Lehrbuch der Auscultation und Percussion: mit besonderer Berücksichtigung der Inspection, Betastung und Messung der Brust und des Unterleibes zu diagnostischen Zwecken / von C. Gerhardt.

Contributors

Gerhardt, Carl 1833-1902. Royal College of Physicians of Edinburgh

Publication/Creation

Tubingen: H. Laupp, 1871.

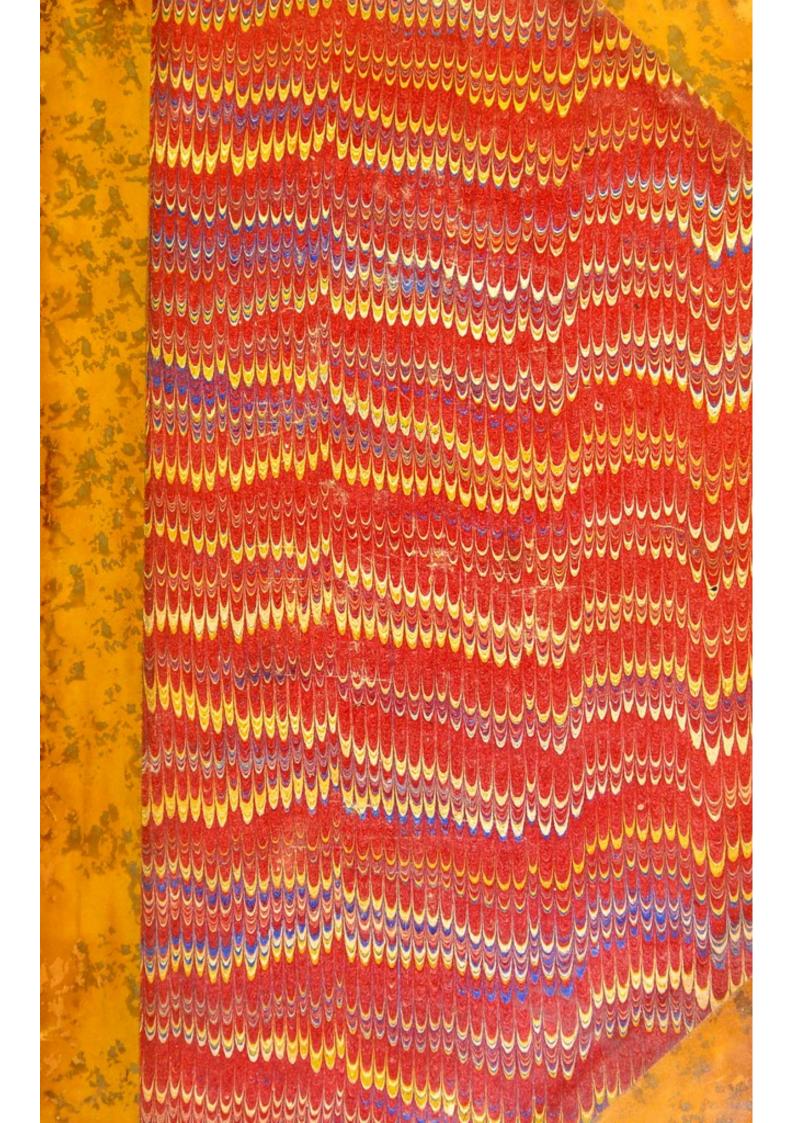
Persistent URL

https://wellcomecollection.org/works/rt3crv8b

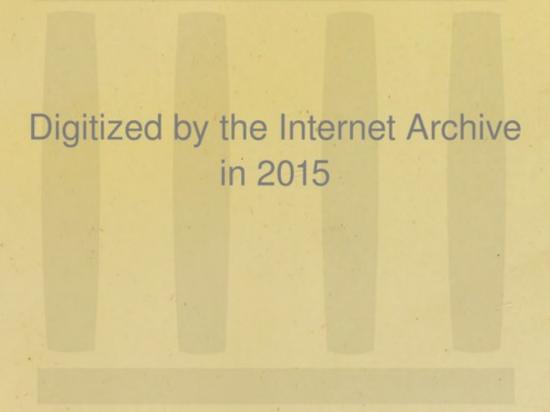
Provider

Royal College of Physicians Edinburgh

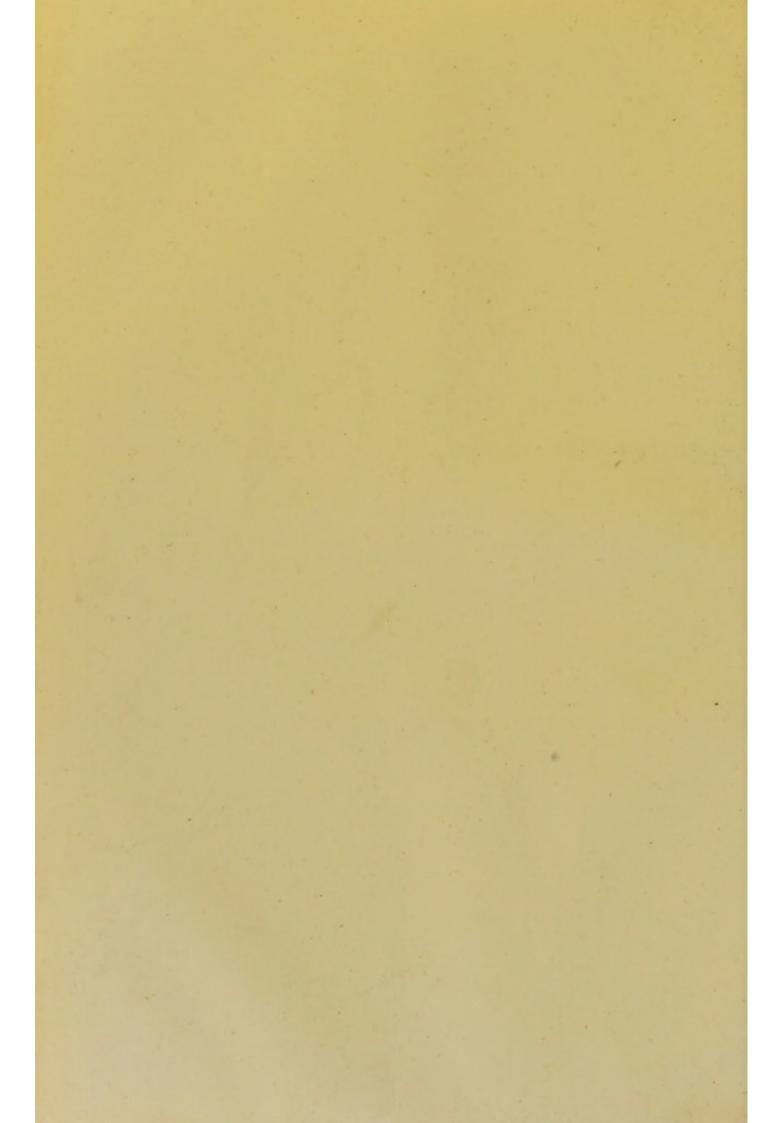
License and attribution


This material has been provided by This material has been provided by the Royal College of Physicians of Edinburgh. The original may be consulted at the Royal College of Physicians of Edinburgh. where the originals may be consulted.

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.


You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org



Cb.5.44 Y3.31

Lehrbuch der Auscultation und Percussion.

1;

Lehrbuch

der

Auscultation und Percussion

mit besonderer Berücksichtigung

der

Inspection, Betastung und Messung der Brust und des Unterleibes zu diagnostischen Zwecken

von

Dr. C. Gerhardt,

ordentl. öffentl. Professor der Medicin, Grossherzogl. Sächs. Geh. Hofrathe und Director der medicinischen Klinik zu Jena.

Zweite vermehrte und verbesserte Auflage.

Mit 31 in den Text gedruckten Holzschnitten und einer lithographirten Tafel.

Tübingen, 1871.

Verlag der H. Laupp'schen Buchhandlung.

Das Recht der Uebersetzung in fremde Sprachen bleibt vorbehalten.

Für die italienische Uebersetzung hat Hr. Dr. Vincenzo Pasquale, Verlagsbuchhändler in Neapel, das Verlags-Recht erworben.

Vorwort zur ersten Auflage.

Während eines fünfjährigen Zeitraumes mit Abhaltung von Auscultationscursen und mit Krankenuntersuchungen zu klinischen Zwecken fast ausschliesslich beschäftigt, habe ich bei ersteren häufig für mich einen Leitfaden, für meine Zuhörer ein Buch zum Nachlesen vermisst, die diesen speziellen Zwecken entsprochen hätten. Ich gedachte daher jenen Wirkungskreis mit der Abfassung einer Anleitung zu diesem Theile der praktischen Krankenuntersuchung abzuschliessen. Ehe sie nach mannichfachen Unterbrechungen zum Abschlusse kam, sind nochmals fast fünf Jahre verflossen, während deren manche Anschauung durch fortgesetzte Untersuchung berichtigt worden, manche neue Erfahrung hinzugekommen ist. Möge dadurch diese Arbeit ihrem ursprünglichen Ziele um so näher gerückt sein, möge sie das Stadium der physikalischen Diagnostik fördern und erleichtern.

Jena, Ostern 1866.

C. Gerhardt.

Vorwort zur zweiten Auflage.

Vielfache Zeichen günstiger Aufnahme im In- und Auslande regten mich lebhaft an, bei Bearbeitung der zweiten Auflage alle wichtigeren Thatsachen, welche die einschlägige Literatur dieser letzten Jahre zu Tage gefördert hat, gewissenhaft zu benützen. Besonderen Genuss gewährte es mir die physikalische Seite des Faches durch Untersuchung der Schallerscheinungen des Körpers mittelst der besten akustischen Apparate zu fördern. Obwohl ich hierin nur die ersten, wie ich hoffe bahnbrechenden, Anfänge vorlegen kann, enthalten diese doch schon manche neue Sätze. Dahin rechne ich die Lehren von der Gleichartigkeit des tympanitischen Schalles und des Bronchialathmens, von der Cavernenmessung, von der Begründung des Metallklanges und des ersten Herztones. In diesen Richtungen waren zahlreiche Verbesserungen und Zusätze einzufügen. Von letzteren musste einer, der die Percussionslehre betrifft, als Nachtrag beigegeben werden. Für die Zeichnungen zu der lithographischen Tafel bin ich Dr. H. Emminghaus ebenso wie für Unterstützung bei diesen und den vorausgegangenen Experimenten zu Dank verpflichtet.

Jena, April 1871.

Inhalts-Verzeichniss.

							Seite
Einleitung							1
A. Inspection					BL.	1	7
I. Hautfärbung							8
II. Formen des Brustkorbs			1				15
III. Respiratorische Bewegungen IV. Pulsationen							32
IV. Pulsationen							46
V. Inspection des Unterleibes			1				68
B. Palpation.				100		2 1000	- 00
I. Betastung des Brustkorbs		200	100	-	-		78
II. Palpation der Gefässe .							85
III. Palpation des Unterleibs .			-			Nie	92
C 3.5		-	-	1			99
C. Mensuration			1		1	1	99
I. Methode							109
II. Elgenschatten des Schalles							112
III. Tympanitischer Percussionsscha	11				133		
Tone des l'ercussionssenalies							114
V. Dumpfer Schall	•		- V				121
V. Dumpfer Schall VI. Voller Schall VII. Metallisland	319	-				10	122
VII. Metallklang	•	3					123
VIII. Gefühl des Widerstands .	-	*					124
IX. Topographische Percussion	•						127
X. Grenzen der Lunge					4		128
XI. Grenzbestimmung des Herzens .		3.30	1	200		190	129
XII. Lebergrenzen				100			135
XIII. Lebergrenzen		123	3				138
XIV. Percussion der Nieren						•	143
XV. Percussion des Magens							145
XV. Percussion des Magens XVI. Larynx			1	-			147
E. Auscultation.			*				149
I. Allgemeines							
II. Instrumente							150
III. Auscultation aus der Entfernung							152
IV. Auscultation der Stimme							156
The state of the s							4.0

VIII

						Seite
V. Athmungsgeräusche.						
1. Bronchialathmen .						164
2. Vesiculärathmen .						168
3. Rasselgeräusche						175
4. Metallklang		. 19				180
5. Pleuritisches Reiben .						184
VI. Auscultation des Herzens.						
A. Töne						187
B. Geräusche						197
C. Töne und Geräusche an d	len A	rterier	und	Venen		206
VII. Auscultation der Unterleibsorg	gane					212
F. Physikalisch-diagnostische S	ymp	tome	ngri	appen		
I. Verengerung der oberen Luft	wege					215
II. Stand des Diaphragma's .					1	220
III. Flüssigkeitserguss im Pleurasa				1150.00		224
TV. Luft im Pleurasack		2.				232
V. Verdichtung der Lunge .		7.				239
VI. Cavernen		-				246
VII. Emphysem						261
VIII. Flüssigkeit im Herzbeutel						268
Anhang. Verwachsung des	Perik	rards .				271
IX. Luft im Herzbeutel						272
X. Herzhypertrophie						274
XI. Klappenfehler					300	281
XII. Lageveränderung des Herzens	3					297
XIII. Krankheiten der Aorta .						299
XIV. Luft im Bauchfellsacke .						301
XV. Flüssigkeit im Bauchfellsacke						304
XVI. Meteorismus intestinorum			. 4			307
XVII. Unterleibsgeschwülste .						308
XVIII. Magenerweiterung						312
XIX. Verkleinerung der Leber .						314
XX. Vergrösserung der Leber						316
XXI. Geschwülste der Milz .				4.00		319
XXII. Ausdehnung der Harnblase	1	1983		10.77		322
VVIII Nierengeschwillste						323
Nachtrag. Optische Unt	ersucl	nung	des	Percussi	ons-	37 12
schalles	-					325

Einleitung.

Wenn wir eine Krankheitsgeschichte erfahren und die Beschwerden eines Kranken vernommen haben, sind die meisten übrigen Krankheitszeichen, welche wir noch aufzunehmen im Stande sind, physikalischer Natur im weitesten Sinne des Wortes, ein geringerer Antheil derselben beruht auf chemischen Vorgängen. Alle Resultate, welche durch Befühlen, Betrachten verschiedener Theile, durch Einführen des Fingers oder der Sonde in Cavitäten, durch microscopische Untersuchung krankhafter Produkte, durch Thermometer, Specula und Explorativnadeln erhalten werden, sind zusammengesetzt aus einer grösseren oder geringeren Anzahl physikalischer Wahrnehmungen, welche wir nicht als solche einzeln, sondern in Form eines Urtheils auszusprechen gewohnt sind. Diese Wahrnehmungen beziehen sich grossentheils auf die Form, die Härte, die Dehnbarkeit, Durchsichtigkeit, die Farbe, die Temperatur der Organe. Zusammenhängende Reihen einfacher, bedeutungsvoller, physikalischer Eigenschaften der Theile des Körpers hat man aus der schwer zu ordnenden Menge der übrigen hervorgehoben und als physikalische Untersuchung die Methoden bezeichnet, durch welche die erwähnten Zeichen zur Wahrnehmung gelangen. Eine erste Reihe dieser physikalischen Untersuchungsmethoden im engeren Sinne, soweit sie die wichtigsten Stützen jeder wissenschaftlichen Diagnostik der Brustund Unterleibskrankheiten bilden, soll eine eingehende Besprechung in den nachfolgenden Blättern finden. Man unterscheidet dieselben als: 1) Besichtigung der äusseren Formen mit Berücksichtigung ihres Zusammenhanges mit oder ihrer Abhängigkeit von den Zuständen der inneren Theile: Inspection, 2) das Befühlen: Palpation, 3) die Messung: Mensuration, 4) das Beklopfen: Percussion, 5) das Behorchen: Auscultation derselben.

Diese Methoden waren bereits für die ärztliche Erkenntniss förderlicher, als all' die zahllosen Sophistereien und Spekulationen des Mittelalters, als manche traurige Verirrung der Neuzeit, die noch jetzt einzelne Kräfte im Banne der naturphilsophischen Träumerei gefangen hält. Sie waren der klaren lichtvollen Naturanschauung des Alterthums, vorzüglich der hippokratischen Schule, keineswegs völlig fremd. Wenn sie auch nirgends als Methoden erwähnt, kapitelweise beschrieben und an unnütze complicirte Instrumente gebunden werden, so sind doch mehrfach werthvolle physikalisch - diagnostische Beobachtungsresultate in den hippokratischen Schriften, nicht minder bei einigen Späteren aufgeführt, so das Einsinken des Brustkorbes nach Pleuraexsudaten, das pleuritische Reibegeräusch, die Athmungsform bei Laryngostenose, der verschiedene Schall des Unterleibes bei Ascites und Meteorismus. Diese und viele andere Beobachtungen sind missachtet, vergessen, von überklugen Kritikern missdeutet worden eine neue Erfindung musste diese Zeichen aufs neue begründen, sie mussten durchdacht und verarbeitet als gegliederte Methode in die Welt treten, um die Gleichgültigkeit und Trägheit zu überwinden, um die Grübeleien und die philosophischen und mystischen Systeme der Medizin zu durchkreuzen und die Blicke des Arztes auf den Menschen als Gegenstand naturwissenschaftlicher Forschung zu lenken. Das geschah. Der erste Anstoss erfolgte von Wien aus.

Nach siebenjährigen Studien inter taedia et labores liess Auenbrugger sein inventum novum, ein kleines Büchlein erscheinen, das nach einer bewundernswerth einfachen Methode damals bereits ohne Hammer, ohne Plessimeter die Grenzbestimmungen der Brustorgane und viele pathologische Zeichen derselben durch die Percussion richtig darlegte. Obwohl Boerhave ihm eine kurze Erwähnung zu Theil werden liess, obwohl Rozière de la Chassagne eine Uebersetzung ins Französische veranstaltete, so fehlte doch wenig daran, dass auch Auenbrugger's mühsam erworbene Erfahrungen der Vergessenheit anheimgefallen wären, hätte nicht J. N. Corvisart, Napoleons Leibarzt, zu seinen Studien über die Krankheiten des Herzens ihrer bedurft und Redlichkeit genug besessen, dem bejahrten, dem Grabe schon nahen, vergessenen Manne sein Verdienst zu lassen, ja ihm dafür die gebührende Achtung und Anerkennung zu verschaffen. Die Percussion Auenbrugger's wurde, früher nur unmittelbar auf der Brust geübt, zur mittelbaren durch Piorry, den Erfinder des

Plessimeters, zur instrumentellen durch Wintrich, den Entdecker des Percussionshammers.

Mehr noch als Auenbrügger durch die Entdeckung der Percussion hat Laennec durch jene der Auscultation geleistet, er hat fast den ganzen Schatz unserer positiven praktischen Erfahrungen hierüber zusammengetragen und klaren Blickes für viele der gefundenen Zeichen eine physikalische Begründung gegeben, gegen die selbst seine scharfsinnigsten Kritiker vergebens ankämpften. Er hat in dem kurzen zeitlichen Spielraume, den eine der von ihm beststudierten Brustkrankheiten seiner Thätigkeit liess, jene ungeahnte und vielgerühmte Sicherheit in der Erkenntniss der Brustkrankheiten uns geschaffen, die wir noch heute für so viele andere Krankeitsprovinzen vergebens erstreben.

Was Laennec für die praktische Erkenntniss, für die nosologische Deutung der Symptome gethan, das hat hinwieder Skoda, alle die seit Laennec geschrieben an Scharfsinn, Klarheit und Selbstständigkeit des Denkens weitaus überbietend, für deren physikalische Begründung geleistet. Er schuf das reichliche, praktische Material zu einem strenggegliederten, gesetzmässigen Baue um, und lehrte zuerst physikalische Zustände der Organe, nicht Krankheitsnamen aus physikalischen Zeichen erkennen. Wohl hat die nachfolgende Zeit so manchen seiner Lehrsätze erschüttert, in manchem einzelnen Punkte Laennec, den so hart von Skoda kritisirten Laennec in sein volles Recht wieder eingesetzt, die bessere, die richtige Methode aber verdanken wir ihm allein. Und was an seinem Riesenbaue durch die nachfolgenden Arbeiten von Wintrich, Traube, Hoppe, Wachsmuth, Schweigger, Seitz, Geigel u. A. gebessert oder geändert wurde, das bezieht sich auf die Zinnen und Ausläufer, aber nur zum kleinsten Theile auf die Grundsteine.

Die physikalische Diagnostik hat sich nunmehr eine bleibende und gesicherte Stellung erworben unter den medizinischen Disciplinen, sie hat den Reiz des Neuen, des Besonderen verloren, aber sie hat nicht aufgehört, die wichtigste Methode zu sein, welche uns ebenso sichere, untrügliche und genaue Krankheitszeichen liefert, wie sie der Chirurgie für die äusseren Gebrechen zu Gebote stehen, Zeichen, die nicht auf dem Wechsel der Stimmungen und Launen der Menschen beruhen, nicht abhängen von dem Bestreben zu täuschen oder zu verschweigen, sondern die einzig und allein beruhen auf unabänderlichen Naturgesetzen. Es

ist ein anderes, diese Zeichen aufzunehmen und sie zu deuten. Wir müssen das letztere stets auf dem Wege anstreben, dass wir zunächst physikalische Zustände der Organe, aus diesen erst und aus ihren Combinationen und Aufeinanderfolgen pathologische Prozesse erschliessen. Diese Untersuchungsweise ist freilich Nichts neues und ausserordentliches mehr, das nur Wenigen, die so glücklich waren, in Paris oder Wien damit vertraut zu werden, angehört, sie ist Gemeingut, ja Bedürfniss jedes Arztes geworden.

An der neuen Strasse, die für die Bahn ärztlicher Erkenntniss durch diese Disciplinen eröffnet wurde, reiht sich schon manch neueres Gebäude an den Giebel dieses ältesten an. Sie bilden eine übereinstimmende Reihe, deren Glieder gegenseitig ihren Werth erhöhen und sich ergänzen. Zeitlich zunächst gelangte die Thermometrie, die Bestimmung der Körperwärme, zu allgemeiner Aufnahme. Ihr enormer Werth zur Erkennung des gesetzmässigen Ablaufes fieberhafter Allgemeinkrankheiten, wie localer Entzündungen, ist tausendfach geprüft und fest in Gesetze gefasst worden, die von der wunderbaren Erscheinung der constanten Temperatur aller gesunden Menschen ausgehen. Man hat auch begonnen, das physikalische Experiment, die chemische Einwirkung auf diese constante Normaltemperatur des Menschen, der Säugethiere einwirken zu lassen und so die nächsten Bedingungen einzelner weniger Temperaturschwankungen erkannt. Aber alles, was darüber vorliegt, ist eine Summe von Erfahrungen, die sich gruppiren und ordnen, aber noch lange nicht auf physikalische und chemische Grundgesetze zurückführen lassen. Die Arbeiten von Liebermeister, von Weikart, Billroth, Weber, Senator haben in den letzten Jahren mehr als einen Lichtstrahl der Erkenntniss in dies dunkle, aber vielfach wohlgeordnete Gewölbe geworfen, eine Uebersicht des Ganzen kann nicht eher erreicht werden, als bis die äusserst complexen Bedingungen der normalen Körperwärme, wie ihrer Schwankungen bei Kranken alle klar erkannt werden. Schon jetzt ist durch die Temperaturbeobachtung jener streng localisirenden Richtung, die hereinzubrechen drohte, ein Damm gesetzt, der Werth vieler akustischen Zeichen weit überboten, die Erkenntniss und noch häufiger die ganze Beurtheilung, die Prognostik vieler Brustkrankheiten erleichtert, verbessert und vervollständigt worden.

Keine der jüngeren Schwestern der Auscultation und Percussion hat mehr dazu beigetragen, diese auf ein rechtes Maass zurückzuführen, als diese. Hüten wir uns nur, über den neuen Reizen dieser jüngeren Schwester die Vorzüge der älteren zu verkennen.

Sehr rasch hat sich die Alleinherrschaft auf ihrem Gebiete, freilich einem kleinen Gebiete, die Larvngoscopie erworben. Sie hat dies leicht vermocht, da sie bereits bei ihren ersten Schritten ins ärztliche Leben ausser der diagnostischen Befähigung die Macht der therapeutischen Leistung mit sich brachte. Für die Respirationskrankheiten hat sie sich als genau ausfüllende Ergänzung gerade da bewährt, wo eine unzugängliche Lücke für die Diagnostik vorlag. Sie besteht in der Anwendung eines einfachen Principes der Optik auf eine beschränkte Localität, und alles, was sich über die Methode selbst sagen lässt, kann nur die Form, Anpassung und Beleuchtung des Spiegels zum Gegenstande haben. Eine andere Frage ist, wie weit sich noch die Endoscopie (Desormeaux) Bahnen in die Höhlen des Körpers brechen, in wieweit die Durchleuchtung der Organe, welche bei einzelnen chirurgischen Fragen benützt und auch bei der Laryngoscopie verwendet werden kann, noch nach innen zu dringen vermag, wenn sie Hülfsmittel, wie z. B. die Rumkorff'schen Röhren, herbeizieht. Rectum und Blase sind ihr bereits völlig zugängig geworden. Oesophagus und Magen, sind wenigstens in Angriff genommen.

Die Akidopeirastik Middeldorpf's, die Untersuchung der Härte, Consistenz und Cohärenz tiefergelegener Theile mittelst eingestochener Nadeln, liefert zur Beantwortung schwieriger diagnostischer Fragen oft entscheidende Aufschlüsse. Allein man wird stets zögern, die diagnostische Nadel in die Tiefe lebenswichtiger Organe zu senken und sie wird ebensowenig, wie eine bei den Kranken beliebte, je eine in der täglichen Praxis geläufige oder nothwendige Methode werden.

Dagegen sind auch die Nervenkrankheiten, der seitherigen physikalischen Diagnostik sogut wie verschlossen, durch die glückliche Uebertragung der Weber'schen Untersuchungsmethode des Tastsinnes, durch die Ausbildung verwandter Methoden zur Messung der Sinneswahrnehmung, vorzüglich aber dadurch, dass Duchenne, Remak, Ziemssen, Benedict, Erb u. A. von der anfangs blinden, diagnosenarmen Electrotherapie das Hülfsmittel entlehnten, um auch auf diesem reichen Gebiete, dem Lieblingsgebiete medizinischer Träumereien und Charlatanerieen, scharfe

Localdiagnosen zu etabliren. Besonders scharf hat Benedict die Bedeutung der electrischen Untersuchung als Methode für die Erkennung des Sitzes der Nervenkrankheiten hervorgehoben.

Rechnen wir hiezu noch, was die microscopische Untersuchung der Se- und Excrete, krankhafter Producte, die die Oberfläche des Körpers liefert, oder die der Tiefe desselben durch chirurgische Akte entrissen wurden, ergiebt, so überblicken wir die Summe desjenigen Materials, das wir heutzutage zu liefern vermöchten zur Verwirklichung der Idee, die einst Corvisart als entferntes Ziel seines Strebens vorschwebte, Morgagni's Werke ein anderes folgen zu lassen mit der Aufschrift: De sedibus et causis morborum per signa diagnostica investigatis et per anatomen confirmatis.

Die Stellung dieser Methoden zu einander ist klar. greift ergänzend in die Grenzen der anderen ein. Der Arzt wird die eine, der zweite eine andere mit Vorliebe benützen oder als Spezialist betreiben, aber nur der Arzt, der alle beherrscht, wird ein spezielles Fach mit vollem Erfolge betreiben können. Was speziell die Auscultation und Percussion betrifft, so bedarf sie aller physikalischen Methoden, auch wo es sich um die Unterscheidung der Krankheiten handelt, die anatomisch die geringste Aehnlichkeit mit einander haben. Aber sie liefert weit einfacher zu eruirende und weit mannichfachere Zeichen, als die meisten dieser Methoden, z. B. die Thermometrie, die so oft die Resultate der Auscultation und Percussion vervollständigen, ihre Deutung corrigiren muss, freilich ihre Anwendung nie überflüssig machen kann. Den Studierenden, der aus den anatomischen und physiologischen Hörsälen in die Klinik hinüberwandert, wird sie stets durch die Klarheit ihrer Resultate in freudige Spannung versetzen, dem beschäftigten Praktiker wird es sich immer wieder aufdrängen, wie gerade diese Untersuchungsweise unermüdlich nach richtiger Methode geübt sein will. Alle Untersuchungsmethoden müssen geübt werden, müssen dem Arzte geläufig sein, aber keine verlangt fleissigere Uebung, erweist sich aber auch dankbarer durch die vielseitigen Aufschlüsse, die sie auf fast allen Gebieten liefert, als diese. Aber nicht allein die Praktiker bedürfen ihrer, die Auscultation und Percussion selbst bedarf auch noch der praktischen Ausbildung ebenso wie der theoretischen Forschung; der praktischen Ausbildung, insoferne die Zwecke, zu welchen sie ferner benützt werden kann, noch beständig sich vervielfachen und durch Beibringung von Thatsachen

erreichbar gemacht werden müssen, noch weit mehr aber der theoretischen Forschung. Denn ihrer physikalischen Begründung fehlen noch an zu vielen Stellen die elementaren Fundamente, die Zurückbeziehungen auf die einfachsten Gesetze der Physik. Hier fehlen dann theilweise den Aerzten Angaben der Physiker in der Form, in der sie gerade ihnen mundgerecht sein würden, theilweise widerstreben die complexen Bedingungen, aus welchen die betreffenden acustischen Symptome hervorgehen, auch in der Hand der geübten Physiker einer experimentellen Nachahmung oder Zerlegung in einfachere Gruppen, aus welchen sie wieder zusammengestellt werden könnten. Wohl werden auch von der Physik noch manche Vorarbeiten auf ihrem eigenen Gebiete gefordert werden müssen, ehe sie alle von hier aus zu stellende Fragen einfach wird beantworten können. - Der Bau wird erst vollendet, erhält erst die Krone, die wissenschaftliche Weihe, wenn alle diese Ergebnisse der ärztlichen Beobachtung anstatt auf bekannte physikalische Thatsachen, auf die Grundgesetze der Lehre vom Schalle zurückgeführt sein werden.

A. Inspection.

Man hat oft gestaunt über die Erfahrung alter Praktiker, die ohne einen Kranken zu berühren, eine Krankheit erkannten, die ein Jüngerer nach Application einer Anzahl von Instrumenten, nach öfterem Betasten, Behorchen, Beklopfen des Kranken übersah oder verkannte. Das sind die Männer, die das Leiden der Kranken »in ihren Augen lesen«, die aus der Hautfarbe auf den Zustand der Herzklappen, aus den Gesichtsfalten auf ein Magencarcinom, aus der Physiognomie auf eine Gehirnkrankheit schliessen. Ihr Thun ist nicht so wunderbar, als es oft scheint, es ist nicht regellos, nicht gesetzlos, nicht auf individuelle Fähigkeiten gegründet. Ihr Erfolg beruht auf einer sicheren Schätzung der allgemeinen Folgen krankhafter Prozesse für das Wachsthum, die Ernährung, die Circulation, die Muskelinnervation des ganzen Körpers oder grösserer Abschnitte desselben und auf der raschen Auffassung einer Anzahl kleiner durch ganz örtliche Processe der Körperoberfläche aufgeprägter Krankheitszeichen, die wie Marken im Spiel ihren bestimmten Werth besitzen. Zu den ersteren gehören die Grösse, der Umfang des Körpers und seiner einzelnen Theile, die Hautfärbung, Glätte, Dicke, Faltung etc. der Haut,

die Physiognomie, der Gang der Kranken, die Stärke der Muskulatur, der Kochenbau und Unzähliges andere. Zu den Marken der zweiten Art liefert die ganze Pathologie ihre Beiträge. Der eine trägt einen Psoriasis-Fleck an der Hohlhand, der andere weisse Flecken an der Hornhaut und Narben am Halse, der dritte zeigt einige Herpes-Bläschen an der Oberlippe, der vierte eine pulsirende Jugularvene, wieder einer Variola-Narben. Alles das will gekannt, beobachtet und verwerthet sein, nur können wir nicht der Inspection zu liebe die ganze spezielle Pathologie hier durchmustern, sondern müssen uns auf das beschränken, was in andern Abschnitten derselben nicht speziell beschrieben, zu der Erkenntniss der Brust- und Unterleibskrankheiten in naher Beziehung steht. Dieselbe hohe Bedeutung, die der erfahrenen und sorgfältigen Betrachtung der Kranken im Allgemeinen beigemessen werden muss, kommt auch speciell der Inspection für die Erkenntniss dieser Krankheiten zu. Sie liefert dafür weit mehr Kennzeichen, als man gemeinhin ahnt, sie liefert häufig die entscheidenden und wichtigsten Zeichen, immerhin aber werden gerade ihr diejenigen Befunde entnommen, welche dem ganzen weiteren Gange der Untersuchung eine bestimmte Richtung geben. Desshalb ist stets, und man wird dadurch bedeutende Umwege vermeiden können, die Aufnahme der physikalischen Zeichen mit der Inspection zu eröffnen.

I. Hautfärbung.

Man beachtet zunächst die Hautfarbe der Kranken. Wo diese entschieden vom Normalen abweicht, findet man sie blass, roth, blau, gelb oder gelbbraun, oder anderweitig pigmentirt. Den Verschiedenheiten des Teint's, den Raceneigenheiten, den Einflüssen des Alters, des Climas, der Lebensweise gegenüber lässt sich keine spezielle Farbennüance als normal bezeichnen, sondern man muss wo möglich von dem Aussehen, das Jemand zuletzt in gesunden Tagen geboten hatte, beim Vergleiche ausgehen.

Blässe des Colorits entsteht vorübergehend durch Ohnmacht, Schreck, Schmerz, Fieberfrost, Kälte und eine Reihe von Vorgängen, welche auf dem Wege des nervösen Einflusses, nämlich der Herzlähmung oder des Arterienkrampfes, Anämie der Hautcapillaren bewirken, sie entsteht dauernd durch Blutverluste, Säfteverluste oder tiefgehende Ernährungsstörungen. Je tiefer eingreifend solche Ernährungsstörungen, desto mehr verknüpft sich mit der Anämie der Haut Atrophie des Unterhautfettgewebes, daher

Faltung der Haut und Abschuppung ihrer Epidermis, Atrophie der Cutis selbst, daher starkes Durchscheinen der Hautvenen. Gerade in diesen Fällen von Blutarmuth und raschem Schwunde der Gewebe erlangt die Haut leicht ein fahles, ins Gelbliche oder Graue gehendes Aussehen, während die Conjunctiva bläulich zu schimmern beginnt. - Verarmung des Blutes an plastischen Bestandtheilen kann zugleich Blässe der Haut und hydropische Beschaffenheit derselben veranlassen, Hydrops selbst kann, die Arterien derselben comprimirend und von ihrem Verlaufe ablenkend, die Haut blass machen; in diesen beiden Fällen ist die blasse Haut zugleich gespannt, glatt und von einem wachsartig durchscheinenden Aussehen. - Auch die Schleimhäute nehmen an der Blässe der Haut Antheil bis zum völligen Entfärbtwerden derselben; sie sind wie diese zum Erkalten geneigt, häufig in ihren Secretionsverhältnissen geändert, wie denn auch die Haut trocken und fast nie schwitzend getroffen zu werden pflegt. - In Folge von Arterienverstopfung, oder Compression, oder Hochlagerung eines Theiles kann local Blässe, in Folge von Venenverstopfung, Tieflagerung oder Compression durch Binden kann local Wassersucht eines Theiles hervorgerufen oder begünstigt werden, und diese kann ihres Theiles die sonst mit diesem Zustande verbundene Cyanose durch Druck zum Erblassen bringen.

Röthe der Haut entsteht durch neuroparalytische Arterienerweiterung vorübergehend in Folge von Aufregung, Zorn, Schamgefühl, Beunruhigung; manche sonst blasse Kranke bieten ein solches täuschendes Aussehen bei jeder ärztlichen Untersuchung, dabei sind die Extremitäten heiss, verschiedene Stellen zu Schweissen geneigt, am meisten Gesicht und Extremitäten, die Herzschläge beschleunigt, die Carotiden stark pulsirend. Alle stärkeren Muskelanstrengungen, alle erhitzenden Momente, besonders Spirituosen, können einen ähnlichen Erfolg haben, nicht minder verbreitet wirkende Hautreize, wie Insolation oder das heisse Bad. Alle Krankheiten mit Steigerung der Körpertemperatur können unter sonst günstigen Umständen eine solche gleichmässig erhöhte, nur an den Wangen, den Lippen, dem Ohr und einigen andern Theilen stärker hervortretende Röthe veranlassen durch gesteigerte Zahl und Energie der Herzcontractionen und durch Relaxation der Gefässwandungen. Das Hitzestadium jedes Fieberanfalles, der Beginn jeder acuten Erkrankung geben Beispiele dafür ab. Nicht selten mischen sich andere Tinten bei, ein leicht gelblicher Schimmer bei

Pneumonischen, ein düsteres ins Blaue gehendes Roth bei Arthritikern, Emphysematikern, Herzkranken und allen jenen, die an peripherer Venenerweiterung leiden. Tritt zu diesen Zuständen eine Verlangsamung des Blutstromes in den peripheren Gefässen hinzu, so genügt oft ein leichterer Druck als zuver, um umschriebene Hautparthieen noch auffallender als die übrigen zu röthen. Daher die auffällige Röthe einer Wange bei Typhösen und Pneumonischen, die rothen Flecke bei Druck auf die Haut von Meningitiskranken, die aber beide bei vielen andern Krankheiten gleichfalls getroffen werden.

Blaue Färbung der Haut, Cyanose, ist jederzeit Folge von Blutanhäufung in den Körpervenen, nie von Gehalt der Arterien an venösem Blute, sie entsteht in Folge von schweren Respirationsbehinderungen, Verschluss der oberen Luftwege, Verstopfung zahlreicher Bronchien mit Schleim, Lähmung der Respirationsmuskeln, Asphyxie, indem das Blut mit Kohlensäure überladen und dadurch das Herz gelähmt wird. Indem nun der rechte Ventrikel und Vorhof kein Blut weiter befördert, muss dessen Anhäufung in den Körpervenen stattfinden. In diesen Fällen ist die Cyanose hochgradig, kurzdauernd, das Leben nahe bedrohend. Sie entsteht ferner vorübergehend bei jedem tüchtigen Hustenanfalle, dauernd bei Verengerung der Lungenarterie selbst, Verstopfung, Compression, Verödung einer grossen Zahl von deren Aesten oder eines grossen Gebietes von deren Capillarbahn, ferner bei allen mechanischen Behinderungen der Herzcontraction: Pericardialexsudat, Herzmuskeldegeneration, bei allen Klappenfehlern mit Rückstauung, sei es, dass diese vom linken oder rechten Ventrikel ausgeht, den die Vorhofsklappe unvollständig schliesst, oder von einem der Vorhöfe, dem das verengte Ostium nur unvollständige Entleerung in den Ventrikel gestattet; in der Regel aber auch in einem späten Zeitraume der anfangs nicht zur Regurgitation führenden Aortenklappenfehler. Locale Cyanose kann durch Verschluss, Compression oder sonstige Verengerung einer Hauptvene erzeugt werden, vorzüglich für die obere oder untere Körperhälfte durch Verschluss der Vena cava descendens oder adscendens, für die Extremitäten durch Verschluss einer Subclavia oder Femoralis und einer Anzahl Hautvenen.

Die cyanotische Färbung der Haut kann von dem dunkelsten Schwarzblau, von einem wirklich mohrenähnlichen Colorite bis zu einem ganz leichten, kaum bemerkbaren bläulichen Schimmer

wechseln. In den ausgesprocheneren Fällen sind zugleich die Schleimhäute blauroth bis schwarzroth gefärbt, selbst die Conjunctiva zeigt im Ganzen einen Stich in's Blaurothe, während sie bei genauerer Betrachtung eine Menge erweiterter Gefässe als Ursache dieser Färbung erkennen lässt. An den Lippen und der äusseren Haut lässt sich stets durch Fingerdruck völlige Blässe auf einen Moment herstellen, was bei der Argyrose, Silbergraufärbung der Haut, natürlich nicht gelingt. Insoferne solche Kranke oft täuschend das Bild der Cyanose beim ersten Anblicke zu bieten scheinen, ist dieses Merkmal wichtig. Man findet bei Cyanotischen die Halsvenen und die Hautvenen der Hand und des Vorderarmes in Folge ihrer stärkeren Füllung deutlicher als sonst sichtbar, die ersteren mit jeder Respiration, oft auch mit jeder Herzaction an- und abschwellend. Die Haut fühlt sich im Ganzen kühl an, an Händen, Füssen, Nase und Stirne oft völlig kalt. Bei längerer Dauer werden die feinen venösen Gefässe der Wange, der Nase, der Lippen, des Rachens gleichmässig oder sackartig erweitert, und bilden ein feines Netz blaurother, gewundener, hie und da punktförmig verdickter Linien. Die grossen Hautvenen der Unterschenkel, die Mastdarmvenen werden seltener in Folge allgemeiner als localer Circulations-Hindernisse in sackartige Erweiterung versetzt. Zu intensiver, andauernder Cyanose tritt meist Oedem hinzu, bei stärkerer Spannung ihres Inhaltes resorbiren die Venen weniger, scheiden selbst Serum ab.

Während die Haut in Folge der Cyanose kaum erhebliche Structurveränderungen erleidet, und auch die Oedeme derselben nur für die Locomotion hinderlich werden, gestalten sich die Folgen allgemeiner Cyanose sehr bedenklich für viele innere Organe. Die Cyanose der serösen Häute führt zu Ergüssen in deren Höhlen, die Raum und Bewegung wichtiger Organe beeinträchtigen; an den Schleimhäuten liefert sie den Boden, auf dem Catarrhe leicht gedeihen und fest wurzeln, und das Material zu jenen acutesten Exsudationen, die als Lungen- und Glottisödem so verderblich werden. Die blutüberfüllten Lebervenen vergrössern das Organ, comprimiren seine Gallenwege und bringen schliesslich sein Parenchym zur Atrophie. Die Nieren werden durch dauernden Druck ihrer Venen atrophirt, dagegen nimmt die Milz nur geringen Antheil an den Folgen der Cyanose, da ihre Venen erst durch die Pfortadercapillaren hindurch von der Rückstauung getroffen werden,

deren Wirkung sich theilweise an der Leber erschöpft. Für die Lunge ist Pigmentinduration die Folge.

Es ist eine auffallende, ebenso leicht zu bestätigende als schwer zu erklärende Wahrnehmung, dass manche angeborene und auch sonstige recht starke Cyanosen, die die kleinen Venen der Haut aufs äusserste ausdehnen, auf die grossen Venen fast gar keinen erweiternden, spannenden Einfluss ausüben. Gerade diese Kranken, z. B. mit Pulmonalstenose, verfallen auch weniger leicht in Wassersucht und weisen eine geringere Benachtheiligung ihrer inneren Organe auf.

Die häufigste gelbe Pigmentirung erhält die Haut, abgesehen von dem manchen Individuen und Stämmen eigenen Pigmentreichthume derselben durch Pigmentirung in Folge von Sonneneinwirkung. Die gegen letztere durch die Kleidung geschützten Theile contrastiren dann durch ihre normale Farbe, und die Conjunctiva bulbi zeigt ihr unverändertes Weiss. Wird Gallenfarbstoff in das Blut aufgenommen und von diesem in die Haut geführt, so gewinnt sie eine ganz blassgelbe, strohgelbe bis dunkelgrün- oder dunkelbraungelbe, olivengrüne Farbe, die Conjunctiva nimmt vollständig Theil an der Gelbfärbung der Haut, die Lippen erscheinen an einer durch Fingerdruck ihres Roths beraubten Stelle gleichfalls gelb, der weiche Gaumen bei weit geöffnetem Munde durch Spannung blass werdend, lässt gleichfalls schon das Gelb hervortreten (de Longon), der Harn enthält Gallenfarbstoff, und wo dieser durch Verschluss der Gallenwege zur Resorption kam, sind die Stühle entfärbt, der Puls wird langsam 1), die Ernährung leidet. Der Harn zeigt mit Essigsäure oder Jodtinctur grüne Färbung, mit rauchender Salpetersäure einen Wechsel von grün, violett, roth und gelben Oxydations-Produkten des Gallenfarbstoffes (Gmelin).

Während die meisten und immer mehr Formen des Icterus als hepatogene, durch Resorption in der Leber ausgeschiedener Gallenstoffe entstandene nachgewiesen werden können, möchte ich doch das Vorkommen hämatogener Entstehung entschieden aufrecht erhalten. Die Identität von Haematoidin und Bilifulvin ist chemisch erwiesen, auch die Praxis liefert Beweise. So sah ich

¹⁾ Selbst in Fällen, wo vor dem Eintritte des Icterus Digitalis wirkungslos war. — Die gallensauren Salze wirken direkt auf die Herzganglien (A. Röhrig) und auf den Herzmuskel (Traube) lähmend.

bei acuter Fettentartung in der Leber, des Herzens und der Niere zwölf Stunden, nachdem reichliches, zuletzt rein galliges Erbrechen stattfand, intensiven Icterus auftreten. Dies stimmt nicht mit der bekannten Thatsache, dass vom Verschlusse des Ductus choledochus drei Tage bis zur Entstehung gelber Hautfärbung verfliessen. Wenige Stunden darauf machte der Icterus stark rother Färbung der Haut Platz, bei der Section waren alle Organe stark mit Blutroth durchtränkt. Man wird ihn dann sicher annehmen dürfen, wenn weder der Stuhl entfärbt ist, noch auch der Harn nach der Pettenkoffen, Gallensäuren enthält.

Die grösste Aehnlichkeit mit Gelbsucht hat die Färbung der Gewebe des Körpers nach dem Einnehmen von Kali picronitricum. Die Farbe der Haut geht etwas mehr ins Braune, ist nicht so lebhaft gelb, der Harn giebt keine Reaction auf Gallenfarbstoff; dieser Pikrinicterus kann zu den seltsamsten Täuschungen Veranlassung geben. Auch auf die Untersuchung des Harnes hin könnte man einen Simulanten, der zu diesem Mittel seine Zuflucht genommen hätte, nicht mit Sicherheit beschuldigen, da hie und da auch beim gewöhnlichen Icterus die Gallenfarbstoffreaction des Harnes fehlt. —

Bei Zerstörung der Nebennieren durch Neubildung wurde von Addison und vielen Anderen Broncefarbe der Haut beobachtet, ein düsteres Graubraungelb, das sich an den dem Lichte ausgesetzten Stellen zuerst entwickelt, später oft an den Genitalien, den Achselhöhlen, der Brustwarzengegend am ausgesprochensten ist. Oft finden sich an der Mundhöhle oder am Körper zerstreut einzelne schwarze Flecken, die Conjunctiva ist stets weiss; Anämie und Abmagerung geht damit einher. Der Urin enthält Spuren von Taurocholsäre und fettsaure Salze. Beginnende Fälle können leicht mit einfacher Bräunung der Haut durch die Sonne verwechselt werden.

Von sonstigen Pigmentirungen der Haut sind vorzugsweise die Silberverfärbung derselben und die Kupferverfärbung zu erwähnen. Die erste ensteht bisweilen nach verschieden grossen Dosen Silbersalpeter und bietet im Beginne ein ganz blassgraues Aussehen, als ob die Haut mit Bleistift leise überfahren wäre; die Verbreitung derselben über die Körperoberfläche ist eine ziemlich gleichmässige, doch die Farbe meist an Gesicht und Händen etwas mehr hervortretend. Bei fortdauernder Silberaufnahme wandelt sich die Farbe der Haut in dunkelblaugrau, später in schwarzgrau um, bei diesen höheren Graden färbt sich zugleich die Conjunctiva blaugrau, und

an der Schleimhaut der Lippen, des Mundes bilden sich inmitten der ohnehin ins Graue stechenden Fläche diffusse, dunklere, blaugraue Flecken. Die Silberfärbung der Haut weicht dem Fingerdrucke nicht im mindesten, wenn auch die Haut an sich durch den Fingerdruck blasser wird.

Die constitutionelle Kupferintoxikation kommt überhaupt selten vor, und erreicht noch weit seltener einen solchen Grad, dass sie der Haut des Gesichtes ein gelbgrünliches Aussehen verleiht. Dabei sollen dunkelblaue Flecken an einzelnen Stellen der Mundschleimhaut, ein grauer Saum an der Basis der Zähne beobachtet werden. Oft sieht man bei sonst gesunden Kupferarbeitern einen grasgrünen Saum längs der Basis der Schneidezähne.

Unter den Combinationen, welche diese Colorite eingehen, heben wir zwei hervor, als von diagnostischer Bedeutung: die Vermengung von Icterus und Cyanose mit Ueberwiegen der letzteren bei den zahlreichen Kranken, die wie an Ueberfüllung der übrigen Körpervenen, so auch an stärkerer Ausdehnung der Lebervenen leiden und zwar in dem Maasse, dass die Gallengänge gedrückt werden und die Gallenbewegung in demselben eine Behinderung erleidet. Herzkranke vor allem, aber auch Emphysematiker, an chronischer Pneumonie Erkrankte bieten dieses Colorit. Ihre Cyanose ist intensiv und verleiht ohnehin der Haut und selbst der Conjunctiva einen Stich ins Schmutzigblaue, der durch das Hinzutreten des Gelben ins Braune hinüberspielt. Fast stets ist Oedem der untern Körperhälfte zugleich vorhanden. Druck auf die Haut lässt die gelbe Farbe derselben, wenn das Blut aus den Gefässen verdrängt ist, erkennen; die Leber ist angeschwollen, hart, glatt, der Harn gallenfarbstoffhältig, in der Regel lässt aber schon ein einfacher Blick auf die Conjunctiva deren icterische Färbung bestimmt erkennen. Es ist eigenthümlich, wie die intensivsten Formen der Cyanose Jahrzehnte lang bestehen können, ohne eine so intensive Form der Muskatnussleber (venösen Leberhyperämie) zu bewirken, dass Gelbsucht daraus resultirte, so bei der angeborenen Pulmonalstenose, während Letztere bei Mitral- und Tricuspidalfehlern selten lange auf sich warten lässt. - Die andere Combination, die zu erwähnen war, ist die von Blässe und Bläue der Haut, auch als Livor öfter bezeichnet. Sie findet sich bei plötzlicher Ohnmacht Cyanotischer, bei manchen Zuständen von Herzschwäche, bei Suffocationszuständen Anämischer und Chlorotischer, bei Krankheiten, die Anhäufung des Blutes in den Körpervenen und gleichzeitig Aspiration desselben nach den grossen intrathoracischen venösen Räumen bedingen: so löst sich z. B. die alte Frage, ob die Croupkranken blass oder blau aussehen, in sehr einfacher Weise, sie sind eben beides zugleich. Alles Roth ist dabei aus der Farbe der Haut geschwunden, ein düsterer blaugrauer Schimmer lagert auf derselben, eine wahre Bleifarbe; an den Wangen, Lippen und der Infraorbitalgegend ist dieselbe stärker ausgesprochen, auch an den Nagelgliedern tritt sie hervor.

II. Formen des Brustkorbs.

Unsymmetrisch bei genauer Messung, dem sorgsam prüfenden Blicke aber ein vollendetes Bild des Ebenmaasses bietend, an einem starken Strebepfeiler aufgebaut, der mindestens vier Krümmungen zeigt, jeden Augenblick seine Form wechselnd, aber bestimmten Gesetzen im Wechsel folgend, und durch ihn das Bild der innern Lebensvorgänge sichtbar ausprägend, bildet das Aeussere des Brustkorbes reichen Stoff der Beobachtung. - Sein knöchernes Gerüste besitzt die Form eines von vorn nach hinten abgeplatteten, mit der abgestumpften Spitze nach oben gekehrten Kegels; durch das Hinzutreten des Gürtels der oberen Extremität und seiner Muskulatur entsteht eine ebenso abgeplattete, mehr nach unten sich verjüngende Kegelgestalt. Die Länge seiner vorderen, hinteren und Seitenwand verhält sich wie 5:11:12", sein grösster Umfang fällt in die Mitte seiner Höhe und beträgt im Mittel 25" (Hyrtl). Von diesem Umfange kommt in allen Höhen bei Rechtshändigen etwas mehr auf die rechte als die linke Seite (1-21/2 Ctm.), er erscheint aber dem Auge beiderseits gleich. Bei Linkshändigen ist er beiderseits gleich oder links um ein Geringes grösser als rechts: er erscheint aber dem Auge in beiden Fällen links etwas grösser als rechts. - Man betrachtet den entblössten und gleichmässig in Muskelruhe gehaltenen und gleichmässig beleuchteten Brustkorb von vorne und von der Rückseite, um seine Länge und seine Breite (Costaldurchmesser) von seitlich und oben, um seine Tiefe (Sternovertebral-Durchmesser) zu erfahren. Der Costaldurchmesser beträgt nach Wintrich bei gesunden jungen Männern oben 25,8, mitten 26,1, unten 25,8 Ctm., der Sternovertebral-Durchmesser 16,5, 19,2, 19,2. - Bei dieser Betrachtung wird man zugleich erfahren, ob der Brustkorb regelmässig gebaut sei oder nicht. Auch bei Gesunden finden sich eine Reihe von Formabweichungen, welche von Woillez unter dem Namen der physiologischen Heteromorphieen zusammengefasst wurden. Dahin gehören: Vorspringen, Eingedrücktsein einzelner Theile oder seitliches Abweichen des Verlaufes des Brustbeines, besonders Vorspringen der Verbindungsstelle zwischen Manubrium und Corpus sterni in Form eines kleinen Querwulstes, dann in Folge von Arbeit mit vorne übergebeugtem Oberkörper, in Folge des Anstemmens von Instrumenten bei manchen Gewerbsleuten Eingedrücktsein des untersten Theiles des Brustbeines in Form einer Grube, ferner gleichmässiges Vorspringen beider Brusthälften vorne über die Ebene, in der das Brustbein liegt, Vorstehen einzelner Rippenknorpelpaare, umschriebene Depressionen oder Vorwölbungen einzelner Stellen der Brustwand, Stand der Brustwarzen in ungleicher Höhe. - Bei jener Minderzahl von gesunden Leuten (ein Fünftel nach Woillez), bei welchen diese Unregelmässigkeiten des Brustbaues nicht getroffen werden, erscheinen beide Brusthälften aufs vollständigste symmetrisch gebaut, die Seitenflächen gleichmässig abfallend, die einzelnen Durchmesser etwa in den oben angegebenen Verhältnissen entwickelt.

Unter den einzelnen Theilen, welche den Brustkorb zusammensetzen, ist am wichtigsten die Wirbelsäule, indem sie ihrerseits bei allen aus ihren Erkrankungen hervorgehenden Form- und Richtungsabweichungen auch die ganze Brustform ändern muss, und auch an den meisten anderweitig bedingten Gestaltveränderungen des Brustkorbes Antheil nimmt. Es ist desshalb vortheilhaft, die auf die einzelnen Theile des Brustkorbes gerichtete Betrachtung desselben mit der Vornahme der Wirbelsäule zu beginnen. Sie bietet, bei Säuglingen noch gerade, beim Erwachsenen vier in der Median-Ebene des Körpers gelegene beträchtliche Krümmungen dar, von welchen diejenigen der Hals- und die der Lendenwirbelsäule nach vorne, die der Brustwirbelsäule und des Kreuzbeines nach rückwärts convex sind. In seitlicher Richtung findet sich normaler Weise nur eine schwächere Krümmung in der Gegend der oberen und mittleren Brustwirbel vor, die der vorzugsweise gebrauchten Hand, also gewöhnlich der rechten zugewendet ist. Es ist wichtig, den gewöhnlichen Grad dieser Ausbeugungen der Wirbelsäule zu kennen, indem Steigerungen derselben bedeutende Unregelmässigkeiten des übrigen Brustbaues erklären können, wie sich bei Berücksichtigung der Insertionen und der Verlaufsweise der Rippen leicht einsehen lässt. Einen verhältnissmässig geringen derartigen Einfluss haben die rein nach rückwärts mit

ihrer Convexität gerichteten Verbiegungen der Wirbelsäule, die Kyphosen. Sie kommen vorzüglich in zwei Formen vor: 1) jenseits des 59sten Lebensjahres bei schwachen Greisen in Folge von Involutionsvorgängen an den Wirbelkörpern und Schwund der der Wirbelsäule ihre Haltung verleihenden Muskeln, selten schon im dritten oder vierten Dezennium. Bei durch Ausschweifung oder Krankheit vorzeitig gealterten Individuen steigert sich die normale Krümmung der Brustwirbelsäule, besonders in deren oberen zwei Dritteln so weit, dass dadurch eine merkliche Verkürzung des Brustkorbes mit Vergrösserung seines Sternovertebral-Durchmessers entsteht: senile Kyphose; dabei kann zugleich die normal schwache, seitliche Biegung der Wirbelsäule sich etwas steigern, eine compensirende Lordose (Vorwärtskrümmung der Wirbelsäule) wird dabei nicht getroffen, daher der Kopf weit vor der Mittellinie des Körpers steht; 2) durch Vereiterung der Brustwirbelkörper erleidet die Wirbelsäule auf einen oder wenige Wirbel beschränkte winkelige, nach hinten vorspringende Knickungen, seltener zugleich nach hinten und seitwärts gerichtet, welche die Dimensionen des Brustkorbes in ähnlichem Sinne, aber in höherem Grade wie die vorige Form abändern, zudem sich oft mit compensirender Lordose der Lenden oder Halswirbel verbinden, und desshalb die Haltung des Kopfes in der Mittellinie des Körpers wiederherstellen: K y p h o s e durch Wirbelcaries, gewöhnlich mit Senkungsabscessen, Intercostalschmerz, Fieber und Compression des Rückenmarkes einhergehend.

Die durch den stärkeren Zug der zwischen Wirbelsäule und der mehr gebrauchten obern Extremität verlaufenden Muskeln entstehende geringe seitliche Ausbeugung der Wirbelsäule steigert sich in pathologischer Weise bei schwächlichen Individuen, welche längere Zeit und anhaltend eine obere Extremität allein und in solcher Weise gebrauchen, dass dadurch die gleichseitige Schulter höher gestellt und die entgegengesetzte Seitenfläche des Brustkorbes eingebogen, somit gerade das Convexwerden der Wirbelsäule nach der betreffenden Seite begünstigt wird. Sie führt zur Annäherung der Rippenränder auf derjenigen Seite, nach welcher zu die Wirbelsäule concav ist, zur Erweiterung der Intercostalräume auf der anderen. Eine im entgegengesetztem Sinne sich entwickelnde Krümmung an den untersten Brustwirbeln und Lendenwirbeln compensirt die erste Krümmung, welche hauptsächlich die oberen zwei

Drittheile der Brustwirbelsäule betrifft, und bildet mit ihr zusammen ein langgestrecktes S, oder es entwickeln sich zwei solche der ursprünglichen entgegengesetzte, compensirende Krümmungen an der Hals- und Lendenwirbelsäule. Das Sternum betheiligt sich an der aus dieser habituellen Scoliose hervorgehenden Verunstaltung des Bruskorbes in der Weise, dass es nach Art eines Pendels mit dem obersten Theile nicht, mit dem Processus xiphoideus am meisten sich nach der convexen Seite des Bogens der Wirbelsäule hinüberbewegt. Oft ist zugleich die eine Seite vorne mehr, die andere hinten mehr und vorne weniger gewölbt. Die angeführten Ursachen machen es natürlich, dass in der Mehrzahl der Fälle die stärkste Krümmung nach rechts ihren Bogen kehrt, die hohe Schulter die rechte ist, und gleichzeitig die Herzgegend, verglichen mit der entsprechenden Stelle der rechten Brusthälfte, etwas vorsteht.

Eine zweite nicht minder häufige Ursache von Scoliosen bildet die Rachitis. Bis sie jedoch zu bedeutenderen Veränderungen an der Wirbelsäule gelangt, hat sie in der Regel schon zuvor andere Formveränderungen am Brustkorbe bewirkt; wir werden daher ihren Einfluss auf dessen Gestalt schrittweise verfolgen müssen. Zuerst werden die Chondrocostalverbindungen der Kinderbrust die der Rachitis verfällt verdickt, so dass sie divergirend von oben nach unten verlaufende Reihen flachkugeliger Vorragungen bilden (rachitischer Rosenkranz), die jedoch mit dem Ablaufe der Rachitis,

Fig. 1.

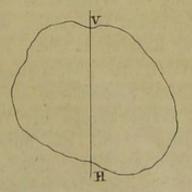


Fig. 1. Cyrtometercurve über die Brustwarze von einer erwachsenen Kyphoscolotischen mit rachitischerKrümmung derBrustwirbelsäule nach rechts convex. —

also spätestens mit dem siebenten Jahre sich ver-Sodann bildet lieren. sich eine vorübergehende Kyphose der Lendenwirbelsäule, die sich beim Aufheben des Kindes wieder ausgleicht; auch sie ist ohne Bedeutung, dann aber bilden sich zwischen Axillar - und Parasternallinie eine Reihe von Infractionen der Rippen, deren Veranlassung theils durch den Zug starker

Inspirationen, theils durch das Anfassen der Kinder unter den Armen gegeben wird. Diese Infractionen, im einzelnen wenig bemerkbar, üben doch im Grossen und Ganzen den wichtigen Einfluss aus, dass sie stets mit bleibender Difformität (Einwärtsbiegung der Rippe) heilend, dem Brustkorbe die Form der Hühnerbrust aufprägen, die denselben schon beim ersten Blicke als rachitischen charakterisirt, die Resultate der Auscultation und Percussion merklich ändert, und für den Kranken, wenn in höherem Grade entwickelt, schon an sich mit der Zeit eine Quelle bedeutender Beschwerden werden kann, es findet sich dabei das Sternum nach unten vorgewölbt, nebst den nächsten etwa 1" breiter Parthieen der Rippenknorpel kielförmig vorstehend (daher Pectus carinatum), jede Seitenfläche des Brustkorbes zwischen Achselhöhle, hinterer Axillarlinie und Parasternallinie anstatt convex flach oder concay, daher der Transversaldurchmesser verkleinert, der sternovertebrale oben wenig, unten bedeutend vergrössert. Zu dieser Veränderung tritt nun die Scoliose hinzu. Auch hier beginnt sie an den oberen und mittleren Rückenwirbeln, dem Zuge der stärkeren Muskulatur folgend nach rechts (oder bei linkshändigen nach links) convex; die compensatorischen Krümmungen an der Hals- und Lendenwirbelsäule treten hinzu, die rechte Schulter tritt in die Höhe, die Intercostalräume dieser Seite werden erweitert, die der andern verengt. Das Brustbein macht seine seitliche Pendelbewegung oder erleidet eine seitliche Knickung in gleichem Sinne, wie die Krümmung der Wirbelsäule erfolgte. So weit folgt alles denselben Regeln, wie bei der habituellen Scoliose, nur eben an einem schon difformen Brustkorbe; aber die rachitische Scoliose bleibt selten allein; sie combinirt sich mit Kyphose und bedeutenderer Torsion der Wirbelkörper. In Folge ersterer beugt sich die scoliotische Brustwirbelsäule zugleich nach rückwärts aus, während mit der secundären seitlichen Krümmung der Lendenwirbelsäule sich zugleich Lordose verbindet, durch die Kyphose wird der Brustkorb verkürzt, das Sternum noch mehr nach vorne getrieben. Die damit verbundene Torsion der Wirbelkörper bedingt Abflachung der einen und stärkere Wölbung, bisweilen selbst winkeliges Vorstehen der anderen hinteren Brusthälfte u. s. w. So entstehen jene zusammengesetzten Veränderungen, die man dem auffälligsten Symptome nach als Buckligsein bezeichnet, die jedoch stets zugleich auf die Athmungsfunktionen und die Cirkulation einen äusserst störenden, auf die akustischen Symptome einen verwirrenden Einfluss äussern. - Diesen ähnliche Missstaltungen des Brustkorbes entstehen bei Osteomalacischen; alle die symetrische Entwicklung des Beckens störenden Krankheiten können seitliche Abweichungen der Lenden- und dann in secundärer Weise auch der Brustwirbelsäule nach sich ziehen.

Kehren wir nun zurück zu der Besichtigung des gesunden Brustkorbes, und setzen wir diese an der vorderen Seite desselben fort, so sehen wir hier die Mittellinie ziemlich genau durch das Brustbein bezeichnet, das durchschnittlich bei Erwachsenen eine Länge von 16-20 Ctm. darbietet, in seiner Mitte am weitesten, an dem Manubrium und dem Proc. xiphoideus am wenigsten weit vorsteht, und von den beiderseits unter gleich grossen Winkeln sich inserirenden Rippenknorpeln und von den Schlüsselbeinen getragen wird. So nimmt es seine sowohl physiologisch, als auch bei Krankheiten einiger Veränderung fähige Lage ein. Die Verschiebung desselben bei der Beugung nach einer Seite bei der Seitenlage kann man leicht an sich selbst erfahren. Bei Schrumpfung einer Lunge, bei complicirten Missstaltungen des Brustkorbes treten leicht seitliche Lageabweichungen des unteren Sternaltheiles, auch winkelige Knickungen nach der Seite zu ein. Während der Processus xiphoideus bei Schustern und andern Handwerkern, die Instrumente gegenstemmen, leicht eingebogen wird, nimmt das Manubrium sterni nur an verbreiteter Verengerung des obersten Theiles der Brusthöhle Antheil. Es stellt sich dabei in mehr weniger vorspringendem Winkel gegen das Corpus sterni (Angulus Ludovici).

Die Schlüsselbeine verlaufen beiderseits fast horizontal nach aussen, mit ihrer inneren Hälfte noch die vordere Wand der Brusthöhle bildend, und werden nach oben von der beiderseits gleichmässig stark ausgehöhlten Supraclaviculargrube, nach unten von der fast ganz flachen Fossa infraclavicularis begrenzt. Da auch gerade über dem Ausschnitte das Manubrium seitlich durch die Sternalportion des Kopfnickers, nach hinten durch die Kehlkopf-Brustbeinmuskeln und die Trachea begrenzt eine (asymmetrische) Grube, die Fossa jugularis liegt, so finden sich zuoberst an der vorderen Brustfläche fünf solche Gruben, zu welchen bei sehr magern Individuen mit in Folge von Dyspnoe vorspringenden Halsmuskeln noch zwei weitere hinzutreten, die zwischen den beiden Köpfen des Sternocleidomastoideus gelegen sind. In jeder derselben können unter Umständen Pulsationen wahrgenommen werden.

Weiter abwärts bietet noch die Brustwarze, wenigstens

beim Kinde und beim Manne einen wichtigen Richtpunkt für die Betrachtung der Theile. Sie findet sich in der Höhe der fünften Rippe gelegen, jederseits 9—11 Ctm. von der Mitte des Brustbeines entfernt. Unter normalen Verhältnissen der Brustorgane kann ein etwas tieferer Stand derselben linkerseits, so wie daselbst eine etwa höchstens um ½ Ctm. geringere Distance derselben vom Sternum vorkommen. Beim Weibe ist sie durch die Brustdrüse verschieben, oder wegen Schlaffheit der umgebenden Gewebe verschiebbar, und desshalb als Richtpunkt nicht brauchbar, sondern durch die obigen Maassangaben zu ersetzen.

Einen weiteren, allerdings weniger zu den Brust- als zu den Unterleibsorganen seiner Conformation nach in Beziehung stehenden Anhaltspunkt für die Betrachtung der vorderen Thoraxfläche finden wir in dem Hypochondrium gegeben, dessen Grenze von dem Ansatze des Schwertfortsatzes bis zur zehnten Rippe, durch die sich aneinander anschliessenden Knorpel der siebenten bis zehnten Rippe gebildet wird. Auch hier ist hauptsächlich die Symmetrie der Theile zu prüfen, dann ob nicht eine Erweiterung der ganzen unteren Thoraxapertur oder Aufwärtskehrung des Rippenbogenrandes (bei Kyphotischen) stattgefunden habe. - Diese Reihen von Knorpelleisten, zu zwei von beiden Seiten her zusammenstrebenden Bogen verbunden, ragen um so stärker vor, je weiter das Brustbein von der Wirbelsäule entfernt und je eingesunkener der Unterleib ist. Andererseits können sie durch den Druck der Schnürbrust nach innen gedrängt oder durch den aufgetriebenen Unterleib noch überragt werden. Engel hat mit Recht auf die wechselnde Distance zwischen Rippenbogen und Darmbeinkamm, die beim paralytischen Thorax sehr reducirt werden kann, als ein diagnostisch wichtiges Zeichen aufmerksam gemacht. In der Höhe des Schwertfortsatzes findet sich meistens an der vorderen Thoraxfläche eine seichte Horizontalfurche, die dem normalen Stande des Zwerchfelles ziemlich entspricht, und wohl auch durch die Contractionen desselben im Laufe der Zeit entstanden ist (Harrison'sche Furche).

Am Rücken sind noch von besonderer Bedeutung die Schulterblätter, die in bekannter Form für gewöhnlich die zweite bis siebente oder dritte bis achte Rippe decken, jedoch der beträchtlichsten Verschiebungen fähig sind, je nachdem z. B. die Arme auf der Brust, über dem Kopfe oder auf dem Rücken gekreuzt werden. Man hat zu Percussionszwecken diese Stellungen der Arme zu methodisiren gesucht (Corson), indess ist damit

kein erheblicher Vortheil verbunden. Man kann durch solche Stellungen bei Gesunden den Interscapularraum breiter machen, wie er es bei Contracturen und Lähmungen gewisser Schultermuskeln wird. Innerhalb desselben kommen zu beiden Seiten der Wirbelsäule wichtige physikalische Erscheinungen seitens der Trachea, Bronchi und Bronchialdrüsen, so wie der Aorta und des Oesophagus zur Wahrnehmung, die wir in späteren Abschnitten besprechen werden.

Topographie. Um für Krankengeschichten oder Referate den Sitz einzelner pathologischer Erscheinungen zu bezeichnen, um, was wichtiger ist, sich selbst über denselben klar zu werden, bedarf man der Ortsbezeichnungen. Zu diesem Zwecke kann man durch Kreuz- und Querstriche die Brust in eine Reihe von benannten Regionen theilen, wie dies z. B. von Piorry und Anderen geschehen ist, allein die Organe, welchen die Namen jener Regionen entnommen sind, werden bei Krankheiten in andere Regionen verschoben, und am wirklich difformen Brustkorbe hört jede Möglichkeit der künstlichen Eintheilung auf. Es ist daher das System der natürlichen Grenzen hier möglichst zur Geltung zu bringen, und jede willkührliche Eintheitung als überflüssig und lästig zu vermeiden. Als allgemeinste Bezeichnungen für die Stelle, wo pathologische Zeichen wahrgenommen wurden, genügen bisweilen Angaben, wie: »rechts, vorn, oben; hinten links in der Mitte«, in der Regel jedoch bedarf es näherer Bestimmungen. Diese beziehen sich auf die Höhe und die Breite, welche zu bezeichnen ist.

Die Höhe wird für die meisten Stellen nach der betreffenden Rippe oder dem nächsten Intercostalraume bestimmbar sein. An anderen Stellen giebt die Berücksichtigung der Supra- und Infraclaviculargrube, der drei Stücke des Sternums, der Fossa supra- und infraspinata, des unteren Schulterblattwinkels, eines Wirbels den Grund zur Bezeichnung ab, wobei zu berücksichtigen ist, dass das Schulterblatt bei auf der Brust gekreuzten Armen von der zweiten bis siebenten Rippe herabreicht. Um zu zählen in der Höhe der wievielten Rippe ein bestimmter Punkt gelegen sei, geht man am besten vom Knorpel der zweiten Rippe an der Verbindungsstelle von Manubrium und Corpus Sterni aus, weniger sicher vom siebenten Rippenknorpel, als dem letzten der das Sternum erreicht, dann hinten unten von der eilften oder zwölften Rippe.

Die Breite wird nach Brustbein, Wirbelsäule, deren Rändern, sodann einer Anzahl allerdings künstlicher, aber durch natürliche Richtpunkte gelegt gedachter Linien bestimmt; diese sind: Parasternallinie, in der Mitte zwischen Brustbeinrand und Brustwarze, Papillarlinie durch letztere, vordere und hintere Axillarlinie durch vordere und hintere Grenze der Achselhöhle, Scapularlinie durch den unteren Winkel des Schulterblattes senkrecht gezogen. Mit besonderer Beziehung zur vorderen Grenze der Milz stellt man sodann noch eine Linea costoarticularis auf von der Sternoclavicular-Articulation schief durch die Spitze der eilften Rippe.

Wir werden uns bei Besprechung der Percussionsresultate zu erinnern haben, dass der von Lunge eingenommene Brustraum nach vorne oben bis 3½ Ctm. über den oberen Schlüsselbeinrand reicht, hinten oben bis zu einer durch die Spitze des Dornfortsatzes des siebenten Halswirbels gelegten Ebene, unten in der Parasternallinie bis zum unteren Rande der sechsten, in der Papillarlinie bis zum oberen der siebenten, in der Axillarlinie bis zum unteren der siebenten, neben der Wirbelsäule bis zur eilften, in der Scapularlinie bis zur neunten Rippe reicht (Strempeljun.). Sticht man auf der rechten Seite an diesen Stellen Nadeln ein, so treffen sie den Lungenrand, etwas unterhalb derselben die Leber. Auf die Topographie der Herzgegend werden wir Gelegenheit finden, bei der Auscultation

und Percussion einzugehen.

Pathologische Thoraxformen. Man unterscheidet zunächst Vorwölbungen und Vertiefungen, soferne nur kleine Stellen der Brust befallen sind, Ausdehnung und Einsenkung, soferne eine Seite oder doch die Hälfte einer solchen Sitz der betreffenden Veränderung ist. Umschriebene Vorwölbung durch Geschwülste der Brustdrüse, durch Lipome der Brustwand, durch Exostosen oder periostitische Abscesse der Rippen ist für unsere Zwecke ohne Bedeutung, dagegen können intrathoracische Geschwülste an allen beliebigen Stellen der Brustwand zur Vorwölbung kommen; welcher Art sind sie und woran erkennt man sie? Zu denselben gehören Carcinome, Cancroide, Sarcome, Cystosarcome, Abscesse, Echinococcen der Lunge, der Pleura, des Mediastinums, der mediastinalen und bronchialen Lymphdrüsen u. s. w., dann Aneurysmen der grossen Gefässe und Lungenhernien. Diese Geschwülste dringen theils zwischen den Intercostalräumen hervor, wie namentlich die eiterhältigen, theils vermögen sie, wie namentlich die Aneurysmen und Neoplasmen, die Rippen zu durchbrechen und mit grösserer Fläche hervorzutreten. Alle sind anfangs, manche, wie die Lungenhernien, stets von unveränderter, verschiebbarer Haut bedeckt. Die übrigen, ausser den Lungenhernien, löthen

sich dann an die Haut an und kommen bei genügend langer Dauer, indem sie Entzündung oder Necrose derselben hervorrufen, zur Perforation der Haut. Manche lassen sich anfangs theils mit, theils ohne gleichzeitig entstehende Dyspnoe in den Brustraum zurückdrängen, und das Befühlen der Ränder des Spaltes, durch den sie hervorgetreten waren, sichert dann die Diagnose. Die Lungenhernie lässt das emphysematöse Knistern beim Druck erkennen. Incomplete Lungen-Pleurafisteln, lufthältige, mit dem Pleurasacke (Pneumothorax) communicirende Abscesse geben bei der Reposition ein plätscherndes, quatschendes Geräusch, das gefühlt, in die Entfernung als Rasseln, mit dem aufgelegten Ohre als Metallklingen gehört wird. Nur ausnahmsweise erlangen durch eingetretene Verwachsungen die Brustmuskeln einigen Einfluss auf die Lage jener Tumoren, deren Beweglichkeit ohnehin eine äusserst geringe zu sein pflegt, indem sie mit ihrer breiteren Basis an ihrer Austrittsöffnung fixirt sind. Ihr wesentlicher Charakter liegt darin, dass sie Bewegungen, welche innerhalb der Brusthöhle erfolgen, fortleiten und dass sie Druckwirkungen auf die intrathoracischen Organe ausüben. Fortgeleitete Pulsationen derselben finden sich nicht allein dann, wenn sie Abschnitten des arteriellen Gefässsystemes angehören, sondern auch wenn sie auf denselben aufliegen, daher fast mit gleicher Deutlichkeit bei manchen Eitersäcken, Cysten und Carcinomen, wie bei Aortenaneurysmen. Die fortgeleiteten Respirationsbewegungen dieser Geschwülste äussern sich durch Verkleinerung der Geschwulst, selbst bei flüssigem Inhalte unter Umständen durch Verschwinden derselben bei tiefem Einathmen oder Schluchzen, durch Zunahme der Spannung und des Umfanges derselben beim Ausathmen oder Husten. Intrathoracische Druckwirkungen kommen keineswegs allen solchen Geschwülsten zu, so der Lungenhernie niemals, den Eitersäcken häufig nicht; ihre Art und Begründung ergiebt sich leicht aus der Berücksichtigung der anatomischen Beziehungen und physiologischen Funktionen der N. vagi, recurrentes und phrenici, der grossen Gefässe, der Luftund Speiseröhre.

Eine besondere Bedeutung ist der Vorwölbung der Gegend zwischen drittem und siebentem Rippenknorpel, Brustwarze und Sternalrand linkerseits, der Vorwölbung der Herzgegend (»Voussure«) beizumessen, soferne sie an einem sonst regelmässig gebauten Brustkorbe beobachtet wird. Bei Ausbeugung des unteren Theiles der Brustwirbelsäule nach links convex ist sie einfach als Folge

dieser aufzufassen. Sie stellt sich gewöhnlich als eine wenig und gleichmässig erhöhte Convexität der genannten Gegend, oft nur der unteren Hälfte derselben dar, und ist nicht selten ungenügend, den Umfang der linken Thoraxhälfte messbar zu vergrössern. Ihre häufigste pathologische Veranlassung ist in bedeutender Vergrösserung des Herzens gelegen, ausserdem findet sie sich jedoch auch bei Flüssigkeitsergüssen in den Herzbeutel, Andrängung des Herzens an die Brustwand, Geschwülsten der Umgebung des Herzens und abgesackten Pleuraexsudaten daselbst. Starke Vorwölbungen der eigentlichen Herzgegend (zwischen vierter und sechster Rippe, linker Brustwarze und Brustbein) deutet an sich, besonders aber bei hebendem Herzstosse mehr auf Hypertrophie des linken Ventrikels, Vorwölbung im ganzen Bereiche zwischen beiden Brustwarzen deutet entweder auf ein grösseres Pericardialexsudat, oder bei verbreiteter auffälliger Pulsation auf eine Vergrösserung des rechten Ventrikels.

Von besonderer Bedeutung sind die Vorwölbungen des 1ten bis 3ten rechten und des 2ten linken Intercostalraumes zunächst dem Sternum. Dieselben zeigen zumeist Pulsation, sie rühren von den verschiedensten mediastinalen Tumoren her, am häufigsten von Erweiterung der beiden grossen Arterienstämme des Herzens.

Umschriebene Vorwölbungen können ferner durch Tumoren der Lunge, ohne dass sie nach aussen durchbrechen, durch umschriebenes Emphysem der Lunge bedingt werden, wie man dies öfter gerade an den Lungenspitzen zu beobachten Gelegenheit hat, und nach der sehr wahrscheinlichen Angabe von Walshe können auch bis zur Pulmonalpleura vorgedrungene Cavernen eine Vorwölbung der betreffenden Stellen eines oder einiger Intercostalräume bedingen. Für den letzteren Fall, sowie für die dilatirende Wirkung des localen Emphysemes, liegt die Erklärung darin, dass die mittlere Ruhestellung der Brustwand bedingt ist durch die Einwirkung des vollen äussern Luftdruckes einer-, desselben vermindert um den Betrag des elastischen Zuges der Lunge anderseits, dass daher, wenn der elastische Zug der Lunge für eine Stelle der Brustwand ausser Wirksamkeit tritt, diese stärker gewölbt werden muss, wie in den beiden angeführten Fällen.

Ausgedehntere Vorwölbungen des untersten Theiles des Brustkorbes finden sich in Folge von Ergüssen in den Pleurasack, Vergrösserung der Leber oder Milz. Ueberhaupt aber finden sich Erweiterungen der unteren Thoraxapertur in Folge aller jener Zustände, welche eine dauernde Volumzunahme des Inhaltes der Unterleibshöhle bedingen, von Meteorismus und Ascites bis zu den Tumoren der Ovarien, Retroperitonealdrüsen, Leber, Milz etc.

Vertiefungen am Brustkorbe, soferne sie nicht durch Substanzverluste, oder Narbeneinziehungen der Brustwand, oder durch physiologische Heteromorphismen bedingt sind, weisen darauf hin, dass unter der betreffenden Stelle eine Verdichtung und Retraction der Lunge erfolgte, oder dass pleuritische Auflagerungen nach Art der Narbenzusammenziehung in Schrumpfung eingingen. Unter besonders günstigen Umständen bei sehr nachgiebigen Brustwandungen oder sehr abgemagerten Weichtheilen der Brustwand kann auch das einfache Luftleerwerden (Collapsus) einer grösseren Lungenparthie eine leichte Vertiefung der betreffenden Stelle bedingen. Am häufigsten finden sich Vertiefungen der Brustwand sowohl, als ausgedehntere Einsenkungen derselben bei jenen chronischen Brustkrankheiten vor, welche zur Phthise führen, also bei Tuberculose, chronischer Pneumonie und Bronchiektasie. Bei der ersteren finden sich diese Veränderungen durch den Sitz des anatomischen Prozesses fast constant an die obere Hälfte des Brustkorbes fixirt, bei chronischer Pneumonie finden sie sich wenigstens häufig daselbst, bei Bronchiektasie dagegen über beliebige Stellen der Brust zerstreut. Wiewohl nun die häufigste dieser Erkrankungen, die Tuberculose durch ihren eigenen Sitz jenen der einschlägigen Veränderungen am Brustkorbe bestimmt, ruft sie doch nur zum kleinsten Theile selbst und direkt dieselben hervor, sondern hiezu wirken weit mehr mit Atelektase, chronisch-pneumonische Verdichtung in dem den Tuberkelheerd umgebenden Lungengewebe und pleuritische Auflagerungen. Diese Veränderungen, beide Lungenspitzen befallend, bewirken allseitige Verkleinerung des Umfanges der oberen Brusthälfte, wie sie mittelst des Bandmaasses durch M. Hirtz in einer genügenden Anzahl von Fällen nachgewiesen wurde, ausserdem aber auch dem geübten Blicke nicht leicht entgeht. Am meisten wird von dieser Verkleinerung der Sternovertebraldurchmesser befallen. Daher rührt es, dass der obere Theil des Manubrium sterni der Wirbelsäule sich nähert und in Folge davon dieser Theil mit dem Corpus sterni einen stärker vorspringenden Winkel bildet. Bei seitlicher Ansicht des Brustkorbes wird sowohl der Sternovertebraldurchmesser, als dieser Winkel am deutlichsten bemessen. Ferner werden durch den gleichen Zug der schrumpfenden Lunge und Pleura die fünf oder sieben Gruben, welche vorne die obere Thoraxapertur umsäumen,

bedeutend vertieft und sie scheinen dies in erhöhtem Grade, weil · unter der abgemagerten Haut die durch fortwährende angestrengte Arbeitsleistung prominent gewordenen Halsmuskeln ihre Ränder stärker hervortreten lassen. In der Tiefe der stark ausgehöhlten Fossa supraclavicularis gewahrt man, wo zugleich vorgeschrittene Abmagerung vorhanden ist, die Contouren der grossen Halsgefässe, der Scaleni, des Omohyoideus. Das Schlüsselbein tritt bei dieser Vertiefung der Gruben mehr hervor, seine Mitte scheint oft nur mehr durch eine Hautfalte mit der Brustwand zusammen zu hängen. Die Schultern sinken weiter nach vorne, die inneren Ränder und Winkel der Schulterblätter stehen daher »flügelförmig« ab, die Schlüsselbeine kommen mit ihren Acromialenden weiter nach vorne zu stehen, als mit den sternalen. Das stärkere Eingesunkensein der Schlüsselbeingruben einer Seite weist fast mit voller Sicherheit auf vorgeschrittenere Lungenverdichtung, eventuell Tuberculose dieser Seite hin, besonders wenn die am stärksten in der Richtung nach vorne, weniger nach oben verminderte Beweglichkeit der Brustwand auf der gleichen Seite noch geringer ist, als auf der anderen. Die Verkleinerung des transversalen Durchmessers der oberen Thoraxapertur kann hauptsächlich nur erzielt werden durch eine von der horizontalen Ebene mehr abweichende Stellung, durch Spitzerwerden der Insertionswinkel der oberen Rippen. dieses Verhältniss sich mehr und mehr steigert, zugleich die Intercostalmuskeln durch Theilnahme an der allgemeinen Muskelabmagerung entkräftet werden, nehmen auch die Rippen bis zur unteren Thoraxapertur eine analoge Stellung ein, der Thorax wird dadurch lang, die Intercostalräume weit, die Seitenflächen geradeabfallend, der Transversaldurchmesser auch nach abwärts zu verkleinert -- es entsteht die paralytische Thoraxform Engel's. -Bei den höchsten Graden dieser Retraction verliert sich vorne beiderseits (selten nur einseitig) zwischen Brustbein, Schulter, Schlüsselbein und vierter Rippe sämmtliche Wölbung der Brustwand und macht wohl auch einer seichten Vertiefung Platz, die Form der Rippen selbst wird somit geändert, ihre Convexität vermindert sich, die Abmagerung der Weichtheile aber trägt wesentlich mit zu dieser Form bei. - Am häufigsten finden sich flache, verhältnissmässig breite Brustformen bei Tuberculösen, seltener cylindrische, noch seltener kurze weite Formen oder durch Combination mit Rhachitismus gleichzeitiges Pectus carinatum.

Die hier besprochenen Zeichen gehören sämmtlich dem erworbenen

phthisischen Habitus an, d. h. sie entstehen durch den Einfluss der erkrankten Lunge auf die Formen des Brustkorbes. Dieselben sind oft verknüpft mit schwacher Muskulatur, blasser zarter Hautfarbe, umschriebener Röthe der Wangen, sehr regelmässig gebildeten durchscheinenden Zähnen, intelligentem sanftem Gesichtsausdrucke, vorgebeugtem Halse und Kopfe. - Einige dieser Zeichen werden zugleich unter denjenigen aufgeführt, welche den angeborenen phthisischen Habitus constituiren. Man rechnet dahin ferner hohe magere Statur, gracilen Knochenbau, langen, engen, flachen, wenig erweiterungsfähigen Brustkorb mit weiten Intercostalräumen, und von Anfang an engere obere Apertur desselben, kolbig verdickte Nagelglieder und klauenförmig gebogene Nägel. Es steht fest, dass ein solcher Körperbau in phthisischen Familien am häufigsten getroffen wird; dass die meisten Träger desselben der genannten Krankheit verfallen; aber das Urtheil hierüber wird getrübt durch die Schwierigkeit, festzustellen, wie lange jemand schon phthisisch sei (oft genug findet sich ja bei anderweitigen Sectionen unerwartet Lungentuberculose), ob also wirklich der Habitus phthisicus sich schon vor der Phthise selbst entwickelt habe; das Gesetz wird zu einer an Ausnahmen reichen Regel herabgedrückt durch die Erfahrung, dass mancher mit dem exquisitesten tuberculösen Habitus ausgestattet zum Erstaunen seiner theilnehmenden und klatschenden Mitmenschen sein 6tes und 7tes Decennium glücklich erreicht. Man wird richtiger annehmen, dass häufig zugleich mit einem gewissen Körper- und namentlich Brustbaue von phthisischen Eltern die betreffende Diathese ererbt werde. Mit wichtigen Gründen ist vor einigen Jahren W. A. Freund für die Annahme eines angeborenen tuberculösen Habitus aufgetreten. Er gab der ganzen Sache eine weit präcisere Wendung, indem er abnorme Kürze oder scheidenförmige Verknöcherung des ersten Rippenknorpels und dadurch bedingte Fixirung und Funktionshemmung des oberen Brustkastens für die Ursache der hereditären, idiopathischen, chronisch verlaufenden Lungentuberculose erklärte. Er ging dabei von der Ansicht aus, dass die Form des Brustkorbes für die Entwickelung seines Inhaltes und für dessen pathologische Schicksale bestimmend sei. Eine unbefangene Prüfung der Thatsachen lässt jedoch diesem Grundsatze nur eine äusserst beschränkte Geltung. Nur sehr bedeutende (z. B. rhachitische) Deformitäten des Brustkorbes üben Einfluss auf Lagerung und Struktur der Brustorgane, wie aber Funktionen und Erkrankungen der Brustorgane die Form von deren Hüllen umändern, das sieht man leicht bei Betrachtung einer Genossenschaft von Bergknappen, Achatschleifern und Steinhauern und einer andern von Posaunenbläsern oder Bergsteigern. Man wird nicht so bald in der Lage sein, denen, die der Tuberculose verfallen sollen, bereits an der Wiege ihr Todtenlied zu singen. - Bezüglich der kolbig verdickten Nagelglieder der sog. Trommelschlägelfinger finde ich, dass dieselben bei Bronchiektasieen oft viel stärker,

als bei Tuberculosen sich entwickelt finden, nur bei ersterer Krankheit, wenn sie nach Atelektasen, Pneumonieen sich unter meinen Augen entwickelte, sah ich eine so zu sagen acute, d. h. binnen wenigen Wochen erfolgende Verdickung der Nagelglieder. Nach Walshe soll sie auch halbseitig und zwar der Seite der Lungenerkrankung entsprechend vorkommen. Auch als Begleiter angeborener Herzkrankheiten wird sie getroffen. Sie ist als eine Folge venöser Stauung aufzufassen.

Andere weniger verbreitete einseitige und mehr an der unteren Brusthälfte localisirte Einziehungen der Brustwand entstehen in Folge der Resorption pleuritischer Ergüsse. So selten als abgesackte Pleuraexsudate an der Lungenspitze allein vorkommen, ebenso selten findet man den obern Theil einer Brusthälfte allein in Folge von überstandener Pleuritis eingesunken. War die Lunge längere Zeit durch im Pleurasacke angesammelte Flüssigkeit comprimirt, so dehnt sie sich nicht der Resorption des Fluidum's entsprechend alsbald wieder aus, der nun bedeutend überwiegende äussere Luftdruck verkleinert, entsprechend der fortschreitenden Flüssigkeitsresorption, die betreffende Parthie der Brustwand, während gleichzeitig die Pleura costalis daselbst bedeckende Bindegewebswucherungen sich organisiren und schrumpfend die Convexität der Seite verkleinern. So entsteht eine Deformität, welche zum wesentlichen Charakter die allseitige Verkleinerung der leidenden Seite bekommt, daher verminderter Umfang derselben durch das Augenmaass so gut als durch das Bandmaass erkannt wird, ebenso die Annäherung der Brustwarze an das Sternum, die Verengerung der Intercostalräume, der tiefere Stand derselben, sowie des Schlüsselbeins, des Schulterblattes und der ganzen Schulter. Jede Wölbung dieser Seite erscheint abgeflacht und vermindert, sowohl an der vorderen Thoraxfläche, als an der Rückseite, das Schulterblatt der leidenden Seite steht tiefer und der Wirbelsäule näher, die Intercostalräume sind tiefer und enger, und wir bemerken schon jetzt, dass nicht nur die Weite, sondern auch die Erweiterungsfähigkeit der ganzen Seite sowohl als der Intercostalräume vermindert ist. Die Wirbelsäule allein scheint der beengten Seite mehr Raum zu gewähren, indem sie gegen die gesunde convex sich ausbeugt. Allein gerade durch dieses Verhältniss wird die Verengerung der leidenden Seite und ihrer Intercostalräume, ihre geringere Weite vermittelt und nothwendig eine Erweiterung der andern bedingt. Nur sehr ausnahmsweise findet sich die von Walshe bezeichnete Abnormität eines höheren Standes der Schulter der leidenden,

übrigens verengten Seite. Diejenigen Zeichen, welche aus der veränderten Lage der benachbarten Organe der Brust und des Unterleibsraumes hervorgehen, oder die dem verdichteten Zustande der Lunge entsprechen, werden später ihre Besprechung finden. Aus diesen dauernd der Brustform aufgeprägten Zeichen kann oft noch nach Jahren, nach Jahrzehnten eine ehedem überstandene Pleuritis erkannt werden, und es ist kein Zweifel, dass im Laufe der Zeit der einmal eingesunkene Brustkorb der Wiederentfaltung der luftleergewordenen Lungentheile als dauerndes Hinderniss entgegenstehen kann. Es ist sicher, dass auch langandauernde trockene Pleuritis mit nur theilweiser Verwachsung beschränkte, aber recht auffällige Vertiefungen, Abflachungen der Brustwand bewirken kann. In diagnostischer Beziehung ist zu berücksichtigen, dass nicht allein Pleuritis, Pneumopyothorax, sondern nicht minder chronisch gewordene pneumonische Infiltrate, zur Heilung gekommene Vereiterungen des Lungengewebes ein ganz ähnliches Bild bedingen können, nämlich alle dasjenige der einseitigen Verengerung des Brustkorbes.

Erweiterungen grösserer Abschnitte des Brustkorbes finden sich, durch local erhöhten intrathoracischen Druck, am häufigsten durch Pleura-Exsudate bedingt und beginnen dann, soferne diesen nicht zuvor schon durch Verwachsungen der Pleurablätter eine bestimmte Stelle an einem anderen Orte angewiesen war, an dem untersten und hintersten Theile der betreffenden Brusthälfte, indem die Intercostalräume daselbst weniger concav, mehr verstrichen im Vergleiche zu jenen der gesunden Seite sich gestalten. Von hier dehnt sich dann die anfangs nur wenig merkliche Wölbungszunahme der leidenden Seite, neben der Wirbelsäule stets höher hinaufreichend als vorne, in der Brustwarzen- und Sternalgegend nach vorne und später nach aufwärts aus, bis sie jeden Halbmesser im Vergleiche zur andern Seite erweitert hat. Die Wirbelsäule beugt sich etwas nach dieser Seite convex aus, die betreffende Brustwarze scheint sich vom Brustbeine entfernt zu haben, der Abstand vom Schlüsselbeine zum Rippenbogen vergrössert. (Dabei verminderte, aufgehobene Beweglichkeit der ganzen Seite oder doch der minder concaven Intercostalräume.) Selten kommt es bei mässigem Ergusse und schwacher Muskulatur dahin, dass die Intercostalräume nach aussen convex werden. Man trifft derartige Kranke zumeist im Beginne ihres Leidens (weil sonst Schmerz entsteht) auf der gesunden, später (um Dyspnoe zu vermeiden) auf der kranken Seite

oder halb auf dieser gelagert. Eine noch stärkere Wölbung der leidenden Seite, mit Vorwölbung der Intercostalräume häufiger verbunden, wird durch Pneumothorax gesetzt, wo keine älteren Hindernisse der Ausweitung der Brust durch denselben entgegen stehen, oder durch Entwickelung solider intrathoracischer Geschwülste.

Elastizitätsverlust oder Verminderung beider ganzen Lungen hat allseitige Erweiterung des Brustkorbes zur Folge, doch erreicht das vesiculäre Emphysem der Lunge nicht häufig jenen hohen Grad von Ausdehnung. Alle Durchmesser des Brustkorbes sind dann erweitert, am wenigsten der transversale, weitaus am meisten der sternovertebrale. Brustbein und Brustwirbelsäule sind beide stärker convex geworden, die Rippen verlaufen nahebei horizontal, die Intercostalräume sind erweitert, flach, oder selbst verstrichen, sehr selten vorgewölbt, die Gruben ober- und unterhalb des Schlüsselbeines sind verschwunden und stark convexe Wölbungen an ihre Stelle getreten. Der ganze Brustkorb bietet eine cylindrische und im wörtlichen Sinne eine »Fassform« dar und überragt mit seinen vorstehenden Hypochondrien erheblich den Unterleib. Die hypertrophischen Halsmuskeln bilden scharfe Vorsprünge an ihren Insertionen, auch die Contouren der Brustmuskeln sind unter der abgemagerten Haut zumeist deutlich zu erkennen.

Die Haltung solcher Emphysematiker, namentlich beim Sitzen, hat oft etwas äusserst Charakteristisches. Der Thorax wird vorgestreckt, der Kopf etwas zurückgelehnt, die Arme stemmen sich auf die Schenkel auf. Ist dabei noch die gewöhnliche Cyanose des Gesichtes, Abmagerung des übrigen Körpers, die stark mit dem voluminösen Brustkorbe contrastirt, die frequente, angestrengte, aber äusserst unergiebige Respirationsweise, die starke, aber fruchtlose Anstrengung vieler Respirationsmuskeln vorhanden, pulsirt das Herz mit seiner Spitze schwach an einer tiefgelegenen Stelle, aber dafür stark mit seinem rechten Ventrikel im Epigastrium, findet sich dieses durch eine seichte mit der Respiration sich verschiebende Querfurche in eine kleinere (pulsirende) obere und eine grössere untere Hälfte getheilt - so ist die Diagnose durch die blosse Inspection bis zur Unmöglichkeit jeder Verwechslung gesichert. In den Hospitälern bilden diese Emphysematiker oft livid und keuchend, mit den Armen auf die Ränder zweier Betten gestützt, mit dem Oberkörper vorgebeugt, äusserst charakteristische Figuren.

Partielles Emphysem kann sich sowohl an beiden oberen, als an beiden unteren Thoraxhälften, als auch einseitig finden; stets wird es für die Inspection nur durch geringere Beweglichkeit und stärkere Wölbung der betreffenden Parthie sich bemerklich machen.

III. Respiratorische Bewegungen.

Schlaf und Scheintod lassen kaum sichtbare Athembewegungen übrig, ein rascher Lauf, aufglühender Zorn machen sie jagend und keuchend, einer reichlichen Mahlzeit folgt eine behagliche Dyspnoe, Verblutende athmen krampfhaft, festanliegende Kleider beengen die Brust, eine Brodkrume einen Luftröhrenast verstopfend erzeugt die heftigste Athemnoth. So hängt das Athmungsgeschäft seinem Betriebe, der Zahl der aufgebotenen Werkzeuge, der Häufigkeit der Operationen nach ab von der Innervation, der Beweglichkeit der Brustwandungen, dem Freisein der Luftwege, der Anfüllung der Unterleibsorgane, der Fähigkeit des Blutes, den eingeathmeten Sauerstoff aufzunehmen. Als den Ort, von dem aus die Athembewegungen angeregt werden, hat Flourens den »Noeud vital« im verlängerten Marke nachgewiesen, als Ursache der automatischen Erregung derselben ist der Mangel an Sauerstoff im Blute zu betrachten (Rosenthal), oder Anhäufung von Kohlensäure in demselben (Traube), als Ursache reflektorischer Erregung Reizung peripherer Nerven, welche auf jenes Centrum übertragen von da aus Respirationsbewegungen auslöst, überdies ist von Einfluss der Wille. Bleibt letzterer unthätig, finden keine aussergewöhnlichen peripheren Reize statt, so erfolgt bei gesunden Erwachsenen die Respiration 16-20 mal in der Minute (Vierordt), bei Neugegeborenen im Mittel 44 (Quetelet).

Die Erweiterung des Brustkorbes, als erster Act jeder Respiration, die Inspiration wird vollzogen durch die Zusammenziehung des Zwerchfelles, der Scaleni, der M. intercostales externi und nach dem jetzigen Stande der betreffenden Frage auch der interni. Durch die Zusammenziehung der Scaleni wird die erste und zweite Rippe und damit ohnehin schon auch jede folgende gehoben, je weiter nach oben, um so mehr, und zugleich mit ihrem Sternalende von der Wirbelsäule entfernt. Die Rippen selbst und noch mehr ihre Knorpel werden dadurch in gewissem Grade gedreht und in Spannung versetzt, das Brustbein wird gehoben und von der Wirbelsäule entfernt, der sternovertebrale sowohl als der transversale Durchmesser vergrössert. Was ohnehin schon durch die Zusammenziehung der Scaleni bewirkt wird, die Hebung der zunächst unterhalb der ersten und zweiten gelegenen Rippen, das

wird in gesteigertem Maasse bewirkt durch die Mitwirkung der Musculi intercostales, die jede folgende Rippe der vorausgehenden nähern. Während auf diese Weise für den oberen und mittleren Theil der Brust die Erweiterung im geraden und queren Durchmesser erreicht wird, wirkt zum Zwecke der allseitigen Erweiterung der unteren Thoraxapertur auch das Diaphragma mit. Indem dieser Muskel eine Verkürzung seiner sämmtlichen Bündel erfährt, wird er zunächst abgeflacht und übt eine deprimirende Wirkung auf die zunächst unterhalb gelegenen Unterleibsorgane aus, welche eine erhöhte Spannung des gesammten Inhaltes der Unterleibshöhle zur Folge hat. So wird denn die vordere Bauchwand bei der Inspiration gewölbter und die epigastrische Grube, an der diese Einwirkung am lebhaftesten hervortritt, verstrichen oder vorgewölbt; aber auch die Hypochondrien als Theil der vorderen und seitlichen Begrenzung der Unterleibshöhle bilden günstige Angriffspunkte für diesen gesteigerten Druck in der Unterleibshöhle. Sie werden nach aussen und wie die eigenthümlichen Fixationsverhältnisse der Rippen es schon mit sich bringen, zugleich nach vorne bewegt und theilen nothwendig diese Bewegung den nächst oberhalb gelegenen Rippen mit und tragen somit zur Erweiterung des unteren Theiles der Brusthöhle bei (Duchenne), so lange dem Diaphragma durch die Unterleibsorgane bei einer gewissen Spannung der Bauchmuskeln eine Stütze zu diesem Zwecke verliehen wird. Zur Fixirung der Rippen, so dass sie dem Zuge des Zwerchfells widerstehen, sogar sich auswärts bewegen, dienen ausser den Intercostalmuskeln vorzüglich der M. serratus posticus inferior (Henle) und die Levatores costarum (Luschka). Durch diese Muskeln werden gleichzeitig mit der Zusammenziehung des Zwerchfells dessen Ursprungspunkte auseinandergerückt, es trägt selbst zu dieser Erweiterung des geraden und queren Durchmessers des Brustraumes bei, indem es die Unterleibsorgane gegen die muskulösen Widerstand leistende vordere Bauchwand und gegen die Rippenbogen hindrängt, der Hauptsache nach bewirkt seine Contraction eine Verlängerung des Brustraumes an allen Punkten seiner Basis, sogut in der Gegend des Centrum tendineum, als nächst den Rippen, wo die Abgangslinie des Zwerchfells herabrückt und die Complementärräume sich öffnen.

Unmittelbar nach der Inspiration ohne Pause, nothwendig sofort mit dem Aufhören des inspiratorischen Muskelzuges beginnend,
folgt dann die Exspiration, die unter den obigen VorausGerhardt, Auscultation, 2te Aufl.

setzungen völliger Gesundheit und Körperruhe ohne jede Muskelhülfe vollzogen wird. Die um ihre Axe gedrehten Rippen und Rippenknorpel streben in ihre Gleichgewichtslage zurückzukehren, der Zug der elastischen, durch die Inspiration stärker ausgedehnten Lunge, sowie die Schwere der Brustwand selbst unterstützen sie hiebei; der elastische Zug der Lunge unterstützt ferner die Rückkehr des Diaphragma's in seine frühere Lage, welche ausserdem durch die Wiederausdehnung der zuvor comprimirten elastischen Unterleibsorgane bewirkt wird. Die Durchmesser des Brustraumes werden somit sämmtlich wieder verkleinert, die vordere Bauchwand verliert an Wölbung und die Magengrube vertieft sich wieder. Als dritten Act jedes Athemzuges pflegt man die Pause zu unterscheiden, das Verharren der Brust in exspiratorischer Stellung bis zum Beginne der nächsten Inspiration, etwa 1/3-1/5 der ganzen Respirationsdauer umfassend. - Graphische Darstellungen der Athembewegungen, wie die hier beigefügte, zeigen das zeitliche Verhältniss der beiden Abschnitte des Athemzuges zu einander sehr klar, lassen jedoch auch erkennen, dass die Pause gewöhnlich unrein, d. h. noch zum Theile von einer leichten Exspirationsbewegung, zum Theile von der langsam beginnenden Inspiration eingenommen

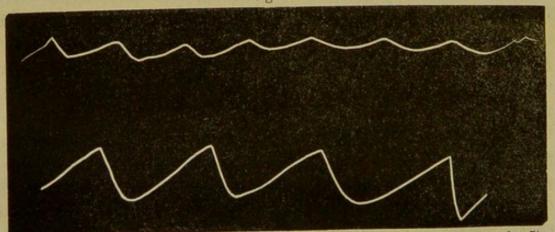


Fig. 2.

Fig. 2. Athmungseurven eines gesunden jungen Mannes, die Vorwärtsbewegung des 7ten Rippenknorpels bei ruhigem und bei angestrengtem Athmen darstellend.

wäre, wenn man sie annehmen wollte. Einen Schritt weiter als ich ist bald nachher F. Riegel in Verwerthung der Respirationscurven gegangen, indem er eine Pause zwischen zwei Athemzügen ganz in Abrede stellte. Damit scheint mir das Richtige getroffen zu sein.

So bei ruhigem Athmen, bei angestrengtem dagegen treten zu den genannten, dann kräftiger wirkenden Inspiratoren noch eine Reihe von weiteren hinzu und dann wird auch die Exspiration

durch Muskelhülfe unterstützt. Zu den Inspirationszwecken wirken bei angestrengter Respiration mit die M. levatores costarum, serrati postici superiores, sternocleidomastoidei, pectorales minores, serrati antici majores, ferner, indem sie für die übrigen genannten Muskeln eine grössere Erweiterungsfähigkeit des Brustkorbes vorbereiten, die Strecker der Wirbelsäule, ferner, als an der Erweiterung des Brustkorbes nicht betheiligte Mitarbeiter, die Erweiterer der Nasenlöcher, der Glottis und die den Kehlkopf herabziehenden Muskeln, welche von diesem zum Manubrium sterni gehen. Bei den äussersten Graden der Dyspnoe treten zugleich noch die Rumpfschulterblatt- und Rumpfarmmuskeln in Wirksamkeit, ebenso einige Unterkiefer- und Zungenmuskeln. Als Exspiratoren treten in solchen Fällen in Wirksamkeit: die sämmtlichen Muskeln der Bauchpresse, unter welchen namentlich der M. transversus als reinster Antagonist des Diaphragma's von Luschka hervorgehoben worden ist, die M. serrati postici inferiores, sterno-costales, quadrati lumborum, und die Beuger der Wirbelsäule.

Für Kaninchen hat Traube die normale Betheiligung des M. obliquus abd. externus an der Exspiration erwiesen, ferner, dass bei denselben als Inspiratoren mit dem Steigen des Respirationshindernisses nur folgende Muskeln in folgender Reihenfolge verwendet werden: Diaphragma intercostales interni (nach Tr. nur z. Th.) und externi, levatores costarum, scaleni, serrati postici superiores, dann die Brustbein-, Kehlkopfmuskeln. Für die dyspnoetischen Erscheinungen beim Menschen lässt sich eine solche Reihe nicht einhalten, Geschlecht, Gewohnheit, Art des Respirationshindernisses u. drgl. wirken zu bedeutend ein, andere Muskeln ausser den hier genannten wirken noch mit.

Für den Beobachter bietet bei diesem Vorgange zweierlei sich dar: die sichtbare Contraction, welche an vielen oberflächlichen Muskeln deutlich als Hervortreten ihrer Contouren und Zunahme des Umfanges wahrgenommen werden kann, und die Bewegung ihrer Insertionspunkte, der Effekt ihrer Contraction. Erstere hängt ausser von der Grösse des Athmungs-Hindernisses und dem Maasse des dadurch gesetzten Sauerstoffmangels im Blute noch ab von der Leistungsfähigkeit der betreffenden Muskeln und ihrer Nerven, letztere von dem Grade der Beweglichkeit der zu bewegenden Theile in der fraglichen Richtung. So sieht man denn bei angestrengter Inspiration die Wirbelsäule mehr gerade gestreckt, oder mit jeder Inspiration sich streckend, die Halsmuskeln mit jeder Inspiration sich spannend und mit scharfen Contouren hervortretend, besonders die Sternocleidomastoidei, die Scaleni, die

Sternothyreoidei, die Brust- und Schultermuskeln in Thätigkeit tretend und die Form des Brustkorbes mit umgestaltend, bei der Exspiration dagegen die Wirbelsäule vorwärts gebeugt und die Bauchmuskeln gespannt, so dass einzelne Faserzüge der Obliqui und die ganzen Formen der Recti hervortreten. Man sieht ferner bei der angestrengten Inspiration die Nasenflügel sich jedesmal erweitern, den Kehlkopf und die Luftröhre (auch die daran seitlich fixirte Glandula thyreoidea) herabtreten, Schultern, Schlüsselbein und Brustbein sich heben, so dass ein sonst sichtbarer Theil der Trachea hinter letzterem sich birgt, jeden leicht merklichen Punkt der vorderen Brustwand, so die Rippenknorpel und die Brustwarzen in der Bewegung nach vorne und aufwärts begriffen. Ich habe laryngoscopisch gezeigt, dass bei angestrengtem Athmen nicht allein die Stimmbänder jedesmal auseinander weichen, sondern auch der Kehldeckel sich hebt, was durch Herabsteigen des Kehlkopfs und gleichzeitige Streckbewegung der Zungenwurzel möglich wird. Daher hat man bei Kranken mit starker Dyspnoe den besten Einblick in den Kehlkopf.

