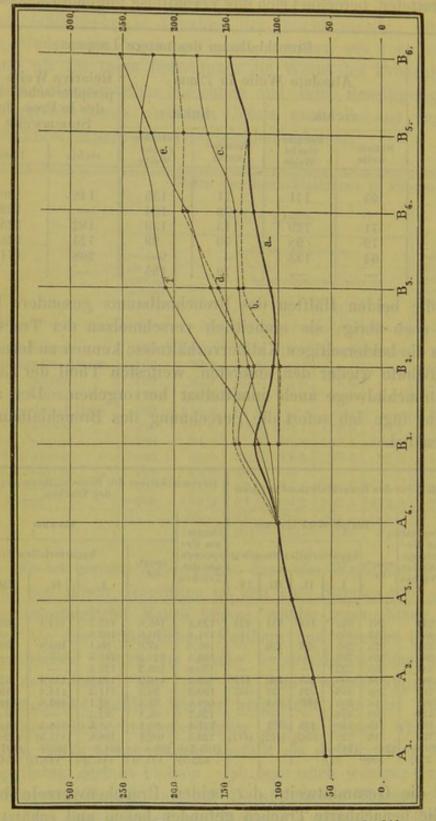


Fig. 8. Graphische Darstellung des Gesammtkaltbers des Bronchialbaums in Procenten des Endkalibers der Trachea. A^1 , oberes Ende, A^2 , erstes, A^3 , zweites Drittel, A^4 , un-teres Ende der Trachea. — B^1 , Wurzel der Stammbronchen; B^2 , Gegend des eparteriellen, B^3-B^6 , des ersten bis vierten hyparteriellen Seitenbronchus. - a, Mensch; b, Cynocephalus babuin; c, Pferd; d, Hund; e, Hase; f, Robbe.

lichen Richtung zu huldigen. Abgesehen von dieser localen Verengerung wiederholt der menschliche Bronchialbaum das Verhalten des thierischen, nur dass die trichterförmige Erweiterung im allgemeinen auf ein bescheideneres Maass beschränkt bleibt. Einige Thiere (Hase, Hund, Cynocephalus) besitzen übrigens eine ähnlich verengte Stelle wie der Mensch. Ueber alles weitere und namentlich über einzelne Beziehungen ertheilt eine graphische Darstellung rascheren und bessern Aufschluss als die ausführlichste Schilderung. Ich überlasse daher jener das Wort (Fig. 8).

Die secundären des Verzweigungen menschlichen Bronchialbaums verhalten sich gerade so wie die primären. Mässige Erweiterung der Luftbahn nach der Peripherie hin ist auch für sie maassgebend. Bezügliche Belege bilden den Inhalt der nachfolgenden Tabelle. Ein Rückschluss von den wirklich untersuchten Seitenbronchen auf alle andern darf wohl ohne Weiteres gezogen werden und

80

mogloud gas and maidena	TUN	Gesam	mtkalih	lären V	Verzweigungen							
	4(1 2)	a	in Proc. des zuge hörigen Stammes									
	epart	t. Br.	1. hypa rec	rt. Br. hts	1. hyp: lit	irt. Br. iks	epart. 1. hyp Br. Br.		1. hyp. Br.			
your unuffield yell & and i	Stamm	Aeste	Stamm	Aeste	Stamm	Aeste	at m	rechts	links			
Weib von 36 Jahren Mann von 35 Jahren 34 Jahren 38 Jahren 44 Jahren 42 Jahren 53 Jahren Mittel	$ \begin{array}{c c} 64\\ 38\\ 79\\ 44\\ 50\\ 71\\ 79\\ 60.7 \end{array} $	52 80 40 64 77 82 65.8	33 38 38 50 28 44 38 38,4	$ \begin{array}{r} 44 \\ 31 \\ 48 \\ 40 \\ 36 \\ - \\ 40 \\ 39.8 \end{array} $	$50 \\ 64 \\ 87 \\ 64 \\ 79 \\ 95 \\ 50 \\ 69.9$	566511474881078283.7		$133.3 \\ 81.6 \\ 126.3 \\ 80.0 \\ 128.6 \\ \\ 105.3 \\ 103.6 \\ 103.6 \\ 1000 \\$	112.0 101.5 131.0 115.0 111.4 112.0 164.0 119.7			

zwar um so unbedenklicher, als wir auch bei thierischen Lungen zu ganz denselben Resultaten gelangt sind.

C. Lappenbildung der Lunge.

Wie gering man auch über die Lappenbildung in allgemein morphologischer Hinsicht denken mag, für die spezielle Anatomie behält deren Product seinen anerkannten und unbestreitbaren Werth. Es lohnt sich daher der Mühe, die relative Grösse dieser Lappen für den Menschen genauer, als es bisher geschehen ist, festzustellen, zumal dabei die Hoffnung vorhanden ist, über die Art des Wachsthums der Lunge etwas zu erfahren und darüber ins Klare zu kommen, ob dasselbe in allen Theilen gleichförmig oder aber ungleichförmig vor sich geht. An der Lösung dieser Frage dürfte wohl Theorie wie Praxis einiges Interesse nehmen. Zwei Wege standen der Untersuchung offen, derjenige der Bestimmung des Gewichtes und derjenige der Bestimmung des Volumens. Ein jeder hat seine Vortheile und birgt hinwiederum seine Gefahren. Absolute Sicherheit bietet weder der eine noch der andere. Nach reiflicher Ueberlegung habe ich mich für den zweiten entschieden, da das Gewicht durch den verschiedenen Zustand des Lungengewebes, durch ungleiche Blutfülle, durch Hypostase und Ablagerung von Krankheitsstoffen grössern Schwankungen und zahlreichern Zufälligkeiten unterworfen ist, als das Volumen. Die gefundene Constanz der Ergebnisse aus einer grösseren Beobachtungsreihe bietet übrigens die beste Gewähr dafür, dass das typische Grundgesetz mächtiger war als die individuellen Fehlerquellen.

Alle Bestimmungen betreffen die Lunge in ihrem natürlichen erschlafften Zustande nach der Herausnahme aus der Brusthöhle. Sie wurden an kindlichen Organen vermittelst eines genau calibrirten Gefässes mit aufgeschliffener Glasplatte, durch deren centrale Oeffnung vermittelst einer Burette nach vorheriger Einbringung des Präparats soviel Wasser eingeführt wurde, als zur

Aeby, Bronchialbaum.

6

genauen Füllung erforderlich war, vorgenommen. Bei Erwachsenen führte Verdrängung des Wassers aus einem grossen, mit passendem Ausflussrohr versehenen Gefässe vermittelst der von einem Gewichte niedergezogenen Lunge zum Ziele. Jeder Lappen wurde für sich allein geprüft, nachdem die zugehörigen Blutgefässe und Luftröhrenäste dicht an der Oberfläche abgetrennt worden waren. Er schwebte während der Untersuchung frei in der Flüssigkeit, die ihn eben überdeckte, so dass von irgend welchem schädlichen Drucke nicht die Rede sein konnte.

Wir halten uns zunächst an die Erwachsenen, um nachher auf die Kinder zurückzukommen. Die pathologisch-anatomischen Notizen verdanke ich dem pathologischen Institute. Die Reihenfolge mag durch das Alter bestimmt werden. Das absolute Volumen in Kubik-Centimetern liefert das Material für die procentische Berechnung der einzelnen Lappen in ihrem Verhältnisse zum ganzen Organ, sowie der linken Lunge gegenüber der rechten. Männer und Weiber sind natürlich auseinander zu halten.

			Ab	solutes	Volume	n in 🖓	Jem		mmt-	
	Alt	ter	Re	chte Lui	nge	Linke	Lunge	volu	er	Bemerkungen
			Oberer Lappen			Oberer Lappen	Unterer Lappen	rechten Lunge	linken Lunge	.0
1)		Jahre	274	97	364	257	278	735	535	Lungen normal Tetanus.
2)	28	10-110	260	132	326	228	344	718	572	Leichtes Emphysem.—Krebs des Peritoneum und der
	he an					- * 0				Nieren.
3)	34	-	230	88	362	256	311	680	567	Oedem der Lungen. — Krebs des Magens und der Leber.
4)	36		380	252	560	354	360	1192	714	Beiderseitiges Emphysem. Rechte Lunge stark ad- härent.
5)	36	nin <u>i</u> ning	380	90	302	430	160	.772	590	Starker Bronchialkatarrh. — Perniciöse Anämie.
6)	36	-	284	92	496	310	356	872	696	Lungen normal. — Anus praeternaturalis.
7)	38	-	358	160	512	266	528	1030	794	Starkes Oedem der Lungen.
8)	41	-	229	105	268	323	287	602	610	Leichtes Oedem der Lungen.
9)	45	in (1	438	124	420	614 ′	412	982	1026	Starkes Emphysem beider Lungen. — Erysipelas ca- pitis.
10)	45	10.12	274	124	564	252	506	962	758	Emphysem. Oedem.
11)	49	-	542	220	524	540	392	1286	932	Emphysem.
12)	51	-	400	122	486	466	426	1008	892	Oedem. Thrombose der Art. pulmonalis.
13)	55	-	318	94	356	454	448	768	902	Leichtes Oedem.
14)	56	-	336	125	250	262	583	711	845	Linkseitiges Emphysem des untern Lappens in Folge von Rippenfractur.
15)	58	-21	348	143	362	485	448	853	933	Oedem. Sehnige Verdickun- gen im obern Lappen. Bronchopneumonie rechts.
16)	63	-	450	179	452	394	394	1081	788	Lungen normal. — Hirner- weichung.
17)	63	-	.292	210	436	278	590	938	868	Oedem.
18)	?	-	310	100	440	400	326	850	726	
19)	?	2041 C	212	50	210	240	146	472	386	House warmen and and
20)	?	-	334	144	470	455	308	948	763	

Männliche Lungen.

C. Lappenbildung der Lunge.

Weibliche Lungen.

			Ab	solutes	Volume	en in 🛱	bcm		mmt-	Star with a
	Alt	ter	Re	chte Lui	nge	Linke	Lunge	d		Bemerkungen
			Oberer Lappen	Mittlerer Lappen	Unterer Lappen	Oberer Lappen	Unterer Lappen	rechten Lunge	linken Lunge	
1)	24	Jahre	214	134	288	308	252	636	560	Lobuläre Hepatisationen bei der Lungen. Tuberkel in
2) 3)	28 38	1-1	238 266	86 106	$\begin{array}{c} 274 \\ 266 \end{array}$	290 176	$\begin{array}{c} 302\\ 250 \end{array}$	598 638	$\begin{array}{c} 592\\ 426\end{array}$	obern Lappen rechts. Lungen normal. — Puerpera Leichtes Oedem. — Spondy litis. Affection des Rücken
4)	30	-	272	114	306	286	300	692	586	markes. Tuberkulose der linken
5)	30	-	246	62	324	338	228	- ⁶³²	566	Lunge. Lobuläre Hepatisationen. Beiderseitige Pleuritis mi
6)	33	-	410	150	350	452	470	910	922	Exsudat. Leichtes Oedem.
7)	34	-	234	84	400	200	.400	718	600	Lungen normal.
8)	35	- 111 (1994)	308	210	410	324	334	928	658	Oedem und Atelectasie links Lobuläre Pneumonie rechts.
9)	36		174	151	436	281	316	761	597	Links oberflächlich stark Pseudomembranen. Sons
0)	40	-	324	98	307	336	256	729	592	normal. Leichtes Oedem. — Nephri
1)	43	-	225	96	266	286	225	587	511	tis. Schwangerschaft. Oedem.
2)	52	-	304	122	368	281	226	794	507	Schwartige Auflagerungen - Krebs des Uterus un
3)	56	-	225	94	300	260	287	619	547	Bauchfells. Oedem. Hochgradige Ana
4)	59	L and	236	60	200	206	222	496	428	mie. Oedem. Bronchopneumonie
5) 6)	82 ?	N.S. CAR	380 255	127 126	349 308	406 288	284 294	856 689	690 582	Peritonitis carcinomatosa Tod aus Altersschwäche. Oedem. Anämie.

Männliche Lungen.

