Contributors

Hermann, Ludimar, 1838-1914. Bernays, Albert James, 1823-1892 St. Thomas's Hospital. Medical School. Library St. Thomas's Hospital. Medical School. Chemical Laboratory King's College London

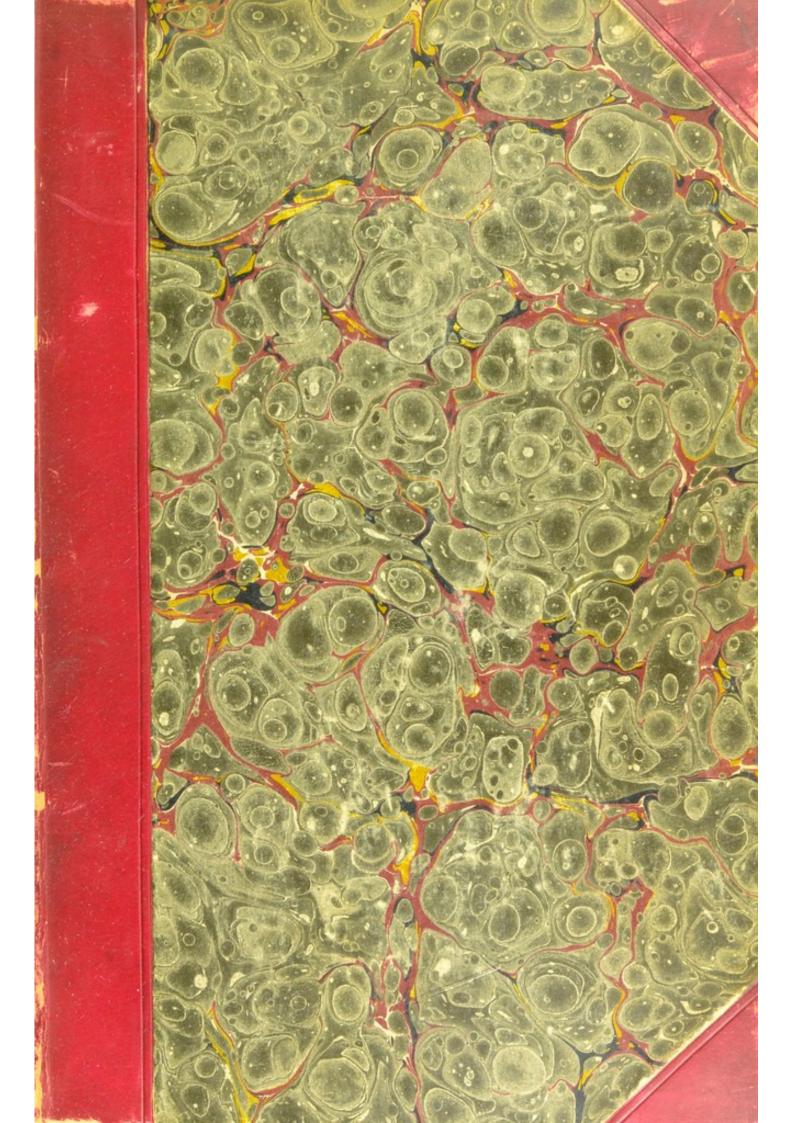
Publication/Creation

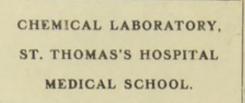
Berlin : Verlag von August Hirschwald, 1874.

Persistent URL

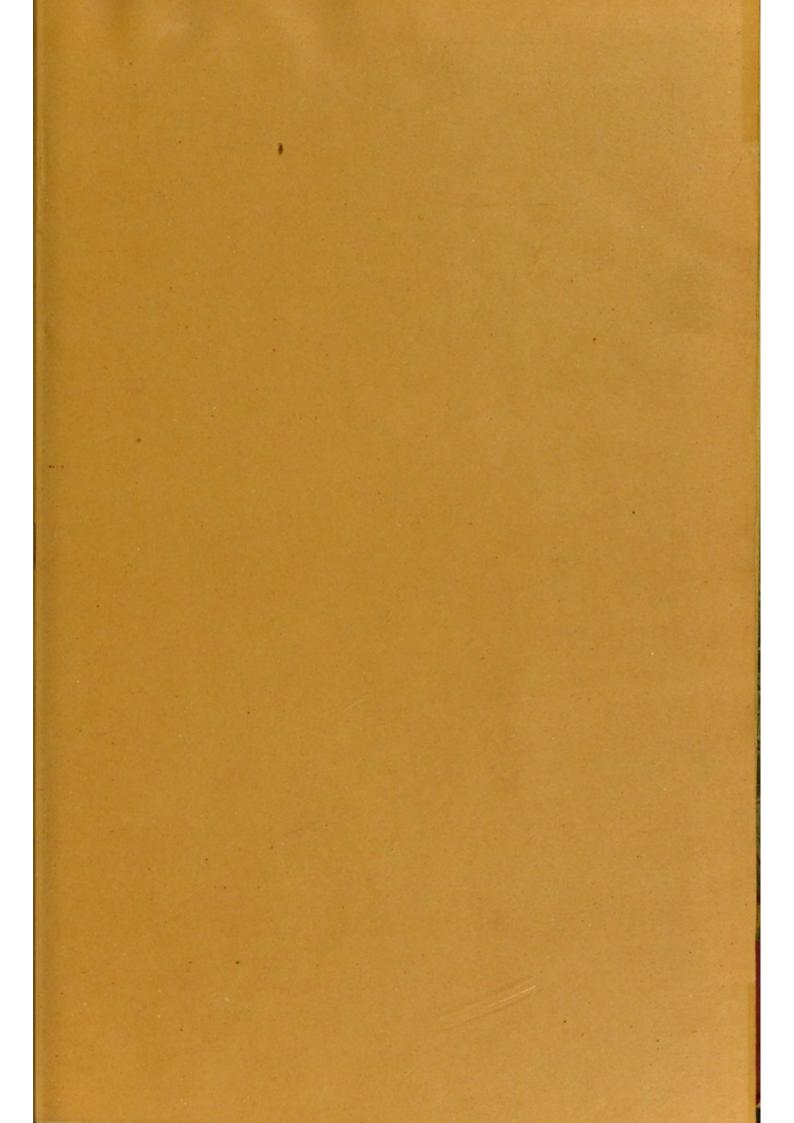
https://wellcomecollection.org/works/m2u4rxks

License and attribution

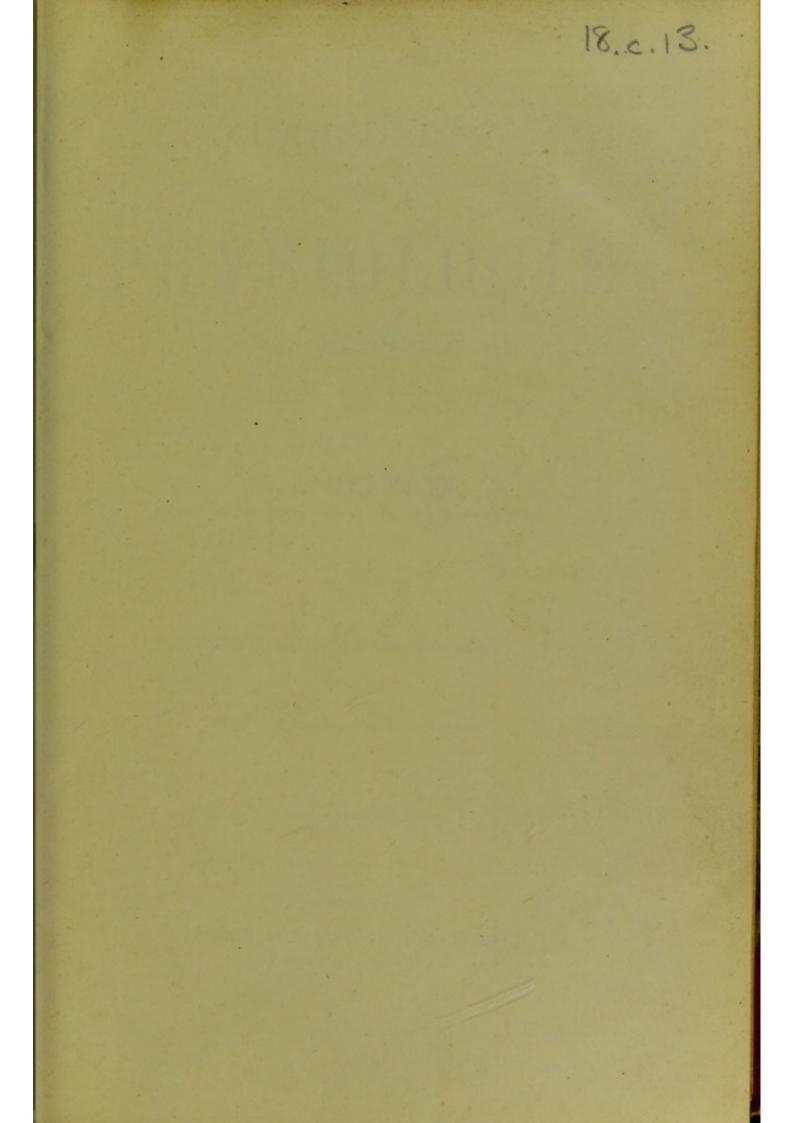

This material has been provided by This material has been provided by King's College London. The original may be consulted at King's College London. where the originals may be consulted.

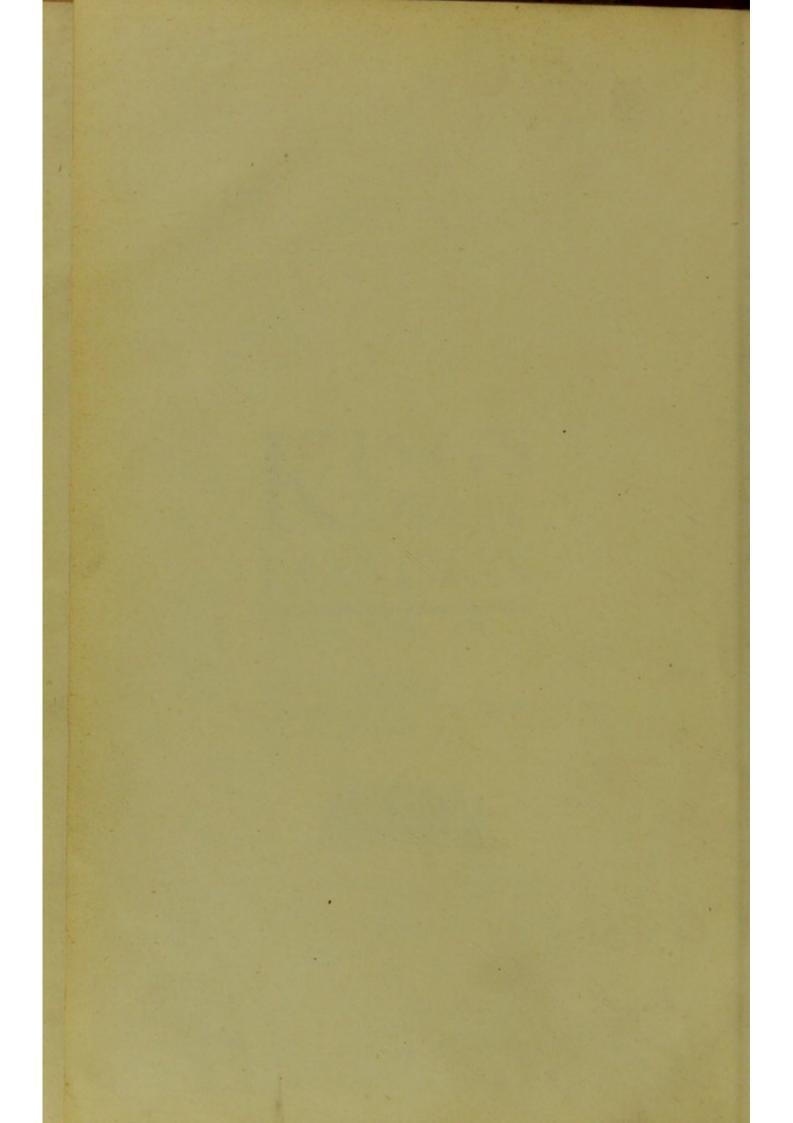

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

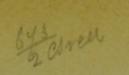
You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.


Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

18. c. 13.




1. ~


TOMME QP34 HER

MARMONN LIBRANY ORMONIELS DER PHYSEOLOGIE PAR MENSCHEN 1874

18.c.13.

GRUNDRISS

DER

PHYSIOLOGIE DES MENSCHEN

VON

Dr. L. HERMANN,

PROFESSOR DER PHYSIOLOGIE AN DER UNIVERSITÄT ZU ZÜRICH.

FÜNFTE VERMEHRTE UND VERBESSERTE AUFLAGE.

Mit in den Text eingedruckten Holzschnitten.

BERLIN 1874.

VERLAG VON AUGUST HIRSCHWALD.

UNTER DEN LINDEN 68.

736271 TOMHO

Der Verfasser behält sich das Recht der Uebersetzung in fremde Sprachen vor.

Dr. L HERMA

Vorwort zur fünften Auflage.

Die Veränderungen, welche der vorliegende Grundriss in der neuen Auflage erfahren hat, bestehen — abgesehen von sehr zahlreichen Correcturen und Einfügungen neuer Ergebnisse — in beträchtlichen Vermehrungen des Inhalts, für welche durch Kürzungen an anderen Stellen so viel Raum gewonnen worden ist, dass der Umfang des Buches sich nicht merklich vergrössert hat. Besonders schien es mir in der Physiologie des Gehirns an der Zeit, die bisherige, mehr schematische Darstellung durch eine eingehendere zu ersetzen, und namentlich den anatomischen Ermittelungen, welche hier oft werthvoller sind als das Experiment, Rechnung zu tragen. Auch in anderen Capiteln (specielle Nervenphysiologie, Sinnesorgane) sind mehr Details aufgenommen worden.

Durch Aenderung der Darstellung einem Buche welches bis zur fünften Auflage gelangt und in fremde Sprachen übergegangen ist,*) einen anderen Character zu geben, habe ich mich nicht entschliessen können, obgleich in neuerer Zeit über die beste Form des physiologischen Lehrbuches discutirt worden ist. Die dogmatische Darstellungsweise hat von gewichtiger Seite den Tadel erfahren, dass sie einer inductiven Wissenschaft nicht angemessen sei; andererseits ist sie in einem neueren Grundriss grade geflissentlich gewählt worden. Mir scheint es für den Werth eines physiologischen Lehrbuches viel mehr entscheidend zu sein, wie vollständig es den Lehrstoff und

^{*)} Bisher sind mir folgende Uebersetzungen bekannt geworden (zu deren keiner ich die Initiative ergriffen habe): 1. Holländisch von Dr. Drielsma, Groningen 1864; 2. Russisch von Prof. Setschenow, Petersburg 1865 (2. Auflage Odessa 1873); 3. Polnisch von Dr. Portner, herausgegeben von Prof. Hoyer, Warschau 1865; 4. Italienisch von Prof. Palladino, Neapel 1869; 5. Französisch von Dr. Roye, herausgegeben von Dr. Onimus, Paris 1869; 6. Spanisch von Prof. Hidalgo (nach der französischen Ausgabe übersetzt), Madrid 1871; 7. Englisch von Prof. Gamgee (im Druck).

Vorwort.

besonders dessen thatsächliche Grundlagen angiebt, als darauf ob die Lehrsätze ihren Grundlagen mit "also", oder die Grundlagen den Lehrsätzen mit "denn" folgen. Die letztere Art, welche in zahllosen Fällen die bei weitem kürzere ist, scheint mir im Lehrbuch ebenso erlaubt, wenn sie auch im mündlichen Vortrag, der am besten sich an die geschichtliche Entwicklung jeder Frage anschliesst, die weniger natürliche ist. Dogmatisch würde ich daher nur dasjenige Buch nennen, welches ein Lehrgebäude hinstellt, ohne die inductiven Grundlagen hinzuzufügen. Die letzteren aber habe ich grade im Gegentheil in möglichster Vollständigkeit anzuführen mich bemüht, und besonders den Untersuchungsmethoden, welche Andere aus dem Grundriss ganz verbannen wollen, kurze Angaben gewidmet, weil aus ihnen oft mehr geistiger Gewinn zu ziehen ist als aus den Resultaten. Ueberhaupt kann ich in der Physiologie zwischen Lehrbuch und Grundriss keine principielle Grenze erkennen, und wenn ich dem vorliegenden Buch seines Umfangs wegen den letzteren Namen beilege, so war es doch mein Bestreben, möglichst viel Details in übersichtlicher Anordnung hineinzubringen. Gleichmässigkeit in der Behandlung, sowohl in Bezug auf die oben berührte Anordnungsfrage, als hinsichtlich der Vollständigkeit in Details, Methoden etc., scheint mir in einer Wissenschaft, die aus so ungemein heterogenen Theilen besteht, kaum durchführbar, und ich muss gestehen, hierauf viel weniger Werth als auf didactische Zweckmässigkeit der einzelnen Theile gelegt zu haben. Ein Grundriss der Physik kann ein abgerundetes Kunstwerk sein, ein Grundriss der Physiologie schwerlich.

Vor dem Gebrauche des Buches bitte ich die Nachträge p. 518 an den betreffenden Stellen notiren zu wollen.

Zürich, im Mai 1874.

L. Hermann.

Inhalt.

to the second second and the second	Seite
Einleitung	1
Erster Abschnitt. Der Stoffwechsel des Organismus	10
Einleitung. Chemische Bestandtheile des menschlichen Körpers	10
Elemente	10
Chemische Verbindungen	11
1. Wasser	13
2. Säuren und Salze	13
3. Alkohole	18
4. Aetherarten und Anhydride	19
5. Ammoniak und Ammoniakderivate	20
6. Complicittere Körper von unbekannter Constitution	30
Cap. 1. Das Blut und seine Bewegung	37
I. Das Blut	38
II. Die Blutbewegung	52
	54
Die Herzbewegung	59
Die Blutbewegung in den Gefässen	
Einfluss des Nervensystems auf die Blutbewegung .	70
Pulsfrequenz	77
Anhang. Austritt von Blutkörperchen aus unverletzten Gefässen	78
Cap. 2. Ausgaben aus dem Blute, Absonderung	79
I. Absonderung im Allgemeinen	80
II. Die einzelnen Absonderungen	85
A. Parenchymsäfte und Parenchyme	85
B. Höhlenflüssigkeiten	87
C. Drüsen-Absonderungen	88

E.			-	١.	2	
	L		8		ι.	

	Seite
Cap. 3. Aufnahme von Stoffen in das Blut, Resorption	118
Vorbereitung der Nahrung für die Resorption, Verdauung	126
I. Chemismus der Verdauung	126
II. Mechanik des Verdauungsapparats	131
Cap. 4. Gasförmige Einnahmen und Ausgaben des Blutes. Athmung	137
I. Chemismus der Athmung	138
II. Mechanik der Athmung	145
Anhang. Folgen des Sauerstoffmangels. Athmung fremder	
Gasarten	157
Cap. 5. Stoffwechsel des Blutes	162
Wechsel der Blutkörperchen	162
Wechsel der chemischen Bestandtheile	166
Constanz der Blutmenge	169
Anhang. Glycogen- und Zuckerbildung in Parenchymen	170
Cap. 6. Stoffwechsel des Gesammtorganismus	175
I. Die Einnahmen	175
II. Die Ausgaben	181
III. Quantitative Verhältnisse zwischen Einnahme, Aus-	
gabe und Bestand	183
1. Nothwendige Ausgaben des Organismus und	
Deckung derselben durch die Nahrung	185
2. Unzureichende Aufnahme	189
3. Ueberschüssige Aufnahme	192
Zweiter Abschnitt. Die Leistungen des Organismus	197
	197 197
Einleitung	
Einleitung	197
Einleitung	197
Einleitung	197 198
Einleitung	197 198 199
Einleitung	197 198 199
Einleitung	197 198 199 202
Einleitung Einführung von Spannkräften Einführung lebendiger Kräfte im Körper (Leistungen des Körpers) Marken Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel	197 198 199 202 202
Einleitung Einführung von Spannkräften Einführung lebendiger Kräfte im Körper (Leistungen des Körpers) des Körpers) Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel Cap. 7.	197 198 199 202 202 202
Einleitung	197 198 199 202 202 204 205
Einleitung Einführung von Spannkräften Einführung lebendiger Kräfte im Körper (Leistungen des Körpers) Maraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel I. Wärmebildung H. Temperaturen des Körpers	197 198 199 202 202 204 205 205
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel I. Wärmebildung I. I. Wärmebildung I. I. Temperaturen des Körpers I. Korpers Körpers Kap. 8. Leistung mechanischer Arbeit (Bewegungsvorgänge)	197 198 199 202 202 204 205 205 205 209
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel I. Wärmebildung I. Wärmebildung I. Temperaturen des Körpers I. I. Temperaturen des Körpers I. I. Die Muskeln I.	197 198 199 202 202 204 205 205 209 216
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Kraftausgabe Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel I. Wärmebildung und Temperaturverhältnisse des Körpers I. Wärmebildung II. Temperaturen des Körpers I. I. Die Muskeln Muskeln A. Die guergestreiften Muskeln I.	197 198 199 202 202 204 205 205 205 209 216 217
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel I. Wärmebildung und Temperaturverhältnisse des Körpers I. I. Temperaturen des Körpers I. I. Temperaturen des Körpers I. I. Die Muskeln I. A. Die quergestreiften Muskeln I. a) Der ruhende Muskel, I.	197 198 199 202 202 204 205 205 205 209 216 217 217
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel Märmebildung und Temperaturverhältnisse des Körpers I. Wärmebildung I. Temperaturen des Körpers I. S. Leistung mechanischer Arbeit (Bewegungsvorgänge) I. I. Die Muskeln I. A. Die quergestreiften Muskeln I. a) Der ruhende Muskel. I. b) Das Erstarren des Muskels I.	197 198 199 202 204 205 205 209 216 217 217 221
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Kraftausgabe Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel I. Wärmebildung und Temperaturverhältnisse des Körpers I. I. Wärmebildung II. I. Temperaturen des Körpers I. I. Die Muskeln II. A. Die quergestreiften Muskeln II. a) Der ruhende Muskel. II. b) Das Erstarren des Muskels II. b) Das Erstarren des Muskels II.	197 198 199 202 204 205 205 209 216 217 217 221 223
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel I. Wärmebildung und Temperaturverhältnisse des Körpers I. I. Wärmebildung II. Temperaturen des Körpers I. Die Muskeln II. Die Muskeln A. Die quergestreiften Muskeln II. A. Die ruhende Muskel II. B. Der ruhende Muskels II. B. Das Erstarren des Muskels II. B. Das Erstarren des Muskels II. B. Das Erstarren des Muskels II. B. Die Thätigkeit des Muskels II. B. Die Thätigkeit des Muskels II.	197 198 199 202 204 205 205 209 216 217 217 221 223
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel Gap. 7. Wärmebildung und Temperaturverhältnisse des Körpers I. Wärmebildung Mir mebildung II. Temperaturen des Körpers II. A. Die quergestreiften Muskeln A. Die quergestreiften Muskeln a) Der ruhende Muskels b) Das Erstarren des Muskels c) Die Thätigkeit des Muskels d) Thermische und electrische Erscheinungen am Muskel	197 198 199 202 204 205 205 209 216 217 217 221 223 226
Einleitung Einführung von Spannkräften Einführung von Spannkräften Eintstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel Cap. 7. Wärmebildung und Temperaturverhältnisse des Körpers I. Wärmebildung Märmebildung II. Temperaturen des Körpers II. A. Die quergestreiften Muskeln II. a) Der ruhende Muskel. II. b) Das Erstarren des Muskels II. b) Das Erstarren des Muskels II. e) Die Thätigkeit des Muskels II. e) Zusammenhang der Erscheinungen am Muskel III.	197 198 199 202 204 205 205 209 216 217 217 221 223 226
Einleitung Einführung von Spannkräften Einführung von Spannkräften Entstehung lebendiger Kräfte im Körper (Leistungen des Körpers) Kraftausgabe Kraftausgabe Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance) Einfluss des Kraftwechsels auf den Stoffwechsel Einfluss des Kraftwechsels auf den Stoffwechsel Gap. 7. Wärmebildung und Temperaturverhältnisse des Körpers I. Wärmebildung Mir mebildung II. Temperaturen des Körpers II. A. Die quergestreiften Muskeln A. Die quergestreiften Muskeln a) Der ruhende Muskels b) Das Erstarren des Muskels c) Die Thätigkeit des Muskels d) Thermische und electrische Erscheinungen am Muskel	197 198 199 202 204 205 205 209 216 217 217 221 223 226 245

VI

-		2		
	-		8.	•
			0.1	10

	Seite
II. Contractile Zellen, Protoplasmabewegungen	257
III. Flimmerzellen und Samenkörper	259
Anhang. Verwendung der Muskeln	260
	268
	200
Gleichgewichtsbedingungen und active Locomotion des	000
Gesammtkörpers	268
Stimme	275
Sprache	283
Dritter Abschnitt. Die Auslösungsapparate. Das Nervensystem	289
	291
Cap. 9. Die Leitungsorgane (Nerven)	A DEPOSIT
A. Allgemeines	291
Ruhender Nerv	292
Absterben der Nerven	293
Thätiger Zustand	293
Electrische Erscheinungen an den Nerven	305
Theorien über das Wesen der Nerventhätigkeit .	309
Function und Eintheilung der Nervenfasern	310
B. Specielle Nervenphysiologie	313
TT	
	314
II. Rückenmarksnerven	320
III. Sympathische Nerven	321
Cap. 10. Die peripherischen Endorgane der Nerven	323
I. Das Sehorgan	323
Sehen	350
Bewegungen des Auges	366
Sehen mit beiden Augen	372
Sabutzorgana das Anass	
	386
Anhang. Facettirte Augen	388
II. Das Gehörorgan	388
Hören	396
Hören mit beiden Ohren	407
Schutzorgane des Ohres	409
Anhang zum Gehörorgan	409
III. Das Geruchsorgan	410
IV. Das Geschmacksorgan	412
V Die jihrigen Sinnegengen	415
Cap. 11. Die centralen Endorgane der Nerven (nervöse Centralorgane)	425
A. Allgemeines	425
B. Specielles	432
1. Rückenmark	433
2. Gehirn	447
A. Verlängertes Mark	452
B. Hirnganglien und weisse Hirnmassen	458
C. Kleinhirn	462
3. Sympathische Centra und Nerven	
	472

VII

	ы		
	ш		
-		 -	

Vierter Abschnitt.	Er	ntsteh	ung,	Ent	wick	elun	g un	dE	Ende	e de	s OI	rgai	nism	nus		Seite 477
Cap. 12																477
		Allge														
		G	eschl	lecht	liche	Zei	igun	g								481
		E	itwi	cklu	ng d	es b	efru	chte	eten	Eie	8.					484
	В,	Zeug	ung	bei	n Me	ensel	ien						•			486
	C.	Eien	twic	klun	g be	i Sä	ugeti	hier	ren	und	bei	m M	fens	sch	en	495
	D.	Extr	aute	rine	Ent	wick	lung								•	513
	E.	Tod		•											•	514
Nachträge																
Register																519

Provide State and and a state bard and

VIII

EINLEITUNG.

Die Physiologie ist die Wissenschaft von den regelmässigen Vorgängen in den sogenannten belebten Körpern oder Organismen, den Pflanzen und Thieren. Die den belebten Körpern eigenthümlichen Vorgänge, deren Gesammtheit also das Leben ausmacht, lassen sich im Grossen zusammenfassen als regelmässige Veränderungen 1) ihres chemischen Bestandes, 2) der in ihnen wirkenden Kräfte, 3) ihrer Form. - Den Grund dieser Eigenthümlichkeiten suchte man früher in besonderen, den Organismen eigenen, vererbbaren Fähigkeiten, deren Summe man als "Lebenskraft" bezeichnete. Diesen unbestimmten Begriff hat man indess fallen lassen, seitdem man in den am besten erforschten Lebensvorgängen das Walten derselben Grundgesetze erkannt hat, welche auch in der unorganischen Natur sich kundgeben, besonders aber seit die Anwendung eines grossen Princips der neueren Naturwissenschaft auf die organische Welt über den Zusammenhang zwischen den Stoffveränderungen und den Kraftverhältnissen der Organismen belehrt hat. Auf diese Erfahrung gestützt vermuthet man, dass überhaupt in den belebten Körpern nur dieselben Kräfte und nach denselben Gesetzen wirken, wie in den unbelebten, und dass es demnach auch gelingen werde, die bisher noch unverständlichen, namentlich auch die Gestaltungs-Vorgänge einst auf physicalische und chemische Gesetze zurückzuführen. Diese Annahme hat, abgesehen von ihrer Wahrscheinlichkeit, das unendliche Verdienst, exacter Forschung und Anschauung auch auf organischem Gebiete Eingang verschafft zu haben. In diesem Werke wird sie, obgleich noch nicht streng

Hermann, Physiologie, 5. Aufl.

bewiesen, der Darstellung des menschlichen Organismus überall stillschweigend zu Grunde gelegt werden.

Der menschliche und jeder thierische Körper ist ein Organismus, in welchem durch chemische Umsetzung seiner eigenen Bestandtheile Kräfte frei werden, d. h. Spannkräfte in lebendige Kräfte übergehen.*) Letztere erscheinen als die Leistungen oder Verrichtungen des Körpers. Die Möglichkeit solcher Umsetzungen ist bedingt durch die Anwesenheit spannkraftführender Stoffe im Organismus.

Die bei einer chemischen Umsetzung freiwerdende Kraftmenge hängt ab von dem Unterschiede der Kraft, mit welcher sich die betheiligten Atome in der vor der Umsetzung und in der nach derselben vorhandenen Moleculargruppirung binden. Als Maass dieser Bindekraft kann man die "Haftwärme" aufstellen, welche jedem Molecül zukommt, und welche von der Natur und der Gruppirung seiner Atome abhängt (also bei isomeren -Molecülen verschieden sein kann). Bei jedem chemischen Process bleibt die Natur und Anzahl der betheiligten Atome unverändert, nur ihre Gruppirung zu Molecülen oder innerhalb des Molecüls wechselt. Die bei dem Process freiwerdende Kraftmenge, im Wärmemaass ausgedrückt, ergiebt sich also wenn man von der Summe aller Haftwärmen der nach dem Process vorhandenen Molecüle die Summe der Haftwärmen der vor dem Process vorhandenen Molecüle subtrahirt; sie ist also gleich der Differenz der Haftwärmen der "Producte" und der "Ingredientien" des Processes. (Da in ganz unverbundenen Atomen die Haftwärme Null ist, so ergiebt sich als Definition der Haftwärme eines Molecüls: die in Wärmemaass ausgedrückte Kraftmenge welche bei der Vereinigung der vorher ganz freien Atome zum Molecül freiwerden würde, oder auch, nach dem Princip der Erhaltung der Kraft, die Kraftmenge welche verbraucht werden würde um die im Molecül vereinigten Atome vollkommen zu "dissociiren".) Die Ingredientien eines mit Kraftentwicklung verbundenen Umsatzprocesses können betrachtet werden als ein Magazin von soviel Kraft ("Spannkraft") als der Process entwickeln kann. Spannkraftführende Stoffe sind also solche deren Atome einer Umsetzung zu Gruppirungen von grösserer Haftwärme fähig sind.

Die meisten mit Kraftentwickelung verbundenen Umsetzungen im thierischen Körper sind Oxydationen und oxydative Spaltungen;

^{*)} Die hier gebrauchten Begriffe der Spannkraft und lebendigen Kraft (potentielle und kinetische Energie) sowie die Gesetze ihrer Umwandlungen (Gesetz der Erhaltung der Energie) müssen als bekannt vorausgesetzt werden. Eine erschöpfende Erläuterung derselben hier zu geben ist unthunlich, weil eine solche, um leicht verständlich zu sein, einer gewissen Weitläufigkeit, namentlich aber des Gebrauchs von Beispielen nicht entbehren könnte. Dieser Gegenstand kann nicht trefflicher dargestellt werden, als in der populären Schrift von Helmholtz[±] "Ueber die Wechselwirkung der Naturkräfte u. s. w. Ein Vortrag etc." Königsberg 1854, auf welche hiermit verwiesen wird. Auch vergleiche man Thomson u. Tait, Handbuch der theoretischen Physik, übersetzt von Helmholtz u. Wertheim. Braunschweig 1871. I. §. 213, 217, 238, 239, 241, 273, 278.

doch kommen höchst wahrscheinlich auch andere derartige Processe vor. Das spannkraftführende Material des Körpers ist demnach hauptsächlich repräsentirt durch oxydirbare ("organische") Verbindungen einerseits, und freien Sauerstoff andererseits.

Ein Beispiel einfacher Oxydation ist:

Ingredientien: Product: 2 $C_5H_4N_4O_2 + O_2 = 2 C_5H_4N_4O_3^*$ Xanthin Sauerstoff Harnsäure

ein Beispiel oxydativer Spaltung:

Bu

Ingredi	ientien:	Producte:						
C4H8O2	+ 3 02 =	$C_2H_4O_2$	+ 2 CO ₂ +	2 H ₂ O.				
uttersäure	Sauerstoff	Essigsäure	Kohlensäure	Wasser				

Von andern im Körper vorkommenden Umsetzungen, welche zum Theil mit Kraftentwicklung verbunden sind, können angeführt werden: die einfache Spaltung, Beispiele:

Ingredientien:Producte:Ingredientien:Producte: $C_6H_{12}O_6 = 2 C_3H_6O_3;$ $C_6H_{12}O_6 = 2 C_2H_6O + 2 CO_2$ ZuckerMilchsäureZuckerAlkohol

und die hydrolytische Spaltung, Beispiel:

Ingredientien: $C_{57}H_{110}O_6 + 3 H_2O = 3 C_{18}H_{36}O_2 + C_3H_8O_3.$ Stearin Wasser Stearinsäure Glycerin.

Jede Leistung des Organismus muss den in ihm vorhandenen Vorrath an spannkraftführendem Material in entsprechendem Maasse vermindern. Da die Producte der Umsetzungen, auch wenn sie vorher im Körper gewisse Verwendungen gefunden haben, schliesslich nach aussen entleert werden, und übrigens eine Zurückverwandlung derselben in die ursprünglichen Ingredientien einen Aufwand von so viel Kraft erfordern würde, als der Process entwickelt hat, so ist ein Ersatz der spannkraftführenden Stoffe nur durch Zufuhr von aussen möglich. Für den Bestand des Organismus ist daher namentlich die fortwährende Zufuhr von freiem Sauerstoff und oxydirbaren Substanzen unentbehrlich. Die letzteren heissen organische Nahrungsstoffe.

Der Organismus enthält ausser seinen spannkraftführenden Bestandtheilen auch andere, nicht spannkraftführende (unorganische). Die Bedeutung derselben ist nur zum Theil aufgeklärt; sie scheint

^{*)} Man beachte, dass auch die einfache Oxydation in Wirklichkeit eine mit Austausch verbundene Atomumlagerung ist, da auch die sogenannten einfachen Körper, z.B. Sauerstoffgas, zusammengesetzte Molecüle haben.

hauptsächlich eine mechanische zu sein; einige dienen als Lösungsmittel für die organischen, andere tragen zur Gestaltung fester Körpertheile wesentlich bei, noch andere sind zusammen mit organischen integrirende Bestandtheile complicirter Verbindungen. Auch die unorganischen Stoffe werden fortwährend in gewissen Mengen nach Aussen entfernt, wobei sie zum Theil den auszuscheidenden Umsatzproducten ebenfalls als Lösungsmittel dienen; auch sie müssen daher beständig durch neue von Aussen aufzunehmende ersetzt werden, letztere sind die unorganischen Nahrungsstoffe.

Aus dem Gesagten erhellt, dass der Bestand des Organismus durch Aufnahme und Ausscheidung einem beständigen Wechsel unterliegt; man bezeichnet denselben als den Stoffwechsel des Organismus. —

Gerade entgegengesetzt dem thierischen scheint das Wesen des pflanzlichen Organismus überwiegend in solchen chemischen Processen zu bestehen, bei welchen die Producte geringere Haftwärme haben als die Ingredientien, also ein entsprechendes Kraftquantum verbraucht, in Form von Spannkraft aufgespeichert wird. Die Pflanze nimmt nämlich besonders die Producte der thierischen Umsatzprocesse auf (Kohlensäure, Wasser, Ammoniaksalze, letztere hervorgegangen aus gewissen thierischen Auswurfsstoffen und aus faulenden Thierkörpern) und reducirt dieselben, lagert die Radicale (Kohlenstoff, Wasserstoff, Stickstoff u. s. w.), unter einander und mit Sauerstoff verbunden, als sogenannte "organische Verbindungen" in sich ab, und übergiebt den grössten Theil des freigewordenen Sauerstoffs der Atmosphäre. Zur Trennung der einmal verbundenen Molecüle werden Quantitäten lebendiger Kraft verbraucht, welche den nach der Trennung wieder vorhandenen Spannkräften gleich sind; man kann also sagen, dass bei der Reduction lebendige Kräfte in Spannkräfte umgewandelt werden. Die lebendigen Kräfte, welche die Pflanze verbraucht, sind wie es scheint hauptsächlich gegeben: durch die ihr zugeführte Wärme (durch Leitung aus der Umgebung - die Pflanzen kühlen dieselbe ab, - durch Strahlung von der Sonne), ferner durch das von ihr absorbirte Licht (chemische Strahlen). Die Spannkraft aber, in welche diese lebendigen Kräfte umgewandelt werden, ist eben repräsentirt durch das getrennte Vorhandensein des freigewordenen Sauerstoffs und der in der Pflanze abgelagerten oxydationsfähigen organischen Verbindungen. (Es darf übrigens nicht unerwähnt bleiben, dass auch entgegengesetzte, den thierischen analoge Vorgänge in den Pflanzen vorkommen mögen; - so bilden manche Pflanzentheile Wärme; ferner erfordern die Gestaltungsvorgänge in den Pflanzen, ebenso wie die thierischen, lebendige Kräfte.) - Es ergiebt sich hieraus die äusserst wichtige Folgerung, dass sich Pflanzen- und Thierreich gegenseitig bedingen: Die Pflanze verbraucht lebendige Kraft und verwandelt sie in Spannkraft, indem sie reducirt, - das Thier wandelt Spannkraft in lebendige um, indem es oxydirt. Die Pflanze verbraucht die Oxydationsproducte des Thieres, CO2, H2O, u. s. w., - das Thier die Reductionsproducte der Pflanze, O einerseits und die in der Pflanze gebil-

deten organischen Verbindungen von C, H, N, O, etc. andrerseits. Letztere bilden, abgesehen von den unorganischen Stoffen, die einzige Nahrung des Thieres, denn auch das fleischfressende Thier geniesst in letzter Instanz nur die Umwandlungen pflanzlicher Nahrung.

Das Quantum der bei den chemischen Processen im Organismus freiwerdenden Kräfte ist durch die Natur des Processes und das Quantum der ihn eingehenden Ingredientien vollkommen bestimmt. In welchen Arten von Bewegung aber sich die freiwerdenden Kräfte äussern, welche Formen von Leistungen also aus den chemischen Umsetzungen hervorgehen, ist von Bedingungen abhängig, deren Wesen, wie in der ganzen Naturwissenschaft, so auch hier noch durchaus unbekannt ist. Man weiss nur, dass bestimmte Leistungsformen an bestimmte Apparate des Organismus gebunden sind, welche sowohl durch die in ihnen vorhandenen Stoffe (ihre chemische Zusammensetzung) als durch ihren besonderen Bau sich von einander unterscheiden, und welche man als Organe bezeichnet. Die allgemeinsten Bewegungsformen unter den Resultaten der thierischen Umsetzungen sind Wärme, Veränderungen des Aggregatzustandes und der Form; diese Veränderungen erfolgen entweder unmerklich langsam in den kleinsten Theilchen und werden dann als Wachsthum, Theilung u. dgl. bezeichnet, oder sie äussern sich in grösserem Maassstabe als Massenbewegung (mechanische Arbeit); von anderen Leistungsformen ist zu nennen die Electricität: bei manchen anderen Thieren kommt auch Lichtentwickelung vor. Dasselbe Organ kann neben einander, oder zu verschiedenen Zeiten, verschiedene Leistungsformen hervorbringen.

Zwischen den verschiedenen Bewegungsformen walten bekanntlich quantitative Aequivalenzverhältnisse ob. Eine Umsetzung welche, zur Wärmebildung führend, 1 Wärmeeinheit producirt, bringt z. B. wenn sie mechanische Arbeit verrichtet, 424 Grammmeter*) Arbeit hervor; ebenso kann 1 Wärmeeinheit in 424 Grammmeter Arbeit, und umgekehrt, verwandelt werden. —

Die Umsatzprocesse und somit die Leistungen des Organismus stehen zum grössten Theil, wenn nicht alle, unter einem gewissen regulirenden Einfluss, der von einem besonderen Apparate, dem Nervensystem ausgeht. Dieser Einfluss erstreckt sich natürlich stets auf beides, sowohl auf Menge und Natur der

^{*)} Eine Wärmeeinheit ist die Wärmemenge welche 1 grm. Wasser um 1°C erwärmen kann, und 1 Grammmeter die durch Hebung von 1 grm. um 1 mtr. verrichtete Arbeit.

Umsatzproducte, als auf die Grösse der frei werdenden Kräfte, der Leistung, obwohl wir gewöhnt sind, je nach dem, was wir für die wesentliche Function eines Organes halten, den einen oder den andern der beiden Erfolge in den Vordergrund zu stellen. So halten wir in einem Muskel den Einfluss des Nerven auf die Bewegung, also die Leistung, für den wesentlichen, während wir den gleichzeitigen Einfluss auf Art und Menge der gebildeten Umsatzproducte für gewöhnlich übersehen; bei der Drüse dagegen gilt der Einfluss der Nerven auf die Umsatzproducte (nämlich die specifischen Secretbestandtheile) als der wesentliche, während der gleichzeitige Einfluss auf die Wärmebildung, also die Kraftäusserung, gemeinhin vernachlässigt wird. - Der Mechanismus dieser Beeinflussung ist noch vollkommen unbekannt: mechanisch aufgefasst stellt sie sich dar als sog. "auslösende Kraft", d. h. als eine Kraft, welche eine gewisse Summe von Spannkraft in lebendige Kraft umwandelt. Bekanntlich kann eine verschwindend kleine auslösende Kraft grosse Mengen von Spannkräften freimachen, und es ist sehr wahrscheinlich, dass auch die auslösenden Krätte des Nervensystems, als Kräfte gemessen, nur einen sehr geringen Werth haben, dass demnach auch die ihnen, wie allen Kraftäusserungen im Organismus, vermuthlich ebenfalls zu Grunde liegenden Umsatzprocesse nur von geringem Umfange sind. - Ein zweiter, ebenso unerklärlicher Einfluss des Nervensystems bezieht sich auf die Form der Leistungen, durch welche sich die ausgelösten Kräfte äussern; dieser qualitative Einfluss scheint mit dem quantitativen eng zusammenzuhängen.

Zur Erläuterung des Begriffs der Auslösung und der auslösenden Kraft diene Folgendes: Eine auslösende Kraft ist diejenige, welche ein Hinderniss hinwegräumt, das eine irgendwo angehäufte Spannkraft bis dahin an ihrem Freiwerden verhinderte. Eine aufgezogene, aber durch einen Sperrhaken am Gehen gehinderte Uhr repräsentirt z. B. eine gewisse Summe von Spannkraft; die Schwere des Gewichts oder die Elasticität der Feder sind an ihrer Wirkung in Form von Bewegung, gehindert. Sowie indess der Sperrhaken weggezogen wird, werden die Spannkräfte frei oder lebendig, das Gewicht fällt, die Feder nähert sich ihrer natürlichen Form, die Uhr geht. Die Kraft, welche den Sperrhaken zurückzicht, welche also die Uhr auslöst, ihre Spannkräfte frei macht, heisst die "auslösende Kraft." Ihre Grösse steht offenbar häufig in gar keinem Verhältniss zu der Grösse der ausgelösten; dieselbe Kraft, welche den Sperrhaken einer durch ein Grammgewicht getriebenen Uhr zurückzieht, könnte auch eine durch ein Centnergewicht getriebene auslösen. Andere Beispiele solcher Auslösungen sind: ein Funke, der eine Pulvermasse entzündet und dadurch enorme Kraftmengen frei macht, eine kleine Bewegung, die eine starke Batterie

schliesst. Jedoch giebt es auch Auslösungsverhältnisse, wo die auslösende Kraft nicht wie oben momentan den ganzen Vorrath von Spannkräften freimacht, sondern nur einen Theil derselben, dessen Grösse zu ihrer eigenen in einem bestimmten, proportionalen oder complicirteren Verhältnisse steht. Ist z. B eine Wassermasse durch eine Schleuse mit rechteckigem Thore am Ausströmen verhindert, so verhalten sich die ausströmenden Wassermengen, also auch die durch ihren Fall repräsentirten lebendigen Kräfte, wie die Höhen, um welche das Schleusenthor gehoben wird, oder die dazu nöthigen — hier auslösend wirkenden — Kräfte. Der letzteren Art sind, wie es scheint, auch alle Auslösungsvorrichtungen im Organismus.

Die nähere Betrachtung des Nervensystems ergiebt nun, dass nicht nur seine Wirkungen auf die Arbeitsorgane des Körpers (so mögen hier kurz zum Unterschiede von den nervösen diejenigen Organe heissen, in welchen beträchtlichere Kraftmengen freigemacht und leicht nachweisbare Arbeiten, Wärmebildung, mechanische Arbeit, etc. geleistet werden, also namentlich Muskeln und Drüsen), sondern auch die seiner einzelnen Theile auf einander, als Auslösungen aufzufassen sind. Ein Theil des Nervensystems, der sog. "leitende", kann nämlich gedacht werden als aus Reihen von Theilchen bestehend, deren jedes gewisse Spannkräfte besitzt, und die so miteinander verbunden sind, dass die freigewordenen Kräfte eines Theilchens die Spannkräfte des Nachbartheilchens auslösen; auf diese Weise vermittelt eine auslösende Kraft, welche auf das erste Theilchen einer solchen Reihe wirkt, hintereinander eine Kette von Auslösungen, bis endlich die freigewordenen Kräfte des letzten Theilchens in einem andern Organe (z. B. wie oben, in einem Arbeitsorgane) Kräfte auslösen. Solcher Auslösungsketten unterscheidet man zwei Arten mit verschiedenen Ausgangs- und Endpuncten; die eine geht von sog. "Sinnesorganen" aus, d. h. von Organen, in welchen ein äusserer Einfluss (Druck, Wärme, Schall, Licht, etc.) als auslösendes Moment wirkt, und mündet in sog. "nervösen Centralorganen": diese Ketten nennt man centripetale; die zweite geht von nervösen Centralorganen aus, und mündet in den "Arbeitsorganen"; die letzteren heissen centrifugale.

Die nervösen Centralorgane sind hiernach als Ausgangs- und als Endpuncte von Auslösungsketten zu betrachten. Welche Vorgänge aber im ersten Falle als erste auslösende Momente wirken, und welche andere im zweiten als Resultat der centripetal anlangenden Auslösungen auftreten, ist unbekannt; über diese Frage giebt es nur Hypothesen, von denen bei den Centralorganen die Rede sein wird. Hier sei nur erwähnt, dass es viele Fälle giebt, wo die

Frage einfach gelöst scheint, nämlich wo eine centripetale Kette im Centralorgan unmittelbar eine centrifugale auslöst, so dass eigentlich nur eine einzige, von einem Sinnesorgan ausgehende und in einem Arbeitsorgan mündende Kette vorhanden ist (Reflexvorgang). Endlich ist zu erwähnen, dass in einem Theile der Centralorgane gewisse materielle Vorgänge, — unter andern auch solche, welche als auslösende Momente für centrifugale Ketten wirken, und solche, welche als Resultate centripetal anlangender auftreten, — mit einer völlig undefinirbaren Erscheinung, die man als Vorstellung bezeichnet, auf unerklärliche Weise verbunden sind. Den Inbegriff sämmtlicher vorhandenen und möglichen Vorstellungen eines Organismus bezeichnet man mit dem Worte Seele.

Die Aufgabe der Physiologie ist es nun, die Molecular-Processe des Organismus zu erforschen und alle seine Leistungen im Sinne des bisher Angedeuteten auf jene zurückzuführen. Für jene naturwissenschaftliche Behandlung der seelischen Erscheinungen dagegen fehlt jeder Angriffspunct, da sie sich unter keinen der naturwissenschaftlichen Begriffe unterordnen lassen. Die Physiologie muss sich daher hier vorläufig auf die Ermittlung der Organe beschränken, an welche sie geknüpft sind. Auch von der übrigen Aufgabe, deren Lösung man als möglich zu bezeichnen wagen darf, ist erst ein kleiner Theil wirklich erledigt.

Für die Darstellung des bisher Ermittelten einen streng logischen Gang zu finden, ist schwierig. Da unsere Kenntnisse über den Zusammenhang zwischen den chemischen Vorgängen und den Leistungen des Organismus so gering sind, dass sie durch die bereits angeführten allgemeinen Bemerkungen fast erschöpft werden, so darf man noch nicht daran denken, beide, die so eng an einander geknüpft sind, in ihrem natürlichen Zusammenhange darzustellen, sondern es ist zweckmässiger, den Stoffwechsel und den Kraftwechsel (so sei es gestattet die Umwandlung von Spannkräften in lebendige kurz zu bezeichnen) völlig getrennt in zwei besonderen Abschnitten abzuhandeln. Aber hier zeigt sich eine neue Schwierigkeit durch das Ineinandergreifen der organischen Processe. Leistung'en des Organismus nämlich, also Resultate des Kraftwechsels,

namentlich mechanische, werden vielfach zur Dirigirung der Stoffe verwandt, so dass ihre Kenntniss bereits für das Verständniss des Stoffwechsels erforderlich ist. So wird es also kommen, dass bereits im ersten, vom Stoffwechsel handelnden Abschnitt vielfach von Bewegungen, also von freigewordenen Kräften, die Rede ist, freilich ohne Rücksicht auf ihren Ursprung. Umgekehrt ist unsere Kenntniss von dem besonderen Stoffwechsel einzelner Arbeitsorgane so gering, dass es aus vielen Gründen zweckmässiger ist, das darüber Ermittelte erst im zweiten Abschnitt bei den Arbeitsorganen (z. B. Muskeln) vorzubringen. — Der dritte Abschnitt handelt von der Physiologie der Auslösungsorgane, des Nervensystems. — Ein vierter bespricht die Entstehung, Entwicklung, die zeitlichen Veränderungen und den Tod des Organismus.

Erster Abschnitt.

Der Stoffwechsel des Organismus.

Einleitung.

Chemische Bestandtheile des menschlichen Körpers.

Folgende Elemente setzen den menschlichen Körper zusammen: Sauerstoff, Wasserstoff, Kohlenstoff, Stickstoff, Schwefel, Phosphor, Chlor, Fluor, Kiesel; — Kalium, Natrium, Calcium, Magnesium, Eisen, Mangan.

Als inconstante und höchst wahrscheinlich unwesentliche Bestandtheile finden sich noch Kupfer und Blei (ersteres vielleicht nur vom Gebrauch kupferhaltiger Materialien bei der Untersuchung herrührend, Lossen). Vermuthlich finden sich auch andere, in geringen Mengen überall verbreitete Metalle spurweise im Körper; nachgewiesen ist z. B. Lithium.

Nur wenige dieser Elemente sind in freiem Zustande*) im Organismus vorhanden, nämlich:

1. Sauerstoff $O_2 o=0$, wird in freiem Zustande in den Körper aufgenommen, und wird hier (s. Einleitung) zur Oxydation (Verbrennung) der Körperbestandtheile verwandt. Aus später anzugebenden Gründen vermuthen Einige, dass er diese allmählich und ohne Hülfe hoher Temperatur erfolgende Verbrennung in seiner Modification als Ozon $O_3 - 0 - 0 - 0 - 0$ der O_{0-0} bewerkstelligt. Er

^{*)} Man erinnere sich übrigens dass auch die sog. freien Elemente in Wirklichkeit Verbindungen mehrerer gleichnamiger Atome sind, z. B. Sauerstoff Og, Ozon Og, Stickstoff Ng.

findet sich in allen Körperflüssigkeiten, theils einfach gelöst, theils in lockerer chemischer Bindung.

Die Existenz einer dritten Sauerstoffmodification, des "Antozons", über deren Eigenschaften die Angaben verschieden sind, wird neuerdings bestritten, und die ihr zugeschriebenen Erscheinungen auf die Gegenwart von Wasserstoffsuperoxyd bezogen.

2. Stickstoff $N_2 N \equiv N$ wird gasförmig aus der Atmosphäre aufgenommen und findet sich in Folge dessen in den Körperflüssigkeiten gelöst. Ausserdem wird er vielleicht bei der Oxydation stickstoffhaltiger organischer Verbindungen frei, und in diesem Zustande ausgeschieden.

Auch Wasserstoffgas H2 kommt im Darmcanal als Zersetzungsproduct unbekannten Ursprungs, vielleicht von Buttersäuregährung herrährend, vor.

Chemische Verbindungen.

Nur in geringem Umfange ist im Organismus die Entstehung chemischer Verbindungen aus Elementen oder aus einfacheren Verbindungen, sogenannte synthetische Processe, bisher nachgewiesen worden. Die genauer bekannten chemischen Processe im Körper bestehen im Gegentheil meist in dem Zerfall complicitter, ihrer Zusammensetzung nach nur unvollkommen, ihrer Constitution nach garnicht bekannter Verbindungen, welche mit der Nahrung in den Körper gelangen; sie bestehen sämmtlich aus Kohlenstoff, Wasserstoff und Sauerstoff, viele enthalten ausserdem Stickstoff, andere noch Schwefel, Phosphor, Eisen. Das hauptsächlichste Agens für diesen Zerfall ist der durch die Athmung in den Körper gelangende Sauerstoff, unter dessen Einfluss complicirte Verbindungen zu einfacheren, gleichzeitig sauerstoffreicheren, sogenannten Oxydationsproducten, zerfallen. Die einfachsten Producte, welche auf diese Weise entstehen, sind Kohlensäure, Schwefelsäure, Phosphorsäure und Wasser, in welchem Falle sich die einzelnen Elemente mit soviel Sauerstoff verbunden haben, als sie überhaupt aufnehmen können. Der Stickstoff spaltet sich nicht auf solche Weise mit Sauerstoff verbunden ab, sondern er isolirt sich entweder vollkommen, indem er gasförmig ausgeschieden wird, - ein Vorgang dessen Vorkommen noch nicht mit Sicherheit constatirt ist, - oder er verlässt den Organismus in einfachen Verbindungen, z. B. als Ammoniak, oder als ammoniakartige Verbindungen (Ammoniake in denen Wasserstoff durch andere Atomverbindungen vertreten ist), z. B. Harnstoff.

Chemische Verbindungen. Uebersicht.

Zwischen diesen einfachen Verbindungen, welche der Organismus ausscheidet, und den verwickelten, welche er aufnimmt, existiren nun eine sehr grosse Anzahl von Zwischenstufen, welche den Hauptbestand des Organismus ausmachen. Dieselben sind um so besser bekannt, je einfacher sie zusammengesetzt sind, mit anderen Worten, je näher sie der Ausscheidung stehen. Bei dieser letzteren kann man auch mit ziemlicher Sicherheit den Oxydationsvorgang und die allmähliche Vereinfachung der Verbindungen verfolgen; man kann auch durch künstliche Oxydation manche dieser Verbindungen aus ihren Vorgängern darstellen, und umgekehrt manche aus einfacheren Verbindungen und aus den Elementen synthetisch erhalten. Bei den verwickelteren, nur wenig bekannten Verbindungen lässt sich dagegen nicht mit gleicher Sicherheit eine Entstehung derselben durch Oxydation behaupten, und es ist möglich (ja sogar zum Theil wahrscheinlich), dass hier auch synthetische Processe vorkommen.

Eine Anzahl von Substanzen, welche der Körper aufnimmt, gehen keine derartigen Veränderungen wie die beschriebenen ein. sondern durchlaufen den Organismus ohne Wechsel ihrer Atomgruppirung. Diese sogenannten unorganischen Stoffe spielen im Körper eine noch nicht völlig aufgeklärte Rolle. Die hauptsächlichste derselben, das Wasser, dient als allgemeines Lösungsmittel im Körper, bildet der Masse nach den Hauptbestandtheil sämmtlicher Organe, mit Ausnahme der Knochen, und wird beständig in grossen Mengen aufgenommen und ausgeschieden, ein kleiner Theil auch im Körper selbst gebildet (s. oben). Die übrigen sind die sogenannten unorganischen Salze. Auch sie kommen in allen Körpertheilen vor, aber (mit Ausnahme der Knochen, die grösstentheils aus Salzen bestehen) nur in geringer Menge; bei der Verbrennung von Körpertheilen bleiben sie als "Asche" zurück. Ihre Bedeutung im Organismus ist nur zum kleinen Theile aufgeklärt. Grossentheils scheinen sie nicht einfach gelöst zu sein, sondern mit complicitteren (organischen) Körperbestandtheilen noch unbekannte chemische Verbindungen zu bilden. Nur so ist es verständlich, dass ihre Menge in sehr constanten Verhältnissen zu der anderer Substanzen steht (z. B. in den Knochen) und dass die Löslichkeit und Beschaffenheit gewisser Körper (z. B. der Eiweisskörper) sehr von den gleichzeitig vorhandenen Salzen abhängt. Die Kenntniss der im Organismus wirklich vorkommenden Salze ist übrigens noch höchst unvollkommen, da einmal die chemische Analyse der Aschen

Wasser. Säuren und Salze: Mineralsäuren.

nur die darin vorhandenen Säuren und Metalle, nicht aber deren Verbindungen als Salze kennen lehrt, und zweitens ein Theil der Säuren, die sich in der Asche finden, erst durch die Verbrennung selbst entstanden ist (z. B. der Phosphorsäure, Schwefelsäure, Kohlensäure).

Unter den in den Auswurfsstoffen des Körpers vorkommenden Salzen finden sich auch solche, welche nicht mit der Nahrung aufgenommen, sondern erst im Organismus entstanden sind. Es sind dies namentlich kohlensaure, schwefelsaure, phosphorsaure Salze.

Folgende chemische Verbindungen kommen im Körper vor:

1. Wasser $H_2O = H_2O = H$ ist wie schon bemerkt als allgemeines Lösungsmittel ein Hauptbestandtheil sämmtlicher Säfte und Gewebe (etwa 70 pCt. des ganzen Körpers). Es wird in grossen Mengen fortwährend mit der Nahrung aufgenommen und aus dem Körper ausgeschieden; kleinere Mengen bilden sich im Organismus durch Oxydation des Wasserstoffs organischer Verbindungen.

Wasserstoffsuperoxyd, HO H-0- oder H₂O₂ H-0-0-H soll nach Einigen im Organismus vorkommen und bei der thierischen Oxydation eine Rolle spielen.

2. Säuren und Salze.

Folgende Säuren sind theils frei, theils in Salzen, theils in complicitteren weiter unten zu besprechenden Verbindungen (Aetherarten, Amidkörper etc.) im Organismus nachgewiesen:*)

a. Unorganische (C-freie) Säuren.

1) Chlorwasserstoffsäure HCl a-h scheint frei im Magensaft vorzukommen (vielleicht in complicitterer saurer Verbindung, vgl. Cap. II.). Ihre Salze (Chloride) sind im Körper sehr verbreitet, namentlich Chlornatrium, Chlorcalcium.

2) Schwefelsäure SO₂(OH)₂ n-o-s-o-n kommt in Salzen (neutrales schwefelsaures Natron, schwefelsaurer Kalk), ferner in complicitteren Verbindungen (vgl. unten: Taurin, Eiweisskörper) vielfach im Organismus vor.

Das saure Secret von Dolium galea enthält freie Schwefelsäure.

^{*)} In den folgenden Modellen sind die durch Metall vertretbaren H-Atome der Säuren durch ein beigefügtes * bezeichnet; je nach der Zahl derselben sind die Säuren 1-, 2- oder mehrbasisch.

Säuren und Salze: Mineralsäuren, Fettsäuren.

3) Phosphorsäure (gewöhnliche, 3 basische oder c-Phosphor-

phosphorsaures Kali und Natron, basisch phosphorsaurer Kalk, basisch phosphorsaure Magnesia, phosphorsaure Ammoniakmagnesia, (PO_4MgNH_4) und ferner in complicitteren Verbindungen (vgl. unten, Glycerinphosphorsäure, Lecithin) vielfach im Körper vor.

4) Kieselsäure SiO_2 o=si=o ist in einigen Geweben des Körpers, vielleicht nur als zufälliger Bestandtheil durch Einathmen von Sandstaub, gefunden worden.

b. Organische (C-haltige) Säuren.

5) Fettsäuren (allgemeine Formel C_nH_{2n-1}O(OH)). Die Reihe der bis jetzt bekannten Fettsäuren lautet:

CHO(OH)	н-с-о-н
$C_2H_3O(OH)$	
$C_3H_5O(OH)$	H H O H-C-C-C-O-H H H
C ₄ H ₇ O(OH)	H H H O H-C-C-C-C-O-H H H H
C ₅ H ₁₀ O ₂ C ₅ H ₁₀ O ₂	
C7H14O2	
$\mathrm{C_8H_{16}O_2}$	
$C_9H_{18}O_2$	
and the second se	
$C_{16}H_{32}O_2$	
	ahrscheinlich ein Gemenge von C16H32O2 und C18H36O2
and the second se	016H3202 Und 018H3602
C20H40O2	
	$C_2H_3O(OH)$ $C_3H_5O(OH)$ $C_4H_7O(OH)$ $C_6H_{12}O_2$ $C_6H_{12}O_2$ $C_7H_{14}O_2$ $C_8H_{16}O_2$ $C_9H_{18}O_2$ $C_{10}H_{20}O_2$ $C_{12}H_{24}O_2$ $C_{16}H_{32}O_2$ $C_{16}H_{32}O_2$ $C_{18}H_{36}O_2$ (was $C_{18}H_{36}O_2$

Diese (1basischen) Säuren bilden eine "homologe" Reihe; ihr Siedepunct nimmt mit jedem eintretenden CH2 um 19° ab; die C-ärmeren sind flüssig und flüchtig,

14

die C-reicheren fest und nichtflüchtig. Aus den letzteren entstehen die ersteren, indem CH₂ durch Oxydation (Bildung von CO₂ und H₂O) herausgenommen wird, z. B. $C_4H_8O_2 + 3O = C_3H_6O_2 + CO_2 + H_2O.$ Buttersäure. Propionsäure.

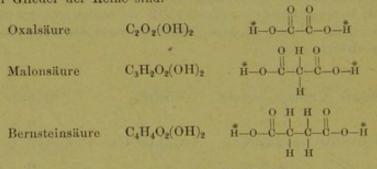
Freie flüchtige Fettsäuren findet man häufig bei der Analyse von Körperbestandtheilen; indess ist ihr Vorkommen während des Lebens nicht festgestellt; die festen Fettsäuren kommen krystallisirt zuweilen in früher fetthaltig gewesenem Zellinhalte vor. Alkalisalze der Fettsäuren (Seifen, in Wasser löslich), ferner Amidverbindungen (vgl. unten, Glycin, Leucin), und vor allem gewisse ätherartige Verbindungen derselben (s. unten, neutrale Fette) kommen in sehr vielen Körperbestandtheilen vor; ausserdem sind sie in gewissen noch complicirteren Verbindungen (vgl. Lecithin) als constituirende Elemente vorhanden.

6) Glycolsäuren (allgemeine Formel C_nH_{2n}-O(OH)₂).

Die Glycolsäuren entstehen durch Oxydation aus den Fettsäuren, indem ein mit C verbundenes H-Atom durch OH ersetzt wird; auch in diesem OH ist H durch Metall vertretbar, so dass diese Säuren 2basisch sind. Aus denjenigen Fettsäuren, welche mehr als 2 C-Atome enthalten (also von der Propionsäure ab) können mehrere isomere Glycolsäuren entstehen, je nach dem C-Atom, in welches die zweite OH-Gruppe eintritt; so entstehen z. B. die beiden isomeren Milchsäuren (Oxypropionsäuren), die sich in ihren Salzen unterscheiden. Die bis jetzt bekannten Glycolsäuren sind:

Kohlensäure (Oxyameisensäure)	CO(OH) ₂	о Ш— 11—0—С—0—Н
Glycolsäure (Oxyessigsäure)	C ₂ H ₂ O(OH) ₂	н о 1 Ш о-с-с-о-н 1
Milchsäure (Oxypropionsäure):	C ₃ H ₄ O(OH) ₂	H
Fleischmilchsäure		H H O H - O - C - C - C - O - H H H H
Gewöhnliche Milchsäure		$ \begin{array}{c} \mathbf{H} \mathbf{H} \mathbf{O} \\ \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \\ \mathbf{H} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{O} \mathbf{H} \\ \mathbf{H} \mathbf{H} \mathbf{O} \\ \end{array} $
Butlactinsäure (Oxybuttersäure)	C4H8 O3	n u
Valerolactinsäure (Oxybaldriansäure)	$C_5H_{10}O_3$	H *
Leucinsäure (Oxycapronsäure)	$\mathrm{C_6H_{12}O_3}$	

Von diesen Säuren kommt nur die Kohlensäure und die beiden Milchsäuren im Organismus vor; die Glycolsäure und Leucinsäure (Oxyessigsäure, Oxycapronsäure) gewinnt man aus dem Glycin (Amidoessigsäure) und Leucin (Amidocapronsäure) durch salpetrige Säure (vgl. unten).


Säuren und Salze: Glycolsäuren, Oxalsäuren, Oelsäuren.

Kohlensäure. Die oben bezeichnete salzbildende Kohlensäure existirt im freien Zustande nicht, sondern nur das Anhydrid derselben, $CO_2 \quad 0=c=0$; die Kohlensäure kommt sowohl frei (als absorbirtes Gas), als in (neutralen und sauren) Salzen, als auch in amidartigen Verbindungen (s. Harnstoff u. s. w.) in fast allen Körperbestandtheilen vor und wird in allen diesen Formen als hauptsächlichstes Oxydationsproduct des Körpers in grossen Mengen ausgeschieden. Kohlensaure Salze, welche in den Aschen gefunden werden, sind häufig zum Theil erst durch den Veraschungsprocess entstanden. Die wichtigsten kohlensauren Salze des Körpers sind: einfach und doppelt kohlensaures Natron (CO_3Na_2 und CO_3NaH), kohlensaurer Kalk (CO_3Ca), kohlensaure Magnesia (CO_3Mg).

Fleischmilchsäure ist ein wichtiges Stoffwechselproduct der Muskeln; gewöhnliche Milchsäure findet sich in verschiedenen Körperflüssigkeiten, wahrscheinlich stets als Product der Milchsäuregährung des Zuckers (s. unten).

7) Oxalsäuren (allgemeine Formel C_nH_{2n-4}O₂(OH)₂)

Die Oxalsäuren sind 2basische Säuren, welche durch Oxydation der Fettsäuren oder Glycolsäuren (mit Austritt von H₂O) entstehen. Die hier in Betracht kommenden Glieder der Reihe sind:

Von diesen kommt die Oxalsäure normal, die Bernsteinsäure vielleicht (neuerdings bestritten), im Organismus in Form von Salzen vor; alle drei genannten aber in complicirteren Verbindungen (vgl. unten, Harnstoffe, Harnsäure u. s. w.).

8) Oelsäuren (allgemeine Formel C_nN_{2n-3}O(OH).

C18H33O(OH)

Diese einbasischen Säuren entsprechen genau den Fettsäuren, in welchen jedoch 2 C-Affinitäten nicht (wenigstens nicht durch H) gesättigt sind. Einige Glieder dieser Reihe sind:

Acrylsäure $C_3H_3O(OH)$ H H OH H OCrotonsäure $C_4H_5O(OH)$ H-C-C-C-O-HoderAngelicasäure $C_5H_7O(OH)$

Oelsäure

16

.

Nur die Oelsäure (Oleinsäure, Elainsäure) kommt im Körper vor und zwar in denselben Formen wie die Fettsäuren (als Seife, als neutrales Fett (Olein) und als Lecithin).

9) Cholalsäuren.

Es sind dies Säuren von noch unbekannter, jedenfalls complicirter Constitution. Sie sind in Wasser unlöslich, bilden leicht lösliche, seifenähnliche Alkalisalze, und zeigen eine gemeinsame characteristische Reaction (PETTEN-KOFER'sche Probe): Mit Zucker und concentrirter Schwefelsäure auf 60º erwärmt geben sie eine purpurviolette Färbung.

Sie kommen in der Galle und im Darminhalt aller Thiere, meist in complicitteren Verbindungen (gepaarte Gallensäuren, vgl. unten, Glycin) vor. Die bis jetzt bekannten sind:

Cholalsäure C24H40O5

Anhydride derselben: Choloidinsäure C24H38O4 $Dyslysin \qquad C_{24}H_{36}O_{3}$ Hyocholalsäure $C_{25}H_{40}O_4$ Dyslysin $C_{24}H_{36}O_3$ HyodyslysinHyodyslysin $C_{25}H_{38}O_3$ Chenocholalsäure $C_{27}H_{44}O_4$ Guanogallensäure?

Lithofellinsäure C20H36O4

10) Aromatische Säuren. Säuren, in welchen die Atomgruppe Benzol C6H6 enthalten ist; in dieser sehr beständigen Gruppe kann jedes H-Atom durch 1 werthige Atome oder Atomgruppen ersetzt werden; unter andern können so die obengenannten Fettsäuren eintreten indem sie durch Wegnahme von einem H 1 werthig werden; das Verhältniss lässt sich auch so ausdrücken, dass die 1 werthige Gruppe Phenyl C_6H_5 (= C_6H_6 – H) in einer grossen Anzahl von Verbindungen 1 H vertreten kann, z. B.

н н		н н
	0	
11		0-0 0
н—с с—н	н-с-о-й	H-C C-C-O-H
C=C		C=C
/ /		/-
н н		Н Н
C_6H_6	CH ₂ O ₂	$CH(C_6H_5)O_2$
Benzol.	Ameisensäure.	Phenylameisensäure oder Benzoësäure.
Einige aromatische	Säuren von ph	ysiologischem Interesse sind:
Benzoësäure (Phenyl-Ame		CH(C ₆ H ₅)O ₂
Chlorbenzoësäure (Chlorp		
S-1: 10 1 1		

Salicylsäure (Oxyphenyl-Ameisensäure)

CH(C₆H₄[OH])O₂ Anissäure (Methyloxyphenyl-Ameisensäure) $CH(C_6H_4[O.CH_3])O_2$

Diese Säuren kommen im Organismus an sich nicht regelmässig vor, jedoch durchwandern sie denselben häufig in Folge ihres Vorkommens in pflanzlicher Nahrung und gehen dann im Organismus eigenthümliche Verbindungen ein (vgl. unten, Hippursäure). Möglicherweise sind sie auch als Bestandtheile in complicirteren Körpern enthalten, da eine ihnen nahestehende Substanz (Tyrosin, s. unten) als Zersetzungsproduct der Eiweisskörper auftritt.

Hermann, Physiologie. 5. Aufl.

2

3. Alkohole.

Von unzweifelhaften Alkoholen kommt nur einer, das Cholesterin $C_{26}H_{43}(OH)$, dessen Constitution noch unbekannt ist, als solcher im Organismus vor, und zwar in den Nervensubstanzen, der Galle und den Blutkörperchen.

Das Cholesterin ist in Wasser unlöslich, in Aether und heissem Alkohol löslich, es krystallisirt aus letzterem in rhombischen Tafeln, die sich mit Schwefelsäure und Jod blau färben.

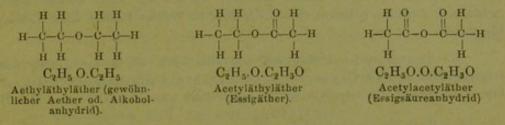
Das Glycerin, $C_3H_5(OH)_3$, ein dreiatomiger Alkohol (Schema p. 20) kommt wahrscheinlich nur in Form von Aetherarten im Körper vor (s. unten).

Zu den Alkoholen sind aber noch höchst wahrscheinlich die Zuckerarten zu rechnen (vielatomige Alkohole), deren Constitution unbekannt ist.

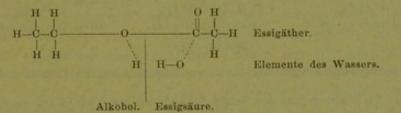
Die Zuckerarten sind leicht lösliche, süssschmeckende, krystallisirbare Körper, deren Lösungen die Polarisationsebene drehen, und die durch ihre leichte Oxydirbarkeit viele Metalloxyde zu Oxydulen oder Metallen reduciren. Sie zerfallen unter der Einwirkung von gewissen Organismen (Hefezellen) und anderen sog. Fermenten unter Wärmeentwicklung in einfachere Verbindungen ("Gährungsprocesse"). Folgende Zuckerarten kommen im Organismus vor:

Traubenzucker $C_6H_{12}O_6$ (syn. Stärkezucker, Krümelzucker, Harnzucker, Leberzucker), kommt spurweise im Blute, in der Leber, in den Muskeln und im Harne (?) vor. In pathologischen Zuständen kann er massenhaft auftreten. Ausserdem ist dieser Atomcomplex in vielen compliciteren Körperbestandtheilen vorhanden (s. unten). Er dreht die Polarisations-Ebene nach rechts.

Gährungen: a. Zerfall in Alkohol und Kohlensäure $(C_6H_{12}O_6 = 2 C_2H_6O + 2 CO_2)$ bei Gegenwart von Hefe; b. Zerfall in Milchsäure (p. 16) $(C_6H_{12}O_6 = 2 C_3H_6O_3)$ bei Gegenwart von sich zersetzenden Eiweisskörpern.


Milchzucker $C_{12}H_{22}O_{11}$, Bestandtheil der Milch, ebenfalls rechtsdrehend. Dieser Zucker ist direct nur der Milchsäuregährung fähig, wird aber durch Kochen mit verdünnter Schwefelsäure in eine der alkoholischen Gährung fähige Zuckerart ("Lactose") verwandelt (s. unten p. 20).

Inosit C₆H₁₂O₆, Bestandtheil der Muskeln, nicht drehend, ebenfalls der Milchsäuregährung fähig.


Die Zuckerarten und deren Anhydride (s. u. p. 21) werden gewöhnlich unter dem Namen "Kohlenhydrate" zusammengefasst, welcher nur ausdrückt, dass sie (ausser C) H und O in dem Mengenverhältniss wie sie im Wasser vorkommen (H₂O) enthalten Aetherarten und Anhydride: Hydrolytische Spaltungen. Glycerinäther. 19

4. Aetherarten und Anhydride.

Wenn Alkoholradicale^{*}) oder Säureradicale oder Alkohol- und Säureradicale durch Sauerstoffatome zusammengehalten werden, so entstehen Aether; sind mehrere gleiche Radicale auf diese Weise untereinander verbunden, so nennt man die Verbindungen auch Anhydride. Z. B.

Die Aetherarten und Anhydride entstehen aus den Alkoholen und Säuren durch Austritt von H₂O und gehen umgekehrt durch Aufhahme von H₂O wieder in diese über. Der erstere Process ist eine Synthese, der zweite eine Spaltung; beide Processe kann man zum Unterschied von anderen Synthesen und Spaltungen als hydrolytische bezeichnen. Die Kolle, welche das Wasser dabei spielt, erhellt aus folgendem Schema; man sieht wie durch Eintritt der Wasseratome in

der angedeuteten Weise die Spaltung in Alkohol und Essigsäure erfolgt. Die hydrolytischen Spaltungen werden zuweilen durch blosse Berührung mit Wasser, in andern Fällen durch Erhitzung mit Wasser (zuweilen erst über 100⁰, "Ueberhitzen") oder durch Kochen mit Wasser und Mineralsäuren^{**}), endlich schon bei mässiger Temperatur durch gewisse ("hydrolytische") Fermente (s. unten) bewirkt. Im Organismus kommen folgende Aether und Anhydride vor:

1) Glycerinäther.

a. Die neutralen Fette (Schema s. unten) sind dreifache Aether des 3atomigen Alkohols Glycerin (p. 18) mit den Fettsäuren (p. 14) und der Oelsäure (p. 17). Thierische Fette sind: Olein (genauer Triolein, flüssig; die nächstfolgenden fest), Stearin, Margarin (vgl. p. 14 Anm.), Palmitin; ausserdem in der Milch (Butterfette): Myristin, Caprinin, Caprylin, Capronin, Butyrin.

Die neutralen Fette sind flüssig (Oele) oder leicht schmelzbar, in Wasser unlöslich, in Aether und heissem Alkohol leicht löslich; flüssig machen sie Papier

^{*)} Unter "Radical" eines Alkohols oder einer Säure versteht man die nach Wegnahme der OH-Gruppen übrigbleibende Atomgruppe.

^{**)} Die Wirkungsweise der Mineralsäuren ist in diesem Falle noch nicht ganz verständlich; vgl. auch unten bei den Fermenten.

20 Aetherarten und Anhydride: Glycerinäther, Walrath, Zuckeranhydride.

durchscheinend (Fettflecken); durch colloide Substanzen lassen sie sich in Wasser in feinen Tropfen vertheilen, wobei die Flüssigkeit weiss und undurchsichtig wird (Emulsion). Durch hydrolytische Fermente oder durch Ueberhitzen mit Wasser (s. oben) werden sie unter Wasseraufnahme gespalten in Glycerin und freie Fettsäure, welche letztere, wenn sie zu den flüchtigen gehört, den "ranzigen" Geruch bewirkt. Durch Alkalien werden die Fette ebenso zersetzt, indem sich fettsaure Alkalien (Seifen) bilden, im Wasser löslich; diese Lösungen lösen Fette.

b. Den neutralen Fetten schliesst sich noch ein anderer, aber saurer Glycerinäther an, die Glycerinphosphorsäure $C_3H_5(OH)_2O(PO[OH])_2$, d. h. eine Vereinigung von Glycerin mit Phosphorsäure unter Austritt von 1 Mol. H₂O.

HHH	H	Н	Н	ннн
н-с-с-н	н-с-		СН	н-с-с-н
000	ò	0	ò	000
ннн	0=0	0=0	C=0	НРИ
	н-с-н	н.с.н	н.с.н	н-о о-н
	н	H	H	0)
C ₃ H ₈ O ₃	C ₃ E	I5.03(C2E	$(I_3O)_3$	C ₃ H ₉ PO ₆
Glycerin (p. 18).	Triac	etylglyceri (Triacetin eutrales F	Glycerinphosphorsäure.	

Die Glycerinphosphorsäure ist ein Zersetzungsproduct des Lecithins (p. 22).

2) Im Walrath (aus den Schädelhöhlen einiger Wale) kommen (einatomige) Aether der Fettsäuren mit dem Cetylalkohol (Aethal) C₁₆H₃₃.OH vor, namentlich Palmitinsäure-Cetyläther C₁₆H₃₃.O.C₁₆H₃₁O.

3) Zuckeranhydride. Im Pflanzenreich sind gewisse Substanzen sehr verbreitet, welche durch hydrolytische Einflüsse (s. oben: Kochen mit verdünnten Säuren, Einwirkung gewisser Fermente) sich unter Wasseraufnahme in Zucker verwandeln, also als Anhydride des Zuckers zu betrachten sind. Die Hauptvertreter derselben sind: Gummi $C_{12}H_{22}O_{11}$, Stärke $C_6H_{10}O_5$, Cellulose $C_6H_{10}O_5$, und das Zwischenproduct zwischen Stärke und Zucker: Dextrin $C_6H_{10}O_5$. Die Formeln dieser Körper, welche sich anscheinend zu den Zuckerarten verhalten wie die Aether zu den Alkoholen, wären demnach zu vervielfachen (Stärke $C_{12}H_{20}O_{10}$ oder $C_{18}H_{30}O_{15}$ etc.); und ihre "Umwandlung" in Zucker wäre in Wirklichkeit eine Spaltung. Auch unter den Zuckerarten selbst ist vermuthlich der Milchzucker (p. 18), der sich durch hydrolytische Einflüsse in eine dem Traubenzucker verwandte Zuckerart, die Lactose, verwandelt oder vielmehr spaltet, ein Aether der Lactose; ähnlich verhält sich anscheinend der Rohrzucker etc.

Andere in den Pflanzen vorkommende Körper, die Glucoside, sind Aether aus Zucker und anderen Atomgruppen und spalten sich daher durch hydrolytische Einflüsse in diese und Traubenzucker.

Im thierischen Körper ist von eigentlichen Zuckeranhydriden nur nachgewiesen das

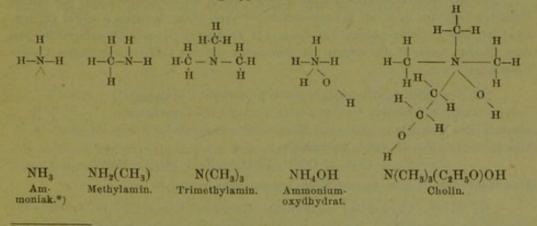
Glycogen. Ammoniak und Ammoniakderivate: Amine.

Glycogen $C_6H_{10}O_5$ (wahrscheinlich ein Vielfaches dieser Formel), Bestandtheil der Leber, der Muskeln und wie es scheint sämmtlicher embryonalen Organe, in Wasser mit Opalescenz löslich, dem Dextrin in der rothen Jodreaction und dem rechtsseitigen Drehungsvermögen am nächsten stehend, durch Säuren und Fermente leicht in (Dextrin? und) Zucker übergehend.

Im Gehirn findet sich ausserdem eine der Stärke ähnliche, mit Jod sich bläuende zuckerartige Substanz.

Auch Glucoside kommen im Körper vor (s. unten, Protagon, Chondrin).

5. Ammoniak und Ammoniakderivate.


 Ammoniak NH₃ und dessen Salze, die sogenannten Ammoniumsalze, kommen spurweise in vielen Körperbestandtheilen, z. B. im Blute, vor.

Das Ammoniak kann sich an der Bildung von Verbindungen betheiligen. indem es als 1werthige Gruppe \dot{H}_2 oder als 2werthige Gruppe \ddot{H} 1 oder 2 Valenzen sättigt (1 oder 2 H vertritt), oder mit anderen Worten, indem die H-Atome des NH₃ durch ein- oder mehrwerthige Atomgruppen vertreten werden.

In die Gruppe der Amoniakderivate gehören fast alle ihrer Zusammensetzung nach genauer bekannten stickstoffhaltigen Körperbestandtheile; dieselben gehen aus den Eiweisskörpern und deren Abkömmlingen hervor, in welchen daher wahrscheinlich ebenfalls der Stickstoff in der Form des Ammoniaks vorhanden ist, zum Theil aber auch in der Form des Cyans, da einige stickstoffhaltige Substanzen auch Cyan enthalten (z. B. Harnsäure). Hier kommen in Betracht:

a. Amine,

Verbindungen in welchen H-Atome des Ammoniaks oder des Ammoniumoxydhydrats durch Kohlenwasserstoffgruppen ersetzt sind, z. B.

*) Die beiden punctirten Affinitätsstriche im Schema deuten an, dass der Stickstoff auch 5werthig auftreten kann, z. B. in den Ammoniumsalzen.

Ammoniakderivate: Amine.

2) Methylamin, NH₂(CH₃) und

3) Trimethylamin, $N(CH_3)_3$, kommen als Zersetzungsproducte des Cholins und Kreatins (s. unten) vor.

4) Cholin oder Neurin, $C_5H_{15}NO_2$, Trimethyl-Oxaethyl-Ammoniumoxydhydrat, ist ein Zersetzungsproduct des Lecithins (s. unten). Man erhält es synthetisch aus Glycol und Trimethylamin, was leicht aus dem Schema des Cholins zu ersehen ist; denn wenn man die beiden durch die schrägen Striche mit dem N verbundenen Gruppen für sich vereinigt, so erhält man das Modell des Glycols und der Rest ist Trimethylamin. Als ein Salz des Cholins ist anzuführen das

Lecithin, $C_{44}H_{90}NPO_9$, Bestandtheil der Nervensubstanz, des Blutes, des Samens, des Eidotters, u. s. w., in welchen es wie es scheint in complicirteren Verbindungen (s. unten, Protagon, Vitellin) vorkommt.

Beim Kochen mit Baryt liefert das Lecithin: Stearinsäure (p. 14), Glycerinphosphorsäure (p. 20) und Cholin (s. oben):

 $\begin{array}{c} \mathrm{C_{44}H_{90}NPO_9} + 3\mathrm{H_2O} = 2\mathrm{C_{18}H_{36}O_2} + \mathrm{C_3H_9PO_6} + \mathrm{C_5H_{15}NO_2} \\ \mathrm{Lecithin.} & \mathrm{Stearins \mbox{aurc.}} & \mathrm{Glycerin.} \\ \mathrm{phosphors \mbox{aure.}} \end{array}$

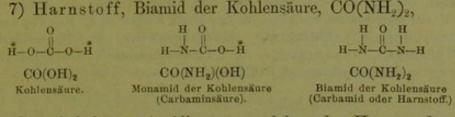
Man betrachtet es (DIACONOW) als distearyl-glycerinphosphorsaures Cholin (im Radical der Glycerinphosphorsäure sind 2 H-Atome durch das Stearinsäure-Radical vertreten). Das Schema des Lecithin wäre hiernach abgekürzt folgendes:

$$\begin{array}{c} H & H & H \\ | & | & | \\ (C_{18}H_{35}O) - C - C - C - (C_{18}H_{35}O) \\ H & | & | \\ H & O & O H & CH_{3} \\ H & - P - O - N < CH_{3} \\ H & O & C_{2}H_{3}O \\ \end{array}$$

Neben dem Distearinlecithin scheint auch ein Dioleinlecithin, ein Olein-Palmitin-Lecithin u. s. w. vorzukommen. — Nach einer anderen Ansicht (STREK-KER) ist das Lecithin nicht ein Salz der Distearyl-Glycerinphosphorsäure mit dem Cholin, sondern die erstere ist ätherartig mit der C₂H₅O-Gruppe des Cholin verbunden.

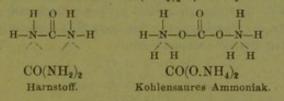
5) Guanidin, Biamido-Imido-Kohlenstoff, $C(NH_2)_2(NH)$ (oder auch Biamido-Imido-Grubengas zu nennen), ein Zersetzungsproduct des Guanins (s. unten). Man erhält es synthetisch aus H = N - C - N - HChlorpicrin $C(NO_2)Cl_3$ und Ammoniak:

 $CNO_2Cl_3 + 4NH_3 = C(NH_2)_2(NH) + N_2 + 2H_2O + 3HCl.$ Das Guanidin ist dem Harnstoff (s. unten) nahe verwandt.


6) Methyluramin, methylirtes Guanidin (Guanidin, in welches die Gruppe CH₂ eingetreten ist wie in den Gliedern homologer Reihen z. B. der Fettsäuren p. 14), oder Biamido - Imido - Aethylwasserstoff, C₂H₂(NH₂)₂(NH), ein Zersetzungsproduct des Kreatins (s. unten p. 27, wo auch das Schema).

22

Ammoniakderivate: Amide.

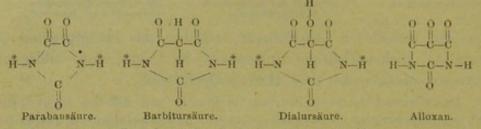

b. Amide,

Verbindungen in welchen die OH-Gruppe von Säuren durch NH₂ ersetzt ist:

einer der einfachsten Amidkörper, welcher das Hauptproduct der Oxydation stickstoffhaltiger Substanzen im Organismus bildet und in grossen Mengen mit dem Harn entleert wird.

Der Harnstoff ist krystallisirbar, in Wasser und Alkohol leicht löslich, giebt mit Salpetersäure ein schwerlösliches Salz, mit salpetersaurem Quecksilberoxyd einen weissen Niederschlag. Bei Gegenwart faulender Substanzen, ferner beim Kochen mit Alkalien, beim Ueberhitzen mit Wasser, nimmt er 2 H₂O auf und liefert kohlensaures Ammoniak: $CO(NH_2)_2 + 2 H_2O = CO(O.NH_4)_2$

Harnstoff war die erste organische Substanz welche synthetisch dargestellt wurde (WÖHLER); man kann ihn auf verschiedene Weise künstlich erhalten, z. B. aus cyansaurem Ammoniak $[CN(O.NH_4) = CO(NH_2)_2]$, durch Erhitzen, wobei die Atome sich umlagern,


	нн	H O H
N≣C-0-H	NEC-O-N	H-N-C-N-H
and the second second	й н	
CN(OH)	$CN(O, NH_4)$	$CO(NH_2)_2$
Cyansäure.	Cyansaures Ammoniak.	Harnstoff.

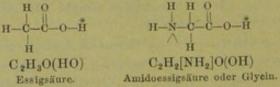
ferner aus Chlorkohlenoxyd (Phosgengas) und Ammoniak $[COCl_2 + 2NH_3 = CO(NH_2)_2 + 2HCl].$

H	O II	H		HOH	
н-й-н	Cl-C-Cl	H-N-H	Cl-H	H-N-C-N-H	H-Cl
NH3	COCl ₂	NH ₃	HCl	CO(NH2)2	HCl
	Phosgen.			Harnstoff.	

Vom Guanidin (p. 22) unterscheidet sich der Harnstoff nur dadurch dass in ersterem das C-Atom mit der 2 werthigen Gruppe NH, im Harnstoff aber mit dem 2 werthigen O-Atom verbunden ist.

In den beiden NH₂-Gruppen des Harnstoffs können noch H-Atome durch Alkohol- oder Säureradicale vertreten werden. Verbindungen der letzteren Art, namentlich mit Ersetzung von 2 H durch 2 werthige Säureradicale, erhält man vielfach bei der künstlichen Oxydation der Harnsäure (welche selbst ein ähnlicher, aber complicirterer Körper ist, s. unten) neben dem einfachen Harnstoff. Namentlich die Radicale der Oxalsäurereihe (p. 16) und der nächsten Abkömmlinge derselben*) bilden solche zusammengesetzte Harnstoffe; dieselben heissen zum Theil Säuren, weil das letzte noch vorhandene H-Atom der Amidgruppen durch Metall vertreten werden kann. Einige dieser Körper sind: Parabansäure $= Oxalylharnstoff CO(NH)_2(C_2O_2)$, Barbitursäure = Malonylharnstoff $CO(NH)_2(C_3H_2O_2)$, Dialursäure = Tartronylharnstoff $CO(NH)_2(C_3H_2O_3)$, Alloxan = Mesoxalylharnstoff $CO(NH)_2(C_3O_3)$.

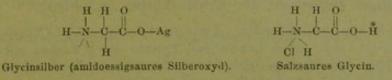
Diese Harnstoffe nehmen bei hydrolytischer Behandlung entweder 1 oder 2 H_2O auf; im ersteren Falle öffnet sich der Ring nnd es bildet sich eine Säure in welcher nur noch die eine OH-Gruppe durch Harnstoff vertreten ist; tritt auch das zweite Mol. H_2O ein, so spaltet sich der Harnstoff ganz von der Säure ab; z. B. liefert für die Parabansäure der erste H_2O -Eintritt (an den im Schema durch . bezeichneten Stelle) Oxalursäure;


$$\begin{array}{c} H & O & H & O & O \\ \| & \| & \| * \| & \| \\ H - N - C - N - C - C - C - O - H \\ C_3 H_4 N_2 O_4 \\ Oxalursäure. \end{array}$$

der zweite H2O-Eintritt (an der * Stelle) liefert

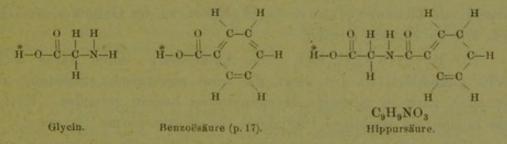
Das Alloxan (s. oben) geht durch Reduction über in Alloxantin $(C_8H_4N_4O_7)$: 2 $C_4H_2N_2O_4 + H_2 = C_8H_4N_4O_7 + H_2O$; das Alloxantin ist eine ütherartige Verbindung des Alloxans und der Dialursäure (s. oben), und geht in Folge dessen unter H_2O - Aufnahme in diese beiden Körper über: $C_8H_4N_4O_7 + H_2O = C_4H_4N_2O_4 + C_4H_2N_2O_4$. Die Dialursäure erhält man durch weitere Reduction des Alloxans oder des Alloxantins: $C_4H_2N_2O_4 + H_2 = C_4H_4N_2O_4$; $C_8H_4N_4O_7 + H_2O + H_2 = 2C_4H_4N_2O_4$.

c. Amidosäuren,


Säuren, in welchen H-Atome des Radicals (p. 19. Anm.) durch NH2 ersetzt sind, z. B.

*) Als solche sind hier anzuführen Tartronsäure=Oxymalonsäure, HO.CO.CH(OH).CO.OH; Mesoxalsäure = Dioxymalonsäure minus Wasser, HO.CO.CO.OO.OH.

Ammoniakderivate: Amidosäuren.


Die Amidosäuren verhalten sich einerseits wie Säuren, andererseits aber wie Basen, indem das Ammoniak mit Säuren sich verbindet, z. B.

Mit salpetriger Säure behandelt gehen die Amidosäuren in Oxysäuren, also z. B. die Amido-Fettsäuren in Oxy-Fettsäuren (Glycolsäuren p. 15) über, indem die Gruppe NH₂ durch die Gruppe OH ersetzt wird.

8) Glycin (Glycocoll, Leimzucker), Amidoessigsäure $C_2H_2(NH_2)O.OH$, als solches nicht im Körper vorkommend, wohl aber in sogenannten gepaarten Säuren, und in complicitter Verbindung im Leim.

Das Glycin giebt mit salpetriger Säure Oxyessigsäure = Glycolsäure (p. 15). Es kann aus Chloressigsäure und Ammoniak synthetisch gewonnen werden. Es tritt mit einbasischen Säuren in der Weise in Verbindung, dass ein H des NH₂ durch das Säureradical vertreten wird (die OH-Gruppe und das H-Atom treten als H₂O aus), z. B.

Solche Verbindungen (welche sämmtlich durch hydrolytische Einflüsse H2O aufnehmen und in Glycin und Säure zerfallen), sogenannte gepaarte Säuren, sind:

Glycocholsäure (Glyco-Cholalsäure, p. 17) C₂₆H₄₃NO₆, Bestandtheil der Galle.

Hippursäure (Glyco-Benzoësäure) C₉H₉NO₃, Bestandtheil des Harns der Pflanzenfresser. Bei jedem Thier tritt sie auf nach dem Genuss von Benzoësäure und einigen anderen aromatischen Säuren (Zimmtsäure, Mandelsäure, Chinasäure), vgl. Cap. II.

Andere, z. B. die p. 17 genannten substituirten aromatischen Säuren bilden nicht Hippursäure selbst, sondern die ihr entsprechende Säure, in welcher das Benzol wie in der ursprünglichen Säure substituirt ist.

9) Alanin, Amidopropionsäure, C₃N₄(NH₂)O.OH, kommt im thierischen Körper nicht vor.

10) Butalanin, Amidobaldriansäure, C5H8(NH2)O.OH, und

11) Leucin, Amidocapronsäure C₆H₁₀(NH₂)O.OH, finden sich in vielen Körperbestandtheilen, jedoch ausser dem Pancreas

Ammoniakderivate: Amidosäuren, substituirte Amidosäuren.

wahrscheinlich nur als Fäulnissproducte. Mit salpetriger Säure giebt Leucin Oxycapronsäure = Leucinsäure (p. 15). Das Leucin ist ein wichtiges Ingrediens der Eiweisskörper (s. unten).

12) Serin, wahrscheinlich Amidomilchsäure $C_3H_5(NH_2)O_3$, aus dem Seidenleim (s. unten) neben Leucin und Tyrosin durch Kochen mit Säuren erhalten. Giebt mit salpetriger Säure Oxymilchsäure = Glycerinsäure.

13) Cystin, C₃H₇NSO₂, also Serin, in welchem ein O durch S vertreten ist, vermuthlich von derselben Constitution, Bestandtheil der Nieren, zuweilen auch im Harn und in Blasensteinen gefunden.

14) Taurin, Amido-Aethylschwefelsäure, SO2(OH)(C2H4.H2N)

0-0	0-он н	0-он н н
H-0-8-0-Н	н-о-в-с-с-н	H-O-S-C-C-N-H
	нн	н н
SO2(OH)2	$SO_2(OH)(C_2H_5)$	$SO_2(OH)(C_2H_4,H_2N)$
Schwefelsäure.	Aethylschwefelsäure.	Amido-Acthylschwefelsäure (Taurin).

kommt in ähnlicher gepaarter Verbindung mit Cholalsäure, wie das Glycin, als Taurocholsäure $C_{z6}H_{45}NSO_7$, in der Galle vor, ausserdem frei in einigen Drüsen.

15) Tyrosin $C_9H_{11}NO_3$, eine Amidosäure, deren Natur noch nicht aufgeklärt ist (es liegt ihr eine aromatische Substanz zu Grunde), wird in geringen Mengen neben Leucin gefunden. Es ist wie Leucin ein wichtiges Ingrediens der Eiweisskörper (s. unten).

Beim Erhitzen mit salpetersaurem Quecksilberoxyd in Gegenwart von wenig salpetriger Säure liefert das Tyrosin eine rothe Färbung.

d. Amidosäuren, in denen aber Wasserstoffe der Ammoniakgruppe selbst substituirt sind.

16) Sarcosin, Methylamido-Essigsäure oder Methylglycin, $C_2H_2(NH[CH_3])O.OH$, erhält man beim Behandeln des Kreatins mit Alkalien (s. unten), oder auch synthetisch aus Chloressigsäure und Methylamin (vgl. oben p. 25 die Synthese des Glycins). Es ist dem Alanin (p. 25) isomer.

17) Kreatin, Methyluramido-Essigsäure, C₄H₉N₃O₂, Bestandtheil des Blutes, der Muskeln, des Gehirns u. s. w.

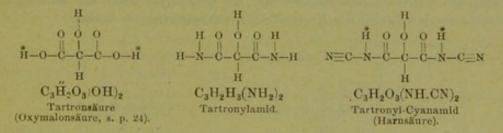
26

Ammoniakderivate unbekannter Constitution.

Man erhält das Kreatin synthetisch aus Cyanamid (CN.NH₂) und Sarcosin (s. oben); auch erkennt man leicht im Schema des Kreatins links die Gruppe des Cyanamids, rechts die des Sarcosins. — Beim Kochen mit Baryt zerfällt das Kreatin unter Wasseraufnahme in Sarcosin und Harnstoff: $C_4H_9N_3O_2 + H_2O$ = $C_3H_7NO_2+CH_4N_2O$; in der That unterscheidet sich der Harnstoff vom Cyanamid nur durch ein Plus von H_2O :

H H O H

$$|$$
 $|$ $|$ $|$ $|$ $|$
H-N-C=N H-N-C-N-H
Cvanamid. Harnstoff (p. 23).


Durch Oxydation (mit Quecksilberøxyd, Bleisuperoxyd u. s. w.) liefert das Kreatin: Methyluramin und Oxalsäure, was leicht verständlich ist, da Methyluramin und Essigsäure im Kreatin stecken (s. oben), und Oxalsäure eine zweifach oxydirte Essigsäure ist (p. 16). Bei anderen Oxydationen liefert das Kreatin Methyl-Parabansäure (über Parabansäure s. p. 24), ebenfalls leicht verständlich,

Beim Erhitzen mit starken Säuren, auch durch blosses Kochen mit Wasser, ferner bei Gegenwart faulender Substanzen giebt das Kreatin H₂O ab und verwandelt sich in Kreatin in (s. unten p. 28).

e. Ammoniakderivate von unbekannter Constitution.

18) Harnsäure C₅H₄N₄O₃, ein Bestandtheil des Harns, bei einigen Thierclassen (Vögel, beschuppte Amphibien, Insecten) der Hauptbestandtheil desselben.

Die wahrscheinlichste Constitution der Harnsäure ist: Tartronylcyanamid.

Die Harnsäure ist 2 basisch, da in ihr, wie in den zusammengesetzten Harnstoffen (p. 24) die beiden noch übrigen H-Atome der Amidgruppen durch Metall ersetzt werden können. Von den Salzen, von denen die sauren, wie die Harnsäure selbst, in Wasser sehr schwer löslich sind, kommen besonders harnsaures Natron und Ammoniak, beim Menschen hauptsächlich pathologisch, vor. Durch Oxydation liefert die Harnsäure: a. bei Gegenwart von Säuren: Alloxan (p. 24) und Harnstoff (p. 23): $C_5H_4N_4O_3 + H_2O + O = C_4H_2N_2O_4 + CH_4N_2O$ [das Alloxan liefert durch weitere Oxydation Kohlensäure und Parabansäure (p. 24): $C_4N_2H_2O_4 + O = CO_2 + C_3H_2N_2O_3$; b. bei Gegenwart von Alkalien: Allantoin ($C_4H_6N_4O_3$) und Kohlensäure: $C_5H_4N_4O_3 + H_2O + O = C_4H_6N_4O_3 + CO_2$; c. mit Salpetersäure zur Trockne verdampft giebt die Harnsäure einen gelbrothen Rückstand, der mit Ammoniak sich purpurroth färbt (Murexid, purpursaures Ammoniak), mit Kali blau.

19) Xanthin $C_5H_4N_4O_2$ findet sich spurweise in vielen Körperorganen und im Harn, und kann künstlich aus Hypoxanthin erhalten werden (s. unten). Einen isomeren Körper ("Isoxanthin") erhält man aus Guanin (s. unten).

20) Hypoxanthin oder Sarkin C₅H₄N₄O kommt in Begleitung des Xanthins vor, in welches es durch Oxydationsmittel übergeführt werden kann.

21) Carnin $C_7H_8N_4O_3$ findet sich im Fleischextract in geringer Menge (WEIDEL); durch Brom wird es zu Sarkin oxydirt:


$$C_7H_8N_4O_3 + Br_2 = C_5H_4N_4O.HBr. + CH_3Br + COCarnin. bromwasserstoffsaures Brommethyl.Sarkin.$$

22) Guanin $C_5H_5N_5O$ findet sich in geringen Mengen im Pancreas und in der Leber, ferner im Guano und in den Excrementen der Spinnen.

Durch Oxydation liefert das Guanin einen dem Xanthin isomeren Körper ("Isoxanthin") unter N-Entwickelung: $2 C_5 H_5 N_5 O + 3 O = 2 C_5 H_4 N_4 O_2 + H_2 O$ + N₂. Andre Oxydationmittel zerlegen es in Kohlensäure, Parabansäure (p. 24) und Guanidin (p. 22): $C_5 H_5 N_5 O + H_2 O + 3 O = CO_2 + C_3 H_2 N_2 O_3 + CH_5 N_3$

23) Kreatinin C₄H₇N₃O, Bestandtheil des Harns.

Das Kreatinin ist eine stark alkalische Substanz; mit Chlorzink giebt es eine characteristisch krystallisirende Verbindung. Es ist ein Anhydrid des Kreatins (p. 26), aus dem es leicht entsteht (p. 27) und in das es leicht sich wieder umwandelt. Die wahrscheinlichste Art der Anhydridbildung ist der Wasseraustritt an den Enden der Kreatinkette, mit ringförmigem Schluss:

24) Inosinsäure C5H8N2O6, Bestandtheil der Muskeln.

25) Kynurensäure $C_{20}H_{14}N_2O_6$, im Hundeharn vorkommend.

26) Allantoin, C₄H₆N₄O₃, Bestandtheil des foetalen und Säuglingsharns.

28

Ammoniakderivate unbekannter Constitution.

Man erhält Allantoin durch Oxydation der Harnsäure (s. p. 28). Hydrolytische Behandlung (p. 19) spaltet das Allantoin in Harnstoff und Allantursäure $(C_3H_4N_2O_3)$: $C_4H_6N_4O_3 + H_2O = CH_4N_2O + C_3H_4N_2O_3$.

27) Farbstoffe. Diese Substanzen, von denen sich die am besten bekannten in ihrem Verhalten den Ammoniakderivaten anschliessen, sind meist krystallisirbar und stammen wahrscheinlich sämmtlich von einem, dem eisenhaltigen Hämatin ab. Einige derselben enthalten kein Eisen; dieselben werden als die einfacheren zuerst aufgeführt.

a. Bilirubin (Biliphaein, Cholepyrrhin, Haematoidin [?]) $C_{16}H_{18}N_2O_3$ (STÄDELER), der orangeroth krystallisirbare Farbstoff der Galle, unlöslich in Wasser, löslich in Chloroform und in Alkalien, mit denen er wie eine einbasische Säure Verbindungen bildet. Durch Oxydation geht er in Biliverdin, bei stärkerer in Bilicyanin und Choletelin über. Dass er vom Haematin herstammt (vgl. Cap. II.), wird besonders dadurch bewiesen, dass er oder wenigstens ein ihm ungemein ähnlicher Körper, in alten Blutextravasaten gefunden wird (Haematoidinkrystalle).

In Berührung mit Salpetersäure, die etwas salpetrige Säure enthält, zeigt die Lösung des Bilirubin in Folge der erwähnten Oxydationen an der Grenze eine regenbogenartige Farbenschichtung, die zur Erkennung kleinster Mengen dienen kann (GMELIN'sche Probe).

b. Biliverdin ($C_{16}H_{20}N_2O_5 = Bilirubin + H_2O + O$ STÄDELER; $C_{16}H_{18}N_2O_4$ MALY) entsteht durch Oxydation des Bilirubins an der Luft; im Organismus scheint es nicht vorzukommen; durch schweflige Säure scheint es wieder in Bilirubin überzugehen.

C. Bilifuscin $C_{16}H_{20}N_2O_5$ (= Bilirubin + H_2O) und

d. Bilinrasin $C_{16}H_{22}N_2O_6$ (= Bilifuscin + H_2O + O) sind in Gallensteinen in geringer Menge gefunden worden.

e. Bilicyanin (HEYNSIUS & CAMPBELL), entsteht bei kräftiger Oxydation aller vorgenannten Farbstoffe, hat in saurer Lösung einen Absorptionsstreifen bei F, und kommt in Gallensteinen vor.

f. Choletelin (MALY), letztes Oxydationsproduct aller Gallenfarbstoffe.

g. Urobilin (JAFFE), wahrscheinlich identisch mit Hydrobilirubin, $C_{32}H_{40}N_4O_7$ (MALY), welches aus Bilirubin durch Reduction in alkalischer Lösung darstellbar ist und mit Stercobilin (VANLAIR & MASIUS), Bestandtheil des Kothes. Der Farbstoff findet sich im Harn, in der Galle und im Darminhalt, besitzt einen breiten Absorptionsstreifen im Grün (bei F), und zeigt in alkalischer Lösung mit Chlorzink starke Fluorescenz.

h. Hämatin, ein Zersetzungsproduct des natürlichen Blutfarbstoffs, dessen Bildung und Eigenschaften beim Blute (Cap. I.) besprochen werden.

Substanzen unbekannter Constitution.

i. Harnfarbstoffe. Im Harn sind verschiedene, theils eisenhaltige, theils eisenfreie, nicht krystallinische Farbstoffe gefunden worden (Urohämatin, Urrhodin, Uroerythrin), deren Zusammensetzung unbekannt ist. Einer derselben, das Urobilin (s. oben) kommt auch in der Galle und im Darminhalt regelmässig vor. Blaue Farbstoffe, welche zur Indigogruppe zu gehören scheinen, sind ebenfalls aus Harn dargestellt, scheinen aber nicht darin präformirt zu sein (s. Cap. II.).

k. Melanin, schwarze und braune, eisenhaltige, wenig bekannte Farbstoffe der Lungen, Bronchialdrüsen, des Rete Malpighii, der Haare, der Chorioidea u. s. w.

6. Complicittere Körper von unbekannter Constitution.

Wie aus dem p. 11 f. Gesagten hervorgeht, sind die bisher genannten Körper als natürliche oder künstliche Zersetzungsproducte anderer viel complicirterer zu betrachten, in welchen also die Elemente der bisher genannten, z. B. die Gruppen OH, CH_3 , NH_2 , C_6H_5 , in den mannigfaltigsten und verwickeltsten Combinationen vorkommen. Von diesen Substanzen sind nur wenige rein darzustellen, bei den übrigen misslingt dies, weil sie zu unbeständig oder weil sie nicht krystallisirbar sind; man kennt daher von den meisten nicht einmal die Gewichts-Zusammensetzung (Formel) genau, geschweige denn die Constitution.

Die Zerlegung dieser Verbindungen in einfachere gelingt fast stets leicht durch die p. 19 genannten hydrolytischen Einflüsse. Man kann sie daher sämmtlich oder doch grösstentheils als Anhydride oder ätherartige Verbindungen im Sinne des p. 19 Gesagten betrachten, wie man die daselbst genannten Verbindungen als Alkohol + Alkohol – Wasser, resp. als Alkohol + Säure – Wasser, oder als Säure + Säure – Wasser, die Amide (p. 23) als Säure + Ammoniak – Wasser, die complicirten Harnstoffe (p. 24) als Säure + Harnstoff – Wasser, die gepaarten Säuren (p. 25) als Glycin + Säure – Wasser etc. betrachten kann.

Indessen sind für viele dieser Verbindungen die hydrolytischen Spaltungsproducte noch nicht genägend bekannt, um eine vollständige Uelersicht über den Bau der Verbindung zu gewähren. Ausserdem sind, selbst wenn man die ersteren genau kennen würde, noch immer viele schwer zu entscheidende Möglichkeiten des Baues vorhanden. Schon bei den Zuckeranhydriden z. B. (s. p. 20) sind, wenn die Stärke auch nur aus Einem Zuckermolecül mit Austritt von 1 H₂O bestände (C₆H₁₀O₅) die verschiedensten Möglichkeiten für den Ort des H₂O-Austritts vorhanden; die Zahl derselben wächst aber ungemein, wenn die Stärke aus 2 Zuckermolecülen mit Austritt von 2 H₂O bestände (C₆H₁₀O₄)₂O₂ $= C_{12}H_{20}O_{10}$. So erklärt es sich dass bei diesen complicirten Körpern so zahlreiche isomere und polymere Verbindungen von nahe übereinstimmenden Eigenschaften vorhanden sind, deren genaue Constitution unbekannt ist. Mit der Zusammenlagerung von immer zahlreicheren Atomcomplexen wächst auch die

Peptone und deren Anhydride.

Complicirtheit der Gewichtsproportionen so, dass sie sich aus den Elementaranalysen nicht deutlich genug ergeben um Formeln aufstellen zu können. Die Formeln der hier folgenden Substanzen sind deshalb unbekannt.

Wir führen hier folgende Gruppen von Körpern auf:

1. Peptone und deren Anhydride (Eiweisskörper und Albuminoide).

Die Peptone selbst entstehen im Organismus erst aus ihren Anhydriden durch hydrolytische Einflüsse (Verdauung s. Cap. III.), und gehen anscheinend bald wieder in Anhydride über (s. Cap. V.). Dagegen kommen die Anhydride, die Eiweisskörper und Albuminoide ungemein verbreitet im Körper vor.

Die hydrolytischen Spaltungsproducte der Peptone sind hauptsächlich Amidosäuren, besonders Glycin, Leucin, Tyrosin (p. 25 f.). Dies können jedoch nicht die einzigen Spaltungsproducte sein, da die meisten dieser Körper schwefelhaltig sind. Es ist unbekannt in welcher Gruppe der Schwefel in ihnen enthalten ist, ob als Schwefelsäure,*) Schwefelwasserstoff, oder Schwefelkohlenstoff. Auch der Stickstoff scheint nicht allein in der Gruppirung der Amidosäuren, sondern auch in anderen vorzukommen. Die verschiedenen Peptone unterscheiden sich durch die relativen Mengen der drei Amidosäuren: während alle Peptone Leucin liefern, liefert das Leimpepton daneben nur Glycin, die übrigen Peptone neben Leucin nur Tyrosin in verschiedenen Mengen. Statt des Tyrosins werden bei anhaltender hydrolytischer Einwirkung andere wie es scheint der Indigogruppe angehörige, übelriechende Substanzen erhalten. Die Anhydride etc. liefern bei der hydrolytischen Behandlung zuerst Peptone, und dann erst die weiteren Spaltungsproducte der letzteren.

1) Peptone. Von diesen ist nur das aus dem Serumalbumin bei der Verdauung entstehende Pepton der procentischen Zusammensetzung nach annähernd bekannt (C 51,37, H 7,25, N 16,18, S 2,12, O 23,11 pCt.).

Die Peptone sind in Wasser, zum Theil auch in Alkohol (BRÜCKE's "Alkophyr"), leicht löslich, diffundirbar; sie drehen die Polarisationsebene nach links; im Gegensatz zu den Eiweisslösungen werden sie nicht gefällt: durch Hitze, schwachen Alkohol, verdünntere Mineralsäuren und verschiedene Metallsalze, gefällt dagegen durch Sublimat, die Quecksilbernitrate, Silbernitrat, Chlor, etc. Sie geben die drei unten bei den Eiweisskörpern angeführten Reactionen. Ueber ihre hydrolytischen Spaltungsproducte s. oben. Ueber ihre Entstehung bei der Verdauung s. Cap. III.

^{*)} Das Auftreten von Taurin (p.26) und von Sulphaminsäure (s. Cap. II. unter Harn) als Producte der Eiweisszersetzung beweist dass jedenfalls ein Theil des Schwefels als Schwefelsäure in den Eiweisskörpern vorkommt.

Peptonanhydride: Eiweisskörper.

2) Eiweisskörper (Proteinstoffe, Albuminstoffe). Diese sehr mannigfaltigen Pepton-Anhydride finden sich fast in sämmtlichen Geweben und Flüssigkeiten des Körpers in Wasser gelöst oder vielmehr gequollen; die Lösungen drehen die Polarisationsebene nach links. Sie sind nicht krystallisirbar (alle bisherigen Angaben über Eiweisskrystalle sind unsicher), daher nicht sicher zu reinigen und äusserst schwer von unorganischen Beimengungen, mit denen sie zum Theil chemische Verbindungen eingehen, zu befreien. Ihre Lösungen werden durch viele Metallsalze und durch Alkohol gefällt. Durch Hitze, Mineralsäuren und durch anhaltende Einwirkung des Alkohols werden sie in eine unlösliche Modification übergeführt ("coagulirt").

Da bei hydrolytischer Behandlung der coagulirten Modification zuerst die lösliche Modification und dann erst Pepton entsteht (s. Cap. III.), so scheint die coagulirte Modification ein weiteres Anhydrid der löslichen zu sein.

Mit Säuren und mit Alkalien bilden die Eiweisskörper Verbindungen, von denen die ersteren (Säure-Albuminate, Syntonin) durch Alkalien, die letzteren (Alkali-Albuminate, Casein) durch Säuren gefällt werden.

Tiefer eingreifende zersetzende Agentien und Oxydationsmittel liefern aus den Eiweisskörpern namentlich Amidosäuren (s. oben): Glyein, Leucin, Tyrosin; ferner flüchtige Fettsäuren, Benzoësäure, Blausäure, Aldehyde der Fettsäuren und der Benzoesäure u. s. w. (angeblich auch Harnstoff). Sie enthalten also Stickstoff in der Ammoniak- und in der Cyangruppe.

Salpetersäure färbt die Eiweisskörper (ebenso die Peptone, s. oben) gelb ("Xanthoproteinsäure"), und Alkalizusatz verwandelt die Farbe in Roth. — Salpetersaures Quecksilberoxyd färbt bei Anwesenheit von wenig salpetriger Säure die Eiweisskörper bei 60° roth (MILLON'S Reagens). Diese Reaction, welche mit der des Tyrosins (p. 26) übereinstimmt, beruht möglicherweise auf einer intermediären Bildung von Tyrosin. — Mit Kupfersulphat und Kali geben die Eiweisskörper eine violette Lösung. — Alle drei Reactionen können zur Erkennung der Eiweisskörper benutzt werden.

Die Herkunft der Eiweisskörper ist nicht sicher bekannt; aber es ist sehr wahrscheinlich, dass sie im thierischen Organismus aus Peptonen, vielleicht sogar aus noch einfacheren Spaltungsproducten derselben, welche durch die Verdauung aus genossenen Eiweisskörpernentstehen, synthetisch regenerirt werden können (Cap. III. und V.). Diese Ingredientien stammen in letzter Instanz aus den Pflanzen, den eigenflichen Eiweisserzeugern. Ebensowenig sicher ist ihr weiteres Schicksal im Organismus festgestellt. Es scheint

Peptonanhydride: Eiweisskörper, Albuminoide.

als ob die sogenannten Albuminoide (s. unten) ihre nächsten Abkömmlinge sind. Bei tieferer Zersetzung im Organismus geht der Stickstoff wahrscheinlich in Amidverbindungen über, deren am meisten oxydirte, z. B. Harnstoff, ausgeschieden werden. Ausserdem aber ist es der Zusammensetzung nach sehr leicht möglich, dass Fette, Glycogen, Zuckerarten aus den Eiweisskörpern hervorgehen, wofür auch wichtige physiologische Thatsachen sprechen. Umgekehrt scheinen auch synthetische Processe höherer Ordnung im Organismus vorzukommen, bei welchen Eiweisskörper complicirtere Verbindungen bilden (s. unten sub 2. p. 35).

Die verschiedenen thierischen Eiweisskörper haben ziemlich gleiche procentische Zusammensetzung: C 52,7—54,5, H 6,9—7,3, N 15,4—16,5, S 0,8—1,6, O 20,9—23,5 pCt. Bei hydrolytischer Behandlung liefern sie $1/_4$ —2 pCt. Tyrosin und 10—18 pCt. Leucin. Sie unterscheiden sich von einander ausserdem hauptsächlich durch die Bedingungen der Fällung und Coagulation. Die wichtigsten sind:

a) Albumin, im Blutserum, Eierweiss (etwas verschieden), und den meisten Gewebssäften. Gerinnt bei 60-70° in neutraler oder saurer Lösung.

Das Casein der Milch ist ein Kalialbuminat (p. 32), gerinnt daher nicht ohne Weiteres durch Hitze, sondern erst nach Säurezusatz. Durch die meisten Säuren wird es gefällt.

b) Globulin, Bestandtheil des Blutes und vieler Gewebe, durch alle Säuren, selbst Kohlensäure fällbar, und durch Sauerstoffzuleitung wieder lösbar (wahrscheinlich ein Alkalialbuminat). Es existiren verschiedene Modificationen dieses Körpers, die man zum Theil als "Paraglobulin" bezeichnet (Cap. I.).

c) Fibrin, das fasrige Gerinnsel im geronnenen Blute; eine Fällung, welche durch gegenseitige Einwirkung zweier Paraglobulinarten (fibrinoplastische und fibrinogene Substanz) entsteht (Cap. I.). Durch Erhitzen nimmt es die Eigenschaften coagulirter Eiweisskörper an.

d) Myosin, das Gerinnsel der spontan erstarrten Muskeln (Cap. VIII.).

Das Syntonin der Muskeln ist nur ein durch die im Muskel auftretende oder zur Extraction verwandte Säure entstandenes Säurealbuminat (p. 32).

3) Albuminoide. Diese Körper, welche in vielen Geweben als wesentliche Bestandtheile vorkommen und den Eiweisskörpern in der Zusammensetzung nahestehen (jedoch sind einige schwefelfrei), werden meist als nächste Abkömmlinge der Eiweiss-

22

Hermann, Physiologie. 5. Auil.

Peptonanhydride: Albuminoide.

körper betrachtet; ob sie durch Oxydation oder umgekehrt durch Synthese oder durch andere Vorgänge aus ihnen hervorgehen, ist unbekannt. Sie sind untereinander viel verschiedener als die Eiweisskörper und haben ausser ihrer Unkrystallisirbarkeit und Unfähigkeit ächte Lösungen zu bilden (Colloidsubstanzen) kein gemeinsames Kennzeichen. Bei hydrolytischer Behandlung liefern sie dieselben Producte wie die Eiweisskörper; namentlich tritt Leucin und Tyrosin in grossen Mengen auf. Einer derselben, das Chondrin, soll beim Kochen mit verdünnter Schwefelsäure Traubenzucker liefern, muss also als ein Glucosid (p. 20) von den anderen getrennt werden (s. unten p. 36). Die wichtigsten sind:

a) Mucin, Schleimstoff, (C 52,2, H 7,0, N 12,6, O 28,2 pCt.) bildet in Wasser zähe Quellungen (Schleim), die durch wenig Essigsäure und durch überschüssigen Alkohol gefällt werden. Es findet sich in den schleimigen Secreten und in den schleimigen Bindesubstanzen (WHARTON'sche Sulze u. s. w.). Liefert neben Leucin sehr viel Tyrosin (7 pCt.).

b) Glutin, Leim (C 50,4, H 6,8, N 18,3, S+O 24,5 pCt.) erhält man aus den meisten Bindesubstanzen (Knochen, Sehnen, Häute) durch Kochen mit Wasser. Der Leim quillt in kaltem Wasser gallertig auf, beim Kochen entsteht eine Lösung, die beim Erkalten wieder gelatinirt. Bei anhaltendem Kochen wird er zu ungelatinirbarem Pepton gespalten, welches auch bei der Verdauung entsteht (vgl. p. 31). Liefert bei hydrolytischer Behandlung Leucin, Glycin und Ammoniak, kein Tyrosin.

c) Sericin, Seidenleim (C15H25N5O8?), Bestandtheil der Seide.

d) Keratin, Hornstoff (C 50,3-52,5, H 6,4-7,0, N 16,2-17,7, S 0,7-5,0, O 20,7-25,0 pCt.), der Rückstand der sogenannten Horngewebe, nach Extraction mit Aether, Alkohol, Wasser und Säuren. Eine nur in heissen Alkalien lösliche, in kalten quellende Substanz. Liefert 10 pCt. Leucin, 3,6 pCt. Tyrosin.

e) Elastin (C 55,5, H 7,4, N 16,7, O 20,5 pCt.), der Rückstand des Bindegewebes nach Extraction alles Löslichen: die Substanz der elastischen Einlagerungen. Unlöslich in allen nicht zersetzend wirkenden Agentien. Liefert sehr viel Leucin (36-45 pCt.), wenig Tyrosin (¹/₈ pCt.).

f) Fibroin (C 48,6, H 6,5, N 17,3, O 27,6 pCt.), der Hauptbestandtheil der Seide, löslich in concentrirten Säuren und Alkalien.

Fermente. Eiweissverbindungen.

g) Hydrolytische Fermente, Körper, welche durch eine noch unverständliche Einwirkung in daneben vorhandenen andern Körpern eine Spaltung unter Wasseraufnahme bewirken, ohne selbst dabei verbraucht zu werden. Man rechnete sie früher zu den Eiweisskörpern, indessen zeigen die am besten bekannten thierischen Fermente nicht deren Eigenschaften, sondern scheinen den Eiweisskörpern nur sehr leicht mechanisch anzuhängen.

Zur Reindarstellung mancher Fermente kann man die Eigenschaft derselben benutzen, aus ihren wässrigen Lösungen durch voluminöse Niederschläge (Zusatz von Cholesterinlösungen, Collodium u. dgl.) mit niedergerissen zu werden.

Der Organismus enthält folgende hydrolytische Fermente:

«. Zuckerbildende Fermente (welche Stärke, Glycogen u. s. w. unter H₂O-Aufnahme in Zucker spalten), im Speichel, Pancreassaft und in der Leber, und in vielen anderen Organen.

 β . Fettzerlegende Fermente (welche neutrale Fette, s. p. 19, unter H₂O-Aufnahme in Glycerin und freie Fettsäure spalten), im Pancreassaft.

y. Eiweisskörper spaltende Fermente (welche coagulirte und gelöste Eiweisskörper zunächst in Peptone, diese weiter in Leucin, Tyrosin etc. spalten), im Magensaft (Pepsin), Pancreassaft und Darmsaft.

Andere als hydrolytische Fermente sind bisher im Organismus nicht nachgewiesen.

2. Körper, welche noch complicirter sind als die Eiweissstoffe. Mit Sicherheit lässt sich eine solche Complicirtheit der Constitution nur von solchen Körpern behaupten, welche durch Zersetzung Eiweisskörper liefern. Hierher gehört:

1) Hämoglobin, der rothe Farbstoff der Blutkörperchen, auch im Serum und in den Muskeln spurweise enthalten, ein krystallisirbarer Körper, dessen Eigenschaften beim Blute (Cap. I.) besprochen werden.

2) Vitellin, ein bei seiner Zersetzung Eiweiss und Lecithin (p. 22) gebender Körper, Bestandtheil des Eidotters, krystallisirbar.

3) Ichthin, ein anscheinend ähnlich constituirter Körper der Fischeier. (Aehnliche Körper sind Ichthidin, Emydin.)

Andere Körper, deren Zusammensetzung compliciter ist als die der Eiweisskörper, sind bisher noch nicht dargestellt. Jedoch kommt höchstwahrscheinlich ein solcher in den Muskeln vor, dessen Zersetzungsproduct das Myosin (p. 33) ist. (Vgl. hierüber Cap. VIII.).

3*

36 N-haltige Glucoside. Progressive und regressive Metamorphose.

3. N-haltige Glucoside (vgl. p. 20). Folgende N-haltigen Glucoside sind bis jetzt im thierischen Organismus nachgewiesen:

1) Protagon, ein Glucosid des Lecithin (p. 22), Bestandtheil des Gehirns, des Blutes und wahrscheinlich auch anderer lecithinhaltiger Organe. Durch hydrolytische Behandlung liefert es Traubenzucker und die Spaltungsproducte des Lecithins (Cholin, Glycerinphosphorsäure etc.); seine Formel ist nicht festgestellt. In Wasser ist es unlöslich, quillt aber kleisterartig auf; in warmem Alkohol und warmem Aether ist es löslich.

2) Chondrin (C 49,9, H 6,6, N 14,5, S 0,4, O 28,6 pCt.) wird durch anhaltendes Kochen mit Wasser aus hyalinem Knorpel, der Haut der Holothurien etc. gewonnen; in seinem äusseren Verhalten ist es dem Leim sehr ähnlich. Es liefert bei hydrolytischer Behandlung Leucin und Traubenzucker (letzterer übrigens bestritten).

3) Chitin, ein N-haltiges Glucosid, in dem äusseren Gerüst der Articulaten.

4) Hyalin, N-haltiges Glucosid der Echinococcus-Blasen.

Die im Organismus vorkommenden Substanzen sind im Vorstehenden nach chemischen Principien angeordnet worden. Andere Gruppirungsweisen gehen von der Genese derselben im Körper aus; dieselben sind aber unvollkommen, da unsere Kenntnisse von den chemischen Vorgängen im Organismus noch zu gering sind. Der gewöhnlichsten Eintheilung liegt die Thatsache zu Grunde, dass von organischen Substanzen hauptsächlich Eiweisskörper, Kohlenhydrate und Fette mit der Nahrung in den Körper gelangen, deren Abkömmlinge alle übrigen Körperbestandtheile sind; man bezeichnet dann die Veränderungen jener Substanzen bis zu ihrem Uebergang in geformte Körperelemente als "Assimilation" oder "progressive Metamorphose", die weiteren Veränderungen bis zur Ausscheidung aber als "regressive Metamorphose." Während bei der letzteren Oxydations- und Spaltungsprocesse die Hauptrolle spielen, wodurch die complicirten Verbindungen in immer einfachere Verbindungen, schliesslich hauptsächlich in Kohlensäure, Wasser, Harnstoff, Schwefelsäure, Phosphorsäure zerfallen, sind die Vorgänge bei der progressiven Metamorphose (Bildung der Albuminoide aus Eiweisskörpern, Entstehung des Hämoglobins, des Protagons u. dgl.) noch ganz unverständlich und hier kommen ohne Zweifel auch synthetische Processe vor.

Erstes Capitel.

Das Blut und seine Bewegung.

Der stoffliche Verkehr der Körperbestandtheile mit der Aussenwelt und unter einander geschieht fast ausschliesslich durch Vermittlung einer Flüssigkeit, welche mit allen Körpertheilen, und auch mit den Apparaten, welche gleichsam als Pforten nach Aussen zu betrachten sind, in beständiger Berührung steht; - diese Flüssigkeit ist das Blut. Letzteres nimmt zunächst von Aussen den Sauerstoff und die Nahrung (p. 3, 4) auf; erst aus ihm versorgen sich mit beiden die einzelnen Körpertheile; ebenso geben nur wenige der letzteren ihre Ausscheidungsproducte direct nach Aussen ab, sondern fast alle übergeben sie zunächst dem Blute, welches sie an geeigneten Stellen aus dem Körper hinausschafft; endlich nimmt das Blut fortwährend Bestandtheile, welche an irgend einer Stelle gewisse Umwandlungen durchlaufen haben, auf, und lagert sie an anderen Orten zur Verwerthung ab. Jedes Theilchen, das dem Stoffwechsel anheimgefallen ist, muss demnach mehrmals, vermuthlich sehr häufig, Bestandtheil einer sehr voluminösen Flüssigkeit werden, in welcher es mit unzähligen anderen sich mischt, so dass sein fernerer Weg durchaus von der zufälligen Stelle abhängt, an welcher es die Blutmasse wieder verlässt.

Es ist daher für die Darstellung des Stoffwechsels nothwendig, das Blut als das natürliche Centrum desselben, auch zum Ausgangspunct der Betrachtung zu machen, und die Stoffwechselprocesse zunächst als Ausgaben und Einnahmen des Blutes zu gruppiren ehe der Stoffverkehr des Gesammtorganismus mit der Aussenwelt behandelt wird.

I. DAS BLUT.

Das menschliche Blut ist eine rothe, selbst in den dünnsten Schichten undurchsichtige, alkalisch reagirende flüssige Masse. Dieselbe besteht aus einer gelblichen, alkalisch reagirenden Flüssigkeit (liquor s. plasma sanguinis), und microscopisch kleinen Körperchen, Blutkörperchen, welche in sehr grosser Menge (4-5,5 Millionen in einem Cub.^{mm}; WELCKER), dicht einander berührend, in der Flüssigkeit aufgeschwemmt sind. Letztere sind zum grössten Theil roth, zum geringen (1/500-1/350, WELCKER; — im Milzvenenblut dagegen 1/70, Hirr) farblos.

Zur Prüfung der Reaction des Blutes lässt sich Lacmuspapier nicht ohne Weiteres verwenden, sondern man muss sich entweder mit einer porösen Scheidewand und destillirtem Wasser ein farbloses Diffusat des Blutes verschaffen, dessen Reaction man prüft (KÜHNE), oder einen Bluttropfen auf Lacmuspapier bringen, das man vorher mit Salzlösung befeuchtet hat (ZUNTZ).

Rothe Blutkörperchen.

Die rothen Blutkörperchen des Menschen sind runde, in der Mitte verdünnte (biconcave) Scheiben; ihr grösster Durchmesser beträgt durchschnittlich ¹/₁₂₆ ^{mm}. — Sie sind gleichmässig roth gefärbt. Der Consistenz nach sind sie sehr weich, biegsam und elastisch; weder eine Membran noch ein Kern ist an ihnen nachzuweisen, so dass man sie nicht als Zellen bezeichnen kann.

Die Blutkörperchen der Säugethiere sind mit Ausnahme der elliptischen des Kameels ähnlich den menschlichen; die der Vögel elliptisch und biconvex; die der Amphibien elliptisch, platt und sehr gross (bis zu ¹/₁₆ mm Dchm. bei Proteus); die der Fische meist rundlich elliptisch. Die der Vögel, Amphibien und Fische haben Kerne. — Bei den Wirbellosen finden sich nur in wenigen Abtheilungen rothe Blutkörperchen. Fast alle Wirbellosen, und von den Wirbelthieren der Amphioxus lanceolatus, haben farbloses oder gelbliches Blut, mit farblosen Körperchen von mannigfacher Gestalt, doch besitzen einige auch rothes Blut mit ähnlichen Farbstoffen wie das der Wirbelthiere.

Das specifische Gewicht der Blutkörperchen ist etwas grösser als das des Plasma; denn sie senken sich in ruhig stehendem Blute, wenn sie nicht (durch Gerinnung, s. u.) gehindert werden, langsam zu Boden. In ruhendem Blute vereinigen sich die rothen Blutkörperchen leicht zu geldrollenähnlichen Säulen. Die Ursache hiervon ist unbekannt.

Rothe Blutkörperchen.

Die Anwesenheit der rothen Körperchen ist nicht allein die Ursache der rothen Farbe, sondern auch der Undurchsichtigkeit des Blutes. Durch eine Anzahl von Mitteln lässt sich der rothe Farbstoff von den Blutkörperchen trennen, wobei er sich im Plasma löst und dieses roth färbt; das Blut wird hierdurch in dünnen Schichten durchsichtig ("lackfarben" ROLLETT), gleichzeitig aber dunkler, weil die Reflexion von den hohlspiegelartigen rothen Scheiben wegfällt; umgekehrt wird das Blut heller roth, wenn die Blutkörperchen durch Zusatz von Salzen zusammenschrumpfen und dadurch das reflectirte Licht mehr concentrirt wird. Die Blutkörperchen schwellen bei der Entfärbung zugleich vom Rande her auf (HERMANN) und werden endlich kugelig; der entfärbte sehr blasse kugelige Rest des Körperchens heisst das "Stroma" (ROLLETT).

Die erwähnten entfärbenden Einwirkungen sind: Verdünnen des Blutes mit Wasser, Gefrieren und Wiederaufthauen des Blutes (ROLLETT), Durchleiten electrischer Entladungsschläge (ROLLETT), Entgasung des Blutes (s. unten), Behandlung mit gallensauren Salzen (v. DUSCH), Aether (v. WITTICH), Chloroform (Böttcher), kleinen Mengen Alkohol (ROLLETT), Schwefelkohlenstoff (HERMANN). Ausser der erstgenannten und der Entgasung, lösen alle diese Einwirkungen bald nach der Entfärbung auch das Stroma im Plasma auf, zuweilen mit Hinterlassung eines klebrigen Körnchens.

An den kernhaltigen Blutkörperchen der Amphibien lässt sich durch Borsäure eine rothe, den Kern enthaltende Masse im Zusammenhange aus dem farblos zurückbleibenden Stroma austreiben; man muss also annehmen, dass jene, zu Bewegungen fähige Masse (das "Zooid") in die Poren des farblosen Stroma ("Oecoid") infiltrirt sei (BRÜCKE). Ein ähnliches Verhalten scheint an den kernlosen Blutkörperchen der Säugethiere zu existiren (STRICKER). Andere erklären diese, auch durch zahlreiche andere Einwirkungen auftretenden Ausscheidungen für Gerinnungsproducte (ROLLETT).

Die chemischen Bestandtheile der rothen Blutkörperchen sind:

1. Ein rother eisenhaltiger Farbstoff, das Hämoglobin (syn. Hämatoglobulin, Hämatokrystallin) von der ungefähren Zusammensetzung C 54,0, H 7,25, N 16,25, Fe 0,42, S 0,63, O 21,45 pCt., in Wasser wenig löslich, viel leichter in verdünnten Alkalien. Ob dieser Körper in den farblosen Rest des Blutkörperchenzooids nur mechanisch imprägnirt oder chemisch gebunden ist, ist unbekannt.

Das Hämoglobin ist eine gefärbte Eiweissverbindung, also von höchst complicirtem chemischem Bau. Es zerfällt sehr leicht unter Auftreten eines anscheinend dem Globulin (s. unten) am nächsten stehenden Eiweisskörpers (der aber nicht wie Globulin durch Sauerstoff gelöst wird) und eines Farbstoffs, Hämatin. Dieser Zerfall

Rothe Blutkörperchen.

wird bewirkt durch alle eiweisscoagulirenden und eiweissfällenden Einflüsse (Hitze, Alkohol, Mineralsäuren), ausserdem durch alle, auch die schwächsten Säuren (selbst Kohlensäure, bei Gegenwart von viel Wasser), endlich durch starke Alkalien. Die verschiedenen rothblütigen Thiere enthalten verschiedene Hämoglobine, deren Unterschiede bis jetzt nur in der Krystallisirbarkeit gefunden sind.

Krystalle des Hämoglobins, die sog. Blutkrystalle (meist rhombische Prismen oder Tafeln, seltner, z. B. beim Meerschweinchenblut, rhombische Tetraeder), erhält man durch Zerstörung der Blutkörperchen (mit Wasser, Aether, gallensauren Salzen, p. 39), und Eindunstung oder Abkühlung der jetzt durchweg rothgefärbten (lackfarbenen) Flüssigkeit. Leicht krystallisiren Hunde-, Pferde-, Meerschweinchen-, Vögelblut, schwer oder gar nicht Rinds- und Schweineblut.

Das gefärbte Spaltungsproduct des Hämoglobins, das Hämatin $(C_{68}H_{70}N_8Fe_2O_{10}?$ HOPPE-SEYLER), welches im Körper für sich nicht vorkommt, ist ein krystallinischer, getrocknet blauschwarzer, metallglänzender Farbstoff, in Wasser und Alkohol nicht löslich, wohl aber in wässrigen oder alkoholischen Säure- und Alkalilösungen, in welchen er jedoch Zersetzungen erleidet; die sauren Lösungen sind braun, die alkalischen dichroitisch: in dünnen Schichten grün, in dickeren roth.

Die Hämatinlösungen zeigen im Spectralapparat hauptsächlich einen Absorptionsstreifen im Roth, dessen Lage in sauren und alkalischen Lösungen verschieden ist. Bei Behandlung mit Reductionsmitteln treten zwei andere Absorptionsstreifen neben einander in Gelb auf, nicht zu verwechseln mit den beiden Streifen des O-Hämoglobin (s. unten). — Aus Lösungen in starker Essigsäure (Eisessig) krystallisirt das Hämatin in rhombischen Tafeln, welche bei Gegenwart von Chloriden aus salzsaurem Hämatin (Hoppe - SEYLER) bestehen; diese sog. Häminkrystalle können zur Erkennung des Blutes dienen (TEICH-MANN). — In concentrirten Mineralsäuren wird Eisen vom Hämatin abgespalten; der entstehende Farbstoff führt den Namen "eisenfreies Hämatin" (MULDER & VAN GOUDOEVEB), Hämatoporphyrin (C₆₈H₇₄N₈O₁₂? HOPPE-SEILER), Hämatoin PREYER).

Nach neueren Angaben (HOPPE-SEYLER) entsteht bei der Spaltung des Hämoglobins unter Luftabschluss zunächst ein purpurfarbiger Körper mit 4 Absorptionsstreifen, das "Hämochromogen", der bei O-Zutritt sofort in Hämatin übergeht.

Im Organismus liefert das Hämoglobin andere gefärbte Producte als die genannten künstlichen, so das Hämatoidin, Bilirubin etc. Ueber diese vgl. Cap. II. unter Galle, Harn etc. Ueber das Verhalten des Hämoglobins zu Gasen und über sein optisches Verhalten (s. unten). 2. Ein durch Kohlensäure fällbarer, durch Luftzuleitung sich wieder lösender Eiweisskörper, das Globulin.

Die Kerne der kernhaltigen Blutkörperchen (s. oben) bestehen aus einer mucinhaltigen Substanz (BRUNTON).

3. Geringe Mengen in Aether löslicher Substanzen: Fette, Seifen, Cholesterin, Protagon und dessen Zersetzungsproducte (Lecithin, Glycerinphosphorsäure etc.)

4. Salze, namentlich Kali- und Phosphorsäure-Verbindungen.

5. Wasser.

6. Gase (s. unten).

Farblose Blutkörperchen.

Die farblosen Blutkörperchen (Lymphkörperchen) sind kuglige kernhaltige Zellen, mit etwas granulöser, maulbeerförmiger Oberfläche, grösser als die rothen (etwa 1/100 mm). Sie zeigen die grösste Aehnlichkeit mit den Zellen der Lymphe, von denen sie auch herstammen (Cap. III. u. V.). Diese (membranlosen) Zellen zeigen bei der Körpertemperatur lebhafte Bewegungen: Aussenden und Wiedereinziehen von Fortsätzen, wodurch fremde Körnchen in das Innere eindringen können (vgl. hierüber Cap. VIII.); ferner (KLEIN) Theilungen. Ihre chemischen Bestandtheile sind noch nicht genau bekannt, vermuthlich sind es, mit Ausnahme des Farbstoffs, nahezu die der rothen. Viele Gründe sprechen dafür (Cap. V.), dass die farblosen Blutkörperchen die Vorstufe der rothen sind; Uebergangsformen finden sich an gewissen Orten (bes. im Milzvenenblut).

Blutplasma.

Ueber die Gewinnung von Blutplasma für sich s. unten (unter "Absterben" des Blutes). Die Reaction des Blutplasma ist wie die des Gesammtbluts alkalisch. Die chemischen Bestandtheile des Plasma sind:

- 1. Wasser, etwa 90 pCt. (das Plasma = 100 gesetzt).
- 2. verschiedene Eiweisskörper, nämlich:
 - a. Albumin (durch Hitze fällbar).
 - b. Natronalbuminat ("Serumcasein", durch Säuren fällbar).
 - c. Die beim Absterben des Blutes das Fibrin bildenden Körper (s. unten).

Die Hauptmasse der Eiweisskörper besteht aus Albumin; die Gesammtsumme beträgt etwa 8-10 pCt. des Plasma.

3. Kreatin, Sarkin und Harnstoff, zuweilen auch Hippursäure, sämmtlich in sehr geringer Menge.

4. Traubenzucker, in geringer und nach dem Orte verschiedener Menge (s. Cap. V.).

5. Fette, Seifen, Fettsäuren, Cholesterin, Lecithin, die Fette theils mittels der Seifen gelöst, theils emulgirt, ebenfalls nur in geringer, übrigens schwankender Menge (0,1-0,2 pCt.).

6. Ein, jeder Blutart eigenthümlicher Riechstoff.

7. Ein gelber Farbstoff. (Häufig enthält das Serum auch Hämoglobin, das jedoch möglicherweise von einer Verunreinigung durch zerstörte Blutkörperchen herrührt.)

8. Salze, und zwar vorwiegend Natriumsalze, Chloride und Carbonate, also besonders Kochsalz und Natriumcarbonat.

9. Gase (s. unten).

Die hier genannten Bestandtheile, mit Ausnahme von 2. c. bilden zugleich dis Bestandtheile des Serum, d. h. der nach der Gerinnung des Plasma oder des Blutes sich ausscheidenden Flüssigkeit (s. unten).

Blutgase.

Von Gasen enthält das Gesammtblut Sauerstoff, Kohlensäure und Stickstoff, theils nur absorbirt, theils in lockeren chemischen Verbindungen (MAGNUS, LOTHAR MEYER, LUDWIG).

Das Grundgesetz für die Absorption von Gasen durch Flüssigkeiten (HENRY-DALTON-BUNSEN'sches Gesetz) lautet: Die Volumeinheit einer Flüssigkeit kann bei gegebener Temperatur ein bestimmtes Volum eines Gases aufnehmen, welches als Absorptionscoëfficient der Flüssigkeit für das Gas bezeichnet wird. Der Absorptionscoëfficient nimmt mit zunehmender Temperatur nach einem in jedem Einzelfall besonderen Gesetze ab und wird beim Siedepunct der Flüssigkeit Null. Vom Druck ist der Absorptionscoëfficient unabhängig, woraus mit Zuhülfenahme des MARIOTTE'schen Gesetzes folgt, dass die aufgenommenen Gasgewichte dem Druck proportional sind. Da verschiedene Gase auf einander keinen Druck ausüben, so ist unter Druck hier nur der Partiardruck des betr. Gases zu verstehen. Wasser absorbirt z. B. aus der Atmosphäre nur soviel Sauerstoff als dem Partiardruck des Sauerstoffs in der Atmosphäre, also etwa 760/5 = 152mm Hg entspricht. - Man kann also ein absorbirtes Gas aus einer Flüssigkeit austreiben: 1. indem man sie in ein Vacuum bringt, das beständig ernenert wird; 2. indem man sie in einen Raum bringt, der von dem betr Gase frei ist und frei gehalten wird, also z. B. durch Hindurchleiten eines fremden Gases durch die Flüssigkeit; 3. durch Erhöhung der Temperatur, bis zum Siedepunct.

Gewisse Gase gehen mit bestimmten Körpern chemische Verbindungen (nach Acquivalentverhältnissen) ein, welche jedoch sich dissociiren, wenn sie mit einem Raume in Berührung sind, in welchem der Partiardruck des betr. Gases unterhalb einer gewissen Grenze liegt. Dieser Minimaldruck, der für das Bestehen der Verbindung Bedingung ist, ist für jeden einzelnen Fall eine Constante, die jedoch mit steigender Temperatur (ähnlich den Absorptionscoëfficienten) abnimmt. Aus diesen lockeren chemischen Gasverbindung en kann daher das Gas auf dieselbe Weise ausgetrieben werden wie aus blossen absorptiven Lösungen (durch das Vacuum, durch fremde Gase und durch Erwärmung). Sie unterscheiden sich aber von letzteren dadurch, dass bei Steigerung des Partiardrucks über die erwähnte Grenze die aufgenommenen Mengen nicht mehr mit dem Drucke wachsen. - Sind Körper, welche ein Gas locker chemisch binden, in einer Flüssigkeit gelöst, so findet neben der chemischen Bindung auch Absorption durch das Lösungsmittel selbst, seinem Absorptionscoëfficienten entsprechend statt; die absorbirten Gewichtsmengen sind dann also zu einem Theil dem Druck proportional, zu einem andern vom Druck unabhängig.

Der Grund der Abhängigkeit der aufgenommenen Gasmengen vom Partiardruck liegt offenbar darin, dass jedes aufgenommene Gas an der Oberfläche der Flüssigkeit eine Spannung besitzt, vermöge der es zu entweichen strebt; ist diese Spannung gleich dem Partiardruck des Gases im Raume über der Flüssigkeit, so findet Gleichgewicht statt; ist sie grösser oder kleiner, so findet Austritt oder Aufnahme statt bis das Gleichgewicht hergestellt ist. Im Gleichgewichtszustande, der sich nach einiger Zeit jedesmal herstellt (durch Schütteln beschleunigt), ist also der Partiardruck jedes Gases im Raum ein directer Ausdruck für die Spannung desselben Gases in der Flüssigkeit. Führt man den Begriff Spannung in die oben angedeuteten Gesetze ein, so lauten dieselben: 1. Bei einfacher physicalischer Absorption ist die Spannung eines aufgenommenen Gases a. abhängig von der Natur der Flüssigkeit und des Gases, b. proportional der aufgenommenen in Gewichten ausgedrückten Menge, c. abhängig von der Temperatur, mit der sie im Allgemeinen zunimmt, um beim Siedepunct unendlich gross zu werden. - 2. Enthält die Flüssigkeit einen das Gas locker chemisch bindenden Körper, so ist die Spannung nicht der ganzen aufgenommenen Menge proportional, sondern nur dem Ueberschuss über die zur Sättigung des bindenden Körpers nöthige Menge; ist der Körper nicht gesättigt, so bewirkt weitere Aufnahme des Gases keine Zunahme der Spannung, sondern diese bleibt gleich dem oben erwähnten Grenzpartiardruck, der aber von der Temperatur abhängig ist.

Zur Entbindung, sowie zur qualitativen und quantitativen Bestimmung des Gasgehalts einer Flüssigkeit, z. B. des Blutes, kann man eins der drei oben genannten Mittel, oder eine Combination mehrerer derselben (z. B. Auskochen im Vacuum, der Luftpumpe oder des Barometers) benutzen. Wegen der Sauerstoffzehrung (s. unten, Absterben des Blutes) muss man um den wahren Gasgehalt des Blutes zu erhalten, dasselbe sofort nach der Entleerung entgasen oder bis zur Entgasung in Eis aufbewahren. – Um die Frage zu entscheiden, ob Gase im Blute einfach absorbirt oder locker chemisch gebunden sind, dienen Absorptionsversuche an entgastem Blute unter verschiedenen Drücken, oder

Spannungsbestimmungen. — Die Methoden der letzteren, welche besonders für die Chemie der Athmung von Wichtigkeit sind, werden im 4. Kapitel angegeben.

1. Sauerstoffgas ist im arteriellen Blute (s. unten) im Mittel zu 16,9 Volumprocenten (PFLÜGER) (das Gas auf 1 mtr. Druck und 0° bezogen) gefunden worden; in venösem Blute ist die Sauerstoffmenge äusserst schwankend (Cap. IV.); im Venenblute ruhender Muskeln betrug sie im Mittel aus 5 Bestimmungen 5.96 Vpct. (SCZELKOW). Das Verhalten gasfreien Blutes gegen Sauerstoffgas zeigt, dass letzteres von Blut nicht bloss absorbirt, sondern zum grössten Theil chemisch gebunden wird. Die Sauerstoffaufnahme ist nämlich (dem Gewichte nach) vom Drucke bis auf einen kleinen Theil ganz unabhängig, folgt also nicht dem DALTON'schen Gesetz. Schliesst man die Blutkörperchen aus. nimmt man blosses Plasma, oder (da dasselbe schwer zu erlangen ist, und sogleich gerinnt, die fibrinbildenden Substanzen aber als für die O-Bindung unwesentlich betrachtet werden) statt dessen blosses Serum (p. 49), so wird das Gas nur absorbirt, und zwar ebensoviel, wie der dem DALTON'schen Gesetze folgende (absorbirte) Theil des vom Blute im Ganzen aufgenommenen Sauerstoffs beträgt (L. MEYER). Man muss deshalb annehmen, dass der Sauerstoff von einer in den Blutkörperchen enthaltenen Substanz locker chemisch gebunden, vom Plasma oder Serum aber nur absorbirt wird (d. h. von dessen Wasser, denn Serum absorbirt gerade soviel Sauerstoff wie blosses destillirtes Wasser).*) Diese Annahme muss man auf den natürlichen Sauerstoffgehalt des Blutes übertragen.

Als die den Sauerstoff locker chemisch bindende Substanz hat sich das Hämoglobin (p. 39) ergeben, welches die Fähigkeit besitzt sich mit Sauerstoff und einigen anderen Gasen in festen Verhältnissen zu verbinden: 1^{grm.} Hämoglobin bindet 1,2—1,3^{Cem.} Sauerstoffgas (bei 0° und 1^{mtr.} Hg-Druck gemessen). Die Verbindung ist krystallisirbar und etwas weniger löslich als das reine Hämoglobin. Ihre Lösungen sind heller roth als die des letzteren, nicht dichroitisch, während gasfreies Hämoglobin in dünnen Schichten grün ist, und zeigen im Spectralapparat zwei Absorptionsstreifen im Grün; das gasfreie besitzt nur Einen verwaschenen Streifen der dem Zwischenraume der beiden ersteren entspricht. Der Sauerstoff

^{*)} Doch wird auch angegeben (Fernet), dass blosses Serum ebenfalls etwas Sauerstoff unabhängig vom Druck aufnehme, ein Resultat, das vielleicht durch den geringen, im Serum vorhandenen Hämoglobingehalt zu erklären ist (p. 42).

wird der Verbindung nicht bloss durch die oben erwähnten gasaustreibenden Mittel, sondern auch durch viele reducirende Substanzen (Schwefelwasserstoff, alkalische Oxydullösungen, Eisen, Stickoxyd u. s. w.) leicht entzogen. Ihr Grenzpartiardruck oder ihre Spannung (s. oben) sind im oben erwähnten Sinne von der Temperatur abhängig, die absoluten Werthe aber noch unbekannt.

Ausser Sanerstoff vermag das Hämoglobin auch Kohlenoxyd (L. MEYEB) und Stickoxyd (HERMANN) chemisch zu binden, und zwar in gleichem Volum-, also glefchem Aequivalentverhältniss. Von diesen Bindungen ist die des Sauerstoffs die lockerste, so dass der Sauerstoff durch Kohlenoxyd, dies aber wieder durch Stickoxyd verdrängt wird. Auch diese beiden Verbindungen sind als "lockere" zu bezeichnen, weil sie nach neueren Untersuchungen (Donders, ZUNTZ, PODOLINSKI) ebenfalls durch physicalische Mittel zerlegbar sind; nur ist ihr Grenzdruck viel niedriger als der der Sauerstoffverbindung. Auch sie sind nicht dichroitisch und haben zwei Absorptionsstreifen, die beim Kohlenoxydhämoglobin etwas anders liegen als bei den beiden analogen Verbindungen. CO- und NO-Hämoglobin haben ähnliche hellrothe Farbe wie die O-Verbindung — Bei der Zersetzung sauerstoffhaltigen Hämoglobins durch Säuren (p. 40) wird der Sauerstoff nicht frei und kann auch nicht ausgepumpt werden; er wird also durch eins der Zersetzungsproducte fest chemisch gebunden (L. MEYER, ZUNTZ, STRASSBURG).

Da das Verhalten des Gesammtbluts gegen Sauerstoff (Kohlenoxyd etc.), sowie das optische Verhalten und dessen Abhängigkeit vom Gasgehalt, ganz das einer Hämoglobinlösung ist und ferner mit Sauerstoff gesättigtes Blut gerade so viel aufnimmt als dem Bindungsvermögen seines Hämoglobingehaltes entspricht, so ist erwiesen dass sämmtlicher locker chemisch gebundene Sauerstoff des Blutes an Hämoglobin haftet.

Der Sauerstoff des Blutes wird an oxydirbare Substanzen so leicht abgegeben, dass man vermuthet hat, er besitze die Form des "activen Sauerstoffs" oder "Ozons" O3. Hierfür scheinen in der That folgende Eigenschaften des Blutes zu sprechen: 1. Das Blut, die Blutkörperchen und das Hämoglobin sind sog. "Ozonüberträger", d. h. sie vermögen das Ozon von ozonhaltigen Körpern (längere Zeit aufbewahrtes Terpenthinöl) auf leicht oxydirbare Substanzen (Ozonreagentien, z. B. Guajactinctur, welche sich durch Oxydation bläut) augenblicklich zu übertragen (Schoenbein, His); hierfür ist es gleichgültig, ob das Blut oder Hämoglobin sauerstoffhaltig ist oder nicht (z. B. mit CO gesättigt). 2. Blut und Hämoglobin können selbst Sauerstoff ozonisiren, also bei Gegenwart von Luft die Guajactinctur bläuen (A. SCHMIDT); enthält das Blut selbst Sauerstoff, so ist die Gegenwart von Luft für die Reaction nicht nöthig, wohl aber, wenn es mit CO gesättigt ist (KÜHNE & SCHOLZ). Auf dieser Eigenschaft beruht auch die Zersetzung von Schwefelwasserstoff durch Blut. Es ist also sehr wahrscheinlich, dass der eigene Sauerstoff des Blutes in Form des Ozons oder in einer ähnlichen vorhanden ist.

2) Kohlensäure findet man im arteriellen Blut (SETSCHENOW) im Mittel zu 30, im venösen Blute ruhender Muskeln (SCZELKOW) zu 35 Volumprocenten. Ein Theil der Kohlensäure ist nur durch Säuren austreibbar, also fest (salzartig) chemisch gebunden. Die auspumpbare Kohlensäure könnte entweder bloss absorbirt, oder zum Theil locker chemisch gebunden sein. Eine lockere chemische Bindung könnte stattfinden: 1. durch das kohlensaure Natron des Plasma, 2. durch das phosphorsaure Natron des Plasma (FERNET), 3. durch noch unbekannte Verbindungen in den Blutkörperchen (PFLÜGER & ZUNTZ, LUDWIG & A. SCHMIDT). Da Lösungen, welche absorbirte oder locker gebundene Kohlensäure enthalten, sauer reagiren, so wäre die alkalische Reaction des Blutes ein Einwand gegen eine andere als feste Bindung der Kohlensäure (PREVER), wenn nicht Blut auch bei völliger Sättigung mit Kohlensäure alkalisch bliebe (PFLÜGER & ZUNTZ).

Da das phosphorsaure Natron der Blutasche fast ganz von verbranntem Lecithin herrührt, so ist die oben sub 2 angeführte Bindung wahrscheinlich nur spurweise verwirklicht (HOPPE-SEYLER & SERTOLI). Da ferner Serum ebensowohl Kohlensäure unabhängig vom Druck bindet wie das ganze Blut, so muss wenigstens ein Theil der locker chemisch gebundenen Kohlensäure im Serum (d. h. im Plasma) stecken, vermuthlich also in Form von Bicarbonat (s. oben sub 1). Für die Bindung eines Theils der Kohlensäure in den Blutkörperchen (s. sub 3) spricht, dass 1 vol. Blut kaum weniger Kohlensäure enthält als ein gleiches vol. Serum (LUDWIG & SCHMIDT) und ferner dass die Kohlensäureabsorption des Blutes nach anderen Gesetzen mit zunehmendem Drucke wächst als die des Serums (PFLÜGER & ZUNTZ).

Kohlensaures Natron wird durch Zuleiten von Kohlensäure in doppeltkohlensaures Natron verwandelt: $CO_3Na_2 + CO_2 + H_2O = 2 CO_3Na11$; durch gasaustreibende Mittel entsteht unter CO_2 -Entwickelung wieder neutrales Salz. Neutrales phosphorsaures Natron nimmt ebenfalls CO_2 auf, und zwar auf 2 Aeq. Salz 1 Aeq. CO_2 (FERNET); es entsteht dabei saures phosphorsaures und neutrales kohlensaures Salz: 2 $PO_4Na_2H + CO_2 + H_2O = 2 PO_4NaH_2$ + CO_3Na_2 (HERMANN). Diese Mischung giebt unter dem Einfluss gasaustreibender Mittel CO_2 ab und es entsteht wieder neutrales phosphorsaures Salz.

3) Stickstoff enthält das Blut etwa zu 1-2 Volumprocenten. Auch von ihm ist vielleicht ein kleiner Theil chemisch gebunden, und zwar in den Blutkörperchen (FERNET, SETSCHENOW).

Beim Erwärmen (THIRY), ja selbst beim blossen Stehen (BRÜCKE), giebt das Blut Spuren von Ammoniak ab, welche vielleicht von der Zersetzung eines im Blute enthaltenen Ammoniaksalzes herrühren (KÜHNE & STRAUCH), obwohl der Nachweis eines solchen im Blute bisher nicht gelungen ist (BRÜCKE). Sauerstoffzutritt befördert die Ammoniakentwickelung (EXNER).

Blutarten.

Entgastes Blut ist sehr dunkel (fast schwarz), dichroitisch und durch Zerstörung der Blutkörperchen lackfarben (p. 39).

Blutarten.

Die Zusammensetzung des Blutes ist nicht im ganzen Körper dieselbe. Den bedeutendsten Unterschied zeigt das arterielle (in den Körperarterien, dem linken Herzen und den Lungenvenen) und das venöse Blut (in den Körpervenen, dem rechten Herzen und den Lungenarterien), und zwar hauptsächlich im Gasgehalt und in der Farbe. Das arterielle Blut enthält mehr Sauerstoff (dagegen weniger Kohlensäure), als das venöse und hat eine hellere (scharlachrothe) Farbe; es zeigt ferner nicht den Dichroismus des letzteren. Der Unterschied der Farbe hängt mit dem des Sauerstoffgehalts eng zusammen; denn durch Schütteln mit Sauerstoff (oder atmosphärischer Luft) wird dunkles Blut hellroth, durch Schütteln mit andern Gasen (ausser Kohlenoxydgas etc. p. 45) das hellrothe dunkel.

Ausserdem soll das Arterienblut mehr Wasser, Fibrin, Salze, Zucker und Extractivstoffe, dagegen weniger Blutkörperchen und weniger Harnstoff enthalten, als das venöse. Seine Temperatur ist durchschnittlich um 1 ^o C. niedriger (Cap. VII.). Die Ursache der Wirkung der Gase auf die Blutfarbe liegt vielleicht zum Theil in der Formveränderung der Blutkörperchen, welche angeblich durch Sauerstoffbindung schrumpfen und concaver werden, durch Sauerstoffentziehung (Kohlensäuredurchleitung etc.) dagegen aufschwellen (HARLESS); dem entsprechend müssten sie im ersteren Falle als stärkere Hohlspiegel das Licht concentrirter zurückwerfen, im letzteren mehr zerstreuen. Wenigstens macht der Zusatz von Salzen das Blut auf diese Weise (p. 39) heller, der Zusatz von Wasser dagegen dunkler. Indess wirken die Gase auch unabhängig von der Form der Körperchen auf den blossen Earbstoff (z. B. wenn man durch Wasserzusatz jene zerstört hat) in demselben Sinne; nur ist in lackfarbenem Blute die Farbe an sich dunkler und daher der Einfluss des Sauerstoffs schwerer sichtbar.

Von der eigenthümlichen Zusammensetzung besonderer Blutarten (Pfortader-, Lebervenen-, Milzvenenblut) ferner von dem Einfluss der Verdauung, der Athmung u. s. w. auf das Blut wird in späteren Capiteln die Rede sein.

Der Wechsel der körperlichen und chemischen Bestandtheile des Blutes, der Verlust und der Wiederersatz, ist Gegenstand des fünften Capitels.

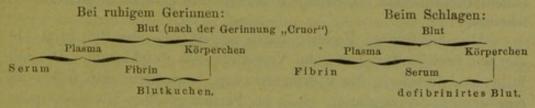
48 Blutmenge. Quantitative Zusammensetzung. Absterben des Blutes.

Blutmenge. Quantitative Zusammensetzung.

Die Menge des im menschlichen Körper enthaltenen Blutes ist nicht genau bekannt; sie beträgt etwa ¹/₁₃ (BISCHOFF), bei Neugebornen ¹/₁₉ (WELCKER) des Körpergewichts.

Die bekanntesten Methodeu zur Bestimmung der Blutmenge sind folgende: 1. Aus der Verdünnung, welche eine bekante, injicirte Wassermenge im ganzen Blut bewirkt, kann man die Blutmenge berechnen; man bestimmt die Verdünnung durch Vergleichung des Wassergehalts von 2 Blutproben, die man unmittelbar vor, und eine Weile nach der Wasserinjection entnommen hat (VALENTIN). [Giebt zu hohe Resultate, weil das Wasser sich nicht gleichmässig mit dem ganzen Blut mischt, und weil das verdünnte Blut sofort mit den Geweben in Diffusion tritt, also Wasser (namentlich durch die Nieren) abgiebt, und feste Stoffe aufnimmt.] 2. Man bestimmt den festen Rückstand der gesammten Blutmenge, die man durch Ausfliessen bei der Enthauptung, und durch Ausspritzen des in den Gefässen gebliebenen Restes mit Wasser (so lange dies noch geröthet abfliesst) erhält; aus dem Rückstand lässt sich die Blutmenge berechnen, wenn man vorher in einer unverdünnten Blutprobe den Gehalt an festen Bestandtheilen bestimmt hat (ED. WEBER). [Ungenau, weil sich nie alles Blut aus den Gefässen ausspritzen lässt und weil das durch die Gefässe strömende Wasser durch Diffusion Substanzen aus den Parenchymen aufnimmt.] - 3. Man gewinnt die in den Gefässen des Enthaupteten zurückgebliebene Blutmenge durch Auslaugen des zerstückelten Körpers mit Wasser; den Blutgehalt des gesammelten Waschwassers bestimmt man, indem man eine bekannte Blutmenge so lange mit Wasser verdünnt bis sie, in gleich dicker Schicht betrachtet, genau dieselbe Farbe hat, wie das Waschwasser. Aus der zum Verdünnen gebrauchten Wassermenge lässt sich die Blutmenge einfach berechnen (WELCKER, HEIDENHAIN). Das in den Muskeln enthaltene Hämoglobin (Cap. VIII.) muss in Abzug gebracht werden. Um die aus verschiedener Sättigung mit Sauerstoff herrührenden Farbenvariationen zu vermeiden, ist es vortheilhaft, das Blut vollkommen mit Kohlenoxyd (s. oben) zu sättigen (v. Bezold & GSCHEIDLEN).

Anhang. Als Beispiel der quantitativen Zusammensetzung des Blutes diene folgendes: Venöses Pferdeblut enthält (HOPPE-SEYLER) 67,4 pCt. Plasma, 32,6 Körperchen; das Plasma für sich enthält 90,8 pCt. Wasser, 1,0 Fibrin, 7,8 Albumin, 0,1 Fette, 0,4 Extractivstoffe, 0,6 lösliche Salze, 0,2 unlösliche Salze; die Körperchen für sich enthalten 56,5 pCt. Wasser, 43,5 feste Stoffe; die organischen Bestandtheile der Körperchen bestehen für sich beim Menschen (JÜDELL) aus 12,2-5,1 pCt. Eiweissstoffen, 86,8-94,3 Hämoglobin, 0,7-0,3 Lecithin, 0,25 Cholesterin.


Absterben des Blutes. Blutgerinnung.

Sobald das Blut oder das Blutplasma dem Einfluss der lebenden Gefässwand entzogen wird, durchläuft er sehr schnell eine Reihe von Veränderungen, die man als das Absterben des Blutes bezeichnen kann. Dieselben sind folgende:

Absterben des Blutes.

1. Die Gerinnung, d. h. die Ausscheidung eines festen Eiweisskörpers, des "Faserstoffs" oder "Fibrins". Dieselbe verwandelt das flüssige Blut zunächst in eine weiche rothe Masse, den Cruor*); nach mehreren Stunden indess zieht sich die feste Masse auf ein kleineres Volum zusammen, indem sie eine gelbliche Flüssigkeit, das Blutserum, aus sich auspresst. Ihre Form, d. h. die des Gefässes, behält sie (in verjüngtem Maassstabe) bei. Die nunmehr vom Serum umspülte dichte rothe Masse, der Blutkuchen (placenta sanguinis), besteht aus dem Fibrin, welches verfilzte Fasern bildet, und den darin eingeschlossenen Blutkörperchen, nebst etwas eingeschlossenem Serum. Die Ausscheidung des Fibrins geschieht im Wesentlichen nicht aus den Blutkörperchen, sondern aus dem Plasma; denn auch dies letztere, welches man durch Senkung der Blutkörperchen (p. 38) im noch ungeronnenen Blute, oder durch Filtriren von Blut mit grossen Blutkörperchen (Froschblut mit Zuckerwasser verdünnt, J. MÜLLER), für sich gewinnen kann, zeigt die Gerinnung, und giebt einen weissen, nur aus Fibrin bestehenden Kuchen. Das Blutserum enthält demnach sämmtliche Bestandtheile des Blutplasma mit Ausnahme des Fibrins. - Haben die Blutkörperchen vor der Gerinnung Zeit gehabt, sich etwas zu senken (wie es z. B. regelmässig im Pferdeblut der Fall ist), so besteht die oberste Schicht des Blutkuchens nur aus Fibrin, ohne Blutkörperchen, ist daher weiss und zieht sich etwas stärker zusammen als der rothe Theil; man nennt sie die Speckhaut (auch causta phlogistica, von ihrem Vorkommen in Aderlassblut bei entzündlichen Krankheiten). Auch durch Peitschen des Blutes während seiner Gerinnung mit einem Stäbchen erhält man das Fibrin für sich, indem es sich in weissen Fasern an das Stäbchen ansetzt; die zurückbleibende, jetzt nicht mehr gerinnungsfähige rothe Flüssigkeit, das "geschlagene" oder "defibrinirte" Blut, besteht aus dem Serum und den Körperchen.

Die Gerinnungsvorgänge verdeutlicht folgendes Schema, in welchem die Endproducte gesperrt gedruckt sind:

*) Manche bezeichnen als "Cruor" das defibrinirte Blut (s. unten). Hermann, Physiologie. 5. Aufi.

4

Absterben des Blutes.

Die Menge des Fibrins ist trotz des grossen Volums, welches es, namentlich anfangs, bei der Gerinnung einnimmt, sehr gering, und, selbst für verschiedene Proben desselben Blutes (S. MAYER), äusserst variabel; im Mittel beträgt sie etwa 0,2 pCt. des Blutes.

Neuerdings wird angegeben (HEYNSIUS), dass auch die (ansgewaschenen) Blutkörperchen Fibrin liefern. – Das Embryonalblut ist im Anfang nicht gerinnungsfähig (Boll).

2. Die Säurebildung. Vom Augenblick der Entleerung an nimmt die alkalische Reaction des Blutes bis zur Gerinnung beständig ab (PFLÜGER & ZUNTZ). Dies beruht höchstwahrscheinlich auf der Bildung einer Säure, deren Natur noch unbekannt ist.

3. Die Sauerstoffzehrung. Unmittelbar nach der Entleerung des Blutes nimmt der O-Gehalt des Blutes etwas ab, der CO₂-Gehalt dagegen zu (PFLÜGER, A. SCHMIDT). Da diese Erscheinung auch während des Lebens stattfindet, weil das Blut immer O verzehrende Substanzen enthält (vgl. Cap. IV.), so gehört sie vermuthlich nicht zu den Absterbeerscheinungen, sondern geht ihnen nur parallel.

4. Die Wärmebildung. Bei der Gerinnung zeigt sich eine geringe, mit dem Thermometer nachweisbare Temperaturzunahme im Blute (Schiffer).