Die Intercostalräume gewinnen in Folge des mit der Ausspannung der Lunge sich steigernden elastischen Zuges derselben und des im Vergleiche mit der anfangs raschen Inspirationsbewegung langsamen Einströmens der Luft an concaver Form, sie ziehen sich ein und zwar, abgesehen von localen Hindernissen, in völlig gleichförmiger Weise auf beiden Seiten. Ein ähnliches Verhältniss zeigen die Supra- und Infraclaviculargruben. Die Bewegung des Zwerchfells manifestirt sich meistens nur durch die stärkere Vorwölbung der epigastrischen Grube, in manchen Fällen jedoch kann durch bedeutende von den Intercostalmuskeln her bedingte Erweiterung der unteren Thoraxapertur so viel Raum für die Unterleibsorgane unter den Hypochondrien sich ergeben, dass die epigastrische Gegend einsinkt, anstatt sich zu heben; in wenigen Fällen steht das Diaphragma so tief (bei Emphysematikern), dass man dessen Abgangslinie als Querfurche zwischen beiden Hypochondrien sich mit der Inspiration abwärts verschieben sieht (Stokes). Auch bei Pleuritis kommt dies vor. Ich sah einigemale bei derartigen Kranken mit sehr kurzen und tiefen Inspirationen, dass sich im Beginne derselben diese Furche erst wenig nach aufwärts und dann erst nach abwärts bewegte (anfängliche Adspiration des schwach contrahirten Diaphragma's). Sehr selten kann die Bewegung des Diaphragma's bei sehr abgemagerten Personen auch bei höherem

Stande desselben an den Intercostalräumen gesehen werden; eine seichte horizontale Furche scheidet dann den oberen concaveren Theil des Intercostalraumes von dem unteren flacheren und steigt auf und ab. Künstlich aufgefütterte Säuglinge liefern am ersten die traurigen Exempel zur Demonstration dieses Satzes. - Auch eine andere Bewegung, welche häufig besonders bei schweren dyspnoischen Zuständen zu beobachten ist, wird oft dem Einflusse des Diaphragma's zugeschrieben, nämlich die inspiratorische Einsenkung des unteren Theiles des Sternum's und der benachbarten Stellen der Rippenknorpel längs der Abgangslinie des Zwerchfells. Es war irrig, wenn man behauptete, dass dieselben bei jeder heftigen Dyspnoe sich fänden, oder wenn man sie von dem direkten Zuge des Zwerchfells ableitete. Man wird sie nicht leicht bei Pneumonie oder Pleuritis, bei Pneumothorax oder rein nervöser Dyspnoe finden, wohl aber und zwar so ausgesprochen, dass der Proc. xiphoideus bis zu 2" der Wirbelsäule sich nähern kann bei Tracheal- oder Laryngostenosis, dann bei Atelektase, bei den asthmatischen Anfällen der Emphysematiker, caeteris paribus um so stärker, je weicher die Rippen und Rippenknorpel, daher namentlich sehr ausgesprochen bei rachitischen Kindern. Sie entstehen, wie wir sahen, in einer Reihe von Zuständen, in welchen behinderter Luftzutritt zu den Bronchien oder Alveolen die Respirationsstörung begründet; hier wird der Brustkorb jedesmal eher bedeutend erweitert, als entsprechend mit Luft gefüllt und desshalb durch den überwiegenden äusseren Luftdruck an dieser nachgiebigen Stelle eingebogen. Würde das Zwerchfell einen so starken Zug auf die Brustwand ausüben sollen, dass es dieselbe einzubiegen vermöchte, so würde es eher seine (der Insertion nächstliegende) vertical aufsteigende Portion von der Brustwand abziehen müssen; aber gerade bei manchen dieser Zustände lässt sich völliger Mangel der Diaphragmadescension nachweisen (Niemeyer), so dass dann um so sicherer das Diaphragma nicht die Brustwände einwärts ziehen kann. Der Einfluss zeitweise erfolgender derartiger Einziehungen mag auch Schuld daran sein, dass sich oft schon in der Jugend eine seichte, bleibende Querfurche, entsprechend der Abgangslinie des Diaphragma's bildet (Harrison), welche zwar später als Marke des früheren, vielleicht auch des jetzigen Zwerchfellstandes angesehen werden kann, aber dessen Veränderungen nicht folgt. -Ist das Diaphragma paralysirt, so erweitert sich die untere Thoraxwand weniger bei der Inspiration, aber sie erweitert sich noch,

die obere Parthie der vorderen Bauchwand jedoch sinkt ein, weil bei dem Auseinanderrücken der Hypochondrien auch noch das Diaphragma nach oben adspirirt, somit während der Inspiration für die Unterleibsorgane viel Raum frei wird. Anderseits kann freilich auch dadurch eine inspiratorische Abflachung der vorderen Bauchwand bewirkt werden, dass bei recht kräftiger Contraction des Zwerchfells die Bauchmuskeln stark sich spannen und dadurch die Unterleibsorgane noch mehr comprimiren, so dass sie gegen die Hypochondrien gedrängt werden und somit eine stärkere Erweiterung dieser letztern und überhaupt der untern Thoraxapertur erzielt wird. Schon bei ruhigem Athmen, noch mehr bei angestrengtem, ist ein gewisser Tonus der Bauchmuskeln nöthig, damit das Diaphragma von Seiten der Unterleibsorgane eine Unterstützung finden und so auf die Dilatation der unteren Thoraxapertur mit einwirken könne; unter besonderen nicht näher bekannten Umständen erst werden die Bauchmuskeln Dyspnoischer gleichmässig zur Unterstützung der In- und der Exspiration verwendet. Ich habe mich durch fast direkte Betastung des Centrum tendineum diaphragmatis, die ich bei einem sonst gesunden Mädchen von einer Kothfistel in der Nabelgegend aus vornahm, überzeugt, dass dasselbe selbst bei ruhiger Inspiration, noch mehr bei angestrengter, herabsteigt und nicht, wie Hyrtl will, unbeweglich bleibt. Vivisectionen ergeben das gleiche, ohnehin aus zahlreichen Gründen zu erwartende Resultat. Bei angestrengtem Athmen finden noch weniger als bei ruhigem Pausen zwischen der vollendeten Ex- und der wieder beginnenden Inspiration statt.

Die Respirationsweise Gesunder lässt mannichfache Variationen erkennen. Schon beim Weinen oder Schluchzen, beim aufgeregten Athmen kleiner Kinder folgen ruckweise Inspirationen und langgezogene Exspirationen fast ohne Pause aufeinander. Ein wichtiger und ziemlich constanter Unterschied findet sich etwa vom 10ten Jahre ab (Boerhave) zwischen beiden Geschlechtern: Männer und Knaben athmen fast ausschliesslich mit dem Zwerchfell und setzen Scaleni und Intercostales kaum merklich in Gebrauch, während diese letzteren bei Weibern und Mädchen fast ausschliesslich unter sehr geringer Mitbetheiligung des Diaphragma's das ruhige Einathmen besorgen. Messungen erweisen, dass jeder untere Rippenknorpel des Mannes und jeder obere des Weibes sich stärker bewegt als der nächstfolgende. Bei einzelnen Männern wird allerdings durch die Gewohnheit, eine Schnürbrust zu tragen, das

Athmen mittelst des Diaphragma's äusserst beschränkt und treten die Scaleni und Intercostales in überwiegende Wirksamkeit: ein weiblicher Inspirationstypus wird erlangt, allein der letzte Grund der verschiedenen Respirationsweise beider Geschlechter kann doch nicht wohl in dem Tragen dieses Verbesserungsmittels der Körperformen gelegen sein, da auch Mädchen, ehe man ihre Brust einzuengen beginnt, und Frauen vom Lande, die nie daran dachten, diese Procedur anzuwenden, den ausgesprochenen Respirationstypus ihres Geschlechtes darbieten.

Durch diese Betrachtungsweise der Wirksamkeit einzelner Muskeln wird die von Beau und Maissiat vertretene Aufstellung dreier Respirationstypen entbehrlich. Dieselben nehmen eine abdominale Athmung, ausgeführt von dem mittleren Theile der Bauchwand, angeblich normal bei Kindern bis zum 3ten Lebensjahre, eine untere costale (das diaphragmale Athmen des Mannes), und eine obere costale (das costale Athmen des Weibes) an. Die erstere Athmungsweise scheint eine pathologische zu sein: diaphragmales Athmen mit Einziehung längs der Abgangslinie des Zwerchfells.

Die Zahl der Athemzüge variirt, auch abgesehen von der willkührlichen Verminderung und Vermehrung, wesentlich bei den Krankheiten verschiedener Organe. Beschleunigung fällt zumeist mit jenen Bedingungen zusammen, welche die Respiration zugleich angestrengt machen, also vorzüglich mit Verminderung der respiratorischen Oberfläche der Lunge, behindertem Luftzutritte, veränderter Blutbeschaffenheit (Leukaemie, Anaemie), aber die Bedeutung des nervösen Einflusses äussert sich sogleich und wesentlich durch die Bedeutung des Schmerzes beim Einathmen für die Zahl der Athemzüge (Rühle). Die absolute Vermehrung der Athemzüge kann 100 pr. Minute übersteigen, doch erhebt sie sich für gewöhnlich nicht weit über 40. Sehr wichtig in diagnostischer Beziehung ist die Betrachtung des Verhältnisses der Zahl der Athemzüge zu jener der Pulsschläge, die vom normalen (1:4 - 1:3,5) schwanken kann von 1:7 - 1:1. Mit die bedeutendste relative Steigerung der Respirationsfrequenz wird bei der Lungenentzündung beobachtet, die bedeutendsten Verminderungen trifft man bei Gehirnerkrankungen an. - Auf die Häufigkeit der Athemzüge wirken zahlreiche Krankheiten ein, die zum gemeinsamen Charakter eine Volumvermehrung des Inhaltes der Schädelhöhle haben, sie vermindern die Zahl derselben. So Blutungen, Geschwülste, Abscesse. Von Krankheiten der Medulla oblongata, die die Gegend

des Noeud vital betreffen, kennt man einen verlangsamenden Einfluss auf das Athmen.

Hier, dann auch bei Herzfehlern, Herzverfettung wird das von Traube hervorgehobene Cheyne-Stokes'sche Respirationsphänomen beobachtet: Lange Pausen der Athemthätigkeit, dann von oberflächlichen Athemzügen zu tiefer Dyspnoe sich steigernde rasche Respirationen. Ganz allgemein findet es sich da, wo in Folge stark verminderter Sauerstoffzufuhr die Erregbarkeit der das respiratorische Centrum zusammensetzenden Nervenzellen in höherem Grade abgenommen hat. Anderseits ist die reflektorische vom Grosshirn aus erfolgende Beschleunigung der Athemzüge wohl bekannt, welche z. B. Gemüthsaffekte der verschiedensten Art kennzeichnet. Bei manchen Zuständen erhöhter Reflexthätigkeit, z. B. bei Hysterie, kommt solche Beschleunigung der Athemzüge leichter, selbst habituell zu Stande. So entsteht bei vielen Leuten, besonders bei Hysterischen, bei abnormen Temperaturgraden das Bedürfniss, rascher zu athmen. Auch Schmerzenserregung, Hautreize und manche Erregungen von innern Theilen aus erhöhen reflektorisch das Athembedürfniss. Ein spezielles Verhältniss in dieser Richtung nehmen die Pleura und die Respirationsschleimhaut ein. Nicht allein, dass pleuritischer Schmerz durch die Hemmung der Tiefe des einzelnen Athemzuges die Zahl der respiratorischen Bewegungen erhöht, so lässt sich auch bei minder schmerzhaften Reizungen der Pleura eine Einwirkung auf Form und Zahl der Athmungen nicht verkennen. Von der Respirationsschleimhaut steht in einem besonderen Verhältnisse derjenige Theil, der vom Nervus laryngeus superior versorgt wird. Was Rosenthal's schöne Entdeckung für den Stamm desselben lehrte, muss natürlich auch auf alle verbreiteten Reizungen seiner Aeste Anwendung finden. Bernard hat aufmerksam gemacht, dass die Respiration bei strangulirten Thieren stille steht, auch wenn man sie tracheotomirt. Aehnlich erklärt sich die Verlangsamung der Respiration bei Entzündungen der Kehlkopfschleimhaut, noch ehe Stenose vorhanden ist. Weiterhin ist es freilich die Stenose des Kehlkopfs oder der Luftröhre an und für sich, die Verlangsamung der Respiration bedingt (wie? werden wir alsbald sehen). Abgesehen von den oberen Luftwegen beschleunigt jede Verkleinerung der respiratorischen Oberfläche die Zahl der Athemzüge, nicht minder thut dies die verminderte Aufnahmefähigkeit des Blutes für den Sauerstoff (Leukaemie, Anaemie, Kohlenoxydgasvergiftung).

Der Effekt der Respirationsbewegungen kann auf dreierlei Weise bemessen werden, 1) nach der Volumszunahme der Lungen, erkennbar durch die Mensuration des Brustkorbes und die Percussion der Lungen. Davon in den beiden nächstfolgenden Abschnitten, 2) nach der Menge der in der Lunge enthaltenen, der aus- und der eingeathmeten Luft; hierüber gibt die Spirometrie Aufschluss, und 3) nach den Spannungsverhältnissen der Athmungsluft. Nach tiefstmöglichem Ausathmen bleibt eine Menge von ca. 1230-1640 Cc. »rückständiger« Luft im Brustraume zurück; nach gewöhnlichem Ausathmen kann man durch angestrengte Exspiration noch ca. 1280-1800 Cc. »Reserveluft« ausstossen, bei einem gewöhnlichen Athemzuge werden etwa 500 Cc. »Athmungsluft« aus- und eingeathmet, nach gewöhnlicher Inspiration kann man durch besondere Anstrengung noch eine Quantität (»Complementär-«) Luft einathmen. Die ganze Luftmenge endlich, welche man vom Momente einer möglichst tiefen Inspiration bis zur möglichst vollendeten Exspiration auszuathmen vermag, wird als vitale Capacität bezeichnet, beträgt im Mittel bei kräftigen, erwachsenen Männern 3200 Cc. Die Druckverhältnisse gestalten sich nach Donders so, dass in der Luftröhre beim Ausathmen höchstens 2-3 Mm. Hg, beim Einathmen - 1 Mm. Hg Druck stattfindet, indess bei forcirtem Athmen der stärkste negative Inspirationsdruck auf 57 Mm., der stärkste Exspirationsdruck auf 87 Mm. im Mittel sich beläuft. - Mit jeder Inspiration ändern beide Lungen ihre Form und zwar an der Spitze am wenigsten, an der Basis am meisten, an dem hinteren Rande weniger, als dem vorderen. Mit jeder Exspiration kehren beide Lungen zu ihrer früheren Form zurück. Daraus resultirt eine inspiratorische Verschiebung jedes Punktes der Pleura pulmonalis der gegenüberliegenden Pleura costalis, resp. diaphragmatica oder dem Mittelfelle gegenüber, welche hauptsächlich in der Richtung von oben nach abwärts erfolgt, doch auch in der Richtung von hinten nach vorne, von aussen nach innen u. s. w. Jede Exspiration bringt eine Verschiebung in entgegengesetzter Richtung. Diese Verschiebungen erfolgen nicht ganz in gleicher Weise bei der Rückenlage, aufrechter Stellung, linker und rechter Seitenlage; die topographische Percussion, welcher man die näheren Aufschlüsse hierüber verdankt, weist nach, dass diese Verschiebung für den unteren Lungenrand bis zu 1", ja darüber betragen kann, ferner, dass sie für den Lungenrand bedeutender ist, wie für die

mittlern Theile der Superficies diaphragmatica, wie dies ohnehin nach den eigenthümlichen anatomischen Verhältnissen des Diaphragma's erwartet werden muss.

Normal von statten gehende Respiration beweist, dass die Beweglichkeit der Brustwand, die Innervation und die Zusammenziehung der bewegenden Muskeln, endlich die Erweiterungsfähigkeit der Lungen die normale ist. Störungen eines jeden dieser Momente können der Respirationsweise einen pathologischen Typus verleihen, wie dies auch ferner durch zu starke Ausdehnung der Unterleibsorgane und abnorme Blutbeschaffenheit geschehen kann. So sieht man den durch Rachitis verkrümmten Brustkorb sich ungleichförmig bei der Inspiration bewegen, die gelähmte Seite bei Apoplektischen schwächere In- und Exspirationsbewegungen machen, ebenso die verkümmerte Seite bei Agenesie des Gehirns, so wird ferner bei progressiver Muskelatrophie bisweilen eine Seite weniger erweiterungsfähig. Am häufigsten jedoch sind es Krankheiten der intrathoracischen Organe, welche eine veränderte Athmungsweise herbeiführen. Hier gilt dann der Grundsatz, dass jeder einzelne Theil der Brustwand in seiner respiratorischen Bewegungsfähigkeit abhängig ist von der Ausdehnungsfähigkeit der zunächst darunter gelegenen Theile. So behindert pneumonisch, tuberculös infiltrirtes, atelektatisches, cirrhotisches, hämorrhagisch infarcirtes Lungengewebe die respiratorische Bewegung einzelner Parthieen oder einer ganzen Seite der Brustwand, nicht minder pleuritische Exsudate oder Luftergüsse im Pleurasacke, welche die Lunge von der Brustwand wegdrängen, in gleicher Weise Tumoren der Mediastinalorgane, aber es kann sich anderseits, wenn dünnwandige, ausdehnungsfähige, oberflächlich liegende Cavernen entstanden sind, die benachbarte Brustwand, zuvor weniger beweglich, wieder ebenso stark oder noch stärker als normaler Weise bei der Respiration ausdehnen. Pleuritische Exsudate und Pneumothorax mindern zugleich die (ganz localen) Formveränderungen der Intercostalräume, was die Erkrankungen des Lungenparenchymes nicht im gleichen Maasse zu leisten im Stande sind.

Mit der Aufstellung pathologischer Respirationstypen ist es auch jetzt noch eine ziemlich missliche Sache. Kann der Respirationsmechanismus schon an und für sich als ein sehr complicirter Vorgang angesehen werden, so ist diess noch weit mehr mit jenen gestörten Athmungsformen der Fall, welche von Krankheiten der Athmungswerkzeuge abhängen. Man muss in jedem Falle beobachten, welche Bewegungen des Brustkorbes und der wenigen anderen in Frage kommenden Theile, namentlich des Kehlkopfes und der Bauchwand vermehrt, welche vermindert und welche von ihrer Richtung abgelenkt oder verkehrt erfolgen. Dieses nächste Beobachtungsresultat muss sodann aus der gesteigerten oder paralysirten Action der normalen Respirationsmuskeln, aus dem Eingreifen der Hülfsmuskeln und aus den veränderten Druckverhältnissen, die auf die Brustwand einwirken, erklärt werden. Immerhin lassen sich auch bei einer solchen eingehenderen Betrachtungsweise der Einzelfälle wiederkehrende Typen ausfindig machen, ja es lassen sich diese an die normalen Acte und Modifikationen der Athemzüge anlehnen. Wir unterscheiden demnach:

1) Inspiratorische Dyspnoe. Langezogene Inspirationen mit grösstem Aufwande an Muskelkraft vollzogen, oft mit Streckung der Wirbelsäule und rückwärts gebeugtem Kopfe, meist unter starkem Herabsteigen des Kehlkopfes. Dabei die Zeichen des behinderten, verzögerten Lufteintrittes und ein zischendes, schnurrendes, schlürfendes Geräusch im Kehlkopfe. Die Exspiration dagegen leicht, kurz, geräuschlos als ein rasches Zurücksinken der zuvor mühsam gespannten Brustwandungen. Wie bei Thieren die Vagusdurchschneidung diesen Zustand zur Folge hat, so kann er beim Menschen durch Lähmung des Erweiterers der Glottis (M. cricoarytaenoideus posticus) bewirkt werden 1). Ferner wird diese interessante Störung in ähnlicher Weise durch entzündliche oder wassersüchtige Anschwellung der aryepiglottischen Falten bewirkt, die wie Klappen durch Adspiration geschlossen, beim Ausathmen wieder auseinandergetrieben werden, endlich durch gestielte Polypen des Kehlkopfseinganges, die durch die Inspiration in die Glottis hereingezogen, durch das Ausathmen wieder herausgeworfen werden, weniger leicht durch in ähnlicher Weise flottirende Croupmembranen. Auch als Bestandtheil complicirterer Krampfanfälle (Epilepsie, Hysterie, Cholelithiasis, Spasmus glottidis) findet sich diese Form. Kinder mit Atelektase bieten in Folge der von Breuer nachgewiesenen Selbststeuerung der Lunge gleichfalls einen dahin gehörigen Respirationstypus: Verlängerung der Inspiration, kurze äusserst leichte Exspiration.

¹⁾ Ich habe dafür ein sehr sprechendes Beispiel in Virchow's Archiv beschrieben und seither noch oft diesen Arzt geräuschvoll einathmen, aber mit klangreicher Stimme sprechen hören.

- 2) Exspiratorische Dyspnoe. Lange, angestrengte, keuchende, namentlich durch starke Zusammenziehung der Bauchpresse und Beugung der Wirbelsäule kenntliche Ausathmung bei freier kurzer Inspiration. Am leichtesten verständlich ist deren Auftreten bei langgestielten Trachealpolypen, flottirenden Croupmembranen, Fremdkörpern im Luftrohre als Ventilwirkung. Aber sie findet sich auch als Folge des Zwerchfellkrampfes (Wintrich, v. Bamberger) und bei complicirteren dyspnoischen Anfällen vor, so bei Morbus Brightii. Die längere Dauer der Exspiration beim Emphysem hat F. Riegel graphisch nachgewiesen. Bei asthmatischen Anfällen handelt es sich ganz überwiegend um exspiratorische durch Lungenblähung entstandene Dyspnoe (Biermer), die wenigstens theilweise aus den Bedingungen der Selbststeuerung der Lunge zu erklären ist. Exspiratorische Dyspnoe hinterlässt als anatomisches Zeichen tiefe scharfe parallele Eindrücke an der convexen Leberfläche » Exspirations-Furchen« (Liebermeister), die von der Einwärtsdrehung des unteren Rippenrandes durch den M. transversus abdominis herrühren.
- 3) Unteres Brustathmen. Vergrössertes und zum Theil entstelltes Bild der männlichen Athmungsweise. Geringe Bewegung oder doch geringe Vorwölbung der oberen Brusthälften bei starker Spannung ihrer Muskeln, die sie bei geschrumpften Lungenspitzen höchstens nach oben zu ziehen vermögen. Um so stärkere Wölbung der unteren Brusthälften bei starkem Spiele der Intercostalräume, bei starker Vordrängung der Bauchwand durch das mächtig agirende Diaphragma. Mässig angestrengte Exspiration, sehr beschleunigte Folge der Respirationen. Die meisten Phthisiker bieten dieses Bild.
- 4) Oberes Brustathmen. Gesteigert weiblicher, etwa den Verhältnissen am Schlusse der Schwangerschaft entsprechender Respirationstypus giebt sich zu erkennen durch starke inspiratorische Anspannung der Rippenhalter, Kopfnicker und Intercostalmuskeln, beträchtliche Hebung der oberen Rippen, Erweiterung der oberen Thorax-Apertur bei geringer oder mangelnder Zwerchfellsbewegung. Demnach bleiben die unteren Rippen, die vordere Bauchwand fast in Ruhe, ihre Bewegung ist stark vermindert oder fast auf O reducirt. Diese Athmungsform findet sich vorzüglich bei Lähmung oder bei Hinaufdrängung, oder bei gespannter Abflachung des Zwerchfells. Die gewöhnlichen Beispiele werden durch grosse Geschwülste oder flüssige Ergüsse des Unter-

leibs geliefert, und sind denn durch die gleichzeitige Erweiterung der unteren Thorax-Apertur und durch den Hochstand des Herzens leicht kenntlich.

- 5) Typus der Seitenlage. Vermindertes Athmen der einen Seite, gesteigertes der andern als Folge davon. Alle wesentlichen Spannungsveränderungen der Brustwand, mögen die wirkenden Kräfte an deren Aussen- oder Innenseite ihren Angriffspunkt finden, beschränken die Athembewegung. Stellt man durch eine klaffende Wunde der Brustwand beide Seiten derselben unter gleichen Luftdruck (frei communicirender Pneumothorax), so wird die Bewegung der Brustwand fast aufgehoben. Durch einen Flüssigkeitserguss in den Pleurasack, durch Elasticitätsverlust der Lunge, durch Schrumpfungen derselben, durch Druck von aussen auf die Brustwand, wie er bei der Seitenlage vorkommt, wird die Arbeitsleistung der Einathmungsmuskeln für eine Seite vermindert, in Folge dessen öfter in Anspruch genommen, an Intensität gesteigert und somit die andere Seite, an der die volle Wirksamkeit der Athmungsmuskeln sich entfalten kann, stärker erweitert.
- 6) Unvollständiger Lufteintritt. Typus der Neugeborenen, deren Athmungsmuskeln wohl in volle Thätigkeit treten, deren atelektatische Lunge jedoch nur unvollständig Luft aufnimmt. Alle Zustände, die den Zutritt der Athmungsluft in irgend einem Theil des Athmungsrohrs behindern, sei es im Isthmus faucium, sei es in den Bronchien zweiter oder dritter Ordnung, haben verstärkte Anstrengungen der Athemmuskeln, jedoch theilweise verminderten, theilweise verkehrten Effekt derselben zur Folge. Die Athmung ist angestrengt, Schlüsselbein und Brustbein und obere Rippen werden gehoben, der Kehlkopf tritt herab, die Glottis wird erweitert, aber die Athmungsräume werden nicht von Luft erfüllt, der Druck auf der Innenfläche der Brustwand mindert sich, der überwiegende äussere Luftdruck drängt die nachgiebigen Theile der Brustwand nach innen. So die Schlüsselbeingruben, die Intercostalräume und vor Allem den Schwertfortsatz und die angrenzenden Rippenknorpel. Dabei ist die Zahl der Athemzüge, nur wenn die Bronchien verstopft oder verengt sind, vermehrt, bei höherem Sitze der Verengung verlangsamt, und in diesem Falle oft das Ein- und Ausathmen von schnarchendem oder tönendem Geräusch begleitet, je nach dem Sitz im Rachen oder Kehlkopf. Das Zwerchfell, weit entfernt durch seine Contraction die Einziehung eines Theiles der Brustwand zu bewirken, wird selbst durch jede

Inspiration überwunden und nach oben adspirirt. Die vordere Bauchwand sinkt beim Einathmen ein, anstatt sich zu wölben, der untere Leberrand rückt nach oben. Bei langer Dauer solchen Missverhältnisses leidet das Wachsthum des Brustkorbs, er bleibt oder wird eng. Die Haupterscheinung bei dieser Athmungsform ist die oft zolltiefe Einschnürung längs der Harrison'schen Furche. Je biegsamer die Brustwand, um so leichter entsteht sie; sie wird halbseitig, oder überwiegend halbseitig beobachtet bei Broncho-Stenose, bei Tracheobroncho-Stenose und bei Atelektase einer Seite. Sie findet sich ausserdem bei allen Verengerungen des Rachens, des Kehlkopfes und der Luftröhre, so wie bei starken Catarrhen und den asthmatischen Anfällen der Emphysematiker.

IV. Pulsationen.

Alle durch die Herzsystole oder Diastole erregten, mit der einen oder andern in der Zeitfolge übereinstimmenden Bewegungen werden mit diesem Namen bezeichnet. Die wichtigste dieser Bewegungen ist die von der Herzspitze erregte der Herzstoss, richtiger der Spitzenstoss des Herzens genannte. Mit dieser hängen oft räumlich Pulsationen weiter aufwärts oder weiter nach rechts gelegener Theile des Herzens zusammen, die man als sichtbare Herzbewegung bezeichnen kann. Ferner werden zu besprechen sein die Pulsationen zwischen Nabel, Processus xiphoideus und beiden Rippenbogen: epigastrische Pulsation, vorne zwischen dem zweiten und vierten Rippenknorpelpaare: Puls der grossen Arterienstämme, ferner die Jugular-, Carotiden-, Subclavia-Pulsation und der Venenpuls am Halse.

A. Der Spitzenstoss des Herzens wird bei Gesunden im fünften linken Intercostalraum zwischen Papillar- und Parasternallinie als eine mit 2—3 Fingerspitzen leicht zu überdeckende systolische, leichte Vorwölbung der Haut wahrgenommen, so wenigstens bei völliger Körperruhe und horizontaler Rückenlage oder sitzender oder aufrechter Stellung. Allein er wechselt auch bei völlig Gesunden seine Lage. Ob jemand steht oder liegt 1), hat kaum Einfluss, bei tiefem Einathmen dagegen tritt er in den sechsten Intercostalraum herab und wird schwächer, bei möglichst tie-

¹⁾ Nur selten beobachtete man Emphysematiker, deren im Stehen stark verbreiteter Herzstoss, im Liegen fast unfühlbar wird, indess gleichzeitig die Herzdämpfung sich auf ein Minimum reducirt.

fem Ausathmen bewegt er sich um einen Intercostalraum nach oben und wird verbreiteter. Bei der linken Seitenlage rückt er sogleich in die Papillarlinie und noch etwas über dieselbe hinaus, ja bei manchen Menschen mit besonders beweglicher Lage des Herzens bis zur Mitte zwischen Papillar- und Axillarlinie vor. Er rückt dagegen bei rechter Seitenlage um etwas Weniges nach rechts, ohne jedoch dabei auch nur mit einiger Häufigkeit die Parasternallinie nach innen zu überschreiten. Der Herzstoss nimmt dann unter folgenden Verhältnissen eine abnorme, aber nicht pathologische Lage ein: bei Heterotaxie (Situs inversus viscerum, Dexiocardie) der Brustorgane schlägt er an der entsprechenden Stelle rechts. Bisweilen bei sehr kurzem Brustkorbe findet er sich einen Insercostalraum höher, bisweilen bei sehr langem Thoraxbaue um einen tiefer. Bei Kindern zwischen zwei und zehn Jahren findet er sich, in der Papillarlinie, häufig auch noch etwas jenseits derselben verbreitet.

Die Frage, warum von allen muskulösen Theilen des Herzens, die doch sämmtlich mit der Systole oder Diastole Formveränderungen erleiden, nur einer, gerade der an der Stelle des Herzstosses gelegene, seine Bewegung den Weichtheilen der Brustwand mittheile, hat zahlreiche Untersuchungen sowohl von Seiten der Physiologen als von jener der Pathologen hervorgerufen, aus welchen eine Anzahl von Theorieen des Herzstosses hervorgegangen sind. Das Herz liegt innerhalb des Brustkorbes in der Richtung von reckts hinten und oben nach links vorne und unten, etwa einen Winkel von 60° mit der Längsachse des Brustkorbes bildend so, dass es sowohl durch das Diaphragma, auf dem es aufliegt, als auch durch die grossen Gefässe, an welchen es aufgehängt ist, getragen, ausserdem durch das Perikard mit seinen Bändern und Fettfalten, sowie die begrenzte Dehnbarkeit der Lunge in seiner seitlichen Beweglichkeit beschränkt wird. Aus diesen Verhältnissen erklärt sich zunächst die Verschiebung des Herzens, somit auch des Herzstosses nach auf- und abwärts beim Athmen, sofern das Diaphragma seine Lage ändert und die grossen Gefässe dehnbar sind, ferner die seitliche Verschiebbarkeit des Herzens, natürlich geht auch hieraus hervor, dass die Herzspitze am weitesten nach unten und links und nach vorne gelagert sein muss. Desshalb bezeichnet man die am weitesten nach unten und links gelegene pulsirende Stelle als jene des Spitzenstosses, wo verbreitete Pulsation vorhanden ist. Trotz der entgegenstehenden Ansicht Hamernik's kann man sich leicht davon über-

zeugen, dass die Herzspitze oder ein derselben sehr nahe gelegener Abschnitt des linken Ventrikels den Herzstoss liefert, wenn man bei einem Agonisirenden die Stelle des Spitzenstosses bezeichnet und vor der Section eine Nadel an derselben einsticht 1). Man kann sich oft durch die Percussion überzeugen, dass die Herzspitze sogar durch eine nicht unbeträchtliche Schicht von Lungengewebe hindurch ihren Stoss sichtbar macht. Bei Emphysematikern ist diess sogar die Regel. Die vordere Fläche des Herzens, überwiegend dem rechten und nur mit einem daumenbreiten Streif dem linken Ventrikel angehörig, wird, so weit sie nicht mit der gegenüberliegenden Innenseite der Brustwand conform ist, und dicht mit dieser der jeweiligen Lage des Herzens entsprechend in Berührung steht, von Lunge überlagert, aber sie kann, so weit sie einmal anliegt, nicht im mindesten durch die Systole oder Diastole von der Brustwand entfernt werden (Kiwisch). Der Herzstoss kann daher nicht durch ein Anschlagen der vorher zurückgewichenen, sondern nur durch ein stärkeres Andrängen der zuvor lose - ohne Druck auszuüben - anliegenden Herzspitze bewirkt werden: Das Herz verkürzt sich, während und wegen der Systole seiner Ventrikel, würden daher die grossen Gefässe sich nicht gleichzeitig strecken, so würde die Herzspitze nach oben und hinten gezogen werden und nicht, wie es thatsächlich der Fall ist, die Weichtheile des Intercostalraumes, hinter welchem sie gelegen ist, vorwölben (Kornitzer). Die Vorwölbung aber wird nur dadurch ermöglicht, dass die Herzspitze durch die Contraction ihrer dem linken Ventrikel angehörigen starken Muskulatur, wie jeder in Contraction begriffene Muskel während der Systole erhärtet. Hiedurch dazu geschickt gemacht, wölbt sie dann durch Andrängen gegen denselben, den Punkt der Weichtheile vor, dem sie anliegt, weil allein der von vorne nach hinten gerichtete Durchmesser des Herzens während der Systole zunimmt (Ludwig); ferner, weil ähnlich wie bei einer Turbine, ein Rückstoss in der dem austretenden Blutstrome entgegengesetzten Richtung stattfindet (Gutbrod und Skoda). Dieser letztere Punkt ist am meisten bestritten worden, allein ich kann die vorgebrachten Gründe

¹⁾ Es giebt seltene Fälle von Achsendrehung des Herzens in Folge complicirter Lungen- oder Pleuraerkrankungen und eigenthümlicher diese begleitender Druckverhältnisse, bei welchen z. B. die Herzspitze nur nach links und unten, nicht nach vorne gekehrt ist. Hier mangelt der Spitzenstoss, und können auch alle übrigen Zeichen vor einer Unterschätzung der Grösse des Herzens nicht schützen.

nicht für genügend halten, um gerade hier ein allgemeingültiges physikalisches Gesetz unanwendbar erscheinen zu lassen. Die Beweglichkeit des Herzens im Ganzen ist allseitig erwiesen, dasselbe kann sicher gleichzeitig durch das Ausströmen des Blutes aus den Ventrikeln nach oben den Impuls zu einer Bewegung nach abwärts erfahren, und dadurch gegen Diaphragma und Brustwand stärker angedrängt werden, während gleichzeitig seine Spitze der Basis sich nähert. Diess ist ebensogut möglich und denkbar, als dass jemand, der von einem Dache fällt, während des Fallens die Beine anzieht. Die Annäherung der Herzspitze an die Basis wird aber durch die gleichzeitige Streckung der grossen Gefässe vollständig ausgeglichen.

In dieser Weise glaube ich die meisten der seither veröffentlichten sogen. Theorieen des Herzstosses zur Erklärung dieses in
seiner Erscheinung so einfachen, in seiner Begründung wahrlich
nicht gerade durchsichtigen Phänomens verwenden zu können, von
der Ansicht ausgehend, dass alle überhaupt einmal richtig beobachteten und gedeuteten Thatsachen, welche sich auf die Lage oder
Bewegung des Herzens beziehen, zu deren Erklärung verwendbar
sein müssen, und dabei keineswegs mit einander in Widerspruch
gerathen dürfen ¹).

Unter pathologischen Verhältnissen kann der Herzstoss seine Lage in so staunenswerther Ausdehnung ändern, dass zwischen zweiter und neunter linker, vierter und achter rechter Rippe, zwischen linker Axillarlinie und rechter Papillarlinie kein Punkt eines Intercostalraumes gelegen ist, an welchem nicht zeitweise der Herzstoss schon beobachtet worden wäre. Die Höhe, in welcher er beobachtet wird, ist einfach abhängig von dem Stande des Diaphragma's. Bedingen verminderter elastischer Zug der Lunge oder Zwerchfellskrampf einen allgemeinen, Flüssigkeit oder Luft im Herzbeutel oder in einem Pleurasacke, Gewichtszunahme des Herzens

¹⁾ Wenn ich so die meisten seitherigen »Theorieen des Herzstosses« als Feststellung thatsächlich diesem Phänomen zu Grunde liegender Bedingungen hier mitverwerthe und nur deren Gleichberechtigung behaupte, so muss ich die von Scheiber (Virch. Arch. Bd. XXIV.) gegebene Theorie, dass nach Analogie des Compensationsstreifens der stärkere linke Ventrikel eine hackenförmige Krümmung der Herzspitze nach links und vorne bei der Systole bedinge, wirklich in das Gebiet der Theorieen verweisen, indem noch Niemand bei den Vivisectionen oder bei den Betastungen des lebenden menschlichen Herzens eine solche Krümmung wahrgenommen hat.

selbst oder demselben nahegelegener Geschwülste einen theilweisen Tiefstand jenes Septum transversum, so nimmt der Herzstoss an demselben, entsprechend der veränderten Lage der Herzspitze Theil. Zieht die schrumpfende Lunge das Diaphragma in die Höhe, vermag es wegen Lähmung seiner Muskulatur dem Zuge der Lunge keinen Widerstand mehr entgegen zu setzen, oder wird es durch erhöhte Spannung der Unterleibsorgane, gleichgültig ob bedingt durch feste Geschwülste, Gas oder Flüssigkeitsansammlung, hinauf gedrängt, so erfolgt auch Hochstand des Herzstosses.

Die seitlichen Verschiebungen des Herzstosses sind abhängig von Vergrösserung des Herzens, anomalem Inhalte des Perikards oder veränderter Lage des Mediastinums. Jede bedeutende Vergrösserung des Herzens, die ohne sonstige erhebliche Lageveränderung der Brustorgane sich entwickelt, giebt nicht allein zum tieferen Stande des Zwerchfelles und des Herzstosses, sondern auch zum Vorrücken der Herzspitze nach links hin Veranlassung, wobei allerdings diese Lageveränderung des Herzstosses um so bedeutender ausfällt, je mehr gerade der linke Ventrikel überwiegend oder ausschliesslich von der Vergrösserung betroffen wird. Wird der Herzbeutel beträchtlich durch Flüssigkeit oder Gas ausgedehnt, so nimmt auch hier entsprechend der im Verhältnisse zu jenen Fluidis beträchtlicheren Schwere des Herzens und der Dehnbarkeit der grossen Gefässe das Herz stets den untersten und mit seiner Spitze zugleich einen weit nach links hin gelegenen Theil des Perikardialraumes ein, und es findet somit, während jener Erguss entsteht, eine Verrückung des Herzstosses nach links und abwärts statt. Die Lage der Laminae mediastini und des zwischen denselben gelegenen Herzens ist, abgesehen von der Druckwirkung der Tumoren, welche bisweilen im Mediastinum selbst oder an den Nachbarorganen desselben zu Stande kommen, hauptsächlich veränderlich durch einseitige Grössenab- oder Zunahme der Lunge oder durch anomalen Inhalt der Pleurasäcke. Schrumpft eine Lunge, so wird weit eher noch als die Brustwand eingebogen wird, das nachgiebigere Mediastinum nach der kranken Seite herübergezogen. Ergiesst sich Flüssigkeit in solcher Menge in einen Pleurasack, dass die Pleura diaphragmatica ganz davon bedeckt wird, so macht sich eine Verschiebung des Herzstosses nach der gesunden Seite hin bemerklich, die allerdings von links nach rechts hinüber leichter und ausgiebiger zu Stande kommt als in der entgegengesetzten Richtung. Auch wenn das ganze Herz von der linken Seite auf

diese Weise nach der rechten hinübertransportirt wurde, ist doch noch die am weitesten nach unten und links gelegene pulsirende Stelle als jene des Spitzenstosses zu betrachten, da bei der Verrückung die Richtung der Axe und Spitze des Herzens nicht erheblich sich ändert (Bamberger). Das Herz kann dann an der neuerlangten Lagerungsstelle adhärent werden und dauernd befestigt bleiben, oder es rückt mit der Resorption des Ergusses nach seiner früheren Lagerungsstelle herüber, oder es wird durch nachfolgende Schrumpfung der vom Exsudat comprimirt gewesenen Lunge noch weiter in die erkrankte Seite hereingezogen. Sowohl nach der gesunden Seite hereingedrängt, als in die kranke herübergezogen, kann das Herz einen abnormen Grad von Beweglichkeit sowohl als von Unbeweglichkeit zeigen, welche sich mit Bezug auf die oben erwähnten Erscheinungen der normalen Verrückung des Herzstosses beim Athmen und bei der Seitenlage bemerklich machen. Ich habe mehrmals Kranke gesehen, die über eine zeitweise Sensation von dumpfem Schmerze noch Jahre lang, nachdem sie pleuritische Exsudate überstanden hatten, klagten, als deren einziger Grund sich bei der Untersuchung die abnorme bleibende Dislocation des Herzens in die gesunde Seite auswies.

Die Stärke des Herzstosses variirt gleichfalls in der auffälligsten Weise. Er kann abgeschwächt werden bis zum Verschwinden der sichtbaren, ja auch der fühlbaren Pulsation und zwar sowohl durch Schwäche der Innervation; als auch durch Degeneration, seltener Atrophie des Herzmuskels und durch Interposition von Flüssigkeit oder lufthältigem Lungengewebe zwischen Herz und Brustwand. Der Herzmuskel kann sich normal contrahiren, aber er wird nicht kräftig dazu angeregt und sein Stoss erscheint desshalb schwach: während der Ohnmacht, bei schweren Entkräftungszuständen, manchen Formen des Typhus, bei Kohlensäureanhäufung im Blute, bei Asphyxie; er ist fettig oder schwielig entartet und untüchtig zu energischen Contractionen bei Alcoholismus chronicus, bei Phosphorvergiftung, mitunter nach Typhus, acutem Gelenkrheumatismus, nach Perikarditis, nicht selten auch ohne bekannte Ursache. Tropfbare oder gasförmige Flüssigkeit lagert sich bisweilen bei linksseitigem Empyem oder Pneumothorax zwischen Herzspitze und Brustwand ein, stets aber bei bedeutendem Hydrops perikardii, Pneumoperikard, Perikardialexsudaten u. s. w. Sie lagert im ersteren Falle zwischen dem die Herzspitze bedeckenden Perikard und Mediastinum einerseits und der Pleura costalis

anderseits, im letzteren direkt zwischen Herzspitze und visceralem Blatte des Pericards auf der einen und parietalem Blatte desselben auf der andern Seite. Lufthältiges Lungengewebe endlich findet sich vor die Herzspitze, resp. die entsprechende Stelle der linken Lamina mediastini gelagert beim Emphysem und dann noch bei seltenen und eigenthümlichen Zuständen von Drehung des Herzens. Am seltensten ist es wirkliche Atrophie oder angeborene Kleinheit des gesammten Herzens, die auffällige Schwäche des Herzstosses bedingt, öfter findet sich eine im Verhältniss zu der Gesammtgrösse des Organes bemerkenswerthe relative Schwäche des Herzstosses bei durch Klappenkrankheit bedingter Kleinheit des linken Ventrikels vor.

Verstärkung des Herzstosses wird sowohl durch verstärkte Innervation des normal entwickelten Muskels, als auch durch die Hypertrophie desselben bedingt. Erstere ist die Folge direkter entzündlicher Reizung bei Perikarditis oder Myokarditis und giebt sich, wie ich auf zwei sichere Beobachtungen gestützt behaupten kann, bisweilen durch Schmerz bei jeder Herzcontraction als solche zu erkennen, oder sie ist von den Nervencentralorganen abhängig. In dieser letzteren Beziehung wird die Pathologie von jetzt an auf sichere physiologische Thatsachen sich stützen können. Die schönen Untersuchungen v. Bezold's, Ludwig's und seiner Schüler haben solche geliefert. Sie haben einen ungeahnten Reichthum des Herzens an Innervationsquellen kennen gelehrt, durch den eine Reihe seither zerstreuter und deutungsloser pathologischer Erfahrungen erst Stellung, Verständlichkeit und Zusammenhang gewinnen. - Die Sache stellt sich so: das Herz hat sein automatisches Bewegungsnervensystem in sich, das rhythmische aber nur schwache Contractionen zu erzeugen vermag. Lässt man auf die Herzwände und deren Ganglien wärmeres Blut oder Plasma einwirken, so steigt die Frequenz der Contractionen. Hierin liegt der Grund der Pulsbeschleunigung in fieberhaften Krankheiten. Steigt der Widerstand in den Arterien (Embolie der Pulmonalarterie, Krampf im Fieberfrost etc.), so hebt sich entsprechend die Zahl der Herzcontractionen. Der Reiz der erhöhten Spannung der Herzwände ist Ursache. Arterienparalyse lässt die Zahl der Herzschläge sich vermindern. Auffällige Unregelmässigkeit und Schwäche der Pulse ist das constanteste Zeichen der Herzmuskelentzündung und -Entartung. zweites, fortwährend ohne besondere Erregung thätiges, motorisches Centrum für das Herz liegt im verlängerten Marke, es verstärkt

und beschleunigt die Bewegung, welche von den im Herzen selbst gelegenen Ganglien aus erregt wird. Die von diesem Centrum sich begebenden Fasern durchlaufen am reichlichsten das Halsmark, doch auch noch das Lendenmark, sie treten allmählig in dem ganzen Grenzstrange des Sympathicus aus und verlaufen von dem Brusttheile desselben abwärts, von dem Bauch- und Lendentheile aufwärts zum Herzen. Dieses automatische Centrum im verlängerten Marke kann vom Sensorium aus in Folge starker Erregung sensibler Nerven tetanisirt werden. So ist die bei Angst, Schreck, Erregung, starken Sinneseindrücken, Schmerz entstehende Palpitation zu verstehen. Ein kleiner Theil erregender Fasern unbekannten Ursprunges verläuft im Halssympathicus. Diesen erregenden Systemen steht das hemmende des Vagus entgegen, dessen Einfluss die Herzcontractionen verlangsamt und abschwächt, den Blutdruck herabsetzt, so wie jene den Rhythmus beschleunigen und den Druck steigern. Direkte Vagusreizung kommt in der Krankenbeobachtung bei manchen Halsgeschwülsten zur Wahrnehmung. Man kann durch Druck auf eine solche Geschwulst den Puls verlangsamen und unregelmässig machen. Viel häufiger kommt Pulsverlangsamung durch reflektorische Vagusreizung zu Stande. So bei neuralgischen Anfällen, Gallensteinkolik, Nierensteinkolik etc. Die meisten Formen von Schmerzerregung verlangsamen vom Vagus aus reflektorisch die Herzaction, die meisten anderweiten sensibeln Reize erhöhen mittelbar vom Grosshirn und Sympathicus aus die Pulsationszahl des Herzens.

Die Hypertrophie des Herzens oder einzelner Abschnitte desselben ist stets Folge von Hindernissen, die seiner Thätigkeit entgegenstehen und durch verstärkte Zusammenziehungen überwunden
werden müssen. Sie ist daher stets verursacht durch erhöhte Thätigkeit und die daran sich knüpfende nutritive Störung. Solche
Hindernisse können gegeben sein durch Faserstoff- oder Bindegewebsumhüllung des Herzens, durch zerstörende oder zur Verdickung
und zum Starrwerden führende Klappenkrankheiten, oder durch
Verengerung oder Erweiterung der aus dem Herzen hervortretenden grossen Arterienstämme oder zahlreicher grosser Aeste derselben.

Man unterscheidet dem Grade nach die einfach verstärkte, erschütternde und hebende Beschaffenheit des Herzstosses. Die letztere erreicht bisweilen solches Maass, dass eine ausgedehnte Parthie der Brustwand, welche der Höhe nach 3—4 Rippen umfasst, bei jeder

Systole gehoben wird, sie kann aber auch auf eine kleine Parthie eines Intercostalraumes beschränkt sein, und sich hier doch dem aufgelegten Finger in recht ersichtlicher Weise mittheilen. Man beobachtet dieselbe vorzüglich bei bedeutenden Hypertrophieen des linken Ventrikels.

Mit der Stärke des Herzstosses geht weder die Ausdehn u n g noch die Frequenz desselben stets gleichen Schritt. Man kann wohl annehmen, dass der verstärkte Herzstoss häufiger verbreitet, der schwache häufiger wenig ausgedehnt wahrgenommen werden wird, allein es finden hiefür auch zahlreiche Ausnahmen statt, wie die so eben erwähnte Beobachtung eines umschriebenen hebenden Herzstosses, und anderseits das Vorkommen eines verbreiteten schwachen Herzstosses in dem Falle beweist, wo eine in grosser Ausdehnung vor der Herzspitze an der Brustwand anliegende feste Masse oder Flüssigkeitsschicht die Herzbewegung gleichmässig aber schwach fortleitet. Nächst der Stärke der Herzcontractionen ist daher als Bedingung für eine ausgebreitete Wahrnehmbarkeit des Herzstosses ein ausgedehntes Entblösstsein des Herzens von der Ueberlagerung der Lungenränder, oder eine Verbindung der vorderen Fläche des Herzens mit der Innenseite der Brustwand durch gutleitende Körper zu verlangen. Vergrössert sich das Herz, ohne gleichzeitig erheblich tiefer gelagert zu werden, so drängt es von der Brustwand die Lungenränder hinweg, aber es wird auch bei Hochstand des Zwerchfells an die Brust angedrängt, ebenso durch dahinter gelegene Tumoren; seine Bewegung leitet sich gut fort, wenn die benachbarten Lungenränder luftleer (atelektatisch, hepatisirt, tuberculös u. s. w.) geworden sind.

Die Frequenz und der Rhythmus des Herzstosses bildet wiederum ein ganz eigenes Feld, auf das wir ausführlicher bei Besprechung der Palpation des Herzstosses und der Arterien zurückkommen werden. Schliesslich wollen wir noch in Kürze hier zweier besonderen pathologischen Formen des Spitzenstosses gedenken:

1) Systolisches Einsinken der Herzspitzengegend bezeichnet die Verwachsung der beiden Blätter des Herzbeutels (Skoda) selbst dann oft, wenn nur eine sehr kleine Stelle Sitz der Verklebung ist (Traube). Die systolische Annäherung der Herzspitze an die Herzbasis wird theils durch die Streckung der grossen Gefässe, theils durch die Locomotion des Herzens nach links und abwärts so ausgeglichen, dass dennoch eine systolische Vorwölbung als Spitzenstoss möglich und sichtbar wird. Wenn durch Verwachsung beider Blätter des Herzbeutels unter sich und des Mediastinums, das dem Herzbeutel anhaftet, mit der benachbarten Pleura costalis und pulmonalis die Locomotion des Herzens nach links und abwärts unmöglich wird, zieht sich mit der Herzspitze die angrenzende Parthie der Brustwand nach der Herzbasis nach hinten zurück. Zunächst sind es die Weichtheile des betreffenden Intercostalraumes, die diese Bewegung erkennen lassen. Ist aber der Herzbeutel nach rückwärts gegen die Wirbelsäule derb adhärent geworden, so werden auch die nächsten Rippen eingezogen, selbst der untere Theil des Sternums kann mit in diese

Bewegung eingehen.

2) Doppelter Herzstoss ist scheinbar vorhanden, wo die Systole und Diastole so stark und rasch erfolgen, dass jeder dieser Akte dem Auge, besonders aber der aufgelegten Hand die Wahrnehmung einer, gesonderten Erschütterung abgiebt. Das Zurücksinken der Brustwand mit der diastolischen Erschütterung gestattet ungemein leicht die Unterscheidung. Mit dem Radialpulse verglichen ist der Herzstoss anscheinend doppelt, wo jeder stärkeren eine schwächere für den Radialpuls wirkungslose Contraction folgt, die jedoch ihre zwei Töne liefert. Man findet diess Verhalten bisweilen in schweren acuten Krankheiten, besonders bei Anwesenheit ausgesprochener functioneller Hirnstörung. Wahre Duplicität des Herzstosses ist dort gegeben, wo die Zusammenziehung der Ventrikel in zwei Absätzen erfolgt. Dabei findet sich ein von dem normalen und von dem gewöhnlichen pathologischen ganz differenter Dicrotismus des Pulses und Verdoppelung des ersten Herztones vor. Das Vorkommen doppelten Spitzenstosses wegen ungleichzeitiger Contraction der Ventrikel, das früher schon seit Laennec öfter vermuthet worden war, ist neuerdings von Leyden für einen Fall complicirter Herzkrankheit so beweisend beschrieben worden, dass es sich nicht weiter anzweifeln lässt. Es ist jedenfalls in der Ausbildung, in der es sich da aus der Differenz des Carotiden- und Venenpulses erweisen liess, sehr selten.

B. Sichtbare Herzbewegung (ausserhalb des Herzstosses) kann sich zwischen beiden Axillarlinien und den zweiten Rippenknorpeln an jeder Stelle vorfinden. Zumeist auf die Weichtheile der Intercostalräume beschränkt, erlangt sie doch bisweilen eine solche Intensität, dass die Rippenknorpel, die Rippen und selbst ein Theil des Brustbeins miterschüttert werden. Fast in

allen Fällen ist diese Bewegung als Krankheitssymptom aufzufassen. Nur in dem einen Falle sehr starker Aufregung, sei sie gemüthlicher Art oder durch den Genuss von Reizmitteln, oder durch Körperanstrengung bewirkt, entsteht eine Ausdehnung der sichtbaren Herzbewegung, die sich vom Herzstosse um einen Intercostalraum auf- oder abwärts und um die Breite desselben nach innen erstrecken kann. Dieser noch unter den Breiten ziemlich normaler Verhältnisse vorfindlichen Erscheinung stehen unter den pathologisch begründeten jene Fälle am nächsten, wo Intoxicationen oder fieberhafte Aufregung als Ursache betrachtet werden müssen. Begünstigend wirkt dabei relative Grösse und Muskelstärke des linken Ventrikels, dünne Beschaffenheit der Brustdecken und nervöse Erregbarkeit. Auch Lageveränderungen des Herzens, die mit Adpression desselben an die Brustwand verbunden sind, so namentlich alle Formen von Hochstand des Herzens üben den gleichen Einfluss aus. Die meisten und bedeutendsten Formen verbreiteter sichtbarer Herzbewegung beruhen auf Herzvergrösserung, so namentlich alle, die bei normalem oder nach unten und aussen verrücktem Herzstosse jenseits des Brustbeines auf der rechten Seite wahrgenommen werden 1). Auch bei hypertrophischem Herzen steigert sich die Stärke und Ausdehnung jener Bewegung mit der Andrängung des Herzens gegen die Brustwand und jeder Verstärkung seiner Innervation. Am häufigsten sieht man links, etwa vom dritten bis fünften oder sechsten Intercostalraum mit nach abwärts und aussen zunehmender Breite die Vorwölbung der Intercostalräume erfolgen. Sie beginnt stets an der höchst pulsirenden Stelle und verbreitet sich mit kaum messbarer Schnelligkeit nach dem Ort des Spitzenstosses hin.

Ihrer anatomischen Begründung nach ist sie wohl stets zum kleineren Theile dem linken, zum grösseren dem rechten hypertrophischen Ventrikel zuzuschreiben. Auch die nach rechts vom Brustbein sich ausdehnende systolische Vorwölbung der Intercostalräume, namentlich des vierten, fünften und sechsten gehört zumeist dem rechten Ventrikel an. Nur wenn sie weit nach aussen und oben sich erstreckt, kann sie unter Umständen auf den rechten Vorhof bezogen werden. Pulsationen oberhalb der dritten Rippe

¹⁾ Nur bei abnorm grosser Beweglichkeit des Herzens findet man hie und da während rechter Seitenlage eine schwache Pulsation neben dem rechten Sternalrande, indess der Herzstoss noch auf der linken Seite, aber abgegeschwächt und dem Sternum genähert gefühlt werden kann.

gehören mit der einzigen Ausnahme eines exquisiten Hochstandes des Herzens den grossen Arterienstämmen an und zwar gewöhnlich die rechtsseitigen der Aorta, die linksseitigen der Pulmonalarterie. Sie setzen als Ursache Dilatation dieser Gefässe oder luftleere, verdichtete, Bewegungen gut fortleitende Beschaffenheit jener Lungenränder voraus, welche normaler Weise die grossen Arterienstämme von der Brustwand trennen, bei deren Erweiterung jedoch zurückgeschoben oder comprimirt werden. Steht das Herz tief, so kann natürlich auch eine Pulsation im dritten Intercostalraum dem betreffenden Arterienstamme angehören; ist es verschoben, so kann auch bisweilen der Puls der Pulmonalarterie rechts neben dem Brustbein, oder anstatt unmittelbar neben demselben bis 2" von ihm nach links getroffen werden. Aehnlich verhält es sich mit dem Aortenpulse, nur dass derselbe bei eigentlich aneurysmatischer Erkrankung der Arterie, wie wir später sehen werden, noch innerhalb viel weiterer Grenzen sich bewegt.

Von der gewöhnlichen Richtung dieser sichtbaren Herzbewegung, die die Intercostalräume vorwölbt, erfolgt in zwei Fällen eine Ausnahme. 1) Bei Verwachsung des Herzbeutels, wo sie ebenso, wie wir diess vom Spitzenstoss des Herzens beschrieben haben, sich in eine systolische Einziehung verwandelt. 2) Bei bedeutender Hypertrophie des Herzens, sehr starker Contraction desselben, vorzüglich aber dort, wo beide Momente zusammen wirken. So sieht man während des Intermittensanfalles, bei Pneumonie, aber auch bei einfacher Hypertrophie und Klappenfehlern häufig im gleichen Momente, in dem die Herzspitze eine Vorwölbung der Brustwand bedingt, die weiter nach innen und oben gelegenen Intercostalräume einsinken. Eine genaue Betrachtung zeigt, dass unmittelbar vor dieser Einsenkung eine kurze und leichte Vorwölbung vorausging. Wo diese beiden Unterscheidungsmerkmale, die gleichzeitige Vorwölbung an der Stelle des Spitzenstosses und die unmittelbar vorausgehende, eigentlich systolische Vorwölbung der betreffenden Stelle selbst übersehen werden, kann dieser geringe Beobachtungsfehler die fälschliche Annahme der Verwachsung beider Blätter des Herzbeutels verursachen. Die mit der Systole verbundene Bewegung des Herzens nach links und abwärts, bei der, wie es scheint, wenn sie im verstärkten Maasse erfolgt, die Herzbasis etwas Weniges nach rückwärts tritt, verursacht allein diese Erscheinung. Oft wird man überrascht von dem schnellen Verschwinden einer vorher weit über die Grenzen des Spitzenstosses

ausgebreiteten Herzbewegung, das den Fieberabfall in acuten Krankheiten begleitet, und fast ebenso sicher als die veränderte Puls- und Temperaturbeschaffenheit die Krise zu charakterisiren geeignet ist. Auch wo die bedeutendsten Herzhypertrophieen zu Grunde liegen, kann allmählig durch Herabtreten des Herzens (Lungenemphysem), wobei die vordere Fläche desselben von Lunge überlagert wird — vorübergehend durch Anwandlungen von Herzschwäche oder in wechselnder Dauer durch Flüssigkeitsergüsse in den Herzbeutel, die sichtbare Herzbewegung theilweise, bis auf den Herzstoss, oder mit diesem zusammen zum Verschwinden gebracht werden. In der ominösesten Weise tritt sie bei diesen Kranken zurück, wo bedeutende mechanische Hindernisse, z. B. Blutgerinnung in den Herzhöhlen, Unvollständigkeit der Systole (Asystolie) bedingen, oder wo Degeneration des Herzmuskels zum gleichen Ziele führt.

C. Als epigastrische Pulsation wird jede in nächster Nähe des Processus xiphoideus zwischen beiden Rippenbogen, kurz in der epigastrischen Grube stattfindende Bewegung bezeichnet, die

vom Herzen direct oder indirect erregt wird.

Die häufigste und präciseste Begründung des fraglichen Symptomes liefert Tiefstand des rechten Ventrikels; es ist diess der einzige Fall, in welchem die epigastrische Palsation vom Herzen selbst abhängig ist. Man sieht sie dann gerade unter dem Processus xiphoideus in geringer Höhenausdehnung, in grösserer gegen den linken Rippenbogen zu, gar nicht oder sehr wenig zwischen Schwertfortsatz und rechtem Rippenbogen. An einer fingerbreiten, nach links vielleicht etwas breiteren Stelle erfolgt genau gleichzeitig mit dem Herzstosse eine Vorwölbung der Weichtheile, die sich vielleicht in etwas diffuserer Weise mehr weniger weit nach abwärts, selbst bis zum Nabel hin fortpflanzt. Diese Verbreitung nach abwärts findet sich besonders bei sehr verstärkter Herzbewegung und bei sehr fester Beschaffenheit der Leber. Man hört an der pulsirenden Stelle zwei Herztöne, und es ist von besonderer Bedeutung, sich von der vollständigen Gleichzeitigkeit des Spitzenstosses su überzeugen. Sowohl allgemeiner Tiefstand des Zwerchfelles (Lungenemphysem), als auch örtliche Herabdrängung des Zwerchfelles durch das hypertrophische Herz kann die nothwendige Vorbedingung liefern. Die übrige Untersuchung lässt leicht zwischen diesen beiden Zuständen unterscheiden. Wo bei beträchtlichem Emphysem ein grösserer Theil des rechten Ventrikels nur durch die Pars sternalis und einige Bündel

der Pars costalis getrennt an den Bauchdecken anliegt, sieht man bei dünner Beschaffenheit dieser letzteren eine quere, leicht vertiefte Linie als Grenze der pulsirenden Stelle auf- und absteigen. Sie bezeichnet in sichtbarer Weise den Stand des Zwerchfelles. Es ist leicht erklärlich, dass in den meisten Fällen die Ausdehnung der pulsirenden Stelle mit der Inspiration sich nach abwärts vergrössert, mit der Exspiration sich verkleinert.

Die frühere Annahme, dass bei Lungenemphysem das Herz senkrecht stehe und mit seiner Spitze am Processus xiphoideus pulsire, wie sie z. B. von Skoda vertreten wird, ist durch Bamberger genügend widerlegt worden. Wenn neuerdings Klob und Friedreich für dieselbe in die Schranken getreten sind, so kann ich nur versichern, dass ich diese sogenannte vertikale Lagerung des Herzens weder durch Lungenemphysem, noch durch irgend eine andere Krankheit bedingt an der Leiche habe vorfinden können. Selbst bei linksseitigem Pneumothorax zeigte das Herz nach Eröffnung eines Pleurasackes und des Herzbeutels noch eine Neigung seines Längendurchmessers gegen jenen des Brustraumes von circa 40 Graden. Ferner gelang es mir noch in jedem Falle von Lungenemphysem den Spitzenstoss des Herzens, wenn auch schwach und tiefstehend, wenn auch nachweislich durch eine Schicht von Lungengewebe hindurch fortgepflanzt, aufzufinden und mit der epigastrischen Pulsation zu vergleichen. So kann ich nach eigener Erfahrung eine vertikale Lagerung des Herzens für keinen einzigen Fall vertreten und höchstens glauben, dass sie bei ganz seltenen und ausnahmsweisen Zuständen getroffen werde. Die gewöhnliche Annahme derselben bei Emphysem und einseitigem Pneumothorax oder Pleuraexsudat muss ich für irrig halten.

Eine andere Art dieser Pulsation von der Aorta abhängig, findet sich nur links von der Mittellinie und erstreckt sich zwischen Nabel und Processus xiphoideus verschieden weit nach abwärts, bisweilen selbst bis gegen die Symphyse hin. Sie erfolgt senkrecht in der Richtung von hinten nach vorn, hat eine verhältnissmässig geringe Breitenausdehnung und kommt, mit dem Herzstosse verglichen, etwas später als dieser zur Beobachtung. Bei der Auscultation lässt sie nur einen Ton oder bisweilen ein systolisches Geräusch erkennen. Sie rührt von der Aorta abdominalis her. Man sieht sie bei sehr eingesunkenen Bauchdecken und sehr leerer Beschaffenheit des Magens und Darmkanals. Man fühlt, ja sieht bisweilen auch rechts neben ihr die vorspringende Wirbelsäule. Sie wird wohl bei verstärkter Herzbewegung gleichfalls verstärkt; allein die wichtigste Bedingung ihrer Wahrnehmbarkeit liegt nicht in der Stärke der Aortenpulsation, sondern in der Nähe

der Aorta bei den Bauchdecken. Weniger leicht als solche erkennbar ist die nach aussen fortgeleitete Aortenpulsation, wo ihre Leitung durch Geschwülste, Bindegewebsstränge oder irgend welche andere feste Körper vermittelt wird. Sie wird dann nur dort gesehen und gefühlt, wo diese Geschwülste die Bauchwand berühren oder ihr sehr nahe liegen, und so kann sie selbst ausschliesslich nach der rechten Seite hin fortgeleitet werden. Ich habe mehr als ein Mal gesehen, wie ein vermuthetes Aneurysma aortae in Kothtumoren, Magen- oder Retroperitonealcarcinom oder sonst irgend einen Tumor der epigastrischen Gegend sich auflöste, obwohl vielleicht diese Geschwulst, der Aorta fest aufliegend, ein Geräusch in ihr erzeugt, oder selbst systolisches Schwirren darge-Möglicherweise können Aneurysmen der grossen Unterleibsarterien ähnliche Pulsationen verursachen. Es ist anzunehmen, dass in Nervenkrankheiten vorübergehende paralytische Gefässerweiterung sehr intensive Formen dieses Aortenpulses bewirken kann.

Bei Tricuspidalinsufficienz können untere Hohlvene und Lebervenen das Epigastrium in Pulsation versetzen. Es ist dies eine sehr auffallende, der Leber und vorzüglich ihrem rechten Lappen angehörige Bewegung. Sie findet sich gewöhnlich in der vollen Ausdehnung vor, in welcher die harte, blutreiche, geschwollene Leber die Bauchwand berührt, erfolgt hauptsächlich in der Richtung von hinten nach vorn, schiebt jedoch auch den Leberrand etwas nach abwärts. In einem Falle der Art, dem eklatantesten, der zu meiner Beobachtung kam, konnte nachgewiesen werden, wie diese Pulsation um einen Moment später, als die der Herzspitze erfolgte. Man hörte weder Geräusch noch Ton an der Leber. Die Section zeigte die untere Hohlvene collosal erweitert, es war jedoch nicht möglich, durch Einspritzen von Wasser in die Pulmonalarterie (obwohl die Tricuspidalklappe hochgradig insufficient war) diesen Puls an der Leiche nachzuahmen.

D. Die mancherlei andern an der Brustwand vorkommenden Pulsationen grosser und kleiner Gefässe können fast nur in einzelnen Fällen Berücksichtigung und Erklärung finden. Wir erwähnen hier aus der grossen Reihe derselben 1) die nach allen Radien hin sich verbreitenden, mitunter auf eine handgrosse Stelle ausgedehnten Pulsationen und pulsirenden Geschwülste der Aortenaneurysmen. Zumeist erstrecken sie sich von der Aorta adscendens nach vorn, rechts und abwärts; doch so mannigfach ist ihre Aus-

breitung, dass sie auch über dem Manubrium sterni und nach links und aussen von der Pulmonalarterie zum Vorschein kommen können. An diese reihen sich die mehr auf der rechten Seite der Brust und des Halses erscheinenden pulsirenden Flächen und pulsirenden Geschwülste an, die von der Arteria anonyma oder subclavia dextra ausgehen; dann die an der Rückenwand klopfenden oder sich vorwölbenden Aneurysmen des Arcus aortae und der Aorta thoracica descendens. 2) Während hie und da einzelne der Haut nahe liegende Arterien aus unbekannten Gründen erweitert sind und bei geschlängeltem Verlaufe sichtbar pulsiren, bietet das sichtbare Pulsiren und fühlbare Schwirren zahlreicher collosal erweiterter Arterien der Brustwand eines der wichtigsten Zeichen einer Verengerung des Arcus aortae dar. 3) Anomaler Verlauf der Arteria mammaria interna über die vordere Fläche eines oder mehrerer Rippenknorpel hinweg, verursacht eine oberflächliche sehr schmale Pulsation, die ihre diagnostische Bedeutung höchstens darin findet, dass sie am zweiten oder dritten Rippenknorpel mit dem mehrfach erwähnten Pulsiren grosser Arterien verwechselt werden könnte. 4) Die bei bedeutender Abmagerung auch unterhalb des äusseren Theiles des Schlüsselbeins sichtbare Pulsation der Arteria subclavia weist auf den Ort hin, wo diese dem Stethoscop zugänglich wird.

E. Ausserdem finden sich noch an der obern Apertur des Brustkorbs einige mit dem Herzen synchronische Bewegungsformen, die für die Kenntniss der Zustände intrathoracischer Organe nicht bedeutungslos sind. Sehen wir ab von dem verschieden starken, mitunter den ganzen Kopf erschütternden Carotidenpuls, der längs des Sterno-cleidomastoideus gefühlt wird und sich von da aus leicht benachbarten Organen, der Jugularvene, der Schilddrüse und Geschwülsten mittheilt. Sehen wir ab vom Puls der Arteria subclavia und einzelnen hie und da erweiterten kleineren Arterien, so bleiben uns vorzüglich zur Besprechung übrig 1) die Pulsation in der Fossa jugularis, 2) diejenige der Vena jugularis.

ad 1. Die Wahrnehmung eines systolischen, in der Richtung von unten nach oben erfolgenden Klopfens in der Jugulargrube weist in der Mehrzahl der Fälle auf hohen Stand und einige Erweiterung des Arcus aortae hin und findet sich daher vorzüglich bei Hypertrophie des linken Ventrikels, Insufficienz der Aortenklappen und Atherom des Aortenbogens. Der zufühlende Finger

stösst auf ein grosses in der Tiefe pulsirendes Gefäss. Dadurch ist leicht die Unterscheidung gegeben von der Pulsation einer Arteria thyreoidea ima, die klein und schwach pulsirend schief durch

die Jugulargrube zur Schilddrüse emporsteigt.

ad 2. Die Vena jugularis communis steigt am hintern Rande des Sternocleidomastoideus, später zwischen seinen beiden Ursprüngen gelegen bis zur Articulatio sterno-clavicularis herab, an die sie durch straffes Bindegewebe geheftet ist und hinter der ihre Klappen gelagert sind, gewöhnlich 2 an der Zahl. Zahl und Lage derselben variiren bisweilen, so dass sich 3 vorfinden, oder so, dass die Klappen 1-2" höher gelagert sind. Für gewöhnlich ist diese Vene überhaupt nicht sichtbar, während die den Sternocleidomastoidëus kreuzende Vena jugularis externa bald als seichte Furche, bald als bläulicher Strang durchschimmert. Wo immer Stauung des Blutes in den Körpervenen und Erweiterung des rechten Vorhofes gegeben ist, wird die Vena jugularis externa umfangreicher bis zur Dicke eines Fingers, die Vena jugularis interna als schlaffer, weicher, bei der Berührung schlotternder Wulst sichtbar. Während die Füllung dieser Venen mit der Zunahme jeder erworbenen Cyanose sich steigert, finden sie sich oft bei der stärksten angebornen Cyanose kaum erweitert. Jede Exspiration schliesst ihre Klappen und macht sie anschwellen. Während des Hustens recht ausgeprägter Emphysematiker ist oft die mehr als Zoll dicke Geschwulst, welche die seit lange ausgeweitete Jugularis interna bildet, beim ersten Blicke kaum mehr als Vene zu erkennen, doch wird dies leicht, wenn man hinter den Klappen die Sinus derselben als halbmondförmige Geschwülste an der grösseren Geschwulst der Vene hervortreten sieht. We immer die Vene so stark gefüllt ist, dass sie äusserlich leicht gesehen werden kann, lässt auch ihr Inhalt Bewegung erkennen. Jede Inspiration erleichtert den Abfluss derselben und vermindert so den Umfang der Vene, jede Exspiration wirkt entgegengesetzt. Die nahe liegende Carotis setzt ihren Inhalt in wogende Bewegung, die aber bei der Compression oder Verschiebung der Carotis von der Vene weg sofort endet. Auch vom Herzen werden ihr verschiedene Bewegungen mitgetheilt. Starke Contractionen des rechten Ventrikels bewirken eine Erschütterung und rückgängige Bewegung des Blutes, das im rechten Vorhofe, in der Vena cava und anonyma enthalten ist. Erst am Beginne der Jugularvene, an deren Klappe, endet die rückgängige Bewegung, aber erschüttert, von einer rückgängigen

Welle durchlaufen wird noch die Jugularvene. Ihr Inhalt geräth in Wellenbewegung, in Undulation. Auch starke Contractionen des rechten Vorhofes können solche Undulationen bewirken, die dann präsystolisch, d. h. um einen Momemt dem Herzstoss vorausgehend, wahrgenommen werden müssen. So entstehen 2- und durch Nachschwingungen der Venenwand auch 3- und mehrtheilige Undulationen. Obwohl man diese Undulationen durch feste Compression der Jugularvene in der Mitte ihres Verlaufes, so dass ihr unteres Stück leer wird, unterbrechen oder auf ein Minimum reduciren kann, so unterliegt es doch keinem Zweifel, dass bei jeder derselben eine geringe Menge Blutes aus der Vena anonyma in die Jugularvene zurückströmt, eine Zurückströmung, die vollständig mit derjenigen auf gleichem Fusse steht, welche an allen Klappen des Herzens stattfindet, namentlich auch an den Semilunarklappen der Aorta und Pulmonalarterie, welche aber so gering ist, dass sie der eigentlichen Insufficienz dieser Klappen gegenüber vollständig ausser Acht gelassen werden kann. Sie umfasst nur den geringen Antheil des Blutes, den die geöffneten Klappen zwischen ihren convexen Flächen enthalten.

Anders gestalten sich alle Erscheinungen, wo diese Klappen wirklich schlussunfähig geworden sind, von der Anonyma her andrängendes Blut nach der Jugularvene hin entweichen lassen. Man beobachtet dann ein diagnostisch hochwichtiges, in letzter Zeit vielfach discutirtes Symptom, den Venenpuls. Beschäftigen wir uns sogleich mit den Bedingungen desselben, so tritt uns als wichtigste anatomische Vorbedingung die Insufficienz dieser Klappen entgegen, sei es, dass sie auf angeborener Kleinheit derselben, oder auf allmählicher Durchbrechung ihres Gewebes durch einen andrängenden rückläufigen Blutstrom beruht, oder dass eine wahre relative Insufficienz, nur durch die Erweiterung der Vene, die Auseinanderdrängung ihrer Wände ohne Beschädigung der vorher schlussfähigen Klappe zu Stande kommt. Da die anatomische Untersuchung nicht selten Kleinheit und unvollständige Bildung dieser Klappen nachweist, wo bei Lebzeiten keineswegs Venenpuls beobachtet worden war, so muss als zweite Bedingung Blutstauung im Gebiete der Cava superior, rhythmisch sich wiederholendes Andrängen des Blutes gegen diese Klappen aufgestellt werden. So kommt es, dass der Venenpuls gemeinhin als Zeichen und zwar als wichtigstes Zeichen der Tricuspidalklappen-Insufficienz betrachtet werden kann. Ist diese Klappe durchlöchert, so wirft jede

Contraction des rechten Ventrikels einen Theil des darin enthaltenen Blutes durch den rechten Vorhof, die Vena cava, die Vena anonyma bis zu den beiderseitigen Klappen der Jugularvene zurück. Wenn und so lange diese schlussfähig sind, grenzt sich die Bewegung hier ab. Sobald sie auseinandergedrängt und an verdünnten Stellen durchlöchert sind, füllt bei jeder Systole ein rückläufiger Blutstrom, der erst in diesem Falle ein sichtbares, der Beobachtung zugängliches Gebiet betritt, diese Venen an. Es ist darnach klar, dass bei vorhandener Tricuspidalklappen-Insufficienz der Venenpuls fehlen kann, es ist auch leicht begreiflich, dass bei schlussfähiger Tricuspidalklappe, aber insufficienten Venenklappen mitunter ein solches Zusammentreffen von Verhältnissen stattfindet, dass dennoch Venenpuls zur Beobachtung kommt. Schlussunfähigkeit der Mitralklappe macht bei weit offenem Foramen ovale Venenpuls. Wenn ferner der stark hypertrophische rechte Ventrikel sich sehr energisch zusammenzieht, kann der auf die Klappe erfolgende Stoss die angrenzende Blutsäule im Vorhofe etc. in rückläufige, durch die insufficienten Venenklappen nicht gehemmte Bewegung versetzen 1). Da die rechte Jugularvene in einer geraderen, direkteren Weise dem Einfluss der Regurgitation ausgesetzt ist, werden ihre Klappen, wo sie nicht von Haus aus ungenügend gebildet waren, stets zuerst durchbrochen. Man beobachtet den beginnenden Venenpuls längere Zeit allein auf dieser Seite, später doch auf dieser Seite ausgesprochener, als auf der andern. Er ist im Anfange stets auf die Vena jugularis interna beschränkt.

Die fragliche Erscheinung stellt sich dar als systolische, oder richtiger um ein ganz kurzes Zeitmoment der Systole folgende Anschwellung der ohnehin erweiterten Jugularvene, so dass sie zum allermindesten die Dicke eines Fingers, oft die eines Hühnereies für einen Moment gewinnt. Ihre Wand wird dabei, wie sich beim Zufühlen leicht ergiebt, in den Zustand praller Spannung versetzt, ohne jedoch je eine ähnliche Resistenz wie eine pulsirende Arterie zu bieten. Nicht selten erreicht die Spannung einen solchen Grad, dass ein dumpfer Ton, oder ein von unten nach aufwärts sich fortpflanzendes Schwirren die Systole begleitet. Weder die stärkste

¹⁾ Man sieht besonders oft bei Ascites und Ovarientumoren Venenpuls entstehen, der nach der Punction wieder verschwindet. Bei einem Knaben mit Lebercirrhose hatte ich noch kürzlich Gelegenheit, nach unzweifelhaftem Venenpuls am Lebenden, bei der Section die Tricuspidalklappe intact zu sehen. Einen ähnlichen Fall beschreibt auch Rovida.

Compression der Vene in der Mitte ihres Verlaufs, noch die Verschiebung derselben aus der Nähe der Carotis vermag auch nur für einen Moment die Pulsation zu unterbrechen. Eine tiefe Inspiration kann sie vermindern. Zwischen die Inspirationsbewegungen sind oft präsystolische oder nachschwingende Undulationen eingeschoben.

Unter den mannichfachen Anomalieen der Jugularvenenklappen verdient besondere Beachtung der Hochstand derselben, so dass ein Bulbus venae jugularis oberhalb des Schlüsselbeines beobachtet werden kann. Entsteht bei Jemanden mit so gearteten Venenklappen Schlussunfähigkeit der rechten Vorhofsklappe oder rücken in Folge letzterer die Venenklappen nach und nach in die Höhe, ehe sie durchbrochen werden, so sieht man mit jeder Systole den Bulbus der Vene dick anschwellen, die Klappen sich wölben, die Sinus derselben sich ausprägen, ja den Bulbus nach oben gleiten, sich verlängern. Nach einiger Zeit führt die fortschreitende Erweiterung der Vene und das Andrängen des Blutes zur Schlussunfähigkeit der Venenklappen, und diese eigenthümliche Form, diese Pulsation des Bulbus geht in die gewöhnliche Form des Venenpulses über. Bei längerer Dauer pflanzt sich diese Bewegung oft auf einzelne subcutan verlaufende kleine Venen fort, namentlich auf solche, die über die Clavicula nach abwärts oder nach rückwärts gegen den Oberarm hinziehen. Im Widerspruche mit manchen andern Angaben muss ich behaupten, neben der innern bisweilen auch die äussere Jugularvene pulsirend gesehen, ja alleinigen Puls der äusseren Jugularis beobachtet zu haben. Sie stellte dann, gewunden wie eine atheromatöse Arterie, einen Kleinfinger dicken, dunkelblauen Strang dar, dessen Windungen mit der Systole sich verdickten und krümmten, dessen Wände dabei hie und da in Schwirren geriethen. An einer früheren Stelle wurde bereits die Anschauung zu begründen gesucht, dass auch die Vena cava inferior pulsire und ihre Bewegung der Leber mittheilen könne. A. Geigel, der gleichfalls Beobachtungen über Pulsation der unteren Hohlvene gesammelt hat, fand, dass man durch Druck auf dieselbe den Puls der Halsvenen verstärken kann. - Im Gebiete der Cava superior waren die weitesten Strecken, bis zu welchen der Puls kleiner Venen verfolgt werden konnte, die Gegend des Ohres und das obere Drittel des Oberarmes.

Bamberger hat den glücklichen Gedanken gehabt, Pulscurven von den Halsvenen aufzunehmen. Dieselben zeigen eine Gerhardt, Auscultation. 2. Aufl. charakteristische präsystolische Schwellung der Vene an, und lehren so, dass beim Venenpulse constant die Vorhofscontraction eine Welle erzeugt, die der stärkeren des Ventrikels direkt voraus läuft. Wir werden später auf die Curve zurückkommen.

Der Venenpuls kann, wo er vorhanden war, wieder verschwinden. Hochgradige Mitralerkrankungen, die z.B. unter dem Einfluss der Digitalis-Behandlung rasche und bedeutende Besserung erfahren, liefern mitunter den Beweis hierfür, aber es gehört eine lange Beobachtungsdauer und sehr genaue Sicherstellung des Venenpulses dazu, um so daraus schliessen zu können. Weit überzeugender sind die freilich noch seltenen Beobachtungen eines periodisch mit Anfällen von Schwäche der Herzbewegung zusammen vorkommenden Venenpulses. Man sieht ihn dann halbe Tage oder Tage lang fehlen, ja man sieht während dieser Zeit überhaupt nichts von der Jugularvene, und stundenweise wird sie mit Blut überfüllt und pulsirt aufs Schönste. Dabei ist der Herzstoss enorm schwach, der Radialpuls klein, die Herztöne werden undeutlich und verworren. Diese Beobachtungen beweisen die Möglichkeit einer Begründung des Venenpulses durch relative Tricuspidal-Insufficienz; aber eine einfache Anschauung der anatomischen Verhältnisse zeigt eine solche Grösse der normalen Tricuspidalklappenzipfel, dass man sie für fähig halten muss, auch bei äusserster Erweiterung des Ostiums noch vollständigen Abschluss desselben zu liefern. So kann ich denn in der vielfach ventilirten Frage über die Möglichkeit einer relativen Tricuspidalklappen-Insufficienz meine Ansicht auch jetzt wie früher nur dahin abgeben, dass wohl die leicht erkrankte, aber kaum je die völlig gesunde Tricuspidalklappe zeitweise schlussunfähig sein könne, je nachdem durch grössere oder geringere Blutstauungen ihr Insertionsring mehr weniger auseinandergedrängt wird. Seit ich diese Ansicht vor neun Jahren zuerst aufstellte, sind mir eine ganze Reihe von Tricuspidalerkrankungen mit vielfacher Gelegenheit zur anatomischen Untersuchung zur Beobachtung gekommen. Keine derselben konnte diese Annahme im mindesten erschüttern. Wer bei häufigen Leichenuntersuchungen an Herzkranken sich überzeugt hat, wie oft neben schweren Erkrankungen der Mitral- und Aortenklappe leichte Retractionen der Tricuspidalis vorkommen, der wird in dieser Anschauungsweise die natürliche und entschieden sachlich begründete Vermittlung in dem lebhaften Streite für und gegen die relative Tricuspidalklappen-Insufficienz erblicken.

Der Venenpuls, von dem wir seither hier und zuvor (pag. 65) bezüglich der Lebervenen gesprochen haben, ist der rückläufige direct vom Herzen abhängige Venenpuls. Ausserdem lassen sich noch zwei andere Arten des Venenpulses unterscheiden: der des Aneurysma arterio-venosum, am häufigsten von den Armvenen durch fehlgeschlagenen Aderlass erzeugt, aber auch

an den Halsvenen vorkommend, sowohl wo der Blutstrom einen Weg aus der Aorta in die Cava superior, als auch wo er einen solchen aus der Carotis in die Jugularis findet. Systolisches Schwirren und Rauschen wird dabei an den Venen wahrgenommen. Durch die Capillaren hindurch kommt nach Quincke sowohl bei Gesunden hie und da als auch bei Kranken mit Aorteninsufficienz eine schwache centripetale Pulswelle an den Venen der Hand und des Unterschenkels zu Stande.

Die Beobachtung des sichtbaren Verhaltens der Halsvenen kann auch noch für ganz andere pathologische Fragen, als für diejenigen, welche auf das Herz sich beziehen, von Bedeutung werden. Wo die Quellen, aus welchen diese Venen ihr Blut beziehen, reichlich fliessen, werden auch diese Leitungskanäle von Inhalt strotzen. Wo ihre Hauptquellen verstopft werden und nur spärlich auf Seitenwegen ihnen Blut zukommt, werden sie blass und zusammengefallen erscheinen. Freien Abfluss des Blutes nach dem Vorhofe vorausgesetzt, lässt sich, wo sie sich stark gefüllt erweisen, auf Blutreichthum der Organe innerhalb des Schädels vorzüglich der Blutleiter schliessen. Trotz normaler Zustände am Herzen und bei ziemlich normalem Blutgehalte des Gehirnes und seiner Häute bedingen sehr häufig Krankheiten, die das Athmungsgeschäft oft und wesentlich erschweren (Emphysem, Atelektase, chronischer Katarrh, Bronchektasie, Pneumonie), Stauungen des Blutes in den Halsvenen. Diese liefert dann ein sprechendes Zeugniss der sogenannten relativen Lungeninsufficienz, d. h. erschwerter Durchgängigkeit der Lungen für den Blutstrom des kleinen Kreislaufes. Cyanose, Verstärkung des zweiten Pulmonaltones, Erweiterung des rechten Herzens liefern weitere Belege für die Anwesenheit dieses umfassenden Symptomenbildes. Die Jugularvenen zeigen sich dabei dauernd erweitert und dazu noch bei forcirten Exspirationen, besonders beim Husten einer Anschwellung fähig, die dieselben in vorragende Säcke von dem Umfange einer Kinderfaust umwandelt. Auch hier sind die Klappen häufig insufficient.

Eine ziemlich lokale, vom Herzen unabhängige Begründung findet endlich noch die andauernde Blutanhäufung in den Halsvenen bei Compression der Vena cava superior durch Geschwülste des Mediastinums. Am bekanntesten unter diesen sind die bei Kindern so oft vorfindlichen Bronchialdrüsengeschwülste, dann die in reiferem Alter sich bisweilen entwickelnden krebsigen oder sarcomatösen Tumoren der Organe des Mediastinums.

Einseitige schwächere Füllung der äusseren Jugularvene findet sich hauptsächlich in Folge von Thrombose eines Sinus transversus und petrosus superior oder endlich der Jugularvene selbst vor. Unterscheidet man davon die auf angeborner Kleinheit unter anomalen Verlaufsverhältnissen und Wurzelbeziehungen einer Jugularvene beruhende schwächere Entwicklung derselben, so ist durch jenen Zustand eines der wenigen derzeit bekannten rationellen Zeichen der Hirnsinusthrombose gegeben. Ich verkenne nicht, dass bis jetzt nur wenige Beobachtungen 1) für die Richtigkeit dieser meiner Annahme einstehen, dass bei gesperrtem Blutzufluss zu einer Vena jugularis interna auch die äussere Jugularvene derselben Seite ihr Blut leichter entleert und desshalb schwächer gefüllt erscheint. Allein die entgegenstehenden Angaben, welche wir Cohn, v. Dusch, Fritz und Anderen verdanken, können, abgesehen davon, dass ich nicht weiss, ob in jenen Fällen überhaupt eine genaue Beobachtung der Jugularvene stattfand, höchstens zeigen, dass dieses Symptom, wie sich von vorne herein aus der Natur der Sache ergiebt, nicht in allen Fällen von Hirnsinusthrombose vorhanden ist. Linksseitige Erweiterung der Vena jugularis externa kann unter Umständen als Zeichen von Aneurysma trunci anonymi auftreten (Duchek).

F. Capillar puls findet sich allgemein verbreitet ausnahmsweise bei Hypertrophie des linken Ventrikels. So sah Lebert bei einem Aneurysma der Aorta mit jeder Systole die Wangen geröthet werden. Eine physiologische Form desselben am Nagelbette einzelner Menschen und zwar an der Grenze zwischen der weissen und der rothen Region desselben hat Quincke kennen gelehrt. Endlich giebt es noch eine lokale auf entzündlicher Arterienparalyse beruhende Form desselben, die man namentlich an dem rothen Hofe von Panaratien bei anämischen Personen bei einer gewissen Biegung des Fingers leicht sehen kann.

V. Inspection des Unterleibes.

A. Formen. Im gewöhnlichen Leben giebt die Anschauung verschiedener physiologischer Zustände Beweis genug dafür ab, binnen wie bedeutender Breiten die Formen des beweglichen Theiles der Bauchwände wechseln können. Im Kindesalter bedingt die verhältnissmässige Enge des Brustkorbes starke Ausdehnung des

¹⁾ neuerdings eine von Huguenin.

Unterleibsraumes, die in auffallender und widerlicher Weise durch rachitische sowohl als scrophulöse Krankheitszustände gesteigert wird. Der Marasmus des Greisenalters dagegen bringt flache, ja eingesunkene Beschaffenheit der verdünnten, faltigen, sich abschilfernden Bauchdecken. Die höchsten physiologischen Grade der Ausdehnung werden gegen Ende der Schwangerschaft erreicht; freilich mischen sich dabei schon pathologische Processe ein, abnorme Pigmentablagerung, braune Färbung längs der Linea alba, Zerreissungen im Unterhautbindegewebe, die später querverlaufende Narben zurücklassen. Nahezu gleiche Umfangsverhältnisse, wie bei der Schwangerschaft, erlangt der Unterleib bei manchen Zuständen von Fettanhäufung in den Bauchdecken und in und an den Unterleibsorganen, die freilich schon stark an das Krankhafte streifen. In ähnlicher Weise nehmen die tiefen muldenförmigen Einsenkungen der vorderen Bauchwand, begrenzt von den scharf vorstehenden Rippenbogen und Hüftbeinkämmen, welche in Folge von Inanition getroffen werden, eine bezüglich ihrer Normalität sehr zweifelhafte Stellung ein. Starke Anfüllung des Verdauungskanales, wie sie im Verlaufe eines opulenten Mahles, eines Gelages hie und da erfolgt, vermag die Formen der Bauchdecken so wesentlich zu erweitern und die übrigen physikalischen Zeichen in dem Maasse zu ändern, dass der Gedanke an Anhäufung völlig pathologischer Produkte nahe liegen kann.

1) Pathologische Vergrösserung des Unterleibes kann in gleichmässiger oder ungleichmässiger Weise erfolgen. Völlig gleichmässig sind die Erweiterungen, die in Folge von Ueberfüllung des ganzen Magens und Darmkanals mit Koth oder gasförmigen Contentis erfolgen, wie sie beim Meteorismus und in Folge tiefsitzender Darmstenosen beobachtet werden. Alle sehr bedeutenden Ausdehnungen des Unterleibraumes erfolgen ziemlich gleichmässig, namentlich dann, wenn abnorme Massen an mehreren Stellen sich entwickeln. Bedeutende Flüssigkeitsansammlungen im Peritonealsack bringen eine zwar allseitige, aber ungleichförmige Ausdehnung zu Stande. Der jedesmaligen Lage oder Stellung des Kranken entsprechend, werden die tiefst gelegenen Theile des Unterleibraumes am stärksten ausgedehnt. Bei Lageveränderungen wechselt die Form rasch, und falls die Bauchdecken noch nicht in den Zustand hochgradiger Spannung versetzt sind, an ihrer Oberfläche noch nicht glatt und glänzend geworden sind, unter sichtbarer Wellenbewegung derselben. Von den ungleichförmigen Ausdehnungen ist

es werthvoll diejenigen zu unterscheiden, die in der Gegend der unteren Thoraxapertur, die aus dem kleinen Becken aufsteigend, und die von einzelnen Organen aus mehr weniger halbseitig entstanden sind. Die ersteren sind es vorzüglich, die die allgemeine Eigenschaft starker Ausdehnungen des Unterleibes sehr deutlich repräsentiren, den unteren Umfang des Brustkorbes sehr bedeutend zu erweitern. Wenn man auch bei Schwangern, Kranken mit Eierstockstumoren und ähnlichen grossen, aus dem Becken aufsteigenden Geschwülsten sich leicht von der erfolgten Formveränderung des Brustkorbes, Verbreiterung seiner Basis, Auswärtsdrängung der Hypochondrien, selbst Umstülpung der Spitze des Schwertfortsatzes nach aussen überzeugen kann, so kommen doch diese Wirkungen grossen Leber-, Milz-, Nieren- und Retroperitoneal-Geschwülsten im weit höheren Grade zu. Die Form des vergrösserten Unterleibes im Ganzen ist häufig die eines längsgelagerten Ovals, eine sogenannte Fassform, wie sie z. B. bei der Rückenlage Schwangerer erscheint, oder die Verbreiterung wiegt vor, gewöhnlich mit Abflachung in der Mitte, bei freien Flüssigkeitsergüssen im Peritonealsack, bei doppelseitigen Nierengeschwülsten, oder es findet sich eine eigentliche Kugelform (Meteorismus), oder die Form eines schräg, z. B. mit der Spitze nach dem einen Darmbeine hin gelagerten, eiförmigen Körpers. Sorgfältige Berücksichtigung dieses Gesammteindruckes der Unterleibsformen kann schon im Beginne der Untersuchung eine bestimmte und zutreffende Richtung verleihen, und in einzelnen Fällen, z. B. bei der Frage nach dem Sitz einer Darmstenose von völlig entscheidender Bedeutung werden. Mit der Vergrösserung des Unterleibsraumes nach vorn geht stets eine solche nach oben Hand in Hand, die sich durch Beengung des Athmens, verbreitete hochstehende Herzbewegung, percutorisch nachweisbaren Hochstand des Zwerchfelles zu erkennen giebt. Die gespannten und glatten, nur bei Verminderung des Druckes sich fein runzelnden Bauchdecken bekommen oft ein durchscheinendes ödematöses Aussehen, und werden bei jeder längeren Dauer solch' erhöhter Spannung von einem bläulich durchschimmernden Netze erweiterter Venen durchzogen (Collateralen bei Compression der Vena cava inferior). Der Nabel wird oft Sitz einer Hernie und ragt als 1-11/2" dicker Kegel, bisweilen mit Varicen besetzt, nach aussen vor. Die geraden Bauchmuskeln werden auseinandergedrängt, Haut und Fascie zwischen denselben gedehnt und verdünnt, und der so entstandene elliptische, dünn bedeckte Streif zwischen ihren

Rändern wird bald auf der Höhe der Unterleibsanschwellung, bald später, nachdem diese längst vorübergegangen ist, der geeignete Schauplatz diagnostisch wichtiger, äusserlich sichtbarer Bewegungen der Unterleibsorgane (Diastase der Musculi recti). An der Seitengegend und an der Rückenfläche ist es nur der Raum zwischen den letzten Rippen und dem Darmbein, der nachgiebig genug ist, um bei vermehrter Spannung der Bauchhöhle etwas nach aussen hervorgewölbt zu werden, während das stärkere halbseitige Vortreten dieser Gegend zu Geschwülsten der Niere und ihrer nächsten

Umgebung in diagnostisch wichtiger Beziehung steht.

2) Einsenkung der Unterleibsdecken erfolgt gleichfalls mehr in allgemeiner oder in beschränkter Weise. Ersteres bei Hungernden, z. B. bei Zuständen von Rachen- und Oesophagusverengerungen, bei manchen mit starker Abmagerung verbundenen Erkrankungen, bei vielen Gehirnkrankheiten. Die Erscheinungen dabei sind einfach die der Vertiefung der Bauchdecken, des Vorspringens der knöchernen Umrandung und bisweilen noch eines deutlich in der Mitte des Unterleibes hervortretenden, die stark concaven Bauchdecken in der Längsrichtung etwas vorwölbenden Wulstes, durch die Wirbelsäule bedingt. Zur Linken von dieser erscheint die stark pulsirende Aorta. Nur dann, wenn die Bauchdecken wenig gespannt und zugleich dünn sind, ist dieser ' Zustand besonders geeignet, noch speciell die Formen einzelner Unterleibsorgane hervortreten zu lassen. Gerade in solchen Fällen sieht man z. B. bisweilen einen birnförmigen Tumor der Harnblase über der Symphyse eine seichte Vorwölbung bedingen, die mit der Harnentleerung wieder verschwindet. Eine solche Geschwulst kann, wenn sie z. B. bei einem Meningitiskranken über Nacht entsteht, und wenn sie bei andauernder Seitenlagerung des Kranken nicht ganz in der Mittellinie getroffen wird, Anfänger in nicht geringe Verlegenheit versetzen. Ich beobachtete einmal bei einem marastischen alten Mann einen auf 1/4" dicker gutartiger Hypertrophie der Blasenwände beruhenden derartigen Tumor, der monatelang sichtbar und als sehr harter Körper tastbar war.

3) Die partiellen Vorragungen der Bauchwand lassen nur dann eine annähernd richtige, übersichtliche Darstellung ihrer zahllosen Begründungsweisen zu, wenn man von den Organen ausgeht, die sie betreffen. Erweiterung und Stase der Contenta des Magens, bei allen Verengerungen des Pförtners zu treffen, verursachen eine umfangreiche gerundete, am Processus

xiphoideus und beiden Rippenbogen beginnende, mehr nach links hin ausgedehnte Vorwölbung, die sich durch eine seichte Furche, der grossen Curvatur entsprechend, ober- und unterhalb des Nabels schräg von rechts oben, nach links unten abgrenzt. Die übrigen Theile des Unterleibs sind, je bedeutender sich diese Vorwölbung darstellt, desto mehr eingesunken. Reichliches Aufstossen oder Erbrechen vermindert die Geschwulst. Laut hörbare metallische Rasselgeräusche bei Druck, voller heller Schall, sichtbare peristaltische Bewegungen charakterisiren sie als dem Tractus angehörig; ihre Lage und die Auscultationserscheinungen beim Trinken der Kranken, vielleicht auch die grosse Völle des Schalles bezeichnen sie als dem Magen zukommend. Geschwülste des Pylorus, des Pankreaskopfes und der benachbarten Lymphdrüsen finden sich mehr weniger verschiebbar, mit der Körperbewegung ihre Lage spontan wechselnd, höckerig, zwischen den eingesunkenen Bauchdecken vorragend, in der Gegend des rechten oberen Rectusabschnittes oder tiefer herabgesunken vor. Sie gehören zwar in der grossen Mehrzahl der Fälle den bösartigen Neubildungen an, doch kann auch die gutartige Hypertrophie der Muscularis am Pylorus solche Vorragungen bedingen. Die Natur der Sache bringt es mit sich, dass sie oft von den Zeichen hochgradiger Magenerweiterung begleitet, bisweilen von ihr verdeckt werden.

Vom Darmkanal bilden hauptsächlich entzündlich verdickte, narbige, krebsige oder invaginirte Strecken Geschwülste, die ab und zu einmal vorragend auf die Configuration des Unterleibes Einfluss gewinnen. Specieller hervorzuheben sind drei dem Kolon angehörige Formen. Anfüllung des gesammten Kolons mit Kothtumoren bildet bei abgemagerten Bauchdecken rosenkranzförmige, dem Verlaufe des Kolons folgende, ihre Lage wechselnde, verschiebbare Vorragungen, die nach Darreichung von Abführmitteln oder Klysmen am Unterleibe verschwinden, in den Dejectionen um so deutlicher zur Beobachtung kommen. Kothanhäufungen im Coecum, Verdickung seiner Häute durch Entzündung, Exsudate, Luft und Kothextravasate in dessen Nähe verursachen bald flache diffuse, oder im ersteren Falle längliche, wurstförmige Vorragungen in der Fossa iliaca dextra, die in Verbindung mit den meist ausgesprochenen Schmerz-Erscheinungen beim Betasten und Percutiren Typhlitis und Perityphlitis charakterisiren. Eine weniger gekannte Geschwulst ragt bisweilen bei stark eingesunkenen Bauchdecken in der linken Fossa iliaca vor, schief von oben und links nach rechts

und unten, wenig nach innen und hinten vom Darmbeinkamm verlaufend, langgestreckt, gleichmässig 1—1½" breit. Nimmt man die Betastung zu Hülfe, so kann sie noch in vielen Fällen, wo sie bei abgemagerten Kranken nicht sichtbar ist, gefühlt werden. Sie entspricht, wie die vergleichende Leichenuntersuchung nachweist, dem leeren, stark contrahirten, mit Koth gefüllten oder dem verdickten Anfangsstücke des S. romanum.

Geschwülste des Netzes ragen nur dann, wenn sie sehr umfangreich sind, ihrer Höhe nach dem Nabel mehr weniger nahe stehend, hervor. Vorzüglich Echinococcen und Carcinome liefern dieselben. Ihre überaus grosse Beweglichkeit gestattet denselben, bereits wenn ein Kranker sich von einer Seite auf die andere legt, eine sichtbare auffällige Ortsveränderung, der entsprechend sie auch bei der weiteren Untersuchung verschiebbar getroffen werden.

Geschwülste der Leber dehnen zunächst im Vergleiche zum linken Hypochondrium das rechte stärker aus, und kommen dann unterhalb des Rippenbogens in einer der Vergrösserung der Leber entsprechenden Breitenausdehnung zum Vorschein. Für die Inspection werden sie namentlich durch den sichtbaren Rand der Leber, durch das an diesem und an etwaigen Höckern derselben bemerkbare, respiratorische Auf- und Absteigen ausgezeichnet. Die grössten derartigen Auftreibungen beruhen auf Echinococcen und Carcinomen, seltener auf Abscessen, wächserner Degeneration des Organs oder fettiger Entartung desselben. Wir werden auf diese Geschwülste, so wie auf die unmittelbar an den Leberrand in der Gegend der Incisura pro vesica fellea sich anschliessenden birnförmigen Geschwülste der Gallenblase an einem späteren Orte noch zurückkommen. Eine eigenthümliche, durch ihre Form ausgezeichnete, durch ihren Sitz überraschende Geschwulst bildet die von Cantani entdeckte wandernde Leber. Sie wurde von ihm sowohl als auch von Meissner und Piatelli zwischen Nabel und Becken getroffen und konnte leicht reponirt werden. Alle 3 Fälle betrafen Weiber. Man glaubte theils in engem Schnüren, theils in vorausgegangener Schwangerschaft den Grund zu sehen.

Während die Geschwülste der Leber sehr oft in Folge ihrer Entstehung durch Neubildungen Unebenheiten, sichtbare Hügel und Thäler unterhalb des rechten Hypochondriums bilden, und oft durch den sichtbaren Leberrand sich leicht abgrenzen, sind die Geschwülste der Milz gerade in ihren excessivsten Formen (Leukämie, Intermittens, Speckkrankheit) meist glattrandig und eben,

am Rande wenig vorragend und, wenn dieser gesehen werden kann, höchstens durch die normale Incisur in der Nähe der Spitze ausgezeichnet. Sie machen starke Vortreibung des linken Hypochondriums, in den erwähnten hochgradigen Fällen Vorwölbung der linken Hälfte des Unterleibes bis zur Linea alba und Symphyse, bisweilen Verdrängung des Herzstosses nach innen und oben ¹).

Aeusserlich sichtbare Geschwülste der Niere kommen, wo ihre Lagerung eine feste ist, neben der Wirbelsäule, zwischen den letzten Rippen und dem Darmbein zuerst als Verstrichensein der dort vorhandenen normalen Concavität zum Vorschein. Sie ragen auch bisweilen hier in der Lumbalgegend höckerig nach hinten vor, bei bedeutendem Wachsthum aber dehnen sie sich mehr und mehr nach der Seite, dann nach vorn aus, so dass sie schliesslich den ganzen Raum von der Wirbelsäule bis unterhalb der Gallenblase rechts und bis unterhalb der Milzspitze links einnehmen und platt oder höckerig vorwölben können. Ja es sind von Virchow congenitale Cystennieren beschrieben worden, die die gesammte Thoraxbasis in hohem Grad erweiterten und den Brustraum beengten. Perinephritische Abscesse, Hydronephrose, Krebserkrankung der Niere und Echinococcen sind es hauptsächlich, die solche auffällige Geschwülste bilden. Ausserdem können die Retroperitonealdrüsen, der Psoas, die Bauchdecken, ja selbst der Urether Unterleibsgeschwülste bedingen.

Wenn wir auch, um das specifisch-gynäkologische Gebiet zu vermeiden, Ovarien-Tumoren, gestielte Uterusfibroide und dergleichen hier nur dem Namen nach erwähnen, so mag doch schliesslich die Bemerkung Platz finden, dass sicher die allerhäufigste Anschwellung des Unterleibs die durch Schwangerschaft bedingte ist, und Verwechselungen derselben mit den verschiedensten krankhaften Unterleibsvergrössungen keineswegs so ganz selten vorkommen, als man den so wohl studirten und so oft beschriebenen Zeichen dieses Zustandes nach erwarten sollte. So wird denn die Warnung keine überflüssige sein, aus dem Becken aufsteigende Tumoren oder sehr beträchtliche Vergrösserungen des Bauchraumes bei Weibern stets in dieser Richtung zuerst und aufs Genaueste zu untersuchen, völlig abgesehen von den Angaben der Kranken, nur nach den objectiven

¹⁾ In höchst bezeichnender Weise finde ich in dem Berichte über einen Kranken mit Lebercirrhose erwähnt, dass er anfangs eine Anschwellung des rechten Hypochondriums gehabt habe, die sich aber später nach links verzog. Seine Leber ist jetzt klein, seine Milz enorm gross.

Zeichen zu beurtheilen und in dubio erst längerer Beobachtung zu unterziehen.

B. Bewegungen. Die weniger in Beziehung zu den Unterleibsorganen stehenden Athmungsbewegungen und Pulsationen des Unterleibes sind schon früher besprochen worden. Wir haben hier zunächst die mitgetheilten Athmungsbewegungen einzelner Organe zu betrachten. Sie betreffen vorzüglich die dem Zwerchfell anhaftenden, zuoberst gelegenen grossen parenchymatösen Organe. Wo irgend der Leberrand den Rippenbogen überragt, diess Organ nur etwas vergrössert und resistenter sich findet, da gelingt es bei dünnen Bauchdecken und geringer Füllung des Magens und Darmkanals gewöhnlich die bekannte leicht gebogene Form des unteren Leberrandes an einer oder der anderen Stelle der Bauchwand durch eine seichte Furche wieder gegeben zu finden. Im Widerspruch zu den gewöhnlichen Angaben kann ich behaupten, sie sicher bei einem Drittel der Kranken, die überhaupt in dieser Richtung untersucht wurden, demonstrirt zu haben. Sicher würde diese sehr oberflächliche Grenzlinie zwischen dem etwas höheren Gebiete der Leber und dem niederern darunter gelegenen sehr oft der Beobachtung entgehen, wenn sie nicht bei jedem Athemzug auf- und abwärts schwankte. Sie wird besonders oft in der Mittellinie sichtbar, wenn die geraden Bauchmuskeln auch nur wenig auseinanderstehen. Sind Organe hinter der Leber vergrössert, so tritt sie um so deutlicher hervor. Bei der später zu erörternden bedeutenden Schwierigkeit einer genauen und richtigen Bestimmung der Lage des unteren Leberrandes durch die Percussion bietet dies Zeichen einen besonders wichtigen diagnostischen Behelf. Dasselbe lässt sich freilich nicht als normale Erscheinung darstellen, aber doch als eines der allerhäufigsten, schon in Folge sehr leichter Veränderungen vorhandenen Symptome am Unterleibe. Die Ausdehnung der Bewegung von oben nach unten, die dieser Linie vom Zwerchfell mitgetheilt wird, ist bei ruhigem Athmen eine geringe, auf 1-2 Centimeter beschränkte, nimmt jedoch entsprechend der Tiefe der Athemzüge zu. Wenn die Leber an der vorderen Bauchwand adhärent wird, wird diese Bewegung vermindert oder hört auf. Das Gleiche geschieht bei sehr bedeutender Vergrösserung der Leber, so dass sie mit dem linken Lappen das linke Hypochondrium erreicht und zwischen beiden Hypochondrien sich feststellt, ferner wenn die Spannung des Inhaltes der Bauchhöhle sich sehr bedeutend steigert, so dass ein mechanischer Widerstand die Zwerchfellsbewegung hemmt. Selbstverständlich hört diese Bewegung auch auf, wo das Zwerchfell gelähmt, durch pleuritische Exsudate aus seiner Lage gebracht, oder durch Entzündung seines Bauchfell- überzuges in seinen Contractionen behindert wird. Unter der Leber befindliche, mit ihrem scharfen Rande oder ihrer concaven Fläche verwachsene Geschwülste theilen die Bewegung derselben, und es können in dieser Weise innig mit der Leber verbundene entartete Stränge des Netzes oder der Lymphdrüsen und Geschwülste des Magens und des Pankreas sich so unmittelbar an die vordere Fläche der Leber anreihen, dass die ihrem unteren Rande entsprechende Furche für den entarteten Leberrand selbst genommen wird.

Bisweilen sieht man unterhalb des Leberrandes eine zweite mit ihm parallel nur etwas gerader verlaufende Linie, die gleichfalls, jedoch in geringerem Maasse als die Leber, auf- und absteigt. Sie entspricht dem unteren Rande des Colon transversum. Die Verminderung ihrer Bewegung im Vergleich zum Leberrand erklärt sich leicht dadurch, dass ein Theil der bewegenden Kraft durch Compression des Koloninhaltes verloren geht. Darmschlingen an der vorderen Fläche des Unterleibes ihre Formen abgeprägt zeigen in Form stark gewundener, 1-3 Finger dicker Wülste, sieht man stets die obersten am stärksten, die unteren successive weniger sich herabbewegen. Dass die Einwirkung des Zwerchfelldruckes beim Einathmen trotzdem bis zu den Beckenorganen sich herab erstreckt, zeigt das Steigen und Fallen des Urinstrahles mit dem Ein- und Ausathmen, noch deutlicher ein mit dem Mastdarm in Verbindung gebrachtes Manometer. Geschwülste des Magens und aller übrigen Unterleibsorgane, mit Ausnahme der Milz und Leber, zeigen das inspiratorische Herabsteigen nicht, sofern sie nicht mit dem Zwerchfell, der Milz oder der Leber in innige Verwachsung eingegangen sind. Obwohl eine solche für die Nierengeschwülste sehr leicht zu Stande kommt, verhindert doch die straffe Befestigung derselben an der hinteren Bauchwand jede ergiebige Bewegung derselben.

Die peristaltische Bewegung des Magens und Darmkanals ist normaler Weise nicht sichtbar, aber es gehören nur geringe Anomalien dazu, um sie der äusseren Beobachtung zugänglich zu machen, nämlich 1) sehr dünne Beschaffenheit der Bauchdecken, 2) abnorm starke Zusammenziehungen der Muskelhaut dieser Organe. So kommt es, dass man sie an den papierdünnen

Bauchdecken atrophischer Säuglinge, an der welken Bauchwand marastischer Greise, bei vielen durch beliebige Krankheiten herbeigeführten Abmagerungszuständen an muskellosen Stellen der Bauchwand, z. B. Hernien, Diastase der Musculi recti erkennen kann, ohne dass irgend eine Krankheit des Magens oder Darmkanals vorhanden ist. Kälte, mechanische oder elektrische Reizung sind dann geeignet die Bewegung zu verstärken oder erst sichtbar zu machen. Ehe ich mit der bedeutenden Häufigkeit dieser Erscheinung bekannt war, wurde ich nicht selten überrascht, wenn bei der klinischen Besprechung von Lungenkranken, Syphilitischen etc. an dem längere Zeit entblössten Unterleib allmählig die bekannten Formen der peristaltischen Bewegung hervortraten. Ein rasches Ueberfahren des Unterleibs mit der Rückenfläche eines Nagelgliedes liess sie rasch deutlicher hervortreten. Wo der Magen- oder Darmbewegung bedeutende Widerstände entgegenstehen, Verengerung des Pylorus oder des Darmes, wo durch Ansammlung reichlichen Inhaltes stärkere Arbeit der Muskulatur erforderlich wird, wo Erweiterung des Darmrohres oder Hypertrophie seiner Muskelschicht sich entwickelt, da werden stets, wenn irgend die Bauchdecken dünn und fettarm sind, peristaltische Bewegungen sichtbar werden.

Die Bewegungen des Magens, ungleich seltener als jene des Darmes zu beobachten, gehören stets dem erweiterten und hypertrophischen Magen an, gewöhnlich dem am Pförtner verengten. Sie finden sich zwischen Schwertfortsatz, Nabel und beiden Hypochondrien auf der linken Seite weiter herabreichend als rechts und durchziehen hier die vorgewölbten Bauchdecken hauptsächlich in querer Richtung. Es bildet sich langsam eine schmale Längsfurche, die zugleich die Vorwölbung verkürzt und mit verschiedener Schnelligkeit nach rechts oder links oder nach beiden Seiten sich fortpflanzt, stets an der früheren Stelle sich wieder ausgleichend. Auch schräg verlaufende Furchen kommen dazwischen vor, quer verlaufende, nach oben oder unten fortschreitende kann ich mich nicht erinnern gesehen zu haben.

