Der gegenwartige Stand der Desinfections-praxis: bericht uber die seit dem VI Internationalen Congresse fur Hygiene und Demographie in Wien 1887 bis Mai 1890 ... / erstattet von Florian Kratschmer.

Contributors

Kratschmer von Forstburg Florian, 1843-1922. International Congress on Hygiene and Demography 1887 : Vienna Austria) Royal College of Physicians of Edinburgh

Publication/Creation

Wien: A. Holder, 1890.

Persistent URL

https://wellcomecollection.org/works/jf4g2fgq

Provider

Royal College of Physicians Edinburgh

License and attribution

This material has been provided by This material has been provided by the Royal College of Physicians of Edinburgh. The original may be consulted at the Royal College of Physicians of Edinburgh. where the originals may be consulted.

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

MITTHEILUNGEN

DES

K. U. K. MILITÄR-SANITÄTS-COMITÉS.

IV, V.

(SAMMLUNG MEDICINISCHER SCHRITTEN XII-XIII.)

DER GEGENWÄRTIGE STAND

DER

DESINFECTIONS-PRAXIS.

BERICHT ÜBER DIE SEIT DEM VI. INTERNATIONALEN
CONGRESSE FÜR HYGIENE UND DEMOGRAPHIE IN WIEN 1887 BIS MAI 1890
AUF DIESEM GEBIETE ERSCHIENENEN ARBEITEN ZU DEM IM AUFTRAGE
DES K. UND K. REICHS-KRIEGSMINISTERIUMS VORGELEGTEN ENTWURFE EINER DESINFECTIONS-VORSCHRIFT

ERSTATTET VON

STABSARZT

PROF. DE FLORIAN KRATSCHMER.

WIEN 1890 ALFRED HÖLDER

K. U. K. HOF- UND UNIVERSITÄTS-BUCHHÄNDLER
1-, ROTHENTHURMSTRASSE 15.

Alle Rechte vorbehalten.

Druck von Friedrich Jasper in Wien.

R32705

Ueber das 16. Thema des VI. internationalen Congresses für Hygiene und Demographie in Wien 1887, »Praxis der Desinfection«, haben Richard, Löffler und Dobroslawin Bericht erstattet.

Nach Richard empfängt man beim Studium des gegenwärtigen Zustandes, in welchem sich die Desinfectionspraxis, wenigstens in den Ländern lateinischer Zunge befindet, einen keineswegs befriedigenden Eindruck. Es kann dies auch nicht anders sein, da wir dermalen über den Werth verschiedener Desinfectionsmittel ganz andere Vorstellungen haben, als kurz vorher, und die Praxis mit der Theorie auf diesem Gebiete nicht gleichen Schritt zu halten vermochte. Unsere Zeit strebt eine gründliche Umgestaltung der Desinfectionspraxis an; gleichwohl finden sich heutzutage neben guten, wissenschaftlich begründeten Methoden auch noch vielerlei überlebte, mit den neueren Anschauungen nicht zusammenstimmende Gebräuche. In Frankreich hat Vallin durch seine Abhandlung über Desinfection eine neue Aera auf diesem Felde inaugurirt. Hinsichtlich der Gesetzgebung über Desinfectionspraxis wird bemerkt, dass in Frankreich und Italien den Vertretungen (Kammern) Gesetzentwürfe vorliegen über Abänderungen der allgemeinen Organisation der hygienischen Massregeln, von welchen jene über Desinfection nur einen Theil ausmachen. Heute ist die Desinfection in Frankreich nirgends durch ein Gesetz obligatorisch und wird nur durch jeweilige Verordnungen im administrativen Wege verfügt. Zeiten von aussergewöhnlichen Epidemien ausgenommen, in welchen die Desinfection von obenher strenge anbefohlen und straffer gehandhabt wird, ist dieselbe gewöhnlich dem Ermessen der Gemeindevorsteher und Präfecten anheimgestellt und wird dementsprechend gegen die herrschenden endemischen Erkrankungen, wenn dieselben auch fast ebenso mörderisch auftreten wie die Cholera, nicht im nöthigen Umfange in Anwendung gebracht. Niemand will die Verantwortung für die nöthigen Geldopfer zu diesem Zwecke übernehmen; es fehlt den betreffenden Gemeindeund Bezirksvorständen die nöthige Competenz und Unabhängigkeit behufs

Durchführung einer allgemeinen Desinfection. In dieser Hinsicht haben die sanitätspolizeilichen Vorschriften über die Desinfection bei Thierkrankheiten einen entschiedenen Vorsprung. Das Gesetz vom 21. Juli 1881, welches bisher bezüglich der Desinfection nach Erkrankungen von Menschen kein Seitenstück gefunden hat, schreibt die Desinfection der Ställe, Wagen und der bei Thieren in Verwendung gekommenen Objecte vor, wenn diese Thiere von contagiösen Erkrankungen ergriffen worden sind, ja es macht die Desinfection der Waggons, welche zum Transporte von Thieren gedient haben, unter allen Umständen obligatorisch. Dieses Gesetz könnte als Vorbild dienen für ein ähnliches Gesetz der Sanitätspolizei bei ansteckenden Krankheiten der Menschen.

In der Armee wird die Desinfection der Localitäten und Effecten jedesmal durchgeführt, so oft der Arzt es verlangt, sei es in einem Spitale oder in einer Kaserne. In den öffentlichen Anstalten — Schulen, Gefängnissen, Asylhäusern — ist die Desinfection dem Gutdünken der Administration anheimgegeben und wird wohl auch gehandhabt, wenn diese gut berathen ist, was bei einigen wohlhabenden Städten, die über ein hygienisches Bureau verfügen, zutrifft; allein solcher Städte gibt es wenig.

Aehnlich liegen die Verhältnisse in Belgien und Spanien.

In neuester Zeit ist jedoch ein Umschwung in dieser Richtung zu verzeichnen. An vielen Orten Frankreichs und der angrenzenden Länder bleibt man nicht unthätig.

In Brüssel schreibt die Stadtverwaltung durch ihr hygienisches Bureau die Desinfection für alle Fälle zymotischer Erkrankungen vor, welche ihr angezeigt worden sind. Die Zahl der Desinfectionen mittelst Schwefel, Carbolsäure, durch Auskochen der Wäsche, durch Tünchen der Zimmer u. s. w. war von 1884—1886 eine sehr bedeutende.

Die Commune verfügt daselbst über ein Haus, worin man Arme, während man ihre Wohnung desinficirt, unterbringt. In Frankreich bestehen in den Spitälern einiger Städte Desinfectionsanstalten, in Reims ist dieselbe der Bevölkerung zur Benützung freigestellt. Während der Cholera im Jahre 1884 haben eigene Abtheilungen von Desinfecteurs 798 Wohnungen desinficirt.

Zur Zeit, wenn die Cholera nicht herrscht, beschränkt sich die Desinfection auf jene Fälle ansteckender Erkrankungen, welche der Präfectur bekannt werden — das sind jene Fälle, welche entweder ins Spital abgegeben werden oder mit Tod abgehen. Das gilt sowohl für Localitäten, als auch für Kleidung, Wäsche, Bettzeug u. dgl. Schon im Jahre 1880 hat der Gesundheitsrath der Seine durch die beiden Berichterstatter Pasteur und Colin den Wunsch nach Errichtung zweier Dampfdesinfectionsanstalten an zwei entgegengesetzten Punkten der Hauptstadt ausgesprochen. Vor kurzem hat Dr. Chautemps diesen Wunsch nach Desinfectionsanstalten, deren Errichtung und Bedienung sich dem Berliner

Muster nähert, wiederholt. Die Auslage für Errichtung zweier Stationen wird ohne Grund und Boden und ohne Fundus instructus mit 300.000 frs. beziffert und die Kosten des jährlichen Betriebes mit 30.000 frs., wozu die Wohlhabenden beisteuern müssten. Die Dauer einer Desinfection wird mit 15 Minuten angeschlagen. Dass man Anstalten und Bedienstete wird vermehren müssen, wenn die Bevölkerung sich an die Desinfection gewöhnt haben wird, liegt auf der Hand.

Die Privat-Industrie beginnt ebenfalls Desinfectionsanstalten zu errichten — natürlich nur gegen Entgelt — als Nebengeschäft bei der in grossem Umfange betriebenen Fleckputzerei, wo dann die Gegenstände nach der Desinfection wieder zum vollkommenen Gebrauche und zu schönem Aussehen hergerichtet werden.

Obwohl Richard im Principe für öffentliche, sei es staatliche oder municipale, Desinfectionsanstalten ist, wünscht er doch auch den Privat-Instituten dieser Art ein gutes Gedeihen. — Zur Zeit des Bedarfes bei grossen Epidemien werden sie sich sehr wohl bewähren.

Selbstverständlich müssen aber derartige Privatanstalten unter der Controle und Ueberwachung der Sanitätsbehörden stehen. Die Sanitätsverwaltung dotirt alle französischen Lazarethe mit Dampfdesinfectionsöfen nach dem System Geneste und Herscher. Die französischen Kriegsschiffe und einige Handelsschiffe sind bereits damit ausgestattet. Die Apparate arbeiten während der Ueberfahrt ohne Schwierigkeit und ohne grosse Kosten.

Bei der Aufzählung der Krankheiten, bei denen eine Desinfection allenthalben heutzutage für nothwendig erachtet wird, wird noch bemerkt, dass bei Typhus auch ein besonderes Augenmerk auf seine gewöhnlichen Ursprungsstätten, schlecht gehaltene Senkgruben, inficirten Boden u. s. w. gerichtet werden müsse, dass bei Masern, deren Contagium so wenig und so kurz haftet, eine Desinfection am wenigsten notwendig sein dürfte, dass dagegen der offenbaren, leichten Verschleppbarkeit der Tuberculose durch Kleider, Bettsorten etc. in den Kasernen, Spitälern, Schulen und selbst in Privathäusern durch energische Desinfection entgegengetreten werden müsse; gerade gegen diese mörderische Geissel der Menschheit werde die Desinfection am meisten leisten können.

Bezüglich der in der Desinfectionspraxis am meisten gebräuchlichen Agentien, worunter sich allerdings heute noch viele antiquirte befinden, verlangt Richard dreierlei Bedingungen und zwar: 1. Wirksamkeit, 2. Leichtigkeit der Anwendung und 3. geringen Kostenaufwand.

Bisher habe man in der Desinfectionspraxis weniger nach der ersten dieser Bedingungen, als vielmehr danach gefragt, ob die Methode leicht zu bewerkstelligen sei und ob deren Durchführung wenig genug Kosten verursache. Nach unseren heutigen Erfahrungen sollte man um den Lohn des Desinfecteurs noch weniger feilschen als um den des Todtengräbers.

Die Reinlichkeit, die Lehrmeisterin der Desinfection, macht insbesondere auf dem Lande geringere Fortschritte, als zu wünschen wäre. — Dieselbe überall einzupflanzen, ist eines der wichtigsten Gebote der Gesundheitspflege. Gewisse ältere Methoden der Reinigung, — welche nur eigentlich im Staubaufwirbeln bestehen, — haben zum Theile ihren Credit eingebüsst, und an Stelle des Besens und der Bürste ist mit gutem Erfolge das Aufwischen mit feuchten Tüchern getreten.

Unter den gasförmigen Desinfectionsmitteln war früher allgemein, und wird noch heute viel die schweflige Säure verwendet. Wiewol Ergebnisse von bakteriologischen Laboratoriumsversuchen das Vertrauen in ihre Wirksamkeit stark erschüttert haben und in der Académie de médecine zu Paris Dujardin-Beaumetz, Pasteur und Roux gegen die Verwendbarkeit derselben als Desinfectionsmittel ihre Autorität geltend machten — ist sie bisher dennoch nicht aus der Desinfectionspraxis verbannt worden.

Bakteriologen und Epidemiologen stehen sich hier gegenüber — die letzteren behaupten gegen die ersteren, dass durch die schweflige Säure zu öfterenmalen die Ausbreitung von Epidemien sei aufgehalten worden, und dass ihre Anwendung jedenfalls besser als nichts, also zum mindesten einem Nothbehelfe gleichzuhalten sei.

Chlor- und Bromräucherungen hingegen haben sich allgemein nicht behauptet, eher noch solche mit salpetriger Säure.

Von flüssigen Desinfectionsmitteln führt Richard an: Eisenvitriol 1:10; Kupfervitriol, Zinkvitriol, Chlorzink, Schwefelsäure und Salzsäure 1:20; Carbolsäure 1:20 und 1:50 und Sublimat 1:1000 bis 1:10.000.

Unter den Desinfectionsapparaten, welche mit Wasserdampf arbeiten, beschreibt Richard ein in Frankreich bekanntes System von Geneste und Herscher, welches von den Fabrikaten anderer Firmen zu demselben Zwecke kaum verschieden ist. Es muss bemerkt werden, dass alle derartigen Apparate erst auf Grund der im deutschen Reichsgesundheitsamte gemachten Beobachtungen über die desinfectorische Wirkung des strömenden Wasserdampfes construirt worden sind.

Die étuve selhydrique von Dobroslawin zu Desinfectionszwecken kommt noch später zur Erwähnung.

Nach Vorführung der verschiedenen, derzeit meist gebräuchlichen Desinfectionsmittel wendet sich Richard zur Erörterung der Massregeln, welche bei der Desinfection von Localitäten, Schiffen, Fahrzeugen, Personen, Geweben und Leichen in Anwendung stehen.

Für Localitäten besteht die gebräuchlichste Methode der Desinfection in der Räucherung mittelst schwefliger Säure in der Weise, dass 20—30 g Schwefel pro Cubikmeter Raum verbrannt werden. Weder der Schwefelkohlenstoff, noch die directe Verwendung von Schwefligsäureanhydrid nach Pictet haben bis jetzt die directe Verbrennung des Schwefels zu

diesem Zwecke zu verdrängen vermocht; die genannten ersteren Verfahren sind viel zu theuer.

Uebrigens ist auch die Anwendung der schwefligen Säure in der Form, in welcher man sie aus verbrennendem Schwefel darstellt, keineswegs so einfach, als hie und da angenommen wird — es ist im Gegentheil sehr mühsam, in einer Localität einen Gehalt der Luft von 1% iger schwefliger Säure herzustellen), so dass das Abwaschen mit Sublimatlösung wol weniger umständlich und in seiner Wirkung viel sicherer ist.

Von Räucherungen mit Chlor und salpetriger Säure ist noch weniger zu erwarten.

Man ist daher bestrebt, überall, wo eine Desinfection von Localitäten voraussichtlich öfter nothwendig sein dürfte, die Mauerüberzüge wasserundurchlässig zu machen, so dass dieselben nach Bedarf und ohne Schädigung ordentlich gewaschen werden können.

Latrinen. Man wäscht die Aborte mit einer Lösung der früher genannten, als desinficirend angenommenen Substanzen. Die Erfahrung hat aber gelehrt, dass es dabei nicht so sehr auf diese oder jene desinfectorisch wirksam gedachte Substanz ankommt, sondern auf die einfache, aber streng gehandhabte Reinigung. Schlecht angeordnete, schlecht gelüftete und beleuchtete Aborte, in denen der Besucher die Umgebung mit seinem Auswurfe besudelt, werden immer Infectionen verbreiten können — die Verhinderung der Verunreinigung ist hier die erste Massregel.

Dasselbe gilt von den Senkgruben. Eine wirkliche Desinfection derselben ist wol kaum zu erreichen und die hiefür angewendete rohe Carbolsäure muss bezüglich ihrer Wirkung sehr problematisch angesehen werden. Ihre Wirksamkeit ist bisher zu wenig experimentell ermittelt worden. Wahrscheinlich würde man für eine ernstliche Desinfection enorme Mengen nöthig haben, von Eisensulphat rechnet man 9 kg auf ein Cubikmeter Materie. Richard meint, dass man vortheilhafter eine Sublimatlösung 1:500 verwenden könnte, wovon 25 Liter auf ein Cubikmeter genügen würden.

Für Schiffe ist die Schwefelräucherung allein und in Verbindung mit Waschungen mittelst desinficirender Flüssigkeiten noch am meisten gebräuchlich.

Die Chlorräucherung hat man definitiv aufgegeben, da sie die Maschinentheile angreift. Sonst wird noch nach Raoul eine Art Dampfdesinfection empfohlen, indem der aus transportablen Dampfkesseln entwickelte Dampf durch Kautschuckschläuche überallhin in die Schiffsräume und an deren Wände geleitet werden kann. Da über die Temperatur, mit

¹) Diese Thatsache ist durch die im deutschen Reichsgesundheitsamte gemachten Beobachtungen schon früher festgestellt worden.

welcher der Dampf bei solchen Vorrichtungen an die zu desinficirende Stelle gelangt, nichts Näheres bekannt und billig zu zweifeln ist, dass dieselbe über 100° gelegen sei, so ist vorläufig auf diese Vorschläge wenig Gewicht zu legen, und Richard glaubt, dass Waschungen mit Sublimat 1:1000 bessere Dienste leisten würden. Den Gefahren, welche Manipulationen mit diesem Gifte mit sich bringen, lässt sich nach seinem Dafürhalten ausweichen, wenn man bedenkt, dass es sich bei ihrer Anwendung immer nur um ausnahmsweise Verhältnisse handelt und dass ihre Anwendung unter der directen Ueberwachung eines Arztes, Pharmazeuten, Chemikers oder Officiers vor sich geht.

Wägen. Waggons, welche zum Transporte von Verwundeten im Kriege gedient haben, sollen mit reichlichem Wasser gereinigt und gespült werden — ausserdem kann, wenn es die Umstände gestatten, etwa Folgendes zur Anwendung kommen.

Wenn man über einen Dampferzeuger oder ein Ansatzrohr für den entwickelten Dampf verfügt, wird heisser oder überhitzter Wasserdampf an die Wände und insbesondere in die Winkel und Ecken geleitet, ein Vorgang, der vor allen anderen den Vorzug verdient. Zu demselben Zwecke kann eine Chlorkalklösung 1:100, Carbolsäurelösung 2—3:100 dienen, mit denen alle Theile des Waggons mit Zuhilfenahme von Bürsten oder mindestens Besen gewaschen werden.

Auf dem Bahnhof zu Tours wird in dieser Weise durch den Apparat Redard die Desinfection durchgeführt. Der entweichende Dampf hat noch 1 dm von der Ausflussöffnung eine Temperatur von 130°. Leider verdirbt Dampf von so hoher Temperatur die gewöhnlichen Anstriche, die Röhren und ist überhaupt schwer zu handhaben.

Aehnliche Wirkungen erzielt der Apparat des Ingenieurs Koch zu Strassburg. Die Desinfection der Wägen, welche zum Transporte contagiös Erkrankter gedient haben, wird in Paris mit Sulfate de nitrosyle bewerkstelligt. 20 gr hievon werden in ein 2-Litergefäss, das ½ Liter Wasser enthält, gegossen — der Wagen geschlossen. Bei der nächsten Abfahrt wird er geöffnet und während der Fahrt ventilirt. Die Tragriemen leiden unter dieser Desinfectionsweise. Leider bestehen nur zwei solche Fuhrwerke. Chautemps verlangt ihrer mindestens 24 und zwar von einer solchen Einrichtung wie in London, verkleidet mit einem gefirnissten Wollstoffe, der sich dann leicht mit desinficirender Flüssigkeit waschen lässt.

In Brüssel sind derartige Wägen noch mit einer Schublade unten versehen zur Aufnahme der Kleidungsstücke der Passagiere.

Personen. In den Epidemiespitälern und besonders bei Puerperalprocessen ist die Desinfection der Person von hoher Wichtigkeit. Bezüglich der letzteren hat man erkannt, dass die strengste Isolirung nichts hilft, insolange nicht das Personale der Aerzte, Hebammen, Wärterinnen sich der strengsten Desinfection befleissigt. Der gewöhnliche Usus besteht darin, die Hände mit einer desinficirenden Flüssigkeit zu waschen, und Dr. Pinard bedient sich seit mehreren Jahren einer Solution, welche auf 1000 Wasser 0.5 Jodkalium und 0.25 Hydrargyrum bijodatum enthält, zu Waschungen des ganzen Personals, zu Einspritzungen, Waschungen der Geschlechtstheile mit solchem Erfolge, dass keine Uebertragung in einem Krankenzimmer mehr vorkommt.

Die nach einer Operation oder Autopsie besudelten Hände werden durch Wasser, Seife und Bürste und hernach durch zwei Minuten langes Eintauchen in 5% ige Carbollösung oder in Chlorwasser desinficirt.

Ausserhalb des Spitales ist eine Desinfection der Personen viel schwieriger. Als Beispiel einer solchen wird angeführt:

Im Frühjahr 1886 wurden auf der Insel Port Cros 3955 aus China zurückgekehrte, mit Cholera angesteckte Personen ausgeschifft.

Sie wurden in Partien zu 20 entkleidet, rieben sich mit schwarzer Seife ab, wurden gedoucht und erhielten nach ihrer Abtrocknung frische Kleider. In einem Tage konnte man 950 Personen absolviren. Ihre Effecten wurden theils durch Wasserdampf, theils durch Schwefelräucherung desinficirt, theils verbrannt. Der Dampfapparat wurde von zwei Sappeurs de génie gehandhabt mit acht Arbeitern — es waren 20 Operationen für den Tag von 5 Uhr Morgens bis 5 Uhr Abends nöthig — stündlich wurden 12 Kilo Kohle verbraucht.

Bettzeuge, besudelt von den Auswurfstoffen der Kranken, werden entweder auf ½ Stunde in kochendes Wasser eingetaucht, oder in eine der früher erwähnten Desinfectionslösungen, unter denen von Tag zu Tag Sublimatlösungen von 1:1000 oder 5000 an Verwendbarkeit gewinnen. Wo nichts Besseres zu machen ist, bedient man sich der Räucherung.

Der strömende Wasserdampf wird mehr und mehr in allgemeine Verwendung genommen; wo die Objecte dies nicht gestatten, macht man Besprengungen mit Carbolsäure- und Sublimatlösung.

Hadern werden am besten durch Wasserdampf desinficirt.

Für Stuhlentleerungen und Erbrochenes dient irgend eine Desinfections-Flüssigkeit zur Aufnahme, am meisten steht in Verwendung Chlorzink, Kupfervitriol; das Sublimat beginnt sich ebenfalls zu diesem Zwecke einzubürgern. Die verschiedenen käuflichen Desinfectionspulver finden geringe Anwendung.

Bezüglich des Hustenauswurfes ist man glücklich, wenn man die Kranken dahin bringt, nicht den Boden zu besudeln, sondern Spuckschalen zu benützen, die man leicht entleeren und reinigen kann.

Professor Grancher ist mit der Herstellung eines Apparates zur Sterilisirung der Hustenauswürfe beschäftigt, in welchem diese Auswurfstoffe durch Aufkochen in einer $10^{\circ}/_{\circ}$ igen Sodalösung zerstört werden.

Cadaver. Man befeuchtet die Todtenlacken mit einer 5°/0igen Zinksolution, im Sarge macht man eine Schichte von 5-6 cm einer Mischung, welche zu gleichen Theilen aus Sägespänen und Zinksulfatpulver besteht.

Die ideale Desinfection der Leichen besteht in deren Verbrennung. Dennoch wird dieselbe weder in Frankreich noch in Belgien durchgeführt. Dagegen macht sie in Italien Fortschritte, wo dermalen 15 Städte mit Verbrennungsapparaten bedacht sind. Man mag über die Leichenverbrennung denken wie man will, der Verbrennung von Leichen nach Cholera, Variola, Scharlach, Diphtheritis und Tuberculose dürfte man sich im Allgemeinen schwerlich widersetzen.

Alle geschilderten Desinfectionsverfahren erfordern eine gewisse Gewandtheit von Seite der Ausübenden, und ein gewisses Zutrauen von Seite des Publikums. Zur Erlangung dieses doppelten Zweckes bedarf es der Unterrichtung der verschiedenen Classen der Gesellschaft über das Wesen und den Nutzen der Desinfection. Conferenzbeschlüsse, Brochüren, Journalartikel, Belehrungen in den Schulen können und müssen hiefür wirken, dass das Publicum endlich selbst nach der allgemeinen Desinfection Verlangen trägt.

Es werden folgende Thesen aufgestellt:

- 1. Damit die Desinfection fruchtbringend werde, muss sie durch ein für das ganze Land verbindliches allgemeines Gesetz für alle Fälle schwerer, contagiöser Krankheiten (zu welchen die Tuberculose zu zählen ist,) zur Pflicht gemacht werden; dasselbe Gesetz muss den behandelnden Aerzten die Anzeigepflicht für diese Krankheiten vorschreiben.
- 2. Die Desinfection verdient dann Vertrauen, wenn sie von eigens für diese Aufgabe geschulten Angestellten ausgeführt und von fachkundigen Personen überwacht wird.
- 3. Was den Kostenpunkt anbelangt, so scheint die vorherrschende Meinung dahin zu gehen, dass sie für die Armen unentgeltlich sein müsse.
- 4. Die von der Privatindustrie unternommenen Versuche von Desinfectionseinrichtungen sind viel eher zu fördern als zu hemmen, wenn man auch wünschen muss, dass überall öffentliche Desinfectionsanstalten errichtet werden.
- 5. Die Desinfection der Kleider, Möbel, Wäsche ist heute durch Dampfdesinfections-Apparate in entsprechender Weise erreichbar.
- 6. Die Desinfection der Räumlichkeiten ist mit den Mitteln, über die wir verfügen, nicht leicht in sicherer Weise auszuführen; unsere Anstrengungen müssen dahin gehen, diese Lücke die ernsteste in unserer Desinfectionspraxis auszufüllen.
- 7. Bezüglich der Aborte und Canäle gibt es nur ein gutes Mittel, nämlich: technisch tadellose Herstellung und sorgfältigste Instandhaltung.

Der Berichterstatter aus Russland, Professor Dobroslawin, ergeht sich zunächst in einer längeren Erörterung, dass möglicherweise nicht die Mikroorganismen an sich, sondern die von ihnen producirten Stoffe, ähnlich den Ptomainen, Ursache der Infectionen sind, und stützt diese Anschauung auf einige, hauptsächlich von russischen Autoren durchgeführte Experimente.

