Experiments and observations relative to the influence lately discovered by M. Galvani, and commonly called animal electricity / by Richard Fowler.

Contributors

Fowler, Richard, 1765-1863. University of Bristol. Library

Publication/Creation

Edinburgh: Printed for T. Duncan, P. Hill, Robertson & Berry, and G. Mudie; and J. Johnson St Paul's Church-yard, London, 1793.

Persistent URL

https://wellcomecollection.org/works/p5pbx2yf

Provider

Special Collections of the University of Bristol Library

License and attribution

This material has been provided by This material has been provided by University of Bristol Library. The original may be consulted at University of Bristol Library. where the originals may be consulted.

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

1512827836

UNIVERSITY OF BRISTOL

MEDICAL LIBRARY

Rote. Med. 18

HELF

D.A.

electraty. eddoes on Consumption Tools & Wall on Tay on Culinary Horson Disonous Negetables Digitized by the Internet Archive in 2015

EXPERIMENTS

AND

OBSERVATIONS

SEP SLLP

RELATIVE TO THE

INFLUENCE LATELY DISCOVERED BY M. GALVANI,

AND COMMONLY CALLED

ANIMAL ELECTRICITY.

BY RICHARD FOWLER.

EDINBURGH:

PRINTED FOR T. DUNCAN, P. HILL, ROBERTSON & BERRY, AND G. MUDIE; AND J. JOHNSON ST PAUL'S CHURCH-YARD, LONDON.

1793.

CHRIMINICANI

12 00 A

OBSERVATIONS

BUT OF BY TAIRS

INFLORMED LATELY BISCOVERED BE

OFFICE VINDERS ORA

ANIMAL TEMPOTATOITY.

Maid the second series of health

imperation and rowings.

IN DRIVERS ONE

nonnation of the Property of t

UNIVERSITY OF BRISTOL MEDICINE

PREFACE.

at it indicated, with

ten to wel awond yns or eldinote?

HE subject of the following experiments, has excited fuch general curiofity, that every new fact respecting it, may afford some gratification; and although the few which I have to offer, have not led me to what many may think very important conclusions, they will not I hope be found wholly undeferving of attention. The experiments were begun, with the view of afcertaining if the influence discovered by M. Galvani, be sh referrible referrible to any known law of nature, or if it be itself a new law.

Finding that it indicated, with tolerable accuracy, the presence of very fmall degrees of the contractile power of muscles, without appearing in the least to diminish that power, as electricity and most other stimuli never fail to do; I thought it might be used with advantage, as a test, in the investigation of some important subjects in physiology; and I have accordingly employed it as fuch.

Every circumstance, observed in the

the course of these experiments, was carefully noted down, at the instant it occurred, and the greater number of these was made in the presence of gentlemen, whose accuracy I had reason to hope would detect any fallacy, which might have escaped myself. I have a particular pleasure, in expressing my obligation to Mr George Hunter of York, for the very friendly affiftance which he afforded me, in almost every experiment, which rendered fuch affiftance necessary.

EDIN. May 28.]

the course of these experiments, was carefully noted down, at the number of thefe was made in the prefence of gentlemen, whole accuracy I had reason to hope would detect any fallacy, which might have eleaped myfelfi i have a particular pleafure, in expression my obligation to Mr George Hamber of York, for the very friendly affile. tance which he afforded me, inalmost every leaveriment; which

SECTION I.

Are the Phenomena, exhibited by the Application of certain different Metals to Animals, referrible to Electricity?

HE whole train of circumstances, which preceded this discovery, had a tendency to occasion the belief of its relation to electricity.

Some accidental appearances, certainly electrical, excited, by their novelty, the attention of the Professor of Anatomy at Bologna, to the investigation of the possible, but unknown, dependencies of the motions of animals upon electricity; and the astonishing essents of that influence upon the human body, particularly in paralytic difeases, whether owing to derangements of

A

the

the nerves, or of the muscles; the experiments, which prove that the fluids of animals are better conductors of electricity, than water is; and that, "if an electric " shock pass through a given part of a liv-"ing animal, the fame shock, after the ani-" mal is dead, will be visibly transmitted " over the furface of the part, but not through "it *:" the recollection, too, of that fingular power, which fome animals poffers, as the torpedo, the gymnotus electricus, and the filurus electricus, of collecting and discharging at pleasure the electrical fluid; but, above all, the wonderful, but folitary, instance of an electrical shock received from a mouse, under diffection, recently related by his countryman Cotugno; were circumftances, which feem to have rendered the expectations of the Professor not a little fanguine as to his fuccefs.

At length, after many ingenious and interesting experiments, illustrative of the relations

Cavallo.

lations which subsist between artificial electricity and the involuntary motions of animals, a happy accident discovered to him the phenomena, which have since been the objects of so much curious research, and which have given to immortality the name of Galvani.

He one day observed, that some frogs, hooked by the spine of the back, and sufpended from the iron palisades, which surrounded his garden, contracted frequently and involuntarily. Examining minutely into the cause of these contractions, he found that he could produce them at pleasure, by touching the animals with two different metals, at the same time in contact with each other.

To a mind prepared by such observations, and experiments as those which had previously occupied M. Galvani, the resemblance which this new discovery bore to the facts he had before observed, must have produced conviction

and the experiments, which have fince been made both by himfelf, and Dr Valli, have given no small degree of plausibility to the opinion. A repetition of some of these experiments excited my doubts as to the legitimacy of the conclusions which had been drawn from them, and induced me at length to proceed in the following investigation.

My first object was to ascertain as well the various circumstances, which are essentially requisite to the production of these new phenomena, as those in which they can be rendered most obvious. After a great variety of experiments, of which it would be unnecessary here to relate more than the result, I found that I could not excite in an animal the appearances described by Galvani with any substances whatever, whether solid or sluid, except the metals: and that the mutual contact of two different metals with each other, so far as I was able to determine, was in every case necessary to the effect.

When

When metals are either calcined, or combined with acids, they are no longer capable of exciting contraction. In estimating the comparative powers of different metals as excitors, I found zinc* by far the most estimated ficacious, especially when in contact with gold, silver, molybdena, steel, or copper, although these latter excite but seeble contractions when in contact only with each other. Next to zinc, tin foil, and lead appear to be the best excitors. But with zinc, and gold, silver, or molybdena, I have frequently succeeded in exciting contractions in the foot

* On this metal Cronstedt has the following very curious remark: "It seems to become electrical by fric"tion, and then its smaller particles are attracted by the
"loadstone; which effects are not yet properly investi"gated." Zinc is an ingredient of the best amalgam for
smearing the rubbers of electrical machines: But I have
not been able to render a bar of zinc electrical by friction, nor to find that its smaller particles were in any state
attracted by the loadstone, unless they had been scraped off by means of an instrument of iron. But, in this
way, the dust of any metal is rendered susceptible of the
influence of the loadstone.

foot of a frog, upwards of a day after they had ceafed to be excited, by arming the nerve with tin foil, and using some other metal as a conductor, in the way the experiment is commonly performed.

When the bulk of the metals is large, and the quantity of furface, of an animal with which they are in contact, is confiderable, I think, the contractions are both stronger and more readily excited, than when the reverse of this is the case. Thus I have almost always been able to make a limb contract, by laying it upon a broad plate of zinc, and employing a half crown piece for an excitor, long after a small piece of zinc, and a silver probe, had failed to produce any effect.

I have faid, that, in order to excite contractions, I believe it necessary that two different metals, communicating with the part to be excited, should be in contact with each other. Some few instances have been observed, observed, which seem to prove the contrary. In a lecture, fo long ago as October last, in which Dr Baillie of London mentioned Galvani's discovery, I think I remember him faying, that he had twice or thrice produced contractions by the application of one metal only: and Dr Valli, in his 9th letter upon this subject, speaks of his having done the fame with a pair of fciffars, made of bad fteel, and in a frog recently killed. I think it not impossible that there may have been fome unnoticed fallacy in these instances. I happened one day to touch the crural nerve of a frog, with a finall gold tooth-pick flid from a filver case, and the leg instantly contracted; I again touched it, and it again contracted. At another time I observed contractions from touching a nerve, with a filver cannula, and at another from placing one in the folds of a filver chain. All these appeared at the time to be fo many decifive instances of contractions from the application of one metal, till the following experiment

ment feemed to afford a different explanation. Having placed, one end of a filver
probe upon the sciatic nerve of a frog, lying
in water some inches below the surface, I
observed that no contractions followed,
neither did they, when I touched the part
of the probe above the surface with a piece
of zinc. But when I touched it at the surface, so that both the zinc and the silver
were in contact with the water, although
the zinc was at the same time many inches
removed from the frog, contractions were
produced equally vigorous, as if both the
metals had been in immediate contact with
the frog.

I was now no longer at a loss to account for the contractions produced by the gold tooth pick, fince the circumstances both of that case, and of the experiment related, were probably the same, two metals in contact with each other. The gold in immediate contact with a nerve; and the silver case communicating with it, and the muscles through

through the medium of the moisture, with which the whole was perhaps furrounded. This led me to examine the chain, and the cannula. I found both the links of the one, and the sides of the other, soldered with a different metal *. So that, in these cases, two metals had at the same time been in contact with a nerve, with moisture, and with each other.

However this may be with respect to the necessity of mutual contact, between two different metals in order to excite contractions, I have long ago found, that contractions may be excited in an animal, when

* If further experiments should establish decidedly, that the mutual contact of two different metals is absolutely necessary for the productions of Galvani's pheno-

the purity of the precious metals? For instance, contractions in an animal produced by the contact of a piece of gold or silver, whose purity we wish to ascertain, with a piece of the same metal known to be pure, would then prove incontestably the presence of alloy.

when no more than one metal is in contact with it *.

At the time I first observed this fact, I was making experiments to ascertain whether it was possible to transmit the influence, which had excited contractions in one leg, into another, removed to some distance from it, and communicating with it, only by means of a single conducting substance, (such as silver, for example). For this purpose,

* In an able lecture, which Dr Monro lately delivered, chiefly upon this fubject, he demonstrated the possibility of exciting contractions in the limb of a frog, without either of the metals he employed being in contact with it; or having any other communication with it than through the medium of some moist substance. In varying this experiment, I find, that if a frog be divided in two parts, just above the origin of the sciatic nerves, and put into a bason of water, the hind legs may be thrown into strong contractions, by bringing zinc, or tin-foil, and silver, in contact with each other, at the distance of at least an inch from the divided spine, so long as they are kept nearly in a right line with it. Water, in this case, is the only communication between the metals and the origin of the nerves.

purpose, I had separated from the trunk, and from each other, the hind legs of a frog recently killed, and had detached their nerves as far as the knee. I then laid them at some distance from each other, upon a plate of glass, and included the nerve of one leg, and the foot of the other, in the folded ends of a filver chain. With one hand I now raifed from the muscles, upon the end of a filver probe, the nerve of the leg, whose foot was folded in the chain; and with a piece of zinc, in the other hand, touched, at the fame time, the nerve and the probe. This leg was thrown into strong contractions; but none were excited in the other. I then touched the chain, and nerve of the other, and, to my furprise, both legs instantly contracted. I had obferved, in the beginning of November laft, that it was not necessary for the metals to be in contact with any thing but nerve, in order to excite contractions in the muscles, to which it was distributed; and had mentioned this fact immediately afterwards to

the Medical Society of this place, as a fufficient refutation of the theory, which Dr Valli had formed of Galvani's discovery. It would not, therefore, have furpaffed my expectations, had the influence, excited by the mutual contact of a piece of zinc, and probe, with the nerve, passed through the medium of the chain, from the leg, in which it first excited contractions, and produced contractions in the distant leg. But, I now thought that I had not only passed the influence from one leg to the other, but in one of the legs in a direction contrary to the course of its nerves. The removal of the leg, whose nerve communicated with the chain, convinced me of my error: but, at the fame time, discovered to me a fact of much greater importance, than any with which I had hitherto been acquainted. For now, upon touching the chain alone with the zinc, I found that the leg, whose foot it still included, and whose nerve I held suspended upon a probe, contracted as strongly as The influence of the two metals, before.

in contact with the nerve of the other leg, had not, therefore, passed into, and excited this.

It had from the first been known, that contractions could be excited by placing two different metals in contact, one with the nerve, the other with the muscles, and making a communication between them: but, in this experiment, the only metal in contact, either with the nerve, or muscle, was filver. Neither had the influence paffed through the chain, and up the leg against the course of the nerve, in consequence of a communication by means of moisture subfifting between the zinc, and the foot, as well as between the filver chain, and the foot; for the experiment fucceeded equally well when the chain was removed, and the foot laid upon a filver plate made perfectly dry. But when either the zinc. or probe was held by another person not communicating with me; or when either of them was infulated in a flick of fealing wax; no contraction whatever took place.

Neither, indeed, were contractions excited in any part of the leg, except the foot, when the probe was withdrawn from the nerve; and the foot, and filver, were both touched with the zinc. It is then clear, that the influence, which, in the former cafe, excited the whole leg to contraction, must have passed through the medium of my body. It is not necessary that the silver should be laid under the foot; all that is required, is, that it should communicate with it by means of moisture; it may then be laid at almost any distance from it *.

The course of this influence, however, was still undetermined: it might be from the muscles to the nerve: it might be from the

* The contractions produced feemed to be strong in proportion to the extent of the surfaces of the metals in contact, strongest when a large plate of zinc is laid horizontally upon a large plate of silver or gold. If the zinc be suffered to remain in contact with the silver, for a little time, the contractions of the leg cease. The zinc may then be slid over the silver, till it even touch the leg without renewing the contractions: but, in withdrawing the silver, the leg contracts at the instant the silver parts from it!

the nerve to the muscles. To ascertain this, and to prove that the influence, which had excited one limb to contraction, might pass on, through a foreign medium, and excite contractions in another, I made the following experiment.

The leg of a frog was disposed as in the former experiment. The probe, suspending the nerve, was held by myfelf; the zinc excitor by another person; and the leg of another frog formed the communication betwixt us. So long as I had hold of the nerve, and the person affisting me held the foot of this interposed leg, no contractions were excited in it, by the influence, which paffed through it and excited the other leg. But when the person holding the zinc, held the nerve of the interposed leg; and I held the foot, both legs contracted with equal strength. From this experiment it is evident, that Galvani's influence had paffed either from the muscles, or the zinc and filver; and in the direct course of the nerves of both legs.

I was now in possession of an easy method of ascertaining the different substances, which do, or which do not, afford a passage to this new influence.

All the metals when pure appear to be excellent conductors; not quite fo good when in the ore; and, I think, least fo when combined with acids, forming metallic falts. They are however, in this state, by no means bad conductors, even when fo carefully dried, as to leave no fuspicion of the flightest degree of moisture adhering to their furface. But, when the metals are calcined, their capacity as conductors is quite destroyed: at least this was the case with the calces of zinc, of bifmuth, of iron, and of mercury; the only ones, with which I have had an opportunity of making the experiment. I could not observe that any contractions were excited through the medium of stones, nor ever through barytes.