Peristaltische Darmbewegungen sieht man fast an jeder Diastase der Musculi recti, fast an jedem sehr abgemagerten Individuum, dessen Bauchdecken man einige Zeit entblösst oder rasch mit dem Finger durchfurcht. Auch wo zuvor keine Darmwülste sichtbar waren, prägen sie sich dann allmählig aus, beginnen langsam in wurmförmig fortschreitende Bewegung zu kommen, ver-

schwinden beim Wiedererschlaffen der Darmwand und werden durch andere neu auftauchende Wülste ersetzt. Aus leicht begreiflichen anatomischen Gründen sind sie in der mittleren Gegend des Unterleibs um den Nabel herum und von da bis zur Symphyse durch tiefere Furchen bezeichnet, als gegen die Seitenwände zu, an welchen sie unter den dickeren Muskellagen unsichtbar bleiben. Weitaus am schönsten, schlangenähnlich sich windend, bald da bald dort in Form hoher Knäuel auftauchend, sieht man sie bei bedeutendem Meteorismus und namentlich bei Darmstenose, auch Bleikolik und manche Zustände der Hysterischen liefern gute, auf reiner Innervationsstörung beruhende Beispiele davon. Diese letzteren recht ausgeprägten Fälle liegen den gewöhnlichen Beschreibungen allein zu Grunde, nur bei guter Beleuchtung und genauer Betrachtung gelingt es, dann aber auch leicht, sich von dem überaus häufigen Vorkommen dieser Erscheinung zu überzeugen.

Andere Bewegungen an den Bauchdecken werden sichtbar, 1) wenn Bauchdeckengeschwülste mit der Muskelzusammenziehung, z. B. beim Aufsitzen oder Niederliegen den Muskelverschiebungen folgen, 2) wenn bewegliche Geschwülste im Bauchraum ihrer Schwere oder stattgehabter Erschütterung zufolge ihre Lage wechseln, 3) wenn am schwangeren Uterus Wehenthätigkeit oder Kindsbewegungen erfolgen.

B. Palpation.

I. Betastung des Brustkorbs.

Dieselbe erstreckt sich auf die Erschütterung und das Zittern der Brustwand, das hervorgerufen wird 1) durch die Stimme, 2) durch Reibung rauher Flächen, 3) durch Bewegung von Flüssigkeit, 4) durch den Herzschlag, 5) durch anomale Schwingungen strömender Flüssigkeiten.

der angrenzenden Luftsäule mit und pflanzen sich wie durch den Mund nach aussen, so durch die Luftröhre und ihre grossen Aeste nach abwärts fort. Indem die Bronchien sich nach der Peripherie zu verengen, üben sie auf die an ihren glatten Wänden sich brechenden Schallstrahlen die umgekehrte Wirkung aus wie ein Sprachrohr. Während dieses denselben eine seinem Längendurchmesser parallele Richtung verleiht, geben die Bronchien nach mehrmaliger Reflexion den Schallstrahlen eine auf ihre Wand senkrechte Rich-

tung, so dass sie diese und das umgebende Lungengewebe durchdringen und zur Brustwand gelangen. Legt man beim Sprechen die Hand an den Kehlkopf, so fühlt man, wie er beim Sprechen in zitternde Bewegung geräth 1). Je geringer die Zahl der Schwingungen in der Zeiteinheit, also je tiefer der ausgesprochene Klang, je grösser die Amplitude der einzelnen Schwingungen, d. h. je lauter der Ton, um so stärker die mitgetheilte Bewegung der Kehlkopfwände. Ebenso verhält sich das Zittern, das die aufgelegte Hand während des Sprechens an der Brustwand fühlt. Als drittes Moment, das bestimmend für die Stärke dieser Erscheinung wirkt, ist die überwiegend von der Dicke abhängige Schwingungsfähigkeit der Brustwand zu betrachten. So wird man denn die Stimmvibration (Pectoralfremitus) bei Aphonischen, bei Leuten mit schwacher hoher Stimme, bei sehr dicker Brustwand nicht selten vermissen, bei magern Bassisten aber trefflich ausgesprochen finden. Sie ist bei Gesunden an jeder Stelle der rechten Brustwand um ein Geringes stärker als an der entsprechenden Stelle der linken Seite, hauptsächlich wegen der grösseren Weite des rechten Bronchus (Seitz). Im Uebrigen ist sie an jeder dünneren Stelle der Brustwand stärker als an jeder dickeren. Letztere Thatsache kommt nur selten, z. B. bei Scoliotischen, bei halbseitigem Oedem, Muskelatrophie praktisch in Frage. Man untersucht fast ausschliesslich in der Absicht die Stärke der Stimmvibration, ihr Verhalten an symmetrischen Stellen beider Brusthälften zu vergleichen. Darauf gründet sich die gewöhnlich angewendete Methode: beide Volarflächen der Hände, oder wo es sich um kleinere Räume handelt, die Volarflächen der beiden vorderen Glieder der drei mittleren Finger an genau symmetrische Stellen der Brustwand mässig fest aufzulegen, während der Kranke durch Fragen, oder durch den Auftrag zu zählen zum Sprechen veranlasst wird. Die Stimmvibrationen gelangen durch den vielfachen Uebergang aus der Luft der Alveolen in deren Wände (jedesmal an der Grenze eines anders leitenden Mediums durch Reflexion geschwächt) nur sehr vermindert zur Brustwand.

Wird ein grösserer Theil des Lungengewebes durch irgend einen Krankheitsprocess in eine gleichmässig festweiche Masse verwandelt,

¹⁾ Diese fühlbare Stimmvibration der Kehlkopfswände erleidet diagnostisch sehr wohl zu verwerthende Abschwächung auf einer Seite, wenn Lähmung oder mechanische Hemmnisse die Schwingungen eines Stimmbandes beeinträchtigen.

so fällt die vielfache Reflexion hinweg und damit ein wesentlicher Grund der Abschwächung der Stimmvibration während ihres Verlaufes zur Brustwand. Man fühlt über entzündlich verdichteten Lungentheilen das Zittern der Brustwand stärker als an der gleichnamigen Stelle der andern Seite. Findet an der Innenseite der Brustwand ein erheblicher Druck auf dieselbe statt, so wird ihre Schwingungsfähigkeit vermindert. Desshalb fühlt man bei massenhafter entzündlicher Verdichtung und sehr fester Andrängung der Lunge gegen die Brustwand, und bei der Ausspannung derselben durch Gas im Pleurasack die Stimmvibration schwächer als normal. Wird der Hauptbronchus einer Seite oder eine Anzahl grosser Bronchien durch völlig unelastische Körper, in welchen jede Schwingung untergeht, z. B. Schleim verschlossen, so gehen die Stimmvibrationen nicht in das Lungengewebe über und gelangen nicht zur Brustwand. Wenn auch alle Ursachen zur Verstärkung der Stimmvibrationen gegeben wären, wird sie in diesem Fall unfühlbar werden. Ein Hustenstoss kann solche Schleimpfröpfe entfernen und rasche Wiederkehr der Stimmvibration vermitteln für eine Stelle der Brustwand, an der sie zuvor aufgehoben war. Fremdkörper, die einen Bronchus verstopfen, heben die Vibration des betreffenden Brustbezirkes auf.

Wird die abschwächende Reflexion der Stimmvibrationen an einem Flüssigkeitsspiegel, der sich zwischen Lunge und Brustwand einlagert, noch wirksamer als zuvor schon in den Lungenzellen zu Stande gebracht, so wird auch an der betreffenden Stelle der Brustwand sehr wenig von Stimmvibration zu fühlen sein. Wird die Brustwand eingebogen und auf einer Seite zusammengekrümmt, vielleicht noch an ihrer Innenfläche mit straffen Membranen bedeckt, so vermindert sich ihre Schwingungsfähigkeit. Aus ersterem Grunde findet man während des Bestehens eines Pleuraexsudates, aus letzterem oft noch Jahre lang nachher die Stimmvibration vermindert.

Die Stimmvibrationen lassen sich an dem Spiegelbilde einer empfindlichen Flamme sehr schön sichtbar machen. Man bringt die Brustwand durch Blechtrichter und Gummirohr mit der Flamme in luftdichte Verbindung. Das Lichtband auf dem rotirenden Spiegel erscheint nicht so stark gezähnt als wenn man es auf die Trachea, oder gar vor den Mund hält. Schon geringe pathologische Abschwächungen können an der Flamme gezeigt werden, sehr schön die bei Pleuritis, besonders wenn man zwei Flammen übereinander anwendet (vergl. Abbildung).

- 2. Die Reibung rauher Flächen kann an der Pleura oder am Perikard stattfinden. Man kennt ausserdem hörbare und fühlbare Erscheinungen, die durch Reibung sonst glatter Organe hervorgerufen sind: an den Gelenken, den Sehnenscheiden und an vielen Unterleibsorganen. Fassen wir diese für einen Augenblick mit in den Kreis der Betrachtung, so finden wir dreierlei Entstehungsweisen fühlbarer Reibung. 1) Durch willkürliche Verschiebung der Theile, durch Druck, den der Beobachter auf dieselben ausübt. In dieser Weise häufig an den Bauchdecken und an Bruchsäcken, die aus diesen hervorragen und deren Inhalt in Entzündung gerieth. 2) Durch willkürliche Bewegungen des Kranken, so an entzündeten Gelenken oder Sehnenscheiden. 3) Durch rhythmische, automatische Bewegungen. Nur die letztere Art von Reibungserscheinungen findet sich am Brustkorbe vor. Die durch Reibung erzeugten Geräusche sind, je tiefer und rauher sie sind, je gröber die einzelnen Absätze zwischen den Geräuschen, um so deutlicher auch mit der aufgelegten Hand zu fühlen. Die Erfahrung zeigt, dass am menschlichen Körper alle durch willkürliche Verschiebung der Theile bedingten Reibungen deutlicher als Zittern mit der aufgelegten Hand zu fühlen, wie als Geräusch mittelst des aufgesetzten Stethoskopes zu hören sind. Für die an der Lunge und am Herzen stattfindenden Reibungen gilt das Umgekehrte. Jede derselben macht ein hörbares Geräusch, aber nur die stärksten und rauhesten können gefühlt werden.
- a) Beide Pleurablätter liegen fortwährend mit spiegelglatten Flächen dicht an einander. Sie verschieben sich mit jedem Athemzuge, mit der Inspiration abwärts, mit der Exspiration in der entgegengesetzten Richtung, am untersten Theile der Pleura costalis am meisten bis zu 1" weit, an der Lungenspitze sehr wenig oder gar nicht, an jedem der zwischengelegenen Punkte um so weniger, je näher er der Lungenspitze liegt. Sie verschieben sich aber auch beim Einathmen horizontal, indem die vorderen Lungenränder vor den Organen des vorderen Mediastinums eine Strecke weit einander sich nähern. Diese Bewegung wird an dem hinteren Lungenrande verschwindend klein. Je näher er diesem gelegen ist, in einer um so kleineren Ausdehnung bewegt sich jeder dazwischen gelegene Punkt der Pleura pulmonalis in der Richtung von hinten nach vorne beim Einathmen und umgekehrt beim Ausathmen. Die Bewegung in der Längsrichtung des Körpers ist die vorherrschende, die andere die untergeordnete. Wird die normale Glätte der Pleura-

blätter durch Entzündungsprodukte getrübt, so entsteht in der gleichen Weise ein fühlbares, gewöhnlich in Absätzen erfolgendes Erzittern der Brustwand, wie eine Glasscheibe zu schwingen beginnt, an der man den befeuchteten Finger hin und her reibt. Verwachsen beide Pleurablätter mit einander, oder werden ihre rauhen Flächen dadurch, dass sie Flüssigkeit absondern, von einander getrennt, so hört die Möglichkeit dieser Erscheinung hier auf. Man fühlt das pleuritische Reiben bald als äusserst feines Anstreifen, bald als rauhes, in erkennbaren Absätzen erfolgendes Knattern, bald nur als eine undeutlich schwingende Bewegung der Brustwand. Es begleitet gewöhnlich sowohl die Inspiration als auch die Exspiration, verschwindet jedoch sofort, wenn der Athem angehalten wird. Hie und da ist es auch nur bei einem der beiden Abschnitte des Athmens vorhanden. Es erfolgt gewöhnlich in auf- und absteigender Richtung (Frottement ascendant et descendant), seltener herrscht die Richtung von vorne nach hinten, oder eine Diagonalrichtung vor. Dem Arzte wird die Auffindung dieses Symptomes häufig dadurch sehr erleichtert, dass die Kranken dasselbe mit der Hand zufällig selbst an der Brustwand wahrgenommen haben und den Ort desselben zu bezeichnen wissen. Verwechselungen kommen hauptsächlich vor mit den sehr ähnlichen Tastempfindungen, die durch starke und oberflächlich entstehende Rasselgeräusche erzeugt werden. Bisweilen lassen sich diese durch Husten beseitigen, oft haben sie eine kürzere Dauer als die Reibegeräusche, am häufigsten muss das Resultat der Auscultation entscheiden.

b) Die systolische Formveränderung und Locomotion des Herzens machen es nothwendig, dass mit jeder Systole und Diastole jeder Punkt der glatten einander zugekehrten Flächen des Perikards eine geringe Verschiebung erfährt. Ist das Perikard durch frische, im Gange begriffene Entzündung, oder durch Sehnenflecken, die als Reste einer solchen zurückblieben, seiner Glätte verlustig, mit Auswüchsen und Auflagerungen von unregelmässiger Oberfläche bedeckt, so machen sich gleichfalls die Folgen der Reibung während der Systole bemerklich. Ist dieselbe intensiv und erfolgt sie in groben Absätzen an der vorderen Fläche des Herzens, ist die Brustwand dünn und zum Schwingen geeignet, so nimmt die aufgelegte Hand ein gröberes oder feineres Kratzen wahr, das bald an der ganzen vorderen Fläche des Herzens, bald nur an wenigen Stellen: der Spitze, den Rändern, der Basis seinen Sitz hat. Ist die Reibung gering, so tritt das Gefühl derselben oft nur in ein-

zelnen unregelmässig vertheilten Momenten der Herzbewegung hervor; ist sie stark, so zieht sich dasselbe durch die ganze Systole und Diastole hindurch, und verliert sich nur am Schlusse der letzteren bis zur nächsten Systole. Auch hier wird durch Flüssigkeitserguss oder Verklebung zwischen beiden Blättern des Herzbeutels diese Erscheinung rasch beendet. Im ersteren Falle gelingt es bisweilen noch sie bei Druck auf die vordere Brustwand, bei der Knie-Ellenbogenlage oder bei der einen oder anderen Seitenlage des Kranken wieder zu Gefühl zu bekommen.

- 3. Bei reichlicher Anhäufung von Flüssigkeit und Luft im Pleurasacke kann in günstigen Momenten das Plätschern der ersteren gefühlt werden, das rasche Erschütterungen des Körpers begleitet. Grössere Hohlräume, nahe der Oberfläche der Lunge von verdichteten, die Erschütterung derselben gut leitenden Gewebsschichten bis zur Pleura bedeckt, lassen oft, wenn sie Flüssigkeit und Luft in geeigneter Menge enthalten, durch zerspringende Blasen der Flüssigkeit entstandene gurgelnde Erschütterung der Brustwand wahrnehmen - bei langem constantem Vorkommen ein fast sicheres Zeichen vorhandener Cavernen. Das Athmen verursacht die Blasenbildung der Flüssigkeit, und während des Athmens wird auch schon die Erschütterung gefühlt, die dem Springen der Blasen entspricht. Sehr oft fühlt man an der Brust schnurrende, den Schwingungen einer Basssaite ähnliche Erschütterungen, die entstehen während die Ein- oder Ausathmungsluft verengte, oder halb mit Schleim erfüllte Bronchien durchdringt. Zwischen diesen beiden letzterwähnten Formen liegen noch zahlreiche Modificationen der Rasselgeräusche, namentlich die trockeneren Formen derselben in der Mitte, die bei genügender Stärke, und wenn sie recht nahe an' der Brustwand entstehen, ihr fühlbare Erschütterung mittheilen können. Es ist daher dringend zu rathen, die Begründung solcher Tastwahrnehmungen durch Pleurareibung nur mit grosser Vorsicht anzunehmen. Selbst dem Geübtesten wird die Entscheidung oft schwer.
- 4. Alles, was die Inspection über den Herzstoss lehrt, kann auch für die Betastung zugängig werden. Der kaum sichtbare Herzstoss wird oft erst durch diese deutlich erkannt. Die Unterscheidung, ob die aufgelegte Hand mit ungewöhnlicher Stärke bewegt, erschüttert, oder eigentlich gehoben werde, ist leicht und klar und führt gewöhnlich erst zur Feststellung des Grades verstärkter Herzbewegung, der anzunehmen ist. Auch die pulsiren-

den Bewegungen in der epigastrischen Grube und am rechten Brustbeinrande werden durch die Betastung controlirt. Ganz besondere Bedeutung hat dasselbe dort, wo die Pulmonalarterie oder Aorta ihre verstärkten, oder durch Verdichtung des Lungengewebes besser geleiteten Pulsationen der Brustwand mittheilt. An der Pulmonalarterie fühlt man oft, ausser der systolischen Vorwölbung der Brustwand, die sie verursacht, einen diastolischen Stoss, der dem Klappenschlusse entspricht und beweist, dass dieser durch eine stärkere Blutsäule als gewöhnlich zu Stande gebracht wird. So kann Blutstauung im kleinen Kreislaufe, noch ehe die Auscultation Verstärkung des zweiten Pulmonaltones nachgewiesen hat, erkannt werden. Fühlt man den verstärkten Pulmonalklappenschluss an einer anomalen Stelle im dritten Intercostalraum, oder auf Zollweite und mehr vom Brustbeinrande entfernt, so ist diess das einzige Zeichen am Lebenden, das in den betreffenden Fällen von der stattgehabten Lageveränderung der Pulmonalarterie Kenntniss gibt. Seltener wird auf der rechten Seite des Brustbeines im zweiten Intercostalraum, ausser der systolischen Vorwölbung der diastolische Klappenschluss der Aorta gefühlt, als ein weiteres Zeichen der Dilatation dieses Gefässes.

5. Flüssigkeiten, die in einem Rohre von übrigens gleichmässiger Weite eine verengte Stelle durchströmen, gerathen unmittelbar jenseits derselben in unregelmässige Schwingungen, die unter Umständen der Gefässwand sich mittheilen, an ihr gefühlt und von ihr noch weiter fortgeleitet werden können. Die gleichen Schwingungen entstehen an jeder ungleichmässig erweiterten Stelle eines sonst cylindrischen Rohres, ferner, wo zahlreiche feine Unebenheiten in das Lumen des Gefässes vorragen. Diese Fälle finden sich am häufigsten an den Ostien des Herzens realisirt. Sind diese verengt, oder mit starren Unebenheiten besetzt, so entstehen zitternde Schwingungen von unregelmässiger Zeitfolge (Geräuschen entsprechend) und leiten sich auf die benachbarten Stellen der Brustwand fort, wo sie gefühlt und als Zeichen bestimmter Klappenfehler des Herzens diagnostisch verwerthet werden. Systolisches Schwirren an der Herzspitze deutet auf Insufficienz der Mitralklappe, am fünften oder sechsten Rippenknorpel rechts neben dem Brustbein auf solche der Tricuspidalis, an der Aorta oder Pulmonalis auf Stenose derselben hin. Diastolisches Schwirren an der Herzspitze, oder der erwähnten Lagerungsstelle der Tricuspidalklappe beweist mit grosser Sicherheit Stenose des betreffenden Ostiums. Diastolisches Schwirren der Aorta oder Pulmonalarterie zeigt Insufficienz ihrer Klappen an.

II. Palpation der Gefässe.

1. Venen. Bei völlig gesunden Individuen und normaler Haltung des Körpers geben die Venen keinerlei tastbare Erscheinungen zu erkennen. Die bei krankhaften Zuständen, vorzüglich bei Tricuspidal-Insufficienz an der Vena jugularis interna und einigen kleineren benachbarten Venen vorfindliche, oben besprochene Pulsation wird weit deutlicher durch den Gesichtssinn, als durch das Tastvermögen erkannt. Wenn dieselbe vorhanden ist, gelingt es bisweilen mit den leise aufgelegten Fingerspitzen einen dumpfen Stoss, oder ein feines in der Richtung von unten nach aufwärts erfolgendes Zittern der Venenwand zu erkennen. Gewisse pathologische Erfahrungen zeigen, dass jede Vene, wenn ein starker rückläufiger Blutstrom in sie eintritt, z. B. durch Eröffnung eines Aneurysmas in ihr Lumen, oder sonstige Communication mit einer Arterie die Erscheinung des mit dem Pulsiren verbundenen rückläufigen Schwirrens darbieten kann. Weit häufiger als vermehrte Füllung und rückläufige Strömung in der Vene ist es verminderter Blutgehalt des ganzen Gefässes oder einzelner Strecken desselben und normal gerichtete, aber unregelmässige Strömung des Inhaltes, wodurch ein Venengeräusch erzeugt wird. Auch dieses hat für gewöhnlich seinen Sitz in der Jugularvene und überwiegend in der rechten inneren Jugularvene. Es ist bekannt und vielbesprochen unter den Namen Venen geräusch, Venensausen, Nonengeräusch, Kreiselgeräusch, Bruit de diable, Chant des artères. Man lernte es zuerst bei Blutleeren und vorzüglich bei Chlorotischen kennen, aber methodische Untersuchung erwies, dass es den meisten, ja wenn man so sagen darf, den gesundesten Menschen auch zukommt, daher der Name anämisches Geräusch jetzt mit Recht ausser Brauch gekommen ist. Dieses Geräusch, auf das wir später zurückkommen werden, ruft, wenn es irgend etwas stark ist, Schwingungen der Venenwand hervor, die durch die Haut gefühlt werden können, und zwar am besten an dem untersten Theil der rechten Jugularvene. Man fühlt dann ein continuirliches, äusserst feines, nur mit jeder Systole und Inspiration sich verstärkendes, dem Rieseln oder Sausen entsprechendes Zittern der Venenwand, das in manchen Fällen noch, dem Verlaufe der Vena anonyma entsprechend, an dem obersten Theile der rechten Brustwand gefühlt werden kann.

Seine Entstehung wird begünstigt, es wird bei vielen Gesunden erst hervorgerufen durch starke Drehung des Kopfes nach der linken Seite hinüber, wenn man es an der rechten und umgekehrt. wenn man es an der linken Jugularis interna fühlen will. Indem die Vene dabei durch Muskel- oder Fasciendruck platt gedrückt wird, kommt das Blut in die Lage, beim Einströmen in den stets durch seine Fixationsverhältnisse gleich weit erhaltenen Theil derselben hinter dem Schlüsselbeine unregelmässige, wirbelnde Strömungen zu machen, die dem Geräusche und Schwirren zu Grunde liegen. Ist die Vene ohnehin schon in Folge allgemeiner Blutarmuth ziemlich leer, so bedarf es keiner Compression derselben, um diess Schwirren oder Rieseln ihrer Wand hervorzurufen. Daher die Erscheinung bei Chlorotischen auch ohne veränderte Stellung des Kopfes wahrgenommen wird. Ist die Vene durch reichlichen Blutgehalt stark ausgedehnt, ist sie in Folge von Herzfehlern oder Lungenkrankheit von Blutstauung betroffen, so gelingt es auf keine Weise, auch wenn beim Umdrehen des Kopfes der Omohyoideus sich fest über sie spannt, die fragliche Erscheinung wahrnehmbar zu machen.

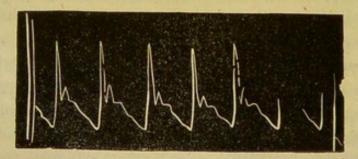
2. Arterien. Die Arterien bieten die Erscheinungen des Pulses und diejenigen des Schwirrens dar. Wir wollen hier nicht die ganze, fast mit der Medicin gleich alte Geschichte des Pulses durchgehen, nicht jener lächerlichen Verirrung gedenken, die zur Unterscheidung ebensovieler Pulsformen führte, als man Krankheiten kannte. Man hat unendlich mehr und unendlich schärfere Zeichen für die Erkenntniss der Krankheiten gefunden, als die im Pulse gelegenen. Die Pulsdiagnosen haben das Schicksal der meisten specifischen und ontologischen Anschauungen in der Medicin getheilt. Nur ganz wenige Krankheiten, namentlich einige Klappenfehler des Herzens, lassen sich mit Wahrscheinlichkeit aus dem Pulse erkennen. Die Bedeutung der Pulsfrequenz als Maass des Fiebers ist durch die Messungen der Körperwärme nahezu auf Null herabgesetzt worden, die übrigen Qualitäten des Pulses aber, die dereinst nur ein besonders fein fühlender und durch Decennien geübter Finger wahrzunehmen im Stande sein sollte, sind vereinfacht, von allem mystischen Anstriche befreit, sie sind messbar und einer erschöpfenden objectiven Darstellung fähig geworden. Man hat gelernt sie mittelst eines Hebelarmes anzuschreiben, der anfangs nach Vierordt Bestandtheil einer umfangreichen Maschine war, jetzt von Marey vereinfacht, in der Tasche mitgetragen

werden kann. Man wird ihn nicht in die Praxis mittragen, aber man wird ihn verwenden, um durch Studium zahlreicher Pulscurven alle Eigenschaften derselben kennen zu lernen, und im zweifelhaften Falle eine rein objective Entscheidung über sein Verhalten zu erlangen. Die Umgestaltung, welche die Lehre vom Pulse durch dieses Hülfsmittel erlitt, ist nicht beendet, wir stehen noch mitten in derselben, wie die Arbeiten von Naumann, Wolff, Landois u. A. erweisen.

Die Pulswelle kann für gewöhnlich an den grossen Gefässen und an den mittleren, namentlich an den Hauptarterien des Vorderarmes und Unterschenkels noch deutlich gefühlt werden. Individuelle Eigenthümlichkeiten, momentane Aufregung, vielleicht auch leichte Vergrösserungen des linken Ventrikels bringen es mit sich, dass bei vielen Gesunden auch noch der Puls der Hohlhandarterien, Fingerarterien, der Arteria dorsalis pedis, temporalis, coronaria labii sehr leicht gefühlt wird. Weiterhin in den kleinen Gefässen erlischt die Pulswelle so weit, dass sie auch bei der oberflächlichsten Lagerung derselben nicht mehr wahrgenommen wird. Schon unter normalen Verhältnissen kommt die Pulswelle an jedem entfernteren Gefässe um ein sehr kleines Zeitmoment später als am Herzen, oder an einem dem Herzen näheren Abschnitte.

Bei der Betastung der Radialarterie, wie sie gewöhnlich zu ärztlichen Zwecken geübt wird, unterscheidet man 1) die Frequenz des Pulses (Pulsus frequens - rarus), d. h. die Zahl der in einer Zeiteinheit, der Minute, erfolgenden Pulsschläge; 2) die Celerität der Schläge (Pulsus celer, tardus), d. h. die Schnelligkeit, mit der die Diastole der Arterie erfolgt und rückgängig wird; 3) die Grösse des Pulses (P. magnus - parvus), nämlich die Höhe der Pulswelle; 4) die Völle des Pulses, den mittleren Füllungszustand der Arterie; 6) die Härte desselben, d. h. den Widerstand, welchen die Arterienwand bei ihrer Ausdehnung dem tastenden oder drückenden Finger entgegensetzt. Es ist klar, dass manche dieser Qualitäten häufig zusammenfallen, dass z. B. der grosse Puls gewöhnlich auch voll und hart sein wird, aber bei Verblutenden kann der Puls auch gross und leer, bei Krankheiten mit Fieber kann er auch gross in Folge von Atonie der Arterienmuskelhaut und dennoch weich sein. Manche besondere Bezeichnungsweisen werden hie und da noch geübt, obwohl sie genau genommen recht überflüssig sind. So nennt man einen kleinen, häufigen, kaum fühlbaren Puls myurus, einen vollen harten Puls mit langsamen Schlägen cephalicus u. s. w.

Eine besondere Bezeichnung des Pulses verdient noch hervorgehoben zu werden: der doppelschlägige Puls (P. dierotus). Er findet sich bei fieberhaften Krankheiten, die durch hochgradige Temperatursteigerung ausgezeichnet sind; vor Allem bei Typhus, und wird hauptsächlich durch Atonie der Gefässwand bedingt. Eine andere seltene aber interessante Begründungsweise desselben findet sich mit manchen Fällen von doppeltem Herzstosse vor und beruht darauf, dass die Systole des linken Ventrikels in zwei Absätzen erfolgt. Der Sphygmograph hat gelehrt, dass jeder normale Puls katatricrot ist, aber die zweite und dritte, jeder Herzsystole entsprechende Welle ist zu klein, um mit dem Finger gefühlt zu werden. Der pathologische dicrotirende Puls beruht nur auf einer grösseren zeitlichen Entfernung der einen secundären Welle von der primären und auf bedeutender Erhöhung derselben. Der normale katatricrote Puls macht bei 40° C. dem katadicroten Platz. Bei noch höherer Körperwärme wird er erst unterdicrot, mit abnorm tiefer Grossincisur, dann bei 42,5 monocrot. Bei dem unterdicroten Pulse schon, wie ihn der Sphygmograph zeichnet, wird der Dicrotismus für den tastenden Finger unfühlbar. (O. J. R. Wolff.)


Der Rhythmus des Pulses wird gestört, in einen unregelmässigen verwandelt, 1) sehr häufig in dem Greisenalter, ohne dass andere Veränderungen zu Grunde lägen, als die dieser Periode normal zukommenden Involutionsprocesse; er findet sich auch hie und da bei Leuten in den mittleren Jahren aus unbekannten, für unsere Hülfsmittel der Untersuchung nicht nachweisbaren Ursachen irregulär. 2) Die verschiedensten Erkrankungszustände des Herzens, Entzündungen, Klappenfehler, Entartung der Muskelsubstanz können vorübergehend oder dauernd unregelmässigen Puls bedingen, besonders Myokarditis und beginnende Perikarditis haben oft diesen Einfluss. 3) Organische Gehirnkrankheiten mannichfacher Art, besonders die mit erhöhtem Drucke innerhalb der Schädelhöhle verbundenen, stören den Rhythmus des Pulses; insofern gewöhnlich dabei Pulsverlangsamung vorhanden ist, ist anzunehmen, dass dieser Einfluss in der Bahn des Vagus verlaufe, und nicht durch das automatische Centrum im verlängerten Marke vermittelt werde. 4) Viele Gifte, vor Allen Digitalis, wirken in ähnlicher Weise ein, und nach Analogie ihrer Wirkung erklärt sich auch das Vorkommen unregelmässigen Pulses bei einzelnen Infectionskrankheiten. 5) Starke Grosshirneindrücke, z. B. Aufregung, Ueberraschung machen den

Puls vorübergehend aussetzend. Der Sphygmograph weist dabei eine zu früh kommende, unvollständige, dicrote Pulswelle nach (Wolff). 6) Durch Druck auf entsprechend gelagerte Drüsengeschwülste am Halse kann der Vagus mechanisch erregt und der Puls verlangsamt und unregelmässig gemacht werden (Czermak). Kranke mit Leukämie, Mediastinalsarkom etc. bieten öfter Gelegenheit zu diesem Versuche.

Man kann unterscheiden, ob der Puls ungleich (inaequalis) sei, also nur durch verschieden lange Zwischenräume zwischen den einzelnen Herzcontractionen unregelmässig werde, oder ob einzelne Herzcontractionen zwischen die normalen eingeschoben oder mitten aus den normalen herausgenommen sind (Pulsus intercurrens und intermittens). Dabei kann noch eine Art von Regelmässigkeit herrschen, so dass jeder 6. 8. 20ste Schlag fehlt oder doppelt erscheint. Der unregelmässige Puls kann, je nachdem die Bedingungen seiner Ursache es erlauben, sich wieder mit der Ausgleichung von Krankheitsmomenten in einen regelmässigen verwandeln, oder man sieht auch bisweilen, dass er durch verschiedene äussere Einwirkungen, bei dem Einen durch Körperruhe, bei dem Andern durch Anstrengung, durch Spirituosen, oder durch einzelne Arzneimittel auf einige Zeit regularisirt wird.


Verspätung des Pulses und Kleinheit desselben kann wie durch Compression von Aussen, so auch durch krankhafte Verengerung der Arterien bewirkt werden; besonders die atheromatöse Entartung ihrer Häute bewirkt manchmal Pulslosigkeit einzelner Arterien. So kann der Puls beider Radialarterien ein ganz verschiedenes Verhalten darbieten. Ist die Aorta ascendens erweitert, so wird der Puls aller Arterien verspätet, bei Aneurysma der Aorta thoracica nur derjenige an den untern Extremitäten. Verengerung der Aorta an der Umbeugungsstelle des Ductus arteriosus Botalli macht Kleinheit des Pulses an den Arterien der unteren Körperhälfte. Es ist denkbar, dass bei Verengerung einer Arteria subclavia, brachialis etc. durch Interferenzverhältnisse der Wellen der Puls der Radialarterien an Frequenz differire. Bei bedeutender Frequenz, ungleicher Beschaffenheit und sehr geringer Stärke der Herzcontractionen ist häufig die Zahl der Arterienpulse geringer als die der Herzschläge, indem viele Wellen der nöthigen Stärke entbehren, um sich bis zur Peripherie fortzupflanzen. Besonders oft findet sich dies Verhältniss bei grossen Perikardialexsudaten, dann bei Fettentartung des Herzens. Eine Art regelmässiger Unregelmässigkeit des Pulses entsteht auch durch den Einfluss der Respiration auf denselben. Tiefe Inspirationen schwächen, längeres Anhalten des Athems sistirt den Puls. Wenn bei Krankheiten der Puls sehr schwach und frequent geworden ist, während der Kranke selten und in tiefen langen Zügen athmet (z. B. im dritten Stadium des Croups), so wird die Arterie während jeder Inspiration pulslos. Griesinger fand in einem Falle von Mediastinitis, dass der Puls bei jeder Inspiration ausblieb, weil Exsudatstränge, die die Aorta wie Schlingen umgaben, dabei gespannt wurden. Auch verstärkte Exspirationen, Hustbewegungen geben Pulswellen (Wintrich).

Der Sphygmograph von Marey hat unter den Händen des Erfinders, Duchek's, Naumann's u. A. alsbald die wichtige Thatsache ergeben, dass der Puls normaler Weise doppelschlägig sei. Man hat den Dicrotismus, d. h. die arteriensystolische zweite Erhebung zu Anfang als localen Effekt der Arterienelastizität (Duchek), als Repercussion der Blutwelle an der Bifurcation der Aorta (Marey) aufgefasst. Gegenwärtig nimmt man allgemein nach dem Vorgange von Buisson an, dass Reflexion von den Aortenklappen her dem Phänomen zu Grunde liege. Die genaueren Versuche von Wolff und von Landois haben vermocht die Reibung der Schreibfeder, überhaupt die Fehlerquellen auf ein Minimum zu redueiren, und nun ergab sich für den Radialpuls die Ausführung des früher Bekannten dahin, dass derselbe normaler Weise trikrot, oder wie man nach Landois sagen muss katadikrot ist. - Nach Letzterem steht die Höhe der Erhebungen zu der Zahl der Pulsschläge im umgekehrten Verhältnisse. Wir begnügen uns hier in Fig. 3 nach den trefflichen Zeich-Fig. 3.

nungen Wolff's ein Bild des normalen katatrikroten Radialpulses und in Fig. 4 des katadikroten Fieberpulses zu geben.

Fig. 4.

Vom Venenpulse hat Bamberger gezeigt, dass er eine anadikrote Curve giebt (siehe Fig. 25 und 26). Die erste schwächere Ascension rührt von der Contraction des rechten Vorhofes her, die folgende stärkere von der des Ventrikels.

Die Betastung der Körperarterien giebt über abnorme Weite derselben, abnorme Richtungs- und Verlaufsweisen, so wie über ungewöhnliche Härte ihrer Wände Aufschluss. Sie lässt umschriebene Erweiterungen als cylindrische, spindel- oder sackförmige pulsirende Geschwülste erkennen, die bei einiger Grösse systolisches Schwirren und ausserdem, wenn sie dem Herzen sehr nahe liegen, einen diastolischen Stoss ergeben. Sie lässt verbreitete oder allgemeine Arterienerweiterung, z. B. in Folge von Atherom oder Herzhypertrophie, theils an der bedeutenden Dicke, theils an dem geschlängelten Verlaufe erkennen, der mit jeder Diastole eine verstärkte Krümmung seiner Windungen erfährt. Dieses Verhalten zeigt sich namentlich an der Brachial- und Cubitalarterie deutlich. Dieselben kommen oberflächlicher zu liegen, ragen mit einzelnen ihrer Wölbungen hervor und können so gewöhnlich schon durch die Inspection erkannt werden. Zahlreiche erweiterte, pulsirende und schwirrende Arterien an den Brustwänden führen bei dem Verschluss oder der Verengerung des Aortenbogens der untern Körperhälfte Blut zu. Wo die Arterienwände in voller Ausdehnung verkalkt oder mit einzelnen härteren Platten oder Ringen besetzt sind (Atherom), werden sie als starre, kaum mehr pulsirende Röhren, oder als rosenkranzförmige, höckerige Stränge gefühlt. Doch erscheint in diesen Fällen die Härte der Arterie am Lebenden weit bedeutender, als man dann bei der anatomischen Untersuchung an der Leiche sie findet. Seit die Lehre von Embolie und Thrombose eine so hohe praktische Bedeutung gewonnen hat, hat man auch öfter Gelegenheit genommen, durch Betastung oberflächlich gelegener Arterien und Venen, deren Umwandlung in harte Stränge nachzuweisen, um so ihre Ausfüllung mit Blutgerinnseln zu constatiren. Für die Arterien ist dieser Nachweis ein sicherer, indem deren Puls von der Verstopfungsstelle an vollständig aufhört, oder weit seltener sich sehr abgeschwächt erweist. Für die Venen sind, wo es sich um kleine Hautvenen handelt, bei bedeutender Schwäche des Kreislaufs und hochgradiger Atrophie des Unterhaut-Bindegewebes Täuschungen möglich, besonders wenn etwas verdicktes Bindegewebe sie zunächst umgiebt. Wo jedoch grössere Venen als solide Cylinder gefühlt werden, darf man die Anwesenheit der Thrombose als sicher gestellt betrachten.

III. Palpation des Unterleibs.

Der Erfolg derselben ist wesentlich abhängig von den grösseren oder geringeren Hindernissen, die in den Zuständen der Bauchdecken begründet sind. So wird man zugleich aufmerksam auf Fettreichthum derselben, brettartige Härte, teigige Beschaffenheit, die den Fingereindruck lange behält (Oedem), Knistern der Bauchdecken bei Druck (Emphysem), während sie durch die verdünnte, manchmal papierdünnne Beschaffenheit, die sie bei abmagernden Kranken darbietet, das diagnostische Resultat der Untersuchung wesentlich befördern hilft. Die einfachsten Wahrnehmungen können schon brauchbare Anhaltspunkte liefern, so die elastische, luftkissenartige Beschaffenheit, die bei Gasauftreibung der Unterleibsorgane auffällig wird und die Wellenbewegung, die ein leichter Stoss oder Schlag auf den flüssigkeitserfüllten Unterleib den Bauchdecken verleiht. Wo diese Wellenbewegung wegen geringer Menge der Flüssigkeit minder deutlich ist, oder wegen starker Spannung des Flüssigkeitsbehälters sehr kleinwellig wird, gelingt es am leichtesten nach kurzem, raschen Anschlag mit dem rechten Mittelfinger sie nahe dabei mit der flach aufgelegten linken Hand zu fühlen. Es kann nöthig werden, den Kranken die Knie-Ellenbogenlage einnehmen zu lassen, damit sich die spärlich vorhandene Flüssigkeit in der Umgebung des Nabels genügend ansammelt um Fluctuation abzugeben, oder bei stark geneigter Seitenlage sie an der gleichnamigen Seitengrenze des Abdomens aufzusuchen.

Eine besondere Art der Fluctuation wurde von Briançon als Hydatidenschwirren beschrieben. Sie sollte auschliesslich den Echinococcensäcken zukommen, ja nur bei Anwesenheit mehrerer Tochtercysten entstehen; letzteres ist durch eine Beobachtung von Jobert genügend widerlegt, aber auch sonst zeigt sich, dass eine sehr kleinwellige und deutliche Fluctuation an jedem stark gespannten elastischen Sacke, der dünne Flüssigkeit enthält, vorkommen kann, namentlich an Eierstockscysten. Eine solche Fluctuation, die die erwähnten Charaktere in sehr hohem Grade an sich trägt, ist nun gerade das Hydatidenschwirren. Während es also nicht absolut, sondern nur gradweise von der Fluctuation anderer, nicht parasitischer Cysten unterschieden werden kann, fehlt es auch wieder bei manchen Formen der Echinococcen vollständig, so bei den

multiloculären Geschwülsten und bei jenen, die in Verkalkung be-

griffen sind.

Die Palpation gibt auch, und zwar oft in sehr störender Weise, Aufschluss über Schmerzhaftigkeit des ganzen Unterleibs oder einzelner Organe, die bald schon bei leisem Drucke, bald erst bei tiefem, sich durch abwehrende Bewegungen, Wegwenden der Kranken oder Spannung der Bauchdecken bemerklich macht. Um diese Hindernisse und die reflectorische Spannung der Bauchdecken zu vermeiden, so wie überhaupt zu brauchbaren Ergebnissen zu gelangen, ist es nöthig, nach bestimmter und richtiger Methode zu verfahren. Stets ist die gesammte Untersuchung des Unterleibes in horizontaler Lage zu beginnen. Der Kopf und Nacken kann dabei mässig erhöht liegen, alle Muskeln müssen in möglichster Erschlaffung sich befinden, nur ist es nützlich, um die Spannung der Bauchdecken zu vermindern, die Beine im Knie aufstellen zu lassen. Die Aufmerksamkeit des Kranken ist durch Unterhaltung, oder sonst in passender Weise von der Untersuchung abzulenken. Nachdem man die bereits besprochenen Wahrnehmungen über Beschaffenheit der Bauchdecken und den Inhalt des Unterleibs im Ganzen gemacht hat, geht man zur Erforschung der einzelnen Organe über, indem der Ulnarrand der Hand oberflächlich über dieselben hingeführt, und dann an den Grenzen derselben mit langsam aber sicher gesteigertem Drucke eingesenkt wird. Wo nicht sofort bedeutende Geschwülste der Untersuchung eine besondere Richtung verleihen, ist es gut, mit den grossen parenchymatösen Organen zu beginnen.

Leber und Milz sind grossentheils unter normalen Verhältnissen der Betastung nicht zugänglich, selbst der zwischen Rippenbogen und Schwertfortsatz herabreichende Theil der Leber, so wie die durch Pneumothorax oder dergleichen herabgedrängte normale Milz sind, obwohl zugängig, doch durch das Gefühl nicht von den übrigen Unterleibsorganen zu unterscheiden. Sie müssen eine vermehrte Consistenz darbieten, wenn ihre Ränder tastbar werden sollen. Diess ist nun in der That sehr häufig der Fall. Schon hei anscheinend Gesunden finden sich Zustände von fettiger Entartung, Blutanhäufung in der Leber, oder von Härterwerden in Folge des Druckes enger Kleidungsstücke (Schnürleber), die sie fühlbar machen. Für die Milz kommt dergleichen viel seltener vor. Kann die Leber gefühlt werden, so überzeugt man sich von der Ausdehnung der zugängigen Oberfläche derselben, ihrer Glätte und Härte, von der

Beschaffenheit, der Schärfe oder Abrundung ihrer Ränder. Nicht selten gelingt es auch die letzteren zu umgehen und einen guten Theil der unteren Fläche zu betasten. Die Form des Organes, schon unter physiologischen Verhältnissen manchem Wechsel unterworfen, kann bei Krankheiten eine völlig unregelmässige, kugelig lappige, oder sehr flach ausgedehnte, die Grösse kann so gering geworden sein, dass überhaupt bei der Betastung nichts von der Leber mehr aufzufinden ist, sondern das ganze Organ hinter dem Diaphragma verborgen, oder sonst von der vorderen Bauchwand abgewichen ist. Sie kann aber auch bis unter den Nabel herab, ja bis zur Symphyse sich erstrecken. Die Ränder, bald abgerundet und stumpf, bald sehnig verdünnt und schneidend zugeschärft, können wie das ganze Organ mit Höckern und Vorsprüngen der verschiedensten Grösse und Härte besetzt erscheinen. Es wäre unstatthaft bei mässigen Schwankungen in der Grösse desjenigen Theiles der Leber, der gefühlt werden kann, hieraus unmittelbar auf die wahre Grösse des Organes zu schliessen, denn ausser von dieser ist die Grösse des zugängigen Theiles auch noch abhängig von dem höheren oder tieferen Stand des Zwerchfelles. Nur wo der Stand des Herzstosses, die Form und Bewegungsverhältnisse des Brustkorbs und Unterleibs eine normale Lagerung der Scheidewand zwischen beiden erwarten lassen, kann man einfach aus tiefem oder hohem Stande des fühlbaren unteren Leberrandes auf Vergrösserung oder Verkleinerung des Organes schliessen. Schon der Umstand ist beweisend hierfür, dass mit jeder Zusammenziehung des Zwerchfelles der fühlbare Leberrand nach abwärts rückt. Diese respiratorische Bewegung des Randes, die nur bei inniger Verwachsung der Leber mit der Bauchwand, bei solcher Vergrösserung derselben, dass sie sich an beide Hypochondrien anstemmt, oder bei bedeutender Spannung des gesammten Unterleibes fehlt, ist sehr geeignet, die Grenze des Organes zu charakterisiren. Nur muss man sich hüten am Rande oder der unteren Fläche der Leber adhärent gewordene Geschwülste mit zu derselben zu rechnen. Selten gelingt es Gallensteine in der Gallenblase zu fühlen, bisweilen aber nimmt man bei dieser Untersuchung das hörbare und fühlbare Klirren derselben wahr. Die vergrösserte Gallenblase kann bisweilen gesehen, öfter gefühlt, in den meisten Fällen aber durch die Percussion erkannt werden, daher wir bei dieser auf ihr Verhalten zurückkommen werden.

Die Milz ist normaler Weise der Betastung nicht zugängig.

Wo sie durch Entzündung oder bei acuten oder chronischen Blutkrankheiten vergrössert ist (Intermittens, Typhus, Leukämie, Syphilis, Speckkrankheit), oder wo sie bei Behinderung des Pfortaderkreislaufes (Lebercirrhose, Pfortaderverschluss) eine hyperämische Anschwellung erleidet, ist stets zugleich ihr Gewebe in dem Grade härter geworden, dass sie sogleich gefühlt werden kann, wenn ihre Spitze jener der eilften Rippe sich nähert oder sie überschreitet. Bei geringer Anschwellung ist es nöthig die Fingerspitzen unter den Rippenbogen zu drängen, um das stumpfspitzige Ende der Milz zu erreichen. Tritt sie unter dem Rippenbogen hervor, so bildet der vorragende Antheil einen glatten, gegen den Nabel hin gerichteten, abgerundeten Keil, der gleichfalls etwas mit dem Athmen auf- und absteigt. Bei noch bedeutenderer Vergrösserung wird die annähernd elliptische Form des Organes kenntlich, wenn auch ein bedeutender Theil derselben hinter dem linken Rippenbogen, ein kleinerer hinter dem Darmbein und der dicken Muskulatur an demselben verborgen bleibt. Nun erweist sich der Längendurchmesser mehr gegen die Symphyse gerichtet, und nun tritt auch eine abnorme Beweglichkeit des Organes hervor, so dass es durch die tastende Hand etwas verschoben werden kann und beim Umdrehen nach der rechten Seite sich etwas nach dieser hin senkt. Sehr seltene Fälle, wo Krebsgeschwülste oder Echinococcen der Milzvergrösserung zu Grunde liegen, ausgenommen, bietet das Organ stets glatte Oberfläche und glatte Ränder dar, nur nach Innen und Oben von der Spitze wird ein seichter Einschnitt gefühlt. Freilich kann auch als zufällige Anomalie derselbe längs des fühlbaren Randes angetroffen werden. Wo bei Bestehen grosser Milztumoren eigentliche Darmblutungen, Magenblutungen oder reichlich schleimig-blutige Ausscheidungen am Darme auftreten, erfolgt oft rasch einige Verkleinerung der Milzanschwellung (Splenicis dysenteria prodest, Hippokrates). Während des Wechselfieberanfalles erfolgt rasche Vergrösseung der Milz.

Während des Bestehens grosser Milz- und Lebergeschwülste hat man öfter Gelegenheit mit der aufgelegten Hand peritoneale Reibegeräusche derselben zu fühlen oder hervorzurufen. Starke Spannung des Bauchfellüberzuges dieser Organe scheint an sich schon Gewebswucherung entzündlicher Art hervorrufen zu können. In anderen Fällen besteht, unabhängig davon, chronische, selten acute Peritonitis, die die Oberfläche dieser Organe und die gegenüberliegenden Peritonealflächen rauh macht. Solche Reibegeräusche

am Unterleibe sind zuerst von Desprèz 1834 beschrieben worden, später von Beathy, Bright u. A. Sie entstehen an der Leber und Milz gewöhnlich in rhythmischer Weise durch das respiratorische Auf- und Absteigen dieser Organe, erfolgen daher auch in abwechselnder Richtung dieser Bewegung und können, wo sie am Thoraxrande selbst wahrgenommen werden, mit den ganz ähnlichen pleuritischen Reibegeräuschen verwechselt werden. Wir handeln sie an dieser Stelle ab, da sie gewöhnlich früher und leichter gefühlt als gehört werden, und wir werden sogleich damit die sämmtlichen ähnlichen Erscheinungen, die am Unterleibe vorkommen, besprechen. Die wesentlichen Bedingungen ihrer Entstehung liegen 1) in der Rauhigkeit der betreffenden Peritonealflächen, 2) in der fortdauernden Verschiebung derselben, die nicht durch Verwachsung oder Einkeilung beeinträchtigt sein darf, 3) in der innigen Anlagerung ja Aneinanderdrängung der Peritonealflächen gegen einander. Das Rauhwerden dieser Flächen wird so überwiegend häufig durch chronische Entzündung verursacht, dass ich selbst früher keine Ausnahme von dieser Regel kannte; aber schon an der Milz begegnet man Reibegeräuschen bei subacuter Entzündung, die mit lebhafter Schmerzhaftigkeit des Organes verbunden ist. Später habe ich nun auch bei acuter Peritonitis, so z. B. bei einem von B. S. Schultze ausgeführten Kaiserschnitte vier Stunden nach der Operation und in einem Falle von Perityphlitis Reibegeräusche zwischen Darm und Bauchwand erfolgen hören. Immerhin darf man bei acuter Peritonitis dieselben nicht als ein berechtigtes und nothwendiges Symptom betrachten, sondern nur als ausnahmsweise Erscheinung. Auch für die Leber wurde ein acut peritonitisches Reibegeräusch von Patterson beobachtet. An der vergrösserten Leber und Milz werden diese Reibegeräusche, wo sie rhythmisch erfolgen, als rauhes auf- und abgehendes Kratzen wahrgenommen, und können ausserdem durch Verschiebung der Bauchdecken in willkürlicher regelloser Weise hervorgerufen werden. Zahlreiche Fälle peritonealer Reibegeräusche sind seither von N. Friedreich, G. Terfloth und M. Seidel veröffentlicht worden. Letzterer theilte aus meiner Klinik auch noch acut- und subacut-peritonitische Fälle mit. Ueber Geschwülsten des Unterleibs und der Bauchhöhle hat man fast ausschliesslich Reibegeräusche durch willkührliche Verschiebung beobachtet und zwar immer oder nahezu jedes Mal bei chronischer Entzündung ihrer Oberfläche. Diese Erscheinung ist namentlich den Gynäkologen von den Eierstockesysten

und Uterusgeschwülsten her bekannt. Im Gegensatze zu den gewöhnlichen acuten Formen der Peritonitis sind es hier so oft adhäsive Entzündungen, die das Reibegeräusch bringen, dass man sich gewöhnt hat, aus diesem Symptom auf die Anwesenheit von Verwachsungen mit den Nachbarorganen zu schliessen. Wie wenig gerechtfertigt dieser Schluss sei, ergibt sich theils aus einer Anzahl in der Literatur vorhandener entgegenstehender Beobachtungen, theils aus der Thatsache, dass diese stets regellosen, nur durch Verschiebung der Bauchdecken zu erzielenden, knirschenden Reibungserscheinungen von Geschwülsten des unteren Theiles der Bauchhöhle, besonders oft nach Punction von Ascitesflüssigkeit zum Vorschein kommen. Als eine eigene Art von Reiben wird noch von Ballard dasjenige beschrieben, das bei verbreiteter Bauchfellentzündung durch die peristaltische Bewegung hervorgerufen werde. Obwohl es leicht kenntlich sein muss, stehen mir eigene Erfahrungen über dasselbe nicht zu Gebote. Neuerdings hat Mosler einen merkwürdigen Fall der fraglichen Erscheinung beschrieben, der darauf hinweist, wie mannichfache Organe Sitz desselben sein können. In dem gedachten Falle wurde über der krebsig entarteten kindskopfgrossen Gallenblase mit dem Athmen auf- und absteigendes Reiben gefühlt. Die Geburtshelfer kennen am Uterus eine sehr ähnliche Wahrnehmung von Knarren, das durch die Bewegung kleiner Kindstheile nach Abfluss des Fruchtwassers entsteht.

Die Niere, für gewöhnlich bei ihrer tiefen Lage der Betastung völlig unzugängig, kann unter abnormen Verhältnissen auf zweierlei Weise fühlbar werden, 1) durch Lageveränderung, 2) durch Vergrösserung. Die bewegliche Niere stellt eine den bekannten Grössenverhältnissen der Niere entsprechende, in charakteristischer Weise bohnenförmige, zwischen Wirbelsäule und ihrer ursprünglichen Lagerungsstätte in die Quere leicht verschiebbare Geschwulst dar, an deren Hilus bisweilen die eintretende Arterie pulsirend gefühlt werden kann. Je dünner die Bauchdecken, desto leichter erkennbar die Geschwulst. Nicht selten ist sie aus ihrem Lager zugleich nach abwärts gewichen, so dass sie dann auf dem Ilio-Psoas auch noch der vorderen Bauchwand sich nähert. Das Kolon scheint an der Beweglichkeit der Niere oft Theil zu nehmen. Obwohl diese Art von Geschwulst durch die ohnehin beweglichere rechte Niere besonders häufig gebildet wird, und eine Zeit lang ausschliesslich für die rechte Seite angenommen wurde, findet sie sich doch auch, wenn gleich seltener links, ja bisweilen auf beiden Seiten zugleich vor. Sie ist seit lange gekannt, schon seit 1825 von Baillie, später von Aberle beschrieben, aber sie wird auch heute noch so manches Mal verwechselt mit pathologischen Neubildungen und in sofern, aber fast nur in dieser Beziehung, ist es wichtig sie zu kennen. Ein selbst mit diesem Zustand behafteter Fachgenosse versicherte, dass Druck auf seine bewegliche Niere einen eigenthümlichen, dem bei Quetschung des Hodens ähnlichen Schmerz hervorrufe. Die schon normal härtere Beschaffenheit der Niere erklärt es, dass sie fühlbar wird, sobald sie erreicht werden kann, und somit ein von der Leber und Milz sehr abweichendes Verhalten darbietet.

Vergrösserungen der Niere, die dieselbe unterhalb der Leber oder Milz fühlbar machen sollen, müssen schon immer einen sehr bedeutenden Umfang haben. Sie werden daher durch die Percussion zumeist schon in einer früheren Zeit erkannt, später fühlt man dieselben als längliche, je nach ihrer Natur höckerige oder glatte, im Ganzen cylindrische, wenig oder nicht bewegliche Geschwülste, die ziemlich genau von Oben nach Unten mit ihrem grössten Durchmesser gelagert sind, oder mit ihrem unteren Ende etwas nach Innen von dieser Richtung abweichen. Sie können auf Vereiterung der Niere, cystoider Entartung derselben, Echinococcen, Hydronephrose oder auch Carcinom und den verwandten bösartigen Neubildungen beruhen. In den ersteren Fällen lassen sie Fluctuation erkennen, die auch an ihrer hintern Fläche, an den vorgewölbten Weichtheilen der Lumbalgegend wahrnehmbar sein kann, diess gewöhnlich in ziemlich dunkler Weise, oder die vielleicht durch Percussion an der vorderen Fläche erregt, neben der Wirbelsäule gefühlt werden kann. Für die Nierengeschwülste liegt ein bezeichnendes Moment in ihrer Verschiebbarkeit in der Richtung von Vorne nach Rückwärts, die mit der einen auf der Lumbalgegend aufliegenden, und der andern durch die Bauchdecken auf die vordere Fläche tastenden Hand bei abwechselndem Drucke wahrgenommen wird. Andere Zeichen werden aus der Ueberlagerung der Niere von Darmschlingen und, wie wir bei Besprechung ihrer Percussion sehen werden, aus ihrem Verhältnisse zum Kolon und Diaphragma entnommen.

Geschwülste des Pankreas werden selten constatirt werden können wegen der tiefen und durch den vorragenden Leberrand geschützten Lage desselben, doch finden sich bisweilen rechts zwischen Papillar- und Mittellinie unter und hinter dem Leberrande von Darmschlingen reichlich überlagerte, desshalb undeutliche, wenig bewegliche Geschwülste, die zum Theil dem entarteten Pankreaskopfe, zum Theil dem Duodenum und den benachbarten Lymphdrüsen angehören. Sie spielen unter den Ursachen schwerer Erkrankung an Gelbsucht eine wesentliche Rolle.

Bei Addison'scher Krankheit wurde wiederholt die Nebenniere als höckerige nuss- bis eigrosse Geschwulst getastet. Die linke Nebenniere ist weil weniger von der Leber überlagert leichter und häufiger der zwischen Nabel und Hypochondrium tief eingedrängten Hand zugängig. Sie wird neben der Bauchaorta gefühlt

und kann von dieser mitgetheilte Pulsation zeigen.

Die Mesenterialdrüsen kommen theils einzeln als glatte, harte, verschiebbare Geschwülste zur Beobachtung, wenn sie Sitz bösartiger Einlagerung geworden sind, und werden dann namentlich durch ihre regelmässige Form, und trotz ihrer Verschiebbarkeit durch ihre im Laufe mehrerer Tage nicht wechselnde Lage von den ziemlich ähnlichen, aber weichen und fortrückenden Kothgeschwülsten unterschieden. Anderntheils gehen sie mit dem Netz, Kolon und Magen in minder bewegliche, breite, dem untern Leberrand sich anreihende Geschwülste ein, oder sie bilden mit den Retroperitonealdrüsen zusammen über kopfgrosse Geschwulstmassen, die der Wirbelsäule aufsitzen und bisweilen die Pulsation der Aorta gut fortleiten, und sich von den früheren durch völlig mangelnde Beweglichkeit unterscheiden. Am Magen und Darm werden theils verschiebbare oder angelöthete, aus ihrer Form und den funktionellen Verhältnissen, so wie durch die Percussion näher zu bestimmende Geschwülste gefühlt, theils dient auch der rasche Druck der zufühlenden Hand dazu, Flüssigkeitsgeräusche in denselben hervorzurufen.

Die aus dem Becken aufsteigenden Tumoren gehören hauptsächlich der überfüllten oder entarteten Blase, oder dem Uterus oder den Eierstöcken an.

C. Mensuration.

Die ärztliche Praxis ist nicht gerade befreundet mit den zahlreichen und mitunter recht complicirten Messungs-Instrumenten, die ihr von der Wissenschaft geboten werden. Aber sie kann derselben auch keineswegs entbehren. Es steht fest, dass bei der einmaligen Untersuchung Alles, was die Form und Bewegung der Theile Wissenswürdiges darbietet, durch die blosse Besichtigung genügend erkannt werden kann; ja das geübte Auge sieht Unterschiede in der Form beider Seiten, über die das Bandmaass unmerklich hinwegzieht. Dennoch sind die Messungen nöthig, als objective Instanz dem unsicheren Eindrucke gegenüber, den der einzelne Beobachter empfängt, als unersetzliches Mittel, die flüchtige Wahrnehmung zu fixiren und mit dem späteren Befunde zu vergleichen. Viele gewöhnliche Krankheitsfälle finden leicht, ohne mit dem Gewichte der Zahlen belastet zu werden, ihre Erledigung; manche der schwierigsten aber auch kommen nur durch die Hülfe des Maasses zur Entscheidung. Auch hier handelt es sich um Formen und Bewegung. Die einzelnen Methoden werden nach den angewandten Instrumenten bezeichnet. Diese sind:

- 1) das Bandmaass,
- 2) der Tasterzirkel,
- 3) der Cyrtometer,
- 4) der Thoracometer,
- 5) der Spirometer.

1) Das Bandmaass, ohnehin zu forensischen Zwecken unentbehrlich, bildet auch sonst eines der wichtigsten Hülfsmittel zur genauen Krankenbeobachtung. Während wir hier nur seine Anwendung an der Brust und am Unterleibe besprechen können, ist es kaum an irgend einem Theile des Körpers noch nicht mit Vortheil gebraucht worden. Es dient dazu, den ganzen Umfang des Brustkorbes, den Halbmesser desselben oder die Entfernung willkürlich gewählter Punkte zu bestimmen. Die häufigste Fehlerquelle bei Anwendung des Bandmaasses liegt in ungenauer Erfassung der Endpunkte. Man thut gut, sich diese vor der Applikation durch Striche zu bezeichnen. In Nothfällen genügt zur Vergleichung verschiedener Maasse ein Bindfaden, zur Uebersetzung derselben in Zahlen kann er mit Knoten oder Tupfen versehen und später ausgemessen werden.

Um den ganzen Umfang zu messen, legt man das Band über die Knorpel der sechsten Rippe, über die Brustwarzen, und drittens über die untere Grenze der Achselhöhle an. Die Untersuchung zahlreicher Personen hat ergeben, dass bis zum 63sten Lebensjahre hin das oberste dieser Maasse das grösste, das unterste das kleinste ist, später aber die untere Linie grösser als die obere

ausfällt. In den mittleren Lebensjahren schwanken die so gewonnenen Zahlen zwischen 80 und 90 Ctm.

Während der ganze Thorax-Umfang für jetzt bei Kranken-Untersuchungen völlig bedeutungslos ist, kann man von der Vergleichung beider Halbmesser keineswegs das Gleiche aussagen. Normal misst bei Rechtshändigen die rechte Brusthälfte bis zu 21/2 Ctm. mehr als die linke, bei Linkshändigen findet sich eine geringere oder keine Differenz zu Gunsten der linken Seite. Die in der Brustwand gelegenen Ursachen ungleichen Umfanges beider Brusthälften, wie Oedem, Emphysem, Geschwülste und dergl., sind meist so augenfällig, dass sie eher die Vornahme der Brustmessung verhindern, als durch dieselbe erkannt werden. Dagegen glaube ich erwähnen zu müssen, dass mehrfache Messungen mir gezeigt haben, dass die halbseitige Verkümmerung des Gehirns (Agenesie) entgegen den gewöhnlichen Angaben, z. B. bei Hasse, auch kleineren Umfang der entgegengesetzten Bauch- und Brusthälfte zur Folge hat. Von den Krankheiten der Brustorgane sind es vorzüglich pleuritische Ergüsse, die beträchtliche, von unten aufsteigende Erweiterung einer Brusthälfte herbeiführen; unter diesen wiederum am meisten die Luftergüsse, am wenigsten die wässerigen. Wenn man auch für einfache Lungenentzündungen einige Erweiterung der leidenden Seite erwiesen hat (Wintrich), so ist dieselbe doch gering, inconstant und nur massigen Hepatisationen zukommend. Für die linke Seite gehen auch von Vergrösserungen des Herzens und Ergüssen in den Herzbeutel Erweiterungen aus. Der untere Umfang der Brust kann von vermehrter Spannung des Unterleibsinhaltes her allseitig, von der Leber, der Milz und dem Magen her einseitig erweitert werden. Verengerungen eines Halbmessers beruhen auf gestörtem Wachsthum der Brustwand, wie z. B. Walshe nach mehrfachen Rippenbrüchen einer Seite beobachtete, oder auf Schrumpfung einer Lunge, in welchem Falle durch Emphysem der anderen dieser Unterschied noch auffälliger wird. Ein ähnlicher Unterschied entsteht bei dauernder Verstopfung oder Verengerung eines Bronchus. Durch die Verödung einer Lunge in Folge chronischer, Schwielen bildender Entzündung oder geheilter Pleuritis werden Unterschiede bis zu 12 Ctm. bedingt. Geheilte Abscesse und Brandhöhlen pflegen nur sehr geringen Einfluss zu üben.

Die Messung einzelner Punkte bezieht sich vorzüglich auf die Entfernung der beiden Acromien, der Brustwarzen vom Brustbein und vom Schlüsselbein und der letzten Rippen vom Darmbeinkamm. Je kleiner die letztere, desto mehr sind die Rippen herabgesunken, desto mehr ist die Brustform eine paralytische.

Einige Beispiele mögen die Anwendung des Bandmaasses erläutern. H. Demme hat gezeigt, dass bei Kropfkranken mit Verengerung der Luftröhre der Brustumfang nach Entfernung der drückenden Schilddrüse um mehrere Centimeter grösser wird, dass also die Verengerung der Luftröhre zuvor eine Verminderung des gesammten Brustumfanges bedingt. Hirtz hat gezeigt, dass bei Tuberculösen häufig der untere Brustumfang den oberen an Grösse übertreffe. Als Beispiel für die Veränderung des Maasses einer Seite mag es gelten, dass bei einem heilenden Pneumothorax meiner Beobachtung die kranke Seite in drei Monaten um 4½ Ctm. schrumpfte. Bei Herzkranken mit bedeutender Vergrösserung des Organes zeigt oft die Messung grösseren Abstand der linken Brustwarze vom Schlüsselbeine sowohl als vom Brustbein.

Am Unterleibe sind als allgemein übliche Applicationsstellen des Bandmaasses zu erwähnen: vom Schwertfortsatz bis zum Nabel, und von da bis zur Symphyse, von einem vorderen Darmbeinstachel zum anderen, und rund um den Unterleib in der Höhe des Nabels.

- 2) Mittelst des Tasterzirkels, dessen gegen einander gekrümmte stumpfe Arme an einem Index ihre Entfernung von einander ablesen lassen, bestimmt man den geraden oder Sternovertebral-Durchmesser in verschiedener Höhe, den queren oder CostalDurchmesser, ausserdem noch Durchmesser von der Mitte des
 Schlüsselbeins bis zur Gräte des Schulterblattes u. s. w. Den
 wichtigsten Durchmesser des Brustraumes, den verticalen, kann
 man natürlich mittelst dieses Instrumentes nicht bestimmen, und
 was man in dieser Richtung zu messen versucht hat, bezieht sich
 nicht auf den Brustraum, sondern nur auf äussere Verhältnisse
 der Brustwand. So z. B. die Entfernung des Schlüsselbeins von
 der letzten Rippe. Der einzige Durchmesser, der von praktischer
 Bedeutung sein kann, ist der sternovertebrale; er wird, wenn man
 überhaupt einmal messen will, gelegentlich mit erhalten bei der
 Application des Cyrtometers.
- 3) Gehen wir zur Anwendung dieses von Woillez angegebenen Instrumentes über, so finden wir, dass es die Leistungen der beiden vorher besprochenen vereinigt und noch mehr dazu liefert, nämlich die genaue Contour eines idealen Thorax-Durchschnittes.

Es besteht aus 2 Ctm. langen, schwer beweglich zu einer Kette von 60 Ctm. verbundenen Fischbeinstäben, nur in der Mitte befinden sich zwei gegen einander leicht bewegliche Glieder. Das Instrument wird nach tiefer Exspiration der Brusthälfte fest angepasst, an der beweglichen Stelle geöffnet, abgenommen und wieder geschlossen auf Papier nachgezeichnet. Soll das Wiederschliessen vor dem Abzeichnen sicher frei von Fehlern erfolgen, so muss entweder an der Aussenseite des beweglichen Gelenkes ein kleiner Gradbogen angebracht werden, damit man wieder auf dieselben Radien einstellen kann, oder es muss der mittelst des Tasterzirkels gemessene Sternovertebral-Durchmesser zur Controle verwendet werden. In dieser Weise sind die beistehenden Curven eines pleuritiskranken Kindes und (Fig. 18) eines nach Fistelbildung schrumpfenden Pneumothorax gewonnen. Auch über Schulterblatt, Schlüsselbein und Brustwarze angelegt, gibt das Cyrtometer gute Curven. Es ist, wenn auch keineswegs ein Bedürfniss des praktischen Arztes, doch sicher das beste Hülfsmittel, das der exacten Krankenbeob-

achtung zur Darstellung der ruhenden-Formen des BrustkorbeszurVerfügung Die seitlichen gesteht. raden Durchmesser, wie der quere lassen sich jederzeit leicht an der gewonnenen Figur messen. Auch für Zwecke der Orthopädie und für die Beschreibung der Geschwülste der Brustwand wird man dasselbe mit Vortheil anwenden können. In gleicher Absicht wie diesen kann man den von Weil aus vielen beweglichen Stäben construirten Messungsap-Auch parat anwenden. der Stethogoniometer von Alison dient ähnlichen Zwecken. Nothdürftigen Ersatz kann ein

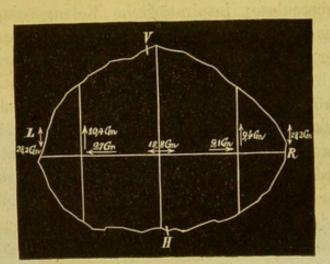


Fig. 5.

Fig. 6.

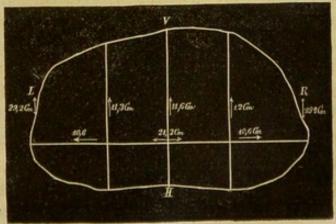


Fig. 7.



Fig. 5, 6 und 7 Cyrtometercurven mit eingezeichneten Thoraxdurchmessern aus der Höhe: der Achselhöhle, der Brustwarze und des siebenten Rippenknorpels. Linksseitige Pleuritis exsudativa. 1/8 nat. Grösse.

dicker Blei- oder Kupferdraht geben.

4) Schwerer als die ruhenden Formen der Brust sind die Bewegungen derselben der Messung zugänglich. Wintrich hat sie im Ganzen durch ein Bandmaass bestimmt, dessen Enden durch eine Kautschuklamelle verbunden waren, so dass sie über einander hinund hergleiten konnten. Bei dieser Messung der

ganzen Brustbewegung zeigten sich bei allen mit Schwerathmigkeit verbundenen Krankheiten Verminderung der Excursionen bis zu 4/5 derselben. Verminderte Erweiterung oben bei der Lungentuberculose; inspiratorische Verengerung unten bei Verengerung des Kehlkopfes. Zur Messung der Bewegung einzelner Punkte der Brust wurde von Sibson ein Instrument angegeben und als Thoracometer bezeichnet, welches auf einem Zifferblatt die Grösse der Bewegungen eines auf die Brustwand aufrecht aufgesetzten Stabes ablesen lässt, der durch eine Feder stets der Brustwand nah erhalten wird. Die nothwendige Ueberwindung der Federkraft, die Compression der Weichtheile und die Einseitigkeit der Messung sind Uebelstände, die den Werth des Instrumentes so reduciren, dass jede weitere Besprechung überflüssig wird. Will man die völlig unbehinderte Bewegung der Brustwand messen, so muss man auf einzelne Stellen derselben kleine Scalen aufzeichnen oder ankleben, und deren Verschiebung durch Visiren in einer geraden Linie ablesen (optische Methode); oder man muss die Bewegung eines Punktes der Brustwand mittelst eines aufgeklebten dünnen Stäbchens auf eine vorüberlaufende berusste Platte aufzeichnen lassen (graphische Methode). Ich habe diesen letzteren Weg seit einiger Zeit cultivirt, und will den Stethographen, dessen ich mich dazu bediene, hier kurz beschreiben (Fig. 8). Er besteht aus zwei Theilen, dem Zeichner und der Platte (a). Der erstere besteht aus einem leichten Holzstäbchen, das in eine dünne Platte auf der einen Seite sich verbreitert, auf der andern Seite

eine Oeffnung besitzt, um ein Elfenbeinhäckchen aufzunehmen. Es wird mittelst Collodium auf die Brust aufgeklebt. Der andere Theil des Apparates wird von Eisenstäben getragen, die in mehrfacher Richtung an einander verschoben werden können, von welchen der eine mittelst einer Klammschraube an einem Stuhl befestigt wird (Fig. 8). Der Apparat zeigt zunächst, dass jeder Punkt der Brustwand während der Athembewegung eine gekrümmte Linie durchläuft, von deren Configuration man eine Vorstellung erhält durch Aufzeichnung der Bewegung in drei Hauptebenen. Man muss demnach durch verschiedene Stellung der Platte die Bewegung vorwärts, aufwärts und seitlich zeichnen. Die so gewonnenen Curven können gemessen werden und dienen also znnächst dazu, die

Fig. 8.

Fig. 9.

Grösse der
Athembewegung kennen
zulernen. Man
fand z. B. bei
einem gesunden 24jährigen
Arbeiter, dass
der Knorpel
der zweiten
Rippe an seinem äusseren
Ende sich bei

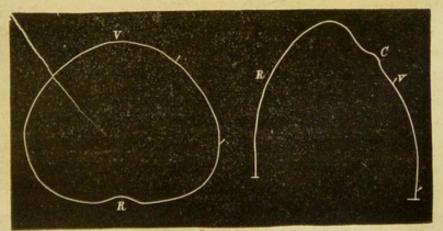
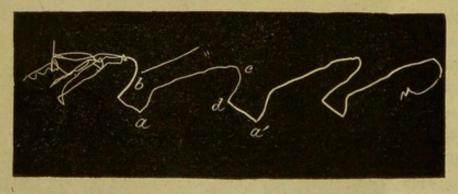



Fig. 9. Cyrtometercurve am Diaphragma und durch die Scapular- und Parasternallinie, 1/6 nat. Grösse. R. Rücken, V. Vorderseite, C. Clavicula. Die kleinen aufgesetzten Striche deuten an der Figur links die Bewegung nach vorne und seitlich, an der rechts die nach vorne und aufwärts an, und zwar in der ersten dünneren-Hälfte des Striches bei ruhigem Athem, in voller Ausdehnung bei angestrengtem Athmen.

ruhigem Athmen seitlich gar nicht, aufwärts sehr wenig, nach vorne um 31/2 Mm. bewegt, bei tiefem Athmen dagegen 8 Mm. aufwärts, 7 vorwärts und 5 seitlich. Der siebente Rippenknorpel dagegen rückte bei ruhigem Athmen 41/2 Mm. vorwärts, vier aufwärts, verschob sich seitlich nicht. Bei angestrengtem Athmen dagegen erreichte die Vorwärts- und Aufwärtsbewegung 2 Ctm. In der Axillarlinie auf der gleichen Rippe betrug die Seitwärtsbewegung schon bei ruhigem Athmen 2-3 Mm., und konnte bis zu 18 gesteigert werden. Die Vorwärtsbewegung des Epigastriums betrug in der Ruhe 6, bei Anstrengung 13 Mm. Die Höhenbewegung desselben, für gewöhnlich verschwindend klein, konnte bis zu 12 Mm. gesteigert werden. Die Grösse der Excursionen nimmt mit dem Alter ab, und zeigt bei Männern und Weibern für die obere und untere Brustgegend entsprechende Differenzen. Sie kann, wie die beistehenden Figuren zeigen, auf die Cyrtometercurve aufgesetzt werden, so dass dem starren Brustdurchschnitte ein Bild und Maass seiner natürlichen Bewegung verliehen wird. Ausserdem zeigen die Curven das zeitliche Verhältniss der Inspiration, Exspiration und der Pause zu einander an. Letztere fällt verschwindend klein aus, die Inspiration und Exspiration sind für die drei Hauptrichtungen, in welchen die Curven aufgenommen werden, keineswegs an allen Orten gleich lang. Endlich gibt die Form der Curven auch noch Aufschlüsse über den Zeitpunkt und die Art des Eingreifens einzelner Muskeln in den complicirten Act der Athembewegung. So zeigt die eigenthümliche Curve des Epigastriums (Fig. 10), dass das Zwerchfell bei der Inspiration sich am frühesten

Fig. 10.

Curve des Epigastrium's. Von α bis b Contraction des Diaphragma's von b bis c der Intercostales; bei c erschlaffen letztere, bei d das Diaphragma.

zusammenzieht und am längsten in Contraction verharrt; ein Vergleich der Curve des zweiten und siebenten Rippenknorpels lässt

die Deutung zu, dass die Intercostalmuskeln der Reihe nach von oben nach abwärts fortschreitend, in Thätigkeit treten.

Diese Versuche sind von F. Riegel mit einem durch Einfügung eines Hebels zwischen Zeichner und Platte verbesserten Apparate wieder aufgenommen worden. Von den interessanten Resultaten hebe ich hervor: Keine Pause zwischen In- und Exspiration, Dauer beider bei Gesunden gleich lang, bei Emphysematikern die Exspiration bis auf das Dreifache der Inspiration verlängert. Excursionsgrösse der einzelnen Rippen beim Manne von oben nach unten zu-, beim Weibe gleichmässig abnehmend. Auch hierin Abweichungen sowohl bei Emphysem als bei Tuberculose 1).

5) Der Spirometer Hutchinson's, verbessert von Vogel und Wintrich, dient praktisch ausschliesslich zur Messung der vitalen Capacität. Er nimmt die Exspirationsluft, die durch einen Schlauch eingeblasen wird, in einem graduirten Gasometer auf, der durch ein Gewicht balancirt äusserst leicht aus dem Wasser, seinem Luftgehalte entsprechend, emporsteigt. Die Menge der Ausathmungsluft schwankt bei Gesunden nach Alter, Grösse und Geschlecht, weniger nach der Stellung des Körpers und der Füllung des Unterleibs. Die vitale Capacität beträgt im Mittel etwa 3600 bei Männern, 2500 bei Weibern; die Körpergrösse bedingt im Alter zwischen 20 und 40 Jahren etwa 22 Kub. Ctm. Athmungsluft auf je 1 Ctm. Körpergrösse, bei Weibern 16-17 Kub. Ctm. Genauer beträgt für das männliche Geschlecht nach Schnepf die vitale Capacität

in den Jahren			C	ubil	ce	ntin	netr	res für je 1 Ctm. Körpergrösse
unter 6								4,5
6—8								9,5
8-10		1						11,4
10-12								12
12-14								14,17
14-16						-		16,44
16—18						1.		20,65
18-20								23,40
20-25	1							23,25
25-30								22,98
40-50						1.	111	21.

¹⁾ Bei Verwendung des Polygraphen von Marey zur Untersuchung dieser Verhältnisse, werden sehr regelmässige Curven erlangt, die jedoch nur die

In Bezug auf Füllung des Magens haben Versuche in meiner Klinik ergeben, dass bei kräftigen Individuen grosse Flüssigkeitsmengen in der Weise einwirken, dass etwa durch 24 Kub. Ctm. die Exspirationsluft um 1 Kub. Ctm. verringert wird. Umgekehrt kann aber auch bei hungernden Individuen eine mässige Anfüllung des Magens die vitale Capacität um ein Geringes erhöhen. Was die pathologischen Ursachen verminderter vitaler Capacität anbelangt, so sind dieselben in allen stenosirenden Erkrankungen des Kehlkopfes, der Luftröhre und der Bronchien, in allen Krankheiten, die die Bewegungen der Brustwand erschweren, endlich in allen jenen Zuständen der Lunge zu suchen, die die respiratorische Oberfläche verkleinern. Man kann unbedenklich normale vitale Capacität als ein Zeichen gesunder Respirationsorgane ansehen. Unter den Lungenkrankheiten wirkt keine früher und keine bei ihrem Fortschreiten in höherem Maasse auf das Athmungsvermögen ein als die Phthise. Der Spirometer ist desshalb ganz besonders wichtig als Erkennungsmittel völlig latenter, oder durch ein anderes Krankheitsbild maskirter Phthise. Nächstdem üben Emphysem und chronische Pneumonie den bedeutendsten Einfluss aus. Bei der Behandlung der Bronchial- und Tracheal-Krankheiten bietet der Spirometer die sicherste Controle des therapeutischen Erfolges. So sah ich bei einer syphilitischen Tracheostenose während einiger Wochen die vitale Capacität von 1100 auf 3000 Kub. Ctm. steigen; bei einer strumösen von 1300 auf 2000. Beide waren mit Jod behandelt worden. Das Princip des Spirometers kann in geeigneten Fällen manchfach modificirt in Anwendung kommen. So konnte bei einem Pneumothorax gemessen werden, dass er 230 Kub. Ctm. Luft aus einer Fistel auspressen konnte; ein Gummischlauch mittelst eines Stethoskop-Trichters angepasst und unter Wasser in ein graduirtes Glas geleitet bildete den ganzen Apparat. Durch Aufsetzen eines Zeichners auf ein Spirometer, in das ein- und ausgeathmet wird, lässt sich eine Curve der Athmungsluft gewinnen (Panum). Schliesslich will ich noch erwähnen, dass die jetzige grosse Verbreitung des Spirometers den Vorschlag von Chelius in Vergessenheit gebracht hat, grosse, durch eine Stethoskopröhre aus einer besonderen Masse geblasene Seifenblasen zur Messung des Athmungsvermögens zu verwenden. Die Zeit, die sie brauch-

Bewegungsgrösse einer Stelle der Brustwand genau zeigen, im Uebrigen keine genauen Schlüsse zulassen.

ten, um sie durch die gleiche Röhre wieder zu entleeren, sollte als Maass dienen. Ich habe sie bisweilen in Cursen zur Demonstration der ausgeathmeten Luftmenge, jedoch nie als Maass benützt.

D. Percussion.

I. Methode.

Die Percussion, d. h. das Anklopfen an einzelne Stellen des Körpers, um aus dem erhaltenen Schalle auf die physikalischen Eigenschaften namentlich den Luftgehalt der unterliegenden Theile zu schliessen, wurde zwar ausweislich einzelner Stellen schon im Alterthum geübt, aber zuerst 1761 von Leopold Auenbrugger in Wien als bestimmte Methode der Untersuchung bekannt gemacht. Er übte ausschliesslich die unmittelbare Percussion, d. h. er führte mit einer oder mehreren Fingerspitzen den schallerzeugenden Schlag aus. Es gelang ihm auf diese Weise mit dieser einfachen, ja unvollkommenen Methode, die normalen Grenzen der Brustorgane und viele pathologische Erscheinungen an denselben mit grosser Richtigkeit nachzuweisen. Sein Werk betitelt: Inventum novum ex percussione thoracis humani ut signo abstrusos interni pectoris morbos detegendi, wurde erst kurz vor seinem Tode (1808) durch Corvisart an's Licht gezogen und zur Erkenntniss der Herzkrankheiten verwendet. Später hat Piorry die Methode verbessert, indem er eine Elfenbeinplatte (Plessimeter) als Mittel zur Uebertragung der Percussionserschütterung zuerst an die Haut anfügte. Diese mittelbare Percussion wird jetzt fast ausschliesslich geübt, von den Einen, indem sie den rechten Zeigefinger als Schallerzeuger verwenden, von den Andern mittelst des Hammers, den Wintrich 1841 zu diesem Zwecke empfahl. Seither sind Material und Form des Plessimeters und Hammers in unendlicher Weise variirt worden, ohne dass für die Percussionslehre als solche aus diesen Erfindungen auch nur der mindeste Vortheil hervorgegangen wäre. Man hat Plessimeter aus Metall, Elfenbein, Kautschuck, Holz, Leder und manchen andern Stoffen angefertigt, rund oder oval, mit zwei Handhaben oder einer rundumlaufenden Randleiste von der Grösse eines Guldenstückes bis zu einer solchen, die eine ganze Westentasche anzufüllen geeignet ist, und wunderbar! man hat auf allen percutiren können. Ja noch mehr, Jeder hat an dem seinen besondere Vorzüge wahrgenommen. Der Wintrichsche Hammer hat nicht minder verschiedene Transformationen erlitten. Man findet ihn kurz und schwer gebaut und wieder schlank und biegsam, mit Leder oder mit Kautschuck überzogen, ja der Erfinder lässt ihn auch noch in einer besonderen eleganteren Form abbilden, und ein späterer Erfinder hat ihn durch einen Fingerhut zu ersetzen gesucht; ein Anderer hat das Stethoscop mit dem Hammer bewaffnet.

Thatsächlich ist weit weniger daran gelegen, womit man percutirt, als wie man percutirt, und ob man durch Uebung hören gelernt hat. Ich lasse es völlig dahin gestellt sein, ob die von Wintrich u. A. gerühmten Vortheile der mittelbaren Hammerpercussion in der That bestehen. Mir sind sie bis jetzt nicht erkennbar gewesen. Vom praktischen Gesichtspunkt aus steht es fest, dass ein Gewinn darin liegt, Instrumente ohne Nachtheil entbehren zu können, und dass der Arzt manchmal ohne Hammer und Plessimeter zu percutiren genöthigt ist. Jedem Lernenden ist es desshalb zu rathen, im Anfange die mittelbare Fingerpercussion zu üben, und so oft auf den fest angedrückten Mittel- oder Zeigefinger der linken Hand mit dem hackenförmig gekrümmten Mittelfinger der rechten Hand zu percutiren, bis auch auf dem Oberschenkel auf diese Weise ein lauter Schall erzeugt wird. Uebungen am eigenen Körper, an der Leiche oder an Gesunden führen am besten zur Erlangung der nöthigen Fertigkeit. Man wird dabei leicht durch die Erfahrung nur auf diese Weise lauten Schall hervorrufen zu können den Rath Skoda's bewährt finden, ausschliesslich mit dem Handgelenk zu percutiren. Wählt man für spätere Zwecke entweder um die Finger zu schonen, oder in der Meinung auf diese Weise lauteren Percussionsschall hervorzurufen das Plessimeter, so ist es immer noch für die Praxis nützlich, die einfache Fingerpercussion nicht ganz ungeübt zu lassen. Als Plessimeter sind kleine, etwa 1"-11/2" grosse, nicht zu dicke Elfenbeinplatten mit einer niedern Randleiste am meisten im Gebrauch. Plessimeter mit eingravirten Maassen führen nicht zu genauerer Ortsbestimmung als die gewöhnlichen. Auf diesen wird mittelst des rechten Mittelfingers oder des Hammers percutirt. Auf letztere Weise lässt sich ein so lauter Percussionsschall erzeugen, wie ihn nur wenige sehr Geübte mit dem Finger hervorrufen können, daher besonders in sehr grossen Kliniken diese Percussionsweise Vortheile bietet.

Während man gewöhnlich auf die Dorsalfläche des zweiten Fingergliedes percutirt, haben Einige die Volarfläche dazu benutzt, was in den meisten Fällen nur sehr unbequem sein kann. Piorry hat in späterer

Zeit ernsthaft, nicht etwa im Scherze darüber geschrieben, dass man auch auf das umgekehrt aufgelegte Plessimeter percutiren könne. Auch hiermit ist die methodologische Ueberschwenglichkeit, welche auf diesem Gebiete herrscht, noch lange nicht erschöpfend vorgeführt. Wie jede Regel ihre Ausnahmen hat, so lassen sich auch einzelne Fälle aufführen, in welchen das Plessimeter mehr Vortheil bietet, als die blosse Fingerpercussion. Es lässt sich z. B. bequemer tief in die Bauchdecken eindrücken als der Finger, und es schützt manchmal dessen Benutzung den letzteren vor Beschmutzung. Aber auch der umgekehrte Fall kommt vor, wo an einem sehr mageren, unebenen Brustkorb das Plessimeter sich gar nicht genügend adaptiren lässt, oder wo in der Kinderpraxis man rascher mit dem Finger zum Ziele kommt. Das Entscheidende für meine Regel, zuerst die Fingerpercussion zu üben, ist, dass Jeder, der dieses genügend erlernt hat, sehr leicht sich mit Hammer und Plessimeter zurecht finden wird, Derjenige aber, der nur in dem Gebrauch dieser Instrumente unterrichtet wurde, ohne diese, wie ich mehrmals in meinen Cursen von Studirenden auswärtiger Hochschulen sah, unverrichteter Dinge vom Krankenbette wieder abziehen muss. Nach Pirsch soll es sogar nöthig sein sich stets eines und desselben Hammers zu bedienen.

Die Percussion hat mit wenigen Ausnahmen nur da einen Zweck, wo lufthaltige Theile in der Nähe liegen. Ihr gewöhnliches Object sind daher die Brust- und Unterleibsorgane. Sie kann jedoch nicht allein auch an der vorderen Fläche des Halses Aufschlüsse liefern, sondern unter Umständen an jedem Theile der Körperoberfläche, wo subcutanes Emphysem, lufthaltige Abscesse u. s. w. vorkommen. Der zu Untersuchende muss in entsprechender Ausdehnung entkleidet, oder höchstens mit dem Hemde bedeckt sein, in vollkommen gleichmässiger Haltung sich befinden, möglichste Erschlaffung der Muskeln bieten. Bei Untersuchung der vorderen Fläche des Unterleibs ist horizontale Lage stets vorzuziehen. Die Milzgegend wird in rechter Seitenlage oder aufrechter Haltung (Ziemssen) untersucht, die Nierengegend am besten in der Bauchlage, die vordere Brustwand im Liegen oder Stehen, die hintere im Sitzen oder Stehen. Alles Geräusch im Krankenzimmer muss möglichst vermieden werden; einige Aufmerksamkeit ist bei liegender Stellung des Kranken auch auf die Beschaffenheit der Unterlage zu verwenden, da z. B. ein gut gepolstertes Sopha den Schall wesentlich lauter machen, freilich zugleich seine Nüancen verwischen kann. Bei der mittelbaren Percussion, die wir zunächst fast ausschliesslich zu üben haben, muss das percutirte Medium ganz fest, ohne dass irgend Luft zwischen gelagert ist, der percutirten Körperstelle angepasst sein. Der Fingerschlag verursacht, auch wenn er sehr stark ist, wenn er ausschliesslich aus dem Handgelenke kommt, unter gewöhnlichen Verhältnissen dem Kranken keinerlei unangenehme Empfindung. Ueber entzündeten Hautflächen oder inneren Organen jedoch erfordert es die Rücksicht auf die Schmerzen, welche leicht für den Kranken entstehen, möglichst leise zu percutiren. Am Brustkorbe der Kinder, dann bei manchen subtilen Grenzbestimmungen sehr oberflächlich gelagerter Organe lässt die leise Percussion deutlichere Schallunterschiede hervortreten als eine mässig starke. Um die Grenzen tief gelegener Organe zu bestimmen ist gerade starke Percussion weit vortheilhafter.

Obwohl dieser Satz sehr leicht verständlich ist, möge ihn doch ein Beispiel erläutern. Man percutire zwei symmetrische Stellen der Brustwand und wähle die linksseitige so, dass notorisch nur eine Lungenschicht von einigen Ctm. dieselbe von der vorderen Fläche des Herzens trennt. Man kann dann bei leichter Percussion beiderseits völlig gleichen Schall erhalten, bei starker links den einer dünnen, rechts den einer mehrfach dickeren Lungenschicht. Percutirt man die linksseitige Stelle leise durch ein Plessimeter, die rechtsseitige stark bei Verwendung des Handrückens als Plessimeter, so ist der erhaltene Schall keinenfalls der gleiche.

II. Eigenschaften des Schalles.

Da die Qualität des Percussionsschalles, welcher über verschiedenen Organen erzeugt wird, sich keineswegs nach den anatomischen, sondern nur nach den physikalischen Eigenschaften der Organe richtet, kann man keine eigenen Schallarten dieser letzteren annehmen. Man ist genöthigt die verschiedenen physikalischen Eigenschaften des Schalles als solche zu unterscheiden, daraus auf die physikalischen Eigenschaften der Organe und aus diesen endlich auf die anatomische Beschaffenheit derselben zu schliessen.

Was wir gewöhnlich als Percussionsschall bezeichnen, muss vom acustischen Standpunkte aus grossentheils als Geräusch betrachtet, und darf nicht als Ton, nur zum Theil als Klang bezeichnet werden.

Die tägliche Erfahrung zeigt, dass die verschiedenartigen Schallwellen, aus welchen Geräusche zusammengesetzt sind, sehr wohl den gemeinsamen Charakter einer grossen oder kleinen Excursionsweite der einzelnen Schwingungen an sich tragen, d. h. laut oder leise sein können. Eine zweite Eigenschaft solcher Geräusche ist die, überwiegend aus Schwingungen von verhältnissmässig grosser oder kleiner Zahl in der Zeiteinheit zu bestehen; wir bezeichnen sie darnach als hoch oder tief.

Drittens finden sich einzelne Schallerscheinungen, deren Höhe oder Tiefe sehr leicht zu unterscheiden ist, weil die Schallwellen, aus denen sie zusammengesetzt sind, nicht sehr bedeutend an Schwingungszahl differiren. Sie sind noch weit entfernt von dem, was neuerdings Helmholtz¹) vom rein acustischen Standpunkte aus als Ton definirt, aber sie nähern sich dem Klang und können sehr wohl als klang ähnlich bezeichnet werden.

Diese Grundeigenschaften der Schallerscheinungen, die man am Körper beobachtet, lassen sich nicht in ganz einfacher Weise auf die praktische Verwerthung der Schallerscheinungen übertragen, die man am Körper wahrnimmt. Man unterscheidet allerdings zunächst, ob der Percussionsschall klangähnlich sei oder nicht, und nennt ihn im ersten Falle nach Skoda »tympanitisch«, im andern Falle »nichttympanitisch.« Man unterscheidet zweitens beim tympanitischen Schall, wo diess sehr leicht fällt, die Höhe oder Tiefe desselben; beim nichttympanitischen Schall jedoch macht man nur ausnahmsweise von dieser Unterscheidung Gebrauch. Da eine leise Beschaffenheit 'des Percussionsschalles hauptsächlich dort zu Stande kommt, wo die Percussionserschütterung beim Vordringen zu einem lufthaltigen (schwingungsfähigen) Körpertheil durch dicke, schlecht leitende Lagen sehr abgeschwächt wird, so pflegt man nach der von Skoda eingeführten Nomenclatur den leisen Percussionsschall als gedämpft, den lauten als hell zu bezeichnen.

Skoda hat noch eine vierte Qualität des Percussionsschalles aufgestellt, die in den letzten Arbeiten über diesen Gegenstand mit seltener Uebereinstimmung als physikalisch unbegründet bezeichnet wird, so von Wintrich, Seitz, Schweigger. Skoda versteht unter vollem Percussionsschall denjenigen, der durch seine lange Dauer und Massenhaftigkeit anzeigt, dass er von einem grossen

¹⁾ Ein Ton wird nur dargestellt durch einfache pendelartige Schwingungen (ohne Obertöne). Wo neben dem Grundton noch Obertöne da sind, ist diess ein Klang, eine Summme von Partialtönen. Geräusche lassen sich aus Klängen zusammensetzen und in Klänge trennen. Sie bestehen aus schnellem Wechsel verschiedenartiger Schallempfindungen, der rasch, unregelmässig, aber deutlich erkennbar erfolgt.

schallenden Organe herrühre; unter leerem den kurzdauernden, dünnen Schall eines kleinen schallerzeugenden Körpers. Kleine Glocken oder kurze Saiten werden nun allerdings bei gleich starkem Anstosse zum Schwingen kürzer tönen als grosse, aber man wird doch auf ihre Grösse, da die Dauer ihrer Schwingungen wesentlich mit von der Stärke des Anstosses abhängig ist, nicht allein aus diesem Verhalten, sondern weit mehr aus der Tiefe des Tones, den sie abgeben, schliessen. So wird man denn allerdings genöthigt sein, wie Traube hervorgehoben hat, das Voll- oder Leersein des Percussionsschalles hauptsächlich aus dessen Tiefe oder Höhe zu entnehmen.

Beim tympanitischen Percussionsschalle ist die Höhe oder Tiefe desselben leicht zu erkennen, und wird auch nur mit diesem Namen »hoher« oder »tiefer« Percussionsschall bezeichnet.

Spricht man beim nichttympanitischen Percussionsschalle von Völle oder Leere desselben, so urtheilt man nach seiner Höhe oder Tiefe und gleichzeitig, da diese sehr oft nur undeutlich zu erkennen sind, nach seiner kürzeren oder längeren Dauer.

So mag es gerechtfertigt erscheinen, wenn wir auch hier noch den Percussionsschall classificiren, je nachdem er 1) im verschiedenen Grade klanghaltig oder klanglos, 2) hoch oder tief, 3) dumpf oder hell, 4) voll oder leer im verschiedenen Grade sich darstellt. Diese Eigenschaften kommen bei jeder Beurtheilung des Percussionsschalles in Betracht. Wenigstens die drei ersteren können als nothwendige bezeichnet werden. Einige ausnahmsweise, den Metallklang, das Geräusch des gesprungenen Topfes werden wir später kennen lernen.

III. Tympanitischer Percussionsschall.

Weder eine Erschütterung der freien Luft, noch auch eine solche von Flüssigkeit oder festen Körpern kann jemals einen tympanitischen Schall liefern. Der auf diese Weise erzielte Schall ist stets so dumpf, dass er überhaupt keine weiteren Qualitäten wahrnehmen lässt. Tympanitischer Schall entsteht aber, wie Wintrich nachwies, der sich überhaupt durch eine neue, bahnbrechende Bearbeitung der Lehre von tympanitischem Schall grosses Verdienst erwarb, wenn in glattwandigen Hohlräumen von regelmässiger Form enthaltene Luftsäulen percutorisch erschüttert werden. Dieser tympanitische Schall findet sich am menschlichen Körper wieder, wenn

man die geöffnete Mundhöhle, den Kehlkopf percutirt, oder wenn man mit der Hand eine Höhle bildet und das darauf gelegte Plessi-

meter anschlägt.

Dieser tympanitische Schall ist um so höher, je kürzer die Luftsäule, die ihn liefert, und je weiter die Oeffnung, durch die sie nach Aussen communicirt. Beim Percutiren auf ein Plessimeter, das abwechselnd über verschieden grosse Gläser oder Töpfe gehalten wird, kann man sich leicht davon überzeugen 1). Noch leichter beim Percutiren an der Wange bei geöffnetem Munde, wenn man bald die Mundhöhle, bald die Mundöffnung erweitert oder verengt, oder am Kehlkopfe, wenn man bei flach gelegter-Zunge den Mund abwechselnd öffnet und schliesst. Zur klinischen Demonstration dieses Verhältnisses schien mir stets am passendsten, mit der Hand eine Höhle zu bilden und zwischen Daumen und Zeigefinger, also in den obersten Ring dieser Höhle ein Plessimeter fest einzusetzen. Schliesst man dann durch Andrängen des letzten vom kleinen Finger gebildeten Ringes gegen den Rumpf, oder gegen den Schenkel die Höhle, so wird der Schall bedeutend tiefer; öffnet man wieder das untere Ende der Höhle und streckt nun successive die Finger von der Ulnarseite her, so wird jedes Mal die Höhle verkürzt und ihr Schall höher. Sehr kleine Luftsäulen lassen den tympanitischen Schall nicht mehr erkennen.

Percutirt man eine Stelle der Brustwand, hinter der Lunge gelegen ist, so ist der Schall, der entsteht, nichttympanitisch; percutirt man die aus dem Brustkorb herausgenommene Lunge, so schallt sie tympanitisch. Die herausgenommene aufgeblasene Lunge schallt gleichfalls nichttympanitisch. Was ist es nun, was jenen tympanitischen Schall erzeugt, und wodurch geht der klangähnliche Charakter des Schalles verloren, wenn die Lunge im Brustkorb ausgespannt, und wenn sie durch Aufblasen künstlich in Spannung versetzt wird?

Der tympanitische Schall der erschlafften, in den Ruhezustand ihrer elastischen Elemente eingetretenen Lunge wird nicht bedingt durch die Schwingungen der einzelnen kleinen Luftmassen in den Alveolen. Ihr Umfang ist dazu zu gering, Luftsäulen von dem zehnfachen Durchmesser sind noch nicht gross genug, um einen

¹⁾ Man setze ein Glas in frischen Schnee, sein Schall wird tympanitisch sein. Nimmt man es heraus, so schallt die gleichgeformte Schneehöhle nicht tympanitisch, weil sie der glatten schallreflexionsfähigen Wände entbehrt.

vernehmlichen tympanitischen Schall zu liefern. Er wird auch nicht bedingt durch die Schwingungen der Luftsäulen in den Bronchien, denn wenn man den Hauptbronchus oder die Durchschnitte vieler Bronchien eines Lungenstückes schliesst und wieder öffnet, ändert sich die Höhe des tympanitischen Schalles der erschlafften Lunge nicht (Wintrich). Wir können diese so einfache Erscheinung des tympanitischen Schalles der retrahirten Lunge noch nicht auf elementarem Wege deuten, doch hat für jetzt die Annahme Schweigger's am meisten für sich, dass die in der Lunge enthaltene Luft als Ganzes schallt, eine Luftsäule repräsentirend, gleichsam als ob die Alveolenscheidewände nicht da wären. In der That wird der Percussionsschall eines Stückes retrahirter Lunge um so höher, je mehr es verkleinert wird und er wird auch höher, wenn man es durch Spannung seines Luftgehaltes beraubt. Analog gibt ein Haufen Eiweissschaum tympanitischen Schall, der um so höher wird je kleiner die Masse des Eiweissschaumes und ein Glas schäumenden Bieres, am Boden percutirt, schallt um so tiefer tympanitisch, je grösser die Menge der darin enthaltenen Luftblasen (Geigel). Allein es bleibt, wenn man diesen tympanitischen Schall mit demjenigen glattwandiger Hohlräume in Parallele setzen will, unerklärt, wodurch die dort nöthige reflectirende Wand hier geliefert werden soll. Die Pleura allein erscheint hiezu kaum ausreichend. Zudem ist es kaum zu verlangen, dass das zwischendurch gezogene Netz von erschlafftem Lungengewebe die Schwingungen des Luftraumes so ganz und gar nicht stören soll.

Es ist von vorne herein unwahrscheinlich, dass der nichttympanitische Schall, den man am Brustkorbe erhält, von der Brustwandung herrühre, und nur desshalb nicht tympanitisch sei, denn auch die herausgenommene aufgeblasene Lunge schallt nichttympanitisch. Um gleich bei dieser Gelegenheit diesen Punkt zu erledigen, sei erwähnt, dass die percutirte Brustwand gar keinen anderen Antheil an der Erzeugung des Percussionsschalles besitzt, als denjenigen, welchen sie durch ihre Dicke als Schalldämpfer erlangt. Der sicherste Beweis hiefür scheint mir darin zu liegen, dass der Schall, welchen man bei der Percussion auf einem Rippenknorpel erlangt, vollkommen der Gleiche bleibt, wenn dieser Rippenknorpel während der Exspiration im Ruhezustande, während der Inspiration in hohem Grade von Spannung sich befindet. Das Experiment von Mazonn, welches zeigt, dass man durch Druck beider Hände eines Gehülfen neben der percutirten Stelle den

Schall dieser Stelle ändern könne, ist richtig. Allein der Schall wird nur in dem Maasse dumpfer, als die Schwingungsfähigkeit der Brustwand und damit ihre Leitungsfähigkeit für die Percussionserschütterung vermindert wird. Nur das Brustbein besitzt eine eigenthümliche Schallleitungsfähigkeit, auf deren Einfluss wir später zurückkommen werden. Wenn also die Brustwand im Ganzen an der Erzeugung des Percussionsschalles keinen Antheil hat, so kann es auch ihrem Einflusse nicht zugeschrieben werden, dass die Lunge bei Gesunden nichttympanitisch schallt.

Die im Brustkorb eines Gesunden (oder der Leiche) in normaler Weise ausgespannte Lunge hat mit der aufgeblasenen, aus der Leiche herausgenommenen Lunge das gemeinschaftlich, dass das Lungengewebe sich in Spannung befindet und somit geeignet ist, durch den Percussionsstoss selbst in schallerzeugende Schwingungen zu gerathen 1). Es lässt sich nun wohl denken, dass die sonst vorhandenen Bedingungen klangähnlichen Schalles dadurch, dass eine Masse verschieden dicker, verschieden schwingender Alveolenscheidewände das Produkt ihrer Schwingungen dazwischen schicken, aufgehoben werden und dabei ein Geräsch entsteht, das nicht die mindeste Klangähnlichkeit besitzt, also nichttympanitischer Percussionsschall.

Leichter erklärlich ist jener tympanitische Schall, den man an den Unterleibsorganen erhält. Glattwandige, schallreflexionsfähige, regelmässig gestaltete Hohlräume sind hier vielfach gegeben, so dass es nur noch vom wechselnden Luftgehalte abhängig ist, ob und wie weit tympanitischer Schall bei der Percussion des Magens und Darmkanals entsteht. Wo diese Höhlen ganz mit Flüssigkeit oder festweichen Massen erfüllt sind, geben sie den gleichen völlig dumpfen Schall wie der Oberschenkel. Wo sie eine sehr starke Spannung ihrer Wände erfahren, tritt ungeachtet eines vollständigen Luftgehaltes derselben tympanitischer Schall nicht auf. Ihre Wände kommen dann selbst in Schwingungen und diese stören die Regelmässigkeit, mit welcher die darin enthaltene Luftsäule schwingen muss, um tympanitisch zu schallen. Das normale Lungengengen gewebe im Thorax schallt nichttympanitisch wegen Spannung seiner Wände. Wenne

^{1) »}Alle fleischigen, nicht lufthältigen organischen Theile, gespannte Membranen und Fäden abgerechnet, so wie Flüssigkeiten, geben einen ganz dumpfen, kaum wahrnehmbaren Percussionsschall, den man sich durch Anklopfen an den Schenkel versinnlichen kann.« Skoda.

diese beim Herausnehmen oder durch pathologische Bedingungen in der Brust ihre Spannung verlieren, schallt es tympanitisch. Die lufthältigen Unterleibsorgane schallen tympanitisch, solange ihre Wände nicht stark genug gespannt sind, um selbst zu tönen.

Unter pathologischen Verhältnissen kommt an der Lunge oft tympanitischer Schall zu Stande, wo vorher der normale, nichttympanitische Schall wahrgenommen war. Scheinbar ist diess am Kinderthorax der Fall, wenn man zuvor leise percutirt, dann stark. Die grosse Ausbreitung, welche hier die Percussionserschütterung erfährt und die Kleinheit der Organe, so wie ihre Nähe bei einander bringen es mit sich, dass vom Brustkorbe aus bei starker Percussion die tympanitisch schallenden Unterleibsorgane leicht in Schwingungen versetzt werden können. In der That aber findet man bei Kranken das Vorkommen des tympanitischen Schalles über der Lunge begründet 1) durch die Anwesenheit grösserer, geeignet geformter Hohlräume; 2) durch die Erschlaffung des Lungengewebes innerhalb der Brust, entsprechend dem Zustande von Retraction, den es nach Eröffnung der Brusthöhle an der Leiche annimmt; 3) durch gleichzeitigen Gehalt der Alveolen an Flüssigkeit und Luft.

Grössere, glattwandige und ziemlich regelmässig geformte Hohlräume in der Lunge entstehen hauptsächlich durch Erweiterung
der normalen Hohlräume, der Bronchien, oder nach Zerstörung
des Lungengewebes durch Brand, Vereiterung, Verkäsung. Haben
sie eine oberflächliche Lage, so dass sie der Percussionserschütterung zugänglich sind und eine genügende Grösse, sind sie ganz
oder grösseren Theils mit Luft erfüllt, so liefern sie tympanitischen Schall. Ein absolutes Maass für die Grösse, die sie hierzu
erlangt haben müssen, lässt sich nicht angeben, weil die Lage und
Beschaffenheit des umgebenden Gewebes mit von Einfluss sind 1).
Es können schon haselnussgrosse Cavernen auf diese Weise bemerklich werden, und bei taubeneigrossen wird man unter sonst
günstigen Umständen den tympanitischen Schall selten vermissen.
Da der Luftgehalt dieser Hohlräume in der Regel durch die Respiration hereingebracht ist, setzt er auch fast stets das Offensein der

¹⁾ So kann eine tief gelegene Caverne innerhalb luftleeren pneumonischen Lungengewebes tympanitisch schallen, und mit der Lösung dieses Processes und dem Wiedereintritte der Luft in die Alveolen wieder ihren Einfluss auf den Percussionsschall verlieren.

zuführenden Bronchien voraus. Ist diess der Fall, so communicit die Luft in der Caverne durch einen Bronchus, die Trachea, den Larynx, die Rachen-, Mund- und Nasenhöhle mit der äusseren Luft. Diese Communikation wird erweitert beim Oeffnen des Mundes, verkleinert beim Schliessen desselben, und so wird auch der Schall solcher Cavernen im ersteren Falle höher, im zweiten tiefer, noch tiefer, wenn gleichzeitig auch die Nasenöffnung geschlossen wird (Wintrich). Durch dieses Verhalten wird derjenige tympanitische Schall, der in einer Caverne entsteht, von jedem anderweitig begründeten tympanitischen Schalle in der Brusthöhle unterschieden.

Nur eine einzige Ausnahme ist hier zu statuiren, die auch bereits von Wintrich aufgeführt wurde. Ist das sämmtliche Lungengewebe eines oberen Lappens vom Hilus der Lunge bis zur vorderen Brustwand luftleer geworden, wie diess im Verlaufe von Lungen- und Rippenfellentzündung vorkommt, so percutirt man durch dieses gutleitende Lungengewebe hindurch einen grösseren Bronchus der betreffenden Seite. Seine Luftsäule steht gleichfalls mit jener der Mundhöhle in direkter Verbindung, sein tympanitischer Schall wird daher gleichfalls mit dem Oeffnen des Mundes höher. Wo der zuführende Bronchus einer Caverne nicht offen ist, wohl auch zuweilen aus andern minder gut gekannten Gründen, bleibt die erwähnte Aenderung des Percussionsschalles über Cavernen aus, sie darf nicht in jedem Falle erwartet werden, sie ist

nur positiv beweisend, nicht negativ.

In diesen Fällen kann der tympanitische Percussionsschall auf andere Weise, als einer Caverne angehörig, charakterisirt werden, die darauf beruht, dass nicht die Luftmenge, die ein Schallraum enthält, sondern der grösste Längendurchmesser desselben maassgebend ist für die Höhe seines Percussionsschalles. Cavernen sind selten ganz rund, zumeist länglich, eiförmig oder unregelmässig gestaltet. Die Flüssigkeit, welche sie enthalten, nimmt, falls sie nicht zu zäh und klebrig ist, stets die tiefste Stelle des Hohlraumes ein. Sie liegt also z. B. in einer im Längsdurchmesser des Körpers stehenden Caverne von langgestreckter Form, bei aufrechtem Stehen an deren unterstem Ende, beim Liegen an deren hinterer Wand. Somit verkürzt die Flüssigkeit im ersteren Falle die Länge des Luftschallraumes der Caverne, während derselbe im zweiten Falle mit dieser den gleichen grössten Durchmesser hat. Der Percussionsschall einer solchen Caverne ist beim Stehen oder Sitzen höher

als beim Liegen. Der tympanitische Percussionsschall einer in ihrem grössten Durchmesser von vorne nach hinten gerichteten Caverne, deren flüssiger Inhalt eines Lagewechsels fähig ist, muss beim Stehen tiefer, beim Aufsitzen höher werden.