Aus den weiteren Darlegungen scheint hervorgehen zu sollen, dass manche Desinfectionsmittel und selbst die kräftigsten nicht unter allen Verhältnissen sichere Dienste leisten. Wenn beispielsweise bekannt ist, dass auf sauerem Nährboden Bakterien nur schlecht gedeihen, so gibt ein gewisser Zusatz von Mineralsäure zu Senkgrubeninhalt noch keine Gewähr der Vernichtung der Bakterien, weil die Säure eben nicht überall hindringt. So lassen sich Sputa nicht leicht mit Sublimat desinficiren und es lasse sich schwer von einem Universal-Desinfectionsmittel sprechen. Während manche Mittel sehr energisch selbst auf die Sporen einwirken, vermögen dieselben unter anderen Verhältnissen nicht einmal die Bacillen zu tödten und es producirt ein und dasselbe Desinfectionsmittel nicht immer dieselben Resultate.

Selbst der Thierversuch entscheidet nicht immer, ob ein angewendetes Desinfectionsmittel wirksam gewesen ist oder nicht, da die zu den Versuchen dienenden Thierarten nicht für alle Infectionen gleich empfänglich sind. Der Laboratoriumversuch könne daher nicht massgebend sein für die Leistungsfähigkeit eines Desinfectionsmittels in der allgemeinen Praxis und man habe nicht das Recht, den im Verlaufe von Jahrhunderten ausgebildeten Empirismus in der Desinfectionspraxis gänzlich ausser Acht zu lassen.

Dobroslawin trennt die drei verschiedenen Desinfectionsverfahren in drei Abtheilungen:

Die erste — Luftdesinfection — beschäftigt sich mit der Desinfection der Luft und den sich aus ihr absetzenden Stoffen — sie betrifft also die Wohnungen mit ihren Wänden; die zweite betrifft die Desinfection der verschiedenen flüssigen Unreinlichkeiten — Desinfection der Flüssigkeiten — die dritte, Desinfection der festen Stoffe — begreift Kleider, Möbel, Geschirre und dergleichen in sich.

Die Luft als ein Gasgemisch kann nur durch gasförmige Desinfectionsmittel gereinigt werden; trotzdem glauben noch heutzutage Einige an die Möglichkeit, die Luft durch Flüssigkeiten und durch Zerstäubungen derselben desinficiren zu können.

Die Unwirksamkeit einer im Raume zerstäubten Kaliumhypermanganatlösung zu Desinfectionszwecken hat Subbotin dargethan. Carbolsäure-, Chlorkalk- und Essigsäurelösungen wirken in gleicher Anwendung dadurch, dass sie Gase bilden und abgeben.

Dobroslawin empfiehlt auch das Wasserstoffsuperoxyd. Ein von Dr. Karajeff unter dem Namen Ozonogen, russisch Ozonorod, eingeführtes, aus einer Mischung von Kiefernöl, Terpentin, Eucalyptol und Wasser bestehendes Desinfectionsmittel, sowie das von Radulowitsch anempfohlene Terpentinwasser bilden unter Belichtung und Insolation bei Temperaturen zwischen $30-40^{\circ}$ Wasserstoffsuperoxyd, welches nach Versuchen von Dr. Lipsky auf den Organismus nicht schädlich wirkt und die Luft verbessert.

Auch Ozon kann zur Luftverbesserung beitragen und eine desinficirende Wirkung ausüben.

Dobroslawin führt Versuche von Speransky und Krukowitsch über die desinficirende Kraft des Chlorgases an. Man musste in einem Zimmer von 33 cm³ auf jeden Cubikmeter Luft 250 cm³ warmen Wassers zerstäuben, auserdem die Wände zwei- bis dreimal mit warmem Wasser befeuchten und in jeder Ecke des Zimmers Schalen mit warmem Wasser und in der Mitte desselben einen Samowar aufstellen, dann erreichte man die völlige Tödtung der Bakterien auf den in der Zimmerluft aufgehängten trockenen Läppehen, und daraus glaubt Dobroslawin schliessen zu können, dass doch eine Möglichkeit existirt, mit dieser Methode die Bakterien zu tödten, welche sich in ganz trockenem Zustande im Zimmer befinden. Es wurden hiefür 1—2 g Chlor pro Cbm. verbraucht.

Nach Aftandiloff tödtet Chlorgas in einer Menge von $30-40~{\rm g}$ pro Cbm. und bei gleichzeitiger Verdampfung von Wasser von $^{1}/_{2}$ bis 1 l pro Cbm. Luft die verschiedenen Sporen von Bakterien. Die Wirkung des Chlors beschränkt sich hiebei nur auf die äusserste Oberfläche — in Schränken befindliche Objecte werden davon nicht alterirt.

Ueber den Effect der Räucherungen mittelst schwefliger Säure kann Dobroslawin auf Grundlage vieler in Russland gemachter Versuche nur aussagen, dass dieselbe nicht desinficire.

Unter der Bezeichnung: »Technische Methoden der Luftreinigung« versteht Dobroslawin die einfache Reinigung der Wohnungen durch Erneuerung des Anstriches der Wände, Thüren etc., ferner das Waschen derselben mit Sublimatlösungen. Bei schweren Epidemien ist er unbedingt für Räucherungen mit desinficirenden Gasen.

Auch die letzte Versammlung der Aerzte der Staatsbahnen in Petersburg hält die Chlorräucherung zwar für sehr umständlich und theuer, jedoch, wenn sie gut ausgeführt wird, für sicher wirkend.

Je nach der Krankheit sollen die Wohnräume entweder streng desinficirt werden, z. B. bei Pest, Blattern, Scharlach, Masern, Flecktyphus, Diphtheritis, Febris recurrens oder blos gereinigt werden, wie bei Erysipel, Varicella, Tuberculose, Dysenterie u. s. w. Dobroslawin versteht eine gewöhnliche und verstärkte Reinigung; zu letzterer rechnet er das Zerstäuben von Terebenwasser, das Abkratzen der Wände, Abspülen mit Sublimatlösung, Erneuerung der Tünche u. s. w. Für die wirkliche Desinfection bedient man sich des Chlors, wozu 140 g Chlorkalk und 280 g Salzsäure pro Cbm. Luft nöthig sind.

Die flüssigen Abfallstoffe können schädlich wirken durch Entwicklung übler Gerüche und durch Abgabe von Infectionsträgern an die Luft. Den ersten kann man keine erhebliche krank machende Wirkung zuschreiben — ihre Beseitigung befriedigt mehr ein ästhetisches als ein sanitäres Bedürfniss; das Letztere kann nur geschehen durch Eintrocknen der Flüssigkeit und Verstäuben ihres Rückstandes oder durch Platzen von Schaumblasen auf deren Oberfläche. Daher besteht die erste Aufgabe bei der Desinfection von Flüssigkeiten darin, eine Schaumbildung, sonach die Gährung zu verhüten, und jene Mittel sind die besten, welche dieses leisten.

Das Gesetz, dass stark sauere Reaction die Mikroorganismen vernichtet, war in Russland schon lange auf empirischem Wege entdeckt, denn 1867 empfahl Ilisch schwache Lösungen von Schwefelsäure als bestes Desinfectionsmittel.

Nach Kwizinsky ist wirklich für Faecalien Schwefelsäure (1:5 Verdünnung) in 10% igen Zusätzen das beste und billigste Mittel, nach Betuzky Eisenvitriol, wovon 2 Loth pro Mann und Tag zur vollen Desinfection genügen.

Nach Kwizinsky liefert jeder Mann der von ihm untersuchten Marinesoldaten täglich 4.5 Pfund (?) Kothmassen.

Beilstein und Heidenreich constatirten ebenfalls, dass Eisenvitriol saure Reaction erzeugt, Gährung und Fäulniss aufhebt, wobei jedoch die Mikroorganismen ganz gut gedeihen.

Sublimat allein ist zu kostspielig und über eine Mischung von Sublimat, Chlorzink und Carbolsäure sind die Untersuchungen noch im Zuge.

Bei Faecalmassen lässt sich eine ernstliche Desinfection nicht durchführen, man muss sich darauf beschränken, das Schäumen der Flüssigkeit hintanzuhalten, die organischen Stoffe darin zu fällen und eine saure Reaction zu erzielen.

Zum Desodorisiren kann Torf dienen. Für wirkliche Desinfection der Stühle von inficirten Kranken kann man Sublimat anwenden. Nach einer Resolution der Versammlung der obgenannten Bahnärzte sollen nach Cholera, Ileotyphus, Dysenterie, Tuberculose und Pneumonie die Excrete desinficirt werden. Sonst sollen Kothmassen und Abfälle möglichst rasch aus der Nähe menschlicher Wohnungen entfernt werden. Befinden sie sich in der Nähe derselben dann soll dafür gesorgt sein, dass von ihnen nichts in Boden und Luft gelange, dass sie also nicht gähren.

Zur Aufnahme zu desinficirender Excrete dienen getheerte Holzeimer, enthaltend Sublimatlösung drei pro mille und Salzsäure 20/0. Nach

2 bis 3 Stunden kann man den Inhalt der Eimer dem Boden übergeben.

Zur Desodorisation von Koth und Abfallgruben benützt man Schwefelsäure (1:5) in solchen Mengen, dass $10^{\circ}/_{\circ}$ auf den flüssigen Inhalt entfallen, von Eisenvitriol braucht man pro Tag und Kopf 25 g.

Bezüglich der Desinfection der festen Stoffe, wozu Dobroslawin Möbel, Bettsachen etc. rechnet, glaubt der Verfasser, dass es nur mit dem Fortschritte unserer Kenntniss gelingen wird, für jeden Fall ein besonderes Mittel anzuwenden — vorläufig herrscht ziemlich universell die physikalische Methode, d. i. die Desinfection mittelst heissen Wasserdampfes. Derselbe ist jedoch nicht für alle Sachen anwendbar, z. B. geleimte Gegenstände, Leder.

Wäschesorten lassen sich durch 12—24stündiges Verweilen in desinficirenden Lösungen desinficiren, Möbel nur mit Chlorräucherungen. Zu diesem Zwecke besitzen die Spitäler in Petersburg doppelte Desinfectionseinrichtungen, nämlich Dampf- und Räucherkammern. Die letzteren sind in den Gefängnissspitälern durch einen ½ m³ Inhalt fassenden Holzkasten ersetzt. Man entwickelt das Chlor in der Quantität, dass auf jeden Cubikmeter des Kastens 30 g Chlor kommt.

In den Dampfkammern werden durch eine 20 Minuten andauernde Einwirkung einer Temperatur von 100° alle Mikroben getödtet. Die Salzwasseröfen von Dobroslawin — étuves selhydriques — beruhen auf der Thatsache, dass sehr concentrirte Salzlösungen Dämpfe von höherer Temperatur als 100° abgeben.

In den Thesen werden als wirklich desinficirende Mittel angeführt: Chlorgas, erhitzter Wasserdampf, Lösungen von Sublimat, Carbolsäure, Schwefelsäure, Aetzkalk, Holzessig, Steinkohlentheer, Kalkpulver, Eisenvitriol, Torfmull und Erde.

Die Desinfection soll nur in beschränkten Grenzen angewendet werden, Desinfection in grossem Massstabe soll als praktisch unausführbar und nutzlos aufgegeben werden.

Dagegen sollen umfangreiche Massnahmen für Reinigung beständig durchgeführt werden.

Der dritte Berichterstatter, Löffler, erachtet es mit Recht für nöthig, sich Rechenschaft zu geben, wie weit die Ergebnisse der neuen Forschung über Desinfectionsmittel in die Praxis gedrungen seien, und namentlich in wie weit sie in Gesetzen und Verordnungen zum Ausdrucke gekommen sind.

Ein für das ganze Deutsche Reich giltiges Gesetz über Desinfectionsverfahren existirt noch nicht.

Dagegen sind auf Grundlage der im kaiserlichen Gesundheitsamte durchgeführten Untersuchungen über den Wert verschiedener Desinfections-

mittel manche Verordnungen erflossen, und viele deutsche Städte haben Desinfectionsanstalten errichtet. Durch die Anstrengungen des preussischen Kriegsministeriums sind heute alle grösseren Garnisonslazarethe mit guten Desinfectionsapparaten versehen.

In Berlin ist durch eine Polizeiverordnung im Jahre 1887 den herrschenden, wissenschaftlich begründeten Anschauungen Rechnung ge-

tragen worden.

Auch bezüglich der Abwehr und Unterdrückung von Viehseuchen sind durch die Ausführungsbestimmungen vom 20. Juni 1886 und insbesondere durch die in der Seucheninstruction der Militär-Veterinärordnung vom Jahre 1886 vorgeschriebenen Desinfectionsverfahren bei Rotz, Milzbrand, Räude, Tollwuth, Brust- und Rothlaufseuche der Pferde die Ergebnisse der wissenschaftlichen Forschung in für die Praxis höchst wertvoller Weise berücksichtigt worden.

In Anbetracht der Thatsache, dass die Weiterverbreitung von Infectionskrankheiten durch die erkrankten Individuen und deren Excrete stattfindet, handelt es sich unter Voraussetzung der unerlässlichen Isolirung solcher Kranken um die Frage, welche Objecte zu desinficiren sind.

Das sind zunächst Faeces, Urin, Erbrochenes, Nasenausfluss, Rachenmembranen, Auswurf, Hautabscheidungen, Schweiss- und Abschuppungsproducte, Blut (Nasenbluten) und Eiter.

Für alle diese Abscheidungen ist das beste Desinfectionsmittel 5% ige Carbolsäure, mit welcher sie zu gleichen Theilen vermischt und dann definitiv in Aborte entleert werden. Sublimat ist hiezu weniger geeignet, das Kochen dieser Dejecte kat keinen Eingang in die Praxis gefunden.

Der Genesene kann durch Seifenbäder — sehr vortheilhaft durch Sublimatbäder 1 pro mille desinficirt werden.

Leichen werden entweder mit 5°/0 iger Carbolsäurelösung gewaschen oder ungewaschen in mit solcher Lösung getränkten Tüchern eingehüllt. Hauptaufgabe der Desinfectionspraxis ist die Desinfection der mit den Kranken in Berührung gekommenen Gegenstände. Unter diesen verdient zuerst die Leib- und Bettwäsche Beachtung; sie kann in verschiedener Weise behandelt werden. Sie kann mit oder ohne Zusatz von Seife anhaltend — mindestens eine halbe Stunde gekocht — sie kann durch 24 bis 48 Stunden in 5°/0 ige Carbolsäurelösung eingelegt oder aber in mit dieser Lösung getränkten Tüchern dem Dampfdesinfectionsapparate übergeben werden.

In gleicher Weise ist mit den nicht waschbaren Effecten zu verfahren.

Ledersachen müssen mit $5^{\circ}/_{\circ}$ iger Carbolsäurelösung gründlich abgerieben und abgewaschen werden.

Gegenstände von geringem Werte sind sofort zu verbrennen.

Essgeschirre, Badeutensilien werden mit $5^{\circ}/_{\circ}$ iger Carbolsäurelösung oder mit Sublimat 1 pro mille gründlich gewaschen, sodann mit heissem Wasser nachgespült.

Metallene Gegenstände werden ausgekocht, der Fussboden wird mit 5%/oiger Carbolsäure gescheuert, Tapeten und gestrichene Wände werden mit Brot scharf und trocken abgerieben, das zu diesem Zwecke verwendete und bei der Manipulation abgefallene Brot verbrannt, eventuell besudelte Tapeten und Anstrich nach Anfeuchtung mit 5%/oiger Carbolsäurelösung entfernt.

Polirte Möbel werden mit trockenen Lappen abgerieben, nicht polirte mit $5^{\circ}/_{\circ}$ iger Carbolsäurelösung.

Holzwandungen werden mit 5%/0 iger Carbolsäurelösung gründlich abgescheuert, nach 24 Stunden mit heisser Sodalösung 2:100 und hierauf wieder mit 5%/0 iger Carbollösung gewaschen, hierauf der Raum durch 24 Stunden gelüftet. Ueber den Desinfectionswerth von Besprengungen der Wände mit 1 pro mille Sublimatlösung und hinterher mit 1%/0 iger Sodalösung fehlen noch Erfahrungen, namentlich darüber, ob und wie viel Quecksilberverbindungen im Raume verbleiben.

Eine Luftdesinfection wird mit Recht nirgends verlangt. Bezüglich der Aborte wird sowohl an den Sitzbrettern und Trichtern, als auch an den Wänden, der Decke und dem Fussboden die Scheuerung mit 5% iger Carbolsäurelösung und reichliche Nachspülung empfohlen. Abtrittsgruben sollen mit roher Carbolsäure oder mit Salzsäure bis zum Eintritt saurer Reaction behandelt werden; ebenso können zu diesem Zwecke Eisenvitriol und dergleichen verwendet werden.

Das im Kielraum von Schiffen befindliche Bilgewasser wird durch Sublimatlösung 1 pro mille desinficirt, die zu Stande gekommene Desinfectionsflüssigkeit gleichmässig vertheilt, abgelassen und noch dreimal durch Einpumpen von Seewasser der Raum ausgespült.

Streumaterialien und Dünger aus Ställen müssen verbrannt oder gekocht oder so tief vergraben werden, dass sie mindestens mit einer $1\,m$ hohen Erdschichte bedeckt sind.

Der Fussboden der Ställe ist mit der darunter befindlichen Erde 10—20 cm auszuheben und mit Aetzkalk und gesunder Erde zu ersetzen. Der Aushub ist unschädlich unterzubringen.

Für die Bereitung der Carbollösungen soll sogenannte 100% ige Carbolsäure — Acidum carbolicum depuratum — dienen, ein Präparat, welches noch andere Stoffe enthält, daher 1 Theil mit 18 Theilen Wasser für die 5% ige und 1 Theil mit 45 Theilen Wasser für die 2% ige Lösung zu verwenden ist. In dieser Mischung befinden sich noch immer ungelöste, ölartige Tropfen nicht gelöst, sie ist daher vor dem Gebrauche zu schütteln. Sublimat kann nur unter den für heftige Gifte vorgeschriebenen Cautelen verwendet werden. Lösungen, welche von dieser Substanz mit

gewöhnlichem Wasser gemacht werden, erhalten zweckmässig den gleichen Zusatz an Kochsalz. Für Desinfection mit Wasserdampf bestehen bereits sehr zahlreiche Apparate verschiedener Construction. Am einfachsten sind die nach der preussischen Instruction vom 14. Juli 1884 improvisirten, welche sich nach eingehenden bakteriologischen Untersuchungen des Stabsarztes Dr. Groschke sehr gut in der Praxis bewährt haben, bestehend aus einem Waschkessel und dem aufgesetzten, mit Filz abgedichteten und mit Deckel verschlossenen Fasse.

Die centrale Oeffnung des Deckels nimmt das Thermometer auf. Im Durchschnitte zeigte dasselbe 1 St. 20 M. nach dem Anheizen 100°; nach zweistündigem Verweilen im strömenden Dampfe waren die Objecte kaum feucht, trockneten rasch, alle Sporen waren vernichtet. Die Beschaffung derartiger Apparate für kleinere Lazarethe wurde angeordnet. Bei Vorhandensein eines Dampfentwicklers, wie z. B. auf Dampfschiffen, lassen sich leicht solche Apparate an die Dampfleitung für die Dampfpfeife anschliessen, wie das in der Anleitung zur Desinfection S. M. Schiffe vorgeschrieben ist.

Der nach Flügge's Angabe hergestellte Apparat, sowie jener der Firma Henneberg leisten ebenfalls gute Dienste. Die mit Ueberdruck arbeitenden Dampfapparate sind concessionspflichtig und erfordern auch unbedingt eine sachverständige Behandlung. So der von der Firma Oscar Schimmel und Comp. in Chemnitz construirte, welchen die Stadt Berlin in ihrer Desinfectionsanstalt im Betriebe hat, der von Budenberg in Dortmund und jener von Walz und Windscheid in Aachen.

Der Patentdurchdämpfungswagen der Actiengesellschaft Schäffer et Walker, sowie die Desinfectionskammer von Sijmons und Huygen in Rotterdam weisen keine bakteriologische Untersuchung bezüglich ihrer Leistungsfähigheit nach. Sie arbeiten mit Gemischen von Wasserdampf und heisser Luft, über deren Wirksamkeit noch Zweifel bestehen. Ein wichtiger Bestandtheil der Dampfdesinfectionsapparate ist das von Wolffhügel eingeführte Thermometer mit Läutewerk, welches den Moment anzeigt, in welchem die Temperatur im Innern der Objecte 100° erreicht hat. Nach den Versuchen von Groschke in dem oben angeführten improvisirten Apparate, sowie von Esmarch im Henneberg'schen Desinfectectionsapparate muss eine Temperatur von 100° zum mindesten 85 Minuten auf die Objecte einwirken, um alle Sporen zu tödten.

Die auf 110° und darüber gespannten Dämpfe bewirken nach den Untersuchungen von Grancher in dem Apparate von Geneste und Herscher eine schnellere Vernichtung aller Keime. Bei solchen Temperaturen werden jedoch die Objecte auch mehr geschädigt, so dass Flecken von Blut und Eiter durch Waschen hinterher nicht mehr beseitigt werden können.

Die Zeitdauer der Desinfection wird sich nach der Leichtigkeit oder Schwierigkeit der Vernichtung der Krankheitserreger bemessen.

Da die Baeillen der Cholera, des Typhus, der Diphtherie, des Rothlaufes, die Eiter- und Erysipelcoccen, die Pneumoniebakterien unter 100°
absterben, das Contagium der Pocken schon bei 60° vernichtet wird, auch
die Contagien der übrigen acuten Exantheme keine grosse Resistenz gegen
Hitze besitzen, die wahrscheinlich als Erreger der Dysenterie anzusehenden
Amöben sicher bei niederen Temperaturen absterben, die Sporen der
Pilze der Hautkrankheiten gleichfalls durch Temperaturen unter 100°
umkommen, da die Milzbrandsporen im Dampfe von 100° in wenigen
Minuten, jene der Tuberculose in 15—30 Minuten sicher zu Grunde gehen
und nur die hier kaum in Betracht kommenden Sporen des Rauschbrandes
eine längere Behandlung erfordern, so dürfte in der Praxis eine halbstündige Einwirkung 100°igen Wasserdampfes ausreichen.

Transportable Desinfectionsapparate haben den Uebelstand der Beschränkung im Raume.

Die Desinfectionspraxis wird sich erheblich erleichtern mit der fortschreitenden Erkenntniss über die biologischen Eigenthümlichkeiten der jeweiligen Infectionsträger.

So lässt sich die Thatsache, dass Choleraorganismen durch Austrocknen in kürzester Zeit zu Grunde gehen, schon dahin verwerthen, dass man die durch diese Krankheiten inficirten Localitäten und Geräthe bei Undurchführbarkeit anderer Desinfectionsmassregeln ausser Gebrauch stellt und anhaltend, eventuell unter Zuhilfenahme künstlicher Erwärmung, durch Ventilation austrocknet. Das Verfahren ist für Cholera erprobt und hat auch in die Instruction für Vornahme der Desinfection bei Cholera Aufnahme gefunden.

Im Anhange folgen die Polizeiverordnung von Berlin, betreffend die Desinfection bei ansteckenden Krankheiten, und das Desinfections-Verfahren aus der Seuchen-Instruction der Militär-Veterinärordnung.

Bei der Discussion des Themas bittet Richard, von der Theorie der Desinfection völlig abzusehen und sich nur streng an das Thema zu halten. Er selbst kann seit der Zeit, als die Sanitätsberichte erstattet wurden, bis heute, nach ungefähr vier Monaten, glückliche Neuerungen in Frankreich als eine Ergänzung des damals erstatteten Berichtes vorführen.

Der Gemeinderath von Paris hat die Kosten für eine öffentliche Desinfectionsanstalt bewilligt. Jede Desinfectionsoperation dauert im Ganzen 39 Minuten mit dem System Geneste und Herscher, der Betrieb hat durch seine Einfachheit und Sicherheit die Verwaltung in Erstaunen gesetzt.

Auch transportable Desinfectionsapparate nach dem genannten Systeme für das Land und für Schiffe haben sich das Vertrauen in der Bevölkerung erobert, und ein Apparat zur Desinfection der Sputa von Phthisikern nach Grancher steht bereits in Verwendung.

Die Desinfection muss aber nicht bloss hie und da geübt werden, sie muss in die universelle methodische Praxis eingeführt, sie muss durch das Gesetz obligatorisch werden.

Man sollte jedoch eine Verpflichtung nicht auferlegen, bevor man der Bevölkerung die Mittel an die Hand gibt, dieser Verpflichtung nachkommen zu können und jene zu diesem Zwecke zu schulen in ähnlicher Weise wie die Feuerwehr.

Auch die persönliche Freiheit hat hier ihre Grenzen — es darf nicht Jedermann freigestellt sein, die Erreger von Infectionskrankheiten weiter zu verbreiten, und ein Gesetz, welches dem einen die Freiheit in seinem Handeln zusichert zum Nachtheile des andern, wäre ein schlechtes und ungerechtes Gesetz. Wenn eine Weingegend von der Reblaus befallen wird, werden es sich die Partisane der allgemeinen Freiheit überlegen, die Massregeln gegen deren Weiterverbreitung zu bekämpfen.

Richard lenkt nochmals die Aufmerksamkeit auf die Nothwendigkeit eines streng desinfectorischen Vorgehens gegen die mörderische Seuche der Tuberculose. Richard empfiehlt hierauf die fünf Thesen, auf welche sich alle drei Berichterstatter geeinigt haben, zur Annahme.

Löffler theilt mit, dass nach Laplace Mischungen von Carbolund Salzsäure sehr kräftig desinficiren. Ein Gemisch von 2º/₀iger Carbolsäure mit 1º/₀iger Salzsäure tödtet Milzbrandsporen nach siebentägiger Einwirkung, während sie jedes der genannten Mittel für sich noch nach 30 Tagen nicht vernichtet. 4º/₀ige Carbolsäure mit 2º/₀iger Salzsäurelösung tödtet Milzbrandsporen nach 30 Minuten; denselben Effect bringt ¹/₂₀ pro mille Sublimat und ¹/₂ pro mille Salzsäurelösung nach eintägiger Einwirkung zu Stande. Auch Carbolöl, das nach Wolffhügel nicht desinficirt, kann diese Fähigkeit durch Zusatz von Aether und Salzsäure erlangen.