The different non-conductors of electri-

city are likewife, I find non-conductors of this influence: even wood, charcoal, and linen, do not conduct except when moift. But all the living vegetables I could procure afforded it a ready paffage: probably from the fluids which they contain. While I held the probe which supported the nerve, I touched the shoe of a gentleman, who applied the zinc to the filver under the foot of the frog. Strong contractions were excited, but when he took off his shoe, and we held it between our hands, no contractions could be excited. In the first case, the influence had to pass through no more than the thickness of the shoe: in the second, through its whole length, which might not be all equally moift. This gentleman had on thread stockings. When I touched the foot of another, who had on cotton flockings, no contractions were excited. Cotton is a non-conductor of electricity.

Oils of all kinds are fo far from conducting, that if the fingers of the person holding ing either the probe, or the zinc, have perfpired much, even this operates as a complete obstruction to the passage of the influence: the instant the perspired matter has
been wiped away, and the singers have
been dipped in water, it again passes, and
excites contractions. When the intestines
of a frog are removed, and its abdomen is
filled with oil, no contraction can be excited by placing one metal upon its sciatic
nerves, and bringing another in contact with
it, either above or below the surface of the
oil.

There is fomething fingular in this refpect, with regard to mercury. If the abdomen of a frog be filled with it, a piece of zinc passed through it, so as to touch the sciatic nerves, excites contractions. But a piece of silver, passed to them, excites none. Neither are any excited by touching the silver, beneath the surface of the mercury, with a piece of zinc. But I have before thewn, that, when water is used instead of mercury,

mercury, contractions may be in this way excited; yet mercury is reckoned a much better conductor of electricity than water. I have repeatedly passed this influence through a great length of thin brass wire, and through the bodies of five persons communicating with each other, by dipping their singers in basons of water placed between them; yet it did not appear to have lost any of its force, in this long and disfused passage: for the contractions excited in the frog's leg were equally strong, as when it had passed only through one person. Vitriolic acid, and alchol appear still better conductors than water.

Wishing to ascertain whether it passed over the surface, or through the substance of metals, I coated several rods of different metals with sealing wax, leaving nothing but their ends, by which they were held, uncovered. Contractions were excited as readily through the media of these, as if they had not been coated. It seems to meet with

with no obstruction in passing from link to link, of several chains, even when no pressure, except that of their own weight, is used to bring them into contact. I was led from this to hope, that I should be able to make it pass through a very thin plate of air. I, therefore, coated a stick of sealing wax, with a plate of tin-foil, and then made an almost imperceptible division a-cross it with a sharp pen-knife. But even this interruption of continuity in the conductor was sufficient effectually to bar its passage.

The chains, through which it paffed most readily, were of gold and silver. It did not pass through a very long and fine brass chain, unless as much force as could be used, without breaking the chain, was employed to bring its links into close contact.

I next proceeded to examine if the capacity of different substances, as conductors, or non-conductors, was at all affected by differences of their temperature. But this

was

was not the case with zinc, iron, water, coal, or a common crucible, the only substances with which I tried the experiment. A red hot iron, and boiling water, conducted equally as well as iron and water that had not been heated: and neither the crucible, nor the coal, became conductors from any addition of heat.

I at first thought that ice conducted; but as, on some trials, no contractions were excited through its medium; and as it appeared uniformly to conduct ill in proportion to the dryness of its surface; I suspect that, if perfectly dry, it would not conduct at all. The instant a part of its surface had been dissolved by the heat of the room, contractions were excited with as much ease, as they usually are through a bason of water. It would appear, therefore, that neither very hot, nor very cold water disperse this influence, as has been afferted by Dr Valli, nor do they seem in the least degree

gree to diminish its power of producing contractions *.

It appears upon the whole to be neceffary, that this influence should pass to a part in a very condensed state, in order to excite contractions: although there are some facts, which, without reflecting, might lead one to suppose, that, passing even in a diffused state, it would excite them. In making that experiment, in which the piece of zinc under the foot of a frog is touched with zinc, while its crural nerve is supported by a silver probe; no contraction takes place, if the probe be either lowered, so as to come in contact with the muscles of the thigh, or if it be made to touch the silver under the foot.

If

^{*} L'eau trop échauffée, ou qui est en éboullition, disperse l'électricité, de manière à en détruire les phenomènes.'

L'excès du froid prive l'eau même de la propriété de conduire le fluide en question.'—Dr Valli, Lettre 9me.

If again, two persons, one of whom holds the probe, the other the zinc, communicate with each other by dipping their unemployed hands in a bason of water; and the perfon using the zinc holds another leg of a frog, fuspended between his fingers by its nerve beneath the furface of the water; no contraction will take place in this leg, when the filver under the other is touched with zinc, at the fame time that strong ones are excited in that other. But, if its nerve be raifed above the furface of the water, it then contracts as vividly as the other. It appears that in the last of these instances, at least the greater part of the influence had diffused itself through the water, instead of passing directly through the nerve, from the fingers of the person holding it, and that in both it had paffed into the legs, in too diffused a state to excite them to contraction.

I have often likewise observed, that when the nerve of a nearly exhausted leg of a frog had been laid upon a piece of zinc, and both

were

were touched with filver, the contractions excited were very distinct: but when the zinc was placed in contact with the muscle, as well as with the nerve, either no contractions could be excited, or such feeble ones that they were scarcely perceptible.

Contractions, however, certainly may be excited in different parts of a frog, without making any division of its skin, by laying the part of the frog to be excited upon a plate of zinc, or tin-foil, and passing a piece of silver over it, till all three are in contact with each other*. Yet even here the in-fluence

* It was in this way, indeed, that I have always excited contractions, when I have employed this new mode of influencing animals, as a test of remaining life in any part of them.

They were constantly kept in fresh water, as the situation most natural to them, during the whole of the time they were under experiment; and their skins were suffered to remain as entire as possible, since I found their muscles lost their contractile power, in a few hours, and became rigid when exposed, deprived of their skins, to the action of the water.

Huence does not pass into the part in so diffused a state as it may at first appear to do. For the skin of these animals is abundantly supplied with nerves, whose trunks communicate, at different places, with those which supply the muscles. And the contractions are always strongest, and most readily excited, when the silver is passed over the course of any of the nerves, which go to the muscles.

From the fact, which I have before mentioned, that a limb may be made to contract, when the metals have apparently no communication with any part of it except its nerve; it might reasonably be doubted, whether, in any case, a communication between the muscles, as well as the nerve, and the metals, were necessary, in order that contractions may be excited.

Several confiderations, however, induce me to believe, that fuch communication is absolutely requisite. If the contact of two different

different metals were alone fufficient to excite contractions; contractions should always take place, whenever a good conductor is interposed between the metals, and the nerve alone. But I have, in no instance, observed this to be the case. In the experiment, where the crural nerve must be fupported upon a filver probe, it is necessary that the piece of filver, with which the zinc is brought in contact, should communicate either immediately, or through fome good conducting medium, with the mufcles of the foot, or leg, before any contraction takes place. And even in the experiment, where water forms the only communication between the metals, and the origin of the fciatic nerves, that fame water, it must be observed, forms likewise a communication between the metals and the muscles, to which these nerves are distributed. But the fact, which appears to me most decisive of this question, is the following: When a nerve, which for fome time has been detached from furrounding parts, is either carefully

carefully wiped quite dry with a piece of fine muslin, or (lest this should be thought to injure its structure,) suffered to remain fuspended till its moisture has evaporated; no contractions can be excited in the muscles, to which it is distributed, by touching it alone with any two metals in contact with each other. But, if it be again moiftened with a few drops of water, contractions instantly take place: and, in this way, by alternately drying and moistening the nerve, contractions may, at pleasure, be alternately suspended and renewed for a confiderable time. It may, indeed, be contended, that the moisture softened, and thus restored electricity and free expansion to the dried cellular membrane furrounding the fibres, of which the trunk of a nerve is composed; and thus, by removing confraint, gave free play to their organization *.

But

er to do a la constitución de la

^{*} M. Fontana, in the first volume of his work on Poisons, mentions some facts, which may, to some, appear

But from observing, that, in every other instance, where contractions are produced by the mutual contact of the metals, a conducting fubftance is interposed between them and the mufcles, as well as between them and the nerve; I think it would be unphilofophical

pear to give confiderable countenance to this explanation. The microfcopical eels found in dry and fmutty wheat; the feta equina or gordius of Linnaeus; and the wheel polypus, all, when dry, become apparently dead: but again recover motion and life when moistened with water. One of the latter was put, by M. Fontana, upon a bit of glafs, and expoted, during a whole fummer, to the noon-day fun. It became fo dry that it was like a piece of hardened glue. A few drops of water, however, did not fail to restore it to life. Another was, in this way, recovered after a fimilar exposure of a year and a half. Father Gumillo, a Jefuit, and the Indians of Peru, are quoted by the fame author, on the authogity of Bonguer, as fpeaking of 'a large and venemous

- fnake, which being dead and dried in the open air, or
- · in the finoke of a chimney, has the property of com-
- ! ing again to life, on its being exposed, for some days,
- to the fun, in a fragmant and corrupted water.'

But it would almost require the credulity of an Indian to credit the testimony of the Jesuit,

unphilosophical not to allow, that, in the instance in question, the moisture, adhering to the surface of the nerve, formed that requisite communication between the metals and the muscles.

I relate the following fact, in this place, because at the same time that it gives further confirmation to the above opinion, it affords an inftance in which infulation diminished the effect of the metals. I had one day laid the nearly exhausted leg of a frog upon my hand, with a piece of zinc in contact with its nerve only; and, when I touched thefe with a filver probe, tolerably ftrong contractions were excited, even when the nerve appeared dry: but when both the leg and the metals, thus disposed, were infulated by means of glass and fealing wax, the contractions were scarcely perceptible. My hand, it would appear, had, in these instances, supplied the place of the moisture in the other; and been the conducting medium between the muscles and the metals.

This communication of the muscles with the nerve, through the medium of the metals, had appeared to Dr Valli a circumstance so essential to the production of Galvani's phenomena, that (taking it for granted they were occasioned by the action of the electrical sluid), it seems to have suggested the hypothesis, which he has offered in order to account for them.

Aware that no electrical phenomenon can possibly have place, except between the opposite states of positive and negative electricity, or, in other words, where there is a breach of equilibrium in the distribution of the electrical sluid; he supposes it to be one office of the nerves, to produce this breach of equilibrium, by continually pumping (to use his own expression) the electrical sluid from the internal parts of muscles, and in this way rendering them negative, with respect to the external surface. The brain, he makes the common receptacle for this sluid. The metals, he seems to consider in the light

of a conductor, interposed between the outfide of muscles and their nerves. And the rapid transmission of the sluid to restore the equilibrium, as the cause of the contractions.

He prefumes his hypothesis proved from the following confiderations:

- I. The interval which commonly takes place between the contractions; which interval, according to him, is necessary for the restoration of the breach of equilibrium.
- II. From observing, that fishermen, in order to preserve their fish from putridity, crush their brains; and thus, by interrupting the medium between the external and internal surfaces of muscles, prevent these repeated discharges of the electrical sluid, which, according to Dr Valli, hastens their putridity.

III. From finding that in general, when the sciatic nerve on one side of a living frog was

med to the external thrane? I he brain,

was divided, the other being left entire, communicating with the brain, both armed and equally excited, the limb, in which the nerve had been divided, preferved its power of contracting longer than the other. From this well devised experiment, he concludes, likewise, that animal electricity is the principle of life. That, on the side where the nerve remained entire, it was withdrawn from the muscles, and deposited in the brain. That, from the impossibility of this taking place on the other side, where the nerve was divided, it had continued in the limb, and enabled it to contract.

If it were indisputably true, as I once believed, that contractions could be excited
in a limb without the metals having any
communication with it, except through the
medium of a nerve; this circumstance
would alone be a sufficient resutation of Dr
Valli's hypothesis: but, as I have already
shewn, that contractions were not in this
way produced in any experiment, which I
have

have made, when no moisture, forming a communication between the metals and the muscles, had been left adhering to the surface of the nerve, it becomes necessary to have recourse to less dubious arguments.

The Dr should have recollected that, in cases of a breach of equilibrium in the distribution of the electrical fluid, all that is required, in order to restore equality of distribution, is, the interposition of a single conducting substance between the place in which it abounds, and that in which there is a desiciency. Whereas, in the phenomena, which he attempts to explain, two conducting substances are necessary to the effect.

When a feparated limb is placed under water, one would naturally imagine, that from the perfect communication, which is then formed between the external furfaces of muscles and their nerves, no breach of equilibrium could possibly have place: yet we

E

find Galvani's phenomena even more readily produced in this fituation, than when both muscles and nerves are free from surrounding moisture.

The following experiment was made with a view of rendering the equilibrium of the electrical fluid, in different parts of frogs, as perfect as possible.

The head of a frog having been feparated from its body, the latter was laid upon a plate of zinc, held by a person sitting in an infulated chair, which communicated with the prime conductor of an electrical machine. The machine was put in action, and both the person and the frog were electrified positively. In these circumstances, no sparks could be drawn from the frog, by the person holding it: nor could any other electrical appearance take place between them. But, when a piece of filver was passed over different parts of the frog, and, at the fame time, brought into contact with benett

with the zinc plate, contractions were uniformly excited, differing not in the leaft, either in strength or frequency, from those which are excited when no artificial electricity is present. The result was precisely the same, when the frog and the person holding it were negatively electrified. This experiment was often repeated. The following experiment was made, in order to see if the effect produced upon a frog, by the passage of artificial electricity from any part of its body, would be increased by employing two different metals as conductors.

A frog was laid, fuccessively, upon a number of different metals, insulated upon glass, and positively electrified by communicating with the prime conductor of an electrical machine. The contractions produced in the frog, thus disposed, by drawing sparks from it, with metals different from those on which it was placed, were not in the least stronger, than those occanioned

fioned by drawing fimilar fparks from it, with conductors of the fame metal.

In establishing a communication between two opposite electricities, as, for example, between the two sides of a charged phial, it is matter of indifference to which the conductor is first applied. But it is by no means so, in the case of muscles and armed nerves. For, if one branch of a conductor be applied to the tin-soil arming a nerve, before the other branch has been applied to the muscles, it frequently sails to excite contractions. If first applied to the muscles, this is very seldom the case.

As for the intervals of rest which alternate with the contractions, and which the Dr considers as employed by the nerves, in restoring the breach of equilibrium between the internal surfaces of muscles, and their external; these may possibly admit of a different explanation.

We

We find them alternating with contractions however excited. It is difficult to conceive, that violent contractions should not derange in some degree, however slight, the intimate organization of muscular fibres: and some time must necessarily elapse before their elasticity can have restored the organized particles, of which they are composed, to that relative situation with respect to each other, which will sit them for again contracting.

This explanation is drawn from observing the following facts. Hearts, taken from the living thorax, and exposed to the action of a strong stimulus, contract vividly for a time, and then cease to be effected by any further application. If they be then removed from the stimulus, and placed for a time either in cold water or in open air, they are observed to regain their susceptibility of the action of stimuli, and again contract. Mr Coleman, in his excellent differtation on Suspended Respiration, makes

an observation, which I have often had opportunity of verifying: that hearts distended
with blood, and in which no contraction
can be produced, by scratching their surface
with a pointed instrument, contract spontaneously, if one of the large vessels, at some
distance from them, be cut so as to evacuate
some of the blood.