	Relativ	Relatives Volumen in Procenten der ganzen Lunge										
Alter	R	echte Lun	ge	Linke	Lunge	volumen der linken Lunge						
And A Con	Oberer Lappen	Mittlerer Lappen	Unterer Lappen	Oberer Lappen	Unterer Lappen	in Proc. der rechten						
1) 21 Jahre 2) 28 - 3) 34 - 4) 36 - 5) 36 - 6) 36 - 7) 38 - 8) 41 - 9) 45 - 10) 45 - 11) 49 -	$\begin{array}{c} 37.3\\ 36.2\\ 33.8\\ 31.9\\ 49.2\\ 32.7\\ 34.7\\ 38.0\\ 44.6\\ 28.5\\ 42.1\\ \end{array}$	$\begin{array}{c} 13.2\\ 18.4\\ 12.9\\ 21.1\\ 11.6\\ 10.5\\ 15.6\\ 17.4\\ 12.6\\ 12.9\\ 17.1\\ \end{array}$	$\begin{array}{r} 49.5\\ 45.4\\ 53.3\\ 47.0\\ 39.1\\ 56.8\\ 49.7\\ 44.5\\ 42.8\\ 58.6\\ 40.8\end{array}$	48.0 39.8 45.1 49.6 72.9 44.5 33.5 53.0 59.8 33.2 57.9	$52.0 \\ 60.2 \\ 54.9 \\ 50.4 \\ 27.1 \\ 55.5 \\ 66.5 \\ 47.0 \\ 40.2 \\ 66.8 \\ 42.1 \\ 1$	$\begin{array}{c} 72.8\\79.6\\83.4\\59.9\\76.4\\79.8\\77.1\\101.3\\104.5\\78.8\\72.5\end{array}$						

83

	Relatives Volumen in Procenten der ganzen Lunge									
Alter	R	echte Lun	ge	Linke	Lunge	volumen der linken Lunge				
Alexandream and	Oberer Lappen	Mittlerer Lappen	Unterer Lappen	Oberer Lappen	Unterer Lappen	in Proc. der rechten				
12) 51 Jahre	39.7	12.1	48.2	52.3	.47.7	88.5				
13) 55 -	41.4	12.2	46.4	50.3	49.7	117.4				
14) 56 -	47.2	17.6	35.2	31.0	69.0	118.8				
15) 58 -	40.8	16.8	42.4	51.9	48.1	109.4				
16) 63 -	41.6	16.6	41.8	50.0	50.0	72.9				
17) 63 -	31.1	22.4	46.5	32.0	68.0	92.5				
18) ?	36.5	11.8	51.7	55.1	44.9	85.3				
19) ? -	44.9	10.6	44.5	62.2	37.8	81.8				
20) ?	35.2	15.2	49.6	59.6	40.4	77.5				
Aller Reparties		Veiblid								
1) 24 Jahre	33.7	21.1	45.2	55.0	45.0	88.1				
2) 28 -	39.8	14.4	45.8	48.9	51.1	99.0				
3) 28 -	41.7	16.6	41.7	41.3	58.7	66.7				
4) 30 -	39.2	16.5	44.3	48.8	51.2	84.7				
5) 30 -	38.8	9.8	51.3	59.7	40.3	89.6				
6) 33 -	45.1	16.5	38.4	49.0	51.0	101.3				
7) 34 -	32.6	11.7	55.7	33.3	66.6	83.5				
8) 35 -	33.2	22.6	44.2	49.2	50.8	70.9				
9) 36 -	22.9	19.9	57.2	47.1	52.9	78.5				
10) 40 -	44.4	13.4	42.1	56.8	43.2	81.2				
(11) (43) -	38.3	16.3	45.3	56.0	44.0	86.9				
12) 52 -	38.3	15.4	46.3	55.4	44.6	63.8				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36.3	15.2	48.5	47.5	52.5	88.3				
Contraction of the second second second second second	47.6	12.1	40.3	-48.1	51.9	86.3				
The second se	44.4	14.8	40.8	58.8	41.2	80.6				
16) ?	37.0	18.3	44.7	49.5	50.5	84.5				

Als Mittel berechnet sich aus den Einzelwerthen der vorstehenden Tabellen.

affante farvier and	V	olumen d	er einzeln	en.	Gesammtvolumen						
-HILLARA	R	echte Lun	ige	Linke	Lunge	de	er	beider			
	Oberer Lappen	Mittlerer Lappen	Unterer Lappen	Oberer Lappen	Unterer Lappen	rechten Lunge	linken Lunge	Lungen			
Absolute Werthe	d'end	in the mill	elitera elitera	in section V	NOV LUCK	Lunger	- 6,14				
Ter Balego	332.4	132.6	408.0	363.2	381.6	873.0	744.8	1617.8			
Männer.	(212 <u></u> 450)	(50 - 252)	(210— 564)	(228 - 540)	(146 - 590)	(472 - 1286)	(386— 1026)				
	269.4	113.8	322.0	294.9	290.4	705.2	585.3	1290.5			
Weiber.	(174-	(60-	(200	(176-	(222 - 470)	(496-928)	(426 - 922)				
Procentische Werthe.	410)	150)	400/	452)	410)	323)	522)				
111	38.4	14.9	46.7	49.1	50.9	100	86.5				
Männer.	(28.5 - 49.2)	(10.5 - 22.4)	(35.2 - 56.8)	(31.0 - 72.9)	(27.1 - 69.0)	5	(59.9 - 118.8)				
	38.3	15.9	45.7	50.3)	49.7	100 -	83.4	-			
Weiber.	(22.9-	(9.8-	(38.4-	(33.3-	(40.3-	A DECISION	(63.8-				
	47.6) 38.4	22.6) 15.4	$57.2) \\ 46.2$	$59.7) \\ 49.7$	$66.6) \\ 50.3$	100	$101.3) \\ 85.0$	-			
Mittel aus beiden.	22.9-)	(9.8-	(35.2-	(31.0-	(27.1-		(59.9-				
10.00	49.2)	22.6)	57.2)	72.9)	69.0)	-	118.8)				

Für die Lungen besteht diesen Zahlen zufolge kein anderer Geschlechtsunterschied als derjenige der absoluten Grösse. Sie sind beim Weibe im Durchschnitt fast genau um ein Viertel weniger umfangreich als beim Manne. Den Werth der linken Lunge finden wir um 15 Proc. kleiner als denjenigen der rechten, was dem allgemein angenommenen Verhältnisse von 11:10 so nahe steht, als man es bei den beträchtlichen individuellen Schwankungen nur erwarten kann. Wichtig ist in dieser Hinsicht, dass die linke Lunge keineswegs immer hinter der rechten an Ausdehnung zurückbleibt, dass sie vielmehr individuell unter Umständen grösser gefunden wird, wo nichts zu der Annahme pathologischer Veränderungen berechtigt. Auf der andern Seite kommen hinwiederum Fälle von auffallender Kleinheit vor, so dass sich in unsern Tabellen die Extreme ziemlich genau das Gleichgewicht halten dürften. In die linke Lunge theilen sich die beiden Lappen durchschnittlich beinahe gleichmässig, ohne individuelle Abweichungen in entgegengesetzter Richtung auszuschliessen. Es kann der obere, wie der untere Lappen seinem Genossen weit überlegen sein. Von der rechten Lunge nimmt der untere Lappen beinahe die volle Hälfte für sich in Anspruch. Die andere Hälfte kommt dem obern und mittlern Lappen zu Gute, wobei dem letzteren freilich übel mitgespielt wird. Er ist ausnahmslos der kleinste von allen, während zwischen oberm und unterm Lappen individuell wiederum das Grössenverhältniss zu Gunsten des erstern sich so weit umkehren kann, dass er dem letzteren, wenn auch nicht gerade um sehr viel, doch immerhin entschieden überlegen wird. Je umfänglicher er ausfällt, um so stärker drängt er natürlich den mittlern Lappen nach unten, während dieser um so höher aufsteigt, in je engere Grenzen jener gebannt wird. Die verschiedene Steilheit im Verlaufe der Seitenbronchen, von der schon früher die Rede gewesen, ist die nothwendige und natürliche Folge dieser schwankenden Verhältnisse. Ich mache noch ausdrücklich darauf aufmerksam, dass beim Erwachsenen in der Vertheilung der Lungensubstanz ein Einfluss des Alters nicht bemerklich ist. Dem Gedächtnisse kommt zu Hülfe, dass die beiden Lappen der linken und der untere Lappen der rechten Lunge relativ mit ungefähr je der Hälfte ihres Organs der Masse nach einander gleichwerthig sind.

Von jüngern Altersstufen ist in meinen Beobachtungen nur diejenige des Neugebornen, der geathmet hatte und dessen Lungen daher lufthaltig waren, mit einer grössern Anzahl von Individuen vertreten. Ich berechne diese zunächst auf ein einheitliches Mittel, das mit den vereinzelten Individuen der übrigen Stufen in eine Reihe zusammengestellt werden kann. Da selbst beim Erwachsenen Geschlechtsunterschiede typischer Art fehlen, so halte ich es für überflüssig, Knaben und Mädchen zu trennen. Alle Lungen waren vollkommen lufthältig und bestanden die Lungenprobe mit Erfolg.

thein Stulle in	Absolutes Volumen der lutthaltigen Lungen von Neugebornen in Er												
ais bein Manne.	Re	echte Lung	ge	Linke	Lunge	Gesammtvolumen							
Geschlecht	sintini.	NOTE OF	TOIL SANS		and a line	de	r	100 200					
na angladahuda	Oberer Lappen	Mittlerer Lappen	Unterer Lappen	Oberer Lappen	Unterer Lappen	rechten Lunge	linken Lunge	beider Lungen					
1) Knabe	9.2	7.6	14.6	13.4	15.6	31.4	29.0	60.4					
2) Knabe	10.5	12.5	21.0	13.2	21.6	44.0	34.8	78.8					
3) Knabe	11.4	11.8	26.2	13.6	21.6	49.4	35 2	84.6					
4) Knabe	10.4	8.7	17.5	13.6	16.8	36.6	30.4	67.0					
5) Knabe	13.5	11.2	21.3	14.3	7 16.3	46.0	30.6	76.6					
6) Knabe	7.7	7.6	15.0	10.7	17.4	30.3	28.1	58.4					
7) Knabe	9.3	6.0	17.2	10.8	14.4	32,5	25.2	57.7					
8) Müdchen	16.4	10.6	24.2	13.6	14.3	51.4	27.9	79.3					
9) Mädchen	6.4	5.5	13.0	6.8	11.0	24.9	17.8 .	42.7					
10) ?	12.2	8.2	17.0	16.6	16.8	37.4	33.4	70.8					
Mittel	10.7	9.0	18.7	12.7	16.6	38.4	29.3	67.7					
-quil-amoton-hab	$\left \begin{array}{c} (6.4-\\16.4)\end{array}\right.$	(5.5-12.5)	$\left \begin{array}{c} (13.0-26.2) \end{array}\right.$	(6.8-16.6)		(24.9 - 51.4)	(17.8 - 34.8)	(42.7 - 84.6)					

Absolutes Volumen der lufthaltigen Lungen von Neugebornen in Ecm

e unelineljeberen	defin	Relatives	Volumen	in Proc. d	ler ganze	n Lunge.
Geschlecht	R	echte Lung	e	Linke l	Lunge	Gesammtvolumen
nation which and	Oberer Lappen	Mittlerer Lappen	Unterer Lappen	Oberer Lappen	Unterer ' L'appen	der linken Lunge in Proc. der rechten
1) Knabe	29.3	24.2	46.5	46.2	53.8	92.4
2) Knabe	23.9	28.4	47.7	37.9	62.1	79.1
3) Knabe	23.1	23.9	53.0	38.6	61.4	71.2
4) Knabe	28.4	23.8	47.8	44.7	55.3	83.1
5) Knabe	29.3	24.3	46.3	46.7	53.3	61.0
6) Knabe	25.4	25.1	49.5	38.1	61.9	92.7
	28.6	18.5	52.9	42.8	57.2	77.5
7) Knabe	31.9	20.6	47.5	48.7	51.3	54.3
8) Mädchen	25.7	22.1	52.2	38.2	61.8	71.5
9) Mädchen	32.7	21.9	45.4	49.7	. 50.3	89.3
10) ? · · ·	27.8	23.3	48.9	43.2	56.8	77.2
Mittel	(23.1 - 32.7)	(18.5-28.4)	(45.4 - 53.0)	(37.9— 49.7)	(50.3 - 62.1)	

Wir verschieben die Besprechung dieser Zahlen auf den Zeitpunkt, wo wir uns auch mit andern jugendlichen Altersstufen vertraut gemacht haben werden. Ich ordne sie nach zunehmendem Alter.

