Dissertatio historico-medica inauguralis de Antonii Leeuwenhoeckii meritis in quasdam partes anatomiae microscopicae: quam, annuente summo numine, ex auctoritate rectoris magnifici Gerardi Sandifort ... pro gradu doctoratus, summisque in medicina honoribus et privilegiis, in Academia Lugduno-Batava ... / submittit Nicolaus Henricus van Charante.

Contributors

Charante, Nicolaus Henricus van. University of Glasgow. Library

Publication/Creation

Lugduni-Batavorum: J.H. Gebhard, 1844.

Persistent URL

https://wellcomecollection.org/works/e6sktwa3

Provider

University of Glasgow

License and attribution

This material has been provided by This material has been provided by The University of Glasgow Library. The original may be consulted at The University of Glasgow Library. where the originals may be consulted. This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

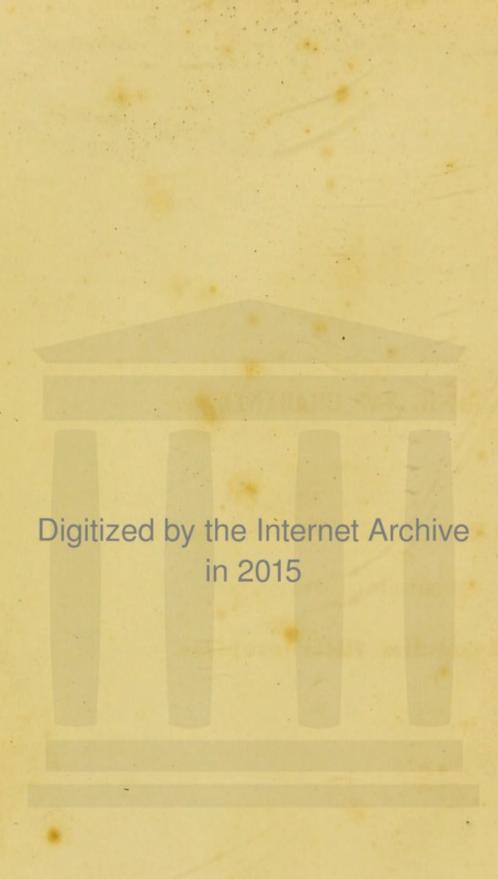
A15: e. 5

GLASGOW

UNIVERSITY

LIBRARY.

No.23. KN. 10. 15


18 69.

Am ico in keg era imo 243 . A. Adriani.

Glasgow University Library

18 MAY 1983

GUL 68.18

N. H. VAN CHARANTE,

DE

LEEUWENHOECKII

MERITIS IN QUASDAM PARTES

Anatomiae Microscopicae.

Auniorated Microscopiene

DISSERTATIO HISTORICO-MEDICA INAUGURALIS

DE

ANTONII LEEUWENHOECKII

MERITIS IN QUASDAM PARTES

ANATOMIAE MICROSCOPICAE,

QUAM,

ANNUENTE SUMMO NUMINE,

EX AUCTORITATE RECTORIS MAGNIFICI

GERARDI SANDIFORT,

MED. DOCT. ET PROF. ORD.,

NEC NON

AMPLISSIMI SENATUS ACADEMICI CONSENSU,

ET

NOBILISSIMAE FACULTATIS MEDICAE DECRETO,

Pro Gradu Doctoratus,

SUMMISQUE IN MEDICINA HONORIBUS ET. PRIVILEGIIS,

IN AGADEMIA LUGDUNO-BATAVA.

RITE ET LEGITIME CONSEQUENDIS,

PUBLICO AC SOLEMNI EXAMINI SUBMITTIT

NICOLAUS HENRICUS VAN CHARANTE,

ROTERODAMENSIS.

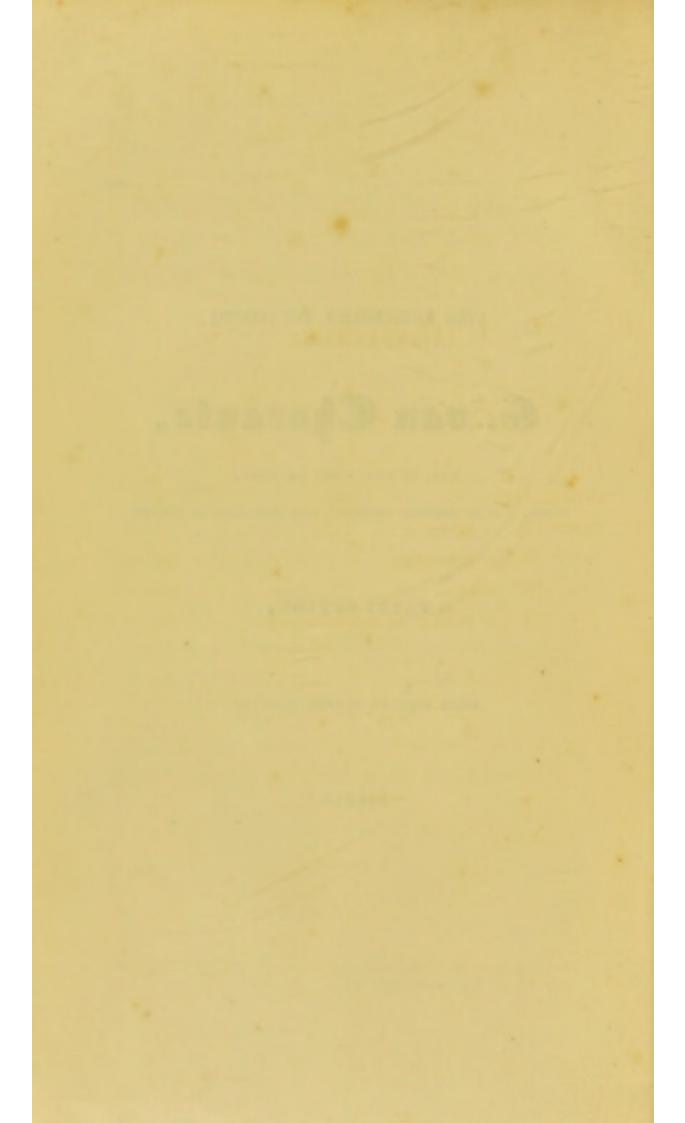
AD DIEM V JUNII MDCCCXLIV, HORA XII-I.

IN AUDITORIO MAJORI.

APUD J. H. GEBHARD ET SOCIOS.
BIBLIOPOLAS.

VIRO NOBILISSIMO, DOCTISSIMO

C. van Charante.


MED. ET ART. OBST. DOCTORI,

RERUM, QUAE AD MEDICINAM PERTINENT, APUD ROTERODAMENSES CURATORI,

PATRI OPTIMO,

OMNI PIETATE SEMPER COLENDO,

SACRUM.

CONSPECTUS.

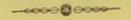
INTRODUCTIO														Pag.			
CAPUT	I.	DE	NER	VIS.													5.
))	II.	DE	EPII	DERN	IIDE.												28.
))	III.	DE	PILI	s													53.
))	IV.	DE	MAT	ERI	E AI) D	EN	TE	s	на	ER	EN	TE				71.

INTRODUCTIO.

Nostris temporibus viget floretque Physiologiae studium; hujus doctrinae fundamentum accurata est observatio, et quidem ope instrumentorum visus potentiam augentium. His strenue operam impendunt multi et multa praeclara reperta divulgantur. Multa tamen nova dicuntur et inventoribus haud exiguam pariunt laudem, quae jam olim reperta sunt, et quidem a cive nostro Leeuwenhoeckio, qui inprimis si consideramus instrumentorum opticorum, quibus instructus erat, conditionem minus perfectam, nec cum

hodiernorum instrumentorum praestantia comparandam, mirum quantum in his rebus excelluit. viro igitur jus tribuere mecum decrevere amici integerrimi F. LE SUEUR FLECK et H. J. HALBERTSMA. que suam tractavit partem, quoniam labor bene divisus bene processurus videbatur. Doctissimus HAL-BERTSMA igitur, praemissis nonnullis de Vita LEEU-WENHOECKII, collegit eas, quas dispersas reliquit observationes de Sanguine, de Vasis et Circulatione, deque Ossibus et Dentibus, illasque cum recentiorum observationibus comparavit. Simili ratione doctissimus Fleck ea edidit, quae spectant Musculos et Lentem crystallinam. Quae supersunt igitur observationes de anatomia microscopica animali, circa Nervos, Epidermidem et Pilos versantes, ego mihi sumsi, eademque ratione, qua usi sunt laboris socii, disputationem institui. Sic igitur libelli amicorum meusque conjuncti maximam partem observationum Leeuwenhoeckii complectuntur. Non tamen omnem de hoc argumento disputandi materiem consumsimus. Quae enim de generatione scripsit Leeuwenhoeckius omisimus. Hoc tamen consulto fecimus, quoniam, ut maximus quisque movetur opinione suo tempore vigente, sic et Leeuwen-HOECKIUS in hoc argumento tractando ductus opinione saeculi sui multos errores commisit, quos repetere nil attinet, quoniam principes in Physiologia, Burdach,

Wagner, Reichert, Mueller, Bischoff, alique satis superque hanc rem illustrarunt. Si igitur libere confitemur Leeuwenhoeckium saepe errasse, quod tamen excusandum ob dictas causas, eo majore jure ejus merita in lucem ponere nobis licet, quod pro mea parte in sequentibus facere conabor, et quidem ea ratione, ut primo agam de Nervis, tum de Epidermide, dein de Pilis, quibus in Capite IV addidi quasdam Leeuwenhoeckii observationes de animalculis ad dentes haerentibus, quas, quamquam non stricte ad anatomiam microscopicam pertineant, hic tamen adjungere placuit.


Delineari insuper curavi alteram Leeuwenhoeckii subscriptionem, quam Cl. Owen cum Cl. J. van der Hoeven communicavit, cujus mentionem fecit in addendis ad dissertationem Doct. Halbertsma, p. 68, quaeque differt ab ea, quam ille tradidit.

Tu igitur, B. L., haec accipe, et quum ego non adeo doctam disputationem, sed meritorum Leeuwenhoeckii accuratam expositionem tibi in manus tradere studui, contentus ero, si per huncce meum libellum aliquatenus aequam de magni viri meritis opinionem tibi formaveris.

His de dissertatione praemonitis, hac occasione grati animi desiderio ductus testor, me verbis exprimere non posse, quantum debeam Viris Clarissimis J. VAN DER Hoeven et J. C. Broers, qui tum per totum vitae academicae curriculum, tum in hoc opere conscribendo insigni me benevolentia adjuti sunt. Verba vero deficiunt, nunquam gratus animi deficiat sensus.

CAPUT PRIMUM,

DE NERVIS.

Jam anno 1677 quasdam observationes instituerat et communicaverat Leeuwenhoeckius de structura cerebri Meleagridis, quas dein, anno 1684, rejecit, earumque in locum multo accuratiores prodidit.

Primo igitur eas examinavit cerebri Meleagridis partes, quae corticales dicuntur. Has cerebri partes (sepositis variis minimisque sanguinis vasculis) compositas invenit ex materie valde pellucida, crystallina, ex materie oleosa, quae ob limpidam et pellucidam substantiam merebatur rectius appellari substantia cerebri vitrea, quam corticalis. Hanc materiem cum per minimas particulas separasset, mox visui occurrebat destillans inde paucus tenuis latex, qui stipabatur longe

minimis globulis, quorum ne triginta sex quidem magnitudinem globuli unius sanguinis aequabant. Praeter enumeratos parvos globulos jacebant nonnulli majores globuli, quorum sex judicabat unum efficere globulum sanguinis. Haec duo parvorum globulorum genera videbat profluxisse ex minutis vasculis, quae forte laesa erant. Insuper per illam dispersi jacebant nonnulli clari ac irregulares globuli, quorum alii magnitudinem unius globuli sanguinis aequabant, alii majores erant: per hanc lucidam materiem ac globulos iterum spargebantur magno numero valde exigua vascula sanguinea, quorum diameter erat # pars axis globuli sanguinis. Et quamvis haec vascula sanguinea tantae essent exiguitatis, notata tamen eo colore erant, ut agnoscere potuit ea materiem colorantem sanguinis continere. Brunneum colorem, quo corticalis cerebri pars est praedita, inde ortum trahere putabat, quod primo maxima pars materiae ejus ex pellucidis particulis constet, quae adeo arcte sibi invicem annexae sunt, ut vitream aut aqueam pelluciditatem pariant, et deinde quod hic brunneus color augeatur multiplieium sanguinis minimorum vasculorum per eam transitu. Vidit quoque passim multas particulas valde exiguas, quas judicabat esse globulos, qui aequabant partem globuli sanguinis. Neque hae particulae pellucidae erant, et imprimebant similiter cerebro colorem brunneum. Observavit quoque ubi hae partes corticales cerebri profunde in partes medullares penetrant, inter utrasque tantam adesse vasculorum sanguiferorum copiam, ut integram membranam prae se fere efficiant. Praeter memorata tenuia haec sanguifera vascula in cerebro occurrunt alia adhuc vascula, multo tenuiora supra descriptis.

In parte medullari cerebri invenit quosdam globulos irregulares diversae magnitudinis, quorum nonnulli magnitudinem sanguinis globuli aut attingebant, aut etiam superabant, quique, quantum oculis judicare poterat, maxima parte constabant ex tenui, pellucida et oleosa materie. Hi globuli praecipue reperiebantur in ea parte cerebri medullari, quae sita est, ubi medulla initium ducit, et tanta copia, ut videantur maximam cerebri partem constituere. Ingens haec glo bulorum copia colorem album hujus cerebri partis efficit. Hi globuli tam arcte sibi invicem erant juncti, ut, quando illos separare conabatur, nonnulli in duplicem longitudinem extendi poterant, et quasi conjuncta videbantur per fila retis. Disruptis globulis videbat partes tenuissimas filamentosas, quas vascula habuit. Constabant porro partes medullares ex innumera quantitate minimorum globulorum, et quadam materie pellucida et tenui, quam ultimam judicabat ex ruptis vasculis emanasse (Epist. 24) (a).

Examinato Ovis cerebro non aliam compositionem, quam in Meleagride invenit: vidit tamen in substantia medullari globulos pellucidos circumdari ingenti copia vasculorum vel striarum retiformium, inter quae nonnulla vasa aderant crassiora, recte decurrentia, pellucida (Epist. 42.).

Observavit porro materiem vitream pellucidam ex parte corticali cerebri Bovis unice constare e tenuissimis striis vel vasculis arctissime invicem junctis. Easdem has strias etiam vidit in Fringillae domesticae cerebri parte tum medullari, tum corticali; invenitque insuper partes constituentes cerebrum animalis minoris non esse minores, sed pauciores, quam in cerebro animalis majoris (Epist. 42.).

Anno 1674 Leeuwenhoeckius observationes suas circa nervum opticum Bovis cum societate Regia Londinensi communicavit, nempe in eo nullam esse cavitatem, per quam visus ad cerebrum transferebatur, sed nervum opticum ex filamentosa constare substantia, optimo jure vasa nominanda; illaque fila impleta esse globulis lente fluentibus: ac quoque si unus globulus in filo quodam prope oculum situs impressione lucis moveretur, tum non tantum omnes globulos tali in filo sitos, sed per illud etiam cerebrum, unde nervus opticus originem trahit, moveri (b).

Postea, anno 1685, examinavit nervum opticum

ex Equo, ut veram formam globulorum haec fila implentium observaret, sed nil aliud videre potuit, quam quod dixit de particulis magnis et parvis globosis: observavit quoque exilia vasa circum magnos lucidos globulos, ac quoque strias pellucidas admodum tenues, ex quibus partes albae cerebri, medullam spinalem versus, constant. Nunc tamen vidit nervum opticum non constare ex filamentis, sed e vasculis globulis repletis (Epist. 47).

Per triginta sequentes annos nullas de cerebro aut de nervis observationes in lucem edidit, quamquam ab eorum investigatione non destitisse videatur auctor: scribit enim anno 1698 (Epist. 111) se frustra tentavisse examinare nervum opticum Culicis. Iterum vero anno 1715, senex jam octogenarius de his argumentis complures conscripsit observationes: inprimis tamen de structura nervorum, quamquam et quasdam de structura medullae spinalis et cerebri instituerit investigationes; in quibus exponendis initium ducam a nervis, quippe quos accuratius et saepius observavit, quorumque cum structura medullae spinalis et cerebri structuram comparavit.

Observat Leeuwenhoeckius, qui vulgo dicitur nervus, constare ex 4, 5, 8, immo crassiores ex 20 quidem filamentis, quorum unum superat alterum sexies vel octies crassitie: quodque filamentum tegitur mem-

brana firma (Epist. Phys. 17, 36). Inter tunicas singulorum filamentorum, inprimis si nervi desumti fuerunt ex animali pinguiori, magna pinguedinis copia invenitur (Epist. Phys. 17). Quodque filamentum constat e pluribus fibrillis vel partibus longis, tenuissimis, vasa minima simulantibus (Epist. Phys. 17, 22, 36). Teneritudo harum fibrillarum tanta est, ut in nervo cujus diameter vix ter superabat crassitiem pili ex barba hominis plus 1000 harum fibrillarum adsint (Epist. Phys. 36). Observavit et partes hisce fibrillis vel vasculis contentas, quas tamen describere non potuit (Epist. Phys. 22). Quando partem nervi transverse dissecti aqua depurata humectabat, in aqua particulas minutissimas natare videbat, quas ex dissectis vasis provenire credebat (Epist. Phys. 32) (c).

Figura 1 sectionem longitudinalem nervi depinxit, in qua A, B, C, D, E, F est pars nervi, et A, G, F ramulus ex majori nervo oriundus. In hac nervi parte non solum fibrillas ex quibus nervus constat videre potuit, sed etiam in quaque fibrilla cavitatem observare, immo partes hisce cavitatibus contentas. In sectione longitudinali nervi Agni una extremitate parte contortas vidit crassitiei pili vulgaris.

Figura 2 sectionem transversalem nervi exhibet, in qua litteris B, C, D, E, F significatur nervulus, in quo fibrillae omnes transverse sunt dissectae, et in

quibus parvis striis lumina fibrillarum designantur. Hic nervus partim circumdatur aliis nervis, litteris G, G, G designatis, quorum tantum neurilema depictum est. Ceterae partes sunt adeps inter singulos nervos praesens.

Neurilema invenit constare ex striis longitudinalibus et transversalibus sive circularibus (Epist. Phys. 32, 36). Hoc neurilema non tantum totum nervum circumdat, sed quaeque fibrilla suas habet tunicas, licet tenuiores, quam tunica totius nervi (Epist. Phys. 36) (d).

Vasa nervorum sanguifera vidit tendere inter tunicas singularum fibrillarum, eaque in ramos dividi plurimos, quorum quidam transverse trans fibrillas decurrunt (Epist. Phys. 17, 36) (e).

Observavit porro nervos ex medulla spinali oriundos variis locis, brevi post exitum e medulla, se figere in parte quadam fibrosa, quae erat in tunica medullae spinalis, et in ea quasi conjungi: et ex ea parte fibrosa iterum emergentes nervi ei videbantur esse fortiores et firmiorem induisse vaginam. Hoc loco nervi adeo erant pinguedine obducti, ut eos bene separare non potuerit (Epist. Phys. 32) (f).

In tendinibus Bovis et Ovis saepius observavit nervos sese in minores spargentes, qui nervi non in ipsos tendines se immergebant, sed tendinibus extrinsecus erant appositi. Inter fibrillas carneas musculorum non pro certe affirmare potuit utrum nervi adsint, nec ne (Epist. Phys. 46) (g).

In retina oculi Ranae observavit plurimas partes, quae membranam hanc intimam constituebant, quasque primo adspectu judicabat esse globulos venis adhaerentes; sed cum accuratiorem iustituisset disquisitionem invenit plerasque particulas esse ex tertia vel quarta parte longiores, quam crassas; maximeque probabile judicabat particulas illas oblongas conficere corpus quoddam retibus nostris non dissimile: ulteriorem retinae partem ex magna globulorum copia constare vidit (h).

Structuram medullae spinalis cum structura nervorum convenire affirmat; medullam in Gado Aeglefino describit, ut partes eo ordine dispositas, ac si omnes in nervos abirent (Epist. Phys. 32, 36, 45) (i).

In cerebro Gadi Morrhuae Leeuwenhoeckius invenit partes longas tenuissimas, maximam cerebri partem constituentes, non ad centrum sed versus peripheriam cerebri tendentes: hae partes cavitatibus erant instructae. Insuper duas alias partes cavas elongatas vidit, quarum altera crassitie congruebat cum iis fibrillis, quae in nervis adsunt: altera pars e vasculis constabat minimis. Putat porro in omnibus animalibus cerebrum simili modo esse constructum (Epist. Phys. 45). Et revera, quas antea fecerat observationes huic

sententiae non oppugnant. In cerebro enim Suis, Bovis et Muris invenit fibrillas tenuissimis tunicis instructas, iis in nervis similes, debiliores tamen (Epist. Phys. 34, 36.). Etiam has fibrillas continere particulas minores, quam ut earum formam rite observare potuerit scribit, easque versus cerebri centrum esse quadrangulares, vel sexangulares; quae forma ei postea tamen magis rotunda visa est (Epist. Phys. 34) (k).

ANNOTATIONES.

- (a). Tota haec Leeuwenhoeckii descriptio structurae cerebri perquam est obscura et confusa: quibuscum enim partibus cerebrum constituentibus, quas recentiorum industria in lucem produxit, jure conferri possent diversae, quas viderit globulorum species et humor oleosus et crystallinus, equidem non video. An globuli quidam in substantia corticali observati conveniunt cum corpusculis nucleatis recentiorum? Conferatur porro annotatio ad hoc caput ultima.
- (b). De anatomica parte hujus observationis videatur sequens annotatio (c). De parte autem physiologica monendum, quae hic a Leeuwenhoeckio scribuntur potius pertinere ad theoremata, quam ad observata; de ratione autem qua

nervi agunt, inprimis meritus est J. Mueller (1): conferri etiam merentur, quae hac de re habet Henle (2).

(c). De nervorum structura intima minime conveniunt scriptores.

GIOVANNI MARIA DELLA TORRE (3) qui microscopii ope investigavit nervos, medullam spinalem, et oblongatam, cerebellum et cerebrum, has partes nihil aliud esse invenit, quam accumulationem globulorum infinitorum transparentium, in aliquo fluido satis pellucido natantium. Hos globulos in variis systematis nervosi partibus variae esse magnitudinis scribit, inque nervis in lineas rectas esse dispositos, et fila aut fibras referre.

Prochaska (4) reperit medullarem nervorum substantiam ex similibus globulis compositam, ac cerebri substantia; aliquod discrimen adesse illi videbatur in dispositione globulorum nervos et cerebrum constituentium; hi nimirum promiscue jacere videbantur, nervorum vero globuli magis in lineas rectas ordinati, ut fibras efficerent; medullaris nervorum substantia firmior ac durior est quam illa cerebri, quae durities major, tamen non a globulis ipsis, sed ab eorum integumentis repetenda videtur.

Prorsus aliam nervorum structuram detexit anno 1779 Fontana (5); de constructione nervorum primitiva sequentia refert: nervus constat e magno numero cylindrorum pellucidorum, homogeneorum, uniformium, simpli-

⁽¹⁾ Handbuch der Physiologie des Menschen. I. Th. 3. Buch.

⁽²⁾ Allgemeine Anatomie. 1841. p. 714 seqq.

⁽³⁾ Nuove osservazioni microscopische. 1776. Prochaska, De structura Nervorum. 1779. p. 42—44.

⁽⁴⁾ De struct. nerv. p. 70.

⁽⁵⁾ Traité sur le vénin de la vipère. 1781. Tom. II. p. 207.

cissimorum. Cylindri facti videntur e tunica subtilissima, uniformi, repleta liquore pellucido, gelatinoso, in aqua insolubili; quisque cylinder accipit involucrum formam habens tubi exterioris compositi ex ingenti numero fibrarum tortuosarum.

Magnus cylindrorum pellucidorum numerus format nervum exiguum, vix oculis conspicuum, formam praebentem ligamentorum alborum (de quibus prius locutus erat, et quae non ad nervum ipsum, sed ad neurilema pertinere videntur), et nonnulli horum nervorum conjuncti constituunt nervos majores, qui iu animalibus observantur.

Microscopicae investigationes ab Ehrenbergio institutae docuerunt (1): fibrillas materiae albae cerebri et medullae spinalis ut et nervorum sensoriorum (optici, olfactorii et acustici) et pro parte nervi sympathici habitum referre tubulorum interdum intumescentium, ac si varicosi vel articulati essent, qui non medullam, sed limpidissimum et pellucidum, non effluentem, oleosum liquorem sine aut cum raris globulis continebant. Hae fibrae varicosae diversae longitudinis ac crassitiei sunt arcte limitatae, et recte plerumque decurrunt, invicem nullam anastomosin ineunt; fibrillae omnium ceterorum nervorum sunt processus directi harum varicosarum cerebri et medullae spinalis fibrarum, sed constituunt fortiores non articulatos cylindricos tubulos, in quorum majoribus albae, parvae, rotundae, irregulares, interdum retiformes vel striatae particulae continentur.

De hujus varicosae structurae fibrillarum nervorum origine multae ortae sunt controversiae et explicationes,

Conf. C. E. Bock, Handbuch der Anatomie des Menschen. 1840.
 Th. II. p. 9.

et hisce diebus probatum videtur varicositatis causam non ab ipsis nervis sed a pressione mechanica substantiae nerveae esse repetendam (1).

Sententia, quam de stuctura primitiva nervorum protulit Robertus Remak (2) maxime convenit cum opinione FONTANAE. REMAK enim distinxit in fibrillis nervorum cerebro-spinalium tres partes: 1. integumentum externum, cellulare, ex tenuissimis fibrillis constans, quae partim durante earum decursu in nodos intumescunt, partim ad margines augentur, varie formatis, plerumque rotundis, pedicellatis corpusculis: 2. tubulum ex membrana tenuissima, valde contractili, aspectum opacum et asperum monstrans, qui habitus efficitur multis flexionibus lateralibus: 3. pallidum et complanatum cingulum, tubulo contractili circumdatum (Primitiv band) marginibus aequalibus, non multo angustius quam fibrilla ipsa. Videt eum post applicatam pressionem e massa nervea regulariter exire, interdum e fibrillis tenuibus nervorum cerebrospinalium et quidem e tenuissimis fibrillis cerebralibus procedere et potuit id in fibrillis fortioribus trans marginem ipsum, interdum etiam in magnam partem a tubulo liberatam observare. Saepius ex tenuibus, solidis fibrillis compositum videbatur, quae in decursu in parvos nodulos increverunt, et se dividebat longitudinaliter interdum in duas aut tres fibrillas. Nonnumquam habitum referebat elateris spiralis ad instar contorti, quod conatur sese explicare. Maceratione ligamenta primitiva tenuiora

⁽¹⁾ HENLE, Allg. Anat. p. 781.

⁽²⁾ FRORIEP'S, Notizen. 1837. No. 47. Remak, Observationes anatomicae et microscopicae de systematis nervosi structura. 1838. p. 1. Henle, Allg. Anat. p. 782.

reddebantur, sed formam complanatam servabant. Aliquoties occurrebant juxta ligamenta primitiva noduli laterales, longi et sat magni. Negat Remak existere medullam globulosam et explicat processum et effluxum globulorum ex motu progrediente tubulorum ipsorum sub neurilemate. Massae globulosae essent residua disruptorum tubulorum, qui facillime comprimi possunt.

Ex observationibus microscopicis, quas instituit Bur-DACH (1) sequentia fere posuit: 1. Adspectus fibrosus observandus in superficie integrorum vel fasciculorum majorum nervorum non pendet a curvatura undulatoria telae cellularis vaginam constituentis, sed a directione curvata fasciculorum fibrillarum primitivarum in ipsa vagina. 2. Fibrillae primitivae non sunt tenuiores in organo quodam ipso, quam extra idem organon. 3. Contentum omnium fibrillarum primitivarum nervorum in statu naturali est limpidum et satis tenax, et tantum coagulatione in massam globulorum mutatur. 4. Fibrillae primitivae initio sunt cylindricae, post mortem vero in parte media contrahuntur, ita ut sub microscopio duplici utrinque linea circumscriptae appareant. 5. Fibrillae nerveae tardius accedunt ad typum perfectissimum, quam ceterae telae organicae; initio constant ex massa globulari, et sensim per formam varicosam, sed non eadem ratione transeunt in formam cylindraceam. 6. Senectute fibrillae primitivae nullam mutationem notabilem subeunt. 7. In fibrillis nervorum primitivis nullus motus massae medullaris in definitam directionem locum habet.