Dobroslawin weist darauf hin, dass im Handel eine Menge werthloser Desinfectionspräparate vorkommen, für welche das Publicum unnützerweise grosse Summen verschleudert. Selbst Aerzte steuern diesem Uebel nicht. Man muss diese werthlosen Präparate bekämpfen und dafür die wirksamen empfehlen.

Weiterhin soll man streng unterscheiden zwischen dem Begriffe der Desinfection und jenem der allgemeinen Reinigung.

Durch die Confundirung dieser beiden Begriffe wird Publicum und Administration zu einer leichtfertigen Behandlung der Desinfection verleitet, während eine gründliche Desinfection in Wahrheit viel Geld und Mühe kostet.

Daher soll man denn auch die Desinfection auf die dringenden Fälle beschränken, nämlich auf Infectionskrankheiten, welche durch Aerzte constatirt worden sind. Auf die Bemerkungen von Chautemps und Richard, dass Dampfapparate mit Spannung, welche Temperaturen bis zu 115° zu erreichen gestatten, eine Vernichtung der Mikroben und besonders ihrer Sporen sicherer garantiren, als einfacher Wasserdampf von 100°, entgegnet Löffler, dass die Sporen der bekannten pathogenen Mikroorganismen alle bei 100° getödtet werden, und dass demnach einfacher Wasserdampf von solcher Temperatur zur Desinfection ausreiche, dass ferner mit Ueberdruck wirkende Apparate Flecken von Blut, Eiter u. dgl. in das Gewebe unaustilgbar fixiren, und dass endlich solche Apparate dem Gesetze bei der Anwendung von Dampfkesseln entsprechend grössere Vorsichtsmassregeln und Umständlichkeit erheisehen.

Auch Wolffhügel hält den 100°igen einfachen Wasserdampf zur Desinfection für ausreichend, wenn auch anerkannt werden müsse, dass gespannter Wasserdampf von höherer Temperatur denselben Zweck in kürzerer Zeit erreichen lasse.

Wo die Mittel fehlen, gespannten Wasserdampf in Anwendung zu bringen, muss man sich daher mit gewöhnlichem Wasserdampf von 100° begnügen und dafür die Desinfectionsdauer erhöhen. Durch dieses letztere Auskunftsmittel lasse sich auch in hochgelegenen Orten die Desinfection mittelst Wasserdampfes durchführen.

Rücksichtlich der von Dobroslawin eingeführten étuves selhydriques ist zu bemerken, dass bereits im Reichsgesundheitsamte constatirt worden sei, dass die Dämpfe concentrirter Salzlösungen eine höhere Temperatur als 100° besitzen. Auffallenderweise wirkt aber der aus Salzlösungen entwickelte Dampf trotz seiner höheren Temperatur noch langsamer als gewöhnlicher Wasserdampf, was wohl daher rühre, dass die Erhöhung der Temperatur auf Kosten der Tension des Dampfes stattfinde.

Unter den in These 4 vorgeschlagenen Desinfectionsmitteln vermisst Wolffhügel das Auskochen in Wasser.

In demselben Sinne äussert sich van Overbeck de Meyer, wogegen Richard die bei weitem grössere Leistungsfähigkeit von überhitztem gegen gewöhnlichen Wasserdampf nochmals hervorhebt. Dobroslawin beschreibt einen Dampfdesinfector nach seiner Angabe, welcher seit einigen Wochen mit Erfolg in einem Gefängnisse in Petersburg functionirt.

Nach kurzer Debatte über den Antrag, die Desinfection gratis durchzuführen, werden die Thesen 1 und 2 in folgender Fassung angenommen:

- 1. Es ist zu wünschen, dass in jedem Lande durch Gesetz die Desinfection gegenüber gewissen Krankheiten obligatorisch gemacht werde, und
- 2. dass ein geschultes Personal und das Material, das zur Desinfection erforderlich, überall der Bevölkerung von Seite der Ortsbehörden

zur Verfügung gestellt, dass die Desinfection wenigstens für Unbemittelte unentgeltlich ausgeführt werde.

Bezüglich der Anfragen Nötzel's und Metschnikoff's über die desinfectorische Leistungsfähigkeit der Carbolsäure allein und derselben in Combination mit anderen Säuren, insbesondere gegen die Diphtheriebacillen, sowie über den Wirkungswerth der Kaliseife äussert sich Löffler, dass der Zusatz von anderen Säuren zu Carbolsäure die Objecte nicht beschädige, dass der Diphtheriebacillus keine Dauersporen bildet und ausserhalb des Thierkörpers nur kurze Zeit lebensfähig bleibe, — daher auch für ihn das jetzige Desinfectionsverfahren genüge.

Kaliseife hält er für kein directes Desinfectionsmittel.

Fränkel spricht in demselben Sinne und hebt hervor, dass der Zusatz von Weinsäure zur Carbolsäure und zum Sublimat die besten desinfectorischen Erfolge ergab.

Eine Mischung von Acid. tart. 5, Acid. carbol. 20 und Sublimat 1 auf 1000 leiste alles Wünschenswerthe. Hierauf wurden die 3. und 4. These in folgender Fassung angenommen:

- 3. Dass die Tuberculose unter diejenigen Krankheiten aufgenommen werde, welche unbedingt die Desinfection erheischen.
- 4. Dass man sich über eine möglichst beschränkte Anzahl von Mitteln einige, die für die Desinfection zu empfehlen sind.

In erster Reihe stehen unter den Desinfectionsmitteln:

Auskochen in Wasser, Wasserdampf von mindestens 100° Hitze, Sublimat zu 1 pro mille, Carbolsäure zu 5°/0, letztere eventuell unter Säurezusatz (Salz- oder Weinsäure).

Zu These 5 bemerkt Jansens, dass Räucherungen in Brüssel seit jeher mit gutem Erfolge geübt worden seien, wogegen Chautemps die durch Miguel nachgewiesene Unwirksamkeit derselben zur Desinfection des Staubes hervorhebt und, da man die Räucherungen doch nicht ganz aufgeben solle, die Anwendung des in den Bleikammern erhältlichen Sulfat de nitrosyle empfiehlt dort, wo eine andere Desinfection nicht platzgreifen kann.

Gärtner, Löffler und Kowalski erklären sich auf Grund zahlreicher Untersuchungen gegen die Verwendung der schwefligen Säure zu Desinfectionszwecken, worauf die These 5 unverändert angenommen wird:

»Von Räucherungen im Allgemeinen und insbesondere von den Räucherungen mit schwefeliger Säure ist in der Desinfection ferner Abstand zu nehmen.«

Zur 4. These bemerkt Mauczka, er möchte die Klärung der Frage herbeiführen, ob Desinfectionsapparate, welche mit Wasserdampf und heisser Luft (System Thursfield) arbeiten, von den Bakteriologen als leistungsfähig anerkannt werden. Löffler bezweifelt ihre Leistungsfähigkeit, wogegen Weichselbaum mit den Thursfield'schen Apparaten günstige Desinfectionsergebnisse bakteriologisch nachgewiesen habe.

Kowalski hat an dem in der hygienischen Ausstellung beim VI. internationalen Congress für Hygiene und Demographie in Wien aufgestellten Thursfield'schen Desinfectionsapparate Versuche angestellt und ungünstige Resultate damit erhalten.

Im Binnenraum des Desinfectionsapparates hatte die Temperatur laut Anzeige eingelegter Maximalthermometer nach einer Stunde 86° und nach vier Stunden 96° erreicht, natürlich waren die verschiedenen zur Probe eingelegten Culturen von Mikroorganismen dabei entwicklungsfähig verblieben.

Ebenso hat Gruber¹) mit dem Thursfield'schen Apparate älterer Construction in einem Falle gar keinen, im anderen einen nur unvollkommenen Desinfectionserfolg erzielen können, wiewohl die freiaufgehängten Thermometer nach vierstündigem Versuche sämmtlich Temperaturen über 130 °C. aufwiesen. Das strömende Gemisch von Wasserdampf und Heissluft, wie es im Thursfield'schen Apparate älterer Construction zur Anwendung kommt, dringt nicht in das Innere der Objecte und seine Desinfectionskraft ist jener heisser Luft nicht überlegen.

Als der Apparat durch Einziehung eines neuen Bodens so abgeändert worden war, dsss in den Desinfectionsraum nur noch Wasserdampf allein einströmte, während die Heissluft zur Erwärmung der Wandungen diente, hatte ein Desinfectionsversuch schon nach einer Dauer von 65 Minuten ein entsprechendes Resultat ergeben. Thursfield änderte nun seinen Apparat in seiner Construction vollkommen ab, so dass nunmehr die Desinfectionskammer die Gestalt eines liegenden Cylinders hat, welcher mit Ausnahme der vorderen Grundfläche allseitig von dem Wasser des Dampfkessels umgeben ist.

Mehrere Versuche mit diesem Apparate ergaben Gruber, dass das Durchdringen der Hitze in das Innere der Objecte ungemein rasch erfolgt. Es genügten 38, 71, 74 und 55 Minuten, um auch das dichteste Object durch und durch auf 100° zu erhitzen, und zwar kamen hier dichtgeschnürte Bündel von 60 cm Durchmesser und 90 bis 100 cm Länge zur Erprobung.

Milzbrandsporen — die nach Koch's Angaben bereits bei 5 bis 10 Minuten dauernder Einwirkung 100°igen Dampfes zu Grunde gehen — waren, wie die Culturversuche lehrten, hier in der That abgetödtet worden, selbst nachdem man das Heizen nur 30 Minuten über das Pyrometersignal fortgesetzt hatte. Man kann sicher sein, sagt Gruber, dass man

¹) Gesundheitsingenieur, Bd. XI, Nr. 9; ferner Centralblatt für Bakteriologie, Bd. III, Nr. 20.

durch 1½ stündige Heizung des Apparates auch die dichtesten, in der gewöhnlichen Praxis vorkommenden Objecte von Milzbrand desinficiren kann. Es gibt zwar Sporen von einigen Saprophyten, z. B. von Bacillus subtilis, welche auch durch länger dauernde Einwirkung von strömendem Wasserdampf unter gewöhnlichem Druck nicht getödtet werden; von den bekannten pathogenen Mikroorganismen sind die Milzbrand- und Tuberkelsporen die widerstandsfähigsten, und da diese in Thursfield's Apparate vernichtet werden, so kann man mit der Leistung desselben zufrieden sein, ohne auf die kostspieligen Apparate mit gespanntem Dampf zu greifen.

Bei der Erörterung der Frage, woher die durch die Versuche im Reichsgesundheitsamte bekannt gewordene Ueberlegenheit des strömend heissen Wasserdampfes allein über heisse Luft oder ein Gemisch von dieser und jenem in der Desinfectionspraxis rühre, wird zunächst nachgewiesen, dass es nicht das Strömen des Dampfes sein könne, welches die energischere Desinfectionswirkung und das rasche Eindringen der Hitze ins Innere der Objecte bewirkt; denn auch der »stagnirende Wasserdampf« in geschlossenen Gefässen mit erhöhtem Drucke wirkt ohne jedes Strömen ganz vortrefflich, andererseits wirkt, wie die Versuche von Gruber zeigen, ein sehr energisch strömendes Gemisch von Heissluft und Dampf nicht in der gleichen Weise. Das Strömen des Dampfes geht ferner am leichtesten dort vor sich, wo demselben die geringsten Widerstände entgegenstehen, und da um die Objecte genug Wege hiefür immer offen stehen, braucht auch heftig strömender Dampf sich nicht erst durch die engsten Kanälchen in denselben durchzuwinden.

Es bleibt demnach nur die Annahme, dass entweder die Mischung mit Luft oder die Ueberhitzung des Wasserdampfes den letzteren zu Desinfectionszwecken weniger tauglich mache.

Durch vergleichende Versuche wurde ermittelt, dass ein Baumwollballen von gesättigt reinem Wasserdampf in 8, von überhitztem Wasserdampf in 6 und von trockener heisser Luft in 106 Minuten durchdrungen wurde. Somit scheint überhitzter Wasserdampf noch rascher zu wirken als gesättigter von 100°.

```
Nun wiegt 1 m<sup>3</sup> Luft von 0° bei 760 mm — 1·293 gr

1 » » 100^{\circ} » 760 » — 0·946 »

1 » Wasserdampf » 100^{\circ} » 760 » — 0·588 »
```

Hiezu ist zu bemerken, dass die grosse Diffusionsgeschwindigkeit von Gasen von geringem specifischen Gewicht seit langem bekannt ist und schon beim Gasindicator nach Ansell — einem Warnapparat für Steinkohlengruben — praktische Verwerthung gefunden hat; das leichtere Gas drängt das schwerere, in diesem Falle der Wasserdampf die Luft aus den Poren der Objecte heraus und tritt mit seinem Wärmevorrathe ins Innere derselben.

Dabei condensirt er sich an kühleren Punkten und diese Condensation mit Entbindung der entsprechenden, früher latent gewesenen Wärmemengen, sowie die infolge der geringen Durchfeuchtung grösser gewordene Leitungsfähigkeit der Objecte und endlich die gute Leitungsfähigkeit des Wasserdampfes selbst fördert die Wirkung des Wasserdampfes. Gruber befürwortet deshalb, den Dampf von obenher in den Desinfectionskasten eintreten zu lassen.

Nach Versuchen, welche Kowalski mit diesem neuartigen Thursfield'schen Apparate angestellt hat, ist es, um einen sicheren Desinfectionserfolg zu erzielen, gerathen, noch 2—3 Stunden, nachdem ein im Desinfectionskasten frei aufgehängter Contactthermometer die Temperatur von 100° signalisirt hat, die Dampfentwicklung zu unterhalten.

Mit dieser Vorbedingung sind denn auch von Seite des technischen und administrativen Militär-Comités, sowie des Militär-Sanitäts-Comités zahlreiche Erprobungen des Thursfield'schen Apparates neuerer Construction mit günstigem Erfolge vorgenommen worden.

Die bei diesen Erprobungen als für die grössere Solidität und Dauerhaftigkeit, sowie für eine raschere Desinfectionswirkung des Apparates als nöthig erachteten Abänderungen, welche sich auf einen besseren Verschluss, auf die Ersetzung des leicht durch Verkohlung Schaden leidenden Holzrahmens des Gestells durch eine Eisenconstruction, auf die Schützung des gläsernen Wasserstandzeigers und Anbringung eines zweiten Hahnes am oberen Ende desselben, sowie auf eine Ausnützung der beim Desinfectionsvorgange aufgewendeten Heizung zur Vorwärmung des zeitweise in den Kessel zum Ersatze des verdampfenden nachfliessenden Wassers beziehen, wurden von dem Erzeuger sofort anerkannt, und hat sich derselbe verpflichtet, auch in dieser Richtung seinen Apparat zu verbessern.

Einen ähnlichen Desinfectionsapparat wie Thursfield — jedoch ganz unabhängig von diesem — hat auch G. van Overbeck de Meyer construirt und functionirt derselbe sehr günstig¹). Ferner wurde im Jahre 1886 in Frankreich auf Anregung von Brouardel gelegentlich der Schweissfrieselepidemie in Montmorillon ein fahrbarer Desinfectionsapparat zum speciellen Gebrauche auf dem Lande durch Geneste und Herscher erbaut.

Dieser gleiche Apparat wird jetzt vielfach in Frankreich mit nur geringer Modification der ursprünglichen Form angewandt und ist ganz ähnlich construirt, wie die in Deutschland eingeführten transportablen Desinfectionsapparate ²).

¹⁾ Centralblatt für Bakteriologie Bd. IV. Nr. 5.

²) Du Mesnil. La desinfection par la vapeur sous pression et les étuves locomobiles dans le département de la Seine. Ann. d'hygiène publique 1888, Nr. 6. Centralblatt für Bakteriologie Bd. V, Nr. 5.

v. Esmarch 1) hat mit Rücksicht auf die Thatsache, dass von Koch, Guttmann und Verfasser selbst über die Widerstandsfähigkeit der als Probeobject für die Beurtheilung der Wirksamkeit eines Desinfectionsverfahrens oft verwendeten Milzbrandsporen verschiedene Angaben vorlagen, diese Frage einer neuerlichen Prüfung unterzogen. Verfasser constatirte von verschiedenen aus den Jahren 1880—1888 stammenden, auf Kartoffeln und Agar gezüchteten Sporenarten, dass ihre Resistenz gegen 5% ige Carbolsäure und gegen strömenden Wasserdampf eine sehr verschiedene sei. Ein grosser Theil derselben wurde durch viertägiges, andere erst durch 45tägiges Liegen in Carbolsäure vernichtet. Strömender Dampf tödtete einen Theil nach 3 Minuten, während ein anderer Theil noch nach 12 Minuten lebensfähig blieb.

Die Ursache dieses Verhaltens ist nicht aufgeklärt und es bleibt demnach nichts anderes übrig, als bei der Prüfung von Desinfections-Apparaten und Verfahren auf deren Wirksamkeit dieselben hiezu verwendteten Sporen gleichzeitig zum Vergleiche auf ihr Verhalten gegen $5^{\circ}/_{\circ}$ ige Carbolsäure und strömenden Wasserdampf zu untersuchen, um nicht zu falschen Ergebnissen zu gelangen.

Budde hat ²) die Bedeutung der Spannkraft, Temperatur und Bewegung des Dampfes bei Desinfection in Dampfapparaten untersucht und kommt dabei zu folgenden Resultaten: Unter sonst gleichartigen Bedingungen trägt eine höhere Spannung, sowie die Bewegung des Dampfes dazu bei, dass die Wärme schneller in die Tiefe des Desinfectionsobjectes eindringt.

Die ununterbrochene Einströmung von stark gespanntem Dampfe in und die ununterbrochene Ausströmung desselben aus dem Desinfectionsraume repräsentirt die wirksamste Form der Anwendung des Dampfes.

In einem zweiten Aufsatze: Neue Constructionen für Dampfdesinfections-Apparate nebst Versuchen über ihre Functionsfähigkeit 3) empfiehlt derselbe Autor für grössere Verhältnisse, den Dampf a) als strömenden, b) stark gespannten und c) nicht überhitzten anzuwenden, und entwickelt dabei die Grundzüge der Construction der betreffenden Apparate.

Unter kleineren Verhältnissen kann man sich mit den langsamer wirkenden Apparaten begnügen, wobei man von überhitztem Wasserdampfe absehen und den strömenden gesättigten Wasserdampf ohne wesentlichen Ueberdruck vorziehen soll.

Von derartigen Apparaten gibt es wohl schon allenthalben vorzügliche Repräsentanten, allein sie scheinen dem Verfasser noch immer viel zu theuer zu sein, um die erforderliche Ausbreitung zu gewinnen. Der-

¹⁾ Zeitschrift für Hygiene Bd. V, p. 67.

²⁾ Archiv für Hygiene Bd. IX, Heft 3.

⁵⁾ Zeitschrift für Hygiene Bd. VII, Heft 3.

artige Apparate sollen nach der Ansicht des Verfassers nämlich nicht nur in den kleineren Krankenhäusern, sondern auch in Gefängnissen, Armenanstalten u. dgl. vorhanden sein; das Hin- und Hertransportiren der sogenannten transportablen Apparate zum Zwecke ihrer Verwendung in verschiedenen Orten hält der Verfasser für kostspielig und unpraktisch.

Verfasser beschreibt nun einen nach seinen Angaben von Capitän Reck construirten Apparat, welcher wesentliche Vorzüge vor den bis jetzt allgemein bekannten verticalen Desinfectionsöfen bietet. Während der Dampf bei den letztgedachten Oefen den Cylinder von unten nach oben durchströmt, strömt er in dem ersteren Apparate oben ein und unten aus, was das Entweichen der Luft erleichtert und dadurch die vollständige Erwärmung des Apparates und das Eindringen des Dampfes und der Wärme in die Tiefe der Desinfectionsobjecte beschleunigt. Ferner bietet er den Vorzug vor den bisher bekannten verticalen Desinfectionsöfen dar, dass das Ein- und Ausladen, bzw. der inficirten und desinficirten Objecte in zwei vollständig getrennten Räumen stattfindet; endlich arbeitet der Apparat immer mit gesättigtem Dampfe.

Dieser Ofen kostet mit 4.5 Cubikfuss disponiblem Desinfectionsraum 266 Mark; mit 8.3 Cubikfuss 333 Mark, der dazu gehörende Trockenapparat kostet 50 Mark und der eiserne Ring mit Deckel für die Oeffnung in der Scheidewand 16.5 Mark. Bezüglich der Details muss auf die Originalabhandlung verwiesen worden.

Nach einer eingehenden Auseinandersetzung darüber, dass es in der Praxis nicht möglich ist, den Erfolg jeder Dampfdesinfection nach dem Absterben gleichzeitig eingebrachter Mikroben constatiren zu wollen, sondern dass man sich mit der Anzeige des Contactthermometers begnügen muss, welcher meldet, dass soeben im Desinfectionsraum die Temperatur von 100 °C. erreicht wurde, und hierauf noch verschieden lange Zeit die Desinfectionsobjecte der Einwirkung dieser Temperatur überlässt — kommt der Verfasser zur Darlegung der mit dem genannten Dampfdesinfections-Apparate erzielten Versuchsergebnisse. Er hebt zunächst die bekannte Thatsache hervor, dass, wiewohl die benützten Apparate alle mit strömendem, gesättigten Dampfe, jedoch ohne wesentlichen Ueberdruck, also mit einer Temperatur von etwa 100 ° C. arbeiteten — dennoch die Maximalthermometer im Desinfectionsraume Temperaturen bis zu 105 ° C. aufwiesen. Er erklärt diese Erscheinung durch die Dampfcondensation, in welcher ein mächtiges Mittel gegeben ist, die Erwärmung sowohl des Desinfectionsraumes als des Inneren der Objecte zu befördern.

Damit ist auch vom physikalischen Standpunkte der Beweis geliefert, wie ihn Esmarch ') vom bakteriologischen Standpunkte geliefert hat, dass jede Ueberhitzung des Dampfes, durch welche ja die Condensation ver-

¹⁾ A. a. O.

ringert wird, in der Desinfectionstechnik irrationell ist. Ferner wird darauf hingewiesen, dass Salzlösungen wohl einen höheren Siedepunkt als reines Wasser und die aus ersteren entwickelten Dämpfe eine höhere Temperatur als die des letzteren besitzen, dass jedoch die gesättigten Dämpfe von Salzlösungen bei derselben Temperatur eine niedrigere Spannung haben, als die Dämpfe aus gewöhnlichem Wasser.

Bei den hier in Rede stehenden Apparaten liess sich durch Anwendung von Salslösungen keine höhere Temperatur im Desinfectionsraume erzielen als durch Verwendung blossen Wassers, und die Frage, ob und inwieweit Salzlösungen für die Desinfection Besseres leisten als gewöhnliches Wasser, muss erst durch weitere Versuche ausgetragen werden.

Den Zeitraum, durch welchen die Desinfectionsobjecte nach der Anzeige des Contactthermometers der Einwirkung des Dampfes noch ausgesetzt bleiben sollen, nimmt der Verfasser in Anbetracht dessen, dass Milzbrandsporen nach den meisten vorliegenden Untersuchungen in den meisten Fällen durch Behandlung mit Dampf von der gewöhnlichen Qualität in wenigen Minuten getödtet zu werden scheinen und dass man in der That in den hier erwähnten Apparaten Temperaturgrade von mehr als 100 in den Objecten erreicht, mit etwa 15 Minuten an, hält es jedoch für selbstverständlich, dass man verschiedenen Umständen und den Forderungen, welche neuere bakteriologische Untersuchungen in dieser Beziehung stellen möchten, Rechnung tragen muss.

Bezüglich der Grösse der Desinfectionsapparate geht, wie Verfasser bemerkt, in kleineren Städten, wenigstens in Dänemark, die Entwicklung in der Richtung, dass man, anstatt die Desinfectionsarbeit auf einzelne grössere Apparate zu concentriren, sie im Gegentheile auf viele kleinere vertheilt.

Ueber die Ergebnisse der Prüfung einiger neuer Desinfectionsapparate berichtet Pfuhl 1).

Der Schaeffer- et Walcker'sche Apparat, im Wesentlichen nach dem Muster des von Gruber ²) geprüften und empfohlenen Thursfield'schen Apparates construirt, besteht der Hauptsache nach aus zwei ineinandergeschobenen, liegenden Cylindern, von denen der innere die Desinfectionskammer bildet. Der Raum zwischen beiden Cylindern stellt den Wasserkessel für die Dampfentwicklung dar. Die Desinfectionskammer ist also, wie bei den von G. van Overbeck de Meyer angegebenen Apparaten, vom Wasserkessel mantelartig umgeben. Der Apparat ergab bei zwei Untersuchungen eine mangelhafte Leistung, welche darauf zurückzuführen ist, dass der zu verdampfende Wasservorrath für die Dauer der Desinfection zu klein bemessen war.

¹⁾ Deutsche militärärztliche Zeitschrift 1879 Heft 8 und 1890 Heft 2.

²⁾ A. a. O.

Nur wenn an dem Apparat noch eine Vorrichtung angebracht wird, welche die Vorwärmung des zum Nachfüllen nöthigen Wassers gestattet, ist zu hoffen, dass er für die Praxis brauchbar wird.

Einen solchen Vorwärmer für das Kesselspeisewasser hat Thursfield neuerdings anbringen lassen, nachdem er durch die Versuchsergebnisse von Weichselbaum veranlasst worden war, in die Gebrauchsanweisung für seinen Apparat die Bestimmung aufzunehmen, dass die Desinfection eine Stunde lang über das Klingeln des Contactthermometers hinaus fortgesetzt werden müsste. Für eine so lange Dauer der Desinfection war der ursprüngliche Wasservorrath des Kessels nicht ausreichend. Als ein besonderer Vorzug des neuen Thursfield'schen Apparates wird noch angeführt, dass die Innenfläche des Deckels mit einem Hanfgeflecht bekleidet ist, um das Beschmutzen der eingebrachten Gegenstände mit weisser Oelfarbe wenigstens von Seite des Deckels zu verhüten. Zweckmässig wäre es, wenn noch der übrige Kammerraum mit einem Rost aus dünnen Holzleisten ausgelegt würde, damit die zu desinficirenden Gegenstände nirgends den Oelanstrich berühren 1).