					0.		ppen		0	ue				,0.										
	Bemerkungen					haltig.	Todtgeboren. Körperlänge: 39 cm. Lunge luft- leer.	Faultodt. Körperlänge: 38 cm. Lunge luftleer.	Lunge luftleer.		Lunge lufthaltig. Mittel aus 10 Fällen.						Rechtseitige Pleuritis. Gangrän des linken Unter- schenkels.	Rechts lobuläre Pneumonie. Diphtheritis.	Peritonitis tuberculosa.	Lungen normal.	Beginnende Miliartuberculose. Leichtes Emphysem.	Lungen anämisch, sonst normal.	Mittel aus 20 Fällen.	Mittel aus 16 Fällen.
Gesammtvolumen	der	linken Lunge	4.6		6.9	10.0	12.4	12.4	26.2		29.3	52.1	36.9	35.6	44.9	130.0	123.0	180.0	158.0	247.0 .	272.0	405.0	744.8	585.3
Gesamm	q	rechten Lunge	6.3		14.5	12.0	16.0	14.7	35.0		38.4	58.2	44.5	44.7	58.5	162.0	149.0	250.0	171.0	250.0	354.0	296.0	873.0	705.2
Linga	agunt a	Unterer Lappen	2.8		5.4	5.5	6.9	7.2	14.8		. 16.6	28.3	20.5	21.0	24.4	55.0	63.0	90.06	90.0	120.0	172.0	260.0	381.6	290.4
田言	типке	Oberer Lappen	1.8		4.5	4.5	5.5	5.2	11.4		12.7	23.8	16.4	14.6	20.5	15.0	60.0	90.0	68.0	127.0	100.0	145.0	363.2	294.9
Absolutes Volumen in achte Lumore	200	Unterer Lappen	3.3		1.7	6.3	8.4	8.0	18.4		18.7	27.0	24.0	23.6	28.9	70.0	77.0	112.0	104.0	130.0	190.0	177.0	408.0	322.0
Absolutes V Rechte Lunce	acitte Trun	Mittlerer Lappen	1.4	-	2.8	2.5	3.0	3.0	2.8		9.0	13.0	8.1	9.3	14.2	40.0	31.0	43.0	25.0	53.0	46.0	35.0	132.6	113.8
Re	M	Oberer Lappen	1.6		4.0	3.2	4.6	3.7	8.8		10.7	18.0	11.8	11.8	15.4	52.0	41.0	95.0	42.0	97.0	118.0	84.0	332.4	269.4
		in the second se	1) Unreife Frucht von		2) Unreife Frucht aus dem 6. Monate. Männl.	3) Unreife Frucht aus dem 6. Monate. Weihl.	4) Unreife Frucht von 7 Monaten. Männlich	5) Unreife Frucht von 7 Monaten. Weiblich	6) Männl. Frucht vom Ende der Schwanger-	schaft.		8) Knabe von 2 Monaten					13) Knabe von 11 Mon		-		Mädchen von	18) - 15 Jahr.	_	20) Erwachsenes Weib

C. Lappenbildung der Lunge.

87

	Rela	atives Vo ga	Gesammtvolumen			
	R	echte Lur	ige.	Linke	Lunge	der linken Lunge
	Oberer Lappen	Mittlerer Lappen	Unterer Lappen	Oberer Lappen	Unterer Lappen	in Proc. der rechten
1) Unreife Frucht von 30 cm Länge	25,4	22.2	52.4	39.1	60.9	73.0
2) Unreife Frucht aus dem 6. Monate. Männl.	27.6	19.3	53.1	45.4	54.6	68.3
3) Unreife Frucht aus dem 6. Monate. Weibl.	26.7	20,8	52,5	45.0	55.0	83.3
4) Unreife Frucht von 7 Monaten. Männl.	28.7	18.8	52.5	44.3	55 6	77.5
5) Unreife Frucht von 7 Monaten. Weibl.	25.2	20.4	54.4	41,9	58.1	84.3
6) Männliche Frucht vom Ende der Schwanger-	25.1	22,3	52.6	43.5	56.5	. 74,9
7) Neugebornes Kind	27.8	23.3	48.9	43.2	56 8	77.2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(23.1-	(18.5-	(45.4-	(37.9-	(50.3	(54.3-
8) Knabe von 2 Monaten	, 32.7)	28.4)	53.0)	49.7)	62.1)	92.7)
9) Mädchen von 5 Monat.	$\frac{30.9}{26.5}$	22.3	46.7	45.7	54.3	89.5
10) Kind von etwa 5 Mon.	26.4	19.5.	54.0	44.5	55.5	83.0
11) 5 Mon.	26.3	20.8 24.3	52.8	41.0	59.0	79.6
12) Kind von 6 Monaten	32.1	24.5	49.4	45.6	54.4	76.8
13) Knabe von 11 Monaten	27.5	20.7	43.2 51.7	57.7	42.3	80.3
14) 4 Jahren	38.0	17.2	44.8	48.8	51.2	82.5
15) Mädchen von 41/2 Jahr.	24.5	14.6	60.8	50.0 43.0	50.0	72.0
16) Knabe von 8 Jahren	34.6	18,9	46.4	51.4	57.0	92.4
17) Mädchen von 15 Jahren	33.3	13.0	53.7	36.7	$48.6 \\ 63.3$	88.2
18) – – 15 Jahren	28.4	11.8	59.8	35.8	64.2	76.8 137.7
19) Erwachsener Mann .	38.4	14.9	46.7	49.1	50.9	86.5
	(28.5-	(10.5-	(35.2 -	(31.0-	(27.1-	(59.9-
20) Enmashaanaa Wath	49.2)	22.4)	56.8)	72.9)	69.0)	118.8)
20) Erwachsenes Weib .	38.3	15.9	45.7	50.3	49.7	83.4
	(22.9 - 47.6)	(9.8-	(38.4-	(33.3—	(40.3-	(63.8
	41.0)	22.6)	57.2)	59.7)	66.6)	101.3)
Mittel aller unreifen Früchte (Nr. 1-6)	26.5	20.6	52.9	43.2	56.8	76.9
Mittel aller Neugebornen (Nr. 7)	27.8	23.3	48.9	43.2	56,8	77.2
Mittel für das erste Jahr (Nr. 8-13)	28.2	22.1	49.6	47.2	52.8	81.9
Mittel für das 4.—8. Jahr (Nr. 14—16)	32.4	16.9	50.7	48.1	51.9	84.3
Mittel für das 15. Jahr (Nr. 17—18)	30.8	12.4	56.8	36.2	63,8	107.2
Mittel für alle Erwachse- nen (Nr. (19-20)	38.4	15.4	46.2	49.7	50,3	85.0

Obgleich die Zahl der untersuchten Altersstufen nicht eben beträchtlich ist und ausserdem die Verwerthbarkeit der gefundenen Grössen noch darunter leidet, dass Angaben über die allgemeine Körperbeschaffenheit der bezüglichen Individuen fehlen, so lassen sich doch dem absoluten Volumen der Lungen einige Gesichtspunkte mit ziemlicher Sicherheit entnehmen. Es zeigt sich, dass zwei Perioden relativ stärksten Lungenwachsthums vorhanden sind, deren eine in die zweite Hälfte des ersten Lebensjahres, deren andere in die Zeit der Pubertät fällt. Wenn nicht zufällig ungéwöhnlich kümmerliche Individuen, worüber mir keine Nachrichten zukamen, das Material für die ersten Monate nach der Geburt geliefert haben, so macht während derselben die Vergrösserung der Lungen nur bescheidene Fortschritte. Erst später kommt die Sache in lebhafteren Gang, so dass sich mit Schluss des ersten Lebensjahres die Lunge auf etwa das Vierfache des anfänglichen Volums erweitert hat. Vergrösserung auf etwa das Achtfache bildet die Aufgabe der nächsten Lebensjahre bis zum 8. hin. Dann wird die Entwicklung so sehr verzögert, dass sie bis zur Pubertät nur bis auf das Zehnfache fortschreitet. Jetzt erst nimmt sie einen neuen Anlauf zur raschen Ausweitung bis auf das Zwanzigfache des Werthes bei Neugebornen. Es liegt hierin übrigens nur die Bestätigung bereits von andrer Seite gemachter Angaben.

HUSCHKe¹) glaubt bemerkt zu haben, dass die rechte Lunge beim Neugebornen und im Kindesalter ein günstigeres Verhältniss zur linken darbiete, als späterhin, nämlich wie 6:5 statt 11:10. Ob solches Regel sei, müsse aber noch strenger untersucht werden. Dass dem in der That so ist, scheint auch aus unsern Zahlen, wenigstens für die jüngsten Altersstufen bis zur Geburt, hervorzugehen. Indessen gleicht sich der Unterschied bereits im ersten Lebensjahre aus und individuell kann er selbst vollständig verwischt werden. In unsern Fällen scheint er überhaupt wesentlich darauf zu beruhen, dass die niedrigen Zahlenwerthe auf allen Altersstufen ungefähr dieselben sind, die höhern dagegen bei ältern Individuen weiter hinaufreichen, als bei jüngern.

Sehr ausgesprochen erscheint der Einfluss des Alters auf die relative Grösse der einzelnen Lungenlappen. Trotz allen individuellen Schwankungen ist hier nicht zu verkennen, wie der oberste Lappen einer jeden Seite im Beginn der Entwicklung von relativ geringerer Ausdehnung ist als später. Es kommt dies links dem untern, rechts vorzugsweise dem mittlern Lappen zu Gute. Noch beim Neugebornen ist der untere Lappen der linken Lunge ganz entschieden grösser als der obere. Ebenso bleibt der mittlere Lappen rechts nur wenig hinter dem obern zurück. Sache der ersten Lebensjahre ist es, diesen Zustand in denjenigen überzuführen, wie wir ihn beim Erwachsenen getroffen haben. Für die Entwicklungsgeschichte der Lungen und wohl auch für die Physiologie derselben ist dieses stärkere Wachsthum der obern Lungenlappen gegenüber den untern sicherlich von hoher Bedeutung. Auch darf wohl vermuthet werden, dass sich die auffällige Kaliberverschiedenheit zwischen dem Anfangsabschnitte des Bronchialbaums und dessen Fortsetzung erst nach der Geburt zu der bekannten Schärfe herausbilde und das ganze System früher von grösserer Gleichartigkeit gewesen sei. Namentlich ist die Stellung des morphologisch so wichtigen mittleren Lappens der rechten Lunge auch dem Umfange nach keineswegs eine so untergeordnete, wie es später der Fall zu sein pflegt. Es ist der obere Lappen, der ihn allmälig in eine solche hineindrängt.

¹⁾ SAM. TH. v. SÖMMERING, Lehre von den Eingeweiden und Sinnesorganen des menschlichen Körpers. Umgearbeitet und beendigt von E. HUSCHKE. S. 282. Leipzig 1844.

D. Zur feinern Architectur der Lunge.

Von HUSCHKE¹) rührt die Angabe her, dass man die Zahl der Lungenzellchen in beiden Lungen auf 1700—1800 Millionen schätze und dass sie jedenfalls sehr bedeutend sei. Ausgebreitet gedacht würden sie eine Fläche von $2000 \square'$ geben. Es ist mir nicht bekannt geworden, worauf sich diese Schätzung stützt. Man hat sie nachgeschrieben, ob jemals auch nachgerechnet, habe ich, wie gleich begründet werden soll, alle Ursache, in Zweifel zu ziehen. Versuchen wir einmal, eine solche Rechnung aufzustellen.

Nach den vorliegenden Messungen ist die Annahme, dass bei Erwachsenen vom 20. bis 80. Lebensjahre die Lungenbläschen im völlig erschlafften Zustande durchschnittlich einen Durchmesser von 0,2 oder 1/5 mm.besitzen, sicherlich eher zu niedrig, als zu hoch gegriffen. Legen wir indessen diesen Werth unsrer Berechnung zu Grunde, so besitzt unter der weitern Voraussetzung, dass das Bläschen der Form nach um eine Kugel oscillire, ein jedes von ihnen eine Wandfläche von 0,125 oder 1/8 \Box mm und einen Kubikinhalt von 0,004 oder 1/250 \oplus mm. Somit enthält jeder Kubikmillimeter Lungensubstanz 250 Bläschen mit einer gesammten Wandfläche von 31,2 \Box mm. Darnach stellt sich nun die Rechnung im weitern folgendermaassen:

	Zahl	Wandfläche		
	1 mm		250	31,2 □mm
	1 Getter		250 000	31 200 □mm
unge	des Mannes	: 1617 - mcm	404 500 000	50 450 400 □mm
			322 500 000	40 248 000 □mm

Die Zahlen von HUSCHKE sind also viel zu hoch gegriffen. Statt der angenommenen 1700—1800 sind nur 3—400 Millionen, freilich immer noch eine stattliche Menge, vorhanden, wobei ich es dahingestellt lassen muss, ob beim weiblichen Geschlechte die Zahl der Bläschen wirklich nach Maassgabe des geringern Lungenumfanges kleiner ist oder ob wenigstens ein theilweiser Ausgleich durch ein geringeres Kaliber erzielt wird. Bezügliche Maassangaben liegen nicht vor. Aehnlich verhält es sich mit der Wandfläche. Die erschlaffte Lunge besitzt eine solche von rund 50 und 40 Quadratmeter oder von 500 und 400 Quadratfuss. Nehmen wir nun an, dass während des hermetischen Einschlusses in den Brustkorb die Lunge das Doppelte des obigen Kalibers besitze, so giebt das für das einzelne Bläschen doch immer nur eine Vergrösserung der Wandfläche auf 0,196 oder beinahe ¹/₅ □mm und für die ganze männliche Lunge auf 79,28 □Meter oder 792,8 □Fuss, für die weibliche auf 63,21 □Meter oder 632,1 □Fuss. Dies wäre somit die Oberfläche des ruhenden Organs. Setzen wir dann die vitale Capacität wiederum gleich dem Umfange

1) v. SÖMMERING, vom Baue des menschlichen Körpers. Bd. 5. S. 268. Leipzig 1844.