The organization, in this case, is suffered to recover by the removal of the stimulus, (distention) which had deranged it. Even, in the living and entire animal, the heart does not renew its contractions, on the sirst influx of blood. Some time must elapse, while it recovers from the derangement occasioned by the preceding contraction.

I have repeatedly excited, by means of zinc and filver, contractions in the leg of a frog, whose head had been divided from its body, upwards of three days before. The receptacle, for the electrical fluid, was in these cases removed. Now, either the nerves continued

parts of muscles, or they did not. If they did, having no longer a receptacle, in which they could deposite their electricity, they must have remained positively electrished; and thus, being in the same state with the outer surface of the muscles, no contraction should, according to the hypothesis, have been excited by the application of the metals. But this is contrary to the fact.

If it be contended, on the other hand, that their pumping power had ceased; then the first application of the metals, which produced a contraction, having restored the equilibrium, which could not afterwards be broken, must have precluded the possibility of further contractions. But this too is contrary to fact.

This argument appears, to me, to do away all support, which the hypothesis may seem to derive from the experiment, before quoted, of applying the metals equally to both both sciatic nerves, after one of them had been divided; I may however remark, that thepain necessarily excited by arming a nerve, whose communication with the brain was not interrupted, would fully account for the more rapid exhaustion of the muscles, to which it belonged, compared with such as had not been acted upon by so strong an additional stimulus. As fact, however, is always more satisfactory than argument, I shall relate the following accidental experiment, in proof of the relevancy of the foregoing observation.

Four days after I had divided the crural nerve of a female frog, full of spawn, I found her dead; she had been observed alive the night before. The application of the metals to the leg, whose nerve had not been divided, did not excite the slightest contractions, but on applying them to the leg, in which the nerve had been divided, tolerably strong contractions were excitable, for more than twelve hours after she was found.

found. The spawning season had closed, upwards of a week before this happened, and, as this frog had long been without a male to assist her, it is probable, that her death had been occasioned by the retention of her spawn, as it was found in a very dissolved state. The pain, necessarily preceding such a death, could affect the different parts of the animal, only through the medium of its nerves; and hence the exemption of that part from its effects, to which the communication, by nerve, had been interrupted.

The same observation will apply to that argument, which Dr Valli has drawn, in support of his hypothesis, from the practice of sishermen. By destroying the brain, they take away all sense of pain, and, confequently, preclude that exhaustion which is so notorious for disposing to putridity.

Should it, therefore, be ever proved, that the phenomena discovered by Galvani are effects

of the indicated and swiper and related to

effects of the action of electricity, I cannot think Dr Valli's hypothesis will be deemed a satisfactory account of the manner in which it produces them.

Strong, however, as is the analogy, which, in many particulars this influence bears to electricity, confiderable doubts must, I think, still remain as to their identity.

The grounds of these doubts would best appear in an accurate and full statement of the several points, both of resemblance and of difference between this influence, electricity, and that power which distinguishes the torpedo, the gymnotus, and the silurus: but, I can here promise no more than a very impersect and desultory sketch of these.

In order to accumulate artificial electricity, if I may be allowed the use of such an expression, it seems necessary, that there should be motion between two substances, an electric and a conductor. But, neither motion nor electrics have any share in the production of that influence which occasions the phenomena in question. The motion, here, is the effect, and not the cause of the accumulation: and instead of one conducting substance of any kind whatever, two metallic substances seem indispensably requisite *.

That

Since what I had before written upon this fubject went to the prefs, I have been informed by a friend, that Dr Lind of Windfor has found, that contractions may be excited in a frog by touching it with iron alone. In a frog very recently killed, I have myfelf, fometimes, excited contractions, by touching its nerves with iron and steel in conjunction. But I can by no means confider this as a fatisfactory proof, that contractions may be excited by the contact of one metal alone; fince I have never been able to excite contractions with a piece of iron, of the fame quality throughout, applied to a frog which had been fo long dead as to leave no fufpicion that the contractions were occasioned by mechanical irritation. In Dr Valli's experiment, with fciffars of bad steel, upon a frog recently killed, these circumstances do not appear to have been fufficiently attended to.

That influence, whatever it be, which is possessed by the torpedo, &c. seems to depend entirely upon the will of these animals, both for its production, and management, as appears not only from the retraction of their eyes within their sockets, whenever they mean to give a shock, but, likewise, from each shock being increased, diminished, or withheld, as they are irritated or aware of some obstacle to its transmission. But the will of an animal has no share in the production of the phenomena discovered by Galvani.

In the scale of conductors of electricity, charcoal holds a higher place than the sluids of animal bodies, and ice than the metallic salts. But of the influence in question, I have found animal fluids, and metallic salts, excellent conductors, at the same time that I have never observed it pass through charcoal, or even dried wood. I have, likewise, reason to believe that it does not pass through ice. Ice, indeed, is but a very imperfect

perfect conductor of electricity, when free from air bubbles, and when the experiments with it are made in a very low degree of temperature. Yet we are told by Mr Achard, that it will conduct electricity, even when Reaumur's Thermometer stands at 6 degrees below o.

But the temperature of the room, in which I made my experiments, was at least 55 degrees above 0, by Fahrenheit's scale. I may likewise remind the reader of the experiment, in which the abdomen of a frog was filled with mercury, and a rod of silver passed through it to the sciatic nerves. A piece of zinc, touching both mercury and silver, excited no contractions; whereas most vigorous ones were excited when water was substituted for the mercury. A proof, as I take it, that water is a much better conductor of this influence than mercury: but of electricity, mercury is deemed a better conductor than water.

We are told by Mr Cavendish, that Mr Walsh found the shock of the torpedo would not pass through a small brass chain: but the influence discovered by Galvani, passes, without sensible diminution of its effects, through a fmall brass chain of several inches in length, when it is drawn fo tight as to bring its links into close contact with each other: and it passes through a gold chain when held between two persons, and fuffered to hang with a confiderable bend. Yet, if we may be allowed to judge of the comparative strength of the two influences, by the effects which they produce upon animals, that of the torpedo must certainly be allowed to be the strongest; and I see no other way of accounting for its finding an infuperable obstacle to its transmission, where the other finds scarcely any, except by suppoling that they are in reality different in their nature. Hakes to ried

Dr Valli tells us, that he observed the hairs of a mouse, attached to the nerves of frogs

frogs by the tin-foil, with which he furrounded them, alternately attracted, and repelled by each other, whenever another metal was fo applied as to excite contractions in the frogs.

This experiment I have many times repeated, both in the manner described by the Dr, and with every variation in the disposition of the hairs which I could devise: but whether they were placed upon the metals, the nerves, or the muscles, or upon all at the same time, neither I, nor my friends who assisted me, have in any instance been able to observe them agitated in the slightest degree.

I have made fimilar experiments upon a dog, and upon a large and lively skate, by disposing, in the same way that I did the hairs of a mouse, slakes of the finest slax, swansdown, and gold leaf; but although the contractions produced in the skate, by the contact of the metals, were so strong as to make

make the animal bound from the table, not the least appearance of electricity was indicated.

I next suspended, from aftick of glass fixed in the ceiling of a close room, some threads, five feet in length, of the flax which I used in the former experiment; and approached some frogs, recently killed, and insulated upon glass as near to them as was possible, without touching: but the threads were innowise affected by the contractions produced in the frogs.

In this respect, therefore, this influence agrees with that of the torpedo, &c. So far as I know, M. Votta's instrument for collecting, condensing, and rendering sensible, very small degree of electricity has not been employed in the examination of either.

And indeed I am not fure, if, in examining the newly discovered influence, by such a test, a sufficient quantity of electricity might not

might not be produced merely by the motion of the animals, fubjected to the experiment, to occasion some fallacy in the refult. Certain, however, it is, that although this influence did not affect the electrometer in these experiments, it produces infinitely stronger effects upon an animal, than any which can be produced by a quantity of electricity fufficient to affect an electrometer to a very high degree. I have frequently detached the crural nerves of frogs for fome length; and having supported them upon a rod of filver, have applied an excited piece of glass, or fealing wax, to the whole length of this rod. The coarfest electrometers have been effected by it, at confiderable distances: but I have never, in this way, been able to excite contractions, unless by laying the rod upon the excited cylender of a powerful electrical machine.

This new influence likewise resembles that of the torpedo, in producing its effects almost equally well, when both it and the G subject

fubject upon which it acts are infulated from furrounding conductors. But an experiment similar to that, which I have related, of infulating, and positively electrifying, both the frog and the metals applied to it, has never (so far as I am acquainted,) been tried with the torpedo.

Both these influences agree too, in not producing so strong an effect, when the subject, upon which they act, is immersed in water, as when it is in the open air. When the separated leg of a frog was held under water, and formed part of the circuit through which this, to influence, had to pass, in order to excite another leg; it never contracted, although it did, and strongly, when held above the surface, as I have already had occasion to notice. And we are told by Mr Walsh, that the shock of the torpedo was four times stronger in air, than when given under water.

This influence differs, both from that of

both their degree

the torpedo, &c. and from electricity, in producing no fenfation (in man at least,) at all similar to that from an electrical shock.

With respect to the single instance related by M. Cotugno, it is probable that both he himself, and all who have repeated experiments of this nature, must have been long ago convinced, that he was deceived into the belief of a shock, from the sensation produced by the struggles of the animal he dissected.

the continuitique acquireg by the grain grains nicht

That some kind of disagreeable sensation is occasioned by it, even in frogs, independent of that which must necessarily arise from irritation, and the contractions of their muscles, is evident from their restlessness, and expressions of uneasiness. In other animals, as I shall afterwards have occasion to shew, these expressions are still less equivocal: and, in man, we can ascertain both their degree and their kind. That they differ considerably from such as are produced

produced by electricity, will be proved when I come to speak of the effects of this influence upon our senses.

But the most important, and characteristic difference, which I have yet been able to discover, between this new influence and electricity, consists in their effects upon the contractile power of animals and of plants. The contractions of animals excited by electricity have a tendency to destroy that power upon which contractions depend. But the contractions excited, by the application of the metals, have, in all my experiments, had the directly opposite effect. The more frequently contractions have been, in this way, excited, the longer do they continue excitable: and the longer are the parts, upon which fuch experiments are made, preferved from putridity. An influence, capable of exciting contractions without occasioning exhaustion, was a thing I so little expected to find, and fo contrary to the character which had been given of this, both

both by Galvani and by Dr Valli, that I, at first, distrusted my own observation of the fact: but the number of comparative experiments, which I had afterwards occasion to make, though with views different from that of ascertaining the point in question, convinced me that this influence, so far from destroying the contractility of muscles, has a tendency to preserve it. Oxygene is, so far as I know, the only stimulus in nature, whose effects are at all analogous.

When a frog has been long dead, I have been fometimes more than a quarter of an hour without being able to excite a fingle contraction by the application of the metals: but after this, without at all varying the means employed, contractions have appeared, and have become gradually more and more vigorous.

It is faid, (for I have never had an opportunity of making the experiment,) that

a stream of electricity passed through a fensitive plant produces an almost immediate collapse of its leaves. But the influence, discovered by Galvani, produced no fuch effect in the following experiment. Having separated the leg of a frog from its body, I freed its crural nerve from furrounding parts, and with one hand held it fupported upon the end of a probe. An affiftant placed a piece of filver under its foot, and held the zinc with which it was to be touched. A fensitive plant formed the medium of communication between us. He held the bottom of its stem between his fingers, while I held the top: fo that when the filver was touched by the zinc, the influence passed up the plant, and through the whole of its stem. The frog's leg instantly contracted, and repeated its contractions every time the filver and zine were in contact: but the leaves of the plant did not collapse; neither did they when any of its branches formed part of the cirtended, and suplied horizontally to tius, Father. I began, therefore, to fuiped that I must, however, confess that the plant, upon which this experiment was made, had been kept through the winter. With a young one the result might possibly be different; but such an one I have not yet had it in my power to procure.

its body. I freed its coural nerve from fin-The torpedo does not appear at all affected by the influence which itself produces. Animals, in which Galvani's phenomena are produced, are strongly affected. From this circumstance, and still more from the presence of metals being absolutely requisite to their production, fome may be induced to believe, that the influence, which causes them, is fomething external to animals; and that it arises from the mutual contact of the metals only. I must confess I was, for some time, inclined to entertain this opinion; and its probability appeared to be not a little increased by observing that its effects differed with the metals employed, and were strongest when their furfaces were extended, and applied horizontally to each other. I began, therefore, to fuspect that it might be some hitherto undiscovered property of metals; for that it was not an electrical phenomenon, feemed still further proved by the circumstance above related. It has been demonstrated, by the very interesting discoveries of M. Volta, that, wherever the capacity of holding electricity is greater, there the intenfity of electricity is less':- and that the capacity of a conductor is increased, when, instead of remaining quite infulated, the conductor is prefented to another conductor not ' infulated; and this increase is more con-' fpicuous, according as the furfaces of those ' conductors are larger, and come nearer ' to each other *.'

When, therefore, a plate of filver, communicating with the leg of a frog, was laid upon glass, and a plate of zinc was lowered horizontally upon it, the capacities of both, for any electricity which they might have contained, must have been so much increase ed, that no one will suspect the contractions

^{*} Phil. Trans. vol. 72. part i. Appen.

of the frog's leg, to have been occasioned by any discharge of the electrical fluid from them.

As little are we authorifed to suppose, that the contractions were produced in confequence of the metals attracting the electrical fluid from the leg: for, since the leg was insulated, it is impossible that it should have received a new supply of electricity, after having been deprived by the metals of what it naturally possessed; and consequently, after once or twice contracting, no further contractions should have taken place: but this is contrary to the fact.

I have before shewn, that slakes of gold leaf, placed between the metals, were not affected by their approach to each other; and that, besides, a quantity of electricity, sufficient strongly to affect an electrometer, was far too weak to excite contractions in the muscles of a frog.

fall that no one will Hipe ... econtract ons

te each, other

That this influence, however, whatever it be, is not derived from the metals alone, but that animals at least contribute to its production, as well as indicate its prefence, is, I think, rendered highly probable, by what I have already urged, relative to the necessity of a communication between the metals, and the muscles, as well as between the metals and the nerves.

I may likewise observe, that animals appear to have a much more complete controul over its effects, than one would expect them to have over an influence wholely external to them.

When living and entire frogs are placed upon a plate of zinc, or tin-foil, and a piece of filver, or of gold, is passed over different parts of their legs, and thighs, till it come into contact with the plate; contractions are very seldom produced, and scarcely ever, if the frogs be healthy and upon their guard. But the instant their sciatic nerves are divided.

ed, the contractions produced are as free and vigorous, as if the legs had been completely feparated from the body. This difference is not owing to the filver coming in contact with the wound, necessarily made in order to divide the nerve; for I have always taken care that it should not, and indeed when it did, no contractions were produced, unless the nerve had been divided.

Taking off the head of an animal, or intercepting, in any way, the influence of its will upon the muscles of the part excited, has precisely the same effect. But the will is not able to controul the effects of electricity, when the electricity is otherwise sufficiently strong to excite muscles to contraction. I have repeatedly found that even by the strongest voluntary contractions of the muscles of my arm, I have not been able altogether to counteract the involuntary ones, produced by electrical sparks, nor have I found that frogs could ever counteract them.