Auch eine Electricitätsentwicklung findet vielleicht unter Umständen beim Absterben des Blutes statt. Frische Organe (Drüsen), an denen man einen künstlichen Querschnitt anlegt, zeigen eine schwache Negativität desselben gegen die natürliche Oberfläche (MATTEUCCI). Dieser Strom zeigt sich jedoch nur an bluthaltigen Organen (HERMANN), und fehlt gewöhnlich an den Organen der Warmblüter (DU BOIS-REYMOND). Es ist zu vermuthen, dass er auf eine Electricitätsentwicklung beim Contact zwischen dem absterbenden Blute (am Querschnitt) und dem noch unveränderten Blute in den Gefässen zurückzuführen ist, wobei das erstere negativ wird (HERMANN). Da das Blut innerhalb der ganzen Gefässverzweigung eine continuirliche Masse bildet, so muss in diesem Falle die Spannung zwischen Oberfläche und Querschnitt von dem Unterschiede in der Absterbegeschwindigkeit des Blutes an beiden abhängen; am Querschnitt stirbt das Blut in allen Fällen sogleich ab, an der Oberfläche stirbt es wegen des Schutzes der Gewebe bei Kaltblütern langsam, bei Warmblütern trotzdem aber schnell ab; so erklären sich die eben mitgetheilten Erfahrungen.

Die angeführten Erscheinungen zeigen, dass das Blut beim Absterben verwickelte chemische Veränderungen durchmacht. Die auffallendste derselben, die Fibringerinnung, betrachtete man früher als eine spontane Coagulation eines im Plasma gelösten Eiweisskörpers. Jetzt weiss man, dass das Fibrin nicht als solches im Blute präexistirt, sondern beim Absterben erst entsteht. Nach den neuesten Unter-

Absterben des Blutes.

suchungen (A. SCHMIDT) entsteht es durch chemische Verbindung zweier im Blute getrennt neben einander befindlichen Eiweisskörper, der "fibrinogenen" und der "fibrinoplastischen" Substanz, unter der Einwirkung eines Fermentes, welches sich erst beim Absterben des Blutes zeigt. Beide Fibringeneratoren sind im Plasma enthalten.

Die Fibringeneratoren sind auch in vielen anderen normalen und pathologischen Flüssigkeiten enthalten, z. B. in Lymphe, Chylus, Liquor pericardii, Hydroceleflüssigkeiten u. s. w.; die ersteren bilden auch das Ferment, coaguliren also spontan, aber langsamer als Blut; die übrigen bilden kein Ferment, gerinnen daher nur auf Zusatz desselben oder Blutzusatz. - Die fibrinogene und fibrinoplastische Substanz stehen dem Globulin (p. 33) am nächsten; aus ihrer natürlichen Lösung im Plasma gewinnt man sie durch Zusatz von Wasser und Einleiten von Kohlensäure; die fibrinoplastische Substanz fällt zuerst aus und reisst Ferment mechanisch mit nieder. Beide sind in Alkalien, auch in Säuren, Salzlösungen löslich und lösen sich in Wasser bei Einleitung von Sauerstoff. Das Ferment erhält man durch Ausfällen des Blutes mit Alkohol, und Extrahiren des nach längerer Zeit abfiltrirten Niederschlags mit Wasser; unmittelbar aus der Ader in Alkohol einströmendes Blut liefert kein Ferment. Die fibrinogene und fibrinoplastische Substanz liefern beim Zusammenfügen ihrer Lösungen bei Gegenwart des Ferments das Fibrin als anfangs gelatinöse, später sich zusammenziehende Ausscheidung; die Menge beider Substanzen ist entscheidend für die Menge des Fibrins, zu welchem sie sich, aber anscheinend in inconstanten Verhältnissen, zu verbinden scheinen; die Menge des Ferments ist nur für die Geschwindigkeit der Ausscheidung von Bedeutung. Das Serum enthält noch überschüssige fibrinoplastische Substanz (Rind 0,7-0,8, Pferd 0,3-0,6 pCt). Gegenwart von unkrystallisirtem Hämoglobin, Kohle, Platin etc. beschleunigt die Fibrinbildung, wenn im Uebrigen alle Bedingungen erfüllt sind. Werden die Lösungen der Fibringeneratoren und des Fermentes vor der Vereinigung durch Wasserstoff O-frei gemacht, so bildet sich kein Fibrin. (A. SCHMIDT.)

Der Zusammenhang der übrigen Absterbe-Erscheinungen, besonders der Säurebildung, mit der eben besprochenen ist unbekannt.

Bei längerem Aufbewahren des abgestorbenen Blutes, besonders des defibrinirten, verliert dasselbe allmählich seinen Sauerstoff vollends (vgl. oben) und bildet dafür Kohlensäure; gleichzeitig stellt sich Fäulniss ein. —

Die Erscheinungen des Absterbens werden durch den Fortfall eines während des Lebens beständig wirkenden Einflusses der lebenden Gefässwand hervorgebracht (BRÜCKE). Das Blut gerinnt nicht, so lange es in den Gefässen kreist, wobei jedes Theilchen fortwährend mit der lebenden Gefässwand in Contact kommt, auch dann nicht, wenn es nach der Entleerung mit einem lebenden Gefässe agitirt wird (wenn man z. B. Froschblut mit einem pulsirenden Froschherzen über Quecksilber bringt, BRÜCKE). Es gerinnt dagegen nach

^{1*}

der Entleerung, oder in den Gefässen nach deren Absterben, oder auch in den lebenden Gefässen, sobald an einer Stelle Stillstand des Blutes eintritt, wodurch die centralen Schichten dem Einfluss der Wand entzogen sind.

Zahlreiche bestimmtere Angaben über die Ursache des Gerinnungsvorganges werden hier übergangen weil sich keine derselben bewährt hat. Im Sinne der oben angegebenen Fibrinbildungslehre würde der Brücke'sche Satz lauten: Der Einfluss der lebenden Gefässwand verhindert die Bildung des Fibrinferments oder zerstört dasselbe fortwährend parallel seiner Bildung.

Das Absterben wird in allen seinen Erscheinungen beschleunigt durch höhere Temperaturen und durch Berührung des Blutes mit fremden Körpern (z. B. beim Schlagen), auch mit Luft (in offenen Gefässen gerinnt das Blut schneller als über Quecksilber). — Die Gerinnung kann verhindert werden durch den Zusatz von Alkalien oder alkalischen Salzen, endlich durch Ausfällung der fibrinoplastischen Substanz (durch Kohlensäure oder andere schwache Säuren).

II. DIE BLUTBEWEGUNG.

Das Blut bewegt sich fortwährend mit grosser Geschwindigkeit durch alle Theile des Körpers in den durch das Gefässsystem vorgeschriebenen Bahnen, welche es unter normalen Verhältnissen nirgends verlässt. Alle Ausgaben von Stoffen geschehen daher durch die geschlossene Röhrenwand hindurch; ebenso, mit einer einzigen Ausnahme (Einströmen der Lymphe) die Einnahmen. Zu diesem Verkehr sind jedoch nur die dünnwandigsten Theile des Gefässsystems, die Haargefässe oder Capillaren geeignet. — Da das Gefässsystem vollständig in sich geschlossen ist und die Blutbewegung stets in derselben Richtung geschieht, so muss dieselbe ein Kreislauf sein.

Man kann sich deshalb das Gefässsystem als ein kreisförmiges, vielfach verzweigtes, aber überall geschlossenes Rohr vorstellen; die Stellen des Rohres, wo die Verzweigung am feinsten ausgebildet ist, entsprechen den Capillarsystemen; nur an zwei Stellen ist es vollkommen einfach, diese sind: die Aorta und die Lungenarterie, jede mit der ihr zugehörigen Herzhälfte; von jeder dieser Stellen kann das Blut in die andere nur durch ein Capillarsystem gelangen; es giebt also zwei Hauptcapillarsysteme, welche

Blutbewegung.

beide jedes Bluttheilchen bei jedem Kreislauf einmal durchlaufen muss, die Lungencapillaren und die Körpercapillaren. Der functionelle Unterschied dieser beiden Capillarsysteme liegt im Gaswechsel des Blutes (s. Cap. IV.): in den Lungencapillaren nimmt das Blut Sauerstoff auf und giebt Kohlensäure ab, in den Körpercapillaren geschieht das Umgekehrte. Das Blut ist daher auf dem ganzen Wege von den Lungen- zu den Körpercapillaren sauerstoffreich, daher hellroth (p. 47) oder arteriell, umgekehrt auf dem Wege von den Körper- zu den Lungencapillaren sauerstoffarm und kohlensäurereich, daher dunkelroth oder venös. Der ganze Kreislauf zerfällt demnach in eine arterielle und eine venöse Hälfte.

An den Anfängen der beiden einfachen Stellen des Gefässsystems (die eine in der arteriellen, die andere in der venösen Hälfte) sind die Haupttriebwerke in Form zweier contractiler, mit Klappen versehener Schläuche angebracht, die beiden Herzhälften, und zwar die linke auf der arteriellen Seite (Anfang der Aorta), die rechte auf der venösen (Anfang der Lungenarterie).

Vom Herzen aus gerechnet, nennt man nun jede zu einem Capillarsysteme hin Blut führende Gefässverzweigung ein Arteriensystem, jede von einem Capillarsystem her Blut bringende ein Venensystem. Es giebt demnach zwei Arterien- und zwei Venensysteme. Das Körperarteriensystem (System der Aorta) führt arterielles Blut aus dem linken Herzen in die Körpercapillaren, das Körpervenensystem das hier venös gewordene in das rechte Herz, von hier führt das Lungenarteriensystem das venöse Blut in die Lungencapillaren und das Lungenvenensystem das hier arteriell gewordene in das linke Herz.

Obwohl die ganze Blutbewegung ein einziger Kreislauf ist, wird doch oft missbräuchlich der Abschnitt vom linken Herzen durch die Körpercapillaren zum rechten Herzen als grosser oder Körper-Kreislauf, der andere als kleiner oder Lungen-Kreislauf bezeichnet. — Ein Theil des Körpervenenblutes, nämlich das aus den Capillaren des Darmes und der Milz kommende, vereinigt sich in einem Venenstamm (Pfortader), welcher nicht ohne Weiteres zum rechten Herzen geht, sondern erst zu einem zweiten Capillarsystem sich in der Leber, wie eine Arterie, verzweigt; erst aus diesem gelangt das Blut in die direct zum Herzen führenden Venen; auch dieser Abschnitt des Gefässystems wird missbräuchlich als Pfortader-Kreislauf bezeichnet.

Da bei den Gefässtheilungen fast stets die Summe der Zweigquerschnitte den Querschnitt des Stammes übertrifft, so nimmt der Gesammtquerschnitt des Gefässsystems im Allg. mit der Verzwei-

gung zu, so dass er an den beiden einfachen Stellen (Aorta und Art. pulmonalis) am geringsten, in den Capillartheilen am grössten ist. Die Gefässröhren, namentlich die Arterien, haben eine sehr vollkommene Elasticität.

Unter den bewegenden Kräften, welche den Blutkreislauf bewirken, steht die Herzbewegung oben an; ehe daher jene im Zusammenhange dargestellt werden, wird das Wesentliche über das Herz vorausgeschickt.

Die Herzbewegung.

Das Herz besteht aus zwei vollständig getrennten übereinstimmend gebauten musculösen Hohlorganen, deren jedes durch rhythmische Zusammenziehungen und ventilartige Vorrichtungen seinen Inhalt in bestimmter Richtung durch sich selbst hindurchbefördert. Die rechte Herzhälfte ist in die venöse, die linke in die arterielle Hälfte des Blutkreislaufs eingeschaltet, jene enthält daher nur dunkelrothes, diese nur hellrothes Blut (p. 53); jene befördert das aus dem Körper kommende, durch die Hohlvenen einströmende Blut in die Lungenarterie, diese das aus den Lungen durch die Lungenvenen zurückkehrende in die Aorta. Jede Herzhälfte besteht aus einer dünnwandigen Vorkammer (Vorhof, Atrium), die das einströmende Blut zunächst aufnimmt, und einer dickwandigen Kammer (Ventrikel), die es in die Arterie presst.

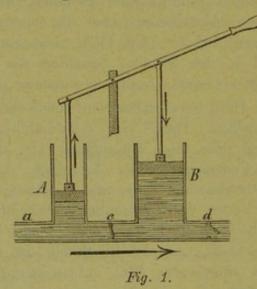
Die Muskelfasern, welche den grössten Theil der Herzwand bilden, sind, obgleich dem Willen gänzlich entzogen, quergestreift und, abweichend von fast allen übrigen, verzweigt und unter einander netzartig zusammenhängend. Sie bilden mehrfache, verschieden gerichtete, zum Theil spiralig gewundene Schichten: die der Ventrikel entspringen von den faserknorpeligen Ringen an den Vorhofsgrenzen, und setzen sich theils ebendaselbst wieder an, theils, nachdem sie sich in die Mm. papillares umgeschlagen, an die Chordae tendineae der Klappen. Die Muskeln der Vorhöfe sind völlig von denen der Kammern getrennt; dagegen gehen viele Fasern von der rechten Herzhälfte auf die linke über. Diese Muskelanordnung erklärt es, dass stets beide Vorhöfe oder beide Ventrikel sich gleichzeitig contrahiren, während Vorhof und Ventrikel in ihrer Thätigkeit von einander unabhängig sind.

Das Herz der Säugethiere und der Vögel verhält sich wie das menschliche. Bei den beschuppten Amphibien communiciren beide Kammern, bei den nackten ist überhaupt nur Eine vorhanden; bei jenen entspringt Aorta und Lungenarterie aus dem gemeinsamen Kammerraum, bei den nackten entspringt nur Ein Gefäss aus der Kammer, welches sowohl dem Körper als den Lungen Blut zuführt. Das Herz der Fische und der Batrachierlarven entspricht

überhaupt nur der rechten menschlichen Herzhälfte (eine Kammer und eine Vorkammer); in die arterielle Kreislaufhälfte ist kein Herz eingeschaltet, so dass die Kiemenvenen direct in die Aorta übergehen. — Bei den Wirbellosen, wo meist kein abgeschlossenes Gefässsystem existirt, kommt ein eigentliches Herz mit Kammern und Vorkammern nur in wenigen Abtheilungen vor; in anderen ist nur ein offener mit Klappen versehener Schlauch vorhanden (z. B. das Rückengefäss der Insecten); andere haben gar Nichts dergleichen.

Die rhythmischen Bewegungen des Herzens bestehen in einer abwechselnden Zusammenziehung der Vorkammern und Kammern. Die beiden Herzhälften arbeiten durchaus parallel und gleichzeitig. Während der Zusammenziehung (Systole) beider Vorkammern geschieht die Erschlaffung (Diastole) beider Kammern, und umgekehrt; die Systole der Kammern folgt unmittelbar auf die der Vorkammern; dagegen bleibt mach der Kammersystole eine kleine Pause bis zur nächsten Systole der Vorkammern; die Systole der Vorkammern dauert ferner kürzere Zeit, als die der Kammern.

Die Systole der Ventrikel nimmt etwa ²/₅, die Diastole derselben etwa ³/₅ der ganzen Periode in Anspruch (VALENTIN, LANDOIS). Dies gilt indess nur bei gewöhnlicher Pulsfrequenz, da bei Veränderungen derselben die Dauer der Systole constant bleibt und nur die der Diastole variirt (DONDERS).


Das Herz und die grossen Gefässe liegen innerhalb des Thorax in einem weiten geschlossenen Behälter, welchen sie und beide Lungen, durch Ausdehnung über ihr natürliches Volum, auszufüllen gezwungen sind (s. Cap. IV.); sie stehen daher unter negativem Druck, d. h. ihre Wände, besonders die nachgiebigeren der Vorhöfe und Venenstämme, werden auseinander gezogen.

Das erschlaffte Herz muss daher von den Venen her sich mit Blut vollzusaugen suchen. Durch eine eigenthümliche Einrichtung ist nun dafür gesorgt dass diese Einsaugung von den Venen her auch während der Contractionen der Ventrikel, der eigentlichen Herzpumpe, nicht unterbrochen wird, also beständig vor sich geht. Die Endstücke der Venen werden nämlich durch die Vorhöfe gebildet, haben also ein variables Lumen: während der Kammersystole sind die Vorhöfe erschlafft, sind also im Stande das während dieser Zeit in den Thorax eingesogene Blut aufzunehmen; während der Kammerdiastole strömt in diese Blut aus den gleichzeitig sich verengenden Vorhöfen ein, ohne dass das Einströmen in letztere aus den Venen unterbrochen wird. Die Vorkammer ist also nicht als eine erste Saug- und Druckpumpe zu betrachten, auf die der Ventrikel als zweite folgt, sondern nur als ein druckregulirendes

Reservoir für das Venensystem. Jede Herzhälfte braucht daher als einfache Saug- und Druckpumpe nur eine Eintritts- und eine Austrittsklappe; erstere ist die Atrioventricular-, letztere die Semilunarklappe. — Bei der Systole der Vorkammern wird das Blut in die gleichzeitig erschlaffenden Ventrikel durch die Aspiration des Thorax (vielleicht auch durch die unten zu besprechende active Saugkraft des Ventrikels in seiner Diastole) eingesogen, so dass gegen den Rücktritt in die Venenstämme kein Klappenschluss erforderlich ist; nur die in den rechten Vorhof mündenden Coronarvenen, deren Inhalt nicht unter Luftdruck sondern unter dem intrathoracischen Druck steht, bedürfen eines Klappenschlusses, der durch die Valvula Thebesii gegeben ist. Ein vollkommenes Verschwinden der Vorhofslumina findet nicht statt, nur an den Herzohren scheint das Lumen ganz zu schwinden.

Dass das Einströmen des Blutes aus den Venen in die Vorhöfe während deren Systole nicht unterbrochen ist, beweist die Abwesenheit von Herzpulsationen an den Venenstämmen. — Die Venen der Lunge stehen an ihren Wurzeln ebenso wie die Körpervenen unter atmosphärischem Druck, da die Capillaren der Alveolen zunächst dem Lumen, also zwischen Atmosphäre und elastischem Gerüste liegen; so ist es begreiflich dass auch der linke Vorhof keine Venenklappen besitzt.

Das beistehende Schema stellt eine nach Art des Herzens wirkende Pumpe dar, welche durch den vorgesetzten Stiefel A, dessen Querschnitt nur halb so

gross ist als der von B, den Strom im Saugrohr a trotz des Pumpens constant hült. B ist die dem Ventrikel entsprechende eigentliche Pumpe mit ihren beiden Klappen c und d. Hätte A denselben Querschnitt wie B, so würde die Einsaugung aus a dadurch, statt auf die Zeit des Kolbenhubs in B (wie es ohne die Vorkammer A sein würde), auf die Zeit des Niedergangs in B verlegt; auf

das Herz übertragen würde dies heissen dass die venöse Ansaugung durch die Vorkammer auf die Zeit der Ventrikelsystole statt auf die der Diastole verlegt wird; schon dies würde wie man leicht findet den Kreislauf, besonders in der Lunge, wesentlich befördern Hat A genau den halben Querschnitt von B, so wird die Einsaugung genau gleichmässig auf Diastole und Systole von B vertheilt. Ein ähnliches Verhältniss ist beim Herzen anzunehmen, da die venöse Einströmung ununterbrochen ist, und die Vorkammer bei allen Herzen ein beträchtlich kleineres Lumen hat als die Kammer.

Der eigentliche Pumpendruck des Herzens beginnt mit der Systole der Ventrikel; der Anfang derselben wandelt den bisher negativen Druck ihres Inhalts in einen positiven um, wodurch die Atrioventricularklappen sich schliessen. Der Klappenverschluss wird durch die gleichzeitige Contraction der Papillarmuskeln noch befestigt, und die Zusammenziehung der Kammern presst nun deren ganzen Inhalt mit grosser Kraft in die Arterien (Aorta und Pulmonalis). Sowie die Systole aufhört, verschliesst der hohe Druck in den Anfängen der Arterien die Semilunarklappen, so dass ein Rücktritt des Blutes in die erschlafften Ventrikel unmöglich ist. Nach einer kurzen Pause, während welcher (wie oben erörtert) die Ventrikel sich aus den bereits gefüllten Vorhöfen anfüllen, beginnt das Spiel von neuem mit der Vorhofssystole.

Die Atrioventricularklappen, rechts die Tricuspidalis, links die Bicuspidalis oder Mitralis) bestehen aus 3 resp. 2 häutigen Platten, die mit breiter Basis an den Wänden der Grenzöffnung, mit ihren freien Rändern durch die Chordae tendineae an den Mm. papillares befestigt sind. In der Ruhe hängen sie schlaff in den Ventrikel herab. Sobald aber im Ventrikel ein höherer Druck herrscht, als im Vorhof, so treibt sie der Rückstrom nach oben, entfaltet sie, und da ihr Umschlagen in den Vorhof durch die Chordae verhindert ist, so werden ihre inneren Ränder an einander gepresst, so dass ein vollständiger Verschluss zu Stande kommt.

Die Semilunarklappen sind je drei am Umfange des Arterieneingangs angeheftete wagentaschenartige Häute. Dem in die Arterien einströmenden Blute setzen sie keinen Widerstand entgegen. Sobald aber der Druck in den Arterien grösser wird, als in den Ventrikeln, schlagen sie sich nach innen und stossen mit ihren Rändern aneinander, die nun einen dreistrahligen Stern bilden; in dieser Lage bilden sie einen festen Verschluss gegen die Ventrikel.

Die Lage der Semilunarklappen in der Systole und ihr Verhalten zu den in den Sinus Valsalvae der Aorta entspringenden Coronararterien ist Gegenstand einer Controverse. Die Einen (SCARAMUZZI, THEBESIUS, BRÜCKE) behaupten dass die Klappen in der Systole der Wand anliegen, also die Zugänge zu den Coronararterien verschliessen, so dass letztere erst während der Diastole mit Blut gespeist werden; die Folge sei ein leichteres Eindringen des Blutes in die Herzsubstanz (während ihrer Erschlaffung), und eine Ausdehnung des diastolischen Ventrikels durch Turgescenz seiner Wandungen, wodurch eine active Aspiration auf das vom Vorhof einströmende Blut ausgeübt würde ("Selbststeuerung des Herzens" BRÜCKE). Andere (HAMBERGER, HYRTL, RÜDINGER, OEHL, CERADINI U. A.) erheben hiergegen hauptsächlich folgende Einwände: 1) Die Klappen seien in der Systole nicht an die Wand angedrückt, sondern sehnenförmig über die Sinus hinweg gespannt, 2) die Coronararterien spritzen, wenn man sie anschneidet, hauptsächlich während der Systole, und zwar aus dem centralen Ende, 3) der Durchgang durch Muskelcapillaren findet während der Contraction weniger Widerstand als während der Erschlaffung (vgl. Cap VIII.), 4) das Herzlumen wird durch Injection in die Coronararterien nicht vergrössert, sondern verkleinert. Nach den neuesten Untersuchungen (CERADINI) findet der diastolische Schluss der Klappen nicht durch eine Regurgitation, sondern im Moment der Unterbrechung des systolischen Axenstroms durch die jetzt frei werdende Spannung an der Peripherie des Bulbus statt, wo während des Durchströmens der Druck grösser ist als in der sich schnell bewegenden Axenschicht.

Die Gestalt des erschlafften Herzens (genauer: der beiden Ventrikel) ist im Allgemeinen ein schiefer Kegel, dessen Basis (ein Querschnitt durch die Atrioventriculargrenze) eine Ellipse ist. Durch die Systole (der Ventrikel) ändert sie sich dergestalt, dass die Basis sich abrundet, und die vorher schiefe Axe sich vertical stellt, so dass ein gerader Kegel entsteht. Diese Formveränderung ist mit einer Axendrehung und durch die eigenthümliche Lagerung des Herzens im Thorax mit einer Aufrichtung der Herzspitze verbunden; letztere schnellt dabei die Thoraxwand hervor (Lupwig). Ein Anschnellen der Herzspitze gegen die Thoraxwand kann ferner bewirkt werden durch den sogenannten "Reactionsstoss", den jeder bewegliche Körper, aus dem eine Flüssigkeit in einer Richtung ausströmt, in entgegengesetzter erleidet (GUTBROD, SKODA). Beide Momente sind zur Erklärung des Herzstosses oder Spitzenstosses verwerthet worden, welchen man, meist zwischen der 5. und 6. Rippe, etwas medianwärts einer durch die Brustwarze gezogenen Verticalen, fühlt und sieht. Trifft der Stoss gerade eine Rippe, so sieht man nur eine leichte Erschütterung der Umgebung.

Sowohl am blossgelegten Herzen, wie am Thorax in der Herzgegend, hört man mit dem aufgelegten Ohre oder mittels des Stethoscops je zwei schnell aufeinanderfolgende Töne, die "Herztöne". Der erste (systolische) ist dumpf, am stärksten in der Gegend der Kammern hörbar, und hält so lange an wie die Systole der Kammern. Einige schreiben ihn den Schwingungen der gespannten membranösen Atrioventricularklappen zu, Andere erklären ihn für das Muskelgeräusch (vgl. Cap. VIII.) des Herzens. Dass das letztere daran betheiligt ist, ergiebt sich daraus, dass man auch am ausgeschnittenen blutleeren Herzen noch den systolischen Ton hört (Ludwig & Dogiel).

Kreislauf. Spannungsverändernde Einflüsse: Herzbewegung.

Der zweite (diastolische) folgt ihm unmittelbar, fällt also in den Anfang der Kammerdiastole. Er ist kürzer und heller, am stärksten an den Ostia arteriosa, wird durch die grossen Arterien fortgeleitet, und rührt jedenfalls von dem plötzlichen Schlusse der Semilunarklappen her, an deren Schlussfähigkeit er gebunden ist (WILLIAMS).

Der Herzstoss kann auch zur directen Registrirung der Herzbewegung benutzt werden indem man auf die betr. Thoraxstelle einen Trichter luftdicht aufsetzt, und die dadurch hervorgebrachten Luftdruckschwankungen im Trichter auf einen Schreibhebel wirken lässt, der auf ein vorüberziehendes Papier Curven zeichnet ("Cardiograph", MAREY). Zur indirecten Registrirung der Herzthätigkeit benutzt man den Arterienpuls (s. unten: Kymograph, Sphygmograph).

Die Blutbewegung in den Gefässen.

Denkt man sich in dem vom Blut erfüllten Gefässsystem jeden Bewegungsantrieb entfernt, so steht das Blut überall unter einem gleichmässigen Drucke, der etwas grösser ist, als er der blossen Schwere entsprechen würde, ein Beweis, dass das Gesammtvolum des Blutes grösser ist, als das natürliche Lumen des Gefässsystems (BRUNNER). Wird nun in einem solchen System plötzlich die Spannung an zwei Stellen ungleich gemacht, so muss sofort eine Strömung von der stärker zu der schwächer gespannten Stelle hin stattfinden. Diese Spannungsausgleichung geschieht um so schneller, die Stromgeschwindigkeit ist also um so grösser, je geringer die ihr entgegenwirkenden Widerstände. Während des Ausgleichungsvorgangs muss daher in jedem Augenblick der noch bestehende Rest von Spannungsunterschied um so grösser sein, je grösser der Widerstand. Ausserdem ist leicht einzusehen, dass bei sonst gleichen Verhältnissen die Stromgeschwindigkeiten mit den Spannungsunterschieden zunehmen.

Eine beständige Ungleichheit der Spannung nun in den verschiedenen Theilen des Gefässsystems wird verursacht durch die Herzbewegung, welche dadurch die Blutbewegung hervorbringt.

Die erste Systole (das System vorher in Ruhe gedacht) presst eine bestimmte, kurz vorher dem Venensystem entnommene*) Quan-

^{*)} Man denke sich für die folgende Betrachtung den rechten Vorhof in die linke Kammer mündend, so dass der ganze Lungenkreislauf sammt rechter Kammer und linkem Vorhof ausgeschlossen wäre.

tität Blut (den Inhalt des linken Ventrikels, s. unten) in das elastische Arteriensystem, erhöht also die Spannung in demselben. Die erhöhte Spannung müsste sich sofort durch die Capillaren hindurch mit der verringerten im Venensystem ausgleichen, wenn nicht das Blut in der Reibung an den Wänden*) der feinen Gefässzweige und besonders der Capillaren einen bedeutenden Widerstand fände; dieser verzögert den Durchgang durch die Capillaren so sehr, dass die nächste Systole noch vor der vollendeten Ausgleichung erfolgt, also eine erhöhte Spannung im Arteriensystem vorfindet. Bei jeder folgenden Systole wiederholen sich dieselben Umstände; die Ueberfüllung des Arteriensystems, und somit die Spannung des Blutes in demselben durch die Ausdehnung der elastischen Arterienwände, wird also immer grösser. Der zunehmende Spannungsunterschied muss aber das Blut zugleich immer geschwinder durch die Capillaren treiben, und er wird endlich so gross werden, dass er in dem Zeitraume zwischen zwei Systolen gerade so viel Blut durch die Capillaren presst, als jede Systole in das Arteriensystem ergiesst. Jetzt kann unter gleichbleibenden Umständen keine weitere Spannungserhöhung stattfinden: der nunmehr bestehende Spannungsunterschied zwischen Arterienund Venensystem ist ein bleibender; er bewirkt einen continuirlichen Strom durch die Capillaren, der genau so viel Blut hindurchtreibt, als das Herz rhythmisch in die Arterien entleert. Die rythmische Uebertragung aus dem Venen- in das Arteriensystem ist also umgesetzt in eine continuirliche Strömung aus dem Arterienin das Venensystem durch die Capillaren. (E. H. WEBER.)

Der Inhalt des linken Ventrikels, also die Blutmenge, welche eine Systole überpumpen kann, hat man auf verschiedenen Wegen zu 150-190 grm. bestimmt-Die Methoden sind hauptsächlich folgende: 1. (LEGALLOIS, COLIN) Man misst direct den Ventrikelinhalt, indem man den Ventrikel (vor der Todtenstarre) mit einer Flüssigkeit von bekanntem spec. Gewicht füllt und vorher sowie nachher wägt; es ist unmöglich hier die normale Spannung des Herzens nachzuahmen, daher die Resultate unbrauchbar. – 2. (VOLKMANN) Man berechnet aus der Ge-

^{*)} Genauer ausgedrückt, ist der Widerstand einer durch ein Rohr strömenden Flüssigkeit, vorausgesetzt dass sie, wie Wasser oder Blat, der Wand adhärirt (sie benetzt), nicht in der Reibung an den Wänden, sondern in der sog. "innern Reibung" zu suchen. Die äusserste Wandschicht einer solchen Flüssigkeit steht nämlich vollkommen still. Denkt man sieh nun die ganze Masse in unendlich viele sehr dünne concentrische Schichten zerlegt, so wird die der unbeweglichen Schicht zunächst liegende sich an dieser verschieben müssen, u. s. f. jede folgende an der nächst äusseren. Jeder solchen Verschiebung wirkt in der Reibung ("innere Reibung") ein Widerstand entgegen, der einen Theil der bewegenden Kraft aufzehrt, d. h. in Wärme verwandelt; jede Schicht wird daher in ihrem Laufe verzögert und zwar müssen natürlich die äusseren Schichten stets mehr verzögert werden, als die inneren, die axiale am wenigsten; in der Axe ist also die Geschwindigkeit am grössten. Ebenso muss in engeren Röhren die Verzögerung der Axenschicht grösser sein als in weiteren.

Spannungen im Gefässsystem. Arterien.

schwindigkeit des Blutstroms in der Aorta und aus dem Querschnitt derselben, eine wie grosse Blutsäule das Herz in der Zeiteinheit um ihre eigne Länge vorschiebt, also wie viel es selbst in der Zeiteinheit entleert; mit Zuhülfenahme der Pulsfrequenz findet man so die durch jede Systole entleerte Menge zu etwa $\frac{1}{400}$ des Körpergewichts, also bei 75 Kgrm. Körp.-Gew. = 187,5 grm. – 3. (VIERORDT) Kennt man die Geschwindigkeit in irgend einem Gesammtquerschnitt des Arteriensystems, ferner die Grösse desselben und endlich die Grösse des Ostium arteriosum sinistrum, so kann man die mittlere Geschwindigkeit in diesem, also auch die in der Zeiteinheit vom linken Ventrikel entleerte Blutmenge einfach berechnen, da die Geschwindigkeiten zweier Querschnitte sich umgekehrt wie deren Flächeninhalt verhalten (s. unten p. 68) – Die Blutmenge, welche die Systole des rechten Ventrikels in das Lungenarteriensystem eintreibt, muss genau der des linken gleich sein, weil durch jeden Querschnitt des Gefässsystems in derselben Zeit gleich viel Blut strömt (s. unten) und beide Herzhälften sich gleich häufig contrahiren.

Um wie viel die Spannung (der Blutdruck) im Arteriensystem höher ist, als im Venensystem, ergiebt sich am einfachsten aus der prallen Füllung der Arterien und der Schlaffheit der Venen, ferner aus der Höhe des Blutstrahls, der aus geöffneten Gefässen hervorspritzt: an den Venen erreicht dieser selten eine nennenswerthe Höhe, Arterien dagegen spritzen bis zur Höhe von mehreren Fussen.

Absolute Blutdruckbestimmungen lassen sich dadurch ausführen. dass man das Gefäss seitlich mit einem Manometer in Verbindung setzt; man kann das Blut selbst als Manometerflüssigkeit benutzen, indem man es in eine verticale Röhre steigen lässt und die Höhe der Säule misst (HALES); bei weitem vortheilhafter aber benutzt man als "Haematodynamometer" das Quecksilbermanometer (Poiseunie), wobei man zur Verhinderung der Gerinnung zwischen Blut und Quecksilber eine Sodalösung einschaltet (p. 52). A priori ergiebt sich, dass der Blutdruck an einer und derselben Stelle des Arteriensystems (abgesehen von den sogleich zu erwähnenden Schwankungen durch die Pulswelle, also der mittlere Blutdruck einer Arterienstelle) wachsen muss: 1. mit der Füllung des Gefässsystems überhaupt, also mit der Blutmenge, 2. mit der Frequenz und Stärke der Herzcontractionen, denn je häufiger und je grössere Blutmengen das Herz aus den Venen in die Arterien überpumpt, um so grösser muss, wie die obige Betrachtung zeigt, der constante Spannungsunterschied, im Arterien- und Venensystem werden. - Die Spannung muss ferner in verschiedenen Theilen des Arteriensystems selbst ungleiche Höhe haben. Da jeder Widerstand die Ausgleichung des Spannungsunterschiedes verzögert (p. 59), so hat der Widerstand, den jedes Arterienstück durch die Reibung an seinen Wänden bietet, einen

Spannungen im Gefässsystem. Herzarbeit.

ähnlichen Einfluss auf die Spannung in den einzelnen Theilen des Arteriensystems, wie der Widerstand der Capillaren auf die Spannungen im Arterien- und im Venensystem. Stromaufwärts von jedem Widerstande muss die Spannung constant grösser sein, als stromabwärts. Hieraus ergiebt sich, dass der Blutdruck im Arteriensystem vom linken Ventrikel nach den Capillaren zu im Allgemeinen kleiner wird, dass die Verkleinerungen am schnellsten eintreten, wo die grössten Widerstände sind, also bei Verengerungen und da, wo Aeste, namentlich unter grossen Winkeln, vom Stamme abgehen, und dass demnach in den Hauptarterienstämmen wegen ihrer Weite und geringen Verästelung der Druck nahezu dem des Bulbus aortae gleich bleibt, während er in den feineren und feinsten Arterien abnimmt. Diese Abnahme ist jedoch nicht bedeutend (H. JACOBSON). Endlich muss wegen des geringeren Widerstandes der Lungencapillaren im Vergleich zu den Körpercapillaren, auch der Spannungsunterschied zwischen Lungenarterien und Lungenvenen geringer, der Druck in den Lungenarterien also niedriger sein, als in den Körperarterien, da die rhythmisch übergepumpten Blutmengen hier und dort gleich sind (p. 61). - In der menschlichen Aorta schätzt man den Blutdruck auf 250 mm Hg., in der Brachialis wurde er zu 110-120 mm direct bestimmt (FAIVRE). In der Art. pulmonalis soll er etwa 1/2 so hoch sein, als in den grösseren Körperarterien (BEUTNER).

Dem entsprechend sind auch die Arbeiten (d. h. die Producte aus den bewegten Massen in die Hubhöhen, hier Druckhöhen) des rechten Ventrikels (3mal) kleiner, und deshalb seine Muskelschicht dünner, als die des linken. Die Arbeit einer Systole des letzteren berechnet sich, wenn man die entleerte Blutmenge (p. 60) auf 175 grm. und den Aortendruck auf $250 \,\mathrm{mm}$ Hg = $3 \,\mathrm{mtr}$. Blut veranschlagt, zu 0,525 Kilogrammmeter, also die 24stündige Arbeit (75 Systolen in der Minute) zu 56700 Kgrmtr. Die Arbeit des ganzen Herzens ist also etwa 75600 Kgrmtr. Da das Gewicht des Herzens 292 grm. beträgt, so würde dasselbe sein eigenes Gewicht in einer Stunde 10788 mtr. heben können. Diese ganze Arbeit wird, wie bereits erwähnt, durch die Reibung in den Gefässen in Wärme verwandelt. — Ueber die Mittel zur Erhaltung eines constanten Blutdrucks s. unten.

Der continuirliche Blutstrom durch die Capillaren setzt eine annähernd constante Spannung der unmittelbar in sie führenden Arterienenden voraus; in diesen also wird sich eine den Systolen entsprechende Druckerhöhung kaum noch geltend machen. Verfolgt man aber das Arteriensystem rückwärts bis zum Herzen, so findet man an jeder Stelle eine regelmässige Druckschwankung, nämlich eine der Systole entsprechende Druckerhöhung und eine der Diastole entsprechende Verminderung. Diese Druckschwan-

Arterienpuls.

kung, welche sich leicht an jedem Arterienstück nachweisen lässt (s. unten), ist um so beträchtlicher, je näher dem Herzen, am stärksten also im Anfangsstück der Aorta (und Art. pulmonalis), am schwächsten, meist unmerklich, in den feinsten Arterienenden; man nennt sie den Puls. Sie tritt nicht im ganzen Arteriensystem gleichzeitig in demselben Sinne auf, sondern jede Phase derselben (z. B. das Maximum) zeigt sich an den vom Herzen entfernteren Arterienstellen später als an den näheren, d. h. die Druckschwankung läuft in Form einer Welle vom Herzen nach den Capillaren durch die Arterien ab, wobei sie zugleich fortwährend an Intensität abnimmt. Die durch die Systole in den Anfang des Arteriensystems eingepresste Blutmenge muss nämlich zuerst in diesem allein die Spannung erhöhen; im nächsten Augenblick aber sucht das über sein diastolisches Volum ausgedehnte Arterienstück durch seine Elasticität sich des Ueberschusses zu entledigen; rückwärts ist dem Blute der Weg durch die sich schliessenden Semilunarklappen versperrt: der Ueberschuss wird also vorwärts gedrängt, und wie in jedem elastischen Rohr, muss die ausgedehnte Stelle schnell nach den Capillaren hin vorrücken. Wäre nun das Arteriensystem blind geschlossen, so müsste offenbar der Wellenberg in unveränderter Grösse bis zum Ende laufen und hier reflectirt wieder zurückkehren. Da aber durch den continuirlichen Abfluss in die Capillaren der systolische Ueberschuss im Arteriensystem fortwährend abnimmt und bis zur nächsten Systole nach dem WEBER'schen Schema ganz verschwunden sein muss, so wird auch der Wellenberg während seines Ablaufes immer kleiner und am Ende seines Weges = 0. - Ingewissen Fällen geht jedoch die Pulswelle in die Capillaren und durch diese selbst in die Venen über, d. h. mit anderen Worten: in gewissen Fällen ist das oben gegebene Schema nicht vollkommen verwirklicht, der Strom durch die Capillaren geschieht nicht mehr continuirlich, sondern es macht sich auch hier noch der Herzrhythmus geltend; - dies tritt ein, wenn durch plötzliche Erweiterung einer Arterie deren Widerstand abnimmt, so dass das bisherige Gleichgewicht zwischen den Widerständen und dem Spannungsunterschied des Arterien- und Venensystems local gestört wird, z. B. nach Durchschneidung eines arterienverengenden Nerven (BERNARD).

Die Geschwindigkeit der Fortpflanzung der Pulswelle (wohl zu unterscheiden von der später zu betrachtenden Geschwindigkeit des Blutstroms) lässt sich mit der Uhr messen, indem man die Durchtrittszeit des Wellenberges in einer entfernten Arterienstelle mit der Zeit der Systole oder mit der Zeit des Pulses in einer dem Herzen nahen Arterienstelle vergleicht. Sie beträgt im Mittel 28,5 Fuss in der Secunde (E. H. WEBER).

Die Erhöhung des Blutdrucks sowohl, als die (sicht- und fühlbare) Erweiterung des Lumens, welche in jedem Arterienstücke während des Durchgangs des Pulswellenberges erfolgt, benutzt man, um den Puls genauer zu beobachten. Die erstere bewirkt in dem seitlich mit der Arterie verbundenen Manometer (p. 61) regelmässige Schwankungen des Quecksilbers. Um diese anschaulich darzustellen, setzt man auf das Quecksilber im offenen Schenkel einen Schwimmer und lässt diesen mittels eines Pinsels oder dgl. auf einer gleichmässig (durch ein Uhrwerk) um eine verticale Axe rotirenden Trommel zeichnen (Lupwic's Kymographion). Die auf- und niedergehenden Bewegungen des Quecksilbers zeichnen hier wellenförmige Curven. Diese geben aber über den zeitlichen Verlauf der Drucksewankung zuweilen keinen genauen Aufschluss, weil das Quecksilber vermöge seiner Trägheit sehr bald in Eigenschwingungen geräth, welche mit den Druckschwankungen zwar gleiche Dauer, aber nicht gleichen Verlauf haben. Um den Verlauf der Druckschwankung zu ermitteln, benutzt man daher andere Manometer, z. B. ein federndes, mit Flüssigkeit gefülltes gebogenes Rohr, das durch Druck auf den Inhalt sich streckt (Bourdox'sches Manometer; FICK'sches Kymographion); oder einen mit Flüssigkeit gefüllten elastischen Beutel, der in einem geschlossenen Röhrensystem sich befindet und dessen Volumänderungen durch Luftdruckübertragung registrirt werden (MAREY'S Kymograph); --- oder man benutzt direct die Erweiterung der Arterie; hierzu dienen die auch beim Menschen anwendbaren Sphygmographen: man setzt auf die Arterie ein Plättchen, welches ihren Erweiterungen und Verengerungen folgend einen Fühlhebel bewegt; auch diesen lässt man auf einer rotirenden Trommel VIERORDT) oder auf einer vorüberziehendon Platte (MAREY) schreiben. Die Eigenschwingungen des Hebels müssen durch möglichste Verminderung seiner Masse und möglichste Erhöhung der Widerstände (durch Federn, die der Bewegung entgegen wirken) verhindert werden.

An den meisten Arterien ist der Puls im normalen Zustande doppelschlägig (dicrotisch) oder meist sogar dreischlägig (tricrotisch). Der zweite und dritte Puls sind jedoch nur mit feinen Mitteln, z. B. mit MAREY'S Sphygmograph, als kleine auf den absteigenden Theil der Pulswelle aufgesetzte Wellenberge nachzuweisen (MAREY, WOLFF, RIVE). Die Ursache derselben sind theils von den Enden der Arterien reflectirte Wellen, theils die durch den Rückstrom beim Schluss der Aortenklappen entstehende Thalwelle (vgl. jedoch p.58),

Ueber die respiratorischen Druckschwankungen in den Arterien s. p. 66. über eine active Triebkraft derselben p. 74.

Der Blutdruck in den Capillaren lässt sich nicht messen, wohl aber kann man seine Veränderungen aus der Weite derselben, sowie aus dem Maasse der Filtration (Cap. II.) beurtheilen. Nach dem obigen Schema müsste er der Zeit nach constant sein, abgesehen von dem oben erwähnten Falle, wo die Pulswellen sich durch die Capillaren fortpflanzen. Jede Verminderung des Widerstandes in den

Venen. Aspiration des Thorax.

abführenden Gefässen muss ihn ferner steigern. Ausserdem steigt und fällt er mit dem allgemeinen Blutdruck.

In den Venen ist der (manometrisch bestimmbare) Blutdruck äusserst schwankend, in den grossen Venenstämmen schwach negativ, und nach der Peripherie hin zunehmend. Ebenso wie die rhythmischen Blutinjectionen in die Arterien hier jedesmal eine Bergwelle hervorbringen, müssten die dem Venensystem rhythmisch entnommenen Blutmengen in diesem jedesmal eine nach den Capillaren verlaufende Thalwelle verursachen, wenn dies nicht durch die Vorhöfe verhindert würde (p. 55). Ueber die respiratorischen Druckschwankungen s. unten.

Für die Blutbewegung sind noch zwei Umstände von sehr grosser Bedeutung, so dass sie neben der Herzbewegung als Ursachen des Kreislaufs mit angeführt werden können, nämlich die Aspiration des Thorax und die zufällige Compression der Venen.

Die Aspiration des Thorax. Das Herz und die grossen Gefässstämme sind durch ihre Lage in einer grossen Höhle, zu deren Ausfüllung sie (neben den Lungen) beitragen müssen, über ihr natürliches Volum ausgedehnt und somit stärker mit Blut gefüllt, als sie es unter anderen Umständen sein würden. Namentlich betrifft dies die nachgiebigeren Theile, also die Venenstämme und die Vorkammern (p. 55). Die Aspiration des Thorax bewirkt somit, wie bereits beim Herzen erwähnt, dass die Blutmenge, welche den in's Herz mündenden Venenstämmen entnommen wird, sich durch Einströmen neuen Blutes aus den ausserhalb des Thorax gelegenen Venen sofort wieder ersetzt, was den Kreislauf wesentlich befördert. Jede Inspiration vergrössert ferner durch die dabei erfolgende Erweiterung der Brusthöhle jenen negativen Druck und übt daher auf die gesammte Blutmasse eine Aspiration in der Richtung gegen den Thorax aus; aber auch diese Aspiration muss vorzugsweise im Venensystem sich geltend machen. In den Arterien bewirkt sie nur eine geringe Abnahme der Spannung; das Venenblut dagegen treibt sie kräftig dem Herzen zu. - Die gewöhnliche Exspiration hebt nur die inspiratorische Erhöhung des negativen Drucks wieder auf; dagegen wandelt eine durch Muskelkräfte bewirkte, kräftige Exspiration, namentlich wenn etwa durch die geschlossene Stimmritze (wie beim Husten) dem Ausströmen der Luft ein Hinderniss gesetzt ist, den negativen Druck im Thorax in einen positiven um, comprimirt also Herz und Gefässe (namentlich die Venen), und

Hermann, Physiologie. 5. Aufl.

5

bewirkt so in den Venen eine bedeutende Stauung, in den Arterien eine weniger bedeutende Druckerhöhung.

Dem entsprechend saugt das centrale Ende einer durchschnittenen Vene bei der Inspiration Luft ein (was durch Embolie in die Lungencapillaren tödtliche Folgen haben kann); umgekehrt schwellen die Venen bei kräftiger Exspiration, namentlich aber beim Husten, bedeutend an. Schliesst man nach einer tiefen Inspiration die Stimmritze, und macht nun eine kräftige Exspirationsanstrengung, so wird der positive Druck im Thorax so stark, dass die Venenstämme fast verschlossen werden, immer weniger Blut in das Herz einströmt, und zuletzt der Kreislauf ganz unterbrochen wird (ED. WEBER). — Die Wirkung der Thoraxverhältnisse auf die Arterien zeigt sich ebenfalls in einer regelmässigen Schwankung des Blutdrucks (Erhöhung bei der Exspiration, Verminderung bei der Inspiration), welche aber nicht den Herz- sondern den Athembewegungen isochron und daher etwa 4 mal langsamer als der Puls ist.

Deswegen erscheinen die Pulswellen der Kymographioncurve auf ein zweites (Respirations-) Wellensystem aufgesetzt. Hindert man durch eine eingeschaltete enge Röhre (SETSCHENOW) die Pulswellen, sich in das Manometer fortzupflanzen, so erhält man die Respirationswellen rein für sich. — Ausser der mechanischen Ursache der Respirationswellen giebt es nach neueren Untersuchungen (SCHIFF) noch eine andere, gewöhnlich wirksamere, nämlich eine Einwirkung der Gasgehaltsschwankungen des Blutes auf das vasomotorische Centrum (s. unten).

Vorübergehende zufällige Compression der Venen durch Contraction benachbarter Muskeln. Jede solche Compression eines Venenstückes muss dessen Inhalt in der Richtung gegen das Herz auspressen, da ihm der Weg in entgegengesetzter Richtung durch die sich schliessenden Klappen der Vene versperrt wird. Mit diesem Druckapparat sind stellenweise auch Saugapparate verbunden; so saugt das unter dem Lig. Pouparti liegende Stück der V. femoralis bei jeder Rollung des Oberschenkels nach aussen Blut von der Peripherie her in sich ein und entleert es bei Rollung nach innen und bei Flexion nach der Cava (BRAUNE).

Die Blutbewegung in den Venen verhält sich demnach folgendermassen: Wenn das Blut das Capillarsystem durchströmt hat, so ist seine Geschwindigkeit nach dem obigen Schema nahezu = 0, weil die Spannung im Arteriensystem nur hinreicht um die erforderlichen Blutmengen (etwa 175 grm. in $^{1}/_{75}$ Minute) durch den Widerstand der Capillaren hindurchzutreiben. Die Herzkraft, welche durch den Widerstand völlig aufgezehrt (in Wärme verwandelt) ist, wirkt also auf

Blutbewegung in den Capillaren. Accessorische Herzen.

das Venenblut nicht mehr ein*). Es wirken hingegen folgende Kräfte: 1. die Schwere; diese kann im Sinne des Kreislaufs treibend nur auf absteigende Venen (z. B. die des Kopfes bei aufrechter Körperstellung) wirken, hemmend dagegen wirkt sie auf aufwärts gerichtete: die Venen des Fusses müssten z. B. unter dem Drucke ihrer hohen Blutsäule so enorm ausgedehnt und gespannt, und der hierdurch gegebene Wiederstand so gross sein, dass die ganze Blutbewegung in der untern Extremität völlig stillstehen würde. Daher sind die übrigen Momente für den Venenblutlauf äusserst wichtig, nämlich: 2. die Aspiration des Thorax, namentlich während der Inspiration, und 3. die Muskelbewegungen des Körpers. — Jedenfalls ergiebt sich aus Allem dass der Venenblutlauf sehr unregelmässig vor sich geht.

Die Blutbewegung in den Capillaren, die man an durchsichtigen Theilen (z. B. in der Schwimmhaut, in der Zunge und im Mesenterium des Frosches, im Omentum des Meerschweinchens, letzteres auf heizbarem Objecttisch STRICKER) unter dem Microscop beobachten kann, ändert in den Zweigchen des feinen Netzwerks häufig ihre Richtung. Man hat hier Gelegenheit, die (p. 60 Anm.) erwähnte ungleiche Geschwindigkeit der verschiedenen Blutschichten an den dahintreibenden Blutkörperchen direct zu beobachten. Die in der Axe befindlichen haben die grösste, die wandständigen eine sehr viel geringere Geschwindigkeit. In den feinsten Capillaren, durch welche nur eine einfache Reihe von rothen Blutkörperchen sich hindurchzwängen kann, sieht man diese vielfach ihre Gestalt den Verhältnissen accommodiren; sie ziehen sich in die Länge, biegen und knicken sich an den Theilungsstellen, drängen sich bis zur Unkenntlichkeit der Contouren zusammen, und nehmen dann wieder ihre natürliche Form an (vergl. auch den Anhang z. d. Cap.) Ueber Auswanderung von Blutkörperchen s. den Anhang zu diesem Capitel.

Bei vielen Wirbelthieren, namentlich bei Fischen, finden sich im Verlaufe des Gefässsystems accessorische Herzen (Verdickungen der Gefässmusculatur mit rythmischer Contraction) sowohl im Arterien- (Bulbus aortae, Art. axillaris u. s. w.) als im Venensystem (Caudalherz des Aals). Ohne anatomisch nachweisbare Verdickung nimmt man an den gewöhnlichen Gefässmuskeln langsame rhythmische Pulsationen (unabhängig vom Herzrhythmus) wahr: an den Ohrarterien des Kaninchens und an den Flughautvenen der Fledermaus. Ihre Bedeutung ist noch nicht erklärt.

Geschwindigkeit der Blutbewegung.

Bei einer jeden Flüssigkeitsbewegung durch ein Röhrensystem muss in bestimmten Zeitabschnitten durch jeden Gesammtquerschnitt des Systems dieselbe Flüssigkeitsmenge strömen. So lange diese

^{*)} Dies gilt indess nicht in aller Strenge; die wirklichen Verhältnisse sind complicitter, als die hier gegebene (Weber'sche) schematische Darstellung, so dass die Spannung in den Arterien häufig local jenes Maass überschreitet und das Blut mit noch merklicher Geschwindigkeit in die Venen gelangt, häufig unter so hohem Druck, dass die angeschnittenen Venen spritzen. Daher findet man gewöhnlich unter den Kräften, welche den Venenblutlauf bewirken, noch einen "Rest der vom Arteriensystem her wirkenden Triebkraft" ("Vis a tergo", "Beharrungsvermögen", etc.) angeführt.

Bedingung irgend eines Hindernisses wegen nicht erfüllt ist, müssen, wenn das System dehnbar ist, vor dem Widerstande die Querschnitte sich entsprechend erweitern, also eine Stauung eintreten. So bewirkt z. B. (p. 60) der Widerstand der Capillaren die constante Stauung (Querschnittsvergrösserung) im Arteriensystem. Sobald aber der Kreislauf in ungestörtem Gange ist, muss auch durch jeden Gesammtquerschnitt des Gefässsystems in der Zeiteinheit dieselbe Menge Blut strömen. Hieraus folgt weiter, dass die Stromgeschwindigkeit in den verschiedenen Gesammtquerschnitten den Querschnittsgrössen umgekehrt proportional ist; sie ist also am grössen im Anfang der Aorta und der Art. pulmonalis, am geringsten (etwa 400 mal kleiner als in der Aorta) in den Capillaren (vgl. p. 54). Ebenso verhalten sich die Geschwindigkeiten in den Totalquerschnitten eines einzelnen verzweigten oder unverzweigten Gefässabschnittes; in einem überall gleichweiten und unverzweigten Gefässstück herrscht also überall gleiche Geschwindigkeit.

Welche Blutmasse aber in der Zeiteinheit durch jeden Querschnitt des Gefässsystems strömt, hängt natürlich ab von der Anzahl und Stärke der Herzbewegungen. Ist n die Anzahl der Systolen in der Zeiteinheit, a die Blutmenge eines Ventrikels (p. 60), so ist die durch jeden Querschnitt in der Zeiteinheit strömende Blutmasse m = n.a, d. h. beim Menschen etwa 218 grm. in der Secunde.

Wie sich diese Geschwindigkeit auf die einzelnen Gefässe, welche zu einem Gesammtquerschnitte des Systems gehören, vertheilt, muss offenbar hauptsächlich von den in ihnen vorhandenen Widerständen abhängen, und die Geschwindigkeit in den widerstandreicheren, also in engeren, gekrümmteren, unter grösserem Winkel abgezweigten, geringer sein. Dass die Geschwindigkeiten ferner in verschiedenen Schichten eines Gefässes sehr verschieden sind, ist p. 60 Anm. erörtert.

Regelmässige Schwankungen der Geschwindigkeit, der Zeit nach, existiren nur soweit das Schema der continuirlichen Strömung nicht völlig verwirklicht ist, also in den Arterien durch die Pulswelle, und ebenso in den Capillaren und Venen, wenn ausnahmsweise auch in sie die Pulswelle übergeht (p. 63). Dass der Durchtritt der Pulswelle an jeder Arterienstelle momentan eine Beschleunigung herbeiführen muss, ergiebt sich aus dem p. 59 Gesagten; denn der Wellenberg erhöht local an einer Stelle die Spannung,

Geschwindigkeiten des Kreislaufs.

während sie in der folgenden Strecke noch die diastolische Höhe hat; die Geschwindigkeit wächst aber mit der Grösse des Spannungsunterschiedes. — In den Capillaren und Venen müsste die Geschwindigkeit, abgesehen vom Eindringen des Pulses, der Zeit nach constant sein, wenn nicht namentlich in den letzteren viele Einflüsse grosse Unregelmässigkeiten herbeiführen. Häufig wird in einem Venenstück der Blutstrom ganz unterbrochen (p. 66), was aber ohne Schaden geschehen kann, weil die meisten Capillargebiete durch mehrere gleichlaufende Venen Abfluss haben, so dass, wenn in einer derselben der Strom verzögert oder unterbrochen ist, das Blut in den anderen um so geschwinder abfliesst.

Durch Beschleunigung und Verstärkung des Herzschlages wird die Stromgeschwindigkeit des Blutes vermehrt. Dies geschieht selbst dann (HEIDENHAIN), wenn Verengung der Arterienenden, also Vergrösserung der Widerstände, die Ursache der verstärkten Herzarbeit ist (s. unten).

Zur Messung der Strömungs-Geschwindigkeit in den Arterien dienen folgende Methoden: 1. VOLKMANN's Hämodromometer ist ein mit Wasser gefülltes Glasrohr von bekanntem Volum, das man plötzlich in den Strom der Arterie einschalten kann; man misst mit der Uhr die Zeit, die das eindringende Blut gebraucht, um das Rohr zu durchlaufen, also alles Wasser hinauszudrängen. Eine Modification hiervon ist die Stromuhr von Lubwig; sie besteht aus zwei (kugelförmigen) Dromometerschenkeln, die man abwechselnd sich füllen lässt, während jedesmal die Flüssigkeit (Oel) in den andern hinein verdrängt wird. 2. Das Tachometer (von VIEROBDT angewandt) ist ein in die Arterie eingeschaltetes Rohr, das ein leichtes Pendelchen enthält; die Ausschläge, welche man von Aussen beobachten kann, stehen in einer vorher zu ermittelnden Beziehung zu den Geschwindigkeiten der das Pendel ablenkenden Ströme. Ist der abgelenkte Körper mit einem ausserhalb des Rohres befindlichen Schreibhebel verbunden, so kann man Curven gewinnen, deren Ordinaten die Stromgeschwindigkeit darstellen (Dromograph, CHAUVEAU, LORTET). 3. Die Bestimmung der aus einer geöffneten Arterie in der Zeiteinheit ausfliessenden Blutmenge, während man die Spannung durch Regulirung der Oeffnungsgrösse unverändert erhält (VIFRordr). - Beim Menschen existiren natürlich solche Bestimmungen nicht. (In der Carotis von Hunden schwankt die Geschwindigkeit zwischen 200 und 700 mm in der Sec.) - Die Geschwindigkeit in den Capillaren bestimmt man bei Thieren durch directe microscopische Messung des Weges, den ein Blutkörperchen in einer gegebenen Zeit durchläuft (E. H. WEBER); beim Menschen durch Selbstbeobachtung an den entoptisch sichtbaren Bewegungen der Blutkörperchen in den Netzhantgefässen (LUDWIG): auf letztere Art fand sie VIERORDT an sich selbst = 0.6-0.9 mm in d. Sec. (vgl. Cap. X.). - Die Geschwindigkeit in den Venen ist mittels der Stromuhr messbar (CYON & STEINMANN).

Wenn man eine Extremität in ein Gefäss mit Wasser taucht, dessen Rand mittels Kautschuks genau anschliesst, und das Lumen des Gefässes mit einem 70 Blutvertheilung. Einfluss des Nervensystems auf den Kreislauf.

Kymographion verbindet, so zeigt jede Druckzunahme, dass mehr Blut in das Glied einströmt als ausströmt; ist also die Geschwindigkeit in den Venen constant, so bedeutet jede Druckzunahme eine grössere, jede Abnahme eine geringere Geschwindigkeit in den Arterien (F1CK).

Um die Zeit zu messen, in welcher ein Bluttheilchen die ganze Kreisbahn durchläuft, injicirt man ein leicht nachweisbares Salz (Ferrocyankalium) in das centrale Ende einer Vene und bestimmt die Zeit, nach welcher es in den aus dem peripherischen Ende derselben Vene in kurzen Intervallen entnommenen Blutproben (durch Eisenchlorid) nachzuweisen ist (HERING); die zuerst nachweisbaren Spuren der Salzlösung können nur durch das rechte Herz, die Lungencapillaren, das linke Herz und die Arterie und das Capillargebiet der gewählten Vene an den Ort der Prüfung gelangt sein, haben also einen ganzen Kreislauf durchgemacht. Der Kreislauf (durch die Kopfgefässe) würde nach solchen Versuchen beim Hunde 15,2, beim Menschen etwa 23 Secunden beanspruchen.

Vertheilung des Blutes im Körper.

Die Blutmenge, welche ein Körpertheil in der Zeiteinheit erhält, hängt ab: 1. von der Zahl und der Weite der zuführenden Arterien, 2. von der Stromgeschwindigkeit in denselben. Letztere ist nach obigem von vielen Umständen abhängig, besonders von der grösseren oder geringeren Entfernung vom Herzen, von der Anzahl und dem Winkel der passirten Verzweigungsstellen u. s. w. Ueber die Veränderlichkeit der Weite einer Arterie s. unten unter "Innervation der Gefässe", wo auch Näheres über die Vertheilung des Blutes im Körper zu finden ist.

Die Vertheilung des Blutes in den einzelnen Körpertheilen kann man an der Leiche nach derselben Methode bestimmen, wie die Blutmenge des Gesammtkörpers (p. 48 sub 3). Die Trennung der einzelnen Körpertheile ist natürlich in gefrorenem Zustande vorzunehmen (v. BEZOLD & GSCHEIDLEN).

Einfluss des Nervensystems auf die Blutbewegung. *)

Von unmittelbarem Einfluss auf die Blutbewegung ist das Nervensystem: 1) durch die Beherrschung der Herzbewegungen; 2) durch die Beherrschung der Weite der Gefässe, speciell der feineren Arterien. Die letzteren sind nämtich mit Muskeln versehen, von deren Contractionszustand ihre Weite abhängt. Durch Veränderung der Gefässweite wird nicht nur local der Blutzufluss zu den einzelnen Organen geregelt, sondern die Veränderung des Lumens einer grösseren Anzahl von Arterien, und die dadurch gegebene Veränderung im

^{*)} Es ist vortheilhaft, bei den Hauptvorgängen des Stoffwechsels die nervösen Einflüsse gleich mit aufzuführen, obgleich bei dieser Vorwegnahme Begriffe gebraucht werden müssen, die erst im dritten Abschnitt erläutert werden.

Intracardiale Centra.

Lumen des ganzen arteriellen Gefässgebietes ist auch von grossem Einfluss auf die Thätigkeit des Herzens.

1. Innervation des Herzens.

a. Intracardiale Centra. Das aus dem Körper entfernte oder von allen zu ihm tretenden Nerven getrennte Herz schlägt noch eine Zeit lang fort; bei kaltblütigen Thieren tagelang, bei warmblütigen so lange für die Zufuhr sauerstoffhaltigen Blutes gesorgt ist. Seine Bewegungen müssen daher, wenigstens zum Theil, durch Vorrichtungen, die in ihm selbst gelegen sind, ausgelöst werden; man vermuthet letztere mit grösster Wahrscheinlichkeit in den (unter einander durch Nervenfasern zusammenhängenden) Ganglienzellen, die in die Muskelsubstanz des Herzens, namentlich in das Septum atriorum und in die Atrioventriculargrenze, eingelagert sind (REMAR). Wenigstens ein Theil dieser Ganglien muss automatisch rhythmische Contractionen des Herzens auslösen, und auch die Reihenfolge des Contractionsverlaufs (von den Vorhöfen zu den Ventrikeln) muss in ihrer Anordnung und Verbindung begründet sein. In einem ruhenden, aber noch erregbaren Herzen lassen sich durch verschiedene, die Herzsubstanz treffende Reize (mechanische, thermische, chemische, electrische) auf reflectorischem Wege eine oder mehrere geordnete Contractionen der Herzabtheilungen hervorrufen, leichter von der inneren, als von der äusseren Herzoberfläche aus.

Ganglienlose Herzmuskelstücke lassen sich wie jedes andere Muskelstück durch directe Reizung in einfache Contraction versetzen. - Beim Froschherzen liegt der hauptsächlich wirkende Ganglienhaufe (REMAK'scher Haufen) in der Wand des Hohlvenensinus, nach dessen Abtrennung das Herz stillsteht, während der Sinus weiter pulsirt (STANNIUS); auch bringen Schädlichkeiten, welche nur den Sinus treffen, das Herz zum Stillstand (v. BEZOLD). Ein zweiter Ganglienhaufen (BIDDER'scher Haufen) liegt in der Gegend der Atroventriculargrenze; wird in dieser Gegend das vom Sinus befreite, stillstehende Herz durchtrennt, so schlägt derjenige Theil wieder rhythmisch, in welchem der Haufe geblieben ist, gewöhnlich der Ventrikel, zuweilen aber die Vorkammern, oder auch beide Theile. Diese Pulsationen sind aber vorübergehend, und scheinen auf mechanischer Reizung des gewöhnlich nicht wirkenden BIDDER'schen Centrums zu beruhen (auch ohne diese Trennung lässt sich das ruhende sinuslose Herz durch einen Stich in der Atrioventriculargrenze in vorübergehende Pulsationen versetzen, H. MUNK). Einige leiten den nach Abtrennung des Sinus eintretenden Stillstand von einer Reizung der durch den Schnitt getroffenen Vagusfasern ab (HEIDENHAIN). Die Annahme hemmender Centra, die in den Vorhöfen ihren Sitz haben und den motorischen Kräften des Sinus und des Ventrikels zusammen nicht gewachsen seien, wohl aber den letzteren für sich (v. BEZOLD), vermag zwar die Erscheinungen zu erklären, ist aber nicht nothwendig.

Hemmende und beschleunigende Herznerven.

b. Hemmende Nerven. Auch die von Aussen her zum Herzen tretenden Nerven (des Plexus cardiacus), welche theils vom Vagus, theils vom Sympathicus herstammen, haben auf die Herzbewegungen Einfluss. Die im Vagus verlaufenden Fasern vermögen, wenn sie anhaltend (mechanisch, chemisch oder electrisch) gereizt werden, die Herzcontractionen zu verlangsamen (und zu schwächen, LUDWIG & COATS), und bei starker Reizung Stillstand des ganzen Herzens in Diastole zu bewirken (ED. WEBER, BUDGE). Bei Säugethieren (und Menschen) besteht eine solche Reizung, vom Ursprung des Vagus in der Medulla oblongata ausgehend, während des ganzen Lebens; denn eine Durchschneidung der Vagi erhöht plötzlich die Pulsfrequenz. Ueber die Quelle und die Abhängigkeiten dieser Erregung s. unten.

Der Vagus enthält neben den hemmenden auch beschleunigende Fasern (s. unten). Sehr schwache Vagusreizung bewirkt zuweilen Beschleunigung des Herzschlages (SCHIFF, GIANNUZZI).

Der Vagus gehört in Bezug auf seine Wirkung auf das Herz zu den sog. "regulatorischen Nerven" (s. darüber das 9. und 11. Capitel). — Am Menschen lässt sich zuweilen der Vagus mechanisch (durch Druck) reizen (CZERMAK, CONCATO). Der rechte Vagus wirkt bei Thieren stärker hemmend als der linke, bei gleicher Reizstärke (MASOIN; ARLOIN & TRIPIER). Nach dem Beginne der Vagusreizung vergeht zuerst eine kurze Zeit, ehe die verlangsamende Wirkung beginnt ("Latenzstadium", DONDERS & PRAHL). Die anhaltende Reizung des Vagus braucht nicht in der gewöhnlichen tetanischen Form zu geschehen, um die hemmende Wirkung auf das Herz ausznüben, sondern es genügt eine in mässig schnellem Rhythmus erfolgende Erregung (v. BEZOLD). — Während des durch Vagusreizung bewirkten Stillstandes löst jede directe Reizung des Herzens eine einmalige, geordnete Contraction aus.

Am Froschherzen kann man durch Reizung des Sinus, an welchem die Vagusfasern verlaufen, die Erscheinungen der Vagusreizung hervorrufen (vgl. oben). Vergiftung mit Curare (s. Cap. VIII.), ebenso starke Abkühlung, lähmt die Vagusendigungen im Herzen.

c. Beschleunigende Nerven. Reizung des Halstheils des Sympathicus bewirkt in den meisten Fällen eine Beschleunigung der Herzschläge (v. BEZOLD). Reizung der Medulla oblongata bewirkt ebenfalls Beschleunigung der Herzschläge, sobald die Leitung zum Herzen, durch das Rückenmark, die von hier zum Grenzstrang des Sympathicus abtretenden Rami communicantes, das erste Brustganglion (Ganglion stellatum), und den Grenzstrang, unversehrt ist (v. BEZOLD). Diese Beschleunigung ist ein complicirtes Phänomen, da durch die Reizung der Medulla oblongata gleichzeitg eine Verengerung des arteriellen Strombettes bewirkt wird, welche die Pulsfrequenz steigert (Ludwig & THIRY, s. unten). Da aber die Frequenz-

Vasomotorische Nerven

steigerung auch eintritt, wenn dieser letztere Einfluss aufgehoben ist (durch Durchschneidung der Hauptgefässnerven: der Splanchnici), und da dieselbe bei erhaltenen Herznerven stärker ist, als nach Trennung derselben (wonach nur die indirecte Frequenzsteigerung eintreten kann), so existirt ein System frequenzvermehrender Fasern, welche auf dem oben angegebenen Wege zum Herzen gehen (M. & E. CYON). Das Centrum derselben scheint in der Medulla oblongata zu liegen; es ist nicht beständig erregt, denn nach Splanchnicusdurchschneidung bewirkt die Rückenmarkdurchschneidung keine Verminderung der Pulszahl (Gebr. CYON). Auch der Vagus führt nach einigen Autoren (SCHIFF, für den Frosch auch SCHMIEDE-BERG) neben den verlangsamenden, beschleunigende Fasern.

Da die Hauptmasse der Gefässnerven erst unterhalb des 2. Brustwirbels, die beschleunigenden Herznerven aber oberhalb desselben vom Rückenmark abtreten, so bewirkt nach Durchschneidung des Rückenmarks an dieser Stelle die Reizung des Halsmarks nur Frequenz- und keine Drucksteigerung, ein weiterer Beweis für das Dasein beschleunigender Nerven (v. BEZOLD). — Auch die Beschleunigungsnerven gehören zu den "regulatorischen" (Cap. IX.).

2. Innervation der Gefässe.

Die Weite der Arterien variirt, abgesehen von der elastischen Ausdehnung, noch mit dem Contractionszustande der in ihrer Wand enthaltenen glatten Muskelfasern; dieser wird wiederum von mannigfachen Umständen beeinflusst; so wird er durch Kälte direct verstärkt, durch Wärme vermindert; auch der Druck und der Gasgehalt des durchströmenden Blutes selbst scheint ihn zu beeinflussen (LUDWIG & SADLER, LUDWIG & HAFIZ); besonders aber ist er von dem Erregungszustande der die Gefässmuskeln beherrschenden "vasomotorischen" Nerven abhängig (BERNARD). Für die meisten derselben ist ein continuirlicher "tonischer" Erregungszustand nachgewiesen, so dass die Durchschneidung Erschlaffung der Gefässmuskeln, Erweiterung der Arterie, verstärkten Blutzufluss zu dem betreffenden Organe und in Folge dessen Röthe, erhöhte Temperatur und vermehrte Ausschwitzung aus den Capillaren zur Folge hat. Die Strömung kann so stark zunehmen, dass das Blut hellroth in die Venen dringt, und sogar die Pulswellen sich bis in die Venen fortpflanzen (BERNARD; vgl. p. 63). Die Reizung des peripherischen Endes des Gefässnerven muss umgekehrt die Arterie verengern und den Blutzufluss bis zur völligen Unterdrückung herabsetzen, wobei der betr. Körpertheil blass, kühl und ärmer an filtrirten Blutbestandtheilen (Parenchymsaft, Secret, s. Cap. II.) werden muss.

Centralorgan für die vasomotorischen Nerven.

Eine von den Stämmen nach den Capillaren peristaltisch fortschreitende Contraction der Arterien würde activ das Blut den Capillaren zutreiben, also im Sinne des Kreislaufs wirken. Ein solcher Vorgang während des Lebens ist nicht festgestellt. Nach Vernichtung der Herztriebkraft lässt sich aber bei Reizung des vasomotorischen Centrums (s. unten) eine active Entleerung der Arterien in die Venen nachweisen (GOLTZ, THIRY, V. BEZOLD), auf welche vermuthlich die Leere der Arterien nach dem Tode zurückzuführen ist.

Die bekanntesten Erscheinungen, die das Einwirken der Nerven auf die locale Blutbewegung zeigt, sind die Schamröthe und die Erectio penis. - Die vasomotorischen Nerven verlaufen theils in spinalen, theils in sympathischen Bahnen, z. B. für die Kopfhaut, die Conjunctiva, die Speicheldrüsen im Halsstrang des Sympathicus (BERNARD), zum Theil auch im N. auricularis magnus (SCHIFF, Lovés), für die unteren Extremitäten in den vorderen Wurzeln der Rückenmarksnerven (PFLÜGER), denen sie sich aber erst mit den Rr. communicantes des Sympathicus beimischen (BERNARD); für die oberen Extremitäten in den mittleren Dorsalwurzeln zum Grenzstrang, von da zum ersten Brustganglion und von diesem durch Rami communicantes zum Plexus brachialis (F. Cyon). Der geräumige Gefässbezirk der Baucheingeweide*) erhält seine Fasern von den Splanchnici, welche daher die einflussreichsten Gefässnerven sind (v. BEZOLD, CYON & LUDWIG.) - Auch das Dasein direct gefässerweiternder Nerven wird behauptet (BERNARD, SCHIFF), ob mit Recht, ist noch nicht entschieden; ihre Wirkung wäre jedenfalls noch unverständlich. Am Penis bewirkt Reizung der Nervi erigentes eine Erschlaffung der Arterien (Lovén), ebenso an den Speicheldrüsen (vgl. Cap. II.) die Reizung der cerebrospinalen Fasern (BERNARD). Die Muskelarterien werden durch Rückenmarkreizung nicht wie die übrigen verengt, sondern erweitert (LUDWIG & HAFIZ). Ueber reflectorische Arterienerweiterung s. unten.

Ein allgemeines Centralorgan für die vasomotorischen Nerven liegt in der Medulla oblongata, deren Reizung bei unversehrtem Rückenmark und Sympathicus Verengerung sämmtlicher feineren Arterien und in deren Folge Erhöhung des Blutdrucks in den Arterienstämmen und Anschwellen des Herzens bewirkt (Lubwig & Thirry); über die Lage desselben s. Cap. XI. Dies Centralorgan ist beständig in Action, wodurch sich der Tonus der vasomotorischen Nerven erklärt. Durchschneidung des Rückenmarks in der Cervicalgegend hebt diesen Tonus auf, bringt also alle Arterien zur Erschlaffung. Ueber den Ursprung dieser Erregung s. unten.

Zahlreiche Erfahrungen, namentlich an entzündeten Geweben (p. 78), sowie die p. 73 genannten directen Einflüsse der Temperatur etc. deuten darauf hin, dass auch noch in unmittelbarer Nähe der Gefässe sich gangliöse Apparate befinden, die die Weite derselben beherrschen.

^{*)} Dieser Gefässbezirk ist so gross, dass er fast die ganze Blutmasse beherbergen kann ; nach Unterbindung der Pfortader z. B. sterben die Thiere an Anämie, weil alles Blut in den Eingeweidegefässen bleibt (Ludwig u. Thiry).

3. Ursprung der Erregungen in den nervösen Centren des Herzens und der Gefässe.

Die Ursache der beständigen rhythmischen Erregung der intracardialen Centra ist gänzlich unbekannt. Sauerstoffzufuhr ist Bedingung (LUDWIG, VOLKMANN, GOLTZ), ebenso eine Temperatur welche von der normalen Blutwärme der Thierart (Cap. VII.) nicht allzuweit entfernt ist. Erhöhung des Blutdrucks im Herzen (z. B. durch Verschliessung der Aorta, Verengerung der feineren Arterien in Folge von Reizung des Gefässnervencentrums, Reizung des einflussreichsten Gefässnerven: des Splanchnicus) bewirkt eine Vermehrung der Pulsfrequenz, wahrscheinlich durch directe Reizung der stärker gespannten Herzwände; umgekehrt bewirkt Erniedrigung des Blutdrucks im Herzen (Durchschneidung des Rückenmarks, der Splanchnici) eine Herabsetzung der Pulsfrequenz (LUDWIG & THIRY).

Die durch Druckzunahme im Herzen hervorgerufene Frequenzsteigerung scheint die Herzarbeit so zu steigern, dass die Vermehrung der Widerstände übercompensirt wird; denn bei Verengerung der feinen Arterien (durch Reizung des verlängerten Marks u. dgl.) nimmt die Geschwindigkeit des Blutstroms in den Arterienstämmen bei Warmblütern zu (HEIDENHAIN).

Temperaturen unter 0 bis 4^{0} und über $30-40^{\circ}$ C. heben die Pulsationen des Froschherzens auf (SCHELSKE, E. CYON). Die Frequenz der Schläge wächst mit steigender Temperatur bis nahe an die Grenztemperatur. Die Intensität der Contractionen ist bei niedrigen und mittleren Temperaturen am grössten und ziemlich beständig; über $20-30^{\circ}$ nimmt sie ab. Plötzliche Einwirkung hoher Temperaturen bewirkt die Erscheinungen der Vagusreizung (s. unten); war aber das Herz vorher stark abgekühlt, so erfolgen rasch auf einander folgende Schläge, die endlich in Tetanus übergehen. — Im Wärmestillstand bringt Reizung am Sinus (welche sonst durch Vagusreizung Stillstand herbeiführt) Tetanus der Ventrikel hervor (E. CYON). — Auch bei Warmblütern steigt im Allgemeinen die Pulzfrequenz mit der Körpertemperatur.

Tetanisirende Ströme, welche das Herz treffen, vernichten die rhythmische Thätigkeit seiner Centra, und bewirken nur resultatlose wühlende Bewegungen, mit starkem Sinken des Blutdrucks (S. MAYER). Ebenso wirken starke constante Ströme. Schwache constante Ströme von der Herzbasis nach der Spitze geleitet, rufen an dem vom Sinus abgetrennten Herzen (p. 71) rhythmische Pulsationen hervor; bei entgegengesetzter Stromrichtung beginnen dieselben abnormer Weise vom Ventrikel (BERNSTEIN), eine Erscheinung, für welche noch keine befriedigende Erklärung aufgestellt ist.

Das Hemmungscentrum im verlängerten Mark, welches bei Warmblütern beständig erregt ist, steht, ähnlich dem in der Nähe befindlichen Athmungscentrum (Cap. IV.), unter dem Einfluss zahlreicher centripetaler Nerven, deren Erregung den Herzschlag verlangsamt, so lange beide oder ein Vagus unverletzt ist. Hierher gehören die verschiedensten sensiblen Nerven (Lovén, KRATSCHMER), der Vagus selbst (v. BEZOLD; DONDERS; AUBERT & ROEVER; ein Vagus central gereizt während der andere intact ist), der Bauch- und Halsstrang des Sympathicus und der Splanchnicus (BERNSTEIN); mechanische Reizung (Klopfen) der Baucheingeweide wirkt ebenfalls reflectorisch durch dieVagi pulsverlangsamend (Goltz).—Dagegen wird die Erregung des Hemmungscentrums vermindert durch Aufblasung der Lunge (HERING). — Ausserdem wird die Erregung des Centrums durch dyspnoische Beschaffenheit des Blutes (vgl. Cap. IV.) wie die des Athmungscentrums gesteigert; ja sie kann eine ähnliche Rhythmik wie das letztere innehalten (bei Einblasungen kohlensäurereicher Luft, TRAUBE), wie auch schon in der Norm mit jeder Inspiration eine gesteigerte Erregung verbunden ist (DONDERS). Erhöhter arterieller Blutdruck im Gehirn steigert die Erregung.

Nach Durchscheidung der oben genannten sympathischen Nerven soll die tonische Vaguserregung aufhören, also nur reflectorischer Natur sein (BERNSTEIN). — Die oben genannten Reflexe werden, wie viele andere (Cap. XI.), durch starke Reizung sensibler Nerven verhindert.

Ueber die Erregungsbedingungen des Beschleunigungscentrums ist Nichts bekannt.

Die Erregung des Gefässnervencentrums ist von sehr ähnlichen Bedingungen abhängig wie die des Herzhemmungscentrums. Centripetale Fasern welche die tonische Erregung verstärken ("pressorische" Fasern) verlaufen im Vagus, besonders im Ram. laryngeus superior, noch mehr im Halssympathicus (AUBERT & ROEVER); ferner bewirkt jede Reizung eines sensiblen Nerven allgemeine Gefässverengerung (Lovén). Vermindernd wirken auf den Gefässtonus centripetale ("depressorische") Fasern des Vagus, bei vielen Thieren in einem besonderen, vom Herzen entspringenden Zweige, dem Ram. depressor (Cron & Ludwig). Im Verbreitungsbezirk vieler sensibler Nerven bewirkt deren centripetale Reizung Gefässerweiterung (Lovén). - Ferner ist der Tonus des vasomotorischen Centrums vom Gasgehalt des Blutes abhängig; durch Steigerung des Kohlensäuregehaltes (Erstickung, Einblasung kohlensäurereicher Luft) verengen sich sämmtliche feineren Arterien unter Zunahme des Herzdrucks und Anschwellen des Herzens (THIRY); die Contraction intermittirt in einem regelmässigen Rhythmus (TRAUBE), welcher mit dem der Athmungserregungen übereinstimmt (HERING). Diese Erscheinungen treten auch bei Verschluss der Carotiden ein, wodurch das stagnirende Hirnblut dyspnoisch wird (NAWALICHIN; vgl. Cap. IV.).

Regulationen. Pulsfrequenz.

Einblasung reizender Dämpfe in die Nase wirkt durch Vermittlung des Trigeminus pressorisch (HERING & KRATSCHMER); mechanische Reizung des Magens, besonders der Serosa wirkt ebenfalls pressorisch (MAYER & PRIBRAM). Die pressorische Wirkung sensibler Nerven soll nur so lange vorhanden sein, als das Grosshirn erhalten ist (E. CYON). — Mit rhythmischer Erregung des vasomotorischen Centrums sollen auch die p. 66 erwähnten respiratorischen Blutdruckschwankungen theilweise im Zusammenhang stehen (SCHIFF).

Viele der hier angeführten Thatsachen deuten auf die Existenz eines complicirten Regulationssystems hin, durch welches Geschwindigkeit und Spannung des in die Capillaren einströmenden Blutes auf constanter Höhe oder innerhalb derjenigen Grenzen erhalten werden, welche für die Functionsfähigkeit der Organe innegehalten werden müssen. Besonders bemerkenswerth ist dass starke Spannung im Arteriensystem und im Herzen einerseits die Herzarbeit steigert, andrerseits (N. depressor) durch Erschlaffung der Arterienenden den Widerstand vermindert. Die Kenntnisse sind noch bei weitem zu mangelhaft, um den ganzen Mechanismus übersehen zu können. Ueber die Regulirung des Blutdrucks im Gehirn siehe Cap. XI.

Pulsfrequenz.

Aus den angeführten Thatsachen ergiebt sich, dass die Grössen der Pulsfrequenz, des Blutdrucks, der Strömungsgeschwindigkeit von sehr mannigfachen Einflüssen abhängen. Die mittlere Pulsfrequenz beträgt 72 in der Minute; beim Foetus ist sie viel grösser (184); sie sinkt bis zum 21. Jahre. Im hohen Alter scheint sie wieder etwas zu steigen. - Die wirkliche Pulsfrequenz in jedem Augenblick ist sehr veränderlich, z. B. wirken Gemüthsbewegungen stark darauf ein (wahrscheinlich durch Vermittelung der Vagi). Von sonstigen Einflüssen sind die wichtigsten: Temperatur: Wärme erhöht, Kälte vermindert die Pulsfrequenz (entweder durch directe Wirkung, vgl. p. 75, oder wahrscheinlicher durch einen reflectorischen Vorgang); Bewegung: dieselbe erhöht die Pulsfrequenz; Körperstellung: in verticaler Stellung (auch ohne Muskelaction) ist die Pulsfrequenz grösser als in horizontaler (Ursache unbekannt); Respiration: während der Inspiration ist sie kleiner als während der Exspiration (p. 76); ferner ist die Pulsfrequenz grösser während der Verdauung, als in den Zwischenzeiten, grösser endlich beim weiblichen Geschlecht und bei kleinen Personen, als beim männlichen Geschlecht und bei langen Personen.

Austritt von Blutkörperchen.

Zahlreiche Arzneistoffe und Gifte wirken auf die Pulsfrequenz, sobald sie in das Blut übergegangen sind, und zwar theils durch directe Einwirkung auf die im Herzen liegenden Ganglien, theils durch Erregung oder Lähmung des Vaguscentrums, oder der Vagusfasern, namentlich deren Endigungen im Herzen, oder vielleicht auch des beschleunigenden Systems; auch durch Wirkungen auf die vasomotorischen Apparate kann nach dem oben Gesagten ein indirecter Einfluss auf die Pulsfrequenz stattfinden.

Anhang.

Austritt von Blutkörperchen aus unverletzten Gefässen.

Sowohl rothe als farblose Blutkörperchen können unter abnormen Verhältnissen die Gefässe ohne Zerreissung der Wand verlassen ("Diapedesis"). Der Austritt der rothen geschieht bei Stauungen des Venenabflusses, wobei durch den hohen Druck zunächst das Plasma hinausgepresst wird, dann die Blutkörperchen bis zur Unkenntlichkeit ihrer Contouren zusammengedrückt und endlich wie eine flüssige Masse ausgepresst werden, worauf sie wieder ihre ursprüngliche Form annehmen (COHNHEIM). Derselbe Vorgang geschieht auch bei anderen, nicht mechanischen Einflüssen, z. B. bei der Einwirkung von Salzen auf nackte Gefässe (PRUSSAK, opp. COHNHEIM). - Farblose Blutkörperchen, allein oder mit wenigen rothen, verlassen die Gefässe bei der Entzündung. Nachdem auf noch unbekannte Weise durch den Entzündungsreiz eine Erweiterung der feinen Arterien und Venen zu Stande gekommen ist, und der Strom in ihnen sich bedeutend verlangsamt hat, bildet sich in letzterem eine Sonderung der farblosen Elemente, welche unmittelbar an der Gefässwand langsam dahinziehen und zuletzt ganz stillstehen, während die rothen in der Axe des Gefässes weiterfliessen. In den Venen und Capillaren sieht man jetzt die farblosen Körperchen unter amöboiden Bewegungen die Gefässwand durchsetzen, worauf sie aussen als "Eiterkörperchen" erscheinen (Соняным). Die Bildung der erwähnten Randschicht wird entweder durch die ungleiche Geschwindigkeit der Blutschichten (p. 67) erklärt, wodurch die kugeligen farblosen Körperchen allmählich nach der Peripherie hingerollt werden müssen, wenn überhaupt der Strom hierzu langsam genug ist (Donders, Cohnheim), oder durch eine besondere Klebrigkeit der farblosen Körperchen, durch welche sie bei hinreichend langsamem Strome, einmal durch Zufall an die Gefässwand gelangt, an ihr haften bleiben (HERING). Ob ferner der Austritt durch active amöboide Bewegungen (COHNHEIM) oder durch eine Art Filtration (HERING, SAMUEL) geschieht, ferner ob durch morphologisch vorgebildete Oeffnungen zwischen den Epithelien ("Stomata"), oder durch die sog. Poren, ist noch nicht entschieden.

Zweites Capitel.

Ausgaben aus dem Blute, Absonderung.

Als "Absonderung" (Secretion) im weiteren Sinne bezeichnet man sämmtliche Vorgänge, bei welchen Stoffe unverändert oder verändert das Blut verlassen; auch bezeichnet man als Absonderungen (Secrete) die durch diese Vorgänge gelieferten Producte. — Die letzteren kann man in zwei Abtheilungen bringen, nämlich:

1. Die aus dem Blute abstammenden, frei auf innere oder äussere Oberflächen ergossenen Flüssigkeiten oder Gase*). Die auf innere Flächen (in Hohlräume, Canäle) ergossenen, die "Secrete im engeren Sinne", dienen hier besonderen Verrichtungen (z. B. der Verdauung), und werden zum grössten Theil mehr oder weniger verändert, wieder in's Blut aufgenommen, — die äusseren dagegen, (die sog. Excrete) sind für den Körper verloren, obwohl einige derselben (z. B. Talg, Schweiss) auch auf der Oberfläche noch gewisse Dienste leisten.

Offenbar ist für den Absonderungsprocess selbst kein Unterschied zwischen Secret und Excret vorhanden, und überhaupt ist die Bestimmung für eine innere oder äussere Oberfläche kein fundamentaler Unterschied. Will man eine scharfe Trennung zwischen Se- und Excreten beibehalten, so nennt man am besten die Stoffe Excretionsstoffe, welche im Körper nicht weiter verwendet werden können und deren Verbleiben im Organismus schädliche Wirkungen äussern würde. Hierher gehören namentlich gewisse Endproducte der Oxydationsprocesse, nämlich Kohlensäure, Harnstoff u. s. w. Als Excrete würde man dann hauptsächlich

^{*)} Die gasförmigen Absonderungen werden im vierten Capitel abgehandelt.

die respiratorische und die Harnabsonderung zu betrachten haben. - Häufig werden alle den Organismus verlassenden Stoffe ohne Rücksicht auf ihren Ursprung Excrete genannt. Es kommen dann zu den hier genannten noch folgende in ihrem wesentlichen Theile nicht oder nicht direct vom Blute abstammende hinzu: 1. der Koth, d. h. die unverdaulichen Theile der Nahrung, gemengt mit den nicht wieder in's Blut zurückkehrenden Bestandtheilen der Verdauungssecrete; 2. die Hornabstossung (Epidermis-, Haar- und Nägelverlust); 3. Eier und Samen.

2. Die aus dem Blute abstammenden, in die Körpergewebe ergossenen und diese durchtränkenden Flüssigkeiten, die "Parenchymsäfte", Muskelsaft, Bindegewebesaft etc.

Insofern auch die festen Bestandtheile der Gewebe (Zellen, Fasern etc.) ihr Material aus den Parenchymsäften, also unmittelbar aus dem Blute beziehen, kann jeder Körperbestandtheil als Absonderung aus dem Blute aufgefasst werden. Doch ist der letzterwähnte Vorgang so in Dunkel gehüllt, dass er hier noch unerörtert bleiben muss; auch die Absonderung der noch wenig bekannten Parenchymsäfte kann hier nur im Allgemeinen berührt werden.

I. ABSONDERUNG IM ALLGEMEINEN.

Physicalische Vorgänge.

Alle flüssigen Ausscheidungen aus dem Blute geschehen durch die geschlossene Gefässwand der Capillaren hindurch. (Die einzige normale Ausscheidung aus offener Gefässwand ist, wie es scheint, die Menstrualblutung, wenn nicht auch diese als eine Diapedesis, vgl. p. 78, zu betrachten ist.)

Die physicalischen Kräfte, welche Flüssigkeiten durch Membranen hindurchtreiben können, sind: die Filtration und die Diffusion.

Filtration nennt man das Durchtreten einer Flüssigkeit durch die Poren (die gröberen, nicht die wesentlichen physicalischen, intermoleculären) eines Körpers, z. B. einer Membran, unter dem Einfluss eines Druckes. Wie beim gewöhnlichen "Filtriren" die Schwere, so kann die Spannung des Blutes in den Gefässen gewisse oder sämmtliche flüssige Blutbestandtheile nach aussen durchpressen, da die Spannung der die Capillaren umgebenden (Parenchym-) Flüssigkeiten meist geringer ist, als der Blutdruck. Die Menge der filtrirten Flüssigkeit nimmt zu mit der Grösse jenes Spannungsunterschiedes; dieser wird aber vergrössert: 1. durch Herabsetzung der Spannung in der Umgebung der Capillaren, also durch Entziehung von Parenchymflüssigkeit, durch locale Aufhebung des Luftdrucks (Aufsetzen von Schröpfköpfen) etc.; 2. durch Erhöhung des Drucks in den Capillaren; diese geschieht durch die p. 73 f. angedeuteten Einflüsse,

Filtration. Diffusion.

nämlich: a. durch Erhöhung des allgemeinen Blutdrucks, b. durch Erweiterung der zuführenden Arterien, d. h. durch Erschlaffung ihrer Circularmuskeln, hervorgebracht durch Wärme oder durch Nachlass der Erregung in den vasomotorischen Nerven. — Die umgekehrten Einflüsse, also: Verminderung des Blutdrucks, Kälte, Reizung der vasomotorischen Nerven, müssen die Filtration herabsetzen. So erklärt sich zum Theil die Einwirkung der Nerven auf die Absonderung (s. unten). — Was die Beschaffenheit der filtrirten Flüssigkeiten betrifft, so gehen ächte Lösungen unverändert durch; unächte dagegen, d. h. blosse Quellungen (z. B. Eiweiss-, Stärke-, Gummilösungen), lassen von dem gequollenen Stoffe nur einen von dem Filtrationsdruck abhängigen Theil, bei sehr geringem Druck gar nichts hindurch. Filtrirendes Blut wird daher bei geringem Druck nur seine ächt gelösten Theile (Wasser, Salze, Zucker etc.), bei höherem auch kleinere oder grössere Mengen von Eiweiss, fibrinogener Substanz etc. durchtreten lassen.

Diffusion (genauer hier: Hydrodiffusion, Endosmose) ist der Verkehr von Flüssigkeiten durch Membranen hindurch, unabhängig von jedem Druckunterschiede, oft sogar dem hydrostatischen Druck entgenwirkend. Auch structurlose Membranen, die also nur die wesentlichen, physicalischen Poren besitzen, sind dazu geeignet (die homogensten Membranen sind die sog "Niederschlagsmembranen", welche bei vorsichtigem Zusammenbringen zweier einen Niederschlag bildenden Lösungen an der Grenzfläche entstehen, M. TRAUBE). Zur Diffusion gehören aber stets zwei Flüssigkeiten, während zur Filtration nur auf einer Seite der Membran Flüssigkeit vorhanden zu sein braucht (auf der anderen kann Luft oder leerer Raum sein); ferner gehören zur Diffusion verschiedene Flüssigkeiten, während Filtration auch zwischen gleichartigen, nur unter verschiedenem Druck stehenden Flüssigkeiten stattfinden kann. - Die Grundbedingung für die Diffusion ist, dass sich die Membran gleichzeitig mit den Bestandtheilen beider Flüssigkeiten durchtränke (imbibire); das Ziel des Diffusionsvorganges ist die völlige chemische Ausgleichung der beiderseitigen Flüssigkeiten. Nach den neuesten Arbeiten erfolgt Durchgang eines Körpers durch eine Membran (Endosmose), wenn jenseits der Membran sich ein Lösungsmittel für ihn befindet, welches eine Anziehung auf ihn ausübt, und wenn die Molecüle des Körpers um ein Bestimmtes grösser sind als die Interstitien oder Poren der Membran. Die Endosmose geschieht ferner um so schneller, je grösser jene Anziehung (die "endosmotische Kraft"), je kleiner die Molecüle der Substanz, und je grösser die Poren der Membran (M. TRAUBE). Die endosmotische Kraft ist sehr gross bei den stark wasseranziehenden hygroscopischen Körpern. Gewisse sehr complicitte Substanzen von sehr hohem Moleculargewicht (vgl. p. 30 f.), welche wegen ihres Mangels an Krystallisirbarkeit den "Krystalloidsubstanzen" als "Colloidsubstanzen" (GRAHAM) gegenübergestellt werden, z. B. Eiweiss, Hämoglobin*), Gummi, können wegen der Grösse ihrer Molecüle durch die meisten Membranen nicht diffundiren. - Andere (VIEROBDT, JOLLY) betrachten als das Weseutliche des Diffusionsvorganges den Austausch der diffundirenden Substanz gegen ein Quantum des in entgegengesetzter Richtung diffundirenden Lösungs-

Hermann, Physiologie. 5. Aufl.

81

^{*)} Obgleich das Hämoglobin krystallisirbar ist, gehört es doch nicht unter die diffundirbare, von Graham als "Krystalloidsubstanzen" bezeichnete Gruppe; ohne Zweifel würde Graham einen anderen Namen gewählt haben, wenn er dies, vor der Hand allein dastehende Beispiel gekannt hätte.

mittels, und nennen das für die Gewichtseinheit eines Körpers ausgetauschte Flüssigkeitsquantum dessen "endosmotisches Acquivalent."

Offenbar werden bei den meisten Secretionsprocessen sowohl Filtration als Diffusion betheiligt sein, weil das Blut überall von chemisch differenten, und zugleich unter niedrigerem Druck stehenden Flüssigkeiten umgeben ist.

Die blossen physicalischen Vorgänge (Filtration und Diffusion) können natürlich nur Flüssigkeiten liefern, welche die Bestandtheile der Blutflüssigkeit, wenn auch in anderen Mengen enthalten. Ob es solche Absonderungen überhaupt giebt, ist nicht mit Sicherheit festgestellt. Am nächsten stehen ihnen der Zusammensetzung nach die sog. "Transsudate", nämlich die normalen Höhlenflüssigkeiten (Liquor pericardii, peritonei, pleurae, ventriculorum cerebri etc.) und die pathologischen Flüssigkeiten hydropischer Höhlen und oedematöser Gewebe. Ihre Hauptbestandtheile sind: Wasser, Salze, Zucker, Harnstoff, verschiedene Mengen von Eiweiss, fibrinogener, zuweilen auch fibrinoplastischer Substanz. Das Dasein der fibrinogenen Substanz erkennt man an dem Eintritt der Gerinnung auf Zusatz von fibrinoplastischen Substanzen und Fibrinferment (z. B. ausgepresstem Blutkuchen p. 51); enthalten die Transsudate zugleich fibrinoplastische Substanz, so gerinnen sie nach der Entleerung spontan, jedoch meist sehr langsam, wegen der geringen Menge des fibrinoplastischen Körpers.

In neuerer Zeit ist es wahrscheinlicher geworden, dass diese Höhlenflüssigkeiten, wenigstens zum Theil, als Lymphe (Cap III.) zu betrachten sind, da man in ihnen Lymphzellen findet und ferner directe Communication der Höhlen mit Lymphgefässen ermitteit ist (v. RECKLINGHAUSEN).

Chemische Vorgänge.

Die meisten Absonderungen enthalten dagegen ausser den Blutbestandtheilen noch andere ("specifische"), zu deren Bildung die physicalischen Vorgänge nicht führen können. Man muss daher gewisse chemische Umsetzungen in den transsudirten Flüssigkeiten annehmen, deren Sitz oder wenigstens Impuls höchstwahrscheinlich in den Zellen zu suchen ist, mit denen die Absonderungen in Berührung kommen, d. h. in den Gewebszellen bei den Parenchymsäften, in den Drüsensäften bei den freien Secreten.

Zwischen Parenchymsäften und freien Secreten scheint daher kein weiterer Unterschied zu sein, als dass jene in einem dichten Zellennetz eingeschlossen bleiben, diese aber eine dünne Zellenlage (in den Drüsen) passiren und ihre Stelle verlassen.

Chemische Absonderungsvorgänge. Absonderungsorgane.

Da die specifischen Secretbestandtheile grossentheils zu den ihrer Natur und Abkunft nach unbekannten Substanzen gehören, so lässt sich über den allgemeinen Charakter der chemischen Vorgänge in den Absonderungszellen nichts Bestimmtes sagen. Einige specifische Secretbestandtheile sind aber unzweifelhaft Oxydationsproducte von Blutbestandtheilen, und da zugleich die Secretion mit einer Leistung (p. 2), nämlich mit Wärmebildung verbunden ist (in den Speicheldrüsen direct nachgewiesen, Ludwig), so ist es wahrscheinlich, dass die chemischen Processe bei der Secretion ziemlich allgemein Oxydationsprocesse sind. Hierfür spricht ferner, dass in den absondernden Organen während der Secretion ein erhöhter Sauerstoffverbrauch stattfindet (dunklere Färbung des Venenbluts), wenn das Secret an specifischen Bestandtheilen reich ist, und dass die Secretion unmöglich wird, wenn die Zufuhr sauerstoffhaltigen Blutes fehlt, obwohl die übrigen Bedingungen vorhanden sind (vgl. unten bei der Speichelsecretion).

Von einigen Secreten (Hauttalg, Milch, Schleim, Speichel) ist es bewiesen, von anderen vermuthet worden, dass die specifischen Bestandtheile derselben von den zerfallenden Zellen selbst herrühren, und dem blossen Transsudate sich beimischen.

Absonderungsorgane.

Die freien Secrete werden von besonderen Absonderungsorganen geliefert. Das einfachste Absonderungsorgan ist eine mit Blutcapillaren. versehene Membran, welche mit einer Zellschicht (Epithel) bedeckt ist; ferner besitzen alle Absonderungsorgane Nerven, deren letzte Endigungen vermuthlich mit den Secretionszellen in directer Verbindung stehen. Die einfachsten absondernden Flächen dienen zur Secretion der Höhlenflüssigkeiten; es sind die serösen Häute (Peritoneum, Pericardium etc.), die Synovialhäute, Schleimbeutel und Sehnenschneiden. Die meisten Secrete aber erfordern eine grössere Oberfläche, als eine einfache glatte Membran bietet; hier wird die absondernde Fläche durch eine einfache oder verzweigte, röhrenoder sackförmige Einstülpung der Fläche, auf welche sich das Secret ergiesst (Schleimhaut, äussere Haut) gebildet; die einzelnen Schichten dieser Fläche setzen sich in die Einstülpung hinein fort, also aussen die bindegewebige, gefässhaltige, oft mit Muskelfasern versehene Grundlage, innen das Epithel, dessen Zellen häufig in der Tiefe der Einstülpung in andersgestaltete, specifische Absonderungszellen übergehen. Eine solche eingestülpte secernirende Fläche bil-

6*

Drüsen. Nerveneinfluss.

det eine Drüse. Das aus den Gefässen kommende Transsudat muss also erst die Zellschicht durchdringen, um als Secret in den Hohlraum der Drüse und von hier auf die Fläche, deren Einstülpung die Drüse ist, zu gelangen. — Auch eine andere Art von Oberflächenvergrösserung, nämlich durch Ausstülpung (Zotten), findet sich in einem Secretionsorgan, nämlich in den Synovialhäuten.

Sind die Drüseneinstülpungen verzweigt, so nennt man die Drüse "zusammengesetzt"; sind sie oder ihre Zweige röhrenförmig, so heissen die Drüsen tu bulös (Schweiss-, Laab-Drüsen, Nieren, Hoden etc.); sind sie bläschenförmig, — acinös (Schleim-, Talg-, Speicheldrüsen etc.). Bei den zusammengesetzten Drüsen heisst der mit der Oberfläche, auf welche die Drüse mündet, unmittelbar zusammenhängende canalförmige Theil, der Eingang der Einstülpung: Ausführungsgang; häufig enthält er Erweiterungen, die als Reservoirs für das fertige Secret dienen (Harnblase, Samenblase), oder er hängt mit wandständigen Reservoirs durch Canäle zusammen (Gallenblase). — Die sog. "Drüsen ohne Ausführungsgang" (Milz, Lymphdrüsen, Follikel, Nebennieren, Thymus, Schilddrüse) sind keine Absonderungsorgane, und werden im 4. und 6. Capitel besprochen.

Nerveneinfluss.

Bei allen Absonderungen vermuthlich, bei vielen nachweisbar, findet ein Einfluss des Nervensystems auf den Secretionsprocess statt. Derselbe kann bestehen in Einleitung der sonst nicht vorhandenen Secretion, in quantitativer Veränderung, und in qualitativer Veränderung der Secretion, durch die Nervenerregung.

Da bei einigen Drüsen der Nerveneinfluss auf die Secretion mit einem zweiten auf die Circulation in der Drüse verbunden ist (z. B. in den Speicheldrüsen, BERNARD), so könnte man geneigt sein, den ersteren überhaupt durch den letzteren zu erklären. Ein solcher Einfluss mittels der Circulation würde bestehen können 1) in Veränderung des Filtrationsdrucks in den Drüsencapillaren, durch Erweiterung oder Verengerung der zuführenden Arterien; 2) in Veränderung der chemischen Processe durch den unter denselben Umständen reichlicher oder spärlicher zugeführten Sauerstoff. Da indess der Nerveneinfluss, soweit er in Einleitung der sonst ruhenden Secretion besteht, auch ohne alle Circulation noch stattfinden kann (an ausgeschnittenen Drüsen, Ludwig), da ferner der Secretionsprocess der Filtration entgegen wirken kann (der Druck im Ausführungsgange der Drüse kann, bei verhindertem Abfluss des Secrets, durch die Nervenreizung grösser werden, als der Druck in den Arterienstämmen, Lupwig), so kann der Nerveneinfluss auf die Secretion nicht allein durch den auf die Circulation erklärt

Nerveneinfluss. Parenchymsäfte.

werden. Neuerdings sind ferner anatomische Veränderungen der Drüsensubstanz unter dem Einflusse der Nervenreizung entdeckt worden (HEIDENHAIN; s. unter Speichel). Man muss also ausser den vasomotorischen Fasern, noch andere specifisch "secretorische" annehmen, welche direct in noch unverständlicher Weise auf den Secretionsprocess wirken.

Dass aber neben den "secretorischen" auch vasomotorische Fasern die Secretion beeinflussen, ist festgestellt (BERNARD) durch das schon erwähnte Zusammenfallen von Secret- und Circulationsveränderungen. Ihrer Natur nach wird der Einfluss derselben sich hauptsächlich auf den Transsudationsprocess, also auf Quantität und Concentration des Secrets erstrecken. Für den zweiten oben genannten Einfluss fehlt es an Anhaltspuncten, wenn auch die Zufuhr sauerstoffhaltigen Blutes für anhaltende Secretion erforderlich ist (die ausgeschnittene Drüse liefert auf Nervenreizung nur Anfangs Secet, auch wenn man, durch künstliches Oedem, für hinreichenden Flüssigkeitsvorrath gesorgt hat, GIANNUZZI).

Der in neuerer Zeit versuchte an atomische Nachweis der secretorischen Nerven, in Gestalt von mit den Drüsenzellen communicirenden Nervenfasern (PFLÜGER) wird vielfach bestritten.

II. DIE EINZELNEN ABSONDERUNGEN.

A. Parenchymsäfte und Parenchyme.

Die Methoden, sich Parenchymsäfte zu verschaffen, sind zu unvollkommen, um sie in ihrer ursprünglichen Zusammensetzung in genügender Menge zu liefern. Sie bestehen darin, entweder das möglichst vom Blut befreite Gewebe auszupressen, oder durch verschiedene Lösungsmittel (Aether, Alkohol, Wasser, Säuren) nach einander einzelne Bestandtheile zu extrahiren. - Die Kenntnisse über die Zusammensetzung und namentlich über die Bildung der Parenchymsäfte sind daher höchst mangelhaft. In vielen Fällen weiss man nicht, ob die durch die oben erwähnten Methoden aus einem Gewebe erhaltenen specifischen Stoffe dessen flüssigen oder geformten Elementen angehören. Ueber die Entstehung der Parenchymsäfte kann man nur vermuthen, dass durch die Zellen des Gewebes in dem von den Blutgefässen gelieferten Transsudate durch chemische Processe, vielleicht unter dem Einflusse besonderer (trophischer) Nerven (s. Cap. IX.) die specifischen Bestandtheile (Leim, Fette, Farbstoffe etc.) entstehen; ferner vermuthet man, dass die Transsudate in einem gewissen Ueberschuss geliefert werden, welcher durch Wiederaufsaugung mittels der Lymphgefässe wieder ausgeglichen wird

Parenchymsäfte. Gewebe.

(s. Cap. III.). Die gebildeten specifischen Stoffe sind zum Theil unlöslich und werden dann Formelemente.

Hieraus ergiebt sich, dass eine gesonderte chemische Betrachtung der flüssigen und geformten Parenchymbestandtheile noch nicht möglich ist und dass die ganze Entstehungsgeschichte der Gewebe vor der Hand nur morphologisch behandelt werden kann. Es wird daher hier ohne jene Trennung das kurz zusammengestellt werden, was über die specifischen chemischen Bestandtheile der Parenchyme bekannt ist.

1. Knochengewebe. Das reine Knochengewebe (nach Entfernung von Periost, Marksubstanz etc.) besteht höchst überwiegend aus unorganischen Salzen; in dem vollkommen getrockneten Knochen (Wasser etwa 2 pCt.) findet sich eine für jede Thierart sehr constante Zusammensetzung; beim Menschen 68 pCt. Salze, 32 pCt. organischer Substanz (ZALESKY). Erstere bestehen aus 84 pCt. basisch phosphorsauren Kalks ($P_2O_8Ca_3$), 1 pCt. basisch phosphorsaurer Magnesia ($P_2O_8Mg_3$), 7,6 pCt. anderer Kalksalze (CO_3Ca_3 , $CaCl_2$, $CaFl_2$) und 7,4 pCt. Alkalisalze (NaCl etc.). Der organische Antheil besteht fast ganz aus leimgebender Substanz, und wandelt sich durch Kochen, namentlich nach Behandlung mit Säuren, in Leim um.

Die eigentliche Knochensubstanz spongiöser und compacter Knochen hat genau dieselbe Zusammensetzung. Die Constanz der Zusammensetzung der Knochensubstanz (MILNE EDWARDS jun., ZALESKY) berechtigt zu der Annahme, dass die Salze nicht mechanisch in die organische Substanz eingelagert, sondern chemisch mit dieser verbunden sind.

Verdünnte Säuren entziehen dem Knochen die Salze und lassen die weiche knorpelartige organische Substanz zurück. Glühen zerstört umgekehrt die letztere und hinterlässt eine weisse poröse unorganische Masse (gebrannter Knochen). In beiden Fällen bleibt die ungefähre äussere Gestalt des Knochens erhalten.

Dem Knochen schliessen sich die anderen mit Kalksalzen imprägnirten Gewebe an, z. B. die Zähne. Der Zahnschmelz, fast wasserfrei, erhält nur 4 pCt. organischer Substanz, und im übrigen die Bestandtheile des Knochens in analogen Verhältnissen.

Ueber die secretorische Bildung und Erneuerung der Knochensubstanz ist, abgesehen von morphologischen Erscheinungen, Nichts bekannt.

2. Knorpelgewebe. Abgesehen vom Wasser und den Bestandtheilen der Zellkörper enthält der Knorpel hauptsächlich chondringebende Substanz (p. 36), Einlagerungen von Elastin (p. 34) und wenig unorganische Salze.

86

Dem Knorpel am nächsten steht die Cornea, welche beim Kochen eine chondrinähnliche Substanz liefert; sie enthält ausserdem viel fibrinoplastische Substanz (p. 51).

3. Bindegewebe. Im Bindegewebe kann man unterscheiden (KÜHNE): 1) die Substanz der Fibrillen, — leimgebende Substanz, 2) die Kittsubstanz zwischen den Fibrillen, durch Kalk- und Barytwasser extrahirbar (ROLLETT), das Extract enthält Mucin, 3) die Einlagerungen von Elastin und 4) die Zellkörper mit ihren gewöhnlichen, hauptsächlich eiweissartigen Elementen; häufig sind dieselben von Fett erfüllt. In den foetalen und einigen anderen Bindegeweben tritt die leimgebende Substanz gegen die mucingebende zurück.

4. Muskelgewebe s. Cap. VIII.

5. Nervengewebe s. Cap. IX.

B. Höhlenflüssigkeiten.

Die Absonderung derselben geschieht nicht durch Drüsen, sondern durch die die Höhlen auskleidenden, mit einer einfachen Zellschicht bedeckten Häute ("seröse Häute" etc.). Der Zusammensetzung nach scheinen sie blosse Transsudate zu sein, über deren allgemeine Bestandtheile das Wesentliche bereits p. 82 erwähnt ist; die Mengenverhältnisse sind äusserst mannigfaltig, die quantitativen Analysen können hier nicht aufgeführt werden. — Als blosse Transsudate können, wie es scheint, betrachtet werden: Liquor cerebrospinalis, Humor aqueus, vielleicht auch Liquor amnii und allantoïdis (4. Abschn.). Die früher ebenfalls zu den Transsudaten gerechneten Liq. pericardii, pleurae und peritonei sind dagegen, da sie durch Oeffnungen direct mit Lymphgefässen communiciren (v. RECKLING-HAUSEN, OEDMANSSON, LUDWIG & DYBKOWSKY), als Lymphe zu betrachten (Cap. III.).

Folgende Höhlenflüssigkeiten haben specifische Bestandtheile:

1. Gelenkschmiere, Synovia; sie enthält ausser den Transsudatbestandtheilen noch Mucin (0,2-0,6%) und Fett (0,06-0,08%); man findet in ihr zahlreiche abgestossene Epithelzellen.

2. Schleimbeutel- und Sehnenscheidenflüssigkeit; sie enthalten einen noch nicht erforschten gallertartigen Stoff.

In welcher Weise die Höhlenflüssigkeiten verbraucht und wieder ersetzt werden, ist unbekannt.

Schleim, Speichel.

C. Drüsen-Absonderungen.

1. Absonderungen für den Verdauungscanal.

1. Schleim.

Der Schleim des Digestionscanals wird im Munde, Rachen und Oesophagus von kleinen acinösen, im Magen (besonders in der Nähe des Pylorus) und Darm von einfachen oder wenig zusammengesetzten tubulösen Drüsen secernirt, welche mit dem Epithel ihres Mutterbodens, also erstere mit Platten-, letztere mit Cylinder-Epithel ausgekleidet sind. - Der Schleim ist eine klare, schlüpfrige, fadenziehende, alkalische Flüssigkeit, eine Quellung von Mucin, zuweilen auch Albumin, in welcher die gewöhnlichen Blutsalze, namentlich Chlornatrium, gelöst sind. Der Darmschleim enthält ausserdem fermenthaltige Körper, welche ihm besondere Eigenschaften verleihen, und wird deshalb gesondert als "Darmsaft" beschrieben (s. unten). Regelmässig enthält der Schleim Formbestandtheile, nämlich 1) kleine, runde, kernhaltige Zellen, den farblosen Blutkörperchen ähnlich, - sog. Schleimkörperchen, welche man als junge Zellen der Schleimdrüsen betrachtet; 2) ausgewachsene platte Epithelzellen der Schleimhaut, häufig im natürlichen Zusammenhang, oder Fragmente von solchen. - Die Schlüpfrigkeit des Schleimes macht ihn geeignet, die Reibung des Inhalts an den Wänden des Digestionscanals zu vermindern.

Reinen Schleim kann man (abgesehen vom Darmschleim) nur bei Thieren aus der Mundhöhle gewinnen, nachdem man die Ausführungsgänge sämmtlicher Speicheldrüsen unterbunden hat. Die beigemischten Formbestandtheile lassen vermuthen, dass das Mucin sich nur durch Zerfall von Drüsenzellen dem Schleim beimischt (vgl. unten die Speichel-, Talg- und Milchsecretion). — Ein Nerveneinfluss auf die Schleimsecretion ist noch nicht bekannt.

Da das Mucin anscheinend nicht resorbirbar ist (Cap. III.), so wird es wahrscheinlich gänzlich mit den Faeces ausgeschieden, während die übrigen Schleimbestandtheile möglicherweise wieder zum Theil in's Blut zurückkehren.

2. Speichel.

Die drei verschiedenen Speichel ("Drüsenspeichel") der Parotis, Submaxillaris und Sublingualis sind sehr wasserreiche, farblose, alkalische Secrete von niedrigem specifischem Gewicht (1,004– 1,009). Ausser den gewöhnlichen Transsudatstoffen (darunter sehr geringe Mengen von Eiweisskörpern: Albumin und Globulin) enthalten sie als specifische Bestandtheile: a) Mucin, am meisten

Speichel.

der Sublingualspeichel, weniger der Submaxillarspeichel, am wenigsten der Parotidenspeichel; — b) ein hydrolytisches Ferment, Ptyalin, welches Stärke, namentlich schnell die gequollene (Kleister), in Dextrin und Zucker umwandelt, am schnellsten bei der Körpertemperatur; — c) Schwefelcyanverbindungen (Rhodankalium). Ausserdem enthält der Speichel, wie es scheint namentlich der Sublingualspeichel (DONDERS), Formelemente, welche den Schleimkörperchen sehr ähnlich sind, — Speichelkörperchen; diese Zellen enthalten Körnchen, welche eine lebhafte Molecularbewegung zeigen. Der gemischte Speichel enthält ausserdem den Mundschleim und abgestossenes Plattenepithel der Mundhöhle.

Die Gewinnung der einzelnen Drüsenspeichel geschieht beim Menschen aus pathologischen Speichelfisteln, für die Parotis ausserdem durch Einlegen eines Röhrchens in die Mündung des Ductus Stenonianus (gegenüber dem 2. oder 3. Oberkiefer-Backzahn); bei Thieren durch künstliche Speichelfisteln. - Das Ptyalin wird durch mechanisches Niederreissen (p. 35) mittels eines im Speichel erzeugten Niederschlags von phosphorsaurem Kalk ausgefällt, aus dem Niederschlag mit Wasser extrahirt und mit Alkohol gefällt; es ist kein Eiweisskörper (Соняным). - Die Fähigkeit, Stärke in Zucker zu verwandeln, kommt jedem einzelnen der menschlichen Drüsenspeichel zu, ganz besonders aber dem gemischten Mundspeichel, welcher in der Mundhöhle durch Zusammenfliessen der Drüsenspeichel und des Mundschleims entsteht. Bei Thieren haben nicht alle Drüsenspeichel diese Eigenschaft, wie denn überhaupt die verschiedenen Drüsenspeichel je nach der Nahrung bei den einzelnen Thieren verschieden entwickelt sind. Die Zuckerbillung geht sehr schnell vor sich, und wird durch mässige Ansäuerung nicht gestört, was für die Verdauung von Wichtigkeit ist. Eine gegebene Menge Speichel kann nicht unendliche Mengen von Stärke in Zucker verwandeln (PASCHUTIN). - Das Rhodankalium CN.KS, nachweisbar durch die blutrothe Färbung bei Zusatz von Eisenchlorid, ist kein constanter Speichelbestandtheil und findet sich am häufigsten im Mundspeichel, besonders wenn krankhafte Processe (Zahncaries) im Munde stattfinden.

Als Beispiel der quantitativen Zusammensetzung des Speichels diene folgende Analyse menschlichen Mundspeichels (BIDDER & SCHMIDT): In 1000 Theilen: Wasser 995,16, feste Bestandtheile 4,84, wovon Epithelien 1,62, lösliche organische Bestandtheile 1,34, unorganische 1,82, wovon fast die Hälfte Chloralkalien.

Secretion.

Die Absonderung des Speichels steht nachweisbar unter Nerveneinfluss, welcher hier besser als bei allen übrigen Secreten erforscht ist. Ohne diesen steht die Secretion völlig still (C. G. MITSCHERLICH, LUDWIG). Im Leben geschieht die Erregung der secretorischen Nerven wie es scheint stets entweder reflectorisch bei Erregung der sensiblen und Geschmacksnerven der Mundhöhle, ferner des Vagus, vermuthlich der vom Digestionsapparat ausgehenden Fasern desselben (OEHL,

Speichel.

dagegen bestritten von v. WITTICH, NAWROCKI) oder (bes. Parotis, BERNARD) combinirt mit (willkürlicher) Erregung der Nerven für die Kaumuskeln. Es wird also Speichel sbgesondert bei Reizung der Mundhöhle durch schmeckende Substanzen oder mechanische, chemische, thermische, electrische Reize, ferner bei gewissen Zuständen des Magens (Nausea), und endlich bei Kaubewegung. Die centripetalen Nerven, welche, erregt, reflectorisch die Secretion einleiten, verlaufen im Trigeminus, Glossopharyngeus und Vagus. Die secretorischen Nerven verlaufen in den Bahnen des Facialis, Trigeminus und Sympathicus.

Auch von sehr entfernten seusiblen Nerven her, z. B. durch Reizung des centralen Ischiadicusendes lässt sich reflectorische Speichelsecretion erzeugen (OwSJANNIKOW & TSCHIRIEW).

Unter den secretorischen Nerven sind zwei Gattungen zu unterscheiden (BERNARD, ECKHARD, v. WITTICH), welche nicht nur verschiedene Arten von Speichel liefern, sondern auch vasomotorisch in verschiedener Weise einwirken, ohne dass es jedoch gelingt, den ersten Einfluss durch den zweiten zu erklären (vgl. p. 84). Die erste Nervengattung wirkt verengend auf die zur Drüse führenden Gefässe, so dass das Blut spärlich und sehr dunkel in die Venen gelangt; die Reizung derselben liefert zugleich einen spärlichen, an specifischen Bestandtheilen, namentlich Schleim, sehr reichen, daher äusserst zähen, häufig gallertartigen Speichel. Die zweite Nervengattung scheint die zuführenden Gefässe zu erweitern, denn bei ihrer Erregung fliesst das Blut sehr reichlich in die Venen (so dass diese pulsiren, s. p. 63), und mit hellrother, fast arterieller Farbe; zugleich ist der copiös secernirte Speichel arm an specifischen Bestandtheilen, sehr dünnflüssig. Die Nerven der ersten Gattung verlaufen für alle Speicheldrüsen im Sympathicus, die der zweiten stammen aus dem Facialis, gehen aber von ihm in die Bahnen des Trigeminus über; für die Parotis durch den N. petrosus superficialis minor [fac.], das Gangl. oticum und den Auriculo-temporalis [trig.] (BERNARD, NAWROCKI), für die Submaxillaris und Sublingualis durch die Chorda tympani [fac.] zum Lingualis [trig.], von hier bald wieder abtretend theil durch das Ganglion submaxillare, theils direct zur Drüse (BERNARD).

Gesetzt auch, es liesse sich der verschiedene Mucingehalt der beiden Speichelarten durch ihre verschiedene Qualität erklären, so dass der unter hohem Druck secernirte, daher reichliche Trigeminus-Speichel in der Zeiteinheit gleichviel specifische Stoffe aus der Drüse entnähme, als der spärlichere Sympathicus-Speichel (BERNARD), so würde doch der vasomotorische Einfluss nicht zur Erklärung der Secretion genügen, da der Druck in dem Drüsenlumen höher steigen

Speichel.

kann als der Blutdruck (vgl. p. 84), und da die Secretion auch noch nach Aufhören des Blutstromes in der Drüse durch Nervenreizung hervorgerufen wird (LUDWIG, GIANNUZZI). Es müssen also andere, noch unbekannte Mechanismen zu Grunde liegen, wobei an die behauptete Verbindung der Nervenfasern mit den Drüsenzellen (PFLÜGER) zu erinnern ist. Folgende Erscheinungen (HEIDENHAIN) sprechen noch directer für eine specifische Einwirkung der secretorischen Nerven: In den Acinis derjenigen Speicheldrüsen, deren Secret Mucin enthält, findet man zwei Gattungen von Zellen: eiweissreiche und schleimfreie, körnige, membranlose "Protoplasmazellen", welche in manchen Drüsen räumlich gesondert liegen (in der Submaxillaris des Hundes liegen sie halbmondförmig an einer Seite des Acinusrandes, bei der Katze nehmen sie den ganzen Rand ein), und schleimhaltige, glänzende, von einer Membran umgebene Zellen "Schleimzellen". Nach anhaltender Reizung der Secretionsnerven, besonders der cerebrospinalen Gattung, findet man dagegen nur Protoplasmazellen, in starker Vermehrung begriffen, während von den Schleimzellen noch erkennbare Reste im Secret sich finden. Es findet also bei der Secretion offenbar eine Umwandlung der Protoplasmazellen in Schleimzellen, durch "Mucinmetamorphose" des Inhalts statt, die Protoplasmazellen werden durch Theilung der übrigbleibenden ersetzt, und die Schleimzellen zerfallen. Der Zellinhalt des Acinus ist also in fortwährender Verjüngung begriffen, und wirklich gleicht die anhaltend gereizte Drüse in ihrem Aussehen der Drüse des Neugebornen. Ein Theil der jungen Protoplasmazellen scheint sich als Speichelkörperchen (p. 89) dem Secret beizumischen. In der Submaxillardrüse des Kaninchens, welche ein mucinfreies Secret liefert, finden sich immer nur Protoplasmazellen. Die Schleimdrüsen (p. 88) gleichen in ihrem Verhalten den mucingebenden Speicheldrüsen. - Nach neuerer Angabe (Ewald) besteht die Regeneration des Drüseninhalts nicht in Zerstörung der Schleimzellen und Neubildung von Protoplasmazellen, sondern nur in Entleerung des Schleims aus den ersteren, wodurch sie wieder zu Protoplasmazellen werden. - Die Temperatur der Speicheldrüsen kann durch die Secretion um 1,5° C. gesteigert werden (LUDWIG).

Da es Gifte giebt, welche den secretorischen Einfluss der Chorda aufheben, den gefässerweiternden aber bestehen lassen, z. B. das Atropin (HEIDENHAIN), so ist es wahrscheinlich dass die secretorischen Fasern der Chorda mit den gefässerweiternden nicht identisch sind. Die Speicheldrüse enthielte sonach vier verschiedene Fasergattungen, denn auch die beiden in der Chorda und im Sympathicus verlaufenden secretorischen Gattungen lassen sich wegen des verschiedenen Einflusses von Giften nicht identificiren.

Die reflectorisch erregte Speichelabsonderung liefert stets den dünnflüssigen (Trigeminus-) Speichel. Das Centralorgan, in welchem (zunächst für die Submaxillardrüse) der Reflex stattfindet, ist für die Geschmacksreizung und für die Secretionserregung vom Magen aus wahrscheinlich das Gehirn, und zwar die Medulla oblongata, deren Reizung Speichelsecretion macht so lange die Drüsennerven erhalten sind (ECKHARD); für andere auf die Mundschleimhaut wirkende Reize aber das Ganglion submaxillare, denn nach Durchschneidung des Truncus tympanico-lingualis wirken die ersteren nicht mehr,

Speichel. Magensaft.

wohl aber die letzteren (BERNARD). Man muss also annehmen, dass das Ganglion submaxillare secretorische Centralorgane enthält, welche zu reflectirter Thätigkeit erregt werden können durch Fasern, welche von der Zunge her in den Lingualis treten, von diesem aber wieder zum Ganglion abgehen; während die vom Gehirn her (hier reflectorisch durch die Geschmacksnerven erregten) durch Facialis, Chorda und Tympanico-lingualis zum Ganglion gelangenden dasselbe vermuthlich nur durchsetzen (BERNARD).

Ausserdem ist bemerkenswerth, dass bei Zerschneidung des Gangl. submaxillare mit Schonung der vom Tympanico-lingualis durchtretenden Fasern, oder bei Vergiftung des die Drüse durchströmenden Blutes mit Curare, eine continuirliche Secretion eintritt, die nun nur durch Geschmacksreize verstärkt werden kann (BERNARD); diese "paralytische" Secretion tritt auch in der Drüse der anderen Seite ein (HEIDENHAIN); ferner tritt eine continuirliche Secretion ein, wenn der Truncus tympanico-lingualis vor längerer Zeit durchschnitten ist; jetzt können nur noch die sympathischen Fasern die Secretion (in der oben angegebenen Weise) modificiren. Eine Erklärung für die paralytische Secretion ist theils in der Annahme von Hemmungsnerven, theils in einer Wirkung des stagnirenden Secrets (HEIDENHAIN) gesucht worden. Die paralytische Secretion lässt übrigens bald nach, unter Degeneration der Drüse.

Die in 24 Stunden secernirte Speichelmenge wird sehr verschieden geschätzt (1/2-2 Kgrm.). Die flüssigen Bestandtheile des Speichels werden vermuthlich mit Ausnahme des Mucins grossentheils im Verdauungscanale wieder resorbirt (s. Cap. III.).

3. Magensaft.

Der Magensaft ist das Secret der die Magenschleimhaut dicht gedrängt erfüllenden, tubulösen, in der Tiefe ausgebuchteten Drüsen (s. unten). - Der Magensaft ist eine dünne, klare, farblose, saure Flüssigkeit, die sich im Magen mit dem Magenschleim mischt. Ihre specifischen Bestandtheile sind: a) freie Salzsäure; diese kann, ohne die Wirkung des Magensaftes zu beeinträchtigen, durch Milchsäure ersetzt werden, welche sich meist bei der Verdauung im Magen bildet (Cap. III.); - b) ein Eiweisskörper spaltendes hydrolytisches Ferment (p. 35), das Pepsin. - Das Pepsin hat in saurer Lösung die Eigenschaft, geronnene Eiweisskörper bei der Körpertemperatur schnell zu lösen; die Lösung erfolgt unter Aufquellung, am schnellsten bei einem Säuregrad welcher auch für sich am schnellsten aufquellend wirkt (z. B. für Ochsenfibrin 0,8-1 grm. HCl im Liter, BRÜCKE); bei gleichem Säuregrad aber um so schneller, je mehr Pepsin vorhanden ist, bis zu einem gewissen Maximalgehalt, über welchen hinaus die Lösung nicht mehr beschleunigt wird. Dieselbe

Magensaft.

Menge Pepsin vermag bei fortwährendem Ersatz der verbrauchten Säure immer neue Eiweissmengen zu lösen. - Die Veränderungen, welche die Eiweisskörper durch die Lösung erfahren, sind noch wenig bekannt. In der ersten Zeit scheinen sie noch ziemlich ihre ursprünglichen Eigenschaften zu behalten; sie sind durch Hitze (vorausgesetzt, dass sie nicht vor der Einwirkung des Magensafts durch Hitze coagulirt waren, in welchem Falle das Aufquellen und die Lösung überhaupt langsamer geschieht), ferner eine Zeit lang durch Neutralisation mit Alkalien fällbar (sind also jetzt in Syntonin p. 32, verwandelt); nach längerer Zeit aber verlieren sie die Eigenschaft durch Hitze, Alkohol, Mineralsäuren und gewisse Metallsalze gefällt zu werden, und heissen in diesem Zustande "Peptone". Die Peptone haben ferner ein weit höheres Diffusionsvermögen (p. 81) als gewöhnliche Eiweisskörperlösungen (FUNKE). Auch gelöste Eiweisskörper erleiden durch Magensaft dieselbe Umwandlung. Ferner wird auch Leim durch Magensaft in eine ungelatinirbare Modification verwandelt. Alle diese Umwandlungen sind höchstwahrscheinlich als hydrolytische Spaltungen aufzufassen (vgl. p. 19, 30). -Da man bei anhaltender Pepsinverdauung viel weniger Pepton erhält, als Eiweiss angewandt wurde, so scheint noch eine weitere Spaltung des Peptons stattfinden zu können, deren Producte aber noch unbekannt sind (KÜHNE). - Milch wird durch Magensaft, auch wenn derselbe neutralisirt ist, zuerst gefällt und dann das Caseingerinnsel verdaut; man vermuthet, dass das Pepsin den Milchzucker schnell in Milchsäure verwandelt, jedoch coagulirt die Milch auch bei alkalischer Reaction des Magensaftes. Gährungs- und Fäulnissprocesse werden im Allgemeinen durch Magensaft verhindert.

Die Wirkungsfähigkeit des Magensaftes wird durch die Einflüsse aufgehoben, welche überhaupt den Fermenten ihre Wirksamkeit nehmen (Kochen, concentrirte Säuren, viele Metallsalze, starker Alkohol u. s. w.). Concentrirte Salzlösungen verzögern die Auflösung, indem sie die Quellung des Eiweisskörpers verhindern; ebenso wird die Lösung verzögert, wenn man durch Einschnüren des Gerinnsels dessen Quellung verhindert. Auch die Galle verhindert die Auflösung (abgesehen von der Neutralisation der Säure) dadurch, dass sie die Quellung der Eiweisskörper verhindert (BRÜCKE), und die Peptone fällt (BERNARD).

Die Verhinderung der Magenverdauung durch Galle hat man dadurch zu erklären versucht (BURKART), dass der saure Magensaft die Glycocholsäure ausfälle, und letztere das Pepsin mechanisch mit niederreisse (p. 35). Hiergegen

Magensaft.

spricht (HAMMARSTEN), dass auch die nur Taurocholsäure enthaltenden Gallen die Magenverdauung stören, dass ferner eiweissfreier Magensaft durch Galle nicht gefällt wird und trotzdem durch die Beimischung von Galle seine Verdauungskraft verliert; das Pepsin ist in ihm nicht zerstört, sondern lässt sich daraus in wirksamem Zustande wieder isoliren. Die Galle wirkt vielmehr hauptsächlich dadurch verdauungshindernd, dass sie die Quellung der Eiweisskörper hindert; die schon gebildeten Peptone fällt sie, bei stark saurer Reaction, wieder aus (BRÜCKE, SCHIFF). Die Quellungshinderung soll auf einer Verbindung der Gallensäuren mit dem Eiweiss beruhen (HAMMARSTEN). Die pepsinfällende Wirkung der Glycocholsäure (BURKART) besteht daneben ebenfalls. — Auch das Secret der BRUNNER'schen Drüsen macht den Magensaft unwirksam (SCHIFF).

Natürlichen Magensaft gewinnt man aus pathologischen oder bei Thieren aus künstlich angelegten Magenfisteln; ferner auch dadurch, dass man Schwämme, die an Fäden befestigt sind, verschlucken lässt und nach einiger Zeit wieder herauszieht. Künstlichen Magensaft bereitet man durch Infundiren frischer oder getrockneter Magenschleimhäute mit Wasser oder (v. WITTICH) Glycerin, und Zusatz von Salzsäure (0,1%), oder auch durch Auflösung von rein dargestelltem Pepsin (über die Methode s. p. 35) in Wasser und Säure. — Die Salzsäure kann ausser durch Milchsäure (welche bei gleicher Menge schwächer wirkt), auch durch Oxalsäure, Phosphorsäure, Essigsäure mit abnehmender Wirksamkeit ersetzt werden.

Der (speichelfreie) Magensaft des Hundes enthält im Mittel in 1000 Theilen: 973,1 Wasser, 17,1 Pepsin (und Pepton), 3,0 freie Salzsäure, 6,8 Salze (BIDDER und SCHMIDT).

Secretion.

Ueber den Bau der Magendrüsen ist neuerdings Folgendes ermittelt (HEIDENHAIN, ROLLETT): Die Drüsen enthalten zweierlei rundliche Zellen: 1) kleinere, welche den grösseren Theil der Drüsen erfüllen und in gewissen Drüsen ("Magenschleimdrüsen" früherer Autoren, besonders in der Regio pylorica) allein vorkommen, die sog. "Hauptzellen" (HEIDENHAIN) oder "adelomorphen" Zellen (ROLLETT); 2) grössere, fast nur im Fundus der Drüsen und an der Wandung vorkommende, die sog. "Belegzellen" (HEIDENHAIN) oder "delomorphen" Zellen (ROLLETT), die "Labzellen" früherer Autoren. Bei der Secretion (während der Verdauung) schwellen die Drüsen, und zwar die Hauptzellen, zuerst stark an, später wieder ab (HEIDENHAIN). Das Pepsin wird in den Magendrüsen gebildet, aus welchen es durch Wasser in neutraler Lösung gewonnen, viel leichter aber durch verdünnte Salzsäure ausgezogen werden kann. Vermuthlich wird es auch im Leben durch eine saure Flüssigkeit aus den Zellen extrahirt. Trotzdem lässt sich in den Drüsen selbst nur in den wenigsten Fällen saure Reaction nachweisen, während die Magenoberfläche der Schleimhaut mit stark saurem Magensaft bedeckt ist. Dennoch wird die Säure in den Drüsen gebildet; denn wenn man die Schleimhaut-

Magensaft.

oberfläche durch Magnesia usta neutralisirt, dann die Schleimhaut mit Wasser zerreibt und stehen lässt, so findet sich nach längerer Zeit wieder saure Reaction (BRÜCKE). Man muss also annehmen, dass die Magendrüsen das Pepsin und eine Säure bilden, letztere aber (mit Pepsin beladen) sofort an die Oberfläche entleeren; die Kräfte, welche dies bewirken, sind räthselhaft, ebenso die Entstehung freier Salzsäure, da man kaum annehmen kann, dass sie etwa durch Milchsäure aus einem Salze verdrängt wird (vielleicht aus Chlorcalcium, SMITH). Möglicherweise steht die gleichzeitige Alkalibildung bei der Pancreassecretion mit der Säurebildung in engem Zusammenhang (MEISSNER). - Wie sich die Pepsin- und die Säurebildung auf die beiden Zellenarten der Drüsen vertheilen ist streitig. Während man früher die Pepsinbildung den "Labzellen" (Belegzellen) zuschrieb, ist neuerdings behauptet worden, dass die Hauptzellen die Pepsinbildner sind, weil diese durch Salzsäure in der Wärme schneller als jene zerfallen, und Schichtschnitte der Magenschleimhaut um so schneller verdauend wirken, je mehr Hauptzellen sie enthalten (HEIDENHAIN, EBSTEIN & GRÜTZNER). Andere dagegen halten an der früheren Anschauung fest, hauptsächlich weil die nur Hauptzellen enthaltenden Zellen der Pars pylorica bei Fernhaltung des Secrets der Labdrüsen kein verdauungsfähiges Infus liefern (FRIEDINGER, v. WITTICH, WOLFFHÜGEL).

Die Secretion des Magensaftes scheint nur unter nervösen Einflüssen, ebenfalls reflectorisch (vgl. Speichel), zu erfolgen. Sie stockt, wenn der Magen leer ist, tritt aber ein, wenn er mit mechanisch reizenden Stoffen (Nahrung) erfüllt ist, wahrscheinlich auch bei Reizung der Mundschleimhaut. Der verschluckte Speichel scheint bei der Erregung betheiligt zu sein (ROLLETT). Die Secretion ist unabhängig von der Integrität der von Aussen zum Magen tretenden Nerven (Vagi etc.); die Centralorgane eines Theiles der secretorischen Nerven hat man also in den Magenwänden selbst zu suchen (BRÜCKE, RAVITSCH). Mit der Secretion tritt eine Röthung der Schleimhaut, also vermuthlich eine Erweiterung der Drüsengefässe ein, ähnlich wie bei der Speichelsecretion.

Der abgesonderte Magensaft wird im Darme vermuthlich grossentheils wieder resorbirt (s. Cap. III.). Man findet daher geringe Mengen von Pepsin in verschiedenen Körperflüssigkeiten, z. B. im Parenchymsaft der Muskeln, im Urin (BRÜCKE). Die Säure des Magensaftes wird durch die alkalischen Darmsecrete neutralisirt. Ueber die secernirten Mengen existiren weder brauchbare Bestimmungen noch Schätzungen.

4. Galle.

Die Galle ist eine neutrale oder schwach alkalische, meist dickflüssige, bittere Flüssigkeit von gelber, brauner, grüner bis schwarzer Farbe. Ihre specifischen Bestandtheile sind (ausser dem aus der Gallenblase und den Gallengängen stammenden Schleim): 1. die Natronsalze zweier gepaarten Säuren (sog. "Gallensäuren") nämlich: Glycocholsäure (auch "Cholsäure" genannt) und Taurocholsäure (auch "Choleïnsäure"). Erstere ist gepaart aus dem stickstoffhaltigen Glycin (p. 25) und der stickstofflosen Cholalsäure (p. 17); letztere aus dem stickstoff- und schwefelhaltigen Taurin (p. 26) und ebenfalls Cholalsäure; 2. Cholesterin (p. 18), gelöst durch die gallensauren Salze; 3. Zersetzungsproducte von Lecithin, nämlich Cholin (p. 22) und Glycerinphosphorsäure (p. 20); 4. Harnstoff (Popp); 5. Farbstoffe; namentlich ein rothgelber, Bilirubin (Cholepyrrhin, Bilifulvin), ein grüner, vielleicht erst secundär entstehender, Biliverdin (p. 29), ferner Urobilin (p. 29); 6. geringe Mengen von Fetten und Seifen; 7. ein zuckerbildendes Ferment (J. JACOBSON, V. WITTICH).

Galle gewinnt man leicht aus der Gallenblase nach dem Tode; während des Lebens bei Thieren durch angelegte Gallenfisteln, die zugleich zur Bestimmung der in bestimmten Zeiten gebildeten Mengen dienen können. Die Farbe der Galle variirt sehr im physiologischen, noch mehr im pathologischen Zustande und bei verschiedenen Thieren; an der Luft wird gelbe Galle grün, durch Oxydation des Bilirubins zu Biliverdin; die der Pflanzenfresser ist bereits in der Blase grün. - Die gallensauren Salze lassen sich leicht durch Eindampfen der Galle, Extraction mit Alkohol, Entfärbung der Flüssigkeit durch Thierkohle und Zusatz von Aether als harziger, beim Aufbewahren in der alkoholisch-ätherischen Flüssigkeit krystallinisch werdender Niederschlag gewinnen ("krystallisirte Galle"). - Die beiden Gallensäuren sind in verschiedenen Verhältnissen gemengt; beim Menschen, bei Amphibien und Fischen überwiegt die Taurocholsäure, ebenso bei vielen Sängethieren und Vögeln, bei anderen (z. B. beim Schwein, Känguruh) die Glycocholsäure. Die in den Gallensäuren enthaltene Cholalsäure wird bei verschiedenen Thieren durch verwandte Säuren ersetzt (p. 17) z. B. durch die Chenocholalsäure bei der Gans, durch die Hyocholalsäure beim Schwein, Guanogallensäure im Guano, und die Säuren führen demnach verschiedene Namen (Taurochenocholsäure, Hyoglycocholsäure). Die Polarisationsebene drehen die Gallensäuren nach rechts, Cholesterin nach links (HOPPE-SEYLER).

Die menschliche Galle enthält in 1000 Theilen: Wasser 822,7-908,1, gallensaure Salze 107,9-56,5, Fett und Cholesterin 47,3-30,9, Mucin und Farbstoffe 23,9-14,5, Asche 10,8-6,3 (v. GORUP-BESANEZ).

Secretion.

Die Bildung der Galle geschieht in den sogenannten Inseln (Acini) der Leber; jede derselben enthält, wie die Leber im Ganzen,

arterielles Blut durch die Leberarterie, und venöses aus den Capillaren des Magens, des Darmes, des Pancreas und der Milz stammendes durch die Pfortader zugeführt, und giebt an die Lebervenen venöses Blut ab.

Die an der Peripherie des Acinus liegenden Endzweigchen der Pfortader (Vv. interlobulares) und der Arterie sind mit den vom Centrum abgehenden Anfangszweigen der Lebervenen (Vv. intralobulares) durch ein dichtes, den Acinus durchflechtendes Capillarnetz verbunden, dessen Maschen dem Anschein nach die grossen, rundlichen Drüsenzellen der Leber dicht erfüllen. Diese sind so angeordmet (HERING), dass sie (oft nur zu zwei in einem Querschnitt) die Wand der feinsten Gallencanälchen bilden, letztere münden in ein die Acini umspinnendes (interlobuläres) Netzwerk, aus dem der Ductus hepaticus hervorgeht, welcher, nachdem er einen Seitenast (Ductus cysticus) zu einem Reservoir (Gallenblase) abgesandt, als Ductus choledochus in das Duodenum mündet. Das Pfortaderblut, welches bereits ein Capillarsystem durchlaufen hat, und sich nun noch einmal auf einen enormen Gefässquerschnitt vertheilt, muss in den Lebercapillaren ausserordentlich langsam fliessen.

Die Bildung der Galle geschieht fortwährend; wie es scheint, wird das Secret ausser der Verdauungszeit durch den Ductus cysticus in die Gallenblase gebracht und hier aufbewahrt, während der Verdauung aber sowohl direct, als aus der Gallenblase in den Darm ergossen. Die Bildung der specifischen Bestandtheile geschieht in den Leberzellen; dass sie nicht einfach aus dem Blute abgeschieden werden, wird dadurch bewiesen, dass sie weder für gewöhnlich, noch bei behinderter Absonderung (nach Exstirpation der Leber) in dem der Leber zuströmenden Blute zu finden sind.

Dagegen treten sie in's Blut über, wenn der Ausfluss der Galle aus der Leber, etwa durch Verschliessung des Ausführungsganges, behindert ist und dadurch der Druck in den Gallengängen zunimmt; schon ein sehr geringer Druck genügt, um den Rücktritt in's Blut zu bewirken: es zeigen sich dann Gallenfarbstoff, Cholalsäure, Glyco- und Taurocholsäure (Hoppe-Seyler) im Urin, und ersterer färbt den Harn braun, Haut und Schleimhäute gelb - Gelbsucht. Auch andere gefärbte Stoffe, die man unter Druck in die Gallenwege bringt, werden resorbirt und färben die Schleimhäute etc. Die Acini färben sich dabei nicht, und die gleich darauf secernirte Galle ist ebenfalls ungefärbt; die Resorption in der Leber geschieht also nicht in den Acinis, sondern in den gröberen Gallenwegen (HEIDENHAIN).

Von welcher der beiden in die Leber gelangenden Blutarten das Material zur Gallenbereitung vorzugsweise geliefert wird, ist ungewiss; nach den Einen (Oré, FRERICHS u. A.) hebt die Unterbindung oder Obliteration (KOTTMEYER) der Leberarterie die Gallensecretion auf, nicht aber die der Pfortader, andere Untersuchungen (SCHIFF) gaben ein entgegengesetztes Resultat. Natürliche Injection der Pfortader mit färbenden Stoffen färbt nur die Peripherie, Injection der Leberarterie 7

Hermann, Physiologie. 5. Aufl.

nur das Centrum des Acinus, so dass eine Betheiligung beider Gefässe an der Secretion wahrscheinlich ist (CHRZONSZCZEWSKY & KÜHNE). Ebenso haben die vergleichenden Untersuchungen des in die Leber gelangenden und aus ihr kommenden Blutes nur ungefähr die Stoffe ermittelt, welche in der Leber zurückgehalten und dort in Gallenbestandtheile umgewandelt werden. Die Untersuchungen des Pfortader- und Lebervenenblutes ergaben, abgesehen von dem Auftreten des Zuckers in letzterem (s. Cap. V.), dass das Lebervenenblut ärmer an Wasser, Eiweiss, Faserstoff, Fetten, Blutfarbstoff und Salzen (dagegen reicher an Blutkörperchen, s. Cap. V.) als das Pfortaderblut sei, das namentlich nach der Verdauung sehr reich an Fetten ist (LEHMANN, C. SCHMIDT). Dass lebhafte Oxydation bei der Lebersecretion vorgeht, beweist die hohe Temperatur der Drüse und des Lebervenenblutes.

Von den specielleren chemischen Umwandlungen bei der Gallensecretion ist am wahrscheinlichsten erwiesen die Bildung des Gallenfarbstoffs aus Blutfarbstoff und zwar durch die Identität (VIRCHOW, VALENTIN, JAFFE), oder wenigstens grosse Aehnlichkeit (STÄDELER & HOLM) des Bilirubins mit Hämatoidin (p. 29). Ferner behaupten einige die Entstehung von Cholalsäure und Zucker aus Fetten, welche nach verschiedenen Hypothesen so stattfinden soll, dass das Glycerin den Zucker, die Fettsäure aber die Cholalsäure liefert, Vorgänge welche bisher durch Nichts bewiesen sind. — Der Ursprung des Glycins und des Taurins könnten möglicherweise die Spaltungsprocesse der Verdauung sein, und die Synthese in der Leber erfolgen. — Das Glycin der Leber kann sich statt mit Cholalsäure auch mit anderen Säuren, z. B. mit Benzoësäure zu Hippursäure synthetisch paaren (vgl. unter Harn).

Die nicht genau bestimmbare Menge der secernirten Galle schwankt (von Ludwig nach anderen Angaben berechnet) ungefähr zwischen 160 und 1200 grm. in 24 Stunden; sie ist von der Nahrung in hohem Grade abhängig, wird gesteigert durch Wassertrinken (wobei die Galle wasserreicher ist), ferner durch Fleischkost, weniger durch Vegetabilien, gar nicht durch Fettgenuss; sehr verringert wird sie beim Hungern. Das Maximum der Secretion fällt mehrere Stunden nach der Nahrungsaufnahme, um so später, je reichlicher die Mahlzeit war (Béchamp). Nervöse Einflüsse auf die Gallenbildung sind noch nicht bekannt; aus einigen Versuchen scheint hervorzugehen, dass Reizung der Gefässnerven der Leber die Secretion vermindert (HEIDENHAIN).

Auch ungewöhnliche Stoffe finden sich in der Galle, wenn sie mit der Nahrung aufgenommen sind, und verlassen auf diesem Wege den Organismus. Namentlich sollen schwere Metalle in die Leber und Galle übergehen; Kupfer und Blei finden sich ziemlich regelmässig in der Leber (vgl. jedoch p. 10).

Ueber andere Functionen der Leber s. Cap. V.

Ausscheidung.

Die Entfernung der gebildeten Galle aus der Leber geschieht vermuthlich durch das mechanische Nachrücken des Secrets, unterstützt durch die Compression der Leber bei der Inspiration die aus Fisteln ausfliessenden Gallenmengen vermindern sich daher bei der verlangsamten Respiration nach Vagusdurchschneidung (HEMENHAIN); die Entleerung der Gallenblase aber und der grossen Gallengänge geschieht wahrscheinlich durch eine gleichzeitig mit den Darmbewegungen eintretende Contraction ihrer glatten Muskelfasern; durch Rückenmarksreizung kann man dieselbe künstlich herbeiführen (HEIDENHAIN).

Da Thiere mit Gallenfisteln schnell abmagern, wenn man sie an dem Auflecken der ausfliessenden Galle hindert, so vermuthete man, dass der grösste Theil der Galle im Darme wieder resorbirt werden müsse; weder aber sind die weiteren Schicksale der resorbirten Gallenstoffe bekannt, noch andere Möglichkeiten, welche die Abmagerung nach Entfernung der secernirten Galle erklären können, genügend ausgeschlossen. Dagegen finden sich sämmtliche Gallenstoffe in beträchtlichen Mengen im Koth, nämlich Gallenfarbstoffe, welche den Koth färben, Gallensäuren, Schleim, Cholesterin u. s. w. Die Gallensäuren erleiden im untern Theile des Darmrohrs eine hydrolytische Spaltung (vgl. Cap. III.), namentlich die Taurocholsäure, so dass man in den Faeces Glycocholsäure, Cholalsäure und ferner deren Anhydride, Choloïdinsäure und Dyslysin (p. 17) findet (Horre-Serler). Die Resorption specifischer Gallenbestandtheile ist daher noch zweifelhaft.

Abweichend von allen übrigen Secreten für den Verdauungsapparat hat die Galle für die eigentliche Verdauung (d. h. Vorbereitung der Nahrung für die Resorption) wahrscheinlich keine Bedeutung; eine allenfalls dahin zu zählende Eigenschaft, nämlich Fette in Emulsion zu bringen, theilt sie mit andern Secreten, die sie in weit höherem Grade besitzen (pancreatischer Saft, Darmsaft?). Peptonlösungen werden durch Galle gefällt (p. 93), ein Umstand, dessen Bedeutung im nächsten Capitel erörtert werden wird. Die physiologische Bedeutung der Galle scheint hauptsächlich der Resorption und zwar der Fette (Cap. III.) zu gelten. Galle (und gallensaure Salze) macht nämlich sowohl die Filtration von Fetten durch Membranen unter geringem Druck, als auch die Diffusion zwischen Fetten und wässerigen Lösungen möglich (v. WISTINGHAUSEN), wahrscheinlich weil sie als seifenartige Lösung die gleichzeitige Imbibition

7*

Galle. Pancreatischer Saft.

beider (eine Bedingung der Diffusion, p. 81) gestattet; sie erleichtert ferner den Durchgang von Fetten durch enge (capillare) Röhren. — Auch soll die Galle die Contraction der Zottenmuskelfasern (Cap. III.) anregen (SCHIFF) und auch dadurch die Fettabsorption befördern. — Ausserdem scheint sie eine faulige Zersetzung des Darminhalts zu verhindern.

Dem entsprechend sieht man, wenn die Galle durch eine Fistel nach aussen geleitet wird, keine wesentliche Verdauungsstörung, sondern nur 1. Hinderung der Fettaufnahme (Fettgehalt des Kothes, und fettarmen Chylus), 2. ungefärbten, sehr übelriechenden harten Koth, 3. zuweilen grosse Gefrässigkeit des Thieres; man erklärt sie durch den bedeutenden Verlust an Gallenbestandtheilen, die im Darme sonst wieder resorbirt werden (s. oben); 4. die mangelnde Fettaufnahme ersetzt das Thier durch vermehrten Genuss von Kohleuhydraten (Cap. VI.).

5. Pancreatischer Saft.

Der pancreatische Saft oder Bauchspeichel, welcher in der acinösen, den Speicheldrüsen sehr ähnlichen Pancreasdrüse abgesondert wird, ist eine stark alkalische, klare, sehr zähe, farblose, in der Hitze gerinnende Flüssigkeit. Ihre specifischen Bestandtheile sind: 1. Mehrere in der Hitze gerinnende Eiweisskörper, welche vom Albumin sich nur wenig unterscheiden und denen manche die fermentartigen Eigenschaften des Secrets zuschreiben (Pancreatin). Nach Anderen (DANLEWSKY) sind die Fermente des Pancreassecrets besondere Körper. — 2. Mehrere von einander trennbare hydrolytische Fermente (s. unten). — 3. Leucin und andere Spaltungsproducte der Eiweissreihe.

Man erhält den pancreatischen Saft durch künstliche Fisteln, und einen künstlichen Pancreassaft durch einen wässerigen Aufguss der Drüsensubstanz.

Der pancreatische Saft hat, vermöge seines Gehalts an Fermenten, drei hervorragende Eigenschaften, die ihn für die Verdauung sehr wichtig machen: 1. Gequollene Stärke wandelt er, noch kräftiger als Mundspeichel, in Dextrin und Zucker um (BERNARD). — 2. Neutrale Fette zerlegt er sehr schnell so, dass (unter Wasseraufnahme) Glycerin und freie Fettsäure entsteht (vgl. p. 20); letztere verbindet sich zunächst mit dem Alkali des Pancreassaftes zu Seife, der Ueberschuss bewirkt (bei Butterfetten) saure Reaction. Mit der Zerlegung ist eine Emulgirung der Fette verbunden (BERNARD), welche wahrscheinlich durch die Zersetzungsproducte selbst eingeleitet wird (BRÜCKE). — 3. Geronnene Eiweisskörper werden durch Pancreassaft aufgelöst, ebenso Leim (Corvisart). Die Auflösung der Eiweisskörper geschieht nur bei alkalischer Reaction (vgl. dagegen den Magensaft), und nicht

100

Pancreatischer Saft.

unter vorherigem Aufquellen (wie im Magensaft), welches sogar verzögernd wirkt (DANMEWSKY). Die Lösung stimmt in ihren Eigenschaften mit den Peptonlösungen überein (KÜHNE). Nach einiger Zeit aber wird das Pepton weiter gespalten unter Auftreten von Leucin, Tyrosin, und unbekannten Extractivstoffen, worunter ein mit Chlor sich violett färbender Körper und ein unangenehm faecal riechender Körper, Indol (KÜHNE). Diese Processe haben nicht den Character der Fäulniss.

Der Leucingehalt des Pancreassaftes rührt jedenfalls von der Wirkung des Saftes auf sein eigenes Eiweiss her; ebenso die röthliche Färbung des Pancreas mit Chlor (TIEDEMANN & GMELIN). – Auch Alkalialbuminat wird vom Pancreassaft verdaut, jedoch langsamer als Fibrin (SENATOR); ebenso Leim und leimgebendes Gewebe. Es ist bemerkenswerth, dass alle hier genannten Wirkungen des Pancreas dieselben sind, welche sich auch durch Kochen mit Mineralsäuren hervorrufen lassen (vgl. p. 19). Durch Injection von geschmolzenem Paraffin in den Ausführungsgang kann man das Pancreas von der Mitwirkung zur Verdauung ausschliessen, ohne dass die letztere wesentlich gestört wird (SCHIEF).

Der Pancreassaft des Hundes enthält 91 pCt. Wasser, 8,2 pCt. organische Stoffe, 0,8 pCt. Asche (BERNARD).

Secretion.

Die Absonderung des Pancreassaftes geschieht wahrscheinlich nie ohne Nervenreiz (wie die des Speichels); sie ist für gewöhnlich sehr schwach, nimmt aber bei der Verdauung stark zu. Dass auch hier die specifischen Bestandtheile in den Drüsenzellen gebildet werden, zeigt: 1. die Wirksamkeit von Aufgüssen der Drüsensubstanz, 2 das Vorhandensein von Zellenfragmenten im Secret (DONDERS); man kann annehmen, dass auch hier die Bestandtheile durch Zerfall der Zellen frei werden. — Mit der verstärkten Absonderung ist stets auch ein verstärkter Blutzufluss, Röthung der Drüse (BERNARD), verbunden. Man kann also eine vasomotorische Einwirkung der Nerven wie bei den Speicheldrüsen vermuthen.

Die auf die Secretion einwirkenden Nerven sind nicht bekannt; sie scheinen von der Magenschleimhaut aus reflectorisch erregt zu werden, ähnlich wie die der Speicheldrüsen von der Mundschleimhaut (LUDWIG); daher gehen Magensaftund Pancreassecretion meist Hand in Hand (BIDDER & SCHMIDT). Reizung des verlängerten Marks steigert den Ausfluss, vielleicht nur durch Contraction des Ganges (LANDAU). Reizung des centralen Vagusendes bringt die Secretion zum Stillstand (N. O. BERNSTEIN); derselbe Stillstand erfolgt beim Erbrechen (WEIN-MANN, BERNARD). — Der Gehalt an festen Bestandtheilen ist der Secretionsgeschwindigkeit umgekehrt proportional (WEINMANN), der Gehalt an Salzen aber ziemlich constant und gleich dem des Blutserums (N. O. BERNSTEIN).

Darmsaft, Lunge.

Die Menge des pancreatischen Saftes lässt sich durch Fisteln nicht genau ermitteln, weil das Pancreas zwei mit einander anastomosirende Ausführungsgänge hat. Von den Schicksalen des Secrets im Darm gilt vermuthlich dasselbe wie vom Speichel und Magensaft.

6. Darmsaft.

Der Darmsaft (Succus entericus) ist das Secret der im ganzen Darmcanal vorkommenden tubulösen Lieberkühn'schen Drüsen (die acinösen BRUNNER'schen Drüsen des Duodenum haben im Bau viel Aehnlichkeit mit dem Pancreas; ihr Secret ist nach neueren Untersuchungen dem Schleim am ähnlichsten). Erst in neuester Zeit ist es gelungen, reinen Darmsaft auf folgende Weise zu erhalten (THIRY): Einem Thiere wird ein Stück des Darms vom Reste abgetrennt, aber mit seinem Mesenterium in Verbindung gelassen; die beiden Enden des Restes werden mit einander vereinigt, so dass das Thier mit einem etwas verkürzten Darm am Leben bleibt. Das resecirte Stück wird am einen Ende verschlossen, das andere in die Bauchwunde eingenäht, durch welche es nun, da seine Ernährung ungestört ist, fortdauernd sein Secret entleert.

Der so gewonnene Saft ist dünnflüssig, hellgelb, stark alkalisch, eiweisshaltig. Fermentartige Wirkung äussert er nur auf Fibrin, welches er schnell löst (andere coagulirte Eiweisskörper nicht, THIRY). Näheres über die chemischen Bestandtheile ist noch nicht bekannt.

Die Secretion ruht für gewöhnlich fast gänzlich, wird aber durch mechanische Reizung und schwache Säuren enorm gesteigert (13—18 grm. auf 100 □cm. pro Stunde).

Früher gewann man nur unreinen Darmsaft durch Darmfisteln bei Entziehung der Nahrung, durch Einlegen von Schwämmen, durch Abschluss der übrigen Secrete, die sich in den Darm ergiessen. Nach älteren, jetzt zum Theil wieder vertretenen Angaben wirkt der Darmsaft auch auf Stärke (SCHIFF, QUINCKE) und auf Fette (SCHIFF) dem Pancreassaft analog, nur etwas langsamer. Die durch Glycerin extrahirten (p. 94) Fermente der Darmschleimhaut besitzen keine eiweissverdauende, wohl aber zuckerbildende Fähigkeit; den Dickdarmdrüsen fehlt auch diese (EICHHORST, COSTA).

Der Darmsaft des Hundes enthält 97,6 pCt. Wasser, 0,8 pCt. Eiweiss, 0,7 pCt. andere organische Stoffe, 0,9 pCt. Asche (THIRY).

2. Absonderungen für den Athmungsapparat.

Die Lunge kann man nach Bau und Function als eine acinöse Drüse mit gasförmiger Secretion betrachten, deren Ausführungsgang die Trachea ist. Wie im 4. Cap. auseinandergesetzt werden wird, kennt man auch hier noch keineswegs vollständig die Kräfte, welche die Abscheidung des Secrets, der Kohlensäure, bewirken.

Harn.

Flüssige Absonderungen, Schleim, liefern die zahlreichen Schleimdrüsen der Luftwege vom Naseneingange bis zu den mittleren Bronchien. Dieselben sind acinös und haben Pflasterepithel, die kleinsten jedoch sind mehr tubulös und haben Cylinderepithel. Von ihrer Secretion gilt dasselbe, wie von den Schleimdrüsen des Digestionsapparats (p. 88). Der Schleim wird, wie es scheint, nur in sehr geringen Mengen secernirt und der Ueberschuss durch später zu erwähnende Vorrichtungen (Cap. IV.) herausgeschafft.

3. Harnabsonderung.

Der in den Nieren gebildete Harn ist ein wahres Excret, dessen Entfernung aus dem Organismus nothwendig ist und ohne weitere Benutzung zu anderen Zwecken (vgl. p. 79 über "Excrete") geschieht. Seine Bestimmung ist die Entfernung gewisser Endproducte der Oxydation stickstoffhaltiger Substanzen und ferner des Wasserüberschusses aus dem Organismus. Die Oxydationsproducte werden in Wasser gelöst zugleich mit Salzen ausgeschieden.

Die lange schwebende Frage, ob jene Endproducte vollständig im Blute präformirt sind, oder ob einige derselben theilweise erst in den Nieren gebildet werden, ob also jene Stoffe wirklich als "specifische Bestandtheile" des Nierensecrets betrachtet werden können, ist noch immer nicht entschieden (s. unten).

Der Harn ist eine klare, durchsichtige, in verschiedenen Nüancen gelbe, schwach saure Flüssigkeit von salzigbitterm Geschmack und aromatischem Geruch (spec. Gew. 1,005-1,030). Ein wenig Schleim aus den Schleimdrüsen der Ausführungsgänge (besonders Blase) ist ihm beigemischt. Seine specifischen (s. jedoch oben) Bestandtheile sind: 1. Harnstoff, das hauptsächlichste Endproduct der Oxydation stickstoffhaltiger Substanzen, zum Theil schon im Blute vorgebildet, zum Theil aber vielleicht erst in den Nieren entstanden; 2. Harnsäure, eine niedrigere Oxydationsstufe, in Form neutraler harnsaurer Alkalien; 3. eine Reihe noch niedrigerer Oxydationsstufen, die meisten in geringen Mengen, einige (mit * bezeichnet) nicht constant vorkommend: *Allantoin, Xanthin, Hypoxanthin (Sarkin), Kreatinin, Glycin (jedoch nur gepaart mit Benzoësäure als Hippursäure), *Taurin, *Cystin, *Leucin, *Tyrosin, Ammoniak, frei und in Salzen (unter andern auch als oxalursaures (p. 24) Ammoniak, Neu-BAUER); 4. ein oder mehrere Harnfarbstoffe (Urobilin, Urohämatin etc. s. p. 29), ferner Indican; 5. gewisse unbekannte Stoffe, sog. Extractivstoffe (z. B. der den Geruch bedingende). - Die übrigen Bestandtheile des Urins sind: 1. Wasser; 2. Salze (die gewöhnlichen Blutsalze; ausserdem aber einige, die wahrscheinlich ebenfalls Oxydationsproducte sind, z. B. oxalsaure Salze, schwefelsaure, vielleicht von Oxydation schwefelhaltiger Stoffe, zunächst Taurin, herrührend); 3. geringe Mengen von Zucker (Brücke); 4. Gase: Sauerstoff, Stickstoff (auffallend viel, Morin, Pflüger), Kohlensäure.

Die Farbe des Harns variirt mit seiner Concentration, sie ist am dunkelsten in dem concentrirten Morgenharn ("urina sanguinis"), am hellsten in dem nach reichlichem Getränk gelassenen ("urina potus"). - Die saure Reaction rührt meist von dem Gehalt an saurem phosphorsauren Natron her (LIEBIG); dass der Harn keine freie Säure enthält, wird dadurch bewiesen, dass er mit unterschweftigsaurem Natron keinen Niederschlag giebt (HUPPERT); zuweilen ist der normale Harn alkalisch, nämlich nach dem Genuss von caustischen, kohlensauren oder pflanzensauren Alkalien (letztere erscheinen durch Oxydation im Harn als kohlensaure wieder, welche alkalisch reagiren, WÖHLER). Beim Stehen bildet der Harn allmählich einen Niederschlag von sauren Uraten oder freier Harnsäure; die blosse Abkühlung kann nicht die Ursache sein, denn beim Wiedererwärmen auf Körpertemperatur löst sich das Sediment nicht völlig auf. Man muss deshalb eine Säurebildung annehmen, durch eine Gährung, wahrscheinlich unter Einfluss des beigemengten Schleims ("saure Gährung", Schenen). - Nach längerer Zeit (bei höherer Temperatur früher) tritt unter dem Einfluss von aussen zutretender organischer Keime Fäulniss ein, namentlich ein Zerfall des Harnstoff's in kohlensaures Ammoniak; die Reaction wird jetzt alkalisch ("alkalische Gährung"), der Geruch stinkend, und es bilden sich unter Pilz- und Infusorienentwickelung Sedimente von harnsaurem Ammoniak, phosphorsaurer Ammoniak-Magnesia u. s. w.

Welche unter den oben genannten specifischen Harnbestandtheilen im Harne besonders vertreten sind, scheint von der Art der Ernährung abzuhängen. Bei den fleischfressenden Säugethieren wiegt wie beim Menschen der Harnstoff bedeutend vor, sehr wenig Harnsäure, keine Hippursäure; bei den Pflanzenfressern wenig Harnstoff, viel Hippursäure, keine Harnsäure; wandelt man gewaltsam die Nahrung um, so ändert sich dem entsprechend auch der Harn. Von besonderen Stoffen ist im Harn der Fleischfresser unterschweflige Säure (SCHMIEDEBERG), in dem der Pflanzenfresser Phenylsäure (Städelen) gefunden worden, letztere wahrscheinlich erst durch die Behandlung mit Säuren aus einem aromatischen Atomcomplex (Indican?, Hippursäure?) sich abspaltend (HOPPE-SEYLER & BULIGINSKI). Die als Harnbestandtheil von Menschen und Thieren angegebene Bernsteinsäure (MEISSNER) ist jedenfalls nicht constant (SALKOWSKI). -Auch der menschliche Harn ändert nach der Nahrung seine Verhältnisse (s. unten); namentlich mehrt sich beim Genuss von Pflanzenkost die Hippursäure, schwindet. dagegen bei blosser Fleischkost. Der gleich nach der Entleerung fest werdende Harn der Vögel, beschuppten Amphibien, Insecten u. s. w. besteht dagegen überwiegend aus Harnsäure oder harnsauren Salzen, der Vogelharn enthält daneben auch Harnstoff, Kreatin, Eiweiss etc. (MEISSNER).

Zahlreiche mit der Nahrung oder als Arznei etc. genossene Substanzen erscheinen theilweise unverändert im Harn wieder, z. B. die meisten Metallsalze, Alkaloide, Farbstoffe, Alkohole. Andere Substanzen erscheinen in ihren Oxydationsproducten, so besonders die Alkalisalze vieler organischer Säuren (Milchsäure,

Harn.