Die Desinfectionsversuche mit dem Budenbergschen Dampf-Desinfectionsapparate, welcher im Wesentlichen eine ähnliche Construction besitzt. wie die anderen derartigen Apparate und bei welchem der Dampf oben in die Desinfectionskammer eintritt, ergaben zuerst, dass die Desinfection auf zweierlei Weise vorgenommen werden kann: 1. mit strömendem Wasserdampf ohne nennenswerthen Ueberdruck bei offener Klappe, 2. mit strömendem gespannten Wasserdampf bei geschlossener Klappe. Im ersteren Falle braucht man nur während der ganzen Dauer der Desinfection die Klappe offen zu lassen. Weiters stellte sich heraus, dass der Apparat rascher und kräftiger wirkt, wenn er mit gespanntem Dampf betrieben wird, dass man bei der Desinfection lockerer, sehr viel Luft enthaltender Sachen, um eine starke Durchnässung derselben zu vermeiden, den Dampf vorsichtig und langsam zulassen müsse und dass die Milzbrandsporen, welche man als die Repräsentanten der widerstandsfähigsten Infectionskeime ansehen kann, in dem Budenberg'schen Apparat sicher abgetödtet werden, wenn sie von dem Augenblicke an, wo Dampf von 100 0 bis zu ihnen gedrungen ist noch 10 Minuten lang der Einwirkung des Dampfes überlassen werden. Es ist daher an derjenigen Stelle zwischen oder in den Desinfectionsobjecten, wo der Dampf am schwersten hineindringen kann, ein Contactthermometer anzubringen, welches ein Läutewerk in Bewegung setzt, sobald Dampf von 1000 bis dahin gelangt ist. Von diesem Zeitpunkte ab brauchte man eigentlich nur noch 10 Minuten lang die Desinfection fortzusetzen. Da die Bedienungsmannschaften jedoch nicht immer

¹) Die erwähnten Constructionsverbesserungen hat Thursfield, wie oben nachgewiesen wurde, über Antrag des Militär-Sanitäts-Comités vorgenommen.

mit Sicherheit herausfinden werden, wo der Dampf am schwersten hingelangen kann, so empfiehlt es sich, um sicher zu gehen, die Desinfection eine halbe Stunde lang über den Beginn des Klingelns hinaus fortzusetzen. Zum Schutze der Desinfectionsobjecte gegen das Condensationswasser sollen jene mit einer wollenen Decke überbreitet werden.

Wenn ein Budenberg'scher Apparat angekauft wird, so empfiehlt es sich, dass der Fabrikant oder ein anderer Sachverständiger den Apparat aufstellt und die Leute, die ihn später zu bedienen haben, in der Hand-

habung desselben unterweist.

Ueber den Einfluss der Desinfection mit strömendem und gespanntem Wasserdampf auf verschiedene Kleiderstoffe hat Levison¹) einige Untersuchungen angestellt, woraus zunächst bezüglich der Farbe hervorgeht, dass echt gefärbte Stoffe hiebei nicht leiden, unecht gefärbte etwas gebleicht und dass die Farben bisweilen etwas verwischt werden, dass weisse Stoffe gewöhnlich etwas vergilben, und dass gewisse Flecke — Eiter, Blut, Fäcalien — durch die Behandlung in den Apparaten fixirt werden, so dass sie nicht durch gewöhnliches Waschen, sondern nur durch Anwendung von Bleichmitteln, wie z. B. von einer Lösung von Chlor, unterchlorigsauren Salzen u. s. w., entfernt werden können.

Bezüglich des Einflusses der Desinfection auf die Consistenz wurden folgende Stoffe geprüft: Lackenleinwand, Bettzwillich (flächserne Stoffe), Stout, geblümter Kattun, gestreifter Schürzenstoff (baumwollene Stoffe), Kirsey und Buckskin (wollene Stoffe für Mannskleider), Flanell (halbwollener), Schwanenboy (halb- und ganzwollener) und Hessians (grober Stoff, der zum Matratzenüberzug verwendet wird).

Die Versuche wurden in der Weise gemacht, dass jede Zeugprobe in drei Theile geschnitten wurde; von den drei Stücken wurde das eine undesinficirt geprüft, das zweite zehnmal im Reck'schen Apparate, das dritte ebenfalls zehnmal in Geneste und Herscher's Apparat desinficirt; nach jeder Behandlung wurden die Stoffe getrocknet und abgekühlt und dann wieder in den Apparat gebracht. Die Zerreisslichkeit der Stoffe wurde mit einem besondeten Apparate ermittelt.

Die flächsernen Stoffe hatten am meisten gelitten, weniger die wollenen Stoffe; bei einigen halbwollenen Stoffen, sowie bei Hessians wurde sogar nach zehnmaliger Desinfection die Zerreisslichkeit geringer gefunden als vor der Desinfection.

Als Schlussresultat muss jedoch hervorgehoben werden, dass selbst die Stoffe, welche am meisten durch die zehnmalige Desinfection gelitten hatten, doch vollständig brauchbar waren, und es muss also eine einmalige Desinfection für alle geprüften Stoffe ohne jeglichen Einfluss auf ihre Brauchbarkeit und ihren Werth sein.

¹⁾ Zeitschrift f. Hygiene, Bd. VI.

Theils unmittelbar vor, theils während und nach den Arbeiten des VI. internationalen Congresses sind auch noch andere, ziemlich zahlreiche, die Desinfectionspraxis betreffende Untersuchungen angestellt worden, deren wichtigste Ergebnisse kurz im Nachstehenden aufgeführt werden.

Gegenüber der von König 1) gemachten Angabe, dass durch Räucherung mit Sublimatdämpfen eine sichere Desinfection von Krankenräumen erreicht und dass durch nachheriges Räuchern mittelst schwefliger Säure das im Raume befindliche Sublimat unschädlich gemacht werden könne, haben Heräus und Kreisbohm,2) der erstere im hygienischen Institute in Berlin, der letztere in Göttingen durch Versuche nachgewiesen, dass durch Sublimaträucherungen eine zuverlässige Desinfection von Krankenräumen nicht erzielt werden kann.

Ueber einige Untersuchungen betreffs der desinficirenden Wirkungen des Kalkes, durchgeführt im hygienischen Institute zu Berlin, berichtet Liborius 3). Der Kalk hat seit jeher als ein gutes Mittel sowohl für therapeutische als für Desinfectionszwecke in gewissem Ansehen gestanden, bei der Klärung und Unschädlichmachung von Abwässern spielt er heute noch überall eine grosse Rolle. Den Anstoss für seine Verwendung in letztgenannter Richtung haben die von Virchow und Hausmann gelegentlich der Studien über Reinigung und Entwässerung von Berlin gemachten Beobachtungen über die Wirksamkeit der Süvern'schen Mischung (100 Theile Aetzkalk, 8 Theile Steinkohlentheer, 33 Theile Chlormagnesium zu 1000 Theilen mit Wasser gemischt) gegeben. So lange Aetzkalk in den mit der Süvern'schen Masse versetzten Gemischen von Abwässern vorwaltete, zeigten sich dieselben frei von Mikroorganismen, welche nur noch mit geringer Beweglichkeit im Bodensatze nachgewiesen werden konnten, mit der fortschreitenden Ausfällung des Kalkes als Carbonat jedoch wieder zu reichlicher Entwicklung gelangten. Durch Zusatz von Steinkohlentheer wurde das Wiederauftreten und die Vermehrung von Mikroorganismen sehr vermindert.

Die Choleracommission in Berlin 1873 empfahl den Aetzkalk zur Desinfection mit dem Zusatze, dass er, als leicht in Carbonat übergehend und dadurch an seiner Wirksamkeit einbüssend, gleichwie das Aetznatron im Ueberschusse anzuwenden sei, so dass 25—30 gr gebrannter Kalk oder das entsprechende Aequivalent an Aetznatron pro Kopf und Tag zur Desinfection des Gruben- oder Tonneninhaltes benöthigt werden. Frische Kalkmilch wird als Anstrich zu Desinfectionszwecken gleicherweise empfohlen.

Koch hat vom Kalkwasser einen geringen, erst nach 15—20tägiger Einwirkung bemerkbaren, entwicklungshemmenden Einfluss auf Milzbrandsporen constatirt.

¹⁾ Centralblatt für Chirurgie 1885, Nr. 12.

²⁾ Zeitschrift für Hygiene, I. Bd.

³⁾ Zeitschrift für Hygiene, II. Bd.

In Anbetracht der Allgegenwärtigkeit von Kalk erschien ein weiteres Studium der desinfectorischen Wirkung desselben unter Berücksichtigung

des bakteriologischen Standpunktes erwünscht.

Aus Vorversuchen mit faulendem Bouillon und mit Canalwasser ergab sich, dass zwar durch Zusatz von Kalkwasser von einem anfänglichen Kalkgehalte von 0.09% eine vollständige und dauernde Vernichtung aller vorhandenen Keime nirgends stattfand, dass aber nach sechsstündiger Einwirkung die überwiegende Mehrzahl der in den Versuchsflüssigkeiten enthaltenen Mikroorganismen getödtet wurde.

Bei der Prüfung der Wirkungsfähigkeit des Kalkwassers auf Typhusbacillen stellte sich heraus, dass ein anfänglicher Kalkgehalt von 0.00740/0 genügte, um alle in der Versuchsflüssigkeit befindlichen Typhuskeime

dauernd zu vernichten.

Bezüglich der Cholerabacillen ergab sich, dass ein anfänglicher Kalkgehalt von 0.0246% bei sechsstündiger Einwirkung alle in der Versuchsflüssigkeit enthaltenen Keime vernichtete.

Um für die Desinfectionsversuche mit Kalk ähnliche Verhältnisse zu schaffen, wie sie die Praxis bietet, wurden Cholerabacillen zu gekochtem und alkalisch gemachtem Fleischwasser hinzugesetzt, worin die Eiweissgerinnsel einen sehr grobflockigen, dicken Bodensatz bilden.

Der Zusatz von 10-20% iger Kalkmilch zu einem halben Liter eines solchen Gemisches genügte, um nach wenigen Stunden, sicher nach

einem Tage, vollständige Desinfection zu bewirken.

Aetzkalkpulver in einem Zusatze von 2 g reichte aus, um einen halben Liter des vorgenannten Gemisches binnen 31/2 Stunden völlig zu desinficiren; 10 g rohen, gebrannten Kalkes leisteten dasselbe nach fünfstündiger Einwirkung.

Ueber den bekannten Henneberg'schen Desinfecteur äussert sich Esmarch¹) folgendermassen:

- 1. Der ungespannte Wasserdampf von 100° C., wenn er schnell strömt, ist wohl geeignet, auch im Grossen als sicheres, verhältnissmässig rasch wirkendes Desinfectionsmittel angewendet zu werden, und
- 2. der Henneberg'sche Desinfector, der auf dieser Grundlage construirt ist, entspricht den Anforderungen eines Desinfectionsapparates und ist auch in Bezug auf billigen und einfachen Betrieb als solcher zu empfehlen.

Guttmann und Merke2) machten Versuche über die Wirksamkeit von Carbolsäure- und Sublimatbepinselungen an Wandungen, auf denen sie Milzbrandsporen mittelst Seidenfäden angebracht hatten. Carbolsäure erwies sich als vollkommen unzureichend, eine Sublimatlösung von 1:1000 wirkte besser, von 75 Milzbrandfäden waren

¹⁾ Zeitschrift für Hygiene, II. Bd.

²⁾ Virchow's Archiv, Bd. CVII, Hft. 3.

34 sterilisirt, an den übrigen 41 waren noch nicht alle Sporen getödtet. Guttmann und Merke halten trotzdem den Sublimatspray zur Desinfection von Wänden für zweckmässig, da in praxi an denselben wohl niemals so viel Sporen befindlich sein dürften, als beim Versuche mit den Seidenfäden, und da sie meinen, dass auch die durch die Bepinselung nicht sofort getödteten Sporen wenigstens abgeschwemmt werden.

Ihre Desinfectionsmethode ist folgende:

Nach reichlicher Durchtränkung des Fussbodens mit 1 pro mille Sublimatlösung geschieht die Desinfection mit einem modificirten Sprayapparat¹). Zunächst wird die Decke solange mit Sublimatspray befeuchtet, bis Tropfen zusammenfliessen; desgleichen die Wände, bis die Sublimatlösung daran herunterrieselt. Zur sorgfältigen Entfernung des Sublimatsbeginnt nun in ganz gleicher Weise die Besprengung der Decke und Wände mit 1% iger Sodalösung; nach dem Trocknen werden die Wände mit einem dichten Besen abgefegt.

Das Verfahren ist sehr billig: für ein Zimmer von 60 m³ sind etwa 8 kg Sublimatlösung erforderlich, welche bei Selbstbereitung mit gewöhnlichem Wasser 4.5 Pfennige kosten. Ebensoviel kostet ungefähr die Sodalösung. Dazu kommt der Lohn eines Arbeiters für sechs Stunden, welche etwa die Desinfection eines Zimmers dauern würde. Die Tapeten leiden unter dem Verfahren nicht.

Die anscheinend gefährliche Verwendung des Sublimates für die Arbeiter und die Zimmerbewohner wird für letztere vermieden durch die Nachbesprengung mit Sodalösung; für die ersteren treten nur dann unangenehme Wirkungen ein, wenn ihnen Theile der an die Zimmerdecke gebrachten Desinfectionsflüssigkeit in Augen und Mund gelangen. Diese Gefahr aber wird umgangen durch eine Modification des Sprayapparates, in Folge deren die Flüssigkeit in einiger Entfernung von dem Arbeiter abtröpfelt. Guttmann und Merke empfehlen das Verfahren.

Esmarch²) hat über den Keimgehalt der Wände und ihre Desinfection Untersuchungen angestellt. Durch Abreiben von Wandstellen mittelst feiner, sterilisirter Schwämmehen und Vertheilung der davon aufgenommenen Keime in Nährgelatine mittelst des sogenannten Rollenverfahrens konnte constatirt werden, dass — auch abgesehen von Räumen, an welchen die Luft dauernd mit Staub erfüllt ist, der Keimgehalt sämmtlicher Wände eines Zimmers kein unbedeutender ist. Auf 1 Quadratmeter kommen sicher über 20.000 Keime, welche alle nur ganz lose an der Wand sitzen, leicht abgelöst und sowohl der Zimmerluft beigemengt, als auch nach aussen getragen werden können, daher das Abreissen und Abkratzen von Tapeten ohne vorhergehende Desinfection, als der Weiterverbreitung von Infectionen Vorschub leistend, zu verurtheilen sei.

^{1) 25} Mark bei Kaehler und Martini in Berlin, Wilhelmstrasse 50.

²⁾ A. a. O.

Bezüglich seiner Versuche über die Desinfection von Wänden führt Esmarch an, dass er solche mit Gasen und mit trockener Hitze als von vornherein wirkungslos nicht erst angestellt habe.

Strömender Wasserdampf büsst natürlich gleich hinter der Austrittsöffnung so viel Wärme ein, dass er mit der für die Desinfection noth-

wendigen Temperatur nicht an die Wand herankommt.

Wenn man aber den Dampf nach dem Ausströmen durch eine Flamme streichen lässt, so kann derselbe bis auf 200—300° gebracht werden, da er die Heiz- und Verbrennungsgase der Flamme mitreisst. Die Resultate der Versuche, um mittelst auf diese Weise überhitzten, strömenden und mit Verbrennungsgasen geschwängerten Wasserdampfes eine Desinfection von Tapeten zu erzielen, waren nicht befriedigend; überdies können durch den Luftzug des mit Heftigkeit auf die Wand aufprallenden Dampfes die lose daran sitzenden Keime abgelöst und ins Zimmer verstäubt werden, ehe die hohe Temperatur dieselben getödtet hat, was dem Desinfectionszwecke gerade entgegenstünde.

Esmarch unterzog nun eigens hergerichtete Tapeten der Desinfection durch Waschungen mittelst Lösungen von Sublimat und Carbolsäure, durch Berieselung mit diesen Lösungen und durch Abreiben mit Brod, welches letztere Verfahren zur Reinigung von Wänden und Tapeten schon lange in Verwendung steht, und verglich die bei diesen Untersuchungen erhaltenen Resultate hinsichtlich des Desinfectionserfolges.

Das Abwaschen mit den genannten Lösungen kann zwar die Wände nicht absolut keimfrei machen — aber schon nach der ersten, noch mehr nach der zweiten Waschung ist ein bedeutender Erfolg zu bemerken.

Da hiebei die Concentrationen der desinficirenden Lösungen keinen Unterschied bewirken, so scheint die Hauptwirkung des Waschens in der mechanischen Abschwemmung zu bestehen, wofür noch weiters spricht, dass durch feuchte Schwämme allein die Wandungen grösstentheils von Keimen befreit werden können.

Beim Berieseln der Wände ist zunächst zu bemerken, dass dadurch ein Ablösen der Keime von denselben und Verbreiten in der Zimmerluft nicht zu befürchten ist. Mit sterilisirtem Wasser berieselte und nicht berieselte Stellen einer und derselben Wand zeigen einen gleichen Keimgehalt.

Das Besprayen hat ungefähr denselben Erfolg — die Wirkung des Spray ist daher nicht wie jene einer Waschung in einer mechanischen Abschwemmung zu suchen — denn die Keime bleiben ja, wie soeben bemerkt, dabei an den Wänden haften, sondern in einer Tödtung der Keime an der Wand mittelst des im Berieselungswasser gelösten Desinfectionsmittels, welches hier länger mit der Wand, respective den Keimen in Berührung bleibt, als beim blossen Abwaschen; berieselte, d. h. mit Spray behandelte Wände bleiben viel länger nass als abgewaschene.

Veränderung der Farbe etc. der Wände durch Besprayen ist nicht zu befürchten.

Das Abreiben mit Brot gab die besten Resultate. In drei Fällen waren die so behandelten Wände schon nach der ersten Abreibung keimfrei, nach der zweiten in allen, bis auf die sehr keimreiche Wand eines Thierstalles. Die Keime haften, wie sich bei der Cultivirung derselben herausstellte, dem Brote ungemein hartnäckig an. Die beim Abreiben zur Erde gefallenen Brotstückchen müssen sorgfältig gesammelt und verbrannt werden.

Das Abwaschen lässt sich ohne Schädigung der Wandverkleidung nur dann durchführen, wenn dieselbe aus einem Oelanstrich besteht oder in einer anderen Art waschbar gemacht worden ist.

Selbstverständlich ist für die gründlichste Beseitigung des Waschwassers Sorge zu tragen. Die Anwendung von Spray schadet den Wandungen in ihrem Aussehen nicht. Sublimat bleibt aber lange haften und ob das durch hinterheriges Besprayen mittelst einer Sodalösung daraus umgewandelte Oxychlorid nicht giftig ist, bleibt dahingestellt.

Carbolsäurespray dagegen ist sicherlich nicht giftig, die Wände behalten aber für längere Zeit einen fatalen Geruch, wodurch der Aufenthalt in solchen Räumen unbehaglich wird.

Das Abreiben mit Brot macht die Wände rasch rein, schön aussehend, sofort wieder bewohnbar, schadet auch den Arbeitern nicht und wird daher von Esmarch bestens empfohlen.

Ueber Desinfection von Wohnräumen hat Krupin¹) einen Bericht bezüglich der Desinfectionsversuche im städtischen Barackenhospital in St. Petersburg veröffentlicht, welcher deshalb grösserer Beachtung werth ist, weil es sich dabei um thatsächlich in praxi beobachtete Verhältnisse handelt.

Nach einer kurzen Darlegung, dass die croupöse Pneumonie auch unter jene Krankheiten inbegriffen werden müsse, welche in Spitälern wenigstens eine Desinfection erheischen, weil gerade in Spitälern die durch andere Krankheiten Heimgesuchten sehr oft dem Keime der Pneumonie erliegen, wird angeführt, dass man die schweflige Säure mit Rücksicht auf ihre durch Versuche im deutschen Reichsgesundheitsamte festgestellte Wirkungslosigkeit für Desinfectionszwecke gleich von vorneherein bei Seite gelassen und zuerst das Chlorgas als desinficirendes Agens im neu eröffneten Hospitale in Anwendung gezogen habe.

Hiebei stellte sich heraus, dass die Desinfection der Baracken mit Chlor für eine gewisse Anzahl von Infectionskrankheiten, als: Typhus exanthematicus und abdominalis, recurrens, Scharlach, Masern und Pocken ausreichend war.

¹⁾ Zeitschrift für Hygiene, Bd. III.

Bald wurden jedoch Zweifel über die desinfectorische Wirkung des Chlorgases rege. In der für die Unterbringung von Scharlachkranken bestimmten Baracke erkrankten nämlich nach Aufnahme eines mit Diphtherie complicirten Falles einige Scharlachreconvalescenten an Diphtherie, weshalb die Baracke geschlossen und mit Chlor desinficirt wurde. Zu diesem Zwecke waren für 900 m³ Rauminhalt 50 kg unterchlorigsaurer Kalk und 65 kg Salzsäure aufgewendet worden. Nach gründlicher Waschung und Ventilation blieb die Baracke durch sieben Monate unbelegt.

Als hierauf bei Masernkranken, die ohne Diphtheriecomplication zugewachsen waren, in dieser Baracke wiederum Diphtherie auftrat, wurde dieselbe evacuirt und abermals mit Chlor desinficirt, und zwar energischer wie früher, da diesmal 150 g unterchlorigsaurer Kalk und 165 g Salzsäure für den Cubikmeter Raum in Verwendung kamen. Nach siebenmonatlichem Leerstehen wurden Pockenkranke in die Baracke gelegt. Einige von diesen, sowie das ganze Pflegepersonal erkrankte an Diphtheritis, die Baracke wurde neuerdings mit Chlor desinficirt und hierauf nur mit erwachsenen Typhuskranken belegt, worauf keine weitere Diphtherieinfection beobachtet wurde.

Die Annahme, dass diese Diphtheriecomplicationen als zufällige, von aussen eingeschleppte erachtet werden müssen, ist nicht haltbar mit Rücksicht auf die Thatsache, dass gleichzeitig weder in drei mit Masernkranken belegten Baracken, noch in den anderen, mit Infectionskranken anderer Art belegten Abtheilungen desselben Spitals Diphtherie beobachtet wurde. Vielmehr war anzunehmen, dass die Diphtheriekeime aus der einmal inficirten Baracke durch Chlordesinfection nicht hatten vertilgt werden können, und dass erst nach wiederholter Desinfection und nach der Belegung mit für Diphtherie weniger empfänglichen Erwachsenen die Erkrankungen an Diphtherie aufgehört hatten.

Der hiemit rege gewordene Zweifel über die Wirksamkeit der Chlordesinfection führte zu directen Versuchen in den Krankenräumen selbst, demnach unter Verhältnissen, wie sie in praxi vorkommen, wobei als Versuchsobject Anthraxsporen verwendet wurden.

Diese Versuche haben ein durchwegs unbefriedigendes Resultat ergeben.

Die Hauptursache dieses negativen Erfolges liegt darin, dass für die praktische Anwendung des Chlorgases zu Desinfectionszwecken die nöthigen Vorbedingungen nicht gegeben sind, nämlich gleichmässige Vertheilung im Raume und allseitige, zur Vernichtung der Mikroorganismen genügende Concentration; dazu kommt noch die Kostspieligkeit dieses Verfahrens. In besonders eingerichteten Kammern, deren Wände nahezu hermetisch schliessen und von Chlorgas nicht oder nur wenig angegriffen werden, lässt sich durch energische Chlorräucherungen ein besseres Resultat erzielen.

Da sich demnach die Chlordesinfection nur unter gewissen, in der Praxis kaum erfüllbaren Bedingungen als erfolgreich erwiesen hat, in Wohnräumen aber so gut wie nichts leistet und überdies kostspielig ist, so wurden andere Desinfectionsmittel zur Desinficirung der Baracken versucht.

Von der durch König empfohlenen Sublimaträucherung wurde Abstand genommen, dagegen wurden Zerstäubungen, »Spray« mit Sublimatlösungen von 1%,00, mit Carbollösungen von 5% und mit einer Mischung dieser beiden Flüssigkeiten angewendet nach vorheriger Waschung der Decken, Dielen und Wände und mit nachheriger Lüftung der Baracken.

Auch in Privatwohnungen ist dasselbe Verfahren geübt worden.

Es wird nun hervorgehoben, dass das Sublimat absolut unschädlich ist für die späteren Bewohner der desinficirten Räumlichkeiten. Weder bei den die Desinfection Ausführenden, noch bei den Nachbewohnern der desinficirten Locale wurden unangenehme oder gar schädliche Wirkungen wahrgenommen.

Da auch nach Koch und Gaffky derlei Desinfectionen von Schiffen keine üble Nachwirkung auf die Schiffmannschaft herbeiführen, so darf man sich bezüglich der vermeintlichen Gefahren, welche mit einer Sublimatdesinfection einhergehen, beruhigen — der Besprayung wird gegenüber der Waschung mit den genannten Desinfectionsflüssigkeiten der Vorzug eingeräumt.

Der Bericht schliesst mit den Sätzen:

- 1. Die Desinfection in Krankenräumen wird am vortheilhaftesten ausgeführt durch Waschung und Besprengung mit Sublimat- und Carbolsublimatlösungen.
- 2. Zur wirksamen Desinfection sind die beiden Mittel in folgender Concentration zu nehmen: Sublimat 1:1000 allein oder zur Hälfte mit Carbolsäure $(5^{\circ})_{\circ}$.
- 3. Nach den bis jetzt gemachten Erfahrungen ist diese Art der Desinfection für die späteren Bewohner der Räume unschädlich.
- 4. Schliesslich entspricht dieses Desinfectionsverfahren angesichts seiner Billigkeit, Bequemlichkeit und Wirksamkeit beim gegenwärtigen Stande der Wissenschaft allen praktischen Anforderungen.

Aus einem Vortrage von P. Guttmann: Statistisches über Desinfection bei contagiösen Krankheiten in Berlin¹) verdienen zunächst einige allgemeine Bemerkungen über Desinfection an dieser Stelle hervorgehoben zu werden.