Die Lunge innerhalb des Brustkorbes kann durch verschiedene Ursachen in denselben Zustand von Retraction versetzt werden, den sie, aus dem Brustkorbe herausgenommen, anzunehmen pflegt. Tritt z. B. durch eine Wunde der Brustwand oder eine durchlöcherte Stelle der Pleura costalis Luft in den Pleurasack ein, und die Lunge zieht sich so lange zurück, bis ihre elastischen Elemente die Gleichgewichtslage erlangt haben, so erhält man in diesem Falle bei der Percussion der Brustwand nicht den Schall der retrahirten Lunge, sondern den der Luft, die zwischen Lunge und Brustwand eingetreten ist. Wird in den Pleurasack Flüssigkeit ergossen, so tritt bei einem gewissen Maasse dieses Ergusses die Lunge zum grösseren oder geringeren Theil in den Zustand der Retraction ein, und zwar ist es gerade der zunächst oberhalb des Ergusses gelagerte Lungentheil, der der Brustwand noch anliegend tympanitischen Schall liefert in Folge der verminderten Spannung seiner elastischen Elemente. So kann auch durch Geschwülste innerhalb des Brustkorbes, durch Vergrösserung normaler, dort gelagerter Organe, wie z. B. des Herzens, in der nächsten Nähe tympanitischer Percussionsschall bedingt werden. Ja es kann ein Theil der Lunge vorübergehend durch starke Ausdehnung seiner Lufträume (z. B. bei Exsudation in derselben) sich so vergrössern, dass seinen Nachbarn gestattet wird, in retrahirten Zustand einzutreten. Dieser tympanitische Percussionsschall wechselt seine Höhe nicht mit dem Oeffnen und Schliessen des Mundes, aber er kann in einzelnen Fällen für die Dauer einer sehr tiefen Inspiration seines tympanitischen Charakters verlustig werden.

Man weiss empirisch, und man kann es jeden Augenblick durch den Versuch auf's Neue erfahren, dass Lungengewebe, dessen Alveolen gleichzeitig Flüssigkeit und Luft enthalten, einen tympanitischen Percussionsschall liefert, auch wenn es sich nicht im Zustande der Retraction befindet. Spritzt man nämlich Wasser in die Trachea in entsprechender Menge ein, ohne dass der Brustkorb eröffnet ist, so wird der vorher nicht tympanitische Brustschall an der Leiche tympanitisch. Es dürfte zur Zeit noch sehr schwer fallen, den physikalischen Grund dieser Erscheinung anzugeben. Man findet in mehreren Krankheiten, so im ersten und dritten

Stadium der Pneumonie und beim Oedem der Lunge anatomisch die Alveolen mit Luft und Flüssigkeit erfüllt, und man beobachtet bei den gleichen Krankheitszuständen am Lebenden tympanitischen Percussionsschall der Brustwand, der beim Oeffnen und Schliessen des Mundes seine Höhe nicht wechselt, aber in nichttympanitischen Percussionsschall umschlägt, so bald die Alveolen ganz mit Flüssigkeit erfüllt, oder wieder ganz lufthaltig werden.

Diess sind die etwas besser gekannten physikalischen Bedingungen, unter welchen tympanitischer Percussionsschall der Brust bei der Krankenuntersuchung getroffen wird. Einzelne weitere, noch ziemlich dunkle Fälle schleppen sich ausserdem in den Lehrbüchern hin. So soll beim Lungenemphysem hie und da tympanitischer Schall sich finden. Doch ist diese Erscheinung eine so ausnahmsweise, dass man wohl besondere complicirende Verhältnisse als Ursache vermuthen darf und nicht genöthigt ist, sie dem Emphysem als solchem zuzuschreiben.

IV. Die Höhe des Percussionsschalles

lässt sich, wie oben bereits erwähnt, beim tympanitischen Percussionsschall jeder Zeit leicht beurtheilen, und sie kommt bei demselben hauptsächlich in zweierlei Richtung in Betracht: 1) um an der Brust den tympanitischen Percussionsschall zu unterscheiden, der von seiner Caverne herrührt, von jenem, der in anderer Weise bedingt ist; derjenige der Caverne wird bei offenstehender Glottis höher bei offenem, tiefer bei geschlossenem Munde (vergl. pag. 119).

2) Um aus der Höhe des tympanitischen Percussionsschalles einen annähernden Schluss zu ziehen auf die Grösse und Form des tympanitisch schallenden Organes. In welcher Weise die Form von Hohlräumen in der Lunge Einfluss hat auf die Höhe des tympanitischen Schalles, haben wir pag. 119 besprochen.

Sehr auffällig wechselt die Höhe des tympanitischen Schalles kleiner Lufträume im Pericard oder neben demselben im Pleurasack. Percutirt man dieselben in rascher Reihenfolge der Schläge, so bekommt man je nach Herzsystole oder Diastole ganz verschiedene Höhen des Schalles zu hören. Die Grösse des Luftraumes bleibt die gleiche, aber seine Form und namentlich der für die Schallhöhe maassgebende längste Durchmesser wird abgeändert, indem

er sich der wechselnden Form des Herzens anpasst.

Besonders muss die Höhe des tympanitischen Schalles beachtet werden bei der Untersuchung des Unterleibes, wo der tiefe tym-

panitische Schall des Magens von dem weit höheren des Colons und der Dünndarmschlingen unterschieden wird, wo ferner der grosse längs der vorderen Bauchwand sich erstreckende Luftraum, der durch Austritt von Gas in den Peritonealsack entsteht, an allen Stellen gleichmässig tief schallt, und nicht jenen Wechsel der Höhe erkennen lässt, der für gewöhnlich durch die verschieden weiten Darmschlingen bedingt wird. Auch an den lufthaltigen Unterleibsorganen wechselt die Höhe des Percussionsschalles unter verschiedenen Umständen, besonders bei verschiedenen Füllungsverhältnissen desselben, doch zu regellos, um diagnostisch verwerthet werden zu können. Nur am Magen kann man sich öfter überzeugen, dass bei mässiger Füllung und überwiegendem Luftgehalte desselben sein tympanitischer Schall mit der Inspiration entweder höher oder tiefer, wie bei der Exspiration wird.

Der nichttympanitische Schall, den man wohl auch als klangloses Geräusch bezeichnen kann, lässt nur weit undeutlicher und nur dann, wenn sehr bedeutende Differenzen zum Vergleiche vorliegen, eine Bestimmung seiner Höhe zu. Wenn jedoch behauptet wird (Seitz), dass man gar nie seine Höhe unterscheiden könne, so lässt sich für diese Behauptung von vorne herein kein theoretischer Grund einsehen, und praktisch genommen wird jeder, der halbswegs hören gelernt hat, den Percussionsschall des dritten rechten Intercostalraumes einer gesunden Brust (zwischen den Knorpeln) in der Papillarlinie tiefer finden, als den des fünften Intercostalraumes. Sehr fein bemerkt Skoda, dass der nicht tympanitische Schall den Uebergang in tympanitischen in der Art bei Infiltrationen der Lungenspitze mache, dass er erst höher werde. Eine solche Höhenzunahme des nicht tympanitischen Schalles erklärt sich aus dem verminderten Luftgehalte des Gewebes unter der percutirten Stelle.

V. Dumpfer Schall.

Als hell bezeichnet man den lauten Schall, der durch starke Percussion über Lufträumen erzielt wird, deren dünne Wandungen vermöge ihres Spannungsgrades zur Fortleitung der Percussionserschütterung gut geeignet sind. Als dum pf den leisen Schall, der durch schwache Percussion über dicken Lagen luftleerer Theile erhalten wird. Vollständig dum pf und dabei nichttympanitisch im vollsten Maasse ist der Percussionsschall des Oberschenkels. Ebenso derjenige, der über dem Deltoideus erhalten

wird, und bei erwachsenen, etwas wohlbeleibten Leuten auch der der Wirbelsäule. Sehr dumpf aber nicht vollständig gedämpft ist ferner der Schall, der beim Percutiren auf dem Schulterblatte und auf dem oberen Rande des Cucullaris erhalten wird. Sehr hell dagegen ist derjenige unterhalb des Schlüsselbeines bis herab zur sechsten Rippe. Dicke Brustwandungen, Flüssigkeitslagen zwischen Brustwand und Lunge, unter der Brustwand gelegene luftleere Schichten der Lunge dämpfen den Percussionsschall, wie der Percussionsschall eines Lungenstückes um so dumpfer wird, je tiefer man es in eine Flüssigkeit eintaucht, an deren Oberfläche mittelst eines Plessimeters percutirt wird. Legt man ein Stück Leber, Milz oder Muskel, Haut oder Blutgerinnsel über einen luftgefüllten Darm, so wird dessen Schall gedämpft. Ebenso wird am Unterleibe, wo die Leber in dünner Schicht den Magen oder Darmschlingen überlagert, der Schall der letzteren gedämpfter wahrgenommen, als wo sie nur von der Bauchwand bedeckt sind. Eine mehrere Zoll dicke Flüssigkeitsschicht zwischen Darm und Bauchwand macht den Schall völlig dumpf, d. h. die Percussionserschütterung verliert sich in ihr, und der durch den Rest derselben erzeugte Schall verliert sich noch vollends, ehe er zur Oberfläche dringt. Jedenfalls darf man erwarten, dass eine 6" dicke Flüssigkeitsschicht den Schall völlig dämpft, häufig aber bedarf es hiezu einer nicht ganz so dicken Lage.

Der völlig dumpfe Schall ist jederzeit klanglos. Sonst kann ein verschiedener Grad von Dämpfung oder Helligkeit (Laut- oder Leise-Sein) sowohl dem klanglosen als dem klanghältigen Schalle

zukommen.

VI. Voller Schall.

Wir haben schon früher besprochen, inwiefern für den tympanitischen Percussionsschall die Unterscheidung von voll und leer uns ganz genügend durch die Berücksichtigung der Schallhöhe ersetzt zu sein scheint. Für den nichttympanitischen Percussionsschall ist diess nicht in gleichem Maasse der Fall. Seine Höhe ist keineswegs immer leicht erkennbar, und man wird desshalb die Dauer und die sogenannte Massenhaftigkeit desselben mit berücksichtigen, um auf die Grösse des percutirten lufthaltigen Körpers zu schliessen. In diesem Sinne voll findet sich der Schall z. B. zwischen zweiter und vierter Rippe der rechten Seite vorn. Von da ab wird er allmählig leerer bis zur sechsten. In diesem Sinne

voll findet sich ferner der Schall eines emphysematösen Brustkorbes im Vergleiche mit einem sonst gleichartigen eng gebauten. Nach der Skoda'schen Lehre wird der Percussionsschall, so oft er gedämpft wird, zugleich leerer, aber er kann sich sehr hell und doch sehr hoch und kurz dauernd über einer kleinen oberflächlich gelegenen Lungenparthie vorfinden, die ringsrum von luftleerem Lungengewebe umgeben ist. Die praktische Bedeutung dieses Unterschiedes wird am klarsten werden an einer späteren Stelle, wo wir die Grenzbestimmung der Brust- und Bauchorgane durch die Percussion besprechen werden. Sie beruht vorzüglich darin, dass man aus dem Leererwerden des Percussionsschalles tiefgelegene, aus dem Gedämpftwerden desselben oberflächlich gelegene, luftleere, schwingungsfähige Körper erkennt, die im ersteren Falle unter, im anderen Falle auf lufthaltigen Organen liegen.

VII. Metallklang.

Während man an jedem Percussionsschalle die dumpfe oder helle, hohe oder tiefe, tympanitische oder mehr weniger volle Beschaffenheit unterscheiden kann, während also diese Grundqualitäten bei jeder Untersuchung durch die Percussion in Frage kommen, gibt es ausserdem noch einige Percussionserscheinungen, die nur hie und da einmal unter besonderen Umständen getroffen werden. Dahin gehören der »Metallklang« und das Geräusch des »gesprungenen Topfes«.

Der Metallklang wird am besten erkannt durch den Vergleich mit jenem Nachhall hoher klingender Art, der beim Anschlage an ein leeres Fass entsteht. Er kann auch an weit kleineren Behältern hervorgebracht werden, an solchen bis zu 6 Centimeter (Wintrich), ja 3 Centimeter (Merbach) grossem Durchmesser, vorausgesetzt, dass sie Luft enthalten, glatte, regelmässig gebaute Wände besitzen und eine in regelmässiger Form verengte Oeffnung darbieten. Man erhält ihn hinterher beim Anschlagen an einen Krug, eine Flasche, nicht aber an ein Glas. Er entsteht darin durch ein regelmässiges System reflektirter Schallwellen. Eben desshalb, weil die meisten Schallwellen wieder nach innen reflektirt werden, gelingt es oft nur, wenn man das Ohr der Mündung des Gefässes nähert, den Metallklang zu erkennen. Er beruht auf dem Hervortreten hoher Obertöne neben dem Grundtone. Seine Höhe richtet sich, wie die des tympanitischen

Schalles, nach dem grössten Durchmesser des Schallraumes, in dem er entsteht, aber sie wechselt ausserdem noch etwas je nach der Richtung, in der die Percussionserschütterung erfolgt. So gibt der Luftraum eines ellipsoidischen Gefässes bei Percussion in der Richtung eines längeren Durchmessers tieferen, in der Richtung eines kürzeren höheren Metallklang. Während bei stark gespannten Wänden eines sonst geeigneten Luftraumes tympanitischer Schall nicht entstehen kann, wird der Metallklang hiedurch nicht beeinträchtigt. Man kann sich an der rund aufgeblasenen Mundhöhle sehr deutlich hiervon überzeugen. Auf diesem Verhältnisse beruht es, dass der Metallklang häufig gerade dann entsteht, wenn der tympanitische Schall verschwunden ist.

Unter normalen Verhältnissen findet sich Metallklang niemals an der Brusthöhle, unter krankhaften Umständen findet er sich dann, wenn ein grösserer Luftraum, der überhaupt die Bedingungen für die Entstehung des Metallklangs darbietet, entweder innerhalb des Lungengewebes in der Nähe der Brustwand, im Pleurasack, oder im Cavum pericardii vorhanden ist. Die Cavernen in der Lunge communiciren gewöhnlich frei mit den Bronchien und den daran sich anschliessenden Lufträumen; daher kann ihr metallischer Percussionsschall beim Oeffnen des Mundes deutlicher zu Gehör kommen. Die Hohlräume, die bei Austritt von Luft zwischen beide Pleurablätter oder in das Cavum pericardii entstehen (Pneumothorax, Pneumopericardie), werden gewöhnlich durch baldige Obliteration der Fistelöffnungen allseitig abgeschlossen, oder es wird doch ihre Communikation eng und beschränkt, ihr Metallklang wird nicht lauter beim Oeffnen des Mundes. Ueber denselben befindet sich die Brustwand in abnorm starker Spannung, so dass die Intercostalräume vorgetrieben erscheinen. Es erschwert dieser Grad von Spannung den Durchtritt der Schallstrahlen. Man ist desshalb oft genöthigt, um den Metallklang, der über solchen Hohlräumen entsteht, überhaupt zu hören, das Ohr der percutirten Stelle der Brustwand sehr zu nähern, oder in der Nähe derselben anzulegen (Percussions-Auscultation). Innerhalb solcher Hohlräume vorhandene Flüssigkeit wechselt weit leichter und freier, als die der Cavernen ihre Lage, ändert somit die Formverhältnisse des Luftschallraumes und hat insofern Einfluss auf die Höhe des erzeugten Metallklanges, der mit der Länge des grössten Durchmessers an Tiefe zunimmt. Am Magen erscheint unter normalen Verhältnissen häufig Metallklang, wenn seine Höhle stark mit Luft

gefüllt ist; unter pathologischen Verhältnissen kann an der ganzen vorderen Bauchwand Metallklang entstehen, wenn Luft in den Peritonealsack ausgetreten ist und die Darmschlingen, Leber und Milz von der Bauchwand abgedrängt hat, oder am grössten Theile derselben, bei starker Luftanfüllung der Darmschlingen.

Das Geräusch des gesprungenen Topfes (bruit du pot fêlé, Münzenklirren) hat die grösste Aehnlichkeit mit dem Geräusche, das beim Aufschlagen der beiden hohl an einander gelegten Handflächen auf das Knie entsteht, oder das erzeugt wird, wenn Jemand beim Schreien oder Singen stark auf seine Brust schlägt. In einer genauer zutreffenden Weise kann es nachgeahmt werden durch Percussion an der Seitenfläche des Kehlkopfes bei fast geschlossenem Kehldeckel. Es entsteht in pathologischen Fällen in ähnlicher Weise wie beim Aufschlagen der Hände auf das Knie, durch Entweichen der Luft aus einem lose geschlossenen Hohlraum, wobei sie durch eine enge Spalte sich mit zischendem Geräusche hindurchdrängt und diese den vorher bestandenen tympanitischen Schall oder Metallklang unterbricht. Auch das von Wintrich hervorgehobene Moment kommt dabei zur Geltung, dass der tympanitische Schall oder Metallklang des betreffenden Hohlraumes durch die Verdichtung seiner Luft in Folge starker Percussion auf einen Moment zum Schweigen gebracht wird. Häufig ist starke Percussion nöthig, um das Geräusch des gesprungenen Topfes dort, wo es erhalten werden kann, hörbar zu machen. Seine Wahrnehmung wird durch Oeffnen des Mundes und weite Stellung der Rachenorgane und des Kehlkopfseinganges erleichtert; man lässt daher die Kranken durch den Mund athmen. Dieses Geräusch entsteht nicht allein über oberflächlichen, unter biegsamer Brustwand gelegenen, grossen Cavernen, wo sein Vorkommen in der oben angedeuteten Weise eine zureichende Erklärung findet, sondern es wird auch dort beobachtet, wo kleine Lungentheile inmitten hepatisirten Gewebes lufthaltig blieben. Es findet sich ferner in der Nähe, namentlich über verdichtetem Lungengewebe, so bei Pneumonie und Pleuritis, aber es ist auch bei Kindern häufig, bei Erwachsenen einzelne Male (H. Bennet) über der ganz gesunden Lunge getroffen werden. Da seine Entstehung an die Bedingung sehr biegsamer Beschaffenheit der Brustwand geknüpft ist, wird sein häufigeres Vorkommen bei Kindern leicht erklärt. Aus dem gleichen Grunde trifft man es am häufigsten zwischen Schlüsselbein und Brustwarze, seltener an der Rückenfläche und an dieser

wieder eher zwischen Schulterblattwinkel und eilfter Rippe, als auf dem Schulterblatte.

Als ein besonderes Geräusch ist von Briançon und Piorry das Hydatiden schwirren beschrieben worden. Dasselbe soll gleichfalls durch Auscultation in der Nähe der percutirten Stelle wahrgenommen werden. Man fühlt dabei über Echinococcusblasen und anderen stark gespannten dünnwandigen Säcken, die leicht bewegliche Flüssigkeit enthalten, am aufgelegten Ohre die kleinwellige Fluctuation. Man hört auch gleichzeitig einen dumpfen, dem Schwirren einer Basssaite ähnlichen Schall. Ich muss es zur Zeit dahingestellt sein lassen, ob dieser in der gespannten Membran oder in der Luft des Stethoskops entstehe. Von besonderer diagnostischer Bedeutung für die Erkennung von Hydatiden ist derselbe jedenfalls nicht.

VIII. Gefühl des Widerstandes.

In innigem Zusammenhange mit dem Gedämpftsein des Percussionsschalles steht der beim Percutiren wahrnehmbare Widerstand der percutirten Oberfläche. Man fühlt allenthalben, wo völlig dumpfer Schall entsteht, dass der percutirte Körper nicht in Schwingungen geräth, und man fühlt desshalb einen hohen Grad dieses Widerstandes sowohl beim Percutiren auf einem Flüssigkeitsspiegel, als auch auf einem festen Körper. Aber es mengt sich in diesen Fällen noch eine andere Empfindung bei, nämlich die, ob der percutirte Körper überhaupt nachgiebig sei und einen Eindruck annehme, oder auch hiefür absoluten Widerstand biete. Ueberall wo absolut dumpfer Schall entsteht, ist die Resistenz eine bedeutende, aber sie schwankt dann wieder, indem sie auf harten Körpern und weichen, wenn beide dumpf schallen, verschieden gross sein muss. So fühlt man über einem verkalkten Echinococcussack bedeutendere Resistenz, als über einem Flüssigkeit enthaltenden. Ueber lufthaltigen Körpern wird sie um so geringer, je mehr der Percussionsschall hell und voll ist. Ueber grossen gespannten lufthaltigen Räumen (z. B. Pneumothorax) fühlt man ein eigenthümliches Wogen der Brustwand beim Percutiren. Eine entscheidende diagnostische Bedeutung ist dem Verhalten des fühlbaren Widerstandes wohl nie beizumessen, doch gibt es bei bestimmten Krankheitsformen nicht unwichtige Unterschiede, die darauf beruhen. So liefern flüssige Ergüsse im Pleurasack stets bedeutendere Resistenz als luftleere Theile der Lunge, und es kann mitunter die Grenze

zwischen einem Pleuraexsudate und dem darübergelegenen luftleeren Lungentheile aus dem fühlbaren Widerstand annähernd bestimmt werden. Wo die Verhältnisse zu sehr leiser Percussion
zwingen, entnimmt man mehr dem Maasse des fühlbaren Widerstandes als dem gehörten Schalle das Urtheil über den Luftgehalt
der unterliegenden Theile. Die mittelbare Percussion mit den
Fingern gestattet eine viel feinere Wahrnehmung dieses Symptoms,
als die mit Hammer und Plessimeter.

IX. Topographische Percussion.

Man erlangt die grösste Sicherheit in der Technik der Percussion durch häufige Versuche am Brustkorbe von Kranken und Gesunden, die normalen oder verschobenen anatomischen Grenzen der Organe kennen zu lernen. Zu praktischen Zwecken ist man sehr oft genöthigt diese Grenzen zu revidiren, und man wird dabei sehr oft und lebhaft erinnert, wie ohne genaue Kenntniss der normalen Verhältnisse eine richtige Auffassung der pathologischen unmöglich sei. Zu Unterrichtszwecken übt man seit lange die Methode des Anzeichnens derjenigen Schallgrenzen, die man gerade bestimmt. Anfängern wird es oft nur auf diese Weise möglich, eine Uebersicht über das Verhalten der normalen, oder wenig veränderten Grenzlinien der Organe zu erhalten. Bei schwierigen Krankenuntersuchungen, wenn z. B. Verschiebbarkeit der Schallgrenzen beim Athmen oder bei Lageveränderungen ihrer Grösse und Ausdehnung nach bestimmt werden muss, kann auch der Geübteste genöthigt sein, zu diesem Hülfsmittel zu greifen. Man verwendet verschiedene Farben hierzu. Piorry hat eine fette durch Kienruss schwarz gefärbte Mischung als Crayon dermographique empfohlen. Tinte eignet sich wenig, weil sie zu leicht überfliesst, Tusche beschmutzt die Finger, dagegen eignet sich die von Ziemssen empfohlene, dunkelblaue Creta polycolor vortrefflich hierzu. Nur wo Grenzlinien sehr dauernd bezeichnet werden sollen, ist Höllenstein das einzig geeignete Material, In der Praxis kann manchmal ein befeuchteter weicher Bleistift ganz ausreichende Dienste leisten. Für Anfänger ist noch zu erwähnen, dass bei der Bestimmung dumpfer Schallräume natürlicher Weise, wenn man die erste dumpfschallende Finger- oder Plessimeterbreite percutirt, die Strichmarke genau ausserhalb derselben anzubringen ist. Wenn man die letzte hellschallende Fingerbreite vorhat, genau nach Innen am Rande derselben.

Man hat besondere Methoden in Anwendung gebracht, um die Genauigkeit dieser Grenzbestimmungen zu steigern. Die mit Maassen versehenen breiten Plessimeter sollten hiezu dienen, aber sie geben gewöhnlich den Gesammtschall der von dem Plessimeter bedeckten Fläche an jeder Stelle, nicht den differenten Schall physikalisch verschiedener Abschnitte derselben. Wintrich hat zu diesem Zwecke unter dem Namen lineare Percussion ein Verfahren empfohlen, welches darauf beruht, das Plessimeter schief nur mit seinem Rande aufzusetzen und von der Fläche her zu percutiren. Wenn überhaupt das Plessimeter in Gebrauch gezogen wird, so kann hiedurch allerdings die Genauigkeit der Resultate sehr gesteigert werden 1). Uebt man die Fingerpercussion, so kann man sicher auf Fingerbreite differente Schallräume unterscheiden, ja auch auf Halbe- und Drittelfingerbreite, indem man, wenn eine Grenzlinie ungefähr bestimmt ist, den Schall vergleicht, den man erhält beim Aufsetzen des Fingers mitten auf, gerade über, und gerade unter derselben. Es lässt sich so auf 1/2 Ctm. Breite eine genaue Bestimmung ausführen. Wir betrachten im Nachstehenden der Reihe nach die Schallgrenzen der Lunge, des Herzens, der Leber, der Milz, der Niere und des Magens.

X. Grenzen der Lunge.

Anatomisch können dieselben am geöffneten Brustkorbe nicht erkannt werden, weil in diesem die Lunge bereits aus ihrer Lage gewichen ist. Sie können nur erkannt werden an Durchschnitten gefrorener Leichen, durch Präparation der durchscheinenden Pleura von aussen oder durch Einstechen von mehreren Nadeln in der Nähe der vermutheten Grenze, um nach der Eröffnung zu sehen, welche derselben wirklich den Rand der Lunge traf. Aber auch diese Grenzen sind nicht genau die mittleren der athmenden Lunge, sondern die exspiratorischen. Da die Lunge den wechselnden Formverhältnissen des Brustkorbes stets folgt, so müssen auch ihre Grenzen in beständigem Schwanken begriffen sein. Wenn die genaue Bestimmung der Lungengrenzen am Cadaver wohl auch den Werth nicht hat, die Grenzen der Lungen am Leben kennen zu lehren, so zeigt sie doch im Verein mit der zuvor am Cadaver vorgenommenen Percussion, in wie weit die Resultate der letzteren richtig sind und überhaupt es sein können. Die gleiche Methode der Percussion am Lebenden angewandt, muss mit gleicher Richtigkeit die Lungengrenzen aufweisen.

¹⁾ Ueber den zum Zwecke genauester linearer Percussion von Peter construirten Plessigraphen stehen mir noch keine Erfahrungen zu Gebote

Fig. 11.

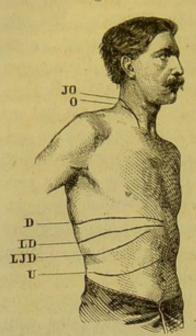


Fig. 11. Obere Lungengrenze und Verschiebung der Lungengrenze durch Seitenlage. O. Obere Lungengrenze, J. O. Inspiratorische obere Grenze, D. Stand des Diaphragmas, L. D. Derselbe bei linker Seitenlage und ruhigem Athmen, J. L. D. Derselbe bei linker Seitenlage und tiefer Inspiration.

Zwischen beiden Lungenspitzen gelegen findet man theils den leeren Schall der Muskeln und der Gefässe des Halses, theils den tympanitischen der Trachea.

Die untere Grenze der Lunge entspricht weder der Insertion des Diaphragma's, noch dem untern Ende des Pleurasackes, sondern sie liegt höher als beide, und bildet eine ziemlich in gleicher Höhe um den Brustkorb laufende Linie, da wo das Zwerchfell von seinem Anfangs vertikal aufstrebenden Verlaufe nach Innen abbiegt. Diese Linie findet sich neben dem Brustbein am unteren Rande der sechsten, in der Papillarlinie am oberen Rande der siebenten, in der Scapularlinie am untern Rande der siebenten, in der Scapularlinie an der neunten, und neben der Wirbelsäule an der eilften Rippe. Sie rückt bei tiefem Ausathmen weiter nach Oben, bei tiefem Einathmen, auch beim Liegen auf der andern Seite herab, aber nur in einem Falle, nämlich wenn der Untersuchte horizontal auf einer Seite liegt und möglichst tief einathmet, steigt der Lungenrand herab bis zur unteren Grenze des Pleurasackes, füllt den von mir sogenannten Complementärraum, den der unterste

Der Percussionsschall der Lunge ist an allen Stellen des Brustkorbs ein nichttympanitischer. Ausnahmen von dieser Regel sind nur scheinbar, wenn gleichzeitig mit der Lunge in der Nähe gelegene tympanitisch schallende Organe in Schwingung versetzt werden. Er ist ferner in verschiedenem Grade hell und voll und unterscheidet sich durch den ersteren Charakter von dem Schalle der lufthaltigen Unterleibsorgane, durch seine Helligkeit und Völle von dem der parenchymatösen Organe, des Herzens, der Leber, der Milz. Die obere Grenze der Lunge liegt beiderseits gleich hoch, 3-4 Ctm. oberhalb des oberen Schlüsselbeinrandes (Strempel, Heyer), und an der Rückseite in gleicher Höhe mit dem Processus spinosus des siebenten Halswirbels. Nach Innen zu begrenzt sich die Lungenspitze längs des hintern Randes des Kopfnickers, oder ihn etwas überschreitend nach Vorne. Theil des Pleurasackes abgibt, vollständig aus und liefert hellen, vollen, nichttympanitischen Schall bis 1" breit vom Rippenbogen. Ein besonderes Verhalten zeigt der Percussionsschall zwischen viertem und sechstem Rippenknorpel, zwischen Sternalrand und Parasternallinie linkerseits. Er ist hier vollständig dumpf und leer, an der Brustwand liegt in der genannten Ausdehnung das Herz an und liefert den Schall eines luftleeren Körpers.

Unter allen Theilen der Brustwand liefert den hellsten Schall der innere Theil der Infraclaviculargegend, und hier schallt wiederum die linke Seite häufig etwas heller als die rechte (geringere Entwicklung der Muskulatur). Der äussere Theil der Regio infraclavicularis gibt schon etwas dumpferen, die Regio supraclavicularis dumpferen und leereren Schall. Von der zweiten Rippe an bis zur vierten wird linkerseits der Percussionsschall je weiter nach abwärts, desto leerer im Vergleiche mit den entsprechenden Punkten rechts. Auf der rechten Seite beginnt der Percussionsschall bei der vierten Rippe, welcher gegenüber in der Mitte des Brustraumes der höchste Punkt des Zwerchfelles und der Leber gelegen ist, leerer zu werden, und diese leerere Beschaffenheit desselben steigert sich bis zur sechsten Rippe, resp. der siebenten, wo plötzlich der helle Charakter umschlägt in völlig dumpfe Beschaffenheit. Die Percussion des Schlüsselbeines selbst liefert Innen einen etwas dumpferen Schall, als die darüber und darunter gelegenen Theile der Brustwand, entsprechend der Dicke des Knochens, nach Aussen zu einen sehr dumpfen Schall. Sehr eigenthümlich sind die Percussionsverhältnisse des Sternums. Man erhält auf dem Manubrium, an dessen Innenseite theils luftleere Gebilde angelagert sind, theils auch der tympanitisch schallende Hohlraum der Trachea angrenzt, dennoch hellen, vollen, nicht tympanitischen Schall. Am hellsten und vollsten schallt allerdings der mittlere Theil des Brustbeines zwischen zweiter und vierter Rippe. Aehnlich verhält es sich zwischen vierter und sechster Rippe; hier berührt die linke Hälfte des Brustbeines das Herz, und es schallt dennoch in der gleichen Weise hell, voll und nichttympanitisch, wie die rechte. Daraus lässt sich folgern, dass das Brustbein eine eigenthümliche, an der ganzen Brustwand nur gerade diesem Organe zukommende Leitungsfähigkeit für die Percussionserschütterung besitzt. Man kann diese Leitungsfähigkeit künstlich stören, wenn ein Gehülfe in der Nähe der percutirten Stelle beide Hände quer über das Brustbein fest auflegt. Druck von innen her durch Geschwülste oder bedeutende Vergrösserung des Herzens bewirkt, kann gleichfalls den hellen Schall des Sternums dämpfen.

Noch dumpfer als in den seither erwähnten Regionen ist der Schall unter der Achselhöhle, unterhalb des Schulterblattes und am stärksten gedämpft auf diesem selbst. Percutirt man linkerseits, von der Achselhöhle an gerade nach abwärts, so wird der Schall successive heller und erhält in der Gegend der fünften, vierten oder sechsten Rippe einen tympanitischen Beiklang, der um so beträchtlicher ist, je mehr der Fundus des Magens durch geeigneten Luftgehalt tympanitisch zu schallen disponirt ist. Anfüllung des Magens mit vielem Speisebrei, Vergrösserung der Milz und viele andere pathologische Momente sind geeignet, diese Erscheinung zu stören, oder aufzuheben. Anders verhält sich diess auf der rechten Seite. Hier entspricht der untere Lungenrand zugleich der oberen Grenze der Leberdämpfung. Die ganze Dicke der Leber scheidet die Lunge von den lufthaltigen Unterleibsorganen. Hier wird der Schall von der Achselhöhle oder von der Brustwarze an nach abwärts zwar leerer: er entspricht einer dünneren Lungenschicht, aber er wird nicht tympanitisch. In dieser Gegend ist mehr als an andern Stellen, an welchen der Schall im gleichen Maasse leerer wird, das Höherwerden desselben bemerklich. Der Schall ist hier sogar an ein und derselben Stelle beim Stehen höher, als beim Liegen. Ich schliesse daraus, dass erhöhte Spannung des Lungengewebes, bedingt durch den Zug der Leber am Diaphragma, dieses Tympanitischwerden des Schalles hervorruft. Wenn Seitz glaubt, dass jeder Schall, der Differenzen seiner Höhe erkennen lasse, tympanitisch sein müsse und in der Dissertation seines Schülers Pirsch gesagt wird: oberhalb der Leber finde sich tympanitischer Schall der gesunden Lunge vor, so findet diess in dem Voranstehenden seine völlig genügende Erklärung.

Bei praktischen Krankenuntersuchungen ist der Percussionsschall jedes Punktes einer Brusthälfte mit dem entsprechenden der andern zu vergleichen. Nur die Präcordialgegend macht hiervon eine Ausnahme. Man beginnt in dieser Weise an der Grube oberhalb des Schlüsselbeines, beschränkt sich von der vierten Rippe an auf die Percussion der rechten Seite und percutirt wie vorne, so von beiden Axillargruben an seitlich und von beiden Fossae supraspinatae an längs der Rückenfläche nach abwärts bis zu der Abgangslinie des Diaphragma's. Besonderes Gewicht ist hiebei auf die obere Grenze zu legen, die bei Schrumpfung der Lunge

tiefer steht, wie denn auch in diesem Falle der Schall der ganzen Supra- und Infraclaviculargegend ein leererer wird. Gerade an dieser Stelle macht es sich besonders nothwendig, dass auf beiden Seiten die Muskulatur gleichmässig erschlafft sei, leichtes Umdrehen des Kopfes, wie es viele Kranken thun, um dem Percutirenden mehr Raum zu gewähren, dämpft bereits den Percussionsschall der einen Oberschlüsselbeingrube. Auch die Richtung des Percussionsstosses hat hier vielen Einfluss. Percutirt man an ganz gleichen Stellen der genannten Grube auf einer Seite senkrecht nach abwärts, auf der andern mehr von vorne nach hinten zu, so wird auf letzterer der Schall dumpfer erscheinen. Endlich sei schon hier bemerkt, dass eine grosse Zahl Erwachsener an der Lungenspitze wegen vorhandener, bindegewebiger Verdichtung derselben auf der einen oder anderen Seite dumpferen Schall liefert, daher man mit mehr Vorsicht, als es gewöhnlich geschieht, bei der Folgerung tuberkulöser Verdichtung der Lunge aus Dämpfung des Schalles einer Spitze derselben zu Werke gehen muss.

Beim Husten und starken Pressen wird theils durch die Muskelspannung, theils durch die innerhalb der Brusthöhle erfolgende Compression der Luft der Schall merklich gedämpft. Diess bemerkt man auch in einer sehr auffälligen Weise beim Schreien der Kinder; namentlich macht es sich auf der rechten Seite geltend. A. Vogel glaubt, dass rechts die Leber beim Pressen hinaufgedrängt werde; da er angibt, dass diese Veränderung des Schalles bis zur Spina scapulae hinaufreiche, so gehört eine sonderbare Anschauung über die Beweglichkeit der Leber und die Dehnungsfähigkeit des Zwerchfelles dazu, um diese Erklärung geniessbar zu finden.

Die oben beschriebene Grenze zwischen hellem, nichttympanitischem Schall der Lunge und dem völlig dumpfen der Leber und Milz bezeichnet man gewöhnlich als Stand des Zwerchfelles und zwar wird sie am richtigsten der mittlere Stand des Zwerchfelles und zwar wird sie am richtigsten der mittlere Stand des Zwerchfelles benannt. Die obere Diaphragmagrenze findet sich dann vorne am Knorpel der vierten rechten Rippe, oder wo der Schall dem höchsten Punkte der Leber gegenüber leerer zu werden beginnt (wahre obere Lebergrenze); als unteren Stand des Diaphragma's würde man die untere Grenze des Pleurasackes bezeichnen, bis zu welcher die Lunge nur bei entgegengesetzter Seitenlage und möglichst tiefem Athmen sich ausdehnt. Dieser mittlere Stand des Zwerchfelles wechselt bei gesunden Leuten

ungemein wenig. Er ist z. B. bei Kindern jeden Alters, sofern nur ihr Athmungsgeschäft in vollem Gange ist, genau der gleiche, wie bei Erwachsenen. Bei Greisen dagegen ist er im Durchschnitte etwas tiefer gelegen. Selbst die Schwangerschaft hat nur geringen Einfluss, dagegen die Geburt einen etwas bedeutenderen. Während der ersteren erfolgt die Druckzunahme in der Unterleibshöhle sehr allmählich, so dass die vordere Bauchwand entsprechend ausgedehnt werden kann. Da der untere Umfang des Brustkorbes beträchtlich erweitert wird, werden auch die Ansatzpunkte des Zwerchfelles auseinandergerückt und dieses Septum transversum wird durch erhöhte Spannung geeignet, dem Andrängen der Unterleibsorgane grösseren Widerstand entgegenzustellen. Bei der Niederkunft dagegen vermindert sich rasch der Inhalt der Unterleibshöhle, die Hypochondrien treten in ihren früheren Stand zurück, das Diaphragma ist noch gedehnt und schlaff. So kommt es, dass am Schlusse der Schwangerschaft das Diaphragma kaum höher steht, als beim Beginne derselben, kurz nach der Niederkunft aber 1-2 Ctm. tiefer getroffen wird, als zuvor.

Mit Bezug auf pathologische Befunde sei hier erwähnt, dass der Stand des Zwerchfelles abhängig ist von dem elastischen Zuge der Lunge, von der Muskelcontraction des Zwerchfelles selbst, von der Spannung des Inhaltes der Bauchhöhle, somit in indirecter Weise auch von dem Tonus und den Contractionen der Muskulatur der vorderen Bauchwand, endlich von seiner Belastung durch einen Theil des Gewichtes des darauf ruhenden Herzens und der daran hängenden Leber und Milz. Hieraus folgt, dass Elasticitätsverminderung der Lunge dem Zwerchfell tiefer herabzutreten gestattet, dass Zwerchfellslähmung Hochstand, Krampf dagegen Tiefstand desselben bedingen müsse. Die Belastung des Zwerchfelles durch das Herz, die Leber und Milz kann, an einem dieser Organe gesteigert, Tiefstand desselben bedingen, doch gilt diess mit grösserer Regelmässigkeit für die Vergrösserung des Herzens, als für die der andern beiden genannten Organe. Bisweilen tritt abnorme Belastung des Zwerchfelles durch Geschwülste an seiner Oberfläche, oder durch Flüssigkeitsergüsse ein, die auf ihm ruhen. Die Spannung des Inhaltes der Bauchhöhle wird erhöht bei der Schwangerschaft, bei Luftauftreibung der Gedärme, Ascites und den verschiedensten Geschwulstbildungen der Unterleibsorgane. Weil Leber und Milz bei ihrer Vergrösserung zugleich die gesammte Spannung

in der Bauchhöhle vermehren, bewirken sie auch häufiger Hochstand als Tiefstand des Zwerchfelles.

XI. Die Grenzbestimmung des Herzens

setzt eine genaue Kenntniss seiner Lagerungsverhältnisse voraus. Erinnern wir uns, dass von den grossen Gefässen abwärts die rechte durch den rechten Vorhof gebildete Grenze vom zweiten Intercostalraum bis zum sechsten Rippenknorpel im Bogen herabzieht, links vom zweiten Intercostalraum bis zur Herzspitze die linke und unten quer durch den sechsten rechten Rippenknorpel zum Schwertfortsatz und den sechsten linken Rippenknorpel die untere vom rechten Ventrikel gebildete Grenze sich erstreckt. Von dieser grossen vorderen Fläche des Herzens, welche innerhalb dieser Ränder liegt, ist nur ein kleiner Theil zwischen viertem und sechstem linkem Rippenknorpel, Mitte des Brustbeines und Herzspitze von

Lunge unbedeckt.

Beide Bezirke, den grösseren der ganzen vorderen Fläche des Herzens und den kleineren von Lunge unbedeckten hat man durch die Percussion zu bestimmen gesucht. Der innere, kleinere muss dem Charakter des Schalles nach, den er liefert, als Herzdämpfung bezeichnet werden. In dieser Beziehung besteht jedoch eine nicht ganz gelinde Sprachverwirrung, indem er von Andern als Herzleerheit, oder Herzmattigkeit bezeichnet wird (Conradi, Seitz, Friedreich). Percutirt man längs des linken Sternalrandes von oben nach abwärts, so wird von der zweiten Rippe ab der Schall leerer, indem eine immer dünnere Schicht von Lunge das Herz von der Brustwand trennt. Bei der vierten Rippe unterem Rande oder im vierten Intercostalraum hat diese Schicht ein Ende und der Schall wird völlig dumpf. Bezeichnet man sich diese Stelle und die durch Percussion längs der rechten Papillarlinie nach abwärts gefundene untere Grenze der rechten Lunge, so ist es dann leicht durch Percussion in transversaler Richtung zwischen beiden Linien den inneren (rechten) und den äussern (linken) Rand der Herzdämpfung wiederum aus dem völlig dumpfen Schall zu erkennen. Ersterer entspricht dem linken Rande des Brustbeines, der andere erstreckt sich von dem äusseren Ende des oberen Randes an schief nach abwärts und Aussen bis zur Stelle der Herzspitze. Da die Lingula des linken oberen Lappens nicht breit genug ist, um auf den Percussionsschall erheblich einzuwirken und der linke Leberlappen unmittelbar unterhalb des Herzens gelegen, fast so weit als die Herz-

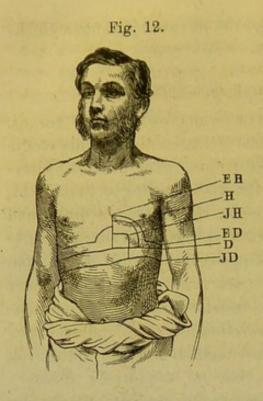


Fig. 12. Respiratorische Verschiebung der Herz- u. Leberdämpfung. H. Herzdämpfung bei ruhigem Athmen. D. Stand des Diaphragma's. E. H. Herzdämpfung bei tiefer Exspiration. E. D. Exspiratorischer Stand des Diaphragma's. J. H. Inspiratorische Herzdämpfung. J.D. Inspiratorischer Stand des Diaphragma's.

spitze nach Aussen reicht, geht der dumpfe Schall der Herzgegend unmittelbar in jenen des linken Leberlappens über. Man bestimmt desshalb die untere Grenze des Herzens auf indirectem Wege durch Verlängerung der rechten unteren Lungengrenze nach der Stelle des Spitzenstosses hinüber; so erhält man ein Viereck von ungleich langen Seiten, dessen inneré und untere Seite jedoch ziemlich übereinstimmend 5-6 Ctm. messen. Die Grösse dieses Raumes ist abhängig von der Grösse des Herzens und von der Ausdehnung der Lunge, oder eigentlich dem Stande des Zwerchfelles. Steht nämlich letzteres höher, so wird das Herz mit einem grösseren Theile seiner vorderen Fläche die Brustwand berühren

und dumpf schallen. Tritt das Zwerchfell herab, so lehnt sich das auf demselben gelegene Herz nach rückwärts und liegt zum geringeren Theile an der Brustwand an, den freibleibenden Raum aber füllen stets die Lungen aus. Die übliche Ausdrucksweise, die Herzdämpfung sei grösser oder kleiner wegen stärkerer Retraction der Lunge, oder weil die Lunge sich zwischen Herz und Brustwand hineingelagert habe, ist insofern unrichtig, als die Lunge am Herzen weder drückt noch schiebt, sondern nur den frei werdenden Raum in der Umgebung desselben ausfüllt. Ist die Lunge verwachsen, oder steht das Zwerchfell tief, so kann selbst die bedeutendste Ausdehnung des Herzens ohne irgendwelche Vergrösserung der Herzdämpfung bestehen.

Gerade aus diesem Grunde wäre es viel werthvoller, wenn man die ganze Grösse der vorderen Fläche des Herzens durch die Percussion bestimmen könnte. Diess ist jedoch thatsächlich unmöglich, weil, entsprechend den gerundeten und weit von der Brustwand abliegenden Rändern des Herzens, der Uebergang vom vollen zum etwas leereren Schall nur ganz allmählich stattfindet, so dass ein Theil des Herzens, auch wenn man nach dem leeren Schall urtheilen will, der Percussion stets entgeht. Genaue Untersuchungen, welche über diesen Gegenstand von Kobelt in Giessen angestellt worden sind, und zwar in der Absicht angestellt wurden, die ganze Grösse des Herzens zu bestimmen, haben ergeben, dass weder die rechte, noch die obere Grenze richtig aus dem leeren Schalle erkannt werden könne, sondern nur die linke, die ohnehin durch den Herzstoss bezeichnet ist. Damit sei keineswegs gesagt, dass diese Methode überhaupt nicht anzuwenden sei, obgleich man durch dieselbe nur einen grossen, aber unbestimmt grossen Bruch-

theil der vorderen Fläche des Herzens bestimmt. Ich finde im Gegentheil dass in Fällen, wo die Herzdämpfung wegen Verwachsung der benachbarten Lungenränder oder aus ähnlichen Gründen verhältnissmässg klein erscheint, eine grosse Ausdehnung des Organes aus der Percussion erkannt werden kann, wenn man die Grenzen des leeren Schalles, also der Herzleerheit berücksichtigt. Aus diesem Grunde habe ich auch auf der Abbildung nr. 13 die Grenzen der Herzleerheit im Vergleiche mit jenen der Herzdämpfung wiedergegeben. Am allergenauesten würde man das Herz nach der neuerdings

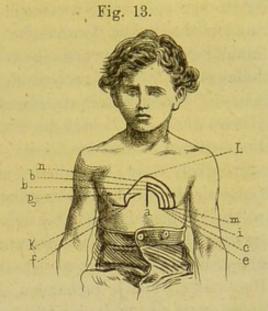


Fig. 13. Herdämpfung bei aufrechter Stellung, rechter und linker Seitenlage und Herzleerheit von einem 15jährigen Manne. a. b. c. Herzdämpfung, m. l. k. Herzleerheit, e. h. g. f. Herzdämpfung bei rechter, a. n. i. bei linker Seitenlage.

von Piorry angegebenen Methode messen können, wonach an der vorderen, hinteren und linken Wand des Brustkorbes die Percussion einen vollständigen Aufriss der Form des Herzens liefern soll. Schade, dass diess Verfahren unausführbar ist.

Die Herzdämpfung kommt tiefer zu stehen und wird kleiner während jeder Inspiration, stellt sich höher und vergrössert sich während der Exspiration, vergl. Fig. 12. Sie vergrössert sich nach links und oben bei linker Seitenlage und verkleinert sich von der gleichen Richtung her bei rechter Seitenlage, vergl. Fig. 13. Ihre innere Grenze jedoch bleibt in allen diesen Fällen die gleiche. Ob der Kranke steht oder liegt, hat zumeist keinen Einfluss auf dieselbe, sehr selten einen so bedeutenden, dass die vergleichende

Untersuchung von Werth ist. Wir sehen hieraus, dass das Herz normal nicht allein mit dem Diaphragma auf- und absteigt, sondern auch einen gewissen Grad seitlicher Verschiebbarkeit besitzt. Diese wechselt binnen ziemlich enger Grenzen, nur hie und da ist das Organ fähig, 1 bis 3" nach jeder Seite sich zu verschieben, aber man kennt die näheren Ursachen dieser ungewöhnlichen Verschiebbarkeit nicht.

Scheinbare Vergrösserung der Herzdämpfung wird bewirkt durch in der Nähe gelegene Geschwülste, Flüssigkeitsergüsse, oder Verdichtungen der Lunge. Wirkliche Vergrösserungen erstrecken sich bei Hypertrophie des Herzens im Ganzen, oder besonders des linken Ventrikels überwiegend nach der linken Seite hin. Bei Vergrösserung des rechten Ventrikels oder rechten Vorhofes erscheint eine rechtsseitige, anfangs durch den hellen Schall von der linken getrennte Herzdämpfung, die aber bei genügender Grösse auch den Schall des Sternums dumpf macht und mit der linksseitigen zusammenfliesst. Vergrösserung nach oben findet vorzüglich statt bei aneurysmatischer Erweiterung der grossen Gefässe, ferner bei Flüssigkeitsansammlung im Perikardialsacke, wobei übrigens eine charakteristische, unten breite, oben stumpfspitzige Form der Herzdämpfung entsteht. Ausser diesen Vergrösserungen oder neben denselben kann Verschiebung der Herzdämpfung vorhanden sein. Diejenige nach oben und nach unten stets mit analoger Dislocation eines Theiles des Diaphragma's verbunden, bringt auch stets in einem Falle Vergrösserung, im anderen Verkleinerung der Herzdämpfung mit sich. Die seitliche Verschiebung erfolgt vorzüglich durch den Druck von Geschwülsten oder Flüssigkeitsergüssen in den Pleurasack, neben deren ohnehin vorhandener Dämpfung man die Herzdämpfung antrifft und durch die Pulsation der stets nach links gerichteten Herzspitze charakterisirt findet.

XII. Lebergrenzen.

Für die Leber und die Grenzbestimmung derselben aus der Percussion begegnen wir sehr ähnlichen Streitigkeiten über die Methode und die Nomenclatur, wie wir sie eben bei dem Herzen besprochen haben. Auch dieses Organ bietet einen kleineren, von lufthaltigen Organen unbedeckten Theil, der dumpfen Percussionsschall liefert, und einen grösseren von Lunge bedeckten, der in

verschiedenem Grade leerer schallt, als die darüber gelegene Lunge. Nennt man, wie es der Skoda'schen Lehre zufolge geschehen muss, den dumpfschallenden Bezirk Leberdämpfung, Andere würden vielleicht sagen Lebermattigkeit, so findet diese ihre obere Begrenzung genau entsprechend dem unteren Lungenrande an der sechsten, siebenten, neunten und eilften Rippe, wenn wir vom Brustbeine aus, unter der Brustwarze, der Schulter und dem Schulterblatte vorbei nach der Wirbelsäule gehen. Die untere Grenze erstreckt sich in der Axillarlinie fast bis zum Rippenbogen, kreuzt denselben in oder etwas vor der Papillarlinie unter spitzem Winkel und liegt in der Mittellinie etwa mitten zwischen Processus xiphoideus und Nabel, um von da aus, schief nach aufwärts verlaufend, zwischen linker Parasternal- und Papillarlinie mit dem Diaphragma und gewöhnlich auch der Herzspitze zusammenzutreffen. Innerhalb dieses Bezirkes ist der Schall keineswegs überall gleich, sondern nur im obersten Theile völlig dumpf und leer, nach abwärts zu zwar noch völlig dumpf, aber entsprechend der Verdünnung des Leberrandes tympanitisch in verschiedenem Grade. Da manchmal der Leberrand auf Fingerbreite weniger als 1 Ctm. Dicke besitzt, so ist auch in solchen Fällen die Dämpfung, welche er dem Schalle der darunter gelegenen Unterleibsorgane verleiht, eine sehr geringe, daher auch oft die untere Lebergrenze zu hoch gesetzt

wird und nur dann mit voller Sicherheit erkannt werden kann, wenn der Leberrand an den Bauchdecken sichtbar ist oder betastet werden kann. An den Leberrand schliesst sich unter Umständen eine kleine halbrunde, nach unten convexe Dämpfung der Gallenblase an, die genau der Localität der der Incisura pro Vesica fellea entspricht. Neuere Untersuchungen haben mir gezeigt, dass auch bei Gesunden bei leerem Magen und Darme die Gallenblase percutirt werden könne. Man findet eine nahezu 1" lange und breite Dämpfung, der schon bei der Besichtigung eine leichte Vorragung

Fig. 14.

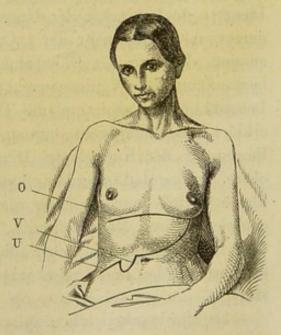


Fig. 14. Dämpfung der Gallenblase bei Icterus catarrhalis.

entspricht und die durch Fingerdruck unter Entstehung eines Rasselgeräusches beseitigt werden kann.

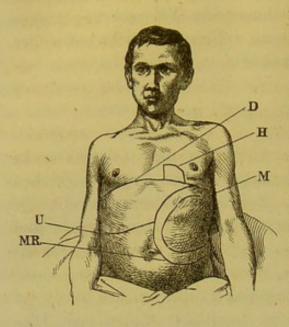
Auch die Grösse der Leberdämpfung wechselt bereits unter physiologischen Verhältnissen sehr. Bei Kindern ist sie, entsprechend der Enge des Brustkorbes und der starken Fettinfiltration, die die Leber im Säuglingsalter fast normal erfährt, in verhältnissmässig breiter Ausdehnung zu percutiren. Bei Weibern hat die Leberhäufig eine flache, stark nach unten ausgedehnte Gestalt, entsprechend der Formveränderung, die ihr durch häufiges Schnüren verliehen wird. Dadurch entsteht eine beträchtliche oft bis zum Nabel hin ausgedehnte Leberdämpfung. Endlich wechselt bei Jedem bei verschiedenen Körperstellungen und mit jedem Athemzuge die Stellung der Leber und die Grösse der Leberdämpfung, entsprechend der überhaupt grossen Verschiebbarkeit unserer inneren Organe. Für die Verschiebbarkeit der Leber bei der Seitenlage fungirt das Ligamentum suspensorium ganz seinem Namen entsprechend, indem bei linker Seitenlage der linke Leberlappen höher, der rechte tiefer zu stehen kommt und umgekehrt bei rechter Seitenlage. Dem entsprechend verändert dann die Leberdämpfung ihre Form und Grösse. Dabei gilt die Regel, dass stets das tiefere Herabtreten der Leberdämpfung oder eines Theiles derselben mit Verkleinerung, das Hinauftreten mit Vergrösserung des dumpfschallenden Raumes verbunden sei. Auch beim aufrechten Stehen tritt die Leber etwas herab im Vergleiche mit ihrem Verhalten zum Liegen, doch beträgt der Unterschied, an ihrem unteren Rande gemessen, kaum mehr als 1 Ctm: Beim Athmen ergibt die Percussion, dass auf der Höhe einer tiefen Inspiration der untere Leberrand um ein Weniges nach abwärts tritt, der obere Rand der Leberdämpfung aber um das Doppelte oder Dreifache mehr. Es erklärt sich diess leicht daraus, dass der untere Leberrand nur die Bewegung der Kuppel des Diaphragma's mitgetheilt erhält. die obere Grenze der Leberdämpfung aber auch um jenen Antheil verkleinert wird, um welchen die Lunge mit ihrem Rande in den complementären Raum eintritt. Daher rührt es auch, dass mit dem Herabtreten der Leber die Leberdämpfung gleichzeitig verkleinert wird. Das Umgekehrte findet während der Exspiration statt.

Es würde werthvoll sein, die ganze Höhe der Leber percutiren zu können und nicht nur jenen Bruchtheil, den wir als Leberdämpfung bezeichnet haben. Der Vergleich mit den anatomischen Verhältnissen ergibt jedoch leicht, dass zwar bei starker Percussion ein Theil des von Lunge bedeckten, in der Diaphragmawölbung gelegenen Leberabschnittes erkennbar sein muss, dass jedoch der höchste Punkt des Diaphragma's von der Brustwand viel zu weit entfernt liegt, um der Percussionserschütterung zu-

gängig sein zu können.

Will man in pathologischen Fällen aus der vorhandenen Leberdämpfung auf die Grösse des Organes schliessen, so muss man zunächst sich erinnern, dass die Leber von unten her vom Darm, von oben her von der Lunge überlagert werden und eine Verkleinerung ihrer Dämpfung erfahren kann. Was den Darm anbelangt, so ist es gewöhnlich ein Theil des Kolon transversum, der diese an sich nicht sehr häufige Erscheinung verursacht. Die vordere Leberfläche besitzt dann in der Nähe ihres unteren Randes eine unregelmässig, quer verlaufende breite Furche, die mit der vorderen Bauchwand zusammen eine Rinne bildet, geeignet, das Kolon aufzunehmen, unterhalb dessen noch Dünndarmschlingen zwischen Leberrand und Bauchwand gelagert sein können. Dann endet der dumpfe Schall der Leber da, wo das Kolon liegt, und man glaubt oft an dieser Stelle mit Bestimmtheit den unteren Leberrand zu fühlen. Es ist möglich, dass es sich in einigen Fällen dabei um eine angeborne Anomalie handelt, eine Beobachtung von Kellenberger zeigt jedoch, dass diese Dislocation des Kolons auch in späteren Lebensjahren und zwar unter ziemlich acuten Erscheinungen erfolgen kann. Wird die Leber sehr klein, so begünstigt diess die Ueberlagerung derselben seitens verschiedener Darmabschnitte, ja bei der acuten gelben Leberatrophie verschwindet, insofern man bei einer so seltenen Krankheit diess Wort gebrauchen darf, häufig die ganze Leberdämpfung, indem die Leber zurücksinkt gegen die Wirbelsäule und die Gedärme vor sie an die Bauchwand zu liegen kommen. Auch unter physiologischen Verhältnissen beobachtet man bisweilen ein theilweises Verschwinden der Leberdämpfung auf diesem Wege. Wenn Jemand bei linker Seitenlage sehr tief einathmet, wird rechts der ganze Complementärraum von Lunge erfüllt, deren Rand handbreit herabtritt bis zum Rippenbogen. Darunter findet man noch einen schmalen Streif Leberdämpfung. Bei einzelnen gesunden Leuten jedoch kann letzterer in der Axillarlinie fehlen und durch hellen tympanitischen Schall ersetzt werden, ein Beweis, dass die Leber im Ganzen sich soweit nach links senkt, dass zwischen ihr und der seitlichen Bauchwand Darmschlingen sich eindrängen können.

Die Ueberlagerung der Leber von Lunge erfolgt in der mehrfach angedeuteten Weise bei jeder starken Diaphragmacontraction, beim Elasticitätsverluste der Lunge und dann, wenn die Leber durch starken Druck von unten her mit sammt dem Diaphragma bedeutend in die Höhe gedrängt wird. Sie kann dann vollständig unter der Wölbung des Diaphragma's verborgen und für die Percussion unzugänglich sein. Dieser letztere Fall, dass die Leber, nach oben hinaufgedrängt, hinter der Lunge liegt und die Lunge nach abwärts rückt und den grössten Theil der Leber bedeckt, findet sich ungemein häufig vor und gibt zu den misslichsten Täuschungen über die Grösse des Organes Veranlassung. Nur eine genaue Kenntniss des Grades, in welchem auf den Umfang der Leberdämpfung ausser der Grösse der Leber selbst, auch noch die Ausdehnung der Lunge einwirkt, und ein eingehendes Studium des Mechanismus der Leberverschiebungen können den Untersucher befähigen, die Leberdämpfung richtig zu verwerthen. In dieser Beziehung ist es besonders instructiv, Kranke mit grossen Ovariencysten oder Ascites unter Anzeichnung der Organe genau zu percutiren vor und nach der Punction, ferner im Verlauf eines pleuritischen Exsudates, besonders eines rechtsseitigen, die Grenzen der Leber zu verfolgen.


Pathologische Verschiebungen der Leber erfolgen nach abwärts beim Emphysem der Lunge gleichmässig, bei Pleuraexsudaten und Pneumothorax in ungleichförmiger Weise, überwiegend auf der leidenden Seite. In einer noch weniger regelmässigen Weise durch Pericardialexsudate, Tumoren des Mediastinums, Geschwülste an der oberen oder unteren Fläche des Diaphragma's, abgesackte Peritonealexsudate oberhalb der Leber. Verschiebungen nach aufwärts durch Schrumpfung der Lunge, oder starken Druck innerhalb der Unterleibshöhle. Sehr unregelmässige Verschiebungen können durch unter oder neben der Leber sich entwickelnde Geschwülste, Nierengeschwülste, Retroperitonealtumoren u. dergl. erzeugt werden.

Vergrösserung des Organes kann seine obere Grenze bald in regelmässiger Weise, bald als Wellenlinie bis zur zweiten Rippe herauf verschieben und die untere der Beckenhöhle nähern, sie kann zur Anlagerung der Leber an die ganze vordere Bauchwand führen und dadurch noch besonders schwer erkennbar werden, dass die sonst charakteristische Verschiebung des unteren Leberrandes beim Athmen durch Einkeilung oder Verwachsung aufgehoben wird. Verkeinerung bis zum völligen Verschwinden der Dämpfung wurde bereits oben erwähnt.

XIII. Die Percussion der Milz

ist von besonderer Wichtigkeit, insofern bei den meistens nicht sehr beträchtlichen Grössenveränderungen dieses Organes Zeichen aus der Betastung, wie sie für das Herz der Spitzenstoss, für die Leber der untere Rand so leicht ergibt, vollständig mangeln und insofern man, ganz abgesehen von selteneren primären Erkrankungen der Milz, sehr oft bei der Nachweisung acuter und chronischer Blutkrankheiten die Milzdämpfung zu untersuchen genöthigt ist. Die normal gelagerte Milz ist theilweise hinter dem Diaphragma und Lungenrande verdeckt, ein anderer Theil, der grössere, liegt unmittelbar an der Brustwand an. Das hintere Ende findet sich neben dem Körper des eilften Brustwirbels. Der obere Rand der Milzdämpfung, also die Grenze zwischen bedecktem und unbedecktem Theile des Organes, wird durch die untere Grenze der Lunge gebildet, welche in gleicher Höhe wie rechterseits verläuft. Die Spitze der Milz, somit das vordere Ende der Milzdämpfung liegt etwas nach rückwärts und oben von dem freien Ende der eilften Rippe. Die grösste Breite der Milzdämpfung, welche sich zwischen vorderem und mittlerem Drittel findet, beträgt 5-6 Ctm.; ihr Längendurchmesser ist gegen den Nabel zu gerichtet. Innerhalb dieser Grenzen schwankt die Milzdämpfung bedeutend; auch sie ist ausser der sehr variablen Grösse des Organes abhängig von der Ausdehnung der Lunge, die sowohl beim Emphysem, als auch bei Hinaufdrängung des Zwerchfelles sie leicht ganz überlagert. Beim Einathmen und bei rechter Seitenlage stellt sich die Milzdämpfung tiefer und wird kleiner, umgekehrt beim Ausathmen und bei linker Seitenlage. Wesentlichen Einfluss haben dann noch die Füllungsverhältnisse des Magens und zwar in zweierlei Richtung. Ist die Milz dünn und der Fundus stark mit Luft gefüllt, so gelingt es oft nur bei sehr leiser Percussion undeutliche Umrisse ihrer Dämpfung zu gewinnen. Ist dagegen der Fundus von Speisebrei ausgedehnt, so umgibt er dumpfschallend nach unten und vorne die Milz und lässt überhaupt eine Abgrenzung derselben nicht zu.

Fig. 15.

Ftg. 15. Milztumor nach Intermittens: D. Diaphragma. H. Herzdämpfung. U. Untere der Milz während des Fieberanfalles.

In pathologischen Fällen erfolgen die Verschiebungen der Milz nach auf- und abwärts, ebenso wie jene der Leber. Unregelmässige Verschiebungen, die bis zur Unkenntlichkeit der Milzdämpfung führen können, erfolgen durch Geschwülste der linken Niere, die das Organ mit dem hinteren Ende nach oben drehen und gegen das Diaphragma drängen, so dass neben der Wirbelsäule eine Milzdämpfung ähnlich der eines abgesackten Pleuraexsudates entsteht, durch beträchtliche Vergrösserung des linken Leberlappens Lebergrenze. M. Milzdämpfung. M. R. Rand und durch andere in der Nähe entstehende Geschwülste. Die Milz-

dämpfung fehlt scheinbar, wo das Organ sehr klein ist, wie diess häufig bei alten Leuten sich findet, oder gänzlich seine Stelle verlassen hat (wandernde Milz), um im kleinen Becken oder wo sonst vorübergehend seinen Aufenthalt zu nehmen. Die Milzdämpfung verschwindet, wo in den Peritonealsack ergossenes Gas sich zwischen Milz und Bauchwand lagert, wie diess auch bereits für die Leberdämpfung an einem früheren Orte erwähnt wurde. grösserung der Milz erfolgt gewöhnlich in die Breite und Länge ziemlich gleichmässig und kann soweit führen, dass mehr als die Hälfte der vorderen Bauchwand von der Milz eingenommen wird. Anfangs wird dabei die Beweglichkeit der Milz grösser, später, wenn sie auf die Beckenknochen aufzuliegen kommt, klein. Der Längendurchmesser richtet sich mehr gegen die Symphyse hin, das hintere Ende drängt sich wenig nach oben wegen der beträchtlichen Senkung des Organes. Die respiratorische Verschiebung der Milzgeschwülste ist verhältnissmässig geringer, als die der Leberanschwellungen, weil dem Diaphragma eine kleinere Fläche zum Angriffe sich bietet.

Es gelingt kaum, durchgreifende Formverschiedenheiten grösserer Klassen von Milzgeschwülsten aufzustellen; mit Ausnahme der sehr seltenen Neoplasmen der Milz erfolgen die Vergrösserungen der Milz sehr gleichmässig, so dass sie einfach die ursprüngliche

Form in vergrössertem Maassstabe wiedergeben, natürlich zu einem weit kleineren Theil von Lunge bedeckt. Nur für die Milzanschwellung beim Typhus lässt sich sagen, dass sie vielleicht wegen des gewöhnlich vorhandenen Meteorismus mehr in die Breite als nach vorne die Dämpfung vergrössere. In einigen Fällen schien es auch, als ob die Milztumoren bei Wechselfieber und Cirrhose der Leber eine flachere, jene bei Leukämie eine mehr cylindrische Form darböten. Die früher beliebte Unterscheidung von venösen und arteriellen Milztumoren, je nach der überwiegenden Längenoder Breitenvergrösserung, ist eine rein illusorische.

Bei Messung der Percussionsgrenzen von Milztumoren oder der normalen Milz sind die Maasse nur sehr vorsichtig zu beurtheilen, da die Dicke und Biegung der Costalwand einen sehr grossen Einfluss auf dieselben hat und stets mitgemessen wird.

XIV. Percussion der Nieren.

Die tiefe Lage dieser Organe bringt es mit sich, dass sie auf den Percussionsschall der vorderen Bauchwand keinerlei Einfluss ausüben. Percutirt man sie aber von der Lumbalgegend aus, so ist zu berücksichtigen, wie gering die Dicke der Niere, wie wechselnd die Verhältnisse des Fettlagers, das sie umgibt, und wie bedeutend die Dicke der hinteren Bauchwand schon unter normalen Verhältnissen getroffen wird. Bei sehr fetten Individuen ist daher die Percussion der Niere resultatlos, aber auch bei sehr mageren können trotz hochgradigen Schwundes der Niere deren Percussionsgrenzen normal getroffen werden. Diese normalen Grenzen nun umgeben einen dumpfen Schallraum, der sich beiderseits neben der Wirbelsäule unmittelbar an jenen der Leber und Milz anschliesst. Stets bedarf es zum Zweck der Nierenpercussion eines sehr starken Anschlages. Als Unterlage verdient ein Plessimeter insofern den Vorzug, als es die ohnehin bedeutenden Weichtheile nicht eben so sehr verdickt, wie der aufgelegte Finger. Am zweckmässigsten zu derartigen Untersuchungen ist die Bauchlage mit durch Kissen unterstütztem Unterleibe. Bei vollständig methodischem Verfahren sucht man zuerst die Diaphragmagrenze, dann von dieser aus in der Scapular- und Axillarlinie beiderseits die untere Grenze der Leber und Milz; unterhalb dieser findet sich tympanitischer Schall, vom Kolon und vom Fundus ventriculi herrührend. Geht man nun längs der unteren Leber- und Milzgrenze

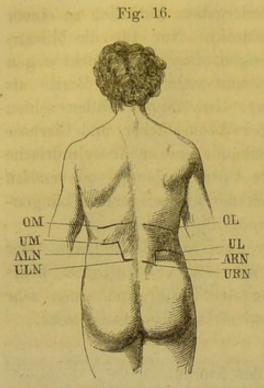


Fig. 15. Dämpfung der Nieren. OM obere Milzgrenze, OL obere Lebergrenze, UM untere Milz-, UL untere Lebergrenze, ALN äussere linke, ARN rechte Nierengrenze, ULN linke, URN rechte untere Nierengrenze.

von der Axillarlinie aus gegen die Wirbelsäule nach Innen, so findet man beiderseits etwa 3 Finger breit von der Wirbelsäule entfernt einen dumpfen Schallraum, der sich unmittelbar an jenen der Leber und Milz anschliesst und wo er nach unten abgegrenzt werden kann, etwa handbreit herabreicht bis zum oberen Rande des Darmbeines. Es erhellt aus dem Gesagten, dass die obere Grenze der Niere selten direct bestimmt, meist nur durch Verlängerung der unteren Leber- und Milzgrenze construirt werden kann. Nach Innen lässt sich die Niere niemals von der Wirbelsäule abgrenzen, nach unten bei weitem nicht immer begrenzen, nur nach Aussen unterscheidet sich ihr dumpfer Schall

stets deutlich von dem des lufthaltigen Kolons, vorausgesetzt, dass letzteres nicht zu stark mit Koth erfüllt ist. Messungen der Nierendämpfung sind von J. Vogel und von A. Reinhold angestellt worden. Nach den Resultaten beider beträgt die Entfernung der äusseren Grenze von der Wirbelsäule 4-6 Ctm. 1), der Längsdurchmesser der Niere 8-12 Ctm. Die praktische Bedeutung der Nierenpercussion erstreckt sich hauptsächlich auf zwei Fälle. Erstens den Nachweis einseitig hellen Schalles bei beweglicher Niere, der, sobald die Niere reponirt wird, wieder in den dumpfen übergeht. Zweitens den Nachweis von Nierengeschwülsten, die der Palpation entweder noch nicht zugängig geworden sind, oder obwohl sie gefühlt werden, durch die Palpation noch nicht genügend als Nierengeschwülste charakterisirt sind. Schon geringe hypertrophische oder hydronephrotische Umfangszunahme lässt sich durch die Percussion erkennen. Grössere Nierengeschwülste geben eine von der erwähnten Gegend aus mehr oder weniger weit um

In dieser Zahl stimmen Breite der Niere, der Milz und Länge und Breite der Herzdämpfung überein.

den Brustkorb herum sich erstreckende Dämpfung, deren Bereich mit der Respiration nicht wechselt und die ein ganz besonderes Characteristicum darin erlangt, dass über die seitliche oder hintere Fläche ein circa 2 Finger breiter Streif tympanitischen, hellen Percussionsschalles verläuft, der dem auf der Nierengeschwulst befestigten Kolon adscendens oder descendens entspricht. Wo an einer solchen Geschwulst die normale Form einer Niere erhalten ist, und an dem Aufrisse derselben in vergrössertem Maassstabe wieder erscheint, wird dadurch die Diagnose wesentlich erleichtert.

XV. Die Percussion des Magens

ist bei starker Gasauftreibung der gesammten lufthaltigen Unterleibsorgane, bei Tympanites peritonaei, bei Anwesenheit grosser Leber- und Milzgeschwülste, bei starker Füllung des Magens mit flüssigen Contentis überhaupt nicht möglich. In allen Fällen ist dieselbe, auch wenn ihr Resultat noch so gesichert scheint, nur mit grosser Vorsicht und im Einklange mit allen übrigen Erscheinungen zu verwerthen. Man darf, wie überhaupt die Percussion der vorderen Bauchwand, sie nur bei liegender Stellung des Kranken vornehmen, indem bei aufrechtem Stehen die Resultate noch trügerischer werden. Man beginnt mit der genauen Abgrenzung des Standes des Zwerchfelles und der unteren Grenzen der Leber und Milz; unterhalb dieser schallt die ganze vordere Bauchwand tympanitisch, aber mit bedeutenden Unterschieden in der Höhe des tympanitischen Schalles. Ist der Magen von mässiger Weite und überwiegend lufthaltig, so findet sich unterhalb der Dämpfung des linken Leberlappens, des unteren Randes der Milz und des zwischen beiden gelegenen unteren Lungenrandes ein tief und gleichmässig voll schallender Bereich tympanitischen Schalles, der zwischen Mittellinie und linkem Hypochondrium durch eine schräg nach unten und aussen ziehende Bogenlinie nach unten abgegrenzt wird. Dieser Schallraum, der dem die vordere Bauchwand berührenden Stücke des Magens angehört, besitzt höchstens Handbreite und erreicht häufig die Mittellinie nicht ganz, indem er schon früher sich unterhalb des Leberrandes verbirgt. Er kann bei starker Anfüllung des Magens mit Speisebrei, anstatt durch tiefen tympanitischen, durch völlig dumpfen und leeren Schall charakterisirt sein, oder auch andererseits bei starker Spannung der Wände des lufthaltigen Magens durch schönen Metallklang.

Frerichs hat gelehrt die Umrisse des Magens zur An-

schauung zu bringen oder doch die Percussionsverhältnisse desselben aufs Günstigste umzugestalten durch künstliche Kohlensäureanfüllung desselben. Man lässt ein Brausepulver nehmen oder rasch eine Flasche Sodawasser trinken. Der Erfolg ist ein überraschender. Meistens kann bei etwas schlaffen Bauchdecken die grosse Curvatur gesehen und der ganze Raum, innerhalb dessen der nun erweiterte Magen der vorderen Bauchwand anliegt, überblickt werden. Nach W. Ph. H. Wagner, der die Resultate dieser Methode genauer beschrieb, findet sich bei dieser temporären Magendilatation der äusserste Punkt nach links in oder nahe der Axillarlinie auf der achten Rippe. Der Rippenbogen wird in der Mitte des neunten Rippenknorpels und in der Mitte zwischen Mammillar- und Axillarlinie geschnitten, von da geht die grosse Curvatur durch die Mittellinie am unteren Ende des zweiten Siebentels zwischen Schwertfortsatz und Nabel. Von da geht sie 5 Ctm. nach rechts und biegt 5 Ctm. über der Horizontalen des Nabels nach oben und nahe dem achten rechten Rippenknorpel nach links um. Die kleine Curvatur schneidet die Mittellinie 4 Ctm. unter dem Processus xiphoideus und dem linken Rippenbogen in der Mitte des siebenten linken Rippenknorpels. Von dieser Projection liegt 1/7 rechts, 6/7 links von der Mittellinie.

Verkleinerungen des Magens lassen sich nicht mit einiger Sicherheit erkennen, Vergrösserungen desselben können bei wiederholter Untersuchung dann angenommen werden, wenn der tiefe tympanitische Schall dieses Organes über die Mittellinie nach rechts oder nach abwärts bis zur Höhe des Nabels an irgend einer Stelle sich erstreckt. Andere Zeichen, Vorwölbung der Magengegend, sichtbare peristaltische Bewegungen, klingende Rasselgeräusche bei der Betastung, massenhaftes Erbrechen und fühlbare den Pylorus verengende Geschwülste kommen gewöhnlich der Diagnose zu Hülfe. Die in grosser Zahl bekannten anomalen Formen des Magens werden leider weit häufiger ein Hinderniss, als ein passendes Object der Diagnose. Die einfacheren derselben, wie die Sanduhrform des Magens, können bisweilen aus der Percussion erkannt werden.

Bei nicht allzustarker Anfüllung mit Luft oder mit Speisen erleidet der Magen selbst durch tiefe Athemzüge keine Verschiebung, sondern eine Formveränderung. Die ihn begrenzenden unteren Ränder der Leber und Milz rücken zwar tiefer herab und überlagern die Magengegend mehr, aber die untere, nur durch die Höhe des tympanitischen Schalles erkennbare Grenze des Magens behält ihre Lage bei. Der tympanitische Schall ändert dabei seine Höhe, wie er diess auch beim Wechsel der Körperlage zu thun pflegt. Wo der Magen dilatirt ist und sein Inhalt dünnflüssig, kann der bei verschiedenen Körperstellungen erfolgende Lagewechsel des Inhaltes an der veränderten Stellung der horizontalen Grenze des dumpfen Schalles innerhalb des Magenbereichs nachgewiesen werden.

XVI. Larynx.

Von besonderem Interesse ist noch die Percussion des Kehlkopfes, der wir hier, obwohl sie gewöhnlich gar nicht berücksichtigt wird, und obwohl ihre praktischen Ergebnisse ziemlich unbedeutend sind, doch eine eigene Stelle schon desshalb gewähren müssen, weil sie von theoretischem Interesse in mehrfacher Beziehung sein wird und ein sehr genaues Studium jener Erscheinungen gestattet, die für die Diagnose der Cavernen innerhalb der Brust von Werth sind. Bei der Percussion des Ring- oder Schildknorpels am Lebenden hört man tympanitischen Schall, der bedeutend tiefer und heller ist, als derjenige, der an einem aus der Leiche herausgenommenen Kehlkopf erzeugt werden kann. Wird die Glottis geschlossen, so wird der Schall dieser Organe sehr dumpf, aber er bleibt tympanitisch. Der Schall auf dem Zungenbeine dagegen bleibt hell, auch wenn die Glottis geschlossen wird. Der Schall auf der Trachea ist weniger voll und hell, als der des Kehlkopfes. Daraus geht hervor, dass der Schall des Kehlkopfes am Lebenden verstärkt wird durch Mitschwingungen der Luftsäulen in der Nasen-, Rachen- und Mundhöhle.

Man kann sich leicht überzeugen, dass beim Schliessen der Nasenhöhle, der Mundhöhle, der Rachenhöhle durch die Zungenwurzel, endlich bei dem dreifachen Schlusse der Glottis durch Kehldeckel, Taschen- und Stimmbänder jedes Mal der tympanitische Schall des Kehlkopfes bedeutend tiefer wird, dass also ein 6facher Abschluss des Kehlkopfes nach Aussen möglich ist. Nur der Abschluss desselben durch die Stimmbänder allein, wie er z. B. beim Intoniren eines Vocales geschieht, hat keinen Einfluss auf die Höhe des tympanitischen Schalles.

Der Percussionsschall des Kehlkopfes und der gleichzeitige der anstossenden Luftsäulen ist noch einer besonderen Modification fähig, der wir nur allein an diesem Orte begegnen. Er kann nämlich die Klangfarbe der meisten Vocale annehmen. Spricht man z. B. mit klangloser Stimme abwechselnd die Vocale a, o, u, e aus, so hört man beim Percutiren am Kehlkopfe deutlich den Klang derselben. Diejenige Reihe von Nebengeräuschen und Klängen, die in der verschieden gestalteten Kehlkopfs-, Rachenund Mundhöhle entstehend diese Vocale bedingt, kann daher auch durch die Percussionserschütterung hervorgerufen und dem tympanitischen Schalle des Kehlkopfs beigegeben werden. Nur der Vocal i macht eine Ausnahme, da bei der Aussprache desselben der Zungenrücken sich dem Gaumen zu vollständig nähert und die Communication zwischen Rachen- und Mundhöhle fast aufhebt.

Während der Inspiration wird der Schall des Kehlkopfes höher, während der Exspiration tiefer.

Mangel des Kehldeckels lässt sich aus der Percussion leicht erkennen, da in diesem Falle beim abwechselnden Aussprechen von a und e der Percussionsschall dieselbe Höhe beibehält. Normal aber wird beim Uebergang von a zu e der Kehldeckel gehoben, somit die Communication zwischen Kehlkopfs- und Rachenhöhle erweitert und daher der Schall der ersteren höher.

E. Auscultation.

I. Allgemeines.

Dieses Verfahren, schon früher als unmittelbare Auscultation mehrfach angewendet, freilich immer nur in vereinzelten Versuchen, wurde dadurch, dass Laennec lehrte, die im Körper entstehenden Geräusche mittelst einer Röhre die zwischen das Ohr und die untersuchte Körperstelle eingeschoben wird, zu erforschen (mittelbare Auscultation), zur Methode. Der Vortheil, den das neue Instrument brachte, das bei den ersten Versuchen Laennec's 1816 durch eine Papierrolle repräsentirt war, war für das Hören selbst ein verschwindend kleiner, für die Methode dagegen und deren Verbreitung und Anwendung ein gewaltiger. Laennec glaubte mittelst seines Instrumentes, des Stethoskopes, mehr hören zu können als Die, welche vor ihm nur das Ohr an die Brust angelegt hatten. Viel war das gewiss nicht, der Hauptvortheil lag darin, dass er das Instrument weit häufiger anwandte, als Jene das unbewaffnete Ohr, und dass er so alle am Körper hörbaren Erscheinungen kennen und verwenden lernte. Die Theorieen des Gehörten, die er gründete, sind von

Skoda revidirt und mit schonungsloser Kritik durcharbeitet worden, auch die Skoda'schen Sätze haben wieder ihre Kritiker gefunden. Die Kräfte Vieler, die sich seither daran erprobt, haben theils Laennec's Anschauungen wieder in ihr Recht eingesetzt, theils was durch Skoda gewonnen war, erweitert und vervollständigt. Seit Kiwisch in seiner bahnbrechenden, genialen Weise die experimentelle Forschung auch hier in ihr Recht einsetzte, ist durch die gleichartigen Arbeiten von Th. Weber, Heynsius, Bayer, Nolet u. A. immer mehr an Anhaltspunkten für die physikalische Begründung der Auscultationslehre gewonnen worden. Auf diesem Wege müssen die heute noch schwebenden Streitfragen gelöst und sämmtliche auscultatorische Zeichen ihrer elementaren Deutung entgegengeführt werden.

Gegenstand der Auscultation kann jede Körperstelle sein vom Scheitel bis zum Fussrücken. In erster Linie wendet sich dieselbe dem intrathoracischen Abschnitte der Respirationsorgane zu. Sodann dem Circulationsapparate und zwar wiederum am Thorax dem Herzen, ferner den grösseren Gefässen des Halses, des Kopfes, Unterleibes und der Glieder. Respiratorische Schallerscheinungen werden auch noch am Halse und Unterleibe wahrgenommen. Spärlich ist die Ausbeute an dem Digestionstracte vom Oesophagus an bis zum Kolon hin. Die von den weiblichen Genitalien in schwangerem oder erkranktem Zustande, gelieferten Zeichen fallen unter die grosse Gruppe der circulatorischen. Endlich können noch die Geräusche entzündeter Gelenke und Sehnenscheiden, fracturirter Knochen, mittelst Sonden berührter innerer Organe durch die Auscultation wahrgenommen werden.

Während der Untersuchung wünscht man so wenig wie möglich durch Geräusch in der Umgebung gestört zu werden. Die zu untersuchende Fläche muss völlig entblösst, oder darf höchstens mit einer weichen, gleichmässig anliegenden Schicht Leinwand bedeckt sein. Nur bei theilweisen mehr revidirenden Untersuchungen schon bekannter Krankheitsgebiete darf letztere Ausnahme gestattet werden. Bei erstmaliger Untersuchung und solange die Diagnose noch zu machen oder zu begründen ist, sollte stets völlige Entblössung der zu untersuchenden Theile von jedem Kranken verlangt werden ¹).

¹⁾ Es ist selbstverständlich dass man, soweit mit diesem Grundsatze vereinbar, jede mögliche Rücksicht für den Untersuchten übt, z.B. während der

Man gewöhnt sich mehr und mehr für die Untersuchung des Respirationsapparates das blosse Ohr, für die der Circulationsorgane das Hörrohr zu verwenden. Im ersteren Falle handelt es sich um schwächere Schallerscheinungen, die aus einem etwas grösseren Bezirke zusammengefasst, stärker wahrgenommen werden, im anderen um eine scharfe Begrenzung der auscultirten Stelle, die besser mittelst des Stethoskopes erlangt wird. Ausnahmen von dieser Regel werden übrigens oft genug durch die Zwecke und Fragen, die die Untersuchung leiten oder durch reine Zufälligkeiten geboten. Da die Anwendung des Stethoskops keineswegs in allen Fällen entbehrt werden kann, theils aus äusseren Rücksichten auf die Wünsche des Kranken, oder das Ohr des Arztes, theils weil man mittelst desselben einen beschränkteren Raum untersuchen kann, und so manche Gehörerscheinungen besser zu isoliren vermag, da ferner das Höhren mit blossem Ohr doppelt so leicht ist, als dasjenige mit dem Stethoskope, so werden Anfänger gut thun zuerst sich nur des Hörrohrs zu bedienen. Während man beim Anlegen des Ohres nur die Ohrmuschel allseitig schliessend anzulegen hat, muss bei der Anwendung des Hörrohres dieses an seinem untern Ende luftdicht schliessen, und wiederum das Ohr an die Platte des Instrumentes angepasst werden.

II. Instrumente.

Die zum Auscultiren verwendeten Instrumente, von welchen man die seither gebräuchlichen sämmtlich mit dem Namen Stethoskop bezeichnet, können zweierlei Functionen haben, sie können Schallleiter sein, analog den Lichtleitern, z. B. dem Kehlkopfspiegel, oder sie können Schallverstärker sein, Schallmikroskope.

Unter den Stethoskopen machen die soliden hölzernen Cylinder, die Hörhölzer unbestritten nur darauf Anspruch, gute Leiter des Schalles zu sein. Sie leiten den Schall mit 14 male grösserer Geschwindigkeit als lufthaltige Stethoskopröhren. Man würde also, wenn es sich darum handelte in grosser Entfernung eine Schallwahrnehmung bald zu erhalten, sich besser des Holzcylinders als

Auscultation an der vorderen Fläche der Brust den Rücken mit einem Tuche bedeckt und umgekehrt, jedes Anfassen oder sich Aufstützen unterlässt. Der Stützpunkt für den einen Arm und damit den Oberkörper des Untersuchenden muss immer am Bette oder Stuhle des Untersuchten, nie an dessen Körper gesucht werden.

der Luftsäule bedienen. Die Aufgabe ist jedoch eine andere. Es handelt sich darum, mit möglichst geringem Verlust die dem einen Ende des Stethoskopes übertragenen Schallerscheinungen an dem anderen wahrzunehmen. Entscheidend ist dafür die Vollständigkeit der Reflexion an der Aussenfläche des leitenden Medium's. Da sich die Bewegung eines Holzstabes leichter der umgebenden Luft mittheilt als die einer Luftsäule ihrem Holzmantel, muss man die röhrenförmigen Stethoskope für die (nicht geschwinder, sondern) vollständiger leitenden halten im Vergleiche zu den stabartigen. Starre Röhren leiten besser als elastische, somit sind

Holzröhren jenen aus Gummi vorzuziehen.

Als schallverstärkendes Stethoskop ist dasjenige von König aufzufassen. Es besteht aus einer Linse - verdichtete Luft zwischen zwei Kautschuklamellen, durch eine Blechkapsel zur Hälfte gedeckt - und einem Leitungsrohr aus Kautschuk, das durch eine Holzröhre in den äusseren Gehörgang gepasst wird. Dieses Instrument von König erweist sich zu Versuchen an beweglichen Objecten mit weicher ebener Oberfläche vorzüglich brauchbar z. B. zur Auscultation an der ausgeschnittenen Lunge. An die starre Thoraxwand lässt sich nur ein zu kleiner Theil der convexen Oberfläche der Schalllinse anpassen. Der Bezirk aus dem die Linse Schallstrahlen aufnehmen und convergenter machen kann, ist kaum so gross als die Mündung eines Holzstethoskopes. Zudem leitet der Gummischlauch weniger vollständig als die Holzröhre. So erklärt es sich, dass man viele Auscultationserscheinungen, namentlich die respiratorischen, durch das König'sche Stethoskop schwächer hört als mit blossem Ohr oder mit dem gewöhnlichen Hörrohr.

Dieses letztere würde, wenn es sich konisch nach dem Aufnahmstheil erweiterte, schlecht, wenn es umgekehrt nach dem Gehörgange zu sich erweiterte, sehr gut die Schallstrahlen parallel richten und an der Zerstreuung hindern. Letztere Form würde mit den Dimensionen des Gehörganges in Conflict kommen, so ist es eine einfache, nur wenig am Aufnahmstheil verbreiterte Röhre, die anderseits mittelst einer durchbohrten Platte an den Gehörgang angepasst wird. Ein hohler Zapfen würde genauer sich einfügen lassen in das Ohr, aber bei häufiger Anwendung Schmerz und Entzündung verursachen. - Bläst man in das Hörrohr hinein, so erhält man ein dem Bronchialathmen ähnliches Geräusch. Hält man ein leeres, offenes Hörrohr ans Ohr, so hört man ein ähnliches

Geräusch wie an einer Muschel. Sucht man sich des Hörrohrs zu entwöhnen, so stellt sich heraus dass man z. B. die Herztöne mit blossem Ohr stets schwächer und diffuser hört als mit dem Instrumente, dass pleuritische Reibegeräusche denn doch besser mit dem Hörrohr unterschieden werden, kurz dass ausser dem Leitungsrohre noch ein anderes Etwas mitwirkt. Ich suche dies in Resonanzwirkungen der Luftsäule des Stethoskopes und finde den Beweis dafür, indem ich Herztöne und gewisse Aneurysmengeräusche mit blossem Ohr nicht ohne dieses aufzulegen, an dem aufgesetzten Stethoskope schon ehe ich es mit dem Ohr berühre, hören kann. Die Töne, welche gut im Stethoskop von gewöhnlicher Länge (ca. 20 Ctm.) resoniren, liegen etwa in der Höhe der Herztöne und etwas tiefen Trachealathmens. Das Hörrohr wirkt demnach nicht allein als Schallleiter, sondern nebenbei auch als Schallverstärker. Dass es dies kann, erweist schon das bekannte Geräusch des leeren Stethoskops, das nur durch Resonanz zu erklären ist.

Material und Form des Hörrohres lassen viele principiell unwichtige Variationen zu. Ob man die Platte kreisförmig oder elliptisch, convex, plan oder concav wählt, aus Elfenbein, Holz oder Hartgummi verfertigt, ob das Instrument schwarz, roth oder weiss, sein Trichter etwas weniger weit oder eng ist, hat weniger Einfluss als die Angewöhnung an die specielle Form, die leicht und mit einigem Rechte jedem sein eigenes Instrument als das vorzüglichste wenigstens für ihn erscheinen lässt. Als besondere Modificationen sind hervorzuheben: 1) Stethoskop zur Selbstauscultation: Trichter aus Holz, Glas, Blei etc., Leitungsrohr aus Gummischlauch und Ohrende in Form eines Hohlzapfens oder einer Stethoskopplatte. 2) Binauriculares oder multiauriculares Stethoskop: Holztrichter, blind endend, mit dessen Lumen 2 oder mehrere Kautschukschläuche mit Ohrzapfen oder Platten zusammenhängen. Werden zwei Schlauchenden von einem Beobachter in beide Ohren gebracht, so erscheinen die Schalleindrücke lauter, markirter. Suchen durch mehrere Schlauchenden mehrere Beobachter gleichzeitig eine Stelle zu auscultiren, so erhält jeder nur einen Bruchtheil der Schallwellen die von dort ausgehen, also abgeschwächte Auscultationserscheinungen. 3) Differential-Stethoskop: Zwei Stethoskope mit einfachem Schlauche endend. Zweck soll sein, die Symptome verschiedener Stellen gleichzeitig zu hören und zu vergleichen.

Resonatoren. Helmholtz der Erfinder der Resonatoren,

erzählt, dass er anfangs Glaskolben, Cylinder aus Pappe und ähnliche Luftschallräume verwendete, um aus einem Gemisch von Tönen einen zu isoliren und so zu verstärken, dass er fast allein gehört wird. In ähnlicher Weise wurden (Januar 71) meine ersten Versuche begonnen mit Glaskolben, Reagensröhren, Lampencylindern. Sie betrafen einen Soldaten, dem in der Schlacht von Wörth eine Kugel die Cruralarterie eröffnet und ein stark pulsirendes und schwirrendes Aneurysma spurium consecutivum am Oberschenkel angelegt hatte. Drückte man die erwähnten Glasgefässe an die schwirrende Stelle der Haut an, so wurde deren Eigenton auf einige Zoll von der Mündung hörbar, während man mit blossem Ohr das Aneurysmengeräusch nie hören konnte, ohne dass das Ohr die Haut des Oberschenkels berührte. Ich verschaffte mir nun 19 abgestimmte König'sche Resonatoren 1) und hatte die Freude nicht allein durch einige derselben, z. B. den auf Ut3 (= 256 Schwingungen) abgestimmten, das Geräusch in dieser Tonart auf 1/2 Mtr. Entfernung hörbar zu machen, sondern auch das so verstärkte Geräusch an dem rotirenden Spiegelbilde der empfindlichen Flamme als Wellenlinie sichtbar zu machen. Es gelang dies mit solcher Sicherheit, dass die Mitanwesenden aus der Form des Spiegelbildes jedesmal richtig angeben konnten, ob die Verbindung zwischen dem Aneurysma und der Flamme hergestellt oder unterbrochen war. Man kann also Auscultationserscheinungen so durch Resonatoren verstärken, dass sie für Schwerhörige noch hörbar, und so auf die empfindliche Flamme übertragen, dass sie sichtbar werden.

Einige der wichtigsten Erfahrungen, welche die Resonatoren geliefert haben, mögen hier in gedrängter Kürze folgen: 1) Percutirt man eine Caverne, deren tympanitischer Schall seine Höhe mit dem Oeffnen des Mundes wechselt, so gelingt es leicht einen Resonator ausfindig zu machen, der vor den offenen Mund gehalten, den tympanitischen Schall ausserordentlich verstärkt. Es liegt nahe, dass zwischen der Grösse der Caverne und der des zugehörigen Resonator's ein einfaches Verhältniss besteht und dass hierin eine exacte Methode gegeben ist, die Grösse von Cavernen zu bestimmen. 2) Auscultirt man die Herztöne durch Resonatoren, so ergibt sich constant, dass ein tiefer abgestimmter Resonator den ersten Ton an der Spitze verstärkt, ein höher abgestimmter den

¹⁾ Herr Coll. Preyer hatte die Güte mir diejenigen des physiologischen Laboratoriums zur Verfügung zu stellen.

zweiten an der Basis. Für den ersten Herzton passt Ut3, für den zweiten Sol3 oder Mi3. Sofort findet man auch, dass für den ersten Herzton immer derselbe Resonator passt, für den zweiten bei aufgeregter Herzthätigkeit ein höherer nöthig wird. Wenn die Aortenklappen unter stärkerem Drucke gespannt werden, ist auch ihr Ton ein höherer. 3) Jedes laute Rasselgeräusch, namentlich wenn es ohnehin schon klingend ist, wird, durch einen gewissen Resonator auscultirt, sofort metallklingend erscheinen. Es wird dabei spärlicher und dem Tone nach viel höher als mit blossem Ohre gehört. Der spontan entstandene Metallklang beruht demnach auf Resonanzverstärkung einzelner Obertöne durch einen dem Resonator ähnlich gestalteten und gleichwirkenden Luftschallraum. 4) Das tracheale Athmen, ebenso der Percussionsschall der Trachea besteht aus einer Reihe von Tönen, denn sie werden durch sehr verschiedene Resonatoren verstärkt. Jedoch wird unter normalen Verhältnissen einer davon stets mit hervorstechender Wirksamkeit den Ton der Trachea verstärken. 5) Bei Gesunden ist das tracheale Inspirium etwas höher als das Exspirium, so dass z. B. von zwei auf einander folgenden Resonatoren einer besser das In- der andere besser das Exspirium verstärkt. Bei Tracheostenose verhält es sich umgekehrt und kann das Exspirium sogar um eine Octave höher sein. 6) Das vesiculäre Athmen (vorne oben) zerfällt in eine grosse Reihe von Tönen, die einzeln durch Resonatoren hörbar gemacht werden können. 7) Herzgeräusche können so zerlegt werden, dass nur einzelne Theile derselben durch je einen passenden Resonator gehört werden. 8) Wenn es von vorneherein anzunehmen ist, dass durch Resonatoren auch Töne herausgefunden werden können, die mit blossem Ohre nicht gehört werden, so kann ich zur Zeit zum Beweise wenigstens eine Beobachtung beibringen. Bei einem Kranken mit systolischem Geräusch ohne Ton, so mit blossem Ohr oder Stethoskop, brachte der Resonator Ut³ sofort den ersten Herzton an der Spitze zur Wahrnehmung, während das Geräusch weit höher abgestimmte Resonatoren zu seiner Verstärkung erforderte.

III. Auscultation aus der Entfernung.

Man hört mit blossem Ohr, ohne dieses dem Körper des Kranken angepasst, ja auch nur sehr genähert zu haben, viele Schallerscheinungen, die theils wesentlich auf diese Weise gehört zu werden bestimmt sind, und aus der Entfernung besser gehört werden als am Brustkorb, theils nur zufälligen Bedingungen eine ungewöhnliche Intensität verdanken, am Rumpfe aber besser gehört werden als am Munde des Kranken. Zu den ersteren gehören die Stimme, das Husten, Gähnen, Seufzen, Niessen, Schluchzen, Schreien u. s. w. In die zweite Reihe gehören Erscheinungen, die an den Respirationsorganen, den Unterleibsorganen oder am Herzen entstehen.

Von den ersteren ist für unsere Zwecke vorzüglich die Stimme von Interesse, insofern sie eine Reihe von pathologischen Modifikationen darbieten kann, die nicht allein für die Diagnose von Erkrankungen der Nasen-, Mund- und Kehlkopfshöhle, sondern auch für jene der Brustorgane von Bedeutung sein können. Sie entsteht dadurch, dass die Stimmbänder in gespanntem Zustande einander bis auf eine linienförmige Spalte genähert, und dann durch den exspiratorischen (nur selten auch den inspiratorischen) Luftstrom in Schwingungen gebracht werden. Indem die Spannung der Stimmbänder beliebig verstärkt, der anströmende Luftstrom aber gleichfalls in jeder gerade nöthigen Intensität verwendet werden kann, wird es möglich, jeden Ton mit beliebiger Stärke zu singen (Compensation). Der Form der anstossenden Räume verdanken dann die Vokale, beigemengten Geräuschen die Consonanten ihre Entstehung. Als pathologische Modifikationen der Stimme sind vorzüglich aufzuführen 1) die gestopfte und offene Nasenstimme. Erstere ein Zeichen der Verstopfung der Nasenhöhle oder des oberen Rachenabschnittes, letztere ein Zeichen der Lähmung, Unbeweglichkeit, Spaltung oder Durchlöcherung des Gaumens, kurz der während des Sprechens ununterbrochen bestehenden Communication zwischen Mund- und Nasenhöhle. 2) Die heisere Stimme mit störenden Nebengeräuschen begleitet, entstanden durch Beleg, Verdickung oder Verschwärung, gestörte Spannung oder gestörten Schluss der Stimmbänder. 3) Die schwache Stimme, durch Schwäche des ausströmenden Luftstromes bedingt, mag diese nun von Erkrankungen der Ausathmungsmuskeln, der Lunge, oder von Durchlöcherung, Verengerung der Trachea, oder von Offenstehen eines Theiles der Glottis herrühren. Sie ist stets arm an Umfang und gehört dem tieferen Theile des früheren Stimmumfanges an. Steigern sich die Ursachen, welche Heiserkeit bedingen, oder jene, welche die schwache Stimme bedingen, bis zu einem gewissen hohen Grade, so wird der Kranke stimmlos, er vermag zu sprechen, aber ohne dass ein Klang

seine Worte begleitete. 4) Von den beiden Stimmlagen, die gewöhnlich unterschieden werden, Brust- und Fistelstimme, und gesunden Erwachsenen zu Gebote stehen, kann die eine, die Bruststimme, zugleich mit allen tieferen Tönen verloren gehen bei Lähmung der Spanner eines Stimmbandes. Der Kranke spricht mit permanenter Fistelstimme. Häufig liegen diesem Zustande Krankheiten der Brustorgane, Aorten-Aneurysmen, Mediastinalgeschwülste zu Grunde. Die Stimme beschränkt sich auf einen Ton (Monotonie der Stimme), auf wenige Töne, oder 5) bei einer bestimmten Stärke des Exspirationsactes stets auf einen Ton (Mangel des Compensationsvermögens) bei verschiedenen Graden doppelseitiger unvollständiger Stimmbandlähmung. 6) In seltenen Fällen von Geschwulstbildung in der Luftröhre ist gleichzeitige Entstehung hoher und tiefer Stimme, Sprechen mit zwei Stimmen beobachtet worden. 7) Wo sehr häufiges Bedürfniss zum Athmen besteht, oder etwas tieferes Ausathmen Schmerz erzeugt, der hemmend wirkt, wird unterbrochene Stimme, Vox intercepta, gefunden. - Nicht artikulirte Töne, wie man sie bei der physikalischen Untersuchung der Kinder häufig genug in störender Weise zu hören bekommt, werden als Geschrei bezeichnet, und auch diesem können diagnostische Anhaltspunkte entnommen werden, die übrigens sich ähnlich wie bei der Stimme beurtheilen lassen.

Das Husten geschieht durch angestrengte Exspiration bei geschlossener, dann rasch sich öffnender Glottis; der an den Stimmbändern sich vorbeidrängende Luftstrom erzeugt ein Anfangs höheres, mit der Erweiterung der Glottis tiefer werdendes Geräusch, dem jederzeit Klänge, bisweilen besondere Geräusche beigemengt sind. Gewöhnlich wird der Hustact in reflectorischer Weise hervorgerufen durch Reizung der Vagusverästlung am Kehlkopf oder der Luftröhre. 1) Geschieht diess durch Kitzel eines Fremdkörpers, eines Secrets, so kann solches ausgehustet werden und dabei ein besonderes Geräusch verursachen. Bisweilen wird Husten von der äusseren Haut her, oder von der Pleura her reflectorisch erregt. In diesen Fällen, dann wenn Entzündung oder anderweitige gewebliche Störung die Fasern des N. larvngeus superior reizt, ist der Husten ein leerer, der weder Auswurf befördert, noch auch von irgend einem durch Flüssigkeit in den Luftwegen erzeugten Geräusche begleitet ist; er verläuft kurz, wiederholt sich häufig und ist oft mit dem Gefühl eines im Halse vorhandenen Fremd-

körpers verbunden. 2) Hustet Jemand, dessen Larynx und Trachea mit schaumigem Schleim reichlich erfüllt sind, so mengen sich reichliche, rasselnde Geräusche dem gewöhnlichen Geräusch des Hustens bei und es entsteht eine krachende, geräuschvolle Art des Hustens, wie sie besonders bei Lungenödem, Lungenblutung und ausgebreiteten respiratorischen Katarrhen und allen den Krankheiten der Luftwege gefunden werden, die mit solchen sich verbinden. Wo gussweise die Sputa hervorquellen, entstehen reichliche brodelnde Geräusche. Man kann diese Art als rasselnden Husten bezeichnen. 3) Andauernde Verengerung der Kehlkopfshöhle, so dass die Glottis oder eine andere Stelle des Kehlkopfes beim Husten einen engen Spalt darstellt, bedingt hohe zischende, pfeifende oder krähende Geräusche als Manifestation des Hustens. Man wird ziemlich sicher aus diesen Geräuschen auf die Anwesenheit der Laryngostenose (höchstens noch der Pharyngo- oder Tracheostenose) schliessen dürfen. 4) Liegen innerhalb der Brust mit den Bronchien in Verbindung grosse regelmässig geformte Hohlräume, so kann das Geräusch des Hustens mit Metallklang in diesen sich verbinden, und dieser metallklingende Husten kann, wie Wintrich mit Recht bemerkt, als Zeichen der erwähnten Hohlräume genommen werden. 5) Klangloser, dumpfer Husten entsteht, wo die Glottis nicht vollständig geschlossen werden, oder wo aus einem andern Grunde nur ein schwacher Luftstrom zum Husten verwendet werden kann. In dieser Weise wird man sowohl Kranke mit Kehlkopfslähmung, als auch Emphysematiker, Gelähmte, husten hören. Er ist gleichwerthig mit der schwachen Stimme.

Aus dieser Darstellungsweise erhellt, dass man aus bestimmten Formen des Hustens allerdings in jedem Fall auf bestimmte Funktionsstörung der dabei betheiligten Organe schliessen könne, dass aber aus den akustischen Erscheinungen beim Husten niemals einzelne Krankheiten erkannt werden können. Diess gilt selbst dann noch, wenn man die Häufigkeitsverhältnisse der Hustbewegungen, ihre Verbindung zu Anfällen und ähnliche Momente in Rechnung zieht. Gerade der Keuchhusten, die nach der Art des Hustens genannte Krankheit, zeigt am allerbesten, wie die gleiche Art des Hustens verschiedenen Krankheiten zukommen kann.

Während das Athmen gewöhnlich geräuschlos verläuft, kann ihm ein auf die Entfernung vernehmliches Stenosengeräusch beigemengt werden, wenn ein sehr starker Luftstrom erzeugt und die

Glottis synergisch mit jeder Exspiration verengt wird, wie beim Keuchen, oder wenn ein Luftstrom von geringerer Stärke durch verengerte Stellen der Leitungsröhren sich hindurchdrängt. Es ist diess bald ein hohes klangvolles, fast tönendes Athmen, wenn feste Körper, wie Geschwülste, Narbenzüge oder stark infiltrirte Stimmbänder die Grenze der Spalte bilden, bald ein tiefes rauhes, dem Schnarchen oder Sägen ähnliches Geräusch, wenn die schlaffen, gelähmten (bei Paralyse des Cricoarytaenoideus posticus) oder ödematöse Stimmbänder, oder anhaftende Schleimmassen die Begrenzung bilden. Das Geräusch ist bei beiden Acten der Respiration ziemlich gleich stark, seltener bei der Exspiration schwächer oder nur bei der Inspiration vorhanden (vgl. S. 43). Das Croupathmen bietet das bekannteste Beispiel der Art. Auch das Athmen kann wie der Husten in den oberen Luftwegen laut hörbare Rasselgeräusche hervorrufen. Das Röcheln der Sterbenden, das rasselnde Athmen der Epileptiker im Anfalle entsteht in der Rachenhöhle und Luftröhre. Das leise Knattern in der Brust mancher Greise, Emphysemkranker und Katarrhleidender verdankt jenem zähen Secrete in den Bronchien seine Entstehung, das oft so schwer und geräuschvoll expectorirt wird. Katarrhalische Erkrankung der grossen Bronchien macht nur an dem geöffneten Munde, nicht an der Brustwand hörbare Rasselgeräusche. Geräusche, die ander Brust zwar stärker gehört werden, weil sie innerhalb der Brust entstehen, aber doch noch in einiger Entfernung von derselben, besonders bei geöffnetem Munde wahrnehmbar sind, kennt man in grosser Anzahl. Vorzugsweise sei erwähnt, dass man Rasselgeräusche, Reibegeräusche, Pfeifen und Schnurren, ein systolisches Geräusch, das die Herzspitze an der Brustwand erzeugt, das Schwappen der Flüssigkeit in grossen Hohlräumen, die zugleich Luft enthalten, und mit der Herzbewegung erfolgende Rasselgeräusche in dieser Weise an der Brust hört, am Unterleibe das Schwappen des Mageninhaltes, das Gurren der Gase im Darm und vielleicht hie und da Reibegeräusche. Manche der erwähnten Schallerscheinungen werden beim Anlegen des Ohres sehr deutlich und oft gehört und kommen doch selten par distance zur Wahrnehmung. Andere dagegen und zwar gerade einige selten vorkommende Schallerscheinungen, wie das Schwappen der Flüssigkeit bei Pneumothorax und Pneumoperikardie, das systolische Rasseln in dem Herzen nahe gelegenen Cavernen

werden fast, so oft sie vorkommen, auf die Entfernung gut gehört 1).

IV. Auscultation der Stimme.

1. Drei Gruppen von Schallerscheinungen kommen an der Lunge zur Wahrnehmung: die durch das Athmen in den Luftwegen erzeugten Geräusche, die am Brustkorbe hörbare Stimme, und die bei Anwesenheit von Flüssigkeit in den Luftwegen oder an verengten Stellen derselben durch den respiratorischen Luftstrom erzeugten Rasselgeräusche. Alle diese Schallerscheinungen treten in einer doppelten Weise auf. Sie werden lauter, heller und erscheinen dem Ohre nah, das Athmen bekommt noch dazu ein anderes Schalltimbre, wenn das Lungengewebe luftleer geworden ist. Sie hören sich leiser, entfernter, dumpfer an, das Athmen ist schlürfend, nicht hauchend, wenn das Lungengewebe in normaler Weise lufth altig ist.

Suchen wir zunächst uns an dem Verhalten der Stimme diese Erscheinungen klar zu machen. Auscultirt man an der Brustwand eines Sprechenden, so hört man überall, wo gesunde Lunge anliegt, ein leises undeutliches Murmeln. Man ist nicht im Stande die einzelnen Worte zu verstehen, die Klänge der Stimme lassen sich kaum durch erkennen, wie unter begleitenden dumpfen Geräuschen. Hört man dagegen über einem luftleer gewordenen, z. B. pneumonisch infiltrirten Lappen, oder über einer Caverne die Stimme, so sind die einzelnen Worte erkennbar, die Klänge deutlich, nur um weniges schwächer, als ob man sie am Munde des Sprechenden hörte, und sie bringen eine deutliche Erschütterung im Ohr hervor (Bronchophonie). Es kann sich auch ereignen, dass auf Momente die Bronchophonie wieder verschwindet, ja es erfolgt diess sicher, so oft die zuführenden Bronchien von Schleim verstopft werden. Man hört also bei normalem Lungengewebe nur undeutliches Murmeln, über ausgebreiteten luftleeren Lungentheilen die deutliche Stimme.

Als Grund dieser Erscheinung bezeichnete Laennec die bessere Leitungsfähigkeit des luftleeren Lungengewebes.

¹⁾ In Würzburg existirte vor Jahren eine Näherin, bei der das herzsystolische Rasseln bronchektatischer Cavernen in Anfällen von Herzpalpitationen auf Zimmerlänge hin zu hören war. In späterer Zeit waren diese Geräusche leiser, jedoch noch hie und da auf 1 Mtr. Entfernung zu hören. Es dürfte sich dabei um starke Resonanzerscheinungen gehandelt haben.