D. Zur feinern Architectur der Lunge.

der ruhenden Lunge, so dehnt sich dabei die letztere beim Mann auf 6468, beim Weibe auf 5160 \oplus cm aus. Das giebt für die Wandfläche eines Bläschens 0,321 oder beinahe $\frac{1}{3}$ mm und für die ganze Lunge des Mannes 129,84 meter oder 1298,4 \square Fuss, des Weibes 103,52 \square Meter oder 1035,2 \square Fuss. Also selbst bei Ansätzen, die zweifellos als Mittelwerthe eher zu hoch denn zu niedrig gegriffen sind $\frac{1}{3}$, kommen wir nicht von ferne zu den von HUSCHKE angegebenen Grössen, eine Thatsache, die nach verschiedenen Richtungen hin von Bedeutung ist. Diese ältern Angaben müssen also ein für alle Mal als dem wirklichen Sachverhalte nicht entsprechend fallen gelassen werden.

Wir schliessen hier noch gleich eine weitere wichtige Frage an. Es herrscht wohl allgemein die Meinung, dass das Wachsthum der Lunge nach der Geburt ausschliesslich auf Rechnung der Grössenzunahme ihrer Bläschen zu setzen sei und eine Neubildung spezifischer Elemente nicht stattfinde. Reicht erstere wirklich zu dem verlangten Zwecke aus? Wir können darauf durch Rechnung antworten. Setzen wir bei Neugebornen den Durchmesser der Bläschen zu etwa einem Drittel von demjenigen des Erwachsenen, also zu 0,07 mm, so entspricht dies einem Kubikinhalt von 0,00018 oder 1/5555 Cubikmillimeter. Daraus berechnet sich für die Bläschenzahl der männlichen Lunge ein Gesammtvolumen von 72,81, für diejenige der weiblichen Lunge ein solches von 58,05, im Mittel für beide von 65,42 Cubikcentimeter, folglich ein Volumen, das auffällig genau mit dem von uns thatsächlich an den Lungen von Neugebornen bestimmten (67,7 m cm) übereinstimmt. Damit ist denn auch streng bewiesen, dass das Wachsthum der Lunge ausschliesslich durch Vergrösserung der bereits zur Zeit der Geburt vorhandenen Elemente stattfindet. Dabei ist nicht ausser Acht zu lassen, dass die Zunahme der Wandfläche nicht gleichen Schritt hält mit der Vergrösserung des Kubikinhaltes, sondern innerhalb engerer Grenzen fortschreitet. Erstere beträgt für die kindliche Lunge bei Annahme der männ-

¹⁾ Die Frage nach der wirklichen Capacität der Lunge in den verschiedenen Phasen ihrer Thätigkeit kümmert uns hier weiter nicht und wir haben keine Veranlassung, darauf einzutreten. Es bedarf auch kaum der ausdrücklichen Erklärung, dass die der Berechnung zu Grunde gelegte einfache Progression ohne alle directe Beziehung auf sie und nur im Interesse möglichst leicht vergleichbarer Zahlenergebnisse gewählt worden ist. Trotzdem glaube ich, dass sie der Wahrheit erheblich näher kommt, als solches nach den neuesten Angaben von WALDENBURG (Bestimmung der Grösse der Residualluft, der Respirations-, Reserve- und Complementärluft. Zeitschrift für klinische Medizin von FRERICHS und LEYDEN. Bd. 1. Heft 1. Berlin 1879) der Fall sein müsste. Derselbe berechnet die Residualluft auf beiläufig 10 000 mem (S. 39) und schliesst daher ganz folgerichtig, dass sie nicht nur nicht kleiner, sondern mindestens doppelt oder nahezu doppelt so gross sei als die Vitalcapacität (S. 46). Meines Erachtens liegt in dem Volumen der erschlafften Lunge der sichere Beweis für die Unrichtigkeit der WALDENBURG'schen Angaben. Besässe die Residualluft wirklich den von ihm behaupteten hohen Werth, so müsste, wenn wir uns das Kaliber der Lunge als reinen Luftraum denken, dasselbe nach Eröffnung der Brusthöhle auf mindestens 1/6, ja, da deren Wandungen im Tode weit davon entfernt sind, sich in äusserster Exspirationsstellung zu befinden, auf noch weit weniger zurückgehen, um die von uns thatsächlich gefundenen Werthe anzunehmen. Mit andern Worten, die eröffnete Brusthöhle müsste zu einem so grossen Theile leer und die Lunge im Verhältniss zu ihr so stark geschrumpft gefunden werden, wie es erfahrungsgemäss in Wirklichkeit gar nie der Fall ist.

lichen Bläschenzahl 6,23 \Box Meter oder 62,3 \Box Fuss, der weiblichen 4,97 \Box Meter oder 49,7 \Box Fuss. Vergleichen wir nun Kubikinhalt und Wandfläche der Lungen des Neugebornen und des Erwachsenen, so finden wir für jenen eine Werthsteigerung um das 22-, für diese nur eine solche um das Sfache. Es wäre daher ein grober Fehler, in der relativen Grösse verschiedener Lungen, sei sie nun als Volumen oder als Gewicht aufgefasst, einen directen Ausdruck für die Leistungsfähigkeit erblicken zu wollen. Solches ist namentlich auch bei der Erweiterung der Lunge durch tiefere Inspiration zu berücksichtigen. Steigt beispielsweise nach unsern obigen Berechnungen das Volumen einer Lunge von 3234 auf 6468 Cubikcentimeter, also von 1 auf 2, so verhalten sich die beiderseitigen Wandflächen zu einander nur wie 79,28 zu 129,84 \Box Meter oder wie 1:1,64.

Es ist nicht ganz ohne Interesse, das Kaliber der Lunge mit demjenigen der zuführenden Luftwege zu vergleichen. Vermittelst der bei Erwachsenen gewonnenen Mittelwerthe lässt sich dies durchführen, freilich nur in allgemeinen Umrissen, da es ja verschiedene Individuen sind, die das Material für die Luftwege und für die Lungen geliefert haben. Die Kaliber der beiden Lungen verhalten sich wie 100:85, die der zuführenden Stammbronchen wie 100:70,7. Der linkseitige Bronchus ist somit verhältnissmässig enger, was sich auch daraus ergiebt, dass auf 1 Quadratmillimeter Querschnitt des rechten Bronchus 4,2, auf 1 Quadratmillimeter des linken Bronchus 4,6 Kubikcentimeter völlig erschlaffter Lungensubstanz zu stehen kommt. Das procentische Volumen der rechtseitigen Lungenlappen zeigt die Werthe 38,4:15,4:46,2, das procentische Kaliber der zugehörigen Luftröhrenäste die Werthe 37.0: 20.8: 42.2. Links erhalten wir für die Lappen 49,7:50,3, für die Kaliber der Bronchen 46,7:53,3. Die beiderseitigen Verhältnisszahlen stimmen unter einander nicht vollständig überein. Daher fallen auch auf 1 Quadratmillimeter Querschnitt der Bronchen rechts vom obern Lappen 4,7, vom mittlern 3,4, vom untern 5,0, links vom obern Lappen 4,6, vom untern 4,2 Kubikcentimeter erschlaffter Lungensubstanz. Für beide Lungen ist das Mittel mit 4,4 Kubikcentimeter das gleiche. Das entspricht einer Zahl von 1 Million und 100 Tausend Lungenbläschen mit einer Wandfläche von 137280 Quadratmillimeter. Denken wir uns im hermetisch geschlossenen Brustkorbe die ruhende Lunge von der doppelten Ausdehnung der herausgenommenen und völlig erschlafften, so hätte durchschnittlich jeder Quadratmillimeter eines Lappenbronchus über ein Areal von 8,8 Kubikcentimeter mit einer Wandfläche von 215600 Quadratmillimeter zu verfügen. Es sind dies Zahlen, die trotz ihres nur relativen Werthes immerhin dadurch einiges Interesse bieten, dass sie dazu beitragen, uns eine reelle Vorstellung von der gewaltigen Ausweitung zu verschaffen, welche die respiratorische Oberfläche im Innern der Lungensubstanz erfährt.

92

III. Der Bronchialbaum der Vögel und der Reptilien.

Die so überraschend einheitliche Entwicklung des Bronchialbaums bei den Säugethieren legt den Gedanken nahe, das ihr eine noch allgemeinere Bedeutung zukomme. Die Lungen aller Wirbelthiere sind ja homologe Organe. Eine gewisse Aehnlichkeit der allgemeinen Structurverhältnisse dürfte somit wohl zu erwarten sein. Oder sollte wirklich, wie man dies vielfach anzunehmen geneigt scheint, eine nicht zu überbrückende Kluft zwischen ihren niedern und höhern Formen bestehen? Es lohnte sich schon der Mühe, die Lösung dieser Fragen, die sich mir mit dem Fortschreiten meiner Arbeit immer lebhafter aufdrängten, zu versuchen.

Es ist längst bekannt, dass sich bei den Vögeln die Luftröhre innerhalb der Lungensubstanz in eine mässige Anzahl grösserer Kanäle auflöst, von denen feinere Seitenäste ausgehen. CUVIER¹) macht einige Angaben über die Zahl und Anordnung ihrer Anfangsöffnungen. Ueber den weitern Verlauf habe ich aus der Literatur wenig Erspriessliches zu erfahren vermocht. Die Dünnwandigkeit der betreffenden Kanäle und ihre innige Verknüpfung mit der benachbarten Lungensubstanz macht es trotz der Oberflächlichkeit ihrer Lage ziemlich schwer, sie übersichtlich in ihrer Gesammtheit darzustellen. Die Ausgussmethode, deren wir uns schon bei den Säugethierlungen mit so grossem Vortheil bedient haben, hilft auch hier über alle Schwierigkeiten hinweg und bringt Verhältnisse, von denen man sonst kaum eine Ahnung zu gewinnen vermag, mit überzeugender Klarheit zum Vorschein. Ich habe bisher allerdings nur bei wenigen Vögeln (Colymbus, Fulica, Strix, Buteo) Gelegenheit gehabt, sie in Anwendung zu bringen, doch ist an der allgemeinen Gültigkeit des erzielten Resultates kaum zu zweifeln, um so weniger, als ich es ausserdem an einer Anzahl von frischen Lungen (Cygnus, Ardea, Anas, Gallus) zu bestätigen vermochte.

Von einer dichotomischen Theilung weiss der Bronchialbaum der Vögel ebensowenig, ja ich möchte beinahe sagen, noch weniger etwas, als derjenige der Säugethiere. Der Stammbronchus geht fast geradlinig bis an das freie Ende der Lunge. Dabei kreuzt er sich gleichfalls in seinem obern Abschnitte mit der Lungenarterie, die nach Abgabe eines aufsteigenden Astes zum eparteriellen Bezirke hinter ihm nach unten verläuft, während die Vene an seiner Vorderseite verbleibt. Eparterieller und hyparterieller Abschnitt entsenden Seitenbronchen, und zwar, in auffälligem Gegensatz zu den Säugethieren, nach verschiedenen Richtungen. Die hyparteriellen Zweige gehen zur Aussenseite, die eparteriellen zur Innenseite des Organes, so dass dessen Körpersubstanz zwischen beide zu liegen kommt. Der ganze Bronchialbaum gewinnt in Folge davon ein sehr eigenthümliches Gepräge, das sich erst bei genauerem Zusehen mit demjenigen der Säugethiere in Einklang bringen lässt (Fig. 9).

¹⁾ G. CUVIER, Leçons d'anatomie comparée Paris, 1840. T. VII. p. 119.

Das hyparterielle System stimmt in allen wesentlichen Punkten mit demjenigen der Säugethiere überein. Zwei Längsreihen von Seitenästen wachsen

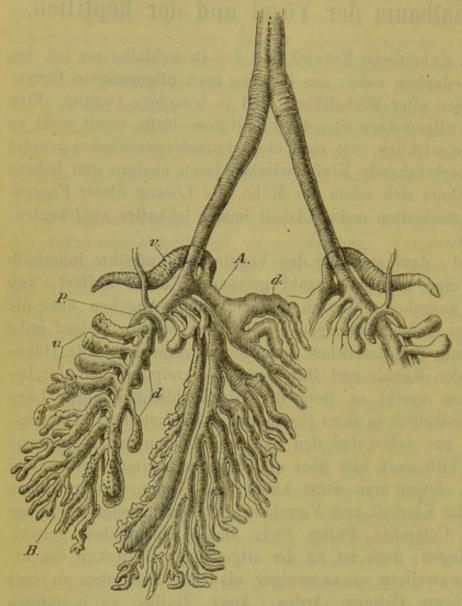


Fig. 9. Bronchialbaum eines Vogels (Colymbus?). Vorderansicht nach einem Metallausgusse. Die linke Hälfte der Raumersparniss wegen grossentheils weggelassen. Das eparterielle und hyparterielle Bronchialsystem mit den einander ursprünglich zugekehrten Seiten nach hinten auf eine horizontale Ebene auseinandergelegt, um die innere Gliederung sichtbar zu machen. — P, Lungenarterie mit aufsteigendem Seitenaste. — A, eparterielles, B, hyparterielles Bronchialsystem; v, ventrale, d, dorsale Verzweigung, letztere auf der hyparteriellen Seite im Ausgusse nur unvollkommen erhalten. Die Ausdrücke ventral und dorsal sind so gewählt, wie es nicht die spezielle Stellung beim Vogel, sondern die Homologie mit den entsprechenden Zweigen bei den Säugethieren erfordert.

folge dürfte sie indessen beim Strauss auf fünf ansteigen. Auch bezeichnet derselbe die Lage des fünften Zweiges als gegenüber, also in gleicher Höhe mit dem ersten hyparteriellen, während der letzte der von mir gesehenen vier eparteriellen Zweige entschieden höher lag als der nächste hyparterielle. Die drei untern eparteriellen Zweige halten sich ausschliesslich an die Innenfläche der Lunge. Der oberste wird dadurch eigenartig, dass er gleich nach seinem Ursprunge in hakenartiger Krümmung einen einfachen Seitenast um die

in entgegengesetzter Richtung aus dem Stammbronchus hervor, um sich in windschiefer Ebene von oben und vorn nach hinten und unten an die Aussenseite der Lunge anzulehnen. Die hintern oder äussern Aeste übertreffendie vordern oder innern bedeutend an Länge. Ich habe ihrer in den mir zugänglichen Fällen neun gezählt, eine Zahl, welche der bei Säugethieren gefundenen gleich ist. Die vordern scheinen bisweilen etwas weniger zahlreich zu sein.