On attending carefully to the state of the muscles of the legs of living frogs, at the instant the metals were applied, I could perceive by the touch, that, in many frogs, though by no means in all, their muscles were perfectly soft and relaxed: a proof that they have other means of counteracting the involuntary contractions, which the metals have a tendency to produce, besides keeping their muscles in a state of permanent and voluntary contraction.

SEC

ora militarione granisher franchisch besiten

nephly 1970 2 3045 Anderson those Tenjalismonth tol

ference shorped and the popular shell be a tribilly

committee of the plant for the property of the party of t

the names of alapanen.

on a plate of iron, and a loadher

SECTION II.

Has Magnetism any concern in the Phenomena discovered by Galvani?

IN answer to this question I have little to fay, as the experiments which it suggested, and which I had an opportunity of making, have been but few.

I have repeatedly excited contractions, both with the natural and the artificial loadstone, but I could never observe any difference between them, and such as were excited by unmagnetised iron, or an ore containing an equal quantity of iron with the natural loadstone.

When

When the separated leg of a frog was laid upon a plate of iron, and a loadstone was brought in contact both with its nerve and the plate, no contraction was excited. I have often brought frogs, in every state of preparation, as nearly as possible to a very sensible magnetic needle, but no variation in its direction was in any case produced by the contractions of the frogs excited by the metals.

N proposing to myfelf a quelifin of Ball

Tour believe town I seek nother better il

some of the second of the second second

Translation of the set of the set

SECTION III.

What are the relations which subsist between the influence discovered by Galvani, and the muscles, the nervous, and the vascular systems, of animals?

In proposing to myself a question of this very extensive nature, it will hardly be imputed to me, that I ever entertained, for a moment, the idle expectation of being able completely to solve it. It is prefixed to the following experiments as the most commodious general head under which I could arrange, not only what I had further to say, upon the influence discovered by Galvani, but likewise upon the several physiological subjects, in the examination of which this influence was employed merely as a test.

OF THE MUSCLES

S I am acquainted with no criterion by which we can affure ourselves of the complete feparation of muscular fibres from nerves, without rendering them objects too minute for accurate experiment; it can never be in our power, fo far as I am able to judge, to fatisfy ourselves, if this new influence can act immediately upon the muscular fibre. A doubt must always remain, whether nerve has not been prefent; and from this doubt will arise another still more difficult to folve, whether the influence produced or excited by the metals have passed through the nerve to the muscles? or if it have merely acted as a stimulus to the nerve, serving to rouse that unknown energy, by which nerves are known in certain circumstances to excite muscles to contraction.

The

The following experiments, made upon animals confidered by anatomists, in general, as destitute of nerves, may to some appear decisive of this question, but to myself, I confess, they are by no means so. In by far the greater number of animals, we are precluded from the possibility of discovering nerves by their minuteness; yet the actions of these animals, not merely excited by mechanical irritation, but so obviously directed to the attainment of an end, oblige us to infer their existence even where our senses, aided by the best glasses, do not enable us to detect them.

Having laid some earth worms upon a plate of zinc, I tried to excite contractions in them, by passing a rod of silver over different parts of their length, till it came in contact with the plate; but for a long time without producing any effect. Application of the metals to a part recently divided seemed to produce as little effect. At length, I perceived one of them dart itself forwards.

forwards, whenever the filver was paffed under its belly near to a part which had been divided and rejoined. On repeating the experiment again, and with more care, I found, (as in the frog,) that when the animal was perfectly lively, and upon its guard, no contraction could in this way be excited; but that when a part had been rendered more fenfible by previous difeafe, recent irritation, &c. or when the worm was taken unawares by hanging it over a probe, and lowering both upon the plate at the fame inftant; a fudden and involuntary motion feemed to dart through a great part of the worm's length from the part touched towards the head; a direction contrary to that in which it takes place in other animals. I never could produce the fame effect upon leeches. On varying the experiment, a most whimsical, but satisfactory phenomenon prefented itself. I had laid a leech upon a crown piece of filver, placed in the middle of a large plate of zinc. The animal moved its mouth over the furface face of the filver without expressing the least uneasines; but having stretched beyond it and touched the zinc plate with its mouth, it instantly recoiled, as if in the most acute pain, and continued thus alternately touching and recoiling from the zinc, till it had the appearance of being quite fatigued. When placed wholly upon the zinc, it seemed perfectly at its ease; but, when at any time its mouth came in contact with the silver lying upon the zinc, the same expression of pain was exhibited as before.

With the earth worm, this experiment fucceeded still more decisively. The animal sprang from the zinc in writhing convulsions; if, when the worm stretched itself forwards, one of its folds lit upon the zinc, it expressed little uneasiness in comparison of what it shewed when the point of its head touched the zinc.

These extraordinary effects were, how-

ever, considerably different from those produced by the metals upon the limbs of frogs, and other animals. They had not so much the appearance of involuntary, instantaneous convulsions, as long continued expressions of pain and disgust; such as are produced by applying zinc and silver to the tongue of a child.

A strong presumptive proof, in my humble opinion, that these animals are endowed with a most exquisite organ of sense, and, consequently, that they are not, as has been supposed, destitute of a nervous system.

Doubtful, therefore, if this influence can ever act upon the muscular fibre, except through the medium of nerves, I shall referve what I have to say upon particular muscles, till I have related some facts relative to the nerves.

their eiver red, as one time upon the

welf, at another upon adjacent mili-

without producing the dightest perc

OF THE NERVES,

variations, in the contractions of the

on a tenoval of them when they

IT appears from every experiment, which has been made in profecution of Galvani's discovery, that the nerves are very effentially concerned, in all the phenomena which it exhibits. It becomes, therefore, an object of inquiry, highly interesting, to afcertain if all the nerves of the body are equally fubjects of this new influence, or if its effects are confined to those appropriated to muscles of voluntary motion. With this view, I furrounded with tin-foil the parvagum and intercostal nerves of several cows and sheep, while the auricles of their hearts were still contracting, and placed one end of a bent filver rod, at one time upon the heart itself, at another upon adjacent muscles, cles, and fometimes upon the nerves; but all without producing the flightest perceptible variations, in the contractions of the heart, or a renewal of them when they had ceased.

I likewise included the caroted artery in the tin-foil; and, at another time, inferted the foil in longitudinal incisions made in the nerves, that it might be more immediately in contact with their fubstance; but still no contractions followed. I had as little fuccefs when I made fimilar experiments upon a dog, cats, rabbits, fowls, and frogs; yet, in all these animals, I could in general excite vigorous contractions, by arming the nerves of parts obedient to the will: I fay in general, for in rabbits I have fometimes failed altogether; especially when they have been drowned in very cold water. Soon after making these experiments, I perceived from one of Dr Valli's letters, published in the Journal de Physique, that he had made a fimilar one upon the heart of a dog, and with

with the same result. The heart, through the medium of its nerves, is not excitable, therefore, by the fame means which are found efficacious in exciting other muscles to contraction. I confess I had not expected this refult. It has been afferted indeed, by many physiologists of the first name*, that the heart can in nowife be affected by the application of a stimulus to its nerves, or to the brain; but many confiderations excited my doubts upon this fubject, and some experiments which I made at this place, more than a year ago, tended to confirm me in an opposite opinion. That both the frequency, and the strength of the heart's contractions are affected by passions of the mind, is a fact known to every one; but what is much more to the purpose, fince

* I have not been at the pains to inform myfelf, who first was the author of this doctrine; but its adoption by Caldani, by Haller, and by Fontana, and by all upon the faith of experiment, was certainly sufficient to give it currency, in opposition to that of Willis, Lower, Kaau, Boerhaave, Laghi, and even of the ingenious Whytt.

we know fo little either of mind or of its mode of influencing the body, we know that many derangements of the brain, fuch as apoplexy, hydrocephalus, phrenitis, &c. together with all kinds of mechanical injuries, (and what are thefe, but so many stimuli irritating the brain, and confequently the nerves fent to the heart?) affect the motions of the heart most materially and obviously. The contractions of the heart, fo long as the brain remains entire, may be affected by a thousand different substances thrown into the stomach; but it appears from the experiment of Mr Kite, that this is by no means the case, when the functions of the brain are fuspended by hanging, or drowning*. Dr Whytt's experiment on this fubject is one of the most decisive with which I am acquainted. He found, that opium operates much more flowly in destroying the heart's motion in frogs, deprived of their brain and spinal marrow, than entered a little towards by relative

^{*} Mem. Med. Soc. Lond. vol. iii.

than it does when thefe animals are entire. Several of my own experiments, though not made expressly with this view, gave the same result with those of Dr Whytt. M. Fontana tells us, he has discovered the heart of the wheel polypus to be a voluntary muscle. It was probably this discovery which led him to try the effects of his will upon his own heart. For the fuccess of his experiment, we have the testimony of his friend Dr Gerardi, Professor of Anatomy in the University of Parma, who, in a very learned little Differtation on the Origin of the Intercostal Nerve, published in the Journal de Physique for September last, makes the following short mention of it; ' Je ne dois point oublier de vous dire que ' M. Fontana a la faculté d'accélérer, ou de retarder à volonté son pouls, sans aucune contraction sensible des muscles.'

The direct experiments, by which I was first led to adopt the opinion that the heart might be affected by the mechanical irrita-

K

tion of its nerves, were made upon very young cats and rabbits; fome with the affistance of my friend Dr Physick, now settled in Philadelphia; others in presence of feveral other gentlemen studying at this university. It appeared very decidedly from two or three of these experiments, that the contractions of the heart were quickened by irritating the brain at the origin of the spinal marrow. In others again, the refult was by no means fo clear. But it should be recollected that the evidence of one accurate, and positive experiment, is not in the least invalidated by twenty unfuccessful ones, especially upon animals of warm blood; where the irritability of their muscles is so very fleeting, and the refult liable to variation from fo many, as yet, unknown causes. The irritability of the arteries, for example, is now completely established, yet Haller's experiments led him to deny it. And even those of the accurate Verschnir, to whom we are indebted for unquestionably the best series of experiments upon,

upon this subject, failed of success (as we are told by Dr Dennison, in an excellent Thesis confirming their truth,) when repeated before fome of the Faculty here. Immediately, therefore, on discovering the fuperior powers of zinc, and molybdena, in exciting contractions, I began again to repeat with these metals the experiments on the nerves paffing to the hearts of frogs; but for a long time without fatisfying either myself, or others, whether any effect was really produced. At length, however, I was fo happy as to fucceed completely. On the 18th of March last, in presence of my friends, Mr Hunter and Mr Thomson, having diffected away the pericardium from a frog's heart, which had an hour before ceased spontaneously to contract, I removed the muscles, and cellular membrane covering its nerves, and large blood veffels. I then placed one end of a rod of pure filver in contact with one fide of these nerves, and blood veffels, and one end of a rod of zinc on the other, both of them at about the

the distance of the third part of an inch from the auricles of the heart. On bringing the opposite ends of these rods in contact with each other, the auricle first, and then the ventricle of the heart immediately contracted, and repeated their contractions as often as the ends of the metal rods were made to touch each other. When a stick of glass, wax, or wood, was made use of in place of one of the metals, no contraction took place. Contractions, however, were excited by irritating the heart itself with the point of a sharp instrument. The contractions were both more vigorous, and more constant when the metals were placed in contact with the heart itself, than when touching only its blood veffels and nerves. I have feveral times attempted to trace fome of the nerves, which may be feen near the large blood vessels of the heart of a frog, into the heart itself, in order to arm them feparated from other parts; but, partly on account of their minuteness, and partly on account of the weak state of my eyes,

eyes, which does not permit me to look intently at minute objects, I have never been able to succeed.

qual other, the audicle firll; and a

Since making this last experiment, I have repeated it upwards of twenty times. In order to its complete success, it is necessary that the spontaneous contractions of the heart should nearly, if not altogether, have ceased; and, when in this state, the experiment is rendered still more satisfactory by removing the heart from the body of the frog, and laying it upon a plate of zinc. We are then sure that its contractions cannot have been excited, by any mechanical irritation, arising from the contractions of the muscles of the thorax.

For want of sufficient leisure, and convenient opportunities, I have neglected to make this experiment upon any animals of warm blood, except cats and rabbits. A few days after I had discovered the possibility of exciting the heart to contraction by means

means of zinc, and filver applied to its nerves, I procured an ordinary fized cat, and drowned it in water, as nearly as poffible, of its own temperature. Four minutes after immersion, it was taken out of the water and dryed. Its thorax was immediately laid open, but no contractions were observed in any part of its heart, except in the right auricle, and even these were very flight. A plate of zinc was then placed in contact with the parvagum, and intercostal nerves, on one fide of the trachea, and a half crown piece in contact with those of the other; both at the distance of about one third of an inch from the auricles. Every time the zinc and filver were brought into contact, complete contractions of the right auricle, and fometimes flight ones of the left were produced, but none in the ventricles. The contractions were observed to become stronger, in proportion as the metals were approached to the heart, and were strongest when one or both was in contact with the auricle. I think the contractions were

were fully as strong when molybdena, as when filver was used. No contractions could be excited, by arming any of the nerves of voluntary muscles, in this cat.

The next experiment was made upon a female cat, far gone with young. She was drowned in very cold water, and although her thorax was opened the inftant she had ceased to struggle, which was in less than four minutes after immersion, her heart had ceased to contract; nor could its contractions be renewed, either by the application of the metals in the way described, in the last experiment, or by pricking or otherwife irritating its furface: but the diaphragm, the intercostal muscles, the fore legs, and the ears, continued to contract long and vigorously, when the metals were as ufual applied to their nerves. On cutting into the uterus, however, and taking out one of the young, I found both auricles and ventricles of its heart, contracting most vigoroufly,

FEE V

gorously, though the mother had now been dead upwards of twenty minutes.

An opportunity, not to be neglected, now presented itself, of trying if it were possible to transmit this influence from the mother to the fœtus, through the medium of the umbilical chord. I therefore applied the two metals in the manner I before described, 1st, to the uterus of the mother, and to the cotyledans; afterwards to feveral different parts of her; but neither uterus nor fœtus were in any instance affected. As little was the fœtus affected, by arming the chord itself. As the hearts of the kittens continued their spontaneous contractions, for more than an hour after they were taken from the mother, I had repeatedly the pleafure of observing, and pointing out to Mr Thomson, and Mr Simpson, who obligingly lent me their affiftance in these experiments, the effects of the metals when in contact with the parvagum, and entercoftal nerves, both of quickening the repetition

continued spontaneous, and of exciting them anew when they had ceased to be so. This experiment, repeated upon a kitten a few days after birth, succeeded, but not quite in so satisfactory a manner as the foregoing, although the heart continued contracting for more than an hour and an half after the thorax was opened. Its contractions were quickened, and rendered vibratory by the slightest mechanical touch of its surface; so that it was difficult to determine the precise shad in their production,

When these had ceased, I did not find that I could revive them by the application of the metals. In the hearts of some young rabbits, upon which I tried this experiment, the contractions appeared to be still more decidedly, occasioned by the application of the metals, than even in the cats.

Liet. As the hearts of the himons conti-

Having ascertained this important fact,

that one muscle, not subjected to the influence of the will, might be made to contract by the application of zinc and silver to its nerves; I proceeded to examine whether the same were the case with respect to all involuntary muscles. I could not, however, observe that any contractions were produced in the stomach or intestines, by placing the metals near the stomachic slexus and semilunar ganglion in a cat. I next proceeded to examine the effects of the metals upon the different organs of sense.