Darnach würden die von den Stimmbändern erregten Schallwellen der nach abwärts in der Luftröhre und in den Bronchien verbreiteten Luftsäule sich mittheilen, und nachdem sie durch die Bronchialwände auf das Lungengewebe übergegangen sind, bei normaler Beschaffenheit desselben zerstreut, bei luftleerer Beschaffenheit gut fortgeleitet werden.

Skoda bestritt diese auf die Leitungsfähigkeit des Lungengewebes begründete Erklärung, indem er das normale Lungengewebe als Luft, das verdichtete als festen Körper betrachtete, das Letztere für das besser leitende erklärte, und sich dabei auf Beispiele aus dem gewöhnlichen Leben berief, so auf die gute Fortleitung leiser Geräusche durch einen Balken, an dem man auscultirt. Er glaubte, dass durch die Verdichtung des Lungengewebes dessen in starrwandige Hohlräume verwandelte Bronchien geeignet würden, durch Consonanz die empfangenen Schallerscheinungen verstärkt zu reproduciren. So sollte man auf dem Wege der Consonanz die Stimme am Brustkorbe unter Umständen stärker hören können, als am Munde des Sprechenden.

Der Haupteinwurf Skoda's gegen die Fortleitungstheorie Laennec's beruht auf der irrigen Voraussetzung, dass die Leitungsfähigkeit normalen Lungengewebes jener der Luft gleichgesetzt werden dürfe. Dasselbe besteht im Gegentheil aus äusserst zahlreichen, abwechselnden Schichten von Luft und fester Substanz, an deren Grenzen jedes Mal Reflexion der Schallwellen stattfindet, so dass die endliche Zerstreuung derselben von der Stimme nur noch ein undeutliches Murmeln übrig lässt. Auch der zweite Einwurf, dass Verstopfung eines Bronchus, die nur diesen absperrt, aber die Leitungsfähigkeit des Lungengewebes nicht ändert, dennoch die Bronchophonie aufhebe, kann leicht beseitigt werden. Durch die Form der Bronchien wird an deren Wänden eine solche Reflexion der Schallstrahlen bedingt, dass sie jedes Mal senkrechter auf die Bronchialwand gerichtet werden und sie dann leicht in dieser Richtung durchdringen. Verstopfung der Bronchien durch einen festweichen Körper, in dem alle Schallschwingung untergeht, verschliesst demnach den Schallwellen die grosse Fläche, auf der sie aus der Luft des Bronchialrohrs in das Lungengewebe übergehen könnten. Daher das Mangeln der Bronchophonie bei Verstopfung der Bronchien. Somit ist allerdings die bessere Schallleitungsfähigkeit verdichteten Lungengewebes der Grund der über demselben gehörten Bronchophonie. In ähnlicher Weise hört man

andere Formen des Athmungsgeräusches, wo die Lunge gleichmässig gut leitet, andere wo sie die aus den grossen Bronchien herrührenden Geräusche zerstreut, in ähnlicher Weise für beide Formen verschiedenartige Rasselgeräusche.

- 2. Die Auscultation der Stimme wird seltener als die des Athmens zu praktischen Zwecken vorgenommen; der einfache Grund ist hiefür entscheidend, dass die Zeichen, welche aus beiden sich ergeben, gleichwerthige sind, dass aber für manche Kranke das Sprechen zum Zwecke der Untersuchung beschwerlich, für Andere überhaupt unmöglich ist, während das Athmen jederzeit stattfindet und leicht etwas verstärkt werden kann. So ist denn auch auf die Unterscheidung verschiedener Formen der Bronchophonie praktisch kein sehr hoher Werth zu legen; diess um so mehr, als das Hauptunterscheidungsmerkmal sehr von dem subjectiven Urtheile abhängig ist. Skoda nennt nämlich starke Bronchophonie diejenige, bei welcher der Auscultirende eine deutliche Erschütterung des Ohres wahrnimmt; wo diese fehlt, oder sehr schwach ist, wird auch die Bronchophonie als schwache bezeichnet. Die starke Bronchophonie zerfällt wiederum, je nachdem die Articulation der Laute deutlich erkannt wird oder nicht, in starke helle und starke dumpfe Bronchophonie. Beide letztere finden sich vorzüglich bei pneumonischer Infiltration und Cavernenbildung. Schwache Bronchophonie findet sich auch bei andern minder vollständigen Verdichtungen der Lunge oberhalb pleuritischer Exsudate, endlich auch bei normaler Beschaffenheit der Lunge zwischen den Schulterblättern und bisweilen unmittelbar unter dem Schlüsselbein.
- 3. Während des Sprechens hört man dann bisweilen noch eine besondere Erscheinung, die von Laennec als Aegophonie bezeichnet wurde. Man versteht darunter einen hohen meckernden, zitternden Widerhall der Stimme, ähnlich wie wenn man durch ein rissiges Rohr hindurch spricht, oder wie wenn man gegen eine Scheibe von Holz, die dicht zwischen die Lippen und Zähne genommen wird, hinspricht. Diese Erscheinung findet sich vorzüglich bei einer gewissen Höhe pleuritischer Exsudate zwischen Brustwarze, Schulterblattwinkel und Wirbelsäule unmittelbar an der oberen Grenze der Flüssigkeit, bei Hydrothorax, bisweilen aber auch bei verdichteter Lunge ohne Flüssigkeitserguss. Sie ist gewöhnlich eine rasch vorübergehende Erscheinung, namentlich in dem ersteren, häufigsten der erwähnten Fälle. Es ist wahrschein-

lich, dass sie in abgeplatteten, noch nicht ganz luftleeren, feinen Bronchien entstehe, deren Wände durch die Schallschwingungen zitternd sich zeitweise berühren und wieder von einander trennen. Die Aegophonie ist stets leiser als die gewöhnliche Bronchophonie.

V. Athmungsgeräusche.

l. Bronchialathmen.

Setzt man das Stethoskop an den Kehlkopf oder die Trachea eines Gesunden oder legt man, was Anfängern mehr zu empfehlen ist, das Ohr auf den siebenten Halswirbel, so hört man bei irgend starkem Athmen, sowohl während der In- als der Exspiration, ein Phänomen, das nachgeahmt werden kann durch Aushauchung von Luft bei erhobener Zungenspitze und jener Stellung des Mundes, als ob man h oder ch aussprechen wollte. Ferner kann dies hauchende Klingen nachgeahmt werden durch Blasen in die Röhre eines Stethoskopes. Man nennt es Röhrenathmen, Laryngeal-, Trachealathmen, oder weil es aller Wahrscheinlichkeit nach in den Bronchien in ähnlicher Weise entsteht: bronchiales Athmen. Man hört solch bronchiales Athmen auch bei der Auscultation der Nasenund Rachenhöhle und kann es bei laut keuchendem Athmen an der ganzen Brust wahrnehmen.

Bronchiales Athmen wird bei der Exspiration stärker und länger gehört als bei der Inspiration, bei letzterer wenigstens an der Trachea etwas höher. Seine Bedeutung ist die gleiche, wie die des tympanitischen Percussionsschalles. Der Klanggehalt, das Tönen ist der eigentliche Charakter sowohl des tympanitischen Schalles, wie auch des Bronchialathmens. Der Eigenton grösserer Lufträume im Bereich der Athmungsorgane wird im einen Fall durch die Percussionserschütterung; im anderen durch ein Stenosengeräusch hervorgerufen, bei der Percussion direct, beim Athmungsgeräusch durch Resonanz eines in einem Stenosengeräusch enthaltenen Tones. Beweise für die Richtigkeit dieser Sätze finde ich in folgenden Beobachtungen: Das tracheale Athmungsgeräusch (am oberen Rande des Brustbeines auscultirt) wird höher beim Oeffnen, tiefer beim Schliessen des Mundes, ganz ebenso wie der Percussionsschall der Trachea. Ich bestimme die Höhe des trachealen Athmungsgeräusches bei einem 17jährigen Manne, während er den Mund offen hat und finde, dass beim Aufsetzen des Resonators Mi3 am oberen Rande des Brustbeines das Trachealathmen auf eine Entfernung

von mehr als einem Fuss hörbar wird. Nur dieser eine Resonator wirkt so verstärkend. Wird nun derselbe Resonator vor den Mund des Kranken gehalten, während die Trachea an der gleichen Stelle des Halses percutirt wird, so zeigt sich, dass er den Percussionsschall ebenso verstärkt und es ist leicht nachzuweisen, dass von der ganzen Reihe von Resonatoren gerade dieser für diesen Schall am besten wirkt. Sind obige Annahmen richtig, so muss eine kleinere Trachea einen höheren Ton liefern, sowohl als Hauptbestandtheil ihres Athmungsgeräusches, als auch bei der Percussion. Diess findet sich sofort bestätigt, wenn man abwechselnd an der Trachea von Kindern und von Erwachsenen untersucht. Um einen exacten Nachweis zu liefern, stelle ich neben den eben besprochenen 17jährigen Mann einen Knaben von 3 Jahren. Probire ich verschiedene Resonatoren, so verstärkt unstreitig Ut4 unter allen am besten das Trachealathmen der Stelle gerade über dem Brustbeingriffe, ebenso wirkt der gleiche Resonator Ut4 an den Mund gehalten für den Percussionsschall dieser Stelle. Was für die Trachea gilt, hat auch für Cavernen seine Berechtigung. Sobald eine Caverne mit dem Oeffnen des Mundes höheren tympanitischen Schallliefert als zuvor, kann man sicher sein, dass ihr Bronchialathmen ebenso beim Oeffnen des Mundes höher, beim Schliessen tiefer werden wird. Ein einziger Fall, freilich ein sehr häufig vorkommender, scheint im Widerstreit mit den aufgestellten Grundsätzen zu stehen; das Bronchialathmen in verdichtetem, z. B. hepatisirtem Lungengewebe trifft zusammen mit leerem, klanglosem Percussionsschall. Zunächst will ich hier an die sehr feine Bemerkung von L. Thomas erinnern, dass er in solchen Fällen nie den Klang in dem leeren Schalle ganz vermisst habe. Sodann steht der Annahme nichts entgegen, dass Brustwand und hepatisirtes Lungengewebe wohl die Schallschwingungen (von den Bronchien nach aussen), nicht aber die Percussionserschütterung (von der Brustwand nach den Bronchien) genügend gut leiten. Eine direkte Bestätigung der Anschauung, dass Bronchialathmen und tympanitischer Schall, der dem Gesetze der offenen und der gedeckten Pfeifen folgt, zusammengehören, liegt in dem, was über den sogenannten Williams'schen Trachealton bekannt ist. Er braucht nicht in die Trachea oder den Hauptbronchus der Seite verlegt zu werden, er entsteht in denselben Bronchien, die das Bronchialathmen liefern. Es ist nicht die Nähe der Trachea, sondern die Biegsamkeit der Brustwand, zwischen Schlüsselbein und Brustwarze, die seine Entstehung ermöglicht.

Dieser Eigenton der Trachea, der Bronchien, der Cavernen, den wir beim Percutiren als tympanitischen Schall kennen lernen, wird beim Athmen erregt durch Stenosengeräusche, in denen er nebst vielen anderen Tönen enthalten ist. Einzelne nur oder eine beschränkte Anzahl dieser Bestandtheile des Geräusches werden durch die anstossenden Lufträume resonatorisch verstärkt. Es erscheint bei der Inspiration etwas höher in der Trachea, weil die Glottis sich erweitert, die Epiglottis sich hebt, die Nasenflügel sich erweitern, bei der Exspiration tiefer, weil das Umgekehrte geschieht. Es geschieht bei der Entstehung des Bronchialathmens das Gleiche, wie bei dem Anblasen einer Stethoskopröhre; oft hört man auch bei der Auscultation am Halse oder der Brust ebenso wie dort den Eigenton der Luftröhre und das Anblasegeräusch noch daneben. Seitz bezeichnet diese Form als scharfes Bronchialathmen. Für die Inspiration entsteht das primäre Geräusch beim Eintritte des Luftstromes aus den Choanen in den Pharynx, beim Eintritte aus der Glottis in die untere weitere Höhle des Kehlkopfes und die Trachea. Daher rührt es, dass man das Inspirationsgeräusch am Larynx stärker, je weiter nach abwärts an der Trachea, um so schwächer hört. Das Exspirationsgeräusch entsteht beim Uebergange aus der engeren Glottis in den weiteren Kehlkopfseingang und wohl auch überall da, wo engere Aeste des Bronchialrohres in einen weiteren einmünden. Diese Stenosengeräusche beruhen auf den Strömungswirbeln, die jenseits stenosirter Stellen eines Rohres sich bilden; sie rühren in letzter Instanz von Reibung der (in diesem Falle elastischen) Flüssigkeit an der Wand her.

Bronchiales Athmen findet sich am Brustkorbe Gesunder entweder nicht oder nur in der Interscapularregion entweder beiderseits oder rechterseits allein vor, da wo die Hauptbronchien der Thoraxwand am nächsten liegen.

In pathologischen Fällen kommt es zur Beobachtung 1) wenn eine ausgebreitete, grössere lufthaltige Bronchien einschliessende Lungenparthie, die an der Oberfläche oder ihr nahe liegt, luftleer geworden ist, so dass der in den Bronchien resonirende in- und exspiratorische Klang nach der Brustwand fortgeleitet und dort gehört werden kann. Zieht man die beiden sich heute noch gegenüberstehenden Erklärungen dieser Erscheinung von Laennec und Skoda in

Erwägung, so ergibt sich Folgendes. Laennec lässt den in den Bronchien entstehenden Ton oder Klang durch die gleichmässig gute Leitung des luftleer gewordenen Lungengewebes zur Brustwand gelangen, indess er im lufthaltigen durch vielfache Reflexion an Luft und Lungengewebe zu Nichte wird. Diess leuchtet ohne Weiteres als richtig ein. Skoda lässt die Resonanz in den Bronchien erst dann zu Stande kommen, wenn sie von starren Wänden umgeben sind. Hier ist zunächst zu bemerken, dass glattwandige Räume keiner besonders starren Wände bedürfen, um zu resoniren. Man denke nur an den tympanitischen (mit dem Bronchialathmen gleichwerthigen) Schall des Magens und Darmes, denen gewiss starre Wände völlig abgehen. Man wird sich ferner leicht überzeugen, dass auch Röhren aus dünnem Kautschuk oder Papier resoniren, wenn sie angeblasen werden. Aber man wird auch leicht finden, dass starrwandige Röhren (z. B. aus Glas oder Holz) lauter und stärker resoniren als gleichgeformte aus weichem Ton, weil in letzteren ein Theil der Bewegung auf die unelastische Wand übertragen, in ihr untergeht. Für die Entstehung starken, hellen Bronchialathmens muss daher die starre Steifung der Bronchialwand durch umgebendes Infiltrat eine sehr begünstigende Bedingung sein. Beide Bedingungen, bessere Leitung durch luftleeres Gewebe und Steifung der Bronchialwand, wirken in den meisten Fällen zusammen.

Sind die zu einem verdichteten Lungentheile hinführenden Bronchien durch unelastische Massen (Schleim) verschlossen, so hört nicht allein die Resonanz in diesen Bronchien auf, sondern sie sind auch für die Schallstrahlung verschlossen. Für diese hat aber ihre gegen die Peripherie verjüngte Form die Bedeutung, nach öfterer Reflexion eine senkrechte Richtung gegen die Wand herbeizuführen und so ihren völligen Uebergang in das gut leitende Lungengewebe zu vermitteln. Von beiden Gesichtspunkten aus erklärt sieh das Aufhören des Bronchialathmens und dessen Wiedererscheinen, sobald jene Massen weggehustet werden.

Die gleichmässigste und vollständigste Verdichtung der Lunge wird durch die lobäre Pneumonie gesetzt. Bei dieser hört man in der Mehrzahl der Fälle so starkes, helles Bronchialathmen, wie es z. B. bei tuberculöser oder atelektatischer Verdichtung nicht oft wahrgenommen wird. Bei Pleuraexsudaten wird zwar häufig eine ausgebreitete Lungenparthie sehr vollständig verdichtet durch den Druck der Flüssigkeit, aber die zuführenden Bronchien sind ge-

drückt und verengt und desshalb für den Uebergang der Schallstrahlen minder günstig. In diesen Fällen ist das Bronchialathmen schwach oder hell, meist verhältnissmässig hoch. Man kann aus dieser Form des Bronchialathmens oft ziemlich sicher die Stellen oberhalb des Pleuraexsudates ausfindig machen, an denen Aegophonie zu hören sein wird.

Bronchialathmen wird 2) an der Brust gehört, wo lufthaltige, glattwandige Hohlräume innerhalb der Lunge nicht zu fern von der Brustwand gelagert sind. Verdichtete Wände, die den Ton der Caverne gut fortleiten, fehlen selten, bei den einfachsten Bronchektasieen ist es Atelektase, sonst entzündetes Lungengewebe, das die Caverne umgibt. Der Luftwechsel in der Caverne ist wohl selten so bedeutend, dass er bei der Inspiration oder selbst in- und exspiratorisch das den Eigenton der Caverne erregende Geräusch liefern könnte. Erreger der Resonanz des Eigentones der Caverne sind wohl meistens dieselben Momente, die für das Bronchialathmen überhaupt erwähnt wurden. Der Nachweis dass das Bronchialathmen mittelgrosser Cavernen höher ist als der Trachea, ist mittelst der Resonatoren leicht zu liefern. Ich nehme zum Beispiel einen Phthisiker vor und bestimme den Eigenton seiner Luftröhre auf Mi3, überzeuge mich, dass seine Caverne (an der linken Lungenspitze) tympanitischen Percussionsschall und Bronchialathmen von vollständig gleicher Höhe liefert, die nach dem Gesetz der offenen und gedeckten Pfeifen wechselt und bestimme nun die Höhe des tympanitischen Schalles bei geöffneten Munde auf Mi4. Ich halte es für sehr wahrscheinlich, dass man bei fortgesetzten Studien über die Tonhöhe des bronchialen Athmens an verdichteten Lungentheilen und an Cavernen Unterschiede finden wird, die die früher schon auf unzureichende Gründe hin versuchte Aufstellung einer Cavernen charakterisirenden Form bronchialen (dann also cavernösen) Athmens zu rechtfertigen vermögen. Kann man die Höhe des Bronchialathmens und des tympanitischen Percussionsschalles einer Caverne, welche als Luftschallraum dem Gesetz der offenen und gedeckten Pfeifen folgt, mittelst des Resonators bestimmen, so ist auch deren Grösse annähernd festgestellt.

2. Vesiculärathmen.

Ueberall wo gesunde Lunge die Brustwand berührt, entsteht durch das Einathmen ein weiches schlürfendes Geräusch, weit leiser als das Bronchialathmen. Man ahmt es nach, wenn der Mund zum Aussprechen von f, b oder w gestellt und durch ihn Luft eingeschlürft wird. Beim Ausathmen hört man an der gesunden Lunge ein weit schwächeres, anders klingendes Geräusch. Man leitet allgemein erstere Schallerscheinung von den Vorgängen ab, die bei der Luftaufnahme in die Alveolen stattfinden und bezeichnet sie daher als »Zellenathmen« oder »Vesiculärathmen«. Alle Erfahrungen weisen darauf hin, dass überall, wo vesiculäres Athmen gehört wird, die Alveolen ihre respiratorische Funktion erfüllen und umgekehrt, dass diese gestört ist, wo das Vesiculärathmen fehlt oder durch ein anderes Geräusch ersetzt ist.

Während dies feststeht, sind die nächsten physikalischen Bedingungen des Phänomens um so schwieriger anzugeben. Skoda leitet es wie Laennec ab von der Reibung der Luft gegen die Wände der feinen Bronchien und Luftzellen, deren Widerstand sie überwinden muss. P. Niemeyer betont mit Recht, dass in luftführenden Hohlräumen immer die Luft das primär schwingende sei und dass wegen der ruhenden Wandschicht von Reibung der Luft gegen die Wand in gröberem Sinne nicht die Rede sein könne. Seine eigene Erklärung, es werde durch den Pressstrahl der durch die Infundibula in die Alveolen eindringenden Luft erzeugt, ist allerdings complet unhaltbar. Wenn hier überhaupt von Strahl die Rede sein kann, so beträgt die Pressung nicht einen Mm. Hg. Jedenfalls müsste aber für die Schallhöhe des entstehenden Geräusches der Durchmesser des Luftraumes, in dem es entsteht, maassgebend sein. Sollte auch ein Unisono pianissimo der Pressstrahle sämmtlicher Alveolen angenommen werden, so würde doch mathematisch berechenbarer Weise das entstehende Geräusch aus Klängen zusammengesetzt sein, die weit höher liegen, als irgend ein menschliches Ohr zu hören vermag.

Folgendes scheinen mir die Grundlagen für eine befriedigende Deutung des Vesiculärathmens zu sein: Es steht zum bronchialen in einem ähnlichen Gegensatzwie der nichttympanitische Schall zum tympanitischen, wie ein Geräusch zu einem Klang. Bei jedem Klang, beim Bronchialathmen, beim tympanitischen Schall: leicht erkennbare Tonhöhe, deutliches Hervortreten eines Grundtones. Beim Geräusch, dem nichttympanitischen Schall, beim Vesiculärathmen gelingt es nicht, einen Ton herauszuhören, fällt es schwer, auch nur annähernd die Höhe der ganzen Schallerscheinung zu schätzen, am ersten gelingt

es noch vergleichsweise, z. B. der leerere nichttympanitische Schall erscheint etwas höher als der volle. Will man nun für das vesiculäre Athmen eine vergleichsweise Angabe der Höhe gelten lassen, so halte ich diejenige von L. Thomas für die richtigste, welche besagt, dass es die gleiche Höhe mit dem Percussionsschall derselben Stelle habe. Wendet man Resonatoren an bei Verstärkung des vesiculären Athmens durch rasche tiefe Athemzüge, so gelingt es durch eine grössere Zahl derselben, es auf eine geringe Entfernung schwach hörbar zu machen, am besten durch die kleineren derselben (welche aber immer noch einige Ctm. Durchmesser haben). Es enthält also viele sehr leise Töne gemischt, ohne dass einer derselben hervorstechend stark wäre.

Reibung des Luftstromes an der Alveolenwand darf man nicht als das Primäre annehmen. Schwingungen der Alveolenluft können es nicht sein, denn sie würden, auch wenn diese Lufträume noch mehrmals grösser wären, für jedes menschliche Ohr unhörbar sein. Es bleiben also nur Schwingungen des Lungengewebes selbst, zu denen es in gespanntem Zustande sehr wohl fähig ist, zur Erklärung übrig. Wir haben damit die vollständige Uebereinstimmung des vesiculären Athmens mit dem nichttympanitischen Schalle erlangt, der an der lufthaltigen Lunge dann entsteht, wenn die Membran selbst in Schwingungen geräth (ebenso wie an den Unterleibsorganen). Wir begreifen dann, warum die Inspiration ein starkes Geräusch bei der Anspannung des Lungengewebes liefert, die Exspiration nur schwach und nicht immer bei der Abspannung desselben.

Die Angabe, dass man vesiculäres Athmen nicht an der herausgenommenen Lunge reproduciren könne, halte ich ich für unrichtig. Wenn man bei einem plötzlichen Todesfalle, bei dem weder Pneumonie noch Lungenödem mitspielte, die Lunge schon wenige Stunden nach dem Tode herausnehmen kann, und das Rohr eines Spirometers in den Hauptbronchus einbindet, lässt sich bei Druck auf die luftgefüllte Trommel des Spirometers, sehr schönes Vesicularathmen mittelst eines König'schen Stethoskopes hören. —

Auch der Charakter des vesiculären Ausathmungsgeräusches wird am besten bezeichnet durch Nachahmung mit dem Munde. Es gelingt, wenn man die Lippen so stellt, als wenn man f oder h aussprechen wollte und dabei Luft ausstösst. Hier fehlt also der schlürfende Charakter und tritt der eines leisen Hauchens oder Blasens ein.

Vesiculärathmen findet sich im vollen Bereiche der Lungenoberfläche vor, und überschreitet fortgeleitet deren Grenzen nach abwärts noch um ein Beträchtliches. Die Stärke des Geräusches ist hauptsächlich abhängig von der Stärke der Athemzüge und von der Beschaffenheit der Lunge. Bei vielen Leuten hört man während ganz ruhigen Athmens kein deutlich unterscheidbares Geräusch, oder nur ein sehr leises Summen; bei den Meisten tritt bei etwas tieferem Athmen das Vesiculärathmen deutlich hervor, bei Einzelnen bleibt es auch da noch undeutlich. Wird das Vesiculärathmen durch angestrengtes Athmen sehr stark, so kann es noch neben sehr lautem Keuchen vernehmbar sein und über den grössten Theil des Unterleibes hinweg gehört werden. Ob dieses Geräusch scharf oder weich, hoch oder tief, rauh oder zart gehört werde, hängt theils von bleibenden individuellen Eigenthümlichkeiten, theils von ganz vorübergehenden, zufälligen Verhältnissen der Respirationsorgane, z. B. Wulstung der Schleimhaut der feinsten Bronchien, die hier Stenosen erzeugt, ab. Bei Kindern, deren Lungengewebe stärker elastisch ist, wird es stets als scharfes Vesiculärgeräusch gehört. Seine Anwesenheit beweist den Eintritt von Luft in die Alveolen für den Bereich der auscultirten Lungenfläche. Das Exspirationsgeräusch weist, wo es gehört wird, nach, dass die Exspiration nicht ohne einigen Widerstand erfolgt, und weist auf Verengerung, Schwellung, kurz auf geringe Widerstände in den Athemwegen hin. Ob diese Widerstände in den Alveolen gelegen sein können, oder den Bronchiolen angehören, weiss man nicht, wahrscheinlich betreffen sie in den meisten Fällen beide Organe. Man hört das Vesiculärathmen nicht an allen Stellen der Brust gleich stark, bald links, bald rechts in der Unterschlüsselbeingegend, doch etwas häufiger links ist es am lautesten. Die ungleichen Dickenverhältnisse der Weichtheile beider Seiten mögen hieran Schuld sein. Vorne unten und seitlich ist es leiser als oben, an der Rückenfläche leiser als vorne.

Es ist von der grössten praktischen Bedeutung, durch häufige Uebung, durch Nachahmen der betreffenden Geräusche und durch besondere Berücksichtigung dieser Frage vesiculäres und bronchiales Athmen sicher unterscheiden zu lernen. Der schlürfende Charakter des Vesiculärathmens, der hauchende, klangähnliche des letzteren, der Umstand, dass Vesiculärathmen überwiegend bei der

Inspiration gehört wird, und von einem schwachen oder keinem exspiratorischen Geräusche begleitet ist, muss hier entscheidend sein, dem in- und exspiratorischen, längeren und stärkeren Bronchialathmen gegenüber. Auch dem Geübtesten begegnen Geräusche, die er weder in der Weise hauchend wie Bronchialathmen noch deutlich schlürfend erkennen kann. Sie werden als unbestimmte bezeichnet, aber je grösser die Uebung des Untersuchers, desto mehr verschwindet die Zahl der unbestimmten Geräusche. Zeitweise gelingt es noch neben vesiculärer Inspiration Bronchialexspiration zu unterscheiden, oder bei der Inspiration an der gleichen Stelle des Brustkorbes Vesiculär- und Bronchialathmen wahrzunehmen. Die neuerdings von Seitz angeführte Unterscheidung eines weichen und scharfen, scharfweichen und weichscharfen Athmens, wobei nur das scharfweiche oder das scharfe Athmen eigentlich vesiculäres sei, ist mir in mancher Beziehung unklar geblieben. Die Unterschiede, die damit aufgestellt werden sollen, ermangeln jedes objectiven Kriteriums, jeder Beziehung zu einem pathologischen oder physiologischen Vorgange oder Zustande. So schien es mir, und ich kann daher über die eigentliche Bedeutung dieser erweiterten Classification noch nicht klar werden. Auch die Begründung, die diese Lehre selbst durch Seitz erhalten hat, scheint mir noch etwas an Unklarheit zu leiden, wenigstens wird stellenweise nur das scharfweiche, dann aber auch wieder das scharfe Athmen als eigentliches Vesiculärathmen dargestellt. Vorläufig wird man daher noch das Hauptgewicht auf die Unterscheidung des vesiculären und bronchialen Athmens legen müssen, die auch wirklich bei krankhaften Zuständen von der grössten Bedeutung ist.

Modificationen des Vesiculärathmens. Als solche sind aufzufassen a) das puerile Athmen, rauhe oder verschärfte Vesiculärathmen; b) das saccadirte Athmen; c) das Vesiculärathmen in Verbindung mit lautem und verlängertem Exspirationsgeräusch; d) das systolische Vesiculärathmen. Alle diese Modificationen beeinträchtigen in keiner Weise den Werth des vesiculären Athmens, den es im Grossen und Ganzen genommen als Zeichen durchgängiger Beschaffenheit der Luftwege eines grösseres Bezirkes besitzt. Denn nur bei freiem Lufteintritte ist die Anspannung des Alveolargewebes und die Schallerzeugung in demselben möglich.

a) Wiederholte Untersuchung zeigt, dass bei Kindern das Vesiculärathmen sehr rein, aber zugleich scharf und laut gehört wird. Dünne Brustwand und rasche Athemzüge mögen diese Erscheinung begünstigen. Der Hauptgrund dürfte jedoch wohl in der stärkeren Retractionsfähigkeit des Lungengewebes bei Kindern, wie sie sich z. B. durch die Neigung zur Atelektasenbildung zu erkennen gibt, zu suchen sein. Erhöhter Widerstand für den Lufteintritt, schärferes Athmungsgeräusch erklären sich daher. Man hat desshalb solch verschärftes, von Anfängern oft mit bronchialem Athmen verwechseltes Athmungsgeräusch häufig als »pueriles« bezeichnet, auch dann, wenn es bei Erwachsenen durch verstärkte Athembewegungen, oder durch Veränderungen im Lungengewebe zu Stande kam. Die Bedeutung desselben, praktisch genommen, ist gewöhnlich die, auf katarrhalische Beschaffenheit der feinsten Luftwege hinzuweisen. Für eine Localität hat man dasselbe als besonders bezeichnend für einen bestimmten Krankheitszustand angesehen. Verschärftes Vesiculärathmen an der Lungenspitze gilt mit als Zeichen des ersten Stadiums der Lungentuberculose. Es ist dann durch Schrumpfung eines Theiles und stärkere Anspannung des umgebenden Gewebes der Lungenspitze zu erklären. Häufig bleibt aber auch nach Entzündung, intensiven Katarrhen, kurz nach den verschiedenartigsten Krankheitszuständen verschärftes Vesiculärathmen zurück und erhält sich Wochen lang an den betreffenden Stellen.

b) Unter dem saccadirten Athmen versteht man mit ganz kurzen Unterbrechungen, oder doch Abschwächungen erfolgendes Athmen. Es ist neuerdings hervorgehoben worden, dass eigentlich jeder Athemzug ungleichmässig mit oscillirenden Verstärkungen und Abschwächungen vor sich gehe. Das mag genau genommen richtig sein, aber bei einiger Uebung unterscheidet man leicht von dieser gewöhnlichen, wenig beachteten Erscheinung die gröberen und deutlichen Absätze, durch welche man bei einzelnen Kranken das Athmungsgeräusch unterbrochen findet. Sie lassen sich nachahmen durch absichtlich stossweises Einathmen, sie erscheinen aber auch so, dass bei gleichmässiger Muskelthätigkeit ein örtliches Hinderniss in den Bronchien den Lufteintritt in die Alveolen eines Bezirkes hemmt, und zum Oefteren während eines Athemzuges überwunden wird. Auch dieses Zeichen ist besonders für die Lungenspitze beachtet worden, und hat sich den Ruf eines frühzeitigen Merkmales beginnender tuberculöser Erkrankung erworben 1).

¹⁾ Die gewöhnlichen Curven des Stethographen lassen nichts vom sacca-

- c) Neben vesiculärer Inspiration vorhandenes Exspirations geräusch findet sich oft vor und kann nicht als abnorm bezeichnet werden. Wo dagegen das Exspirationsgeräuch so laut als dasjenige der Inspiration, so lang als dieses oder noch länger gehört wird, da deutet es mit grosser Wahrscheinlichkeit auf rauhen, aufgelockerten Zustand der Respirationsschleimhaut, zumeist auf Katarrhe hin. Von Fournier u. A. ist mit entschiedenem Raffinement dieses Verhältniss der Exspiration mit der Inspiration verglichen und sogar durch Zahlen bezeichnet worden. Welche Bedeutung solchen Zahlen beizumessen sei, leuchtet schon bei geringer Einsicht in die zu Grunde liegenden Ursachen dieser Erscheinung ein. Es ist diess eine Art von Pharisäismus der Exactheit, die in praktisch medicinischen Dingen mit einiger Vorliebe zur Schau getragen wird.
- d) Von Wintrich u. A. ist eine sehr häufige Erscheinung beschrieben worden, die am besten als systolisches Vesiculärathmen bezeichnet wird. Wir haben schon mehrfach hervorgehoben, wie die Lunge jeder Formveränderung des Brustkorbes zu folgen genöthigt ist. So folgt sie nicht nur im Ganzen der respiratorischen Erweiterung des Brustkorbes und erzeugt dabei das Vesiculärathmen, sondern es folgen auch ihre Ränder der Formveränderung des Herzens, nehmen bei dessen Systole mehr Luft auf, um den Raum, der bei der Verkleinerung des Herzens frei wird, auszufüllen, und geben so an den Grenzen der Herzgegend Veranlassung zu einer eigenen Form des Vesiculärathmens. Selten hört man wirklich während jeder Systole ein kurzes Geräusch von der Beschaffenheit des vesiculären Athmens, häufig während der Inspiration eine mit jeder Systole statthabende Verstärkung des Inspirationsgeräusches. Das Vorkommen dieser Erscheinung scheint die Regel zu sein, aber ihr Fehlen wird auch häufig beobachtet. Die Bedingungen des letzteren Verhaltens sind noch nicht festgestellt. Es ist möglich, dass man dadurch diagnostische Anhaltspunkte z. B. für die Verwachsung der Lungenränder in der Herzgegend gewinnen könnte.

Das Vesiculärathmen kann einer grösseren oder kleineren Thoraxfläche fehlen, sowohl weil es durch ein anderes Athmungsgeräusch ersetzt ist, also auch ohne dass eine solche Sub-

dirten Athmen erkennen, wohl aber die von alten Leuten und von Tuberculösen gewonnenen sehr deutlich.

stitution stattgefunden hat. Die ersteren Fälle finden bei Besprechung des Bronchialathmens und des amphorischen Wiederhalls ihre Erledigung. Einfaches Fehlen des Vesiculärathmens würde z. B. während jeder Suspension des Athmungsgeschäftes nothwendig erscheinen, ebenso bei Verstopfung eines Bronchus, dann dort, wo die Lunge durch eine Geschwulst oder einen Flüssigkeitserguss von der Brustwand weggedrückt ist. Diese Grundbedingungen erfahren zahllose Modificationen. So findet sich ein Hauptast einer Seite durch Fremdkörper verstopft, oder durch Geschwulstbildung comprimirt; die Lunge wird durch Pleuraexsudat von der Brustwand weggeschoben, oder durch einfaches Zusammensinken atelektatisch. Eine Masse Alveolen eines Bezirkes erfüllt Flüssigkeit in dem Maass, dass sie luftleer werden. Ganz vorübergehend setzt sich ein Schleimpfropf in einem Bronchus fest. In allen diesen Fällen fehlt auf kürzere oder längere Zeit das vesiculäre Athmen. Dasselbe wird abgeschwächt durch verminderte Athembewegung, oder durch Erfüllung eines Theiles der Alveolen mit Exsudat, Flüssigkeit oder beliebigen festweichen Körpern. So findet sich in der Nähe geschrumpfter Lungenparthieen, über lobulär hepatisirten oder miliartuberculösen Lungentheilen in umschriebener Weise, ausgedehnt beim Emphysem der Lunge, halbseitig bei Lähmung der Athemmuskeln einer Seite Schwäche des vesiculären Athmens vor.

3. Rasselgeräusche.

Die an dem Brustraume wahrnehmbaren Rasselgeräusche entstehen grösstentheils dadurch, dass Flüssigkeit von Luft in Bewegung versetzt und in Blasen geformt wird, die beim Zerspringen einen Knall liefern. Sie entstehen ausserdem durch mit Geräusch in Bewegung versetzte Schleimhautfalten und Schleimmassen, durch Auseinanderreissung verklebter Schleimhautflächen, durch Klappenund Stenosen-Mechanismen. Man unterscheidet bezüglich der Rasselgeräusche, ob sie feucht oder trocken, klingen doder klanglos, mehr weniger reichlich, ob gross- oder kleinblasig sind.

Es ist überaus schwer zu beschreiben, was man unter feuchten und trocknen Rasselgeräuschen zu verstehen pflegt. Im Wesentlichen sind es jene Eindrücke, die uns auf dem blossen Wege des Gehöres erkennen lassen, ob eine schäumende Substanz aus Wasser, Serum, Eiter und ähnlichen dünneren Flüssigkeiten

bestehe, oder aus zähem Schleim oder Gallertmasse. Wenn auch Vergleiche, wie die der feuchten Rasselgeräusche mit dem Blasenspringen des siedenden Fettes oder Wassers, oder schäumenden Weines, der trockenen Rasselgeräusche mit dem Knarren des Leders, frisch gefrorenen Schnees, oder mit dem Prasseln des Holzes eine ungefähre Idee der hier in Frage kommenden Geräusche und ihrer Unterschiede verschaffen können, so vermag doch nur häufiges Untersuchen einschlägiger Krankheitsfälle zur sichern Kenntniss feuchter und trockener Rasselgeräusche zu führen. Wo Kranke eitrige, jauchige oder seröse Flüssigkeiten reichlich durch Husten entleeren, oder selbst wo dünne, schleimig-eitrige Sputa geliefert werden, wird man selten feuchte Rasselgeräusche an ihrer Brust vermissen; wo zäh-schleimige Sputa mit Mühe herausgehustet werden, finden sich häufig trockene Rasselgeräusche; aber solche können auch durch Schleimhautfalten, durch halbgelöste Pseudomembranen und dergl. bedingt werden. Aus der Anwesenheit feuchter Rasselgeräusche wird man daher stets auf theilweise Erfüllung der Luftwege mit dünner Flüssigkeit schliessen, aus der trockener Rasselgeräusche auf zähe Schleimmassen oder verengerte Stellen der Bronchien.

Als klingende, nach Skoda consonirende Rasselgeräusche betrachtet man diejenigen, die hell, hoch und dem Ohre nahe erscheinen. Jedenfalls setzen sie gute Fortleitung von ihrer Entstehungsstelle her bis zur Brustwand durch verdichtetes Lungengewebe vermittelt voraus. Wo sie in ihrer Tonhöhe mit gleichzeitigem Bronchialathmen übereinstimmen, unter sich gleichtönend sind oder mit dem Percussionsschalle des betreffenden Luftraumes (Caverne) übereinstimmen, muss Resonanz als Verstärkung einzelner Töne des ursprünglichen Geräusches angenommen werden. Ihre diagnostische Bedeutung ist daher vollständig die gleiche, wie diejenige des bronchialen Athmens und der Bronchophonie. minder hellen, dem Ohre entfernter erscheinenden Rasselgeräusche werden als klanglos, nach Skoda als nicht consonirend bezeichnet. Es liegt nahe, dass in manchen Fällen, z. B. wo Rasselgeräusche innerhalb kleiner, verdichteter Lungenbezirke entstehen, die gehörten Geräusche klangarm, aber nicht völlig klanglos sein werden, so dass es unmöglich sein kann zu entscheiden, oder vollständig willkürlich wird, ob sie klanglos oder klingend seien.

Die Reichlichkeit der Blasen wird nach der Zahl der empfangenen Schalleindrücke beurtheilt. Selten hört man ganz vereinzelte Rasselgeräusche, oft aber solche, die aus Hunderten von Blasen bestehen müssen. Wie viele entstehen, ist von der Stärke des Luftstromes, der beim Athmen erzeugt wird, von dem Mengenverhältniss der Luft und Flüssigkeit, von der Consistenz der letzteren, hauptsächlich aber von der Zahl und Grösse der mit Flüssigkeit erfüllten Räume abhängig.

Die Grösse der Blasen wird wie im gewöhnlichen Leben beurtheilt; Jeder wird das Geräusch über einer gährenden Flüssigkeit von jenem, das in einem sprudelnden Kessel entsteht, unterscheiden und erkennen, dass in einem Falle kleinere, im andern Falle grössere Blasen das Geräusch erzeugen. Für die Grösse der Blasen, die in den Luftwegen entstehen, ist in gewissem Sinne die Grösse der Lufträume, worin sie gebildet werden, maassgebend, insofern nämlich, als in kleinen Lufträumen nur kleine, in grossen dagegen grosse und kleine Blasen gebildet werden.

Man kann weiter unterscheiden ob die Rasselgeräusche stark oder schwach, hoch oder tief, überwiegend der Inoder Exspiration angehörig sind, doch ist es von weit geringerer Bedeutung, als die Beachtung der oben aufgestellten Unterschiede, die bei der Beurtheilung eines jeden Rasselgeräusches, wenn man genau zu Werke gehen will, in Rechnung gezogen werden müssen. Anfängern ist eine solche Analyse aller beobachteten Rasselgeräusche dringend zu empfehlen; sie führt allein zu sicherer Kenntniss ihrer Bedeutung.

Für praktische Zwecke braucht man kürzere, bestimmtere Bezeichnungen, als z. B. die eines feuchten, klingenden, reichlichen, grossblasigen Rasselgeräusches wäre. Man unterscheidet in dieser Richtung 1) vesiculäre Rasselgeräusche, auch als Knistern oder Knisterrasseln bezeichnet: kleinblasige, gleichblasige Rasselgeräusche, ähnlich dem Knistern des Salzes im Feuer oder dem Geräusche, das beim Reiben der Haare vor dem Ohre entsteht. Sie kommen meist sehr reichlich und stets in der Weise zur Beobachtung, dass sie als feucht bezeichnet werden können, so wenig auch obige Vergleiche auf letzteren Punkt hindeuten. Bei Krankenuntersuchungen hört man dieses Geräusch meistens unter Umständen, die die gleichzeitige Anwesenheit von Luft und Flüssigkeit in den Alveolen voraussetzen lassen, vorzüglich im ersten und dritten Stadium der Pneumonie und beim Lungenödem. Allein es ist unmöglich sich vorzustellen, dass durch die Entstehung und das Zerspringen mikroskopischer Flüssigkeitsbläschen in den Alveolen noch ein

wahrnehmbares Geräusch erzeugt werden könne. Betrachten wir also jene Annahme als ein Bild, von dem es nicht erwiesen ist, ob es richtig die Natur des Vorganges bezeichnet. Sicher ist es nun freilich, dass auch auf andere Weise Knisterrasseln entstehen könne. Bläst man die herausgenommene Lunge eines frisch geschlachteten Thieres auf, so wird an ihr das deutlichste Knistern vernommen. In einem Falle hört man nun auch bei Krankenuntersuchungen ein Knistern, das nicht durch Flüssigkeit in den Alveolen erklärt werden kann. Wenn geschwächte Kranke, die lange auf dem Rücken gelegen waren, wieder einmal einige tiefe Athemzüge machen, hört man an dem hintersten untersten Theil ihrer Lunge, während der ersten Paar Athemzüge ausgesprochenes, jedoch etwas mehr trocken als gewöhnlich klingendes Knisterrasseln. In beiden Fällen ist anzunehmen, dass beim Collabiren der Lunge die Alveolenwände mit einander verklebt waren, und durch die Auseinanderreissung derselben während des Aufblasens das vesiculäre Rasseln bedingt wurde. Dieser Vorgang muss überhaupt als Grund des vesiculären Rasselns betrachtet und somit auch bei der Pneumonie und dem Lungenödem angenommen werden.

2) Als klingendes Rasseln kurzweg bezeichnet man jedes durch verdichtetes Lungengewebe gut fortgeleitete Rasselgeräusch, gleichgültig, ob es in einer Caverne oder in einem Bronchus entsteht. Da zum Zwecke der Verdichtung des Lungengewebes die Alveolen luftleer sein müssen, so kann dieses Geräusch niemals ein kleinblasiges, gleichblasiges sein, sondern es muss ungleichblasig gehört werden. In der Regel haben diese Geräusche den feuchten Charakter in hohem Grade; man hört sie sowohl innerhalb pneumonischer als atelektatischer und tuberkulöser Verdichtungsheerde, wie über Cavernen von beträchtlicher, aber nicht zu bedeutender Grösse, gleichgültig, ob dieselben durch Erweiterung der Bronchien, Tuberkulose, Abscessbildung, Brand oder was sonst entstanden sind. Es ist keineswegs absolut nöthig, dass solche Cavernen innerhalb des Lungengewebes gelegen seien, sie können auch durch abgesackte Lufträume zwischen den Pleurablättern dargestellt werden. In einem Falle meiner Beobachtung war es der oberhalb einer Verengerung erweiterte, mit der Trachea communicirende Oesophagus, in welchem klingende Rasselgeräusche entstanden. Wo die Cavernen, zwar von verdichteten Wänden umgeben, aber noch durch eine beträchtliche Schicht lufthaltigen Lungengewebes von der Brustwand getrennt sind, sind die Rasselgeräusche nicht klingend, aber sie werden es, sobald das zwischengelegene Lungengewebe luftleer wird. Wenn Bronchiektatiker von Pneumonie befallen werden, hat man oft Gelegenheit diese Erfahrung zu machen.

- 3) Knatternde Rasselgeräusche, die vereinzelt, grossblasig und trocken, dabei nicht klingend gehört werden, entsprechen in vielen Fällen einfach der Anwesenheit zäher Flüssigkeit in den Bronchien. Von besonderer Bedeutung sind sie jedoch, sofern sie an den Lungenspitzen auftreten, da hier normaler Weise grössere Bronchien nicht verlaufen und katarrhalische Secrete sich nicht anhäufen, sondern dem Gesetz der Schwere folgend nach abwärts sich senken; so deuten an den Lungenspitzen häufig während längerer Zeit gehörte, knatterde Rasselgeräusche auf beginnende Bildung abnormer Hohlräume hin. Am häufigsten geschieht diess durch Schmelzung von Tuberkelheerden. Es ist nicht zu läugnen, dass auch ampullär erweiterte Bronchien Ursache derselben sein können.
- 4) Unbestimmte Rasselgeräusche; dahin gehören alle weder klein- noch gleichblasigen, noch klingenden, noch knatternden Rasselgeräusche. Sie entstehen am häufigsten durch katarrhalische Secrete in den Bronchien, seltener durch Wasser, Eiter, Blut, Jauche in denselben. Aus ihrem trockenen oder feuchten Charakter kann man einigermaassen auf die Beschaffenheit der betreffenden Flüssigkeit schliessen. Man wird nicht selten überrascht dadurch, dass Personen, an deren Brust niemals ein Rasselgeräusch gehört wird, Tag für Tag ganze Spucknäpfe voll Schleim aushusten. diesem Falle ist das negative Ergebniss der Auscultation charakteristisch. Es weist nach, dass entfernt von der Brustwand gelegene, somit grosse Bronchien Sitz der Absonderung sein müssen. Man muss annehmen, dass die in den grossen Bronchien entstehenden Rasselgeräusche gerade so, wie unter gewöhnlichen Verhältnissen das Bronchialathmen, ehe sie die mächtige Schicht lufthaltigen Lungengewebes durchdrungen haben und zur Brustwand gelangt sein würden, völlig zerstreut worden sind.

An die Rasselgeräusche schliessen sich nahe an das Pfeifen, Schnurren und Zischen. Sie wurden erst durch Skoda dem Namen nach von denselben getrennt. Man versteht darunter ganz Aehnliches, wie im gewöhnlichen Leben unter der gleichen Bezeichnung, so dass die tieferen und durch grössere Absätze getrennten Geräusche als Schnurren, die höheren, aus feinen Abtheilungen bestehenden als Zischen und Pfeifen bezeichnet werden. Die Entstehungsweise dieser Geräusche ist an dieselben Bedingungen geknüpft, wie jene der trockenen Rasselgeräusche, also die Anwesenheit verengerter Stellen in den Bronchien oder zäher, dieselben theilweise verschliessender Secrete. Man kann oft für diese Geräusche einige der Charaktere in Anspruch nehmen, welche den Rasselgeräuschen regelmässig zukommen; während gewöhnlich kein Klang dabei vorhanden ist, wird in einzelnen Fällen das Pfeifen, seltener auch das Zischen und Schnurren klingend gehört, woraus dann auf luftleere Beschaffenheit des nächst gelegenen Lungengewebes zu schliessen ist. Auch von einer Reichlichkeit dieser Geräusche kann unter Umständen die Rede sein. Man hört oft an einer und derselben Stelle der Brustwand regelmässig wiederkehrend Zischen, Pfeifen oder Schnurren ganz vereinzelt, eine Erscheinung, die, wenn sie an der Brustwand fühlbar, oder für den Kranken selbst hörbar wird, Hypochonder in nicht geringe Aufregung zu versetzen vermag. In andern Fällen, so bei recht eingefleischten Emphysematikern, scheint die ganze Brust zu stöhnen oder zu quieken, nur haben diese Geräusche, wenn sie mehrfach an der Brust erscheinen, nie jene Gleichmässigkeit, die verschiedenen Formen der Rasselgeräusche zukommt. Das Auftreten derselben ist in der Regel von sehr zufälligen und wechselnden Bedingungen abhängig, flüchtig und kaum in allgemeine Regeln zu bringen. Pfeifen und Zischen, vielleicht auch Schnurren, die sonst von der Respiration abhängen und bald in- und exspiratorisch, bald nur bei einem der beiden Akte erscheinen, können hie und da einmal in der Herzgegend von der Herzbewegung abhängen, also systolisch oder diastolisch gehört werden. Einhalten des Athmens oder ein tüchtiger Hustenstoss beseitigt rasch die auffällige und leicht mit eigentlichen Herzgeräuschen zu verwechselnde Erscheinung.

4. Metallklang.

Mehrere der seither beschriebenen Geräusche, nämlich Bronchialathmen, Bronchophonie und klingendes Rasseln können unter Umständen auch noch mit Metallklang verbunden erscheinen. Dieselben Bedingungen liegen dabei zu Grunde, die auch bei der Percussion die Entstehung des Metallklangs begründen. Sind innerhalb der Brusthöhle grosse, mindestens 4 Ctm. im Längendurchmesser haltende, einigermaassen gerundete Hohlräume vorhanden, die Luft führen, oder Luft und Flüssigkeit und glatte

Wände besitzen, so können sich darin entstehende, oder aus der Nähe dahin fortgeleitete Schallerscheinungen an diesem Orte mit Metallklang verbinden. Man versteht darunter denselben hohen und hellen Klang, der in der gerundeten, geöffneten Mundhöhle das Zerspringen grösserer Blasen des Speichels begleitet, der beim Schütteln von Flüssigkeit in einem Kruge gehört wird, oder der beim Anklopfen an leere Fässer nachklingt. Er setzt, wie der percutorische Metallklang, Hohlräume voraus, die eine allseitige Reflexion der Schallwellen, die Entstehung eines geschlossenen Wellensystemes gestatten. Die Höhe des Metallklangs ist wesentlich abhängig von dem grössten Durchmesser des Luftraumes, in dem er erzeugt wird. Es gelingt demnach, die Länge dieses Durchmessers zu-bestimmen durch den Vergleich künstlich hergestellter Lufträume von ähnlicher Höhe des Schalles. Allein es ist unrichtig, dass die Weite der Oeffnung eines solchen Raumes ohne allen Einfluss auf die Höhe seines Metallklanges sei. Man kann sich hievon überzeugen sowohl beim Zuhalten weiter Brustfisteln, die in einen Pneumothorax führen, als auch beim Percutiren jeder Glasflasche, deren Mündung man mit dem auscultirenden Ohre nach und nach verschliesst. Einen solchen geringen Einfluss auf die Höhe des Metallklanges hat nach den Versuchen Biermer's auch die Spannung der Wand. Nicht überall, aber in weitaus den meisten Fällen, wo der Percussionssehall metallisch klingt, wird Metallklang auch bei der Auscultation gehört. Er kann durch das Athmen, die Stimme, oder durch Rasselgeräusche, bisweilen auch durch Pfeifen erzeugt werden. Es ist gleichgültig, ob der metallklingende Hohlraum mit den betreffenden Bronchien communicirt oder nicht, also auch ob in ihm selbst diese anregenden Geräusche entstehen, oder nur in der Nähe. Am häufigsten erzeugen Rasselgeräusche Metallklang, und es fällt dann gewöhnlich auf, dass man unter einer Masse nicht metallisch klingender Rasselgeräusche nur hie und da einen hellen, hohen Metallklang heraushört. Man nahm an, dass dieser durch herabfallende Tropfen in der Höhle zeitweise erzeugt werde, allein es wäre völlig unbegreiflich, warum gerade Tropfen das leisten sollten, was die vorhandenen Rasselgeräusche nicht thun. Man kann den Metallklang lauten klingenden Rasselgeräuschen künstlich verleihen, wenn man an der betreffenden Stelle der Brustwand einen passenden Resonator aufsetzt. Man überzeugt sich, dass es starke Resonanz eines hohen Obertones ist, die diesem Phänomen zu Grunde liegt. Daher das seltene Auftreten dieses starken, hellen Klanges dessen Schallhöhe unter gewöhnlichen Bedingungen stets die gleiche ist. Beim Bronchialathmen und der Bronchophonie wird noch seltener, als bei Rasselgeräuschen, Metallklang gehört. Man wird von dieser Erklärung ausgehend durch die musikalische Bestimmung der Schallhöhe des Metallklingens eine ungefähre Vorstellung von der Räumlichkeit der betreffenden Höhle erlangen können.

Ueber denselben Hohlräumen, die den Metallklang liefern, hört man das Athmen gewöhnlich begleitet von einem tiefen, hohlen Sausen, wie es auch durch Hineinblasen in einen hohlen Krug erzeugt wird. Es wird als amphorischer Wiederhall bezeichnet und besitzt die gleiche Bedeutung, wie die eben besprochenen Erscheinungen. Diese, der Metallklang bei der Auscultation und der bei der Percussion identisch in ihrer Bedeutung, werden auch häufig unter einem Namen, dem der metallischen Phänomene zusammengefasst. Sie entstehen über sehr grossen Cavernen oder pneumothoracischen Hohlräumen. Sie sind die sichersten Zeichen für die Anwesenheit des einen oder andern dieser Zustände, und doch weisen sie nicht mit absoluter Sicherheit darauf hin. Von Kolisko und Wintrich wurde Metallklang über taubeneigrossen Cavernen, die mit weiten Bronchien in Verbindung standen, gehört. Diese weiten Bronchien scheinen den Raum der Caverne so vergrössert zu haben, dass beide zusammen Metallklang erzeugen konnten. Von Friedreich wurde hervorgehoben, dass in sehr seltenen Fällen amphorisches Athmen in der Schulterblattgegend bei gesunder Lunge gehört wird. Skoda erwähnt, dass dasselbe bei starker Dyspnoe im Rachen erzeugt und am ganzen Brustkorbe wahrgenommen werden kann. Auch ich habe in einem Falle ausgedehnter cylindrischer Ektasie der Bronchien einer Lunge mit Verödung des Zwischengewebes verbreitetes, metallklingendes Rasseln gehört, ohne dass irgendwo eine grössere Caverne gelegen gewesen wäre. Die Lehre vom Metallklang hat neuerdings eine wichtige Bereicherung erfahren durch die von Biermer nachgewiesene Eigenschaft desselben, mit dem Wechsel des längsten Durchmessers eines solchen Hohlraumes seine Höhe zu ändern. Ist also leicht bewegliche Flüssigkeit in genügender Menge darin vorhanden, so wird der Metallklang beim Aufsitzen höher oder tiefer, als beim Liegen erscheinen. Geigel hat diese Erscheinung gleichfalls wahrgenommen, auch ich kann sie bestätigen, nur halte ich für feststehend, dass sie metallklingenden Hohlräumen, die leicht

bewegliche Flüssigkeit enthalten, überhaupt, also auch manchen Cavernen innerhalb der Lungen und nicht allein dem Pneumothorax zukomme. Bei einem kleinen abgesackten Pneumothorax habe ich vergebens nach dieser Erscheinung gesucht, bei einigen grossen, freien dagegen, sie leicht bestätigen können. Nach den letzten Mittheilungen von Biermer hierüber wird der Metallklang bei Pneumothorax während des Aufsitzens tiefer, als er beim Liegen getroffen wird, und zwar in einem Falle um eine kleine Terz, in einem andern Falle um eine Quart. Darnach wird der Luftraum beim Aufsitzen länger, während man von vorne herein das Gegentheil hätte erwarten sollen. Es muss also wohl das Zwerchfell tiefer zu stehen kommen (wie ich diess auch schon bei Gesunden aus dem Percussionsschall oberhalb der Leber nachgewiesen habe). Biemer hat ferner gezeigt, dass der Metallklang beim Einathmen über einem Pneumothorax höher gehört wird als beim Ausathmen. Am Unterleibe findet sich metallklingendes Rasseln im erweiterten Magen und Colon, innerhalb lufthaltiger Cysten, im lufterfüllten Cavum peritonaei. Es entsteht theils durch peristaltische Bewegung, theils durch Druck oder Schütteln. Auch metallklingender Aortenton kommt bei dem letzterwähnten Zustande vor.

An diese hier beschriebenen Erscheinungen schliesst sich das Succussionsgeräusch (Succussio Hippocratis) unmittelbar an. Auch hier ist Metallklang vorhanden, nur wird er auf andere Weise erregt. In vielen grossen, Luft und Flüssigkeit enthaltenden Hohlräumen nämlich, kann durch Schütteln die Flüssigkeit in Bewegung versetzt werden, so dass sie ein plätscherndes, von Metallklang begleitetes Geräusch verursacht, ähnlich jenem, das beim Schütteln von wenig Wasser in einem Kruge entsteht. Bald ist diess Geräusch so laut, dass es im ganzen Krankenzimmer gehört werden kann, bald auch so wenig laut, dass es nur beim Anlegen des Ohres vernommen werden kann. Seine Schallhöhe ist stets die gleiche, wie die des anderweitig gehörten Metallklanges. Die verbreitete Annahme, dass solches Succussionsgeräusch nur bei Pneumothorax gehört werde, muss als vollständig irrig bezeichnet werden. Freilich hat man, obwohl grosse Cavernen häufig getroffen werden, nur selten Gelegenheit sich zu überzeugen, dass sie, in Folge reichlicher Anwesenheit leicht beweglicher Flüssigkeit, auch Succussionsgeräusch abgeben; doch sind beweisende Fälle von Gendrin, Weber u. A. beschrieben worden. Selten sind es tuberkulöse Cavernen, die diess Geräusch erkennen lassen, weit eher solche, die aus Lungengangrän oder Abscessbildung hervorgingen. Der Inhalt der letzteren ist häufiger in dem nöthigen Maasse dünnflüssig. Diess scheint mir an sich schon Beweis genug dafür zu sein, dass auch bei Cavernen der Metallklang mit dem Aufsitzen seine Höhe ändern könne. Es ist aber wahrscheinlich, dass er dann bei längs gelagerten Cavernen höher und nicht tiefer werde, wie beim Pneumothorax. Auch durch die Herzbewegung kann sowohl in benachbarten pneumothoracischen Räumen, als auch in dem lufthältig gewordenen Perikard Metallklang erzeugt werden, der dann zumeist von Rasselgeräuschen erregt wird, die mit der Systole erfolgen.

5. Pleuritisches Reiben.

Das pleuritische Reibegeräusch wurde, soweit es fühlbar erscheint, bereits an einer früheren Stelle besprochen. Wir erwähnen hier kurz, dass jeder Akt des Athmens Verschiebung jedes Punktes der Pleura pulmonalis, der Pleura costalis gegenüber bis gegen die Lungenspitze hin mit sich bringt. Ueberwiegend ist diese Verschiebung eine auf- und absteigende, in minderem Grade eine von rückwärts nach vorne gerichtete. Auch zwischen Pleura pulmonalis und Mediastinum, und zwischen ersterer und Pleura diaphragmatica findet in entsprechender Weise Verschiebung statt. Sind die Pleurablätter durch Faserstoffauflagerung oder Gewebsvegetation rauh geworden, so erfolgt Reibung, die bei genügender Stärke und Raschheit der Verschiebung ein Geräusch verursacht. Gewöhnlich erfolgt dieses der Hauptrichtung der Verschiebung entsprechend in auf- und absteigender Weise, seltener in einer transversalen oder schrägen Richtung (Frottement ascendant et descendant). Es wird gewöhnlich bei beiden Akten der Respiration gehört, bisweilen bei einem lauter und länger, selten bei einem allein. Der Charakter des Geräusches ist anstreifend, selbst dem Hauchen mitunter nicht unähnlich, schabend, kratzend, knirschend, bisweilen vergleichbar dem Geräusche, das mit dem Finger auf einer nassen Glastafel erzeugt wird. Am deutlichsten ist dasselbe dann zu erkennen, wenn es eigentlich reibend oder schabend in gröberen Absätzen erfolgt, die den Eindruck machen, als ob die reibenden Flächen zeitweise an einander hängen blieben. Sein Charakter wird undeutlich, wenn es leise schlürfend oder hauchend dem vesiculären Athmen oder dem Exspirationsgeräusche ähnlich wird, oder wenn es knatternd in grösseren Intervallen erscheint,

und so den Rasselgeräuschen oder dem Schnurren sich nähert. Für diese letzteren Fälle gelten als Unterscheidungsmerkmale: 1) sehr laute, nur an wenigen Stellen hörbare Geräusche, sind eher als Rasselgeräusche oder Schnurren zu betrachten; 2) Reibegeräusche werden häufiger gefühlt; 3) trockene Rasselgeräusche können nicht selten durch Husten zum Verschwinden gebracht werden, und sind jedenfalls an einer und derselben Stelle von kürzerer Dauer als die Reibegeräusche; 4) das eigentlich reibende, anstreifende oder kratzende Timbre der Reibegeräusche kann häufig bei aufmerksamer Untersuchung erkannt werden. Alle Ursachen der Reibegeräusche nehmen ihren gemeinsamen Ausgangspunkt in der Entzündung der Pleura. Sie sind bisweilen das einzige oder neben Seitenschmerz das alleinige Symptom der Pleuritis (trockene Pleuritis), sie sind in andern Fällen während des ganzen Verlaufes dieser Krankheit zu hören, oder nur im Beginne und am Schlusse derselben; aber es kann auch nach abgelaufener Pleuritis die Pleura noch Monate lang rauh bleiben und ein Reibgeräusch liefern. Oft findet man das Reibegeräusch gerade an der Stelle des stärksten Seitenschmerzes mit Leichtigkeit auf; mit einiger Vorliebe zeigt es sich in der Gegend zwischen unterem Winkel des Schulterblattes und Axillarlinie, aber es kann auch an jeder andern Stelle der Brustwand gehört werden und von einer Stelle zur andern wandern. An der Lungenspitze hörbare, mehrere Tage andauernde Reibegeräusche finden sich häufiger bei Tuberkulösen vor. Solche an den Lungenrändern, in der Nähe des Herzens, begleiten gerne die perikarditische Erkrankung. Während das flüssige Exsudat jeder Pleuritis nach den tiefen Stellen des Pleurasackes sich senkt, kann das Reibegeräusch, das auf den festhaftenden Entzündungsprodukten beruht, den Sitz der Pleuritis kennzeichnen. Das früher besprochene Verhältniss der Complementärräume erklärt es, warum man z. B. bei Infractionen der neunten Rippe in der Axillarlinie öfter ein Reibegeräusch in der Gegend der siebenten Rippe, nicht aber an der Stelle der Verletzung selbst zu hören bekommt. An letzterer liegen sich nur Pleura costalis und diaphragmatica unbewegt gegenüber, erst höher oben tritt der Lungenrand mit seiner Pleura verschiebbar dazwischen. - Mit dem Aufsteigen eines pleuritischen Exsudates verschwindet successive das Reibegeräusch an den früher inne gehabten Stellen, um an der oberen Exsudatgrenze gleichsam nach aufwärts fortwandernd wieder zum Vorschein zu kommen. Bei einer gewissen Grösse des Exsudates ist überhaupt

kein Reibegeräusch mehr möglich, weil die Lunge theils eine feste Lage eingenommen hat, theils durch Exsudat von der Pleura costalis entfernt gehalten wird. Vermindert sich die Flüssigkeit, oder wird sie durch Thoracenthese entfernt, so kann sofort wieder Reibung stattfinden und so lange andauern, bis entweder die rauhen Flächen sich glatt gerieben, oder ihre Bewegung durch Verwachsung unmöglich geworden ist. Nach Seitz soll in letzterem Falle das Geräusch in gröberen Absätzen knarrend und nicht allmählig leiser und feiner werden, wie diess dem Vorgange der Abschleifung entspricht. Eine Verstärkung der Reibegeräusche durch bessere Schallleitungen, wie wir sie für die Rasselgeräusche kennen gelernt haben, ist einfach darum nicht häufig, weil sie unmittelbar unter der Brustwand entstehen. Man kann sich oft überzeugen, wie dieselben bei Anwendung des Stethoskopes deutlicher gehört werden und den Charakter der Reibung besser erkennen lassen. Möglicher Weise ist es in diesen Fällen der Druck des Stethoskopes, der die reibenden Flächen fester an einander presst und so das Geräusch verstärkt, während er die Ausdehnung der betreffenden Bruststelle beeinträchtigend andere gleichzeitige Geräusche abschwächt. Neben dem Reibegeräusch können vesiculäres oder bronchiales Athmen, Rasselgeräusche jeder Art, aber nicht leicht metallische Phänomene hörbar sein.

Anhang.

An der Wirbelsäule hört man von den obersten Brustwirbeln bis zum eilften herab das Geräusch des Schluckens, eine Art von Rasseln oder Plätschern, die in der Richtung von oben nach abwärts erfolgt und stets einen exquisit feuchten Charakter besitzt. Wir erwähnen dasselbe hier, weil es von den Zuständen des benachbarten Lungenparenchyms nicht ganz unabhängig ist. In Fällen doppelseitiger Pneumonie der oberen Lappen wird es nämlich besonders gut fortgeleitet, und demnach als klingendes Geräusch gehört in der Gegend der oberen Brustwirbel. Ausserdem besitzt es für die mit Verengerung des Oesophagus verbundenen Krankheiten insofern Bedeutung, als eine an einer bestimmten Stelle eintretende Verlangsamung und merkliche Abschwächung des Deglutitionsgeräusches diese Stelle als wahrscheinlichen Sitz der anderweitig nachgewiesenen Oesophagusverengerung erkennen lässt. Bei broncho-ösophagealer Fistelbildung hört man an der betreffenden Stelle der Wirbelsäule metallklingende Rasselgeräusche. Ein sehr

günstiges Leitungsverhältniss kann zwischen Bronchus und Wirbelsäule hergestellt werden durch solide mediastinale Geschwülste, namentlich durch Bronchialdrüsengeschwülste. Dadurch kann Bronchialathmen und klingendes Rasseln an einzelnen Stellen der Wirbelsäule mit grosser Deutlichkeit hörbar werden. Da die Dicke der Wirbel und der an sie sich anschliessenden Weichtheile für die Schallleitung sehr ungünstig ist, habe ich einigemale eine blind endende Schlundröhre durch einen Gummischlauch mit dem Ohre in Verbindung gebracht. Man hört dadurch die Aortentöne und das Trachealathmen sehr laut. Die Verwendbarkeit dieser Auscultationssonde wird eine beschränkte sein.

Endlich wäre noch mit einigen Worten der über der Lunge hörbaren, von Gefässen abhängigen Geräusche zu gedenken. Von Friedreich u. A. wurde in letzterer Zeit ein systolisches, aber nur während der Exspiration hörbares Geräusch in der Schlüsselbeingegend wahrgenommen, und zwar bei Phthisikern auf der Seite, auf welcher die Lungenschrumpfung weiter vorgeschritten war. Auch mir ist dasselbe mehrmals vorgekommen. Es scheint durch Zug der verwachsenen Lungenspitze an der Arterie erzeugt zu werden. Endlich muss ich hier einer seltsamen und nicht mehr vereinzelten Beobachtung gedenken, die sich gleichfalls auf einen Phthisiker bezieht. In der rechten Fossa supraspinata desselben hörte man Bronchialathmen und einzelne consonirende Rasselgeräusche, und ausserdem ein systolisches, klingendes Blasen, das einige Wochen vor dem Tode verschwand. Die Section zeigte daselbst eine Caverne, durch die ein obliterirter, in der Mitte zu einem erbsengrossen Knoten angeschwollener Pulmonalarterienast verlief. Eine ähnliche Beobachtung wurde von Cejka veröffentlicht. Neuerdings wurde durch Beobachtungen von Immermann, Bartels und Bettelheim gezeigt, dass Strictur eines oder mehrerer Pulmonalarterienastes bei Lungenkranken ausgebreitetes systolisches Geräusch in der Lunge verursachen kann. Ferner kann damit Erweiterung des Pulmonalarterienursprunges und Cyanose verbunden sein.

IV. Auscultation des Herzens.

A. Töne.

1. Zu den Zeichen, welche für die Stärke der Herzbewegung und die Lagerung des Organes seinem Spitzenstosse, für den Umfang derselben den Resultaten der Percussion und für seine Arbeitsleistung dem Verhalten des Arterienpulses entnommen werden, treten als weitere die auscultatorischen hinzu, und zeigen den Schluss und die Schlussfähigkeit der Klappen und die Erweiterung der grossen Gefässe mit der Systole dem Ohre an. Jeder Klappe des Herzens und beiden Hauptabschnitten seiner Thätigkeit entsprechend werden Schallerscheinungen gehört, die man bei Laennec, Gendrin und allen andern Schriftstellern vor Skoda als Geräusche bezeichnet findet, die dagegen jetzt ziemlich allgemein Töne genannt werden. Es ist entschieden vortheilhaft, diese kurzen, scharf abgeschlossenen Schallerscheinungen, die eine solche Gleichmässigkeit bieten, dass man es schon versuchen konnte, eine musikalische Höhe derselben ausfindig zu machen, durch die Bezeichnung »Töne« von vorne herein vollständig zu unterscheiden von jenen länger dauernden, ungleichmässigeren und rauheren Geräuschen, die in pathologischen Fällen wahrgenommen werden. Aber im akustischen Sinne richtig und dem Begriff eines Tones entsprechend ist dieses Verfahren nicht im Entferntesten. Die Herztöne sind höchstens als Klänge zu bezeichnen, in denen ein Ton vorherrscht, gewiss nicht als einfache Töne. Man hört an jeder beliebigen Stelle des Herzens zwei sogenannte Töne während des Ablaufes einer Herzcontraction. Der erste derselben beginnt genau mit der Systole, also mit dem Beginne des Herzstosses und Arterienpulses, und dauert fast bis gegen Ende der Systole. Auf eine kurze Pause, die den Schluss der Systole einnimmt, folgt dann, genau mit der Diastole beginnend, der zweite Ton und dauert während des grössten Theils der Diastole. An ihn schliesst sich die grosse Pause bis zum Wiederbeginne der nächsten Herzcontraction an. Diese Herztöne sind nicht an allen Stellen der Herzgegend in gleicher Weise zu hören. Zwischen zweitem und viertem Rippenknorpel beiderseits wird der erste Ton leiser und kürzer, der zweite stärker und länger gehört. An der Stelle des Spitzenstosses, am Manubrium sterni und den benachbarten rechten Rippenknorpeln wird der erste systolische Ton länger, lauter und accentuirt, der zweite diastolische, dessen Eintritt die Erschlaffung der Ventrikel und das Einströmen des Blutes aus den Vorhöfen anzeigt, leiser gehört. Unter besonderen Umständen findet man sowohl an der Herzbasis, als auch an der Herzspitze die Töne links von anderem Klange höher, tiefer, rauher, oder sonst verändert, im Vergleiche mit jenen, die rechts im zweiten oder fünften Intercostalraume gehört werden; Beweis genug dafür, dass sowohl die rechtsseitigen, als auch die linksseitigen Ostien des Herzens Töne

entstehen lassen an ihren Klappen. Die vielfachen früheren Discussionen, wo am Herzen die Töne entstehen, sind meistens als erledigt zu betrachten; nur Klappen, Sehnenfäden oder elastische Gefässwände werden durch Spannung zum Tönen gebracht. Diese Lehre Rouanet's (1832) hat schnell den Comité's, die früher die Entstehung der Herztöne aufzuklären suchten, und allen den zahlreichen Theorien über die Herztöne ein Ende gemacht. Nur über die Mitwirkung der Muskelcontraction sind neuerdings wieder lebhafte Discussionen im Gange.

Auch über die Zahl der am Herzen entstehenden Töne ist ein Zweifel kaum mehr möglich. Es sind deren sechs. Sowohl die Mitralklappe als die Tricuspidalklappe wird bei der Systole gespannt, ihre Spannung beginnt gleichzeitig mit der Systole, nachdem schon zuvor am Schlusse der Diastole die Klappe im schwach gespannten Zustande geschlossen war, und durch die rasche Steigerung der Spannung der Klappe und der Sehnenfäden entsteht nun beiderseits ein Ton. Ist die Systole vorüber, so erschlafft die Klappe, ihre Zipfel nähern sich der Ventrikelwand, die Sehnenfäden sind dabei ausser Spannung und keine denkbare Ursache liegt vor, wesshalb während der Diastole an den beiden venösen Klappen Töne entstehen könnten. Anders verhält es sich an den Semilunarklappen der Aorta und der Pulmonalarterie. Mit dem Beginne der Systole erschlaffen die Klappen und nähern sich der Gefässwand, aber die Gefässwand selbst wird gespannt durch das Einströmen des Blutes, und liefert dabei mit dem gleichen Rechte an jeder der beiden Hauptarterien einen systolischen Ton, mit welchem die Carotis oder Arteria cruralis beim Anlangen der Blutwelle einen solchen liefert. Ist die Systole vorüber, so vermindert sich die Spannung der Arterienwand, deren Ton ohnehin schon vorher endete, aber die Klappen werden aufgebläht und gespannt und erzeugen dabei einen diastolischen Ton. Obwohl nun nur zwei diastolische Töne am ganzen Herzen entstehen, hört man doch über der Tricuspidalklappe und Mitralklappe nicht allein den systolischen Ton, den sie erzeugen, sondern auch je einen diastolischen. Der letztere ist fortgeleitet für die Mitralis von der Aorta, für die Tricuspidalis von der Pulmonalarterie her. So entstehen also sechs Töne am Herzen, an jeder der venösen Klappen einer, an jeder der arteriellen zwei, an jedem Ostium ein systolischer, nur an den arteriellen ein diastolischer.

Nachdem schon früher von Natanson, Haughton u. A.

der erste Herzton (d. h. die beiden systolischen Töne der Atrioventricularklappen) als Muskelton angesprochen worden war, ist neuerdings Ludwig in Verbindung mit Dogiel zu Gunsten dieser Annahme mit einem sehr schwer wiegenden Beweise eingetreten. Er hörte an einem blutleeren unterbundenen, herausgeschnittenen Thierherzen unter Ausschluss aller Täuschungsquellen, so lange es pulsirte, den ersten Herzton. Die Mitralklappe kann also nicht gespannt werden und doch entsteht ein Ton, nur kürzer und schwächer als der normale erste Ton (Thomas). Für diese Auffassung des ersten Tones als Muskelton ist alsbald O. Bayer mit einer Menge von practischen Gründen eingetreten; als er jedoch in der Absicht auch noch den negativen Beweis von Seiten der Mitralklappe zu erbringen, versuchte an der Leiche den linken Ventrikel durch ein Loch von der Spitze her mit Wasser zu füllen, die Klappe erst zu stellen und dann plötzlich unter hohen Druck zu setzen, gab sie einen Ton. Dieser war zwar dem am Lebenden hörbaren in mancher Beziehung unähnlich, aber es war doch erwiesen, dass die Mitralklappe tönen könne.

Wenn man auf diesen Gegenstand eingehen will, besteht eine wichtige Vorfrage darin, ob die Herzsystole eine lang gezogene Zuckung (Marey) oder einen Tetanus darstellt. Im ersteren Falle kann der Herzmuskel keinen Ton liefern. Aber auch wenn er bei der Systole eine Reihe von Zuckungen macht, und einen Ton liefert, ist der erste Ton, den wir am Lebenden hören, dennoch nicht einfach als Muskelton aufzufassen. Der Muskelton macht nach Helmholtz 19 Schwingungen, sollte er selbst, wie manche jetzige Bestimmungen noch angeben und früher allgemein angenommen wurde, die doppelte Zahl von Schwingungen 32-40 in der Secunde machen, so würde er doch noch einer der tiefsten hörbaren Töne sein und bereits die einzelnen Stösse merklich wahrnehmen lassen. Der erste Herzton thut dies nicht. Seine Höhe habe ich bei ganz selbstständigen Versuchen so bestimmt, dass sie 256 Schwingungen entspräche, Funke fand sie g = 198 Schwingungen also ungleich höher. Aber es lassen sich noch vielerlei Gründe gegen die Erklärung des ersten Herztones als Muskelton vorbringen: warum kracht nicht der Thorax eines Erstickenden wie ein zusammenbrechendes Haus wenn man das Ohr anlegt, wenn die Muskeln solche Töne liefern? hat nicht die Diagnostik sich tausendmale mit Recht auf den gestörten Klappenton bei Diagnose der Klappeninsuffizienz gestützt? wie will man die gespaltenen Herztöne anders als aus ungleichzeitigem Klappenschlusse erklären, doch nicht aus ungleichzeitiger Muskelcontraction?

Eine Versöhnung der Ansichten scheint mir möglich. Wenn der Herzmuskel bei der Contraction nicht blos zuckt, sondern tetanisirt ist, muss er einen Muskelton liefern. Der Ludwig-Dogiel'sche Versuch spricht dafür, dass er dies thut. Nach dem Bayer'schen Versuche liefert die Mitralklappe bei der Spannung, die sie im Lebenden erlangt, in der That einen Ton. Aber er ist, wenn, wie in Bayer's Versuch, der Muskel nicht mitwirkt, von anderem Klange als am Lebenden. Weder der Muskelton, noch der künstliche Klappenton entspricht dem Klange des ersten Herztones am Lebenden. Der Muskelton enthält aber Obertöne, das ist in der Discussion über seine Schwingungszahl ausdrücklich anerkannt worden. Da liegt es denn nahe zu glauben, dass ein höherer Oberton des Muskeltones Schallherrscher am Herzen wird und die gespannten Atrioventricularklappen in seiner Tonart zu schwingen zwingt. Eine Bestätigung dieser Annahme sehe ich darin, dass bei meinen Resonatorversuchen der erste Ton constant, die gleiche Höhe zeigte, während der zweite Ton unter Umständen, die eine stärkere Spannung der Klappen voraussetzen liessen, höher wurde. Ich finde den 2ten Ton z. B. bei normalen Verhältnissen meistens Mi³, bei aufgeregter Herzthätigkeit z. B. nach raschem Gehen Sol3, bei einem Herzkranken aber auch Re4 und doch hat bei letzterem der erste Ton seine normale Höhe beibehalten. Diess deutet auf eine gewisse Unabhängigkeit des ersten Tones von stärkerer und schwächerer Spannung der Klappe hin, wie sie obiger Annahme entspricht.

2. Betrachtet man das Herz in natürlicher Lage, wie es die vortreffliche dritte Tafel der Luschka'schen Brustorgane darstellt, oder sticht man an der Leiche Nadeln ein in die Brustwand, oder hat man Gelegenheit Durchschnitte gefrorener Leichen zu studiren, so ergibt sich über die Lagerung der Klappen des Herzens Folgendes: die Klappen der Pulmonalarterie liegen im zweiten linken Intercostalraum und erstrecken sich ½" breit vom Sternalrande nach Aussen. Jene der Aorta liegen hinter dem Sternum in der Höhe des zweiten Intercostalraumes, und reichen gerade noch bis zum Sternalende des zweiten rechten Intercostalraumes, so dass sie noch durch eine schief nach Innen eingestochene Nadel getroffen werden können. Die Tricuspidalklappe erstreckt sich

schief vom Sternalende des dritten linken bis zu jenem des fünften rechten Rippenknorpels. Die Mitralklappe endlich liegt dem oberen Rande des dritten linken Rippenknorpels gegenüber. Würden die Schallleitungsverhältnisse am Herzen ganz einfache sein, so würde man jede Klappe an den zunächst gegenüberliegenden Theilen der Brustwand auscultiren. Man würde sich dann mit dem Stethoskop, das zur Wahrnehmung der Herztöne vor der unmittelbaren Auscultation den Vorzug verdient, ausschliesslich auf einem sehr kleinen Raume bewegen, nämlich in der nächsten Nähe des innern Endes des dritten Rippenknorpels. Dem ist nun aber nicht so, nur die Töne zweier Klappen sucht man dort auf, wo sie, den anatomischen Thatsachen entsprechend, gefunden werden müssen, nämlich die Töne der Pulmonalarterie an der innern Hälfte des Raumes zwischen zweitem und drittem linkem Rippenknorpel, und die der Tricuspidalklappe am fünften und sechsten Rippenknorpel und dem benachbarten Stücke des Brustbeins. Die Töne der Aorta werden, da auf dem Sternum die beiden grossen Arterien zu nahe und theilweise hintereinander liegen, am Innenrande des zweiten rechten Intercostalraumes aufgesucht. Jene der Mitralklappe endlich würden am dritten linken Rippenknorpel vergebens erwartet werden; man würde dort weit eher die Töne der beiden grossen Arterien, als die der Bicuspidalklappe hören. Es erklärt sich diess theilweise daraus, dass hier der linke Ventrikel mit der Brustwand in keiner Berührung steht und grösstentheils hinter dem rechten Ventrikel gelegen ist. Man hört aber die Mitralklappentöne, oder vielmehr den systolischen Ton der Mitralis und den fortgeleiteten diastolischen der Aorta mit Sicherheit an der Herzspitze genau an der Stelle, wo der Spitzenstoss erfolgt. Wo immer das Herz normal gelagert ist, sind an den genannten vier Orten, an dem innersten Theil des zweiten rechten und zweiten linken Intercostalraumes, am fünften rechten Rippenknorpel und an der Herzspitze die Töne der Aorta, Pulmonalis, Tricuspidalis und Mitralis aufzusuchen.

3. Die Töne, die man hier hört, werden mit dem Ticktack einer Uhr verglichen. Sie haben jedoch keinen vollständigen Perpendikelrhythmus, sondern eine erste kürzere, eine zweite (dem zweiten Ton folgende) längere Pause. An der Herzspitze und der Tricuspidalklappe ist der erste accentuirt, an den arteriellen Klappen der zweite, so dass man für die ersteren eine Aehnlichkeit mit dem Trochaeus, für die zweiten mit dem Jambus vergleichsweise aufführt. Bei verschiedenen Individuen zeigen sich auch bei völlig

normalen Verhältnissen des Herzens diese Töne verschieden hell, laut, rein oder hoch, ohne dass man daraus irgend wichtigere Schlüsse zu ziehen vermöchte; ja ihre Stärke wechselt bei einem und demselben Individuum unter dem Einflusse aller der Ursachen, von welchen die Innervation des Herzens abhängig ist. Normale Herztöne beweisen mit einer gewissen Wahrscheinlichkeit, dass sämmtliche Klappen des Herzens schlussfähig, frei von Auflagerung und Verdickung, spannungsfähig sind, in normaler Weise gespannt werden, und dass die Ostien weder verengt, noch mit Auswüchsen besetzt sind. Da ein vollständiger Verschluss der Atrioventricularklappen noch zudem wesentlich abhängig ist von der Verkürzung der Papillarmuskeln, so kann auch auf eine normale Thätigkeit dieser aus den ersten Tönen beider Vorhofsklappen geschlossen werden.

- 4. Als geringfügige Veränderungen der Herztöne sind aufzuführen
- a) unreine Töne. Man nennt die Herztöne dann unrein, wenn sie, weniger gerundet und abgeschlossen, aus ungleichmässigeren Schwingungen bestehen, oder von solchen begleitet werden. Man kann daraus vermuthen, dass geringe Veränderungen der betreffenden Klappe, Verdickungen oder Auflockerungen derselben vorhanden seien, oder dass der Schluss derselben nicht ganz vollständig oder etwas ungleichmässig an ihren einzelnen Zipfeln erfolge. Man kann diess vorzüglich dann vermuthen, wenn zeitweise ein eigenes Geräusch neben dem Ton, zeitweise nur unreine Beschaffenheit des Tones beobachtet wird. Ein sicherer Schluss aber kann auf unreine Herztöne allein niemals begründet werden. Am häufigsten handelt es sich, wo man von unreinen Tönen spricht, um undeutlich gespaltene Töne von allen den Eigenschaften, die wir als diesen zukommend kennen lernen werden.
- b) Schwäche der Herztöne wird durch geringe Spannung der Klappen, oder für die ersten Arterientöne durch geringe Spannung der Arterienwand bedingt. Schwäche aller Herztöne zeigt, dass die Herzcontractionen in ungenügender Weise erfolgen; Schwäche einzelner Herztöne pflegt gleichfalls mit Schwächezuständen des Myokards zusammenzuhängen. So die Schwäche der ersten Arterientöne bei schweren Typhusfällen, die Schwäche des ersten Mitraltones bei Fettentartung des Herzens. Doch ist dieser Gesichtspunkt nur dann gültig, wenn a) keine besonderen Schwierigkeiten für die Fortleitung der Herztöne bestehen, und b) die-

selben nicht schwach erscheinen, weil sie von andern Geräuschen übertönt werden. Wie bei schlecht angesetztem Stethoskop alle Herztöne wegen dieses Leitungshindernisses schwach erscheinen, so erscheinen sie auch schwach, wenn die Brustwand in hohem Grade ödematös ist, oder wenn eine Schicht flüssigen Perikardialexsudates, oder die emphysematös ausgedehnte Lunge das Herz von der Brustwand trennt. Der wohlgebildete Ton einer Klappe kann wegen des gleichzeitigen Geräusches einer andern Klappe schwach erscheinen. Zahlreiche Rasselgeräusche oder lautes Athmungsgeräusch der umgebenden Lunge schwächen die Herztöne scheinbar ab.

- c) Verstärkung der Herztöne ist oft die Folge verstärkter Herzcontractionen, oder besserer Fortleitung der Herztöne in Folge von Verdichtung der angrenzenden Lungenränder. Diess gilt namentlich für die Töne der Aorta und Pulmonalis, da zwischen der Ursprungsstelle und der Brustwand lufthältiges Lungengewebe gelagert ist. Verstärkung einzelner Herztöne kann von Hypertrophie der Muskelwand einzelner Herzabschnitte herrühren, aber' sie kann auch herrühren von dem Druck einer stärkeren Blutsäule auf die arteriellen Klappen. Besonders in dieser Beziehung hervorzuheben sind a) die Verstärkung des ersten Mitraltones durch einen klirrenden, von der Erschütterung der Brustwand durch verstärkten Spitzenstoss herrührenden Schall. Dieser Schall kann selbst auf die Entfernung gehört werden, und entsteht entweder bei starker Hypertrophie des Ventrikels oder bei sehr aufgeregter Herzthätigkeit. b) Verstärkter zweiter Ton der Aorta rührt von Erweiterung dieses Gefässes her. Ist derselbe zugleich klingend, so deutet er auf atheromatöse Entartung der Gefässwand hin. Der klingende zweite Aortenton ist höher als der normale und enthält ausserdem noch deutlich hervortretende Obertöne. Auf letzteren beruht sein Klingen. c) Verstärkung des zweiten Pulmonaltones rührt von Erweiterung der Pulmonalarterie und dem Druck einer stärkeren Blutsäule auf die Pulmonalarterienklappen her und wird als Zeichen von Stauung im kleinen Kreislaufe betrachtet. Die Verstärkung des zweiten Tones eines der grossen Gefässe wird für gewöhnlich aus vergleichender Untersuchung derselben erkannt, ihre zweiten Töne sind normaler Weise gleich stark.
- d) Gespaltene Herztöne. Man kann häufig bei Gesunden oder Kranken der verschiedensten Art eine Erscheinung am

Herzen wahrnehmen, die zunächst den Eindruck macht, als erfolgten während einer Herzaction drei oder mehr Töne. Untersucht man genau, so ergibt sich, dass einer der beiden Töne durch eine äusserst kurze Pause in zwei Abtheilungen gebracht ist. Je länger die Pause, um so täuschender der Eindruck, dass mehrere Töne vorhanden seien; je kürzer die Pausen und je mehr Abtheilungen und Pausen ein Ton erhalten hat, um so mehr der Eindruck eines unreinen, von einem Geräusche begleiteten Tones. Jeder der sechs Töne, die am Herzen erzeugt werden, kann diese Erscheinung darbieten, doch sind es am häufigsten die (ersten) Töne der Vorhofsklappen, nächstdem die zweiten Arterientöne, die gespalten erscheinen. Spaltung des zweiten Tones an der Herzspitze oder Tricuspidalis setzt nothwendig voraus, dass auch der zweite Aortenoder Pulmonalton gespalten sei.

Die Erscheinung, von der wir sprechen, kann sehr verschieden begründet sein. Man muss vor Allem eine Form von Spaltung unterscheiden, die sehr häufige rein functionelle Form, ausgezeichnet durch kurzes Intervall der meist einfachen Spaltung und durch Abhängigkeit der Erscheinung von den Acten der Respiration. Potain hat sie in einer sehr fleissigen Arbeit näher beschrieben. Er nennt sie normale. E. Seitz hat zuerst beobachtet, dass die Spaltung des zweiten Tones nur mit der Vollendung des Inspiriums und während des Exspiriums wahrgenommen wird. A. Geigel hat dann gezeigt, dass bei gewissen Formen der Mitralstenose ungleichzeitiger Klappenschluss der beiden grossen Gefässe, von Differenzen der Blutspannung herrührend, den zweiten Ton gespalten erscheinen lassen. Potain hat diese beiden Punkte, die Beeinflussung durch die Respiration und die Begründung durch ungleichzeitigen Schluss der venösen oder der arteriellen Klappen zum Ausgangspunkte sehr ausführlicher Betrachtungen und Erwägungen gemacht. Er fand, dass die Spaltung eine sehr häufige Erscheinung ist (1/5 der Untersuchten) und dass bei weitem am häufigsten der erste Herzton von ihr betroffen wird. Unter 99 Fällen war 61 mal der erste, 30 mal der zweite, 8 mal der erste und zweite Ton gespalten. Je schärfer man seine Aufmerksamkeit darauf richtet, desto häufiger begegnet man der Spaltung. Ich fand sogar unter 260 Kranken (meist Ambulante), die ich untersuchte, 130 Spaltungen, wovon 112 den ersten, 11 den zweiten und 7 beide Töne betrafen. Einmal betraf die Spaltung nur den ersten Arterien-, nicht den Ventrikelton, öfter fand sie sich neben einem

Klappengeräusch vor. Sehr häufig ist die Erscheinung in einem fortwährenden Kommen und Verschwinden begriffen. Potain wies nach, dass dies von der Einwirkung der Respiration abhängt und zwar, dass der erste gespaltene Ton dem Ende der Exspiration und dem Anfange der Inspiration, der zweite dem Ende der Inund dem Anfange der Exspiration angehört. Vom gespaltenen ersten Ton hört man die erste Hälfte constant am linken, die zweite am rechten Herzen stärker. Der Schluss liegt nahe, dass der Tricuspidalton der verspätete ist, und dass seine Verspätung durch die Einwirkung der Exspiration entsteht. Vom gespaltenen zweiten Ton hört man an der Pulmonalarterie den zweiten Theil, an der Aorta den ersten stärker. Also die Inspiration verzögert den Klappenschluss der Pulmonalarterie. Von der Erklärung Potain's abweichend, glaube ich, dass durch die von Diesterweg nachgewiesene Hülfswirkung der Respirationspumpe für das rechte Herz bei der Inspiration der Druck in der Pulmonalarterie vermindert und so ihr Klappenschluss verspätet, bei der Exspiration der Druck im linken Herzen gesteigert und so der Mitralklappenschluss beschleunigt wird. Unter normalen Verhältnissen arbeiten die beiden Herzventrikel, der rechte unterstützt durch den Athmungsmechanismus, geräuschlos und mit völlig isochronem Ventilschluss. Ein geringes Missverhältniss zwischen Last und Kraft auf der Seite des rechten Ventrikels lässt bereits den Einfluss der Athmung auf den kleinen Kreislauf durch das Nachklappen eines der rechtsseitigen Töne während einer Respirationsphase bemerklich werden. Für einzelne Krankheitsformen und Fälle muss die speziellere Bedeutung der functionell gespaltenen Töne erst noch ergründet werden. Die Forschungen Geigel's über Mitralstenose haben in dieser Richtung die Bahn eröffnet.

Wenden wir uns nun zu der zweiten Form der Spaltung der Herztöne zu derjenigen, die auf organischen Veränderungen beruht, so kann man sich 1) in einzelnen seltenen Fällen auf das Bestimmteste überzeugen, dass die dem gespaltenen ersten Mitraltone zu Grunde liegende, in Absätzen erfolgende Contraction des linken Ventrikels wirklich stattfindet, nämlich dann, wenn der Herzstoss doppelt ist. 2) Jaksch will in einem Falle ungleiche Länge der Aortenklappen als Ursache des gespaltenen zweiten Tones anatomisch nachgewiesen haben. Immerhin müssen derartige Fälle mit ungleicher Länge der Klappen sehr seltene und dadurch ausgezeichnet sein, dass sie constant unveränderlich die

Spaltung aufzuweisen haben. 3) Drasche hat gezeigt, dass gespaltene Töne unter günstigen Umständen, z. B. bei starker Herzaufregung, in eigentliche Geräusche übergehen können, namentlich soll diess nach Drasche und Skoda mit dem gespaltenen zweiten Mitraltone in Fällen vorkommen, wo der zweite Aortenton nicht gespalten ist. 4) Mir ist es häufig aufgefallen, dass man nur an einer beschränkten Stelle, in der Gegend der Herzspitze oder der Herzbasis einen Ton gespalten fand, der in der weiteren Umgebung einfach erschien. Ich habe auch in solchen Fällen gesehen, dass die Spaltung sich verlor bei der einen oder andern Seitenlage, oder während tiefer Athemzüge. Die Section ergab dann an den Stellen, wo der Ton gespalten erschien, ausgedehnte, rauhe Sehnenflecken. In solchen Fällen, wo der Ton nur in geringer Ausdehnung gespalten scheint, und diese Eigenschaft unter willkürlich herbeizuführenden Umständen beseitigt werden kann, ist die Spaltung eine scheinbare, bedingt durch ein kurzes, an einem Sehnenfleck erzeugtes Geräusch, das einen der Herztöne begleitet 1). 5) Bei Verwachsung des Herzbeutels kann durch das diastolische Zurückprallen der zuvor eingezogenen Brustwand ein Schall entstehen, der mit dem zweiten Herzton zusammen einen gespaltenen zweiten Ton darstellt (Friedreich). Dieses Beispiel zeigt sehr deutlich, wie ausserhalb des Herzens gelegene Schallerscheinungen bei der Entstehung der gespaltenen Töne betheiligt sein können.

B. Geräusche.

5. Die experimentellen Untersuchungen, welche von Kiwisch, Heynsius, Th. Weber, Chauveau, Thamm, Bayer, Nolet, anfangs unabhängig von einander, später sich immer mehr ergänzend und vervollkommnend, geliefert worden sind, ergeben die Sätze:

Flüssigkeiten, welche in Röhren, deren Wand benetzend, strömen, liefern um so leichter Geräusche, je grösser die Geschwindigkeit der Strömung ist. Die Druckhöhe hat so wenig Einfluss, dass sogar bei Strömung unter negativem Druck Geräusche entstehen. Dagegen begünstigt dünnflüssige Beschaffenheit der Flüssigkeit etwas die Entstehung von Geräuschen.

¹⁾ Man hüte sich bei der Palpation, die unregelmässige Erschütterung der Herzgegend durch stark gespaltene Töne mit dem Schwirren zu verwechseln, welches Geräusche erzeugen.

Die Geräusche entstehen in der Flüssigkeit und theilen sich der Wand erst mit. Ob das Material der letzteren hart oder biegsam oder wie sonst beschaffen, ist daher für die Schallerzeugung ohne Einfluss. Glätte der Innenseite der Röhrenwand erschwert, Rauhigkeit erleichtert die Entstehung von Geräuschen, d. h. gestattet sie bei geringerer Strömungsgeschwindigkeit. Die Geräuschbildung ist möglich in gleichweiten Röhren, an erweiterten und an verengten Stellen: Sie erfolgt am leichtesten an erweiterten Stellen z. B. jenseits einer Einschnürung. Kiwisch glaubte alle Gefässgeräusche auf Einströmen in erweiterte Abschnitte zurückführen zu können. Schon Th. Weber fand aber Geräusche in Röhren von gleichmässigem Caliber. Je weiter die Röhre, je weiter das Caliber, je weniger vollständig die Glätte der Wand um so leichter entstehen diese. Erst E. J. M. Nolet hat jüngst die Geräusche, die beim Einströmen in eine verengte Stelle entstehen, kennen gelehrt und gezeigt, dass für ihre Entstehung ein beträchtlich höherer Grad von Stromgeschwindigkeit erforderlich ist, als für die Geräusche jenseits der Stenosen. Für die Entstehung der Geräusche beim Einströmen in Erweiterungen ist von Bedeutung der Grad der Erweiterung; je grösser dieser, desto schwieriger die Entstehung eines Geräusches.

Zur Erklärung der Geräusche beim Eintritte in erweiterte Abschnitte des Gefässsystemes hat Chauveau F. Savart's Lehre von der Vena contracta sonora verwendet. P. Niemeyer hat dieselbe unter dem Namen »Pressstrahl« in Deutschland einzubürgern und von den Herzostien bis zu den Alveolen hin zur Grundlage der Erklärung der meisten auscultatorischen Geräusche zu machen gesucht. Geht man auf das Historische der Sache ein, so hat Corrigan schon 1830, bei der durch Kiwisch angeregten Würzburger Discussion wieder F. Rinecker (1850) die wirbelförmige Bewegung der Flüssigkeit, also einen Act innerer Reibung derselben als Grund der Schallerscheinung bezeichnet. Heynsius hat dieselbe in Glasröhren mittelst eingestreuten Bernsteinstaubes sichtbar gemacht, Nolet mittelst eines sinnreichen Apparates gemessen. Die Geräusche vor Erweiterungen und in gleichweiten Röhren sind überhaupt nur auf diese Weise zu erklären.

Praktisch kommen die Schallerscheinungen in gleichweiten Röhren und die vor Verengerungen noch sehr wenig in Gebrauch. Es handelt sich fast nur um sogenannte Stenosengeräusche, d. h. jenseits verengter Stellen entstandene. Für diese sind die Strömungsgeschwindigkeit, der Grad der Verengerung und die Glätte oder Rauhigkeit der Wand von Bedeutung. Das Minimum der Geschwindigkeit für Schallerscheinungen muss bedeutend überschritten werden, wenn tastbares Schwirren erscheinen soll. Die Fortleitung aller Geräusche findet am besten in der Richtung des Blutstromes, der sie erzeugt, statt.

Die Geräusche, die am Herzen wahrgenommen werden, sind stets sehr genau zu beurtheilen mit Bezug auf das Zeitmoment der Herzthätigkeit, dem sie angehören. In dieser Beziehung ist die Regel entscheidend, dass alle vom Beginne des ersten Tones an stattfindenden Geräusche bis zum Beginn des zweiten Tones hin der Systole angehören; alle von hier bis zum Wiederbeginne des ersten Tones erfolgenden der Diastole. Alle weitere Unterscheidung in prä- und peri-systolische und -diastolische Geräusche ist überflüssig. Geräusche, die überhaupt keinem Zeitmomente der Herzthätigkeit mit Regelmässigkeit angehören, haben eine besondere Bedeutung und werden später zur Sprache kommen. Um das Zeitmoment, wo es überhaupt bestimmbar ist, zu erkennen, muss man oft die Pulsation der Herzspitze oder der Carotis während des Auscultirens befühlen, um danach den Beginn der Systole festzustellen. Das Verhältniss der Geräusche zu den Tönen ist ein solches, dass sie mit einem Tone gehört werden, oder anstatt eines Tones und in beiden Fällen der Dauer des Tones gleichkommen oder sie übertreffen. Mitunter ersetzt ein Geräusch beide Töne. -Manche Geräusche sind so laut, dass sie gehört werden können, ohne dass noch das Ohr an die Brustwand angelegt wurde, selbst auf mehrere Fuss Entfernung hin. Diese sind dann gewöhnlich auch am Rücken des Kranken, am Kopf und Unterleib, ja bisweilen an der Lehne des Stuhles, auf dem er sitzt, zu hören. Andere können nur bei grösster Aufmerksamkeit als ein schwacher, den Ton begleitender Hauch gehört werden, die meisten besitzen einen mittleren Grad von Stärke. Als Schalltimbre oder Qualität der Geräusche fasst man eine Anzahl von Eigenschaften derselben zusammen, die sich theils auf die Höhe derselben, theils auf die Anzahl der Absätze, woraus sie zusammengesetzt sind, theils auf die grössere oder geringere Gleichartigkeit der Schallerscheinungen, die zusammen das Geräusch construiren, beziehen. Sehr viele Geräusche werden mit einem, dem gewöhnlichen Leben entnommenen Vergleiche als blasende, scharfblasende oder weichblasende bezeichnet. Ausserdem finden sich solche, welchen ihr Schalltimbre den Namen

der hauchenden, stöhnenden, pfeifenden, feilenden, kratzenden, raspelnden verschafft.

6. Diejenigen Geräusche, die überhaupt einem bestimmten Zeitmomente der Herzthätigkeit angehören, werden in Klappengeräusche pengeräusche (organische, endokardiale Herzgeräusche) und in accidentelle Geräusche (anorganische, accessorische Herzgeräusche) unterschieden. Weder das Zeitmoment, dem sie angehören, noch ihr Schalltimbre, noch auch ihre Dauer und ihr Verhältniss zu den Herztönen sichert denselben die eine oder andere Bedeutung zu. Man versteht unter accidentellen Geräuschen diejenigen, welche, ohne dass an den Klappen, Sehnenfäden, oder an den Papillarmuskeln erhebliche anatomische Veränderungen vorhanden wären, durch veränderte Innervation oder Ernährung des Herzmuskels, oder durch Anomalien der Menge oder Zusammensetzung des Blutes bedingt sind.

Obwohl nun alle erwähnten Eigenschaften der Geräusche am Herzen nicht in absoluter Weise dieselben als von Klappenerkrankung herrührend oder unabhängig charakterisiren, gilt doch als Regel, dass die accidentellen Geräusche nur bei der Systole, kaum je bei der Diastole auftreten; am häufigsten. an der Mitralklappe, nächstdem an der Pulmonalarterie gefunden werden, nicht leicht an einer andern Klappe allein, wohl aber häufig an allen Klappen und Ostien des Herzens auftreten, gewöhnlich zusammenfallen mit blasenden Geräuschen in den Gefässen des Halses, und wie diese von hauchender oder weichblasender Art zu sein pflegen. Der wichtigste Unterschied aber liegt darin, dass alle sonstigen Folgen, die die Klappenfehler des Herzens für diese selbst und für den Kreislauf nach sich ziehen, im einen Falle mangeln, im andern vorhanden sind. Als gewöhnlichste Ursachen accidenteller Geräusche sind aufzuführen: Chlorose und andere Arten der Anämie, Fieberanfälle und andauernde hochgradige Fieberzustände, zu Anämie oder Kachexie führende, schwere Erkrankung, namentlich Krebs und Tuberkulose, Compression einzelner Abschnitte des Herzens durch benachbarte Organe.

Klappen geräusche des Herzens deuten auf Schlussunfähigkeit hin, wenn sie in dem Zeitmomente gehört werden, in dem die Klappen geschlossen sein sollten; also an den Vorhofsklappen in der Systole, an den arteriellen Klappen in der Diastole. Sie entstehen dann für die ersteren durch einen aus dem Ventrikel in den Vorhof, für die letzteren durch einen aus der Arterie in den

Ventrikel rückläufigen Blutstrom, während derselbe durch eine enge, vielleicht auch noch mit Rauhigkeiten besetzte Oeffnung sich hindurchdrängt. Rauhe Stellen an der Ventrikelseite der Vorhofsklappen oder der concaven Seite der Semilunarklappen können vielleicht, ohne dass die Klappe insufficient ist, ähnliche Geräusche bedingen. Klappengeräusche deuten auf Verengerung des betreffenden Ostiums hin, wenn sie in dem Zeitmomente entstehen, in welchem ein Blutstrom durch dasselbe hindurchgeht, also an den venösen Ostien in der Diastole, an den arteriellen in der Systole. Blosse Rauhigkeiten an der dem Blutstrom zugekehrten Seite der Klappen erzeugen häufig die gleichen Geräusche, aber sie haben nicht die gleichen Folgen, wie der betreffende Klappenfehler, und können daraus unterschieden werden. Nach dem Gesagten bedeutet systolisches Geräusch an der Mitralis und Tricuspidalis ungenügenden Schluss der Klappe, am Ursprung der Aorta und Pulmonalarterie Verengerung dieser Gefässe; diastolisches Geräusch an der Mitralis und Tricuspidalis Stenose des betreffenden venösen Ostiums, an der Aorta und Pulmonalis Insufficienz der Klappen, oder in allen diesen Fällen an den Klappen gelegene Rauhigkeiten.

7. Wodurch werden nun, wenn die Klappen vollständig schliessen, oder doch wenigstens keine anatomischen Veränderungen erkennen lassen, systolische Geräusche an denselben erzeugt, diejenigen Geräusche, welche wir accidentelle genannt haben? Man nimmt an, dass entweder geringe Veränderungen des Klappengewebes, Ernährungsstörungen desselben seine Schwingungsfähigkeit so verändern, dass bei demjenigen Drucke, der sonst Töne erzeugt, Geräusche entstehen, oder dass durch schwächere oder stärkere Zusammenziehung des Herzmuskels ein Blutdruck in seinen Höhlen zu Stande gebracht wird, der an den unveränderten Klappen Töne zu erzeugen zu schwach oder zu stark ist. Es ist wahrscheinlich, dass in vielen Fällen Verhältnisse beiderlei Art, Ernährungsstörungen der Klappen und Veränderungen des Blutdruckes bei Erzeugung der accidentellen Geräusche zusammenwirken. Der Umstand, dass bei den Versuchen P. Bayer's Verdickungen an den Vorhofsklappen Tonlosigkeit und nicht Geräusch bewirkten, enthält keinen Gegenbeweis, da bei jenen Experimenten die mechanische Mitwirkung der Papillarmuskeln und die akustische Mitwirkung des Herzmuskels bei der Entstehung des ersten Tones nicht geleistet werden konnte. Wohl aber sprechen zwei alltägliche Erfahrungen zu Gunsten dieser Annahme; der Ort, an welchem

accidentelle Geräusche am häufigsten entstehen, ist unstreitig die Mitralklappe, also gerade diejenige, an der geringfügige Veränderungen bei den Sectionen am häufigsten, ja mit einiger Regelmässigkeit nachgewiesen werden können. Diese Veränderungen. die sogenannten gallertartigen Verdickungen an den Spitzen der Zipfel bestehen in vielen Fällen, ohne dass jemals desshalb ein Geräusch gehört würde. Aber es lässt sich nicht läugnen, dass durch dieselben die Beschaffenheit der Klappe eine ungleichmässige wird, und es scheint mir in hohem Grade wahrscheinlich, dass wegen derselben unter sonst begünstigenden Umständen gerade diese Klappe zuerst und am leichtesten ein systolisches Geräusch liefert. Die zweite Erfahrung, auf die wir uns hier berufen wollen, ist die, dass bei vielen Herzkranken eine fehlerhafte Klappe, bei schwacher Herzaction ein Geräusch liefert und bei starker nicht, oder umgekehrt bei gewöhnlicher Herzbewegung kein Geräusch liefert, wohl aber bei verstärkter. So wird man denn sich vorstellen können, dass die gewöhnlichen Veränderungen an der Mitralklappe die Häufigkeit der accidentellen Geräusche an derselben bedingen, dass weitere, durch Anämie und dergleichen bedingte Ernährungsstörungen der Klappe im Verein mit veränderter Druckkraft des Herzmuskels thatsächlich das Geräusch hervorrufen. Diese veränderte Druckkraft liefert bald der Schwächezustand bei Anämischen und abzehrenden Kranken, bald die Verstärkung der Herzcontractionen bei fieberhafter Aufregung.

Während die Mehrzahl der accidentellen Geräusche, namentlich die Mehrzahl derer, die an der Mitralklappe gehört werden, auf diese Weise erklärt werden können, glaube ich doch auch noch mehrere andere Momente beiziehen zu müssen, durch die man besondere Arten dieser Geräusche erklären kann. 1) Die bei Chlorotischen so häufig vorkommenden systolischen Geräusche an der Mitralklappe finden sich zugleich vor mit Vergrösserung des Herzens, die durch die Percussion nachgewiesen werden kann, verändertem Stande des verstärkten Herzstosses und accentuirtem zweiten Pulmonalton. Bei solchen Kranken entstehen Oedeme und Katarrhe der verschiedensten Schleimhäute; die Section aber weist nie Veränderungen an den Klappen nach und die Krankheit ist heilbar. Man muss wohl annehmen, dass dem sogenannten accidentellen Geräusche, das dabei an der Mitralklappe gehört wird, ein auf vorübergehender Funktionsstörung des Herzmuskels und speciell der Papillarmuskeln beruhender Klappenfehler zu Grunde liege, eine temporäre Insufficienz der Mitralklappe und ausweislich des Venenpulses, mitunter auch der Tricuspidalklappe. 2) Obwohl die Sehnenflecken selten Reibegeräusche er-

zeugen, halte ich doch die Entstehung solcher für vollständig erwiesen. Obwohl die meisten Reibegeräusche zwischen die Herztöne fallen, kommen doch einzelne rein systolische oder rein diastolische vor. Es gibt nun accidentelle Geräusche und zwar zumeist systolische, hie und da auch diastolische, die auf einen sehr kleinen Raum beschränkt sind und weitaus nicht überall den betreffenden Ton begleiten. Diese accidentellen Reibegeräusche glaube ich, gestützt auf mehrere Sectionsbefunde, als entstanden durch perikardiale Reibung ansprechen zu müssen. 3) Die schon mehrfach erwähnten respiratorischen Geräusche in der Herzgegend können so bestimmt an einzelnen Tönen und zwar gewöhnlich den systolischen anhaften, dass man sie ohne Weiteres für accidentelle Geräusche zu halten geneigt ist. Sie schallen dann bald wie vesiculäres Athmen, Blasen, Rasseln oder Pfeifen, und sie können vorzüglich daraus erkannt werden, dass sie bei angehaltenem Athem, bald, wenn diess nach tiefem Einathmen, bald, wenn es nach tiefem Ausathmen geschieht, verschwinden, oder wesentlich ihren Charakter ändern. 4) Bei umschriebener Compression eines der beiden Ventrikel, oder eines der beiden Arterienursprünge entsteht ein systolisches, blasendes oder auch rauheres Geräusch. Auf diese Weise sind die neuerdings von Sommerville Scott Alison hervorgehobenen systolischen Geräusche an der Pulmonalarterie bei Tuberkulösen zu erklären. Knoten des benachbarten Lungenrandes, gleichgültig ob tuberkulös, carcinomatös, chronisch pneumonisch oder wie sonst beschaffen, zwischen Brustwand und Pulmonalarterie gelegen, drücken auf die letztere, oder stören doch durch ihre Berührung die Schwingungen der Häute des Gefässes. So sind die Geräusche an der Herzspitze zu erklären, die bei allen stärkeren Auftreibungen des Unterleibes gehört werden. Ebenso die Geräusche an der Herzspitze Hochschwangerer. Endlich ist diess meines Wissens die einzige Form eines accidentellen Geräusches, die bei Gesunden willkürlich hervorgerufen werden kann. Während starken Pressens entsteht nämlich an der Herzspitze ein schwachblasendes Geräusch, das den ersten Ton begleitet und ihm nachfolgt. Für die Compressionswirkung fester Körper, die sich an den Pulmonalursprung anlagern, gibt auch die Thrombose des linken Herzohres ein bemerkenswerthes Beispiel ab. Die Gruppe der accidentellen Geräusche ist in raschem Zusammenschmelzen begriffen. Immer mehr derselben finden ihre definitive Deutung als Klappengeräusche, so das systolische Geräusch an der Pulmonalarterie bei Mitralinsufficienz: es ist das fortgeleitete Mitralgeräusch (Naunyn), so die Geräusche Chlorotischer, die auf Insufficienz der Papillarmuskeln beruhen.