Bernsteinsäure, Weinsäure, Citronensäure, Aepfelsäure) als Alkalicarbonate, welche den Harn alkalisch machen (Wöhlen), Benzol als Phenylsäure (SCHULTZEN & NAUNYN). Substanzen welche vollständig verbrennen, z. B. Glycerin, liefern keinen besonderen Harnbestandtheil. Eine theilweise Verbrennung erleiden manche gepaarte Körper, z. B. liefert die Gerbsäure (Glucosid der Gallussäure) Gallussäure. Benzoësäure und einige verwandte Stoffe, Bittermandelöl, Zimmtsäure, Chinasäure, liefern durch Paarung mit Glycin Hippursäure (Wöhlen), ebenso einige substituirte Benzoësäuren (Chlorbenzoësäure, Nitrobenzoësäure, Salicylsäure, Anissäure) die entsprechenden Hippursäuren. Die einfacheren Amidosäuren, Glycin und Leucin, erscheinen als Harnstoff im Harn wieder (SCHULTZEN & NENCKI); dagegen tritt Sarcosin (p. 26) mit Carbaminsäure (p. 23) unter Wasseraustritt zusammen und erscheint als Sarcosincarbaminsäure (C4HeN2O3) im Harn (SCHULTZEN); ein Theil paart sich ganz analog mit Sulphaminsäure (NH2,SO2,OH) und erscheint als Sarcosinsulphaminsäure (C3H8N2SO4). Ebenso erscheint Taurin mit Carbaminsäure gepaart als Taurincarbaminsäure (CsHsN2SO4) im Harn (SALKOWSKI).

$$H_2N-CO-OH$$
 $H_2N-CO-N \langle CH_3 \\ CH_2-CO-OH$ $H_2N-SO_2-N \langle CH_3 \\ CH_2-CO-OH$

Die Hippursäure im Harn der Pflanzenfresser bildet sich höchst wahrscheinlich durch Genuss eines der Benzoësäure nahestehenden pflanzlichen Stoffes; das zu ihrer Bildung nöthige Glycin wird der Leber entnommen (KÜHNE und HALLWACHS). Als jener Stoff ist vielleicht die "Cuticularsubstanz" der Pflanzen zu betrachten, welche der Chinasäure in ihrer Zusammensetzung am nächsten zu stehen scheint (MEISSNER & SHEPARD); diejenigen Pflanzentheile, welche keine Cuticularsubstanz besitzen, z. B. die unterirdischen Pflanzentheile, enthülste Getreidekörner, geben keine Hippursäure. Doch ist es auch möglich, dass andere Substanzen von ähnlichem Vorkommen, welche dem Benzol verwandt sind, die Quelle der Hippursäure bilden (NENCKI).

Eine ungefähre Uebersicht der sehr wechse nden quantitativen Harnzusammensetzung geben folgende Mittelzahlen (in 1000 Theilen): Wasser 960, Harnstoff 23,3, Harnsäure 0,5, Chlornatrium 11,0, Phosphorsäure 2,3, Schwefelsäure 1,3, Ammoniak 0,4 (Vogel).

Secretion.

Die absondernden Elemente der Nieren (Näheres über ihre Structur s. in d. histologischen Lehrbüchern) sind die Harnkanälchen und die mit ihnen in Verbindung tretenden Gefässe. Jedes Harnkanälchen endet in der Rindensubstanz der Niere mit einer blasigen Anschwellung (Kapsel, MALFIGHI'sches Körperchen), in welche ein sog. Glomerulus eingestülpt ist. Der Glomerulus ist ein kleiner Gefässknäuel, entstanden durch Verzweigung und Wiedervereinigung eines feinsten Zweiges der Nierenarterie (Vas afferens). Das aus der Wiedervereinigung hervorgehende, aus der Kapsel austretende Gefäss (Vas efferens) löst sich noch einmal in wahre Capillaren auf, welche die Harnkanälchen, namentlich die gewundenen Anfänge derselben, umspinnen und dann sich zu den Nierenvenenzweigen vereinigen:

Harn.

Da das Blut in den Glomerulis wegen des im zweiten Capillarsystem gegebenen Hindernisses unter hohem Drucke steht, so muss hier eine starke Filtration in die Kapseln hinein stattfinden; es werden also Wasser und die ächt gelösten Theile der Blutflüssigkeit (Salze, Harnstoff, Zucker u. s. w.) in die Harnkanälchen übergehen. (Unächt gelöste Theile, Eiweiss etc., treten erst unter abnorm erhöhtem Drucke über, p. 81.) Diese sehr verdünnte Lösung tritt nun an den Wänden der Harnkanälchen mit dem Blute, welches sie soeben verlassen hat, und welches durch den Wasserverlust concentrirter geworden ist, in Diffusion, die nothwendig zu einer Rückkehr von Wasser in das Blut führen muss (Ludwig), so dass der Urin concentrirter wird. - Ausser diesen physicalischen Vorgängen scheinen aber noch andere bei der Harnbereitung mitzuwirken. Vor Allem sprechen manche Gründe für eine Mitbetheiligung der Drüsenzellen (Epithelien), deren pathologische Entartung z. B. die Secretion stört; bei Vögeln sieht man die harnsäurehaltigen Harnkugeln innerhalb der Zellen entstehen, durch deren Zerfall sie erst frei zu werden scheinen (v. WITTICH, MEISSNER).

Da die Verzweigungen des Vas afferens an der Peripherie des Glomerulus liegen, während das Vas efferens aus dem Innern hervorgeht, so ist der Strom aus ersterem in letzteres begünstigt, ein Rückstrom aber erschwert, da Spannungszunahme in den Zweigen des Vas efferens die Zweige des Vas afferens an die Wand der Kapsel andrücken und verschliessen muss (Ludwig).

Die Betheiligung des Nierenparenchyms an der Harnbereitung fassen Einige nur so auf, dass die Nierenzellen ein besonderes Attractionsvermögen für die im Blute enthaltenen geringen Harnstoff- resp. Harnsäuremengen besitzen (BowMAN); (manche sehen indessen in der Kleinheit dieser Mengen keine Schwierigkeit für die rein physicalische Absonderungstheorie, da bei dem sehr raschen Blutstrom durch die Nieren doch genügende Mengen zur Absonderung kommen können). Andere dagegen nehmen an, dass in der Niere eine Bildung von Harnstoff, Harnsäure etc. aus anderen weniger oxydirten Substanzen stattfinde (HOPPE-SEYLER & OPPLER, HOPPE-SEYLER & ZALESKY); die Erfahrungen aber, auf welchen diese Annahme beruht, werden von Andern wieder bestritten oder anders gedeutet (MEISSNER, VOIT). - Folgendes sind die hauptsächlichsten Streitpuncte: 1. Die einfache Frage, ob das Nierenarterienblut mehr Harnstoff enthalte als das Nierenvenenblut (PICARD), scheint nach neueren Untersuchungen (GRÉHANT) im bejahenden Sinne entschieden zu sein; der Unterschied schwinde nach Unterbindung der Ureteren. 2. Nach Nierenexstirpation oder Unterbindung der Nierengefässe findet sich nach den Einen (BERNARD & BARRESWIL, OPPLER, ZALESKY) keine Harnstoffanhäufung im Blute, während Andere (MEISSNER, VOIT, GRÉHANT) dieselbe behaupten, ja sogar eine Zunahme der Anhäufung mit der Zeit angeben (GREHANT); der erstere Befund würde übrigens nichts für eine Harnstoffbildung in den Nieren beweisen, weil nach der Operation vicariirend harnstoff- oder ammoniakhaltige Flüssigkeiten durch Magen und Darm aus-

geschieden und durch Erbrechen entleert werden (BERNARD & BARRESWIL); auch sterben meist die Thiere so schnell (an der sog. "Urämie", sei es durch eine retinirte schädliche Substanz, sei es durch blosse Wasserretention), dass es zu einer sehr erheblichen Harnstoffanhäufung, wie sie z. B. nach blosser Unterbindung der Ureteren eintritt, nicht kommen kann. Exstirpation Einer Niere vermindert die Harnstoffausscheidung nicht (ROSENSTEIN). 3. Das Vorkommen von eigenthümlichen Stoffen in der Niere, ohne dass dieselben in den Harn übergehen (z. B. Cystin, Taurin), spricht zwar für Umwandlungsprocesse in der Niere, nicht aber gerade für Harnstoff- oder Harnsäurel ildung in derselben. 4. Die Anhäufung von Kreatin, Kreatinin etc. in manchen Organen (Blut, Muskeln) nach Nierenexstirpation (OPPLER, ZALESKY) ist dahin gedeutet worden, dass aus diesen Körpern normal in der Niere Harnstoff gebildet werde; auch soll Kreatin bei der Digestion mit zerriebener Nierensubstanz sich in Harnstoff verwandeln (SSUBOTIN). Da aber dargereichtes Kreatin und Kreatinin nicht als Harnstoff sondern im Allgemeinen unverändert im Harn wieder erscheinen (MEISSNER, VOIT) so scheinen diese Stoffe überhaupt nicht die Quelle des Harnstoffs zu sein. -Die Frage, ob die Nieren den Harnstoff, resp. die Harnsäure, nur aus dem Blute abscheiden oder neu bilden, scheint also jetzt sich im ersteren Sinne zu entscheiden.

Bei Vögeln und Schlangen findet man nach Unterbindung der Ureteren (s. oben) eine sichtbare Harnsäureanhäufung im ganzen Körper. Nach Nierenexstirpation finden sich bei Schlangen*) nur beschränkte Harnsäureablagerungen (ZALESKY), welche keinen bestimmten Schluss gestatten.

Wenn die beiden wesentlichen Harnkörper den Nieren schon fertig zugeführt werden, so dürfte vielleicht die Leber eine Hauptbildungsstätte derselben sein, da sie von allen Organen am meisten Harnstoff resp. (bei Vögeln) Harnsäure enthält (HEYNSIUS, STOKVIS, MEISSNER), und an durchgeleitetes Blut Harnstoff abgiebt (CYON, GSCHEIDLEN).

Aus den oben angedeuteten Absonderungsverhältnissen ergeben sich folgende Einflüsse auf die Menge des in bestimmter Zeit entleerten Harns und seiner einzelnen Bestandtheile: 1. Die Menge des Harns im Ganzen hängt ab: a. von der Höhe des Blutdrucks in den Glomerulis; b. von dem Gehalte des Blutes an leicht diffundirenden Stoffen (Wasser, Salze etc.); — denn je grösser ersterer, um so mehr wird in der Zeiteinheit filtriren, und je grösser letzterer, um so weniger wird von den filtrirten Stoffen aus den Harnkanälchen wieder in das Blut zurückdiffundiren, um so grösser wird also in beiden Fällen die Harnmenge sein. — Ad a. Zu den den Druck in den Glomerulis erhöhenden Umständen gehören: 1. Erhöhung des allgemeinen Blutdrucks, also erhöhte Füllung des Gefässsystems (z. B. durch reichlichen Genuss von Wasser, das schnell resorbirt wird); 2. Erhöhung der Spannung im Arteriensystem allein, hervorgebracht

^{*)} Bei Vögeln ist wegen der Lage der Nieren deren Exstirpation mit Erhaltung des Lebens unausführbar.

durch erhöhte Herzthätigkeit; 3. Erhöhung der Spannung in der Nierenarterie insbesondere (z. B. nach Unterbindung anderer grosser Arterien), oder bloss in den Glomerulis (durch vasomotorische Erweiterung der Vasa afferentia); 4. gehinderter Abfluss aus den Glomerulis nach der Venenseite hin (z. B. durch krankhafte Verengerung der Capillaren oder nach Unterbindung der Nierenvene). Sehr starke Erhöhung des Drucks, bes. durch die ad 4. genannten Umstände lässt auch (s. p. 81) die unächt gelösten Theile der Blutflüssigkeit, Eiweiss, fibrinogene Substanz, in den Urin filtriren, die stärkste endlich lässt durch Gefässzerreissung oder vielleicht durch Diapedesis (p. 78) Blut (Blutkörperchen) übertreten. Entgegengesetzte Einflüsse, namentlich also verminderte Spannung im Arteriensystem, z. B. bei verminderter Herzthätigkeit (Herzkrankheiten), müssen die Urinmenge herabsetzen. - Ad b. Unter den hierher gehörigen Stoffen wird namentlich der Wassergehalt des Blutes auf die Harnmenge den grössten Einfluss haben; in der That hängt die Urinmenge auch von ihm, also von der Menge der Getränke, hauptsächlich ab (durch a. und b. erklärlich). - Die Menge jedes einzelnen Harnbestandtheiles hängt ab: a. von dem Gehalte des Blutes an demselben: es wird aber vermehrt: 1) der Wassergehalt des Blutes: durch Aufnahme von Wasser (in Getränken) und durch verminderte Ausscheidung desselben auf andern Wegen, durch Schweiss und Exspiration (bei niedriger Temperatur); 2) der Salzgehalt: durch vermehrte Aufnahme der Salze in der Nahrung (gewisse durch Oxydation erst im Körper entstehende werden natürlich durch erhöhte Oxydationsvorgänge vermehrt); 3) der Zuckergehalt: durch vermehrte Bildung des Zuckers in der Leber oder durch verminderte Zerstörung desselben (s. hierüber Cap. V.); 4) der Gehalt an Oxydationsproducten stickstoffhaltiger Substanzen (vorläufig abgesehen von den einzelnen, ob Harnstoff, Harnsäure, Kreatinin etc.): durch vermehrte Aufnahme stickstoffhaltiger Nahrungsmittel, also Fleisch, Eier etc., ferner durch vermehrten Verbrauch N-haltiger Substanzen (erhöhte Nerventhätigkeit, erhöhte Temperatur, Fieber u. s. w.; Cap. VI.); 5) der Kohlensäuregehalt: durch Erhöhung kohlensäurebildender Processe im Körper, bes. durch Muskelbewegung (MORIN); - b. möglicherweise (vgl. p. 106) von der oxydirenden Thätigkeit der Nieren.

Aus dem eben Gesagten wird man leicht sich die Bedingungen zusammenstellen können, welche die Menge des in bestimmter Zeit entleerten Harnstoffs vermehren. Es sind: 1. vermehrte Urinsecretion überhaupt, gleichgültig aus welcher Ursache; 2. reichliche Fleischkost; 3. erhöhter Verbrauch stickstoffhaltiger Substanzen (s. d. 7. und 8. Cap.); 4. erhöhte oxydirende Thätigkeit der Nieren?

Harn.

Ausser den genannten Bestandtheilen enthält der Urin nach dem Genusse gewisser ungewöhnlicher Substanzen diese oder ihre Oxydationsproducte (s. oben). Sofern diese Substanzen giftig sind, führt die Nierensecretion eine beständige Entgiftung des Körpers mit sich, welche, wenn sie so schnell erfolgt, dass sie mit der Einführung des Giftes in das Blut (z. B. durch Resorption vom Magen aus) gleichen Schritt hält, das Zustandekommen der Vergiftung ganz verhindern kann Daher sind bei bestehender Nierensecretion gewisse leicht diffundirende Gifte (z. B. Curare) vom Magen aus unwirksam, während dieselben sofort Vergiftung herbeiführen, wenn sie entweder direct in das Blut gebracht oder schnell resorbirt werden (z B. bei subcutaner Injection) — oder wenn die Nierenthätigkeit (durch Unterbindung der Nierengefüsse) unterbrochen wird (BERNARD, HERMANN). Da wir möglicherweise mit der Nahrung viele so beschaffene schädliche Substanzen häufig geniessen, so ist die Entgiftung des Körpers eine weitere wichtige Function der Nieren.

Die Menge des in 24 Stunden entleerten Urins schwankt beim Erwachsenen (hauptsächlich unter dem Einfluss der Getränkmenge) zwischen 1000 und 2000 Gramm; die Menge des Harnstoffs beträgt durchschnittlich 30, die der Harnsäure 1 Gramm, die der Hippursäure 1-2 Gramm.

Dass ein Einfluss des Nervensystems auf die Nierensecretion vorhanden ist, beweisen schon die Veränderungen derselben bei Gemüthsbewegungen und Nervenkrankheiten. Nach den wenigen bestimmteren Angaben über Wege und Art dieses Einflusses (BERNARD, ECKHARD, KNOLL, USTIMOWITSCH) scheint derselbe hauptsächlich vasomotorisch zu sein. Durchschneidung der die Gefässe begleitenden Nierennerven, ferner der Splanchnici (vgl. p. 74), des Rückenmarks, Verletzung einer bestimmten Stelle am 4. Hirnventrikel steigern im Allgemeinen die Secretion und machen zugleich die Nierenvenen, deren Blut gewöhnlich wegen des schnellen Stromes hell carmoisinroth ist, anschwellen. Reizung des Splanchnicus vermindert die Secretion und die Stromgeschwindigkeit.

Vagusreizung soll umgekehrt die Secretion und die Strömung steigern (BERNARD), würde also analog den Facialisfasern der Speicheldrüsen (p. 90) die Arterien erweitern. Der Erfolg der Durchschneidung der vasomotorischen Nerven ist um so unsicherer, je mehr andere mitgetroffen werden (z. B. bei Splanchnicusoder hoher Rückenmarksdurchschneidung), wodurch der arterielle Blutdruck so sinkt, dass dies die Erweiterung der Nierenarterien übercompensirt. Nach Durchschneidung der Nierennerven verändert sich die Drüse und der Harn wird eiweisshaltig (KRIMER, BRACHET, MÜLLER & PEIPERS).

Ausscheidung.

Der secernirte Urin gelangt aus den gewundenen Harnkanälchen in ihre Fortsetzung, die geraden, welche, nach mehrfachen gabeligen Vereinigungen, an der Oberfläche der Nierenpapillen in die Nierenkelche und das Nierenbecken münden. Alle diese Theile sind stets mit Harn gefüllt; ein Rücktritt aus dem Becken in die Kanälchen ist unmöglich, weil jeder erhöhte Druck in jenem die Mündungen dieser zusammendrückt. — Aus den beiden Nierenbecken gelangt der Urin durch die beiden Ureteren in das Reservoir, die Harnblase. Die Bewegung durch die Ureteren kann geschehen: 1. durch das Nachrücken des beständig secernirten Urins; 2. durch die Schwere (da die Blase fast in jeder Körperstellung tiefer liegt, als die Nieren); 3. durch peristaltische Contractionen der Uretermuskeln, welche, wie es scheint, jeden einzelnen in den Ureter gelangten Tropfen, durch fortlaufende Verschliessung des Lumens hinter ihm, hinabdrängen.

In der Blase, welche im leeren Zustande gefaltet ist, sammelt sich der Urin gewöhnlich so lange an, bis sie sich vollständig entfaltet; jede weitere Anfüllung dehnt ihre Wand über ihren natürlichen Umfang aus. Der Rücktritt des Harns in die Uretern ist durch deren eigenthümliche Einmündungsweise (schiefe Durchbohrung der Blasenwand, so dass ein Druck von innen den Kanal verschliesst), - der Austritt in die Harnröhre durch einen Ring von elastischen Fasern, beim Manne ausserdem durch die Elasticität der Prostata verhindert. Sobald die Spannung des Urins die Elasticität letzterer Gebilde überwindet, so dass ein Tropfen in die Harnröhre gelangt, tritt Drang zur Entleerung der Blase ein; jetzt wird entweder der Verschluss der Blase durch willkürliche Contraction der die Harnröhre umgebenden Muskeln verstärkt (BUDGE), oder es wird willkürlich die Entleerung der Blase eingeleitet. Diese geschieht durch Contraction der Blasenwandmuskeln (Detrusor urinae), welche allmählich bis zum völligen Verschwinden des Blasenlumens vorrückt, und den ganzen Inhalt durch die Harnröhre nach Aussen treibt. Die Harnröhre selbst wird dann noch zuletzt durch die umgebenden Muskeln (bes. Bulbocavernosus) entleert. Die Entleerung der Blase wird durch die Bauchpresse (s. Cap. IV.) unterstützt.

Während des Aufenthalts in der Blase soll der Urin einen Theil seines Wassers durch Resorption verlieren (KAUPP), während andere umgekehrt eine Aufnahme von Wasser und eine Abgabe von Harnstoff an das Blut behaupten (TRESKIN), und andere jeden Diffusionsverkehr bestreiten, da die Blase Salzlösungen nicht resorbire, so lange ihr Epithel unversehrt ist (KÜSS, SUSINI). Ferner wird ihm hier sowohl wie in der Harnröhre Schleim aus den zahlreichen Schleimdrüsen beigemengt.

Die peristaltischen Ureterbewegungen geschehen reflectorisch, da sie nur auf Reizung des Ureter durch eindringenden Harn oder künstliche Reizung hervorgerufen werden; sie laufen stets in der Richtung zur Blase ab, mit einer Geschwindigkeit von 20-30 mm. in der Secunde bei Kaninchen (ENGELMANN).

Harn. Schweiss.

Jede Reizung des Ureter bewirkt eine nach beiden Seiten ablaufende Contractionswelle; dies geschieht auch in ganglien- und nervenlosen Ureterstücken, die Welle scheint also bloss durch Muskelleitung sich fortzupflanzen. Die spontanen Bewegungen des Ureter werden neuerdings auf automatische Muskelcontractionen (s. Cap. VIII.) zurückgeführt (...NGELMANN).

Der oben dargelegten Ansicht vom Blasenverschluss steht eine andere, verbreitetere gegenüber, wonach die Blase durch einen kreisförmigen Schliessmuskel, Sphincter, verschlossen ist, der in einem beständigen vom Nervensystem abhängigen Contractionszustande ("Tonus") verharrt (HEIDENHAIN & COLBERG, SAUER, ROSENPLATNER, KUPRESSOW). Das Dasein des Sphincter ist von anderen für den Menschen geleugnet (BARKOW, dagegen behauptet von HEIDENHAIN), und ebenso das Vorhandensein jenes Tonus nach Experimenten an Thieren bestritten worden (L. ROSENTHAL & v. WITTICH).

Die Nerven der Blasenmuskeln will man in das Rückenmark (Lendentheil BUDGE), selbst in das Hirn (KILIAN, VALENTIN) verfolgt haben. Sie können leicht, namentlich von der Blasenschleimhaut und dem Bulb. urethrae aus reflectorisch erregt werden. Daher tritt bei starker Blasenfüllung unwillkürliche Entleerung ein. Bei Rückenmarksdegeneration findet sich häufig Harnretention durch Lähmung des Detrusor. Vgl. auch Cap. XI. unter Rückenmark.

4. Absonderungen für die Haut.

Ueber die respiratorische Ausscheidung der Haut s. das 4. Capitel.

1. Schweiss.

Der Schweiss ist das Secret der zahlreichen Schweissdrüsen der Haut, tubulöser Drüsen, deren inneres, blindes Ende zu einem Knäuel aufgewickelt ist und meist im Corium, zuweilen im Unterhautbindegewebe liegt, deren äusseres Ende frei auf die Hautoberfläche mündet (die "Poren" der Haut).

Der Schweiss führt im Allgemeinen dieselben Auswurfsstoffe aus dem Körper, wie der Harn, von dem er sich hauptsächlich dadurch unterscheidet, dass er nicht beständig secernirt wird und dass er über die ganze Haut ergossen wird, so dass er noch für den Organismus (als Temperaturregulator) verwerthet werden kann. [Es würden sich die Schweissdrüsen zu den Nieren hiernach morphologisch etwa so verhalten, wie die Schleimdrüsen zu den Speicheldrüsen, die BRUNNER'schen Drüsen zum Pancreas, die Talgdrüsen zur Milchdrüse.]

Man erhält grössere Mengen von Schweiss durch Lagerung des Körpers auf eine geneigte Metallrinne im Dampfbade, oder durch Bekleiden einzelner Körpertheile mit einem luftdicht schliessenden Ueberzuge (Guttapercha), der mit einem Auffangegefäss verbunden ist. Fast stets ist das Gewonnene mit Hauttalg und Epidermisschappen verunreinigt.

Der Schweiss ist eine anscheinend farblose, klare, sauer reagirende Flüssigkeit von variablem Geruch (nach den Hautstellen). Die Bestandtheile des Schweisses sind: 1. Wasser, 2. die gewöhnlichen Salze, 3. Harnstoff (und vielleicht andere Oxydations-

Schweiss.

producte N-haltiger Körper, so nach FAVRE eine N-haltige Säure, Schweisssäure oder Hidrotsäure), 4. Spuren eines Farbstoffs (SCHOTTIN), 5. Fette, 6. verschiedene flüchtige Fettsäuren (Ameisensäure, Essigsäure, Buttersäure, Propionsäure, etc.).

Die Fette überwiegen im Secrete der Schweissdrüsen des äusseren Gehörganges (Ohrenschmalzdrüsen) so bedeutend, dass dasselbe (Ohrenschmalz) mehr dem Hauttalge als dem Schweisse gleicht. — Der Schweiss ist leicht zersetzbar, und zwar trifft die Zersetzung entweder mehr seinen Fettgehalt, in welchem Falle der Geruch nach flüchtigen Säuren und die saure Reaction zunimmt, oder seine N-haltigen Bestandtheile, in welchem Falle Ammoniak und alkalische Reaction entsteht.

Die quantitative Zusammenstellung des Schweisses ist ungefähr folgende (in 1000 Theilen): Wasser 995,6, Harnstoff 0,04, Fette 0,01, andere organische Stoffe 1,88, unorganische Stoffe 2,5 (FAVRE)

Secretion.

Die Absonderung des Schweisses geschieht nur unter gewissen Umständen. Sie besteht höchst wahrscheinlich zum Theil in einer Transsudation, zum Theil in eigenthümlicher Thätigkeit der Schweissdrüsenzellen; jedenfalls rührt der Fettgehalt von diesen her, da sie mit Fetttröpfchen gefüllt sind, und um so stärker, je fett- oder fettsäurereicher das Secret ist. Die Absonderung wird befördert: 1. durch Alles was den Druck in den Capillaren der Schweissdrüsen erhöht, also: a. erhöhten Blutdruck im Allgemeinen, z. B. durch reichliche Wasseraufnahme; b. erhöhte Temperatur des Körpers oder der Umgebung, welche die zuführenden Arterien (durch Erschlaffung ihrer Muskeln?) erweitert. Für diesen Fall wird die Schweissabsonderung besonders wichtig, da die Verdunstung des Schweisses dem Körper Wärme entzieht und ihn abkühlt (s. Cap. VII.). 2. Durch erhöhten Gehalt des Blutes an Schweissbestandtheilen, namentlich Wasser. Reichliches warmes Getränk wirkt daher aus mehrfachen Ursachen schweisstreibend. — Welche Höhe die genannten Einflüsse erreichen müssen, um überhaupt die Secretion einzuleiten, ist nicht bekannt. -Die secernirten Mengen sind natürlich äusserst schwankend. Häufig wird Monate lang kein Schweiss abgesondert, während zu anderen Zeiten in einer Stunde bis zu 1600 grm. und mehr geliefert wird (FAVRE). Am meisten liefern die mit vielen grossen Schweissdrüsen versehenen Hautflächen (Stirn, Achselhöhlen, Fusssohlen, Handteller u. s. w.). - Ueber die Bedeutung der Schweisssecretion für den Gesammtorganismus s. Cap. V. und VII.

Hauttalg. Milch.

Eine Einwirkung des Nervensystems auf die Schweissbildung ist wegen der bekannten Einflüsse von Gemüthsbewegungen wahrscheinlich. Indessen kennt man weder die Bahnen, noch sind überhaupt Nerven zu den Drüsen verfolgt. Man ist deshalb vorläufig auf die Annahme rein vasomotorischer Einflüsse beschränkt. — Wie in den Harn, so gehen auch in den Schweiss genossene Substanzen unversetzt oder oxydirt über. Nach dem Genuss von Benzoësäure soll sich im Schweisse, wie im Harn, Hippursäure finden (MEISSNER). Auch Indican zeigte sich einmal im Schweisse (BIZIO).

2. Hauttalg (Hautsalbe).

Die kleinen acinösen Talgdrüsen der Haut münden fast sämmtlich in Haarbälge; jedoch sind die Bälge an vielen Stellen so klein, dass sie selbst als wandständige Ausstülpungen des Drüsenausführungsganges erscheinen. Die Hauptmasse des Talgsecrets sind verschiedene, bei der Körpertemperatur im normalen Zustande flüssige Fette, und Cholesterin; ausserdem aber in geringer Menge die gewöhnlichen Transsudatbestandtheile (Wasser, Salze) und ein Eiweisskörper. Die Absonderung geschieht vermuthlich so, dass die specifischen Bestandtheile (Fette) in den Drüsenzellen entstehen, und durch deren Zerfall frei werden. Möglicherweise handelt es sich indess beim Freiwerden der Fetttropfen um einen ähnlichen Contractionsprocess wie in der Milch (s. unten). Man sieht die dem Drüsenlumen nächsten Zellschichten sich mehr und mehr mit Fetttropfen füllen ("fettig degeneriren"), bis die innersten ganz davon voll sind; letztere zerfallen fortwährend, und daher sind Zellentrümmer dem Secrete beigemengt. Ein Einfluss des Nervensystems auf die Secretion ist nicht nachgewiesen. - Das Secret erhält zunächst die Haare, dann aber auch die Haut schlüpfrig und glänzend, und hindert das Eindringen von Flüssigkeiten.

Genauere, besonders quantitative Untersuchungen des Secrets fehlen, da man sich keine grösseren Mengen verschaffen kann, ausser der die Haut der Neugeborenen überziehenden Anhäufung (Vernix caseosa). — Dem Hauttalge gleicht wahrscheinlich das Secret der MEIBOM'schen Drüsen der Augenlider. Dagegen ist das Ohrenschmalz ein Secret von Schweissdrüsen (p. 112), obwohl es auch im Gehörgang (an den Haarbälgen) Talgdrüsen giebt.

An die Talgsecretion schliesst sich sehr nahe an die

5. Milchabsonderung.

Die Milchdrüsen lassen sich als sehr vergrösserte, agglomerirte Talgdrüsen, die Milch als ein Hauttalg mit vergrössertem Gehalt an Transsudatbestandtheilen betrachten.

Jede Milchdrüse besteht aus 15-24 unvollkommen getrennten acinösen Drüsen, jede mit einem Ausführungsgange versehen, der Hermann, Physiologie. 5. Aufl. nach einer länglichen reservoirartigen Erweiterung auf der Brustwarze mündet. Nur beim Weibe in der Zeit des Geschlechtslebens sind die Drüsen vollkommen entwickelt, und nur in der Zeit von der Niederkunft bis zum Wiedereintritt der Menstruation secerniren sie.

Auch bei Neugeborenen, vom 4. bis zum 8. Tage, kommt eine Milchsecretion vor ("Hexenmilch"); ferner in seltenen Fällen bei Männern.

Das Secret, die Milch, ist eine undurchsichtige, weisse, meist schwach alkalische, häufig aber neutrale oder schwach saure Flüssigkeit (nach SoxLET ist die normale Reaction amphichromatisch) von süsslichem Geschmack und eigenthümlichem Geruch; sie ist eine Emulsion von sehr kleinen Fetttröpfchen ("Milchkügelchen") in einer klaren Flüssigkeit; ihr spec. Gewicht ist 1,008—1,014.

Den geformten Bestandtheilen der Milch scheint auch das Casein (s. unten) anzugehören, da es in klare Filtrate (mittels der Luftpumpe durch Thon) nicht übergeht (ZAHN, KEHRER); vermuthlich ist es in Zellentrümmern enthalten (KEHRER). Manche nehmen an, dass die Fettkügelchen Hüllen von Casein besitzen.

Die Bestandtheile der Milch sind: 1. Wasser, im Mittel 89%, 2. Salze und zwar hauptsächlich Kali-, Kalk-, Phosphorsäure-Verbindungen, auch etwas Eisen und Mangan (die Salze zeigen eine auffallend ähnliche Mischung mit denen der Blutkörperchen); 3. Milchzucker; 4. Albuminstoffe, besonders Casein, auch etwas Eiweiss (d. h. [p. 32] nur ein kleiner Theil der Albuminstoffe wird durch Hitze, der grösste Theil nur durch Säurezusatz gefällt); 5. Fette: die Glycerinäther der Palmitin-, Stearin- und Oelsäure, in kleinen Mengen auch der Butter-, Capron-, Caprin-, Capryl- und Myristinsäure (letztere als Butterfette bezeichnet); 6. Lecithin, oder Protagon (TOLMATSCHEFF); 7. verschiedene "Extractivstoffe", darunter Harnstoff (LEFORT); 8. Gase (CO₂, O, N).

Die menschliche Milch enthält in 1000 Theilen (TH. BRUNNER): Wasser 900,0, Casein + Albumin (Spuren) 6,3, Fette 17,3, Milchzucker 62,3, Salze und Extractivstoffe 14,1. — Die Kuhmilch enthält (KÜHN): Wasser 885,3, Caseiu + Albumin 28,5, Fette 31,2, Milchzucker 45,6, Salze und Extractivstoffe 9,8. — Aeltere Analysen weichen hiervon sehr bedeutend ab.

Secretion,

Die Absonderung der Milch geht wahrscheinlich so vor sich, dass die specifischen Bestandtheile (Milchzucker, Casein und Fett) in den Drüsenzellen aus Transsudatbestandtheilen gebildet und durch Zerfall der Zellen oder analoge Processe frei werden. Von den Fetten ist dies direct nachgewiesen; man sieht ganz wie bei den Talgdrüsen die innersten Zellenlagen sich mit Fett mehr und mehr erfüllen. Milch.

Entweder zerfallen nun diese Zellen, oder wahrscheinlicher (STRICKER, SCHWARZ) sie entleeren die Fetttröpfchen durch Contractionen (s. unten, Colostrumkörperchen). Die freigewordenen Tröpfchen vertheilen sich in der Flüssigkeit emulsiv. Wie überhaupt Fett in albuminathaltigen Flüssigkeiten, so überziehen sich auch die Milchkügelchen mit einer aus einem Albuminat (Casein?) bestehenden dünnen Haut. Im Beginn der Milchabsonderung, in der Milch der ersten Säugetage, dem sogenannten "Colostrum", finden sich runde unzerfallene, mit Fetttröpfchen erfüllte Zellen (die Colostrumkörperchen) zuerst allein, dann mehr und mehr, nie aber ganz durch die gewöhnlichen Milchkügelchen verdrängt. Man bemerkt, dass die Colostrumkörperchen contractil sind (STRICKER, SCHWARZ) und Fetttröpfchen aus sich auspressen; es liegt daher nahe, anzunehmen, dass dies auch später der Modus der Milchkügelchenbildung ist, dass aber nur im Beginn die Mutterzellen der Milchkügelchen sich selbst ablösen und in die Milch übergehen. - Aus welchen Transsudatbestandtheilen die specifischen gebildet werden, ist nur zu vermuthen; das Casein stammt ohne Zweifel vom Eiweiss des Blutes her (neuerdings ist in der Milchdrüse ein Ferment gefunden worden, welches eine Mischung von Albumin und Alkali in Albuminat verwandelt, DÄHNHARDT), der Milchzucker möglicherweise vom Traubenzucker des Blutes, wenigstens wird er durch Genuss von Kohlehydraten vermehrt; jedoch sind auch andere Quellen denkbar (Cap. VI.); der Ursprung des Fettes ist ebenso zweifelhaft wie die Fettbildung überhaupt (vgl. über diese Frage Cap. VI.); man vermuthet eine Abstammung von Albuminaten (von Casein, HOPPE, s. unten). - Der Secretionsprocess liegt daher noch ganz im Dunkeln, zumal da selbst der Salzgehalt (s. oben) nicht einfach physicalisch zu erklären ist. Auch ein Einfluss des Nervensystems, der unzweifelhaft existirt, scheint zur blossen Milchsecretion nicht erforderlich zu sein, da diese durch Durchschneidung der cerebrospinalen Nerven (beim Menschen der 4.-6. Intercostalnerv; auch mit den Gefässen gelangen [sympathische?] Nerven in die Drüse) fortdauert (ECKHARD). Von Einwirkungen auf die Secretion einzelner Bestandtheile kennt man hauptsächlich die der Nahrung: bei Fleischkost ist der Caseingehalt und der Fettgehalt stärker, als bei Pflanzenkost; bei reichlicher Nahrung überhaupt wächst der Fettgehalt, bei reichlicher Aufnahme von Kohlehydraten der Zuckergehalt; Fettnahrung erhöht den Fettgehalt nicht. - Ausserdem variirt die Zusammensetzung mit der Dauer der Absonderung, mit den übrigen geschlechtlichen Verrichtungen, u. s. w.

115

8*

Wie in den Harn gehen auch in die Milch viele genossene heterogene Substanzen unverändert oder verändert über.

Da die Milch mehrere sehr leicht veränderliche Bestandtheile und höchst wahrscheinlich auch Fermente erhält (welche beim Transsudiren der Milch durch eine Membran theilweise zurückgehalten werden, F. HOPPE), so erleidet sie sehr bald nach der Entleerung gewisse Veränderungen, die zum Theil auch künstlich angeregt und benutzt werden. Einige dieser Veränderungen sind nachweislich Oxydationen und mit Sauerstoffverbrauch und Kohlensäurebildung verbunden (HOPPE). -- Zunächst bildet sich auf der Milch beim Stehen eine Schicht, welche aus emporgestiegenen (ihres Fettgehalts wegen leichteren) Milchkügelchen besteht, der sog. "Rahm". Durch Schlagen ("Buttern") der Milch werden die Hüllmembranen der Milch zum Theil zerrissen und dadurch eine Vereinigung des Fettes bewirkt; man erhält so das Milchfett fast rein als "Butter". (Die zurückbleibende Lösung von Casein, Zucker und Salzen ist die "Buttermilch"; gewöhnlich macht man Butter durch Schlagen des blossen Rahmes.) - Unter den chemischen Veränderungen der Milch stehen obenan die des Milchzuckers und der Fette. Ersterer geht, namentlich bei etwas hoher Temperatur, allmählich in Milchsäuregährung über, die Milch wird sauer und die freie Milchsäure fällt, wie jede freie Säure (p. 32) und wie der Magensaft (p. 93) das gelöste Casein, die Milch gerinnt flockig. Das Gerinnsel, der "Käse", schliesst andere Milchbestandtheile, namentlich die Kügelchen, in sich ein. Die zurückbleibende Zucker- und Salzlösung heisst "Molke". Häufig findet eine geringe Milchsäurebildung bereits in der Drüse statt, so dass die Milch sauer entleert wird. Die Milchsäurebildung bedarf des Sauerstoffzutritts nicht (HOPPE). - Auf Zusatz von Hefe kann die Milch unter Umständen (die wahrscheinlich den Milchzucker in Lactose verwandeln, vgl. p. 18, 20) in alkoholische Gährung übergehen; ein so bereitetes alkoholisches Getränk ist der "Kumiss" der Tartaren. - Die Fette zersetzen sich ebenfalls beim Stehen der Milch oder der Butter in Glycerin und Fettsäuren (Capryl-, Caprin-, Capron-, Buttersäure). Ferner nimmt beim Stehen der Milch an der Luft (unter Einwirkung von fremden Fermenten, KEMMERICH) unter Sauerstoffaufnahme und Kohlensäureabgabe der Caseingehalt ab, das Alkohol- und Aetherextract zu, wahrscheinlich also entsteht hier Fett durch Oxydation und Spaltung von Albuminstoffen (HOPPE) Endlich nimmt der Caseingehalt auf Kosten des Albumins zu, und zwar auch ohne Luft- und Fermentzutritt (KEMMERICH).

Während der Säugezeit beträgt die 24stündige Milchmenge beider Brüste etwa 1350 grm.

Ausscheidung.

Die Entleerung der Milch aus den flaschenförmigen Reservoirs der Milchgänge geschieht gewöhnlich durch das Saugen des Säuglings zu dessen Nahrung sie dient, d. h. durch den Luftdruck. Unterstützt wird sie wahrscheinlich durch die glatten Muskelfasern, welche die ganze Drüse umfassen. Ein Theil der Muskeln dient ferner zu der noch nicht genau erforschten Erection der Warze, welche nach Durchschneidung der cerebrospinalen Nerven der Milchdrüse aufhört (ЕСКНАRD).

Thränen.

6. Absonderungen für die Sinnesorgane.

Es handelt sich hier fast durchweg um Schleimdrüsensecretionen, von welchen dasselbe gilt, wie von der des Verdauungsapparats (s. p. 88). Ferner sind bereits erwähnt das Ohrenschmalz (p. 112), und das Secret der MEIBOM'schen Drüsen (p. 113). Eine besondere Erwähnung erfordert nur noch die Absonderung der

Thränen.

Sie werden von den acinösen Thränendrüsen secernirt, welche den Schleimdrüsen vollständig analog gebaut sind; auch das Secret kann man als einen ausserordentlich wässerigen Schleim (oder wenn man will: Speichel) betrachten; es besteht überwiegend aus Transsudatbestandtheilen mit kleinen Mengen Mucin und Eiweiss. Es ist klar, farblos, alkalisch, von salzigem Geschmack.

Die Thränen enthalten 99 pCt. Wasser, 0,1 Albumin, 0,8 Salze, 0,1 Epithelien (FREBICHS).

Die Thränen werden beständig in geringen Mengen secernirt (s. Cap. X.); ihre Secretion wird aber bei psychischen Erregungen gewisser Art, und ferner reflectorisch bei Reizung der Nasenschleimhaut, der Conjunctiva und der Retina bedeutend gesteigert. Der Reflex von der Nasenschleimhaut erstreckt sich nur auf die gereizte Seite (HERZENSTEIN). Die Nerven, deren Reizung die Secretion steigert, welche also die secretorischen Fasern enthalten, sind: R. lacrymalis trigemini, R. subcutaneus malae trig., und der Halssympathicus. Der Nasenreflex bleibt nach Durchschneidung des Lacrymalis aus (HERZENSTEIN).

Die Thränen gelangen durch mehrere Ausführungsgänge in den Conjunctivalsack; über ihre weitere Verwendung und Beförderung s. das 10. Capitel

Die specifischen Secrete für die Geschlechtsapparate, in welchen morphologische Gebilde das Wesentliche sind, werden erst im 4. Abschnitt besprochen.

Drittes Capitel.

Aufnahme von Stoffen in das Blut, Resorption.

Resorbirte Stoffe.

Die Stoffe, welche in das Blut aufgenommen (resorbirt) werden, sind (p. 37): 1. das Oxydationsmittel, der Sauerstoff, aufgenommen durch die Athmung (Cap. IV.); 2. das umzusetzende oder zum Ersatz unverändert ausgeschiedener Körperbestandtheile dienende Material, die Nahrung; dieselbe unterliegt zuvor gewissen vorbereitenden Einflüssen, welche die Resorption möglich machen, -Verdauung (s. unten); 3. die Umsatzproducte von Stoffen, die durch Absonderung vom Blute an die Körperorgane abgegeben und hier oxydirt worden sind; - diese Producte sind entweder gasförmig (nur die Kohlensäure) oder flüssig; sie sind ferner entweder höchste Oxydationsproducte, die das Blut nur aufnimmt, um sie an andern, dazu geeigneten Stellen aus dem Körper auszuscheiden (Kohlensäure, Harnstoff etc.), oder sie sind Umsatzproducte, welche zwar nicht an Ort und Stelle, wohl aber im Blute selbst, oder nach ihrer Wiederabsonderung an andern Stellen, durch weitere Umwandlungen verwerthet werden; zu diesen letzteren gehören die meisten sog. "specifischen Bestandtheile" der Absonderungen, seien es nun Parenchymsäfte, Höhlenflüssigkeiten oder freie Secrete: der Unterschied ist nur der, dass die Bestandtheile der ersteren von derselben Stelle in's Blut aufgenommen werden, an der ihre Mutterstoffe es verlassen hatten, während die der freien Secrete an anderen Stellen resorbirt werden,

Resorption. Lymph- und Chylusgefässe.

nachdem sie in den Kanälen des Körpers kürzere oder längere Wege zurückgelegt haben. 4. Endlich wird auch ein grosser Theil der vom Blute abgesonderten Stoffe unverändert wieder aufgenommen, entweder auf anderem Wege, oder auf demselben, wenn die physicalischen Bedingungen sich unterdess geändert haben; so Wasser, Salze, Eiweiss, kurz sog. Transsudatbestandtheile.

Zur Erläuterung des sub 3 Angeführten diene p. 37 — Ad 4. Hierher gehört die Resorption unveränderter Bestandtheile der Parenchymsäfte und Höhlenfüssigkeiten, ferner die Aufsaugung pathologischer Transsudate (Oedemflüssigkeiten, seröse Ergüsse); offenbar wäre diese Resorption unter denselben Bedingungen, unter denen die Ausscheidung erfolgte, und in dieselben Gefässe hinein, undenkbar; es müssen daher entweder andere Bedingungen eintreten, z. B. der Filtrationsdruck des Blutes nachlassen, der ja fortwährend wechselt, oder ein anderer Weg genommen worden, z. B. durch die Lymphgefässe (s. unten). Die unveränderten Bestandtheile wahrer Secrete werden an anderen Orten wieder resorbirt.

Resorptionswege.

Die Aufnahme in's Blut geschieht theils direct in die Blutgefäss-Capillaren, theils indirect durch einen Appendix des Blutgefässsystems, die Lymphgefässe. Blut- und Lymphgefäss-Capillaren liegen überall zusammen. Der vom Verdauungsapparat, namentlich vom Darm kommende Theil des Lymphgefässsystems heisst das Chylusgefässsystem.

Das Lymph- und Chylusgefässsystem bildet einen einfach verzweigten Gefässbaum (vergleichbar dem Venensystem), welcher mit mehreren nicht sehr starken Stämmen, Ductus thoracicus und Truncus lympathicus communis dexter, in die Halsvenenstämme einmündet. Letzterer sammelt nur die Lymphgefässe der rechten oberen Körperhälfte und der rechten Brusthöhle, der Ductus thoracicus alle übrigen, also auch die Chylusgefüsse. Ueber die Anfänge der Lymphgefüsse in den Organen sind noch wenig sichere Beobachtungen gemacht. Die Einen halten das geschlossene Netzwerk der Lymphcapillaren (etwas weiter als die Blutcapillaren) für den Ursprung der Lymphgefässe, Andre lassen dasselbe erst aus feinen wandungslosen Räumen in den Geweben entspringen. In vielen zusammengesetzten Geweben, namentlich in Drüsen, sind die Ursprünge der Lymphgefässe einfach die spaltförmigen Räume zwischen den Blutgefässen und andern Gewebstheilen, z. B. den Drüsenkanälchen (LUDWIG, TOMSA, ZAWARYKIN, MAC-GILLAVRY); im Rückenmark umgeben diese Spalten die Blutgefüsse (perivasculäre Räume, His). Diese Lymphräume scheinen von Epithel ausgekleidet zu sein. Achnliche, aber viel grössere lympathische Spalträume stellen die sogenannten serösen Säcke (Pleura, Peritoneum etc.) und die subcutanen Lymphsäcke des Frosches dar. Diese mit Lymphe erfüllten (p. 87), mit Epithel ausgekleideten Räume communiciren durch kleine, zwischen den Epithelzellen befindliche Oeffnungen ("Stomata") mit den Lymphcapillaren der anliegenden Gewebe, z. B. des Centrum tendineum des Zwerchfells (v. RECKLINGHAUSEN

LUDWIG & DYBKOWSKY, SCHWEIGGER-SEIDEL & DOGIEL, OEDMANSSON), und überhaupt der Sehnen und Fascien (GENERSICH).

Innerhalb der elementaren Gewebe selbst bildet höchstwahrscheinlich das netzförmige Saftkanälchensystem, welches die anastomosirenden Zellen der Bindesubstanzen (Bindegewebe, Knochen etc.) bilden (Vіясноw), oder nach anderer Auffassung: das Saftkanälchennetz, in dessen Knotenpunkten die Protoplasmahaufen der Bindesubstanzen liegen (v. RECKLINGHAUSEN), den Ursprung des Lymphgefässsystems (Vіясноw). Es ist möglich, dass dieses Canalsystem andererseits mit den Blutgefässcapillaren in directer Communication steht, in welchen Manche feine Oeffnungen zwischen den Epithelzellen ("Stomata") annehmen. —

Dieselbe Ungewissheit wie über die Lymphgefässe herrscht über die Ursprünge des Chylusgefässsystems in den Zotten des Dünndarms, kleinen, verschieden, meist kegelförmig gestalteten, dicht nebeneinander stehenden Hervorstülpungen der Schleimhaut, die der inneren Darmfläche ein sammetartiges Aussehen geben. Diese Zotten sind von dem Cylinderepithel der Darmschleimhaut überzogen und besitzen längsgerichtete glatte Muskelfasern, bei deren Contraction Verkürzung der Zotte und spiralige Faltung ihrer Oberfläche eintritt (BRÜCKE). Die Zotten enthalten nun ausser einem Blutcapillarnetz auch die fraglichen Anfänge der Chylusgefüsse, die mit einem, selten mehreren centralen Stämmchen aus jeder Zotte hervorgehen. Diese Anfänge liegen im weitesten Sinne in den die Zotte bedeckenden Epithelialzellen, da alle aus dem Darm in die Chylusgefässe dringenden Substanzen nothwendig zuerst jene passiren müssen und auch nachweislich passiren (wie man an den Fetttröpfchen beobachten kann, s. unten). Es nehmen nun die Einen eine directe Verbindung jener Epithelialzellen mit den Chylusgefässen an, und zwar durch das Saftkanälchensystem des Bindegewebes der Zotte, welche mit Ausläufern der an ihrer Basis sich verjüngenden Epithelzellen communiciren (HEIDENHAIN, EIMER, V. THANHOFFER); Andere nehmen ein Chyluscapillarsystem in der Zotte an, das aber abgeschlossen ist und nur durch Diffusion mit dem Epithel communiciren kann (E. H. WEBER); Andere endlich bestreiten auch die Chyluscapillaren (FUNKE, KÖLLIKER), ja selbst das centrale Chylusgefäss (BRÜCKE, BASCH), und nehmen eine Fortbewegung durch wandungslose Räume, durch die Maschen des Zottengewebes oder durch Spalträume zwischen Gefässen und andern Gewebsbestandtheilen (BASCH) an. Es sind also für die Chyluswege ziemlich dieselben Ansichten repräsentirt, wie für die Lymphgefässanfänge. - Ebenso streitig ist die Beschaffenheit der Epithelialzellen selbst, welche aus dem Darme nachweislich Körper aufnehmen können, deren Durchgang das Dasein von Oeffnungen voraussetzt (Fetttröpfchen, Pigmentkörnchen, Blutkörperchen etc.). Jede Zelle hat dem Darmlumen zugewandt eine verdickte, streifige Wand, welche die fraglichen Oeffnungen enthalten muss. Nach dem Einen ist diese Wand nur ein Schleimpfropf, die Zellen also offen, nach Andern ist sie (wofür ihr streifiges Aussehen spricht) von feinen Porenkanälchen durchbohrt (Kölliker, Welcker), oder sie besteht, an Flimmerzellen erinnernd, aus dicht pallisadenartig nebeneinanderstehenden Stäbchen, deren Zwischenräume also die Kanäle repräsentiren würden (FUNKE, BRETTAUER & STEINACH, HEIDENHAIN, LIPSKY); Andere endlich halten sie für völlig solide ohne Oeffnungen - Eine von allen übrigen abweichende Angabe (LETZERICH) lässt die in die Chylusgefüsse eindringenden Körperchen gewisse offene, zwischen den Epithelialzellen liegende becherförmige Gebilde durchwandern, welche in

Directe und indirecte Resorption.

der Tiefe mit dem Saftkanälchennetz anastomosiren. Andere (EIMER, F. E. SCHULZE) schreiben den Becherzellen im Wesentlichen secretorische Functionen zu; noch Andere halten sie für Kunstproducte (DÖNITZ, LIPSKY, ERDMANN, SACHS), oder für Metamorphosenzustände der gewöhnlichen Epithelzellen (ARNSTEIN, OEFFINGER, HEIDENHAIN). — Ueber die in das Lymph- und Chylussystem eingeschalteten drüsigen Organe s. unten.

Resorptionskräfte.

Die physicalischen Kräfte, welche eine Aufnahme von Flüssigkeiten in das Blut bewirken können (die Gasaufnahme wird im 4. Cap. behandelt werden), sind für die directe Aufnahme durch die geschlossene Capillarwand wiederum (p. 80) Filtration und Diffusion; erstere wirkt wahrscheinlich nur ausnahmsweise, weil ein höherer Druck als der Blutdruck ausserhalb der Gefässe unter normalen Umständen nicht vorzukommen scheint. Dagegen kommen für die Aufnahme in die noch zweifelhaften Anfänge der Lymph- und Chylusgefässe wahrscheinlich ausserdem andere Kräfte in Betracht; sind sie z. B. offne Röhren, vielleicht Capillarattraction u. s. w.; möglicherweise kann hier auch die Filtration eine grössere Rolle spielen, da der Druck im Lymphsystem bedeutend geringer ist, als im Blutsystem (Noll). - Welche Substanzen direct in's Blut, und welche durch das Lymphsystem aufgesogen werden, weiss man durchaus nicht. Da man in den Lymph- und Chylusgefässen noch freien Spielraum für Vermuthungen in Bezug auf die Resorptionskräfte hat, so ist man geneigt, Substanzen, welche sehr schwer diffundiren, oder solche, die gar keiner Diffusion fähig sind, kurz Alles, dessen Resorption durch Blutgefässe dem Anschein nach nur schwer oder gar nicht möglich ist, von Lymph- oder Chylusgefässen resorbiren zu lassen. Dahin gehören namentlich Eiweisslösungen und Fette, aber auch fein vertheilte feste Körper (Farbstoffe). Wasser und ächte Lösungen (auch Peptone) werden höchstwahrscheinlich von beiden Gefässarten aufgenommen; auch scheint die Fettresorption nicht ganz auf die Lymphgefässe beschränkt zu sein (dafür spricht der grössere Fettgehalt des das Darmvenenblut enthaltenden Pfortaderblutes, anderen Blutarten gegenüber, p. 98; vgl. auch Cap. V.).

In neuerer Zeit hat man, entsprechend der Auswanderung (p. 78), auch Einwanderung zelliger Gebilde in die Blutgefässe hie und da beobachtet (v. RECKLINGHAUSEN, SAVIOTTI); sind diese mit fein vertheilten Farbstoffen, Fetten etc. beladen, so kann dadurch eine Art von directer Resorption ungelöster Substanzen zu Stande kommen.

Resorption vom Darm aus.

Frösche deren Herz zerstört ist, resorbiren noch Flüssigkeiten aus den Lymphsäcken, aber nur, wenn Hirn und Rückenmark noch erhalten sind (Goltz). Es scheint dass bei vollständiger Gefässlähmung die Resorption aufhört sobald die Gefässe sich gefüllt haben, während sie bei erhaltener Innervation sich ihres Inhalts ab und zu wieder entledigen und sich neu füllen können (BERNSTEIN, HEUBEL).

Resorptionsstätten.

Eine der Hauptaufsaugungsstätten, die hier gesondert zu betrachten ist, ist der Verdauungskanal. Hier werden 1. die Nahrungsbestandtheile zum Theil resorbirt, nachdem sie die für das Zustandekommen der Resorption erforderlichen Umwandlungen - Verdauung (s. unten) - erlitten haben; neben dieser hauptsächlichen Resorption geschieht aber auch 2. eine Resorption der Secrete des Verdauungsapparats (Schleim, Speichel, Magensaft, pancreatischer Saft, Galle, Darmsaft), nachdem sie ihre Function verrichtet haben, wahrscheinlich zum Theil verändert: gewisse Bestandtheile derselben (Mucin, spec. Gallenbestandtheile, p. 99) werden nicht resorbirt, sondern mit dem Koth entleert. - Die bei der Verdauung unten näher zu besprechenden Umwandlungen schaffen aus den zur Resorption ungeeigneten Stoffen, Stärke (Kleister), Eiweissstoffen und Leim, andere leicht diffundirbare, nämlich Zucker, Peptonlösung, Leimlösung; ebenso aus einem Theil der Fette leicht resorbirbare Seifen (p. 100); die Hauptmasse der Fette verwandeln sie in eine Emulsion. Es sind demnach im Ganzen folgende Stoffe im Verdauungsapparat zu resorbiren: 1. Wasser (theils aus der Nahrung, theils von Verdauungssäften), 2. lösliche Salze (ebenso, zum Theil aus unlöslichen Salzen oder freien Säuren und Basen der Nahrung entstanden, s. unten, Verdauung), 3. Zuckerarten (alle Arten direct aus der Nahrung, Traubenzucker ausserdem aus der genossenen Stärke), 4. andere lösliche Stoffe der Nahrung oder der Verdauungssäfte (Pepsin u. s. w.), 5. Seifen (aus genossenen Fetten), 6. lösliches Eiweiss und durch Verdauung entstandene Albuminate, 7. Peptone (aus genossenen löslichen und unlöslichen Eiweissstoffen), 8. Leimlösung (aus genossenem Leim und leimgebendem Gewebe), 9. emulgirtes (in feinen Tröpfchen vertheiltes) Fett aus der Nahrung. - Von diesen Stoffen scheinen die 8 ersten Rubriken sowohl von den Blutgefässen, als von den Chylusgefässen resorbirt zu werden, wegen ihrer Diffundirbarkeit; wahrscheinlich werden die ächten Lösungen unter ihnen (1-4) überwiegend von den Blutgefässen, oder gleichmässig von beiden, die übrigen aber überwiegend von den Chylus-

Resorption vom Darm; von der Haut; von Parenchymen.

gefässen aufgenommen. Die Aufnahme der Fette dagegen ist, wie es scheint, fast ausschliesslich Aufgabe der Chylusgefässe.

Die Wege, auf welchen die Fette in diese hineingelangen, sind nach dem p. 120 Angegebenen entweder vollständig ausgebildete Kanäle (Oeffnungen der Zottenepithelien und Bindegewebskanalsystem bis zu dem Chylussystem der Zotte, HEIDENHAIN) oder sie werden ganz oder zum Theil erst von den Fetttröpfchen selber gebahnt, die man während der Fettverdauung alle Theile der Zotten erfüllen sieht. Sowohl für die erste als für die zweite Möglichkeit ist die Wirkung der Galle, Filtration von Fetten zu befördern (p. 99), ein wichtiges Hülfsmittel. Dennoch sind die Kräfte, welche den Uebergang bewirken, noch ganz räthselhaft; am wahrscheinlichsten ist die Filtration durch den im Darme herrschenden ziemlich hohen Druck. da der Druck in den Chylusgefässen jedenfalls gering ist; die Contraction der Zotten (s. oben) kann nur die Entleerung ihrer Chylusgefässe nach den Stämmchen zu, nicht aber die Aufnahme von Fett aus dem Darm bewirken; die Contraction soll durch die Galle befördert werden (Schiff).

Die Fettaufnahme durch die Chylusgefässe und die begünstigende Wirkung der Galle sieht man deutlich an dem weissen, milchähnlichen Inhalt jener nach Fettgenuss und aus der Abnahme desselben, wenn der Zutritt der Galle zum Darme durch Verschliessung des Ductus choledochus oder durch Anlegung einer Gallenfistel abgeschnitten ist (p. 99 f.).

Eine zweite, nur ausnahmsweise thätige, aber viel besprochene und deshalb hier zu erwähnende Aufsaugungsstätte ist die äussere Haut. Alle von hier aufgenommenen Stoffe müssen zuerst die Epidermis durchwandern, deren Permeabilität, wie es scheint, im gewöhnlichen Zustande sehr gering ist, durch verschiedene Mittel aber (warme Bäder etc.) vorübergehend erhöht werden kann. Die Resorptionsfähigkeit der Haut ist durch sichere Thatsachen festgestellt.

Die Aufsaugung der Parenchymsäfte ist ein noch sehr in Dunkel gehüllter Vorgang. Wie es scheint, werden (abgesehen von der Resorption ächt gelöster Oxydationsproducte) auch die unveränderten, eiweisshaltigen Transsudate beständig oder unter Umständen durch die Lymphgefässe aufgezogen, nämlich um so stärker, je stärker die Transsudation, je höher also die Spannung der Parenchymflüssigkeit im Gewebe ist. Wenigstens fliesst aus einem durchschnittenen Lymphgefäss die Lymphe um so stärker aus, je mehr man die Transsudation, durch Erweiterung der zuführenden Arterien (Durchschneidung oder Lähmung der vasomotorischen Nerven), Hemmung des Blutabflusses (Unterbindung der Venen,

123

Chylus und Lymphe. Lymphdrüsen und Follikel.

Compression derselben durch Muskelcontractionen), erhöht (LUDWIG, SCHWANDA); so dass vielleicht die Lymphgefässe als Regulatoren für den Gewebsturgor zu betrachten sind. Den Zustand erhöhter Spannung der Parenchymflüssigkeit, welchem hiernach durch vermehrte Lymphaufsaugung abgeholfen wird, nennt man Oedem. Man kann sagen, dass fortwährend eine Art Drainage der Gewebe stattfindet, indem Flüssigkeit aus den Blutgefässen durch Transsudation zuströmt, das Zellgewebe durchwandert und durch die Lymphgefässe wieder abfliesst. Auch sind die Lymphgefässanfänge von den Blutgefässen gewöhnlich möglichst entfernt (v. RECKLINGHAUSEN). Die Aufsaugung aus den Parenchymen scheint durch Knetung derselben, wie sie z. B. die Contractionen benachbarter Muskeln bewirken, befördert zu werden (GENERSICH). Erhöhung des arteriellen Blutdrucks hat auf die Lymphbildung keinen Einfluss (PASCHUTIN).

Schicksale der resorbirten Stoffe.

Die direct vom Blute resorbirten Stoffe gehen in dessen Plasma über, aus welchem sie theils nach aussen, theils in andere Organe ausgeschieden werden.

Es bleibt nun noch übrig, die indirect, durch Chylus- und Lymphgefässe resorbirten Stoffe auf ihrem Wege bis in's Blut zu verfolgen. Sie legen diesen Weg nicht ohne Weiteres zurück, sondern ihre Mischung wird durch gewisse Organe, die Lymphdrüsen, welche in das Chylus- und Lymphgefässsystem eingeschaltet sind, beträchtlich verändert und in eine Flüssigkeit umgewandelt, welche dem Blute, in das sie ergossen werden soll, in vieler Hinsicht ähnlich und gleichsam eine Vorstufe desselben ist. Da sich solche Organe nicht bloss im Verlaufe der grösseren Lymphgefässe finden (gewöhnliche Lymphdrüsen), sondern auch ganz dicht an den Anfängen der Chylus- und Lymphgefässe (die sog. "Follikel"), so kann man sich den ursprünglichen, durch die einfache Resorption entstandenen Inhalt der Chylus- und Lymphgefässe nicht verschaffen, man kennt daher nur den veränderten Inhalt, welcher bereits Drüsen passirt hat, den Chylus und die Lymphe.

Die Follikel, welche man erst in neuerer Zeit als die einfachste Form der Lymphdrüsen erkannt hat, finden sich in grosser Zahl an den Anfängen der Chylus- und der Lymphgefässe. Erstere liegen in der Darmschleimhaut entweder einzeln ("solitäre Follikel", im ganzen Darm) oder in Haufen nebeneinander (PEVER'sche Haufen, "Plaques", im unteren Theil des Dünudarms); letztere finden sich in vielen Körpertheilen, namentlich in der Schleimhaut der Mundhöhle, des Rachens (auch die Tonsillen sind nur Follikelhaufen), des Magens, der Con-

Lymphe. Chylus.

junctiva (Trachomdrüsen), in den Lungen (hier schon lange als kleine Lymphdrüsen beschrieben), in der Milz (MALPIGHI'sche Blüschen) und wahrscheinlich noch an vielen anderen Stellen. Ueber den feineren Bau der Follikel und Lymphdrüsen s. die histolog. Lehrb. Das Wesentliche scheint Folgendes: der Follikel enthält einen, die Lymphdrüse zahlreiche, von Bindegewebsgerüsten gebildete Hohlräume (Lymphräume, Alveolen), welche von einem zarten Fasernetz (Reticulum) und von Blutgefässcapillaren durchflochten sind; die Binnenräume sind dicht von farblosen, runden, kernhaltigen Zellen (Lymphzellen) erfüllt. Es scheinen nun diese zellenerfüllten Räume nichts Anderes zu sein, als ein sehr erweitertes Bindegewebs - Saftkanälchensystem, dessen Grundsubstanz zu dem feinen Fasernetz geschwunden ist. In diese Räume münden entweder die gewöhnlichen Saftkanälchen oder, in den eigentlichen Lymphdrüsen, die Zweige der zuführenden Lymphgefässe, welche in Form von (mit Epithel ausgekleideten) Spalträumen (Lymphsinus) die Alveolen umgeben, und aus den Alveolen gehen die abfuhrenden Lymphgefässe wieder hervor. Es muss also die zugeführte Flüssigkeit die Hohlräume passiren und zwischen den Zellen ihren Weg suchen, wobei sie mit dem in den Capillaren enthaltenen Blut in endosmotischen Verkehr tritt.

Die Lymphe ist eine farblose oder gelblichweisse Flüssigkeit, welche unter dem Microscop sich in ein farbloses Plasma und darin suspendirte kernhaltige contractile Zellen (Lymphkörperchen, vgl. p. 41), feine Fetttröpfchen und Kerne zerlegt; die Lymphkörperchen sind den in den Alveolen der Follikel und Lymphdrüsen enthaltenen Zellen äusserst ähnlich und stammen sicher der Hauptmasse nach von dieser her (vor dem Passiren grösserer Lymphdrüsen enthält die Lymphe nur sehr wenige, aus den Follikeln oder aus den Bindegewebskanälchen (p. 120), möglicherweise auch aus den Blutgefässen (p. 78) stammende); andererseits gleichen sie völlig den farblosen Blutkörperchen. Die Lymphe gerinnt beim Absterben wie das Blut, nur langsamer; sie bildet einen Lymphkuchen und presst ein Lymphserum aus; sie enthält also die Fibringeneratoren und bildet das Ferment (p. 51), jedoch weniger als das Blut, so dass Zusatz von Blut die Gerinnung beschleunigt. - Die übrigen Bestandtheile sind, ausser dem fehlenden Farbstoff, ganz die des Blutes, also Wasser, Salze, Albuminate, Protagon, Fette, Zucker, Harnstoff, Extractivstoffe und Gase (fast nur Kohlensäure, HAMMARSTEN). - Der Chylus (schwer rein zu gewinnen, weil er sich in der Cysterna chyli und im Ductus thoracicus mit Lymphe mengt) unterscheidet sich von der Lymphe nur durch seinen hohen Fettgehalt während der Verdauung, der ihm ein milchweisses Aussehen giebt; das Fett bildet theils einzelne, theils gehäufte Tröpfchen, grösser als die der Lymphe; ferner wird es von den contractilen Lymphkörperchen in deren Protoplasma aufgenommen.

Lymphbewegung. Lymphherzen. Verdauung.

Die Bewegung der Lymphflüssigkeiten zum Blute hin geschieht unter geringem Druck (NoLL) und sehr langsam, besonders wegen des bedeutenden Widerstandes, den die Lymphdrüsen bieten müssen. Die Kräfte, welche die Bewegung unterhalten, kann man nur vermuthen; wahrscheinlich sind es: 1. dieselben (nach p. 121 f. noch unbekannten) Kräfte, welche den Inhalt in die Anfänge hineintreiben; sie müssen ein allmähliches Vorrücken des Inhalts bewirken; 2. Contraction der die Lymphgefässe umgebenden Körpermuskeln, die wegen der zahlreichen Klappen derselben den Inhalt, ganz wie den der Venen (p. 66), nach der Mündung zu auspressen; 3. die Aspiration des Thorax (p. 65), da die Mündungen der Hauptstämme, und ausserdem der grösste Theil des Ductus thoracicus, innerhalb der Brusthöhle liegen.

Bei gewissen Thieren, bei Amphibien und einigen Vögeln (Struthionen), wird die Bewegung der Lymphe durch rhythmisch pulsirende Lymphherzen (4 bei den Fröschen, 2 bei den übrigen Amphibien, 1 bei den Straussen) befördert. Ihr nervösen Centralorgan liegt nach den Einen im Rückenmark, nach Anderen in ihnen selbst. — Beim Meerschweinchen hat man neuerdings an den Lymphgefässen des Mesenteriums rhythmische Contractionen der durch die Klappen getrennten Abschnitte, mit regelmässigem Fortschreiten nach den Stämmen hin, also einen herzartigen Mechanismus beobachtet (A. HELLER).

Im Blute angelangt mischen sich die Lymphbestandtheile mit denen des Blutes. In welcher Weise sie hier weiter verwerthet und umgewandelt werden, wird im 5. Capitel besprochen.

Vorbereitung der Nahrung für die Resorption, Verdauung.

In dem Verdauungskanal, der vom Munde bis zum After reicht, werden die genossenen, theils festen, theils flüssigen Nahrungsmittel zum Theil direct von den Wänden in die Säfte aufgenommen, zum grössten Theil aber erst nach gewissen mechanischen und chemischen Vorbereitungen. Der Theil der Nahrung, welcher weder der directen Aufnahme noch einer erfolgreichen Vorbereitung zugänglich ist, der "unverdauliche", wird in Gemeinschnft mit gewissen Bestandtheilen der Darmsecrete als "Koth" durch den After entleert.

I. CHEMISMUS DER VERDAUUNG.

Die Absonderung und die Eigenschaften der Verdauungssäfte sind im vorigen Capitel besprochen.

Keine wesentlichen chemischen Veränderungen erleiden im Verdauungskanal das Wasser, die unorganischen und die meisten löslichen organischen Bestandtheile der eingeführten Nahrung: diese

Chemische Verdauungsvorgänge.

werden, so weit sie schon gelöst waren oder in den Verdauungssecreten löslich sind, unverändert, höchstens, sofern sie freie Säuren und Basen waren, gebunden, an den geeigneten Orten resorbirt (s. p. 122). - Unverändert bleiben ferner gewisse, der Einwirkung der Verdauungssäfte unzugängliche, unlösliche Substanzen, namentlich Cellulose, Horngewebe, elastisches Gewebe, - und auch von löslichen die Theile, welche wegen zu grosser Masse oder zu dichter Beschaffenheit nicht vollständig gelöst werden können. Dies Alles wird, in Verbindung mit gewissen Bestandtheilen der Verdauungssäfte, als Koth durch den After entleert. - Die verschluckte Luft giebt im Verdauungskanal ihren Sauerstoff ab und empfängt dafür Kohlensäure (Cap. IV.), so dass im Dickdarm hauptsächlich Stickstoff und Kohlensäure vorhanden sind. - Die eigentlichen chemischen Veränderungen betreffen gewisse unlösliche oder zwar gelöste, aber schwer diffundirbare organische Stoffe, die zu den wichtigsten Nahrungsmitteln gehören; nämlich Kohlenhydrate (nam. Stärke) Eiweissstoffe (Eiweiss, Fibrin, Muskelsubstanz, Casein u. s. w.) sowohl in ihren löslichen als in den unlöslichen Modificationen, Leim und Fette. Diese Substanzen müssen in eine zur Resorption geeignete Form umgewandelt werden.

Die pflanzenfressenden Thiere scheinen auch zur Verdauung der Cellulose Einrichtungen zu besitzen; vermuthlich wandeln sie dieselbe in Zucker um. Man schliesst eine Verdauung von Cellulose aus der grossen Menge derselben in der pflanzlichen Nahrung und aus dem geringen Gehalt der letzteren an andern Nahrungsstoffen, welcher kaum hinreichen kann, die Ernährung zu unterhalten. Neuerdings ist auch bei Menschen beobachtet worden, dass die genossene Cellulose nicht vollständig in den Faeces wiedererscheint (HENNEBERG & STOHMANN, WEISKE). Welches Secret auf sie wirkt, ist unbekannt. — Auch die Cuticularsubstanzen, welche zur Hippursäurebildung führen sollen (p. 105), müssten von den Pflanzenfressern verdaut werden, während sie für Fleischfresser unverdaulich sind.

In der Mundhöhle werden die Speisen mit dem alkalischen Mundspeichel, d. h. einer Mischung von Parotiden-, Submaxillarund Sublingualspeichel mit Mundschleim, gemengt und eingeweicht. Diese Mischung verhält sich 1) als Lösungsmittel für lösliche, aber noch ungelöste Bestandtheile der Nahrung (z. B. Salze, Zucker), 2) wandelt sie die in der Nahrung enthaltene Stärke (gequollen: "Kleister") in Dextrin und Traubenzucker um. Diese Umwandlung beginnt schon im Munde und wird im Magen fortgesetzt, wenn nicht zu grosse Säuremengen sie hindern (s. p. 89).

Im Magen geschieht 1) eine innige Mischung der Nahrungstheile unter einander und mit den Secreten der Magendrüsen: Schleim und Magensaft. Da letzterer sauer reagirt, so wird das vorher alkalische Gemisch meist neutralisirt und angesäuert; vieles vorher ungelöste wird hier noch gelöst, namentlich Salze, die nur durch Säuren gelöst werden können, z. B. kohlensaure und phosphorsaure Erden. 2) Die Umwandlung der gequollenen Stärke in Zucker wird durch den verschluckten Speichel fortgesetzt, so lange die Reaction nicht zu stark sauer ist. 3) Die Hauptveränderung im Magen betrifft die Eiweisskörper. Fibrin, Muskelsubstanz gelangen fast stets in unlöslicher Modification in den Magen, Albumin bald in löslicher, bald in unlöslicher (z. B. gekochtes Eiereiweiss). Casein ebenso (gelöst in der Milch, ungelöst im Käse); doch wird auch das gelöste Casein sofort nach dem Eintritt in den Magen durch den Magensaft gefällt (p. 93). Ausser dem löslichen Eiweiss hat es daher der Magen im Allgemeinen mit ungelösten Eiweisskörpern zu thun. Durch die Einwirkung der Säure quellen dieselben im Magen auf und werden dann durch das Pepsin des Magensaftes gelöst, und grossentheils (vgl. unten) in "Peptone" (p. 31) umgewandelt. Die löslichen und unlöslichen Eiweisskörper sind gleich gut verdaulich (FICK). Auch der Leim und die leimgebenden Gewebe (Bindegewebe, Knochenstroma) werden im Magen in eine ungelatinirbare Lösung verwandelt. - Ob die Aufenthaltszeit der Speisen im Magen genügt, diese Umwandelungen zu vollenden, ist nicht bekannt, jedenfalls gehen bei reichlichem Genuss Quantitäten von unveränderter Stärke und ungelösten Eiweisskörpern in den Darm über. - Die Masse bildet beim Uebergang in den Darm einen meist sauren Brei, den Chymus.

Die natürliche Verdauung im Magen hat man beobachtet: bei Menschen durch zufällig vorkommende Magenfisteln (ВЕЛЦМОНТ, ВІДДЕВ & SCHMIDT); bei Thieren durch künstlich angelegte Magenfisteln, oder durch Wiederherausziehen der Nahrung, die man, in ein an einem Faden befestigtes Tüllsäckchen gehüllt, hatte verschlucken lassen. Aus den Versuchen mit natürlichem oder künstlichem Magensaft (p. 94) bei Körpertemperatur (künstliche Verdauung) hat man mancherlei Rückschlüsse auf die Vorgänge im Magen gezogen.

Im Darm kommt der saure Chymus mit durchweg alkalischen Secreten in Berührung, nämlich mit Galle und Pancreassaft im Duodenum, mit Darmsaft im ganzen Darm. Dies muss zunächst eine Umwandlung der Reaction zur Folge haben, die in den äusseren (die Wand berührenden) Schichten früher zu Stande kommt, als in der Axe des Darmrohrs; in der Mitte des Dünndarms ist sie meist durchweg vollendet, die Reaction also alkalisch. Obwohl man die Eigenschaften jedes einzelnen der Verdauungssäfte einigermassen

Chemische Verdauungsvorgänge.

kennt (s. das vorige Cap.), so ist doch ihr Zusammenwirken in der natürlichen Mischung ziemlich unbekannt. Erwiesen ist, dass die Darmverdauung, soweit sie chemische Umwandlung des Inhalts, und nicht Resorption (s. oben) betrifft, auf die noch unveränderten Stärke- und ungelösten Eiweiss- und Leimtheile des Chymus im Sinne der vorhergegangenen Processe einwirkt, also jene in Zucker und diese in lösliche Peptone umwandelt; dass sie ferner die bis dahin noch ganz intacten Fette für die Resorption vorbereitet. --Die Zuckerbildung aus der Stärke ist (da der Mundspeichel im Darme nicht mehr mit Sicherheit nachzuweisen ist) dem pancreatischen Saft zuzuschreiben. Die Lösung der Eiweisskörper besorgt, da die Wirkung des in den Darm gelangten Magensaftes durch die Galle aufgehoben wird (p. 93), höchst wahrscheinlich der pancreatische Saft und der Darmsaft; die Peptone werden im Darm zum Theil weiter zersetzt (vgl. p. 101), wofür ihre Fällung durch die Galle (p. 99) wichtig scheint, weil sie sonst zu schnell resorbirt werden würden: unter Auftreten von Leucin und Tyrosin, - welche vermuthlich resorbirt werden, da sie sich im Koth nicht finden, - und andern Zersetzungsproducten, welche in den Koth übergehen. - Die Fette endlich werden durch den pancreatischen Saft (wahrscheinlich auch durch Galle und Darmsaft) in eine sehr feine Emulsion umgewandelt, eine Form, in der sie für die Resorption geeignet sind (p. 122); ein Theil derselben wird auch durch den Pancreassaft in Fettsäuren und Glycerin zerlegt, also in lösliche, resorbirbare Producte. Letztere Wirkung scheint erst da einzutreten, wo der Darminhalt alkalisch ist, also in der zweiten Hälfte des Dünndarms; die Fettsäuren verbinden sich hier mit den freien Alkalien zu Seifen. Die Seifen befördern ihrerseits die Emulgirung des übrigen Fettes (BRÜCKE).

Ausser diesen, für die Resorption höchst wichtigen Umsetzungen kommen noch andere vor, die für die Resorptionsfähigkeit, wie es scheint, ohne Belang sind. So wird genossener Rohrzucker (durch ein besonderes Ferment des Darmsaftes, PASCHUTIN) in Traubenzucker, der genossene sowohl wie der durch die Verdauung gebildete Traubenzucker, ebenso Milchzucker, vor der Resorption zum Theil in Milchsäure verwandelt (schon im Magen); auch Alkohol- und Buttersäure-Gährung kommt vor (wahrscheinlich nur unter abnormen Verhältnissen). Die Gase, welche bei diesen Gährungen geliefert werden, sind hauptsächlich Kohlensäure und Wasserstoff, zuweilen auch Kohlenwasserstoffe (Grubengas); die Darmgase bestehen daher hauptsächlich aus Kohlensäure, Stickstoff und Wasserstoff (vgl. Cap. IV.). Ferner sollen Salze mit organischen Säuren schon im Darm ganz oder theilweise in kohlensaure Salze umgewandelt werden (MAGAWLY). Auch die bei der Fettzersetzung gebildeten Fettsäuren gehen weitere Zersetzungen ein, und diese liefern theils flüchtige Producte, die zusammen mit dem übel-

Hermann, Physiologie. 5, Aufl.

Wesen der chemischen Verdauungsprocesse.

riechenden Product der Pancreasverdauung (p. 101) dem an sich fast geruchlosen Dünndarminhalt den eigenthümlichen Kothgeruch verleihen, theils Gase. Die gepaarten Gallensäuren werden im Darm vermuthlich durch den pancreatischen Saft hydrolytisch gespalten in Glycin resp. Taurin, und Cholalsäure, welche zum Theil in Anhydridform (Choloidinsäure, Dyslysin, p. 17) in den Koth übergeht.

In Folge der beschriebenen chemischen Umwandlungen und der nebenherlaufenden Resorption aller löslichen oder löslich gemachten Bestandtheile und der Fette ändert sich im Laufe des Dünndarms die Beschaffenheit des Inhalts bedeutend. Die im Anfang noch vorhandenen Stärke- und unlöslichen Eiweisstheile schwinden allmählich, statt ihrer treten Zucker, Milchsäure, Peptone, Leucin und Tyrosin auf; ebenso schwinden die zuerst beigemischten grösseren Fetttropfen und -Haufen, indem die Flüssigkeit zur Emulsion wird; die Farbe ist durch die beigemengten Gallenfarbstoffe gelb oder gelbbraun. Endlich schwinden die gelösten diffundirbaren Stoffe und die Fette ganz und gar aus der Masse, auch an Wasser wird sie immer ärmer, so dass sie am Ende des Dünndarms nur noch die Bestandtheile des Koths enthält; auch zeigt sie hier schon dessen Geruch, wegen der oben besprochenen Zersetzungen und Gährungen.

Im Dickdarm treten die Verdauungsprocesse (d. h. die Vorbereitungen für die Resorption) immer mehr zurück; neue Säfte, ausser dem auch hier gebildeten Darmsaft, kommen nicht hinzu; auch die Resorption beschränkt sich fast auf die Wasseraufsaugung, also Eindickung des Inhalts. Dieser, der Koth und die Gase, ist bereits besprochen.

Häufig zeigt der Koth eine saure Reaction, die von freien Fettsäuren herrührt. Die Menge des Kothes, im Verhältniss zum Genossenen, hängt natürlich von dem Gehalte des letzteren an unverdaulichen Bestandtheilen ab.

Die chemischen Verdauungsprocesse haben, wie sich aus der Vergleichung der Verdauungsproducte mit ihren Mutterkörpern ergibt, durchweg den Character hydrolytischer Spaltungen (HERMANN) (vgl. p. 19 f.). Diese Spaltungen scheinen nicht bloss die Resorption zu begünstigen, da die Spaltungsproducte meist diffundirbarer sind als die ursprünglichen Substanzen, sondern scheinen eine noch viel wichtigere Rolle für den Aufbau von Körperbestandtheilen aus dem Nahrungsmaterial, die sog. "Assimilation" zu spielen. (Vgl. hierüber Cap. V. und VI.)

II. MECHANIK DES VERDAUUNGSAPPARATS.

Die Mechanik des Verdauungsapparats umfasst: 1. die Aufnahme (Ergreifung) der Nahrung, die Beförderung derselben durch den Verdauungskanal, und die Entleerung des Kothes, — 2. die mechanische Vorbereitung für die Aufnahme in die Säfte, nämlich die Zerkleinerung der festen Nahrung, und die innige Mengung derselben mit den chemisch vorbereitenden Flüssigkeiten (Kauen, Einspeicheln etc.). Beide Vorgänge laufen nebeneinander her.

Das Ergreifen der Nahrung geschieht für flüssige Substanzen durch Eingiessen unter Beihülfe des Einsaugens (Trinken), für feste dadurch, dass kleine Stücke hinter Lippen und Zähne gebracht, oder durch die Schneidezähne von einem grösseren Stücke abgeschnitten ("abgebissen") werden.

Sofort nach dem Eingreifen beginnt bei festen Bissen die Zerkleinerung, das Kauen. Dasselbe beginnt mit einem Zerschneiden zwischen den messerförmigen Schneidezahnreihen, hierauf folgt eine Zermalmung zwischen den höckrigen Flächen der Back- (Mahl-) Zähne. Zum Zerschneiden dient eine abwechselnde An- und Abziehung des Unterkiefers senkrecht gegen den Oberkiefer, also eine Drehung des ersteren um eine durch seine beiden Gelenke gehende, horizontale Axe: die Anziehung geschieht durch den Masseter, Temporalis und Pterygoideus internus, die Abziehung durch die Schwere des Unterkiefers, durch den Digastricus, Mylo- und Geniohyoideus, bei befestigtem Zungenbein (Omo-, Sterno-, Thyreohyoideus, Sternothyreoideus). Zur Zermalmung gehört eine Verschiebung der Gelenkköpfe des Unterkiefers in ihren Gelenkgruben, welche den Unterkiefer gegen den Oberkiefer nach vorn, nach hinten und nach den Seiten verrückt; hierzu dienen besonders beide Pterygoidei. Das fortwährende Hineinschieben des Bissens, oder seiner Theile zwischen die Zahnreihen geschieht von aussen her durch die Wangen- und Lippenmuskeln, bes. den Buccinator, von innen her durch die Zunge. Letztere vermag auch weichere Bissen durch Andrücken und Reiben gegen den harten Gaumen zu zerquetschen. - Während des Kauens wird der Bissen innig mit den Flüssigkeiten der Mundhöhle (Speichel und Schleim) gemengt und so zu einem formbaren Brei gebracht.

Die Nerven, die zu diesen Acten dienen, sind: für die eigentlichen Kaumuskeln der Ram. maxillaris inferior trigemini (bes. sein oberer Zweig: Crotaphitico-buccinatorius), für die Zunge und einen Theil der Kieferabzieher der

Schlingen.

Hypoglossus. — Das Centrum für die coordinirten Kaubewegungen liegt in der Medulla oblongata (SCHRÖDER v. D. KOLK). — Bei vielen Thieren wird die Speichelwirkung, zum Theil auch Zerkleinerung der Speisen noch in gewissen Apparaten des Magens fortgesetzt, so in den drei ersten Mägen der Wiederkäuer (Pansen [rumen], Netzmagen [reticulum] und Buch [psalterium]; aus den beiden ersten Mägen kehrt der Brei in den Mund zurück, ehe er in den folgenden übergeht), im Kropf und im Muskelmagen vieler Vögel, im Kaumagen der Käfer, in dem gezahnten Magengerüst der Krebse u. s. w.

Die Fortbewegung der festen und flüssigen Speisen durch den Verdauungskanal geschieht durch Contraction der in seinen Wänden befindlichen ringförmig und longitudinal angeordneten Muskeln; dieselbe verläuft so, dass die dadurch bewirkte Verengerung oder Verschliessung des Lumens den Inhalt in der Richtung vom Munde zum After vor sich hertreibt. Man nennt diese vorrückende Contraction die peristaltische Bewegung und ihren ersten Theil (vom Munde zum Oesophagus), bei welchem willkürliche Muskeln wirken, das Schlingen. - Beim Schlingen lassen sich zwei Stadien unterscheiden: 1. Der auf dem vorderen Theil der (eine nach oben concave Rinne bildenden) Zunge befindliche Bissen wird durch eine nach hinten fortschreitende Anpressung derselben an den harten Gaumen vorgeschoben und gelangt hinter den vorderen Gaumenbogen. 2. a. Der vordere Gaumenbogen schliesst sich durch Contraction der Musc. palatoglossi und zugleich nähert sich die Zungenwurzel durch diese Contraction dem Gaumensegel. b. Auch die hinteren Gaumenbögen schliessen sich unter Zuhülfenahme der Uvula und das so geschlossene Gaumensegel wird nach hinten und oben gezogen, bis zum Anschluss an die hintere Rachenwand (Mm. pharyngopalatini, Levator und Circumflexus palati). c. Zungenbein und Kehlkopf werden einander genähert (Thyreohyoideus) und beide stark nach vorn und oben gezogen (Genio- und Mylohyoideus, Digastricus anterior; der Unterkiefer der durch die Kaumuskeln angezogen ist bildet den festen Halt); hierdurch wird die Zungenwurzel nach hinten umgebogen und sammt der Epiglottis auf den Kehlkopfeingang gedrückt. Durch a. ist der Rücktritt in die Mundhöhle, durch b. der Abweg in das Cavum pharyngonasale und in die Nase, durch c. der in den Kehlkopf abgesperrt, so dass der Bissen der fortschreitenden Schnürung durch die Constrictores pharyngis und den Stylo- und Salpingopharyngeus folgend keinen anderen Weg als in den Oesophagus hat. Beim Vorübergang an der schleimdrüsenreichen Gegend der Tonsillen wird er mit Schleim überzogen und dadurch seine Fortbewegung erleichtert.

Auch bei fehlender Epiglottis kann die Zungenwurzel den Kehlkopfeingang, wenn auch weniger sicher, schliessen. Die Tasche zwischen Zungenwurzel und Epiglottis ist beim Schlucken so vollkommen geschlossen, dass von verschluckten (gefärbten) Flüssigkeiten nichts eindringt.

Die Zunge wird in toto durch den Genioglossus nach unten und etwas nach vorn, durch den Hyoglossus nach unten und hinten, durch den Palatound Styloglossus nach oben und hinten gezogen. Alle diese Muskeln, sowie der Lingualis durchsetzen den Zungenkörper mit verticalen, queren und longitudinalen Fasern. Durch Combination ihrer Contractionen kann sie die mannigfaltigsten Formen annehmen: Abplattung durch Contraction der Verticalfasern, Verlängerung und Verdickung durch Contraction der Vertical- und Querfasern, Verkürzung durch Contraction der Längsfasern, nach oben concave Rinne durch Contraction der Quer- und der inneren Verticalfasern, Convexität nach oben durch Contraction der unteren Querfasern, Seitwärtsbiegung der Spitze durch einseitige Contraction der Längsfasern u. s. w.

Im Oesophagus wird der durch Schleim schlüpfrig gemachte Bissen theils durch die Schwere, hauptsächlich aber durch die peristaltische Bewegung, die in den unteren zwei Drittheilen nur von glatten Muskelfasern bewirkt wird, in den Magen hinabbefördert.

Im Magen verweilen grössere Speisemassen längere Zeit. Die Bewegungen, die hier vorgehen, sind noch nicht genau bekannt: jedenfalls müssen einerseits die Massen durcheinander geknetet werden, damit auch die im Innern befindlichen Theile mit der absondernden Wand in Berührung kommen, anderseits müssen die Speisen durch den Magen hindurch, und endlich durch den Pylorus hinaus befördert werden; letzteres bewirkt die im ganzen Digestionskanal vorhandene peristaltische Bewegung. Wie beide Bewegungsprincipien verwirklicht sind, und wie sie abwechseln, ist ziemlich unbekannt. Wahrscheinlich ist die Magenwandung gewöhnlich dicht um den Inhalt zusammengezogen; die Muskelverdickungen, die Cardia und Pylorus umschliessen (erstere neuerdings bestritten, GIANNUZZI), verschliessen für gewöhnlich die Oeffnungen. Der Pylorusverschluss ist am Anfang der Verdauung am festesten und lässt allmählich nach, so dass Flüssigkeiten, später der eigentliche Chymusbrei, und selbst feste Stücke in den Darm übertreten. Der ungefüllte Magen macht (ohne Muskelwirkung, durch mechanische Verhältnisse) eine Drehung um eine horizontale, durch Cardia und Pylorus gehende Axe, so dass die sonst nach unten gerichtete grosse Curvatur sich nach vorn wendet. Verschluckte oder im Mageninhalt entwickelte Gase treten meist durch die am höchsten gelegene Cardia wieder aus. - Die Magenbewegungen sollen während des Schlafes fehlen (Busch).

134 Fortbewegung des Darminhalts. Innervation der Darmbewegung.

Im Dünndarm ist die peristaltische Bewegung am ausgeprägtesten; sie ist mit einer mannigfachen Verlagerung der ganzen Darmschlingen (mit Ausnahme des kurz befestigten Duodenums) verbunden, und immer gegen den After gerichtet. Sie schiebt den ziemlich dünnflüssigen Inhalt, sowie die eingeschlossenen Gase allmählich bis zum Uebergang in's Coecum. Die Bewegung in entgegengesetzter Richtung ist ausserdem durch die klappenartig gestellten Schleimhautfalten gehindert. Aus dem Coecum, dessen specielle Bedeutung unbekannt ist, ist der Rückweg in den Dünndarm durch die Valvula Bauhini, eine klappenförmige Falte der Darmwand, verhütet.

Im Dickdarm geschieht die peristaltische Bewegung sehr langsam, so dass der Inhalt in den Ausbuchtungen des Colon (Haustra coli) längere Zeit sich aufhalten kann. Nachdem er hier (durch Verlust an flüssigen Bestandtheilen) sich in Koth umgeändert hat, gelangt er in das S romanum und dann in den Mastdarm.

Die Entleerung des Kothes aus dem Mastdarm geschieht in grösseren (meist 24stündigen) Intervallen. Ausser der peristaltischen Bewegung wirkt bei der Kothentleerung die Bauchpresse bedeutend mit (zwar nicht direct auf den im kleinen Becken liegenden Mastdarm, aber wahrscheinlich durch Nachschieben von Koth aus den höhergelegenen Theilen). Ueber den Mechanismus der Bauchpresse s. Cap. IV. Die Sphincteren des Mastdarms sind für gewöhnlich geschlossen; ihre Contraction, und wenn diese aufgehoben ist, ihre Elasticität, wird durch den Druck des herabgepressten Kothes überwunden; der Levator ani verhindert das Herauspressen des Mastdarms und befördert durch Verkürzung des Rohres in der Längsaxe das Freiwerden der in ihm befindlichen Kothsäule.

Auslösung der Bewegungen am Digestionsapparat.

Zum Zustandekommen der den Inhalt fortschiebenden Bewegungen im Verdauungskanal ist der Reiz des Inhalts nothwendig; sie scheinen also reflectorisch erregt zu werden. So tritt also z. B. die Schlingbewegung nur dann ein, — und dann auch immer, wenn ein fremder Körper hinter den weichen Gaumen gebracht wird, ebenso bei jeder Berührung der hinteren Gaumensegelfläche, der Epiglottis u. s. w. Man kann daher willkürlich nur dann "leer" schlucken, wenn man etwas Speichel hinter den weichen Gaumen bringt; dadurch ist das Leerschlucken nur wenige Male hintereinander möglich, nämlich so lange der Speichelvorrath im Munde reicht.

Innervation der Darmbewegungen.

Soweit quergestreifte Muskeln bei den Bewegungen im obern Theile des Verdauungskanals betheiligt sind, liegt ihr nervöses Centralorgan in der Medulla oblongata, und zwar beim Menschen in den Nebenoliven (SCHRÖDER V. D. KOLK); die von hier aus das Schlingen vermittelnden Nerven sind: Facialis für die Lippen, die Kaunerven (s. oben) für den Kieferschluss, Hypoglossus für die Zunge, und Plexus pharvngeus (gebildet vom Glossopharvngeus, Vagus-Accessorius und Sympathicus) für den Rachen. Der Tensor palati mollis und der Mylohvoideus werden ausserdem vom Trigeminus versorgt. Die sensiblen Fasern, welche reflectorisch das Schlingen einleiten, liegen in den Gaumenzweigen des Trigeminus (Schröder v. d. Kolk). -Die peristaltischen Bewegungen der übrigen Theile haben dagegen ihre Centralorgane wahrscheinlich in den Ganglien, die in den Wandungen der Organe theils entdeckt sind, theils vermuthet werden müssen (REMAR, MEISSNER, MANZ, BILLROTH, AUERBACH, KRAUSE); zugleich erklärt das Vorhandensein der Ganglien die Bewegungen ausgeschnittener Stücke; directe Reizung bringt eine örtliche Contraction hervor, die zuweilen, aber durchaus nicht constant, peristaltisch vorschreitet. - Doch werden alle hierhergehörigen Theile auch von Aussen her mit Nerven versorgt, namentlich vom Vagus (Plexus oesophageus, Rami gastrici) und Sympathicus (Splanchnici, Plexus coeliacus, mesenterici, hypogastrici); zum Theil sind diese gewiss bei den Bewegungen betheiligt: sicher nachgewiesen ist indess nur. dass durch Reizung des Vagus Contractionen des Oesophagus und des Magens bewirkt werden können, dass Durchschneidung der Vagi die Fortbewegung der Speisen aus dem Magen erheblich beeinträchtigt und dass Reizung des Splanchnicus die peristaltischen Bewegungen des Dünndarms zum Stillstand bringt (Pflüger): letzterer könnte demnach zu den "Hemmungsnerven" gezählt werden (Cap. X.). - Bei der Kothentleerung sind auch die Nerven der Exspirationsmuskeln, ferner die des Levator ani und anderer Dammmuskeln betheiligt.

Schlingbewegungen können auch durch Kehlkopfreizung erregt werden; auch bei Reizung des N. laryngeus superior treten sie auf (WALLER & PREVOST).

Beim Frosche werden die Schlund- und Magenbewegungen nach Durchschneidung der Vagi oder Zerstörung der Cerebrospinalorgane sehr lebhaft, so dass ein mittels der Vagi ausgeübter Hemmungseinfluss anzunehmen ist (Goltz).

Die Darmbewegungen hören bei Warmblütern auf wenn der Darm unter 19° C. abgekühlt wird; mit zunehmender Temperatur werden sie lebhafter; Unterbrechung der Blutzufuhr vernichtet sie (HORWATH). Die peristaltische Fortleitung derselben soll wie beim Ureter (p. 111) auf directer Muskelleitung be-

Innervation der Darmbewegungen. Erbrechen.

ruhen (ENGELMANN & VAN BRAKEL), wogegen aber ihre einseitige Richtung (s. oben) spricht.

Die Darmbewegungen werden durch Sättigung des Blutes mit Sauerstoff aufgehoben, bei Erstickung verstärkt und sind wahrscheinlich deshalb unmittelbar nach dem Tode sehr kräftig; der sie auslösende Reiz scheint also (ähnlich wie beim Athmungscentrum, Cap. IV.) durch die Venosität des Blutes in den Darmgefässen bedingt zu sein (S. MAYER & v. BASCH).

Der Splanchnicus ist zugleich der vasomotorische Nerv des Darms (p. 74); seine Reizung bewirkt also eine Verminderung des Blutzuflusses, welche möglicherweise die Hemmung der peristaltischen Bewegungen erklären könnte. Uebrigens bewirkt Leere der Darmgefässe, z. B. durch Compression der Aorta, verstärkte Darmbewegung, die durch Injection beliebiger Flüssigkeiten (O. NASSE) in die Gefässe wieder aufgehoben wird. Nach dem Tode (genauer zu der Zeit, wo die Gefässe gelähmt sind, also venöses Blut in die Capillaren einströmt, MAYER & v. BASCH) bewirken Splanchnicusreizung und ebenso Vagusreizung verstärkte Darmbewegung. Die Wirksamkeit der Vagusreizung wird bestritten, oder von Magencontractionen abgeleitet, welche Mageninhalt in den Darm treiben (VAN BRAAM HOUCKGEEST).

Das Vorkommen antiperistaltischer Bewegungen im Digestionskanal ist, obwohl häufig behauptet, noch nicht nachgewiesen. Das Erbrechen, d. h. die Entleerung des Mageninhalts nach oben, beruht nicht auf einer activen Contraction des Magens, sondern nur auf der Compression desselben durch Contraction des Zwerchfells und der Bauchmuskeln (MAGENDIE). Dies wird dadurch bewiesen, dass ein Erbrechen auch noch möglich ist, wenn man den Magen durch eine Blase ersetzt (MAGENDIE), (wobei aber die Cardia und das unterste Oesophagusende mit entfernt werden müssen, FANTINI, SCHIFF, vgl. unten) und dass das Erbrechen nicht mehr stattfindet nach Vergiftung der Thiere mit einer Dosis Curare welche die willkürlichen Muskeln lähmt, die Nerven des Magens jedoch intact lässt (GIANNUZZI). Dagegen beobachtet man auch am blossgelegten Magen während der jetzt erfolglosen Brechversuche active Magenbewegungen, die namentlich in einer activen Oeffnung der Cardia bestehen (SCHIFF); ohne diese Oeffnung ist das Erbrechen unmöglich. Das Centralorgan für den Brechact ist dem Respirationscentrum nahe verwandt; Brechmittel verhindern das Zustandekommen der Apnoe (Cap. IV.), und ebenso verhindert starke künstliche Respiration das Zustandekommen des Brechacts; das Brechmittel scheint also das Respirationscentrum stark zu erregen (GRIMM); diese Erregung ist auch bei Injection des Brechmittels in das Blut eine Wirkung centripetaler Nerven (KLEI-MANN & SIMONOWITSCH).

Die Abführmittel wirken nach den Einen (MOREAU) durch gesteigerte Secretion von Flüssigkeiten in den Darm, nach Andern (THIRY, RADZIEJEWSKI) durch beschleunigte peristaltische Bewegung. Die salinischen Abführmittel, deren Wirksamkeit von ihrem endosmotischen Aequivalent abhängt (BUCHHEIM), und welche umgekehrt Verstopfung machen wenn sie in die Gefässe injicirt werden (AUBERT), wirken hauptsächlich durch Retention von Wasser im Darm (BUCHHEIM).

136

Viertes Capitel.

Gasförmige Einnahmen und Ausgaben des Blutes. Athmung.

Unter Athmung (Respiration) versteht man denjenigen Theil des Stoffwechsels, bei welchem gasartige Stoffe betheiligt sind, also im Wesentlichen die Zufuhr des Sauerstoffs zu den Körperbestandtheilen und die Entfernung der gasigen Oxydationsproducte, bes. der Kohlensäure. Die Vermittelung dieser Processe geschieht, wie überhaupt die Vermittelung des Stoffverkehrs mit der Aussenwelt, durch das Blut, so dass dieses einerseits mit dem umgebenden Medium, in welchem die Thiere leben (atmosphärische Luft oder Wasser), in Verkehr tritt, um ihm Sauerstoff zu entnehmen und Kohlensäure zu übergeben ("äussere Athmung"), - andererseits mit den Körpergeweben, um ihnen Sauerstoff zu übergeben und Kohlensäure zu entziehen ("innere Athmung"). Die äussere Athmung, auch kurzweg Athmung genannt, geschieht überall, wo das Blut mit dem Athmungsmedium in eine für den Gasverkehr hinreichend nahe Berührung kommt, der Hauptsache nach aber in den speciell dazu bestimmten "Athmungsorganen".

Die atmosphärische Luft ist eine Mischung von etwa $\frac{1}{5}$ (0,208) Vol. Sauerstoff und $\frac{4}{5}$ (0,792) Vol. Stickstoff, einer sehr geringen schwankenden Menge (0,0003-0,0005 Vol.) Kohlensäure und einer ebenfalls schwankenden Menge Wasserdampf (deren Maximum von der Temperatur abhängt). Diese Mischung steht unter einem Druck von etwa 760 mm Hg (für Meereshöhe). – Das zur Athmung vieler Organismen dienende Wasser enthält ausser etwas Stickstoff und Kohlensäure bei 15° C. und 760 mm Barometerstand höchstens $\frac{1}{12}$ (0,084) seines Volums an Sauerstoff in Lösung. Die in Wasser lebenden Thiere haben dem entsprechend ein verhältnissmässig geringes Sauerstoff bedürfniss.

I. CHEMISMUS DER ATHMUNG.

Acussere Athmung.

Die äussere Athmung, der Verkehr der Gase des Blutes mit denen der Luft, geschieht an allen Stellen, wo Blutcapillaren mit Luftschichten in naher Berührung sind. Eine solche findet hauptsächlich statt auf der grossen Oberfläche der "Athmungsorgane", von welchen unten die Rede sein wird, ausserdem aber auf der Haut und in dem stets lufthaltigen Verdauungstractus, doch in beiden mit weit geringerer Energie. Indessen ist die Hautathmung ("Perspiration") bei vielen Thieren, z. B. Fröschen, von solcher Bedeutung, dass sie für sich das allerdings geringe Sauerstoffbedürfniss dieser Thiere längere Zeit (nach Ausschneidung der Lungen) unterhalten kann. Die Darmathmung ist wegen des geringen Gasvorraths beim Menschen ohne Bedeutung, doch wird aller im Darme vorhandene Sauerstoff verzehrt und Kohlensäure dafür ausgeschieden, so dass sich im Dickdarm hauptsächlich Kohlensäure und Stickstoff finden (p. 129).

Bei manchen Thieren (z. B. bei einem Luft schluckenden Fisch: Cobitis fossilis, Schlammpeizger) scheint die Darmathmung Bedeutung zu haben. - Der Hautathmung (über die Grösse derselben s. unten p. 144) hat man früher auch für Warmblüter grosse Bedeutung beigelegt, weil die Aufhebung derselben, durch Ueberfirnissung der geschorenen Haut, unter starker Temperaturabnahme bald den Tod herbeiführe (BERNARD). Doch tritt nach neueren Untersuchungen (ROSENTHAL & LASCHKEWITSCH) hierbei immer eine Gefässerweiterung an den überfirnissten Stellen ein, welche, wenn sie die ganze Körperoberfläche betrifft, direct einen ungemeinen Wärmeverlust nach sich zieht (s. Cap. VII.), welcher tödtlich wirkt. Die Gefässlähmung soll nach andern allgemein, auch in den inneren Organen entwickelt sein, deren Erkrankung (Niere, Rückenmark) an den Symptomen Antheil hat (FEINBERG, SOCOLOFF). Die schädlichen Wirkungen der Ueberfirnissung leiteten ferner Einige von einem im Körper zurückgehaltenen schädlichen Auswurfsstoff ("Perspirabile retentum") ab; derselbe scheint in einer flüchtigen stickstoffhaltigen Verbindung zu bestehen; an den freigelassenen Stellen lässt sich die Ausscheidung eines flüchtigen Alkali (Ammoniak?) durch Hämatoxylinpapier nachweisen; ferner zeigt sich an den längere Zeit überzogen gehaltenen Hautstellen ein entzündliches Oedem, in dessen Serum sich Krystalle von phosphorsaurer Ammoniak - Magnesia finden (EDENHUIZEN); möglicherweise ist die zurückgehaltene Substanz Harnstoff, der sich unter Ammoniakentwicklung zersetzt (LANG).

Die äussere Athmung besteht in einem Uebergang von Sauerstoff aus der Luft in das Blut, von Kohlensäure, Wasserdampf und Wärme aus dem Blute in die Luft; es kehrt also die eingeathmete Luft sauerstoffärmer, aber wärmer, kohlensäure- und wasserreicher

138

Aeussere Athmung.

(meist mit Wasserdampf gesättigt) aus dem Körper zurück. Dem entsprechend ist das aus der Lunge zurückkehrende (Lungenvenen-) Blut sauerstoffreicher, kühler (?), kohlensäure- und wasserärmer, als das Lungenarterienblut; es ist demnach heller geröthet (arteriell); doch kommt nur ein kleiner Theil des Wärme- und Wasserverlustes auf Rechnung des Lungenblutes, da alle Theile des Athmungskanals an die eingeathmete Luft Wärme und Wasserdampf abgeben.

Auch eine spurweise Ammoniak-Ausscheidung findet bei der Athmung statt (THIEY), und zwar nur bei der Lungenathmung (SCHENK); die bei Ueberfirnissung in der Haut vorkommenden Ammoniakverbindungen (s. oben) wären hiernach abnorme Producte.

Trotz der Wärmeabgabe in den Lungen ist das Blut im linken Herzen nach neueren Beobachtungen (Colin, Jacobson & BERNHARDT) nicht kälter, sondern wärmer als das im rechten; möglicherweise weil in den Lungen durch die O-Bindung eine Wärmeproduction stattfindet (Colin). Von Anderen (HEIDENHAIN & KÖRNER) wird diese Angabe wieder bestritten. (Näheres s. Cap. VII.)

Die Ursache der äusseren Athmung ist hauptsächlich oder ausschliesslich (s. unten) die Differenz der Gasspannungen (p. 43) im Blute und in der Atmosphäre, und die Athmung besteht in deren Ausgleichung. Die Sauerstoffspannung ist in dem zur Athmung gelangenden (venösen) Blute kleiner als in der Atmosphäre, die Kohlensäurespannung in ersterem grösser als in letzterer. Dies gilt auch dann noch wenn, wie bei der Lungenathmung, statt der Atmosphäre die viel sauerstoffärmere und kohlensäurereichere Alveolenluft die eine Seite bildet. Aus einem abgesperrten Luftraum kann das Thier wegen der sehr niedrigen Sauerstoffspannung seines Blutes den Sauerstoff fast bis auf die Neige aufzehren, während die Kohlensäureausgabe schon früher an der Ausgleichung der Spannungen eine Grenze findet (WILH. MÜLLER).

Zur Bestimmung der Gasspannungen einer Blutart hat man nach p. 43 dieselbe nur mit einem abgeschlossenen Gasquantum zu schütteln; die Gasspannungen des letzteren nach dem Schütteln (ermittelt aus der Zusammensetzung und dem Gesammtdruck) sind dann ein directes Maass für die Gasspannungen im Blute (LUDWIG). Der Versuch misst strenggenommen nur die Spannungen des Blutes am Ende des Schüttelns; er ist also um so richtiger je weniger das Blut durch das Schütteln seine Gasspannung verändert, d. h. je grösser die verwendete Blutportion, je kleiner die verwendete Gasportion, endlich je näher diese schon von vornherein der Gasspannung des Blutes entspricht. Am richtigsten ist es das Blut gleichzeitig mit zwei Gasportionen zu schütteln, deren eine etwas höhere, deren andere etwas niedrigere Spannung besitzt als das zu untersuchende Blut, und aus beiden gefundenen Spannungen das Mittel zu nehmen ("Aërotonometer", PFLÜGER & STRASSBURG).

Acussere Athmung.

Die Sauerstoffspannung des Blutes ist wegen der chemischen Bindekraft des Hämoglobins sehr niedrig, und wird (vgl. p. 45) durch Erwärmen grösser (WORM MÜLLER). Im arteriellen Hundeblute beträgt sie im Mittel 22 mm Hg (d. h. sie entspricht der O-Spannung einer Atmosphäre von 2,9 pCt. Sauerstoff), im venösen 29,6 mm (3,9 pCt.); die Kohlensäurespannung beträgt im arteriellen Blut im Mittel 21 mm (2,8 pCt.), im venösen 41 mm (5,4 pCt.) (STRASSBURG). In der äusseren Atmosphäre beträgt die Sauerstoffspannung 158 mm (20,8 pCt.), die Kohlensäurespannung 0,38 mm (0,05 pCt.).

Wegen der viel höheren Kohlensäurespannung der Alveolenluft musste es zweifelhaft erscheinen ob nicht diese die Kohlensäurespannung des gewöhnlichen venösen Blutes übersteige; man müsste dann in der Lunge Einflüsse annehmen welche kohlensäureaustreibend wirken, d. h. die Kohlensäurespannung des eintretenden Blutes steigern. Solche Einflüsse sind theils in der Sauerstoffaufnahme, theils in Wirkungen des Lungenparenchyms selbst vermuthet worden. Die Entscheidung wird durch directe Bestimmung der Kohlensäurespannung im Lungencapillarblut gegeben, indem man die in den Lungen zurückgehaltene Athmungsluft gleichsam als Schüttelgas benutzt und nachher analysirt (BECHER); da aber ein längeres Anhalten des Athems auf die Gasspannungen im Blute verändernd einwirkt, und die entleerte Luft nicht in allen ihren Theilen für die Ausgleichung zur Geltung gekommen ist, so ist es besser, bei einem Thiere nur einen einzelnen Lungenabschnitt für den Versuch abzusperren (Lungencatheter. PFLÜGER & WOLFFBERG). So ergiebt sich die Kohlensäurespannung des Lungencapillarbluts beim Hunde im Mittel etwa gleich der des venösen Blutes im Herzen (WOLFFBERG), so dass also die einfache Spannungsausgleichung zwischen äussere Athmung als venösem Blute und Luft betrachtet werden kann. Die Diffusionsgeschwindigkeit in der Lunge ist so gross dass auch ohne Absperrung, bei ruhiger Athmung, die Exspirationsluft des Hundes eine Kohlensäurespannung hat die der des venösen Blutes nahe steht (im Mittel 2.8 pCt. CO₂ und 16,6 pCt. O₂, WOLFFBERG).

Trotzdem trägt möglicherweise die gleichzeitige Sauerstoffaufnahme in den Lungen zur Kohlensäureaustreibung etwas bei, freilich in noch nicht bestimmbarem Grade. Man findet nämlich die Kohlensäurespannung des Blutes grösser wenn das Schüttelgas (p. 43) Sauerstoff enthält als wenn es sauerstofffrei oder der Ausgleichungsraum leer ist (LUDWIG & HOLMGREN; WOLFFBERG). Der

Aeussere Athmung

Sauerstoff erhöht also die Kohlensäurespannung, wirkt chemisch CO., austreibend. Ferner findet man (Ludwig & Schöffer, Sczelkow, PREYER) dass das arterielle Blut nicht bloss an auspumpbarer, sondern auch an fest, salzartig gebundener Kohlensäure ärmer ist als das venöse, ferner dass im Serum die Kohlensäurespannung viel kleiner ist als im Gesammtblut, und durch Zusatz von Blut erhöht wird, nicht aber durch blossen Sauerstoffzutritt. Hiernach würden die sauerstoffhaltigen Blutkörperchen eine chemische Wirkung äussern, durch welche Kohlensäure, besonders des Serums, aus festen Salzverbindungen frei gemacht und dadurch auspumpbar wird. - Dagegen sind die Versuche welche eine Betheiligung des Lungenparenchyms an der Kohlensäureaustreibung beweisen sollten (Blut sollte wenn man es durch die Gefässe einer mit Stickstoff gefüllten Lunge leitet, mehr Kohlensäure an deren Gasraum abgeben als an einen einfachen mit Stickstoff gefüllten Gasraum, J. J. MÜLLER) neuerdings angefochten worden (PFLüger & Wolffberg).

Die genannte Wirkung der O-haltigen Blutkörperchen, welche anscheinend nur auf der Bildung einer Säure beruhen kann, ist auf verschiedene Weise denkbar: 1) Das Sauerstoff-Hämoglobin, welches sauer reagirt (PREYER), könnte selbst CO2-austreibend wirken (PREVER); hierfür spricht unter anderm, dass Sauerstoffzutritt zu Blut unter denselben Bedingungen die Krystallisation des Hämoglobins befördert, wie die Abstumpfung der alkalischen Reaction des Blutes durch Säurezusatz (KÜHNE). 2) Der Sauerstoff könnte eine Zersetzung des Hämoglobins bewirken, durch welche eine Säure entsteht (bei gewissen Zersetzungen des Hämoglobins entstehen flüchtige Fettsäuren, HOPPE-SEYLER). Bei Entgasung von Blut unter starker Eindunstung wird nämlich ebenfalls die fest gebundene Kohlensäure aus dem Blute, ja sogar aus zugesetzten kohlensauren Salzen, ausgetrieben (PFLÜGER); es ist denkbar, dass hierbei Säuren durch Zersetzung des Hämoglobins entstehen. 3) Die Säure könnte aus anderen Bestandtheilen der Blutkörperchen, z. B. aus Lecithin (p. 41), entstehen. 4) Wenn die Kohlensäure wesentlich in den Blutkörperchen, vielleicht von einer Hämoglobinverbindung, gebunden ist (vgl. oben p. 46), so könnte der O möglicherweise die CO2 direct aus der Hämoglobinverbindung verdrängen. - Auch im Lungengewebe, dessen Zuthun nach dem oben angegebenen Versuche vermuthet wurde, kommt eine Säure vor, der man die CO2-Austreibung zugeschrieben hat, nämlich Taurin (p. 26) (CLOETTA; früher war dasselbe als "Lungensäure" ven VERDEIL beschrieben worden). - Da gewisse Eiweisskörper (Globulin) aus Alkalicarbonaten unter Beihülfe des Vacuums CO2 entwickeln, so hat man auch diesen Vorgang für den respiratorischen Process zu verwerthen gesucht (HOPPE - SEYLER & SERTOLI); doch stimmt er nicht zu der Erfahrung, dass Sauerstoff stärker CO2-austreibend wirkt als das Vacuum.

Da die äussere Athmung zunächst eine Spannungsausgleichung zwischen Lungenblut und Alveolenluft ist, so wird das Blut in der Lunge um so sauerstoffreicher und kohlensäureärmer, je mehr die

Innere Athmung.

Alveolenluft in ihrer Zusammensetzung der atmosphärischen Luft sich nähert, was wieder von der Energie der Lüftung, also von der Frequenz und Tiefe der Athembewegungen abhängt. Letztere beeinflusst also bedeutend den Gasgehalt des Blutes, und dadurch indirect auch etwas den Gaswechsel des Gesammtorganismus. Hieraus ergiebt sich ferner dass nur in der Vergleichung der in längeren Zeiträumen in- und exspirirten Luft der Gaswechsel des Körpers einen richtigen Ausdruck findet.

Innere Athmung.

Die Frage nach dem Orte der inneren Athmung fällt zusammen mit der nach dem Sitze der thierischen Oxydationsprocesse. Die alte Ansicht (LAVOISIER) dass die Kohlensäure in der Lunge selbst entstehe ist durch den Kohlensäurereichthum des in der Lunge anlangenden venösen Blutes widerlegt. Diese Beschaffenheit lässt sich bis zu den Capillaren zurückverfolgen; entweder in ihnen, oder jenseits derselben in den Geweben muss die Sauerstoffverzehrung und Kohlensäurebildung erfolgen. Das erstere ist an sich unwahrscheinlich weil die Oxydationsprocesse so innig an die Functionen der Organe geknüpft sind dass sie auch in ihnen ablaufen müssen. Am besten würde die Frage zu entscheiden sein wenn sich die Gasspannungen der Gewebe ermitteln und mit denen des Blutes vergleichen liessen. Dies ist im Allgemeinen nicht direct möglich, aber in Gasräumen und Flüssigkeiten welche allseitig von unverletzten Geweben umgeben sind (Gas abgebundener Darmschlingen, Gallenund Harnblaseninhalt) findet man die Kohlensäurespannung bedeutend grösser als selbst im venösen Blute, woraus ein Kohlensäureübergang aus den Geweben in das Blut hervorgeht; wor aber die Kohlensäure entsteht, dahin muss auch der Sauerstoff wandern (PFLÜGER & STRASSBURG).

Eine andere Methode, indirect die Gasspannungen der Gewebe kennen zu lernen, wäre die Untersuchung der Gasspannungen der Lymphe (Ludwig & HAMMARSTEN). Hier findet man die Kohlensäurespannung kleiner als im venösen Blut, wenn auch grösser als im arteriellen. Hieraus aber darf nicht geschlossen werden, dass die Kohlensäure nicht in den Geweben entsteht, denn die untersuchte Lymphe hat schon im Bindegewebe und in den Lymphdrüsen Gelegenheit gehabt, ihre Spannungen mit arteriellem Blute auszutauschen. Ein anderer, aber für sich nicht ausreichender Grund, der für die Gefässe als Sitz der Oxydationsprocesse zu sprechen schien, ist das Vorkommen leicht oxydirbarer (reducirender) Substanzen im Blute (p. 50), besonders im Erstickungsblute (A. SCHMIDT) Die Quelle dieser Substanzen (welche nicht im Plasma sondern in den Körperchen enthalten sind, AfoNASSIEFF) kann im Blute selber liegen; die Lymphe enthält dieselben nicht (HAMMARSTEN). — Die Sauerstoffspannung vieler Gewebe scheint geradezu Null zu sein, so dass sie also mit Begierde dem Blute Sauerstoff entziehen müssen. Der Muskel enthält z. B. keinen auspumpbaren Sauerstoff (HERMANN; vgl. Cap. VIII.)

Die Energie der inneren Athmung ist natürlich für die verschiedenen Organe verschieden und wechselt in jedem einzelnen mit der Zeit je nach der Energie seiner Oxydationsprocesse. Einen Maassstab für jene Energie giebt die Vergleichung des Arterien- und Venenblutes des Organs in Bezug auf Gasgehalt und Farbe. In den Nierenvenen ist das Blut fast arteriell gefärbt, in den Muskelvenen sehr dunkel; während der Thätigkeit erscheint es zuweilen heller, wahrscheinlich weil der stärkere Gaswechsel übercompensirt wird durch die Beschleunigung des Blutstroms (Cap. VIII.).

Die Natur der Oxydationsprocesse in den Geweben, welche strenggenommen nicht in das Gebiet der Athmungslehre gehört, muss hier doch kurz berührt werden. In dem Organ, in welchem sie am meisten studirt ist, nämlich im Muskel, geschieht die Oxydation nicht unmittelbar, sondern der Process der Sauerstoffaufnahme und der der Kohlensäurebildung sind zeitlich nicht an einander gebunden. Näheres hierüber s. im 8. Cap. Deshalb sind auch die Theorien, welche die thierischen Oxydationen an Ozonisirung des Sauerstoffs oder Bildung von Wasserstoffsuperoxyd binden, unwahrscheinlich.

Grössen des Gaswechsels.

Die Mengenverhältnisse des Gaswechsels sind, abgesehen von den Schwankungen welche durch die Athembewegungen bedingt sind (s. oben), hauptsächlich von dem Verbrauche des Sauerstoffs im Organismus abhängig (über diesen Verbrauch s. den 2. Absch.). Denn es wird um so mehr Kohlensäure abgegeben, je mehr das Blut durch die Oxydationsprocesse im Körper mit diesem Gase beladen ist. Unter den Momenten, welche einzelne oder alle Oxydationsprocesse im Körper steigern (2. Abschnitt), sind besonders hervorzuheben: Muskelarbeit, niedere Temperatur der Umgebung (welche den Wärmebildungsprocess im Körper, zur Erhaltung der normalen Temperatur, erhöhen soll, vgl. Cap. VII.), der Verdauungsprocess (der mit Steigerung vieler Secretionen verbunden ist), grössere Energie der ganzen Lebensthätigkeit (so beim männlichen Geschlecht, bei kräftigen Constitutionen, im mittleren Lebensalter, u. s. w.; bei kaltblütigen Thieren auch durch gesteigerte Temperatur). Alle diese Momente erhöhen die Kohlensäureabgabe, da bei allen Oxydationen Kohlenstoff oxydirt wird; am meisten erhöhen diejenigen Processe die Kohlensäureabgabe, welche mit Verbrennung kohlenstoffreicher Stoffe verbunden sind, und ebenso der Genuss kohlen-

Quantitative Bestimmungen des Gaswechsels.

stoffreicher Nahrung (Kohlenhydrate), welche zum Theil direct verbrannt zu werden scheint. Die Sauerstoffaufnahme braucht nicht nothwendig der Kohlensäureausgabe parallel zu gehen, selbst wenn alle gebildete Kohlensäure sofort zur Ausscheidung kommt; da einerseits eine Bildung von Kohlensäure ohne Sauerstoffverbrauch (durch Spaltungsprocesse) denkbar ist, andererseits aufgenommener Sauerstoff in irgend einer Art aufgespeichert werden kann, ohne sogleich verbraucht zu werden. Näheres über diese Verhältnisse bei den Muskeln (Cap. VIII.), wo sie am besten bekannt sind.

Mittelzahlen für die Mengen des Gaswechsels haben dem entsprechend nur geringen Werth; ein Erwachsener verbraucht in 24 Stunden etwa 746 grm. (520 Liter) Sauerstoff und exspirirt etwa 867 grm. (443 Liter) Kohlensäure (VIERORDT). Würde sämmtlicher Sauerstoff nur zur Oxydation von Kohle verwandt und alle gebildete CO₂ exspirirt, so müsste das Volum derselben dem des Sauerstoffs in grösseren Zeiträumen gleich sein, denn 1 Aequivalent CO₂ und 1 Aequivalent O₂ haben gleiches Volum. Da jedoch auch andere Oxydationsproducte entstehen (H₂O etc.), und ein Theil der CO₂ durch Harn etc. ausgeschieden wird, so muss die gebildete CO₂ weniger Raum einnehmen, als der verbrauchte O; daher entsteht beim Athmen im abgeschlossenen Raum stets eine Luftverdünnung (die sich jedoch auch dadurch schon erklären lässt, dass die Sanerstoffaufnahme bis zur Erschöpfung des Vorraths fortgesetzt wird; während die Kohlensäureausscheidung bald nachlässt und zuletzt aufhört; vgl. p. 139). — Durch Arbeit kann die stündliche Sauerstoffaufnahme von 31 grm. (s. oben) auf das fünffache (156 grm., Hirk) gesteigert werden.

Der Hautgaswechsel ist gegenüber dem der Lungen beim Menschen wie schon p. 138 erwähnt, fast verschwindend klein; die CO_2 -Ausscheidung beträgt 2,3-6,3, im Mittel 3,87 grm. in 24 Stunden; sie steigt mit der Temperatur (AUBERT).

Zur qualitativen Vergleichung der in- und exspirirten Luft genügt die tägliche Erfahrung, dass die ausgehauchte Luft wärmer und feuchter ist, als die gewöhnliche Atmosphäre, und das einfache Experiment, durch eine Röhre in Kalk- oder Barytwasser auszuathmen, wobei eine Trübung von kohlensaurem Kalk oder Baryt entsteht. - Zur quantitativen Vergleichung genügt, da die Zusammensetzung der eingeathmeten Luft bekannt ist (den Kohlensäure- und Wassergehalt entfernt man, indem man die Inspirationsluft vorher durch Kali und Schwefelsäure streichen lässt), die Untersuchung der ausgeathmeten; man exspirirt dazu gewöhnlich in Quecksilbergasometer (ALLEN & PEPYS). Um indess den Gesammtgaswechsel für längere Zeit zu bestimmen, kann man die exspirirte Luft durch Apparate streichen lassen, welche die gebildete Kohlensäure und das Wasser auffangen, so dass beides gewogen werden kann. Hierzu sind Aspirationsvorrichtungen nöthig, z. B. luftleere Räume (ANDRAL & GAVARRET), ein sich entleerendes Wassergefäss (SCHARLING), oder eine Saugpumpe (PETTENKOFER). Will man den Versuch im Grossen anstellen (wie bei dem PETTENKOFER'schen Apparat, dessen Athmungsraum bequem einem Menschen längere Zeit zum Aufenthalt dienen kann), so genügt es, nur einen gemessenen Bruchtheil der ein- und austretenden Luft durch die Absorptionsflüssigkeiten streichen zu lassen, voraus-

Gaswechsel. Athmungsorgane.

gesetzt, dass die Gesammtmengen (durch Gasuhren) beständig gemessen werden. Nach einer anderen Methode wird in einem völlig abgeschlossenen Raume geathmet, der nur mit einem Sauerstoffbehälter in Verbindung steht; die gebildete Kohlensäure wird durch einen in Kalilange gefüllten], sehr vollkommenen Absorptionsapparat fortwährend gebunden, und die dadurch entstehende Verminderung des Luftdrucks saugt fortwährend Sauerstoff ein; am Ende des Versuchs findet man dann die producirte Kohlensäure in der Kalilauge, den schon vorher vorhanden gewesenen Stickstoff im Raume; den verbrauchten Sauerstoff findet man aus der Abnahme des zu Anfang im Raume und im Sauerstoffbehälter vorhanden gewesenen Vorraths (REGNAULT & REISET).*) Aehnliche Apparate, aber einfacher, sind neuerdings (Ludwig & Kowalewski, Ludwig & Sanders-Ezn) construirt worden. - Will man den Gaswechsel der gesammten äusseren Athmung bestimmen, so muss der Athmungsraum den ganzen Körper aufnehmen; sucht man nur den der Hautathmung, so athmet Mund und Nase durch ein besonderes nach Aussen geführtes Rohr; sucht man endlich nur den der Lungen, so besteht der Athmungsraum nur aus einer vor Mund und Nase gebundenen, luftdicht anschliessenden Maske.

II. MECHANIK DER ATHMUNG.

Bei den niedersten Organismen mit sehr geringer Körpermasse genügt die blosse Umspülung der Oberfläche durch das Respirationsmedium (Wasser), um den Gasverkehr durch Diffusion zu unterhalten. Bei entwickelteren Thieren, von grösserer Masse muss eine grössere Oberfläche für den Verkehr zwischen den Säften und dem Medium vorhanden sein. Bei den Thieren mit unentwickeltem oder fehlendem Blutgefässsystem muss das Respirationsmedium in den Körper eingeführt und darin verbreitet werden, um gleichsam überall die Säfte aufzusuchen; bei entwickeltem Blutgefässsystem dagegen kann die Blutmasse in ein Organ mit grosser Oberfläche geleitet werden, wo sie das Respirationsmedium antrifft und auf grossen Flächen mit ihm in Diffusionsverkehr treten kann. Ersteres geschieht durch verzweigte Röhrensysteme, welche den ganzen Körper durchziehen, nämlich die Wassergefässsysteme der Strahlthiere und Würmer, und die Luftröhren- oder Tracheensysteme der Arthropoden; - letzteres: bei Wasserathmung durch eine vom Wasser umstülpte Ausstülpung der Körperoberfläche, die Kiemen der Mollusken, Krebse, Fische und Batrachierlarven, - bei Luftathmung durch ein Einstülpungs-System, die Lungen der Amphibien, Vögel, Säugethiere und des Menschen. Als ein besonderes Athmungsmedium für den Foetus der Säugethiere und des Menschen ist endlich noch das sauerstoffhaltige mütterliche Blut zu betrachten. Das Begegnen des Blutes mit dem Athmungsmedium, d. h. beider Blutarten, geschieht in der Placenta (foetalis und uterina), in welcher durch Capillarwände der Gasverkehr vermittelt wird (Cap. XII.).

Hermann, Physiologie. 5. Aufl.

^{*)} Bei diesen Versuchen zeigte sich eine Zunahme des Stickstoffgehaltes im Athmungsraume, welche man entweder durch eine respiratorische N-Entleerung oder durch einen geringen N-Gehalt des Sauerstoffs erklären kann. Erstere scheint zuweilen vorzukommen, zuweilen auch umgekehrt eine respiratorische Absorption von N (Ludwig & Scheremetjewski); doch bedarf dieser Gegenstand noch weiterer Untersuchung. Vgl. auch Cap. VI.

Thorax und Lungen.

Die menschlichen Athmungsorgane,*) die Lungen, sind zwei elastische Säcke, die ein verzweigtes Röhrensystem mit endständigen Bläschen (Alveolen) enthalten; die Oberfläche jeder Alveole ist noch dadurch vergrössert, dass ihre Wände durch hervorspringende Leistchen vielfach ausgebuchtet sind. Der Hohlraum der Lunge communicirt durch Luftröhre, Kehlkopf, Rachen und Nasen- oder Mundhöhle mit der äusseren Luft.

Die sich selbst überlassenen Lungen enthalten keine Luft: sie sind "atelectatisch" wie die Lunge des Foetus vor der ersten Athmung, d. h. die Wände ihrer Röhren und Alveolen werden durch ihre Elasticität aneinandergedrückt. Im Körper sind aber die Lungen in einen starren Behälter von grossem Volumen (den Thorax) so eingefügt, dass zwischen ihrer äusseren Oberfläche und der inneren des Behälters (genauer zwischen dem Pleuraüberzug der Lungen und dem des Thorax) keine Luft sich befindet und auch keine hineindringen kann. Der Druck der in die Lungen eindringenden atmosphärischen Luft muss sie daher ihrer Elasticität zuwider, über ihr natürliches Volum entfalten, so dass sie dem Thorax überall unmittelbar anliegen, sie sind deshalb während des Lebens stets mit · Luft gefüllt. Sowie indess durch eine Oeffnung Luft in den Raum zwischen Lungen und Thoraxwand eindringen kann, fallen die Lungen durch ihre Elasticität zu ihrem natürlichen (atelectatischen) Volum zusammen ("Pneumothorax").

Zur Ausfüllung des Thoraxraumes müssen nicht nur die Lungen, sondern auch Herz und Gefässe beitragen. Auf die Innenwand aller dieser Organe wirkt der atmosphärische Luftdruck, - auf die Lungen direct (durch Communication mit Trachea u. s. w.), auf das Herz indirect, da der ganze Körper, mithin sämmtliche ausserhalb des Thorax gelegenen Blutgefässe unter dem Luftdruck stehen, und diese mit dem Herzinhalt communiciren. Da somit auf alle im Thorax liegenden Hohlorgane derselbe Druck entfaltend wirkt, so werden dieselben einfach ihrer Dehnbarkeit entsprechend ausgedehnt werden; das dehnbarste Organ, die Lunge, wird daher bei Weitem am meisten zur Ausfüllung des Thorax beitragen müssen (am meisten über das natürliche Volum ausgedehnt werden), die dickwandigen Herzkammern am wenigsten (kaum merklich), sehr merklich dagegen die dünnwandigen Vorkammern und Venenstämme (vgl. p. 55). Ferner müssen auch die nachgiebigen Theile der Thoraxwand selbst, auf deren Aussenfläche ebenfalls der Atmosphärendruck wirkt, durch Hineinwölbung in den Thorax zur Ausfüllung oder vielmehr Verkleinerung des Thorax beitragen. Daher sind Zwerchfell und Intercostalweichtheile in den Thorax hineingewölbt.

^{*)} Von der Haut- und Darmathmung (p. 138) ist hier nicht die Rede, weil diese keine besondere Mechanik besitzen. Auch ist ihre Bedeutung beim Menschen gering.

Thorax.

Zur Veranschaulichung dieser Verhältnisse diene folgendes Modell: Die mit dem Hahn o versehene Flasche enthält zwei elastische Beutel, deren natürliche Gestalt Fig. 2 darstellt; der eine, ein Doppelbeutel mit einer dünnwandigen und einer dickwandigen Abtheilung (v und k) ist mit Flüssigkeit gefüllt und communicirt mit einem offenen Wassergefäss; er stellt das Herz (v Vorkammer, k Kammer) dar; der Beutel I, mit Luft gefüllt und durch t (Trachea) mit der Atmosphäre communicirend, repräsentirt die Lunge. Die Membran i stellt die Weichtheile eines Intercostalraums dar. Fig. 3 zeigt nun den Apparat, nachdem man durch o die Luft aus der Flasche ausgepumpt hat. Man sieht, wie beide Beutel, auf deren Innenwand der Luftdruck (bei v k mittelbar) wirkt, entfaltet worden sind, bis der Raum der Flasche vollkommen ausgefüllt ist. Am meisten ist l ausgedehnt worden, viel weniger v, am wenigsten k. Ferner ist auch i etwas in die Flasche hineingewölbt worden. — Sowie man durch Oeffnen von o Luft einlässt, stellt sich der Zustand der Fig. 2 wieder her, welcher dem Pneumothorax entspricht.

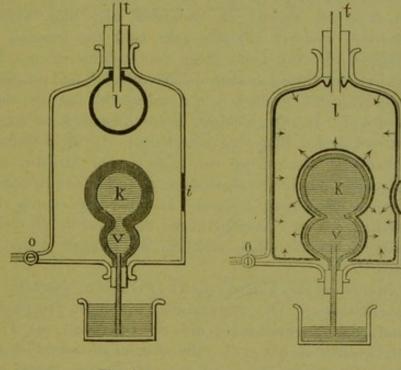


Fig. 2.

Fig. 3.

Jeder der beiden Beutel (in Fig. 3) sucht natürlich sich auf Kosten des andern zusammenzuziehen, d. h. letzteren auszudehnen; die Figur stellt eben den Gleichgewichtszustand dar. Man findet daher gewöhnlich die Thoraxverhältnisse so dargestellt, dass die über ihr natürliches Volum ausgedehnte Lunge einen Zug ("negativen Druck") auf das Herz und die Weichtheile der Thoraxwand ausübt (in Fig. 3 durch die Pfeile angedeutet). Man muss aber festhalten, dass dieselbe Wirkung auch umgekehrt vom Herzen u. s. w. auf die Lungen ausgeübt wird.

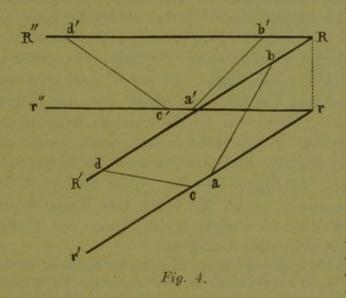
Die elastische Kraft, mit welcher die zur Weite des ruhenden Thorax ausgedehnten Lungen sich auf ihr natürliches Volum zusammenzuziehen streben,

10*

Athembewegungen. Inspiration.

also den negativen Druck im ruhenden Thorax, kann man manometrisch bestimmen, indem man an der Leiche ein Manometer luftdicht in die durchschnittene Trachea einfügt und dann den Thorax öffnet; sie beträgt etwa 6 mm Hg (DONDERS). — Die elastische Kraft der ausgedehnten Lungen kann noch unterstützt werden durch die Contraction der die Bronchien umgebenden glatten Muskelfasern. Dieselbe muss die Bronchien verengen und zugleich den negativen Druck im Thorax verstärken (d. h. zu einer stärkeren Ausdehnung der anderen Organe führen). Jedoch ist weder über ihren Eintritt noch über ihre Innervation etwas Sicheres ermittelt; Reizung der Vagi vermindert das Volum der ausgeschnittenen und unterbundenen Lunge ein wenig (SCHIFF).

Die Athembewegungen.


Die in den Lungenalveolen enthaltene Luft verkehrt mit den Gasen des Blutes, welches durch die sie umspinnenden Capillaren kreist. Der bereits besprochene Verkehr besteht auf Seite der Alveolenluft in einem Verlust an Sauerstoff und einer Aufnahme von Kohlensäure, wodurch dieselbe sehr bald für ferneren Gaswechsel unfähig wird. Nun kann durch die Gasdiffusion ein schichtweiser Austausch der Gase zwischen der Alveolenluft und den darüber lagernden Luftschichten geschehen, der zuletzt bis an die äussere Atmosphäre dringt. Indess geschieht dieser Austausch zu langsam, um den Gaswechsel des Blutes zu unterhalten. Es ist deshalb eine häufige mechanische Wechselung der Luft in den Alveolen nöthig und diese geschieht durch eine regelmässig abwechselnde Erweiterung und Verengerung der ganzen Lungen. Dieselbe wird durch rhythmische Erweiterungen und Verengerungen des Thorax (Inspiration und Exspiration) bewerkstelligt, welchem die Lungen ja beständig folgen müssen.

Die Erweiterung des Thorax, die Inspiration, geschieht stets durch Muskelwirkung. Die regelmässig wirkenden Inspirationsmuskeln sind: das Zwerchfell, die Scaleni und die Intercostales, namentlich die externi. Bei absichtlich tiefer oder wegen irgendwelcher Hindernisse angestrengter Inspiration treten noch andere, "accessorische" Inspirationsmuskeln in Thätigkeit, zunächst die Serrati postici und die Levatores costarum, bei höchster Athemnoth die Sternocleidomastoidei, Pectorales, Serrati antici etc. — Hauptsächlich bewirkt das Zwerchfell die Erweiterung des Thoraxraumes, und zwar indem es sich bei seiner Contraction, namentlich an den musculösen Partien abflacht, und an seinen Rändern, mit denen es in der Ruhe an der Thoraxwand anliegt, sich von ihr abhebt. Die übrigen Muskeln wirken fast alle auf die Rippen;

Inspiration.

sie haben im Allgemeinen einen Verlauf von hinten und oben nach vorn und unten, sind an ihrem oberen Ende, durch die Wirbelsäule oder (Pectorales, Serrat. antic.) festgestellte Theile der oberen Extremität, fixirt, und ziehen daher die Rippen nach aussen und oben, wodurch der Thorax erweitert wird.

Jede Rippe ist vermöge ihrer beiden an dem Wirbelkörper und Querfortsatze befindlichen Gelenke um eine geneigte Axe drehbar. Jede Drehung um dieselbe nach oben macht die geneigte Ebene, die man sich durch den Rippenbogen gelegt denkt, mehr horizontal, erweitert somit den Thorax im Querschnitte. Die Drehung der Rippen um ihre Axe ist jedoch durch die, freilich nachgiebigen, elastischen Knorpel, durch die sie mit dem Sternum verbunden sind, auf enge Grenzen beschränkt. Mit jeder Rippenhebung erfolgt daher ausser einer Hebung des Sternum auch eine leichte Torsion der Knorpel um ihre Längsaxe. Die Wirkung der rippenhebenden Muskeln ist hiernach leicht

verständlich. - Inwieweit ferner die Intercostalmuskeln als Rippenheber zu betrachten sind, ergiebt sich aus Folgendem (HAMBER-GER): Sind in nebenstehender Figur RR' und rr' die hinteren (nach vorn absteigenden) Stücke zweier benachbarten Rippen in ihrer Ruhestellung, RR" und rr" dieselben in der Inspirationsstellung, stellt ferner a b eine Faser der Intercostales externi, c d eine der interni dar, so muss offenbar, wie schon der

Augenschein lehrt, der Abstand ab in der gehobenen Stellung (a'b'), c d dagegen in der gesenkten, am kleinsten sein.*) Hieraus folgt umgekehrt, dass Verkürzung von ab beide Rippen heben, von c d dagegen beide senken muss. Gerade umgekehrt verhalten sich die gleichen Faserrichtungen an den vorderen Rippenabschnitten (zwischen Angulus costae und Sternum). Hier müssten die interni inspiratorisch, die externi exspiratorisch wirken. Inspiratorisch wirken also die externi an den knöchernen, die interni an den knorpeligen Rippentheilen. Da aber dies zugleich ziemlich die Haupt-Verbreitungsbezirke der beiden Faserrichtungen sind, so kann man die Intercostales überhaupt zu den Inspirationsmuskeln rechnen. Uebrigens ist die Wirkung der Intercostalmuskeln noch nicht vollkommen experimentell festgestellt.

*) Setzt man den Winkel rRb = x, so ist

$$ab^2 = Rr^2 + (ra - Rb)^2 + 2Rr (ra - Rb) \cos x$$

 $cd^2 = Rr^2 + (Rd - rc)^2 - 2Rr (Rd - rc) \cos x;$

es wird also a b um so grösser, je kleiner x, c d dagegen um so grösser, je grösser x (der Cosinus wächst mit abnehmendem Winkel). Während die Rippenheber den Thorax im Querschnitt erweitern, vergrössert die Zwerchfellcontraction den Längendurchmesser. Je nachdem die Rippen- oder die Zwerchfellsbewegung vorwiegt, unterscheidet man einen Costal- und einen Abdominaltypus der Athmung (letzterer Name rührt davon her, dass jede Zwerchfellabflachung die Baucheingeweide nach unten drängt, also die Bauchwand hervorwölbt). Der Costaltypus ist beim weiblichen, der Abdominaltypus beim männlichen Geschlechte meist der vorwiegende.

Die Verkleinerung des Thoraxlumens, die Exspiration, geschieht in der Regel dadurch, dass die bei der Inspiration aus ihrer Gleichgewichtslage gebrachten Thoraxwandungen nach dem Aufhören der Inspirationskräfte durch Schwere und Elasticität wieder in jene zurückkehren. Die Schwere zieht die gehobenen Rippen wieder herab; die Elasticität der Lungen zieht das Zwerchfell wieder in die Höhe und die Thoraxwände einwärts, die Elasticität der torquirten Rippenknorpel bringt die Rippen wieder in ihre natürliche Lage. -Bei angestrengter oder behinderter Exspiration treten auch hier Muskelkräfte in Thätigkeit, und zwar haben die Exspirationsmuskeln im Allgemeinen die Richtung von hinten und unten nach vorn und oben. Die hauptsächlichsten Exspirationsmuskeln sind die Bauchmuskeln, welche bei ihrer Contraction den Bauchinhalt comprimiren und dadurch das Zwerchfell in die Höhe treiben; auch ziehen sie die Rippen nach unten; dasselbe thun die Quadrati lumborum und die Serrati postic. infer.; die Rippen werden ferner gesenkt durch die Intercostales interni, soweit sie an den knöchernen Rippentheilen verlaufen (s. oben). Wie die Herabziehung der Rippen den Thorax verengt, ergiebt sich aus dem oben Gesagten.

Auch die luftzuleitenden Apparate nehmen in gewisser Beziehung an den Athembewegungen Theil. So erweitert sich bei der Inspiration die Stimmritze, bei angestrengter Inspiration auch die Nasenlöcher (Mm. levatores alae nasi), wodurch der Luft der Zutritt zu den Lungen erleichtert wird.

Da die Lungen, wie oben erwähnt, jeder Bewegung der Thoraxwand nachfolgen müssen, so bewirkt jede Inspiration eine Vergrösserung der Lungen im Querschnitt und in den Längsdurchmessern (auch in der Wandschicht, da die Randtheile des Zwerchfells sich von der Thoraxwand abheben). Letztere ist selbstverständlich mit einem Herabrücken der ganzen Lunge längs der Thoraxwände verbunden, und bedingt schon für sich, auch ohne Erweiterung des Thoraxquerschnittes, eine Vergrösserung des Lungenquerschnitts, da durch das Herabrücken in dem kegelförmigen Thorax jede Lungenschicht in einen tieferen, also grösseren, Thoraxquerschnitt gelangt. Das Herabrücken der Lungen zieht auch Luftröhre und Kehlkopf bei der Inspiration etwas nach unten, was man leicht von aussen bemerkt.

Athembewegungen. Lungenluft.

Die Erweiterung der Lungen bei der Inspiration, welche alle Hohlräume derselben, vorzüglich aber die nachgiebigsten, die Alveolen, betrifft, bewirkt eine Zunahme ihres Luftgehaltes. Diese Zunahme beträgt bei ruhigem Athmen etwa ¹/₆ des Gesammtinhalts. Doch ist ein weit intensiverer Luftwechsel durch tiefere Athmung ermöglicht. Einen Massstab für die Grenze des möglichen Luftwechsels gewährt die "vitale Capacität" der Lungen, nämlich der Volumunterschied des Luftgehalts in der möglichst gefüllten und der möglichst entleerten Lunge; oder die Luftmenge, welche nach möglichst tiefer Inspiration durch eine möglichst tiefe Exspiration entleert wird (Hurchinson). Diese Menge steht in einem ziemlich bestimmten Verhältnisse zur Körpergrösse, variirt jedoch etwas nach Beschäftigung und Geschlecht (ist bei Männern grösser, ARNOLD). Bei erwachsenen Männern beträgt sie im Mittel 3770 Ccm.

Zur Ermittelung der vitalen Capacität dient das "Spirometer" (HUT-CHINSON), ein Glockengasometer, dessen Glocke durch Gewichte äquilibrirt ist, und in welches, nach einer tiefen Inspiration, durch ein Kautschukrohr möglichst tief exspirirt wird; die Luftvolumina werden durch die ihnen proportionalen Erhebungshöhen der (cylindrischen) Glocke gemessen. Auch Gasuhren kann man hierzu benutzen.

Andere hier in Betracht kommende Grössen sind: 2) Der Luftgehalt der Lunge im Zustande stärkster Exspiration ("residual air" HUTCHINSON); man kann denselben ermitteln, indem man Wasserstoffgas aus einem geschlossenen Behälter so lange athmet, bis keine Aenderung der Zusammensetzung des Gases mehr erfolgt, also der Wasserstoff sich gleichmässig mit dem ganzen Lungeninhalt gemischt hat; wenn man jetzt so tief als möglich exspirirt, kann man aus der Zusammensetzung der Gasmischung und dem fehlenden Wasserstoff die in den Lungen noch befindliche Gasmenge berechnen (H. DAVY, GREHANT) 3) Der Luftgehalt der Lunge im Zustande gewöhnlicher mässiger Exspiration (ebenso wie die vorige Grösse zu bestimmen). - Der Unterschied beider Grössen, also die Luftmenge, die nach mässiger Exspiration noch exspirirt werden kann, heisst "Reserveluft". Ebenso heisst der Unterschied im Luftgehalt bei gewöhnlicher und bei tiefster Inspiration "Complementärluft". Der Unterschied im Luftgehalt bei gewöhnlicher Inspiration und Exspiration heisst "Respirationsluft". Nennt man die residual air a, Reserveluft b, die Respirationsluft c, die Complementärluft d, so ist b + c + d die "vitale Capacität".

In Bezug auf die chemische Gaserneuerung in den Lungen ist ermittelt worden (durch Wasserstoffathmung, GRÉMANT), dass von einer zwischen zwei beliebigen Exspirationen inspirirten Gasmenge c ein bestimmter Theil α . c in den Lungen bleibt und sich gleichmässig vertheilt (ist c = 500 Ccm., so ist α . c = 330). Bei gewöhnlicher Respiration ist also $\frac{\alpha \cdot c}{a+b+c}$ das Volum neuer Luft (im chemischen Sinne), welches die Volumeinheit des Lungenraums bei jeder Inspiration erhält; diese Grösse (z. B. für c=500, a + b + c = 2930, $\frac{330}{2930} = 0,113$) heisst

4

Athembewegungen.

der "Ventilationscoëfficient". — Ferner ist (durch einmalige Wasserstoffinspiration und folgende Luftathmung) gefunden worden, dass eine inspirirte Gasmenge von 500 Ccm. bei gewöhnlicher Athmung erst nach der 6.—10. Respiration die Lungen wieder ganz verlassen hat (Grémant).

Zur Bestimmung der Thoraxbewegungen dient das "Thoracometer" (Sisson), welches die Aenderungen im horizontalen Mediandurchmesser der Brust bestimmt: die vordere Brustwand schiebt ein Stäbchen vor sich her, das durch ein Getriebe einen Zeiger bewegt; die Axe des Zeigers ist durch ein Gestell an einem Brett befestigt, auf welchem der Körper horizontal ruht; ähnliche Apparate (RANSOME) messen gleichzeitig in mehreren Durchmessern die Excursionen; auch können sie zu graphischer Darstellung modificirt werden ("Stethograph", RIEGEL). Der "Pneumograph oder Atmograph" (MAREY) ist ein Gürtel, in welchen ein elastischer Hohlcylinder eingeschaltet ist, dessen Lumen durch die Inspiration erweitert wird; der Luftdruck im Cylinder wird graphisch registrirt. In ähnlicher Weise wie die Umfangs- lassen sich auch Durchmesservariationen mittels Luftdruckübertragung aufschreiben (FICK). An Thieren kann man auch die Zwerchfellbewegungen bestimmen: durch eine eingesenkte Nadel (SNELLEN) oder durch einen vom Abdomen her gegen das Zwerchfell gelegten Fühlhebel, welcher seine Bewegungen auf einem vorbeigeführten Papierstreifen graphisch in Curven darstellt, - "Phrenograph" (ROSENTHAL).

Da der Thorax bei der Inspiration sich erweitert, so werden die in ihm liegenden Hohlorgane noch weiter über ihr natürliches Volum ausgedehnt, als sie in der Ruhe schon sind, unter Anderm wird also auch der "negative Druck" (p. 147), unter dem das Herz und die Gefässe stehen, vergrössert, die Aspiration des Herzens und der Gefässe also verstärkt (p. 65). Umgekehrt kann durch die Exspiration, welche für gewöhnlich nur die inspiratorische Zunahme des negativen Drucks wieder aufhebt, der negative Druck gänzlich aufgehoben und selbst in einen positiven verwandelt werden, - dann nämlich, wenn bei activer Exspirationsanstrengung das Entweichen der Luft aus den Lungen durch Verschluss der Stimmritze gehindert ist (vgl. p. 66) Auf den Blutstrom durch die Lunge wirkt die Aspiration des Thorax nach den Einen beschleunigend (HALLER, QUINCKE & PFEIFFER), nach Andern verlangsamend (POISEUILLE, J. J. MÜLLER). Gesteigerter Druck in den Luftwegen wirkt verlangsamend (QUINCKE & PFEIFFER). - Auch der (in der Ruhe dem Atmosphärendrucke gleiche) Druck der in den Athemwegen enthaltenen Luft erleidet wegen der Enge der Zugänge (Nasenlöcher, Stimmritze) geringe Schwankungen, eine negative (etwa 1 mm) bei der Inspiration, .eine positive (2-3 mm) bei der Exspiration. Man kann sie nachweisen: bei Thieren, indem man ein Mauometer seitlich mit der Trachea iu Verbindung setzt, - beim Menschen, indem man das Manometer in ein Nasenloch bringt und bei geschlossenem Munde durch das andere athmet.

Der bei der Inspiration durch den Kehlkopf und das Luftröhrensystem streichende Luftstrom erzeugt durch die Reibung an den Wänden Geräusche, die man mit dem aufgelegten Ohre hört. In den starren Theilen (Kehlkopf, Luftröhre, grössere Bronchien) hat dasselbe einen hauchenden Charakter (= h oder ch. "bronchiales Athmungsgeräusch"); in den feinsten Bronchien dagegen, wo sich die Luft durch enge Canäle hindurchzwängen muss, ist es mehr schlürfend oder zischend (= w oder f, "vesiculäres Geräusch") Beim oberflächlichen Athmen (erwachsener Männer) wird der Character des Geräusches unbestimmt; ebenso erzeugt die reguläre Exspiration ein undeutliches schwaches Geräusch.

Rhythmus und Auslösung der Athembewegungen.

Sowohl Inspirations- als Exspirationsbewegungen können willkürlich hervorgebracht werden. Gewöhnlich geschehen sie jedoch unwillkürlich in einem bestimmten Rhythmus und mit bestimmter Intensität (Tiefe). Der Wille kann beides beliebig variiren, doch ist die gänzliche Unterbrechung nur auf kurze Zeit möglich. Die durchschnittliche Frequenz ist beim Erwachsenen 18 in der Minute.

In frühem und spätem Lebensalter, beim weiblichen Geschlecht, bei erhöhter Temperatur, bei Muskelanstrengungen, während der Verdauung, bei Gemüthsbewegungen, nach einer zeitweisen Unterdrückung (also etwa bei denselben Momenten, die die Herzfrequenz erhöhen) sind die Athembewegungen häufiger. Im Allgemeinen kommen in jedem Zustande auf 4 Herzcontractionen eine In- und Exspiration. — Der Einfluss der Affecte betrifft nicht bloss die Frequenz, sondern oft auch Tiefe und Form der Athembewegung; letztere bewirkt zuweilen characteristische Töne oder Geräusche im Zuleitungsrohre. So sind mit Schallerscheinungen verbunden: die schnell auf einander folgenden Inspirationen des Schluchzens, die tiefe Inspiration mit folgender kräftiger Exspiration beim Seufzen, die langsame und anhaltende Inspiration durch den krampfhaft geöffneten Mund beim Gähnen, die stossweise unterbrochene Exspiration des Lachens u. s. w.

Die Anregung zu den unwillkürlichen rhythmischen Athembewegungen geht von einer umschriebenen Stelle der Medulla oblongata aus, welche an der Ursprungsstelle des Vagus und Accessorius liegt (Näheres im 11. Cap.); ihre Zerstörung unterdrückt sofort die Athmung und ist daher tödtlich ("Noeud vital" FLOURENS). Von hier aus werden durch die Nn. phrenici das Zwerchfell, durch die äusseren Thoraxnerven die übrigen Inspirationsmuskeln in Bewegung gesetzt; auch die Exspiration wird, soweit sie durch Muskelkräfte geschieht, von hier aus geleitet. - Der Rhythmus der Erregungen des Athmungscentrums wird durch gewisse auf der Bahn des Vagus anlangende beständig erregte Fasern beeinflusst. Es giebt zwei Gattungen dieser Fasern: die einen wirken beschleunigend, die anderen, welche dem Vagus durch den R. laryngeus superior (ROSENTHAL), nach Andern (PFLÜGER & BURKART, HERING & BREUER) auch auf anderen Wegen, besonders durch den R. laryngeus inferior, zugeführt werden, verlangsamend. Im gewöhnlichen Zustande überwiegt die Erregung der ersteren, denn Durchschneidung eines oder beider Vagi (am Halse) verlangsamt den Athmungsrhythmus (TRAUBE); auch bei künstlicher Reizung des centralen Endes der durchschnittenen Vagi pflegt die Erregung der beschleunigenden Fasern zu überwiegen, also die Athmung wird schneller, und bei starker Reizung tetanisch, d. h. das Zwerchfell steht in Contraction (Inspiration) still (TRAUBE); doch tritt zuweilen der entgegengesetzte Erfolg ein, Stillstand des Zwerchfells in Erschlaffung (Exspiration), besonders bei Ermüdung, welcher die verlangsamenden Fasern weniger rasch zu erliegen scheinen (BURKART). Bei der Erregung der regulatorischen Fasern werden die Athembewegungen in demselben Maasse, als sie langsamer oder schneller werden, zugleich tiefer, resp. oberflächlicher, so dass die Leistung der Med. obl. im Ganzen dieselbe bleibt, nur anders vertheilt wird; wenigstens werden nach der Vagusdurchschneidung die im Ganzen inspirirten Gasmengen nicht kleiner (ROSENTHAL) und der Gaswechsel, wenigstens Anfangs, nicht verändert (Vort & RAUBER). Inspirationsmuskeln, die vor der Reizung der beschleunigenden Fasern noch nicht in Thätigkeit waren, werden auch durch die Reizung nicht afficirt. Waren vor der Reizung bei der Exspiration Muskeln thätig, so wird ihre Thätigkeit durch die Reizung aufgehoben. - Umgekehrt werden bei immer stärker werdender Reizung der verlangsamenden Fasern, nach Aufhebung der inspiratorischen Bewegungen (s. oben) schliesslich Expirationsmuskeln in Thätigkeit gesetzt (ROSENTHAL).

Die beschleunigenden und verlangsamenden Fasern gehören in die Classe der regulatorischen Nerven, worüber Näheres im Cap. XI. — Ueber die Art, wie diese Regulation im Leben peripherisch in Gang gesetzt wird, sind bereits verschiedene Ansichten ausgesprochen worden (ROSENTHAL, SKLAREK, HERING & BREUER). Der Ausdehnungszustand der Lunge scheint mechanisch auf die Erregung dieser Fasern einzuwirken (ROSENTHAL); und zwar scheint die Ausdehnung die verlangsamenden und exspiratorisch wirkenden, das Zusammenfallen die beschleunigenden und inspiratorisch wirkenden zu erregen, wodurch eine Art "Selbststeuerung" der Athmung entstehen würde (HERING & BREUER); dass auch der Kehlkopf bei der Regulirung betheiligt ist (SKLAREK), darauf deutet der Gehalt der Laryngei an regulatorischen Fasern (s. oben).

Reizung der Nasenschleimhaut bewirkt einen exspiratorischen Athmungsstillstand von einiger Dauer; dieser Effect wird durch den Trigeminus, nicht durch den Olfactorius vermittelt (HERING & KRATSCHMER). Auch Reizung vieler Hautnerven, z. B. der Brustnerven beim Untertauchen in Wasser, bewirkt exspiratorischen Athmungsstillstand (SCHIFF, FALK).

Das auslösende Moment für die Athembewegungen, von welchem weiter unten die Rede sein wird, könnte entweder direct auf die Substanz der Medulla oblongata wirken (ROSENTHAL), oder auf die Endigungen centripetaler Nerven, welche zur Medulla oblongata gehen (RACH, v. WITTICH); im letzteren Falle wäre die Athmung ein reflectorischer Act. Der entscheidende Versuch, ob nämlich die Athembewegungen aufhören, sobald die Medulla oblongata von allen ihren centripetalen Fasern getrennt ist, ist von beiden Seiten mit verschiedenem Erfolge angestellt worden. Eine Entscheidung ist daher noch nicht möglich, da die übrigen für beide Ansichten angeführten Versuche nicht eindeutig sind.

Das auslösende Moment selbst besteht in einem bestimmten Grade des Sauerstoff- und des Kohlensäuregehalts im Blute. Dass dieser Zustand des Blutes die Athembewegungen veranlasst, wird durch Folgendes bewiesen: 1. Man kann die Athembewegungen ganz unterdrücken ("Apnoe"), wenn man durch starke künstliche Athmung (Einblasen von Luft in die Lungen) oder durch willkürliche zeitweilige Verstärkung der Athmung, das Blut mit Sauerstoff gesättigt und arm an Kohlensäure erhält. 2. Die Athmung ist um so stärker und es betheiligen sich um so mehr accessorische Muskeln ("Dyspnoe", s. den Anhang), je ärmer an Sauerstoff und je reicher an Kohlensäure das Blut ist; z. B. bei Eintritt von Luft oder Flüssigkeit in die Pleurahöhlen, wodurch die Lunge zusammenfällt (p. 146), oder bei Athmungsunfähigkeit der Lungen durch Entzündung etc. Die erste Athembewegung des Foetus wird ebenso durch Unterbrechung der Placentarathmung, also plötzlichen Sauerstoffmangel und Kohlensäureanhäufung im Blute bewirkt (SCHWARTZ). 3. Diese Blutveränderung braucht nur local in den Gefässen der Medulla obl. zu geschehen, um dieselbe Wirkung zu äussern*); dies geschieht z. B. durch Stagnation des Blutes in diesen Gefässen (bei Unterbindung sämmtlicher Hirnarterien, KUSSMAUL & TENNER, ROSENTHAL, oder bei Sperrung des venösen Abflusses vom Gehirn, HERMANN & ESCHER), wodurch das Blut immer sauerstoffärmer und kohlensäurereicher wird.

Durch sehr hochgradigen Sauerstoffmangel wird die Erregbarkeit der Medulla oblongata vernichtet, so dass durch keinen Reiz, selbst nicht durch starke Kohlensäureüberladung, Respirationen bewirkt werden können; dieser Zustand heisst "Asphyxie" (s. den Anhang).

Da die Umstände, welche den CO₂-Gehalt des Blutes erhöhen, fast stets mit Verminderung seines O-Gehalts verbunden sind, und umgekehrt, so ist es schwer zu entscheiden, ob der Sauerstoffmangel oder die Kohlensäureanhäufung

^{*)} Dies ist übrigens kein Moment zur Entscheidung der oben erörterten Frage, ob die Athembewegungen reflectorisch seien oder nicht. Denn die Anhänger ersterer Ansicht können diese Versuche so deuten, dass das Blut der Med. obl. auf das Zustandekommen des Reflexes von Einfluss ist.

Schutzvorrichtungen.

das eigentliche die Athembewegungen auslösende Moment sei. Zweckmässig ist es, vor der Hand beide Momente als "gesteigerte Venosität" oder "dyspnoische Beschaffenheit" des Blutes zusammenzufassen (HERING). Festgestellt ist, dass sowohl O - Mangel ohne CO2 - Anhäufung, nämlich Einathmung oder künstliche Einblasung von indifferenten, O-freien Gasen (H, N, N2O) Athmung und Dyspnoe bewirkt (ROSENTHAL), als auch umgekehrt CO2-Anhäufung ohne O-Mangel, nämlich Einblasung sehr CO2-reicher, aber durchaus nicht O-armer Gasmischungen (L. TRAUBE). Die Argumentation, dass auch im ersteren Falle in Wahrheit eine CO2-Anhäufung stattfinde, weil indifferente Gase die CO2 nicht so vollständig aus dem Blute austreiben können wie O (vgl. oben p. 140), dass also in allen Fällen die CO2 das erregende Moment sei (THIRY), ist dadurch widerlegt, dass bei N - Athmung im Blute keine CO2 - Anhäufung stattfindet (PFLÜGER). Man muss also entweder schliessen (DOHMEN, PFLÜGER), dass sowohl O-Mangel an sich, als auch CO2-Anhäufung an sich, erregend auf das Athmungscentrum wirken oder (HERMANN) dass, wenn die CO2 das allein erregende Moment ist, ihre Wirkung um so schwächer ist, je grösser der gleichzeitige O-Gehalt (wie z. B. die Wirkung des Strychnins durch Sättigung des Blutes mit O verhindert wird, s. Cap. XI.).

In der Apnoe ist der Sauerstoffgehalt im arteriellen Blute vermehrt, im venösen aber vermindert (EWALD); letzteres wahrscheinlich durch Verminderung der Stromgeschwindigkeit, in Folge bedeutender Herabsetzung des arteriellen Blutdrucks (PFLÜGER).

Ein eigenthümlicher Fall von abnormer Regulirung der Athembewegungen ist das "CHEYNE-STOKES'sche Respirationsphänomen": bei Hirn- und Herzkranken kommt zuweilen eine Intermittenz der Respiration vor; nach jeder Pause steigert sich die Athmung bis zur Dyspnoe und sinkt dann wieder bis zur Pause. Die Ursache wird darin gesucht (TRAUBE), dass es bei verminderter Erregbarkeit des Centrums jedesmal einer beträchtlichen Steigerung der Venosität des Blutes bedarf, um dasselbe zu erregen, die schliesslich eintretenden starken Athmungen aber die Venosität des Blutes wieder bedeutend herabsetzen.

Anhang zur Mechanik der Athmungsorgane. Die luftzuleitenden Organe, Nasenhöhle (die Athmung durch den Mund dient, obwohl sie häufig willkürlich gewählt wird, in der Regel nur als Ersatz, wenn die Nasse verschlossen ist), Cavum pharyngonasale, Kehlkopf und Luftröhre sind theils mit Vorrichtungen versehen, die den Zwecken der Athmung dienen, theils wird die Athembewegung benutzt, um in jenen zweckmässige Bewegungen einzuleiten. In dem langen Zuleitungskanal wird die inspirirte Luft erwärmt und von den gröberen schädlichen Beimengungen, die an den Wänden haften bleiben, gereinigt; die nach Aussen gerichtete Flimmerbewegung (fast im ganzen Zuleitungsrohre) schafft die angesetzten Partikeln, ebenso überschüssigen Schleim u. s. w., beständig heraus. - Der Kehlkopf besitzt ferner in den Stimmbändern eine Schutzwand gegen eindringende fremde Körper (Speichel, Speisetheilchen) etc., sowie gegen die Einathmung gewisser ätzender Gase (s. Anhang), da jeder Reiz reflectorisch die Stimmritze schliesst. Sind die Muskeln derselben durch Zerschneidung beider Vagi oder Laryngei inferiores gelähmt, so dringen jene Substanzen leicht durch die geöffnete Stimmritze ein und erzeugen tödtliche Lungenentzündung (TRAUBE). - Die Hinausbeförderung fremder Körper, welche einmal in die Luftwege eingedrungen oder krankhaft darin entstanden sind (Schleim), geschieht durch

Modificirte Athembewegungen. Folgen des Sauerstoffmangels. 157

Reizung der betreffenden Schleimhautpartien, welche durch Reflex explosive Exspirationsstösse erzeugt; diese schleudern die fremden Substanzen heraus. Solche Exspirationsstösse sind das Niesen für den Nasenkanal, das Husten für den Kehlkopf. Beide sind mit einem Schall verbunden, der durch das plötzliche Sprengen des Verschlusses (beim Niesen das an die Schlundwand angelegte Gaumensegel, beim Husten die geschlossene Stimmritze) entsteht. Von jeder Stelle der Respirationsschleimhaut von der unteren Fläche der oberen Stimmbänder bis zu den Alveolen lässt sich durch mechanische Reizung Husten hervorrufen, besonders stark vom Kehlkopf und von der Bifurcationsstelle der Trachea (NOTHNAGEL). Die beim Reflex betheiligten sensiblen Nerven sind beim Niesen der Trigeminus, vielleicht auch der Olfactorius, beim Husten vermuthlich besonders der Laryngeus superior. Den Husten kann man auch willkürlich hervorrufen. (Möglicherweise werden auch die Bronchialmuskeln [p. 148] zur Entfernung von Schleim etc. aus den feineren Bronchien benutzt.) - Die Exspirationsströme benutzt man ferner willkürlich zu ähnlichen Zwecken, z. B. treibt man durch sie Schleim aus der willkürlich von Aussen comprimirten Nase aus (Schnäuzen), oder aus dem durch Muskelwirkung verengten Isthmus faucium (Räuspern). Flüssigkeiten, welche man in dem Rachen eine Zeit lang verweilen lassen will, ohne sie zu verschlucken, verhindert man durch den Exspirationsstrom am Eindringen in die Luftwege, wobei die in Blasen durch die Flüssigkeit streichende Luft ein gluckendes Geräusch verursacht (Gurgeln). Den aus dem weit geöffneten Munde kommenden warmen und feuchten Exspirationsstrom benutzt man beim Hauchen zum Erwärmen oder Befeuchten. Endlich setzt man durch den Exspirationsstrom Stimmbänder, Gaumensegel, Zunge, Lippen oder die Vorrichtungen an den Mund gesetzter Instrumente in tönende Schwingungen oder Geräusche (Singen, Sprechen, Blasen etc. - Ueber Stimme und Sprache s. Cap. VIII.). - Schliesst man nach tiefer Inspiration die Stimmritze und contrahirt nun kräftig die Bauchmuskeln, so wird der Bauchinhalt stark comprimirt, was zu Entleerungen aus den Abdominalorganen (Mastdarm, Uterus, Blase) benutzt wird (Bauchpresse).

Anhang zum vierten Capitel.

Folgen des Sauerstoffmangels.

Wird auf irgend eine Weise der Zutritt des Sauerstoffs zum Blute abgeschnitten oder bedeutend vermindert, oder gar der bereits im Blute gebundene Sauerstoff ausgetrieben oder anderweitig dem Blute entzogen, so tritt eine Reihe von Erscheinungen ein, welche schliesslich zum Tode führt (Erstickung, Suffocation).

Eine Austreibung gebundenen Sauerstoffs aus dem Blute kann geschehen durch Einathmen von Kohlenoxydgas (p. 45); ferner kann dem Blute Sauerstoff entzogen werden durch sauerstoffverzehrende

Dyspnoe. Krämpfe.

Substanzen, z. B. Schwefelwasserstoff. Die Umstände, welche, je nachdem sie vollständig oder unvollständig eintreten, die Sauerstoffzufuhr hemmen oder herabsetzen, sind: Sauerstoffmangel im Athmungsmedium (z. B. fortgesetztes Athmen in abgeschlossenem Luftraume; luftleerer Raum, Untertauchen in Wasser); beim Foetus die Ablösung der Placenta oder Verschluss der Nabelgefässe vor der Geburt; Unterbrechung der Haut- oder Lungenathmung: ersteres durch Ueberfirnissen (vgl. jedoch p. 138), letzteres durch Verschliessung der luftzuführenden Canäle (von Aussen durch Druck, - Erwürgen, - innen durch krampfhaften Verschluss der Stimmritze [s. oben], Verstopfung durch fremde Körper oder Geschwülste, Füllung der Bronchien mit krampfhaften Producten [Schleim]), Zusammensinken der Lunge durch Eindringen von Luft oder Flüssigkeit in die Pleurasäcke (Pneumothorax, pleuritische Exsudate), partielle Zerstörung der Lungen (Tuberculose etc.), Aufhören der Athembewegungen, endlich Verschluss (Embolie) der Lungenarterie.

Im luftverdünnten Raum sterben Warmblüter schon vor Erschöpfung des Sauerstoffvorraths durch Gasentwicklung im Blute und dadurch bewirkte Circulationsstörung (HOPPE - SEYLER). In verdichteter Luft erfolgt der Tod durch Behinderung der Kohlensäureausscheidung (BERT).