In der Verordnung des königl. Polizei-Präsidiums in Berlin sind die ansteckenden Volkskrankheiten in solche eingetheilt, welche unbedingte Desinfection erheischen (a), und in solche, bei welchen auf besondere amt-

¹⁾ Berliner klinische Wochenschrift Nr. 22, 1888.

liche Anordnung Desinfection stattfinden muss, andererseits dringend empfohlen wird (b).

Zur Gruppe a) gehören: asiatische Cholera, Pocken, Fleck- und Rückfalls-Typhus, Diphtherie, zur Gruppe b): Darmtyphus, Scharlach, epi-

demische Ruhr, Masern, Keuchhusten, Lungenschwindsucht.

Guttmann hält die Einreihung des Scharlach in die Gruppe a) für nothwendig, da der Scharlach in demselben Grade ansteckend ist wie die gefürchtete Diphtherie und eine nur um ein Geringes niedrigere Mortalität aufweist als diese. Dagegen scheint ihm die Einbeziehung des Rückfalltyphus in die Gruppe a) nicht gerechtfertigt. Derselbe, nach der gebräuchlicheren Bezeichnung Febris recurrens genannt, scheint nach allen bisherigen Erfahrungen eine wenig contagiöse Krankheit zu sein und hat eine geringere Mortalität. Gerechtfertigter schiene die Einstellung des schon wegen der Darmdejectionen mehr contagiösen und wegen seines wesentlich höheren Mortalitätspercentes mehr zu fürchtenden Darmtyphus in die Gruppe a).

Bezüglich des von demselben Autor gemachten, bereits früher angeführten Vorschlages, zur Desinfection von Wohnräumen, beziehungsweise deren Wänden eine Bestäubung mit Sublimatlösung von 1 pro mille und hierauf zur Unschädlichmachung des haftenden Sublimates einen Spray mit 1 % iger Sodalösung zu verwenden, wird gegenüber den von Esmarch — sowie den von Petri in derselben Angelegenheit erhobenen Bedenken, sowie mit Rücksicht auf die Beobachtungen von Krupin Folgendes geltend gemacht:

»Es sind im verflossenen Jahre von den Arbeitern in der städtischen Desinfectionsanstalt in ihren dienstfreien Stunden etwa 100 Wohnungen nach der Methode von Guttmann-Merke desinficirt worden, und es ist niemals eine Klage von den Bewohnern gekommen, dass eine Unzuträglichkeit und Schädigung der Gesundheit bemerkt worden wäre. Von den Arbeitern, die mit der Desinfection der Wohnungen beauftragt waren, sind nur einigemale in der ersten Zeit geringe Belästigungen empfunden worden, die durch Niederträufeln des Sublimatsprays auf die Augen hervorgerufen waren. Später, als die Arbeiter sich während des Besprengens einer Gesichtsmaske bedienten, fielen diese Belästigungen ganz fort. Auch diese Arbeiter sind stets gesund geblieben. Für die Desinfection eines mittelgrossen Zimmers brauchen 2 Arbeiter 3 Stunden Zeit.«

Durch diese Thatsachen darf wohl der Beweis als praktisch erbracht bezeichnet werden, dass ein schädlicher Einfluss der Sublimatdesinfection mit nachfolgender Besprengung mittelst kohlensauren Natrons nicht vorhanden ist. Es kann daher der theoretische Einwand, dass die bei diesem

¹) Eulenberg's Vierteljahrsschrift für gerichtliche Medicin und öffentliches Sanitätswesen 1888, Z. 48, pag. 280.

Verfahren sich bildende Quecksilberoxychloridverbindung in den Magen gelangen, in der sich hier findenden freien Salzsäure lösen und so eine Quecksilbervergiftung erzeugen könne, keine Bedenken gegen das Verfahren erregen.

Bezüglich der Desinfection der Choleradejectionen in Hospitälern bemerkt Wassiljew in einem Aufsatze¹), dass in Anbetracht der grossen Menge der bei solchen Epidemien zu desinficirenden Dejecte eine Sicherheit darüber, ob die Desinfectionssubstanz in genügender Quantität zugesetzt und mit dem zu Desinficirenden auch gründlich durchgemischt worden sei, schwer zu erlangen ist.

Der Gedanke, Choleradejectionen zu verbrennen, müsse aufgegeben werden.

Verfasser schlägt für die Desinfection von Choleradejecten einen Apparat vor, in welchem dieselben in grossem Massstabe durch überhitzten Wasserdampf sterilisirt werden können.

Es handelt sich dabei im Wesentlichen um die Aufstellung fassungsreicher Kessel, in denen unter gutem Verschlusse die zu desinficirenden Massen durch Dampf erhitzt und schliesslich entleert werden.

Ueber das Verhalten der Typhus- und Cholerabacillen zu säure- oder alkalihaltigem Nährboden hat Kitasato 1) Studien angestellt, welche in der folgenden Uebersicht zusammengefasst sind:

Der Zusatz, welcher sowohl in Nährgelatine als in Bouillon erforderlich war, um Typhus- und Cholerabacillen zn vernichten, beträgt bei:

Präparat	Für Typhusbacillen	Für Cholerabacillen
Salzsäure und Salpetersäure	0.20/0	0.1320/0
Phosphorsäure	0.254-0.30/0	0.1830/0
Schwefelsäure	0.073-0.08%	0.049%
Schweflige Säure	0.24-0.280/0	0.128-0.148
Milchsäure	0.40/0	0.27-0.430/0
Essigsäure	0.275-0.30/0	0.173-0.20/0
Ameisensäure	0.3-0.3560/0	0.183 - 0.22%
Citronen, Wein- und Apfelsäure	0.43-0.4760/0	$0.27 - 0.3^{\circ}/_{\circ}$
Oxalsäure	0.3-0.3660/0	0.26-0.285%
Borsäure	2.4-2.70/0	0.92-1.33%
Gerbsäure	$1.52 - 1.66^{\circ}/_{\circ}$	1.15-1.30/0
Carbolsäure	0.286-0.340/0	0.146-0.50/0
Aetzkalk	0.0966%	0.10/0
Aetzkali, Aetznatron	0.16-0.180/0	0.2-0.237%

¹⁾ u. 2) Zeitschrift für Hygiene, Bd. 3.

Ammoniak	0 24-0.30/0	0.2-0.3389/0
Kaliumearbonat	0.784-0.810/0	$0.9 - 1^{0}/_{0}$
Natriumearbonat	2.32 - 2.47%	$2.72 - 3.45^{\circ}/_{\circ}$
Ammoniumcarbonat	0.9-1%	1.2-1.30/0
Lithiumcarbonat	0.635 - 0.666 ⁰ / ₀	0.7-0.720/0
Baryumhydrat	0.93-1%	1.3—1.420/0

Die Cholerabacillen sind demnach im Ganzen gegen Säuren, die Typhusbacillen gegen Alkalien empfindlicher. Die Borsäure scheint kein Desinfectionsmittel zu sein. Ausserdem wurde Chlor-, Brom- und Jodkalium versucht; diese Salze erwiesen sich gegen beide Bacillenarten so gut wie unwirksam.

Aus einem Aufsatze von Salomonsen und Levison über Versuche mit verschiedenen Desinfectionsapparaten 1) möge hier zuerst hervorgehoben werden, dass bei der Gepflogenheit, die Wirkungsfähigkeit eines Desinfectionsverfahrens oder Desinfectionsapparates mittelst Gartenerdesporen zu erproben, zu berücksichtigen ist dass diese Mikroorganismen nach dem einstimmigen Urtheile der damit beschäftigt gewesenen Bakteriologen sehr widerstandsfähig sind, widerstandsfähiger als die Sporen des Heubacillus und des Milzbrandes, und dass es darum nicht angeht, einen Apparat oder ein Verfahren, welches wohl andere Mikroorganismen vernichtet, während einzelne Gartenerdesporen noch entwicklungsfähig bleiben, ohneweiters als unzulänglich für Desinfectionszwecke zu bezeichnen. Jedenfalls müssen für die Entscheidung dieser Frage auch Reinculturen anderer und insbesondere bereits bekannter pathogener Keime dem zu beurtheilenden Desinfectionsverfahren ausgesetzt werden, und den Gartenerdesporen bleibt ihr Werth gewahrt, unter verschiedenen Verfahren das am meisten wirksamste anzuzeigen.

Die Ergebnisse der Versuche, welche im Universitätslaboratorium für medicinische Bakteriologie mit verschiedenen, in den Krankenanstalten Kopenhagens in Betrieb stehenden Desinfectionsapparaten angestellt worden sind, lassen sich kurz zusammenfassen. Sie stimmen mit denen überein, welche zuerst im Reichsgesundheitsamte in Berlin und später dann vielfach anderwärts beobachtet worden sind.

Vor allem erwiesen sich die Apparate, welche mit heisser Luft allein oder mit einem Gemische von heisser Luft und Wasserdampf betrieben wurden, als für eine sichere und vollständige Desinfection nicht zureichend. Es erscheint überflüssig, die hiezu in Verwendung stehenden Systeme namentlich anzuführen und deren Construction näher zu beschreiben.

Die Desinfection mit strömendem Wasserdampf lieferte nach einer Stunde und wenig darüber im Ganzen gute Resultate. Unzukömmlichkeiten

¹⁾ Zeitschrift für Hygiene Bd. IV.

in der Construction der Apparate in technischer und ökonomischer Hinsicht, welche die Leistungsfähigkeit derselben nicht wesentlich beeinflussten und allerorten in dieser oder jener Weise abgestellt werden, kommen hier nicht in Betracht.

Sehr gute Resultate lieferte die Desinfection mit gespanntem Wasserdampf und in viel kürzerer Zeit, als der strömende Wasserdampf allein, was übrigens gleichfalls schon von verschiedenen anderen Seiten beobachtet worden ist.

Nach Versuchen, welche v. Esmarch zuerst im Laboratorium und hierauf mit dem Henneberg'schen Desinfectionsapparat über die desinficirende Wirkung des strömenden überhitzten Wasserdampfes angestellt hat 1), scheint es, dass der strömende Wasserdampf von 100 °C. für die Desinfection Besseres leistete, als der durch entsprechende Vorrichtungen über diese Temperatur hinaus überhitzte Wasserdampf.

In gewisser Beziehung darf man wohl auch die Rede, welche R. Koch zur Feier des Stiftungstages der militärärztlichen Bildungsanstalten in Berlin über die Bekämpfung der Infectionskrankheiten, insbesondere der Kriegsseuchen im August 1888 gehalten hat, unter jene Publicationen einreihen, welche das Thema der Desinfection behandeln. Wenn in dieser Rede in erster Linie und hauptsächlich die Massregeln erörtert werden, welche nach der heutigen Auffassung über das Wesen der Infection getroffen und andauernd beobachtet werden müssen, um Infectionen zu verhüten, so ergibt es sich im Verlaufe der weiteren Behandlung dieses Themas von selbst, der Hilfsmittel zu gedenken, welche uns heute zu Gebote stehen, um der Weiterverbreitung von Infectionskrankheiten, wenn dieselben einmal in ein kleineres militärisches oder nicht militärisches Gemeinwesen Zugang gefunden haben, entgegenzutreten, und damit tritt denn auch sogleich die Frage über die Desinfection in ihr Recht.

Deshalb erscheint eine kurze Inhaltsangabe der Enunciation seitens der unbestritten grössten Autorität auf diesem Gebiete hier wohl am Platze, und es ist nur noch zu betonen, dass sich dieselbe in Anbetracht der Veranlassung vornehmlich auf militärische Verhältnisse bezieht. Die Hygiene hat sofort nach der Errichtung des hygienischen Institutes in Berlin einen Platz neben den seitherigen Unterrichtsgegenständen an den militärärztlichen Lehranstalten erhalten. Hygienische Massregeln können in mancher Beziehung für eine Armee von Nutzen sein; ihre Bedeutung für die Ernährung, Bekleidung, Unterkunft u. s. w. ist nicht zu unterschätzen.

Ueber verschiedene, oft recht beträchtliche Mängel, welche in letzterer Hinsicht bestehen, kann sich der Soldat noch immer leichter hinwegsetzen, als über die Gefahr von Infectionskrankheiten, von Heeresseuchen. Hier

¹⁾ Zeitschrift für Hygiene Bd. IV.

ist die Hygiene berufen, nicht nur helfend, sondern unter Umständen geradezu rettend einzutreten.

Als Beleg für diesen Ausspruch werden statistische Nachweise, insbesondere über die seither so oft besprochenen Mortalitätsverhältnisse in der Armee der Franzosen und Engländer im Krimkriege angeführt. Bei den letzteren kamen die ärztlichen Rathschläge zur Geltung, bei den ersteren nicht.

Die Herabminderung der Mortalität in der preussischen Armee von $13.8^{\circ}/_{\circ}$ in den Dreissiger zu $9.5^{\circ}/_{\circ}$ in den Fünfziger, zu $6^{\circ}/_{\circ}$ in den Sechziger und zu $4.5^{\circ}/_{\circ}$ in den weiteren Jahren des Säculums liefert den Beweis, dass Infectionskrankheiten, — denn diese sind die Hauptursachen der grossen Mortalität — bis zu einem gewissen Grade vermindert werden können.

Heutzutage besser, als in früheren Zeiten, da man eine Einsicht darüber erlangt hat, inwiefern die zur Abwehr von Seuchen dienenden Massregeln dem Wesen der Infectionskrankheiten und dem Verhalten der Infectionsstoffe im Allgemeinen entsprechen.

Infectionen können nur durch specifische Krankheitserreger erzeugt werden; wo dieselben fehlen, kann aucht rotz ungünstiger wirtschaftlicher und socialer Verhältnisse eine Infection nicht zu Stande kommen. Diese pathogenen Mikroorganismen können hie und da im trockenen Zustande eine gewisse Zeit lebensfähig verbleiben, eine Vermehrung derselben hingegen ist nur bei genügender Feuchtigkeit und in Flüssigkeiten möglich. Aus diesen können sie sich nur dann in die Luft verpflanzen, wenn die Flüssigkeiten verstäubt werden oder eintrocknen, wobei dann durch die staubförmigen Partikelchen des festen Rückstandes derselben auch die daran haftenden Infectionsträger aufgewirbelt und in die umgebende Luft verbreitet werden können.

Die staubförmigen Träger der Mikroorganismen in der Luft sind keineswegs so leicht — in ruhender Luft und selbst bei einer Bewegung derselben von 0.2 m senken sie sich zu Boden.

Darum und weil in der Luft die Bedingungen für die Vermehrung von Keimen keine günstigen sind, enthält eben die Luft wenig Keime und darum ist die Luft für gewöhnlich gerade kein sehr geeignetes Mittel zur Verbreitung von Infectionsstoffen, wobei noch zu berücksichtigen ist, dass durch sie nur solche Infectionsstoffe verbreitet werden können, welche im trockenen Zustande längere Zeit lebensfähig verbleiben.

Flüssigkeiten und insbesondere das Wasser sind hiezu viel geeigneter. Der Boden bietet an der Oberfläche bei genügender Feuchtigkeit sehr günstige Lebensbedingungen für die Mikroorganismen. In einer Tiefe von wenigen Metern ist derselbe jedoch theils wegen der in solchen Bodenschichten herrschenden niederen Temperaturen, theils wegen des erheblichen Widerstandes, welchem zumal feinporige Erde dem Vordringen der Mikroorganismen entgegenstellt — selbst an bewohnten Orten nahezu

keimfrei, und pathogene Mikroorganismen können wohl nur ganz ausnahmsweise in tiefere Bodenschichten gelangen.

Aus diesem Verhalten ergeben sich auch die gegen die Verbreitung von Infectionsstoffen einzuhaltenden Massregeln.

Für die Luft muss möglichst verhütet werden, dass die Infectionsstoffe aus dem feuchten in den trockenen, staubförmigen Zustand übergehen können. Ist das nicht möglich, so muss der Staub aus der Umgebung des Menschen durch kräftige Luftströme ins Freie getragen werden, wo er sich dann auf so grosse Luftmengen vertheilt, dass die Gelegenheit zur Infection nur eine geringe sein kann.

Dies ist die Aufgabe der Ventilation und diese scheint bei exanthematischen Krankheiten, insbesondere beim Flecktyphus gute Dienste zu leisten.

Beim Boden wird zu berücksichtigen sein, dass die oberen Schichten rein und trocken gehalten werden; — aus tieferen Bodenschichten können Infectionsstoffe bei leichter Durchgängigkeit in die Brunnen gerathen.

Ein Aufsteigen von Infectionsstoffen aus tieferen Schichten zur Oberfläche, sei es durch die Strömung der Bodenluft oder durch capillare Bewegung, ist bis jetzt nicht erwiesen.

Dagegen können die an der Oberfläche befindlichen Infectionsstoffe mit den Füssen verschleppt, in die Brunnen und Wasserläufe gespült und als Staub auch in die Luft verbreitet werden.

Das Wasser schützt die Mikroorganismen vor dem Eintrocknen, bietet unter Umständen günstige Bedingungen für ihre Vermehrung und jederzeit für ihre Verbreitung. Besonders das offen stehende und fliessende Wasser ist stets als infectionsverdächtig anzusehen, gut natürlich oder künstlich filtrirtes Wasser ist von pathogenen Keimen gewöhnlich frei. Es kommt nun weiter zu erwägen, dass manche Infectionsstoffe nur unter Verhältnissen der Temperatur und des Nährbodens gedeihen können, wie sie der thierische Körper bietet, die Verbreitung derselben ist nur durch directe Berührung und durch den Staub der Luft möglich, zum Boden und Wasser haben sie dagegen keine Beziehungen; andere können im Wasser und Boden leben und sich vermehren.

Dann kommt es auch darauf an, welche Eingangspforten den Mikroorganismen beim Menschen und Thiere offen stehen. Manche nisten sich in die verletzte Haut ein, andere müssen in den Verdauungscanal eingeführt werden, um ihre deletäre Wirkung zu entfalten; die letzteren werden vornehmlich durch Wasser und anderweitige Nahrungsmittel, die ersteren durch die Luft an uns herankommen. Die Massregeln zur Verhütung von Infectionen müssen sich vornehmlich gegen die Art der möglichen Uebertragung, — durch Berührung, durch Vermittlung der Luft, des Bodens, Wassers, der Nahrungsmittel, Kleider u. s. w. richten.

Die Berührung lässt sich wohl, zumal unter militärischen Verhältnissen, nicht vermeiden, allein es lassen sich unnöthige Anhäufungen und Zusammendrängungen von Menschen verhüten. Damit steht auch die möglichste Reinhaltung der Luft im Zusammenhange. Insbesondere in Schlafräumen ist die möglichst grosse Luftmenge für einen Menschen zu gewähren; überfüllte Nachtquartiere sind geeignete Veranlassungen für das rasche Umsichgreifen von Infectionen.

Der Boden soll an seiner Oberfläche durch Drainage trocken und von dem Ab- und Auswurf der Menschen rein erhalten werden; ein Vergraben der Abfallstoffe in entsprechender Tiefe ist zu befürworten.

Auf die Wasserversorgung ist ein Hauptaugenmerk zu richten. Quellen und Röhrenbrunnen liefern gewöhnlich ein von Natur gut filtrirtes Wasser, welches nur vor weiteren Verunreinigungen zu bewahren ist.

Gegen Infectionen von Seite des Wassers, das aus offenen Behältern und Gerinnen stammt, muss die Filtration Vorsorge treffen — leider gibt es noch keine tadellos wirkenden, transportablen Filter. Durch Kochen kann das Wasser keimfrei gemacht werden.

Die beste Art der Desinfection von Nahrungsmitteln besteht in deren Zubereitung durch Kochen. Reinhaltung der Unterkunft, der Kleidung und des Körpers selbst gehören zu den allgemeinen, vorbeugenden Massregeln gegen Infectionen.

Wenn trotzdem eine Infectionskrankheit Eingang findet und damit die Gefahr unmittelbar geworden ist, müssen neben den allgemeinen auch besondere Massnahmen ergriffen werden, welche sich direct gegen den Infectionsstoff richten.

Im Vordergrunde steht hier das richtige Erkennen der ersten Fälle. Es muss alles daran gesetzt werden, die Seuche bei diesen ersten Fällen im Keime zu ersticken, später ist es nicht mehr möglich — das ist das Programm der Zukunft für eine kräftige Seuchen-Abwehr.

Hiefür ist eine gewisse Uebung in der Handhabung mikroskopischer und bakteriologischer Untersuchungsmethoden und eine regelmässige Revision behufs Eruirung der ersten Seuchenfälle nöthig.

Dann kommt die strenge Isolirung, wobei auch eine Zusammendrängung von Infectionskranken zu vermeiden ist — demnach eine mit der peinlichsten Vorsicht und Ueberwachung durchzuführende Evacuation und Abschiebung solcher Kranker. Es ist dies ein äusserst schwieriger Punkt. Endlich muss die Desinfection geübt werden.

Verbrennen der inficirten Gegenstände Verlassen von inficirten Gebäuden ist bei vereinzelten Fällen das Beste.

Kleidung, Wäsche, Decken, Matrazen sind durch transportable Dampfdesinfectionsapparate zu desinficiren, im Nothfalle durch Auskochung. Dejecte, sowie der damit inficirte Boden können durch rohe Carbolsäure, welche durch Säuren und Alkalien aufgeschlossen ist, oder durch Aetzkalk

unschädlich gemacht werden; Unterkunftsräume können durch wiederholtes Tünchen mit Kalkmilch desinficirt werden. Die Körperoberfläche von reconvalescenten Infectionskranken sowie des Pflegepersonals muss durch entsprechende Desinfection behandelt werden.

Ein Ortswechsel leistet erfahrungsgemäss bei Seuchen, welche sich in einer Truppe eingenistet haben, gute Dienste. In der Präventiv-Impfung besitzen wir nur bisher gegen Pocken allein ein gutes Mittel zur Abwehr, ob dasselbe auch für andere Infectionen sich bewähren wird, muss erst die Zukunft lehren.

Die zur Abwehr von Infectionen dienenden Massregeln müssen allerdings nicht allein den hier skizzirten allgemeinen Grundsätzen entsprechen, sondern auch in allen Einzelnheiten dem Wesen der betreffenden Infectionskrankheiten angepasst sein.

Die Aerzte, in deren Händen die Ausführung liegt, müssen daher mit dem Wesen der Infectionsstoffe vertraut sein, was nur durch experimentelle Uebung mit diesen Stoffen zu erreichen ist.

Mit Rücksicht auf die durch die neueren Untersuchungen auf dem Gebiete der Desinfection festgestellten Thatsachen, dass den pathogenen Bakterien gegen ein und dasselbe Desinfectionsmittel eine verschiedene Widerstandsfähigkeit zukommt, dass die mannigfaltigen zu desinficirenden Objecte eine verschiedene Behandlung erfahren und auch die Zeitdauer, welche zu einer erfolgreichen Desinfection nöthig ist, in der Praxis für die Wahl des Desinfectionsverfahrens von hervorragender Bedeutung sein muss, hat Dr. H. Jaeger Untersuchungen über die Wirksamkeit verschiedener chemischer Desinfectionsmittel bei kurz dauernder Einwirkung auf Infectionsstoffe 1) angestellt, welche darauf abzielen, für die Desinfection von Thierställen eine geeignete experimentelle Grundlage zu schaffen und zwar unter ausschliesslicher Berücksichtigung chemischer Desinfectionsmittel, auf welche man für diesen Zweck hauptsächlich angewiesen ist. Insbesondere aber handelt es sich darum, Mittel zu finden, welche die Infectionsstoffe innerhalb sehr kurzer Zeit zu tödten vermögen. Bei der Anordnung der Versuche wurden die Verhältnisse, wie sie sich in der Praxis gestalten, thunlichst berücksichtigt. Wie dort viele der zu desinficirenden Gegenstände nur abgewaschen, bestrichen und getüncht werden können, so sollte auch im Versuche das Object nur kurze Zeit durch die Desinfectionsflüssigkeit befeuchtet, letzere aber andererseits nicht durch Abspülen im Fortwirken gehindert werden, sondern auf dem Objecte allmählich eintrocknen. Bei diesen Untersuchungen fanden die bekannten Methoden, welche sich nach der grundlegenden Angabe Koch's bisher weiter ausgebildet haben, entsprechende Beachtung und Verwerthung. Geprüft wurden:

¹⁾ Arbeiten aus dem kaiserl. Gesundheitsamte, V. Bd., 2. H. 1889.

1. Kalk.

Das über diese Substanz als Desinfectionsmittel bisher Erprobte ist oben unter der Arbeit von Liborius bereits angeführt worden; dort handelte es sich um die Desinfection infectiöser Flüssigkeiten, während hier die Wirkung des Kalkes auf Ansteckungsstoffe, durch welche Wände und dergleichen verunreinigt sind, geprüft werden sollte.

Der gelöschte Kalk kam in folgenden Verhältnissen zur Anwendung:

1:20 Wasser

1: 5

1: 2

1:1

Die beiden ersten geben dünne und dicke Kalkmilch, die beiden letzten Kalkbrei.

Zur Untersuchung gelangten: a) von nicht pathogenen Organismen Coccen, Hefe und Bacillen-Sporen, b) von pathogenen Coccen und Bacillen, beziehungsweise für Milzbrand Bacillen und Sporen.

ad a) 1. Micrococcus prodigiosus.

Durch dreimaliges Streichen mit Kalkbrei im Verhältniss von 1 Kalk zu 2 Wasser während 1 Stunde 10 Minuten konnte eine Tödtung sämmtlicher Keime bewirkt werden. Dasselbe günstige Resultat wurde erreicht durch einmaliges Streichen mit demselben Kalkbrei, wenn derselbe 2 Stunden lang einwirkte.

2. Micrococcus aurantiacus.

Zweimaliger Kalkanstrich, wie oben, genügt, um nach vierstündiger Einwirkung diese Organismen völlig zu vernichten.

3. Rosa-Hefe.

Schon der einmalige Anstrich gab bei zweistündiger Einwirkung befriedigende Resultate; nach zweimaligem Anstriche war vollständige Desinfection erreicht.