8. Reibegeräusche am Herzen entstehen ebenso wie jene an der Pleura durch Unebenheit der einander zugekehrten, sich gegeneinander verschiebenden Flächen des Perikards. Sie sind abhängig von der Herzbewegung und begleiten jede Herzeontrac-

tion, aber sie sind unabhängig von dem Schlusse der Klappen und begleiten desshalb nicht die einzelnen Herztöne. Das Herz ändert mit jeder Systole und Diastole seine Form, und es erklärt sich daher leicht, dass während der ganzen Dauer dieser Acte eine Verschiebung des visceralen Blattes des Perikards dem parietalen gegenüber stattfinden muss. Sind nun durch Entzündung die beiden Blätter des Perikards in grösserer oder geringerer Ausdehnung ihrer normalen Glätte verlustig, mit Exsudat belegt, oder mit Excrescenzen besetzt worden, so ist die Ursache gegeben zu derjenigen Reibung, die sich hörbar durch ein Geräusch zu erkennen gibt. Wird bei Fortdauer der Entzündung flüssiges Exsudat in grösserer Menge abgesetzt, so lagert sich dasselbe zwischen beide Blätter des Herzbeutels und hebt die Berührung der vorher an einander reibenden Flächen auf. Das Reibegeräusch verschwindet dann, bis mit dem Rückgängigwerden des Exsudates die rauhen Flächen wieder in Berührung kommen, und nun ist es nicht von der Dauer der Entzündung, sondern von jener der rauhen Beschaffenheit des Perikards abhängig. Es endet bald kurz nachher, bald erst nach Wochen oder Monaten, indem die rauhen Flächen sich abschleifen und das Reibegeräusch immer leiser wird, oder indem Verwachsungen sich bilden und dann, indem es in immer rauheren Absätzen gehört wird. Nicht immer ist mit dem Eintritte der Verwachsung das Bestehen des Geräusches vollständig abgeschlossen. Ich habe in einem Falle von Verklebung beider Blätter des Herzbeutels durch mehrere mörtelähnliche, locker zusammenhängende Lagen noch kurz vor dem Tode ein knarrendes Perikardialgeräusch gehört. Es liegen mehrere Beobachtungen dafür vor, dass perikardiales Reibegeräusch nicht allein durch rauhe, sondern auch durch trockene Beschaffenheit des Perikards bedingt werden könne, so z. B. während der Cholera (Pleischl).

Geräusche, die am Herzbeutel durch Reibung entstehen, können oft schon von vorne herein als reibende erkannt werden vermöge ihres schabenden, kratzenden, anstreifenden Charakters. Doch ist weniger die Qualität der Geräusche bezeichnend, als der Umstand, dass sie nicht regelmässig einen bestimmten Zeitraum jeder Herzaction ausfüllen, z. B. mit einem Herzton zusammentreffen, sondern in einer ungeregelten Weise den Herztönen nachschleppen, oder zwischen sie hineinfallen. Häufig sind die Perikardialgeräusche dadurch sehr ausgezeichnet, dass sie dem Ohre nahe erscheinen, unmittelbar unter dem Ohre zu entstehen

scheinen, doch diess natürlich nur dann, wenn sie der unbedeckten Region der vorderen Fläche des Herzens angehören. Solche Geräusche sind dann auch sehr deutlich zu fühlen. An umschriebenen Stellen wahrnehmbare Reibegeräusche verschwinden oder kommen, wenn der Kranke seine Lage ändert. Geräusche, die nur im aufrechten Stehen, oder nur in der einen oder anderen Seitenlage gehört werden, können schon darauf hin als Perikardialgeräusche angesprochen werden. Auch andere Umstände haben Einfluss sowohl auf das Bestehen, als auf die Stärke derselben. Nach Blutentziehungen werden sie, so-lange die Entzündung noch lebhaft im Gange ist, bisweilen stärker oder schwächer. Einiger Druck mit dem Stethoskop ausgeübt vermag sie bei biegsamer Brustwand lauter erscheinen zu lassen.

Im Beginn einer Perikarditis gehen dem Erscheinen des Reibegeräusches oft Veränderungen der Herztöne, oder Geräusche von unbestimmtem Charakter voraus; so Blasen an der Pulmonalarterie, oder der sogenannte perpendikelartige Rhythmus der Herztöne (gleich lange Dauer beider Pausen zwischen den Herztönen). Auf der Höhe der Krankheit ist es oft im gleichen Grade diagnostisch wichtig und praktisch schwierig, ein Reibegeräusch ausfindig zu machen. Es ist dann besonders zu empfehlen, bei linker Seitenlage den linken Rand des Herzens und bei rechter Seitenlage den rechten zu auscultiren. Namentlich bei linker Seitenlage kann man öfter zuvor mangelnde Reibegeräusche constatiren. Am häufigsten unter allen Localitäten lässt der Ursprung der Pulmonalarterie Reibegeräusche erkennen. Dem entsprechend sind hier Sehnenflecken und partielle Verwachsungen in Form halbmondförmiger Falten sehr oft zu treffen als rückständige Merkmale stattgehabter Entzündung. Am häufigsten freilich finde ich Sehnenflecken an einem ganz anderen, gemeinhin wenig beachteten Orte, an der Einmündungsstelle der Vena cava inferior. Es ist leicht erklärlich, dass die denselben vorausgehende Entzündung kein an der Brust-, wand hörbares Geräusch verursachen muss.

Zwei besondere Formen der Perikardialgeräusche sind hier zu erwähnen. 1) Das extern perikardiale, durch Reibung zwischen Mediastinum und Pleura erzeugte, das genau genommen eher einer Pleuritis als Perikarditis seinen Ursprung verdankt, und sowohl mit der Herzbewegung als mit der Respirationsbewegung gehört wird. Manche Thatsachen sprechen dafür, dass es in vielen Fällen nur auf Entzündung der benachbarten Pleura beruhe, aber

es ist in manchen anderen, wo beide Geräusche, das respiratorische und das mit der Herzbewegung synchronische gleichzeitig entstehen, nicht zu entscheiden, ob ausser der Pleura auch das Perikard rauh geworden sei. Die Häufigkeit beschränkter Pleuritis in der Nähe des entzündeten Perikards ist Ursache, dass sehr oft an den Rändern des Herzens pleuritische Geräusche neben perikarditischen gehört werden. 2) Das mehrtheilige Perikardialgeräusch ist eine äusserst seltene Erscheinung. Ich habe es nur einmal gehört und zwar in folgendem Falle. Bei einer Kranken mit complicirten Klappenfehlern war der Puls auf 40 gesunken, so dass mehrtheilige, diastolische Undulationen der Jugularvenen sehr deutlich beurtheilt werden konnten; nach Aussen von der Aorta hörte man synchronisch mit jenen Undulationen ein mehrfaches Reibegeräusch. Beide, Undulation und Reibegeräusch, wurden erklärt durch die Annahme mehrfacher Contractionen des rechten Vorhofes. Die Section ergab einen grossen, rauhen Sehnenfleck an der vordern Seite des rechten Vorhofes. Wo Perikardialgeräusche und Klappengeräusche sich mengen, können sehr eigenthümlich klingende Combinationen derselben entstehen.

C. Töne und Geräusche an den Arterien und Venen.

9. Geht man von der Aorta aus, so hört man noch an den nächst gelegenen grossen Arterienstämmen, nämlich an der Carotis und Sublavia, dieselben Töne, wie an der Aorta. Die Arterien werden während der Systole ausgedehnt, und ihre Häute erfahren ganz ebenso, wie jene der Aorta, eine starke tonerregende Anspannung. Der systolische Arterienton verhält sich in seiner Höhe dem ersten Herzton auffallend ähnlich. Er wird wie dieser durch den Resonator Ut³ verstärkt und zwar ebensogut an der Carotis als an der Brachial- oder Cruralarterie. Der systolische Arterienton kommt auch gespalten vor z. B. an der Cruralarterie bei Aorteninsufficienz, Bleikolik, Typhus (Duroziez). Bei der Diastole dagegen waltet kein einziger Umstand ob, der die Entstehung eines Tones an den Arterien erklären könnte; es weist im Gegentheil das Mangeln des diastolischen Tones an andern grossen, aber entfernter gelegenen Arterien, z. B. der Aorta abdominalis und Iliaca, darauf hin, dass dieser zweite Ton ein fortgeleiteter sei. Es ist diess der durch den Klappenschluss am Ursprung der Aorta erzeugte Ton, der ebenso hier, wie an der Herzspitze fortgeleitet erscheint. Die beiden Töne der Carotis werden am hinteren Rande

des Sternocleidomastoideus auscultirt, die der Subclavia ober- und unterhalb des Schlüsselbeines. Die Töne der Aorta thoracica descendens können, indem man das Ohr auf die Wirbelsäule auflegt, gehört werden. Wahrscheinlich sind auch jene beiden Töne von diesem Gefässe herzuleiten, die man hört, wenn eine Schlundsonde durch ein elastisches Rohr mit dem Ohr in Verbindung gebracht wird. Die Aorta abdominalis wird von der vorderen Bauchwand aus mittelst eines tief eingedrängten Stethoskopes auscultirt; sie liefert nur einen Ton, der ihrer Diastole (also der Systole des Herzens) entspricht. Ebenso verhält es sich mit den übrigen Arterien mittleren Calibers. Bei vielen Gesunden, und namentlich von Klappenfehlern freien Individuen kann man auch noch an der Cubitalarterie und an den Hohlhandbogen einen schwachen systolischen Ton wahrnehmen. An allen überhaupt tönenden Arterien kann man sich überzeugen, wie leicht derjenige kurze Schall, den wir gewöhnlich als Ton bezeichnen, in ein langgezogenes und als solches unverkennbares Geräusch umgewandelt werden kann. Ein leichter Druck mit dem, dem Ursprung der Arterie zugekehrten Rande des Stethoskops genügt, um ein langgezogenes Blasen während der Systole hören zu lassen.

Für den Cubitalpuls hat O. J. B. Wolff den Nachweis geliefert, dass bei manchen, besonders mageren Personen, besonders bei Reconvalescenten von acuten Krankheiten durch Betastung drei Stösse, durch Auscultation bei bestimmtem Grade des Druckes, der mit dem Stethoskope geübt wird, ein in drei Abtheilungen getheiltes Geräusch wahrgenommen werden. Auch mir sind einzelne derartige Wahrnehmungen vorgekommen. Das Resultat der Untersuchung Gesunder, ein Ton und ein Stoss der grossen und mittleren Arterien wird dadurch nicht abgeändert.

Als normal an den Arterien auftretende Geräusche können wir ausser obigen künstlich durch Druck erzeugten noch zwei aufführen. 1) Das Geräusch, das bei Kindern von der vierten Lebenswoche an bis zum Schluss der grossen Fontanelle, also gewöhnlich bis zum Alter von 1½—1½ Jahren, beim Anlegen des Ohres auf der grossen Fontanelle, oder in deren nächster Nähe gehört wird. Bei Offenbleiben dieser Knochenlücke kann es auch bis zum achten Lebensjahre fortbestehen. Dieses systolische Blasen, das man als Hirngeräusch bezeichnet hat, wurde zuerst von Fischer in Boston 1833 beschrieben. Während es Anfangs für ein pathologisches gehalten wurde, haben spätere Untersuchungen, namentlich diejenigen von Hennig es als ein normales kennen

gelehrt. Dasselbe erfolgt, ohne dass ein Ton zu hören wäre, als ein weiches, hauchendes Blasen, das mit jeder Herzsystole sich wiederholt, oder genauer genommen mit der Pulsation der Fontanelle zusammenfällt. Die seitherigen Beobachter haben dasselbe meistens vom Sinus longitudinalis und den in diesen einmündenden Venen abgeleitet, allein es wäre diess in der That das einzige, genau systolische Venengeräusch. Wer irgend mit den Schallerscheinungen, die in Arterien und Venen entstehen, bekannt ist, wird nicht umhin können, dieses Geräusch als ein arterielles zu betrachten. Da grosse Arterien nur an der Schädelbasis gelegen sind, so muss es wohl in diesen entstehen, und durch die homogene Hirnsubstanz, so wie durch die weiche Ausfüllungsmasse der Knochenlücken gut fortgeleitet werden. Von alledem, was über das pathologische Vorkommen und Nichtvorkommen dieses Geräusches gesprochen worden ist, bleibt wenig diagnostisch Brauchbares übrig. Es findet sich sowohl bei Hirnhypertrophie, als auch bei chronischem Hydrocephalus. Nur bei acutem Hydrocephalus, der bei offener Fontanelle sich entwickelt, wird es nicht, oder nur leise gehört. Am Interessantesten ist die Frage, wodurch dieses normale Geräusch bedingt, und wodurch es eigentlich zu einer gewissen Zeit wieder zum Verschwinden gebracht wird. Es scheint am Wahrscheinlichsten, dass es in den starken Windungen und Knickungen der Arterien an der Schädelbasis seinen Grund finde, und dass es später nur wegen der differenten Schallleitungsfähigkeit der Schädelknochen nicht mehr gehört werde. Das zweite normale Geräusch, das wir hier aufzuführen haben, ist das sogenannte Uteringeräusch oder Placentargeräusch, das in den erweiterten, den Uterus umgebenden Arterien entstehend, gegen Ende der Schwangerschaft hin gehört wird, und so ein normales, in aneurysmatischen Arterien entstehendes Geräusch darstellt. Sehr analoge pathologische Geräusche, die wir hier gleich erwähnen wollen, finden sich an vielen Geschwülsten des Uterus oder der Eierstöcke, namentlich an grossen subperitonealen Uterusfibroiden und grossen Ovarientumoren vor.

10. Häufiger hört man unter pathologischen Verhältnissen Geräusche an den Gefässen. Sind die Aortenklappen durch Erkrankungen zerstört, so fehlt der zweite Aortenton an der Aorta selbst und ebensogut auch an den Halsarterien. An seine Stelle tritt an beiden Orten, aber nicht weiter hin, ein diastolisches Geräusch, das am häufigsten eigentlich rauschend, in andern Fällen aber auch

blasend, stöhnend, raspelnd gehört wird. Systolische Geräusche können an den grossen Arterien des Halses auf folgenden Ursachen beruhen: a) Gesteigerte Strömungsgeschwindigkeit bei Hypertrophie des linken Ventrikels, vielleicht auch bei sehr verstärkten Herzcontractionen. Daher sind namentlich die Geräusche bei Atherom und Aorteninsufficienz an den Halsarterien abzuleiten. b) Rauhigkeit der Arterienwand in Folge von Atherom oder Gerinnselbildung an derselben. Normale Strömungsgeschwindigkeit lässt in glattwandigen Arterien kein Geräusch entstehen. In der That entspricht die Geschwindigkeit des Blutstromes nicht einmal der Höhe, bei der Wasser in gleichweiten Röhren ein Geräusch erzeugen würde (Nolet). Bei gesteigerter Geschwindigkeit oder bei rauhen Arterienwänden kann jedoch ganz wohl Schallerzeugung stattfinden; nur systolisch, weil bei der Diastole die Strömungsgeschwindigkeit abnimmt. c) Von der Aorta her fortgeleitete Geräusche; und zwar können dieselben von den erkrankten, starr und rauh gewordenen Aortenklappen fortgeleitet sein, oder von dem erweiterten Ursprung oder Bogen der Aorta her. d) Durch Erweiterung bedingte Geräusche. Solche finden sich an den ziemlich seltenen Aneurysmen der grösseren Halsarterien, häufiger noch an den stark erweiterten und gewundenen Aesten der Schilddrüsenarterien, wo diese Drüse grössere Geschwülste bildet. Diese Arterien mit ihren Geräuschen bieten eine sehr vollständige Analogie mit den erweiterten Uterinarterien und den Geräuschen, die darin entstehen. e) Abnorme Beschaffenheit des Blutes und daher rührende veränderte Ernährung und veränderter Tonus der Gefässwände, gewiss auch gleichzeitige Abweichungen in der Stärke der Herzcontractionen verursachen bisweilen bei den höchsten Graden von Blutarmuth blasende Geräusche in den grossen Arterien des Halses, die aber freilich mit jenen bei Gesunden und bei blutarmen Kranken so häufig wahrzunehmenden continuirlichen, und nur mit der Systole sich verstärkenden Venengeräuschen nicht verwechselt werden dürfen.

Gehen wir weiter nach der Peripherie und zwar von diesen Arterien aus, so kommen ferner nur systolische Geräusche zur Beobachtung, und zwar finden sich diese bei aneurysmatischen Erweiterungen derselben, gleichgültig, ob sie cylindrische oder sackförmige sind, ferner bei sehr starker Anspannung der Arterienhäute
bei sehr gesteigerter Strömungsgeschwindigkeit des Inhaltes. Man
hört nämlich bei der Aorteninsufficienz und bei andern starken

Hypertrophien des linken Ventrikels, bei welchen an den grossen Halsarterien ein unverkennbares systolisches Blasen wahrgenommen wird, an den Arterien des Armes oder der Hand eine Schallerscheinung, die man mit derjenigen, die bei einem Nasenstüber gehört wird, zu vergleichen pflegt. Dieselbe wird gewöhnlich als ein Ton bezeichnet. Herztöne sind jedoch noch immer aus gleichartigeren Schwingungen zusammengesetzt, als jene Schallerscheinungen, die man bei dem sogenannten Tönen der Arterien zu hören bekommt. Es handelt sich hier offenbar um ein sehr kurzes Geräusch, das man durch die Bezeichnung eines Tones von dem längeren blasenden Geräusche unterscheidet, welches an denselben Arterien durch geringen Druck mit dem Stethoskop hervorgerufen werden kann. Dieses Tönen der Arterien erfolgt genau in dem Momente, in welchem die bei der Systole des linken Ventrikels entstandene Blutwelle die betreffende Arterie erreicht und deren Diastole bewirkt. Es erstreckt sich oft bis zu den Hohlhandarterien, der Arteria dorsalis pedis und der gewundenen, unter der Haut sichtbaren Arteria temporalis.

An sackförmig erweiterten Arterien hört man gleichfalls ein systolisches Geräusch, dabei einen systolischen Ton, und bei einer gewissen Nähe derselben am Herzen auch noch einen diastolischen Ton. Der systolische Ton ist wohl immer durch die Spannung des Sackes selbst zu erklären; das systolische Geräusch, das jedoch bei den Aneurysmen der Aorta ascendens häufig, manchmal auch bei jenen anderer Arterien fehlt, wird durch das Einströmen des Blutes in die erweiterte Arterie, oft noch begünstigt durch rauhe Gerinnselschichten innerhalb des Sackes erzeugt. Das Fehlen des Geräusches bei manchen Aneurysmen erklärt sich aus übermässiger Weite des Sackes im Vergleich zum zuführenden Rohre. Der diastolische Ton lässt sich bei Aneurysmen der Aorta ascendens, Subclavia und Carotis als fortgeleitet von den Aortenklappen betrachten. Er kommt aber auch an weiter vom Herzen entfernten Arterien vor, an der Aorta thoracica descendens (Eiselt). In diesen Fällen ist er analog dem von Duroziez und Traube bei starker reiner Aorteninsufficienz an der Cruralarterie beobachteten Doppelton zu deuten. Der zweite Ton beruht auf der raschen Abspannung der Wand. Beide können durch Druck mit dem Stethoskop in Geräusche umgewandelt werden.

11. Geräusche an den Venen kommen sowohl in der Richtung des normalen Blutstromes, als auch in der eines unter

besonderen Umständen wahrnehmbaren rückläufigen Blutstromes vor. Die Geräusche in ersterer Richtung werden besonders oft an den Halsvenen, namentlich an dem untersten Theile der Vena jugu-* laris interna beobachtet. Dieselben kommen nicht nur bei kranken, anämischen Individuen, sondern auch bei der Mehrzahl der Gesunden zur Beobachtung. Sie werden leichter und lauter gehört, wenn der Kopf stark nach der entgegengesetzten Seite gewendet wird. Sie entstehen in aufrechter Stellung leichter als in liegender; sie sind continuirlich, werden aber mit der Systole verstärkt und erscheinen, je nachdem sie deutliche Klänge enthalten oder nicht, als Singen, Pfeifen, Stöhnen oder als Blasen, Hauchen, Rauschen. Sie finden demnach die Bezeichnung Gesang der Arterien, Venenrauschen, Nonengeräusch. Sie werden vorzüglich dann vermisst, wenn eine erhebliche Stauung des Blutes in den Venen stattfindet. Ihre Entstehung ist Gegenstand vieler Hypothesen gewesen; früher in die Arterien verlegt, können sie jetzt mit Sicherheit den Venen zugeschrieben werden; aber sie müssen ebenso gedeutet werden, wie die Arteriengeräusche, nämlich als bedingt durch das Einströmen des Blutes aus einem engen in einen weiten Gefässabschnitt. Eine solche Erweiterung ist schon natürlicher Weise gegeben durch die von Hamerník hervorgehobene allseitige Anheftung der Jugularvene hinter der Articulatio sterno-clavicularis. Vorzüglich ist diess dann der Fall, wenn wenig Blut in den Jugularvenen strömt und diese desshalb oberhalb sich verengt haben. Wo in dieser Weise Anämie der Entstehung des Geräusches nicht zu Grunde liegt, wird die Verengerung bedingt beim Umdrehen des Kopfes nach der andern Seite, indem dann der Omohyoidëus und die Fascien des Halses die Vene comprimiren. Das Geräusch ist häufig so stark, dass es fühlbares Schwirren erzeugt; es ist nie links allein zu hören, bisweilen rechts allein, häufig auf beiden Seiten. Bei einzelnen Kranken erzeugt es, wie schon Aran vermuthete, dadurch, dass es von den Kranken selbst gehört wird, Ohrensausen, das durch Compression der Vene unterbrochen werden kann; bisweilen kann es auch noch über dem zweiten rechten Rippenknorpel gehört werden und scheint sich dann in die Vena anonyma hereinzuerstrecken. Es ist von Hamerník und Anderen auch an der Vena cruralis gehört worden.

Rückläufiges Venengeräusch wird sehr häufig an den Halsvenen, und zwar auch wieder auf der rechten Seite eher als an der linken gehört, wo die Ursachen des Venenpulses gegeben sind. So kommt es denn am meisten bei der Insufficienz der Tricuspidalis zur Beobachtung. Seltener als das Geräusch findet man in diesen Fällen eine so starke und plötzliche Ausdehnung der Vene durch die rückläufige Blutwelle, dass ein systolischer Ton an derselben gehört werden kann, der allerdings sehr dumpf und unrein zu sein pflegt. Es lässt sich leicht denken, dass auch dann, wenn eine andere Ursache die Halsvenen pulsiren macht, Geräusch sowohl als Ton in denselben entstehen kann. So hat z. B. Cossy ein Aneurysma anastomoseon, durch Durchbruch eines Aortenaneurysma in die Vena cava superior entstanden, beschrieben, bei welchem an den Halsvenen Puls und Schwirren wahrgenommen wurde. Auch an anderen Venen kann dadurch, dass arterielles Blut auf neugebahnten Wegen in sie einströmt, systolisches, dumpfes Tönen, begleitet und gefolgt von systolischem Geräusch, erzeugt werden.

V. Auscultation der Unterleibsorgane.

Von den zahlreichen im Magen und Darme entstehenden Geräuschen wollen wir hier nur diejenigen aufführen, die in irgend einer Beziehung diagnostische Bedeutung haben. Am Magen hört man, während der Kranke eine Flüssigkeit schluckt, sehr bald und rasch das durch das Einströmen der Flüssigkeit verursachte klingende oder auch metallklingende, rasselnde oder plätschernde Geräusch. Verspäteter Eintritt dieses Geräusches, Spärlichkeit, dafür aber lange Dauer der einzelnen Geräusche, die es zusammensetzen, sprechen für ein Hinderniss, das dem Eintritt der Flüssigkeit in die Magenhöhle entgegensteht; gewöhnlich also für Verengerung der Speiseröhre oder des Magenmundes. Bei starken Contractionen der Magenmuskulatur und entsprechender Anfüllung seiner Höhle mit Luft und Flüssigkeit entstehen spontan gurgelnde oder brodelnde Geräusche in der Magenhöhle, die oft auf einige Entfernung hin gehört werden können. Ist die Magenhöhle dilatirt und enthält sie neben Luft viel Flüssigkeit, so können durch abwechselnden Druck mit beiden Händen auf dieselbe klingende, plätschernde, jenen bei Succussio Hippocratis ähnliche Geräusche erzeugt werden. Ebenso können viele Kranke durch schüttelnde Bewegung des Rumpfes diese Geräusche hervorrufen. Die Anwesenheit derselben ist an sich keineswegs, wie es oft angenommen wird, beweisend für dauernde, pathologisch begründete Magendilatation. Es ergibt sich vielmehr, dass für jeden gesunden Magen

hie und da einmal Zustände vorübergehender Dilatation beobachtet werden, während welcher die fragliche Erscheinung leicht gehört werden kann. Durch Genuss einer etwas grösseren Quantität von Bier scheint namentlich leicht eine geeignete Anfüllung des Magens zu Stande zu kommen. Nur solche Geräusche genannter Art dürfen als Zeichen von Magendilatation betrachtet werden, die in ungewöhnlicher Ausdehnung zu Stande kommen oder die namentlich rechts von der Mittellinie erzeugt werden. Ist die Magenhöhle stark von Luft ausgedehnt, so können alle in der Nähe entstehenden Geräusche, welche die geeigneten Töne enthalten, Resonanz darin hervorrufen; besonders leicht geschieht diess durch die Herztöne und durch in dem unteren Abschnitte der linken Lunge entstehende Rasselgeräusche, und zwar fehlt nicht leicht Metallklang dabei. Diese Erfahrung kann namentlich bei der differentiellen Diagnose des Pneumothorax oft verwerthet werden.

Es ist wahrscheinlich, dass am Duodenum durch die zu gewissen Zeiten erfolgende spontane Entleerung der Gallenblase Geräusche hervorgerufen werden können. Trotz längerer Auscultation gesunder Leute, einige Stunden nach der Mahlzeit, gelang es mir noch nicht, dafür bezeichnende Geräusche aufzufinden; dagegen konnte ich öfter bei der künstlichen Entleerung der Gallenblase durch Druck, die bei icterischen Kranken vorgenommen wurde, ein Rasselgeräusch erzeugen, das feinblasiger und höher war, als die sonst am Unterleibe vorkommenden.

Die im übrigen Darmkanal entstehenden Geräusche sind abhängig von dessen Füllung mit Flüssigkeit und Luft, und von den Contractionen seiner Muskulatur. Man pflegt sie als Kollern oder Borborygmen zu bezeichnen. Bei Hindernissen, die der Fäcalbewegung entgegenstehen und bei Kolikanfällen werden sie besonders deutlich gehört. Sind etwas weitere Abschnitte des Darmes mit Flüssigkeit und Luft gefüllt, so können an denselben durch Druck mit der Hand Geräusche erzeugt werden. Man hat Werth darauf gelegt, solche bei Typhuskranken in der rechten Regio iliaca erzeugen zu können (Ileocöcalgeräusch). Sie finden sich jedoch auch bei anderen mit Diarrhoe behafteten Kranken vor.

Sind grössere Hohlräume im Unterleibe mit Luft und Flüssigkeit gefüllt, so können metallklingende Fluctuationsgeräusche entstehen, völlig analog jenen beim Pneumothorax. Ich habe sie z. B. bei lufthältigen Ovariencysten und bei einem verjauchenden, mannskopfgrossen Echinococcus hepatis gehört beim Schütteln des Rumpfes. Wintrich erwähnt einen solchen Fall von einem abgesackten, lufthältigen Peritonealexsudate neben dem Magen. Sind jene leicht nachweisbaren Tumoren ausgeschlossen, so bilden solche metallklingende, beim Schütteln des Rumpfes (durch Anfassen beider Hüftbeine) entstehende Fluctuationsgeräusche das wichtigste Unterscheidungszeichen der Pneumoperitonitis gegenüber einfachem Meteorismus intestinalis. Erst kürzlich konnte ich bei einem langsam perforirenden Magencarcinom allein auf dieses Zeichen hin die Diagnose des Luftextravasates in den Peritonealsack mit solcher Sicherheit stellen, dass darauf hin die Punction gemacht werden konnte.

Endlich erübrigt uns noch, das früher schon theilweise besprochene peritoneale Reibegeräusch zu erwähnen. Erinnern wir uns, dass es zumeist chronischen oder subacuten Entzündungs- und Auflagerungsprocessen am Peritoneum seine Entstehung verdankt; dass es besonders oft über der Leber, der Milz bei angeschwollenem Zustande derselben und über anderen grösseren Tumoren des Unterleibs gehört wird; bald respiratorisch-rhythmisch, bald durch Verschiebung und Druck mit der Hand erzeugt; vielleicht auch hie und da durch Darmbewegung angeregt. Während es so gewöhnlich ein rauhes Knarren darstellt und vorzüglich adhäsiven Entzündungsformen entspricht, wird es hie und da bei acuter 1), verbreiteter Peritonitis mit eitrig-faserstoffigem Exsudate als feines Anstreifen, ja als dem Vesiculärathmen ähnliches Schlürfen gehört. Nach Punctionen oder spontaner Resorption grösserer Flüssigkeitsergüssse kommt es analog dem Auftreten pleuritischen Reibens bei Resorption eines Exsudates besonders leicht zur Beobachtung. So konnte ich kürzlich nach der Punction des Ascites bei einer Herzkranken den vorher zweifelhaften Eintritt der Peritonitis allein auf ein bald sich einstellendes Reibegeräusch über der Leber mit Sicherheit annehmen. Diesem Geräusche scheint bis jetzt noch immer wenig Aufmerksamkeit zugewendet zu werden, obwohl es sicher für frische Peritonitis sowohl, als für ältere Verwachsungen wichtige Anhaltspunkte liefern kann.

¹⁾ Der erste derartige Fall, den ich beobachtete, betrifft einen Kaiserschnitt, den mein College Schultze 1862 veröffentlichte. Bereits vier Stunden nach der Operation war das Geräusch vorhanden. Später habe ich es auch bei Perityphlitis gehört.

F. Physikalisch-diagnostische Symptomengruppen.

Ausser dem völlig dumpfen und leeren Percussionsschalle, der die complete Luftleere des unterliegenden Theiles anzeigt, gibt es kaum irgend ein anderes physikalisches Zeichen, das ohne Ausnahme nur durch einen einzigen physikalischen Zustand bedingt werden könnte. Man hat den Metallklang, den amphorischen Wiederhall, das Geräusch des gesprungenen Topfes, den Höhenwechsel des Percussionsschalles mit Unrecht eine Zeit lang für solche eindeutige Zeichen gehalten. Für alle diese Schallerscheinungen ist die Deutung durch Ausnahmen und Beschränkungen erschwert worden. Auch die einfachsten physikalischen Zustände der Brust- und Unterleibsorgane müssen aus dem Zusammenstimmen ganzer Symptomengruppen geschlossen werden. Nie genügen einzelne werthvolle Zeichen, wenn man sie auch fälschlich oft als absolut sicher und beweisend darstellt. Noch viel weniger können solche einzelne Zeichen nosologische Krankheitsbilder charakterisiren. Kann man eine Caverne nicht aus einem Zeichen erkennen, so wird man viel weniger noch die Bronchiektase daraus demonstriren können. Es liegt ausserhalb unserer hier gestellten Aufgabe, die Zeichen der Lungenentzündungen, der Tuberkulosen, kurz die Zeichen einzelner geweblicher Störungen an den Brustund Unterleibsorganen hier zu schildern, denn diese können nicht in der Percussion und Auscultation allein gelegen sein. Alle andern Untersuchungsmethoden werden dabei mitzureden haben. Wohl aber können wir versuchen, eine Anzahl von physikalisch-diagnostischen Symptomencomplexen hervorzuheben, und als berechtigtes Mittelglied darzustellen zwischen den akustischen Zeichen und den die histologischen und funktionellen Störungen aussprechenden Krankheitsdiagnosen.

I. Verengerung der oberen Luftwege.

Wenn das Leitungsrohr der Athmungsluft an irgend einer Stelle erheblich verengt wird, so entsteht eine Art von Schwerathmigkeit, die sich von allen andern Arten der Dyspnoë leicht unterscheiden lässt. Entzündungen und Neubildungen des Rachens, Verengerungen des Kehlkopfes und der Luftröhre, die durch Fremdkörper in denselben, durch Erkrankung ihrer Wandungen oder durch Compression von aussen bewirkt werden (für den Kehlkopf auch noch durch Stimmbandlähmungen), bewirken eine Reihe von

gemeinsamen, ausserdem auch einzelne, je nach dem betroffenen Abschnitte verschiedene Symptome.

Die Respiration wird mit dem Eintritte eines solchen Hindernisses alsbald angestrengt, so dass für die Inspiration die Halsmuskeln und die Muskeln des Schultergürtels, für die Exspiration die Bauchmuskeln mit in Thätigkeit treten. Alle Athemmuskeln treten zur Zeit ihrer Action stark gespannt hervor, und verharren lange in Contraction; nur zögernd ändert sich die Form der Brust; denn nur langsam vermag die Athmungsluft aus- und einzutreten. Selbst die scheinbaren Pausen zwischen Ex- und Inspiration fallen hinweg, und dennoch erreicht die Zahl der Athemzüge oft kaum die normale oder überschreitet dieselbe nur unbeträchtlich. Die Zahl der Herzcontractionen steigert sich rasch, die der Athemzüge so wenig, dass das normale Verhältniss von 1:4 nicht erreicht, oder selbst in 1:5 oder 6 umgestaltet wird. Der Grund zu dieser relativen Verlangsamung der Athemfolge mag theilweise in dem Gefühl der Kranken liegen, das sie empfinden lässt, dass nach der gewöhnlichen Dauer einer Inspiration der Zweck derselben noch nicht erfüllt, ihr Brustkorb noch nicht genug Luft aufgenommen habe. Für die meisten Larvngostenosen ist durch Entzündung oder Fremdkörper verursachte Reizung der sensiblen Enden des Nervus laryngeus superior der Grund des verlangsamten Athmens, denn auch ohne zu stenosiren verursachen Kehlkopfsentzündungen Verlangsamung des Athmens, und gewisse Verhältnisse der Percussion weisen auf inspiratorische Erschlaffung des Diaphragmas hin. Somit tritt hier die von Rosenthal entdeckte Hemmungsfunktion des Nervus larvngeus superior in Wirksamkeit.

Im Anfange jeder Inspiration bildet sich durch Einziehung am unteren Theil des Brustbeins und den benachbarten Rippenknorpeln längs der Insertion des Diaphragmas eine quere Furche, die gegen Ende der Inspiration sich wieder ausgleicht. Sie kann so tief werden, dass der Schwertfortsatz auf 1½—2" sich der Wirbelsäule nähert. Gleichzeitig vertiefen sich die Intercostalräume und sinken die Schlüsselbeingruben ein. Das Ueberwiegen des äusseren Luftdruckes bei der eintretenden Verdünnung der Luft in dem erweiterten Brustkorbe ist der Grund dieser compensatories chen Einsenkung der nachgiebigsten Stellen der Brustwand. Percutirt man während der In- und Exspiration den unteren Rand der Leberdämpfung, der ein getreueres Abbild der

Zwerchfellsbewegung liefert als der obere, so findet man denselben entweder unbeweglich, oder in der umgekehrten Richtung bewegt, wie bei Gesunden. Das Zwerchfell muss also bei der Inspiration steigen, bei der Exspiration herabgedrückt werden. Man kann nicht zweifeln, dass dieser starke Muskel, wenn er sich gleich energisch wie die übrigen Einathmungsmuskeln zusammenzöge, durch den Zug der übrigen Muskeln nicht überwunden werden würde.

Ist der Kehlkopf verengt, so wird durch die Luftdruckverhältnisse sein Auf- und Absteigen zu einem stärkeren gemacht, als die blosse Contraction der Halsmuskeln bewirken würde. Das Spirometer zeigt, dass die vitale Capacität um ein Bedeutendes, selbst über die Hälfte vermindert wird. An der beengten Stelle verursacht der Luftstrom ein häufig als Stridor bezeichnetes zischendes, oft weithin hörbares Stenosengeräusch, das keineswegs klangarm, meist die Klänge der Vokale i und u enthält. Je weiter oben gelegen und je enger die Stenose, um so lauter fällt dasselbe aus. Das Exspirationsgeräusch ist dabei im Gegensatze zum normalen Verhalten bedeutend höher als das inspiratorische. Sitzt die Stenose am Larynx oder dem Halstheile der Trachea, so kann das Geräusch als Schwirren von aussen gefühlt und so der Sitz der Verengerung gut bestimmt werden. Auch an dem Bilde der empfindlichen Flamme lässt sich dieses Geräusch darstellen. Die Stimme ist klanglos, heiser oder nur im Umfange vermindert, der Husten von Zischen begleitet.

Sobald die Herzthätigkeit schwach und beschleunigt wird, übt die Inspiration einen beträchtlichen abschwächenden Einfluss auf den Radialpuls aus. Die Herzdämpfung wird wegen ungenügenden Lufteintrittes in die Lungen durch Atelektase der angrenzenden Lungenränder vergrössert.

Fast alle Verengerungen der oberen Luftwege zeigen einen auffälligen Wechsel in der Heftigkeit der Symptome, fast alle zeigen paroxysmen weise Steigerung derselben. Auch wo von Krampf oder Lähmung der Muskeln, die beide in einzelnen Kehlkopfskrankheiten ihre Rolle spielen mögen, oder von der wechselnden Lage eingedrungener Fremdkörper nicht die Rede sein kann, treten Anfälle starker Athemnoth mit lauterem Tönen des Athmens und tieferen Einziehungen ein, die gewöhnlich mit-Aushusten zäher Schleimmassen enden. Katarrhalisches Secret der verengten Stelle sich anlagernd oder sie erfüllend, ist die häufigste

Ursache dieser Anfälle. Bei Schwellung des Kehlkopfeinganges treten dieselben besonders bei Nacht im Liegen ein, wenn Secret der Mund- und Rachenhöhle sich dort ansammelt. Lange bestehende Verengerung der oberen Luftwege hat Verengung des Brustkorbes zur Folge. Für die chronische Schwellung der Mandeln kennt man diesen Einfluss längst; für die Verengerung der Luftröhre hat ihn Demme durch Messung erwiesen.

Anhang.

Erst in neuerer Zeit haben die Trachealstenosen eine genauere Bearbeitung erfahren. Vorzüglich hat Demme die verschiedenen Entstehungsarten derselben classificirt und die meisten Symptome festgestellt. Die Verengerungen der Luftröhre beruhen grösseren Theils auf Druck von aussen, und zwar am häufigsten auf Druck Seitens der vergrösserten Schilddrüse, doch können auch Aortenaneurysmen, Mediastinaltumoren und andere Geschwülste des Halses ähnlichen Effekt liefern. Ein geringerer Theil dieser Erkrankung rührt von Fremdkörpern in der Luftröhre oder von Erkrankungen ihrer Wandungen her, namentlich kommen sehr selbstständige Formen durch Carcinom und Syphilis zu Stande, bisweilen auch durch Tuberkulose. Die syphilitischen Stenosen haben am häufigsten am untern Ende des Canals ihren Sitz, und finden sich oft als sehr vereinzeltes Symptom dieser Krankheit vor.

Trachealstenose lässt im Ganzen drei Zeiträume erkennen. Einen ersten fast beschwerdefreien, höchstens nur bei Körperanstrengung durch mühsame Respiration bezeichnet. Einen zweiten der andauernden hochgradigen Verengerung, der sich auf sehr lange Zeit erstrecken kann und fast alle Symptome darbietet, die der Kehlkopfsverengerung zukommen; namentlich die Form des Athmens, das laut hörbare Athmungsgeräusch, die relative Verlangsamung der Respiration verhalten sich fast ebenso; die Zahl der Respirationszüge beträgt weniger als ein Viertel der Pulsschläge, die Wirbelsäule wird bei der Inspiration gestreckt, viele Hülfsmuskeln werden in Anspruch genommen; es finden sich complementäre Einziehungen der Brustwand, namentlich längs der Abgangslinie des Diaphragmas. Die Athemzüge sind von laut hörbarem Geräusch begleitet, das übrigens manchmal doch etwas dumpfer klingt als bei Laryngealstenose. Sucht man den Sitz dieses Geräusches mit dem Stethoskope vom Larynx bis zwischen die Schulterblätter zu erforschen, so zeigt sich, dass dasselbe keineswegs dort am stärksten gehört wird, wo seine Entstehungsstelle sich befindet; die Fortleitungsverhältnisse sind zu complicirt, als dass ein so einfacher Schluss gerechtfertigt wäre, denn einige Geräusche, die in der Trachea entstehen, können am lautesten im Larynx gehört werden. Die Stimme der Kranken ist in der Regel heiser wegen gleichzeitiger Kehlkopfserkrankung oder wegen Beeinträchtigung der Kehlkopfsnerven durch dieselben Geschwülste, die die Trachea comprimiren. Immer ist die Stimme dieser Kranken schwach und von beschränktem Umfange, entsprechend der Schwäche des Luftstromes, der die Stimmbänder anspricht. Das Compensationsvermögen des Stimmorganes ist somit einseitig gestört.

Die eigentliche Unterscheidung der Tracheostenose von Laryngostenose beruht desshalb auf andern Hülfsmitteln, auf der Anwendung der Sonde und des Kehlkopfspiegels. Nur ein physikalisches Zeichen in unserem Sinne, ein Zeichen aus der Inspection gibt gleichfalls über diese hochwichtige Frage Aufschluss. Bei Tracheostenose bewegt sich nämlich der Kehlkopf gar nicht beim Athmen oder sehr wenig auf und ab, bei Laryngostenose macht er in Folge der obwaltenden Druckverhältnisse der Luftsäulen oberhalb und unterhalb der verengten Stelle sehr starke respiratorische Excursionen. Die Anwendung der Sonde ist unangenehm und nicht immer ohne Gefahr. Sie wird mittelst eines elastischen Rohres durch den Larynx auszuführen sein und Aufschluss geben über den Sitz des Hindernisses bei Messung der Länge des eingeführten Stückes, von der Stelle des erreichten Widerstandes bis zu den Schneidezähnen. Weitaus am förderlichsten für die Diagnose ist die Anwendung des Kehlkopfspiegels. Die Diagnose der Tracheostenose wird dabei gesichert, wenn der Larvnx als völlig durchgängig erkannt wird. Ausserdem kann aber auch der speziellere Sitz und die Natur des Hindernisses in der Trachea constatirt werden. Freilich ist dazu eine öftere und mühsame Untersuchung der Kranken nöthig, doch wird diese Mühe durch das bestimmte und häufig für die Behandlung sehr brauchbare Resultat der Untersuchung sehr reichlich belohnt. Mit Verengerung des untersten Theiles der Trachea ist häufig auch Bronchostenose verbunden. Man weiss durch die sehr schönen Messungen von Demme, dass Trachealstenose Verengerung des Thoraxumfanges zur Folge hat. Ist ein Bronchus verengt, so wird bei der Messung diese Seite von kleinerem Umfange getroffen,

ausserdem ist die Respirationsbewegung und das Vesiculärathmen derselben schwächer.

Das dritte Stadium der Tracheostenose pflegt sehr rasch, manchmal auf Erkältung oder sonstige geringfügige Schädlichkeiten hin, einzutreten. Es beginnt mit einem Suffocationsanfalle; dieser geht vorüber, der Kranke erholt sich scheinbar auf einen oder mehrere Tage, behält jedoch Katarrh der Bronchien; nach kürzerer oder längerer Zeit wiederholt sich der Anfall, der Kranke geht entweder im Anfalle zu Grunde, und dann zeigt die Section die verengte Stelle der Trachea durch katarrhalisches Secret verstopft, oder es stellt sich Fieber ein, Dämpfung des Percussionsschalles mit Knisterrasseln, und der Kranke erliegt rasch einer sich ausbreitenden Adspirations-Pneumonie. Wir bezeichnen demnach dieses nur auf wenige Tage sich erstreckende Stadium als katarrhalisch-pneumonisches.

Die zahlreichen bekannt gewordenen Beispiele vergeblichen, ja das Ende der Kranken rasch herbeiführenden Luftröhrenschnittes bei Trachealstenose rechtfertigen es genügend, wenn wir die Unterscheidung dieses Zustandes von Laryngostenose als eine hochwichtige Frage bezeichneten und derselben hier eine kurze Besprechung gegönnt haben. Auch die Unterscheidung des dritten Stadiums hat ihre bestimmte Bedeutung. Alle operativen Eingriffe, so wie alle reizenden Mittel, namentlich die Anwendung des Jodes dürfen mit dem Beginne desselben als contraindicirt betrachtet werden.

II. Stand des Diaphragmas.

Wenn auch eigentlich keinen pathologischen Symptomencomplex, so bildet derselbe doch eine wichtige Vorfrage bei jeder Brustuntersuchung. Wir bezeichnen mit diesem Ausdrucke die durch die Inspection oder Percussion erkennbare Abgangslinie des Diaphragmas von der Brustwand, deren normalen, nahezu horizontalen Verlauf wir bereits früher in der Reihenfolge der verticalen Linien von vorne nach rückwärts an die sechste, siebente, neunte und eilfte Rippe verlegt haben. Hier wollen wir nur der Abänderung dieses Verlaufes durch Krankheiten gedenken. Nur unter krankhaften Verhältnissen kann derselbe durch die Inspection erkannt werden, entweder bei äusserster Abmagerung der Weichtheile an dem Wölbungsunterschiede der Intercostalräume ober- und unterhalb, oder bei Tiefstand des Zwerchfells an einer horizontalen, zwischen beiden Rippenbogen verlaufenden, auf- und absteigenden

Linie. Ausserdem wird der Stand des Zwerchfells bezeichnet durch den Unterschied des hellen Schalles der Lunge und des dumpfen der Leber und Milz. Wo diese Organe in hohem Grade atrophisch geworden sind, kann es vorkommen, dass auf der einen oder andern Seite lufthaltige Unterleibsorgane an dem äussern Winkel des Diaphragmas liegen. In diesem Falle wird der Unterschied zwischen dem nichttympanitischen Schall der Lunge und dem tympanitischen der genannten Organe, der mittelst leiser Percussion aufgesucht werden muss, die Grenze bezeichnen. Er bietet noch immer ein besseres Merkmal dar als die Verbreitung des vesiculären Athmens, das von Manchen hiefür benutzt wurde. Die Fortleitungsverhältnisse des letzteren sind solche, dass von der wirklichen Grenze an nur eine ganz allmähliche Abschwächung stattfindet. Wo die Lunge selbst in Folge von Verdichtung ihres Gewebes, namentlich bei Pneumonie der unteren Lappen, in der Nähe der Leber und Milz den gleichen dumpfen, leeren Schall gibt wie diese, versagt die Percussion jeden Aufschluss über den Stand des Zwerchfells. Den besten Ersatz für diesen Ausfall liefert die Prüfung der Stimmvibration, die in der Ausdehnung der verdichteten Lunge stark, an deren Grenze sehr rasch an Intensität abnimmt. Für die Stelle des Herzens kann nur dort der Stand des Zwerchfells direkt durch die Percussion bestimmt werden, wo der linke Leberlappen nicht bis zur Herzspitze hinreicht. Der Unterschied zwischen dem dumpfen Schalle des Herzens und dem tympanitischen des Magens ist dann maassgebend.

Für gewöhnlich ist der Stand des Zwerchfells ein mit dem Athmen beweglicher. — Un beweglicher Stand desselben ist unter allen jenen Zeichen, die man für die Erkennung von Verwachsungen beider Pleurablätter angeführt hat, das einzige sichere; kommt jedoch auch bei Krampf und Lähmung desselben in veränderter Höhe vor. Die Verwachsung des Lungenrandes erfolgt für gewöhnlich in normaler Stellung, hie und da auch mit Aus-

füllung des Complementärraumes.

Hochstand des Zwerchfells wird bedingt durch Schrumpfung der Lunge, Lähmung des Zwerchfells oder durch Geschwülste, Gas- oder Flüssigkeitsausdehnung des Unterleibes, kurz durch erhöhten Druck von unten her. Langsam sich entwickelnde Geschwülste des Unterleibes können aber auch durch gleichzeitige Erweiterung der Thoraxbasis den Stand des Zwerchfells unverändert lassen. Das beste Beispiel hiefür liefert die

Schwangerschaft. Man findet bei Hochschwangeren normalen Stand des Diaphragmas vor, aber kurz nach der Geburt Tiefstand, und einen im Verhältniss zur letzten Zeit der Schwangerschaft verminderten Thoraxumfang. Beweis genug, dass durch Erweiterung der Thoraxbasis das Zwerchfell so gespannt wurde, dass es trotz des erhöhten Druckes von der Unterleibshöhle her seinen normalen Stand beibehalten konnte. Lokalen Hochstand des Zwerchfelles bedingen umschriebene Geschwülste der Leber, Milz, der Niere und abgesackte Peritonealexsudate an der unteren Fläche des Diaphragmas. Beim Hochstand des Zwerchfelles finden sich nicht allein die Lungengrenzen höher gerückt, so dass sie z. B. in der Papillarlinie an der fünften Rippe zu treffen sind, sondern es findet sich dabei zugleich constant Hochstand des Herzstosses, etwa im dritten oder vierten Intercostalraum, verbreitete Herzbewegung und Vergrösserung der Herzdämpfung durch Andrängung des Herzens an die Brustwand; indem die nachgiebigeren mittleren Theile des Diaphragmas einen verhältnissmässig noch höheren Stand erlangen als die Seitentheile, wird zugleich unter seiner Kuppel mehr Raum gewonnen für die Aufnahme der Leber. Darum findet sich mit Hochstand des Diaphragmas constant relative Verkleinerung der Leberdämpfung vor. In den äussersten Fällen geht die Leberdämpfung und die in gleicher Richtung sich bewegende Dämpfung der Milz vollständig verloren.

Tiefstand des Diaphragmas wird durch verminderten Zug der Lunge, oder durch erhöhte Belastung erzeugt. Der erstere Fall ist vorzüglich bei Emphysem der Lunge gegeben, dessen wesentlicher Charakter im Elasticitätsverluste der Lunge gelegen ist. Man findet daher ausser dem cyanotischen Aussehen der Kranken, der weiten cylindrischen Form ihres Brustkorbes, der geringen Tiefe der Intercostalräume und Schlüsselbeingruben, und dem fruchtlos angestrengten Athmen den Stand des Diaphragmas um 1-3 Intercostalräume tiefer als normal, die Herzdämpfung klein oder in hochgradigen Fällen fast fehlend, Tiefstand und Schwäche des Herzstosses, der durch eine Lungenschicht hindurch gefühlt wird (in der gleichen vertikalen Linie wie normal), Pulsation des rechten Ventrikels im Epigastrium. Bei den asthmatischen Anfällen dieser Kranken sieht man gleichfalls wie bei Zuständen von Laryngostenose oder von Atelektase die Insertionslinie des Zwerchfelles sich einziehen. Die Diaphragmabewegung ist ausweislich der Percussion bei Emphysematikern vermindert; die theilweise

Erfüllung der Complementärräume und der Wölbungungsverlust des Zwerchfelles tragen Schuld hieran. Ein weiterer Fall, in dem Verminderung des Zuges der Lunge und zwar plötzlich entstehend, Tiefstand des Zwerchfelles bedingt, ist bei der Entstehung des Pneumothorax gegeben. Wir werden später von diesem zu sprechen haben. Erhöhte Belastung des Zwerchfelles wird durch Pleuraexsudate oder durch Pyopneumothorax, gewöhnlich halbseitig, geliefert. Der Tiefstand des Zwerchfelles ist aber in diesen Fällen seinem Grade nach nur undeutlich erkennbar, weil der Schall der oberhalb desselben gelagerten Flüssigkeit sich von jenem der Leber und Milz nicht unterscheidet. Somit kann in diesen Fällen ein scheinbarer Hochstand des Zwerchfelles angenommen werden. Am leichtesten ist diese Verwechslung bei Pyopneumothorax zu vermeiden, wo die Flüssigkeit, frei beweglich, mit jeder Körperlage ihre Grenze ändert. Pleuraexsudate ändern nur binnen längerer Zeit sehr allmählig ihre Grenze, aber sie stehen an der Rückenfläche höher als vorn, während das Zwerchfell horizontal verläuft, und fallen nach vorne in wellenförmig gebogener Linie ab. Sie gehen einher mit Erweitertsein der Seite und verminderter Bewegung der

Intercostalräume, die beim blossen Hochstande des Zwerchfelles normal sich bewegen; sie verdrängen das Herz aus der Mittellinie nach der entgegengesetzten Seite; sie verleihen endlich der Leber eine schiefe, nur auf einer Seite tiefere Stellung. Aus diesen Zeichen wird man den scheinbaren Hochstand des Zwerchfelles bei Flüssigkeitsergüssen einer Brusthälfte erkennen und thatsächlich als Tiefstand auffassen. Auch Krampf des Zwerchfells bedingt allgemeinen Tiefstand desselben, ebenso wie eine tiefe Inspiration. Bei asthmatischen Anfällen verdient die Bestimmung und der vergrösserten Herzdämpfung bei des Zwerchfellstandes die sorgfältigste Berücksichtigung, seitdem D Stand des Diaphragma's, U untere Leberdie Untersuchungen von Wintrich und Bamberger eine leicht

Fig. 17. Wechsel des Diaphragmastandes Tricuspidalinsufficienz vor und nach der Punction des Ascites. H Herzdämpfung, grenze, sämmtlich vor der Punction. P H Herzdämpfung, P D Stand des Diaphragma's nach der Punction.

erkennbare Ursache dieser Anfälle in der spastischen Contraktur des Zwerchfelles nachgewiesen haben. Lokaler Tiefstand wird z. B. durch Herzhypertrophie bedingt, und für diesen Fall aus der Lage des Herzstosses erkannt. Er kann dann ferner in der Herzgegend durch Flüssigkeitserguss im Herzbeutel, an anderen Stellen durch abgesackte Exsudate, Tumoren, vielleicht auch durch den Zug adhärenter Unterleibsorgane bewirkt werden.

III. Flüssigkeitserguss im Pleurasack.

Gewöhnlich erfolgen solche Ergüsse, wenn sie entzündlicher Natur sind, halbseitig, wenn sie auf Transsudation beruhen, doppelseitig. Im ersteren Falle sind sie gleichzeitig von den örtlichen Entzündungserscheinungen und von fieberhaften Störungen des Allgemeinbefindens begleitet. Im andern Falle treffen sie häufig mit verbreiteter Neigung zu wässrigen Ausscheidungen zusammen. Wesentliche Unterschiede ihrer physikalischen Zeichen hängen davon ab, ob sie frei erfolgen oder in einem vorher durch Pleuraverwachsungen abgesackten Raume. Setzen wir den ersteren Fall, der auch weitaus der häufigere ist, und nehmen wir einen halbseitigen Flüssigkeitserguss als vorliegend an, so gestaltet sich der Mechanismus desselben in folgender Weise. Die Flüssigkeit sammelt sich ihrer Schwere folgend in den hintersten untersten Theilen des Pleurasackes zuerst an, und verbreitet sich von da aus allmählig bei ihrer Zunahme nach vorne und oben; da sie einen Theil des Pleurasackes ausfüllt, gestattet sie einem entsprechenden Theil der Lunge sich in den Zustand der einfachen Retraction zu begeben, also in denjenigen Zustand, den die ganze Lunge bei Eröffnung des Brustkorbes annimmt.

Sobald jedoch etwa so viel Erguss sich angesammelt hat, dass er die ganze obere Fläche des Zwerchfelles bedeckt, beginnt derselbe in merklicher Weise Druckwirkung auszuüben. Insofern diese nach abwärts gerichtet ist, drängt sie das Zwerchfell aus seiner Lage, vermindert seine Wölbung und verleiht dem betreffenden Theil der Leber, linkerseits auch der Milz eine tiefere Stellung. Nehmen wir an, dass der Erguss rechtsseitig erfolge, so wird die Leber nicht nur tiefer gestellt, sondern auch in eine schiefe Stellung gebracht, rechts tiefer als links, und ausserdem, da die Wölbung des Zwerchfelles sich mindert, mit einem grösseren Theil ihrer convexen Fläche unter der Bedeckung des Zwerchfelles hervorgedrängt. Die seitliche Druckwirkung des Pleuraexsudates

erstreckt sich vorzüglich auf das Herz, das mit den einschliessenden Laminae mediastini gegen die gesunde Seite herübergerückt

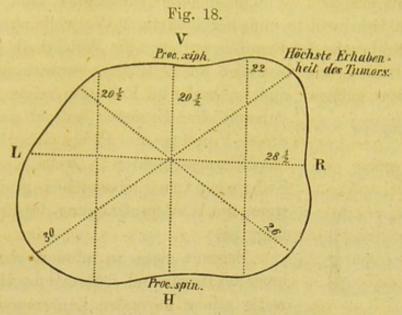


Fig. 18. Rechtsseitiger pleuritischer Erguss. Durchbrechung der Costalpleura, subcutaner Abscess in der Gegend der 7ten rechten Rippe. Cyrtometercurve.

wird, und zwar in der gleichen Richtung in der es gelagert war, nur selten mit geringer Drehung seiner Längsaxe. Gleichzeitig wird auch die Brustwand durch den seitlichen Druck des Exsudates betroffen, die leidende Seite wird erweitert, die Intercostalräume werden weniger concav, die Brustwand wird gespannt und dadurch weniger fähig sich an der Athmungsbewegung zu betheiligen, die Intercostalmuskeln, welche unter dem Flüssigkeitsspiegel liegen, werden gelähmt und zur Bewegung unfähig. Wenn die Flüssigkeit mehr und mehr zunimmt, übt sie zugleich nach oben auf die Lunge einen beträchtlichen Druck aus, der beim Husten und bei ähnlichen forcirten Exspirationsbewegungen sich steigert und die Lunge, welche Anfangs auf dem Exsudate schwamm, von unten her luftleer zu machen beginnt. Diese taucht nun theils in das Exsudat unter, theils auch wird sie nach hinten und oben in die Schulterblattgegend geschoben, wo sie, wenn das Exsudat die ganze Seite erfüllt, erweitert und auf Kosten der gesunden Seite ausgedehnt hat, am häufigsten in Form eines bandartigen dünnen Streifes angetroffen wird. Lagerung der comprimirten Lunge vorne, innen oder an der Seitenwand wird möglicherweise durch frühere Adhäsionen daselbst bedingt.

Steigert sich die Spannung der Flüssigkeit noch mehr, und erlangt dieselbe zugleich anätzende Eigenschaften, so kann ein

Durchbruch derselben durch die Weichtheile der Brustwand nach aussen, durch das Zwerchfell, das Pericard, durch die Pleura pulmonalis erfolgen. Von besonderer Wichtigkeit sind jene fluctuirenden Geschwülste und hernienartigen Vorwölbungen, welche beim Durchbruche des Ergusses zwischen die Weichtheile der Brustwand entstehen, und bisweilen am Lebenden, wenn sie in der Nähe des Herzens gelagert sind, mitgetheilte Pulsation zeigen. Bei den

folgt ist.

entzündlichen Ergüssen bedeckt sich während

dieser Vorgänge die Pleura allenthalben mit Verdickungsschichten, welche später in Schrumpfung einzugehen geeignet sind, wenn die Wiederaufsaugung des Ergusses er-

Beginnt diese, so mindert sich die Wöl-

bung der Brustwand, während das Herz gleichzeitig seiner normalen Lagerungsstätte sich

wieder zu nähern pflegt. Zwerchfell und Le-

ber kommen höher zu stehen, die Lunge selbst

wird nach und nach von den zuletzt com-

dem Fortschreiten der Wiederaufsaugung be-

Fig. 19.

Fig. 19. In Resorption begriffenes linksseitiges Pleuraexsudat. Cyrtometercurve 6 Ctm. vom jederseitigen Sternalrande und von der Wirbelsäule ab genommen. Die primirten Partien aus wieder lufthältig. Mit schraffirte Linie entspricht der linken, die glatte der rechten seite. 1/8 natürlicher ginnt zugleich die Schrumpfung der auf der Grösse.

Pleura aufgelagerten Verdickungsschichten. Bewirkt schon diese bei ihrem Fortschreiten eine Verkleinerung der zuvor ausgedehnt gewesenen Brusthälfte, so kommt diesem Vorgange noch ferner die unvollständige Wiederausdehnung der

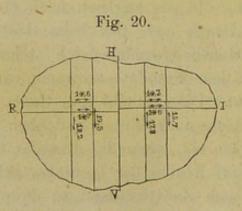


Fig. 20. Dasselbe wie Fig. 19. Cyrtometercurve horizontal über die Papillen.

Lunge zu Statten. Die luftleer gewordenen Theile derselben nehmen theils gar nicht, theils nur sehr langsam wieder Luft auf, gleichzeitig aber wird die zwischen Lunge und Brustwand gelegene Flüssigkeit resorbirt, der äussere Luftdruck bringt in Folge davon die Brustwand zum Einsinken. So kann denn am Schlusse des Processes gerade das umgekehrte Ver-

halten aller Organe vorhanden sein, wie im Beginne desselben: eingesunkene Brustwand, hochstehendes Zwerchfell, kleine Leberdämpfung, das Herz in die kranke Seite hereingezogen.

Betrachten wir nun die Zeichen, die diesen Vorgängen entsprechen, so finden wir im Beginne die Form der Brustwand noch unverändert, das Athmen theils wegen des Schmerzes, theils wegen der Verminderung der respiratorischen Oberfläche beschleunigt, und von geringerer Ausdehnung des unteren Theiles der leidenden Seite begleitet, alle Percussionsverhältnisse an der vorderen Fläche der Brustwand normal, dagegen hinten neben der Wirbelsäule auf der leidenden Seite die untere Grenze des hellen Schalles der Lunge um einen oder einige Finger breit höher stehend, als auf der andern. Diese Percussionsdämpfung reicht kaum bis zur Scapularlinie hin und ist mit Abschwächung des vesiculären Athmens verbunden, das nur fortgeleitet von den benachbarten Partien der Lunge her gehört wird. Auch der Pectoralfremitus ist in der gleichen Ausdehnung abgeschwächt. Diese letzteren Erscheinungen jedoch werden erst recht deutlich, wenn das Exsudat etwas massenhafter geworden ist, wenn z. B. eine handbreite, von oben nach abwärts an Intensität zunehmende Percussionsdämpfung vorhanden ist, die nach vorne sich allmählig senkend, etwa bis zur Axillarlinie hinreicht. Bei weiterer Zunahme des Ergusses gelingt es wohl immer, manchmal auch schon bei dieser Grösse desselben, zwischen Schlüsselbein und Brustwarze derselben Seite einen leicht tympanitischen Beiklang des Percussionsschalles zu erkennen, der von dem verminderten Luftgehalt der Lunge herrührt und von Ungeübten nicht selten dahin gedeutet wird, dass der Percussionsschall dieser Seite voller sei. Hieran kann man bisweilen, noch ehe der Kranke sich aufgesetzt hat, die leidende Seite erkennen. Im weiteren Verlaufe findet man dann, dass in manchen Fällen der dumpfe, durch die Anlagerung der Flüssigkeit veranlasste Schall an der Rückseite auffallend hoch steigt, ohne vorne bemerklich zu werden, in andern Fällen wiederum sich mit nahezu horizontaler Begrenzung rings um die leidende Seite verbreitet. Dieser Unterschied ist hauptsächlich davon abhängig, ob die Kranken während der Entstehung des Ergusses fortwährend zu Bette liegen oder herumgehen. Man findet ferner, dass in einem Theil der Fälle die obere Grenze der Percussionsdämpfung bei tiefem Einathmen sich etwas senkt, in andern unverändert bleibt, ein Unterschied, der von der frühzeitigen Bildung von Verwachsungen in der Umgebung des Ergusses abhängig ist, und für das etwaige operative Vorgehen von Bedeutung sein kann. Die Grenzlinie der

Percussionsdämpfung ist keine ganz geradlinige, sondern wie Damoiseau zeigte, eine in der Seitengegend des Brustkorbes mehrfach wellenförmig gekrümmte. Ich finde keinen anderen Grund für diese Curven der Dämpfungsgrenze als die in Folge der Muskelinsertionen ungleichmässige Dicke der Brustwand. Während Anfangs in der vollen Ausdehnung der Percussionsdämpfung das Athmungsgeräusch als vesiculäres, wenn auch abgeschwächt zu hören war, verliert es sich später an den hintern untern Theilen derselben vollständig, und wird an den obern Theilen ein schwach bronchiales. Es wird bronchial, weil die Bronchien von luftleerem Lungengewebe umgeben werden, schwach bronchial, weil zwischen Lungengewebe und Brustwand eine dünne, reflektirende Flüssigkeitsschicht gelagert bleibt. Die Stimmvibration wird durch mächtige Flüssigkeitsschichten völlig aufgehoben, pflegt sich aber oberhalb derselben, wo die comprimirte Lunge gelagert ist, verstärkt zu finden. Ist das Exsudat dahin gelangt, die ganze Zwerch-

Fig. 21.

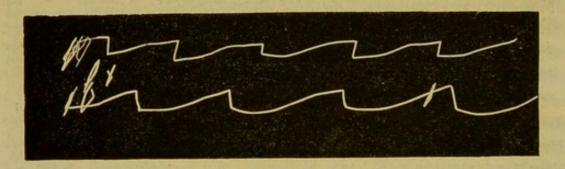


Fig. 22.

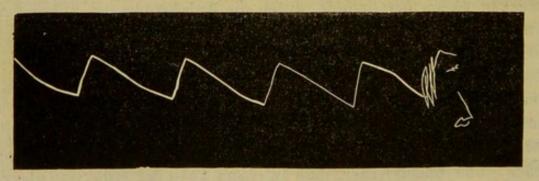


Fig. 21 u. 22. Stethographische Curven von der seitlichen Bauchwand (Höhe des Nabels) von einem Manne mit grossem Pleuraexsudate. Fig. 21 von der kranken, und Fig. 22 von der gesunden Seite, erstere bei ruhigem und angestrengtem, letztere nur bei ruhigem Athmen.

fellsfläche zu bedecken, so finden sich auch andere Zeichen bei der Inspection vor. Die ganze Brusthälfte erscheint erweitert, die

Intercostalräume sind weniger tief, die untere Hälfte der Seite bewegt sich nicht mehr, die obere in gewöhnlicher Weise oder in erhöhtem Maasse. Der Herzstoss ist nach der gesunden Seite zu von seiner Stelle gewichen, bisweilen auch tiefer stehend. In dieser Beziehung macht die erkrankte Seite einen wesentlichen Unterschied; linksseitige Ergüsse verdrängen das Herz weit leichter nach rechts, als rechtsseitige nach links. Die Intercostalräume zeigen, so weit sie im Bereiche des Exsudates liegen, keine respiratorische Bewegung. Duchenne hat gezeigt, dass bisweilen auch das Diaphragma seine Contractilität halbseitig verliert, und dass diese Zwerchfellslähmung sich durch inspiratorische Einziehung längs der Insertionslinie des Diaphragma's zu erkennen gibt. Bei Exsudaten dieser Grösse kommt auch häufig eine sehr auffällige, jedoch nicht charakteristische Erscheinung vorübergehend zur Beobachtung, die Aegophonie, der zitternde Wiederhall der Stimme des Kranken. Sie findet sich am meisten zwischen Scapular- und Axillarlinie, und verschwindet rasch mit dem Steigen oder Fallen des Ergusses. Je grösser dieser wird, desto deutlicher wird auch vorn oben der tympanitische Percussionsschall, bis auch diese Stelle von Flüssigkeit eingenommen wird. Bisweilen kommt es vorher noch zu einer eigenthümlichen Erscheinung, nämlich bei sehr biegsamer Brustwand zur Entstehung des Geräusches des gesprungenen Topfes bei starker Percussion unterhalb des Schlüsselbeins. Noch seltener, wenn die luftleere Lunge nach vorne und oben gedrängt ist, wird daselbst tympanitischer Percussionsschall gehört mit der Eigenschaft, beim Oeffnen und Schliessen des Mundes seine Höhe zu wechseln. Er entsteht in dieser Weise, wo grössere Bronchien, der Hauptbronchus dieser Seite oder die Trachea durch die Percussionserschütterung getroffen werden. (Trachealton von Williams.) Je grösser das Exsudat, desto weiter reicht die Leberdämpfung nach abwärts, auch ohne dass ihr Umfang sich irgend vergrössert hat.

Die Erkennung kleiner Flüssigkeitsergüsse ist namentlich dort, wo sie entzündlicher Natur sind, von der grössten praktischen Bedeutung, denn eine eingreifende Therapie ist in früher Zeit entschieden wirksam, aber sehr vielen dieser Fälle gelingt es unter dem Schutze eines strengen Incognito's oder mittelst der Namen Catarrhfieber, Grippe, Gastricismus sich bis zu solcher Grösse emporzuarbeiten, dass ihre Existenz auf mehrere Monate gegen die Angriffe der Therapie gesichert erscheint. Viele Pleuraexsudate

gehören zu dem Gefolge mächtiger Brustkrankheiten, und sind desshalb für die Therapie schwer zu erreichen, ausserdem aber können sie, so lange sie erst 2—3 Querfinger hoch sind, ziemlich sicher in acht Tagen beseitigt werden, während so bald sie die Mitte des Schulterblattes überschritten haben, sich nicht mehr voraussagen lässt, ob ihre Dauer nach Wochen oder Monaten zu rechnen sein wird, wie schwere Nachkrankheiten sie hinterlassen.

Ist das Exsudat erkannt und zu einer gewissen Höhe gelangt, so ist es von ähnlicher praktischer Bedeutung den Moment zu bestimmen, in dem es rückgängig zu werden beginnt. Nicht immer sind es die gleichen Symptome, welche diesen Zeitpunkt kennzeichnen, zumeist wird zuerst eine Abnahme der Percussionsdämpfung an ihrer oberen Grenze bemerkt; aber diese kann auch, wo Verwachsungen um dem Exsudatraum sich gebildet haben, trotz der beginnenden Resorption unverändert bleiben, dann ist es bald Abnahme der Wölbung der Brust, bald Herauftreten der Leberdämpfung, rückgängige Bewegung des Herzstosses, bald auch Verminderung des Bronchialathmens oder der Aegophonie, welche diesen Vorgang ankündigt. Alle Erscheinungen kommen dann in der Weise, in der sie entstanden waren, zum Rückgange; die meisten schlagen in die entgegengesetzten über. So wird die vorher gewölbte Brustwand enger, das Diaphragma höher hinaufgezogen, die Intercostalräume werden tiefer; gleichzeitig beugt sich die Wirbelsäule nach der gesunden Seite aus und tritt die Schulter herab: allseitige Verengerung der leidenden Seite.

Nach grossen Exsudaten bleibt das Herz bisweilen, durch Verwachsungen genöthigt, an der Stelle liegen, an der es dislocirt war, gewöhnlich wird es in die schrumpfende Seite hereingezogen, doch kann es auch am Schlusse des Processes seine normale Stellung wieder einnehmen. Sowohl ungewöhnlich geringe, als ungewöhnlich grosse Beweglichkeit des Herzens kann in Folge solcher Ergüsse beobachtet werden.

Auch ohne dass Flüssigkeit oder mörtelähnliche Massen zurückgeblieben sind, bleibt der Percussionsschall nach Ablauf des Processes hinten und unten gedämpft und die Stimmvibration oft noch Jahre lang vermindert; beides wegen der Verdickung der zusammengeschobenen Weichtheile. Andererseits kann auch nach langer Dauer der Erkrankung noch reichliche Flüssigkeit im Brustkorb enthalten sein. Ist derselbe gleichzeitig erweitert, so fällt die Erkennung nicht schwer; aber es findet sich keineswegs in der

Mehrzahl der Fälle bei chronischer Pleuritis dauernde Erweiterung der Seite. Häufig ist der Brustkorb verengt, und doch noch eine grössere oder geringere Quantität von Flüssigkeit vor-

handen. Bedeckt diese das ganze Zwerchfell, so ist aus der Form der Percussionsdämpfung, dem Mangel der Stimmvibration, des Athmungsgeräusches und der Bewegung der Intercostalmuskeln der Zustand leicht zu erkennen. Ist dagegen nur eine geringe Menge von Flüssigkeit in einem cystenartigen Raum zwischen neugebildeten Faserstoff- und Bindegewebslagen abgesackt, so vermag weder die Form der Percussionsdämpfung, noch Fig. 23. Cyrtometercurve von abirgend eines der übrigen erwähnten Kenn- gelaufener Pleuritis mit Fistelbilzeichen die Diagnose sicher zu stellen.

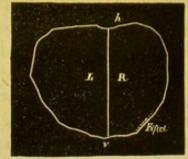


Fig. 23.

Die dritte Art des Vorkommens chronischer Pleuritis, die in Verbindung mit einer dauernden Pleurafistel, liefert sehr prägnante Kennzeichen. Die Fistel lässt entweder andauernd eine geringe Quantität von Flüssigkeit sich entleeren, oder sie schliesst sich zeitweise, um dann zu reichlicherem Ausflusse sich wieder zu öffnen. Diesen zeitweisen Entleerungen gehen erhöhte Frequenz der Athembewegungen, Dyspnoe, Steigen der Percussionsdämpfung und etwas stärkere Ausdehnung der leidenden Seite voraus. Erfolgt die Entleerung im Strahl, so verstärkt sich derselbe während der Exspiration. Gegen Ende treten hie und da unter Glucksen Luftblasen während der Inspiration in die Brust ein. Nach einer ausgiebigen Entleerung ist der Brustumfang kleiner, die Percussionsdämpfung des Exsudates vermindert, dem entsprechend Vesiculärathmen und Pectoralfremitus wieder in grösserer Ausdehnung vorhanden; bisweilen schwindet danach zuvor vorhandenes Bronchialathmen oder klingendes Rasseln, und insofern nach der Entleerung der Flüssigkeit rauhe Flächen mit einander in Berührung kommen, kann pleuritisches Reiben entstehen.

Wird ein Flüssigkeitserguss im Pleurasack während seines Bestandes durch Verwachsungen abgesackt, so werden seine Grenzen für den Act der Respiration unbeweglich, aber sie behalten die normalen Umrisse, welche den Ergüssen im Pleurasacke zukommen. Wird dagegen ein solcher Erguss in einen durch frühere Verwachsungen um-

grenzten Raum abgesetzt, so ist er an die, wenn auch noch so unregelmässigen Formen dieses Raumes gebunden, und gelangt nur selten dazu auf dem Wege der Durchbrechung dieser Verwachsungen sich in einen freien Erguss umzuwandeln. Wo immer an der Brustwand intensive Dämpfung des Percussionsschalles, andauernde Abschwächung der Stimmvibration und des Vesiculärathmens, ferner Abschwächung der Bewegung der Intercostalmuskeln und, wenn der Bereich dieser Veränderungen umfangreich ist, Vorwölbung der Brustwand sich finden, da ist der Verdacht eines abgesackten Pleuraexsudates gerechtfertigt. Schliesst sich ein solches an die Dämpfung der Leber, oder der Milz, oder des Herzens, oder bei Kindern an die Dämpfung der Thymus an, so ist seine Erkennung sehr erschwert. Wir wollen gleich hier erwähnen, dass eine nach oben sich vorwölbende linksseitige Hydronephrose völlig dieselben Symptome liefern kann, wie ein links hinten unten abgesacktes Pleuraexsudat; dass ferner dem Diaphragma anhaftende umschriebene Peritonealexsudate die gleichen Zeichen liefern, wie ein abgesacktes Pleuraexsudat. Oberhalb des Herzbeutels zwischen zweiter und vierter Rippe abgesackte Exsudate können bei Kindern für die Thymus der Form der Dämpfung wegen gehalten, oder auch durch die vergrösserte, abnorm lange persistente Thymus nachgetäuscht werden.

IV. Luft im Pleurasack.

Der Eintritt elastischer Flüssigkeit in den Pleurasack erfolgt von der Brustwand aus durch perforirende Wunden, Fisteln oder Punctionsöffnungen; von der Lunge aus durch Durchbruch nekrotischer oder verdünnter Stellen der Pleura (Tuberkulose, Abscess, Gangrän, Emphysem), oder durch innere Verletzung der sonst gesunden Pleura (Knochensplitter bei Rippenbrüchen) vom Oesophagus, Magen oder Darm her durch fistulöse Geschwüre; von der Trachea oder einem Bronchus aus durch Zerreissung derselben, oder doppelte Perforation von Bronchialdrüsen. Ausserdem kann sich aus jauchigen Flüssigkeiten im Pleurasacke Gas in spontaner Weise entwickeln.

Ist eine Oeffnung in der Brustwand, der Pleura costalis, oder einem andern der erwähnten lufthältigen Organe nach dem Pleurasack zu entstanden, so wird bei der nächsten Inspiration die Lunge der Erweiterung der Brusthälfte nicht folgen, sie wird sich im Gegentheil ihrem elastischen Zuge entsprechend von der Brustwand

entfernen, und der durch die Verkleinerung der Lunge frei werdende Raum wird durch Luft, die in den Pleurasack strömt, ausgefüllt werden. Ist diess während einer Inspiration geschehen, so wird bei der Exspiration die ausgetretene Luft, und mittelst derselben die Lunge einen Druck erfahren, durch dessen öftere Wiederholung sie mehr und mehr verkleinert und schliesslich in luftleeren Zustand versetzt wird. Derselbe Druck wird allmählig das Diaphragma nach abwärts, das Mediastinum nach der andern Seite drängen, und es wird schliesslich die Luft im Pleurasack einen Grad von Spannung erreichen, durch den sie die Brustwand ausgedehnt erhält, und ihr nicht mehr gestattet einen geringeren, als den inspiratorischen Umfang anzunehmen. Diess Alles, vorausgesetzt, dass nicht Verwachsungen beider Pleurablätter den entstehenden Luftraum zu einem sehr beschränkten machen. Die zu Grunde liegenden Verletzungen, die häufig mit eintretenden zersetzten Flüssigkeiten bedingen es, dass man in der Mehrzahl der Fälle gleichzeitig einen Erguss tropfbarer Flüssigkeit mit vorfindet (Pyopneumothorax, Pneumopyothorax). Die Compression der Lunge durch die Luft führt gewöhnlich, aber nicht immer bei dem von der Pleura pulmonalis her entstandenen Pneumothorax, zur baldigen Wiederverschliessung des Pleurarisses, so dass ein Pneumothorax mit andauernder Communication mit den Luftwegen als Ausnahme betrachtet werden darf. Physikalisch diagnostisch haben wir daher zu betrachten: 1) Freien Erguss von Luft und Flüssigkeit in den Pleurasack bei wiederverschlossener Fistel. 2) Freien Erguss von Luft und Flüssigkeit mit offener Fistel. 3) Abgesackten Pneumothorax. 4) Reinen Pneumothorax (nur Luft im Pleurasack).

Die Entstehung dieser Krankheitsform ist, wenn sie durch Ruptur veranlasst wird, für den Kranken gewöhnlich ein erschütternder Moment, der durch plötzlichen Schmerz in der Brust, das Gefühl einer inneren Zerreissung und plötzlich entstehende Dyspnoe bezeichnet wird. Letztere verursacht sofort eine äusserst beschleunigte und angestrengte Respirationsweise; der Puls wird klein und frequent, die Haut blass. Für den Anfang besteht das Bedürfniss in aufrechter Stellung zu athmen, erst später wird die Lage auf der kranken Seite, oder nach der kranken Seite geneigt die erträgliche. Die Untersuchung zeigt die leidende Seite stark ausgedehnt, oft um 6-8 Ctm. an Umfang die andere übertreffend, die

Intercostalräume verstrichen oder vorgewölbt, die Athembewegung dieser Seite aufgehoben, die der andern Seite um so energischer. Die Percussion ergibt beim Liegen in den vorderen, beim Stehen in den oberen Theilen der kranken Seite einen dumpfen (wegen der Spannung der Brustwand) und zugleich metallisch klingenden Schall. Dieser Metallklang bei der Percussion wird häufig nur bei sehr genähertem Ohr, bisweilen nur bei direkter Percussionsauscultation gehört. Er beruht auf dem Hervortreten hoher Obertöne neben dem tiefen tympanitischen Schalle des Luftraumes. Damit stimmt die schöne Erfahrung von O. Heubner, dass durch Erzeugung eines klirrenden Schalles beim Percutiren (z. B. Metall gegen Elfenbein) der gewöhnliche tympanitische Schall gar nicht, dagegen um so deutlicher das »reine Tintement métallique« gehört werde. Hier werden neben dem resonirenden Luftraume überwiegend dessen höhere Obertöne, nicht sein Grundton hervorgerufen. Er wechselt seine Höhe nicht beim Oeffnen und Schliessen des Mundes, wohl aber beim Aufsitzen oder Niederliegen des Kranken; der Metallklang ist nach abwärts begrenzt durch den dumpfen Schall der im Stehen auf dem Diaphragma, im Liegen auf der hinteren Brustwand gelagerten, völlig frei beweglichen Flüssigkeit; indem diese, je nach ihrer Lagerung, den grössten Durchmesser des Luftraumes verkürzt oder nicht verkürzt, bedingt sie den erwähnten Unterschied des Percussionsschalles beim Sitzen oder Liegen. Die Percussion der Leber erweist diese noch tiefer herabreichend, noch mehr diagonal gestellt, als diess schon bei pleuritischen Exsudaten stattfindet. Das Herz ist stets verdrängt nach der gesunden Seite hin, häufiger etwas nach abwärts, und dem entsprechend sind sein Stoss und seine Dämpfung dislocirt. Die Auscultation ergibt schon auf die Entfernung hin ein Zeichen, das gleichfalls von der freien Beweglichkeit der Flüssigkeit abhängig ist, ein beim Schütteln oder raschen Umdrehen des Kranken entstehendes plätscherndes Geräusch (Succussio Hippokratis). Bei der direkten Auscultation kann diese, wo sie zuvor fehlte, noch erkennbar werden. Ferner werden bei dieser wahrgenommen amphorischer Widerhall des Athmens, Metallklang des Athmens und metallisch klingende Rasselgeräusche. Diese sogenannten metallischen Phänomene wechseln ihre Schallhöhe mit veränderter Körperstellung.

Biermer hat diesen Gegenstand durch sehr eingehende Untersuchungen ins Klare gebracht und gezeigt, dass der Metallklang

eines pneumothoracischen Raumes beim Stehen um mehrere Töne tiefer wird, als er beim Liegen war. Als Grund hiefür ist eine Verlängerung des Luftraumes durch den Druck der Flüssigkeit auf das Diaphragma im Stehen anzusehen. Schwieriger zu erklären ist die gleichfalls von Biermer aufgefundene Thatsache, dass der gewöhnlich stärkere inspiratorische Metallklang höher ist, als jener, der die Exspiration begleitet.

In einzelnen Fällen finden sich auch plätschernde, metallklingende Rasselgeräusche, die durch die Herzbewegung hervorgerufen werden und an den Rhythmus derselben gebunden sind. Der Percussionsschall kann bei abgesacktem Pneumothorax neben dem Herzen mit der Systole und Diastole seine Höhe ändern. Je bedeutender die Spannung der Brustwand, um so schwächer der Pectoralfremitus. Stets ist derselbe schwächer als auf der gesunden Seite; häufig ganz aufgehoben. Während sonst Pleuraexsudate ihre Grenzen durch den Bereich des abgeschwächten Pectoralfremitus zu erkennen geben, lässt sich die den Pneumothorax begleitende Flüssigkeit auf diese Weise nicht abgrenzen; nur die Percussion gibt Aufschluss über ihren Stand, aber in ungenauer Weise, weil an ihrer oberen Grenze der Metallklang noch eine Strecke weit herabreicht, ihre untere Grenze aber von der Dämpfung der Leber, der Milz, oder der Niere nicht unterschieden werden kann.

Von den zahlreichen auffälligen Erscheinungen, die der Pneumothorax liefert, kann keine einzige als absolut charakteristisch bezeichnet werden; namentlich aber muss gewarnt werden, aus dem percutorischen oder auscultatorischen Metallklang allein auf das Vorliegen dieses Zustandes schliessen zu wollen. Selbst die Succussio Hippokratis kommt nach dem Zeugniss von Lännec, Weber und vielen Andern bei grossen Cavernen dünnflüssigen Inhaltes gleichfalls vor. Auch der Höhenwechsel des Metallklangs beim Sitzen und Liegen, auf den neuerdings so grosses Gewicht gelegt wurde, kann bei Cavernen beobachtet werden, freilich nicht bei den nächsten besten Cavernen von Phthisikern, wohl aber bei recht grossen bronchektatischen oder gangränösen. Zu voller Sicherheit gelangt die Diagnose nur dann, wenn neben diesen metallischen Phaenomenen und der Succussio Hippokratis noch die Erweiterung der Brusthälfte, die Vorwölbung der Intercostalräume, die Verdrängung der benachbarten Organe und die Verminderung des Pectoralfremitus beobachtet werden. Tritt daher Pneumothorax

in einer ohnehin schon verengten Brusthälfte ein, so wird die Diagnose minder sicher sein, wenn nicht der Moment des Eintrittes in charakteristischer Weise verlief, an der noch verengten Brusthälfte eine Erweiterung im Vergleiche zu früher nachgewiesen werden kann, oder der rasche Wechsel der Auscultations- und Percussionserscheinungen den Ausschlag gab.

2) Bleibt die Communikationsöffnung in der Pleura costalis oder in der Brustwand offen, so kommen einige Modifikationen der beschriebenen Erscheinungen und einige völlig andere Symptome zu Stande. Das Offenbleiben der Fistel in der Costalpleura hat bei freiem Pneumothorax in der Regel eine schon anfänglich bedeutende Grösse derselben zum Grunde, so nach ausgebreiteter Gangrän einer dünnen Cavernenwand oder Gangrän der Pleura. Bei den seltneren Ursachen des Pneumothorax, Ruptur der Trachea oder eines Bronchus oder Perforation des Diaphragma's vom Magen her, darf es wohl als Regel betrachtet werden. In diesem Falle wird weder die Compression der Lunge eine complete, noch auch die Spannung der intrapleuralen Luft eine sehr bedeutende werden. - Letztere wird dem Druck der Atmosphäre völlig gleich sein. Dem entsprechend fällt auch die Erweiterung der Brusthälfte, die Vorwölbung der Intercostalräume, die Verdrängung des Herzens und der Leber geringer aus. Der Percussionsschall wird bei geöffnetem Munde des Kranken deutlicher als metallischer erkannt und zugleich höher als zuvor. Wenigstens ist ein Wechsel der Höhe des Schalles in dem Falle sicher vorhanden, wenn die Communikationsöffnung eine weite ist, nicht unter dem Flüssigkeitsniveau sich befindet, und wenn der zuführende Bronchus wegsam ist. Hier kann dann der Schall beim Oeffnen des Mundes um mehrere Töne höher werden, während bei sehr feiner Fistelöffnung der Unterschied ein sehr geringer sein kann. Besteht als Quelle des Pneumothorax eine Brustwunde, so wird beim Schliessen derselben der metallische Percussionsschall tiefer werden. An einer solchen Wunde zeigt dann auch die bekannte Erscheinung, dass beim Husten die Lunge hervorgebläht werden kann, auf's Deutlichste, dass bei fortbestehender Communikation eine hochgradige Compression der Lunge unmöglich wird. Bleibt die Höhe des Metallklanges annähernd gleich, so spricht diess eher gegen eine Fistel, nimmt dieselbe während mehrerer Tage andauernd ab, so zeigt diess noch fortbestehende Communikation, zunächst Vergrösserung des Luftraumes an. Ausser diesen

eigentlich physikalischen Zeichen können sich auch noch wichtige Anhaltspunkte für die Diagnose des Offenstehens der Fistel aus den Verhältnissen der Expectoration ergeben. Treten jedesmal bei der Lage des Kranken auf der gesunden Seite, oder bei einer bestimmten Wendung desselben, die den Flüssigkeitsspiegel über die Fistel sich erheben macht, heftige Hustanfälle mit wahrer Ueberschwemmung der Luftwege des Kranken durch dünne, eitrige Flüssigkeit ein, so kann diess als beweisendes Zeichen betrachtet werden. Finden sich im Auswurfe Bestandtheile, die ein Pleuraexsudat charakterisiren, z. B. Faserstoffflocken, Cholesterinkrystalle u. dgl. m. vor, so hat diess eine ähnliche Bedeutung. Der Hauptsache nach ist es wichtig zu berücksichtigen, dass in diesem besprochenen Falle der Wechsel der Höhe des Percussionsschalles nicht allein bei Lageveränderung des Kranken, sondern auch sonst, wie nur bei Cavernen, beim Oeffnen und Schliessen des Mundes beobachtet wird. Wo eine Communikation sich erst wieder herstellt, demnach die höhere Spannung der Luft sich ausgleicht, kann man auch deutlich bemerken, wie mit der Abnahme der Spannung der Brustwand die Stimmvibrationen wieder stärker werden.

Bestehen zwei Fisteln, eine der Pleura pulmonalis und eine der Brustwand, so ist die Diagnose der ersteren sehr leicht. Man lasse den Kranken möglichst tief exspiriren, schliesse sodann die Fistel mit der befeuchteten flachen Hand luftdicht, lasse tief ein- und ausathmen, und entferne gegen Ende der Exspiration langsam die Hand. Man wird dann wahrnehmen, dass, während sie sich abhebt, ein starker Luftstrom der Fistel entweicht. Noch leichter lässt sich diess mittelst eines Manometers, den man luftdicht aufklebt, erweisen. Ein solcher Kranker zeigte bis zu 12 Mm. Inspirations- und 24 Mm. Exspirationsdruck, athmete 230 Cc. Luft durch die Fistel aus, und letztere enthielt weniger Kohlensäure als die Exspirationsluft Gesunder, während die pneumothoracische Luft gewöhnlich der exspiratorischen ziemlich nahe steht an Kohlensäuregehalt. Man kann sich durch Einwerfen von Sonnenlicht durch die (genügend weite) Fistel in den Pneumothoraxraum überzeugen, dass die comprimirte Lunge nicht ruhig liegt, sondern mitgetheilte Respirationsbewegungen erkennen lässt.

3) Abgesackter Pneumothorax bietet, sofern er überhaupt mit der Brustwand in Berührung steht, gewöhnlich eine Kegelform dar, deren Basis die Pleura costalis bildet, deren Spitze vielleicht mit einer trichterförmigen Verlängerung durch die noch offene Fistel dargestellt wird. Für diese beschränkte Form des Pneumothorax kann nahezu das Offenbleiben der Fistel als Regel betrachtet werden. Die Brustwand wird also auch hier nur in

mässigem Grade hervorgewölbt, die Intercostalräume werden verstrichen in der beschränkten Ausdehnung des pneumothoracischen Raumes, aber nicht convex; die Stimmvibration wird wenig vermindert. Bei genügender Grösse des Luftraumes wird Metallklang gehört bei der Percussion, bei gleichzeitiger Ansammlung von Flüssigkeit im Bereiche dieser dumpfer Schall, der mit dem Metallklange je nach der Lage des Kranken seine Gränzen wechselt. Auch das Geräusch des gesprungenen Topfes, oder blosser tympanitischer Schall werden hier öfter gehört. Fast jedesmal wird der vorhandene Metallklang oder tympanitische Schall mit dem Oeffnen und Schliessen des Mundes seine Höhe wechseln. Verdrängungserscheinungen benachbarter Organe können nicht leicht in ausgiebiger Weise zu Stande kommen. Succussionsgeräusch fehlt gänzlich. Wir sehen, die Zeichen des beschränkten Pneumothorax nähern sich in vollstem Maasse jenen der Cavernen. Zwei Umstände tragen hierzu besonders bei. Ueber grossen, sehr oberflächlich gelagerten Cavernen kann die Brustwand vorgewölbt sein, statt eingezogen. Die Natur des abgesackten Pneumothorax bringt es mit sich, dass er öfter zwischen Adhäsionen sich Bahn bricht, somit an einer ohnehin eingezogenen, starren, nicht mehr erweiterungsfähigen Brustwand gelagert ist, und diese nicht vorzuwölben vermag. In der That besteht auch schliesslich der einzige Unterschied zwischen einem abgesackten Pneumothorax und einer sehr grossen oberflächlich gelagerten Caverne darin, dass im einen Falle die Pleura pulmonalis den Luftraum noch bedeckt und im andern nicht. In jenen Fällen, in welchen die Entscheidung dieser Frage nothwendig wird, sind alle die letzten Entscheidungsgründe auf die leichtere oder schwerere Beweglichkeit der gleichzeitig vorhandenen Flüssigkeit basirt. Hierauf beruht namentlich der Wechsel in der Höhe des Metallklanges beim Sitzen und Liegen, der Wechsel in den Gränzen des Metallklanges und des dumpfen Schalles bei jeder Lageveränderung des Kranken. Ist also der Inhalt der Cavernen ein sehr dünnflüssiger, wie diess bei Lungengangrän sich öfters findet, so ist die Verwechslung desselben mit abgesacktem Pneumothorax kaum zu vermeiden. Wie die physikalischen Bedingungen beider Zustände, so können auch die physikalischen Zeichen derselben in manchen Fällen die grösste Aehnlichkeit darbieten.

4) Reiner Pneumothorax ohne gleichzeitige Anwesenheit einer erheblichen Flüssigkeitsmenge im Pleurasacke entwickelt sich selten aus inneren Krankheiten, sondern zumeist nach Quetschungen des Brustkorbes, Rippenbrüchen, oder penetrirenden Brustwunden; nur hie und da einmal bei Ruptur emphysematöser Lungenvesikeln. Seine Dauer als solcher ist zudem eine beschränkte. Sind nicht zersetzbare, oder in Zersetzung begriffene Flüssigkeiten mit ausgetreten, die rasch pleuritische Exsudation erregen, so wird die Luft bald resorbirt, oder bald ein tödtlicher Ausgang beobachtet. Die Erscheinungen sind genau dieselben, wie die bei jedem Pneumothorax, mit Abzug des der Flüssigkeit zufallenden Antheils derselben. Die Brust wird erweitert, die Intercostalräume wölben sich hervor, Diaphragma und Mediastinum werden verdrängt, und mit dem einen Leber oder Milz nach abwärts, mit dem andern das Herz seitlich verschoben; der Pectoralfremitus wird abgeschwächt; amphorischer Wiederhall und Metallklang begleiten die Stimme und das Athmen. Succussion, Rasselgeräusche, Flüssigkeitsdämpfung, Schallwechsel bei veränderter Lage mangeln vollständig.

V. Verdichtung der Lunge

kommt in der Weise zur Beobachtung, dass die Alveolen luftleer werden, mit ihren Wänden sich aneinander legen und wohl auch die kleinern Bronchien, die der knorpligen Stütze entbehren, sich abplatten, oder so, dass Alveolen und feinere Bronchien anstatt mit Luft, mit halbflüssigen Substanzen, Flüssigkeiten oder Gerinnseln ausgegossen werden. Im erstern Falle wird die betreffende Lungenpartie kleiner, nimmt eine dunkle Farbe an, bleibt aber weich und schlaff, im zweiten behält sie ihren Umfang, oder wird selbst voluminöser und nimmt eine hauptsächlich von der erfüllenden Substanz abhängige rothe, gelbe, graue Farbe an; immer aber verliert der betroffene Theil die Eigenschaft auf Schnitten Luft zu entleeren, bei Druck zu knistern und auf Wasser zu schwimmen. Die einfach luftleere Lunge kann häufig durch Aufblasen wieder ihr normales Aussehen erhalten, was bei der infiltrirten unmöglich ist. Befallen diese Veränderungen nur einzelne Vesikeln oder Läppchen, so liefern sie keine, befallen sie eine ganze Lunge, so liefern sie sehr auffällige, physikalische Zeichen; die gewöhnlichen Fälle liegen in der Mitte. Ganz allgemein lässt sich feststellen: luftleere Lungentheile liefern denselben dumpfen und leeren Schall, wie der Schenkel, die Leber oder beliebige Flüssigkeit. Sind sie von lufthaltigen Theilen überlagert, so wird ihr Schall nur leerer, liegen sie bei geringer Dicke oberflächlich, so dämpfen sie den Schall. Auf die Form der Brustwand üben sie keinen merk-

lichen Einfluss aus, ebensowenig auf die Lage benachbarter Organe. Wohl aber vermindern sie bei halbseitigem und ausgebreitetem Vorkommen die sichtbaren Respirationsbewegungen, die zugleich mindestens im Verhältnisse des Umfanges solcher Verdichtungen beschleunigt werden. Auf die Stimmvibrationen üben sie einen verstärkenden Einfluss aus, so ferne die zuführenden Bronchien nicht verstopft sind. Unter der gleichen Bedingung und bei einiger Ausbreitung derselben wird anstatt des vesikulären Athmens bronchiales Athmen, anstatt des undeutlichen Summens Bronchophonie gehört, und zufällig vorhandenes Rasselgeräusch in ein klingendes verwandelt. Diese sämmtlichen Veränderungen des Pectoralfremitus des Athmungsgeräusches und der Stimme sind einfach abhängig von dem bessern Schallleitungsvermögen verdichteter Lungenpartien. Nachdem wir so die gröbern gemeinsamen Züge dieser physikalischen Zustände betrachten, wird es nöthig, der aus den speziellen Krankheits- und Verlaufsverhältnissen resultirenden Zeichen zu gedenken, welche den zahlreichen einschlägigen Krankheitsbildern zu Grunde liegen.

1) Atelektase (Fötalzustand der Lunge, Apneumatose) wird aus dem Fötalleben mit herübergebracht (angeborene Atelektase) und oft noch längere Zeit mit fortgeschleppt, oder sie wird, nachdem die ganze Lunge lufthaltig geworden war, früher oder später, besonders oft im Kindesalter, dann im Verlaufe entkräftender Krankheiten erworben (acquisite Atelektase). Sie findet sich hauptsächlich an den Lungenrändern und an den hintersten untersten Theilen der untern Lappen, gewöhnlich doppeltseitig. An sich ist sie ein fieberloser Zustand, der weit eher mit Blässe, oder leichter Cyanose der Haut, als mit Hitze oder Röthung derselben einhergeht. Es ist auffallend und schwer erklärlich, dass auch ziemlich ausgebreitete, den grössten Theil eines Lappens betreffende Atelektase kaum je die Form der Brustwand, oder die Lage der benachbarten Organe beeinträchtigt. Dagegen wird die Form der Respiration und die Ausbreitung der Pulsation und Dämpfung des Herzens entschieden von der Atelektase beeinflusst. Die Respiration wird im Verhältnisse der Ausbreitung der Atelektase und etwa noch des Einflusses gleichzeitig vorhandenen Bronchialkatarrhes beschleunigt. Schmerz dagegen übt auf die Zahl der Athemzüge hier keinen Einfluss aus, sie wird im gleichen Verhältnisse angestrengter, und bietet ausserdem in ausgezeichneter Weise, namentlich bei Kindern die Form der ober-

flächlichen Respiration mit complementären Einziehungen dar. Während der Inspiration sinken die Intercostalräume, die Schlüsselbeingruben, und vorzüglich jene mehr besprochene der Abgangslinie des Zwerchfelles entsprechende Querfurche beträchtlich ein. Es ist auch leicht zu unterscheiden, ob diese Einziehungen von Verengerung der obern Luftwege, von einem fieberhaften Zustande wie Pneumonie (bei der sie ungleich seltner vorkommen) oder von Atelektase abhängig sind. Häufig bietet schon dieses äusserliche, bei den Kindern als »Flankenschlagen« bekannte Zeichen Aufschlüsse darüber, auf welcher Seite die Atelektase ausgebreiteter sei, indem ein Rippenbogen stärker als der andere nach innen gezogen wird. Die Herzdämpfung wird vorzüglich bei linksseitiger Atelektase ausgebreiteter, indem die Lungenräder sich von der vorderen Fläche des Herzens zurückziehen. Umgekehrt kann aber auch Hydrokardie oder Herzhypertrophie einen unrichtig grossen Umfang der Herzdämpfung dadurch bedingen, dass sie durch Compression die benachbarten Lungenränder luftleer macht. Immer werden atelektatische Lungenränder der benachbarten Herzdämpfung zugerechnet werden. Die Percussion liefert in der gleichen Ausdehnung, in der oberflächliche Atelektase vorhanden ist, gedämpften, in jener Ausdehnung, in der die Atelektase tiefer geht, leereren Percussionsschall. Da dieser Zustand der Lunge am häufigsten in plattenförmiger Ausdehnug an der Oberfläche vorkommt, oder inselförmig zerstreut sich findet, so ist eine mässige Dämpfung des Schalles der gewöhnliche Befund. In der Umgebung atelektatischer Lungentheile befinden sich häufig die Alveolen im Zustande der Retraction, daher der gedämpfte Schall sich leicht mit dem tympanitischen verbindet. oder von ihm umsäumt wird. Die Stimmvibrationen würden über derartig erkannten Lungentheilen verstärkt getroffen werden, wenn nicht die häufigste Entstehungsweise so verliefe, dass zuerst ein grösserer Bronchus, oder mehrere kleinere Bronchien eines Gebietes durch katarrhalisches Secret verstopft werden, und dann die nachfolgende Resorption der abgesperrten Luft die Atelektase zu Stande bringt. Häufig dauert die Verstopfung der zuführenden Bronchien noch fort und werden die Stimmvibrationen desshalb schwächer getroffen. Aus dem gleichen Grunde wird bei der Auscultation nicht sehr umfangreicher atelektatischer Lungentheile nur Verminderung, schwache Fortleitung oder Fehlen des vesiculären Athmens wahrgenommen. Unter sehr zahlreichen Atelektasen, die ich untersuchte, kamen mir nur sehr wenige lobäre vor, diese aber, sowohl bei Kindern als bei schwerkranken, namentlich typhösen Erwachsenen, begleitet von lautem Bronchialathmen und klingendem Rasseln, ferner von verstärktem Pectoralfremitus, also genau von jenen physikalischen Symptomen, die wir alsbald als Zeichen des zweiten Stadiums der Pneumonie kennen lernen werden.

Die Unterscheidung von pneumonischen Infiltrationen stützt sich hauptsächlich auf den fieberlosen Verlauf, die diffusern Gränzen der Percussionsdämpfung, auf die von Owen Rees und mir als charakteristisch erkannten complementären Einziehungen, die Abwesenheit des Knisterrasselns, und die Seltenheit der sogenannten Consonanzerscheinungen. Freilich macht Atelektase nicht selten, so im Verlaufe der Masern und des Keuchhustens den Uebergang in lobuläre Pneumonie, wie diess neuerdings von Barthels und von Ziemssen genauer beschrieben wurde, und in diesen Fällen ist die Unterscheidung, wie viel der vorhandenen Zeichen dem einen oder dem andern dieser Zustände angehöre, eine beinahe unmögliche.

Der Einfluss der Atelektase auf die Circulation ist in jeder Beziehung ein ungünstiger. Die zusammengefallenen Lungentheile sind schwerer durchgängig für den Strom der Pulmonal-Arterie. Die Wirkung dieses Zustandes kommt daher gleich einer Verkleinerung des Querschnittes der Pulmonal-Arterie. In Folge davon wird das rechte Herz erweitert; der zweite Pulmonal-Ton verstärkt, die Blutmenge des linken Vorhofes, des linken Ventrikels und der Körperarterien vermindert; jene im rechten Vorhof und den Körpervenen vermehrt. Bläuliches Aussehen des Kranken, leichtes Erkalten der Körper-Oberfläche, Kleinheit des Pulses, Schwellung der Halsvenen sind die Zeichen dieser Zustände.

Der Einfluss der Atelektase auf die Häufigkeit des Pulses lässt sich erklären nach einem von Marey nachgewiesenen Gesetze. Die Herzcontractionen werden langsamer mit jeder Behinderung, schneller mit jeder Erleichterung des Blutstromes in den Arterien. Für die Körperarterien hat Marey zahlreiche Beispiele beigebracht; für die Arterien des kleinen Kreislaufes giebt die angeborne Atelektase (Asphyxie) ein sehr prägnantes Beispiel ab. Bringt man bei asphyktischen Kindern durch eine der bewährten Methoden, durch Schwenken, Lufteinblasen, Elektrisiren, oder durch Wechsel der Lage nach Marshal Hall die Athmung in Gang, so dass

sich die Lunge ausdehnt, und ihre Gefässe durchgängiger werden, so nimmt die vorher verlangsamte Zahl der Pulsschläge beträchtlich zu. Nach diesem Mare y'schen Gesetze erklärt sich, wie wir hier beiläufig bemerken wollen, auch die Verlangsamung des Fötal-Pulses bei Compression der Nabelschnur. Bei erworbener Atelektase wirken zu viele Ursachen ein, welche, wie z. B. der Katarrh der Bronchien, den Puls beschleunigen können, als dass das erwähnte Gesetz dabei häufig zur Geltung kommen könnte. Wie man die atelektatische Lunge von den Bronchien aus aufblasen kann, so kann man am Lebenden die Atelektase, soferne kein zu solider Bronchialverschluss zu Grunde liegt, beseitigen durch Erregung tiefer Athemzüge. Die Atelektase einer Lunge lässt sich durch Lage auf der gesunden Seite um so leichter beheben, jemehr katarrhalische Verstopfung der zuführenden Bronchien mit als Ursache wirksam war. Die Berücksichtigung der Pathogenese liefert sowohl für die prophylaktische als curative Therapie wichtige Anhaltspunkte, die besonders bei der Behandlung Masern- und Typhus-

kranker sehr zu beherzigen sind.

2) Luftleere Beschaffenheit des Lungengewebes ohne Infiltration desselben kommt ferner durch Compression zu Stande. Diese kann ausgeübt werden durch den durch Flüssigkeit ausgedehnten Herzbeutel, durch das hypertrophirende Herz, durch intrathoracische Geschwülste; aber sie erfolgt am häufigsten durch Luft oder Flüssigkeitserguss in den Pleurasack. In den meisten dieser Fälle ist der dumpfe und leere Schall des comprimirenden Körpers von dem des comprimirten Lungengewebes schwer zu unterscheiden; doch kann man bei Pleuraexsudat eine ausgebreitete, theils der Flüssigkeit, theils der comprimirten Lunge angehörige Dämpfung häufig noch nach dem Verhalten der Stimmvibrationen in einen obern Theil mit starken Schwingungen und einen untern mit abgeschwächten theilen. Ersterer gehört dann der verdichteten Lunge, letzterer dem Ergusse an. Innerhalb atelektatischen Lungengewebes sind die meisten Bronchien verstopft, daher die Stimmvibrationen häufig nur sehr abgeschwächt, oder nicht beträchtlich verstärkt zur Brustwand gelangen. In comprimirtem Gewebe dagegen pflegen die Bronchien frei, und auch bei mässigem Drucke, soweit sie mit Knorpeln gestützt sind, nicht abgeplattet zu sein. Daher die beträchtliche Verstärkung der Stimmvibrationen dort wo comprimirtes Lungengewebe die Brustwand berührt. An diesen Hauptunterschied reihen sich noch mehrere untergeordnete an. Com-16 *

primirtes Lungengewebe pflegt in weit grösserer Ausdehnung als atelektatisches von Lungenpartien im Zustande der Retraction umgeben zu sein. Der dumpfe leere Schall der comprimiten Lunge pflegt daher einerseits begrenzt zu sein durch die stärkere Resistenz und die schwächeren Stimmvibrationen des comprimirenden Körpers, andrerseits durch den ausgebreiteten Raum des hell und tympanitisch schallenden retrahirten Gewebes. Bei der Auscultation hört man sehr häufig schwaches Bronchial-Athmen und Aegophonie. Comprimirtes Gewebe wird weniger leicht wieder lufthältig als atelektatisches. Je länger der Zustand dauerte, desto zweifelhafter wird die Fähigkeit der Lungen, wieder vollständig Luft aufzunehmen. Fällt nach langer Compression die Ursache derselben z. B. durch Resorption eines Pleuraexsudates hinweg, so sinkt einerseits die Brustwand ein, andererseits erweitern sich die Bronchien, die Alveolen aber bleiben luftleer.

3) Wird die Lunge durch Erfüllung mit gerinnenden oder dickflüssigen Körpern luftleer, so gewinnt sie dabei beträchtlich an Umfang, statt dass sie reduzirt würde. Den häufigsten Fall der Art bietet die Pneumonie dar; von deren drei Stadien gehört genau genommen nur das zweite, den grössten Theil des Verlaufes umfassende, dasjenige der Hepatisation, hierher. In dem ersten und dritten sind die Alveolen gleichzeitig mit Luft und Flüssigkeit erfüllt. Nun wird aber neben dem zweiten Stadium jedesmal zugleich das erste oft auch das dritte getroffen.

Der Beginn des etwa einwöchentlichen cyclischen Verlaufes dieser Krankheit lässt bereits, sowie Seitenstechen begonnen hat, verminderte Athembewegung des befallenen Brusttheiles erkennen. Dieser ist am häufigsten der rechte untere, seltner der linke untere Lappen, noch seltner ein oberer Lappen, oder ein Theil beider Lungen. Die Respirationsbewegung erweist sich local vermindert wegen des erschwerten Eintrittes der Luft in die Alveolen; die Muskelanspannung aber, namentlich die Bewegung der Intercostalräume, bleibt beiderseits gleich ausgesprochen. Die Athemzüge sind vermehrt, theils wegen der Verminderung der respiratorischen Oberfläche der Lunge, theils wegen des Schmerzes, der sie nur oberflächlich und unergiebig zu Stande kommen lässt. Trotz lebhaften Fiebers ist doch die Beschleunigung des Pulses eine verhältnissmässig weit geringere, als die der Athemzüge, sodass das Verhältniss beider 3-2,5:1 anstatt 4-3,5:1 beträgt. Die Percussion erweist in dieser Zeit klanghältigen Schall in der Ausdehnung, in welcher die Absetzung von Flüssigkeit in die Alveolen begonnen hat. Zugleich ist entsprechend dem geringern Luftgehalte der Percussionsschall leerer; doch sah ich nicht selten von Anfängern den tympanitischen Schall für den vollern genommen und somit die erkrankte Seite verwechselt werden. Die Auscultation erweist, so lange das erste Stadium, dasjenige der blutigen Anschoppung andauert, nur schwaches Vesiculärathmen mit Uebergängen zu unbestimmtem Athmen und jenes klein- und gleichblasige Rasseln, das in charakteristischer Weise als »Knistern« bezeichnet wird. Es entsteht durch die Auseinanderreissung der mit einander verklebten Alveolenwände; es findet sich constant in diesem Stadium vor, und sollte es jemals zu fehlen scheinen, so genügt es, den Kranken husten, und dann tief einathmen zu lassen, um es zu hören. Gewöhnlich ist es mehr bei der Inspiration vorhanden, häufig aber auch bei beiden Acten der Respiration, selten wird es rein exspiratorisch gehört. Kommt es auch ausserdem noch vor beim Lungenödem, bei capillärer Bronchitis und beim ersten Lufteintritte in früher atelektatische Partien, so ist es doch selten in diesen Fällen, so vollständig gleichblasig und kleinblasig, so reichlich und so völlig dem Knistern ähnlich, wie bei der Pneumonie.

