## Index of spectra / by W. Marshall Watts; with a preface by H.E. Roscoe.

#### **Contributors**

Watts, W. Marshall 1844-1919. Royal College of Physicians of Edinburgh

## **Publication/Creation**

London: H. Gillman, 1872.

#### **Persistent URL**

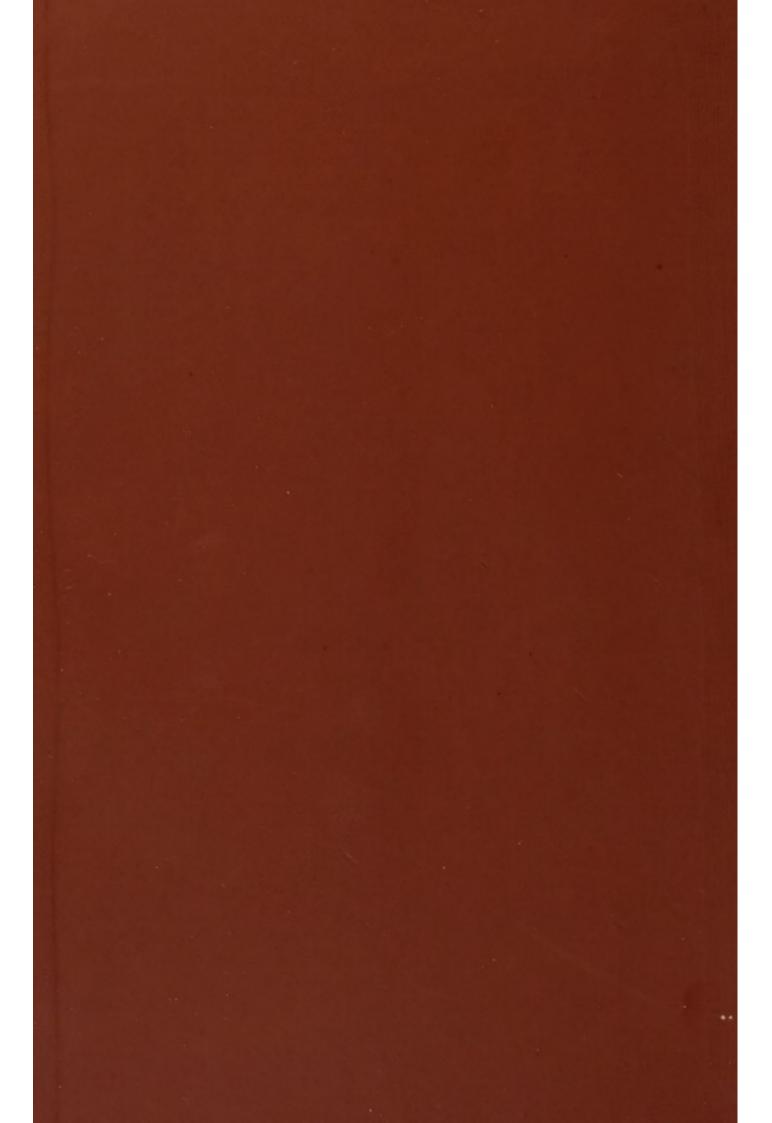
https://wellcomecollection.org/works/e9pzkfy6

## **Provider**

Royal College of Physicians Edinburgh

### License and attribution

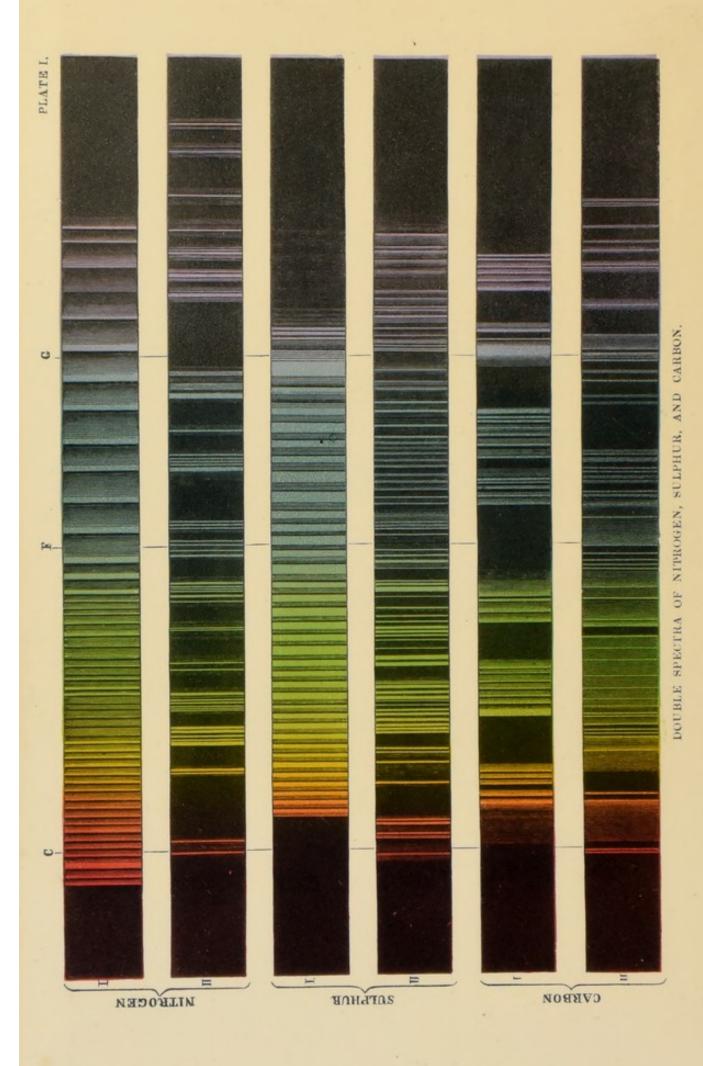
This material has been provided by This material has been provided by the Royal College of Physicians of Edinburgh. The original may be consulted at the Royal College of Physicians of Edinburgh. where the originals may be consulted.


This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.



INDEX OF SPECTRA


OR. W. M. WATTS





Hc4. 40

Digitized by the Internet Archive in 2015







# INDEX OF SPECTRA.

BY

# W. MARSHALL WATTS, D.Sc.,

SENIOR PHYSICAL SCIENCE MASTER IN THE MANCHESTER GRAMMAR SCHOOL.

### WITH A PREFACE BY

H. E. ROSCOE, B.A., Ph.D., F.R.S.,

PROFESSOR OF CHEMISTRY IN OWEN'S COLLEGE, MANCHESTER.



LONDON:

HENRY GILLMAN, BOY COURT, LUDGATE HILL.

LONDON:

PRINTED AT THE CHEMICAL NEWS OFFICE,
BOY COURT, LUDGATE HILL, E.C.

## PREFACE.

A LL workers with the Spectroscope must have experienced the inconvenience arising from the employment of different scales in the mapping of spectra. The object of this book is to facilitate spectroscopic research by collecting all existing measurements of the spectra of the elements, and presenting them on a uniform scale of wave-lengths, and the attention which the author has bestowed on the work is a sufficient guarantee that the numbers are to be relied upon. This scale of wave-lengths, whilst adequate to the representation of very exact measurements obtained with the largest spectroscopes, is equally convenient for use with instruments of only one or two prisms, and it is therefore much to be desired that its employment should become universal.

I have every reason to hope that Dr. WATTS'S "INDEX OF SPECTRA" may contribute to the adoption of such a uniform scale.

H. E. ROSCOE.

MANCHESTER, Fan. 22, 1872.

## INTRODUCTION.

A NY method of measurement which is to be applicable to observations made with different spectroscopes must be independent of the peculiar construction of the instruments, the number, position, and refracting angle of the prisms, the dispersive power of the material of which they are made, of variations in the temperature, and of all other disturbing causes. It is clear that in such a method each line can be mapped only by means of its colour, that is to say, by the length of the wave of light by which it is produced; and a spectrum so represented must be such a one as is produced by diffraction, and not by dispersion.

Dispersion spectra obtained by the use of prisms of different materials vary greatly in the relative breadth of the colours, so that in mapping a spectrum it is by no means sufficient to give the positions of only two or three lines as points of reference. Many otherwise valuable observations of spectra are entirely useless, from the insufficient number of reference lines observed.

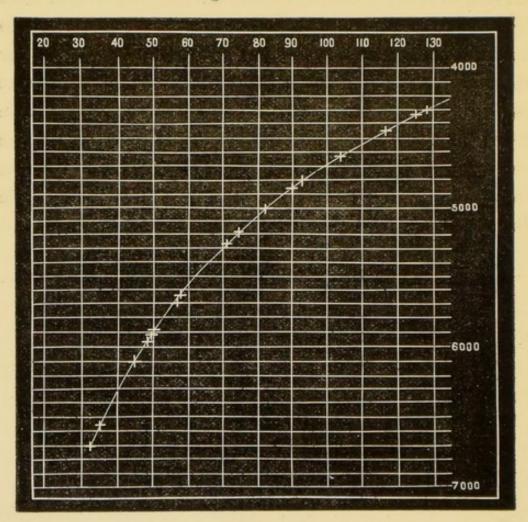
In a diffraction spectrum the position of the lines is dependent solely on their colour, and is precisely the same by whatever method the spectrum is obtained.

The following table shows the relative positions occupied by the Fraunhofer lines B, D, E, F, and G, in dispersion spectra, produced by prisms of 60°, of crown-glass, of flint-glass, and of carbon disulphide, with which are compared the positions of the same lines in a spectrum obtained by diffraction. The interval between B and G is, in each case, divided into 1000 equal parts.

It will be noticed that the blue end of the spectrum is much more compressed in the diffraction spectrum than in any of the dispersion spectra, and the red end is correspondingly lengthened out.

|              |              | Diffraction.          |      |      |
|--------------|--------------|-----------------------|------|------|
| Crown-glass. | Flint-glass. | Carbon<br>Disulphide. |      |      |
| В.           | 0            | 0                     | 0    | 0    |
| D.           | 236          | 220                   | 194  | 381  |
| E.           | 451          | 434                   | 400  | 624  |
| F.           | 644          | 626                   | 590  | 784  |
| G.           | 1000         | 1000                  | 1000 | 1000 |

In order that the results obtained by different observers may be comparable, either the spectra must be obtained directly by the method of diffraction, or the results obtained with the prism must be reduced to wave-lengths. For this purpose we must possess an accurate table of the wave-lengths of the spectral lines of the elements, we can then very easily determine the wave-lengths of the lines of any new spectrum with as much accuracy as the dispersive power of the spectroscope employed will permit. It is always possible to find two known lines between which the line to be measured falls, and from their wave-lengths to calculate the wave-length of the new line, for which purpose the best method is that of graphical interpolation. A scale of wave-lengths is marked off along one edge of paper ruled


into squares, and the edge at right angles to that has a scale marked on it corresponding to the scale of the instrument. The positions of as many lines as possible are then mapped on the paper, and through these points a curve is drawn as uniformly as possible. Then the position of the line to be measured, being found on the curve, will have opposite to it the wave-length required on the scale of wave-lengths.

Thus, in using a single prism spectroscope provided with a photograph-millimetre scale, it is necessary first of all to obtain as accurate an interpolation curve as possible, for which purpose the position of as many reference lines as possible should be read off. I take as an example the scale of my own spectroscope, on which I have read off the positions of the principal Fraunhofer lines, of the brightest lines in the air spectrum, and of two lines of lithium. We thus obtain the following table:—

|      |     |   |  | So | cale Reading. | Wave-length. |
|------|-----|---|--|----|---------------|--------------|
| C.   |     |   |  |    | 34.6          | 6562         |
| D.   |     |   |  |    | 50.0          | 5892         |
| E.   |     |   |  |    | 70.7          | 5269         |
| b.   |     |   |  |    | 74.5          | 5174         |
| F.   |     |   |  | ,  | 90.0          | 4861         |
| G.   |     |   |  |    | 128.2         | 4307         |
| Air  |     |   |  |    | [48.7         | 5942         |
| AII  | *   |   |  |    | 149.0         | 5932         |
| _    |     |   |  |    | (56.2         | 5678         |
| -    |     |   |  |    | 156.6         | 5666         |
| _    |     |   |  |    | 82.5          | 5003         |
| _    |     |   |  |    | 92.8          | 4803         |
| -    |     |   |  |    | 103.9         | 4630         |
| _    |     |   |  |    | 116.2         | 4447         |
| _    |     |   |  |    | 125'1         | 4348         |
| Litl | niu | m |  |    | 32.0          | 6705         |
| _    | -   |   |  |    | 44.6          | 6101         |

The figure is a reduction of the curve drawn from these numbers, the actual scale being eight or ten times that of the figure. Paper suitable for this purpose, ruled into inches and tenths, is sold by Messrs. Letts and Co.

If the spectroscope is constructed, like those made by Mr. Browning, with a scale of angular deviations, or with a micrometer-screw, the process is exactly the same, the readings of the micrometer-screw or the angles observed being substituted for the readings of the illuminated scale. For a



small spectroscope, and for most purposes, the illuminated scale is decidedly to be preferred, but with larger spectroscopes the best plan is to employ a micrometer eye-piece. This has two very fine spider-lines, one of which is fixed, and the other is moved by means of a micrometer-screw. The interval between the bright line to be measured and

each of two known lines between which it falls can thus be determined with great precision.

Instead of employing the method of graphical interpolation, the wave-length may be calculated by means of the following interpolation formula (W. Gibbs, Silliman's Journal, July, 1870; Phil. Mag. [4] \* xl., 177):—

$$\lambda_{2}^{2} = \frac{n_{3} - n_{1}}{\frac{n_{2} - n_{1}}{\lambda_{2}^{2}} + \frac{n_{3} - n_{2}}{\lambda_{1}^{2}}}$$

where  $n_3$  and  $n_1$  are the readings on the scale of the spectroscope of the two known lines,  $\lambda_3$  and  $\lambda_1$  their wave-lengths,  $n_2$  the reading of the line to be measured, and  $\lambda_2$  its wavelength. The following example will render the use of the formula clear:—One of the brightest lines in the spectrum of the Bessemer flame falls between two bright lines produced by cadmium. Reference to the table shows that these lines have wave-lengths 5378 and 5337 respectively. When the cross wires of the telescope were made to coincide with the lines, the micrometer-screw of the instrument gave the readings 14.38 and 15.27, while, when the wires were brought on the Bessemer line, the reading was 14.81. Putting, then,  $n_3 = 15.27$ ,  $\lambda_3 = 5327$ ,  $n_1 = 14.38$ ,  $\lambda_1 = 5378$ , and  $n_2 = 14.81$ , we find for  $\lambda_2$  the value 5358.

If the line to be determined lies near to the two reference lines, but not between them, the interpolation formula given above must be replaced by one of the two following extrapolation formulæ.

$$\lambda_{1}^{2} = \frac{n_{3} - n_{2}}{n_{3} - n_{1}} - \frac{n_{2} - n_{1}}{\lambda_{2}^{2}}$$

$$\lambda_{2}^{s} = \frac{n_{2} - n_{1}}{\frac{n_{3} - n_{1}}{\lambda_{2}^{2}} - \frac{n_{3} - n_{2}}{\lambda_{1}^{2}}}$$

<sup>\*</sup> In the formulæ 1 and 3, on p. 178, there is a misprint of + for - in the denominator.

I have adopted as the basis of this work Angström's measurements of the wave-lengths of the principal Fraunhofer lines, which appear to me to exceed in accuracy all similar measurements at present at our disposal. They are given in the following table expressed in tenth-metres.\*

| A.               |  |  |  |  | 7600.9 |
|------------------|--|--|--|--|--------|
| a.               |  |  |  |  | 7185.0 |
| В.               |  |  |  |  | 6866.8 |
| C.               |  |  |  |  | 6561.8 |
| $D_2$ .          |  |  |  |  | 5895.0 |
| D <sub>1</sub> . |  |  |  |  | 5889.0 |
| E.               |  |  |  |  | 5269.0 |
| $b_{i}$ .        |  |  |  |  | 5183.0 |
| $b_2$ .          |  |  |  |  | 5172.0 |
| $b_3$ .          |  |  |  |  | 5168.3 |
| $b_4$ .          |  |  |  |  | 5166.7 |
| F.               |  |  |  |  | 4860.6 |
| G.               |  |  |  |  | 4307.2 |
| h.               |  |  |  |  | 4101.3 |
| H.               |  |  |  |  | 3968.0 |
| H2.              |  |  |  |  | 3932.8 |
|                  |  |  |  |  |        |

Angström has applied slight corrections to these numbers, and finally adopts the following definitive values (Recherches sur le Spectre Solaire, pp. 25 and 34):†—

| A                |  |  |  |  | 7604.00 |
|------------------|--|--|--|--|---------|
| В                |  |  |  |  | 6867.00 |
| C                |  |  |  |  | 6562.01 |
| D                |  |  |  |  | 5892.12 |
| E                |  |  |  |  | 5269.13 |
| F                |  |  |  |  | 4860.72 |
| G                |  |  |  |  | 4307.25 |
| H <sub>1</sub> . |  |  |  |  | 3968.01 |
| H2.              |  |  |  |  | 3933.00 |

<sup>\*</sup> A tenth-metre is 1-1010 of a metre.

<sup>†</sup> These are the values in air at 760 m.m. pressure and 16° C. In order to obtain the wave-lengths in vacuo, these numbers must be multiplied by the respective refractive indices of the rays for air at 16° C. When thus corrected the wave-length of C becomes 6563.9 and that of F 4862.1.

These numbers are unquestionably very exact, and it is scarcely likely that any corrections which may be rendered necessary by new and more exact measurements will affect them, except in the decimal place. The wave-lengths of the spectral lines of the elements are given in this work only to the ten-millionth part of a millimetre; a greater degree of exactitude for any except the brightest lines seems scarcely possible at present.

I have collected, in the following table, all the previous measurements of wave-lengths which I have been able to find. The numbers obtained by Fraunhofer (Gilbert's Annalen der Physik und der physikalischen Chemie, xiv., 559) are headed F1, F2, F3. The first and second series of measurements were made with wire gratings, and the third with a glass grating. A gives the numbers of Angström (Recherches sur le Spectre Solaire, Upsala, 1868), D2 those of Ditscheiner (Wien. Ber., lii., 289), and V W those of Van der Willigen (Archives du Musée Teyler, t. 1, p. 1). These measurements are absolute; the rest are relative only, assuming usually Fraunhofer's number for D, viz. 5888. D, gives the measurements of Ditscheiner (Wien. Ber., 1., 256), B those of Bernard (Compt. Rend., Iviii., 1153, and lix., 32), M those of Mascart (Compt. Rend., lviii., 1111), and E those of Esselbach (Pog. Ann., xcviii., 513), who assumes Fraunhofer's numbers for C and H. S gives a series of measurements by Stefan (Pog. Ann., cxxii., 631).

|                  | F <sub>1</sub> . | F <sub>2</sub> . | Fa.  | A.     | $D_{2}$ . | D <sub>1</sub> . | В.     | M.   | E.   | v w.                 | S.   |
|------------------|------------------|------------------|------|--------|-----------|------------------|--------|------|------|----------------------|------|
| A.               | -                | -                |      | 7600'9 |           | -                | 7602   | _    |      | 7633'6               | 7598 |
| B.               | 6878             | 6881             | -    | 6866-8 | 6883'3    | 6870'6           | 6865   | 6867 | 6874 | 6874.8               | 6872 |
| C.               | 6564             | 6567             | 6556 | 6561.8 | 6571'1    | 6559*5           | 6557   | 6561 | 6564 | 6565.6               | 6558 |
| D <sub>2</sub> . | } 5888           | 5896             | 5888 | 5895.0 | 5905'3    | 5892°4<br>5888   | } 5888 | 5888 | 5886 | 5898·6 )<br>5892·6 ) | -0   |
| E.               | 5260             | 5271             | 5265 | 5269'0 | 5278'3    | 5268.6           | 5266   | 5268 | 5260 | 5272'4               | 5252 |
| F.               | 4843             | 4856             | 4856 | 4860.6 | 4868.7    | 4859'7           | 4858   | 4860 | 4845 | 4863'9               | 4843 |
| G.               | 4291             | 4293             | 4296 | 4307'2 | 4317'0    | 4308.8           | 4305   | 4307 | 4287 | 4311.2               | 4302 |
| H <sub>1</sub> . | 3928             | 3944             | 3963 | 3968 o | 3974'2    | 3966.8           | 3967   | 3967 | 3929 | 3971'3               | _    |
| Ha.              | -                | -                | -    | 3932.8 | 3940'5    | 3935'2           | -      | -    | -    | 3937'6               | -    |

The spectra of most of the elements have been mapped by Thalén, Huggins, and (as far as the brighter lines are concerned) by Kirchhoff. The numbers in Thalén's memoir (Nova Acta Reg. Soc. Sc. Upsal [iii.] vi.) are already given in wave-lengths; they were obtained by interpolation from Angström's fundamental numbers. The instrument employed was a spectroscope of six prisms of flint-glass, or of one or two prisms of carbon disulphide, according to the intensity of the spectrum.

The numbers of Huggins (Phil. Trans., 1864, p. 139) were obtained by observations with a spectroscope of six glass prisms, and are referred to an arbitrary scale, in which the air-lines are taken as starting points. I have reduced these numbers to wave-lengths by means of an interpolation curve, in which Huggins's numbers are represented as abscissæ, and the wave-lengths as ordinates. The curve is drawn by means of 138 lines, spread over the whole spectrum, whose wave-lengths were taken from Angström's normal map of the solar spectrum. The curve so obtained is very regular, and is drawn on a scale so large that the error in determining the wave-length corresponding to any number of Huggins's scale is many times less than the probable error of the original measurements of the lines. Thus it is impossible to draw a smooth curve through all the 138 points of reference, and the curve actually adopted while it passes through a large number of these points also leaves a considerable number slightly on the one side or the other. The source of this irregularity may be either in the measurements of Huggins or in those of Angström, or in both; but as the curve drawn from Kirchhoff's numbers and Angström's wave-length determinations is much less irregular, I conclude that Huggins's determinations are not equal in accuracy to those of Angström or of Kirchhoff. The interpolation curve for Kirchhoff's number was drawn by means of 149 solar lines, which could be certainly identified on Angström's map. These points of reference agree better amongst themselves than those used for Huggins's scale, although the curve is not so regular a one. It is made up, indeed, of a number of nearly straight lines, each break in direction corresponding, no doubt, to the re-adjustment of the prisms. I believe that the error arising from such re-adjustments of the apparatus is entirely got rid of by adopting so large a number of reference-lines, and that Kirchhoff's measurements of the wave-lengths of the bright lines of the metals, so far as they extend, are second in value to none.

A comparison of the numbers given in the tables confirms this conclusion, inasmuch as those given by Thalén and Kirchhoff always agree more closely than those of Huggins do either with Kirchhoff's or Thalén's. We may take for example the numbers given on page 61, representing the spectrum of Strontium.

| Huggins. | Thalén. | Kirchhoff. |
|----------|---------|------------|
| 5531     | 5534    | 5534       |
| 5519     | 5522    | 5521       |
| 5500     | 5503    | 5503       |
| 5487     | 5485    | 5485       |
| 5480     | 5480    | 5480       |
| 5254     | 5256    | 5256       |
| 5238     | 5238    | 5238       |
| 5228     | 5228    | 5228       |
| 5224     | 5225    | 5225       |
| 5221     | 5223    | 5222       |
| 4604     | 4607    | 4607       |
|          |         |            |

I had completed the reduction of both Huggins's and Kirchhoff's numbers before I became acquainted with two papers by Dr. Wolcott Gibbs, in the "American Journal of Science," for January, 1867, and March, 1869, in which very

careful reductions of the numbers of both Kirchhoff and Huggins are given, effected by means of interpolation formulæ.