Mit der Sauerstoffverarmung im Blute, wie sie durch die genannten Umstände bewirkt wird, ist meist auch eine Anhäufung von Kohlensäure verbunden, und diese Veränderungen im Gasgehalt (vgl. p. 155 f.) bewirken sogleich eine Verlangsamung und Vertiefung der Athembewegungen, unter Beihülfe der accessorischen Muskeln (p. 148), die sog. Dyspnoe. Dieselbe ist offenbar ein regulatorischer Act, denn in den meisten Fällen (wenn nicht etwa gar kein Sauerstoff im Athmungsmedium vorhanden oder die Gaszufuhr zu den Alveolen ganz unmöglich ist) wird sie zu einer Erhöhung des Sauerstoffgehalts im Blute führen; sie lässt dann von selbst wieder nach.

Geht die Sauerstoffverarmung des Blutes aber noch weiter, so treten allgemeine Krämpfe der Körpermuskeln ein (clonische Convulsionen); das Centrum derselben liegt ebenfalls in der Medulla oblongata, so dass man annehmen muss, dass der Reiz, wenn er einen gewissen Grad erreicht hat, vom Athmungscentrum auf benachbarte, schwerer erregbare Centra übergeht. Ferner entsteht ein Krampf der Gefässmuskeln (s. p. 73), der auf das Herz zurückwirkt (p. 75). Dieser Gefässkrampf ist intermittirend (TRAUBE) und hält denselben Rhythmus ein wie die noch in diesem Stadium bestehenden rudimentären Athmungszuckungen (HERING, vgl. auch Cap. XI.).

Die Krämpfe entstehen auch, wenn man bloss die Blutzufuhr zum Gehirn abschneidet, durch Verschliessung der Carotiden und Vertebralarterien, und ebenso bei Verblutung (KUSSMAUL & TENNER); man hat sie in dieser Form als "anämische" Krämpfe bezeichnet; ihre wahre Ursache ist aber in allen Fällen die Gegenwart stagnirenden und dadurch bald O-arm und CO₂-reich werdenden Blutes in den Hirncapillaren (ROSENTHAL), und sie lassen sich auch durch Hemmung des venösen Abflusses vom Gehirn (Verschliessung der Cava sup. nach Durchbrennung 'des Rückenmarks) hervorbringen (HERMANN & ESCHER). Auch beim KUSSMAUL-TENNER'schen Versuch geht den Krämpfen Dyspnoe voraus (ROSENTHAL, vgl. p. 155). — Bei der Verblutung kann man sich ebenfalls die Stagnation von Blut in den Hirngefässen, durch ungenügenden Nachschub von den Stämmen, leicht vorstellen; ebenso gut aber wäre es denkbar, dass auch der O-Mangel oder die CO₂-Anhäufung in der Hirnsubstanz selbst erregend wirken könnte.

Geht der Sauerstoffmangel immer weiter, so hört endlich die Erreg bark eit der Nervencentra auf, zu welcher ein gewisser Sauerstoffgehalt nöthig ist, und nun kann selbst der stärkste Reiz weder Athembewegungen noch Krämpfe auslösen, beide hören vollständig auf; dieser Zustand (nicht zu verwechseln mit der "Apnoe" p. 155) heisst "Asphyxie". Sehr bald hört jetzt auch das Herz zu schlagen auf (p. 75) und der Tod tritt ein (Erstickung).

Im Zustande der Asphyxie ist, so lange das Herz noch schlägt, noch Rettung möglich (ausser bei Sättigung des Blutes mit Kohlenoxyd) durch Einblasung von Sauerstoff in die Lungen (künstliche Respiration). Es treten dann die Erscheinungen in umgekehrter Reihenfolge wieder auf, zuerst Krämpfe, dann Dyspnoe, dann die gewöhnliche Athmung, endlich, bei sehr lebhafter Lufteinblasung, Apnoe (p. 155).

In der Leiche des Erstickten fehlt der Unterschied zwischen arteriellem und venösem Blut; alles Blut ist dunkel schwarzroth (nur bei Kohlenoxydgasvergiftung nicht, p. 45); abscheidbarer Sauerstoff ist nicht vorhanden (das Blut zeigt im Spectralapparat den Streifen des O-freien Hämoglobins, p. 44), dagegen viel freie Kohlensäure (jedoch nicht so viel, als dem Sauerstoffminus entspricht); der Gehalt an gebundener Kohlensäure und an Stickstoff ist unverändert (SETSCHENOW).

Wird Erstickungsblut mit Sauerstoff geschüttelt, so wird ein Theil des letzteren sofort unter Kohlensäurebildung verzehrt, offenbar durch den Gehalt an leicht oxydirbaren ("reducirenden") Stoffen (vgl. p. 50, 142).

Besteht der Sauerstoffmangel dagegen lange Zeit in mässigem Grade fort, z. B. bei partieller Lungenzerstörung, einseitigem Pneumothorax, so erfolgt eine Accommodation des Sauerstoffverbrauchs an die Zufuhr; es werden die mit Oxydationen verbundenen Leistungen

Fremde Gase.

entsprechend vermindert (der Körper kühler, schlaffer), die Athembewegungen etwas frequenter; der bestehende Sauerstoffmangel macht sich durch dunklere Färbung des Blutes kenntlich, welche, unterstützt durch eine Erschlaffung der feinen Arterien, an den Lippen und anderen Schleimhäuten durch bläuliche Färbung (Cyanose) sich kund giebt.

Athmung fremder Gasarten.

Für die Erhaltung des Lebens kann bei Warmblütern die Zufuhr von Sauerstoff auch die kürzeste Zeit nicht entbehrt werden; derselbe darf jedoch mit anderen unschädlichen Gasen (Wasserstoff, Stickstoff) gemengt sein, wie in der Atmosphäre.

Die Angabe, dass das Stickstoffoxydulgas längere Zeit hindurch den Sauerstöff vertreten könne (H. DAVY), hat sich nicht bestätigt; reines N_2O bewirkt bei Warmblütern sofort Dyspnoe und Erstickung; beim Menschen wird erstere nur durch den Rausch (s. unten) subjectiv unmerklich (HERMANN).

Die übrigen Gasarten lassen sich folgendermassen eintheilen: A. Indifferente Gase. Sie können, mit Sauerstoff gemischt, beliebig lange ohne Schaden geathmet werden. 1. Stickstoff, 2. Wasserstoff, 3. Grubengas. Für sich geathmet bewirken sie Dyspnoe, Krämpfe und Asphyxie (p. 158).

B. Irrespirable Gase. Sie können nur spurweise, mit andern Gasen gemengt, eingeathmet werden, weil sie in grösserer Concentration reflectorisch Stimmritzenkrampf bewirken (p. 156). Hierher gehören: a) Gasförmige Säuren: 1. Kohlensäure (als schwächste Säure am wenigsten irrespirabel, kann daher in erheblicher Concentration geathmet werden, namentlich durch Trachealfisteln [s. unten], und wirkt dann giftig, s. sub C.), 2. Chlorwasserstoffsäure, 3. Fluorwasserstoffsäure, 4. Untersalpetersäure, 5. schweflige Säure u. s. w. - b) Säurebildende Gase: 1. Stickoxydgas (NO) giebt mit Sauerstoff sogleich Untersalpetersäure: $NO + O = NO_2$; würde, wenn es zum Blute gelangen könnte, giftig wirken (s. sub C.); 2. Phosgengas (Chlorkohlenoxyd, COCl₂ [p. 23] zerfällt mit Wasser sogleich in Kohlensäure und Salzsäure: $COCl_2 + H_2O = CO_2 + 2HCl;$ 3. Chlorborgas (BCl₃), giebt mit Wasser Borsäure und Salzsäure; 4. Fluorborgas (BFl3), giebt mit Wasser Borsäure und Borfluorwasserstoffsäure; 5. Fluorkieselgas (SiFl4) giebt mit Wasser Kieselsäure und Kieselfluorwasserstoffsäure u. s. w. - c) Alkalische Gase: 1. Ammoniak, 2. substituirte Ammoniake (Methylamin etc.). - d) Substituirend oder oxydirend wirkende Gase: 1. Chlor; 2. Fluor (?); 3. Ozon.

Fremde Gase.

Die irrespirablen Gase kann man bei Thieren durch Trachealfisteln in die Lungen einführen, wo dann die meisten heftig zerstörend wirken; der Stimmritzenkrampf ist also ein schützender Act; nach Vagusdurchschneidung würde er fortfallen (p. 156).

C. Giftige Gase. Dieselben können eingeathmet werden, bewirken aber durch ihre Aufnahme in das Blut schädliche oder tödtliche Veränderungen im Organismus.

Man kann sie folgendermassen eintheilen: a) Reducirende Gase: sie oxydiren sich auf Kosten des Blutes, welchem sie seinen Sauerstoff entziehen; hierdurch bewirken sie die Erscheinungen des Sauerstoffmangels (p. 157), Dyspnoe Krämpfe und Asphyxie. 1. Schwefelwasserstoffgas H₂S (oxydirt sich zu S und H₂O); nachdem das Blut O-frei geworden ist, wird das Hämoglobin zersetzt, wobei sich zuerst ein hämatinartiger Körper, dann eine grüne Substanz bildet; zu diesen Wirkungen kommt es aber bei warmblütigen Thieren nicht, weil schon vorher durch die Sauerstoffentziehung der Tod erfolgt (HOPPE-SEYLER, KAUFMANN & ROSENTHAL). 2. Phosphorwasserstoffgas PH3, oxydirt sich im Blute zu phosphoriger Säure und Wasser (Dybkowsky). 3. Arsenwasserstoffgas AsH3 und 4. Antimonwasserstoffgas SbH3, scheinen ähnlich zu wirken (HOPPE-SEVLER). 5. Stickstoffoxydgas NO, wirkt auf das Blut zuerst ebenfalls reducirend (HERMANN), ist aber irrespirabel (s. auch sub b). 6. Cyangas (C2N2), wirkt auf Blut reducirend, zugleich aber tiefer zersetzend (ROSEN-THAL & LASCHKEWITSCH). - b) Sauerstoffverdrängende Gase; sie treiben den Sauerstoff aus seiner Verbindung mit Hämoglobin aus, mit welchem sie selbst eine festere, ebenfalls hellrothe Verbindung eingehen, sie bewirken ebenfalls die Erscheinungen des O-Mangels. 1. Kohlenoxydgas CO (vgl. p. 45). Wenn das Blut nicht völlig mit CO gesättigt ist, so ist eine Herstellung möglich, indem der noch im Blute vorhandene Sauerstoff das CO zu CO, oxydirt (POKROWSKY). 2. Stickoxyd, im Ueberschuss auf Blut wirkend, bildet ebenfalls eine feste Verbindung mit Hämoglobin (HERMANN); es kommt aber wegen seiner Irrespirabilität nicht zur Wirkung. c) Berauschende Gase: sie bewirken, mit Sauerstoff eingeathmet, Störungen des Bewusstseins und Anästhesie: 1. Stickoxydulgas N2O (H. DAVY) (vgl. p. 160); 2. Methylchlorürgas CH2Cl (HERMANN); 3. Kohlensäure CO2, bewirkt eine Reihe complicitter Erscheinungen, von denen einige bereits p. 76, 156 und 160 angeführt sind; weiterhin tritt eine Art Betäubung (Narcose) ein; der Zusammenhang ist hier noch nicht vollständig aufgeklärt. - d) Giftige Gase von unbekannter Wirkung; hierher gehören die meisten übrigen, noch sehr wenig untersuchten Gase,

161

Fünftes Capitel.

Stoffwechsel des Blutes.

Nachdem in den drei vorhergehenden Capiteln die Ausgaben und Einnahmen des Blutes besprochen worden sind, ist zu erörtern, auf welche Weise sich das Blut und seine Bestandtheile in ihrer normalen absoluten und relativen Menge erhalten. Dass unter normalen Lebensbedingungen sich Einnahmen und Ausgaben des Blutes fast genau decken, zeigt die sehr constante Menge (Spannung) und Zusammensetzung des Blutes; gewisse Schwankungen kommen allerdings auch normal vor, aber nur vorübergehende; so ist es z. B. klar, dass zur Zeit der Verdauung, wo die Einnahmen so bedeutend überwiegen, eine positive Schwankung eintreten muss. Eine Bilance der Einnahmen und Ausgaben ist jedoch noch nicht zu ziehen möglich, da man bis jetzt keine der beiden Grössen auch nur annähernd quantitativ bestimmen kann.

Wechsel der Blutkörperchen.

Ein Wechsel der chemischen Blutbestandtheile wäre denkbar, ohne dass zugleich ein Wechsel der Formbestandtheile, der Blutkörperchen, Statt fände. Indessen sprechen viele (unten zu erwähnende) Thatsachen dafür, dass fortwährend rothe Blutkörperchen zu Grunde gehen und neue entstehen; andere Thatsachen zeigen, dass die neuen rothen Blutkörperchen aus farblosen hervorgehen. Ueber die Entstehung dieser letzteren liegen ziemlich sichere Erfahrungen vor, viel weniger über Ort und Art des Uebergangs der farblosen in rothe, und am wenigsten über den Modus des Unterganges der letzteren. Wechsel der Blutkörperchen. Thymus. Schilddrüse. Nebennieren. Milz. 163

1. Die farblosen Blutkörperchen, identisch mit den Lymphzellen, entstehen im Geborenen höchst wahrscheinlich fast sämmtlich in den Lymphdrüsen und Follikeln (sowie in einigen wahrscheinlich ähnlich gebauten Organen: Thymus- und Schilddrüse), ferner in der Milz und im Knochenmark (NEUMANN). Die in den ersteren Organen gebildeten werden mit der Lymphe in's Blut ergossen (p. 126), die der Milz und des Knochenmarks dagegen (mit Ausnahme der Milz-Follikel, die zum Lymphsystem zu gehören scheinen) werden dem Blute direct beigemischt, zum Theil bereits in rothe umgewandelt.

Von den Lymphdrüsen und Follikeln war bereits (p. 124) die Rede. - Die Thymusdrüse, ein embryonales, nach der Geburt langsam abnehmendes, erst spät ganz verschwindendes Organ der Brusthöhle, scheint nach den neuesten Forschungen Alveolen zu enthalten, die den Lymphalveolen und Follikeln völlig entsprechen; ausserdem enthält sie degenerative Bestandtheile (Fettzellen, Amyloidkörper u. s. w.). Jene Structur und ihre zahlreichen Lymphgefässe lassen in ihr ein lymphdrüsenähnliches Organ vermuthen. - Auch in der Schilddrüse werden von Einigen (JENDRASSIK, für den Frosch TOLDT) lymphalveoläre Gebilde als normale Bestandtheile, die daneben vorkommenden mit colloiden Massen und Krystallen unbekannter Natur erfüllten Cysten dagegen als Degeneration angesehen, während Andere mit Flüssigkeit gefüllte und mit Epithel ausgekleidete Blasen für die normalen Bestandtheile halten. - Zu den Organen von ähnlichem Bau gehören auch die Nebennieren, deren areoläres Gewebe mit Zellen erfüllt ist, die von Einigen mit Nervenzellen verglichen oder geradezu identificirt werden. Ueber die Function ist Nichts bekannt; wegen des Reichthums an Nervenfasern und der eben erwähnten Zellen halten sie Einige für eine Art von sympathischem Ganglion, Andere bringen sie mit der Erzeugung von Farbstoffen in Verbindung; bei einer gewissen Pigmentanomalie der Haut ("Bronzed skin") sollen die Nebennieren erkrankt sein (ADDISON), aus ihrer Substanz lässt sich ein violetter Farbstoff darstellen (HOLM).

Unklar ist ebenfalls der Bau der Milz (s. d. hist. Lehrb.). Nach der jetzt verbreiteten Vorstellung sind 1) die an den feinen Arterienzweigen seitlich aufsitzenden MALPIGHI'schen Bläschen als wahre Lymphfollikel zu betrachten (GERLACH); sie bilden circumscripte Verdickungen der Arterienwand, die sich als einfache Einlagerung von farblosen (Lymph-) Zellen zwischen die Gewebsspalten ler Adventitia betrachten lassen (vgl. p. 125); bei vielen Thieren ist diese alveoäre Verdickung nicht circumscript, sondern mehr gleichmässig über die Arterienwände verbreitet (W. MÜLLER). 2) Die Milzpulpe besteht nach den Einen W. MÜLLER, FREY) aus ganz ähnlichen Räumen, wie die Alveolen der Lymphdrüsen, nur dass hier die Blutgefässe dieselbe Rolle spielen, wie in jenen die Lymphgefässe, d. h. die Capillaren der Blutgefässe münden (wie dort die freilich spaltförmigen Lymphgefässenden) in die mit Lymphzellen erfüllten Alveolen, us denen dann erst die Venen hervorgehen. Es mischen sich also die Bestandheile des Blutes mit den hier befindlichen Lymphkörperchen. Neben dieser Mischung (die also rothe und farblose Zellen enthält) finden sich in diesen Räumen zahlreiche Uebergangsformen zwischen farblosen und rothen Blut-

164 Milz. Knochenmark. Entstehung der farblosen Körperchen.

körperchen (s. unten) und ausserdem gefärbte Zellen und Kerne, welche man für in Rückbildung begriffene rothe Blutkörperchen hält, - letztere theils frei, theils in zellenartige Massen eingeschlossen (vgl. unten). Andere (BILLROTH, KÖLLIKER, KYBER, WEDL) weisen den Blutgefässen überall geschlossene Bahnen an, und erklären jene scheinbare Vermischung für Kunstproduct. Die Milzpulpe reagirt sauer, und man findet in ihr ausser sämmtlichen Blutbestandtheilen mannigfache Oxydationsproducte: Harnsäure, Hypoxanthin, Xanthin, Leucin, Tyrosin, Inosit, flüchtige Fettsäuren (Ameisen-, Essig-, Buttersäure), Milchsäure; ferner zahlreiche Pigmente, ein eisenhaltiges Albuminat, und überhaupt auffallend viel Eisenverbindungen. - Das Venenblut der Milz enthält ausnehmend viel farblose Zellen (1 auf 70 rothe, HIRT) und seine rothen Zellen zeichnen sich durch Kleinheit, geringere Abplattung, grössere Resistenz gegen Wasser, Mangel an Rollenbildungsvermögen (p. 38) vor anderen aus (FUNKE), Eigenschaften, die man als Merkmale der Neubildung betrachtet; ausserdem enthält es, wie die Milzpulpe, zahlreiche Uebergangsformen. - Exstirpation der Milz tödet die Thiere nicht; ihre Function scheint durch Anschwellung anderer lymphatischer Organe (Lymphdrüsen, Knochenmark) ersetzt werden zu können.

Das Kochenmark endlich enthält in einem dem lymphatischen ganz ähnlichen areolären Gerüst zahlreiche farblose contractile Zellen, die völlig mit den Lymphkörperchen übereinstimmen, und daneben Uebergangsformen zu rothen Blutkörperchen (NEUMANN, BIZZOZERO U. A.). Die Art des Uebergangs dieser Zellen in die Blutgefässe ist noch nicht sicher festgestellt.

Die Bildung der Lymphzellen in allen diesen Organen ist nach den neueren Forschungen ein Vorgang, welcher mit der Entstehung der Bindegewebskörperchen seiner Natur nach zusammenfällt. Die einander völlig analogen farblosen, contractilen und activer Wanderungen (Cap. VIII.) fähigen Körperchen, welche in dem Canälchennetz des Bindegewebes (in den Knötenpuncten), ferner in dem hiermit zusammenhängenden (p. 120) Lumen der Lymphgefässe und in dem erweiterten Canalnetz der Lymphdrüsen und Follikel (p. 125), endlich in den analogen Räumen der Milz etc. liegen, sind, so muss man annehmen, in beständiger Vermehrung (durch Theilung) begriffen, wodurch der fortwährende Abgang in der Richtung zum Blute ersetzt wird (VIRCHOW, v. RECKLINGHAUSEN).

Diese Anschauungen werden durch zahlreiche Thatsachen gestützt, unter andern: das Vorkommen von Lymphzellen in Lymphe, welche noch keine Lymphdrüsen oder Follikel passirt hat; ferner die pathologische Bildung von Lymphkörperchen aus zweifellosen Bindegewebszellen bei der Leukämie, wo auch die Bildung der Lymphzellen in den Lymphdrüsen oder in der Milz (zuweilen auch im Knochenmark, s. oben; NEUMANN) krankhaft gesteigert ist; endlich nach Einigen die Bildung der den Lymphkörperchen völlig gleichenden Eiterkörperchen durch Vermehrung von Bindegewebszellen (VIRCHOW, C. O. WEBER, RIND-FLEISCH, STRICKER), welche allerdings von anderen bestritten wird (COHNHEIM, vgl. p. 78).

Uebergang farbloser Körperchen in rothe.

Die massenhafte Neubildung der farblosen Blutelemente scheint auf die verschiedenen Bildungsorgane derartig vertheilt zu sein, dass eines das andere ersetzen und unterstützen kann. Man schliesst dies aus der Erfahrung, dass die Exstirpation einzelner jener Organe (Milz, Thymus, Lymphdrüsen etc.) keine nachtheiligen Folgen für den Körper hat, sondern durch vicariirende Anschwellung der übrigen compensirt wird; werden jedoch viele zugleich exstirpirt, so ist das Leben gefährdet.

Von der Blutzellenbildung im extrauterinen Leben ist die fötale gänzlich verschieden. Die ersten Blutzellen entstehen mit den Gefässen zugleich, indem die innersten Schichten der die letzteren bildenden Zellenreihen ohne weiteres Blutzellen werden und durch Theilung neue bilden (REMAK, KÖLLIKER); später, sobald die Leber gebildet ist, soll die Blutkörperchenbildung auf diese übergehen (E. H. WEBER, KÖLLIKER); jedoch ist weder der Modus deutlich, noch die Thatsache überhaupt feststehend. Einige (LEHMANN, FUNKE) schreiben sogar der Leber für das ganze Leben die Bildung neuer Blutzellen zu, und stützen sich hauptsächlich auf den Reichthum des Lebervenenblutes an farblosen Zellen und an neugebildeten rothen (ähnlich denen des Milzblutes); jedoch lassen sich diese Beobachtungen auch anders erklären (s. unten), und es sind in der Leber noch keine follikelähnlichen Organe nachgewiesen.

2. Der Uebergang farbloser Blutkörperchen in rothe geschieht wahrscheinlich überall im Blute, direct nachgewiesen ist er nur in der Milz, deren Venenblut zahlreiche Uebergangsformen enthält (p. 163), und im Knochenmark. Die zu Grunde liegende chemische Umwandlung ist unbekannt, namentlich die Entstehung des Hämoglobins; es wird angegeben, dass dasselbe in den neu entstandenen rothen Zellen besonders leicht krystallisirbar ist (FUNKE). Die Entstehung des Hämoglobins scheint unter dem Einfluss des Sauerstoffs zu geschehen, denn man sieht auch Lymphe und lymphhaltige Organe an der Luft sich röthen (VIRCHOW, FRIEDREICH). - Der formelle Uebergang besteht nach der verbreitetsten Ansicht in einem Verschwinden des Kernes, dem eine allmähliche Abplattung der rothwerdenden Zelle folgt; zugleich scheint das Körperchen immer leichter den Diffusionsströmen zugänglich zu werden; die eben roth gewordenen, jungen Zellen, wie sie im Milz- und Lebervenenblute vorkommen (s. oben), quellen weniger leicht in Wasser auf und sind noch nicht so stark abgeplattet, als die gewöhnlichen, älteren, die vom Wasser leicht zerstört werden, und scheibenförmig, daher auch grösser sind.

Beim Frosche kann man den Uebergang farbloser Zellen in rothe in entleertem Blute direct beobachten (v. RECKLINGHAUSEN). Die dabei entstehenden Zwischenformen finden sich auch im circulirenden Blute.

Untergang der Blutkörperchen.

Ein Theil der farblosen Zellen soll nicht in rothe sich verwandeln, sondern durch fettige Degeneration zu Grunde gehen (Vinchow).

3. Ueber den Untergang der rothen Zellen ist noch wenig bekannt. Man hat Ursache ihn überall zu vermuthen, wo Farbstoffe entstehen, da es wahrscheinlich ist, dass diese alle aus freigewordenem Blutfarbstoff hervorgehen, hauptsächlich also in der Milz, in der Leber, in der Niere u. s. w.

Am wahrscheinlichsten ist ein massenhafter Untergang rother Blutkörperchen in der Milz und Leber. In der Milz werden, wenn wirklich das Blut nach der oben erörterten Anschauung zwischen den farblosen Zellen der Alveolen hindurchfiltriren muss, vermuthlich viele mit dem Arterienblut hineingelangte Zellen zurückgehalten (vgl. jedoch p. 164). Hierfür sprechen zugleich die p. 164 geschilderten Spuren des Untergangs rother Elemente: die in Rückbildung begriffenen, verschrumpften Zellen, die Pigmente und eisenhaltigen Verbindungen. vielleicht auch die Oxydationsproducte; ferner der Umstand, dass das Milzvenenblut nur farblose und "junge" rothe Blutzellen enthält. Die sog. blutkörperchenhaltigen Zellen scheinen dadurch zu entstehen (PREYER), dass farblose contractile Zellen rothe Blutkörperchen in sich aufnehmen. - In der Leber wird der Untergang rother Blutzellen wahrscheinlich gemacht durch das Auflösungsvermögen der gallensauren Salze für die rothen Körperchen (p. 39) und die Bildung des Gallenpigments, ferner durch den äusserst langsamen Blutstrom in der Leber (p. 97), endlich durch die Armuth oder den Mangel an "alten" rothen Zellen im Lebervenenblut. Dasselbe enthält, wie bereits erwähnt, nur "junge" rothe und viele farblose. Zellen, ähnlich dem Milzvenenblut (LEHMANN); woraus aber noch keineswegs auf eine Neubildung von Blutzellen in der Leber geschlossen werden darf, da die neuen Zellen der Milzvene durch die Pfortader in die Leber gelangen. Nimmt man nun an, dass die durch die übrigen Componenten der Pfortader eingeführten "alten" rothen Zellen ganz oder theilweise in der Leber zu Grunde gehen, so muss natürlich das Lebervenenblut mehr neue Elemente enthalten als das Pfortaderblut. - Es scheint demnach besonders der in die Artt, coeliaca und mesentericae gelangende Bruchtheil der Blutmasse seine rothen Elemente einzubüssen und zwar theils direct in der Milz und Leber (Art. hepatica), theils nachdem Magen und Darm versorgt sind, in der Leber (Pfortader). - Auch im Knochenmark, wo sich Pigment und blutkörperchenhaltige Zellen (BIZZOZERO; nach NEUMANN nur pathologisch) finden, soll ein Untergang rother Elemente stattfinden (BIZZOZERO).

Wechsel der chemischen Bestandtheile.

Ueber den Wechsel der chemischen Blutbestandtheile ist noch weniger Sicheres bekannt, als über den der morphologischen. Man weiss zwar im Allgemeinen, wie in den drei letzten Capiteln erörtert ist, welche Bestandtheile das Blut einnimmt und ausgiebt, allein man kennt weder auch nur annähernd die Grössen dieses Umsatzes, noch weiss man, wie er sich auf die verschiedenen Verkehrsstellen vertheilt. Ferner weiss man so gut wie nichts über die Frage, ob

166

Wechsel des Wassers.

innerhalb des Blutes selbst chemische Veränderungen seiner Bestandtheile vor sich gehen. Gegen das Vorkommen von Oxydationsprocessen im Blute spricht die Thatsache, dass in sauerstoffhaltigem, aber kohlensäurefreiem frischen Blute keine oder nur eine Spur von Kohlensäure gebildet wird. Dagegen wird (abgesehen von den Bestandtheilen der Blutkörperchen, deren Farbstoff nach p. 165 erst im Blute entsteht) gewöhnlich angenommen, dass die fibrinogene Substanz entweder im Blute oder doch in der Lymphe aus anderen Eiweisskörpern (Albumin) entstehe; jedoch ist auch dies keine feststehende Thatsache, da auch sie möglicherweise aus irgend einem Organe fertig gebildet aufgenommen wird. Ferner ist nachgewiesen, dass gewisse leicht oxydirbare Substanzen, z. B. milchsaures und capronsaures Natron, Glycerin (dagegen nicht Zucker, ameisensaures, essigsaures und benzoësaures Natron), nach Einspritzen in's Blut schnell verbrannt werden, auch wenn man sie nur mit Blut gemischt durch irgend ein Organ leitet; jedoch ist nicht erwiesen, ob diese Verbrennung im Blute selbst erfolgt (LUDWIG & SCHEREMETJEWSKI).

Der Wechsel der chemischen Blutbestandtheile durch Secretion und Resorption lässt sich auf folgende Weise kurz zusammenfassen.

1. Der Gaswechsel des Blutes ist bereits im 4. Capitel im Zusammenhang besprochen.

2. Die unorganischen Bestandtheile werden beständig in grossen Mengen aus dem Verdauungsapparat und aus Parenchymsäften und Secreten resorbirt und ebenso an Parenchymsäfte und Secrete ausgegeben, das Wasser ausserdem durch Haut- und Lungenathmung direct an die Atmosphäre. Die Constanz ihrer Menge im Blute wird durch folgende Mechanismen erhalten: a. das Wasser: Verarmung des Blutes an Wasser muss zunächst auf den Diffusionsverkehr des Blutes in der Art einwirken, dass von dem concentrirteren Plasma weniger Wasser an die Parenchyme und Secrete abgegeben, dagegen mehr aufgenommen wird. Ferner ist mit jeder Wasserabnahme im Blute zugleich eine Abnahme des Blutvolums, also eine Verminderung des Blutdrucks in den Gefässen verbunden. so dass auch durch Filtration weniger Wasser abgegeben wird; am meisten macht sich dies durch Verminderung des Wassergehalts (und der Menge) der nach aussen gehenden Secrete, Harn, Schweiss, bemerklich, in den Parenchymen nur durch verminderten Turgor. Endlich bewirkt der locale Wassermangel gewisser Parenchyme Empfindungen, welche zu erhöhter Wasseraufnahme durch die Nahrung veranlassen (Durst, s. Cap. VI.). - Umgekehrt

führt begreiflich Wasserüberschuss im Blute zu vermehrter Ausgabe durch Filtration und Diffusion, welche wiederum durch Vermehrung des Harns, des Schweisses, Aufhören des Durstes etc. sich bemerklich macht. Ueber die Vertheilung der Wasserabgabe nach aussen s. Cap. VI. — b. Salze. Auch die Veränderungen im Salzgehalt des Blutes müssen den Diffusionsverkehr, wie sich leicht ergiebt, in einer Art modificiren, welche zu einer annähernden Constanz des Salzgehalts im Ganzen führt. Wie sich aber die Mengen der einzelnen Salze erhalten, oder ob eine gegenseitige Vertretung stattfindet, ist unbekannt.

3. Organische Bestandtheile. Da die Kräfte, durch welche organische Substanzen in das Blut ein- und aus demselben austreten, noch keineswegs sicher bekannt sind (s. Cap. II. und III.), so kann man noch nicht den Mechanismus vermuthen, welcher, analog dem eben besprochenen für die unorganischen Stoffe, eine annähernde Quantitätsconstanz jener herbeiführte. Nur das weiss man, das eine beständige Aufnahme organischer Nahrungsstoffe durch gewisse, noch räthselhafte Empfindungen (Hunger, s. Cap. VI.) veranlasst wird, und zwar um so stärker, je grösser der Verbrauch gewesen ist.

Die Aufnahme organischer Substanzen in das Blut geschieht zum Theil ohne Weiteres, indem dieselben chemisch unverändert aus der Nahrung resorbirt werden; so werden viele lösliche organische Nahrungsbestandtheile, ferner ein Theil des löslichen Eiweisses (BRÜCKE), endlich ein Theil der Fette nach blosser Emulgirung in das Blut aufgenommen. Ein grosser Theil der Nahrungsbestandtheile aber erleidet durch die Verdauung chemische Veränderungen (s. Cap.III.), und die Producte derselben, welche resorbirt werden, scheinen nach der Resorption wieder neue Veränderungen durchzumachen, ehe sie bleibende Blutbestandtheile werden; diese Veränderungen bezeichnet man als "Assimilation"; sie sind zum grössten Theil noch unbekannt. Folgende Assimilationsvorgänge sind bis jetzt annähernd ermittelt: 1) Die Eiweisskörper, der Leim und ähnliche Substanzen werden grossentheils vor der Resorption in Peptone, zum Theil vielleicht noch weiter gespalten; da nun die Peptone in den Säften und Geweben nicht nachweisbar sind (LEHMANN; HOPPE-SEYLER & DE BARY), auch in den Harn nicht übergehen (FEDE), so müssen sie schnell in andere Körper, vermuthlich in Eiweisskörper verwandelt werden. 2) Ein Theil der Fette wird im Darm gespalten und verseift und als Seife resorbirt; da nun aus genossenen Seifen die entsprechenden Fette im Organismus gebildet werden, so ist es wahrscheinlich, dass

Assimilationsprocesse. Synthesen.

auch die im Darm gebildeten Seifen nach der Resorption wieder in Fette zurückverwandelt werden können (RADZIEJEWSKY). 3) Genossener oder aus genossener Stärke bei der Verdauung gebildeter Zucker wird nach der Resorption in eine stärkeähnliche Substanz (Glycogen) verwandelt und zwar in der Leber, worüber Näheres im Anhang zu diesem Capitel.

Da ein Theil der Eiweisskörper unpeptonisirt zur Resorption kommt (s. oben), so vermuthen Einige, dass die Peptone nicht wieder in Eiweiss zurückverwandelt werden, sondern im Gegentheil zu Harnstoff verbrannt, zur Ausscheidung kommen.

Der Sitz dieser Assimilations - Processe ist noch unbekannt; manche vermuthen ihn in der Leber, in welche namentlich der sub 3) angeführte zu verlegen ist. Die genannten Processe sind sämmtlich Synthesen, im Gegensatz zu den hydrolytischen Spaltungen der Verdauung (p. 130), deren Umkehrung sie geradezu sind. (Eine andere im Organismus erfolgende Synthese, die der Hippursäure aus Glycin und genossener Benzoësäure, geschieht nachgewiesenermassen in der Leber, Kühne & Hallwachs). Der Vorgang, dass die Nahrungsmittel im Darm gespalten, und die Spaltungsproducte nach der Resorption zu Synthesen, zum Theil zur Regeneration der ursprünglichen Substanzen verwandt werden, ist in zwei Hinsichten von Nutzen (HERMANN): erstens sind die Spaltungsproducte wegen ihrer kleineren Molecüle (p. 81) im Allgemeinen resorbirbarer als die ursprünglichen Substanzen, zweitens liefern die Spaltungsproducte ein einfacheres Baumaterial, aus welchem allein die Synthese so mannigfacher Substanzen, wie sie der Körper braucht, möglich ist.

Die meisten der complicirteren Substanzen, welche der Körper braucht, müssen nothwendig erst in ihm durch Synthese entstehen; denn die Zufuhr von fertigem Hämoglobin, unzersetzter Muskelsubstanz, u. dgl. durch die Nahrung ist unmöglich, weil diese Substanzen theils spontan, theils im Verdauungsapparat zerstört werden; die Assimilation bedarf also der Synthesen (HERMANN). Vom Hämoglobin ist nachgewiesen, dass seine Menge im Blute durch eiweisshaltige Nahrung vermehrt wird (SUBBOTIN).

Ebensowenig wie über die Art der Zufuhr der organischen Bestandtheile zum Blute ist etwas Genaueres über die Art der Abgabe derselben an die Gewebe u. dgl. ermittelt.

Constanz der Blutmenge.

Die Erhaltung der Blutmenge ist natürlich das Resultat der Quantitätsconstanz der Blutbestandtheile. Da jedoch das Wasser bei Weitem die Hauptmasse des Blutes ausmacht (80%), und dem

170 Constanz der Blutmenge, Glycogen- und Zuckerbildung.

Volumen nach das Wasser dem Blutvolumen fast gleichkommt, so kommt für die Erhaltung der Blutmenge vorzüglich die der Wassermenge in Betracht, deren Mechanismus bereits (p. 167) erörtert ist. In der That stellt sich nach grossen Blutverlusten sehr schnell das Blutvolum dadurch wieder her, dass unter dem verminderten Blutdruck weniger Wasser an die Parenchyme und Secrete abgegeben und mehr resorbirt wird, dass ferner starker Durst zu vermehrtem Flüssigkeitsgenuss auffordert.

Anhang zum fünften Capitel.

Glycogen- und Zuckerbildung in Parenchymen.

In vielen thierischen Geweben findet sich eine stärke- oder richtiger dextrinähnliche, sehr leicht (durch dieselbe Mittel wie Stärke) in Zucker übergehende Substanz, das Glycogen (p. 21). Hauptsächlich kommt sie vor in der Leber (BERNARD, HENSEN), in den Muskeln (MAC-DONNELL, O. NASSE), in fast allen Geweben des Embryo und seiner Adnexa (BERNARD), ebenso in den Geweben junger Thiere, und in neugebildeten pathologischen Geweben (KÜHNE).

Glycogen scheint auch bei niederen Thieren vielfach vorzukommen, z. B. fand es sich in der Ascaris lumbricoides, hauptsächlich in den Muskeln (Foster). Zuckerbildende ("glycogene") Substanzen, die dem Glycogen der Leber mehr oder weniger nahe stehen, finden sich auch im Gehirn (JAFFE), in den Muskeln (Dextrin, LIMPRICHT), in vielen Drüsen (KÜHNE, BRÜCKE), im Blut (BRÜCKE) u. s. w.

Aus der Leber stellt man das Glycogen dar durch Zerreiben des ganz frischen Organs mit Sand und Wasser bei 100⁰, Ansäuern zur vollständigen Ausfällung der Albuminate, Filtriren und Auskochen des Rückstandes mit neuen Portionen Wasser, bis das Filtrat nicht mehr opalisirt. Die vereinigten Filtrate werden auf die Hälfte eingeengt und mit Alkohol versetzt, wodurch das Glycogen, mit etwas Glutin verunreinigt, in weissen Flocken ausfällt; von letzterem befreit man es durch Kochen mit Kali, Neutralisiren und Ausfällen mit Alkohol. — Leichter gewinnt man es rein von N-haltigen Beimischungen, wenn man das wässerige Leberextract vor Ausfällung des Glycogens mit Jodquecksilberkalium ausfällt (BRÜCKE).

Fermente, welche das Glycogen in Zucker überführen können, enthalten nicht bloss die zuckerbildenden Secrete (Speichel, Pancreassaft), sondern auch die Leber (BERNARD), das Blut, ja fast sämmtliche Gewebe (v. WITTICH, LÉPINE). Die ausgeschnittene Leber enthält stets grosse Mengen von Zucker, welche beständig zunehmen,

Zuckerbildung.

so lange noch Glycogen vorhanden ist. Eine noch nicht entschiedene Frage ist es, ob die Leber auch während des Lebens Zucker bilde. In einer ganz frischen, dem eben getödteten Thiere entnommenen Leber haben die Einen (BERNARD, KÜHNE) geringe, aber deutliche Zuckermengen gefunden, die Andern (PAVY, RITTER, SCHIFF, EULENBURG) keine Spur. Für eine Zuckerbildung in der Leber während des Lebens spricht ferner, dass das Lebervenenblut (bei stärke- und zuckerfreier Kost) reicher an Zucker ist, als das Pfortaderblut (BERNARD, TIEFFENBACH); diese beständige Abfuhr von Zucker liesse sich mit sehr geringem Zuckergehalt oder selbst mit Zuckermangel der Leber vereinigen, indess ist auch dieser Befund und überhaupt der Zuckergehalt des Blutes, insbesondere des Lebervenenblutes, bestritten worden (PAVY, RITTER, SCHIFF). Diejenigen, welche keine Zuckerbildung in der lebenden Leber annehmen, bestreiten entweder das Vorhandensein des zuckerbildenden Fermentes, das sich erst nach dem Tode oder unter pathologischen Bedingungen (s. unten, Diabetes) bilde (SCHIFF), oder nehmen an, dass das vorhandene Fermet (durch eine Art Hemmungswirkung von Seiten des Nervensystems) an seiner Wirkung während des Lebens gehindert sei (PAVY).

Die Präexistenz des Fermentes in Blut und Geweben wird neuerdings bestritten (LÉPINE, PLÓSZ, TIEGEL). Blut wirkt nicht auf Glycogen, wenn nicht dessen Blutkörperchen (durch Wasser, Aether etc.) bei Gegenwart des Glycogens zerstört werden, so dass wahrscheinlich die Blutkörper im Augenblick ihrer Zerstörung das Ferment entwickeln (PLÓSZ, TIEGEL). Bemerkenswerth ist hierbei dass in der Leber wahrscheinlich fortwährend Blutkörper zerstört werden (vgl. p. 166).

Der Glycogengehalt der Leber ist sehr von der Nahrung abhängig; er ist um so stärker je reicher dieselbe an Kohlenhydraten ist (PAVY, TSCHERINOFF). Bei hungernden Warmblütern schwindet das Glycogen in wenigen Tagen, und erscheint sofort wieder reichlich nach Zuckerinjectionen in den Darm (Dock). (Das gleiche bewirken Injectionen von Glycerin, WEISS.) Hieraus ist zu schliessen dass das Glycogen durch Anhydridbildung in der Leber aus Zucker entsteht (vgl. p. 169).

Eine andere Erklärung welche versucht worden ist (WEISS), betrachtet andere Substanzen (Eiweisskörper) als die Quelle des Glycogens; das Glycogen werde aber gleich weiter oxydirt, wenn nicht andere, leicht oxydable Körper z. B. Zucker, den Sauerstoff von ihm zurückhalten. Hierfür wird angeführt, dass auch Glycerininjectionen in den Darm die Leber glycogenhaltig machen. Dagegen ist erstens Zucker nach neueren Versuchen keine leicht verbrennliche Substanz (Scheremetjewski, vgl. p. 167); ferner bewirken andere leicht verbrennliche Substanzen, z. B. milchsaures Natron, keine Glycogenanhäufung, und Glycerin nur dann wenn es in den Darm, nicht wenn es subcutan injicirt wird (LUCHSINGER). Andere Zuckerarten, Milchzucker, auch der linksdrehende Fruchtzucker, liefern ebenfalls normales Glycogen (LUCHSINGER). Die Zuckerarten also und das ihnen nahe verwandte Glycerin scheinen in Glycogen überzugehen wenn sie der Leber durch die Pfortader zugeführt werden. — Hierfür spricht ferner dass Zucker, in die Pfortader injicirt, nicht im Harne erscheint, wohl aber wenn er in andere Venen gebracht wird (SCHÖPFFER).

Das Schicksal des Leberglycogens ist nicht festgestellt. Diejenigen welche eine vitale Zuckerbildung annehmen, lassen es in Zucker übergehen und diesen theils ausgeschieden (Harn, p. 104, Milch), theils verbrannt werden. Andere Möglichkeiten sind: Ueberführung in andere glycogenhaltige Organe (Muskeln, Hoden) und functioneller Verbrauch daselbst; ferner weitere Umwandlungen, in Fette u. dgl. —

Unter gewissen Umständen kommt es zu einer reichlichen Ausscheidung von Zucker durch den Harn, — Zuckerruhr, Diabetes. Diese Umstände sind: 1) pathologische Veränderungen deren Sitz und Wesen unbekannt sind (pathologischer Diabetes), 2) Verletzung einer circumscripten Stelle des verlängerten Marks, am Boden des vierten Ventrikels ("Zuckerstich", "Piqûre", traumatischer Diabetes, BERNARD), 3) gewisse Vergiftungen, besonders mit Curare, 4) Einflössung sehr verdünnter Salzlösungen in die Blutgefässe (BOCK & HOFFMANN). — Die Ursache des Diabetes kann gesucht werden: a. in einer Umwandlung (resp. gesteigerten Umwandlung) des Glycogens der Leber oder anderer Organe in Zucker; b. in einer verminderten Umwandlung zugeführten Zuckers in Glycogen; c. in einer verminderten Zerstörung des aus Leberglycogen normal entstehenden Zuckers (s. oben).

Im pathologischen Diabetes schwindet der Zucker ganz oder nahezu aus dem Harn wenn keine Kohlenhydrate genossen werden. Auch der Zuckerstich macht keinen Diabetes, wenn die Thiere durch Hungern glycogenfreie Lebern haben (Dock). Bei Thieren mit Zuckerstich macht ferner Zuckerzufuhr die Leber nicht wie sonst glycogenhaltig (Dock). Hieraus geht hervor dass der traumatische und wahrscheinlich auch der pathologische Diabetes aus der Unfähigkeit der Leber zugeführten Zucker als Glycogen zu fixiren hervorgeht, so dass der Zucker unverändert im Harn wiedererscheint oder in anderen Organen sich ansammelt. Dagegen werden Hungerthiere durch Curare auch ohne Zuckerzufuhr diabetisch (Dock); wahrscheinlich stammt also hier der Zucker aus einem Glycogenvorrath der in Zucker umgewandelt wird, vielleicht in den Muskeln.

Die nähere Ursache des traumatischen Diabetes wird neuerdings in einer Gefässlähmung der Leber gesucht (SCHIFF, CYON & ALADOFF). Die Zuckerstichstelle ist möglicherweise ein Theil des vasomotorischen Centrums (Cap. XI.).

Diabetes.

Auch andere Verletzungen in den vasomotorischen Bahnen der Leber, z. B. des Ganglion cervicale inf. oder der von ihm zum Ganglion stellatum gehenden Nerven, machen Diabetes, dagegen nicht Durchschneidung der Splanchnici, die vielleicht den Blutdruck zu sehr allgemein herabsetzt (vgl. p. 109) (Cvon & ALADOFF). (Vom Splanchnicus wird im Gegentheil behauptet, dass seine Reizung Diabetes macht, GRäffe.) Auch der Curarediabetes lässt sich möglicherweise auf Gefässlähmung zurückführen. — Nach dem oben Gesagten müsste die Gefässlähmung einerseits die Glycogenbildung aus Zucker hindern oder das Glycogen, vorräthig oder neu entstanden, in Zucker zurückverwandeln, durch einen noch unverständlichen Einfluss auf Entwicklung des Ferments. Für den Diabetes durch Injection verdünnter Salzlösungen kann eine Zerstörung von Blutkörperchen an der Fermentbildung betheiligt sein (vgl. p. 171); das Ferment geht hier mit in den Harn über (PLósz & TIEGEL). Sechstes Capitel.

Stoffwechsel des Gesammt-Organismus.

I. DIE EINNAHMEN.

Wie bereits wiederholt angegeben, nimmt der Organismus regelmässig von Aussen auf: 1. Ersatzmaterial für die theils nach ihrer Oxydation in Form von "Oxydationsproducten", theils unoxydirt, unverändert ausgeschiedenen Körperbestandtheile, — Nahrung. 2. Sauerstoff, zur Oxydation der oxydirbaren Körperbestandtheile. Was über die Aufnahme des letzteren zu sagen ist, findet sich im vierten Capitel. Die Nahrung erfordert dagegen hier eine nähere Betrachtung.

Die Nahrung.

Die Elemente der Nahrung müssen im Allgemeinen dieselben sein wie die Körperelemente (p. 10), wenn sie den Verlust der letzteren ersetzen sollen. Indessen genügt die Zuführung dieser Elemente im isolirten Zustande nicht zur Ernährung, weil sie theils zur Aufnahme in das Blut untauglich sind, theils wenn sie auch aufgenommen sind, doch ihre Synthese zu den chemischen Verbindungen, welche sie ersetzen sollen, im Organismus nicht ausführbar ist. Es können daher im Allgemeinen nur chemische Verbindungen als Nahrungsstoffe benutzt werden, und zwar nur solche, die die folgenden Bedingungen erfüllen: 1. die Verbindung muss zur Aufnahme in das Blut oder den Chylus direct oder nach der Vor-

Nahrungsstoffe. Nahrungsmittel. Speisen.

bereitung durch die Verdauungsvorgänge geeignet ("verdaulich") sein; 2. sie muss einen unorganischen oder organischen Bestandtheil des Organismus direct ersetzen oder im Körper in einen solchen sich verwandeln, oder als Ingrediens zum Aufbau desselben verwandt werden können; weder sie selbst, noch eines ihrer etwaigen Umwandlungsproducte darf Eigenschaften besitzen, welche den Bestand oder die Thätigkeiten irgend eines Körperorganes beeinträchtigen (derartige Stoffe werden "Gifte" genannt).

Kaum ein einziger der Nahrungsstoffe wird für sich allein, fast alle werden in gewissen natürlichen Gemengen genossen, welche man Nahrungsmittel nennt; es sind meist pflanzliche oder thierische Gewebe, oder Theile von solchen. Auch diese werden meist noch künstlich mit einander vermischt und, theils zur leichteren Verdauung, theils zur Erhöhung des Wohlgeschmacks, auf mannigfache Weise zubereitet. Solche zubereitete Gemenge von Nahrungsmitteln nennt man Speisen.

Bei der Mischung von Nahrungsmitteln zu Speisen ist die Zufügung eines sog. "Gewürzes" das Wesentlichste, d. h. eines Stoffes, der durch gewisse reizende Eigenschaften zur reflectorischen Anregung der Absonderung der Verdauungssäfte (Speichel, Magensaft etc.) besonders geeignet ist; das gewöhnlichste Gewürz ist das Kochsalz (welches aber auch als Nahrungsstoff eine Rolle spielt, s. unten). Die Zubereitungen der Speisen (Kochen, Braten, Backen etc.) haben besonders zum Zweck, der Verdauung durch Vorwegnahme einiger ihrer Verrichtungen, z. B. durch Lösung des Löslichen, Löslichmachen des Unlöslichen, Auflockern des Compacten, Zersprengen unverdaulicher Hüllen, Vorschub zu leisten.

Wie aus dem oben Gesagten hervorgeht, zerfallen die Nahrungsstoffe in zwei natürliche Gruppen, welche beide nothwendig in der Nahrung vertreten sein müssen. Die erste, welche zum Ersatz unoxydabler Körperbestandtheile dient, ist die unorganische Nahrung und besteht wesentlich aus Wasser und Salzen; die zweite, zum Ersatz der oxydirbaren Körperbestandtheile dienende, welche also oxydirbar sein muss, ist die organische Nahrung. Diese stammt wie alle organischen Stoffe unmittelbar oder mittelbar aus der Pflanze; denn auch die organischen Bestandtheile des Thierkörpers (welche die "thierische Nahrung" bilden) sind auf pflanzliche zurückzuführen, weil auch das fleischfressende Thier sich direct oder jedenfalls in letzter Instanz von Pflanzenfressern nährt.

Die mannigfachen organischen Verbindungen von C, H, N, O, S u. s. w., die in der Pflanze sich bilden (p. 4), sind nur zum geringsten Theile wirkliche Nahrungsstoffe, weil viele von ihnen die

Organische Nahrungsstoffe.

oben angegebenen Bedingungen nicht erfüllen. Die von den Nahrungsstoffen unter ihnen herstammenden thierischen Stoffe müssen wie sich leicht ergiebt, zum grössten Theile wieder als Nahrungsstoffe dienen können; indessen sind diese wieder um so werthlosere Nahrungsstoffe, je höhere Oxydationsstufen sie sind. Der Werth eines Nahrungsstoffes richtet sich nämlich vorzugsweise nach der durch ihn repräsentirten Summe von Spannkraft (p. 2), d. h. nach dem Quantum von lebendiger Kraft oder Arbeit, das aus seiner Verbrennung hervorgeht. (Ueber directe Maassbestimmungen in dieser Beziehung s. die Einleitung zum zweiten Abschnitt.) Je höher aber die Oxydationsproducte sind, um so weniger Sauerstoff sind sie noch zu binden im Stande, um so werthloser sind sie also für die Leistungen des Organismus. Daher ist Harnstoff kein Nahrungsstoff, Kreatin ein sehr werthloser, Eiweiss, Zucker dagegen sehr werthvolle.

Welche Substanzen nothwendige organische Nahrungsstoffe sind, würde sich ergeben, wenn man die regelmässigen Körperbestandtheile (p. 13 ff.) als unentbehrlich betrachtet, und sie in Rücksicht darauf durchmustert, ob sie aus irgend einer andern Substanz im Thierkörper entstehen könnten; wenn nicht, so würden sie mit der Nahrung aufgenommen werden müssen.

Hierbei ist jedoch erstens festzuhalten, dass nicht die Unentbehrlichkeit aller im Organismus vorkommenden Stoffe angenommen werden kann; es ist also Gefahr vorhanden, dass man auf dem eben angegebenen Wege zu viele nothwendige Nahrungsstoffe findet; in dieser Beziehung wäre also ein Vorbehalt zu machen. - Ferner ist zu berücksichtigen, dass eine Anzahl von Körperbestandtheilen gar nicht dadurch ersetzt werden kann, dass wir sie selbst mit der Nahrung einführen; weil sie entweder unresorbirbar und unverdaulich sind (z. B. Mucin, Keratin, Cholalsäure), oder weil sie schon vor dem Genuss sich unvermeidlich zersetzen, z. B. die Muskelsubstanz durch Erstarren, oder im Digestionsapparat zersetzt werden, z. B. Hämoglobin durch die Säure des Magensafts, oder weil sie nach ihrer Resorption schnell verändert, oxydirt werden würden, ehe sie an den Ort ihrer Bestimmung gelangen; solche Substanzen müssen daher nothwendig erst innerhalb des Organismus producirt werden.

Vor Allem aber scheitert das Bemühen, auf dem angegebenen Wege die nothwendigen Nahrungsstoffe zu ermitteln, an der Unkenntniss dessen, was der Organismus synthetisch zu leisten vermag.

Ableitung der nothwendigen Nahrungsstoffe.

Im vorigen Capitel ist angeführt worden, dass höchstwahrscheinlich bei der Assimilation aus Peptonen Eiweisskörper, aus Seifen (und Glycerin) Fette, aus Zucker Glycogen gebildet werden kann; ob aber z. B. auch noch weitere Spaltungsproducte der Eiweisskörper (Leucin, Tyrosin etc., s. p. 101) zu Eiweiss synthetisch regenerirt werden können, ist unbekannt. Besässe der Organismus ganz allgemein die Fähigkeit, Substanzen unter Wasseraustritt synthetisch zu vereinigen, so könnte man kurz als nothwendige organische Nahrungsstoffe bezeichnen: die hydrolytischen Spaltungsproducte der wesentlichen Körperbestandtheile, d. h. der Eiweisskörper und ihrer Verbindungen (p. 35 f.), der Glucoside, der Lecithinkörper, der Fette u. s. w.; diese Spaltungsproducte könnten entweder isolirt oder bereits zu irgend welchen Gruppen vereinigt (welche dann theilweise durch die Verdauung wieder gespalten würden) in der Nahrung enthalten sein. Die oben als Beispiele genannten Körper könnten also in der Nahrung auf folgende Weisen vertreten sein: a) Fettsäuren (Seifen), Glycerin, Phosphorsäure, Zucker (Stärke), Peptone; oder b) Fette, Phosphorsäure, Zucker (Stärke), Eiweiss; oder c) Lecithin, Zucker (Stärke), Eiweiss; oder d) Protagon, Eiweiss u. s. f.

Die vorliegende Frage wird noch dadurch sehr complicirt, dass man nicht weiss, ob ausser hydrolytischen Spaltungen noch andere, tiefere chemische Umwandlungen (abgesehen von den Oxydationen) im Körper vorkommen. So scheinen namentlich Fette noch aus andern Körpern als Fette oder Lecithin hervorgehen zu können; denn der Thierkörper kann auch bei fettfreier Nahrung stark fetthaltig werden. Fette könnten ausser den schon genannten Ursprüngen im Organismus entstehen: 1. aus Eiweisskörpern; hierfür spricht: a) die Entstehung eines fettartigen Körpers (Leichenwachs, Adipocire) in eiweissreichen Geweben der Leiche; b) die Fettbildung aus Casein in stehender Milch (p. 116); c) ein ähnlicher Vorgang beim Reifen des Käses; d) das Auftreten von Stearin im Körper, wenn neben Eiweiss eine stearinfreie Fettart (Palmöl) im Futter gereicht wird (SUBBOTIN). Andere für Fettbildung aus Eiweisskörpern u. dgl. angeführte Erscheinungen, z. B. die "fettige Degeneration" stickstoffreicher Organe haben keine volle Beweiskraft, weil sie nur zeigen, dass an einem Orte im Organismus, der also mit allen übrigen in stofflichem Verkehr steht, statt des einen ein anderer Körper auftritt; dies kann natürlich nicht sicherstellen, dass auch letzterer aus ersterem hervorgeht. So wurde z. B. eine Zeit lang unter den Beweisen für die Fettbildung aus Eiweisskörpern Hermann, Physiologie. 5. Aufl. 12

angeführt, dass fettlose Krystalllinsen und andere stickstoffhaltige Körper, in die Bauchhöhle lebender Säugethiere eingebracht, nach einiger Zeit sehr fettreich waren und an Stickstoff verloren hatten. Allein Controllversuche mit ganz indifferenten porösen Körpern, Holz, Hollundermark etc. zeigten, dass auch diese sich in der Bauchhöhle lebender Thiere mit Fett imprägnirten. 2. Aus Kohlehydraten; obwohl die Umwandlung von Kohlehydraten in Fette ein Reductionsprocess wäre, wenn nicht etwa die Kohlehydrate nur das Glycerin liefern, so sprechen doch folgende Erfahrungen für diesen Vorgang: a) die Bienen liefern bei reiner Zutterfütterung einen fettartigen Körper, das Wachs; b) eine an Kohlehydraten reiche Nahrung macht den Körper fett ("Mästung", s. unten); besonders zeigt sich hierbei unmittelbar eine starke Fettanhäufung in der Leber (TSCHERINOFF); diese Thatsachen lassen sich aber auch so erklären, dass die Oxydation der leicht verbrennlichen Kohlehydrate die Verbrennung von Fett oder fettbildenden Körpern (z. B. Eiweisskörpern) beeinträchtigt (Näheres unten). Der Umstand endlich, dass in Früchten (Oliven) sich Fette aus Kohlehydraten (Mannit) bilden, beweist Nichts für einen ähnlichen Vorgang im Thiere.

Man hält jetzt die Fettbildung aus Eiweiss für die einzige neben der aus genossenem Fett; denn in allen bekannten Fällen, selbst bei der enormen Fettbildung milchender Kühe, reicht das Fett und Eiweiss der Nahrung aus, um das Fett zu liefern, die Wachsbildung der Bienen bei blossem Zuckergenuss lässt sich ebenfalls durch vorräthiges Eiweiss erklären, und die Mästung mit Kohlehydraten gelingt nur bei gleichzeitiger Eiweissfütterung (Vorr).

Es ergiebt sich aus dem Allen, dass man für die Aufstellung der nothwendigen Nahrungsstoffe vor der Hand auf die Erfahrung allein angewiesen ist. Diese lehrt, dass ausser Wasser und Salzen (worunter besonders Chloride und Phosphate) vor Allem Eiweisskörper unentbehrlich sind (wieweit dieselben durch verdauliche Albuminoide [Leim oder leimgebendes Gewebe] ersetzt werden können, wird weiter unten sub III. 2. erörtert); ferner scheinen noch Fette (Stearin, Palmitin, Olein etc.) nur bei grossem Aufwand von Eiweiss entbehrlich zu sein, aber durch Kohlehydrate vertreten werden zu können. Wahrscheinlich ist hiermit die Reihe der unentbehrlichen Nahrungsstoffe noch keineswegs erschöpft.

Einige der wichtigeren Nahrungsmittel und Speisen sind folgende:

1. Fleisch (Muskeln), enthält ausser Wasser und Salzen (bes. Kalisalze) von wesentlicheren Nahrungsstoffen (vgl. Cap. VIII.) mehrere Eiweisskörper Myosin, Albumin), leimgebendes Gewebe, wenig Lecithin (von den intra-

Wichtigste Nahrungsmittel und Speisen.

muscularen Nerven?), Fette, ausserdem einige "Extractivstoffe", welche theils wohlschmeckend sind ("Osmazom"), theils schwach aufregende Wirkungen zu haben scheinen (Kreatin etc.). - Es wird genossen: 1) roh; 2) mit Wasser gekocht; - das Extract, die Fleischbrühe, enthält hauptsächlich Leim, die Extractstoffe, die Salze (welche durch ihren Kaligehalt der concentrirten Brühe eine erhebliche Wirkung auf das Herz verleihen, КЕММЕRICH), und etwas oben schwimmendes Fett; die Eiweisskörper sind im heissen Wasser unlöslich und bleiben vollständig im Fleisch, wenn dieses sofort mit heissem Wasser behandelt wird; wenn nicht, so geht das Albumin in das kalte Wasser über, gerinnt aber beim Erhitzen und wird mit dem "Schaum" entfernt; - das rückständige Fleisch enthält noch die meisten nahrhaften Bestandtheile (Myosin und das leimgebende Gewebe, im erstgenannten Falle auch das Albumin), aber nicht mehr die wohlschmeckenden und die Salze; 3) gebraten, d. h. ohne oder mit möglichst wenig Flüssigkeit (Wasser oder Fett) stark erhitzt; so zubereitet behält das Fleisch seine sämmtlichen Bestandtheile, und es entstehen, besonders an der Oberfläche, einige braune empyreumatische, angenehm riechende und schmeckende Stoffe.

2. Milch (vgl. p. 114), enthält Eiweisskörper (Albumin, Casein), Fette (Butter), wahrscheinlich Lecithin, ferner Kohlehydrate (Milchzucker), Wasser und sehr viel Salze. Sie wird frisch oder sauer genossen; ferner die für sich dargestellte Butter; endlich der Käse, d. h. das durch (spontane) Säuerung der Milch oder durch Magensaft (Laabmagen von Kälbern) ausgefällte Casein, welches einen grossen Theil der Fette in sich einschliesst; beim Aufbewahren verändert sich der Käse in einer der Verdauung analogen Weise, indem er (durch Peptonisirung und weitere Spaltung des Caseins) weich und durchscheinend wird ("Reifen" des Käses, wobei eine Fettbildung aus Casein stattfinden soll und Leucin und Tyrosin entstehen). Ueber Molken und Kumiss s. p. 116.

3. Eier. Das Weisse enthält eine concentrirte Albuminlösung; der Dotter Eiweisskörper, viel Lecithin, Cholesterin und Fette, ferner Zucker. Beim Erhitzen coagulirt das Weisse compact, das Gelbe krümelig.

4. Getreidekörner (Weizen, Roggen, Mais, Gerste, Reis, Hafer u. s. w.), enthalten einen Eiweisskörper (Kleber, Pflanzenfibrin, in Wasser unlöslich), ein Albuminoid (Pflanzenleim), Lecithin (Hoppe-SEYLEE), Spuren von Fett, in grosser Menge Stärke, daneben, besonders im Keimungszustand, ein zuckerbildendes Ferment (Diastase). Das zermahlene und von der Rinde (Kleie) befreite Getreide, das Mehl, wird hauptsächlich zur Bereitung des Brodes verwandt. Beim Anrühren des Mehls mit Wasser entsteht eine (durch den Kleber) zähe Masse, der Teig, welchen man auf irgend eine Weise lockert und dann stark erhitzt; das Lockern geschieht durch Kohlensäureentwickelung, indem man im Teige erst einen Theil der Stärke (durch die Diastase) in Dextrin und Zucker übergehen lässt und letzteren danach durch Zusatz von Hefe oder Sauerteig in alkoholische Gährung überführt; der gelockerte Teig wird dann (auf etwa 2000) erhitzt, wobei zugleich der Alkohol entweicht; neuerdings treibt man statt der Gährung auch künstlich Kohlensäure in den Teig ein. - Ein anderes Getreideproduct ist das Bier, ein wässeriges Decoct gekeimten und erhitzten, daher sehr dextrin- und zuckerreichen Getreides (Malz); das Decoct wird durch Hefe in alkoholische Gährung übergeführt; das Bier enthält hauptsächlich Dextrin, Alkohol, zugesetzte Bitterstoffe (Hopfen) und absorbirte Kohlensäure; es ist das alkoholärmste der berauschenden Getränke (2-8 pCt.). Durch Destillation des Bieres und ähnlicher gegohrener Getreide- (oder Kartoffel-) Decocte ("Schlempe") erhält man alkoholreichere Getränke (Branntwein).

5. Leguminosenfrüchte (Erbsen, Bohnen, Linsen u. s. w.), enthalten viel Eiweissstoffe (Legumin), ausserdem Lecithin und Stärke. Sie werden meist gekocht genossen (wobei die Stärke zu Kleister aufquillt); zur Brodbereitung eignen sie sich nicht, weil sie (wegen des Mangels an Kleber) keinen zähen Teig geben.

6. Kartoffeln, enthalten neben sehr wenig Eiweiss hauptsächlich Stärke.

7. Zuckerhaltige Früchte (Obst), enthalten Zuckerarten, Dextrin, Pflanzengallerte, sehr wenig Eiweiss, ferner organische Säuren (Weinsäure, Aepfelsäure, Citronensäure u. s. w.). Viele, besonders die Weintrauben, liefern durch Gährung des ausgepressten Saftes alkoholische Getränke, Weine.

8. Grüne Pflanzentheile (Blätter, Stengel u. s. w.) und Wurzeln enthalten hauptsächlich Stärke, Dextrin, Zucker, wenig Eiweissstoffe.

Alle pflanzlichen Nahrungsmittel enthalten der Hauptsache nach Cellulose, welche für Menschen und Fleischfresser völlig oder beinahe unverdaulich, für Pflanzenfresser aber möglicherweise ein sehr werthvoller Nahrungsstoff ist (vgl. p. 127).

Nahrungsaufnahme.

Die Aufnahme der Nahrung geschieht in willkürlichen Intervallen, die jedoch meist so klein sind, dass Verdauung und Aufsaugung, wenigstens bei Tage, kaum unterbrochen werden. Angeregt wird die Aufnahme durch gewisse, noch nicht hinreichend erklärte Empfindungen, Hunger und Durst, welche das Bedürfniss des Organismus nach Nahrung anzeigen. Die Sinnesorgane, in denen sich dies Bedürfniss des Gesammtorganismus als Empfindung geltend macht, sind gewisse Theile des Verdauungsapparats. Eine directe örtliche Empfindung dieses Bedürfnisses ist aber, wie es scheint, nur der Durst, ein Gefühl von Trockenheit und Brennen im Schlunde, hervorgerufen durch Wassermangel der Gaumen- und Rachenschleimhaut. Dieser Wassermangel ist gewöhnlich eine Theilerscheinung allgemeinen Wassermangels im Organismus, kann aber auch örtlich durch Austrocknung (Durchstreichen trockener Luft) oder sonstige Wasserentziehung (Genuss hygroscopischer Salze) entstehen. Gestillt wird das Gefühl gewöhnlich durch örtliche Befeuchtung der genannten Theile, welche meist durch Trinken geschieht, so dass zugleich der Gesammtorganismus Wasser erhält; - aber auch anderweite Wasserzufuhr (z. B. durch Einspritzen von Wasser in die Venen) löscht den Durst, entsprechend seiner Entstehung durch allgemeinen Wasser-

Hunger. Ausgaben des Organismus.

mangel (vgl. auch Cap. X. sub V.). — Der Hunger dagegen, eine drückende, nagende Empfindung des Magens und bei höheren Graden auch des Darms, kann nicht als der Ausdruck örtlichen Substanzmangels, etwa der Magen- und Darmhäute, als Theilerscheinung allgemeinen Nahrungsbedürfnisses, betrachtet werden; sondern er ist, wie es scheint, eine Empfindung von Leere im Verdauungsapparat, deren Zustandekommen noch vollkommen dunkel ist; wenigstens wird er durch Anfüllung selbst mit unverdaulichen Dingen gestillt. Später tritt freilich in diesem Falle eine vom gewöhnlichen Hunger verschiedene, ganz räthselhafte Empfindung von allgemeinem Nahrungsbedürfniss ein.

Die Nerven, welche das Durstgefühl vermitteln, sind wahrscheinlich die des Gaumens und Rachens (Trigeminus, Vagus, Glossopharyngeus) oder einzelne derselben; die für den Hunger sind noch gänzlich unbekannt. Durchschneidung der Vagi, der Splanchnici hebt die Fresslust bei Thieren nicht auf.

II. DIE AUSGABEN.

Die Stoffe, welche der Organismus beständig nach Aussen abgiebt, sind solche, welche für die Verwerthung in demselben nicht weiter tauglich sind, also: 1. Stoffe, welche gar nicht in den Stoffwechsel übergehen können, nämlich: der unverdauliche Theil der Nahrung; 2. die Endproducte der Oxydationsprocesse im Körper (die entweder überhaupt oder wenigstens im Körper nicht weiter oxydirt werden können), namentlich Kohlensäure, Wasser, Harnstoff, Harnsäure: 3. gewisse Secretionsstoffe, welche auf innere oder äussere Oberflächen des Körpers gebracht worden sind, um hier benutzt zu werden, und welche dann irgend welcher Eigenschaft halber nicht wieder resorbirt werden können, z. B. unlösliche Gallenbestandtheile, Schleim der Verdauungssecrete, Fette der Hautsalbe, Hornsubstanz u. s. w. - Endlich wird 4. ein Theil der unoxydirbaren Körperbestandtheile, Wasser und Salze, durch gewisse physicalische Verhältnisse fortwährend ausgeschieden, ersteres meist als Lösungsmittel für andere Auswurfsstoffe.

Die gasförmigen, flüssigen oder festen Ausscheidungen, in welchen diese Stoffe aus dem Körper entfernt werden, nennt man Excrete. Die wichtigsten sind: 1. die respiratorische Ausscheidung durch Lungen, Haut und Darm (Kohlensäure, Wasser); 2. der Harn (Wasser, Salze, Harnstoff, Harnsäure u. s. w.); 3. die

Ausgaben des Organismus.

flüssigen Hautabsonderungen: Schweiss (Wasser, Salze, Harnstoff, Fettsäuren etc.), Talg (Fette, Wasser, Salze, Eiweiss); 4. der Koth (unverdauliche Theile der Nahrung und der Secrete des Verdauungsapparats); 5. die Hornabstossung (Epidermis-, Haarund Nägelverlust).

Ausser diesen beständigen Ausscheidungen, welche meist wahre Auswurfsstoffe enthalten, giebt der Organismus zeitweise gewisse Bestandtheile ab, welche in der Oxydationsreihe so tief stehen, dass sie noch sehr gut in andern Organismen verwerthet werden können, zu deren Aufbau oder Ernährung sie in der That dienen. Diese sind: 1. die Milch, 2. die Eier, 3. der Samen, eiweiss-, kohlehydrat- und fettreiche Ausscheidungen. — Auch kann man 4. das Menstrualblut (4. Abschn.) hierher rechnen.

Von den genannten Excreten sind die meisten directe Absonderungen aus dem Blute und als solche bereits früher besprochen, nämlich Harn, Schweiss, Hauttalg, Milch (Cap. II.), und die respiratorische Ausscheidung (Cap. IV.). Der Koth, die im Darmkanal als Abfall beim Verdauungsprocess entstehende Mischung, ist bei der Besprechung der Verdauung im 3. Cap. erörtert. Die übrigen Excrete, die Horn-, Ei- und Samenausscheidung sind im Wesentlichen Ausscheidungen von Zellen oder Zellentheilen. Die beiden letzteren werden im 4. Abschnitt besprochen werden; die Hornabsonderung besteht in Folgendem: Diejenigen inneren und äusseren Oberflächen, welche mit geschichtetem Plattenepithel bedeckt sind, also die äussere Haut, die Mund- und Rachenschleimhaut, ein Theil der Harn- und Geschlechtsorgane und die Conjunctiva, verlieren fortwährend durch Abstossung ihre obersten Zellenlagen, nachdem diese einen eigenthümlichen Process der Schrumpfung, die sog. "Verhornung", durchgemacht haben. - Die verhornten Zellen der äusseren Haut, nämlich die obersten Lagen der Epidermis, die ihnen entsprechenden der Nägel und die Deckschuppen der Haare werden einfach durch Abnutzung abgerieben ("abgeschilfert"); die der Schleimhäute mischen sich den sie bespülenden Secreten (Speichel, Schleim, Harn, Thränen) bei und werden auf den daraus sich ergebenden Wegen, also durch Koth und Harn, aus dem Körper ausgeschieden. - Die Hornabstossung entfernt nicht unbedeutende Mengen Stickstoff und Schwefel aus dem Organismus.

III. QUANTITATIVE VERHÄLTNISSE zwischen Einnahme, Ausgabe und Bestand.

Im Beginn des Capitels wurde als Zweck der Nahrung bezeichnet: der Ersatz der Verluste, welche durch die Ausscheidung unorganischer und die Oxydation organischer Körperbestandtheile bedingt sind. Das einfachste Verhältniss der Nahrung zum Körper wäre also das, dass sie gerade hinreicht, die Ausgaben des Körpers zu decken, also das Körpergewicht zu erhalten. In diesem Falle muss natürlich nicht nur das Gesammtgewicht der Einnahmen mit dem Gesammtgewicht der Ausgaben, sondern auch, wenn die chemische Zusammensetzung des Körpers sich nicht ändern soll, die Quanta der einzelnen chemischen Elemente der Einnahme mit den entsprechenden der Ausgabe übereinstimmen. Ferner muss die Quantität der Einnahme und ihrer einzelnen Elemente sich auch allen Schwankungen der Ausgabe beständig anpassen, wie sie namentlich durch den wechselnden Umfang der Umsatzprocesse des Organismus (durch die verschiedene Grösse seiner Leistungen) bedingt werden (s. hierüber den folgenden Abschnitt).

Nun aber geschehen die Einnahmen zum grössten Theile durchaus willkürlich und ohne dass ihre Menge nach einer genauen Kenntniss der Bedürfnisse des Organismus bemessen würde; denn die Empfindungen, welche über diese Bedürfnisse Aufschluss geben könnten, Hunger und Durst, veranlassen nur im Allgemeinen zur Nahrungsaufnahme, nicht aber zur Aufnahme bestimmter Mengen, und sehr gewöhnlich geschieht die Nahrungsaufnahme ganz ohne ihre Veranlassung. Daher ist die Aufnahme überschüssiger, oder auch unzureichender Nahrung etwas sehr Gewöhnliches. Im ersteren Falle sind folgende Möglichkeiten denkbar: 1. die Ausgaben bleiben dieselben, das Körpergewicht nimmt zu; es werden in diesem Falle den schon vorhandenen Spannkräften des Organismus neue hinzugefügt und aufgespeichert; 2. die überschüssig aufgenommene Nahrung wird nicht resorbirt, sondern unverändert mit dem Kothe wieder ausgeschieden; - dieser Fall tritt nur bei sehr grossen Ueberschüssen ein; das Resorptionsmaximum wird, was die leichter resorbirbaren Nahrungsstoffe betrifft, am leichtesten bei den Salzen*), demnächst bei den Fetten, am schwersten beim Wasser erreicht; 3. die überschüssig

^{*)} Die sehr leicht erfolgende Resorption der leicht löslichen Salze wird bei grösseren Mengen dadurch beschränkt, dass dieselben durch ihr Wasserattractionsvermögen den Darminhalt fülssig machen und daher schnell, noch vor der Resorption, entfernt werden (Durchfall, vgl. auch p. 136).

Haushalt des Organismus.

aufgenommenen und resorbirten Nahrungsstoffe werden ohne Weiteres sofort wieder ausgeschieden; dies kommt nur bei Wasser und Salzen vor, welche allerdings so lange gleich wieder entleert werden, bis der Körper sein gehöriges Maass davon hat (p. 167); unoxydirte organische Stoffe finden sich aber unter normalen Verhältnissen in keinem Excret mit Ausnahme der Milch, der Eier und des Samens (p. 182); 4. der überschüssigen Aufnahme folgt eine Vermehrung des Umsatzes, der Oxydationsprocesse und Leistungen, so dass die Ausgaben sich vermehren und das Körpergewicht unverändert bleibt; 5. wäre es denkbar, dass auch ohne erheblich vermehrte Oxydation das Körpergewicht durch Vermehrung der Ausgaben sich annähernd erhält; es könnten nämlich durch Spaltung des überschüssig Aufgenommenen sich sehr spannkraftreiche und spannkraftarme Spaltungsproducte bilden, von denen die ersteren im Körper zurückbleiben, die letzteren entleert werden. Es würden auf diese Weise die Spannkräfte des Aufgenommenen gleichsam auf eine geringere Substanzmasse concentrirt, so dass zwar die Spannkräfte des Organismus, sein Gewicht aber nur sehr wenig zunähme.

Im umgekehrten Fall der unzureichenden Nahrungsaufnahme kann 1. bei gleichbleibenden Leistungen und Ausgaben das Körpergewicht abnehmen, oder 2. bei abnehmenden Ausgaben das Körpergewicht sich erhalten. Da nun die zweite Möglichkeit stets dadurch beschränkt ist, dass eine gewisse Summe von Leistungen, somit von Verbrauch und Ausgaben zur Erhaltung des Körpers unumgänglich nothwendig ist, so muss bei anhaltend unzureichender Nahrung stets früher oder später ein Punct eintreten, von dem ab das Körpergewicht stetig abnimmt, bis das Leben unmöglich wird.

Ueber die hier erörterten, sich von selbst ergebenden Schlüsse und Möglichkeiten experimentell zu entscheiden, ist die Aufgabe der Ernährungs-Physiologie. Durch längere Versuchsreihen an Menschen und Thieren, bei denen die Bedingungen gerade hinreichender, überschüssiger und mangelhafter Nahrung künstlich hergestellt und sowohl die Einnahmen wie die Ausgaben im Ganzen und in ihren Elementen quantitativ bestimmt werden, sucht sie zu ermitteln: 1. welche Elemente des Körpers bei normalen Verhältnissen, ohne Erhöhung des Verbrauchs durch besondere Leistungen (hierüber s. den folgenden Abschn.), ausgeschieden werden müssen; hieraus ergiebt sich die zum Ersatz dieses nothwendigen Verlustes erforderliche Menge und Zusammensetzung der Nahrung; — 2. wie sich der Stoffwechsel ändert bei mangelhaftem Ersatz, und 3. wie bei überschüssiger Nahrung.

Minimal-Stoffwechsel.

1. Nothwendige Ausgaben des Organismus und Deckung derselben durch die Nahrung.

Zur Beantwortung der Frage, welche Ausgaben unumgänglich nothwendig, welche Nahrungsmengen demnach zum Ersatz erforderlich sind, stehen zwei Wege offen, von denen indess keiner ganz zum Ziele führt. Der erstere ist der, einem Menschen oder Thiere die geringste Nahrungsmenge zu reichen, welche eben noch zur Erhaltung des Körpergewichts hinreicht, und die in diesem Zustande gemachten Ausgaben zu analysiren, deren Elemente dann mit denen der Nahrung quantitativ übereinstimmen müssen. Der zweite besteht darin, einem Thiere jede Nahrung zu entziehen; man ist dann sicher, dass keine unnütze Ausgabe gemacht wird, und kann aus der Analyse der während des Hungers gemachten Ausgaben auf die nothwendigen Nahrungselemente schliessen.

Die erste Methode leidet hauptsächlich an folgenden Fehlern: 1. an dem Uebelstande des Herumprobirens (tâtonnement), welches schwer zu einem genauen Resultate führt; 2. an der Schwierigkeit, jeden nicht wesentlichen Verbrauch (durch Bewegung u. s. w.) auszuschliessen; 3. an der Unsicherheit, ob die Nahrungsmenge, welche eben hinreicht das Körpergewicht zu erhalten, nicht bei einer anderen, zweckmässigeren Zusammensetzung der Nahrung noch geringer gefunden worden wäre, oder mit andern Worten, ob in den Ausgaben sich nicht noch solche befinden, die durch überschüssige Einnahmen bedingt sind; 4. an der Schwierigkeit der Kothverrechnung; der Koth enthält (Cap. III.) nicht nur wahre Ausgaben des Stoffwechsels (Darmsecrettheile), sondern auch die unverdaulichen Nahrungsbestandtheile, also Stoffe, die gar nicht den zu ersetzenden Körperausgaben beigerechnet werden können, sondern ganz von der Beschaffenheit der Nahrung, also vom Zufall abhängen. So nimmt z. B. der Koth der Pflanzenfresser fast die Hälfte der Gesammtausgabe ein (Pferd 40-50 pCt., VALENTIN, BOUSSINGAULT; Kuh 34,4 pCt., BOUSSINGAULT) wegen des bedeutenden Gehalts der pflanzlichen Nahrung an unverdaulichen Bestandtheilen; der der Fleischfresser ist dagegen sehr unbedeutend (Katze 1 pCt., BIDDER & SCHMIDT); der der Omnivoren steht in der Mitte (Mensch 4-8 pCt., VALENTIN, BARRAL, HILDESHEIM; Schwein 19,9 pCt., BOUSSINGAULT) und schwankt je nach der augenblicklichen Ernährungsart. Man muss nun, um diesen höchst schwankenden und unwesentlichen Factor aus der Ausgabenberechnung zu eliminiren, entweder den Koth ganz unberücksichtigt lassen, wobei man aber den Fehler macht, die ihm beigemengten, wirklichen Ausgaben zu übersehen, - oder man müsste Nahrungsmittel wählen, die gar keine unverdaulichen Bestandtheile enthalten, ein noch nicht gemachter Versuch. - Die zweite (Hunger-) Methode leidet an dem noch viel grösseren Fehler, dass im hungernden Thiere die Functionen bald sehr mangelhaft werden, so dass Verbrauch und Ausgaben geringer werden als sie bei eben zureichender Nahrung sein würden.

Von den nach diesen Methoden gewonnenen Resultaten sind die über die relativen Mengen der Auswurfsstoffe die sichersten und auch die wichtigsten, weil sie zugleich darüber belehren, auf welchem Wege die verschiedenen Körperelemente ausgeschieden werden. Es vertheilt sich nämlich:

1. Die Gesammtausgabe, nach Abzug der äusserst schwankenden Kothmenge (s. oben), etwa zu gleichen Theilen auf den Harn einerseits, auf Schweiss und respiratorische Ausscheidung andererseits. Vernachlässigt sind hierbei: die im Kothe enthaltenen wahren Ausgaben (Gallenbestandtheile etc.), die Talg- und die Hornabstossung, über welche keine Bestimmungen existiren. Bei den Fleischfressern ist die Harnausscheidung meist etwas grösser, als die übrigen incl. Koth zusammen; bei den Pflanzenfressern beträgt sie dagegen nur ¹₈ bis ¹/₃ der übrigen. Die Ursache hiervon liegt besonders in den grösseren Kothmengen.

2. Die Elemente, welche die unorganischen Bestandtheile des Körpers (Wasser und Salze) zusammensetzen und welche in denselben Verbindungen sowohl ausgeschieden, als ersetzt werden, vertheilen sich folgendermassen:

a) Das Wasser. Abgesehen von der meist geringen Ausgabe durch den Koth, hängt seine Vertheilung auf die übrigen Ausscheidungen hauptsächlich von der Temperatur und dem Wassergehalt der Atmosphäre ab; die Wasserabgabe durch die Lungen ist annähernd constant, weil hier eine stets gleich grosse und gleich feuchte Oberfläche durch Vermittelung einer stets bewegten Luftschicht mit der Atmosphäre in Verkehr tritt; die respiratorische Wasserabgabe durch die Hautathmung lässt sich ferner nicht von der durch den Schweiss trennen; man kann also beide zusammenfassend sagen, dass sich die Hauptwasserausgabe auf Lungen, Haut und Nieren vertheilt. Aus leicht ersichtlichen Gründen überwiegt nun von den beiden letztgenannten bei trockner, warmer Luft die erstere, bei feuchter uud kalter die letztere. (Dass die Gesammtmenge des ausgeschiedenen Wassers direct von der Aufnahme abhängt, ist bereits p. 108 angedeutet; ferner s. unten bei der überschüssigen Nahrung.) - Bei Fleischfressern wird fast alles Wasser (bis zu 90 pCt.) durch den Harn, bei Pflanzenfressern grosse Mengen (bis zu 60 pCt.) mit dem Koth entleert.

b) Die Salze werden hauptsächlich durch den Harn, einige, besonders Chlornatrium, durch den Schweiss, nur wenige (vorwiegend Kalisalze und die unverdaulichen Salze) durch den Koth entleert (ebenso die überschüssig genossenen, p. 183, Anm.). 3. Die Elemente der (oxydirten) organischen Körperverbindungen werden zum grössten Theil in unorganischen Oxydationsproducten, zum geringen in organischen Oxydations- oder Spaltungsproducten entleert, und zwar:

a) Der Kohlenstoff zum bei Weitem grössten Theile (über 90 pCt.) in Form von Kohlensäure durch die respiratorische Ausscheidung; ein geringer Theil in niedrigeren Oxydationsproducten durch die übrigen Ausscheidungen (im Harnstoff, Harnsäure etc., in der Hornsubstanz, dem Hauttalg, in den Secretbestandtheilen des Kothes, u. s. w.).

b) Der Wasserstoff der organischen Körperbestandtheile grösstentheils in Form von Wasser, zusammen mit dem als solches im Körper vorhanden gewesenen (s. 2a). Ein geringer Theil verlässt den Organismus in den ad a genannten organischen Verbindungen.

c) Der Sauerstoff der organischen Verbindungen des Körpers, zusammen mit dem als Oxydationsmittel aufgenommenen (welcher etwa das 3- bis 10 fache des auszuscheidenden Theils des ersteren beträgt), wird zum bei Weitem grössten Theil in den höchsten Oxydationsproducten, Kohlensäure und Wasser, zum geringsten in den niederen (Harnstoff etc.) ausgeschieden.

d) Der Stickstoff wird sämmtlich in Spaltungsproducten entleert, und zwar zum allergrössten Theile als Harnstoff durch Harn und Schweiss, ausserdem als Harnsäure, Harnfarbstoff, Hornsubstanz, Gallenbestandtheile und möglicherweise geringe Mengen als Ammoniak und als reiner Stickstoff (durch respiratorische Ausscheidung, p. 145, Anm.).

Der alte Streit, ob bei gleichbleibendem Körpergewicht sämmtlicher aufgenommene N in den sensiblen Excreten (besonders Harn und Koth) wiedererscheint, oder ob ein sog. "Stickstoff-Deficit" existirt, welches zur Annahme einer respiratorischen N-Ausscheidung zwingen würde, scheint jetzt zu Gunsten der ersteren Alternative entschieden (VOIT, SIEWERT, SCHULZE & MÄRCKER [HENNEBERG], STOHMANN; opp. SEEGEN); speciell für sehr eiweissreiche Kost wird noch das Vorhandensein eines Stickstoffdeficits behauptet (STOHMANN). Beim Schwitzen tritt natürlich wegen der N-Ausgabe durch den Schweiss ein scheinbares N-Deficit ein (LEUBE).

e) Der Schwefel (namentlich von Albuminaten des Körpers herrührend) verlässt den Körper etwa zur Hälfte als Schwefelsäure, in schwefelsauren Salzen durch den Harn, zur andern in organischen Verbindungen durch die Hornabsonderung und den Koth (Keratin, Taurin).

Minimal-Stoffwechsel.

Weit unsicherer noch sind die Angaben über die absolute Grösse der Minimalausgabe oder der zu ihrer Deckung nöthigen Minimalnahrung, namentlich wegen der Unsicherheit der oben (p. 185) angeführten Ermittelungsmethoden. Es ergeben sich folgende allgemeine Gesichtspuncte:

1. Das Ausgabe- oder Nahrungsminimum ist um so grösser, je kleiner das Thier ist. Um von der absoluten Grösse unabhängig zu sein, bestimmt man die Stoffwechselgrössen pro Kilogramm Thier (auf 24 Stdn.); man findet nun, dass z. B. ein Kilogramm Taube weit mehr umsetzt, als ein Kilogramm Hund, dies wieder mehr, als ein Kilogramm Mensch. Es erklärt sich dies aus der grösseren Lebhaftigkeit der Lebensprocesse in kleineren Organismen; so muss z. B. wegen ihrer verhältnissmässig grossen Oberfläche zur Erhaltung der Temperatur weit mehr Wärme producirt werden, als in den grösseren (s. Cap. VII.).

2. Das Gesammtnahrungsminimum stellt sich bei einer bestimmten Mischung der Nahrung am niedrigsten; diese Mischung bezeichnet man als die "vollständige Nahrung"; sie enthält (vgl. p. 178) Eiweisskörper (oder Albuminoide), Fette oder Kohlehydrate, vielleicht auch Lecithin, Wasser und Salze in bestimmten Verhältnissen; letztere am wenigsten, Wasser am meisten.

3. Das günstigste Verhältniss dieser Factoren zu einander, d. h. das Verhältniss, bei welchem die geringsten Quantitäten zur Erhaltung des Körpergewichts hinreichen, ist für verschiedene Zustände (Alter, Geschlecht, Lebensweise) verschieden.

4. Bis zu einem gewissen Puncte kann durch Vermehrung der Fett- oder Kohlehydrat-Nahrung die nöthige Eiweissnahrung bedeutend herabgesetzt werden; — vielleicht (HOPPE, VOIT) weil jene leichter oxydirbaren Stoffe die Einwirkung des Sauerstoffs von den Eiweisskörpern abziehen (s. unten).

5. Das Gesammtnahrungsminimum ist um so grösser, je mehr der Organismus bereits durch überschüssige Nahrung (s. unten) "gemästet" ist.

Die absoluten Zahlen für das Minimum des Stoffwechsels, welche nach den oben angegebenen Methoden gefunden sind, haben wegen der ebendaselbst erörterten Mängel höchstens dann einigen Werth, wenn genau alle Versuchsbedingungen mit aufgeführt werden. Ihre Angabe muss daher hier unterbleiben. Auch ist zu berücksichtigen, dass z. B. die Temperatur auf den Stoffverbrauch des Körpers von Einfluss ist (s. unten).

Vollständiger Nahrungsmangel.

2. Unzureichende Aufnahme.

Schon oben (p. 184) ist angedeutet worden, dass bei anhaltend unzureichender Nahrung nothwendig ein Zeitpunct eintreten muss, von dem ab das Körpergewicht stetig abnimmt. Bei vollständigem Mangel der Nahrung, beim Hungern, tritt dieser Punct natürlich gleich im Anfang ein, und früher oder später, je nach dem Zustande des Thieres vor dem Beginn des Hungerns, folgt ihm ein Zeitpunct, wo auch die Functionen, somit die Ausgaben, abzunehmen beginnen; diese Abnahme dauert bis zum Tode. Der Stoffwechsel des Hungernden beschränkt sich auf Verbrennung von Körperbestandtheilen durch den fortwährend eingeathmeten Sauerstoff und Ausscheidung der Oxydationsproducte nebst unverbrennlichen Körperbestandtheilen (Wasser und Salzen). Ein Ersatz findet für den Gesammtorganismus nicht statt, wohl aber möglicherweise für einzelne Theile desselben, indem durch Vermittlung des Blutes Theile, welche spannkraftreiche Materialien im Ueberschuss besitzen, dieselben anderen übergeben, welche bereits daran Mangel leiden.

Beobachtungen des Stoffwechsels Hungernder (sog "Inanitionsversuche") existiren begreiflich für längere Beobachtungszeiten nur bei Thieren, hauptsächlich Tauben (CHOSSAT), Hunden (BISCHOFF & VOIT) und Katzen (BIDDER & SCHMIDT).

Aus den Beobachtungen hungernder Thiere ergiebt sich Folgendes: 1. Mit dem Beginn des Hungerns nehmen das Körpergewicht, die Leistungen und die Ausgaben des Thieres ab; die Abnahme der letzteren bedingt natürlich eine von Tag zu Tag geringer werdende Verminderung des Körpergewichts, da die Grösse der Ausgaben nach Abzug des aufgenommenen Sauerstoffs zugleich die Grösse des Gewichtsverlustes ausdrückt (vgl. unten Fig. 5). Die Abnahme der Leistungen, welche innig mit der Abnahme der Ausgaben zusammenhängt (s. d. folg. Abschn.), zeigt sich besonders in einer Verminderung der Temperatur, der Puls- und Athemfrequenz, - die ihr zu Grunde liegende Verminderung der Oxydationsprocesse in der Verminderung der Sauerstoffaufnahme. - 2. Die Abnahme der Ausgaben trifft nicht alle Bestandtheile derselben gleichmässig. Die bedeutendste Aenderung erfährt die Zusammensetzung der Ausgaben bei den Pflanzenfressern; denn alle hungernden Thiere müssen sich wie die Fleischfresser verhalten, weil sie nur von (ihren eigenen) thierischen Bestandtheilen leben; - so nimmt bei hungernden Pflanzenfressern der Harnstoffgehalt der Ausscheidungen im Anfang zu (p. 104). Dagegen nimmt im Allgemeinen der Harnstoffgehalt der

Vollständiger Nahrungsmangel.

Ausscheidungen mit zunehmender Hungerzeit ab, ein Beweis, dass die Verminderung der Oxydationsprocesse im Organismus auch die Oxydation stickstoff haltiger Körperbestandtheile (Eiweisskörper) betrifft. Die Abnahme der Harnstoffausscheidung ist anfangs steil, um so steiler, je grösser die Harnstoffausscheidung vor dem Hungern war, später wird die Abnahme der Ausscheidung langsam und gleichmässig; während also in der letzteren Periode ein dem noch vorhandenen "Organeiweiss" proportionaler Bruchtheil desselben regelmässig verbraucht wird, zehrt im Anfang das Thier von seinem unmittelbar aus der letzten Nahrung stammenden "Vorrathseiweiss" (Vorr). - 3. Nachdem das Thier einen gewissen Bruchtheil seines Körpergewichts verloren hat, tritt (nach verschieden langer Zeit) der Tod durch "Verhungern" ein. Zeit und Verlustgrösse richten sich nach dem Zustande des Thieres beim Beginn des Hungerns. Gemästete Thiere (s. unten) brauchen erst eine gewisse Zeit bis ihr Körpergewicht das des nur zureichend ernährten Thieres erreicht hat; diese Zeit haben sie vor letzterem voraus, da jetzt erst eine Abnahme der Ausgaben und Leistungen, also das eigentliche Hungern beginnt. So sterben junge, magere Tauben schon nach Verlust von 1/4 ihres Gewichts (nach 3 Tagen), ältere, fette dagegen erst wenn sie fast die Hälfte verloren haben (nach 13 Tagen) (CHOSSAT). - 4. In der Leiche zeigt sich der Gewichtsverlust der einzelnen Körpertheile durchaus verschieden; am meisten geschwunden ist der Fettinhalt des Fettgewebes, oder kurzweg "das Fett"; das ganze Gewebe hat 91-93% verloren (d. h. es ist nur die Bindesubstanz geblieben vgl. jedoch unten); weniger geben ab die Baucheingeweide und die Muskeln; am wenigsten dagegen, nämlich fast Nichts, das Gehirn (etwas mehr das Rückenmark). (Das Blut und besonders dessen Hämoglobingehalt behält annähernd sein Verhältniss zum Körpergewicht.) Dieser ungleiche Verlust deutet auf das schon (p. 189) angedeutete Verhalten, dass durch Vermittelung des Blutes zwischen den verschiedenen Organen eine gewisse intermediäre Aushülfe mit Material stattfindet, dass die mehr verbrauchenden Organe auch reichlicher versorgt werden; letzteres ergiebt sich nicht nur aus dem geringen Gewichtsverlust des Gehirns, dessen Thätigkeit bis zum Tode unvermindert fortdauert, sondern auch aus dem geringen Verluste der häufig gebrauchten Muskeln im Vergleich zu dem der unthätigen. Da unter den stark verminderten Bestandtheilen Fett und Muskeln die Hauptmasse ausmachen, so wird gewöhnlich angegeben, dass der hungernde Organismus, auf Kosten seines Fettes und

Unvollständiger Nahrungsmangel.

seiner Muskeln ("seines Fleisches") lebt. Einige Forscher (SCHMIDT, BISCHOFF & VOIT) haben sogar aus dem Stickstoffgehalt der Ausgaben auf die verbrauchte Muskelsubstanz zurückgerechnet und den Rest der aus organischen Körperbestandtheilen hervorgehenden Ausgaben (berechnet aus der Kohlensäure) für verbrauchtes Fett verrechnet. —

Der Entziehung aller Nahrung steht die nur unvollständige Ernährung gegenüber; diese kann quantitativ oder qualitativ unvollständig sein, d. h. sie enthält entweder sämmtliche Bestandtheile der "vollständigen Nahrung" (p. 188), aber in ungenügender Menge, oder sie enthält nicht alle Bestandtheile derselben. Die quantitativ ungenügende Nahrung führt zu Erscheinungen, die denen des Hungens völlig gleich sind, nur bei Weitem langsamer ablaufen. - Die qualitativ ungenügende Nahrung führt bei den meisten Combinationen ebenso schnell zum Hungertode, wie vollständiges Hungern, nur unter geringerer Abnahme des Gesammtgewichts. Bei vollständiger Entziehung des Wassers*) (SCHUCHARDT) nehmen die Thiere sehr bald auch nichts Festes, bei Entziehung aller festen Nahrung (BISCHOFF & VOIT, CHOSSAT) sehr bald auch kein Wasser mehr auf, so dass beides de facto dem vollständigen Hungern gleichkommt. --Bei manchen Combinationen scheitert die Beobachtung an dem geringen Resorptionsmaximum, so dass man die Wirkung grosser Mengen nicht studiren kann, - oder an eintretenden krankhaften Erscheinungen (z. B. Diarrhoe bei Fütterung mit Zucker und Wasser). Am wichtigsten sind die Versuche, bei denen einer der beiden organischen Hauptnahrungsstoffe, Eiweisskörper oder Fett (resp. Kohlenhydrate, p. 178), dem Thiere vorenthalten wird. Hier ist der Gesammtverlust bedeutend geringer als beim Hungern; beide Nahrungsstoffe können sich also bis zu einem gewissen Grade ersetzen. Bei der Entziehung der Eiweissnahrung (Nahrung aus Fett und Wasser, oder Fett, Kohlehydraten und Wasser) ist bei geringerer Gewichtsabnahme die Harnstoffausscheidung bedeutend vermindert, also die Oxydation der N-haltigen Körperbestandtheile herabgesetzt. Bei der Entziehung des Fettes tritt, wenn die Nahrung dafür Kohlehydrate enthält, keine bedeutende Veränderung des Stoffwechsels ein. Fehlen auch diese, so bemerkt man eine starke Vermehrung der Harnstoffausscheidung, also eine vermehrte Oxydation N-haltiger Bestandtheile,

^{*)} d. h. auch des in den organischen Nahrungsmitteln enthaltenen, denn das Wassertrinken entbehren viele Thiere sehr gut (z. B. Katzen, Bidder und Schmidt).

Ueberschüssige Nahrung.

so dass zur Erhaltung des Lebens bedeutend mehr Eiweisskörper aufgenommen werden müssen. — Bei Entziehung des Kochsalzes tritt keine wesentliche Störung ein (vgl. jedoch junten); bei Entziehung der Phosphorsäure halten die Knochen ihre Phosphorsäure lange fest (WEISKE).

Das Eiweiss kann in gewisser Beziehung durch Leim ersetzt werden, da Leimzufuhr den Eiweissverbrauch herabsetzt, so dass bei geringerer Eiweisszufuhr das Körpergewicht sich erhält. Da aber Leimzufuhr allein (neben stickstofffreier Nahrung) das Körpergewicht schnell zum Sinken bringt, so ist anzunehmen, dass der Bedarf der Gewebe an Eiweiss nicht durch Leim gedeckt werden kann (Vorr).

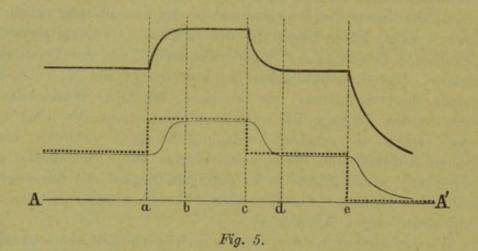
3. Ueberschüssige Aufnahme.

Wie bereits oben erwähnt, ist die Aufnahme sehr häufig grösser, als sie zur Deckung der nothwendigen (Minimal-) Ausgaben, also zur Erhaltung des Körpergewichts, sein müsste; entweder in einzelnen, oder in allen ihren Bestandtheilen. Es ist nun zu entscheiden, welche der p. 183 f. angedeuteten Möglichkeiten bei überschüssiger Nahrungsaufnahme eintritt. Die Frage vereinfacht sich dadurch, dass man ausschliesst: 1) jede Aufnahme, die das Resorptionsmaximum überschreitet (p. 183), weil diese gar nicht in den Stoffwechsel übergeht; 2) jede Mehraufnahme, welche zur Deckung vermehrter Leistungen (Wärmebildung, mechanische Arbeit, - s. den folg. Abschn.), erforderlich ist. Es sind ferner sofort aus der Betrachtung fortzulassen die überschüssig aufgenommenen unorganischen Nährstoffe, Wasser und Salze; denn, wie bereits erwähnt (p. 167), entledigt sich der Körper sofort jedes Ueberschusses derselben durch directe Ausscheidung aus dem Blute, - des Wassers durch Haut und Nieren (über die Vertheilung zwischen beiden s. p. 186), der Salze durch die Nieren.

Es bleiben demnach noch die überschüssig aufgenommenen organischen Nahrungsstoffe und für diese drei Möglichkeiten übrig: 1. sie werden einfach im Organismus zurückbehalten; 2. sie werden schnell oxydirt und ausgeschieden; 3. sie werden gespalten, zum Theil oxydirt und ausgeschieden, ein anderer, spannkraftreicher Theil zurückbehalten (p. 184); — im ersteren Falle würde das Körpergewicht zunehmen, die Ausgaben constant bleiben, — im zweiten die Ausgaben zunehmen, das Körpergewicht constant bleiben, — im dritten beide zunehmen. Die Erfahrung hat nun gelehrt, dass bei

Mästung.

überschüssiger Ernährung des Organismus derselbe an Gewicht zunimmt, dass aber ferner auch die Ausscheidung von Oxydationsproducten gesteigert ist, namentlich bei reichlicher stickstoffhaltiger Kost die Harnstoffausscheidung (C. G. LEHMANN, BIDDER & SCHMDT), dass endlich nie unoxydirt Stoffe in die Ausscheidungen übergehen. Die erste der oben angedeuteten Möglichkeiten ist also durch die Zunahme der Ausscheidungen ausgeschlossen. Die zweite, gegen welche bereits die Gewichtszunahme des überschüssig ernährten Körpers spricht, würde ferner eine den erhöhten Oxydationsprocessen entsprechende Erhöhung der Sauerstoffaufnahme und der Leistungen erfordern. Das Gesammtresultat der letzteren könnte bei ruhendem Zustande des Organismus nur in einer erhöhten Wärmebildung gesucht werden (s. Cap. VII.). Dies beides ist in der That vorhanden (schon die erhöhte Verdauungsthätigkeit erfordert einen grösseren Aufwand und liefert mehr Wärme durch Secretionen und Bewegungen); aber offenbar in zu geringem Maasse, um der zweiten Annahme zu genügen. Die folgenden Thatsachen sprechen nun für die dritte der obigen Annahmen.


Wie bei unzureichender, passen sich auch bei überschüssiger Nahrungsaufnahme die Ausgaben in gewissem Grade den Einnahmen an. Am genauesten sind diese Beziehungen für den Eiweissstoffwechsel festgestellt (BISCHOFF, VOIT). Bei jedem Eiweisskostmaass das längere Zeit erhalten wird, stellt sich nach kurzer Zeit ein Zustand des Gleichgewichts zwischen Stickstoffaufnahme und Stickstoffausgabe ein; dies Gleichgewicht ist mit einem bestimmten Körpergewicht verbunden, das während desselben erhalten wird. Wird das Kostmaass plötzlich erhöht, und auf der neuen Höhe erhalten, so wird ein neuer Gleichgewichtszustand mit erhöhtem Körpergewicht erst nach einiger Zeit erreicht; in der Uebergangsperiode bleiben die Ausgaben hinter den gesteigerten Einnahmen noch zurück, und der Körper setzt Eiweiss ("Fleisch") an. Wird umgekehrt auf ein niederes Kostmaass übergegangen, so sind in der Uebergangsperiode, bis zum neuen Gleichgewicht mit vermindertem Körpergewicht, die Ausgaben noch nicht so vermindert wie die Einnahmen, und der Körper giebt von seinem Eiweiss ab. Der Organismus kann sich also, innerhalb gewisser Grenzen, mit jedem Kostmaass "in's Gleichgewicht setzen", ändert aber dabei seine Beschaffenheit. Wird die untere Grenze des Kostmaasses überschritten, so ist der Hungerzustand vorhanden, dessen Gesetze den obigen analog sind.

Hermann, Physiologie. 5, Aufl.

13

Fettansatz.

Das folgende Schema diene zur Veranschaulichung des Gesagten. Die Abscissen AA' bedeuten Zeiten, die Ordinaten der starken Curve das Körpergewicht oder dessen Eiweissbestand, die der feinen Curve die Grösse der täglichen Ausgabe, die der punctirten die Grösse der täglichen Einnahme. Die Einnahme wird zur Zeit a plötzlich vergrössert, zur Zeit c plötzlich vermindert, zur Zeit e Null. Aa, bc, de sind Gleichgewichtszustände, ab Ausgleichungsperiode mit Zunahme der Ausgaben und des Bestandes, c d Ausgleichungsperiode

mit Abnahme der Ausgaben und des Bestandes, eA' Hungerperiode, ebenfalls mit Abnahme beider. Die Veränderung des Bestandes ist natürlich an jedem Tage gleich der Differenz zwischen Einnahme und Ausgabe.

Aehnliche Verhältnisse wie zwischen Einfuhr, Bestand und Verbrauch des Eiweisses scheinen nach neueren Untersuchungen (PETTENKOFER & VOIT) auch für das Fett vorhanden zu sein. Der Fettvorrath des Körpers ist aber ausserdem auch von der Eiweisszufuhr abhängig, so dass bei Vermehrung derselben nicht bloss Eiweissansatz, sondern auch Fettansatz ("Mästung") stattfindet. Vermuthlich erfolgt bei der Zersetzung des Eiweisses unter Umständen eine Fettbildung (p. 178), also eine Spaltung mit Ausscheidung von Harnstoff und Retention eines spannkraftreichen Atomcomplexes im Sinne der oben sub 3 angeführten Möglichkeit. Welches aber diese Umstände sind, ob sie mit überschüssiger Aufnahme in Verbindung stehen, lässt sich noch nicht exact angeben. Andererseits wird der Eiweissverbrauch durch gleichzeitigen Genuss von Fetten oder Kohlehydraten herabgesetzt, wofür keine Erklärung existirt. Die sehr verbreitete Annahme, dass diese Körper als leichter verbrennliche Substanzen den Sauerstoff auf sich ablenken und dadurch das Eiweiss conserviren, hat sehr unsichere Grundlagen. Dass Fettzusatz zur Eiweisskost den Fettansatz befördert, wird am wahrscheinlichsten

Luxusconsumption.

durch directen Ansatz des genossenen Fettes, oder verminderten Umsatz des schon vorhandenen Fettes erklärt. Dass Kohlehydratzusatz denselben Einfluss habe, wird bestritten und ist jedenfalls noch ganz unerklärt.

Der gesteigerte Eiweissverbrauch bei gesteigerter Zufuhr ist mit einer Vermehrung des Sauerstoffverbrauchs verbunden (PETTENKOFER & Voir), die angeführte Zersetzung, resp. Spaltung also eine oxydative. Berechnet man aus der Stickstoffausscheidung die Menge des verbrannten Eiweisses, so findet sich nicht aller Kohlenstoff desselben in den Excreten, ein Beweis, dass ein C-reicher Bestandtheil abgespalten und zurückbehalten wird (PETTENKOFER & VOIT). Vollkommen unbekannt ist der Sitz dieser Processe. Früher nahm man an, dass das überschüssig aufgenommene Eiweiss einfach im Blute verbrannt werde, ohne erst Organbestandtheil zu werden ("Luxusconsumption"); jetzt aber ist es viel wahrscheinlicher, besonders da man niemals wahre Oxydationsprocesse innerhalb des Blutes hat nachweisen können, dass alle Umsatzprocesse an die Zellen der Organe geknüpft sind und nur durch den Grad der Zufuhr in unbekannter Weise beeinflusst werden. Die Fettbildung ist nachweisbar immer an Zellen geknüpft. Die Fettkörper selbst, besonders die mesenterialen, sind nach neueren Untersuchungen (TOLDT, ROLLETT) nicht als einfaches Bindegewebe zu betrachten, dessen Zellen mit Fett erfüllt sind (Vinchow), sondern als drüsenartige Organe mit besonderen Gefässen, welche beim Menschen schon frühzeitig vom Bindegewebe umwachsen werden.

Im Sinne der Luxusconsumption wird neuerdings die weitgehende Spaltung eines Theils des Eiweisses im Darm (zu Leucin, Tyrosin etc., vgl. p. 101) gedeutet. Manche betrachten sogar die Peptone als einen zu directer Verbrennung bestimmten Theil des genossenen Eiweisses (p. 169).

Der Eiweissverbrauch ist ausser von der Zufuhr des Eiweisses selbst, sowie der Fette und Kohlenhydrate, auch von der der Salze in gewissem Grade abhängig. Namentlich wird mässigem Kochsalzgenuss ein vermindernder Einfluss auf den Eiweissverbrauch zugeschrieben (KLEIN & VERSON), während starker Kochsalzgenuss umgekehrt den Verbrauch steigert (Vorr). Auch die Wasserzufuhr ist von Einfluss; reichlicheres Trinken vermehrt die Harnstoffausscheidung, was von einem Einfluss auf die Eiweisszersetzung abgeleitet werden muss, da physicalische Umstände nicht auf die Dauer die Harnstoffmenge steigern können. — Erhöhte Temperatur steigert den Eiweissverbrauch. — Ueber den Einfluss der Muskelarbeit siehe den folgenden Abschnitt.

13*

Luxusausgaben. Wachsthum.

Dass überschüssige Aufnahme die Regel ist (p. 183), geht daraus hervor, dass das Gewicht (und die Dimensionen) des Organismus von der Entstehung an beständig bis zu einem gewissen Puncte zunimmt (Wachsthum), und dass von da ab beim Manne und Weibe gewisse regelmässige Ausgaben unoxydirten Materials erfolgen, beim Manne die Samenentleerungen, beim Weibe die Menstrualblutungen und die Ausgaben für das sich entwickelnde Ei, später die Milchabsonderung zur Ernährung des Kindes. Vgl. hierüber den 4. Abschnitt.

The American of

196

Zweiter Abschnitt.

Die Leistungen des Organismus.

Einleitung.

In der allgemeinen Einleitung ist auseinandergesetzt, dass in den thierischen Organismen eine beständige Umwandlung von Spannkräften in lebendige Kräfte stattfindet. Die Spannkräfte sind, wie sich für die überwiegende Mehrzahl der Fälle sagen lässt, in zwei von einander getrennten Stoffen repräsentirt, nämlich einerseits dem in den Körper eingeführten atmosphärischen Sauerstoff, andererseits den oxydirbaren Körperbestandtheilen, welche in Form von Nahrung in den Körper eingeführt sind. Es werden demnach fortwährend spannkraftführende Stoffe in den Körper aufgenommen. Ferner ist bereits angegeben, dass die aus der Verbindung jener Stoffe hervorgehenden Producte, die Oxydationsproducte des Körpers, beständig aus dem Organismus hinausgeschafft werden. Ebenso werden nun auch die im Körper frei gewordenen lebendigen Kräfte beständig an Körper der Aussenwelt übertragen welche nicht zum Organismus gehören, also gleichsam nach Aussen abgegeben. Ebenso jedoch, wie die stoffliche Ausgabe des Körpers hinter der Einnahme immer um so viel zurückbleibt, dass ein bestimmter Körperbestand da ist, so bleibt auch die Kraftausgabe hinter der Krafteinnahme immer um so viel zurück, dass der Organismus einen bestimmten Kraftvorrath enthält, und zwar theils Spannkraft, in dem noch unoxydirten

Körpermaterial, — theils schon lebendige Kraft, — in Form seiner Wärme. — Neben dem Stoffwechsel des Organismus zeigt also der Kraftwechsel völlig parallele Bilanceverhältnisse.

So wie im vorigen Capitel die Einnahmen und Ausgaben an Stoffen erörtert und mit einander verglichen wurden, so wären jetzt dieselben Aufgaben für den Kraftwechsel zu erledigen, ferner das Verhältniss des letzteren zum Stoffwechsel soweit möglich festzustellen. Die geringen Kenntnisse nöthigen zu einer Beschränkung auf einige Hauptgesichtspuncte.

Einführung von Spannkräften.

Obwohl die hier in Betracht kommenden Spannkräfte das Vorhandensein sowohl des oxydirbaren Materials als des Sauerstoffs voraussetzen, so spricht man doch gewöhnlich kurzweg nur von Spannkräften der eingeführten Nahrungsstoffe, indem man das Vorhandensein der entsprechenden Sauerstoffmenge mit Recht stillschweigend annimmt. Die Spannkräfte der oxydirbaren (organischen) Nahrungsstoffe werden gewöhnlich als "latente Wärme" bezeichnet, d. h. man stellt sich sämmtliche lebendige Kraft, welche bei ihrer Oxydation aus den Spannkräften hervorgehen kann, in Form von Wärme vor, obwohl nachweislich auch andere Leistungsformen aus ihnen entstehen (s. unten); diese Vereinfachung bietet namentlich für die Messung grosse Vortheile.

Die Bestimmung der latenten Wärme der Nahrungsstoffe geschieht einfach dadurch, dass man sie in einem rings von Flüssigkeit (meist Wasser) umgebenen Raume, in einem "Calorimeter", verbrennt und die Temperatur der Flüssigkeit, deren Menge bekannt ist, vor und nach der Verbrennung bestimmt. Das Resultat, also die Menge der entstandenen Wärme, drückt man in Wärmeeinheiten (p. 5) aus, und gewinnt so ein Maass für die "Verbrennungswärme" der Nahrungsstoffe. Die Schwierigkeiten dieser empirischen Bestimmung sind jedoch für viele Nahrungsstoffe sehr gross, und deshalb für viele die Verbrennungswärme nicht genau bekannt.

Obwohl im Körper die Verbrennung der Nahrungsstoffe (oder der aus ihnen entstehenden Körperbestandtheile) nicht plötzlich, wie bei der künstlichen Verbrennung, sondern allmählich, unter Bildung zahlreicher Oxydationsstufen geschieht, so ist doch das erhaltene Resultat maassgebend; denn die Summe aller Wärmemengen, welche bei den einzelnen stufenweisen Oxydationen oder beliebigen anderen Umsetzungen eines Stoffes bis zur

198

Verbrennungswärme. Freiwerden von Kräften im Körper.

vollständigen Verbrennung (zu Kohlensäure, Wasser, Schwefelsäure u. s. w.) entstehen, ist dieselbe, als die bei directer vollständiger Verbrennung gebildete.

Dagegen ist eine andere Erleichterung bei der Bestimmung der Verbrennungswärme, welche sich einige Forscher erlaubt haben, nicht zulässig und führt zu falschen Resultaten. Diese haben nämlich die Verbrennungswärme eines zusammengesetzten Stoffes aus den bekannten Verbrennungswärmen seiner Elemente zu berechnen versucht, indem sie den in der Verbindung selbst enthaltenen Sauerstoff als bereits mit einem Theile des Wasserstoffs oder des Kohlenstoffs verbunden annahmen; jedoch leuchtet ein, dass erstens für diese Annahmen die Basis fehlt, und dass zweitens die anderen Elemente der Verbindung unter sich mit einer gewissen Kraft verbunden sind, so dass zu ihrer Trennung bei der Verbrennung ein Theil der entstehenden lebendigen Kraft aufgezehrt werden muss; dem entsprechend sind auch die erhaltenen Resultate von den directen Bestimmungen abweichend. — Fär chemische Verbindungen von bekannter Constitution, zu welchen jedoch die meisten Nahrungsstoffe noch nicht gehören, lässt sich die Verbrennungswärme nach einfachen Regeln berechnen (HERMANN).

Nach empirischen Bestimmungen giebt bei vollständiger Verbrennung 1 grm. Eiweiss 4998, 1 grm. fettfreies Rindfleisch 5103, 1 grm. Rinderfett 9069 Wärmeeinheiten; bei Verbrennung bis zu Harnstoff: Eiweiss 4263, Rindfleisch 4368 (FRANKLAND). — Durch Rechnung ergiebt sich für 1 grm. Stearin 9036, Palmitin 8883, Olein 8958, Glycerin 4179, Leucin 6141, Kreatin 4118 u. s. w. (HERMANN).

Entstehung lebendiger Kräfte im Körper. (Leistungen des Körpers.)

Die bei Weitem häufigste Gelegenheit, bei welcher die Ueberführung von Spannkräften in lebendige Kraft stattfindet, ist, wie bereits vielfach erwähnt, die Oxydation. Es darf indess nicht übersehen werden, dass nicht die Oxydationsprocesse allein mit dem Freiwerden von Kräften verbunden sind, sondern diese nur einen einzelnen, freilich den bei Weitem häufigsten Fall des allgemeineren Gesetzes darstellen (p. 2), dass bei jedem chemischen Vorgange, durch welchen stärkere Affinitäten, als vorher gesättigt waren, gesättigt werden, Kraft frei wird.

Ein Beispiel für einen nicht oxydativen Vorgang, bei welchem dennoch Wärme gebildet wird, ist die alkoholische Gährung des Zuckers:

199

Freiwerden von Kräften im Körper. Leistungsformen.

Wie die Modelle zeigen, sind Affinitäten der C-Atome, welche im Zuckermolecul nicht, oder durch C-Affinitäten, oder durch H gesättigt waren, nach der Spaltung durch O - Affinitäten gesättigt; da aber die Anziehung des C zum O grösser ist als die des C zum C oder zum H, so muss durch diese Atomumlagerung Kraft frei werden. — Da die bei einer solchen Spaltung entstehenden Zusammenlagerungen stärker sich anziehender Affinitäten fester sein müssen, als die früheren, so sind die neuen Verbindungen beständiger und man kann also allgemein sagen, dass, wo überhaupt Verbindungen oder beständigere Verbindungen entstehen, Kraft frei wird; unter diesen Satz fallen die gewöhnlichen oxydativen Processe, aber auch andere, welche sich der Zuckergährung vergleichen lassen. Da die letzteren im Körper bisher nur ausnahmsweise gefunden sind (vgl Cap. VIII.), so ist in diesem Capitel der Kürze halber nur von Oxydation als Ursache des Kraftwechsels die Rede.

Die Leistungsformen, in welchen die lebendigen Kräfte, die im Körper aus den eingeführten Spannkräften hervorgehen, zur Erscheinung kommen können, sind, soweit bekannt, Wärme, Electricität und mechanische Arbeit. Für den ruhenden, d. h. alle nicht absolut zur Erhaltung des Lebens nöthigen Leistungen vermeidenden Körper lässt sich behaupten, dass alle diese Formen zum überwiegend grössten Theile schliesslich in eine einzige übergehen, nämlich in Wärme.

Die Form einer Leistung (s. die Einleitung) ist bekanntlich etwas äusserst Wandelbares; leicht lässt sich Wärme in Bewegung (Dampfmaschire), Bewegung in Wärme (Reibung), beide in Electricität (Reibungs- und Thermoelectricität), und Electricität in Wärme und Bewegung (galvanisches Glühen, — Electromagnetismus u. s. w.) umwandeln. Jedoch bleibt die Quantität der lebendigen Kraft bei jeder Umwandlung sich vollkommen gleich, da die Umwandlung stets nach bestimmten Verhältnissen (Aequivalenten) vor sich geht. Am wichtigsten für die Physiologie ist unter den letzteren das "mechanische Wärmeäquivalent", d. h. die mechanische Arbeit, in welche eine bestimmte Wärmemenge umgewandelt werden kann, oder umgekehrt (vgl. p. 5).

Die directe Wärmebildung erfolgt in allen Organen des Körpers, in welchen Oxydationsprocesse stattfinden, d. h. in sämmtlichen mit Ausnahme der Horngebilde. Electricitätserregung kommt, soweit bekannt, nur in den Muskeln und im Nervensystem vor (Cap. VIII. und IX.). Bewegungen treten auf: a) mit einer für die Beobachtung genügenden Geschwindigkeit: 1. in den quergestreiften und glatten Muskelfasern; 2. in den contractilen Zellen; 3. an den Flimmerzellen; 4. an den Zoospermien; b) mit unmerklicher Geschwindigkeit an sämmtlichen organischen Formelementen, als Wachsthum, Theilung etc.

Der Beweiss, dass für den ruhenden Körper sämmtliche Leistungen in Wärme umgewandelt und in dieser Form an Körper

· 200

Ruhender und arbeitender Körper.

der Aussenwelt übertragen werden, liegt einfach in Folgendem: 1. Alle Bewegungen im ruhenden Körper wirken als solche nicht auf die Aussenwelt, sondern werden im Körper selbst zum Verschwinden gebracht. Dies Verschwinden geschieht überall durch Reibung; so wird z. B. die ganze lebendige Kraft eines Herzimpulses der Blutmasse übertragen, und geht bei einem Umlaufe durch die innere Reibung des Blutes in den Gefässen, namentlich in den Capillaren, vollständig in ihrer bisherigen Form ("Geschwindigkeit, mechanische Arbeit") zu Grunde (p. 59 ff.), ebenso die Bewegungen des Verdauungsapparates durch die Reibung an dem Inhalt und den Umgebungen. Da nun eine andere Bewegungsform (etwa Electricitätserregung) durch diese Reibung, so weit bekannt, nicht entsteht, so muss man annehmen, dass überall aus der verschwindenden mechanischen Arbeit eine äquivalente Menge von Wärme entsteht. --2. Die geringen Electricitätserregungen im Nerven- und Muskelsystem werden, wie es scheint, ebenfalls zum grössten Theile in Wärme umgesetzt (Cap. VIII.).

Eine freilich quantitativ verschwindend kleine Ausnahme machen hiervon: 1. die Bewegungen, welche in Form von Athembewegung, Herz- oder Pulsstoss Körpern der Aussenwelt mitgetheilt werden können; 2. Theilströme, welche bei Anlegung leitender Körper an die Körperoberfläche auf jene übergehen (Cap. VIII.).

In dem nicht ruhenden (arbeitenden) Körper entstehen ausser den lebendigen Kräften des ruhenden noch andere, und zwar in Form von Wärme und mechanischer Arbeit, beides in den Muskeln; auch von dieser mechanischen Arbeit wird ein grosser Theil im Organismus selbst in Wärme umgewandelt, und zwar durch die Reibung des Muskels selbst in seinen Hüllen, ferner der Sehnen in ihren Scheiden, endlich der bewegten Knochen in ihren Gelenkverbindungen. Der Rest wird theils zur Bewegung der Körpertheile gegen einander, theils zur Bewegung des Körpers im Ganzen gegen die Aussenwelt oder zur Bewegung von Körpern der Aussenwelt verwandt.

Da sich nun auch der letztgenannte Theil der Körperleistungen leicht in Wärme überführen oder in Wärmeeinheiten ausdrücken lässt, so ist es klar, dass das natürlichste Maass für sämmtliche Leistungen des Organismus das Wärmemaass ist.

Natürlich könnte man ebenso gut sämmtliche Leistungen nach mechanischem Maasse (in Kilogrammmetern, Fusspfunden etc.) ausdrücken. — Die Zahlen für die Wärmeeinheiten, durch welche die lebendigen Kräfte des Organismus gemessen werden, sind ausserordentlich gross (Millionen pro Tag). Einige benutzen daher zu diesen Ausgaben eine grössere Wärmeeinheit, die tausendfache der gewöhnlichen

Uebertragung lebendiger Kräfte an die Aussenwelt.

(welche also 1 Kilogramm Wasser von 0^{0} auf 1^{0} erwärmt; ihr mechanisches Aequivalent ist demnach = 424 Kilogrammmetern).

Kraftansgabe.

Abgesehen von den geringen Spannkraftmengen, welche der Organismus in seinen noch nicht völlig oxydirten (organischen) Auswurfsstoffen, — Harnstoff, Harnsäure, Milch u. s. w., — nach Aussen abgiebt, werden sämmtliche mit der Nahrung eingeführten Spannkräfte als lebendige Kräfte der Aussenwelt übertragen, und zwar, wie sich aus dem Gesagten ergiebt, vom ruhenden Organismus nur in Form von Wärme, vom nicht ruhenden (arbeitenden) in Form von Wärme und mechanischer Arbeit. Die Wege, auf welchen die ausgegebenen Wärmemengen Körpern der Aussenwelt übergeben werden, werden im folgenden Capitel besprochen; die Uebertragung der mechanischen Arbeit bedarf keiner weiteren Besprechung.

Die directe Messung dieser Kraft- (Wärme-) Ausgabe geschieht für den ruhenden Organismus dadurch, dass man den Menschen oder das Thier, gleich der verbrennenden Substanz p. 198, in einen dazu geeigneten calorimetrischen Kasten setzt. Für den arbeitenden Organismus wird in dem Kasten noch eine Vorrichtung angebracht, durch welche die Arbeit gemessen werden kann, z. B. ein Rad das mit einer Dampfmaschine in Verbindung steht, in welchem der Beobachtete auf- oder absteigt, und dadurch eine bestimmbare (hemmende oder beschleunigende) Arbeit verrichtet (HIRN). Aus der erhaltenen Arbeitsmenge wird dann die äquivalente Zahl von Wärmeeinheiten berechnet und den direct aus der Wärmeausgabe gefundenen zugefügt.

Ueber die Grösse und Abhängigkeit der Wärme- und mechanischen Arbeitsausgabe s. die beiden nächsten Capitel.

Vergleichung der Einnahme und Ausgabe von Kräften (Kraftbilance).

Eine solche Vergleichung dient hauptsächlich zur Bestätigung der theoretischen Anschauung und zur Controle der beiderseitigen Bestimmungen.

Wie oben erwähnt, liesse sich die Einnahme an Spannkräften quantitativ dadurch bestimmen, dass man die Menge und die Verbrennungswärme der organischen Nahrungsstoffe direct ermittelt. Ebendaselbst ist jedoch bereits erwähnt worden, dass es nur für äusserst wenige Nahrungsstoffe eine genaue Bestimmung der latenten

Kraftbilance.

Wärme giebt. Man begnügt sich daher damit, die in einem gegebenen Zeitraum aus den Spannkräften entstandenen lebendigen Kräfte zu bestimmen und mit den Kraftausgaben zu vergleichen. Jene bestimmt man nach folgenden Principien: Jedes Freiwerden von Kraft muss mit einem entsprechenden Sauerstoffverbrauch verbunden sein, dem Sauerstoffverbrauch entspricht aber für grössere Zeiträume die Sauerstoffaufnahme (p. 143 f.). Aus der Sauerstoffaufnahme könnte man demnach die freiwerdenden Kräfte berechnen, wenn der gesammte Sauerstoff nur zur Oxydation eines und desselben Körpers von bekannter Verbrennungswärme benutzt würde. Da aber verschiedene Verbindungen von ungleicher Verbrennungswärme oxydirt werden, so genügt die Kenntniss der Sauerstoffmenge nicht. Nun lassen sich aber aus den in derselben Zeit ausgeschiedenen Oxydationsproducten wenigstens die oxydirten Elemente annähernd bestimmen: aus der Kohlensäure der Kohlenstoff, aus dem (Oxydations-) Wasser der Wasserstoff; da aber das im Körper gebildete Wasser sich kaum bestimmen lässt, so zieht man die dem Kohlenstoff entsprechende Sauerstoffmenge von dem Gesammtsauerstoff ab und nimmt an, dass aller übrige Sauerstoff zur Oxydation von Wasserstoff verwandelt worden sei. Dieser Fehler verschwindet gegen den viel grösseren, dass man die Verbrennungswärme des so gefundenen Kohlenstoffs und Wasserstoffs als die bei der Verbrennung ihrer organischen Verbindungen gebildete Wärmemenge verrechnet hat (s. hierüber p. 199). Demgemäss hat sich bei diesen Versuchen (DULONG & DESPRETZ) keine Uebereinstimmung zwischen der so berechneten und der direct gemessenen Wärmeausgabe gezeigt.

Wie bei der stofflichen, so hat man auch bei der Kraftausgabe die Vertheilung derselben auf die verschiedenen Ausgabewege zu bestimmen gesucht. Indess sind die Zahlen durch Berechnung gefunden, welche an zahlreichen zum Theil schon erörterten Fehlern leiden, auf die hier nicht weiter eingegangen werden kann; die Resultate haben daher nur den Werth eines ungefähren Ueberblicks. Von der Kraftausgabe kommen (nach BARRAL'schen Stoffwechselzahlen berechnet) etwa 1-2 pCt. auf Wärmeverlust durch Excrete (Harn und Koth), 4-8 pCt. auf Wärmeverlust durch die Athmung, 20-30 pCt. auf Wärmeverlust durch Wasserverdunstung, der grösste Theil (60-75 pCt.) auf Wärmeverlust durch Leitung und Strahlung von der Oberfläche und auf äussere mechanische Arbeit. Von letzterem Posten kommt auf die mechanische Arbeit nach Einigen (LUDWIG) nur ein sehr geringfügiger, nach Anderen (M. TRAUBE)

Einfluss der Leistungen auf den Stoffwechsel.

ein bedeutender Antheil. Ueber die Bedeutung dieser Frage s. unten.

Einfluss des Kraftwechsels auf den Stoffwechsel.

Im vorigen Capitel (p. 185) wurde kurz angegeben, dass eine gewisse Summe von Oxydationsvorgängen zur Erhaltung des Organismus unumgänglich nothwendig sei, und dass diese den "Minimal-Stoffwechsel" bedinge. Eine nähere Untersuchung der Ursachen jener Nothwendigkeit ergiebt sogleich, dass jene nothwendigen Oxydationsvorgänge eben zur Herstellung der nothwendigen Leistungen erforderlich seien, nämlich zur Wärmebildung, zu gewissen mechanischen Arbeiten (Herzbewegung, Athembewegung, Darmbewegung) u. s. w. — Der Minimal - Stoffwechsel ist also, so zu sagen, durch den "Minimal-Kraftwechsel" bedingt.

Eine scheinbare Ausnahme hiervon machen die nothwendigen Oxydationsprocesse in den Drüsen; hier scheint auf den ersten Blick (s. Einleitung p. 6) die Bildung der Oxydationsproducte (specifischen Secretbestandtheile) wesentlicher zu sein, als das damit verbundene Kraftfreiwerden (die Wärmebildung). Indessen fehlt für diese teleologische Anschauung jede Basis; es werden eben für die Zwecke des Organismus nicht bloss die freiwerdenden Kräfte, sondern auch die Producte des chemischen Vorganges benutzt. Dasselbe übrigens, was von den Drüsen gilt, kann auf alle Parenchyme angewendet werden; überall werden ausser den Leistungen auch die Oxydationsproducte (specifische Parenchymbestandtheile) verwerthet.

Die Erhöhung eines dieser beiden Vorgänge muss selbstverständlich auch eine Erhöhung des andern zur Folge haben. Dass durch Erhöhung des Stoffwechsels bei der Luxusaufnahme auch die Leistungen erhöht werden, ist bereits oben (p. 193) erwähnt. Es bleibt also hier noch der Fall zu betrachten, wo die Erhöhung der Leistungen eine gesteigerte Stoffaufnahme erforderlich macht. Diese gesteigerte Stoffaufnahme nennt man: "Arbeits-Consumption".

Diejenige Leistung des Organismus, welche erfahrungsgemäss am häufigsten und bedeutendsten gesteigert wird, ist die mechanische Arbeit der willkürlichen Muskeln (kurzweg "Arbeit" genannt), durch Willen, Reflexe, pathologische Krämpfe u. dgl. Sie ist mit vermehrtem Stoffwechsel verbunden, erhöht somit die Ausgabe, namentlich die Kohlensäure - Ausscheidung und bedingt zur Erhaltung des Körpergewichts eine vermehrte Aufnahme, eine Arbeitsconsumption; sie steigert auch das Gefühl des Nahrungsbedürfnisses, den Hunger. Ob auch die Wärmebildung, abgesehen von Muskelbewegungen, unter normalen Verhältnissen gesetzmässige Steigerungen erfährt, namentlich in Folge von Wärmeentziehungen, ist streitig; vgl. hierüber das folgende Capitel.

Den verschiedenen Leistungen liegen Oxydationen verschiedener Körperbestandtheile zu Grunde, wie später genauer erörtert werden wird. Um zu beurtheilen, welche Nahrungsstoffe für die Arbeitsconsumption bei einer bestimmten Leistung die zweckmässigsten sind, ist es nöthig zu wissen, welche Bestandtheile für dieselbe vorzugsweise oxydirt werden. Der directeste Weg hierzu wäre das Studium der Organe, in welchen die Leistungen und Oxydationen vor sich gehen, also der Muskeln etc. Da aber gerade dieser Theil der Physiologie noch wenig entwickelt ist, so begnügt man sich mit der Untersuchung der Ausscheidungen, welche der vermehrten Leistung entsprechen. Besonders kommen hierbei der Harnstoff als Zeichen für die Oxydation stickstoffhaltiger Körper, und die Kohlensäure als Ausdruck der Oxydationsprocesse überhaupt, in Betracht.

In Folge zweifelhafter Angaben (besonders, dass die Muskelthätigkeit die Harnstoffausscheidung erhöhe) war nun lange Zeit die Ansicht verbreitet, dass nur die stickstoff haltigen Körperbestandtheile, welche allein die geformten Theile des Organismus bilden, zur Erzeugung mechanischer Arbeit, und erst, nachdem bei diesem Vorgange stickstofflose Spaltungsproducte aus ihnen entstanden, zur Wärmebildung, die stickstofflosen aber nur zur Wärmebildung verwandt werden. Hierauf gründete sich eine teleologische Eintheilung der Nahrungsstoffe, welche die stickstoffhaltigen in Rücksicht auf ihre Anwendung zu geformten Körperelementen "plastische", die stickstofflosen dagegen "respiratorische" nannte (LIEBIG); oder jene als alleinige Bewegungserzeuger "dynamogene" oder "kinesogene", diese aber als alleinige Wärmeerzeuger "thermogene" (BISCHOFF & Vorr). - Seitdem aber bewiesen ist, dass die Harnstoffausscheidung durch mechanische Arbeit nicht vermehrt wird (vgl. Cap. VIII.), hat diese Ansicht ihren Halt verloren, und die mannigfachen Bedenken, welche ihr entgegenstanden, sind zu ihrem Rechte gekommen. Unter diesen sind besonders zu erwähnen (M. TRAUBE): 1. dass auch bei sehr stickstoffarmer (pflanzlicher) Kost bedeutende mechanische Arbeit geleistet werden kann (die meisten Arbeitsthiere sind Pflanzenfresser, die Bienen sind bei blosser Honignahrung fortwährend in Bewegung). Diese Thatsache konnte nur unter der Voraussetzung mit jener Theorie im Einklange bleiben, dass die mechanische Arbeit des Körpers, auch wenn sie hohe Werthe erreicht, der Wärmebildung gegenüber nur geringfügig ist, eine jetzt

Teleologische Eintheilung der Nahrungsstoffe,

bestrittene Anschauung (vgl. p. 203); 2. dass kaltblütige Thiere, und ebenso Thiere und Menschen in heissen Zonen, — deren Wärmebildung somit nur geringfügig sein kann, — dennoch zum grossen Theil von stickstoffarmer Pflanzenkost leben; 3. dass Fleischfresser trotz ihrer geringen Aufnahme an stickstofflosen Stoffen dennoch eine genügende Wärmeproduction haben, auch ohne etwa durch reichliche mechanische Arbeit sich die nöthigen stickstofflosen Spaltungsproducte zu verschaffen; 4. endlich hat sich direct ergeben, dass die in einer bestimmten Zeit verbrauchten Eiweisskörper (aus der Harnstoffausscheidung berechnet) auch nicht entfernt ausreichen, um die in derselben Zeit geleistete Arbeit zu erklären, selbst wenn man ihre Verbrennungswärme übertrieben hoch annähme (FICK & WISLICENUS); hiermit steht im Einklang, dass in Gebirgsgegenden die Bewohner für anstrengende Touren als Proviant nur Speck und Zucker mitzunehmen pflegen.

Es lässt sich also vor der Hand keine Leistung bezeichnen, für welche der Genuss einer bestimmten Nahrungsart (etwa N-haltiger) direct erforderlich wäre.

206

Siebentes Capitel.

Wärmebildung und Temperaturverhältnisse des Körpers.

I. WÄRMEBILDUNG.

Ueber die Entstehung der Wärme im Körper ist hier nur noch Weniges nachzuholen. Mehrfach bereits, speciell p. 200, ist erörtert worden, dass in allen Organen, in welchen Oxydationsprocesse stattfinden, entweder sämmtliche dabei freiwerdenden Kräfte, oder wenigstens ein beträchtlicher Theil derselben, die Form von Wärme annehmen. Die übrigen Formen der Leistung (mechanische Arbeit, Electricität) entstehen nur in gewissen Organen und auch hier stets neben der Wärme.

Zu den wärmebildenden Organen gehört nach neueren Untersuchungen auch die Lunge, in welcher die Verbindung des Hämoglobins mit Sauerstoff eine Wärmequelle ist (vgl. jedoch unten).

Die absolute Wärmemenge, welche die Masseneinheit eines bestimmten Organs in der Zeiteinheit producirt, ist noch nicht bestimmt; jedenfalls ist sie in den einzelnen äusserst verschieden. So produciren z. B. die Drüsen viel mehr Wärme, als die Parenchyme, weil die Oxydationsproducte der ersteren (die specifischen Secretbestandtheile) fortwährend abgeführt und durch neugebildete ersetzt werden müssen, während die der letzteren (die "specifischen Bestandtheile" der Parenchymsäfte) lange Zeit an Ort und Stelle verweilen; — in den Drüsen ist also die Oxydation bei weitem lebhafter. Auch in einem und demselben Organe schwankt die Wärmebildung der Zeit nach bedeutend, und zwar selbstverständlich mit der Energie der Oxydationsprocesse, oder, was dasselbe ist, mit der Menge des verbrauchten Sauerstoffs. Besonders eclatant ist die Zunahme der Wärmebildung mit der Energie der Oxydationsprocesse in den Drüsen, deren Temperatur mit der Energie der Secretion bedeutend zunimmt (p. 83, 91). Auch in den Muskeln ist eine Temperaturzunahme bei der Thätigkeit beobachtet (s. das folgende Cap.); es ist also hier zu der schon in der Ruhe vermuthlich vorhandenen Wärmebildung nicht nur die Bildung mechanischer Arbeit, sondern auch noch ein Plus an Wärmebildung hinzugekommen.

Gar keine Wärme wird gebildet in den Horngeweben des Körpers, in welchen, wie es scheint, keine Oxydationen existiren. Ob auch im Blute Wärme gebildet wird, hängt von der Entscheidung der Frage ab, ob in ihm selbst Oxydationen stattfinden (vgl. p. 167).

Ausser diesen directen Wärmequellen giebt es noch andere, ebenfalls bereits besprochene. Es ist nämlich (p. 200 f.) nachgewiesen worden, dass im ruhenden Körper auch alle übrigen Formen lebendiger Kraft, namentlich die mechanische Arbeit, so gut wie vollständig in Wärme umgewandelt werden. Diese Umwandlung geschieht theils direct durch die Reibung der sich activ bewegenden Organe (Muskeln) an ihrer Umgebung, theils durch die Reibung und Zerrung der passiv durch jene in Bewegung gesetzten (Sehnen, Knochen, Blut in den Gefässen u. s. w.). — Ebenso wird im arbeitenden Körper ein grosser Theil der mechanischen Arbeit durch Reibung in Wärme umgesetzt.

Muskelarbeit erhöht demnach die Wärmebildung im Körper auf doppelte Weise: 1. durch die mit der Muskelthätigkeit verbundene Erhöhung der Wärmebildung im Muskel selbst; 2. durch die Reibung des Muskels und der durch ihn bewegten Theile an ihrer Umgebung.

Ob die Wärmebildung in den Parenchymen (abgesehen von Drüsen und Muskeln) durch besondere Nerven direct beherrscht wird, ist eine noch unentschiedene Frage. Die meisten Temperaturveränderungen, welche nach Durchschneidung oder Reizung von Nerven auftreten, erklären sich durch Einflüsse auf den Wärmeverkehr (durch vasomotorische Nerven, vgl. unten). Doch scheinen einige neuere Beobachtungen für directe nervöse Einflüsse auf die Wärmebildung zu sprechen: Nach traumatischen Rückenmarksdurchtrennungen (BRODIE, BILLROTH, QUINCKE) und nach Durchschneidungen des Marks tritt unter gewissen Umständen eine

Wärmeausgleichung. Körperwärme. Wärmeausgaben.

Temperaturerhöhung ein; da nun auf vasomotorischem Wege die Rückenmarkdurchschneidung eine Temperaturverminderung bewirkt (s. unten), so schliesst man auf direct die Wärmeproduction beherrschende, im Mark verlaufende Fasern, welche sonach dieselbe hemmen müssten; das Hemmungscentrum würde danach etwa im Gehirn zu suchen sein (NAUNYN & QUINCKE); damit die Temperaturerhöhung auf Rückenmarkdurchschneidung hervortrete, muss der entgegengesetzte Einfluss der Trennung der vasomotorischen Bahnen, durch Hinderung der Wärmeabgabe nach Aussen, verhindert werden. Andere erhielten bei diesem Versuch keine Temperatursteigerung (ROSENTHAL). Auch nach Abtrennung des verlängerten Markes vom Pons, sowie nach Verletzungen dieser beiden Hirntheile zeigen sich Temperaturerhöhungen (TSCHESCHICHIN; BRUCK & GÜNTHER), welche noch nicht hinreichend erklärt sind.

II. TEMPERATUREN DES KÖRPERS.

Die verschiedenen Organe des Körpers stehen untereinander theils in directer Verbindung durch Berührung, theils werden sie durch das alle durchströmende Blut in wärmeleitende Verbindung gebracht. Dadurch vertheilen sich die in den einzelnen Körpertheilen gebildeten Wassermengen ziemlich gleichmässig auf den ganzen Körper und auch auf diejenigen Körpertheile, welche für sich gar keine Wärme erzeugen. Das Resultat dieser Ausgleichung und der sogleich zu besprechenden Wärmeverluste ist eine annähernd constante Temperatur des ganzen Körpers, welche sich beim Menschen zwischen 36 und 38º C. hält. Ziemlich dieselbe Höhe hat sie bei den Säugethieren, eine etwas grössere bei den Vögeln; diese Organismen mit constanter Temperatur nennt man warmblütige oder auch homöotherme (constant temperirte). Bei den übrigen Thieren ist die Energie der Oxydationsprocesse und somit die Wärmeerzeugung so gering, dass keine constante Körpertemperatur entsteht, sondern nur eine um wenige Grade höhere, als die des umgebenden Mediums (Luft oder Wasser). Man nennt diese Thiere kaltblütige, besser pökilotherme (von variabler Temperatur).

Wärmeausgabe.

Da der menschliche Körper fast immer von Medien umgeben ist, welche kühler sind als er, so findet regelmässig eine Wärmeabgabe an die Umgebung statt. Dieselbe geschieht auf folgenden Wegen: 1. durch Strahlung von der freien Oberfläche des Körpers; Hermann, Physiologie. 5. Aufl. 14

209

Locale Temperaturen.

2. durch Leitung: a) an die die Körperoberfläche berührenden Gegenstände, welche kälter als der Körper sind, also besonders Luft und Kleidung; b) an die in den Körper aufgenommenen Stoffe, welche kälter als der Körper sind, also inspirirte Luft und Nahrung. Letztere Wärmeausgabe wird auch häufig so ausgedrückt, dass der Körper mit seinen Auswurfstoffen (exspirirte Luft, Schweiss, Harn, Koth), welche sämmtlich die Temperatur des Körpers haben, Wärme ausgiebt; selbstverständlich läuft beides auf dasselbe hinaus, vorausgesetzt dass Einnahmen und Ausgaben an Quantität und specifischer Wärme gleich sind, — was im Allgemeinen zutrifft; c) an verdunstende Excretionsstoffe, welche während der Verdunstung mit der Körperoberfläche in Berührung sind, besonders Schweiss; die an sie übergebene Wärme wird sofort latent; gewöhnlich wird diese Ausgabe als eine besondere "durch Wasserverdunstung" aufgeführt.

Da die Wärmeabgabe hauptsächlich von der Oberfläche aus geschieht, ihre Grösse demnach von der Grösse der Körperoberfläche abhängt, so ist es klar, dass kleinere Individuen, deren Oberfläche im Verhältniss zur Körpermasse grösser ist, relativ mehr Wärme ausgeben, als grössere.

Viele der hier genannten Wärmeausgaben sind sehr variabler Natur; und ihre Veränderlichkeit wird daher benutzt, um die Temperatur des Körpers constant zu erhalten (vgl. unten).

Locale Temperaturen.

Aus leicht ersichtlichen Gründen kann die oben erwähnte Ausgleichung zwischen den Temperaturen der verschiedenen Körpertheile nicht ganz vollkommen sein; gewisse Temperaturunterschiede bestehen fortwährend. Diese Unterschiede, welche sich ohne Weiteres aus den angegebenen Verhältnissen ableiten lassen und durch die Erfahrung vollkommen bestätigt werden, sind hauptsächlich folgende: 1. Je mehr Wärme ein Körpertheil selbst producirt, um so wärmer ist er auch (unter sonst gleichen Verhältnissen). Am wärmsten sind hiernach die Drüsen während der Absonderung und die Muskeln während der Arbeit (und beim Erstarren, s. unten); am kühlsten die Horngewebe. Je mehr ein Organ durch seine Lage oder sonstige Verhältnisse genöthigt ist, Wärme durch Strahlung oder Leitung abzugeben, um so kühler ist es; am kühlsten sind hiernach: die äussere Haut, besonders wenn sie mit verdunstendem Schweisse bedeckt ist, ferner die Lungen, die Anfänge des Verdauungskanals u.s.w. Die frei liegenden unter diesen Körperstellen sind wieder kühler, als geschütztere (z. B. Achselgrube, Mundhöhle etc.). Da das Blut das

Locale Temperaturen.

wichtigste Ausgleichungsmedium für die Temperaturen der verschiedenen Körpertheile ist, so darf man seine Temperatur als die mittlere Körpertemperatur betrachten; in der That sind die p. 209 angegebenen Zahlen den Beobachtungen der Blutwärme entnommen. Hieraus lässt sich nun weiter folgern: a) Bei Organen, welche viel Wärme produciren, deren Temperatur also die Blutwärme übersteigt (Drüsen, arbeitende Muskeln), ist das abfliessende Venenblut wärmer als das zufliessende Arterienblut; umgekehrt ist es bei wenig Wärme bildenden oder Wärme nach aussen abgebenden; so ist z. B. das Hautvenenblut kühler als das Hautarterienblut; in der Lunge wird die Wärmeausgabe an die Luft nach Einigen (Colin, Jacobson & BERNHARDT) übercompensirt durch die Wärmebildung bei der Sauerstoffbindung, so dass das Lungenvenenblut und die linke Herzhälfte wärmer sei als das rechte Herz; nach Anderen (G. LIEBIG, BERNARD, HEIDENHAIN & KÖRNER) ist das Umgekehrte der Fall, was übrigens (KÖRNER) nicht von der geringen Wärmeabgabe in den Lungen (vgl. p. 139), sondern von dem Anliegen der rechten dünnwandigen Herzhälfte an die warmen Baucheingeweide herzuleiten sei. b) Ein Organ, dessen Temperatur unter der Blutwärme liegt, wird um so wärmer, je mehr Blut ihm in der Zeiteinheit zufliesst, daher nimmt die Temperatur solcher Organe (z. B. einer Hautstelle) zu: bei Erhöhung des allgemeinen Blutdrucks, bei Verstärkung der Herzthätigkeit, besonders aber bei Erweiterung der zuführenden Arterien (z. B. nach Durchschneidung der vasomotorischen Nerven), während die umgekehrten Einflüsse die Temperatur herabsetzen; daher ist Röthe einer Hautstelle in der Regel mit Wärme, Blässe mit Kühle verbunden.

Auch die Hitze entzündeter Theile rührt nur von verstärkter Blutzufuhr, nicht von local gesteigerter Wärmebildung her, denn sie ist stets niedriger als die normale Temperatur der inneren Organe (HUNTER, JACOBSON & BERNHARDT, SCHNEIDER).

Diese Verhältnisse müssen bei Messungen der allgemeinen Körper-Temperatur stets berücksichtigt werden. Da man nur bei Thieren die Blutwärme direct durch Einführung von Thermometern in die Gefässe bestimmen kann, so wählt man für den Menschen solche Stellen, welche am wenigsten Wärmeverlusten ausgesetzt sind; man führt daher das Thermometer in die Mundhöhle, in den Mastdarm, die Vagina oder die Achselhöhle ein, wo man es möglichst lange verweilen lässt. Hierbei ist zu beachten, dass hohe Temperatur der äusseren Zone durch Vermehrung der Wärmeausgabe zu einer Abkühlung des Kerns führt, und umgekehrt. Man darf daher aus Messungen welche innerhalb der äusseren Zone gemacht sind, nie auf die Temperatur des Kernes schliessen,

Wärmeregulation.

in welchem sich, unter den genannten Messungsstellen, höchstens das tief in das Rectum eingeführte Thermometer befindet.

Absolute Temperaturbestimmungen macht man stets mit dem (Quecksilber-) Thermometer. Vergleichungen der Temperatur zweier Körperstellen oder der Temperatur einer und derselben zu verschiedenen Zeiten, unter verschiedenen Bedingungen u. s. w. macht man entweder mit dem Thermometer oder besser auf thermoelectrischem Wege (Näheres Cap. VIII.).

Erhaltung der mittleren Temperatur bei Warmblütern.

Die angegebene mittlere Temperatur des Menschen und der Warmblüter scheint für das Zustandekommen der wichtigsten Lebensprocesse eine unerlässliche Bedingung zu sein. Man schliesst hierauf aus der Thatsache, dass selbst geringe Erhöhungen oder Erniedrigungen der Temperatur über die angegebenen Grenzen hinaus schon bedeutende Gefahren mit sich bringen. Die zahlreichen gährungsähnlichen Processe im Körper erklären diese Gefahren leicht; bei einer Temperatur von 42,6° C. soll ferner in den Gefässen Blutgerinnung eintreten (WEIKART), bei 49° C. tritt Wärmestarre der Muskeln ein (s. d. folgende Cap.). — Dem entsprechend besitzt der Organismus mannigfache Vorrichtungen, um die Temperatur in ihren Grenzen zu halten. Die wichtigsten derselben sind folgende:

1. Solche, welche auf die Wärmeausgabe regulirend einwirken: a) Das Gefühl verminderter oder erhöhter Temperatur (Frost- und Hitzegefühl, s. d. 10. Capitel) veranlasst den Menschen, sich im ersten Falle mit schlechten Wärmeleitern (dicke Kleidung, Wolle, Seide), im zweiten mit guten (dünne Kleidung, Leinen) zu umgeben, oder gar sich künstlich (durch kalte Bäder) Wärme zu entziehen. - b) Erhöhte Temperatur vermehrt die Herzthätigkeit (p 77) und die Athmung (p. 153); erstere bewirkt eine stärkere Füllung der Capillaren, unter anderen auch der Haut, dadurch erhöhte Temperatur derselben (p. 211), und vermehrte Wärmeausgabe durch Leitung und Strahlung (bei erhöhter Körperwärme ist daher die Haut strotzend, warm und feucht, bei erniedrigter eingefallen, kalt und trocken); die vermehrte Athmung erhöht die Wärmeausgabe durch die Luftwege*). Mit erhöhter Blutfüllung der Haut ist ferner gewöhnlich eine Einleitung oder Erhöhung der Schweiss-Secretion verbunden (p. 112), und der schnell verdunstende Schweiss entzieht

^{*)} Die etwaige Wärmebildung in den Lungen (p. 207, 211) wird durch Steigerung der Athmung ohne entsprechenden Mehrverbrauch von Sauerstoff nicht wesentlich erhöht werden können.

Wärmeregulation. Schwankungen der Körpertemperatur.

ausserordentlich viel Wärme (im Sommer, wo die umgebende Luft fast die Temperatur des Körpers hat, ist dies fast die einzige Wärmeausgabe). — c) Kälte verengt, Wärme erweitert die kleinen Arterien (p. 73), besonders der Haut, dieser Einfluss muss dieselbe regulirende Wirkung haben, wie die ad b. genannten.

2. Regulirende Vorrichtungen, welche auf die Wärmeerzeugung einwirken: a) Eine unwillkürliche directe Steigerung der Wärmeproduction in der Kälte, welche auf noch unbekanntem Wege vor sich gehe, wird von Einigen behauptet (HOPPE, LIEBERMEISTER, Röhrig & Zuntz), besonders weil im kalten Bade die Temperatur der Achselhöhle anfangs steigt und die Kohlensäureausscheidung vermehrt wird: indessen erklären Andere (SENATOR, WINTERNITZ) die erstere Erscheinung für eine Wärmestauung durch die Verengerung der Hautgefässe, und die Stoffwechselsteigerung ist jedenfalls nicht constant, da auch die entgegengesetzte Wirkung eintreten kann; auch braucht sie keineswegs mit einer vermehrten Wärmebildung verbunden zu sein. - b) Erniedrigte Temperatur ("Kälte") erhöht das Hungergefühl; vermehrte Nahrungsaufnahme erhöht aber die Wärmeerzeugung (p. 193). - c) In der Kälte fühlt man das Bedürfniss nach Muskelbewegungen (Umhergehen, Arbeiten), welche ja in doppelter Weise die Temperatur erhöhen (p. 208); ferner treten (vermuthlich reflectorisch) unwillkürliche Muskelbewegungen ein (Schaudern, Zähneklappern; beide werden auch willkürlich mit wohlthuendem Erfolge eingeleitet).

Kleinere Individuen, deren Wärmeausgabe constant grösser ist (p 210), essen und bewegen sich mehr als grössere.

Die Wirksamkeit der Regulationsmittel gegen Abkühlung ist beim Menschen überhaupt ziemlich geringfügig, so dass Kleidung, Heizung, Bewegung etc. der wirksamste Schutz des Menschen gegen die Kälte sind.

Schwankungen der mittleren Temperatur.

Es bleibt nur noch übrig, die Schwankungen der mittleren Körpertemperatur (Blutwärme) innerhalb ihrer Normalgrenzen (d. h. soweit sie nicht durch die Regulationsmittel ausgeglichen werden) und die Abhängigkeit derselben von den Körper- und Lebensverhältnissen zu erörtern. Da die wärmebildenden Processe sämmtlich in einem der Wärmebildung annähernd proportionalen Verhältnisse Kohlensäure erzeugen, so zeigen die Wärmeschwankungen eine grosse Uebereinstimmung mit denen der Kohlensäureausscheidung (p. 143). Erhöhend wirken auf die Temperatur: Muskelbewegungen, reichliche

213

Drüsensecretionen (namentlich Gallensecretion; daher besonders die Verdauung), grössere Energie des gesammten Stoffwechsels (bei Männern, bei kräftigen Constitutionen, im mittleren Lebensalter, u. s. w.), krankhafte Erhöhungen des Stoffwechsels, wie sie vielleicht im Fieber existiren (die Harnstoffausscheidung ist hier gesteigert, und zwar schon vor der Temperaturerhöhung, so dass die Steigerung nicht (p. 195) durch letztere zu erklären ist, NAUNYN). — Erniedrigend wirken die entgegengesetzten Verhältnisse, ferner krankhafte Zustände, welche die Sauerstoffaufnahme hemmen (Lungenkrankheiten, Hungern p. 189) u. s. w. Ferner findet sich eine tägliche Temperaturschwankung, welche von der Verdauung unabhängig, nur von der verschiedenen Energie der Oxydationsprocesse zu verschiedenen Tageszeiten herzurühren scheint.

Nicht bloss die wärmebildenden, sondern auch die wärmeausgebenden Processe können die mittlere Körpertemperatur dauernd verändern; so ist dieselbe z. B. von dem Contractionszustande der Hautgefässe (Reizung des vasomotorischen Centrum, p. 74) sehr abhängig, und da dieser im Fieber erhöht ist, so kann man die hohen Fiebertemperaturen hierdurch theilweise erklärcn (L. TRAUBE). Hierher gehört auch nach der jetzigen Erklärung die nach Hautfirnissung (p. 138) eintretende sehr bedeutende Temperaturerniedrigung. Ferner sinkt die Blutwärme bei Reizung sensibler Nerven (MANTEGAZZA, HEIDENHAIN), und zwar durch Vermittelung der Medulla obl., deren directe Reizung ebenfalls diese Wirkung hat; dieselbe beruht auf Beschleunigung des Blutstroms und dadurch gesteigerter Wärmeausgabe (HEIDENHAIN).

Aus den angegebenen Verhältnissen erklärt sich leicht die temperatursteigernde Wirkung der Rückenmarkreizung (TSCHESCHICHIN), während umgekehrt Rückenmarkdurchschneidung, ebenso Lähmung der Gefässnerven durch Gifte (Nicotin, Curare), die Temperatur herabsetzt. Schliesst man die vermehrte Wärmeabgabe dadurch aus, dass man das Thier in warme Umgebung bringt, so bewirkt die Rückenmarkdurchschneidung nach Einigen die p. 208 f. erwähnte Temperatursteigerung.

Eine anhaltend sehr niedrige Temperatur haben die Winterschläfer zur Zeit ihres Schlafes. Hier ist sowohl die Wärmebildung auf ein Minimum reducirt, als auch die Wärmeausgabe, durch enorme Verlangsamung des Kreislaufs, sehr beschränkt.

Gewöhnliche Warmblüter sterben durch Abkühlung, sobald ihre Temperatur auf eine gewisse Grenze gesunken ist. (Vorher sinkt ähnlich wie bei Winterschläfern die Pulsfrequenz und die Darmbewegungen enorm, und die Centralorgane werden zu vielen Leistungen, z. B. Erstickungskrämpfen, unfähig; HORWATH.) Erreicht die Abkühlung diese Grenze nicht, so kann man die Thiere

Tödtliche Abkühlung. Postmortale Temperatursteigerung.

durch Wiedererwärmung aus dem soporösen (dem Winterschlaf entsprechenden) Zustand wieder erwecken. Erreicht die Abkühlung nicht 20-18°, so erwärmen sich die Thiere von selbst wieder, sobald sie aus der Kälte entfernt und in mittlere Temperatur gebracht werden. Auch unter dieser Grenze erfolgt die Erwärmung von selbst, wenn man künstliche Respiration einleitet (WALTHER: HOWARTH hat auf 5° abgekühlte Thiere durch blosse Erwärmung wieder in's Leben zurückgerufen).

Anhang. Unmittelbar nach dem Tode findet sich häufig eine vorübergehende Temperatursteigerung ("postmortale Temperatursteigerung"). Dieselbe rührt nach Einigen her von der beim Erstarren der Muskeln erfolgenden Wärmebildung (s. Cap. VIII.), während Andere sie davon herleiten, dass mit der Aufhebung des Kreislaufs die Wärmeausgabe sehr bedeutend verlangsamt wird, während die Wärmebildung der Organe noch eine Zeit lang nach dem Tode fortdauert (HEIDENHAIN).

Achtes Capitel.

Leistung mechanischer Arbeit. (Bewegungsvorgänge.)

Das Freiwerden von Kräften in Form von Bewegung ist im Organismus weit weniger verbreitet, als die Entstehung von Wärme, und nur an bestimmte Apparate geknüpft. Diese Apparate sind überall einfache oder metamorphosirte Zellen, oder Bestandtheile von Zellen. In folgenden Apparaten des menschlichen Organismus sind bis jetzt Bewegungserscheinungen nachgewiesen: 1. Muskelfasern (quergestreifte und glatte), 2. die Lymphkörperchen und deren Analoga (farblose Blutkörperchen, Bindegewebskörperchen, Schleimkörperchen, Eiterkörperchen u. s. w.), 3. die Flimmerzellen, 4. die Samenkörperchen, 5. die Zellen mit Molecularbewegungen. - An diese Apparate schliessen sich unmittelbar an: die contractilen Massen vieler einfacher Organismen. - Endlich sind noch sämmtliche Gestaltungsvorgänge, Wachsthum, Theilung etc. als Bewegungen aufzufassen. Jedoch unterscheiden sich die vorher angeführten Bewegungen von diesen durch eine viel grössere Geschwindigkeit, welche ihre directe Beobachtung möglich macht, während die Gestaltungsvorgänge so langsam geschehen, dass sie erst nach längeren Intervallen an ihren Erfolgen zu erkennen sind. Auch führen jene nur zu vorübergehenden Orts- und Formveränderungen, nach welchen die bewegten Theile annähernd wieder zu ihrem früheren Zustande zurückkehren, die Gestaltungsvorgänge aber zu bleibenden. Hinsichtlich der letzteren wird auf den 4. Abschnitt verwiesen.

Bau der quergestreiften Muskeln.

Die oben genannten, theils im Ganzen, theils in einzelnen Theilen contractilen Organe haben sämmtlich, soweit sie untersucht sind, gewisse gemeinsame Eigenschaften (abgesehen von der Contractilität selbst), welche auf eine ihnen allen gemeinsame wesentliche Substanz deuten. Diese Substanz scheint in der ganzen Thierwelt und in vielen pflanzlichen Organismen verbreitet zu sein. Man nannte sie früher "Sarcode", jetzt allgemein "Protoplasma". Man kann daher den Satz aufstellen, dass active Bewegungen überall nur da vorkommen, wo sich Protoplasma findet. Die Eigenschaften des Protoplasma werden zweckmässiger im Zusammenhange erst dann besprochen, wenn die Physiologie der wichtigsten Bewegungsapparate abgehandelt ist. Von diesen werden zunächst und vorwiegend die am besten studirten, die Muskeln, Gegenstand der Betrachtung sein.

I. DIE MUSKELN.

Die Muskeln unterscheiden sich von fast allen übrigen bewegungserzeugenden Gebilden wesentlich dadurch, dass die Bewegung in ihnen nur auf die Einwirkung einer nachweisbaren auslösenden Kraft erfolgt. In der Regel geht diese Auslösung vom Nervensystem aus.

Neuerdings ist das Vorkommen automatischer Muskelbewegungen behauptet worden (ENGELMANN, s. unter glatte Muskeln).

Man unterscheidet, hauptsächlich nach dem Bau der histologischen Elemente, zwei Arten von Muskeln, die quergestreiften und die glatten. Die physiologischen Eigenschaften beider sind, wie die folgende Betrachtung zeigen wird, im Wesentlichen dieselben, wenn auch im Einzelnen mancherlei Abweichungen vorkommen.

A. Die quergestreiften Muskeln.

Die quergestreiften oder animalischen Muskeln sind überall da im Körper angebracht, wo energische Bewegungen vorkommen; mit wenigen Ausnahmen sind alle Bewegungen dieses Characters, somit die Thätigkeit der quergestreiften Muskeln, vom Willen abhängig. Man nennt daher die quergestreiften Muskeln auch willkürliche. Unter jenen Ausnahmen bildet die wichtigste das Herz, dessen quergestreifte Fasern auch in anderer Hinsicht sich von den gewöhnlichen unterscheiden (s. p. 54).

Die quergestreiften Muskeln bilden meist länglichrunde Stränge, zuweilen aber platte Ausbreitungen, von rothbrauner Farbe, welche eine grobe Längsfaserung zeigen; sie sind an die zu bewegenden Theile (Knochen, Knorpel etc.) entweder direct oder durch Vermittelung längsgefaserter Bindegewebsmassen (Sehnen) angeheftet. Umgeben sind sie von gröberen äusseren, und feineren unmittelbar anliegenden Bindegewebshäuten (Fascien, Perimysium); letztere setzen

Bau des Muskeirohrs.

sich in das Innere, zwischen die Fasern fort, und theilen den Muskel in zahlreiche längsverlaufende Fächer. Die Muskeln lassen sich ohne Mühe in der Längsrichtung in immer feinere Faserbündel zerreissen, bis zu einer gewissen Grenze, den sog. "Primitivbündeln". Diese sind indess keine Bündel mehr, sondern Röhren, mit einer anscheinend flüssigen Masse, der eigentlichen Muskelsubstanz, erfüllt. Die Wand dieser Röhren (Muskelfaser, Muskelrohr) besteht aus einer sehr elastischen, vollkommen geschlossenen Membran, dem Sarcolemm. Der Inhalt zeigt unter dem Microscop feine, regelmässige Querstreifen, welche von schichtweise angeordneten, stärker als die Grundsubstanz lichtbrechenden Körperchen herrühren; diese Körperchen sind zugleich doppeltbrechend (BRÜCKE). Der Abstand der Querstreifen ist in der Ruhe sehr regelmässig, und bei den verschiedenen Thieren fast derselbe (0,0020 bis 0,0028 mm.) (HENSEN). Die meisten Muskelröhren verlaufen durch die ganze Länge des Muskels und setzen sich direct an die Sehne oder den Knochen etc. an; ein Theil indess endet zugespitzt frei im Innern des Muskels (ROLLETT).

Dass der Muskelinhalt flüssig ist, schliesst man aus den unter Umständen in ihm ablaufenden Wellenbewegungen, namentlich aus dem hier wie in anderen Flüssigkeiten sich zeigenden Porner'schen Phänomen (KÜHNE), d. h. der Fortführung des Muskelinhalts zum negativen Pol bei Durchleitung eines electrischen Stromes. Ferner hat ein Beobachter (KÜHNE) in einer frisch herauspräparirten Froschmuskelfaser eine eingeschlossene Nematode sichtlich ohne mechanische Widerstände sich umherbewegen gesehen. - Durch die Einwirkung verschiedener Reagentien wird der Muskelinhalt fest (Näheres s. unten) und zerfällt nach verschiedenen Richtungen: a) nach der Richtung der Querstreifen, in runde dünne Scheiben ("discs" BOWMAN); b) in feine Längsfasern, welche als Andeutung der früheren Querstreifung in den dieser entsprechenden Abständen leichte varicöse Anschwellungen zeigen ("Muskelfibrillen" KÖLLIKER); c) nach beiden Richtungen zugleich, in kleine prismatische Körperchen, welche man sich entstanden denken kann entweder durch Zerfall der Fibrillen in der Richtung der Querstreifung oder durch Zerfall der Discs in der Richtung der Fibrillen ("sarcous elements" BOWMAN, "Fleischprismen" KÜHNE). Alle diese Zerfallproducte sind zu Zeiten als präformirte Muskelelemente angesehen worden. Neuerdings, wo es gelungen ist, die Fleischprismen im lebenden Muskel als in der Muskelflüssigkeit suspendirte Körper wahrzunehmen (besonders an Insectenmuskeln), muss man letztere als präformirte Gebilde, die Fibrillen als Längsreihen, und die Discs als Querschichten von solchen betrachten; in den meisten Muskeln haben die Fleischprismen beim Absterben die Neigung, in fibrillärer Anordnung aus einander zu fallen; manche Reagentien bewirken dagegen den Zerfall zu Discs. Die Fleischprismen haben meist im Querschnitt eine 3-5seitig polygonale Gestalt, und liegen so dicht aneinander, dass nur schmale Zwischenräume für die flüssige Grundsubstanz übrig bleiben (Сонинеім).

Bau des Muskelrohrs. Chemische Bestandtheile.

Im polarisirten Lichte untersucht zeigen sich die Fleischprismen doppeltbrechend (bei gekreuzten Nicols farbig), die Grundsubstanz einfachbrechend. Da die Fleischprismen bei der Contraction ihre Gestalt ändern (kürzer und dicker werden), so sind sie keine einfachen doppeltbrechenden Gebilde, etwa wie Krystalle, sondern man muss annehmen dass sie selbst Gruppen von zahlreichen kleinen doppeltbrechenden Elementen ("Disdiaclasten") sind, welche im ruhenden und im contrahirten Fleischprisma verschieden angeordnet sind (BRÜCKE).

Nach neueren Angaben (KRAUSE, HENSEN, FLÖGEL, MERKEL, ENGELMANN u. A.), die jedoch in ihren Einzelheiten noch vielfach controvers sind, ist der Bau der Muskelfasern viel complicirter als das eben angegebene Schema. Die Querstreifung ist, genauer ausgedrückt, die optische Wirkung einer Abwechslung heller und dunkler Schichten; in den hellen erscheint nun eine feine Mittellinie ("Querscheibe"), welche als Ausdruck einer Quermembran angesehen wird (KRAUSE). Auch in der dunklen Schicht erscheint eine (hellere) Querlinie, die "Mittelscheibe" (HENSEN). Auf Grund dieser Befunde werden nun neue Schemata aufgebaut, auf welche hier nicht eingegangen werden kann, da die Wirkungen postmortaler Gerinnungsdifferenzirungen sehr schwer auszuschliessen sind Am complicirtesten ist das KRAUSE'sche Schema, in welchem der Sarcolemmschlauch durch quere ("Querscheiben") und longitudinale Scheidewände in ein System von "Muskelkästchen" getheilt ist, deren jedes ein Sarcous element (der Antheil der dunklen Querschicht zwischen zwei helleren flüssigen Schichten die an die Querscheibe grenzen) einschliesst.