Die Alveolen füllen sich vollständig mit Flüssigkeit, diese gerinnt, und die Verdichtung oder das Stadium der Hepatisation ist gegeben; das solide ausgegossene Lungengewebe umgibt als gleichmässig gut und leicht schallleitende Masse die Bronchien, und bedingt auf diese Weise die charakteristischen Zeichen des zweiten Stadiums. Die Respiration ist mehr noch beschleunigt und auf der leidenden Seite vermindert, die Bewegung der Intercostalräume dennoch nicht gehemmt, kein Organ verdrängt: der Halbmesser der Brust erweitert sich nicht oder höchst unbedeutend. Man kann noch streiten, ob die geringe, hie und da wahrnembare Erweiterung nicht Folge gleichzeitigen Pleuraexsudates sei. Die Stimmvibrationen sind über den hepatisirten Lungentheilen beträchtlich verstärkt; die Percussion zeigt dumpfen, leeren, oft dem des Schenkels ähnlichen Schall und bedeutende Resistenz der Brustwand, die aber dennoch jener bei Pleuraexsudaten nicht gleichkommt. Besondere Percussionserscheinungen können bedingt werden, wenn einzelne lufthaltige Inseln inmitten hepatisirten Lungengewebes überbleiben, oder wenn ein oberer Lappen in gewisser Weise befallen wird. Liegen die erwähnten Inseln lufthaltigen Gewebes gerade unter der Pleura, und erreichen sie den Umfang etwa eines Thalers, so schallen sie auffallend laut und hoch tympanitisch oder liefern das Geräusch des gesprungenen Topfes. Wird ein oberer Lappen in grosser Ausdehnung bis zur vordern Brustwand hepatisirt, so kann von der Gegend des zweiten oder dritten Rippenknorpels aus der Percussionsstoss bis zur Luftsäule grösserer Bronchien sich fortpflanzen und nicht allein tympanitischen Schall hervorrufen, sondern auch eine Aenderung der Höhe dieses tympanitischen Schalles beim Oeffnen und Schliessen des Mundes erkennen lassen; auch das Geräusch des gesprungenen Topfes kommt unter diesen Umständen bisweilen zur Beobachtung. Wechselt der tympanitische Percussionsschall einer Stelle mit dem Oeffnen und Schliessen des Mundes seine Höhe, so thut es in gleicher Weise das Bronchialathmen. Beide sind Eigenton derselben Luftsäule, der eine durch Anstoss, der andere durch Anblasen hervorgerufen. Sie verhalten sich wie Pizzicato und Anstreicheton einer Violinsaite.

Die Auscultation hepatisirter Lungentheile lässt die Stimme deutlich und stark, als ob in das Ohr gesprochen würde, erkennen und ergibt beim Athmen bronchiales Geräusch von solcher Stärke, Intensität und Höhe, wie es nur bei wenig Zuständen wahrgenommen wird. Da wenige Pneumonien ohne Katarrh verlaufen, und zwar ohne Katarrh derjenigen Bronchien, die von der Hepatisation umgeben sind, hört man gewöhnlich mit dem Bronchialathmen klingende Rasselgeräusche, die feucht und ungleichblasig, überwiegend jedoch grobblasig sind. Nur bei sehr zerstreuten, oder die Oberfläche nicht erreichenden Erkrankungsheerden kann Vesiculärathmen, unbestimmtes Athmen, oder Vesiculär- und Bronchialathmen gleichzeitig gehört werden; an den Gränzen der erkrankten Lungentheile hört man oft fortgeleitetes schwaches Bronchial- und Vesiculärathmen zugleich, und so ferne der Heerd noch in Ausbreitung begriffen ist, auch Knisterrasseln. Jede Pneumonie, die sich bis zur Oberfläche der Lunge erstreckt, erzeugt Pleuritis; gewöhnlich Pleuritis sicca; dem entsprechend hört und fühlt man auch oft neben allen andern Erscheinungen pleuritisches Reibegeräusch.

Auch bei Pneumonien, deren sämmtliche sonstige Verhältnisse bessere Fortleitung der Stimmvibrationen, des Bronchialathmens und der klingenden Rasselgeräusche erwarten lassen, können momentan Bronchialathmen, Rasselgeräusche, überhaupt jedes Athmungsgeräusch fehlen und die Stimmvibrationen abgeschwächt sein. Den Grund hiefür liefert die Verstopfung der zuführenden Bronchien durch katarrhalisches Secret: ein einziger Hustenstoss genügt häufig, um alle diese Erscheinungen in früherer Weise wieder herzustellen. Für die Stimmvibrationen gibt es noch einen andern Grund ihrer Abschwächung anstatt Verstärkung bei der Pneumonie. Gerade die massenhaftesten Hepatisationen, diejenigen, bei welchen die Section tiefe Rippenfurchen an der Oberfläche der Lunge erkennen lässt, lassen am häufigsten die Verstärkung der Stimmvibrationen nicht vorübergehend, wie in dem frühern Falle, sondern für die ganze Dauer ihres Bestehens vermissen. Der starke einseitige Druck auf die Brustwand ist hier Grund verminderter

Schwingungsfähigkeit derselben.

Die Percussionsdämpfung bei der Pneumonie zeigt am häufigsten die Form der Lungenlappen, allerdings in vergrössertem Umrisse, entsprechend dem erweiterten Umfange derselben. Nur am Rücken wahrnehmbare Dämpfung ist dann, wenn sie nicht ausschliesslich die Fossa supraspinata zum Sitze hat, auf den untern Lappen der Lunge zu beziehen. Nur an der vordern Brusthälfte wahrnehmbare Dämpfung gehört dem obern Lappen an, jene rechts unterhalb der Achselhöhle dem mittleren. Obwohl der untere Lappen beiderseits nur etwa bis zur Mitte des Schulterblattes reicht, nimmt er doch im Zustande der Hepatisation fast die ganze Rückenfläche einer Seite ein und der verdichtete obere Lappen breitet sich seitlich und rückwärts weiter aus. Lehrt auch die Statistik, dass die untern Lappen, namentlich der rechte, weitaus am häufigsten erkranken, so ist es doch völlig ungerechtfertigt, und häufig sehr zum Nachtheil des Kranken, wenn bei praktischen Fällen der Arzt sich mit der Untersuchung der Rückenfläche begnügt. Ich möchte in dieser Beziehung nicht allein die jedesmalige Untersuchung der vorderen Brustfläche, sondern auch jene der Axillargegend auf's dringendste empfehlen; da gerade in letzterer viele Pneumonien, sowohl des obern als des untern Lappens, zuerst zur Hepatisation gelangen, und viele central beginnende Pneumonien zuerst die Oberfläche der Lunge erreichen, somit untrüglich physikalisch nachweisbar werden.

Das dritte klinische Stadium der Pneumonie, dasjenige der Lösung, bietet die gleichen Zeichen, wie das erste dar, da das Infiltrat, wie es in flüssigem Zustande in die Alveolen hereingelangt, ebenso auch nur auf dem Wege der Verflüssigung

zur Resorption oder geringern Theils zur Expectoration gelangen kann. Der dumpfe Schall wird heller und gewinnt wieder einige Völle, indess er zugleich tympanitisch wird, die Resistenz mindert sich, das Bronchialathmen wird erst schwächer, dann kommen bei starken Hustenstössen spärliche, knisternde Rasselgeräusche neben dem Bronchialathmen zum Vorschein und werden reichlicher, indess die klingenden ungleichblasigen Rasselgeräusche zurücktreten. Dann stellt sich unbestimmtes, endlich vesiculäres Athmen ein und nach kürzerer oder längerer Zeit schwindet auch das Knisterrasseln wieder und stellen sich die normalen Verhältnisse der Respirationszahl, der Athembewegung, des Pectoralfremitus und des Percussionsschalles her. Solche Zeichen liefern die croupösen, lobären, genuinen Pneumonien. Vesiculäre und lobuläre Pneumonien können der Erkenntniss völlig entgehen und sich auf die Zeichen des Bronchialkatarrhes beschränken. Ziemlich umfangreiche centrale Pneumonien und solche, die sich an ältere Erkrankungsheerde anlehnen, an Carcinome, Echinococcen, Cavernen, Infarcte- oder Tuberkelinfiltration der Lunge können nur bei genauer Verfolgung des-Zustandes von Tag zu Tage mit Sicherheit nachgewiesen werden.

Folgende Punkte bedürfen noch einer besondern Erwähnung:
a. An den von der Pneumonie nicht betroffenen
Lungentheilen gehen ohne Zweifele in jedem Falle wichtige

Fig. 24.

Fig. 24. Herzdämpfung während einer Hepatisation des rechten unteren Lappens und nach deren Lösung.

Aenderungen der Funktion von statten, sie werden stärker und häufiger ausgedehnt, die Circulation innerhalb derselben erfolgt auf abnorme Weise, wegen der vermehrten Zahl der Herzcontractionen und der erschwerten Durchgängigkeit der innerhalb der Hepatisation gelegenen Pulmonalgefässe. So entwickelt sich an den Rändern und bei den Pneumonien der untern Lappen, an den Spitzen zuerst, ein acutes vicariirendes Emphysem, dessen Einfluss es wohl in vielen Fällen zuzuschreiben ist, dass die Herzdämpfung trotz der erschwerten Entleerung des rechten Ventrikels sich nicht vergrössert. In einzelnen Fällen wird diese Behinderung durch vorübergehende

Verstärkung des zweiten Pulmonaltones angezeigt, in anderen kommt es zur deutlichen Vergrösserung, überwiegend Verbreiterung der Herzdämpfung. Auch an den gesunden Lungentheilen hört man verstärktes, rauhes Inspirationsgeräusch und schon bei gewöhnlichem Athmen lautes Exspirationsgeräusch. Früher bestandener Katarrh steigert sich, oder es entwickelt sich ein acuter Katarrh der grossen, mittleren und feineren Bronchien und je ausgebreiteter die Hepatisation demnach die Störung des kleinen Kreislaufes, um so leichter entsteht jene acuteste Form des Katarrhes der Alveolen und feinsten Bronchien, die man dem serössalzigen Charakter ihres Produkts entsprechend als Lungenödem bezeichnet. So hört man denn über den nicht hepatisirten Lungentheilen sehr häufig einfach katarrhalische Rasselgeräusche, und in den schwersten Fällen als Zeichen eines nahen schlimmen Ausganges Knisterrasseln, das jedoch nicht ganz gleichblasig erscheint, bei tympanitischem Percussionsschalle. In diesem Falle steigert sich die Athemnoth auf das Aeusserste, die Herztöne sind schwach, der Puls klein, das Gesicht livid.

b. So werthvoll auch die genannten physikalischen Erscheinungen für die Diagnose der Pneumonie sein müssen, so unentbehrlich sie zur Bestimmung des Sitzes und der Verbreitung der Lungenerkrankung sind, dennoch können sie bei einmaliger Untersuchung für sich die Diagnose dieser Krankheit nicht allein begründen. Nur eine mehrtägige Beobachtung ihres Verlaufes ermöglicht die Unterscheidung von acuter Tuberkelinfiltration, hämorrhagischem Infarcte und ähnlichen Zuständen. Stets ist es daher räthlich, alle übrigen Erscheinungen: den initialen Frost, das intensive gleichmässig andauernde Fieber, ausgesprochen durch eine vom Beginne bis zum Eintritte der Lösung sich fast gleichbleibende Temperatursteigerung von 39,5-40,5 Graden, die Sputa, die als blutige innig gemengte, safrangelbe, rostfarbene bis Pflaumenbrühe-ähnliche mit croupösen Bronchialabgüssen getroffen werden, endlich den cyclischen Verlauf der Krankheit mit zu berücksichtigen. Vom Beginne, dem Froste bis zum Eintritte der Lösung umfasst letzterer im Mittel eine Woche, kürzestens 2 Tage, während seine längste Dauer wegen des Ueberganges in Nachkrankheiten sich nicht mehr genau bemessen lässt.

c. Der häufigste Ausgang ist der in Lösung; er wird, so weit er die fieberhaften Erscheinungen der Pneumonie betrifft, oft in weniger als 24 Stunden vollzogen (complete Krise),

d. h. die Temperatur sinkt in kürzerer Zeit von der während etwa einer Woche bestandenen pneumonischen Höhe auf normal oder unter normal herab. Respiration, Puls und alle andern Fiebersymptome gehen zurück und dem Kranken erübrigt nur noch, die zurückgebliebenen Krankheitsprodukte zu resorbiren. Hiezu bedarf er einer längeren Zeit, stets mehrerer Tage, und in einer geringen Zahl von Fällen hält auch die Abnahme der allgemeinen Krankheitszeichen gleichen Schritt mit jener der localen. Aber zahlreiche Veränderungen können, gleichgültig, ob der ursprüngliche Temperaturabfall ein rapider und vollständiger war oder nicht, in den nächsten Tagen, Wochen oder Monaten sich entwickeln. Jener beträchtliche Verlust an Elasticität, der an der hepatisirten Lunge überaus leicht sich nachweisen lässt, kann andauern, und in Folge dessen Emphysem, von den ursprünglich befallenen Theilen aus sich entwickeln. Umgekehrt kommt es zur cirrhotischen Schrumpfung des befallenen Lungentheiles mit Einsenkung der Seite, andauernder Dämpfung des Percussionsschalles, localisirtem Katarrhe und nachträglichen Bronchektasien, vielleicht auch Hochstand des Zwerchfelles, Verschiebung des Herzens in die leidende Seite und Emphysem der andern Seite wenn das Infiltrat anstatt gelöst zu werden, sich organisirt, verdichtet und schrumpft, wenn die acute Pneumonie den Uebergang in chronische macht. In den nächsten Tagen kann die Pleuritis, welche als trockene, faserstoffige, jede Pneumonie begleitet, sich selbstständig weiter entwickeln, und flüssiges Exsudat abzusetzen beginnen. Ebenso können die Uebergänge in Tuberculose (fast jedesmal bei doppelseitiger Pneumonie der Spitzen) Abscess oder Gangrän anstatt der normalen Lösung sich einstellen, und in weiterem Verlaufe die Zeichen der Cavernenbildung herbeiführen.

d. Während des Verlaufes der Pneumonie können durch andere, früher schon bestandene, gleichzeitige oder hinzutretende Erkrankungen alle Erscheinungen, selbst die physikalischen wesentlich modificirt werden. So verhält es sich bei der Pneumonie kachektischer, tuberculöser und pyämischer Personen. Einige Fälle mögen besondere Erwähnung finden. Tritt die Pneumonie zu Laryngostenose oder Tracheostenose hinzu, so kann das Bronchialathmen sowohl als die Bronchophonie vollständig mangeln. Auch die Rasselgeräusche fallen dann spärlich aus, und man wird oft nur durch die Percussionsdämpfung, etwas Knistern

oder unbestimmtes Rasseln, sowie durch die höhere Körpertemperatur auf die eingetretene Weränderung aufmerksam. Man hört dann an den Erkrankungsstellen häufig weder Vesiculär- noch Bronchialathmen, sondern nur das fortgeleitete Laryngealathmen, das auch aus dem Munde des Kranken auf die Entfernung gehört wird. - Wo bronchektatische Cavernen inmitten des Lungengewebes bestanden, liefern sie auch bei ziemlicher Grösse häufig gar keine auffälligen Zeichen. Erst wenn pneumonische Infiltration hinzutritt, und eine gut schallleitende Schicht zwischen Caverne und Brustwand liefert, findet sich inmitten völlig dumpfen und leeren Schalles an der betreffenden Stelle tympanitischer Schall und zwar - darin liegt das Beweisende - tympanitischer Schall, der beim Oeffnen und Schliessen des Mundes seine Höhe wechselt. Bei genügender Grösse der Caverne werden über derselben metallklingende Rasselgeräusche gehört. Mit der Lösung der Pneumonie verschwinden diese Phänomene. Sehr schwierige diagnostische Verhältnisse gehen aus der Combination der Pleuritis mit Pneumonie hervor, die glücklicher Weise nur unter ganz besonderen Bedingungen angetroffen wird: bisweilen als wirklich gleichzeitige Entwickelung in Folge starker Traumata, oder purulenter Metastasen, andere Male so, dass zu einem mässig grossen Pleuraexsudate unerklärt die Pneumonie des angränzenden Lungentheiles hinzutritt. Stets müssen in beiden Fällen die Zeichen der Pleuritis: Erweiterung der Seite, Lähmung der Intercostalräume, starke Leere des Schalles, geschwächter Pectoralfremitus und geschwächtes Athmungsgeräusch die vorwiegenden sein. Von den Zeichen des comprimirten Lungengewebes über dem Exsudate, differiren jene der Hepatisation nicht. Nur die starke Ausbreitung der Dämpfung mit verstärkten Stimmvibrationen, die anomale mehr nach oben vorragende Form der Dämpfung, oder die Lappenform derselben, die Stärke des Bronchialathmens und reichliches Knisterrasseln sind unter den akustischen Zeichen für diesen Fall maassgebend. Wichtiger freilich ist die plötzliche hohe und dauernde Steigerung der Körperwärme und das blutige Sputum.

In einem Falle hauptsächlich sind die akustischen Zeichen allein von entscheidendem Werthe, dort, wo bei hochgradiger Anämie metastatische Pneumonien auftreten. Hier ist oft der Stand der Körperwärme nieder, ihr Gang unregelmässig, das Sputum wegen der blutarmen (schon anfänglich grauen) He-

patisation von dem Aussehen eines einfach katarrhalischen.

- e. Die Unterscheidung pneumonischer Heerde von Krankheiten, die ähnliche physikalische Zeichen liefern, fällt in der Regel nicht schwer. Abgesehen von den Zeichen, die am Beginn der Krankheit der continuirlich fieberhafte Verlauf und die Sputa liefern, sind es hauptsächlich die Verhältnisse der Respiration und die Ausbreitungsweise der Percussionsdämpfung, die zur Unterscheidung benutzt werden. Bei Pleuritis wird die leidende Seite erweitert, die Bewegung der angränzenden Intercostalräume vermindert, Herz und Leber verdrängt, der Pectoralfremitus abgeschwächt, kein Knistern und nur schwaches Bronchialathmen gehört, häufig Aegophonie, während bei der Pneumonie keine Erweiterung, keine Verdrängung, keine Störung der Bewegung der Intercostalmuskeln stattfindet, Knistern, starkes Bronchialathmen, starke Bronchophonie, und unter Umständen reichliches consonirendes Rasseln gehört wird. Bei der Pneumonie ist der Pectoralfremitus (zwei bereits besprochene Bedingungen ausgenommen) verstärkt, und es hat bei derselben die Percussionsdämpfung eine völlig irreguläre, oder eine dem Umfange der Lungenlappen folgende Form. wird nach Pleuritis die leidende Seite verengt, während sie nach Pneumonie ihre Form völlig beibehält, ausser wenn ein anomaler Ausgang stattfindet, z. B. chronische Pneumonie oder Abscessbildung den langsamen Uebergang zur Heilung begleitet. Auch die Entstehung der Dämpfung, rasch bei der Pneumonie, langsam Schritt für Schritt nach oben steigend bei der Pleuritis, ist eine charakteristische. - Bei der Atelektase liegt allerdings das wesentlichste Kriterium nicht in den physikalischen Erscheinungen, sondern in den Temperaturverhältnissen. Doch mangeln für dieselbe jene wichtigen Zeichen des ersten und dritten Stadiums der Pneumonie, die wir als Knisterrasseln und tympanitischen Percussionsschall kennen gelernt haben. Sie erlangt selten eine solche Ausbreitung, dass sie ganze Lappen betrifft, liefert selten starkes Bronchialathmen und bedingt ungleich häufiger als Pneumonie die besprochenen compensatorischen Einziehungen. Ihre Lieblingssitze sind die Ränder der Lunge, und allerdings auch die untern Lappen derselben. Neuerdings wies Ziemssen auf die öfters stattfindende streifenförmige Verbreitung derselben, am Rücken von unten nach oben, hin, die er besonders bei Masernkranken beobachtete.
- 4) Verdichtung der Lunge mit Schrumpfung erfolgt bei Carcinomentwicklung, chronischer Pneumonie, bei Hei-

lung von Lungenabscessen, jedoch weitaus am häufigsten bei der verkäsenden Pneumonie. Unter allen Lungenkrankheiten eine der häufigsten, hat die käsig zerfallende Pneumonie mit ganz besonderer Vorliebe, wenigstens dort, wo sie chronisch auftritt, die Lungenspitzen zum Sitze; unter diesen häufiger die rechte, an der sie dann auch, wenn sie auf die andere Seite übergegangen ist, in vorgerückter Entwickelung getroffen wird.

Die frühesten Zeichen dieser verbreiteten Krankheit, diejenigen ihres ersten Stadiums, des Stadiums der Infiltration, beziehen sich nur auf die Verdichtung und Schrumpfung der Lungenspitze, und etwa noch auf die Verkleinerung der Lunge im Ganzen. Man findet dann bei blasser Hautfarbe, Kurzathmigkeit und beträchtlich verminderter Capacität der Lunge den Sternovertebraldurchmesser kleiner, die Gruben über und unter dem Schlüsselbeine tief, die Bewegung beider obern Brusthälften vermindert, und dabei gewöhnlich auf einer Seite, häufiger der rechten den Durchmesser von vorn nach hinten kleiner, die genannten Gruben tiefer und die Athembewegung beschränkter. Namentlich findet sich oft das Verhältniss, dass die Bewegung der Weichtheile und Schlüsselbeine nach vorne sehr gering ist im Vergleiche zu der eigentlichen Hebung oder Bewegung nach oben.

Die Percussion erweist über oder unter dem Schlüsselbeine oft nur auf einer Seite den Schall höher, leerer oder bereits tympanitisch. Aber diese Percussionsdämpfung an der Lungenspitze darf nur mit grösster Vorsicht aufgenommen und verwerthet werden. Sie kann bei jedem Gesunden durch Drehung des Kopfes nach der andern Seite erzeugt werden, und es können aus einer solchen Verwechslung die schwersten praktischen Irrthümer hervorgehen. Wer immer sich die Mühe nimmt, bei einer Anzahl Schwerkranker die Lungenspitzen genau zu untersuchen, wird bei einigen derselben Dämpfung des Schalles auf der einen oder andern Seite treffen, die bei der Section sich einfach durch alte Bindegewebsknoten oder schieferige Induration erklärt. finden sich also auch andere Schrumpfungen und Verdichtungen der Lungenspitzen vor, die die gleichen physikalischen Zeichen liefern müssen und nicht aus diesen, sondern nur aus dem Verlaufe und andern funktionellen Symptomen erkannt und unterschieden werden können. Bisweilen liegen die ersten nachweisbaren Infiltrationen mehr nach rückwärts, und die Percussionsdämpfung derselben kommt zunächst an der Fossa supraspinata zum Vorschein. Auch jenes Verhältniss wird oft getroffen, wo auf einer Seite zuerst über dem Schlüsselbeine, auf der andern über der Spina scapulae die Dämpfung sich bemerklich macht (gekreuzte Dämpfung). Mehrmals schon fand ich bei Kranken mit Hämoptoë Dämpfung an einer Lungenspitze, die im Laufe einiger Wochen wieder schwand, und sowohl nach diesem Verlaufe, als nach den übrigen Zeichen der blutigen Infiltration des Lungengewebes zuzuschreiben war. Die Percussion lässt dann ferner oft schon frühzeitig Hochstand des Zwerchfelles, und bei verbreiteter Pulsation relativ grosse Herzdämpfung ergeben. Auch wird nach Seitz die obere Lungengränze an der erkrankten Lunge tiefer stehend getroffen als die andere. Es unterliegt keinem Zweifel, dass ziemlich grosse käsige Knoten mehr central im obern Lappen gelegen, der Percussion völlig entgehen können, und dass auch doppelseitig gleichmässige Infiltration der Lungenspitzen leicht übersehen wird.

Die Auscultation zeigt im ersten Stadium der Phthise mancherlei Veränderungen der Athmungsgeräusche. Nur sehr ausgebreitete Infiltration ist im Stande, jene physikalischen Bedingungen herbeizuführen, vermöge deren an der Brustwand das Athmungsgeräusch der Bronchien gehört wird. Bisweilen ist es nur das Exspirationsgeräusch, das an einer oder der andern Stelle den bronchialen Charakter gewonnen hat; gewöhnlich aber hat man es in früherer Zeit mit verschiedenen Veränderungen des vesiculären Athmens zu thun, die weder zu allen Zeiten bei demselben Kranken, und noch viel weniger bei allen Kranken gleichartig getroffen werden. Verstärktes rauhes Vesiculärathmen, von einem verlängerten, gleichfalls rauhern Exspirationsgeräusch begleitet, ist eine der häufigsten Erscheinungen. Ausgebreitete Infiltration mit Verschluss der zuführenden Bronchien kann wohl auch vorübergehend oder dauernd Schwäche des Vesiculärathmens herbeiführen. In andern Fällen treten jene schon dem Verlaufe des normalen Athmens nicht ganz fremden Absätze stärker hervor, und bedingen das sogenannte saccadirte Athmen, oder es ist während längerer Zeit das veränderte oder normal beschaffene Vesiculärathmen von unbestimmten Rasselgeräuschen begleitet. Diess hat insofern eine besondere Bedeutung, als an der Lungenspitze allein localisirte Katarrhe nicht leicht aus andern Gründen andauernd getroffen werden, als in Folge verkäsender Pneumonie. Aus eben dieser Ursache entspringen auch die meisten trocknen, mit Reibegeräusch verbundenen, länger

bestehenden Pleuraentzündungen, daher auch ein solches andauernd gehörtes Reibegeräusch an der Lungenspitze mit Wahrscheinlichkeit auf Phthise hinweist. Es geht aus dem Gesagten hervor, dass keine der bezeichnenden Auscultationserscheinungen abhängig ist von tuberculösen Erkrankungen als solcher, vielmehr sind es Verdichtungen des Gewebes, begleitender Katarrh und begleitende Pleuritis, welchen alle auscultatorischen Symptome des ersten Stadiums der Phthise ihre Entstehung verdanken. Desshalb müssen nothwendig viele andere Zeichen in Rechnung gezogen werden, um eine nachgewiesene Verdichtung der Lungenspitze, auch wenn sie von Katarrh oder Pleuritis begleitet ist, als käsig pneumonische zu kennzeichnen.

a. Hereditäre Anlage, Vorausgegangensein von Krankheiten, die zu Scrophulose disponiren (Masern, Keuchhusten, Pleuritis), oder von Zuständen mangelhafter Ernährung, öftere Katarrhe, phthisischer Habitus, verminderte vitale Capacität der Lunge, abendliches Fieber, blutig tingirte, späterhin rein blutige Sputa. Schweisse, Diarrhöen, Larynxgeschwüre sind die hauptsächlichen Erscheinungen die phthisische Lungenerkrankung begleiten.

b. Der weitere Verlauf der Phthise liefert nur theilweise noch Zeichen von Verdichtung der Lunge. Man unterscheidet ein zweites Stadium der Erweichung, und ein drittes der Cavernenbildung; das letztere wird anderwärts seine Erledigung finden. Das zweite ist charakterisirt durch ausgebreitetere Entwicklung und Confluenz käsiger Produkte und centrale Erweichung derselben, also bereits beginnende Cavernenbildung. Die physikalischen Zeichen desselben sind die gleichen, wie diejenigen des ersten Stadiums, nur sind sie ausgesprochner und ausgebreiteter vorhanden. Häufig wird eine gleichzeitig an beiden Lungenspitzen verbreitete Percussionsdämpfung so intensiv, dass man von vornherein sagen kann, der normale Schall dieses Brustkorbes an den Lungenspitzen müsste ein vollerer sein. Die Dämpfung verbreitet sich nun oft schon bis zur zweiten, bis vierten Rippe nach abwärts, und am Rücken in die Gegend des Schulterblattes. Der Schall wird aus mannigfachen Gründen zugleich tympanitisch getroffen, theils wegen Bildung kleiner Cavernen, theils wegen vicariirenden Emphysems, oder verbreiteter katarrhalischer Erkrankung. Die Auscultation zeigt bald noch rauhes Vesiculärathmen, verlängerte Respiration, saccadirendes Athmen, bald auch leises, entferntes Bronchialathmen, ausserdem reichlichere Rasselgeräusche unbestimmten Charakters, und was besonders für diesen Zeitraum bezeichnend ist, vereinzelte grossblasige trockene Rasselgeräusche (Knattern).

c. Selten schon im ersten Stadium, häufiger im zweiten, findet sich die Leber vergrössert bis gegen den Nabel hin, durch das Tastgefühl erkennbar, aber weich, nachgiebig, flach und glatt (Fettleber) oder nebst der Milz vergrössert und hart (Amyloidentartung). Auch die Herzdämpfung kann vergrössert erscheinen, wie jene der Leber wegen des Hochstandes des Diaphragma's, wegen ausgebreiteter Infiltration des linken obern Lappens, oder wegen Hydrokardie, die sich entwickelt. Einige andere Erscheinungen am Gefässsystem verdienen noch Erwähnung; die Pulsation des Herzens ist gewöhnlich eine verbreitete und verstärkte, der zweite Pulmonalton kann gefühlt werden, der erste Pulmonalton seltener auch der erste Mitralton wird von einem blasenden Geräusch begleitet. Bei manchen Phthisikern ist auf der vorwiegend ergriffenen Seite der erste Ton der Subclavia häufig nur während der Inspiration, andere Male nur während der Exspiration in ein blasendes Geräusch umgewandelt, oder von einem solchen begleitet. Das Venenrauschen kann namentlich in denjenigen Fällen, in welchen die Phthise anfangs unter dem reinen Bilde der Anämie auftritt, an der rechten Jugularvene auch ohne erhebliche Drehung des Kopfes gehört werden.

VI. Cavernen.

Die normalen Hohlräume, welche innerhalb der Brust verlaufen, Trachea, Bronchi und grössere Bronchien geben bei Gesunden keinerlei physikalische Zeichen ab. Nur wenn das Lungengewebe zwischen denselben und der Brustwand verdichtet wird, können auf die ersten beiden Percussionserscheinungen auf alle Auscultationserscheinungen bezogen werden. Auch krankhaft entstandene Höhlen grössern Umfanges können, wenn sie noch von einer reichlichen Schicht Lungengewebes nach allen Seiten überdeckt sind, sich ebenso verhalten. In der Regel müssen Cavernen, die bestimmt nachweisbar sein sollen, neben oberflächlicher Lagerung eine Grösse, die mindestens der einer Wallnuss gleichkommt, besitzen, mit verdichteten glatten Wänden ausgestattet sein und überwiegend Luft enthalten. Am günstigsten sind darnach die Bedingungen für den Nachweis von Cavernen an den Spitzen der Lunge, wo eine dicke Ueberlagerung mit Lungengewebe aus

räumlichen Gründen nicht möglich ist, und das Secret vermöge der Richtung der Bronchien sich leicht entleert. Die Form der Brustwand, da wo Cavernen gelagert sind, ist gewöhnlich eine eingezogene, wegen der Verlaufsweise derjenigen Verdichtungs-, Neubildungs-, Entzündungs-Processe, welche der Cavernenbildung vorausgehen. Freilich kann auch die Brustwand über sehr dünnwandigen Cavernen ihre normale Wölbung beibehalten, oder selbst etwas convexer erscheinen. Die Respirationsbewegungen sind überall dort, wo die Brustwand eingezogen ist, gleichzeitig vermindert, andernfalls können sie ergiebig fortbestehen. Die aufgelegte Hand fühlt den Pectoralfremitus verstärkt und nimmt bisweilen Erschütterungen wahr, die von Rasselgeräuschen innerhalb Cavernen herrühren. Unter Umständen können solche Rasselgeräusche auch auf die Entfernung, namentlich bei geöffnetem Munde der Kranken gehört, und selbst als klingende unterschieden werden.

Bei der Percussion erscheint der Schall je nach der Dicke der Cavernenwand in verschiedenem, meist jedoch geringem Grade gedämpft, und je nach dem Luftgehalte derselben hoch oder tief. Bei der erwähnten Grösse ist derselbe jedoch immer tympanitisch, und je grösser die Caverne, um so tiefer wird auch der tympanitische Schall gehört. Nach der schönen Entdeckung von Wintrich lässt sich dieser tympanitische Schall der Cavernen von jedem nicht durch Hohlräume bedingten tympanitischen Schall dadurch unterscheiden, dass er bei geöffnetem Munde höher, bei geschlossenem tiefer, und wenn man auch diess untersuchen will, bei geschlossener Nase noch tiefer schallt. Bei etwas grössern Cavernen kann man auch bemerken, dass ihr Schall im Aufsitzen höher oder tiefer wird als beim Niederliegen. Verkürzung des längsten für die Schallleitung maassgebenden Durchmessers der Cavernen verursacht diese Erscheinung. Ist dieser z. B. von vorne nach rückwärts gerichtet, so wird der Schall im Liegen höher werden als beim Sitzen, umgekehrt, wenn der längste Durchmesser von oben nach unten verläuft. Ist die Thoraxwand dünn, biegsam, und kann demnach die Caverne durch starken Percussionsschlag leicht erschüttert und comprimirt werden, so liefert sie auch das Geräusch des gesprungenen Topfes. Doch ist auf dieses kein grosses Gewicht zu legen, indem es bei Kindern und einigen Erwachsenen am normalen Brustkorbe, häufig auch über Verdichtungen der

Lunge sich findet, die noch von einer Schicht lufthaltigen Gewebes bedeckt sind. Sehr grosse Cavernen, solche von dem Umfange eines Hühnereies und darüber, geben bei glatter Beschaffenheit und regelmässiger Form ihrer Wandungen percutorischen Metall-

klang.

Bei der Auscultation hört man Bronchophonie, Bronchialathmen und klingendes Rasseln. Das Bronchialathmen ist gewöhnlich nicht sehr hell und hoch, das consonirende Rasseln grossblasig, reichlich und feucht. Bei sehr bedeutender Reichlichkeit des letzteren kann das Bronchialathmen mangeln. Eine völlig leere Caverne wird natürlich nur Bronchialathmen und keine Rasselgeräusche hören lassen. Bei entsprechender Grösse sind die Rasselgeräusche hie und da von Metallklang begleitet; dieser zeigt sich auch mit dem Athmungsgeräusch oder es kann dieses amphorischen Wiederhall erkennen lassen. Ein besonderes zuverlässiges Auscultationszeichen der Cavernen beschreibt Seitz unter dem Namen des metamorphosirenden Athmens. Dasselbe soll nur diesem Zustande zukommen und durch anfängliche Enge des zuführenden Bronchus bedingt sein, der während der Inspiration ausgeweitet wird. Es wird beschrieben als ein dem scharfen Vesiculärathmen ähnliches Zischen, ein Stenosengeräusch, das während der Inspiration, etwa nach einem Drittel derselben verschwindet, und einem andern gewöhnlichen Geräusche, z. B. dem Bronchialoder Vesiculärathmen Platz macht. Sehr selten ist in sehr grossen Cavernen die Flüssigkeit leicht beweglich, und verursacht beim Schütteln des Kranken das Succussionsgeräusch. Noch seltener dürfte, wie in einem Falle von Cejka und in einem von mir, über Cavernen ein systolisches hohes, fast pfeifendes Geräusch gehört werden. Ich konnte einen erweiterten Pulmonalarterienast, der durch die Caverne verlief, bei der Section als wahrscheinliche Entstehungsstelle nachweisen. Dem Herzen nahegelegene grosse Cavernen lassen häufig herzsystolische Rasselgeräusche oder klingende, ja metallklingende Herztöne hören. Merkwürdig sind die wenigen beschriebenen Fälle (auch ich habe deren einen beobachtet), in welchen herzsystolische Rasselgeräusche sich so durch Resonanz verstärkten, dass sie auf die Entfernung mehrerer Schritte gehört werden konnten.

Betrachtet man kritisch die einzelnen physikalischen Zeichen der Cavernen, so ergibt sich, dass deren Nachweis ein keineswegs sehr sicherer ist. Das Geräusch des gesprungenen Topfes darf von

vornherein als werthlos bezeichnet werden. Bronchialathmen findet sich bei fast allen ausgebreiteten Verdichtungen der Lunge in gleicher Weise. Die Rasselgeräusche kommen allerdings den Cavernen mit besonderer Reichlichkeit zu, und ihre grossblasige Beschaffenheit weist schon für manche Orte, wo nur kleine Bronchien verlaufen, z. B. die Lungenspitze, die Annahme ihrer Entstehung in normalen Bronchien zurück. Allein bei dem Vergleiche des klinischen und des anatomischen Befundes von vielen Phthisisehen wird man öfter an Orten, wo sehr reichliche und grossblasige Rasselgeräusche wahrgenommen werden, vergeblich Cavernen suchen. Der amphorische Wiederhall ist wenigstens für die Intrascapulargegend nicht beweisend, wo er bisweilen auch bei Gesunden getroffen wird. Als sicherste Zeichen bleiben demnach der Höhenwechsel des tympanitischen Schalles und der Metallklang übrig. Nun findet sich aber der Höhenwechsel des tympanitischen Schalles auch dann, wenn durch verdichtetes Lungengewebe hindurch grosse Bronchien percutirt werden können. Metallklang allerdings wird nur bei Pneumothorax oder Cavernen getroffen, aber er setzt auch schon eine beträchtliche Grösse der Cavernen voraus.

Die Grössenbestimmung der Cavernen wird ermöglicht durch die Anwendung von Resonatoren. Wechselt der tympanitische Schall der Caverne beim Oeffnen und Schliessen des Mundes seine Höhe, so hält man vor den weit geöffneten Mund des Kranken der Reihe nach verschiedene Resonatoren, während über der Caverne percutirt wird. Ein Resonator oder eine kleine Reihe aufeinanderfolgender Resonatoren zeigt auffällige Verstärkung des Percussionsschalles, die nicht nur für den, der das Ohr dem Resonator nähert, sondern auch noch für die Umstehenden bemerklich wird. Der Mund muss dabei soweit geöffnet sein, dass er nicht selbst als kugelig gestalteter Resonator wirkt. Für ziemlich grosse Hohlräume kommt auch der Fall in Betracht, dass die Verbindung von Caverne und Bronchus unterbrochen oder aufgehoben ist. Man setzt dann den Resonator in nächster Nähe der percutirten Stelle auf die Brustwand auf. Cavernen, für die nur ein Resonator passt, sind glattwandige und regelmässig gestaltete. Cavernen, für die gleichzeitig mehrere Resonatoren passen, sind buchtige, unregelmässig gestaltete. Da man nur den Luftraum der Caverne bestimmen kann, muss man sie in möglichst leerem Zustande zu untersuchen trachten und von mehreren zu verschiedenen

Zeiten erhaltenen Resultaten dasjenige als gültig betrachten, das auf den grössten Luftraum hinweist. Da ausser der Grösse des Luftraumes auch die Weite der ausführenden Oeffnung in Betracht kommt, ergiebt sich leicht, dass man beim Aufsetzen des Resonators auf die Brustwand (bei geschlossenem Munde) die Caverne stets zu gross, beim Vorhalten des Resonators vor den Mund leicht etwas zu klein bestimmen wird.

Belege: In den folgenden Fällen wurde bei Phthisikern kurz vor dem Tode die Grösse der Cavernen durch Resonatoren bestimmt und bei der Section gemessen:

- 1) Eine Caverne der rechten Lungenspitze gibt tympanitischen Schall, den vor den Mund gehalten die Resonatoren nr. 11 und 13 von 5 und 5,5 Ctm. Durchmesser verstärken. Die Lungenspitze zeigt bei der Section eine buchtige Caverne, deren Durchmesser vor dem Eröffnen an der eingesunkenen Parthie auf 6 Ctm. bestimmt wird.
- 2) Caverne der rechten Lungenspitze. Vor den Mund gehalten verstärken Re⁴ und nr. 11 mit 6,25 und 5,0 Ctm. Durchmesser. Section: Maasse der Caverne '9 Ctm. Länge, 6 Ctm. Breite, sehr buchtige irreguläre Form.
- 3) Caverne links vom 2ten Intercostalraum abwärts. Auf die Brustwand gesetzt verstärkt Resonator Mi³ mit 10,5 Ctm. Durchmesser. Maasse der herausgenommenen Caverne 9 Ctm. Länge, 8 Breite.

Ueber die Frage, welcher Natur die vorgefundenen Cavernen seien, welchem Krankheitsprocesse sie ihre Entstehung verdanken, gibt die physikalische Untersuchung nur wenige Anhaltspunkte, die sich hauptsächlich auf die gleichzeitigen besondern Verhältnisse der Lunge, auf den Sitz der Cavernen und auf die Constanz der Erscheinungen, welche sie liefern, beziehen. Finden sich nur Cavernen an beiden Lungenspitzen, konnte vielleicht deren Entstehung aus vorausgegangener Verdichtung der Lunge nachgewiesen werden, so ist deren Entstehung durch käsigen Zerfall kaum zu bezweifeln, ebenso wird einseitige Cavernenbildung bei Verengerung der obern Brusthälfte und sonstigem phthisischem Habitus, und bei gleichzeitiger Verdichtung der andern Lungenspitze aller Wahrscheinlichkeit nach auf Phthise zu beziehen sein, der überhaupt die grosse Mehrzahl der Cavernen ihre Entstehung verdankt. Da die aus Lungengangrän oder Abscessbildung sich entwickelnden Cavernen bei Berücksichtigung der Anamnese, des Verlaufes und des Secretes, das entleert wird, sehr leicht erkannt werden können, so haben wir es hier hauptsächlich nur mit der praktischen, so hochwichtigen Unterscheidung der bronchektatischen von den ulcerösen Cavernen zu thun. In den untern Lappen allein gelegene Höhlen

können in der Regel eher als bronchektatische betrachtet werden, ebenso solche Cavernen, die nur in einer geschrumpften Lunge zerstreut gefunden werden, während die andere Lunge völlig normale Verhältnisse, oder emphysematösen Zustand erkennen lässt. Cavernen, die rasch ihren Füllungszustand ändern, einmal Bronchialathmen, consonirendes Rasseln, tympanitischen Schall, verstärkte Stimmvibrationen, ein ander Mal leeren Schall, abgeschwächte Stimmvibrationen, kein Athmungsgeräusch oder nur feuchte Rasselgeräusche ergeben, werden selten andere als bronchektatische sein. Auch die Cavernen, die man erst während des Bestehens einer Pneumonie zu entdecken im Stande ist, ebenso solche, welche man Jahre lang ohne Zeichen fortschreitender Erkrankung beobachtet, gehören in die gleiche Kategorie.

In Bezug auf den Auswurf erinnern wir kurz daran, dass der missfarbige, äusserst übelriechende Auswurf bei Lungengangrän hauptsächlich durch die darin enthaltenen Bindegewebsfetzen charakterisirt wird, aber wenig oder keine elastischen Fasern führt, die hinwieder in den münzenförmigen, fast geruchlosen Sputis der Tuberculösen reichlich getroffen werden, dass der missfarbige übelriechende, in einzelnen reichlichen Entleerungen herausbeförderte Auswurf der Bronchektatiker weder Bindegewebe noch elastische Fasern, häufig aber einige Blutkörperchen führt. Endlich der reineitrige, dünnflüssige, reichlich hervorquellende Auswurf bei Lungenabscessbildung hat an sich am wenigsten besondere Charaktere. Von den Bronchektasien ist noch besonders hervorzuheben, dass man sich durch die Qualität des Auswurfes weder allein noch überwiegend zu deren Annahme bestimmen lassen darf; dieselbe Form des Auswurfes kann durch einfachen Katarrh geliefert werden, und wir kennen Bronchektasien mit äusserst ausgebreiteten Cavernen, die einfachen, katarrhalischen Auswurf liefern und solche, die Monate lang fast gar keinen Auswurf lieferten. Man wird in der Regel die stinkende, brodsuppenähnliche Beschaffenheit des Auswurfes bei jenen bronchektatischen Cavernen vermissen, die gutgenährten Individuen angehören und bei der Untersuchung eine weite Communikation mit der Trachea aus bedeutendem Höhenwechsel des tympanitischen Schalles erschliessen lassen.

VII. Emphysem.

Das substantive Emphysem findet seinen wesentlichen Charakter in dem Elastizitätsverluste der Lunge, doch kann es nicht einfach diesem gleichgesetzt werden, da andere Abnormitäten hinzutreten. Alle Zeichen des Emphysems lassen sich unmittelbar aus den anatomischen und functionellen Störungen ableiten.

Der Elasticitätsverlust der Lunge hat zur Folge, dass der atmosphärische Druck, der auf der Innenseite der Brustwand lastet, eine geringere Verminderung erleidet, als diess unter normalen Verhältnissen durch den Zug der Lunge geschieht; daher erweitert sich der Brustkorb, nimmt eine mehr inspiratorische Stellung an, daher werden die Intercostalräume flacher, die Schlüsselbeingruben verstrichen. Noch mehr macht sich diess an dem Zwerchfell geltend, dessen Wölbung sich vermindert, dessen Complementärräume sich öffnen. So sinkt die untere Grenze der Lunge, also die obere Grenze der Leber- und Milzdämpfung tiefer herab. Das auf dem Centrum tendineum aufruhende Herz nimmt dabei eine mehr nach rückwärts geneigte Lage ein, kommt im Ganzen tiefer zu stehen, berührt mit einem kleinern Theile seiner Fläche die Brustwand und wird dafür von Lunge überlagert, ja in extremen Fällen vollständig verdeckt. Diesen Veränderungen entsprechend findet sich der Herzstoss tieferstehend, sehr schwach (weil er durch eine Schicht von Lunge wahrgenommen wird), der rechte Ventrikel zum Theil zwischen den Rippenbogen der Bauchwand angelagert, so dass stärker als der Herzstoss dessen Pulsation im Epigastrium gefühlt wird. Die Herzdämpfung ist tiefstehend und klein, übrigens aber nach innen vom linken Sternalrand begränzt, nach unten in jene des linken Leberlappens übergehend. Die Herzdämpfung erreicht nicht entfernt die Stelle des Spitzenstosses, es ist nicht selten die linke Grenze derselben mehr als einen Zoll von der Stelle des Herzstosses entfernt. In extremen Fällen kommt es zum völligen Verschwinden der Herzdämpfung, wobei allerdings nicht allein die Grösse des Emphysems, sondern noch spezielle, die Abflachung der Kuppel des Zwerchfelles begünstigende Umstände von Bedeutung sind. Ist die Basis des Herzens von der Brustwand entfernt, die Spitze desselben von Lunge überlagert, so müssen natürlich die Herztöne an allen diesen Stellen abgeschwächt zur Wahrnehmung kommen. Da der Thorax fortwährend in einer Stellung verharrt, die einer gewöhnlichen Inspiration gleichkommt oder eine solche noch an Erweiterung überbietet, bedarf es häufiger und intensiver Anstrengung der Respirationsmuskeln, auch der auxiliären, um den Thorax noch zu erweitern, so wie um ihn wieder zu verengen, kurz um einen genügenden Luftwechsel

zu Stande zu bringen. Man sieht daher die Ränder der Halsmuskeln dieser Kranken stark hervorspringen, ihre Respirationsbewegung frequent, die Inspiration durch die Schultermuskeln, die überwiegend erschwerte und verlangsamte Exspiration durch die Bauchpresse unterstützt, und dennoch fällt der Erfolg dieser Muskelanstrengung, die wirkliche Formveränderung des Brustkorbes sehr gering aus. Diese Athemnoth steigert sich in Anfällen, und namentlich während solcher asthmatischer Anfälle findet inspiratorische Einziehung der Brustwand längs der Diaphragmainsertion ganz in derselben Weise statt, wie wir sie für die Laryngo- und Tracheostenose, ferner für die Atelektase als wichtiges Zeichen kennen gelernt haben. Auch hier ist es eine compensatorische Einziehung, wie sie dort bei der Verengerung der Trachea oder des Larynx wegen ungenügenden Lufteintrittes in den sich erweiternden Brustkorb stattfindet; so entsteht sie bei den Emphysematikern dann, wenn die Verstopfung zahlreicher Bronchien durch katarrhalisches Secret den Lufteintritt unmöglich macht. Dass man hier kein Einsinken der oberen Intercostalräume und Schlüsselbeingruben beobachtet, findet in der bekannten Thatsache seine einfache Erklärung, dass hauptsächlich die untern Lappen Sitz der katarrhalischen Verstopfung der Bronchien werden.

Die pathologische Anatomie zeigt die Alveolen der emphysematösen Lunge nicht allein vergrössert im Verhältnisse zu der Erweiterung der ganzen Lunge, sondern durch Schwinden ihrer Scheidewände zu grossen, oft den Umfang einer Haselnuss erreichenden Lufträumen zusammengeflossen. Mit den Alveolenwänden gehen auch zahlreiche Gefässe unter. Der daraus resultirenden Verminderung des Querschnittes der Capillarbahn der Lunge entspricht eine beträchtliche Blutstauung in der Pulmonalarterie, dem rechten Herzen und den Körpervenen. Daher verstärkter zweiter Pulmonalton, Erweiterung und Hypertrophie des rechten Ventrikels, die freilich gerade wegen des Emphysems der Lunge gewöhnlich durch die Percussion nicht nachgewiesen werden kann, jedoch durch die verstärkte Pulsation im Epigastrium sich kundgibt, cyanotisches Aussehen der Kranken, nach längerem Bestande der Krankheit Oedeme, Vergrösserung der tiefstehenden Leber, Härte des fühlbaren Leberrandes, leicht icterisches Aussehen neben der Cyanose der Kranken. Während in den rückwärts von den Lungencapillaren gelegenen Theilen, der Arterie, dem Conus arteriosus, dem rechten Herzen und Vorhofe und den Körpervenen das Blut sich anhäuft, findet eine um so schwächere Füllung in den Lungenvenen, dem linken Vorhofe und Ventrikel und den Körperarterien statt. Hievon geben Kunde das ähnlich wie bei manchen Lungenembolien entstehende systolische Mitralgeräusch (ein Zeichen localer Anämie), die Schwäche und Kleinheit des Arterienpulses, die trockene kühle Haut und die verminderte Harnabsonderung.

Entsprechend dem geringen Luftwechsel in der Lunge, der geringen Ausdehnung des Lungengewebes bei der Einathmung findet sich schwaches Vesiculärathmen, ausserdem, da die meisten Emphyseme von chronischen Katarrhen herrühren oder von solchen begleitet sind, Rasselgeräusche, namentlich trockene, grossblasige Rasselgeräusche, Pfeifen und Schnurren, und zwar regelmässig diese Erscheinungen an den untern Lappen allein oder doch am reichlichsten vorfindlich. An letzteren beobachtet man auch, dass ähnlich wie bei der Percussion der volle Schall, bei der Auscultation das Vesiculärathmen in grösserer Ausdehnung gehört wird.

Ueberblicken wir nochmals diese Zeichen in der Reihenfolge, in der sie bei der Untersuchung wahrgenommen werden, so finden wir cyanotisches Aussehen, geschwollene, namentlich bei den Hustbewegungen sich stark erweiternde Halsvenen, weiten fassförmigen Brustkorb mit bedeutendem Sternovertebraldurchmesser, angestrengte häufige, aber wenig erfolgreiche Respirationsbewegung speziell die Exspiration verlängert und durch Muskelhülfe vollzogen, den Herzstoss schwach im sechsten oder siebenten Intercostalraum, dafür den rechten Ventrikel stark im Epigastrium pulsirend, wo er häufig durch eine auf- und absteigende Querfurche (Diaphragma) von der stärker vorgewölbten Leber abgegrenzt erscheint. Die Percussion zeigt überall hellen vollen, zuweilen auffallend vollen nichttympanitischen Percussionsschall, der bis zur siebenten oder achten Rippe in der Papillarlinie herabreicht. Die Herzdämpfung ist klein und beginnt erst an der fünften oder sechsten Rippe, und reicht nicht bis zur Stelle des Herzstosses nach aussen. Die Leberdämpfung ist tiefstehend, aber gross. Man hört schwaches Vesiculärathmen, an den unteren Lappen viele Rasselgeräusche, am Herzen in inconstanter Weise Verstärkung des zweiten Pulmonaltones und den ersten Mitralton von einem blasenden Geräusche begleitet. Die Töne der grossen Arterien sind schwach, weil diese Gefässe von der Brustwand abgerückt liegen. v. Dusch hat darauf hingewiesen, dass man unter diesen Verhältnissen die Töne

der Mitralklappe oft deutlicher über dem linken Leberlappen als an der Stelle der Herzspitze höre.

- a) Die differentielle Diagnose des Emphysems unterliegt auch nicht den mindesten Schwierigkeiten. Verwechslungen desselben mit Pneumothorax, mit Tuberculose gehören fast zu den Unmöglichkeiten. Pneumothorax unterscheidet der Metallklang, die Succussion, das amphorische Athmen, welche dieser Affection angehören, Tuberculose die Erweiterung des Brustkorbes beim Emphysem, während dort Schrumpfung in jeder Richtung beobachtet wird.
- b) Partielles Emphysem von einiger Ausdehnung wird in mehrfacher Weise beobachtet. Während manche Formen des Emphysems z. B. beim Keuchhusten an den Lungenspitzen beginnen, unterliegt es keinem Zweifel, dass in vielen Fällen die ganze Lunge von der Spitze bis zur Basis beiderseits Sitz der Erkrankung sei. Ja es kommt auch Emphysem der untern Theile allein vor, namentlich in den Fällen, in welchen chronische, zum Stillstand gekommene Verdichtungsprocesse die Spitzen oder den grösseren Theil der oberen Lappen zur Verödung und Schrumpfung brachten, so bei chronischer Pneumonie und Phthise, die Stillstand machte oder zur Heilung gelangte. Hier kann die Betrachtung des Brustkorbes eingesunkene Schlüsselbeingruben, geringen Sternovertebraldurchmesser, stark concave Intercostalräume an der oberen Brusthälfte ergeben, während die untere Brusthälfte erweitert ist, geringe Tiefe der Intercostalräume zeigt, und aus den Percussionsresultaten Tiefstand der unteren Lungengrenze und Ueberlagerung des Herzens von Lunge erkennen lässt. Partielles halbseitiges Emphysem entsteht hauptsächlich in vicariirender Weise nach Schrumpfung einer Lunge, sei es, dass diese von geheiltem Pneumothorax, Empyem oder von chronischer Pneumonie ausgegangen sei. In solchen Fällen erweist die Messung und Betrachtung des Brustkorbes wesentliche Unterschiede in dem Umfange sowohl, als in der Bewegungsfähigkeit seiner beiden Hälften. Häufig gewinnt es bei dem ersten Anblicke den Anschein, als ob die Brust im Ganzen sich bei jeder Inspiration nach der gesunden Seite hin verschiebe. Das Herz findet sich beträchtlich in die kranke Seite herein dislocirt, worüber sowohl Beobachtung des Herzstosses, als auch die Percussion der Herzdämpfung Aufschluss geben. Das Diaphragma ist auf der Seite des entwickelten Emphysems nicht allein tieferstehender als auf der geschrumpften Seite, sondern über-

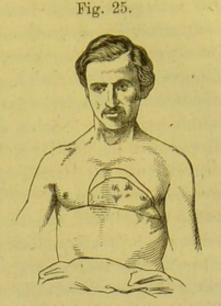
haupt im Vergleiche mit seinem normalen Stande tiefstehend. In solchen Fällen ist die vitale Capacität der Lunge vermindert sowohl wegen Schrumpfung der einen Seite, als auch wegen Emphysems der anderen, also doppelt vermindert, die Zahl der Athemzüge dem entsprechend eine sehr beschleunigte. Bei der Auscultation hört man neben dem schwachen Vesiculärathmen der emphysematösen Lunge wegen des häufig complicirenden Bronchialkatarrhes

viele trockene Rasselgeräusche.

c) Die Diagnose mancher andern krankhaften Zustände der Lunge kann durch die Anwesenheit des Emphysems wesentlich erschwert werden. Die meisten Erkrankungen an Emphysem sind mit Bronchektasien verknüpft; wie die Alveolen, so werden auch die Bronchien erweitert. So weit nun diese Bronchektasien cylindrische sind, ist ihre Erkennung überhaupt schwierig oder unmöglich. Aber auch sackförmige Bronchektasien, die ziemlich grosse Cavernen bilden, sind der Diagnose weit schwerer zugängig, wenn sie von emphysematösem Lungengewebe überlagert werden, und ich erinnere mich mehrerer Fälle, in welchen dieselben einzig und allein durch die immer an derselben Stelle wahrnehmbaren grossblasigen, jedoch nichtklingenden Rasselgeräusche angezeigt wurden. Aehnlich wie mit den Cavernen verhält es sich nun auch mit den Verdichtungen der Lunge. Entwickelt sich z. B. rings um eine Tuberkelablagerung in einer Lungenspitze hochgradiges vicariirendes Emphysem, so kann die Brustwand auf dieser Seite sogar gewölbter erscheinen, als auf der andern, der Percussionsschall voller sein als normal; die Respirationsbewegungen freilich werden dennoch vermindert erscheinen. Während das Emphysem sehr häufig mit ausgedehnter Verwachsung der Pleura combinirt ist, sind doch Zeichen von Pleuritis nur selten dabei wahrnehmbar. Jene Verwachsungen der Lunge geben sich zu erkennen durch verminderte Bewegung der Lungenränder bei einer sorgfältig die in- und exspiratorischen Grenzen darstellenden Percussion.

d) Die Entstehung des Emphysems ist fast auschliesslich auf verstärkte Athembewegungen zurückzuführen. Häufige, übermässig starke Ausdehnung der Lunge beraubt sie ihrer Elastizität und führt so zur Entstehung des Emphysems. Man hat in letzter Zeit besonders die Hindernisse der Exspiration hervorgehoben, sowohl die ausserhalb des Körpers liegenden, wie sie bei dem Blasen mancher Instrumente hervortreten, als die innerhalb desselben gelegenen, wie sie durch mässige Verengerung der Luft-

röhre durch Kropfknoten u. dergl. bedingt werden. In letzterer Weise wirken sehr intensive häufige Hustbewegungen, wie sie in acuterer Weise beim Keuchhusten, in mehr chronischer bei vielen Katarrhen beobachtet werden. Man hat mit Recht darauf hingewiesen, dass durch Husten hauptsächlich die nicht von Exspiratoren comprimirte Parthie der Lunge in der Ausdehnung der vier ersten Rippen emphysematös werde, weil sie, während die übrige Lunge bei geschlossener Stimmritze comprimirt wird, eine stärkere Ausdehnung erfährt. Gerade daraus muss man, das wichtige Moment des exspiratorischen Druckes vollständig zugestanden, folgern, dass die Inspiration nicht minder, wo sie dauernd verstärkt ist, Emphysem bewirkt - gestützt auf die zahlreichen Fälle, in welchen auch die unteren Theile der Lunge, die durch die complexe Exspiration comprimirt und leicht ausgedehnt werden, in hohem Grade emphysematös getroffen werden. Die Lunge verhält sich eben hierin wie jedes andere elastische Gewebe, sie büsst durch jeden häufigen übermässigen Zug an Elastizität ein. Zu diesem Hauptmomente treten die wichtigen Einflüsse der Erblichkeit, die hier in hohem Grade sich nachweisen lässt, der vorausgegangenen Lungenentzündungen, die einen bedeutenden, zum Theil vorübergehenden, zum Theil andauernden Elastizitätsverlust des Lungengewebes bewirken, der an manchen Orten bestehenden endemischen Verbreitung der Struma u. A. mehr hinzu, und machen die mässigen Grade des Emphysems zu einer der häufigsten Krankheiten.


e) Das systolische Mitralgeräusch, das bei vielen Emphysematikern gehört wird, hält man ziemlich allgemein für ein accidentelles. Auch ich bin dieser Ansicht, und zwar rechne ich dasselbe unter die durch Anämie bedingten Geräusche. Es hat auf den ersten Blick etwas Befremdendes, bei diesen über und über cyanotischen Kranken von Anämie zu sprechen, dennoch ist diese Annahme völlig begründet. Die Blutstauung bei den Emphysematikern beginnt erst bei den Pulmonalcapillaren und verbreitet sich von da auf die Pulmonalarterie, den rechten Ventrikel und Vorhof und auf die Körpervenen rückwärts. Der linke Vorhof und die Lungenvenen sind frei davon, sie erhalten sogar wegen der Verödung vieler Pulmonalcapillaren abnorm wenig Blut. Ganz dasselbe Geräusch sieht man acut entstehen bei grober Embolie der Pulmonalarterie. Es sind Ernährungs- und Contractionsstörungen des Herzmuskels in Folge mangelhafter Speisung mit arteriellem Blute, die diesem systolischen Geräusche zu Grunde liegen.

Die geringe Füllung des linken Vorhofes erklärt es mit, dass beim Emphysem das Herz so stark rückwärts zu sinken, d. h. sich von der Brustwand zu entfernen im Stande ist.

VIII. Flüssigkeit im Herzbeutel.

Man unterscheidet seröse, serösfaserstoffige, eitrige, jauchige Flüssigkeit und Bluterguss in dem Herzbeutel. Die physikalischen Zeichen aller sind der Hauptsache nach die gleichen. Wird der Herzbeutel ausgedehnt von einem solchen Ergusse, so nimmt das Herz die tiefste Stelle ein, die Flüssigkeit sammelt sich hauptsächlich in den obern Theilen des Cavum pericardii an, und verdrängt die Lunge in der Umgebung der grossen Gefässe von der Brustwand. Dadurch entsteht eine Vergrösserung der Herzdämpfung nach oben, die obere Grenze wird dadurch nach dem dritten, zweiten, selbst ersten linken Intercostalraume verschoben. Anfangs bleibt die innere Grenze an den linken Sternalrand angelehnt, später verschiebt sie sich mit ihrem untern Theile nach rechts, und kann sich hier schräg nach abwärts bis über die rechte Papillarlinie hinaus erstrecken; die linke Grenze wird wenig nach aussen gerückt, und nach unten verlängert. Ist die Flüssigkeitsansammlung so reichlich geworden, dass diese abgestumpft dreieckige Herzdämpfung sich über den rechten Sternalrand hinaus verbreitert, so verfehlt sie auch nicht auf das Verhalten des Herzstosses Einfluss zu üben. Derselbe wird tiefer gestellt, weiter nach aussen gerückt und abgeschwächt; da die Flüssigkeit von den Herzcontractionen in Bewegung gesetzt wird, so findet sich häufig anstatt eines umschriebenen Herzstosses an bestimmter Stelle nur verbreitete schwache Undulation in vielen Intercostalräumen vor. Bei sehr massenhafter Ansammlung von Flüssigkeit geht der Herzstoss ganz verloren, oder er wird wenigstens während der Rückenlage unfühlbar. Ist der Herzstoss wahrnehmbar, so liegt ein wichtiges Zeichen darin, dass die Herzdämpfung weiter nach links und aussen reicht, als die Pulsation des Herzens. Während beim Emphysem der Herzstoss an einer Stelle gefühlt wird, die noch den Schall der Lunge liefert, reicht hier der dumpfe Schall des Herzbeutelinhaltes weiter nach aussen, als die Pulsation des Herzens, die Herztöne werden schwach, frequent und undeutlich gehört. Ich habe gefunden, dass die Regel, dass die Herzdämpfung im Stehen und Liegen gleich bleibe, bei Perikardialergüssen eine

wichtige Ausnahme erfährt. Die im Liegen schon vergrösserte Herzdämpfung gewinnt beim Stehen um 1/3-1/2 an Umfang. Ist die Brustwand nachgiebig, so erleidet sie durch den Druck der sich ansammelnden Flüssigkeit Vorwölbung. Der gleiche Druck bedingt Tiefstand des Herzstosses und Tiefstand des linken Leberlappens. Durch die Wirkung des Druckes nach rückwärts wird der linke untere Lungenlappen theilweise in Verdichtung versetzt, wodurch gedämpfter Schall ähnlich dem eines Pleuraexsudates, jedoch Fig. 25. Herzdämpfung bei Perikarmit verstärkten Stimmvibrationen da-

ditis im Stehen und Liegen.

selbst entsteht. Dieser Druck kann auch auf das Herz selbst sich geltend machen, und neben Kurzathmigkeit und verschiedenen andern Beschwerden hochgradige Cyanose bedingen; er kann ferner die Lungenränder comprimiren und so die Ausdehnung der Herzdämpfung noch grösser erscheinen lassen, als sie der Wirklichkeit nach ist. Das constanteste unter diesen Zeichen des Ergusses in das Perikard ist die dreieckförmige Vergrösserung der Herzdämpfung. Sie fehlt nur in zwei Fällen: nämlich bei Verwachsung und dadurch bedingter Unbeweglichkeit der das Herz umgebenden Lungenränder und bei hochgradigem Emphysem.

a) Welcher Art eine Flüssigkeitsansammlung im Herzbeutel sei, ist grossentheils nach der Anamnese, und den Allgemeinerscheinungen zu beurtheilen, doch kann das schon früher erwähnte Perikardialgeräusch als wesentliches Beweismittel in dieser Richtung dienen. Wo es dem Ergusse vorausging, nachfolgt oder während desselben noch bei einer oder der andern Körperstellung gehört werden kann, wird es für die entzündliche und speziell die serösfaserstoffige Art des Ergusses sprechen, seinem Fehlen dagegen

ist keinerlei besondere Beweiskraft beizumessen.

b) Die beschriebene Form der Herzdämpfung ist unter allen Zeichen dieses Zustandes das charakteristischste. Während sie nur bei Verwachsung der Lungenränder oder emphysematösem Zustand derselben fehlt, erleidet sie nur durch partielle Verwachsungen des Herzbeutels oder der Lungenränder Formveränderung, die sie zu einer unregelmässigen, zackig ausgebuchteten machen.

Ist in irgend einem Falle Flüssigkeitsansammlung im Herzbeutel wahrscheinlich geworden, die Herzdämpfung jedoch nicht nach oben vergrössert, so kann man durch Prüfung der Verschiebungsfähigkeit der Herzdämpfung, resp. der Lungenränder erfahren, ob die Herzdämpfung überhaupt sich vergrössern konnte oder daran verhindert war. Nächst der Herzdämpfung ist das Verhalten des Herzstosses an und für sich, und namentlich im Zusammenhalte mit dem Befunde der Herzdämpfung am meisten beweisend. Man kann ziemlich unbedenklich in jedem Falle, in welchem die Herzdämpfung weiter nach aussen reicht, als der Herzstoss, dieser aber schwach bei starkem Radialpulse getroffen wird, das Vorhandensein eines Perikardialergusses annehmen. Die Schwäche der Herztöne hat geringere Bedeutung und ist ebenso, wie die Vorwölbung der Brustwand, ein vieldeutiges Zeichen. Bisweilen tritt zu den vorerwähnten Erscheinungen noch eine weitere hinzu, nämlich diffuse Dämpfung des Schalles links hinten unten bei erhaltenen oder verstärkten Stimmvibrationen, bedingt durch Compression der Lunge durch den ausgedehnten Herzbeutel.

- c) Solche Compressions-Erscheinungen können wohl auch noch andere benachbarte Brustorgane betreffen. Doch geben sowohl die Erscheinungen am Lebenden, als auch die Sectionsresultate wenig bestimmte Aufschlüsse hierüber. Nur die Cyanose, die starke Anschwellung und Undulation der Jugularvenen, die zu mässigen Flüssigkeitsabsetzungen im Herzbeutel hinzutreten, können in reinen Fällen mit Sicherheit auf Druck auf den rechten Vorhof und die Vena cava innerhalb des Perikards bezogen werden. Wenn der Puls während eines solchen Zustandes äusserst klein, frequent und unregelmässig wird, und schwächern Herzcontractionen nach dem Resultate der Vergleichung zwischen Auscultation am Herzen und Palpation der Radialarterie keine Pulswelle mehr entspricht, so darf mit einigem Rechte an Druckwirkung auf die Aorta adscendens gedacht werden. Auch für den linken Bronchus, Oesophagus, Nervus recurrens etc. ist solches schon anatomisch constatirt worden.
- d) Vergrösserung des Herzens selbst liefert niemals die gleiche Form der Herzdämpfung. Auf ganz einzelne Theile der Lungenränder beschränkte Infiltration, die die Form der perikarditischen Herzdämpfung nachtäuschen könnte, würde sich durch die ihr zukommenden Auscultations-Erscheinungen und durch die Verstärkung des Pectoralfremitus zu erkennen geben. Media-

stinalgeschwülste oberhalb des Herzens und Aneurysmen des Ursprunges der Aorta oder Pulmonalarterie üben stärkere und viel umschriebenere Druckwirkung auf die Brustwand sowohl, als auf die benachbarten übrigen Brustorgane aus. Die Aneurysmen verursachen zudem pulsirende und häufig auch schwirrende Vorwölbungen der Brustwand.

Anhang.

Verwachsung des Perikards.

Obliteration des Perikards nennt man die Verklebung beider Blätter dieser serösen Membran mit einander durch Ueberreste stattgehabter Entzündung. Dieselbe kann eine totale oder partielle sein, mit Vergrösserung des Herzens, Verkleinerung desselben oder Degeneration seiner Muskulatur einhergehen, durch dicke, festweiche Exsudatschichten verursacht oder mit Neubildungen vermischt sein (Tuberkeln), oder selbst Cysten abgesackten Exsudates einschliessen. Alle diese Verhältnisse können, so wie auch jene der benachbarten Pleura und Lunge das Resultat der physikalischen Untersuchung wesentlich beeinflussen. Es geht daraus hervor, dass die Herzdämpfung vergrössert oder verkleinert oder von normalem Umfange sein kann, dass die Herzgegend eine verstärkte Wölbung nur in

wenigen Fällen darbietet.

Die wichtigsten Zeichen werden der systolischen Bewegung der Brustwand entnommen. An der Stelle der Herzspitze findet systolisches Einsinken anstatt Vorwölbung sich vor. Es ist dieses Einsinken der Stelle des Spitzenstosses nicht zu verwechseln mit dem Einsinken benachbarter, mehr nach rechts oder oben gelegener pulsirender Stellen der Herzgegend. Während eine Beobachtung von Traube zeigt, dass schon mässig ausgebreitete Adhäsionen zwischen beiden Blättern des Perikards in der Aortengegend dieses systolische Einsinken zur Folge haben können, zeigen auch einige andere Fälle, dass dasselbe ohne jede Spur von Verwachsung des Herzbeutels zu Stande kommen kann. Es ist demnach keineswegs ein beweisendes Zeichen, wohl aber ist es beweisend, wenn die Brustwand in grösserer Ausdehnung mit der Systole eingezogen wird, mit dem Eintritte der Diastole rasch wieder ihre frühere Form annimmt. Das Zustandekommen dieses Zeichens ist abhängig von der Möglichkeit kräftiger Herzcontractionen, und wird begünstigt durch Verwachsung des Herzbeutels gegen die Wirbelsäule zu (Skoda), aber es kommt auch ohne

diese weitere Fixation des Herzens vor (Friedreich). Bei verhinderter Bewegung des Herzens nach links und abwärts bewirkt die systolische Verkürzung seines Längendurchmessers die Einziehung der Brustwand. Friedreich hat gezeigt, dass das diastolische Zurückschnellen der Brustwand einen dem zweiten Herzton folgenden Ton und rasche Entleerung der vorher gefüllten Halsvenen bewirken könne.

Die Percussion kann die Herzdämpfung vergrössert, verkleinert oder normal zeigen. Ist gleichzeitig mit der Verwachsung des Perikards Fixation der benachbarten Lungenränder vorhanden, so ändert die Herzdämpfung ihre Grösse weder bei tiefem Athmen, noch bei Seitenlage, doch kann diese Unbeweglichkeit derselben natürlich auch bei blosser Verwachsung der Lungenränder vorhanden sein, und die Herzdämpfung kann sehr frei beweglich sein trotz allseitiger Verklebung beider Blätter des Perikards. Die Herztöne sind, sofern keine Klappenfehler gleichzeitig vorhanden sind, rein und unverändert. Aus den geschilderten Zeichen kann keineswegs in jedem Falle die Diagnose der Herzbeutelverwachsung gestellt werden, es gibt Fälle, in denen alle Zeichen mangeln, und alle Zeichen sind wiederum unsicher mit Ausnahme starker Einziehung eines grösseren Theiles der Brustwand. Für die bisherigen Behelfe absolut unzugängig sind jene Fälle, in welchen der Herzbeutel ganz oder fast vollständig von der emphysematösen Lunge überlagert wird.

IX. Luft im Herzbeutel.

Pneumoperikardie entsteht durch Perforation aus lufthaltigen Organen in den Herzbeutel, so von der Lunge, Oesophagus oder Magen aus, z. B. vom Oesophagus her in einem Falle von Walshe nach dem Verschlucken eines Messers, vom Magen aus in einem Falle von Mac Dowel durch doppelte Perforation eines Leberabscesses, durch Perforation einer tuberculösen Caverne in den Herzbeutel in einem Falle Niemeyer's. Sie entsteht zweitens durch perforirende Wunden der Brustwand (Feine), und drittens durch spontane Gasentwicklung aus jauchigen Perikardialexsudaten (Stokes, Friedreich).

Wenige Zustände liefern so sinnenfällige, ja für den Beobachter geradezu überraschende Symptome als dieser. Das Verhalten des Herzstosses ist verschieden, er kann fehlen oder durch eine auf mehrere Intercostalräume ausgebreitete Pulsation ersetzt

sein; daneben fühlt die aufgelegte Hand das Knattern zahlreicher grossblasiger Rasselgeräusche, die mit der Herzbewegung synchronisch auftreten. Die Brustwand zeigt, wenn sie nachgiebig ist, beträchtliche Vorwölbung in der Herzgegend. Die Percussion liefert an Stelle der Herzdämpfung oder eines Theiles der Herzdämpfung deutlichen, und zwar entsprechend der Kleinheit des Raumes hohen Metallklang. Ich konnte mich in einem Falle überzeugen, dass dieser bei raschem, andauerndem Percutiren einer Stelle fortwährend entsprechend dem Rhythmus der Herzbewegung höher und tiefer wurde, was sich aus der beständigen Formveränderung des im Herzbeutel vorhandenen Luftraumes leicht erklärt. Da in allen Fällen neben der Luft Flüssigkeit im Herzbeutel enthalten ist, findet sich der Metallklang des Luftraumes begrenzt durch den dumpfen Schall der Flüssigkeit. Diese Grenze wechselt auffällig mit jeder Lageveränderung des Kranken. Bei völlig horizontaler Lage des Kranken, die jedoch der Dyspnoë halber nicht leicht stattfinden kann, würde die Luft allein zunächst der Brustwand liegen und percutirt werden, bei Knieellenbogenlage die Flüssigkeit allein; beim Stehen und Sitzen nimmt der Luftraum den obern, die Flüssigkeit den untern Theil des Cavum pericardii ein. Bei der Auscultation hört man neben den Herztönen ein fortwährendes metallklingendes Plätschern oder Rasseln, das mit der Herzbewegung stärker und schwächer wird, oder derartiges Rasseln, das während der Herzpausen gleichfalls pausirt. Das Geräusch ist häufig so laut, dass es auf einige Entfernung gehört werden kann und dem Kranken selbst wahrnehmbar wird. Von einem Kranken wird erzählt, dass ihn diess Geräusch, das er dem Plätschern eines Mühlenrades verglich, am Schlafe störte. Ausser demselben können noch sägende, schabende, perikarditische Reibegeräusche wahrgenommen werden.

Bei der Diagnose dieser Krankheit hat man Folgendes zu berücksichtigen: In manchen Fällen starker Gasauftreibung des Magens erregt die Herzbewegung durch eine Art von innerer Percussion dieses Organes systolischen Metallklang, oder selbst metallklingende Rasselgeräusche in demselben. Bei sehr ungeschickter Percussion könnte der percutörische Klang des ausgedehnten Magens, der sich über einen grossen Theil der linken Seite herauferstreckt, mit den erwähnten Rasselgeräuschen zusammen zur fälschlichen Annahme der Pneumoperikardie verleiten, aber es sind dann die Zeichen der Gasauftreibung des Magens unverkennbar durch

die Percussion und Palpation nachzuweisen. Die Verhältnisse des Herzstosses sind nicht geändert oder er steht etwas höher, bei leiser Percussion können die normalen Umrisse der Herzdämpfung aufgefunden werden, die Herztöne sind deutlich, das metallklingende Rasseln erscheint selten. Aehnliche Erscheinungen können auch durch Cavernen in der Nähe der Herzspitze erzeugt werden; man muss eben dann die normale oder dislocirte Herzdämpfung von dem Metallklange der Caverne zu trennen wissen, und aus dem gleichzeitigen respiratorischen Rasselgeräusche der Caverne ihre Zusammengehörigkeit mit den Respirationswegen entnehmen; zudem wird hier der Höhenwechsel des Metallklanges über eine fortdauernde Communikation mit den Bronchien Aufschluss geben, die bei Pneumoperikardie sich nicht leicht findet. Die grösste Aehnlichkeit bietet neben dem Herzen liegender abgesackter Pneumothorax. Doch bleibt hier immer die Herzbewegung und Dämpfung, wenn auch in veränderter Lage, deutlich nachweisbar.

X. Herzhypertrophie.

Vergrösserung des Herzens ist gewöhnlich durch Hypertrophie seiner Wände und Erweiterung seiner Höhlen gleichzeitig bedingt. Wir sehen desshalb hier ab von den selteneren reinen Dilatationen des Herzens und den sogar bestrittenen, doch sicher bei einzelnen Combinationen von Klappenfehlern, z. B. Stenose des linken arteriellen und venösen Ostiums vorkommenden concentrischen Hypertrophien. So finden wir denn bei der Vergrösserung des Herzens in dem Maasse den Herzstoss verstärkt, in dem Hypertrophie, und in dem Maasse denselben nach aussen und unten dislocirt, in dem Erweiterung vorhanden ist. Die Brustwand wird häufig in der Herzgegend vorgewölbt, vorzüglich bei dünner nachgiebiger Beschaffenheit, bei hohem Grade und langer Dauer der Hypertrophie. Die Pulsation des Herzens findet sich in mehreren Intercostalräumen mit grösserer Stärke und grösserer Breitenausdehnung. Die Percussion zeigt bei normaler oder wenig (höchstens den Raum einer Rippe und eines Intercostalraumes) nach oben gerückter oberer Grenze der Herzdämpfung, deren seitliche Ausdehnung nach rechts und nach links hin, unter Umständen nach beiden Richtungen gleichmässig oder nach einer mehr erweitert. Die untere Grenze der Herzdämpfung steht nun nicht mehr in gleicher Höhe mit dem rechten untern Lungenrande, sondern, wie aus der Vergleichung des Herzstosses entnommen wird und bisweilen direct nachgewiesen werden kann, wenn die Herzdämpfung nach aussen zu den linken Leberlappen überragt, tiefer, als das Diaphragma in einiger Entfernung davon getroffen wird. Das Verhalten der Herztöne wechselt sehr, sie können sehr stark, der erste an der Herzspitze von einem klirrenden Geräusche begleitet getroffen werden, durch Klappengeräusche völlig verdeckt sein, oder bei gesunkener Innervation des Herzens auch dumpf und schwach gehört werden.

- a) Das Vorhandensein von Herzhypertrophie lässt sich leicht constatiren, wenn die Herzdämpfung nach oben nicht oder wenigstens nicht in Dreieckform vergrössert ist, nach links so weit reicht als der Herzstoss. Schon durch diesen Befund sind alle Verwechslungen ausgeschlossen, namentlich wenn eine gewisse regelmässige Form der Herzdämpfung noch dabei vorhanden ist. Aber das Herz kann sich um ein Beträchtliches vergrössern, ohne dass die Herzdämpfung umfangreicher würde; jede Section eines Emphysemkranken gibt hiefür den Beleg ab; auch Verwachsung der Lungenränder mit der Pleura parietalis und dem Herzbeutel können es verhindern, dass das hypertrophirende Herz auch eine entsprechend grössere unbedeckte Fläche bietet. In diesen Fällen kann man Aufschluss erhalten durch genaue Beobachtung der Lage des Herzstosses, der ausserhalb der Grenzen der Herzdämpfung getroffen wird, ferner durch eine möglichst genaue Abgrenzung des leereren die Herzdämpfung umgebenden Schalles, auch durch den Versuch die wahre Grösse des Herzens zu percutiren. Dass das Resultat dieses Versuches kein exactes sei, wurde bereits früher erwiesen.
- b) Die Frage, welcher Theil des Herzens überwiegend vergrössert worden sei, bezieht sich zunächst auf rechts oder links und zwar links nur auf den Ventrikel, rechts auf Ventrikel und Vorhof, aus dem einfachen Grunde, weil der linke Vorhof so entfernt von der vorderen Brustwand abliegt, dass von einer Grössenbestimmung desselben gar nicht die Rede sein kann. Der linke Ventrikel vergrössert sich bei manchen Ernährungsstörungen und unächten Massenzunahmen, die das ganze Herz betreffen, bei Hindernissen im Stromgebiete der Körperarterien, so bei Stenose des linken arteriellen Ostiums, bei Verengerung der Aorta an ihrem Bogen, bei allgemeiner Enge des Aortensystems, Aortenaneurysmen, bei Atherom der Körperarterien, endlich bei Nierenkrankheiten, die zur Schrumpfung der Niere und zum Verluste eines grossen Theiles der renalen Capillarbahn führen (Traube), aber auch bei paren-

chymatöser Nierenentzündung noch ehe diese zur Schrumpfung führte (Bamberger, Förster). Bedeutende Hypertrophie des linken Ventrikels bedingt in der Regel hebenden Herzstoss. Ueberhaupt ist der Herzstoss dabei beträchtlich verstärkt und weit nach aussen und unten dislocirt, nicht ganz selten bis zur Axillarlinie und zum achten Intercostalraum. Er ist auf einen kleinen Raum beschränkt und unterscheidet sich jedenfalls deutlich vonandern daneben vorhandenen Pulsationen des Herzens. Der eigentliche Spitzenstoss also lässt sich deutlich von dem Pulsiren benachbarter Intercostalräume unterscheiden durch die Stärke der Vorwölbung, die er verursacht. Entsprechend diesen starken Herzcontractionen findet sich auch grosser und voller Arterienpuls, ausser, wenn Gefässverengerungen die Blutströmung und den Lauf der Pulswelle hemmen. So ist bei Stenose des Aortenostiums der Puls überall klein, bei Stenose der Aorta an der Einmündung des Ductus arteriosus der Puls an den obern Extremitäten gross, an den untern klein. Die Herzdämpfung zeigt sich nicht oder wenig nach oben vergrössert. Das Herz hat demnach, soweit es nicht durch die Abwärtsdrängung des Diaphragmas Raum gewann, sich horizontaler gelagert. In die Quere reicht die Herzdämpfung vom linken Sternalrande oder höchstens von der rechten Parasternallinie an bis zur Stelle des Herzstosses. Die Herzdämpfung ist also überwiegend nach der linken Seite zu vergrössert. Wenn man gewöhnlich als Eigenthümlichkeit der linksseitigen Herzhypertrophie überwiegende Vergrösserung der Herzdämpfung im Längsdurchmesser aufführt, so entspricht diess dem Umstande, dass das Herz selbst bei dieser Art der Hypertrophie bedeutend verlängert (in Folge des verstärkten Rückstosses von der Aorta) aber keineswegs kugelförmig gestaltet erscheint. Der Längsdurchmesser ist aber in diesen Fällen fast quer gelagert, indem als solcher die Linie vom obern Rande der Herzdämpfung in der Sternalgegend bis zur Herzspitze bezeichnet wird. Man würde also die Sachlage richtiger charakterisiren, wenn man sagt, dass die Herzdämpfung weniger nach oben und rechts, aber bedeutend nach links und abwärts vergrössert sei. Gewöhnlich zeigen die Körpervenen keine abnormen Füllungsverhältnisse, doch liegt es im Verlaufe der Klappenfehler, die linksseitige Herzhypertrophie bewirken, auch der Aortenstenose und Insufficienz, dass sie in späterer Zeit auch venöse Stauung hervorrufen.

c) Vergrösserung des rechten Ventrikels bewirkt

gleichfalls Verschiebung des Herzstosses nach unten und aussen, jedoch in weit geringerem Masse als jene des linken. Der Herzstoss wird verstärkt, aber nicht leicht vom rechten Ventrikel allein aus hebend, die Verstärkung desselben ist eine geringere als im vorigen Falle. Der Spitzenstoss ist schwer von der Pulsation benachbarter Intercostalräume zu unterscheiden, er geht unmittelbar in dieselbe über. Diese Pulsation ist gewöhnlich eine sowohl nach oben als nach dem Sternum zu sehr verbreitete. Nehmen Conus arteriosus und Arteria pulmonalis an der Vergrösserung Antheil, so kann der zweite Pulmonalton an der entsprechenden Stelle der Brustwand gefühlt werden. Die Herzdämpfung ist entsprechend vergrössert, aber weniger nach links zu als nach rechts hin, nach oben gar nicht oder wenig. Der Querdurchmesser derselben, der senkrecht auf den Längsdurchmesser gestellt wird, ist überwiegend vergrössert, der Arterienpuls zeigt die gewöhnlichen Verhältnisse seiner Völle oder er ist abnorm klein. Die Körpervenen sind stark gefüllt. In manchen Fällen ist exquisite Cyanose vorhanden. -Solche Hypertrophie des rechten Ventrikels erfolgt bei Stenose und Insufficienz der Mitralklappe, namentlich der erstern, bei Stenose der Pulmonalarterie oder des Conus arteriosus, bei Insufficienz der Pulmonalarterie, endlich noch bei Schrumpfung der Lunge in der Weise, dass zahlreiche Lungenarterienäste verengt werden oder obliteriren. Ausserdem findet sie sich bei allgemeinen ächten oder degenerativen Hypertrophien des Herzens.

d) Die Vergrösserung des rechten Vorhofes allein hat man sehr selten Gelegenheit zu beobachten, sie würde z. B. bei isolirter Stenose des rechten venösen Ostiums nothwendig zu Stande kommen müssen. Wohl aber kann man häufig einen grössern oder geringern Antheil einer nach rechts ausgebreiteten Herzdämpfung als dem rechten Vorhof angehörig bezeichnen. Die Gründe, welche hiezu berechtigen, liegen in der Grösse und Höhenausdehnung der rechtsseitigen Herzdämpfung an sich, dann in den Verhältnissen der rechts vom Sternum wahrnehmbaren Pulsation. Pulsirt nämlich von einer ausgebreiteten rechtsseitigen Herzdämpfung nur ein kleiner unterer und innerer Abschnitt in deutlich fühlbarer Weise, so darf dieser als Antheil des rechten Ventrikels, der daneben und nach aussen gelegene Theil der rechtsseitigen Herzdämpfung als dem Vorhofe angehörig betrachtet werden. Bisweilen wird diese Anschauungsweise unterstützt durch das Vorhandensein einer kleinen Einkerbung am äussern Rande der rechtsseitigen Herzdämpfung, die der Grenze zwischen Vorhof und Ventrikel entspricht, aber allerdings nur bei sehr genauer Percussion wahrgenommen werden kann. Bei sonst mässiger Grösse der Herzdämpfung darf eine in der Rückenlage vorfindliche rechtsseitige Herzdämpfung mit Sicherheit als Zeichen einer Vergrösserung der rechtsseitigen Herzhälfte bezeichnet werden. — In der rechten Seitenlage entsteht eine solche jedoch bei vielen, ja bei den meisten sonst gesunden Leuten.

e) Während alle andern Formen der Herzhypertrophie durch directe Ernährungsstörung des Herzens sehr palpabler Art oder durch Circulationshindernisse entstehen, wird von manchen Seiten her auch eine »reine Herzhypertrophie« angenommen, eine Art von Herzhypertrophie ohne Ursache oder, wie Manche wollen, Herzhypertrophie in Folge starker Muskelanstrengung oder sehr reichlicher Ernährung des Körpers oder in Folge von Berufsweisen, die diese beiden ursächlichen Momente mit sich bringen. Das Wenige, was ich hierüber sagen kann, reducirt sich auf folgende Punkte. Von Herzhypertrophie in Folge starker Muskelanstrengung ist mir nur die eine auffällig gewesen, die bei Epileptikern sich fand, die jahrelang an ihrer Krankheit leidend, mir in Pflegeanstalten öfters zur Beobachtung kamen. Sie war als mässige Hypertrophie des linken Ventrikels ausgesprochen; bei Schmieden, Steinhauern, Ackerbauern, kurz bei irgend welchen sonst ganz gesunden Individuen habe ich dieselbe nie nachweisen können. Bei sehr reichlich genährten und dem Genusse der Spirituosen ergebenen Kranken kommen häufig Vergrösserung der Herzdämpfung und wie die Sectionen erweisen allerdings auch des Herzens selbst vor. Aber der Herzstoss bei diesen Leuten ist nicht oder auffallend wenig verstärkt, der Arterienpuls von geringer Völle, häufig auch weich und klein und die anatomische Untersuchung zeigt, so oft ich sie vornehmen konnte, dass keine reine Herzhypertrophie, sondern mehr oder weniger vorgeschrittene fettige Entartung der Vergrösserung zu Grunde lag. Demnach scheint mir die ganze Lehre von der reinen Herzhypertrophie eine noch sehr wenig fest begründete und überhaupt keiner festen Begründung fähige zu sein.

Unter die normalen Herzhypertrophien würde auch die Herzhypertrophie der Schwangern gehören, welche zuerst vor vierzehn Jahren von Larcher angenommen wurde. Aus verschiedenen allgemeinpathologischen Gründen, weil das Herz der Circulation zweier Individuen zu dienen habe, weil bei Schwangern

Plethora bestehe, Entzündungen und Katarrhe einen hartnäckigen Verlauf nähmen, hauptsächlich aber auf das Resultat zahlreicher anatomischer Untersuchungen hin, die an achtzig Herzen von Puerperen vorgenommen wurden und von Ducrest nach Messungen an hundert Herzen bestätigt wurden, wird die Lehre von der Herzhypertrophie der Schwangern begründet, die nach vielen rasch gefolgten Schwangerschaften eine bleibende werden soll. Sonderbarer Weise fand dagegen W. Bauer unter seinen achtzehn Fällen von »reiner« Herzhypertrophie nur sechs bei Weibern und sogar nur zwei bei Weibern über zwanzig Jahre. Sowohl die Vergleichung der Maassangaben Larcher's und Ducrest's mit den Normalmassen des linken Ventrikels, die von Bizot, Ranking, Peacock ermittelt worden sind, als auch die Untersuchung einiger Herzen von Puerperen, die ich secirte, zeigten mir, dass die Maasse derselben noch innerhalb der normalen Grenzen, die die letztgenannten Forscher ermittelten, gelegen sind. Die Untersuchung an Lebenden aber ergiebt im Durchschnitt von fünfzig Messungen eine geringe Vergrösserung der Herzdämpfung, wie sie aus der Heraufdrängung des Diaphragmas oder wenigstens seines Centrum tendineum sich leicht erklärt. Die untere Grenze desselben misst 73/4, die innere 61/2 Centimeter im Mittel. Wo wirkliche Vergrösserung des Herzens bei Schwangern getroffen wird, ist sie nicht auf die vorübergehende Erweiterung der Uterinarterien, die mit Aneurysmen gar nichts gemein hat, sondern auf Morbus Brightii oder chlorotische Zustände zu beziehen.

Verhältnissmässige Grösse der Herzdämpfung und wirkliche Grösse des Herzens ist schon mehrfach als bei Kindern vorkommend, hervorgehoben worden. So sagt z. B. Hope, dass bei diesen das Herz meist relativ grösser als bei Erwachsenen sei, so dass erst zur Zeit der Pubertät sich das richtige Verhältniss wieder herstelle. Anatomische Messungen haben mir nun gezeigt, dass dieses Missverhältniss einer bedeutenden Dicke des linken Ventrikels nur eben in dem Maasse besteht, in dem die Aorta an der Einmündungsstelle des Ductus arteriosus Botalli eine verengte Stelle zeigt. Dem entsprechend fand ich bei zwölf gesunden Kindern zwischen drittem und achtem Lebensjahre den Herzstoss im fünften Intercostalraume elfmal nach aussen die Papillarlinie überragend und nur einmal in dieser gelegen. Als weiteren Beweis stelle ich hier einige Angaben über die Grenzen der Herzdämpfung zusammen:

- 1) Bei gesunden jungen Männern im Mittel ein Drittel der Länge des Brustbeins nämlich 5 1/4 Centimeter ist gleich 1 " 11" par. Länge, sowohl der inneren als der unteren Greuze.
- 2) Bei Frauen zwischen 20 und 40 Jahren innere Grenze 5¹/₂, untere 6 Ctm. im Mittel.
- 3) Bei Kindern zwischen 3 und 8 Jahren mittlere Länge des inneren Randes 4 ½, des untern Randes 5 Ctm. bei 8 ½ Ctm. mittlerer Länge des Sternums. Demnach die Länge der Herzdämpfung etwa die halbe Länge des Sternums betragend. In der That stand auch der obere Rand der Herzdämpfung in der Hälfte der Fälle an der dritten Rippe und noch in einem Viertel derselben am obern Rande der vierten Rippe. Ich glaube nicht, dass diess als eine normale Hypertrophie bei Kindern, sondern einfach als eine bedeutendere Grösse des Herzens zumal des linken Ventrikels zu betrachten ist. Vorzüglich geht aus diesen Untersuchungen hervor, dass der normale Stand des Herzstosses bei Kindern des erwähnten Alters ausserhalb, nicht innerhalb der Papillarlinie zu suchen sei.
- f) Vorübergehende Vergrösserung des Herzens in Krankheiten ist mehrfach beobachtet worden. Zunächst sind Heilungen von Klappenfehlern, wenn auch keineswegs ein Ding der Unmöglichkeit, so doch selten genug sicher zu constatiren. Jaksch hat einige solche Heilungsfälle nachgewiesen und gezeigt, dass sie in stärkerer Ausdehnung der noch functionsfähig gebliebenen Klappentheile ihre Begründung finden. Auch mir sind einige Fälle vorgekommen, in welchen sicher ohne Entwicklung von Lungenemphysem bei jugendlichen, kräftigen, schwere Arbeit verrichtenden Individuen alle Zeichen von Insufficienzen der Mitralis oder Aorta verschwanden, die unter meinen Augen entstanden waren, somit auch die Zeichen der durch jene Klappenfehler bedingt gewesenen Hypertrophie. Ferner kann erkannte Herzhypertrophie, welche einen einfachen Klappenfehler begleitet, dadurch, dass derselbe ein complicirter wird, vermindert werden, so beim Hinzutreten von Mitralstenose zur schon bestandenen Aorteninsufficienz. Häufiger hat man Gelegenheit in andern Krankheiten vorübergehende Vergrösserung des Herzens zu beobachten, die hauptsächlich auf Atonie seiner Musculatur beruhen. Solche sind von Stokes für das Fleckfieber, aber auch von Friedreich in sehr überzeugender Weise für einzelne Fälle von Ileotyphus und Pneumonie nachgewiesen worden. Während des Wechselfieberanfalles hat man gleichfalls Verbreiterung der Herzdämpfung

beobachtet, doch hat mir deren Nachweisung, so oft ich auch darnach suchte, noch niemals gelingen wollen. Endlich sind in meiner Klinik von Th. Stark durch genaue Messung der Herzdämpfung bei Chlorotischen sehr bedeutende Verbreiterungen namentlich nach rechts hin nachgewiesen worden, die mit der Heilung der Krankheit spurlos wieder verschwanden. Nach reichlichen Blutungen aus Unterleibsorganen findet man die Herzdämpfung vergrössert, die Milzdämpfung verkleinert. Mit dem Wiederersatze der Blutmasse erlangen beide die normalen Grenzen wieder.

g) Von den Vergrösserungen des Herzens durch unächte Hypertrophie seiner Wandungen ist am genauesten die fettige Degeneration bekannt. Ihre physikalischen Zeichen jedoch reduciren sich auf nach aussen gerückten schwachen, unregelmässigen, frequenten, seltener verlangsamten Herzstoss, bedeutende Verbreiterung der Herzdämpfung, Schwäche der Herztöne und im Verhältniss zum Herzstoss noch schwächeren Radialpuls. Alle anderen Symptome dieses Zustandes sind theils der Anamnese entnommene, theils subjective, so namentlich die Schwindelanfälle und die dyspnoischen Anfälle, unter welchen diese Kranken leiden. Die genaue Verfolgung der Percussionsverhältnisse des Herzens während seiner acuten fettigen Degeneration, wie sie bei Phosphorvergiftung und bei der sogenannten acuten gelben Lebertrophie beobachtet wird, hat bis jetzt keine Umfangsveränderung gezeigt.

XI. Klappenfehler.

Wir werden uns unter ausdrücklichem Hinweise auf die genauere Beschreibung dieser Zustände in den neueren Lehrbüchern der Herzkrankheiten mit einer kurzen Schilderung ihrer physikalisch-diagnostischen Symptome begnügen.

1) In sufficienz der Mitralklappe: leichte Cyanose des Gesichtes, der Schleimhäute, etwas stärkere Füllung und Undulation der Halsvenen, verstärkter nach aussen von der Papillarlinie, jedoch in der Regel noch weit vor der Axillarlinie gelagerter Herzstoss, unter Umständen systolisches Schwirren an der Herzspitze und tastbarer diastolischer Stoss der Pulmonalklappen, Verbreiterung der Herzdämpfung vorzüglich nach rechts, systolisches blasendes Geräusch an der Herzspitze mit oder nach dem ersten Tone oder anstatt desselben, häufig der erste Pulmonalarterienton von einem ebenso lauten Geräusch begleitet, ziemlich constant der zweite Pulmonalton verstärkt und accentuirt, der Ra-

dialpuls von mittlerer Völle. Bei sehr bedeutender Insufficienz oder nach längerem Bestand derselben nachdem Fettdegeneration des Herzmuskels hinzugetreten ist: stärkere Cyanose, Anschwellung der Leber, Bronchialkatarrh, Oedem der untern Extremitäten, Verminderung der Harnmenge, unter Umständen auch Ascites, Hydrothorax, Oedema pulmonum und hämorrhagischer Infarct.

Dieser Klappenfehler findet sich unter allen am häufigsten, wird besonders als Resultat der Endokarditis, und bei weiblichen und jugendlichen Individuen mehr angetroffen, als bei bejahrten Männern, er ist selten ganz rein, häufig mit mässiger Stenose complicirt. Nächst der Endokarditis liefert das Atherom das stärkste Contingent der Erkrankten. Seltener sind es bei starken Körperanstrengungen entstandene Zerreissungen der Sehnenfäden, myokarditische Loswühlungen der Insertion, Fettentartung der Papillarmuskeln, die die Schlussunfähigkeit der Klappe bedingen. Bei Erschlaffung des Herzmuskels in schweren Krankheiten kann ungenügende Contraction der Papillarmukeln temporäre Insufficienz bewirken. Ebenso ist wenigstens in vielen Fällen von Anämie das systolische Geräusch an der Herzspitze zu deuten. Das systolische Mitralgeräusch kann fehlen oder verschwinden, am begreiflichsten dann, wenn der Blutdruck des linken Ventrikels sehr vermindert wird oder wenn die Insufficienz eine sehr bedeutende wird.

Die Mechanik dieses Klappenfehlers ist eine sehr einfache und besteht hauptsächlich in einer rückwärts vorschreitenden Dilatation. Bei jeder Systole fliesst Blut aus dem linken Ventrikel in den linken Vorhof zurück und erzeugt dabei das systolische Geräusch, indem der anomale Blutstrom durch den engen Spalt der insufficienten Klappe sich hindurchdrängt. Bei bedeutender Insufficienz gelangt die Klappe desshalb nicht zum Tönen, weil sie bei der leichten Entleerung des Blutes aus dem linken Ventrikel nicht die genügende Spannung erlangt. Der Vorhof erhält während seiner Diastole Blut aus den Lungenvenen und aus dem linken Ventrikel Diese Erweiterung macht jedoch und wird dadurch erweitert. wegen der Lagerungsverhältnisse des Vorhofes keinerlei Symptome. Die Entleerung des Blutes aus den Lungenvenen in den überfüllten Vorhof wird erschwert und so pflanzt sich diese Stauung und mit ihr die Gefässerweiterung auf den gesammten kleinen Kreislauf, auf den Stamm der Pulmonalarterie fort und bewirkt hier die Verstärkung des zweiten Pulmonaltones, ferner auf den Conus arteriosus, den rechten Ventrikel, daher die Ausbreitung der Herzdämpfung

und ausgedehnte Pulsation, endlich auf den Vorhof und die Körpervenen, daher die Schwellung der Halsvenen, die Cyanose, die Vergrösserung der Leber und die Functionsstörung der Nieren, die anderseits noch begründet wird durch den verminderten arteriellen Druck. Der rückläufige Blutstrahl erzeugt in der Blutmasse des linken Vorhofes das systolische Geräusch; durch das linke Herzohr wird dieses nach der Aussenseite der Pulmonalarterie fortgeleitet und im 2ten und 3ten linken Intercostalraum um so besser gehört, je weiter das linke Herzohr an die Brustwand hinreicht. (Naunyn.)

2) Stenose des linken venösen Ostiums (kurzweg Mitralstenose) bewirkt gleichfalls schwachen, mitunter sehr schwachen aber verbreiteten Herzstoss, häufig systolisches, diastolisches oder systolisches und diastolisches Schwirren an der Herzspitze, sowie tastbaren Klappenschluss der Pulmonalarterie. Die Percussion erweist die Herzdämpfung vergrössert besonders im Querdurchmesser, es wird nämlich eine umfangreiche theils dem Ventrikel theils dem Vorhof angehörige rechtsseitige Herzdämpfung beobachtet. Die Auscultation zeigt in manchen Fällen ein lautes nur diastolisches, schabendes, blasendes oder sägendes Geräusch; in andern systolisches und diastolisches dieser Art, am häufigsten systolisches Geräusch, das schon vor dem ersten Tone (somit durch ein diastolisches Geräusch) eingeleitet wird, also ein Geräusch, das am Schlusse der Diastole beginnt, sich continuirlich über den ersten Ton und durch einen Theil der Systole hinzieht. Manchmal ist auch einzig und allein systolisches Geräusch vorhanden oder es findet sich in der Ruhe ein systolisches und nach Körperbewegung auch ein diastolisches Geräusch. Diese Verhältnisse begreifen sich leicht, wenn man berücksichtigt, dass eine Stenose ohne gleichzeitige Insufficienz an der Mitralklappe nur äusserst selten zu Stande kommen kann, ferner dass der Blutstrom aus dem Vorhofe in den Ventrikel, der das diastolische Geräusch erzeugt, ein weit schwächerer sein muss, als der systolische anomale Blutstrom aus dem Ventrikel in den Vorhof, dem dasjenige Geräusch seine Entstehung verdankt, das der Insufficienz angehört. Zudem setzt die beginnende Insufficienz einen engen Spalt, der in einen weiten Raum (den Vorhof) führt, die beginnende Stenose eine geringe Einschnürung des Kanales. Es ist als ob im einen Falle durch das Schlüsselloch in ein Zimmer, im andern durch die halb geöffnete Thüre des Zimmers geblasen würde. Dass das Geräusch am häufigsten unmittelbar der Systole vorausgeht, findet leicht seine Erklärung darin, dass in diesem Momente die Blutströmung aus dem Vorhofe in den Ventrikel durch die Contraction des ersteren einen erheblichen Zuwachs an Geschwindigkeit erfährt.

Die Stauung in den Körpervenen ist stärker, alle Symptome derselben, Cyanose, Schwellung der Halsvenen, Schwellung der Leber u. s. w. sind stärker ausgesprochen, der Radialpuls ist auffallend klein, dabei häufig sehr unregelmässig. Das diastolische Schwirren an der Herzspitze, ein sehr sicheres Zeichen der Mitralstenose, kann manchmal, wo es bei der Rückenlage fehlt, in der linken Seitenlage wahrgenommen werden, da bei dieser der atrophische linke Ventrikel wieder mit der Brustwand in Berührung kommt. Die Stärke des Herzstosses und dem entsprechend des Radialpulses ist einigem Wechsel unterworfen, indem diejenige concentrische Atrophie des linken Ventrikels, die man allen Bedingungen nach erwarten muss, keineswegs jedesmal thatsächlich vorhanden ist. Für einzelne Fälle mag die von Friedreich gegebene Erklärung zureichend sein, dass die Compression zahlreicher Capillaren und kleiner Arterien, welche bei massenhaftem Oedem stattfindet, ein Circulationshinderniss setzt, das die Arbeit des linken Ventrikels erhöht und so seine Atrophie wieder ausgleicht. Aber es fand zu häufig in Fällen ohne jedes Oedem bei den Sectionen die theoretisch verlangte Atrophie des linken Ventrikels sich nicht vor, als dass man jene Erklärung als einzige und ausreichende annehmen könnte. Wahrscheinlich wird es durch die Verlaufsweise der Muskelbündel am Herzen, dass nicht dieselben Primitivbündel am rechten Ventrikel hypertrophiren, am linken atrophiren können, ohne dass die Differenz der Arbeitsleistung beider Ventrikel eine sehr bedeutende sei. Daher mag es sich erklären, dass nur bei sehr hochgradigen und sehr reinen Mitralstenosen die besprochene Atrophie des linken Ventrikels sich findet.

Die Diagnose dieses Zustandes stützt sich hauptsächlich auf das diastolische Mitralgeräusch, nächstdem auf die Kleinheit des Herzstosses und Pulses. Sie ist eine leichtere und sicherere, als jene der Mitralinsufficienz.

Die Krankheitszeichen kommen so zu Stande, dass das Blut des linken Vorhofes durch das verengte oft knopfloch- oder muttermundähnliche Ostium nur unvollständig in den linken Ventrikel entleert werden kann; dass somit die gleichen Vorgänge der Di-

latation des Vorhofes und der Retrodilatation bis zu den Körpervenen hin Platz greifen. Der linke Ventrikel aber empfängt wenig Blut und hat wenig Arbeit zu leisten, er wird eng und seine Wand dünn, die Arterien werden wenig gefüllt und empfangen eine schwache Pulswelle. Daher die Schwäche des Herzstosses, die zudem dadurch noch erhöht wird, dass der Spitzenstoss ausschliesslich vom rechten Ventrikel ausgeht, daher die Kleinheit des Arterienpulses. Wie gering oft die Blutbewegung im linken Vorhofe ausfällt, zeigen am deutlichsten die bei Mitralstenose in den abgelegensten Theilen desselben nicht selten entstehenden spontanen Blutgerinnungen, deren eine sogar, aus dem linken Herzohr sich loslösend, plötzlich den übrig gebliebenen Rest von Ostium verstopfte und die Blutbewegung im Herzen und mit ihr das Leben des Kranken augenblicklich aufhob. Auch auf das ganze Atrium bis auf schmale Bahnen zwischen Pulmonalvenen und Ostium kann sich diese Gerinnselbildung ausdehnen.

Gelegentlich sei hier ein Zeichen erwähnt, das weder Mitralstenosen allein, noch auch jeder Mitralstenose zukommt, wohl aber das Maass arterieller Anämie des Körpers anzeigt. Es ist dies die gegen Ende der Inspiration eintretende Pupillenerweiterung, der im Laufe der Exspiration die Wiederverengerung folgt. Sie entsteht dadurch, dass die Inspiration den ohnehin schwachen Aortenstrom noch mehr abschwächt, so dass am Schlusse der Inspiration die Hirnanämie bis zum Grade der Pupillenerweiterung ansteigt.

3) In sufficienz der Aortenklappen: entsteht durch endokarditische Zerstörung oder verkürzende Auflagerung, durch atheromatöse Erkrankung, selten durch Zerreissung, Fensterung der Aortenklappen oder myokarditische Loswühlung derselben und gestattet während der Diastole dem aus dem linken Ventrikel in die Aorta gelangten Blute den Rückfluss in den linken Ventrikel.

Die Herzgegend findet sich vorgewölbt, der Herzstoss hebend, weit nach unten und aussen gerückt, gewöhnlich nicht von Schwirren begleitet. Ausser einer verschieden starken Pulsation der nächsten Intercostalräume, beobachtet man häufig auch Pulsation am Sternalrande des zweiten oder dritten rechten Intercostalraumes, und in diesen Fällen wird hier gewöhnlich diastolisches sehr deutlich in der Richtung nach abwärts sich verbreitendes Schwirren gefühlt, oder es findet sich an dieser Stelle systolisches und diastolisches Schwirren. Die Herzdämpfung ist sehr beträchtlich vergrössert und zwar hauptsächlich in ihrem Längsdurchmesser. Die

obere Grenze ist wenig nach oben gerückt, die untere und linke bedeutend nach aussen. Die rechte Grenze kann normal stehen oder es findet sich bei recht bedeutender Vergrösserung des Herzens auch eine mässige rechtsseitige Herzdämpfung. An der pulsirenden Stelle der Aorta ist der Schall gewöhnlich leerer, aber nicht völlig dumpf. Die Auscultation zeigt an der Aorta, an der Herzspitze, an den grossen Arterien des Halses, manchmal auch an den beiden rechtsseitigen Ostien ein gedehntes eigenthümlich rauschendes diastolisches Geräusch und falls die Klappe vollständig untergegangen ist, Fehlen des zweiten Aorten- und Arterientones. Dieses diastolische Geräusch wird an der Aorta am stärksten gehört; nur dann, wenn z. B. in Folge von Emphysem eine Lungenschicht von beträchtlicher Dicke die Aorta von der Brustwand trennt, kann es an der Herzspitze, wohin es der Richtung des erzeugenden Blutstromes halber sich gut fortleitet, stärker als in der Aortengegend erscheinen. Einige Male konnte ich auch trotz allseitig festgestellter Aorteninsufficienz mir nicht verhehlen, dass das Geräusch am linken Sternalrande lauter als am rechten war. Verschiebung der grossen Ursprünge nach links muss wohl die Schuld daran tragen. Der erste Aortenton kann gleichfalls fehlen und ist gewöhnlich von einem Geräusche begleitet, das auch an der Carotis und Subclavia gehört und als Schwirren gefühlt werden kann. Dasselbe verdankt seine Entstehung häufig an den entarteten Aortenklappen vorragenden Höckern oder Rauhigkeiten. Für die reinen, glattwandigen Aorteninsufficienzen muss man sich erinnern, dass das Ostium venosum sinistrum schon unter normalen Verhältnissen eine Stenose, freilich eine geräuschlose darstellt zwischen Ventrikel und Aorta. Ein Zuwachs an Strömungsgeschwindigkeit, wie ihn die Aorteninsufficienz liefert, kann genügen, um jenseits dieser normalen, glatten Stenose ein Geräusch entstehen zu lassen. Demnach ist dieses Geräusch keineswegs als zuverlässiges Zeichen gleichzeitiger pathologischer Stenose zu betrachten. Aehnlich wie mit diesem Halsarteriengeräusche verhält es sich mit jenem systolischen Geräusche, das fast in allen Fällen von Aorteninsufficienz an der Mitralklappe wahrgenommen wird. Mit den Aortenklappen erkrankt mitunter auch der Aortenzipfel der Mitralklappe, somit kann diess Geräusch von gleichzeitiger Mitralinsufficienz herrühren, thatsächlich aber ist diess selten der Fall. Es kommt vielmehr mit grosser Häufigkeit den Aortenklappenfehlern ein systolisches accidentelles Geräusch an der Mitralklappe zu, das von abnormen

Spannungsverhältnissen derselben abgeleitet zu werden pflegt. An der Pulmonalis wird das systolische und diastolische Aortengeräusch fortgeleitet gehört neben deren Tönen. Der zweite Pulmonalton ist nicht verstärkt, wenn die Mitralklappe sufficient ist und die Stauung im linken Ventrikel noch durch fortschreitende Hypertrophie und Dilatation desselben compensirt werden kann. Wird der rechte Ventrikel durch das sich hinüberwölbende Septum verengt und der linke Ventrikel unvermögend durch weitere Hypertrophie die ihm obliegende Arbeitslast zu bewältigen, so wird auch der zweite Pulmonalton verstärkt, die Kranken werden cyanotisch, während sie vorher ein normales Colorit boten, und alle Beschwerden der Herzkrankheit brechen dann über sie herein.