4. Gartenerde mit Kalkbrei vermengt, erfährt wohl eine Verminderung der Keime, jedoch keine vollständige Desinfection; noch unsicherer wirkt ein selbst wiederholter Kalkanstrich.

ad b) 1. Micrococcus tetragenus.

Bei einem Versuche hatten 2 Anstriche wie oben noch nicht alle Mikroorganismen getödtet, bei einem zweiten Versuche hatte schon ein einziger Anstrich hiefür genügt. Es hängt demnach die vollständige Desinfection mittelst eines Kalkanstriches von 1:2 hier von der geringeren oder grösseren Lebensenergie der Keime ab.

2. Staphylococcus pyogenes aureus.

Wird durch Kalkanstrich von 1:2 nach zweistündiger Einwirkung getödtet.

- 3. Zur Zerstörung der Hühnercholerabacillen genügte schon die zweistündige Einwirkung eines einmaligen Kalkanstriches 1:20.
- 4. Die Bacillen des Schweinerothlaufes, der Schweineseuche, ¹) der Schweinepest,²) der Mäusesepticämie und des Rotzes wurden durch einbis dreimaligen Anstrich mit Kalk 1:2 bei zweistündiger Einwirkung getödtet.
- 5. Zur Zerstörung der Typhusbacillen reicht schon der einmalige Kalkanstrich aus; desgleichen für Milzbrandbacillen; gegen Milzbrandsporen hingegen erwies sich auch mehrmaliger Kalkanstrich von 1 Kalk auf 1 Wasser erfolglos, ebenso gegen Tuberkelbacillen.

2. Chlorkalk.

Es kamen Concentrationen des Desinfectionsmittels zur Verwendung von 1:100, 1:10, 1:5, 1:3, 1:2. Die zu desinficirenden Objecte wurden nicht getüncht, sondern in die betreffenden Mischungen eingetaucht und dann trocknen gelassen, worauf die Impfung damit vorgenommen wurde, die Bacillen der Hühnercholera, des Schweinerothlaufes, der Schweineseuche, Schweinepest, der Micrococcus tetragenus und Milzbrandbacillen wurden durch Gemische von 1:100, Rotz- und Milzbrandsporen und Tuberculose durch solche von 1:5 — 1:3, beziehungsweise 1:2 vernichtet, wonach also der Chlorkalk — seine gute Qualität vorausgesetzt — hinsichtlich der Desinfectionswirkung eine der ersten Stellen einnimmt.

3. Theer.

Die conservirende Fähigkeit des Theers ist bekannt, eine desinficirende Wirkung wurde von ihm früher vermuthet, bis Koch nachwies, dass derselbe wenigstens gegen Milzbrandsporen völlig wirkungslos sei.

In den vorliegenden Versuchen wurden die Bacillen der Hühnercholera, des Schweinerothlaufes, der Schweineseuche, Schweinepest, des Milzbrandes und der Micrococcus tetragenus durch Eintauchen sowohl in Steinkohlen- wie Holztheer getödtet; Milzbrandsporen und Tuberkelbacillen wurden von Steinkohlentheer bei 2 Versuchen nicht, von Holztheer einmal vernichtet.

4. Rohe Carbolsäure 40/0 mit Zusatz von Salzsäure 20/0.

Unter dieser Mischung ist zu verstehen: 8 cm 3 $50^{\circ}/_{\circ}$ iger roher Carbolsäure und 2 cm 3 Salzsäure zu 90 cm 3 Wasser. Eine innige

³⁾ Löffler, Schütz.

²⁾ Bang.

Mischung dieser Bestandtheile kam nicht zu Stande; von der rohen Carbolsäure setzte sich ein Theil ihrer Bestandtheile zu Boden, ein anderer schwamm obenauf. Dieses Gemisch hat sich sowol an Tuberkelbacillen, als auch an Milzbrandsporen wirksam erwiesen.

5. Rohe Schwefel-Carbolsäure.

Dieselbe kam sowohl nach der Angabe von Laplace ¹), als auch nach einer in der Veröffentlichung des kaiserlichen Gesundheitsamtes 1888, Nr. 17, pag. 263 gegebenen Vorschrift zur Anwendung und leistete gegen Milzbrandsporen nichts, bewährte sich hingegen wider Tuberculose.

6. Creolin.

Da dieses Präparat nach einer Analyse von B. Fischer »den nicht sehr wertvollen Rückstand bei der Darstellung der Phenole durch Destillation von Steinkohlentheer« darstellt, welcher möglicherweise, wie Esmarch fand, sich in seiner Wirkung sehr ungleichmässig verhalten kann, je nach der Bereitung des reinen Phenols, kamen Proben aus sieben verschiedenen Bezugsquellen zur Prüfung. Es konnte jedoch keine Differenz in der Qualität dieser Producte constatirt werden. Es kamen 10% ige Lösungen zur Verwendung. Gegen Milzbrandsporen waren dieselben unwirksam. Gegen Tuberkelbacillen in Reinculturen und tuberculöses Sputum erwiesen sie sich hingegen als wirksam.

7. Cresolin.

Von der Firma M. Brockmann in Entritzsch-Leipzig als Parasitentinetur in den Handel gebracht, verhielt sich so, wie das Creolin.

8. Natron- und Kalilauge.

In Lösungen von 1:100 wurden die Bacillen der Hühnercholera, des Schweinerothlaufes und des Milzbrandes getödtet; in Laugen von 1:084 spec. Gew. (7:5%) auch die Bacillen der Schweineseuche, des Rotzes und der Micrococcus tetragenus, wogegen die Einwirkung auf Milzbrandsporen zweifelhaft, auf Tuberkelbacillen negativ ausfiel.

9. Sodalösung.

Es wurden Lösungen von folgender Concentration angewendet: 16:100 (gesättigte Lösung), 5:100, 2:100 und 5:1000.

Die Bacillen der Hühnercholera und der Schweineseuche gehen schon beim Eintauchen in Lösungen von 5:1000 zu Grunde, die des Schweinerothlaufes erst in 2% iger Lösung.

⁴⁾ Deutsche med. Wochenschrift, 1888, pag. 121.

Gegen Rotzbacillen und Micrococcus tetragenus erwies sich auch die gesättigte Lösung nur von zweifelhafter Wirkung. Gegen Milzbrandbacillen reichte eine Lösung von 5% aus; gegen Tuberculose und Milzbrandsporen blieben auch gesättigte Lösungen wirkungslos.

10. Kieselfluornatrium

in letzter Zeit als Desinfectionsmittel anempfohlen, erwies sich als wirkungslos.

11. Kalium permanganicum

hat sich in jeder Beziehung als ein sehr wenig zuverlässiges Desinfectionsmittel herausgestellt. Die positiven Erfolge bei Anwendung geringerer Concentrationen dürfte wohl lediglich auf Tödtung der Bacillen durch Eintrocknen zu schieben sein.

12. Eisenvitriol.

muss als ein Desinfectionsmittel von überausgeringer Wirkung angesehen werden.

In seinen Versuchen über Desinfection und Geruchlosmachung 1. von Senkgruben, 2. von Canalflüssigkeiten, 3. von trockenem Strassenkehricht und 4. von frischen Excrementen kommt Dr. Sigismund v. Gerlöczy¹) zu folgenden Resultaten:

1. Corrosiv verdient als Desinfectionsmittel für Excremente und Kehricht offenbar bei weitem nicht jenes Vertrauen, welches man ihm auf Grund der älteren Desinfectionsversuche entgegenbrachte. Zur Desinfection des Inhaltes von Senkgruben kann dasselbe überhaupt nicht in Betracht kommen, weil selbst die concentrirteste, flüssige Lösung desselben Excrementstoffe von gleicher Menge nicht zu desinficiren vermag.

Auch zur Desinfection frischer Excremente müsste man überaus viel davon verwenden, was den Nachtheil der Kostspieligkeit zur Folge hat.

Zieht man ausserdem noch in Betracht, dass Corrosiv in den Händen von Laien, ja auch in denen des zur Desinfection verwendeten Dienstpersonales zu Vergiftungen Anlass geben kann, so wird das Corrosiv in der grossen Praxis der Desinfection nicht als ein empfehlenswertes Mittel erscheinen.

2. Auf Grund von Versuchen kann besonders Cuprum sulfuricum als vielversprechendes Desinfectionsmittel hervorgehoben werden. Es zeigte sich, dass dieses Mittel die Canalflüssigkeit schon in einer Quantität von 1:1000 ganz reinigt und geruchlos, ja selbst dauernd steril macht; es zeigte sich ferner, dass dasselbe in gehöriger Menge angewendet (und die

¹⁾ Deutsche Vierteljahrsschrift für öffentliche Gesundheitspflege, Bd. XXI, Heft 3.

Billigkeit dieses Mittels gestattet dies) auch den Inhalt von Senkgruben und um so mehr frische Excremente desinficirt.

Vorzüge von Kupfervitriol sind noch, dass es verhältnismässig sehr wohlfeil, sowie nicht so sehr giftig ist und vermöge seiner auffallenden Farbe nicht leicht zu Irrthümern Anlass bietet.

Jedenfalls verdient dasselbe, dass die Behörden damit in grösserem Masse Versuche anstellen.

 Ebenso nachdrücklich kann als Desinfectionsmittel die aus Asche bereitete Lauge empfohlen werden.

Starke Lauge desinficirt frische Excremente, auch wenn sie kalt ist. Siedend heisse Lauge aber muss zu den wirksamsten und am schnellsten wirkenden Desinfectionsmitteln gezählt werden.

- 4. Krystallisirte Carbolsäure verdient bei der Desinfection weniger Beachtung, als cuprum sulfuric. oder Lauge und zwar um so weniger, da der Preis derselben im Verhältniss zu ihrer in diesen Versuchen nachgewiesenen mässigen Wirkung ein sehr hoher ist.
 - 5. Rohe Carbolsäure ist als Mittel zur Geruchlosmachung wertvoll.
- 6. Die in neuester Zeit zur Desinfection empfohlenen Mittel, nämlich Creolin und die Oxynaphtolsäure, können für die Desinfection der bei vorliegenden Untersuchungen benutzten Stoffe nicht in Betracht kommen.

Auf Grund dieser Darlegungen wäre für die hier ins Auge gefassten Zwecke der Desinfection folgendes Verfahren in Vorschlag zu bringen:

a) Desinfection und Geruchlosmachung von Senkgruben.

Die vollständige Desinfection von Senkgruben kann nur in ausserordentlichen Fällen beantragt werden, wie z. B. in Cholerazeiten, bei den zuerst auftauchenden Fällen, wenn das Excrement in den Abort geschüttet wurde. Zur Desinfection empfiehlt sich dann eine starke Lösung von Cuprum sulfuricum und zwar mindestens 40 kg Cupr. sulfuric. per m³ Senkgrube (Kosten ca. 12 fl.)

Zur Geruchlosmachung empfiehlt sich rohe Carbolsäure und zwar auf einen Kubikmeter wenigstens 20 kg, einen Kostenaufwand von beiläufig 3 fl. 20 kr.

b) Desinfection und Geruchlosmachung von Canalflüssigkeiten.

Als Desinfectionsmittel sollte Cuprum sulfuric. im Grossen versucht werden.

Schlammige, stark stinkende Ausgussrinnen können mit roher Carbolsäure geruchlos gemacht werden und zwar benehmen schon 2 Theile von rohem Carbol 1000 Theilen Schmutzwasser den Geruch. Die Canalöffnungen und Schlammbehälter werden am zweckmässigsten durch Ausspülen mit Wasser, eventuell mit Zinkvitriol oder rohem Carbol geruchlos gemacht und rein gehalten.

c) Trockener Strassenkehricht ist zu befeuchten und schnell aus der Stadt zu entfernen. In den Wohnhäusern, auf den Stiegen und in den Höfen sollte es aber nicht gestattet sein, Carbolkalk aufzustreuen, sondern sollte der Staub und Kehricht lieber durch fleissiges Fegen und Aufwaschen mit Zinkvitriollösung entfernt, resp. unschädlich gemacht werden.

d) Desinfection frischer Excremente.

Zur Desinfection der Darmentleerungen ist eine starke Lösung von Kupfervitriol zu empfehlen und zwar wenigstens 1 gr Kupfervitriol auf 100 cm³ Excremente. Noch angezeigter ist es, die Excremente mit dreifacher Menge siedender Lauge (1 Theil Asche auf 2 Theile Wasser), zu desinficiren.

Billig und gut desinficirt auch noch Kalkmilch (1 Theil Kalk in 20 Theilen Wasser gelöscht) im beiläufigen Quantum von $^{1}/_{5}$ bis $^{1}/_{10}$ des Excrementes.

Ueber die desinficirenden und antiseptischen Eigenschaften des Aseptols berichtet Hueppe 1).

Der Körper ist den Chemikern seit 1841 als Orthophenolsulfosäure bekannt; er wird in neuerer Zeit als Desinfectionsmittel und Antisepticum empfohlen, vielleicht weil seine Zusammensetzung mit jener der Salicylsäure eine gewisse Aehnlichkeit hat.

Das käufliche Aseptol ist ein brauner, ähnlich, jedoch schwächer als Carbolsäure riechender Syrup, der sich in Wasser, Alkohol und Glycerin in jedem Verhältnisse löst.

Es hat weniger ätzende Eigenschaften, wie Carbolsäure.

Eine 10%/oige, wässerige Lösung des Aseptol gehört nach dem Ergebnisse der bakteriologischen Untersuchungen zu den wirklichen Desinfectionsmitteln, welche innerhalb 24 Stunden den höchsten Anforderungen gerecht werden und eine 3—5%/oige Lösung ist schon von sehr entschiedener antiseptischer Wirkung.

Laplace²) wies nach, dass Zusatz von Salzsäure oder Weinsäure die Sublimatlösung wirksamer mache und empfiehlt als aseptische Lösung:

Sublimat. 1 Acid. tartar. 5 Aq. destill. 1000

¹⁾ Berliner klinische Wochenschrift Nr. 37, 1886.

²⁾ Deutsche medicinische Wochenschrift, 1887, Nr. 40.

Die Verbandgaze wird bereitet mit:

Sublimat 5
Acid. tartaric. 20
Aq. destill. 1000.

Der Verbandstoff bleibt darin 2 Stunden, wird dann ausgedrückt

und getrocknet.

Von der Laplace'schen Lösung bemerkt Behring 1), dass Mikroorganismen, welche sich in Eiter befinden, durch dieselbe schwerer getödtet
werden als solche, die im Blutserum vorhanden sind; dass einfache
Sublimatlösungen weit kräftiger antiseptisch wirken als Lösungen von
Weinsäuresublimat, dass hingegen die tödtliche Dosis für Kaninchen von
Weinsäure-Sublimat erheblich kleiner ist als von einfachem Sublimat und
dass der Zusatz von Weinsäure zu Sublimat nur den Zweck erfüllt,
Niederschläge in eiweisshaltigen Flüssigkeiten zu verhindern.

Lübbert und Schneider²) treten auf Grund längst bekannter Thatsachen³) über die Unfällbarkeit von Eiweisslösungen durch Sublimat bei gleichzeitiger Gegenwart von Chlornatrium für die Verwendung von Sublimat-Kochsalzlösungen in der Asepsis ein.

Ueber die von demselben Autor gefundene Erhöhung der Wirksamkeit der rohen Carbolsäure durch einen Zusatz von Salzsäure war bereits

früher die Rede.

Bezüglich der aseptischen Händereinigung von Aerzten und Wärtern gibt Fürbringer 4) folgende Vorschriften: Es werden 1. die Nägel auf trockenem Wege von etwa sichtbarem Schmutze befreit; 2. die Hände eine Minute lang allenthalben mit Seife und recht warmem Wasser gründlich abgebürstet, insbesondere die Unternagelräume bearbeitet; 3. ebenfalls eine Minute lang in Alkohol gewaschen und darauf sofort vor dem Abdunsten desselben, 4. in die antiseptische Flüssigkeit (2 pro mille Sublimat und 3% jege Carbolsäure) gebracht und mit dieser gleichfalls eine Minute lang gründlich bearbeitet. Als Vorzüge dieser Methode sind hervorzuheben: 1. Sicherheit des Desinfectionserfolges, 2. Zeitersparniss, 3. Schonung der Hände und die Billigkeit bei Verwendung von Sublimat 5).

Behufs Desinfection der Instrumente emphielt H. Davidsohn 6) folgenden Vorgang:

¹⁾ Centralblatt für Bakteriologie, Bd. III, Nr. 1 und 2.

²) Centralblatt für Bakteriologie, Bd. III, Nr. 11 und 12.

³) Vergleiche Wiener Medic. Wochenschrift 1876 Nr. 47 und 48, Kratschmer: Ueber Sublimatpräparate für subcutane Injectionen.

⁴⁾ Referirt im Centralblatt für Bakteriologie Bd. III, Nr. 8.

⁵⁾ Siehe auch P. Landsberg, Centralblatt für Bakteriologie Bd. V, Nr. 3, und Roux et Reynés Compt. rend. Tom. CVII. 1888 ref. Centralblatt für Bakteriologie, Bd. V, Nr. 7, ferner Nr. 9 und 11.

⁶⁾ Referirt im Centralblatt für Bakteriologie, Bd. V, Nr. 3.

Man bringe die Instrumente gleich nach der Operation in kaltes Wasser, bürste den Eiter etc. oberflächlich ab; Spritzen und Canülen spritze man einigemale durch und fülle sie dann mit Wasser. Darauf koche man die Instrumente in einem besonderen Wasserbade bei 100° C. 5 Minuten. Nach dem Herausnehmen trockne man sie mit einem sterilisirten Tuche ab. Vor einem neuen Gebrauche koche man 5 Minuten, nehme die Instrumente heraus, lasse sie erkalten und benutze sie dann ohne Zuhilfenahme einer desinficirenden Flüssigkeit.

In jüngster Zeit ist von England her durch Professor Attfield in Form eines Geheimmittels eine desinficirende und antiseptisch wirkende Flüssigkeit unter dem Namen Creolin empfohlen worden.

Fröhner hat dasselbe 1) als Antiparasitieum gegen Epizoen, sowie als Antiseptieum bei Operationen, Wunden u. s. w. und schliesslich auch als Desinficiens zum Reinigen von Stallungen, Gefässen u. dgl. mehrfach angewendet und in jeder Hinsicht als empfehlenswerth gefunden: er zieht dasselbe der Carbolsäure und dem Sublimat vor, weil es für den höher entwickelten Organismus unschädlich zu sein scheint.

Hunde und Pferde vertrugen das Mittel in unverdünntem Zustande in grösseren Mengen (50 g) innerlich, ohne dass sich nachtheilige Folgen für die Gesundheit der Thiere gezeigt hätten.

Nach v. Esmarch²) kommt das Creblin in unverdünntem Zustande als syrupöse dunkelbraune Flüssigkeit in den Handel; es riecht nach Theer und bildet mit Wasser in jeder Concentration eine Emulsion. Gewonnen wird dasselbe aus der Destillation einer englischen Steinkohlenart durch genau bestimmte Fractionsmethoden; ausserdem erhält es den Zusatz eines Alkali. Nähere Angaben werden von der Betriebsfirma nicht gemacht.

v. Esmarch prüfte die Wirksamkeit dieses Mittels auf pathogene Mikroorganismen im Vergleiche zu Carbolsäure.

Gegen Bacillen erwies sich das Creolin wirksamer als Carbolsäuse, umgekehrt gegen Sporen. Bei Versuchen mit Faulflüssigkeiten ergab sich zunächst, dass die im Handel vorkommenden Creolinpräparate englischer Provenienz von ungleicher Wirkung sind, und dass ebenso wie früher das Creolin gegen Bacillen die Carbolsäure gegen Sporen vergleichsweise mehr leistet.

Bemerkenswerth ist, dass Creolin den Fäulnissgestank sofort ganz beseitigt, Carbolsäure nicht. Nach 8—10 tägiger Einwirkung jedoch hatte die Carbolsäure den Geruch der Faulflüssigkeit zerstört, während die mit Creolin versetzten Proben gleich dem Inhalte einer abgeschlossenen Senkgrube rochen.

¹⁾ Nr. XIV des Archivs für wissenschaftliche und [praktische Thierheilkunde, Berlin 1887.

²⁾ Centralblatt für Bakteriologie Bd. II, Nr. 10 und 11.

Aehnliches ergab sich bei der vergleichenden Prüfung von Creolin und Carbolpulver und Creolin und Sublimatseife.

v. Esmarch glaubt daher das Creolin unbedingt empfehlen zu können, wo es sich um schnelle Beseitigung schlechter und fauliger Gerüche handelt.

Bezüglich der desinficirenden Wirkung wäre eine stets gleiche Güte der Präparate erforderlich, was bisher nicht der Fall ist.

Nach Untersuchungen von J. Eisenberg 1) ist das Creolin Pearson in 50/oiger Lösung als ein Desinfectionsmittel anzusehen, welches bereits in kürzester Zeit alle pathogenen Mikroorganismen tödtet.

Lösungen von $2-8^{\circ}/_{\circ}$ tödten nach zweitägiger Einwirkung Milzbrandsporen und nach sechs Tagen die ausserordentlich widerstandsfähigen Sporen des Heubacillus.

2º/oige Creolinlösung wirkt bereits entschieden entwicklungshemmend. Vorläufig erfreut sich das Creolin wegen dieser Eigenschaften, zu welchen sich noch die Vorzüge der Ungiftigkeit und Billigkeit gesellen, einer ziemlich ausgebreiteten therapeutischen Verwendung; wie es sich als Desinfectionsmittel in grossem Umfange bewähren wird, muss erst die Zukunft lehren.

In der chirurgischen und gynäkologischen Praxis ist das Creolin durch zahlreiche Autoren geprüft und als sehr kräftig desodorisirendes, als antiseptisches und unschädliches Mittel anerkannt worden.²)

Baumm³) hält jedoch die Unschädlichkeit des Präparats für keineswegs bewiesen; in einem Falle von Uterusspülung mit Creolin traten Intoxicationserscheinungen, als: Benommenheit, Schwindel, Ohrensausen, Uebelkeit, Erbrechen, Schwarzfärbung des Harnes auf.

Nachdem schon Hiller⁴) die Vermuthung ausgesprochen hatte, dass die gerühmte Ungiftigkeit des Creolins nur auf der eigenthümlichen Form dieser Masse beruhen dürfte, welche eine Resorption ihrer toxischen Stoffe wenn nicht ganz hindere, so doch erschwere, berichtet Baumgarten⁵) über Untersuchungen des Creolins, welche auf die Entscheidung der Frage abzielten, ob dasselbe als Prophylacticum oder specifisches Heilmittel gegen allgemeine Infectionskrankheiten praktische Verwendung finden könne Denn da gerade dem Creolin die Eigenschaft nachgerühmt wurde, mit einer hervorragenden bakterienfeindlichen Kraft vollständige Reizlosigkeit und absolute Ungiftigkeit zu verbinden, so musste von neuem die Hoffnung auf erfolgreiche Versuche angeregt werden, ob es gelingen werde, den

¹⁾ Wiener medic. Wochenschr. 1888, Nr. 17, 18, 19.

²) Török, Das Creolin als Wundverbandmittel, Wiener klin. Wochenschr. I. Jahrg., Nr. 14.

³⁾ Centralbl. f. Gynäkologie 1888, Nr. 20.

⁴⁾ Deutsche med. Wochenschr. 1888, Nr. 27.

⁵⁾ Centralbl. f. Bakteriologie, V. Bd., Nr. 4.

lebenden Thierkörper, ohne ihn dabei wesentlich zu schädigen, derartig mit Creolin zu sättigen, dass dadurch die Entwicklung specifisch-pathogener Mikroorganismen in ihm verhindert wird.

Die antiseptische und desinficirende Wirkungsfähigkeit des Creolins auf in todtem Nährboden befindliche Mikroorganismen wird nach den früheren Angaben von Esmarch und Eisenberg bestätigt. Wenn Mäusen und Meerschweinchen nach Impfung mit virulenter Milzbrandcultur sofort wässerige Lösungen von Creolin in bestimmten Mengen unter die Bauchoder Rückenhaut ein- oder mehreremal täglich nachgespritzt wurden, so gelang es in der That, die Entwicklung des Milzbrandes im Thierkörper zu hemmen oder zu unterdrücken, jedoch nur bei Anwendung solcher Quantitäten von Creolin, welche den Tod der Thiere an acuter oder chronischer Creolinintoxication herbeiführten. Aehnlich berichtet auch Cornet über Versuche mit Creolin gegen Tuberculose.

Baumgarten's Versuche haben unwiderleglich festgestellt, dass das Creolin an sich ein starkes Gift für den thierischen Organismus ist, seine gerühmte Ungiftigkeit ist nur eine relative, indem der bei weitem grösste Theil des injicirten Creolins, welches sich in Wasser und in den Körpersäften nicht löst, sondern mit denselben eine Emulsion bildet, an der Injectionsstelle zurückgehalten wird.

Die Symptome der acuten Creolinvergiftung bestehen in klonischen Krämpfen der Rumpf- und Extremitätenmuskeln, begleitet von einem soporösen Zustande. Injectionen von 1 gr 10°/0 iger wässeriger Creolinlösung subcutan bei Mäusen, resp. 5 g derselben intraperitoneal bei Meerschweinchen lösen die Intoxicationssymptome unverzüglich aus und der Tod erfolgt spätestens in wenigen Stunden. Bei geringeren Dosen treten die Vergiftungserscheinungen später auf, die Thiere erholen sich anscheinend, sterben aber trotzdem noch vor Ablauf des ersten Tages.

Geht man mit der Dosis noch weiter herunter, so überstehen die

Thiere den Eingriff ohne ersichtliche Störung.

Intraperitoneale Injection von 5 g 10°/oiger Creolinlösung tödtet die Thiere ausnahmslos, wogegen die einmalige subcutane Injection der gleichen Dosis keine oder nur geringe und vorübergehende Intoxicationserscheinungen hervorruft.

Dieser Unterschied in der Wirkung hängt wahrscheinlich damit zusammen, dass der vom Peritoneum zum Ductus thoracicus führende Resorptionsstrom nicht, wie jener vom subcutanen Bindegewebe aus, durch Lymphdrüsen, welche einen Theil des resorbirten Creolins zurückhalten, unterbrochen wird.