Secundum opinionem Purkinjii et Rosenthalii, conve-

⁽¹⁾ Ernst Burdach, Beitrag zur microscopischen Anatomie der Nerven. 1837. p. 43.

nientibus hac de re etiam Valentin et Henle (1) tres sequentes partes constituunt elementa fibrillarum primitivarum: 1. vagina externa, fortis, amorpha; 2. ab illa inclusa vagina medullaris, tenuis, tubulosa, quae initio pellucida est et statim post mortem coagulatur; 3. axis cylindricus, qui pressione una cum vagina medullari ex involucro externo exprimi solet; liberatus a vagina medullari formam prae se fert fibrillae pellucidae, elasticae, non planae, sed cylindraceae. Hic axis cylindricus omnino convenit cum parte nondum coagulata medullae, quam descripsit Burdach.

(d). Nervi possident vaginam, quae Neurilema dicitur, et cujus crassities cum nervorum crassitie simul augetur vel diminuitur. Tunicas singulas fibrillas nervorum et nervos circumdantes Воск (2) ita distinguit: vaginam singulas fibrillas vel fasciculos includentem Neurilema dicit; est tunica compacta, splendens, glabra, tendinosa, in qua observantur striae oblique vel transverse decurrentes, interdum spiraliter contortae, vel crispae (im Zickzack gebogene), lucidae, splendentes, cum obsentioribus alternantes. Cum neurilemate cohaeret stratum telae cellularis parenchymatosae, tunica cellulosa nervorum, quae singulas fibrillas et fasciculos conjungit, et ramificationes vasorum continet. Tunica exterior totius nervi, vagina nervi cellulosa, quae etiam ex tela cellulosa, splendore argenteo constat, ope telae cellulosae cum partibus vicinis cohaeret, nervum cum his partibus conjungit et vasa in nervi partem interiorem ducit.

⁽¹⁾ HENLE, Allg. Anat. p. 782.

⁽²⁾ Handb. der Anat. T. II. p. 15.

Valentin (1) distinguit inter vaginam externam nervorum (äussere Scheidenbildung) et tunicam continentem (Begrenzungshaut). Tunica externa, neurilema, formatur ex tela cellulari, et investit totum nervum, dein tamen etiam ejus partes constituentes, usque ad fibrillas primitivas, perque eum decurrunt vasa sanguifera; continet insuper adipem et pigmentum. Striae, quae in eo observantur obscurae a dispositione partium constituentium proficiscuntur. Tunica continens fibrillarum nervorum est membrana tenuissima, pellucida, quae fibrillas immediate circumdat.

Secundum Henle (2) nervorum vagina, neurilema, componitur e tela conjunctiva, quae exteriora versus transit in telam conjunctivam amorpham, nervos circumdantem, interiora versus plures dimittit productiones, semper minores quantitates fibrillarum nervorum continentes, et in fasciculos conjungentes. Tela conjunctiva neurilematis in genere eosdem characteres habet, quos tela fibrosa: septa vero inter singulos fasciculos tenuiores constant e fibris vel membranis, quae majorem ostendunt similitudinem cum iis formis, quas tela conjunctiva durante sua evolutione percurrit (3). Fibrillae primitivae etiam suas habent tunicas in quibus Schwann et Rosenthal nucleos elongatos cellularum observaverunt: vidit porro Rosenthal in hac tunica strias longitudinales et transversales (4).

⁽¹⁾ Gewebe des menschlichen und thierischen Körpers in Wagner's Handwörterbuch der Physiologie. 1842. T. I. p. 687.

⁽²⁾ Allg. Anat. p. 614.

⁽³⁾ De tela conjunctiva ejusqus formis variis. Vid. Henle, Allg. Anat. p. 348. Mueller, Handb. der Physiol. I. p. 450.

⁽⁴⁾ ROSENTHAL, De formatione granulosa. 1839. p. 18. Henle, l. l. p. 620.

Paget (1) scribit tunicam fibrillarum primitivarum esse membranam tenuissimam, perfecte pellucidam, et universe nullam ostendere structuram.

Mandl (2) nervorum fibrillis minimis tribuit neurilema ex tela cellulari densissima compositum.

Bruns (3) nervorum neurilema ex filamentis cylindricis e tela cellulari compositis constare dicit. Neurilema a parte exteriore strato e tela cellulari laxa circumdatur: interne neurilema in nervis majoribus simili strato ex cellulosa laxa cohaeret, cum vaginis secundariis nervorum fasciculos circumdantibus, in hac tela sunt extremae ramificationes vasorum sanguiferorum nervorum. In his vaginis secundariis nervorum fibrilli primitivi continentur.

(e). Quae Leeuwenhoeckius de vasorum sanguiferorum decursu in nervis observat cum recentiorum observatis egregie conveniunt. Sic Bruns (4) sequenti modo hanc destributionem vasorum describit: parvi trunci arteriosi, qui sat magna copia nervos adeunt, sat cito in duos ramos dividuntur, qui in contrariam directionem tendunt, parvos tum emittunt ramulos, qui initio magis oblique in tunicam cellulosam nervorum inter fasciculos secundarios destribuuntur, tandem vero in directionem fibrillarum primitivarum, iisque paralleles decurrunt, dum ramulis anastomosin constituentibus, transversis et obliquis multiplici ratione conjunguntur, adeo ut rete vasculosum lu-

Report on the chief results obtained by the use of the Microscope in the study of Human Anatomy und Physiology. 1842.
 p. 31.

⁽²⁾ Manuel d'Anatomie générale. 1843. p. 141.

⁽³⁾ Lehrbuch der allgemeinen Anatomie des Menschen, 1841. p. 159.

⁽⁴⁾ L. l. p. 161.

minibus longitudinalibus constituant. Vasa capillaria nervorum ad tenuissima pertinent, statu vacuo eorum diameter 0,002''' parum superat; constant solum ex tunica vasorum primaria cum nucleis cellularum longitudinalibus, saepe regulari modo alternantibus (1).

(f). Haec observatio Leeuwenhoeckii pertinere videtur ad ganglia nervorum cerebro-spinalium ex divisione Muelleri. Secundum descriptionem, quam dedit Bock (2) ganglia sunt intumescentiae griseo-rubrae, globoso-applanatae, nodis similes. Continent haec ganglia copiam magnam corpusculorum singulari ratione conformatorum, quae nomine globulorum vel corpusculorum nucleatorum (Ganglienkugeln) designantur, quamquam raro perfecte sphaerica sint, sed potius ovalia, tri- vel quadriangularia, prismatica, reniformia, coneïformia, saepe etiam irregularis figurae. Eadem varietas observatur quoad eorum magnitudinem: plurimorum diameter est a 0,022-0,027'''. Signum characteristicum eorum corpusculorum est color rubro-flavus, consistentia mollis et cerae consistentiae similis, et superficies granulosa. In ferme omnibus observatur corpusculum exacte sphaericum, ut guttula adipis splendens, et cujus diameter in majoribus et minoribus gangliorum globulis satis constans est 0,001-0,0015". Cum hoc corpusculo concentrica observatur linea tenuissima, acuta, in cujus centro parvum corpusculum splendens semper retinetur, quique ambo semper formam perfecte rotundam conservant, quacunque ratione premuntur, ex quo sequitur esse vesiculas vel globulos sibi circumdantes. Externa est aqua clarior et habet diametrum

⁽¹⁾ HENLE, Allg. Anat. p. 616.

⁽²⁾ Lehrb. der Anat. des Menschen. II. p. 30.

0,006—0,008". Vesicula pellucida cum nucleo, cujus in loco interdum duo vel tres nuclei ejusdem formae sed minores inveniuntur, interdum ad unum parietem ganglii nervei invenitur, vulgo tamen ab omni parte substantia ganglii circumdata est, etsi non exacte medium locum occupet. Interdum duae vesiculae in uno globulo ganglii occurrunt (1).

Globuli gangliorum habent processus latos sensim in acumen desinentes, ejusdem substantiae ac globuli ipsi. Eorum apex non semper exacte limitatus est, sed saepius quasi abruptus, numquam tamen in filamenta simpliciora divisus.

Ex globulis nucleatis appositis color flavus et intumescentia nervorum in gangliis pendent. In massis confertis dispositi sunt globuli; regulares et globosi ad snperficiem, polyedri in interna gangliorum parte occurrunt. Tela conjunctiva firma, productio neurilematis omnes circumdat et sepimenta format, per quae globuli in massa separatas conjunguntur. Inter globulos fasciculi nervorum partim non mutati transeunt, partim in fibrillas primitivas decomponuntur, et gyris bene multis circa singulos globulos vel massas globulorum circumvolvuntur. Sed et fasciculi nervorum, qui recte decurrunt per ganglia expanduntur et formant plexus, in quorum interstitiis ganglia nervorum recipiuntur. Fibrillae nerveae plerumque centralem ganglii partem occupant, interdum magis lateralem tenent locum, interdum etiam ad exteriorem ganglii partem decurrent (2).

Ab hac descriptione gangliorum, quam dedit Henle,

⁽¹⁾ REMAK, De system. nerv. struct. p. 9. Tab. II. fig. 15.

⁽²⁾ Henle, Allg. Anat. p. 653 seqq.

non multum diversa est descriptio celeberrimi Valentin. Hie nempe tubulos primitivos per ganglia ita decurrere observavit, ut partim plexum formantes via recta iter suum pergant (durchgehende Fasern), partim et praecipue in exteriori ganglii parte globulos nucleatos undique amplectantur (umspinnende Fasern); ceterum globuli gangliorum, nucleum, et in ejus circumferentia nucleolum continentes, saepe pigmento obtecti, secundum illum vagina quadam cellulosa circumdantur, atque nervorum elementis non nisi contigui sunt (1).

Partim haec a doctissimo Remak confirmantur, qui tamen de quibusdam rebus aliam profert opinionem, et inprimis in eo quod invenit fibras organicas ab ipsa globulorum nucleatorum substantia oriri (2).

Sententiae de compositione gangliorum ab Ehrenberg et Volckmann propositae legantur in Anatomiae Compendio cl. Bock, ubi simul inveniuntur opiniones cl. Henle et Stilling de horum gangliorum in oeconomia humana utilitate (3).

(g). Haec observatio Leeuwenhoeckii de nervis tendinum unica esse videtur, quae exstat. Conf. Sebastian, Physiol. general. edit. alter. p. 160.

De decursu nervorum in musculis vid. annotatio huc spectans in Dissertatione Doctissimi F. Le Sueur Fleck p. 37.

(h). Vulgo horum bacillorum (Stabformigen Körper) inventio Trevirano tribuitur, sed ex hac descriptione patet Leeuwenhoeckium haec jam in Rana observasse. Sic enim Remak, qui tria in retina assumit strata sequenti modo

⁽¹⁾ Cff. Bock, Anat. II. p. 32. Remak, De syst. nerv. struct. p. 8.

⁽²⁾ REMAK, I. I. p. 9.

⁽³⁾ Book, l. l. p. 30 seqq.

haec descripsit: primum stratum interius constat ex corporibus bacilliformibus, interdum papillarum ad instar tumentibus, in quibus tamen numquam arcus terminales (Endumbiegungsschlingen) cylindrorum nervorum observavit. Haec bacilla contra per series ita disposita sunt, ut finibus suis se invicem tangant, et magis vel minus concreta sint. Haec bacilla, quando recentia, motus perficiunt notabiles, pro parte voluntarios, cum motu vibratorio tamen non comparandos. Bacilla in pluribus animalibus versus finem praedita sunt papillis majoribus vel minoribus. In animalibus majoribus observat has papillas rima transversali a reliqua bacilli parte separatas esse, et hoc loco facile solvi. Observatur tum filamentum tenuissimum ex interiori bacilli parte papillam intrare, unde concluditur et bacillos et papillas structura cellulari gaudere. Alterum stratum componitur ex cylindris nerveis: fasciculi nempe nervi optici radiatim expanduntur post nervi in oculi bulbi introitum, et versus secundam tertiam partem inter se plexus formant: fines extremitatum nervorum non observavit Remak. Tertium stratum ex magnis constat cellulis; huic incumbit membrana chroroïdea.

Recentioribus Bidderi (1) et Hannoveri (2) indagationibus constat has particulas sive trabeculas esse in retinae parte externa, neque nerveae naturae.

(i). Haec Leeuwenhoeckii observatio non accurata dicenda. Recentiorum enim industria de medullae spinalis structura sequentia innotuerunt. Constat medulla spinalis ex substantia alba, et ex substantia cinerea, cujus pos-

⁽¹⁾ BIDDER, MUELLER'S, Archiv. 1839. S. 371. 1841. S. 248-262.

⁽²⁾ HANNOVER, MUELLER'S, Archiv. 1840. S. 320.

tremae, auctore Remak (1), duae sunt species, alia observior, substantia corticalis proprie dicta (substantia cinerea spongiosa vascularis) et ubi haec in substantiam albam transit substantia cinerea minus intense colorata (substantia gelatinosa): prima continet corpora nucleata et multas fibrillas, postrema corpuscula multo minora, corpusculis sanguinis Ranae similia.

Auctore Valentin medulla spinalis constat e fibrillis primitivis et corporibus nucleatis, utrisque tunicis teneris, ut in nervis, obtectis. Fibrillae primitivae in medulla non finiuntur, sed ad cerebrum tendunt in eo medullae latere ubi intrarunt, sine quod miscentur cum fibrillis alterius lateris medullae. In utraque medullae substantia fibrillae apparent, quae tamen in substantia medullari multo apertius cernuntur, quam in substantia corticali, ubi plures plexus et ramificationes laterales ostendunt. Non per omnem longitudinem paralleles decurrunt, sed sequuntur interdum directionem obliquam, simul etiam non sunt tensae, sed in longitudine parumper plicatae (2).

(k) Cerebrum, ut anatomica hujus partis contemplatio docet, ex duabus componitur substantiis, e substantia nempe cinerea corticali et e substantia alba, medullari, quarum diversitas a diversis partibus constituentibus pendet.

Substantia alba constat praeter telam cellulosam parcam et vasa sanguifera non valde numerosa, tota quanta e fibrillis nerveis primitivis, quae numero ingenti sibi

⁽¹⁾ De syst. nerv. struct. p. 12.

⁽²⁾ Plura de hoc argumento ut et de decursu fibrillarum primitivarum per medullam spinalem legantur apud Bock, Handb. der Anat. des Menschen. II. p. 28 seqq. Köstlin, Microsc. Forsch. p. 28 seqq. Bruns, Allg. Anat. p. 176 seqq. Henle, Allg. Anat. p. 671 seqq.

appositae sunt, et plexus componunt valde intricatos, sed nullibi anastomoses formant. Hae fibrillae primitivae sunt productiones immediatae fibrillarum primitivarum nervorum periphericorum, et tantum ab iis distinguuntur crassitie minore et vagina tenuiore (1). In genere directionem sequuntur versus partem periphericam cerebri. Auctore Ehrenberg hae fibrillae sunt varicosae et nulla vagina indutae (2).

Substantia corticalis, sive cinerea, tota quanta componitur ex corpusculis nucleatis, qualia in gangliis inveniuntur, quae hic majori copia occurrunt, interdum tunicis tenuissimis circumdata, interdum iis non instructa. Ad limites substantiae cinereae et albae color magis albicans vel flavus producitur, pro majori minorive numero fibrillarum primitivarum, quae per partem aliam substantiae cinereae continuantur. Vasa sanguifera, quae substantiam cineream instrant ramificationibus suis interstitia rotunda vel quadrangularia inter se relinquentibus circumdant unam vel plures horum corpusculorum nucleatorum massas (3).

Valentin in cerebro et cerebello tubulos primitivos ita terminari contendit, ut inter substantiam albam et cineream arcus terminales forment et denuo ad peripheriam corporis recurrant, atque putat substantiam flavam praecipue ex paucis ejusmodi arcubus et globulis nucleatis componi (4).

⁽¹⁾ BRUNS, Allg. Anat. p. 175.

⁽²⁾ Book, Handb. der Anat. des Menschen. H. p. 25.

⁽³⁾ BRUNS, Allg. Anat. p. 176.

⁽⁴⁾ Remak, De struct. syst. nerv. p. 21. Bock, Handb. der Anat. des Menschen. II. p. 27.

Huic non assentitur REMAK, qui affirmat se distincte cognovisse tubulos primitivos simili fere modo ac in partibus exterioribus gangliorum et in substantia spongiosa medullae spinalis tortuose decurrere, et in decursu suo pluries se flectentes et reflectentes una simulque ad cerebri superficiem magis magisque appropinquare. Neque assentitur Cel. Valentin, qui peculiare stratum globulorum distinguit, quod tubuli primitivi non assequantur (reine Belegungsformation) (1).

Observavit porro Franciscus Gennari (2) stratum mere cinereum, fere gelatinosum, crassitie lineam dimidiam raro superans, interstitio albido ejusdem fere crassitudinis a substantia corticali plus minusve separatum, ceterum decursum quod attinet fere ubique cum substantia cinerea parallele. Stratum hoc remak compositum vidit ex corpusculis nucleatis et fibris tenuissimis non tubulosis, interstitia albida eo tantum produci, quod tubulis primitivis perpauca tantum substantiae cinereae elementa immixta sunt.

Purkinje in substantia flava cerebelli observavit globulos nucleatos caudatos, quorum caudae superficiem cerebelli versus spectabant, id quod Valentin etiam in substantia flava cerebri se vidisse addit.

De productione tubulorum nervorum legi merentur, quae habet Henle (3).

⁽¹⁾ REMAK, De struct. syst. nerv. p. 21.

⁽²⁾ De peculiari structura cerebri, Parmae. 1782. p. 72.

⁽³⁾ Allg. Anat. p. 685.

CAPUT SECUNDUM,

DE EPIDERMIDE.

Anno 1674 Leeuwenhoeckius scripsit Domino Oldenburgh, quo modo, prout tunc detegere potuit, nostra cuticula sive epidermis insensibilis videretur constare ex particulis sive squamulis rotundis (a): praeterea addidit annotationes circa exterioris cutis formationem, quibus docuit eam assidue cum ab inferiori parte accrescere, tum a superiore deteri (Epist. 39). (b). Ab eo tempore varias circa has particulas instituit observationes, verum nihil aliud quam antea detexit: tamen ubi alio quam ante hac modo in illis observandis uteretur, vulgaris microscopii ope primo multo apertius videbat particulas per illud sibi apparentes, esse rotundas; ac concinne juxta se invicem in plano quadrato

ordinatas, easque adeo minutas existimabat, ut earum 200 aut 250 arenula tegi possent; puta squamarum particulas, quae in oculos nostros cadunt, vel in quas cadit lux, quasque eo modo, ut figura 3 ostendit, depinxit. Ubi eas magis augente microscopio investigaret, vidit eas non confici ex humore, qui ex corpore nostro protruditur, ex quo materies aquea exhalatur, et substantialis materies, quae humori inest squamulam conficit, ut sibi olim persuaserat, sed jam in eam sententiam deductus est, superiorem nostram cuticulam solummodo ex squamis constare.

(Incongruum quibusdam videbitur nomen squamulae, utpote quo raro aliquid solemus designare, praeter piscium cutim extimam. Sed non videt auctor cur
non liceat partes cutem nostram tegentes et conservantes squamas vocare: atque ut supremam Cyprini
Bramae aut Cyprini Carpionis epidermidem vocamus
squamas, ita etiam supremam Gadi Morrhuae aut Salmonis Eperlani cutem vocamus squamas, licet posteriorum plus centies minores sunt, quam Cyprini Carpionis, aut Bramae: atque ita, licet corporis nostri
squamae aliquot millenis vicibus minores sint quam
Gadi Morrhuae aut salmonis Eperlani, squamas tamen
eas vocare licet, quum revera tales sint, ac idem officium corpori nostro praestent, quod piscibus suae
squamae solent praestare.)

Squamae hae, ut jam dixit, concinne juxta se invicem sunt dispositae, ut in piscibus solent: atque non tantum vidit eas constare ex quinque lateribus, sed et in multis dignoscere potuit intimas circumferentias, quas existimabat esse augmentum sive transmissionem uniuscujusque squamulae, quoniam hoc ipsum ope microscopiorum in singulis piscium squamis observaverat.

Fig. 4 depinxit squamulam ex epidermide humana, quam perfectam judicabat, quae latere AB cuti adhaeserat, atque ibi non tam lata erat, quam est pars superior. Simul observantur circumferentiae supra memoratae. Multae aliae squamae non erant tam longae, nec adeo exactis lateribus, quas posteriores judicabat magis intempestive a cute esse detractas: hae autem tenuissimae sunt, judicabat enim earum latitudinem plus 25 vicibus superare densitatem (c), ac praeterea vidit eas triplici stratorum serie sibi invicem impositas esse, sive cutem nostram triplici squamarum tegmine conservari: nam cujusque squamae tertia tantum pars oculo nostro cernitur, sub qua parte ad minimum binae aliae supra se invicem positae squamarum partes jacent, quae a priori teguntur, ut hic fig. 5 cujus pars 1, 2, 3, 4 tantum cernitur, repraesentatur; ceterae hujus squamulae partes aliis squamis sunt tectae.

Quum pisces squamas suas numquam permutant, e contrario in cute nostra saepius id fit, atque non fit ut squamula squamulam sequatur, sed ejusmodi frustulis, ut mille quidem et plures squamae sibi invicem adhaereant (Epist. 39). Huic desquamationi etiam debetur praesentia squamularum in sudore, quarum magnum numerum observavit, quum sudorem in facie contemplaret (Epist. 47). Praeterea hasce squamulas invenit in cerumine auris, et in materie, quam dicit protrusam ex nostris pedibus et quae aqua pluviatili humectata albescit; cujus albedinis causam animadvertit deberi squamulis (Epist. 91).

Observavit quoque epidermidem cicatricis, quae sibi ex venaesectione, jam ante 25 annos facta supererat, ac vidit multas ex iis squamulis habere figuram talem qualis depicta cernitur fig. 6. Per multas harum squamularum diffusae erant pellucidissimae irregulares striae, quales fig. 5 depinxit, quae interdum obsitae erant rotundis globulis, aequalibus fere sextae parti globuli sanguinis. Strias has confici putabat sudore, qui ex corpore protrusus solidam aliquam materiem squamis reliquerit; globulos autem ex corpore nostro esse protrusos, vel ex protrusis quibusdam partibus coagulatos. (d).

His observationibus probatum esse putat, nullos in epidermide nostra esse poros, sed humorem, qui passim ex corpore nostro protuditur (et quidem majori copia et vi ubi sudamus) multis simul locis inter squamulas posse exire; licet squamulas, ubi eas examinamus, sibi invicem firmiter adhaerentes videamus ope substantiae, ut opinatur, quae in humore est, quaeque inter exhalandum squamis adhaeret, ac facile ab humore subsequente denuo ad fluiditatem potest redigi, ac expelli (e).

Sumsit et squamulas ex interiore manus parte, et quidem ex durissima illa cute quam callum vocamus; squamulas has invenit ejusdem circumferentiae, qualem habent ceterae, in reliquis corporis partibus; sed cum squamulae reliqui corporis tenues sint et pellucidae, hac contra tot globulis striisque erant obsitae, ut ex globulis compositae viderentur. Et quia passim expertus est, non solum ex interiori parte digitorum, sed etiam ex totius manus parte interiore maximam copiam humoris, (inter quem multum est adipis) expelli, sibi persuasit, sicut squamulae in brachio, etc. alimento destitutae decidunt, ita e contrario, licet squamulae in interiore manus aut pedis parte alimento destituantur, multiplici tamen compacta exhalataque materie tam arcte et dense compingi et parvulos tantum in squamulis relinqui canales, per quos tenuissima materies assidue expellatur; ut densa adeo haec cutis appareat cum tamen pro maxima parte ex squamulis constet. Densitas haec etiam augetur ubi manus duro labore exercentur, quo fit, ut expulsio partium earumque coacervatio magis augeatur (Epist. 39).

Saepius miratus fuerat Leeuwenhoeckius magnam observans evaporationem humoris et adipis trans cutem cum nullas, quibus exirent, microscopio in cute observare potuerat vias. Postea tamen cultro tenuissimo cutem ex dorso manuum digitorum et brachii in tenuissimas divisit lamellas, et observavit cutem constare vasculis minimis, per quae humor et pinguedo transsudant. Vasculis his, quae summam cutem efficiunt, et insuper squamula conteguntur talis est crassitudo, ut eorum diameter, si cum ipso meatu sive lumine comparetur sit triplex. Sed vascula illa, cum ad microscopium admoventur, plerumque complicata cernuntur, sicubi vasa sanguinea, dum sanguine vacant. Hinc fit ut de 25 vasculis, quanta libet tenuitate lamellae a cute praecidantur, vix unicum occurrat quod intuentium conspectui sit pervium (f).

Quomodo vascula haec perspexit, videre licet in figura 7, qua repraesentatur lamella, quam secunda aut tertia incisione a cute digiti interiore absciderat; et ut incredibilem copiam vasculorum, quae cutem humanam perforant, designaret, judicavit spatio cutis, quod ¹/₁₀ parti pollicis longitudine respondeat, facile 120 vascula contineri, unde computatione facta

concludit in tota corporis humani superficie ultra 2016000000 talia adesse vascula (Epist. Physiol. 43).

Ex brachiis Aethiopissae, ex parentibus Angolicis 13 circiter annos natae, variis locis subtili instrumento detraxit cuticulam, ac vidit ubique eam quoque nullis aliis constare particulis, quam ex squamulis coacervatis; sed squamulae illae non erant tantae magnitudinis, quantae sunt squamae nostram epidermidem formantes: cujus rei causam esse putabat, quod Aethiopissa, ratione aetatis suae, non adeo procera erat statura, ac praeterea quia infans tot instructus est squamis in corpore quot adultus, ac pro corporis incremento, etiam squamae crescunt; persuasum enim est ipsi licet piscis non sit longior digiti articulo, immo minor, corpus tamen tot squamis esse obtectum, quot sunt, ubi magis increverit. Squamas has Aethiopissae microscopio admovens, eas non comperit adeo pellucidas ac squamas ex nostra cute, ac praeterea vidit in loco brachii, ex quo squamulas desumserat nigram tamen relinqui maculam (g). In manuum parte interiore, ac pedum inferiore has squamulas partim albicantes invenit. Nigrum cutis colorem repetebat a superpositione squamularum leviter coloratarum (Epist. 41). (h).

Mentionem quoque fecit Leeuwenhoeckius pueri 10 circiter annorum, qui tunc temporis spectaculo cir-

cumducebatur, et cujus totum corpus, excepto capite, magnis squamis piscinis, ut dicebant, erat obsitum. In talem ita dictam piscinam squamam inquisivit, ac post varias observationes satis certus factus est, eam consistere ex agglutinatis naturalibus squamulis, similibus iis, quibus corpora nostra teguntur; nam ubi postea dictam hanc particulam per aliquot horas aquae imposuisset, parvae squamulae ad minimum contactum in aliquot millia separabantur, ac tum eas apertius, quam antea videbat. Sed hae squamulae, plus solito obsitae erant globulis non diversis ab iis, ex quibus callus in manibus constat (Epist. 40). (i).

Vagina canis femellae post coïtum dissecta, immensum squamarum numerum invenit, quibus vagina procul dubio intrinsecus instructa fuit, et quae supremam cuticulam vaginae constituerunt, quarum squamarum multae in coëundo detritae fuerunt (Epist. 45). (k).

Inquisivit et in supremam interioris oris cuticulam, ac praesertim in eam, quae in inferiore labio est, atque vidit ipsam quoque squamis esse obsitam, sed paullo majoribus et latioribus at tenuioribus, quam quibus reliquum nostrum corpus obtectum est. Fig. 8 et 9 depinxit squamulam, quam de perfectissimis minimeque laesis esse existimabat. Hae autem squamulae magis erant obsitae striis per eas decurrentibus, quam

illae quae in exteriore corporis parte sunt: hinc eas quoque reliquias tantum censuit materiae sub quaque squamula expulsae, atque adeo canalium vices obire. Singulae quoque squamulae obsitae erant plurimis pellucidis admodum globulis, qui dictis figuris depinguntur.