Dr. Gibbs has employed partly the wave-lengths of Ditscheiner, partly an older series of measurements by Angström,\* so that his results are not directly comparable either with my own or with Thalén's numbers. If, however, we make the necessary correction of the fundamental wavelengths, Dr. Gibbs's numbers agree with mine as closely as can be expected. This will be seen from the following table, which contains a few numbers selected at random. Column A<sub>1</sub> gives the older determinations of Angström, A<sub>2</sub> the more recent ones, D their difference, G the numbers obtained by Dr. Gibbs by reduction of Huggins's observations, G—D the corrected numbers, and W the numbers given in this work.

| A <sub>I</sub> . | A2.    | D.  | G.     | G—D.    | W.   |
|------------------|--------|-----|--------|---------|------|
| 6566.5           | 6561.8 | 4.7 | 6553.2 | 6548.5  | 6547 |
| 6520.7           | 6515.2 | 5.5 | 6519.2 | .6514.0 | 6513 |
| 5900.7           | 5895.0 | 5.7 | 5830.5 | 5824.5  | 5824 |
| 5607.0           | 5601.7 | 5'3 | 5490.7 | 5485.4  | 5487 |
| 5273'2           | 5268.5 | 4.7 | 5273.6 | 5268.9  | 5269 |
| 4386.3           | 4382.8 | 3.2 | 4379'7 | 4376.2  | 4376 |
| 4310.3           | 4307'2 | 3.1 | 4319'4 | 4316.3  | 4318 |

I have throughout compared Dr. Gibbs's results with my own, in order, as far as possible, to avoid errors in the tables. This means of control is, of course, confined to the 28 elements examined by Dr. Huggins.

The reductions of Kirchhoff's numbers, given by the Astronomer Royal in the "Philosophical Transactions" for 1868, are, as he himself admits, to be trusted only in the close neighbourhood of the six Fraunhofer lines employed as starting points.

<sup>\*</sup> Pog. Ann., exxiii., 489.

I have not thought it necessary to give the intensities of the lines noted by different observers, but have given a mean estimate on a scale from I to I2, I2 being the brightest.

In the case of the elements whose spectra have not been examined by Thalén, Huggins, or Kirchhoff, I have given the best results which exist, and have given references to the original memoirs (the papers of Huggins, Kirchhoff, and Thalén, are not referred to again under the different elements).

The degree of accuracy which these numbers represent is very different. Plücker's measurements for chlorine, bromine, iodine, phosphorus, sulphur, selenium, nitrogen, and oxygen, given in the "Philosophical Transactions" for 1865, seem to be tolerably exact. They have been reduced to wave-lengths by means of an interpolation-curve drawn from the lines of oxygen and nitrogen.

The numbers given from Mascart, Ketteler, and Müller, were obtained by direct observation of the diffraction spectra; they all assume Fraunhofer's number for D, viz., 5888.

In the lithographic plates a drawing of the spectrum of each element is given on the plan proposed by Bunsen, in which the intensity of a bright line is indicated by the height of the line representing it. These drawings represent the dispersion spectra as obtained with one flint-glass prism; the scale is almost exactly that upon which Bunsen's first drawings of the spectra of the alkalies and alkaline earths were given. The column headed "No." in the tables refers to these drawings, and in all cases where a spectrum has been completely mapped by more than one observer, those lines only are drawn which are recorded by two observers.

The chromo-lithograph gives representations of different

spectra produced by the same element, in the case of nitrogen, sulphur, and carbon; oxygen, hydrogen, and aluminium also appear to give more than one spectrum each.

Spectra of hydrogen and aluminium are represented in Plate II., which is a copy of the drawing accompanying Wüllner's paper on the Different Spectra of Hydrogen (Festchrift der niederrheinischen Gesellschaft für Natur-und Heilkunde, zur 50-jährigen, Jubelfeier der Universität Bonn); the reference-lines given are too few to render a satisfactory reduction of the drawings to any other scale possible.

It should be remarked that Angström\* denies the possibility of an element giving different spectra.

<sup>\*</sup> Comptes Rendus, August 7, 1871.

# INDEX OF SPECTRA.

Air.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1.

| No.  | Thalén. | Huggins. | Plücker.                                         | Intensity. |
|------|---------|----------|--------------------------------------------------|------------|
| 34.0 | 6602    | 6602 N   | 6602 N                                           | 6          |
| 34.6 | 6562    | 6562 H   | 6562 H                                           | 10         |
| 36.0 | 6480    | 6482 N   | 6480 N                                           | 6          |
|      | _       | _        | 6452 0                                           | 8          |
| _    | -       | -        | 6376 N                                           | 2          |
| -    | _       | _        | 6358 N                                           | 2          |
| _    | _       | . —      | 6341 N                                           | 2          |
|      | _       |          | 6288 N                                           | 2          |
| _    | _       | _        | 6249 N                                           | 2          |
| 42.9 | 6171    | 6171 NO  | 6170 O                                           | 6          |
| -    | _       | -        | $ \begin{pmatrix} 6165 \\ 6152 \end{pmatrix} $ N | band       |
| _    | _       | -        | 6118 0                                           | 8          |
| 48.5 | 5949    | 5950 N   | 5949 N                                           | 4          |
| 48.7 | 5942    | 5942 N   | 5942 N                                           | 10         |
| 49.0 | 5932    | 5930 N   | 5932 N                                           | 9          |
| 49.1 | 5929    | 5925 N   | 5929 N                                           | В 4        |

| No.  | Thalén. | Huggins. | Plücker.           | Intensity. |
|------|---------|----------|--------------------|------------|
| 53.6 | 5767    | 5768 N   | 5767 N             | 4          |
| _    |         | _        | 5754 N             | 8          |
| 54.1 | 5745    | 5746 N   | _                  | 4          |
| _    | _       | 5726 N   |                    | I          |
| 55'3 | 5711    | 5709 N   | 5711 N             | 6          |
| 56.0 | 5686    | 5686 N   | 5686 N             | 5          |
| 56.2 | 5678    | 5680 N   | 5681 N             | 12         |
| 56.3 | 5675    | 5675 N   | 5676 N             | 5          |
| 56.6 | 5666    | 5668 N   | 5666 N             | IO         |
| _    | _       | _        | 5560 N             | 8          |
| 60.4 | 5549    | 5550 N   | 5549 N             | 4          |
| 60.8 | 5541    | 5541 N   | 5541 N             | 5          |
| 60.9 | 5534    | 5534 N   | _                  | 8          |
| 61.0 | 5530    | 5528 N   | 5530 N             | 5          |
| 61.5 | _       | 5524 N   | 5524 N             | I          |
| 62.2 | 5495    | 5495 N   | 5495 N             | 7          |
| 62.7 | 5479    | 5479 N   | 5479 N             | 5          |
| 63.3 | 5462    | 5462 N   | 5462 N             | 4          |
| 63.5 | 5453    | 5453 N   | 5453 N             | 4          |
| 67.6 | 5351    | 5350 N   | -                  | I          |
| 68.0 | 5339    | 5338 N   | 5341 N             | 2          |
| _    | -       | -        | 5340 O             | 10         |
| -    | _       | -        | 5330 N             | 8          |
| 68.8 | 5320    | 5319 N   | _                  | I          |
|      |         | _        | 5315 O             | 10         |
| -    |         | _        | 5309 N             | 8          |
|      |         | 5205 0   |                    | I          |
| 74.2 | 5190    | 5190 O   | 5190 O             | 4          |
| 74.6 | 5184    | 5179 N   |                    | 2          |
| 74.7 | 5178    | 5176 N   | 5178 O             | 4          |
| 74.8 | 5172    | 5172 N   | N                  | 2          |
|      | _       | - CT62 O | 5164 N<br>5161 O   | 10         |
| 75.2 |         | 5163 O   | (5160)             | 4          |
| -    | -       | -        | (5160)<br>(5152) N | band       |
| _    | _       | _        | 5144 0             | 10         |
| _    | -       | _        | 5120 N             | 2          |
|      |         |          |                    |            |

| No.  | Thalén. | Huggins. | Plücker. | Intensity. |
|------|---------|----------|----------|------------|
| _    |         | _        | 5098 N   | 2          |
| 79'4 | _       | 5071 N   | 5071 N   | 2          |
| 80.6 | 5045    | 5045 N   | 5045 N   | IO         |
| 81.4 | 5025    | 5024 N   | 5025 N   | 7          |
| 81.9 | 5016    | 5016 N   | 5016 N   | 5          |
| 82.2 | 5010    | 5010 N   | 5010 N   | 5          |
| 82.3 | 5007    | 5007 N   | _        | 3          |
| 82.4 | 5005    | 5003 N   | 5005 N   | 12         |
| 82.7 | 5002    | 4999 N   | 5002 N   | 12         |
| 83.1 | 4993    | 4993 N   | 4992 N   | . 5        |
| 83.4 | 4987    | 4986 N   | 4986 N   | 5          |
| 85.0 | -       | 4953 O   | 4954 O   | . 3        |
| 85.7 | 4941    | 4943 O   | 494I O   | 4          |
| _    | _       | 4931 N   | _        | I          |
| 86.4 | 4924    | 4925 O   | 4925 O   | 4          |
| 87.4 | 4906    | 4907 O   | 4900 O   | 4          |
| 87.9 | 4895    | 4895 N   | 4894 N   | 4          |
| 88.3 | _       | 4892 O   | 4884 O   | 4          |
| 88.8 | _       | 4880 N   | 4876 N   | I          |
| 89.3 |         | 4872 O   | 4866 O   | *3         |
| -    | _       | 4866 N   | =        | I          |
| _    | _       | _        | 4862 O   | 2          |
| 89.8 | _       | 4858 N   | 4859 N   | 4          |
| _    | _       | _        | 4856 O   | 2          |
| 90.4 | _       | 4853 O   | 4850 O   | 2          |
| _    | _       | _        | 4848 O   | 6          |
| 90.2 | _       | 4849 N   | 4846 N   | 4          |
| 92.8 | 4803    | 4804 N   | 4804 N   | 8          |
| 93.6 | 4788    | 4788 N   | -        | 8          |
| 94.1 | 4779    | 4781 N   | _        | 8          |
| _    | _       | _        | 4754 O   | 4          |
| -    | _       |          | 4744 O   | 2          |
| _    | _       | -        | 4743 N   | 4          |
| -0-  | -       | -        | 4732 N   | 4          |
| 98.4 | 4712    | -        | 4711 O   | 4          |
| 98.8 | 4706    | 4705 O   | 4706 O   | 7          |
| 99.1 | 4698    | 4699 O   | 4698 O   | 7          |

| No.   | Thalén. | Huggins.                | Plücker.                                   | Intensity. |
|-------|---------|-------------------------|--------------------------------------------|------------|
| _     | _       | -                       | 4690 O                                     | 2          |
| 100.0 | 4675    | 4677 O                  | 4675 O                                     | 7          |
| 101.7 | 4662    | 4662 O                  | 4662 O                                     | 7          |
| 102.2 | 4649    | 4648 O                  | 4649 O                                     | - 8        |
| _     | _       | _                       | 4644 N                                     | 10         |
| 103.1 | 4642    | _                       | 4640 O                                     | 6          |
| 103'2 | 4640    | 4640 NO                 | 4639 O                                     | 6          |
| 103.9 | 4630    | 4629 N                  | 4630 N                                     | 10         |
| 104.2 | 4621    | 4621 N                  | 4621 N                                     | 7          |
| 105.0 | 4613    | 4613 N                  | 4613 N                                     | 7          |
| 105.3 | 4607    | 4608 N                  | 4609 N                                     | 7          |
| 105.8 | 4601    | 4600 N                  | 4601 N                                     | 7          |
| 100.0 | 4596    | 4596 O                  | 4600 O                                     | 6          |
| 106.4 | 4590    | 4588 O                  | 4593 O                                     | 6          |
| 108.8 | _       | 4553 N                  | $\begin{cases} 4551 \\ 4544 \end{cases}$ N | band       |
| 110.3 | -       | ${4533 \choose 4506}$ N | ${453^2 \choose 4523}$ N                   | band       |
| . –   |         | _                       | ${4506 \choose 4500}$ N                    | band       |
| _     | -       | 4496 N                  | _                                          | I          |
|       |         | 4490 N                  | _                                          | I          |
| _     | _       | 4477 N                  | _                                          | _          |
| _     | _       | _                       | 4474 O                                     | 10         |
| 115.0 | _       | 4467 O                  | 4468 O                                     | 10         |
|       | _       | _                       | 4457 O                                     | 4          |
| _     | _       | _                       | 4450 O                                     | 4          |
| 116.2 | 4447    | 4448 N                  | 4447 N                                     | 10         |
| _     | -       | -                       | 4443 O                                     | 4          |
| 112.3 | 4432    | {4437<br>4422} N        | ${4438 \atop 4421}$ N                      | band       |
| 110.0 | 4418    | 4416 O                  | 4418 O                                     | 8          |
| 119.9 | 4414    | 4414 0                  | 4414 0                                     | 8          |
| 120'4 | _       | 4398 N                  | 4398 O                                     | 6          |
| 123'4 | 4368    | 4364 O                  | 4367 O                                     | 4          |
| _     | 4351    | -                       | _                                          | 6          |
| 125.1 | 4348    | 4347 ON                 | 4348 O                                     | 10         |
|       |         |                         |                                            |            |

| No.    | Thalén. | Huggins. | Plücker.                | Intensity. |  |
|--------|---------|----------|-------------------------|------------|--|
|        | _       | _        | 4347 O                  | 10         |  |
| 125'4  | 4346    | _        | 434I O                  | 6          |  |
| 126.3  | 4333    | -        | 4334 O                  | 2          |  |
| _      | _       | _        | 4327 O                  | 2          |  |
| 127.3  | 4319    | _        | 4320 O                  | 8          |  |
| 127.5  | 4317    | 4318 O   | 4317 O                  | 6          |  |
| _      | _       | 4278 O   | _                       | _          |  |
| _      | _       | _        | 4262 O                  | 10         |  |
| _      | _       | _        | 4243 O                  | 6          |  |
| 133'5) | 1220    | 4238 N   | ${4247 \brace 4227}$ N  | band       |  |
| 135.2) | 4230    | 4230 IV  | 142275                  | Danu       |  |
| 137.0  | _       | 4206 N   | ${4214 \atop 4199}$ N   | band       |  |
| 138.6] |         | 4200 11  |                         |            |  |
|        | -       | -        | 4196                    | 10         |  |
| 139.9  | 4190    | 4190 O   | 4190 O                  | 5          |  |
| 140.9  | 4184    | 4183 O   | _                       | 5          |  |
| 141.3) | _       | 4170 N   | ${4184 \choose 4170}$ N | band       |  |
| 142.8  |         | 1 /      |                         |            |  |
|        |         | _        | 4171.0                  | · 2        |  |
| 144.3  | 4155    | -        | 4158 O                  | 4          |  |
| 145.0  | 4149    | 4149 O   | 4147 O                  | 2          |  |
|        | _       | /        | ${4151 \choose 4147}$ N | band       |  |
| T.6.T  | 4707    | urua N   |                         |            |  |
| 146.1  | 4137    | 4142 N   | 4141<br>4130 N          | 4          |  |
| 147.1  | _       | 4130 N   |                         |            |  |
| T.47'0 | 4700    |          | 4136 O<br>4126 O        | 6          |  |
| 147.9  | 4123    | 4777 ()  |                         |            |  |
| 148.6  |         | 4117 0   | 4117 0                  | 2          |  |
|        |         | - N      | 4104 0                  | 2          |  |
| 150.0  |         | 4101 N   | 4094 (                  | 2          |  |
| 151.7  | _       | 4094 N   | {4097<br>4080} N        | band       |  |
| 153.9  | 4076    | _        | 4086 O                  | 2          |  |
| _      | _       | -        | 4085 O                  | 4          |  |
| 155.0  | 4074    | 4073 O   | 4072 O                  | 3          |  |
| _      | 4072    | _        | _                       | 6          |  |
|        |         |          |                         |            |  |

| No.   | Thalén. | Huggins. | Plücker. | Intensity. |
|-------|---------|----------|----------|------------|
| 155.5 | 4069    | 4069 O   | 4069 O   | 3          |
| 160.0 | 4040    | 4038 N   | _        | 4          |
| 165.4 | 3995    | 4000 N   | _        | 4          |

# Aluminium.

WÜLLNER. Festschrift Bonn., 1868.

| No.   | Thalén. | Kirchhoff.                                                           | Intensity. |
|-------|---------|----------------------------------------------------------------------|------------|
| 38.2  | 6371    | _                                                                    | 6          |
| 38.7  | 6345    | _                                                                    | 6          |
| 41.2  | 6244    | 6245<br>6243                                                         | 9          |
| 41.4  | 6234    | $     \begin{pmatrix}       6235 \\       6233     \end{pmatrix}   $ | 9          |
| 54.8  | 5722    | 5722                                                                 | 10         |
| 55.8  | 5695    | 5695                                                                 | 10         |
| 58.9  | 5592    | _                                                                    | 4          |
| 80.3  | 5056    | _                                                                    | 10         |
| 101.4 | 4662    | (4662)<br>(4661)                                                     | 10         |
| 110.2 | 4529    | _                                                                    | 7          |
| 111.6 | 4511    | _                                                                    | 7          |
| 114.2 | 4478    | _                                                                    | 4          |
| 171.3 | 3961    | -                                                                    | 4<br>8     |
| 174.2 | 3943    | <del>-</del>                                                         | 8          |

# Antimony.

| No. | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-----|----------|---------|------------|------------|
| _   | 7020     | _       | _          | 5          |
| _   | 6840     | _       | _          | 2          |
| _   | 6803     |         | _          | 5          |
| _   | 6780     |         | _          | 5          |
|     | 6742     |         | _          | I          |

| No.  | Huggins. | Thalén. | Kirchhoff.            | Intensity. |
|------|----------|---------|-----------------------|------------|
| _    | 6712     | _       | _                     | 2          |
| _    | 6645     | _       | _                     | 2          |
| _    | 6513     |         | _                     | 2          |
| _    | 6500     | _       | _                     | 2          |
| _    | 6461     | _       | _                     | 2          |
| _    | 6392     | _       |                       | 4          |
| -    | 6320     | _       | -                     | 2          |
| 39'9 | 6301     | 6301    | 6301                  | 8          |
| _    | 6283     | -       | _                     | 4          |
| 41.2 | 6243     | 6244    | 6244                  | 5          |
| 42.0 | 6204     | 6209    | _                     | 4          |
| 42.3 | 6189     | 6193    | 1                     | 4          |
| 43'3 | 6153     | 6155    | _                     | 5          |
| 43'9 | 6125     | 6129    | (6130)<br>(6128)      | 10         |
| 45 2 | 6076     | 6078    | (6080)<br>(6076)      | 10         |
| 46.0 | 6050     | 6051    | (6052)<br>(6048)      | 5 .        |
| 47.2 | 6002     | 6003    | (6006)<br>(6003)      | 12         |
| 47.8 | 5982     | 5979    | 5979                  | 4          |
| _    | 5920     | -       | _                     | _          |
| 49.5 | 5912     | 5909    | {5910}<br>5905}       | 9          |
| 50.0 | 5895     | 5894    | ${5896 \atop 5891}$   | 9          |
| _    | 5840     | _       | _                     | I          |
| _    | 5822     | _       | _                     | I          |
| 52.5 | 5790     | 5791    | _                     | 4          |
| _    | 5714     | _       | _                     | _          |
| _    | 5700     | _       | _                     | I          |
| -    | 5663     | -       | _                     | I          |
| -    | 5644     | -       | _                     | I          |
| 57.5 | 5635     | 5638    | ${5641 \choose 5639}$ | 9          |

| No.   | Huggins. | Thalén.                                  | Kirchhoff.                             | Intensity. |
|-------|----------|------------------------------------------|----------------------------------------|------------|
|       | 5629     | _                                        | _                                      | I          |
| _     | _        | 5607                                     | _                                      | 2          |
| 59.7  | 5556     | 5567                                     | (5569)<br>(5566)                       | 9          |
| 63.2  | 5460     | 5463                                     | (5465)<br>(5462)                       | 8          |
| _     | 5392     | _                                        | _                                      | -          |
| 66.4  | 5379     | 5379                                     | _                                      | 7          |
| -     | _        | 5371                                     | -                                      | 2          |
| 67.5  | 5352     | 5352                                     | _                                      | 2          |
| 72.0  | 5238     | 5241                                     | _                                      | 7          |
| 73.2  | 5219     | 5208                                     | _                                      | I          |
| 74.7  | 5177     | 5177                                     | _                                      | 7          |
| 76.2  | 5139     | 5141                                     | _                                      | 7          |
| 77'5  | 5112     | 5112                                     | _                                      | 5          |
| _     | 5080     |                                          | _                                      | I          |
| _     | 5044     |                                          | _                                      | 2          |
| 81.1  | 5031     | 5036                                     | -                                      | 2          |
| 85.3  | 4948     | 4948                                     | _                                      | 9          |
| 88.9  | 4878     | 4878                                     | _                                      | 7          |
| 91.3  | 4832     | 4835                                     | _                                      | 5          |
| 93.7  | 4787     | 4786                                     | _                                      | 5          |
| -     | 4768     | _                                        | _                                      | 2          |
| _     | 4757     | _                                        | _                                      | 2          |
| 96.8  | 4735     | 4735                                     | -                                      | 4          |
| 98.4  | 4712     | 4711                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 10         |
| 99.7  | 4693     | 4691                                     | _                                      | 7          |
| _     | 4622     | _                                        | _                                      | I          |
| _     | 4600     | _                                        |                                        | I          |
| 106.2 | 4588     | 4591                                     | _                                      | 7          |
|       | 4506     | _                                        | _                                      | 2          |
| _     | 4457     | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 | _                                      | I          |
| -     | 4376     | _                                        |                                        | I          |
| 124'9 | 4349     | 4352                                     | _                                      | 9          |
| 131.8 | 4264     | 4265                                     | _                                      | 7          |
| _     | 4249     | _                                        | _                                      | I          |
| _     | 4193     | _                                        | _                                      | Ī          |

# Arsenic.

| No.  | Huggins. | Thalén. | Kirchhoff.                                    | Intensity. |
|------|----------|---------|-----------------------------------------------|------------|
| _    | 6404     |         | _                                             | I          |
| _    | 6342     | _       | _                                             | I          |
|      | 6252     |         | _                                             | I          |
| 42.9 | 6164     | 6169    | ${6171 \choose 6167}$                         | 10         |
|      | 6131     | _       | _                                             | I          |
| 44'3 | 6108     | 6110    | (6112)<br>(6109)                              | 10         |
| _    | 6078     |         | _                                             | 2          |
| 46.8 | 6020     | 6021    | 6022                                          | 5          |
| _    | 5839     | _       | _                                             | I          |
| _    | 5781     | _       | _                                             | I          |
| 57'1 | 5647     | 5651    | (5652)<br>(5650)                              | 10         |
|      | 5616     | _       | _                                             | I          |
| -    | 5590     | -       | _                                             | I          |
| 60.1 | 5554     | 5558    | \[ \begin{pmatrix} 5558 \\ 5556 \end{pmatrix} | 10         |
| 62.1 | 5495     | 5498    | 5498<br>(5496)                                | 8          |
| -    | 5404     |         | -                                             | I          |
|      | 5384     | -       | _                                             | I          |
| 68.3 | 5324     | 5532    | 5333<br>5330                                  | 8          |
| -12  | 5287     |         | _                                             | I          |
| -    | 5229     | _       | -                                             | 5          |
| -11  | 5162     | -       | -                                             | I          |
|      | 5104     |         | -                                             | 5          |
|      | 4983     |         | _                                             | 2          |
|      | 4888     | -       | -                                             | I          |
| -    | 4732     | -       | -                                             | I          |
| -    | 4551     | _       | _                                             | I          |
| -    | 4537     | 22      | -                                             | I          |
| _    | 4497     |         | 0.0                                           | 2          |
|      |          |         |                                               | С          |

| No. | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-----|----------|---------|------------|------------|
| _   | 4464     | _       | _          | 3          |
| -   | 4369     | _       | _          | I          |
| -   | 4335     | _       | _          | I          |

