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2 PREFACL.

We are told that in early times Pythagoras and Democritus, who taught the
Greeks astronomy and mathematics, learnt these sciences in India, The Arabians

-

 Such is the detailed explication of that very ingenious mode which, in certain cases, the Hindoo Astro-
nomers employ for constructing the table of approximate sines. But totally ignorant of the principles of
the operation, those humble calculators are content lo follow blindly a slavish routine. The Brahmins must
therefore have derived such information from people farlher advanced than themselves in science, and of
a bolder and more inventive genius. Whatever may he the pretensions of that passive race, their know-
ledge of trigonometrical computation has no solid claim to any high antiyuity. It was probably, before
the revival of letters in Europe, carried to the East, by the tide of victory, The natives of Hindustan
might receive instruction from the Persian Astronomers, who were themselves taught by the Greeks of
Constantinople, and stimulated to those scientific pursuits by the skill and liberality of their Arabian con-
querors,"—(Leslie’s Elements, p. 485.)

When “scientific operations are detailed, and most of the theorems on which they depend are given in the
form of rules, surely it is not to be inferred because the demonstrations do not always accompany the rules,
therefore that they were not known; on the contrary, the presumption in such a case is that they were
known. So it is here, for the Hindoos certainly had at least as much trigonometry as is assumed by Mr.
Leslic to be the foundation of their rule. Mr. Leslie, after inferring that the Hindoos must have derived their
science from people farther advanced than themselves, proceeds to shew the sources from which they might
have borrowed, namely, the Persians, the Greeks, and the Arabians. Now as for the Persians as a nation, we
do not know of any science of theirs except what was originally Greek or Arabian. This indeed Mr, Leslie
would seem nol to deny; and as for the Greeks and Arabians it is enough to say that the Hindoos could not
borrow from them what they never had. They could not hiave borrowed from them this slawish routine for
the sines, which depends on a principle not known even to the modern Europeans till 200 years ago. In short
the tide of victory could not have carried that which did not exist.

It appears from Mr. Davis's paper that the Hindoos knew the distinctions of sines, cosines, and versed sines.
They knew that the difference of the radius and the cosine is equal to the \rcrsed sine; that in a right-angled
triangle if the hypothenuse be radius the sides are sines and cosines. They assumed a small arc of a circle as
equal to its sine. They constructed on true principles a table of sines, by adding the first and second
differences. .

From the Bija Ganita it will appear that they knew the chief properties of right-angled and similar triangles.

In Fyzee’s Lilavati I find the following rules:

(The hypothenuse of a right-angled triangle being &, the base 8, and the side 5.)

b3afas?
Assmine any large number p, then Vi :" 12} — s
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always considered the Indian astrology and astronomy as different from theirs
and the Greeks. We hear of Indian astronomy known to them in the time of the
Caliph Al Mamun. (See d'Herbelot). Aben Asra is said to have compared the
Indian sphere with the Greek and Persian spheres. (Heilbronnen Hist. Math,
p. 456). We know that the Arabians ascribe their numeral figures to the

Let p and ¢ be any numbers; then
pg =5 pt=—gl=f andp* +* = .
k1

a
a— — ¢+?—

Given a = h = s; then 3 Ilt-::,, and = 8

— — =‘ 2
Gi‘énﬂ =ﬁ+;; [ML‘;“.? -l_—ﬁlI and ﬂ.—*i{?:—..—@: &

There are also rules for finding the areas of triangles, and fourssided figures; among others the rule for the
area of a triangle, without finding the perpendicular,
For the circle there are these rules (c being the circumference, b the diameter, ¢ the chord, o the versed siae,
& the mh‘;j
€:D3:2:7;andc : D :: 3927 : 1250, (Also see Ayeen Akbery, vol, 3, p.32.)
b—y/((o+e)(D—¢)) __ &
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Also formulz for the sides of the regular polygons of 3, 4, 5, 6, 7, 8, 9 sides inscribed in a circle. There are
also rules for finding the area of a circle, and the surface and solidity of a sphere. It will be seen also that
Bhascara is supposed to have given these two rules, viz——the sine of the sum of two arcs is equal to the sum
of the products of the sine of each multiplied by the cosine of the other, and divided by the radius; and the
cosine of the sum of two arcs is equal to the difference Letween the products of their sines and of their
cosines divided by radius.

Is it to be doubted that the Hindoos applied their rule for the construction of the sines, to ascertain the
ratio of the diameter of a circle to its circumference *—thus the circumference of a circle being divided into
360 degrees, or 21600 minutes, the sine of 90 degrees which is equal to the radivs would be found by the

! 402
73 and 1250 : Sg'ﬁﬁ'

and assuming, as the Hindoos commonly do, the nearest integers, the ratio would be 7 : 22 or 1950 : 3027,

It is not to be denied that there are some m'“ﬂf@f coincidences between the Greek and the Hindoo science =
for example, among many which might be giver it may he sugzesied that the contrivances ascribed to .rlntiphm:
and Bryso, and that of Archimedes, for finding the ratio of the diameter of a circle to its circumference might
have been the foundation of the Iindeo method; that Diophantus’s speculations on indeterminate problems
might be the origin of the Hindoo Algebra. But there are no truths in the history of science of which we are
better assured than that the Surya Siddhanta rule for the sines, with the ratio of the diameter of a circle to its
circumference 1250 : 39275 and the Bija Ganita rules for indeterminate problems were not hnown to the Greeks,
Such are the stumbling blocks which we always fiod in our way when we attempt to refer the Hindoo science to
any foreign origin,

rule 2438. This would give the ratio of the diameter to the circumference 7121 367

A S
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Iudians; and Massoudi refers Ptolemy’s astronomy to them. (See Bailiy’s preface
to his Indian astronomy, where is cited M. de Guignes. Mem. Acad. [us, T. 36,
p. 771). Fyzee, who doubtless was conversant with Greco-arabian learning, and
certaimly knew the Hindoos well, has never started any doubt of the originality
of what he found among them. The preface to the Zeej Mahommed Shaby, or
Astronomical Tables, which were published in India in 1728, speaks of the
Furopean, the Greek, the Arabian, and the Indian systems as all different.
That work was compiled with great learning by persons who were skilled in the
sciences of the West, as well as those of the East®*. Alore examples might be
given—Dbut to proceed.

The Bija Ganita is a Sanscrit treatise on algebra, by Bhascara Acharya, a
celebrated Hindoo Astronomer and Mathematician.

Fyzee§, who, in 1587, translated the Lilavati, a work of his on arithmetic,
mensuration, &c. speaks of an astronomical treatise of Bhascara's, dated in the
1105th year of the Salibahn, which answers to about 1183 of our wra; but Fyzee
also says, it was 373 years before 995 Hegira, which would' bring it dewn to A, D.
1225. So that Bhascara must have written about the end of the 12th century, or
beginning of the 15th,

A complete translation of the Bija Ganita is a great desideratum ; so it has
been for more than 20 years, and so it seems likely to remain.

It will be seen however that we have already means of learning, with sufficient
accuracy, the contents of this work. I have a Persian translation of the Bija Ganita,
which was made in India in 1634, by Ata Allah Rusheedee. The Persian does not in
itself afford a correct idea of its original, as a translation should do; for it is an

* See Asiatic Researches, 5th vol. on the Astronomical Labours of Jy Singh.

+ I will here translate a part of Fyzee's preface :—* By order of king Akber, Fyzee translates into Persian,
from the Indian language, the book Lilavati, so famous for the rare and wonderful arts of caleulation and
mensuration. He [Fyzee) begs leave to mention that the compiler of this book was Bhascara Acharya, whose
birth place, and the abode of his ancestors was the city of Biddur, in the country of the Deccan. Though
the date of compiling this work is not mentioned, yet it may be nearly known from the circumstance, that the
author made another book on the construction of Almanacks, called Kurrun Kuttohul, in which the date of
compiling it is mentioned to be 1105 years from the date of the Szlibahn, an ®ra famous in India. From
“ that year to this, which is the 32d Ilahi year, corresponding with the lunar year 995, there have passed
. 973 years.”

As the lahi began in the Hegira {or lunar) year, 992, (see Ayeen Akbery) the date 32 of lahi is of
course an error. It is likely too that there is an error in the nuwmber 373.

Mr, Colebrooke, in the 9th vol. of Asiatic Researches, gives, on Bhascara’s own authority, the date of his birth,
viz. 1063 Saca. In 1105 Salibahn (or Sica) that is, about A, D. 1163, he was 42 years old,

L]
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the Sanscrit work, and that the references to Fuclid are interpolations of the
Persian translator they give most of the Hindoo Algebraic notation* which is
wanting in the Persian, and they shew that the Astronomy of the Hindoos was
connected with their Algebra.

I must however confess, that even before I saw these notes the thing was to
my mind quite conclusive. For I found (as will be seen) in this Persian trans-
lation of 1634, said to be from the Sanscrit, a perfectly connected structure of
science, comprehending propositions, which in Europe were invented successively
by Bachet de Mezeriac, Fermat, Euler, aud De La Grange .

* Thé Hindoos have no mark for 4, they only separate the quantities to be added by a vertical line
thus | or||, as they separate their slocas or verses.

Their mark for minus is a dot over the quantity to be subtracted.

Instead of a mark for multiplication they write the factors together as we do, thus, ab for a % 5.

Division they mark as we do by a horizontal line drawn between the dividend and divisor, the lower
guantity being the divisor,

For unknown quantities they use letters ol the alphabet as we do. They use the first letters of the words
signifying colours.

The known quantity (which is alwaysa number) has the word roop (form) or the first letter of the word prefixed.

The square of the unknown quantity is marked by adding to the expression of the simple quantity the first
letier of the word which means square, and in like manner the cube,

The sides of an equation are written one above another ; every quantily on one side is expressed again directly
under it on the other side. Where there is in fact no corresponding quantity, the form is preserved by wriling
that quantity with the co-efficient 0.

The methods of prefixing a letter to the known number, and using the first lelter of the words square and
eube are the same as those of Diophantus. T mention it as a curious coincidence; perhaps some people may
allach more importance to it than I do.

+ The propositions which I here particularly allude to are these:—

1. A general method of solving the problem ar 2 c'= y, 4, b and ¢ being given numbers and x and y

&
indeterminate. The solution is founded on a division like that which is made for finding the greatest eommon
measure of two numbers. The rules comprehend every sort of case, and are in all respects quite perfect.

2. The problem am? 4 1| =%, (a being given and » and » required) with ils solution,
5. The application of the above to find any number of values of ax?+ &= »? from one known case,

. =
4, To find values of x and g in ax® 4 b= 3" by an application of the problem “: f = % It is un-

necessary for me kere to give any detail of the Hindoo methods.

The first question about this extraordinary matter is, what evidence have we that it is not all a forgery ?
1 answer, shortly, that independently of its being now found in the Sanscrit books, it is ascerlained to have
been there in 1634 and 1587, that is tosay, in times when it could not have been forged.

The following extract from a paper of De La Grange, in the 24th volume of the Memoirs of the Berlin
Academy, for the year 1568, contains a summary of that part of the history of Algebra which is now alluded to,
As fur the 4th of the points abovementioned, the method in detail (however imperfect in some respecis) is, as
far as [ know, new to this day. The first application of the principle in Europe is to Le sought in the writings
of De La Grange himself.
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To maintain that the Bija Ganita rules for the solution of indeterminate pro-
blems might have been had from any Greek or Arabian, or any modern European
writers before the Mathematicians just named, would be as absurd as to say that
the Newtonian Astronomy might have existed in the time of Ptolemy. It is true
that Bachet wrote a few years before 1634, but this is no sort of objection to the
. argument, for that part which might be questioned as a mere copy of Bachet’s
method, namely, the rules for indeterminate problems of the first degree, is closely
connected with matters of latter invention in Europe, and is in Mr. Dalby’s copy
of Fyzee's translation of the Lilavati, which I have before said was made in 1587 ;
and Mr. Davis's notes shew that it is in the Sanscrit Bija Ganita, which was

 La plupart des Géometres qui ont cultivé "analyse de Diophante se sont, a 'exemple de cet illustre invens
“ tuer, uniquement appligués & eviter les valeurs irrationelles; et tout Jartifice de leurs méthodes se reduil 3
* faire en sorte que les grandeurs inconnues puissent se déterminer par des nombres commensurables,

“ L'art de resondre ces sorles de questions ne demande gueres d’autres principes que ceux de l'analyse
“ ordinaire ; mais ces principes deviennent insuffisant lors-qu'on ajoute la condition que les quantitds cher-
‘ chées soient non seulement commensurables mais encore égales & des nombres entiers.

“ M. Bachet de Mezeriac, auteur d'un excellent commentarie sur Diophante et de différens autres ouvrages
* est, je crois, le premicr quil ait tanté de soumetire celte condition au caleul. Ce savant a trouvé une méthode
# générale pour resoudre en nombres entiers toutes les equations du premier degré a deux ou plusieurs incon,
 nues, mais il ne paroit pas aveir éé plus loin; et ceux qui aprés lui se sont occupés du méme objet, ont
¢ aussi presque tous bowni leurs recherches aux eyuations indéterminées du premier degré; leurs efforts se
« gont réduits a varier les méthads qui peuvent servir a la resolution de ces sortes d'equations, et aucun, si
" j'ose le dire, n'a donné une methode plus directe, plus générale, et plus ingenieuse que celle de M. Bachet
“ qui se trouve dans ses récréations mathématiques intituéles ¢ Problems plaisans ef délectables qui se font par les
“ momlres. Il est a la vérité assez surprenant que M. de Fermat qui s'etoit si long tems et avec tant de
*¢ guccés exercé sur la théorie des nombres enticrs, n’ait pas cherché & resoudre généralement les problems
# indeterminés du second degré, et des degrés superieurs comme M. Bachet avoit fait ceux du premier degré ;
*“ gn a cependent lieu de croire qu'il s'etoit aussi appliqué a cette recherche, par le probleme qu'il proposa
“ comme une espece de défi & M. Wallis et & tous les Geometres Anglois, et qui consistoit & trouver deux
 carrés entiers, dont I'un étant multiplié par un nomb¥e votier donné non carré & ensuite retranché de Pautre,
# le reste fut etre €gal & unilé, car, outre que ce probleme est un cas particulier des €quations du second
* dégré & deux inconnués il est comme la clef de la résolution génerale de ces équations. Mais soit que
# M. de Fermat n'ait pas continué ses recherches sur cette matiere, soit quelle ne soit parvenue jusqu'd nous,
“ il est certain qu'on nen trouve gucune trace dans ses ouvrages.

“ ]I paroit méme que les Geometres Anglois qui ont résolu le probleme de M. de Fermat n’ont pas connu
* toute I'importance dont il est pour la solution géuérale des problemes indélerminés du second degré, du
“ moins on ne voit pas qu'ils en ayant jamais fait usage, et Euler est si je ne me trompe, le prémier qui ait
* fait voir comment & I'aide de ce probleme on peut trouver une infinité de solutions en nombres entiers de
* toute éyuation du second dégré 3 deux inconnues, dont on connoit déja une solution.

“ Il résulte de tout ce que nous venons de dire, que depuis louvrage de M, Bachet que a paru en 1613,
# jusqu'a présent, ou du moins jusqu'au mémoire que je donnai année passée sur la solution de problems

“ indéterminés du sécond dégré, la théoric di ces sortes de problemes n'avoit pas a8 proprement parler, éte
“ poussée au dela do premier digré,”
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written four centuries before Bachet. - Though we are not without direct proofs
from the original, yet, as even the best Sanscrit copies of the Bija Ganita, or any
number of su-;h copies exactly corresponding, would still be open to the chjection
of interpolations, it 1s necessary in endeavouring to distinguish the possible and
the probable corruptions of the text, from what is of Indian origin, to recur to
the nature of the propositions themselves, and to the general history of the
science. Indeed we have not data enough to reason satistactorily on other prin-
ciples. We cannot rely upon the perfect identity or genuineness of any book
before the invention of printing, unless the manuscript copies are numerous, and
of the same age as the original. Such is the nature of our doubt and difficulty
in this case, for old mathematical Sanscrit manuscripts are exceedingly scarce ;
and our uncertainty is greatly increased by a consideration of this fact, that in
latter times the Greek, Arabian, and modern European science has been introduced .
into the Sanscrit books.

Yet, in cases precisely parallel to this of the Hindoos, we are not accustomed
to withhold our belief as to the authenticity of the reputed works of the ancients,
and in forming our judgment we advert more to the contents of the book than
to the state of the maunuscript. When the modern Europeans first had Euelid,
they saw it only through an Arabic translation. Why did they believe that
pretended translation to be authentic ? Because they found it coatained a well
connected body of science; and it would have been equally as improbable to
suppose that the Arabian translator could have invented it himself as that he could
have borrowed it from his countrymen. There are principles on which we decide
such points. We must not look for mathematical proof, but that sort of proba—
bility which determines us in ordinary matters of history.

Every scrap of Hindoo science is interesting ; but it may be asked why publish
any which cannot be authenticated ? I answer, that though this translation of
Ata Allah’s which professes to exhibit the Hindoo algebra in a Persian dress, does
indeed contain some things which are not Hindoo, yet it has others which are
certainly Hindoo. By separating the science from the book we may arrive at
principles, which if cautiously applied, cannot mislead, “which in some cases will
shew us the truth, and will often bring us to the probability when certainty is
not to be had. On this account I think the Persian translation at large interest-
ing, notwithstanding it contains some trifling matters, some which are not in-
telligible, and others which are downright nonsense. ;

I have said that Mr. Davis’s notes shew a_connexion of the algebra of t]}e
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" Hindoos with their astronomy. Mr. Davis informs me that in the astronomieal
treatises of the Hindoos, reference is often made to the algebra; and particularly
he remembers a passage where Bhascara says “ it would be as absurd for a person
“ ignorant of algebra to write about astronomy, as for one ignorant of grammar
“ to write poetry.” i

Bhascara, who is the only Hindoo writer on algebra whose works we have
yet procured, does not himself pretend to be the inventor, he assumes no character
but that of a compiler®. Fyzee never speaks of him but as a person eminently
skilled in the sciences he taught. He expressly calls him the compiler of the
Lilavati.

I understand from Mr. Davis, and I have heard the same in India, that the
Bija Ganita was not intended by Bhascara as a separate unconnected work, but
as a component. part of one of his treatises on astronomy, another part of which
is on the circles of the sphere.

I have found among Mr. Davis’s papers, some extracts from a Sanscrit book of
astronomy, which I think curious, although the treatise they were taken from is
modern. Mr. Davis believes it to have been written in Jy Sing’s time, when the
European improvements were introduced into the Hindoo books. Two of these
extracts I have added to the notes on the Bija Ganita. The first of the two
shews that a method has been aseribed by Hindoo Astronomers to Bhascara of
caleulating sines and cosines by an application of the principles which solve
indeterminate problems of the second degree. This suggestion is doubtless of
Hindoo origin, for the prineiples alluded to were hardly known in Europe in
Jy Sing’s timef. I think it very probable that the second extract is also purely
Hindoo, and that the writer knew of Hindoo authors who said the square root
might be extracted by the cootuk ; that is to say, the principle which eflects the
solution of indeterminate problems of the first degree. From this, and from what
is in the Bija Ganita, one cannot but suspect that the Hindoos had continued
fractions, and possibly some curious arithmetic of sines. On such matters how-
ever, let every one exercise his own judgment. §

® 4 Almost any trouble and expence would be compensated by the possession of the three copious treatises
 on algebra fram which Bhascara declares he extracted his Bija-Ganita, and which in this part of India ase
# supposed to be entirely lust."—As. Res. vol. iii. Mr. Davis “ On the Indian Cycle of 60 years.”

+ Iy Siné reigned from 1694 to 1744,
+ Mr, Reuben Burrow, who, by the bye, it must be confessed is very enthusiastic on these subjects, in a paper
s
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We must not be too fastidious in our belief, because we have not found the
works of the teachers of Pythagoras; we have access to the wreck only of their
ancient learning; but when we see such traces of a more perfect state of know-
ledge, when we see that the Hindoo algebra 600 years ago had in the most
mteresting parts some of the most curious modern European discoveries, and
when we see that it was at that time applied to astronomy, we cannot reasonably
doubt- the originality and the antiquity of mathematical learning among the
Hindoos. Science in remote times we expect to find within very narrow limits
indeed . its history 1s all we look to in such researches as these. Considering
this, and compaiing the contents of the Hindoo books with what they might
have been expected to contain, the result affords matter of the most curious
speculation.