In höchst eigenartiger, von derjenigen bei Säugethieren sehr abweichender Form tritt uns das eparterielle System entgegen. Es enthält immermehrere, doch weniger Zweige als das hyparterielle, und dieselben niemals zu einer Doppelreihe, sondern immer nur zu einfacher Längsreihe geordnet. Die Zahl vier scheint die typische zu sein. Der von CUVIER (a. a. O. S. 120) gegebenen Darstellung zu-

III. Der Bronchialbaum der Vögel und der Reptilien.

Aussenseite des Stammbronchus herum und über den Arterienstamm hinweg nach vorn in das Gebiet des hyparteriellen Systems schickt und sich somit gleich dem einfachen eparteriellen Bronchus der Säugethiere in dorsaler wie ventraler Richtung verästelt. Der zweite und dritte Bronchus ist durch Länge ausgezeichnet. Bei gleicher Entwicklung reichen beide bis an das untere Ende der Lunge. Dabei liegen sie dicht neben einander und lassen aus ihren freien Rändern, also nach entgegengesetzten Seiten, zahlreiche, einander parallele Seitenzweige spitzwinklig hervortreten. Bleibt der zweite Bronchus hinter dem dritten an Länge zurück, so wird das jenen überragende Ende des letzteren durch zwei einander gegenüberstehende Reihen von Seitenzweigen doppelt gefiedert. Der vierte Bronchus ist klein, unansehnlich und offenbar in starker Rückbildung begriffen. Der peripherischen Raumentwicklung nach kommt das eparterielle System dem hyparteriellen zum mindesten gleich.

Der charakteristische Unterschied zwischen den Bronchialbäumen der Vögel und der Säugethiere liegt also vornehmlich in der verschiedenen Ausbildung des eparteriellen Bezirkes. Bei den ersteren enthält derselbe noch Elemente, die bei den letzteren spurlos verschwunden sind. Diese bringen es günstigsten Falles dahin, den obersten der eparteriellen Zweige, wie sie bei Vögeln vorkommen, fest zu halten, doch mit der Abänderung, dass sein Hauptgewicht, statt wie dort auf die dorsale, nunmehr auf die ventrale Seite verlegt wird. Bekanntlich verschwindet auch er noch häufig genug vollständig. Jetzt verliert seine Eigenart viel von ihrem Räthselhaften und wird die von ihm so schroff eingehaltene Sonderstellung, wenn auch nicht erklärlich, doch weniger unbegreiflich. Der Herkunft nach ist er eben in der That von all den übrigen Seitenbronchen verschieden. Mit ihm geht das letzte Ueberbleibsel einer untergegangenen Generation zu Grabe. Sein Verschwinden ist der Schlussakt eines Vorganges, der bei den Vögeln eingeleitet wird. Diesen Erfahrungen gegenüber kann es keinen Augenblick zweifelhaft sein, dass das Vorkommen eparterieller Zweige bei Säugethieren als ein Kennzeichen der primären, ihr theilweises oder gar vollständiges Fehlen als das Merkmal einer secundären, durch fortschreitende Differenzirung entstandenen Form zu deuten sei. Eine Asymmetrie, wie sie auf diesem Gebiete bei Säugethieren vorkommt, ist bei Vögeln selbstverständlich ausgeschlossen. Innerhalb engerer Grenzen, durch ungleiche Ausbildung der beiderseitigen Systeme, wäre sie immerhin denkbar. In den von mir beobachteten Fällen war sie nicht vorhanden.

Mit der Rückbildung des eparteriellen Systems bei den Säugethieren vollzieht sich noch eine andere Aenderung. Das hyparterielle System der Vögel liegt so, dass es den Lungenkörper von vorn und aussen her umfasst. Bei den Säugethieren hat es sich mit dem Stammbronchus um dessen Achse derart nach vorn und innen gedreht, dass die Hauptmasse der Lunge an seine Aussenseite zu liegen kommt. Seine bisher nach hinten gerichteten längern Zweige wenden sich jetzt als ventrale nach vorn und seine bisher vordern werden zu hintern oder dorsalen. Gleichzeitig wächst die Lungensubstanz über sie hinweg und drängt sie in die Tiefe, doch nicht so sehr, dass sie auf eine wenigstens relativ oberflächliche Lage verzichten müssten. Die bei den Vögeln äussere Seite der Lunge ist bei den Säugethieren zur innern geworden und das hyparterielle Astsystem in die Ebene des eparteriellen verschoben. Der Gegensatz, der bezüglich der Lagerung ursprünglich zwischen beiden bestand, hat sich verflacht. Die bei Vögeln so ausgesprochene Zweitheilung des Bronchialbaums ist bei Säugethieren in Folge davon beinahe völlig verschwunden.

Der Schritt von den Vögeln hinüber zu den Reptilien ist leicht zu thun. Beide stehen einander in der allgemeinen Gliederung des Bronchialbaums ausserordentlich nahe. Von einer dichotomischen Verzweigung des Stammbronchus ist bei letzteren überhaupt nie die Rede gewesen. Dafür war sein gestreckter Verlauf und sein die Umgebung entschieden beherrschendes Kaliber zu offenkundig. Natürlich kommen hierbei nur solche Reptilien in Betracht, deren Lungen die einfache Sackform überwunden haben. Mir standen bloss Crocodilus sclerops, Testudo tabulata und Megachelys Temminckii zur Verfügung. Sie verhielten sich für die in Frage kommenden Verhältnisse wesentlich wie die Vögel. Dieselbe Kreuzung zwischen Stammbronchus und Arterie. Dieselbe Erweiterung des eparteriellen Systems nach abwärts, nur noch ausgiebiger, so dass es theilweise neben das hyparterielle zu liegen kam. Mein Material reichte leider nicht aus, um zu bestimmen, in welcher Ausdehnung solches geschieht. Soviel scheint aber doch sicher zu sein, dass bei den Reptilien der sonst überall so bestimmt ausgesprochene reine Gegensatz einer eparteriellen und hyparteriellen Bronchialreihe in denjenigen einer mit Beziehung auf die Lungenarterie medialen und lateralen übergeht. Beide wären demnach' als ursprünglich einander parallele Längsreihen aufzufassen, deren eine später allmälig bis auf das die andere nach oben überragende Kopfstück verschwindet und vielfach gänzlich verloren geht. Beim Krokodile konnte ich deutlich, genau so wie bei Vögeln, einen Ventralzweig des ersten eparteriellen Seitenbronchus um den Stammbronchus herum nach vorn verlaufen sehen. Den beiden Schildkröten schien er zu fehlen.

Ich bin leider nicht im Stande, über den Bronchialbaum von Vögeln und Reptilien weitere Mittheilungen zu machen. Dazu war mir das Material zu spärlich zugemessen. Es bleibt somit noch manches zu thun, bevor wir unser bezügliches Wissen als ein einigermaassen ausreichendes bezeichnen dürfen. Aber Ein grundlegendes Resultat ist doch schon jetzt mit Befriedigung zu verzeichnen, die Erkenntniss der völlig einheitlichen Gestaltung des Bronchialbaums in der Wirbelthierreihe. Seine Differenzirung schreitet getreu demselben Plane, nach welchem sie in ihren ersten Anfängen eingeleitet wird, auch bis zu Ende fort. Ich hege die Ueberzeugung, dass dabei die Lage der Lungenarterie eine entscheidende Rolle spielt, ohne freilich vor der Hand die Art dieses Einflusses näher bezeichnen zu können. Jedenfalls erscheint sie als der feste Punkt, der durch alle Wandlungen seiner Umgebung hindurch unerschüttert stehen bleibt. Was diese Wandlungen veranlasst, welche Momente die eparterielle Gruppe der Luftwege hinter diejenige der hyparteriellen zurücktreten lässt, darüber liegt zur Zeit noch undurchdringliches Dunkel. Auch das bleibt erst noch zu entscheiden, von wo die so weit reichende Differenzirung der Säugethierlunge ausgeht. Die Vögel treten unmittelbar in die Fussstapfen der

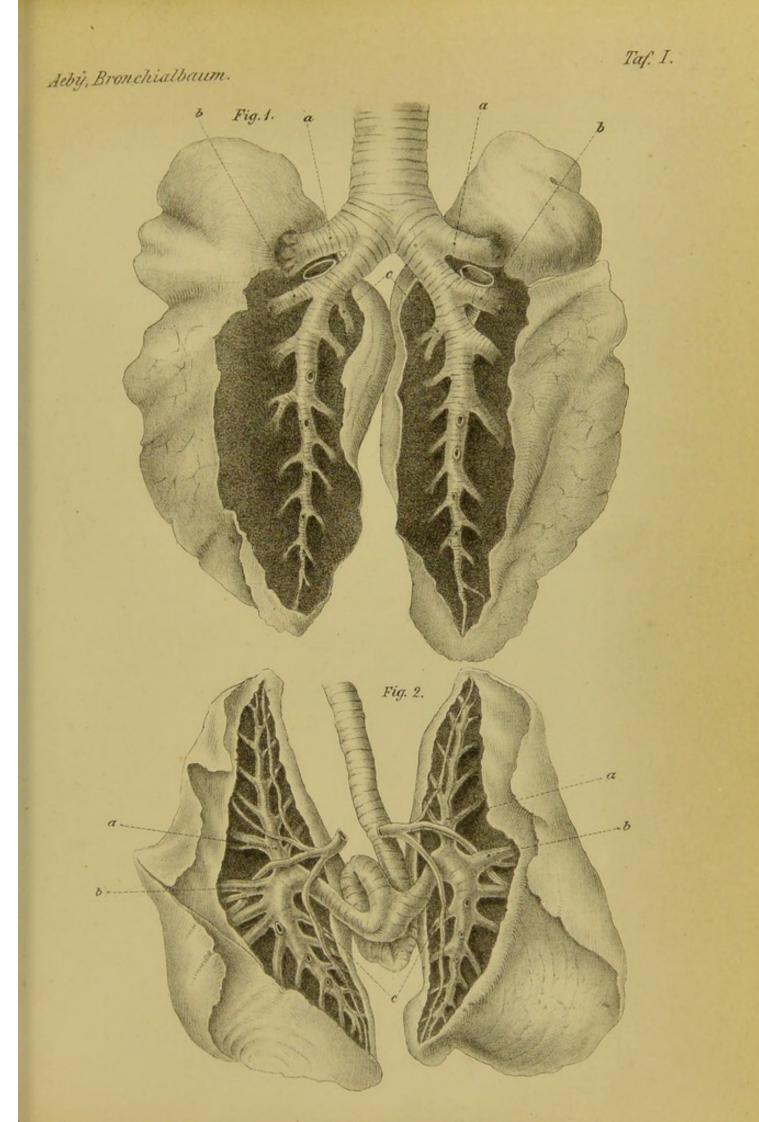
Reptilien. Den Säugethieren fehlt, wie noch in so vielen andern Beziehungen, der unmittelbare Anschluss an die Grundform. Das sind freilich bedauernswerthe Lücken. Sie sollen uns aber die Freude daran nicht verkümmern, dass wieder ein neues Organ dem Prinzipe der fortlaufenden Formentwicklung gewonnen und der Morphologie ein Gebiet erschlossen worden, aus dessen Boden ihr hoffentlich noch mehr als Eine Frucht erwachsen wird.

Erklärung der Tafeln.