# Barium.

Bunsen and Kirchhoff. Pogg. Ann., cx., 161.

| No.  | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|------|----------|---------|------------|------------|
| _    | 6889     | _       | _          | I          |
| _    | 6780     | _       | _          | I          |
| -    | 6697     | _       | _          | I          |
| _    | - 6677   | _       | _          | I          |
|      | 6589     |         |            | I          |
| 35.2 | 6523     | 6526    |            | 6          |
| 35.8 | 6499     | 6496    | 6497       | 10         |
| -    | -        | 6483    | _          | 6          |
| 36.6 | 6452     | 6449    |            | - 6        |
| 38.7 | 6344     | 6343    | _          | 6          |
| 43.7 | -        | 6141    | 6141       | 10         |
| 44.2 | 6113     | 6110    | 6111       | 6          |
| 45.6 | 6064     | 6062    | 6063       | 6          |
| 46.8 | 6021     | 6018    | 6018       | 6          |
| 47'3 | 5998     | 5992    | -          | 6          |
| 48.0 | 5973     | 5971    | 5971       | 6          |
| 49.7 | 5904     | 5904    | _          | 2          |
| -    | 5889     | _       | _          | I -        |
| 51.5 | 5850     | 5853    | 5853       | 10         |
| 21.9 | 5823     | 5827    | 5827       | 6          |
| _    | -        | 5808    | 700        | 2          |
|      |          | 5803    |            | . 2        |
| 53*2 | 5774     | 5780    | 5780       | 6          |
| _    | 5744     |         | -          | I          |
| 60.9 | 5538     | 5534    | 5534       | IO         |
| 61.4 | 5518     | 5518    | 5518       | 3-         |
| -    | 5490     |         | -          | I          |

| No.   | Huggins. | Thalén. | Kirchhoff.       | Intensity. |
|-------|----------|---------|------------------|------------|
| 64.7  | _        | 5425    | 5424             | 6          |
| 86.0  | 4934     | 4933    | 4933             | 12         |
| 87.7  | 4898     | 4899    | 4899             | 9          |
| _     | 4727     | _       | -                | I          |
| _     | 4690     | _       | _                | I          |
| 108.8 | 4553     | 4553    | {4554}<br>{4553} | 12         |
| 110.8 | 4524     | 4524    | 4524             | 6          |
| _     | 4174     | _       | _                | 2          |
| -     | _        | 4165    | _                | 8          |
| 147'1 | 4130     | 4130    | _                | 10         |
|       |          |         |                  |            |

# Bismuth.

MASCART. Annales Scientifiques de l'Ecole Normale Supérieure, t. iv.

| No.  | Huggins. | Thalén. | Mascart.    | Intensity. |
|------|----------|---------|-------------|------------|
| _    | 6808     | _       | _           | 4          |
| 34.0 | 6590     | 6599    | _           | 4          |
| _    | 6571     |         |             | I          |
| 35.8 | 6499     | 6493    | _           | 6          |
| 44.0 | 6125     | 6129    |             | 8          |
| 45.9 | 6057     | 6057    | _           | 8          |
| 46.0 | 6055     | 6050    |             | 4          |
| 46.2 | 6034     | 6038    |             | 4          |
| _    | 5980     | -       |             | I          |
| _    | 5972     | _       | <del></del> | I          |
| 50.9 | 5862     | 5862    | _           | 8          |
| 52.2 | 5819     | 5816    | _           | 6          |
| 55.0 | 5717     | 5717    | _           | 6          |
| 56.9 | 5656     | 5655    | _           | 4          |
| 60.3 | 5552     | 5553    | _           | 4          |
|      | 5538     | _       |             | I          |
| 63.6 | 5449     | 5450    | -           | 8          |
| 65.9 | 5394     | 5396    | - 1         | 4          |

| No.   | Huggins. | Thalén. | Mascart. | Intensity. |
|-------|----------|---------|----------|------------|
| -     | 5357     | -       | -        | 1          |
| 70.7  | 5271     | 5270    | -        | IO         |
| 73.5  | 5208     | 5208    | _        | 10         |
| 73'9  | 5199     | 5201    | 1        | 4          |
| 76.0  | 5144     | 5144    | _        | 12         |
| 76.8  | 5124     | 5124    | _        | IO         |
| 78.5  | 5089     | 5090    | _        | 2          |
| 79.0  | 5078     | 5078    | -        | 5          |
| 83.2  | 4991     | 4993    | _        | 8          |
| 84.5  | 4970     | 4970    | _        | 2          |
| _     | 4915     | -       | -        | I          |
| 87.4  | 4907     | 4905    | _        | 4          |
| 93.1  | 4798     | 4797    | _        | 4          |
| 95.7  | 4752     | 4752    | _        | 2          |
| 97.2  | 4729     | 4730    | _        | 2          |
| 97.8  | 4723     | 4722    | 4721     | 10         |
| 98.8  | 4705     | 4705    |          | 2          |
|       |          | 4691    | _        | 4          |
| 108.3 | 4560     | 4560    |          | 8          |
| -     | 4476     | _       | -        | I          |
| _     | 4389     | _       | -        | 2          |
| 125.9 | 4338     | 4339    | _        | 4          |
| 126.6 | 4329     | 4328    | _        | 4          |
| 128.8 | 4301     | 4302    | -        | . 8        |
| 132.3 | 4259     | 4259    | -        | 9          |
| 148.2 | 4120     | 4119    | -        | 5          |
| 154.0 | 4080     | 4084    | -        | 4          |
|       |          |         |          |            |

### Boron.

No observations of the spectrum of this element exist. Drawings of the flame-spectrum of Boracic Acid are given by MITSCHERLICH, *Phil. Mag.* [4], xxviii., 169; and by Thalen "Om Spektralanalys." See also Simmler, *Pogg. Ann.*, cxv., 242.

Bromine.

PLÜCKER. Pogg. Ann., cvii., 497.
PLÜCKER and HITTORF. Phil. Trans., 1861, 1.

|      | THE                  |      |      | Din 1                   |      |
|------|----------------------|------|------|-------------------------|------|
| No.  | Plücker and Hittorf. | Int. | No.  | Plücker and<br>Hittorf. | Int. |
| 29'3 | 6862                 | 6    | 66.8 | 5383                    | I    |
| 33.5 | 6628                 | 6    | 68.6 | 5326                    | IO   |
| 34.3 | 6576                 | 6    | 69.7 | 5299                    | I    |
| 34.8 | 6555                 | 6    | 69.9 | 5292                    | IO   |
| 38.5 | 6357                 | 10   | 71.0 | 5263                    | 8    |
| 43.2 | 6158                 | 10   | 71.2 | 5250                    | 8    |
| 43'4 | 6151                 | 2    | 72.7 | 5225                    | 10   |
| 43'9 | 6131                 | 2    | 73.0 | 5220                    | I    |
| 43'9 | 6128                 | 2    | 73*2 | 5216                    | 2    |
| 50.8 | 5868                 | 6    | 74.3 | 5187                    | I    |
| 21.9 | 5827                 | 10   | 74.6 | 5180                    | 2    |
| 52.0 | 5824                 | 2    | 75.0 | 5168                    | 10   |
| 53.0 | 5792                 | I    | 75.7 | 5150                    | 8    |
| 54'3 | 5739                 | 2    | 77.0 | 5122                    | 2    |
| 54.8 | 5722                 | 6    | 77.8 | 5106                    | 2    |
| 55.3 | 5712                 | 2    | 78.4 | 5092                    | 4    |
| 55.8 | 5696                 | 6    | 80.3 | 5054                    | 6    |
| 56.7 | 5662                 | 2    | 81.0 | 5035                    | 6    |
| 57.8 | 5626                 | 2    | 82.2 | 5010                    | 6    |
| 57'9 | 5622                 | 2    | 83.2 | 4990                    | 6    |
| 58.8 | 5598                 | 10   | 83.6 | 4982                    | I    |
| 59.8 | 5566                 | I    | 84.7 | 4960                    | 2    |
| 60.3 | 5552                 | I    | 85.4 | 4945                    | 2    |
| 61.4 | 5515                 | 8    | 86.1 | 4932                    | 8    |
| 61.9 | 5502                 | 8    | 86.2 | 4924                    | 2    |
| 62.3 | 5492                 | 8    | 89.4 | 4868                    | I    |
| 63.8 | 5446                 | 10   | 90.3 | 4852                    | 2    |
| 64.2 | 5436                 | IO   | 90.6 | 4847                    | I    |
| 64.2 | 5428                 | I    | 92.1 | 4818                    | 8    |
| 64.8 | 5422                 | 8    | 92.6 | 4807                    | 2    |
| 66.0 | 5391                 | I    | 93.7 | 4787                    | IO   |

| No.   | Plücker and<br>Hittorf. | Int. | No.   | Plücker and<br>Hittorf. | Int. |
|-------|-------------------------|------|-------|-------------------------|------|
| 94.2  | 4778                    | 2    | 102'9 | 4644                    | I    |
| 94.6  | 4771                    | 6    | 104'2 | 4625                    | 10   |
| 96.1  | 4746                    | I    | 109.6 | 4543                    | 4    |
| 96.8  | 4736                    | I    | 123.2 | 4365                    | 10   |
| 97.2  | 4730                    | I    | 129.8 | 4288                    | 2    |
| 97'9  | 4721                    | 4    | 134.0 | 4241                    | I    |
| 98.7  | 4706                    | 10   | 135.4 | 4228                    | 2    |
| 99.5  | 4695                    | 2    | 138.8 | 4198                    | I    |
| 100.4 | 4680                    | 10   | 141.3 | 4181                    | I    |
| 100.0 | 4676                    | I    | 145.9 | 4142                    | I    |

## Cadmium.

MASCART. Annales de l'Ecole Normale.

| No.  | Huggins. | Thalén. | Kirchhoff.       | Mascart. | Int. |
|------|----------|---------|------------------|----------|------|
| 31.3 | 6740     | _       | 6742             | _        | 4    |
| _    | _        | _       | 6726             |          | -    |
| 36.3 | 6462     | 6466    | (6468)<br>(6462) | -        | 7    |
| 36.9 | 6433     | 6438    | 6438             | 6437     | IO   |
| 46.0 | 6050     | 6056    | _                | _        | 2    |
| 47.2 | 6004     | 6004    | _                | _        | 2    |
| 48.3 | 5959     | 5958    |                  | _        | 2    |
| 49'4 | 5914     | 5913    | -                | -        | 2    |
| -    | _        | 5790    | _                | -        | 2    |
| _    | _        | 5687    | _                | _        | 4    |
| _    | _        | 5489    | _                | _        | 2    |
| _    | -        | 5471    | . —              | _        | 4    |
| 66.5 | 5377     | 5378    | {5379}<br>5378}  | 5377     | 12   |
| 68.2 | 5334     | 5338    | {5339}<br>5337}  | 5336     | 12   |
| 69.5 | 5304     | 5304    | _                | _        | 2    |
| 75.6 | 5153     | 5153    | -                | _        | 4    |
|      |          |         |                  |          |      |

| No.   | Huggins. | Thalén. | Kirchhoff. | Mascart. | Int. |
|-------|----------|---------|------------|----------|------|
| 78.7  | 5085     | 5085    | 5085       | 5084     | 10   |
| 93.0  | 4798     | 4799    | 4800       | 4799     | 10   |
| 100.8 | 4677     | 4677    | 4677       | 4677     | 10   |
| 110.1 | 4416     | 4416    | 4416       | 4415     | 8    |

#### Cæsium.

Bunsen. Pogg. Ann., cxix., 6.
Johnson and Allen. Phil. Mag. [4], xxv., 199.

| No.  | Thalén. | Intensity. |
|------|---------|------------|
| 84'1 | 4972    | 10         |

### Calcium.

Bunsen and Kirchhoff. Pogg. Ann., ex., 161. Roscoe and Clifton. Proc. Lit. and Phil. Soc. Manchester, 1862.

ERDMANN. Fourn. Prak. Chem., 1xxxv., 394.

| No.  | Huggins. | Thalén. | Kirchhoff.            | Intensity. |
|------|----------|---------|-----------------------|------------|
| 31.0 | 6710     | -       | 6722                  | I          |
| 35.8 | 6498     | 6498    | 6499                  | 8          |
| 35'9 | 6492     | 6492    | 6492                  | 10         |
| 36.2 | 6468     | 6468    | 6468                  | 8          |
| 36.4 | 6458     | 6462    | 6462                  | IO         |
| 36.7 | 6445     | 6449    | 6447                  | 8          |
| 36.9 | 6434     | 6438    | 6438                  | IO         |
| -    | 6352     | -       | _                     | I          |
| _    | 6336     | _       | _                     | I          |
| _    | 6311     | _       | _                     | I          |
| -    | -        | _       | 6209                  | _          |
| _    | _        | _       | 6202                  | -          |
| -    | -        | -       | ${6194 \choose 6192}$ | _          |

| No.  | Huggins. | Thalén. | Kirchhoff.       | Intensity. |
|------|----------|---------|------------------|------------|
| _    | _        |         | {6180}<br>(6175} | _          |
| 42.9 |          | 6168    | 6167             | 8          |
| 43'I | 6163     | 6161    | 6161             | 10         |
| _    | 6154     | _       | _                | 4          |
| 44'I | 6116     | 6121    | 6121             | 10         |
| 44.6 | _        | 6102    | 6101             | 8          |
| _    | 6093     | _       | _                | I          |
| -    | 6087     | -       |                  | I          |
| _    | 6060     | -       | _                | _          |
| 47'2 | 6002     |         | {6006}<br>6003}  | I          |
| _    | 5986     | -       | _                | _          |
| 21.1 | 5854     | 5857    | 5857             | 6          |
| 58.6 | _        | 5602    | 5602             | 4          |
| 58.7 | 5600     | 5600    | 5600             | 6          |
| 58.8 | 5598     | 5597    | 5597             | 6          |
| 58.9 | 5594     | 5593    | 5595             | 8          |
| _    | 5591     | _       | _                | 3          |
| 59.0 | 5588     | 5589    | 5589             | 4          |
| 59.1 | 5587     | 5588    | 5588             | IO         |
| 59'3 | 5581     | 5581    | 5581             | 4          |
|      | 5509     |         | -                | I          |
| 67.7 | 5348     | 5349    | 5348             | 8          |
| 70.7 | 5269     | 5269    | 5269             | 8          |
| 70.9 | 5264     | 5264    | 5264             | 6          |
| 71.0 | _        | 5263    | 5263             | 4          |
| 71.1 | 5261     | 5261    | 5261             | 2          |
| 71.1 | 5258     | 5261    | 5261             | 2          |
| 74'3 | 5187     | 5188    | 5188             | 6          |
| 80.8 | 5040     | 5041    | 5041             | 8          |
|      | 5021     | _       | -                | I          |
| 89.0 | 4877     | 4877    |                  | 6          |
|      |          | 4841    | _                | 4          |
|      | '        | 4832    |                  | 2          |
| _    |          | 4812    |                  | 4          |
| _    |          | 4607    | _                | 4          |

| No.   | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
| 106.7 | 4584     | 4585    | _          | 4          |
| 106.9 | 4581     | 4581    | _          | 4          |
| 107'1 | 4578     | 4578    | _          | 4          |
| 115'9 | _        | 4455    | 4456       | 2          |
| 116.0 | 4454     | 4454    | 4454       | 10         |
| 117.5 |          | 4435    | 4435       | 2          |
| 117.6 | 4434     | 4434    | 4434       | 10         |
| 118.4 | 4424     | 4425    | 4424       | 10         |
| _     | _        | 4408    | _          | - 2        |
|       |          | 4407    | _          | 2          |
| _     |          | 4406    | _          | 2          |
| _     | _        | 4393    | _          | 4          |
| -     |          | 4389    |            | 4          |
|       |          | 4385    | _          | 4          |
| _     |          | 4379    | · —        | 4          |
| 127'5 | 4318     | 4318    | 4318       | 8          |
| 128.3 | 4306     | 4307    | 4307       | . 6        |
| 128.7 | 4302     | 4302    | 4302       | IO         |
| 129.0 | 4298     | 4298    | 4298       | 6          |
| 129.8 | 4288     | 4289    | _          | 8 .        |
| 130.5 | 4282     | 4282    | _          | 8          |
| -     | -        | 4274    | _          | 2          |
| _     | _        | 4271    |            | 2          |
| _     | _        | 4254    | -          | 2          |
| _     | _        | 4250    |            | 4          |
| -     | . —      | 4247    | _          | 4          |
|       | _        | 4237    | _          | 2          |
| _     |          | 4233    | _          | 2          |
| 135.2 | 4227     | 4226    | _          | 10         |
| _     | _        | 4215    | _          | 8          |
| -     | -        | 4192    | _          | 2          |
| _     | -        | 4188    | _          | 4          |
| -     | _        | 4143    | _          | 4          |
| _     | _        | 4131    | _          | 4          |
|       | _        | 4098    |            | 2          |
|       | -        | 4095    | _          | 2          |
|       |          |         |            |            |

| No.   | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
| _     | -        | 4092    | _          | 2          |
| _     | _        | 4077    | _          | 6          |
| 170'2 | 3969     | 3968    | <u></u>    | 10         |
| _     | _        | 3934    | _          | 10         |

#### Carbon.

SWAN. Edinb. Phil. Trans., xxi., 411.

ATTFIELD. Phil. Trans., 1862, 221.

PLÜCKER. Pogg. Ann., cvii., 497.

DIBBITS. De Spectraal Analyse.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1.

MORREN. Ann. de Chim. et de Phys., 1865, iv., 305.

THALEN. "Om Spektralanalys."

LIELEGG. Phil. Mag. [4], xxxvii., 208.

WATTS. Phil. Mag. [4], xxxviii., 249; xli., 12.

### Spectrum No. I.

|     | 1 42.5 | Wave-length | 6190 |
|-----|--------|-------------|------|
| a   | 44.5   | ,,          | 6110 |
|     | 46.0   | ,,          | 6050 |
|     | 47.2   | ,,          | 5990 |
|     | (48.5  | ,,          | 5955 |
| - 1 | 58.0   | ,,          | 5622 |
|     | 60.0   | ,,          | 5582 |
|     | 61.2   | ,,          | 5534 |
| 7 - | 63.0   | ,,          | 5495 |
|     | 64.5   | ,,          | 5463 |
|     | 66.0   | ,,          | 5440 |
|     | 67.0   | ,,          | 5425 |
|     | 750    | ,,          | 5170 |
| 8   | 77.0   | ,,          | 5139 |
|     | 79'3   | ,,          | 5100 |
|     | 80.2   | ,,          | 5082 |
|     |        |             |      |

```
97'0 Wave-length 4734
    98.5
                       4710
                       4689
€ 4 100.0
                       4675
   101'5
   101'7
                       4670
                       4600
   105'0
   107'5
                       4574
   109'5
                       4550
   110'5
                       4534
   112'0
                       4514
   113.0
                       4505
   114'0
                       4502
```

Broad band intersected by a great number of fine dark lines.

Fine bright line.

128.0 Wave-length 4313. Least refracted edge of a broad band made up of a great number of fine bright lines separated by dark spaces. At first these lines are too close to be read; then several bright lines gave the readings:—

The lines become fainter, but read as far as 4195.

```
\theta \begin{cases} 136\text{'o Wave-length } 4220 \\ 237\text{'5} & ,, & 4210 \\ 138\text{'5} & ,, & 4190 \\ 140\text{'o} & ,, & 4174 \\ 141\text{'o} & ,, & 4166 \\ 142\text{'o} & ,, & \begin{cases} 4160 \\ 4158 \end{cases} \end{cases}
```

Each of the bands of which the groups  $\delta$ ,  $\gamma$ , and  $\alpha$  consist is made up of an immense number of fine bright lines separated by dark spaces. These lines are closer together on the side towards the red, till where they make up the bright edge of the band the dark lines can no longer be observed.

#### Spectrum No. II.

|     | 40  | Wave-length | 6060 |
|-----|-----|-------------|------|
| h   | 45  | ,,          | 5803 |
| j   | 58  | ,,          | 5602 |
| k   | 74  | ,,          | 5195 |
| l   | 92  | 2*          | 4834 |
| 112 | 112 | ٠,          | 4505 |
| 12  | 121 | "           | 4395 |

Each of the bands of this spectrum is brightest on the least refracted side, and fades away towards the blue. Each band is shaded with dark lines which are closer together at the bright edge—so that the band presents the appearance of a cylindrical pillar with equal flutings, seen at a little distance. The dark lines are not so close together in the band j as they are in the band k.

### Spectrum No. IV.

```
a { 34.0 Wave-length 6578 34.5 ,, 6562
                      6562 Coincident with hydrogen α.
                        6165
     43'0
                        6095
 Two not very bright lines, each triple.
     48'0 Wave-length 5954 Double.
                        5855 Double.
 Three faint lines, the first double.
     56.0 Wave-length 5688 56.5 ,, 5652
                        5640
     57'2
                        5635 Double.
     57'5
                        5426 Double.
     62.7
     66.0
                        5385 Triple.
```

```
69.0 Wave-length 5306
Three faint lines.
   75'o Wave-length 5160
                      5152
                      5140
                             Triple.
   79.7
                      5065
                      4969
   84.0
                             Double.
   84.5
                      4960
Faint double line.
   85.5 Wave-length 4947
   86.6
                      4927
   87.3
                      4911
                      4900
                      4874
                            Double.
                      4860
    90.3
                             Double.
   99.2
                      4730
                      4696
   99.6
                      4674
  IOI.O
                      4656
  102'0
                      4646
                      4637
                      4632
  100.0
                      4590
                      4585
Five faint lines, of which the fourth is double and the fifth
    triple.
  119'5 Wave-length 4417 Middle of rather wide line.
                      4368 Most refracted edge of band.
Perfectly black interval.
  125.0 Wave-length 4350 Least refracted edge of band.
Two fine lines.
```

127'0 Wave-length 4320 Double.

133'0 4272

Maximum of broad band 130 to 134.

4196 4192

Three faint lines.

146.0 Wave-length 4141

147'4 Wave-length 4130 Three faint lines.

to to to Broad band, fine line at 4089.