May I be excused for adding a few words about myself. If my researches have
not been so deep as might have been expected from the opportunities I had in
India, let it be remembered that our labours are limited by circumstances. Tt is
true I had at one time a copy of the original Bija Ganita, but I do not under.
stand Sanscrit, nor had I then any means of getting it explained to me. ~ Official
avocations often prevented me from bestowing attention on these matters, and
from seizing opportunities when they did occur. Besides, what is to be expected
in this way from a mere amateur, to whom the simplest and most obvious parts
only of such subjects are accessible ?

Ei SI-

The following account of Ata Allah’s Bija Ganita is partly literal translation,
partly abstract, and partly my own.

The literal translation is marked by inverted commas ; that part which consists
of my own remarks or description will appear by the context, and all the rest is

abstract.
I have translated almost all the rules, some of the examples entirely, and

in the appendix of the 2d vol. of the As. Res, speaks of the Lilavati and Bija Ganita, and of the mathematical
knowledge of the Hindoos : He says, he was told by a Pundit, that some time ago there were other treatises of

algebra, &c. (See the paper.)
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“ or two negative quantities together, the sum is the result of the addition. If
““ they are affirmative call the sum affirmative ; if negative call the sum negative,
“If the quantities are of different kinds take the excess; if the affirmative is
“ greater, the remainder is affirmative; if the negative is greater, the remainder
“ is negative; and so itis in subtraction.” (Here follow examples).

Secr. IL
On Multiplication *.

“ If affirmative is maltiplied by affirmative, or negative by negative, the product
“ is dffirmative and to be included in the product. If the factors are contrary
¢¢ the product is negative, and to be taken from the product. For example, let us
“ multiply two affirmative by three affirmative, or two negative by three negative,
“ the result will be six affirmative; and if we multiply two affirmative by three
‘ negative, or the comtrary, the result will be six negative.”

Sect. III
On Division.

““ The illustration of this is the same as what has been treated of under multi-
“ plication, that is to say, if the dividend and the divisor are of the same kind
“the quotient will be affirmative, and if they are different, negative. For
¢ example, if 8 is the dividend and 4 the divisor, and both are of the same kind,
“ the quotient will be 2 affirmative ; if they are different, 2 negative.”

Secr. IV,
On Squarest.

“ The squares of affirmative and negative are both affirmative; for to find the

* In the Persian translation the product of numbers is generally called the rectangle.
4 I had a Persian treatise on Algebra in which there was this passage—** Any number which is to be multiplied

“ by itself is called by arithmeticianz root f)q}.;}l by measurers of surfaces side (y.\:ﬂ.l), and by alge-
# braists thing (Lj":”)' And the product is called by arithmeticians square (JJ\)\_:\—Q), by measurers
“ of surfaces squa;: { éJfg), and by algebraists possession (JL@}" ‘_‘]L-q is alse used for plus, and
its oppaosile debt ( wd) for mt’rm.;. These terms, all of which are Arabic, are used in the Persian translation
of the Bija Ganita, the geometrical more frequently than their corresponding arithmetical or algebraical ones.
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Secr. IIIL
On Division,

“ If the dividend is cipher and the divisor a number the quotient will be ci pher.
“ For example, if we divide cipher by 3 the quotient will be cipher, for multi-
“ plying it by the divisor the product will be the dividend, which is cipher:
“ and if a number is the dividend and cipher the divisor the division is impossible ;
“for by whatever number we multiply the divisor, it will not arrive at the divi-
“ dend, because it will always be cipher.”

SecT. IV,
On Squares, &e.

“The square, cube, square root, and cube root of cipher, are all cipher ; the
““ reason of which is plain.”

CHAP. IIIL

Ox Coroumrs.

“ Whatever is unknown in examples of calculation, if it is one, call it thing,
“ ( (.5':" ), and unknown (‘J—’\":\")’ and if it is more call the second black,

“ and the third blue, and the fourth yellow, and fifth red. Let these be termed
““ colours, each according to its proper colour, This chapter has five sections.

Secr. L
On Addition and Subtraction of Colours.

““ When we would add one to another, if they are of the same kind add the
“ numbers* together ; if they are of two or more kinds, unite them as they are,
“and that will be the result of the addition.” Here follows an example.

¢ If we wish to subtract, that is to take one from the other, let the subtraliend
““be reversed. If then two terms of the same kind are alike in this, that they are
“ hoth affirmative or both negative, let their sum be taken, otherwise their dif-
“ ference, and whatever of the kind cannot be got from the minuend, must be

* Meaning here the co-efficients,
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Secr. IV.
On the square of Colours :

“ That is to say, the product arising from any thing multiplied by itself.”
Examples.

Secr. V.
On the Square Root of Colours.

** To know the square root of a colour, find that which when it is multiplied by
“ jtself the product subtracted from the colour whose root is required, will leave no
“ remainder. The rule is the same if there are other colours or numbers with
‘¢ that colour.” _

Exvample. Required the square root of 162*+36—48x. The roots of 164" and
36 are 4r and 6, and as 48x is — these two roots must have different signs.
Suppose one + and the other —, multiply them and the product will be — 242 ;
twice this is — 482 which was required. The root then is 4 4r—6, or +6—4ux.

Another Example. Required the square root of 9a*+4y 42+ 120y —6i5—
4yz—6x—4y+2z+1. Take the root of each square ; we have 3z, 2y, 2, and 1.
Multiply these quantities and dispose the products in the cells of a square.

3r oy [ s 1

S 9r* | 6y | Saz | Sa

2y by 4" 1 2= 2y

Srz | 2=z s L

Ey

T v O S R

LA

To find what sort of quantities these are: The product of = and 7 is +, there-
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Sect. II.
On Multiplication.

Proceed according to the rules already given; but if one of the factors has
numbers as dithems or dinars, take their squares and go on with the operation.

Example, Multiply +/3+45 by v/24+4/34++/8. As 5 isof the square sort take
its square, and arrange in a table thus :

Ve V'3 V'8
V'3 V6 V9 V24
V€5 V50 V75 v/200
t Product |3 4+ 4/54 4+ 450+ 75

In summing the terms of the product, if any square number is found, take its
root. Here 9 is found and its root is 3. The rest of the terms being irrational,
add such as can be added. +/64 v 24=+/54. If this last were a square number
its root should be extracted.

Again, +/5044/200=4/450. No further addition is possible; the complete
product therefore is 34 4/544+/450+ /75.

Another rule to be observed is, if any of the terms which compose the factors
can be added, take their sum and write it in the table instead of the terms of
which it is formed. Thus in the last example +/2 and /8 may be added. Write
/18 which is their sum in the table, and we shall have
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Secr. III.

On Division,

Divide the dividend by the divisor, and if the quotient is found without a re-
mainder the division is complete. When this cannot be done proceed "as follows :

When in the divisor there are both affirmative and negative terms, if there are
more of the former make one of them negative; if more of the latter make one
of them affirmative. 'When all the terms are affirmative make one negative, and
when_all are negative make one affirmative, When the number of affirmative
terms is equal to that of the negative, it is optional to change one of them or not.
Multiply the divisor (thus prepared) by the original divisor, and add the pro-
ducts rejecting such quantities as destroy each other. Multiply the prepared
divisor by the dividend, and divide the product of this muit;phcatmn b:,r that of
the former the result will be the quotient required.

Erﬂmpic. Let the dividend be that which was the product in the first example
under the rule for multiplication, viz. 3 4+ 4/54 + +/450 4 /75, and the divisor
V18 + /5.

A i 450 i i Ot v O

|

=3 - T
3 , V2

the quotient then is 5 4 /3.

Another Example. Divide +/9 + /54 + /450 + V75 by 5 +v/3. Make
/3 negative, and multiply 5 (or v/25) — 4/3 by the divisor /25 + /3.

+425 | —v3

+#3 | +vT75 | =9

b 425 | 4625 | — 75

4
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found, and the roots of the several products will be the remaining parts of the
quotient required.
15
= =2, +9=8 S=1= 2 1 20 el I1xe=9,4X2 =238

+/2 and +/8 are the remaining parts of the quotient.

Sect IV.
On the Sguares of Surds.

Multiply the surds by themselves.—(Here follow examples).—The squares are
found by multiplying the surds in the common way.

Seer. V.
On finding the Square Roots of the Squares of Surds *.

“ If the square is of one surd or more, and I would find its root ; first I take the
“square of the numbers that are with it, and subtract these squares from it.
“ Accordingly after subtraction something may remain. I take the root of what-
“ ever remains, add it in one place to the original number, and in another sub-
“ tract it from the same. Halve both the results, and two roots will be obtained.
‘I then re-examine the squares of the surds to know whether any square remains

®* [eta+ &+ e+ /d, &c. be the square of a multinomial surd, a the sum of the squares of the roots, and
V& 4 ¢ 3 v d + &ca the product of the rools taken two and two. The number of roots being m, the num-
ber of terms in the square will be n%, of which x will be the number of rational terms, and #* — n the number of

—Tk

surd products. If we call the double products single terms, r:—-g— will express the number of surd terms,

and considering the sum of the rational terms as one term, the proposed square may be reduced to the form

(x4 342+ &) + (2o 4+ 2¢/'x2 4+ &) 4 (299 + Koo &e)
where /2 + /v + 'z + &c. is the root of the square, and the surd terms of the square are divided inio
periods of n— 1, n—2, n—3, &c. as directed in the Beej Gunnit,

Supposing x + ¥ + z 4+ &c. = a
y+z+ ke ==r
z 4 &ee = 5
&e. ke
1/-:;:1:1:"[1‘—41&]:“”“:“;“
B =k ¢/ (R* — dys
WL PR :

5 == (5 —dzT
V, [ﬂ }_—. +'5 or &c. and 5o on.
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terms.  8'=04, 64 —060=4, y/4=2, 8+2=10, 8-9:6,1—; = 5, and g T

All the terms of the square having been brought down, the complete root is
VB 5+ V3 4 Ve
Another Evample. Required the root of 72: 72°=5184, 0°=0, 5184—0=5184,
V5184=72, 704+72=144, 72—72=0, "_‘L* = 72, 2 =0, v/72 then is the root.
If instead of one term three terms are required, find them by the rule
given in the section on division; divide by 36 which is a square mumber,

=0 Ny o ' e 7o .
g — V'36=6, 6=342+41, =9, 2'=4, I'=1, 0% ==18,4X =",

30
Rl
1 X iﬁ = 2; therefore +/72=v/184+v/8+ /2. If three equal terms had been

required, the root of the divisor must have been divided into three equal parts,
Another Exvample. 1t is required to find the difference of /3 and /7. The
rule not being applicable to this case, suppose +/7 affirmative, and 4+/3 negative,
the square of these numbers is 10—4/84. To determine the root of this, suppose
84 to be positive; 10°=100, 100—84=16, +/16 =4, 1044=14, 10—4=6,
H‘?, =38. We have then +/7 and v/3, one of which must be minus because

v/ 84 was minus.
Another Evample. Whether the root is +4/244/3— /5 or —v/2—4/344/5
the square will be the same, viz. 104424 —4/40—+/60.
Let the root of this square be determined: 10* = 100, 100 — (40 + 60) =
10 10

v/0=0, 104-0=10, 10—0=10, 5 =% ?—5 As ¢/24 remains, 5* =25,
25 —2=1, VvI=1, 541=6, 5~1=4, -_5 ~—29. If 24 + 40 is sub-
16 4

tracted from 100 there remains 36, #/ 36 =6,104+6=16, 10—06=4, — =8, - 5 =2.

2
As /60 remains 8'=64, 64—00=4, / 4=2, §+2=10, s-s:ﬁ,‘; =5, 555
If 2 4 60 is subtracted from 100 there yemains 16. /16=4, 104+4=

10—4=6, 24 =i b =3, +40 yet remaining, 7 =49, 49—40=9, +/9=3,

2 <
4

74+ 3=10, 7 — =04, %: (i T 2, The terms of the root are +/2 and
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¢ Por numbers consisting of more terms than 9 the number of surds in the
squares may be found by the rule which has been given. If in the square there
“ are three surd terms, first subtract two of them from the square of the numbers
“ and afterwards subtract the third. If there are six surds, first subtract 3, then
“ o and so on ; if there are 10 surds, first subtract 4; if 15, first 5; if 21, first G;
“if o8, first 7; if 56, first 8 ; and in general the number of surds of the square
“ will be found in the table in the column of roots next above the number
“ of its root.  1i they are not subtracted in the regular order, the result will be
¢ wrong. The test of the operation of this: if either of the two numbers found
by the rule is multiplied by 4, and the number which was subtracted from the
“ square of the rational term is divided by the product, the quotient will be the
“ other number found, without any remainder. If ecither of those two numbers
is a correct term of the root, and the other the sum of two roots, the least, or
¢ that which is the correct term, whether in number it be more or less than the
“ pumber of the sum of two roots, must be multiplied by 4, and every quantity
that has been subtracted must be divided by the products, the quotient will be
the numbers of the required roots from the second number. If, after this divi-
sion, there is any remainder the operation is wrong.

“ The squares of” all moofrid numbers* are made up either of rational numbers
alone, or of rational numbers and surds, as has been seenin the examples of the
section on squares.

“ If a surd occurs there must be a moofrid number with it, otherwise its root
« cannot be found. If a surd is divided into two:—For example, if +/18 is
“ divided into /2 and /'8, its root will have one term more than it would have
““ had regularly ; and if two surds are united the root will have one term less.
These two operations of separation and union must be attended to and applied
whenever they are possible.”

Evample. Required the root of 10 4 +/32 ++/24 4+ 4/8. TIrom the square
of 10 which is 100, subtract any two of the numbers under the radical signs, and
the remainder will be irrational: the case is, therefore impossible. If we proceed
contrary to the rule, by subtracting at once the three terms from 100, we shall

16 4 2
_R—~= 3 :
2 2, We

[

-

-~

ik

(¥

have 56 the remainder, then 4/36=6, 1G+ﬁ—16 10—6=4,

* Moofrid means simple as opposed to compound, but in the hngu'lgeof this science it is generally vsed to
express o number having one significant figure. __ﬁ
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“ add proceed as follows. Having performed the operations directed above, sub-
¢ tract the value of y from a and that of @ from b.  If a number cannot be found
“ to divide a, b, and ¢, without a remainder, but a number can be found to divide
“ g and ¢ without a remainder, (supposing the reduction of these two instead of
“ that of the three which was directed by the foregoing rule) @ will be brought
¢ out right and » wrong. To find y right, multiply its value now found by the
““ divisor of @ and ¢, and the product will be the true value of y. If ¢ and b only
“ can be reduced by a common divisor, the value of » must be multiplied by the
¢ common divisor, and the quotient will be the true value of . When ¢ is — sub-
“ tract the value of @ from &, and that of y from «.”

“1If the subtraction is possible let it be done, and the question is solved ; if it
¢ is impossible suppose the excess of the subtrahend above the minuend to be
‘““ negative. Multiply the minuend by a number, so that the product may be
“ greater than the negative quantity. From this product subtract the negative
““ quantity, and the remainder will be the number requirecd.

““ When a is — the same rule is to be observed ; that is, subtract the values of &
“and y from b and a. 1f ¢ is 4 and greater than b reject 4, and its multiples from
“ ¢ till a number less than b remains. Note the number of times that b is rejected
“ from c; if there will be no remainder after rejection it is unnecessary to reject.
* Go on with the operation, add the number of rejections to the value of y and
“ the sum will be its true value. The value of # will remain as before. If cis —
¢ subtract the number of rejections from the value of y. 1If @ and ¢ are greater
¢ than b reject & (or its multiples) from both; call the two remainders @ and ¢
“ and proceed ; 2 will come out right and y wrong. It there is no augment, or
“ if ¢ divided by & leaves no remainder, @ will be = 0, and y the quotient. If
‘“ the numbers are not reduced, but the quotients are taken from original num-
“ bers, ' and y will always be brought out right. If the numbers are reduced,
“ 2 and y will be brought out right only when both are reduced, and but one of
“ them will be brought out right when both are not reduced.”

Evample, a = 221, c¢=65, b = 195, dividing these numbers by 15 we
have, &’ = 17, ¢’ = 5, b' = 15. Divide 17 by 15 (as above directed) continu-
ing the division till the remainder is 1. The quotients are 1 and 7, write
these in a line with ¢ below them, and 0 below ¢, thus:

5 ; 3 1 40
Multiply 5 by 7 the product is 35, add 0 the sum is 8 Mul- ”
tiply 35 by 1 the product is 385, add 5 the sum is 1e two 5
last numbers then are 40 and 35. From 40 throw ¢ ut 0







39 INTRODUCTION:

 The two last numbers are 27 and 171, From 27 thiow out 10 twice, 7 re-
mains ; from 171 throw out 63 twice, 45 remains. The number of quotients
being odd, subtract 45 from 63, the remainder 18 is the value of & 7 sub-
tracted from 10 gives 3 for 4, which is not the true value. To find y correct,
multiply 3 by the common divisor 10, the product 80 will be the true value
of y.

Another way of solving' the same question is this, find a common divisor of
b and ¢, for example, 9. Dividing & and ¢ by 9 we have « = 100, ' = 7, ¢'= 10.
Perform the division and arrange the quotients in a line with ¢ and 0 below, the
quotients will be found 14 and 3, then

33 104 0= 30 :
14 X 30 + 10 = 430.

I'rom 430 throw out 100 four times, 30 remains. Ilere we have found a true
value of y and a wrong value of @ Multiply 2 by the common divisor 9, and
the product 18 is the true value of w. This question may also be solved by first
taking a common divisor of @ and ¢, and afterwards a common divisor of & and ¢,
as follows :

Reducing @ and ¢ we have @ = 10, ¢’ = 9, and b = 63. Reducing & and ¢ we
have a = 100, ¢ = 10, ¥ = 7. Unite the reduced numbers thus; @' = 10;
b' =7 ; but ¢ having undergone two reductions®, take the difference of the
numbers arising from the two operations; then ¢ = 10; ¥ =7, ¢" = 1, divide
and arrange the quotients with ¢’ and 0, as above directed, and we shall have

2 X1+t 0=2g
1% 9 oY = 8

5 and 2 are now found for @ and y, but they are both wrong, for ¢ was re-
duced both with & and @. 2 must be multiplied by 9 the common divisor of &
and ¢, and 3 must be multiplied by 10 the common divisor of « and ¢; the true
values will be # = 18, y = 30; and new values of y and @ may be had by adding
a and b again and again to those already found.

ax . E B AL F
e s . - n m P ¢
HLet Z=F — o dividea and ¢ by p, then 2L =¥, whence —?—F = x, now divide 6 and °
3 ¥ iz » a P
#
b

c
x L~
a =

by g then I £ ___EF E Taking the difference is only true in this
P

pbecanse pg = ¢, and p=—g=1.

ale
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times from 23, there remains 2.  Make ¢ = 2 and place it with 0 under the line
of quotients, we find 1 X2 +0=2
1 X 2 4+ 2 = 4

2 is the true value of 2, and 4 which is found for the value of y is wrong. Add =
7 the divisor of ¢ to 4, the sum 11 is the true value of y. If¢is — subtract 2
from 3, and 4 from 5, and we shall have 1.for the value of @ which isright, and 1
for the value of  which is wrong. Subtract 7 from the value of .y, the difference
is — 6; add twice 5 to — 6, and we shall have 4 the true value of y.

That the numbers may correspond, twice 3 must in like manner be added to 1,
and 7 will be the true value of .

Another Example. a =5, b =13, ¢ =0, orc = 65; the quotients are 0, 2;

1, 1; place them in a line with ¢ and 0 below, we shall have
1. D; 410
1 X 04 0
2 X0 4+ 0
0X 04+ 0
Add 5 to 0, which stands for the value of g, and 13 to that which stands for
the value of @, we have theny = 5 and @ = 13. In the second case a=35, b=13,
e = 65. As0b measures ¢, x will be found = 0 and y = 0. To the value of y
add 5, which is the number of times & is rejected from ¢, and this will give a
5 X 04 65
o e ,
o, we shall have » = 13, and adding 5 to & which is the value of y, y = 10,

18 4+ 65
forf—'&T_*_— =H

Another method is to suppose ¢ = 1, and proceed as above directed. Multiply
the values of & and g, which will be so found by ¢, rejecting @ from the value
of y and & from that of z, the remainders will be the numbers required.

Il
c .o

correct value of y, for = 5. Adding 13 to 0 which is the value of

Example. a =221, b = 195, ¢ =65; dividing these numbers by 13, their
common divisor, we have & = 17, b = 15, ¢’ = 5. For § write one, and
finding the quotients as above, arrange them with 1 and 0 below, then

TX14+0=7

1' X7 4+'1"=8 4
Multiply 8 and 7 by 5, the products are 40 an@e‘wmng 17 twice from 40,
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debf | ¥ A Be= 28
0 X8B+7=7
wrong; 21 — 7 = 14 = & right; for multiplying 14 by 5 the product is 70,
which being divided by 63 leaves the remainder 7; and multiplying 14 by 10,
and dividing the product by 63, the remainder 14 is obtained.