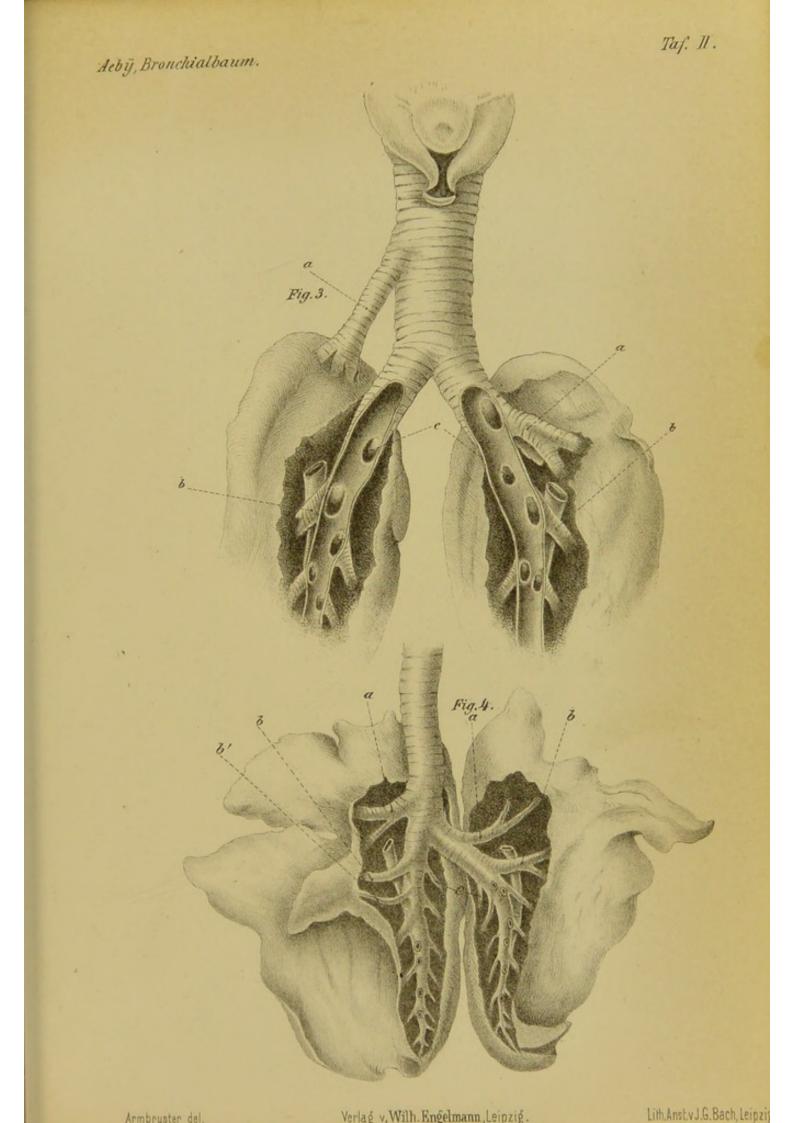
Fig. 1—12 bringt Lungen mit von der Mediastinalseite her frei gelegtem Bronchialbaum. Alle Zweige desselben wurden mit grösster Sorgfalt nach dem Präparate controllirt, so dass in dieser Hinsicht auf volle Naturtreue Anspruch darf erhoben werden. Die Breite der einzelnen Theile wurde so wiedergegeben, wie sie sich eben darbot, ohne Rücksicht darauf, dass sich die einen in Folge der Nachgiebigkeit ihrer Wandungen abgeplattet hatten, die andern nicht. Ein völlig getreuer Ausdruck der Kaliberverhältnisse ist daher nicht zu erwarten. Dafür treten die photographisch aufgenommenen Metallausgüsse der Fig. 13—25 in die Lücke. — Die beigesetzten Buchstaben haben in allen Figuren dieselbe Bedeutung. Sie dürften für die Orientirung wohl ausreichen. Für den Menschen verweise ich ausserdem auf die halbschematische Figur 7, Seite 53 des Textes.

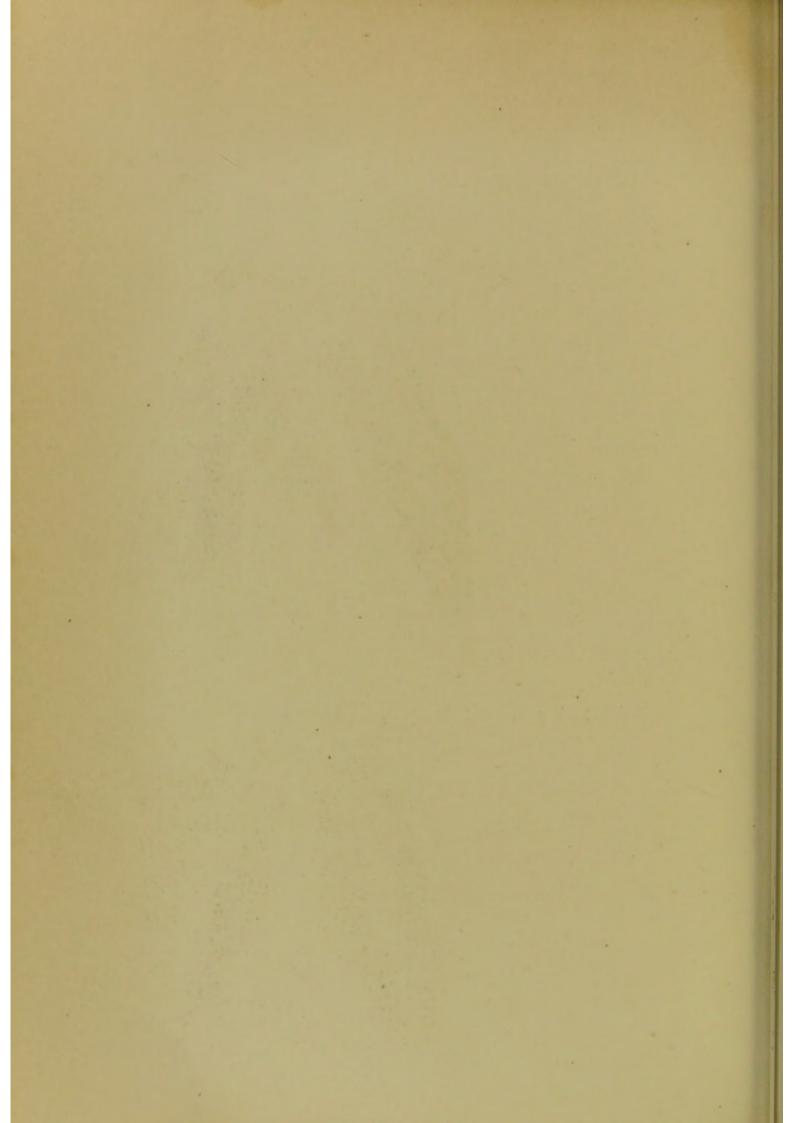
- a. Eparterieller Seitenbronchus.
- b. Erster hyparterieller Ventralbronchus. b', Herzbronchus.
- c. Erster hyparterieller Dorsalbronchus.

Die Nebenbronchen sind in Fig. 1—12 dicht am Stammbronchus abgeschnitten und daher leicht zu erkennen. In Fig. 13—25 ergiebt sich ihre Bedeutung, so weit sie überhaupt vorhanden und sichtbar sind, aus der Anordnung der Hauptbronchen. — Sämmtliche Zeichnungen rühren von Hrn. Armbruster, die photographischen Aufnahmen von M. Vollenweider und Sohn in Bern her.

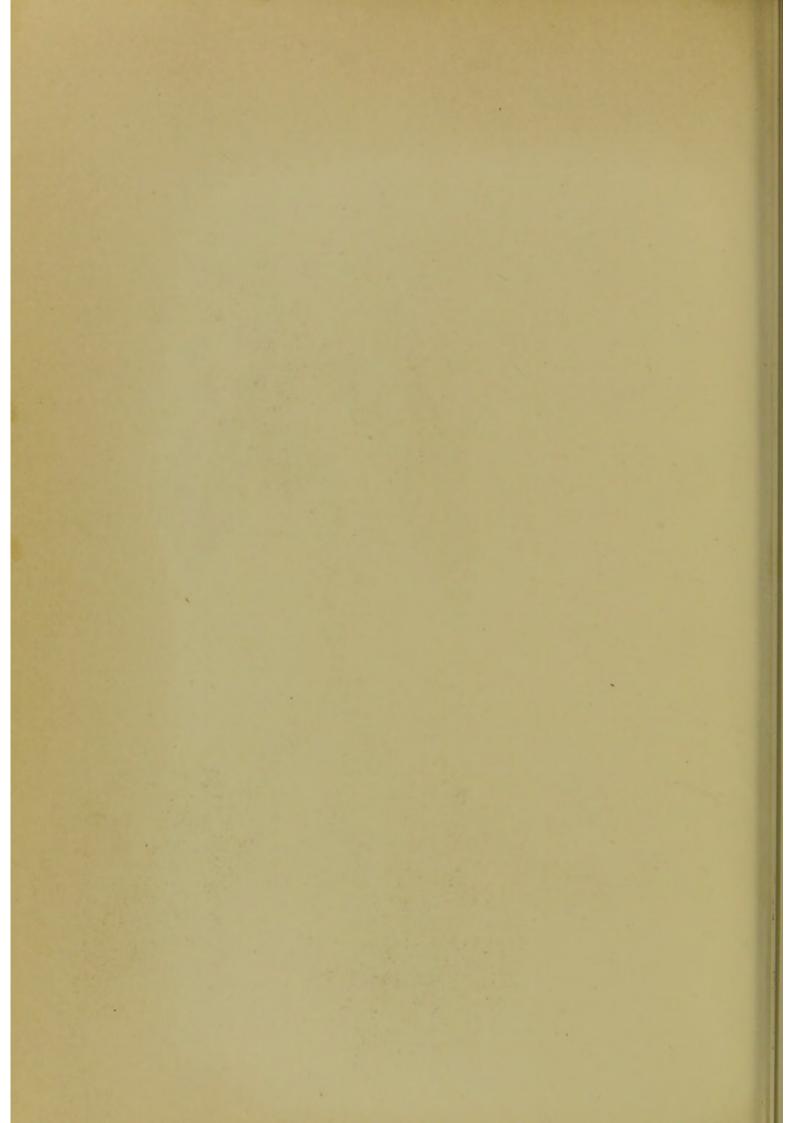

Taf.	I.	Fig.	1.	Lunge	und	Bronchialbaum	von	Phoca vitulina (1/2 nat. Gr.)
								Vorderansicht.
		Fig.	2.	-	-	-	-	Bradypus tridactylus (1/1 nat.Gr.)
The	п							Vorderansicht.
Taf.	п.	Fig.	З,	-	-	/	-	Delphinus delphis (1/2 nat. Gr.)
		I.		-				Vorderansicht.
		rig.	4.	-	-	- /	-	Auchenia lama (1/2 nat. Gr.)
Taf.	ш	Fig.	5	- 1				Vorderansicht.
		118.	0.				-	Bos taurus (1/3 nat. Gr.)
		Fig.	6	-	-	_		Vorderansicht.
		1.8.					-	Phascolomys Wombat (2/3 nat. Gr.)
Taf.	IV.	Fig.	7	-				Vorderansicht.
	-	- 1B.				-	-	Lemur mongoz (4/1 nat. Gr.)
		Fig.	8.	-		-		Vorderansicht.
		8.				-		Ornithorhynchus paradoxus
Taf.	V.	Fig.	9	-		-		(¹ / ₁ nat. Gr.) Vorderansicht.
		0.					-	Cynocephalus sphinx (1/1 nat. Gr.)
								Vorderansicht.