Wird bei der subcutanen Injection die Dosis auf mehrere Stellen vertheilt, so resultirt gleichfalls tödtliche Intoxication, was sich ungezwungen dadurch erklären lässt, dass die Resorptionsverhältnisse in letzterem Falle günstiger sein müssen.

Injection von Creolinmengen, um die Entwicklung des Milzbrandes im Thierkörper zu hemmen, vertragen die Thiere nicht, sie sterben, und bei der Obduction findet man keine palpable Todesursache in den inneren Organen.

Auch Neudörfer hat in ähnlicher Weise nach intravenöser Creolininjection die geschilderten Symptome beobachtet und als Vergiftungs-

erscheinungen gedeutet.

Behring¹) ist bei seinen Versuchen zu dem Resultate gekommen, dass das Creolin als Desinficiens bei der Wundbehandlung bedeutend hinter der Carbolsäure zurücksteht und ein gefährliches Gift für den thierischen Organismus werden kann.

Die erstere Thatsache, welche den Angaben früherer Beobachter widerspricht, erklärt sich so, dass die von anderer Seite mitgetheilten Versuche in eiweissfreien Nährlösungen angestellt waren. Hier hemmt das Creolin in der That das Bakterienwachsthum schon in einer Verdünnung von 1:5000. In Blutserum gelöst, entfaltet es diese Wirkung erst im Verhältniss 1:175 und tödtet in 20/0 iger Lösung selbst nach 10 Minuten nicht Staphylococcen; leistet daher drei- bis viermal weniger als die Carbolsäure.

Pathogenen Bakterien gegenüber ist seine Wirksamkeit geringer als gegen die nicht pathogenen. Dieses den von Esmarch veröffentlichten Versuchen widersprechende Ergebniss erklärt sich so, dass v. Esmarch den Einfluss des Creolins auf pathogene Bakterien in eiweissfreien, den auf nicht pathogene in eiweisshältigen Lösungen geprüft hatte.

Bezüglich der Giftwirkung antiseptischer Mittel lasse sich das Gesetz aufstellen, dass, auf 1 kg Thiergewicht bezogen, der sechste Theil der Dosis, welche das Wachsthum von Milzbrandbakterien aufhebt, bereits für die Versuchsthiere tödtlich ist.

Dies gilt für Carbolsäure, Sublimat und auch für das Creolin.

Das Bild der Creolinvergiftung der Thiere tritt am besten bei subcutaner Injection des unverdünnten Mittels zu Tage. In 1—2 Stunden erfolgt unter zunehmender Schwäche und klonischen Krämpfen der tödtliche Ausgang. Auch eine chronische Creolinvergiftung lässt sich erzeugen durch Injection der nicht tödtlichen Creolinmenge. Hier findet sich Albuminurie und nach dem Tode chronische Nephritis.

Hünermann²) spricht sich auf Grund seiner Versuche gegen die Verwendbarkeit des Creolins aus.

Auch Weyl³) macht darauf aufmerksam, dass die verschiedenen Creoline als Geheimmittel von sehr ungleicher Zusammensetzung und durchaus nicht immer von indifferenter Wirkungsweise anzusehen sind.

3) Zeitschr. für Hygiene, Bd. VI, Heft 2.

Deutsche militär-ärztliche Zeitschr., Jahrg. XVII, 1888, Heft 8.

²⁾ Deutsche militär-ärztliche Zeitschr., Jahrg. XVIII, Heft 3.

Nach Rosin¹) starb eine Patientin nach viermaliger Ausspülung des puerperalen Uterus mit $1-2^{0}/_{0}$ iger Creolin-Emulsion im Collaps unter Erbrechen; die Erscheinungen waren denen einer Carbolsäurevergiftung sehr ähnlich.

Nach Cramer²) trat bei einem Knaben, der nach einer Herniotomie mit in 2⁰/₀ige Creolin-Emulsion getauchter Gaze verbunden wurde, ein scharlachähnliches Exanthem und dunkler Harn auf. Beide Erscheinungen schwanden schnell, nachdem an Stelle des Creolins 3⁰/₀ige Borsäure verwendet wurde.

A. Henle³) hat eingehende Untersuchungen über das Creolin, u. zw. sowohl über das zuerst im Handel erschienene Pearson'sche, als auch über das später von Hamburg aus vertriebene Artmann'sche Präparat durchgeführt.

Bezüglich der chemischen Zusammensetzung fand er in den ihm zu Gebote stehenden Creolinproben weniger Phenole und mehr Pyridinbasen als frühere Untersucher, woraus hervorgeht — wie dies bereits v. Esmarch bemerkt — dass das Creolin keineswegs ein Präparat von gleichmässiger Zusammensetzung ist.

Die Emulsion des Hartmann'schen Creolins schäumt beim Schütteln lange nicht so anhaltend, wie die des Pearson'schen; das erstere reagirt neutral, das letztere alkalisch; es scheint, dass bei dem Artmann'schen Creolin nicht wie bei dem Pearson'schen eine Seife, sondern ein gummiähnlicher Stoff als Emulgens verwendet wird.

Das Artmann'sche Präparat hat einen sehr geringen Grad von Phenolen, ist jedoch nicht, wie behauptet wird, absolut frei davon. Pyridine enthält es gleichfalls und an Naphtalin ist es reicher, als das englische Präparat. Die Zusammensetzung der indifferenten Kohlenwasserstoffe ist in beiden Creolinsorten nicht die gleiche. Im englischen Präparate liegt der Siedepunkt dieser Stoffe zwischen 200—300°, im Artmann'schen zwischen 200—265°.

In den Emulsionen erscheinen bei starker Vergrösserung die feinsten Theile des Pearson'schen Creolins als schwarze Punkte, jene des Artmann'schen immer als deutlich runde Tröpfehen von bläulich weisser Farbe. Es ist daher die Vertheilung mittelst der Seife eine viel feinere als die durch Gummi und dergleichen bewirkte.

Bei der bakteriologischen Prüfung ergab sich zunächst die für die Desinfection überhaupt beachtenswerthe Erscheinung, dass die desinficirende Wirkung bei höheren Temperaturen grösser ist als bei niederen.

Sodann wurde festgestellt, dass man Gemische von Desinfectionsmitteln bereiten kann, in denen jeder einzelne Bestandtheil zur Entfaltung

¹) Therapeutische Monatshefte 1888, Nr. 10.

²⁾ Therapeutische Monatshefte 1888, Nr. 12.

³⁾ Archiv für Hygiene, II. Bd., 9. Heft.

seiner ganzen Kraft gelangt, so dass es zu einem vollen Zusammenwirken der Componenten kommt.

Bezüglich des Desinfectionswerthes des englischen Fabrikats werden die von Eisenberg gefundenen Resultate im Allgemeinen bestätigt, ja die Wirkung wurde sogar etwas stärker befunden, wahrscheinlich weil die Einwirkungstemperatur 21° betrug.

Unterschiede in der Wirkung der einzelnen Creolinproben waren nicht zu bemerken, wenn man, wie die Anweisung lautete, dieselben vor dem Gebrauche kräftig schüttelte.

Die desinficirende Wirkung des Artmann'schen Creolins ist eine höchst geringe, so zwar dass man dieses Präparat gar nicht zu den Desinfectionsmitteln zählen darf.

Im Creolin lassen sich vier Gruppen von Körpern unterscheiden, die Seife, das Creolinöl (worunter die indifferenten aromatischen Kohlenwasserstoffe zu verstehen sind), die Pyridine und die Phenole, und es war zu prüfen, welcher von diesen Gruppen ein Desinfectionsvermögen und in welchem Grade zukommt.

Schon das Emulgens in Pearson's Creolin, die Harzseife, besitzt in geringem Grade desinficirende Eigenschaften, der gummiähnliche Stoff in Artmann's Fabricat dagegen wahrscheinlich nicht. Aus Harz und Alkali bereitete Seifen sind mindestens gleichwerthig der im Creolin enthaltenen Seife.

Das Creolinöl ist an sich ebenfalls ein, wenn auch schwaches Desinficiens, denn die Wirkung eines Gemisches von Harzseife mit Creolinöl ist energischer desinficirend als Harzseife allein; ferner wirkt die Seifen-Emulsion dieses Gemisches stärker als die Gummi-Emulsion. Das Creolinöl des englischen und deutschen Creolins besitzt ganz die gleiche Wirkung.

Die Pyridine haben bis zu $^{1}/_{2}^{0}/_{0}$ keine Wirkung; da eine $1^{0}/_{0}$ ige Creolin-Emulsion nur $0.04^{0}/_{0}$ davon enthält, kommen diese Substanzen für die Desinfection im Creolin nicht weiter in Betracht und sind — übelriechend und zugleich wirkungslos — als ganz werthlose Beimengungen des Creolins anzusehen.

Da die drei angeführten Gruppen keine oder nur geringe Desinfectionskraft besitzen, so bleibt nichts Anderes übrig, als dass das Desinfectionsvermögen des Creolins hauptsächlich auf die Rechnung der Phenolgruppe zu setzen ist.

Im Creolin finden sich von diesen letzteren vornehmlich Kresole und andere Phenole, deren Siedepunkt über 201° gelegen ist.

Schon die wässerige Lösung dieser Phenole ist einer solchen der gewöhnlichen Phenole (Carbolsäure) an antiseptischer Leistungsfähigkeit bedeutend überlegen. Chemisch reines Kresol aus Thieröl gibt klarere Lösungen als die Phenole des Creolins, wirkt schwächer als diese, jedoch noch immer weit kräftiger als Carbolsäure. Die bekannten Kresole, Ortho-, Para- und Methakresol, haben mit steigendem Siedepunkte steigende antiseptische Wirkung, so dass das Orthokresol (Siedepunkt 185—186°) am schwächsten das Parakresol (199°) etwas stärker und das Methakresol (201°) noch stärker wirkt.

Dementsprechend besitzen Destillate roher Carbolsäure um so kräftigere, desinficirende Wirkungen, bei je höherer Temperatur sie gewonnen wurden.

Die im Creolin enthaltenen Phenole sind durch die Destillation von der Carbolsäure befreit; das Creolin enthält also nur hochsiedende und sonach sehr wirkungsfähige Phenole.

Henle schätzt den Gehalt der von ihm zur Prüfung verwendeten Creoline an Phenolen auf $10^{\circ}/_{\circ}$. Bei einer $12^{\circ}/_{\circ}$ igen Emulsion wäre demnach der Gehalt der Desinfectionsmischung an Phenol $^{1}/_{2^{\circ}}$. In dieser Concentration haben die Phenole aber nicht den geringsten bemerkbaren Einfluss auf die Keimzahl in den Culturen. Sie können daher für sich allein die Desinfectionskraft des Creolins nicht bedingen. Löst man jedoch die Phenole etwa zu $10^{\circ}/_{\circ}$ in Creolinöl auf und emulgirt sie mit Seife, so erhält man ein Gemisch, welches dem englischen Creolin in seiner Wirkung gleichkommt.

Phenole, indifferente Kohlenwasserstoffe und die Harzseife sind demnach die Bestandtheile, welche dem Creolin seine antiseptischen Eigenschaften verleihen.

Das Fortlassen eines dieser Körper genügt, die Desinfectionskraft wesentlich zu schwächen.

Während ölige Lösungen von Carbolsäure nicht aseptisch wirken, wirken Emulsionen derselben sehr kräftig; dem Emulgiren kommt demnach bei Verwendung der Phenole eine besondere Bedeutung zu.

Bei der Darstellung creolinartiger Desinfectionsgemische ist zunächst die Harzseife durch Gummi nicht ersetzbar; ferner leisten nieder siedende Phenole, also auch die Carbolsäure, weniger als die höher siedenden, wiewohl auch das Carbolsäure-Creolin noch immer stärker wirkt als einfache Carbolsäure.

Das Creolinöl (die indifferenten aromatischen Kohlenwasserstoffe) ist in den beiden Creolinen dasselbe, es kann daher von einem oder dem andern zur Darstellung von Gemischen verwendet werden.

Dieses Creolinöl ist durch fette Oele nicht ersetzbar; erstlich, weil die letzteren mit Harzseife eine nur unvollkommene Emulsion geben und weil sie zweitens viel schwächer wirken als das Creolinöl.

Die Wirkung eines creolinartigen Desinfectionsgemisches steigt mit zunehmendem Procentgehalte an Kresol, vorausgesetzt, dass immer so viel Oel vorhanden ist, um eine gute Emulsion zu liefern. Sinkt die Menge des Oeles an oder unter 10%, dann wird die Emulsionsbildung schwieriger und damit sinkt auch die antiseptische Leistungsfähigkeit des Gemisches.

Damit, dass man zufolge der Ergebnisse dieser Untersuchungen in der Lage ist, Creolin nach Belieben zu erzeugen, wird auch das Präparat des Charakters als Geheimmittel entkleidet.

Ueber die Giftigkeit derartiger Gemische müssen weitere Versuche Aufklärung bringen.

Dort, wo man auf Giftwirkung keine Rücksicht zu nehmen hat, sind Creolin-Nachahmungen mit einem Gehalte an Phenolen von 60°/₀ zu Desinfectionszwecken zu empfehlen.

Die chemische Untersuchung des Creolins hat mit der chirurgischen Erprobung seiner desinfectorischen Wirkung, wenn man von den werthvollen Arbeiten Henle's hierüber absieht, bisher durchaus nicht gleichen Schritt gehalten.

Es ist dies sehr leicht begreiflich. Der Chemiker versteht sich nicht gerne dazu, etwas, was wie ein Geheimmittel angepriesen wird, ernstlich zu berücksichtigen; ihm sind die Schwierigkeiten ebensowohl, wie die praktische Nutzlosigkeit derartiger Untersuchungen bekannt — es handelt sich ja um kein chemisches Individuum, um keine constante Zusammensetzung eines Präparates, sondern um ein sehr veränderliches Gemisch einer gewöhnlichen Handelswaare.

Bald nach dem englischen Jeyes'schen oder Pearson'schen Creolin tauchte ein deutsches Fabricat auf und in letzter Zeit ist auch ein Wiener Creolin marktgängig. Die Fabrikanten der einzelnen Sorten verfehlen zwar nicht, ihr Erzeugniss als das beste anzupreisen und jenes ihrer Concurrenten herabzusetzen, über die Zusammensetzung geben sie jedoch nur dunkle Andeutungen.

Mit der Untersuchung des englischen Creolins haben sich Biel¹), Fischer²) und Lutze³) beschäftigt; nach ihnen besteht dasselbe aus 66% indifferenten aromatischen Kohlenwassertoffen, die wieder einen nicht unbedeutenden Theil Naphthalin enthalten (etwa 18%), 27·4% Phenolen, die durch fractionirte Destillation ganz oder fast ganz von Carbolsäure befreit sind; 2·2% pyridinähnlichen, organischen Basen; 4·4% Asche (kohlensaures Alkali, etwas Chlor und Spuren von schwefelsaurem Alkali).

Auch andere, wie Gerlach, Frühling, Bodländer, Pieper, Morpurgo, Gawalowski, Weyl haben sich an diesen Untersuchungen mit ähnlichen Ergebnissen betheiligt.

¹⁾ Chemische Zeitung 1887.

²⁾ Pharmaceutische Zeitung 1887, Nr. 103, und 1888, Nr. 48.

³⁾ Pharmaceutische Zeitung 1888, Nr. 14.

Nach Schenkel¹) wäre das Creolin identisch mit dem von ihm schon 1884 in den Handel gebrachten Sapocarbol, einer Mischung von höher siedenden phenolhaltigen Theerbestandtheilen mit Seife und Wasser.

Nach R. Otto und H. Beckurts²) enthielten 100 g des von ihnen untersuchten Yeyes'schen Creolins:

Kohlenw	assei	st	toffe	(S. P.	19	90	-3	50	(0)			59.6
Phenole	(S. I		200)	-310	(0)		-					10.4
Pyridinb													
Abietins													
Natron.					4						- 33		2.8
Wasser					. 10								3.4

Hienach ist dieses Creolin als eine Mischung von höher siedenden, Phenole und kleine Mengen Pyridinbasen enthaltenden Theerölen mit Natronharzseife und Wasser zu betrachten.

Artmann's Creolin enthält nach denselben Autoren weder Phenole noch Harzseife, sie wissen jedoch nicht anzugeben, woraus der die Emulsion bewirkende Körper darin besteht.

Ueber die Unterschiede zwischen englischem und deutschem Creolin hat die frühere, ausführlich eitirte Arbeit Henle's Aufschlüsse gebracht.

Das Wiener Creolin hat nach einer im chemischen Laboratorium des Militär-Sanitäts-Comités vorgenommenen Untersuchung folgende Zusammensetzung:

Phenole											300	6.40/0
Kohlen	was	ssei	ste	offe	(Cre	olii	nöl)				32.40/0
Harze								300				31.20/0
Pyridin	bas	en										1.20/0
Asche												5.30/0
Wasser								1				23.5%

Es steht daher wegen seines Gehaltes an Phenolen und Harzseife dem Pearson'schen Präparate nahe, enthält jedoch weniger Creolinöl und Phenole und etwas mehr Seife als dieses.

Bezüglich der Wirksamkeit der schwefligen Säure bei der Desinfection von Localitäten kommen H. Dubief und J. Brühl³) zu folgenden Schlüssen:

- 1. Die gasförmige schweflige Säure besitzt eine entschieden Mikroben vernichtende Wirkung.
- 2. Diese Wirkung äussert sich vor Allem, wenn das Medium mit Wasserdampf gesättigt ist.
 - 3. Die schweflige Säure wirkt vornehmlich auf die Bakterien.

¹⁾ Pharmaceutische Centralhalle 1887, Nr. 37.

²⁾ Pharmaceutische Centralhalle 1889, Nr. 15.

³⁾ Compt. rend. CVIII, Nr. 15.

4. Die reine schweflige Säure kann bei verlängerter Einwirkung Keime selbst in trockenem Zustande zerstören.

Ueber die desinficirende Wirkung des Wasserstoffsuperoxyds, auf welche bereits Guttmann 1877 aufmerksam gemacht hatte, und über dessen Verwendung zur Sterilisirung des Trinkwassers macht van Hettinga Tromp¹) folgende Angaben:

- 1. Die zur Sterilisation von Trinkwasser erforderliche Menge von H₂O₂ ist von der Anzahl der Keime und von der Natur derselben abhängig. In den Versuchen des Verfassers genügte für gewöhnliches, verunreinigtes Trinkwasser ein Zusatz von 1 Theil H₂O₂ zu 5000—50.000 Theilen zum vollständigen Sterilisiren in 24 Stunden.
- 2. Die Sporen des Bacillus Anthracis werden durch 24stündige Einwirkung von 2:10000 H₂O₂ geschwächt, durch 5:10000 H₂O₂ getödtet. Subtilissporen bedürfen dagegen 1°/₀ H₂O₂.
- 3. Der Typhusbacillus (Eberth-Gaffky) wird durch 2:10.000 H_2O_2 geschwächt, durch 5:10.000 schon in 5 Minuten, der Cholerabacillus (Koch) gar durch 1:10.000 H_2O_2 in weniger als 5 Minuten getödtet.

Nach Verfasser ist daher H₂O₂ in Anbetracht seiner kräftigen Wirkung auf Typhus- und Cholerabacillen ein geeignetes Desinficiens für Trinkwasser.

Zur Desinficirung des Lungenauswurfes von Phthisikern wenden jetzt Grancher und de Gennes²) nach mancherlei misslungenen Versuchen einen von Genest und Hercher gebauten einfachen und wenig kostspieligen Desinfectionsapparat für strömenden Wasserdampf an, den sie sehr bewährt gefunden haben. Er besteht aus einem 50 cm breiten, 60 cm tiefen und 80 cm hohen Kasten, in den man auf Schienen einen kleinen Wagen hineinrollen kann. Dieser Wagen trägt einen in vier Abtheilungen getheilten Behälter, deren jeder fünf Spucknäpfe übereinander aufnehmen kann. Innerhalb einer Stunde ist man daher deren 40 zu desinficiren im Stande. Ein Zusatz von 15 g Soda zum Liter des zur Verdampfung bestimmten Wassers erleichtert die nachherige Reinigung der Spucknäpfe erheblich.

- P. Canalis³) schlägt auf Grund seiner Experimente zur Desinfection der Viehtransportwägen folgendes Verfahren vor:
 - a) Fortschaffung der Streu vom Boden.
- b) Abkratzung der Wände mit Schabeisen und mit in saure Sublimatlösung zu 1.5 p.m. oder in warmes Wasser getauchten Bürsten, bis der Koth vollständig von den Wänden gelöst ist und diese ganz rein sind.

3) Ref. im Centralbl. f. Bakteriologie, Bd. V, Nr. 24.

¹⁾ Ref. im Centralbl. f. Bakteriologie, Bd. III, Nr. 25.

²⁾ Revue d'Hygiène, ref, im Centralbl. f. Bakteriologie, Bd. V, Nr. 8,

c) Abwaschung mit einer Sublimatlösung zu 1.5 p. m., die mittelst einer Pumpe oder eines Irrigators gegen die Wände geschleudert wird. Nach vorgenommener Desinfection lasse man den Wagen offen, bis er ganz trocken ist.

Dieses Desinfectionsverfahren vereinigt in sich die Vortheile, dass es leicht ausführbar ist, dass dabei die Wände nicht beschädigt werden, dass es unschädlich ist für die mit der Reinigung beschäftigten Personen und wenig kostet. Wird die Reinigung und Abwaschung mit einer Sublimatlösung zu 1.5 p. m. vorgenommen, so sind für jeden Wagen etwa 40 Liter dieser Lösung erforderlich, d. h. 60 g Sublimat und 200 g Salzsäure. Nimmt man dagegen zur Reinigung einfaches Wasser und also nur zur Abspülung die Sublimatlösung, so genügen hievon 15 Liter, und demnach sind für jeden Wagen 22.5 g Sublimat und 75 g Salzsäure erforderlich.

Sobald es sich jedoch um Wagen handelt, die zum Transport kranker oder verdächtiger Thiere gedient haben, wird man gut thun, auch die Reinigung mit der Sublimatlösung zu besorgen, um die Arbeiter nicht der Gefahr der Ansteckung auszusetzen.

Die k. k. Statthalterei in Wien bringt mit Z.20267, 14. April 1890, die Nothwendigkeit der Reinigung und Desinfection der Viehtransportwägen in Erinnerung.¹)

Ueber die desinficirenden Eigenschaften der Kresole bringt Fränkel²) interessante Mittheilungen.

Aus gleichen Gewichtsmengen roher Carbolsäure und concentrirter Schwefelsäure nur mit dem Unterschiede dargestellte »Schwefelcarbolsäuren«, dass bei der einen Probe sorgfältige Kühlung während der Mischung unterhalten worden war, bei der anderen Probe nicht, zeigten gegenüber Milzbrandsporen eine verschiedene Wirksamkeit, und zwar erwies sich die kalt bereitete Probe in ihrem Desinfectionsvermögen der heiss bereiteten erheblich überlegen.

Beide Gemische in $5^{\circ}/_{\circ}$ iger wässeriger Lösung wirkten ferner rascher als $5^{\circ}/_{\circ}$ ige Lösungen von reinem Phenol und reiner Schwefelsäure, wie dies schon von Laplace constatirt worden war.

Die nicht ganz vollständige Uebereinstimmung seiner Versuchsergebnisse mit denjenigen von Laplace erklärt Fränkel aus der verschiedenen Widerstandskraft der als Prüfungsobjecte verwendeten Milzbrandsporen, worauf bereits Esmarch³) aufmerksam gemacht hat. Er spricht sich auf Grund seiner Erfahrungen dahin aus, dass der Grad der Resistenz, welchen an Seidenfäden angetrocknete Milzbrandsporen einmal besitzen, denselben

¹⁾ Das österr. Sanitätswesen II, Nr. 18.

²⁾ Zeitschr. f. Hygiene, Bd. 6.

³⁾ A. a. O.

als eine Rasseneigenthümlichkeit auch ziemlich fest und dauernd anzuhaften pflegt, so dass die Differenzen im Widerstandsvermögen sich nur bei Sporen von ursprünglich verschiedener Herkunft geltend machen und es leicht möglich ist, stets mit einem in dieser Hinsicht wesentlich gleichartigen Testobject zu arbeiten. Verf. schlägt vor, bei der Mittheilung von Desinfectionsversuchen die dabei benützten Milzbrandsporen nach dem Grade ihrer Resistenz etwas näher zu charakterisiren, indem man solche Milzbrandsporen, welche in einer reinen $5^{\circ}/_{\circ}$ igen Lösung von krystallisirtem Phenol nicht länger als höchstens zehn Tage bestehen, als *schwach widerständig«, solche von 10-20 Tagen als *mittel-widerständig«, solche von 20-40 Tagen als *hoch-widerständig« und solche von mehr als 40 Tagen aber als *äusserst widerständig« bezeichnen solle.

Die bei den folgenden Versuchen benutzten Sporen gehören der

letzteren Classe an.

Um die Ursache der desinfectorischen Ueberlegenheit der rohen Schwefelcarbolsäure über das reine Phenol zu ermitteln, wurden zunächst gleiche Gewichtsmengen reinen Phenols und reiner Schwefelsäure einmal unter Kühlung, das anderemal ohne Kühlung zusammengemischt und mit diesen Gemischen reine, aus Kahlbaum's Fabrik bezogene Ortho- und Paraphenolsulfosäure verglichen.

Aus der kalt bereiteten Mischung krystallisirte der neu entstandene Körper, die Phenolsulfosäure, die warm bereitete Mischung behielt ihre

syrupartige Beschaffenheit.

Die Versuche mit Milzbrandsporen ergaben, dass dieselben, während sie vorher in einer 5% igen Lösung des reinen Phenols mehr als 40 Tage lebensfähig geblieben waren, nun in den 5% igen Lösungen der Phenolsulfosäure schon nach 2—9 Tagen abstarben.