154'0 ,, 4080

### Chlorine.

PLÜCKER. Pogg. Ann., cvii., 497.
PLÜCKER and HITTORF. Phil. Trans., 1865, 1.

| No.  | Plücker. | Int. | No.  | Plücker. | Int. |
|------|----------|------|------|----------|------|
| 31.2 | 6730     | 2    | 74.6 | 5180     | 2    |
| 32.2 | 6692     | 2    | 74.7 | 5176     | 2    |
| 32.7 | 6665     | 2    | 75'3 | 5161     | 2    |
| 33.1 | 6645     | 2    | 75'3 | 5160     | 2    |
| 44.4 | 6108     | 8    | 75.7 | 5150     | 2    |
| 48.5 | 5952     | I    | 75.8 | 5148     | 2    |
| 48:9 | 5934     | I    | 78.1 | 5101     | 4    |
| 52.7 | 5788     | 2    | 78.1 | 5099     | 6    |
| 55'1 | 5716     | 2    | 79.0 | 5077     | 6    |
| 56.0 | 5685     | 2    | 79.6 | 5066     | I    |
| 56.4 | 5674     | 2    | 80.6 | 5044     | I    |
| 57.4 | 5640     | 2    | 82.4 | 5006     | 2    |
| 58.7 | 5601     | 2    | 82.2 | 5004     | 2    |
| 59'4 | 5577     | 2    | 82.8 | 4998     | 4    |
| 60.8 | 5540     | 2    | 84.0 | 4974     | 4    |
| 61.0 | 5533     | 2    | 85.3 | 4948     | 2    |
| 63.3 | 5460     | 10   | 85.6 | 4942     | 2    |
| 63.9 | 5444     | 10   | 86.2 | 4930     | 4    |
| 64.8 | 5422     | 10   | 86.2 | 4924     | 4    |
| 66.5 | 5385     | 10   | 87.3 | 4907     | 6    |
| 67.8 | 5346     | 2    | 87.7 | 4899     | 6    |
| 68.6 | 5325     | 2    | 91.7 | 4825     | IO   |
| 70.2 | 5274     | 4    | 92.3 | 4814     | 10   |
| 73'3 | 5212     | 10   | 93.0 | 4800     | 10   |
| 73.6 | 5205     | 10   | 93.5 | 4790     | 2    |

| No.   | Plücker. | Int. | No.   | Plücker. | Int. |
|-------|----------|------|-------|----------|------|
| 93'7  | 4786     | 6    | 106.4 | 4590     | 2    |
| 94.0  | 4782     | I    | 107.0 | 4579     | band |
| 94.2  | 4778     | 2    | 107.4 | 4574)    | Dana |
| 94.2  | 4777     | 6    | 125'3 | 4346     | 10   |
| 94'9  | 4765     | 2    | 125.9 | 4338     | 2    |
| 95'7  | 4749     | 8    | 158.1 | 4310     | 4    |
| 98.5  | 4711     | I    | 129'4 | 4293     | 2    |
| 102.2 | 4650     | 2    | 130'4 | 4280     | . I  |
| 103.6 | 4634     | 2    | 130.4 | 4277     | I    |
| 104.9 | 4615     | 2    | 132.4 | 4258     | 4    |

# Cerium.

| No.  | Thalén. | Kirchhoff.                                    | Intensity. |
|------|---------|-----------------------------------------------|------------|
| 57'3 | 5654    | 5638                                          | 2          |
| 58.7 | 5600    | _                                             | 2          |
| 59*8 | 5564    | \[ \begin{pmatrix} 5563 \\ 5554 \end{pmatrix} | 2          |
| 61.6 | 5511    | _—                                            | 8          |
| 63.0 | 5472    | 5471                                          | 6          |
| 63.1 | 5467    | 5467                                          | 4          |
| 63.2 | 5463    | 5463                                          | 2          |
| 65.3 | 5409    | 5409                                          | 8          |
| 65.9 | 5392    | 5392                                          | 8          |
| 67.5 | 5352    | 5352                                          | 10         |
| 68.4 | 5330    | 5329                                          | 6          |
| 70.6 | 5273    | 5273                                          | IO         |
| -    | _       | ${5230 \brace 5229}$                          | _          |
| 74.2 | 5191    | 5191                                          | 4          |
| 74.4 | 5187    | 5186                                          | 6          |
| 75.3 | 5161    |                                               | 2          |
| -    | _       | 5146                                          | -          |
| _    | _       | 5116                                          | _          |
| 78.9 | 5079    | 5079                                          | 6          |

| No.   | Thalén. | Kirchhoff.                                | Intensity. |
|-------|---------|-------------------------------------------|------------|
| 79.3  | 5072    | 5075                                      | 4          |
| 84.3  | 4970    | 4971                                      | 2          |
| _     |         | 4882                                      | _          |
| _     |         | 4737                                      | _          |
| 98.4  | 4713    | {4713}<br>4712}                           | 9          |
| 104.0 | 4628    | 4628                                      | IO         |
| 104.3 | 4624    | -                                         | 2          |
| 105.2 | 4605    | _                                         | 2          |
| 106.5 | 4594    | 4594                                      | 6          |
| 106.9 | 4582    | -                                         | 2          |
| 107.1 | 4578    | _                                         | 2 -        |
| 107.4 | 4573    | 4573                                      | IO.        |
| 108.0 | 4564    | _                                         | 2          |
| 108.3 | 4562    | ${4562 \brace 4561}$                      | 10         |
| 108.3 | 4561    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 9          |
| 109.8 | 4540    | 4540                                      | 8          |
| 110.2 | 4528    | ${45^{28} \choose 45^{27}}$               | 9          |
| 110.6 | 4527    | \begin{cases} \{4527\\ 4526\} \end{cases} | 10         |
| 110.8 | 4523    | _                                         | 8          |
| 113.2 | 4486    | -                                         | 2          |
| 113.8 | 4483    | _                                         | 2          |
| 114.1 | 4479    |                                           | 2          |
| 114.7 | 4471    | 4471                                      | 9          |
| 115.0 | 4467    | _                                         | 2          |
| 115.4 | 4463    | _                                         | 2          |
| 115.6 | 4460    | {4460}<br>{4459}                          | 10         |
| 116.2 | 4448    | _                                         | 6          |
| 116.9 | 4443    | _                                         | 6          |
| 118.1 | 4428    | _                                         | 8          |
| 118.0 | 4419    | 4419                                      | 8          |
| 119.2 | 4410    | _                                         | 2          |

| No.   | Thalén. | Kirchhoff. | Intensity. |
|-------|---------|------------|------------|
| 120.4 | 4398    | _          | 2          |
| 121'0 | 4391    | 4391       | 8          |
| 121'5 | 4385    | 4385       | 8          |
| 121.8 | 4382    | 4382       | 8          |
| 123.2 | 4365    | -          | 2          |
| 129'2 | 4296    |            | 10         |
| 129'7 | 4289    | -          | 10         |
| 140.6 | 4186    | _          | 6          |
| 143'2 | 4165    | _          | 4          |
| 145'0 | 4149    | _          | 4          |
| 146.5 | 4136    |            | 4          |
| 146.9 | 4132    |            | 4          |
| 147'4 | 4127    | _          | 2          |
| 147.8 | 4124    | -          | 2          |

# Chromium.

| No.  | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|------|----------|---------|------------|------------|
|      | 6659     | _       |            | I          |
| _    | 6499     | _       |            | I .        |
| _    | 6461     | - '     | -          | I          |
| _    | 6436     |         |            | I          |
| _    | 6157     | _       | -          | I          |
| _    | 6116     |         |            | 2          |
| _    | 6100     |         | _          | I          |
|      | 5790     |         |            | I          |
| _    | 5784     | _       |            | I          |
|      | 5780     | -       |            | ı.         |
| _    | 5638     |         | _          | I          |
| _    | 5605     |         | _          | . 2        |
| 65.3 | 5411     | 5409    | 5409       | 8          |
| _    | 5346     | _       | _          | I          |
| 67.9 | 5342     | 5342    | _          | 2          |
| 68.8 | 5321     | 5318    | _          | 2          |
|      | _        | 5313    | _          | 2          |
|      | _        | 5297    | _          | 2          |
|      |          | 3-97    |            | E          |
|      |          |         |            |            |

| No.   | Huggins.     | Thalén. | Kirchhoff. | Intensity. |
|-------|--------------|---------|------------|------------|
| 69.8  | 5295         | 5296    |            | 2          |
| 70.2  | 5274         | 5274    | _          | 4          |
| _     | 5265         |         | _          | r          |
| 70.9  | 5264         | 5263    | -          | 4          |
| 71.3  | 5252         | 5254    | _          | 4          |
| 71.7  | <b>52</b> 46 | 5246    | _          | 4          |
| _ '   | 5236         |         | -          | I          |
| -     | 5224         | -       | _          | I          |
| 73.5  | 5207         | 5208    | 5207       | 10         |
| 73.6  | 5203         | 5205    | 5205       | 10         |
| 73'7  | 5202         | 5204    | 5203       | 10         |
| -     | 5152         | _       |            | 2          |
| _     | 5104         | -       | _          | I          |
| 86.5  | 4921         | 4924    | _          | 4          |
| _     | 4886         | _       | _          | I          |
| -     | 4876         |         | _          | I          |
| _     | 4871         | -       | _          | I          |
|       | 4862         | _       | _          | I          |
| _     | 4829         |         |            | I          |
|       | 4824         |         | _          | 2          |
|       | 4788         | _       | _          | I          |
| _     | 4756         | -       | _          | I          |
|       | 4753         | -       |            | I          |
| _     | 4738         |         |            | I          |
|       | 4730         |         | _          | I          |
|       | 4718         |         |            | I          |
| 102.3 | 4652         | 4654    | _          | 4          |
|       | 4648         |         | _          | I          |
| 102.8 | 4646         | 4646    | -          | 4          |
|       | 4631         |         | _          | I          |
|       | 4615         |         | _          | I.         |
| _     | 4600         |         |            | I          |
|       | 4587         |         |            | I          |
|       | 4559         |         |            | I          |
|       | 4546         | -       |            | I          |
| 1000  | 4541         |         |            | I          |
|       | 4535         |         |            | I          |
|       | 4529         | -       | -          | 1          |

| No.   | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
| -     | 4524     | -       | _          | I          |
| 102.7 | 4497     | 4495    |            | 4          |
| _     | -        | 4382    | -          | 4          |
| _     | -        | 4369    | -          | 4          |
|       | _        | 4359    | _          | 4          |
| 124.8 | 4350     | 4352    | -          | 8          |
| 125.5 | 4343     | 4344    | -          | 8          |
| 125.8 | 4341     | 4338    |            | 8          |
| 126.0 | 4337     | 4338    | -          | 8          |
| -     | -        | 4337    | _          | 6          |
| 129'7 | 4289     | 4289    | _          | IO         |
| 130.0 | 4274     | 4275    | _          | 10         |
| 132'7 | 4255     | 4254    | -          | IO         |
| _     | 4227     | _       | _          | -          |
| -     | 4216     | -       | _          | -          |

# Cobalt.

| No.  | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|------|----------|---------|------------|------------|
|      | 6453     | _       | _          | I          |
| _    | 6349     | -       |            | I          |
| _    | 6298     | _       | _          | I          |
| _    | 6275     | _       |            | 1          |
| -    | 6247     | -       | _          | I          |
| 43.6 | _        | 6143    | 6144       | 6          |
| 44'I | -        | 6121    | 6121       | 6          |
| _    | 6116     |         | _          | I          |
| _    | 6084     |         | _          | I          |
| _    | 6047     |         | _          | I          |
| -    | _        | -       | 6006       | -          |
| 47'2 | 6002     | 6003    | 6003       | 8          |
| _    | 6000     |         | _          | I          |
| -    | 5989     |         |            | I          |
| -    | 5983     | -       | -          | I          |
| -    | 5915     | -       |            | 2          |
| _    | 5843     | -       | -          | I.         |

| No.  | Huggins. | Thalén. | Kirchhoff.                                    | Intensity. |
|------|----------|---------|-----------------------------------------------|------------|
| _    | 5838     | _       | _                                             | I          |
| _    | 5644     | _       | _                                             | I          |
| _    | 5634     | _       | _                                             | I          |
| _    | 5590     | _       | _                                             | I          |
| 62.7 | 5481     | 5482    | 5482                                          | 4          |
| 63.5 | _        | 5452    | 5452                                          | 6          |
| 63.9 | 5443     | 5443    | 5442                                          | 6          |
| _    | 5379     | _       | _                                             | I          |
| 66.9 | 5368     | 5368    | 5368                                          | 6          |
| 67.1 | 5360     | 5363    | 5363                                          | 2          |
| 67.2 | 5356     | 5359    | 5359                                          | 2          |
| 67.5 | 5351     | 5352    | 5353                                          | 6          |
| 67.6 | 5350     | 5351    | 535I                                          | 6          |
| 67.8 | 5344     | 5343    |                                               | 2          |
| 67.9 | _        | 5342    | \[ \begin{pmatrix} 5342 \\ 5341 \end{pmatrix} | 2          |
| _    | 5338     | _       | _                                             | 4          |
| _    | 5329     | _       | _                                             | I          |
| _    | 5320     | _       | _                                             | I          |
| -    | 5317     | -       | _                                             | I          |
| _    | 5313     |         | _                                             | I          |
| _    | 5309     | _       |                                               | I          |
| _    | 5290     | _       | _                                             | I          |
| _    | 5285     | _       |                                               | I          |
| _    | 5281     | _       | _                                             | I.         |
| 70.3 | 5279     | 5280    | 5279                                          | 6          |
| _    | 5274     | _       |                                               | I          |
| 70.8 | 5267     | 5267    | 5268                                          | 2          |
| 70.9 | 5265     | 5266    | 5265                                          | 6          |
| _    | 5254     | -       |                                               | I          |
| _    | 5252     |         | , -                                           | I          |
| _    | 5249     | _       | _                                             | I          |
| _    | 5247     | -       | _                                             | I          |
| 72.3 | 5234     | 5234    | 5234                                          | 2          |
| 72.5 | 5228     | 5230    | 5230                                          | 2          |
| 73'3 | 5213     | 5212    | 5211                                          | 2          |
| _    | 5200     | _       | -                                             | I          |

| No.   | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
| _     | 5190     |         | _          | I          |
| _     | 5184     | _       | _          | I          |
| _     | 5156     | _       | _          | I          |
|       | 5147     | _       | _          | I          |
| _     | 5128     | _       | _          | I          |
| _     | 5105     | _       | _          | I          |
| _     | 5074     | _       | _          | I          |
| _     | -5061    | _       | _          | I          |
| -     | 5054     |         | _          | I          |
| _     | 5028     | _       | _          | 1          |
| _     | 4967     | _       |            | I,         |
| 89.5  | 4870     | 4867    | 4867       | 10         |
| 91.0  | 4841     | 4839    | 4839       | IO         |
| 92.3  | 4814     | 4813    | 4813       | IO         |
| 93'4  | 4793     | 4792    | 4792       | IO         |
| 94.3  | _        | 4779    | 4778       | IO         |
| 95.7  | 4751     | 4749    | 4749       | 4          |
| _     | 4737     | _       | _          | I          |
| _     | 4720     | _       | _          | I          |
| _     | 4683     | _       | _          | I          |
| 106.9 | 4581     | 4581    | 4581       | 4          |
| _     | 4565     | _       | _          | I          |
| _     | 4549     | _       | _          | I          |
| 110,3 | 4530     | 4531    | 4531       | 4          |
| _     | 4120     | _       | -          | 3          |
| _     | 4119     |         | _          | 3          |
| _     | 4113     | _       | _          | I          |
| _     | 4097     | -       |            | I          |
|       |          |         |            |            |

# Copper.

DIACON. Ann. de Chim. et de Phys. [4], vi., I. LEEDS. Quart. Fourn. Science, Jan., 1871.

| No.  | Thalén. | Kirchhoff. | Intensity. |  |
|------|---------|------------|------------|--|
| 38.0 | 6380    | _          | 8          |  |
| 41.8 | 6218    | -          | 2          |  |
| 53'2 | 5781    | 5782       | 8          |  |

| No.   | Thalén. | Kirchhoff.        | Intensity. |
|-------|---------|-------------------|------------|
| 55'7  | 5700    | _                 | IO         |
| 69.9  | 5292    | 5292              | 8          |
| 73'1  | 5217    | 5217              | IO         |
| 75.6  | 5153    | 5 <sup>1</sup> 53 | 10         |
| 77.8  | 5105    | 5105              | IO         |
| 82.1  | 5011    | _                 | 4          |
| 84.9  | 4955    | _                 | 6          |
| 86.1  | 4932    | _                 | 6          |
| 87.2  | 4911    |                   | .6         |
| 98.9  | 4703    | _                 | 6          |
| 102'4 | 4651    | 4651              | 6          |
| 130.8 | 4275    | _                 | 6          |

## Didymium.

GLADSTONE. Chem. Soc. Journ., x., 219.
BUNSEN. Phil. Mag. [4], xxviii., 246; xxxii., 177.
DELAFONTAINE. Pogg. Ann., cxxiv., 635.

(See "LANTHANUM."

### Erbium and Yttrium.

Bunsen and Bahr. Ann. Chem. Pharm., cxxxvii., 1. Huggins. Proc. Roy. Soc., June 16, 1870.

| No.  | Thalén. | Int. | No.  | Thalén. | Int. |
|------|---------|------|------|---------|------|
| 37.0 | 6434    | 8    | 43'9 | 6131 EY | 10   |
| 41.4 | 6235    | 2    | 44'3 | 6112    | 2    |
| 41.7 | 6223    | 2    | 44.4 | 6106    | 2    |
| 41.8 | 6218 E  | 8    | 44.7 | 6094    | 2    |
| 42'2 | 6199    | 4    | 44'9 | 6088    | 2    |
| 42.4 | 6190 E  | 8    | 45'4 | 6071    | 4    |
| 42.7 | 6179    | 6    | 45'9 | 6053    | 4    |
| 43.0 | 6164    | 6    | 46.3 | 6038    | 6    |
| 43.5 | 6148 EY | 8    | 46.8 | 6019    | 6    |

| No.  | Thalén. | Int. | No.   | Thalén. | Int. |
|------|---------|------|-------|---------|------|
| 47'2 | 6003 EY | 8    | 71.1  | 5261    | 4    |
| 47.6 | 5988 EY | 8    | 72.0  | 5239    | 4    |
| 47.7 | 5982 E  | 4    | 73.6  | 5205 EY | 8    |
| 48.0 | 5971 EY | 10   | 73'9  | 5200 EY | 8    |
| 55.5 | 5706    | 4    | 74°I  | 5195    | 4    |
| 56.8 | 5661    | 10   | 76.4  | 5134    | 2    |
| 57.2 | 5646    | 4    | 76.8  | 5126    | 4    |
| 57.4 | 5641    | 4    | 77'I  | 5121    | 8    |
| 57.7 | 5629    | 8    | 77'2  | 5117    | 6    |
| 58.2 | 5604    | 4    | 78.6  | 5087 EY | IO   |
| 58.9 | 5594    | 4    | 83.7  | 4981    | . 4  |
| 59°I | 5588    | 4    | 84.2  | 4971    | 4    |
| 59'3 | 5580    | 8    | 85.9  | 4935 E  | 4    |
| 59°4 | 5576    | . 4  | 87.7  | 4900 EY | IO.  |
| 59'7 | 5567    | 4    | 88.7  | 4882 EY | IO   |
| 60°2 | 5555 E  | 6    | 90°2  | 4854 EY | 10   |
| 60.6 | 5544    | 6    | 90.7  | 4845    | 2    |
| 60.7 | 5542    | 6    | 90.9  | 4842    | 2    |
| 91,1 | 5527    | 10   | 91.0  | 4839    | 2    |
| 61.3 | 5522    | 4    | 91.9  | 4822    | 4    |
| 61.6 | 5509    | 6    | 93.8  | 4785 E  | 6    |
| 61.9 | 5502    | 4    | 95.2  | 4760    | 4    |
| 62.2 | 5496    | 8    | 101.0 | 4674    | 4    |
| 62.8 | 5479    | 4    | 103.0 | 4643    | 8    |
| 62.9 | 5477    | 2    | 112.1 | 4505    | 4    |
| 62.9 | 5476 E  | 8    | 118.6 | 4422    | 8    |
| 62.9 | 5473    | 4    | 120.2 | 4397    | 4    |
| 63.1 | 5468    | 2    | 122.6 | 4374 EY | 10   |
| 63.2 | 5465    | 10   | 124'3 | 4357    | 6    |
| 64.1 | 5437    | 4    | 128.2 | 4309    | 10   |
| 65.7 | 5401    | 10   | 134.2 | 4236    | 6    |
| 67.5 | 5352 E  | 4    | 135.2 | 4227    | 2    |
| 67.8 | 5345 E  | 4    | 142'0 | 4176    | -8   |
| 68.2 | 5335 E  | 6    | 143'1 | 4167    | 6    |
| 70.1 | 5287    | 4    | 145'9 | 4142    | 6    |
| 70.7 | 5269    | 4    | 147°4 | 4127    | 6    |
| 70.9 | 5264    | 4    | 150.7 | 4102    | 6    |

## Fluorine.

No observations of the spectrum of this element exist.

## Glucinum.

| No.   | Thalén. | Kirchhoff. | Intensity. |
|-------|---------|------------|------------|
| 107.5 | 4572    | 4572       | 6          |
| 113.4 | 4488    | 4488       | 6          |

## Gold.

| No.  | Huggins. | Thalén. | Kirchhoff.     | Intensity. |
|------|----------|---------|----------------|------------|
| _    | 6710     | -       | _              | I          |
| _    | 6670     | _       | _              | I          |
| _    | 6660     | _       | _              | I          |
| _    | 6457     | _       | _              | I          |
| _    | 6428     | _       | _              | I          |
| _    | 6304     | _       | _              | I          |
| -    | 6291     | -       | _              | I          |
| 40.3 | 6276     | 6276    | 6275           | 8          |
| 48.3 | 5961     | 5960    | 5961           | 6          |
| 48.4 | 5954     | 5955    | 5956           | 6          |
| _    | 5920     | _       | _              | I          |
|      | 5880     | _       | _              | I          |
| _    | 5862     |         | <del>-</del> - | 2          |
| 51.4 | 5835     | 5836    | 5838           | 10         |
| _    | 5790     | _       | _              | I          |
| _    | 5758     | _       | _              | I          |
| _    | 5653     | _       | _              | I          |
| _    | 5580     | _       |                | I          |
| 72.5 | 5231     | 5230    | 5230           | IO         |
| _    | 5067     | _       | _              | I          |
| -    | 4811     | _       | _              | I          |
| 93.4 | 4793     | 4792    | 4792           | 6          |
| _    | 4489     | _       | _              | 3          |
|      |          |         |                |            |

## Hydrogen.

PLÜCKER. Pogg. Ann., cvii., 497.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1.

ÅNGSTRÖM. Pog. Ann., cxxiii.

Recherches sur le Spectre Solaire.

WÜLLNER. Phil. Mag. [4], xxxvii., 405.

" Phil. Mag. [4], xxxix., 365; Pogg. Ann., cxxxvii., 337.

LECLANCHÉ. Bull. Soc. Chim., v., 338.

| No.   | Ångström. |
|-------|-----------|
| 34.6  | 6562      |
| 89.8  | 4861      |
| 125.8 | 4340      |
| 150.0 | 4101      |

### Indium.

REICH and RICHTER. Journ. Prak. Chem., lxxxix., 441. Schrötter. Les Mondes, viii., 148.

MÜLLER. Pogg. Ann., cxxiv., 637.