M. Volta's discovery of the sensation produced upon the end of the tongue, by coating its upper and under surfaces with different metals, led me to compare this sensation with that produced by electricity. I found a very considerable difference between them. Both, indeed, are subacid, but as unlike to each other, as the taste of vinegar is to that of diluted vitriolic acid. That occasioned by the metals is accompanied

panied with what is familiarly called the metallic tafte; and differs according to the metals employed. With the greater number of metals it is fcarcely perceptible. With zinc and gold, I think, it is ftrongeft; next fo with zinc and filver, or molybdena, and infufferably difagreeable with any of them.

The fenfation is most distinct when the tongue is of its ordinary temperature, and when the metals are of the fame temperature with the tongue. When either the tongue, or the metals, or both, are heated or cooled, as far as can be borne without inconvenience, fcarcely any fenfation is produced. That this difference in the effect is owing to the alteration which has been produced in the state of the tongue, and not to that in the temperature of the metals, is evident from experiments which I have already related; from which it appears that neither the conducting, nor the exciting powers of metals are affected by differences

differences of their temperature. But I have found it the uniform result of many experiments, that both the life and irritability of the most vigorous frogs is completely destroyed in a few minutes, by placing them in water heated to 106 degrees of Fahrenheit's scale.

Cold, however, though it appears to affect the fensibility of the tongue nearly as much as heat, did not, in one or two instances in which I tried it, affect the irritability of the muscles of a frog. Some separated legs contracted equally well after they had lain upon a piece of ice for some hours, as they did before they had been in that situation.

Whatever has a tendency to blunt the fenfibility of the tongue, as laudanum, a strong folution of opium in water, distilled spirits, acids, &c. diminishes the effect of the metals. Acids, I think, diminish it least.

On placing different metals in the meatus auditorius externus of both my ears, and establishing an infulated metallic communication between them, I felt, or fancied that I felt, a difagreeable jirk of my head. The metals used were a filver probe, a roll of tin-foil, and a common brafs conductor belonging to an electrical machine. On withdrawing them from my ears, I experienced a feeling fimilar to that which one has after emerging from under water. I was not fenfible of having hurt my ears by the experiment, nor had I any uneafy fenfation after it; but, on getting out of bed next morning, I perceived both my pillow and my face stained with blood; and, on examining, found that it had come from one of my ears. An hæmorrhagy from this part had never happened to me before. From whatever cause this accident happened, (and it is highly probable that it arose from some hurt unperceived at the time), I need not fay, that I have never repeated the experiment, and that I certainly never shall.

I never could perceive, that the fenses, either of touch or of fmell, were in the least affected by the metals; but the effect which they produce upon the eye is very remarkable. Having laid a piece of tin-foil upon the point of my tongue, I placed the rounded end of a filver pencil-case, against the ball of my eye, in the inner canthus, and fuffered them to remain in these situations till the parts were fo far accustomed to them, that I could examine the fensations produced; I then brought the metals into contact with each other, and, to my furprife, perceived a pale flash of light diffuse itself over the whole of my eye. My tongue was at the fame time affected with a fimilar fenfation to that produced when both the metals are in contact with it. On darkening the room, the flash became more distinct, and of a stronger colour. This fensation is not the effect of pressure upon the eye, as in Sir Isaac Newton's experiment; for no pressure should be used. All that is required, is, that the filver lie between the lids of the

the eye, and in contact with any part of the ball. If the experiment be made with zinc and gold, instead of tin-foil and silver, the slash is incomparably more vivid. I had the disagreeable opportunity of trying this experiment upon one of my eyes, in a state of instammation; and, in this case, found the slash much more strong than it was in the uninflamed eye. I tried it likewise upon a patient, affected with amaurosis; but the man was so stupid that I could not satisfy myself as to the precise result.

Recollecting that fine nervous twigs pass from the ciliary or ophthalmic ganglion, through the sclerotic coat of the eye, to the choroid coat, and to the uvea; and that this ganglion is in great part formed from a twig of the nasal branch, of the fifth pair of nerves, in conjunction with a branch of the third, I proceeded to try if, by infinuating a rod of silver, as far as possible, up my nose, and thus arming this nasal branch, I could, by bringing the silver into contact with a piece

piece of zinc, placed upon my tongue, pass this new influence up the course of the nerve, and thus produce the flash in the eye. The experiment answered my most fanguine expectation. The flash, in this way produced, is, I think, if any thing, stronger than when the ball of the eye itself is armed. I now thought I had discovered a certain method, by which I could afcertain the effect of Galvani's influence, upon a very important, involuntary muscle, the human It occurred to me that the ingenious physiologist Dr Whytt, had been able, through the medium of the nafal branch of the fifth pair of nerves, to produce, at pleafure, dilatations of the contracted pupil of a boy, in the last stage of hydrocephalus, by applying aq. ammonia to his noftrils; and this instance of the affection, of an involuntary muscle, through the medium of its nerves, had, previously to making any experiments upon the fubject, always operated with me as a strong presumptive argument,

gument, that the contractions of the heart might be influenced in a fimilar manner.

I therefore defired fome of my friends to observe my pupil, while I repeated the experiment, which I have above described. When the external light was strong, they found fome difficulty in determining, whether the pupil contracted or not; but when no more light was admitted, than what was just fufficient for discerning the pupil, they perceived a very distinct contraction, every time the metals were brought into contact with each other. This experiment requires fome attention, in order that it may fucceed fatisfactorily; but although I have repeated .. it a great number of times upon the eyes of others, it has feldom failed, when made in a fleady light, and when the filver has been passed far enough up the nofe.

The dilatation of the pupil, instead of its contraction, on the application of a stimulus to its nerves, as in the case related by Dr. M. Whytt,

Whytt, is, I apprehend, not so uncommon a circumstance, as it may at first be suppofed. I have myself seen three instances of it in diseases of the head. One of these was in an epileptic patient, whose pupils, during the intervals of his sits, became suddenly dilated whenever his eyes were exposed to a strong light.

My friend, Mr George Hunter of York, while one day amufing himfelf with repeating some of these experiments, discovered that by placing one of the metals as high up as possible between the gums and the upper lip, and the other in a fimilar fituation with respect to the under lip, a flash was produced as vivid as that occasioned by paffing one of the metals up the nofe, and placing the other upon the tongue. differs, however, from the flash produced in any other way, in the fingular circumstance of not being confined to the eye alone, but appearing diffused over the whole of the face. On attending to the concomitant

mitant fensations produced by this disposition of the metals, I perceived that a sense
of warmth, at the instant they were brought
into contact, disfused itself over the whole
upper surface of the tongue, proceeding
from its root to the point. Dr Ruthersord,
to whom Mr Hunter had communicated
this experiment, remarked, on repeating it,
that a slash is produced not only at the instant the metals are brought into contact,
but likewise at the instant of their separation. While they remain in contact, no
slash is observed.

This fact is precifely analogous to one already mentioned of contractions being produced in the leg of a frog, at the instant one of the metals in contact with the other metal is withdrawn from the leg.

After this full detail of these curious phenomena, I hardly need remark, that they demonstrate the free communication, which subsists

fubfifts between the feveral branches of the fifth pair of nerves, and confequently give strong support, if not absolute confirmation, to the well known doctrine of nervous sympathy, or of the reciprocal influence, which different parts exert upon each other, through the medium of nerves.

If I might be allowed to hazard a conjecture, where we cannot have recourse to demonstration, I should say that the flash, observed in the above experiments, was the effect of contractions excited in involuntary muscles by the application of a stimulus to their nerves; or, in other words, that the effects of the application of the metals to the nafal branch of the first division of the fifth pair of nerves, had been propagated through the ciliary ganglion, along the ciliary nerves, and to the choroid coat, whose veffels it had excited into inflantaneous action; and that their action again (as in the case of action excited by preffure, or a blow upon the eye,) had by stimulating the retina occafioned the fense of light.

This

This supposition is, I think, rendered probable by several considerations. I have already shewn that this influence can excite contractions in involuntary muscles, through the medium of their nerves. And certainly no reason can be affigned, a priori, why it should not act equally upon every description of involuntary muscles; upon those which make a part of the minutest vessels in the body, as well as upon the heart, or upon the iris.

That it excites to increased action the arteries of the tongue in the experiment, in which a sense of warmth is produced along its surface by the application of the metals to the lips, seems to be almost demonstrated; for it would be difficult to point out the presence of another cause competent to occasion the evolution of the heat, in this case, besides the increased action of the arteries: and that this cause is competent to the effect we know from numberless experiments,

periments, too familiar to need being particularized here.

Whether the metals, however, do or do not affect the action of the blood veffels, is a question which admits of solution by experiment. The following, I confess, was not quite satisfactory, and I have not yet found leifure and opportunity to repeat it with all the attention it requires.

I inspected the foot of a living frog with a microscope of very high powers. In fixing the foot so as to keep the web expanded, a considerable degree of inflammation was excited, notwithstanding every precaution to avoid it. The current of blood was seen distinctly in several vessels, now flowing rapidly, now slowly, and now in a direction contrary to that in which it was first observed, but with equal rapidity. A thin plate of zinc was introduced between the sleshy part of the foot and its supporter, and a silver probe was used as an excitor. To

me, the circulation appeared very decidedly to be quickened feveral times when the metals were made to touch each other: but the gentlemen who affifted me could obferve no change. To prevent the contractions in the muscles of the leg from producing any fallacy, the crural artery should be laid bare, and insulated from surrounding parts, by passing a thin plate of glass, or fealing wax, between it and them.

That the flash is the effect of such an increased action of the vessels, composing the choroid coat, might be somewhat more disficult to prove. It is however known to every one, that a blow, and that pressure upon the eye, are capable, as I have before observed, of producing a similar effect. And the following case, which Bonetus quotes from Hermannus Cummius, if it may be credited, affords an almost positive proof, that vision depends upon the stimulus given to the retina by the activity of blood vessels in some part of the eye. Quando theolo-

' gus, plaga dolorifica, a rupta instrumenti

' musici chorda accepta, nocte subsequenti

' jam adulta, e fomno evigilans, cuncta cla-

re, ac si de die esset, vidit, adeo, ut mini-

' mos picturarum et tapetum tractus obser-

' vare, characteresque ex libro legere posset.

' Oculo vero læso clauso, tenebras densissi-

' mas adesse ille percepit, eodemque iterum

' aperto, conclave illustratum visum est, lu-

' cem tamen candelæ allatae folisque splen-

' dorem de die, ægre tulit oculus affec-

' tus, quod per aliquot dies duravit, tan-

6 demque sensim remisit.'

Haller speaks of such cases as by no means uncommon, and quotes the names of several authors, who have related similar ones.

The direction of this influence, when fuffered to purfue its natural course, appears to be the same with that of most other stimuli, i. e. from the place at which it sirst affects a nerve, onwards to the part, in which that

that nerve terminates. I have repeatedly caused electrical sparks to be passed into my own ulnar nerve at its passage over the inner condyle of the humerus, but both the sensations and the contractions produced by them have been entirely confined to the hand and fore arm.

It appears too, both from the experiments of Dr Monro, and of Dr William Alexander of Halifax in Yorkshire, that when no communication is left between the trunk and posterior extremities of a frog, except by its sciatic nerves, a strong solution of opium, injected under the skin of its posterior extremities, deprives them both of their sensibility and of their contractile power; but that it does not in the least affect the trunk of the body. If, on the contrary, it be applied to the trunk, it exhausts both the trunk and the extremities.

M. Galvani is faid to have observed the effects of the influence, which he discovered, diffused over the whole body of a frog, when

laid bare, without being either divided or feparated from furrounding parts. If we are allowed to infer this diffusion of the influence from the restlessiness expressed by the animal, M. Galvani's observation may be just. If from the contractions produced, I suspect it is by no means so; since, in every experiment which I have made upon the subject, the contractions have been confined to those parts to which the nerve touched by the metals was distributed.

That this influence, however, may pass in a direction contrary to the course of nerves, is evident from some of the experiments which I have related relative to its effects upon the senses, but is still more clearly demonstrated by the following.

If, after having divided at the pelvis a frog recently killed, the sciatic nerves be freed from cellular membrane up to their origin from the spine, and all the parts be-

low this, except themselves, be cut away, the muscles on each side of the spine, for some little way up, may be brought into contraction by touching the nerves alone with the two metals in contact. This experiment has not always succeeded with me, and never unless the frog had been recently killed. So long as the hind legs remain undivided from the nerves, it never succeeded; the only contractions produced being in the legs.

OF

OF THE BLOOD VESSELS.

The E are told by Dr Valli, that no contractions are excited by arming the blood vessels; but as he has not told us whether his experiments were made upon them while the blood still continued to flow through them, or after they had been deprived of their blood, I determined to make the following experiment.

Having laid bare, and separated from surrounding parts and from each other, the crural artery, and nerve, in the thigh of a surful grown frog, I cut out the whole of the nerve between the pelvis and the knee. I then infinuated beneath the artery a thin plate of sealing wax, spread upon paper, and broad

broad enough to keep a large portion of the artery completely apart from the rest of the thigh. The blood still continued to flow, through the whole course of the artery, in an undiminished stream. The artery, thus partially infulated, was touched with filver and zinc, which were then brought into contact with each other; but no contraction whatever was produced, in any muscle of the limb. This experiment was frequently repeated upon feveral different frogs, both in whom the nerve was, and in whom it was not, divided. The refult was uniformly the fame. But vivid contractions were produced in the whole limb, when an electrical spark, or even a full stream of the aura, was passed into the artery.

It, however, by no means follows from this experiment, that the fanguiferous fyftem of animals bears no relation whatever to the influence discovered by Galvani. I have already shewn, that the heart may be affected by it, and have given reason to be-

lieve.

lieve, that the smallest arteries of the body are not exempted from its action. Should it ever be proved to be an exclusive property of animals, it is not impossible but that even its origin may be traced to their sanguiferous system.

one miguoridi nezir terewi'nezir e

SEC-

SECTION IV.

An attempt to investigate the Source from which the respective Powers of Nerves, and of Muscles, are derived.

As yet, the question whence the nerves and muscles of animals derive their respective properties, remains in a state of doubt. By many, the brain has been considered as the source not only of the several energies exerted by nerves, whether appropriated to sensation, to the excitement of muscles subservient to the will, or distributed to organs exempted from its influence; but likewise of that unascertained power,

power, by which muscles contract on the application of a stimulus.

By others again, these several properties are supposed to be derived from the arteries, which may either supply the materials and construction of that exquisite and peculiar organization, which sits nerves and muscles for performing their respective sunctions, or may surnish, from the blood, some subtile principle, such as that believed by M. Fontana, to exist there, or such as that we are now examining, which differently modified in different parts, may be the latent cause of all the phenomena exhibited by animals.

The advocates for the first opinion obferve, that whenever the brain is considerably injured, or its free communication, by means of nerves, with moving parts is interrupted, a deprivation both of sense and motion is the uniform consequence: and, further, that the several organs, both of sense and of motion, appear to suffer detriment from from the over strained exertions of the brain in thinking, equal to that which they experience from their own exertions.

The fecond opinion is countenanced by facts and observations not less important. From experiments of Haller; some which are recorded in one of the early volumes of the Philosophical Transactions, and others, it appears that a paralysis of the posterior extremities of animals was induced by tying their aorta.