—21, we find 0 and 4 s 7T —9=2,20=81 =7, §~2=3=y

CHAP. VI.

“ On * the operation of multiplication of the square; aud that relates to the
* knowing of a square, such that when it is multiplied by a number, and to the
“ product a number is added, the sum will be a square.

““ In this question then there are two squares, one less and the other areater,
““and a multiplicand and an augment. From the multiplicand and augment
“ known, the two unknown squares are to be found. The method of solution
“is this : Assume a number and call it the less root; take its square and mul-
“ tiply it by the multiplicand, and find a number which when added to-it or
“ subtracted from it will be a square ; then take its root and call it the greater
““root: Write on a horizontal line these three, the less and greater roots, and the
“ number which was assumed as the augment. And again write such aunother
¢ line under the former so that every number may be written twice, once
“ ahove and Delow ; then multiply crossways the two greater roots by the two
¢ Jess; then take the sum of the two and call it the less root; then take the
“ rectangle of the two less roots and multiply it by the multiplicand, add the

* The rules at the beginning of ‘this chapter for the general solution of Ax*+s—y?are, as they stand in the
Persian, to this purport: Find af*4-8 =g?, where f; g, and g may be any numbers which will satisly the equa=
tion, Make »' = ¢ + fr and ¥ = aff+gg, and g'= 8. Then ax'2 + B =5"*; and making = = ¥g + v
and " = axf+ 3'z, and B =8, or 2" = sg—yf and 3" =3’ — ax'f, we have ax"?+ g'= "9,

Ifa* 7 B then ‘%‘:- =8, andif 8" # B, then 8"p*= 5, butin the first case the values of 2" and 3" must be

divided, and in the second case multiplied by p. In this way, by the cross multiplication of the numbers, new
solutions are had for as* + p=3*. When g= 1 and # = 5 the rule is the same as Fermat’s propasition, which
first was applied in this manner by Euler for finding new values of # and y in the equation ax® 46 = 3.  (See

- ! s ir -
the investigation of this method in his algebra.) If ax?+ B =7 ¥% then» = A T being any number;
&r e

rt—a ‘+--l= r? —a
)=

2
this expression is true only when 8 = 1. 1In that case A( ) which is the same as

Lord Brouncker’s solution of Fermat's problem.
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“ Multiply crossways, and add the two greater, it is 6 ; and this is the less
“root. Take the rectangle of the two less roots; it is 1. Multiply by 11; it is 11.
* Add it to the rectangle of the two greater which is 9; it is 20, and this is the
“ greater root. Take the rectangle of the augments, it is 4 affirmative. Now
‘¢ we have found a number such that when we divide this number by the square
““ of that, the quotient will be the original augment. We have found 2 and per-
¢ formed the operation ; 1 is obtained. And we divide the greater root which
“is 20 by €, 10 is the greater root. And we divide the less root, 3 is the less
“root. For if the square of 3 which is 9 is multiplied by 11, it will be 99, and
“ when we add 1 it will be 100, and this is the square of 10 which was the
‘* greater root,

“ Another method is, suppose I the less root, and multiply its square by 11,

“itis 11. We find 5 which being added to it will be a square, that is 16; its root
““ which is 4 is the greater root, thus:

Less Greater Augment
1 4 5
1 4 3

¢ After multiplying crossways, add the two rectangles; it is 8, and this is the
“ less root, and the rectangle of the two less ; which is 1 we multiply by 11, it is
“ 11; add it to the rectangle of the two greater which is 16; it is 27, and this is
“ the greater root. And from the rectangle of the augments, 25 augment is
“ ohtained, We have found an assumed number 5, such that when the aug-
‘““ ment is divided by its square the quotient will be 1. Aund for correspondence
““ we divide 8 by 5; 8 fifths is the less root. And we divide 27 by 5 ; 27-fifths
““ is obtained for the greater root. For multiplying the square of 8-fifths, that is
‘4 64 twenty fifth parts by 11, it is 704 twenty fifth parts; add 1 integer that is
“a95, It is 729 of the abovementioned denomination. And to find other
“ numbers under the same conditions, write the two roots and the other augment
“ below these two roots and augment, and that is on the supposition of 3 and 10
¢ and 1, which were obtained before, thus:
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““ out that which is required by the rule of the multiplicand. It is thus: After
“ supposing the less and greater roots and the augment, suppose the less root the
““ dividend, and the augment the divisor, and the greater root the augment.
“Then by the rule of the muitiplicand which is passed, bring out the multipli-
“ cand and the quotient. If that number by which the questioner multiplied the
¢ square can be subtracted from the square of this multiplicand, let it be done:
““ otherwise subtract the square of this multiplicand from that number of the mul-
“tiplicand. If a small number remains, well; if not increase the multipli-
“ cand thus: add the divisor again and again to the multiplicand as before
“ explained, till it is so that you can subtract the number of the multipli-
“cand from the square of it, or the square of it from the number of the mul-
“tiplicand.  'Whatever remains we divide by the augment of' the operation of
““ multiplication of the square, and take the quotient which will be the augment
¢ of the operation of multipﬁcgtiuu of the square. Ifthen we shall have sub-
“ tracted the multiplicand from the square, let the quotient remain as it is: and
< if we shall have subtracted the square from the multiplicand it will be contrary,
“ that s, if negative it will become affirmative, and if atirmative negative ; and
“ that quotient which was obtained by adding the dividend to the quotient; as
“ many times as the divisor was added to the multiplicand, will be the less root ;

“fi;—'g = v and from the known numbers f;, g, B, find % and ¥ by the rules which have been given, . If x*

be s A take x¥— a, or il not take A — x% Ifa small number remains it is well, otherwise take multiples
of 8, and add them to the found value of x for a new value, till we have (m@ 4 x)P—a, or A — (B + x)2;
divide this by g, and if the square has been subtracted change the sign of the quotient. If instead of x the
value m@ + x has been used a corresponding value of ¥, mf + ¥ must be taken: by substituting these values as

1 r i 5 -

follows: vy ormfi4 v= #, and E——;—A or {____L:I'HB +: L = g, we have the solution of this equation
axt 4 B'=y" 1@ is neither = & nor to 8® nor to f'__. proceed as before. Let o™ 3 8= g7 be a solution
of ax? + & = 3" where /7, 8 and g’ are known. Suppose "-‘l-;—{u = v'; proceed as before, and solutions

n n n n E
will be had for Ax™ + & =", and in like manner for Ax? + B = 3" till g is found = m or Ep? WF'
4 e x4 _ xT—a _ (fE ey x—a
The truth of this is plain, foras x'= Friee and B'= —F— we have ax*+p =4 ( 3 ) + —5— which

g = (A" 4+ B) X 9*’;"':5”‘ A Af* +B=g" and g* — B = af?, and therefore ax' + §'=

£ + ﬂﬂgfx L = (Ei%‘_“i)’= #2. This rule, though in some respecis imperfect, is in

principle the same as that for solving the problem in integers by the application of continued fractions, which
was first given in Evrope by De La Grange.
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“tiply it by 67, it is 67. TFind 3 the number of the augment, which sub=
“ tracted from 67 will leave a square, that is 64, the root'of which is 8, and this
“1s the greater root. 1 then is the less root, and 8 the greater reot, and 3 the
“ augment negative. If we wish to bring it out by the operation of circulation, let
““ us suppose 1 the dividend, and 8 the augment, and 3 the divisor  As rejection
“ of the divisor from the augment is possible, reject it twice, € remains.  Sup-
*‘ pose this the augment, take the numbers of the line, cipher is obtained. Write
* under it 2 the augment and cipher. Perform the operation, the multiplicand is
“ found ¢ and the quotient cipher. The number of the line being odd, subtract
““ the multiplicand and the quotient from the divisor and the dividend, 1 and 1
*“ are obtained. As we rejected the divisor which is 3 from the augment which is
““8, add 2 to the quotient, the quotient is § and the multiplicand 1. As we
“ cannot subtract 67 which is the multiplicand of the operation of multiplication
*“ of the square, from the square of this multiplicand, and if we subtract the
“ square of this from 67 a greater number remains ; from necessity we add the
‘¢ divisor, which is 3, twice to the multiplicand 1, it is 7 ; add the dividend to
*the quotient itis 5. Subtract the square of 7, which is 49, from 67, 18 re-
“mains. Divide by the augment of the operation of multiplication of the
“ square, which is 3 negative, 6 negative is the quotient. As the square has
“ been subtracted from the multiplicand the negative becomes contiary ; it is
““ 6 atfirmative, and this is the augment; and 5, which was the number of
* the quotient, is the less root. Then bring out the greater root, from the less
“ root and the augment, and the multiplicand 67, it is 41. Write them in order.
** As 6 is the augment of the operation and 1 is the original augment, perform the
* operation again to find the original augment : that is to say, suppose 5 the
“ dividend, and 6 the divisor, and 41 the augment, and perform the operation of
“ the multiplicand, the multiplicand is found 41 and the quotient also 41. Sub-
“* tract 5, the dividend, 6 times from 41, the quotient, 11 remains; and subtract
“ 0 the same number of times from 41, the multiplicand, 5 remains; take its

And as 8" was added once to the value of %" add /* to that of x*, 11 + 16 =2T=%"=#" Nowa/™ 4L g"=
g™, because x"=27, and 3"=—2, therefore 3" = 221, Let 4™ 4 B"=g", where /" =21, f"==—=2,
and g” = 221. Having now found 87, which, multiplied by itself will be the augment of the square, (meaning,
I suppose, = Bp*) apply the first ruleof this chapter, #¥=2/"g" = 11934, 3" =g + Ao/ =07634, B =,

) q
we find p = 2 such that %=a =1. Dividing As" 4 87" = y™ by p*, we have (A"F) i (%:) !
and 67 % 5067* 4- 1 = 488437,
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“ manuner we divide 11934 by 2, 5967 is the less root, and 48842 is the greater
“ root. ] '

Another Exvample. * What square is that which being multiplied by 61, and
““ the product increased by 1, will be a square®*. Let 1 be the less root; 8 is the
“ greater; and 3 the augment, affirmative. Applying the operation of the multi-
“ plicand, 1t is thus:

Dividend. Divisor. Augment.
1 3 8

“ Reject the divisor twice from the augment, 2 remains; and after the operation
‘2 the multiplicand, and cipher the quotient are obtained. As the line is odd
“ we subtract cipher from the dividend and 2 from the divisor. Itis1 and 1.
“ As we rejected the divisor twice from the augment, we add 2 to the quotient.
“The quotient is 3 and the multiplicand 1. If we subtract the square of the
“ multiplicand which is 1 from 61, a greater number remains. We therefore add
“ twice the dividend and the divisor to the quotient and the multiplicand. The

* glatg 1=y Let afr4a—g?, where f=I, 8=3, g=8. Make ¥ that is

!x—;-'-g: ]x;l'am?, reject 8
twice from g, 8 —23x3=2, we skall find x=2 and v=0. The number of quotients in the division of 1 by 3
being odd, subtract the value of ¥ from f, and that of x from B, 1—0= I=v, 2—l =I=x. As B was rejected
twice from g add 2 to the value of ¥, 1-+=2=1w. Ifwetake A — x* a grealer number remains; add twice f

to the value of v, and twice Btothatofl % I+ 2 X 1l =5=v. 1 42 x I=T= x. Take A —x%, 6l=—
73=12. Divide by B, —Ef = 4, which becomes —4 =@, and 3 =v =41 Nowas" 48 = ', whence
¥ =30 Letaff+ @ =g%wheref'=5 F=—4, g =39 Asgisnot= g, we find 2 number p=2, such

ol E_.,J_,__
—:-_j,.andp— = =

[R5

l
i

=

that %: — 1. Divide ' and ' by p, and we have ;: =g and i———!:

8" As =), apply the first rule of thischapter, B' Xf'=—1x — 1 =+1 = 5. TEE =R z—xﬂ;=
390 __ " i f 3837 A A0KE . 390, 10N, 046 L6RG s’
T_:.andg + aAf —(2)4-6?}:(2)_ T =h T =0 == amlliix(=d +

2 an
= (..—-15:3 « Wad g n=y" wheres = — 1, or6l *— 1 =3 then = =/, == & and — 1 = &

Multiply Af* 4 B = g? crossways with Af% <+ g'=g"?, where /' = %' and ‘B=4 1, in order that we may

have P8'= — 1. Then x= 3605, and y = 29718, and B = — 1; 61 x (3805)*— | = (£9718)% For new
values, where 8 = + 1, multiply af/? + 8 = g? crossways with the values of x and g, which we have just found,
61 ¥ 296153980% 4 | = 17663190492 I » is — take the product of two augments which have umlike signs,
and if B is 4 that of two which have like signs.
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¢ squares, and divide the augment by each, the two numbers which are found
“will both be the less root; what was required may be obtained from each.
Evample.  * What square is that which being multiplied by 13, when 1 is sub-
“ tracted from the product, asquare will remain *, 13 then is the sum of 4 and
“9, and 1 the augment negative. Take the roots of 4 and 9, they are 2 and 3.
L

“ Divide the augment by these two, the quotients are giami ;__, both these are
: ot

¢ the less roots.  What is required may be had from either. For multiplying

“ the square of i— which is i by 13, it is 13-fourths ; and subtracting from it 1,
“ which is 4, 9-fourths will remain ; and this is the square of 1%. Muitiplying
¢ the square of :lj which is % by 13, it is 13-ninths; and subtracting 1 integer

- & 4 & - -
“ which is 9, g remains ; and this is a square.”

Here follow solutions of the same question, by the former methods: T omit
them because they contain nothing new, and are full of errors in the calculation.

Another Example. Where 82* — 1 = y* is solved by the last rule, is omitted,
because it is immaterial.

Another Evample. * What square is that which being multiplied by 6, and
“ '3 added to the product, will be a square. And what number is that which
“ heing multiplied by 6 and 12 added to the product will be a square f. The
¢ pperation in the first case is thus. Suppose 1 the less root, and multiply by 6,
“it is 6; add 8, it is9; and this is a square. And for the second case thus:
‘¢ Multiply 1 by 6, it is 6 ; and find a number which added to it will be a square;

1 " 1
% 3t — 1= here ..||.=Iﬂ=9+4=p’+g’,p=ﬂ,g=3;:=§ anu:=%;l’u:l$x (E)"—

2 ]
1 = ;:{IQ}'; and 13 x f?;} -—1=g=(§) -

+ 6t 3=y%and G 12 =3% Fist suppose s=land s =3, thenEx 1 4+ 3=9=13% y =3,
Second, 6 % | =6, findgsuchthat 6 +8=[]. Let =3, 643 =09=273% 3 being not =g, but les
than it, find p such that gp* =8, p=12, 3x 2*=12=18, Nowif g =3, ¥'= |, and y' =3, multiplying
AT 4 ' = o® by p?, we have A17p? 4 87 = 3%, and making x = =p, y = ¥p, and 8 = 8p!, we haves =13,
y:E:u.‘Ld. E=12. 6 X 22 12= 0,
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“ the product, will be a square®. The less root then is -&, the square of whin:hi

“ multiplied by 32 willbe 8 : add 1, it is 9 ; and this is a square. If we suppose
‘2 the less root and divide 32 the multiplicand by 4, 8 will be the multiplicand ;
““ and dividing the less root by the root of 4 which is 2, 1 is the less root. For
“ multiplying by 8 and adding 1, itis 9, which is a square, the root of which
‘s 8.

Rule. “ If the multiplicand is a square {, divide the augment by an assumed
“ number, and write the quotient in two places ; and in one place add to it, and
““in the other subtract from it the assumed number, and halve them both; the
“ greater number will be the greater root. Divide the less by the root of the
* multiplicand, the quotient will be the less root.

Lample. *“ What square is that which when multiplied by 9, and 52 added
“to the product, is asquare}. What other square is that which when multiplied
“ by 4, and 33 added to the product, is a square. In the first case divide 52 Ly 2,
‘“ 26 is the quotient ; write it in two places and add and subtract 2, it is 28 and
“ 24 : the halves are 14 and 12 ; 14 then is the greater root. And divide the less
“ number which is 12 by the root of the multiplicand which is 3, 4 is the que-

“ tient, and this is the less root : for when the square of 4 which is 16 is multiplied
“byo, it is 144; add 52, it is 195, which is the square of 14: and in the

1 13 Soth Y N RRL A S e !
'39){:1+1=D. Letx = E.ﬂﬂ‘x (Td) 4 1=5=73% Ifrx=2. F = al, ?—3,-P_l.-.'r=l.
forsd x 1 4= 1=232
-.:+r: -;-—-u = —_
+ If ax*+ B =2 and A = p*. take n any number; and we have —=Y and — =x;ﬂ;r"f_§_-
P 2
.B_- + n 1
_n—xt 7 _ B4nt ]1.-—-11“)* _fr4n®*,
S antl - But g* % ( - +B_( o= ) ,fluenulh:ruie.
1 92 4 52=3" and 4x2+ 35 =p* Fimst é'}?-=ﬂﬁ, 42 =28, 26=—0=14. %: M;—?:l!. =
14, %:4 == 9 47 4 52 = 196 == 14%. Second, :;_:1=“' 1l 43=14, 11 —3 =8, i;- =71=y,
%—-_—-},%:2:;-,4}(*214.33:49:?’. Values of x and y might have been found by taking = = 4 in the

first case, and n =1 :W second.

L., ENE eam—
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“add them together, itis 11-second parts; and this is the less root. Multiply
“ 3-second parts by 1, it is the same: multiply it by 13, the multiplicand, it is
“ 39-second parts: add it to the rectangle of the two greater roots which is cipher,
““it is the same; and this is the greater root; and 13 is the augment negative ;
‘“as it is not the original augment, for 15 affirmative is required ; again, suppose

1 : - A
““ the less root— and the augment 1 negative ; and multi pl}'% which is the square,
“by 13; itis 13-fourths. Subtract 1, that is 4-fourths, the augment negative, there

- iy s D] ; ;
““ remains 9-fourths, the root of which is 15 By this we multiply crossways,

“ thus :
11 39
2 2 it
1
2 9 R

“ the less root is 72-fourths, which is 18 integers, and the greater root is 260-
¢ fourths, which is 65 integers, and the augment is 13 affirmative.

“ If we would perform the operation of cross multiplication take the dif-
“ ference of the two, which are 39-fourths, and 83-fourths, that is 6-fourths ;

3 1% is the less root; take the difference of the two less, after multiplying by
‘“ the multiplicand, and the rectangle of the two greater, it is 26-fourths, that

“is Eé- ; and this is the greater root and 13 is the augment affirmative.

Another Example. « What square is that which being multiplied by 5 nega-
“ tive, and the product increased by 21 will be a square®*. Suppose 1 the less
“yoot, and multiply its square by 5 negative, it is 5 negative: add 21 affirma-
“ tive, it is 16 ; 4 then will be the greater root. In another way. Suppose 2 the

TR 2=y Supposex=1; —5x1+2=16; y=4. Or, supposex=2, —5 % 2°+
9l =1, y= 1. By multiplying crossways when 8 = 1, new values may be found.

T

¥«






BOOK T
ON THE EQUALITY OF UNKENOWN WITH NUMBER,

—— R —

T KI\COW that whatever is not known in the question, and it is required to bring
¢ it out by a method of calculation, suppose the required number to be one
“ or two unknown, and with it whatever the conditions of the question in-
“ yolve, and proceed by multiplication and division, and four proportionals and
“ five proportionals, and the series of natural numbers, and the knowledge of the
« side from the diameter, and the diameter from the side, that is the figure of the
“ bridet, and the knowledge of the perpendicular from the side of the triangle,
« and conversely. and the like, so that at last the two may be brought to equa-
“lity. If after the operation they are not equal, the question not being about
« the equality of the two sides, make them equal by rejection and perfection, and
¢« make them equal. And that is so, that the unknown, and the square of the
« ynknown of one side is to be subtracted from the other side, if there is an un-
“ known in it; if not subtract it from cipher: and subtract the numbers and
“ surds of the other side from the first side, so that the unknown may remain
¢ on one side, and number on the other; the number then, and whatever else is
¢ found, is to be divided by the unknown, the quotient will be the quantity of
¢ the unknown.