BÖTTGER. Jahresb. d. Frankfurt Ver., 1863, 25.

| No.   | Thalén. | Müller, | Intensity. |
|-------|---------|---------|------------|
| 110.3 | 4532    | _       | 8          |
| 111.8 | 4509    | 4550    | 10         |
| 150.9 | 4101    | _       | 10         |

## Iodine.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1.

| No.  | Plücker. | Int. | No.  | Plücker. | Int. |
|------|----------|------|------|----------|------|
| 29.3 | 6861     | 2    | 32.2 | 6690     | 2    |
| 29'9 | 6825     | 2    | 33'2 | 6640     | 2    |
| 31.0 | 6757     | 2    | 34'3 | 6576     | 2    |
|      |          |      |      | F        |      |

| No.  | Plücker. | Int. | No.   | Plücker. | Int. |
|------|----------|------|-------|----------|------|
| 35'9 | 6494     | 2    | 63.3  | 5460     | 2    |
| 38.9 | 6339     | 2    | 64.0  | 5441     | 8    |
| 40.0 | 6292     | 2    | 64.8  | 5422     | 2    |
| 40.9 | 6257     | 4    | 65.6  | 5402     | IO   |
| 42.0 | 6210     | 4    | 66.5  | 5377     | 2    |
| 42.9 | 6169     | 2    | 67.0  | 5365     | 8    |
| 43'3 | 6154     | 2    | 68.0  | 5339     | IO   |
| 43'9 | 6131     | IO   | 68.4  | 5330     | IO   |
| 44.9 | 6087     | 2    | 69.0  | 5314     | 2    |
| 45'3 | 6073     | IO   | 69.9  | 5292     | 2    |
| 45.5 | 6067     | 2    | 71.0  | 5262     | 4    |
| 48.4 | 5956     | IO   | 71'2  | 5257     | 4    |
| 49'3 | 5920     | 2    | 72.2  | 5235     | 8    |
| 50°I | 5889     | 2    | 73'1  | 5218     | 2    |
| 50.8 | 5866     | · I  | 73.4  | 5209     | 6    |
| 52'1 | 5821     | 2    | 74.7  | 5176     | 2    |
| 53.0 | 5790     | 4    | 75'1  | 5166     | 2    |
| 53.3 | 5777     | 10   | 75.7  | 5150     | 2    |
| 53.7 | 5763     | 10   | 76.3  | 5138     | IO   |
| 54'3 | 5739     | 10   | 77.7  | 5107     | 2    |
| 55.2 | 5713     | IO   | 78.0  | 5102     | 2    |
| 55.5 | 5705     | 2    | 79.8  | 5064     | 6    |
| 55.8 | 5696     | IO   | 80.2  | 5047     | 2    |
| 56.1 | 5683     | 10   | 81.3  | 5028     | 2    |
| 57°I | 5649     | 2    | 83.2  | 4990     | 2    |
| 57.6 | 5632     | 10   | 84.1  | 4972     | 2    |
| 58.0 | 5620     | 4    | 84.7  | 4960     | 2    |
| 58.4 | 5607     | 4    | 85.4  | 4946     | 2    |
| 58.7 | 5600     | 2    | 86.6  | 4922     | 2    |
| 90.I | 5558     | 2    | 88.4  | 4886     | 2    |
| 61.0 | 5530     | 2    | 90.5  | 4853     | 4    |
| 61.6 | 5511     | 4    | 91.1  | 4838     | I    |
| 62.0 | 5499     | 10   | 91.4  | 4832     | I    |
| 62.2 | 5494     | 2    | 92.5  | 4809     | 2    |
| 62.7 | 5482     | 2    | 103.2 | 4636     | 4    |
| 63.1 | 5468     | 10   |       |          |      |

# Iridium and Ruthenium.

| No.  | Kirchhoff. | Intensity. |
|------|------------|------------|
| 38.7 | 6347       | _          |
| 63.6 | 5449       | 2          |
| 69.7 | 5299       | 2          |
|      |            |            |

## Iron.

|      |          | 222 200 |            | V 1        |
|------|----------|---------|------------|------------|
| No.  | Huggins. | Thalén. | Kirchhoff. | Intensity. |
| 35'9 | 6497     | 6490    | 6490       | 6          |
| _    | 6460     | -       | _          | I          |
| -    | 6414     | _       | _          | I          |
| _    | 6401     |         | _          | I          |
| 37'7 | 6400     | 6399    | 6399       | 10         |
| _    | 6386     | _       | _          | I          |
| _    | 6360     | _       | _          | I          |
| _    | 6338     | _       | _          | I          |
| _    | 6320     | _       | _          | I          |
| 39'9 | 6306     | 6300    | 6300       | 6          |
| - '  | 6254     | _       | -          | I          |
| 41'1 | 6246     | 6245    | _          | 8          |
| 41.2 | 6231     | 6230    | 6229       | 8          |
| 42.4 | 6190     | 6190    | 6190       | 8          |
| 43.8 | 6138     | 6136    | 6136       | 8          |
| _    | 6103     | _       | _          | I          |
| 45.6 | 6080 (?) | 6065    | 6065       | 8          |
| 46.7 | 6020     | 6023    | 6023       | 6          |
| _    | _        | 6019    |            | 4          |
| _    | _        | 6007    | _          | 4          |
| -    | _        | 6002    | _          | 4          |
| 47.6 | 5984     | 5986    | -          | 4          |
| -    | _        | 5984    |            | 4          |
| 100  | _        | 5983    | -          | 4          |
| -    | -        | 5976    | 100        | 4          |
| -    | -        | 5975    | _          | 4          |

| No.  | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|------|----------|---------|------------|------------|
| _    | _        | _       | 5914       | _          |
| _    | 5958     | _       | _          | I          |
| _    | 5902     | -       | _          | I          |
| _    | 5880     | _       | _          | I          |
|      | 5855     | _       | _          | I          |
| _    | 5780     | _       | _          | I          |
| 53.7 | -        | 5762    | 5762       | 6          |
| _    | -        | 5708    | _          | 6          |
| _    | _        | 5681    | _          | 6          |
| _    | _        | 5661    | _          | 6          |
| _    | _        | 5658    | _          | IO         |
| _    | -        | 5654    | _          | 6          |
| 57'9 | 5624     | 5623    | 5623       | 6          |
| 58.2 | 5612     | 5614    | 5614       | IO         |
| 58.7 | 5601     | 5602    | 5601       | IO         |
| 58.8 | 5594     | 5597    | _          | 10         |
| _    | _        | 5591    | _          | 8          |
| 59'2 | 5584     | 5586    | 5585       | IO         |
| 59'4 | _        | 5575    | 5575       | 8          |
| 59'5 | 5571     | 5572    | 5572       | IO         |
| 59.6 | 5569     | 5569    | 5569       | 8          |
| 61.8 | 5503     | 5506    | _          | 6          |
| _    |          | 5500    | _          | 6          |
| 63.3 | 5460     | _       | 5462       | 2          |
| -    | _        | 5497    | _          | 6          |
| _    | -        | 5487    | -          | 4          |
| 63.2 | 5454     | 5455    | 5454       | 10         |
| 63.8 | 5444     | 5446    | 5446       | IO         |
| _    | _        | -       | 5444       | _          |
| 64.3 | 5432     | _       | 5433       | 2          |
| 64.4 | 5426     | 5429    | 5429       | 10         |
| 64.7 | 5424     | _       | 5423       | 2          |
| 65'1 | 5412     | _       | 5415       | I          |
| 65'3 | 5409     | 5405    | 5410       | 8          |
| 65.6 | 5402     | 5403    | 5405       | 8          |
| 65.7 | 5401     | _       | 5403       | 2          |
| 65.8 | 5392     | 5396    | 5396       | 8          |
|      |          |         |            |            |

| No.  | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|------|----------|---------|------------|------------|
| 65.9 | 5388     | 5392    | 5392       | . 8        |
| 66.3 | 5383     | 5382    | 5382       | 6          |
| 66.8 | 5370     | 5371    | 5371       | 10         |
| 66.8 | _        | 5369    | 5369       | 6          |
| 66.9 | 5366     | 5367    | 5367       | 6          |
| 67.0 | 5365     | 5364    | 5364       | 6          |
| 67'1 | 5363     | 5362    | _          | 4          |
| _    | _        | 5352    | -          | 4          |
| _    | _        | 5349    | _          | 4          |
| 68.0 | _        | 5346    | 5340       | 8          |
| 68·o | _        | 5339    | 5339       | 8          |
| 68.5 | 5322     | 5327    | 5327       | IO         |
| 68.7 | 5318     | 5323    | 5323       | 8          |
| 69.0 | 5314     | 5316    | 5316       | I          |
| 69.2 | 5312     | 5307    | _          | 6          |
| 69.7 | 5299     | 5301    | 5301       | 6          |
| 70.2 | 5289     | 5283    | 5282       | 8          |
| 70.3 | 5282     | 5281    | 5280       | 6          |
| _    | 5274     | _       | _          | I          |
| 70.7 | E 5270   | 5269    | 5269       | IO         |
| 70.8 | (5209    | 5268    | 5268       | 10         |
| 70.9 | 5267     | 5266    | 5265       | 8          |
| 71.0 | 5262     | 5262    | _          | 4          |
| -    | 5256     | _       | _          | I          |
| _    | 5250     | _       | _          | I          |
| -    | 5241     | _       | _          | I          |
| 72.4 | 5232     | 5232    | 5232       | 10         |
| 72.7 | 5226     | 5226    | 5226       | 10         |
| _    | 5218     | _       | _          | I          |
| _    | _        | 5208    | _          | 6          |
| 73.8 | 5202     | 5204    | _          | 6          |
| -    | _        | 5201    | _          | 4          |
|      | _        | 5194    | _          | 6          |
| 74.1 | 5192     | 5192    | 5192       | 8          |
| 74.5 | 5190     | 5190    | 5191       | 4          |
| _    | 5180     | _       | _          | I          |
| 74'9 | -        | 5171    | 5171       | 4          |

| No.         | Huggins. | Thalén. | Kirchhoff.   | Intensity. |
|-------------|----------|---------|--------------|------------|
| 75.0        | 5168     | 5168    | 5168         | 6          |
| 75.0        | 5166     | 5167    | 5167         | 8          |
| 75'2        | _        | 5162    | 5162         | 4          |
| _           | 5148     |         | _            | I -        |
| 76.2        | 5139     | 5139    | 5139         | 8          |
| 76.2        | 5133     | 1 - 1 - | <b>5</b> 133 | 2          |
|             | _        | 5107    | _            | 6          |
| _           | 5099     | _       | _            | -          |
| _           | _        | 5064    | <del></del>  | 4          |
| 5           | _        | 5051    | _            | 8          |
| _           | _        | 5049    | _            | 8          |
| -           | _        | 5041    | -            | 6          |
| _           | _        | 5040    | _            | 6          |
| 81.8        | 5017     | _       | 5017         | 3          |
| -           | -        | 5005    | _            | - 4        |
| _           | -        | 5002    | _            | 2          |
| _           | _        | 4993    | _            | 2          |
| _           | _        | 4990    | _            | 4          |
|             |          | 4988    | _            | 2          |
| 84.8        | 4958     | 4957    | 4956         | IO         |
| 86.2        | 4923     | 4923    | 4923         | 6          |
| 86.7        | 4920     | 4920    | 4920         | 10         |
| 86.8        | _        | 4918    | 4919         | 8          |
| 88.3        | 4893     | 4890    | 4890         | 10         |
| 88.9        | _        | 4877    | 4877         | 6          |
| 89.3        | _        | 4871    | 4871         | 8          |
| 89.3        | _        | 4870    | 4870         | 8          |
| 89.9        | _        | 4859    | 4858         | 4          |
| _           | _        | 4789    | _            | 2          |
| -           | 7 · -    | 4786    | _            | 2          |
| -           | -        | 4709    |              | 2          |
| -           | _        | 4708    | _            | 2          |
| <del></del> | _        | 4706    | _            | 2          |
| -           | - 13-    | 4691    | -            | 6          |
| -           | _        | 4653    |              | 6          |
| -           |          | 4632    | _            | 6          |
| _           | 100      | 4611    | _            | 6 .        |
|             |          |         |              |            |

| No.   | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
| _     |          | 4603    | _          | 4          |
| 106.6 | 4582     | 4592    | _          | 6          |
| -     |          | 4528    | _          | 6          |
| 119.1 | _        | 4415    | 4415       | 10         |
| 119'9 | 4406     | 4404    | 4404       | 10         |
| 121.7 | 4380     | 4383    | 4383       | 10         |
| -     | _        | 4343    | _          | 6          |
| 126.9 | 4324     | 4325    | 4325       | 10         |
| -     | -        | 4315    | _          | 6          |
| 128.3 | 4307     | 4307    | 4307       | 10         |
| -     | 4303     | _       | _          | 3          |
| 130.0 | 4300     | 4299    | _          | 4          |
| 129.3 | 4294     | 4294    | _          | 4          |
| -     | _        | 4286    | _          | 4          |
| 131.1 | 4272     | 4271    | _          | 10         |
| 132.3 | 4259     | 4260    | _          | 8          |
| 133.1 | 4251     | 4251    | _          | 10         |
| _     | _        | 4250    | _          | 10         |
| _     | _        | 4247    | _          | 4          |
| _     | _        | 4235    | -          | 6          |
| _     | _        | 4233    |            | 6          |
| _     | _        | 4227    | -          | 2          |
| _     | -        | 4222    | _          | 2          |
| -     | _        | 4218    | _          | 2          |
| _     | _        | 4210    |            | 2          |
| 138.4 | 4201     | 4201    | _          | 8          |
| 138.4 | 4199     | 4198    | _          | 8          |
| _     | -        | 4191    | _          | 8          |
| -     | _        | 4187    | _          | 10         |
| _     | _        | 4187    | _          | 10         |
|       | _        | 4181    | _          | 4          |
| _     | _        | 4177    | _          | 4          |
| -     | _        | 4154    | -          | 6          |
| 144.8 | 4151     | 4151    | _          | 4          |
| _     | _        | 4149    | -          | 4          |
| 145.8 | 4142     | 4143    | _          | IO         |
|       | _        | 4134    | _          | . 8        |
|       |          |         |            |            |

| No.   | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
| 147'0 | 4131     | 4131    | -          | IO         |
| _     | _        | 4118    | _          | 8          |
| 155.0 | 4074     | 4071    | _          | 10         |
| 126.1 | 4067     | 4063    |            | 10         |
| 158.8 | 4047     | 4045    | _          | 10         |
| _     | _        | 4005    |            | 6          |

# Lanthanum and Didymium.

| No.  | Thalén. | Kirchhoff. | Intensity. |
|------|---------|------------|------------|
| 38.7 | 6346 Di | _          | 2          |
| 40.0 | 6292    | 6292       | 2          |
| 47'9 | 5973    |            | 2          |
| 48.2 | 5963    | _          | 2          |
| _    | _       | 5863       | _          |
| 52.6 | 5805    | 5805       | 2          |
| _    | man 1   | 5803       | _          |
| 52.9 | 5797    | 5796       | 2          |
| 53.0 | 5790    | 5790       | 4          |
|      | _       | 5788       |            |
| 53.6 | 5768    | 5767       | 2          |
| _    | _       | 5593 Di    | _          |
| _    |         | 5587 Di    |            |
| _    | _       | 5502       | _          |
| 62.0 | 5500    | 5500       | 6          |
| _    | _       | 5484       | _          |
| 63.2 | 5454    | 5452       | 8          |
| _    |         | 5432 Di    | _          |
| _    | _       | 5431 Di    | -          |
| 66.4 | 5381    | 5381 La    | 6          |
| _    | _       | 5380 La    | _          |
| 66.6 | 5376    | 5376 La    | 6          |
| _    | -       | 5360 Di    | _          |
| 68·o | 5339    | 5340 La    | 4          |
| 68.1 | 5337    | _          | 6          |
| _    | _       | 5319 Di    | _          |

| No.          | Thalén. | Kirchhoff.        | Intensity. |
|--------------|---------|-------------------|------------|
| 69.6         | 5303    | 5302              | 8          |
| _            |         | 5300              | _          |
| 70.6         | 5270    | 5273 Di           | 4          |
| -            | _       | 5272 Di           | _          |
| 71.2         | 5258    | 5258 Di           | 2          |
| 71.4         | 5252 Di | 5254 Di           | 4          |
| _            | _       | 5249 Di           |            |
| 72.3         | 5233    | 5233 Di           | 4          |
| 72.7         | 5225    | _                 | 2          |
| 73.4         | 5211    | _                 | 4          |
| 73.7         | 5203    | 5203 La           | 4          |
| _            | _       | 5192              | _          |
| _            | *       | 5191              | -          |
| 74.3         | 5187    | 5187 La           | 10         |
| 74.5         | 5182    | 5182 La           | 10         |
| 74.7         | 5177    |                   | 4          |
| 75.4         | 5157    | 5 <sup>1</sup> 55 | 4          |
| 76.0         | 5144    | 5144              | 4          |
| 76.6         | 5130 Di | 5128 Di           | 6          |
| 77.0         | 5122    |                   | 6          |
| 77'4         | 5114    | _                 | 6          |
| 80.2         | 5055    |                   | 2          |
| 82.7         | 4999    | 4999              | 4          |
| 84.0         | 1068    | 4994              |            |
| 84°2<br>85°2 | 4968    | 4970              | 4          |
| 86.0         | 4950    | 1021              | 4          |
| _            | 4934    | 4934              | 4          |
| 86.7         | 4920    | 4933              | 10         |
| 87.7         | 4900    | 4921              | 10         |
| 88.7         | 4882    | 4879              | 10         |
| 89.9         | 4860    | 4079              |            |
| 90.0         | 4858    | 4859              | 4          |
| 91.8         | 4823    | 4823              | 4          |
| 92.2         | 4811    | 4809 La           | 4          |
| 92.9         | 4802    | — —               | 4          |
| 96.0         | 4747    | 4748              | 6          |
|              | 17-17   | 7/40              | 6          |

| No.   | Thalén. | Kirchhoff. | Intensity. |
|-------|---------|------------|------------|
| 96.4  | 4742    | 4743       | 6          |
| 96.6  | 4739    | 4740       | 2          |
| 99.0  | 4702    | 4702       | 6          |
| 99.8  | 4691    | 4692       | 10         |
| 101.3 | 4671    | 4670       | 8          |
| 101.3 | 4668    | 4667       | 8          |
| 101.6 | 4663    | 4662       | 10         |
| 101.4 | 4661    | 4661       | 10         |
| 102'2 | 4654    | 4654       | 10         |
| 104.6 | 4620    | 4620       | 10         |
| _     |         | 4619       | _          |
| 105'0 | 4614    | 4614       | 8          |
| 108.4 | 4559    | 4559       | 8          |
| _     | -       | 4558       | 1          |
| 110.4 | 4525    | 4526       | 8          |
| _     | _       | 4524       | -          |
| 110.0 | 4521    | 4521       | 10         |
| 117.9 | 4430    | 4429       | IO         |
| 124.2 | 4354    | 4354       | 4          |
| 126.1 | 4335    | 4335       | 10         |
| 129'2 | 4295    | _          | 8          |
| 129.8 | 4287    | _          | 8          |
| 131.2 | 4268    | _          | 8          |
| 132.0 | 4262    | _          | 10         |
| 134.4 | 4237    | -          | 10         |
| 136.6 | 4217    | - 1        | 4          |
| 139.1 | 4196    | _          | 4          |
| 139.6 | 4192    | _          | 4          |
| 146.0 | 4141    |            | 4          |
| 147'9 | 4123    | _          | 4          |
|       |         |            |            |

Lead.

WERTHER. Journ. Prakt. Chem., Ixxxviii., 180. LEEDS. Quart. Journ. Science, Jan., 1871. PLÜCKER and HITTORF. Phil. Trans., 1856, 1.

| No.  | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|------|----------|---------|------------|------------|
| _    | 6790     |         | _          | 3          |
| 33.0 | 6655     | 6656    | 6657       | 10         |
| 36.6 | _        | 6452    | 6452       | 6          |
| _    | _        | 6059    | _          | 2          |
| 46.3 | 6034     | 6040    | 6041       | 6          |
| _    |          | 445     | 6039       | _          |
|      | _        | 6009    |            | 2          |
| 47'3 | 5997     | 6001    | 6003       | 6          |
| _    | _        | 44.0    | 6001       | _          |
| 49'9 | 5895     | 5895    | _          | 2          |
| 50.2 | 5876     | 5874    | _          | 6          |
| 51.3 | 5853     | 5856    | _          | 4          |
| _    | 5823     | _       | _          | _          |
| 53'2 | 5776     | 5779    | _          | 2          |
| 58.4 | 5608     | 5607    | 5608       | IO         |
| _    |          | _       | 5607       | _          |
| 60.6 | 5566*    | 5546    | 5547       | 8          |
| _    | _        | _       | 5543       | _          |
| -    | _        | 5523    | -          | _          |
| 66.6 | 5372     | 5372    | 5374       | 10         |
| _    | _        | _       | 5372       | _          |
| 70'5 | 5274     | 5274    |            | 2          |
| _    | _        | 5206    | _          | 2          |
| 73'9 | 5199     | 5201    | _          | 6          |
| 74.3 | 5190     | 5189    | _          | 2          |
| 75.3 | 5163     | 5163    | _          | 4          |
| 80.6 | 5044     | 5045    | 5045       | 8          |
| -    |          | -       | 5042       | <u> </u>   |
|      | _        | 5005    | -          | 6          |

<sup>\*</sup> Huggins's scale-number is 1279. It is probably a misprint for 1297, which would correspond to the wave-length 5548.

| No.   | Huggins. | Thalén. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
|       | _        | 4802    | _          | 2          |
| _     | _        | 4796    | _          | 2          |
| 95'1  | 4763     | 4760    | _          | 4          |
| _     | _        | 4573    | _          | 2          |
| _     | _        | 4401    |            | 2          |
| 121.2 | 4386     | 4386    | 4387       | 10         |
| -     | _        |         | 4386       | _          |
| -     | 4271     | _       | _          | 2          |
| 133'5 | 4247     | 4246    | _          | 10         |
| _     |          | 4167    | _          | 6          |
| 156.2 | 4066     | 4062    | _          | 4          |
| _     | -        | 4058    | _          | 4          |
|       |          |         |            |            |

### Lithium.

MÜLLER. Pogg. Ann., cxviii., 641.

MASCART. Annales de l'Ecole Normale Superieure, iv.

KETTELER. Pogg. Ann., civ., 390.

RÜHLMANN. Pogg. Ann., cxxxii., I.

FIZEAU. Pogg. Ann., cxix., 87; Ann. de Chim. et de Phys. [3], lxvi., 429.

TYNDALL. Phil. Mag. [4], xxii., 151 and 473.

Frankland. Phil. Mag. [4], xxii., 472.

ROSCOE and CLIFTON. Proc. Lit. and Phil. Soc. Manchester, ii., 227.