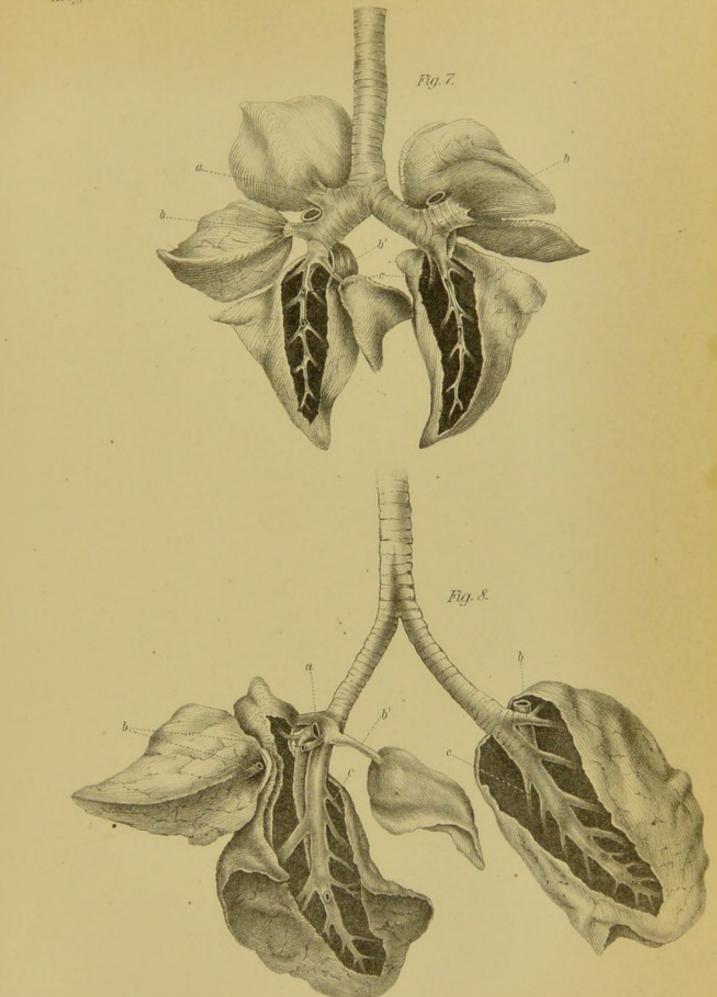

90	Erklarung der Tatem.
Taf. V.	Fig. 11.*) Lunge und Bronchialbaum von Pithecus satyrus (2/3 nat. Gr.) Vorderansicht.
Taf. VI.	Fig. 10.*) Mensch (1/3 nat. Gr.) Vorderansicht.
	Fig. 12 Hystrix cristata (2/3 nat. Gr.)
	Vorderansicht.
Taf. VII.	Fig. 13. Bronchialbaum von Equus caballus. Metallausguss. Vorderansicht.
Taf. VIII.	Fig. 14. Bronchialbaum von Canis familiaris. Metallausguss. Ansicht schräg von rechts und hinten.
	Fig. 15. Derselbe. Vorderansicht.
	Fig. 16. Bronchialbaum von Capra hircus. Metallausguss. Vorderansicht.
	Fig. 17. Bronchialbaum von Phoca vitulina Metallausguss. Ansicht schräg
	von links und hinten. Der 4. hyparterielle Ventralbronchus der
	linken Lunge verkümmert.
Taf. IX.	
	deransicht. Der Herzbronchus sehr unvollständig ausgegossen.
	Fig. 19. Bronchialbaum eines Mannes von 35 Jahren. Metallausguss. Vor-
	deransicht. Stammbronchus der rechten Lunge unterhalb des 3. hyp-
	arteriellen Ventralbronchus (bei*) abgebrochen.
	Fig. 20. Bronchialbaum eines Mannes von 34 Jahren. Metallausguss. Vor-
	deransicht. Caverne des linken Oberlappens.
	Fig. 21. Bronchialbaum eines Weibes von 36 Jahren. Metallausguss. Vor- deransicht.
Taf. X.	Fig. 22. Bronchialbaum eines Mannes von 44 Jahren. Metallausguss. Vor-
	deransicht.
	Fig. 23. Derselbe. Ansicht schräg von rechts und hinten.
	Fig. 24. Bronchialbaum eines Mannes von 53 Jahren. Metallausguss. Vor- deransicht.
	Fig. 25. Derselbe. Ansicht schräg von rechts und hinten.
	the Market Market Stranger Market Statute Market

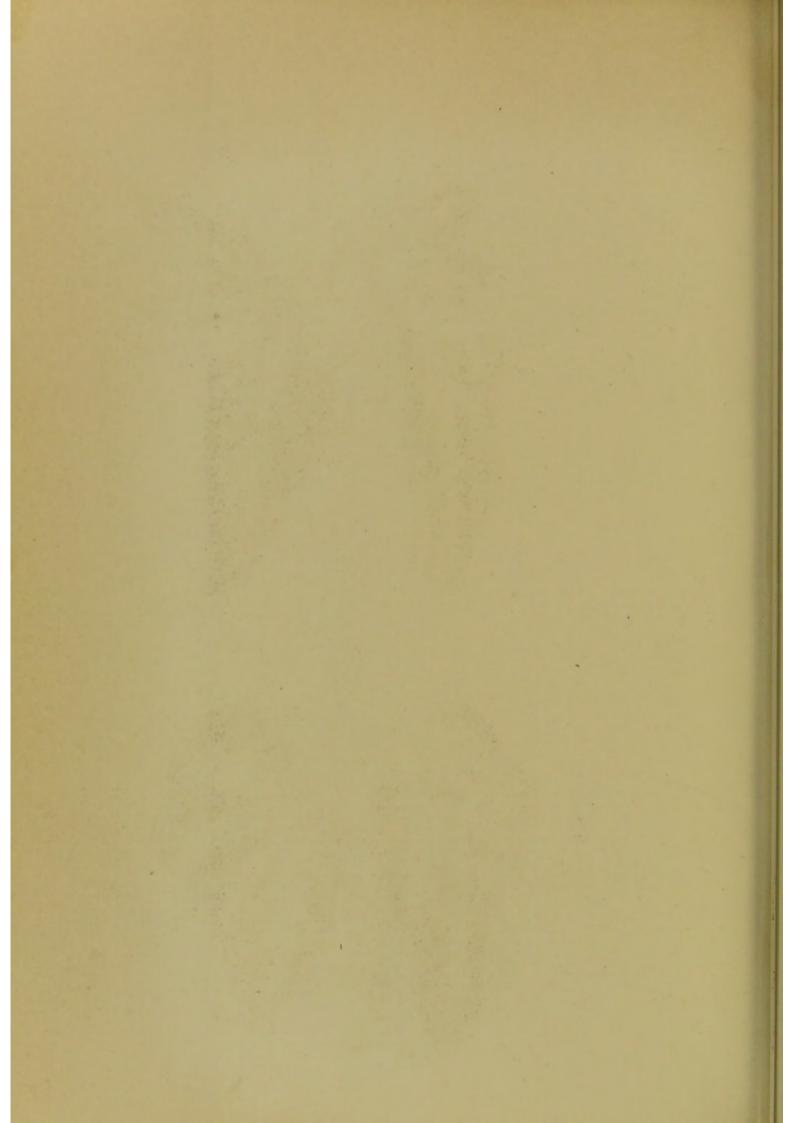

Erklärung der Tafeh


*) Fig. 10 und 11 mussten des Raumes wegen verstellt werden.

98






a

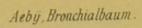
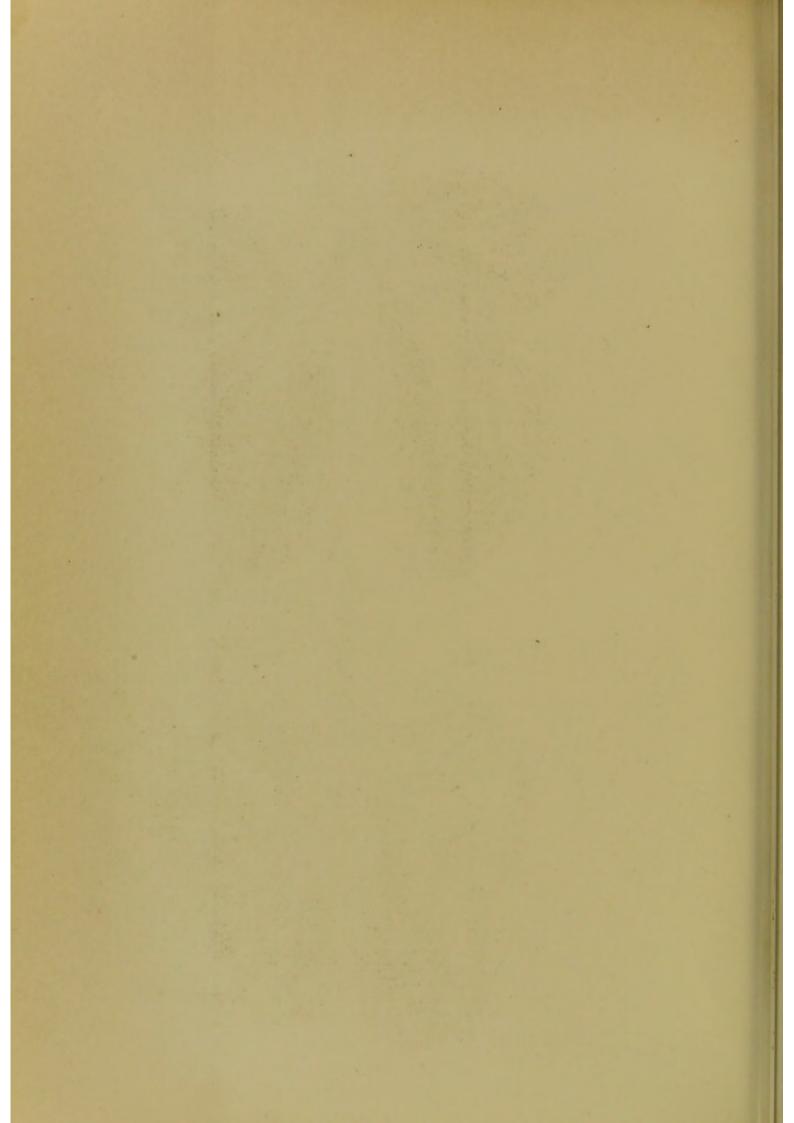

Fig. 5.

Fig. 6.