Ausserdem enthält die Muskelfaser noch folgende Formbestandtheile: 1. Kerne (bläschenförmig, mit Kernkörperchen und einer undeutlichen körnigen Umgebung, welche von Einigen für Protoplasma gehälten wird); sie liegen in der Nähe des Sarcolemms, bei manchen Thieren gleichmässig durch den Muskelinhalt vertheilt; 2. Nervenendigungen (KÜHNE); die verzweigten Nervenprimitivfasern treten in das Muskelrohr ein, indem das Neurilemm continuirlich in das Sarcolemm übergeht, das Mark an der Eintrittsstelle aufhört und der Axencylinder in eine der quergestreiften Substanz unmittelbar aufliegende Masse übergeht: den Nervenendhügel; das Sarcolemm ist dieser Auflagerung entsprechend etwas ausgebuchtet. Die Substanz des Endhügels ist eine homogene, feingranulirte, mit grossen Kernen versehene Masse, in welcher eine verästelte Platte (Nervenendplatte), die eigentliche Endigung des Axencylinders, liegt. Auf eine in den Muskel eintretende Nervenfaser kommen in den Augenmuskeln 1—10, in anderen Muskeln weit mehr (20—80) Muskelfasern (TERGAST).

Der Muskel enthält ausser den Muskelröhren und dem vom Perimysium ausgehenden Scheidewandsystem noch reichliches Bindegewebe, welches mit letzterem zusammenhängt, ferner Blut- und Lymphgefässe und verzweigte Nervenfasern.

Chemische Bestandtheile des Muskels.

Die Reaction des frischen ruhenden Muskels ist neutral, oder durch die Bespülung mit alkalischen Säften (Lymphe) schwach alkalisch (DU BOIS-REYMOND).

Da der Muskel eine chemisch sehr veränderliche Substanz ist,

220

so erfordert die Feststellung einiger seiner Bestandtheile besondere Vorsichtsmassregeln und ist noch nicht endgültig durchgeführt. Diese Substanzen sind namentlich die eiweissartigen.

Möglichst unveränderten Inhalt der Muskelröhren erhält man (KÜHNE): 1. durch Auspressen der Muskeln kaltblütiger Thiere, nach Entfernung des Blutes durch Ausspritzen der Gefässe mit indifferenten Flüssigkeiten (½- bis 1procentige Kochsalzlösung); 2. durch Gefrierenlassen entbluteter Muskeln, Zerkleinerung mit abgekühlten Instrumenten und Filtration bei wenig über 0%, am besten nach Verdünnung mit abgekühlter Kochsalzlösung. — Die so erhaltene trübe, neutrale, oder schwach alkalische Flüssigkeit, das "Muskelplasma", verändert sich, um so schneller je höher die Temperatur; sie gerinnt nämlich, zuerst gleichmässig gallertartig, so dass man die Gerinnung nur am Zäherwerden und am Nichtausfliessen beim Umkehren des Gefässes bemerkt; später zieht sich das Gerinnsel unter Bildung von Flocken und Fetzen zusammen, wobei die Masse sich stark trübt; hierbei wird eine saure Flüssigkeit frei ("Muskelserum").

Die durch die Gerinnung ausgeschiedene Substanz ist ein Eiweisskörper: Myosin. Derselbe ist in concentrirteren Kochsalzlösungen löslich, und wird aus diesen Lösungen durch Verdünnen und umgekehrt durch Salzzusatz wieder ausgeschieden. Verdünnte Säuren lösen ebenfalls das Myosin leicht, wobei es sich aber in Syntonin (p. 32) umwandelt.

Die spontane Myosinausscheidung geschieht am schnellsten, nämlich momentan: bei 40° für Kaltblüter, bei 48-500 für Warmblüter. Sie wird ferner augenblicklich bewirkt durch destillirtes Wasser und durch Säuren.

Das Muskelserum enthält die übrigen Muskelbestandtheile, nämlich: 1. eine Anzahl von Eiweisskörpern, welche bei verschiedenen Temperaturen (45-70°) gerinnen; der bei 60-70° gerinnende ist gewöhnliches Albumin: 2. verschiedene Kohlenhydrate, nämlich Glycogen (NASSE) (in besonders grosser Menge bei Embryonen und jungen Thieren, MAC-DONNELL), daneben dessen Umwandlungsproducte: Dextrin (LIMPRICHT) und Traubenzucker (MEISSNER), wohl erst postmortal entstanden (NASSE); ferner Inosit in grösseren Mengen; 3. wahrscheinlich Lecithin (nicht direct nachgewiesen, aber jedenfalls wegen des Daseins von Nervenendigungen anzunehmen); 4. Fette, in geringen Mengen; 5. freie Säuren; hauptsächlich Fleischmilchsäure, ferner noch einige flüchtige Fettsäuren (Ameisensäure, Essigsäure); 6. verschiedene Amidsubstanzen:

Genuine Muskelbestandtheile. Ruhender Muskel. Elasticität. 221

Kreatin (nach Einigen auch Kreatinin, welches aber nach Andern erst bei der Darstellung aus Kreatin sich gebildet hat), Carnin (p. 28), Hypoxanthin (Sarkin), Xanthin, Inosinsäure, zuweilen Harnsäure (?); 7. ein rother Farbstoff, in den meisten Muskeln Hämoglobin (KÜHNE), 8. Salze, besonders Kalisalze; 9. Wasser; 10. Gase, hauptsächlich Kohlensäure (s. unten).

Die genannten Bestandtheile sind die des schon geronnenen Muskelinhalts. Da der Gerinnungsvorgang, ebenso die Contraction (s. unten), mit chemischen Veränderungen im Muskel verbunden ist, die zum Theil noch in Dunkel gehüllt sind, der ungeronnene Muskel oder das Muskelplasma aber nicht mit Vermeidung jener Vorgänge untersucht werden können, so sind die hier genannten Stoffe nicht als die Bestandtheile des unveränderten lebenden Muskels anzusehen. Was über diese ermittelt ist oder vermuthet werden kann, wird weiter unten im Zusammenhange erörtert werden.

Im Gesammtmuskel finden sich ausserdem die Bestandtheile der übrigen Formelemente (Bindegewebe, Gefässe, Blut, Nerven etc.), also ausser den bereits genannten noch leimgebende Substanz, Elastin u. s. w. Das Sarcolemm scheint aus elastischer Substanz zu bestehen.

Die quantitative Zusammenstellung der (starren) Rindsmuskeln ist folgende (LEHMANN) in 100 Theilen: Wasser 70-80, feste Bestandtheile 26-20, unlösliche Eiweisskörper (darunter Myosin, Sarcolemme etc.) 15,4-17,7, lösliche Eiweisskörper und Kalialbuminat 2,2-3,0, Leim 0,6-1,9, Kreatin 0,07-0,14, Fett 1,5-2,3, Milchsäure 1,5-2,3, Phosphorsäure 0,66-0,7, Kali 0,5-0,54, andere Aschenbestandtheile 0,17-0,26. – Das Carnin ist bisher nur im Fleischextract des Rindes gefunden (1 pCt. des LIEBIG'schen Extractes, WEIDEL).

Zustände des Muskels.

Den gewöhnlichen Zustand des lebenden Muskels nennt man den Ruhezustand; die Vorgänge in diesem Zustande sind ohne feinere Hülfsmittel unmerklich. Aus dem Ruhezustand kann der Muskel durch gewisse Bedingungen in andere übergeführt werden: 1. in den thätigen Zustand, bei welchem eine sichtbare Verkürzung eintritt, 2. in die Starre, ein Zustand, welcher von gewissen mit dem Aufhören des Lebens (Absterben) verbundenen chemischen Veränderungen herrührt und ebenfalls mit Verkürzung verbunden ist.

a) Der ruhende Muskel.

Mechanische Eigenschaften des ruhenden Muskels.

Der Muskel (der Einfachheit wegen werden hier alle Muskeln als spindelförmig in die Länge gestreckt angesehen, eine Gestalt

Ruhender Muskel. Elasticität. Stoffwechsel.

welche die meisten in der That haben) ist ein Gebilde von geringer aber sehr vollkommener Elasticität, d. h. er besitzt eine grosse Dehnbarkeit (wird durch geringe Belastungen schon bedeutend verlängert), kehrt aber nach dem Aufhören der dehnenden Kraft sofort wieder zu seiner ursprünglichen Länge zurück. Mit der Verlängerung nimmt natürlich die Dicke (der "Querschnitt") entsprechend ab, so dass das Volum annähernd dasselbe bleibt (es wird etwas vermindert, SCHMULEWITSCH). Wie bei allen organisirten Körpern sind auch beim Muskel nicht, wie bei den unorganisirten, die Dehnungslängen den spannenden Gewichten proportional, sondern ein gleicher Spannungszuwachs bringt um so geringere Verlängerung hervor, je mehr der Muskel bereits gedehnt ist (ED. WEBER). Die Dehnungscurve, d. h. die Linie, welche man erhält, wenn man die dehnenden Gewichte als Abscissen und die Dehnungslängen als Ordinaten aufträgt, ist daher nicht wie bei den unorganisirten Körpern eine gerade Linie, sondern nähert sich einer Hyperbel (WERTHEIM). Im lebenden Körper sind die Muskeln beständig etwas über ihre natürliche Länge gedehnt, so dass sie bei Lostrennung von ihren Befestigungspuncten etwas zurückschnellen. Diese Anordnung hat den Vortheil, dass bei eintretender Contraction sofort die Befestigungspuncte einander genähert werden, ohne dass erst Zeit und Kraft zur Anspannung des schlaffen Muskels verloren wird. In den losgetrennten Muskeln findet man die Muskelröhren gewöhnlich nicht gradlinig ausgestreckt, sondern wellenförmig und im Zickzack gekrümmt.

Stoffwechsel des ruhenden Muskels.

Ueber die chemischen Vorgänge im ruhenden Muskel ist erst sehr wenig ermittelt. Da der Muskel beständig das ihm zuströmende arterielle Blut in venöses verwandelt, so müssen in ihm Vorgänge existiren, welche mit einem Sauerstoffverbrauch und einer Kohlensäurebildung verbunden sind. Es ist durch Erfahrungen, welche weiter unten mitgetheilt werden, wahrscheinlich, dass diese beiden Vorgänge nicht identisch sind, sondern nur neben einander herlaufen.

Auch an den ausgeschnittenen Muskeln (kaltblütiger Thiere, da bei diesen der ausgeschnittene Muskel noch lange Zeit die Eigenschaften des lebenden bewahrt) lässt sich eine Sauerstoffaufnahme und eine Kohlensäureausgabe nachweisen (DU BOIS-REYMOND, G. LIEBIG); diese Processe finden auch in entbluteten Muskeln (p. 220) statt, sind also nicht dem Blute der Muskelgefässe, sondern der Muskelsubstanz selbst zuzuschreiben. Da jedoch starre Muskeln denselben Gaswechsel zeigen, wie lebende (HERMANN), so ist derselbe jedenfalls zum überwiegend grössten Theil nicht einem functionellen Process, sondern einer fauligen

Muskelathmung. Erstarren des Muskels.

Zersetzung zuzuschreiben, welche namentlich die Oberfläche des Muskels, und ganz besonders die freiliegenden Querschnitte ergreift; die Grössen des Gaswechsels sind daher um so bedeutender, je grösser die Oberfläche, und je mehr sich der Muskel der eigentlichen Fäulniss nähert.

Da indess ausgeschnittene Muskeln in Sauerstoffgas oder Luft ihre Lebenseigenschaften unter gewissen Umständen etwas länger bewahren, als in Wasserstoffgas und andern O-freien indifferenten Gasen (v. HUMBOLDT, G. LIEBIG, HERMANN), so ist dennoch eine geringe functionelle O - Aufnahme anzunehmen, welche aber für den gasometrischen Nachweis zu klein ist. Dass im vom Blute durchströmten Muskel die physiologische O-Aufnahme viel grösser ist, als im ausgeschnittenen, kann in folgenden Umständen seinen Grund haben: 1. darin, dass der ausgeschnittene Muskel nur an seiner Oberfläche, der vom Blute durchströmte dagegen in allen seinen Theilen mit dem Sauerstoffträger (bei ersterem die Luft, bei letzterem das Blut) in Berührung ist; 2. darin, dass der Blutsauerstoff, welcher an Hämoglobin gebunden ist, möglicherweise besondere, für den Uebergang an die Muskelsubstanz günstigere Eigenschaften hat, als der freie Sauerstoff der Luft (vgl. p. 45); 3. darin, dass der Process der Verbindung des Sauerstoffs mit der Muskelsubstanz noch anderer Stoffe bedarf, welche im Muskel nicht vorräthig sind, sondern durch das Blut zugeführt werden (Näheres unten).

Weiteres über die chemischen Vorgänge im ruhenden Muskel ist nicht direct beobachtet, sondern kann nur aus den Erscheinungen bei der Contraction und beim Erstarren geschlossen werden; es wird daher weiter unten davon die Rede sein.

b) Das Erstarren des Muskels.

Wird einem Muskel die Blutzufuhr abgeschnitten, oder wird er ganz aus dem Körper entfernt, so geht er bei Warmblütern in kurzer Zeit, bei Kaltblütern viel später in den Zustand der Todtenstarre über. Er hat in diesem Zustande seine Erregbarkeit eingebüsst, ist stark in der Längsrichtung verkürzt, weniger elastisch, weisslich trübe und seine Reaction ist durchweg sauer (DU BOIS-REYMOND); sein Volum ist ein wenig vermindert (SCHMULEWITSCH, WALKER). Unter dem Microscop erscheinen die vorher durchscheinenden Muskelröhren undurchsichtig und trübe, und der vorher flüssige Inhalt fest (KÜHNE). Ueber die Kraft der Starre-Verkürzung s. unten bei der Thätigkeitsverkürzung.

Der Eintritt des "spontanen" Starre wird beschleunigt durch vorhergegangene anhaltende Thätigkeit des Muskels; ferner durch Wärme, so dass er bei einer bestimmten Temperatur (40° für Kaltblüter, 48—50° für Warmblüter) augenblicklich erfolgt ("Wärmestarre"); in der Kälte tritt die Erstarrung sehr spät ein, bei 0° erst nach mehreren Tagen; ebenso durch destillirtes Wasser ("Wasserstarre"), durch Säuren, auch die schwächsten, wie Kohlensäure ("Säurestarre"), und durch viele chemisch differente Substanzen, endlich durch Gefrieren und Wiederaufthauen.

Auch wenn die Circulation im Muskel noch besteht, kann er durch manche der zuletzt genannten Einflüsse zur Starre gebracht werden, jedoch ist eine viel längere und intensivere Einwirkung derselben erforderlich; die Circulation wirkt also der Entwickelung jeder Art von Starre entgegen (HERMANN).

Die Aufhebung der Blutcirculation bringt den Muskel dadurch zur Starre, dass ihm die Sauerstoffzufuhr entzogen wird; denn im ausgeschnittenen Muskel kann man durch Hindurchleiten O-haltigen, nicht aber durch die O-freien Blutes, die Starre auf lange Zeit hinausschieben (LUDWIG & A. SCHMIDT). Auch der undurchströmte ausgeschnittene Muskel verliert seine Erregbarkeit in Luft oder Sauerstoff ein wenig später als in O-freien Gasen (v. HUMBOLDT, G. LIEBIG), jedoch ist hier der Unterschied nur äusserst gering, wahrscheinlich weil der Sauerstoff nur mit der Oberfläche des Muskels in Berührung ist (vgl. p. 223).

Das Wesentliche der Starre ist eine Gerinnung im Muskelinhalt (p. 220), wodurch dieser fest wird (BRÜCKE, KÜHNE). Der coagulirte Körper, dessen Ausscheidung auch im Muskelplasma (p. 220) von selbst, bei höheren Temperaturen augenblicklich, stattfindet, ist ein Eiweisskörper, das Myosin. Nach den Erfahrungen am Muskelplasma muss man annehmen dass zuerst der Muskelinhalt dickflüssiger, endlich gelatinös wird, und dass schliesslich das Gerinnsel, ähnlich dem Fibringerinnsel im Blutkuchen, sich fest zusammenzieht, erst jetzt verkürzt sich der Muskel, wird undurchsichtig, und presst eine Flüssigkeit (das Muskelserum, p. 220) aus sich aus. Hiernach hat man verschiedene Stadien des Erstarrungsprocesses zu unterscheiden, von denen nur das letzte durch die Undurchsichtigkeit und Verkürzung sich dem Auge kundgiebt.

Neben der Myosinausscheidung verlaufen noch andere Processe, nämlich: 1. die schon erwähnte Säurung, welche von der Bildung einer Säure oder eines sauren Salzes herrührt: als jene Säure wird die Fleischmilchsäure (p. 15 f.) betrachtet, daneben soll auch Glycerinphosphorsäure (p. 20) vorkommen (DIACONOW). Die Säuremenge, welche ein Muskel beim Erstarren bildet, ist gleich gross, mag die Starre langsam (spontan) oder schnell (durch Wärme) sich entwickeln (J. RANKE); 2. eine Kohlensäureausgabe, welche von der Bildung freier (auspumpbarer) Kohlensäure herrührt; auch hier

Erstarren des Muskels.

ist die Menge der gebildeten Kohlensäure unabhängig von dem Modus des Erstarrens; die beim Erstarren gebildeten Kohlensäuremengen sind ferner um so kleiner, je mehr Kohlensäure der Muskel vorher durch Contractionen (s. unten) gebildet hat (HERMANN); 3. ein Glycogenverlust (dessen Grösse ebenfalls von dem Modus des Erstarrens unabhängig ist), ohne dass indess festgestellt ist, was aus dem Glycogen werde (O. NASSE).

Von dem ersten nicht sichtbaren Stadium der Myosinausscheidung ist es wahrscheinlich, dass es (bei Kaltblütern) sehr allmählich verläuft, da der Muskel vom Augenblick des Ausschneidens ab (nach einer rasch vorübergehenden Erhöhung) beständig an Erregbarkeit verliert; man kann also sagen, der ausgeschnittene Muskel sei in beständigem langsamen Erstarren begriffen (d. h. es bildet sich eine gallertartige Myosinausscheidung aus, es wird Kohlensäure gebildet, Glycogen verzehrt, und es entsteht Säure, welche allmählich die Reaction des Muskels verändert). Aber erst nach längerer Zeit tritt das zweite Stadium (Zusammenziehung des Gerinnsels und Verkürzung des Muskels) ein, womit die Starre vollendet ist. Der vollkommen starre Muskel fällt nach einiger Zeit der Fäulniss anheim, wobei Vibrionen sich entwickeln, die saure Reaction durch Ammoniakbildung allmählich in die alkalische übergeht, und stinkende Gase auftreten; der faulende Muskel entwickelt (auch im Vacuum) hauptsächlich Kohlensäure, Stickstoff, etwas Schwefelwasserstoff. Schon lange ehe der (ausgeschnittene) Muskel durch und durch starr ist, ist die Oberfläche desselben in einer ähnlichen, wenn auch schwachen fauligen Zersetzung begriffen.

Im ersten Stadium der Erstarrung kann der Muskel durch die Blutcirculation wieder hergestellt werden, nicht aber im zweiten Stadium, d. h. nach Contraction des Myosingerinnsels (KÜHNE, HER-MANN). Ein Warmblütermuskel geht durch Unterbindung seiner Arterie (STENSON) sehr schnell in das zweite Stadium der Starre über, in welchem er nicht mehr durch blosse Wiederherstellung des Blutumlaufs restituirt werden kann. Ueber das Wesen des Restitutionsprocesses s. unten.

Durch plötzliche starke Erhitzung (Werfen in siedendes Wasser — "Brühung") verlieren die Muskeln die Fähigkeit zu erstarren; sie werden dann weder sauer (DU BOIS-REYMOND), noch bilden sie Kohlensäure (HERMANN). Dieselbe Wirkung haben die Mineralsäuren, so dass die "Säurestarre" (p. 224) von der gewöhnlichen wesentlich verschieden ist (HERMANN).

Hermann, Physiologie. 5. Aufi.

Thätiger Zustand. Irritabilität.

Bleiben die Muskeln in der Leiche in ihrer natürlichen Lage, so bewirkt ihre Verkürzung bei der Starre eine Steifigkeit sämmtlicher Glieder, die "Todtenstarre", welche erst mit dem Eintritt der Fäulniss "sich löst", indem die Glieder wieder beweglich werden. Von dieser Starre der Leiche hat die Muskelstarre ihren Namen.

Die Stellung der Gliedmaassen in der starren Leiche entspricht meist der Resultirenden aus der Spannung der erstarrten Muskeln und der Einwirkung der Schwere. Bei sehr plötzlich eintretender Starre bleiben zuweilen die Gliedmaassen in der Stellung, die sie im Augenblick des Todes durch Muskelcontractionen angenommen hatten (Rossbach).

c) Die Thätigkeit des Muskels.

Die physiologisch wichtigste Zustandsänderung des Muskels ist der Uebergang in den "thätigen Zustand" d. h. in einen Zustand, wo unter Erhöhung des Stoffwechsels der Muskel eine neue Gestalt annimmt.

Auslösung der Muskelthätigkeit.

Die Einflüsse, welche diesen Uebergang hervorrufen, nennt man Reize, die Ueberführung selbst Erregung, und die Fähigkeit des Muskels, durch die Reize erregt zu werden, seine Erregbarkeit oder Irritabilität. Insofern die Reize Quantitäten von Spannkräften in lebendige überführen, verhalten sie sich diesen gegenüber wie auslösende Kräfte (p. 6), und man spricht daher von der Auslösung der Muskelarbeit durch die Reize. — Der normale Reiz für den Muskel geht von dem sich in ihm verbreitenden ("motorischen") Nerven aus, und besteht in einem noch nicht aufgeklärten Vorgange, von dem im nächsten Capitel die Rede sein wird. Jedoch giebt es noch zahlreiche andere Muskelreize, welche theils in Folge krankhafter Verhältnisse, theils künstlich angewendet, auf den Muskel erregend wirken.

Lange Zeit war man der Ansicht, dass es keine directe Muskelirritabilität gebe, d. h. dass alle auf den Muskel direct und mit Erfolg angewandten Reize nur die im Muskel enthaltenen Nervenendigungen und erst durch deren Vermittelung indirect den Muskel erregen. Folgende Gründe haben jedoch zu Gunsten der directen Muskelerregbarkeit entschieden: 1. Auch nervenlose Muskelstücke (die Enden des Sartorius vom Frosche) können durch directe Reize in Thätigkeit versetzt werden (KÜHNE). 2. Es giebt chemische Muskelreize, welche den Nerven nicht zu erregen im Stande sind (KÜHNE), und umgekehrt electrische Nervenreize, welche für die Muskelsubstanz wirkungslos sind (BRÜCKE, vgl. Cap. IX.). 3. Stoffe, welche die Eigenschaft haben, die Nerven, bes. die intramusculären Nervenenden, leistungsunfähig zu machen, heben die directe Erregbarkeit des Muskels nicht auf (Vergiftung mit indianischem Pfeilgift [Curare] KÖLLIKEB);

Muskelreize.

auch andere Einflüsse (starke Kälte, Unterbrechung der Blutzufuhr) bringen ein vorübergehendes Stadium hervor, in dem die intramusculären Nervenenden gelähmt sind, directe Muskelreizung aber noch wirksam ist. 4. Unter gewissen Verhältnissen (Ermüdung des Muskels) ruft eine örtliche Reizung des Muskels nur eine örtlich beschränkte Zusammenziehung hervor, welche nur am Orte der Reizung auftritt, ohne Rücksicht auf den Verbreitungsbezirk der an dieser Stelle getroffenen Nervenfasern (SCHIFF, KÜHNE). 5. Die niederen contractilen Organe und Organismen, deren Substanz mit der Muskelsubstanz übereinstimmt (s. unten), entbehren der Nerven gänzlich. 6. Auch in den Muskeln höher organisirter Thiere sollen automatische Bewegungen vorkommen (vgl. unten bei den glatten Muskeln).

Die bisher bekannten Reize für den Muskel sind: 1. der normale, vom Nerven ausgehende Reiz, der entweder vom nervösen Centralorgan (Wille, Automatie, Reflex) oder von einem gereizten Puncte der Nervenbahn aus zum Muskel geleitet ist. 2. Electrische Reize; es ist zweckmässiger, das Nähere darüber bei den Nerven (Cap. IX.) anzuführen, auf welche sie nach ähnlichen Gesetzen wirken. 3. Chemische Reize; als solche sind im allgemeinen alle Substanzen zu betrachten, welche schnell Veränderungen in der chemischen Zusammensetzung des Muskelinhalts hervorbringen; an der Applicationsstelle bewirken sie zugleich mit der Contraction den Eintritt der Starre. Die meisten wirken schon in sehr grosser Verdünnung, so namentlich (KÜHNE): Mineralsäuren (Salzsäure schon in einer Lösung von 0,1%), Lösungen von Metallsalzen, Milchsäure, verdünntes Glycerin, Ammoniak selbst in spurweiser Verdünnung (ammoniakhaltige Luft). Zu den chemischen Reizen gehört auch destillirtes Wasser, besonders wenn es in die Gefässe des Muskels injicirt wird. Die meisten dieser Substanzen wirken auf den Nerven gar nicht erregend, z. B. Ammoniak, oder nur in grösserer Concentration (vgl. oben). 4. Thermische Reize, d. h. Temperaturen über 40°, besonders leicht stark erhitzte Körper, welche den Muskel berühren. 5. Mechanische Reize, jede plötzliche gewaltsame Gestaltveränderung, welche die Muskelfaser an irgend einer Stelle trifft (Druck, Quetschung, Zerrung, Dehnung u. s. w.). - Die Art der Einwirkung dieser Reize ist zur Zeit noch durchaus unverständlich.

Dieselbe Reizstärke hat bei einem und demselben Muskel nicht unter allen Umständen denselben Erfolg; sie löst bald mehr bald weniger Kräfte aus, d. h. die Erregbarkeit des Muskels ist nicht immer gleich gross. Sie hängt, soweit bisher ermittelt, von folgenden Momenten ab: 1. Sie ist für jeden Organismus bei einer gewissen mittleren Temperatur am grössten und nimmt mit dem Sinken oder

Erregbarkeit.

Steigen derselben ab. 2. Durch vorangegangene Thätigkeit wird sie auf einige Zeit herabgesetzt; diese Herabsetzung nennt man "Ermüdung". Folgende Umstände können ihr möglicherweise zu Grunde liegen: a) die Anhäufung gewisser Producte im Muskel, welche bei der Thätigkeit in grosser Menge gebildet (s. unten) und vielleicht nicht schnell genug durch Resorption beseitigt werden; man müsste dann annehmen, dass dieselben irgendwelchen nachtheiligen Einfluss auf die Thätigkeit ausüben; diese Vermuthung hat sich neuerdings bestätigt (J. RANKE), die ermüdend wirkenden Stoffe sind: die Kohlensäure, und die freie oder als saures Salz vorhandene Säure des Muskels, b) der Mangel an den specifischen Bestandtheilen, auf deren Verbrauch die Thätigkeit beruht, und welche während derselben nicht schnell genug ersetzt werden können (s. unten). Vielleicht sind beide Ursachen betheiligt oder beide führen zu verschiedenen Arten von Ermüdung, obwohl meist nur die erste angeführt wird. (Ueber den Einfluss der Ermüdung auf die Leistungen des Muskels s. unten.) 3. In den aus dem Körper entfernten oder (durch Unterbindung ihrer Arterie, STENSON'scher Versuch) der Sauerstoffzufuhr beraubten Muskeln, sowie in denen des gestorbenen Körpers nimmt sie nach kurzer Steigerung ab, bei Warmblütern schneller, als bei Kaltblütern; die Abnahme der Erregbarkeit geht der Entwicklung der Starre vollkommen parallel, wird durch dieselben Umstände wie diese beschleunigt (p. 223) und mit der Vollendung der Starre ist die Erregbarkeit vernichtet. 4. Alle Einflüsse, welche im lebenden Organismus die normale Zusammensetzung des Muskelinhalts wesentlich ändern, vermindern die Erregbarkeit bis zum Erlöschen. 5. Ist die Erregbarkeit durch einen der genannten Einflüsse, mit Ausnahme des letzten, sehr herabgesetzt worden, die Starre aber noch nicht eingetreten, so lässt sie sich in gewissem Sinne wieder herstellen, wenn ein starker constanter galvanischer Strom den Muskel eine Zeit lang in der Längsrichtung durchfliesst (HEIDENHAIN); eine wahrscheinliche Erklärung hierfür s. im 9. Cap. bei den Modificationen der Nervenerregbarkeit. 6. Ein anderes Wiederherstellungsmittel für die Erregbarkeit ist die Circulation (wenn Unterbrechung derselben Ursache der Verminderung war), jedoch nur so lange, als die Muskeln noch nicht in den Zustand vollkommener Starre übergegangen sind.

Da die meisten Lösungen und selbst destillirtes Wasser auf den Muskel reizend und zerstörend wirken, so giebt es nur wenige indifferente Flüssigkeiten, in denen er sich nicht verändert; solche sind: verdünnte Lösungen von NaCl

Stoffwechsel bei der Muskelthätigkeit.

(am besten 0,6 pCt., O. NASSE), oder anderen Natronsalzen (die günstigsten Procentzahlen verhalten sich wie die Moleculargewichte, NASSE); weniger günstig, aber günstiger als destillirtes Wasser, sind Lösungen von Borsäure $(1^{1}/_{z}-2 \text{ pCt.})$ und von arseniger Säure (BRÜCKE).

Stoffwechsel des thätigen Muskels.

Folgende chemischen Processe sind für den thätigen Muskel erwiesen:

1. Er bildet Kohlensäure, welche an das Blut, oder beim ausgeschnittenen Muskel an die Luft abgegeben wird; die Kohlensäureausgabe ist während der Thätigkeit bedeutend grösser als während der Ruhe. Dies ergiebt sich sowohl am ausgeschnittenen Muskel (MATTEUCCI, VALENTIN), als auch am Muskel im Organismus, oder am künstlich von Blut durchströmten Muskel, dessen Venenblut während der Thätigkeit kohlensäurereicher abfliesst als während der Ruhe (Ludwig & Sczelkow, Ludwig & Schmidt); endlich scheidet auch der Gesammtorganismus zur Zeit der Arbeit mehr Kohlensäure aus, als während der Ruhe (REGNAULT & REISET, vgl. p. 143).

2. Der Muskel im Organismus und der künstlich durchströmte Muskel verzehrt mehr Sauerstoff bei der Thätigkeit, als während der Ruhe, wie man aus dem O-ärmer abfliessenden Venenblut ersieht (LUDWIG & SCZELKOW, LUDWIG & SCHMIDT); ebenso verzehrt der Gesammtorganismus bei der Arbeit mehr Sauerstoff als in der Ruhe (REGNAULT & REISET), aber der Unterschied ist viel kleiner als der der Kohlensäureausfuhr (PETTENKOFER & VOIT).

Am ausgeschnittenen Muskel ist ein vermehrter Sauerstoffverbrauch bei der Thätigkeit gasometrisch nicht nachzuweisen (HERMANN).

Die Sauerstoffaufnahme ist für die Thätigkeit nicht unmittelbar erforderlich, da der Muskel auch im Vacuum und in O-freien Gasen anhaltend arbeiten kann. Vorräthigen auspumpbaren Sauerstoff enthält der Muskel nicht (HERMANN).

3. Der Muskel wird durch die Thätigkeit sauer (DU BOIS-REYMOND), ebenso wie durch die Starre; die Säure ist vermuthlich dieselbe wie bei letzterer (vgl. p. 224).

4. Der Muskel verändert sich bei der Thätigkeit so, dass das Wasserextract ab-, das Alkoholextract zunimmt (HELMHOLTZ).

Dies sind die einzigen sicher festgestellten Vorgänge im thätigen Muskel. Ausserdem sind noch andere Angaben gemacht worden, welche zum Theil auf fehlerhaften Methoden beruhen, zum Theil durch andere entgegenstehende Resultate widerlegt oder zweifelhaft gemacht werden. Die beiden Hauptmethoden

Stoffwechsel bei der Muskelthätigkeit.

zur Entscheidung der hier vorliegenden Fragen sind folgende: a) Vergleichung der Ausgaben des ruhenden und des arbeitenden Gesammtorganismus; aus der Categorie der bei der Arbeit in grösseren Mengen ausgeschiedenen Stoffe lassen sich Schlüsse auf die zum Verbrauch gekommenen Sabstanzen ziehen. b) Vergleichung der chemischen Zusammensetzung ruhender und anhaltend thätig gewesener Muskeln, am besten desselben Thieres. Bei diesen Versuchn kann man die Thätigkeit entweder a. am lebenden Thiere hervorrufen (z. B. in Form von Strychninkrämpfen; eine Extremität wird durch Durchschneidung ihrer Nerven in Ruhe erhalten), oder β . am ausgeschnittenen Muskel. Bei diesem Verfahren existirt eine Fehlerquelle, welche die meisten derartigen Versuche unbrauchbar macht. Es wird nämlich unten sich als höchstwahrscheinlich herausstellen, dass der chemische Vorgang bei der Thätigkeit und beim Erstarren identisch sind, und zwar so, dass zwei gleiche ausgeschnittene Muskeln nach dem Erstarren genau gleich zusammengesetzt sind (abgesehen von entweichender CO₂), mag der eine nach dem Ausschneiden thätig gewesen sein oder nicht. Da nun bei der chemischen Behandlung der Versuchsmuskeln fast stets zunächst Starre eintritt (sie müssten denn sofort "gebrüht" werden, vgl. p. 225), so ist bei Vergleichung der Muskeln vom Verfahren b. ß. kein Unterschied im chemischen Befunde zu erwarten, und die gefundenen Unterschiede lassen keine sichere Deutung zu. - Bei Verfahren b. a. dagegen kann der Blutstrom während der Thätigkeit Stoffwechselproducte aus dem Muskel entfernen; der thätig gewesene Muskel wird also nach dem Erstarren weniger von diesen Producten enthalten als der ruhende; wenn man nun wie gewöhnlich die Stoffe, welche man im thätigen Muskel vermehrt findet, als Producte der Thätigkeit ansieht, so macht man, wenn (s. oben) der Eintritt der Starre nicht vermieden wurde, einen Fehler, der die Resultate in ihr Gegentheil umkehrt. - Die hauptsächlichsten Angaben über den Stoffwechsel im thätigen Muskel sind nun folgende:

1. Der Muskel verzehre (oxydire) bei seiner Thätigkeit Eiweisskörper. Man schloss hierauf: a) aus einer angeblichen Vermehrung der Harnstoffausscheidung bei der Thätigkeit: dieselbe existirt jedoch nicht (VoIr); b) aus der angeblichen Verminderung des Eiweissgehalts der Muskeln bei der Thätigkeit (J. RANKE); indess ist diese Verminderung nach Andern (NAWROCKI) so gering, dass sie fast die Fehlergrenzen der Bestimmung erreicht, — abgesehen von dem oben erwähnten principiellen Fehler; c) aus einer angeblichen Anhäufung von N-haltigen Oxydationsproducten im thätigen Muskel, nämlich Kreatin (J. LIEBIG, SOROKIN, SCZELKOW — von Andern [NAWROCKI] nicht bestätigt), Hypoxanthin etc. (SCHERER); es scheint eine solche Anhäufung unter Umständen vorzukommen, aber nicht als unmittelbares Product der Arbeit (s. unten).

2. Der Muskel producire bei der Arbeit Traubenzucker (J. RANKE); inde-s ist die angebliche Vermehrung so spurweise (0,005 pCt., dass sie, abgesehen von dem oben Gesagten, keine Schlüsse gestattet.

3. Der Muskel producire bei der Arbeit Fette (J. RANKE); dies Resultat ist unbrauchbar, so lange der Antheil der ätherextractreichen intramuscularen Nerven nicht ausgeschlossen ist.

4. Der Muskel oxydire bei der Arbeit flüchtige Fettsäuren (Sczelkow); die Versuche sind aus den oben angegebenen Ursachen nicht beweiskräftig.

230

Stoffwechsel bei der Muskelthätigkeit.

Die aus den angeführten Angaben abgeleiteten Theorien, z. B. dass der thätige Muskel Eiweisskörper verbrenne, unter Bildung von Kreatin, Zucker, (Milchsäure), Fetten und Kohlensäure (J. RANKE), sind daher zu verwerfen.

Dagegen lässt sich Folgendes über die Natur des chemischen Processes bei der Muskelaction aussagen:

Der chemische Process bei der Thätigkeit und beim Erstarren des Muskels sind höchst wahrscheinlich identisch (HERMANN); denn 1. ein ausgeschnittener Muskel producirt eine gleiche Gesammtmenge von Kohlensäure, mag er direct erstarren, oder vorher durch Contractionen Kohlensäure bilden; je mehr Kohlensäure also durch Contractionen gebildet wird, um so weniger producirt der Muskel (gleiche anfängliche Beschaffenheit vorausgesetzt) beim Erstarren (HERMANN). 2. Dieselben Verhältnisse scheinen für die Milchsäurebildung zu bestehen, wenigstens producirt ein im Körper thätig gewesener Muskel nach dem Ausschneiden beim Erstarren weniger Säure als ein unthätig gewesener (J. RANKE). 3. Beide Zustände sind von Sauerstoffaufnahme unabhängig; auch im Vacuum und in indifferenten Gasen kann der Muskel sich contrahiren und erstarren; es sind daher keine Oxydationsprocesse, sondern Spaltungsprocesse mit Sättigung stärkerer Affinitäten, wodurch Kraft frei wird, im Sinne des p. 199 Angeführten. 4. Eine Wiederherstellung sowohl des durch anhaltende Thätigkeit (Ermüdung) als des durch unvollkommene Erstarrung unerregbar gewordenen Muskels geschieht durch die Blutcirculation. 5. Der Muskel kann aus dem Zustande der Thätigkeit unmittelbar in den der vollkommenen Starre (zweites Stadium, p. 224) übergehen.

Zur vollkommenen Uebereinstimmung beider Vorgänge müsste nur noch auch während der Thätigkeit eine Myosinausscheidung stattfinden, und zwar die (optisch nicht nachweisbare) gallertartige (p. 224); eine solche ist höchst wahrscheinlich wegen des oben sub 5. genannten Umstandes, denn da das zweite Stadium der Myosingerinnung das Vorausgehen des ersten voraussetzt, so kann dasselbe in diesem Falle nur während der Thätigkeit abgelaufen sein.

Der einfachste Ausdruck für die chemischen Processe während der Erstarrung und während des thätigen Zustandes ist daher höchstwahrscheinlich folgendes: Der Muskel enthält in jedem Augenblick einen Vorrath einer complicirten, N-haltigen, im Muskelinhalt (und Muskelplasma, p. 220) gelösten Substanz (welche man der Kürze halber als die "krafterzeugende" oder "inogene" Substanz bezeichnen kann), welche einer Spaltung (mit Kraftentwicklung) fähig ist; die Spaltungsproducte sind unter andern: Kohlensäure, Fleischmilchsäure, vielleicht Glycerinphosphorsäure (p. 224), und ein gelatinös sich abscheidender, später (bei gewisser Concentration?) sich fest contrahirender Eiweisskörper (Myosin). Die Spaltung geschieht in der Ruhe langsam spontan (allmähliches Erstarren, p. 223), um so schneller, je höher die Temperatur; plötzlich, bei der Temperatur der Wärmestarre; sie wird ferner plötzlich beschleunigt durch die "Reize"; diese plötzliche Beschleunigung ist das Wesentliche des thätigen Zustandes. Ist die Substanz verbraucht, so ist keine Muskelthätigkeit mehr möglich.

Diese Substanz ist bisher noch nicht isolirt worden, weil sie bei jeder chemischen Behandlung sogleich sich in der bezeichneten Weise spaltet. Die Spaltung wird verhindert: durch plötzliche starke Erhitzung (Brühung) und durch Mineralsäuren (vgl. p. 225); beide Einwirkungen zerstören aber gleichzeitig die Substanz. – In Bezug auf ihre Zusammensetzung würde sie neben das Hämoglobin zu stellen sein (vgl. p. 35), da sie wie dieses erst bei der Zersetzung einen Eiweisskörper liefert. – Wegen der Analogie der chemischen Processe bei Thätigkeit und Erstarrung wird auch für erstere ein Glycogenverbrauch vermuthet (O. NASSE, vgl. p. 225).

Da die wirksame Substanz bei der Muskelthätigkeit verbraucht wird, so ist für die Erhaltung eines leistungsfähigen Muskels fortwährende Zufuhr oder eine Neubildung derselben erforderlich; die Restitution des Muskels geschieht, wie bereits erwähnt, sowohl für den durch Erstarrung als für den durch Thätigkeit erschöpften Muskel durch das Blut. Das Blut wirkt aber nicht bloss restituirend durch Herbeischaffung oder Neubildung der wirksamen Substanz, sondern auch durch Fortschaffung der Spaltungsproducte derselben, welche für den Muskel schädlich sind (p. 228). Das Blut schafft ans dem Muskel fort: Kohlensäure und höchstwahrscheinlich (DU Bois-REYMOND) die Fleischmilchsäure, beides schädliche Stoffe; - das Blut giebt an den Muskel ab: Sauerstoff; es ist aber klar, dass dieser allein den Verlust des Muskels nicht ersetzen kann, da ja fortwährend auch Kohlenstoff und Wasserstoff (in der Kohlensäure und Milchsäure) den Muskel verlassen; ausser dem Sauerstoff muss also das Blut dem Muskel noch kohlenstoff- und wasserstoff haltiges ("organisches") Material übergeben.

Da hiernach einerseits nicht sämmtliche Spaltungsproducte der inogenen Substanz den Muskel verlassen (das Myosin bleibt im Muskel, da die N-Ausscheidung durch die Thätigkeit nicht vermehrt wird, p. 230), andererseits nicht die fertige Substanz, sondern nur Ingredientien derselben dem Muskel zugeführt werden, so ist es höchst wahrscheinlich, dass die Restitution des Muskels, abgesehen von der Abfuhr der Muskelschlacken, in einer Synthese der inogenen Substanz besteht, an welcher sich das Myosin wieder betheiligt, und zu welcher das Blut Sauerstoff und eine noch nicht ermittelte N-freie organische Substanz liefert (HERMANN). Das Myosin würde also im Muskel eine Art chemischen Kreislaufs durchmachen.

Als Bedingungen für die Restitution des Muskels würden sich hieraus ergeben: 1. die Zufuhr von Sauerstoff; diese kann auch, in geringerem Umfange freilich, am ausgeschnittenen Muskel geschehen; 2. die Zufuhr der noch unermittelten organischen Substanz (s oben); es wäre denkbar, dass der aus-

232

Synthetische Restitution.

geschnittene Muskel einen gewissen Vorrath davon enthält; es würde dann durch den Aufenthalt desselben in Luft eine gewisse Restitution möglich sein, und dadurch sich die etwas längere Dauer der Erregbarkeit in O-haltigen Gasen erklären (p. 223); 3. die Gegenwart verwendbaren Myosins; als verwendbar muss das Myosin gelten, so lange es noch nicht in den fest contrahirten Zustand übergegangen ist. Hierdurch erklärt sich die p. 225 angeführten Beschränkung der Restituirbarkeit mittels der Circulation. — Die oxydative Synthese der inogenen Substanz scheint ein Analogon zu haben in der Synthese des Hämoglobins, bei welcher ebenfalls der Sauerstoff eine Rolle spielt (vgl. p. 165).

Der chemische Process, welcher das Substrat der Muskelarbeit ist, und der Restitutionsprocess verlaufen im Wesentlichen unabhängig von einander, ebenso daher die an ersteren gebundene Kohlensäureausscheidung und die an letzteren gebundene Sauerstoffaufnahme des Muskels und des Gesammtorganismus (vergl. p. 144). Jedoch findet sich zu den Zeiten, wo die Spaltung beschleunigt ist, also während der Muskelthätigkeit, auch der Restitutionsprocess erhöht, d. h. der Muskel nimmt während der Thätigkeit mehr Sauerstoff aus dem Blute auf als während der Ruhe (p. 229); hierdurch ist die Gefahr der Erschöpfung vermindert. Diese Regulation erklärt sich hauptsächlich dadurch, dass während der Contraction die Circulation im Muskel beschleunigt ist (LUDWIG & SCZELKOW). Bei sehr heftiger Anstrengung kann indess die Restitution dem Verbrauch nicht folgen, so dass der Muskel vorübergehend sauer und schwer erregbar wird; dieser Zustand ist der der Ermüdung (p. 228); ein ähnlicher Zustand entsteht, wenn man, z. B. durch Einwirkung hoher Temperaturen, den Muskel dem Erstarren nahe bringt (vgl. p. 223).

Gewisse Umstände machen es wahrscheinlich, dass, namentlich bei sehr anhaltender Anstrengung, einzelne Fasern des Muskels in den Zustand der vollkommenen Starre gerathen. Das Myosin derselben ist in diesem Falle (vgl p. 224) zur restitutiven Synthese nicht mehr brauchbar. Diese Verluste des Muskels müssen durch eine anderweite Bildung inogener Substanz ersetzt werden. Neben dem oben erörterten regelmässigen functionellen Stoffwechsel müsste hiernach noch ein anderer existiren, den man als "Abnutzungs-Stoffwechsel" bezeichnen kann. Es ist nun zu vermuthen, dass das Myosin der verbrauchten Fasern, unter Bildung von Kreatin und vielleicht von Fetten (fettig degenerirte Fasern finden sich in jedem Muskel) weiter zerfällt, wodurch es zu einer vermehrten Harnstoffausscheidung kommen kann (hierdurch würden sich eine Anzahl derartiger Angaben erklären); andererseits würden bei der "neoplastischen" Synthese inogener Substanz statt des Myosins andere, diesem nahestehende Eiweisskörper zur Verwendung kommen, welche der Muskel stets vorräthig enthält (nämlich die bei Temperaturen zwischen 40 und 60° coagulirenden, vgl. p. 220).

Aus der hier gegebenen Darstellung ergiebt sich, dass bei der Muskelthätigkeit nur N-freies Material zum eigentlichen Verbrauch kommt. Zu

Stoffwechsel des Muskels.

dieser Erkenntniss führte die Beobachtung, dass die Harnstoffausscheidung durch die Muskelarbeit nicht vermehrt wird (Vorr); allerdings hat man diese Beobachtung mit einem Verbrauch N-haltiger Substanzen zu vereinigen gesucht: einmal durch die Annahme, dass der Stoffverbrauch des Muskels bei der Thätigkeit überhaupt nicht erhöht sei, also auch dasselbe Quantum von Kraft frei werde wie in der Ruhe, nur in anderer Form (Vorr); zweitens durch die Annahme, dass der während der Arbeit erhöhte Stoffwechsel durch eine unmittelbar auf die Arbeitszeit folgende Herabsetzung ausgeglichen werde (J. RANKE). Dass aber beides nicht richtig ist, beweist die Vermehrung der CO2-Ausscheidung, zur Zeit der Arbeit sowohl, als auch für längere Zeiträume, in welche eine Arbeitszeit gefallen ist. Seitdem zum ersten Male ausgesprochen ist, dass nur N-freies Material bei der Muskelarbeit verbraucht wird (M. TRAUBE), hat man auch direct nachgewiesen, dass die während der Arbeitszeit verbrauchte Quantität von Eiweisskörpern (berechnet aus dem ausgeschiedenen Harnstoff) selbst bei übertrieben hoher Annahme ihrer Verbrennungswärme nicht im Stande ist, die geleistete Arbeit (in Wärmeeinheiten ausgedrückt, p. 201) zu erhalten (FICK & WISLICENUS, FRANKLAND).

Den Umstand, dass der Muskel Sauerstoff aufnimmt, ohne ihn sogleich zur Kohlensäurebildung zu verbrauchen, hat man durch die Hypothese zu erklären versucht (M. TRAUBE), dass zunächst ein Ferment den O aufnehme, und ihn erst im Augenblick der Thätigkeit des Muskels an das zu oxydirende (N freie) Material abgebe. Diese Anschauung trifft im wesentlichen dasselbe wie die oben angegebene, nur in anderer Form; das Ferment würde das Myosin sein, das aber nicht den O aufnimmt und wieder abgiebt, sondern mit dem O und einem andern N-freien Atomcomplex eine Verbindung eingeht, die bei der Action zerfällt und das Myosin zu neuer Verwendung wieder frei macht.

Ferner hat man zur Erklärung der Thatsache, dass während der Muskelarbeit das Mengenverhältniss des aufgenommenen O zur ausgeschiedenen CO₂ ein anderes ist, als während der Ruhe, angenommen, dass während der Thätigkeit andere Substanzen im Muskel verbrannt werden als im Ruhezustande (LUDWIG & SCZELKOW); indessen ist diese Annahme durch die oben erörterte Unabhängigkeit des O verzehrenden (synthetischen) und des CO₂ bildenden (Spaltungs-) Processes erledigt.

Unter den Wirkungen der Muskelarbeit auf die Beschaffenheit der Excrete ist auch behauptet worden dass der Säuregrad des Harns durch Arbeit gesteigert werde (KLÜPFEL), was aber von anderen bestritten wird (SAWICKI).

Formveränderung des thätigen Muskels.

Das wichtigste und ausgesprochenste Resultat der im thätigen Muskel frei werdenden Kräfte, welches vorzugsweise als Muskelarbeit bezeichnet wird, ist mechanische Arbeit, Bewegung. Die Form dieser Bewegung ist eine Gestaltveränderung des Muskels, nämlich Verkürzung der Längsaxe (oder der Primitivröhren) und Verdickung im Querschnitt; die Gestaltveränderung geschieht mit solcher Energie, dass sie selbst bedeutende Widerstände, die sich ihr entgegenstellen, überwinden kann. Die Widerstände wirken fast

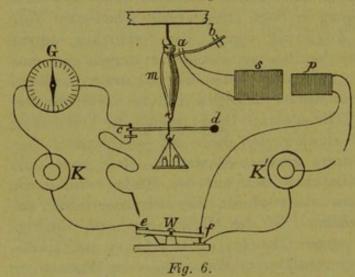
Verkürzung. Zuckung. Zeitlicher Verlauf.

immer der Verkürzung entgegen, und bestehen in Kräften, welche die beiden Endpuncte des Muskels auseinanderziehen; der häufigste Fall, auf den zugleich alle übrigen zurückzuführen sind, ist der, dass an dem aufgehängt gedachten Muskel eine Last hängt. Durch die Verkürzung des Muskels wird diese Last gehoben und die dabei geleistete mechanische Arbeit wird ausgedrückt durch das Product der Last mit der Hubhöhe.

Mit der Verkürzung und Verdickung des Muskels ist zugleich eine Volumverminderung, also eine Verdichtung verbunden. Bringt man nämlich Muskeln in ein geschlossenes, mit Flüssigkeit erfülltes und mit einer Steigröhre versehenes Gefäss, und veranlasst sie zur Contraction, so sinkt während derselben die Flüssigkeit in der Steigröhre (ERMAN, VALENTIN). (Vergl. auch p. 223.)

Der verkürzte Muskel ist ferner weniger elastisch, also dehnbarer, als der ruhende (ED. WEBER).

Auf jeden einfachen, den Muskel treffenden Reiz entwickelt sich die Gestaltveränderung in Form eines schnell ablaufenden Vorgangs, den man eine "Zuckung" nennt. Die Verkürzung beginnt nicht sofort im Momente der Reizung, sondern es vergeht erst eine kurze Zeit (bis zu 1/100 Secunde), ehe die Contraction anfängt, während welcher also der Muskel äusserlich in Ruhe bleibt: die Zeit der "latenten Reizung" (HELMHOLTZ). Dann beginnt die Verkürzung und steigt, zuerst mit zunehmender, dann mit abnehmender Geschwindigkeit, bis zu einem gewissen Maximum. Jetzt lassen die verkürzenden Kräfte allmählich nach und der Muskel wird durch die an ihm hängende Last zuerst schnell, dann langsamer wieder auf seine frühere Länge gedehnt. Ist der Muskel gar nicht belastet, auch nicht durch sein eigenes Gewicht (z. B. wenn er auf Quecksilber liegt), so behält er ungefähr die Form, die er im Moment der höchsten Verkürzung hatte (KÜHNE); ist er nur schwach belastet, so erreicht er die ursprüngliche Länge nicht vollständig wieder (HERMANN). - Denkt man sich hiernach den oberen Endpunct eines vertical aufgehängten Muskels befestigt und vor dem unteren eine Fläche in horizontaler Richtung mit gleichmässiger Geschwindigkeit schnell vorübergeführt, so beschreibt der untere Endpunct auf dieser Fläche folgende Curve (deren Abeissen den Zeiten, deren Ordinaten den Verkürzungen entsprechen): Sie läuft vom Moment der Reizung ab zuerst eine Strecke auf der Abscissenaxe (latente Reizung), darauf erhebt sie sich und steigt, erst convex, dann concav gegen die Abscissenaxe, bis zum Maximum; darauf fällt sie (bei hinreichender


Zeitlicher Verlauf der Zuckung.

Belastung des Muskels) allmählich wieder zur Abscissenaxe zurück (HELMHOLTZ).

Der zeitliche Verlauf der Kraftentwicklung im Muskel nach der Reizung kann nach zwei Methoden ermittelt werden (HELMHOLTZ):

1. Man lässt den (schwach belasteten) Muskel sich frei verkürzen, wobei die Hubhöhen den Verkürzungskräften proportional zuerst wachsen und dann abnehmen; der Muskel ist vertical aufgehängt und sein unteres Ende zeichnet mittels eines Hebelsystems mit Schreibstift seine Bewegung auf eine sich schnell mit constanter Geschwindigkeit horizontal vorüberbewegende Fläche, entweder den Mantel eines um eine verticale Axe rotirenden Cylinders (HELMHOLTZ'sches Myographion) oder eine an einem langen Pendel befestigte ebene Platte (FICKsches Myographion). Es entsteht so eine Curve, deren Abscissen die Zeit, und deren Ordinaten die Verkürzungsgrössen darstellen. Damit an dieser Curve auch die latente Reizung messbar wird, muss der Moment des Reizes auf der Schreibfläche markirt sein; am einfachsten dadurch, dass die sich bewegende Fläche selbst beim Durchgang durch eine bestimmte Stellung die Zuckung durch Oeffnung eines Contacts auslöst.

2. Man lässt die Zuckung nicht wirklich zu Stande kommen, sondern ver-

hindert sie durch Gewichte; diese werden in einer Wagschale unter dem bei c gestützten Hebel d c so angebracht (Fig. 6), dass sie den Muskel in der Ruhe nicht dehnen können, aber an ihm hängen sowie er sich verkürzen will. Jedes so angebrachte Gewicht ("Ueberlastung") hält den Muskel so lange auf seiner Ruhelänge fest, bis die Verkürzungskraft (Energie) bis zu einem Werthe angewachsen ist, der der

Ueberlastung gleich ist; da die Verkürzungskraft sich successive nach der Reizung entwickelt, so ist die Zeit von der Reizung bis zur Abhebung der Ueberlastung von ihrer Unterlage, d. h. bis zur Lösung des Contacts bei c, um so grösser, je grösser die Ueberlastung ist. (Ist die Ueberlastung Null, so ist die bis zur Hebung verstreichende Zeit die der latenten Reizung.) Endlich kommt man zu einer Ueberlastung, welche überhaupt nicht mehr gehoben wird, welche also die Grenze darstellt, bis zu welcher die verkürzenden Kräfte sich entwickeln können. — Die Messung der Zeit vom Momente der Reizung bis zur Hebung der Ueberlastung (d. h. bis zur Lösung des Contacts bei c) geschieht nach der PoumLETschen Methode, d. h. aus dem Ausschlag eines Galvanometers G, dessen Strom (Kette K) im Moment der Reizung geschlossen und durch die Oeffnung des Contacts c wieder geöffnet wird. Das Zusammenfallen der Schliessung des zeitmessenden Stromes mit der Reizung geschieht durch die Wippe W, an der das

236

Zeitlicher Verlauf der Zuckung. SCHWANN'sches Gesetz. Superposition. 237

die Schliessung bewirkende Aufstossen des Griffels auf die Platte e zugleich den Contact f und dadurch den erregenden Strom K' öffnet und dadurch dem Muskel einen Oeffnungs-Inductionsstrom ertheilt.

Trägt man die so gefundenen Zeiten als Abscissen, die ihnen entsprechenden Ueberlastungen als Ordinaten auf, so erhält man eine Energiecurve, welche mit dem ansteigenden Theil der nach der myographischen Methode erhaltenen Curve übereinstimmt. Jedoch weicht die Myographioncurve wegen der Trägheit der am Muskel hängenden Last etwas von der Energiecurve ab (KLÜNDER); durch geeignete Vorrichtung lässt sich übrigens auch letztere direct graphisch gewinnen (FICK).

Statt die Verkürzung des Muskels ihre Curve aufzeichnen zu lassen, kann man dasselbe auch mit der Verdickung des Muskels machen (AEBY, MAREY); dies ist auch am unverletzten Körper (bei lebenden Menschen) ausführbar. Die Dickencurve stimmt natürlich mit der Längencurve überein.

Gewisse Muskeln haben die Eigenthümlichkeit, dass ihre Zuckung sehr langsam abläuft (ihre Zuckungseurve sehr gedehnt ist), z. B. die Muskeln der Schildkröte, ferner der Herzmuskel (MAREY); letzterer bildet den Uebergang zu der ungemein langsamen Contraction der glatten Muskeln (s. unten). Kälte, Ermüdung u. s. w. verzögern den Ablauf der Zuckung (VALENTIN, KLÜNDER) und vermindern die Grösse derselben (VOLKMANN).

Die grösste Kraft, welche der Muskel nach der Reizung erreicht, gemessen durch die Ueberlastung, welche ihn selbst nach voller Entwicklung der verkürzenden Kräfte noch auf der Ruhelänge festzuhalten vermag (s. oben), nennt man die "absolute Kraft" des Muskels (Näheres hierüber s. unten). Lässt man den Muskel unbelastet sich wirklich verkürzen und hält ihn erst mitten in der Zuckung durch ein plötzlich angebrachtes Gewicht fest, so genügen hierzu um so kleinere Gewichte, eine je grössere Verkürzungsstrecke der Muskel schon zurückgelegt hat; die Kraft des Muskels nimmt also während der Verkürzung ab, und wird bei Beendigung derselben Null. Um dies zu zeigen, stützt man wiederum den Hebel, an dem der Muskel wirkt, und überlastet ihn, senkt aber dann das obere Muskelende so weit, dass der Muskel erst in einem bestimmten Stadium der Verkürzung am Hebel angreift (SCHWANN).

Folgen zwei Reize so schnell aufeinander, dass die vom ersten ausgelöste Zuckung beim Eintreten des zweiten Reizes noch nicht das Maximum der Verkürzung erreicht, wohl aber das Stadium der latenten Reizung überschritten hat, so setzen sich die Erfolge beider derartig aufeinander, dass eine stärkere Zuckung resultirt. Die Wirkung des zweiten Reizes erfolgt nämlich so, als ob die verkürzte Form, welche der Muskel bei ihrem Eintritt bereits erreicht hat, seine natürliche wäre (HELMHOLTZ); wie sich leicht ergiebt, kann das Maximum der Verkürzung unter den günstigsten Umständen sich hierbei verdoppeln, nämlich, wenn der Zeitunterschied der beiden Reizungen gleich der Dauer der einfachen Zuckung bis zu ihrem Maximum ist.

5 Superposition von Zuckungen. Tetanus. Muskelgeräusch.

Trifft ferner eine Reihe von Reizen in sehr kurzen Intervallen den Muskel, so hat derselbe zwischen je zweien nicht Zeit, sich wieder auszudehnen, und behält seine verkürzte Gestalt während der Reizungsreihe bei; diesen Zustand nennt man "Tetanus". Alle andauernden Muskelcontractionen, wie sie so häufig im Körper vorkommen, sind als tetanische zu betrachten, d. h. sie werden durch eine Reihe schnell aufeinander folgender Reize hervorgebracht (Ep. WEBER). Dass jede solche anhaltende Contraction als eine Reihe von Zuckungen anzusehen ist, ergiebt sich erstens aus der weiter unten zu besprechenden Erscheinung des "secundären Tetanus" (DU BOIS-REYMOND), zweitens aus den Erscheinungen des Muskelgeräusches: An einem nicht zu kleinen, in Tetanus versetzten Muskel (z. B. beim Menschen) hört man mit dem aufgelegten Ohr oder Stethoscop ein schwaches Geräusch, in welchem ein deutlicher Ton vorherrscht: das Muskelgeräusch oder den Muskelton (WOLLASTON). Die Schwingungszahl dieses Tones ist bei Anwendung tetanisirender Inductionsströme (s. unten) gleich der Zahl der Reizungen in der Secunde (HELMHOLTZ). Da nun willkürlich tetanisirte Muskeln regelmässig einen bestimmten Ton (19,5 Schwingungen in der Secunde) geben, so muss die Zahl der Reizungen (von den motorischen Centralorganen ausgehend) bei willkürlichem Tetanus 19,5 in der Secunde sein (HELMHOLTZ).

Bei sehr schneller Aufeinanderfolge der Reize (über 224 bis 360 pro Stunde) entsteht bei gewisser Stärke derselben kein Tetanus (HARLESS, HEIDENHAIN), sondern nur der erste derselben bewirkt eine Zuckung ("Anfangszuckung", BERNSTEIN); Verstärkung der Reize macht Tetanus.

Zum "Tetanisiren" eines Muskels eignen sich am besten oft wiederholte electrische Reize, z. B. durch fortwährendes Oeffnen und Schliessen eines electrischen Stromes. Näheres im IX. Cap. Zum Studium derjenigen Eigenschaften des thätigen Muskels, zu deren gehöriger Entwickelung eine einzelne Zuckung zu flüchtig ist, z. B. der chemischen Veränderungen bei der Thätigkeit (p. 229), der Wärmebildung (s. unten), der negativen Stromesschwankung am Multiplicator, dessen träge Nadel einem einzigen flüchtigen Impulse nicht folgt (s. unten), ist es am zweckmässigsten, den Muskel zu tetanisiren.

Ein Muskelgeräusch (von der gewöhnlichen Höhe) ist höchstwahrscheinlich auch der erste Herzton (NATANSON, HAUGHTON; vgl. p. 58); die Ventrikelsystole müsste dann eine tetanische Contraction sein. An sich selbst hört man das Muskelgeräusch am besten Nachts bei (mit Siegellack) verschlossenen Ohren, indem man die Kaumuskeln contrahirt. Die Höhe des Muskeltons wurde früher (NATANSON, HAUGHTON, HELMHOLTZ) zu 36-40 Schwingungen angegeben; nachdem es aber gelungen ist, ihn genau zu bestimmen (über die Methode s. unten),

238

Muskelgeräusch. Fortpflanzung der Contraction.

hat er sich zu 19 Schwingungen ergeben, so dass also der hörbare Ton der erste Oberton des eigentlichen Grundtons im Muskelgeräusch ist (HELMHOLTZ). Die Abhängigkeit der Tonhöhe von der Anzahl der Reize ergiebt sich, wenn man seinen eigenen Masseter electrisch tetanisirt, mittels eines selbstthätigen Inductionsapparats, der in einem entfernten Zimmer steht; der Ton ist dann jedesmal gleich dem Ton der Feder des Apparats (HELMHOLTZ). Die selbstständige Schwingungszahl eines von den Centralorganen aus tetanisirten Muskels wurde zum ersten Mal bemerkt an dem tiefen Geräusch, in welches ein durch electrische Reizung des Rückenmarks tetanisirtes Thier geräth (DU BOIS-REYMOND); die Tonhöhe ist hier unabhängig von dem Ton der Feder des Apparats. An Froschmuskeln gelingt es, das Muskelgeräusch zu hören, wenn man sie belastet am Ende eines im Ohr steckenden Stabes aufhängt und tetanisirt. Sicht bar werden die Schwingungen, sobald man sie durch Resonauz auf eine Feder oder einen Papierstreifen von gleicher Schwingungszahl überträgt (HELMHOLTZ).

Wird nur eine beschränkte Stelle eines Muskels oder einer Muskelfaser durch einen Reiz in den thätigen Zustand versetzt, so pflanzt sich derselbe sogleich auf die ganze Länge der getroffenen Faser fort (KÜHNE). Die Geschwindigkeit dieser Fortpflanzung beträgt für Froschmuskeln etwa 0,8-1,2 Mtr. in der Secunde (AEBY, v. BEZOLD), nach neueren Angaben wahrscheinlich etwas mehr (3 Mtr., BERNSTEIN), und sinkt mit abnehmender Temperatur. Unter dem Microscop sieht man die Zusammenziehung in Form einer Welle über den flüssigen Inhalt der Muskelfaser ablaufen (KÜHNE). Dabei nähern sich die Querstreifen einander (ED. WEBER), welche zugleich schmaler werden, indem die doppeltbrechenden Gruppen sich in der Richtung der Längsaxe verkürzen (BRÜCKE). Die Krümmungen der ruhenden Fasern (p. 222) verschwinden während der Thätigkeit (ED. WEBER). - Hat die Erregbarkeit der Muskelfaser abgenommen, z. B. durch Ermüdung (p. 228), so bleibt die Contraction auf die direct gereizte Stelle beschränkt, und es bildet sich hier, namentlich bei kräftiger mechanischer Reizung, durch die örtliche Verkürzung und Verdickung eine wulstige Hervorragung (KÜHNE), welche, schon früher bekannt, aus theoretischen nicht mehr gültigen Gründen den Namen "idiomusculäre Contraction" erhalten hat (Schiff, vgl. p. 227).

Bei kräftiger localer (mechanischer) Reizung entsteht diese Wulstbildung auch in noch völlig erregbaren Muskeln, zugleich mit der allgemeinen, aber schwächeren Contraction der ganzen Faserlänge (z. B. bei einem kräftigen Schlage auf die Oberarmmuskeln).

Entsprechend den neueren Angaben über feinere Structurverhältnisse der quergestreiften Muskeln sind auch zahlreiche Angaben über Aenderung derselben bei der Contraction gemacht worden, welche aber noch zu wenig unter einander übereinstimmen um hier eine Stelle finden zu können.

WEBER'sche Theorie der Contraction.

Arbeitsgrössen des thätigen Muskels.

1. Bei maximaler Leistung. Als einfachster Fall wird zunächst derjenige betrachtet, in welchem, durch möglichst starke Reizung, soviel Kräfte im Muskel frei werden, als überhaupt möglich.

Man kann sich die mechanischen Veränderungen im Muskel beim Uebergang in den thätigen Zustand so vorstellen (ED. WEBER), als wenn unter der Einwirkung des Reizes und der dadurch herbeigeführten chemischen Vorgänge dem Muskel AB (Fig. 7) plötzlich eine neue natürliche Form A b zukäme, die sich von der des ruhenden AB durch geringere Länge, grössere Dicke und geringere Elasticität (p. 235) unterscheidet, und in welche er nun überzugehen strebt. Geht der Muskel aus der alten in die neue Form über, so verhält er sich gerade so, als ob er über die natürliche Länge der letzteren hinaus gedehnt gewesen wäre, und schnellt mit elastischen Kräften in die neue Form über. Dasselbe geschieht nun, wenn er in der Ruhe durch eine Belastung gedehnt war, nur schnellt er jetzt zu der Länge über, welche man erhält, wenn man die thätige Form durch die Belastung gedehnt sich denkt. Der Unterschied beider Längen ist jedesmal die Hubhöhe, und das Product derselben mit der gehobenen Last die Arbeit des Muskels. Eine einfache Ueberlegung, besonders ein Blick auf die Figur 7

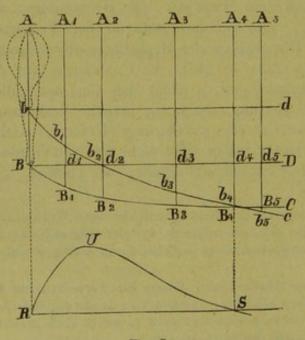


Fig. 7.

zeigt nun, dass wenn die Dehnbarkeit des thätigen Muskels bedeutend grösser ist, als die des ruhenden, die Hubhöhe mit steigender Belastung abnehmen, bei einer gewissen Belastung = 0, und endlich negativ werden muss, d. h. dass eine gewisse Belastung nicht mehr gehoben wird, und bei noch grösserer Belastung der Reiz Verlängerung des Muskels statt der Verkürzung bewirkt. Ist nämlich AB die natürliche Länge des

WEBER'sche Theorie. Leistungsfähigkeit des Muskels.

ruhenden Muskels, - denkt man sich ferner gewisse Belastungen als Abscissen auf die Axe BD und die ihnen entsprechenden Dehnungen nach unten als Ordinaten aufgetragen, so ist BC die Dehnungscurve des ruhenden Muskels und A1B1, A2B2, A3B3 etc. die Muskellängen, welche den Belastungen Bd1, Bd2, Bd3 etc. entsprechen. Ist ferner A b die natürliche Länge des thätigen Muskels (für einen gewissen Reiz), und seine Elasticität um ein Gewisses geringer, als die des ruhenden, so wird seine Dehnungscurve b c steiler abfallen als BC, und diese in einem Puncte (B4) schneiden. Da nun A1b1, A2b2, A3b3, A4b4 etc. die Längen des belasteten thätigen Muskels sind, so sind die Strecken B1b1, B2b2 etc. zwischen BC und bc, die Hubhöhen. Man sieht sofort, dass sie immer kleiner, bei $B_4 = 0$, und darüber hinaus (B_5b_5) negativ werden; hier tritt eine Verlängerung statt der Verkürzung ein (A5B5 wird A5b5). - Die Arbeiten, welche der Muskel bei den verschiedenen Belastungen leistet, sind die Producte aus den Abscissen (Bd1, Bd2 etc.) und den Hubhöhen. Man findet leicht, dass diese Producte sowohl bei B als bei $B_4 = 0$, und etwas vor der Mitte am grössten sind; jenseits B4 werden sie negativ. Sie lassen sich durch die Curve R U S darstellen.

Mit dieser Anschauung stimmen nun zahlreiche Thatsachen überein, die leicht zu beobachtende Abnahme der Hubhöhe mit steigender Belastung, die negative Hubhöhe bei sehr hohen Belastungen (WEBER)*); ferner andere unten zu erörternde Erscheinungen.

Für verschieden grosse Muskeln derselben Beschaffenheit (desselben Thieres) gestalten sich die Verhältnisse sehr einfach. Beim Maximum der Thätigkeit kann ein Muskel eine um so grössere Last zu derselben Höhe heben, je grösser sein Querschnitt, und dieselbe Last um so höher, je länger er ist. Der Beweis ergiebt sich sehr leicht. Denkt man sich n gleiche Muskeln, deren jeder eine einfache Last zu einer einfachen Höhe hebt, parallel dicht neben einander gehängt, so entsteht ein Muskel von n fachem Querschnitt, der die n fache Last zur einfachen Höhe hebt. Hängt man sie dagegen der Länge nach einen an den andern, und an den untersten die Last, so entsteht ein Muskel von n facher Länge, der die einfache Last zur n fachen Höhe hebt. Auch durch Zeichnungen von der Art der Figur 7 kann man sich diese Gesetze veranschaulichen,

^{*)} Nach Fick findet bei keiner Belastung eine negative Hubhöhe statt; er nimmt daher an, dass die beiden Dehnungscurven be und BC sich nicht schneiden, sondern sich asymptotisch einander anschliessen.

Hermann, Physiologie. 5. Aufl.

wenn man im Auge behält, dass die Dehnbarkeit eines Muskels (in gleichem Zustande) seiner Länge direct und seinem Querschnitt umgekehrt proportional ist.

Für das Maximum der lebendigen Kräfte, welche im Muskel bei der höchsten Erregbarkeit und den stärksten Reizen frei werden können, wäre das Arbeitsmaximum bei der stärksten Reizung das natürlichste Maass. Das Arbeitsmaximum ist jedoch sehr variabel; es ist von der Belastung abhängig (s. oben), und ferner ergiebt sich aus der WEBER'schen Theorie, dass es grösser ausfällt, wenn die Belastung während des Hubes beständig vermindert wird (FICK); in der That wirken im Körper viele Muskeln an Hebeln dergestalt, dass das Moment der Last bei der Verkürzung abnimmt. Das Arbeitsmaximum für 1 grm. Froschmuskel beträgt 3,324 bis 5,760 Grammmeter (FICK).

Gewöhnlicher bestimmt man die Leistungsfähigkeit des Muskels durch das Maximum der Verkürzungskraft, welche er bei stärkstem Reize entwickeln kann, die sog. "absolute Muskelkraft" (WEBER, vgl. p. 237). Diese Grösse ist, da sie durch ein Gewicht ausgedrückt wird, nur vom Querschnitt des Muskels abhängig und wird gewöhnlich für die Flächeneinheit des Querschnitts angegeben. Für den Dcm. Froschmuskel beträgt sie etwa 2800 bis 3000 grm. (Rosen-THAL), für den Dcm. menschlichen Muskel etwa 6000 bis 8000 grm. (HENKE & KNORZ, KOSTER).

Am ausgeschnittenen Muskel findet man die absolute Kraft am besten nach der p. 236 angegebenen Ueberlastungsmethode. - Andere Methoden beruhen darauf, dass das Gewicht, welches die absolute Kraft darstellt, nach der WEBERschen Theorie zugleich dasjenige ist, welches den thätigen Muskel auf die Länge des ruhenden dehnen würde (in Figur 7 entspricht also der absoluten Kraft die Abscisse Bd2), und ferner dasjenige, mit welchem belastet der ruhende Muskel sich auf seine natürliche Länge (AB) zusammenziehen würde. - Die Bestimmung beim Menschen geschieht unter anderen nach folgendem Verfahren (WEBER): Beim Erheben auf die Zehen, oder richtiger die Metatarsusköpfchen, ziehen die Wadenmuskeln am Tuber calcanei an einem einarmigen Hebel, dessen Drehpunct in der Berührungsstelle zwischen Cap. metatarsi und Fussboden liegt; die Last (des Körpers) wirkt auf den Punct, in welchem die Schwerlinie des Körpers den Fuss trifft (vgl. den Anhang); beschwert man nun den Korper so lange mit Gewichten, bis das Erheben der Ferse vom Boden unmöglich ist, so ist die absolute Kraft der Wadenmuskeln gleich dem Moment der Last (Körper + Gewichte) dividirt durch die Länge des Hebelarms der Wadenmuskeln; dies Gewicht braucht nur noch auf die Querschnittseinheit reducirt zu werden. - Den (mittleren) Querschnitt eines Muskels findet man, wenn man sein Volum (= absol. Gewicht dividirt durch spec. Gewicht) durch die Länge dividirt.

Ermüdung. Arbeit im Tetanus. Reizstärke und Muskelarbeit. 243

Die SCHWANN'schen Versuche (p. 237) messen gleichsam die absolute Kraft des Muskels in den verschiedenen Stadien seiner Verkürzung, also bei den Längen zwischen A B und A b (Figur 7); da nun die für die Länge A_1b_1 gefundene Kraft dem Gewichte gleich ist, welches den thätigen Muskel A b auf die Länge A_1b_1 dehnt, so entspricht sie der Abscisse B d₁. Man hat also in den Schwann'schen Versuchen ein Mittel, die Dehnungscurve des thätigen Muskels, wenigstens das Stück bb₂ derselben zu ermitteln (HERMANN).

Bei der Ermüdung (p. 228) nimmt sowohl die absolute Kraft als auch die Verkürzungsgrösse des Muskels ab. Die Hubhöhe vermindert sich (bei stets maximaler Reizung und constanter Belastung) in jeder folgenden Zuckung um einen gleichen Betrag, wenn die Zeitintervalle gleich bleiben; dieser Betrag ist um so kleiner, je grösser das Zeitintervall; der Einfluss des letzteren wird durch Ermüdung vergrössert; bei gleichen Zeitintervallen werden die Zuckungsdifferenzen von dem Moment ab kleiner, wo der Muskel sich nicht mehr bis auf seine unbelastete Ruhelänge verkürzt; die Curve der Zuckungsgrössen, bis dahin gradlinigt, wird von hier ab eine Hyperbel die sich der Dehnungscurve des ruhenden Muskels asymptotisch anschliesst (KRONECKER).

Während des Tetanus leistet der Muskel nach aussen keine mechanische Arbeit, da keine Last gehoben, sondern nur die bereits gehobene gehalten wird. Da indess der Zustand des Tetanus mit erhöhtem Stoffwechsel verbunden ist, so muss man annehmen, dass der tetanisirte Muskel dennoch Arbeit leistet, indem der Muskel in dem äusserst kurzen Zwischenraume zwischen zwei Reizen jedesmal seine ganze Spannung verliert, und diese ebenso schnell wiedergewinnt, wobei die plötzliche Anspannung jedesmal eine Erwärmung hervorbringen muss. Das Aequivalent des Stoffwechsels im tetanisirten Muskel hätte man also in der Wärmebildung desselben ("innere Arbeit") zu suchen. Der fortwährende Wechsel in der Spannung des Muskels ist vermuthlich die Ursache des oben (p. 238) erörterten Muskelgeräusches. Dass dabei die am Muskel hängende Last ein wenig auf- und absinke, hat man bisher mit den feinsten Hülfsmitteln nicht nachweisen können.

2. Bei nicht maximaler Leistung. Für jeden constanten Reiz gestalten sich die Hubhöhen und Arbeiten gerade so wie für den bisher besprochenen übermässig starken. Variirt man aber die Stärke der Reize, so tritt ein verschieden hoher Grad der Muskelthätigkeit ein; d. h. die neue natürliche Form, der der Muskel zustrebt (p. 240), ist um so weniger in Länge und Elasticität von der Ruheform verschieden, je schwächer der Reiz ist. Nach welchem Gesetze die Stärke der Reize auf die Stärke des thätigen Zustandes einwirkt, ist noch nicht endgültig ermittelt; es wird angegeben, dass mit steigendem Reize der thätige Zustand mit abnehmender Geschwindigkeit zunehme (HERMANN), aber auch, dass er von 0 bis zu einer gewissen Grenze mit gleichbleibender Geschwindigkeit wachse und darüber hinaus constant bleibe (A. FICK).

Die Methoden für solche Bestimmungen sind folgende: Man misst die Reizstärke, welche nöthig ist, damit der Muskel eine bestimmte absolute Kraft (gemessen durch minimale Hebung einer Ueberlastung, vgl. p. 236) erreicht (HERMANN); oder man misst die Hubhöhen bei einer gleichbleibenden Belastung und Variirung der Reize (FICK).

Wenn für jeden Grad der Formveränderung auch die zugehörige Elasticitätsveränderung bekannt wäre, so würde sich nach Analogie der Figur 7 in jedem Falle die Dehnungscurve des thätigen Muskels construiren und so die Hubhöhe für jede Last und jeden Grad der Thätigkeit bestimmen lassen. Jene Abhängigkeit ist aber unbekannt, und daher gestatten auch umgekehrt Bestimmungen der Hubhöhe bei bekannter Belastung keinen Schluss auf die dem betreffenden Thätigkeitszustande zukommende natürliche Form. - Wenn man auch die Dehnungscurven des thätigen Muskels nicht a priori construiren kann, so zeigt doch Fig. 7, dass die Linie b c um so näher an BC heranrücken und um so schwächer gegen BC geneigt sein muss, je geringer der thätige Zustand, je schwächer also der Reiz ist. Daher müssen die Unterschiede der Hubhöhen für verschiedene Lasten um so geringer werden, je schwächer der Reiz, und der schwächste Reiz, der überhaupt noch wirkt, muss also sowohl die kleinste als die grösste Last um ein Minimum heben, oder mit andern Worten, um 1 Grm. und um 500 Grm. um ein Minimum zu heben, ist dieselbe Reizstärke erforderlich; diese Ableitung bestätigt der Versuch (HERMANN).

Aus dem Gesagten ergiebt sich, dass ein gleicher Reiz bei verschieden belasteten Muskeln sehr verschiedene Arbeiten auslöst (vgl. über die Auslösungsverhältnisse p. 6); und dies erklärt sich dadurch, dass der Muskel durch Belastung ein anderer Körper wird, der mit stärkeren Spannkräften begabt ist. Es muss aber ausserdem noch ein tiefer verändernder Einfluss der Belastung existiren, da dieselbe auch auf den Stoffverbrauch im Muskel von Einfluss ist (vergl. unten).

Auch für die Erstarrungsverkürzung (p. 223) kann man die Hubhöhen für gegebene Lasten, und die absolute Kraft bestimmen. Erstere sind für kleine Lasten grösser, für grosse kleiner als bei maximaler Reizung des lebenden Muskels, die natürliche Form des erstarrten Muskels ist also im Sinne der WEBER'schen Theorie kürzer, seine Dehnbarkeit aber grösser als die des thätigen Muskels; die absolute Kraft ist geringer als die des letzteren (WALKEE).

d) Thermische und electrische Erscheinungen am Muskel.

Thermische Erscheinungen.

Sowohl der ausgeschnittene als der im Organismus befindliche Muskel wird während der Thätigkeit (Helmholtz, Béclard) und während des Erstarrens (v. Walther, Huppert, Fick & Dybkowsky, Schiffer) wärmer, als er während der Ruhe war. In beiden Acten findet also eine Wärmebildung in ihm statt, oder die in der Ruhe etwa vorhandene Wärmebildung wird vermehrt. Die Wärmebildung beim Erstarren fällt mit der Verkürzung zeitlich zusammen (Fick & Dybkowsky).

Der Nachweis der Erwärmung durch die Thätigkeit, welcher früher nur am tetanisirten Muskel gelang, ist neuerdings auch für einzelne Zuckungen geführt (HEIDENHAIN). Derselbe geschieht auf thermoëlectrischem Wege, indem man die eine Löthstelle oder Löthstellenreihe mit dem Muskel in Berührung bringt, die andere auf constanter Temperatur erhält (am einfachsten durch Berührung mit einem zweiten, in Ruhe bleibenden Muskel). Früher wandte man nadelförmige Thermoëlemente an, die man in den Muskel ein- oder hindurchstach, je nachdem die Löthstelle endständig oder in der Mitte war. Neuerdings benutzt man mehrgliedrige Thermosäulen (aus Wismuth und Antimon), deren eine Löthstellenreihe an den Muskel nur angelegt und befestigt wird (HEIDEN-HAIN). Die Erwärmung beträgt bei Froschmuskeln für einzelne Zuckungen 0,001-0,005° C., für Tetanus bis zu 0,15°. In welches Stadium der Zuckung (p. 235 f.) die Wärmebildung fällt, ist noch unbekannt.

Der Nachweis der Erwärmung durch das Erstarren geschieht ebenfalls auf thermoëlectrischem Wege, indem die eine Löthstellenreihe auf constanter Temperatur gehalten wird (SCHIFFER); oder durch zwei verglichene Quecksilberthermometer, deren Kugel beim einen mit lebenden, beim andern mit bereits starren Muskeln bewickelt wird: werden beide jetzt in indifferente Flüssigkeit getaucht und diese erwärmt, so steigt bei der Erstarrungstemperatur das erste Thermometer höher als das zweite (FICK & DYBKOWSKY). Im unverletzten Körper giebt sich die Wärmebildung beim Erstarren dadurch zu erkennen, dass der Körper nach dem Tode sich langsamer abkühlt, als die noch einmal nach dem Erstarren auf die Körpertemperatur künstlich erwärmte Leiche (HUPPERT). Durch die Erstarrungswärme lässt sich die sog. "postmortale Temperatursteigerung" erklären (p. 215), welche zuerst auf die Vermuthung einer Wärmebildung beim Erstarren geführt hat (WALTHER).

Auch bei der Dehnung des Muskels erfolgt eine geringe Erwärmung (SCHMULEWITSCH, WESTERMANN).

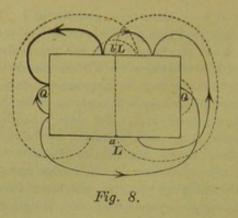
Ueber die nähere Ursache dieser Wärmebildungen existiren nur Vermuthungen, die weiter unten erörtert werden.

246 Electrische Erscheinungen. Muskelstrom bei künstlichem Querschnitt.

b. Electrische Erscheinungen.

Legt man an einem Muskel einen Querschnitt an, und bringt man die beiden Enden eines stromanzeigenden leitenden Bogens, zunächst eines solchen in den ein empfindlicher Multiplicator oder eine Spiegelboussole eingeschaltet ist, so mit dem Muskel in Verbindung, dass das eine einen Punct des Querschnitts, das andere einen Punct der Längsoberfläche berührt, so zeigt das Instrument einen Strom an (NOBILI, MATTEUCCI, DU BOIS-REYMOND). Derselbe geht in der Leitung vom Längsschnitt zum Querschnitt, im Muskel selbst also vom Querschnitt zum Längsschnitt; denselben Strom, den sogen. "Muskelstrom", erhält man, wenn man statt des ganzen Muskels nur ein durch Längstheilung desselben hergestelltes, wenn auch noch so dünnes Faserbündel zum Versuch nimmt, welches durch einen Querschnitt begrenzt ist, und die Multiplicatorenden mit der Längsoberfläche (künstlicher Längsschnitt) und dem Querschnitt verbindet; hier verhält sich der künstliche Längsschnitt wie im ersten Falle die natürliche Längsoberfläche (natürlicher Längsschnitt); offenbar würde eine einzelne Muskelfaser denselben Strom zeigen-

Tödtet man durch Aetzung, Quetschung, Erhitzung u. s. w. einen Theil der Faserlänge an einem Faserbündel oder dem ganzen Muskel, so hat man ebenfalls eine quere Begrenzung des lebenden Muskeltheiles, an welche sich die abgestorbene Strecke wie ein indifferenter Leiter inserirt. Auch hier verhält sich jeder Punct der queren Begrenzung und somit auch im Allgemeinen jeder Punct der abgestorbenen Strecke wie im ersten Falle der Querschnitt; nennt man eine solche quere Begrenzung des lebenden Faserantheils ebenfalls einen "künstlichen Querschnitt", so verhält sich allgemein jeder irgendwie hergestellte künstliche Querschnitt negativ gegen den natürlichen oder künstlichen Längsschnitt. Der Strom ist um so stärker, je näher der Mitte des Längs- und des Querschnittes die Ableitung geschieht.


Von den vielen zur Anstellung dieser Versuche nöthigen Vorkehrungen soll hier nur erwähnt werden, dass man die thierischen Theile nicht direct mit den metallischen Enden des Multiplicators oder seiner Verlängerungen (Leitungsdrähte) in Berührung bringen darf; denn bekanntlich bilden zwei scheinbar völlig gleiche Metallstücke (z. B. zwei Kupferdrähte) dennoch bei Berührung mit einem feuchten Leiter, — und als solche sind alle thierischen Stoffe zu betrachten, eine galvanische Kette, deren Strom hier die Nadel ablenken müsste. Die einzige Ausnahme hiervon machen amalgamirte Zinkstücke, wenn als feuchter Leiter eine Lösung von Zinkvitriol angewandt wird; diese Anordnung giebt keinen

Nachweis des Muskelstroms. Schwache Ströme.

Strom (die beiden Metallstücke verhalten sich "vollkommen gleichartig"). Man lässt deshalb die Multiplicatorenden in zwei amalgamirte Zinkstücke auslaufen; jedes derselben taucht in ein Gefäss mit Zinkvitriollösung, und aus jedem dieser Gefässe ragt ein mit derselben Lösung getränkter Bausch von Fliesspapier heraus. Die zu untersuchenden thierischen Theile werden nun so angebracht, dass sie zwischen den beiden Bäuschen den Kreis schliessen, sie brückenartig verbindend, und mit den Puncten, auf die es ankommt, berührend. Vor dem schädlichen Einfluss der Zinklösung werden sie durch einen untergelegten unschädlichen Leiter geschützt (mit 1 procentiger Kochsalzlösung angerührter Modellirthon). Die Anwendung der Zinkelectroden hat ausserdem den Vortheil, das sofortige Zurückgehen der Nadel nach dem ersten Ausschlag zu verhüten, welches bei jedem anderen Verfahren durch die sofort eintretende Polarisirung der Metallenden bewirkt wird, während amalgamirtes Zink in Zinklösung unpolarisirbar ist. Auch auf andere Weise als durch den Multiplicator lässt sich der Muskelstrom nachweisen: 1. auf electrochemischem Wege, indem man Jodkalium in Kleister durch ihn zersetzen lässt, das an der positiven Electrode sich abscheidende Jod bläut den Kleister daselbst; 2. dadurch, dass man den Muskelstrom als Reiz auf einen Nerven, z. B. auf den eigenen des Muskels wirken lässt ("physiologisches Rheoscop"). Dazu ist es, wie Cap. IX. erörtert werden wird, nöthig, den Strom plötzlich in den Nerven hereinbrechen zu lassen. Man erreicht dies dadurch, dass man einen leitenden Kreis, in welchen der Nerv eines präparirten Froschschenkels eingeschaltet ist, plötzlich durch Längs- und Querschnittsberührung eines Muskels schliesst; sofort erfolgt eine Zuckung des Schenkels; mit einem einzigen Muskel stellt man das Experiment so an, das man seinen eigenen Nerven (den man mit den natürlichen Längsschnitten sämmtlicher Muskelröhren in leitender Berührung stehend sich denken muss) plötzlich auf den Querschnitt des Muskels zurückfallen lässt; auch hier erfolgt eine Zuckung. (Diese "Zuckungen ohne Metalle" waren schon vor der Entdeckung des Muskelstromes bekannt.)

Nicht bloss bei Verbindung des Längs- und Querschnittes erhält man Ströme, sondern auch wenn man die Enden der Multiplicatorleitung mit zwei Puncten eines und desselben Schnittes in Berührung bringt. Es verhält sich nämlich von zwei Puncten des Längsschnittes jedesmal der dem Aequator (so nennt man den die Mitte des Muskelcylinders umgürtenden Kreis) näher liegende positiv gegen den entfernteren (also dem Querschnitt näheren) und von zwei Puncten des Querschnitts jedesmal der der Axe näherliegende negativ gegen den entfernteren (also dem Längsschnitt näheren). Keine Ströme erhält man demnach, wenn man zwei vom Aequator gleich weit entfernte Puncte des Längsschnitts, oder zwei von der Axe gleich weit entfernte Puncte des Querschnitts mit dem Multiplicator verbindet. Alle diese Gesetze gelten nicht bloss für Puncte desselben Querschnitts, sondern auch für zwei Puncte verschiedener Querschnitte; ebenso für Puncte verschiedener Längsschnitte (wenn man nicht einfach den ganzen Cylindermantel, also eine einzige Fläche, als Längsschnitt bezeichnen will); natürlich geben denn auch die beiden Endpuncte der Axe, und ebenso zwei Puncte des Aequators keine Ströme. - Die Ströme zwischen zwei Längsschnitts-, oder zwei Querschnittspuncten sind immer bei Weitem schwächer als die zwischen einem Längsschnitts- und einem Querschnittspuncte; und sie sind um so stärker, je bedeutender der Unterschied der Entfernungen

248 Schwache Ströme. Neigungsstrom. Stromvertheilung im Muskel.

vom Aequator, resp. der Axe, ist; man nennt sie meist kurz die "schwachen Ströme", im Gegensatz zu den "starken Strömen" zwischen Längs- und Querschnitt. — In Figur 8 bezeichne das Rechteck ein Muskelstück, L, L Längsschnitt, Q, Q Querschnitt, a b den Aequator; es sind dann die feinen Bogen Beispiele von Verbindungen, welche schwache Ströme geben, der starke Bogen eine Verbindung mit starkem Strom, die punctirten Bogen Verbindungen ohne Strom.

Legt man an einem Muskel einen schrägen Querschnitt an, oder stellt man einen solchen durch Verziehen eines verticalen Querschnitts her, so zeigt sich von dem bisher geschilderten Verhalten eine Abweichung, insofern als der negativste Punct des Querschnitts nicht in dessen Mitte liegt, sondern in die Nähe der spitzen Ecke gerückt ist; ebenso liegen die positivsten Puncte des Längsschnittes nicht mehr im Aequator, sondern näher der stumpfen Ecke; es verhält sich daher an einem solchen "Muskelrhombus" ein in der Nähe der stumpfen Ecke liegender Punct positiv gegen einen der spitzen Ecke naheliegenden, trotz gleicher Entfernung von der Mitte. Es müssen also im Muskelrhombus Ströme, welche von den spitzen Ecken im Muskel zu den stumpfen gehen, sich zu dem gewöhnlichen Muskelstrom summiren. Diese Ströme heissen "Neigungsströme".

Alle bisher angeführten Erscheinungen lassen sich aus dem Satze ableiten; dass jede einzelne Muskelfaser dasselbe Verhalten zeigt, wie der Muskel im Ganzen, dass nämlich ihr irgendwie hergestellter Querschnitt sich negativ verhält gegen den Längsschnitt. Die "starken" Ströme zwischen Längs- und Querschnitt erklären sich hierdurch ohne Weiteres. Die schwachen Ströme erklären sich dadurch, dass an einem ausgeschnittenen Muskelstück die Oberfläche schnell bis zu einer gewissen Grenze abstirbt, und dadurch zum indifferenten Leiter wird; in diesem gleicht sich der Muskelstrom theilweise ab, und die Spannungen vertheilen sich nunmehr an der Oberfläche so, dass die stärkste positive Spannung in der Mitte (Aequator) des Längsschnitts, die stärkste negative in der Mittedes Querschnitts ist, hieraus folgt das p. 246 ausgesprochene Gesetz der Längs-Querschnittsströme, und ferner (da sich ein Punct schwächerer positiver Spannung negativ verhält gegen einen Punct stärkerer positiver Spannung, ebenso ein schwächer negativer Punct positiv gegen einen stärker negativen, endlich zwei Puncte gleich starker und gleichnamiger Spannung stromlos sind) die p. 247 erörterten Erscheinungen. An schrägen Querschnitten bilden die sich treppenförmig überragenden wirksamen Querschnitte der Muskelfasern eine Art von schrägliegender Säule, deren positiver Pol der stumpfen und deren negativer der spitzen Ecke zugekehrt ist; der Strom dieser Säule summirt sich algebraisch zum gewöhnlichen Muskelstrom, woraus sich die Erscheinungen des Neigungsstromes ableiten lassen.

Die electromotorische Kraft des Längs-Querschnittsstromes beträgt beim Frosch bis zu 0,08 Daniell, die Kraft der Neigungsströme kann über 0,1 Daniell

Verhalten unversehrter Muskeln.

steigen (DU BOIS-REYMOND). Die ermüdenden Einflüsse (p. 228) setzen auch die Kraft des Muskelstroms herab (ROEBER).

Am unversehrten ausgeschnittenen Muskel zeigen sich bei Anlegung der Multiplicatorenden an die Oberfläche unregelmässige Ströme von sehr verschiedener Stärke und Richtung. Häufig zeigt sich die Sehne, also der an die natürlichen Faserenden angelegte indifferente Leiter negativ gegen den Längsschnitt, jedoch nie so stark als ein künstlicher Querschnitt, den man an der Sehne z. B. sofort dadurch herstellen kann, dass man sie mit Aetzmitteln behandelt. An Fröschen, die durch Kälte in einen winterschlafartigen Zustand versetzt sind, verhält sich die Sehne häufig stromlos oder positiv gegen den Längsschnitt (DU BOIS-REYMOND). Im ganz unversehrten, unenthäuteten Thiere sind die ruhenden Muskeln vollkommen stromlos (HERMANN); die Ströme entstehen erst bei der Präparation der Muskeln, indem schädliche Einflüsse, bei Fröschen unter Andern spurweises Zutreten des ätzend wirkenden Hautsecrets, die Oberfläche treffen und zur Bildung künstlicher Querschnitte (im Sinne von p. 246) Anlass geben. Je mehr man bei der Präparation diese Schädlichkeiten vermeidet, um so näher steht der präparirte Muskel der vollkommenen Stromlosigkeit. Es giebt also im ruhenden Muskel keine anderen Ströme als die durch die Negativität künstlicher Querschnitte gegen den Längsschnitt bedingten (HERMANN).

Um am unenthäuteten Frosche die electromotorischen Eigenschaften der Muskeln zu untersuchen, genügt es nicht, die Multiplicatorenden an zwei Hautpuncte anzulegen, weil die Haut an jeder Stelle senkrecht zu ihrer Fläche von aussen nach innen electromotorisch wirkt (DU BOIS-REYMOND). Man muss also diese Hautströme, welche durch Auftragen von Aetzmitteln schnell vernichtet werden, zuvor eliminiren (DU BOIS-REYMOND). Geschieht dies in einer Weise, bei welcher das Durchdringen des Aetzmittels zu den Muskeln, wenigstens bis zur Zeit der Prüfung, vermieden wird, so zeigt sich vollkommene Stromlosigkeit der Muskeln (HERMANN). - Schädlichkeiten, welche die ganze Muskeloberfläche treffen, machen immer die Sehne negativ gegen den Längsschnitt, da an letzterem die Fasern in ganzer Länge absterben, also keinen Strom besitzen (s. unten), unter der Sehne aber an zahlreichen noch lebenden Muskelfasern künstliche Querschnitte angelegt werden, besonders wenn die Sehne wesentlich nur eine dünne aponeurotische Haut darstellt (wie am Gastrocnemius). - Das abweichende Verhalten von Muskeln winterschlafender Thiere erklärt sich höchst wahrscheinlich aus einer gewissen Indolenz derselben gegen geringfügigere Schädlichkeiten, welche übereinstimmt mit der bekannten Trägheit derselben gegen Reize.

An ganzen Gliedmassen enthäuteter Thiere, oder am ganzen enthäuteten Thiere zeigen sich bei Ableitung von zwei Puncten Ströme, welche als Resultanten der vielen einzelnen Muskelströme zu betrachten sind. An gänzlich erstarrten, oder ohne Erstarrung getödteten Muskeln oder Muskelfasern zeigt sich kein Strom mehr.

Erwärmung eines von Längs- und Querschnitt begrenzten Muskelstücks (nicht über die Erstarrungstemperatur hinaus) vergrössert die Kraft des Muskelstroms, Abkühlung verkleinert sie; wärmere Stellen einer Faser verhalten sich positiv gegen kältere; die Kraft des Stromes zwischen zwei Faserpuncten wird durch die Temperatur zwischenliegender Faserstrecken nicht beeinflusst; die Veränderungen durch Erwärmung und Abkühlung schwinden wieder bei Herstellung der früheren Temperatur (HERMANN).

Bringt man einen vom Längs- und künstlichen Querschnitt zum Multiplicator abgeleiteten Muskel in toto zur Contraction, so zeigt sich eine Abnahme des Muskelstroms, eine "negative Stromesschwankung" (DU BOIS-REYMOND). Um die träge Nadel in die dieser Abnahme entsprechende Bewegung zu versetzen, genügt eine einzelne Zuckung nicht, sondern man muss den Muskel tetanisiren (p. 238). Mittels des physiologischen Rheoscops lässt sich jedoch die negative Stromesschwankung auch für eine einzelne Zuckung zeigen, indem man die Schwankung als Reiz (vgl. Cap. IX.) auf den Nerven eines zweiten Muskels wirken lässt (der Nerv des zweiten Muskels wird an Längs- und Querschnitt des ersten angelegt); bei jeder Zuckung des ersten Muskels zuckt dann der zweite ebenfalls ("secundäre Zuckung"). Beim Tetanisiren des ersten Muskels geräth der zweite in Tetanus ("secundärer Tetanus"), ein Beweis dass während des Tetanus eine Reihe von Stromesschwankungen erfolgt (vgl. p. 238). Die negative Schwankung geht höchstens bis zu Null, nie bis zur Umkehr des Stromes (BERNSTEIN).

Wechselt man die Ableitungspuncte, so dass in der Ruhe ein schwacher oder kein Strom sich kund giebt, so ist dem entsprechend auch die Stromesschwankung kleiner, und fehlt im letzteren Falle ganz (DU BOIS-REYMOND).

An einem unversehrten, annähernd (p. 249) oder ganz stromlosen Muskel, welcher von seinem Nerven aus gereizt wird, tritt bei der Contraction eine electromotorische Wirksamkeit ein, für die noch kein allgemeingültiges Gesetz aufgestellt ist: der Gastrocnemius z. B. wird hierbei zwischen oberer und unterer Sehne absteigend wirksam; ebenso tritt im ganzen Hinterbein des unenthäuteten Frosches ein absteigender Strom bei der Contraction auf; bei willkürlichem Tetanus eines Armes beim Menschen tritt ein im Arm aufsteigender, beim Tetanus im Bein ebenfalls ein aufsteigender Strom ein (DU BOIS-REYMOND). Sind in der Ruhe bereits Ströme vorhanden, so summiren sie sich zu den eben erwähnten algebraisch.

Erregt man ein Faserbündel an einem Ende, so dass die Contraction wellenförmig durch dasselbe abläuft (p. 239), so läuft von der Reizstelle her eine gegen jeden anderen Längsschnittspunct negative Stelle über den Muskel ab, und zwar anscheinend mit derselben Geschwindigkeit wie die Contractionswelle (p. 239), nämlich 3 Meter in der Secunde (BERNSTEIN). An jedem Puncte dauert die Negativität, welche zuerst zunimmt und dann abnimmt, im Ganzen etwa ¹/₃₀₀ Secunde, und fällt ganz und gar in das ¹/₁₀₀ Secunde dauernde Stadium der latenten Reizung (p. 235). Jede Faserstelle muss also erst die electrische Veränderung durchmachen, ehe sie sich verkürzt (HELMHOLTZ, HOLMGREN) oder mit anderen Worten, der Contractionswelle läuft eine Negativitätswelle unmittelbar voraus. Diese Negativitätswelle nimmt während ihres Ablaufs an Intensität ab (BERNSTEIN).

Ueber die Methode, durch welche diese Resultate gewonnen wurden, s. Cap. IX. Die Grösse der Stromesschwankung hängt genau von denselben Umständen ab, wie die Grösse der Erregung.

Zur Erklärung der electromotorischen Erscheinungen am Muskel stehen sich folgende zwei Hypothesen gegenüber:

Nach der einen (DU BOIS - REYMOND) enthält jede Muskelfaser in ihrem Inneren electromotorische Molecüle, welche in einer leitenden Flüssigkeit in regelmässiger Anordnung suspendirt sind. Indem dieselben sämmtlich dem Längsschnitt positive, den Querschnitten negative Flächen zukehren, gewinnt der erstere positive, der letztere negative Spannung. Jede quere Durchschneidung, oder Aetzung u. s. w. legt neue negative Flächen bloss. Während der Contraction, oder vielmehr während des ihr vorangehenden latenten Stadiums, nimmt die Electricität der Elemente ab, wodurch bei totaler Contraction des Muskels dessen Strom im Ganzen abnimmt, bei partieller Contraction aber die in derselben begriffene Strecke sich in ihrem Verhalten einem indifferenten Leiter nähert, der nun, vermöge der zunächst angrenzenden negativen Elemente des ruhenden Faserantheils, sich negativ gegen den Rest der Faser verhalten muss (vgl. oben). — Um zu erklären, warum das natürliche Faserende sich nicht, wie es nach dem eben erwähnten Schema sein müsste, wie ein künstlicher Querschnitt verhält, wird an demselben eine Lage gesetzwidrig angeordneter ("parelectronomischer") Elemente angenommen, welche der natürlichen Endfläche nicht negative, sondern positive Flächen zukehren; je mehr von diesen Elementen vorhanden sind, um so mehr nähert sich der Muskel der Stromlosigkeit, und geht endlich in verkehrten Strom über; die Entwickelung der parelectronomischen Elemente, welche übrigens nie ganz fehlen, wird, wie ferner angenommen werden muss, durch Kälte u. s. w. (Winterschlaf) befördert. Endlich wird angenommen, dass die parelectronomischen Elemente durch die Thätigkeit nicht wie die übrigen beeinflusst werden, um das p. 250 f. angegebene Verhalten unversehrter Muskeln bei der totalen Contraction zu erklären.

Die andere Hypothese (HERMANN) führt sämmtliche Erscheinungen auf zwei Contactwirkungen zurück: es verhält sich gegen lebenden, ruhenden Muskelinhalt negativ electrisch: erstens absterbender (erstarrender) und zweitens in Thätigkeit (genauer: im latenten Stadium) begriffener Muskelinhalt. Aus der ersteren Contactwirkung erklärt sich die Negativität jedes künstlichen Querschnitts einer lebenden ruhenden Faser gegen deren Längsschnitt, da an jedem künstlichen Querschnitt zwischen dem (indifferenten) schon abgestorbenen und dem lebenden Fasertheil sich eine im Erstarren begriffene Schicht befindet und hieraus weiter (p. 248) alle Erscheinungen des ruhenden Muskelstroms, aus der zweiten alle Erscheinungen, welche bei der Reizung auftreten, namentlich die Abnahme des Muskelstroms bei Reizung der verletzten Faser in toto, die Negativität der Actionswelle gegen den Rest der Muskelfaser; dass stromlose Muskeln bei Reizung vom Nerven aus zwischen zwei Ableitungsstellen Ströme von bestimmter Richtung zeigen, kann daher rühren, dass die von der Nerveneintrittsstelle durch die Faser ablaufenden Actionswellen an den beiden Ableitungspuncten mit verschiedener Intensität anlangen (z. B. weil beide von der Eintrittsstelle verschieden weit entfernt sind); diejenige Stelle, an welcher die Welle intensiver anlangt, wird sich dann gegen die andere negativ verhalten.

Beide Hypothesen stehen mit den Thatsachen gleich gut im Einklange. Für die zweite scheint jedoch ausser ihrer Einfachheit (die erste muss mindestens vier von einander unabhängige, also willkürliche Annahmen machen) vor Allem die in ihr sich vollendende Analogie zwischen dem Erstarrungs- und dem Thätigkeitsprocess zu sprechen, von welcher weiter unten die Rede sein wird; ferner der Umstand, dass die Ströme bluthaltiger Drüsen (p. 50), sowie die an Pflanzenquerschnitten (BUFF; HERMANN) etc. durch vollkommen analoge Annahmen sehr gut sich erklären lassen.

Theorien der Muskelthätigkeit.

Der oben (p. 250) erwähnte Einfluss der Temperatur würde nach der ersten Hypothese so zu denten sein, dass Wärme die Kraft der Molecüle steigert, Kälte sie herabsetzt; nach der zweiten würde eine Electricitätserzeugung beim Contact wärmeren und kälteren Muskelinhalts anzunehmen sein, wobei letzterer negativ ist. Das electromotorische Verhalten der verschiedenen Zustände des Muskelinhalts gehorcht, wie namentlich der p. 250 Zeile 6, 7 erwähnte Versuch ergiebt, dem Gesetze der Spannungsreihe (HERMANN).

Ueber die Einwirkung electrischer Ströme auf den Muskel s. beim Nerven, Cap. IX.

e) Zusammenhang der Erscheinungen am Muskel und Theorien der Muskelthätigkeit.

Es existirt noch keine feststehende Erklärung der Erscheinungen am Muskel; die räthselhafteste derselben, die Verkürzung auf Reize, haben bis jetzt die meisten als Folge einer plötzlich eintretenden Anziehung kleinster Theilchen in der Längsrichtung des Muskels betrachtet, welche in einem plötzlich gesteigerten Verbrennungsprocess ihre letzte Ursache habe. Ferner haben manche zwischen den drei Formen, in welchen die freiwerdenden Kräfte im Muskel sich äussern, nämlich mechanische Arbeit, Wärme und Electricität, quantitative Beziehungen der Art vermuthet, dass erstens das Gesammtquantum derselben bei der Thätigkeit grösser sei, als bei der Ruhe (in welcher überhaupt keine dieser drei Leistungen stattzufinden scheint), zweitens die Steigerung der einen der drei Leistungen immer verbunden sei mit der Verminderung einer anderen.

Für keine dieser Annahmen ist bis jetzt ein thatsächlicher Anhalt vorhanden. Insbesondere lässt sich nicht feststellen, dass bei gleichem Reize eine Vermehrung der mechanischen Arbeit mit einer Verminderung der Wärmebildung verbunden sei. Variirt man die Arbeit durch Veränderung der Belastung, so wird der bei der Contraction eintretende chemische Process in seinem Umfange verändert, indem z. B. die Säure- und Alkoholextract-Production bei stärkerer Belastung zunimmt (HEIDENHAIN, NIEGETIET & HEPPNER), und dadurch das Vorhaben vereitelt: die Summe Wärme + Arbeit (entsprechend dem Stoffwechsel) verändert sich mit der Belastung. Variirt man die Arbeit dadurch, dass man bei gleichem Reize und gleicher Belastung einmal das Gewicht nach jedem Hube frei wieder fallen lässt, wobei im Ganzen also keine nutzbare Arbeit geliefert wird, und der Muskel statt dessen durch das ihn plötzlich beim Fall dehnende Gewicht erwärmt wird, das andere Mal aber den Muskel durch seine Zuckungen das Gewicht immer höher aufwinden lässt (in den Zwischenzeiten wird es durch eine Sperrvorrichtung festgehalten), wobei also nutzbare Arbeit geleistet wird (FICK), so wird allerdings im ersteren Falle der Muskel wärmer als im zweiten, es lässt sich aber einwenden (HEIDENHAIN), dass die chemischen Processe nicht mit dem Augenblick des Hubes beendigt sind, vielmehr noch während der Ver-

Theorien der Muskelthätigkeit.

längerung fortdauern, und hier wie während der Verkürzung durch die Spannung beeinflusst werden; in der That bildet im ersteren Falle der Muskel weniger Säure als im zweiten (LANDAU & PAKULLY); wiederum also ändern die Versuchsbedingungen den Stoffwechsel, also die Summe Arbeit + Wärme. Natürlich ist es nach dem Princip der Erhaltung der Kraft unzweifelhaft, dass in jedem einzelnen Falle die Summe der im Muskel freiwerdenden Kräfte durchaus der chemischen Umsetzung äquivalent ist.

Die jetzt vollkommen durchgeführte Analogie zwischen den Erscheinungen beim Erstarren und bei der Thätigkeit des Muskels berechtigt zur Aufstellung einer neuen von den früheren Anschauungen abweichenden Hypothese über das Wesen der Muskelcontraction (HERMANN). Die Analogien zwischen Erstarrung und Thätigkeit bestehen in Folgendem: 1) der chemische Process ist bei beiden Vorgängen soweit bekannt derselbe (p. 231 f.); 2) in beiden Acten verkürzt und verdickt sich der Muskel unter Verminderung seines Volums und Abnahme seiner Elasticität (p. 223, 235); 3) in beiden Acten bildet er Wärme (p. 245); 4) in beiden Acten verhält sich der Muskelinhalt negativ electrisch gegen die unveränderte (lebende, ruhende) Substanz (p. 252). Im erstarrenden Muskel schreibt man die Verkürzung der Myosincoagulation zu, da man weiss, dass jedes Eiweiss enthaltende Gewebe, z. B. eine Sehne, sich bei der Coagulation (beim Erhitzen) in der Richtung seiner Faserung stark verkürzt. Da nun bei der Contraction des lebenden Muskels der Annahme einer plötzlichen, sofort sich wieder lösenden Coagulation nichts entgegensteht, so ist wegen der Analogie mit der Erstarrung diese Annahme gerechtfertigt. Für dieselbe sprechen weiter folgende Gründe: Zu der Annahme einer Umwandlung von Wärme in Bewegung, wie in der Dampfmaschine, oder von Electricität in Bewegung, wie in den electromagnetischen Maschinen, fehlt beim Muskel jeder Anhalt; es bleibt also nur übrig, eine directe Entstehung der Bewegung durch den chemischen Process anzunehmen; ein solcher Vorgang ist aber nur dergestalt denkbar, dass durch den chemischen Process ein neuer Körper entsteht, der ein bestimmtes Volum mit elastischen Kräften einzunehmen strebt (wie die Pulvergase bei der Explosion); dass dies auch im Muskel der Fall ist, ist schon durch die WEBER'sche Theorie ausgesprochen (p. 240); als einen solchen Körper kann man aber sehr gut ein plötzlich entstehendes Eiweisscoagulum betrachten, und die nähere Erklärung findet nur dieselben Schwierigkeiten, wie die Erklärung der Sehnenverkürzung beim Kochen. Die Wärme- und Electricitätserzeugung im Muskel sind ihrer Quantität nach jedenfalls Nebenproducte; ob sie mit dem che-

Theorien der Muskelthätigkeit. Glatte Muskeln.

mischen Spaltungsprocess, oder mit dem physicalischen Process der Aggregatzustandsveränderung zusammenhängen, ist noch nicht entschieden.

Wenn die Contraction auf einer Coagulation im Muskelinhalt beruht, so muss das Coagulum momentan wieder verschwinden können; ja beim Tetanus muss dies sich mehrere hundert Mal in der Secunde wiederholen können. Der oben (p. 232 f.) erörterte synthetische Restitutionsprocess kann hierzu nichts beitragen, weil der Muskel auch bei vollständigem Sauerstoffmangel nach jeder Zuckung wieder erschlafft, auch dieser Process auf fest coagulirtes Myosin gar nicht einwirkt (p. 233). Man kann sich den Vorgang so vorstellen, dass der durch den Reiz plötzlich sehr beschleunigte (p. 232) Spaltungsprocess Myosin mit solcher Geschwindigkeit bildet, dass es nicht Zeit hat, sogleich in die gelatinöse Lösung überzugehen, sondern für einen Moment in dem ungelösten Zustand auftritt, der bei der langsamen Spaltung (Erstarrung) erst durch grosse Concentration herbeigeführt wird. Hierfür scheint zu sprechen, dass nur ganz plötzliche Einwirkungen als Reize für den Muskel sich geltend machen.

Wie viel Unbefriedigendes die hier gegebene Anschauung auch hat (so lässt sie z. B. die Bedeutung der Fleischprismen vorläufig ganz unerklärt), so scheint sie doch eine grössere Annäherung an den wirklichen Sachverhalt zu gewähren, als irgend eine der bisherigen rein physicalischen Theorien.

Die Wärmebildung steht vermuthlich nicht ganz und gar mit dem Spaltungsprocess in Zusammenhang, sondern ist zum Theil ein Resultat des synthetischen Oxydationsprocesses (232). Dieser Process muss mit Freiwerden von Kräften verbunden sein, und da er auch im Ruhestande vor sich geht, im thätigen aber gesteigert ist (p. 233), so spricht Alles dafür, dass er mit Wärmeentwickelung einhergeht (möglicherweise sind also die ruhenden Muskeln ein Hauptsitz der Wärmebildung). Dass übrigens nicht etwa die ganze Wärmebildung von diesem Processe herrührt, zeigt das Verhalten derselben in ausgeschnittenen Muskeln, in denen der synthetische Process nur spurweise entwickelt ist (p. 229).

Ueber die Anwendung der willkürlichen Muskeln im Organismus s. den Anhang zu diesem Capitel.

Ueber das Empfindungsvermögen der Muskeln s. Cap. X.

B. Die glatten Muskeln.

Die "glattten" oder "organischen" Muskeln vermitteln die weniger energischen, langsamen Bewegungen der dem Willen entzogenen Organe, besonders der Eingeweide. Sie bilden meist häutige Ausbreitungen von verschiedener Dicke (tunicae musculosae). Diese sind immer nach bestimmten, oft schichtenweise abwechselnden Richtungen fein gefasert. Sie bestehen aus spindelförmigen, langgestreckten Elementen, welche mit ihrer Längsaxe in der Richtung der Faserung liegen. Jedoch durchläuft nicht, wie bei den

Glatte Muskeln.

quergestreiften Muskeln, jedes einzelne die ganze Länge der Faserung, sondern sie sind vielfach mit ihren schmalen Enden an einander gereiht. Diese Elemente werden als langgestreckte Zellen angeschen; eine Membran (Sarcolemm) ist nicht sicher nachgewiesen; dagegen enthalten sie einen länglichen Kern, welcher zugleich Nervenendorgan sein soll (FRANKENHÄUSER, opp. Schwalbe, ARNOLD, HERTZ). Von Querstreifen zeigen sie keine Spur, zuweilen aber eine Andeutung von Längsstreifung. Man nennt sie "glatte Muskelfasern" oder "contractile Faserzellen".

Die Untersuchung im polarisirten Lichte zeigt, dass auch sie doppeltbrechende Körper (Disdiaclasten) enthalten, aber nicht in der regelmässigen Anordnung der quergestreiften Muskeln, sondern in der ganzen Masse zerstreut, es erscheint deshalb die ganze Faser doppeltbrechend (BRÜCKE). Die Zergliederung der glatten Muskelmassen in spindelförmige Elemente soll nach neueren Angaben nicht präexistiren, sondern erst beim Absterben auftreten (ENGELMANN).

Die chemischen Bestandtheile der glatten Muskelfasern sind anscheinend dieselben, wie die der quergestreiften. Auf spontan gerinnbare Substanzen darf man aus der auch hier auftretenden Todtenstarre schliessen. Die Reaction wird stets neutral oder alkalisch gefunden (DU BOIS-REYMOND); es ist daher unentschieden, ob auch hier bei der Starre eine Säurebildung stattfindet, welche vielleicht nicht genügt, das Alkali zu besiegen. Am contrahirten Uterus reagiren die Muskeln sauer (SIEGMUND).

Die Eigenschaften beider Muskelarten stimmen ebenfalls, so weit sie untersucht sind, fast gänzlich überein; noch nicht untersucht ist die Respiration, die Veränderung der Zusammensetzung bei der Thätigkeit, die Elasticitätsverhältnisse, die Wärmebildung u.s. w. Die mechanische Thätigkeit der glatten Muskeln geschieht ebenfalls in Form einer Verkürzung; dieselbe läuft nach denselben Gesetzen ab, wie bei den quergestreiften (p. 235), nur in viel längerem Zeitraum, so dass die einzelnen Stadien (latente Reizung, allmähliches Ansteigen der Verkürzung und Wiedernachlassen) ohne Weiteres sichtbar sind. Es vergeht nämlich nach der Reizung geraume Zeit, ehe die Verkürzung beginnt, dann tritt eine ganz langsame Zusammenziehung ein, die eine Zeit lang in maximo verharrt und dann allmählich nachlässt. An musculösen Strängen (Ureter, Darm) sieht man die an einer Stelle erregte Contraction wellenförmig mit einer Geschwindigkeit von 20-30 mm. pro Sec. ablaufen, anscheinend durch directe Erregungsleitung (vergl. oben, ENGELMANN). -

Protoplasmabewegungen.

Neuerdings sind auch automatische Contractionen von glatten Muskeln für den Ureter behauptet worden (ENGELMANN).

Die Untersuchung der glatten Muskeln ist deshalb sehr schwierig, weil man hinreichendes Material nur von Warmblütern bekommen kann, und dies sehr schnell seine Erregbarkeit verliert.

H. CONTRACTILE ZELLEN, PROTOPLASMA-BEWEGUNGEN.

Die contractile Substanz, das Protoplasma (p. 217), kommt ausser in röhrenförmige Hüllen eingeschlossen (Muskeln), auch in freien, membranlosen Conglomeraten vor, und bildet dann feinkörnige, meist microscopisch kleine Massen von sehr wechselnder Form, welche Kerne einschliessen. Solche contractile Massen sind: die ganze Leibessubstanz vieler niederer Thierformen (Amöben, Myxomyceten u. s. w.), oder wenigstens die Weichtheile derselben (Rhizopoden), die farblosen Blutkörperchen und die ihnen analogen Bindegewebs-, Lymph-, Milz-, Schleim-, Eiterkörperchen der höheren Thiere (vergl. p. 41, 78, 164); ferner der Inhalt vieler pflanzlicher Elementartheile (Zellkapseln).

Alle diese Protoplasmahaufen sind allgemeiner und partieller Contractionen fähig. Die ersteren entstehen durch Reizung mit Inductionsströmen; die Masse nimmt dabei die Kugelgestalt an; ist dies unmöglich, ist sie z. B. in ein Rohr eingeschlossen, so nähert sie sich soviel als möglich der Kugelgestalt, indem sie sich verkürzt und verdickt (KÜHNE).

Viel gewöhnlicher und vielleicht ausschliesslich im Naturzustande vorkommend sind partielle Contractionen; diese können die mannigfachsten Formveränderungen hervorbringen, z. B.: Aussenden und Wiedereinziehen von Fortsätzen*), wobei fremde Körnchen in die Substanz hineingezogen werden können; — Ortsveränderungen des ganzen Gebildes mittels der ausgesandten Fortsätze ("Pseudopodien"); — Körnchenbewegungen im Innern der Masse, u. s. w.; darunter auch tanzende Bewegungen (Molecularbewegung); — Verlagerung von mit Flüssigkeit erfüllten Hohlräumen (Vacuolen)

Hermann, Physiologie. 5. Aufl.

^{*)} Das Aussenden eines Fortsatzes ist nicht anders zu erklären, als durch Contraction in der Richtung einer Sehne, wodurch ein Segment hervorgedrängt wird; indem dieser Vorgang sich in diesem Segment immer vorrückend wiederholt, kann ein langer dünner Fortsatz entstehen.

Protoplasmabewegungen.

in der Masse. Alle diese Bewegungsformen werden häufig beobachtet (M. Schultze, Brücke, Häckel, Kühne, v. Recklinghausen).

Molecularbewegung ist bis jetzt an dem körnigen Inhalt folgender Zellen genauer beobachtet (BRÜCKE): farblose Blutkörperchen, Eiterkörperchen, Schleimund Speichelkörperchen, Knorpelzellen, Pigmentzellen der Frösche. Jedenfalls ist sie sehr allgemein verbreitet. Dass hier ein von den Molecularbewegungen unorganischer Niederschläge verschiedenes Phänomen vorliegt, geht daraus hervor, dass die Bewegung durch viele Einflüsse aufgehoben wird, welche das Leben der Zelle gefährden, und stets mit dem Tode derselben schwindet, dass ferner diese Zellen nicht von Membranen umschlossene und mit Flüssigkeit gefüllte Bläschen sind, sondern aus einer zähflüssigen Masse bestehen, in welcher man nach gewissen Erscheinungen das Dasein complicirter Höhlungen oder Canäle vermuthen muss. Die ruhenden Körperchen sind meist um die Kerne angehäuft, und bilden häufig strahlige Fortsätze nach dem Rande zu. Inductionsströme* führen zum Aufhören der Bewegung und dann zu einer plötzlichen Verkleinerung der Zelle mit Austreibung der Körner. Die Molecularbewegung ist daher ein complicirtes, mit den übrigen Lebenserscheinungen der Zelle innig zusammenhängendes Phänomen.

Die Reize, durch welche diese Gebilde zur Thätigkeit gebracht werden können, sind dieselben, wie für die Muskeln, ebenso die Bedingungen der Erregbarkeit und des Absterbens (KÜHNE). Bei 40° tritt eine Art Starre ein, bei 36° wirkt die Wärme als Reiz und bewirkt einen Tetanus (Kugelgestalt, s. oben). Mangel des Sauerstoffzutritts vernichtet die Erregbarkeit, was gegenüber dem geringen Einfluss des Sauerstoffs auf ausgeschnittene Muskeln (p. 223) sich leicht durch die verhältnissmässig grosse Oberfläche dieser kleinen Massen erklärt.

Alle Protoplasmagebilde scheinen also dieselbe wesentliche Substanz zu enthalten wie die Muskeln (p. 231); ihre Spaltung geschieht durch die Thätigkeit und langsam in der Ruhe bis zur Erstarrung; ihre Regeneration geschieht unter dem Sauerstoffzutritt von der Oberfläche her. — Einen sehr schädlichen Einfluss auf alle Protoplasmabewegungen haben sämmtliche, auch die schwächsten Säuren (Kohlensäure).

Gewisse Protoplasmagebilde, welche nicht wandern, z. B. ein Theil der Bindegewebszellen in der Cornea, stehen mit Nervenfasern in Verbindung, auf deren Reizung Contraction eintritt (KÜHNE, LIPMANN, von Anderen bestritten). Die grosse Mehrzahl aber ist vom Nervensystem völlig unabhängig und der Reiz, welcher hier die Bewegungen veranlasst, noch unbekannt. Man bezeichnet diese Bewegungen als automatisch (vgl. auch p. 257).

258

III. FLIMMERZELLEN UND SAMENKÖRPER.

Auf gewissen Körperflächen, welche mit einfachem oder geschichtetem Cylinderepithel bedeckt sind (namentlich: Respirationscanal vom Naseneingang bis zu den Alveolen der Lunge, p. 156; weibliche Geschlechtsorgane von den Tubenöffnungen bis zum äusseren Muttermund; Hirnventrikel mit ihren Communicationen), ist die oberflächliche, resp. die einzige Zellenlage auf ihrer freien Fläche mit feinen, structurlosen Härchen ("Flimmercilien") besetzt, welche in unaufhörlicher Bewegung begriffen sind. Eine Auslösung durch das Nervensystem findet, soweit bekannt, nicht statt. Die Bewegungen bestehen meist in einem abwechselnden Umbiegen und Wiederaufrichten der Haare; es sollen auch pendelartige, kegelförmige und andere Bewegungen vorkommen.

Die Samenkörperchen (4. Abschn.) lassen sich als Flimmerapparate mit einer einzigen Cilie auffassen; der Kopf entspricht den Flimmerzellen, der Schwanz ist Cilie. Die Bewegung ist hin- und herpeitschend.

Befinden sich bewegliche Theilchen auf einer flimmernden Fläche, so werden sie in einer bestimmten Richtung allmählich fortgeschoben. Diese Richtung geht beim Respirations- und Genitalapparat nach den Ausgängen zu. Zu ihrer Erklärung muss man annehmen, dass die Schwingung in einer Richtung geschwinder erfolgt, als in der anderen, so dass ein Schleudern nach jener stattfindet; sonst müssten die Theilchen nach jeder Hin- und Herschwingung wieder ihre alte Stellung einnehmen. (Ueber den Nutzen der Flimmerbewegung s. p. 156 und die Eiwanderung im 4. Abschn.). — Kleine Körper, welche mit Flimmercilien versehen sind (zahlreiche Infusorien, die Samenkörperchen), können sich durch dieselben in der Flüssigkeit activ fortbewegen.

Die Einflüsse, unter welchen die Flimmer- und Samenkörperbewegungen bestehen und aufhören, sind genau dieselben, wie für die Protoplasmabewegungen (ROTH, KÜHNE, ENGELMANN). Bedingungen des Bestehens sind: Erhaltung der Concentration der Flüssigkeit, Sauerstoffzutritt (KÜHNE, nach ENGELMANN kann derselbe lange Zeit entbehrt werden), mittlere Temperatur; Erhöhung der Temperatur wirkt beschleunigend (CALLIBURCES), ebenso electrische Stromesschwankungen (KISTIAKOWSKY); sehr niedrige und sehr hohe Temperaturen bewirken einen Stillstand, der bei normaler Temperatur

17*

Muskelwirkung.

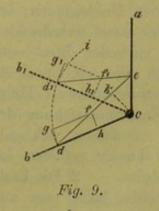
wieder aufhört — Kälte- und Wärmetetanus (Rотн); bei 45° erfolgt bleibender Stillstand unter Säurebildung — "Starre"; eine spontane Starre tritt nach der Entfernung aus dem Organismus ein. Sehr schädlich sind auch hier die Säuren (vgl. p. 258); der Einfluss der Alkalien, spontan erloschene Flimmer- und Zoospermienbewegung wieder zu erwecken (Vівсноw), beruht daher vielleicht nur auf Neutralisation schädlicher Säuren (Roth; während Andere auch den Säuren, dem Alkohol, Aether etc. wiederbelebende Kraft zuschreiben, ENGELMANN).

Die Flimmer- und Samenkörperbewegungen sind daher höchstwahrscheinlich nur eine besondere Form der Protoplasmabewegungen. Ob die Cilien nur passiv durch das Zellprotoplasma bewegt werden, oder activ betheiligt sind indem sie selbst protoplasmatische Natur besitzen, ist noch nicht entschieden.

Anhang zum achten Capitel.

Verwendung der Muskeln.

Die Verkürzungsfähigkeit der Muskeln wird auf die mannigfaltigste Art benutzt, um Körpertheile, welche gegen einander beweglich sind, aus ihrer Gleichgewichtslage zu bringen, und dadurch Formveränderungen am Körper hervorzubringen. Die Gleichgewichtslage der Körpertheile wird durch mannigfache mechanische Einflüsse bestimmt, hauptsächlich durch Schwere und Spannung (Elasticität). Die Formveränderungen geschehen theils zu bewussten Zwecken (willkürliche Bewegungen), theils sind sie durch gewisse Mechanismen, deren Sitz in den Centralorganen des Nervensystems zu suchen ist, bedingt (unwillkürliche Bewegungen).


Die Formveränderung, welche durch die Verkürzung eines Muskels (zunächst möge man sich statt des Gesammtmuskels eine einzelne Muskelfaser denken) bewirkt wird, lässt sich in jedem Falle berechnen, wenn die Gleichgewichtslage und die Beweglichkeit der zu bewegenden Objecte sowie die Situation des Muskels bekannt ist. Es kommen hauptsächlich zwei Fälle der Muskelwirkung in Betracht: 1. Die beiden Endpuncte des Muskels sind gegen einander nicht verschiebbar, sondern unbeweglich mit einander verbunden. In diesem Falle kann eine Verkürzung des Muskels nur dann stattfinden, wenn der Muskel nicht gradlinigt ausgespannt, sondern gekrümmt ange-

Muskelwirkung.

ordnet ist. Dies ist der Fall bei den musculösen Hohlorganen, bei welchen auf einer cylindrischen, kugeligen oder sonst gekrümmten Fläche Muskelfasern verlaufen, deren Enden entweder direct oder durch Aneinanderreihung vieler Fasern, in sich oder auf einem als unveränderlich anzusehenden Körper zusammenlaufen (Darm, Herz, Uterus, Blase u. s. w.). Hier wird bei der Zusammenziehung der Fasern das Bestreben der geraden Linie sich zu nähern sich geltend machen und daher mit der Fläche ein Druck auf etwa im Hohlraum befindliche Flüssigkeiten ausgeübt werden. - 2. Die Endpuncte sind gegen einander verschiebbar, entweder beide oder nur der eine beweglich (der gewöhnliche Fall). In diesem Falle muss die Verkürzung des Muskels, vorausgesetzt, dass dieser bereits vorher zwischen seinen Endpuncten ausgespannt war (p. 222), die beiden Endpuncte, und somit die Theile, an welche die Muskelenden angeheftet sind, einander nähern. Ist einer derselben festgestellt, so verändert nur der andere seinen Ort; sind beide beweglich, so verhalten sich die Verschiebungen umgekehrt wie die der Verschiebung entgegenwirkenden Widerstände. Die Richtung der Verschiebung liegt durchaus nicht immer in der beide Puncte verbindenden Geraden. Abweichungen von dieser Richtung werden bewirkt: a) dadurch, dass der Verlauf des (ausgespannten) Muskels oder seiner Verlängerungen (Sehnen) nicht geradlinigt, sondern gekrümmt oder geknickt ist, z. B. dadurch, dass Muskel oder Sehne über einen rollenartigen Vorsprung läuft; - b) dadurch, dass die Anheftungspuncte sich nicht geradlinigt gegen einander bewegen können, weil ihre Beweglichkeit durch irgend welchen Mechanismus beschränkt ist. In diesem Falle wird nicht die ganze lebendige Kraft der Muskelthätigkeit (gegeben durch Länge, Querschnitt und Thätigkeitsgrad des Muskels) zur Formveränderung verwandt, sondern ein Theil derselben wird durch den Widerstand des Mechanismus aufgehoben, d. h. in Wärme umgewandelt. Man findet den zur Formveränderung verwendbaren Theil leicht nach dem Parallelogramm der Kräfte, indem man die Verkürzungskraft des Muskels auf die Zugrichtung als Linie aufträgt und in zwei Componenten zerlegt, die eine in der Richtung des absoluten Widerstandes, die andere in der Richtung der absoluten Beweglichkeit; letztere Componente stellt die formverändernde Wirkung dar.

Sind z. B. ac und bc zwei durch ein Charniergelenk c verbundene Knochen, die durch den Muskel de gegen einander bewegt werden können (ac fest gedacht), so kann der Punct d nur in der auf bc senkrechten Richtung

Muskelwirkung.

d g (Tangente an den Bogen d i) bewegt werden. Die Zugkraft der Muskelverkürzung d f muss also zerlegt werden in die Componente d g (bewegender, formverändernder Theil) und d h (Richtung des absoluten Widerstandes; — gelenkpressender Theil) — Man sieht leicht, dass bei fortschreitender Contraction der bewegende Antheil d_1g_1 immer grösser, der gelenkpressende d_1h_1 immer kleiner wird. Bezeichnet man die Zugkraft des Muskels durch K, so ist der davon in Wirksamkeit tretende Antheil = K. sin c d e, und das Moment desselben in Bezug auf den Hebelarm c d = K. c d. sin c d e. Da nun

 $c d = \frac{c k}{\sin c d e}$, so ist das Moment = K. ck, d. h. der Muskel wirkt in jedem Augenblicke so, als wenn er mit voller Kraft senkrecht an einen Hebelarm von der Länge angriffe, die gleich der kürzesten Entfernung des Gelenks vom Muskel ist (HENKE).

Die Umwandlung des "gelenkpressenden Theils" der Muskelarbeit in Wärme ist so zu verstehen, dass die Pressung des Gelenkes die Reibung in demselben vermehrt, wodurch die dieser zuzuschreibende Wärmebildung erhöht wird.

Die auf starre Körpertheile (Knochen oder Knorpel) einwirkenden Muskeln greifen, da jene fast alle um einen Punct drehbar befestigt sind, meist an Hebeln an, wodurch die Vertheilung ihres Bewegungsmomentes auf Last und Geschwindigkeit mannigfach modificirt ist. Die meisten dieser Hebel sind einarmig, d. h. der Angriffspunct des Muskels und die Last oder der Widerstand befinden sich auf derselben Seite des Drehpunctes; jedoch kommen auch zweiarmige Hebel vor (einen solchen bildet z. B. der Vorderarm für den am Olecranon angreifenden Triceps brachii). Der Angriffspunct des Muskels liegt meist dem Drehpunct sehr nahe, so dass der Hebelarm des Muskels bedeutend kleiner ist, als der der Last; es können daher nur verhältnissmässig geringe Lasten (an ihrem natürlichen Angriffspunct gedacht), aber mit desto grösserer Geschwindigkeit bewegt werden. Hierdurch ist eine sehr grosse Behendigkeit der Körperbewegungen möglich; eine einfache Ueberlegung zeigt ferner, dass eine entgegengesetzte Anordnung die Gestalt des Körpers, namentlich der Extremitäten, sehr unförmlich machen müsste.

Wo mehrere Muskeln in verschiedenen Richtungen auf denselben Körpertheil bewegend einwirken, lässt sich das Resultat jedesmal leicht mittels des Parallelogramms der Kräfte finden, ebenso die resultirende Zugrichtung eines Muskels, dessen Fasern verschieden

Antagonisten. Knochenverbindungen. Synchondrosen.

gerichtet sind. Sind verschiedene auf denselben Körpertheil wirkende Muskeln so angeordnet, dass bei gleichzeitiger Anstrengung aller die resultirende Bewegung = 0 werden, der Körpertheil also in Ruhe bleiben kann, so nennt man jeden derselben den Antagonisten der übrigen. Die Gleichgewichtsstellung eines Körpertheils, auf welchen antagonistische Muskeln wirken, ist, abgesehen von dem Einfluss der Schwere, diejenige, bei welcher sich die elastischen Kräfte sämmtlicher Muskeln das Gleichgewicht halten.

Von speciellen Muskelanwendungen ist bereits im 1. Abschnitt mehrfach die Rede gewesen, namentlich bei der Blutbewegung, Verdauung und Athmung. Hier sollen die Bewegungen der starren Theile des Körpers, welche beweglich mit einander verbunden sind, Knochen und Knorpel, im Allgemeinen betrachtet, und dann zwei wichtige Bewegungsgruppen speciell erörtert werden, nämlich: 1. die Locomotion des Gesammtkörpers, 2. die Bewegungen im Zuleitungsrohre des Athmungsapparats, welche zur Bildung der Stimme und Sprache dienen.

Mechanik des Skeletts.

Die Elemente des Skeletts, die Knochen, sind zum grössten Theile beweglich mit einander verbunden. Absolut unbeweglich für solche Kräfte, die nicht das Bestehen des Organismus gefährden, ist nur die Verbindung der Knochen durch Nähte, wie sie am Schädel vorkommt. Durch Naht verbundene Knochen hat daher die Mechanik als ein unveränderliches Ganzes zu betrachten. Unter den beweglichen Knochenverbindungen sind zwei Formen zu unterscheiden: Die erste gestattet nur eine sehr geringe, aber der Richtung nach ziemlich unbeschränkte Bewegung; der Complex der verbundenen Knochen besitzt eine durch die Verbindung gegebene stabile Gestalt, aus welcher sie nur durch bedeutende Kräfte entfernt werden kann, und in die sie beim Nachlassen derselben mit elastischen Kräften zurückschnellt; diese Form bilden die Synchondrosen oder Symphysen. Die zweite Form gestattet eine ausgiebige, aber der Richtung nach beschränkte Bewegung, ohne wesentlichen Widerstand; sie bedingt also keine Gleichgewichtsstellung; diese Form bilden die Gelenke.

Synchondrosen.

Die Synchondrosen werden dadurch gebildet, dass zwei einander gegenüber stehende, meist congruente, Knochenflächen durch

263

ein festeres oder weicheres Bindemittel, meist hyalinen oder Faserknorpel, zusammengekittet sind. Das Ausweichen des Bindemittels nach den Seiten wird durch eine ligamentöse Umhüllung der Verbindungsstelle verhindert. Die Beweglichkeit dieser Knochenverbindungen hängt ab: 1. von der absoluten Festigkeit des Bindemittels; 2) von den Dimensionen desselben: die Beweglichkeit ist nämlich (abgesehen von dem ad 3. genannten Einfluss) direct proportional der Länge der Verbindung, d. h. dem Abstande der beiden Knochenflächen, und umgekehrt proportional dem Querschnitt des Bindemittels, d. h. der Grösse der Knochenflächen; - 3. von der Straffheit des umhüllenden Bandes. - Immer ist die Beweglichkeit sehr gering, und Muskelzüge haben daher auf derartige Knochenverbindungen fast keinen Einfluss. Dagegen ist die Elasticität derselben von grosser Bedeutung, namentlich für die Wirbelsäule, in welcher eine ganze Reihe von Synchondrosen (die Intervertebralknorpel) auf einander folgen, und dadurch der mehrfach gekrümmten Säule eine gewisse Biegsamkeit und grosse Elasticität verleihen (Näheres s. unter Stehen).

Gelenke.

In den absolut beweglichen Knochenverbindungen der Gelenke sind die der Bewegung entgegenwirkenden Widerstände auf ein Minimum reducirt. Dagegen ist die Richtung der Bewegungen schon durch die Form der Gelenkverbindung mannigfach beschränkt. — Die beiden mit einander in Gelenkverbindung tretenden Knochen kehren sich zwei glatte, überknorpelte Flächen (Gelenkflächen) zu, welche durch gewisse weiter unten zu besprechende Mittel beständig in möglichst ausgedehnter gegenseitiger Berührung gehalten werden. Die eine derselben ist stets grösser als die andere.

Am einfachsten sind diejenigen Gelenke, bei welchen die kleinere Gelenkfläche beständig mit allen ihren Punkten die grössere berührt. Soll diese Berührung bestehen bleiben, also keine andere Bewegung als ein Schleifen der kleineren auf der grösseren Gelenkfläche stattfinden, so hängt natürlich die Möglichkeit der gegenseitigen Verschiebung beider Knochen durchaus von der Form der Gelenkfläche (beide Flächen decken sich, die eine ist der Abguss der anderen) ab. — Ueberhaupt gestatten ein solches Schleifen nur bestimmte Flächen von regelmässiger Gestalt, and zwar: 1. Ebenen (Gelenke mit ebenen Flächen scheinen nicht vorzukommen; die Bewegungen, die sie gestatten würden, sind: a) Drehung jedes Knochens um Axen, die auf der Gelenkebene senkrecht sind; b) Verschiebung

Gelenkformen.

der Axe jedes Knochens parallel mit sich selbst). - 2. Oberflächenstücke von Rotationskörpern, d. h. Flächen, welche entstanden gedacht werden können durch Rotation einer Graden oder einer beliebigen Linie von einfacher Krümmung, um eine in derselben Ebene liegende Axe. (Es entsteht auf diese Weise: wenn die rotirende Linie gerade und der Axe parallel ist, ein Cylinder; ist sie gerade, aber der Axe nicht parallel, ein Kegel; ist sie ein Halbkreis und die Axe sein Durchmesser, eine Kugel; ist sie ein Kreisbogen, und die Axe liegt auf seiner convexen Seite, eine sattelförmige Fläche; liegt die Axe auf seiner concaven Seite [bildet sie eine Sehne], ein Cycloïd; ist sie eine Ellipse und die Drehaxe eine ihrer geometrischen Axen, ein Ellipsoïd u. s. w.; - ist sie endlich eine beliebige krumme Linie, so entsteht ein gekehlter drehrunder Körper, eine Rolle, etc.) - Alle Gelenke dieser Form gestatten eine Drehung beider Knochen um eine gemeinschaftliche Axe, und zwar um die geometrische Axe der Gelenkfläche; man nennt sie einaxige oder Charniergelenke (Ginglymi). - Nur die Gelenke mit Kugelflächen machen eine Ausnahme, indem sie eine Drehung um jeden beliebigen Durchmesser der Kugel, oder wie man auch sagt, um einen Punct, nämlich den Mittelpunct der Kugel, gestatten; man nennt sie vielaxige oder Nussgelenke (Arthrodien). - Eine besondere Art von einaxigen Gelenken bilden die Schraubengelenke. Ihre Gelenkfläche kann so entstanden gedacht werden, dass die rotirende (hier krumme) Linie, während der Rotation, in der Richtung der Axe nach einem Endpunct derselben vorrückt, und zwar mit einer der Rotations-Geschwindigkeit proportionalen Geschwindigkeit. Gelenke dieser Art bedingen bei der Drehung um die Rotationsaxe zugleich eine gegenseitige Verschiebung der Gelenkflächen in der Richtung der Axe (analog der Verschiebung einer in ihrer Mutter sich drehenden Schraube).

Die bisher betrachteten Bedingungen sind nur bei einem Theile der im Körper vorhandenen Gelenke verwirklicht, und auch hier nirgends mit mathematischer Genauigkeit. Bei einer grossen Zahl von Gelenken sind die Gelenkflächen nicht congruent, so dass eine vollkommene Berührung mit allen Puncten der kleineren unmöglich ist. Auch für die bereits besprochenen Formen sind Stellungen möglich, in welchen eine nicht ganz vollkommene, sondern nur annähernde Deckung stattfindet; dadurch ist z. B. den Gelenken mit sattelförmigen und cycloïden Flächen ausser der Drehung um die Rotationsaxe noch eine zweite gestattet, um eine Axe, welche zu jener senkrecht gerichtet ist, nämlich um eine durch das geometrische Centrum des rotirenden Kreisbogens gehende, zur Rotationsaxe senkrechte Axe, vorausgesetzt, dass die eine Gelenkfläche nur einen kleinen Theil der anderen bedeckt. Ueberall, wo keine unmittelbare Berührung der Gelenkflächen stattfinden kann, werden die Lücken durch gewisse im Gelenke befindliche Weichtheile und Flüssigkeiten ausgefüllt (s. unten).

Wenn eine vollkommene Deckung der Gelenkflächen nicht erforderlich ist, so wächst dadurch die Zahl der Gelenkformen und die Möglichkeit ihrer Bewegungen in's Unübersehbare. Auch wird es dann unmöglich, aus der blossen Form der beiden Gelenkflächen auf die Beweglichkeit zu schliessen, da die Beschränkungen derselben überwiegend von den übrigen Bestandtheilen des Gelenkes herrühren. Eine allgemeine Betrachtung dieser unregelmässigen Gelenke, deren Flächen nicht Rotationskörpern angehören, ist daher unmöglich; jedes einzelne aber durchzugehen, würde, selbst wenn die Forschung bereits alle behandelt hätte, hier zu weit führen.

Haftmechanismen.

Die beständige und möglichst innige Berührung der beiden Gelenkflächen wird durch folgende Mittel erhalten: 1. Der Raum zwischen beiden Gelenkflächen ist nach Aussen abgeschlossen. Beide Knochenenden werden nämlich durch ein kurzes Rohr miteinander verbunden, das um den Umfang jedes Gelenkkopfes angewachsen ist (Gelenkkapsel); die so gebildete Höhle hat nur ein capillares Lumen, und ist mit einer entsprechenden Menge einer zähen, schlüpfrigen Flüssigkeit (Gelenkschmiere, Synovia) erfüllt. Die beiden Gelenkflächen können sich demnach nicht weiter von einander entfernen, als die geringe in der Gelenkhöhle befindliche Flüssigkeitsmenge gestattet. Jede weitere Entfernung verhindert der äussere Luftdruck mit einer Kraft, die gleich in dem Product aus dem Flächeninhalt der kleineren Gelenkfläche und dem barometrischen Luftdruck für die Flächeneinheit. Diese Befestigung ist namentlich für Gelenke mit grossen Flächen von Wichtigkeit, besonders für die Kugelgelenke, bei welchen jede andere Befestigungsweise die allseitige Beweglichkeit beschränken muss. Beim Hüftgelenk, dem grössten Kugelgelenk des Körpers, ist die kleinere Gelenkfläche (die des Acetabulum) so gross, dass der Luftdruck dem Gewicht des ganzen Beins das Gleichgewicht hält, so dass letzteres nicht herabfällt, nachdem man alle umgebenden Weichtheile und selbst die Gelenkkapsel

Haft- und Hemmangsmechanismen. Spiralgelenke.

durchschnitten hat (Gebr. WEBER); die Fläche des Acetabulum wird noch vergrössert und der Schluss des Gelenks gesichert durch einen den freien Rand umgebenden zugeschärften elastischen Knorpelring (Labrum cartilagineum), der sich bei allen Bewegungen innig an den Schenkelkopf anschmiegt. - Wo eine mangelhafte Congruenz der Gelenkflächen einen grösseren Gelenkhohlraum nöthig macht, ist der grösste Theil desselben nicht durch flüssige Synovia, sondern durch verschiebbare Knorpel, Fettmassen oder Bänder, welche durch die Gelenkhöhle gehen, ausgefüllt; das ausgebildetste Gelenk dieser Art ist das Kniegelenk. - 2. Bei fast allen Gelenken dienen ausserdem noch ligamentöse Massen zur Befestigung; dieselben bestehen entweder in gespannten Bändern, welche von einem Knochen zum andern hinübergehen (meist mit der Kapsel verwachsen), oder in gespannten Theilen der Kapsel selbst. Da die Haftbänder eine beständige Spannung besitzen müssen, so können sie nur so liegen, dass sie die Bewegung nicht hindern, also bei Charniergelenken an beiden Enden der Drehaxe. Bei den meisten Gelenken mit nicht congruenten Flächen werden erst durch die Insertion der Haftbänder die Drehaxen bestimmt. 3. Einen wesentlichen Beitrag zur Aneinanderheftung der Gelenkenden liefert die Spannung und Contraction der umgebenden Muskeln.

Hemmungsmechanismen.

Die Vorrichtungen, welche nicht die Richtung, sondern die Ausgiebigkeit der Gelenkbewegungen bestimmen, sind folgende: 1. besondere Gestaltung des Knochens; so bildet z. B. beim Ellbogengelenk das Anstemmen des Olecranon ulnae gegen den Sinus maximus humeri eine absolute Grenze für die Extension des Vorderarms; 2. sog. Hemmungsbänder, d. h. Ligamente, welche bei mittleren Gelenkstellungen ungespannt sind, aber bei gewissen extremen Stellungen sich anspannen, dadurch dass ihre Ansatzpuncte sich bei Bewegungen des Gelenks von einander bis zum Maximum entfernen (auch bei den Gelenken mit Knochenhemmung tritt häufig schon vor der Erreichung dieser eine elastische Bandhemmung ein). Einen Fall, wo die Haftbänder zugleich die Rolle von Hemmungsbändern spielen, liefern die sog. Spiralgelenke, von denen das Kniegelenk das auffallendste Beispiel bietet. Ein Sagittalschnitt durch das Gelenkende des Femur zeigt als Begrenzung eine Spirale, deren Mittelpunct nach hinten liegt und deren Vectoren von hinten nach vorn an Länge zunehmen. An den Endpuncten einer quer durch

Hemmungsmechanismen. Spiralgelenke. Stehen.

diesen Mittelpunct gelegten Axe (Tuberositas condyli interni und externi femoris) sind die oberen Enden der beiden Ligamenta lateralia befestigt (das untere Ende des inneren ist am Condylus internus tibiae, das des äusseren am Capitulum fibulae angeheftet). Durch diese beiden Bänder wird das Kniegelenk zu einem unvollkommenen Charniergelenk. Dadurch aber, dass bei flectirtem Knie die kleinsten Vectoren der Spirale, bei vorschreitender Extension immer grössere in die Richtung der Bänder einrücken, wird der Abstand ihrer Ansatzpuncte, mithin ihre Spannung, von der Flexions- zur Extensionsstellung stetig vergrössert, bis zu einem Maximum, über welches hinaus eine weitere Extension unmöglich ist. Hierdurch wird zugleich bewirkt, dass die Drehung des Unterschenkels um seine Längsaxe nur in der Flexion unabhängig vom Oberschenkel möglich ist, nicht aber bei gestrecktem Bein, wo Unter- und Oberschenkel durch jene Einkeilung ein einziges Stück bilden. 3. Auch die die Gelenke umgebenden Weichtheile (Muskeln, Sehnen, Haut) können ähnlich wie die Hemmungsbänder den Bewegungen durch ihre Anspannung Grenzen setzen.

Bei Muskeln, welche über zwei Gelenke laufen, kommt es vor, dass die Beugung oder Streckung des einen den Muskel der Art spannt, dass er zum Hemmungsbande für das andere wird ("passive Insufficienz"; unter "activer Insufficienz" versteht man den entgegengesetzten Fall, der ebenfalls bei zweigelenkigen Muskeln vorkommt, dass die Beugung oder Streckung des einen Gelenks den Muskel der Art abspannt, dass seine Contraction keinen Effect mehr hat; — C. HÜTER, HENKE).

Gleichgewichtsbedingungen und active Locomotion des Gesammtkörpers.

Für die hier zu besprechenden Verhältnisse kann man den Körper als eine vielfach gegliederte und mehrfach verzweigte Kette betrachten, deren Gliederabtheilungen überall da zu suchen sind, wo zwei Knochen mit einander beweglich verbunden sind. Eine solche Kette wird nur dann in stabilem Gleichgewicht sich befinden, wenn jedes einzelne Glied genügend unterstützt ist. Dies wird bei den verschiedenen Körpersituationen (Liegen, Sitzen etc.) auf die mannigfachste Art erreicht. Die Stellungen, welche hier allein besprochen werden sollen, sind das aufrechte Stehen und das Sitzen.

Stehen.

Unter freiem Aufrechtstehen versteht man diejenige Gleichgewichtsstellung des Körpers, bei welcher der Gesammtkörper nur

268

Stehen.

durch die beiden den Boden berührenden Fusssohlen gestützt ist. Wäre der ganze Körper eine starre, ungegliederte Säule, so wäre hierfür keine weitere Bedingung zu erfüllen, als dass der Schwerpunct derselben durch die Unterstützungsfläche (gegeben durch die Berührungspuncte zwischen Fusssohlen und Boden) gestützt wäre, d. h. dass die Schwerlinie (ein durch den Schwerpunct gehendes Loth) den Boden innerhalb der Unterstützungsfläche träfe. Zu einer solchen starren Säule kann aber der Körper nur dadurch werden, dass alle in Betracht kommenden beweglichen Knochenverbindungen unbeweglich festgestellt werden. Beim natürlichen Stehen geschieht diese Feststellung fast ohne Beihülfe von Muskelcontractionen, so dass die Muskeln beim Stehen nur für das allerdings etwas anstrengende Balancement des ziemlich labilen Gleichgewichts beschäftigt sind.

Die in Betracht kommenden Knochenverbindungen sind: die Tarsal- und Tarso-Metatarsal-Gelenke, das Fussgelenk, das Kniegelenk, das Hüftgelenk, die Wirbelverbindungen (die Beckensymphysen können als absolut fest gelten) und das Gelenk zwischen Kopf und obersten Halswirbeln. Die übrigen Knochenverbindungen (des Thorax, der oberen Extremität und der Kiefer) kommen nicht in Betracht, weil die betreffenden Knochen nicht anderen zur Unterstützung dienen, sondern an den übrigen aufgehängt sind.

1. Das Gelenk zwischen Kopf und oberen Halswirbeln. Die beiden Gelenkflächen zwischen Kopf und Atlas bilden Theile einer einzigen, nach oben concaven Fläche, deren Krümmung frontal geringer ist als sagittal; das Gelenk ist also im wesentlichen zweiaxig, d. h. die sagittale Drehaxe liegt im Kopfe höher als die frontale, und um letztere geschehen die ausgiebigsten Bewegungen. Bei vornüber gebeugtem Kopf gestattet das Gelenk auch eine Rotation des Kopfs auf dem Atlas. Die hauptsächlichste Rotation geschieht aber im Gelenk zwischen Atlas und Epistropheus; der Proc. odontoideus des letzteren bildet in seinem Gelenk eine verticale Drehaxe für Atlas mit Kopf. Die Gelenkflächen der Proc. obliqui sind im Sagittalschnitt an Atlas und Epistropheus gegen die Gelenkhöhle convex. Da bei der Zahndrehung diese beiden Flächen auf einander ruhen, so muss Atlas und Kopf in der symmetrischen Mittelstellung am höchsten stehen und bei den Seitwärtsdrehungen etwas heruntergleiten; die Bewegung ist also schraubenartig; vermuthlich wird durch diese Einrichtung die Zerrung des Rückenmarks bei der Seitenwendung des Kopfes verhütet. - Während in den folgenden Knochen-

Aufrechtstehen.

verbindungen Alles auf Ersparung von Muskelarbeit und mechanische Fixation berechnet ist, erfordert die allseitige Beweglichkeit des Kopfes, dass die Stellung desselben ausschliesslich von dem Contractionszustande der zahlreichen Muskeln des Halses und Nackens abhängt. Fehlt dieser (im Schlafe etc.), so sinkt bei aufrechter Rumpfstellung der Kopf nach vorn über und stützt sich mit dem Kinn auf die Brust, da der Schwerpunct des Kopfes weiter nach vorn liegt, als sein Unterstützungspunct.

2. Die Wirbelsäule. Da die Wirbelverbindungen der Hauptsache nach Synchondrosen sind, so bildet die Wirbelsäule einen starren, aber etwas biegsamen und sehr elastischen Stab; derselbe ist mehrfach gekrümmt, nach vorn convex in der Hals- und Lendengegend, nach vorn concav im Brust- und Kreuzbeintheil. Die Beweglichkeit der Wirbelsäule, welche im Kreuztheil ganz fehlt, nimmt nach oben zu, weniger durch die Abnahme des Querschnitts der Intervertebralknorpel (denn dieser Einfluss wird zum Theil compensirt durch die parallel gehende Abnahme der Höhe derselben; vgl. p. 264), als durch die Beschaffenheit der wahren Gelenke zwischen den Processus obliqui. In der Lendenwirbelsäule stehen diese Gelenkflächen fast vertical, sagittal und nahezu einander parallel (schwach nach vorn convergent), so dass jeder obere Wirbel sperrzahnartig in den unteren eingreift; Rotation um die Längsaxe ist dadurch vollkommen verhindert, auch Beugung und Streckung sowie Biegung nach den Seiten nur in geringem Grade möglich. Am Rücken stehen die Gelenkflächen mehr frontal. nach hinten convergent, und gestatten dadurch eine Längsdrehung, da ihre gemeinsame Axe etwa in die Wirbelkörper fällt; auch die Seitenbeugung ist nicht absolut verhindert, Vor- und Rückwärtsbeugung aber ohne Klaffen fast unmöglich. In der Halswirbelsäule nähern sich die Flächen der horizontalen Richtung und gestatten alle drei Bewegungsrichtungen.

3. Das Hüftgelenk. a. Der Schwerpunct des hier zu unterstützenden Körperantheils — Rumpf + Kopf — liegt in einer durch den Proc. xiphoideus sterni gelegenen Horizontalebene (WEBER), und zwar nahe der Wirbelsäule (vor dem 10. Brustwirbel, HORNER); er schwankt begreiflich mit der Füllung des Digestionsapparates u. s. w. Das durch ihn gelegte Loth (die "Schwerlinie") fällt hinter die Verbindungslinie der Hüftgelenke. Der Rumpf müsste hiernach hinten überfallen, wäre er nicht vorn jederseits durch ein starkes, an die Spina ilium ant. inf. geheftetes Band, Lig. superius seu ilio-

Aufrechtstehen.

femorale, am Oberschenkelknochen (Linea intertrochanterica ant.) befestigt. Der Rumpf wird also auf den Schenkelköpfen etwa so gehalten, wie ein schräg geschultertes Gewehr, dessen Hintenüberfallen man durch Festhalten des Kolbens mit der Hand verhindert. Ganz ähnlich wie das Lig. iliofemorale wirkt der vordere Theil der gespannten Fascia lata (Lig. iliotibiale) und die Spannung der grossen Unterschenkelstrecker (M. extensor quadriceps), mit dem Unterschiede, dass der untere Ansatzpunct dieser Halter am Unterschenkel liegt. b) Eine Feststellung in frontaler Richtung (gegen das Ueberfallen nach rechts oder links) wäre durch die doppelte Unterstützung des Beckens unnöthig gemacht, wenn beide Beine am Boden befestigt wären. Da dies nicht der Fall ist, so wäre ein seitliches Ueberfallen, d. h. eine Drehung des Rumpfes um einen Schenkelkopf nach der Seite möglich, wenn nicht die damit nothwendig verbundene Adduction des Oberschenskels über die Mittellinie hinaus bei gestrecktem Oberschenkel durch das Lig. teres verhindert würde (das Lig. teres hemmt bei gestrecktem Oberschenkel die Adduction, bei gebeugtem die Rotation), namentlich wenn es durch das Auswärtsrollen des Beines, wie es beim Stehen der Fall ist, gespannt wird; dies Auswärtsrollen besorgt der Glutaeus maximus; der Adduction wirkt ferner das gespannte äussere Blatt der Fascia lata entgegen. -c) Eine Feststellung gegen Rotation des Rumpfes auf dem Schenkelkopf ist beim Stehen auf zwei Beinen unwesentlich; sie kann durch die Glutaeen und die Bänder bewirkt werden.

4. Das Kniegelenk. a. Der gemeinsame Schwerpunct von Kopf + Rumpf + Oberschenkeln liegt zwar tiefer, aber nicht wesentlich weiter nach vorn, als der von Kopf und Rumpf allein. Auch für das Kniegelenk fällt also die Schwerlinie hinter den Unterstützungspunct, freilich so wenig, dass geringe Kräfte genügen, um das Hintenüberschlagen (Beugung) zu verhindern. Diese bestehen in der Spannung des Lig. iliotibiale (s. oben), in geringer Spannung und Contraction des Extensor quadriceps und endlich in dem Umstande, dass zur Beugung im Kniegelenk bei feststehendem Unterschenkel das Femur eine geringe Rotation nach aussen machen muss, welche durch das stark gespannte Lig. iliofemorale (s. oben) verhindert wird. - b. die Feststellung in frontaler Richtung ist schon durch die Charnierbewegung des Kniegelenks, nämlich durch die Ligg. lateralia unnöthig gemacht. - c. Die Rotation auf den Unterschenkeln ist in der Streckung durch den p. 267 f. erwähnten Mechanismus verhindert.

Aufrechtstehen.

5. Das Sprunggelenk. Der Schwerpunct des Gesammtkörpers (die Füsse werden hier vernachlässigt) liegt ungefähr im Promontorium ossis sacri, die Schwerlinie trifft hiernach beim Stehen etwas vor die Verbindungslinie der beiden Fussgelenkaxen. Es muss also hier das Vornüberschlagen des Körpers verhindert werden. Dies kann geschehen: a) dadurch, dass die Axen der beiden Sprunggelenke einen Winkel mit einander bilden, so dass eine gleichzeitige Rotation um beide ohne Stellungsveränderung (Entfernung) der Beine unmöglich ist; b) durch Einklemmung des hinteren, schmaleren Theils der Astragalusrolle in die von den beiden Malleolen gebildete Gabel, welche in der Streckung des Unterschenkels so eng ist, dass sie den vorderen, breiteren Theil der Rolle nicht aufnehmen kann (wie es doch beim Vornüberbeugen nöthig wäre); die Einklemmung zwischen den Malleolen geschieht durch eine mit dem Schluss der Streckung des Unterschenkels verbundene Rotation der Tibia um die Fibula*), wodurch die Gabel so gedreht wird, dass sie die Rolle schräg umgreift. - c) durch die Contraction und Spannung der Fussbeuger (im anatomischen Sinne), Muskeln der Achillessehne, Tibialis post., Peronaei post. etc.

6. Kleine Fussgelenke. Die Tarsal- und die Metatarsalknochen bilden ein Gewölbe, auf dessen höchstem Punct (Caput astragali) die Last des Körpers ruht und das sich mit drei Puncten auf den Boden stützt: mit dem Tuber calcanei (Ferse) und mit den Capitula metatarsi 1. und 5. (Ballen der grossen und kleinen Zehe). Die Wölbung, welche die Schwere des Körpers abzuplatten sucht. wird hauptsächlich durch die Spannung der Bänder an der Plantarseite des Fussskeletts erhalten; nur bei krankhafter Erschlaffung derselben giebt die Wölbung nach ("Plattfuss"). - Die Zehen dienen beim Stehen nicht zur Unterstützung des Körpers, sind aber auch hier für die Balancirbewegungen, namentlich aber beim Gehen, von Wichtigkeit. Auch das "Stehen auf den Zehen" ist nur ein Balanciren auf den Capitula metatarsi mit gestrecktem Fussgelenk (i. vulgären S.), wobei der Rumpf soweit vorgebeugt wird, dass seine Schwerlinie in die Unterstützungslinie fällt.

^{*)} Diese Rotation hat ihre Ursache in der Gestalt des Kniegelenks, indem bei der Streckung die Condyli femoris auf der Gelenkfläche der Tibia radartig nach vorn rollen, aber in ungleichem Maasse.

Sitzen.

Beim Sitzen ruht der Rumpf auf den beiden Tubera ischii, wie auf den Kufen eines Wiegepferdes (H. MEYER); er kann deshalb nach vorn und nach hinten schaukeln. Man unterscheidet eine vordere und eine hintere Sitzlage, je nachdem die Schwerlinie des Rumpfes vor oder hinter die Verbindungslinie der Ruhepuncte der Tubera ischii fällt. - In der vorderen Sitzlage wird das Vornüberfallen des Rumpfes verhindert: a) durch Anstemmen desselben (Aufsetzen der Ellbogen auf den Tisch u. s. w.), b) durch Fixation gegen die unteren Extremitäten, welche durch Aufsetzen der Füsse auf den Boden, oder der Oberschenkel auf den vorderen Stuhlrand gestützt sind; die Fixation geschieht hauptsächlich durch die Oberschenkelstrecker. - In der hinteren Sitzlage muss sich der Rumpf gegen eine hintere Lehne stützen, entweder mit dem Rücken (Rückenlehne, hohe Stuhllehne), oder mit der concaven Lumbosacralgegend (Kreuzlehne, niedrige Stuhllehne). Auch ohne Lehne kann das Gleichgewicht erhalten werden dadurch, dass die Spitze des Kreuzbeines den dritten Unterstützungspunct bildet. Endlich kann durch weites Vorstrecken der Beine und Fixation des Rumpfes gegen diese durch (anstrengende) Muskelwirkung eine Stellung erreicht werden, bei welcher der Gesammtschwerpunct so weit nach vorn gerückt wird, dass die Füsse den dritten Unterstützungspunct hergeben. Sowie in dieser Stellung der Rumpf ein wenig rückwärts neigt, verlassen die Füsse den Boden.

Gehen, Laufen.

Das Vorwärtsgehen besteht darin, dass das Becken und mit ihm der Rumpf rhythmisch abwechselnd durch eins der beiden Beine (das "active") gestützt und eine Strecke weit ("eine Schrittlänge") vorwärts geschoben wird, während das andere ("passive") Bein nur an ihm hängt. Im Beginne eines Schrittes ist das während desselben active Bein (meist leicht gebeugt, s. unten) senkrecht gestellt und bildet eine Cathete eines rechtwinkeligen Dreiecks, dessen Hypotenuse von dem nach hinten vollkommen ausgestreckten und nur mit der Zehenspitze den Boden berührenden (s. unten) passiven Bein gebildet wird und dessen andere Cathete die Verbindungslinie beider Füsse am Boden darstellt. Das active Bein geht nun, das Becken vorschiebend, aus seiner senkrechten Cathetenstellung in eine schräg nach vorn gerichtete Hypotenusenstellung über, wobei es sich, da das Hermann, Physiologie. 5. Aut. 18

273

Becken in horizontaler Richtung vorgeschoben werden soll, entsprechend verlängern muss. Dies geschieht dadurch, dass sich das (im Anfang leicht gebeugte) Bein in allen seinen Gelenken vollkommen streckt; die Streckung im Fussgelenk (vulgär) bedingt eine Ablösung der Ferse vom Boden, wodurch der Stützpunct auf die Capitula metatarsi übergeht; auch diese aber werden zuletzt vom Boden erhoben, so dass das Bein nur noch mit der Spitze der grossen Zehe den Boden berührt; der Fuss wird also wie eine aufgehobene Kette vom Boden "abgewickelt". Jetzt hat das active Bein gegen den Rumpf dieselbe Stellung, welche im Anfang das passive hatte. - Dieses letztere, welches soeben beim vorhergehenden Schritte als actives fungirt, also dieselbe Bewegung durchlaufen hatte, verlässt im Beginn des Schrittes den Boden und macht um seinen Aufhängepunct am Becken eine Pendelschwingung nach vorn, durch welche sein Fuss um eben so weit vor den activen gebracht wird, als er im Beginn des Schrittes hinter demselben stand (d. h. eine Schrittlänge); er wird jetzt niedergesetzt und steht nun, sobald die Vorschiebung des Beckens durch das active Bein vollendet ist, senkrecht unter diesem, wie im Anfange des Schrittes der active Fuss. (Um bei der Pendelschwingung nicht den Boden zu berühren, muss das pendelnde Bein sich durch Beugung etwas verkürzen.) Es ist also während des Schrittes das active Bein aus seiner Cathetenstellung in eine Hypotenusenstellung, das passive aber aus seiner Hypotenusenstellung in eine Cathetenstellung übergegangen; das Dreieck ist um eine Schrittlänge vorgeschoben; der passive Fuss ist um zwei Schrittlängen vorgependelt, der active hat seinen Platz behalten; beide Beine wechseln jetzt ihre Rollen, das eben abgewickelte active Bein wird passiv und beginnt seine Pendelschwingung, das eben niedergesetzte passive Bein wird activ und beginnt seine Abwickelung; u. s. f.

Die Geschwindigkeit des Ganges muss hiernach abhängen: 1. von der Schrittlänge; 2. von der Schrittdauer, welche zusammengesetzt ist aus der Dauer der Pendelschwingung und dem Intervall von der Vollendung derselben bis zum Beginn der nächsten, d. h. dem Zeitraum, in welchem beide Füsse den Boden berühren. 1. Die Schrittlänge, als Cathete des erwähnten rechtwinkligen Dreiecks gedacht, ist um so grösser, je grösser der Unterschied zwischen Hypotenuse und der anderen Cathete, also: a) je kürzer, d. h. je stärker gebeugt das active Bein im Beginn des Schrittes ist, also je niedriger das Becken beim Gehen getragen wird; b) je grösser der

Laufen. Stimme.

Längenunterschied zwischen dem vollkommen abgewickelten (passiven) und dem senkrechten Bein ist, d. h. je länger Bein und Fuss ist; lange Personen können daher grössere Schritte machen, als kurze. — 2. a) Die Pendelschwingung geschieht nach bekannten Gesetzen um so schneller, je kürzer das schwingende Bein ist; die Elongation (Schrittlänge) hat ebenfalls einen Einfluss, weil der Elongationswinkel hier ziemlich gross ist. b) der Zeitraum, in welchem beide Füsse den Boden berühren, kann willkürlich verkürzt werden, und wird beim schnellsten Gehen = 0, so dass der abgewickelte Fuss in demselben Augenblicke den Boden verlässt, in welchem der andere nach seinem Pendeln niedergesetzt wird.

Eine noch grössere Geschwindigkeit kann durch das Laufen erreicht werden, bei welchem es in jeder Schrittperiode einen Zeitraum giebt, in welchem keiner der beiden Füsse den Boden berührt. Das abgelöste Bein hat schon seine Schwingung begonnen, ehe noch die des anderen vollendet ist. Hierzu ist erforderlich, dass dem Becken eine genügende Schwungkraft mitgetheilt wird, um während des Schwebens nicht zu fallen; dies geschieht dadurch, dass das active Bein im Beginn sehr stark gebeugt ist und die Streckung mit grosser, schnellender Geschwindigkeit erfolgt.

Auf die verschiedenen Abarten des Gehens und Laufens, sowie auf die Nebenerscheinungen, welche dabei beobachtet sind (W. & E. WEBER, H. MEYER) und sich zum Theil schon aus dem Gesagten ableiten lassen, kann hier nicht eingegangen werden.