WOLF and DIACON. Comptes Rendus, Iv., 334.

| No.   | Huggin | s. Thalén. | Kirchhoff. | Mascart. | Intensity. |
|-------|--------|------------|------------|----------|------------|
| 32.0  | 6705   | 6705       | 6708       | 6706     | IO         |
| 44.6  | 6098   | 6102       | 6101       | _        | 6          |
| _     | 4972   | -          | -          | _        | 4          |
| 105.4 | 4602   | 4603       | _          | 4602     | IO         |
| Mülle | er.    | Ketteler.  | Rühlman    | n. Fiz   | zeau.      |
| 6763  |        | 6706       | 6708       | 67       | 703        |

# Magnesium.

| No.   | Thalén. | Kirchhoff.                             | Intensity. |
|-------|---------|----------------------------------------|------------|
| 61.1  | 5527    | _                                      | 10         |
| 74.5  | 5183    | 5183                                   | 12         |
| 74.8  | 5172    | 5172                                   | 12         |
| 75.0  | 5167    | 5167                                   | 12         |
| 98.9  | 4703    | _                                      | 6          |
| 106.6 | 4586    | ${4587 \choose 4586}$                  | 6          |
| 113.9 | 4481    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 6          |
|       |         |                                        |            |

# Manganese.

| No.  | Huggins. | Thalén. | Intensity. |
|------|----------|---------|------------|
| _    | 6344     | _       | Î          |
| _    | 6128     | _       | I          |
| _    | 6117     | _       | I          |
| 46.8 | 6021     | 6021    | IO         |
| 46.9 | 6014     | 6016    | 10         |
| 47.0 | 6012     | 6012    | IO         |
| -    | 5556     | _       | I          |
| 61.2 | 5513     | 5516    | 2          |
| _    | 5467     | _       | I          |
| 63.9 | 5432     | 5443    | 2          |
| 64.9 | 5419     | 5419    | 6          |
| _    | Lui-     | 5412    | 6          |
| 65.4 | 5407     | 5406    | 2          |
| -    | 5404     |         | I          |
| 65.8 | 5396     | 5400    | 4          |
| 65.9 | 5392     | 5393    | 4          |
| 66.2 | 5377     | 5377    | 6          |
|      | - ·      | 5359    | 4          |
| -    | 5348     | -       | I          |
| 68.1 | 5338     | 5340    | 6          |

| No.   | Huggins.     | Thalén.         | Intensity. |
|-------|--------------|-----------------|------------|
|       | (5300)       |                 |            |
|       | (5290)       | _               |            |
| 71.3  | 5254         | 5254            | 4          |
| -     | _            | 5234            | 4          |
| -     | -            | 5195            | 4          |
| 91.8  | 4824         | 4823            | 10         |
| 93.8  | 4785         | 4783            | 10         |
| -     | _            | 4766            | 2          |
| 94'9  | 4765         | 4765            | IO         |
| 95'1  | 4762         | 4762            | IO         |
| -     | -            | 4761            | 2          |
| 95.6  | 4754         | 4753            | IO         |
| 96.6  | 4738         | 4738            | 6          |
| 97.4  | 4728         | 4729            | 6          |
| _     | _            | 4726            | 6          |
| 98.5  | 4710         | 4709            | 6          |
| 112'3 | 4503         | 4503            | 2          |
| -     | _            | 4501            | 8          |
| 112.6 | 4499         | 4498            | 8          |
| _     | _            | 4495            | 2          |
| 113'2 | 4490         | 4491            | 2          |
|       |              | 4489            | 6          |
| -     | -            | 4479            | 2          |
| 114.5 | 4477         | 4472            | 8          |
| _     | -            | 4470            | 8          |
| 115'3 | 4464         | 4464            | 6          |
| 115.4 | 4461         | 4462            | 6          |
| + /   | <del>-</del> | 4461            | 6          |
| -     | _            | 4460            | 2          |
| 112.8 | 4457         | 4458            | 6          |
| -     |              | 4457            | 4          |
| -     | _            | 4456            | 4          |
| 115'9 | 4455         | 4455            | 6          |
| 116.5 | 4452         | 4452            | 2          |
| 116.5 | 4451         | 4450            | 6          |
|       | 4449         | () <del>-</del> | I          |
| 117.4 | 4436         | 4436            | 4          |

| No.   | Huggins. | Thalén. | Intensity. |
|-------|----------|---------|------------|
| _     | _        | 4435    | 2          |
| 119'1 | 4415     | 4415    | 8          |
| 130.3 | 4281     | 4281    | 5          |
| 131.6 | 4267     | 4265    | 6          |
| 132.4 | 4259     | 4258    | 6 -        |
| 134.6 | 4237     | 4235    | 10         |
| _     | _        | 4227    | 10         |
| _     | _        | 4083    | 6          |
| _     | _        | 4080    | 6          |
| _     | _        | 4063    | 2          |
| _     | _        | 4054    | 6          |
| -     | _        | 4048    | 6          |
| _     | _        | 4040    | 6          |
|       | _        | 4034    | 2          |
| _     | _        | 4033    | 2          |
| _     | _        | 4032    | 6          |
|       |          | 4029    | . 8        |
| _     | _        | 3988    | 2          |

# Mercury.

GLADSTONE. Phil. Mag., XX., 249. PLÜCKER. Pogg. Ann., cvii., 497.

| No.  | Huggins. | Thalen. | Kirchhoff.                                          | Plücker. | Intensity. |
|------|----------|---------|-----------------------------------------------------|----------|------------|
| -    | 6383     | _       | _                                                   | _        | I          |
| _    | 6360     | _       | _                                                   |          | I          |
| 43'4 | 6144     | 6151    | 6152                                                | _        | IO         |
| _    | 6088     | _       | -                                                   | _        | I          |
| 50.3 | 5885     | 5884    | _                                                   | _        | 8          |
| 50.7 | 5871     | 5871    | _                                                   | _        | 4          |
| _    | 5817     | _       | _                                                   | _        | I          |
| 52.8 | 5800     | -       | 5791                                                | _ '      | I          |
| 53.0 | 5788     | 5789    | 5788                                                | -        | IO         |
| 53.6 | 5768     | 5768    | \[ \begin{align*}     5769 \\     5766 \end{align*} | 5772     | 10         |

| No. | Huggins. | Thalén. | Kirchhoff. | Plücker. | Intensity. |
|-----|----------|---------|------------|----------|------------|
|-----|----------|---------|------------|----------|------------|

| 56.3  | 5678 | 5678         | (5681)<br>(5676)                                   | _    | 8  |
|-------|------|--------------|----------------------------------------------------|------|----|
| 58.9  | 5594 | 5595         | _                                                  | _    | 6  |
| 63.3  | 5460 | 5460         | \[ \begin{aligned} \ 5461 \\ 5458 \end{aligned} \] | 5461 | 12 |
| 64.6  | 5425 | 5426         | \[ \begin{pmatrix} 5427 \ 5424 \end{pmatrix}       | _    | 8  |
| 67.0  | 5364 | <b>5</b> 364 | _                                                  | _    | 4  |
| 70.4  | 5281 | 5278         |                                                    | _    | 2  |
| 73'1  | 5218 | 5217         | _                                                  | _    | 2  |
|       | _    | 5206         | _                                                  | _    | 4  |
| 76.2  | 5132 | 5131         | _                                                  | -    | 4  |
| 84.8  | 4959 | 4958         | _                                                  | -    | 6  |
| 86.3  | 4918 | 4916         |                                                    | -    | 4  |
| _     | 4826 | 7-7-7        | _                                                  | -    | I  |
| 124.5 | 4357 | 4358         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\             | 4358 | 12 |
| _     |      | 4078         | _                                                  |      | 6  |
| 158.6 | 4055 | 4047         | _                                                  | -    | 6  |
| 168.2 | 3990 | 3982         | _                                                  |      | 4  |
|       |      |              |                                                    |      |    |

# Molybdenum.

| No.  | Thalén. | Int. | No.  | Thalén. | Int. |
|------|---------|------|------|---------|------|
| 46.5 | 6029    | IO   | 61.0 | 5531    | IO   |
| 50.2 | 5887    | IO   | 61.8 | 5505    | 10   |
| 21.1 | 5857    | 8    | 67.2 | 5360    | 4    |
| 53.0 | 5791    | 6    | 83.7 | 4979    | 2    |
| 54.0 | 5750    | 6    | 89.5 | 4867    | 4    |
| 56.0 | 5687    | 6    | 91.2 | 4829    | 4    |
| 57'1 | 5649    | 4    | 92.1 | 4818    | 4    |
| 57.7 | 5631    | 4    | 95.4 | 4757    | 4    |
| 59.6 | 5569    | 10   | 97.2 | 4730    | 4    |
| 60.8 | 5540    | 2    | 98.7 | 4706    | 4    |

| No.   | Thalén. | Int. | No.   | Thalén. | Int. |
|-------|---------|------|-------|---------|------|
| 110.0 | 4536    | 4    | 122'0 | 4380    | 4    |
| 114.4 | 4475    | 4    | 126.8 | 4326    | 4    |
| 117.7 | 4433    | 4    | 130.2 | 4277    | 6    |
| 119.4 | 4411    | 4    |       |         |      |

# Nickel.

| No.  | Thalén. | Kirchhoff.      | Intensity. |
|------|---------|-----------------|------------|
| 42.8 | 6176    | \{6176\\ 6175\} | 6          |
| 44'2 | 6115    | 6116            | 4          |
| 44.4 | 6108    | 6108            | 4          |
| 50°I | 5892    | 5891            | 10         |
| 21.1 | 5856    | 5856            | 4          |
| 62.9 | 5476    | 5477            | 6          |
| 74'7 | 5176    | 5176            | 2          |
| 75.0 | 5168    | 5168            | 2          |
| 75.5 | 5155    | 5154            | 2          |
| 75'9 | 5146    | 5146            | 2          |
| 76.1 | 5142    | 5141            | 2          |
| 76.3 | 5137    | 5136            | 2          |
| 77'3 | 5115    | 5115            | 2          |
| 78.1 | 5100    | 5099            | 2          |
| 78.2 | 5098    | 5098            | 2          |
| 78.9 | 5081    | 5081            | 2          |
| 78.9 | 5080    | 5080            | 2          |
| 81.0 | 5035    | 5035            | 6          |
| 81.8 | 5017    | 5017            | 6          |
| 83.2 | 4983    | 4983            | 2          |
| 83.7 | 4980    | 4979            | 2          |
| 85.9 | 4935    | 4935            | 6          |
| 86.8 | 4918    | 4918            | 6          |
| 87.5 | 4904    | 4904            | 6          |
| 89.1 | 4873    | 4873            | 10         |
| 89.6 | 4865    | 4865            | 10         |
| 90.2 | 4855    | 4854            | 10         |
|      |         |                 | H          |

| No.   | Thalén. | Kirchhoff. | Intensity. |
|-------|---------|------------|------------|
| 91.2  | 4830    | 4831       | 2          |
| 91.6  | 4828    | 4828       | 2          |
| 93.7  | 4786    | 4786       | 8          |
| 95.5  | 4755    | 4755       | 2          |
| 98.3  | 4714    | 4714       | 10         |
| 102.7 | 4647    | 4647       | 2          |
| 120'1 | 4402    | _          | 2          |
|       |         |            |            |

### Niobium.

THALÉN ("Determination des Longeurs d'Onde de Raies Metalliques," p. 11) states that the lines of Niobium are too faint to be measured satisfactorily.

## Nitrogen.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1. WÜLLNER. Phil. Mag. [4], xxxvii., 405.

,, Phil. Mag. [4], xxxix., 365; Pogg. Ann., exxxvii., 337.

(See "AIR.")

#### Osmium.

FRASER. Chemical News, viii., 34.

| No.  | Huggins. | Thalén. | Intensity. |
|------|----------|---------|------------|
| 36.4 | 6460     | _       | 2          |
| 40.2 | 6280     | _       | I          |
| 47.5 | 5991     | _       | I          |
| 21.1 | 5858     | _       | 2          |
| 53'3 | 5777     | _       | I          |
| 54.9 | 5719     | _       | 2          |

| No.   | Huggins. | Thalén. | Intensity. |
|-------|----------|---------|------------|
| 59.2  | 5582     | _       | 2          |
| 61.3  | 5521     | -       | 4          |
| 64.0  | 5440     | _       | I          |
| 65.1  | 5414     | _       | 3          |
| 73'9  | 5201     | _       | I          |
| 79.2  | 5073     | _       | I          |
| 109.0 | 4550     | -       | I          |
| 118.7 | 4419     | 4422    | 8          |
| 124'3 | 4357     | _       | 2          |
| 128.0 | 4311     | _       | 2          |
| 129'3 | 4294     | _       | 2          |
| 132.2 | 4260     | _       | 6          |
|       |          |         |            |

## Oxygen.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1.

WÜLLNER. Phil. Mag. [4], xxxvii., 405.

", Phil. Mag. [4], xxxix., 365; Pogg. Ann., cxxxvii., 337.

(See "AIR.")

## Palladium.

| No.  | Huggins.        | Thalen. | Kirchhoff. | Intensity. |
|------|-----------------|---------|------------|------------|
| _    | 6381            | -       | -          | I          |
| _    | 6248            | _       | _          | I          |
| 43'9 | 6125            | 6129    | 6130       | 2          |
| -    | {59°3}<br>5888} | -       | _          | _          |
| _    | 5866            | _       | -          | 3          |
| _    | 5854            | _       |            | I          |
| _    | 5823            | _       | -          | 1          |
|      | 5805            |         |            | _          |
| -    | 5787            | _       | _          | _          |

| No.   | Huggins. | Thalen. | Kirchhoff. | Intensity. |
|-------|----------|---------|------------|------------|
| 54.4  | 5737     | _       | 5737       | I          |
| _     | 5733     | _       | _          | I          |
| 55.8  | -        | 5694    | 5694       | 6          |
| 56.2  | 5669     | 5668    | 5669       | 6          |
| 57.0  | 5653     | 5651    | _          | 4          |
| 57.4  | 5638     | 5640    | 5643       | 4          |
| 57.7  | 5630)    | -6-0    |            |            |
| 58.2  | 5614     | 5618    | _          | 6          |
| -     | 5607     | _       | -          | I          |
| -     | 5599     |         | _          | I          |
| '     | 5587     | _       | _          | I          |
|       | 5564     | _       | _          | I          |
| 60.6  | 5546     | 5546    | 5545       | 6          |
| 60.8  | 5540     | 5542    | 5540       | 6          |
| _     | _        | _       | 5529       | _          |
| _     | 5512     | -       | _          | 2          |
| _     | 5465     | _       | -          | 2          |
|       | 5436     | - '     | _          | I          |
| 65.9  | 5394     | 5394    | 5393       | 8          |
| 67.1  | 5359     | 5362    | 5362       | 4          |
| 67.8  | 5342     | 5345    | 5344       | 4          |
| 69.1  | 5310     | _       | 5313       | I          |
| 69.9  | 5292     | 5295    | 5294       | 10         |
| 71.3  | 5254     | 5257    | 5255       | . 4        |
| _     | 5249     | -       | _          | I          |
| 72.3  | 5233     | 5234    | 5234       | 8          |
| 73.5  | 5209     | 5208    | 5207       | 4          |
| 75.5  | 5163     | 5163    | 5163       | 10         |
| 77'3  | 5116     | 5116    | _          | 8          |
| 77.6  | 5110     | 5110    | 5110       | 8          |
| 79'9  | 5062     | -       | 5062       | I          |
| 89.1  | 4876     | 4874    | 4874       | 6          |
| 92.1  | 4818     | 4817    | 4820       | 6          |
| 93.7  |          | 4787    | 4787       | 6          |
| 114.2 | 4474     | 4474    | 100        | 6          |
| -     | _        | 4278    | _          | 2          |
| 137.2 | 4212     | 4212    | _          | 8          |

## Phosphorus.

PLÜCKER. Pogg. Ann., cvii., 497.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1.

CHRISTOFLE and BEILSTEIN. Ann. Chem. Phys. [4], iii., 280.

MULDER. Fourn. Prakt. Chem., xci.

SEGUIN. Comptes Rendus, liii., 1272.

| No.  | Plücker. | Int. | No.   | Plücker. | Int. |
|------|----------|------|-------|----------|------|
| 35.6 | 6505     | 6    | 66.4  | 5381     | 8    |
| 36.5 | 6457     | 4    | 67.3  | 5358     | I    |
| 37.0 | 6433     | I    | 68.1  | 5337     | 8    |
| 38.2 | 6370     | 2    | 69.4  | 5306     | 8    |
| 42.2 | 6200     | I    | 70.3  | 5284     | IO   |
| 42.8 | 6173     | 4    | 71.8  | 5243     | 10   |
| 44.6 | 6100     | 4    | 74.7  | 5178     | 4    |
| 45'4 | 6071     | 4    | 84.1  | 4972     | 4    |
| 45'9 | 6057     | IO   | 105.8 | 4600     | 10   |
| 46.2 | 6043     | 4    | 106.2 | 4588     | IO   |
| 46.2 | 6032     | 10   | 108.3 | 4562     | band |
| 47.5 | 5990     | 2    | 108.7 | 4554)    | Danu |
| 48.2 | 5964     | 2    | 110.3 | 4532)    | band |
| 58.7 | 5601     | 2    | 110.4 | 45265    | Danu |
| 59.0 | 5589     | 2    | 112.3 | 4503     | band |
| 60.3 | 5552     | 2    | 112.2 | 4499)    | band |
| 60.8 | 5540     | 2    | 114.3 | 4477     | 4    |
| 62.0 | 5500     | 4    | 114.3 | 4477     | band |
| 62.6 | 5486     | 2    | 115.0 | 4468     | band |
| 62.8 | 5480     | 2    | 118.2 | 4423     | 4    |
| 63.5 | 5462     | 4    | 135.0 | 4232     | 2    |
| 63.2 | 5452     | 4    | 136.1 | 4222     | 2    |
| 64.9 | 5420     | 10   | 141.2 | 4180     | 2    |
| 65.6 | 5402     | 8    |       |          |      |

## Platinum.

| No.   | Huggins. | Thalén. | Kirchhoff.       | Intensity. |
|-------|----------|---------|------------------|------------|
| 35'3  | _        | 6522    | 6522             | 6          |
| _     | 6374     | _       | _                | I          |
| 47'1  | 6015     | _       | 5994             | _          |
| -     | -        | _       | 5988             |            |
| _     | _        | _       | 5986             | _          |
| _     | _        |         | 5983             |            |
| 47.8  | 5979     | _       | 5980             | -          |
| _     | _        |         | 5977             | _          |
| 48.2  | 5964     | 5964    | 5964             | 6          |
| _     | _        |         | 5954             | _          |
| 48.5  | 5952     | _       | 5952             | I          |
| 51.2  | 5840     | 5845    | _                | 4          |
| 51.7  | 5835     | 5837    |                  | 4          |
| 52.7  | 5800     | 5806    | _                | 4          |
| 62.9  | 5477     | 5478    | 5475             | 4          |
| -     | _        | 5476    | -                | 4          |
| 66.0  | 5389     | 5389    | -                | 6          |
| 66.9  | 5367     | 5367    | _                | 8          |
| 69.7  | 5299     | 5301    | (5301)<br>(5300) | 10         |
| 72.7  | 5226     | 5226    | 5226             | 8          |
| 74.0  | 5196     | 5198    |                  | 4          |
|       | 3-90     | 3-90    | 5060             |            |
| 80.0  | 5059     | 5059    | (5059)           | 8          |
| 88.9  | _        | 4879    | 4878             | 4          |
| -     | _        | 4851    | _                | 4          |
| -     | _        | 4803    | _                | 4          |
| 108.9 | 4553     | 4552    | 4551             | I '        |
| III.O | 4521     | -       | 4518             | 4          |
| 112.6 | 4499     | 4498    | 4497             | 8          |
| 116.9 | 4444     | 4442    | 4442             | 4          |
| -     |          | 4389    | _                | 4          |
| 126.7 | 4327     | 4327    | _                | 4          |

#### Potassium.

Bunsen and Kirchhoff. Phil. Mag. [4], xx. Kirchhoff. Untersuchungen über das Sonnenspectrum, ii., 5. Rutherford. Silliman's Journal [2], xxxv., 407. Wolf and Diacon. Comptes Rendus, lv., 334.

| No.   | Huggins.     | Thalén. | Kirchhoff.       | Intensity. |
|-------|--------------|---------|------------------|------------|
| 18.0  | -            | -       | {7700}<br>{7670} | _          |
| 27.8  | 6953         | _       | 6940             | 6          |
| 28.2  | 6932         |         | 6920             | 6          |
| _     | 6305         | _       | _                | I          |
| _     | 6246         | _       | _                | I          |
| _     | 6120         | -       | _                | 3          |
| 51.8  | 5831         | 5829    | _                | 10         |
| _     | 5811         | _       | _                | I          |
| 52.8  | 5800         | 5802    | _                | IO         |
| -     | <del>-</del> | 5782    | _                | IO         |
| _     | 5516         | -       |                  | 2          |
| -     | _            | 5353    | _                | 8          |
| _     | _            | 5338    | _                | 8          |
| _     | _            | 5322    |                  | 8          |
| 91.6  | 4827         | 4827    |                  | 6          |
| _     | 4386         | -       | _                | 4          |
| 128.3 | 4309         | 4309    | _                | 4          |
| _     | 4263         | -       | _                | 4          |
| -     | 4184         | - 11    | _                | 6          |
| _     | 4044         | -       | _                | 6          |

### Rhodium.

THALÉN. "Determination des Longeurs d'Onde des Raies Metalliques." Lines too faint to measure.

### Rubidium.

Bunsen and Kirchhoff. Phil. Mag. [4], xxii.

| No.   | Thalén. | Kirchhoff.       | Intensity. |
|-------|---------|------------------|------------|
| 39'9  | 6296    | 6296             | .Io        |
| 42°I  | 6204    | 6205             | 8          |
| 43'1  | 6160    | {6161}<br>(6159} | 6          |
| 45'4  | 6070    | _                | 6          |
| 94'3  | 4776    | _                | 4          |
| 107.7 | 4569    | -                | 2          |
| 108.9 | 4551    |                  | 2          |
| 138.3 | 4202    | _                | 8          |

## Ruthenium.

(See "IRIDIUM.")