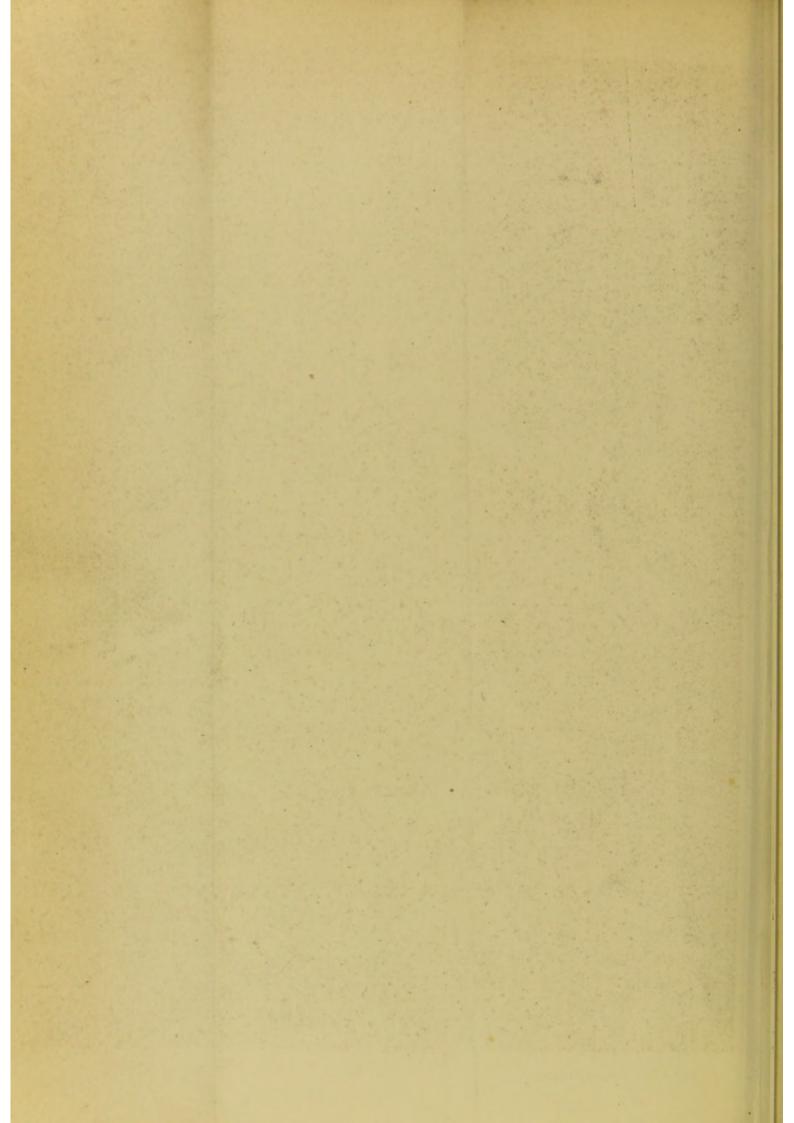
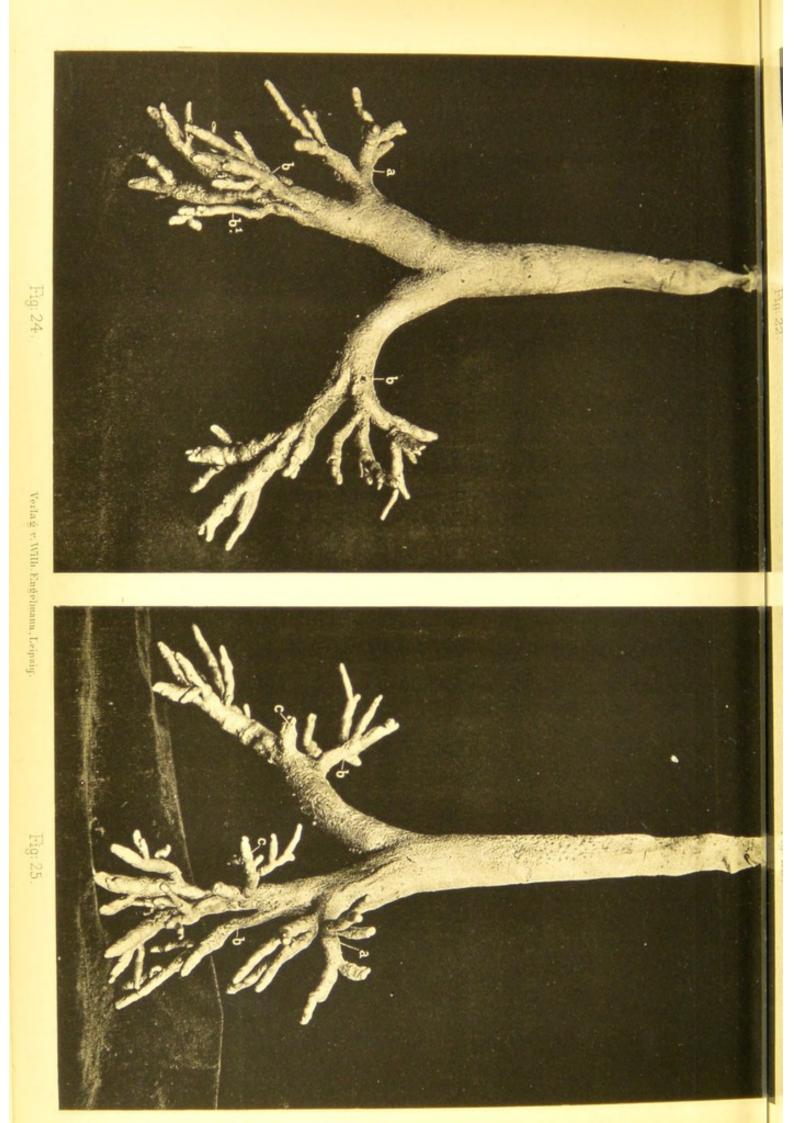
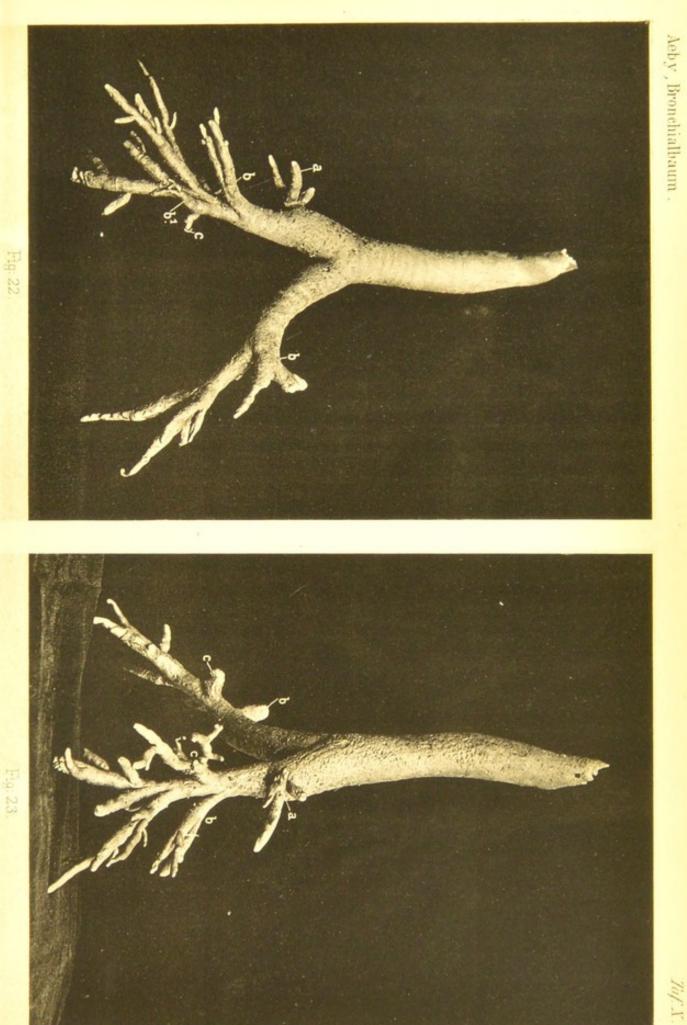
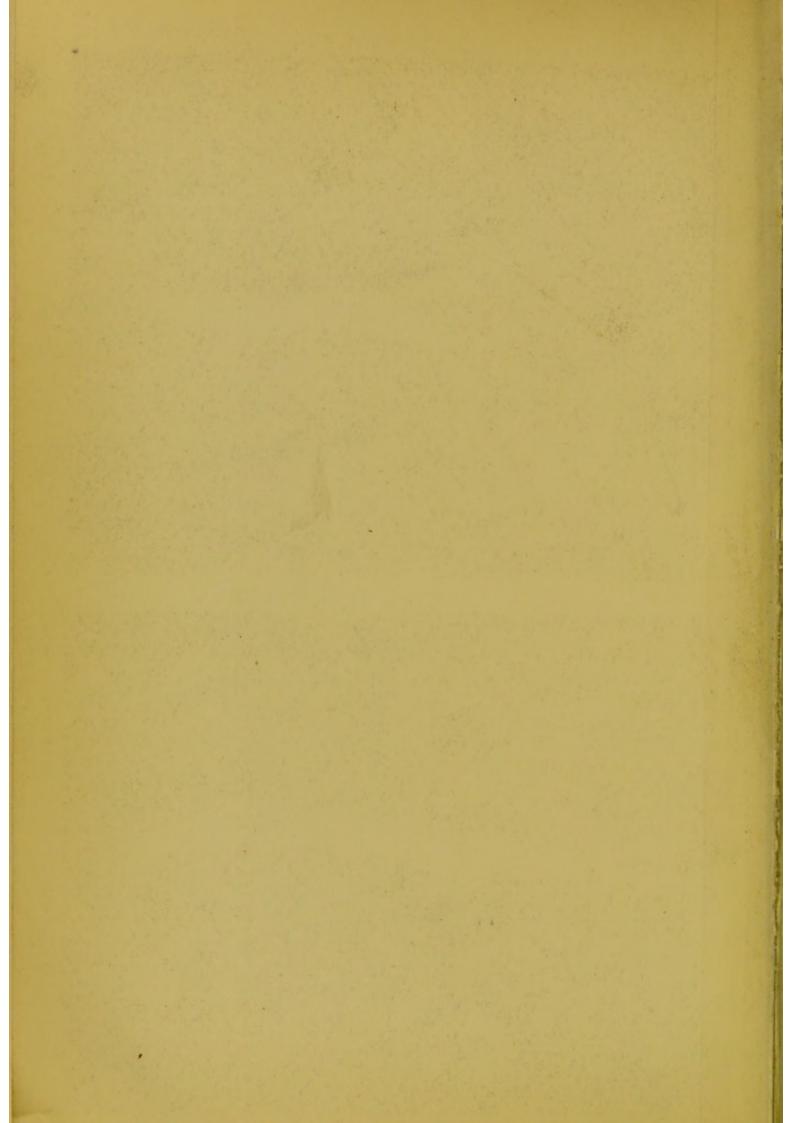

b

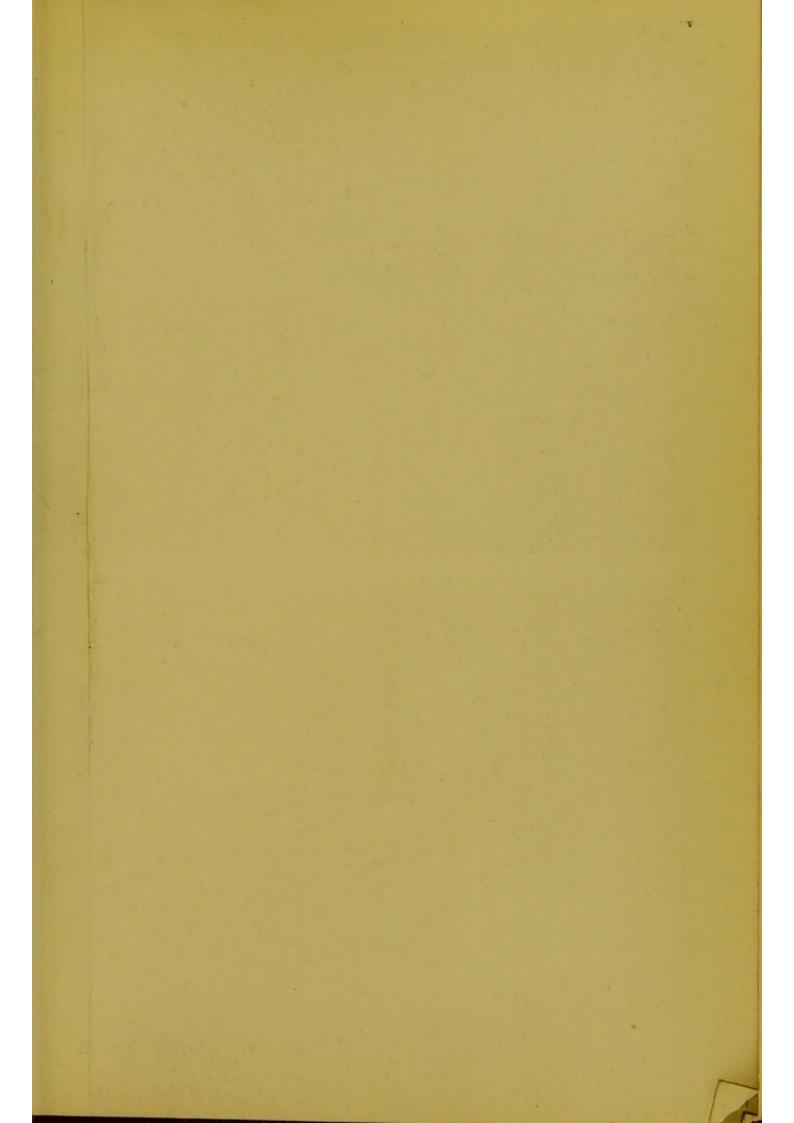

Fig. 9.

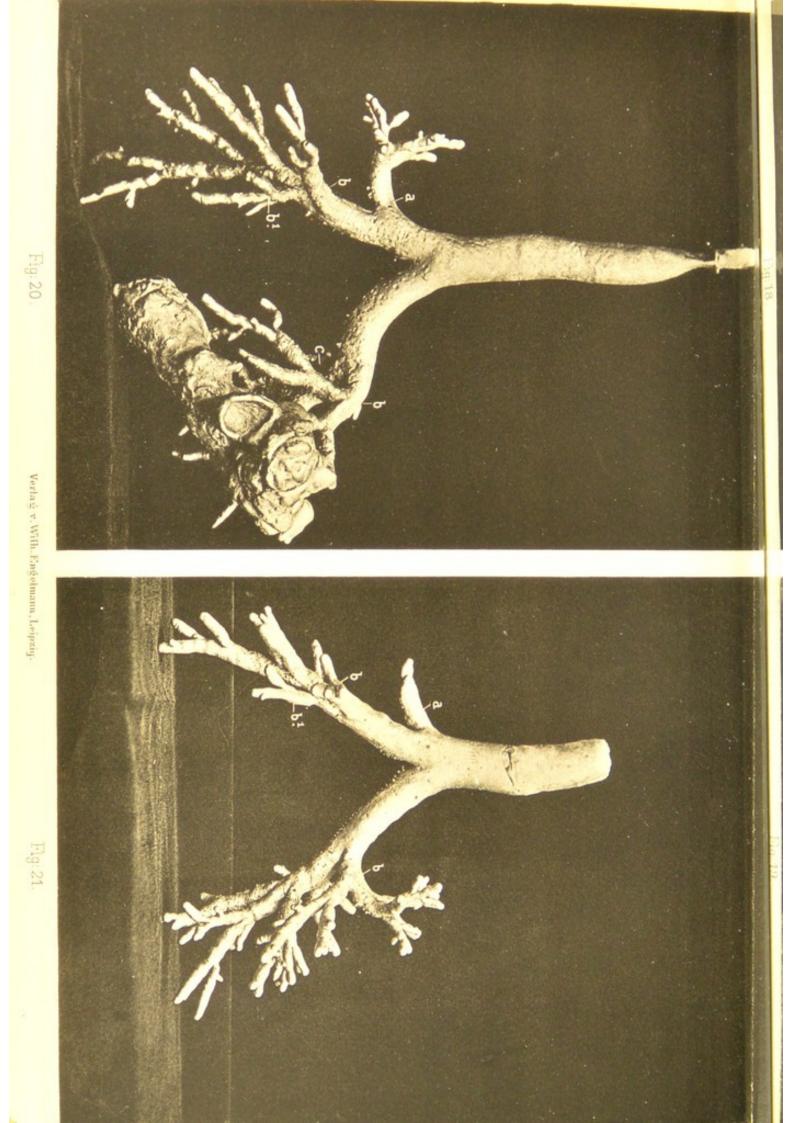
Fig. 11.








Verlag v. Wilh. Engelmann, Leipzig.


Lichtdruck von Römmler & Jonas in Dresden.