Stimme und Sprache.

Der durch den Kehlkopf und die Rachen-, Mund- und Nasenhöhle streichende Exspirationsluftstrom, ausnahmsweise auch der Inspirationsstrom, wird benutzt, um Theile dieser Organe in Schwingungen zu versetzen und dadurch Klänge und Geräusche hervorzubringen; erstere bezeichnet man mit dem Namen "Stimme", beide, sobald sie als Zeichen zum Zwecke der Verständigung benutzt werden, als "Sprache".

1. Stimme.

Die Klänge der Stimme entstehen durch Schwingungen der unteren Stimmbänder des Kehlkopfes, welche nach Art einer membranösen Zunge in dem Kehlkopfrohr ausgespannt sind. Angeblasen werden sie von unten her durch den Strom der exspirirten Luft. Das Rohr, in welches die Stimmbänder eingesetzt sind, — unten

Stimme.

("Windrohr") Bronchialbaum, Trachea, Kehlkopf; oben ("Ansatzrohr") Kehlkopf, Pharynx, Mund- und Nasenhöhle, — dient wie die Röhren der Zungenpfeifen theils zur Modificirung des Klanges, theils zur Verstärkung desselben.

Als "Klang" bezeichnet man neuerdings (HELMHOLTZ) jede Gehörsempfindung, welche durch regelmässige (periodische) Schwingungen hervorgebracht wird. Sind die Luftschwingungen einfach pendelartig, so wird der Klang zum "Ton". Jede complicittere regelmässige Schwingung lässt sich aber nach einem bekannten mathematischen Lehrsatz in eine Summe einfach pendelartiger Schwingungen zerlegen, deren Schwingungszahlen sich wie 1:2:3 u. s. w. verhalten (FOURIER). Diese Zerlegung kann aber nicht bloss mathematisch, sondern auf gleich zu beschreibende Weise auch gewissermassen mechanisch geschehen. Es lässt sich also jeder Klang auffassen als eine Summe von Tönen, deren Schwingungszahlen sich wie 1:2:3 u. s. w. verhalten (Partialtöne des Klanges). Den tiefsten dieser Töne nennt man den Grundton des Klanges, die folgenden dessen harmonische Obertöne. Hat der Grundton die Schwingungszahl n, so sind die Schwingungszahlen der harmonischen Obertöne: 2n (Octave des Grundtons), 3 n (Duodecime), 4 n (2. Octave), 5 n (grosse Terz davon) u. s. w. Die Anzahl der Partialtöne, die relative Stärke der einzelnen, ist bei verschiedenen Kläugen, z. B. bei denen verschiedener Instrumente, äusserst verschieden; oft fehlen einzelne Partialtöne aus der Reihe ganz. Man benennt den Klang meist nach seinem stärksten Partialton (Hauptton, die andern: Nebentöne). Tritt ein Ton, z. B. a, in verschiedenen Klängen als Hauptton auf, so bezeichnet man dies im gewöhnlichen Leben dadurch, dass man a mit verschiedener "Klangfarbe (Timbre)" gehört habe. Zeichnet man die Schwingungscurve eines Klanges, so weicht sie von der eines einfachen Tones in ihrer Gestalt mannigfach ab; häufig nähert sie sich der Wellenform eines bestimmten Tons: ihres Haupttons; man sagte daher früher, zwei gleich hohe und starke "Töne verschiedenen Timbres" differiren in dem Verlauf ihrer (gleich langen und hohen) Wellen.

Die Zerlegung eines Klangs in seine Partialtöne geschieht am einfachsten durch Mittönen (HELMHOLTZ): Durch einen einfachen Ton werden fast ausschliesslich die Körper in Mitschwingung versetzt, welche dieselbe Schwingungszahl haben; durch einen Klang aber alle diejenigen, deren eigene Schwingungszahl mit der eines seiner Partialtöne übereinstimmt, und zwar genau in dem Intensitätsverhältniss, welches den einzelnen Partialtönen bei der Zerlegung des Klanges nach der Fourier'schen Reihe zukommt. Hat man also eine Reihe von leicht mittönenden Körpern (Resonatoren), deren Eigentöne den einzelnen harmonischen Obertönen eines Tones a entsprechen, so werden, beim Ertönen eines Klanges vom Grundton a, die einzelnen Resonatoren mit verschiedenen Intensitäten, einzelne gar nicht, mittönen. Als Resonatoren benutzt man am einfachsten abgestimmte Glas- oder Blechkugeln mit zwei Oeffnungen, deren eine in den Gehörgang passt. So wie in einem Klange der Eigenton des Resonators als Partialton vorkommt, so wird dieser laut gehört, während alle übrigen Töne unhörbar bleiben (das andere Ohr wird verstopft). Ebenso wie man auf diese Weise die Klänge analysiren kann, kann man sie auch umgekehrt durch Synthese

Zerlegung der Klänge. Klänge der Zungen und Zungenpfeifen.

aus einfachen Tönen zusammensetzen. Methoden, völlig einfache Töne darzustellen und zu combiniren, s. unter Sprache

Auch der Schall des Kehlkopfes und der ihm analogen Zungenpfeifen sind Klänge, in denen der Grundton bedeutend überwiegt, aber die harmonischen Obertöne meist bis zum 6. oder 8. durch die Analyse nachweisbar sind. - Wenn nun im Folgenden von den Tönen des Kehlkopfes und ihrer Höhe die Rede ist, so ist darunter immer der Grundton der Klänge zu verstehen.

Klänge der Zungen und Zungenpfeifen.

Eine "Zunge" im acustischen Sinne ist eine elastische Platte, welche in der Ruhe eine Oeffnung fast genau verschliesst, aber so angebracht ist, dass durch jede Excursion aus ihrer Gleichgewichtslage die Spalten zwischen ihren Rändern und den Rändern der Oeffnung vergrössert werden. Wird ein genügend starker Luftstrom gegen die Oeffnung geblasen, so muss dieser, wie sich leicht ergiebt, die Zunge in Schwingungen versetzen; die Spalten sind nämlich in der Ruhelage der Platte so eng, dass der Luftstrom nicht ohne Weiteres hindurchgehen kann, sondern ein Hinderniss findet; es findet also vor der Zunge eine Stauung der Luft, eine Druckzunahme statt, welche, sobald sie eine gewisse Höhe erreicht hat, die elastische Platte zum Ausweichen bringt; in diesem Augenblick strömt die Luft mit Gewalt aus und der Druck vor der Zunge nimmt so beträchtlich ab, dass diese wieder zuräckschwingt; dasselbe Spiel wiederholt sich beständig. Es wird also durch diesen Mechanismus der continuirliche Luftstrom in einen intermittirenden oder wenigstens ab- und zunehmenden verwandelt, und zugleich die Zunge in Schwingungen versetzt. Der Schall entsteht wesentlich durch die Schwingungen der Luft (wie bei der Sirene), nicht durch die der Zunge (HELMHOLTZ). - Die Zunge kann entweder eine einseitig befestigte starre elastische Platte sein, wie bei vielen zungenführenden musicalischen Instrumenten, oder eine über die Oeffnung hinweg gespannte elastische Membran ("membranöse Zunge"). Letztere kann wiederum entweder so über die Oeffnung gespannt sein, dass sie zu beiden Seiten Spalten lässt, oder sie kann die Oeffnung völlig ausfüllen, und nur in der Mitte eine Spalte lassen. Letzterer Art ist die durch die beiden Stimmbänder mit der Stimmritze gebildete membranöse Zunge des Kehlkopfs.

Die Höhe (d. h. die Schwingungszahl in der Zeiteinheit) des Tons, den eine angeblasene Zunge giebt, ist abhängig von der Schwingungszeit der Platte an sich, da von dieser die Frequenz der Luftstösse abhängt; sie ist demnach umgekehrt proportional der Länge der Platte und direct proportional der Quadratwurzel aus ihrer Elasticitätsgrösse, - bei gespannten Membranen also der Quadratwurzel aus den spannenden Gewichten, ganz wie bei einer gespannten Saite. Bei membranösen Zungen kommt hierzu noch ein dritter Einfluss, nämlich der der Stärke des Anblasens, welche für die Tonhöhe der gewöhnlichen starren Zungen gleichgültig ist. Dass stärkeres Anblasen den Ton hier nicht bloss verstärkt, sondern auch erhöht (J. MÜLLER), erklärt sich daraus, dass dasselbe zugleich die Spannung der Membran vermehrt; denn die Mittelstellung, um welche die Zunge schwingt, weicht bei stärkerem Anblasen weiter von der Ruhelage ab, als bei schwächerem; diese grössere Abweichung vermehrt aber bei Membranen natürlich die Spannung, während sie bei starren Platten deren Elasti-

Zungenpfeifen. Stimmbänder. Kehlkopfknorpel.

cität, soweit sie bei den Schwingungen in Betracht kommt, nicht erhöht. Der erhöhende Einfluss des stärkeren Anblasens ist in seinen Gesetzen noch nicht festgestellt. — Die Form und Grösse der Spalte ist nur insofern von Einfluss auf den Ton, als eine engere Spalte bei gleicher lebendiger Kraft die Stauung, also den Druck vor der Zunge, vergrössert, somit ein stärkeres Anblasen möglich macht.

Befindet sich die Zunge in einer Röhre ("Zungenpfeife"), so nennt man den den Luftstrom zuführenden Theil derselben das Windrohr, den anderen das Ansatzrohr. Im Allgemeinen kann man den Einfluss des Ansatzrohres dahin definiren, dass seine Eigentöne sich dem Klange der Zunge beimischen und event. gewisse Partialtöne desselben verstärken. Durch besondere Verstärkung eines Obertons kann der Klang scheinbar erhöht werden, indem der verstärkte Ton als Hauptton hervortritt; umgekehrt kann eine Vertiefung eintreten, wenn der Grundton des Ansatzrohrs tiefer ist als der der Zunge, und stark hervortritt. Das Ansatzrohr des Stimmorgans hat diesen Einfluss nur in geringem Grade, so dass die Klangfarbe der Stimme nur wenig, wenn auch deutlich, durch dasselbe modificirt wird (vgl. unten: Vocale), der Hauptton des Kehlkopfklanges aber derselbe bleibt.

Einrichtung des Kehlkopfs.

Im Kehlkopf wird die membranöse Zunge gebildet durch zwei horizontale membranöse Platten, die unteren Stimmbänder, welche zwischen der inneren (hinteren) Fläche des Schildknorpels und den vorderen äusseren Flächen der Giessbeckenknorpel ausgespannt, und mit der Kehlkopfschleimhaut, die hier ausnahmsweise Pflasterepithel trägt (vgl. p. 156), bekleidet sind. Die Spalte zwischen beiden, die Stimmritze (Glottis vocalis), setzt sich nach hinten fort in den Zwischenraum zwischen beiden inneren Flächen der Giessbeckenknorpel, die Athemritze (Glottis respiratoria). Der Schildknorpel und die Giessbeckenknorpel sind drehbar auf dem Ringknorpel befestigt, ersterer dreht sich um eine horizontale Queraxe, so dass durch die Drehung sein vorderer Theil (die Schildplatte) dem vorderen Theil des Ringknorpels genähert oder von ihm entfernt werden kann; hierdurch wird die Neigung der Schildplatte gegen die Verticale vergrössert oder verkleinert, ihr oberer Theil also, an dem die Stimmbänder befestigt sind, nach vorn oder hinten bewegt. Die Giessbeckenknorpel drehen sich hauptsächlich um ihre (verticalen) Längsaxen, so dass sie, da sie dreiseitige Pyramiden bilden, mit ihren Kanten verschiedene Stellungen gegeneinander einnehmen und dadurch die Gestalt der Spalte verändern. Auf Länge und Spannung der Stimmbänder muss, wie sich hieraus ergiebt, hauptsächlich der Schildknorpel durch seine Stellung Einfluss haben. Sehr passend ist deshalb vorgeschlagen worden, den Ringknorpel "Grundknorpel", den Schildknorpel "Spannknorpel" und die Giessbeckenknorpel "Stellknorpel" zu benennen (Lupwig).

Folgende Muskeln können nun Lageveränderungen der Kehlkopfknorpel bewirken, welche auf die Stimmbänder Einfluss haben: 1. Die Cricothyreoïdei ziehen den Spannknorpel vorn gegen den Grundknorpel, drehen also ersteren nach vorn und unten um seine Axe; sie ziehen demnach (s. oben) den oberen Theil des Knorpels nach vorn und spannen dadurch die Stimmbänder, wenn die Stellknorpel feststehen. 2. Die Thyreoarytaenoïdei, welche grossentheils in den Stimmbändern selbst verlaufen, drehen den Spannknorpel nach oben und hinten, gegen den Stellknorpel, spannen daher die Stimmbänder ab; ein Theil ihrer Fasern entspringt von Puncten der Stimmbänder selbst, muss daher bei seiner Contraction dem Stimmbande ungleiche Spannung geben (den gespannten Theil verkürzen), indem er nur den Theil abspannt, in welchem er selbst verläuft, den Rest aber anspannt. Da ferner ein Theil der Fasern um die äussere Kante der Stellknorpel herumgreift, muss er diese zugleich so drehen, dass sie mit ihren vorderen inneren Kanten (Proc. vocales) zusammenstossen, mit ihren hinteren inneren aber auseinander weichen. Hierdurch wird die Glottis vocalis zu einer schmalen Spalte verengt, die Glottis respiratoria aber zu einem dreieckigen Raum erweitert. 3. Die Cricoarytaenoïdei postici ziehen die äussere Kante der Stellknorpel, an deren unterem Ende (Proc. muscularis) sie angreifen, nach hinten und unten, so dass die vorderen inneren (Proc. vocal.) nach aussen gedreht werden und zugleich etwas nach oben weichen, während die hinteren zusammenstossen. Hierdurch werden sowohl die Stimm- als die Athemritze zu dreieckigen Räumen erweitert, so dass beide zusammen eine weite, rautenförmige Oeffnung bilden. 4. Die Cricoarytaenoïdei laterales ziehen die Proc. musculares der Stellknorpel nach unten, vorn und aussen; hierdurch werden die Spitzen der beiden Pyramiden etwas von einander entfernt und zugleich diese so gedreht, dass sie eine ähnliche Stellung wie bei Contraction der Thyreoarytaenoïdei einnehmen; nur berühren sich die Proc. vocales nicht so dicht. 5. Die Arytaenoïdei proprii (Interarytaenoïdei, transversus und obliqui) nähern die Spitzen der Pyramiden einander und ziehen zugleich deren hintere Kanten zusammen. Wirken sie daher mit den Thyreoarytaenoïdei zusammen, so ist sowohl die Glottis vocalis, als die Glottis respiratoria geschlossen, das Athmen also unterbrochen, z. B. vor dem Husten (p. 157).

Kehlkopfklänge.

Die Ventriculi Morgagni geben den Stimmbändern freien Raum zum Schwingen, namentlich wenn letztere durch starkes Anblasen in die Höhe gewölbt sind. Die oberen Stimmbänder haben, wie es scheint, gar keine Bedeutung für die Stimme; zwar ist beobachtet worden, dass eine Verengerung des Ansatzrohrs über der Zunge den Ton erhöhen kann (J. MÜLLER); aber der ausgeschnittene Kehlkopf giebt dieselben Töne, mögen die oberen Stimmbänder vorhanden oder entfernt sein. — Bei den Vögeln dienen die Stimmbänder überhaupt nicht zur Tongebung, sondern der "untere Kehlkopf", ein eigenthümliches, meist an der Theilungsstelle der Luftröhre angebrachtes Organ.

Die motorische Innervation des Kehlkopfs geschieht durch den R. laryngeus inferior n. vagi, dessen Lähmung daher Stimmlosigkeit bewirkt; der R. laryngeus superior versorgt nur den M. cricothyreoideus, nach Einigen (NAWRATIL) auch diesen nicht.

Klänge des Stimmorgans.

Die allgemeinen Bedingungen der Tonerzeugung und des Tonwechsels im Kehlkopfe sind aus dem, was oben über Zungen und Zungenpfeifen gesagt worden, leicht ersichtlich. Zur Hervorbringung eines Tones überhaupt ist danach eine gewisse Stärke des anblasenden Luftstroms erforderlich; letztere erfordert wiederum Schluss der Athemritze und Enge der Stimmritze, wie sie durch Contraction der Cricoarytaenoïdei laterales oder der Thyreoarytaenoïdei bewirkt wird: bei Contraction der Cricoarytaenoïdei postici ist also keine Stimmgebung möglich. - Die Höhe des Tones hängt ferner nach dem oben Erörterten ab von der Länge und der Spannung der Stimmbänder und von der Stärke des Anblasens; sie ist dagegen unabhängig von der Gestalt der Stimmritze; nur muss diese zur Ermöglichung stärkeren Anblasens stärker verengt werden; sie ist ferner unabhängig (beim Kehlkopf, p. 278), von der Gestalt und Länge des Wind- und Ansatzrohres. Hieraus ergiebt sich, dass die Tonhöhe wächst: 1. mit zunehmender Spannung der Stimmbänder, und zwar wird diese erhöht: a) durch Contraction der Cricothyreoïdei (von aussen fühlbar), welche die Stimmbänder anspannt; b) durch abnehmende Contraction der Thyreoarytaenoïdei im Ganzen, deren Contraction die Stimmbänder abspannt; c) durch stärkeres Anblasen (p. 277); dieser Einfluss wird hauptsächlich bei den höchsten Tönen benutzt, welche daher nur forte angegeben werden können. Um das stärkste Anblasen zu ermöglichen, muss die Stimmritze möglichst eng sein und die Athemritze luftdicht geschlossen werden (durch die Arytaenoïdei proprii). Umgekehrt ist bei jeder starken Anspannung der Stimmbänder zum Ansprechen ein stärkeres An-

Kehlkopfklänge.

blasen erforderlich; der Luftdruck in der Trachea, den man bei Trachealfisteln manometrisch bestimmen kann, nimmt daher mit der Tonhöhe zu (CAGNIARD-LATOUR). - 2. mit abnehmender Länge der schwingenden Theile der Stimmbänder; - verkürzt aber werden dieselben bei gleicher Spannung: a) durch gewisse partielle Contractionen der Thyreoarytaenoïdei (p. 279); b) durch innige Aneinanderlagerung der Processus vocales der Stellknorpel, wodurch die Theile der Stimmbänder, in welchen der Knorpel liegt, der Schwingung entzogen werden; c) Kehlköpfe von kleineren Dimensionen, namentlich die der Kinder und Frauen, geben wegen Kürze der Stimmbänder im Ganzen höhere Töne. Alle diese Schlüsse hat die Beobachtung bestätigt, und ausserdem gelehrt (GARCIA), dass mit zunehmender Tonhöhe sich die oberen Stimmbänder mehr und mehr nähern (aber nie bis zum völligen Verschluss) und der Kehldeckel sich mehr und mehr über den Kehlkopfeingang hinüberlegt. Mit den höheren Tönen steigt ferner der Kehlkopf in die Höhe, theils durch Contraction der kehlkopfhebenden Muskeln, theils vielleicht durch die Dehnbarkeit der Trachea bei zunehmender Spannung der eingeschlossenen Luft. -Trotz der scheinbar einfachen Verhältnisse muss der wirkliche Vorgang bei der Tongebung äusserst complicirt sein. So müsste z. B. bei einer gewissen Einstellung der Stimmbänder stärkeres Anblasen den Ton nicht bloss verstärken, sondern auch erhöhen; da wir nun aber denselben Ton mit wechselnder Stärke (piano und forte) anhalten können, so muss eine fortwährende Compensation der Muskelkräfte stattfinden.

Zur Beobachtung der Stimmbildung im Kehlkopf giebt es folgende Methoden: 1. Palpation und Auscultation des Kehlkopfs von Aussen. 2. Besichtigung des Kehlkopfinneren mittels des Kehlkopfspiegels (GARCIA, CZERMAK, TÜRCK). Derselbe besteht in einem kleinen, erwärmt (zur Verhütung des Beschlagens) in den Mund einzuführenden Spiegel, der mittels eines Griffes über dem Kehlkopfeingang vor dem zurückgedrückten Gaumensegel unter einer Neigung von 45° festgehalten wird. Concentrirtes Licht wird durch einen vor dem Munde befindlichen, mit einer Oeffnung versehenen Spiegel, hinter dem das Auge des Beobachters sich befindet, auf jenen geworfen; der Mund wird weit geöffnet, die Zunge aus dem Munde hervorgestreckt; man sieht das Innere des Kehlkopfes stark beleuchtet. 3. Beobachtung des künstlich von oben her geöffneten Kehlkopfs lebender Thiere. 4. Versuche mit ausgeschnittenen Kehlköpfen menschlicher Leichen (J. MÜLLER). Die Muskelwirkungen werden dadurch nachgeahmt, dass man an den Ansatzpuncten Fäden befestigt, diese in gehöriger Richtung über Rollen führt, und mit Gewichten beschwert. Kehlkopf und Rollen werden an einem Stative befestigt. Das Anblasen geschieht durch ein in die Trachea gebundenes Rohr, mit dem Munde oder durch ein Blasewerk; zur Mes-

Beobachtung des Kehlkopfs. Fistelstimme.

sung des Drucks bringt man seitlich an dem Rohre ein Manometer an. Um den Einfluss des Ansatzrohres zu studiren, lässt man den Kehlkopf oben mit den Kopftheilen in Verbindung. Die Versuche mit todten Kehlköpfen zeigen mannigfache, zum Theil noch unerklärte Abweichungen von dem Verhalten des lebenden, welche auf die Mangelhaftigkeit der Kenntnisse über den letzteren hindeuten. 5. Versuche mit künstlich nachgebildeten Kehlköpfen (J. MÜLLER); im weitesten Sinne gehören hierher die Versuche mit Zungenpfeifen überhaupt.

Eine weitere Erhöhung der Töne, als sie durch die gewöhnliche Art des Stimmgebens erreicht werden kann, wird durch die sog. "Fistelstimme" ermöglicht; es ist dies ein anderes "Register", eine andere Art der Stimmerzeugung, welche namentlich für höhere Tonlagen geeignet ist, deren Unterschiede von der gewöhnlichen aber noch nicht sicher festgestellt sind. Auch die Klangfarbe (p. 276) der Fistelstimme ist von der der gewöhnlichen Stimme wesentlich verschieden. Beobachtet ist, dass die Stimmritze bei ihr weiter ist, als bei der gewöhnlichen (ebenso die Entfernung der oberen Stimmbänder); behauptet wird ferner, dass die Stimmbänder bei ihr in geringerer Breite, nur an den Rändern schwingen (J. MÜLLER, LEH-FELDT), und zwar durch partielles Auflegen der obern Stimmbänder (MANDL), von Anderen aber im Gegentheil, dass sie in grösserer Breite als gewöhnlich schwingen (GARCIA); wahrscheinlich ist endlich, dass die Stimmbänder sehr stark gespannt sind, wofür das Gefühl der Anstrengung im Kehlkopfe spricht. Wegen der grösseren Weite der Stimmritze muss die Luft bei der Fistelstimme schneller entweichen; ein Fistelton kann daher nicht so lange angehalten werden, wie ein gewöhnlicher. Ein auf demselben Umstande beruhender Unterschied beider Stimmregister liegt in der Resonanz des Wind- und Ansatzrohres; hierüber s. unten.

Die Form und Länge des Ansatz- und Windrohrs ist, wie bereits mehrfach erwähnt, beim Kehlkopf ohne Bedeutung für die Höhe des Klanges; dagegen wirkt das Rohr verstärkend durch Resonanz, und verändernd dadurch dass in demselben Nebentöne entstehen, welche gewisse Partialtöne des Stimmklanges verstärken und dadurch das Timbre desselben (p. 276) ändern; die Stimme der einzelnen Individuen unterscheidet sich dadurch wesentlich. Durch Veränderungen in der Form des Ansatzrohrs können in diesem noch besondere Nebentöne und Geräusche willkürlich erzeugt werden, welche für die Sprache (s. unten) wesentlich sind. Andere unwesentliche oder störende Geräusche entstehen durch Anhäufung von Schleim etc. in verschiedenen Theilen des Rohrs (oder an den Stimmbändern selbst). — Die Resonanz ist bei den gewöhnlichen

Einfluss des Wind- und Ansatzrohrs. Stimmumfang. Sprache. 283

Tönen im Windrohr am stärksten, weil dieses die durch die Enge der Stimmritze comprimirte Luft enthält; Luftröhre und Brustwandungen resoniren daher bedeutend und gerathen in zitternde Bewegung (Fremitus pectoralis); man nennt danach die gewöhnliche, volle und kräftige Stimme die Bruststimme. Bei den Fisteltönen findet wegen der Weite der Stimmritze keine Resonanz der Brust statt, sondern es überwiegt hier die Resonanz des Ansatzrohrs, der Mundund Nasenhöhle, u. s. w.; die Fistelstimme heisst daher auch Kopfstimme.

Der Umfang der Bruststimme beträgt bei vollkommener Ausbildung des Stimmorgans zwei bis zwei und eine halbe Octaven. Jedoch liegen die Grenzen verschieden je nach der Grösse des Kehlkopfs. Den am tiefsten liegenden Stimmumfang haben die Männer: der Bass gewöhnlich von E (80 Schw. in der Sec.) bis f^I (342), der Tenor von c (128) bis c^{II} (512); den am höchsten liegenden die Kinder und Frauen: der Alt von f (171) bis f^{II} (684), der Sopran von c^I (256) bis c^{III} (1024). Der Gesammtumfang der menschlichen Bruststimme beträgt also (E 80 — c^{III} 1024) beinahe 4 Octaven. Die Strecke c^I (256) bis f^I (342) ist allen Stimmen gemeinsam, klingt jedoch wegen des eigenthümlichen Timbres der Kehlköpfe verschieden, je nachdem sie von einem Bassisten, einem Altisten, u. s. w. angegeben wird. In vielen Fällen werden die hier angegebenen Grenzen überschritten.

Die Ausbildung des Kehlkopfes steht in einer gewissen Beziehung zur geschlechtlichen Entwickelung. Mit dem Eintritt der Pubertät nehmen seine Dimensionen plötzlich zu und die Alt- oder Sopran- (Discant-) Stimme des Knaben wandelt sich in eine Bass- oder Tenorstimme um ("Stimmwechsel"). Bei Castraten, Hypospaden u. s. w. bleibt die Stimme abnorm hoch, ja selbst höher als die Sopranstimme der Frauen.

2. Sprache.

Die Sprache wird zusammengesetzt durch gewisse Töne und Geräusche, welche die exspirirte Luft in den Hohlräumen oberhalb des Kehlkopfes hervorbringt und diese werden entweder für sich zur Sprache benutzt, — Flüstersprache, — oder in Verbindung mit den Klängen der Stimme, — laute Sprache.

Die Elemente, aus deren zeitlicher Aufeinanderfolge die Sprache gebildet wird, heissen Laute, und werden eingetheilt in Selbstlaute (Vocale) und Mitlaute (Consonanten). Erstere Benennungen sind unpassend, weil auch die "Mitlaute" für sich allein und ohne Stimme angegeben werden können (wenn auch einige derselben da-

Sprache. Vocale.

durch etwas von ihrer Eigenthümlichkeit einbüssen, s. unten). Der wahre Unterschied besteht darin, dass die Consonanten wahre undefinirbare Geräusche sind, während die Vocale den Character von Klängen (p. 276) haben; letztere sind nämlich bei der Flüstersprache Geräusche mit einem überwiegenden, der Höhe nach bestimmbaren Ton, welche in der Mundhöhle producirt werden, — bei der lauten Sprache aber gewisse Modificationen des Stimmklanges, welche dadurch hervorgebracht werden, dass die Eigentöne der Mundhöhle einzelne Partialtöne des ersteren verstärken.

Vocale.

1. In der Flüstersprache entstehen die Vocale dadurch, dass die in verschiedene Gestalten gebrachte Mundhöhle durch den Exspirationsluftstrom angeblasen wird. Dadurch entstehen Geräusche, in denen man aber bei einiger Aufmerksamkeit, namentlich bei Vergleichung mehrerer Vocale, bestimmte Tonhöhen unterscheidet, die bei verschiedenen Personen (Alter, Geschlecht) für denselben Vocal auffallend übereinstimmen, und am Clavier bestimmt werden können (DONDERS). Es sind dies die Eigentöne der angeblasenen Mundhöhle. Noch besser kann man durch Mittönen (p. 276) diese Töne finden, indem man angeschlagene Stimmgabeln vor die für den Vocal eingestellte Mundhöhle bringt; trifft man gerade die Stimmgabel, deren Grundton mit dem Ton der Mundhöhle übereinstimmt, so wird die Stimmgabel sofort durch die resonatorische Verstärkung hörbar (HELMHOLTZ). Die Gestalt der Mundhöhle (vgl. unten) ist bei U und 0 die einer runden Flasche mit kurzem Hals, bei A ein vorn weiter Trichter, bei E und I eine runde Flasche mit langem engem Hals, u. s. w. Entsprechend den Eigentönen solcher Flaschen sind nun die Töne der Mundhöhle für U: f, für 0: b¹, für A: b¹¹; für A, E, I giebt es zwei Eigentöne (einer für den Bauch, einer für den Hals): für Ä: g^{II} und d^{III}, für E: f^I und b^{III}, für I: f (?) und dIV; ferner für Ö: f1 und gIII bis asIII, für Ü: f und gIII-asIII (HELMHOLTZ). Geringe Modificationen der Aussprache, namentlich die fremdländischen (Oa etc.) verändern den Ton bedeutend. Die Constanz des Eigentones für denselben Vocal bei verschieden grossen Mundhöhlen ist durch die proportionale Veränderung der Mundöffnung zu erklären.

Nach neueren Versuchen (König) sind die characteristischen Töne:

für U O A E I b bl bll bll blV.

Bildung der Vocale. Analyse.

Die verschiedenen Formationen der Mundhöhle kommen folgendermassen zu Stande: Zunächst muss bei allen Vocalen der Zugang des Luftstroms zu den Choanen durch Hebung des Gaumensegels abgesperrt werden, wenn die Mundhöhle allein angeblasen werden soll. Unterbleibt dies, so erhalten beim lauten Sprechen (s. unten) die Vocale den "nasalen" Character. Die Hebung des Segels ist am wenigsten vollständig bei A, dann folgen E, O, U, I. Die verschiedenen Flaschenformen (s. oben) entstehen folgendermassen: bei A ist die Mundhöhle durch Niederlegung der Zunge auf den Boden am weitesten, der Mund weit geöffnet (Trichterform); bei 0 und U entsteht die kugelige Flasche durch Hebung der Zungenwurzel und Verengerung des Mundes zu einer runden Oeffnung (bei U am engsten); bei Ä, E, I entsteht der lange Flaschenhals durch Näherung der Zunge an den harten Gaumen u. s. w. Bei allen Vocalen ausser U rückt der Kehlkopf etwas nach oben, am wenigsten bei 0, dann folgt A, E, I.

2. Die lauten Vocale entstehen dadurch, dass der Eigenton der Mundhöhle den entsprechenden Partialton des Stimmklanges verstärt (WHEATSTONE, HELMHOLTZ). Hieraus folgt, dass die Vocale am meisten characteristisch auf die Noten gesungen werden können, die einen mit dem Eigentone der Mundhöhle übereinstimmenden harmonischen Oberton haben; ferner dass die einzelnen Vocalklänge sich nicht durch die Ordnungszahlen der verstärkten Partialtöne, sondern durch die absolute Höhe derselben unterscheiden.

Die Analyse der Vocalklänge kann leicht mitels der p. 276 erwähnten Resonatoren geschehen; vollständiger dadurch, dass man die Vocalklänge auf eine gespannte Membran überträgt, welche ihre Schwingungen auf einem rotirenden Cylinder aufschreibt (Phonautograph, DONDERS). - Um den Vocalklang synthetisch zu reproduciren, braucht man nur den Dämpfer eines Claviers aufzuheben und den Vocal kräftig und rein auf eine Claviernote gegen die Saiten zu singen. Es tönen dann (vgl. p. 276) alle Saiten mit, deren Töne als Partialtöne in dem Vocalklange enthalten sind, und in dem entsprechenden Intensitätsverhältnisse; man hört daher den gesungenen Vocal nicht blos als Ton, sondern als Vocal aus dem Clavier resoniren (HELMHOLTZ). - Instructiver ist die directe Synthese aus einfachen Tönen: Eine Anzahl Stimmgabeln, welche harmonischen Obertönen eines Grundtons entsprechen (z. B.: B, b, fI, bI, dII, fII, as II, bII, dIII, as III, f III, b III), wird durch Electromagneten in Schwingungen versetzt (die Oeffnungen und Schliessungen des Stromes geschehen durch eine besondere Stimmgabel, welche durch eine Vorrichtung nach dem Princip des WAGNER'schen Hammers in Schwingung erhalten wird). Die Klänge der Stimmgabeln sind durch deren Aufstellung (auf Gummi) unhörbar; vor jeder aber steht eine auf ihren Grundton abgestimmte Resonanzröhre; wird diese geöffnet, so macht sie den Grundton der

Synthese der Vocale. Consonanten.

Stimmgabel, also einen einfachen Ton, hörbar. Man kann nun beliebig die einzelnen Töne stark oder schwach, durch ergiebigeres oder geringeres Oeffnen der Resonanzröhren mittels einer Claviatur, ertönen lassen und combiniren. So lassen sich nicht nur die Vocale, sondern auch die characteristischen Klänge der verschiedenen Instrumente synthetisch darstellen; einfacher erreicht man dasselbe durch Zungenpfeifen, welche einfache Töne geben (HELMHOLTZ).

Die Diphthongen entstehen während des Ueberganges aus der Mundstellung für den einen Vocal in die für den zweiten, und bestehen aus zwei schnell auf einander folgenden Klängen.

Consonanten.

Die als Consonanten bezeichneten Laute entstehen sämmtlich dadurch, dass die durchstreichende Exspirationsluft gewisse leicht bewegliche Theile im Rachen- und Mundkanal in nichttönende Schwingungen versetzt; dieselben klingen verschieden, je nachdem die Stimmbildung im Kehlkopf hinzukommt oder nicht. Besonders drei verengbare Stellen ("Verschlüsse") des Kanals sind dazu geeignet: 1. der Lippenverschluss, gebildet entweder durch beide Lippen oder durch Unterlippe und obere Schneidezahnreihe, auch wohl durch Oberlippe und untere Schneidezahnreihe; 2. der Zungenverschluss, gebildet durch Zungenspitze und vorderen Theil des harten Gaumens oder Rückseite der oberen Schneidezähne; 3. der Gaumenverschluss, gebildet durch Zungenwurzel und weichen Gaumen. An jedem dieser Verschlüsse oder Thore kann eine Reihe von Geräuschen gebildet werden, wodurch drei Reihen von Consonanten entstehen: Lippen-, Zungen- und Gaumenbuchstaben.

Die Geräusche, welche an jeder der drei Verschlussstellen gebildet werden können, sind (Brücke):

 Verschlusslaute (Explosivae). Sie entstehen durch plötzliche Sprengung des bisher geschlossenen oder durch plötzliche Schliessung des bisher offenen Thores: a) ohne Stimme: P, T, K;
 — b) mit Stimme: B, D, G.

Sprengung wird zur Bildung dieser Laute angewandt, wenn sie eine Sylbe beginnen, Schliessung, wenn sie am Ende einer Sylbe stehen (z. B. pa, ap). — Da P von B (ebenso T von D, K von G) sich nur durch Ab- und Anwesenheit der Stimme unterscheiden, so ist beim Flüstern keine scharfe Unterscheidung möglich, B wird hier zum P.

2. Reibungsgeräusche (Aspiratae). Die Verschlussstelle wird geschlossen bis auf eine kleine Spalte, durch welche der Exspirations- (oder Inspirations-) Luftstrom entweichen kann; es entsteht dadurch ein Geräusch: a) ohne Stimme: F(V), scharfes S, Ch; - b mit Stimme: W, weiches S, J. - Am Zungen-

Consonanten.

thor lässt sich ausser dem scharfen S noch ein zweites Reibungsgeräusch bilden, wenn der Verschluss vorn vollkommen ist und die Luft nur an den Seiten zwischen den Backzähnen entweichen kann: L. — Durch Aspiration zweier auf einander folgender enger Spalten, nämlich zwischen Zungenspitze und hartem Gaumen, und zwischen beiden Schneidezahnreihen entsteht: ohne Stimme: Sch, mit Stimme: das französische J (in joli). — Bildet man eine Spalte zwischen Zungenspitze und beiden Schneidezahnreihen, so entsteht durch Anblasen: ohne Stimme: das harte englische Th (in thing), mit Stimme: das weiche englische Th (in the). — Das Ch kann mehr nach vorn (in "ich") und mehr nach hinten (in "ach") gebildet werden.

F und W etc. unterscheiden sich gerade so wie P und B etc. — In der Flüstersprache ist ein W unmöglich, und wird durch u oder f ersetzt.

3. Resonanten. Das Thor wird vollkommen geschlossen und bei gesenktem Gaumensegel durch die Nase exspirirt, indem die Stimme mittönt: M, N, nasales N (im franz. "gens").

Diese Laute sind bei Flüstern nicht vollkommen ausführbar: sie erscheinen von B, D, G nur wenig verschieden.

4. Zitterlaute. Die Verschlussstelle wird lose geschlossen und durch den Exspirationsstrom wie eine Zunge angeblasen; es entstehen Schwingungen, die aber zu langsam sind, um einen Ton zu geben; so entstehen drei Arten von **R**, von denen das Lippen-R (der bekannte Kutscherlaut) in europäischen Sprachen nicht vorkommt, das Zungen- und Rachen-R nach Gewohnheit und Dialect verschieden verbreitet sind.

Hiernach lassen sich die Consonanten folgendermassen übersichtlich gruppiren:

	Lippen- buchstaben.	Zungenbuchstaben.	Gaumen- buchstaben.
1. Verschluss- laute			
ohne Stimme	P.	Τ.	К.
mit Stimme.	В.	D.	G.
2. Reibungs- geräusche			
ohne Stimme	F (V).	scharfes S, L, Sch, hart. eng. Th.	Ch in "ich", Ch in "ach"
mit Stimme.	W.	weiches S, L, franz. J, weich. engl. Th.	J.
3. Resonan-			
ten.	M.	N.	nasales N.
4. Zitterlaute.	Lippen-R.	Zungen-R.	Rachen-R.

Consonanten.

H ist ein im Kehlkopf selbst entstehendes Geräusch, hervorgebracht durch schnelles Durchstreichen der Luft durch die weit geöffnete Stimmritze.

Zusammengesetzte Consonanten entstehen namentlich dadurch, dass nach plötzlicher Oeffnung eines verschlossenen Thores (P, T, K) die herausfahrende Luft durch das verengte zweite Thor fährt (hartes S); so entstehen Zusammensetzungen aus P und S (Ψ), T und S (Z), und K und S (X). Andere Zusammensetzungen entstehen durch schnellen Uebergang aus einer Mundstellung in die andere.

Die Beobachtung der sprachbildenden Bewegungen geschieht theils durch Inspection der Mundhöhle, wenn der Mund offen ist, theils durch Palpation mittels des in den Mund eingeführten Fingers. Um über Offensein oder Verschluss des hinteren Naseneinganges zu entscheiden, bringt man vor die Nasenlöcher eine Kerzenflamme oder einen blanken Spiegel. Endlich sind viele Sprachverhältnisse durch Beobachtung der Sprache bei pathologischen Missbildungen (Mangel, Adhaesionen des Gaumensegels etc.) aufgehellt worden.

Dritter Abschnitt.

Die Auslösungsapparate.

Das Nervensystem.

In der Einleitung ist bereits (p. 5 ff.) in groben Zügen die Einrichtung des Auslösungsapparates (Nervensystems) und seine Beziehungen, einerseits zur Aussenwelt, andererseits zu den "Arbeitsorganen" (p. 7) angedeutet worden. Aus jener Darstellung ergiebt sich sofort, dass man im Nervensystem folgende fünf Gruppen von Organen zu unterscheiden hat:

1. Organe, vermittelst welcher in den Arbeitsorganen Leistungen ausgelöst werden: — die Nervenendorgane in Parenchymen, Drüsen und Muskeln;

2. Organe, welche den Auslösungsvorgang (Auslösungskette) von nervösen Centralorganen aus auf die ad 1. genannten Organe fortpflanzen: — centrifugale Leitungsorgane;

3. nervöse Centralorgane, deren Bedeutung p. 7 angedeutet ist;

4. Organe, welche Auslösungsvorgänge, die von der Aussenwelt herrühren (s. sub 5.), auf Centralorgane fortpflanzen: — centripetale Leitungsorgane;

5. Organe, in welchen eine Bewegung der Aussenwelt auf die ad 4 genannten Organe auslösend wirkt: — Sinnesorgane.

Hermann, Physiologie. 5. Aufl.

Das Nervensystem.

Indess geschieht die physiologische Darstellung des Nervensystems nicht in diesen fünf Abtheilungen. Die centrifugalen und die centripetalen Leitungsorgane unterscheiden sich nämlich in ihren Eigenschaften durchaus nicht von einander; nur die Organe, mit welchen sie peripherisch zusammenhängen, sind verschieden (s. oben 1. und 5.); man hat also zu unterscheiden: Leitungsorgane, Centralorgane, Sinnesorgane und Endapparate in Arbeitsorganen; die beiden letzteren kann man auch als peripherische Endorgane der Leitungsorgane zusammenfassen, wie es hier im Cap. X. geschieht.

Neuntes Capitel.

Die Leitungsorgane (Nerven).

A. ALLGEMEINES.

Die Elemente der Nerven sind dünne langgestreckte Fasern, welche der Länge nach ähnlich den Muskelfasern durch Bindegewebe aneinandergeheftet und in einer festen fibrösen Hülle (Perineurium) zu einem runden oder platten Strange (Nerv) vereinigt sind. Jede Nervenfaser ist eine von zum Theil flüssigem Inhalt erfüllte Röhre; die dünne Scheide (Neurilemm, SCHWANN'sche Scheide) ist wie das Sarcolemm eine elastische Membran, und ist mit grossen Kernen versehen. Im Inhalt des Nervenrohrs unterscheidet man einen in der Axe liegenden dünnen Strang, den Axencylinder, und eine diesen umgebende glänzende Masse, welche leicht krümlig zerfällt, das Mark oder die Markscheide. Eine gewisse Art von meist dünneren Nervenfasern entbehrt der Markscheide, besteht daher nur aus Axencylinder und Neurilemm (marklose Fasern); eine dritte Art zeigt die Eigenthümlichkeit, dass der Axencylinder in gewissen Abständen varicös geschwollen ist und keine Hülle erkennen lässt (graue, varicöse, REMAR'sche Fasern). Ueber das Vorkommen der verschiedenen Fasergattungen s. Cap. XI.

Der Axencylinder tritt namentlich nach dem Absterben des Nerven deutlich hervor und ist deshalb von Vielen als ein postmortales (contrahirtes) Gerinnsel angesehen worden. Doch betrachten ihn die Meisten als einen vorgebildeten, und zwar den essentiellen Bestandtheil des Nervenrohrs, da er direct mit den wesentlichen Theilen der centralen und peripherischen Nervenendorgane in Verbindung tritt, wenn man nicht auch solche Theile als Gerinnungsproducte auffassen will. —

19*

292 Chemische Bestandtheile des Nerven. Zustände des Nerven. Ruhender Nerv.

Manche oder vielleicht alle Axencylinder bestehen aus einem Bündel feinster "Nervenfibrillen" (M. SCHULTZE). — In den Centralorganen kommt eine besonders feine Art von Axencylindern (einfache Nervenfibrillen, M. SCHULTZE) vor, welche die (intercentralen) Verbindungen der Ganglienzellen bildet (Cap. XI.). — Die Dicke der Nervenfasern hängt wesentlich von der An- oder Abwesenheit, resp. von der Dicke der Markscheide ab, welche zur Ernährung des Axencylinders zu dienen scheint. — Bei geeigneter Behandlung sieht man an markhaltigen Fasern in gewissen Abständen ringförmige Einschnürungen, an denen das Mark unterbrochen sein soll; da stets zwischen zwei solchen Stellen ein einziger Kern des Neurilemms liegt, so scheinen dieselben Andeutungen einer Zusammensetzung der Faser aus einer Zellenreihe und die Einschnürungen ehemalige Zellengrenzen zu sein (RANVIER).

Chemische Bestandtheile des Nerven.

Die chemischen Bestandtheile des Nerven sind noch so gut wie unbekannt. Der Axencylinder scheint den Eiweisskörpern in den Eigenschaften nahe zu stehen. In der Markscheide, deren Aussehen und Verhalten gegen Lösungsmittel fettartig ist, kommt möglicherweise kein eigentliches Fett vor, sondern nur Lecithin und Protagon (p. 22, 36), welche allerdings bisher nur aus Gehirn etc., nicht aus Nerven selbst dargestellt sind. Daneben enthalten die Nerven Cholesterin, ferner Kreatin.

Die Reaction des frischen ruhenden Nerven ist neutral (FUNKE). Ueber Reaction und Zusammensetzung der Gehirnsubstanz s. Cap. XI.

Zustände des Nerven.

Wie beim Muskel, kann man auch beim Nerven unterscheiden: 1. den gewöhnlichen Ruhe-Zustand; 2. den Zustand des Absterbens; 3. den thätigen Zustand. Durch den blossen Anblick lassen sich aber hier die drei Zustände nicht unterscheiden, da die mechanischen Eigenschaften des Nerven keiner Veränderung unterliegen.

Die mechanischen Eigenschaften der Nerven sind überhaupt von keinem physiologischen Interesse. Schlaff daliegende Nerven haben die Neigung, in der Querrichtung feine Falten zu bilden (FONTANA'sche Querstreifung).

Ruhender Nerv.

Wie im Muskel, so findet auch im Nerven schon während der Ruhe ein gewisser Stoffwechsel statt, obwohl man bisher weder eine Sauerstoffaufnahme noch eine Kohlensäurebildung constatirt hat. Man darf auf solche Vorgänge daraus schliessen, dass der Nerv specifische,

Absterben der Nerven. Thätiger Zustand. Erregbarkeit.

von den Blutbestandtheilen verschiedene Gewebsbestandtheile enthält. Der Stoffwechsel des Nerven ist jedenfalls von sehr geringem Umfange, wie sich daraus ergiebt, dass die Nerven der Blutgefässe so gut wie ganz entbehren. Näheres ist nicht bekannt.

Absterben des Nerven.

Das Absterben des Nerven ist nicht wie beim Muskel durch einen nachweisbaren Gerinnungsprocess markirt; es giebt sich nur zu erkennen durch den Verlust der Erregbarkeit (s. unten), und das Auftreten saurer Reaction (FUNKE), ferner durch die unten zu erörternden electromotorischen Erscheinungen. Der abgestorbene Nerv geht wie der Muskel in Fäulniss über, wenn er nicht durch Vertrocknen davor geschützt wird.

Thätiger Zustand.

Der thätige Zustand des Nerven wird ganz wie der des Muskels hervorgerufen durch eine auslösende Kraft, einen Reiz; man nennt auch hier die Eigenschaft des Nerven, durch Reize in den thätigen Zustand übergeführt zu werden, seine Erregbarkeit.

Die Erregbarkeitsverhältnisse und die Reize sind für den Nerven in vielen Puncten mit denen des Muskels übereinstimmend; über Abweichungen s. unten p. 299. Die specifische Erregbarkeit des Nerven ist grösser als die des Muskels, d. h. physicalisch gleiche Reize (Stromesschwankungen von gleichem Werthe und gleicher Dichte) wirken auf den Nerven stärker erregend als auf den durch Curare entnervten Muskel (ROSENTHAL).

Erregbarkeit.

Die Erregbarkeit ist an die normale Zusammensetzung des Nerven gebunden. Da indess diese nur sehr oberflächlich bekannt ist, so muss man sich damit begnügen, die Einflüsse festzustellen, welche erfahrungsgemäss die Erregbarkeit erhöhen, erniedrigen oder vernichten; ein Verständniss fehlt bei den meisten. Folgende Thatsachen sind in dieser Beziehung bekannt:

1. Ist ein Nerv nicht mehr mit einem lebenden Centralorgane verbunden (z. B. von ihm durch Schnitt getrennt, oder letzteres abgestorben), so nimmt seine Erregbarkeit zuerst beträchtlich zu, sinkt dann aber bis zum Erlöschen; Anlegen eines Querschnitts beschleunigt den Ablauf dieses Vorgangs (ROSENTHAL); ferner verläuft derselbe schneller in den dem Centrum näheren, als in den enfernteren

Erregbarkeit. Einfluss der Electricität (Electrotonus).

Nervenstrecken (RITTER-VALLI'sches Gesetz). In einem vom Centrum getrennten, aber im Körper verbleibenden Nerven erfolgen später chemische und morphologische Veränderungen, die sog. "fettige Degeneration". (Sind die beiden Schnittenden in Berührung, so wachsen sie nach längerer Zeit wieder zusammen.) Sauerstoffzutritt ist bei ausgeschnittenen Nerven für die Erhaltung der Erregbarkeit von ebenso geringem Einfluss wie bei den Muskeln (PFLÜGER & EWALD, vgl. p. 223).

2. Auch anhaltende Ruhe des Nerven vermindert und vernichtet die Erregbarkeit, und führt endlich zu fettiger Degeneration. (Durchschnittene sensible Nerven degeneriren daher sowohl im peripherischen als im centralen Stücke, — in jenem, weil es vom Centralorgan losgetrennt ist, im letzteren, weil es nicht mehr erregt wird.)

3. Anhaltende Thätigkeit vermindert ebenfalls zeitweise die Erregbarkeit und kann sie selbst für immer vernichten (Ermüdung, Erschöpfung). Im ersteren Falle wird durch Ruhe ("Erholung") der ursprüngliche Zustand wiederhergestellt. Die bei der Ermüdung stattfindenden Veränderungen im Nerven sind noch nicht bekannt.

4. Grobe mechanische Veränderungen des Nerven (Zerren, Quetschen), ebenso

5. Gröbere Veränderungen der chemischen Zusammensetzung (Wasserverlust durch Austrocknen, Aetzen u. s. w.) vernichten die Erregbarkeit.

6. Die Einflüsse der Temperatur, bisher nur an Fröschen studirt, sind folgende: Temperaturen über 45° C. vernichten die Erregbarkeit, und zwar um so schneller, je höher sie sind, — eine Temperatur von 70° augenblicklich; bis zu 50° ist durch Wiederabkühlung eine Wiederherstellung der Erregbarkeit möglich (Rosenthal); unterhalb 45° bewirkt Erwärmung eine anfängliche Steigerung, dann ein Sinken der Erregbarkeit; die Steigerung ist um so grösser, und das Sinken um so schneller, je höher die Temperatur, so dass also die Erhöhung der Temperatur die Dauer der Erregbarkeit vermindert, den Grad aber erhöht (Afanasieff); plötzliche Temperaturerhöhung auf 35 — 45° wirkt als Reiz (s. unten).

7. Besonders wichtig scheint der Einfluss electrischer Durchströmung des Nerven. Leitet man durch eine beliebige Strecke des Nerven einen constanten galvanischen Strom, so geräth der Nerv in seiner ganzen Länge in einen veränderten Zustand (DU Bois-

Electrotonus. Nervenreize: electrische.

REYMOND), in welchem unter anderm auch seine Erregbarkeitsverhältnisse modificirt werden (ECKHARD, PFLÜGER). Dieser Zustand heisst der "electrotonische" oder "Electrotonus" (DU BOIS-REYMOND); ferner nennt man den Zustand im Bereiche der positiven Electrode (Anode) "Anelectrotonus", den im Bereiche der negativen (Cathode) "Catelectrotonus" (PFLÜGER), den constanten Strom selbst nennt man den "polarisirenden" oder "electrotonisirenden". Die zwischen den Electroden (in der "intrapolaren Strecke") liegende Grenze zwischen Anelectrotonus und Catelectrotonus (der "Indifferenzpunct") liegt bei schwachen Strömen in der Nähe der Anode und rückt mit zunehmender Stromstärke an die Cathode heran. Der Einfluss des Electrotonus ist am stärksten in der Nähe der Pole. - Die Erregbarkeit ist in der catelectrotonisirten Strecke erhöht, in der anelectrotonisirten erniedrigt. Nach dem Aufhören des polarisirenden Stromes kehrt die Erregbarkeit nach einem Umschlag in die entgegengesetzte Modification (positive nach An-, negative nach Catelectrotonus) allmählich zur Norm zurück (PFLÜGER). Im ersten Moment nach der Schliessung soll die Erregbarkeit im ganzen Nerven erhöht sein (WUNDT). (Vgl. auch unten bei den Reizen und bei den electrischen Erscheinungen.)

Die Veränderungen der Erregbarkeit kann man sich unter dem Bilde vorstellen, dass die Theilchen der Nerven in des anelectrotonisirten Strecke eine verminderte, in der catelectrotonisirten eine vermehrte Beweglichkeit haben. Die Veränderungen der Erregbarkeit werden entweder durch die Veränderungen der Zuckungshöhen bei gleich bleibendem (schwachen) Reiz, oder durch die Veränderungen der zur Auslösung einer Minimalzuckung nöthigen Reizstärken gemessen. Die so erhaltenen Resultate lassen noch eine andere Erklärung, ohne Annahme von Erregbarkeitsveränderungen zu, die unten zu erwähnen ist.

Auch am Menschen lassen sich bei Application constanter Ströme die electrotonischen Erregbarkeitsveränderungen nachweisen (EULENBURG, ERB); jedoch muss man, um Täuschungen zu vermeiden, den prüfenden Reiz an der Stelle der grössten Stromdichte appliciren, weil nur in der Nähe der Electroden der Strom im Nerven dicht genug ist, um electrotonische Erscheinungen hervorzubringen, also zu beiden Seiten der Cathode gleichsam zwei Anoden und zu beiden Seiten der Anode zwei Cathoden sich befinden (ERB).

Reize.

Die Reize, welche den Nerven in Thätigkeit versetzen, sind folgende:

1. Electrische Stromesschwankungen. Ein völlig constanter, den Nerven durchfliessender Strom wirkt währenddessen nicht wesentlich, wenn auch nachweisbar, erregend (Näheres hierüber s. unten). Dagegen bringt eine jede Veränderung der Stromstärke [genauer: der Stromdichte*)] im Nerven eine Erregung hervor, und zwar ist die Erregung um so stärker, je schneller (plötzlicher) die Veränderung der Stromdichte (die "Stromesschwankung") vor sich geht (DU BOIS-REYMOND). Die am häufigsten angewandte Stromesschwankung ist die Schliessung oder Oeffnung eines Stromes, d. h. der Uebergang von der Stromstärke Null zur vollen Stärke des Stromes; oder der umgekehrte Vorgang. Aber auch jede andere Stromesschwankung wirkt erregend, z. B. die plötzliche Verstärkung oder Schwächung eines bereits den Nerven durchfliessenden Stromes, oder eine blosse Veränderung der Stromdichte im Nerven, bei unveränderter Stromstärke.**)

Denkt man sich die Zeit der Stromesschwankung in viele kleine Theile zerlegt und diese als Abscissen aufgetragen, als Ordinaten dagegen die einem jeden Zeittheilchen entsprechende Stromdichte, so erhält man eine Curve, welche den zeitlichen Verlauf der Stromesschwankung darstellt. Aus dem angegebenen "Gesetze der Nervenerregung durch den Strom" ergiebt sich nun, dass der erregende Werth der Stromesschwankung um so grösser ist, je steiler diese Curve an- oder absteigt. (Das genauere Gesetz dieser Abhängigkeit ist noch nicht bekannt.) - Aus demselben Gesetz ergiebt sich leicht, dass man schon mit einer sehr geringen Stromstärke einen Nerven stark erregen kann, wenn man sie nur sehr schnell in den Nerven hereinbrechen oder aus ihm herausgehen lässt. Daher wirken die Entladungen der Reibungselectricität sehr stark erregend, weil sie zwar sehr schwache, aber äusserst schnell entstehende und wieder vergehende Ströme sind. Aus demselben Grunde wendet man die sehr schnell entstehenden und wieder vergehenden Inductionsströme gern zur Reizung an. Andererseits ist es klar, dass man einen sehr starken Strom durch den Nerven schliessen kann, ohne dass die Schliessung erregend wirkt, wenn man sie nur durch gewisse Kunstgriffe äusserst allmählich bewerkstelligt ("Hineinschleichen in die Kette").

Die oben erwähnte Erregung durch constante Ströme zeigt sich bei Muskelnerven in einem Tetanus, bei Empfindungsnerven als Empfindung (Schmerz etc.), welche während der Dauer des Stromes anhalten. Die Erscheinungen sind an ersteren bei aufsteigendem (s. unten) Strome stärker als bei absteigendem, beginnen schon bei sehr schwachen Strömen, sind ferner um so stärker, je stärker die Ströme, bis zu einer gewissen Grenze, über welche hinaus die electrotonischen Modificationen der Erregbarkeit (p. 295) den Erfolg wieder mindern (PFLÜGER).

^{*)} Unter Stromdichte versteht man die Stromstärke, dividirt durch den Querschnitt des durchflossenen Körpers (hier des Nerven). Offenbar ist nur diese Grösse maassgebend, denn dieselbe Stromstärke muss in einem dünneren Nerven stärkeren Effect haben.

^{**)} Letzteres erhält man z. B., wenn man bei geschlossenem Strome den Nerven plötzlich durch einen anderen darübergelegten feuchten Leiter verdickt. Der Strom, der sich bisher durch den Nerven allein ergoss, ergiesst sich jetzt durch beide Leiter zugleich, die Dichte im Nerven nimmt also plötzlich ab.

PFLÜGER'sches Erregungsgesetz. Ableitung des Zuckungsgesetzes. 297

Die erregende Wirkung des Stromes findet bei der Schliessung (und überhaupt bei positiver Schwankung) nur an der Cathode, bei der Oeffnung (negativer Schwankung) nur an der Anode statt, oder mit andern Worten; eine Nervenstrecke wird durch einen Strom erregt, wenn in ihr durch denselben Catelectrotonus entsteht (resp. zunimmt) oder Anelectrotonus schwindet (resp. abnimmt) (PFLüGER). Die Erregung der übrigen Nervenstellen ist nur Folge der Erregungsfortpflanzung (s. unten).

In der p. 295 eingeführten bildlichen Vorstellung ausgedrückt, lautet das PFLÜGER'sche Erregungsgesetz: der Uebergang der Molecüle aus dem gewöhnlichen in den beweglichen (Catel.), oder aus dem schwer beweglichen (Anel.) in den gewöhnlichen Zustand wirkt erregend; dagegen der Uebergang aus dem gewöhnlichen Zustand in den schwer beweglichen (Anel.), oder aus dem leicht beweglichen (Catel.) in den gewöhnlichen wirkt nicht erregend. In dieser Form ist das Gesetz seiner Ursache nach einigermassen verständlich.

Die Erfahrungen, aus denen dies Gesetz abgeleitet wird, sind ziemlich complicirt. (Sie sind an motorischen Nerven gewonnen, daher heisst das Gesetz auch das "Zuckungs-Gesetz".) Durchfliesst nämlich der erregende Strom eine beliebige (mittlere) Nervenstrecke, so wird der ganze Nerv in zwei Theile zerlegt, in denen entgegengesetzte Zustände herrschen, in dem einen An-, im anderen Catelectrotonus. Das obige Gesetz sagt nun, dass bei der Schliessung des erregenden Stromes immer nur die catelectrotonisirte Strecke, bei der Oeffnung nur die anelectrotonisirte erregt wird. (Man kann das Gesetz daher auch so ausdrücken, dass die Erregung bei der Schliessung von der Cathode, bei der Oeffnung von der Anode ausgeht.) Hat der erregende Strom die aufsteigende Richtung (d. h. die positive Electrode dem Muskel zugekehrt), so wird offenbar bei der Schliessung die obere Nervenstrecke, bei der Oeffnung aber die untere erregt; - bei absteigenden Strömen umgekehrt. Es fragt sich nun, welche Strecke, wenn sie erregt wird, den Muskel in Thätigkeit versetzt (eine Zuckung Dies ist aber nach der Stärke des erregenden Stromes verschieden. bewirkt) Bei starken Strömen verliert nämlich die anelectrotonische Strecke ihr Leitungsvermögen (s. unten); es können also nur die Erregungen der unteren, dem Muskel zunächst gelegenen Strecke zur Geltung kommen; bei starken Strömen kann demnach der absteigende Strom nur bei der Schliessung, der aufsteigende nur bei der Oeffnung Zuckung bewirken. Bei mittelstarken Strömen kommen beide Strekken zur Geltung, weil die Leitung im ganzen Nerven nirgends unterbrochen wird; offenbar muss hier, wie der Strom auch gerichtet sei, sowohl Oeffnung als Schliessung Zuckung bewirken. Bei den schwächsten Strömen wird nur diejenige Strecke auf den Muskel wirken, deren Erregung den grösseren Effect hat: dies ist aber cet. par. die entferntere (s. unten bei der Leitung); es müsste also bei sehr schwacher Stromstärke die Schliessung der aufsteigenden und die Oeffnung des absteigenden Stroms Zuckung bewirken. Dies letztere Verhältniss kehrt sich aber dadurch um, dass das Entstehen des Catelectrotonus ein stärkerer Reiz ist als das Vergehen des Anelectrotonus, so dass bei den schwächsten absteigenden

Oeffnungstetanus.

Strom.	Aufsteigender Strom.		Absteigender Strom.	
Stark	S-R	0-Z	s—z	O-R
Mittelstark	S-Z	0-Z	S-Z	0-Z
Schwach'	S-Z	0_R	S-Z	O-R

Strömen nicht Oeffnungs-, sondern Schliessungs-Zuckung eintritt. Hiernach gestaltet sich das Zuckungsgesetz folgendermassen (Z = Zuckung, R = Ruhe, S = Schliessung, O = Oeffnung):

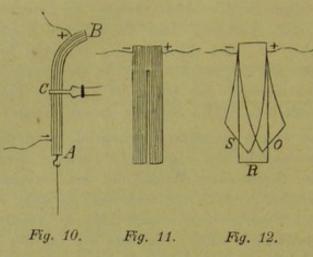
Inductionsströme bestehen aus einem sehr plötzlich entstehenden und etwas langsamer wieder verschwindenden Strome; von diesen zwei unmittelbar auf einander folgenden Reizmomenten ist das erstere nach dem allgemeinen Erregungsgesetz (s. oben) das wirksamere, und bei schwachen Strömen das allein wirksame Moment. Schwache Inductionsströme wirken also wie Schliessungen eines gleich gerichteten constanten Stroms; so betrachtet gilt auch für sie das Zuckungsgesetz (ROSENTHAL).

An centripetalen Nerven kann man die Wirksamkeit der Reize bei Thieren nur unvollkommen untersuchen, indem man sie durch Strychninvergiftung zu Reflexkrämpfen geneigt macht (s. Cap. XI.). Auch an Hemmungsnerven, z. B. den herzhemmenden Vagusfasern, lässt sich ein analoges Erregungsgesetz nachweisen (DONDERS).

Ist der zur Reizung verwandte Strom sehr stark oder lange Zeit geschlossen gewesen, so tritt statt der Oeffnungszuckung ein Oeffnungstetanus (RITTER'scher Tetanus) ein, der sofort wieder verschwindet, sobald man in derselben Richtung wieder schliesst, dagegen verstärkt wird, wenn man in umgekehrter Richtung schliesst. Da dieser Tetanus von der starken Erregung durch das Verschwinden des Anelectrotonus herrührt, so hört er sofort auf, wenn man die anelectrotonisirte Nervenstrecke vom Muskel trennt. Dies kann natürlich nur beim absteigenden Strome geschehen und zwar durch einen Schnitt zwischen den Electroden, im Indifferenzpunct (p. 295) (PFLÜGER). - Früher wurde jenes Verhalten als eine Modification der Erregbarkeit betrachtet, analog den p. 295 besprochenen, und so ausgedrückt, dass der constante Strom die Erregbarkeit des Nerven für die Oeffnung des gleichgerichteten und für die Schliessung des entgegengesetzt gerichteten erhöhe, für die entgegengesetzten Vorgänge aber herabsetze (ROSENTHAL). Die geschilderten Vorgänge erklären sich aber einfach aus dem PFLÜGER'schen Erregungsgesetze, wie man leicht findet. - Ist der Strom schwächer oder kürzere Zeit geschlossen gewesen, oder die Erregbarkeit durch Absterben des Nerven herabgesetzt, so tritt statt des Oeffnungstetanus eine etwas gedehnte Zuckung und endlich die gewöhnliche Oeffnungszuckung ein.

Die p. 228 erwähnte "Wiederherstellung der Erregbarkeit von Muskeln durch constante Ströme" gehört ebenfalls in diese Categorie von Erscheinungen, wobei man sich erinnern muss, dass alle Gesetze der electrischen Nervenerregung auch für den Muskel gelten. Auch dort nämlich wird der Muskel nur erregbar für Oeffnung des gleich und für Schliessung des entgegengesetzt gerichteten Stromes.

Electrische Nervenreizung. Electrische Muskelreizung.


Da nach dem PFLÜGER'schen Gesetz die Erregung von dem Eintritt, resp. dem Aufhören eines veränderten Zustandes (Electrotonus) herrührt, so wird die Erregung bei sehr kurzdauernden Strömen, die für das Zustandekommen des Electrotonus keine Zeit lassen, ausbleiben müssen; dies ist in der That der Fall, wenn der Strom nicht mindestens 0,0015 Secunde dauert (König).

Die Ströme wirken am stärksten erregend, wenn sie den Nerven der Länge nach durchfliessen, — gar nicht dagegen, wenn der Quere nach. Bildet der Strom einen Winkel mit der Nervenaxe, so erhält man mittlere Werthe, deren Gesetz noch nicht feststeht. — Die Länge der durchflossenen Strecke, welche nach früheren Angaben allgemein die Erregung begünstigen sollte, thut dies nur für den absteigenden Strom, während beim aufsteigenden die kürzere Strecke begünstigt ist; die Erregung ist also, dem Electrotonusgesetz entsprechend, um so grösser, je näher die Cathode und je entfernter die Anode vom Muskel ist (WILLY).

Für die electrische Erregung der Muskeln gelten genau dieselben Gesetze wie für die der Nerven (vgl. p. 227). Auch hier wirken wesentlich nur Stromesschwankungen erregend, und die Erregung geht bei der Schliessung von der Cathode, bei der Oeffnung von der Anode aus (v. BEZOLD). — Da die Veränderungen im Muskel träger erfolgen als im Nerven (man vergleiche z. B. die Leitungsgeschwindigkeit beider), so bleibt hier bei kurzdauernden Strömen die Erregung noch leichter aus als beim Nerven (s. oben). So wirken alle Inductionsströme und sehr kurzdauernde constante Ströme (z. B. bei Anwendung eines schnell rotirenden Blitzrades) auf die Muskelsubstanz (d. h. auf durch Curare entnervte Muskeln, vgl. p. 226) nicht erregend, während sie die Nerven erregen (BRÜCKE). Dasselbe war schon früher bekannt von Muskeln, deren Nervenendigung durch Ermüdung, Absterben, pathologische Lähmungen u. s. w. functionsunfähig waren (v. BEZOLD, FICK, NEUMANN).

Dass beim Muskel das PFLÜGER'sche Erregungsgesetz gilt, kann man auf folgende Arten zeigen (ENGFLMANN):

1. Man befestigt einen Muskel A B (Fig. 10) in der Mitte bei C, ohne ihn zu quetschen, und lässt die untere Hälfte ihre Verkürzung an einem Myographion aufschreiben. Befindet sich die Cathode bei A, die Anode bei B, so fällt das Latenzstadium (p. 235) bei der Schliessungszuckung kürzer aus als bei der Oeffnungszuckung, weil bei ersterer die Reizung von A, bei letzterer von B ausgeht; bei umgekehrter Anordnung der Electroden ist der Erfolg umgekehrt. — 2. Legt man die Electroden an die scharfen Kanten eines platten, beinkleiderförmig gespaltenen Muskels (Fig. 11), so zuckt, bei mässigen Strömen, bei der Nervenreize.

Schliessung nur die Seite der Cathode, bei der Oeffnung nur die der Anode; zwar hat jede Faser ihre Anode und Cathode, die Dichte des Stromes ist aber nur in der Nähe der Eintrittsstellen zur Erregung hinreichend. Ist der Muskel ungespalten (Fig. 12), so krümmt er sich aus dem angegebenen Grund bei der Schliessung nach der Seite der Cathode (S), bei der Oeffnung nach der der Anode (O).

2. Chemische Reize. Im Allgemeinen wirken alle Einflüsse erregend auf den Nerven, welche seine chemische Zusammensetzung in gewissem Maasse und mit einer gewissen Geschwindigkeit verändern. Fast alle chemischen Nervenreize tödten zugleich den Nerven (vernichten seine Erregbarkeit, p. 294), doch wirkt nicht umgekehrt jede tödtende Substanz erregend, denn es tödten einige, z. B. Ammoniak und Metallsalzlösungen, so schnell, dass gar keine Erregung vorhergeht. Da die Nervensubstanz Flüssigkeiten nur langsam diffundiren lässt, namentlich von der Scheide aus, so müssen die chem. Nervenreize im Allgemeinen concentrirter sein, als die Muskelreize (p. 227). Demnach sind die hauptsächlichsten chemischen Nervenreize folgende (Ескнако, Кёнме): concentrirte Lösungen von Mineralsäuren, Alkalien, Alkalisalzen, concentrirte Milchsäure, concentr. Glycerin u. s. w. Auch Wasserentziehung (Austrocknen) wirkt stark erregend.

3. Thermische Reize. Eine Temperatur von 34-45° C. wirkt auf (motorische Frosch-) Nerven erregend, ohne sie zu tödten; bis 40° entstehen clonische, über 40° tetanische Erregungen. Höhere Temperaturen (vgl. p. 294) tödten ohne Erregung (ROSENTHAL, AFANASIEFF).

4. Mechanische Reize. Jeder mechanische Eindruck, der die Form des Nerven an irgend einer Stelle mit einer gewissen Ge-

Thätiger Zustand. Fortpflanzung desselben.

schwindigkeit verändert (Stoss, Druck, Unterbindung, Schnitt u. s. w.) wirkt während der Formveränderung selbst erregend. Ist die Form bleibend verändert, so ist gewöhnlich die Erregbarkeit (und die Leitungsfähigkeit, s. unten) aufgehoben.

5. Die naturgemässen, von den Endorganen ausgehenden Reize, d. h. (s. die Einleitung zu diesem Abschnitt) die von den Centralorganen oder von den specifischen Erregungsapparaten der Sinnesorgane (welche ihrerseits durch Licht, Schall, Wärme, Stoss u. s. w. erregt werden) übertragenen Erregungen (vgl. Cap. X. und XI.).

Erscheinungen des thätigen Zustandes.

Ueber den thätigen Zustand des Nerven selbst ist erst sehr wenig ermittelt. Man kennt weder die Natur der Kräfte, welche bei der Thätigkeit im Nerven frei werden, noch die chemischen Processe, die ihnen zu Grunde liegen. Ein ohne Weiteres sich aufdrängendes Kennzeichen, welches eine thätige Nervenstelle von einer ruhenden unterscheidet, etwa wie die Verkürzung beim Muskel, — fehlt ganz. Ein chemischer Unterschied zwischen ruhenden und thätig gewesenen Nerven ist bisher nur darin behauptet worden, dass letztere eine saure Reaction zeigen (FUNKE, J. RANKE; opp. LIEBREICH, HEIDEN-HAIN). Der Sauerstoffverbrauch ist für den thätigen Nerven ebensowenig ermittelt wie für den ruhenden. Eine Wärmebildung ist im thätigen Nerven nicht nachweisbar (HELMHOLTZ, HEIDENHAIN). Ueber electrische Vorgänge und den zeitlichen Verlauf der Nerventhätigkeit s. unten bei den electromotorischen Eigenschaften.

Fortpflanzung des thätigen Zustandes durch die Nervenfaser (Leitung).

Die Thätigkeit des Nerven, welche sich, wie erwähnt, im Nerven selbst nicht äusserlich kund giebt, führt dagegen zu Veränderungen in einem der beiden Endorgane desselben, im peripherischen oder im centralen. Unter normalen Verhältnissen wirkt stets der Reiz, der den Nerven in den thätigen Zustand versetzt, auf eines seiner beiden Endorgane, und jedesmal tritt darauf eine gewisse Veränderung, die wir kurzweg den "Erfolg" nennen wollen, in dem anderen Endorgane ein. Tritt in einem Nerven nach Erregung des peripherischen Endorgans der Erfolg im centralen ein, so nennt man den Vorgang einen centripetalen, im umgekehrten Falle einen centrifugalen. In

Bedingungen der Leitung.

jeder Nervenfaser kommt gewöhnlich nur eine der beiden Richtungen zur Geltung, man unterscheidet daher centripetale und centrifugale Nervenfasern und Nerven. — Ausser diesen naturgemässen, auf eins der Endorgane wirkenden Reizen kann aber der Nerv auch an jedem Puncte seines Verlaufes durch künstliche Reizung (s. oben) erregt werden, auch dann tritt stets derselbe Erfolg ein und zwar im centralen Endorgan bei centripetalen, im peripherischen bei centrifugalen Nerven.

Die einfachste Erklärung für dies Verhalten ist die, dass bei der normalen Erregung des Endorgans nicht auf einmal der ganze Nerv in den thätigen Zustand geräth, sondern dass der Thätigkeitsvorgang von einem Querschnitt des Nerven auf den nächsten übertragen und so durch die ganze Länge des Nerven fortgeleitet wird; — dass ferner jeder Reiz, der auf einen beliebigen Punct des Nerven wirkt, zunächst diesen in den thätigen Zustand versetzt und dadurch dieselbe Kette von Uebertragungen veranlasst, wie die natürliche Erregung des Endorgans. Diese Eigenschaft des Nerven, den thätigen Zustand von jedem Puncte auf den nächsten und so bis zum Endorgan zu übertragen, nennt man das Leitungsvermögen.

Bedingung für die Leitung ist, dass zwischen dem erregten Puncte und dem Endorgan, in dem der Erfolg auftreten soll, der Nerv überall völlig intact ist. Jede Verletzung an irgend einer Stelle dieses Verlaufs durch Zerschneiden, Quetschen (Unterbinden), Brennen, chemisches Zerstören (Aetzen), unterbricht die Leitung. Auch die übrigen Einflüsse, welche die Erregbarkeit herabsetzen, beeinträchtigen zugleich das Leitungsvermögen, z. B. der Anelectrotonus (p. 295). Ein Uebergang der Leitung von einer Faser auf die andere findet niemals statt.

Ein solcher Uebergang findet scheinbar statt, wenn bei isolirter electrischer Reizung eines Nervenzweiges ein anderer Zweig in einem Muskel Zuckung bewirkt. Diese sog. "paradoxe Zuckung" wird weiter unten bei den electrischen Erscheinungen erörtert werden.

Um den Unterschied zwischen centripetal- und centrifugalleitenden Nerven zu erklären, nahm man früher an, dass jeder Nerv überhaupt nur in Einer Richtung zu leiten im Stande sei, und zwar erstere nur in der Richtung zum centralen, letztere nur zum peripherischen Ende. Indessen ist diese Annahme unnöthig, weil jede Nervenfaser nur an einem ihrer beiden Enden mit Organen in Verbindung steht, in welchen ein Erfolg ihrer Thätigkeit zu Tage treten kann. (Es giebt z. B. keinen Nerven, der an dem einen Ende mit

Doppelsinniges Leitungsvermögen.

empfindungsfähigen Ganglien, am andern mit einem Muskel in Verbindung stände.) Man braucht daher keinen specifischen Unterschied zwischen centripetalen und centrifugalen Nerven aufzustellen, sondern kann annehmen, dass jeder Nerv in beiden Richtungen leiten könne, dass aber nur eines seiner Endorgane die Nerventhätigkeit mit einem Erfolge beantworte. - Dass nun in der That ein "doppelsinniges Leitungsvermögen" existirt, wird durch folgende Erfahrungen bewiesen: 1. Wird eine beliebige Stelle eines Nerven durch Reizung erregt, so treten die electrischen Veränderungen, welche die Nervenhätigkeit begleiten (s. unten), nicht blos an Einer, sondern zu beiden Seiten der gereizten Stelle ein (DU BOIS-REYMOND). 2. Reizt man den einen Endzweig einer gespaltenen motorischen Nervenfaser, so geräth, wenn der gemeinsame Stamm unverletzt ist, auch der andere Endzweig in Thätigkeit; es muss also jener, seiner gewöhnlichen centrifugalen Leitungsrichtung entgegen, centripetal geleitet haben (KÜHNE). 3. Weder in anatomischer, noch in chemischer, noch in physiologischer Hinsicht ist bis jetzt ein Unterschied beider Nervengattungen nachgewiesen. 4, Der directeste Beweis für das doppelsinnige Leitungsvermögen der Nerven ist aber der Versuch, künstlich einen Nerven herzustellen, der am centralen Ende mit empfindenden Centralorganen, am peripherischen mit Muskeln in Verbindung steht, an dem sich also die Leitungsfähigkeit in beiden Richtungen durch Erfolge kundgeben kann; die Methode besteht darin, das centrale Ende eines durchschnittenen sensiblen und das peripherische eines motorischen Nerven zusammenzuheilen (BIDDER). Dieser Versuch gelingt mit dem peripherischen Hypoglossus- und dem centralen Lingualis - Ende und giebt das erwartete Resultat (PHILIPPEAUX & VULPIAN; ROSENTHAL).

Als physiologischer Unterschied zwischen den beiden Nervengattungen wird angeführt, dass gewisse Gifte nur eine derselben afficiren; so lähmt z. B. das Pfeilgift Curare (s. p. 226) nur die motorischen Nerven. Indessen ist nachgewiesen, dass die Wirkung von den peripherischen Endorganen ausgeht; sie beweist also Nichts für eine Eigenthümlichkeit der Nerven selbst.

Der durch den Reiz zunächst an der erregten Stelle hervorgebrachte thätige Zustand wird also durch die Leitung nach beiden Seiten, oder wenn die Erregung von einem Endorgan ausgeht, nur nach Einer Seite fortgepflanzt. Hierdurch gerathen alle Theil des Nerven successive in den Zustand der Thätigkeit. Man hat gefunden (PFLÜGER), dass der Erfolg im Endorgan (z. B. im Muskel, bei Erregung eines motorischen Nerven) um so stärker sei, je weiter die

Geschwindigkeit der Leitung.

gereizte Nervenstelle vom Endorgane entfernt ist. Man kann dies dadurch erklären, dass der Thätigkeitszustand bei der Fortleitung sich nicht in derselben Grösse erhält, sondern "lavinenartig" anschwillt. Wahrscheinlicher aber ist es, dass diese Erscheinung von einer grösseren Erregbarkeit der entfernteren Nervenstrecke durch die Nähe eines künstlichen Querschnitts (vgl. p. 293), in andern Fällen vielleicht durch die Nähe der Centralorgane, herrührt.

Geschwindigkeit der Leitung.

Die Uebertragungsvorgänge, welche der Leitung zu Grunde liegen, erfordern eine gewisse Zeit, so dass die Leitung mit einer bestimmten, nicht allzugrossen Geschwindigkeit geschieht. Diese beträgt für motorische Froschnerven 26 - 27 Meter in der Secunde (HELMHOLTZ); für menschliche Empfindungsnerven schwanken die Angaben: pro Secunde 94 Meter (KOHLRAUSCH), 60 Meter (HELM-HOLTZ), 34 Meter (HIRSCH), 30 Meter (SCHELSKE), 26 Meter (DE JAAGER), 41,3 Meter (v. WITTICH); für menschliche Bewegungsnerven beträgt die Geschwindigkeit im Mittel 33,9 Meter (HELMHOLTZ & BAXT), welches ohne Zweifel auch für die Empfindungsnerven die richtige Zahl ist. Die Geschwindigkeit wird durch mancherlei Einflüsse modificirt; so z. B. verringert durch Kälte (HELMHOLTZ), und ebenso durch den electrotonischen Zustand, gleichgültig von welcher Phase (v. BEZOLD). Wahrscheinlich ist es ferner, dass die Geschwindigkeit der Leitung nicht gleichmässig ist, sondern mit zunehmender Entfernung von der zuerst erregten Stelle abnimmt (H. MUNK, HELMHOLTZ & BAXT).

Zur Ermittelung der Leitungsgeschwindigkeit im motorischen Froschnerven dienen dieselben beiden Methoden, wie zur Bestimmung des zeitlichen Verlaufs der Muskelzuckung (p. 236). Es wird nämlich derselbe Nerv zweimal hintereinander an verschiedenen Puncten seines Verlaufs (a und b in Fig. 6 gereizt. Bei der Reizung der dem Muskel näheren Stelle ist die Zeit der latenten Reizung (welche man sowohl nach der POULLET'schen als auch nach der Myographion-Methode bestimmen kann) kürzer, es tritt also die Zuckung früher ein, als bei Reizung der entfernteren. Der Unterschied in der Dauer der latenten Reizung beider Versuche, bezogen auf den gemessenen Abstand der beiden erregten Puncte, giebt offenbar die gesuchte Fortpflanzungsgeschwindigkeit im Nerven (HELMHOLTZ).

Beim Menschen war man früher auf die Messung der Leitungsgeschwindigkeit in sensiblen Nerven beschränkt; die Methode ist im Allgemeinen folgende: eine Person giebt auf eine gewisse Empfindung ein verabredetes Signal; der Zeitabstand zwischen diesem und einem anderen, mit der Reizung verbundenen, Signal wird nach beliebigen Methoden gemessen (Pouller'sche Methode [p. 236];

Leitungsgeschwindigkeit. Electrische Erscheinungen.

HIPP'sches Chronoscop [s. Lehrb. d. Physik]; KRILLE's Registrirapparat [die Zeichen werden auf einen rotirenden Cylinder übertragen, auf dem gleichzeitig ein Pendelapparat Secunden markirt]; HANKEL's Registrirapparat [die Zeichen werden auf einer Paraffinfläche, die sich auf der Peripherie eines sehr schnell rotirenden Rades befindet, durch Eindrücken eines Stiftes in das Paraffin übertragen; die Rotationsgeschwindigkeit wird mittels des KRILLE'schen Apparats bestimmt]; König's Phonautograph [im Princip ähnlich dem KRILLE'schen Apparat, mit dem Unterschiede jedoch, dass nicht ein Pendel, sondern eine schwingende Stimmgabel die Zeit markirt; die Zeit wird hier also viel feiner eingetheilt, was bei ungleichmässiger Rotationsgeschwindigkeit sehr wichtig ist]). Die so gemessene Zeit Z umfasst folgende Abtheilungen: a) die Zeit für die sensible Leitung bis zum Gehirn, b) die Zeit für den psychischen Vorgang bis zur Innervation des motorischen Nerven, c) die Zeit von hier bis zum Erfolgen des Signals (Z = a + b + c). Wenn man nun den Versuch zweimal hintereinander anstellt, indem man einmal den Reiz an einer dem Gehirn näheren, das andere Mal an einer entfernteren Nervenstelle anbringt (am Halse und am Fusse), so ergiebt der Unterschied der Zeiten Z und Z', bezogen auf den Unterschied der Nervenlängen, die gesuchte Leitungsgeschwindigkeit; vorausgesetzt, dass der Unterschied zwischen Z und Z' nur auf dem zwischen a und a' beruht und b und c in beiden Versuchen gleich sind. Dies ist aber für b nicht immer sicher, da man gefunden hat, dass die Art der Empfindung, das vorherige Kennen oder Nichtkennen derselben, die Erwartung derselben zu einer bestimmten Zeit, die Art des verabredeten Signals etc. den grössten Einfluss auf die Zeit haben (DONDERS & DE JAAGER). Die grossen Unterschiede in den von verschiedenen Beobachtern gefundenen Zeiten (s. oben) könnten nun entweder auf Fehlern durch die Inconstanz von b oder auf wirklichen individuellen Verschiedenheiten der Leitungsgeschwindigkeit beruhen.

An den motorischen Nerven des Menschen bestimmt man die Leitungsgeschwindigkeit, indem man die Daumenmusculatur ihre Zuckungscurve mittels ihrer Verdickung (vgl. p. 237) auf einem Myographion aufschreiben lässt, einmal bei Reizung einer nahen, einmal bei Reizung einer entfernten Nervenstelle am Arm (HELMHOLTZ). Nebenbei fand sich bei diesen Versuchen, dass schwächere Reize sich langsamer fortpflanzen als stärkere.

Electrische Erscheinungen an den Nerven.

1. Einwirkung galvanischer Ströme auf den Nerven.

Der galvanische Leitungswiderstand der Nerven ist in der Richtung quer zur Faserung etwa 5mal so gross als in der Faserrichtung; beim Absterben vermindert sich der Unterschied auf etwa die Hälfte. Die Ursache dieses Verhaltens ist zum Theil oder ganz eine innere Polarisation, welche an der Grenze zwischen Hüllenund Kernsubstanz der Nervenröhren auftritt; dieselbe entwickelt sich momentan bei der Schliessung und schwindet ebenso plötzlich bei der Oeffnung. Die gleiche Erscheinung zeigt sich an den Muskeln,

Hermann, Physiologie. 5. Aufl.

bei welchen der Querwiderstand im Mittel 7 mal so gross ist als der Längswiderstand. (HERMANN.)

Im Electrotonus (p. 295) zeigt sich in den extrapolaren Strecken überall ein Strom im Sinne des polarisirenden Stromes, der sich zum Ruhestrom, wo ein solcher vorhanden ist (s. u.), algebraisch summfrt; der electrotonische Strom ist in der Nähe der Electroden am stärksten. Er tritt sofort bei der Schliessung auf, und ist auf der Seite der Cathode in beständiger Abnahme begriffen (DU BOIS-REYMOND). In der intrapolaren Strecke tritt kein merklicher Strom im Sinne des polarisirenden Stromes neben demselben auf (HERMANN).

Das plötzliche Auftreten des electrotonischen Stromes in den extrapolaren Strecken kann auf andere Nerven, welche denselben anliegen, als Reiz wirken, und so eine "secundäre Zuckung oder secundären Tetanus vom Nerven aus" (vgl p. 250) hervorbringen Eine solche ist auch die bereits (p. 302) erwähnte "paradoxe Zuckung", welche bei electrischer Reizung eines Nervenzweiges in einem andern Zweige desselben Nerven eintritt, dadurch, dass im gemeinsamen Stamm die Fasern beider Zweige an einander liegen und die electrotonische Stromesschwankung des einen auf den andern als Reiz wirkt (DU BOIS-REYMOND).

Nach dem Oeffnen des polarisirenden Stromes bleiben kurze Zeit "electrotonische Nachströme" bestehen (FICK); dieselben sind in der intrapolaren und in der extrapolar anelectrotonisirten von entgegengesetzter, in der extrapolar catelectrotonisirten Strecke von gleicher Richtung wie der polarisirende Strom (HERMANN).

Die electromotorische Kraft der electrotonischen Ströme ist sehr gross. Grössen von 0,5 Daniell sind beobachtet (DU BOIS-REYMOND).

2. Eigene electrische Wirkungen des Nerven.

An einem von zwei Querschnitten begrenzten Nervenstück sind Ströme nachweisbar, welche denselben Gesetzen folgen wie am Muskel (DU BOIS-REYMOND); man vergleiche hierüber p. 246 f. — An den natürlichen Nervenfaserenden ist kein Strom mit Sicherheit nachgewiesen.

Die electromotorische Kraft des Längsquerschnittstroms am Nerven beträgt im Mittel 0,02 Daniell (DU BOIS-REYMOND).

Bei der Erregung des Nerven wird die electromotorische Kraft des Längsquerschnittstromes herabgesetzt (DU BOIS-REYMOND). Diese "negative Stromesschwankung", welche bei starker Reizung bis zur Umkehrung des Stromes gehen kann, entwickelt sich schneller als sie schwindet, und nimmt im Ganzen etwa 0,0007 Secunde in Anspruch (BERNSTEIN). — Am polarisirten Nerven zeigen die extra-

Electrische Erscheimungen.

polaren electrotonischen Ströme ebenfalls bei der Erregung eine negative Schwankung (BERNSTEIN); in der intrapolaren Strecke aber bewirkt die Erregung einen dem polarisirenden Strom gleich gerichteten Zuwachsstrom (HERMANN).

Die am Nervenstumpf anlangende Erregung giebt sich ganz ebenso durch Abnahme des Längsquerschnittstromes zu erkennen, wie die am intremusculären Nervenende anlangende durch Zuckung. Man kann daher mittels der negativen Schwankung die Erregungsgesetze des Nerven ganz ebenso untersuchen wie mittels der Zuckung. So wird z. B. erstere so gut wie letztere durch Anelectrotonus der Reizstelle verkleinert, durch Catelectrotonus vergrössert (BERNstEIN); ferner erhält man mittels der Zeitintervalle zwischen Reizung und negativer Schwankung, einmal bei langer, einmal bei kurzer Strecke, denselben Werth für die Leitungsgeschwindigkeit, wie mittels der Zeitintervalle zwischen Reizung und Zuckung (BERNSTEIN). Da man einen Nerven der an beiden Seiten mit Muskeln endet nur schwer herstellen kann (p. 303), leicht aber einen Nerven mit zwei künstlichen Querschnitten, so lässt sich das doppelsinnige Leitungsvermögen der Nerven durch die negative Schwankung am besten beweisen (DU BOIS-REYMOND).

Auch den Nerven muss man (wie den Muskel, p. 250) viele Male hinter einander reizen, um seine negative Stromesschwankung am Multiplicator nachzuweisen. Das physiologische Rheoscop vermag dieselbe überhaupt nicht anzuzeigen, — die "secundäre Zuckung und der secundäre Tetanus vom Nerven aus" sind (vgl. oben) nicht durch die negative Stromesschwankung, sondern durch den Electrotonus bedingt: sie fehlen z. B. bei nicht electrischer Nervenreizung, ferner kann man mittels des Zuckungsgesetzes nachweisen, dass die Erregung des stromprüfenden Nerven bei der secundären Zuckung unter Umständen von einer positiven Schwankung herrührt, dann nämlich, wenn der Eintritt oder das Aufhören des Electrotonus eine solche mit sich bringt (DU BOIS-REYMOND).

Zur Ermittelung des Zeitintervalls zwischen Reizung und negativer Schwankung des Längsquerschnittstromes dient folgendes Verfahren (BERNSTEIN) : Ein schnell rotirendes Rad bewirkt, bei jeder Umdrehung einmal, 1. electrische Reizung einer Nervenstelle a und gleich darauf 2. vorübergehende Schliessung eines Multiplicatorkreises, in welchen die Längsquerschnittstrecke ß eingeschlossen ist. Die Zeit zwischen den beiden Vorgängen (1) und (2) kann man beliebig variiren; und indem man sie von 0 ab beständig vergrössert, kommt man endlich an einen Punct, wo die Schliessung des Multiplicatorkreises gerade in dem Moment stattfindet, in welchem die Strecke β eben ihre negative Schwankung in Folge der Reizung bei a beginnt. Hat man diesen Punct erreicht so kennt man offenbar die Zeit, welche die Erregung des Nerven gebraucht hat, um von α nach β fortzuwandern. Man findet diese Zeit proportional der Länge der Strecke $\alpha \beta$ (woraus sich zugleich ergiebt, dass die Erregung sogleich im Momente der Reizung beginnt), und zwar beträgt sie 1 Secunde auf 28,718 Meter (vgl. p. 304). - Variirt man die Zeit zwischen den Vorgängen (1) und (2) so, dass der Nervenstrom bei β im Moment des Vorgangs (2) nicht den Beginn, sondern eine andere Phase der negativen Schwankung

Electrische-Erscheinungen.

zeigt, z. B. das Maximum, oder das Ende u. s. w., so kann man aus den Unterschieden der Zeiten 1-2 den zeitlichen Verlauf und die Dauer der negativen Stromesschwankung selbst bestimmen.

Hinsichtlich der Nervenströme stehen sich dieselben zwei Ansichten gegenüber wie beim Muskel (vgl. p. 251 f.). Nach der einen (DU BOIS-REYMOND) enthält jede Nervenfaser regelmässig angeordnete electromotorische Molecüle, welche dem Längsschnitt positive, dem Querschnitt negative Elemente zukehren, und deren Wirksamkeit bei der Erregung abnimmt. Die electrotonischen Ströme erklärt diese Hypothese durch eine Richtkraft des polarisirenden Stromes auf die drehbaren Molecüle, welche im Sinne dieses Stromes eingestellt werden müssen (man muss zu diesem Zwecke jedes Molecül sich in zwei bipolare Hälften zerlegt denken, welche durch Schnitt und Aetzmittel untrennbar sind, deren jedes aber für sich drehbar ist); es entsteht hierdurch eine säulenartige Anordnung der halbirten Molecüle, die in der Nähe der Electroden am vollständigsten ist, und die electrotonischen Ströme erklärt.

Gegen diese Erklärung des Electrotonus spricht das Verhalten der intrapolaren Strecke, welche hiernach einen ungemein kräftigen Stromzuwachs im Sinne des polarisirenden Stromes zeigen müsste, wovon indess keine Spur vorhanden ist (p. 306).

Die andere Ansicht (HERMANN) erklärt die Nervenströme, ganz analog den Muskelströmen (p. 252) aus zwei Contactwirkungen: Gegen lebenden ruhenden Nervenröhreninhalt verhält sich negativ electrisch: absterbender und thätiger Nervenröhreninhalt. Die Ursache der electrotonischen Erscheinungen ist die oben (p. 305) erwähnte Polarisation an der Grenze zwischen Hüllen- und Kernsubstanz der Nervenröhren.

Tritt ein Strom aus einem Leiter in einen andern ein, und findet an der Grenze beider eine Polarisation und somit ein Uebergangswiderstand statt, so breitet sich nach den Gesetzen der Stromverzweigung Strom und Polarisation in der ganzen Umgegend der Ein- und Austrittsstelle aus, und in Folge hiervon erhält jedes extrapolar angelegte Electrodenpaar einen dem polarisirenden gleichgerichteten Stromzweig; in der intrapolaren Strecke würden diese Stromzweige, wenn sie nachweisbar wären, dem polarisirenden entgegengesetzt sein. Durch diesen Vorgang, welcher zuerst an feucht umhüllten Metalldrähten nachgewiesen wurde (MATTEUCCI), erklärt sich der Electrotonus des Nerven, da auch in diesem die angegebene Bedingung verwirklicht ist (HERMANN). Die Polarisationsströme bleiben auch nach der Oeffnung noch kurze Zeit bestehen, in der anelectrotonisirten Strecke summirt sich aber dazu algebraisch die stärkere Wirkung der Oeffnungserregung an der Anode, so dass hier der Nachstrom dem polarisirenden entgegengesetzt gerichtet ist (s. oben).

Electrische Erscheinungen.

Wenn, wie p. 302 angenommen, die Leitung im Nerven nichts Anderes ist als eine Fortpflanzung des erregten Zustandes von einer Nervenstelle zur anderen, so muss, nach beiden Theorien der Nervenströme, während der Erregungsleitung durch den Nerven diejenige Stelle desselben, an welchem sich gerade die Erregung befindet, sich gegen jeden anderen Längsschnittspunct negativ verhalten (nach der Moleculartheorie weil die erregte Stelle als relativ unwirksamer Leiter von den anliegenden negativen Molecülflächen des ruhenden Theils ableitet, nach der anderen Theorie ihrem Wortlaut gemäss). Ein directer Nachweis dieses Verhaltens ist bis jetzt nicht geführt.

Die Veränderungen der electrotonischen Ströme durch die Erregung lassen sich durch die Annahme erklären, dass die Erregung bei ihrem Ablauf durch den polarisirten Nerven ihre Grösse ändert, und zwar zunimmt wenn sie zu positiveren (d. h. stärker positiv oder schwächer negativ polarisirten) Stellen fortschreitet, und abnimmt wenn sie zu negativeren gelangt. Hierdurch erklärt sich: 1. der positive Stromzuwachs in der intrapolaren Strecke; denn die Erregung langt an der Anode stärker an als an der Cathode, jene wird also durch die Erregung stärker negativ als diese; 2. der negative Zuwachs des extrapolaren Electrotonus in derselben Weise; 3. die negative Schwankung des Längsquerschnittstromes; denn letzterer bewirkt in der Nähe des Querschnitts negative Polarisation (auch ohne äussere Ableitung), die Erregung langt also am Querschnitt geschwächt an, jede Längsschnittsstelle wird durch die Erregung stärker negativ als der Querschnitt. - Umgekehrt folgt aus der genannten Annahme dass eine aus positiv polarisirten (anelectrotonischen) Nervenstellen entspringende Erregung bei ihrem Ablauf durch den Nerven abnehmen, eine aus negativ polarisirten (catelectrotonischen) Nervenstellen entspringende zunehmen muss; hierdurch erklärt sich eine scheinbare Verringerung der Erregbarkeit im Anelectrotonus und eine scheinbare Erhöhung im Catelectrotonus (und in der Nähe des Querschnitts). Die p. 295 angeführten Erscheinungen lassen sich also auch auf diesem Wege erklären. (HERMANN.)

Theorien über das Wesen der Nerventhätigkeit.

Die meisten nehmen in den Nerven bewegliche oder veränderliche Theilchen an, die so mit einander verknüpft sind, dass die Bewegung oder Veränderung des einen die des Nachbartheilchens auslöst. Manche identificiren diese Theilchen mit denjenigen, welche

310 Theorien der Nerventhätigkeit. Eintheilung der Nervenfasern,

zur Erklärung der electromotorischen Eigenschaften angenommen worden sind (p. 308). Man nimmt ferner an, dass die Bewegung oder Veränderung dieser Theilchen Widerstände, Hemmungen zu überwinden hat, deren Grösse der Erregbarkeit umgekehrt proportional wäre; im Catelectrotonus würden diese Hemmungen vermindert, in Anelectrotonus verstärkt sein.

Die Bewegung oder Veränderung eines Nerventheilchens würde hiernach auf das Nachbartheilchen gleichsam als Reiz wirken. Man sollte hiernach meinen, dass die Leitungsfähigkeit stets mit der Erregbarkeit gleichen Schritt halte. Dies scheint indess nicht immer der Fall zu sein, denn 1. ist im Catelectrotonus die Erregbarkeit erhöht, die Leitungsgeschwindigkeit aber vermindert (vgl. p. 295 und 304); 2. soll es im Rückenmark leitungs- aber nicht direct erregungsfähige Fasern geben (s. Cap. XI.), und auch Nerven, die durch Coniin, Curare, Kohlensäure vergiftet sind, sowie zuweilen die Nerven gelähmter Theile, sollen noch centrale Erregungen fortleiten, direct aber nicht mehr erregbar sein (Schiff, Erb, Grünhagen).

Ueber das Wesen des bei der Erregung stattfindenden Vorganges sind die Meinungen verschieden; die Einen sind geneigt, eine wirkliche Bewegung (Drehung, Ausschlag u. s. w.) sich vorzustellen, Andere vermuthen eine chemische Veränderung, eine der musculären analoge Spaltung, welche in den Nachbartheilchen denselben Process auslöst, etwa wie beim Abbrennen einer Pulverlinie. Diese Spaltung würde schon in der Ruhe langsam verlaufen, durch Absterben und erregbarkeitserhöhende Einflüsse beschleunigt und durch Reize (plötzlich einwirkende Einflüsse) ungemein beschleunigt werden, und sich um so schneller den Nachbartheilchen mittheilen, je grösser ihre Geschwindigkeit ist (das Abster ben pflanzt sich langsam, die Erregung schnell fort, um so schneller, je stärker sie ist; vgl. p. 305).

Die Polarisation an der Grenze von Hüllen- und Kernsubstanz der Nervenröhren, von welcher der Electrotonus herrührt (p. 308), spielt möglicherweise bei der Fortpflanzung der Erregung eine wichtige Rolle. Da nämlich eine erregte Stelle der Kernsubstanz sich negativ verhält gegen die unerregte Nachbarschaft, so entstehen dadurch Strömchen, die sich durch die Hüllensubstanz abgleichen; dieselben wirken aber anelectrotonisirend, also erregungshemmend, auf die erregte Stelle und catelectrotonisirend, also erregend, auf die unerregte Nachbarschaft.

Function und Eintheilung der Nervenfasern.

Trotzdem höchst wahrscheinlich sämmtliche Nervenfasern völlig gleichartig sind (p. 303), macht sich doch das Bedürfniss einer Eintheilung derselben geltend. Die gewöhnliche Eintheilung ist hergenommen von der zufälligen Function der Fasern, wie sie durch die Beschaffenheit ihrer beiden Endorgane gegeben ist; man bezeichnet die so bedingte Function eines Nerven als seine "specifische Energie". Hiernach theilt man die Nervenfasern (genauer: die Systeme aus einer Nervenfaser und ihren beiden Endorganen) ein in:

Eintheilung der Nervenfasern.

A. Centrifugalleitende Fasern (p. 301 f.): 1. Motorische Fasern; ihr peripherisches Endorgan (Erfolgsorgan) ist eine Muskelfaser oder ein anderes der im vorigen Capitel genannten contractilen Elemente; 2. Secretorische Fasern; ihr peripherisches Endorgan ist ein Drüsenelement und ihre specifische Energie besteht darin, auf eine vom Centrum ausgehende oder reflectirte Erregung den Secretionsvorgang in der Drüse direct (ohne vasomotorische Vermittlung) zu steigern (vgl. p. 84); 3. Trophische Fasern, d. h. solche, die die Ernährungs- (Oxydations-) processe in den Parenchymen beherrschen, also sich zu den Parenchymsäften (p. 85) verhalten, wie die secretorischen zu den freien Secreten. Ihr Dasein ist, obwohl nicht unwahrscheinlich, doch bisher noch nicht erwiesen; fast alle Erscheinungen, die man bisher dafür angeführt hat, lassen sich auf Wirkungen motorischer (namentlich vasomotorischer), secretorischer oder selbst sensibler Fasern zurückführen (s. unten beim Trigeminus). Der einzige unzweifelhafte Nerveneinfluss auf die Ernährung ist der auf die des Nerven selbst; es ist nämlich schon früher angeführt worden (p. 293), dass durchschnittene Nerven in ihrem peripherischen Abschnitt fettig degeneriren.

Die secretorischen und die fraglichen trophischen Nerven haben zugleich (p. 6, 91) Einfluss auf die Wärmebildung und könnten deshalb ebensogut als thermische, wie die Muskelnerven als motorische, bezeichnet werden. Indess scheinen die nervösen Einflüsse auf die locale Temperatur hauptsächlich sich auf die Blutvertheilung zu beziehen (vasomotorische Nerven; vgl. jedoch p. 208).

B. Centripetalleitende Fasern: 1. Sensible Fasern; ihr centrales Endorgan (Erfolgsorgan) ist ein Seelenorgan, der Erfolg ihrer Erregung eine Seelenthätigkeit, nämlich Empfindung; das peripherische Endorgan ist ein Sinnesorgan (Cap. X.); 2. Reflectorische oder excitomotorische Fasern; in ihrem centralen Endorgan wird die anlangende Erregung auf andere Fasern, und schliesslich auf centrifugale übertragen.

Die mit den sensiblen Fasern verbundenen Seelenorgane repräsentiren verschiedene Arten von Empfindungen, die einen Gesichtsempfindungen, andere Gehörsempfindungen, etc. Jede sensible Faser kann immer nur dasselbe Seelenorgan erregen, also immer nur dieselbe Empfindungsart hervorrufen, auf welche Weise sie selbst auch erregt sei; die "specifische Energie" der Opticusfasern ist also Gesichtsempfindung, die der Acusticusfasern Schallempfindung u. s. w. Ja noch mehr, man ist genöthigt die verschiedenen Qualitäten

Specifische Energieen.

einer Empfindungscategorie, z. B. die Empfindung rothen und die blauen Lichtes im Bereiche der Gesichtsempfindung, die eines höheren und eines tieferen Tones im Bereich des Hörens, der Erregung verschiedener Fasern zuzuschreiben, also besondere Fasern anzunehmen deren specifische Energie die rothe Lichtempfindung und andre, deren specifische Energie die blaue Lichtempfindung ist; denn sonst müsste man annehmen, dass eine und dieselbe Nervenfaser mehrere qualitativ verschiedene Erregungszustände haben kann, was bisher durch nichts wahrscheinlich gemacht wird. Es muss also mindestens soviel verschiedene sensible Fasern geben als elementare Empfindungsqualitäten vorkommen, wobei zu berücksichtigen ist, dass die zahllosen wirklich vorkommenden Empfindungsqualitäten durch mannigfache Mischung einer relativ geringen Zahl elementarer Empfindungsqualitäten entstehen (s. Cap. X.). Diese consequente Durchführung des Princips der specifischen Energie (Young, HELMHOLTZ) ist bisher, obwohl physiologisches Postulat, doch erst bei wenigen Sinnesorganen specieller ausführbar gewesen.

In scheinbarem Widerspruch zu diesem Princip steht die Erfahrung, dass die Geschmacksnerven, durch auf- und absteigende Ströme erregt, verschiedene Empfindungen veranlassen; indess lassen sich die betr. Versuche auf andere Weise deuten (s. Cap. X.).

Die peripherischen Endorgane jeder sensiblen Faser (Sinnesorgane), aber nur diese, sind ausser durch die allgemeinen Nervenreize noch durch einen besonderen Reiz erregbar, und werden für gewöhnlich durch diesen erregt; so die Opticusendorgane in der Retina durch Lichtwellen, die Endorgane des Acusticus durch Schallwellen, die des Olfactorius durch den Einfluss von "Riechstoffen", etc.

Da die Seele nun kein Mittel hat, den Ursprung der anlangenden Erregung zu erkennen, so nimmt sie für jede Empfindung den gewöhnlichen Ursprung an, d. h. 1. sie verlegt die Ursache jeder Empfindung in das peripherische Endorgan der sensiblen Faser, auch wenn die Erregung ungewöhnlicherweise nicht dieses, sondern den Stamm des Nerven getroffen hat; Amputirte verlegen die Empfindungen, welche durch irgendwelche Reizung des Nervenstumpfes bedingt sind, in das amputirte Glied (excentrische Verlegung der Empfindungen); 2. sie nimmt als Ursache den specifischen Vorgang an, welcher gewöhnlich das Endorgan der Faser erregt (Licht, Schall etc.), auch wenn nicht dieser, sondern irgend ein allgemeiner Nervenreiz (mechanisch, electrisch, thermisch, chemisch) der Erreger gewesen ist; sie hält also jede Gesichtsempfindung für bedingt durch Licht-

Excentrische Verlegung. Specielle Nervenphysiologie.

wellen, welche die Retina getroffen haben, auch wenn Zerrung der Retina, Quetschung des Opticus, etc. die Ursache war; u. dgl. m. -Die Schlüsse über den Ursprung der Erregung gehen in vielen Fällen noch weiter; nämlich da, wo der specifische erregende Vorgang stets einen bestimmten Weg durchlaufen muss, um zum peripherischen Endorgan der sensiblen Faser zu gelangen. So muss jede die Retina treffende Lichtwelle, jede den Acusticus erregende Schallwelle vorher die durchsichtigen Medien des Auges, die schallleitenden Körper des Ohres durchlaufen haben: demgemäss wird die Ursache der Lichtund Schallempfindungen nach Aussen verlegt. Bei den Lichtempfindungen macht die Seele sogar einen Schluss auf den Ort des leuchtenden Körpers, wenigstens der Richtung nach; beim Sehen kann jeder beleuchtete Retinapunct mit dem leuchtenden Punct durch den Hauptstrahl (die "Richtungslinie", s. Cap. X.) verbunden werden, und in dieser Richtung wird daher die Ursache jeder Lichtempfindung, auch der subjectiven, nach Aussen verlegt.

C. Intercentrale Fasern, d. h. solche, welche zwei Centralorgane (Ganglienzellen) unter einander verbinden. Ihre Zahl ist ausserordentlich gross; über ihre Bedeutung existiren bis jetzt nur Hypothesen, von welchen erst im 11. Capitel die Rede sein wird. Es gehören hierher: der grösste Theil der Fasern des Gehirns und Rückenmarks, der Haupttheil der sympathischen Nerven, die sog. Hemmungsnerven, u. a. m.

B. SPECIELLE NERVENPHYSIOLOGIE.

Die verschiedenen (motorischen, sensiblen, etc.) Nervenfasern sind in der Regel so angeordnet, dass die für dieselbe Körpergegend bestimmten, welcher Art sie auch seien, eine Strecke weit in einem gemeinsamen ("gemischten") Nervenstamme zusammenlaufen, und erst in der Nähe ihres Bestimmungsortes in Zweige auseinandergehen, die nur Fasern derselben Gattung enthalten ("sensible, motorische Nerven"). Nur bei den Nerven des Kopfes, deren ganzer Verlauf kürzer ist, findet meist keine Vereinigung Statt, so dass die Kopfnerven vom Ursprung ab grossentheils entweder rein motorisch oder rein sensibel sind.

Specielle Nervenphysiologie. Olfactorius. Opticus.

Die Aufgabe der speciellen Nervenphysiologie ist es, für jede einzelne Nervenfaser ihre specifische Energie (kurzweg "Function" genannt) festzustellen. Diese würde sich stets von selbst ergeben, wenn die beiden Endorgane jeder Faser durch die Anatomie genau ermittelt und in ihren Functionen bekannt wären. Beide Wissenschaften ergänzen sich hier gegenseitig.

Von der speciellen Function eines Nerven überzeugt man sich folgendermaassen: 1. Man durchschneidet ihn an irgend einer Stelle; es bleiben dann auf der Seite des Erfolgsorgans alle Erfolge aus, welche durch Erregung jenseits des Schnittes eintreten müssten; bei Durchschneidung eines Muskelnerven bleibt also der Muskel erschlafft, obgleich der Wille oder eine reflectorische oder automatische Erregung auf das centrale Ende der Nerven, oder irgend ein anderer Reiz auf dessen Verlauf oberhalb des Schnittes einwirkt: — der Muskel ist "gelähmt"; bei Durchschneidung eines centripetalen Nerven kommen Sinnesreize oder Erregungen des peripherischen Nervenabschnitts nicht mehr zur Empfindung, es tritt Blindheit, Taubheit, Fühllosigkeit u. s. w. ein. — 2. Man reizt die beiden durch den Schnitt von einander getrennten Nervenabschnitte (meist tetanisch) und beobachtet, auf welcher Seite und welcher Erfolg eintritt.

Die Nervenstämme werden nach ihren centralen Enden (ihrem "Ursprung") eingetheilt in Hirn-, Rückenmarks- und sympathische Nerven.

I. Hirnnerven.

Ueber den specielleren Ursprung der Hirnnerven vergl. das 11. Capitel.

1. Olfactorius. Seine Fasern haben die Function, jede Erregung, welche sie an irgendwelcher Stelle trifft, den geruchsempfindenden Hirntheilen zuzuleiten und dadurch Geruchsempfindungen zu veranlassen; die Erregung geschieht physiologisch stets in den peripherischen Endorganen, auf der Riechhaut (Cap. X.), und zwar durch gewisse specifische Reize, die "Riechstoffe". Die Durchschneidung des Bulbus olfactorius (bei jungen Thieren ausführbar) vernichtet das Riechvermögen (BIFFI).

Die Entstehung von Geruchsempfindung bei Erregung des Olfactorius durch gewöhnliche Nervenreize ist noch nicht direct nachgewiesen.

2. Opticus. Jede Erregung desselben erregt die lichtempfindenden Hirntheile, bringt daher Lichteindrücke hervor. Seine normale Erregung geht von seinen peripherischen Enden in der Retina des Auges aus. Ausserdem kann er reflectorisch Fasern des Oculomotorius erregen, die zum Sphincter iridis gehen. Ueber das Chiasma s. Cap. X.

314

Oculomotorius. Trochlearis. Trigeminus.

3. Oculomotorius, motorischer Nerv für die meisten Muskeln der Augenhöhle: Rectus superior, inferior, internus; Obliquus inferior, und Levator palpebrae superioris; ferner für den Circularmuskel der Pupille (Sphincter s. Circularis iridis) und den Tensor chorioïdeae. Seine Erregung im Gehirn geschieht theils durch den Willen, theils (die Fasern für die Iris) reflectorisch vom Opticus aus (Cap. X.). Es wird behauptet, dass der Oculomotorius auch sensible Fasern enthält; jedoch scheint es, dass ihm diese nicht von Anfang an, sondern erst nach seiner Communication mit dem Trigeminus beigemischt sind (opp. Adamüß).

Durchschneidung und Lähmung des Oculomotorius bewirkt daher: 1) Herabfallen des oberen Augenlids ("Ptosis"); 2) Auswärtsschielen, weil jetzt dem Trochlearis und Abducens die andern Augenmuskeln nicht mehr das Gleichgewicht halten; 3) Erweiterung der Pupille und Unempfindlichkeit derselben gegen Licht; 4) beständige Accommodation für die Ferne.

In seltenen Fällen sollen bei Thieren die pupillenverengenden Fasern im Abducens statt im Oculomotorius verlaufen (ADAMÜK). Im Verlaufe zur Iris gehen sie durch das Ganglion ciliare und die Nervi ciliares.

4. Trochlearis, motorischer Nerv für den M. obliquus oculi superior (trochlearis). Auch ihm werden sensible Fasern zugeschrieben.

5. Trigeminus, ein gemischter Nerv, der aus zwei Wurzeln, einer sensiblen (Portio major) und einer motorischen (P. minor), nach Art der Rückenmarksnerven (s. unten) entsteht, und bald wieder in motorische und sensible Aeste zerfällt. Die sensible Wurzel enthält ähnlich den Rückenmarksnerven ein Ganglion (G. Gasseri s. semilunare).

Seine sensiblen Fasern vermitteln die Empfindung fast am ganzen Kopf und eine sehr grosse Zahl von Reflexen. Die nicht vom Trigeminus innervirten Kopfgebiete sind die vom Vagus und Glossopharyngeus versorgten Theile des Pharynx, Gaumens und der Zungenwurzel, ferner Tuba Eustachii, Paukenhöhle und ein Theil des äusseren Gehörgangs und der Ohrmuschel, die vom R. auricularis vagi innervirt werden, endlich ein Theil des Hinterhaupts, welcher von Cervicalnerven des Rückenmarks versorgt wird. Ein Theil der Trigeminusfasern scheint zu den Geschmacksnerven zu gehören (s. Cap. X.). — Seine motorischen Fasern versorgen die Kaumuskeln (Temporalis, Masseter, Mylohyoideus und beide Pterygoidei), den Tensor tympani, Tensor palati mollis, wahrscheinlich auch (ОЕНL) den Dilatator iridis (Cap. X.); endlich verlaufen in ihm vasomotorische Fasern für Conjunctiva und Iris (vermuthlich sympathischen Ursprungs). — Ferner enthält er secretorische Fasern für die Thränendrüse, die Parotis und Submaxillaris. Näheres über Ursprung und Verlauf der letzteren (welche zum Theil von Facialis stammen) s. p. 90.

Dem Trigeminus werden auch "trophische Fasern" zugeschrieben, namentlich für den Augapfel, der nach Durchschneidung des Trigeminus (in der Schädelhöhle) entzündet und zerstört wird. Wahrscheinlich aber ist dieser Erfolg nur dem Verluste der Empfindung zuzuschreiben, der die Abhaltung äusserer Schädlichkeiten beeinträchtigt. Hierfür spricht, dass der Augapfel auch nach Durchschneidung des Trigeminus intact bleibt, wenn man eine empfindende, schützende Fläche vor ihm künstlich anbringt, bei Kaninchen z. B. das von Cervicalnerven innervirte Ohr vornäht (SNELLEN). Neuerdings ist freilich diese Erklärung wieder zweifelhaft geworden, da erstens nach Lähmung des Facialis, trotzdem das Thier jetzt sein Auge nicht mehr durch Lidschluss schützen kann, keine Entzündung eintritt (SAMUEL), und da man zweitens nach partieller Durchschneidung des Trigeminusstammes, sobald die innersten Fasern intact sind, trotz vollkommener Empfindungslähmung und ohne dass man das Auge künstlich schützt, keine Entzündung eintreten sieht, und umgekehrt das Auge sich sehr leicht entzündet (wenn es nicht geschützt wird), sobald nur die innersten Fasern verletzt, die übrigen erhalten, das Auge also sensibel geblieben ist (MEISSNER, SCHIFF). Man würde also, wenn diese vorläufig vereinzelten Beobachtungen sich bestätigen, und ein Einfluss der vasomotorischen Fasern ausgeschlossen werden kann, doch besondere "trophische" Fasern annehmen müssen, die im Stamm am innern Rande verlaufen; die Wirkung derselben ist noch ganz unverständlich. - Auch für die Mundhöhle sollte der Trigeminus trophische Fasern führen, da nach Durchschneidung desselben Geschwüre im Munde auftreten; dieselben rühren aber von der Schiefstellung des Unterkiefers (durch einseitige Lähmung der Kaumuskeln) her, wodurch die Zähne nicht mehr auf einander passen, sondern sich an die Schleimhaut andrücken (ROLLETT).

6. Abducens, motorischer Nerv für den M. rectus oculi externus (abducens).

Der Abducens erhält durch eine Anastomose auch Fasern vom Halstheil des Sympathicus, so dass der Rectus externus auch aus der Regio ciliospinalis des Rückenmarks (Cap. XI.) Fasern bezieht.

7. Facialis, enthält fast nur centrifugal leitende (motorische und secretorische) Fasern. Wo er sensible Zweige besitzt, rühren diese von beigemischten Trigeminusfasern, zum kleinen Theil auch von Vagusfasern her; denn die Sensibilität schwindet nach Durchschneidung des Trigeminus nicht ganz vollständig. Die Chorda tympani führt nach neueren Angaben Geschmacksfasern (vergl. Cap X.).

Seine motorischen Fasern versorgen alle Hautmuskeln des Kopfes (sog. "Gesichtsmuskeln"; - er vermittelt daher die Mimik), die Muskeln des äusseren Ohrs, den Stylohyoïdeus, Levator palati mollis, hinteren Bauch des Digastricus, Stapedius, endlich das Platysma myoides. — Seine secretorischen Fasern wirken auf die Speicheldrüsen. (Näheres p. 90.)

Bei Lähmung eines Facialis entsteht eine Verzerrung des Gesichts nach der gesunden Seite. — Dieselbe rührt daher, dass nach einer Contraction der letzteren, die Spannung der verzogenen Theile nicht hinreicht, die Muskeln wieder auf ihre frühere Länge auszudehnen (vgl. p. 235).

8. Acusticus, ist der alleinige Vermittler der Gehörswahrnehmungen. Jede Reizung derselben erzeugt Schallempfindungen, seine Durchschneidung Taubheit. Ueber eine merkwürdige Beziehung des Acusticus zur Haltung des Kopfes wird im 10. Capitel unter Gehörsinn, Anhang, das Nöthige angeführt.

9. Glossopharyngeus, ein gemischter Nerv, der indess nur wenige motorische Fasern für den M. levator palati mollis, azygos uvulae, constrictor faucium medius und stylopharyngeus enthält. Die übrigen Fasern sind centripetal und vermitteln theils die Tastempfindungen, zum grössten Theil aber die Geschmacksempfindungen, des weichen Gaumens und der Zungenwurzel.

10. und 11. Vagus und Accessorius Willisii. Beide zusammen bilden einen gemischten Nerven. Es ist behauptet worden, (LONGET), dass beide Nerven als zwei Wurzeln zu betrachten sind, deren eine (Vagus) nur die centripetalen, die andere (Accessorius, dessen innerer oder vorderer Ast mit dem Vagus der descriptiven Anatomie sich vereinigt) die centrifugalen Fasern enthält; indess führt auch der Vagusursprung motorische Fasern, für den Larynx, Pharynx und Oesophagus (van KEMPEN).

Die centrifugalen Fasern sind, soweit bekannt, folgende:

a. Motorische Fasern 1) für die Muskeln des weichen Gaumens und des Schlundkopfs; 2) für die des Kehlkopfs, grösstentheils enthalten im Laryngeus inferior s. Recurrens (jedoch enthält der Laryngeus superior einen Zweig für den Cricothyreoideus [neuerdings bestritten]); 3) für die Muskeln der Bronchien (? s. unten); 4) für den Oesophagus; nach Durchschneidung beider Vagi dringen verschluckte Speisen nicht in den Magen ein; Durchschneidung der Accessorii hat diese Wirkung nicht; 5) für den Magen (vgl. p. 95, 135); 6) nach Einigen auch für den Dünn- und Dickdarm und für den Uterus; 7) für den Sternocleidomastoïdeus und Cucullaris (im äusseren oder hinteren Aste des Accessorius der descriptiven Anatomie).

Vago - Accessorius.

b. Regulatorische und zwar hemmende Fasern für die Herzbewegung (Ed. WEBER, Budge, s. p. 72). -

c. Secretorische Fasern 1) für die Drüsen der Magenschleimhaut etc., nicht sicher erwiesen, neuerdings bestritten (s. p. 95), 2) für die Nieren (BERNARD): Reizung des Vagus an der Cardia soll die Harnsecretion vermehren, unter Röthung des Venenblutes (?);

d. Vasomotorische Fasern für die Lungengefässe (?).

Die centripetalen Fasern sind folgende:

a. Empfindungsfasern, vermuthlich 1) für den ganzen Respirationsapparat, 2) für den Digestionsapparat vom Gaumensegel bis zum Pylorus, 3) für das Herz;

b. regulatorische Fasern: 1) beschleunigende für das Inspirationscentrum, wahrscheinlich in der Lunge entspringend (s. p. 154), 2) hemmende für dasselbe Centrum (ROSENTHAL); über die Vertheilung dieser beiden Fasergattungen auf die Vaguszweige s. p. 153, 3) excitirende für das Herzhemmungscentrum (Donders, vgl. p. 76), 4) excitirende für das vasomotorische Centrum ("pressorische Fasern"), besonders im R. laryngeus superior (AUBERT & ROEVER), 5) hemmende für dasselbe Centrum, bei manchen Thieren in einem besonderen Zweige, dem R. depressor liegend (Ludwig & Cyon, vgl. p. 76), 6) excitirende für die Speichelsecretion, wahrscheinlich vom Magen entspringend (? vgl. p. 89 f.), 7) hemmende für die Pancreassecretion (Ludwig & N. O. BERNSTEIN, vgl. p. 101), 8) excitirende für die Zuckerbildung in der Leber, d. h. solche, deren centripetal geleitete Erregung die Nerven reflectorisch anregen soll, welche die Zuckerbildung einleiten (vgl. jedoch p. 171); diese Fasern haben ihre peripherischen Enden in der Brusthöhle, vielleicht in der Lunge (BERNARD).

Zur bessern Uebersicht sollen hier die Resultate der Durchschneidungsund Reizungsversuche am Vagus und Accessorius resumirt werden, aus denen man das Vorhandensein dieser Fasergattungen erschlossen hat:

1. Durchschneidung des Accessorius oberhalb seiner Verbindung mit dem Vagus (statt derselben werden gewöhnlich die Accessorius-Wurzeln aus dem Marke "ausgezogen"): lähmt alle vom Vago-Accessorius abhängigen Muskeln (s. oben); nach Einigen sind die Kehlkopfmuskeln hiervon ausgenommen (van KEMPEN, NAVRATIL), auch ist das Schlingen nicht völlig unmöglich; ferner beschleunigt sie die Herzbewegungen, während Reizung sie verlangsamt (WALLER, HEIDENHAIN); die einseitige Lähmung des äusseren Accessoriusrestes bewirkt Schiefstellung des Kopfes.

2. Reizung des Vagus oberhalb der Vereinigung bewirkt unter anderm Contractionen im Larynx, Pharynx und Oesophagus. 3. Durchschneidung des Vagusstammes am Halse: a) lähmt die Muskeln des Kehlkopfes, wodurch bei Durchschneidung beider Vagi die Stimmbänder nicht mehr functioniren, die Stimme versagt, und Speisetheilchen in die Lungen gerathen können; hierdurch entsteht tödtliche Pneumonie (vgl. p 156), b) beschleunigt die Herzbewegungen, c) verlangsamt die Inspirationsbewegungen, d) verhindert die Reflexe vom Kehlkopf, Schlund und Magen, e) verhindert die Beendigung des Schlingactes so dass der Oesophagus sich mit Speisen anfüllt, f) unterbricht die Zückerbildung in der Leber (?).

4. Reizung des peripherischen Vagusendes am Halse: a) bringt die Muskeln des Kehlkopfs zur Contraction (Stimmritzenkrampf), ebenso die Reizung des peripherischen Endes vom Laryngeus inferior, b) verlangsamt die Herzbewegung bis zum Stillstand in Diastole, c) soll die glatten Muskeln der Bronchien contrahiren, so dass das Lumen sich etwas verengt (wird vielfach bestritten: DONDERS, WINTRICH, ROSENTHAL, RÜGENBERG, neuerdings wieder behauptet von SCHIFF), d) bringt Contractionen des Magens, des Darms (?), des Uterus (?) u. s. w. hervor, e) vermehrt die Nierensecretion (?).

5. Reizung des centralen Vagusendes am Halse: a) beschleunigt die Inspirationsbewegungen bis zur tetanischen Inspiration (über den zuweilen eintretenden entgegengesetzten Erfolg vgl. p. 154), b) vermehrt die Zuckerbildung (?), c) vermehrt die Speichelsecretion (?), d) vermindert die Pancreassecretion, e) vermindert den Blutdruck, wenn die Reizung oberhalb der Einmündung des Depressor geschicht, f) verlangsamt den Herzschlag, wenn der andere Vagus intact ist.

6. Durchschneidung oder Lähmung des Laryngeus inferior lähmt die Kehlkopfmuskeln, wodurch derselbe Effect entsteht wie bei Vagusdurchschneidung (vgl. sub 3. a.); durch Aneurysmen des Arcus aortae wird zuweilen der linke Lar. inf. comprimirt und gelähmt, wodurch das linke Stimmband erschlafft.

7. Durchschneidung des Laryngeus superior hat eine geringe Verlangsamung der Inspiration zur Folge (SKLAREK), wegen beigemischter motorischer Fasern für den Kehlkopf, bes. für den M. cricothyreoideus (letztere neuerdings bestritten, NAWRATIL).

8. Reizung des centralen Endes des Laryngeus superior: a) verlangsamt die Inspirationen bis zum völligen Aufhören der Respiration (ROSENTHAL), b) erhöht den Blutdruck durch Contraction sämmtlicher Arterien.

9. Reizung des centralen Endes des Depressor erweitert sämmtliche Arterien und vermindert dadurch den Blutdruck (Crox & Lubwig).

Die Erregbarkeit der einzelnen Vagusfasern, oder richtiger ihrer Endorgane, ist verschieden; bei Reizung des peripherischen Endes tritt die Contraction der Kehlkopfmuskeln schon bei schwächerer Erregung ein, als die verlangsamende Wirkung auf das Herz (RUTHERFORD); bei Reizung des centralen Endes ermüden die athmungsbeschleunigenden Fasern schneller als die verlangsamenden (BURKART). Die Herzhemmungsfasern sind zuweilen sehr ungleich auf beide Vagi vertheilt (p. 72).

12. Hypoglossus, der motorische Nerv für sämmtliche Zungenmuskeln, also auch für die Sprache; ferner versorgt er die zum Zungenbein gehenden Muskeln. Durch seinen Ramus descendens

Rückenmarksnerven.

empfängt er auch sensible Fasern aus dem 1. Cervicalnerven (Ansa Hypoglossi), so dass die Zunge auch nach Durchschneidung des Trigeminus noch einen Rest von Empfindlichkeit behält.

II. Rückenmarksnerven.

Ueber den centralen Verlauf und Ursprung der Rückenmarksnerven vergleiche man das 11. Capitel.

Die vom Rückenmark entspringenden Nerven sind sämmtlich in einem grossen Theil ihres Verlaufes gemischt; jedoch sind sie es nicht von Anfang an, sondern ein jeder entspringt mit zwei Wurzeln, einer vorderen, welche die centrifugalen, und einer hinteren, welche die centripetalen Fasern enthält (CHARLES BELL); jene heisst daher auch die motorische, diese die sensible Wurzel; letztere besitzt ein Ganglion.

Durchschneidet man demnach sämmtliche vordere Wurzeln einer Seite, so sind die Muskeln der entsprechenden Körperhälfte vollständig gelähmt; durchschneidet man die hinteren, so ist die Körperhälfte unempfindlich. Durchschneidet man bei einem Thiere (Frosch) auf der einen Seite (z. B. rechts) die hinteren, auf der anderen (links) die vorderen Wurzeln der Schenkelnerven, so bleibt es, wenn man das rechte Bein insultirt, unbeweglich, weil es den Schmerz nicht fühlt; verletzt man dagegen das linke, so macht es mit dem rechten abwehrende Bewegungen, während das linke unbewegt bleibt, denn es fühlt den Schmerz im linken Bein, kann aber nur das rechte bewegen. Beim Hüpfen schleppt es auch das rechte Bein wie ein gelähmtes nach, weil es dasselbe nicht fühlt.

Auch die vorderen Wurzeln sollen zuweilen sensible Fasern enthalten (LONGET). Dies sind aber nur solche, welche in der hinteren Wurzel aus dem Rückenmark herausgetreten und aus dem gemeinsamen Stamm rückwärts wieder in die vordere umgebogen sind; daher ist, wenn man die vordere Wurzel zerschnitten hat, auch nur das peripherische Ende empfindlich, und die Sensibilität erlischt ganz, sowie man die hintere Wurzel durchschneidet (MAGENDIE).

Die centrifugalen Fasern der Rückenmarksnerven (in den vorderen Wurzeln enthalten) sind: 1. motorische für sämmtliche quergestreifte Muskeln des Rumpfes und der Extremitäten, und (wahrscheinlich durch Vermittlung des Sympathicus) für gewisse glatte Muskeln der Eingeweide, z. B. den Detrusor urinae; — 2. vas omotorische Fasern für den grössten Theil der Arterien der Körpers; diese gehen jedoch theilweise zunächst in den Sympathicus über und treten dann in andere Spinalwurzeln ein (vgl. z. B. p. 74); — 3. möglicherweise auch secretorische und trophische Fasern. — Die centripetalen Fasern sind die sensiblen Nervenfasern für die Empfindung der ganzen Körperoberfläche mit Ausnahme des Gesichts und Vorderkopfes.

Rückenmarksnerven.

Die Vertheilung der verschiedenen motorischen und sensiblen Nerven (für die einzelnen Muskeln und Hautstellen) auf die 31 Wurzelpaare ist aus den Angaben der Anatomie zu entnehmen.

Durchschneidet man die hinteren Wurzeln der Rückenmarksnerven, so sinkt plötzlich die Erregbarkeit der vorderen (LUDWIG & CYON, opp. GRÜN-HAGEN & G. HEIDENHAIN). Es müssen also die ersteren durch einen reflectorischen Vorgang beständig die Erregbarkeit der letzteren steigern, oder, was verständlicher wäre, sie beständig schwach erregen (vgl. Cap. XI. unter Muskeltonus), so dass bei Reizung der vorderen sich der Reiz zu dieser beständigen Erregung addirt.

III. Sympathische Nerven.

Die Betrachtung derselben lässt sich nicht gut von der der sympathischen Centralorgane trennen, welche im 11. Capitel behandelt werden; ebendaselbst werden die Gründe dafür angegeben werden.

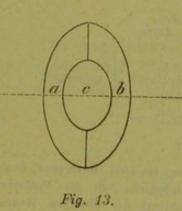
321

Zehntes Capitel.

Die peripherischen Endorgane der Nerven.

Das Wenige, was über die peripherischen Endorgane der centrifugalen Nerven bekannt ist, ist bei den Absonderungs- und Bewegungsorganen erwähnt (Cap. II. und VIII.). Dagegen sind die peripherischen Endorgane der centripetalen Nerven grösstentheils ziemlich genau untersucht. Ein grosser Theil, dieser Endorgane steht mit Vorrichtungen in Verbindung, welche dazu dienen, die zur Erregung der Nerven bestimmten Eindrücke der Aussenwelt (Licht, Schall, Wärme, Druck u. s. w.) in geeigneter Weise den Endorganen zuzuleiten. Dadurch werden Organe gebildet, welche aus den zuleitenden Vorrichtungen und den nervösen Endorganen bestehen, und welche man "Sinnesorgane" nennt. Da die Physiologie der zuleitenden Vorrichtungen sich nicht von der der Endorgane trennen lässt, so wird hier die ganze Physiologie der Sinnesorgane abgehandelt.

I. DAS SEHORGAN.


Im Schorgan, dem Auge, sind die Nervenendorgane auf einer sphärisch gekrümmten Haut (Retina) angebracht; auf diese Fläche fallen die zum Schen bestimmten Lichteindrücke. Die in das Auge fallenden Lichtstrahlen werden durch ein System verschieden brechender Medien so auf die Retina projicirt, dass auf dieser ein verkleinertes, umgekehrtes, reelles Bild der geschenen Gegenstände entsteht, ähnlich wie in der Camera obscura.

Schema des Auges.

Schema des Auges.

Die brechenden Medien des Auges sind, der Reihe nach wie sie der einfallende Lichtstrahl durchläuft, folgende: 1. Die Cornea, 2. der Humor aqueus, 3. die Linse mit ihrer Kapsel, 4. der Glaskörper. Diesen Medien entsprechen vier trennende Flächen ("brechende Flächen"): 1. zwischen Luft und Corneasubstanz (vordere Fläche der Cornea), 2. zwischen Cornea und Humor aqueus (hintere Fläche der Cornea) u. s. w. — Um nun den Gang eines einfallenden Strahles durch das Auge bis zur Retina zu verfolgen, müssen begreiflicherweise gegeben sein: 1. die Brechungsindices sämmtlicher Medien, 2. die Gestalten sämmtlicher brechenden Flächen, 3. die Entfernungen der letzteren von einander und von der Projectionsfläche (Retina).

Die Linse ist kein einfaches brechendes Medium; ihre Consistenz und ihr Brechungsvermögen nehmen von aussen nach innen zu, der feste Kern der Linse, welcher eine Linse von sehr kleinem Krümmungsradius darstellt, bricht am stärksten. Das Schema Fig. 13, welches den Bau der Linse vereinfacht darstellt, zeigt dass man

dieselbe sich zusammengesetzt denken kann aus einer starken Convexlinse c und zwei Concavlinsen a und b. Letztere neutralisiren einen Theil der Wirkung von c; und zwar einen um so geringeren Theil je kleiner ihr Brechungsindex ist. Dadurch dass a und b einen kleineren Brechungsindex haben als c, ist also die Gesammtwirkung der Linse grösser als wenn sie denselben Index mit c hätten, d. h. die Linse homogen wäre und durchweg das Brechungsvermögen des

Kerns hätte. — Aus der empirisch bestimmten Brennweite der Linse und ihrer äusseren Gestalt lässt sich der sog. "totale Brechungsindex" derselben berechnen, d. h. derjenige den die Linse bei gleicher Begrenzung und Wirkung haben müsste, wenn sie homogen wäre. Nach dem eben Gesagten ist dieser Index grösser als der des Kerns.

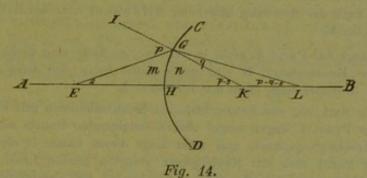
Das Problem der optischen Behandlung des Auges vereinfacht sich ferner dadurch bedeutend, dass die Cornea eine parallelwandige Platte ist, welche vorn und hinten an Flüssigkeiten annähernd gleichen Brechungsvermögens grenzt (vorn die bespülende Thränenflüssigkeit,

Schematisches Auge.

hinten den Humor aqueus); ein solcher Körper kann aber bekanntlich (wie eine beiderseits von Luft begrenzte Glasplatte, eine Fensterscheibe, ein Uhrglas) dem durchgehenden Lichtstrahl keine neue Richtung geben, sondern ihn nur parallel mit sich selbst ein wenig verschieben. Man kann daher die Cornea ganz vernachlässigen, und so rechnen, als wenn der Humor aqueus bis zur vorderen Corneafläche reichte. Es bleiben demnach nur drei brechende Medien übrig, nämlich Humor aqueus, Linse und Glaskörper, somit drei brechende Flächen: vordere Corneafläche, vordere und hintere Linsenfläche. Die Krümmungsmittelpuncte dieser drei Flächen liegen in Einer geraden Linie, der Augenaxe*).

Folgendes sind nun die für das ruhende Auge (d. h. ohne Accommodationsveränderungen) ermittelten Zahlen (LISTING):

- a) Die brechenden Flächen sind Kugelflächen von folgenden Radien:
 - 1. Vordere Hornhautfläche ca. 8mm.
 - 2. Vordere Linsenfläche 10mm.
 - 3. Hintere Linsenfläche 6mm.
- b) Die Entfernungen betragen:
 - 1. zu 2.: ca. 4mm.
 - 2. zu 3. ("Linsenaxe"): ca. 4mm.
 - 3. zu Retina: ca. 13mm.
- c) Die Brechungsindices sind (der der Luft = 1 gesetzt):
 - für den Humor aqueus = $\frac{103}{77}$.
 - die Linse (total, s. p. 323) = ${}^{16}/_{11}$.
 - den Glaskörper = $103/_{77}$.


Die Resultate der genauesten Messungen dieser Grössen (BREWSTER, beide KRAUSE, HELMHOLTZ) können hier nicht Aufnahme finden; nur die Methoden mögen kurz angedeutet werden. Die Brechungsindices der flüssigen Medien werden nach bekannten optischen Methoden an den Medien ausgeschnittener Augen bestimmt; der totale Brechungsindex der Linse wird (vgl. oben) aus ihrer empirisch bestimmten Brennweite und ihrer äusseren Gestalt berechnet. Die Bestimmung der Krümmungsradien muss womöglich am lebenden Auge geschehen, weil die Formen sich mannigfach (s. unten) verändern. Dies geschieht nach folgender, sehr genauen Methode, welche namentlich für die Feststellung der Accommodationsveränderungen von Wichtigkeit ist (HELMHOLTZ): Nach einfachen geometrischen Principien lässt sich der Radius einer Kugelfläche berechnen, wenn man in gemessener Entfernung einen (linear gestalteten) Körper von

^{*)} Unter Wasser fällt auch die Wirkung der vorderen Hornhautfläche fort, das Auge hat also nur zwei brechende Flächen. Die Folgen hiervon s. unten.

bekannter Länge aufstellt, und nun dessen in der Kugelfläche gespiegeltes Bild misst Letztere Messung geschieht folgendermassen: man betrachtet das z. B in der Cornea gespiegelte Bild (das wir horizontal denken wollen) durch eine dicke Glasplatte; diese ist durch einen horizontalen Schnitt in zwei Hälften gespalten, welche um eine gemeinsame, verticale Axe drehbar sind. So lange die Platte senkrecht von den Strahlen getroffen wird, erscheint das Spiegelbild unverrückt: dreht man nun aber die beiden Plattenhälften um ihre Axe, nach entgegengesetzten Seiten (so dass sie von oben gesehen, sich kreuzen), so wird eine jede schräg von den Strahlen getroffen, und dadurch das Bild in horizontaler Richtung verschoben; die beiden Platten verschieben das Bild nach entgegengesetzter Richtung, es entstehen also zw ei Bilder. Hat man nun so lange die Platten gedreht, bis das Bild durch eine jede grade um die Hälfte seiner Länge verschoben ist, so dass die entgegengesetzten Endpuncte beider Bilder sich berühren (das eine Bild erscheint dann als Verlängerung des andern), so lässt sich die Länge des Bildes aus dem Winkel, den beide Platten jetzt mit einander machen, berechnen, wenn man Dicke und Brechungsindex der Platten kennt; der Platten-Apparat, an welchem sich zugleich der Winkel ablesen lässt, heisst "Ophthalmometer." - Was die Entfernungen der brechenden Flächen betrifft, so kann die Dicke der Linse (Länge der Linsenaxe) an ausgeschnittenen Linsen direct gemessen werden. Jedoch ist es besser sie, wegen ihrer physiologischen Veränderungen, am lebenden Auge ophthalmometrisch mittels der Spiegelbilder zu messen, und ebenso die Distanz zwischen vorderer Hornhaut und vorderer Linsenfläche.

Entstehung des Bildes.

Das Auge ist nach diesen Angaben ein System aus drei centrirten brechenden Flächen. Die Brechungsgesetze desselben ergeben sich auf folgende Weise:

1. CD (Figur 14) sei eine kuglig gekrümmte brechende Fläche, K ihr Krümmungsmittelpunct, AB eine durch ihn gelegte Gerade, die Axe. Von den beiden durch CD getrennten Medien habe das links gelegene (vordere oder erste) den Brechungsindex m, das andere (hintere oder zweite) den Brechungsindex n.

Der von dem Axenpuncte E im ersten Medium auf die Fläche CD fallende Strahl EG wird bei G gebrochen; das Einfallsloth für den Punct G ist der Radius KI, also EGI = p der Einfallswinkel, KGL = q der Brechungswinkel. Nach dem Brechungsgesetz liegen FG, KI und GL in Einer Ebene, GL muss also wie EG die Axe schneiden. Der Abstand des Punctes E von dem "Hauptpunct" H, EH sei gleich a_1 , der Abstand des Punctes L vom Hauptpunct H, LH sei gleich a_2 . Die Beziehung der Abstände a_1 und a_2 ergiebt sich dann folgendermassen (der Winkel HEG sei = s, es ist dann Winkel HKG = p-s, und Winkel HLG = p-q-s; endlich sei der Radius KH = KG = r): Nach dem Brechungsgesetz ist

Im Dreieck EGK ist

$$r + r : r = \sin (180^{\circ} - p) : \sin s$$
 (9)

und im Dreieck GKL

$$-\mathbf{r} \cdot \mathbf{r} - \sin a \cdot \sin \left(\mathbf{n} - a - \mathbf{r} \right) \tag{9}$$

Liegt E von H sehr entfernt, oder liegt G an H sehr nahe, ist also der Strahl E G nur wenig von der axialen Richtung abweichend und fällt er nahe der Axe auf die brechende Fläche, so sind die Winkel p, q und s so klein dass man ihre Sinus den Bogen gleich setzen kann. Thut man dies, und berücksichtigt man dass sin $(180^{\circ}-p) = \sin p$, so verwandelt sich

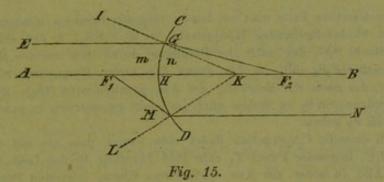
(1) in $nq = mp \dots \dots \dots \dots \dots \dots \dots \dots (4)$ (2) in $pr = s (a_1 + r) \dots \dots \dots \dots \dots \dots \dots (5)$

(3) in $qr = (p - q - s) (a_2 - r) \dots (6)$ Eliminirt man aus diesen drei Gleichungen q und s, so fällt p von selbst heraus und man erhält zwischen a_1 und a_2 folgende einfache Beziehung:

$$\frac{\mathbf{m}}{\mathbf{a}_{t}} + \frac{\mathbf{n}}{\mathbf{a}_{s}} = \frac{\mathbf{n} - \mathbf{m}}{\mathbf{r}} \quad \dots \quad \dots \quad (7)$$

Da die Beziehung von den Winkeln p und s unabhängig ist, so müssen auch alle anderen von E aus auf CD auffallenden Strahlen, immer vorausgesetzt (s. oben) dass die Winkel p und s nicht zu gross werden, nach der Brechung durch den Punct L gehen. Ein von E ausgehendes "homocentrisches" Strahlenbündel ist also nach der Brechung wieder homocentrisch; der Vereinigungspunct nach der Brechung heisst der Bildpunct oder das Bild des leuchtenden Punctes E.

2. Liegt der Punct E nicht in der Axe, so kann man doch immer durch ihn und den "Knotenpunct" K eine grade Linie legen und diese als neue Axe betrachten; in dieser liegt dann der Bildpunct L.


3. Der Satz von den homocentrischen Strahlenbündeln gilt also allgemein wo auch der Punct E liegen möge. Jedem leuchtenden Puncte entspricht demnach ein Vereinigungspunct, und zwar liegt dieser immer in einer durch den leuchtenden Punct und den Knotenpunct gelegten graden Linie; diese Linie nennt man Hauptstrahl oder Richtungslinie. Der Vereinigungspunct oder das Bild heisst reell, wenn die Strahlen wie in Fig. 14 in ihrer wirklichen Verlaufsrichtung denselben erreichen, virtuell dagegen, wenn er nicht von den Strahlen selbst, sondern nur durch Rückwärtsverlängerung derselben erreicht werden kann.

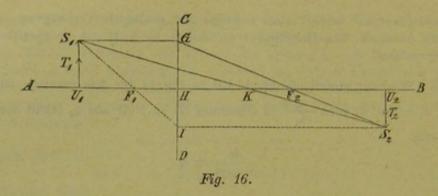
4. Werden die gebrochenen Strahlen zu einfallenden (also der reelle oder virtuelle Bildpunct zum reellen resp. virtuellen Ausgangspunct von Strahlen, so vereinigen sie sich wie die einfachste Betrachtung lehrt, wieder im früheren Lichtpuncte. Lichtpunct und Bildpunct stehen also in reciprokem Verhältniss,

Brechung an sphärischen Flächen.

man bezeichnet sie deshalb auch richtiger als "conjugirte Vereinigungspuncte" und ihre Abstände vom Hauptpunct (a_1 und a_2 in §. 1) als "conjugirte Vereinigungsweiten".

5. Wird der einfallende Strahl EG in Fig. 14 der Axe parallel, ist also EH = $a_1 = \infty$, so wird $\frac{m}{a_1}$ in Gleichung (7) zu Null und a_2 erhält demnach den Werth

Wird umgekehrt der vom zweiten Medium herkommende Strahl LG der Axe parallel, wird also LH = $a_2 = \infty$, so wird a_1 in Gleichung (7) zu

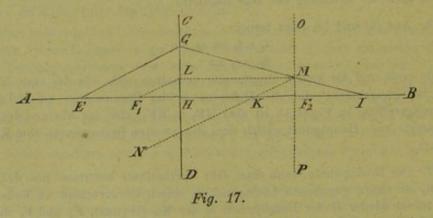

Alle im ersten Stadium parallel der Axe verlaufenden Strahlen vereinigen sich also nach der Brechung in einem Puncte F_2 (Fig. 15) dem hinteren oder zweiten Brennpunct, dessen Abstand vom Hauptpunct, $HF_2 = f_2$ (Gl. 8), die zweite Brennweite heisst. Ebenso vereinigen sich alle im zweiten Medium der Axe parallelen Strahlen im ersten oder vorderen Brennpunct F_1 , dessen Abstand vom Hauptpunct, $HF_1 = f_1$ (Gleichung 9) die erste Brennweite heisst. (Umgekehrt werden natürlich alle von den Brennpuncten ausgehenden Strahlen nach der Brechung der Axe parallel.)

6. Aus (8) und (9) folgt ferner

$$f_1 : f_2 = m : n (10)$$

d. h. die erste und die zweite Brennweite verhalten sich wie der erste und der zweite Brechungsindex; und die Differenz beider Brennweiten ist gleich dem Krümmungsradius; in Figur 15 ist also $HF_1 = KF_2$, also der Abstand des ersten Brennpuncts vom Hauptpunct gleich dem des zweiten Brennpuncts vom Knotenpunct.

7. Die Brennpuncte kann man sehr vortheilhaft benutzen um den Bildpunct S_2 zu einem gegebenen Lichtpunct S_1 durch Construction zu finden. In Figur 16 sei wieder H der Hauptpunct, K der Knotenpunct, F_1 und F_2 die beiden Brennpuncte. Wo zwei von S_1 ausgehende Strahlen nach der Brechung sich schneiden, müssen auch alle übrigen es thun (s. §. 1); zur Construction Brechung an sphärischen Flächen.



dieses Schneidepuncts kann man am besten folgende Strahlen benutzen: 1. den ungebrochen hindurchgehenden Hauptstrahl (§. 3) S_1KS_2 ; 2. den mit der Axe parallelen Strahl S_1G , der nach der Brechung durch den zweiten Brennpunct geht, also nach GF_2S_2 fällt; 3. den durch den ersten Brennpunct einfallenden Strahl S_1F_1I , der nach der Brechung der Axe parallel wird (IS₂). Zwei dieser Strahlen genügen um S_2 zu finden, auch ist leicht geometrisch zu beweisen, dass sie alle durch S_2 gehen.

Durch dieselbe Construction findet man ferner, dass ein auf dem Lothe (zur Axe) S_1U_1 liegender Punct T_1 sein Bild ebenfalls in das Loth S_2U_2 , nach T_2 wirft. Alle in einer zur Axe senkrechten Ebene liegenden Puncte haben also ihre Bilder ebenfalls in einer zur Axe senkrechten Ebene. Jeder ebene Gegenstand der zur Axe senkrecht steht, liefert also ein zur Axe senkrechtes ebenes Bild, und zwar ist, wie ebenfalls geometrisch leicht zu beweisen ist das Bild dem Gegenstande ähnlich.

Nach §. 6 müssen auch alle unendlich entfernten Puncte ihre Bilder in Eine zur Axe, und zwar im Brennpunct senkrecht stehende Ebene werfen, die Brennebene. Unter einander parallele Strahlen haben also immer ihren Vereinigungspunct in einem Puncte der Brennebene.

8. Hieraus ergiebt sich eine einfache Construction um zu einem gegebenen einfallenden Strahl EG (Fig. 17) den gebrochenen Strahl GI zu construiren. OP sei die Brennebene. Ein zu EG parallel einfallender Strahl muss sich mit dem gesuchten Strahl in einem Puncte der Brennebene (M) schneiden; um diesen

Punct zu finden kann man entweder den zu EG parallelen ungebrochenen Hauptstrahl NKM benutzen, oder durch den Brennpunct F_1 einen zu EG

328

parallelen Strahl legen (F₁L), welcher nach der Brechung der Axe parallel wird, und so ebenfalls nach M führt.

$$a_1f_2 + a_2f_1 = a_1a_2 \text{ oder } \frac{a_1}{a_1} + \frac{a_2}{a_2} = 1$$
 (16)

Die Gleichung (16) geht über in die Gleichung (7) wenn man für f_1 und f_2 ihre Werthe aus (8) und (9) einsetzt.

10. Lässt man in (16) a_1 alle Werthe zwischen ∞ und 0 durchlaufen, so durchläuft a_2 folgende Werthe: 1) für $a_1 = \infty$ (Lichtpunct unendlich entfernt) ist $a_2 = f_2$ (Bildpunct in F_2 , s. §. 5) 2) " $a_1 = f_1$ (Lichtpunct in F_1) " $a_2 = \infty$ (Bildpunct unendlich

2) ", $a_1 = f_1$ (Eichtpunct in F_1) ", $a_2 = 60$ (Bhupunct utendited entfernt, s. §. 5) 3) ", $a_1 = 0$ (Lichtpunct in H) ", $a_2 = 0$ (Bildpunctebenfalls in H) 4) ", $a_1 = -(f_2 - f_1)^*$) (Lichtpunct in K) ", $a_2 = f_2 - f_1$ (Bildpunctebenfalls

Der Hauptpunct und der Knotenpunct sind also ihr eigenes Bild.

11. Ebenen welche in conjugirten Vereinigungspuncten (§. 4) senkrecht zur Axe stehen, kann man "conjugirte Ebenen" nennen, weil das Bild der einen sich in der anderen befindet. Das Verhältniss der Grösse ihrer Bilder wird durch li und le (vgl. §. 9) ausgedrückt. Jeder Punct der einen Ebene hat also einen Bildpunct in der anderen und zwar verhalten sich die Abstände dieser beiden Puncte von der Axe wie l₁ : l₂. Kennt man demnach Lage und Bildgrössenverhältniss zweier conjugirter Ebenen, so kann man sie zur Construction des Bildes eines beliebigen Punctes verwenden; denn jeder von letzterem zur ersten Ebene gerichtete Strahl muss nach der Brechung durch einen genau bestimmbaren Punct der zweiten Ebene gehen; wählt man nun die beiden Constructionsstrahlen (§. 7) so, dass sie noch eine zweite Bedingung zu erfüllen haben (z. B. Strahlen die durch die Brennpuncte gehen), so sind sie dadurch vollkommen bestimmt. Am bequemsten sind natürlich zum Zwecke dieser Construction diejenigen conjugirten Ebenen, deren Bilder nicht bloss ähnlich, sondern auch gleich gross, also congruent sind und welche man "Hauptebenen" nennt. Man findet ihre Lage wenn man in Gleichung (15) und (16) $l_1 = l_2$ setzt. Es ergiebt sich dann $a_1 \equiv 0$ und $a_2 \equiv 0$, d. h. die beiden Hauptebenen fallen unter einander und zugleich mit der brechenden Fläche zusammen. Diese ist also ihr eigenes Bild. Gründet man hierauf die eben angedeutete Construction, so ergiebt sich die schon in §. 7 angegebene.

*) a₁ ist immer positiv zu zählen, wenn es von H nach links gerichtet ist, negativ, wenn nach rechts; a₂ dagegen zählt nach rechts positiv.

Systeme sphärischer Flächen.

12. Hat man zwei kuglige brechende Flächen, so ist die durch die beiden Krümmungsmittelpuncte gelegte Grade die gemeinsame Axe. Da ein auf die erste Fläche fallendes homocentrisches Strahlenbündel, dessen Strahlen nicht zu grosse Winkel mit der Axe bilden, auch nach der Brechung homocentrisch bleibt, also homocentrisch auf die zweite Fläche fällt, so wird es auch nach der zweiten Brechung homocentrisch sein.

13. Der gegenseitige Abstand der beiden brechenden Flächen auf der Axe sei e, ferner seien f1, f2 die Brennweiten der ersten, g1, g2 die der zweiten Fläche. Ist jetzt a1 der Abstand eines Gegenstandes vor der ersten Fläche, so entwirft die erste Fläche ein um die Entfernung a2 hinter ihr gelegenes Bild; liegt dies Bild um b, vor der zweiten Fläche, so liegt das von dieser entworfene, definitive Bild um b2 hinter dieser. Es bestehen nun folgende Beziehungen:

as (16)
as (16)
as (16)
addich (s. oben)
tieraus ergiebt sich

$$\frac{f_1}{a_1} + \frac{f_2}{a_2} = 1$$

$$\frac{g_1}{b_1} + \frac{g_2}{b_2} = 1$$

$$a_2 + b_1 = e.$$

$$(a_1e - f_1e - f_2a_1) g_2$$

$$(e - f_2 - g_1) a_1 - (e - g_1) f_1$$

aus (16)

8

endlich (s. oben)

Hieraus ergiebt sich

14. Ist ferner 11 die Grösse des Gegenstandes, 12 die seines Bildes durch die erste Fläche, m2 die des definitiven Bildes durch die zweite Fläche, so ist

aus	(14)	$l_2=\frac{f_1}{f_1-a_1}\;.\;l_1$	
aus	(15)	$m_2 = \frac{g_2 - b_2}{g_2} \cdot l_2$	
5.2.A	at a loss of	Dissectoring des Worthes	

Hieraus ergiebt sich mit Einsetzung des Werthes (17) für b2:

15. Sucht man die Lagen der Hauptebenen (§. 11), so muss man in (18) $m_2 \equiv l_1$ setzen; man erhält dann als Abstand der ersten Hauptebene vor der ersten brechenden Fläche

$$\mathfrak{a}_1 = \frac{f_1 e}{e - f_2 - g_1} \quad . \quad . \quad . \quad . \quad . \quad . \quad (19)$$

. . . (17)

und als Abstand der zweiten Hauptebene hinter der zweiten brechenden Fläche, durch Einsetzung des Werthes (19) für a, in (17):

$$\mathfrak{b}_2 = \frac{\mathbf{g}_2 \mathbf{e}}{\mathbf{e} - \mathbf{f}_2 - \mathbf{g}_1} \qquad (20)$$

Die beiden Hauptebenen fallen also hier nicht zusammen, sondern liegen auseinander um

 $a_1 + b_2 + e$.

16. Den definitiven Vereinigungspunct der vor der ersten Brechung der Axe parallelen Strahlen, also den hinteren Hauptbrennpunct, findet man, wenn man in (17) $a_1 = \infty$ setzt; b_2 ist dann der Abstand des hinteren Hauptbrennpuncts hinter der zweiten brechenden Fläche, und zwar

$$B_2 = \frac{(e - f_2) g_2}{e - f_2 - g_1} \quad . \quad . \quad . \quad . \quad . \quad . \quad (21)$$

330

Brechung an sphärischen Flächen.

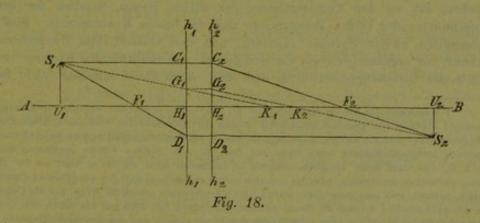
Ebenso ergiebt sich der Ausgangspunct der Strahlen die nach der letzten Brechung der Axe parallel werden, d. h. der vordere Hauptbrennpunct, wenn man in (17) $b_2 = \infty$ setzt; a_1 ist dann der Abstand des vorderen Hauptbrennpuncts vor der ersten brechenden Fläche, und zwar

17. Der Abstand des ersten (vorderen) Hauptbrennpuncts vom ersten Hauptpunct, d. h. die erste Hauptbrennweite ist $A_1 - a_1 = F_1$, also

Entsprechend ist der Abstand des zweiten (hinteren) Hauptbreunpuncts vom zweiten Hauptpunct, d. h. die zweite Hauptbrennweite $B_2 - b_2 = F_2$, also

Man hat also aus (23) und (24)

$$F_1: F_2 = f_1 g_1: f_2 g_2$$
 , (25)


Ist nun m der Brechungsindex des ersten, n der des zweiten, o der des dritten Mediums, so ist

(aus 10, §. 6)

$$\begin{array}{l} f_1 &: f_2 &= m : n \\ g_1 &: g_2 &= n : o, \\ f_1 g_1 : f_2 g_2 \ll m : o, \quad \text{also} \\ F_1 &: F_2 &= m : o \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (26) \end{array}$$

d.h. die beiden Hauptbrennweiten verhalten sich wie die Brechungsindices des ersten und letzten Mediums.

18. Mit Hülfe der beiden Hauptebenen $(h_1h_1 \text{ und } h_2h_2 \text{ in Figur 18})$ und der beiden Hauptbrennpuncte F_1 und F_2 kann man nun leicht zu jedem gegebenen Lichtpunct S_1 den Bildpunct S_2 construiren; wiederum benutzt man hierzu zwei Strahlen; der von S_1 ausgehende der Axe parallele Strahl S_1C_1 geht nach der Brechung sowohl durch den C_1 congruent liegenden Punct der zweiten Hauptebene, C_2 , als durch F_2 , muss also in $C_2F_2S_2$ liegen; der von S_1 durch F_1 gehende Strahl S_1D_1 muss nach der Brechung erstens der Axe parallel sein,

zweitens durch den D₁ congruent liegenden Punct der zweiten Hauptebene, D₂ gehen, also nach D₂S₂ fallen, S₂ ist also der gesuchte Bildpunct.

Centrirte Systeme. Cardinalpuncte.

19. Setzt man jetzt die Länge $H_1U_1 = A_1$, $A_2U_2 = A_2$, d. h. rechnet man die conjugirten Vereinigungsweiten (s. §. 4) von den Hauptpuncten aus, so erhält man aus der Betrachtung der ähnlichen Dreiecke in Figur 18, die dem §. 9, Gleichung (16) entsprechende Gleichung

$$A_2 = -A_1$$
, so ergrebt sich in
9L - F₂ - F. (98)

die Entfernung desjenigen Punctes hinter der 1. Hauptebene, dessen Bild ebensoweit hinter der 2. Hauptebene liegt. Man hat jetzt zwei neue conjugirte Vereinigungspuncte, die beiden "Knotenpuncte" (K1 und K2 in Fig. 18), welche um den Betrag der Differenz beider Hauptbrennweiten von den Hauptpuncten entfernt sind. (Bei der einfachen brechenden Fläche gab es nur Einen Knotenpunct, §. 2.) Da die beiden Knotenpuncte conjugirte Puncte sind, so muss jeder Strahl der vor der ersten Brechung nach K1 gerichtet war, z. B. S1K1, ein sog. Hauptstrahl (vgl. §. 3), nach der letzten Brechung durch K2 gehen; und zwar muss er S₂K₁ parallel sein, also nach G₂S₂ fallen, weil er noch die andere Bedingung zu erfüllen hat, die 2. Hauptebene im Puncte G2 zu schneiden der G₁ congruent liegt (s. §. 18). Man sieht leicht ein, dass man zur Construction des Bildes von S1 statt des einen der beiden Strahlen S1C1 und S1D1 auch den Strahl S1Ki benutzen kann.*) [Die beiden Knotenpuncte sind hiernach Axenpuncte mit folgender Eigenschaft: jeder vor der Brechung nach dem ersten gerichtete Strahl geht nach der Brechung, der Einfallsrichtung parallel durch den zweiten. Aus dieser Eigenschaft, welche sie völlig bestimmt, lässt sich ihre Lage auch direct berechnen.

20. Kommt zu dem eben betrachteten System aus zwei brechenden Flächen noch eine dritte brechende Fläche, oder ein zweites System zweier brechenden Flächen hinzu, so sind die gleichen Vereinfachungen wie bisher zulässig, sobald alle brechenden Flächen eine gemeinsame Axe haben (centrirt sind), d. h. ihre Krümmungsmittelpuncte in derselben graden Linie liegen, was bei nur zwei Flächen natürlich stets der Fall ist); denn nur dann wird ein homocentrisches Strahlenbündel auch auf jede folgende Fläche unter so kleinen Winkeln mit der Axe auffallen wie auf die erste, also homocentrisch bleiben. Immer lässt sich dann für das ganze System die Lage der Cardinalpuncte angeben, die zu den Constructionen der Bilder dienen, nämlich der beiden Hauptpuncte, der beiden Brennpuncte und der beiden Knotenpuncte. Sind die Brennweiten zweier Systeme ermittelt, und der Abstand ihrer Hauptebenen e bekannt, so ergeben sich die Cardinalpuncte des resultirenden Systems immer mittels der Gleichungen (19-24) und (28). Auch bleibt wie man leicht findet

^{*)} Man kann die beiden Hauptebenen als zwei das brechende System repräsentirende brechende Flächen von gleicher Krümmung (wegen der Kleinheit des wirksamen Abschnitts als eben gezeichnet) und die beiden Knotenpuncte als ihre Krümmungsmittelpuncte betrachten. Die Constructionsregeln stimmen dann ganz mit den für eine einzige Fläche gegebenen überein (vgl. §. 7), nur dass jeder einfallende Strahl so behandelt wird als ob er statt an der ersten Fläche gebrochen zu werden, parallel mit sich selbst verschoben auf den congruenten Punct der zweiten auffiele und hier gebrochen würde. Auch ergiebt sich leicht die Regel für die Construction des gebrochenen Strahls zu einem einfallenden (vgl. §. 8). Man hat nur durch den zweiten Knotenpunct eine Parallele zum einfallenden Strahl zu ziehen, und den Durchschnittspunct derselben mit der Brennebene zu verbinden mit dem dem Einfallspunct congruenten Punct der zweiten Hauptebene.

auch bei noch so complicirten Systemen immer das in (26) ausgedrückte einfache Verhältniss der Hauptbrennweiten b stehen.

Um nun für das centrirte dreiflächige System des Auges die Cardinalpuncte aufzusuchen, sind zunächst die Brennweiten jeder einzelnen Fläche zu ermitteln. Hierzu dienen (8) und (9) oder (8) und (11):

- 1. Vordere Hornhautfläche: $r = 8^{mm}$, m = 1, $n = \frac{103}{17}$. Also $f_1 = 23,692^{mm}$, $f_2 = 31,692$.
- 2. Vordere Linsenfläche: r = 10, $m = \frac{103}{77}$, $n = \frac{16}{11}$. Also $f_1 = 114,444$, $f_2 = 124,444$.
- 3. Hintere Linsenfläche: r = -6, $m = \frac{16}{11}$, $n = \frac{103}{77}$. Also $f_1 = 74,667$, $f_2 = 68,667$.

Combinirt man jetzt zunächst 2. und 3. zu einem System, d. h. sucht man die Cardinalpuncte der von den Augenflüssigkeiten umgebenen Linse, so ist $e = 4^{mm}$, $f_1 = 114,444$, $f_2 = 124,444$, $g_1 = 74,667$, $g_2 = 68,667$. Also:

- der erste Hauptpunct der Linse liegt hinter der vorderen Linsenfläche (nach 19) um — $a_1 = 2,346^{\text{mm}}$;
- der zweite Hauptpunct der Linse liegt vor der hinteren Linsenfläche (nach 20) um $-b_2 = 1,408$ mm;
- die beiden Brennweiten der Linse, welche nach (26) wegen des gleichen Brechungsindex von Humor aqueus und vitreus einander gleich sind, sind (nach 23 oder 24) $F_1 = F_2 = 43,797$ mm.

Wird nun schliesslich die Hornhaut mit der Linse zum vollständigen System des Auges combinirt, so ist für diese Combination $f_1 = 23,692$, $f_2 = 31,692$, $g_1 = 43,797$, $g_2 = 43,797$, endlich e = 4 + 2,346 = 6,346mm. Man erhält also für das ganze Auge: Der erste Hauptpunct liegt (nach 19) um — $a_1 = 2,174$ mm hinter dem Hornhautscheitel;

der zweite Hauptpunct liegt (nach 20) um — $b_2 = 4,020$ mm vor dem zweiten Hauptpunct der Linse, also um 4,020 + 1,408 = 5,428mm vor der hinteren Linsenfläche, oder 2,572mm hinter dem Hornhautscheitel;

beide Hauptpuncte stehen also von einander ab um 0,398mm.

- Die erste Hauptbrennweite ist (nach 23) $F_1 = 15,007$ mm, der erste Brennpunct liegt also **12,833mm** vor dem Hornhautscheitel;
- die zweite Hauptbrennweite ist (nach 24) $F_2 = 20,074$ mm, der zweite Brennpunct liegt also 22,646mm hinter dem Hornhautscheitel.

Cardinalpuncte im Auge. Sehstrahlen.

Da der Abstand der Knotenpuncte von den Hauptpuncten $= F_2 - F_1 = 5,067$ mm, so liegt also

- der erste Knotenpunct 7,241mm hinter dem Hornhautscheitel und
- der zweite Knotenpunct 7,639mm hinter dem Hornhautscheitel.

Die beiden Hauptpuncte liegen also, 0,398mm von einander entfernt, etwa in der Mitte der vorderen Augenkammer, die beiden Knotenpuncte ebenfalls 0,398mm von einander, im hinteren Theile der Linse, der 2. Brennpunct sehr nahe oder in der Retina (vgl. unten). Figur 19 stellt das schematische Auge mit seinen Cardinalpuncten dar.

Die Entfernung der beiden Knotenpuncte von einander ist so gering, dass man für Veranschaulichungszeichnungen sie ohne grossen

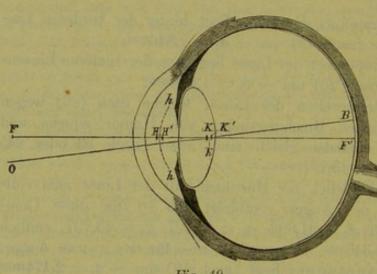


Fig. 19.

Fehler in Einen (k) vereinigen, also die Hauptstrahlen einfach gradlinigt zeichnen kann. (Ebenso kann man die beiden Hauptflächen in die Kugelfläche h h vereinigt denken, welche also brechende die Fläche des Auges darstellt.)

Man findet demnach, unter der Voraussetzung, dass alle Bildpuncte auf der Retina liegen (hierüber s. unten bei der Accommodation) für jeden Objectpunct einfach den Bildpunct, indem man von jenem aus eine gerade Linie durch den Knotenpunct auf die Retina zieht. Solche Linien (z. B. OB in der Fig.) nennt man Richtungslinien oder Sehstrahlen, und die vereinigten Knotenpuncte (k) den Kreuzungspunct der Richtungslinien; den Winkel, den zwei Sehstrahlen mit einander bilden, nennt man den Sehwinkel. — Will man ermitteln, in welcher Richtung der zu einem Bildpuncte gehörige Objectpunct liegt, so braucht man nur umgekehrt eine grade Linie (einen Sehstrahl) vom Bildpunct aus

334

Wirkung von Linsen.

durch die vereinigten Knotenpuncte zu legen, und nach aussen zu verlängern.

Anhang über die Wirkung von Linsen. Für eine Linse, die beiderseits an Luft grenzt, sind nach Gleichung (26) die beiden Hauptbrennweiten gleich; nach (28) fallen in Folge dessen die Knotenpuncte mit den Hauptpuncten zusammen. Um den Werth der Brennweite zu finden seien für eine biconvexe Linse r_1 und r_2 die beiden Krümmungsradien, n der Brechungsindex (Luft = 1); dann sind die 4 Brennweiten der beiden Flächen nach (8) und (9):

$$f_1 = \frac{r_1}{n-1}$$
, $f_2 = \frac{nr_1}{n-1}$, $g_1 = -\frac{nr_2}{1-n}$, $g_2 = -\frac{r_2}{1-n}$

Hiernach folgt aus (23) oder (24), wenn die Dicke der Linse, e, vernachlässigt wird:

Ist eine der Flächen concav, so muss ihr Radius negativ genommen werden. Biconcave und convex-concave Linsen (bei denen die concave Fläche den kleineren Radius hat) haben daher negative Brennweiten.