¢ If the question involves more unknown quantities than one, call the first

¢« gne unknown, the second two unknown, the third three unknown, and so on.
“ And the method is this. Suppose the quantity of the lower species less than

¢ that of the higher, and sometimes suppose Tj‘-’ and %, andiﬂ of the unknown

* There are many parts of the rules given in the rest of the Work which are unintelligible to me; they
are obscured probably by the errors of transeribers and of the Persian translator.—I translate them as exactly
as | can from the Persian.

t The Arabs call the 47th proposition of the first book of Euclid, *the figure of the bride.® I do not
know why. -

T

s ek






506 OF EQUATIONS.

“ should receive 5 per cent. a month, After some months he teok fiom him the
“ principal and interest, and having subtracted the square of the interest from
“ principal gave the remainder to another person, on condition that he should
“receive 10 per cent. and after the same time had passed, as in the former case,
“ he took back the principal and interest, and this interest was equal to the first
“ interest ; what sum did he lead to each person, and what was the time for
“ which the money was lent* "

The first principal is supposed unknown, and the number of months during
which it was lent is supposed 5. The question is solved by the rules of propor-
tion and a simple equation. Another way is given for working this question, viz.

¢ Divide the interest of the second by that of the first, call the quotient the
“ multiplicand, and suppose a number the interest for the whole time and takeits
¢ square, and from the multiplicand subtract 1, and divide the square by the
“ yemainder ; the quotient will be the amount of the second sum, and the second
“ sum multiplied by the multiplicand, or added to the square of the interest of
¢ the whole, will be equal to the first sum.”

The next question is like the preceding, and is solved by means of the rule.
I pass over several other examples, which contain nothing new or remarkable.
A question in mensuration comes next. y

* There is a triangle, one side of which is 13 surd, and another side 5 surd,
< and its area 5 direhs; how much is the third side? I suppose the third side
“ unknown ; the side 13 is the base. It is known that when the perpendicular
¢¢ is multiplied by half the base, or the base by half the perpendicular, the pre-
« duct will be the area of the triangle. Here the base and the area are known,
“ and the perpendicular is unknown: 1 divide 4 which is the whole area by half
“ of 18 surd ; the quotient is the perpendicular. 1 perform the operation thus:
¢ As 4 is a number I take its square 16, for the division of a number by a surd
“ is impossible. I take half of 13 surd thus: I square 2, which is the denomi-

“ nator of %, itis 4. I divide 13 by it. The quotient is 13 parts of 4 parts. I

* Let », p, bethe principal, 1, i, the interest; ®, r, the rate, and ,n, the number of the months. If
prn=i, PRN =1, P=p—13, ¥ =mn, and 1 =4; we have(p — i?). BN = i=prn; or pRH— RN =

RN s rit ri* "
prn; whence pn % (R —r) =¥, and R—f=:-F-;:—, but this is equal to ol and P=_ _r=._i—_"‘l
r ¥

which is the first W rule ; therest is evident.




OF EQUATIONS. 37

“divide 16 by 13 parts of 4 parts; it is 64 parts of 13 surd; and this is the
¢ perpendicular. T then require the excess of the square of 5 surd above 64 parts
“of 13 surd: First I take the square of 5 surd ; it is 5 number ; take its square,
“ it is 25 surd ; the root of which is 5. T then take the square of 64 parts of 13
“ surd, as above. I take the excess thus: I make 5 of the same sort; it is 65 ;
“] take the excess of 65 above 64 ; it is one part of 13 surd; and this is from
“ the place of the perpendicular to the anzle formed by the side 5 and the base.”
The other segment of the base is found by subtracting this from the whole, by
a rule which was given in the 4th chapter of the introduction, for finding the.

difference of two surds, viz. y/a—v/b= 1/(1/(% — 1)* X b). Thesquare root

of the sum of the squares of this segment and the perpendicular gives the quantity
of the unknown side of the triangle.

In the next question, the sides of a triangle being given, its area is required.
One of the segments of the base made by a perpendicular, is supposed unknown.
From two values of the perpendicular, in terms of the hypothenuses of the two
right-angled triangles, and their bases, an equation is formed ; from which the
unknown quantity is brought out. The equation involves many surds, and they
are reduced by the rules laid down in the introduetion. The perpendicular is then
found by taking the square root of the difference of the squares of a segment of
the base, and of the adjacent sides of the triangle. The operation is here con-
cluded. Ina marginal note are directions to find the area, as in the foregoing
case. 3

The next is, “ What four fractions are those whese denominators are equal, and
“ whaose sum is equal to the sum of their squares. Also what four fractions are
“ those, the sum of whose squares is equal to the sum of their cubes.” For the
first part of the question: ** Suppose the first fraction one unknown, the second
“ two unknown, the third three unknown, and the fourth four unknown, and
“ helow each write 1 for the denominator. The sum of the four is 10 unknown,
“ Their squares are 1 and 4 and 9 and 16, whose sum is 30 square of unknown,
“ and these two quantities are equal. Divide both by one unknown ; the quotients
“are 10 number and 30 unknown. Divide 10 by 30 unknown, the quotient is

& % of unknown. The first fraction then is %, the second ,%, the third ~—:, and

¢ the fourth %; and the squares of these fractions are %an{l ;Ji, and ‘?-and ;—6; and

H
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”n

30 . X 10
““ the sum of these four is %-, and this is equal to —.” In the same manner the

3
LA 3 1ol 12
the other fractions are found to be 10" ST T and T

The next is to find a right-angled triangle, ¢ the area of which is equal to its
*‘ hypothenuse ;" and to find a right-angled triangle, * the area of which is equal
“ to the rectangle of its three sides.” For the first part of the problem, one side
of the triangle is assumed equal to 4 unknown, and the other side equal to 8 un-
known ; the hypothenuse is found equal to sr, and the area equal to Ga*; the
equation 5@ = Gu* being reduced, gives the value of w. For the second part, the
sides are assumed as above, and the value of 2 is deduced from the equation 602
=6 :

The next problem is, to find two numbers of which the sum and the difference
shall be squares, and the product a cube. The numbers are supposed 5a2* and
47*, and the cube to which their product ‘must be equal 10002%, whence x is
found.

The next is to find two numbers such that the sum of ‘their cubes shall be a
square, and the sum of their squares a cube. One number is supposed a% and
the other 2u* and the cube 1252° % In the solution of this the following
passage occurs: “ The cube of the squaie of unknown, which in Persian algebra
“ is termed square of cube.” In the margin is this note: * Here is evidently a
“ mistake ; for in Persian algebra the unknown () ) sg==0) is called thing ( L_'ii')’

“and its square (c.;fa} square ( JLe), (literally possession;) and its cube
“ (axe=s) cube (eaxs); and when the cube is multiplied by thing, the
“ product is called square of square (JLo Jlo); and when the square of
“ square is multiplied by thing, the product is called square of cube (Caxs” JLo);
“ and when the square of cube is multiplied by thing, the product is cailed cube
“ of cube (L axf), not square of cube. For example, suppose 2 thing
¢ 4 is its square, 8 its cube, 16 its square of square, 32 its square of cube, 64 its
“ cube of cube, not its square of cube, although it is the cube of the square

i ((‘_")” xEm.), or the square of the cube (ars=y é{r}.”

In the next example the three sides of a triangle are given, and the perpen-

* Sum of the cubes == 4 5x% = 94" (a square) ; and the sum of squares = x* - 4&* = 5%, assume thic
= 125#%, or 5x* = 125&%, whence 5x= 125, and x =25; therefore 625 and 1250 are the numbers.
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“* ascertain these two quantities by another method, and that is the ratio of 25,
“ (that is the sum of the two sides) to 20, is like the ratio of 15 to the unknown ;
“ that is the quantity towards theside 15. Multiply 15 by 20, itis 300. Divide
““ 300 by 25, itis 12. The ratio of 25 to 20, is like the ratio of 10 to the unknown ;
“ the result is 8, and this is the quantity towards the side 10. By another
“ method, by four proportionals, we find that the ratio of 20 to 25, is like the
“ ratio of 8 to the unknown ; 6 is the result. In like manner the ratio of 20 to
“ 10, is like that of 12 to unknown ; again 6 is the result. Another method is,
‘“ divide the rectangle of the two sticks by the sum of the two, the result is the
“ quantity of the perpendicular, and the quantity of the ground we multiply by
“ each side separately, and divide both by the sum of the sides. The two quotients
“ will be the quantities from the place of the perpendicular to the bottom of the
“sticks ; accordingly divide 150, which is the rectangle of the two sticks, by
“ g5, the quotient is 6, Multiply 20 direhs, which is the quantity of the ground
“ by both sticks, the products are 300 and 200. Divide both by 25, the quotients
“are 12 and 8, In this manuner the figure may be. found by calculation as
“ correctly as if it were measnred.”

EXD OF THE FIRST BOOK.

i
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¢ place of number increase both sides by the square of the thing of the unknown,
¢ wiich is ou that side; both sides will be squares. Talke the roots of both and
¢ equate them, and the quantity of the unknown will be found.

Example.  * Some bees were sitting on a tree ; at once the square root of half
“ their number flew away. Again, eight-ninths of the whole flew away the
“second time; two bees remained. Ilow many were there? The method
“ of bringing it out is this: Irom the question it appears that half the sum has
““ aroot; I therefore suppose @ square of unknown, and [ take 1 unknown, that
“ is the root of half. And as the questioner mentions that two bees remain, 1

8 o T
¢ unknown and ] of 2 square of unknown, that is 5 of 1 square of unknown,

“and 2 units, is equal to 2 square of unknown. I perform the operation of
“ equating the fractions in this manner, I multiply both sides by 9, which is the
“ denominator of a ninth ; 16 square of unknown and 9 unknown, and 18 units,
“is equal to 18 square of unknown. I equate them thus: I subtract 16 square of
“ unknown of the first side from 18 square of unknown of the second side ; it is
“ ¢ square of unknown affirmative ; and in like manner I subtract 9 unknown of
¢ the first side from cipher unknown of the second side; 9 unknown negative
¢« remains, Then I subtract cipher the numbers of the second side from 18 units of'
“ the first side; it is the same. The first side then is 2 square of unknown affirma-
¢ tive and 9 unknown negative, and the second side is 18 units affirmative. In this
« example there is equality of square of unknown, and unknown to number ; that
“ is equality of square and thing to number. As the roots of these two sides can-

“ not be found, suppose the number 4, and multiply it by 2, which is the number

¢t of the square of the unknown, it is 8. I multiply both sides by 8 ; the firstside is
“ 16 square of thing, and 72 unknown negative; and the second side is 144
« ynits, I then add the square of the number of the unknown, which is 81, te the
« result of both sides; the first side is 16 square of unknown, and 72 unknown
“ pegrative, and 81 units; and the sccond side is 225 units, I take the roots of
*“ both sides : the root of the first side is 4 unknown and 9 units negative ; and
“ the root of the second side is 15 units affirmative. I equate them in this
“ manner: I subtract cipher unknown of the second sice from 4 unknown of the
““ first side; and 9 units negative of the first side from 15 units affirmative of
“ the second side ; the first is 4 thing, and the second side is 24 units affirma-
¢ tive, 1 divide, 6 is the result, and this is the quantity of the unknown ; and

e

T
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“ that number, and cipher will be rejected.” Whence the equation 2* 4+ @ =90
which is solved in the common way.

The next is; a value of & is required in the case ((¢+ —;) X 0) + 2 (2 + g)}{

0 = 15. Itis brought out in a manner similar to that of the foregoing.

The next example is of a cubic equation, viz. 2’ 4+ 122 = G6+* + 35. The
terms involving the unknown quantity being brought all on the same side, 8 is
added to complete the cube.  “ I take the cube root of the second side 3, and I
“ write the terms of the first side in the arithmetical manner, thus : 8 units nega-
“ tive, and 12 unknown affirmative, and 6 square of unknown negative, and 1
¢ cube of unknown. First, I take the cube root of the last term, it is 1 un-
“ known. I square it and multiply it by 3, and I divide the term which is last
“ but one by the product ; g units negative is the quotient. Its square, which is 4
‘¢ affirmative, 1 multiply by the term first found, viz. 1 thing; it is 4 thing. 1
“ multiply it by 3, it is 12 unknown. I subtract it from the third term whieh is
“ after the first, nothing remains. After that I subtract the term ¢ negative from
“ the first term, nothing remains, The cube root then of the first side is found 1
“ thing affirmative and 2 units negative.” Whence + — 2 = 8, which is re-
duced in the usual way.

In the next a biquadratic is found, #* — 4002 — 2:* = 9099. To solve this
4000 + 1 is directed to be added to each side; the equation is then a* — 22* +
1 = 10,000 + 4002, The root of the first side is 2* — 1, but the root of the
second side cannot be found. Find a number which being added, the roots of
both sides may be found; that is 42* + 400z 4 1. This will give a* 4+ 22* + |
= 10,000 4+ 4#" 4 4002 ; and extracting the square root, 2* + 1 = 100 + 24,
which is reduced by the rules given in this chapter. At the conclusion of the ex-
ample are these words : “ The solution of such questions as these depends on
“ correct judgment, aided by the assistance of God.

In the two next examples notice is taken of a quadratic equation having two
roots. ¢ When on one side is thing, and the numbers are negative, and on the
t« other side the numbers are less than the negative numbers on the first side,
¢ there are two methods. The first 1s, to equate them without alteration. The
¢t second is, if the numbers of the second side are affirmative, to make them nega-
¢ tive, and if negative to make them affirmative. Equat,e them ; 2 11umhers will
* be obtained, both of which will probably answer.”

The next example is, *“The style of a dial 12 fingers long stands perpendi-

- &
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We have noww+2=s*; o+2=(r+8)": y+2=(r+0); a+2=0+0)*;

And e 18=(rs=2)'; ay418=(st—2)" and yz+18=(ro—2)* _

Making rs4tv4(rs—Q) 4 (sf—2) +(tp—2)-+ 11 = 13*; a quadratic equa-
tion arises, which heing reduced r is found = g, whence w = 2, @ = 23,"y =62,
and g =119, :

Some questions about right angled triangles occur next; the firstis,  Given
“the sides of a right-angled triangle 15 and 20; required the hypothenuse.
“ Although by the figure of the bride the hypothenuse is the root of the sum of
“ the squares of' the two sidcs, the method of solution by Algebra is this : In this
“ triangle suppose the hypothenuse unknown, and then divide the triangle into
“ two right-angled triangles, thus: Suppose the unknown hypothenuse the base

‘“ of the triangle, and from the right-angle draw a perpendicular ; then 15 is the
““ hypothenuse of the small triangle, and 20 that of the large one. By four pros
“ portionals I find, when the least side about the right angle, whose hypothes
‘“ nuse is 1 unknown, is 15; how much will be the least side about the right
“ angle whose hypothenuse is 15,”  In like manner the other segment is to be
brought out, whence @ = 25. ¢ If I would find the quantity of the perpen-
* dicular, and the segments of the hypothenuse at the place of the perpendicular,
it may be done in various ways; first by four proportionals,” &e, . They are
found on the same principle as above, * And another way which is written
“in the Leelawuttee is this; The difference of the two containing sides, that is
“ to say 5, I multiply by 35, which is the sum of the two sides; it is 175
“Idivide by 25 thatis the base; the quotient is 7. I add this ta the base, it
“jis 32. I halve it, 16 is obtained; when I subtract 7 from the base, 18
‘“ remains. 1 halve, 9 is the smaller segment from the place of the pmpen-
“ dicular,

Rules *¢ The square of the hypothenuse of every right-angled triangle is equal
“ to twice the rectangle of the two sides containing the right angle, with the
*¢ square of the difference of those sides, As the joining of the four triangles
“ abovementioned is in such a manner that from the hypothenuse of' each, ‘the
“ sides of a square will be formed, and in the middle of it there will be a square,
“ the quantity of whose sides is equal to the difference of the two sides about the
“ right-angle of the triangle ; and the area of every right-angled triangle is half
“¢ the rectangle of the sides about the right triangle. Now twice the rectangle
¥ of the two sides containing that is 600, is equal to all the four triangles; and

o
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“ when I add 25, the small square, it will be equal to the whole square of the
“ hypothenuse, that is 625, which is equal to the square of thing ; and in many
¢ cases an effable root cannot be found, then it will be a surd; and if we do
“ notsuppose thing, add twice the rectangle of one side into the other, to the
¥ stquare of the difference of the sides, and take the root of the sum, it will be
“ the quantity of the hypothenuse. = And from this 1t is known that it twice the
¢ rectangle of two numbers is adied to the square of their difference, the result
% pwill ,ht:-equal to the sum of the squares of those two numbers.”

e i . - e ¥
The next is in a right-angled triangle Hi\r. Giveny/(aAB—3) — 1 = ac —

Bc, required the sides. ¢ First, I perform the operation of contrariety and op-
“ position : let Ac — e be supposed-2.  To this add 1, itis 3; take its square,
““itsis 9: add 3, itis 12. This is the quantity of the less side ; its square which
“js 144 is = ac’ — pc*; here then the differences of the two original numbers,
“ and of the two squares are both known ; and the difference of the squares of two
“ numbers is equal to the rectangle of the sum of the two numbers, into their
“ (ifference. Therefore when we divide the difference of the squares by the

¢ difference of the two numbers, the sum of the two numbers will be the quotient;
“;,mtl if we divide by, the suin, the difference will be the quotient: because the
'f,l_afﬂqm of a line has reference to a four-sided Equl.'mn'ulur figure whose four
“ gides are equal to that line; for example, the square of 7 direhs is 49, If I
“ subtract the square of 4 from it, 24 remains; and the difference of 7 and 5 is

2, aud, their sum 12, and the rectanwic of these two is 24, which is the number
" remaining. Then it is known that t!m rectangle of the sum of the two numbers
“linto. their difference, thatis 12 multiplied by, 2, is equal to the difference of the
¢t squares of the two that is 94,” &c. On this principle the sum and difference
being found, then umbers themselves are had *“ by a rule of the Leelawuttee,” viz.

at+ b d—-a anda-ﬂ‘b—q'_b:&
. 2 2 2 2
Bj’ supposing other numbers besides 2 for the difference, and proceeding in the
ahov: manner, tnaugiﬁs without end may be found.

ﬁ.s ol:gectmn is here made (I suppose by the Peisian translator) that the
ahove is not algebraical, It is then stated that the translator has found out an
r;nny wajr of solving the questmn hy Mgehla He :lireqts that. the difference
AC — BC 1Ay be assumed = 2 as befmc' dnd making B¢ =5, Ac will be

" 12

&
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=a + &, and A8 being = 12, the value of » may be found from the equatmn'
19 = (2 2)N

Rule.  “ The difference of the sum of the squares of two numbers and the
“ square of their sum is equal to twice the rectangle of the two numbers. For
‘ example, the squares of 3 and'5 are 9 and 25, that is 34, and their sum
““is 8 and its square 64, and the difference of these is 30, which is equal to twice
“ the rectangle of 3 and 5 that is by the 4th figure of the second book thus,” In
the copy which I new have, the figures are omitted. In Mr. Bumrow's copy itis -

64

o
i
[+
Lo
R
e

Then follows another rule: 4ab — (a + b)* = (a — 4)*, which may be easily
understood by this figure. There is no figure in Mr. Burrow’s copy, nor in my
present copy, but I had one in which there was a figure for the dfmbnstratmn of
the 8th proposition of the second book of Euclid. .

Next come two examples : The first of them is, what right-angled triangle is
that “ the sum of whose 3 sides is 40, and the rectangle of the two sides about
¢ the right angle 1207

“The method of solution is this: By the first rule take twice 120, it is 240,
“ and this is equal to the difference of the sum of the squares of the sides about
“ the right angle, and the square of their sum that is the hypothenuse. Then
¢ the difference of the squares of the two numbers, one of which is the sum of the
“ two sides and the other the hypothenuse, is 240; and the sum of both is 40.
“In the method of finding out the triangle, it was before known that the dif-
* ference of the squares of two numbers is equal to the rectangle of their sum and
¢ difference ; when the difference of the two squares is divided by the differ-
“ ence of the two numbers, the quotient is the sum of the numbers; and if it is
« divided by the sum, the quotient is the difference. Let then 240 be divided
“ by the two numbers, which together make 40 by the question, the quotient
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% js 6, and this is the difference of the hypothenuse and the sum of the two sides
“ about the right angle; then add 6 to 40, and take its half, it is 23; this is the
“ sum of the sides; subtract 6 from 40, fmd take its half, it is 17, and this is the
* hypothenuse, for the sum of the two sides is always greater than the hypothe-
“ nuse by the asses proposition®. Tt was stated in the second rule that the
* difference of the square of the sum of two numbers, and 4 times their rectangle,
“ js equal to the square of their difference. Take then the squares of 23, it is
* 529, and 4 times the rectangle of the two sides, it is 480; their difference is
* 49, which is equal to the square of the difference of the sides, that is 7: then
¢ add 7 to 23, and subtract it from the same, and the halves, are 15 and 8 tle
“ two sides.”