Quemadmodum squamulae cutem obtegentes, usque adeo supra se invicem prominent, ut ad minimum ternae sint coacervatae, quae causa est, cur cutis nostra videatur alba, contrarium obtinet in oris squamulis; hae enim lateribus suis parumper tantum sibi invicem sunt impositae, adeo ut pro maxima parte unaquaeque squama carnis sanguinisque rubedinem transmittat; easdem ergo ob rationes, interiora labiorem et oris nostri sunt rubra (Epist. 40).

Postea oris squamulis, diversis temporibus examinatis, valde clare et distincte observavit, plerasque in medio habere maculam quamdam claram, supra alias squamarum partes eminentem, quam antea casu et fortuito in squamis ortam putaverat. Itidem in nonnullis squamulis particulae brachii invenit talem maculam, verum non ita distinctam (Epist. 49). (1).

Examinavit Leeuwenhoeckius materiem mucilaginosam, qua intestina sunt obsita, et invenit hanc non esse pituitam ut vulgo habebatur, sed partes organaque intestinis necessaria. Nam ubi hanc materiem in bubus examinabat, vidit et admiratus est maximum tenuissimorum vasorum sanguiferorum numerum, quae ramulis suis multis in locis tam prope sibi invicem jacebant, ut ne tantum quidem spatii, quantum a vigesima quinta parte diametri pili occupatur, inter ea esset; idque praeter alia vascula, in quibus colorem dignoscere, nequivit, et quae pro vasis lymphaticis aut lacteis habuit. Inter dicta haec sanguifera aliaque vascula vidit materiem, quae ex globulis constare videbatur, (notum sit Leeuwenhoeckium hic loqui de intestino, ita ut inflatum ab interioribus suis visui patebat), ac postea videbantur esse exigua in intestino intestinula. Tandem vero expertus est quae observaverat esse fibras, quarum altera extremitas ab ante dictis vasis ex parte tegebatur cingebaturque, altera vero extremitas conjuncta erat pelliculae sive membranae, quae anatomicis pro interiore intestini membrana habetur (m). Fig. 10 A, B, C sunt extremitates substantiae villosae, quae aliis pituita, aliis vero intestinorum mucus audit, quamque Leeuwen-HOECKIUS appellat nomine interioris intestinorum musculi, qui ita apparet, sepositis nempe sanguiferis aliisque vasculis saepius memoratis. A, D, E, C sunt fibrae, ut a lateribus conspiciuntur, quae interiorem intestini musculum constituunt. Harum crassitiem a capillis nostris superari censuit, ac praeterea eas valde

esse fragiles expertus est, adeo ut levissimo contactu, non tantum quasdam ex iis laederet, sed partes ab iis avelleret (Epist. 40).

ANNOTATIONES.

(a). Ex recentiorum observatis hae squamulae, quas descripsit hic Leeuwenhoeckius constant ex cellulis membranaceis, quarum forma et natura in variis epidermidis stratis nonnullas obfert varietates. Corio proximum est stratum cellularum, quae sunt minimae, molles, nucleum subrubri coloris, corpusculo sanguinis similem, nisi forma ovali ab eo diversum, arcte circumdantes, formae globosae aut polyedrae, parum vel non deplanatae. Cellulae habent diametrum 0,00050—0,00058 Poll. Par.; diameter nucleorum est 0,00030—0,00040 Poll. Par. Ubi corium est inaequale et exhibet eminentias, hae per omnem altitudinem talibus cellulis circumdantur, et ubi eminentiae prope se invicem positae sunt, ut e. g. papillae in planta pedis, spatium inter illas totum quantum cellulis inpletur.

Cellulae stratorum intermediorum efficiunt laminas vel squamulas parvas, claras, pellucidas, satis planas, quadri-, quinque-, vel sexangulares, marginibus aequalibus, quae in medio habent nucleum rotundum vel ovalem, granulatum, in utroque latere prominentem. Longitudo media harum cellularum est 0,00130-0,00188 Poll. Par., latitudo 0,00070-0,00100 Poll. Par.; nuclei diameter est 0,00020 Poll. Par.

In laminis superficialibus epidermidis ab his cellulis formantur squamalae irregulares, rotundae vel angulatae, marginibus inaequalibus, 0,00004—0,00006 Poll. Par. crassas, ejusdem longitudinis et latitudinis ac cellulae praecedentes: sed in his rarissime nucleus discerni potest. Constituunt hac cellulae arcte sibi invicem appositae epithelium tessulare lamellatum a Henle denominatum. (Geschichtetes Pflasterepithelium) (1).

Fontana (2) primus has cellulas cum nucleis contentis descripsit in anguilla, et invenit esse vesiculas irregulares repletas corpusculis sphericis minimis.

(b). Conveniunt haec, quae Leeuwenhoeckius de desquamatione et de regeneratione cuticulae scripsit cum recentiorum observationibus. E. H. Weber (3) sequenti experimento hoc comprobavit. Cum in apice digiti quatuor incisionibus perpendiculariter in epidermidem factis parvam partem quadrangularem epidermidis crassitiei unguis hujus digiti separaverat et ope scalpelli sustulerat, corio tamen neque omni epidermide orbato, neque laeso, fovea inde orta quadrangularis neque implebatur, neque margines praescissi epidermidis mutabantur. Inaequalitas hinc orta eo rursus aequabatur, quod epidermis adjacens sensim desquabamatur.

⁽¹⁾ HENLE, allg. Anat. p. 231, seqq. BRUNS, allg. Anat. p. 357.

⁽²⁾ FONTANA, Traité sur le Vénin de la Vipère. 1781. T. II. p. 254. Tab. I. fig. 8 et 9.

⁽³⁾ HILDEBRANDT, Handbuch der Anatomie des Menschen, 4te Ausg. besorgt von E. H. Weber. Th. I. S. 191.

Historia accuratior regenerationis epidermidis haec est: ex fluido nutriente, quod ex vasis superficiei externae corii secernitur nascuntur proxime ad hanc superficiem nuclei cellularum, qui sat cito induuntur membrana cellulari juste nucleos circumdante, et sibi prope appositi infimam epidermis laminam formant. Cum hae cellulae ulteriore susceptione materiei nutrientis ex illo fluido magis evolvuntur et mutantur in cellulas planas laminarum epidermidis intermediarum, a cellulis novis, quae continuo in superficie corii formantur, magis magisque extrorsum premuntur, donec tandem in laminis superficialibus, affluxu materiei nutrientis orbatae, et potentiis externis mechanicis et chemicis obnoxiae, demoriuntur et repelluntur (1).

- (c). Haec relatio inter crassitiem squamularum et latitudinem, quam Leeuwenhoeckius tradit, bene convenit cum mensuratis crassitie et diametro cellularum superiorum epidermidis, quam tradit Bruns (2).
- (d). Forte quae corpuscula in nonnullis squamulis observata a Leeuwenhoeckio nomine globulorum rotundorum describuntur fuere nuclei cellularum: videatur annotatio (a).
- (e). Causa cur epidermis Leeuwenhoeckio aliisque imperforata videbatur, cum revera in ea hiant ostia canalium sudoriferorum, inde petenda, quod hi canales instar spirae sint convulutae, quo fit, ut eorum apertura externa valde sit obliqua, plano exteriori cutis ferme

⁽¹⁾ BRUNS, allg. Anat. p. 360. HENLE, allg. Anat. p. 248, seqq. PAGET, Report. p. 15. MANDL, Manuel d'Anatomie générale. 1843. p. 543.

⁽²⁾ Allg. Anat. p. 357.

parallela, et haec apertura claudatur parietibus superiobus et inferioribus tubi sibi incumbentibus. Si vero sudor stillare incipit, observare licet, qua ratione ante primae guttulae apparitionem epidermis tollatur valvulae ad instar: si autem vel in cadavere vel in homine vivo pars epidermidis detrahitur, canales sudoriferi vi quadam lacerati a parte corii, retrahuntur, eo effectu ut aperturam claudant. Si laminae tantum epidermidis tolluntur, quaeque lamina spirae partem continet, et duae hujus fragmenti aperturae, plano laminae ferme parallelae sibi non respondent: quam ob rem lamina haec epidermidis imperforata videtur (1).

(f). Lumina vasorum sudoriferorum se hic observasse Leeuwenhoeckius putat. Totum autem apparatum ad sudoris secretionem primi indicaverunt Purkinje et Wendt (2): accuratius dein descripserunt Breschet et Roussel de Vauzème (3) et Gurlt (4). Canales sudoriferi ita a Gurlt describuntur: penetrant hi canales per corium et epidermidem, usque ad hujus superficiem liberam, ubi aperturis infundibiliformibus, plus minus conspicuis terminantur. Inversione (Einstulpung) epidermidis orti sunt, nam in animalibus cuticula colorata instructis, idem color in canalibus sudoriferis extremis observatur, qui

⁽¹⁾ Breschet et Roussel de Vauzème, Recherches sur les appareils tegumentaires des animaux. Ann. des Sc. nat. 2. Ser. II. p. 194.

⁽²⁾ Wendt, De epidermide humana. 1833. Mueller's, Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin. 1834. p. 284.

⁽³⁾ Annales des Sciences naturelles. II. Série. T. II. p. 192.

⁽⁴⁾ MUELLER'S Arch. 1835. p. 399—418. Vergleichende Untersuchungen über die Haut des Menschen und der Haussaugethiere, und über die Krätz-oder Raude milben. von Dr. C. F. GURLT und Dr. C. H. HERTWIG. 1844.

in epidermide; partes ab epidermidis superficie magis distantes sunt pellucidae et incoloratae: structura horum canalium eadem est, ac epidermidis. Jam vero Blumen-BACH et EICHHORN, quam sententiam etiam Brescher et Roussel de Vauzème confirmant (1), conjiciunt ex magno numero foraminum vel luminum vasorum, quem se observasse scribit Leeuwenhoeckius, eum aliud quid vidisse, et quidem secundum Henle (2), quae Leeuwenhoeckius hie habet pro luminibus vasorum sudorem fundentium, sunt nuclei cellularum, et partes, quas auctor dicit parietes horum vasorum, sunt cellulae. Hoc si ita est, mensura, quam Leeuwenhoeckius hic memorat cellularum satis convenit cum diametro latitudinali, quem Bruns (3) invenit cellularum ex stratis epidermidis intermediis: computatione enim facta hic diameter secundum auctorem est ferme 0,00083 Poll.; Bruns diametrum latitudinalem invenit 0,00070-0,00010 Poll.

(g). De hac observatione minime conveniunt scriptores.—
Winslow (4) et Albinus (5), quibus assentitur Weber (6),
epidermidem Aethiopum cum tenui et pellucida lamella
cornu nigri comparant. — Malpighius (7), Monro (8), Haller (9) et Bichat (10) Aethiopum epidermidem non colo-

⁽¹⁾ Ann. des Sc. nat. II. Sér. T. II. p. 198.

⁽²⁾ Allg. Anat. p. 259.

⁽³⁾ Allg. Anat. p. 357.

⁽⁴⁾ Exposition anatomique de la structure du corps humain. 1732. p. 488.

⁽⁵⁾ De sede et causa coloris Aethiopum. p. 6.

⁽⁶⁾ Hildebrandt's, Anatomie. I. p. 187.

⁽⁷⁾ Opera. II. Epist. Anat. p. 15. De externo tactus organo. p. 26.

⁽⁸⁾ Works. p. 707.

⁽⁹⁾ Elementa Physiologiae. V. p. 19.

⁽¹⁰⁾ Anatomie générale. IV. p. 452.

ratam dicunt. — Ruysch (1), Cruikshank (2), Camper (3), Heusinger (4), Breschet (5) et Flourens (6) eam cineream vel leviter nigrescentem invenerunt. — Nigram eam depinxerunt Santorini (7) et Rudolphi (8).

Causa hujus opinionum varietatis in eo est, quod epidermis Aethiopum numquam perfecte a rete solvitur, adeo ut semper majores vel minores partes pigmenti ad partem internam haereant; pro copia varia hujus pigmenti adhaerentis epidermis est nigra vel cinerea. Loca epidermidis a pigmento prorsus vacua, microscopio subjecta, a ceterorum hominum epidermide differre non videntur (9).

(h). Mirum certe Leeuwenhoeckium, observatorem ceteroquin et diligentissimum et accuratissimum de hoc notabili in gentibus Aethiopibus coloris a ceteris hominibus discrimine non ampliores instituisse investigationes, hujusque coloris causam a superpositione squamularum epidermidis leviter colaratarum quaesivisse, imprimis cum ipse observaverit et annotaverit cutem Aethiopissae eo loco, ubi epidermidis partem desumserat, tamen nigro colore tinctam esse. Recentiorum observationes satis docue-

⁽¹⁾ Curae renovatae. No. 59, 87.

⁽²⁾ Experiments on the insensible perspiration of the human body. p. 2.

⁽³⁾ Demonstr. Anatomico-Patholog. L. I. C. I.

⁽⁴⁾ Ueber anomale Kohlen-und Pigmentbildung in dem menschlichen Körper. p. 14.

⁽⁵⁾ Ann. des Sc. nat. 2e. Ser. II. p. 344.

⁽⁶⁾ Ann. des Sc. nat. VIII. p. 160; IX. p. 240.

⁽⁷⁾ Observationes Anatomicae. 1724. p. 2.

⁽⁸⁾ Berl. Acad. 1814—1815. p. 177.

⁽⁹⁾ HENLE, allg. Anat. p. 237.

runt causam longe aliam esse, quarum quoniam cum theoriis variis de cutis et epidermidis structura arcte cohaerent, nonnullas hic memorare non alienum visum est.

Riolanus (1) dicens cuticulam sedem nigri coloris esse in in Aethiopibus, verbis nec re a posterioribus dissentit: nam quod recentiores cuticulam et reticulum vocaverunt, antiquiores communi nomine epidermidis designaverunt. Accuratior tamen hujus rei cognitio a Магрісню oriunda. Malpighius (2) enim inter corium et cuticulam invenit membranam, foraminulis pertusam, Rete Malpighii dein nominatum, in quo reticulo sedem hujus nigri coloris situm esse conjecit. Haec opinio confirmata fuit a summo Albino (3), qui tamen observavit, neque rete Malpighii esse membranam foraminulis pertusam, neque in hac unice nigri Aethiopum coloris sedem esse petendam, sed quamquam pro maxima parte in reticulo, tamen et in epidermide: quod et observaverat Santorini (4). Dicit porro reticuli colorem saturatiorem esse, qua id cuti proximum, ab altera parte, qua epidermidi conjunctum, jam aliquantulum exstinctum: indeque intelligi posse, qui fiat, ut extrinsecus Aethiops tam fuscus non sit quam est pars intima reticuli sui: non enim intimi reticuli colorem integre posse apparere per corpus reticuli et per epidermidem, quoniam tantum pelluciditatis gradum non habent. Observavit porro partem intimam reticuli non ubivis aequaliter esse coloratam; ubi enim foveolas intra papillas cutis intrat colorem minus esse fuscum, quam

⁽¹⁾ Anthrop. Lib. H. Cap. 4.

⁽²⁾ Exerc. epist. de Tactus organo.

⁽³⁾ De sede et causa coloris aethiopum. p. 7.

⁽⁴⁾ Observat. Anat. Cap. I. § 1.

ubi papillas obtegit. — Putat porro Albinus reticulum in omnibus hominibus, candidis etiam, adesse: in his tamen candidum etiam esse, ideoque difficulter ab epidermide discerni.

BLUMENBACH (1) opinatur ex evaporatione cutanea in Aethiopibus Carbonium praecipitari, quod in ceteris hominibus in acidum carbonicum mutatur.

CRUIKSHANK (2) inter corium et epidermidem quatuor numeravit strata, duo infra stratum coloratum, stratum coloratum ipsum, et aliud supra illud.

GAULTIER (3) rete Malpighii ex quatuor stratis constare dicit; nempe ex papillis (Bourgeons sanguins), ex earum tunica fibrosa (Membrane albigunée profonde), ex pigmento (substance brune vel couche de gemmules), in Aethiopibus tantum conspicuo, et ex membrana albuginea superficiali, inter pigmentum et cuticulam.

DUTROCHET (4) quinque supra corium assumit strata, et quidem 1°. corpus papillare: 2°. membranam, quae papillis est loco epidermidis, difficile agnoscendam: 3°. stratum pigmenti: 4°. integumentum corneum papillarum: duo haec strata, difficile a se invicem separanda, componunt rete Malpighii: 5°. cuticulam.

Breschet et Roussel de Vaunzème (5) peculiarem de epidermide proposuerunt sententiam. Secundum eos nempe et rete Malpighii et epidermis ipsa sunt secreta duorum

⁽¹⁾ De gener. hum. variet. 1795. p. 124.

⁽²⁾ Exper. on the insensible perspiration of the human body. 1798.
p. 30.

⁽³⁾ Rech. anat. sur le syst. cutané. 1811. p. 11.

⁽⁴⁾ Journ. Complem. V. 1819. p. 366.

⁽⁵⁾ Ann. des Sc. nat. 2e. Série II. p. 167, 321.

apparatuum glandulosorum, qui in corio adsunt: apparatuus blennogeneticus et chromatogeneticus (appareil blennogène et chromatogène). Primus secernit mucum vel corneam materiem, alter pigmentum: utraque ad superficiem corii deponuntur inter papillas, ubi miscentur et ad superficiem externam exsiccantur. Apparatus blennogeneticus constat glandula et ductu excretorio, qui mucum inter papillas corii deponit (1). Apparatus chromatogeneticus in exteriore parte corii invenitur inter ejus papillas; est structurae vasculosae et ex superficie plurimi oriuntur ductus excretorii breves (2).

Henle (3) sedem coloris Aethiopum cutis ponit infra rete Malpighii, inter quod et cutem saepe et cum reticuli cellulis intermixtum inveniuntur cellulae pigmento repletae, reticuli cellulis similes colore tantum diversae.

Plerumque per strata sibi invicem incumbunt, interdum magis sunt dispersae. Gradus colorationis variat, et ab hoc, ut et ab epidermidis crassitie pendet intensitas coloris cutis. Sunt hae cellulae sacculae vel vesiculae incoloratae, fluidum pellucidum, cum corpusculo pigmenti continentes. Earum forma est plerumque sexangularis, vel ad eam accedens. Diameter est 0,0039—0,0062'''; corpusculi pigmenti diameter est 0,0016'''. Color horum corpusculorum non est perfecte niger, sed intense brunneus (4). Hujus pigmenti evolutionis causam multi repetiverunt ab actione caloris solis, cum pueri Aethiopum

⁽¹⁾ Ann. d. Sc. nat. 2e. Sér. II. p. 322.

⁽²⁾ Ann. d. Sc. nat. 2c. Sér. II. p. 339.

⁽³⁾ Allg. Anat. p. 282.

⁽⁴⁾ De corpusculis pigmenti inprimis legendus est VALENTIN, Gewebe des menschlichen und thierischen Korpers in WAGNER'S, Handwörterbuch der Physiologie. I. p. 644.

primis post nativitatem diebus in paucis tantum corporis locis fusco colore tincti sunt, et post 10 a nativitate dies hoc colore per totum corpus obteguntur (1). Haec causa dein tamen rejecta, cum probatum sit, neque Europaeos in Africa nigros, neque Aethiopes in Europa albos evadere.

FLOURENS (2) in cute Aethiopum peculiarem invenit apparatum, qui in gentibus non coloratis desideratur. Invenit nempe inter corium et epidermidem, quae ex ejus sententia ex duabus laminis constat, apparatum, quem vocat pigmentalem, compositum ex membrana peculiari, quae gerit vel secernit pigmentum, et ex lamella ipsa pigmenti. Talis igitur secundum eum auctorem est compositio cutis, ut corio non mutato, incolorato incumbat membrana continua, pigmentalis, quae gerit pigmentum; haec membrana pigmento nondum orbata a parte, qua corio adhaeret coerulea videtur, a pigmento libera est alba. Sequitur pigmentum ipsum, quod non est membrana, sed potius stratum dici meretur; membrana, quae tegit pigmentum est membrana continua, estque interna epidermidis lamina: huic incumbit externa cuticulae lamina (3).

Quum in enumerandis nonnullorum auctorum sententiis de origine et sede coloris Aethiopum, plurima simul inserenda fuerint de totius cutis structura, paucas alias de eodem argumento sententias hic adjungere placet.

Bonn (4) quatuor in cute memorat membranas cuticu-

⁽¹⁾ LABATE, Voyage aux Isles de l'Amérique. T. II. Cap. 6. CAMPER, Demonstr. Anat. Path. Lib. I. p. 1.

⁽²⁾ Archives du Muséum d'Histoire naturelle, III. 1843. p. 186.

⁽³⁾ Arch. du Mus. III. p. 165 seqq.

⁽⁴⁾ De continuationibus membranarum.

lam, reticulum, corpus cutis sive corium et cellulosam. Lamina vel membrana haec cellulosa videtur esse lamella intima corii, quae est minus compacta quam exteriores.

BICHAT (1) quatuor in cute strata assumit: corium, corpus reticulare, papillas et epidermidem.

MITCHELL (2) ex actione vesicatorii in cutem Aethiopum concludit epidermidem constare ex duabus laminis: sub his adesse sedem coloris: qua in re convenit cum observatione Di. Flourens, qui etiam ipse credit se sibi consentientem habere Albinum, ubi dicit: "Habeo epidermidem, quam detraxi de superiore parte brachii foeminae candidissimae, cui epidermidi adhaeret reticulum, omnino candidum, et ob id difficulter discernendum ab epidermide (3).

(h). Hic puer, cujus mentionem facit Leeuwenhoeckius, affectus fuit Ichthyosi, qui morbus a Rayero (4) dicitur evolutio morbosa papillarum cutis cum crassitie adaucta lamellarum epidermidis. Parvae tamen hujus epidermidis partes juxta se invicem positae sunt, neque sibi imbricatim incumbunt, ut squamae piscium. Buniva putat substantiam squamularum nihil aliud esse, nisi gelalatinam solidam et duram factam ope connubii cum quadam quantitate Phosphatis et Carbonatis Calcis. Delvaux invenit illam insuper continere Carbonatem Ferri et Silicam, et igitur squamas in Ichthyosi continere eadem

⁽¹⁾ Anat. génér. T. IV. art. Organisation du système dermoïde.

⁽²⁾ An essay upon the causes of the different colours of people in different climates. (Phil. Transact. Vol. XI, III. p. 102.

⁽³⁾ De sede et causa coloris. p. 8.

⁽⁴⁾ Traité théorique et pratique des Maladies de la Peau. 3 ed. T. III. p. 614.

principia, quae ungues, pili et ceterae productiones epidermidis.

RAYER invenit eas easdem habere proprietates physicas et chemicas ac epidermis (1). Simili ratione J. Vogel (2) dicit in morbis cutaneis huc usque accuratius examinatis plurimas mutationes Epidermidis spectare evolutionem et incrementum, non vero dispositionem histologicam elementorum, ex quibus composita est.

- (k). Haec observatio Leeuwenhoeckh de praesentia squamularum in interiore oris, et genitalium feminarum superficie, egregie convenit cum iis, quae de distributione epithelii tessularis scimus. Extenditur nempe praeter superficiem externam corporis, per interiorem nasi superficiem ad lineam usque, quae ducitur a margine libero ossium Nasi ad processus nasales ossium maxillarium superiorum: porro per cavitatem tympani: investit partem laryngis, epiglottidem; totum os et pharyngem, oesophagum, glandulas salivales, ventriculum ad pylorum usque. In mucosa uro-genitali hominis epithelium tessulare adest in cellulis prostratae, et in vesiculis seminalibus: in femina pagina interna labiorum majorum, labia minora, clitoris, hymen, vagina et collum uteri hoc epithelio teguntur (3).
- (1). FLOURENS, in ore et in lingua structuram cutis talem invenit, ut constet ex corio, corpore mucoso, et epidermide simplici. Corpus mucosum idem est ac cor-

⁽¹⁾ Vid. RAYER, l. l. p. 620.

⁽²⁾ Gewebe (in Pathologischer Hinsicht) in Wagner's, Handworterb. der Physiolog. I. p. 817.

⁽³⁾ Köstlin, Die microscop. Forschungen im Gebiete der menschlichen Physiologie. 1840. p. 170.

pus reticulare Malpighii, de quo copiosas Flourens instituit observationes, et convenit cum cutis externam corporis superficiem tegentis epidermidis lamina interiore (1).

(m). Manifeste Leeuwenhoeckius hic vidit et descripsit epithelium cylindricum intestinorum. In hoc nempe epithelii genere cellulae formam habent conicam, apicibus suis membranam mucosam, quam tegunt, spectantes. Facies terminalis vel basis coni est plana vel parum convexa, nunc rotunda, nunc polygona. Nucleus invenitur vulgo ad mediam longitudinem cellulae, parietes laterales ejus attingens, vulgo eminentiam in cellula provocans: est autem ille nucleus rotundus vel ovalis, et si est ovalis, ejus axis longitudinalis convenit cum axi longitudinali cellulae vel eam sub angulo acuto secat. Est autem hoc epithelium forma epithelii tessularis, ut apparet ex modo, quo unum sensim in alterum transeat. Harum cellularum longitudo est in homine 0,008-0,009 Lin.; diameter extremitatis liberae 0,0017-0,0024 Lin.(2). In hoc epithelio cylindrico secundum Valentin (3) semper exteriores et vetustiores cellulae fiunt cylindricae, adeo ut earum superficies libera fiat plana vel parum convexa, extremitas opposita magis acuminata et in filum excurrens. Repulsio in hoc epithelio non fit tam continuo ac in epithelio tessulari, sed certis temporibus, ut in intestinis per primas vitae hebdomades, etc. (4). Interdum hujus epithelii cellulae sibi proxime adjacent, et tum pressione

⁽¹⁾ Arch. du Mus. III. p. 197-211.

⁽²⁾ HENLE, allg. Anat. p. 239.

⁽³⁾ G. VALENTIN, Ueber die Entwickelung der Thierischen Gewebe, in Wagner's, Lehrb. der Physiol. p. 134.

⁽⁴⁾ Köstlin, l. l. p. 172.

reciproca in se invicem formam acquirunt polygonalem, vel relinquunt spatia, quae substantia pellucida, intercellulari impletur, quae tum apparet forma systematis vasorum capillarium retiformis (1), qua etiam forma a Leeuwenhoeckio descriptae sunt, qui haec interstitia inter cellularia pro vasis sanguiferis minimis habuit, quae numero maximo adesse dicit. Invenitur hoc epithelium in tractu intestinorum, primo loco circumscripto in ventriculo prope cardiam: a pyloro inde format continuum indusium mucosae intestinalis cum omnibus suis prominentiis, et ad anum tangit epidermidem linea aspera. Obtegit ductus excretorios glandularum salivalium et lacrymalium, ductum choledochum, hepaticum et cysticum, vesiculam fellis et ductum Wirsungianum. In genitalibus virilibus tantum deëst in prostata et in vesiculis seminalibus (2).

GLISSONIUS (3) omnem praesentiam epidermidis in intestinis negavit: item Bichat (4), Beglard (5), et Meckel (6). Observatum fuit tamen ab Hallero (7), Lieberkuhn (8), Ruysch (9) et Doellinger (10).

FLOURENS (11) praeter epithelium, in intestinis non solum,

⁽¹⁾ HENLE, Allg. Anat. p. 237.

⁽²⁾ Köstlin, l. l. p. 172.

⁽³⁾ De ventriculo et intestinis.

⁽⁴⁾ Anat. Génér. T. IV. Epiderme des surfaces muqueuses profondes.

⁽⁵⁾ Notes sur Bichat.

⁽⁶⁾ Handbuch der menschlichen Anatomie. I. p. 613, 614.

⁽⁷⁾ Element. Physiol. T. VII. p. 22.

⁽⁸⁾ De fabrica et actione villorum tenuium.

⁽⁹⁾ Thesaur. VII. No. 40.

⁽¹⁰⁾ De vasis sanguiferis, quae villis intestinorum tenuium hominis brutorumque insunt.