## Selenium.

PLÜCKER and HITTORF. Phil. Trans., 1865, 1. MULDER. Journ. Prakt. Chem., xci. WERTHER. Journ. Prakt. Chem., lxxxviii., 180.

| No.  | Plücker. | Int.   | No.  | Plücker. | Int. |
|------|----------|--------|------|----------|------|
| 35.7 | 6503     | 6      | 48.5 | 5952     | 2    |
| 36.0 | 6480     | 6      | 51.2 | 5856     | 6    |
| 37.0 | 6431     | 6      | 51.4 | 5845     | 2    |
| 39.7 | 6308     | 6      | 54'1 | 5746     | 2    |
| 42.8 | 61731    | band   | 55.7 | 5700     | 2    |
| 43'1 | 61605    | Dand   | 26.1 | 5683     | 4    |
| 43'3 | 6152)    | band   | 56.6 | 5668     | 2    |
| 44°I | 61195    | band , | 57.8 | 5628     | 6    |
| 45'4 | 6070     | 6      | 58.8 | 5596     | 6    |
| 46.4 | 6035     | 2      | 59.8 | 5566     | 6    |

| No.  | Plücker. | Int.  | No.   | Plücker. | Int.   |
|------|----------|-------|-------|----------|--------|
| 61.3 | 5524     | 6     | 98.7  | 4707     | 4      |
| 63.1 | 5466)    |       | 99.1  | 4700     | 4      |
| 63.4 | 5457     | band  | 100.8 | 4677     | band   |
| 63.5 | 5452     |       | 101.0 | 4673     | Dana   |
| 63.8 | 5444     | band  | 101.4 | 4666     | band   |
| 66.0 | 5391     | 2     | 101.2 | 4661     | Dana   |
| 66.6 | 5374     | 8     | 102.2 | 4654     | 10     |
| 69.9 | 5293     | 10    | 103.3 | 4638     | 8      |
| 71.1 | 5259     | 8     | 104.7 | 4619     | 8      |
| 71.8 | 5243     | 8     | 105.4 | 4606     | 10     |
| 72.4 | 5232     | 4     | 100.1 | 4596     | 4      |
| 73.0 | 5220     | 4     | 107.8 | 4567     | 2      |
| 73.2 | 5215     | 10    | III.I | 4519)    | band   |
| 75.2 | 5162     | 10    | 111.4 | 4514)    |        |
| 75.6 | 5153     | 2     | 114.6 | 4473     | band   |
| 76.9 | 5124     | 10    | 115.5 | 4465)    |        |
| 77.3 | 5115     | 4     | 116.3 | 4451     | band   |
| 77'9 | 5103     | 4     | 116.9 | 4443)    |        |
| 78.1 | 5099     | 4     | 118.9 | 4418     | band   |
| 78.5 | 5091     | 10    | 119.5 | 4410)    |        |
| 78.5 | 5089     | 4     | 119.8 | 4406     | band   |
| 79.6 | 5066     | 6     | 120'4 | 4398)    |        |
| 80.2 | 5048     | 2     | 121.2 | 4386)    | band   |
| 81.3 | 5029     | 6     | 122'1 | 4379)    |        |
| 82.0 | 5014     | 2     | 124.7 | 4352     | band   |
| 82.5 | 5003     | 2     | 125'3 | 4346)    |        |
| 82.7 | 5000     | 2     | 127.1 | 4322     | band   |
| 83.0 | 4994     | 10    | 127.7 | 4315)    |        |
| 83.9 | 4975     | 10    | 131.1 | 4272     | band   |
| 90.7 | 4845     | 10    | 131.7 | 4266)    |        |
| 91.0 | 4840     | 10    | 136.1 | 4222     | band   |
| 94'3 | 4776     | 10    | 136.7 | 4216)    | Durid  |
| 95'9 | 4748     | band  | 139.9 | 4190)    | band   |
| 96.4 | 4741     | Durid | 143.0 | 4168     | Durice |
| 96.7 | 4737     | band  | 145'1 | 4148)    | band   |
| 97.1 | 4731     | Durie | 147.3 | 4128     | Julia  |

## Silver.

MASCART. Annales Scientifiques de l'Ecole Normale Superieure, iv.

| No.  | Huggins. | Thalén. | Kirchhoff. 1 | Mascart. I | Intensity. |
|------|----------|---------|--------------|------------|------------|
| _    | 6371     | _       | _            | _          | I          |
| _    | 6249     | _       | _            | _          | I          |
| 46.4 | 6034     | 6036    | _            | _          | 2          |
| _    | 5973     |         | _            |            | I          |
|      | 5854     |         | _            | _          | I          |
| 57'3 | 5644     | 5645    | _            | _          | 4          |
| 57.8 | 5626     | 5626    |              | -          | 4          |
| 57'9 | . 5622   | 5622    |              | _          | 8          |
| 58.4 | 5607     | 5610    | _            | _          | 4          |
| 59.0 | 5590     | 5590    | _            | _          | 4          |
| 59.6 | 5570     | 5568    | _            | _          | 4          |
| _    | -        | 5556    | _            | _          | 2          |
| 60.2 | 5558     | 5552    | -            | -          | 8          |
| _    | _        | 5522    | _            | _          | 4          |
| _    | -        | 5486    | _            | _          | 2          |
| 63.0 | 5471     | 5470    | 5470         | -          | 8          |
| 63.2 | 5463     | 5464    | 5465         | 5464       | 12         |
| 64.6 | 5426     | 5424    | _            | _          | 6          |
| 65'2 | 5412     | 5411    | _            | _          | 2          |
| 65.7 | 5401     | 5401    | _            | _          | 8 .        |
| -    | _        | 5299    | _            | _          | 6          |
| 73'5 | 5207     | 5209    | 5208         | 5207       | 12         |
| -    | _        | 4874    | _            | _          | 8          |
| _    | _        | 4666    | -            | -          | 4          |
| -    | _        | 4475    | _            | _          | 4          |

#### Silicon.

PLÜCKER. (Spectrum of Silicon-chloride), Pogg. Ann., cvii.

| No.  | Plücker.                  | Kirchhoff.   |
|------|---------------------------|--------------|
| 39.1 | SiCl <sub>4</sub> a 6329  | _            |
| 47.8 | SiCl <sub>4</sub> \$ 5978 | _            |
| 80.0 | _                         | 5060<br>5056 |
| 80.2 | _                         | 5056         |
| 80.7 | SiCl <sub>4</sub> γ 5043  | ∫5045        |
|      | 51014 7 5043              | 5042         |

SiCl<sub>4</sub>  $\alpha$  is a brilliant red line;  $\beta$  a somewhat weaker orange band;  $\gamma$  a brilliant green double band with a bright line in the middle. The spectrum contains also two dark violet bands whose wave-lengths are about 4205 and 4160.

#### Sodium.

BUNSEN and KIRCHHOFF. Phil. Mag. [4], xx. RUTHERFORD. Silliman's fournal [2], xxxv., 407. Wolf and Diacon. Comptes Rendus, lv., 334. ATTFIELD. Phil. Trans., 1862, 221. Müller. Pogg. Ann., cxviii., 641.

| No.  | Huggins. | Thalén. | Kirchhoff. | Müller. | Intensity. |
|------|----------|---------|------------|---------|------------|
| 43.2 | (6155    | 6160    | _          |         | 8          |
| 43'3 | (6149    | 6154    | _          | _       | 8          |
| 49'9 | ∫5895    | 5895    | 5895       | 5918    | 10         |
| 50.1 | 5889     | 5889    | 5889       | 5910    | (10        |
| 56.0 | ∫5687    | 5687    | _          | -       | 6          |
| 56.2 | (5681    | 5681    | _          | _       | 6          |
| 75.5 | 5154     | 5155    | _          | _       | 6          |
| 75.7 | (5149    | 5152    | _          | _       | 6          |
| 83.2 | 4985     | 4983    | _          | _       | 4          |

## Strontium.

Bunsen and Kirchhoff. Phil. Mag. [4], xx. Mascart. Annales de l'Ecole Normale, iv. Müller. Pogg. Ann., cxviii., 641.

| No.  | Huggins. | Thalén. | Kirchhoff. | Mascart. | Müller. | Int. |
|------|----------|---------|------------|----------|---------|------|
| _    | 7108     | -       | _          | _        | _       | 4    |
| _    | 6885     | _       | _          |          | _       | 4    |
|      | 6790     | _       | -          | _        | _       | 4    |
| _    | 6641     | _       | _          | _        | _       | I    |
| _    | 6606     | _       | _          | _        | _       | 2    |
| 34'9 | 6548     | 6550    | _          | _        | _       | 4    |
| 35.8 | 6502     | 6502    | 6502       |          | _       | 8    |
| _    | 6435     | _       | _          | _        | _       | _    |
| 37.4 | 6410     | 6407    | 6406       | _        | _       | IO   |
| 37.8 | 6388     | 6387    | _          | _        | _       | 6    |
| 37'9 | 6383     | 6380    | _          | _        | _       | 4    |
| _    | 6369     | _       | _          | _        | _       | I    |
| _    | 6347     | _       | _          |          | _       | I    |
| _    | 6343     | _       |            | _        | _       | I    |
|      | 6311     |         | _          | -        | _       | _    |
| _    | 6274     | _       |            | -        | _       | I    |
| -    | 6251     | _ ''    | _          | _        | _ '     | _    |
| _    | 6220     |         | _          |          | _       | _    |
|      | 6172     | _       | _          | -        | _       | I    |
| _    | 6098     | _       | _          | _        | _       | 2    |
| _    | 5998     | _       |            | _        | _       | _    |
| _    | 5977     | _       | _          | _        | _       | _    |
| 48.0 | 5971     | 5971    | _          | _        | _       | 2    |
| _    | _        | 5850    | _          | _        | _       | 2    |
| _    | 5816     | _       |            | _        | -       | I    |
| -    | 5766     |         | _          | _        | -       | I    |
| _    | 5647     |         | _          | _        | _       | 2    |
| _    | 5623     |         | _          | _        | _       | 3    |
|      | 5579     | _       | -          | -        | -       | I    |
| _    | 5543     | _       | _          | _        | -       | 4    |
| 60.8 | 5540     | 5540    | 5540       | _        | -       | 6    |
|      |          |         |            |          |         |      |

| No.   | Huggins. | Thalén. | Kirchhoff.      | Mascart. | Müller. | Int. |
|-------|----------|---------|-----------------|----------|---------|------|
| 60.9  | 5531     | 5534    | 5534            | _        | _       | 8    |
| 61.3  | 5519     | 5522    | 5521            | _        | _       | 8    |
| 61.9  | 5500     | 5503    | 5503            | _        | _       | 8    |
| _     | 5496     | _       | _               | _ '      | _       | _    |
| 62.6  | 5487     | 5485    | 5485            | _        | _       | 6    |
| 62.8  | 5480     | 5480    | 5480            | _        | _       | 10   |
| _     | 5450     | _       | -               | _        | _       | 5    |
| -     | 5423     | _       | -               | _        | _       | 2    |
| _     | 5383     | _       | _               | _        | _       | 3    |
| 71.3  | 5254     | 5256    | 5256            | _        | _       | 3    |
| 72'1  | 5238     | 5238    | 5238            | _        |         | IO   |
| 72.6  | 5228     | 5228    | 5228            |          | _       | 6    |
| 72.7  | 5224     | 5225    | 5225            | -        | -       | 6    |
| 72.9  | 5221     | 5223    | 5222            | _        | _       | 6    |
| _     | 5217     | _       | -               | _        | _       | 2    |
| _     | 5155     | _       | -               | _        | _       | 2    |
| _     | 5102     | _       | _               | _        |         | I    |
| 84.3  | 4967     | 4967    | _               | _        | _       | 4    |
| 84.6  | 4962     | 4962    | _               | -        | _       | 8    |
| _     | 4943     | _       | -               | _        | _       | I    |
| _     | 4893     | _       | _               | _        | _       | I    |
| 89.0  | 4875     | 4876    | _               | _        | _       | 6    |
| 89.2  | 4872     | 4872    | _               | _        | _       | 2    |
| -     | 4865     | _       | _               | _        | _       | 2    |
| _     | 4853     | _       | _               | _        | _       | 2    |
| 91.2  | 4830     | 4831    | _               | _        | _       | 6    |
| 92.4  | 4811     | 4812    | _               | _        | _       | 6    |
| 93'9  | 4784     | 4784    | _               | _        | _       | 6    |
| 95.8  | 4750     |         | _               | _        | _       | I    |
| 96.4  | 4742     | 4741    |                 | _        | -       | 6    |
| 97'9  | 4721     | 4721    | 1,600)          | _        | _       | 6    |
| 105.4 | 4604     | 4607    | {4608}<br>4607} | 4607     | 4631    | 10   |
|       | 4438     | _       | -               | -        | _       | 2    |
| _     | 4367     | -       | _               | _        | _       | I    |
| _     | 4361     | _       | _               | _        | _       | I    |
| _     | 4337     | ,-      | -               | _        | _       | 2    |

| No.   | Huggins. | Thalén. | Kirchhoff.                             | Mascart. | Müller. | Int. |
|-------|----------|---------|----------------------------------------|----------|---------|------|
| -     | 4319     | _       | -                                      | _        | _       | 2    |
| 128.5 | 4305     | 4305    | \begin{cases} 4305 \\ 4304 \end{cases} | _        | -       | 10   |
| 135.6 | _        | 4226    | _                                      | _        | _       | 6    |
| 136.8 | 4215     | 4215    | _                                      | _        | -       | 10   |
| 143.6 | 4161     | 4161    | _                                      | -        | _       | 6    |
| 154.3 | 4078     | 4078    | _                                      | -        | -       | 10   |

## Sulphur.

PLÜCKER and HITTORF. Phil. Trans., 1865, p. 1. MULDER. Journ. Prakt. Chem., xci., 111.

| Plücker. | Int.                                                                                           | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plücker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Int.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6579     | 2                                                                                              | 60.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6454     | 2                                                                                              | 61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6421     | 4                                                                                              | 61.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6404     | 8                                                                                              | 61.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6390     | 6                                                                                              | 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6321     | 8                                                                                              | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6309     | 8                                                                                              | 64.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6290     | 10                                                                                             | 64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6152     | 2                                                                                              | 68.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6111     | 2                                                                                              | 69.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6009     | 4                                                                                              | 70.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5866     | 4                                                                                              | 72.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5810     | 4                                                                                              | 73'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5780     | 4                                                                                              | 73'5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5667     | 6                                                                                              | 73'9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                                                                                                | 74.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 8                                                                                              | 74.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 10                                                                                             | The state of the s | 5143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5618     | 4                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5609     | 10                                                                                             | 76.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 4                                                                                              | 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5568     | 8                                                                                              | 77.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 6579 6454 6421 6404 6390 6321 6309 6290 6152 6111 6009 5866 5810 5780 5667 5657 5650 5641 5618 | 6579 2 6454 2 6421 4 6404 8 6390 6 6321 8 6309 8 6290 10 6152 2 6111 2 6009 4 5866 4 5810 4 5780 4 5667 6 5657 8 5650 8 5641 10 5618 4 5609 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6579       2       60°1         6454       2       61°0         6421       4       61°2         6404       8       61°7         6390       6       62°9         6321       8       63°5         6309       8       64°1         6290       10       64°6         6152       2       68°1         6111       2       69°5         6009       4       70°7         5866       4       72°5         5810       4       73°1         5780       4       73°5         5657       8       74°2         5650       8       74°5         5641       10       76°0         5618       4       76°2         5584       4       76°9 | 6579       2       60°1       5558         6454       2       61°0       5532         6421       4       61°2       5522         6404       8       61°7       5508         6390       6       62°9       5473         6321       8       63°5       5452         6309       8       64°1       5438         6290       10       64°6       5425         6152       2       68°1       5338         6111       2       69°5       5304         6009       4       70°7       5269         5866       4       72°5       5231         5810       4       73°1       5218         5780       4       73°5       5207         5667       6       73°9       5199         5657       8       74°2       5191         5650       8       74°5       5182         5641       10       76°0       5143         5609       10       76°2       5140         5584       4       76°9       5124 |

| No.   | Pläcker. | Int.               | No.   | Plücker. | Int.  |
|-------|----------|--------------------|-------|----------|-------|
| 78.3  | 5096     | 8                  | 106.8 | 4583)    | band  |
| 79.5  | 5068     | 2                  | 107.1 | 4578     | Danu  |
| 80.6  | 5044     | 4                  | 108.1 | 4563     | h and |
| 81.0  | 5036     | 2                  | 108.3 | 4560     | band  |
| 81.3  | 5030     | 10                 | 108.9 | 4552     | 10    |
| 81.2  | 5024     | 10                 | 110.8 | 4523     | 10    |
| 82.0  | 5013     | 8                  | 113.6 | 4485     | 10    |
| 82.5  | 5004     | 8                  | 115.1 | 4466     | 10    |
| 82.6  | 5003     | 2                  | 117.6 | 4434)    | hand  |
| 82.7  | 5000     | 4                  | 117.9 | 4430     | band  |
| 83.2  | 4990     | 6                  | 118.4 | 4424)    | band  |
| 85.6  | 4942     | 4                  | 118.7 | 4421     | band  |
| 86.2  | 4924     | 8                  | 121.5 | 4389)    | band  |
| 86.6  | 4922     | 6                  | 121.6 | 4384     | Danu  |
| 87.6  | 4902     | 6                  | 124.2 | 4358     | 4     |
| 88.6  | 4884     | 6                  | 124.9 | 4350     | 4     |
| 91.7  | 4825     | 6                  | 125.5 | 4343     | 4     |
| 92.3  | 4813     | 8                  | 126.1 | 4336     | 4     |
| 92.8  | 4804     | 4                  | 126.6 | 4329     | 4     |
| 93'4  | 4791     | 4                  | 127'5 | 4317)    | band  |
| 94.5  | 4777     | 2                  | 127'9 | 4313     | Dand  |
| 94.7  | 4768     | 2                  | 129.1 | 4297     | 8     |
| 95.1  | 4762     | 2                  | 130.1 | 4284     | 8     |
| 96.9  | 4734     | 2                  | 130.2 | 4279     | 4     |
| 97.8  | 4723     | 2                  | 131.1 | 4272     | 8     |
| 98.1  | 4718     | . 8                | 132.3 | 4259     | 4     |
| 99.6  | 4694)    | band               | 132.7 | 4255     | 8     |
| 99.9  | 46905    | 5                  | 133.9 | 42421    | band  |
| 100.8 | 4677)    | band               | 134.1 | 4240)    |       |
| 101.4 | 46665    |                    | 135.2 | 4230)    | band  |
| 101.2 | 4661     | band               | 135.2 | 4227)    |       |
| 102'2 | 4654)    |                    | 138.8 | 41981    | band  |
| 103.8 | 4632     | band               | 139.3 | 4194)    |       |
| 104.0 | 4628)    | Access to the last | 141.4 | 4181     | 6     |
| 105.0 | 4613)    | band               | 143.0 | 4168     | 8     |
| 105.3 | 46085    | Dana               | 143.9 | 4158     | 6     |
| 106.0 | 4596     | band               | 146.1 | 4140     | 6     |
| 106.4 | 4590)    |                    |       |          |       |

### Tantalum.

THALÉN. "Determination des Longeurs d'Onde des Raies Metalliques." Lines too faint to measure.

### Tellurium.

WERTHER. Journ. Prakt. Chem., lxxxviii., 180.

| No.  | Huggins. | Thalén. | Intensity. |
|------|----------|---------|------------|
| _    | 6645     |         | 4          |
| 37.0 | 6431     | 6437    | IO         |
|      | 6366     | _       | I          |
| _    | 6347     | _       | I          |
| -    | 6290     |         | 2          |
|      | 6243     | _       | _ 3        |
|      | 6228     |         | . 3        |
| 46.2 | 6042     | 6046    | 6          |
| 47.0 | 6010     | 6012    | 6          |
| _    | 5995     | _       | I          |
| 47'9 | 5970     | 5973    | 10         |
| 48.9 | 5934     | 5935    | 8          |
| 51.2 | 5854     | 5856    | 4          |
| 51.3 | 5849     | 5852    | 4          |
| -    |          | 5825    | 4          |
| _    | _        | 5805    | 4          |
| 53.9 | 5756     | 5755    | 10         |
| 54.3 | 5740     | 5741    | 2          |
| 55.4 | 5708     | 5707    | IO         |
| 57.2 | 5646     | 5647    | 10         |
| 58.1 | 5618     | 5616    | 4          |
| 59.5 | 5575     | 5574    | 6          |
| 62.6 | 5486     | 5488    | 6          |
| 62.9 | 5476     | 5477    | 6          |
| 63.7 | 5447     | 5447    | 8          |
| 65'3 | 5409     | 5409    | 4          |
| 67.0 | 5366     | 5366    | 6          |

| No.   | Huggins. | Thalén.  | Intensity. |
|-------|----------|----------|------------|
| 69.2  | 5309     | 5310     | 6          |
| 69.7  | 5298     | 5299     | 2          |
| 73.0  | 5222     | 5217     | 8          |
| _     | _        | 5172     | 2          |
| _     | _        | 5152     | 6          |
| 76·4  | 5134     | 5133     | 2          |
| _     | _        | 5104     | 6          |
| 81.0  | 5038     | 5035     | 4          |
| _     | _        | 4895     | 2          |
| 89.5  | 4866     | 4866     | 4          |
| 91.4  | 4832     | 4832     | 2          |
| 93.8  | 4785     | 4785     | 2          |
| _     | 4709     | _        | _          |
| _     | 4664     | _        | I          |
| _     | 4652     | <u>`</u> | I          |
| 105.7 | 4602     | 4603     | 4          |
| _     | 4599     | _        | I          |
| _     | 4544     | —        | _          |
| _     | 4479     | _        | I          |
| _     | 4352     | _        | I          |
| _     | 4302     | _        | . 2        |
|       | 4259     | -        | _          |
|       | 4063     | -        | 3          |

### Thallium.

CROOKES. Phil. Trans., 1863, 173.

MILLER. Proc. Roy. Soc., xii., 407.

GASSIOT. Proc. Roy. Soc., xii., 536.

KETTELER. Pogg. Ann., civ., 390.

BERNARD. Les Mondes, v., 181.

MASCART. Annales de l'Ecole Normale, iv.

NICKLÉS. Comptes Rendus, lviii., 132.

MÜLLER. Pogg. Ann., cxviii., 641.

RÜLHMANN. Pogg. Ann., cxxxii., 1.

| No.  | Huggins. | Thalén. |                                                                       | Intensity. |
|------|----------|---------|-----------------------------------------------------------------------|------------|
| _    | 6547     | _       | _                                                                     | 4          |
| _    | 6240     |         | _                                                                     | I          |
| _    | 6002     | _       | _                                                                     | 2          |
| 48.6 | 5949     | 5948    | _                                                                     | 6          |
| _    | 5824     | _       | _                                                                     | 2          |
| -    | 5771     | -       | _                                                                     | I          |
| _    | _        | 5608    | _                                                                     | 2          |
| 62.4 | 5487     | 5490    |                                                                       | I          |
|      | _        | 5412    |                                                                       | 4          |
| _    | _        | 5360    |                                                                       | 4          |
| 67:7 | 5347     | 5349    | \[ \begin{pmatrix} 5348* \\ 5345† \\ 5352‡ \\ 5348   \end{pmatrix} \] | 10         |
| 75.6 | 5153     | 5153    | 5349§                                                                 | 8          |
| _    | _        | 5085    | _                                                                     | 4          |
| 79.0 | 5078     | 5078    | _                                                                     | 6          |
| 80.2 | 5054     | 5053    | -                                                                     | 6          |
| 83.7 | 4980     | 4981    | _                                                                     | 6          |
| _    | _        | 4945    | _                                                                     | 4          |
| 88.1 | 4893     | 4892    | _                                                                     | 4          |
| _    | 4767     | _       | _                                                                     | 2          |
| 96.8 | 4737     | 4736    | _                                                                     | 6          |
| -    | 4112     | _       | _                                                                     | 3          |

## Thorium.

| No.  | Thalén. | Int. | No.   | Thalén. | Int. |
|------|---------|------|-------|---------|------|
| 55.7 | 5698    | 2    | 89.7  | 4863    | 6    |
| 57.4 | 5640    | 2    | 120.9 | 4392    | IO   |
| 60.9 | 5537    | 6    | 121.9 | 4381    | 10   |
| 63.8 | 5446    | 6    | 130.3 | 4281    | 10   |
| 66.6 | 5374    | 6    | 130'7 | 4277    | 8    |
| 86.7 | 4919    | 6    | 131.1 | 4272    | 6    |

<sup>\*</sup> Müller. + Ketteler. ‡ Bernard. || Rühlmann. § Mascart.

Tin.