Dass den Phenolsulphosäuren eine bedeutende Desinfectionswirkung zukomme, ist bekannt, insbesondere von der Orthosulfosäure, welche unter dem Namen Aseptol verwendet wird, wie Hueppe darüber berichtet. ¹) Nun blieb es noch immer auffallend, dass die sulfirten Lösungen des reinen Phenols, trotz ihrer schon gegenüber dem einfachen Phenol gesteigerten Wirksamkeit, doch den Lösungen der rohen, mit Schwefelsäure vermischten Carbolsäure noch um ein Bedeutendes nachstanden.

Man musste annehmen, dass die rohe Carbolsäure selbst Körper von sehr hoher Desinfectionskraft enthalte, welche erst durch den Zusatz von Schwefelsäure aufgeschlossen werden und zur Geltung kommen.

Es sind dies, wie diesbezügliche Versuche ergaben, die zwischen 185—205° bei der Destillation übergehenden Fractionen, welche hauptsächlich die sogenannten Kresole enthalten. Vermischungen der im Handel käuflichen reinen Kresole, welche im Wasser schwer löslich sind und

¹⁾ A. a. O.

dementsprechend in wässerigen Lösungen ihre desinfectorische Kraft nicht voll entfalten können, mit Schwefelsäure liefern im Wasser leicht lösliche Gemenge von hervorragend desinficirenden Eigenschaften. Während jedoch den Sulfosäuren des Phenols eine höhere desinficirende Wirkung zukommt als dem Phenol allein, gilt dies von den Sulfosäuren der Kresole nicht in gleicher Weise. Wenn man nämlich das sogenannte »Rohkresol aus Toluidinen« der chemischen Fabriken zu gleichen Theilen mit concentrirter Schwefelsäure kalt vermischt, so erhält man trübe, nach einiger Zeit aber klar filtrirende Flüssigkeiten von ausserordentlicher Desinfectionsenergie, in denen jedoch die Kresole und die Schwefelsäure keineswegs zu neuen Verbindungen zusammengetreten sind, sondern in denen beide, die Kresole und die Schwefelsäure, frei nebeneinander bestehen und die ersteren durch die letztere nur in Lösung gebracht worden sind. Das »Rohkresol aus Toluidin« hat gegenüber den theuren reinen Kresolen einen verhältnissmässig geringen Preis und darum kann auf dieses Präparat zu Desinfectionszwecken eher reflectirt werden, als auf die Kresole selbst.

Nach diesen Versuchsergebnissen erklärt sich das eigenthümliche desinfectorische Verhalten der Gemische von roher Carbolsäure und Schwefelsäure, sowie ihre Ueberlegenheit gegenüber dem reinen Phenol, insbesondere bei kalter Zubereitung in einfacher Weise wie folgt:

Die rohe Carbolsäure enthält nicht unbedeutende Mengen von Kresolen, welchen an sich eine nennenswerthe desinficirende Wirkung zukommt. Da diese Kresole jedoch in Wasser sehr schwer löslich sind, so kann diese ihre Wirkung nicht zur vollen Entfaltung kommen, es geschieht dies erst dann, wenn concentrirte Schwefelsäure zugesetzt wird.

Wird beim Schwefelsäurezusatze das Gemisch nicht gleichzeitig gekühlt, so entstehen Kresolsulfosäuren, welche weniger energisch wirken als einfache Lösungen der Kresole in Schwefelsäure, wie sie eben bei sorgfältiger Kühlung des Gemenges zu Stande kommen.

Würde man anstatt der Schwefelsäure Salzsäure zu dem gleichen Zwecke verwenden, so bestünde unter keinen Umständen — ob mit oder ohne Kühlung — die Gefahr, dass sich die weniger energisch wirkenden Sulfosäuren bilden — sondern die Kresole werden durch dis Salzsäure einfach gelöst, und so ist es auch zu erklären, dass Jaeger 1) ein Gemisch von roher Carbolsäure mit Salzsäure weit wirksamer gefunden hat als ein solches mit Schwefelsäure.

Die Kresolsulfosäuren zeigten endlich auch eine Entwicklungshemmung bei einer Concentration von 1:300—1:250.

In der Abhandlung »Ueber die Desinfection der Typhus- und Choleraausleerungen« weist Pfuhl²) vorerst darauf hin, dass es sich

¹⁾ A. a. O.

²⁾ Zeitschrift für Hygiene, Bd. VI.

bei der Desinfection von Faecalien wohl nur um die Vernichtung der Typhus- und Cholerabacillen sowie um die Infectionskeime der Ruhr handeln könne. In wie weit bei einer solchen Desinfection unter praktischen Verhältnissen der Aetzkalk, über dessen entschieden desinfectorische Wirkung bereits Kitasato 1 und Liborius 2 ihre Erfahrungen mitgetheilt haben, Verwerthung finden könne, stellte er sich die Aufgabe, zu untersuchen.

Die Ergebnisse seiner Versuche sind kurz folgende: Mit zerkleinertem gebrannten Kalk lässt sich, wiewohl langsam, eine Abtödtung der in Typhusausleerungen enthaltenen Keime erzielen, allein es bedarf dazu, wenn die Desinfection auch nur nach 2 Stunden beendet sein soll, einer grossen Menge des (6% jegen) Desinfectionsmittels.

Es ist daher, wenn immer nur möglich, der gelöschte Kalk dem gebrannten zu diesem Zwecke vorzuziehen, umsomehr, als sich der gelöschte Kalk besser hält als der gebrannte.

Der pulverförmige gelöschte Kalk mischt sich jedoch sehr schlecht mit Stuhlmassen, er muss daher nicht in Pulverform, sondern als Kalkmilch zur Anwendung kommen.

Die zu den Versuchen verwendete Kalkmilch enthielt 13·7% Kalkhydrat. Es genügte nun ein Zusatz von 2% dieser Kalkmilch, um in einer Stunde sämmtliche im Stuhle enthaltenen Typhusbacillen und Cholerabacillen zu tödten, und es ist sehr wahrscheinlich, dass die noch unbekannten Ruhrkeime durch den gleichen Zusatz von Kalk zu den Ruhrdejectionen getödtet werden. Da sich die Kalkmilch rascher abmessen als abwägen lässt und das specifische Gewicht derselben (1·152) nicht sehr erheblich von jenem des Wassers abweicht, so erscheint es am zweckmässigsten, in der Praxis 2 Volumpercente zu verwenden.

Der Zusatz von 2 Volumpercenten ist aber nur dann ausreichend, wenn 1. die Kalkmilch aus gutem Kalk erst vor kurzem bereitet und 2. die Ausleerungen — wie bei Typhus und Cholera in der Regel — dünnflüssig sind. Im Falle jedoch kein guter Aetzkalk zur Verfügung stünde, so müsste man von der daraus bereiteten Kalkmilch soviel den Entleerungen zusetzen, bis das Gemenge eine deutlich alkalische Reaction aufweist; denn diesbezügliche Versuche ergaben, dass ein Quantum Kalkmilch, welches in dem Gemische eine deutlich alkalische Reaction erzeugt, auch genügt, um nach einer Stunde die Desinfection desselben herbeizuführen. —

Die Ergebnisse der Laboratoriumsversuche wurden nun auf praktische Verhältnisse übertragen, es wurden Versuche über die Desinfection der Latrinen mit Kalk 3) angestellt.

¹⁾ A. a. O.

²⁾ A. a. O.

³⁾ Zeitschrift für Hygiene, Bd. VII, H. 3.

Nach einigen praktischen Winken über die Qualitäten des käuflichen Aetzkalks, die Art seiner Prüfung und Löschung folgt die gleichfalls praktisch wichtige Angabe, dass 1 Liter Kalkhydrat (d. i. gelöschter Kalk in Pulverform) etwa 0.5 kg entspricht, wonach es ein Leichtes ist, Kalkmilch von bestimmter Concentration zu bereiten. 1 Liter Kalkhydrat mit 2 Liter Wasser liefern demnach eine Kalkmilch, in welcher 1 Theil Kalkhydrat auf 4 Theile Wasser kommt.

Zur Bestimmung der für die Desinfection einer Latrine erforderlichen Menge von Kalkmilch hat man sich zunächst daran zu halten, dass das Gemisch eine deutlich alkalische Reaction aufweisen soll.

Verfasser empfiehlt, mit Hilfe guten, glatten und starken rothen Lackmuspapieres eine Scala herzustellen, in welcher die Nr. 1 den Grad der Bläuung durch concentrirtes Kalkwasser, Nr. 2 durch zur Hälfte verdünntes, Nr. 3 durch zweifach verdünntes Kalkwasser u. s. w. anzeigt.

Die Reaction des Latrinen-Kalkmilchgemisches muss mindestens der Nr. 4 der Scala entsprechen; dann kann man annehmen, dass das Gemisch die für die sichere Desinfection der Faecalien nöthige Menge von Kalkmilch enthält.

Carbolkalkpulver leistet dieses bei der üblichen Anwendungsweise nicht. Bei der praktischen Erprobung stellte sich heraus, dass von einer mechanischen Verrührung der Kalkmilch mit den Faecalien Abstand genommen werden müsse. Desgleichen ist der einmalige Zusatz des ganzen Quantums an Kalkmilch, welcher für die Desinfection der innerhalb einiger Tage zusitzenden Faecalien berechnet werden kann, nicht ausreichend, um auch in den oberen Schichten der Tonne oder Latrine noch zur Wirkung zu gelangen, es muss vielmehr täglich die entsprechende Menge von Kalkmilch eingetragen werden.

Bei den an Senkgruben angestellten Versuchen ergab sich, dass $2^{1}/_{4}$ Liter Kalkhydratpulver, mit der vierfachen Wassermenge gemischt, ausreichten, um in 224 Litern Faecalien eine wirksame Alkalescenz hervorzurufen. Dementsprechend erscheint es zweckmässig, bei der Desinfection von Senkgruben einen solchen Kalkzusatz zu wählen, dass auf 100 l des täglichen Zuwachses der Faecalien 1 l Kalkhydratpulver — in Form von zubereiteter Kalkmilch — kommt. Bei Tonneninhalt, der rascher ansteigt als in Senkgruben, ist die Menge des Kalkzusatzes zu erhöhen.

Sehr bemerkenswerth ist, dass die Desinfection mit Kalkmilch auch eine Verminderung des üblen Geruches zur Folge hatte.

Bei der Desinfection des Inhaltes von Stechbecken bringt man soviel Kalkmilch hinzu, bis nach gehöriger Mischung ein hineingehaltener Streifen rothen Lackmuspapieres stark blau wird.

Verfasser zieht aus seinen Versuchen folgende Schlussfolgerungen:

- 1. Das Löschen des Kalkes zu pulverförmigem Kalkhydrat hat durch Zusatz von etwa 60 Gewichtstheilen Wasser zu 100 Theilen gebrannten Kalkes zu erfolgen.
- 2. 1 Liter des pulverförmigen Kalkhydrats kann als 0.5 kg schwer angenommen werden. Im Allgemeinen genügt eine Kalkmilch, bei der auf 1 Liter Kalkhydratpulver 4 Liter Wasser, also auf 1 Gewichtstheil Kalkhydrat 8 Theile Wasser kommen.
- 3. Die Wirksamkeit der Desinfection constatirt man am einfachsten durch Prüfung der Reaction des Latrineninhaltes mit rothem Lackmuspapier. Wird dasselbe stark gebläut (mindestens bis Nr. 4 der Scala), so ist die Desinfection ausreichend.
- 4. Bei Senkgruben empfiehlt es sich, die Desinfection mit einer solchen Kalkmenge zu beginnen, dass 1 Liter Kalkhydratpulver 100 Liter des täglichen Zuwachses des Latrineninhaltes entspricht. Bei Tonnen würde 1.5 Liter auf 100 zu nehmen sein.

Für Stechbecken ist behufs rascherer Desinfection ein noch stärkerer Kalkzusatz nothwendig.

- 5. Der tägliche Zuwachs der Latrine ist, wenn das Pissoir davon getrennt ist, auf 400 cm ³ pro Mann zu rechnen.
 - 6. Es ist das Sicherste, dass die Desinfection täglich ausgeführt wird.
- 7. Auf eine Vermischung des Kalkes mit den Faecalien vermittelst Handarbeit ist nicht zu rechnen. Es bleibt nichts übrig als dieselben der Selbstmischung zu überlassen oder noch besser, die Mischung durch eine Rührvorrichtung ähnlich wie beim Thiriart'schen Modell zu bewerkstelligen.

In einer Notiz über die Verwendung von Carbolseifenlösungen zu Desinfectionszwecken macht Nocht 1 aufmerksam, dass die rohe Carbolsäure, sowie die sogenannte 100% ge Carbolsäure des Handels weder an sich, noch nach erfolgter Aufschliessung durch Schwefelsäure für die Desinfection von Kleidern, Leder, Polstersachen u. dergl. zu gebrauchen sei.

Dagegen ist durch die Untersuchungen über die sogenannten Kreoline bekannt geworden, dass die rohe Carbolsäure durch Zumischung von Seifelösung für diese Zwecke recht verwendbar wird.

Die desinficirende Kraft solcher Carbolseifenlösungen wurde an Lösungen von 3 und 6% Seifegehalt geprüft; es zeigte sich, dass der Seifegehalt nicht in Frage kommt, dass aber die Temperatur, bei welcher die Desinfection stattfindet, von wesentlichem Einflusse ist. Milzbrandsporen, an Seidenfäden angetrocknet, können in kalten Carbolseifenlösungen 6 Tage und länger verweilen, ohne abgetödtet zu werden; bei ca. 50% C. jedoch, bei welcher Temperatur die Carbolsäure in völlig klarer Lösung gehalten wird, werden Milzbrandsporen durch eine Carbolseifenlösung von 5% Carbolsäuregehalt in 6 Stunden abgetödtet.

¹⁾ Zeitschrift für Hygiene Bd. VII.

Sporenfreie Bakterien, so Cholera- und Typhusbacillen, Staphylococcus aureus werden auch durch kalte Seifenlösungen von 1.5° Carbolsäuregehalt in einer halben Stunde sicher getödtet.

Für die Praxis empfiehlt es sich daher, da man mit dem Seifengehalt bis zu 3% heruntergehen kann, um bei 6% Carbolsäuregehalt noch klare Lösungen zu erhalten, sich 3% ige heisse Seifenlösungen herzustellen, in welche dann, je nach der beabsichtigten Stärke der desinficirenden Einwirkung, bis zu 5% der sogenannten 100% igen Carbolsäure eingetragen werden.

In diese Lösung können dann Kleider etc. bei höherer Temperatur eingeweicht gehalten, Ledersachen mit der Lösung abgewaschen werden, ohne dass die betreffenden Gegenstände Schaden leiden.

Mit der ganz rohen Carbolsäure geben Seifenlösungen keine ganz klaren Lösungen, es bleiben dabei immer schwärzliche ungelöste Massen suspendirt, welche sich auf Kleider etc. niederschlagen und Flecke verursachen.

Ueber die desinficirende Eigenschaft des Chlorkalks sind neuerlich von Nissen 1) einige Versuche angestellt worden u. zw.

- I. Ueber die bakterienvernichtende »desinficirende« Eigenschaft des Chlorkalks.
- a) Mit Reinculturen von Bacillus Typhi abd., Cholerae asiat., Anthracis, Staphylococcus pyogenes aureus, Streptococcus Erisypelatis.

Das Ergebniss war:

Typhusbacillen sind, gleichgiltig, ob man filtrirte oder nicht filtrirte Chlorkalkflüssigkeit nimmt, wenn der Percentgehalt in der Bouillon nicht unter 0·12 herabgeht, mit Sicherheit nach 5 Minuten vernichtet, bei höherem Procentgehalt tritt die totale Vernichtung schon nach 1 Minute ein.

Cholerabacillen haben bei einem Chlorkalkgehalt von 0·12°/₀ meist schon nach 1 Minute, immer nach 5 Minuten ihre Entwicklungsfähigkeit eingebüsst. Liborius¹) gibt für die Vernichtung von Typhus- und Cholerabacillen in 15fach mit Wasser verdünnten Bouillonculturen einen Aetzkalkgehalt von 0·0074 bezw. 0·0246°/₀ an, Kitasato in nicht verdünnten Culturen einen Gehalt von 0·0966 bezw. 0·1; die letzteren Zahlen stehen denen des Verf. nahe.

Nur in einem Punkt unterscheidet sich die Wirkung des Aetzkalks von der des Chlorkalks, nämlich in der zur Desinfection nothwendigen Zeit. Hier genügen wenige Minuten, dort sind eine oder mehrere Stunden nothwendig.

Milzbrandbacillen sind bei einem Percentgehalt von 0·1 nach einer Minute vollständig vernichtet.

¹⁾ A. a. O.

²⁾ Zeitschrift für Hygiene, Bd. VIII.

Staphylococcus pyogenes aureus und Streptococcus Erisypelatis sind nach 1 Minute Aufenthalt in einer $0.2^{\circ}/_{\circ}$ Chlorkalk enthaltenden Bouillon nicht mehr wachsthumsfähig.

b) Mit Milzbrandsporen.

Die verwendeten Sporen gehörten zu den weniger widerstands-

fähigen.

Je höher der Gehalt der Desinfectionsflüssigkeit an unterchlorigsaurem Calcium, desto energischer im Allgemeinen die Desinfectionswirkung. In einer 5% jegen Chlorkalkflüssigkeit waren die Sporen selten schon nach 5, öfter nach 15, fast immer nach 30 Minuten vernichtet.

Zusatz von Salzsäure verstärkte die Wirkung erheblich.

II. Ueber die entwicklungshemmende Eigenschaft des Chlorkalks.

Eine Entwicklungshemmung tritt erst dann ein, wenn der Chlorkalkzusatz den für die Vernichtung von Milzbrandbacillen erforderlichen Grad erreicht; hieran dürfte die leichte Zersetzbarkeit des Chlorkalkes schuld sein. Als entwicklungshemmendes Agens ist der Chlorkalk demnach nicht verwerthbar.

III. Ueber die Desinfection von Fäulnissflüssigkeiten und menschlichen Faeces.

a) Fäulnissflüssigkeit.

Bei einem Chlorkalkzusatz von 0·1°/0 trat meist nach einer, sicher nach 5 Minuten totale Sterilisation ein, nebstdem eine kräftige desodorisirende Wirkung.

c) Faeces.

Mit Beziehung auf die Arbeiten Pfuhl's ¹) geht aus den angestellten Versuchen hervor, dass Chlorkalk, sei es dass er als Pulver oder als Flüssigkeit gebraucht wird, im Verhältniss von 0.5% diarrhöische Faeces zugesetzt, im Stande ist, die in diesen enthaltenen Träger des Typhusgiftes — und wohl auch der Cholera — innerhalb 10 Minuten zu vernichten. Durch die Kürze der zur Desinfection nöthigen Zeit unterscheidet sich der Chlorkalk wesentlich von seinem durch den geringeren Preis mächtigeren Concurrenten — dem Aetzkalk. Pfuhl ²) verlangt als Desinfectionszeit bei Typhus- und Choleraentleerungen für Aetzkalk eine Stunde. Dies ist, wenn es sich um Desinfection von Stechbecken handelt, ein viel zu grosser Zeitraum. Einmal ist man zu sehr auf die Zuverlässigkeit des Wartepersonals angewiesen, welches darauf achten müsste, dass der Stuhlgang im Stechbecken nicht vor einer Stunde fortgeschafft wird, zweitens ist es vom ökonomischen Standpunkte nicht praktisch, Stechbecken eine Stunde

¹⁾ u. 2) A. a. O.

lang ungereinigt zu lassen. Eine Desinfection der Faeces im Stechbecken muss gefordert werden, weil beim etwaigen Ausschütten der Faeces in andere Gefässe eine Verspritzung des Infectionsstoffes stattfinden kann. Wenn es sich um ausgebreitete diarrhöische Erkrankungen handelt, wo die Zahl der Kranken und somit der Stuhlentleerungen sehr gross ist, ist eine schnelle Reinigung der Stechbecken behufs baldiger Wiederbenützung nothwendig. Genügen nur einige Minuten zur Desinfection, so kann der Krankenwärter, wenn er das Desinficiens dem Stuhlgange zugesetzt und ordentlich verrührt hat, nach einer kleineren Zwischenbeschäftigung z. B. bei der Wartung des Kranken den Stuhlgang ausschütten, und man ist sicher, dass der Infectionsstoff vernichtet ist.

Bei der praktischen Verwendung des Chlorkalks wäre zu berücksichtigen:

- 1. Der Chlorkalk ist am besten in fest verschlossenen, dunklen Gefässen aufzubewahren.
- 2. Der Zusatz kann in Pulverform geschehen u. zw. müssen auf je 100 cm³ Faeces 0·5 g oder besser, wenn man auf die Verschiedenheit der Qualitäten Rücksicht nimmt, 1 g Chlorkalk zugesetzt werden.
- 3. Die Entfernung der Faeces aus den Stechbecken darf erst zehn Minuten nach dem Zusatz des Chlorkalkes geschehen.

Aus der gründlichen, sehr lesenswerthen, weil die gesammte Literatur über diesen Gegenstand zusammenfassenden Abhandlung von Sonntag über die Bedeutung des Ozons als Desinficiens 1) können mit Rücksicht auf den geringen Werth, welcher bis heute dem Ozon als Desinfectionsmittel zukommt, nur einige wenige Sätze herausgehoben werden.

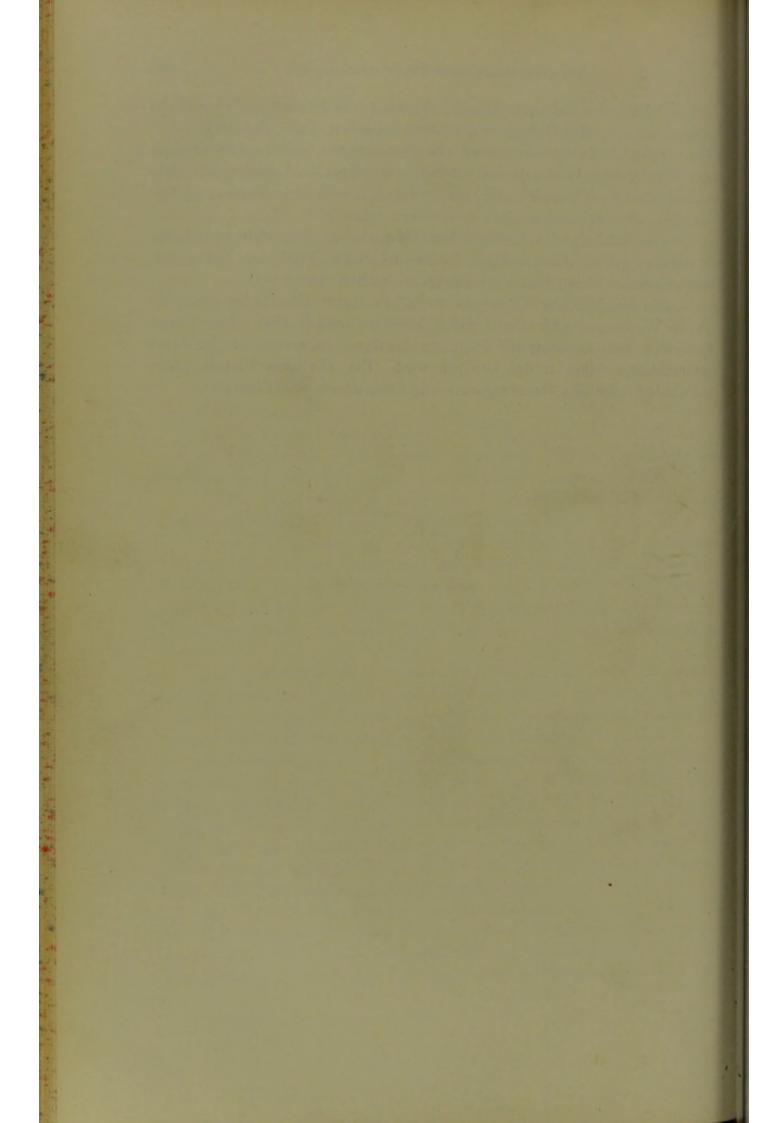
Aus diesbezüglichen Versuchen geht hervor, dass eine Luft, welche im Liter etwa ein Milligramm = 0.05 Volumpercent Ozon enthält, selbst unter den günstigsten Umständen weder die Sporen noch die vegetativen Formen des Milzbrandbacillus zu vernichten imstande ist.

Bei 24stündigem Verweilen der Bakterien in einer trockenen Sauerstoffatmosphäre, welche im Liter 4·1 Miligr. = 0·19 Volumpercente Ozon enthielt, hatte letzteres einen zweifellosen Einfluss auf die Entwicklungsfähigkeit und die Virulenz der geprüften Bakterienarten noch nicht auszuüben vermocht. Auch bei Gegenwart von Feuchtigkeit liess eine Atmosphäre mit dem anfänglichen Ozongehalt von 3 mg pro Liter = 0·14 Volumpercent die Bakterien augenscheinlich unbehelligt.

Ein Gas mit dem Ozongehalte von anfänglich 13.53 mg (und nach der Einwirkung auf die unter Glocken neben den Mikroben ihm ausgesetzten organischen Stoffe noch von 5.83 mg im Liter) stellt nach den Versuchsergebnissen offenbar denjenigen Concentrationsgrad des Ozons dar,

¹⁾ Zeitschrift für Hygiene, Bd. VIII.

bei welchem eine bakterientödtende Wirkung des letzteren eben sich zu zeigen beginnt, ohne jedoch schon sicher in jedem Falle einzutreten.


Somit dürfte fernerhin über alle Bemühungen, welche dahin gehen, die schädigende Wirkung des gasförmigen Ozons auf pathogene Bakterien für die Therapie oder für prophylaktische Desinfection zu verwerthen, ohneweiters der Stab zu brechen sein.

Die Prüfung des Lender'schen Ozonwassers hat nicht zu einem Resultate geführt, durch welches die Zweifel an der chemischen Zusammen-

setzung dieses Präparates als beseitigt anzusehen wären.

Die Lender'schen Lösungen vermögen unter Umständen desinficirende Wirkungen auszuüben; dabei bleibt es freilich eine offene Frage, inwieweit diese Leistung auf Rechnung des Ozons zu setzen ist oder durch unterchlorige Säure u. dgl. bewirkt wird. (Ein ähnliches Urtheil dürfte überhaupt über alle Ozonpräparate und Ozonwässer zu fällen sein.)