⁽¹¹⁾ FLOURENS, Arch. du Museum. T. III. p. 217-233.

sed etiam in ventriculo dicit adesse rete mucosum, sed ex sententia Henle loco retis mucosi lamellam membranae mucosae ventriculi et intestinorum descripsit (1).

⁽¹⁾ HENLE, allg. Anat. p. 268.

CAPUT TERTIUM,

DE PILIS.

Leeuwenhoeckius jam antea scripserat corticem crinis Alcis et Gervi compositum esse ex globulis; examinatis vero tunc temporis pilis humanis etiam crines nostros ex globulis constare docuit. Sed postea crines nostros arborum ad instar habere corticem, ex globulis compositum existimabat, illorumque inaequalitatem inde unice provenire judicabat, quod dum adhuc molles sunt, vi quadam per cutem protrudantur; crines etiam dixit intrinsecus ex striis constare (Epist. 80).

Quum vero multi putant crines cavos esse, alii vero perhibent crines intrinsecus medullam continere, quemadmodum ossa, operae pretium judicavit crinem suillam examinare, ad demonstrandum, quomodo illa cavitas subinde in pilis conspecta oriatur; simul etiam quare multi putent crines medullam continere: quam postremam opinionem improbat auctor (Epist. Phys. 5). (a).

Pili non pullulant more plantarum, sed crescunt propulsione quadam, et quae pars hodie intra cutem est, post diem unum et alterum extra cutem erit protrusa (Epist. 34, Epist. Phys. 5). Hi crines ex cute provenientes in omnibus suis partibus sunt admodum humidi, ac humor ille statim evaporari incipit; subita illa evaporatione facta cortex crinis, cum striis proxime cortici adpositis, firmitatem recipit suam, unde crinis simul contrahi nequit, quae causa est quod striae magis introrsum sitae suam amittant humiditatem, ac exinde tenuiores reddantur, striae a se invicem rumpantur, nunc una, nunc pluribus rimis, unde sic conficiuntur subobscurae strigae aut striga in crine, quae tum procul dubio pro medulla crinis habentur (Epist. Phys. 5).

Pilum suillum declineandum curavit transverse dissectum, figura 11, in quo E E E sunt rimae ex siccitate pili ortae. Ejusdem pili delineavit aliam sectionem cuti propiorem, figura 12, in qua non variae sunt rimae aut rupturae, sed una tantum rima, tam magna, ut magnum foramen sive cavitas in crine sit, ut K L M. Talem igitur cavitatem a quibusdam non

per accidens ortam, sed crini propriam esse habitam opinatur auctor.

Figura 13 depinxit frustum pili suilli ex transverso dissecti, in quo nulla rima aut ruptura aderat, propter tardam humoris evaporationem: erat hic crinis versicolor, aliae enim rimae erant nigrae et figuram a b c referebant, aliae erant albae.

Crinium formam dicit admodum variam esse, neque omnes esse rotundos, sed potius tot esse figuras, quot crines (Epist. 34). Pilorum crassitiem dicit esse $\frac{1}{\sigma \circ \sigma}$ partem Pollicis (Epist. 41). (b).

Crines, qui in aure adsunt, tectos esse scribit materie quadam sebacea, glutinosa: et idem obtinere in ceteris totius nostri corporis pilis putat, sed hanc materiem vestimentorum motu deteri (Epist. 80).

Ad pilorum radices tendere vasa sanguinea observavit Leeuwenhoeckius, cum viderat in Lepore Cuniculo evulsione crinis in aure plura vascula dilacerari, sanguinemque ex iis effundi: similem observationem etiam in se ipsum fecit (Epist. 68). (c).

Pili radices habent crassas, quando vero decidunt, tenues et acutas (Epist. 34). (d).

Loco crinium, qui elapsi sunt, quod per totum corpus, exceptis capillo et barba, fit quotannis, vulgo alii oriuntur crines, quod magnum provocat pruritum et titillationem. Hunc ingratum sensum inde provenire judicat, quod pili, quando eousque protrusi sunt, ut ad extremam pervenerint cuticulam, ibi nullam inveniant aperturam, et quasi occlusi per supremam cutem perrumpere debeant, quo fiat, ut epidermidem aliquomodo a corio divellant (Epist. 34, 120).

Hanc conjecturam dein observatione comprobavit, quam cum lectoribus communicavit describens se saepe vidisse particulas crinium, de novo protrusorum, nulla apertura in suprema cute reperta, incurvatas contra supremam cutem jacentes, et quidem tali modo ut epidermidem in tuberculum quoddam erigerent (Epist. 35). (e).

Ex hac causa quoque repetit, quas observamus, pilorum curvaturas, et confirmat hanc suam sententiam observatione crinis in brachio, quem etiam delineari jussit, figura 14.

ABC est radix crinis, et ACD frustula epidermidis, quae in evulsione crinis disrupta est. DEF curvatura est crinis; inter FGHJ cernitur pars epidermidis, quam pilus e cute propulsus disjunxit et secum rapuit (Epist. 80). (f).

Plurium animalium pilos observavit et animadvertit illos extrinsecus instructos esse cortice, intrinsecus vero striis longitudinalibus, quod observavit in Bubus, Equis, Ovibus et Suibus, unde per analogiam conclusit idem obtinere in omnibus animalibus, a quibus tamen excepit Alcem et Cervum (Epist. Phys. 5).

Particularem tamen formam crinium observavit in Mure: vidit nempe illos non leves et aequales esse, sed quasi constare e partibus annularibus, globulis similibus et esse geniculatos, crassitiei diversae, et exire in apicem acutissimam, pellucidam. Talem pilum etiam depinxit, parte sua crassissima, figura 15, et versus apicem, figura 16. Similem structuram notavit in crinibus Mustelae Ermineae, Felis, Talpae, Cuniculi et Mustelae Putorii (Epist. Phys. 5). (g).

Peculiarem structuram, quam observavit in pilis Cervi Elaphi delineavit figura 17.

Notavit porro in pilis Ursi striam obscuram, quam et saepe in pilis humanis detexit.

Ut accuratius hoc investigare posset crinem Ursi secundum longitudinem dissecuit, et vidit crines illos partim continere globulos: hi globuli, in quibusdam crinibus dimidiam crassitiem totius crinis efficiebant, et partes illos circumdantes et includentes erant striae tenuissimae. Talem sectionem longitudinalem pili Ursi depinxit figura 18, in qua HJ et LM significant strias tenuissimas corticem crinis constituentes et NK partem interiorem crinis (Epist. Phys. 5) (h).

Vidit et in pilo humano striam brunneam, mediam pili partem vulgo occupantem: stria haec non recte decurrit, sed curvatim, et ex partibus inaequalibus constabat. Quum porro observaverat hanc striam brunneam, neque semper ejusdem esse coloris, neque semper continuam, plures insuper esse crines pellucidos, multo puncto colorato tantum distinctos, judicabat hanc striam produci e materie quadam desiccata ex sanguine. Qua forma pilum humanum viderit, delineavit figura 19.

Ultimo loco observationes nonnullas instituit circa ita dictas Comedones (Met-Eeters). Notavit nempe Leeuwenhoeckius in quibusdam corporis locis, praesertim in naso, cutem summam nigris conseri punctulis, quos aliqui vermes esse judicant. Hos imaginarios vermes ex suo naso expressit, quorum nonnulli capite instructi videbantur, quod exinde oriebatur, quia illa pars, quae extra cutem fuerat, hoc modo multo siccior ac fusci coloris deprehendebatur, quam pars intra cutem occlusa. Plerisque in varias partes dissectis et sic observatis, tamen nullam partem animalculum referentem vidit. In medio nonnullorum tenuissimos ac brevissimos invenit crines cum suis radicibus, alios vicies, alios centies vulgari crine tenuiores (Epist. 39). Originem harum Comedonum talem putat: ponit pilum tenuem, cujus radix in cute profunda est, non amplius nutrimentum accipere, quando semel supra epidermidem pervenerit: parvam hanc partem eminentem rebus externis deteri: materie nutriente ulterius affluente alium crinem juxta priorem formari et sic porro, donec 8, 10 vel 30 in fasciculo juxta se invicem positi sint: adeo ut talis fasciculus non uno tempore sed per plures annos formetur: omnes enim pili non in finem acutum terminantur, sed extremitatem habent obtusam (Epist. 39). Antea cogitaverat has Comedones solummodo loca esse procreandis crinibus destinata, et alimentum, pilos illos tenuissimos procreans, per brevissimum temporis spatium adfuisse (Epist. 34) (i).

ANNOTATIONES.

(a). Similem sententiam professi sunt Rudolphi (1) et Weber (2), qui discrimen inter substantiam corticalem et medullarem in pilis negant. Aliis tamen in locis alii sententiae favere videtur Leeuwenhoeckius, quod ex aliis pilis, quos aliis temporibus observavit forte repetendum. Nam recentiores conveniunt medullam non in omnibus

⁽¹⁾ ELBE, l. l. II. p. 31.

⁽²⁾ Allg. Anat. des menschl. Körp. p. 197.

pilis inveniri, neque ubi adest continuam formare massam, sed subinde desiderari, quod ubi accidit, ubique desideratur, pilorum structuram apparere homogeneam, filamentosam. Desideratur autem in genere in tenuioribus pilis et in lanugine (1). Hae controversiae de praesentia vel absentia medullaris cavi in pilis magna pro parte repetendae sunt ex variis modis, quibus radii lucis directi fuerunt in pilum examinandum, quod ab aliis observatoribus alio modo factum est, cujus rei effectum in has observationes, fuse exposuit Van Laer (2) simulque explicuit, qua ratione difficultates inde oriundae optime evitari possint.

(b.) Henle (3) dixit pilos in genere esse cylindricos, interdum plus minusve applanatos.

Bruns (4) scribit crines raro formam perfecte cylindricam habere, sed saepius referre formam cylindri applanati, interdum ab uno latere aliquantulum excavati, adeo ut sectio transversalis exhibeat figuram ovalem vel reniformem, absque hoc formae discrimine deducit nisum ad crispationem, cum, ex observatione E. H. Weber, relatio inter crassitiem et latitudinem pili non crispi sit 1: 1, 40; pili autem crispi 1: 2, 22. Crassitiem autem pilorum Bruns variare invenit a 0,00048—0,00540 p. Poll. Par. pro variis corporis locis ex quibus pili desumti erant. Sic diameter lanuginis est $\frac{1}{200}$ — $\frac{1}{500}$ p. L.; capillorum $\frac{1}{400}$ p. L.; barbae $\frac{1}{300}$ p. L.; pubis $\frac{1}{200}$ p. L.

Eble (5) dixit formam primitivam pilorum esse rotun-

⁽¹⁾ HENLE, allg. Anat. p. 296.

⁽²⁾ Scheikundige Onderzoekingen. I. p. 77.

⁽³⁾ Allg. Anat. p. 293.

⁽⁴⁾ Allg. Anat. p. 202.

⁽⁵⁾ Die Lehre von den Haaren. 2 Bd. 1831. T. I. p. 69.

dam, ex quibus aliae omnes derivandae sunt. Saepius tamen forma est cylindrica complanata, interdum etiam plana: interdum habent formam pyramidis tri- vel quadriangularis: in nonnullis animalibus quasi uncis obsitae sunt. De his plura copiose ab eble exposita sunt, in Capite II. l. p. 97-155.

Malpighius (1) formam pilorum dicit subrotundam, quorundam etiam quadratam.

DIEMERBROEK (2) dicit crines nunc esse quadrangulares, nunc triangulares, nunc rotundos.

Spigelius (3) pilos observavit quadrangulares.

ROBERT HOOK (4) omnes pilos rotundos vidit.

VAN LAER (5) figuram pili transverse dissecti, oblongam irregularem, aliquando marginibus magis acutis esse dixit talemque figuram depinxit.

Cum Leeuwenhoeckii mensura crassitiei pili optime conveniunt mensurae, quas invenit Weber, qui crassitiem pili invenit $\frac{1}{555}$ p. Poll. Par., latitudinem $\frac{1}{370}$ p. Poll. Par. Aliorum mensuras refert Eble.

Clar. J. van der Hoeven figuram sectionis transversalis capilli vidit ovalem, et axin hujus sectionis longiorem invenit 0,062 ad 0,065 m.m.

(c.) Quae Leeuwenhoeckius disrupta observavit vascula, fuere vel vascula bulbi, vel folliculi vel pulpae pili. Terminatur nempe radix pili ab intumescentia molli vas-

⁽¹⁾ Oper. Posthum. De pilis observat. p. 93.

⁽²⁾ Oper. omnia Med. et Anat. 1687. Eble, L. l. II. p. 32.

⁽³⁾ De humani corporis fabrica. C. I. p. 911. Eble, L. l. II. p. 33.

⁽⁴⁾ Micrograph. curios. in Ephemerid. Erudit. T. II. n°. 42. p. 185. Eble, L. I. II. p. 33.

⁽⁵⁾ De structura capillorum humanorum observationibus microscopicis illustrata. 1841. p. 19.

culis minimis multis obsita, bulbo pili dicta, quae basi infundibiliformi excavata pulpam, pili circumdat. Sacculus radicem pili circumdans folliculus pili, extremitate aperta angusta et media parumper ampliata in substantia corii abscondita est, extremitate autem inferiore coeca penetrat in telam cellularem subcutaneam, inprimis si ad pilum quemdam majorem pertinet, et apertura angusta, pilum contentum arcte circumdante ad superficiem cutis terminatur. Constat e membrana simplici, pellucida, vasculosa, cellulari, quae a parte interiore libera continuatione epidermidis tegitur. In fundo hujus folliculi prominet corpus breve, coniforme, molle, pulposum, valde vasculosum et sensile, rubro aut nigro colore tinctum, pulpa seu blastema pili, quod in excavationem bulbi pili penetrat eamque accurate implet. Structura et functione pulpa pili cum papillis in corio comparanda est; major tamen est, quoniam majorem copiam materiei ad formandos pilos recipere debet (1).

Pili ipsi non continent vasa sanguifera neque nervos, ut nonnulli perhibent, quam sententiam confirmare student observationibus de Plica Polonica: in hoc enim morbo evolutio praeternaturalis pilorum observatur, qui materie glutinosa in massam cohaerentem conglutinantur, et prope cutem secti dolores provocant et sanguinem fundunt. Sed hae observationes praesentiam vasorum sanguiferorum atque nervorum in pilis non comprobant, quoniam haec symptomata explicari possunt ex hypertrophia pulpae pili vasis et nervis instructae, quae ita volumine augetur, ut extra cutem promineat, quale quid etiam secundum

⁽¹⁾ BRUNS, allg. Anat. p. 207.

Heusinger (1) in vibrissis canum in statu normali observatur.

- (d) Conveniunt haec cum aliorum observatis: sic Hen-LE (2) dicit pilos, qui sponte deciderunt, habere in extremitate inferiore intumescentiam parvam, siccam; pilorum contra, qui evulsi sunt extremitatem inferiorem per longitudinem 1—2''' esse mollem et humidam, saepe extremum versus quasi acuminatam, saepe etiam per omnem longitudinem vel in quibusdam locis substantia molli, alba, adiposat circumdatam, quae abradi potest, et qua vestita radix pili, cylindrum pili ter crassitie superat.
- (e.) Hanc observationem de pilis anomala ratione retentis confirmaverunt Weber et Eschricht. Simili ratione pili prodeunt ex folliculis suis in foetu Suillo. Vidit nempe Simon (3) pilum, quando ad eam longitudinem pervenit, ut in folliculo suo non amplius contineri possit, vulgo non recte excrescere, sed instar arcus flecti, adeo ut apex pili et pars radici proxima in folliculo inveniantur, arcus extra promineat. Interdum pilus ad aperturam folliculi convolutus invenitur. In foetu 7-8 pollices longo saepius hoc observavit (4).
- (f) Variae sunt antiquiorum inprimis auctorum de hoc argumento sententiae, quas fuse exposuit Eble (5); ad duas tamen opiniones omnes ferme reduci possunt: nempe alii, qui causam hujus crinium curvationis quaerunt in apertura cutanea folliculi, per quam transit pilus;

⁽¹⁾ Histologie. p. 185. BRUNS, allg. Anat. p. 209.

⁽²⁾ Hence, allg. Anat. p. 298.

⁽³⁾ Simon, zur Entwickelungs Geschichte der Haare. MUELLER's, Archiv. 1841. p. 361, seqq.

⁽⁴⁾ MUELLER'S, Archiv. 1841. p. 370.

⁽⁵⁾ Lehre von den Haaren. II. p. 132, seqq.

alii, qui causam petunt ex humoribus in crine praesentibus, ab una vel altera parte deficientibus vel abundantibus. Secundum Henle (1) curvaturae pilorum proveniunt ab earum forma, cum sectio transversalis pilorum crisporum non sit rotunda, sed potius ad figuram ovalem accedens, adeo ut diameter maximus hujus sectionis $\frac{1}{3}$ - $\frac{1}{5}$ major sit, quam diameter minor: in Aethiopibus diameter unus altero $\frac{1}{2}$ immo $\frac{2}{3}$ major est. Partes pilorum applanatae tum axi incurvationis sunt oppositae.

- (g.) De singulari crinium forma in his animalibus conferatur Eble, qui Leeuwenhoeckii observationes confirmat (2).
- (h) Designavit hic Leeuwenhoeckius compositos esse pilorum cylindros ex substantia corticali et medullari. Substantia corticalis per omnem longitudinem ostendit strias, adeo ut ex fibris separatis composita videatur: interdum etiam si pilus longitudinaliter perscinditur partes fibrosae desumi possunt (3). Fibrae illae sunt pellucidae, marginibus parumper inaequalibus, obscuris, rectae, rigidae, fragiles, 0,0027''' latae et planae. Striae versus apicem pili obfuscantur, radicem versus magis perspicuae evadunt (4). Bauns similem quidem hujus substantiae corticalis compositionem describit, dicit tamen partes constituentes esse fila solida e substantia cornea, cylindrica, flexilia, tenacia, versus utrumque finem acuminata, quorum diameter est 0,00010—0,00016 poll. Par. A majori

⁽¹⁾ Allg. Anat. p. 298.

⁽²⁾ Die Lehre von den Haaren. I. p. 150. 189.

⁽³⁾ Egregiam delineationem hanc rem illustrantem dedit HENLE, allg. Anat. Tab. I. fig. 16.

⁽⁴⁾ HENLE, allg. Anat. p. 294.

vel minori numero horum filorum pendet crassities substantiae corticalis (1).

Mandl (2) compositionem substantiae corticalis pilorum describit ex fibris, descriptioni quam dedit Henle ferme similem: fibrarum tamen applanatarum latitudinem dicit esse 0,005'''.

EBLE (3) putat substantiam corticalem magnam habere convenientiam cum cuticula, quod ad elementa constituentia attinet, quoniam versus finem nil aliud est, nisi epidermis cornea, quae per compactionem aliquam cum cornu similitudinem contraxit.

VAN LAER (4) substantiam corticalem ex fibris constare affirmat, quae hic illic includunt parva corpora elliptica, aliquando longiora, passim sine ordine dispersa, quae in genere magis in stratis externis residere videntur, quam prope medullam. Eorum diameter longa semper axi pili parallela decurrit.

Praeter strias has longitudinales substantiae corticalis et aliae adsunt transversales, quae tamen unice superficiei exteriori propriae sunt. Striae hae parumper oblique decurrunt et saepe in unicam duae vel plures conjunguntur: sibi invicem sunt proximae, adeo ut in longitudine 0,1''' 20-28 talium striarum occurrant (5). Causa harum striarum repetenda est ex integumento substantiae corticalis pilorum, quod constat e parvis squamulis, epidermidis squamulis similibus: hae squamulae in annulos

⁽¹⁾ BRUNS, allg. Anat. p. 204.

⁽²⁾ Anat. génér. p. 307. In anatomia microscopica contra enunciavit substantiam corticalem pili constare ex lamellis superpositis.

⁽³⁾ Die Lehre von den Haaren. II. p. 22.

⁽⁴⁾ De struct. capill. human. p. 29.

⁽⁵⁾ Henle, allg. Anat. p. 294.

dispositae sunt: squamulae seriei inferioris superioris seriei squamulas obtegunt in modum tessularum, et sibi adeo propinquae sunt, ut tota haec pili epidermis ex tribus vel quatuor squamulis sibi impositis constet. Meyer in nonnullis squamulis observavit nucleum (1). Haec confirmantur a Mandl (2), Eble (3), Valentin (4) et Van Laer (5), qui accurate actionem acidorum, inprimis acidi sulphurici in hanc epidermidem investigavit.

D's. Barry hanc epidermidem constare putat ex fibris spiralibus latis concretis, atque totam pili structuram cum structura fibrae muscularis convenire (6).

Heusinger (7) earum squamularum praesentiam negat, eirca substantiam corticalem pilorum, neque eruns ullam de hac epidermide mentionem facit.

De substantia medullari pilorum plurimae diversae a diversis auctoribus prolatae sunt sententiae, quarum plures tradidit Eble (8). Ipse fatetur se non certam sententiam de substantia medullari habere, neque ex descriptione, quam dedit, perspicue ejus sententia apparet: videtur tamen significare medullam hanc non constare materie fluida vel oleosa, sed solida, eamque non formare massam continuam, et semper medium cylindri

⁽¹⁾ MEYER, Froriep's Notizen. 1841.

⁽²⁾ MANDL, Anat. génér. p. 307.

⁽³⁾ Die Lehre von den Haaren. T. II. p. 25.

⁽⁴⁾ Repertorium. 1841. WAGNER, Handworterbuch der Physiologie. I. p. 761.

⁽⁵⁾ Scheikundige Onderzoekingen gedaan in het Laboratorium der Utrechtsche Hoogeschool. I. p. 86.

⁽⁶⁾ PAGET, Report. p. 24.

⁽⁷⁾ System der Histologie. 1823. p. 154.

⁽⁸⁾ Die Lehre von den Haaren, II. p. 26, seqq.

locum occupare, nec ad parietes canalis medullaris ob-

Henle (1) dicit substantiam medullarem constare ex globulis minimis, splendentibus corpusculis pigmenti, vel vesiculis pinguedinis similibus, conglomeratis, qui saepe in serie continua et densa sibi appositi massam obscuram efficiunt: saepe tamen minus agglomeratae, perspicue apparent sub forma conglomerationum disjunctarum, et passim spatia majora vel minora inter se relinquunt. Si substantia medullaris in aliqua parte deficit, hoc loco pili saepe videntur structurae homogeneae filamentosae, ut cylinder solidus; saepe etiam in his locis magis pellucidi sunt. Interdum vacuum inter duas partes substantiae medullaris duabus lineis limitatum est, unde videbatur per medium pilum decurrere canalis, partim globulis medullae, partim materie homogeneae pellucida repletus.

In segmento transverso medullam vidit, magis minusve in circuli formam dispositam, medium occupantem locum, annulo striato, lucido circumdatam. Etiam in pilis medulla carentibus observatur linea obscura, exteriori circumferentiae segmenti parallela, limitem canalis medullaris designans.

Haec est etiam sententia Meyeri (2), cui favent Valentin (3) et Reichert (4).

Bruns (5) dicit substantiam medullarem constare ex agglomeratis corpusculis pigmenti minimis vel e cellulis

⁽¹⁾ Allg. Anat. p. 296.

⁽²⁾ FRORIEP'S, Notizen. 1841. PAGET, I. c. p. 24.

⁽³⁾ Repertorium. 1841. WAGNER'S, Handworterb. der Physiol. I. 761.

⁽⁴⁾ MUELLER'S, Archiv. 1841. CLXXVI.

⁽⁵⁾ Allg. Anat. p. 204.

pigmentum continentibus, sphaericis vel polyedris, eamque in parte extrema vel apice pili totam deficere.

Van Laer (1) ex suis observationibus concludit medullam formari e massa spissa, molli, granulosa, ita disposita, ut interstitia plura, vel et spatia majora vel vacua, vel impleta materie lumen aliter flectente, probabiliter aere, appareant, qua ejus obscuritas, quae vulgo pro colore nigricante habetur, explicari videtur.

Mandl (2) colorem substantiae medullaris ex sequentibus causis repetit 1°. e locis cavis aëre repletis: 2°. ex siccitate telae ipsius: 3°. e pigmento forma globulorum in cellulis deposito. Diameter medullae, secundum Mandl est ½ vel ½ pars diametri totius cylindri pili: secundum Henle et Meyer ½ vel ¼: secundum Van Laer ratio media diametri trunci ad diametrum medullae est uti 1:0,17.

BICHAT (3) se internam naturam pilorum ignorare fatetur, sed putat analogiam adesse inter rete Malpighii et substantiam medullarem, et credit medullam probabiliter formari vasis duplicis ordinis, cujus alter ordo materiem colorantem stagnantem, alter fluidam secernit, et adeo speciem circulationis in pilis locum habere, quam opinionem observationibus pathologicis stabilire conatur.

(i). Nuper de his comedonibus observationes instituit et communicavit doctissimus Simon (4), qui quae LeeuHoeckius viderat in genere confirmavit, quaedam tamen accuratius descripsit.

⁽¹⁾ De struct. cap. hum. p. 35.

⁽²⁾ Anat. génér. p. 308.

⁽³⁾ BICHAT, Anatom. génér. 1812. T. IV. p. 813.

⁽⁴⁾ Ueber eine in den Kranken und normalen Haarsäcken des Menschen lebende Milbe. Muellen's, Archiv. 1842. p. 218, seqq.

Invenit nempe Simon comedones esse folliculos pilorum morbose mutatos. Observationes pilorum jam docuerunt substantiam, quae ex comedonibus exprimitur constare e parvis cellulis, quarum plurimae sunt repletae adipe (1). Hanc observationem de contentis in comedonibus confirmatam invenit Smon, sed in iis saepe unum vel plures pilos reperit. Erant hi in materia expressa vel irregulariter dispersi, et in varias directiones incurvati, vel omnes sibi paralleli appositi. Numerus pilorum in comedone interdum praemagnus erat, in pluribus casibus 40. Pili in comedonibus majoribus e naso a parte superiore non in acuminatam finem terminabantur, sed in superficiem rotundam desinebant. In sectione verticali comedones apparebant sacculi a parte inferiore clausi, apertura sua ad cutis superficiem tendentes. Forma folliculis pilorum erant similes, sed his ampliores.

Praeter memorata comedonum contenta in materie ex comedonibus desumta invenit saepe corpus tenue I partem lineae longum, ab una extremitate rotundatum, ab altera crassius, brevibus uncis obsitum. Accuratiore instituto examine vidit Simon haec corpuscula esse animalia, quorum caput, artus, thoracem et abdomen distinxit, quorumque motum observavit. Horum animalculorum longitudo est 0,085—0,125 Lin.: latitudo 0,020 Lin. Quatuor eorum distinxit formas, quas descripsit et delineavit. Cum viro doctissimo Ericuson (2) ad classem Arachnoïdearum, et quidem ad ordinem Acarorum hocce animalcu-

⁽¹⁾ Henle, Symbolae ad anatomiam villorum intestinalium. 1837, p. 6. not.

⁽²⁾ MUELLER'S, Archiv. 1842. p. 229.

lum retulit, eique imposuit nomen Acarus folliculorum (1).

⁽¹⁾ Cl. R. Owen generice ab aliis acaris distinguendum recte censuit animal, ipsique nomen imposuit Demodex folliculorum. Lectures on the compar. Anatomy and Physiology of the invertebrate Animals. London 1843. p. 252.

CAPUT QUARTUM,

DE MATERIE AD DENTES HAERENTE,

Saepius Leeuwenhoeckius observavit salivam et materiem, quae ad dentes haeret. In saliva variorum hominum variae aetatis numquam animalcula observavit, sed in materie, quae dentes obsidet saepius vidit animalcula adesse, motu notabili praedita, quorum tres formas observavit. Prima forma est oblonga, extremitatibus parumper acuminatis, ac motu forti et celeri insignita: hujus speciei pauca plerumque aderant animalcula. Altera species minorem habet longitudinem, quam praecedens; movebantur hujus speciei animalcula turbinis ad instar, juxta lineas curvas; horum copia major. Tertiae formae animalculis certam ac definitam figuram adsignare non potuit, nunc enim

videbantur esse ovalia, nunc rotunda. Erant haec omnium minima et motus celeritate insigni praedita. In quantitate globulo arenae non majore, quae 200 partibus aquae erat extensa, horum animalculorum tertiae formae quidem pluria millia adesse censet auctor. Porro maxima hujus materiei pars constabat ex ingenti copia filamentorum longitudinis admodum varii, crassitiei aequalis, quorum nonnulli recti, alii incurvati erant et inordinate jacebant: in his tamen nullum motum observare potuit. Bis vel ter, praeter jam memorata, in hac materie observavit particulas pellucidas, globosas, vel formae minus regularis, magnitudinis diversae, quarum maximas vicesies quinquies corpusculo sanguinis humani majores judicabat, quaeque aquae fundum petebant. Numerum animalium permagnum esse scribit, inprimis postquam observare sibi visus erat in parte hujus materiei centesima parte arenulae non majore 1000 animalcula viva adesse (Epist. 39).