Both Dr Monro and Dr Alexander of Halifax have remarked, that when all the blood vessels, supplying the posterior extremities of frogs, had been divided, and a solution of opium injected under the skin of these extremities, they became, in less than half an hour, both motionless and insensible; whereas, the fore part of the body was not observably affected six hours afterwards; and, in Dr Monro's experiments, the frogs lived till the day following. Hence Dr

0

Monro

Monro concludes, 'that concomitant arte'ries, fomehow or other, tune the nerves,
'fo as to fit them to convey impression *.'

On the other hand, where it is intended that nerves shall convey impressions with great accuracy, as in all the senses, and very remarkably in the part which some have amused themselves by considering as a sixth organ of sense, the distribution of blood vessels is more profuse than in almost any other equal part. It is likewise universally true, that increase of vascular action in a part is always attended with a proportional increase of sensibility there.

From the valuable experiments made by Mr Cruikshanks, and which have since received the fullest confirmation from those repeated by M. Fontana and others, it appears, that whatever may be the relation between brain and nerves, the latter may certainly be regenerated after excision, and have

^{*} Effays Phyfical and Literary.

have their functions fully restored. Now, in what manner this can be accomplished, unless by the agency of arteries, would, I imagine, be no easy task to point out.

The influence discovered by Galvani appeared to me an admirable test, by which something decisive might be ascertained relative to these important points in the physiology of animals, and as such I have employed it in the following experiments.

Confidering, therefore, the brain on the one hand, and the fanguiferous fystem on the other, as the possible sources from which nerves and muscles might derive their power, I began by comparing the effects which result from interrupting their communication, first with the brain, and then with the arteries. This mode of procedure seemed to afford the best prospect of information with respect to every object which I had in view, but particularly with regard

to the relations which this influence may bear to the feveral parts examined.

Before relating the experiments, I must observe that the comparison was instituted between the effects of only partially interrupted communication; since it must be obvious that a complete interruption, either of nervous or of arterious communication between any part of an animal, and the rest of its body, could not have been effected without so far injuring the animal, as to render the result fallacious.

Experiments

frong cellular membranes. A fa

under fide or the thigh, was fallered to re

main undividual. The legs, whose nerves

and been divided, became completely para-

Situal Commence of the Commenc

Experiments in which the Sciatic Nerves of Frogs were divided.

EXPERIMENT I.

I divided the sciatic nerve, on one side only, in sour large frogs. The division was made at the very top of their thighs, and before the nerve had given off the first large branch to the muscles of the thigh. This nerve lies immediately underneath the large crural artery, to which it is closely attached by a sheath of sine but very strong cellular membrane. A small nerve, which supplies some of the muscles on the under side of the thigh, was suffered to remain undivided. The legs, whose nerves had been divided, became completely paralytic

lytic below the knee, and very nearly fo above it. These legs too, immediately after the division of their nerves, contracted vigorously when laid upon zinc, and excited by passing a rod of silver in contact with the under part of the knee till it touched the zinc; but the other legs which were suffered to remain in their natural state, in order that the contractility of one leg might all along be compared with that of the other, did not contract when the metals were similarly applied to them.

These frogs were all killed by cutting off their heads; the first, at the end of two days after dividing the nerve; the second, at the end of five days; the third, at the end of seven; and the fourth, at the end of nine. Their legs were carefully examined, in the manner I have described, four or five times every day after their heads had been taken off, so long as any contractions could be excited; but I could not perceive, in any one of these instances, that the contractile power continued either longer

longer or more vigorous in the legs, in which the nerves were not divided than it did in those in which they were.

Both in these experiments, and in all my others, where a comparison was instituted between the two legs of the same frog, I divided equal portions of skin on both thighs, that there might be no unequal exposure of the muscles to the water, which would have occasioned a fallacy in the refult.

legs were carefully ex-

EXPE-

EXPERIMENT II.

N the 31st of March last, I divided, in two, a frog, in one of whose legs I had four months before excited inflammation, by laying bare the crural artery and nerve. The inflammation had been fo violent and general, that the frog loft its cuticle in confequence of it, and, when compared with a healthy frog, its resperation was observed to be remarkably frequent. Three weeks after this, when the wound in its thigh had perfectly skined over, I laid it open again, and divided the fciatic nerve. No general inflammation this time took place, nor did the wound again skin over; but for about a month before it was killed, a large ulcer had formed immediately over the division of the nerve,

nerve, but had not proceeded down to it. The limb, at the time I killed the frog, was as destitute both of motion and of sensation, as at the first instant the nerve was divided, but contractions were excited in it, by touching the ulcer with zinc and silver. When the frog was dead, however, the contractions were found much more feeble in this than in the other leg.

The metals were now applied to the sciatic nerves within the abdomen. Vigorous contractions were excited in the sound leg, but none in that whose nerve had been divided. Hence it was plain, that no actual regeneration had taken place. On examining the nerve accurately at the part divided, I sound the divided ends, which had receded considerably from each other, connected by a transparent gelatinous substance. From the upper end, which appeared elongated into a conical form, several red streaks projected into the interposed substance. The lower end was opaque, thickened, and P rounded.

rounded. No appearance of spiral bands could be detected, either in the interposed substance, or in the part of the nerve below the division, when these parts were examined with the affistance of a microscope. This substance had attained sufficient consistence to support the under part of the nerve, when the upper was raised with a pair of forceps. The leg, in which the nerve had been divided, continued to contract as long as the other, though much less vigorously, and the part, from which I could longest excite contractions, was the ulcer,

EXPE-

EXPERIMENT III.

On the 14th of April last, I killed two other frogs, by dividing their hind extremities from their bodies. In one, the right sciatic nerve had been divided more than six weeks previous to its death. In the other, one of the sciatic nerves had been divided between three weeks and a month.

The legs of these frogs, examined by the metals both before and after their separation from the body, were found in a state very different from those before spoken of. The contractions were scarcely perceptible. The incisions made through the skin, in order to get at their nerves, had closed completely in less than a week after they had been made.

The appearance of the muscles in the legs, whose nerves had been divided, was found to be precifely the fame as in those where nothing had been done; but, notwithstanding this circumstance, even strong electrical sparks excited but very feeble contractions. On examining the nerves, the ends of that which had been longest divided were found connected by a fubitance not at all refembling nerve, but fimilar to that found in the former experiment, and evidently proceeding from the upper divifion. In the nerve which had not been fo long divided, this circumstance was still more apparent, as the fubstance had not extended quite to the lower division. The cellular membrane furrounding these upper divisions had the appearance of innumerable veffels finely injected, and fome red ftreaks were feen projecting, as if from the nerve itself, into the gelatinous production. In the found nerves, the obliquely transverse lines of alternate opacity and transparency, or, as Fontana has called them, the white fpiral

spiral bands of nerves, were seen distinctly at the first glance of the eye, and without the affiftance of a glass; but no appearance of these could be found in the parts of the divided nerves below the division; these were uniformly opaque. Their bulk, however, was not in the least diminished. The organization of nerves long divided, therefore, undergoes a very evident alteration, although it is by no means fo clear that the fame change happens in the muscles, to which these nerves are distributed. Yet their fusceptibility to the action of electricity, as well as to that of this new influence, was nearly loft. Some may confider this as an additional argument, that stimuli act upon muscles only through the medium of nerves.

I have before observed that muscles of frogs, from whom the skin has been stripped, become in a short time hard when exposed to the action of water. Wishing, therefore, to see if there would be any difference

ference between these legs, whose nerves had been divided, and others, in this respect, I laid them in water, and examined them every ten minutes, but both became hard nearly at the same time. Mr Allen, a gentleman well versed in physiological purfuits, was with me when I examined the alteration which had taken place in one of these nerves, in consequence of its having remained long divided, and I had afterwards an opportunity of shewing it to Dr Rutherford. In all the frogs, whose nerves I have divided, I have observed that the divided extremities, though placed in most exact contact from each other, had after a time receded at least 1 of an inch from each other.

Experiments

Experiments in which the Crural Arteries
of Frogs were tied as near to the Trunks
of their Bodies, as where the Nerves had
been divided in the former Experiments.

EXPERIMENT I.

BOTH crural arteries of a full grown frog having been laid bare, one of them was tied. The leg, in which this was done, became inftantly weaker than the other, and rather dragged when the animal was put into water. The frog, however, could still jump about with great agility. Four hours after this operation, it was killed by crushing its brain. It continued to move its legs spontaneously, when touched, during more than two days after this, and contractions were excitable by the application

Sometimes it appeared rather doubtful, which leg contracted most vigorously, but, in general, the leg in which the artery remained free did so, and contractions could be excited in it, more than an hour after every means to excite them in the other leg had failed.

EXPE-

EXPERIMENT II.

IGATURES were passed round the crural arteries of two other frogs, and one of them was fuffered to live thirty fix hours afterwards, before its head was crushed: the other four days. In these, the difproportion between the vigour and continuance of the contractions in the compared legs, was fo much greater than in the preceding experiment, as to leave no doubt of the effects produced by tying an artery. The leg, whose artery had remained tied four days, never contracted near fo ftrongly as its fellow, and contractions had ceafed to be excitable in it, upwards of twenty hours before they had ceafed in the leg, whose artery had not been tied.

Q

From

From these experimennts, it appears decidedly, that a much greater detriment to that condition of a limb, upon which contraction depends, is induced by interrupting its circulation, than by intercepting its communication with the brain.

But still, as the effects arising from the interception of the influence of the brain, and of the circulation, were not compared with each other in the same but in different animals, whose age, relative strength, &c. might possibly differ, I thought proper to repeat the comparison, in the following manner.

Experiments

Experiments in which the Sciatic Nerve was divided on one side, and the Crural Artery tied on the other.

EXPERIMENT I.

DIVIDED the sciatic nerve of one leg, and tied the crural artery of the other, in a large frog. Scarcely any blood was lost in doing either. Two days after this, I strangled it. During the first 24 hours, the leg, in which the nerve had been divided, appeared to contract with most vigour; after this period, the difference between them became more doubtful; but the contractions were at no time stronger in the leg, whose artery was tied, than in that whose nerve was divided.

EXPE-

EXPERIMENT II.

HE fame operations were performed upon a large female frog full of spawn. Four hours afterwards, she was observed covered by a male, who had been treated in a similar manner. I mention this circumstance, as it tends to prove that the pain occasioned by the operation was probably not so great as to produce much fallacy.

On the day following, she had spawned, and on the sixth day from the operations, she was strangled. When laid upon a plate of zinc, and excited by means of a rod of silver, the contractions were found extremely feeble in the leg whose artery had been tied, and ceased altogether in about twenty-two hours after her death.

In the leg, whose nerve had been divided, they appeared as vigorous as they usually are in legs to which no injury has been previously done, and continued excitable upwards of two days after they had ceased to be so in the other.

EXPE-

EXPERIMENT III.

I AVING tied the crural artery on one fide, and divided the sciatic nerve on the other, on three full grown male frogs, I strangled them all on the fixth day following. My motive for killing the frogs, subjected to such experiments, either in this manner or by crushing their heads, will be obvious. It was of consequence to preserve their circulation as entire as possible, and, at the same time, avoid the continuance of pain, which by exhausting all the parts of the body, whose communication with the brain was not interrupted, might considerably have affected the result of the experiments.

The contractions excited by means of the metals,

metals, were, in all these instances, likewise as much more strong and durable in the legs, whose nerves had been divided, than what they were in the legs, whose arteries had been tied, as what I had found them to be in the preceding experiment.

Having thus found, that a diminution of the circulation of a part, was accompanied with a proportionable diminution of the respective powers of nerves and muscles in that part, I next proceeded to examine if an increased circulation would be attended with a proportionable increase of these powers. That this is actually the cafe, with respect to the nerves, the few facts which I have related of the eye, in a state of inflammation, have a tendency to prove; and we all know how much the fenfibility of every part of the body is increased, by an increase of vascular action. That a similar relation subfifts between an increased action of the arteries, and the contractile power of muscles, is, I think, proved by the following experiment.

Experiments

Experiments made with a view of afcertaining some of the Effects of Inflammation.

EXPERIMENT I.

HAVE before faid that if a living and en-I tire frog be fet upon a plate of zinc, contractions can very feldom be produced in any part of its body by paffing a rod of filver over it, fo that the filver, the frog, and the zinc, may be all in contact with each other. But, I have found in upwards of twenty experiments, that when inflammation had been excited in one of the hind legs of a frog, by irritating it with a brush, contractions uniformly took place in that leg when the metals were applied to it, although none had been produced in it before it was inflamed, nor could ftill be produced in the other leg which remained in its natural state. EXPE-

EXPERIMENT II.

TAVING previously excited inflamma-L tion, by means of a brush, in the foot and leg of a healthy and large frog, I cut off its head. The contractions excited by the metals in the inflamed leg were in vigorous and inftantaneous jirks; those in the found leg more languid and difficultly excited. Spontaneous motions continued at this time nearly the fame in both. Till the end of the fecond day, after this frog's head had been taken off, the contractions excited in the inflamed leg continued uniformly, and beyond all comparison more vigorous than what I could by any means excite in the found leg. But, after this time, the inflamed leg became hard as a R piece piece of wood; probably in consequence of the effusion to which the inflammation had given rise.

The event of five fimilar experiments was fo nearly the fame, that I should be thought unnecessarily minute, were I to relate them in detail.

We are now perhaps prepared to account for the deficiency of contractile power in those legs, whose sciatic nerves had been divided, the one, between three weeks and a month, the other, fix weeks, compared with its continuance in the leg, whose nerve had been divided upwards of three months. It appears, from the circumstances of those experiments, that some of the arteries, appropriated to the fupply of the sciatic nerves of frogs, have the fame courfe with the nerves themselves; fince the depofition of new matter could in all be traced from the upper division of the nerves. It is obvious, therefore, that the part of the nerves below

below the division, must have been deprived of so considerable a portion of their usual arterial fupply, as in time would occasion fome alteration in their structure, and confequently in their powers. We accordingly find that fuch alteration of structure, and fuch deficiency of power, had actually taken place. It is further probable, that, in proportion as the fupply from the arteries was restored, the powers of that nerve, which had been three months divided, had been likewise restored. This supposition is countenanced by every instance in which nerves are reproduced; as we find the functions of the parts in which they had been divided, are not immediately, but gradually restored.

M. Fontana feems too hastily to have adopted the opinion, that the sciatic nerves, when divided, are probably never reunited by truly nervous structure, because no reunion took place during the very short period which he suffered to elapse between their division, and their subsequent examination.

nation. In the experiments, which I have related, the progress towards reunion seems to have borne a very exact proportion to the time the nerves had remained divided; and, in an experiment related by Dr Monro, where the sciatic nerve of a frog had been divided a year previous to the death of the animal, the reproduction was advanced so far as to have the appearance of being perfect. Nor can I doubt, that both the sensibility and the motion of the limb would have been restored, had the animal been permitted to live a sufficient length of time. The following fact renders the supposition at least extremely probable.