Eine besondere Bedeutung besitzt bei der Aorteninsufficienz der Arterienpuls. Die Körperarterien sind erweitert, verlängert und zeigen daher oft einen oberflächlichen geschlängelten Verlauf, der besonders an der Brachialarterie und Radialis sehr deutlich bemerkt wird. Kleine, sonst unfühlbare Arterien, die Coronaria labii, die Fingerarterien, Arteria dorsalis pedis und ähnliche pulsiren deutlich. Ueber den mittleren Arterien wird bei der Auscultation ein dumpfer, einem Geräusch sich nähernder Ton beobachtet (abnormes Tönen der Arterien). Kommt recht ausgebildete reine Aorteninsufficienz bei kräftigen jugendlichen Personen zur Beobachtung, so findet man noch einige weitere Erscheinungen an der Curalarterie (Duroziez), seltener an der Axillararterie (Friedreich). Der erste Ton ist gespalten. Diess kommt auch bei Bleikolik etc. vor. Man hört einen zweiten Ton laut und deutlich, oft selbst stärker als den ersten. Diess diastolische Tönen vom Herzen entfernter Arterien rührt von rascher Abspannung ihrer Wand her. Durch Druck mit dem Stethoskop kann rückläufiges, diastolisches Geräusch an der Cruralarterie erzeugt werden. Der Radialpuls ist auffallend gross aber schnell.

Die Aorteninsufficienz bewirkt namentlich, wenn sie mit einem mässigen Grade von Stenose gepaart ist, lange Zeit unter allen Klappenfehlern des Herzens die geringsten Beschwerden. Sie ist in ihren höhern Graden sehr deutlich charakterisirt durch die colossale Hypertrophie des Herzens, durch den hebenden Herzstoss, der oft schon durch die Kleidungsstücke hindurch wahrgenommen werden kann, durch das diastolische Schwirren in der Aortengegend, das eigenthümliche Geräusch und die erwähnten Verhältnisse des Pulses. Der Mechanismus derselben ist äusserst einfach: während

jeder Diastole Füllung des linken Ventrikels nicht allein vom Vorhofe sondern gleichzeitig durch den regurgitirenden Blutstrom aus der Aorta, dadurch Dilatation des linken Ventrikels und Hypertrophie desselben, dadurch vermehrtes Einströmen des Blutes in die Körperarterien unter stärkerem Drucke, grössere Pulswelle, Erweiterung der Körperarterien. Die überwiegende Dehnung des linken Ventrikels in die Länge, welche man anatomisch constatirt, und welche der starken Dislocation des Herzstosses nach abwärts zu Grunde liegt, wird am besten erklärt durch den verstärkten Rückstoss des Blutes gegen die Herzspitze zu. Von der erhöhten Druckkraft des Blutes in den Körperarterien zeugen ausser der gleichmässigen Erweiterung derselben häufig sackförmige Aneurysmen, die an kleinern Arterien entstehen, in andern Fällen Arterienrupturen, die Hämorrhagien herbeiführen.

Fig. 26.

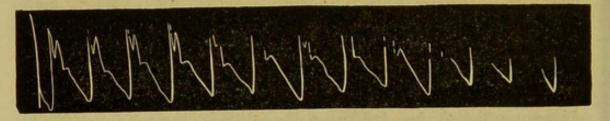


Fig. 26. Pulseurve der Aorteninsufficienz nach Wolff.

Auffällig erscheint es, dass die Mitralklappe die Kreislaufsstörung vollständig abschliesst, dass dieselbe sich demnach weder auf den linken Vorhof noch auch in dem klappenlosen Gebiete des kleinen Kreislaufes nach rückwärts verbreitet, sondern gesetzmässig wenigstens für ein langdauerndes erstes Stadium der Krankheit auf den linken Ventrikel und die Körperarterien beschränkt bleibt. Bei den Mitralkrankheiten bietet die Tricuspidalklappe nicht in ähnlicher Weise für den rechten Vorhof und die Körpervenen Schutz gegen Regurgitation.

Die sphygmographische Untersuchung, die sich von Anfang an mit besonderem Interesse der Aorteninsufficienz zuwandte, zeigt für den Radialpuls bedeutende Höhe der Wellen, hohe Lage, spitze Winkel und bedeutende Höhe der ersten secundären Ascension, während die zweite niederer ist und stumpfe Winkel hat, sehr spitzen Gipfel der Ascensionslinie dagegen stumpfwinkelig gebogene Grossincisur. Wolff hat erwiesen, dass diese Curvenform nicht. Eigenthümlichkeit der Aorteninsufficienz, sondern Folge der Hyper-

trophie des linken Ventrikels ist, somit auch dem Aortenaneurysma, dem Arterienatherom, anderweiten Hypertrophien des linken Ventrikels in gleichem Maasse zukommt.

Die von Marey hergestellte Curve des Herzstosses zeigt mancherlei interessante Abweichungen, namentlich bestätigt sie die Annahme beträchtlicher Drucksteigerung im Ventrikel schon vor der Systole (durch den regurgitirenden Blutstrom). Eine Annahme, die auch von Traube aufgestellt wurde, um das häufige Ausfallen des ersten Tones der Mitralklappe aus ungenügendem Spannungszuwachs bei der Systole zu erklären.

4) Stenose der Aorta in der Klappengegend oder des Ostium arteriosum sinistrum findet sich im untergeordneten Grade neben den meisten Insufficienzen derselben vor. Sie kann dann nur aus der geringen Völle des Pulses und auffälligen Stärke des systolischen Geräusches an der Aorta erschlossen werden. Reine oder überwiegende Stenose gehört zu den seltneren Formen der Klappenfehler. Sie bedingt die gleichen Zeichen der Hypertrophie des linken Ventrikels, nur in etwas geringerem Maasse, also hebenden nach aussen und unten stark dislocirten Herzstoss und im Längendurchmesser vergrösserte Herzdämpfung. Pulsation der Aorta im zweiten oder dritten rechten Intercostalraume wird seltener wahrgenommen, wohl aber häufig systolisches Schwirren an dieser Stelle. Ebenso an den Halsarterien. Die Auscultation zeigt in den ausgesprochenen Fällen dieser Krankheit ein einziges langgezogenes blasendes, sausendes oder hauchendes Geräusch, das mit der Systole beginnt, und sich continuirlich bis weit in die Diastole hineinzieht, um wieder kurz vor der Systole zu enden. Es ist nicht selten, dass alle Herztöne durch dieses Geräusch complet verdeckt sind, oder in einer späten Periode der Krankheit, wenn Störung des kleinen Kreislaufes und Ueberfüllung der Körpervenen bereits hereingebrochen sind, hört man von allen Tönen nur den einzigen verstärkten zweiten Pulmonalton. Der Radialpuls ist klein, oft verschwindend klein, langgezogen und sehr häufig unregelmässig. Härte des Pulses neben seiner Kleinheit spricht eher für Aortenstenose, als für Mitralstenose. Sie ist von der Hypertrophie des linken Ventrikels abzuleiten. Häufig kommt der Puls verspätet, was sich namentlich bei gleichzeitigem Befühlen des Radialpulses und des Herzstosses leicht bemerklich macht. Die Blutarmuth der Körperarterien kann am Gehirn, das am feinsten auf solche Zustände reagirt, sich durch Zufälle von Bewusstlosigkeit und Krämpfen bemerklich machen. Die Anhäufung des Blutes, das nicht in die Körperarterien gelangt, findet zunächst in dem kleinen Kreislaufe statt, daher die Häufigkeit des Blutspeiens bei dieser Krankheit. Das Geräusch, das am Herzen bei Aortenstenose entsteht, gehört zu den stärksten und lautesten, die man kennt. Es kann manchmal an dem Kopfe der Kranken, ja an der Lehne des Stuhles, auf dem sie sitzen, gehört werden.

5) In sufficienz der Tricuspidalklappe, ein Klappenfehler, der rein ohne Complicationen sogut wie unbekannt ist, daher sich seine wesentlichen Zeichen auf die Erkennung desselben neben anderen Klappenfehlern, namentlich neben jenen der Mitralis beziehen. Solcher Zeichen sind drei zu besprechen: a) der Venenpuls, b) das systolische Geräusch an der Stelle der Tricuspidalklappe, c) die Schwäche des zweiten Pulmonaltones.

Fig. 27.

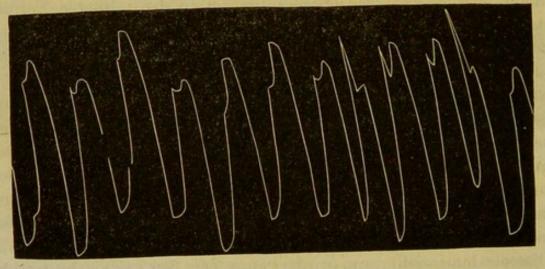


Fig. 28.

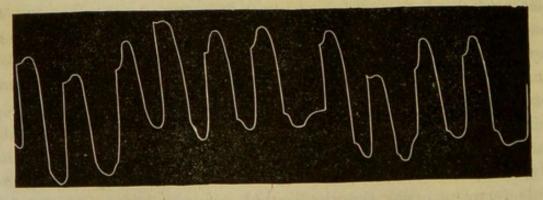


Fig. 27 u. 28. Venenpulscurven nach Bamberger.

a. Der Venenpuls ist genau genommen ein Zeichen der Blutstauung in den Venen und der Insufficienz der Jugularvenen-

klappen. Diese beiden Bedingungen werden am häufigsten bei Tricuspidalinsufficienz erfüllt. Für diesen Herzfehler ist jedoch der Venenpuls nicht pathognomisch; er kommt, wiewohl sehr selten, auch bei gesunder Tricuspidalklappe vor. Abgesehen von letzteren Fällen entsteht er durch das systolische Regurgitiren des Blutes aus dem rechten Ventrikel durch die insufficiente Klappe, durch die Hohlvene, Anonyma, die gleichfalls insufficient gewordenen Klappen der Vena jugularis communis in der Weise, dass diese dauernd erweitert und zugleich mit jeder Systole von unten her geschwellt und von einer rückläufigen Blutwelle durchlaufen wird. Sie geräth dabei häufig in systolisches Tönen oder Schwirren, und sie gibt, wie Bamberger nachwies, eine anadikrote Pulscurve mit einer ersten präsystolischen und einer zweiten systolischen höheren Ascension. Gewöhnlich zuerst rechts auftretend, wird er später doppelseitig, und kann sich sowohl auf die Vena jugularis externa, als auch auf die kleineren Venen des Halses, des Oberarmes, ja der obern Brusthälfte ausbreiten. Der Puls der Vena cava inferior und der Lebervenen zeigt sich rechts von der Mittellinie, kann die ganze Leber in eine Art pulsirender Geschwulst verwandeln, wird jedoch weit seltener und noch am ersten nach Punctionen des Unterleibes wegen Ascites beobachtet. An der Vena jugularis interna kann der unterste Abschnitt bei abnorm hoher, oder in die Höhe gedrängter Lage der Klappen pulsiren, ohne dass die Klappen durchbrochen worden sind (Pulsation des Bulbus). Wie der Venenpuls von der blossen Undulation und von mitgetheilter Pulsation unterschieden werde, wurde schon früher ausführlich besprochen (pag. 64).

b. Systolische Geräusche an der Tricuspidalklappe werden häufig beobachtet. Aber es ist denselben nur in einer Minderzahl von Fällen die Bedeutung eines eigentlichen Klappengeräusches beizumessen. Nicht einmal auf blosse Rauhigkeit der Klappe können dieselben mit einiger Häufigkeit bezogen werden, sondern sie sind theils accidentell, theils fortgeleitet.

Da die accidentellen weit schwieriger an diesem Orte als an der Mitralis und Pulmonalis zu Stande kommen, so trifft man sie nur bei hochgradigen anämischen oder Fieberzuständen, deren Unterscheidung von den mit recht hochgradiger Cyanose verbundenen Tricuspidalinsufficienzen jederzeit leicht fällt. Schwieriger ist die Unterscheidung der fortgeleiteten Geräusche, wie sie sich ziemlich gewöhnlich bei Mitral- oder Aortenkrankheiten vorfinden. Die

Qualität der Geräusche muss eine sehr differente sein, um dieselben auf verschiedene Ursprungsstellen zu beziehen. Diess findet sich häufig für die Aorta vor, weniger für die Mitralis; der gleichartigere Bau letzterer Klappen mag daran Schuld sein. Aber sehr oft gelingt es, kleine, jedoch deutliche Unterschiede in der Zeitdauer der gleichzeitig vorhandenen Mitral- und Tricuspidalgeräusche aufzufinden, und diese sind dann absolut beweisend. So beobachtet man z. B. an der Mitralis, wo die Insufficienzen höhern Grades sehr gewöhnlich von Stenose begleitet sind, viel häufiger als bei den meist reinen Tricuspidalinsufficienzen, dass das systolische Geräusch bereits vor dem ersten Tone beginnt; endlich ist das Verhalten der Tricuspidaltöne zu Rathe zu ziehen, die man oft noch weiter nach rechts und aussen rein und frei von den fortgeleiteten Geräuschen wahrnehmen kann. Sollte das systolische Geräusch an der Tricuspidalis von Schwirren begleitet sein, jenes an der Herzspitze aber nicht, so würde diess natürlich auch für das Vorhandensein der Tricuspidalinsufficienz einen sichern Beweis liefern. Das Schwirren müsste dann rechts vom Sternum auf dem fünften und sechsten Rippenknorpel getroffen werden.

c. Die von Mühlhäuser zuerst als diagnostisches Zeichen zur Geltung gebrachte Schwäche des Pulmonaltons beruht darauf, dass dem bei Mitralkrankheiten im kleinen Kreislaufe im rechten Ventrikel angehäuften und unter stärkerer Spannung versetzten Blute durch das Insufficientwerden der Tricuspidalklappe ein Abzugsweg nach dem rechten Vorhofe und den Körpervenen hin eröffnet wird. Deshalb werden nach dem Eintritte der Tricuspidalinsufficienz die Pulmonalarterienklappen in jeder Diastole mit geringerer Kraft zur Spannung und zum Tönen gebracht, als zuvor. Freilich ist nicht selten die Spannung immerhin noch so bedeutend, dass der zweite Pulmonalton auch noch als verstärkt erklärt werden muss. Aus dieser Betrachtung ergibt sich auch, dass nur, wo der zweite Pulmonalton vorher verstärkt, und später schwach gehört wird, der Schluss auf Tricuspidalinsufficienz gerechtfertigt werden könne, nicht aber daraus allein, dass derselbe schwach getroffen wird.

d. Die übrigen Verhältnisse der Kranken mit Tricuspidalinsufficienz ergeben sich leicht aus der Betrachtung der Mechanik dieses Zustandes. Der rechte Vorhof wird stark ausgedehnt und natürlich im Verhältnisse dazu und zu der Verschiebbarkeit des rechten Lungenrandes an die Brustwand angedrängt, sodass eine

beträchtliche rechtsseitige Herzdämpfung beobachtet wird. Der rechte Ventrikel würde bei reiner Tricuspidalinsufficienz eher kleiner erscheinen wegen der erleichterten Entleerung seines Blutes nach der Pulmonalbahn und dem rechten Vorhofe zugleich, allein sowohl eine stärkere Anfüllung vom Vorhofe her, als auch die gleichzeitigen linksseitigen Klappenfehler bedingen es, dass er gewöhnlich nicht wenig zu dem Umfange der rechtsseitigen Herzdämpfung beiträgt und eine rechts von dem Sternum vorhandene Pulsation des fünften, sechsten, vielleicht auch siebten und vierten Intercostalraumes bewirkt. In Folge der Regurgitation findet hochgradige Anhäufung des Blutes in den Venen statt, Cyanose, Oedem und häufig auch Ergüsse in die serösen Säcke, namentlich Ascites resultiren daher. Der Radialpuls pflegt wegen der Anhäufung des Blutes in den Venen klein und weich, und gewöhnlich auch sehr unregelmässig zu sein. Alle von den Venen aus bedingten Folgen der Klappenfehler entwickeln sich hier rasch und erreichen eine bedeutende Höhe.

6) Auch Tricuspidalstenose (Stenose des rechten venösen Ostiums) kommt, wo sie erworben ist, meistens mit anderen Klappenfehlern zusammen vor. Von ihr sind ausser diastolischem über der Tricuspidalis hörbarem und wie sich aus der Gesammtheit der Verhältnisse ergeben muss, sicher an ihr entstandenem Geräusche keine zuverlässigen Zeichen bekannt. Ein derartiger Fall, den ich beobachtete, zeichnete sich durch eine sehr auffällige und gleichmässige Cyanose aus bei mässig starker Füllung der Halsvenen, und überhaupt der grösseren Venenstämme. Obwohl nun in zwei anderen, gleichfalls sehr hochgradigen Fällen dieses Zeichen fehlte, so dürfte es vielleicht doch, wenn Pulmonalstenose ausgeschlossen werden kann, für die Annahme der Tricuspidalstenose von einiger Bedeutung sein. Uebrigens muss dieser Klappenfehler noch mehr als der zuvor besprochene abschwächend auf die Stärke des zweiten Pulmonaltones wirken, die Hypertrophie des rechten Ventrikels vermindern, dagegen die Blutstauung in den Körpervenen steigern. Mehr als allen anderen Klappenfehlern kommt diesem die Wirkung zu, Blutgerinnungen im lebenden Herzen zu begünstigen. Er wirkt der durch andere Klappenfehler angebahnten Neigung zur Herzhypertrophie unter Umständen sehr kräftig entgegen, was um so wichtiger ist, als er fast stets bei sehr complicirten Klappenleiden mit eintritt. Der öfter ausgesprochene Satz: bei Stenose dreier Ostien hypertrophire das Herz nicht, dürfte sich grösstentheils

darauf beziehen, dass Tricuspidalstenose drei Höhlen des Herzens blutarm und desshalb zur Dilatation und Hypertrophie ungeeignet macht. In den reineren angeborenen Formen, deren Schipmann eine Anzahl zusammengestellt und analysirt hat, ist neben starker Cyanose das Fehlen rechtsseitiger Herzdämpfung und ein diastolisches Geräusch über dem 4ten und 5ten linken Rippenknorpel bezeichnend.

- 7) Pulmonalstenose: Dieselbe findet sich weit häufiger angeboren als erworben. Es ist ein charakteristischer Zug, dass die fötale Endokarditis häufiger rechts als links, und wiederum häufiger an der arteriellen als an der venösen Klappe sich findet. die Stenose des Conus arteriosus (Dittrich's wahre Herzstenose) liefert die gleichen Zeichen, wie die Stenose der Pulmonalarterie. Diese beruhen auf beträchtlicher Vergrösserung des rechten Ventrikels, daher bedingter Verstärkung und Ausbreitung der Pulsation des Herzens bei undeutlichem Herzstosse, Vergrösserung der Herzdämpfung besonders nach rechts hinüber und einem systolischen, mit Pulsation und Schwirren verbundenen Geräusche im zweiten, dritten linken Intercostalraume, dabei Kleinheit des Arterienpulses, dunkelblaue Färbung der Haut, Kurzathmigkeit und Schwäche der Ernährung. Die gewöhnlich mit vorhandenen anatomischen Störungen: anomale Ursprungsstelle der Aorta, Offenstehen des Septum atriorum und Septum ventriculorum, seltener auch des Ductus arteriosus, sowie die Erweiterung der Bronchialarterien tragen, soviel bekannt, zu den am Lebenden beobachteten Symptomen nicht bei. In einem Falle konnte ich den Klappenstoss der Pulmonalarterie bei offenbar vorhandener congenitaler Stenose derselben deutlich fühlen. Hieraus dürfte gefolgert werden, dass eigentlich nicht die Pulmonalarterie, sondern der Conus arteriosus Sitz der Stenose war. Die im Extrauterinleben in Folge von Endokarditis sich entwickelnde Pulmonalstenose liefert die gleichen Zeichen, wie die congenitale, nur pflegt die Cyanose wenig entwickelt zu sein. Unter allen angebornen krankhaften Zuständen am Herzen ist die Pulmonalstenose am besten gekannt. Als eine häufige Complication sind käsig zerfallende Infiltrate der Lunge aufzuführen, die wie auch beim Diabetes mellitus und insipidus (Leyden) ihre Entstehung der mangelhaften Zufuhr an Ernährungsmaterial und Flüssigkeit verdanken.
- 8) Insufficienz der Pulmonalarterienklappen zeigt hochgradige Hypertrophie und Dilatation des rechten Ventri-

kels, systolische Pulsation und diastolisches Schwirren im zweiten oder dritten linken Intercostalraume, starken Spitzenstoss und epigastrischen Stoss, umfangreiche rechtsseitige Dämpfung, diastolisches und systolisches Geräusch an der Pulmonalarterie am lautesten, das sich nach den benachbarten Ostien fortpflanzt, hochgradige Stauung im kleinen Kreislaufe und Stauung in den Körpervenen. In einem Falle der Art beobachtete Bamberger, dass an dem im Epigastrium tastbaren rechten Ventrikel systolisches Schwirren entstand, wenn mit dem Finger ein Druck auf den-

selben ausgeübt wurde.

9) Complicirte Klappenfehler, gleichzeitige Erkrankungen mehrerer Herzklappen, liefern im Allgemeinen das Bild schwererer Herzkrankheit, bedeutender Stauung in den Körpervenen und im kleinen Kreislaufe, dann die physikalischen Zeichen einer sehr beträchtlichen Hypertrophie entweder des rechten Ventrikels allein oder beider Ventrikel. Häufig finden sich die Herztöne vollständig durch Geräusche ersetzt, oder so unregelmässig und frequent, dass eine genaue Feststellung des Zeitmomentes der vorhandenen Geräusche erst nach wiederholter Beobachtung, oder nach künstlicher Verlangsamung der Herztöne durch Medicamente möglich wird. Obwohl für den einzelnen Fall keine ganz bestimmten Regeln sich aufstellen lassen, darf man doch stets die charakteristischen Zeichen der einzelnen vorhandenen Klappenfehler und nur geringe Modifikationen in ihren Erfolgen für den Kreislauf zu finden erwarten. Bezüglich der Geräusche wird man gut thun, stets die diastolischen zum Ausgangspunkte der Diagnose zu nehmen, da die systolischen oft nur auf functionellen Störungen beruhen. Stärke, Zeitdauer, Schalltimbre, und Continuität der Geräusche an verschiedenen Orten muss deren Entstehungsart kennen und unterscheiden lehren. Bei der gewöhnlichen Form von Combination einer Mitral- und Tricuspidalkrankheit liefert erstere ihre gewöhnlichen und nothwendigen Zeichen, nur das Verhalten des zweiten Pulmonaltones kann durch die Tricuspidalinsufficienz in entgegengesetzter Weise wie beim Mitralfehler beeinflusst werden. Das Hinzutreten des Venenpulses oder eines eigenen systolischen Geräusches kennzeichnet die Tricuspidal-Erkrankung. Bei Combination von Fehlern der Mitralis und Aorta ist je nach dem Ueberwiegen des einen oder andern die Hypertrophie und Dilatation des rechten oder linken Ventrikels mehr ausgesprochen, der zweite Pulmonalton verstärkt, aber neben dem Geräusche an der Mitralis noch ein anderes in die Halsarterien sich gut fortleitendes an der Aorta vorhanden. Wegen der Aorteninsufficienz ist der Puls gross und schleudernd, auch die Folgen für den kleinen Kreislauf pflegen sehr stürmisch und ungünstig auszufallen. Bei Erkrankung dreier Klappen liefern häufig nur zwei derselben charakteristische Zeichen. Uebrigens macht bei allen complicirten Klappenfehlern ein eingehendes Studium des Einzelfalles alle allgemeinen Regeln darüber werthlos.

Die allerergiebigste Entstehungsquelle der Klappenfehler ist die Endokarditis. Diese betrifft fast immer die Klappen, höchst selten die grössere übrige; der Herzwand anliegende Ausbreitung des Endokard's. Schon dieser Umstand weist entschieden auf die hohe Bedeutung der mechanischen Reizung, Reibung u. dergl. für die Erkrankung hin. An den Klappen sind es die Ränder, oder richtiger die Schliessungsspuren, die am meisten von Endokarditis betroffen werden, unter den Klappen ist im extrauterinen Leben die V. mitralis am meisten befallen, deren Schliessung unter dem stärksten Drucke erfolgt. Eine Anzahl von Krankheiten, an deren Spitze vielfache acute Gelenkentzündungen (nicht allein acute Gelenkrheumatismen) stehen, erzeugt durch functionelle Reizung des Herzmuskels, oder durch chemische Reizung des Endokard's Neigung zu Endokarditis. Ich lege namentlich um desswillen Gewicht auf die chemische Reizung, weil jene Eigenschaft auch den ulcerirenden Carcinomen, namentlich jenen des Magens und Uterus zukommt. Ausser meinen eigenen Aufzeichnungen finde ich eine Bestätigung hiefür z. B. in Wagner's Angaben über die Häufigkeit der Endokarditis beim Carcinoma uteri. Wo solche allgemeine Ursachen Endokarditis erzeugen, nimmt dieselbe fast stets ihren Ausgangspunkt an der Klappe, die unter dem stärksten Drucke steht, also im Extrauterinleben an der Mitralis. Erzeugt die Insufficienz oder Stenose dieser eine beträchtliche Hypertrophie des rechten Ventrikels, so ändert sich, falls aufs neue Endokarditis sich einstellt, das Verhältniss. Die Mitralis selbst wird durch ihren Klappenfehler vor starkem Drucke behütet, denn der linke Ventrikel wird atrophisch, oder er drückt machtlos auf die durchlöcherte Klappe. Dagegen ist nun die Tricuspidalis dem Drucke des hypertrophischen rechten Ventrikels ausgesetzt, also in der zum Erkranken günstigen Disposition. So erzeugt die spätere Endokarditis nicht eine Steigerung des Mitralklappenfehlers, sondern als häufigste Complication desselben die Tricuspidalinsufficienz. Wenn bei Jemanden durch Fortpflanzung des atheromatösen Prozesses oder ausnahmsweise Localisation der Endokarditis die Aortenklappen erkrankt sind und derselbe darnach von Endokarditis betroffen wird, sind es in der Regel weder die Aortenklappen, noch die Zipfel der Tricuspidalis, die nun erkranken, sondern die Mitralklappe wird ergriffen, da sie die stärkste

Spannung und Reibung erleidet. Hierin findet das anerkannt häufige Hinzutreten von Mitralklappenfehlern zu jenen der Aorta seine Erklärung. Nicht allein Klappenfehler, auch sonstige Circulationsanomalien wirken so; in Fällen des Offenstehens des Ductus arteriosus Botalli fand man die Klappen der Pulmonalarterie mit endokarditischen Excrescenzen besetzt. Durch das hier entwickelte Gesetz der Klappenerkrankungen finden auch jene Fälle ihre Erklärung, die vor einigen Jahren von Neumann als »cyanotische Endokarditis« geschildert wurden, d. h. als Endokarditis entstanden durch Blutstauung.

Die Folgen eines Klappenfehlers werden in gewissem Maasse ausgeglichen, die durch denselben entstandenen Circulationshindernisse überwunden durch die erfolgende Hypertrophie eines Ventrikels. Es wird durch die-Hypertrophie des linken Ventrikels bei Aortenfehlern, durch die des rechten bei Mitralfehlern eine Compensation geleistet. Man unterscheidet desshalb noch nicht compensirte, compensirte und nicht mehr compensirte Klappenfehler. Es liegen in dieser Anschauung wesentliche prognostische und therapeutische Anhaltspunkte. Sollen Klappeninsufficienzen in der Weise, wie es von Jacksch geschildert wurde, heilen, so geschieht diess im Zeitraume der vollen Compensation. Diese wird begünstigt durch öftere vorübergehende Steigerung der Arbeitsleistung des Herzens, z. B. durch körperliche Anstrengung. In der That fanden sich die wenigen Heilungsfälle von Klappenfehlern (zwei der Mitralis, einer der Aorta), die ich durch Jahre lange Beobachtung constatiren konnte, gerade bei solchen Leuten, die bald nach der Erkrankung wieder anstrengender Körperarbeit oblagen.

XII. Lageveränderung des Herzens.

Die angeborene Rechtslagerung des Herzens (Dexiokardie) bildet einen Theil der Lageverwechslung aller Organe (Heterotaxie nach B. S. Schultze), oder nur der Brustorgane, oder es findet sich noch eine Form, die wir hier gleich miterwähnen wollen: normale Lagerung der Brustorgane, also auch des Herzens bei verkehrter der Bauchorgane. An dem in der rechten Brusthälfte mit der Spitze nach rechts hin gelagerten Herzen entspringt aus dem rechten durch eine Valvula mitralis sich abschliessenden Ventrikel die Aorta, aus dem linken mit Tricuspidalklappe die Lungenarterie, bildet der linke Vorhof den Hohlvenensack u. s. w. Der Truncus anonymus entspringt links, um den Arcus aortae schlingt sich der rechte N. recurrens; die linke Lunge hat drei, die rechte zwei Lappen u. s. w.

Diesen Verhältnissen entsprechend findet man in den betref-

fenden Fällen den Spitzenstoss des Herzens in der rechten Parasternal- bis Papillarlinie, die Herzdämpfung zwischen rechter 4ter und 6ter Rippe, bei Stauung im kleinen Kreislaufe den 2ten Ton am Ende des 2ten rechten Intercostalraumes verstärkt, bei Atherom am Ende des 2ten linken Intercostalraumes, die Stimmvibration linkerseits stärker als rechts, auch die geringen Modificationen, welche das Vesiculärathmen beider vorderen Brusthälften bietet, umgetauscht (Seitz). Ob die Heterotaxie auch das normale Verhältniss des grösseren Umfanges der rechten Seite umkehre, scheint mir unentschieden, da der Fall von Seitz dafür, jener von B. S. Schultze, ebenso ein jetzt mir vorliegender, dagegen spricht.

Bei der Heterotaxie der Unterleibsorgane findet sich die Leber, der Pylorus, das Coecum an der entsprechenden linksseitigen Körperstelle gelagert, Milz, Fundus, Colon descendens rechts. Es leuchtet von selbst ein, in welcher Weise die Zeichen der Percussion und Palpation dadurch abgeändert werden. Die Aorta pulsirt rechts von der Wirbelsäule, die Niere reicht linkerseits weiter herab. Die Erkenntniss dieser Zustände ist nicht unwichtig. Als Student sah ich die linksgelagerte Leber als typhösen Milztumor eines Pneumoniekranken percutiren.

Fig. 29.

Fig. 29. Schrumpfung der linken Lunge mit Dislocation des Herzens und Hochstand des Zwerchfelles.

Die erworbenen seitlichen Lageveränderungen des Herzens werden, soweit sie bleibende sind, vorzüglich durch Lungenschrumpfung nach Lungenoder Rippenfellentzündungen herbeigeführt. Die Dislocation nach links macht sich in entscheidender Weise bemerklich dadurch, dass der innere (rechte) Rand der Herzdämpfung anstatt an den linken Sternalrand sich anzulehnen, durch einen manchmal gegen 2" breiten Streif hellen vollen Schalles von dem Brustbeine getrennt ist. Im Uebrigen kann die nach links verrückte Herzdämpfung von normaler oder veränderter Form sein. Ersteres war bei dem beistehend abgebildeten Kranken der Fall, Cyrtometercurve bereits früher (Fig. 23) mitgetheilt wurde. Der Herzstoss findet sich am linken unteren Ende der Herzdämpfung, die Tricuspidaltöne sind neben dem linken Sternalrande aufzusuchen. Die erworbene Dexiokardie zeigt den grössten Theil oder die ganze Herzdämpfung nach rechts vom Brustbeine herübergerückt, dabei zumeist, da die Herzspitze hinter dem Brustbeine oder dem engsten Theile der Intercostalräume liegt, zwar eine in der Ausdehnung der Herzdämpfung verbreitete schwache Pulsation, aber keinen entschiedenen Spitzenstoss des Herzens.

XIII. Krankheiten der Aorta.

1) Aneurysma. Die traumatischen sowohl als die spontanen Aneurysmen, welche überhaupt Symptome machen, pflegen schon eine beträchtliche Grösse erlangt zu haben, und gehören gewöhnlich unter die sackförmigen und unter die unächten Aneurysmen. Sie liefern, indem der Blutstrom beim Eindringen in die erweiterte Stelle des Gefässes unregelmässig wird, ein systolisches Geräusch an der Stelle der Brustwand (oder Bauchwand), der sie am nächsten gelagert sind. Je umfangreicher der Sack im Vergleich zum zuführenden Rohr, je glatter die Wand um so leichter kann das Geräusch fehlen. Die Aneurysmen der Aorta adscendens finden sich häufig ohne Geräusch vor und liefern nur einen Doppelton, während andere Aortenaneurysmen ausser dem systolischen sehr oft noch ein diastolisches Geräusch erkennen lassen, das in Folge einer rückläufig in den Sack einströmenden Blutwelle entsteht. Der erste Ton aneurysmatischer Säcke entsteht, wenn überhaupt ein solcher gehört wird, in Folge der Anspannung ihrer Häute, der zweite gewöhnlich durch Fortleitung des zweiten Tones der Aortenklappen; doch reicht diese Erklärung nicht für alle Fälle, namentlich nicht für die Aneurysmen des untern Theiles der Aorta thoracica descendens aus. Hier dürfte der hie und da vorkommende zweite Ton nach Art des zweiten Cruralarterientones bei Aorteninsufficienz zu erklären sein. Drängen sich die Aneurysmen an die Brustwand, so bilden sie pulsirende, nach allen Seiten sich ausdehnende Geschwülste, an welchen ein doppelter Schlag, entsprechend ihrem Doppelton, gefühlt wird, häufig auch Schwirren, sowohl systolisch als auch diastolisch. Der Percussionsschall einer solchen Stelle ist dumpf, und die Form einer solchen Dämpfung ragt hervor aus der Herzdämpfung in der Gegend der zweiten und dritten rechten Rippe, oder sie ist völlig von ihr getrennt. Der Blutstrom wird innerhalb des Sackes abgeschwächt,

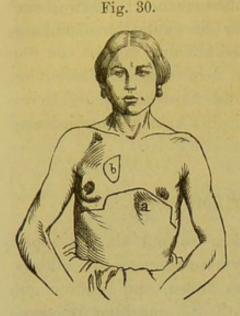


Fig. 30. Herzhypertrophie und Aneurysma aortae adscendentis. a. Herz-

ebenso die Pulswelle, die zugleich verlangsamt wird. Der Puls aller jenseits entspringenden Arterien erscheint deshalb später; er ist bei Aneurysmen des Aortenbogens gewöhnlich ungleich für beide Körperhälften bezüglich seiner Grösse und der Zeit seines Anlangens, weil die aus dem Aneurysma abgehenden Arterien verengt und spaltförmig verzogen sind. Die Abschwächung der Pulswelle macht sich häufig desshalb nicht bemerklich, weil compensirende Hypertrophie des linken Ventrikels eintritt. Die Druckwirkungen der Aneurysmen auf den Oesophagus, die Luftdämpfung, b. Dämpfung der erweiter- röhre, die Lungenvenen und Hohlvenen, die Nervi vagi, phrenici und inter-

costales, ihre Perforationserscheinungen und die Embolie aus denselben können in unvollständig charakterisirten Fällen der Beweiskraft der physikalischen Zeichen zu Hülfe kommen.

- 2) Verengung der Aorta in der Nähe der Einmündungsstelle des Ductus arteriosus Botalli charakterisirt sich durch Hypertrophie des linken Ventrikels, durch systolisches Geräusch an der Herzbasis, hauptsächlich aber durch auffällige Kleinheit des Pulses an den Arterien der untern Körperhälfte im Vergleiche zu jenen der obern, und durch zahlreiche, erweiterte, schwirrende, sichtbare und tastbare gewundene Arterien an der Brustwand; sie ist stets in früher Kindheit entstanden, wird aber hie und da noch im spätern Mannesalter beobachtet. Durch die erwähnten, von Oppolzer zuerst aufgefundenen Zeichen, ist ihre Diagnose leicht und sicher geworden.
- 3) Aneurysma varicosum, fistulöse Communication zwischen erweiterter Aorta und Vena cava superior bedingt rasch eintretende Cyanose der obern Körperhälfte, häufig auch Oedem und Hämorrhagien derselben, Pulsation der Halsvenen und ein an der Stelle der Aorta hörbares andauerndes, mit jeder Systole sich verstärkendes Geräusch. Es bedarf kaum der Erwähnung, dass dieser Zustand nur höchst selten getroffen wird, und dass die gleichfalls zu den seltensten Befunden gehörende Verschliessung der Vena cava superior in ähnlicher Weise Cyanose

und Oedem der obern Körperhälfte bewirkt, ausserdem collaterale Erweiterung subcutaner Venen am Brustkorb und Bauch, die ihr Blut dem Stromgebiete der Vena cava inferior zuführen, nicht aber jenes systolisch sich verstärkende Geräusch an der Aortengegend und ebensowenig den Venenpuls.

Aortenaneurysmen, die sich nach binks hin vor die Pulmonalarterie oder um den hintern Umfang derselben bis nach aussen von ihr zur Brustwand ausdehnen, können die gleichen Zeichen liefern, wie die wenigen seither beobachteten Fälle von Aneurysmen der Pulmonalarterie, nämlich Vorwölbung, Pulsation, systolisches Schwirren und umschriebene Percussionsdämpfung am Sternalende des zweiten und dritten linken Intercostalraumes, und im entsprechenden Theile der Sternalgegend, ferner langgezogenes systolisches Geräusch an dieser Stelle. Aber die Geräusche der Aortenaneurysmen leiten in die Halsarterien sich gut fort, jene der Pulmonalarterie nicht; letzteren fehlt jeder Einfluss auf das Verhalten des Pulses der Körperarterien, der für die Aortenaneurysmen so charakteristisch ist.

Etwas häufiger noch als das Aneurysma der Pulmonalarterie ist das Offenstehen des Ductus arteriosus Botalli beobachtet worden. Diese Krankheit bewirkt erst im Laufe der Jahre geringe, nach und nach sich steigernde Cyanose, zuletzt alle Beschwerden der Herzkrankheiten. Sie bewirkt Hypertrophie des rechten Ventrikels, dem entsprechendes Verhalten des Herzstosses und der Dämpfung, jedoch mit der Modification, dass die Herzdämpfung zwischen vierter und zweiter rechter Rippe neben dem Brustbeinrande in Form eines schmalen Viereck's nach aufwärts verlängert ist. An der gleichen Stelle ist bei geringer Vorwölbung Pulsation und systolisches Schwirren zu fühlen. Man hört an der Pulmonalarterie in manchen Fällen continuirliches, mit der Systole sich verstärkendes, in andern rein systolisches Geräusch, das in die linke Carotis und die Aorta descendens sich gut fortleitet. Die übrigen Herztöne sind rein.

XIV. Luft im Bauchfellsacke.

Freier Meteorismus, Tympanites peritonaei entsteht nach Perforation des Magens oder Darmkanals oder durch Perforation des Diaphragma's von der Lunge oder von dem lufthältigen Pleurasacke her. Während penetrirende Wunden der Brustwand fast nothwendig Pneumothorax zur Folge haben, werden Wunden der Bauchwand nur höchst ausnahmsweise Lufteintritt zur Folge haben, nämlich da, wo der Magen und Darm so collabirt sind, dass ein

negativer Druck in der Bauchhöhle mit concaver Spannung der Bauchdecken wie bei manchen Hirnkranken obwaltet. Der Lufterguss kann in seiner ursprünglichen unvermengten Form mehrere Tage bestehen, auch wo er aus einer kleinen bald wieder verklebenden Oeffnung hervorging, spurlos zur Resorption gelangen. Nach kurzer Zeit seines Bestehens oder von Anfang an treten entzündliche Erscheinungen hinzu. Der Peritonealraum enthält dann Luft und Flüssigkeit zugleich. So auch in jenen Fällen in welchen Luft aus jauchigem Peritonealexsudate sich spontan entwickelt (Pneumoperitonitis).

Die vordere Bauchwand wird in hohem Grade vorgewölbt und gespannt. Sie bietet ein gleichförmiges, kugliches Aussehen dar, und es fehlt jene Abzeichnung einelner Wülste und fortschreitender Bewegung, die bei Gasansammlung im Magen oder Darme sich findet. Die Respirationsbewegung ist auf die obern Brusthälften beschränkt, frequent und oberflächlich, die Bauchdecken bleiben regungslos. Veränderte Körperlage hat keinen erheblichen Einfluss auf die Form des Unterleibes. Die Percussion ergibt Hochstand des Diaphragma's und der Herzdämpfung, dem entsprechend wird der Herzstoss im dritten oder vierten Intercostalraume getroffen. Die Percussion zeigt ferner überall an dem ausgedehnten Unterleibe verbreiteten, gleichmässig hellen und sehr vollen Schall von tympanitischer Beschaffenheit, oder von Metallklang begleitet. Die Dämpfung der Leber und Milz ist verschwunden, sofern diese Organe nicht durch Verwachsungen in ihrer Lage erhalten werden, oder sofern nicht der Lufterguss in den Bauchfellsack von zu geringem Umfange und in dem untern Theile der Bauchöhle localisirt ist. Es fällt häufig sehr schwer, den hellen vollen, nichttympanitischen Schall der Lunge von dem tympanitischen Schalle des Unterleibes überhaupt noch abzugränzen, also namentlich in der Lebergegend die untere Lungengränze zu bestimmen. In frischen, reinen Fällen von Lufterguss in das Cavum peritonaei erweist sich die Luftblase, welche sich bildet, ungemein leicht beweglich. In der Rückenlage findet sich ihr heller tympanitischer Schall in der Gegend des Schwertfortsatzes, in der Bauchlage ersetzt er den hinteren medialen Theil der Leberdämpfung, in der linken Seitenlage den lateralen Theil derselben, in der rechten Seitenlage ein Stück Milzdämpfung.

Soviel mir bekannt, ist bei diesem Zustande durch die Auscultation noch kein peritonäales Reibegeräusch beobachtet worden, obwohl häufig die Bedingungen dazu gegeben sein mögen. Dagegen finden sich zwei andere wichtige Auscultationserscheinungen vor: metallklingender Aortenton, der übrigens auch bei starker Gasausdehnung des Magens vorkommen kann, und Succussionsgeräusch. Das Letztere, ein lautes metallklingendes Plätschern, entsteht beim Schütteln des Rumpfes des Kranken. Es ist constanter, lauter und tiefer als das entfernt ähnliche, bisweilen im Magen entstehende Geräusch, und kann auch mit jenem nicht leicht verwechselt werden, das in lufthältigen Ovarientumoren oder Echinokockussäcken entsteht. Ist die tropfbare Flüssigkeit reichlich, so kann sie an den tiefgelegenen Stellen des Peritonäalsackes Dämpfung durch den horizontalen Flüssigkeitsspiegel begränzt, liefern, deren Niveau bei verschiedener Körperlage des Kranken rasch und leicht seine Form wechselt. Die Zeichen dieses Zustandes können unvollständig vorhanden sein, wenn peritonäale Verwachsungen oder Verklebungen die Ausbreitung des Luftergusses beschränken, die Form des Unterleibes unregelmässig, und die Dislocation der Leber und Milz unmöglich machen. Verwechslungen können namentlich vorkommen mit dem alsbald zu besprechenden Meteorismus der Gedärme, starker Auftreibung des Magens, mit vom Anfang lufthältigen, oder erst später lufthältig gewordenen Geschwülsten, endlich sind solche auch möglich bei sehr rapid verlaufenden Formen der acuten gelben Leberatrophie, die gleichfalls zum Verschwinden der Leberdämpfung führen.

Schliesslich mag hier noch der Hinweis darauf gestattet sein, dass die Luftergüsse in die serösen Säcke wenigstens diejenigen in die Pleurahöhle, das Perikard und den Bauchfellsack Zeichen liefern, welche unter sich in vielen Punkten übereinstimmen. Die Vorwölbung der äusseren Wand fällt am stärksten aus am Unterleibe wegen der grösseren Nachgiebigkeit der Bauchwand, am geringsten am Herzen, wegen der starren Wand und der Kleinheit des Raumes. Die Percussion zeigt für alle Fälle Metallklang, der an die Stelle des normalen Schalles der betreffenden Organe, im einen Falle der Lunge, im andern des Herzens, im dritten der Leber und Milz tritt. Die Auscultation zeigt gleichfalls Metallklang, im einen Falle hervorgerufen durch die Athmungsgeräusche und das Schütteln, im zweiten durch die Herzbewegung, im dritten durch Schütteln oder den Ton der Bauchaorta. Die functionelle Störung sowohl als der Schmerz fallen für das Perikard am geringsten aus.

XV. Flüssigkeit im Bauchfellsacke

findet sich sowohl in Folge von Circulations- und einfachen Ernährungsstörungen als Transsudat, wie auch bei den serös-faserstoffigen, eitrigen und jauchigen Formen der Peritonitis als entzündliche Ausschwitzung vor. Dieselbe bedingt eine entsprechende Vermehrung des Unterleibsumfanges. Sie nimmt stets die tiefgelegensten Stellen des Peritonäalsackes ein, demnach bei der Rückenlage die hintere, bei der Knieellenbogenlage die vordere Bauchwand, bei aufrechtem Stehen hauptsächlich die Beckenhöhle. Die Form des Unterleibes ist nicht im gleichen Maasse kuglich bei dieser Krankheit, wie wir sie bei freiem Meteorismus trafen. Bei der Rückenlage namentlich übt die Flüssigkeit einen stärkeren seitlichen Druck aus, sodass der Unterleib zwischen Hypochondrien und Darmbeinen mehr vorgewölbt, an der vorderen Fläche, namentlich in der Umgebung des Nabels mehr abgeplattet erscheint. Die Form des Unterleibes wechselt entsprechend der freien Beweglichkeit der Flüssigkeit, welche die nachgiebige Bauchwand und die lufthaltigen Unterleibsorgane gestatten; bei jeder Seitenlage findet stärkere Wölbung auf der gleichnamigen, Abflachung auf der entgegengesetzten Seite statt; während des Wechsels der Lage gerathen häufig die Bauchdecken in von der Flüssigkeit mitgetheilte Wellenbewegung. Noch deutlicher kann diese Wellenbewegung gefühlt, oft auch gesehen werden bei kurzem Anschlage des Fingers an den untern, mit der Flüssigkeit in Berührung stehenden Theil der Bauchwand. Dieses Fluctuationsgefühl wird bei rechter Seitenlage in der rechten, bei linker in der linken Regio iliaca deutlicher erscheinen.

Die Percussion ergibt, je massenhafter die Flüssigkeitsansammlung, desto deutlicher Hochstand des Diaphragma's bei
entsprechendem Hochstande des Herzstosses und der Herzdämpfung.
Es war mir oft in solchen Fällen unerwartet, dass den theoretischen
Voraussetzungen entgegen, die Herzdämpfung keine erhebliche
Vergrösserung wahrnehmen liess. Diess ist wohl bei länger dauernder Bauchwassersucht durch die dabei stattfindende Erweiterung
des unteren Thoraxumfanges erklärlich. Im Uebrigen werden bei
massigem Ergusse die Leber- und Milzdämpfung hochstehend und
klein getroffen, entsprechend der Verdrängung dieser Organe unter
die Wölbung des Diaphragma's. Der Theil der Bauchwand zwischen
Nabel und Schwertfortsatz, oder wenigstens in der Nähe des

letztern liefert stets in der Rückenlage oder im Stehen den hellen tympanitischen Schall der lufthaltigen Unterleibsorgane, die auf dem Ergusse schwimmen; bald schon in der Nabelgegend bald in verschiedener Entfernung zwischen dieser und der Symphyse trifft man bei senkrechter Percussion nach abwärts auf die Dämpfung der der Bauchwand anliegenden Flüssigkeit. Die Form dieser Dämpfung ist charakteristisch für den Zustand; sie bietet bei der Rückenlage mit Erhöhung des Oberkörpers, wie sie diese Patienten gewöhnlich einhalten, eine halbmondförmige nach oben concave Begrenzungslinie, entsprechend einem völlig horizontal durch die vordere Bauchwand geführten Schnitte. Diese Grenze wechselt nach der Lage des Kranken. Legt sich derselbe auf die rechte Schulter, so genügt eine kurze Zeit, um die Flüssigkeit völlig nach dieser Seite herübersinken zu lassen und die lufthaltigen auf der Flüssigkeit schwimmenden Gedärme nach der hochliegenden Seite zu dislociren; bei völliger und horizontaler Seitenlage würde dann die Grenze der Flüssigkeit über oder unter der Linea alba genau parallel mit dieser verlaufen und so durch die Percussion getroffen werden müssen. Die Auscultation ergibt für gewöhnlich keinerlei charakteristische Merkmale. Die der Hauptsache nach horizontale Begrenzungslinie zeigt übrigens bei genauer Anzeichnung einen etwas unebenen Verlauf, der von dem Hereinragen der Flüssigkeit zwischen die Darmschlingen herrührt (Breslau).

a) Findet sich gewöhnlich die Leber- und Milzdämpfung verkleinert, so ist doch dabei ein häufiger Befund, dass die Milzdämpfung wegen des völlig dumpfen Schalles der sie allseitig umgebenden Flüssigkeit gar nicht nachgewiesen werden kann. Von der Leber haben wir mehrfach das Umgekehrte bemerkt, nämlich völliges Verschwinden ihrer Dämpfung, wenn das rechte Hypochondrium, der betreffende Theil der vorderen Bauchwand so sehr gehoben wurde, dass lufthaltige Darmschlingen zwischen sie und die Leber hineingedrängt werden konnten, oder wenn das ohnehin kleine Organ, z. B. bei Cirrhosis hepatis, vollständig unter die Wölbung des Diaphragma's verdrängt werden konnte. In diesen Fällen markirte allein der Uebergang des nichttympanitischen Schalles der Lunge in den tympanitischen des Darmes den Stand des Diaphragma's. Um sich von diesem scheinbaren Verschwinden der Milz- und Leberdämpfung zu überzeugen, gibt es kaum irgend ein geeigneteres Mittel, als die öftere Untersuchung vor und nach der Punction des Ascites.

- b) Nach Punctionen kann man sich zunächst häufig überzeugen, wie die Leberdämpfung und der Herzstoss um zwei bis drei Fingerbreiten herabsteigen, der Umfang der untern Thoraxapertur sich vermindert, die Leberdämpfung tiefer zu stehen kommt, grösser wird und die Untersuchung durch Betastung leicht und erfolgreich gemacht wird. Es ist dringend zu rathen, nachdem vor der Punction die Dämpfungsgrenzen angezeichnet worden waren, sofort nach derselben eine genaue Palpation und Percussion folgen zu lassen, indem häufig schon bis zum andern Tage die Flüssigkeit sich soweit wieder angesammelt hat, dass die Untersuchung unmöglich oder wenigstens in ihren Resultaten weit weniger erfolgreich wird. Besonders zwei Zeichen treten oft nach Punctionen unerwartet hervor. Bei Tricuspidalinsufficienz der Puls der Vena cava inferior und bei rauher Beschaffenheit des Peritonäums das peritonäale Reibegeräusch, das namentlich über der Leber oder Milz als rhythmisches durch die Respiration angeregtes hörbar und fühlbar auftreten kann.
- c) Die Zeichen eines solchen Flüssigkeitsergusses können vollständig zweideutig werden, wenn gleichzeitig ein abgesackter Flüssigkeit haltiger Tumor vorhanden ist, oder wenn einzelne peritonäale Adhäsionen die Form des Unterleibes und die Grenzen der Percussionsdämpfung unregelmässig machen und an ihrer freien für die Percussion so bedeutungsvollen Bewegung hindern. Die Diagnose kann aber auch schwer sein, einfach wegen zu massenhafter Ansammlung der Flüssigkeit zur Zeit der ersten Untersuchung. Fast die ganze Bauchwand gibt dann den dumpfen leeren Schall der Flüssigkeit, auch die comprimirten und mit Koth gefüllten Gedärme liefern denselben, der Bauch wird mehr kuglich vorgewölbt, verliert seine in der Mitte abgeplattete Form; von freier Bewegung der Flüssigkeit sind keine Zeichen mehr wahrzunehmen. Hier kann dann manchmal noch der gegen die Lendengegend hin wahrnehmbare Schall des Colons die Erkennung der einfachen und dünnwandigen Ovariencysten sichern. Jedenfalls aber können nach der Punction die Verhältnisse richtig beurtheilt werden.
- d) Dünnwandige schlaffe, aber umfangreiche Ovariencysten nehmen sich am meisten ähnlich mit dem in Rede stehenden Zustande aus. Auch sie sind einer Lageveränderung, eines Hinübersinkens fähig, platten sich an der Oberfläche ab und geben sogar, wenn sie in einer bestimmten Art theilweise von Darmschlingen überlagert sind, nicht die ihnen gewöhnlich zukommende

nach oben convexe, sondern eine anscheinend nach oben concave Form der Percussionsdämpfung, die jedoch immerhin eine schärfere, nicht durch Ausbuchtungen unterbrochene Grenzlinie, verglichen mit den freien Flüssigkeitsergüssen zeigt. Hier entscheidet genaue Berücksichtigung der Entstehungsweise der Unterleibsanschwellung, Untersuchung per vaginam und mikroskopische Betrachtung und chemische Analyse der entleerten Flüssigkeit.

e) Viele entzündliche Flüssigkeitsergüsse weichen vermöge ihrer abgesackten Lage und zäheren Consistenz wesentlich von den Transsudaten ab, so dass sie nicht allein aus dem fieberhaften Verlaufe, der Schmerzhaftigkeit, den heftigeren Funktionsstörungen des Magens und Darmes erkannt werden, sondern überwiegend nach ihren physikalischen Zeichen, denen zufolge sie weit mehr unregelmässig begrenzte, in ihrem Wachsthum stark schwankungsfähige Geschwülste darstellen als Flüssigkeitsergüsse. Die Stelle, an der sie der Bauchwand anliegen, zeigt meistens ganz umschriebene Vorwölbung, ungleich dumpferen Schall als die Umgebung, starke Resistenz, auf- und absteigendes oder dem Vesiculärathmen ähnliches Reibegeräusch, mitunter undeutliche Fluctuation.

XVI. Meteorismus intestinorum.

Gasanhäufung im Darmkanal entsteht sowohl, wenn Hindernisse der Fäcalbewegung entgegenstehen als auch bei paralytischem Zustande der Bauchdecken und der Darmmuscularis selbst. Sie wird begünstigt, manchmal auch hervorgerufen durch den Genuss zur Gasentwickelung besonders geeigneter Speisen. Bei Hemiplegischen hat man zuweilen Gelegenheit halbseitigen Meteorismus zu beobachten, entsprechend der halbseitigen Lähmung der Bauchmuskeln. Lässt man in solchen Fällen pressen, so verzieht sich der Nabel nach der gesunden Seite. Der Unterleib wird im Ganzen kugelig vorgewölbt, das Diaphragma ebenso wie bei den beiden vorher besprochenen Zuständen nach oben verdrängt, der Herzstoss und die Herzdämpfung nach aufwärts verschoben, bei längerer Dauer und hohem Grade selbst die untere Thoraxapertur erweitert. Aber die Bauchwand ist nicht glatt, sondern die Darmwülste sind an ihr ausgeprägt, und bei Darmstenosen sieht man dieselben in lebhafter peristaltischer Bewegung begriffen.

Der Percussionsschall ist nicht überall gleichmässig voll, sondern entsprechend der verschiedenen Weite der Darmschlingen an einzelnen Stellen höher oder tiefer. Unter Umständen kann man auch eine Abweichung von der sonst regelmässigen Kugelform des Unterleibes wahrnehmen. So wird bei Verengerung des Colon adscendens oder der Flexura hepatica der Unterleib rechts unten etwas stärker als links ausgedehnt erscheinen. Je höher oben am Dünndarme die Verengerung liegt, um so geringer der Meteorismus. der in diesem Falle mehr die mittleren, oberen Theile des Unterleibes zu befallen pflegt. (Ist gleichzeitig Flüssigkeit ergossen, so sieht man mit jeder Inspiration die Furchen zwischen den Darmwülsten etwas tiefer werden.) Die obigen Angaben über die verschiedene Völle des tympanitischen Schalles können bei Darmstenose eine wesentliche Aenderung dadurch erfahren, dass allenthalben die der Bauchwand anliegenden Darmschlingen mit lufthaltigem flüssigem Kothe gleichmässig erfüllt sind und desshalb einen gleichmässig hohen tympanitischen Schall liefern. Es findet hier eine innige Vermengung der Luft mit dem flüssigen Kothe statt und die neuerdings mehr in Aufnahme gekommene Enterotomie zeigt oft in überraschender Weise, dass keineswegs allein Luft, sondern ein dichter Schaum von Koth die Därme erfüllte. Unter diesen Verhältnissen begreift sich leicht der allenthalben gleichmässig hohe tympanitische Schall. Die Auscultation zeigt nur häufige und zahlreiche Rasselgeräusche, die sehr grossblasig und klingend sind, das sogenannte Gurren oder Poltern im Unterleibe. Am Herzen zeigt die Auscultation bisweilen ein systolisches Geräusch in der Gegend der Herzspitze, das sich am besten aus dem Drucke des Diaphragma's auf den rechten Ventrikel erklärt. Diese Erscheinungen können rein für sich oder gemengt mit jenen eines Flüssigkeitsergusses oder Tumors in der Bauchhöhle vorhanden sein.

XVII. Unterleibsgeschwülste.

Es kann hier nicht unsere Aufgabe sein, die einzelnen Formen der Geschwulstbildung in dem Unterleibsraume ausführlich zu besprechen. Wir können uns nur mit der Beschaffenheit grosser, mittlerer und kleiner Anschwellung des Unterleibes ihren allgemeinsten Erscheinungen nach bekannt machen. Jede grosse Unterleibsanschwellung, die längere Zeit besteht, bringt nicht nur eine verstärkte Wölbung der vorderen Bauchwand, sondern auch glattes glänzendes Aussehen der Bauchhaut und stärkere Entwickelung von Venennetzen an derselben zu Stande. Diese letzteren sind von

jener bestimmten Form pyramidaler mit ihrer Basis nach dem Nabel hin gerichteter Venen wohl zu unterscheiden, welche man als Caput Medusae bezeichnet, und von der Communication des Pfortadergebietes mit den Bauchdeckenvenen entweder durch die wieder wegsam gewordene und erweiterte Vena umbilicalis (Rokitansky) oder durch accessorische neugebildete Pfortaderäste

(Sappey) ableitet.

Bei jeder Geschwulstbildung innerhalb des Unterleibsraumes geben die allgemeinen Umrisse der Unterleibsformen bestimmte Anhaltspunkte. So findet sich in einer Anzahl von Fällen der Raum zwischen Nabel und Symphyse besonders stark ausgedehnt, der Nabel nach oben gerückt, die untere Thoraxapertur verhältnissmäsig wenig erweitert. Wiederum in andern Fällen ist der Nabel vom Processus xiphoideus weiter entfernt und die Thoraxbasis stark erweitert. Man hat unter den erst angegebenen Verhältnissen aus dem Becken aufsteigende Geschwülste vor sich, namentlich Uterustumoren, Ovarientumoren oder dem Uterus adnexe Geschwülste. In der zweiten Reihe von Fällen sind es die oberen Bauchorgane, Leber, Magen, Milz, vielleicht auch Retroperitonäaldrüsen oder Nieren, welche die Anschwellung bedingen. Ferner sind seitliche Verschiebungen der Mittellinie und namentlich des Nabels, umschriebene seitliche Ausdehnungen des Bauchraumes besonders zu berücksichtigen, wie sie einerseits durch die Leber und Ileocöcalgeschwülste, anderseits durch jene der Milz bedingt werden, ferner durch einseitige Anschwellungen der Niere, des Ovariums und anderer paarig vorhandener Organe.

Hat man durch das Befühlen des Unterleibes, durch sichtbare Vorwölbung oder durch umschriebene Percussionsdämpfung, die Anwesenheit von Unterleibsgeschwülsten erkannt, so ist nächst deren Lage ihre Beweglichkeit, Grösse und Härte zu berücksichtigen. Geschwülste, die stark und deutlich mit der Respiration herab- und heraufsteigen, stehen mit dem Diaphragma in unmittelbarer Verbindung und gehören daher gewöhnlich der Leber oder Milz an, doch können auch die an dem Diaphragma adhärent gewordenen Geschwülste des Magens, des Netzes, der Retroperitonäaldrüsen oder gemischte Geschwülste die oben gedachte eigenthümliche Bewegung zeigen. Für die Geschwülste des Uterus und der ihm annexen Organe ist es charakteristisch, dass ihre Bewegung der Vaginalportion sich mittheilt und somit durch die combinirte (innere und äussere) Untersuchung wahrgenommen werden kann,

ebenso mittelst der in die Uterushöhle eingeführten Sonde. Sehr wenig beweglich sind allseitig verlöthete Geschwülste, in der Regel die Geschwülste der Niere, des Pankreas und der Retroperitonäaldrüsen, eine sehr grosse Beweglichkeit zeigen dagegen im Mesenterium, im Netz gelagerte, von den Mesenterialdrüsen oder Ovarien ausgegangene Geschwülste. Spontane Bewegung wird häufig wahrgenommen, vor allem an den nach und nach vorrückenden Kothgeschwülsten, dann an den Ovariengeschwülsten, die sich häufig, nachdem sie eine gewisse Grösse erlangt haben, in den vordern oder hintern Douglas'schen Raum herab senken, dann an den Geschwülsten des Magens namentlich des Pylorus und des Darmes, die mit der verschiedenen Füllung ihrer Organe ihre Lage verändern. Für die Pylorusgeschwülste zumal ist das zeitweise Herabsinken sowohl als die Rotation nach vorn und nach hinten beobachtet. Besondere Beachtung verdient bei kleinern oberflächlichen Tumoren die Frage, ob sie von den Bewegungen der Bauchmuskeln unabhängig sind, oder an diesen theilnehmend als Bauchdeckengeschwülste erkannt werden. Aus all' dem Gesagten erhellt, dass, wo immer Unterleibsgeschwülste wahrgenommen werden, die Palpation wiederholt und namentlich auch nach zuvor bewirkter Entleerung des Unterleibes durch reichliche Stühle vorgenommen werden muss.

Die Grösse kann nur bei ziemlich oberflächlicher Lagerung einigermaassen richtig erkannt werden. Auch da wird dieselbe leicht um die Dicke der Bauchdecken, die man mittastet, überschätzt. Sie lässt sich nur unvollständig überblicken bei den hinter den Hypochondrien oder von den Organen nächst der hintern Bauchwand entspringenden Tumoren, während jene des kleinen Beckens meist noch durch combinirte äussere und innere Untersuchung, letztere vom Rectum oder der Vagina aus, grösstentheils umgriffen oder wenigstens bezüglich ihrer längsten Durchmesser, ihrer Fixation u. dgl. erforscht werden können.

Auch über die Härte der Geschwülste ergibt die Betastung häufig irrige Vorstellungen, die hauptsächlich in der Spannung der Hüllen der Geschwulst begründet zu sein pflegen. So wird ein zerfliessend weicher Markschwamm, der unter dem gespannten Peritoneum z. B. der Leber seinen Sitz hat, nicht selten als hart und derb gefühlt. Auch die Spannung der Bauchdecken selbst kann mit dazu beitragen, dass die Härte der Geschwülste darunter überschätzt wird. Anderseits werden halbfeste Massen in einer

Hülse von geringer Spannung namentlich Markschwämme öfter als fluctuirend mit Unrecht betrachtet, ja selbst von dieser Voraussetzung aus der Punction unterworfen. Uebung des Tastsinnes und sorgfältige Untersuchung des Einzelfalles sichern allein in

dieser Richtung. -

Die Percussion der Unterleibsgeschwülste liefert wohl in der enormen Mehrzahl der Fälle den dumpfen leeren Schall fester oder flüssiger Gebilde, doch sind uns mehrfache Ausnahmen von dieser Regel vorgekommen. Sie betreffen Luftaustritt in zuvor gebildete abgesackte peritonitische Heerde, wie diess namentlich bei Perityphlitis perforativa in der Ileocöcalgegend beobachtet wird; ferner durch Communication mit dem Magen oder Darmkanal oder durch spontane Zersetzung jauchigen Inhalts lufthaltig gewordener perinephritischer Abscesse, Leberechinokocken, Ovarientumoren u. d. m. In allen diesen Fällen findet sich tympanitischer oder Metallklang über der Geschwulst. Die Percussion an sich entscheidet nur darüber, ob eine solche Geschwulst lufthaltig sei oder nicht; ob sie fest oder flüssig sei, lehrt die bei der Palpation wahrgenommene Resistenz und Fluctuation derselben. Die Percussion liefert ferner im Vereine mit der Palpation den genauen Umriss der Form einer solchen Geschwulst und lässt dadurch deren Ursprung von dem einen oder anderen Organe errathen, sofern sie dessen bekannte Form in vergrössertem Maassstabe wieder gibt. So gehören birnförmige Geschwülste über der Symphyse gewöhnlich der Blase, keilförmige eher dem Uterus an, sackförmige nach oben convexe Geschwülste, seitlich vom Becken aufsteigend sind mehr auf die Ovarien zu beziehen, birnförmige dem Leberrande sich anschliessend auf die Gallenblase, walzenförmige vom linken Hypochondrium ausgegangene mit einer Kerbe an dem vorderen Rande gehören eher der Milz an u. s. w.

Die Auscultation der Unterleibsgeschwülste ergibt nicht gerade häufig Anhaltspunkte über ihre Natur, aber es können diese um so wichtiger sein. Rauhigkeit der Oberflächen bedingt auch bei ruhenden Organen ein Reibegeräusch, das durch Verschiebung hervorgerufen wird, an der Leber oder Milz oder sonstigen dem Diaphragma annexen Theilen ein rhythmisches Reibegeräusch. Abwechselnder Druck auf die mit Gallensteinen gefüllte Gallenblase kann das Klirren der Gallensteine erkennen lassen. Aehnlicher Druck auf den Magen oder die Ileocöcalgegend liefert bisweilen gurrende Rasselgeräusche. Von der allergrössten Bedeutung für die

Diagnose von Geschwülsten, die aus der Beckenhöhle emporgestiegen sind, bei weiblichen Individuen ist die An- oder Abwesenheit kindlicher Herztöne, die freilich sehr genau und gründlich festgestellt sein will, wenn der Arzt sich vor Täuschungen der schlimmsten Art behüten will. Dieselben müssen auf der betreffenden Geschwulst mit aller Deutlichkeit gehört werden und bestimmt an Frequenz die mütterlichen Herztöne übertreffen. Die hohe Bedeutung dieses Symptomes erhellt am einfachsten aus dem Hinweise auf dessen bereits gemachte Anwendung zur Erkennung des Absterbens des Kindes, der Zwillingsschwangerschaft und auf den versuchten Nachweis des Geschlechtes des Kindes und fötaler Herzfehler. Von weit geringerer Dignität ist das in der Umgebung des schwangern Uterus, aber auch von Ovarientumoren und Fibroiden des Uterus wahrnehmbare systolische Blasen, das in erweiterten Arterien dieses Organes entsteht. 'Aehnliche blasende Geräusche entstehen nicht allein in Aortenaneurysmen und sonstigen Aneurysmen der Baucharterien, sondern auch in Geschwülsten, die auf die Aorta einen Druck ausüben oder auch nur ihr fest aufgelagert sind. Bei Magen- und Retroperitonäalcarcinomen hat man häufig Gelegenheit sich von diesem Verhältnisse, sowie von der mitgetheilten Pulsation solcher Geschwülste zu überzeugen. Schliesslich haben wir noch einer eigentlich am Umfang der Brusthöhle vorkommenden Erscheinung zu gedenken, die jedoch auch ihren bestimmten Werth für die Feststellung von Erkrankungen des Verdauungskanals besitzt. Bei Verengerung des Oesophagus kann das Stocken, die Verzögerung der beim Schlingen entstehenden Rasselgeräusche an einer bestimmten Stelle seines Verlaufes. freilich nur neben den Resultaten der Untersuchung mit der Sonde diese Stelle als verengte erkennen lassen. In analoger Weise kann die Auscultation der Magengegend, während der Kranke trinkt, für die Diagnose der Kardiaverengerung werthvoll werden.

XVIII. Magenerweiterung.

Die Ursachen der Magenerweiterung liegen theils in Verengerung des Pylorus, in gewohnheitsmässiger Ueberausdehnung des Magens durch Speisen, Erschütterung des Magens oder lähmungsartigen Zuständen seiner Häute. Am häufigsten sind es Pylorusverengerungen oder doch Verengerungen im obern Dünndarm, die zur Anstauung der Ingesta und daher rührender Magenerweiterung führen. Hat diese einen erheblichen Grad erreicht, so übt sie auf

die Form des gesammten Unterleibes und besonders auf die epigastrische Gegend ihren Einfluss aus. Letztere zeigt anstatt der seichten Vertiefung zwischen Nabel, Schwertfortsatz und Rippenbogen eine ausgebreitete hauptsächlich in die Quere sich ausdehnende Vorwölbung, die der rechten sowohl als der linken Seite angehört und ihre untere Grenze bald noch oberhalb, bald verschieden weit unterhalb des Nabels durch eine seichte Querfurche findet. Häufig lässt der ungerade nach rechts etwas aufsteigende Verlauf der letzteren sie als grosse Curvatur erkennen. Gerade in den Fällen, in denen Pylorusverengerung der Magenweite zu Grunde liegt, contrastirt das Aussehen der aufgeblähten Magengegend wesentlich mit jenem des eingesunkenen übrigen Unterleibes. Bei der Betastung erweist sich die vorgewölbte Parthie zwar gespannt, doch immer nachgiebig, von luftkissenartiger Resistenz.

Die Percussion zeigt je nach dem Inhalte des Magens in verschiedener Ausdehnung Metallklang oder dumpfen leeren Schall. Ist in der ausgedehnten Magenhöhle überwiegend Luft angesammelt, so wird tympanitischer Schall mit Metallklang angetroffen, der des grossen Luftraumes halber sehr tief und der dünnen Bauchdecken halber sehr hell und laut gehört wird. Die Ausdehnung desselben übertrifft weitaus jene des normalen Magens, erstreckt sich nach unten oft weiter als der Nabel, nach rechts bis zu den letzten Rippen. Die Unterscheidung dieses Metallklanges oder unter Umständen tympanitischen Schalles von dem Schalle der unterhalb des Magens gelegenen Gedärme stützt sich hauptsächlich auf seine Tiefe, die eine bedeutende ist und in grosser Ausdehnung die gleiche. Wo an den untersten Theilen des Magenraumes der Flüssigkeitsspiegel seines Inhaltes als Percussionsgrenze nachgewiesen werden kann, ändert der dumpfe Schall rasch mit jeder Körperbewegung seine Lage. Man kann sich leicht von dem Einflusse der Nahrungsaufnahme einerseits, andererseits des Erbrechens auf die Höhe und Begrenzung des Percussionsschalles der Magengegend überzeugen. Auch die Respiration ändert etwas die Dimension der Magenhöhle durch den Druck des Diaphragma's und gewinnt dadurch einigen Einfluss auf die Höhe seines Schalles. Bei starker Percussion erhält man bisweilen, wenn eine dünne Luftschicht zunächst unter den Bauchdecken gelagert ist, das Geräusch des gesprungenen Topfes, häufiger noch klingende Rasselgeräusche, die sehr grossblasig neben dem Percussionsschalle zu hören sind. Derartige Rasselgeräusche oder ein eigentliches Fluctuationsgeräusch können die Kranken mit Magendilatation häufig in laut hörbarer Weise durch Schütteln ihres Rumpfes erzeugen, oder der Arzt kann dasselbe durch abwechselnden Druck auf zwei verschiedene Gegenden des Magens mit den Händen ausgeübt leicht hervorrufen. Für ein pathognomonisches Zeichen der Magendilatation vermag ich jedoch dasselbe nicht zu halten, indem es auch bei gesunden Personen, wenn deren Magen stark mit Flüssigkeit gefüllt ist, gehört werden kann. Nur wo es in ungewöhnlicher Ausdehnung, bis zum Nabel herab, oder noch rechts von der Mittellinie durch den Druck der Hände erzeugt werden kann, darf es als Zeichen der Magenerweiterung betrachtet werden. Die Diagnose der Magenerweiterung kann dadurch unterstützt werden, dass solche Quantitäten von Flüssigkeit erbrochen werden, welche in dem normalen Magenraume unmöglich Platz finden konnten.

Da mit der Magendilatation gewöhnlich auch Hypertrophie der Wandungen verbunden ist, so findet sich in Folge davon ein weiteres Zeichen vor, nämlich das auf den verstärkten Muskelcontractionen der an die vordere Bauchwand gedrängten vorderen Magenwand beruhende Sichtbarwerden wurmförmig fortschreitender, gewöhnlich sich in die Quere verbreitender Zusammenziehungen. Dasselbe kann hervorgerufen werden durch die Anwendung elektrischen Reizes oder leichter mechanischer Reizung der Magengegend, z. B. rasches Darüberfahren mit dem Finger.

Vorhandene Magendilatation kann vermindert oder vollständig rückgängig werden, wenn ihre Ursachen gehoben werden, namentlich wenn der zuvor verengte Pylorus durch Zerfall einer Neubildung oder Ausdehnung neben einer Narbe wieder genügende Weite erlangt, ausserdem wenn eine ergiebige Fistel nach dem

Colon zu sich bildet.

XIX. Verkleinerung der Leber

erfolgt langsam durch Cirrhose oder einfache rothe Atrophie, rasch durch acute gelbe Atrophie. Verkleinerung der zuvor vergrösserten Leber resultirt aus dem Heilen mancher Leberkrankheiten. Eine scheinbare Verkleinerung der Leber ist jedesmal Folge einer beträchtlichen Flüssigkeits-, Gasansammlung oder Geschwulstbildung im Unterleibe; die Leber wird dann unter das Diaphragma, das sich stärker wölbt, geschoben, und so ihre Dämpfung verkleinert, ähnlich, doch etwas in anderer Weise, wie bei jeder tiefen Inspiration die Leberdämpfung kleiner wird. Die Verkleinerung der Leber hat gewöhnlich auf die Form des Rippenbogens keinen erheblichen Einfluss, wohl aber würde stärkere Einsenkung der zunächst an den Rippenbogen sich anschliessenden Weichtheile gesehen werden können, wenn nicht in den meisten Fällen Ascites mit Meteorismus in entgegengesetzter Richtung wirkten.

Die Percussion zeigt die Leberdämpfung an der normalen Linie, oder je nach Umständen tiefer oder höher beginnend und von beträchtlich verminderter Höhe. Gewöhnlich beginnt die Verkleinerung am liuken Lappen, daher dieser geringere Höhe und Breite seiner Dämpfung erkennen lässt, und zugleich einen in solchem Maasse tympanitischen Schall liefert, dass daraus auch auf Verdünnung dieses Theiles der Leber geschlossen werden kann. Dann wird auch der Schall des rechten Lappens tympanitisch neben seiner dumpfen Beschaffenheit und zugleich auf einen schmalen Streif reducirt. Nur bei sehr unregelmässiger Verkleinerung fehlt die Leberdämpfung an einzelnen Stellen z. B. in der Axillargegend in einiger Breite. Sind die Bauchdecken schlaff und dünn, so kann man oft noch den Leberrand erreichen und z. B. bei Cirrhose als harten, zugeschärften oder höckerigen erkennen. Von besonderem Werthe ist es für die Diagnose der Verkleinerung der Leber, wenn zu verschiedenen Zeiten, unter gleichen Spannungsverhältnissen der Bauchdecken, bei gleich hohem Stande des Diaphragma's ihre Höhe als abnehmende, ihr unterer Rand dem obern näher stehend getroffen wird. Es darf nämlich als Regel betrachtet werden, dass die fortschreitende Verkleinerung der Leber sich durch Hinaufrücken des untern Randes zu erkennen gibt, da sie ihre Fixation am Diaphragma besitzt. Nur bei sehr rasch eintretender bedeutender Verkleinerung, oder bei gleichzeitiger Entwicklung von Emphysem rückt auch der obere Rand herab.

Die schnellste und bedeutendste Verkleinerung dieses Organes findet bei der acuten gelben Atrophie statt, einer Wirkung höchst intensiver septischer Intoxication mit fettiger Entartung der Leber, des Herzens und der Nieren. Hier kann oft im Laufe eines oder weniger Tage vollständiges Verschwinden der Leberdämpfung nachgewiesen werden, indem das Organ zugleich schlaff wird, gegen die Wirbelsäule zurücksinkt und von Darmschlingen überlagert wird. Zwei Vorgänge können zu einer bedeutenden Unterschätzung der Grösse der Leber führen, nämlich bedeutende Erweiterung der untern Thoraxapertur, sodass die convexe Fläche der Leber von

der vordern Bauchwand entfernt wird, wie diess namentlich bei manchen Formen des Ascites stattfindet, bei welchen bewegliche Darmschlingen sich vor die Leber lagern; ferner die unbewegliche Einlagerung der Darmschlingen in Furchen der vergrösserten Leber. Letzteren Vorgang lerne ich als einen immer häufigeren und bei den verschiedensten Leberkrankheiten vorfindlichen kennen.

XX. Vergrösserung der Leber.

Wenn das rechte Hypochondrium stärker gewölbt ist, bei erhaltener Form seiner Intercostalräume, aber verminderter Bewegung der angränzenden Brustparthien, wenn gegen den Nabel zu eine schräge, rechts tiefer stehende seichte Furche mit der Respiration sich auf und ab bewegt, bis zu dieser Furche hin in ungewöhnlicher Höhe der Schall leer und dumpf getroffen wird, und an der Stelle derselben der glatte, oder höckerige oder gerundete Rand der Leber mit seiner Gallenblasenincisur gefühlt werden kann, vielleicht auch ein Theil der untern Lebergegend betastet werden kann, und die respiratorische Bewegung des Organes für den zufühlenden Finger deutlich wird, dann sind die unzweifelhaften Zeichen der Vergrösserung der Leber gegeben.

Was die Ursachen der Leberanschwellung betrifft, so kann man manche Formen als Anschwellung des Organes, andere als Geschwülste, die der Leber angehören, oder mit ihr verbunden sind, unterscheiden. Häufig ist freilich die Leber angeschwollen und zugleich mit Geschwülsten besetzt. Die gleichmässigen Vergrösserungen, die Anschwellungen des Organes sind hauptsächlich durch dessen Blutüberfüllung, Gallenstase, Bindegewebshyperplasie, fettige, amyloide Entartung seiner Zellen, oder durch zahlreiche in dasselbe eingelagerte Neubildungen hervorgerufen. Sie vermehren dessen Durchmesser in jeder Richtung, erhöhen seine Consistenz, und bedingen daher ausgebreitetere Dämpfung und fühlbare Härte der Leber. Weil die Leber für gewöhnlich eine Belastung des Diaphragma's darstellt, nicht aber eine Stütze desselben, so findet auch die Ausbreitung der Percussionsdämpfung bei Vergrösserung der Leber hauptsächlich in der Richtung nach abwärts statt, weniger in jener nach oben. Nur dann, wenn ihre Peritonäalhülle innig mit dem Peritonäum parietale verwachsen ist, wenn das Organ eine solche Breite erlangt hat, dass es auf beide Hypochondrien einen Druck ausübt, und dort eine feste Stütze ge-

winnt, oder wenn der Inhalt der Unterleibshöhle ohnehin vermehrt ist, drängt die vergrösserte Leber das Diaphragma nach oben und findet demnach auch Vergrösserung der Leberdämpfung nach aufwärts statt. Die untere Gränze wird also für gewöhnlich allein verschoben, sie erreicht den Nabel, überschreitet denselben und kann selbst bis gegen die Symphyse hin sich ausdehnen. Ausserdem breitet sich der linke Leberlappen entsprechend gegen die Milz hin aus, sodass er diese berührt, oder selbst nach oben verschiebt und unmittelbar an das linke Hypochondrium sich anstemmt. Der rechte Leberlappen kann sich natürlich nicht weiter gegen die Rippenwand hin ausdehnen, wohl aber diese vorwölben, oder selbst umstülpen. Bei solchen grossen Lebertumoren finden sich Leberdämpfungen, die den grössten Theil der vordern Bauchwand einnehmen, den Magen vollständig überlagern und namentlich bei Hinzukommen von Ascites oder Milztumor allenthalben dumpfen Schall an der vorderen Bauchwand bedingen. In diesen Fällen kann dann auch das Diaphragma beträchtlich selbst bis zur dritten oder vierten Rippe nach aufwärts verschoben werden. Bei der Palpation fühlt man die glatte ebene, oder mit einigen Höckern oder Geschwülsten besetzte Leberoberfläche, sofern es gelingt, die Bauchwand genügend zur Erschlaffung zu bringen. Besonders wichtig ist die Unterscheidung des bald zugeschärften sehnig schnei-

denden, bald abgerundeten oder höckrigen Leberrandes, der durch die Incisura pro Vesica fellea, dann durch seine respiratorische Bewegung charakterisirt wird. Gelingt es die untere Fläche zu erreichen, so sind an dieser die beiden Längseinschnitte wahrzunehmen.

Geschwülste der Leber werden hauptsächlich durch Carcinom, Abscess und Echinokocken dargestellt. Sie können bei mehr
centraler Lage sich allein durch eine Vergrösserung des gesammten Organes kund
geben in der Art, dass dessen regelmässige
Form ziemlich bewahrt bleibt, häufiger ragen
sie an einer der beiden Flächen oder am
Rande der Leber vor. Ihre tastbare Form
sowohl als ihre Percussionsdämpfung schliesst
sich unmittelbar an jene der Leber an, zwi-

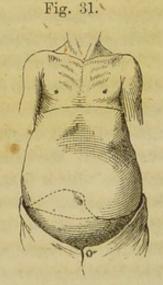


Fig. 31. Leberdämpfung bei Echinococcus hepatis. Innerhalb der punktirten Linien war die Leber von Darmschlingen überlagert, demnach nur zu fühlen, nicht zu percutiren.

schen beiden Organen ist kein Eindringen der Finger möglich, kein Rand zu fühlen, sie theilen, sofern sie nicht derb mit benachbarten Organen verwachsen sind, vollständig die Bewegung der Leber, über denselben werden häufig peritonitische Reibegeräusche gehört.

Zwei Formen dieser Geschwülste verdienen besondere Besprechung. Diejenigen, welche am obern Theil der convexen Fläche oder am obern Rande ihren Ursprung nehmen, sind nur für die Percussion, nicht für die Palpation zugängig. Sie bedingen wellenförmige.oder halbkreisförmige, nach oben convexe Ausbeugungen der sonst horizontalen Diaphragmagränze, Ausbeugungen derselben, welche freilich durch eireumscripte Lungenerkrankungen am untern Rande, durch abgesackte Flüssigkeitsansammlungen im untersten Theile des Pleurasackes, oder zwischen Leber und Peritonäum in ganz ähnlicher Weise bewirkt werden können. Circumscripte Lungenerkrankungen bewirken keinerlei Vorwölbung, beeinträchtigen die Bewegung der Intercostalräume nicht und verstärken die Stimmvibrationen, abgesackte Pleura- oder Peritonäalexsudate vermindern die Concavität der Intercostalräume, lähmen die Intercostalmuskeln und vermindern die Stimmvibrationen. Aufwärts vorragende Lebergeschwülste zeigen in der Regel ein gleichmässig zunehmendes Wachsthum, können örtliche Vorwölbung der Rippen und Intercostalräume bewirken, schwächen die Stimmvibrationen, lassen nur vermindertes Athemgeräusch, und keinerlei Reibegeräusch erkennen.

Geschwülste der Gallenblase sind durch den Ort, an dem sie entstehen (circa zwei Finger breit rechts von der Mittellinie) durch ihren unmittelbaren Anschluss an den untern Leberrand, ihre Bewegung mit diesem und ihre annähernde Birnform erkennbar. Sie entstehen vorübergehend bei Verstopfung des Ductus cysticus durch Fremdkörper oder Entzündungsproducte, dauernd bei narbigem oder degenerativem Verschluss desselben, ferner bei Degeneration der Gallenblasenwände selbst, oder bei starker Anfüllung der Gallenblase mit Gallensteinen. Liegt die Ursache ihres Entstehens am Ductus choledochus, so sind sie mit Gelbsucht verbunden, beruhen sie auf Gallensteinbildung, so kann man bisweilen das Klirren der Gallensteine fühlen, sind sie völlig stationär, von mässiger Grösse, elastisch und fluctuirend bei sonst ungetrübter Gesundheit vorhanden, so dürfen sie als Hydrops vesicae felleae angesprochen werden, sind sie hart, höckerig und sehr gross, so

kann carcinomatöse Entartung der Gallenblasenwände zu Grunde liegen. Manche andere Entstehungsweisen derselben ergeben sich nur aus der speciellen Analyse des einzelnen Falles.

Mit der Leber verwachsende, unter ihr entstandene, und nach unten sich ausbreitende Geschwülste des Netzes, Magens, des Pankreas und der retroperitonäalen Lymphdrüsen bedingen gleichfalls Vorwölbung des gesammten Unterleibes, besonders seines oberen Theiles, Erweiterung der Thoraxbasis, unter Umstäuden selbst stärkere Wölbung des rechten Hypochondriums. Ihre Dämpfung schliesst sich so unmittelbar an die Leberdämpfung an, dass sie durch die blosse Percussion nicht von ihr unterschieden werden kann, ja es reicht manchmal die sorgfältigste Palpation nicht aus. . um den auf die Geschwulst aufgeklebten, unbeweglich gewordenen, oder unmerklich mit der Respiration auf und ab gleitenden Rand der Leber von ihr zu unterscheiden. In der Mehrzahl der Fälle freilich gelingt es, wenn der Tumor nicht adhärent ist, die bewegliche Gränzlinie des unteren Leberrandes an den Bauchdecken zu sehen, andernfalls dessen Contouren durch die Betastung zu unterscheiden.

XXI. Geschwülste der Milz.

Dieselbe Percussionsmethode, durch welche die normale Milzdämpfung ausfindig gemacht wird, dient auch zur Erkennung des vergrösserten Organes. Es wird also zuerst in der Axillargegend von der Lunge aus die obere Gränze der Milz (linksseitiger Stand des Diaphragma's) aufgesucht, sodann durch senkrechte Percussion nach abwärts die untere Gränze; nachdem'diess in mehreren Linien geschehen ist, wird die hintere Gränze in der Nähe des elften Brustwirbels und die vordere in der Gegend der freien Spitze der elften Rippe bestimmt. Dieses etwas umständlichen Verfahrens wird man häufig überhoben, wo zwischen Symphyse und linkem Rippenbogen ein guter Theil der Milz über letztere vorragt, und somit der tastenden Hand leicht zugänglich ist. In diesen Fällen grosser Milzgeschwülste findet sich das linke Hypochondrium vorgetrieben, die linke Hälfte des Unterleibes stärker gewölbt, die Respirationsbewegungen des untern Theils der linken Brusthälfte vermindert, und man fühlt einen unter dem linken Hypochondrium hervorkommenden, gegen die Symphyse gerichteten, gerundeten, etwas gebogenen Rand eines festen glatten Körpers, dessen stumpfspitziges Ende sehr deutlich umfasst werden kann, und je nach

Umständen vor der Spitze der elften Rippe in der Gegend des Nabels, am häufigsten nach links und abwärts von diesem getroffen wird. Es kann etwas zurückgedrängt werden, erlaubt seitliche Verschiebung, rückt mit der Respiration etwas nach auf- und abwärts, und ändert auch bei rechter und linker Seitenlage seine Lage etwas. Um zur vollen Ueberzeugung zu gelangen, dass gerade die Milz der vorliegende harte feste Körper sei, muss man noch an dem vordern Rande derselben, nahe der Spitze, die allerdings etwas inconstanten, bisweilen mehrfachen Einkerbungen aufsuchen, den hintern Rand soweit möglich gegen Darmbein oder Rippenbogen hin verfolgen, endlich durch die Percussion die · Umrisse des dumpf schallenden Organes vollständig zu gewinnen suchen. Dabei zeigt sich, dass das Diaphragma nahe der Wirbelsäule etwas nach oben verschoben ist, und bei sehr grossen Tumoren eine geringe Dislocation des Herzens nach innen und oben. Ueber solchen sehr grossen Milztumoren habe ich bei Cirrhose und bei Intermittens Reibegeräusche wahrgenommen, die rhythmisch mit der Respiration erfolgten; auch bei Leukämie wurden solche von Roth und andern gefunden. Die momentane Vergrösserung solcher Tumoren während des Wechselfieberanfalles lässt sich leicht constatiren, ebenso ihre Verkleinerung bei Darmblutung, Dysenterie oder Magenblutung.

Kleinere Milztumoren überragen mit ihrer Spitze den Rippenbogen gar nicht oder nur wenig, bewirken weder verstärkte Wölbung der Milzgegend, noch Verdrängung des Diaphragma's und Herzens, oder diese Verdrängung ist doch eine wenig bedeutende. Demnach werden sie nur durch die Percussion erkannt, falls nicht sehr günstige Verhältnisse der Bauchdecken und beträchtliche Härte der geschwollenen Milz, deren Spitze auch hinter oder gerade unter dem Rippenbogen dem Tastgefühl zugängig machen. Vorzüglich die Verbreiterung der Milzdämpfung lässt die Vergrösserung des Organes erschliessen. Grundsätzlich ist die Untersuchung öfter zu wiederholen und zwar bei derselben Körperlage, indem die Grössenverhältnisse der Milzdämpfung mit dem Wechsel der Körperlage nicht unbeträchtlich sich ändern. Die Beweglichkeit solcher kleiner Milztumoren ist jedoch eine verhältnissmässig geringere. Die von Manchen über denselben gehörten circulatorischen, wahrscheinlich Venengeräusche sind mir nie zur Beobachtung gekommen, obwohl ich Intermittenskranke, bei welchen sie sich finden sollen, öfters darauf untersuchte.

Die wiederholte Percussion der Milz, wo es sich um geringere Anschwellung derselben handelt, ist namentlich desshalb nöthig, um sich vor Verwechslungen der Dämpfung des stark mit Speisen

angefüllten Magenfundus mit der Milzdämpfung sicher zu stellen. Ausserdem können noch mehrere Irrthümer passiren. Die Dämpfung der vergrösserten linken Niere kann als vergrösserte Milzdämpfung aufgefasst oder wenigstens mit ihr zusammengerechnet werden. Hievor schützt die Berücksichtigung des hellen Schalles des Colons, der in Form eines Längsstreifes über die Niere hinwegläuft, und der einspringende Winkel, der zwischen Milz- und Nierendämpfung sich findet. Sehr leicht werden der Milzdämpfung benachbarte pleuritische und peritonitische Exsudate zugerechnet. Anderseits sah ich die im Intermittensparoxysmus vergrösserte,

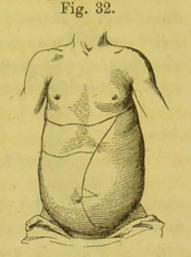


Fig. 32. Milztumor eines Leukämiekranken. Neben dem Nabel die fühlbare Incisur.

und hinten sich hinaufschiebende Milzdämpfung einmal mit einer beginnenden Pneumonie des linken untern Lappens, ein anderes Mal mit einem Pleuraexsudate verwechseln.

Während gewöhnlich die regelmässige Form die Erkennung der Milzdämpfung leicht macht, kommt es auch vor, dass höckerige Carcinom- oder Echinokockengeschwülste derselben mit ähnlichen Anschwellungen des Netzes, des Magens oder der Retroperitonäaldrüsen verwechselt werden. In dieser Beziehung ist zu berücksichtigen, dass Geschwülste des Magens nicht leicht einen so völlig dumpfen Schall liefern als jene der Milz, dass die des Netzes einen grössern, die der Retroperitonäaldrüsen einen geringeren Grad von Beweglichkeit darbieten, als die Milzanschwellung. Während die genannten beiden überaus selten, namentlich selten primär in der Milz sich findenden Geschwulstformen sehr umfängliche, unregelmässig geformte Tumoren abgeben, ist das Verhältniss ein anderes bei der häufigsten Form der Milzgeschwülste, bei dem Syphilom der Milz. Dasselbe findet sich meist zugleich mit der analogen Geschwulstform der Leber, jedoch zu Dutzenden das dunkelviolette Parenchym der Milz durchsetzend, von jeder Grösse bis zu dem Umfange eines Taubeneies vor, von weissgelber Farbe. Die Milz ist dabei um das Zwei- bis Vierfache vergrössert. Sie ragt meist über den Rippenbogen vor. Man findet an diesem vorderen Ab-

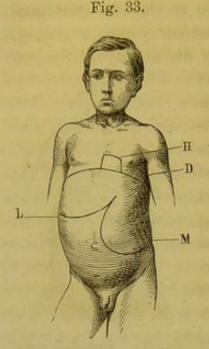


Fig. 33. Ein 15jähriger Branntweintrinker mit Cirrhosis hepatis. H. Herzdämpfung. D. Diaphragma. L. Untere Gränze der Leber. M. Milz.

schnitte des ausweislich der Percussion bedeutend vergrösserten Organes, bei der Betastung eine Reihe knolliger harter Vorragungen. Diese unterscheiden die fragliche Form des Milztumors der Syphilitischen von einfachen Hyperplasieen des Organes und von Speckentartung desselben. Durch Jodkalium wird in sehr prompter Weise das Syphilom der Milz zur Heilung gebracht, sodass die Höcker und Härten verschwinden, und das ganze Organ sich auf oder unter sein normales Volumen zurückzieht.

XXII. Ausdehnung der Harnblase.

Die völlig entleerte Harnblase hat keinerlei Einfluss auf den Percussionsschall des Unterleibes. Ein wie grosser Harngehalt derselben bereits hinreicht, um

eine merkliche Dämpfung des Schalles oberhalb der Symphyse zu veranlassen, hängt mit von der Wölbung der Bauchdecken und der Dicke derselben ab. Bei sehr eingesunkenen Bauchdecken wird schon die mässig gefüllte Harnblase oberhalb der Symphyse als birnförmiger Tumor sichtbar, der bei der Seitenlage seiner Schwere folgend, sich etwas nach rechts und links senkt. Weit leichter wird die Anfüllung der Harnblase durch die von mehreren Seiten her radiär nach der Symphyse gerichtete Percussion erkannt, welche bei mässiger Füllung der Blase eine Dämpfung von der Grösse und Form etwa der vorderen Hälfte der Hand, bei sehr starker Ausdehnung eine Höhe der Dämpfung bis über den Nabel und eine Form derselben, ähnlich der einer Melone nachweist. Drückt man auf die Gegend dieses dumpfen Schalles, so entsteht Bedürfniss zum Entleeren des Harnes, nach dessen Vornahme die Dämpfung kleiner wird. Führt man den Katheter ein, so kann er innerhalb der Harnblasengeschwulst von den Bauchdecken aus gefühlt werden. Die Geschwulst der Harnblase kann bei straffer Spannung ihrer Wand gefühlt werden als gespannte Blase, ferner wird sie und zwar dauernd gefühlt bei gutartiger Hypertrophie, oder carcinomatöser Infiltration ihrer Wand, welche so bedeutend

ist, dass das Organ in einen soliden, starren Behälter umgewandelt wird.

Das Einführen des Katheters kann zweierlei Auscultationserscheinungen zur Folge haben: das klirrende Geräusch, das beim Zusammenstossen des Metalles mit Harnblasensteinen entsteht und zweitens ein glucksendes Geräusch des Lufteintrittes dann, wenn bei umfänglich mit den benachbarten Peritonäalflächen verwachsenem Harnblasenscheitel, das Organ durch Druck entleert worden war mit dem Nachlasse dieses Druckes.

XXIII. Nierengeschwülste

können entstehen 1) durch Massenzunahme der Drüsensubstanz oder Einlagerung in dieselbe, oder 2) durch Flüssigkeitsansammlung im Nierenbecken. Auch die Vereiterung des Bindegewebslagers der Niere (Paranephritis) wird dazu gerechnet. In die erste Gruppe gehören die Hypertrophie, Amyloidentartung, Krebs- und Echinokockengeschwulst. Die Form der Niere wird bei letzteren öfter in eine knollige, walzenartige oder sonst unregelmässige umgewandelt. Zur zweiten Gruppe gehören Pyelitis, Hydronephrose, Haemonephrose. Bei diesen bleibt die Form der Niere gut gewahrt, wenn sie auch unter Untergang der Drüsensubstanz in kolossale Dimensionen übergeführt werden kann.

Kleinere Nierengeschwülste können nur aus der Percussion erkannt werden, soferne sie nicht etwa an einer wandernden Niere sich gebildet haben. Der Vergleich der Normalmaasse der beiden Nierendämpfungen und der Grenzen bei Gesunden von ähnlichem Körperbaue führt dahin, auch geringe Anschwellungen ausfindig zu machen. Beim Heranwachsen werden Leber, Milz und Diaphragma sehr bald neben der Wirbelsäule in die Höhe geschoben. Die daraus entstehende percutorische Grenzverschiebung ist nicht immer leicht zu deuten. Erst weit später gelingt es von der vorderen Bauchwand aus bei entgegengesetzter Seitenlage die Geschwulst in der Nabelhöhe etwa mit der eingedrängten Hand zu erreichen, während die andere Hand einen leichten Druck auf die Nierengegend ausübt. Diese Gegend zwischen Wirbelsäule, letzten Rippen und Darmbein wird in verschiedenem Grade vorgewölbt, von hier aus verbreitet sich die Vorwölbung nach der seitlichen und vorderen Bauchwand und richtet sich bei manchen Formen (z. B. angeborener Cystenniere) so nach oben, dass sie zugleich den Rippenbogen erweitert, während sie bei anderen sich so senkt, dass sie z. B. die Gegend zwischen 11ter Rippe und Symphyse einnimmt. Für diese grossen Tumoren ist der längs darüber verlaufende Colon mit seinem hellen Schalle ein gutes Erkennungszeichen.

Nachtrag.

Optische Untersuchung des Percussionsschalles.

Man kann die einzelnen Schwingungen des Percussionsschalles an einer empfindlichen Gasflamme und namentlich an dem Lichtstreif, der auf einem rotirenden Spiegelprisma deren Bild darstellt, sichtbar machen. Es sind jedesmal nur wenige, etwa 3-12 Schwingungen, meistens 5-8, die durch einen Percussionsstoss hervorgerufen werden. Fügt man Resonatoren mit dem Schnabel in das Gummirohr ein, das zu der empfindlichen Flamme führt, und percutirt mittelst Hammer und Plessimeter nahe an der Basalöffnung des Resonators, so hört man dessen Grundton und sieht gleichzeitig an irgend einer Stelle des Spiegelbildes einige einfache gleichartig gestaltete Zacken, deren mittlere die grössten, deren seitliche niederer erscheinen. Dieses gleiche Bild einer Gruppe regelmässig und gleichmässig gestalteter Zacken an dem oberen Rande des Lichtstreifs, kann ebenso zur Anschauung gebracht werden, wenn man anstatt eines Resonators die geöffnete Mundhöhle percutirt und das Zuleitungsrohr nahe vor die Mundöffnung hält. Bei den Resonatoren sowohl als bei der Mundhöhle sind die Zacken um so kleiner und niederer, je höher der Percussionsschall ausfällt. Das Resultat ist das gleiche, wenn man den Kehlkopf oder die Luftröhre percutirt und das Fangrohr der empfindlichen Flamme vor den Mund hält. Ja, wenn man den Magen oder Darm percutirt und das Rohr in die Nähe des Plessimeters hält, ergibt sich die gleiche Schallerscheinung. Es erweist sich somit als allgemeiner Charakter des tympanitischen Schalles, dass sein Flammen-Spiegelbild aus völlig gleichartigen Schwingungen besteht, die nur um so grösser erscheinen, je tiefer und je lauter der tympanitische Klang war.

Die Lichterscheinung des nichttympanitischen Schalles stimmt mit derjenigen des tympanitischen darin überein, dass sie nur einen kleinen Theil des Lichtstreifs, den man sieht, betrifft, und dass sie gleichfalls Zacken bildet. Aber die Zacken sind nicht von gleichartiger, unter sich übereinstimmender Form, sondern sie wechseln so, dass auf eine grössere eine oder mehrere kleinere folgen. Sie gleichen dem Lichtbilde, das durch den Klang mancher Vocale, z. B. a oder u hervorgerufen wird. Die Form der Erscheinung kann eine sehr wechselnde sein, und das Bild, das ich hier davon gebe, gibt nur ein Beispiel, keineswegs eine Norm für alle Fälle. Wenn auch so in der Zahl und im Verhältniss der grossen und kleinen Zacken mancherlei Variationen vorkommen, so wird doch nie die volle Gleichmässigkeit der Wellen des tympanitischen Schalles produzirt. Der Unterschied der Lichtbilder beider Schallarten ist so constant, dass ich glaube, sie daraus, auch ohne eine Spur des Schalles zu hören, jedesmal sicher erkennen zu können.

Percutirt man auf Stellen, die leeren Schall geben, den Schenkel oder Oberarm, und hält das Zuleitungsrohr der empfindlichen Flamme in die Nähe, so bilden sich nur wenige sehr grosse und grobzackige Berge an der Grenze der Lichtlinie. Meistens ist einer in der Mitte auffallend gross im Vergleich zu den übrigen und durch je eine sehr breite Incisur von seinen beiden nächsten Nachbarn geschieden. Auf diese Weise gibt auch der leere Schall eine Curve, die ihn vom tympanitischen und vom vollen nichttympanitischen Schall ganz bestimmt unterscheidet.

Register.

Accidentelle Geräusche 200. Addison's Krankheit 13. Aegophonie 163. 229. Amphorischer Wiederhall 182. Aneurysma aortae 299. - arteriae pulmonalis 301. varicosum 300. Angulus Ludovici 20. Aorta abdominalis 59. Aorteninsufficienz 285. Aortenstenose 289, 300. Argyrose 11. Arteria mammaria int. 61. - subclavia 61. Arterien, Betastung der, 91. Arterientöne 206. Ascites 304. Atelektase 240. Athembewegungen 32. Atherom 91. Athmen, angestrengtes, 35. Athmungsluft 41. Auscultation 150. Bandmaass 100. Betastung 78. Blässe der Haut 8. Bronchialathmen 164. Bronchophonie 161, 163. Brustathmen, unteres, oberes, 44. Brustbein 20, 131. Brustumfang 101. Brustwarze 20. Bulbus vena jugularis 65. Capacität, vitale, 41, 107. Capillarpuls 68.

Cavernen 118, 125, 155, 168, 256,

Chlorose, Herzgeräusche bei, 202. Compensation der Herzfehler 297. Complementärluft 41. Compression der Lunge 243. Costaldurchmesser der Brust 15. Cubitalpuls 207. Cyanose 10. Cyrtometer 102. Cystenniere 74. 323. Darmkanal, Geräusche 213. Degeneration des Herzens 281. Dexiokardie 297. Diaphragma 133. 220. Dilatation des Herzens 280. Ductus Botalli 301. Dumpfer Percussionsschall 122. Durchmesser des Brustkorbes 15. Dyspnoe 34. 43. 44. Einziehung der Brustwand, compensatorische 37. Emphysema pulmonum 31. 261. Endokarditis 296. Exspiration 33. Exspirationsgeräusch 174. Flexura sigmoidea 73. Fluctuation 92. Fluctuationsgeräusch, abdominales, 213.Formen des Brustkorbes 15. Fremitus pectoralis 78. Gallenblase 139, 318. Gasflamme, empfindliche, 80. Gefässgeräusche 197. Geräusch 113. des gesprungenen Topfes 126. Geschwülste, intrathoracische, 23.

Grenzen der Lunge 23. Habitus des resorbirten Empyem's 29. Halsarterien, Geräusch 209.

Hammerpercussion 110.

Harnblase 322.

Harrison's Furche 21. 37.

Hautfärbung 8.

Herzdämpfung 135.

- bei Kindern 279.

Herzleerheit 137.

Herzstoss 46. 83.

Herztöne 155. 187.

Heteromorphie 15.

Heterotaxie '47.

Hirngeräusch 207.

Höhe des Percussionsschalles 121.

Hühnerbrust 19.

Husten 158.

Hydatidenschwirren 92. 127.

Hydrokardie 268.

Hypertrophie des Herzens 274.

Hypochondrium 21.

Icterus 12.

Heocöcalgeräusch 213.

Inspection 7.

Inspiration 32.

Interscapularraum 22.

Jugularvene 62.

Klang 113.

Klappenfehler, complicirte, 295.

Klappengeräusche 200.

Klappen, Lage der, 192.

Kothtumoren 72.

Kupferintoxication 14.

Kyphose 17.

Laryngostenose 215.

Larvnx, Percussion 149.

Leber 73.

- atrophie 314.

- geschwülste 316.

- grenzen 138.

-, Palpation der, 93.

- rand, sichtbarer, 75.

- venenpuls 291.

Livor 14.

Lunge, Gefässgeräusche der, 187.

Lungengrenzen 23. 129.

Lungenödem 120.

Lunge, Percussionsschall der, 115.

Lungenspitze, Percussion 132.

Magenbewegung, sichtbare, 77.

Magendilatation, künstliche, 148.

Magenerweiterung 72. 312.

Magengeräusche 212.

Magen, Percussion 147.

Metallklang 124. 156. 181, 234.

Mesenterialdrüsen 99.

Meteorismus 301. 307.

Milz 73.

- dämpfung 143.

- geschwülste 319.

-, Palpation der, 94.

Mitralinsufficienz 281.

Mitralstenose 283.

Muskelton 190.

Nabel 70.

Nebenniere 99.

Netz 73.

Niere 74.

Nierengeschwülste 323.

Niere, Palpation 97.

-, Percussion 145.

Obliteration des Perikards 271.

Oesophagus 186.

Ovariencysten und Ascites 306.

Palpation 78.

Pancreas, Palpation 98.

Paranephritis 323.

Percussionsschall 112.

-, leerer, 123, 326.

-, nichttympanitischer, 325.

-, tympanitischer, 114. 325.

Percussion, lineare, 129.

-, topographische, 128.

Perikarditis 205. 268.

Peristaltik, sichtbare, 76.

Peritonitis 304. 307.

Pfeifen 179.

Phthisis pulmonalis 26. 253.

Placentargeräusch 208.

Pleurafistel 231. 236.

Pleuritis 29.

Plessimeter 109.

Pneumonie 244.

Pneumoperikardie 272.

Pneumoperitonitis 302.

Pneumothorax 232. Pueriles Athmen 173. Pulmonalklappenschluss, fühlbarer, 84. Pulmonalklappeninsufficienz 294. Pulmonalton, zweiter, 292. Pulmonalstenose 294. Puls 86. Pulsation, epigastrische, 58. Rachitis (Scoliose) 18. Rasselgeräusch 175. Reibungsgeräusch, perikardiales, 82. 203. -, peritoneales, 95. 214. -, pleuritisches, 81. 184. Reserveluft 41. Resonatoren 154. 164. Respirationsbewegungen 32. Respirationsphänomen, Cheyne-Stokessches, 40. Respirationstypen, pathologische, 42. Retraction der Lunge 120. Röthe der Haut 9. Saccadirtes Athmen 173. Selbststeuerung der Athmung 43. Schlucken (Geräusch) 186. Schlüsselbein 20, -Percussion 131. Schnurren 179. Schulterblatt 21. Schwangerschaft u. Herzhypertrophie Schwirren der Brustwand 84. Scoliose 18. Spaltung der Herztöne 195. Spannung der Athmungsluft 41. Sphygmograph 86. 90. Spirometer 107. Stand des Diaphragma's 133.

Stethograph 104.

Stethoskop 150. 153. Stimme 157. 161. Stimmvibration 78. Succussionsgeräusch 183. 234. Syphilom der Milz 321. Tasterzirkel 102. Thoracometer 104. Thorax, emphysematöser, 31. Thoraxform der Phthisiker 26. 28. -, paralytische, 29. Thoraxformen, pathologische, 23. Ton 113. Topographie der Brust 22. Trachealathmen 156. Trachealton von Williams 165. 229. Tracheostenose 156. 218. Tricuspidalklappeninsufficienz 66. Tricuspidalstenose 290. 293. Tympanites peritonaei 301. Tympanitischer Percussionsschall 114. 325. Unterleibsformen 68. Unterleibsgeschwülste 308. Uteringeräusch 208. Venengeräusch 85. 210. Venenpuls 60. 62. 290. Vertiefungen der Brustwand 26. Verwachsung des Perikard's 271. Vesiculärathmen 168. Voller Schall 123. Vorwölbung der Brustwand 23. — — Herzgegend 24. Voussure 24. Widerstand beim Percutiren 127. Wirbelsäule 16. Zischen 179. Zwerchfellsbewegung, sichtbare, 36.

Berichtigung.


Die pag. 190 angegebene Schwingungszahl des ersten Herztones von 256 ist, wie ich mich später überzeugt habe, zu hoch, da der betreffende Resonator bei Verschluss seiner Basalöffnung einen tieferen Ton angiebt. Damit erleidet der Satz keine Aenderung, dass der erste Herzton von constanter Höhe, der zweite von wechselnder ist.

Erklärung der Tafel.

- Fig. 1. Abbildung der Gasflamme.
- Fig. 2. Bild der ruhenden Flamme auf dem rotirenden Spiegel.
- Fig. 3, 4, 5. Spiegelbilder der Flamme, während mit tiefer und lauter Stimme U ausgesprochen wird. Der Trichter, der durch ein Kautschuck-Rohr zur Flamme führt, wird bei Fig. 3 vor den Mund, bei Fig. 4 vor die Trachea am Halse, Fig. 5 an die vordere Brustwand gehalten.

Bei der Untersuchung eines Kranken mit grossem rechtsseitigem Pleuraexsudat entspricht Fig. 5 den Vibrationen der linken, Fig. 2 denen der kranken Seite.

- Fig. 6. Geräusch eines Cruralarterienaneurysma's an dem Spiegelbilde der Flamme sichtbar gemacht.
- Fig. 7. Tympanitischer Schall der Trachea bei halbgesenktem Kehldeckel (tiefer tympanitischer Schall) am Spiegelbilde der empfindlichen Flamme dargestellt.
- Fig. 8. Tympanitischer Schall der Trachea bei erhobenem Kehldeckel (hoher tympanitischer Schall) ebenso.
- Fig. 9. Eine der Formen des nichttympanitischen Schalles der Brustwand ebenso.

Lish Ansty J. 8 84th Largeig