The next example iS, ﬂj’ l‘Etlﬂi]'cﬂ Yy, such that z i T — 55.

and 1yz = 4200. “I sup;ﬂlse the diameter (the hypothenusc) unknown ; take its
“ square it is 2*: This is equal to the sum of the square of the two sides about
“ the right angle, by the figure of the bride ; and as 4200 is the product of the
“ rectangle of the two sides multiplied by the hypothenuse, I divide 4200 by the

200 . f
3 1s the rectangle of the two sides. Awnd it was

‘1': unknown, the quotient

¢ stated that the excess of the square of the sum of the numbers above the sum
¢ of their squares is equal to twice the rectangle of the two numbers. The sum
* of the two sides 1s 56 — & ; I take its square, it is 2* — 1122 4 5136 and the
s s‘_-‘,’lifu{" the squares of the two sides is 2%, for that is the square of the hypothenuse,
¢ which is the same. 1 take the difference of the two— 1120 + 3136, and this

¢ is equal to twice the rectangle of the two sides, that is -E—E?—, 1, Socse

- The equation is reduced in the common way: the square in the quadratie,
which arises, being completed by adding the square of 14, which is half the co-
efficient of o In this way the hypothenuse, and thence the other sides are

brought out.
=tuglos -

* Meaning by the asses proposition the 90th of the first book of Euclid, which we are told was ridiculed by

the E,piéurrgm_;s clear even to asses. These passages are only interpolations of the Persian translator,

-
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BOOK 3.

“ EXPLAINING THAT MANY COLOURS MAY BE EQUAL TO EACII OTHER.”

oY

ey F Wr—

N THE rule in this casc is to subtract the unknown of one side from the un-
« known or cipher of the other side, and all the other colours and the numbers of
e« the second side from the first side, from which the unknown was subtracted,
¢ and divide those celours by the unknown. If, as may happen, the denomi-
“ nators are one quantity, perform the operation of the multiplicand ; and if the
« denominators are different unknown quantities let them be unknown. Suppose
« the quantity of every one of these unknown the denominator, and put it below
« the colours of the dividend, and reduce the fractions and reject the denomina-
¢ tors ; then the unknown will not remain on any side. After that subtract the
& black of one side from the other side, and subtract the rest of the colours and
+ the numbers from the side from which the black was subtracted, and perform
“ the same operations as were directed for the unknown, and the quantity of the
“ Jhlack will be obtained : and in like manner the rest of the colours, and all
« the quantities of the multiplicand will be obtained. Then perform withit the opera-
# tion of the multiplicand ; and the multiplicand and quotient will be obtained. The
“ multiplicand will be the quantity of the dividend, and the quotient the quan tity of
s the divisor. And if in the dividend of the operation of the multiplicand, two
« colours remain ; as for example, black and blue, suppose the second in order,
«¢ which is blue, the dividend, and suppose black a number, and add that to the
“« gugment, and perform the operation ; and when the quantity of the two last
s colours is obtained, we shall known by the method which has been explained
¢ and illustrated in the examples, what are the quantities of the other colours
s which are below it. And when the quantity is known, reject the name of
“ colour, and if the quantity of the colour is not obtained in whole numbers,
“ again perform the operation of the multiplicand till it comes out whole ; and by
# the quantity of the last colour we know the quantities of the other colours, so
““ that the quantity of the unknown will be found. If then any one propose a
¢ question in which there are many things unknown, suppose them different
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“ colours. Accordingly, suppose the first unknewn, and the second black, and
¢ the third blue, and the fourth yellow, and the fifth red, and the sixth green, and
¢ the seventh parti-coloured, and so on, giving whatever names you please to
“ upknown quantities. which you wish to discover.  And if instead of these
“ colours other names are supposed, such as letters, and the like it may be done.
“ For what is required is to find out the unknown quantities, and the object in
¢ giving names is that you may distinguish the things required.”

From the first question in this book arises the equation 5o 4 8y + 7z 4 90 =

7# + 9 + 63 + 62, From this is derived =2 T 2 o VT2 38 _

Now = is assumed =1, and from —2 = Y : ﬂg, the multiplicand and the quotient
are found by the rules of the fifth chapter of the introduction as follows: The
augment being greater than the divisor, the former is divided by the latter. The
quotient is retained, and the remainder is written instead of the augment; the
quotient is found = 0 and the multiplicand = 1. As the number of the quotients
arising from the division of the dividend by the divisor is in this case odd, and
as the dividend is negative » and each of these circumstances requiring the mul-
tiplicand to be subtracted from the divisor, and the quotient from the dividend,
the quantities remain as they were, viz. 0 and 1. Now adding 14, the quotient
of 29 divided by 2, to 0; the true quotient is 14 and the multiplicand = 1.
Therefore @ = 14, and y = 1, and 5 = 1 ; and new values may be found by the
rules of the 5th chapter of the introduction.

The next question is the same as the third of the 1st book.

In the next we have the four quantities 50 4+ 2y + 82 4+ 7w, and 3r 4 7y +
2% 4 1w, and Gr + 4y = 12 4 2w, and S» + 1y 4 92 + 1w, all equal to each
other; and the valies of 2, 9, 2, and w are required. From the first and second
is found 2@ = 5y — 6z — 6w ; from the second and third 3r = 3y + & — w; and
from the third and fourth gvr = 3y — 2z + w. :

- From the two first of these three equations 9y = 20z + 16w, and from the two
]iﬁi ':*;J: 82— Suw; 'xfha:riu:'e: 123 :.' 93w ; and dividing E-I—f%{a—n = &; “and
“ ghove, where the rule of the multiplicand was given, it was said that when the

¢ augment is cipher, the multiplicand will be cipher, and the quotient the quotient
¥ of the augment divided by the divisor ; here then the multiplicand and quotient
“ are both cipher:” "Then ‘ddding 87 for a new value of 'z, and 4 for a pew

-
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value of w, 31 = 5 and 4 = w, and the other quantities are brﬂ-ught out in the
usual manner.

The next example gives 5r + 7y + 9z 4 Sw = 100, and 32 + 5y + 7= +

9w=100. From these comes 4y = — 8z — 36w + 200, and for the operation of

the multiplicand — s Tﬂ' e j.r Suppose w = 4, then — 8z will be

the dividend, and + 56 the augment, and -tr the divisor.  As & measures 56,
tunes without a remainder, the multiplicand will be = 0, and the quetient = 14 ;
adding — 8 to 14 and 4 to 0, y = 6 and : = 4. The other quantities are found
in the same way as in the former examples. Another method, not materially
different from the foregoing, is also preseribed for the solution of this question *,
A great part of the next example is not intelligible to me.  What I can make
out is this. To find 2 so that = _[; ’ = Y, - : S o2 :: - % L:_‘g
whole numbers.  Taking values of & in these equations the following are found
Gy = 52— 1, 52 = 4v — 1, and v = Sw = 1; from this last w =S and v = ¢,

= 2,

B i : '
but these numbers giving za fractional value of z, new values must be sought

for w and w. Then after some part which I canmot understand, the author makes
w = 3 =+ 4w, and says u is found = 4; thenw = 19, v = 2 + 85, v = 14, After

: fv — 1
more, which I cannot make out, he finds —

= 11 =z, by means of # which

he adds to v and finds = 15. After more, which I can make nothing of, he finds
y:ﬂﬂtlll.r:5g+ il
The next example is, what three numbers are those which when the first is
multiplied by 5 and divided by 20, the remainder and quotient will be equal ;
and when the second 1s multiplied by 7 and divided by 20, the remainder and the
quotient will be equal, with an increase of 1, to the remainder and quotient of the
first ; and when the third is multiplied by 9 and divided by 20, in like manner, the
remainder and quotient will be equal with an increase of 1 to the remainder and
quotient of the second ? The first remainder is called &, the second 2 + 1, and the
third, » 4+ 2, and these are also the quotients. Let the first number be . By the

o

* From (his place there is a great omission in my copy as far as the question 74® 4 87 = [0, and 7a® —83?
— 1=, in the next book. Mr. Burrows’s copy, huwvﬂ, being complete in this part, [shall preceed to
mpp!;r the omission in mine from his.

-




OF INDETERMINATE PRORBLEMS, 73

question 2-—;“; ==z 4+ EU’ whence & = ::'—If Let the second number be z, then
;ﬁ =z 41+ + I, whenee & = :‘lg_—l-ﬂ. Let the third number be v, then
v 9 gy — 42
gu *+92+ ;-J , whencex = ‘}T- From the first and second values
= .y v — 21 3
of wis found 1 3 i =y, and from the second and third —=4 From

this last is found by the operation of the multiplicand z=6andv» = 7, and 9
is called the augment of 2, and 7 the augment of v; as this value of z does not
give y integer, other values must be sought. The augment of z is directed to be
called w, and the value of w is to be sought; w is found = 3, and its augment
5; 33 is found by multiplying 3 by 9 and adding 6 ; at last the required numbers
are found 42, 33, and 28. Most of this example after that part where z is
found = 6, is unintelligible to me. It appears only that new values of 2 are
found from 6 + 9w, and that w and its values are found w = 3 and 3 + 5, anl
from w = 3 the numbers are found. I suppose the question is solved much in the
same way as such questions are now commonly done.

x—1 £r—2a ¥—3

<l (F e B [ 2
x—1x—22x—3 2 3 5

B B g ey Faig e ¥
to find x so that all these numbers shall be integers,

Let the number required be x; let the first quotient be gy + 1, this multiplied
by the divisor 2 will produce for the dividend 4y + ¢, and 1 being added for
the remainder * = 4y 4+ 3. In like manner the second quotient being assumed
3z + 2, 92+ 5 = 4y; from this last, by the operation of the multiplicand, find
z = 3 and y = 8, and the augment of z is 4v, and that of y is 9v; then » = dy+
3=38+4 X (8490) = 55 + 36v. As the value of y, 8 will not answer for 2 in
the third condition, proceed thus: Let the third quotient be 5u + 3. Multiply
hy 5 and add 3, 25u 4 18 = &, this is = 35 4 36v, hence 254 — 17 = 36v; then
by the operation of the multiplicand = 5 and v = 3, 36v = 108, 25 X 5—174
35 =143 =« and as u = 5 + 36w and v = 3 + 25w, the augment of ¥ is YOO
because 25 X 36 = 900.

- . 7
The next question is to find two numbers » and s such that

g—r)=2(r4+8 —5
3 : 9

The next question gives

—1 =9
x Gr

are integers. To find other numbers

rs —
, and
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besides G and 8. Let the first number be s + 1, and the second 6 + 2, the
difference is  + 1. Divide by 3; suppose the quotient y and the remainder € ;
then# + 1 =3y + 2, and « = 3y+1, and 52 + 1 the first number = 15y 4+ 63

and 6x 4 2 the second number = 18y+8 ; their sum is 33 y+14. Let ey ot 3N
=z+ %—; then 2z 2 — — -‘J—”:— ; from this is found y = 3 and 2 = 18,

or ¥ =0+ 3w and 2 = 1 4+ 1lw; hence 52+ 1=45w+6, and 6x+2=54w+ 8.
““ As the product of these taken according to the question mvolves @*, and would
«“be a long work,” suppose 45w + 6 =51 and let the second number be as it
was ; throw out 7 from both, the remainders are 2 and 5w + 1; take their
product, it is 10w + 2. Divide by 7; suppose u the quotient and 6 the re-

: 10w 4 2 () Tu 4+ 4 &
mainder; —w?+—- =u+— 10w+ 2=7%u+ 6, e W from this is
{2

found w=6 or 64+7v. The second number being 54w + 8, it is 54 X6+48=332,
and its augment is 5 X 7v = 378¢. As the first number is 45w + 6, and was
supposed = 51, its avgment is 45 X 7v.

The next is, what number is that which being multiplied hv 9 and 7 and the
two products divided by 30, the sum of the two remainders and two quotients
will be 26.  “ Suppose the number x, multiply it by 16, it 1s 16x, for af 1 had
“ multiplied separately by 7 and 9, by the first figure of the second book, it would
“ also be 162", Let the quotiert of 16 divided by 30 be y, 16x—30y is the re-
mainder, add the quotient ¥ ; 162 — 20y =26, and E‘*’_@,ﬂi'i{;_if‘ = 2. The augment
being greater than the divisor, subtract .6 from 26, it is 10. By the operation of
the multiplicand, the quotient is found 90 and the multiplicand 50. From 90
subtract the 29°, and from 50 the 16°; 3 and 2 remain. Take 3 from 29 and 2
from 16, 26 and 14 remain, As 16 was once rejected from the augment, add
1 to 26, @ = 27, and the quotient is 14 and the remainder 12, No new values

can be had in this case by the augment, for then the guotient and remainder
would be greater than 27. i

The next is, what number is that which multiplied by 3, 7, and 9, and the
products divided by 30, and the remainders added together and again divided by
50, the remainder will be 11. Suppose the number x; let 19z be divided by
30, and let the quotient be y, then 194 — 30y =11.  If we had multiplied
“ separately, and divided each number by $0, thesum again divided by 30 would




OF INDETERMINATE PROBLEMS. 75

« also have been equal to 11 ; but this would have been a long operation. The proof
¢« of the rule for such numbers is plain ; for example, if 8 be multiplied by ¢, 3, and
4, it will be 16, 24, and 39, and dividing each by 13, there will remain 1, 9,
“and 2. The sum of these, that is 12, divide by 15; there remains 12, If.§ is
-‘ﬂmﬂt-ipiied by the sum of these that is 9, it'will be 72 ; divide this by 15, 12

e 11 : J r
= rema.ma * From —Og-%-#—* = z by the operation of the multiplicand is found z =

,:‘.Zp :‘- S0m, and y — 18 + 19m.
The next is, what number is that which being multiplied by 23, and divided

by’ G0, and again by 80, the sum of the remainders is 1007 L{t the number be a.

Suppose the first remainder 40, and the second 60, and let ﬁ = v+ ﬁr;’ then

40 23 80z + 60
.1'.'.':.-_.:; . Again, iet-gb—'rzx+*- then z = zw . Hence 80z 420

= 60y, from which are found y = 8 and z = ¢; these values do not make x in-
teger. y =3 4 4m, 2 =2 + Sm. Lety =7 andz = 5, thenz = 20. By sup-
posing - the remainders 30 and 70, x will be=90, and the question may be worked
without supposing the remainders given numbers, and by subjecting the quan-
tities separately to the operation of the mull:ipl'tr:aml

3 the next example y being the quotient of 2 I.i’ z + y=30. * Here there can

“ be no multiplicand for no line (of quotients) is found, nor can it be brought
“out by interposition” (meaning quadratic equations). Proceed then by another
method and the question is solved by position ; the number is supposed 13, and

2 :
brought out trulyﬂl*ﬂ-; afterwards is added, *““I say this too may be done by

‘¢ Algebra thus :” Call the number &,
ned

S4a=t=

The next examplﬂ is, It is said in ancient books that there were three people,
of whom the first had 6 dirhems, the second 8, and the third 100. They all
went trading and bought pawn leaves at one price, and sold them at one rate,
and to each person something remained. They then went to another place where
the price of each leaf was 5 dirhems; they sold thie remainder and the property of
the three was equal. At what price did they buy first, and at what rate did they

sell, and what were the remainders ?

L

= a0k 18e = 3090, ¢ =]

K2
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Let the number of leaves bought for 1 dirhem be 2, and suppose the price they
sold for to be a certain number. For example: Suppose 110 leaves sold for 1
dirhem, then the leaves of the first person were Gz; let the quotient of Ga,
divided by 110 be %, which is the number of dirhems first had ; 62 — 110y is the
number of leaves remaining. Multiply by 5, 50x — 550y is their price; add
the former result y, 30x— 549y is the amount of the first person’s property. Then by
four proportionals is found what theproduceof 8z and 100xwill be, thatof Gxbeing

y; the second person is found to have y +%imd the third 16y + %&“ After
working as above, according to the terms of the question, the amount of the

. e 1200 — 5 e 5
secand person’s property is found 5 3919 Y and in like manuer the third

15000 — 27450y
3

549, thisis =, and y = 30*, It is added that unless a number is assumed the

uestion cannot be solved without the greatest difficulty.

'This book closes with some general remarks about the attention and acuteness
requisite for solving questions like these.

]:ersnn‘s

. From 30x = 549y, « is found = 0, and its augment

* Some of these numbers are evidently brought out wrong, for x should be divisible by 5 and by 21. Taking
525 (instead of 549) for x, and putting a, b, ¢ for the leaves sold at 110 per dirhem ; we get 5 = 1100 4 a, and
€= 51700 & a; where @ may be 110, or the mulliples of 110 up to 770,

END OF THE THIRD BOOK,




BOOK 4.

 ON THE INTERPOSITION (lopu 45) OF MANY COLOURS.”

Y _A_ND that relates to making the squares of many colours equal to number.
“ Its operation is thus: When two sides in the said condition are equal, in the
“ manner that has been given above for the interposition of one colour, suppose
“ a number and multiply or divide both sides by it, and add or subtract another
“ number, so that one of the two sides may be a square. Then the other side
“ must necessarily have a root, for the two sides are equal, and by the increase or
“ decrease of equal quantities, equals result; then take the root of that which is
¢t easiest found. And if in the second there is the square of a colour and a
“ number, suppose the square the multiplicand and the number the augment,
* and find the root by the operation of the square which was given above, and
¢ this certainly will be number. Make the first root of colours equal in these
“ two, and know that you must equate so that the square, or the cube, or the
% square of the square, of the unknown may remain. And afier the operation of
“ the multiplication of the square, the less root is the quantity of the root of the
“ square of the colour of that side which was worked upon; and the greater root
“is the root of all that side which was equal to the root of the first side. Equate
‘“ then in these two sides. And if in the second side there is the unknown, or
* the square of the unknown, the operation of the multiplicand cannot be done.
 Then assuming the square of another colour perform the operation. Thus it is.
¢ If there is the unknown with numbers, or the uuknown alone, whose root does
* not come out by the multiplication of the square, unless by assuming the square
¢ of another colour; when the root of this is obtained, equate in both and find
¢ the quantity of the unknown. The result of this is, that you must apply your
“ mind with steadiness and sagacity, and perform the operation of multiplication
“ of the square in any way that you can.” Here follow a few lines of general
observations not worth translating.
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Evample.  'What number is that which being doubled, and 6 times its square
added to it, will be a square ?

Let the number be a, and let 2x + 6a* = g% Maultiply by 24, which is 6 mul-
tiplied by 4, and add 4; then divide by 4, it is 12¢ + 362> + 1 =6y* + 1;
v (12r 4 562 4+ 1) = 6 + 1. As the root of the other side 6y* 4 1 cannot be
found, perform the operation of the multiplication of the square. Suppose the

9
less root, or. v = 2; then B < 1.=5% 0 =le-H s 3 By the rule of

cross multiplication for new values y = 2 X 1042 X 10 = 40 and 6z 4+ 1 =49,
whence 2 = 8. L y

The next is: What numbers are those two, the square of the sum of whicl:,
and the cubie of their sum, is equal to twice the sum of their cubes ?

Let the first number be @ — y; and the second & + y, their sum will be 2 :
then 42* 4+ 82 = 2 ((x — 3)' + (x 4+ y)') =42 + 12zy°; 4z 442 = 12y°;
42" + 4x + 1 = 12y* + 1; whence 2z 4 1} = + (12y* 4 1). Then by the mul-
tiplication of the square, making 2 the less root, 7 is the greater, 22 + 1 =7,
=3, y=2: a—y=1, v+y=45. By cross multiplication new values may be found,.

The next is: What number is that which, when the square of its equare is
multiplied by 5, and 100 times its square subtracted from the product, the re-
mainder 1s a squarer

&

Let the number be &, and let 5a*— 1002* = »*; 5a0° — 100 = E; = . _Sup-
pose 10 the less root, then 5 X 10— 100 = 400 = 20*; whence y = 200 and
G Se= L

The next is: What are those two whole numbers whose difference is a square,
and the sum of whose squares is a cube ¢

Let the two numbers be @ and y; let y — @ = 3% then a* = y* — 2yz + 2%,
and as a* + 9* = @, let 2 — 2y2* 4+ 2* =25 Then 9" — 292" ="%° — 2%
and 4y* — 4yz2* = 22° — 22%, and 4y* — 4y2* + 2* = 22° — 24; whence 2y — 2
=v/(22° — %) =2 v/(22° — 1). Now by the multiplication of the square
making 5 the less root, 2 X 5" — 1 =49, and 7 is the greater root. Then
VIR =2 =175 =gy — 2 Gy — 25 = 175, y =00 Py — 3 = g5
Or if 2 = 29 new values of » and y will be found as above.