In the first volume of the Edinburgh Medical Essays, the case of a Captain of a man of war is related, who entirely lost the use of his right arm, in consequence of a gun-shot wound received in his neck. The circumstances of the case are such as leave no reason to doubt, that the loss of the power of motion, in this gentleman's arm,

was owing to the division of the cervical nerves proceeding to the arm: yet both the full use, and strength of this arm, were restored, after a period of about two years and a half. A proof perfectly satisfactory that an actual regeneration of nerves had, in this case, taken place; and if in this, one sees no reason why it should not equally take place in any other part of the body.

It might be difficult to assign a satisfactory reason for the very speedy reproduction of the intercostal, parvagum, and recurrent nerves, when compared with the great length of time required for the reproduction of others. May it not be owing to the very profuse manner in which they are supplied with arteries, probably both in an ascending, and in a descending direction; from above, by the superior, and from below, by the inferior laryngeal arteries?

It appears upon the whole, therefore, tolerably lerably certain, that the fanguiferous system contributes more immediately than the brain to the support of that condition of muscles and of nerves, upon which the phenomena of contraction depend; since that condition is much more injured by intercepting the influence of the former than of the latter.

Every experiment and observation, which has been made upon the subject of nutrition, and of the reproduction of parts, clearly demonstrates that nerves and muscles, in common with every other part of the body, derive their structure from the arteries; and it is evident, that upon this structure their feveral properties must in some measure depend. But M. Galvani's discovery of a fubtile influence, which may be transmitted apparently from one part of an animal to another through foreign media, may reafonably give rife to a conjecture that the phenomena exhibited by nerves and by muscles may perhaps depend more immediately diately upon fome fuch influence; and reafons exist, which might induce some to suspect that even this is derived from the blood,

Experiments

Experiments suggested by some opinions of M. Fontana.

FROM the greatest number of experiments, perhaps, ever made by one physicologist, M. Fontana has been led to conclude, that the venom of the viper, opium, and several other poisons, which he examined, produce no effects whatever, when applied immediately to nerves and muscles alone, but that they destroy life, by exerting their influence upon some subtile principle existing in the blood.

Independant of the experiments, published by M. Fontana, on this subject, his opinion respecting the existence of such a principle may be thought to receive no inconsiderable

fiderable countenance, from the opinions of Harvey and of Mr Hunter, concerning the life of the blood, and from those experiments, by which Mr Hewson has demonstrated, that changes are instantaneously produced upon the coagulability of the blood, by passions of the mind, and whatever else affects the action of the heart and arteries. An experiment made by Dr Alexander of Halifax, and published at this place in the year 1790, in his excellent Thesis, 'De partibus corporis quae viribus opii parent,' may at first appear a sufficient resutation of M. Fontana's opinion.

He found that thirty three drops of a strong solution of opium in water, injected into the jugular vein of a large rabbit, deftroyed it, as in M. Fontana's experiments, in sour minutes and a half; whereas, the same quantity injected into the crural vein in each leg of another rabbit, with an interval of twenty six minutes between the two injections, although it rendered the animal

fleepy and stupid for a few hours, did it no material or permanent injury. Hence, Dr Alexander concludes, that the opium, injected into the jugular vein, did not destroy the animal by acting upon the blood alone, since if it had, the same effect, should have been produced, by introducing an equal quantity into any other vein of the body; but a quantity double of that, which had occasioned death when introduced into the jugular vein, sailed to occasion it when introduced into the crurals.

It is not, however, by one experiment, formidable as it must be allowed to be, that the innumerable hosts brought to the contest by M. Fontana ought to be combated. Besides, it might be objected even to this one, that the opium was introduced into veins, from which it must have been so much longer in passing to the arterial blood, than from the jugular vein, and consequently so much more diluted, and perhaps too altered in its nature before it got there, as might

might be fufficient to account for the difference of refult in the two cases compared.

The opportunity afforded by M. Galvani's discovery, of putting the truth of the opinion held by M. Fontana more fully to the test, and the possibility which presented itself, that if any such principle, as he supposes in the blood, should really be found to exist there, it might prove to be identically the same with that discovered by M. Galvani, induced me to make the sollowing experiments.

affine myfelf of the wengine expension,

of the blood, id next injected water into its

gral byokt alighans oughter beloombated

bi louger in palling to he arterial blood

shapings the jogulary in and ontequent

of an edge of the best of the contract of the

EXPE-

EXPERIMENT I.

AVING selected two frogs as nearly as possible of the same size and vigour, I deprived one of its blood by opening, sirst, one of its crural veins, then, a crural artery, and last of all, the heart. To assure myself of the complete evacuation of its blood, I next injected water into its heart, and immediately afterwards forty drops of a strong aqueous solution of opium*.

akulating not from the come

* This folution, which is the fame that I employed in all my subsequent experiments, was of the same strength with that used by Dr Alexander in the greater number of his, viz. an ounce of crude opium mixed in a mortar with two ounces and a half of water, and siltered through paper, after having remained twelve hours, in a close corked bottle, near a chamber sire.

I then removed the sternum of the other frog, and having made an opening into the ventricle of its heart, injected into it likewise forty drops of the solution. Less blood was effused in doing this, than one would at first expect; for the ventricle contracts so strongly, immediately after the incision, as to prevent much blood from passing out, unless the incision be made, as it was in the other frog, purposely large.

The moment, at which each injection was made, was accurately noted, and the time expended in evacuating the blood from the first frog, was allowed for. The frog, from which the blood had been withdrawn, ceased to contract, when irritated, very nearly an hour before the other, even calculating not from the time of injection, but from the moment I began to bleed it; nor could I by means of the metals excite contractions in it, for upwards of a day before they had ceased to be excitable in the other frog.

distinct removed the flement of the wheet

and chaving made an opening into

EXPERIMENT II.

S evacuating the blood from a living animal is rather a fevere operation, and might have occasioned some fallacy in the last experiment, by subjecting the frog, in which this was done, to a greater degree of pain, and consequently of exhaustion, than what the other was subjected to, I crushed the brains of two other frogs before I proceeded, as in the former experiment, to withdraw the blood from one of them. Instead of forty, I injected no more than thirteen drops of the strong folution of opium, into each of the hearts of thefe frogs. The inftant the injection had entered, both hearts became white, and ceafed from contracting. Forty eight hours after the injection

tion of the opium, the contractions excited by the metals in the frog, deprived of its blood, had become very flight, particularly in the limb whose vein and artery had been opened. The other frog still continued to contract with fo much vigour, as to raife its body from the plate of zinc, upon which it was laid. Seventy two hours after the injection, no contractions could be excited in the frog, from which the blood had been withdrawn, except fome very flight ones in the leg, whose artery and vein had not been opened. The contractions in the legs of the other frog, continued still fo vigorous as to raife its body from the plate, and fome were produced even by mechanical irritation.

Ninety fix hours after the opium had been injected, (both the frogs having lain out of water all night,) that without blood was found quite putrid. In the other, the contractions, produced by exciting the legs, were fufficiently strong to move the feet:

as the body, however, had become putrid and offensive, it was thrown away.

EXPERIMENT III.

THE heads of two other full grown and lively frogs, having been crushed, their hearts were laid bare, and the blood was evacuated from one of them, as in the former experiments. A small portion of the skull of each then being removed, eight drops of the strong solution of opium was injected upon their brains. At least half the quantity seemed to return from the wound. Both frogs became instantaneously motionless after the injection, but, in about an hour, were considerably recovered.

Spontaneous motions continued during more

more than fifty hours, in the legs of that from which the blood had not been drawn, and contractions were excitable by the metals, upwards of 24 hours after they had ceased to be so, in that from which the blood had been drawn.

The following experiments may be deemed fill more fatisfactory, than the preceding, from the circumstance of the comparison having been instituted, between the effects of opium, upon different, but similar parts of the same frog, differently circumstanced.

over experiments; A finall portion of the

tall of each then being removed, eight

sew mercy to nemighamed not to remain

T EXPE-

cound. is a rope be and subananeoutly

berg-opp who deigh work do not be

pains bearing and and and and

EXPERIMENT IV.

had cealed alterether to be excitable, in the

end of an hours, fearcely any contraction,

could be excited in the leg whale array had

NE of the crural arteries of a frog having been included in a tight ligature, as near as possible to the body, I fuffered four days to elapse, and then injected through a perforation in its skull, eight drops of the strong folution upon its brain, and in a direction towards its spinal marrow. This frog continued most violently convulfed for more than an hour, and, in two, was to all appearance dead. When laid upon zinc, and excited with filver, the contractions were not at first perceptibly stronger in one leg than in the other. After eight hours, however, they were evidently most strong in the leg whose artery remained free. After 21 hours, this difference became still more decided. At the end of 34 hours, scarcely any contractions could be excited in the leg whose artery had been tied; though they continued vigorous in the other; and, at the end of 46 hours, they had ceased altogether to be excitable, in the leg whose artery was tied. In the other, they continued during several hours afterwards.

EXPERIMENT V

drops of the Brong folution upon its brain,

and in a direction with its initial mar-

ture, as near as pollible to the body, I

having been included in a tight liga-

AVING tied one of the crural arteries of another frog, I filled its stomach, immediately afterwards, with a saturated solution of opium in water. The difference between the strength, and the continuance of the contractions, excited by the metals, in the two legs of this frog, was not so great as in the former; yet still the difference was considerable in favour of that leg in which the artery remained free.

EXPE-

EXPERIMENT VI.

In two other frogs, in each of which a crural artery had been tied, and the folution of opium (without regard being paid to quantity), repeatedly injected underneath their skulls immediately after; the contractions appeared to be very little weaker in the legs, whose arteries were tied, than what they were in the legs in which they were not tied, and they continued excitable during an equal length of time in both.

continued excitable about an

EXPE-

EXPERIMENT VII.

Therefore, I immediately filled both its stomach and abdomen with a strong solution of opium. In an hour after this, it was to appearance quite dead. At the end of eight hours, the contractions, excited by the metals, had become very feeble in the leg whose artery was tied, in comparison of what they were in the other leg; and, at the end of twelve hours, no contractions could be excited in any part of the frog, except in the leg whose artery remained free. In this they continued excitable about an hour longer.

As it was possible, that the more speedy exhaustion

exhaustion of the legs, in which the arteries were tied, might have been owing in some measure to the pain, occasioned by that operation, I repeated the experiment with the following variation.

EXPERIMENT VIII.

legs of two frogs, and then tied the crural artery in one leg of each. Eight drops of the folution of opium were immediately afterwards injected upon their brains. But the event of this experiment was precifely the fame with the majority of those before related. The contractions excited by the metals, in the legs whose arteries were tied, were uniformly more feeble, and of shorter duration, than those excited in the other legs: yet it is evident, that, in all these experiments, the very reverse of this ought

M. Fontana has afferted, that opium has no effect upon any part of the body, except through the medium of the blood.

The experiments however, which I am now to relate, may perhaps appear still more satisfactory.

EXPERIMENT IX.

FIRST divided the frianc nerves, in both

Having laid equally bare both the ficiatic nerves of a frog, at the upper part of its thighs, I passed a ligature round one of them, and drew it as tight as it was well possible, without dividing the nerve. I then removed a portion of its skull, and with a small brush, kept it constantly wet with laudanum during several hours. The frog scon became convulsed; and, during ten or twelve hours, continued in that state of exquisite

quisite sensibility, which opium never fails to produce in these animals. It may here be worth remarking, that, while they are in this state, the slightest touch of a feather, or even breathing upon them, excites inftantaneous convulfions. The leg whofe nerve was tied, remained paralytic during this time, but when it was laid upon zinc and excited with filver, it contracted as ftrongly as the other. After forty three hours, the contractions were very feeble in the leg whose nerve was not tied, but still vigorous in the other. After fifty three hours, no contractions could be excited in any part of the frog, except in the leg whose nerve was tied. In this they were fufficiently strong to move the foot, and continued fo for more than an hour longer.

leg, whole newe had been ned. This dil-

no longer be excited in the leg whole nerve

remained tree, In that, in which the nerve

EXPE-

EXPERIMENT X.

NE of the crural nerves of another frog having been tied in a similar manner, eight drops of the strong solution of opium were injected upon its brain. The animal instantly became motionless, but, in less than an hour afterwards, was considerably recovered.

The contractions, excited by the metals, in the leg whose nerve was free, soon became more feeble than those excited in the leg, whose nerve had been tied. This disproportion, between them, continued increasing during ninety six hours, after the opium had been injected, when contractions could no longer be excited in the leg whose nerve remained free. In that, in which the nerve

U

had been tied, they continued upwards of 4 hours afterwards.

EXPERIMENT XI.

Upon the whole, therefore, it appears,

and has books and he main

IMMEDIATELY after having divided the sciatic nerve, in one thigh only, of three other frogs, I injected as much of the strong solution of opium underneath their skulls, as could possibly be retained. The legs, in which the nerves had been divided, continued contractile several hours after the others had ceased to be so.

Hence, then, we see no reason for suspectating that the more speedy cessation of contractions in those legs, in which the crural arteries were tied, than in those on which no operation was performed, was owing to the pain occasioned by such operation, since even

even the more painful operations of tying or dividing the sciatic nerves, were attended with no such effect.

Upon the whole, therefore, it appears, that the conclusion which M. Fontana draws from his numerous experiments with opium, ' That the circulation of the blood and hu-' mours in the animal machine, is the ve-' hicle for opium, and that, without this ' circulation, it would have no action on the ' living body,' is the very reverse of that which I am warranted to draw from the experiments I have just related; fince the parts, most affected by the action of opium, were not those in which the circulation remained most entire, but those in which it had been almost altogether interrupted; and fince in two parts where the circulation remained equal, and entire, the action of opium was rendered unequal, by interrupting the communication of one of them, by means of nerves, with the parts to which the opium was applied.

The existence, consequently, of any such principle in the blood, as that supposed by M. Fontana to exist there, is rendered far too problematical, even to allow me to expect that it can ever be proved: far less that it may turn out to be the same with that discovered by M. Galvani, or with that, whatever it may be, upon which the phenomena of nerves and of muscles may depend, granding experiments, sheep

the mention of the following tacks, which they afforded one an opportunity of observ-

ing, as they were not immediately connected with the objects on account of which the experiments were inflitured; and I have

vet -M. J. P. P. P. Lo relate, which, from the hafte with which there sheets were prepared . for the prets, I had omined to infert in their proper places.

i. In one of my first experiments in which I had occation to reffer a trog to remain tolerably entire, Io long as courractions could be excited in any part of its body, I was furprifed to find, on removing its fternum, The existence, consequently, of any such principle in the blood, as that supposed by M. Fontana to exist there, is rendered far too problematical, even to allow me to ex-

APPENDIX.

Was unwilling to interrupt the narration of the preceding experiments, by the mention of the following facts, which they afforded me an opportunity of observing, as they were not immediately connected with the objects on account of which the experiments were instituted; and I have yet some few to relate, which, from the haste with which these sheets were prepared for the press, I had omitted to insert in their proper places.