MASCART. Annales de l'Ecole Normale, iv.

| No.   | Huggins. | Thalén. | Kirchhoff.                                    | Mascart. | Int. |
|-------|----------|---------|-----------------------------------------------|----------|------|
| 2017  | 60.0     |         | (6842)                                        |          |      |
| 29.7  | 6840     |         | [6840]                                        | _        | 3    |
| _     | 6769     | _       | _                                             | _        | I    |
| -     | 6573     | _       | _                                             | _        | I    |
| 36.6  | 6447     | 6452    | (6453)<br>(6448)                              | _        | 10   |
| 52.8  | 5798     | 5798    | {5799}<br>{5796}                              |          | 10   |
| 57.7  | 5630     | 5630    | _                                             | _        | 8    |
| 59.1  | 5587     | 5588    | \[ \begin{pmatrix} 5591 \\ 5586 \end{pmatrix} | _        | 10   |
| 59*9  | 5564     | 5563    | \[ \begin{pmatrix} 5564 \\ 5560 \end{pmatrix} | _        | 10   |
| 67.0  | 5366     | 5368    | _                                             | _        | 2    |
| 67.7  | 5347     | 5347    | _                                             | _        | 4    |
| 68.3  | 5333     | 5332    |                                               | _        | 8    |
| _     | 5328     | _       | _                                             | _        | 4    |
| 70.0  | 5287     | 5289    | _                                             | _        | 2    |
| 72.8  | 5224     | 5224    | _                                             | _        | 4    |
| 78.1  | 5098     | 5100    | \[ \begin{cases} 5100 \\ 5099 \end{cases} \]  | _        | 6    |
| -     | _        | 5021    |                                               | _        | _    |
| -     | _        | 4923    | _                                             | _        | _    |
| 89.0  | 4858     | 4858    | 4857                                          | -        | 6    |
| 106.4 | 4584     | 4585    | 4585                                          | _        | 8    |
| 110.8 | 4523     | 4524    | 4524                                          | 4523     | IO   |
|       |          |         |                                               |          |      |

## Titanium.

| No.  | Thalén. | Int. | No.  | Thalén. | Int. |
|------|---------|------|------|---------|------|
| 34.8 | 6556    | 4    | 62'4 | 5489    | 8    |
| 35.0 | 6543    | 2    | 62.5 | 5487    | 6    |
| 40.8 | 6260    | 8    | 62.8 | 5480    | 8    |
| 40.9 | 6257    | IO   | 62.9 | 5476    | 6    |
| 41.8 | 6221    | 6    | 62.9 | 5473    | 6    |
| 41.9 | 6214    | 6    | 63.0 | 5470    | 4    |
| 44.0 | 6125    | 8    | 63.7 | 5448    | 6    |
| 44.7 | 6097    | 6    | 63.8 | 5446    | 4    |
| 44.8 | 6090    | 8    | 64.4 | 5429    | 8    |
| 45.0 | 6083    | 6    | 64.6 | 5425    | 6    |
| 45.6 | 6064    | 8    | 65.0 | 5418    | 4    |
| 47'3 | 5999    | 8    | 65.3 | 5409    | 8    |
| 47.8 | 5978    | IO   | 65.6 | 5403    | 6    |
| 48.1 | 5965    | IO   | 65.8 | 5396    | 8    |
| 48.2 | 5952    | 10   | 66.4 | 5380    | 6    |
| 49'3 | 5921    | 6    | 66.8 | 5369    | 8    |
| 49'3 | 5919    | 6    | 67.6 | 5350    | 8    |
| 49.8 | 5899    | 10   | 68.1 | 5337    | 10   |
| 50.8 | 5865    | 10   | 69.8 | 5298    | 6    |
| 54.4 | 5738    | 6    | 69.8 | 5297    | IO   |
| 55.I | 5714    | 4    | 69.9 | 5295    | 6    |
| 55.7 | 5701    | 2    | 70.1 | 5288    | 4    |
| 56.0 | 5688    | 8    | 70'2 | 5283    | 10   |
| 56.2 | 5679    | 6    | 70.7 | 5271    | 4    |
| 56.4 | 5674    | 10   | 70.8 | 5267    | 4    |
| 56.8 | 5661    | 10   | 70.9 | 5265    | 8    |
| 57.2 | 5647    | 4    | 71.0 | 5263    | 4    |
| 57.3 | 5643    | 10   | 21.1 | 5260    | 4    |
| 57.7 | 5629    | 2    | 71.3 | 5255    | 4    |
| 58.8 | 5597    | 2    | 71.2 | 5251    | 4    |
| 59.8 | 5565    | 6    | 71.7 | 5246    | 8    |
| 61.2 | 5513    | 10   | 72'1 | 5238    | 8    |
| 61.2 | 5512    | 10   | 72.7 | 5226    | 6    |
| 61.9 | 5503    | 8    | 72.8 | 5223    | 10   |

| No.  | Thalén.           | Int. | No.  | Thalén. | Int. |
|------|-------------------|------|------|---------|------|
| 73'1 | 5217              | 4    | 82.7 | 5001    | 4    |
| 73'4 | 5209              | 10   | 82.7 | 4999    | 10   |
| 73.6 | 5205              | 6    | 83.2 | 4990    | IO   |
| 73'9 | 5200              | 6    | 83.3 | 4988    | 6    |
| 74'1 | 5192              | IO   | 83.7 | 4981    | IO   |
| 74'3 | 5188              | 8    | 83.8 | 4978    | 6    |
| 74.4 | 5185              | 6    | 83.9 | 4975    | 4    |
| 74.8 | 5173              | 8    | 84.1 | 4972    | 2    |
| 75.6 | 5 <sup>1</sup> 53 | 6    | 84.3 | 4968    | 2    |
| 75'7 | 5151              | 8    | 84.2 | 4964    | 2    |
| 75.8 | 5147              | 6    | 85.3 | 4947    | 2    |
| 76.0 | 5144              | 8    | 85.8 | 4937    | 8    |
| 76.6 | 5129              | 10   | 86.3 | 4927    | 8    |
| 76.7 | 5127              | . 4  | 86.4 | 4925    | 4    |
| 77'1 | 5120              | 10   | 86.7 | 4921    | 6    |
| 77'4 | 5113              | 8    | 86.7 | 4919    | 6    |
| 77.6 | 5109              | 4    | 87.0 | 4913    | 6    |
| 78.0 | 5102              | 4    | 87.2 | 4911    | 6    |
| 78.7 | 5086              | 8    | 87.5 | 4904    | 4    |
| 79.1 | 5076              | 4    | 87.7 | 4899    | 8    |
| 79'3 | 5072              | 4    | 88.6 | 4884    | IO   |
| 79.7 | 5065              | 4    | 89.1 | 4873    | 4    |
| 79.8 | 5064              | 10   | 89.4 | 4869    | 8    |
| 79'9 | 5061              | 6    | 89.2 | 4.867   | 8    |
| 80.3 | 5052              | 6    | 90.I | 4855    | 8    |
| 80.7 | 5043              | 6    | 90.2 | 4848    | 6    |
| 80.8 | 5039              | 8    | 91.0 | 4840    | 8    |
| 80.0 | 5038              | 8    | 91.3 | 4835    | 4    |
| 81.0 | 5036              | 10   | 92.0 | 4819    | 8    |
| 81.4 | 5025              | 6    | 92.8 | 4804    | IO   |
| 81.2 | 5024              | 6    | 93.I | 4797    | 4    |
| 81.4 | 5021              | 6    | 93.4 | 4792    | 8    |
| 81.7 | 5019              | 8    | 94.1 | 4779    | 6    |
| 81.9 | 5015              | 8    | 95'3 | 4758    | IO   |
| 82.0 | 5013              | 10   | 95.4 | 4757    | IO   |
| 82.1 | 5012              | 4    | 96.4 | 4742    | 8    |
| 82.3 | 5007              | 10   | 97.8 | 4723    | 8    |

| No.   | Thalén. | Int. | No.   | Thalén. | Int. |
|-------|---------|------|-------|---------|------|
| 98.6  | 4709    | 8    | 116.4 | 4449    | 8    |
| 99.3  | 4698    | 8    | 116.6 | 4446    | 8    |
| 99.8  | 4691    | 8    | 116.0 | 4443    | 10   |
| 100.6 | 4681    | 8    | 118.3 | 4427    | IO   |
| 101.3 | 4666    | 8    | 118.0 | 4418    | 8    |
| 102'1 | 4656    | IO   | 119.4 | 4411    | 6    |
| 102.9 | 4644    | 4    | 120.0 | 4403    | 6    |
| 103.3 | 4639    | 10   | 120'4 | 4398    | 6    |
| 104.0 | 4629    | 6    | 120.8 | 4393    | IO   |
| 104.4 | 4623    | 8    | 126.0 | 4337    | 10   |
| 104.8 | 4617    | 8    | 127'1 | 4323    | 8    |
| 107.2 | 4571    | IO   | 127'3 | 4320    | 2    |
| 108.1 | 4563    | 8    | 127.5 | 4318    | 2    |
| 108.6 | 4555    | 6    | 127'9 | 4313    | 2    |
| 108.0 | 4552    | 6    | 127'9 | 4312    | 2    |
| 100.1 | 4549    | IO   | 128.3 | 4307    | 2    |
| 100.6 | 4543    | 6    | 128.2 | 4305    | 8    |
| 110.0 | 4536    | 10   | 129'0 | 4299    | 10   |
| 110.3 | 4532    | 10   | 129.5 | 4295    | 2    |
| 110.6 | 4526    | 10   | 129.3 | 4294    | 2    |
| 110.0 | 4522    | 6    | 129.5 | 4291    | 8    |
| III'2 | 4517    | 6    | 129.8 | 4287    | 2    |
| 111.6 | 4511    | 6    | 130.5 | 4282    | 2    |
| 112.4 | 4501    | 10   | 131.0 | 4273    | 2    |
| 112.8 | 4496    | 8    | 131.6 | 4263    | 8    |
| 113.9 | 4481    | 6    | 134.2 | 4236    | 8    |
| 112.0 | 4468    | 10   | 140.4 | 4185    | 6    |
| 115.8 | 4457    | 8    | 142.7 | 4171    | 10   |
| 112.9 | 4455    | 8    | 143.4 | 4163    | 10   |
| 119.1 | 4453    | 8    | 1     |         |      |

# Tungsten.

| No.  | Thalén. | Int. | No.  | Thalén. | Int. |
|------|---------|------|------|---------|------|
| 52.6 | 5805    | 4    | 57.2 | 5648    | 4    |
| 54.5 | 5733    | 6    | 57.7 | 5631    | 2    |

| No.  | Thalén. | Int. | No.   | Thalén. | Int. |
|------|---------|------|-------|---------|------|
| 61.2 | 5513    | IO   | 88.4  | 4887    | 8    |
| 62.4 | 5491    | 8    | 90.7  | 4842    | 10   |
| 72.8 | 5223    | 10   | 100.4 | 4680    | 2    |
| 79'4 | 5070    | 6    | 101.8 | 4660    | 2    |
| 79'5 | 5068    | 6    | 101.0 | 4659    | 2    |
| 80.3 | 5053    | IO   | 128.7 | 4302    | 6    |
| 82.0 | 5014    | 6    | 129.2 | 4295    | 6    |
| 82.3 | 5007    | 6    | 131.4 | 4269    | 6    |
| 83.7 | 4981    | 4    |       |         |      |

## Uranium.

| No.    | Thalén. | Int. | No.   | Thalén. | Int. |
|--------|---------|------|-------|---------|------|
| 49'4   | 5913    | 8    | 66.2  | 5384    | 6    |
| 58.0   | 5619    | - 6  | 81.3  | 5027    | 6    |
| 59'3   | 5579    | 6    | 97.1  | 4731    | 6    |
| 59'9   | 5562    | 6    | 97.8  | 4723    | 6    |
| . 61.1 | 5527    | 10   | 109.6 | 4543    | 8    |
| 61.6   | 5509    | 6    | 114.6 | 4472    | IO   |
| 62.3   | 5493    | 10   | 120.8 | 4393    | 6    |
| 62.8   | 5481    | IO   | 122.6 | 4374    | 6    |
| 62.8   | 5479    | 10   | 123.8 | 4362    | IO   |
| 62.9   | 5477    | 10   | 125.8 | 4340    | IO   |
| 62.9   | 5474    | 10   |       |         |      |

## Vanadium.

| No.  | Thalén. | Int. | No.  | Thalén. | Int. |
|------|---------|------|------|---------|------|
| 41.3 | 6241    | 6    | 53.1 | 5786    | 4    |
| 43.8 | 6134    | 4    | 54.7 | 5725    | 10   |
| 44'I | 6119    | 10   | 55.5 | 5706    | 4    |
| 44'3 | 6109    | 4    | 55.6 | 5702    | 6    |
| 44.8 | 6089    | 10   | 55.8 | 5697    | 8    |
| 45°I | 6080    | 4    | 56.6 | 5668    | 6    |
| 46.3 | 6039    | IO   | 57.8 | 5626    | 6    |

| No.   | Thalén. | Int. | No.   | Thalén. | Int.    |
|-------|---------|------|-------|---------|---------|
| 57'9  | 5622    | 6    | 120°2 | 4400    | 2       |
| 65.1  | 5414    | 6    | 120.6 | 4395    | 6       |
| 65.7  | 5401    | 4    | 121'2 | 4389    | 8       |
| 72.0  | 5240    | 6    | 121.6 | 4384    | IO      |
| 72.3  | 5233    | 6    | 122'1 | 4379    | 10      |
| 74.0  | 5195    | 4    | 124.7 | 4352    | 2       |
| 74.5  | 5191    | 4    | 125.8 | 4340    | 2       |
| 88.8  | 4881    | 6    | 126.4 | 4332    | 2       |
| 89.1  | 4874    | 6    | 126.6 | 4329    | 2       |
| 89.7  | 4864    | 4    | 128.1 | 4310    | 2       |
| 90.4  | 4851    | 2    | 129'1 | 4297    | 4       |
| 90.8  | 4843    | 6    | 129.5 | 4292    | 2       |
| 91.2  | 4831    | 2    | 130.5 | 4283    | 2       |
| 106.5 | 4593    | 6    | 130.4 | 4277    | 2       |
| 106.4 | 4585    | 4    | 131,1 | 4272    | 4       |
| 107.1 | 4579    | 2    | 131.2 | 4268    | 4       |
| 107.3 | 4576    | 2    | 149.6 | 4110    | 6       |
| 115.4 | 4459    | 8    | 147.1 | 4130)   | several |
| 119.4 | 4407    | 10   |       | to      | faint   |
| 119.8 | 4406    | 4    | 153.2 | 4085)   | lines.  |

## Yttrium.

(See "ERBIUM.")

## Zinc.

MASCART. Annales de l'Ecole Normale, iv.

| No.  | Huggins. | Thalén. | Kirchhoff.       | Mascart. | Intensity. |
|------|----------|---------|------------------|----------|------------|
| _    | 6581     | _       | _                | _        | I          |
| 38.4 | 6360     | 6362    | 6362             | 6361     | IO         |
| _    | 6211     | _       | _                | _        | 2          |
| 44.5 | 6100     | 6102    | {6106}<br>(6099} | _        | 10         |
| _    | 6041     |         | _                | _        | 2          |

|            |          |         | 9 ,             |            |           |
|------------|----------|---------|-----------------|------------|-----------|
| No.        | Huggins. | Thalén. | Kirchhoff.      | Mascart. I | ntensity. |
| 46.7       | _        | 6023    | {6025}<br>6019} | _          | 8         |
|            | 2010     |         | (0019)          |            | IO        |
|            | 5910     | -804    | =804            |            | 8         |
| 50.0       | 5894     | 5894    | 5894            |            |           |
| 52.3       | 5814     | 5816    |                 |            | 4 2       |
| 53'9       | 5755     | 5756    | _               |            |           |
| 54'3       | 5741     | 5745    | _               | _          | 2         |
|            | _        | 5608    | _               | _          | 4         |
| 59.4       | 5577     | 5577    |                 |            | 4         |
| 59.9       | 5563     | 5563    | _               | _          | 4         |
| _          | _        | 5436    |                 | _          | 2         |
| 68.2       | 5333     | 5336    | _               | _          | 2         |
| 71.9       | 5247     | 5249    | _               | _          | 4         |
| 72.4       | 5232     | 5233    | -               | _          | 4         |
| 75.4       | 5157     | 5158    | _               | _          | 4         |
| 77.0       | 5122     | 5121    | _               | _          | 4         |
| _          | 5117     | _       |                 | _          | I         |
| _          | 5083     | _       | _               | _          | I         |
| 79'3       | 5072     | 5074    | _               | _          | 4         |
| 80.2       | 5049     | 5048    | _               | _          | 4         |
| 84.2       | 4970     | 4971    | _               | _          | 4         |
| 86.5       | 4924     | 4924    | {4928}<br>4924} | 4923       | 10        |
| 87.2       | 4911     | 4911    | 4911            | 4911       | IO        |
| _          | _        | 4878    | _               | _          | 2         |
| 89.5       | 4867     | 4865    | _               | _          | 2         |
| 92.2       | 4809     | 4810    | 4810            | 4809       | 10        |
| 97'9       | 4722     | 4721    | 4721            | 4721       | 10        |
| 100.8      | 4679     | 4679    | 4679            | 4679       | 10        |
|            |          | _       |                 |            |           |
| Zirconium. |          |         |                 |            |           |
| No.        | Thalén.  | Int.    | No.             | Thalén.    | Int.      |
| 38.8       | 6343     | 6       | 43'9            | 6132       | 6         |
| 39.6       | 6310     | 6       | 44.0            | 6127       | 10        |
| 43.7       | 6140     | 10      | 66.2            | 5384       | 4         |
| 10 /       |          |         |                 | 33-4       | 1. +      |

L

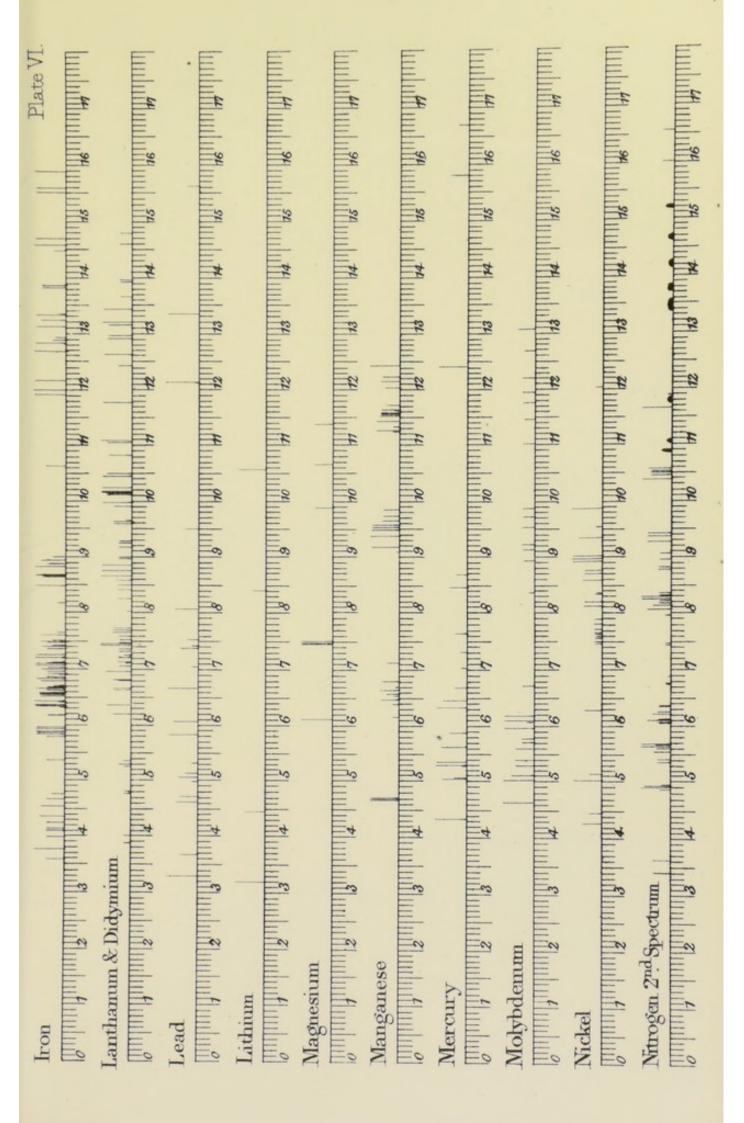
| No.   | Thalén. | Int. | No.   | Thalén. | Int. |
|-------|---------|------|-------|---------|------|
| 67.6  | 5349    | 6    | 122.0 | 4380    | 4    |
| 74'2  | 5190    | 6    | 123'0 | 4370    | 4    |
| 92.2  | 4815    | IO   | 124'0 | 4360    | 4    |
| 94.6  | 4771    | IO   | 133.0 | 4242    | 4    |
| 96.6  | 4738    | 10   | 134.0 | 4241    | 4    |
| 98.5  | 4709    | 10   | 135'4 | 4228    | 4    |
| 100'2 | 4686    | IO   | 137.4 | 4210    | 4    |
| 112.7 | 4497    | 4    | 137'5 | 4209    | 4    |
| 112'9 | 4494    | 4    | 144'3 | 4155    | 8    |
| 116.9 | 4443    | -4   | 145.0 | 4149    | 8    |

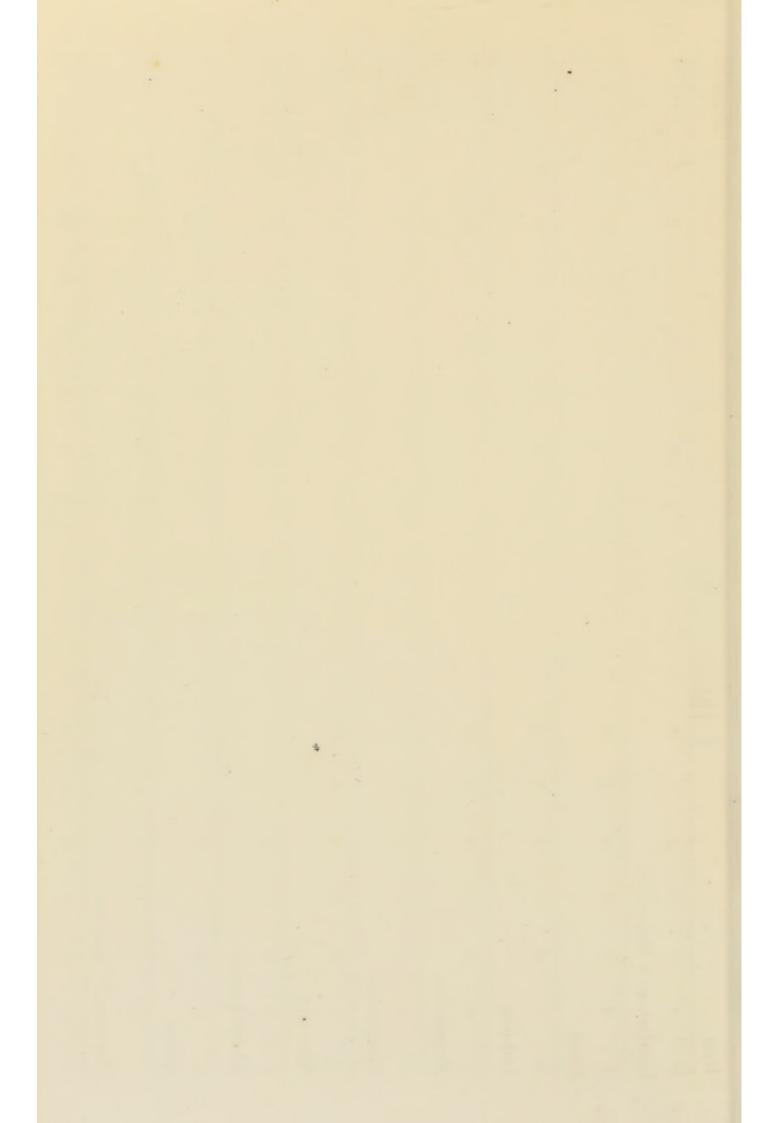
Printed at the CHEMICAL NEWS Office, Boy Court, Ludgate Hill, London, E.C.





SPECTRA OF HYDROGEN AND ALUMINIUM.





Bromine hand the control of t Barrum Commission of the Commi Bismuth Commission of the Commission o 10 million 13 million 14 million 15 million 16 million 17 million 18 million Boracic Acid Barium











Rubidium



Selenium
Sel Silver

Commission of the state of the Silicon Chloride

Tame Spectrum Continue of the Spectrum of the Continue of the Strontum Strontium

Sulphur Strontium

| Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Strontium | Stron

Tellurium

Thalkum



465.