Here follows a Rule. *“ Know that when both sides are equal and the root of
“one side is found, and on the other side there is a colour and its square, make
¢ this side equal to the square of the next colour, that is to say not to &, and let
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“ its square be to that of y, and if y be its square, malke it equal to the square of z,
“ and multiply or divide both sides.by a number, and add or subtract something
¢ 50 that the root of the side may be found. Here then I have found two roots;
“one the first, which 1s the root of the fust of the first two sides: and the
“ second, the root of the first of the second two sides, which is not equal to that
“ root. Perform the operation of the multiplication of the square with that other
¢ side whose root is not found. = Let the less root be equal to the first root, and
“ the greater root be equal to the second root, and the quantity of these coleurs

“ will be found.”

Evample. A person gave to a poor man in one day three units, and gave every
day with an increase of two. One day the poor man counted all the money,
and asked an accountant when he should receive three times the sum, at the rate
paid. Let the number of days passed when he counted his money be r, and the
rumber of days when the sum would be tripled y. First find the amount received
in the time #, thus: ¢ By a rule in the Lilavati,” (¢ — 1) X 2+ 3 =2r + 1 =

: sr+1-43 : 2

the gift of the last day ; S ek e the gift of the middle day.
Mu’iti'ply this by the number of days, @* 4 2 is the sum. In like manuner the
sum for the time y is y* + 2y, which by the question is = 32* 4- 62 ; whence
9 + 1$r+ 9=3y +6y+09, and 3r 4 3 = v (3" + Gy + 9). Let 3y* +
ﬂ._y + 9 = 2%, then will be found 3y 4+ 3 =+/(82* — 18). By the multiplication
oftﬁe square, making 0 the less root, 32* — 18 = 15%, therefore 3y + 3 = 15 and
Y ‘=4 ; and because 3y* 4 6y + 9 = 2* =81, and S.r B =10 =g, JHhng
on the first day, he got 3, and the second 5, and the sum is 8 ; and on the fourth
(Iay he had 24, which is three times 8. In like manner, by making the less root
g3, the grmt{:r root will be 57, and y = 18 and 2 = 10, and other valucs may be
found by assuming other numbers for the less root.

" Then follows a Rule, which is so mutilated that I do not know how to translate
it. Asfar | can judge, its meaning appears to be this: It a2* 4 by* = 2% the
quantities are to be found thus: Either find » such that @* 4+ 4= [ =p*, and then
a will be = ry and = = py, or apply the rule given at the end of the 6th chapter
of the introduction for the case, when ¢ = .

Required® rand y, such that 7:* 4+ 8y* = [, and 72* —8y* + 1 = O

* At this place my copy comes in again.
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72" + 8y is supposed = 2°. The operation of multiplication of the square is
directed to be performed, 72° being the multiplicand, and 8y* the augment: ¢ I
““ suppose 2 the less root, and multiply its square which is four by 7 the multi-
“ plicand ; it is 28; add 8, the square is 86 ; 6 then is found the greater root ;
“ 6 black then is the quantity of blue, and @ black the quantity of the unknown.”
Thus 2 is found =6yandr = 2. The second condition is 70 — 8y* 4+ 1 = O,
whence by substituting 2y for x5 285" — 8y* + 1, or 20y* + 1 = 0 = w*. Now
by the operation of multiplication of the square, supposing the less root, and
20 x 2*+1=81=w"; whencew = 9. Therefore . = 4 and y = 2, supposing 56
the less root, . will be = 72 and y = 36.

In the next Example 2 and y are required such that +* + %' = O, and
24 y = 0. The multiplicand being a square let the augment be divided h}r A

Then by a rule of the 6th chapter of the intr-::mlI|.u:titt1|n‘E-:‘;:--‘EI =i Let + ¥

= w*, then y* +y = 2w’. Multiply by 4 and add 1, 49" + 4y + 1 =8w* _|_ .
The root of the first side of the equation is 2y + 1. Find the root of the second
side by the operation of multiplication of the square, supposing 6 the less root,
17 will be the greater; now 9y + 1 =17; whence y =S anda =93 Other
values of y and r are 40 = y, and 1176 = .

Another method of solving this question is given. Supposing one of the
numbers ¢2* and the other 72* ; the sum is 92%, which is the square of 5z. The
square of the first added to the cube of the second, is 82° + 492 ; let this be = »*;
divide by %, the quotient is 8z* 4+ 49. Perform the operation of multiplication
of the square, supposing 2 the less root, 8 X 4+ 49 =81 =9* Therefore
« = 2, and the first number 2a* is=8, and the second 72 is=28 ; and supposing
7 the less root, 21 will be the greater root : then x = 7, and the first number will
be 08 and the second 343.

Rule. “If a square is equalf, the root of which cannot be found{, and in

- + n : — 1
* Viz. If & =pa (supposing ax* 4 8=y, then ---E-_y, and =

S
s .P
t+ Here seems to be an omission,
t If the number can be reduced to the form (ax 4 my)? 4 ry%, it becomes rational by making ax 4 my =

y) o+t = i’:-"—-i #)1 In Mr, Burrow's copy this rule begins, “ Il #lere are fuo

r

—?——Ly, for then (

i sides, the root,” &c.
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¢ which there are two squares of two colours, and the rectangie of those two
“ colours; take the root of one square, and hnd from the second square a root, so
“ that from the two squares that rectangle may be thrown out,

. ““ For example : In the second side is 36 square of .unkunown, and 36 square of
“ black, and 36 rectangle of unknown and black. Take the root of 86 square of
“ unknown, 6 unknown ; and from 36 square of black, take the root of 9 square
‘¢ of black, 3 black. When we take twice the rectangle of these two roots, the
¢ rectangle which is also 36 will be thrown out ; and from the squares 27 square
“of black will remain, Divide whatever remains by the colour, of which this is
““ the square; and from the number of the colour of the quotient, having sub.
¢ tracted one, halve the remainder, make what is obtained equal to that root
“which has been found.  After dividing the second by the first, the quantity of
* the first colour will be obtained.”

- In the next example » and y are required such that 2* 4 y* + ay = O, and
V(@' +y +ay) X(w4+y)+ 1= o. ©Thefirstequation being multiplied by
“ 36 gives S062* + 36xy* + S6ay = 362*. The root of one square and part of the
“* second square, the rectangie having been thrown out, are found 6 unknown, and
“ 8 black: there remains 27 square of black.” Then applying the rule, 2 is

Fnumi = 3 whence a* = 9;3-", and 2* +y* +ay = 5%_+y » a!f 433.#.
(6
( ﬂ) and v/ (1* +y* +1J}x(1+J}+]_L'{(__+J) iy _:5._”" +9’ Wilke

this = w", then 563 + 9=9w'. Then root of 9w'is 3w, and by the operation
of multiplication of the square, making 6 the less root, 45 will be the greater root.
For 56 X 36 + 9 = 2025 = 45*; therefore y =6 and.v = 10; or making 180
the less root, ¥y = 180 and @ = 300.

The next question is: Required » and y such that ﬂ%’r = (), and 2* +¥*

=0,andr+4+y+2=p,ander —y+2=0;, and2* — ¥ 4+ 8 = 0, aund
LI L @ ) + VeI D + V=g 4 D+ +9)

= m. Itis plain that 6 and 8 will answer the above conditions. Pass them
and find two others, It is required to find them by means of one unknown
quantity only, Suppose the first number p* — 1, and the second ¢p. Then

ay + F—1)y X 2p+ 2 1= 2 2 ’ P TE
.?gy:g }EP Ji‘?=g']Ij 5{:+ p:p’. And 2* + v = p* —

F
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o'+ 1+ =pt+ P+ 1=+ 1) Andr+y+2=(p—1)+2p+2
=p+P+1=0@+1)" Anda* -y +2=0p—1)" And +'— ¢ + 8 =
=P+ 1—4p*+8=p*—6p*+9=(p*—3)*; and the sum of the roots is equal to
pa P+ + (p+1) + (p—1) + (p°—3) = <p* + 3p — 2. As the root of
this cannot be found, make it equal to 9*: then 2p* 4 5p = 9* + 2. Multiply
by S and add 95 16p* 4 24p + 9 = 89* + 25. Tind the 100t of the first side
V(16 + 24p 4+ 9) = 4p 4+ 3. Tor the root of the second side perform the
operation of multiplication of the square.  Suppose the less root 5, the greater
root will be 155 for 8X 25 4 25 = 225 = 15*. Make the root' of this equal to
that of the first side 4p 4+ 3 =15, whencep=—=13. Inthiscase »x = 8andy =6;
making the less root 30, the greater will be 85; p will then be %1* and 2 = "———lﬁj?
and y = 41; or making the less root 175, the greater will be 495, p = 123,
r=15128, and y = 266. Or > may be supposed = p* 4+ 25, amd'y ='2. Or
w=pr—gp, amdy=2¢p—2 Orao=p"44p+3 and gy =¢p - 4. Aund
the numbers required may be brought out in an infinite number of ways besides
the above. '

Here follows an observation, that in calculation, correctness is the chief point ;
that a wise and considerate person will easily remove the veil from the object ; but
that where the help of acuteness is wanting, a very clear explication is necessary.
“ And so it is when there is such a question as this: What two numbers are those,
“the sum or difference of whieh, or the sum or difference of the squares of
“which, being increased or lessened by a certain number, called the augment,
“will be a'square. If examples of this sort are required to be solved by one
“ colour only, it is not every supposition that will solve them; but first suppose
““the root of the difference of the two numbers one unknown, and another
“ number with it either affirmative or negative. Divide the augment of the
“ difference of the two squares, by the augment of the sum of the numbers, and
““ add the root of the quotient to the root of the supposed difference abovemen-
““ tioned ; it will be the root of the two numbers. Take then every one, the
« square of the root of the difference of the numbers, and the square of the root
“ of the sum of the numbers, and write them separately. Afterwards, by the way
“ of opposition add and subtract, the augment of the difference, and the sum of
¢ the two numbers aforementioned, as is in the example, to and from the squares of
“ the two, which, by the question, were increased or diminished. The result of
* the addition and subtraction will be known, and from that the two numbers




OF INDETERMINATE PROBLEMS, 33

(v +9) + (r —9)

“ may be found in this manner, viz. by the rule = = &, and

[T (J‘ i jl') ;‘ {'T"_ 3’) - 3'.ul

ffhcne::tismﬁnd 2 and jfﬁl.lﬂh that.1~+y+ ] = 0 au([i-..__y,{.. . — 0

¥

and 2* + y'—4 =, and 2* — y* + 12 = 7, and % + y = (@, and the

sum of the roots + 2 = 0. Exclude 6 and 7, which it is plain will answer.
v/(r — y) is supposed = p — 1, then x is made equal to p* — 2 and y = 2p,
wherefore v+ y 4+ 3=(P'—D +2Pp +3=(p+ 1), and o —y + 3= (p*—9)
—2p+3= (p—1)", and 2" +y'—4= (p*—4p*+4) +4p*'—4= (")}, and 2*—y*+
12= (p"—l!-p’+4} —4P1+12:(P1_4):’ and igf Ly = {P_jti‘;.{‘;‘l}_gﬂ +2p=p", and
the sum of the roots 4+2 = (p+1) + (p—1) +p* (P'—4) +p+2=9p*+3p—2;
make this = ¢*; 2p*+3p—2=¢’, and Qp‘+ 3p=¢*+2. Multiply by 8 and add 9,
16p* +24p+9=8¢"+25. The root of the first side is 4p+3. Find the root of
the second side by the operation of multiplication of the square ; making the
less root 175, the greater root will be 495. Therefore 4p4+5=495, and p=123,
and r=15127, and y=246.

The next is: Required 2 and y such that »*—3*4+1=0], and »* +y*4 1= 0,
Let #*=5p*—1 and y*=4p? 2"—y'+1=p*and ¥ +y"+1=(3p)*. The root of
4p1is 2p. Find the root of 5p*—1 by the operation of multiplication of the
square. Supposing the less root 1, the greater will be 2, Supposing 17 the less
root, the greater will be 38, Orif 2> 4+ y* — 1 =0, anda* —y* — 1 =, let
s = 5p° 4 1 and ° = 4p*; and so on as in the first case.

Bule. * When the root of one side is found, and on the second side there is
““ a colour, whether with or without a number, equate that side with the square
“¢ of the colour which is after it and one unit. And bring out the quantity of
“ the colour of the second side which is first in the equation ; and bring out what
““ is required in the proper manner.”

Evample. To find @ and y such that 3v+ 1 =0, andsr+ 1= 0. Let
v+ 1= (35 4+.1), then * =32" 4 25, let 5(8z* + 92) + 1 = w’, whence
152+ 10z =w"— 1 ; multiply by 15.and add 25 ; 2252* 4 130z + 25 = 15w*4-10.
The root of the first side is 15z + 5. Find the root of the second side by the

L 2
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operation of multiplication of the square ; making the less root 9, the greater will
be 85; 15z 4 5 = 85; therefore 2 = 2 and x = 16. By another way: Let

2= 5z*

z — 12 .

g multiply by § and add 1, ' make'this = w*; 53> = 3u* +2.
Multiply by 5 ; 252* = 15%* 4+ 10; the root of the first side is 52, Find the
the root of the second as before, making the less root 9, the greater will be 55 ;
whence = and 2. In the above example other values of & are mentioned besides
those which I have taken notice of.

F =

The next example is: Required @ such that 30 + 1 = E, and 3(3¢ + i}T

; Pl : .
+1=0: LetSe+1=y’; then 3o =3’ — 1, and o = 4 5~ > multiply this

by 3 and add 1, the result is %°, the cube cube root of which 1s . Let 3y* 4+ 1
= 2*; making the less root 4, the greater will be 7, whence » = 21.

The nextis : To find & and y such that 2(+*—¢7)4-5=, and 3(*—y }4-3=0O.
*“ Know that in bringing out what is required, you must sometimes suppose the
“ colour in that number which the question involves, and sometimes begin from
“ the middle, and sometimes from the end, whichever is easiest. IHere then
“ suppose the difference of the squares unknown,” &e.
3

Let a*— 3*=p ; make 2p+3=4¢*; then [

:i‘F

=p; multiply this by 3, and add 3,
3¢* — 3 { fcder = .
e let this be = *; therefore 3¢ — 3 = 2r*; multiply by 3 and

it is
transpose ; 9¢°=06r"49; the root of the first side is 3¢. Find that of the second
side by the operation of multiplication of the square. Making the less root 6, the
greater will be 15.  Or making the less 60, the greater will be 147. If Sg=15,
g=5; if 3¢=147, ¢=49. In the first case p=11, and in the second p = 1199.
L b e it 4.5
Suppose v —.y = 1, #* = being.=.11, *:5*:-3}-—.1- = T_.Il ;and 4w
and @ — y being given, 2 and y may be found. In the first case » = 6 and y = 5.
In the second o = 600 and y = 599.

Rule. ** If the square of a coloar is divided by a number and the quotient is
‘““ a colour. If after the reduction of the equation its root is not found, make it

“ equal to the square of a colour, that the quantity of the black may come
i Ol.!.t..”
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: e i : £ — 4
The next example which concludes this book is: Required . such tha e

& — 4

— a whole number. Make =y, then ¥* =7y 4 4: the root of the first

side is x; that of the second side cannot be found.  Then by the above rule”
let 72 +2 = /(79 - 4); 403> 4 28z + 4 = 7y + 4; whence 72" 4 42 — »,
“ As the quantity the of biack is 7 square of the blue, and 4 blue ; and as 7 blue and
“ a ynits were supposed equal to a root which is equal to the unknown, T make
‘¢ jt equal to the unknown. 'This same is the quantity of the unknown. 1 sup-
¢ pose the quantity of the blue a certain number,” &e. As7z42=wx If2=0,
z2=0, If z=1, v=9. If =2, #=16. Other values of + may be found in the
sime manner.

« After*® equating that the two sides may come out, multiply the first side by
¢t 3 npumber and take its root, and keeping the second side as it was, multiply the
« pumber of the second side by the number which the first was multiplied by,
« and make it equal to the square of'a colour.”

Example. What number is that whose square being multiplied by 5, and 3

i 1 ins * S50 45
added, and divided by 16, nothing remains ? Let the number be 2, Let “-:-_
—y, a whole number; then 52" = 16y — 3, 52* X 5 = 2527, /(252%) = 5.
Then there seems to be assumed 3 X 5=:*—1, and afterwards trom o : ] =

the question is prepared for solution.

The next rule is: “ If the cube of a colour is divided by a number, and the
‘“ quotient is a colour, make it equal to the cube of a colour. The way to find
‘ that, is this : Assume the cube of a number and divide it by the divisor; there
‘¢ should be no remainder ; and add the number with it again .nd again to the
“ divisor, or subtract it from it; or let the cube be a cube of a number, which
¢ join with it ; or again multiply that number by the fixed number 3, and the
“ result multiply into the quotient, and divide it by the dividend; also there

* In Mr. Burrow’s copy the fourth book ends with two rules and two examples, which, as far as I can make
them out, are as above,






- BOOK 5.

¢ ON TIHE EQUATION OF RECTANGLES.”
ey W —

. AND that relates to the method of solving questions which involve the
¢ rectangles of colours. Know that when the question is of one number multi-
« plied by another, if the two numbers are supposed colours, it necessarily comes
« ynder rectangle of colours, The solution of that being very intricate and
« exceedingly difficult, if one number is required suppose it unknown ; and if
€ two or three, suppose one unknown and the others certain numbers, such that
¢ yrhen they are multiplied together according to the question, no colour will be
“ gbtained except the unknown, and it will not come uunder rectangle of colours.
¢ And besides multiplication, if the increase or diminution of a number is re-
“ quired, perform the operation according to the question, then it will be exactly
“a question of the same sort as those in the first book, which treats of the
“ equality of unknown and number. By the rules which were given there, what
“ s required will be found.”

"Fhe first question is to find 2 and ¥ such that 4 4 5y + € =ay. Supposing
.y =5, then i» 4 17 = 5, wherefore » = 17 and y = 5. Supposing y =0,
then # = 10. In like manner any number whatever being put for y the value of
x will be found.

The next is to find w, a, ¥, 5, such that (w+x+y+ z) 20 = wryz. Suppose
the first w, the second 5, the third 4, and the fourth 2; then 20w 4220=40w,
and w = 11. Other values of w, x, y, z, are taken notice of.

The next is to find x and y in integers such that /(o +y + 2y + 2* + ¥°) +
x+y =23, or =53. In the first case, suppose the first number # and the
second 2, then v/ (¢* 4+ 3v 4+ 6) + 2+ 2=23, and #/ (2" + 30 + 6) =21 — g,

- Z . 29 !
and #* + 3¢ + 6 = 2* — 42r + 441 ; whence r will be found = 35 this not

being an integer, let the operation be repeated. Suppose y = 3 then & will be
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.‘:]?. ] [l " » . -
found = 773 this too being a fraction, supposey =5; then a willbe =7. In

the second case a number is put for y, and a fractional value of & is found.
““ And if we suppose the second number 11, the ghantity of the unknown will
““ be 17, and thus is contrary ; for if the second number is supposed 17, the quan-
“ tity of the unknown will be 11; and if one is supposed a colour and the other a
“ certain number, it 1s probable that the unknown will be brought out a fraction;
* and if a whole number is required, it may be found by much search, And if

“both are supposed colours, and the question solved by this rule, a whole
“ number wiil easily be found,”

Rule*. “ When two sides are equal, the method of equating them is thus:
* subtract the rectangle of one side from the other side, and besides that what-
‘ ever is on the second side is to be subtracted from the first ; then let both sides
“ be divided by the rectangle ; and on the side where there are colours let those
“‘ colours be multiplied together. And let a number be supposed, and let the
“ numbers which are on that side be added to it: and let the result be divided
““ by the supposed number ; and. let the quotient and the number of the divisor
“ be separately increased or lessened by the number of the colows which were
“ before multiplication, whichever may be possible. Wherever the unknown is
“ added or subtracted there will be the quantity of the black ; and wherever the
“ black is added or subtracted there will be the quantity of the unknown. And
“ in like manner if there is another number, and if both addition and subtraction
¢ are poussible, let both be done, and two different numbers will be found. Also
“ if the number of the colours is greater, and cannot be subtracted, subtract the
¢ quotient and the number of the divisor from the colour if possible, what was
“ required will be obtained.”