ANNOTATIO.

Recentiores observatores, qui de industria hanc materiem, quae dentes obsidet, examinaverunt, sunt Buehlmann (1) et Mandl (2). Buehlmann ad dentes hominum adultorum, inprimis si ad has adsunt deposita ex Tartaro, materiem quamdam invenit, quae constat ex magna copia corporum filiformium vario modo inter se textorum, quorum tres species vel formae diversae observantur.

- 1°. Observantur filamenta supra materiem grumosam flavescentem, formae rotundae vel oblongae, ex qua materie haec fila provenire videntur. Haec forma raro occurrit.
- 2°. Filamenta videntur solitaria, dispersa, saepe disrupta sub epithelio, tartaro et muco, qui dentes obsidet.
- 3°. Cerniter magna copia filamentorum irregulariter permixtorum, materie flavescente grumosa obtectorum.

Prima forma a Buehlmann primitiva habetur: primo adspectu animalculis spermaticis similis videtur: filamenta habent crassitiem 0,00006—0,00008 p. Poll. Par., longitudo est admodum varia. Crassitiem indicatam conser-

F. Buehlmann, Ueber eine eigenthümliche, auf den Zähnen des Menschen vorkommende Substanz. Muellen's, Archiv. 1840. p. 442.

⁽²⁾ M. L. Mandl, Recherches microscopiques sur la composition du tartre et des enduits muqueux de la langue et des dents. Journal de Pharmacie et de Chimie. III. Série. Tom. IV. 1843. p. 228.

vant a basi usque ad mediam longitudinem circiter; inde vero sensim decrescunt, ut in apicem terminentur: sunt glabrae, ex flavo albae, parumper pellucidae, undulatim flexae, vel interdum rectae. Occurrunt unice ad dentes, non in membrana mucosa; inveniuntur aeque in junioribus ac in senioribus, frequentiores et numerosiores in senibus, inprimis in iis, qui minorem dentium curam gerunt, quae muco et tartaro sunt obductae: tamen in summa cura dentes purgantibus observantur.

Mandle in muco, qui obtegit dentes invenit magnam copiam animalculorum infusoriorum, qui moventur motu admodum celeri, et quorum magnitudo variat a 1/500 m.m. ad plures centesimas m. m. partes. Forma convenit cum forma infusoriorum, quibus nomen Vibriones imposuerunt auctores, et magnam habet similitudinem cum Bacillariis.

Calor, acidum Hydrochloricum, etc. statim omnes motus sistunt, qui eo vivaciores sunt, quo minora sunt animalcula. Constituunt haec infusoria partem majorem muci, qui linguam obsidet in iis, quibus digestio est turbata. Tartarum compositum invenit ex mortuis Vibrionibus diversae magnitudinis, substantia organica (muco exsiccato) invicem junctis. Exinde concludit MANDL Vibriones habere sceleton inorganicum ex calce.

Hanc observationem Doct. Mandl confirmare mihi licuit; per microscopium enim Cl. J. van der Hoeven, vidi in tartaro dentium sexcenties amplificato, aqua pura humeetato plurima corpora oblonga, quorum quaedam extremitates habebant acuminatas; videbantur haec corpora non esse cylindrica, sed potius plana: cum Bacillariis similitudinem quidem monstrabant, sed latitudo erat minor respectu longitudinis, quam solet esse in Bacillariis: aderant

insuper multa corpora rotunda et ovalia, quorum nonnulla puncto centrali lucido videbantur instructa: ambae hae species motu voluntario praeditae erant, quo facile distinguebantur ab aliis substantiis, quae simul observabantur.

THESES.

I.

Non facio cum Doellingero neganti parietes membranaceas vasorum capillarium.

II.

Non probanda est explicatio muelleri primae respirationis. Vid. ejus Physiol. T. I. p. 347.

III.

False Kielmeyer sanguini arterioso facultatem motricem insitam esse statuit.

IV.

False Wagner » die Speicheldrüsen haben für die thierische Oekonomie im Allgemeinen keine hohe Bedeutung."

V.

Nervus glossopharyngeus est nervus gustatorius.

VI.

Nervus vagus est nervus mixtus.

VII.

Non admittenda est theoria, quam proposuit Cl. Ma-GENDIE de functione cerebelli et corporum striatorum.

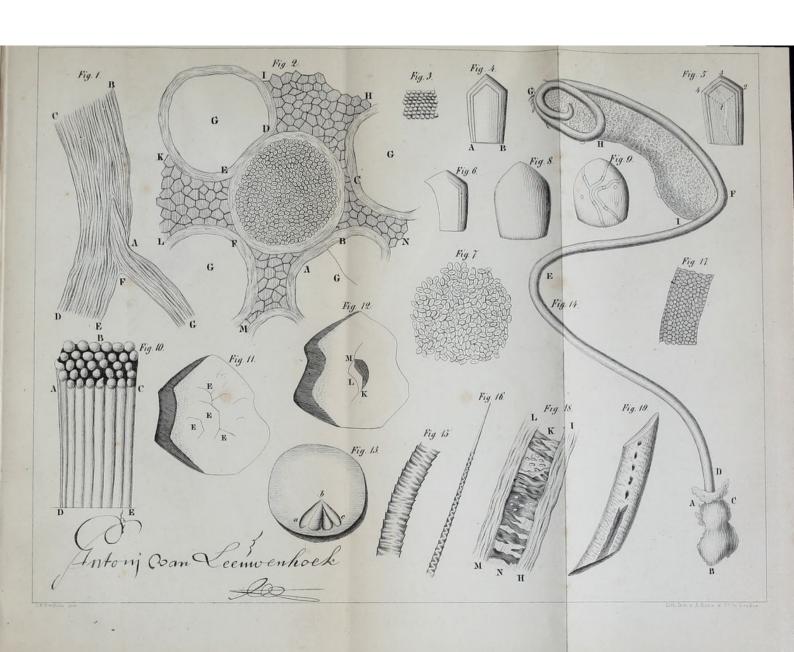
VIII.

Passionem hystericam et hypochondricam non ejusdem speciei varietates, sed revera distinctas esse morbi species statuo.

IX.

Minus vera est sententia Cl. Schönlein, dicentis (Path. u. Ther. T. III. p. 111.) Merkwürdig ist noch die Gegensatz zwischen Tuberkel und Intermittens; beide scheinen sich auszuschliessen.

X.


Icterus neonatorum perperam a solo coloris cutis a rubore ad pallorem transitu nasci creditur.

XI.

Assumtorum medicamentorum elementa cum ipso sanguine miscentur, hujusque auxilio ad varia organorum systemata ducuntur.

XII.

Microscopicae investigationes medico aeque necessariae ac stethoscopicae explorationes.

DISSERTATIO PHYSICA INAUGURALIS

CONTINENS

DISQUISITIONES QUASDAM,

EXPERIMENTALES ET THEORETICAS,

CIRCA MAGNETISMUM ROTATIONE EXCITATUM.

DISSERTATIO PHYSICA INAUGURALIS

CONTINENS

DISQUISITIONES QUASDAM,

EXPERIMENTALES ET THEORETICAS,

CIRCA MAGNETISMUM ROTATIONE EXCITATUM,

QUAM ,

ANNUENTE SUMMO NUMINE,

EX AUCTORITATE RECTORIS MAGNIFICI

GERARDI SANDIFORT,

MED. DOCT. ET PROF. ORDIN.,

NEC NON

AMPLISSIMI SENATUS ACADEMICI CONSENSU,

ET

NOBILISSIMAE FACULTATIS DISCIPLINARUM MATHEMATICARUM ET PHYSICARUM DECRETO,

PRO GRADU MAGISTERII ET DOGTORATUS,

SUMMISQUE IN MATHESI ET PHILOSOPHIA NATURALI HONORIBUS AC PRIVILEGIIS,

In Academia Lugduno-Batava,

RITE ET LEGITIME CONSEQUENDIS ,

PUBLICO AC SOLEMNI EXAMINI SUBMITTIT

NICOLAUS HENRICUS VAN CHARANTE,

ROTERODAMENSIS.

AD DIEM V JUNII MDCCCXLIV, HORA I-II.

LUGDUNI-BATAVORUM,
APUD J. H. GEBHARD ET SOCIOS.
BIBLIOPOLAS.

VIRO AMPLISSIMO

Nacobo Moll, Menr. Fil.

CIVITATIS ROTERODAMENSIS SENATORI,

AVO CARISSIMO

HAS STUDIORUM PRIMITIAS

D. D. D.

Auctor.

OWNERS ORDER

Besselv Millett . Henry officer

. DONALD STREET, STREE

ORIESTMO OVA

CAPTURED INTERPRETARION CONT.

THE REST

JESTSHE'S

INTRODUCTIO.

Inter Physices partes, quae ultimis temporibus magis universalem moverunt attentionem, certe non ultimo loco numeranda sunt ea phaenomena, quae Electricitati et Magnetismo originem debent.

Nec mirum: — plurima enim nova in his detecta sunt, multa utiliter ad artes et vitam communem applicata, longeque mutata eorum relatio et nexus: nam dum ante quinquaginta annos ea esset disciplinae conditio, ut Clar. VAN SWINDEN, examine accurate instituto, cogeretur omnem inter Electricitatem et Magnetismum nexum negare 1), nostris contra temporibus oersted omnium primus palam fecit magnam vim, quam Electricitas in motu habet in magnetes, eaque

Vid. VAN SWINDEN, sur l'analogie de l'Électricité et du Magnétisme, 3 Vol. 1785.

inventione fundamentum posuit totius de Electro-Magnetismo doctrinae, et provocavit ingeniosam illam de Magnetismo theoriam ab AMPÈRE propositam. Ut autem oersted nos docuit phaenomena Magnetica producere Electricitatis ope, ita FARADAY nobis postea ostendit, qua ratione Magnetismi ope Electricitas provocari pos-Ante hanc inventionem physici Anglici summi, ARAGO nobis indicavit vim, quam corpora ita dicta non magnetica certis conditionibus in acum magneticam exercent. Hic nempe die 22 Novembris 1824 verbatim cum Academia regia Scientiarum Parisiensi communicavit eventus nonnullorum, quae instituerat, experimentorum de vi, quam metalla et alia corpora in acum magneticam exercent, quae talis est, ut sat cito amplitudinem oscillationum minuat, nullum tamen effectum notabilem in earum durationem ha beat 1).

E contra ratiocinabatur ARAGO, si acus magnetica mota retinetur a corpore quiescente, necesse est, ut acus quiescens circumvehatur a corpore moto: hac ratiocinatione ductus laminas corporum examinandorum sub acu magnetica rotare jussit, et hac ratione ad eventus pervenit, qui expectationem suam longe superabant: hanc amplificationem cum Academia re-

¹⁾ Ann. de Chim. et de Phys. XXVII. 363.

gia communicavit die 7 Martis 1825 1). Postea docuit hanc vim disci metallici rotantis in magnetem in tres alias orthogonales decomponi posse, quarum una est perpendicularis in radium, secundum directionem tangentis, et producit rotationem: altera verticalis in disci planum, et est vis repellens magnetem sursum: tertia autem secundum directionem radii ipsius, acum inclinationis ad centrum disci attrahens vel ab eodem repellens 2). Ante disquisitiones summi faraday de inductione magneto-electrica, haec phaenomena sola et inexplicata in scientia stabant, prima, simulac proposita esset, explicatione, ab ARAGO ipso rejecta, postquam perspexerat illam nullo modo veram esse posse. Attamen post labores physici Anglici apparuit haec phaenomena casus esse satis compositos, sed legi generali subjectos, quam sub forma simplicissima in lucem produxit.

Multi viri docti statim pleraque experimenta ab ARAGO publicata repetiverunt et extenderunt, quaeque descripta sunt phaenomena explicare conati sunt.

Quum tamen in quibusdam physici et ab ARAGO ipso et a se invicem differant, nonnulla quoque experimenta sunt, quae omnes quidem in ore habent, sed quae nemo, quantum scio, repetiit, cumque insuper,

¹⁾ Ann. de Chim. et de Phys. XXVIII. 325.

²⁾ Ann. de Chim. et de Phys. XXXII. 218.

quae propositae sunt, horum phaenomenorum theoriae diversae, non ab omni parte cum experientia quadrare videantur, consilium eepi, monente viro Clar. uylenbroek, ejusque benevolentia facultate ad id mihi facta, nonnulla huc pertinentia, casus inprimis vel dubios, vel non satis exploratos, accurate, quantum possem, revidere, et experimentis institutis in veritatem inquirere; dein, singulis breviter recensitis theoriis, novam tentare viam, quam mihi Praeceptor meus indicavit, qua felicius forte, quam in hunc usque diem, difficultates evitarentur, quae impediunt, quominus gravissima haec res rite explicetur.

Scriptio igitur nostra in duas tendit partes, alteram experimentalem, alteram theoreticam. In prima parte quatuor mihi proposui examinandas quaestiones:

primo, num omnia corpora ea praedita sint vi in magnetem, quam iis tribuit ARAGO:

tum, quaenam sit intensitas relativa actionis variorum corporum:

dein, qualis sit vis illa repellens verticalis in discum rotantem, quam descripsit Arago:

tandem, an admittenda sit vis quaedam, agens secundum directionem radii disci rotantis, cujus actio in variis a centri distantiis varia esset?

PARS PRIMA,

QUAE EST EXPERIMENTALIS.

→→→→◆③②②€€€€€

Phaenomena Magnetismi, ut dicitur, Rotationis, ut jam ex brevi commemoratione eorum, quae Arago cum Academia Scientiarum communicavit, patet, duplici forma se obferunt, quarum una alteri quod ad tempus inventionis praecessit. Secundum primam nempe methodum, observatur diminutio amplitudinum, quam oscillationes acus magneticae prope quoddam corpus quiescens patiuntur; secundum alteram notatur deviatio magnetis, quae motu corporis cujusdam efficitur. In prima experimenti instituendi methodo acus magnetica vulgaris vel astatica filo sericeo suspenditur, vel cuspidi metallico imponitur, ad certas distantias a corpore, cujus vis examinanda est. Corpus hoc ipsum forma laminae vel disci infra acum ponitur, vel annuli ad instar illam cir-

cumdat. (Ultima hac methodo prae ceteris usus est marris). Acus e meridiani circuli plano educitur, notatur oscillationum, quas inter duo statuta divisionis appositae puncta perficit, numerus, qui comparatur cum numero, quem requirit ad eandem diminutionem amplitudinis subeundam sine praesentia hujus corporis. Totus apparatus campana vitrea tegitur, ut acus a fluxibus aëris tuta sit 1).

In altera methodo, corpus, cujus actio in magnetem est examinanda, forma disci centro suo imponitur extremitati axis verticalis, et hac ratione motus rotatorius in plano horizontali ei tribuitur: supra hunc discum magnes filo sericeo vel metallico ita suspenditur vel cuspidi ita imponitur, ut distantia magnetem inter et discum mutari possit: ope circuli divisi deviatio acus a solita directione determinari potest: vel contraria ratione magnes rotatur sub disco filo suspenso. Ut porro acus magnetica vel discus rotatus defenderetur ab omni fluxu aëris, tegitur campana vitrea, et a disco rotante separatur diaphragmate vitreo vel papy-

¹⁾ Loco acuum, quibus vulgo utuntur in his experimentis, vulgaris vel astaticae, aliam proposuerunt, utraque extremitate eodem magnetismo imbutam, ut, quantum fieri potest, utrisque postulatis, ut nempe a vi directrice terrae libera, simul autem valide magnetica esset acus, satisfieret: talium acuum parandarum methodum proposuit BOETTGER, Ann. de Chim. et de Phys. LXXV. 326. Ann. der Phys. L. 35.

raceo interposito. Patet igitur ex descriptione duarum methodorum, secundum quas haec experimenta institui possunt, primam quantum fieri potest, praeferendam esse, quippe quae natura sua aptior est ad accuratos praebendos eventus, quoniam inaequalitates, quae profluere possunt ex apparatu magis composito, e vacillatione instrumenti, e fluxibus aëris rotatione disci oriundis, si secundum primam methodum instituantur experimenta, non sunt timendae. Quum tamen non omnia phaenomena prima methodo se manifestare possunt, altera adhibenda est, effectibus causarum harum omnium, quantum fieri potest, minutis. Quomodo constructum sit instrumentum, ad haec experimenta instituenda destinatum, a mechanico BECKER confectum, quod invenitur in collectione instrumentorum physicorum academica, cujusque usum mihi concessit vir Clar. UYLENBROEK, quaque ratione effectus nocentes supra memorati diminuti sunt, ex descriptione sequente satis, ut spero, intelligetur.

Corpora, quorum in magnetem actio examinanda est, forma disci, imponuntur in discum horizontalem ligneum, affixum extrema axi verticali. Huic axi, et igitur etiam disco, motus communicatur rotatorius ope horologii, cujus celeritas quodammodo regulatore potest moderari, dum celeritas rotationis indicatur indice, qui movetur supra circulum divisum, exteriori

parieti armarii, quo horologium continetur, affixum. Haec circumferentia circuli, quam index percurrit, in 120 divisa est partes, quarum quaeque unam revolutionem disci indicat.

Supra discum illum diaphragma vitreum collocatum est, affixum annulo ligneo, ad magnetem ab omnibus fluxibus aëris rotatione disci oriundis arcendum. Distantia superficiei superioris hujus diaphragmatis ab initio divisionis verticalis appositae est 1^{mm}.6. Diaphragmati incumbit circulus metallicus, cujus singuli quadrantes in gradus sunt divisi.

Omnia haec tecta sunt campana vitrea, ad arcendum effectus turbantes fluxuum aëris in conclavi praesentium. Campana haec simul adhibetur ad suspendendum magnetem: in parte enim superiore ope annuli cuprei applicata est cochlea, cujus extremitati annexum est filum, compositum ex aliis filis simplicibus sericeis non torsis, a quo, annuli et unci ope, suspensus est magnes: ejusdem cochleae ope distantia inter magnetem et diaphragma mutari potest, ita tamen ut filum non tordeatur: distantiam illam metimur ope divisionis verticalis, campanae insculptae, cujus initium est in superficie superiore disci rotantis.

Armarium recludens horologium, et sustinens discum rotantem, circulum divisum, campanam vitream, et magnetem, impositum est tripodi et ope libellae aëreae et cochlearum trium ejus positio quam accuratissime horizontalis reddi potest.

Instrumento adjunctae acus declinationis pondus est 277.5, ejus longitudo est 123^{mm}, latitudo 8^{mm}, crassities 3^{mm}.5.

CAPUT PRIMUM,

IN QUO QUAERITUR, NUM OMNIA CORPORA EA PRAEDITA SINT VI IN MAGNETEM, QUAM IIS TRIBUIT ARAGO.

Videamus primo de iis, quae arago hac de re retulit. In prima communicatione sua ad Academiam locutus est arago de actione metallorum et multorum aliorum corporum in magnetem 1): in altera hanc actionem latius extendit, et memoravit omnia corpora, tum solida, tum fluida 2): tandem in commen tatione sua expressis verbis affirmavit, omnia naturae corpora (tous les corps de la nature), vim in magnetem habere 3), quamquam eodem loco dicat de corpo-

¹⁾ Ann. de Chim. et de Phys. XXVII. 363

²⁾ Ann. de Chim. et de Phys. XXVIII. 325.

³⁾ Ann. de Chim. et de Phys. XXXII. 213.

ribus gaziformibus compressis spem esse, fore ut, experimento omni cura instituto, etiam horum in lucem prodeat vis 1). Experimenta ad firmandam opinionem suam haec tantum affert.

Acus magnetica horizontaliter suspensa, perficiebat inter 53° et 43°.

Supra	1	ad	distant.	0 ^{mm} 65	30	oscillationes.
aquam	1))))	52.2	60	»
)	ad	distant.	0 ^{mm} 70	26	»
Supra	())))	1.26	34	»
Supra glaciem))	>>	30.5	56	»
)))	»	52.2	60	»

Alia acus perficiebat inter 90° et 41°.

BAUMGARTNER 2), acu 3 pollices longa supra varias lignorum species suspensa, sequentem oscillationum numerum invenit, dum amplitudo a 20° minueretur ad 10°, ad distantiam unius lineae supra discum

¹⁾ Ann. de Chim. et de Phys. XXXII. 214.

²⁾ Zeitschrift für Phys. und Mathem. II. 419.

Abiegnum	6	lin.	crassum	78	oscillationes.	
»	41/2		»	82	»	
Fraxineum	6		»	79	»	
»	11/2		»	83	»	
Quercinum	6		»	74	» »	
»	1 2		. »	81	»	

Ad distantiam 6 pollicum ab fundo ligneo cylindri, quo acus circumdata erat, eadem diminutio amplitudinis obtinebatur post 106 oscillationes.

HARRIS 1) observavit oscillationes acus magneticae in aëre libero, dein in campana exhausta, intra diversos annulos 1 pollicem altos et ½ pollicis crassos; extremitates acus ¾ pollicis ab interiore superficie annulorum distabant; numeravit oscillationes inter 45° et 10°.

Acus perficiebat in aëre..... 420 oscillationes. Intra annulum ex aqua destillata,

¹⁾ Philos. Transact. 1831. p. 79.

Diversae lignorum species densitatis admodum diversae eandem oscillationum numeri diminutionem provocabant.

Corpora fluida, nominatim acidum sulphuricum, non majorem exercebant vim, quam quae tribuenda erat vasi, quo continebantur: nullus etiam effectus videbatur solutionis saturatae Sulphatis Ferri.

Qui secundum alteram methodum experimenta de hoc argumento instituerunt sequentia retulerunt. Arago auctore 1), omnia corpora, certe quadam celeritate in vicinitate acus magneticae rotantia, praedita sunt facultate, illam ad relinquendum meridianum magneticum impellendi. Experimentum quod affert unicum est de cupri efficacia, dum e corporibus non metallicis experimentum affert nullum.

Christie nullam actionem percepit a charta papy racea, a vitro et a mica 2).

Neque HARRIS rotatione magnetis tam celeri, ut 700 revolutiones in 1' perficerentur, in recipiente exhausto, efficere potuit, ut corpora non metallica motum rotatorium assumerent 3).

Sic et faraday disco e corpore non metallico con-

¹⁾ Ann. de Chim. et de Phys. XXVIII. 325.

²⁾ Phil. Transact, 1825. p. 497.

³⁾ Phil. Transact. 1831. p. 86.

fecto et prope magnetem rotante, vel magnete rotante prope corpus non metallicum, nullum videt effectum 1).

Babbage et herschell 2) ligni, vitri, cerae, resinae, sulphuris, acidi sulphurici, etc. nullam actionem in magnetem perceperunt; unicum corpus non metallicum, cujus aliquem effectum viderunt, erat carbo, et ea quidem forma, qua in praeparatione gaz e lithanthracibus, in cylindris relinquitur, qua forma magnam cum metallis habet similitudinem, quoad conductibilitatem caloris et electricitatis.

Sic et NOBILI et BACELLI, physici celeberrimi Modinenses, nullum effectum corporum non metallicorum in acum magneticam viderunt 3).

Neque SEEBECK ullam diminutionem oscillationum observavit orientem vel a vitro vel a charta papyracea in. crassis 4).

Experimenta, quae ipse hac de re institui, sequentia docuerunt. Acus magnetica, supra memorata, horizontaliter suspensa, toto apparatu campana vitrea tecto, inter 90° et 45° azimuth supra discum ligneum perficiebat

¹⁾ Exper. Researches (1728) p. 549.

²⁾ Phil. Transact. 1825. p. 474.

³⁾ Biblioth. Univ. XXXI. 45.

⁴⁾ Abh. der Berl. Acad. 1825. p. 73.

ad	distantiam	1 mm	96	oscillationes.
))	»	3.7	130	»
))))	20	152	»

Altera observatio cum eadem acu eodemque disco sequentes dedit eventus. Perficiebat acus

ad	distantiam	1 ^{mm}	97	oscillationes.
))	»	3.7	130	»
))))	20	150	, »

In his experimentis puncta 45° et 90° in disco ipso notata erant. Eadem acus suspensa supra diaphragma vitreum, cui suppositus erat alius discus vitreus, perfecit, campana tecta, inter 90° et 40°.

Altera observatio cum eadem acu et eodem corpore instituta sequentia docuit. Acus perficiebat

ad distantiam 0^{mm}.9 92 oscillationes.

» » 3.7 151 »

» » 20.4 192 »

In his experimentis circulus cupreus divisus appositus erat, ad eandem distantiam a diaphragmate, ac acus magnetica. Eadem acus suspensa supra diaphragma vitreum, cui impositus erat circulus cupreus divisus, ad distantiam 0^{mm}.9, perfecit, campana vitrea tecta,

inter 90° et 45°, 87 oscillationes. In alio experimento numerus oscillationum erat 87.5.

Discus e sulphure vulgari, cujus diameter erat 123^{mm}, et crassities 1^{mm}.8 infra diaphragma ponebatur, ita ut distantia inter sulphuris superficiem superiorem et magnetis superficiem inferiorem esset 2^{mm}.5, distantia acus a diaphragmate immutata; in eodem arcu perfecit acus 87.5 oscillationes; in alio experimento 86.5. Si distantia magnetis superficiei inferioris a sulphuris superficie superiori erat 6^{mm}.5 acus inter 90° et 45° perficiebat 130 oscillationes. Sulphureo disco infra diaphragma amoto, et distantia a diaphragmate, 5^{mm} circiter, immutata retenta, acus in eodem arcu item 129.5 oscillationes absolvebat.

Ad determinandum, quam vim fluida ad oscillationes magnetis minuendas exerceant, sequens institui experimentum. Eadem acus magnetica suspensa horizontaliter supra diaphragma vitreum, cui impositus erat circulus metallicus divisus, ad distantiam 5^{mm} a diaphragmate, perficiebat inter 90° et 45° 129 oscillationes.

Aqua destillata vase contenta, infra diaphragma posita, ita ut aquae superficies a superficie superiori diaphragmatis fere 1^{mm}.5 distaret, atque ut tota distantia inter aquam et magnetem esset 6^{mm}.5 acus inter 90° et 45° perficiebat 130 oscillationes. In his experimentis apparatus etiam campana vitrea tectus erat.

Ut accuratius constaret de singulari hac vi, pateretque quas in his phaenomenis partes agerent tum aëris resistentia, tum aliae forte causae, sequentia experimenta mei gratia instituit mecumque communicavit Cl. uylenbroek. Primo acus magnetica ad parvam distantiam a, quam tamen apparatus accurate metiri non sinebat, sed semper eandem et millimetro minorem, suspendebatur supra discum vitreum, sub diversis aëris atmosphaerici pressionibus: observabatur numerus oscillationum, quas acus perficiebat, ut definitum amplitudinis diminutionem pateretur. Sequentia prodierunt.

	Barom.	Distantia	a 90°—60°	a 90°—30°
	760^{mm}	a	22 osc.	62 osc.
	760	а	20 »	61 »
	763	a	21 »	65 »
	755	a	20 »	63 »
medius val	.759.5	a	20.75 »	62.75 » .

Dein eadem observabantur, distantia magnetis a disco 10^{mm} aucta.

	Barom.	Distantia	a 90°—60°	a 90°—30°
	753 ^{mm}	$a+10^{\mathrm{mm}}$	37 osc.	118 osc.
	753	a+10	39 »	116 »
	763	a+10	41 »	125 »
med. val.	756.3	a+10	39 »	119.66 ».