Folgen zwei Linsen von den Brennweiten f und g so nahe auf einander, dass ihre Entfernung e vernachlässigt werden kann, so folgt aus (23) für die Brennweite F der Combination

$$F = \frac{fg}{f+g}$$
 oder $\frac{1}{F} = \frac{1}{f} + \frac{1}{g}$ (30)

und ebenso für eine Combination mehrerer naher Linsen

Ist a_1 die Entfernung eines Gegenstandes von einer Linse, l_1 dessen Grösse, f die Brennweite, und a_2 , l_2 Abstand und Grösse des Bildes, so folgt aus (16)

ferner aus (14)

Hieraus lassen sich die Eigenschaften der Bilder für jede Linse ableiten, wovon das Wichtigste hier folgt. Zunächst ist a_1 (und l_1) immer positiv angenommen.

- I. Convexlinsen (f positiv).
 - 1) a_2 ist positiv, d. h. die Bilder reell, wenn $a_1 \rangle f$;
 - a_2 ist negativ, d. h. die Bilder virtuell, wenn $a_1 \langle f.$
 - 2) l_2 ist negativ, d. h. die Bilder sind verkehrt, wenn $a_1 > f$;
 - l_2 ist positiv, d. h. die Bilder sind aufrecht, wenn $a_1 \leq f$.
 - 3) $l_2 \langle l_1 , d. h. die Bilder sind verkleinert, wenn <math>a_1 \rangle 2 f;$ $l_2 = -l_1 wenn a_1 = 2 f;$
 - $l_2 \mathrel{>} l_1$, d. h. die Bilder sind vergrössert wenn $a_1 \mathrel{<} 2 \, f.$

Hiernach giebt eine Convexlinse, wenn $a_1 > 2 f$, reelle verkehrte, verkleinerte Bilder (Objectiv der Fernröhre, Operngläser, der Camera obscura); wenn $2 f > a_1 > f$,

so sind die Bilder reell, verkehrt und vergrössert (Sonnenmicroscop, Objectiv des zusammengesetzten Microscops); endlich wenn $a_1 \leq f$, so sind die Bilder virtuell, aufrecht und vergrössert (Loupe, Ocularlinse des astronomischen Fernrohrs und des zusammengesetzten Microscops).

II. Concavlinsen (f negativ).

1) a₂ ist immer negativ,

2) l₂ ist immer positiv,

3) l_2 ist immer $\langle l_1 \rangle$.

Concavlinsen geben also von jedem Gegenstande virtuelle, aufrechte, verkleinerte Bilder.

Ist eine Convexlinse so aufgestellt dass sie ein reelles verkehrtes Bild von einem Gegenstande giebt, und wird nun eine zweite Linse in die gebrochenen Strahlen gebracht, ehe sie sich zum Bilde vereinigt haben, so bildet dies letztere gleichsam das Object für die eingeschaltete Linse, der Abstand desselben von der letzteren, a₁, ist aber negativ zu nehmen. Die Wirkung der eingeschalteten Linsen ist dann folgende:

I. Eingeschaltete Convexlinsen (f positiv).

Für jeden negativen Werth von a_1 wird a_2 positiv, $a_2 \langle -a_1, l_2$ von gleichem Vorzeichen mit l_1 und $l_2 \langle l_1, d. h.$ die eingeschaltete Convexlinse lässt das reelle verkehrte Bild reell und verkehrt, nähert es aber der ersten Linse und macht es kleiner. Diese Wirkung hat u. A. die Collectivlinse des zusammengesetzten Microscops.

- II. Eingeschaltete Concavlinsen (f negativ).
 - 1) a_2 ist positiv wenn $-a_1 \langle f, negativ wenn <math>-a_1 \rangle f$,
 - 2) l_2 hat entgegengesetztes Vorzeichen mit l_1 wenn $a_1 \langle f, gleiches wenn <math>a_1 \rangle f$.
 - 3) $l_2 \langle l_1 \text{ wenn } -a_1 \rangle 2 f$; $l_2 = l_1 \text{ wenn } -a_1 = 2 f$; $l_2 \rangle l_1 \text{ wenn } -a_1 \langle 2 f$.

Eine zwischen Convexlinse und reelles Bild eingeschaltete Concavlinse, lässt also das letztere Bild reell und verkehrt wenn sie um weniger als ihre Brennweite von ihm absteht; dagegen macht sie es virtuell und aufrecht, wenn sie um mehr als ihre Brennweite von ihm absteht; diese Wirkung hat die Ocularlinse des Opernglases. Sie verändert dabei die Grösse des Bildes nicht, wenn sie von ihm um ihre doppelte Brennweite absteht.

Netzhautbilder bei unveränderlichem Auge.

Fallen von einem Gegenstande (Object) Lichtstrahlen in das Auge, so entspricht jedem einzelnen Puncte des Objects ein bestimmter Bildpunct. Die Bildpuncte geben zusammen ein dem Object entsprechendes, natürlich umgekehrtes Bild. Dieses Bild muss, um deutlich wahrgenommen zu werden, genau in die Retinafläche fallen. Nun ist es aber klar, dass für ein bestimmtes, unveränderliches Auge es nur eine einzige Fläche geben kann, deren Bild genau in die Retina fällt; Gestalt und Entfernung dieser Fläche lassen sich aus den optischen Grössen des Auges berechnen. Jeder Objectpunct,

Zerstreuungskreise. SCHEINER'scher Versuch.

der nicht in dieser Fläche liegt, hat seinen Bildpunct nicht in der Retina, sondern entweder vor oder hinter derselben. In beiden Fällen durchschneidet die Retina den Kegel der von dem Objectpuncte ausgegangenen, gebrochenen Strahlen, im ersten Falle nach, im zweiten vor ihrer Vereinigung zum Bildpuncte; in beiden Fällen entsteht also auf der Retina statt des Bildpunctes ein sog. "Zerstreuungskreis", d. h. eine kleine beleuchtete Kreisfläche, ein Durchschnitt des Strahlenkegels.

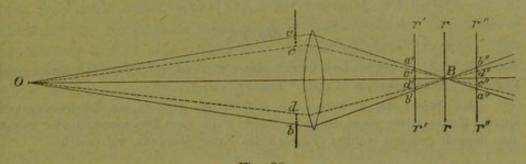


Fig. 20.

In Fig. 20 stellt B den Bildpunct des Objects O vor, welcher in die Retina rr fällt. Liegt aber die Retina vor dem Bildpunct (r'r') oder hinter demselben (r"r"), so entstehen Zerstreuungskreise vom Durchmesser a'b' und a"b".

Hieraus ergiebt sich, dass strenggenommen ein unveränderliches Auge nur flächenhafte Objecte von ganz bestimmter Entfernung deutlich sehen kann; alle Objecte oder Theile von Objecten, welche ausserhalb dieser Fläche liegen, haben ein undeutliches, "verwaschenes" Bild (Zerstreuungsbild"), in welchem jedem Objectpuncte ein Zerstreuungskreis statt eines Bildpunctes entspricht.

Die Grösse des Zerstreuungskreises hängt ceteris paribus ab von dem Umfange des in das Auge gelangenden Strahlenkegels, dieser aber wiederum von der Weite der Pupille, deren Rand den Strahlenkegel begrenzt. Verengt sich daher die Pupille (s. unten), oder ersetzt man sie durch eine kleine vor das Auge gebrachte Oeffnung, z. B. durch ein Loch in einem Kartenblatt, so wird cet. par. der Zerstreuungskreis kleiner, das Zerstreuungsbild also schärfer. In Fig. 20 ist c d die Oeffnung der verengten Pupille; man sieht wie die Verengerung die Zerstreuungskreise auf die Grössen c'd', resp. c"d" verkleinert. Ersetzt man die Pupille durch zwei kleine Oeffnungen, bringt man z. B. vor das Auge ein Kartenblatt mit zwei Nadelstichen, deren Abstand kleiner ist als der Durchmesser der Pupille, so werden aus dem grossen Strahlenkegel gleichsam zwei kleinere ausgeschnitten, und auf der Retina entstehen, statt Eines Zerstreuungskreises, zwei kleinere.

Hermann, Physiologie. 5. Aufl.

In Fig. 21 sind e und f die Löcher im Kartenblatt, welche die Pupille ersetzen; die beiden Strahlenkegel vereinigen sich in B; die Netzhaut erhält,

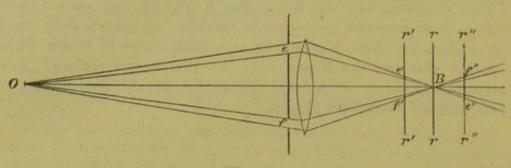


Fig. 21.

wenn sie nicht in rr, sondern in r'r' oder r"r" steht, statt des Bildpunctes zwei kleine Zerstreuungskreise e' und f' resp. e" und f".

Ein Object, das so zum Auge gestellt ist, dass es ein Zerstreuungsbild auf die Retina wirft, muss daher in diesem Falle zwei Zerstreuungsbilder geben. also doppelt gesehen werden (Versuch des Pater SCHEINER, vgl. unten).

Accommodation.

Die tägliche Erfahrung lehrt aber, dass ein normales Auge Gegenstände fast in jeder Entfernung deutlich sehen kann; es muss also nothwendig eine Vorrichtung gegeben sein, welche das Auge zu verändern vermag, und welche vom Willen abhängig ist. Die Veründerungen des Auges, welche sie hervorbringt, nennt man die "Accommodation". — Für welche Entfernung das Auge eingerichtet ist, wenn jede active Accommodationsthätigkeit fehlt, weiss man nicht ganz sicher. Man glaubte früher, dass das ruhende Auge für eine mittlere Entfernung accommodirt sei und nahm daher zwei Richtungen der Accommodation, eine für die Nähe ("positive") und eine für die Ferne ("negative Acc.") an. Jetzt indess wird fast allgemein angenommen, dass das ruhende Auge normal für die unendliche Ferne eingestellt sei, dass also der Brennpunct des normalen ruhenden Auges in der Retina liege. Es giebt also hiernach nur Eine Richtung der Accommodation, nämlich für die Nähe.

Die Gründe, welche hauptsächlich hierfür sprechen, sind: 1. beim plötzlichen Oeffnen der lange geschlossen gewesenen Lider ist das Auge für die Ferne eingerichtet (VOLKMANN); 2. das Sehen in die Ferne ist nicht mit dem Gefühl der Anstrengung verbunden, wie das für die Nähe; 3. Atropin, welches den Accommodationsapparat lähmt, bewirkt eine unveränderliche Einstellung für die weiteste Ferne; gäbe es einen negativen Accommodationsapparat, so müsste man die unwahrscheinliche Annahme machen, dass dieser gleichzeitig mit der Läh-

338

Accommodation. PURKINJE - SANSON - HELMHOLTZ'scher Versuch. 339

mung des positiven in tetanische Anstrengung versetzt würde (DONDERS); 4. auch bei neurotischen Lähmungen des Accommodationsapparats (durch Oculomotoriuslähmung, s. unten) tritt stets Accommodation für die Ferne ein, dagegen kennt man keine Lähmungszustände mit Accommodation für die Nähe.

Folgende Veränderungen am Auge könnten zur Accommodation dienen: 1) Veränderungen der Brechungsexponenten der Augenmedien, 2) Verschiebung der Projectionsfläche (Retina), analog der künstlichen Accommodation in der Camera obscura, 3) Veränderungen der Gestalt der brechenden Flächen. - Die ad 1) genannten kommen selbstverständlich nicht vor. Verschiebung der Retina in der Richtung der Augenaxe wäre möglich durch seitliche Compression des Bulbus mittels der graden Augenmuskeln; dieser Einfluss, den man früher zur Erklärung der Accommodation annahm, kann jedoch nicht wesentlich sein, da auch im ausgeschnittenen Auge noch Accommodationsveränderungen hervorgerufen werden können. Es müssen daher Veränderungen in der Gestalt der brechenden Flächen möglich sein, und diese sind in der That nachgewiesen, und zwar an der Linse. Bei der Accommodation für die Nähe wird nämlich ihre vordere Fläche stärker gewölbt, und der Cornea genähert, besonders der von der Iris nicht bedeckte Theil, der sich durch die Pupille hervorwölbt (CRAMER).

Bewiesen werden diese Veränderungen namentlich durch folgenden Versuch: Stellt man seitlich vom Auge eine Kerzenflamme auf, und blickt von der andern Seite her in das Auge hinein, so bemerkt man drei deutliche, durch Reflex von den brechenden Flächen des Auges entstehende Bildchen der Flamme: das erste aufrecht (virtuell), gebildet von der vorderen Corneafläche, das zweite ebenfalls aufrecht, aber viel schwächer, gebildet von der vorderen Linsenfläche, das dritte hell und verkehrt (reell), gebildet von der hinteren Linsenfläche. Fixirt jetzt das Auge einen nahen Gegenstand, so wird das zweite Bildchen bedeutend kleiner und nähert sich etwas dem ersten, ein Zeichen dass die vordere Linsenfläche stärker convex wird und nach vorn rückt. Die umgekehrten Veränderungen treten ein, wenn das Auge in die Ferne starrt. (PURKINJE-SANSON'scher Versuch, CRAMER.) Statt der Flamme wendet man zweckmässiger zwei leuchtende Puncte an (Löcher in einem Schirm), deren Abstand im Spiegelbilde, besser als die Grösse des Flammenbildes ophthalmometrisch gemessen werden kann (p. 325) (HELMHOLTZ). — Das durch die Zunahme der vorderen Linsenwölbung bewirkte Vorrücken der Iris lässt sich auch noch dadurch zeigen, dass die bei seitlicher Beleuchtung des Auges auf der gegenüberliegenden Irishälfte sich zeigende caustische Linie (von der Brechung auf der Corneafläche herrührend) bei der Accommodation für die Nähe auf der Iris ihre Stelle ändert, indem sie sich dem Rande nähert (HELMHOLTZ).

Die folgende Tabelle (HELMHOLTZ) zeigt die Veränderungen der optischen Constanten des Auges durch die Accommodation; die Orte sind vom Hornhaut-

22*

Accommodation.

scheitel aus gerechnet und zählen nach hinten positiv, nach vorn negativ. Die Zahlen für den Ruhezustand sind von den p. 324 und 333 angegebenen, welche LISTING's schematischem Auge angehören, etwas abweichend.

	Ruhend. (Ferne.)	Accommodirt (Nähe.)
Krümmungsradius der Hornhaut	8	8
" , vord. Linsenfläche	10	6
" " hint. Linsenfläche	6	5,5
Ort der vord. Linsenfläche	3,6	3,2
""" hint. Linsenfläche . :	7,2	7,2
" des 1. Hauptpuncts	1,9403	2,0330
,, ,, 2. ,,	2,3563	2,4919
""" 1. Knotenpuncts	6,957	6,515
,, ,, 2. ,,	7,373	6,974
"" " 1. Brennpuncts	-12,918	-11,241
2	22,231	20,248
Erste Brennweite	14,858	13,274
Zweite "	19,875	17,756

Die Accommodation geschieht hauptsächlich durch den M. tensor chorioideae (M. ciliaris, BRÜCKE'scher Muskel). Dieser besteht aus radiären und circulären Fasern. Die ersteren, welche die Hauptmasse bilden, entspringen vorn von der Umschlagsstelle der Membrana Descemetii, da wo sie von der Cornea auf die Iris übergeht (Lig. iridis pectinatum) und setzen sich an die Processus ciliares der Chorioidea an; die unbedeutenden circulären Fasern, welche nach innen von den ersteren im vordersten Theile des Muskels liegen, umgeben den Rand der Linse. Die radiären Fasern ziehen für sich den vorderen Rand der Chorioidea nach vorn, dadurch ziehen sie die Chorioidea sammt der Retina wie einen Beutel um den Glaskörper zusammen (wobei dieser die Linse nach vorn drängt). Dadurch wird die Zonula Zinnii, deren Spannung in der Ruhe den Linsenrand nach hinten und aussen zieht, also die Linse abflacht, durch Näherung ihrer hinteren Insertion an die vordere (den Linsenrand) abgespannt und somit ein Dickerwerden der Linse bewirkt (HELMHOLTZ). Die Mitwirkung der circulären Fasern scheint darin zu bestehen, dass sie die Ciliarfortsätze nach innen ziehen und dadurch zur Abspannung der Zonula beitragen (F. E. SCHULZE).

Auch die Iris ist bei der positiven Accommodation betheiligt: passiv dadurch, dass sie durch die stärkere Wölbung der vorderen

Accommodation.

Linsenfläche ebenfalls stärker gewölbt wird, denn der Pupillarrand der Iris liegt der Linsenkapsel unmittelbar auf (Beweis: das Fehlen seines Schlagschattens auf der Linse, HELMHOLTZ; doch liegt die Iris nur mit ihrem Rande auf, im übrigen besteht zwischen ihr und der Linse eine mit Flüssigkeit erfüllte "hintere Augenkammer", HENSEN & VÖLCKERS); — activ dadurch, dass sich die Pupille verengt (über die Bewegungen der Iris s. unten). Letztere Bewegung scheint nicht zur Accommodation nothwendig zu sein; denn diese ist auch bei fehlender oder gespaltener Iris möglich. Ihr Sinn ist vielleicht darin zu suchen, dass bei einer stärker gewölbten Linse die sphärische Abweichung grösser wird und daher eine umfangreichere Abblendung der Randstrahlen erforderlich ist. Die Unabhängigkeit der Pupillenverengerung von der Accommodation ergiebt sich daraus, dass diese früher eintritt als jene (DONDERS).

Die Nervenfasern für den Accommodationsapparat liegen in den Nervi ciliares, deren Reizung Accommodation für die Nähe hervorbringt (Völckers & Hensen). Sie stammen höchst wahrscheinlich aus dem Oculomotorius.

Die Figur 22 stellt einen Durchschnitt des vorderen Augenabschnitts, links mit Accommodation für die Ferne, rechts für die Nähe dar (nach HELMHOLTZ).

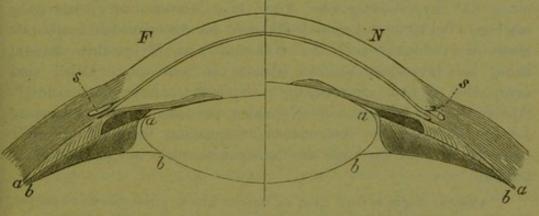


Fig. 22.

ss Canalis Schlemmii. aabb die Falten der Zonula Zinnii, welche zwischen die Processus ciliares eingeschoben sind; letztere sind dunkel gehalten und zum Theil durch erstere verdeckt (der Schnitt ist so gelegt, dass eine Falte der Zonula vor der des Proc. ciliaris liegt). Man erkennt ferner die radiären, von s entspringenden Fasern des Tensor chorioideae.

Ueber die ziemlich geringe Geschwindigkeit der Accommodation fehlt es an übereinstimmenden Angaben; der Uebergang von der Thätigkeit zur Ruhe geschieht schneller als der umgekehrte (HENSEN & VÖLCKERS).

Zwischen den Nerven für die Accommodation, die Iris und die äusseren Augenmuskeln scheint ein noch wenig erforschter centraler Connex zu bestehen. Hierfür spricht: 1. das Verhalten der Pupille bei der Accommodation (s. oben);

342 Fern- u. Nahepunct. Anomalien des Brechzustandes. Kurz- u. Weitsichtigkeit.

2. mit Rotation der Bulbi nach innen ist Verengerung der Pupillen (s. u.) und unwillkürliche Accommodation für die Nähe verbunden (СZERMAK); 3. das Atropin, welches die Pupille erweitert (s. unten), lähmt zugleich wie schon erwähnt die Accommodationsfähigkeit; umgekehrt bewirkt die Calabar-Bohne Verengerung der Pupille und krampf hafte Accommodation für die Nähe.

Die Accommodationsbewegungen beider Augen sollen nach Einigen immer parallel gehen, was von Andern bestritten wird.

Für jedes Auge giebt es gewisse Grenzen des deutlichen Sehens; der fernste Punct, von dem das Bild genau in die Netzhaut fallen kann, heisst der Fernpunct, der nächste der Nahepunct; die Strecke zwischen beiden die Weite des deutlichen Sehens. Für normale Augen liegt der Fernpunct unendlich weit entfernt (s. oben), der Nahepunct, der um so näher heranrückt, je leistungsfähiger der Accommodationsapparat ist, etwa 0,2-0,3^m vom Auge.

In vielen, sonst normalen Augen liegt der Brennpunct in der Ruhe nicht, wie gewöhnlich, in der Netzhaut (Emmetropie), sondern durch abnorme Länge oder Kürze der Augenaxe vor der Retina (Myopie) oder hinter derselben (Hypermetropie). Der Fernpunct myopischer Augen liegt daher abnorm nahe, der Fernpunct hypermetropischer Augen dagegen noch weiter als unendlich entfernt (d. h. um selbst unendlich entfernte Gegenstände deutlich zu sehen muss das hypermetropische Auge eine Accommodationsbewegung machen). Bei gleicher Leistungsfähigkeit des Accommodationsapparats muss nun offenbar auch der Nahepunct bei Myopischen abnorm nahe, bei Hypermetropischen abnorm entfernt sein. Daher sind myopische Augen "kurzsichtig", hypermetropische "weitsichtig". Andere Abweichungen vom Normalen entstehen durch zu geringe Leistungsfähigkeit des Accommodationsapparats; diese influiren aber natürlich nur auf die Lage des Nahepuncts, nicht auf die des Fernpuncts.

Abnorme Augen müssen ihren zu starken oder zu schwachen Brechzustand, d. h. die relativ zu grosse oder zu geringe Krümmung ihrer Linse durch ein vor das Auge gesetztes Glas ("Brillenglas") corrigiren; dasselbe muss natürlich im ersten Falle (bei Myopen) concav, im zweiten (bei Hypermetropen) convex sein.*) Auch Mängel im Accommodationsvermögen lassen sich durch künstliche Accommodationen mittels zeitweiliger Anwendung der Brillengläser corrigiren.

^{*)} Unter Wasser ist das menschliche Auge aus dem p. 324 Anm. angegebenen Grunde enorm hypermetropisch; beim Fischauge ist dies durch die starke Krümmung der Krystalllinse vermieden. Zum deutlichen Sehen unter Wasser ist eine Convexbrille oder (Dudgeon) eine aus Uhrgläsern und einem Rohr zusammengesetzte) concave Luftlinse erforderlich, welche letztere zugleich in der Luft das Sehen nicht hindert. Die p. 333 berechneten Brennweiten der Linse für sich in den Augenflüssigkeiten (43,797 mm.) sind zugleich die des Auges unter Wasser.

Optometer. Iris und Pupille.

Die einfachste Art die Lage des Nahe- und Fernpuncts zu bestimmen ist die Prüfung, in welchen Entfernungen das Auge einen Gegenstand, den man nähert und entfernt, deutlich erkennen, eine Schrift z. B. lesen kann. Diese Methode ist jedoch deshalb ungenau, weil in der Ferne das Kleinerwerden des Schwinkels (s. unten) die Gegenstände schwerer erkennbar macht. Viel besser ist es, direct zu bestimmen, in welchen Entfernungen ein Gegenstand ein deutliches und in welchen er ein Zertreuungsbild auf die Retina wirft. Hierzu bietet der SCHEINER'sche Versuch (p. 338) das sicherste Mittel. Betrachtet man einen Gegenstand (z. B. einen Stecknadelknopf) durch zwei nahe bei einander befindliche Löcher in einem Kartenblatt, so erscheint er nach dem dort Gesagten einfach, sobald das Auge genau für ihn accommodirt ist, sonst dagegen doppelt. Nähert und entfernt man also den Gegenstand, so ist die Strecke, in welcher er einfach gesehen wird, die Weite des deutlichen Sehens. Hierauf gründen sich verschiedene, namentlich zur Auswahl von Brillengläsern dienende Apparate, die sog. "Optometer". Das verbreitetste (STAMPFER'sche) benutzt als Object einen beleuchteten Spalt, dessen Entfernung vom Auge geändert und zugleich gemessen werden kann. - Mit zunehmendem Alter, schon vom 15. Jahre an (MAC-GILLAVRY), nimmt das Accommodationsvermegen für die Nähe ab, vermuthlich durch Härterwerden der Linse (DONDERS).

Iris und Pupille.

Als Diaphragma zur Abblendung der Randstrahlen (analog den Diaphragmen optischer Linseninstrumente), sowie zur Regulirung der ins Auge dringenden Lichtmenge, endlich als Beihülfe zur Accommodation, dient die Iris mit ihrer centralen Oeffnung, der Pupille. Die Weite der letzteren wird bestimmt durch den Contractionszustand der beiden antagonistischen Irismuskeln, des Sphincter und Dilatator pupillae. Ersterer bildet eine Ringfaserschicht um die Pupille, letzterer hat radial gerichtete Fasern; jener ist vom Oculomotorius, dieser vom Sympathicus abhängig. Werden beide oder ihre Nerven gleich stark gereizt, so überwiegt der Sphincter, so dass sich die Pupille verengt. Für gewöhnlich sind beide Nerven in einem gewissen Erregungszustande (Tonus), denn wenn einer derselben durchschnitten wird, so erhält der vom andern beherrschte Muskel das Uebergewicht: Durchschneidet man den Sympathicus (am Halse), so verengt sich die Pupille, wenn man den Oculomotorius durchschneidet, so erweitert sie sich.

Neuerdings ist das Vorkommen eines Dilatator bei Säugethieren verneint worden (GRÜNHAGEN, HAMPELN); indess streitet hiergegen die Angabe fast sämmtlicher Anatomen (neuerdings HENLE, MERKEL, DOGIEL, v. HÜTTENBRENNER), ferner die Erweiterung der Pupille bei Sympathicusreizung (für welche die den Dilatator Bestreitenden vasomotorische Wirkungen in Anspruch nehmen), endlich der Umstand, dass directe Reizung am Rande der Iris local beschränkte Erweiterung bewirken kann (BERNSTEIN & DOGIEL, ENGELHARDT).

Iris und Pupille.

Die pupillenverengenden Fasern des Oculomotorius verlaufen durch das Ganglion ciliare zum Auge, nicht aber die pupillenerweiternden Fasern des Sympathicus. Die letzteren haben ihren Ursprung zunächst im Rückenmark, in der Gegend der unteren Hals- und der oberen Brustwirbel (Centrum ciliospinale, BUDGE). Bei pathologischen Reizungszuständen dieser Gegend ist die Pupille erweitert. Jedoch liegt das wirkliche Centrum dieser Fasern in höhern Theilen des Markes, wahrscheinlich in der Medulla oblongata (SALKOWSKI).

Am Kopfe verlaufen die pupillenerweiternden Fasern in der Bahn des Trigeminus, dessen Reizung Erweiterung bewirkt, und dessen Durchschneidung die Wirkung der Sympathicusreizung aufhebt. Da aber nach Sympathicusdurchschneidung die Pupille sich nicht so stark verengt wie nach Trigeminusdurchschneidung, so muss der Trigeminus noch besondere pupillenerweiternde Fasern führen. Der Ursprung derselben liegt beim Frosch im Ganglion Gasseri (ОЕНL, ROSENTHAL, HIRSCHMANN, S. GUTTMANN). Auch entgegengesetzte Angaben über die Pupillenwirkung des Frigeminus existiren (ROGOW).

Bewegungen der Iris treten hauptsächlich unter folgenden Umständen ein:

1. Reizung des Opticus verengt die Pupille durch reflectorische Reizung des Oculomotorius. Die Pupille verengt sich daher wenn Licht in das Auge fällt, und um so stärker, je intensiver das Licht ist. Hierdurch wird die Beleuchtung der Retina einigermassen regulirt. Die Verengerung tritt auch ein bei Reizung des Opticusstammes (MAYO), und bleibt aus nach Durchschneidung des Oculomotorius. Reizung eines Opticus genügt, um beide Pupillen zu verengen. Ueberhaupt sind beide Pupillen im normalen Zustande stets genau gleich weit (DONDERS).

2. Bei der Accommodation für die Nähe verengt sich die Pupille (p. 341), ebenso durch Gifte, welche krampfhafte Accommodationen für die Nähe bewirken (Calabarbohne). Diese Verengerung geschieht durch Reizung der pupillenverengenden Nerven und ist als eine Art "Mitbewegung" zu betrachten (Cap. XI.). Die Verengerung tritt später ein, und geht (bei der toxischen Form) schneller vorüber, als die Accommodation, ist daher von dieser nur in gewissem Grade abhängig.

Die Pupillenverengerung auf Lichteindrücke beginnt im Mittel 0,49 (0,4 LISTING) Sec. nach der Reizung, ihr Maximum tritt 0,58 Sec. nach der Reizung ein. Die accommodative Verengerung beginnt 0,41 Sec. und erreicht ihr Maximum 1,13 Sec. nach dem Impulse. Die Erweiterung auf Sympathicusreizung beim Kaninchen beginnt 0,89 Sec., Maximum 3,40 Sec. nach dem Beginne der Reizung (ARLT jun.). 3. Drehung des Bulbus nach innen bewirkt, ebenfalls durch eine Art Mitbewegung, Pupillenverengerung, durch Erregung des Oculomotorius. Da die Augen im Schlafe nach innen und oben gedreht sind, so erklärt sich hieraus die Pupillenverengerung im Schlafe.

4. Während der Dyspnoe (p. 158) ist eine Pupillenerweiterung vorhanden, die mit dem Eintritt der Asphyxie vorübergeht. Dieselbe beruht auf Reizung des pupillenerweiternden Centrums im Mark, denn sie bleibt aus, wenn vorher der Sympathicus durchschnitten worden.

5. Starke Erregung sensibler Nerven bewirkt reflectorisch eine Pupillenerweiterung (BERNARD, WESTPHAL).

6. Starke Muskelanstrengungen (namentlich starke In- und Exspirationen) sind mit Pupillenerweiterung verbunden (ROMAIN-VIGOUROUX).

Ausserdem bemerkt man schon in der Norm bei jedem Pulse eine sehr geringe Verengerung, ebenso bei jeder Exspiration; überhaupt scheint jeder Blutzufluss zur Iris eine Verengerung zu bewirken; so erklärt sich auch die bei Abfluss des Humor aqueus eintretende Pupillenverengerung (HENSEN & VÖLCKERS).

7. Zahlreiche Gifte bewirken, sowohl bei Einführung in das Blut als bei örtlicher Application, Veränderungen der Pupille. Erweiternd wirkt namentlich Atropin, und zwar durch Lähmung der Endigungen des Oculomotorius im Sphincter iridis. — Verengend wirken: Nicotin, Calabar, Morphium etc., und zwar nach den Einen (HIRSCHMANN, ROSENTHAL) durch Lähmung der Sympathicusendigungen im Dilatator, nach Andern (GRÜNHAGEN) durch Reizung des Oculomotorius. — Die anästhesirenden Gifte (Chloroform, Alkohol etc.) bewirken zuerst Verengerung, dann Erweiterung.

Die Art der Einwirkung der Gifte ist streitig. Indessen ist die Angabe, dass sie alle auf das System des Sphincter wirken (d. h. die erweiternden lähmend, die verengenden reizend), deshalb die wahrscheinlichste, weil die streitigen Gifte gleichzeitig und in gleichem Sinne auf den Accommodationsapparat wirken (vgl. oben). Hauptsächlich ist es zweifelhaft ob die verengenden Gifte (Calabar etc.) nicht durch Lähmung des Sympathicus wirken; für das letztere wird angeführt, dass Reizung des Sympathicus während der Giftwirkung keinen erweiternden Effect habe; dies kann aber in der Heftigkeit des Krampfes des Sphincter seine Ursache haben. — Der Umstand ferner, dass die Atropinwirkung auch nach Durchschneidung des Ganglion eiliare noch eintritt (HENSEN & VÖLCKERS), sowie überhaupt die Wirkung der Gifte bei der directen Einträufelung, machen die Annahme sehr wahrscheinlich, dass in der Iris selbst oder in ihrer Nähe noch unbekannte gangliöse Centra existiren (v. BEZOLD).

Chromatische Abweichungen.

Ist die eine Pupille durch Atropin erweitert, so ist die andere während dieser Zeit verengt, wegen der grossen Lichtmenge, welche in das erstere Auge fällt (vgl. sub 1.).

Abweichungen und Eigenthümlichkeiten des Auges.

Aus dem bisher Gesagten ergiebt sich, wie von jedem vor dem Auge innerhalb der Weite des deutlichen Sehens befindlichen Gegenstande ein scharfes, verkleinertes, umgekehrtes Bild auf der Retina erzeugt werden kann. Indessen wird die vollkommen fehlerlose Ausführung desselben durch gewisse Eigenschaften des Auges verhindert, die es mit den meisten optischen Instrumenten theilt, nämlich:

1. Die chromatische Abweichung. Weisses Licht wird bekanntlich durch die Brechung in seine farbigen Componenten zerlegt, weil diese verschiedene Brechbarkeit besitzen. Geht daher von einem Objectpuncte weisses Licht aus, so muss derselbe im Auge statt eines einzigen eine Reihe von hinter einander liegenden Bildpuncten haben, der vorderste für die brechbarsten (violetten), der hinterste für die am wenigsten brechbaren (rothen) Strahlen. Das Auge kann daher für einen weissen Punct nie vollkommen accommodiren: accommodirt es z. B. so, dass der Bildpunct der violetten Strahlen in die Retina fällt, so erscheinen die übrigen Farben in concentrischen Zerstreuungskreisen, die um so grösser sind, je weiter die Farbe vom Violett entfernt ist; da sich nun in der Mitte alle Zerstreuungskreise und der violette Punct decken, so entsteht ein weisser Fleck mit farbigen Rändern. Ebenso muss ein jeder weisse Gegenstand weiss mit farbigen Rändern erscheinen, da die farbigen Zerstreuungsbilder sich bis auf die Ränder sämmtlich decken. Accommodirt man für eine mittlere Farbe, etwa grün, so entstehen offenbar zwei Reihen von farbigen Zerstreuungskreisen, diese decken sich auch an den Rändern zum Theil so, dass complementäre Farben (s. unten), auf einander fallen, so dass auch die Ränder grösstentheils weiss erscheinen. Letzterer Umstand trägt dazu bei, dass wir die farbigen Ränder beim gewöhnlichen Sehen nicht wahrnehmen; dieselben sind überhaupt wegen des geringen Dispersionsvermögens der Augenmedien (etwa gleich dem des destillirten Wassers, HELMHOLTZ) nur unbedeutend und verschwinden vollends gegenüber dem stärkeren weissen Lichteindruck der Mitte; möglicherweise wirkt auch die Zusammenstellung der verschiedenen Augenmedien etwas achromatisirend (analog den Flint- und Crownglas-Linsen der optischen Instrumente). - Um die farbigen Ränder deutlich wahrzunehmen, muss man, wie aus Obigem hervorgeht, nicht für eine mittlere, sondern für eine extreme Farbe (Roth oder Violett) accommodiren; dies erreicht man selbstverständlich am sichersten, wenn man gar nicht für den Gegenstand selbst accommodirt. Weisse Felder erscheinen daher bei zu ferner Accommodation mit einem schwachen rothgelben, bei zu naher mit einem blauen Rande (HELMHOLTZ); ein durch ein rothviolettes Glas gesehener Lichtpunct erscheint bei Accommodation für die rothen Strahlen roth mit violettem Zerstreuungskreis, im anderen Falle umgekehrt (HELMHOLTZ). - Aus dem oben Gesagten ergiebt sich auch, dass die Weite des deutlichen Sehens für verschiedene Farben verschieden ist. Offenbar muss Nahe- und Fernpunct für

346

Sphärische Abweichung. Astigmatismus. Fluorescenz.

violettes Licht bedeutend näher liegen, als für rothes; man kann dies daran erkennen, dass man um Puncte verschiedener Farbe bei gleichem Abstand durch ein Fernrohr deutlich zu sehen, das letztere verschieden einstellen muss (FRAUN-HOFER). Rothe Flächen endlich erscheinen näher als in gleicher Ebene befindliche blaue, weil das Auge für erstere stärker accommodiren muss und daraus (s. unten) auf grössere Nähe urtheilt (BRÜCKE).

2. Sphärische (monochromatische) Abweichung. Die von einem Objectpunct ausgehenden Strahlen können sich nur dann wieder zu einem wahren Bildpunct vereinigen, wenn sie in sehr geringer Entfernung von der Axe auf die sphärischen brechenden Flächen auffallen, wie bereits oben mehrfach erwähnt ist (p. 326, 330). Dieser Bedingung ist theilweise dadurch genügt, dass die Iris die Randstrahlen in bedeutendem Umfange abblendet. Eine fernere Correction wird dadurch bewirkt, dass einige brechende Flächen Ellipsoide sind, dergestalt, dass die Krümmung nach den Rändern zu bedeutend abnimmt; ferner dadurch, dass in der Linse die Randstrahlen nur die äusseren Schichten durchwandern, welche (p. 323.) geringeres Brechungsvermögen besitzen, als die inneren. Diese Correction ist aber nie genau, sondern bald nicht ausreichend, bald übermässig, so dass fast stets, namentlich bei weiter Pupille, eine gewisse Abweichung übrig bleibt, die sich durch Zerstreuungskreise, also undeutliche Bilder kundgeben muss; sie ist aber selten merklich. Auch mangelhafte Centrirung des brechenden Systems im Auge lässt sich zuweilen nachweisen (BRÜCKE). - Einige andere Formen monochromatischer Abweichung umfasst der sog.

Astigmatismus (HELMHOLTZ, KNAPP, DONDERS). a) Der sog. "unregelmüssige" Astigmatismus besteht in mannigfachen Krümmungsabweichungen der brechenden Flächen, wodurch die Vereinigung eines homocentrischen Strahlenbündels in Einen Punct verhindert wird; jeder kleine Abschnitt der Fläche hat seinen besonderen Bildpunct, so dass ein punctförmiges Object auf der Retina ein sternförmiges Bild giebt (Fixsterne). Die Cornea zeigt ausserdem vorübergehende Unebenheiten (Thränen etc.). - b) Der "regelmässige" Astigmatismus besteht in einer Verschiedenheit der Krümmung der brechenden Flächen in verschiedenen Meridianen. Die beiden am meisten von einander abweichenden heissen die Hauptmeridiane. Meist ist beim Auge der eine, am stärksten gekrümmte, der verticale, - der andere, am schwächsten gekrümmte, der horizontale. Beide Meridiane haben also verschiedene Brennweiten, ja das Auge kann sogar im verticalen Meridian kurzsichtig, im horizontalen weitsichtig sein. Meist ist freilich der Unterschied so gering, dass er sich nur zu erkennen giebt, wenn man feine parallele Striche in der Ferne betrachtet; man kann sie, wenn sie vertical stehen, weiter entfernt erkennen, als horizontal. - Bei hochgradigem Astigmatismus muss man eine Correction anbringen durch ein Glas, das in einer Richtung stärker als in der andern, einfacher: überhaupt nur in einer Richtung, gekrümmt ist, d. h. Gläser mit cylindrischer Fläche.

3. Fluorescenz. Sämmtliche Augenmedien fluoresciren, am wenigsten der Glaskörper, am meisten die Linse (HELMHOLTZ, SETSCHENOW, REGNAULD). Wenn daher die Erregbarkeit der Netzhaut auf Aetherwellen bestimmter Längen beschränkt ist (s. unten), so wird unser Wahrnehmungsvermögen durch die Fluorescenz nach der Seite der kleinsten Wellen hin (ultraviolette Strahlen) erweitert. Ueber die factischen Grenzen s. unten.

Polarisation. Reflexion. Bedeutung der Stäbchen.

4. Polarisation. Fällt polarisirtes blaues oder Blau enthaltendes Licht in's Auge (sieht man z. B. durch einen Nicol gegen den Himmel, oder auch mit blossem Auge, da die blauen Strahlen des Himmels schon polarisirt sind), so bemerkt man eine büschelförmige Figur (HAIDINGER), welche sich mit dem Auge bewegt. Die doppeltbrechenden Eigenschaften der Augenmedien, welche nachgewiesen sind (JAMIN, VALENTIN), genügen zur Erklärung dieser Erscheinung nicht. Die Ursache liegt in den (ebenfalls vermuthlich doppeltbrechenden) Fasern des gelben Flecks (s. unten), welche, von dem polarisirten Lichte in verschiedenen Winkeln getroffen, hier mehr dort weniger davon absorbiren und so die erwähnte Erscheinung bewirken (HELMHOLTZ); es kann indess auf diesen Gegenstand nicht näher eingegangen werden.

Verbleib des ins Auge gedrungenen Lichtes.

Die in das Auge gedrungenen Lichtstrahlen werden hier zum · Theil absorbirt, zum Theil aber reflectirt, und zwar so, dass sie auf demselben Wege wieder aus dem Auge zurückkehren, auf welchem sie hineingelangt sind. Jedes ins Auge fallende homocentrische Strahlenbündel vereinigt sich, bei vollkommener Accommodation, nach der Brechung in einem Puncte der durchsichtigen Retina, und zwar vermuthlich in der äusseren (Stäbchen-) Schicht. Ein jedes Stäbchen*) ist aber zu betrachten als ein radial gestelltes Prisma von sehr starkem Brechungsvermögen, das mit der Basis an die Chorioïdea grenzt und längs seiner Flächen mit einer schwach lichtbrechenden Zwischensubstanz in Berührung ist (BRÜCKE). Die nach der Vereinigung im Bildpuncte wieder divergirenden Strahlen treffen nun theils direct die Chorioïdea (axiale Strahlen), theils zunächst die Seitenwand des Stäbchens, letztere aber unter so stumpfen Winkeln, dass nicht eine Brechung in die Zwischensubstanz, sondern eine totale Reflexion stattfindet; hierdurch müssen auch diese Strahlen schliesslich auf die Chorioïdea geworfen werden. Von dem schwarzen Pigment derselben werden hier die Strahlen fast ganz absorbirt; der Rest des Lichts aber wird reflectirt und muss nun, wie sich leicht ergiebt, wiederum theils direct (die axialen Strahlen), theils nach Reflexion an den Stäbchenwänden, nach bekannten optischen Gesetzen, wieder zu dem Objectpuncte aus dem Auge heraus zurückkehren, da das dem Bildpunct entsprechende Stäbchen jetzt den Lichtpunct darstellt (p. 326). Durch diese Einrichtung wird der Uebergang von Strahlen von einem Theile der Netzhaut auf den andern, Interferenzen u. s. w. verhütet, und ein deutliches Sehen er-

348

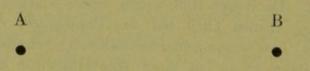
^{*)} Nach den neueren Untersuchungen spielen diese Rolle nur die sog. "Aussenglieder" der Stäbchen und die ihnen ganz ähnlichen der Zapfen (vgl. unten).

Augenspiegel. Leuchten des Auges.

möglicht. Zugleich ist dies der Grund, weshalb beim Hineinblicken in ein Auge der Augengrund immer dunkel erscheint.

Um ihn leuchten zu sehen, müsste der Beobachter seine eigene Netzhaut zum Ausgangspunct von Strahlen machen, die dann auf dem Rückwege, nach der Reflexion im beobachteten Auge zur Wahrnehmung kommen würden. Man erreicht dies künstlich durch die "Augenspiegel". Ihr Wesen besteht darin, dass das Licht einer Flamme so in das beobachtete Auge hineingeworfen wird, als ob es von dem beobachteten käme. Einer der einfachsten (HELMHOLTZ) besteht aus einem Satz von Glasplatten, welcher zugleich als Spiegel und als durchsichtiges Medium dient. Man wirft durch ihn das Licht einer seitlich vom beobachteten Auge befindlichen Lichtquelle in dasselbe. Die zurückkehrenden Strahlen werden von den Platten nur zum Theil zur Lichtquelle zurückgeworfen; zum Theil gehen sie durch die Platten hindurch und gelangen in das beobachtende Auge, welches sich hinter den Platten befindet. Das beobachtete Auge erscheint auf diese Weise diffus leuchtend, mit rothem Lichte. Man kann ferner mittels des reflectirten Lichtes ein deutliches Bild des Augengrundes erhalten: Wenn das beobachtete Auge auf eine endliche Entfernung eingestellt ist, so befindet sich die Netzhaut etwas hinter dem Brennpunct des optischen Systems, welches wie das Objectiv eines Microscops ein reelles, verkehrtes, vergrössertes Bild der Netzhaut in derjenigen Ebene entwirft für welche das Auge eingestellt ist. Da dieses Bild wegen seiner starken Vergrösserung (die nur einen kleinen Theil auf das Pupillenfeld des Beobachters kommen lässt) und wegen seiner fortwährend wechselnden Lage nicht beobachtet werden kann, so muss eine Hülfslinse benutzt werden: entweder eine collective Convexlinse, die das Bild kleiner, lichtstärker, dem Beobachter näher und in einer Ebene fixirbar macht, - oder eine Concavlinse, welche ähnliche Wirkungen hat und zugleich das Bild virtuell und aufrecht macht (vgl. p. 336).

Den Plattensatz kann man durch einen Hohl- oder Planspiegel ersetzen, der durch eine centrale Oeffnung einen Theil der rückkehrenden Strahlen für das beobachtende Auge hindurch lässt. So entstehen andere Formen des Augenspiegels (von RUETE und Coccius). Zwischen Lichtquelle und (Plan-) Spiegel stellt man eine Convexlinse auf, um das Licht zu concentriren. — Kommt es nicht darauf an, ein scharfes Bild der Retina eines Auges zu gewinnen, sondern nur dieselbe diffus beleuchtet zu sehen, so genügt statt des oben erwähnten folgendes Verfahren (BRÜCKE): Das zu beobachtende Auge blickt auf einen nahen leuchtenden Punct, accommodirt aber für die Ferne. Statt des Vereinigungspunctes entsteht jetzt ein Zerstreuungskreis auf der Retina. Die reflectirten


Sehen. Endorgane des Opticus.

Strahlen werden jetzt nicht in ihrem Ausgangspuncte sich wieder vereinigen, sondern entweder weit hinter demselben oder gar nicht (parallel oder divergirend). Befindet sich nun das divergirende Auge innerhalb des Kegels der rückkehrenden Strahlen (vor dem Eindruck der Flamme nöthigenfalls durch einen Schirm geschützt), so sieht es den Augengrund erleuchtet. Der belenchtete Augengrund erscheint in rothem Lichte. Albinotische Menschen und Thiere zeigen ohne Weiteres einen leuchtenden Augenhintergrund, weil Licht durch Sclerotica und Chorioïdea in das Auge fällt — Das Leuchten des Auges erscheint besonders stark bei den Thieren, bei welchen in einem Theile der Chorioïdea das schwarze Pigment durch eine helle, glänzende, stark reflectirende Membran ersetzt ist, das sog. Tapetum (bei vielen Säugethieren, namentlich Raubthieren und Cetaceen, bei Fischen u. s. w.).

Sehen.

Die auf die Netzhaut fallenden Strahlen kommen dadurch zur Wahrnehmung, dass die in ihr befindlichen Nervenendigungen des Opticus von den Aetherschwingungen in einer uns unbekannten Weise erregt werden. Als lichtempfindende Nervenendigungen sind nur die Stäbchen und Zapfen zu betrachten. Die Beweise hierfür sind folgende:

1. Die Eintrittsstelle des Schnerven, an welcher die Netzhaut nur aus Opticusfasern ohne Stäbchen und Zapfen besteht, ist zur Lichtwahrnehmung unfähig; sie heisst daher der "blinde Fleck" (auch MARIOTTE'scher Fleck). Fixirt man den Punct A mit dem

rechten Auge (bei zugehaltenem linken) aus einer Entfernung die etwa 4 mal so gross ist als der Abstand AB, so wird der Punct B völlig unsichtbar. Beim Fixiren von A fällt nämlich sein Bild auf den Endpunct der Augenaxe und das Bild von B auf die Eintrittsstelle des Sehnerven, welche etwa $3^{1}/_{2}^{mm}$ von jenem nach innen entfernt ist. Ebenso verschwindet A, wenn man B mit dem linken Auge aus derselben Entfernung fixirt. Ueber die Rolle des blinden Fleckes im Gesichtsfelde s. unten.

2. Die Fovea centralis retinae und die sie umgebende Macula lutea, welche nur Zapfen und Stäbchen, aber keine Opticusfasern enthalten, sind zum schärfsten Sehen geeignet (die Fovea centralis liegt fast genau am Endpunct der Augenaxe [s. u.], so dass das Bild

Endorgane des Opticus.

eines fixirten Gegenstandes auf diese Stelle fällt). Da die Fovea centralis nur Zapfen, die Macula lutea Zapfen in grosser Menge (ein Zapfen von einem Kreise von Stäbchen umgeben) die übrige Netzhaut aber nur wenig Zapfen (1 Zapfen von mehreren Stäbchenkreisen umgeben) enthält, so ist man zu dem Schlusse berechtigt, dass die Zapfen zur Lichtempfindung noch geeigneter sind, als die Stäbchen (näheres über beider Function s. unten.

3. Die Netzhautgefässe, welche hinter der Faserschicht, aber vor der Stäbchen- und Zapfenschicht liegen, werfen, wenn das Auge von aussen beleuchtet wird, auf letztere einen Schatten; da dieser unter gewissen, unten zu erörternden Bedingungen entoptisch wahrnehmbar ist (PURKINJE'sche Aderfigur), so ist dies ein sicherer Beweis, dass die Stäbchen und Zapfen die lichtempfindenden Elemente sind. Dass die wahrgenommenen Schatten wirklich von den Netzhautgefässen, und nicht etwa von anderen vor der Netzhaut liegenden herrühren, ist durch genaue Messungen constatirt. Durch Bewegen der Lichtquelle verändert nämlich der Schatten seinen Ort; und da man diese Ortsveränderung entoptisch messen kann, so kann man daraus die Entfernung der schattenwerfenden Körper von der wahrnehmenden Fläche leicht berechnen. Diese Entfernung stimmt aber genau überein mit der direct gemessenen Entfernung der Netzhautgefässe von den Stäbchen (H. MÜLLER).

Nur die Endorgane also (Stäbchen und Zapfen) sind durch Aetherschwingungen direct erregbar, nicht die Opticusfasern selbst, weder innerhalb der Retina noch im Stamme des Nervus opticus. Dagegen bewirkt jede Erregung des Opticus an irgendeiner Stelle seines Verlaufs oder seiner Endigungen, durch einen der gewöhnlichen Nervenreize (mechanische, electrische, u. s. w.), die Empfindung des Lichtes. Lichtempfindung ist also die "specifische Energie" des Opticus (s. p. 311).

Mechanische Reizungen im Bereiche des Opticus sind: Quetschung oder Durchschneidung des Stammes (Erfolg: eine blitzartige Erleuchtung des ganzen Gesichtsfeldes), Druck auf das Auge, also auf einen Theil der Retina (Erfolg: eine kreisförmige leuchtende "Druckfigur" auf der entsprechenden [gegenüberliegenden] Seite des Gesichtsfeldes); bei krankhaft erregbaren Augen genügt sogar die Berührung des die Retina durchfliessenden Blutes, um Lichterscheinungen (Funken, Gefässbilder) hervorzurufen; endlich bewirkt eine plötzliche Accommodationsveränderung im Dunkeln durch die damit verbundene Zerrung des vorderen Netzhautrandes die Erscheinung eines leuchtenden Saumes am Rande des Gesichtsfeldes (PURKINJE, CZERMAK). — Electrische Reizung (Durchleiten eines constanten Stromes durch das Auge oder Stromesschwankungen) bewirkt eben-

Erregung der Retina, Ermüdung, Lichtempfindung,

352

falls eigenthümliche Lichterscheinungen, bei denen die verschiedenen Theile der Netzhaut zur Wahrnehmung kommen (RITTER, PURKINJE). Ueber den Einfluss der electrischen Reizung auf die Farbenempfindung s. unten.

Das Zustandekommen einer Netzhauterregung setzt nur eine äusserst kurze Zeit der Beleuchtung voraus (die Dauer des electrischen Funkens genügt). Bei längerer Dauer, namentlich intensiver Erregungen tritt eine Ermüdung der Netzhaut ein. Hieraus erklärt sich: 1. die Erscheinung der "negativen Nachbilder" (s. unten); 2. die bedeutend grössere Empfindlichkeit der Netzhaut nach längerem Aufenthalt im Dunkeln; 3. die grössere Wirksamkeit intermittirender Lichtreize im Vergleich zu anhaltenden; der Effect der Intermittenz ist am grössten, wenn dieselbe 17-18 mal in der Secunde erfolgt (BRÜCKE), vermuthlich weil dann die neue Reizung grade eintritt, wenn das Schorgan sich von der vorhergehenden eben erholt hat (jedoch hat auch die Mitwirkung der complementären Nachbilder, s. unten, auf die Erscheinung Einfluss, BRÜCKE).

Für die Wahrnehmung von Gelb genügt eine viel kürzere Beleuchtung als für die von Violett (VIERORDT, BURCKHARDT & FABER), die längste Beleuchtung erfordert Roth (LAMANSKY); die zur Warnehmung nöthige Stärke der Belenchtung ist für alle Farben nahezu gleich. - Je heller und grösser die Netzhautbilder sind, um so weniger Zeit ist zu ihrer Wahrnehmung nöthig, jedoch nimmt die erforderliche Zeit nur in arithmetischer Progression ab, wenn Beleuchtungsintensität und Grösse des Netzhautbildes in geometrischer Progression zunehmen; der reizbarste Theil der Netzhaut liegt der Netzhautmitte ferner, als der am raschsten die Contouren der Gegenstände wahrnehmende Theil (Exnen). Die Curve der Netzhauterregung hat einen ansteigenden und einen absteigenden Theil, so dass bei sehr kurzer Beleuchtung nicht die volle Intensität der Lichtempfindung zu Stande kommt (FICK); bei anhaltender Beleuchtung entspricht der absteigende Theil der Ermüdung, Die absolute Helligkeit ist ohne Einfluss auf die relative Ermüdung, letztere wirkt nur so, als ob das objective Licht um einen Bruchtheil seiner Intensität vermindert würde (HELMHOLTZ). Die Ermüdung verläuft anfangs steiler als weiterhin: der Verlust beträgt in den ersten Secunden über 7 pCt., später viel weniger; der ganze Tagesverlust beträgt nur etwa 51 pCt., weil das Auge fortwährend Gelegenheit zur Erholung hat; des Morgens ist der Einfluss der Ermüdung am stärksten (FICK & C. F. MÜLLER). Im Centrum der Netzhaut tritt sie schneller ein als an der Peripherie (AUBERT).

Qualitäten der Lichtempfindung.

Nicht alle Aetherschwingungen vermögen die Endorgane des Opticus zu erregen. Diejenigen, deren Wellenlänge grösser ist, als die der FRAUNHOFER'schen Linie A entsprechenden ("ultrarothe, thermische Strahlen"), sind zur Erregung unfähig, daher unsichtbar; diejenigen, deren Wellenlänge kleiner ist, als die der Linie H entsprechenden ("ultraviolette, chemische Strahlen") erregen so schwach, dass es besonderer Vorrichtungen bedarf, um sie sichtbar zu machen.

Die Unsichtbarkeit der ultrarothen Strahlen hat zur Untersuchung der Diathermansie der Augenmedien geführt, wobei sich ergeben hat, dass letztere über 90 pCt. der Wärmestrahlen absorbiren (BRÜCKE, JANSSEN). In Bezug auf die einzelnen Spectraltheile verhält sich die Diathermansie der Augenmedien etwa wie die des Wassers (FRANZ); es wird sonach von den ultrarothen Strahlen noch so viel durchgelassen, dass man ihre Unsichtbarkeit nur durch ihre Unfähigkeit die Retina zu erregen, erklären kann. — Die schwer sichtbaren ultravioletten Strahlen erscheinen, wenn sie (natürlich ohne Zuhülfenahme fluorescirender Körper, ausser den eigenen Augenmedien, s. p. 347) künstlich durch Abblendung des übrigen Spectrums sichtbar gemacht werden, mit bläulichweiss-grauer ("lavendelgrauer") Farbe (HELMHOLTZ), die äussersten der sehr verlängerten Metallspectra ohne erkennbare Farbe (MASOART).

Die erregungsfähigen Aetherschwingungen verursachen durch Fortleitung der Erregung von den Endorganen in der Netzhaut zu den Centralorganen des Opticus im Bewusstsein den Eindruck der Lichtempfindung. Die Intensität (Elongation, Wellenhöhe) der Schwingungen bedingt die Stärke des Lichteindrucks, die Länge der Wellen hingegen bedingt specifische Verschiedenheiten des Lichteindrucks, die man als Farben bezeichnet. Das Sonnenspectrum, welches Strahlen aller erregungsfähigen Wellenlängen nebeneinander in das Auge gelangen lässt, zeigt daher nebeneinander sämmtliche Farben. Ausser diesen Farben, welche man "einfache" nennt, giebt es noch sogenannte "Mischfarben". Den Eindruck einer Mischfarbe erhält das Bewusstsein entweder dadurch, dass Strahlen von verschiedener Wellenlänge (verschiedene einfache Farben) sich zu einem resultirenden Wellensystem vereinigen, welches die Retina trifft, oder dadurch dass dieselben oder zusammengehörige (identische, s. unten) Opticusfasern gleichzeitig durch mehrere verschiedenfarbige Strahlen erregt werden. In beiden Fällen geben dieselben einfachen Farben dieselbe Mischfarbe.

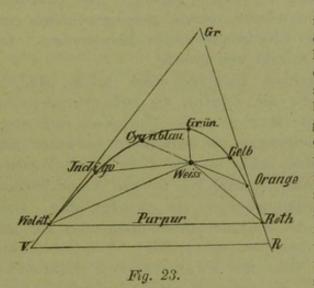
Die Empfindung der Abwesenheit eines Lichteindrucks auf einer lichtempfindenden Netzhautstelle nennen wir "Schwarz".

Die beiden oben angedeuteten Arten der Farbenmischung werden in folgender Weise verwirklicht: 1. Bildung resultirender Aetherwellensysteme: a) die Lichtquelle selbst entsendet ein solches, dasselbe ist dann durch ein Prisma in die einfachen Farben zerlegbar; b) man leitet mehrere von verschiedenen Puncten ausgehende Farbenstrahlen so in das Auge, dass sie auf dieselbe Stelle der Netzhaut fallen. Einfache Mittel hierzu sind folgende: Man betrachtet eine Farbe durch eine schräggestellte Glasplatte, welche zugleich

Hermann, Physiologie. 5. Aufl.

23

Farbenmischung.


durch Reflex eine andere Farbe in das Auge wirft (HELMHOLTZ), — oder man stellt den Scheinen'schen Versuch (s. p. 338) so an, dass man in die beiden kleinen Oeffnungen zwei verschieden gefärbte Gläser bringt; die beiden Strahlenkegel sind jetzt verschieden gefärbt. Accommodirt man nun so, dass die beiden Zerstreuungskreise sich theilweise decken, so wird die gemeinschaftliche Stelle der Retina von gemischtem Licht beschienen (CZERMAK). 2. Erregung derselben oder correspondirender Retinaelemente durch verschiedene Farben: a) Man benutzt das Beharrungsvermögen der Netzhaut (s. unten), und lässt schnell hintereinander (mittels des "Farbenkreisels") verschiedene Farben ins Auge fallen, so dass die durch die erste bewirkte Erregung noch vorhanden ist, wenn die zweite einwirkt; b) man lässt auf zwei "identische Puncte" beider Augen (s. unten) verschiedene Farben wirken.

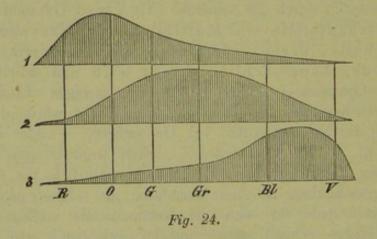
Die Erfahrungen über Farbensehen und Farbenmischung (New-TON, GRASSMANN, HELMHOLTZ, MAXWELL) führen zu folgenden Sätzen: 1. Derselbe farbige Eindruck lässt sich durch sehr verschiedene Mischungen hervorrufen; die Anzahl der möglichen Farbenempfindungen ist also viel kleiner als die der möglichen objectiven Schwingungsformen. 2. Jede Farbe erscheint um so weisslicher, je intensiver sie beleuchtet ist, und bei intensivster Beleuchtung weiss; am leichtesten von allen Farben geht das Gelb in Weiss über. 3. Die Mischung zweier einfacher Spectralfarben erzeugt einen Eindruck, welcher sich jedesmal reproduciren lässt durch eine zwischen beiden im Spectrum liegende Farbe, gemischt mit einem gewissen Quantum Weiss (d. i. die Farbe des unzerlegten Sonnenlichts), oder durch blosses Weiss (in diesem Falle heissen die beiden Farben Complementärfarben); hieraus folgt, dass auch drei und mehr Spectralfarben gemischt immer einen Eindruck machen, der aus einer Spectralfarbe und Weiss wiedererhalten werden kann; jeder beliebige Farbeneindruck kann also durch eine Spectralfarbe mit Weiss wiedergegeben werden.

Um den 3. Satz allgemeingültig zu machen, muss man sich das Spectrum ringförmig geschlossen denken, indem man zwischen das rothe und violette Ende eine neue Farbe, die Mischfarbe aus Roth und Violett, nämlich Purpur, einfügt. Verlegt man in die Mitte dieses geschlossenen Feldes (Figur 23) das Weiss, und füllt man das Feld in der Weise farbig aus, dass jeder Vector von einer Spectralfarbe zum Weiss, die Mischungen derselben mit Weiss in allen Mischungsverhältnissen enthält (so dass die Farbe nach dem Weiss zu immer weisslicher wird), so kann das Schema zur unmittelbaren Auffindung des Mischeindrucks bei gegebenen Componenten dienen. Denkt man sich nämlich in die den farbigen Componenten entsprechenden Puncte Massen gelegt, deren Grössen den Intensitäten derselben entsprechen, und sucht man den gemeinsamen Schwerpunct derselben auf, der natürlich innerhalb des ebenen Feldes liegen muss, so bezeichnet der Ort desselben den gesuchten Mischeindruck. Man sieht sofort,

Mischfarben. Theorie der Farbenwahrnehmung.

dass der Mischeindruck zweier Spectralfarben in der sie verbindenden Graden liegen muss, und dass er, wie es Satz 3 verlangt, einer zwischenliegenden Spectralfarbe, mit Weiss gemischt, entspricht; dass ferner die Beimischung von

Weiss um so stärker wird, je mehr die beiden Ingredientien einander diametral gegenüber liegen; dass endlich jede durch das Weiss selbst gelegte Grade zwei Complementärfarben ver-Die Gestalt der umbindet. gebenden Curve und die Lage des Weiss musste deshalb so gewählt werden, dass letzteres immer in der Verbindungslinie zweier Complementärfarben und zwar immer derjenigen Farbe näher liegt, welche relativ stark vertreten sein muss, um mit ihrer Complementärfarbe Weiss zu geben.


Wollte man annehmen, dass jede Opticusfaser durch verschiedene Farben in verschiedener Art erregt würde und so die mannigfachen farbigen Lichteindrücke hervorbrächte, so widerspräche dies nicht allein dem Princip der specifischen Energieen (vgl. p. 312), sondern es wären auch viele der im Vorstehenden enthaltenen Erfahrungen, ganz besonders die Identität des Eindrucks bei objectiver und subjectiver Mischung derselben Farben absolut unverständlich. Alle Schwierigkeiten werden dagegen vollständig beseitigt durch die Annahme (TH. YOUNG, HELMHOLTZ), dass jede Netzhautstelle ein Multiplum von Nervenendigungen enthalte, deren jede durch eine bestimmte Farbe allein oder hauptsächlich erregt wird und durch die zugehörige Opticusfaser einen bestimmten farbigen Eindruck im Bewusstsein hervorbringt. Eine gemischte Farbe würde dann (wie ein Klang durch Resonatoren, vgl. Gehörorgan, - oder wie durch ein Prisma) in ihre Componenten zerlegt werden, und diese die betreffenden Fasern erregen. Es ist dann natürlich für die Empfindung gleichgültig, ob eine Mischfarbe als solche, oder ob die Componenten jede für sich die Netzhautstelle treffen, oder ob endlich letztere schnell nach einander anlangen, oder gar auf die correspondirenden Puncte beider Netzhäute vertheilt sind. Weiss würde empfunden werden bei gleichmässiger Erregung aller Elemente.

Theorie der Farbenwahrnehmung.

Wie viele solcher farbenpercipirenden Elemente man an jedem Netzhautpuncte anzunehmen hat, ist a priori nicht zu bestimmen; die geringste denkbare Zahl ist drei (Young). Aus Gründen, die hier übergangen werden müssen, nimmt man gewöhnlich ein roth-, ein grün- und ein violettempfindendes Element an. In Wahrheit ist vielleicht die Anzahl weit grösser.

Die neuesten anatomischen Untersuchungen haben nämlich als fast sicher erwiesen, dass die Zapfen die farbenpercipirenden Elemente der Netzhaut sind (M. SCHULTZE). Dieselben sind aber als Multipla von Nervenendigungen zu betrachten, sie haben ein längsgestreiftes Aussehen und gehen in eine dicke Faser (Zapfenfaser) über, welche aus einem Bündel von feinsten Axencylindern besteht, die in der Zwischenkörnerschicht aus einander fallen. Das Farbenperceptionsvermögen der Netzhaut variirt demgemäss mit der Verbreitung der Zapfen in derselben (vgl. p. 351). Die Stäbchen sind höchstwahrscheinlich bloss mit quantitativem Lichtunterscheidungsvermögen begabt. Sie gehen in einen einzelnen Axencylinder über, oder wenigstens in eine viel geringere Zahl als die Stäbchen.

Die in Satz 2 p. 354 angeführte Erfahrung erfordert die schon im Text angedeutete Annahme dass jede Youws'sche Faser nicht bloss durch eine, sondern durch alle Farben, nur in verschiedenem Grade, erregt wird. In Fig. 24 bezeichnen die Ordinaten der Curven den relativen Erregungsgrad den jede Spectralfarbe der Youws'schen Faser ertheilt und zwar gilt Curve 1 für die rothempfindende, 2 für die grünempfindende, 3 für die violett empfindende Faser.

Da bei zunehmender Intensität der Beleuchtung die Erregung bald einen Maximalwerth erreichen muss, so wird nothwendig eine intensiv beleuchtete Farbe alle 3 Fasern im Maximum, also gleich stark erregen, also weiss erscheinen müssen; Gelb, das ohnehin wie die Curven zeigen, die 3 Fasern annäbernd

356

gleich stark erregt, muss am leichtesten in Weiss übergehen (s. p. 354). — In der Farbenebene Fig. 23 muss man den farbigen Eindrücken die der Erregung einzelner Youwo'scher Fasern entsprechen würden, Plätze geben, die ausserhalb des Farbenfeldes liegen, also in R, Gr und V; denn wie Fig. 24 zeigt giebt es keine objective Farbe die nur eine einzige Youwo'sche Faser erregt; natürlich muss wiederum das Weiss im Schwerpunct dreier gleicher in R, Gr und V gelegter Massen liegen. Das Dreieck R Gr V umfasst alle denkbaren farbigen Eindrücke, aber nur das innere Feld die durch objective Beleuchtung möglichen; der Rest kann nur auf subjectivem Wege entstehen.

Die Young - HELMHOLTZ - SCHULTZE'sche Theorie wird ausser den schon genannten Umständen (Resultate der Farbenmischungen; Form der Zapfen- und Stäbchenfasern) noch durch Folgendes gestützt: 1. Den Nachtthieren (Eule, Fledermaus) fehlen die Zapfen gänzlich, sie haben nur Stäbchen (M. SCHULTZE); dies stimmt zu ihrer Aufgabe nur quantitative Lichtverschiedenheiten (Hell und Dunkel) zu unterscheiden. 2. Das Farbenunterscheidungsvermögen des Menschen ist am schärfsten in der Fovea centralis, wo nur Zapfen sind, nimmt nach der Peripherie ab, parallel mit der Einstreuung von Stäbchen, und fehlt endlich ganz an der Peripherie, wo die Zapfen nur vereinzelt vorkommen (AUBERT, M. SCHULTZE). Hier findet sich auch eine qualitative Abweichung der Farbenwahrnehmung (s. unten). 3. Sehr häufig kommt ein Fehler des Auges vor, die sog. Farbenblindheit, namentlich die Rothblindheit (Daltonismus). Letztere besteht darin, dass Roth schwarz erscheint, und dass Mischfarben, welche Roth enthalten, so erscheinen, als ob das Roth fehlte (Weiss z. B. grünblau). Dieser Zustand ist nicht anders zu erklären, als durch einen Mangel oder eine Functionsunfähigkeit der rothempfindenden Elemente*); da es Rothblinde giebt, die durch starkes Roth erregt werden, so ist wohl kein Mangel, sondern eine Unvollkommenheit, welche graduell variiren kann, anzunehmen. Die peripherischen Theile der Netzhaut sind normal in gewissem Grade rothblind (nach WOINOW auch grünblind): Weiss erscheint hier grünlich; da ferner an den Grenzen der Farbenwahrnehmung (bei Kleinheit des farbigen Bildes oder kurzer Beleuchtung), ebenfalls das Roth am leichtesten unempfindbar wird (AUBERT, LAMANSKY), so scheint es, dass die rothempfindenden Zapfenelemente eines stärkeren Reizes bedürfen als die übrigen**), und dass ferner eine gewisse Anzahl von Zapfen erregt werden müssen, damit überhaupt eine Farbenwahrnehmung zu Stande komme; diese beiden Sätze erklären alle genannten Erscheinungen. (Jedoch soll auch Grünblindheit vorkommen, PREYER.) - Electrische Ströme geben, wenn sie den Opticus durchfliessen, schwache Farbenempfindungen, und zwar erscheint das Gesichtsfeld violett bei aufsteigendem, röthlichgelb bei absteigendem Strom (RITTER); dieselbe Wirkung äussert sich beim Farbensehen als ein Zuwachs (Beimischung) im violetten resp. gelben Sinne (SCHELSKE). Es scheint also die Erregung der violettempfindenden Fasern

^{*)} Für einen absolut Rothblinden werden alle denkbaren Farbeneindrücke sich auf die grade Linie Gr V in dem Schema Fig. 23 beschränken.

^{**)} Hierfür spricht ausserdem noch, dass bei Schnervenatrophie zuerst Rothblindheit eintritt (Benedict, Leber), und dass im Roth geringe Helligkeitsunterschiede schwerer erkannt werden als bei irgend einer anderen Farbe (Lamansky). Das Unterscheidungsvermögen für Intensitäten nimmt vom Roth zum Violett beständig zu, und nur im äussersten Violett wieder ab (Dobrowolsky).

bei aufsteigendem Strom stärker, bei absteigendem schwächer zu sein, während die der grün- und rothempfindenden wenig beeinflusst wird. 4. Eine bedeutende Stütze für die Youxe'sche Theorie gewähren die vollkommen analogen Verhältnisse beim Gehörorgan (s. d.).

Der gelbe Farbstoff der Macula lutea macht namentlich bei starker Entwicklung die Netzhautmitte empfindlicher für Gelb und weniger empfindlich für Violett, wie manche Erfahrungen lehren (MAXWELL, PREYER). Das bei Santoninvergiftung eintretende Gelbsehen wird von Einigen (M. SCHULTZE) auf Vermehrung des gelben Pigments zurückgeführt, während Andere (HÜFNER) eine Lähmung der violettempfindenden Fasern annehmen, besonders weil Anfangs Violettsehen eintritt, was durch anfängliche Reizung dieser Fasern zu erklären wäre

Die Art, wie das gemischte Licht in den Zapfen zerlegt wird, ist noch ziemlich unverständlich (s. unten). Dagegen kommt bei den Vögeln eine Einrichtung vor, welche Aufschluss über deren Farbenperception giebt. Die Zapfen der Vogelretina sind nämlich einfache Elemente, indem sie nur mit einem einfachen Axencylinder verbunden sind, sie sind also im Sinne der SCHULTZE'schen Theorie Stäbchen; dieselben enthalten aber an der Grenze zwischen Innen- und Aussenglied (s. unten) eine fettartige Kugel, welche bei den einen roth, bei den andern gelb, bei noch andern farblos ist. Es wäre nun denkbar, das die Stäbchen der ersten Art nur rothes Licht zu den empfindenden Elementen zulassen die der zweiten gelbes, die der dritten vielleicht weisses. Die Farbenwahrnehmung scheint also hier auf mehrere Stäbchen vertheilt, von denen einige nur durch Licht von besonderer Farbe erregt werden; diese Vielheit von Stäbchen entspricht einem Zapfen des Menschen (M. SCHULTZE). Der Eule fehlen die pigmentirten Stäbchen, es bleiben nur die farblosen übrig (s. oben).

An den Stäbchen und Zapfen unterscheidet man leicht zwei Theile, ein inneres und ein äusseres Glied (M. SCHULTZE). Das Aussenglied ist bei Stäbchen und Zapfen gleich (nur bei ersteren länger), regelmässig stabförmig, stark lichtbrechend und schwärzt sich meist durch Ueberosmiumsäure; es ist ein Reflexionsapparat im Sinne des p. 348 Gesagten. Das Innenglied ist bei Stäbchen und Zapfen verschieden, bei ersteren von gleicher Dünne mit dem Aussenglied, bei letzteren spindelförmig und längsgestrichelt (s. oben): es ist offenbar einfach nervöser Natur. Die Demarcationslinie zwischen beiden Gliedern ist scharf und muss von innen kommende Strahlen grösstentheils total reflectiren; das in's Aussenglied eindringende Licht wird von der Chorioïdea absorbirt oder ebenfalls wieder in das Innenglied reflectirt. Da nun ausserdem in der Vogelretina an der Grenze zwischen Innen- und Aussenglied sich die farbensondernde Pigmentkugel befindet (auch andere Thiere zeigen an dieser Stelle refractorische Apparate von ellipsoidischer oder linsenförmiger Gestalt, KRAUSE, SCHULTZE), so ist es höchst wahrscheinlich, dass die Aussenglieder die eigentlichen lichtpercipirenden Organe sind. Dieselben zeigen bei allen untersuchten Thieren eine quere Zerklüftung in feine Plättchen, die bei Tauben 0,0606 mm dick sind, bei Krebsen 0,002-0,008 (M. SCHULTZE). Diese Structur hat auf die Vermuthung geführt, dass die Aussenglieder die Aufgabe haben die fortschreitenden Lichtwellen durch Reflexion an den Plättchen in stehende Schwingungen zu verwandeln; diese würden bewirken dass die Maximumpuncte für die verschiedenen Farben nicht zusammenfallen, also die einzelnen Farben verschiedene Stellen des Organs erregen, eine Zerlegung im Sinne der Young'schen Theorie;

Gesichtsfeld, Blinder Fleck.

dass für alle Wellenlängen stehende Schwingungen erzeugt werden können, ist wie es scheint dadurch ermöglicht, dass zwar nicht der Abstand der spiegelnden Flächen (Dicke der Platten), aber doch der Brechungsindex in den Plättchen eines Stäbchens variirt (ZENKER).

Bilder.

Schon oben (p. 334) ist gesagt, dass man von jedem auf der Retina befindlichen Bildpunct zum Objectpunct gelangt, wenn man den zugehörigen Sehstrahl zieht. In dieser Richtung verlegt nun auch das Bewusstsein die Ursache jedes Lichteindrucks, welcher durch Erregung eines Retinaelements entstanden ist, nach Aussen (p. 313). In welche Entfernung auf dieser Linie der Objectpunct verlegt wird, soll später erörtert werden; vorläufig nehmen wir an, die Verlegung geschehe so, dass sämmtliche Objectpuncte in einer vor dem Auge schwebenden Fläche zu liegen scheinen. Diese Fläche heisst das "Gesichtsfeld." Das Bewüsstsein hat nun fortwährend eine Vorstellung von dem Erregungszustande sämmtlicher Netzhautelemente in ihrer gegebenen räumlichen Anordnung, es wird also fortwährend ein Gesichtsfeld gesehen; dieses erscheint "schwarz" (p. 353), wenn jede Erregung fehlt; jedem erregten Retinaelement entspricht ein leuchtender, jedem unerregten ein schwarzer Punct an den diametral gegenüberliegenden Stellen des Gesichtsfeldes. Letzteres ist also mit genau.denselben, nur umgekehrten, Bildern erfüllt, welche objectiv auf der Retina vorhanden sind. Da nun diese im Verhältniss zu den gesehenen Gegenständen verkehrt sind, so erscheinen letztere im Gesichtsfelde aufrecht.

Der blinde Fleck verursacht keine bemerkbare Lücke im Gesichtsfelde. Der Mangel der optischen Erregung, dessen Empfindung wir als "Schwarz" bezeichnen (p. 353), kann nämlich nur empfunden werden, wo lichtempfindliche Nervenendorgane vorhanden sind. Diese fehlen aber im blinden Fleck. Letzterer verhält sich also zum Licht wie irgend eine Hautstelle: wir empfinden mit der Hand nicht Schwarz, obgleich wir keinen Lichteindruck von ihr erhalten. Da nun aber die Gesichtseindrücke der Umgebung des blinden Flecks mittels der Sehstrahlen im Gesichtsfelde localisirt werden, so muss das Bewusstsein das Bedürfniss zwischenliegender leuchtender Puncte logisch wahrnehmen und scheint diese nach Anleitung der Wahrscheinlichkeit sich vorzustellen (E. H. WEBER). Daher erscheint bei dem p. 350 angeführten Versuch an Stelle des verschwindenden Objects nicht ein schwarzer Fleck, sondern die Farbe des Grundes (das Weiss des Papiers) setzt sich als wahrscheinlichste Ergänzung über die Lücke fort.

Da jede Netzhautstelle nur eine bestimmte Anzahl von Opticusendorganen (Stäbchen oder Zapfen) enthält, so kann jedes Bild nur aus einer beschränkten Anzahl räumlich getrennter Lichteindrücke bestehen, welche mosaik- oder stickmusterartig zusammengesetzt sind. Indessen ist die Mosaik so fein, dass der Eindruck einer continuirlichen Zeichnung entsteht. Derselbe Gegenstand wird um so schärfer erscheinen müssen, auf je mehr percipirende Elemente der Retina sein Bild vertheilt wird. Daher hängt die Schärfe der Wahrnehmung eines bestimmten Gegenstandes ab: 1) von der Grösse seines Netzhautbildes; derselbe Gegenstand erscheint demnach in der Nähe schärfer als in der Ferne; 2) von der Lage der Netzhautstelle, welche sein Bild trifft; die percipirenden Elemente sind nämlich am dichtesten gedrängt in der Fovea centralis und der Macula lutea, und stehen am spärlichsten am Rande der Retina; ein Gegenstand erscheint daher bei gleicher Entfernung am schärfsten. wenn sein Bild auf die Mitte der Retina fällt; daher wird beim scharfen Betrachten ("Fixiren") eines Gegenstandes das Auge so gedreht, dass derselbe sein Bild auf die Mitte der Netzhaut, die Fovea centralis (p. 350) wirft. Der die Fovea centralis treffende Sehstrahl, die "Sehaxe", fällt nicht genau mit der optischen Axe des Auges zusammen; sondern weicht hinten etwas nach aussen und unten von letzterer ab. Beide bilden einen Winkel von 3.5-7°.

Diese Abweichung wird erkennbar und messbar, wenn man die Mitte eines vor dem Auge aufgestellten horizontalen Maassstabs fixiren lässt, an dessen einem Ende ein Licht, an dessen anderem das beobachtende Auge sich befindet. Die drei Lichtreflexe (p. 339) erscheinen dann nicht in symmetrisch gleicher Anordnung, wenn Licht und Beobachter ihre Stelle vertauschen; sondern dies tritt erst dann ein, wenn der Beobachtete nicht die Mitte, sondern einen etwas nach innen von derselben gelegenen Punct des Maassstabs fixirt. Die Symmetrie wird aber auch dann nie absolut vollkommen, weil die Centrirung der drei Flächen des Auges (p. 333) nicht ganz genau ist.

Es wird ferner ein Gegenstand überhaupt nur dann erkennbar sein, wenn sein Netzhautbild eine genügende Anzahl von percipirenden Elementen bedeckt, so dass das Bewusstsein eine genügende Zahl räumlich getrennter Eindrücke erhält, um die Gestalt des Gegenstandes zu characterisiren. Man hat gefunden, dass zwei Bildpuncte auf der Fovea centralis der Retina mindestens 0,002 mm von einander abstehen müssen, um noch getrennt wahrgenommen zu werden, — auf den übrigen Retinatheilen aber noch viel weiter. Daher sind sehr kleine oder sehr weit entfernte Gegenstände nicht erkennbar.

Die Grösse (der Durchmesser) des Netzhautbildes wird offenbar immer durch die Grösse des Sehwinkels bestimmt, welchen die beiden äussersten Richtungslinien eines Gegenstandes mit einander bilden (p. 334); man drückt sich daher gewöhnlich so aus, dass Gegenstände unter einem sehr kleinen Sehwinkel nicht mehr erkennbar sind. — Um auch solche Gegenstände noch zu erkennen, muss der Sehwinkel künstlich vergrössert werden; und hierzu dienen für kleine Objecte die Loupen und Microscope, für entfernte Objecte die Fernröhre.

Die Loupe ist eine Convexlinse; innerhalb ihrer Brennweite befindet sich das Object, welches also ein virtuelles, aufrechtes, vergrössertes Bild liefert (p. 336).-Beim Sonnenmicroscop liegt das Object ausserhalb der Brennweite, nahe dem Brennpunct, liefert also ein reelles, vergrössertes, verkehrtes Bild, das auf einem Schirm aufgefangen wird. - Beim zusammengesetzten Microscop wird das ebenso beschaffene reelle Bild nicht aufgefangen, sondern ehe es zu Stande kommt durch eine Convexlinse (Collectivlinse) etwas genähert und verkleinert (p. 336) und dann durch eine Loupe (Ocularlinse) betrachtet; es bleibt also verkehrt. - Bei allen (dioptrischen) Fernröhren wird zunächst durch die convexe Objectivlinse ein reelles verkehrtes Bild des entfernten Gegenstandes entworfen. Beim astronomischen Fernrohr wird dies Bild durch eine convexe Ocularlinse (Loupe) betrachtet, bleibt also verkehrt und wird virtuell; beim terrestrischen Fernrohr wird das reelle verkehrte Bild durch ein zusammengesetztes Microscop welches das Ocularsystem bildet, betrachtet, also noch einmal umgekehrt, so dass es aufrecht wird; beim holländischen Fernrohr (Opernglas) kommt das vom Objectiv entworfene reelle Bild nicht zu Stande, sondern wird durch eine eingeschaltete Concavlinse (Ocular) virtuell und umgekehrt (vgl. p. 336), so dass die Gegenstände aufrecht erscheinen.

Unter "Vergrösserung" der optischen Instrumente versteht man die durch sie bewirkte Vergrösserung des Schwinkels. -Bei den Instrumenten welche reelle Bilder liefern, wie beim Sonnenmicroscop, findet man sie einfach

$$\mathbf{V} = \frac{\mathbf{a_2}}{\mathbf{a_1}} = \frac{\mathbf{f}}{\mathbf{a_1} - \mathbf{f}} \quad \dots \quad \dots \quad \dots \quad (1)$$

Bei allen Instrumenten mit virtuellen Bildern gewinnt die Schweite des beobachtenden Auges einen Einfluss, da das virtuelle Bild um deutlich zu erscheinen in derjenigen Entfernung S liegen muss, in welcher der Beobachter nahe Gegenstände genau zu betrachten gewöhnt ist. Befindet sich das beobachtende Auge unmittelbar an der Loupe, resp. Ocularlinse, so ist für letztere $-a_2 = S$. Die Vergrösserung V einer Loupe ist also $= \frac{S}{a_1}$, oder, da nach (32) p. 335 $\frac{1}{a_1} - \frac{1}{S} = \frac{1}{f}$, so ist

Vergrösserung durch optische Bilder.

die Vergrösserung einer Loupe ist also für den Kurzsichtigen kleiner. Beim zusammengesetzten Microscop giebt das Objectiv für sich, wenn f_1 seine Brennweite ist, wie oben beim Sonnenmicroscop die Vergrösserung $V_1 = \frac{f_1}{a_1 - f_1}$; vom Collectiv wird hier abgesehen; die Ocularloupe, deren Brennweite f_2 sei, giebt für sich wie eben entwickelt die Vergrösserung $V_2 = \frac{S + f_2}{f_2}$. Die Gesammtvergrösserung ist also

Der Abstand zwischen Objectiv und Ocular, die Länge des Microscops, muss dann sein gleich der Summe der Bildweite des Objectivs, und der Objectweite der Loupe die nöthig ist damit $-a_2 \equiv S$ werde; beide Summanden erhält man aus (32), wonach

Meist ist nun bei den Microscopen L unveränderlich gegeben, so dass also a₁, der Abstand des Objects vom Objectiv, für jede Schweite S geändert werden muss; die Vergrösserung erhält man wenn man aus (3) und (4) a₁ eliminirt.*) Auch der Einfluss der Collectivlinse ist leicht zu berechnen, was aber hier zu weit führen würde. Für das astronomische Fernrohr ergiebt sich als Vergrösserung

und als Länge derselbe Werth wie in (4); da hier a_1 durch die Natur gegeben ist, so muss L veränderlich sein; aus (4) folgt dass das Fernrohr um so mehr ausgezogen werden muss, je kleiner a_1 und je grösser S. Wenn man f_1 gegen a_1 und f_2 gegen S vernachlässigt, so erhält man aus (5) $V = \frac{f_1}{f_2}$ und aus (4) $L = f_1 + f_2$; die Länge ist also etwa die Summe der Brennweiten von Objectiv und Ocular. Beim Opernglase ist sie, wie man leicht findet, etwa gleich der Differenz der Brennweiten. —

Der kleinste Abstand in welchem zwei Netzhautbildpuncte noch getrennt wahrgenommen werden können, kann unter anderen auf folgende Arten gefunden werden (Volkmann): 1. Zwei feine Drähte oder Linien werden, in gleichbleibender Entfernung vom Auge, einander so lange genähert, bis sie nicht mehr unterschieden werden können, und dann der Zwischenraum ihrer Netzhautbilder berechnet. Statt die Objecte einander zu nähern, kann man sie auch durch einen verschiebbaren Verkleinerungsapparat ("Macroscop") betrachten. 2. Man betrachtet einen dem Drehpunct sehr nahen Punct eines schwingenden Pendels aus verschiedenen Entfernungen, bis seine Bewegung nicht mehr wahrzunehmen ist. Bei diesen Versuchen muss stets die Irradiation (s. unten) berücksichtigt werden. In den älteren Messungen stimmte die kleinste wahrnehmbare Netzhautdistanz mit der damals angegebenen Grösse der Zapfendurchmesser (0,004 mm) überein. Beide Grössen haben sich in neueren Messungen kleiner erwiesen, als sie früher

^{*)} Da sonach die Vergrösserung eines Microscops für verschiedene Augen verschieden ist, so legen die Optiker ihren Angaben über Vergrösserung einen conventionellen Werth von S zu Grunde (meist 0,25 mtr.).

Schärfe des Sehens. Subjective Bilder. Nachbilder.

angenommen wurden, und noch jetzt kann man eine Uebereinstimmung beider behaupten. Die Zapfen der Fovea centralis haben etwa 0,002 mm im Durchmesser; es scheint aber nur die Grenzfläche zwischen Aussen- und Innenglied (s. oben) in Betracht zu kommen, welche etwa 0,001 mm im Durchmesser hat (M. SCHULTZE). Da diese Flächen natürlich etwas von einander abstehen, so muss es vorkommen können, dass beim centralen Sehen kleine Puncte, Sterne dadurch verschwinden dass ihr Bild in den Zwischenraum fällt. Dies ist in der That der Fall (HENSEN).

Für die Erkennbarkeit kleiner Netzhautbilder ist es nicht gleichgültig, welche Anordnung die Mosaik der Netzhautelemente hat; dieselbe ist für den gelben Fleck regelmässig so, dass in den rhombischen Durchschnitten guillochenartig sich schneidender Kreise die Zapfen liegen (M. SCHULTZE).

Die Details eines Bildes werden theils durch den Unterschied in der Helligkeit, theils durch den Unterschied in der Farbe unterschieden. Für letztere hängt die Feinheit des Perceptionsvermögens von der Anzahl nicht der Netzhautelemente überhaupt, sondern speciell der Farbenwahrnehmungselemente (Zapfen, s. oben) ab, welche das Bild bedeckt. Für die Mitte des Sehfeldes kommt beides auf dasselbe hinaus, da hier nur Zapfen existiren, nach der Peripherie hin aber nimmt das Farbenunterscheidungsvermögen.

Subjective Bilder und optische Täuschungen.

Da bei der Lichtempfindung, wie bei allen übrigen Empfindungen, nervöse Apparate betheiligt sind, so müssen alle Eigenthümlichkeiten der Nervenerregbarkeit sich dabei geltend machen, und zum Theil zu Störungen oder Täuschungen Anlass geben. Es wird z. B. dieselbe Aetherschwingung einen stärkeren oder schwächeren Eindruck im Bewusstsein hervorrufen, je nach dem Erregbarkeitsgrade der Endorgane des Opticus, oder seiner Fasern, oder endlich der Centralorgane. Andere Umstände bewirken wirkliche Fehler, Lichtperceptionen ohne erregende Lichtstrahlen, oder Wahrnehmungen anderer Strahlen als wirklich da sind (Farbentäuschungen). Solche Wahrnehmungen nennt man "subjective". Die gewöhnlichsten derselben sind folgende:

1. Nachbilder. Eine erregte Opticusfaser beharrt noch eine Zeit lang im erregten Zustande, nachdem der erregende Lichtstrahl aufgehört hat, und zwar um so länger und intensiver, je anhaltender und intensiver die "primäre" Erregung war. Nach jedem Gesichtseindrucke bleibt daher der gesehene Gegenstand noch eine kurze Zeit sichtbar, es erscheint ein Nachbild. Hierauf beruht z. B. das Erscheinen eines feurigen Kreises, wenn man eine glühende Kohle vor dem Auge im Kreise herumführt. Apparate, die auf diesem Phänomen beruhen, sind: das Thau matrop, eine vor dem Auge rotirende Scheibe (oder Cylinder), auf deren Umfang ein sich continuirlich bewegender Körper in verschiedenen anf einander folgenden Phasen seiner Bewegung abgebildet ist, so dass jedes

Successiver Contrast. Irradiation.

Bild einen Moment sichtbar ist; jeder Eindruck bleibt dann so lange bestehen, bis das folgende Bild heranrückt, und so entsteht der Anschein, als ob die Bewegung continuirlich geschähe. Ferner der Farbenkreisel, eine schnell rotirende Scheibe, die in Sectoren von verschiedener Farbe getheilt ist; die Farbe eines jeden Sectors bleibt während einer ganzen Umdrehung sichtbar, so dass eine Mischung sämmtlicher Farben zum Bewusstsein kommt (vgl. p. 354). -War der Lichteindruck stark, so ist das Nachbild zuweilen dunkel, d. h. die Erregbarkeit der getroffenen Fasern ist durch die Ermüdung (p. 352) momentan aufgehoben, so dass eine dunkle Stelle, von derselben Gestalt wie der helle primär gesehene Gegenstand, als Nachbild erscheint, - negatives Nachbild. Zuweilen wechseln positive und negative Nachbilder eine Zeit lang ab, d. h. die momentan aufgehobene Erregbarkeit kehrt momentan wieder, so dass das (positive) Nachbild wieder erscheint, verschwindet dann wieder u. s. w. - Eigenthümlich gestalten sich die Nachbilder, wenn der primäre Eindruck durch intensives oder lange einwirkendes farbiges Licht hervorgebracht wurde. Das Nachbild erscheint hier nicht immer gleichfarbig ("positiv"), sondern häufig in einer andern, sog. "Contrast-Farbe", zuweilen abwechselnd positiv und contrastirend. Die Contrastfarbe ist immer diejenige, welche die primäre zu dem gewöhnlichen Tageslicht (das nicht rein weiss, sondern ein wenig röthlich ist) ergänzt, also sehr nahe die Complementärfarbe der primären (BRÜCKE). Auch weisses Licht erscheint nach einem farbigen Eindrucke in der Contrastfarbe; legt man z. B. auf eine weisse Fläche ein gefärbtes Papierstück, starrt dies eine Zeit lang an, und blickt dann auf die weisse Fläche, so erscheint hier ein Nachbild von der Gestalt des gefärbten Stücks, in der Contrastfarbe. Man kann die Contrasterscheinungen durch Ermüdung der der primären Farbe entsprechenden Netzhautelemente erklären; das Weiss muss dann, da in der Erregung eine Componente unwirksam ist, in der Complementärfarbe erscheinen. Farbige Nachbilder erscheinen auch nach weissen Lichteindrücken, wenn diese sehr intensiv sind (z. B. nach einem Blick in die Sonne); gewöhnlich erscheinen hinter einander verschiedene Farben in regelmässiger Folge. Diese Erscheinung, das sog. "Abklingen der Farben", findet ihre Erklärung vermuthlich darin, dass die Erregung der einzelnen Farbenwahrnehmungselemente verschieden lange den Lichteindruck überdauert. - An den peripherischen Netzhauttheilen sind die Contrasterscheinungen durch die daselbst vorhandene Rothblindheit (und Grünblindheit, p. 357) modificirt (ADAMÜK & WOINOW).

2. Die Irradiation macht sich geltend, wenn ein heller Gegenstand auf dunklem Grunde betrachtet wird: er erscheint dann grösser als er ist, – umgekehrt ein dunkler Gegenstand auf hellem Grunde verkleinert. Diese Erscheinung beruht auf fehlerhafter Accommodation, wodurch die hellen Gegenstände in Zerstreuungsbildern erscheinen. Das Bewusstsein hat nun die Neigung, den halbbeleuchteten Saum (welcher die Breite des Radius der Zerstreuungskreise hat) dem prädominirenden Theile des Bildes hinzuzufügen; nun prädominirt einerseits das Helle vor dem Dunklen; andererseits aber das Object vor dem Grunde. Ist der Grund schwarz, das Object weiss, so vereinigt sich beides, um das Object auf Kosten des Grundes vergrössert erscheinen zu lassen; ist aber das Object schwarz, der Grund weiss, so kann der zweite Einfluss den ersten so übertreffen, dass auch schwarze Linien auf Kosten des weissen Grundes verbreitert erscheinen (VOLKMANN).

Simultaner Contrast, Entoptische Wahrnehmungen.

3. Der simultane Contrast umfasst eine Reihe von Erscheinungen, die auf Vergleichung zweier im Gesichtsfelde an einander grenzender Farben oder Helligkeiten und dadurch bewirkter Urtheilstäuschung beruhen. Ein weisses Feld erscheint uns um so heller, je dunkler seine unmittelbare Umgebung (ein weisses Gitter auf schwarzem Grunde zeigt z. B. an den Kreuzungspuncten scheinbar dunkle Flecke, weil hier die Umgebung eines weissen Punctes weniger Schwarz enthält, als an den übrigen Theilen des Gitters); ebenso erscheint eine Farbe um so intensiver, je vollständiger sie in der Umgebung fehlt, d. h. je mehr sich letztere der Contrastfarbe nähert; umgekehrt tritt in einer (schwach beleuchteten) weissen Fläche diejenige Componente des Weiss am stärksten hervor, welche in der Umgebung fehlt, das Weiss erscheint also in der Contrastfarbe der Umgebung (der Schatten eines von einer Kerze beleuchteten Stabes erscheint z. B. bei Tage nicht weiss oder grau, sondern in der Contrastfarbe des gelben Kerzenlichts, nämlich blau). Die vielen Beispiele von Wirkungen des simultanen Contrastes können hier nicht angeführt werden. - Auf ganz unerregten Netzhautstellen zeigen sich nie Contrasterscheinungen, die sog. "Mitempfindung" (Cap. XI.) hat also mit diesen Nichts zu thun (ROLLETT).

4. Unter den subjectiven Erscheinungen sind ferner noch die Farbentäuschungen, die durch die peripherische Farbenblindheit und durch die ungleiche Erregbarkeit der Farbenwahrnehmungsorgane (p. 357) entstehen, anzuführen; z. B. erscheint sehr schnell intermittirendes weisses Licht, weil die Lichtdauer zur Erregung der rothempfindenden Elemente nicht genügt, grünlich (BRÜCKE).

5. Wahrnehmung von Netzhauttheilen durch mechanische Ursachen, z. B. des Netzhautrandes durch die plötzliche Zerrung bei der Accommodation (p. 351), des gelben Flecks bei Druck auf den Bulbus (HOUDIN); hieran reihen sich zahlreiche Wahrnehmungen von Netzhauttheilen, deren Ursache bisher unbekannt ist, und auf die hier nicht näher eingegangen werden kann (Löwe, MAXWELL, HELM-HOLTZ, CZERMAK, EXNER u. A.).

6. Erregungen der lichtempfindenden Elemente durch rein innere Ursachen, ohne äussere Veranlassung. Hierher gehören: a) mechanische Erregung, durch die Blutcirculation, nur bei krankhaft gesteigerter Erregbarkeit vorkommend; sie zeigen sich als Funken, Blitze u. s. w.; zuweilen erscheint, namentlich vor dem Einschlafen, ein vollständiges Bild der Netzhautgefässe mit Blutkörperchen u. s. w.; b) centrale Erregungen unbekannten Ursprungs in den verschiedensten Formen ("Hallucinationen, Phantasmen"); sie erscheinen namentlich im Traume, im halbwachen Zustande, vor dem Einschlafen, bei krankhaften Zuständen auch im Wachen.

Entoptische Wahrnehmungen.

Von den subjectiven Lichterscheinungen wohl zu trennen sind die "entoptischen", d. h. objective Gesichtswahrnehmungen von im Auge selbst befindlichen Gegenständen. Die wichtigsten derselben sind: 1. Wahrnehmung von Trübungen und Verdunkelungen der brechenden Medien des Auges. Dieselben kommen zur Anschauung, wenn durch Beleuchtung des Auges ihre Schatten auf die Netzhaut fallen, am besten, wenn parallelstrahliges Licht durch das Auge geht. Sie erscheinen in Form von dunklen Flecken, Kugeln, Streifen, Perlschnüren u. s. w.; zum Theil sind sie fest, zum Theil (die des Glaskörpers) verändern sie, namentlich bei plötzlichen Bewegungen des Auges oder des Kopfes,

Entoptische Wahrnehmungen. Augenbewegungen.

ihre Stelle (mouches volantes). — 2. Wahrnehmung der Retinagefässe (s. p. 351), ebenfalls durch ihren auf die Stäbchenschicht fallenden Schatten. Um ihren Schatten auffallend zu machen, wirft man ihn entweder auf seitliche, seltener beschienene Netzhauttheile (indem man ein intensives Licht seitlich auf die durchscheinende Sclerotica fallen lässt), oder man bewegt den Schatten dadurch dass man einen leuchtenden Punct vor dem Auge hin- und herführt. Es erscheint dann eine dunkle Gefässzeichnung, im erleuchteten Gesichtsfelde; auch der Rand der Fovea centralis ist durch einen Schatten erkennbar (PURKINJE'sche Aderfigur). *) — 3. Wahrnehmung der Blutkörperchen in den Netzhautcapillaren, bei sehr greller Beleuchtung des Auges (durch eine Schneefläche, eine Lampenglocke, oder [GRÜNHAGEN] ein dunkelblaues gegen die Sonne gehaltenes Glas, u. s. w.); noch nicht völlig erklärbar.

Bewegungen des Auges.

Das Auge besitzt eine sehr grosse Beweglichkeit in der Augenhöhle, und die absolute Beweglichkeit des Sehorgans wird noch durch die des ganzen Kopfes bedeutend vermehrt. Hierdurch wird es möglich, bei Einer Körperstellung fast in allen Richtungen des Raumes Gegenstände zu fixiren, d. h. das Auge so für sie einzustellen, dass ihr Retinabild in die Fovea centralis retinae fällt (p. 360). Die grosse Beweglichkeit des Bulbus beruht auf der Art seiner Befestigung in der Orbita. Er ruht nämlich in dem Fettpolster derselben wie der Gelenkkopf eines Kugelgelenks in der Pfanne, ist daher um unzählige Axen drehbar. Gehemmt werden diese Drehungen, welche durch die Augenmuskeln bewirkt werden, erstens durch die Anheftung der Antagonisten, zweitens durch den Widerstand des Opticusstammes. Ausser den Drehbewegungen können noch Ortsveränderungen des Bulbus im Ganzen stattfinden, weil die Umgebung nachgiebig, also die "Gelenkpfanne verschiebbar ist" (Ludwig).

Der Drehpunct des Bulbus (im Sinne des p. 265 Gesagten) liegt nicht wie man a priori vermuthete und auch nach Versuchen behauptete (VOLKMANN), in der Mitte der Sehaxe, sondern (DONDERS & DOIJER, FICK & MÜLLER) bei normalem Auge etwa 1,77^{mm} hinter derselben.

Zu bemerken ist, dass bei forcirter Oeffnung der Augenlider der Bulbus etwas aus der Orbita heraustritt, wahrscheinlich durch Contraction der beiden

^{*)} Ich sehe die Aderfigur auch häufig Morgens beim ersten Aufschlagen der Augen auf einen Moment; auch dies erklärt sich leicht, weil die jetzt sehr erregbare Netzhaut (p. 352) von dem Schatten gleichsam überrascht wird.

Axen und Drehungen des Bulbus. Primärstellung.

Mm. obliqui; das Hervortreten ist am stärksten bei horizontalem und gesenktem Blick, nämlich etwa 1 mm (FICK & MÜLLER; opp. WOINOW).

Um die Lageveränderungen des Bulbus und die Anordnung und Wirkung der Augenmuskeln zu verstehen, muss man gewisse feste Puncte und Linien in der Augenkugel annehmen, deren Lageveränderungen einen Maassstab für die Bewegungen des Auges abgeben. Eine Linie im Auge ist durch den anatomischen Bau desselben gegeben, nämlich die Schaxe, der Hauptstrahl eines fixirten Punctes, deren Lage zur Hornhautaxe schon besprochen ist (p. 360). Von der Fovea centralis aus, welche man als Pol der Augenkugel bezeichnen darf, zieht man nun zwei zu einander senkrechte Meridiane über die Retina. Die Lage derselben wird durch gewisse physiologische Eigenschaften des Auges bestimmt; sie theilen nämlich die Netzhaut in vier Quadranten, welche in beiden Augen gewisse gegenseitige Beziehungen haben (s. unten). Man nennt sie daher Trennungslinien (eine verticale und eine horizontale). --Denkt man sich ferner im Mittelpunct der Sehaxe eine zu ihr senkrechte Ebene durch das Auge gelegt, so schneidet diese die Kugeloberfläche in einem zu den Meridianen senkrechten grössten Kreise, den wir als Aequator des Auges bezeichnen wollen (die Ebene also als "Aequatorial-Ebene"). Man hat jetzt drei auf einander senkrechte grösste Kreise (Aequator und zwei Meridiane); die ihnen entsprechenden Ebenen schneiden sich gegenseitig in drei zu einander senkrechten Durchmessern, Axen, nämlich eine sagittale (Sehaxe), eine verticale ("Höhenaxe") und eine horizontale ("Queraxe"). Diese können als ein körperliches Coordinatensystem benutzt werden, welches, mit dem Auge beweglich, dessen Drehungen anzeigt. Hierzu muss man noch ein zweites im Raume absolut feststehendes Coordinatensystem annehmen, das in der Ruhelage des Auges mit dem beweglichen zusammenfällt. In jeder anderen Stellung des Auges werden dann zwei oder alle drei entsprechenden Axen beider Systeme Winkel mit einander bilden.

Die Bewegungen des Auges sind namentlich für die gegenseitigen Stellungen beider Augen von Wichtigkeit, und durch diese beschränkt (s. unten). Man nimmt daher als Ruhelage, von welcher alle Bewegungen ausgehend gedacht werden können ("Primärstellung"), eine Stellung an, in welcher alle drei Axen des einen Auges denen des andern parallel und die Queraxen in Einer graden Linie liegen, die Sehaxen also sagittal nach vorn gerichtet sind.

Offenbar kann diese Stellung verbunden sein mit einer beliebigen Neigung der Sehaxen gegen den Horizont. Unter allen hier möglichen Stellungen ist aber wieder eine als eigentliche Primärstellung herauszuheben, nämlich die Neigung, von welcher aus Convergenz-Bewegungen der Sehaxen stattfinden können, ohne dass die Augen sich scheinbar um ihre Sehaxen drehen, was bei allen andern Neigungen der Fall ist (s. unten). Die Bestimmung dieser Neigung wird unten erörtert werden. Es ist nun ermittelt worden (LISTING, MEISSNER, HELMHOLTZ), dass alle Drehungen des Auges aus der Primärstellung heraus um solche Axen geschehen, welche in der Aequatorialebene liegen (so dass also die Sehaxe stets senkrecht auf der Drehungsaxe steht, also niemals Drehungen um die Sehaxe vorkommen). Unter den in der Aequatorialebene gelegenen unzähligen denkbaren Axen sind zunächst zwei hervorzuheben, nämlich diejenigen, welche zugleich Coordinatenaxen sind, also die Queraxe und die Höhenaxe. Drehungen um diese beiden Axen führen zu den sog. "Secundärstellungen" des Auges. Die Drehung um die erstere bewirkt nur Veränderung der Neigung gegen den Horizont (unter Beibehaltung des Parallelismus der Sehaxen), die um die Höhenaxe bewirkt Drehung nach innen oder aussen, also Convergenz oder Divergenz der Sehaxen (unter Beibehaltung der Neigung gegen den Horizont). Bei ersterer also fällt zwar noch die verticale Trennungsebene, aber nicht mehr die horizontale, mit den entsprechenden des festen Coordinatensystems zusammen, bei letzterer umgekehrt. --Drehungen um andere in der Aequatorialebene des Bulbus gelegene Axen führen zu den "Tertiärstellungen" des Auges. Da sich jede solche Drehung nach einfachen Regeln zerlegen lässt in eine Drehung um die Höhen-, und eine Drehung um die Queraxe, so ist erstens mit den Tertiärstellungen sowohl Convergenz der Sehaxen als veränderte Neigung derselben gegen den Horizont verbunden, zweitens aber fällt jetzt weder die verticale noch die horizontale Trennungsebene mit den entsprechenden des festen Coordinatensystems zusammen; beide sind gegeneinander geneigt; die Augen haben also bei den Tertiärstellungen eine scheinbare Drehung um die Sehaxen, sog. Raddrehung erlitten, und zwar (von vorn gesehen) im Sinne eines Uhrzeigers bei Wendung des Blicks nach links oben oder rechts unten. Es ist also mit jeder Stellung der Sehaxe eine bestimmte Raddrehung des Auges verbunden, welche sich aus dem LISTING'schen Gesetze ableiten lässt.

368

Raddrehungen. Princip der leichtesten Orientirung. Augenstellungen. 369

Ist α die verticale und β die horizontale Abweichung der Sehaxe von der Primärstellung, so findet man den Raddrehungswinkel y aus der Gleichung (HELMHOLTZ):

$$- \tan \gamma = \frac{\sin \alpha \sin \beta}{\cos \alpha + \cos \beta}$$
$$\tan \frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$$

oder

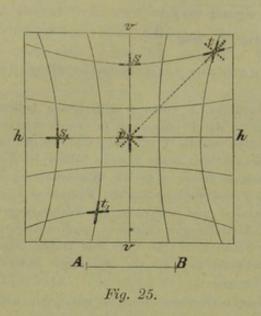
au

auch diese Gleichungen zeigen dass für
$$\alpha \equiv 0$$
 oder $\beta \equiv 0$ (Secundärstellung) d
Raddrehung 0 ist.

Nennt man die (stets gemeinschaftliche, s. unten p. 372) Ebene beider Sehaxen die Visirebene, so fällt also in der Primär- und in den Secundärstellungen der horizontale Netzhautmeridian in- die Visirebene, und weicht in den Tertiärstellungen von ihr ab; der Winkel den beide Ebenen bilden ist der Raddrehungswinkel. Mittels der Visirebene lassen sich die Augenstellungen auch folgendermassen definiren. In der Primärstellung hat die Visirebene eine bestimmte Neigung, die Sehaxen sind parallel und senkrecht zur Verbindungslinie der beiden Augendrehpuncte. Secundärstellungen entstehen, wenn entweder die Visirebene ihre Neigung ändert, die Sehaxen in ihr aber fest liegen, oder wenn die Visirebene fest bleibt, die Sehaxen aber in ihr ihre Lage ändern. Alle anderen Stellungen sind Tertiärstellungen.

Die Nothwendigkeit des LISTING'schen Gesetzes, wonach mit jeder Abweichung der Schaxe aus der Primärstellung zugleich die Raddrehung (Neigung der Netzhautmeridiane zur Visirebene) und somit die Stellung des ganzen Auges gegeben ist, lässt sich herleiten aus dem "Princip der leichtesten Orientirung" (HELMHOLTZ). Da nämlich die Orientirung beim Sehen abhängt von der uns bewussten Stellung der Sehaxe zum Kopf, und dem Betrag der Raddrehung*), so ist es zweckmässig, wenn wir die Beurtheilung des letzteren dadurch ersparen, dass er direct von der ersteren abhängt; wir lernen also durch Uebung, oder vielleicht durch einen von Uebung entsprungenen vererbten Mechanismus (vgl. das DARWIN'sche Princip, Cap. XII.), mit jeder Schaxenstellung eine bestimmte Raddrehung zu verbinden. Weitere (mathematische) Verfolgung des Princips der leichtesten Orientirung ergiebt ferner dass die zweckmässigste Ausgangsstellung (Primärstellung) die ist, bei welcher die Sehaxe gerade in der Mitte ihres Bewegungsfeldes steht (d. h. in der Mitte des Orbitakegels), und dass sie aus dieser Lage nur abweichen darf durch Drehungen des Bulbus um Durchmesser der Aequatorialebene (LISTING'sches Gesetz). Die Primärstellung ist in der That die Mittelstellung des Auges.

In keinem Widerspruch mit diesen Principien steht die neuerdings gefundene Thatsache (JAVAL, SKREBITZKY, NAGEL) dass bei seitlichen Kopfneigungen eine wirkliche (compensatorische) Raddrehung stattfindet die anscheinend mit der Kopfdrehung in unabänderlichem nervösem Connex steht.]


Fig. 25 stelle eine vor dem Auge in der (reducirten) Entfernung AB befindliche verticale Ebene dar, und p sei der Durchschnittspunct derselben mit

Hermann, Physiologie. 5. Aufl.

ie

^{*)} Wir halten z. B. eine in einem Punct fixirte Linie für vertical, wenn sie sich bei einer bestimmten Kopfstellung in einem bestimmten Netzhautmeridian abbildet.

der Sehaxe in der Primärstellung. Blickt jetzt das Auge auf irgend einen andern Kreuzungspunct der Figur, so stellen die Linien (entsprechend reducirt) die Richtungen dar in der die Ebenen des horizontalen und des verticalen Meri-

dians die betrachtete Ebene schneiden.*) Man sieht dass diese Richtungen bei den Secundärstellungen, d. h. bei Stellungen innerhalb der Linien hh und vv, horizontal, resp. vertical bleiben, bei allen übrigen Stellungen (Tertiärstellungen) aber vermöge der Raddrehung von der horizontalen, resp. verticalen Richtung abweichen. Wird in der Primärstellung das verticale stark gezeichnete Kreuz bei p fixirt, und so dem verticalen und horizontalen Meridian ein Nachbild imprägnirt, so bleibt dasselbe in den Secundärstellungen (s, s₁) unverändert, nimmt aber in den Tertiärstellungen t und ti die angegebene Lage ein, erscheint also schräg und zugleich nicht mehr rechtwinklig, entsprechend den Durchschnittslinien

der beiden (natürlich stets zu einander verticalen) Meridianebenen mit der betrachteten Ebene. Wäre das Kreuz in p wie das punctirte so gestellt dass sein einer Schenkel in die Linie pt, in der sich der Blick bewegt, fällt, so tritt keine Verziehung des Nachbildes bei t ein. Ist die betrachtete Ebene mit horizontalen und verticalen Linien versehen, so kann man leicht mittels der Lage der Nachbilder das LISTING'sche Gesetz prüfen und bestätigen (HELMHOLTZ).

Augenmuskeln.

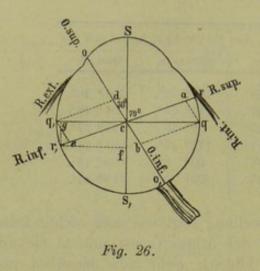
Die Wirkungsweise jedes einzelnen Augenmuskels, d. h. die Lage der Axe, um welche er für sich allein das Auge zu drehen vermag, lässt sich berechnen, wenn man vorher den Ort seines Ursprungs in der Orbita^{**}) und seines Ansatzes am Bulbus kennt (die Lage dieser Puncte wird ausgedrückt durch die Abscissenlängen, welche die von ihnen auf die drei festen Coordinatenaxen gefällten Lothe auf diesen abschneiden). Die Lage der Axe wird bestimmt durch die drei Winkel, welche sie mit den drei Coordinatenaxen des Auges in der Ausgangsstellung bildet. In dieser Weise sind die

^{*)} Die Linien bilden ein System von Hyperbeln.

^{**)} Für den Oliquus superior muss begreiflicherweise statt des Ursprungsortes der Ort der Trochlea in Frage kommen.

Wirkung der Augenmuskeln.

hier folgenden Lagen der Axen für die sechs Augenmuskeln bestimmt (FICK); die Ausgangsstellung ist ungefähr die Primärstellung.


Muskel.	Winkel, den die Drehaxe bildet mit der		
	Sehaxe.	Höhenaxe.	Queraxe.
Rectus superior ,, inferior ,, externus ,, internus Obliquus sup. ,, inf.	111° 21'. 63° 37'. 96° 15'. 85° 1'. 150° 16'. 29° 44'.	108° 22'. 114° 28'. 9° 15'. 173° 13'. 90° 0'. 90° 0'.	151 ° 10'. 37° 49'. 95° 27'. 94° 28'. 60° 16'. 119° 44'.

Für die gewählte Ausgangsstellung liegt wie man sieht, keine Drehaxe in der Aequatorialebene des Auges (sonst müsste sie mit der Sehaxe einen rechten Winkel bilden). Sehr nahe derselben, nur wenig von der Höhenaxe entfernt, liegen die Drehaxen des Rectus internus und externus, die also in der That die Hornhaut fast rein nach innen und aussen drehen. Die der beiden Obliqui dagegen liegen genau in der Horizontalebene, zu beiden Seiten der Sehaxe, jede etwa 30° von dieser entfernt, so dass der superior die Hornhaut nach aussen und unten, der inferior dagegen nach aussen und oben dreht. Die Drehaxen des Rectus superior und inferior weichen von der Queraxe ziemlich bedeutend ab, so dass jener die Hornhaut nach oben und innen, dieser nach unten und innen dreht. Aus den Winkeln ergiebt sich zugleich, dass jedes der drei Paare nahezu Eine Axe hat, also ungefähr antagonistisch wirkt.

Da nun die wirklichen Augendrehungen um Durchmesser der Aequatorialebene geschehen (vgl. oben), so ergiebt sich leicht, dass fast zu jeder Bewegung mehrere Muskeln zusammenwirken müssen. Dies ist in der That namentlich durch Beobachtungen an Augen, deren Muskeln zum Theil gelähmt waren, bestätigt worden. Figur 26 stellt einen Horizontalschnitt des linken Auges dar, ss, die Schaxe, qq, die Queraxe. Die Ebene enthält nach dem eben Gesagten die Drehaxe der Recti rr1, und die der Obliqui 001. Drückt man die Drehmomente durch Längen aus welche auf den entsprechenden Drehaxen, je nach der Richtung der Drehung, nach der einen oder der anderen Seite vom Drehpunct aufgetragen werden, so kann man diese Drehmomente, ganz analog dem Parallelogramm der Kräfte, zu resultirenden Drehmomenten combiniren; die Diagonale des Parallelogramms giebt durch ihre Richtung die Lage der resultirenden Drehaxe und die Richtung der Drehung, durch ihre Länge die Grösse der resultirenden Drehung an. Umgekehrt lassen sich Drehungen nach gegebenen Axen zerlegen. So zeigt die Figur dass zu einer Drehung des Bulbus um die Queraxe im Betrag von cq (in der Richtung Hornhaut nach oben) der

24*

Rectus superior und Obliquus inferior zusammenwirken müssen und zwar im Verhältniss von ca und cb. Für eine gleich grosse Drehung cq1 im entgegen-

gesetzten Sinne (Hornhaut nach unten) müssen Obliquus superior und Rectus inferior im Verhältniss von cd und ce zusammenwirken. Ferner zeigt die Figur dass der Rectus inferior für sich nicht bloss eine Drehung um die Queraxe (cg) sondern auch eine um die Sehaxe (cf) bewirken würde, etc. Die Betrachtung und Berechnung der zu einer bestimmten Bewegung erforderlichen Muskelwirkung ist indess so ausserordentlich verwickelt, namentlich dadurch, dass bei der geringsten begonnenen Lageveränderung auch die Drehaxe eines Muskels eine andere wird, - dass hier nicht weiter darauf eingegangen werden kann.

Die Nerven, welche die Bewegungen des Augapfels beherrschen, sind: der Oculomotorius, Abducens und Trochlearis, letztere beide für die gleichnamigen Muskeln, ersterer für die vier übrigen. Diese sehr faserreichen Nerven, deren Wirkungen mit sehr grosser Geschwindigkeit abwechseln, stehen beiderseits im Gehirn in einer gewissen Verknüpfung, so dass ihre Bewegungen sich gegenseitig beschränken. Diese Verknüpfung bewirkt erstens, dass immer nur solche Bewegungen geschehen, dass beide Sehaxen in derselben Ebene ("Visirebene") liegen, also verlängert sich in einem Puncte schneiden (wenn sie nicht parallel sind); sie haben daher, so lange der Kopf gerade steht, dieselbe Neigung gegen den Horizont (da man die beiden Drehpuncte sich fest denken kann). Ferner ist ihre gegenseitige Neigung in so fern beschränkt, als sie nur in geringem Maasse nach vorn divergiren, dagegen in jedem durch die Lage erlaubten Maasse convergiren können. Der Mechanismus dieses Zusammenhangs, der in die Categorie der Mitbewegungen gehört, ist völlig räthselhaft. Störungen desselben bezeichnet man als "Schielen (Strabismus)". Das Centralorgan der coordinirten Augenbewegungen liegt in den Vierhügeln (s. Cap. XI.).

Sehen mit beiden Augen.

Beim gewöhnlichen Sehen wirken beide Augen zusammen; die Vortheile, welche dadurch geboten werden, sind: 1. Correctionen von Fehlern etc. eines Auges durch das andere, 2. eine vollkomm-

372

Binoculares Schen. Identische Puncte.

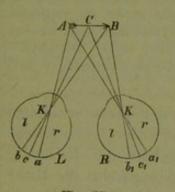
nere Raumanschauung, da das Betrachten eines Gegenstandes von zwei verschiedenen Standpuncten aus statt einer blossen Flächenprojection auch die Ausdehnung in der dritten Dimension zur Anschauung bringt, 3. genauere Schätzung der Grösse und Entfernung der Gegenstände.

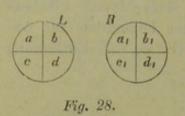
Einfachsehen.

Trotz des Sehens mit zwei Augen erscheinen die Gegenstände im Allgemeinen nur einfach; dies kann nur dadurch geschehen, dass die Erregung gewisser zusammengehöriger Puncte beider Netzhäute im Bewusstsein an dieselbe Stelle des Raumes verlegt wird, — mit andern Worten: dass beide Augen nur Ein gemeinschaftliches Gesichtsfeld haben (p. 359), und dass die durch Erregung zweier zusammengehöriger Puncte entstehenden Lichteindrücke an Einer Stelle jenes Gesichtsfeldes erscheinen. Solche zusammengehörige Netzhautpuncte nennt man "zugeordnete" oder "identische". Ein mit beiden Augen bei irgendeiner Stellung derselben einfach gesehener Gegenstand muss also auf die beiden Netzhäute so seine Bilder werfen, dass die beiden Bildpuncte jedes Objectpunctes auf zwei identische Netzhautpuncte fallen. Wird ein oder werden beide Augen etwas gedreht, so muss sofort ein Doppelbild erscheinen. Näheres über das Wesen der "Identität" weiter unten.

Lage der identischen Puncte.

Ueber das Lageverhältniss der identischen Puncte ergeben sich sofort folgende Gesetze: 1. Da ein mit beiden Augen fixirter Punct




Fig. 27.

C (Fig. 27), dessen Bilder also auf die Endpuncte der Sehaxen c und c_1 fallen, einfach erscheint, so müssen die beiden Endpuncte der Sehaxen c und c_1 identische Puncte sein. 2. Fixirt man nun die Mitte C eines Gegenstandes, welcher einfach erscheint, so müssen, wie die einfache Construction der Figur ergiebt, für alle Puncte der rechten Hälfte einer Netzhaut die identischen Puncte in der rechten Hälfte der anderen liegen, und umgekehrt; ferner für die der oberen Netzhauthälfte eines Auges in der oberen

des anderen, für die der unteren in der unteren des andern. Sind die Kreise L und R (Fig. 28) Projectionen der beiden Netzhäute,

373

so sind die gleichbezeichneten Quadranten a, a1 u. s. w. identisch.

Die beiden Meridiane, welche diese identischen Quadranten trennen, heissen "Trennungslinien" (verticale und horizontale, vgl. p. 367). 3. Hieraus folgt weiter, dass entsprechende Puncte der beiden verticalen Trennungslinien identisch sein müssen, und ebenso die der horizontalen.

Zieht man bei einer gewissen Augenstellung für je zwei identische Puncte die zugehörigen Schstrahlen, und verlängert sie über das Auge hinaus, bis sie sich schneiden, so sind die Durchschnittspuncte offenbar Puncte, welche bei dieser Augenstellung einfach erscheinen. Den Inbegriff aller derjenigen Puncte im Raum, welche bei einer bestimmten Augenstellung einfach erscheinen, nennt man den "Horopter" für diese Stellung. Hätte man für eine Augenstellung den Horopter auf irgend eine Weise vollständig ermittelt, so wäre dadurch offenbar das Lageverhältniss der identischen Puncte bestimmt, und für jede andere Augenstellung der Horopter zu construiren. Umgekehrt kann man, wenn man das Lageverhältniss jener kennt, für jede Augenstellung den Horopter ableiten. In Bezug auf dies Lageverhältniss ist nun die einfachste Annahme die, dass, wenn man beide Netzhäute sich mit den entsprechenden Trennungslinien aufeinander gelegt denkt, alle sich deckenden Retinapuncte identische seien.

Dies ist jedoch, auch abgesehen von der nicht genau sphärischen Gestalt der Netzhaut, von welcher man sich unabhängig machen kann (p. 376 Anm.) nicht in aller Strenge der Fall. Namentlich sind nicht genau die verticalen Meridiane identisch, sondern die wahren verticalen Trennungslinien weichen etwas von ihnen ab und zwar nach oben aussen und unten innen. Die physiologische Höhenaxe des Auges ist daher auch etwas zu der geometrischen (p. 367) geneigt.

Mit Hülfe der obigen Annahme und der eben erwähnten Abweichung lässt sich durch mathematische oder geometrische Ableitung der Horopter feststellen. Die Resultate der Rechnung werden durch Versuche bestätigt, woraus sich umgekehrt die Richtigkeit des angegebenen Lageverhältnisses der identischen Puncte ergiebt.

Eine allgemeine Ableitung des Horopters kann auf folgendem Wege geschehen (HELMHOLTZ): Jeder Netzhautpunct kunn als Durchschnittspunct eines

Horopter.

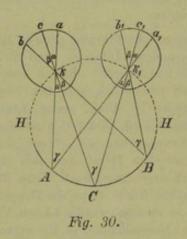
Meridians und eines "Parallelkreises" (Kreise, welche concentrisch um die Fovea centralis, gleichsam den Pol der Netzhautkugel, verlaufen) betrachtet werden. Man kann nun berechnen: 1. den "Meridianhoropter", d. h. den Inbegriff der Durchschnittslinien von je zwei durch identische Meridiane (und die Knotenpuncte) gelegten Ebenen; 2. den "Circularhoropter", d. h. den Inbegriff der Durchschnitte von je zwei durch identische Parallelkreise und die Knotenpuncte gelegten Kegelflächen; es ist dann 3. der "Puncthoropter", d. h. der gesuchte Horopter der identischen Puncte, offenbar der Durchschnitt des Meridianhoropters und des Circularhoropters.

Eine zweite Ableitungsmethode (HERING, HELMHOLTZ) lässt die Ebene des verticalen Meridians um die Höhenaxe, und die des horizontalen um die Queraxe rotiren, die so erhaltenen Netzhautschnitte heissen "Längs-" und "Querschnitte". Längsschnitte von gleichem "Breitenwinkel" (d. h. Winkel mit der Ebene des Verticalmeridians) sind identisch; die Durchschnittslinien der Ebenen identischer Längsschnitte bilden zusammen den "Horopter der Längsschnitte". Ebenso bilden die identischen Querschnitte (von gleichem "Längenwinkel") ein System von Durchschnittslinien, den "Horopter der Querschnitte". Der Durchschnitt beider Horopter ist der gesuchte Puncthoropter.

Beide Methoden müssen natürlich bei richtiger Ausführung gleiche Resultate geben. Indessen hat jede derselben ihr besonderes Interesse, weil nicht bloss der "Puncthoropter", sondern auch die "Linienhoropter", die zu dessen Ermittelung führen, von Bedeutung sind. Dies gilt namentlich von dem oben

erwähnten "Meridianhoropter". Eine grade Linie, welche in einem Puncte fixirt wird, bildet sich nämlich offenbar in einem Netzhautmeridian ab. Wenn nun eine Linie auf zwei identischen Meridianen sich abbildet, so muss sie einfach erscheinen, auch wenn die

einzelnen Puncte derselben nicht auf identische Puncte fallen. Denn die Doppelbilder werden sich dann im gemeinsamen Sehfelde so decken, wie die Linien AB und ab in Fig. 29. Der "Meridianhoropter" oder die "Normalfläche" (v. RECKLING-HAUSEN) hat also die Eigenschaft, dass zwar nicht alle in ihm liegenden Puncte, aber wohl alle in ihm liegenden graden Linien einfach erscheinen.

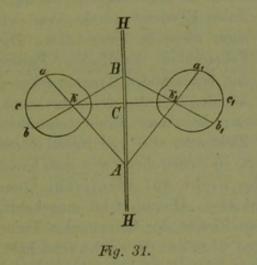

Für die practische Ausführung der Berechnung ist die zweite der oben genannten Methoden vortheilhafter, namentlich weil sie eine Berücksichtigung der p. 374 erwähnten Abweichung der physiologischen Verticalmeridiane gestattet. Auf die Resultate dieser Berechnung kann hier nicht eingegangen werden, weil eine erschöpfende Behandlung des schwierigen Horopter-Problems die Grenzen dieses Grundrisses überschreiten würde. Statt dessen werden im Folgenden diejenigen Horopterbestimmungen behandelt werden, welche sich durch einfache geometrische Betrachtung ergeben.

1. In der Primärstellung und bei den Secundärstellungen mit parallelen und gradeaus gerichteten Sehaxen ist der Horopter eine der Visirebene parallele Ebene, welche durch den Schneidepunct der beiden Höhenaxen geht. Da es aber hier sich um die physiologischen Höhenaxen handelt, deren Schneidepunct

Horopter.

etwa 5 Fuss unter der Visirebene liegt (vgl. p. 375), so liegt die Horopterebene, welche sonst unendlich weit nach unten entfernt sein müsste, nur etwa 5 Fuss unter der Visirebene. Ist also der Blick horizontal gradeaus in die unendliche Ferne gerichtet, so ist der Fussboden die Horopterfläche, was für das Sehen in dieser Stellung von Wichtigkeit ist (HELMHOLTZ).

2. Bei symmetrischen Secundärstellungen mit Convergenz der Sehaxen verhält sich der Horopter folgendermaassen: Es sind zunächst zwei Linien desselben zu bestimmen, nämlich diejenige welche den identischen Puncten der horizontalen, und die welche denen der verticalen Trennungslinien (s. oben) entspricht (ein transversaler, durch die Visirebene gebildeter, und ein medianer Horopterdurchschnitt). a) Der transversale Horopterdurchschnitt

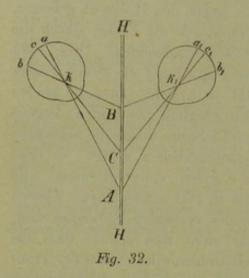

ist ein Kreis (J. MÜLLER): In Fig. 30 sind die beiden Augenquerschnitte durch die horizontalen Trennungslinien gelegt, der transversale Horopterdurchschnitt muss also in der Ebene des Papiers (Visirebene) liegen, c und c_1 sind die Endpuncte der Sehaxen, C der fixirte Punct. Sucht man nun zu zwei Puncten der horizontalen Trennungslinie, z. B. a und b, die identischen Puncte auf der andern Seite, so müssen diese offenbar 1. im gleichnamigen Quadranten liegen, also auf derselben

Seite vom Endpuncte der Sehaxen, 2. gleichweit von diesem entfernt sein (s. die Annahme oben); sie liegen also in a_1 und b_1 . Die zugehörigen Sehstrahlen schneiden sich in den Puncten A und B, welche also Puncte der gesuchten Horopterlinie sind. Man sieht nun sofort, schon aus der Winkelbezeichnung an den Knotenpuncten k und k_1 , dass die Winkel bei A, B, C (γ) sämmtlich einander gleich sind.*) Sie müssen also, da sie die gemeinschaftlichen Fusspuncte k und k_1 haben, sämmtlich Peripheriewinkel eines zugleich durch k und k_1 gehenden Kreises HH sein. Dies ist die gesuchte transversale Horopterlinie, denn auch die Sehstrahlen aller übrigen iden-

^{*)} Von der Gestalt der Retina ist man unabhängig, wenn man statt identischer Netzhautpuncte identische Richtungslinien annimmt und für die Congruenz der identischen Puncte die ebenso zulässige Annahme macht, dass die identischen Richtungslinien beider Augen eine congruente Lage haben.

Horopter.

tischen Puncte der horizontalen Trennungslinien müssen sich in ihr schneiden. — b) Der mediane Horopterdurchschnitt dagegen ist eine auf der Visirebene senkrechte, also gegen den Horizont geneigte, grade Linie, nämlich diejenige, in welcher sich die beiden durch die verticalen Trennungslinien gelegten Ebenen schneiden. Dies sieht man am leichtesten ein, wenn man die Fig. 31 auf ein Stück Papier zeichnet und diese längs der Linie HH so bricht, dass die beiden Seiten nach vorn convergiren. Es sind nämlich die beiden Augen-


durchschnitte durch die verticalen Trennungslinien gelegt, so dass die beiden convergirenden und sich in HH schneidenden Ebenen die der verticalen Meridiane sind; man sieht nun sofort, dass die Sehstrahlen aller Puncte der Trennungslinien, welche gleichweit vom Endpunct c, c_1 der Sehaxe, entfernt sind, also z. B. a und a_1 , b und b_1 sich in Puncten der Durchschnittslinie HH treffen, dass diese also die mediane Horopterlinie darstellt.*) — Auf die

genannten beiden Linien beschränkt sich der Horopter für convergente Secundärstellungen.

3. Bei (symmetrischen) Tertiärstellungen bilden, wie p. 368 erwähnt, sowohl die verticalen, als die horizontalen Trennungslinien beider Augen mit einander Winkel. Legt man nun zunächst a) durch jede verticale Trennungslinie eine Ebene, so schneiden sich diese beiden in einer zur Visirebene geneigten graden Linie (den Augen oben näher bei Tertiärstellung mit Neigung nach oben, — von der Primärstellung aus gerechnet, — unten dagegen bei Tertiärstellungen nach unten). Diese geneigte Linie, sowie die geneigte Stellung der verticalen Trennungslinien verdeutlicht die umstehende Figur 32, welche ebenso wie die Figur 31, abzuzeichnen und in HH zu brechen ist. In dem geknifften Modell ist cCc, die Visirebene und HH die

^{*)} Ein sehr instructives Modell erhält man, wenn man die beiden Figuren 30 und 31 in gleichen Dimensionen (Augenradius und Abstand des Fixationspuncts C in beiden gleich) auf Kartenpapier entwirft und durch Schlitze die gekniffte zweite Zeichnung in die erste einbringt. Man hat dann die beiden Trennungsiinien und die ihnen entsprechenden Theile des Horopters. — In Wirklichkelt ist die mediane Horopterlinie nicht genau senkrecht zur Visirebene, weil die wahren verticalen Trennungslinien nicht vertical zu derselben stehen (p. 374).

zu ihr geneigte Durchschnittslinie der beiden Trennungsebenen, wie in Fig. 31. Man sieht nun, dass auch die Sehstrahlen aller in den

verticalen Trennungslinien gelegenen identischen Puncte, z. B. a und a_1 , b und b_1 , sich in HH schneiden, dass diese Linie also den Horopter der vert. Trennungslinien darstellt. — b) Legt man auch durch die horizontalen Trennungslinien Ebenen, so schneiden sich auch diese in einer Linie. Die Sehstrahlen identischer Puncte der horizontalen Trennungslinien könnten sich also, wenn überhaupt, nur in dieser Linie schneiden. Zieht man aber von irgend einem

Puncte der letzteren zwei Sehstrahlen, so treffen diese, wie man leicht einsieht, auf symmetrische, also nicht auf identische Quadranten der horizontalen Trennungskreise. Hieraus folgt umgekehrt, dass die Sehstrahlen der identischen Puncte der horizontalen Trennungslinien sich bei Tertiärstellungen überhaupt nicht schneiden, dass es für sie also keinen Horopter giebt. Ueberhaupt begreift der Horopter für Tertiärstellungen ausser der medianen Linie nur noch eine durch den Fixationspunct gehende Curve doppelter Krümmung, deren Ableitung hier nicht gegeben werden kann.

Bisher war nur von symmetrischen Augenstellungen die Rede; auf die unsymmetrischen, bei welchen der fixirte Punct ungleich weit von den beiden Knotenpuncten entfernt ist, kann hier nicht eingegangen werden. Zu erwähnen ist, dass es hier Stellungen giebt, wo nur der fixirte Punct den Horopter bildet.

Zu erwähnen ist noch ausser dem bisher betrachteten Puncthoropter der Meridianhoropter oder die Normalfläche, deren Eigenschaften schon p. 375 angegeben sind. Dieselbe ist (v. RECKLINGHAUSEN) bei convergenten Secundärstellungen eine auf der Visirebene im Fixationspuncte senkrechte Ebene; bei symmetrischen Tertiärstellungen ein schiefer Doppelkegel, dessen Spitze im fixirten Puncte liegt. — Aus ersterem ergiebt sich die wichtige Folgerung, dass in einer vor dem Auge befindlichen Ebene, vorausgesetzt, dass sie, wie wohl meistens, in Secundärstellung betrachtet wird, jede grade Linie einfach erscheinen muss, sobald ein Punct derselben in 's Auge gefasst wird. — Versuche haben aber ausserdem ergeben, dass alle in der Normalfläche liegenden Graden, und nur diese, senkrecht zur Medianebene erscheinen, auch bei Tertiärstellungen, wo ihre wirkliche Richtung eine andere ist. Betrachtet man

Wesen der Identität. Chiasma. Ueberwiegendes Einfachsehen. 379

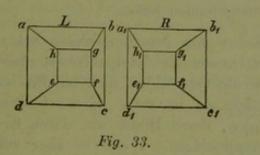
nämlich einen Drahtstern, dessen Strahlen in einer Ebene liegen, mit Fixation seines Mittelpuncts, so erscheint er nur in Secundärstellungen eben, verkrümmt dagegen in Tertiärstellungen und zwar weichen die Strahlen scheinbar in entgegengesetzter Richtung als die Normalfläche von der Ebene ab; erst dann erscheint der Stern in der Tertiärstellung eben, wenn man ihm künstlich die der Normalfläche entsprechende Krümmung giebt. — Andere Versuche zeigen, dass jeder leuchtende Punct, für dessen Entfernungsschätzung die anderen Mittel (s. unten) fehlen, auf der Richtungslinie in die Normalfläche projicirt wird. Wie es scheint ist also diese Fläche unseren Augen sehr geläufig und höchst wahrscheinlich spielt sie auch beim körperlichen Sehen (s. unten) eine grosse Rolle, indem die Lage jedes nicht in ihr liegenden Punctes nach ihr bemessen wird.

Zur Erklärung des Verhaltens der identischen Puncte könnte man annehmen, dass die ihnen zugehörigen Opticusfasern im Centralorgane in besonderer Weise verknüpft sind, so dass ihre Erregung nur einen einzigen Eindruck zum Bewusstsein bringt oder wenigstens beide Eindrücke an eine und dieselbe Stelle des Raumes, nämlich in den Schneidepunct ihrer beiden Schstrahlen, verlegt werden. Manche deuten in diesem Sinne das Verhalten der Opticusfasern im Chiasma nervorum opticorum, indem sie annehmen dass hier ein Uebergang der Hälfte der Fasern einer Seite auf die andere stattfindet, so dass jeder Opticusstamm zur Hälfte aus Fasern des Tractus opticus derselben, zur Hälfte aus solchen der andern Seite besteht, und zwar soll jeder Tractus opticus zwei gleichnamige, also identische Netzhauthälften, begrenzt durch die verticale Trennungslinie, mit Fasern versorgen. Hierfür wird besonders das Vorkommen "gleichnamiger Hemiopie" angeführt, wobei auf beiden Augen die gleichnamigen Netzhauthälften erblindet sind; es wird angenommen, dass hier die Fasern oder die Centralorgane des einen Tractus opticus functionsunfähig sind (v. GRAEFE). Im Gegensatz hierzu wird neuerdings wieder eine totale Kreuzung im Chiasma behauptet (MANDELSTAMM); gleichnamige halbseitige Blindheit würde dann nicht durch Affection eines Tractus, sondern durch Einwirkung auf den äusseren Winkel zwischen Tractus und Nervus zu Stande kommen, während Einwirkungen auf den vorderen Winkel beider Nervi beiderseits innere, solche auf den hinteren Winkel beider Tractus beiderseits äussere Netzhautstörungen bewirken würden; unverständlich bleibt aber hierbei das Vorkommen wahrer Hemiopie mit genauer Abgrenzung im verticalen Meridian. Die Berechtigung der Annahme einer centralen anatomischen Verbindung der identischen Puncte ist überhaupt noch zweifelhaft, weil die "Identität" nicht absolut zu nehmen ist (vgl. unten bei der Stereoscopie) und möglicherweise daher ganz als etwas durch Gewohnheit Erworbenes angesehen werden muss. Auf keinen Fall ferner kann die anatomische Verbindung zweier identischer Puncte so beschaffen sein, dass die Erregung beider nur eine einzige Empfindung verursacht, denn die Erscheinungen des stereoscopischen Sehens bei Momentanbeleuchtung und des stereoscopischen Glanzes (s. unten) zeigen, dass es sich nur um Verschmelzung zweier gesonderter Empfindungen handeln kann.

Vernachlässigung der Doppelbilder.

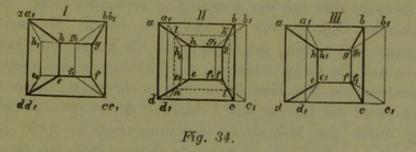
Aus dem oben Gesagten geht hervor, dass wegen der Beschränktheit des Horopters bei allen Augenstellungen die meisten vor dem Auge befindlichen Gegenstände doppelt erscheinen, und dass ausserdem dadurch, dass von zwei verschiedenen Objectpuncten Strahlen auf identische Puncte fallen, Verschiebungen und Verwirrungen der Gesichtsfelder beider Augen entstehen müssen. Dass trotzdem im Allgemeinen nur einfache Bilder zum Bewusstsein kommen und von Verwirrungen im Schfelde nichts bemerkt wird, hat seinen Grund wahrscheinlich in folgenden Umständen: 1. erscheinen die auf der Mitte der Retina (Fovea centralis und Macula lutea) sich abbildenden Gegenstände fast unter allen Umständen einfach, weil die Endpuncte der Schaxen identische Puncte sind (p. 373), und die Sehaxen sich stets verlängert in einem Puncte schneiden (p. 372). Da diese Orte aber die des schärfsten Sehens sind und auf sie die Aufmerksamkeit fast ausschliesslich gerichtet ist, so überstrahlt der Eindruck des hier einfallenden Lichtes das ganze übrige Gesichtsfeld. 2. Die einfach erscheinenden (im Horopter liegenden) Gegenstände könnten deshalb am intensivsten zum Bewusstsein kommen, weil sie denselben Theil des Seelenorgans mit doppelter Energie erregen. 3. Die Augen accommodiren immer zu gleich für diejenigen Gegenstände, für welche ihre Axen eingestellt sind ("auf welche visirt ist"), so dass diese schärfer erscheinen, als die vor oder hinter dem Schneidepunct der Axen, also nicht im Horopter, gelegenen. Jene Uebereinstimmung zwischen Augenbewegung und Accommodation wird einmal durch den Willen, dann aber auch durch einen nervösen Mechanismus (CZERMAK) bewirkt; denn bei blosser Drehung Eines Auges treten zugleich Accommodationsveränderungen ein, z. B. Accommodation für die Nähe bei Drehung nach innen (p. 342). 4. Das Bewusstsein bringt unter Umständen auch Bilder nicht identischer Puncte zur Deckung (vgl. unten bei der Stereoscopie).

Gegenseitige Unterstützung beider Augen.


Der nächstliegende Nutzen des Sehens mit zwei Augen ist die Ausgleichung functionsunfähiger Stellen der einen Netzhaut (z. B. pathologischer Defecte, v. GRAEFE) oder solcher Stellen, welche durch fixe Trübungen der brechenden Medien nie Bilder erhalten können, durch die identischen Stellen der andern, — wie dies häufig beobachtet wird. Hierher gehört auch der gegenseitige Ersatz der durch die beiden blinden Flecke bedingten Lücken des Gesichtsfeldes (p. 350); denn die identischen Puncte der blinden Flecke sind empfindungs-

Körperliches Sehen.

fähige Netzhautstellen (die blinden Flecke liegen in ungleichnamigen, symmetrischen Quadranten).


Körperliches Sehen. Stereoscop.

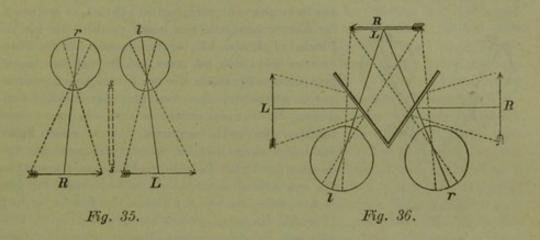
Auf dem oben erwähnten Umstande, dass die beiden Bilder eines körperlichen Gegenstandes oder einer Fläche, die nicht mit dem Horopter zusammenfällt, sich nach der Lehre von den identischen Puncten strenggenommen nie vollständig zu Einem Gesichtseindrucke vereinigen können, beruht das körperliche Sehen, die Wahrnehmung der dritten Dimension. Da die beiden Augen den Körper von verschiedenen Standpuncten aus betrachten, so fallen auf die beiden Netzhäute zwei verschiedene perspectivische Bilder desselben. Nur congruente Netzhautbilder jedoch können durchweg auf identische Puncte fallen: bei unveränderlicher Augenstellung kann deshalb nur ein Theil des Körpers einfach erscheinen, das übrige erscheint

doppelt. Sind z. B. L und R (Fig. 33) die beiden perspectivischen Netzhautbilder einer vor dem Gesicht befindlichen abgestumpften Pyramide, die ihre Spitze den Augen zukehrt, so können nur entweder allein die Bilder der Grundfläche a b c d, a₁b₁c₁d₁, oder allein die der Ab-

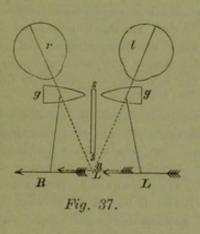
stumpfungsfläche efgh, $e_1f_1g_1h_1$, auf identische Puncte fallen; im ersteren Falle erscheint die kleine Fläche doppelt, im zweiten die grosse. Dennoch werden beide Bilder zu einem, und zwar körperlichen Gesammteindruck vereinigt. Eine einfache Erklärung hierfür wäre folgende (BRÜCKE): Die beiden Augen sind in fortwährender Bewegung, ihre Convergenz schwankt so hin und her, dass nach

einander die Bilder aller Querschnitte der Pyramide auf identische Puncte der Netzhäute fallen. In Figur 34 sind aus der hierbei ent-

Körperliches Schen.


stehenden Reihe von Vereinigungseindrücken drei ausgewählt. Bei dem ersten fallen die Bilder der Grundfläche, beim dritten die der Abstumpfungsfläche auf identische Puncte, beim mittleren wird ein zwischen beiden liegender Querschnitt der Pyramide (i k l n) einfach gesehen. Da nun zum Zustandekommen des Eindrucks III die Augen stärker convergiren müssen als für I, und die Convergenz ein Mittel zur Schätzung der Entfernung ist (s. unten), so zieht das Bewusstsein den Schluss, dass die Flächen e f g h, i k l n und a b c d hintereinander liegen, und gewinnt so die Anschauung des Körperlichen, indem sämmtliche schnell aufeinander folgenden Eindrücke sich zu einem einzigen vermischen.

Gegen diese Erklärung spricht aber die Erfahrung, dass die verschwindend kleine Zeit der Beleuchtung durch den electrischen Funken genügt, um zwei einfache stereoscopische Bilder zu einem körperlichen Eindruck zu verschmelzen (Dove); in diesem Moment können keine Augenbewegungen stattgefunden haben.


Dieser Versuch zwingt, die Lehre von dem binocularen Sehen etwas zu modificiren. Die Identität zweier Netzhautpuncte ist nämlich nicht absolut zu nehmen, und beruht vermuthlich nicht auf directer anatomischer Communication, sondern sie ist etwas Erworbenes. Identische Puncte sind also diejenigen, deren Bilder wir, durch Erfahrung belehrt, gewöhnlich verschmelzen. Wenn es aber zur Hervorbringung eines vernünftigen Eindrucks nothwendig scheint, so verschmelzen wir auch die Bilder zweier nicht genau identischer Puncte, die wir unter gewöhnlichen Umständen als Doppelbilder wahrnehmen würden; es lässt sich leicht zeigen, dass gleichzeitig Bilder, welche auf identische Puncte fallen, nicht vereinigt werden, ohne freilich als Doppelbilder deutlich wahrgenommen zu werden. Muss aber die Seele Bilder vereinigen, die nicht auf Deckpuncte fallen, so muss dies mit der Vorstellung verbunden sein, dass die entsprechenden Objectpuncte in dem Orte liegen, für welche die Augen eingestellt werden müssten, damit die Bilder auf Deckpuncte fallen. - Auf die vielen anderen, zur Erledigung der vorliegenden Frage aufgestellten Theorien kann hier nicht eingegangen werden. Uebrigens wird die BRÜCKE'sche Erklärung der stereoscopischen Vereinigung durch die Momentanbeleuchtungsversuche nicht gänzlich zurückgewiesen, denn für complicirte Gegenstände ist ein solches "Herumführen des Blickes" um dieselben jedenfalls sehr nützlich; auch genügt hier die Momentanbeleuchtung nicht.

Stereoscope.

Künstlich lässt sich das körperliche Sehen nachahmen, wenn man jedem Auge eine von seinem Standpuncte aus entworfene Zeichnung eines Körpers darbietet, nach Art der Fig. 33. Die Augen bringen auch hier successive oder momentan die verschiedenen Theile der Zeichnung zur Deckung und so entsteht

der Eindruck des Körpers. Hierauf beruht die Anwendung der Stereoscope. Ohne weiteren Apparat lassen sich die nebeneinander liegenden Bilder R und L zur Deckung bringen, wenn man jede der beiden Augenaxen auf das entsprechende Bild richtet (Fig. 35). Da indess nur Wenige ihre Augen hinlänglich in ihrer Gewalt haben, um zwei verschiedene Puncte einer Fläche zu fixiren, anstatt wie

gewöhnlich die Axen in der betrachteten Fläche sich schneiden zu lassen, so sind Vorrichtungen angegeben, um diese Anstrengung zu ersparen*) und auch bei gewöhnlicher Augenstellung die Bilder auf identische Puncte zu werfen. Die beiden bekanntesten Stereoscope sind das WHEATSTONE'sche (Fig. 36) und das BREWSTER'sche (Fig. 37), beide aus den Figuren einleuchtend. Bei ersterem werden durch zwei convergente Spiegel, bei letzterem durch zwei prismatische Gläser (Linsenhälften) g.g., beide Bilder auf Einen Ort $\frac{R}{L}$ verlegt, auf den die Augenaxen gerichtet

sind.

Bringt man zwei völlig gleiche Bilder in das Stereoscop, so erscheinen sie natürlich ganz wie ein einfaches. Sind sie aber in einer Kleinigkeit verschieden, die sich nur auf die Stellung gewisser Theile beschränkt, so müssen die Augen Bewegungen machen, um auch diese Theile zu vereinigen, und sie erscheinen daher nach dem oben Erörterten ausserhalb der Fläche, vor oder hinter derselben. Daher kann man das Stereoscop benutzen, um zwei gleiche, aber in kleinen

^{*)} Eine Erleichterung für Ungelibte bietet eine zur Ebene der Bilder verticale Scheidewand ss (Fig. 35).

versteckten Puncten verschiedene Bilder von einander zu unterscheiden, z. B. eine ächte und eine nachgemachte Kassenanweisung, zwei (immer etwas verschiedene) Abgüsse derselben Form u. s. w. (Dove).

Verwechselt man die beiden stereoscopischen bilder eines Körpers, z. B. die beiden Bilder der Figur 33, so dass das für das rechte Auge bestimmte vor

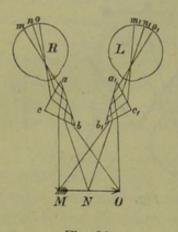


Fig. 38.

das linke gebracht wird, und umgekehrt, so erscheint der Körper hohl und von innen gesehen, die kleine Fläche efgh also hinter der grossen. In der That unterscheiden sich bei einer hohlen und von innen betrachteten Pyramide die von beiden Augen gewonnenen perspectivischen Ansichten nur insofern von denen, die von der massiven und von aussen betrachteten Pyramide herrühren, dass im ersten Falle das rechte Auge dieselbe Ansicht gewinnt, wie im zweiten das linke. Beim Betrachten eines Gegenstandes von aussen sieht das rechte Auge mehr von der rechten Seite als von der linken (die Fläche bicifigi [Fig. 33] ist daher grösser als a₁d₁e₁h₁); beim Hineinsehen in einen hohlen Körper umgekehrt (das rechte Auge gewinnt dann die Ansicht L, wo befg kleiner ist als adeh). Ein solcher durch Verwech-

seln zweier stereoscopischer Bilder entstandener täuschender Eindruck heisst ein "pseudoscopischer". Das Pseudoscop (Fig. 38) ist ein Apparat, durch welchen die beiden einen Körper betrachtenden Augen einen pseudoscopischen Eindruck erhalten; jedes Auge erhält nämlich durch Totalreflexion von der Hypotenusenfläche eines rechtwinkligen Prismas den ihm zugehörigen Eindruck in verkehrter Anordnung, so dass er dieselbe Gestalt annimmt, wie sonst der dem anderen Auge zugehörige. Dadurch erscheint der Körper hohl und von innen gesehen, während er seine Aussenfläche den Augen zuwendet, und umgekehrt; begreiflicherweise ist der Apparat nur bei symmetrisch geformten Körpern anwendbar.

Schr ferne Gegenstände, z. B. die am Horizont liegenden Landschaftstheile, erscheinen gewöhnlich flächenhaft ausgebreitet, wie auf einem Gemälde, weil die beiden Augen einander zu nahe stehen, um wesentlich verschiedene Ansichten der fernen Körper zu gewinnen. Zur künstlichen Vergrösserung des Abstandes beider Augenstandpuncte dient das Telestereoscop (HELMHOLTZ)ein WHEATSTONE'sches Stereoscop, dessen beide Bilder L und R durch zwei den innern Spiegeln parallele, gegen den Horizont gewendete Spiegel ersetzt sind; die beiden Augen gewinnen hier Ansichten, als wenn sie den Ort der äusseren Spiegel einnähmen, und der Horizont erscheint daher verkörpert; gewöhnlich blickt man in die beiden innern Spiegel durch zwei Fernröhre.

Giebt man den beiden stereoscopischen Bildern eines Körpers verschiedene Helligkeit (ist z. B. das eine schwarz, das andere weiss oder farbig) oder verschiedene Farbe, — oder bringt man vor beide Augen verschieden helle oder verschieden gefärbte Flächen, so erscheint der Körper resp. die Fläche glänzend. — Die wahrscheinlichste Erklärung hierfür ist folgende: Eine mit Einem Auge betrachtete Fläcke scheint glänzend, wenn sie das Licht sehr regelmässig reflectirt; jede vollkommen ebene oder vollkommen regelmässig gekrümmte Fläche

Stereoscopischer Glanz. Schätzung der Grösse und Entfernung. 385

(ohne Unebenheiten) zeigt daher Glanz. Wird dieselbe Fläche mit beiden Augen betrachtet, so erscheint sie beiden mit verschieden starkem Glanze und in verschiedener Helligkeit, weil das reflectirte Licht unter verschiedenen Winkeln in beide Augen einfällt. Erhalten nun umgekehrt beide Augen zwei an sich matte, aber verschieden helle Eindrücke, so schliesst das Bewusstsein auf eine regelmässig reflectirende (also beide Augen verschieden beleuchtende), mithin glänzende Fläche (HELMHOLTZ). Die heiden stereoscopischen Bilder einer glatten Kugel, welche den Lichtreflex an verschiedenen Stellen zeigen, geben aus demselben Grunde den Eindruck einer glänzenden Kugel. - Nicht so leicht ist die Erklärung des Farbenglanzes; die einfachste scheint folgende: Ausser durch einfache regelmässige Reflexion können noch gewisse Arten von Glanz entstehen durch Reflexion von mehreren dicht hintereinander befindlichen Flächen, auch wenn diese an sich matt sind. So beruht z. B. der Metallglanz darauf, dass das ein wenig durchsichtige Metall nicht blos von seiner Oberfläche, sondern auch aus tieferen Schichten Licht reflectirt (BRÜCKE). Da nun für zwei verschiedene Farben von gleicher Entfernung eine etwas verschiedene accommodative Einstellung nothwendig ist (p. 346 f.), so erscheint (s. unten) die eine Farbe etwas hinter der andern liegend, und so entsteht der Glanz (Dove). Uebrigens misslingt Vielen die binoculare Farbenmischung, indem beide Farben sich nicht zu einem Bilde vereinigen, sondern abwechselnd die eine und die andere zum Vorschein kommt, oder beide im Gesichtsfeld nebeneinander auftauchen ("Wettstreit der Schfelder"). Da übrigens glänzende Flächen bei dem beständigen Wechsel der Augenstellungen immer andere Reflexe zeigen, so könnte umgekehrt ein fortwährend wechselnder Lichteindruck den Eindruck des Glanzes geben, und der Farbenglanz also sich aus dem Wettstreit der Schfelder erklären.

Schätzung der Grösse und Entfernung.

Ein dritter bemerkenswerther Nutzen des Sehens mit beiden Augen ist die Beihülfe desselben zur Schätzung der Grösse und Entfernung gesehener Gegenstände. Der Ausgangspunct der Grössenschätzung ist die Grösse des Netzhautbildes. Je grösser dieses ist, um so grösser erscheint ceteris paribus der Gegenstand. Da aber die Grösse des Netzhautbildes, oder was dasselbe ist, die Grösse des Schwinkels (s. p. 361), nicht bloss von der Grösse, sondern auch von der Entfernung des Gegenstandes abhängt (denn der Schwinkel ist der Entfernung umgekehrt proportional), so ist mit jeder Grössenschätzung auch eine Schätzung der Entfernung verbunden. Für letztere hat schon das einzelne Auge ein Mittel in der Accommodationsanstrengung, deren Grösse und Richtung durch das Muskelgefühl der dabei betheiligten Muskeln zum Bewusstsein kommt. Beim Sehen mit zwei Augen kommt nun hierzu noch als wichtige Beihülfe das Muskelgefühl der Augendrehmuskeln, welches uns über den Convergenzgrad der Augenaxen belehrt. Es erscheint also ein Gegenstand, bei gleicher scheinbarer Grösse, um so näher, Hermann, Physiologie. 5. Aufl. 25

Schätzung der Grösse und Entfernung. Augenlider.

386

1. je grösser sein Netzhautbild, 2. je stärker die positive Accommodation, 3. je stärker die Convergenz der Augenaxen ist. — Weitere Beihülfen für die Schätzung der Entfernung sind: die Lichtstärke, welche im Allgemeinen mit der Entfernung abnimmt; — ferner die Verschiebung des Gegenstandes gegen andere zugleich gesehene, welche eintritt, wenn entweder der Gegenstand selbst, oder jene anderen, oder das Schorgan (bei Bewegungen des Kopfes oder des ganzen Körpers) seinen Ort verändert.

Die directesten Beweise für jene drei Hauptmittel zur Schätzung der Entfernung oder Grösse sind; 1. der Einfluss des Netzhautbildes bedarf kaum eines Beweises: als ein solcher kann gelten, dass ein bei mangelhafter Accommodation (in Zerstreuungskreisen) gesehener Gegenstand grösser erscheint als ein scharf gesehener (p. 364); 2. der Einfluss der Accommodationsempfindung tritt am deutlichsten dadurch hervor, dass ein auf irgend eine Weise gewonnenes Nachbild bei wechselnder Accommodation scheinbar seine Grösse ändert, ferner dass von rothen und blauen Feldern in gleicher Ebene die ersteren näher erscheinen (BRÜCKE, vgl. p. 347); 3. ein auffallender Beweis für den Einfluss der Axenconvergenz ist das sog. "Tapetenphänomen": Visirt man, während man ein aus kleinen gleichen Feldern bestehendes Muster (eine Tapete, ein Stuhlgeflecht etc.) betrachtet, auf einen vor oder hinter demselben liegenden Punct, so rückt sehr bald das Muster scheinbar in die Ebene des'Convergenzpuncts der Schaxen, erscheint daher näher oder ferner, und wie aus dem oben Gesagten hervorgeht, in demselben Maasse kleiner resp. grösser. Die Erklärung ist einfach: Ein unregelmässiges Muster würde offenbar unter diesen Umständen doppelt erscheinen; auch das regelmässige wird doppelt gesehen, da sich aber in den übereinander hingeschobenen Doppelbildern gleiche Felder genau oder nahezu decken, so entsteht die Täuschung, dass beide Bilder mit entsprechenden Theilen auf identische Puncte fallen, dass also der Gegenstand in der Entfernung des Schneidepuncts der Schaxen liege (H. MEYER). - Wie die Bilder der Netzhautmitten in den Schnittpunct der Schaxen verlegt werden, so die übrigen Bilder in die Fläche, in der sich die identischen Meridiaue schneiden, d. h. in die Normalfläche (vgl. p. 379).

Schutzorgane des Auges.

1. Das in der knöchernen Augenhöhle fast allseitig geschützte Auge kann auch nach vorn durch den Schluss der knorpligen Augendeckel (Augenlider) vollkommen abgesperrt werden. Der Schluss geschieht durch die Contraction des M. orbicularis palpebrarum (abhängig vom Facialis), beim oberen Augenlid auch durch die Schwere. Die Oeffnung geschieht beim unteren durch die Schwere, beim oberen durch den Levator palpebrae superioris (abhängig vom Oculomotorius), ausserdem bei beiden durch glatte, vom Sympathicus abhängige Retractoren (H. MÜLLER, SAPPEY). Schluss und Oeffnung wechseln häufig ab (Lidschlag, Blinzeln).

Thränenapparat.

Der Schluss erfolgt: 1) willkürlich; 2) unwillkürlich und automatisch, im Schlafe; 3) reflectorisch auf Berührung des Augapfels oder der als Tasthaare dienenden Augenwimpern, oder auf Reizung des Opticus durch intensives Licht. Die Verengerung der Lidspalte und die Beschattung derselben durch die Augenwimpern unterstützt bei intensivem Licht die schützende Wirkung der Pupillenverengerung.

Die MÜLLER'schen Retractoren liegen an der Rückseite der Augenlider, senkrecht zur Lidspalte. Ein anderer glatter Muskel überbrückt die Fissura orbitalis inferior, und verengt durch seine Contraction etwas den Raum der Orbita, so dass der Bulbus etwas hervortritt. Beide Muskeln sind tonisch contrahirt. Bei Durchschneidung des Sympathicus am Halse wird die Lidspalte enger und der Augapfel sinkt etwas zurück (H. MÜLLER).

2. Die vordere Augenfläche wird beständig von der Thränenflüssigkeit (p. 117) bespült, und dadurch rein erhalten und vor Eintrocknung geschützt. Die Thränen gelangen durch die feinen Ausführungsgänge der Drüse in den oberen äusseren Theil des Conjunctivalsackes. (Der Conjunctivalsack ist bekanntlich ein Schleimhautsack, der mit seinem freien Rande längs des Randes der Lidspalte angeheftet, und in den von hinten der Augapfel zum Theil hineingestülpt ist; er überzieht daher die Hinterfläche der Lider, schlägt sich dann auf den Bulbus um und überkleidet dessen vorderes Drittheil. Da die Lider dicht auf dem Bulbus aufliegen, so hat der Conjunctivalsack nur ein capillares Lumen. Nur nahe der Berührungslinie der geschlossenen Lider erweitert er sich zu einem flachen dreiseitigen Canal, da die geringere Krümmung der Lider hier sich der des Bulbus nicht anschliesst.) In den capillaren Conjunctivalraum werden nun die Thränen durch Capillarität eingesogen und gegen den inneren Augenwinkel hinbefördert. Diese Bewegung wird durch den Lidschlag unterstützt, da beim Schlusse der Lider zugleich ein Fortrücken derselben gegen den inneren Winkel, den Ansatzpunct des Orbicularis palpebrarum, stattfindet. Das Ueberfliessen der Thränen über den freien Rand der Lider wird, wenn die Secretion nicht übermässig stark ist (wie beim Weinen), durch das fettige Secret der MEIBOM'schen Drüsen (p. 113) verhindert. Im inneren Augenwinkel sammeln sich die Thränen in dem sog. "Thränensee", in welchen die beiden capillaren, steifen Thränenröhrchen mit ihren Mündungen, den "Thränenpuncten", eintauchen. Der Thränencanal, in welchen die Thränenröhrchen führen, und der unten gegen die Nasenhöhle durch eine nach unten sich öffnende Klappe verschlossen ist, erweitert sich oben (Sack) beim Schliessen der Augenlider (weil seine hintere Wand mit dem

^{25*}

Knochen, seine vordere aber mit dem Lig. palpebrale internum, welches sich beim Lidschluss anspannt, verwachsen ist); hierdurch saugt er die Thränen aus dem Thränensee ein, und diese gelangen in die Nasenhöhle; dasselbe bewirkt die Contraction des sog. HORNERschen Muskels, welcher ebenfalls den Thränensack erweitert.

Der Lidschluss könnte auch bei vollkommenem Schluss der Lidspalte die Thränen in den Sack hineinpressen. Dies wird in der That von Einigen (Ross, STELLWAG v. CARION) behauptet. Die Experimente mit gefärbten Flüssigkeiten, welche zur Entscheidung der Frage angestellt wurden, haben nicht übereinstimmende Resultate gegeben (STELLWAG, ARLT).

3. Den Augenbrauen wird der Schutz des Auges vor herabfliessendem Stirnschweiss zugeschrieben.

Anhang. Die facettirten Augen der Insecten und Crustaceen bestehen aus conischen, wie die Radien einer Kugel angeordneten Abtheilungen; jede derselben besitzt aussen einen dioptrischen Apparat, der wie eine Convexlinse wirkt, innen nervöse Gebilde die mit dem das Centrum der Kugel einnehmenden gangliösen Schnervenende zusammenhängen. Jede dieser radialen Abtheilungen, die durch Pigment und totale Reflexion (ähnlich den Netzhautstäbchen, p. 348) optisch von einander getrennt sind, lässt höchstwahrscheinlich nur solches Licht zur Perception zu, das in der Richtung ihrer Axe einfällt, so dass das Thier ein geordnetes Gesichtsfeld, besonders für nahe Gegenstände hat, das so viele Felder zu unterscheiden gestattet als Abtheilungen vorhanden sind. Die Zuordnung eines Schnervenelements zu einer Schrichtung geschicht also hier wie im Wirbelthierauge, nur durch andere Mittel. Bei letzterem nämlich gestattet der gemeinsame dioptrische Apparat zu jedem Netzhautelement nur solchem Lichte Zutritt das in einer bestimmten Richtung (der des entsprechenden Sehstrahls) entspringt; beim Insectenauge dagegen hat gleichsam jedes Netzhautelement ein nach einer bestimmten Richtung gerichtetes Schrohr. Dass jedes Feld des Insectenauges von entfernten Gegenständen ein reelles Bildchen liefert, hat wahrscheinlich für das Sehen keine Bedeutung, denn es ist unwahrscheinlich dass innerhalb einer Abtheilung noch Bilddetails unterschieden werden können, und es wäre schwer begreiflich wie ein Multiplum von Bildern desselben Objects zu einer einheitlichen Wahrnehmung führen sollte.

II. DAS GEHÖRORGAN.

Schema desselben.

Die Endorgane der Hörnerven sind ähnlich denen des Sehnerven auf membranartigen Flächen, jedoch von unregelmässiger Gestalt, ausgebreitet (Ampullen, Vorhofssäckchen, häutige Schnekkenplatte). Die zur Erregung des Hörnerven bestimmten Schallschwingungen werden diesen Endorganen durch ein System von sich berührenden, schwingungsfähigen Körpern mitgetheilt, deren

Schallleitungswege.

erster, nach aussen gelegener, durch die Schwingungen des tönenden Körpers in Mitschwingung versetzt wird, direct, oder nachdem die Schallschwingungen durch einen intermediären Körper (Luft, Wasser) bis zu ihm fortgepflanzt worden.

Solcher Systeme giebt es zwei, welche einen, nämlich den unmittelbar an die Endorgane grenzenden Theil gemeinsam haben; dieser letztere ist das Labyrinthwasser, welches die Endorgane umspült. Das Labyrinthwasser kann auf zwei Wegen in Schwingung versetzt werden: 1. durch die es umgebenden Knochen, zunächst das Felsenbein, weiterhin sämmtliche Schädelknochen. Diese Leitung wird vorzugsweise benutzt, wenn der schallerzeugende (feste) Körper unmittelbar oder nur durch Vermittelung fester oder flüssiger Körper mit dem Schädel in Verbindung steht, oder wenigstens das unmittelbar an den Kopf grenzende Medium nicht gasförmig ist, z. B. wenn der schallerzeugende Körper an die Zähne gehalten, oder wenn der Kopf unter Wasser getaucht ist; -2. durch die Membran des ovalen Fensters, welche das Labyrinthwasser von der lufthaltigen Paukenhöhle absperrt. Diese Membran wird durch folgende Kette von Körpern in Schwingung versetzt (von der Membran ab gezählt): Steigbügel, Amboss, Hammer, Trommelfell, Luft und Wände des äusseren Gehörganges und der Ohrmuschel. Die letztere Leitung ist zum Hören der Schallschwingungen bestimmt, welche durch die Luft dem Ohre zugeleitet werden, ist also für den Menschen die gewöhnliche, und fehlt bei den nur im Wasser lebenden Thieren.

· Von den beiden Leitungswegen erfordert nur der zuletzt genannte eine besondere Betrachtung; der erste, der beim Menschen eine durchaus untergeordnete Bedeutung hat, bedarf keiner Erläuterung.

Leitung bis zur Paukenhöhle.

Der Uebergang der Luftleitung in die Leitung durch feste Körper geschieht hauptsächlich an der Oberfläche des Trommelfells, ausserdem aber auch an den Wänden der Ohrmuschel und des äusseren Gehörgangs. Die an letztere übertragenen Schwingungen werden grösstentheils ebenfalls dem Trommelfell, von dessen Anheftungsringe aus übertragen; ein Theil jedoch gelangt durch Knochenleitung an das Labyrinth, ebenso wie alle an die gesammte Kopfoberfläche von der Luft übertragenen Schwingungen. Einen weit wichtigeren Dienst aber, als die der Aufnahme von Luft-

Ohrmuschel, äusserer Gehörgang.

schwingungen und Leitung derselben zum Trommelfell, leisten die Wände des Gehörgangs und vielleicht auch der Ohrmuschel durch Reflexion der sie treffenden Luftwellen, durch welche diese von der Ohrmuschel in den Gehörgang, vom Gehörgang aber gegen das Trommelfell geworfen werden. Für die Ohrmuschel ist diese Function nicht sicher erwiesen, und durch Experimente sogar unwahrscheinlich gemacht.