Example. xand y are required such that 4¢ + 3y + 2 = ay. Multiply 3 by

* This rule is very ill expressed ; it must mean—The equation being reduced to ax - by ¢ = =y, o

ah 4
P

willbe =y and & 4 p=x. Decauvse ax4fyte=ay, ¢ = xy —ax—>by, add ab io both sides, then céc

ab == ¢

=ay—ay by f ab= (xt — &) (y—a): and making p=x — b, y —a will be = » Therefore x=& 4

ab;-c. More formule may be had by resolving ab<c into different factors.

poandy =a--






Mr. Davis’s Notes.

e P T B T

1 vERE put together all T have been able to make out of Mr, Davis's notes of
the Bija Ganita. What I have extracted literally is marked by inverted commas ;
the rest is either abstract, or my own remarks or explanations. I have preserved
the divisions of the Persian translation for the convenience of arrangement and for
casy reference. Mr. Davis’s letter to me, authenticating these notes, is annexed.

Chapter st of Introduction.

- - e ¥ ——

THE manner in which the negative sign is expressed, is illustrated in the notes
by the addition and subtraction of simple quantities, thus: ¢ Addition.—When

¢ hoth affirmative or both negative, &c. When contrary signs, the difference
“ js the sum.

RETY RS
]
P
b= s

¢ Subtraction.
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# Multiplication.
 When both are affirmative or both negative the product is affirmative.
g2 X:3 =%, ,a:»-::j_ﬁ 9:{3:& 2% 3=6,
“Why is the product of two affirmative or two negative quantities always
“ affirmative ? The first is evident. With regard to the second it may be ex-
“ plained thus: Whether one quantity be multiplied by the other entire, or in
¢ parts, the product will always be the same, thus:

£ 155 % 12 = 1620

#1885 X 8= WSO
185 W o= 580

1620
« Then, let 135 be X by 4, but 12—4=16 and 135 X 4 = 540; 135 % 16
2 =2160, and 540 4 2160 = 2700, which is absurd: but 540 + 2160 = 1620."

Mr, Davis remarks to me that there are here evidently some errors and some
omissions, and he thinks that the meaning of the last part of the passage must

have been to this effect: 12 may be composed of 16 added to 4. Let 135 be
multiplied by 12, so composed
135 X 16 = 2160 135 X 16 = 2160

135 X 4= 540 15 % &= 540
135 X 12 = 2700 This is absurd: but 135 X 12 = 1620 which is
right. Thus too 4 may be taken as formed by 12 + 16 =4, and if
135 x 16 = 2160 135 X 16 = 2160
155 X 12 = 1620 135 % 12 = 1620

|

135 X 4 = 3780 which is absurd: but 135 X 4 = 540 which is right.

Perhaps something like the following might have been intended ;

— 135X —12=1620 either+4or— ,:iiii :2% —1620¢ither+or—; nowd—j12=
: —taax(q.—m)g s
—g8;andB—12=—4; themforerhc.sumﬂf_m&xw_!ﬂj must be=—=135X — 1g,

M 2
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—135% (4—12)=— 540+ or — 1620
— 135X (8—12)=~— 1080+ or —1620
product —1620 —3240==—4860 if — X — gives — ; but

— 162043240 = 41620 if — X — gives +; therefore — 135X — 12 =+ 1620.

Chapter 3.

“ OF QUANTITIES UNKNOWN, BUT EXPRESSED BY LETTERS.”

¢¢ Jabut tabut . « . « . 15t . - qT

“Kaluk . . .. . o0 ad'e. R

g [ 1] R S e 3d . .owy

SiPepl oot want . 4th . O}

€ Lrheet . oo - .. StH R
&c.

“ Commentary adds Hurretaka . . . 1
“Chitraka .. « . 2
&e.
““ These are styled abekt or unknown,
“ These may be added to themselves, subtracted, &c. but cannot he added
“to, &c. known quantities in the manner explained, or to unlike quantities of

“ any kind. The square of 3T cannot be added to 3T, but the addition may be
“ expressed thus 71 add to 7T ; the reason is, because to add 5 signs

“to 2 degrees we cannot say 5 added to 2 is equal to seven, for this would be
¢ absurd, we thercfore write the sum 5° €°.  DBut when the unknown quantity is
“ discovered it may then be added to the known, into one simple quantity.







4 NOTES.
And there is another example with the numbers 4 and 9, and the following
|
theorem, ¢ 2)8(4, its rootis 2, 4+ 1 — 1

3 1
L TR St 9 X ¢ = 18 sum.
“1X1=1 1 X 2 = 2 difference.”
Also this: ““The carni 18 is found ; its root is the sam of the roots of the two
““ given numbers; but if there be two roots there must be two squares, the
“ difference is the square of the difference between these squares.”
And the following examples in multiplication: ‘“ To multiply the square roots
“of 2, 8, and 3, by the square root of 3 and the integral number 5.

“ These are surds, therefore take the square of the sum of the square roots of 2
and 8, and multiply by the square of 5.

“ Square of sum of square roots of 2 and 8 is 18.

18 | 25, 3 | 450, 54

3125 8] 75, 9| rootof9 is3 roop.
Sqrs. Sqrs. Sqrs.
450 54

75 = roop 3,
* Example second.

Roap. Carni. Carni.
“ Multipliers 5, 3, 12.

« 5 5|25 3| 625 75 | 25 roop a5 roop 675
u 13} 27 | 25, 3 | 675, 81 | 9 roop 9 roop 75
16 300

“The product therefore is 16 roop, 300 carni.”

The square of a negative quantity being made negative is here taken notice of
as in the Persian Translation: In division the following rule is mentioned.

“The carni divisor : reverse of each term, its sign, and multiply both divisor
*“ and dividend.” -

Carni which here means surd, means also the hypothenuse of a right-angled
triangle.
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Chapter 5.

3 WHAT is that number by which when 221 is multiplied and 65 added to the
« product, and that product divided by 195, nothing will remain,

“ The dividend bhady, divisor hur or bhujuk, the number added or subtracted
“is called chepuk. The bhady is here 221, the bhujuk 195; when divided the
% guotient is 1, this is disregarded ; the seke or remainder is 26, by which 195
“ divided the quotient is 7 disregarded, the remainder is 13, by which divide
“ 221, the quotient1s 17, the remainder is 0. The quotient 17 is the true or
“ dirl-bhady.

 Then 195 divided by 13, the quotient is 15; the remainder 0. This quotient
* is named dirl-bhujuk.

“ Then divide 65 by 13, the quotient is 5 ; the remainder 0; the quotient is
“ the dirl-chepuk.

“ They are now reduced to the smallest numbers.
¢ 17 dirl-bhady.
“* 15 dirl-bbujuk.
¢ 5 dirl chepuk.

The quotients are found and arranged as in the rule with 5§ and 0 below,
(11
1

thus: 7

5

0 this is called bullee ; the cipher is called unte or the latter ; the next (5)
¢t is called upantea. Multiply this by its next number (7) and add the next below
* 5, this being 0, the product will be 35, Multiply this by the uppermost number
“ (1) and add the next below (5) the amount is 40.”
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Then 40 and 35 are directed to be divided by the dirl-bhady and bhujuk.
17) 40 (2
3t

6 this 1s called lubd.
15) 35 (2
30

5 this is called gvonuk, and it is the number wughl:'.

=

291 X 5 + 65

i = 6, and directions are given for finding new values of .« and y,

(supposing ar ;I- ‘= y) by adding a (in its reduced state) and its multiples to

the value of y ; and & and its multiples to the value of 2.
The next question in the notes is also the same as that in the Persian.
“ Bhady 100, bhujuk 63, and chepuk 90.

¢« OPERATION.

““ These numbers cannot be all reduced to lower proportionals,
100 divided by 63, the quotient is 1, the remainder 37 ; by this remainder
“ divide 63, the quotient is 1, the remainder is 26 ; by this divide 37, the quotient
“is 1, the remainder 11. Divide again; quotient 2, remainder 4. Divide
‘“ again ; quotient 2, remainder 3. Divide again ; quotient 1, remainder 1 ; this re-

| -

* mainder 1 is disregarded. The several quotients write down thus: 1

the c]lepuk.

QiEIHI'MImlHI
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“ Multiply and add from the bottom as in the former example, 90X 14-0=90,
“ 90X 24-90=270, 270X 2+90=630, 630X 1 4270=900, 900X 1 4630=1530,
#1530 14+900=2430.

* The two last are the numbers songht ; then

“ 100)2430(24 this is disregarded.
200

430
400

80 Seke or remainder is the lubd.
e 53)]534@4
126

270
252

18 this is the goonuk.”
100 X 18 4+ 90 __
53 = 30
The method of reducing the bhady and chepuk is noticed, and the values of
x = 171 and y = 27, being first found the true values are found, thus:
63)171(2 and 10)27(2
126 20

45 7
63 —45 =z and (10 —=7) X 10=y.
The several methods of proceeding : first, by reducing the bhady and chepuk ;
second, by reducing the bhujuk and chepuk ; third, by reducing the bhady and
chepuk ; and then the reduced chepuk and the bhujuk are also mentioned.

"The following explanation of these reductions is given :
¢ The bhady 27, bhujuk 15;
““ these are divided each by 3. . . . 9 and 5.
* Write 27 in two divisions . . . .. 9 and 18
“ these again divided by 3 ... .. 38 and ©
# these two add 3 4+ 6 = 9 ; thus the parts added, how many so ever are, always
“ gqual to the whole, thus therefore they are reduced to save trouble, and there-
¢ fore all these numbers are so reduced ; but the goonuk is as yet unknown. Let
N

-
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“it be supposed to be 5, by which multiply the parts of the bhady 9and 18;
“g X5 =45 18 X5 =90, which added are 135, and the bhady 27 X 5§ =
“ the same 135 ; this divided in two parts, 60 and 75, and added again, are 135,
“ The lowest terms of 27 and 15 above, are 9 and 5; the common measure 3,
“ multiplied by 5, 3X 5 =15 andd 9 x 15 = 155.

“ Thus too the chepuk nust be reduced, and when they are all reduced to the
“ lowest, the lubd and goonuk will be true; and if their numbers are not reduced
“ to their lowest terms, the work will be the greater.”

The principle on which the chepuk is reduced is explained thus :

f*OF THE CHEPUK.”

“ The bhady 221, bhujuk 195, chepuk 65; the goonuk was found 5, lubd 6.
221 X 5§ = 1105
195)1105(5 lubd.
975

130 seke, which deduct from the bhujuk 195 — 130 = 65 equal

« to the chepuk, which divide by the bhujuk 195)195(1. The lubd is 5, to
“ which add 1; 6 = the original lubd.”

In another example the bhady = 60, bhujuk = 18, and chepuk = 16 or — 16,

By the bullee are found the numbers 80 and 368 ; then 365—606=8 the lubd,

and 80 — 18 X 6 = 2 the goonuk ; 60 — 8 = 52 the lubd corrected, and

13 — 2 = 11 the goonuk corrected. -fﬂ—]-{::;—+_]is_5gj and ﬁﬂ’}(lﬂ;—lﬁ s

“ Note in the text: The product by the two uppermost terms of the hul[ee
“ when divided by the bhady and bhujuk respectively, have hitherto ahw,:,s
“ quoted the same number, as in the last example 6 the quotient, and the like
-¢ also in the foregoing examples, but when it happens otherwise, as in the fol-
«lowing : When the bhady is 5, the bhujuk 3, the chepuk 23 afﬁrmat]vg or
“ negative, what will be found the goonuk ?

3)5(1 : 1)
] —_
s 1
2)35(1 — ) Bullee.
2 23
1 seke disregarded 0/
98 % 1 =088 0 =88 5)46 (9 5)e8(?
23X 1 =28 + 23 =46 45 21

1 2 goonuk

I
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“ The two quotients being different numbers they must be taken the same ;
“ thus instead of 9, take the quotient 7.

5)46(7
35

—_—

11
“ therefore the goon is 2, the lubd 11. ‘i{-?s—ﬂ — g [

“ Next, when the chepuk is negative, or to be deducted, the rule directs to
“ subtract the lubd from the bhady, but here it cannot be done: the rule is
¢ reversed, thus 11—5=6, which is the lubd for the negative chepuk ; next for
“ the goon of the rhin chepuk §—2=1; therefore the goon and lubd for the
““ rhin chepuk are 1 and 2; 5X1=5; but from this the rhin chepuk cannot be
** taken ; therefore take it from the chepuk 23—5=18.

© % 3)18(6 the lubd.”
18

0

Other cases are mentioned for the negative chepuk, and for the chepuk re-
duced, and for new values of the goon and lubd.

5T 0 s5r 6. : ! :
The examples - l—: and i-l--l—t;—f, which are in the Persian translation, are

also stated here, but no abstract of the work is given, only the lubd is said to be
5 and the goonuk 0, which applies to the last of the two only.

“ The seke in bekullas is termed sood, meaning that it is the chepuk; the
“ bhady, let it be 60. The coodin or urgun is the bhujuk, from which the lubd
¢¢ will be found in bekullas, and the goon will be the seke of the cullas, which
“ must be taken as the chepuk ; making the bhady again 60, the bhujuk will be
“ the urgun, the lubd of this will be in cullas, the seke is the seke of the ansas,
“ which seke must be taken as the chepuk; the bhady being taken 30, the
“ bhujuk is still the urgun, the lubd is in ansas, the seke is the seke of the signs,

¥ ¢
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“ which seke take as the chepuk ; making the bhady 12, the bhujuk will be still
“ the coodin, the lubd here will be signs, the seke is the seke of bhaganas,
¢ revolutions, which seke must be taken as the chepuk ; the lubd will here be
“in bhaganas, the seke the urgun.”

Example. “ Let the calp coodin or urgun be 19, the bhaganas 9, the
“ urgun 13.”

“ Then by proportion if 19 gives 9, what will 18 give?” This is found to be

60r — 11

G rev. 1 sign, 26°, 50°, 31", with a fraction of i1; then from i9 =i

0z' — 10
19
120" — 17
19

; 6
x and y are found £ =10, y=31 ; then from =¥, ¥ = 50 and 2" = 16,

poiligs :
from m—w—l— = 7", ¥''= 26, o' =217, rom

=y et alley

FEF (k) 3 ; -
from ng-— =y, ¥ =6 and &’ = 13, which is the urgun.

In another Example. Seke bekullas = 117, bhaganas = 49, calp coodin or
urgun =149, Jeist urgun =97. The quantity is found by the rule to be =

o

28 rev. 10 signs, 18°, 23/, 317, the remainder 11.

““ The addy month 1, is the bhady ; the coodin 195, the bhujuk ; the seke of
‘¢ the addy month 95, is the chepuk,

“195)1(0 0
1 scke disregarded 95 bullee,
0
(]
oOX9 ' +0=20 Raaagg
“ 1)0(0 195)95(0
0 lubd 95 goonuk.
“95 X1 —=95=0 195)0(0

0
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Chapter 6.

¢« TIIE CHACRA BALA.?

A R

“THE multiplication of the square is a chacra bala. There are six cases :
“ The first quantity assumed 1s called Aurswa (the smaller); its square must be
“ multiplied by the pracrit, and then must be added the chepuk; that is such a
“ chepuk as will by addition produce a square, and this chepuk may require to be
“ affirmative or negative, which must be ascertained. The root of this square is
“ the jeist : these three, the canist or hursua, jeist, and chepuk must be noted
“ down and again written down.”

The distinctions of samans babna and anter babna are given as follows :

““ oF THE SAMANS BABNA'"

“ When the jeist and canist are multiplied into each other (budjra beas)
* the sum is the hursa or canist. It is called budjra beas from its being a tri-
“ angular multiplication ; the upper, or jeist, or greater, being multiplied by the
« lower, smaller, the canist; and the canist multiplied by the greater or jeist;
“ the two products added is the hurs.

“The two canists multiplied together, and multiplied again by the pracrit,
““ then the product of the two jeists—added altogether, produces the root of the
“jeist; the product of the two chepuks then becomes the chepuk.”

The anter babna is described thus: * The difference between the two products
¢ or budjra beas, produces hursa or canist. The product of the canists multiply
* by the pracrit, and the difference between (this and) the product of the two
“ jeists is the root of the jeist, and the product of the two chepuks is the
¢ chepuk.”

The rest of this is very imperfect, but the cases of g3 = Bp* and pa :;-._.-, and

]
the rule A (F,—E:—#) + 1=[3, are plainly alluded to. (See notes on the Persian
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translation.) * Thus” (it is added) “ the root of the canist and jeist may be in a
“ variety of cases found.”

After this there are examples the same as in the Persian translation, and worked
the same way as far as the ““ Operation of Circulation ;” and, after the examples.
“ Hence, how various soever the Ist, from the somans babna and anter babna may
“ be produced canist, jeist, and chepe; and hence it is called the chacra bala.”

I find no abstract of the rule for the ¢ operation of circulation,” but there is
the first example, viz. 672 + 1 = O, as follows : ““ Roop 1 is the canist, 3 is
* the chepe; then the pracrit 67, canist 1, jeist 8. IHurs 1 is the bhady, chepe is

“ the bhujuk, jeist 8 is the chepuk ; then by the cootuk gunnit
% Bha. 1, che 8,

“ Hur i.i; hence the goonuk 1.
“ then the square of 1is 1, 67 — 1 =66, but this is not the smallest; then
i 3:+5:6, 6+1=7; its square 49, deduct from pracrit 67—49=18; 5}13({:.?;
“ but the negative must be made affirmative 6; and 5X5=25, and 25 X67=
“ 1675, and 1675 4+6=1681 its root 41 ; then by the cootuk gunnit

“ Bha 5, che 41,

“ Hur 6 ;
« then 5% 5=25 and 61—25=42, 6)42(7 ; the lubd is the canist 11; 11X 11=

“ 191, 121X67=8107; chepe is 7, 8107+7=8100 its root is 90, which is the
« jeist ; then by the cootuk
_  Canist is bhady 11, che 90,

“ Hur 7.

¢ Here the goon is 2, che7; 7+2=9 the second goonuk ; its square is 81
“ 81—67=14; 7)14(2 the other chepe.”
¢ The canist 27. This is made jeist 221.
# Ca. 27, 221 jeist, che 2.
 Ca. 27, 221 jeist, che 2.

“ Ca. 11934, jeist 97684, che 4.
“Ca. 5967, jeist 48842, che 1.
 The square ca. 35605089, which multiply by 67, and 1 added, the sum will
¢ he 2385540964, and its root is 48842.”




BOOK 1.

5 THE unknown quantities, &c. must be clearly stated, and then the equation
“ must be reduced in the manner hereafter shewn by x, by =, by the rule of
¢ proportion, by progression, ratios, by I sl maintaining the equality.
“ When they are otherwise, add the difference; then sodana the quantities ; the
“sume with respect to roots. In the other side of the equation the roop must be
¢ sodanad with the roop. When there are surds they must be sodanad with
“ surds 3 then Dy the remainder of the unknown quantities division, the roop
“ must be divided ; the quotient is the quantity songht, now become wvisible.”

¢ Then the quantity so found must be utapanad, in order to resolve the
¢ question.” _

It will be remarked that the Persian translation has “ the figure of the bride,”
for that expression which is represented by [~ in the above abstract. Mr.
Davis tells me that the original had nothing like a reference to Euclid, and that
this part related simply to the proportions of right-angled triangles.

There follow abstracts of the seven first questions of this book, with their

solutions, which are the same as those in the Persian translation.
* The first part of the first example is: ** One man had 6 horses and 300 pieces of
¢ silver, and the other had 10 horses, and owed 100 pieces of silver; their pro-
« perty was cqual. Quere, the value of each horse, and the amount of the pro-
«« perty of each person. Here the unknown quantity is the price of one horse.

“ Ja 6, oo 300

¢« Ja 6, roo 100 these are equal.

“ Ja 6, roo 300

¢ Ja 10, roo 100. Sodan, that is transpose.
“Ja 6 4+ 300 = Ja 10 — 100

“ Ja &4 = 400
i = 1




NOTES, 105

The third example, where the Persian translator has introduced the names
Zeid and Omar, 1s in Mr. Davis’s notes thus:

“ One man said to another, if you give me 100 pieces of silver I shall have
“ twice as many as you ; the other said give me 10 pieces and I shall bave six
‘ times as many as you. Queere, the number each had.
“Ja 2 roo 100
“Ja 1 roo 100
“ Ja 12 roo 660
“Ja 1 roo 110
“ Diff. Ja 11 roo 770
“Ja  roo 70

BOOK 2.