	Barom.	Distantia	a 90°—60°	a 90°—30°
	7 ^{mm}	a	25 osc.	72 osc.
	7	a	26 »	73 »
	9	a	26 »	71 »
	12	a	22 »	68 »
	15	a	25 »	71 »
medius val	. 10	a	24.8 »	71 ».
	Barom.	Distantia	a 90°—60°	a 90°—30°
	9 ^{mm} 5	$a + 10^{\text{mm}}$	54 osc.	155 osc.
	10	a+10	53 »	148 »
	10	a+10	52 »	150 »
:	25	a + 10	48 »	147 »
1	15	a+10	53 »	153 »
med. val.	3.9	a+10	52 »	150.6 » .

Similia experimenta facta sunt cum acu lignea, ejusdem formae et magnitudinis ac acus magnetica, quacum firmiter erat conjuncta ad talem infra acum distantiam, ut hujus in discum vitreum actio haberi posset nulla. Sequentes obtenti fuere eventus.

mente	Barom.	Distantia	a 90°-60°	a90°—30°	
	762 ^{mm}	a	27 osc.	85 osc.	
	762	a	27 »	84 »	
val. media	ıs 762	a	27 »	84.5 » .	

В	arom.	Distan	tia a	900-6	0º a	900—3	300	
7	72 ^{mm}	a + 10	mm	34 o	sc.	108	osc.	
7	772	a + 10		35	>>	111))	
val. medius	772	a+10)	34.5))	109.	5 » .	
al al	Barom. 1	Distantia	a90	~-60°	a90	-30	,	
	$12^{\rm mm}$	a	38	osc.	112	osc.		
	9	a	38))	106))		
	9	а	35))	100))		
	10	a	37))	112))		
	10	a	37	»	112))		
val. medius	10	a	37	>>	108	.4 »		
	Barom.	Distan	tia	a90°—	-60°	a90°-	_30°	
	12^{mm}	a+10)mm	76	osc.	226	osc.	
	12	a+10)	67	»	206))	
val. medius	12	a+10)	71.5))	216	» .	

Ex his experimentis patet igitur manifeste amplitudines oscillationum non solum acus magneticae, sed etiam acus non magneticae, immo non metallicae, prope discum vitreum diminui.

Ut porro pateret, num disci ex corporibus electricitatem non aut parum ducentibus confecti prope acum magneticam rotantes acum e meridiani circuli plano deflectere valerent, sequentia instituta sunt experimenta.

Distantia superficiei inferioris magnetis ad superfi-

ciem superiorem disci vitrei erat 2^{mm}.5. Diaphragmate vitreo inter magnetem et discum rotantem interposito: omnibus campana vitrea tectis.

Si celeritas rotationis talis erat, ut quaque 1" vel 1.4 revolutio vel 4 revolutiones perficerentur, nulla deviatio acus magneticae observabatur.

Videmus igitur experimentatores omnes, qui tantum secundum alteram methodum experimenta sua instituerunt, actionem corporum non metallicorum invenisse nullam, et eos solum, qui prima methodo usi sunt, aliquem horum effectum vidisse: eorum tamen communicationes minime accurate convenire. Arago nempe ipse, postquam expressis verbis omnium omnino corporum actionem in magnetem affirmaverat, dein tamen multo minus certe de corporibus gaziformibus loquitur. HARRIS, qui magna cura experimenta et instituit et descripsit, variarum specierum lignorum, densitatis admodum diversae, actionem invenit eandem, dum e contra BAUMGARTNER ab aliis speciebus alios obtinuit effectus. Alii, ut seebeck et nobili, a corporibus non metallicis nullam se obtinuisse actionem ad minuendam amplitudinem oscillationum acus magneticae affirmant; HARRIS a fluidis pluribus nullum vidit effectum: quod fortasse repetendum a ratione minus idonea, qua HARRIS experimenta sua instituit: cum enim forma annulorum vel cylindrorum corporum

et solidorum et fluidorum vim in magnetem examinaverit, ultima vitreis vasis includenda erant, quo necesse distantia a magnete augebatur. Ipse diminutionem amplitudinum a vitro et ligno vidi, a rotatione tamen nullum obtinui effectum.

Patet igitur ex his experimentis actionem horum corporum non metallicorum, nulla ratione tam certe probatam esse quam metallorum; et revera etiam, quum satis certe sciamus phaenomena haec originem debere fluxibus electricis, non facile est intellectu, qua ratione hi fluxus in corporibus electricitatem non vel male conducentibus excitari vel sustineri possint 1).

Obtinere tamen aliquam diminutionem amplitudinis oscillationum magnetis prope corpora non metallica negari non potest. Sed et acus non magneticae, immo non metallicae, oscillationum amplitudo in vicinio corporis non metallici minuitur: hujus amplitudinum decrementi causa certe non fluxus electrici; sed potius ab aëris resistentia repetenda, quod et eo confirmatur, quod amplitudinum decrementum minus observatum

Invenit SEEBECK (Abh. der Acad. zu Berlin 1825. p. 84.) compositiones metallicas quasdam, quae nullum in magnetem habent effectum: ut e. g. connubium 4 partium Antimonii et 1 partis Ferri: 3 partium Cupri et 1 partis Antimonii: 2 partium Cupri et 1 partis Niccoli. Operae foret pretium examinare qualis harum compositionum relatio sit ad conductionem vulgarem Electricitatis.

fuit in aëre rariori. Attamen fatendum est, hoc decrementum non tantum esse, quantum expectare liceret; quod hinc forte petendum, quod aër a superficiebus corporum, acus et disci, attrahitur, iisque firmiter adhaeret; quo fit, ut si aër exhauriatur ex campana, aëris pars, quae superficiebus est proxima, minus rara fiat, quam reliqua aëris pars, ac hae superficies suam quasi habeant atmosphaeram, quae atmosphaerae, si ita dicere licet, motu acus contra se invicem teruntur, ac sic oscillationum amplitudinem minuunt. - Aërem atmosphaericum revera a corporum superficiebus attrahi iisque firmiter adhaerere, inter alia scimus ex magna difficultate, qua in parandis barometris aër omnis a tubi vitrei superficie separatur. Porro experimenta, quae instituit sabine 1), nos docent, diminutionem amplitudinum oscillationum penduli in variis gazis, variae densitatis, non esse in ratione hujus densitatis, sed in alia, eaque minore. Sic comparavit aërem atmosphaericum et gaz hydrogenium, quorum densitates sunt ut 13:1, viditque eorum actiones in penduli oscillationes minuendas esse ut 5.25:1.00 2).

Eandem causam, resistentiam aëris, provocare di-

¹⁾ Captain SABINE, on the reduction to a vacuum of the vibrations of an invariable pendulum. Philos. Transact. 1829. p. 207—239.

²⁾ Philos. Transact. 1829. p. 231.

minutionem magnetis oscillationum prope corpora non metallica, docemur experimentis pag. 16 et 17 memoratis, cum et his in experimentis numerus oscillationum in aëre rarefacto major est, quam in aëre densitatis vulgaris 1). Sed si accurate comparemus eventus experientiae de diminutione oscillationum acus ligneae et magneticae, levem observamus differentiam, quae tribuenda videtur vario gradui et intensitati, quibus varia corpora aërem atmosphaericum ad suam superficiem figunt ac retinent.

Quod si quae hoc capite disputavimus, paucis contrahamus, huc redit:

- 1°. esse corpora, inprimis metallica et Electricitatem optime ducentia, quae, sive quiescant, sive moveantur, in acum magneticam vim exercent peculiaris naturae eamque minime dubiam.
- 2°. alia vero esse, non metallica nec inter optimos Electricitatis ductores referenda, quorum facultas hoc nomine multo magis est incerta, quoniam haec corpora si quiescant acus oscillationes quidem citius sistant, at si ipsa moveantur, acum ne tantillum quidem deflectere valeant.

Quod et apparet ex effectu ferme aequali, quem singula corpora non metallica exercent, et ex eo, quod disci e sulphure vel aqua infra diaphragma vitreum positi effectum diaphragmatis ad numerum oscillationum minuendam non auxerunt.

3º. hanc, quam ultimo loco commemoravi actionem, nequaquam e viribus electricis aut magneticis esse repetendam, quippe quae actio eadem prorsus ratione observatur inter corpora electricitate aut magnetismo prorsus destituta.

CAPUT SECUNDUM,

IN QUO QUAERITUR, QUAENAM SIT INTENSITAS RELATIVA ACTIONIS VARIORUM CORPORUM IN MAGNETEM.

Ut metalla optimi sunt electricitatis conductores, ita etiam actionem in magnetem manifestam ostendunt, ut de eorum vi nulla inter physicos sit lis. Non omnes tamen conveniunt de hujus vis intensitate relativa in singulis metallis; videamus igitur quid hae de re tradiderunt.

Seebeck 1) varia metalla sequenti ordine tradit: acus, quae supra marmorem oscillationes 116 in certa quadam amplitudine perficiebat, ad distantiam 3 lin. perficiebat

¹⁾ Abh. der Acad. zu Berlin , 1825. p. 76.

supra	Mercurium	2	lin.	crass.	112	oscilla	tiones.
»	Bismuthum .	2))	106))	
»	Platinam	0.4		"))	94))	
))	Antimonium	2))	90))	
»	Plumbum	0.75	-))	89	.)	Section.
>>	Aurum	0.2))	89))	
))	Zincum	0.5))	71))	
))	Stannum	1.0))	68))	
»	Aurichalcum	0.9))	62))	
))	Cuprum	0.3))	62	,))	
))	Argentum	0.3		»	55))	
))	Ferrum	0.4))	6))	

Disci hi non erant ejusdem magnitudinis, minimi tamen 1 pollicem majores acu magnetica.

Haec series a seebeck tradita viribus relativis conputandis vix inservire potest, propter diversam magnitudinem et crassitiem discorum, quos adhibuit: concludere tamen ex ea possumus Argentum superare Cuprum, et cetera in hac serie contenta metalla: porro Mercurium superari a Bismutho et Antimonio, dum de aliis metallis minime accurate, sed tantum approximative concludere possumus.

Longe accuratiorem seriem nobis dedit HARRIS 1),

¹⁾ Phil. Transact. 1831. p. 85.

qui eadem observandi methodo usus est, qua seebeck, at experimenta sua ita instituit, ut ea magis essent inter se comparabilia. Hic e suis observationibus vim relativam diversorum corporum ad minuendas oscillationes acus magneticae sequenti computavit formula

$$\left(\frac{a}{b}-1\right)r$$
:

in qua a significat numerum oscillationum liberarum in certa amplitudine, b numerum in eodem arcu, quodam corpore suam vim exercente, et r vim retardantem, qua acus in spatio libero ad quietem pellitur: $\frac{a}{b}r$ igitur conjunctum effectum disci et magnetismi terrestris significat: ab hoc pars actionis, quae magnetismo terrestri debetur subtrahitur, ut ita appareat, quae pars retardationis debeatur corpori opposito. Posuit igitur HARRIS, si ipsius verba bene ceperim, hanc vim esse in ratione directa differentiae oscillationum per certum arcum primum libere, dein in vicinio alicujus corporis perfectarum, et in ratione inversa numeri oscillationum per eundem arcum, praesente quodam corpore, peractarum. Quae argumentandi ratio, licet universe aliquam veri speciem prae se ferat, reapse tamen nimis vaga et incerta est, quam ut sequentibus numeris, dictae formulae ope computatis, plenam habeamus fidem.

Argenti cusi	39.
Cupri cusi	29.
Cupri fusi	
Auri cusi	
Zinci fusi	
Stanni fusi	
Plumbi fusi	
Hydrargyri solidi	
Antimonii fusi	
Hydrargyri fluidi	
Bismuthi fusi	0.45.
Partium aequalium Cupri et Zinci fusi	
Partium aequalium Cupri et Bismuthi fusi	2.3.
Partium aequalium Zinci et Bismuthi fusi	1.4.
Aquae destillatae temp. 20° Fahr	0.27.
Ligni	0.36.
Marmoris	0.37.
Freestone	
Vitri	
Nobili et BACELLI ex deviatione alia, quar	
magnetica patitur ad eandem distantiam ab	
aliis metallis, eadem celeritate circumvolutis, s	
tem invenerunt seriem descendentem, Cuprum	-
cum, Aurichalcum, Stannum, Plumbum 1).	audi

¹⁾ Biblioth. Univers. Janv. 1826. p. 52.

Babbage et herschell duplici ratione hanc vim relativam nonnullorum metallorum determinaverunt 1). Primo rotando discos horizontaliter, et notando deviationes, quas acus magnetica subibat; ut dein ex observatis deviationibus virinm rationes computarent, sequenti usi sunt hypothesi, (at hypothesi nec ab ipsis auctoribus, nec ab aliis dein, quantum sciam, probata): esse vires diviationum sinubus proportionales. Hanc incertam viam ingredientes, tabulam composuerunt, quam hic exhibemus.

NOMEN CORPORIS REVOLVENTIS.	MEDIA DEVIATIO DEXTRORSUM ET SINISTRORSUM.	RATIO VIS AD VIM CUPRI.
Cuprum	11024	1.00.
Zincum	10 11	0.90.
Stannum	5 21	0.47.
Plumbum	2 53	0.25.
Antimonium	1 16	0.11.
Bismuthum .	0 6	0.01.

Idem experimentum repetitum, acu ad minorem distantiam a discis posita, sequentes dedit eventus.

¹⁾ Phil. Transact. 1825. p. 472.

NOMEN CORPORIS REVOLVENTIS.	MEDIA DEVIATIO DEXTRORSUM ET SINISTRORSUM.	RATIA VIS AD VIM GUPRI.
Cuprum	28° 54′	1.00.
Zincum	26 42	0.93.
Stannum	12 54	0.46.
Plumbum	7 0	0.25.
Antimonium	2 27	0.09.
Bismuthum .	0 32	0.02.

E ceteris, quae examini subjecerunt metalla, argentum excellere vi in magnetem apparuit, aurum contra hoc respectu admodum debile esse, adeo ut ejus actionem tribuerent cupro in eo praesenti. Mercurio adsignabant locum inter antimonium et bismuthum, superiorem saltem certe bismutho, et inferiorem plumbo.

Altera, quam adhibuerunt, methodus haec erat: suspendebant magnetes astaticos supra discos rotantes et notabant non punctum aequilibrii, sed velocitatem productam, vel tempus requisitum ad certa describenda spatia: sive aliis verbis, metiebantur non staticum effectum, sed dynamicum. Sequens tabula repraesentat eventus, quos hac ratione obtinuerunt.

Numerus revolution.	TEMPORA IN QUIBUS PERFICIUNTUR A				
vel partium revolutio- nis s=	Cupro t=	Zinco t=	Stanno t=	Plumbo t =	Antimonio t=
0.25	38.3	36.1	51.7 74.8	70.9 102.5	109.6 157.9
0.50 0.75	54.2 68.5	51.7 63.9	92.8	128.0	197.4
1.00 2.00	79.8 110.6	74.0 106.2	107.8 156.8	151.2 221.8	232.4 351.7
3.00 4.00	136.9 160.0	131.4 152.8	195.5 229.5	281.3 335.0	460.7
5.00	180.4	172.8	260.3	385.0	-

Vires deductae ex expressione $\nu = 10000000 \frac{s}{t^2}$

Numerus revolution. vel partium revolutionis = s	Cupri	Zinci v=	Stanni	Plumbi v=	Antimonii
0.25	170	192	93	42	21
0.50	170	187	89	48	20
0.75	160	184	87	46	19
1.00	157	183	86	44	19
2.00	164	177	81	41	16
3.00	160	174	78	38	14
4.00	156	171	76	36	-
5.00	153	167	74	34	_
Medium omnium.	161	179	83	41	-
Medium ex sex priorib.	100				18

Effectus torsionis, resistentiae et frictionis satis apparent ex diminutione virium in quaque revolutione, adeo ut tantum numeri in eadem linea horizontali inter se sint comparandi. Comparando igitur medios valores virium omnium cupri, zinci, stanni, plumbi, et sex priorum cupri et antimonii intensitas relativa actionis in magnetem invenitur,

Zinci 1.11.

Cupri 1.00.

Stanni 0.51.

Plumbi 0.25.

Antimonii 0.01.

Observare licet secundum hanc posteriorem methodum, alium ordinem metallorum respectu hujus vis in magnetem inveniri, quam secundum alteram methodum. Sed ipsi babbage et herschell observaverunt, hanc minus accuratam esse, propter majores, quos adhibuerunt, discos, et minorem puritatem metallorum. Ceterum ipsa formula $v = 10000000 \frac{s}{t^2}$, quae virium rationibus computandis inserviit, quo jure adhibita sit non patet. Supponit haec vim v esse acceleratricem constantem, ad quod genus utrum vires de quibus hîc agitur referendae sint, jure merito dubites.

Secundum FARADAY 1) vis relativa metallorum accu-

¹⁾ Experiment. Researches in Electricity, Lond. 1839. (211). p. 61.

rate eadem est ac eorum conductibilitas electricitatis, ferro, aliisque metallis, quae polarisationem magneticam vulgarem subeunt, exceptis, quae majorem quam alia metalla exercent actionem, propter solitam, quam in magnetem possident, vim.

Ipse hac de re nonnulla institui experimenta, variis discis metallicis magneti supra pag. 9 memorato suppositis: singulorum discorum diameter erat 123^{mm} et crassities 1^{mm}.8. Distantia inter magnetem et discos erat 6^{mm}.5. Totus apparatus campana vitrea erat tectus.

Acus perficiebat inter 90° et 45°

supra discum e Cupro, ponderis 1777.5 20 oscill.

- » » ex Aurichalco, » 179. 3 43 »
- » e Zinco, » 136. 8 43 »
- » » e Stanno, » 161. 2 55 »
- » » e Plumbo, » 243. 6 71 »
- » superficiem Hydrargyri, cras-

sitiei majoris quam metal-

lorum solidorum 90 »

- » discum ex Antimonio, ponderis 136. 2 100 »
- » » e Bismutho, » 210. 3 116 »

Ferri quoque actionem in magnetem, quae debetur fluxibus electricis in ferro a magnete inductis, cum cupri actione comparare studui, eam hunc in finem experimentandi formam adhibens, quae a STURGEON

excogitata est 1), quippe quae hoc in casu vulgari methodo aptior est.

Apparatus magnetici, quos adhibui, compositi sunt singuli ex lamellis quindecim tribus seriebus quinque lamellarum sibi impositis, et quarum extrema ferro ductili conjuncta sunt. Longitudo harum lamellarum est 600^{mm}. Earum vim magneticam satis bene aequalem esse sequens experimentum docet. Discus ferreus polo australi unius magnetis apposito intra certam amplitudinem perficiebat 15½ oscillationes; polo boreali alterius magnetis eodem loco posito, quo ante fuerat polus australis alterius magnetis, discus intra eandem amplitudinem perfecit 15½ oscillationes.

Discorum, tam ferrei quam cuprei, diameter est 316^{mm} . Ferrei disci crassities est 3^{mm} , cuprei autem 2^{mm} .8.

Magnetum positio semper ea fuit, ut in eodem essent plano in quo axes discorum verticaliter rotantium.

Discus ferreus certum quoddam spatium a loco quietis remotus 49.5 oscillationes peragebat antequam quiesceret.

Discus cupreus ad idem spatium absolvendum 39.5 oscillationes requirebat.

Si autem magnetes apponebantur, polis contrarii nominis eodem spectantibus, ita ut a quoque latere

¹⁾ Edinb. Philos. Journal 1825. p. 24.

disci polus oppositus esset, ad distantiam 9^{mm}, dum margo disci 82^{mm} intra extrema magnetum erat, discus ferreus ad idem spatium percurrendum, quod antea, 45 oscillationes requirebat, alio experimento 44; discus cupreus 34, alio experimento 37.

Si magnetes ad discos adducebantur, adeo ut distantia ab iis esset tantum 5^{mm} et discorum margines 44^{mm} intra extrema magnetum essent, discus ferreus perficiebat 47 oscillationes, cupreus 36 oscillationes.

Numerus oscillationum in his experimentis, praesentibus magnetibus, non multum decrescebat, quod inde deducendum, quod, quoniam motus discorum, quando positionem quietis fere attingunt, admodum tardus est, intensitas fluxuum in iis productorum, durantibus ultimis oscillationibus fere nulla est. Observavi igitur numerum oscillationum per minorem motus partem eamque initialem: discus cupreus sibi relictus, in certo quodam arcu perficiebat 18 oscillationes, inter magnetum polos oppositos 8.5. Discus ferreus in eodem arcu in spatio libero perficiebat 20.5 oscillationes, inter polos oppositos magnetum, eodem modo locatos, ac in experimento cum cupreo disco, 17.5 oscillationes. Si loco magnetum trabeculae ligneae apponebantur, numerus oscillationum erat 21.

Ex his experimentis igitur patet in ferro fluxus electricos hac ratione induci. Nam diminutio oscillationum numeri resistentiae aëris non fuit tribuenda: neque ab actione vulgari magnetum in ferrum pendet, quoniam poli ejusdem fere intensitatis ab utroque latere et ad eandem distantiam a disco appositi erant: diminutio igitur observata proficiscitur a fluxibus electricis inductis, quamquam, ob crassitiem disci, vulgaris magnetismi actio non omnino tolli potuit. Sed horum fluxuum intensitas in ferro multo debilior est, quam in cupro, qua in re haec experimenta conveniunt cum experientia summi faraday 1).

Ordo, quem reliqua metalla respectu hujus in magnetem actionis tenere ex meis experimentis sequitur, ferme convenit cum ea serie, quam determinavit HARRIS.

Sed ut numeros obtinerem, qui vim relativam horum metallorum, si fieri posset, certius aliquanto, et accuratius exhiberent, missis computandi rationibus nimis vagis, hac usus sum formula

$$\varepsilon = \frac{\lambda}{mT}$$

quam proposuit Cl. GAUSS 2) et quae, quamvis nitatur hypothesi vim e, quae acui magneticae oscillanti re-

¹⁾ Experim. Researches, p. 40.

Anleitung zur Bestimmung der Schwingungsdauer einer Magnetnadel, in Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1837. p. 58.

sistit, esse acus velocitati proportionalem, ideo tamen fidem meretur, quoniam ex ea hypothesi sequitur, quod experientia confirmat, amplitudines oscillationum juxta progressionem geometricam decrescere. Ut vim ε computemus, praeter m, modulum systematis Logarithmorum, cognoscamus oportet T' oscillationis tempus, et λ decrementum Logarithmicum, i. e. differentiam Logarithmorum amplitudinis initialis et finalis, divisam numero oscillationum interim peractarum.

Quod ad durationem oscillationum T attinet, jam arago omnium primus observavit, quique eum secuti sunt, ipsi assentiuntur, hanc, esse pro variis metallis corporibusve constantem. Gaussius vero demonstravit, et subtiliori experiundi ratione re vera invenit, differentiam temporum oscillationum in variis casibus etsi exiguam, non tamen esse plane nullam. At vero mea experimenta nec fuere, nec propter apparatus, quo usus sum, dispositionem esse potuere tam subtilia, ut quantitates tam parvae sese rite manifestarent.

Hinc T' constantem facere cogor, neque id faciendo gravem me committere errorem arbitror. Porro, si, ut in meis experimentis, pro variis metallis, eadem semper est et amplitudo initialis et finalis, decrementa Logarithmica, adeoque vires retardantes erunt numeris oscillationum inverse proportionales. Hinc, si n et n'

dictos numeros oscillationum, e et e' vires significent, erit

$$\frac{\varepsilon}{\varepsilon'} = \frac{n'}{n}$$
.

Si secundum hanc formulam observationes nostras computemus, reliquorum metallorum viribus cum vi retardante cupri comparatis, sequentem obtinemus seriem:

 Cuprum
 ...
 1.

 Zincum
 ...
 0.4651

 Aurichalcum
 ...
 0.4651

 Stannum
 ...
 0.3636

 Plumbum
 ...
 0.2817

 Mercurium
 ...
 0.2222

 Antimonium
 ...
 0.2

Bismuthum . . . 0.1724.

Ceterum, quo minus hos valores omnibus numeris absolutos credamus, impediunt et aliae causae, et inprimis illa, quae ab aëris resistentia oritur. Hujus tamen effectus nocivos, ut, quantum fieri posset, evitaremus, acum magneticam ad distantiam satis magnam 6mm.5 a discis suspendimus; curavimusque insuper, ab amplitudine 90° incipiendo, ut majori celeritate acus intensiores obtineremus effectus. Denique illud uni-

verse est animadvertendum nova etiamnum et accuratiora requiri experimenta, si vires has metallorum relativas, ea qua par est praecisione cognoscere velimus.

CAPUT TERTIUM.

INQUIRITUR IN VIM, ITA DICTAM REPELLENTEM, IN DISCUM ROTANTEM VERTICALEM.

Cl. Arago haud diu postquam phaenomenon primarium, de quo in Cap. I egimus, detexerat, novos se acus magneticae, disco metallico rotanti proximae et subtiliter suspensae, motus observasse professus est. Horum motuum, per se maxime memorabilium, alter inprimis Physicorum attentionem excitavit, quippe quo pateret eos viros doctos in ingenti versari errore, qui putarent, acum horizontalem eâ de causa motum disci rotantis sequi, quoniam ipsius acûs poli veluti attraherentur a polis nominis contrarii, ab ipsa acu evolutis et jam subito moventibus. Hanc attractionem inter acum et discum, hos polos ab acu in disco quasi disseminatos, merum esse ingenii figmentum, neque in natura subsistere declaravit Cl. Arago; tantum enim

abesse ut hic attractioni locus sit, ut potius, docente experientia, repulsionem inter acum et discum admittere cogamur; nam si in experiundo rite procedamus acum discum rotantem aufugere, a disco recedere observabimus. At ipsum audiamus Cl. auctorem, qui his fere verbis hanc disci actionem in magnetem descripsit 1):

Si acus magnetica valde longa, fili ope, directione verticali suspenditur e bilance, et aequilibrium restituitur ope ponderum cujusvis naturae, in altera lance positorum: si porro discus cupreus circumvolvatur sub magnete, aequilibrium non amplius persistet; magnes levior factus videbitur, tolletur, discus eum repellet.

Paucis his verbis admirabilis phaenomeni complectitur descriptio. Dolendum profecto eam, etsi perspicuam, justo tamen esse breviorem pluraque in ea desiderari, quae si exposita essent, facilior foret experimentum eadem prorsus ratione instituendi occasio: nam desideramus in ea, et accuratam magnetis adhibiti descriptionem, quem unice cognoscimus ex adjectis verbis, valde longus (fort long), et indicationem crassitiei et magnitudinis disci cuprei, directionis et eeleritatis rotationis; ignoramus porro, qui polus mag-

¹⁾ Ann. de Chim. et de Phys. XXXII. 217.

netis disco fuerit proximus; quaeque fuerit distantia magnetem inter et discum: quae bilancis sensilitas; quae et quanta indicis deflectio actu repulsionis producta, alia.

Quae Cl. ARAGO parcius exposuerat, ea ample dein suppleta profecto putares ab iis omnibus, qui ipsius egregiam observationem sive eadem ratione sive aliis modis repetivissent. Anxie igitur collegi et pervolvi diaria, commentarios varios, enchiridia Physices, omnes verbo libros, in quibus haec, quae nos jam occupant phaenomena enarrantur, ut quid alii egissent, quidque vidissent, edocerer. At mirum quid et incredibile fere hic accidit. Omnes, quos consului, auctores, iisdem et totidem pene verbis, quibus Cl. ARAGO suam observationem publicavit, eandem descripserunt, neque vel tantillum de suo addiderent, omnemque hanc rem sic exposuerunt, ut ne levissimum dubium superesse possit, quin in relatis referendis occupatissimi scriptores, de observatione gravissima vel semel repetenda ne cogitasse quidem videantur. Nemo igitur mirabitur, si, in tanta observationum penuria, et non obstante fidem, quam omnes Physici, (nec immerito) in relatione Cl. ARAGO habuerunt, avidus ego occasionem arripuerim singulare hoc experimentum repetendi; idque eo magis cum apparatui, quem supra p. 7 descripsi, a dexterrimo artifice addita esset, subtilissima bilaux, huic observationi et facile et accurate instituendae, inprimis et data opera adaptata.