I. In one of my first experiments, in which I had occasion to suffer a frog to remain tolerably entire, so long as contractions could be excited in any part of its body, I was surprised to find, on removing its sternum, that

that its heart had ceased to contract, nor could be roufed by the application of any stimulus whatever, notwithstanding the contractions in its hind legs, excited by the metals, were still vigorous, and continued so for feveral hours afterwards. On paying particular attention to this circumstance in another frog, upon whose brain opium had been injected, I found that its legs continued excitable, upwards of forty hours longer than its heart. This discovery of the continuance of the contractile power, in the muscles of the posterior extremities, so long after its disappearance in the heart, is fo contradictory to the opinion generally received upon this fubject, and long established among physiologists, that I can scarcely expect it should be credited, by those who may not themselves have opportunities of observing it. It is a fact, however, of which, in the course of these experiments, I have had the most fatisfactory and uniform proofs, both in fuch frogs as have, and in fuch as have not, been under the influence of opium. If If a different opinion has hitherto been held by experimentalists upon this subject, it should be recollected, that, till the discovery made by Galvani, we had no means of afcertaining the presence of the contractile power of muscles, which had not, at the same time that they indicated its continuance, a tendency to destroy it, and consequently to render it impossible for us to trace its natural progress to extinction.

I have, more than once, observed the same circumstance in both cats and rabbits.

eer than its heart. This discovery of the

2. Dr Alexander, in his excellent Thesis already quoted, tells us, that the contractility of all the voluntary muscles of frogs was destroyed in the course of a very few minutes, by injecting eight drops of a strong solution of opium in water, (similar to that which I employed) upon the surfaces of their brains. But that the contractions of their hearts did not appear to be much, if at all, affected by this treatment. In all the similar

milar experiments, which I have made, the event has been very different. I have not found it possible by any quantity, either of aqueous or of spirituous folution of opium, injected upon the brains of frogs, to produce that rapid extinction of the contractility of their voluntary muscles, of which Dr Alexander speaks. They commonly recovered in less than an hour, from the complete infensibility and paralysis, first occafioned by the injection of the opium, and after that time, their spontaneous motions almost always continued for several hours longer, and, by the application of the metals, contractions were excitable even for days. Their hearts, as I have already faid, uniformly loft their fusceptibility of the action of stimuli, long before their posterior extremities.

3. The arguments against the antiquated doctrine of transudation, through parts of a living body, are already so numerous and satisfactory, that it may be thought unnecessary

ceffary to notice in this place, a decifive one for far as relates to the skin of frogs, at least, which may be deduced from the fact already mentioned; that so long as the skin was suffered to remain upon the limbs of frogs, placing them in water, very evidently preserved the contractility of their muscles, whereas when the skin was taken off, the muscles became hard, and incapable of contracting, in a very few hours. Had there been a possibility of water soaking through the skin, this difference could not possibly have had place.

4. In speaking of some of the relations, which subsist between the influence discovered by Galvani and the nerves, I omitted mentioning the following sacts,

A by does northernous of the metals.

A very different effect is produced by applying the metals to the brain or spinal marrow of frogs, from what is produced by applying them to their nerves. In the latter case, I have observed, that every muscle,

X

CCEAFF

distributed, is brought into instant contraction. But no muscles are brought into contraction, when the metals are applied to the brain or spinal marrow, except such as derive their nerves from the part immediately in contact with the metals. The influence does not stimulate or pass along the spinal marrow, as it would along the trunk of a nerve, to affect all other nerves branching off from it.

I first became acquainted with this fact, while making the following experiment. Having laid bare the brain of a living frog, and put a stop to its spontaneous motions, by gently pressing upon the brain, I introduced a long slip of tin-foil doubled underneath a part of the skull, which had not been removed, and placed a silver probe upon its tongue. The only muscles which contracted, when the tin-foil was bent over the nose of the frog, so as to come in contact with the probe, were those which move the

the eyes, and the transparent membrane which defends them, those of the tongue and of the throat. When the tin-foil was twisted into a thin roll, and passed a little way down the spine, the muscles of the upper extremities and of the thorax contracted; when a little further, those of the back and of the abdomen contracted; and when introduced still further, to where the sciatic nerves leave the fpine, the posterior extremities were, for the first time, strongly convulfed. I have repeated this experiment very frequently; and have always found, that, as foon as the spontaneous motions of frogs had ceased, the contractions, excited by the metals, were uniformly progreffive from the head downwards, corresponding exactly to the progress of the metals down the spine. The experiment fometimes succeeds when neither the brain nor the fpinal marrow have been laid bare, and when even the skin has not been divided, but, when the frog is placed upon a plate of zinc, and one of the ends of a bent filver wire is placed

placed upon any part of its spine, while the other is made to touch the plate.

J. As it has not been till very lately, that I have been able to procure an electropherus, I have as yet made but few experiments with it; their refult, however, is such as tends still more to confirm me in the opinion, that the influence, discovered by Galvani, has no relation whatever to electricity.

Having, first, so far freed the instrument, from the small quantity of electricity collected, by wiping it, that none was indicated by a very sensible electrometer of linenyarn, suspended from the wooden part of its handle; I placed it within a few inches of a glass stand, upon which I had laid a plate of zinc, supporting a frog recently killed, and with its sciatic nerves within the abdomen laid bare. A bar of zinc formed the communication between the frog and the metal plate of the electropherus. Contractions

tions were then excited in the frog, by placing one end of a bent filver wire, infulated in fealing wax, upon the nerves of the frog, and the other end upon the bar of zinc. After strong contractions had, in this way, been kept up for about half a minute, I carefully removed the bar of zinc, by means of a stick of wax, that there might be no possibility of the electricity escaping, if any should have been collected. The metal plate was then raised from the varnished surface. The electrometer attached to its handle was very slightly affected; but a fine thread, prefented to the plate, was perceptibly attracted by it.

I had a strong suspicion, that the electricity, thus collected, had been excited solely by the friction of the frog's legs during contraction, against the insulated plate of zinc upon which it lay; and I soon found that my conjecture was just; for an equal quantity of electricity was obtained from another frog similarly disposed, when contractions

tractions were excited in it, by merely mechanical irritation.

The result was the same when these frogs were laid successively upon the metal plate of the electropherus itself, and excited, the one in M. Galvani's method, the other by mechanical irritation only.

These experiments were very frequently repeated, but the quantity of electricity collected was always greatest where the contractions, or, in other words, the friction had been most considerable, and did not, in any instance, appear to depend on the means employed to excite the contractions.

What still further proves, that the electricity, in this way collected, had no dependence whatever, for its production, upon the application of the metals to the frog, but had been merely the portion of electricity, naturally possessed by the frog, in common with other conducting substances, is, that when the electricity, which was collected from its first contractions, had been drawn off from the plate, no more could afterwards be collected, although the contractions, excited by the metals, still continued as vigorous as ever.

of. When the electropherus was charged with electricity, as highly as it was possible to charge it by friction, the contractions produced by the insulated metals in a prepared frog, laid upon the metal plate of the electrophorus, were not at all affected by raising it from the varnished surface. A proof that the phenomena in question are not affected, either by the condensation or rarefaction of the electricity, in either the animal or the metals, by which they are exhibited.

I have not found, that any quantity of electricity, which I could accumulate in the metal plate of the electropherus, did ever, when discharged into the nerve of a

frog,

frog, excite contractions nearly fo strong as what are excited by the application of zinc and silver; nor could I, at any time, collect a sufficient quantity of electricity, from sive insulated frogs, sufficient to excite contractions in a single leg of a frog, though recently separated from its body, and consequently excitable by stimuli of very weak powers.

The politeness of the very learned Mr Robison, Professor of Natural Philosophy in this University, enables me to lay before the public the following communication; which, independent of its intrinsic merit, affords an additional gratification, by evincing the great interest taken in the subject, by one whose abilities and extensive knowledge so well qualify him for giving it a full investigation.

To MR FOWLER,

EDIN. May 28. 1793.

SIR,

ABOUT a fortnight ago, my fon told me of a curious experiment, with a piece. of zinc and a piece of filver applied to the tongue, by which a strong irritation, refembling tafte, was produced, and that a luminous flash was excited, by applying one of them to the eye. I immediately repeated them according to his directions, and my curiofity was greatly excited to profecute them in a variety of circumstances. I understand, that these experiments have originated from the curious discoveries made fome time ago in Italy, of which I was informed last winter. But I have been so much out of the world for some years past, that I have had no opportunity of knowing what was going forward.

Being informed, that you have been long engaged in experiments on this subject, and

are about to favour the public with an account of them, I have taken the liberty of cummunicating to you, a few facts which have occurred to me, fome of which, perhaps, may be new to you.

1. I find, that if a piece of zinc be applied to the tongue, and be in contact with a piece of filver, which touches any part of the lining of the mouth, nostrils, ear, urethra, or anus, the fenfation refembling tafte is felt on the tongue. If the experiment be inverted, by applying the filver to the tongue, the irritation produced by the zinc is not fenfible, except in the mouth and the urethra, and is very flight. I find the irritation by the zinc strongest when the contact is very flight, and confined to a narrow space, and when the contact of the filver is very extensive, as when the tongue is applied to the cavity of a filver spoon. When the zinc touches in an extensive furface, the irritation produced by a narrow contact of the filver is very diffinct, especially on the upper fide of the tongue, and along

along its margin. This irritation feems to be mere pungency, without any refemblance to taste, and it leaves a lasting impression, like that made by caustic alcali.

- 2. If the zinc (finely polished) be applied to the ball of the eye, the brightness of the flash seems to correspond with the surface of contact, of the silver with the tongue, palate, fauces or cheek. The same thing happens when the silver is applied to the eye.
- 3. When a rod of zinc, and one of filver are applied to the roof of the mouth, as far back as possible, the irritations produced, by bringing their outer ends into contact, are very strong, and that by the zinc resembles taste, in the same manner as when applied to the tongue.
- 4. I had been paring my toe nails with scizzars, and had cut off a considerable pertion of the thick skin, so that the blood be-

gan to ooze through, in the middle of the wound. I applied the zinc there, and an extensive surface of silver to the tongue. Every time I brought the metals into contact, I felt a very smart irritation by the zinc at the wound.

5. I made a piece of zinc having a sharp point, projecting laterally from its end. I applied this point to a hole in a tooth, which has fometimes ached a little, and applied the filver in an extensive furface to the infide of the cheek. When the metals were brought into contact, I felt a very fmart and painful twitch in the tooth, perfectly refembling a twitch of the toothack. I thought this twitch double, and that one of them happened before the metals came into absolute contact. I am now almost convinced, that this is the cafe, for when I make the filver rest on a dry tooth, without touching the tongue or fauces, I have no twitch on bringing the outer ends of the metals together: showing that there is not a proper communication

communication through a dry tooth. If, while the outer ends remain in contact, I touch the filver with the tip of the tongue, still no twitch is felt in the tooth. If I now feparate the outer ends of the metals, keeping the tongue applied to the filver, a slight twitch is felt in the moment of feparation, and a strong double twitch when they are again brought into contact. N. B. This twitch is prevented, by allowing the tongue or lip to touch any part of the zinc.

6. I had a number of pieces of zinc made of the fize of a shilling, and made them up into a rouleau, with as many shillings. I find that this alternation, in some circumstances, increases considerably the irritation, and expect, on some such principle, to produce a still greater increase. If the side of the rouleau be applied to the tongue, so that all the pieces are touched by it, the irritation is very strong and disagreeable. This explains what I have often observed, the strong taste of soldered seams of metal. I can now per-

ceive

ceive seams in brass and copper vessels by the tongue, which the eye cannot discover, and can distinguish the base mixtures which abound in gold and silver trinkets.

If any of the above facts can add to the stock of knowledge you have acquired on this subject, it will give me great satisfaction, and I shall not fail to communicate any thing which may afterwards occur. My indisposition hinders me from taking an active part in the researches, to which this wonderful and important discovery incites; but it is both my duty and my earnest wish, to contribute my feeble assistance to every gentleman engaged in this interesting pursuit.

I find that common filver thread makes a very good conductor, and this to any diftance.

Since writing the above, I have found a very eafy way of producing very fenfible convultions, (I think mufcular) and corroborating

borating my opinion, that the communication (of this part of the whole effect) takes place before contact.

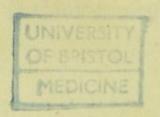
Put a plate of zinc into one cheek, and a plate of filver, (a crown piece) into the other, at a little distance from each. the cheeks to them as extensively as possible. Thurst in a rod of zinc between the zinc and the cheek, and a rod of filver between the filver and the other cheek. Bring their outer ends flowly into contact, and a fmart convulfive twitch will be felt in the parts of the gums fituated between them, accompanied by bright flashes in the eyes. And thefe will be diffinctly perceived before contact, and a fecond time on feparating the ends of the rods, or when they have again attained what may be called the striking distance. If the rods be alternated, no effect whatever is produced.

Care must be taken, not to press the pieces hard to the gums; this either hinders

us from perceiving the convulsion, or prevents it. I find too, that one rod, whether zinc or silver, is sufficient for the communication, and even bringing the two pieces together, will do as well, or perhaps better. But the rods are easier in the management.

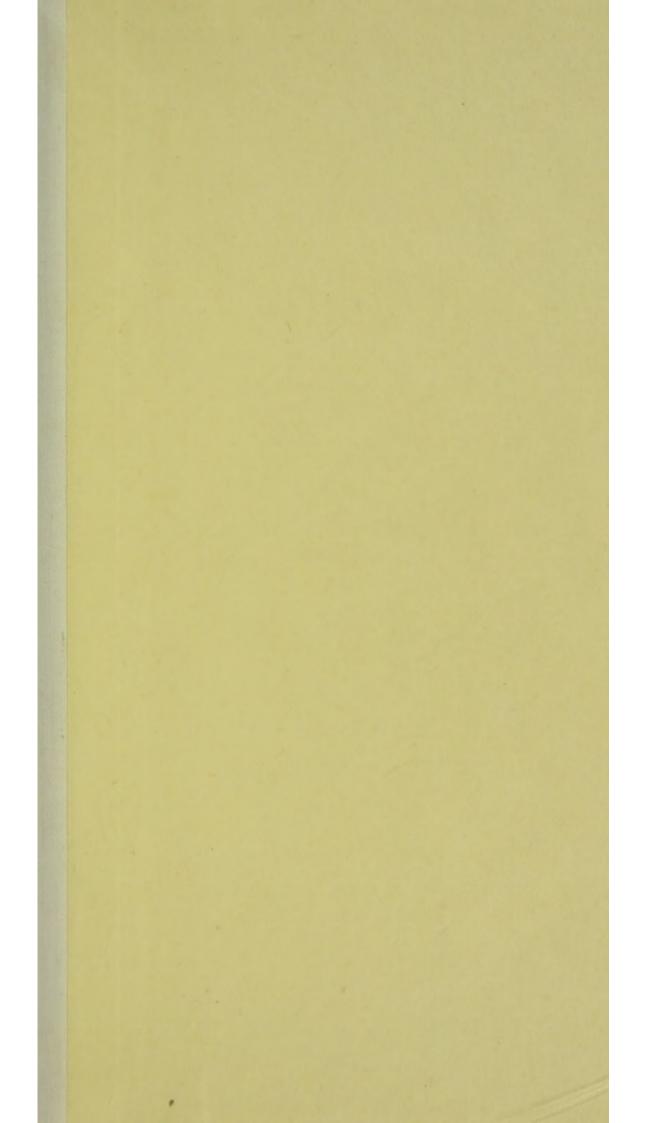
Asking pardon for the liberty I have taken, without having the honour of your acquaintance, I am,

With great regard,


SIR,

Your most obedient

Humble fervant,


JOHN ROBISON.

FINIS.