)

“Tue square root of the sum of the squares of the bhoje and cote is the carna.
“ Explain the reason of this truth.

o
“The carna is ka ju; the figure thus, m Divide this by a perpen-
AF

« dicular fﬂﬁ ; these are equal triangles. The bheje is abada or given,

Bl 5
“ The lumb or perpendicular is the cote, k .
F Y B
“ijs a carna, the lumb perpendicular is the bhoje, the cote is the carna ; they are
“¢ similar triangles, When the bhoje, now carna, gives the lumb for the cote,
““ then cote for carna how much? Thus by proportion the cote is found.”

Also

*“ As bhoje 15 is to carna, then from this carna 15 what bhoje ?
o

In the latter the cote
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“ Therefore 15 X 15, and divide by Ja 1, and the small bhoje is found =
295

——. Apgain.
Ja | a
“ As cote 20, to the carna, so is the carna 80. What cote?”
400 . { - 625 .
This i1s found = T aml this added to jfﬁl = J] 51 is the carna ; whence
sl
a5 —Jal.

“ Then from the bhoje to find the I}Elpenduular

“ The bhoje .5, its square 2:5; bhoje abada = 9, its square 81 ; the differ-
““ence is 1443 1its root is the lumb 12,

8o, the cote 20, its square 00 ; cote abada 16, its square 256 ; difference
“ of squares 144 ; 1its root the lumb 1s IE Agaiu,

Another way.

“Carna ja 1; then half the rectangle of the bhoje and cote is equal to the
“ area = 150; therefore the area of thr. square formed upon the carna in this
“ manner will be equal to four times the above added to the contained square,
“ which square is equal to the rectangle of the difference between the bhoje and
“ cote, which is 5 X 5 = 25. 'l_'he n:umngl'e of the bhoje and cote 1s 15 X 20
“ =3500; and 300X 2=600 (ur 3’!;_:- ¥ 4); 600 + 25 = 625, which is equal to
“ the area of the whole square drawn upon_the carna, and therefore the square
“ root of this is equal to the carna = 25. If this comes not out an integral
“ number, then the carna is imperfect or a surd root,

“The sum of the squares of the bhoje and cote, and the square of the sum of

“ the bhoje and cote, the difference of these is equal to twice their rectangles ;
““ therefore (theorem) thesquare root of the squages of the-blhioje and cote is equal
“ to the carna. To illustrate this, view the figure.”

Here a figure is given which requires explanation to make it intelligible,

“ Iu that figure where 3 deducted from the bhoje, and the square root made of
* the remainder, and one deducted frem the square roar, and where the remainder

“is equal to the difference between the cote and carna. quulrr:d the thJE cote,

““ and carna.
L urr-:am*mu."

“ Let the assumed number be g, to which add 1, its squareis made=9; to this

“add 3, whence the bhoje is 12 ; its square is 144, and this by the foregoing is

o

ra—

e i
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¢ equal to the difference between the squares of the cote and carna; and the sum
¢ of the cote and carna multiplied by their difference is equal to this,”

Then follows something which I cannot make out, but it appears to be an
illustration of the rule, that the difference of two squares is equal to a rectangle
‘under the sum and difference of their sides, probably the same as that in the
Persian translation.  The end of it is,

¢ Thus the square of 5is 85, and the difference between 5 and 7, sides of the
“ square, is 2; the sum of those sides is 12, which muliiplied together is 24 ;
¢ therefore equal to this is the remainder, when from the square of 7 is deducted

* the square of 5.

“ The difference hetween the squares of these is known, and thence the
“ cote and carna are discovered thus : This difference of squares divide by the
** difference of the cote and carna, or difference of roots, as in the Pati Ganita,

]M . w 5 s, = & *
“— =72, and this is the sum of the two quantities sought, as is taught in the

* Pati Ganita, but their difference is 2; therefore deduct 2 from the sum, the
“ remainder is 70, and half of this is the first quantity sought. Again, add 2 to
79, the sum is 74 ; its half is 37 the other quantity ; therefore the cote is 35,

*¢ the carna 37.
“ When the proposed difference is 1, the numbers are found 7, 24, 253 multi-

“ ply these by 4, the numbers will be 28, 96, 100.

Then follows a note of the rule, that the difference of the sum of the squares of
two numbers, and the square of their sum, is equal to twice the rectangle of the
two numbers, and this example as in the Persian translation.

¢ The two numbers arc 3 and 5 ; the sum of squares 9 4+ 25 = 34; the sum
“ 8\ its square 64; the difference is 64—34=30; then 5 X 3=15, 15X2=30,
“ equal to the above. - But when the sides are not knowu, but the difference of
“ their squares, 16 then divide by 2, (viz. E.-y the di ﬁr::m:c of the numbers)

6
“ % = 8; this is their sum, and dﬂluat thf:u' defchnce §—2 = 6, half this is
“ one number, and 84+2=1¢, and Eﬁ = 5, the other number.” ¥

0 2
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The next is,

““ In the figure where the sum of bhoje, cote, carna is 40, and the product of
*“ bhoje and cote 120.  What is the bhoje, cote, carna ?

“ Multiply the product 1.0 by 2 =210, this will be equal to the difference between
“ the square of the sum of the bhoje and cote and the carnas square. The sum
““ of the squares of the bhoje and cote equal to square of the carna ; therefore the
“ product of the bhoje and cote X by 2 is equal to the difterence between the
“ rectangle and cote (the squarc) of the sum of the bh. je, and the square of the
“ carna.

“ Divide this number 240 by the sum of the bhoje, cote, and carna 40, -ﬂ—fé‘! =6,
“ which is equal to the difference between the carna and the sum of bhoje and

“ cote. Hence M A = 17 the carna: 23 sum of bhoje and cote, squared is

Q

“529. Multiply the rectangle of bhoje and cote 120 by 4 = 480, the remainder

¢ 49, and its root 73 this is the difference of bhoje and cote ; deduct this from
.16 . L

“ their sum 23; 23 — 7 = 16, its half g = 8 1Is the bhoje; 23 4+ 7 = 30, its

“ half, is the cote 15."

The next is,

*“ Where the sum of bhoje, cote, carna is 56, and their product 4200, what
“ are the bhoje, cote, carna?

“Ja 1, ja, bha 1. ‘The sum of bhoje, cote, carna.

“Carmajal; ja ‘], roo 56 ; these three multiplied, 4200.

roo 4200

‘ The rectangle of bhoje and cote 77

equal to sum of squares of bhoje

*¢ and cote is ja bha 1, sum of bhoje and cote ja 1, roo 56 ; the square ja bha 1,

. g =
“ ja 112, roo 3136 ; the difference between them is equal to J: W

“ therefore Ja 112 roo 3136
Ja 0 roo 8400

Jjal
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“ divide both by 112; reduce both sides, and it will be
Ja1l roo 28

Ja D roo 75

Ja 1
Reduce the fractions.

“Jabhal, jag8 roo 0

“Jabha0, ja 0, roo75

« Multiply Dy 4, and add the square of 28.
¢ Jabhad, Jall2, roo 300 (should be 734)
“Jabha0, Ja0  roo 484

P _iaﬂrﬂuﬂ'ﬂ_ 50 .. o o
The square root 780 o028’ then add, et divide by 2 = 23, which is

“ the jabut, and therefore carna.
“ Then for the bhoje cote. The three multiplied are 4200. Divide by carna

"f-:%ﬂ- = 168 = bhoje X by cote. The sum of bhoje and cote =356 — 25 =31,

“and 168 X4=672. The square of 31=961," (the difference) ** 289, its square
“ yoot is the difference of bhoje and cote = 17 ; deduct this, 31 — 17 = 14; its
‘¢ half 7, which is the bhoje ; and 31 4 17 = 48 ; its half 24 is the cote.”
The ‘lines above have been carelessly drawn. The true Hindoo method of
writing the equation — v 4 28 = E; I understand to be this, ja l:' roo 28, and
. Ja 0 Roo 75

|
that of — 2* + 28.r = 75 this, Ja bha 1 lja 28 I roo 0

Ja bha ¢ |ja..l3| roo 75
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Books 3, 4, and 5.

s B B —

¥ rinp among Mr, Davis’s notes a small part only of the beginning of the
3d book, which consists of rules for the application of the cootuk to questions
where there are more unknown quantities than conditions. I find also some
notes which evidently relate to the first example of this book, but nothing
distinct can be made out.

There are no notes relating to the 4th book.,

Of the 5th book only this

“ When' there are two or more quantities multiplied, the Ist quantity must be
¢ discarded—then™....There is also an abstract of the first example, the same as
that in the Persian translation.

Extracts from Mr. Davis’s Notes, taken from a modern
Hindoo Treatise on Astronomy.

“ By the method of the Jeisht and Canist from two jyas* being found, others
“ may be computed by those who understand the nature of the circle (the bow

* Jya or faw; sine~The modern Europeans acquired their knowledge of the sine from the Arabians; and it
is obvious that they used the term sinus only, because the word jeel ':""'.'""“."—:"—]' by which the Arabians called the

line in question, is translated sinus dndusii., The radical meaning of {i..‘.n..a.:.] is to cut, and it dencles the bosom

of & garment only, because the garment is cut there to make a pockel; accordingly we find that oz

[
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“and arrow), and thus, by the addition of surds, may the sum and the
“ difterence of the arc and its sine be computed whether that arc be 90 degrees,

“ more or less.

dne; noi l:{.uun bosom, hul that ainong the Arabizis it Sig_niﬁtﬁ that part al their dress where the putkei 15
ﬁmall]r pla,cﬂl, and in some Idllguagl.'!- which abound in Arabic words, as the Persian and the Hindoostanee,
it is the commun term, not only for a pocket in the bosom, bui for any pocket wherever it mav be. ' In all
Arab c dictionaries this word is explained as abuve, and in some; though not in all, (it is not in the Kushfool
Loghat) the live we call sing is given as a second meaning.

The Arabs call the arc kous {WJS:I, which signifies a dow ; the cord wur )j:j}, which is the bowestring ;
and the versed sine sufkin {rv.u], which is the arrow. But the sine they express by a word which has no

eonnexion whatever with the fow,
. The Mathematical history of the Arabians is not known enough for us to speak jmll.l\'d} about Lhe first uge

nf sines among them, but there seems o be reason 1o suspect that they had it from a foreign source, probably
from the Indians.

The Sanserit word for the chord is jaw, or wmore properly jya andjiva, (For these terms see Mr. Dayis"s
paper in the second volume of the Asiastic Researches; the iteral explanation of the words has been given me I]J.r
Mr. Wilkins,) and the sine is called fya ardhi, or hall cord ; but commonly the Hindoos, for brevity, use jya
for the sine. They also apply the word in composition as we do; thus, they call the cosine e tij;e, meaning the
sine, the side of a right-angled triangle; the sine (or right sine) bleyyya, meaniong the sine, the base of a right-
angled triangle, and cramajya the sinve moved; the versed sine they call Wl‘ﬂ'wﬂq;ya. or the sine moved ups
wards; the radius they call fridjya, or the sing of l.hrm, {meaning probably three sigus.)  In their term for the
diameter jyapinda, or whole jya, the word is used in its proper acceptation for chord, and not for jya ardhi,
or sine,

It seems as if \aa= and jya were originally the same word. Mr. Wilkins (the best apthority) assures'me

that jya, in the feminine jiva, is undoubtedly pure Sanscrit, Lhat it is found in the best and eldest dictionaries,

and that ils meaning is a bowsiring,
The Amhlam in adapting a term to the idea nf chord, had reference to the thing which it r-esmnhln;-d

ﬂnd. cal]aﬂ. it _.’ or the !‘UMHHE, but having so ap]:ln:d this term, thqr had to seck another for sine;
thep thgr would paturally refer Lo H'n.: name of the thing, and callit by some word in their own ]-l"sua.t;C.
which m:nu‘l:,r resembled that under which it was originally known to them. This mode of giving a séparate
deﬁgmtmn to the sine was evidently more convenient than that of the Hindoos, so I conjecture that { A
fof sine is no otber than the Sanscrit word jya or jiva. :

1t is remarkable that the Sanserit terms for the sides of a right-angled triangle have reference to a oo :
they seem to be named from the angular points which are formed by the end of the bow, the arm which.

holds it, and the ear to which the string is drawn ; thus the side is called eoti, or end of the bow; the base
baaf, or the arm; and the Inputhﬂmlﬁe earna, or the ear. Some further explanation however is desirable
to shew why bhwjya is the term for the sine, and not (as it should be by analogy) the cosine, and cofijyu the

cosine instead of the sine,
The Hindeos have g word for the versed sine, sur, which signifies arrow, answering exactly to the Arabic r-v-m-

*
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“ Multiply the jaw of one of two ares by the colejaw of the other are, divide
“ the product by the tridjaw, add the two quotients and also subtract them ; the
“ sum is equal to the jaw of the two ares, the other is the jaw of the difference
between the two ares.

“ Again, multiply the two bojejaws together, and likewise the two cotejaws
“togcther ; divide by the tridjaw, Note the sum and the difference. The sum
“1s the cotejaw of the sum of the two wces, the difference is the cotcjaw of the
“ difference of the two arcs.

“ In this manner Bhascara computed the sines in his Siromony, and others
“ have given other methods of their own for computing the same.

The author of the Marichi observes, * that the author of the Siromoni derived
‘¢ his method of computing his sines by the jeisht and canist, and diagonally multi-
“ plied (ba jera beas), the jeisht and canist being the cotejaw and the bojejaw ;
“hence he tound the sines of the sum and difference of two ares, the third
“ canist being those quantities. He did not use the terms jeisht and canist, but
“in their room bojgjaw and cotejaw. I shall therefore explain how they
“ were used.

“ The bojejaw = canist (small).

“ Cotejaw = jeisht (larger).

““ (The theorem then is what square multiplied by 8, and 1 added, will produce
‘“ a square).

“ Multipiy the given number (8) by the square of the canist, and add the
“ chepuk, the sum must be a square.

““ The bojejaw square deducted from the tridjaw square, leaves the cotejaw
“ square, therefore the bojejaw square is made negative, and the tridjaw square
« added to a negative being a subtraction, the tridjaw square is made the chepuk.

“ The canist square, which is the bojejaw square, being multiplied by a negative
“ becomes a negative product, therefore the quantity is expressed by 1 roop
“ negalive.

“‘Then the bojejaw square multiplied by 1 roop negative, and added to the
““ tridjaw, its square is the cotejaw.

“ Hence the bojejaw and cotejaw in the theorem by Bhascara, represent the
« canist and jeisht, and 1 roop negative is the multiplier, and the chepuk is the
“ square of the tridjaw, and the equation will stand as follows :

“ Canist 1st. jaw 1: jeisht Ist. cotejaw 1 : chepuk, tridjaw square 1,
“ Canist 2d. jaw 1: jeisht 2d. cotejaw 1: chepuk, tridjaw square 1.
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Second Extract,

“Sroca. The munis determined the equations of the planets centres for the
* use of mortals, and this can be effected only by computations of the sines of
“arcs. 1 shall explain and demonstrate their construction and use.

g, Aund for this purpose begin with squares and extractions of roots, for the
“¢ satisfaction of intelligent persons of ready comprehension,

“ 3. Thesquare is explained by the ancients to be the product of a number
“ multiplied by itselt. (He goes on to show how squares are found and roots
¢« extracted as in the Lilavati).

“ 6, Square numbers may be stated infinitely. The roots may be as above
“ extracted, but there are numbers whose roots are irrational.  (Surds.)

“7, The ancients have shewn how to approximate to the roots of such
“ numbers as follows: Take a greater number than that whose root is wanted ;
“ and by its square multiply the given number, when that given number is an
« integer. Lxtract the root of the product, divide this root by the assumed
“ number, and the quotient will approximate to the root required. If the given
“ number be a fraction, multiply and extract as before. To approximate the
“ nearer the munis assumed a large number, but the approximation may be made
“ by assuming a small number.”

And after a blank.
¢ In like manner surds are managed in the abeks or symbolical letters,
« (Algebra) expressing unknown quantities.”

Again, after a blank.

“ Some have pretended to have found the root of a surd, and that this might

-
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“ be effected by the Cutuca Ganita, attend and learn whether or not this could
“ have been possible. I shall relate what Bhascara and others have omitted ta
 explain. A root is of two kinds; one a line, the other a number. And the
*“ root of a square formed by a line expressing 5, may be found, though the root
“ of 5 cannot be numerically expressed ; but the numbers 1, 4, 9, &c. may be
“ expressed both ways, 2, 3,5, &c. are surds, and can have theirroots expressed
“ only by lines. (lle goes on to shew the impossibility of finding the root of a
“ surdd, though it should be eternally pursued through fractional quantities.)
“ The root of a surd may be shewn geometrically.”

I Have copied these two extracts exactly as I found them ; there appear to be
one or two errors which it may be as well to mention. In the first extract the
latter part of the first sentence should, perhaps, run thus: * By the addition of
“the jeisht and canist may the sines of the sum and difference of arcs be
“ computed,” &c.

I observe that where jeisht and canist first occurred in these notes Mr. Davis
translated it originally  arithmetic of surds,” and afterwards corrected it;
probably from oversight it was not corrected in the second place,

The value of the cosine of the sum of two arcs is given instead of that of the
difference and wice versa.

There is an error also in writing the sum and the difference of the cross pro-
ducts. S e

I know nothing of the author of the Marichi. Possibly he might have
observed that the jeisht and canist rule corresponded with the formulw for the sines
and cosines, and the latter were not derived from the former by Bhascara, but
invented at a later period, or introduced among the Hindoos from foreign
sources. Probably however the application and the formule are both of Indian
origin. ,

As for the second extract the rule for approximating to the square root is the
same as that given by Recorde, in his “ Whetstone of Wit,” which was pub-
lished in 1557 ; and by his contemporary Buckley; (for an account of whose
method see Wallis’s Algebra, p. 32. English edition,) I have before stated, that

P ¢
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this rule is aiso in the Lilavati. I mentioned it generally then only because of
its connexion with a trigonometrical proposition. The following is a literal
translation of the rule, as given by Fyzee: ‘ Take the squares of the base and
“ side, and add them together; then multiply by the denominator and write it
“down. Then assume a large number and take its square. Then multiply it
“ by that which was written down. Take the square root of the result and call
¢ it the dividend. Then multiply that denominator by that assumed number,
“ and call it the divisor. Divide the dividend by the divisor, the quotient is the
% hypothenuse.” This is not delivered with perfect accuracy, the true meaning
however is plain.  If the assumed multiplier is decimal the method gives the
common approximation in decimal fractions. The writer denies that the root of
a surd can be found by the cootuk, but he speaks of it as a subject to which the
cootuk was said to have been applied. It is very improbable that such a thing as
this should have found its way from Europe to India, and it is very probable that
many things of this sort were te be had from Hindoo sources.
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Bhaganas.—Revolutions.
Calp—The great period.
Raas—Literally a heap, a sum total, a constellation.

Cootuk—The principle on which problems of this form ‘E-};th = y are solved.

Sanstisi—Ditto uf%ﬁ =y + ¢ and iif =2 | e

Chacra-bala—Ditto of aa® + b = y*—Literally strength.

Hursua, hurs, hursa—x in the above form — Literally small.

Pracrit—a in Ditto—Literally principal.

Jeist or Jeisht—y in Ditto—Literally greatest,

Canist—x in Ditto—Literally least.

Samans babna—If ax* + g = y"? and A.ft 4+ g.= g*, then the rule x" = x'g + yfis called
samans babna—Literally contemplation of equal degrees.

Anter babna—1In the above form, when 2" = xg — y'f, it is called anter babna—Literally
contemplation of difference.

Badjra beas—Cross multiplication which produces the above forms — Literally cross
diameter.

Cootuk gunnit or cutuca ganita.—Cootuk Calculation.

Sodana—Reduce—Literally purify.

Utapana~Brought out.

Bhoje—Base of a right-angled triangle—Literally arm.

Cote— Side of Ditte — Literally end of a bow.

Carna—Hypothenuse—Literally ear.

Lumb—Perpendicular—Literally length,

Abada—Given.

Ist—Assumed.

Jaw or Jya—Sine or chord—Literally bow-string.

Bojejuw—Sine.

Cotejaw—Cosine.

Tridjaw — Radius—Literally sine of three ; perhaps meaning of three signs or 90 degrees,

Addy—Intercalary.

Che-tits (Cshaya tithi)—Difference of solar and lunar days.

Abum—? For bhumi savan—solar days.

Chandra—Lunar.

For the literal explanation of these terms, as far as they could be made out, I am obliged
to Mr. Wilkins. Most of the words are written here according to their common prenun-
ciation in Bengal.






