Apparatus ille, cujus delineationem fig. 1. exhibet, ita constructus est: componitur e magnete, qui a duabus extremitatibus verticaliter suspendi potest e brachio longiori bilancis, dum aequilibrium pondere juxta alterum brachium brevius per cochleam mobili constituitur: bilanx duobus acuum chalybearum acuminibus incumbit duobus planis ex gagate, et indice 114mm longo instructa est, in parte infima sustentaculi, cui imposita sunt plana e gagate sustinentia bilancem, adest divisio in millimetra, juxta quam index movetur. Hujus autem magnetis pondus est 257.5: longitudo 123mm: latitudo 8mm: crassities 3mm.5. Suspendebatur acus polo notato disco proximo ad distantiam a superficie superiore disci cuprei rotantis 1mm.7. Disci diameter erat 123mm, crassities 1mm.8 et pondus 1777.5. Discus tectus erat diaphragmate vitreo, et rotabat ratione 4.3 revolutionum in 1". Directio motus erat dextrorsum. Acus verticalis a centro disci 44mm circiter aberat.

Hoc apparatu sensilissimo et egregio fabrefacto instructus confidenter experimenta agressus sum, nullus dubitans, quin videre mihi contingeret, quod, Cl. ARAGO si excipias, nemo forte unquam vidit. At spem (infortunium meum profiteri non erubesco) eventus fefellit. Nullum indicis bilancis motum, nullam repulsionem magnetem inter et discum rotantem observavi; vel si quam subinde levissimam indicis agitationem me videre arbitrarer, ea tantilla tamque incerta erat, ut huic tamquam fundamento notam de repulsione legem supustruere profecto non auderem. Idque ita mihi cessit, non tantum cum uterer disco cupreo leviori et celerius movente supra commemorato, sed etiam postquam huic alium discum ejusdem materiae et diametri ponderisque 167%.5 addidissem; quo tamen massae augmento celeritas rotationis decrevit, ita ut tantum 3.8 revolutiones in 1" peragerentur.

Hunc conaminum meorum exitum, licet experientiae Cl. Arago contrarium, eo tamen lubentius hic refero, quoniam mihi ipse conscius sum, me, quamvis experiundi et observandi imperitiorem, nihil tamen, quantum sciam, neglexisse, omniaque ea observasse, quae requiri videbantur, ut vitia evitarentur. Magnopere tamen vereor ne alicubi lapsus sim. Utinam quis meum mihi indicet errorem! Utinam expertes ac fide digni observatores novis experimentis novos faciant ad veritatem stabiliendam progressus!

CAPUT QUARTUM,

IN QUO QUAERITUR, AN ADMITTENDA SIT VIS QUAEDAM AGENS
IN DIRECTIONEM RADII DISCI ROTANTIS, CUJUS ACTIO
IN ALIIS A CENTRO DISTANTIIS ALIA EST?

Alterum singulare phaenomenon, quod memoravit ARAGO 1) huc redit. Si acus inclinationis verticalis ita ponatur, ut ejus axis revolutionis situs sit in plano perpendiculari ad directionem alicujus radii disci, sequentia observantur. Supra centrum collocata, acus situm suum verticalem servat: alio in loco circumferentiae quam centro propiori item situm verticalem servat: inter duo haec puncta polus inferior ad centrum trahitur, inter punctum alterum et circumferentiam, immo extra circumferentiam, constanter acus extrorsum propellitur.

Hoc phaenomenon etiam memoratur a nobili 2) et FARADAY 3), qui ejus quidem explicationem propo-

¹⁾ Ann. de Chim. et de Phys. XXXII. 218.

Ann. de Chim. et de Phys. I. 280. Poggend. Ann. XXIV. pag. 621. Poggend. Ann. XXVII. pag. 401.

³⁾ Ann. de Chim. et de Phys. LI. 404.

suerunt, valde ingeniosam, sed tamen non indicarunt se experimentis observationem Cl. Arago confirmasse. Porro baumgartner, lamé, muncke 1), et moser 2) aliique de eodem hoc phaenomeno disserunt, nullis tamen memoratis novis experimentis vel additis amplificationibus, praeter additamentum, quod dedit moser, referens punctum alterum, ubi acus situm verticalem servat, inveniri ad distantiam ²/₃ partium radii a centro, quaeque loci definitio arago ipsi adscribitur; ubi haec tamen sit invenienda, ibi non memoratur.

Patet igitur Physicos, qui alia experimenta ab Arago communicata, repetiverunt, hanc actionem, quod certe mirandum, quodammodo neglexisse, praeter marris 3), secundum quem acus inclinationis non movetur, si axis ejus est perpendicularis in radium disci revolventis: sed acus videbatur sequi directionem motus disci, si axis in eodem plano verticali erat, in quo radius.

Experimenta de hac vi agente in directionem radii ego quoque institui cum acu inclinationis, (fig. 2) cujus longitudo est 152^{mm}, latitudo et crassities 3^{mm}:

¹⁾ Gehler's Wörterb. neue aufl. VI. pag. 740.

²⁾ Repertorium der Physik von DOVE et MOSER I. pag. 301.

³⁾ Phil. Transact. 1831. pag. 73.

ejus axis rotationis est 20^{mm} longus, et movet in cavitatibus ex gagate; distantia hujus acus a disco mutari potest ope cochleae. Annexa est divisio huic acui inclinationis a — 21° ad + 21°:

Posita est haec acus supra discum cupreum jam saepius memoratum et diaphragmate vitreo tectum, ita ut, quoties verticalis esset, ejus extremitas inferior a superiori disci superficie 2^{mm} distaret. Discus durante 1" 4 perficiebat revolutiones; motus directio semper erat dextrorsum.

Vim disci in hanc acum Inclinatoriam, quam, nisi sponte sua directionem verticalem assumeret, debitis adhibitis adjumentis, coegimus ut hunc situm, disco non movente, servaret, juxta tres praecipue diametros exploravimus, scilicet: (fig. 3)

- 1°. cum acus, sponte verticalis, tantum moveri posset in plano OW, ad meridianum magneticum ZN perpendiculari.
- 2º. cum acui, verticali factae, nullus nisi in ipso meridiani magnetici plano ZN motus sive a Z versus N, sive ab N versus Z superesset.
- 3°. denique, cum acum cogeremus, in planis PQ aut RS rotari, quae cum duobus praecedentibus angulos 45° faciebant.

In omnibus his dispositionibus anxie curavimus, ut plana, in quibus acui motus sive unam sive alteram partem versus liber esset, accuratissime per disci centrum transirent.

His expositis, brevis esse poterit eorum, quae observavimus enarratio; nam

- 1°. quodcunque diametri OW punctum acus extremitas inferior directe respiceret, disco rotante, acus erat manebatque prorsus immobilis.
- 2°. Eadem acus immobilitas obtinuit, quoties ipsi juxta ZN sive in meridiano magnetico motus concederetur liberrimus.
- 3º. Neque aliter res evenit, si acus juxta diametros PQ aut RS rotari posset. In his quoque positionibus immota persistebat.

Hinc jure quodam concluderemus vim disci in acum magniticam verticalem juxta diametrum aut radium, quemcunque fore nullam.

Ne vero quis hanc acus immobilitatem alicui apparatus defectui tribuat, age experimenta afferamus quae probent, acum non esse tantopere a motu alienam, si modo ipsi venia concedatur in alias quoque, quam juxta diametros, directiones rotandi. Nam quam primum acus motu suo unam alteramvé disci chordam describat, eam v. g. quae (ut in hoc unico casu subsistamus, fig. 4) diametro OW parallela est, sive haec chorda Septentrionem sive Meridiem spectet, mox a situ verticali deflectet, quantitatibus iisdem fere, si chordae, quas percurrit, aeque a diametro OW distent, ea tantum intercedente differentia, quod deflectiones hae in parte septentrionali et meridionali disci quoad directionem oppositi erunt signi, ita ut diameter ipsa OW veluti limes sit, quo positivae deflectiones a negativis distinguantur, et in quo ipso igitur nullae deflectiones locum habere possint.

Jam vero chordam ab eam selegimus, quae non nisi 3 millimetris a diametro OW distaret, acumque sponte semper verticalem respective respicere fecimus diversa hujus chordae puncta; quo facto, cum reliquae experimenti circumstantiae immutatae mansissent, eos obtinuimus effectus, quos sequens schema exhibet.

Distantia acus a centro.	SUPRA PARTEM DISCI	
	Orientalem.	Occidentalem.
30 ^{mm}	acus ad circumfe- rentiam deflectitur 1°.3.	deflectitur 1°.
58 ^{mm} 5	Extrem. inf. acus ad circumfer. deflect. 0°.6.	Extrem. inf. acus ad centrum deflect. 0°.7.
61 ^{mm} 5	Deflectio acus	Deflectio acus
sive in circumfe- rentia ipsa.	0°.	00.
63mm5	Deflectio acus	Deflectio acus
sive 2 ^{mm} citra cir- cumferentiam.	0°.	00.

Ex hac tabula igitur apparet acum debita sensilitate non caruisse, cum in distantiis tam parum a disci centro remotis deflectiones passa sit tam perspicue observandas. Ne quis vero miretur acum prope circumferentiam disci positam aut minus aut prorsus non deflexisse, illud animadvertendum est, in his locis, etsi disci celeritas major fuerit, acus positionem viribus deflectentibus excitandis minus fuisse idoneam.

Postquam igitur satis, ni fallor, apparatum, quo usi sumus, quoad ejus aptitudinem ad minores etiam vires indicandas defendimus; si jam ad priora experimenta nostra de viribus juxta radios agentibus recurramus, tutius etiamnum concludere licebit, has vires esse nullas. Ingratum quidem est et in hac quoque disquisitionis gravissimae parte a sententia Cl. Arago nobis esse discedendum: at ea tamen nunc nobis felicitas contingit, quod, ceteris omnibus experimentatoribus tacentibus, unus saltem, isque harris, hanc meam experientiam confirmet. Quidquid sit, res dignissima est, quae ulterius exploretur, inprimis cum haec ipsa, de quibus his ultimis capitibus disputavimus, experimenta Cl. Arago praecipuum constituunt fundamentum, cui Ill. faradax hypothesin suam superstruxit: » ad evolvendos fluxus electricos necessario tempus quoddam requiri."

PARS ALTERA,

QUAE EST THEORETICA.

Pars Theoretica argumenti nostri tot proprie constat capitibus, quot experimentalis. Scilicet singulorum Phaenomenorum, quae in singulis capitibus partis prioris exposuimus, jam causa est explicanda. Etsi vero novitas et singularitas Phaenomenocum, quae Cl. ARAGO omnium primus detexit et in lucem potulit, statim Physicos excitaverint ut eorum rationes redderent probabiles, multum tamen abfuit, ut singula, quae descripsimus, Phaenomena, eos aeque sollicitaverint. FARADAYUM si excipias, qui praeterquam quod phaenomeni universi causam indicaverit verissimam, etiam metallorum variorum vires relativas ex eodem fere fonte probabiliter deduxit, viriumque repellentium, quas ARAGO viderat, originem ex alio principio ingeniose admodum petiit; reliqui omnes Physici non nisi vim tangentialem discorum rotantium curarunt, eamque variis modis varioque eventu tentarunt quidem, nec tamen ut videtur in hunc usque diem pleno successu explicavere.

Quae igitur nobis exponenda supersunt, cum res ipsa brevitatem sinat, uno hoc capite, at tribus paragraphis distincta trademus. Primo videbimus de vi tangentiali; dein de viribus relativis, denique de viribus discorum repellentibus.

I. Primus, qui vis tangentialis explicationem tentavit fuit vir clarissimus du hamel, qui suam theoriam jam die 27 Decembris 1824 cum Academia Regia Scientiarum communicavit 1). Haec theoria, quam et nobili et bacelli, seebeck, babbage et herschell, christie et harris admiserunt, huc redit.

In omnibus metallis, et verosimiliter in omnibus naturae corporibus, adest vis magnetica sed intensitate admodum varia. Polo magnetico disco apposito, magnetismus disci decomponitur et nascitur in disco polus contrarii nominis. Decompositio haec tamen non unico temporis puncto obtinet, neque statim remoto magnete status ille magneticus deletur, ita ut polus in disco provocatus post aliquod tempus demum maxi-

¹⁾ Ann. de Chim. et de Phys. XXXII. pag. 216.

mam intensitatem acquirat, eamque intensitatem etiam remoto magnete per breve tempus retineat, tum autem sensim sensimque perdat. Ex eo sequitur quod, si magnes moveatur supra discum, semper ad eandem distantiam a disco, spatium majus et fortius magnetismo contrario inbutum post magnetem erit, quam ante illum; nascitur igitur actio obliqua inter polum magnetis et polum oppositum disci, et, si discus libere moveri potest in proprio suo plano, vis decomposita parallela superficiei, constanter discum directionem motus magnetis sequi coget.

Sed praeter polum nominis oppositi, a magnete in sua vicinitate proxima provocatum, etiam polaritas ejusdem nominis in disco excitatur. Haec tamen non ut contraria in parvo spatio prope magnetem est concentrata, sed circa illud intensitate multo debiliore et magis aequabiliter per partes magis dissitas disci diffusa est.

Vis igitur composita omnium virium depellentium, minus obliqua est in superficie, quam composita attrahentium, cujus effectus praevaleat ideoque actionem trahentem producat necesse est. Haec vis, quamquam parva, continua sua actione, tandem si vis magnetis sufficit ad attritum, etc. superandum, celeritatem satis notabilem profert. Quo major celeritas relativa, eo longius polus a magnete provocatus pone

eum erit, eoque major erit pars decomposita vis hujus horizontalis.

Secundum MUNCKE 1) causa horum phaenomenorum est Magnetismus per divisionem, et rotatio efficitur retentione quadam, quam corpus magneticum in talia exercet corpora, in quibus magnetismus excitari valet. Difficile est judicatu, utrum haec vis pendeat a praesentia parvae quantitatis ferri regulini in cupro et aliis metallis, an a certa quadam aggregationis forma earum molecularum, formae aggregrationis in ferro simili. Omnis actio ad superficiem restricta videtur, attractioque non ad certa puncta limitata, sed supra omnem superficiem se extendens, causa videtur esse vis satis magnae in continuitate superficiei conspi-Fortassis materies magnetica partim est fluidum meteoricum, quod aeque ac Electricitas et forte simul cum ea, constanter quidem sed statu fixo in atmosphaera adest, a superficiebus quorundam corporum vario gradu attrahitur et figitur, aptumque est ut a quovis corpore idio-magnetico statim polariter dissolvatur.

Hae igitur explicationes quamvis diversae in eo tamen conveniunt, quod omnia metalla, eodem sensu magnetica habeantur, ac ferrum; differantque tantum

¹⁾ Gehler's Worterb. VI. pag. 740.

majori minorive capacitate magnetismi et facultate illius retinendi.

Contra hanc explicationem statim se opposuit AraGo 1), perhibens non attractionem esse quae inter magnetem discumque existat, sed repulsionem. Dein faRADAY et alii hanc theoriam oppugnaverunt, e quibus
prae reliquis faraday luculenter probavit actionem
cupri, similiumque metallorum in magnetem, longe
alii causae esse tribuendam, ac ei a qua actio vulgaris
ferri aliorumque metallorum magneticorum pendet 2).
Comparans nempe inter se actiones polorum ejusdem
et oppositi nominis in cuprum et in ferrum, hunc in
finem usus methodo experimentandi a sturgeon poprosita, sequentia invenit.

Discus cupreus sibi relictus sexaginta perficiebat oscillationes, antequam arcus oscillationis a nota definita ad aliam diminutus erat. Si ab utroque latere disci adversum idem punctum ad brevem distantiam poli magnetum oppositi ponebantur, oscillationes ad quindecim minuebantur. Quando ab utroque latere poli ejusdem nominis ponebantur numerus oscillationum augebatur ad quinquaginta, et positis in eodem loco duobus frustis ligneis ejusdem magnitudinis ac magnetes et

¹⁾ Ann. de Chim. et de Phys. XXX. pag. 216.

²⁾ Experim. Resarch. pag. 71 sqq.

ad eandem distantiam, numerus oscillationum adsurgebat ad quinquaginta et duo, ita ut polis ejusdem nominis adhibitis effectus fere nullus esset, quum retardatio observata potius resistentiae aëris tribuenda sit: dum poli contrarii nominis maximum edunt effectum. Si unus polus margini disci apponeretur, retardatio oriebatur nulla.

Discus ferreus sibi relictus triginta et duas absolvebat oscillationes, dum earum amplitudo definitam patiebatur diminutionem; polo magnetis prope marginem disci posito oscillationum numerus reducebatur ad undecim, poloque ¹/₂ poll. a margine distante, ad quinque; polo notato ad certam distantiam uni lateri disci opposito, numerus oscillationum erat quinque: polo vero notato alius magnetis ad eandem distantiam alteri lateri apposito numerus oscillationum ad duo reduceba-Altero vero polo non notato eundem locum occupante numerus oscillationum adscendebat ad viginti et duo. Fortiori, horum polorum contrariorum paullulum remoto, numerus oscillationum augebatur ad triginta et unum, vel fere ad numerum primitivum: polo autem remoto numerus iterum reducebatur ad quinque vel sex.

In ferro igitur, et corporibus magnetismi vulgaris capacibus, poli contrarii ad latera opposita disci positi mutuum effectum destruunt, et etiam polus ad marginem disci positus oscillationum numerum diminuere valet. Sed in cupro aliisque corporibus magnetismi vulgaris non capacibus, poli nominis ejusdem ad latera opposita disci suam actionem mutuam destruunt, contrarii effectum adaugent: polus unicus in plano disci positus nullum edit effectum.

Nihil, inquit faraday, plenius ostendere potest quantopere differant effectus quos arago a metallis obtinuit, iique, qui a viribus magneticis vulgaribus producuntur 1).

Res igitur incerta mansit, donec faraday a. 1831 invenit fluxus Electricos inductos, probavitque non tantum fluxum Electricum alium inducere posse fluxum, sed magnetes etiam vulgares idem efficere valere. Quo gravissimo facto, cognita aliunde ratione agendi fluxus Electrici in Magnetem, clavem se tenere sibi videbatur Ill. faraday, quae viam ad saniorem Phaenomenorum nostrorum explicationem aperiret. Neque res aliter se habere reliquis Physicis visa est, quippe qui omnes fere cum applausu faradayi sententiam amplexi sunt, quamquam perpauci fortasse rite

¹⁾ Plura argumenta alia, quae falsitatem harum explicationem a DU HAMEL, BABBAGE, et aliis propositarum dilucide demonstrant, copiose exposita sunt a viro Clarissimo W. A. ENSCHEDÉ in Natuurkundige Verhand. der Maatsehappij van Wetenschappen te Haarlem, XXI. p. 222 sq.

nexum perspexi sint, qui inter utraque phaenomena existit. Si enim acuum magneticarum discis metallicis rotantibus expositarum varios motus explicare velimus, perfecto id novisse non sufficit, excitari in his metallis, motus ope et magnetis auxilio fluxum electricum, hunc vero sua vice quasi reactionem in magnetem exercere; sed e legibus, quibus haec singula phaenomena obtemperant, stricta ratiocinatione deducendae sunt novae leges, quibus phaenomenon compositum, de quo hic agitur, obediat. Sunt enim tales conductoris Electrici in magnetis aut fluxus Electrici viciniis motus, qui nullum, alii, qui eos fluxus inducant, quibus phaenomena oriantur, ab iis, quae re extant, prorsus diversa. Hinc apparet, vaga verba parum auxilii afferre, sed, si rem acu tangere velimus, accuratam et bene definitam requiri eorum omnium descriptionem, quae ad phaenomenon, quod explicare aggredimur, conferre videntur.

Quod si jam Physicos circumspicimus, qui Phaenomena Magnetismi Rotationis ab arago detectis et
descripta e legibus quas oersted, ampère et faraday
posuerunt, deducere, et veluti ex elementis suis recomponere tentarunt, paucos inveniemus arduae rei auctores, multos vero horum imitatores. Inter priores unici,
quantum sciam, referendi sunt nobili et antinori, qui
de hoc argumento in tribus commentationibus egerunt.

- 1. De vi electromotrice magnetis 1).
- 2. Investigationes novae electromotrices et theoria physica magnetismi rotationis 2).
- 3. Nobili, Theoria physica de divisione electrodynamica 3).

Secunda horum scriptorum inprimis plurima continet minus accurata, quae tamen in tertia commentatione a nobili conscripta pro magna parte emendata sunt. Tertia haec commentatio est maxime absoluta, et pro magna parte convenit cum theoria a faraday proposita, in quibusdam tamen ab eo differt, inprimis quod attinet sententiam ejus de causa inductionis Magneto-electricae.

Omnem suam theoriam a sequenti principio, quod FARADAY jam posuerat, deduxit NOBILI: fila, quae percurrit fluxus electricus, certis quibusdam conditionibus in aliis filis fluxus procreare valent, qui tamen per punctum temporis tantum persistunt. Inductio haec in duobus casibus obtinet: quando filum neutrale filo Voltaïco, in directione huic parallelà appoprinquatur, et quando eadem directione ab

Ann. de Chim. et de Phys. XLVIII. p. 412. Pogg. Ann. der Phys. u. Chim. XXIV. p. 473.

²⁾ Ann. de Chim. et de Phys. L. p. 280. Pogg. Ann. der Phys. u. Chim. XXIV. p. 621.

³⁾ Pogg. Ann. der Phys. u, Chim. XXVII. p. 401,

eodem removetur. In primo casu fluxus inductus contrariam habet directionem ac inducens, in altero casu eandem. Intensitas fluxus inducti augetur celeritate motus aucta, minuitur celeritate minuta; celeritate nulla etiam fluxus nullus. Iidem obtinentur effectus, filis ad eandem distantiam manentibus, fluxu in filo iuducente provocando, et abrumpendo. Considerat porro effectum, quem fluxus Electricus habeat in massas metallicas motas, et hunc in finem circumvolvit annulum metallicum circa axin verticalem juxta conductores verticales et horizontales, quos fluxus electrici percurrunt directione varia, et inquirit qualis sit effectus fluxibus horizontalibus et verticalibus conjunctim agentibus: hinc, considerato effectu conductoris in formam rectanguli plicati, transit ad actionem magnetis in massam metallicam motam, quem in finem theoriam ab AMPÈRE primum propositam adhibet.

Directio porro fluxuum in disco metallico sub magnete rotante hac ratione discribit: sit OE (fig. 5) discus cupreus horizontalis, qui revolvitur in directionem sagittarum appositarum R, R, magnete super imposito vim exercente. — Polus notatus disco sit proximus, et circulus rz ejus in discum projectionem denotat; fluxus in disco fere repraesentabunt lineae punctatae: ab utroque igitur poli latere con-

fluxus in parte disci ad polum magnetis appropinquante contrariam habeant directionem, ac fluxus qui in magnete adesse suspicentur, dum in partibus recedentibus directio fluxuum in magnete et disco sit eadem. Jam vero cum fluxus contrariae directionis sese repellant, qui vero in eandem partem tendunt, sese attrahant, facilis hinc est conclusio polum magniticum disci rotantis motum sequi debere.

Haec est theoria Cll. Nobili et antinori, quae quamquam simplicitate summopere se commendet, legitimisque superstructa videatur principiis, ita ut phaenomenon, quod observatur, actu repraesentet, tamen factis nimis est contraria, quam quae admitti possit. Neque hoc Cl. faraday aufugit, qui haud diu postquam haec theoria in lucem prodiit, eam strenue recensuit 1), atque inter alios, hunc inprimis Cll. auctorum errorem indicavit; in disco sc. rotante ea ratione iisque sub conditionibus, quas posuerunt auctores, fluxus electricos, non esse, quod ex eorum theoria sequitur, a circumferentia ad centrum directos, sed eosdem e contra, teste experientia, progredi a centro peripheriam versus; adeoque, cum ex eorum princi-

In epistola ad Gay Lussac Ann. de Chim. et de Phys. T. LI. p. 404, sqq. Lond. et Edinb. Phil. Mag. T. XVII. p. 281, sqq.

piis sequatur, quod observationi contrarium est, ea ipsa principia admitti non posse.

Fuse omnem hanc rem l. c. pertractavit Cl. faraday, ostenditque Cll. auctores nimium ponderis tribuisse accessioni et recessioni fili conductoris quoad polum magneticum, neque verum esse quod tamquam principium posuisse videntur: ubi neque accessio, neque recessio, neque abruptio vel restitutio fluxus inducentis obtinet, nullus in conductore obtinebit fluxus inductus. Sequentia tamen commemoravit faraday experimenta 1). Discus cupreus affixus extremitati magnetis cylindrici, charta papyracea interposita, una cum magnete revolvebatur: fila galvanometri apposita disco fluxus in disco oriri indicabant.

Cylinder cupreus, ab una extremitate clausus, impositus erat magneti pilei ad instar, interpositaque charta papyracea, firmiter magneti affixus. Totus apparatus immersus mercurio, ita ut pars inferior cylindri tangeret mercurii superficiem, rotabatur; fila galvanometri, quorum unum immersum erat mercurio, alter in parva cavitate in cylindri pacte superiore, fluxus electricos in cylindro ortos indicabant.

Tandem magnes ipse circa propriam axin rotatus fluxum electricum inducere valet.

¹⁾ Exper. Research. (218-220) p. 63.

In his casibus, ut et in cylindro rotante circa magnetem nulla obtinet accessio ad magnetem vel recessio ab eodem: ex theoria igitur a nobili et antinori proposita nullus oriri potest fluxus electricus: FARADAY tamen galvanometri ope eorum praesentiam indicavit: manifesto indicio hanc non veram esse horum fluxuum causam.

Quod attinet porro directionem fluxuum in disco sub magnete rotante, quam ex theoria sua descripsit NOBILI, ab utroque magnetis polo contrariam. Probavit FARADAY in lamina vel disco metallico circum polum magnetis circumvecto, fluxus oriri perpendiculares in directionem motus et semper in eandem directionem, sive metallicus discus ad magnetem accedat vel ab eo recedat, dummodo directio motus eadem maneat; et fluxus illos in disco sub polo magnetico ortos redire per partes, quae ab utroque latere quam longissime a polo distant. Et revera directio fluxuum, qualis a Nobili in figura indicata est, cum sententia, quam FARADAY communicavit, convenit: nam secundum illam figuram fluxus omnes a centro disci circumferentiam petunt, dum dein per partes disci magis dissitas redeunt 1).

Ceterum hac ipsa opportunitate saepius Cl. FARADAY

¹⁾ Vid. Ann. de Chim. et de Phys. LI. p. 419.

refert ad suam hujus rei theoriam in Disquisitionibus suis Experimentalibus copiose expositam; cujus theoriae tam arcte cum nostro argumento conjunctae, hic summa capita breviter commemorare haud inutile judicamus 1).

Instituta inquisitione in naturam et directionem fluxuum electricorum inductorum, dein magneto-electricorum, variisque modis circumstantiis mutatis, apparuit Ill. FARADAY causam horum fluxuum esse motum conductoris per curvas magneticas; hoc est per lineas vis magneticae, quae quacunque ratione juxtapositione polorum mutata, a limatura ferri depingerentur: vel tales, quibus acus magnetica minima tangens esset. Hae curvae magneticae non tantum prope polos magnetis inveniuntur, sed quodcunque filum conducit fluxum electricum ab omni parte circumdatur curvis magneticis, quarum intensitas diminuitur eadem ratione, ac augetur earum distantia a filo 2).

Ratio autem quae est inter polum magneticum, directionem motus fili metallici, et directionem fluxus inducti, id est lex, quae evolutionem electricitatis per

¹⁾ Investigationes Ill. FARADAY de inductione Magneto-Electrica communicavit in actis philosophicis Societatis Regiae Londinensis anni 1831, simul cum explicatione phaenomenorum Magnetismi rotationis, quam explicationem dein amplificavit in Epistola ad GAY-LUSSAC missa. Ann. de Chim. et de Phys. LI. 404.

²⁾ Exper. Research. (232) p. 67.

inductionem magneto-electricam regnat, secundum FARADAY haec est 1).

Si (fig 6) PN significat filum horizontale circumvectum circa polum magneticum notatum, ita ut motus sibi sit parallelus juxta lineam curvam tangentem, sed in directione sagittarum appositarum: vel si circa polum circumducitur, quacunque directione alia, sed ita ut secet curvas magneticas juxta eandem directionem, vel ad idem latus, ad quod eo filo secarentur, si moveretur juxta curvam indicatam, fluxus tenderet a P versus N. Filo in directionem oppositam moto, a N versus P tendet fluxus. - Si filum verticale, per P' N' significatum, in similem directionem movetur, quod filum eousque cum linea punctata horizontali convenire debet, quod curvas magneticas ad idem latus cum illa secet, fluxus erit a P' versus N'. Si filum consideratur ut tangens superficiei curvatae magnetis cylindrici et circa hanc superficiem, alio quodam modo positum circumvehitur, vel si magnes ipse circa axin circumvolvitur, ita ut omnes ejus partes una post alteram filo tangenti oppositae fiant, tum si filum dein in directionem indicatam movetur fluxus Electricitatis tendet a P versus N, vel si in contrariam movetur directionem a N versus P; ita ut varii motus

¹⁾ Exper. Research. (114) p. 32.

fili circa polum ad duos reduci possint, sibi directe oppositos, quorum unus fluxum provocat a P versus N, alter a N versus P.

Idem locum habet respectu poli non notati magnetis, praeterquam, quod si in figura loco poli notati ponitur, quando fila in directionem sagittarum moventur, fluxus a N tenderet ad P, et quando in oppositam directionem moventur a P versus N. Si filum inducendum circa polum electro-magneticum circum vehitur, ut e. g. extremitatem helicis cupreae, quam percurrit fluxus electricus, directio fluxus in filo appropinquante eadem est ac fluxus in latere vel partibus helicis filo proximis, et inversa in filo recedente.

Ex his omnibus concludere licet, facultatem inducendi fluxus electricos exerceri in circumferentia a composita magnetica vel axi potentiae, eadem ratione ac magnetismus in circumferentia dependet et exhibitur a fluxu electrico 1).

Quam igitur constat fluxus electricos oriri in disco metallico prope magnetem moto, et insuper cognitum est actionem, quam fluxus electricus exercet in magne-

¹⁾ All these results show that the power of inducing electric currents is circumferentially exerted by a magnetic resultant or axis of power, just as circumferential magnetism is dependent upon and is exhibited by an electric current. Exper. Res. (113) p. 34.

tem esse lateralem sive tangentialem, haec duo principia sufficiunt ad explicanda phaenomena ab Arago detecta, nec necesse est, fingere polum contrarii nominis in disco metallico orientem, aut ponere discum statum suum post aliquod demum temporis acquirere vel perdere. Fluxus in disco a magnete inducti ab utroque latere recurrunt, per has disci partes, quae magis a polo magnetico inducente remotae sunt, ubi igitur inductio magnetica debilior est.

Haec est Theoria Cl. faraday, quae, etsi non ab omni obscuritate immunis, inprimis quod attinet rationem, qua fluxus motu conductoris trans lineas, quas vocavit curvas magneticas, excitentur, egregie tamen, quatenus ipsius experientiae fidelis est imago, ipsi inserviit ad repellandam Cll. nobili et antinori explicationem. Utinam V. Cl. eandem adhibuisset non tantum ad errores indicandos, sed etiam, quod leve profecto si voluisset, negotio fecisset, eosdem corrigendos. Quod cum omiserit, nec post eum alii fecerunt, res eo redacta est, ut etiamnum, et quamvis optimis ad singularia phaenomena explicanda praeceptis muniti simus, proba rerum expositione careamus.

Qua ratione huic defectus possit suppleri jam indicare nobis animus est. Eum in finem viam ingrediemur, quam, uti jam in initio hujus commentationis monuimus, nobis monstravit et patefecit Cl. uylenbroek.

Constat experientia in disco metallico rotante dextrorsum sub polo notato magnetis verticalis prope circumferentiam positi, fluxus Electricos oriri, qui diriguntur a centro versus peripheriam disci. Quaeritur, quo fit, ut fluxus hi sic procedant, neque in directionem contrariam, quemadmodum Nobili, e principiis verissimis ab ipso faradayo positis, jure deducere posse sibi videbatur. Respondemus rem facile, etiamsi velimus fundamentum theoriae Cl. NOBILI servare (quod tamen minime nostrum est propositum) explicari, et huic theoriae aliquam afferri posse medelam, si cogitemus, praeter disci radium AC (fig. 7), qui ad polum N accedit, radiumque BC, qui ab eodem recedit, alium quoque esse CD, qui a parte sinistra fluxus, polum N cingentis, discedit, ut ad dextram accedat, adeoque hoc motu in isto radio, fluxum oriri debere, qui a centro C versus peripheriam in D vergit, i. e. juxta eam ipsam directionem, quam unice veram esse experientia docet. Jam vero iste fluxus intensitate quoque, iis quos nobili exstare credidit, praestantior erit; quippe qui summa actionum oppositarum partium fluxus N excitatur, dum imaginarii isti, si exstarent, differentiae tantum earumdem virium origines suas deberent.

Postquam sic ostendimus, vel in ipsa Cl. nobili theoria directionem fluxus, quam observamus, rite posse explicari, illud altero loco observandum est, acus motum dextrorsum, fluxu excitato provocatum, non adscribi posse, uti perverse fecerunt Physici Itali attractionibus et repulsionibus, quae secundum notam ampèrii legem, locum habent inter fluxus parellelos, in disco et magnete prouti vel in eandem, vel ad oppositas spatii partes tendunt; sed isti oerstedi legi fundamentali, fluxum tendentem a C versus D sub polo notato, hunc polum dextrorsum deflectere, quo (uti ampère postea ostendit) fluxus magnetis fierent fluxubus disci paralleli.

Hanc oersted legem, non vero attractiones repulsionesve fluxuum in disco et magnete (secundum sententiam nobili aliorumque) obviorum, veram esse motus magnetis causam ex eo ipso, quem assumit polus, motu sequitur. Nam cum experimentis, quae instituit Cl. faraday, quemque nos, ut rei essemus certiores, pleno successu repetivimus, constat revera fluxus in disco, rotante ut supposuimus, a centro ad circumferentiam tendere, idque non tantum in radio CD, sed etiam, (quod necessario ita fieri debere mox demonstrabimus) in radiis uti vocantur appropinquantibus CA, aeque ac in recedentibus CB, si viribus inter magnetem et discum attrahentibus et re-

pellentibus acus motus adscribendus esset, motus iste sinistrorsus esset, cum revera sit dextrorsus, sive in directionem disci rotantis.

Duplicem igitur commiserunt errorem nobili et antinori, alterum statuendo fluxus in disci radiis provocari eo, quod alii radii ad polum accedant, dum alii eundem relinquant; alterum, cum ponerent acus motum adscribendum esse viribus attrahentibus inter magnetis et disci fluxus parallelos ejusdem directionis, repellentibusque inter eorundem fluxus parallelos directionis contrariae. At fortuito errores hi ejus sunt naturae, ut, si simul committantur, alter alterius effectum destruat, et argumentationis exitus, aeque probus sit et verus, ac si ipsa argumentatio nullo laborasset vitio.

Jam vero ut paradoxon probemus, scil. necesse esse in omnibus disci rotantis radiis polo N proximis, tam advenientibus, quam recedentibus fluxus progrediantur a centro versus circumferentiam, age! relinquamus viam istam, facilem quidem eam, nec probabilitatis specie destitutam, attamen, ut vidimus, minime fidam, immo fallacem, quam nobis praeiverunt Physici Itali; aliamque nobis aperiamus, quae tam universis dynamicis principiis, quam Experientiae effatis sit magis congrua.

In eo enim praecipue Viri Cll., quorum sententiam

oppugnamus, errasse nobis videntur, quod, quae Phaenomena inter discos motos et helices Electrodynamicas observavere, eadem etiam inter eosdem discos magnetesque necessario obtinere statuerint. Nam licet magna sit inter mirificos hos apparatus, magnetem scil. et helicem Electrodynamicam similitudo, multum tamen abest, ut helix magnetem constituat, aut hic pro illa ubivis substitui possit.

In helice v. c. Electrodynamica fieri posset ut, propter fluxuum finitam, et saepius satis amplam extensionem, partis cujusdam unius fluxuum parallelorum actio ad phaenomenon quoddam inductionis excitandum sufficeret, ac si reliquae partes hujus fluxus, omnesque alii prorsus non adessent. In magnete vero, propter infinitam fluxuum parvitatem, infinitamque eorum copiam infinite proxime sibi adjacentium, aegre ejusmodi Hypothesis admitteretur.

Accedit quod, si massae alicujus M (fig. 8) in punctum materiale P actionem definire velimus, non earum tantum particularum massae M, quae puncto P proximae sunt, actio sit consideranda, sed in censum venire debeant actiones omnium, quibus massa M constat, particularum vi in punctum P praeditarum.

Hinc, si M sit magnes, P vero elementum conductoris Electrici, atque motu ipsius conductoris in eodem, fluxibus, quibus magnes constare concipitur, novus fluxus inductione oriatur, hujus fluxus directio et intensitas pendebit non tantum a directione motus conductoris quoad particulas magnetis ipsi P proxime adjacentes, sed ab hac ipsa directione relata ad omnes magnetis particulas, fluxusve eas cingentes.

Calculo, sive ratiocinatione vis Magnetis inducentis adeoque et fluxus in P inducti directionem definire, etiamsi universe fieri posset, in singulis tamen casibus ardua res foret. Experientia feliciter hic nobis succurrit, nobisque simplicem facilemque subministrat regulam expositis principiis, aliisque aliunde nobis cognitis et mox memorandis consonam; qua norma si te duci patiaris, ubivis ipsius effata, eventu confirmata videbis.

Quo clarius hanc meam regulam explicem, fingas tibi, velim, praeter magnetem inducentem M (fig. 9), et conductorem mobilem CO, adesse in codem quasi cum conductore loco, particulam, elementum si lubet, ferri ductilis. Magnes M in hoc ferro ductili magnetismum inducet juxta certas, omnibusque notas, regulas; sive si cum ampèrio loqui velis, magnes M in ferro ductili fluxus excitabit electricos certa ac definita ratione dispositos. Jam vero, si conductor modo quocunque moveatur, fluxus a magnete M in ipso inducti

ea erit directio, ac si, sublato magnete primario M, at persistentibus ferri sive magnetismo, sive fluxibus electricis, conductor CO sese horum respectu movissit.

Sic, ut rem exemplo illustrem, si ponamus conductorem CO versari in viciniis magnetis M poli Borealis (qui septentrionem spectat) in ferri mollis extremitate magneti proxima excitabitur polus Australis, sive fluxus, cujus directionem adscriptae sagittae indicant; si insuper statuamus conductorem moveri in sensum sagittae superius appositae et quidem in ipso fluxus ferri mollis plano, in ipso conductore novus inducetur fluxus adscendens, sive ab O versus C progrediens; eaque fluxus directio determinabitur juxta principium, toties jam commemoratum, sed non semper rite adhibitum, conductorem seil. motu suo de fluxu adscendente discedere simulque accedere ad descendentem.

Jam vero si ponamus conductorem, ferrumque ductile illum concomitans, transferri ad alias variasque positiones respectu poli Borealis magnetis; in singulis hisce casibus, eâdem erit ratione procedendum, ut, dato insuper conductoris motu, indicetur directio fluxus a magnete inducti. Primum seil. definienda est, directio fluxus in ferro ductili, ad quem dein si conductoris motus referatur, nullo fere negotio fluxus in eo inducti directionem determinabis.

Utque jam haec principia ad eos casus, qui inprimis nos occupant, applicemus, fingamus a dextra sinistraque parte poli Borealis Magnetis horizontalis, et in aequalibus ab eo distantiis remoti, duo pluresve conductores verticales; imo ponamus polum borealem veluti annulo talium conductorum parallelorum cingi, hosque omnes in unam eandemque directionem lente moveri, (fig. 10); facile patebit in omnibus hisce, sive ad polum N accedant, sive ab eodem recedant, sive etiam neutrum horum obtineat, dummodo conductor moveatur, fluxuum inductorum directionem fore eandem; nam secundum principium a nobis positum, fluxuum directiones a magnetis polo N inductorum erunt eaedem, ac si fluxus essent producti motu conductorum trans fluxus in ferro ductili unicuique conductori quasi annexo, obvios. Jam vero in singulis his elementis ferreis polus evolvetur australis; qui poli cum habebunt fluxus suos eodem ordine et directione in plano verticali dispositos, fieri non potest, quin etiam in conductoribus areas veluti horum fluxuum eadem ratione verrentibus, iidem excitentur fluxus inducti. Hujus autem argumentationis conclusio cum plenissime ab experientia confirmetur, haud leve principii veritatis documentum est.

Nunc vero sponte quoque ratio patet cur in radiis disci nostri sub polo magnetis rotantis, tam accedentibus ad polum, quam ab eodem recedentibus, una eademque fluxuum directio observatur, quae, si polus sit Borealis, tendit a centro ad circumferentiam. Cum enim polus Borealis, si particulae ferreae in diversis his radiis dispositae essent, in omnibus hisce polos Australes sibi ipsi proximos provocaret, qui poli, ut notum, fluxus exhiberent omnes similiter et eadem directione ac in polo Boreali, dispositos; aliter fieri non potest, quin in radiis horum fluxuum areas prorsus eadem ratione et directione verrentibus novi fluxus e centro progredientes inducantur.

Eadem simplici ratione hac via cedit explicatio eorum phaenomenorum, quae theoria a nobili et antinori inexplicata reliquit.

Sic ortus fluxuum electricorum rotatione cylindri cuprei circa magnetem vel magnetis circa proprium suum axin hac via progredientibus simplex videbitur. Nam si filum conducens vel cylinder rotetur parallelus axi magnetis, distantia inter conductorem et magnetem non mutatur, sed conductor quasi secat varios fluxus electricos qui magnetis polum ab omni parte circumdant, quo fit, ut conductor semper ad alias fluxuum partes accedat, ab aliis recedat.

Ortus fluxuum inductorum in magnete circa suum proprium axin rotato eodem modo explicatur, quum hoc in casu particulae extra axin positae secent fluxus electricos, qui circumdant particulas in ipso axi magnetis sitas, qui fluxus in his particulis exterioribus ortus per axin vel partes centrales magnetis conducitur. Observatio a faraday et aliis memorata, quod hi fluxus maximae sunt intensitatis, quando fila conducentia fluxum apponuntur extremitati axis magnetis ejusque parti mediae, eo explicatur, quod fluxus qui alterum magnetis polum circumdant, contrariam habeant directionem, ideoque provocent fluxus inductos contrariae directionis ac priores, quorumque igitur effectum minuant.

Eadem prorsus ratione invenitur directio fluxuum, qui in disco rotante horizontali a magnetismo terrestri provocantur. Si nempe cogitamus qualis est directio fluxuum, quos adsumimus in acu Inclinationis, perque horum fluxuum areas in planum horizontale projectas varios disci radios transire fingamus, statim apparebit magnetismum terrestrem niti quidem ad fluxus in singulis disci metallici dextrorsum rotantis punctis excitandos, qui omnes a centro ad circumferentiam tendunt; hunc vero nisum nullum habere effectum, quoniam fluxibus istis ad centrum, ex quo orirentur, redeundi omnis deëst opportunitas. Hinc ea, quae supra commemoravimus, experimenta cum disco horizontali instituta, a vi perturbatrice magnetismi terrestris tuta fuere.

Bene autem tenendum nos, quoties de conductoribus areas fluxuum in ferro ductili praesentium verrentibus sermo sit, non illud perhibere, tales revera existere fluxus; nam ut exstarent, ferrum ipsum ductile, quod tantum facilitatis, causa in auxilium vocavimus, adesse deberet. Nihil aliud volumus, quam intimum esse simplicissimumque inter inductionem Magneticam in ferro molli et Electricam in conductore non magnetico a magnete, motu illius provocatam, nexum, quo, si illam cognoveris, hanc quoque facile et vere definias.

II. Altero loco de viribus relativis videndum est. Atque hic omnium primum in considerationem venit ingens discrimen, quod, quoad facultatem acum magneticam deflectendi inter diversa corpora existit; dum alia, metalla imprimis, ista facultate excellant, alia aero, praecipue quae Electricitatem male ducunt, eâdem prorsus orbata viderentur, nisi decrementa amplitudinum acus magneticae in viciniis horum corporum oscillantis suspicionem moverent, his quoque aliquotenus tamen hanc facultatem inesse.

At vero, ex quo patuit, ut in praecedenti paragrapho vidimus, phaenomena, de quibus hic agitur, mere esse electrica, acumque magneticam universe affici fluxibus electricis, in variis corporibus excitatis, dubitari vix potest, quin ea corpora, ejusmodi fluxibus in se recipiendis minus apta, etiam facultate sint caritura magnetis quiescentis motum excitandi, aut oscillantis temperandi. Cum autem experientia docet omnium corporum quibus cum Magnetismo aut Electricitate nihil commune est, si sibimet proxime moveantur, motum citius cessare, nulla profecto causa est, cur decrementa amplitudinum acus magneticae in viciniis vitri, sulphuris, similiumve corporum Electricitatem non ducentium, fluxibus Electricis adscriberemus; inprimis cum illud vitrum aut sulphuris frustum velocissime in magnetis viciniis rotata, pertinaciter vel minimos fluxus Electricos in se recipere negent.

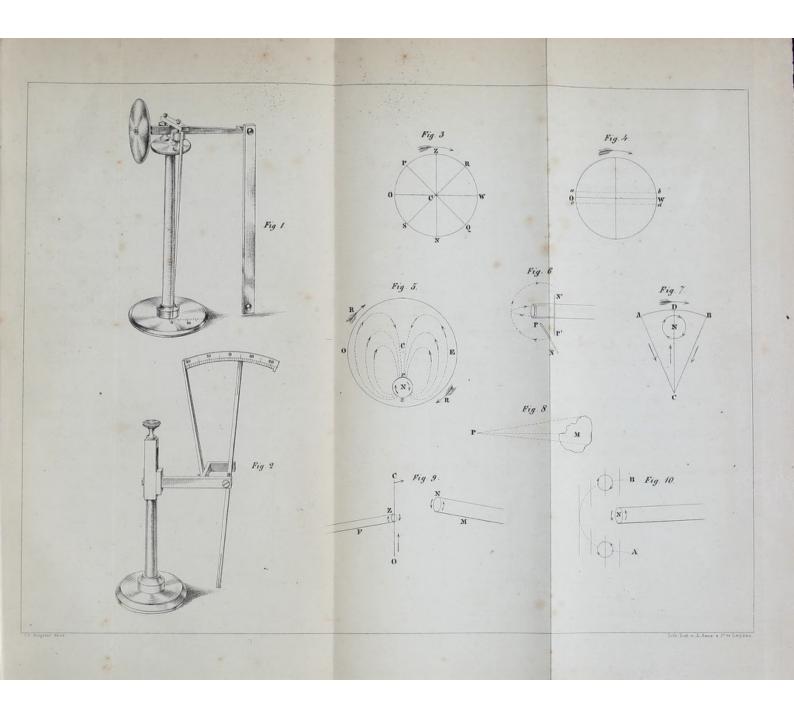
Hinc concludimus esse corpora, quae in acum Magneticam non sensibiliter agant, eaque ista facultate carere, quoniam Electricitatem aut non, aut pessime ducunt, adeoque fluxibus Electricis in se recipiendis inepta sunt.

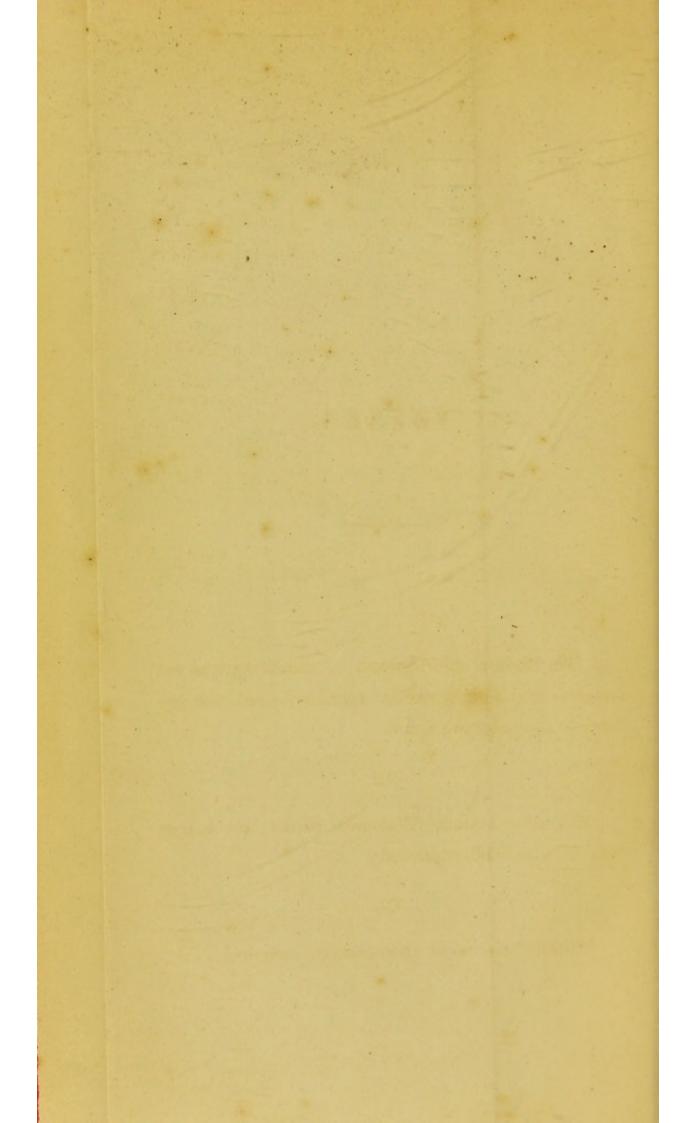
Eadem proprietas, major sc. minorve ad Electricitatem ducendam aptitudo, causa esse videtur primaria, cur inter se differant ea corpora, quae acum, sive moventem, sive quiescentem afficere valent. Est enim, uti jam faraday indicavit, ordo, quem metalla hoc respectu observant, idem ac ille, juxta quem disponuntur, si eorum Electricitatis ducendae facultatem respicimus. Et quamvis experimenta, tam ea, quae

metallorum actionem diversam in magnetem, quam quae eorundem conductibilitatem Electricam spectant, nec satis sint extensa, nec satis accurata, quam ut certi quid pronuntiare audeamus, tamen ea, quae hoc respectu jam innotuerunt, quaeque aliunde universe novimus de intimo nexu inter fluxus intensitatem, materiaeque fluxum propagantis conductibilitatem Electricam, probabilem admodum reddunt sententiam esse metallorum rotantium vires in acum magneticam, eorundem viribus ducentibus quoad Electricitatem proportionales.

III. Quaestionem denique aggredimur de viribus disci rotantis repellentibus, propter Phaenomenorum singularitatem, observationumque inopiam, non minoribus, quam duae praecedentes, difficultatibus obseptam. In parte priori hujus commentationis jam diximus perpaucos fuisse Physicos, qui in his viribus accurate explorandis operam suam collocaverint, neque eorum, qui id fecerunt, testimonia quoad res ab ipsis observatas inter se convenire. Etiamsi, quae nos a nobis visa retulimus, seponas, habebis tamen harrisum, qui Cl. arago obloquitur. Haec inter observatores discordia explicandi phaenomena difficultates haud parum auget. Accedit quod notae magnetum, fluxuumque Electricorum proprietates nihil nobis supper

ditent, quo repulsiones istas explicemus, aliaque esse circumspicienda ut et in axilium vocanda subsidia, ut causam reddamus motuum peculiarium acus magneticae, quas Cl. ARAGO videre contigit. Haec si teneamus, profecto non mirabimur, perparvum esse numerum eorum, qui explicandi negotium in se susceperint. Neminem in arenam discendisse reperimus praeter Cl. NOBILI, et post eum Ill. FARADAY. Priorem Physicum quod attinet, hic in dissertatione jam saepius citata repulsionis rationem reddidit iisdem usus principiis, quae jam supra tamquam experientiae contraria rejecimus, sibique adeo statim severas Cl. FARADAY reprehensiones contraxit. Hanc igitur explicationem ulterius exponere mittamus, videamusque de hypothesi, quam ingeniosissimus faraday excogitavit, ut acus inclinatoriae verticalis, disco metallico rotanti proximae varios motus quasi demonstraret. Celeberrimus Physicus Anglus, qua est sagacitate, mox vidit omnes istos motus rite explicari, si adsumamus, tempus ad fluxus excitandos requiri; quo sc. principio admisso, facile est videre fluxum, interea dum maximam intensitatem acquirit, rotante disco, non esse transiturum per projectionem poli acus in disco, sed ejus directionem aliquantulum esse ab isto puncto deflexuram, et quidem eam partem versus, in quam disci rotatio locum habet. Actio igitur inter polum fluxusque centrum, sive punctum intensitatis maximae, quae semper fit juxta normalem in lineam duo haec puncta jungentem, in discum obliqua erit, poteritque in duas vires, alteram disco parallelam, alteram in disco perpendicularem, decomponi; earumque virium postrema, cum integra actio sit repellens, causa erit repulsionum, quae subinde in acu inclinatoria observantur.


Hac hypothesi usus Cl. FARADAY varios, quos ARAGO descripsit, acus inclinatoriae motus tanta felicitate explicuit 1), ut vix abesse possis, quin Te ambabus manibus Ipsi tradas, Tibique persuadeas, et Cl. ARAGO unice recte observasse, et jure quodam suo FARADAYUM, propositione inversa, statuere: Phaenomena haec, ab ARAGO observata, luce clarius demonstrare fluxum Electricum, ut possit evolvi, tempore indigere.


Quamvis igitur hac ratione res acta, et, me quod attinet conclamata, videatur, victum tamen me, pace tantorum virorum dictum sit, declarare nondum possum. Nam etsi vera fortasse sit, quam excogitavit faradayus, hypothesis, tempus sc. finitum ad fluxum constituendum requiri, non tamen video, quo modo tempus istud in fluxus directionem mutandam aliquam vim habere possit. Id tamen, si Physicum

¹⁾ Vid. FARADAYI ad Gay Lussacium epist. jam saepius citata.

Anglum Illustrissimum bene intelligo, obtinet; nam, disco rotante, fluxus, qui interim ad maximum intensitatis perducitur, acus polo aliquantum praecedit; ac si fluxus iste disco fixe inhaerens, ipsius rotationis esset particeps. Istius autem necessitudinis inter fluxum et certas metalli particulas non percipio; neque video quare fluxus, qui in sua origine juxta definitam directionem procedit, non possit in eadem directione manere, etiamsi discus rotetur, i. e. quamvis novae particulae metallicae continuo iis succedant, quae, si omnis rotatio abfuisset, fluxui ulterius propagando inserviissent. Haec rei ratio, quam verbo tango, si obtineat, facile perspicimus tempus istud, a Cl. faradax invocatum, parum nihilve ad repulsiones acus inclinatoriae explicandas.

Quidquid sit, non is ego sum, qui gravissimam hanc quaestionem decidam. Ego meae et observandi et ratiocinandi imperitiae juvenilis probe conscius, lubens jam arenam aliis me et doctioribus et dexterioribus relinquo.

THESES.

I.

De Mathesi ad Physicam adhibenda egregia est BACONIS VERULAMII sententia: terminare eam, non generare aut procreare debet.

II:

Phantasmata moseri (Mosersche Bilder) non ex luce ita dicta invisibili explicanda.

III.

Aërolithorum origo atmosphaerica non est.

IV.

Prima Mineralogiae adjumenta sunt Chymia et calculus mathematicus.

V.

Geologo studium Zoologiae et Botanices aeque utile ac Minaralogiae cognitio.

VI.

Calor animalis non a sola respiratione repetendus.

VII.

Inepte fluidum nerveum habetur pro Electricitate.

VIII.

Electricitas animalis non alia est ac electricitas ex aliis fontibus oriunda.

IX.

Perperam involucrum corneum Insectorum sceleton dicitur.

X.

Expositio disciplinarum, quae dicitur popularis, disciplinis ipsis proficua est.

XI.

Nulli opportunitate fertiliori fruuntur agnoscendi Divini Numinis curam, quam qui naturae organicae studio operam dant.

XII.

Eo tendat naturae investigatorum studium, ut phaenomena, quae observantur tum in corporibus anorganicis, tum in organicis ex uno eodemque fonte explicare conentur. Nolli apportunitti iste dertiliori diminitur apraiocendi
librat diministrativa committativa apportunicaci
molio apportuni dimin.

15%

To civider the interpolation studies, or placement of the compositions of a composition of