Keine Form eines festen Körpers ist für die Aufnahme und weitere Fortpflanzung senkrecht oder schräg auffallender Luftwellen geeigneter als die gespannter Membranen oder starrer, elastischer, dünner Platten. Letztere Form hat die knorplige Ohrmuschel, erstere das Trommelfell. In beiden Fällen ist der Körper so dünn, dass die ihn treffenden Verdichtungs- und Verdünnungs-Kugelschaalen der Luftwelle seine ganze Masse in der Richtung des Dickendurchmessers in Schwingungen ("Transversal-Schwingungen") versetzen können, während sonst die einzelnen Molecülschichten successive in Schwingungen gerathen und so Verdichtungs- und Verdünnungswellen in dem Körper ("Longitudinalschwingungen") entstehen; bei ersteren, wo nur die Elasticität zu überwinden ist, ist der Widerstand also viel geringer, die Schwingungselongationen viel grösser, als bei letzteren, wo der grosse Widerstand der gegenseitigen Molecülverschiebung entgegensteht. Natürlich können auch solche Körper longitudinal schwingen, nämlich, wenn ihnen vom Rande her Schwingungen mitgetheilt werden, z. B. dem Trommelfell von der Wand des äusseren Gehörganges.

Die Reflexion von den Wänden des äusseren Gehörgangs bedarf keiner Erläuterung; denn alle Schwingungen, welche die Wand einer cylindrischen Röhre treffen, müssen nach ein- oder mehrmaliger Reflexion an die Verschlussfläche derselben (hier das Trommelfell) gelangen; dieselbe hat hier eine schräge Stellung gegen die Axe der Röhre (von unten und innen nach oben und aussen). - Eine Reflexion von den Flächen und Vorsprüngen der Ohrmuschel gegen die Mündung des Gehörgangs wäre sehr gut denkbar, namentlich da dieselbe sowohl im Ganzen als in ihren einzelnen Theilen durch Muskeln (die freilich meist ungeübt, oft verkümmert sind) verstellbar ist. Versuche indess, bei welchen die ganze Ohrmuschel bis auf den durch eine Röhre verlängerten Gehörgang mit einer weichen Masse ausgefüllt war, haben keine merkliche Schwächung des Gehörs ergeben, also die reflectorische Function der Ohrmuschel unwahrscheinlich gemacht (HARLESS); Andere freilich kamen zu entgegengesetzten Resultaten (SCHNEIDER). Fehlen der Ohrmuschel bedingt keine Schwächung des Gehörs. -Künstliche Reflectoren von bedeutender Wirkung (für Schwerhörige) sind die Hörrohre, röhrenförmige, mit einem Trichter endende Verlängerungen des Gehörgangs. Die Stethoscope sind ebenfalls röhrenförmige Verlängerungen des Gehörgangs, welche mit dem andern Ende den tönenden Körper berühren; bei ihnen ist indess ein grosser, vielleicht der grösste Theil der Wirkung auf die Leitung der Wände zu beziehen.

Obgleich gespannte Membranen, ebenso wie gespannte Saiten, durch Luftschwingungen im Allgemeinen nur dann angesprochen werden, wenn ihre Schwingungszahl mit der des erregenden Tones

übereinstimmt, oder ein Vielfaches derselben ist (also z. B. im Octavenverhältniss zu ihr steht), und dann immer nur in ihrem eigenen Tone mitschwingen, wird das Trommelfell durch jeden Ton von beliebiger Höhe (innerhalb gewisser Grenzen) in Schwingungen versetzt, und schwingt immer genau in der Schwingungszahl des Tones, und in einer der des Tones proportionalen Intensität. Ja sogar complicittere Schallwellen, Klänge (p. 276 f.), setzen das Trommelfell in vollkommen übereinstimmende Schwingungen. Der Beweis hierfür liegt darin, dass wir (innerhalb der unten erwähnten Grenzen) jeden beliebig hohen Ton in specifischem Timbre hören und seine Stärke beurtheilen können. Letzteres Urtheil ist allerdings insofern etwas mangelhaft, als wir bei gleicher objectiver Intensität sehr tiefe Töne sehr viel schwächer hören, als sehr hohe, ein Beweis, dass das Trommelfell wirklich durch tiefe Töne schwerer angesprochen wird, als durch hohe. Die erörterte Eigenthümlichkeit des Trommelfells erklärt sich: 1. hauptsächlich dadurch, dass den Schwingungen desselben durch seine Verbindung mit den Gehörknöchelchen und der Membran des ovalen Fensters ein sehr bedeutender Widerstand gesetzt ist (SEEBECK). Hierdurch wird zwar die Intensität der Trommelfellschwingungen sehr bedeutend herabgesetzt (die Gehörnervenendigungen müssen daher sehr empfindlich sein, Lupwig); aber die eigene Schwingungszahl des Trommelfells verliert dadurch, da zugleich die Masse (also das Trägheitsmoment) des Trommelfells sehr klein ist, fast ganz ihren bestimmenden Einfluss.*) Derselbe Umstand verhindert auch das selbstständige Nachschwingen (Nachtönen) des Trommelfells, so dass wir den Ton nicht länger hören als er dauert; 2. zum Theil dadurch, dass die Spannung des Trommelfells durch den M. tensor tympani verändert werden kann; dieser Einfluss kann natürlich nur dazu dienen, das Trommelfell für gewisse Tonlagen, z. B. sehr hohe oder sehr tiefe, im Allgemeinen etwas schwingungsfähiger zu machen. Durch stärkere Anspannung wird es für hohe, durch Abspannung für tiefe etwas accommodirt. Stärkere Anspannung des Trommelfells schwächt ausserdem etwas die Intensität der Schwingungen, macht also schwerhörig (J. MÜLLER), weil die Widerstände dadurch vermehrt werden.

^{*)} Nach demselben Principe, nach welchem man die Eigenschwingungen eines auf und ab gehenden Hebelsystems dadurch eliminirt, dass man ihm geringe Masse und bedeutende Widerstände giebt, wie beim Sphygmographen (s. p. 61).

Wirkung des Tensor tympani.

Die Anspannung des Trommelfells durch den Tensor tympani geschieht auf folgende Weise: Zwischen die Lamellen des Trommelfells ist von oben her in radialer Richtung der lange Griff des Hammers bis etwas unter das Centrum eingeschoben. Der Hammer ist nun (mit dem Amboss) um eine von vorn nach hinten durch seinen Hals gehende Axe drehbar (s. unten). Durch seine Verbindung mit den übrigen Gehörknöchelchen, sowie durch die Elasticität der ihn tragenden Bandmasse (Näheres über diese s. unten) ist seine Gleichgewichtslage so, dass sein Griff schräg mit dem unteren Ende nach innen ragt. Hierdurch wird das Trommelfell in Form eines flachen Kegels oder Trichters, dessen Meridiane wegen der Spannung der circulären Fasern nicht grade, sondern nach Aussen convex sind, etwas nach innen in die Paukenhöhle hineingezogen. [Diese Gestalt des Trommelfells hat den Vortheil die Kraft seiner Schwingungen auf Kosten ihrer Amplitude zu vergrössern, denn auf mathematischem und experimentellem Wege lässt sich erweisen, dass der auf die schwach gekrümmten Meridiane wirkende Luftdruck in Bezug auf deren Ende (den Nabel des Trommelfells) denselben Effect hat als wäre letzteres das Ende eines sehr kurzen Hebelarms während der Luftdruck auf einen sehr langen wirkt (HELMHOLTZ).] Die Sehne des Tensor tympani, welche, nachdem sie über ihre Rolle gegangen, einen rechten Winkel mit dem Griff bildend sich dicht unter dem Drehpunct des Hammers ansetzt, muss bei der Contraction des Muskels den Griff noch weiter nach innen ziehen, das Trommelfell also stärker anspannen. Die Contraction (abhängig von N. trigeminus) kann von Manchen willkürlich hervorgerufen werden (J. MÜLLER); bei Allen erfolgt sie als "Mitbewegung" bei kräftiger Contraction der Kaumuskeln (FICK). Ob die Contraction für gewöhnlich willkürlich oder reflectorisch (zur Dämpfung bei starken Schalleindrücken) vom Acusticus oder den sensiblen Nerven des äusseren Gehörgangs aus (HARLESS) eingeleitet wird, ist unentschieden. Beim Nachlassen der Contraction kehrt der Hammerhandgriff und das Trommelfell durch die Elasticität des letzteren, ferner der oben erwähnten Bandmasse und der Gelenke zwischen den Hörknöchelchen wieder in die Gleichgewichtslage zurück. Der Tensor tympani braucht also keinen Antagonisten; was früher als solcher (Laxator tympani) beschrieben wurde, ist nur ein Band.

Viele Personen können willkürlich ein knackendes Geräusch im Ohre hervorbringen, welches früher mit der Contraction des Tensor tympani in Zusammenhang gebracht wurde (Muskelgeräusch oder plötzliche Trommelfellspannung).

Luftdruck in der Paukenhöhle. Leitung durch dieselbe.

Gegen diese Erklärung spricht, dass das Geräusch nicht mit Einziehung des Trommelfells (nachweisbar an einem in den Gehörgang eingepassten Manometer) verbunden ist (POLITZER, LÖWENBERG). Man leitet es daher jetzt von plötzlicher Oeffnung der Tuba Eustachii ab (durch den Tensor palati mollis), welche in der Ruhe nach Einigen (TOYNBEE, POLITZER, MOOS) ganz geschlossen ist, nach Anderen (RÜDINGER, LUCAE) jedoch beständig ein Lumen hat, und (CLE-LAND) während des Schlingens sich schliesst.

Auch auf andere Weise kann das Trommelfell stärker angespannt werden, nämlich wenn zu den bestehenden Verhältnissen noch eine Verschiedenheit des Luftdruckes auf beiden Seiten des Trommelfells (in der Paukenhöhle und im äusseren Gehörgang) hinzukommt. Gewöhnlich ist der Luftdruck beiderseits gleich, weil auch in der Paukenhöhle, welche durch die Tuba Eustachii mit der Rachenhöhle in Verbindung steht, der Druck der Atmosphäre herrscht. Durch eine kräftige Exspiration bei geschlossener Mundund Nasenhöhle (Ausschnauben) kann aber in die Paukenhöhle Luft eingepresst, durch eine kräftige Inspiration unter gleichen Umständen Luft herausgesogen werden (VALSALVA'scher Versuch). Im ersten Falle wird das Trommelfell nach aussen, im letzteren nach innen getrieben, in beiden also stärker gespannt. Die Folge ist ausser der Accommodation für höhere Töne augenblickliche Schwerhörigkeit. Dauernde Schwerhörigkeit entsteht, wenn durch Versperrung der Tuba der Luftdruck der Paukenhöhle sich abnorm erhält; dieselbe kann nur durch Wegsammachen der Tuba (Einführen eines Catheters vom unteren Nasengang aus) gehoben werden.

Die tiefsten Töne, welche noch wahrnehmbar sind, werden zu 40, die höchsten etwa zu 16000 Schwingungen in der Secunde angegeben; jedoch ist es zweifelhaft, ob diese Begrenzung dem Trommelfell oder dem Empfindungsvermögen des Hörnerven zuzuschreiben ist. Die Grenzen sind für verschiedene Menschen verschieden; so können Manche sehr hohe, aber Anderen noch hörbare Töne, z. B. das Zirpen der Heimchen, nicht mehr wahrnehmen. Ueber die Schwingungsformen des Trommelfells vgl. auch unten.

Leitung durch die Paukenhöhle.

Die weitere Fortleitung der Trommelfellschwingungen geschieht durch die Kette der Gehörknöchelchen, welche nur dazu zu dienen scheinen, die Trommelfellschwingungen auf die Membran des ovalen Fensters zu übertragen. Bei den Vögeln und beschuppten Amphibien sind sie daher durch ein einziges stabförmiges Gehörknöchelchen (columella) vertreten. Beim Menschen sind nun die beiden gegenüberliegenden Membranen nicht durch einen einfachen Stab, sondern durch einen aus drei Knochen bestehenden Winkelhebel verbunden, dessen Drehaxe die Hammer-Amboss-Axe (a in Figur 39)

Fig. 39.

ist. Die Pfeile in der Figur verdeutlichen wie die Membran der Fenestra ovalis mit dem Trommelfell in gleichem Sinne mitschwingen muss. Die Verbindung des Winkelhebels mit der Membran des ovalen Fensters geschieht nicht, wie mit dem Trommelfell, durch einen radial eingeschobenen Arm, sondern durch

eine central eingesetzte Platte, die Fussplatte des Steigbügels. — Die Gelenke zwischen den einzelnen Knöchelchen, welche sämmtlich durch die elastische Spannung, resp. Contraction des Tensor tympani so festgestellt werden, dass das System mit dem Trommelfell als Ganzes schwingt, dienen wahrscheinlich dazu, die gegenseitige Verschiebung derselben bei den Stellungsänderungen des Trommelfells möglich zu machen, welche dadurch geboten ist, dass der Steigbügel vermöge der Anheftung seiner Fussplatte nur in der Richtung seiner wenig verrückbaren Längsaxe schwingen kann. — Die Dimensionen der Gehörknöchelchen und des mit ihnen schwingenden Labyrinthwassers sind im Vergleich zur Wellenlänge der Schallwellen so gering, dass alle diese Theile immer in gleicher Phase der Schwingung begriffen sein müssen (E. WEBER, HELMHOLTZ).

Der Hammer wird durch eine Bandmasse getragen, welche von vorn nach hinten durch die Trommelhöhle gespannt ist und zugleich seine Drehaxe bildet ("Axenband" HELMHOLTZ); sie besteht aus zwei an den Hals des Hammers sich inserirenden Bändern: einem vorderen, an die Spina tympanica ant. angehefteten und einem hinteren, welche die Verlängerung des vorderen bildet. Um diese Axe wird der Hammer durch die seinem Griff sich mittbeilenden Bewegungen des Trommelfells gedreht, und sammt ihm der mit ihm articulirende Amboss; letzterer wird wesentlich vom Hammer getragen, ist aber durch seinen kurzen Fortsatz dergestalt mit der hinteren Trommelhöhlenwand verbunden, dass er die Bewegungen des Hammers etwas modificirt (so dass man auch beide zusammen als einen complicirten Hebel bezeichnen kann) und den Nabel des Trommelfells nur vertical zu dessen Randebene sich bewegen lässt. Der lange Ambossfortsatz, dessen Ende mit dem Steigbügel articulirt, schwebt etwas nach innen vom Hammergriff, dem er stets annähernd parallel bleibt. Das Gelenk zwischen Hammer und Amboss ist sattelförmig; der Körper des Amboss umfasst die convex-concave Gelenkfläche am Halse des Hammers. Die Gelenkflächen sind mit einer Art von Sperrzahn versehen, so dass Einwärtsdrehungen des Hammers dem Amboss genau mitgetheilt werden, Auswärtsbewegungen aber nicht; der Steigbfigel kann daher durch letztere nicht aus dem ovalen Fenster herausgerissen werden; gegen das zu starke Hineintreiben schützt die Spannung des Trommelfells selbst. (HELMHOLTZ.) - Der von hinten her an das Köpfchen des Steigbügels, rechtwinklig gegen dessen Ebene sich ansetzende kleine Muskel (Stapedius)

Wellenleitung im Labyrinth.

dient wahrscheinlich dazu, die Stellung der Steigbügelplatte in der Fenestra zu verändern, und sie entweder mit dem hinteren Raude mehr hinein- oder mit dem vorderen herauszuhebeln; vermuthlich beschränkt beides die Excursionsfähigkeit des Steigbügels, so dass der Muskel dämpfend zu wirken scheint. Ueber seine Innervation (durch den Facialis) weiss man nichts Genaueres.

Der vom Hammer und Amboss gebildete einarmige Hebel, dessen Drehpunct die Spitze des kurzen Ambossfortsatzes ist, überträgt die Schwingungen des Trommelfells im Verhältniss von 3:2 vermindert, in der Kraft also umgekehrt verstärkt, auf den Steigbügel, was bei den grossen Widerständen des letzteren von Vortheil sein muss (HELMHOLTZ).

Leitung durch das Labyrinth.

Im Labyrinthwasser erzeugen die Stösse der Steigbügelplatte Beugungswellen, d. h. das Labyrinthwasser weicht bei jedem Stosse in seiner ganzen Masse aus, indem es die nachgiebige Stelle der Labyrinthwand, die Membran der Fenestra rotunda, nach aussen in die Paukenhöhle hervorwölbt. (Wäre das Labyrinthwasser überall von starren Wänden umgeben, so würde jeder Stoss der Steigbügelplatte zum grössten Theil reflectirt werden; nur ein verschwindend kleiner Theil der lebendigen Kraft würde sich in Form von Verdichtungs- und Verdünnungswellen durch das fast incompressible Labyrinthwasser fortpflanzen.) Welchen Weg indess die Beugungswelle oder der durch jeden Steigbügelstoss im Labyrinthwasser erzeugte kleine Stoss nimmt, ob er alle Theile desselben gleichmässig in Bewegung setzt u. s. w., lässt sich bei der complicirten Gestalt des Labyrinthes nur vermuthen. Am sichersten kennt man den letzten Theil des Weges, nämlich den durch die Schnecke. Die Welle tritt in diese vom Vorhof durch die Apertura scalae vestibuli ein, durchläuft den oberen Schneckengang (Scala vestibuli) bis zur Kuppel, tritt von hier aus in den unteren Spiralgang (Scala tympani) und durchläuft diesen bis zum Ende, nämlich zur Fenestra rotunda; schon auf dem Wege durch die Scala vestibuli findet indess höchstwahrscheinlich ein theilweiser Uebergang in die Scala tympani durch den häutigen Theil der Wendeltreppe (Lamina spiralis membranacea) hindurch statt. - Viel schwieriger verständlich ist der Weg im Vorhof und in den halbeirkelförmigen Canälen. Am natürlichsten scheint die Annahme, dass die Welle im Vorhofe sich theilt, und durch jeden halbcirkelförmigen Canal einen Zweig sendet, alle Theilwellen sich dann wieder im Vorhof vereinigen, um in die Schnecke überzugehen. Auf dem Wege durch den Vorhof würde die Welle die 396 Erregung des Hörnerven. Endigungen in den Ampullen und Vorhofssäckchen.

Säckchen, auf dem Wege durch die Canäle die Leisten der Ampullen bewegen. Der Sinn der Canäle wäre dann darin zu suchen, dass sie überhaupt die Bewegung der Ampullenleisten möglich machen; denn in eine blind geschlossene Höhle würde eine Beugungswelle gar nicht eindringen. Jedoch ist diese Erklärung durchaus noch ungenügend (vgl. auch den Anhang z. Gehörorgan).

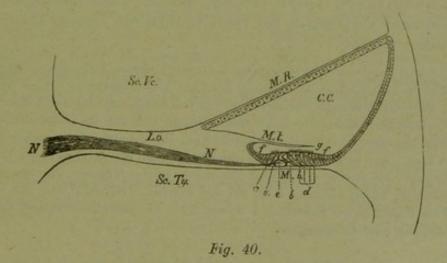
Nach dem bis jetzt Gesagten ergiebt sich von selbst die Bedeutung der lufthaltigen Paukenhöhle, nämlich den Schwingungen des Trommelfells und der Gehörknöchelchen, sowie dem Ausweichen der Membran des runden Fensters freien Spielraum zu gewähren; — ebenso die Bedeutung der Tuba Eustachii zur Ausgleichung des Luftdrucks in der Paukenhöhle mit dem der Atmosphäre (s. p. 393). Die Vermuthung, dass die Tuba hauptsächlich zum Hören der eigenen Stimme diene, ist nicht wahrscheinlich.

Wie normal die Luftschwingungen durch das Trommelfell auf die schwingenden Theile des Gehörorgans übertragen werden, so geschicht auch das umgekehrte, wenn das Gehörorgan primär (durch Knochenleitung, z. B. die eigene Stimme) in Schwingungen versetzt wird. Diese Ableitung schwächt die Schwingungen des Ohres (MACH). Verhindert man sie (durch Schliessen des Gehörgangs), so hört man daher den durch Knochenleitung zugeführten Schall und die eigene Stimme stärker (WEBER).

Hören.

Erregung der Acusticus-Endorgane.

Die dem häutigen Labyrinth und der häutigen Spiralplatte übertragenen Bewegungen des Labyrinthwassers erregen die hier befindlichen Endigungen des Hörnerven, und bringen dadurch Gehörempfindungen hervor.


Ueber die Endorgane des Hörnerven ist Folgendes bekannt:

1. Endigungen in den Ampullen und Vorhofssäckchen. In den Ampullen befinden sich die Nervenendigungen in einer gelblichen halbkreisförmigen äquatorialen Leiste, einer Verdickung des häutigen Labyrinths (SCARPA, STEIFENSAND, M. SCHULTZE). Die Structur dieser Leiste ist besonders nach Untersuchungen am Rochen folgende: Das einfache Epithel der Ampulle erhebt sich auf dem leistenförmig angeschwollenen harten Bindegewebe zu einer dicken wulstigen, vielschichtigen Masse, auf welcher feine steife Borsten (die "Hör-, haare") stehen. In der Epithelialmasse verzweigen sich die Nervenfasern, nachdem sie an der Grenze des Bindegewebes plötzlich ihre Scheide verloren haben, als nackte Axencylinder auf das Feinste. In den Zellen der Epithelschicht unterscheidet man: a) cylindrische, kernhaltige Epithelzellen in mehreren Schichten, in der untersten ("Basalzellen") mehr pyramidal und zugespitzt; b) spindelförmige Zellen mit zwei feinen Ausläufern, deren einer der Oberfläche zustrebt, deren anderer, häufig varicös (die Varicositäten sind Kunstproducte,

Nervenendigungen in der Schnecke.

SCHULTZE) nach der Basis gerichtet ist, ohne dass seine Endigung zu verfolgen wäre; diese Fasern und Zellen sind nervös und stellen vermuthlich die Endigungen der verzweigten Axencylinder dar; c) in der oberflächlichen Schicht kuglige oder cylindrische Zellen, welche die oben erwähnten Hörhaare tragen; nach Anderen wurzeln die letzteren auf den der Oberfläche zugekehrten Fortsätzen der nervösen Zellen. - In den Vorhofssäckchen (untersucht bei Fischen) sind die Nervenendigungen ebenfalls in einer halbkreisförmigen, aber niedrigeren Leiste enthalten; in dieser finden sich dieselben Elemente wie in den Leisten der Ampullen, bis auf die Borsten. Statt ihrer befindet sich hier der Otolith, welcher der Innenwand des Sackes an der die Leiste tragenden Fläche genau anliegt, und für die Leiste eine entsprechende Rinne zeigt; er besteht aus einem harten oder breiigen Conglomerat von prismatischen Stäbchen (Krystalle von kohlensaurem Kalk in der Arragonitform) und schwebt ohne Anheftung in der zähen, glaskörperähnlichen Flüssigkeit (Endolympha), welche das Säckchen erfüllt (M. SCHULTZE). Stellenweise finden sich zuweilen kurze Borsten, und zwar da, wo der Otolith nicht genau anschliesst.

2. Endigungen in der Schnecke (Cortisches Organ). Der um die Spindel sich herumwindende Schneckengang wird durch die von ersterer ausgehende knöcherne Spiralplatte (L. o. Figur 40) und die von dieser zur gegenüberliegenden Gangwand hinübergespannten beiden Membranen, die Membrana basilaris (M. b.) und die REISSNER'sche Membran (M. R.) in drei Kanäle getheilt, die Scala vestibuli (Sc. ve.), Scala tympani (Sc. ty.) und den zwischen beiden Membranen liegenden Canalis cochlearis (C. C.). Die Fasern des in die Spindel eintretenden Schneckennerven wickeln sich von diesem in Form eines schraubenartig gewundenen Fächers ab, indem sie durch die radiären Canälchen der Lamina ossea (N. N.) in den Can. cochlearis eintreten und sich zu dem daselbst

liegenden Corrischen Organ begeben. Der Bau des letzteren ist nach den neueren Untersuchungen (Kölliker, Böttcher, Waldever & Gottstein, v. Winiwarter) etwa folgender: Die epitheliale Auskleidung des Can. cochlearis ist auf der Membr. basilaris zu einer eigenthümlichen Formation entwickelt. Auf jedem radialen Durchschnitt finden sich zwei elastische, härtliche, auf der Basilar-

398 Nervenerregung. Function der Labyrinththeile. Gehörempfindung.

membran wurzelnde Pfeiler (a und b), welche mit ihren Köpfen unter einander articuliren, die "Cortrischen Bogen oder Pfeiler". Nach innen vom inneren Pfeiler findet sich eine mit einer Nervenfaser in Verbindung stehende "innere Haarzelle" (c), ebenso nach aussen vom äusseren Pfeiler eine Anzahl "äusserer Haarzellen" (d) (bei Säugethieren 3, beim Menschen 4-5; Vögel und Amphibien haben nur die inneren), welche ebenfalls mit Nervenfasern (e) versorgt werden. Die Köpfe der Contrischen Pfeiler sind mit Fortsätzen versehen, durch welche sie zur Bildung eines stützenden Netzwerks beitragen, das im Niveau des Epithelsaums liegt (Lamina reticularis, ff); in den Ringen dieses zierlichen Netzes sind die Köpfe der Haarzellen, in quincuncialer Anordnung, befestigt. Das ganze Contrische Organ ist von einer weichen "Deckmembran" (M. t.) bedeckt, die von der Lamina ossea ausgeht, und in der Flüssigkeit des Can. cochlearis mit freiem Rande endigt (g). Die Zeichnung ist schematisch gehalten.

In allen Organen des inneren Ohrs sind Vorrichtungen an den Nervenendigungen angebracht, welche eine mechanische Erregung derselben zu begünstigen scheinen: in den Ampullen und im Corrischen Organ die Borsten, welche, durch die durchziehende Wasserwelle in Bewegung gesetzt, die Nervenzellen erschüttern können; in den Vorhofssäckchen die Otolithen, welche den Nervenendigungen auf's Genaueste anliegend, bei der geringsten Erschütterung jene percutiren müssen; endlich in der Schnecke die ganze häutige Scheidewand mit ihren Membranen und Pfeilern, deren Schwingungen auf die eingeklemmten Nervenzellen einen Druck ausüben könnten. Man vermuthet daher, dass die Erregung der Hörnervenendigungen auf mechanischer Tetanisirung beruhe, wofür namentlich das sehr constante Vorkommen der Otolithen in der ganzen Thierreihe zu sprechen scheint.

Ueber die besondere Function der verschiedenen Endorgane, also der verschiedenen Labyrinththeile existiren bis jetzt nur Hypothesen. Eine frühere Ansicht, dass die Schnecke vorzugsweise zur Wahrnehmung der durch Knochenleitung vermittelten Gehöreindrücke diene, stützte sich auf die irrthümliche Angabe, dass die Nervenenden der Schnecke auf der Lamina ossea selbst angebracht wären. Sie wird zur Genüge widerlegt durch den Nachweis des Contrschen Organs und durch das Fehlen der Schnecke bei Thieren die nur durch Knochenleitung hören können, z. B. bei den Fischen. Näheres über die wahrscheinliche Function der Schnecke s. unten; über die halbeirkelförmigen Canäle s. den Anhang zum Gehörorgan.

Qualitäten der Gehörempfindung.

Die Erregung der Endorgane des Acusticus durch die Wellenbewegungen des Labyrinthwassers, sowie jede beliebige andere Erregung von Acusticusfasern, bewirkt eine Gehörempfindung. Die Höhe (Elongation) der Wellen bedingt die Intensität des Hörens,

Umfang der Gehörwahrnehmung. Töne. Klänge Combinationstöne. 399

die Länge der Wellen, oder die Zahl der Schwingungen in der Zeiteinheit bedingt die Höhe des gehörten Tones. Der Umfang des Gehörvermögens in Bezug auf die Höhe ist sehr bedeutend, und die p. 393 angegebenen Grenzen sind wahrscheinlich gar nicht durch die Erregbarkeit des Hörnerven, sondern durch die Schwingungsfähigkeit der zuleitenden Organe z. B. des Trommelfells bedingt. Indess selbst das Intervall zwischen dem dort angegebenen tiefsten (40 Schw.) und höchsten (16000—20000 Schw.) Tone beträgt ungefähr $8^{1/2}$ —9 Octaven, während das Intervall zwischen den äussersten sichtbaren rothen und violetten Strahlen, in analoger Weise berechnet, noch nicht eine Octave beträgt.

Gegenstand der Gehörempfindungen sind aber für gewöhnlich keine einfachen Töne, ebenso wie wir für gewöhnlich keine einfachen Spectralfarben, sondern Mischfarben sehen. Die gewöhnlichen Schalle sind Klänge oder Geräusche.

Das Wesen der Klänge, ihre Zerlegbarkeit in einfache Töne, ist bereits früher (p. 276 f.) erörtert worden. Einfache Töne kann man nur künstlich hervorbringen, und zwar dadurch, dass man einen auf einen Partialton eines Klanges abgestimmten Resonator durch den Klang zum Mittönen bringt, z. B. einen der p. 276 erwähnten Resonatoren, oder die Resonanzröhren p. 285, oder eine Monochordsaite, auf der man eine klingende Stimmgabel so lange verschiebt, bis eine Saitenlänge getroffen ist deren Eigenton mit einem Partialton des Stimmgabelklanges übereinstimmt (HELMHOLTZ).

Werden zwei verschiedene einfache Töne gleichzeitig angegeben, so machen sich, bei einer gewissen Stärke derselben, gegenseitige Störungen ihrer Wellensysteme bemerkbar, durch welche in den schallleitenden Medien, z. B. in der Luft, neue Schwingungen entstehen, und zwar solche deren Schwingungszahl der Differenz, und andere deren Schwingungszahl der Summe beider primären Schwingungszahlen gleich ist. Obgleich nun in diesem Falle nur Ein resultirendes Wellensystem das Ohr trifft, und unverändert durch die schallleitenden Medien den Nervenapparaten zugeführt wird, werden doch bei genügender Stärke vier einzelne Töne gleichzeitig gehört, die beiden primären und zwei Combinationstöne: ein Differenz- und ein Summationston.

Wird ferner ein Klang angegeben, so wird dieser in seiner specifischen Zusammensetzung erkannt (was dadurch bezeichnet wird, dass man den Hauptton in specifischer Klangfarbe, Timbre höre, s. p. 276). Ausserdem aber kann man sogar jeden einzelnen Partialton des Klanges heraushören, auch ohne besondere Uebung, wenn man ihn nur unmittelbar vor Ertönen des Klanges einzeln angegeben hat (HELMHOLTZ).

Endlich hört man bei gleichzeitigem Ertönen vieler Klänge nicht ein Geräusch, wie man nach dem complicirten das Ohr durchlaufenden resultirenden Wellensystem erwarten müsste; sondern man unterscheidet deutlich jeden einzelnen Klang; ja man kann sogar aus einem Orchester ein einzelnes Instrument heraushören und für sich verfolgen.

Alle diese Erfahrungen deuten nun darauf hin, dass es im Gehörorgan eine Vorrichtung giebt, welche jedes auch noch so complicirte Wellensystem in einfach pendelartige Componenten zerlegt, etwa wie jeder Klang durch Resonatoren in seine Bestandtheile zerlegt werden kann, dass ferner jede Componente eine besondere Nervenfaser erregt, und dadurch die Empfindung eines einfachen Tones hervorbringt. Diese Vermuthung, welche zugleich allein dem Princip der specifischen Energien Genüge leistet (p. 311 f.), wird zur Gewissheit erhoben durch folgende Erfahrung (HELMHOLTZ): combinirt man mehrere einfache Töne zu einem Klange, und lässt die einzelnen zu beliebigen Zeiten anfangen, so dass sie mit verschiedenen Phasen ihrer Schwingungen in einander greifen, so entstehen die mannigfaltigsten Verschiedenheiten des combinirten Wellensystems. Erregte nun das Wellensystem als solches den Gehörnerven zu verschiedenen Formen der Thätigkeit, so müssten offenbar bei diesen Versuchen stets verschiedene Klangeindrücke wahrgenommen werden. Der Versuch, angestellt mit dem p. 285 erwähnten Vocalapparat, lehrt aber, dass in allen Fällen derselbe Klang gehört wird; die geringste Verschiedenheit würde sich als ein Unterschied im Vocalklange markiren.

Jeder Resonator erklingt nicht bloss bei Angabe seines eigenen, sondern auch bei der der benachbarten Töne, jedoch um so schwächer je grösser der Abstand der letzteren vom Eigenton.*) Das Mitschwingen erstreckt sich wie die Theorie lehrt auf um so distantere erregende Töne, je grösser die Dämpfung des Resonators, d. h. je schneller seine Schwingungen, einmal erregt, abnehmen. Der Dämpfungsgrad lässt sich bemessen nach der Anzahl der Schwingungen nach welcher die Intensität auf einen gewissen Bruchtheil, z. B. ¹/₁₀ der ursprünglichen herabgesunken ist, die Erstreckung des Mitschwingens nach dem Abstande

^{*)} In Wirklichkeit ist der am stärksten ansprechende Ton vom Eigenton des Resonators ein wenig verschieden; beide wären nur dann völlig identisch wenn Reibung und Luftwiderstand Null wären (Helmholtz).

Dämpfungsgrad der Resonatoren im Ohr.

desjenigen Tons vom Eigenton des Resonators, der letzteren noch mit einem bestimmten Bruchtheil z. B. ¹/₁₀ der Intensität anspricht wie der Eigenton. Kennt man diesen Abstand, so lässt sich der Dämpfungsgrad berechnen und umgekehrt Für die Beziehungen beider liefert folgende Tabelle einen Anhalt (HELMHOLTZ):

Differenz der Tonhöhe, durch welche die Intensität des Mitschwingens auf ¹ / ₁₀ reducirt wird.	Zahl der Schwingungen, nach wel- cher die Intensität des ausklingenden Tones auf ¹ / ₁₀ reducirt wird.				
Ein achtel Ton	38,00				
Ein viertel Ton	19,00				
Ein halber Ton	9,50				
Drei viertel Ton	6,33				
Ein ganzer Ton	4,75				
Fünf viertel Ton	3,80				
Kleine Terz (3/2 Ton)	3,17				
Sieben viertel Ton	2,71				
Grosse Terz (2 Töne)	2,37				

Der Dämpfungsgrad der Resonatoren im Ohr lässt sich hiernach aus folgender Erfahrung ermitteln: Ein Triller mit der Geschwindigkeit von 10 Tonschlägen in der Secunde kann in allen Tonlagen bis zum A (110 Schwingungen) herab mit vollkommener Schärfe gehört werden, ohne dass der Eindruck des Abwechselns zweier Töne sich durch Nachtönen der schwingenden Theile im Ohre verwischt; letzteres geschieht erst unterhalb A. Nimmt man nun an, dass die Schwingung bis auf 1/10 ihrer Intensität herabgesunken sein muss, um bei der Wiederkehr desselben Tones, also nach 1/5 Secunde, nicht mehr gehört zu werden, so ergiebt sich, dass die durch A in Schwingung versetzten Theile im Gehörorgan nach 1/5 Secunde, also 22 Schwingungen, nur noch mit 1/10 ihrer ursprünglichen Intensität nachschwingen. Der Dämpfungsgrad der Resonatoren im Ohr wird also etwa der zweiten, vielleicht der dritten oder vierten Stufe der obigen Tabelle entsprechen; unterhalb A werden wenigstens die Triller in der That bald rauh und verworren. Nimmt man die dritte Stufe als die richtige an, so ist für jeden Resonator, wenn man die Intensität der Erregung durch seinen Eigenton = 100 setzt, die durch die benachbarten Töne folgende:

Differenz der Tonhöhe in

Bruchtheilen eines ganzen

Tones 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Intensität des Mitschwin-

gens 100 74 41 24 15 10 7,2 5,4 4,2 3,3 2,7. Diejenigen Theile im Ohr die durch den Ton A in Schwingung versetzt werden, können also durch einen um $\frac{1}{2}$ Ton abstehenden Ton nur mit $\frac{1}{10}$ der Intensität angesprochen werden; für Ais und As müssen also nothwendig andere Resonatoren vorhanden sein als für A, abermals ein Beweis für die angeführte Theorie (HELMHOLTZ).

Hermann, Physiologie. 5. Aufl.

Die zuweilen beobachtete, mitunter plötzlich entstehende Taubheit für eine Reihe von Tönen, z. B. für die tiefsten (Basstaubheit), spricht ebenfalls sehr dafür, dass an der Wahrnehmung verschieden hoher Töne räumlich getrennte Apparate im Ohr betheiligt sind (Moos).

Ein einfacher Ton würde nach dieser Theorie einen Resonator des Ohrs mit grösster, die benachbarten mit abnehmender Intensität erregen. Theoretische Betrachtungen ergeben jedoch, dass das Trommelfell wenn es durch einen einfachen Ton erregt wird, zugleich in dessen harmonischen Obertönen schwingt, so dass also auch die diesen entsprechenden Resonatoren erregt werden, also niemals ein einfacher Ton gehört werden kann (J. J. MÜLLER).

Die Zerlegung der Klänge kann nur durch ein System von Resonatoren im Ohre geschehen. Welchen Theil des Ohres man aber als ein solches anzusehen habe, ist bis jetzt noch Gegenstand von Vermuthungen. Vor Allem bietet anscheinend die Schnecke Anhaltspuncte. Man könnte die Corrischen Bogen (p. 398) als Resonatoren ansehen (HELMHOLTZ), da ihre abgestuften Dimensionen auf eine Abstufung ihrer Eigenschwingungszahlen hindeuten; oder einfacher die Radien der Membrana basilaris (HENSEN), welche sich wie eine Reihe gespannter Saiten von abgestufter Länge verhalten, da die Membran in radialer Richtung stärker als in longitudinaler gespannt ist. Endlich könnten auch die Hörhärchen des Labyrinths und der Schnecke durch abgestufte Länge und Steifigkeit ein Resonatorensystem darstellen (HENSEN).

Die Schnecke soll etwa 3000 Contrische Bogen enthalten (KÖLLIKER). Rechnet man hiervon 200 für nicht musicalisch brauchbare Töne ab, so bleiben 2800 für die musicalisch hörbaren ungefähr 7 Octaven (von c^{II} bis h^{VI}); es kommen also 400 auf jede Octave und $12:400 = 33^{1}/_{3}$ auf jedes halbe Tonintervall. Da nun geübte Musiker noch $1/_{64}$ einer halben Tonstufe unterscheiden sollen (E. H. WEBER), so kann man annehmen, dass ein zwischen zwei Contrische Fasern treffender Ton beide mit ungleicher Intensität anspricht, und dass nach dieser Verschiedenheit die Tonhöhe beurtheilt wird (HELMHOLTZ).

Zur Hervorbringung einer Tonempfindung sind mindestens zwei mit genügender Geschwindigkeit auf einander folgende Schwingungen erforderlich; eine einzelne kann nur als Stoss empfunden werden. Hält man z. B. gegen die Zähne eines sich drehenden (SAVART'schen) Zahnrades ein Kartenblatt, so dass ein Stoss entsteht, so bleibt derselbe Ton hörbar, wenn bei bleibender Umdrehungsgeschwindigkeit die Zähne allmählich bis auf zwei entfernt werden; nur wird er immer dumpfer, wie eine Farbe matter wird, wenn sie mit viel "Schwarz" gemischt ist. Wird auch der vorletzte Zahn entfernt, so verschwindet der Ton und es bleibt nur ein "Stoss" übrig (vermuthlich ein sehr schnell abnehmendes Wellensystem). Geräusche. Dämpfung im Ohr. Harmonie der Klänge. Schwebungen. 403

Combiniren sich sehr viele verschiedene einfache Töne, so dass das Gehörorgan sie nicht zerlegen kann, oder folgen sie so schnell auf einander, dass die Nachtöne (s. unten) der vorhergehenden sich mit den folgenden combiniren, so dass ein unzerlegbares Gewirr entsteht, in welchem nichts Periodisches mehr erkannt wird, so pflegt man die resultirende Empfindung ein "Geräusch" zu nennen. Viele Geräusche sind daher nur sehr complicirte Klänge, welche deutlich einen Hauptton, oft in der Klangfarbe eines Vocales, erkennen lassen: nach diesem Vocal werden sie onomatopoëtisch benannt ("Klirren, Donnern, Knattern, Schmettern," u. s. w.) Ausser diesen scheinbar unperiodischen Schallschwingungen, welche aber doch immer periodisch sein müssen, weil sie aus Tönen zusammengesetzt sind, giebt es nun auch wirklich unperiodische Schallschwingungen, deren Eindrücke auf das Ohr ausschliesslich als Geräusche bezeichnet werden sollten (HELMHOLTZ). Durch welche Theile des Gehörorgans die Wahrnehmung der Stösse und Geräusche vermittelt werde, darüber giebt es nur unbewiesene Hypothesen (Ampullen und Otolithensäckchen?)

Die Vermischung auf einander folgender Töne würde viel allgemeiner sein und dadurch jede Musik unmöglich werden, wenn nicht die Dämpfung der schwingenden Theile im Ohre sehr vollkommen wäre. Der Dämpfungsapparat ist noch nicht aufgeklärt. Manche vermuthen in den Otolithen und in der Membr. tectoria der Schnecke, die dem Corrischen Organ aufliegt (p. 398), Dämpfungsvorrichtungen (WALDEYER).

Harmonie der Klänge.

Treffen mehrere Klänge gleichzeitig das Ohr, so entsteht bekanntlich ein angenehmeres oder unangenehmeres Gefühl unter Bedingungen, welche mit dem Verhältniss der Schwingungszahlen ihrer Grundtöne im engsten Zusammenhange stehen. Man unterscheidet hiernach consonante (wohlgefällige) und dissonante Zusammenklänge. Das Octavenverhältniss (1 : 2) und die Duodecime (1 : 3) bilden die vollkommenste Consonanz; dann folgen in der Richtung zur Dissonanz: Quinte (2 : 3), Quarte (3 : 4), grosse Sexte (3 : 5), grosse Terz (4 : 5), kleine Sexte (5 : 8), kleine Terz (5 : 6) u. s. w. — Diese Erscheinung lässt sich vollkommen dadurch erklären (HELMHOLTZ), dass das Unangenehme der Dissonanz in den durch sie bedingten Schwebung en beruhe, d. h. in Schwankungen der Intensität durch Interferenz zweier in ihrer Wellenlänge etwas verschiedener Wellensysteme. Zwei gleichzeitige, verschieden hohe Töne müssen sich

^{26*}

	G	K	KI.	G	G	0	P	H	0		
	Gr. Septime	Kl. Terz	I. Sexte	Gr. Terz	Gr. Sexte	Quarte	Quinte	Duodecime	Octave	Grundklang	KLÄNGE
-	hI 480	dis ^I 307	gis ^I 410	е ^I 320	a ^I 427	f1 341	gI 384	g11 768	е ^Ц 512	cI 256	E.
	480 224 32	307 614 922 1229 51 205 102 154 154 102 205 51	410 154 102	320 640 960 64 192 128 128 192 64	427 171 85	341 683 85 171 171 85	384 128 128		512	256 512	SCHWINGUNGSZAHLEN DER PARTIALTÖNE UND SCHWEBUNGSZAHLEN.
	960 192 64	1 922 154 154 102	819 51 205	0 960 128 192 64	853 85 171	3 1024 85	768	768	1024	768 1024	GSZAHLEN
	1440 160 96	1229 205 51	1229 205 51	1280	1280		1152 128 128		4	24 1280	DER PART
	96 01	1536	1638 102 154	1600 64 192	1707 171 85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1536	1536	1536	1536 1	TALTÖNE U
	1920 128 128	1843 2 51 205 102	2048	1920 128 128		5 2048	1920 128 128		2048	1792 2048	ND SCHWEB
	2400 96 160	2150 2458 102 154 154 102	2458 154 102	2240 21 192 64 21	2133 22 85 171 22	2389 85 171	2304	2304	10	2304	UNGSZAHLEN
100	0	2	-	2560	2560	-	-	(2560	25 <u>6</u> 0 8	-
	$32 = \frac{256}{8}$	$51_{pm} = \frac{256}{5}$		$64 = \frac{256}{4}$	$85_{1}=\frac{256}{3}$		$128 = \frac{256}{2}$	Keine Schwebun- gen.		KLEINSTE SCHWEBUNGS- ZAHL.	
	Dissonanz.	mene.	Unvollkom-		Mittlere.		Vollkom- mene.	Absolute.		DER CONSONANZ.	CPAN

404

Consonanzen und Dissonanzen.

Consonanzen und Dissonanzen.

nämlich verstärken, so oft zwei Wellenberge oder zwei Thäler zusammentreffen, schwächen dagegen oder selbst aufheben, so oft Berg auf Thal fällt. Die Periode der Schwebung muss offenbar der Differenz der Schwingungszahlen beider Töne gleich sein. Die Schwebungen sind daher um so seltener, je kleiner das Intervall beider Töne ist und je tiefer sie liegen. Sind sie zu häufig, um einzeln (als "Stösse") wahrgenommen zu werden, so geben sie dem Eindruck eine peinliche Discontinuität (vergleichbar dem Flackern eines Lichts). Das Maximum der Wirre und Rauhigkeit liegt bei 33 Schwebungen i. d. Sec. Zwei gleichzeitige Klänge wirken nun um so dissonanter, je mehr durch nahes Zusammentreffen von Partialtönen, unter sich oder mit Combinationstönen (p. 399), Anlass zu Schwebungen mässiger Frequenz gegeben ist.

Um das Gesagte zu erklären, stellt die vorstehende Tabelle, vom Grundklang c^I (256) ausgehend, die Schwingungszahlen der untersten Partialtöne für ihn und einige abgeleitete Klänge dar; sollten sich alle Bedingungen der Dissonanz ergeben, so müsste die Tabelle auch die Combinationstöne darstellen, welche hier nicht berücksichtigt sind. Die kleingedruckten Zahlen bedeuten die Anzahl der Schwebungen, welche ein Partialton mit den beiden ihm nächststehenden Partialtönen des Grundklangs macht.

Aus der Tabelle ersieht man, dass in dem Klange der Octave und der Duodecime keine Partialtöne vorkommen, die nicht schon im Grundklang vorhanden sind; es ist also hier nirgends Schwebung möglich: die Octave und die Duodecime sind "absolute" Consonanzen. In dem Klange der Quinte kommen dagegen Partialtöne vor, die nicht im Grundklang vorhanden sind, aber diese collidiren nicht so nahe mit den zunächst liegenden des Grundklangs, dass Schwebungen entstehen könnten: die Quinte bildet eine "vollkommene" Consonanz. Bei der Quarte, grossen Sexte und grossen Terz ("mittlere" Consonanzen), noch viel mehr aber bei der kleinen Sexte und kleinen Terz ("unvollkommene" Consonanzen), und dann hei den Septimen, Secunden etc. (Dissonanzen) ist dagegen vielfach Gelegenheit zu Schwebungen der Partialtöne gegeben, und man sieht. dass die Schwebungszahlen der Zahl 33 immer näher kommen. Natürlich wird dasselbe Intervall um so leichter zur Dissonanz Anlass geben, je tiefer es angegeben wird (vgl. oben). Auf diesen Principien beruhen die Lehren der Harmonie, der Accordarten u.s w., auf welche hier nicht eingegangen werden kann. Auch für die Aufeinanderfolge der Klänge (Melodie) ist das Verhältniss ihrer Partialtone (ihre "Verwandtschaft") von Bedeutung; folgt auf einen Klang seine Octave, so werden keine neuen Töne gehört, die Aufmerksamkeit also nicht durch einen neuen Eindruck gefesselt; wohl dagegen, wenn die Quinte oder Quarte folgt u. s. w.

Macht der Grundton eines Klanges n Schwingungen in der Secunde, so beträgt die kleinste Anzahl der Schwebungen in der Secunde: beim Zusammen-

Verlegung nach Aussen. Subjectives Hören.

klang mit dem Klang der Quinte $\frac{1}{2}n$, mit der Quarte und grossen Sext $\frac{1}{3}n$, mit der grossen Terz $\frac{1}{4}n$, mit der kleinen Sexte und kleinen Terz $\frac{1}{5}n$, mit der grossen Septime und grossen Secunde (1 ganzer Ton) $\frac{1}{8}n$, mit der kleinen Secunde ($\frac{1}{2}$ Ton) $\frac{1}{15}n$ u. s. w. — Allgemeiner: Ist n die Schwingungszahl des tieferen und m die des höheren Grundtons, und reducirt man den unächten Bruch m/n auf die kleinsten ganzen Zahlen (m_1/n_1), so ist die kleinste Schwebungszahl $= n_1/n$, also um so kleiner, je kleiner n (je tiefer das Intervall) und je grösser n_1 (je incommensurabler das Intervallverhältniss). (Der Bruch m_1/n_1 ist bekanntlich für die Quinte $\frac{3}{2}$, für die Quarte $\frac{4}{3}$, grosse Sexte $\frac{5}{3}$, grosse Terz $\frac{5}{4}$, kleine Sexte $\frac{8}{5}$, kleine Terz $\frac{6}{5}$, grosse Septime $\frac{15}{6}$, grosse Secunde $\frac{9}{6}$, kleine Secunde $\frac{16}{15}$).

Ein einfacher Versuch zeigt überzeugend, dass wirklich das Wesen der Dissonanz in den Schwebungen liegt. Wenn man nämlich von 2 gleichen, auf Resonanzkästen stehenden Stimmgabeln die eine mit Wachs immer mehr verstimmt, so entstehen beim Anstreichen immer schnellere Schwebungen, und wenn diese eine gewisse Frequenz erreichen, hat man das characteristische Gefühl der Dissonanz.

Aeusseres Hören.

Die Ursache jeder Tonempfindung, deren zu Stande Kommen durch das Trommelfell vermittelt ist, verlegt die Seele nach aussen, während ihr die durch Knochenleitung vermittelten im Kopfe selbst entstanden scheinen. Taucht man z. B. mit dem Kopfe unter Wasser, so werden die Gehöreindrücke nur dann nach aussen verlegt, wenn der äussere Gehörgang mit Luft gefüllt ist (WEBER). Da indess auch in diesem Falle die Hauptleitung durch die Kopfknochen geschieht, so scheint die Sensibilität des Trommelfells, nicht etwa eine besondere Form derjenigen Labyrinthwellen, welche vom Steigbügel ausgehen, die Empfindung des äusseren Ursprungs zu bewirken. Wenn das ist, so kann man sich auch vorstellen, dass die Empfindung des Trommelfells über die Richtung der anlangenden Schallwellen belehrt und ebenso vielleicht die der Ohrmuschel, die durch ihre zahlreichen Vorsprünge besonders geeignet ist, über den Winkel, unter dem die Schallstrahlen auffallen, zu urtheilen (WEBER), namentlich wenn etwa Bewegungen derselben zu Hülfe genommen werden. (Vgl. auch unten.)

Subjective Gehörempfindungen.

Wie beim Schorgan, so giebt es auch hier gewisse auf den Eigenthümlichkeiten der Nervenerregung oder auf Nervenschwächen beruhende "subjective Gehörempfindungen". Diese scheinen jedoch nur sehr beschränkt vorzukommen und sind ers tzum geringsten Theil erforscht. Auf Nachtöne kann man mit Wahrscheinlichkeit daraus schliessen, dass bei einer Reihe schnell auf einander

406

folgender Töne (wie sie entsteht, wenn man den Abstand der Zähne am SAVARTschen Rade von Strecke zu Strecke wechseln lässt) eine Mischung derselben in Form eines Geräusches entsteht, analog der Farbenmischung auf dem Farbenkreisel (p. 364). Sehr lang anhaltende Nachtöne, z. B. das "in den Ohren Klingen" eines Tones oder gar eines Musikstücks lange nach dem Aufhören gehören zu den psychischen Erscheinungen; ebenso andere Gehörhallucinationen. - Zu den subjectiven Gehörempfindungen wird ferner das Ohrenklingen und Ohrensausen gerechnet, Töne und Geräusche, die von Erregungen des Hörnerven durch unbekannte Einflüsse, namentlich bei krankhaft erhöhter Erregbarkeit, herrühren sollen. Die zuweilen beobachteten subjectiven musicalischen Töne sind höchstwahrscheinlich durch abnorme Erregung der einer einzelnen Conrischen Faser entsprechenden Nervenfaser (p. 402) zu erklären, da in den betreffenden Fällen zugleich Hyperästhesie gegen die entsprechenden objectiven Töne vorhanden war (Moos, CZERNY, SAMELSON). - Das bei geschlossenen Gehörgängen entstehende Sausen rührt unzweifelhaft davon her, dass man jetzt besser durch Knochenleitung hört (p. 396) und daher die Muskelgeräusche namentlich des Kopfes, die Reibungsgeräusche des Blutes in den Kopfgefässen etc. wahrnimmt.

Entotische Wahrnehmungen.

Von den subjectiven Gehörempfindungen sind auch hier (vgl. p. 365) die entotischen zu unterscheiden, objective Wahrnehmungen, deren Ursache jedoch im Gehörorgan selbst liegt. Hierher gehören: 1. Brausende Geräusche, hervorgebracht durch Schwingungen der Luft im äusseren Gehörgang oder in der Paukenhöhle, wenn diese von der äusseren Atmosphäre abgesperrt sind (ersterer durch vorgehaltene oder eingesteckte verschliessende Körper, durch Ohrenschmalz u. s. w., letztere durch Verschliessung der Tuba Eustachii); jene erscheinen besonders stark, wenn die Luft in einem an den Gehörgang als dessen Verlängerung angesetzten hohlen Körper, z. B. einer Röhre, mitschwingt. 2. Das p. 392 f. erwähnte knackende Geräusch bei Contraction des Tensor tympani; über dessen Deutung s. daselbst 3. Klopfende Geräusche, hervorgebracht durch das Pulsiren der Arterien im Gehörorgan, oder das fortgeleitete fernerliegender Arterien, besonders wenn man mit dem Ohre auf einem harten Körper liegt. 4. Reibungsgeräusche, durch die Bluteireulation. 5. Muskelgeräusche etc. (s. oben).

Hören mit beiden Ohren.

Das Hören mit beiden Ohren gewährt, analog dem Sehen mit beiden Augen, 1. eine gegenseitige Unterstützung und Ausgleichung von einseitigen Fehlern, 2. eine Beihülfe zur Schätzung des Ortes des schallerzeugenden Körpers. Ob wie bei den Augen eine Art "Identität" beider Gehörnervenenden vorhanden ist, ob z. B. die Erregung zweier correspondirender Fasern beider Schnecken als eine einzige Empfindung wahrgenommen wird, lässt sich nicht entscheiden; wir hören zwar einen einzigen Ton, von dem man also annehmen

Verschiedenheit beider Ohren. Urtheil über Richtung.

408

darf, dass er correspondirende Schneckenelemente erregt, mit beiden Ohren nur einfach; wir unterscheiden aber zwei Töne, wenn wir jedes Ohr besonders durch gleich hohe Töne gleichzeitig erregen lassen, vorausgesetzt, dass ihre Intensität verschieden ist, oder dass die Erregbarkeit beider correspondirenden Gehörelemente nicht gleich ist. Letzteres wird durch folgenden Versuch bewiesen: Hält man vor beide Ohren zwei gleich tönende Stimmgabeln, und dreht die eine so um ihre Axe, dass der Ton abwechselnd (viermal während einer Umdrehung) verschwindet und wieder auftritt, so hört man nicht etwa die andere continuirlich, sondern beide tönen abwechselnd, die nicht gedrehte nur während die andere nicht gehört werden kann (DOVE). Die Erregbarkeit nimmt nämlich während des Tönens ab, auf der Seite der gedrehten Stimmgabel natürlich weniger als auf der andern, und bei gleich starker Erregung wird nur auf der Seite der grösseren Erregbarkeit ein Ton wahrgenommen. (Der Erfolg tritt natürlich nicht ein, wenn beide Töne verschieden sind.) Man kann aus diesem Versuche schliessen: entweder dass die Erregung zweier correspondirender Elemente beider Ohren unterschieden wird, oder dass sie als eine einzige wahrgenommen, und nur auf die Seite der stärkeren Erregung verlegt wird; beides spricht gegen die Analogie mit dem Gesichtsorgan. Jedoch ist der Versuch deshalb wenig beweisend, weil höchst wahrscheinlich die Klänge beider Stimmgabeln nicht absolut gleich sind. Eine andere Thatsache, welche gegen das Vorhandensein einer gemeinsamen Empfindung zu sprechen scheint, ist die, dass bei den meisten Personen (FESSEL, FECHNER), besonders aber bei pathologischen Zuständen (v. WITTICH), das eine Ohr denselben Ton höher empfindet, als das andere.

Beurtheilung der Richtung.

Ueber die Richtung des Schalles müssen natürlich zwei gegenüberliegende Trommelfelle und Ohrmuscheln viel sicherer belehren, als eine einzige, zumal wenn Drehungen des Kopfes ihre Standpuncte gegen den tönenden Körper verändern; ja es wäre denkbar, dass der verschiedene Standpunct beider Ohren auch ein Urtheil über Entfernung gestattete.*) Was die Richtung betrifft, so wird die Stellung beider Ohren am besten zur Entscheidung über seitlich

^{*)} Gewöhnlich schätzen wir die Entfernung der Schallquelle nur nach der Intensität; daher die bekannte im Theater benutzte acustische Täuschung.

Schutzorgane des Ohres. Function der Bogengänge.

erzeugte Töne geeignet sein. Ueber Vorn und Hinten kann aber nur entschieden werden entweder durch Drehungen des Kopfes, oder durch die Stellung der Ohrmuscheln, welche für die von vorn her kommenden Wellen entschieden günstiger ist; diese werden daher stärker erscheinen als die hinteren. Macht man künstlich letztere dadurch intensiver, dass man die Ohrmuscheln an den Kopf andrückt, und dafür die Hände vor dem Gehörgang nach Art der Ohrmuscheln anlegt, so entsteht eine Art Täuschung.

Schutzorgane des Ohres.

In gewissem Sinne kann die Ohrmuschel, namentlich bei Thieren, wo sie äusserlich beweglich ist, als Schutzorgan für das Ohr betrachtet werden, da die Vorlagerung von Vorsprüngen (z. B. des Tragus beim Menschen) das Eindringen von Staub und kalter Luft in das Ohr erschwert. Fernere Schutzorgane des Ohres sind die steifen borstenähnlichen Haare (Vibrissae) des äusseren Gehörgangs und die Ohrenschmalzdrüsen, deren Secret die Wand des Gehörgangs schlüpfrig erhält. Die Bedeutung des Ohrenschmalzes ist unklar; bei Mangel desselben tritt Schwerhörigkeit und Brausen auf, ohne bekannte Ursache. — Das innere Ohr ist durch seine Lage im Innern des Felsenbeins vollkommen vor jedem Eingriff geschützt.

Anhang. Nach Zerstörung des häutigen Labyrinths (FLOURENS), ebenso nach Durchschneidung des N. acusticus (BROWN-SÉQUARD) zeigen die Thiere auffallende Verdrehungen des Kopfes, Abweichungen der Gangbewegungen und Drehungen die den Zwangsbewegungen nach Hirnverletzungen (Cap. XI.) ähnlich sind. [In Betreff der thatsächlichen Angaben existiren Controversen; die Gleichgewichtsstörung sei bei ausschliesslicher Labyrinthverletzung am Frosche nicht vorhanden (Börtchen); sie sei auch nach Abtragung des Grosshirns vorhanden, und beruhe auf Reflexen die durch Reizung des Labyrinths ausgelöst werden und im Thalamus ihr Centrum haben (Löwenberg)]. Man vermuthet (GOLTZ), dass diese Störungen auf einen Mangel der Beurtheilung der Kopfstellung zurückzuführen seien, und dass diese Beurtheilung mit Hülfe des häutigen Labyrinths und des Acusticus erfolge, indem bei jeder Kopfstellung eine andere Stelle des ersteren den stärksten Druck der Endolymphe erfahre. Nach einer anderen Theorie (BREUER) soll die Endolymphe bei Bewegungen des Kopfes durch Zurückbleiben relative Bewegungen gegen die Gangwände machen, welche durch die ampullaren Acusticusendigungen percipirt werden.

409

III. DAS GERUCHSORGAN.

Die peripherischen Endorgane der Geruchsnerven, welche als zahlreiche Zweige von den Bulbi olfactorii durch die Löcher der Siebbeinplatte in's Labyrinth eindringen, sind auf einer Membran ausgebreitet, welche schleimhautähnlich den oberen Theil der Nasenhöhle überzieht und sich durch eine hellere Färbung und den Mangel des Flimmerepithels von der übrigen Nasenschleimhaut (Schneiderschen Haut) unterscheidet. Erregt werden diese Endigungen auf völlig unbekannte Weise durch gewisse gasförmige Körper; die Eigenschaften, denen dieselben ihre Erregungsfähigkeit verdanken, sind ebenfalls unbekannt. Zugeleitet werden sie der Riechhaut mittels der Inspiration durch die Nase. Der eingezogene Strom bricht sich an dem vordern Vorsprung der unteren Muschel dergestalt, dass ein Theil desselben nicht den directen Weg durch den unteren Nasengang zu den Choanen, sondern den Umweg durch die oberen Theile der Nasenhöhle nimmt (BIDDER). Die Erregung geschieht, wie es scheint, nur im ersten Augenblick der Berührung; denn zur dauernden Unterhaltung der Empfindung ist es nöthig, dass immer neue Theilchen des erregenden Körpers mit den Endorganen in Berührung kommen, dass also der erstere in einem Strome durch das Geruchsorgan geführt werde; und der Erfolg ist um so grösser, je schneller der Wechsel der Theilchen geschieht, d. h. je schneller der Strom ist.

Die Bulbi olfactorii, welche man früher als die Riechnervenstämme beschrieb, werden jetzt richtiger als Hirntheile betrachtet. Die wirklichen Olfactorii unterscheiden sich von anderen Nerven dadurch, dass zahlreiche, äusserst feine Primitivröhren in einer gemeinsamen Bindegewebshülle zu einem Bündelchen, und diese Bündelchen erst zu Stämmen vereinigt sind. Die Riechhaut, welche die beiden oberen Muscheln und den oberen Theil der Nasenscheidewand ("Regio olfactoria") überzieht, hat folgenden Bau (M SCHULTZE): Zwischen den cylindrischen, nach der Basis zugespitzt auslaufenden Epithelzellen finden sich bipolare spindelförmige Zellen, welche einen Fortsatz nach der Oberfläche, und einen in die Tiefe senden; letzterer soll identisch sein mit den feinen Primitivfasern des Olfactorius, ersterer ist mit einem Bündel äusserst zarter langer Härchen besetzt. welche über die Oberfläche hinausragen; die Spindelzellen werden demnach als Nervenzellen betrachtet. Nach neueren Untersuchungen (EXNER) sind beim Frosche auch die früher als einfache Epithelzellen beschriebenen Zellen nervös und mit Haaren besetzt.

Dass nur gasförmige Körper erregungsfähig sind, ersieht man daraus, dass die Anfüllung der Nasenhöhle mit einer starkriechenden (flüchtigen) Flüssigkeit, z. B. Eau de Cologne, keine Geruchsempfindung verursacht (WEBER). Dass

Gerüche.

ferner der riechende Stoff in einem Strome über die Regio olfactoria geführt werden muss, ist bekannt; denn durch Anhalten des Athmens oder durch ausschliessliche Mundathmung kann man sofort jede Geruchsempfindung aufheben, selbst wenn die Atmosphäre, also auch die Luft der Nasenhöhle, mit riechenden Stoffen gefüllt ist. Umgekehrt sucht man durch schnelle und häufige Inspirationen durch die Nase ("Schnüffeln") den Geruchseindruck zu verstärken. — Die Nothwendigkeit der Hinleitung des Luftstroms zur Regio olfactoria mittels des vorderen Vorsprungs der unteren Muscheln ergiebt sich daraus, dass der riechende Stoff nicht gerochen wird, wenn er erst in den Mund und dann durch die Choanen von hinten in die Nase gebracht wird (BINDER). — Die meisten riechenden Stoffe wirken schon in ausserordentlich grosser Verdünnung, so dass eine verschwindend kleine Menge zu der Atmosphäre eines ganzen Zimmers gemischt, dieselbe schon riechbar macht. Neuerdings ist bei einer grossen Anzahl riechender Dämpfe ein grosses Wärmeabsorptionsvermögen nachgewiesen worden (TYNDALL).

Geruchsempfindungen.

Die Erregung der Geruchsnervenendigungen, ebenso wahrscheinlich jede beliebige Erregung der Stämme, verursacht gewisse Empfindungen, die wir Gerüche nennen. Dieselben unterscheiden sich von einander ihrer Intensität und ihrem Character nach. Die Intensität scheint abzuhängen: 1. von dem Gehalte des Gasgemisches an dem riechenden Stoffe, 2. von der Geschwindigkeit des Durchströmens, 3. von der Anzahl der getroffenen Riechelemente; wenigstens haben die Thiere, deren Geruchsorgan eine sehr grosse Oberfläche hat, das feinste Geruchsvermögen. — Die Ursache des besonderen Characters eines Geruches ist ebenso unbekannt, wie die der Riechbarkeit überhaupt; auch giebt es keinerlei Eintheilung oder Scala, ja nicht einmal Namen für die verschiedenen Gerüche, sondern wir bezeichnen sie nur nach irgend einem Körper, dem sie eigenthümlich sind, und dessen wir uns bei der Empfindung des gleichen oder ähnlichen Geruchscharacters erinnern.

Dass auch mechanische, electrische u. s w. Erregung der Olfactorii Geruchsempfindungen veranlasst, ist nach der Analogie aller übrigen Sinnesnerven kaum zweifelhaft, aber noch nicht sicher experimentell erwiesen: der fast einzig sichere Weg, den Olfactoriis electrische Stromzweige zuzusenden, ist der, die Nasenhöhle mit Wasser zu füllen und in dieses die eine Electrode zu tauchen; hier aber verursacht die gleichzeitige Erregung der sensiblen Trigeminuszweige so heftige Schmerzen, dass über Geruchsempfindungen nicht zu entscheiden ist (ROSENTHAL) — Bei der Erregung der Olfactoriusenden durch Riechstoffe scheinen die oben erwähnten Härchen bedeutend betheiligt zu sein; man glaubt dies daraus schliessen zu können dass die Erfüllung der Nasenhöhle mit Wasser*)

*) Die mehrfach erwähnte Anfüllung der Nasenhöhle mit Flüssigkeiten geschieht von den Nasenlöchern aus, während man auf dem Rücken liegt. Der Abfluss durch die Choanen in den Pharynx wird durch das an die Pharynxwand sich anlegende Gaumensegel verhindert (Weber). das Riechvermögen auf einige Zeit aufhebt (E. H. WEBER), und dass nach anderen Erfahrungen die Härchen bei Berührung mit Wasser durch starkes Aufquellen für einige Zeit unsichtbar werden (SCHULTZE). — Das Princip der specifischen Energie (p. 312) dürfte auch hier wie beim Gesichts- und Gehörorgan (p. 355 und 400) die Annahme verschiedener Arten von Geruchsfasern rechtfertigen, deren jede durch eine besondere Art von Riecheinflüssen erregt wird und eine besondere Empfindung verursacht; wie viele solcher Arten man anzunehmen habe, dazu fehlt jeder Anhaltspunct.

Von den Geruchseindrücken sind diejenigen wohl zu unterscheiden, welche durch Erregung der sensiblen Trigeminusfasern in der Nasenschleimhaut erzeugt werden; Ammoniakdämpfe z. B. wirken vorzugsweise auf diese letzteren und werden daher auch nach Zerstörung der Olfactorii durch Empfindung wahrgenommen, oder erregen Reflexbewegungen (Niesen).

Ueber subjective Geruchsempfindungen ist nicht viel ermittelt; gewisse krankhafte Zustände der Nase (Schnupfen etc.) heben das Geruchsvermögen zeitweise auf, und bringen selbst abnorme Geruchseindrücke hervor. Ueber "Nachgerüche" ist so gut wie Nichts bekannt. Verf bemerkt nach gewissen lebhaften Gerüchen, z. B. nach cadaverösen, dass jede innerhalb einiger Stunden folgende unangenehme Geruchsempfindung auf das deutlichste den Character der ersten hat. – Ueber die Beziehungen beider Nasenhöhlen zu einander weiss man nur, dass die Erregung beider durch verschiedene Gerüche gewöhnlich nicht zu einem einzigen Eindrucke verschmolzen wird, sondern einen gewissen Wettstreit der beiden Wahrnehmungen verursacht (VALENTIN).

Als Schutzorgan für die eigentliche Riechhaut kann die Nasenschleimhaut angesehen werden, welche die eindringende Luft von gröberen schädlichen Beimengungen befreit (p. 156). Andererseits wird das Geruchsorgan gewöhnlich als Wächter für die Respiration angesehen, da zahlreiche schädliche Verunreinigungen der Atmosphäre riechbar sind, und daher durch das Geruchsorgan angezeigt werden.

IV. DAS GESCHMACKSORGAN.

Ueber den Geschmackssinn sind die Kenntnisse mangelhafter als über irgend ein anderes Sinnesorgan. Nicht einmal der Ort des Geschmacksorgans ist genau bestimmt, 1. weil nur äusserst schwer die Geschmacksempfindungen von andern Empfindungen genügend zu sondern sind, die meist bei der Application schmeckender Körper auftreten, nämlich Geruchs- und Tasteindrücke. — 2. weil die schmeckenden Flüssigkeiten sich sehr leicht von jeder beliebigen, also auch von einer nicht geschmacksfähigen Applicationsstelle in der Mundhöhle zu den eigentlichen Geschmacksorganen verbreiten.

Ort und Nerven des Geschmacks. Endigung der Geschmacksnerven. 413

Daher wird der Ort des Geschmacksorgans sehr verschieden angegeben. Unzweifelhaft ist die Zungenwurzel beim Geschmack betheiligt; streitig dagegen ist, ob nur diese (BIDDER, WAGNER), oder auch die Zungenspitze und die Zungenränder (SCHIRMER, KLAATSCH & STICH, CAMERER), der weiche Gaumen (J. MÜLLER, DRIELSMA), oder wenigstens ein Theil desselben (SCHIRMER, KLAATSCH & STICH), selbst der harte Gaumen (DRIELSMA) Geschmacksorgan sei. Untersuchungen mit beschränkter electrischer Reizung zeigen (NEUMANN), dass Spitze und Ränder der Zunge in einer Breite von mehreren Linien geschmacksfähig sind, jedoch nicht für alle Geschmacksqualitäten (LUSSANA); der vordere Theil der oberen, die ganze untere Fläche und das Frenulum schmecken nicht.

Die Nervenfasern welche den Geschmack vermitteln scheinen sich auf mehrere Hirnnerven zu vertheilen. Ausser dem Glossopharyngeus, dessen Geschmacksfunction unbestritten ist, wird auch der Ramus lingualis des Trigeminus von den Meisten als Geschmacksnerv betrachtet, dessen Geschmacksfasern Einige von der Chorda tympani, also vom Facialis ableiten, ausserdem die Rami palatini des Trigeminus.

Bei Facialislähmungen kommen Geschmacksstörungen häufig vor. Gegen die Betheiligung des Facialis wird dagegen angeführt dass nach Durchschneidung der Chorda sich im Lingualis jenseits des Abgangs der Speichelnerven keine degenerirten Fasern finden (VULPIAN); Andere fanden solche (PREVOST; beim Hunde auch VULPIAN). Da ein Fall beobachtet ist in welchem der intracranielle Theil der Faciales vollständig degenerirt war, ohne Geschmacksstörung (WACHSMUTH), so wird angenommen dass die Geschmacksfasern erst durch den N. petrosus superficialis major zum Facialis treten, und theils durch den N. petrosus superficialis major zum Facialis treten, und theils durch den N. petrosus superficialis major oticum, theils durch die Chorda in die Trigeminusbahn übergehen (SCHIFF). Da auch Trigeminuslähmungen ohne Geschmacksstörung vorkommen, so kann ein Uebertritt von Glossopharyngeusfasern durch die Jacobson'schen Anastomose, den Petrosus superfic. min. und das Gangl. oticum in den Trigeminus gedacht werden.

Die Endorgane der Geschmacksnerven liegen in den Zungenpapillen. An den Papillae circumvallatae der Zungenwurzel erstreckt sich die umgebende Furche weit in die Tiefe und bildet eine capillare Spalte, deren innere Wand mit den Geschmacksnervenendigungen versehen ist, während die freie Oberfläche der Papille meist den gewöhnlichen Bau der Zungenschleimhaut zeigt; jene bestehen in den "Geschmacksknospen" oder "Schmeckbechern", becherförmigen, aussen offenen, von länglichen Zellen erfüllten Organen; von den letzteren endigen die inneren, die eigentlichen Schmeckzellen, peripherisch mit einem kurzen Stäbchen, central gehen sie in feine Nervenfasern über, die in der Tiefe der Papille mit markhaltigen Fasern zusammenhängen (Lovén, Schwalbe). Die zu schmeckende Flüssigkeit muss also erst in den capillaren Spaltraum eindringen. Ausser als Cylindermäntel sind diese mit Schmeckbechern besetzten Spalten auch als Ebenen entwickelt, nämlich in den Papillae foliatae des Menschen und vieler Säugethiere (meist eine an jedem Seitenrande des hinteren Zungentheils, beim Menschen aus 5 parallelen Längsspalten bestehend; C. MAYER, KRAUSE, v. WYSS). Die Papillae fungiformes besitzen Schmeckbecher auf ihrer oberen Fläche (Lovén); auch die freie Fläche der Papillae circumvallatae ist nach Einigen damit versehen (Schwalbe, Hönigschmied).

Die Erregung der Geschmacksnerven geschieht durch gewisse flüssige oder wenigstens in der Mundflüssigkeit lösbare Substanzen; zu diesen gehören vermuthlich auch die grossentheils (STICH) schmeckbaren Gase. Der Erregungsvorgang ist völlig unbekannt. Der Erfolg der Erregung der Endorgane, ebenso jeder beliebigen (electrischen u. s. w.) Erregung der Geschmacksnerven sind die "Geschmacksempfindungen", die sich der Intensität und dem Character nach unterscheiden. Die Intensität hängt ab von der Stärke, der Dauer der Erregung und von der Zahl der erregten Fasern. Geschieht die Erregung durch eine schmeckende Substanz, so muss demnach der Geschmack um so intensiver sein, 1. je erregungsfähiger die Substanz ist, 2. je concentrirter sie einwirkt, 3. je länger sie einwirkt, 4. je grössere Flächen des Geschmacksorgans sie berührt, 5. je erregbarer die Nervenenden sind. Die Schmeckbarkeit scheint durch Reiben erhöht zu werden. Durch welche Eigenschaften der schmeckende Körper die verschiedenen empirisch bekannten, undefinirbaren, Charactere des Geschmacks, der süsse, bittere, saure, alkalische, salzige, faulige, bedingt sind, weiss man nicht; die verschiedenen süss schmeckenden Stoffe, z. B. Zuckerarten, Glycerin, Glycin, Bleisalze, Beryllsalze u. s. w.) gehören den verschiedensten Körpergruppen an und zeigen in ihren anderen Eigenschaften keine Uebereinstimmung.

In Bezug auf den Geschmack von Substanzen chemischer Gruppen lässt sich anführen: der saure Geschmack der löslichen Säuren; der süsse Geschmack aller mehratomigen Alkohole, welche soviel OH-Gruppen als C-Atome enthalten (hierzu gehören: $C_2H_4(OH)_2$ Glycol; $C_3H_5(OH)_3$ Glycerin; $C_4H_6(OH)_4$ Flechtenzucker; $C_6H_8(OH)_6$ Mannit [2 H weniger: Traubenzucker]); der bittere Geschmack der complicirteren Zuckerverbindungen (Glucoside), vieler Alkaloide u. s. w.

Erregungen der Geschmacksnervenstämme beim Menschen sind nur auf electrischem Wege zu bewerkstelligen. Sendet man einen aufsteigenden Strom

Electrischer Geschmack. Endorgane sensibler Nerven.

durch die Geschmacksnerven (z. B. indem man die positive Electrode einer Kette an die Zungenspitze, die negative aber an irgend einen andern Körpertheil, etwa an die Hand anlegt), so empfindet man einen deutlich sauren Geschmack; ist der Strom absteigend gerichtet, so ist der Geschmack brennend und wird als laugenhaft ("alkalisch") bezeichnet. Wenn es sich hier wirklich um directe Erregung der Nerven durch den Strom handelte, so widerspräche das Auftreten verschiedener Geschmäcke je nach der Stromrichtung einigermassen dem Princip der specifischen Energieen (p 312). Man hat deshalb versucht, den Erfolg als ein Schmecken electrolytischer Producte, die in der Zunge abgeschieden werden, zu deuten. Der Einwand, dass der Geschmack auch dann ebenso eintritt, wenn man den Strom der Zunge nicht durch Anlegen von Metall, sondern durch Vermittelung feuchter Leiter zuführt (ROSENTHAL), kann diese Deutung nicht widerlegen, weil auch an der Grenze zweier feuchter Leiter, und speciell zwischen Nerveninhalt und Hülle (p. 305), Electrolyte abgeschieden werden können.

Ausser der Geschmacksempfindung bewirkt die Erregung der Geschmacksnerven reflectorisch die Secretion der Speicheldrüsen (Näheres hierüber s. p. 89 f.).

Ueber subjective Geschmacksempfindungen ist nichts Näheres bekannt, obwohl ihr Vorkommen festgestellt ist (Nachgeschmack etc.). Auch hier sind von den subjectiven Empfindungen die durch gewisse Zustände der Mundschleimhaut bewirkten Geschmackserregungen zu sondern ("perverse" Geschmacksempfindungen bei Catarrhen etc.).

V. DIE ÜBRIGEN SINNESORGANE.

Die durch die übrigen centripetalen Nerven (ausser den Gesichts-, Gehörs-, Geruchs- und Geschmacksnerven) vermittelten Wahrnehmungen werden als "Gefühle" bezeichnet. Sensible Nerven verbreiten sich fast in jedem Körpertheil, jedoch in sehr ungleichem Maasse; wahrscheinlich am wenigsten in den Eingeweiden, ebenfalls wenig in den Muskeln, Knochen, Sehnen u. s. w., sehr zahlreich dagegen in der Haut und den ihr benachbarten Schleimhäuten (Schleimhaut der Mundhöhle, Nasenhöhle, Conjunctiva u. s. w.).

Die Endorgane der sensiblen Nerven sind erst an wenigen Stellen bekannt, und ihr feinster Bau noch vielfach streitig. Man kennt bisher folgende Formen 1. VATEE'sche (PACINI'sche) Körperchen, ziemlich gross (0,5-4 mm), im subcutanen Zellgewebe, namentlich der Hohlhand und Fusssohle liegend, ausserdem aber an den Geschlechtsorganen, vielen Muskeln und Gelenken, und in den sympathischen Plexus der Bauchhöhle (z. B. im Mesenterium der Katze). Sie sind eiförmig und bestehen aus vielfachen concentrischen Bindegewebsschichten, die einen cylindrischen aus Protoplasma bestehenden Körper (Innenkolben) umschliessen; in letzterem verläuft die eintretende Nervenfaser als nackter Axencylinder und endigt einfach oder in mehrere kurze Endzweige gespalten, mit einer kleinen knopfartigen Anschwellung. Auch vor dem Eintritt ist die Nervenfaser von geschichtetem Neurilemm umgeben. - 2. "Nervenendkolben" (W. KRAUSE), ebenfalls ovale oder mehr kugelige Bläschen von nur 0,03-0,06 mm, bestehend aus einer bindegewebigen Hülle mit Kernen und einem weichen homogenen Inhalt, in den die Nervenfaser eintritt, um zugespitzt zu endigen; sie finden sich in vielen Organen, namentlich Schleimhäuten und liegen hier in der bindegewebigen Mucosa. Vermuthlich sind die Organe ad 1. und 2. Modificationen einer einzigen Grundform, als welche vielleicht die letztgenannte zu betrachten ist. - 3. "Tastkörperchen" (WAGNER & MEISSNER), in einem Theil der Papillen der Cutis (die übrigen Papillen tragen Capillarschlingen), am zahlreichsten in der Hohlhand und-Fusssohle; länglich ovale, grob und unregelmässig quergestreifte Kölbchen von 0,05-0,1 mm Länge, welche fast den ganzen Raum der Papille einnehmen, und in welche eine oder mehrere Nervenfasern, oder Zweige von solchen eintreten; die Endigungsweise der letzteren ist zweifelhaft; behauptet wird, dass sie sich im Inneren des Bläschens verästeln und dass jeder Ast sich in eine Anzahl kurzer, quergerichteter Zweigchen auflöst, welche die Querstreifung bewirken; neuerdings dagegen ist es wahrscheinlich geworden, dass das Tastkörperchen nur aus einer knäuelförmig aufgewickelten Nervenfaser besteht; solche "Nervenendknäuel" kommen besonders entwickelt und deutlich in der Glans penis vor (Tomsa). Im Innern sollen die Nervenzweige der umspinnenden Nervenfaser analog wie bei den VATER'schen Körperchen endigen (GRANDRY). - 4. "Nervenendknöpfchen", die Endigungen der sensiblen Nerven der Cornea; die letzteren verzweigen sich zu feinen Fasern, welche in der subepithelialen Schicht ein gitterförmiges Netzwerk bilden, von diesem treten feine, zuweilen verzweigte Fasern in das Epithel aus und endigen auf der freien Oberfläche, in der Thränenflüssigkeit flottirend (COHNHEIM), nach andern innerhalb des Epithels (HOYER), mit einem kleinen Knöpfchen. Eine ähnliche Endigungsart scheint in der Epithelschicht der Haut vorzukommen (LANGERHANS, PODCOPAEW, EBERTH). - An sehr vielen Orten sind die Endorgane der sensiblen (oder reflectorischen) Nerven noch grösstentheils unbekannt In der Haut kommen auch ganglienartige Bildungen vor, welche vielleicht als sensible Endorgane zu betrachten sind (Tomsa). - Besondere Modificationen der Endorgane, zum Theil mit den Tasthärchen verbunden, finden sich u. A. in der Flughaut der Fledermaus, am Ohr der Hausmaus, an der Schnauze des Maulwurfs etc.

Qualitäten der hierhergehörigen Empfindungen.

Jede intensive Erregung der hierhergehörigen Nerven, die man von den vorhergenannten ("sensuellen") als "sensible im engeren Sinne" unterscheidet, mag sie nun die Endorgane oder die Stämme treffen, macht sich als eine unangenehme Empfindung, als Schmerz geltend. Ein grosser Theil derselben, nämlich die die Eingeweide, die Knochen, die Gefässe u. s. w. versorgenden, scheint überhaupt nur durch intensive (pathologische) Einwirkungen erregt zu werden und dann immer Schmerz zu bewirken, wofern nicht als ihre Function die Erregung von Reflexen anzusehen ist. Die übrigen aber

Tastempfindungen.

verursachen bei der normalen, mässig starken Erregung ihrer Endorgane andere, sehr verschiedenartige Empfindungen. Die Erregung der Endorgane kann durch sehr verschiedene Vorgänge geschehen, durch mechanische, chemische, thermische Einwirkungen, aber nicht durch Licht- und Schallschwingungen. Diese Uebereinstimmung der specifischen Erreger (p. 312) mit den allgemeinen Nervenreizen begünstigt die Vorstellung, dass die Endorgane der sensiblen Nerven sehr einfach und nicht wesentlich verschieden von den Stämmen eingerichtet, vielleicht nur durch günstige Lagerung den erregungsfähigen Vorgängen der Aussenwelt zugänglicher sind. - Die Empfindungen, welche aus mechanischer Erregung der Endorgane hervorgehen, nennt man Tastempfindungen, die durch thermische bewirkten Temperaturempfindungen.

Ob die schmerzhaften Hautreizungen wirklich nur in starker Reizung der gewöhnlichen Nervenendigungen, und nicht vielmehr in der Reizung besonderer Nervenendorgane bestehen, ist neuerdings zweifelhaft geworden. Es existiren nämlich für die Tastempfindungen nach Einigen andere Leitungsbahnen im Centralorgan als für die schmerzhaften, z. B. durch chemische Hautreizung hervorgebrachten Erregungen (tactile und pathische Bahnen, vgl. Cap. XI.); möglicherweise also sind bei beiden verschiedene peripherische Apparate betheiligt; dass die Nervenendigungen in der Haut sehr mannigfach sind, ist bereits oben gesagt

Den Beweis, dass Temperaturempfindungen nur durch thermische Erregung der Endorgane entstehen können, liefert folgender Versuch (E. H. WEBER): Taucht man den Ellbogen in eine sehr kalte Flüssigkeit, so fühlt man Kälte höchstens an der eingetauchten Stelle (durch die hier endigenden Fasern), Schmerz dagegen in den Endorganen des Ulnaris, nämlich in den Fingerspitzen; dieser Schmerz übertäubt zugleich die locale Kälteempfindung. Der Versuch ist zugleich ein trefflicher Beweis für die Verlegung der Empfindungsursache in das Endorgan (p. 312).

Tastempfindungen.

Tastempfindungen werden hervorgebracht durch mechanische Einwirkungen verschiedenen Grades, durch Berührung oder Druck. Die Grenze, bei welcher die Intensität der Einwirkung schmerzhaft wird, ist an verschiedenen Körperstellen verschieden. Durch die Tastempfindungen sind wir zu folgenden Schlüssen fähig: 1. Wir schliessen auf das Dasein eines den Körper berührenden Gegenstandes. 2. Aus der Intensität der Empfindung schliessen wir auf die Stärke des ausgeübten Drucks und dadurch unter Umständen auf Gewicht, Spannung u. s. w. des berührenden Gegenstandes. Zu diesen Schätzungen ist für gewöhnlich das Muskelgefühl eine wichtige Beihülfe,

d. h. das Gefühl des Anstrengungsgrades in den beim Tragen, Heben, Ziehen, Drücken u. s. w. betheiligten Muskeln (vgl. unten). 3. Wir haben fortwährend eine Vorstellung von dem Erregungszustande aller unserer sensiblen Fasern und empfinden daher unsere Körperoberfläche als "Tastfeld" analog dem Gesichtsfelde (vgl. p. 359). Hierdurch sind wir im Stande, den Ort jeder berührten Körperstelle und dadurch den Ort jedes berührenden Körpers unmittelbar zu bestimmen. 4. Wenn ein Körper eine Hautfläche oder mehrere Hautpuncte gleichzeitig berührt, so vermögen wir aus der Lage der verschiedenen Berührungspuncte, aus dem verschiedenen Druck und aus den nicht berührten Lücken einen Schluss auf die Gestalt des berührenden Gegenstandes zu ziehen. Dieser Schluss wird noch sicherer, wenn wir mit der Haut über den Gegenstand hinüberfahren und uns so gleichsam eine Reihe von Tastbildern verschaffen. Am geeignetsten hierzu sind Hautflächen mit sehr zahlreichen sensiblen Endorganen, die zugleich sehr beweglich sind, z. B. Fingerspitzen, Zungenspitze (s. unten). Berühren mehrere verschiedene Hautstellen denselben Gegenstand, so gehört zur Beurtheilung der Gestalt desselben auch die Kenntniss des relativen Orts der verschiedenen Hautstellen. Diese erhalten wir durch das Muskelgefühl (s. unten), weil fast zu jeder Veränderung des relativen Orts Muskelbewegungen geführt haben. Fehlt diese Kenntniss, z. B. bei abnorm verzerrten Ortsverlagerungen, so entstehen Täuschungen über die Gestalt des Gegenstandes. Hierher gehört der "Versuch des Aristoteles": Schlägt man den Mittelfinger so über den Zeigefinger, dass man einen kleinen runden Gegenstand (Erbse, Federhalter) zwischen die Daumenseite des ersteren und die Kleinfingerseite des letzteren bringen und hin- und herrollen kann, so fühlt man stets zwei runde Körper, weil eine Berührung dieser beiden Flächen durch Einen runden Körper ohne Verzerrung nicht vorkommen kann. - Aus sehr gleichmässiger Berührung einer Hautfläche schliessen wir ferner auf das Dasein einer Flüssigkeit, aus dem wenig oder stark zunehmenden Druck beim Vorschieben der Tastfläche auf weichere oder härtere Consistenz etc. - Diese verschiedenen Schlüsse werden häufig als besondere "Sinne" aufgezählt (Drucksinn, Ortsinn u. s. w.).

Die Feinheit des Erkennungsvermögens durch die sensiblen Nerven hängt für jede Körperstelle ab: 1. von der reicheren oder spärlicheren Verbreitung ihrer Endorgane, 2. von der absoluten Empfindlichkeit derselben.

Die Anzahl der in verschiedenen Hautstellen vorhandenen

Prüfung des "Ortsinns".

Endorgane würde sich nur auf anatomischem Wege ermitteln lassen. Experimentell aber lassen sich wenigstens vergleichende Angaben über ihre Verbreitung gewinnen, und zwar nach folgenden Methoden (E. H. WEBER, CZERMAK): 1. Man sucht den kleinsten Abstand, welchen zwei gleichzeitig oder schnell nach einander die Haut berührende Körper haben dürfen, um noch gesondert wahrgenommen zu werden; hierzu dient ein Stangenzirkel mit abgestumpften Spitzen, welche in verschiedenen, direct ablesbaren Abständen auf die Haut gesetzt werden (bei geschlossenen Augen). Der Abstand ist am kleinsten auf der Zungenspitze (1,1 mm), auf der Volarseite der dritten Phalanx (2,2^{mm}) und auf den rothen Lippen (4,4^{mm}); am grössten an Rücken, Brust, Hals und Extremitätenstämmen (35-66mm). -Der geringste erforderliche Abstand ist an manchen Stellen, z. B. an den Extremitätenstämmen, in der Querrichtung kleiner als in der Längsrichtung; er ist ferner kleiner, wenn die Spitzen nach einander aufgesetzt werden; er ist kleiner, wenn man von grossem Abstande ausgeht, und den Abstand aufsucht, bei welchem die vorher gesonderten Empfindungen verschmelzen, als wenn man umgekehrt von einem kleinen Abstande ausgehend die Entfernung aufsucht, bei welcher zuerst zwei gesonderte Eindrücke auftreten; er ist endlich kleiner bei grösserer Aufmerksamkeit und grösserer Uebung (daher im Allgemeinen kleiner bei Blinden, Goltz); auch soll er kleiner sein, wenn man die Haut mit indifferenten Flüssigkeiten (Oel, Wasser) von der Körpertemperatur umgiebt (Suslowa). - Zwei eben noch gesondert empfundene Eindrücke vereinigen sich zu Einem, wenn man die Haut zwischen beiden erregten Puncten durch Kitzeln oder Inductionsströme mit erregt (SusLowA); über die Deutung hiervon s. unten. — 2. Man bewegt die beiden gesondert wahrnehmbaren Spitzen bei gleichbleibendem Abstande in zwei parallelen Linien über die Haut hin, und lässt die Veränderungen im scheinbaren Abstand, sowie den Punct der Verschmelzung beider Empfindungslinien angeben. - 3. Man berührt bei geschlossenen Augen einen Hautpunct und lässt den scheinbaren Ort der Berührung genau angeben.

Die absolute Empfindlichkeit einer Hautstelle bestimmt man folgendermaassen: 1. Man belastet eine Hautstelle mit zwei verschiedenen Gewichten schnell hintereinander und ermittelt den kleinsten Gewichtsunterschied, der noch wahrnehmbar ist. Die Belastung geschieht entweder durch frei aufgelegte Gewichte (WEBER), oder beschwerte Plättchen (AUBERT & KAMMLER), oder durch eine an einem Wagebalken hängende stumpfe Spitze, deren Gewicht durch Belastung

27*

Prüfung des "Drucksinns".

des anderen in verschiedenem Grade äquilibrirt wird (DOHRN). Auch hier zeigt sich das Gefühl feiner beim Aufsteigen als beim Absteigen mit dem Gewichtsunterschied, ebenso bei kleinerem absoluten Druck feiner als bei grösserem. - 2. Man ermittelt die kleinste Druckschwankung, welche eine Hautstelle wahrzunehmen vermag (GOLTZ); hierzu dient ein mit Wasser gefülltes Kautschukrohr, welches an einer zur Herstellung einer constanten Berührungsfläche über einen Kork gebogenen Stelle mit der zu prüfenden Hautstelle berührt wird, und in welchem durch rhythmisches Pressen Wellen, analog dem Arterienpuls, erzeugt werden. Nach dieser Methode ergiebt sich dieselbe Scala der Empfindlichkeit, wie bei dem WEBER'schen Zirkelversuch; nur die Zungenspitze macht eine bemerkenswerthe Ausnahme, da ihre Druckempfindung auf einer viel niedrigeren Stufe steht, als in jener Scala ihr Ortsinn. - 3. Man ermittelt den leisesten Reiz der überhaupt noch empfunden wird; in dieser Beziehung ist ermittelt worden, dass eine eben noch merkliche Berührung nicht mehr empfunden wird, wenn schwache unfühlbare Inductionsströme die Hautstelle durchlaufen (SusLowA).

Von den zuletzt genannten drei Methoden ist die zweite deshalb allein maassgebend, weil wir überhaupt fast nur Druckschwankungen empfinden, und diese hier in viel schnellerer und präciserer Weise erfolgen, als bei der ersten. Zu bemerken ist übrigens, dass bei diesem Verfahren die räumliche Empfindung nicht ganz ausgeschlossen ist, weil mit der positiven Druckschwankung wahrscheinlich auch eine geringe Vergrösserung der Berührungsfläche verbunden ist, da Schlauch und Hautstelle sich gegenseitig etwas abplatten. Das Verfahren ist hergeleitet von der Erfahrung, dass man mit dem Finger an vielen Körperstellen den Arterienpuls fühlt, ohne dass die berührte Hautstelle, auf welche doch dieselbe Druckschwankung wirkt, dieselbe wahrnimmt. Schon Vergleichungen dieser Art können zur Aufstellung einer Scala benutzt werden (Goltz). — Die dritte Methode wird am zuverlässigsten, wenn man zur Reizung die Ströme eines Magnetelectromotors benutzt (LEYDEN); ihre Resultate aber sind wegen des verschiedenen Leitungswiderstandes der Schleimhäute und der Epidermis verschiedener Hautstellen auch dann nur mit Vorsicht zu benutzen.

Endlich giebt es noch Methoden, die Empfindlichkeit der Hautstellen nach beiden Richtungen gleichzeitig zu prüfen, indem man die Vollkommenheit des Schlusses auf die Gestalt oder den Weg berührender Körper ermittelt: 1. Man berührt die Haut mit bestimmt gestalteten Körpern, 2. man zeichnet mit einer Spitze verschiedene Figuren (Buchstaben) auf die Haut, und lässt im ersten Falle die scheinbare Gestalt des Körpers, im zweiten die der Zeichnung angeben. —

Empfindungskreise. Theorie des Ortsinns.

Zur Erklärung der oben angeführten Erfahrungen über die räumliche Sonderung von Tasteindrücken muss man folgende Annahmen machen (Lotze, E. H. WEBER, MEISSNER, CZERMAK): Das Bewusstsein hat fortwährend eine Vorstellung von dem Erregungszustande sämmtlicher Hautpuncte in ihrer gegebenen räumlichen Anordnung (es fühlt ein "Tastfeld", wie bereits oben ausgedrückt). Jede Erregung eines sensiblen Endorgans wird an eine bestimmte Stelle des Tastfeldes, der Körperoberfläche, verlegt. Diese Stelle ist aber nicht der erregte Punct, sondern eine kreisförmige oder (an den Extremitäten, p. 419) längliche Fläche, deren Mittelpunct der erregte Punct ist, der sog. Empfindungskreis (über die Deutung s. unten). Zwei sich berührende oder theilweise deckende Empfindungskreise können aber in der Vorstellung nicht räumlich gesondert werden; die Sonderung geschieht erst, wenn zwischen beiden ein unerregtes sensibles Element vorhanden ist, und die scheinbare Entfernung der beiden Erregungen ist um so grösser, je mehr unerregte Elemente zwischen beiden Empfindungskreisen übrig bleiben. Hieraus ergiebt sich, dass zwei benachbarte Eindrücke auf der Haut erst dann gesondert wahrgenommen werden können, wenn ihr Abstand grösser ist, als zwei halbe, also ein ganzer Durchmesser eines Empfindungskreises; die p. 419 angegebenen Zahlen sind also die Durchmesser der Empfindungskreise an den betreffenden Hautstellen. Ferner ergiebt sich, dass zwei distincte Eindrücke sich vermischen, bei Erregung der zwischenliegenden empfindenden Elemente (vgl. die Beobachtung p. 419, ad 1. extr.).

Es ist nun noch zu erklären, wie es kommt, dass die Empfindungskreise an verschiedenen Körperstellen verschiedene Grösse haben. Offenbar ist ein Empfindungskreis nicht eine anatomische Grösse, etwa der Verbreitungsbezirk einer Nervenfaser; denn einmal ist er veränderlich durch Aufmerksamkeit, Uebung und andere Einflüsse (p. 419), zweitens müsste ein Zirkelabstand, der geringer ist als der Durchmesser eines Empfindungskreises, bald mit beiden Füssen in Einen, bald in zwei benachbarte (fest gedachte) Empfindungskreise fallen können; — vielmehr ist ein Empfindungskreis um jeden einzelnen Hautpunct anzunehmen. Ferner ist zur Erklärung hinzuzuziehen, dass die Empfindungskreise um so kleiner sind, je dichter gedrängt die sensiblen Organe stehen (vgl. p. 415 f. und 419). Hieraus folgt, dass die Annahme nicht ausreicht, der Empfindungskreis entstehe durch mechanische Einwirkung des Reizes auf eine Hautfläche statt auf einen blossen Punct ("Zerstreuungskreis"); denn dann müsste offenbar die Grösse der Kreise unabhängig von der relativen Anzahl der Endorgane, und im Allgemeinen überall dieselbe sein. Man muss vielmehr annehmen, die Uebertragung der Erregung von Einer auf benachbarte sensible Fasern sei ein centraler Vorgang (Mitempfindung, Irradiation), erstrecke sich immer, und von jedem Punct nach allen Richtungen, auf eine gleiche Anzahl sensibler Fasern (der Abstand der Zirkelspitzen umfasst im Mittel etwa 12 Tastkörperchen, KRAUSE), welche indess durch Uebung, Aufmerksamkeit, Schärfe der Erregung, u. s. w. zu immer vollkommnerer Isolirung verkleinert werden könne. Diese Anschauung (Näheres im 11. Capitel unter Rückenmark) scheint am meisten den Erscheinungen zu entsprechen.

Veränderungen des normalen Blutgehaltes der Haut (Hyperämie, Anämie) vermindern das Tastvermögen (Alsberg); starke Abkühlung (z. B. durch zerstäubten Aether) kann vollständige Anaesthesie bewirken, ebenso gewisse auf die Haut gebrachte Gifte.

Temperaturempfindungen.

Temperaturempfindungen entstehen auf Erregung sensibler Nervenendorgane (vgl. p. 417) durch Temperaturschwankungen innerhalb der Grenzen von etwa + 10 bis + 47° C., namentlich bei Erwärmung oder Abkühlung der Haut durch berührende Gegenstände; die Empfindung durch positive Schwankung nennt man Wärme-, die durch negative Kältegefühl; erstreckt sich die Temperaturschwankung auf eine grosse Fläche oder auf die ganze Körperoberfläche, so geht das Kältegefühl in "Frostgefühl", das Wärmegefühl in "Hitzegefühl" über. Beide sind mit den p. 212 f. erwähnten Erscheinungen verbunden. (Der "Fieberfrost" entsteht durch plötzliche Abkühlung der Haut in Folge des durch Krampf der Hautarterien verminderten Blutzuflusses, die "Fieberhitze" durch den umgekehrten Vorgang; bei beiden ist übrigens die mittlere Körpertemperatur über die Norm erhöht.) Zwischen 27 und 33° werden Temperaturschwankungen am feinsten unterschieden, demnächst zwischen 33-39° und zwischen 14-27° (NOTHNAGEL). Die Körpergegenden gruppiren sich in Bezug auf die Empfindlichkeit gegen Temperaturschwankungen (gemessen durch die kleinste noch wahrnehmbare), mit Hinweglassung der sehr regellosen Extremitäten, folgendermaassen (E. H. WEBER): Zungenspitze, Augenlider, Wangen, Lippen, Hals, Rumpf. Die der Mittellinie näheren Theile empfinden weniger fein. Je schneller die Temperaturschwankung geschieht, ferner je grösser die betroffenen Hautflächen sind, um so intensiver

wird die Schwankung empfunden. Höhere und niedrigere Temperaturen als die oben genannten Grenzen, wirken schmerzerregend (p. 416); Schwankungen werden hier nicht mehr specifisch empfunden.

Anämie der Haut steigert, Hyperämie vermindert die Temperaturempfindlichkeit (Alsberg).

Die Durchführung des Princips der specifischen Energieen (vgl p. 312, 355, 400) würde auch hier das Dasein verschiedener Fasern und Centralorgane für die Tast- und für die Temperaturempfindungen voraussetzen; Näheres ist hierüber nicht bekannt; zu erwähnen ist nur, dass die Abstände bei dem p. 419 erörterten Zirkelversuch kleiner ausfallen, wenn die Temperatur beider Spitzen verschieden ist (CZERMAK), und dass bei den p. 419 unten angeführten Versuchen ein kälteres Gewicht schwerer geschätzt wird, so dass der scheinbare Druckunterschied grösser wird, wenn das schwerere Gewicht zugleich kälter ist, kleiner wenn das leichtere kälter ist, und ein Druckunterschied bei gleichen Gewichten angegeben wird, wenn sie ungleiche Temperatur haben (WEBEE).

Andere specifische Empfindungen.

Die sensiblen Nerven gewisser Haut- und Schleimhautpartieen der Geschlechtsorgane erzeugen auf gewisse Erregungen (4. Abschn.) eigenthümliche von den Tast- und Temperaturempfindungen verschiedene Empfindungen, die man als "Wollust" bezeichnet.

Von den specifischen Empfindungen durch Nervenfasern welche nicht in der Haut endigen, ist noch sehr wenig bekannt. Einige dieser Sinnesempfindungen, Hunger und Durst, sind bereits früher erwähnt (p. 180 f.). Besonders zu besprechen ist noch das

Muskelgefühl (WEBER). Die Anwesenheit sensibler Fasern in den Muskeln ist, wenn auch nicht sicher anatomisch, so doch physiologisch festgestellt durch die unter Umständen auftretenden Muskelschmerzen, ferner durch das unzweifelhaft vorhandene Gefühl der Ermüdung. Es frägt sich aber, ob diese oder andre Nervenfasern uns über den Thätigkeitszustand der Muskeln Aufschluss geben. Dass viele Erscheinungen, z. B. die Coordination complicitter Muskelbewegungen, auf einer Vermittlung durch centripetal leitende Fasern beruhen, geht daraus hervor, dass solche Bewegungen höchst mangelhaft werden, wenn die hinteren Wurzeln der Rückenmarksnerven (p. 320) durchschnitten sind (BERNARD), oder wenn die centripetal leitenden Rückenmarkstheile (s. Cap. XI.) verletzt oder entartet sind (z. B. bei der grauen Degeneration der Hinterstränge — Tabes dorsalis, Ataxie locomotrice). Dass diese

Muskelgefühl.

Mangelhaftigkeit nur von Unempfindlichkeit der Haut herzuleiten sei. ist unwahrscheinlich, weil blosse Enthäutung die Bewegungen nicht oder wenig beeinträchtigt (BERNARD). Es scheint daher das Bewusstsein von dem Zustande der Muskeln etc. selbst unterrichtet zu sein. Dies ist auf folgende Arten denkbar: 1) sensible Nerven der Muskeln unterrichten über Veränderungen der Spannung, des Drucks, möglicherweise auch des Contractionszustandes; 2) das Bewusstsein beurtheilt den willkürlichen Impuls, der den motorischen Nerven ertheilt ist, und den dazu nothwendig gehörigen Erfolg; 3) durch die sensiblen Nerven der umgebenden Theile (Knochen, Bindegewebe etc.) wird das Bewusstsein von den Erfolgen der Muskelthätigkeit unterrichtet. Ob alle diese Beziehungen oder einzelne derselben verwirklicht sind, weiss man nicht. - Die mannigfachen Anwendungen eines solchen Muskelgefühls ergeben sich theils aus dem hier Gesagten (coordinirte Bewegungen, Erhaltung des Gleichgewichts beim Stehen, u. s. w.), theils sind sie schon früher erwähnt (Schätzung gehobener Gewichte. Beurtheilung der Gestalt der Körperoberfläche und Rückschlüsse auf die Gestalt berührender Gegenstände, s. p. 417 f.).

In den Gelenken, dem Periost, seltener in den Muskeln, sind VATER'sche Körperchen (p. 415) gefunden worden, welche vielleicht zum Muskelgefühl im Sinne von 3) in Beziehung stehen (RAUBER).

Elftes Capitel.

Die centralen Endorgane der Nerven. (Nervöse Centralorgane.)

A. ALLGEMEINES.

Die centralen Endapparate der Nervenfasern sind in gewissen Organen enthalten, welche man "nervöse Centralorgane" nennt. Dieselben enthalten ausser den centralen Endapparaten der Nervenfasern auch zahlreiche leitende Fasern. Ihre Function ist also schon deshalb sehr complicirt, weil sie zugleich als Leitungsorgane wirken können. Eine Physiologie der centralen Nervenendapparate lässt sich bei dem heutigen Standpuncte der Wissenschaft nicht geben, namentlich weil sie nirgends getrennt von beigemischten Nervenfasern untersucht werden können. Es können daher nur die Ermittelungen über die Function jener gemischten Organe, — Hirn, Rückenmark, Ganglien, — als Material für eine künftige Physiologie der nicht isolirbaren Nervenendorgane aufgeführt werden.

Maassgebende Eigenschaften, welche dazu berechtigen, ein Organ als nervöses Centralorgan zu bezeichnen, sind nach dem in der Einleitung Gesagten folgende: 1. Die Auslösung des thätigen Zustandes einer ("centrifugalen") Nervenfaser anscheinend ohne Betheiligung eines äusseren Einflusses — Automatie. 2. Die Auslösung des thätigen Zustandes einer ("centrifugalen") Nervenfaser, veranlasst durch eine andere ("centripetale") — Reflex. 3. Die als Vorstellungen oder Seelenthätigkeiten zusammengefassten Erscheinungen, welche mit der Erregung gewisser Centralorgane verbunden sind (p. 8).

Alle Körperorgane, an welchen man solche Eigenschaften nachweisen kann, enthalten als integrirende Bestandtheile Ganglienzellen, welche mit Nervenfasern in unmittelbarer Verbindung stehen, und da man ausser den früher als peripherische Endorgane aufgeführten keine anderen Formelemente in sicher continuirlichem Zusammenhange mit Nervenfasern findet, so werden allgemein die Ganglienzellen als die centralen Endorgane der Nervenfasern bezeichnet. Zweifelhaft aber ist es: 1. ob alle Ganglienzellen als Centralorgane zu betrachten, 2. ob nicht ausser den Ganglienzellen noch andere centrale Apparate vorhanden sind.

Gegen die erste Annahme spricht scheinbar bereits der allgemein gebräuchliche Ausdruck "peripherische Ganglienzellen". In vielen Organen nämlich, deren Functionen durchaus nicht die nervöser Centralorgane sind, findet man die Nervenfasern mit Ganglienzellen oder sehr ähnlichen zelligen Apparaten versehen (so in den Sinnesorganen, in den Drüsen u s. w.). Lässt man indess die Function, die Erregung von einer Nervenfaser auf eine andere zu übertragen, allgemein als eine centrale gelten, so steht Nichts im Wege, auch die "peripherischen Ganglienzellen", deren wirkliche Bedeutung noch völlig unbekannt ist, als Centralorgane zu betrachten. Man muss dann jede durch eine Ganglienzelle unterbrochene Faser als ein System von zweien ansehen; die eine hat ein peripherisches Endorgan, die andere verbindet zwei Centralorgane, wie die zahlreichen intercentralen Fasern (p. 313) des Hirns, des Rückenmarks und des Sympathicus. - Was die zweite Frage nach der Ausschliesslichkeit der Ganglienzellen als Centralorgane betrifft, so giebt es im Gehirn zwar zahllose kleine zellige Organe von mannigfaltiger Gestalt, welche man von den Ganglienzellen unterschieden hat, deren wesentliche Natur aber doch mit der der Ganglienzellen übereinzustimmen scheint, soweit sie überhaupt nervös sind.

Viele anatomische Einzelheiten im Bau der Centralorgane können nur an Präparaten ermittelt werden, in welchen ausser den Veränderungen durch das Absterben noch andere (Gerinnungen u. s. w.) durch Reagentien vorgegangen sind; über die wirkliche Beschaffenheit während des Lebens weiss man daher nur sehr wenig Sicheres.

Eigenschaften der Ganglienzellen.

Ueber die Eigenschaften der Ganglienzellen ist so gut wie Nichts bekannt. Ueber ihre chemische Zusammensetzung kann man nur aus den Analysen der grauen Hirnsubstanz einige ungefähre Schlüsse ziehen. Die weisse Substanz, welche wesentlich aus Nervenfasern und einer Kittsubstanz (Neuroglia) besteht, wird für gleich zusammengesetzt mit den peripherischen Nerven gehalten, deren Bestandtheile (p. 292) sogar wesentlich nach Hirnmarkuntersuchungen

Chemie des Gehirns. Functionen der Ganglienzellen.

angegeben werden. Während die Reaction der weissen Substanz neutral oder alkalisch ist, wird die graue sauer reagirend gefunden (GSCHEIDLEN), was jedoch vielleicht von sehr schnellen Veränderungen an der Schnittfläche herrührt. Die chemischen Bestandtheile der weissen Substanz sind: Lecithin, Protagon und wahrscheinlich noch andere Lecithinkörper; Albumin, Kalialbuminat und Globulinkörper; Cholesterin, Fette; Kreatin, Xanthin, Hypoxanthin; Inosit und ein Zuckeranhydrid; Milchsäure (gewöhnliche, GSCHEIDLEN), flüchtige Fettsäuren; Salze und Wasser. — Die graue Substanz unterscheidet sich von der weissen chemisch hauptsächlich durch grösseren Wassergehalt, und unter den festen Bestandtheilen durch mehr Eiweiss, Lecithin und Milchsäure, weniger Cholesterin, Fett und Protagon.

Sehr viele Substanzen welche jetzt als Zersetzungsproducte des Lecithins, oder als Gemenge von solchen mit anderen Körpern erkannt sind, sind früher als genuine Hirnbestandtheile beschrieben worden. Auch die oben genannten Bestandtheile sind vielleicht selbst Zersetzungsproducte complicirterer präexistirender Verbindungen. Einer von ihnen, das Protagon, wird neuerdings als ein Gemenge von Lecithin und einem N-haltigen Glucosid, dem Cerebrin betrachtet (Horpe-Seyler), das hauptsächlich in der weissen Substanz vorkommt (Petrowsky). Die Zusammensetzung beider Substanzen ist folgende (Petrowsky):

Wasser		81,6 pCt.	Weisse Substanz. 68,4 pCt, 31,6 "
Eiweissstoffe und Leim Lecithin		55,4 pCt.	24,7 pCt.
Cholesterin und Fette		18,7 "	9,9 ,, 51,9 ,,
Cerebrin	Ζ.	6,7 "	9,5 ,, 3,3 ,,
Salze		1,5 ,,	0,6 "

Dass Oxydationsprocesse in den Ganglienzellen wie in allen übrigen Organen- vor sich gehen, ist zwar höchst wahrscheinlich, aber vorläufig durch Nichts bewiesen, als vielleicht dadurch, dass das Venenblut des Gehirns, des Rückenmarks etc. ebensogut arm an Sauerstoff und reich an Kohlensäure (dunkelgefärbt) ist, wie das anderer Körpertheile; ebensowenig lässt sich bis jetzt absehen, ob und in wie fern die Oxydationsprocesse mit der Thätigkeit der Ganglienzellen zusammenhängen, ob nicht Spaltungsprocesse, ähnlich wie in den Muskeln und Nerven, der letzteren zu Grunde liegen und welches die Oxydations- resp. Spaltungsproducte sind.

Noch weniger bekannt ist der Kraftwechsel der Ganglienzellen. Die in der Ganglienzelle frei werdenden Kräfte gehören, soweit man

Reflex, Automatie.

von ihnen weiss, nicht zu den durch äussere Mittel erkennbaren. Man muss hier im Allgemeinen ähnliche Molecularprocesse vermuthen, wie sie in den Nervenfasern hypothetisch angenommen sind (p. 309 f.), und in continuirlichem Zusammenhange mit den letzteren stehend. Denkt man sich den thätigen Zustand einer Nervenfaser als eine Kette von Auslösungen, so würde das Freiwerden der Kräfte in der Ganglienzelle als Ausgangspunct oder als Endpunct jener Auslösungen zu betrachten sein. Es entsteht nun die Frage: welches ist im ersten Falle die auslösende Kraft für die Spannkräfte der Ganglienzelle, und was wird im zweiten aus den in der Ganglienzelle freigewordenen Kräften?

Am einfachsten wie es scheint gestaltet sich die Antwort auf diese Fragen in dem Falle, wo die Zelle nur den Vermittler zwischen zwei Nervenfasern spielt, d. h. beim Reflexe (im weitesten Sinne). Hier werden die Spannkräfte der Ganglienzelle ausgelöst durch die freigewordenen Kräfte der einen erregten Faser, und machen selbst wiederum die Spannkräfte der andern frei. In diesem Falle ist also nur eine einzige Auslösungskette anzunehmen; ihr Ausgangspunct (die erste auslösende Kraft) ist ein Einfluss der Aussenwelt, der auf ein peripherisches Nervenendorgan (Sinnesorgan) einwirkt, ihr Endpunct die Auslösung der Spannkräfte eines Arbeitsorgans (Muskel, Drüse, Parenchym). Die Ganglienzelle würde hier zunächst keine wesentlich andere Rolle spielen als irgend ein Stück der einfach leitenden Nervenfaser.

Viel unverständlicher bereits ist der Vorgang bei den Erregungen, welche als automatische bezeichnet werden. Man fasst unter diesem Namen alle von einer Ganglienzelle ausgehenden Erregungen zusammen, bei denen die auslösende Kraft in der Ganglienzelle unbekannt ist. Hier sind zwei Möglichkeiten zu berücksichtigen. Entweder geschieht das Freiwerden der Spannkräfte in der Zelle ohne auslösende Kraft; in diesem Falle muss man ein continuirliches Freiwerden von Kräften annehmen.*) Die dadurch bewirkte Erregung der Nervenfaser braucht indess deshalb nicht continuirlich zu sein; denkt man sich nämlich, dass die freigewordenen Kräfte einen gewissen Widerstand zu überwinden haben, ehe sie aus-

^{*)} Man kann sich einen solchen Vorgang entweder so vorstellen, dass die spannkraftführenden Stoffe durch äussere Vorgänge (z. B. durch die Blutzufnhr) beständig gerade in dem Maasse mit einander in Berührung gebracht werden, in welchem sie sich verbinden, — oder so, dass die in jedem Moment freiwerdenden Kräfte selbst zum Theil auf die im Vorrath aufgespeicherten Spannkräfte für den nächsten Moment auslösend wirken, etwa wie beim glimmenden Zunder die gebildete Wärme zugleich dazu dient, die Verbrennung zu unterhalten.

Rhythmische und tonische Automatie. Regulatorische Nerven

lösend auf die Nervenfaser wirken können, so ist die Folge, dass sie sich jedesmal vorher bis zu einer gewissen Spannung aufspeichern müssen, ähnlich wie ein continuirlich durch eine Röhre unter Wasser geleitetes Gas in diesem nicht continuirlich, sondern intermittirend in Blasen von einer gewissen Grösse aufsteigt, indem es sich in der Röhre jedesmal bis zu einem Drucke ansammelt, welcher hinreicht den Widerstand der Cohäsion und Schwere des Wassers zu über-Hierdurch wird also eine rhythmische Erregung zu winden. Stande kommen. In der That sind alle bis jetzt nachgewiesenen automatischen Erregungen entweder continuirlich ("tonisch") oder rhythmisch, wobei man aber sich erinnern muss, dass vermuthlich auch alle tonischen Erregungen in Wahrheit als rhythmische (tetanische, p. 238) aufzufassen sind. Jede Kraft, welche den hypothetischen Widerstand vergrössern oder verkleinern kann, würde die Frequenz des Rhythmus und die Stärke der jedesmaligen Erregung in ähnlicher Weise beeinflussen, wie im obigen Beispiel Vermehrung der Cohäsion des Wassers (durch Gummi, etc.) die Blasen seltener aber grösser, Verminderung der Cohäsion (Aether statt des Wassers) die Blasen häufiger und kleiner macht. Wird der Widerstand unüberwindlich gross gemacht, so wird jede Erregung lange Zeit ausbleiben, wird er sehr erniedrigt, so wird eine tonische (tetanische) Erregung eintreten. Ein solcher Einfluss scheint nun wirklich bei gewissen rhythmisch - automatisch wirkenden Ganglienzellen zu existiren, ausgeübt durch die sog. "regulatorischen" Nerven, von denen die "Hemmungsnerven" eine Abtheilung bilden. Gewisse Erscheinungen, namentlich die p. 72 und 153 f. erörterten Einwirkungen des Vagus auf das Herz und anderer Fasern desselben auf die Medulla oblongata, lassen sich nur äusserst gezwungen durch andere Annahmen erklären. Bestätigt sich das Ergebniss dass die Einflüsse jener Fasern auf die Centralorgane nur in einer Modification der zeitlichen Vertheilung ihrer Thätigkeit bestehen, dass also die jedesmalige Entladung der Frequenz derselben umgekehrt proportional anzusehen sei (vgl. p. 154), so bleibt nur die Deutung übrig, dass jener hypothetische Widerstand durch die Thätigkeit gewisser Fasern erhöht (Hemmungsfasern), durch andere herabgesetzt wird (beschleunigende Fasern). Ebensogut aber kann man sich die Einwirkung der Beschleunigungs- und Hemmungsnerven so vorstellen, dass (bei gleichbleibendem Widerstand) die einen den continuirlichen chemischen Process im Centralorgan beschleunigen, die andern ihn verzögern; diese Vorstellung würde erfordern, dass die Gesammt-

429

Seelenthätigkeiten.

summe der Entladungsgrössen nicht constant bleibt, sondern variirt wird (dies letztere ist der Fall bei der Herzhemmung durch den Vagus, Ludwig & Coars). — Die zweite Möglichkeit, durch welche man der Annahme unbekannter auslösender Kräfte bei den automatischen Erregungen entgehen kann, wäre die, dass die Automatie nur scheinbar ist, und in Wahrheit ein Reflexvorgang zu Grunde liegt; vielleicht lassen sich viele anscheinend automatische Erregungen auf diese Weise erklären, wie es bei manchen derselben (s. die Auslösung der Athembewegungen, p. 155; ferner unten die Lehre vom Muskeltonus etc.) bereits versucht worden ist.

Jedem Verständniss entzogen sind aber die Erregungsvorgänge der Ganglienzellen, bei welchen anscheinend der Ausgangspunct oder der Endpunct einer Auslösungskette eine Vorstellung ist (Wille, Empfindung), und ebenso die Vorstellungen, welche scheinbar in keinem directen Zusammenhange mit Erregungen der Leitungsorgane stehen (Denkprocesse). Ob es wirklich Vorstellungen giebt, die in gar keinem Zusammenhange mit Nervenerregungen also mit Empfindung oder Willen stehen, ist durchaus zweifelhaft. Nicht unwahrscheinlich ist die freilich unerweisbare, aber bereits von anderer Seite modificirt ausgesprochene Annahme, dass alle Vorstellungen ununterbrochene Reihen ("Gedankenketten") bilden, deren Ausgangspunct stets an eine anlangende Nervenerregung anknüpft (Empfindung), deren Endpunct stets wiederum eine mit einer Nervenerregung verbundene Vorstellung (Wille) ist. Sehr naheliegend scheint nun die Annahme, dass ebenso zwischen den beiden Auslösungsprocessen der anlangenden und der schliesslich abgehenden Erregung eine ununterbrochene Kette von Auslösungsprocessen im Centralorgan vorhanden ist, welche mit der Kette der Vorstellungen parallel und auf unbekannte Weise mit dieser verknüpft ist. Mit dieser Hypothese wäre die Schwierigkeit beseitigt, Anfang oder Ende eines nicht rhythmischen und nicht continuirlichen Auslösungsprocesses im Centralorgan zu suchen; denn es würden sich hiernach die materiellen Vorgänge im Centralorgan bei Betheiligung der Seele, von den blossen Reflexvorgängen (s. oben) nur durch grössere zeitliche und räumliche Ausdehnung (auf zahlreiche Centralorgane, deren Erregung mit Vorstellungen verbunden ist - Seelenorgane) unterscheiden, und consequenterweise wäre der Ursprung jeder nicht automatischen Nervenerregung unmittelbar oder mittelbar in der Erregung peripherischer Nervenendorgane zu suchen.

Allgemeine Eigenschaften der Ganglienzellen.

Die mannigfaltigen philosophischen Anschauungen über den Zusammenhang der Seelenfunctionen mit den materiellen Vorgängen, oder wie es hier dargestellt ist, mit den freiwerdenden Kräften des Centralorgans, zu erwähnen, ist hier nicht der Ort. Es muss hervorgehoben werden, dass die soeben angedeutete Hypothese mit diesen Fragen Nichts zu thun hat.

Die Eigenschaften, welche man nach dem Erörterten theils einzelnen, theils allen Ganglienzellen hypothetisch vindiciren kann, sind also folgende: 1. continuirliches Freiwerden von Kräften, welche auslösend auf die Spannkräfte der abgehenden Nervenfasern wirken, entweder ohne Weiteres (wahre tonische Automatie, die indess nicht nachgewiesen ist), oder nach Ueberwindung eines gewissen hypothetischen Widerstandes (rhythmische und tetanische [scheinbar tonische] Automatie); die Grösse des Widerstandes oder nach anderer Anschauung die Geschwindigkeit der Kraftentwicklung, hängen wiederum von dem Erregungszustande gewisser eintretender Nervenfasern ("regulatorische") ab; 2. Leitungsvermögen von einer eintretenden Nervenfaser auf eine andere; die Leitung geschieht von einer centripetalen Faser durch eine oder viele Ganglienzellen schliesslich zu einer centrifugalen; ist die Veränderung der Ganglienzellen während der Leitung nicht mit Vorstellungen verbunden, so heisst der Vorgang Reflex; ist er dagegen mit Vorstellungen verbunden, so heisst Empfindung die Vorstellung bei Erregung des Centralorgans durch die centripetale Faser Wille, die Vorstellung bei Erregung der centrifugalen Faser.

Ob zu den allgemeinen Eigenschaften der Ganglienzellen auch die Erregbarkeit durch die allgemeinen Nervenreize gehört, ist noch nicht festgestellt. Gewisse Erfahrungen über Unerregbarkeit des Rückenmarks bei mechanischer Reizung, welche unten zur Sprache kommen werden, deuten darauf hin, dass vielleicht beträchtliche Abweichungen vom Verhalten der Nerven vorhanden sind. Von eigenthümlichem Einfluss ist die Beschaffenheit des die Zellen bespülenden Blutes (s. p. 155 und unten).

Endlich sind noch zu den allgemeinen Eigenschaften der Ganglienzellen höchst wahrscheinlich gewisse zeitliche Verhältnisse ihrer Thätigkeit zu rechnen. Die hierhergehörigen, schon in früheren Capiteln berührten Erfahrungen sind: 1. Die Periode des Muskelgeräusches bei vom Centrum aus erregtem Tetanus (p. 238); dieselbe beträgt 19,5 in der Secunde. Da der Muskel bei künstlicher directer oder indirecter Reizung einer viel schnelleren Aufeinanderfolge der Schwingungen fähig ist, so kann diese Zahl nicht von

Allgemeine Eigenschaften der Ganglienzellen.

einer Eigenschaft der Muskeln oder Nerven abhängen, sondern ist höchstwahrscheinlich so zu erklären, dass die motorischen Ganglienzellen, von welchen unmittelbar die motorischen Nerven entspringen, bei jeder (auch künstlicher, vgl. p. 239) Erregung 19,5 Impulse in der Secunde dem Nerven ertheilen. 2. Die Erregung des Opticus wirkt am intensivsten, wenn sie 17—18 mal in der Secunde erfolgt (p. 352), ebenso 3. die Erregung einer Acusticusfaser am intensivsten, wenn sie 33 mal in der Secunde an- und abschwillt (p. 405). Diese beiden Erfahrungen sind möglicherweise dadurch erklärlich, dass in den sensiblen Ganglienzellen, welche zunächst durch centripetale Fasern erregt werden, jede Erregung mit der darauf folgenden Ermüdung etwa $\frac{1}{17}$, resp. $\frac{1}{33}$ Secunde andauert und die neue Erregung daher nach Ablauf dieser Zeit intensiver wirkt, als wenn sie schon früher eintritt. Der Gesammteffect muss dann bei der genannten Frequenz am grössten sein.

Die Zeit, welche die Leitung durch das Centralorgan (Ganglienzellen, graues Netz) erfordert, lässt sich für Reflexvorgänge bestimmen, indem man das Zeitintervall zwischen Reiz und Reflexbewegung misst und davon die (nach p. 304 bekannte) Dauer der Leitung im sensiblen und im motorischen Nerven subtrahirt (HELMHOLTZ). Es ergiebt sich so die Zeit von $1/_{30}$ — $1/_{10}$ Secunde, von welcher aber unbekannt ist, auf eine wie grosse und auf welche Leitungsbahn im Centralorgan sie zu beziehen ist. Die centrale Uebertragungszeit ist um so kürzer je stärker die centripetale Erregung; sie ist ferner (im Bereiche des Rückenmarks) grösser bei Uebertragungen die die Medianebene zu überschreiten haben; durch Ermüdung des Centralorgans wird sie vergrössert (ROSENTHAL).

Ueber Zeitmessungen im Bereich der Seelenthätigkeiten s. unten, unter Grosshirn.

B. SPECIELLES.

Es folgt jetzt dasjenige, was über die centralen und Leitungsfunctionen der einzelnen Centralorgane (Hirn, Rückenmark, sympathische Ganglien) bisher ermittelt ist, wozu ausdrücklich bemerkt werden muss, dass hier nur die wirklich mit annähernder Sicherheit ermittelten Ergebnisse in diesem dunkelsten Gebiete der Physiologie berücksichtigt werden sollen.

432

Bau des Rückenmarks.

1. Rückenmark.

Anatomisches. Das physiologisch Wichtigste des Rückenmarksbaues ist folgendes: Auf Querschnitten unterscheidet man am Rückenmark 1) den von einem Epithel ausgekleideten engen Centralcanal, 2) die graue Substanz, welche den ersteren umgiebt und in Form von hornartigen Fortsätzen in die weisse Substanz hineinragt (Vorder- und Hinterhörner), 3) die weisse Substanz, in welcher man jederseits von den medianen Incisuren drei Stränge unterscheiden kann: den Vorder-, Seiten- und Hinterstrang; zwischen Vorder- und Seitenstrang liegt das Vorderhorn der grauen Substanz, und die in dasselbe eintretenden Fasern der vorderen Spinalwurzeln, zwischen Hinter- und Seitenstrang ebenso das Hinterhorn und die hinteren Wurzelfasern.

Die weisse Substanz besteht, abgesehen von den horizontalgerichteten durchtretenden Wurzelfasern, aus vertical (längs) gerichteten Fasern und einer verkittenden Bindesubstanz (Neuroglia). Die graue Subsanz besteht aus Ganglienzellen (s. unten) und aus einer homogenen grauen Masse, in welcher die Mehrzahl der neueren Beobachter ein Gewirr von feinen, in allen Richtungen verlaufenden Axencylindern annehmen.

Die Ganglienzellen liegen hauptsächlich in den Vorder- und Hinterhörnern. Man unterscheidet an jeder Ganglienzelle (DEITERS): eine körnige Masse (Protoplasma), einen grossen Kern mit Kernkörperchen, und Fortsätze. Unter den Fortsätzen zeichnet sich durch sein Aussehen sogleich aus: der Axencylinder, welcher, wie es scheint, mit dem Kern in Verbindung steht; die übrigen Fortsätze sind feine, vielfach verzweigte, spitz endigende Fasern (Protoplasmafort sätze), an welche sich homogene, feine, sich nicht verjüngende Fasern, Axencylinder zweiter Art, inseriren. Die letzteren begeben sich in das feine Fasernetz, aus welchem die Hauptmasse der grauen Substanz besteht (GERLACH) und aus welchem Fasern, zu dickeren vereinigt, in die weisse Substanz austreten. Nach neueren Angaben (M. SCHULTZE) bestehen die Zellen aus einem feinen Fibrillennetz, und ebenso sind die Fortsätze fibrillär gebaut (vgl. p. 292); die Zelle würde dann nur von den Fibrillen der Fortsätze durchsetzt werden.

Die grossen Axencylinder (erste Art) der Zellen sind die Enden der spinalen Wurzelfasern. Die Zellen, in welche die vorderen Wurzelfasern eintreten ("motorische Ganglienzellen"), sind grösser und haben zahlreichere Protoplasmafortsätze, als die mehr spindelförmigen Zellen, in welche die hinteren Wurzelfasern übergehen ("sensible Ganglienzellen"). Nach einer anderen Angabe (GERLACH) gehen die Fasern der hinteren Wurzeln überhaupt nicht in Ganglienzellen, sondern direct in das Fibrillennetz der grauen Substanz über, so dass also wahrscheinlich auch die Zellen der Hinterhörner zu den motorischen zu zählen wären.

Schon die Anatomie ergiebt, dass das Rückenmark (abgesehen von den dünnen sympathischen Communicationen) die einzige Verbindung ist zwischen dem Gehirn und den Nerven des Rumpfes und der Extremitäten. Das Rückenmark muss also die Leitungsbahnen für alle willkürlichen Bewegungen des Rumpfes und der Extremitäten, für alle Empfindungen in diesen Theilen, und für die Einwirkung anderer Hirncentra ausser den psychischen (z. B. Athmungscentrum) auf die genannten Theile enthalten.

Es ist aber anatomisch festgestellt, dass die Rumpfnerven im Rückenmark nicht einfach zum Gehirn verlaufen, sondern sämmtlich, oder wenigstens die motorischen (s. oben), zunächst mit Ganglienzellen in Verbindung treten (p. 433). Auch physiologische Gründe sprechen gegen eine directe Einmündung von Rumpfnerven in das Gehirn (s. unten die Reflexbewegungen).

Ueber die Leitung von den motorischen und sensiblen Ganglienzellen zum Gehirn ist noch nichts Sicheres anatomisch ermittelt. Am wahrscheinlichsten ist, dass diese Zellen zunächst mit einem complicirten Fasernetz in leitende Verbindung treten, welches sich ununterbrochen bis zum Gehirn hinauf fortsetzt, aus welchem aber fortwährend Fasern auftauchen, welche in der weissen Substanz isolirt zum Gehirn verlaufen. Für das Verständniss ist nun die Annahme durchaus nothwendig, dass die Leitung von Erregungen nur in den morphologisch vorgebildeten Bahnen verlaufe, in diesen aber überall vordringen könne, soweit es die Continuität der leitenden Bahn gestattet. In einem wirklichen anastomotischen Netzwerk von Fasern muss hiernach die einmal eingedrungene Erregung in alle Fasern übergehen können.

Der Erfolg der Erregung von sensiblen Fasern des Rumpfes oder der Extremitäten ist nun entweder eine Empfindung, welche mehr oder weniger genau an den Ort der Endigung dieser Faser verlegt wird (p. 421), oder ein Reflex, d. h. eine Erregung motorischer Fasern ohne Vermittelung des Bewusstseins (unwillkürlich).

Das Zustandekommen einer localisirten Empfindung setzt voraus, dass die Erregung isolirt bis zu den Seelenorganen im Gehirn fortgeleitet sei. Da nun die sensiblen Fasern sämmtlich, sei es direct, sei es durch Vermittlung sensibler Ganglienzellen, in das mehrfach erwähnte Fasernetz übergehen, so ist jene isolirte Leitung zunächst unverständlich. — Ebenso unverständlich ist der der bewussten Empfindung gewissermassen gegenüberstehende Vorgang der willkürlichen isolirten Bewegung; denn da die Erregung einer motorischen Ganglienzelle anscheinend nur durch Vermittelung des grauen Fasernetzes erfolgen kann, welches doch ebenso mit allen übrigen motorischen Zellen in Berührung steht, so ist nicht einzusehen, wie gerade nur die eine Zelle in Erregung gerathen kann. — Zur Er-

Geordnete Reflexe.

klärung dieser Erscheinungen muss eine Annahme gemacht werden, die unten zu besprechen ist (p. 437).

Die Reflexe nach Erregung derselben sensiblen Faser können der verschiedensten Art sein: es können einzelne Muskeln sich contrahiren, und dadurch geordnete, in gewissem Sinne (s. unten) zweckmässige Bewegungen erfolgen, es können aber auch anscheinend ungeordnete Muskelcontractionen in mehr oder weniger beschränkten Muskelgebieten oder auch in sämmtlichen Muskeln des Körpers auftreten.

Geordnete Reflexbewegungen beobachtet man am reinsten an Thieren, deren Seelenorgane, durch Abtrennung des Gehirns, vom Rückenmark getrennt sind; am besten ist diese Operation an Fröschen ausführbar. Geköpfte Frösche machen auf Reizungen regelmässige und zweckmässige Abwehrbewegungen, welche von willkürlichen Abwehrbewegungen sich so wenig unterscheiden, dass man sie als die Wirkungen von im Rückenmark vorhandenen Seelenorganen betrachtet hat (PFLÜGER). Ganz ähnliche Reflexbewegungen treten auf, wenn die Seelenorgane im Gehirn durch den Schlaf (s. unten) in Unthätigkeit versetzt sind. Aber auch im wachen Zustand kommen fortwährend unwillkürliche geordnete Abwehrbewegungen gegen Reize welche den Körper treffen, vor.

Ein geköpfter oder enthirnter Frosch nimmt eine sitzende Stellung ein, wie ein unverletzter; kneipt man ihn mit einer Pincette, so stemmt er sich mit den Füssen gegen dieselbe, um sich zu befreien, betupft man eine Hautstelle mit Säure, so wischt er die Säure augenblicklich mit den Pfoten ab u. s. w. Diese Abwehrbewegungen sind sehr regelmässig, jedoch ist eine Abwechselung derselben möglich; schneidet man z. B. das Glied ab, welches bei Reizung einer Hautstelle gewöhnlich zum Abwischen benutzt wird, so wird, nach vergeblichen Bewegungen des Stumpfes, ein anderes Glied zu dem genannten Zwecke verwendet; freilich ist in diesem Falle die Reizung nicht die gewöhnliche, sondern sie hat durch längere Dauer (während der vergeblichen Stumpfbewegungen) eine grössere Intensität erreicht, so dass eine rein mechanische Erklärung dieser Erscheinung wohl möglich ist. — An Schlafenden bemerkt man auf Kitzeln u. dgl. bewusstlose, aber regelmässige und zweckmässige Bewegungen. — Ueber die versuchte Erklärung dieser Erscheinungen durch Seelenorgane im Rückenmark s. unten.

Die geordneten Reflexbewegungen haben nicht sämmtlich den Character der Abwehr, sondern es kommen auch andere zweckmässige Reflexvorgänge vor. So beobachtet man (Goltz) an Fröschen, deren Grosshirn vom Rückenmark getrennt ist: 1) regelmässig ein Quarren, sobald man die Haut der Rückengegend sanft streicht, oder deren Nerven mechanisch reizt; 2) zur Zeit der Begattung, beim

28*

Geordnete und ungeordnete Reflexe.

Männchen ein festes und dauerndes Umarmen des Weibchens, wenn man dasselbe mit dem Rücken gegen die Brust des Männchens legt; auch andere ähnlich geformte Gegenstände (Männchen, der Finger des Untersuchenden) werden in gleicher Weise umklammert; — der unversehrte Frosch quarrt dagen nicht regelmässig beim Streicheln des Rückens, und umarmt andere Gegenstände als das Weibchen nur dann, wenn man ihn unmittelbar vorher aus der Umarmung des Weibchens gerissen hat (Goltz); Näheres über diesen Unterschied im Verhalten s. unten.

Zu den regelmässigen Reflexen genügt das Stück Rückenmark mit welchem die bei denselben betheiligten sensiblen und motorischen Nerven direct in Verbindung stehen. Zu dem eben beschriebenen Umklammerungsversuch genügt z. B. der Rumpftheil welcher die vorderen Extremitäten trägt (Rücken zwischen Schädel und viertem Wirbel, Brustgürtel und Vorderbeine).

Ausser den geordneten Reflexbewegungen können nun auch ungeordnete, nicht deutlich zweckmässige auftreten, welche man als Reflexkrämpfe bezeichnet. Sie treten nur unter abnormen Bedingungen auf, nämlich bei sehr heftiger Reizung, oder nach Einwirkung gewisser Gifte (Strychnin) und gewisser pathologischer Processe (traumatischer und rheumatischer Tetanus, Hydrophobie). Sie bestehen in vorübergehenden tetanischen Contractionen einzelner Muskelgruppen oder sämmtlicher Körpermuskeln, auf die Einwirkung sensibler Reize. Je geringer der abnorme Zustand des Rückenmarks entwickelt ist, um so beschränkter bleiben die Krämpfe, und um so stärkerer Reize bedarf es um sie auszulösen. Wenn durch Zunahme des abnormen Zustandes oder der Reizstärke die Reflexkrämpfe (Reizung einer beschränkten Hautstelle vorausgesetzt) sich immer weiter ausbreiten, so nehmen sie folgenden Verlauf (PFLÜGER): Zunächst ergreifen sie Muskeln deren motorische Fasern im Rückenmark auf derselben Seite und in gleichem Niveau entspringen; erst bei weiterer Ausbreitung werden auch Fasern der anderen Seite ergriffen, aber stets nur solche, die symmetrisch sind mit ergriffenen Fasern der primären Seite, und nie stärker als die der letzteren; weiterhin werden auch Fasern anderer Niveau's betheiligt und zwar nach der Medulla oblongata hin fortschreitend; endlich können auch sämmtliche Fasern ergriffen werden, wodurch allgemeine tetanische Krämpfe entstehen (dieselben sind, wegen des Uebergewichts der Streckmuskeln, Streckkrämpfe). Auch ohne grosse Ausbreitung des Reflexvorganges im Rückenmark können sich Fasern die von der Medulla oblongata ausgehen, bei den Reflexkrämpfen betheiligen (s. unten).

Erklärung der bisher angeführten Erscheinungen.

Bei Strychninvergiftung genügt die geringste Berührung des Vergifteten, ein Luftzug, eine Erschütterung des Lagers, um einen Krampfanfall auszulösen. — Neuerdings ist beobachtet worden, dass in dem Zustande der Apnoe (p. 155) die Reflexkrämpfe bei Strychnin- und ähnlichen Vergiftungen ausbleiben (Rosen-THAL & LEUBE, USPENSKY).

Das Verständniss der Reflexvorgänge erfordert das Vorhandensein von Verbindungen der motorischen und sensiblen Ganglienzellen, und zwar in der mannigfachsten Weise. Da nun directe Anastomosen dieser Zellen nicht vorkommen (DEITERS), so kann die Verbindung nur durch das oben erwähnte graue Fasernetz zu Stande kommen. Da aber dies Netz anscheinend sämmtliche Ganglienzellen des Rückenmarks unter einander verbindet, so ist zwar die Ausbreitung von Reflexen auf sämmtliche Körpermuskeln, etwa wie sie bei den allgemeinen Strychninkrämpfen vorkommt, verständlich; aber die Beschränkung des Reflexes oder gar die Entstehung geordneter Reflexe, ist zunächst eben so wenig verständlich, wie (p. 434) die isolirte Leitung der Empfindungen zum Gehirn, oder die ihr entsprechende, isolirte Innervation einzelner Rumpfmuskeln durch den Willen.

Um nun die anatomischen Ermittelungen mit den physiologischen Postulaten zu vereinigen, muss man die Annahme machen dass im normalen Zustande der Leitung in dem ganzen Fasernetz ein sehr grosser Widerstand entgegensteht, so dass die Erregung schon in geringer Entfernung von der direct erregten sensiblen Zelle auf eine unmerkliche Grösse sich vermindert; die Erregung wird sich hiernach nur ausbreiten können: a) in der Nachbarschaft der erregten Zelle, wodurch beschränkte Reflexe entstehen; b) in gut leitende Bahnen, welche schon in der Nähe der erregten Stelle aus dem Fasernetz entspringen; als solche sind aber anscheinend zu betrachten die aus dem Netze auftauchenden, in die weisse Substanz übergehenden, zum Gehirn verlaufenden Fasern; hierdurch würde sich die isolirte Leitung der Empfindung, und ebenso die isolirte Leitung für willkürliche Bewegungen erklären (letztere würde auf einer Faser der weissen Stränge herabkommen, in das Netz übergehen und nur in die der Uebergangsstelle zunächst gelegenen motorischen Zellen eintreten können).

Das Zustandekommen geordneter, zweckmässiger Reflexbewegungen ist jedoch hierdurch noch nicht erklärt, da es sich bei denselben nicht sicher um Uebergang der Leitung auf zunächst gelegene motorische Zellen handelt; wenigstens müsste erst nach-

Entstehung geordneter Reflexe. Reflexhemmung.

gewiesen sein, was freilich nicht undenkbar ist, dass die Lage der Zellen so ist, dass stets die motorischen die zweckmässigste Abwehrbewegung liefern für Reizung der zunächst gelegenen sensiblen. Aber ebensogut ist es denkbar, dass durch eine angeborene Vollkommenheit der Organisation die Leitung von jeder sensiblen Zelle aus in dem Netzwerk zweckmässiger Weise in gewissen Richtungen besonders begünstigt (d. h. der Widerstand am geringsten) ist, oder dass gutleitende Verbindungen durch Fasern der weissen Substanz hergestellt sind.

Die abnorme Ausbreitung der Reflexe auf benachbarte und immer weiter entfernte, endlich auf alle motorischen Zellen würde ferner erklärt werden durch eine Verminderung des oben erwähnten Leitungswiderstandes, und Strychnin, ebenso die pathologische Ursache der Tetanuskrankheit, müssten diese Wirkung in besonders hohem Grade besitzen. Wenn dies sich so verhält, so müsste gleichzeitig die Localisation der Empfindungen und willkürlichen Bewegungen durch diese Schädlichkeiten beeinträchtigt werden, worüber keine genauen Ermittelungen existiren.

Umgekehrt ist es nun hiernach denkbar, dass es Einwirkungen giebt, welche den Widerstand vermehren, und also einerseits das Zustandekommen von Reflexbewegungen erschweren, andererseits die Localisation von Empfindungen und willkürlichen Bewegungen verschärfen. Solche Einflüsse sind in der That nachgewiesen.

Nachdem bereits früher bemerkt worden war, dass nach Abtrennung des Gehirns die Reflexe im Bereich des Rückenmarks regelmässiger und stärker werden, gelang es bei Fröschen im Gehirn Organe nachzuweisen, welche beständig die Reflexe im Rückenmark beeinträchtigen ("Reflexhemmungscentra", SETSCHENOW). Misst man (mittels eines Metronoms) die Zeit zwischen der Application eines fortdauernd wirkenden (chemischen) Reizes und dem Auftreten der Reflexbewegung, so findet man dieselbe bei gleichem Reizmittel um so grösser, je geringer das Reflexvermögen des Centralorgans ist, weil der Reiz erst durch fortgesetzte Einwirkung eine genügende Stärke erlangen muss, um den Reflex auslösen zu können. Man findet nun die Zeit zwischen Reizung und Reflex vermindert (d. h. die Reflexfähigkeit erhöht) nach Abtrennung des Gehirns unterhalb der Lobi optici, dagegen jene Zeit vergrössert (die Reflexthätigkeit vermindert) bei Reizung des Gehirns, speciell der Lobi optici, durch Kochsalz oder Blut (welches für die Centralorgane ein Reizmittel ist, SETSCHENOW). Die Lobi optici üben also beim Frosch eine beständig

Reflexhemmung durch die SETSCHENOW'schen Centra; durch den Willen. 439

reflexhemmende Wirkung auf das Rückenmark aus, welche nach Obigem in einer Vergrösserung des Widerstandes in dem grauen Fasernetz bestehen müsste. Auch bei Säugethieren lassen sich ähnliche Reflexhemmungscentra nachweisen (SIMONOFF).

Die Wirkung gewisser reflexdeprimirender Gifte (Morphium, Digitalin etc.) beruht auf einer Reizung dieser Centra (SETSCHENOW, WEIL). Auch gesteigerte Venosität des Blutes (Erstickung, Stagnation in den Hirngefässen, vgl. p. 155) wirkt auf diese Centra erregend (ROSENTHAL & WEIL).

Die nach Durchschneidung des Rückenmarks auftretende Erhöhung der Reflexneigung unterhalb des Schnittes (früher als "Hyperästhesie" und "Hyperkinesie" bezeichnet), welche namentlich nach halbseitigen Durchschneidungen bei Vergleichung beider Seiten hervortritt, kann nicht allein von der Abtrennung der reflexhemmenden Centra abhängen, weil der Schnitt, bei welchem eine Reizung der hemmenden Leitungsbahnen unvermeidlich ist, nicht zuerst die Reflexe deprimirt und dann steigert, sondern umgekehrt zuerst steigert und später deprimirt; man muss also annehmen, dass der Schnitt und die ihm folgende Benetzung der Schnittoberfläche mit Blut u. dgl. zum Theil unbekannte Reizungen die Reflexapparate selbst reizen und später überreizen (HERZEN, SETSCHENOW & PASCHUTIN). — Diese Wirkung besteht in einem Einfluss auf die graue Substanz, während die Leitungsbahnen, die von den Hemmungsorganen herabkommen, in den weissen Vordersträngen verlaufen.

Hiernach ist man nicht sicher berechtigt den Reflexhemmungsapparaten eine beständige (tonische) Einwirkung auf die Reflexapparate zuzuschreiben. Dass aber das Gehirn noch in einer anderen Weise hemmend auf die Reflexapparate einwirkt, ergiebt sich aus dem p. 435 f. Angeführten. Während das geköpfte Thier gewisse geordnete Bewegungen auf bestimmte Reizungen ganz regelmässig ausführt, können diese Reflexe bei Anwesenheit des Hirns beliebig unterdrückt werden, und zwar offenbar durch den Willen. Gerade wie der unversehrte Frosch nicht zu quarren braucht, obgleich seine Rückenhaut gestreichelt wird u. s. w. (s. p. 436), so kann auch der Mensch im wachen Zustande willkürlich Reflexe unterdrücken, die er im Schlafe sicher ausführt, und zu denen ihn auch im Wachen ein "fast unwiderstehlicher Trieb" hinzieht, z. B. Kratzen auf Jucken, Lidschluss bei Berührung der Conjunctiva (im Bereiche des Hirns existiren ganz ähnliche Verhältnisse). Jedoch giebt es auch Reflexe, auf deren Verhinderung der Wille keinen Einfluss hat (z. B. die

Ejaculatio seminis auf Reizung des Penis), und zwar sind dies stets solche Bewegungen, welche auch nicht durch blossen Willen (ohne Reflex) hervorgerufen werden können.

Eine andere Art von Reflexhemmungen geschieht nach neueren Beobachtungen (GOLTZ, SETSCHENOW, NOTHNAGEL, LEWISSON) durch starke Reizung sensibler Nerven, auch bei enthirnten Thieren; z. B. bleibt das p. 435 erwähnte Quarren bei starker Reizung irgend einer Hautstelle aus. Es müssen also auch von der Peripherie reflexhemmende Fasern in's Rückenmark eintreten.

Bei starker Reizung der Stämme sensibler Nerven bleiben, vermuthlich durch Mitreizung der Hemmungsfasern, die geordneten Reflexe aus (FICK und ERLENMEYER).

Man hat also vor der Hand drei Arten von Reflexhemmung zu unterscheiden: erstens die durch die SETSCHENOW'schen Centra, zweitens die durch die Seelenorgane, drittens die durch centripetale Fasern. Die beiden ersteren Vorgänge für identisch zu halten (DA-NILEWSKY) liegt kein Grund vor, denn erstens liegen beim Frosch die SETSCHENOW'schen Centra nicht im Grosshirn, welches unzweifelhaft der Sitz des Bewusstseins ist; zweitens sind beide Arten von Reflexhemmung dem Wesen nach verschieden; während der Wille das Zustandekommen geordneter Reflexe entweder zulässt oder verhindert, scheinen die SETSCHENOW'schen Centra mehr auf die ungeordneten Reflexe zu wirken, und diese nur in Grad und Ausbreitung zu beeinflussen.

Die Reflexe jeder Art setzen einen gewissen Grad von Venosität des Blutes in den Rückenmarksgefässen voraus; in der Apnoe bleiben dieselben daher aus (ROSENTHAL; vgl. p. 437).

Man hat neuerdings den Versuch gemacht, die Reflexe nach der Art der Auslösung einzutheilen (SETSCHENOW, DANILEWSKY). Die durch Tasteindrücke ausgelösten sind als "tactile Reflexe" unterschieden worden von den durch chemische oder überhaupt durch zerstörend wirkende, schmerzhafte Hautreizung ausgelösten: "pathische Reflexe". Man hat ferner beiden Reizungsarten verschiedene centripetale Bahnen zugeschrieben, weil die Reflexe verschiedener Natur sind. Eine solche Sonderung, welche möglicherweise anatomisch begründet ist (vgl. p. 417), würde zugleich den Unterschied in der bewussten Localisation beider Eindrucksarten erklären können; die Tasteindrücke werden nämlich ungleich genaner localisirt, als die weithin "ausstrahlenden" schmerzhaften Eindrücke (indess erklärt sich diese Erscheinung auch auf dem p. 442 angegebenen Wege). Es scheinen nun ferner nur die "pathischen" Reflexe durch das SETSCHENOW'sche Centrum gehemmt zu werden, die "tactilen" aber nur durch den Willen. Weiter unten wird nochmals von diesen Unterschieden die Rede sein.

440

Unerregbarkeit des Rückenmarks?

Ueber die Bahnen, in welchen die bis jetzt betrachteten Vorgänge im Rückenmark geleitet werden, ist nur wenig theils durch Versuche, theils durch pathologische Beobachtungen, theils endlich durch Betrachtung der anatomischen Verhältnisse ermittelt. Die Versuche bestanden meist in partiellen Durchschneidungen des Rückenmarks (halbseitige; Durchschneidung einzelner weisser oder grauer Stränge; Durchschneidung in verschiedenen Niveau's, gleichseitig oder gekreuzt u. s. w.). Die andere Art der Leitungsermittelung (p. 314), nämlich durch Reizungsversuche, scheitert an der Unerregbarkeit des Rückenmarks gegen directe mechanische und electrische Reizung (BROWN-SÉQUARD, SCHIFF, VAN DEEN, S. MAYER; opp. FICK & ENGELKEN, GIANNUZZI; abgesehen von chemischen Reizen (welche zum Theil wirksam zu sein scheinen) ist nämlich jede Rückenmarkreizung erfolglos, wenn sie nicht gerade die durchtretenden queren Spinalwurzelfasern trifft.

Eine Ausnahme machen die vom vasomotorischen Centrum durch das Rückenmark verlaufenden Fasern, da jede Rückenmarksreizung unterhalb der Reizstelle alle Arterien verengt (LUDWIG & THIRY). Ebenso bewirkt Reizung der Rückenmarkssubstanz die p. 76 erwähnte reflectorische Erregung des Gefässcentrums, wirkt also pressorisch (LUDWIG & DITTMAR). Falls sich die neuerdings bestrittene (FICK, GIANNUZZI) Wirkungslosigkeit der electrischen und mechanischen Reizung trotzdem bestätigen sollte, so wäre wohl eher an eine überwiegende Reizung der durch den Reiz mitgetroffenen hemmenden Fasern (s oben), als an eine wirkliche Unerregbarkeit irgend welches leitenden Theils zu denkeu; im letzteren Falle würden nur die Axencylinder der ersten Art (p. 433) die allgemeinen Eigenschaften der extracentralen Nervenfasern theilen, die übrigen, specifisch centralen, wären gegen die hauptsächlichsten Nervenreize unerregbar. Man hat daher die leitende Substanz, um auszudrücken, dass sie nur leitungs-, nicht erregungsfähig sei, als "ästhesodisch" (sensibel leitend), resp. "kinesodisch" (motorisch leitend) bezeichnet.

Die Durchschneidungsversuche (BROWN-SÉQUARD, SCHIFF, SETschenow u. A.) ergeben nun Folgendes: 1. Die Leitung localisirter Empfindungen und willkürlich beschränkter Bewegungen geschieht durch die weisse Substanz. Partielle Durchschneidungen derselben entziehen einzelne Hautregionen und Muskelgruppen dem Einfluss der Seele (Unempfindlichkeit gegen Tasteindrücke — Anästhesie; Unfähigkeit zu willkürlichen Bewegungen). Die betreffenden Bahnen bleiben bis zum Gehirn auf derselben Seite (keine Kreuzung). Die sensible Leitung geschieht durch die weissen Hinterstränge, die motorische durch die weissen Vorder- und Seitenstränge. 2. Die pressorischen Fasern, zunächst die welche von den hinteren Extremitäten kommen (p. 76), verlaufen in den Seitensträngen, und er-

Leitung im Rückenmark.

leiden eine unvollkommene Kreuzung (LUDWIG & MIESCHER). 3. Die Leitung von Schmerzempfindungen und unwillkürlichen (namentlich reflectorischen) Bewegungen geschieht durch die graue Substanz in ihrer ganzen Ausdehnung, ohne Trennung zwischen sensiblen und motorischen Bahnen. Durchschneidungen der grauen Substanz bringen daher unter anderm einen Zustand hervor, in welchem schmerzhafte Eingriffe zwar Tastempfindungen, aber keine Schmerzempfindungen bewirken ("Analgesie"); ein ähnlicher Zustand existirt häufig in der Chloroformnarcose, in welcher das Messer zwar gefühlt, aber nicht schmerzhaft empfunden wird. Diese Folge des Schnittes tritt nicht in scharf begrenzten Körperregionen (wie bei Schnitten in die weisse Substanz) auf, sondern ziemlich gleichmässig in allen Theilen, deren Nerven unterhalb des Schnittes ins Rückenmark münden, um so vollständiger, je vollständiger die Trennung der grauen Substanz.

Diese Erfahrungen stimmen mit den auf die Reflexe bezüglichen, und mit den anatomischen Ermittelungen gut überein. Eine normale sensible Erregung ("tactiler Reiz") würde nach allem Gesagten von den sensiblen Ganglienzellen aus nur in geringem Umfange in dem grauen Fasernetz vorschreiten, und bald von hier aus in abtretende Fasern der weissen Hinterstränge übergehen, die, zu den Seelenorganen führend, eine localisirte Empfindung hervorrufen. Die Leitung in dem Fasernetz wird ausserdem eine Anzahl motorischer Zellen und demnächst Fasern erregen, durch welche ein geordneter Reflex zu Stande kommt; dieser Reflex kann durch eine in den weissen Vordersträngen vom Gehirn herabkommende Erregung (durch den Willen) auf unbekannte Weise verhindert werden. Ebenso kann der Wille durch die Leitung in den weissen Vorder- und Seitensträngen eine beschränkte Erregung in dem grauen Fasernetz bewirken, durch welche gewisse motorische Zellen und Fasern erregt werden, und so eine willkürliche beschränkte Bewegung zu Stande kommt.

Heftige ("pathische") Reizungen dagegen werden eine stärkere Erregung der sensiblen Ganglienzellen bewirken, welche in der grauen Substanz viel weiter geleitet wird als mässige Erregungen, vielleicht sogar durch die ganze graue Substanz hindurch. Hierdurch wird erstens eine viel grössere Anzahl von abtretenden Fasern der Hinterstränge in Erregung versetzt werden müssen, wenn auch in ungleich starke (die Fasern die der erregten Zelle zunächst abtreten, werden wegen des grossen Widerstandes in der grauen Sub-

Coordination. Tonus animalischer Muskeln.

stanz stärker erregt werden als die andern); hierdurch entsteht eine weniger genaue Localisation der bewussten Empfindung ("Ausstrahlung in die Umgebung"). Zweitens muss durch eine weitere Ausbreitung der Leitung in dem Fasernetz eine grössere Anzahl von motorischen Apparaten in Erregung versetzt, und dadurch ausgebreitetere, ungeordnete Reflexe zu Stande kommen; diese Wirkung kann vermindert werden durch eine in der weissen Substanz herabkommende Wirkung der Setschenow'schen Reflexhemmungscentra. Endlich scheint eine Leitung der Erregung durch die graue Substanz bis zum Gehirn die specifische Schmerzempfindung zu verursachen (?).

Zur Erklärung der geordneten Reflexe ist es nothwendig (p. 438) gewisse Verbindungen zwischen Ganglienzellen anzunehmen, in welchen die Leitung mit besonders geringem Widerstande erfolgt. Auf diese Weise entstehen gewisse Zusammengehörigkeiten motorischer Elemente, Coordinationen, welche, wie es scheint nicht bloss reflectorisch, sondern auch durch den Willen in Action versetzt werden können, so dass also der Wille bei beabsichtigten zweckmässig geordneten Bewegungen nicht nöthig hat jede einzelne Muskelfaser für sich zu innerviren, sondern nur denselben Apparat in Action zu versetzen hat, der auch reflectorisch in toto zur Action gebracht wird; im andern Falle würde die Seele bei der unendlichen Menge von Muskelbewegungen welche zu scheinbar einfachen Handlungen, z. B. zum Gehen erforderlich sind, mit Beschäftigung überladen sein. —

Ob das Rückenmark ausser den bisher genannten auch automatische Apparate besitzt, ist noch nicht endgültig entschieden. Folgende automatische Functionen sind ihm zugeschrieben worden:

1. Tonus animalischer Muskeln. Unter "Muskeltonus" versteht man eine beständige schwache unwillkürliche, aber vom Nervensystem abhängige Contraction sämmtlicher Muskeln, zunächst der animalischen. Alle gewöhnlich als Beweise für dieses Verhalten angeführten Erscheinungen sind indess auf andere Weise zu erklären, z. B. die Retraction durchschnittener oder tenotomirter Muskeln (sie tritt auch ein, nachdem vorher der Nerv durchschnitten ist, und beruht einfach auf der Ausspannung der Muskeln über ihre natürliche Länge, p. 222); ferner die Gesichtsverzerrung nach einseitiger Facialislähmung (erklärt sich ohne Annahme eines Muskeltonus aus dem p. 235 Gesagten). Dass ferner ein wirklicher au tomatischer Muskeltonus nicht existirt, wird dadurch bewiesen, dass an einem aus Centralnervensystem, motorischem Nerven und gespanntem Muskel bestehenden Präparate der Muskel sich nicht im geringsten dadurch verlängert, dass man den Nerven durchschneidet (AUERBACH, HEIDENHAIN).

Dagegen lässt sich unter gewissen Bedingungen für einzelne willkürliche Muskeln in der That eine unwillkürliche schwache Contraction darthun, die aber nicht automatischer, sondern reflectorischer Natur ist. Ein senkrecht aufgehängter Frosch, dessen Gehirn vom Rückenmark getrennt ist, zeigt nämlich, wenn die Nerven des einen Hinterbeins durchschnitten sind, ein schlafferes Herabhängen desselben im Vergleich mit dem unverletzten; dieselbe Erscheinung tritt auch ein, wenn statt des ganzen Plexus ischiadicus nur die hinteren Wurzeln desselben durchschnitten sind; dies beweist, dass die schwache Beugung des (unverletzten) Beins nicht automatischer sondern reflectorischer Natur ist, und dass die sensiblen Fasern des Beins den Reflex auslösen (BRONDGEEST). Die Erregung der letzteren scheint von der Haut auszugehen (COHNSTEIN). - Diese Contraction ist jedoch weder allen Muskeln des Beines gemeinsam, noch ist ihr Vorhandensein für gewöhnliche Körperstellung nachgewiesen. Denn erstens nehmen nachweislich nur die Flexoren an der Contraction Theil; zweitens ist die ganze Erscheinung nur eine andere Form der bekannteren, dass ein hirnloser Frosch in allen Stellungen die Beine anzuziehen strebt; es ist nicht nachgewiesen, dass wenn das Anziehen der Beine (im Sitzen) erfolgt ist, die Contraction der Flexoren fortdauert wie im Hängen, wo die Anziehung der Schwere wegen nur in geringem Grade dauernd eingehalten werden kann (HERMANN). Das BRONDGEEST'sche Phänomen ist also nur eine besondere in abnormer Lage dauernd zu beobachtende Erscheinung eines in gewöhnlicher Lage nur vorübergehend auftretenden geordneten Reflexes (p. 435). Ein "Muskeltonus" ist dadurch nicht erwiesen.

Der p. 321 erwähnte Einfluss der hinteren Wurzeln auf die Erregbarkeit der vorderen (neuerdings bestritten, Grünhagen & G. Heidenhain) lässt sich auf das Brondgeest'sche Phänomen zurückführen (Steinmann & Cyon, vgl. p. 320).

2. Tonus glatter Muskeln.

a. Die tonische Contraction des Dilatator pupillae (p. 343) und der glatten Müller'schen Augenmuskeln (p. 387), welche nach Durchschneidung der Sympathicus am Halse aufhört, soll vom Rückenmark aus innervirt werden, und zwar soll das automatische Centrum in der Gegend der unteren Hals- und oberen

Tonus glatter Muskeln.

Brustwirbel liegen ("Centrum ciliospinale" BUDGE; "oculospinale" BERNARD), weil erstens die vorderen Spinalwurzeln dieser Gegend dem Sympathicus die betreffenden Fasern nachweisbar zuführen, und weil zweitens Lähmungs- und Reizungszustände des Marks in dieser Gegend von den entsprechenden Erscheinungen am Auge (Pupillenverengerung bei Lähmung, u. s. f.) begleitet sind. Dies beweist aber, wie man leicht einsieht, nur, dass die genannte Rückenmarksgegend bei der Zuleitung der Erregung betheiligt ist, nicht dass sie den centralen Ursprung derselben enthalte. Da auch nach Durchschneidungen des Halsmarks die Pupille sich verengt (SCHIFF) und die dyspnoische Pupillenerweiterung (p. 345) ausbleibt (SALKOWSKI), so liegt jedenfalls ein Angriffspunct dieser Fasern und die Ursache ihrer tonischen Erregung oberhalb des Rückenmarks, etwa in der Medulla oblongata. Das Centrum ciliospinale kann daher nur, analog der ganzen grauen Substanz des Rückenmarks als der nächste Ursprung der betr. Fasern, der vielleicht auch reflectorischer Angriffspunct ist, betrachtet werden.

b. Tonus der Arterien (p. 73). Auch dieser ist bekanntlich von der Integrität von Fasern abhängig die vom Rückenmark entspringen (halbseitige Rückenmarksdurchschneidung bewirkt gleichseitige Arterienerweiterung unterhalb des Schnittniveau's). Ein Centrum aller dieser Fasern liegt in der Medulla oblongata (s. unten), aber auch hier scheint die graue Substanz des Rückenmarks nähere Centra reflectorischer Natur zu enthalten zu denen sich die absteigenden vasomotorischen Fasern zunächst begeben. Ja sogar ein Theil der tonischen Erregung muss dem Rückenmark selbst zugeschrieben werden, denn nach Durchschneidungen desselben ist die Erweiterung der unterhalb des Schnitts innervirten Gefässe nicht permanent, sondern macht bald wieder einer Verengerung Platz; erst nach Zerstörung des abgetrennten Rückenmarkabschnitts ist die Erweiterung permanent und die Thiere sterben an ihren Folgen, wenn das gelähmte Gebiet hinreichend gross ist (LE GALLOIS, GOLTZ); auch Strychnin bewirkt Verengerung der Arterien unterhalb eines Rückenmarkschnitts (Schlesinger). Die vom verlängerten Mark herabkommenden vasomotorischen, sowie die zu ihm aufsteigenden pressorischen Fasern liegen in den Seitensträngen des Marks (DITTMAR).

c. Tonus von Sphincteren. Der Sphincter ani ist beständig contrahirt, da die Anfüllung des Rectum mit Flüssigkeit den Sphincter bei unversehrten Nerven erst bei höherem Druck überwindet, als nach Durchschneidung der Nerven (GIANNUZZI & NAWROCKI). Das Centralorgan für diese Contraction (Centrum ano-spinale) liegt im Rückenmark und zwar bei Hunden am untern Drittel des 5. Lendenwirbels (BUDGE, GIANNUZZI, MASIUS), bei Kaninchen zwischen 6. und 7. Lendenwirbel (MASIUS). Was den Sphincter vesicae und dessen Tonus betrifft, so ist schon p. 111 gesagt, dass weder der letztere noch überhaupt das Dasein des Muskels zweifellos feststeht; das Hauptmoment des Blasenschlusses, die Contraction der Harnröhrenmusculatur (BUDGE) ist höchstwahrscheinlich reflectorischer Natur. Das Centralorgan für den Blasenverschluss (Centrum vesico-spinale) liegt unmittelbar unter dem Centrum anospinale (MASIUS). Auch der tonische After- und Blasenschluss werden durch vom Hirn

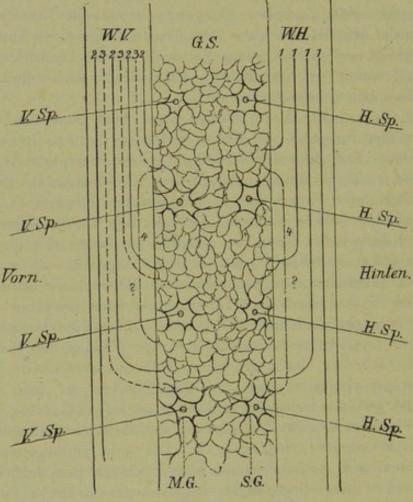


Fig. 41.

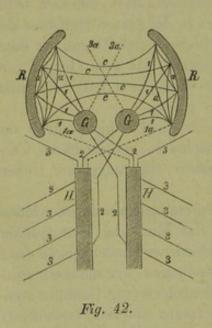
G. S. Graue Substanz. W. V. Weisser Vorderstrang. W. H. Weisser Hinterstrang. V. Sp. Vordere Spinalwurzelfasern. H. Sp. Hintere Spinalwurzelfasern. M. G. Motorische Ganglienzelle der grauen Vorderhörner. S. G. Sensible Ganglienzelle (?) der grauen Hinterhörner. 1, 1, 1, 1 Sensible Fasern. 2, 2 Motorische Fasern. 3 Hemmungsfasern. 4, 4 Coordinatorische Fasern? (p. 438).

kommende Fasern regulirt (MASIUS) wie die anderen geordneten Reflexe im Bereiche des Rückenmarks.

Es ist also im Rückenmark kein einziges automatisches Centrum mit Sicherheit oder auch nur mit Wahrscheinlichkeit anzunehmen, sondern alle Erscheinungen erklären sich durch Vorgänge von der Natur der "geordneten Reflexe" (p. 435 f.).

Zur Erläuterung des hier über die Physiologie des Rückenmarks Angeführten diene die vorstehende schematische Darstellung des Rückenmarkbaus, welche die Leitung im Mark veranschaulichen wird. Die Figur stellt einen sagittalen Längsschnitt, etwas seitlich von der Medianebene gelegt, dar.

2. Gehirn.


Die obere Fortsetzung des Rückenmarks, bestehend aus dem verlängerten Mark, dem Kleinhirn, den sogenannten Hirnganglien (Vierhügel, Sehhügel, Streifenhügel, Linsenkern u. s. w.) und endlich den Grosshirnhemisphären, enthält eine grosse Anzahl von Centralorganen, deren Functionen und Verbindungen erst zum kleinsten Theil ermittelt sind. Die Grosshirnhemisphären enthalten die Organe der psychischen Functionen, wofür unten die Beweise angeführt werden.

Eine der Hauptaufgaben in der Physiologie der Centralorgane ist die Aufsuchung der Verbindungen zwischen dem Seelenorgan und den peripherischen Endorganen, Sinnesorganen und Muskeln. Für die Spinalnerven ist bereits oben nachgewiesen, dass sie sich nicht direct zur Grosshirnrinde begeben, sondern in der grauen Substanz des Rückenmarks eine vorläufige Endigung finden; dies Organ ist dann durch die Längsfasern der weissen Substanz mit dem Gehirn verbunden, aber wie sogleich erörtert werden wird, auch jetzt noch nicht direct mit der Grosshirnrinde.

Auch die Hirnnerven aber communiciren nicht direct mit der Grosshirnrinde, sondern endigen zunächst in intermediären Centralorganen, über welche folgende Angaben eine ungefähre Uebersicht liefern.

Die schalenartig die Grosshirnhemisphären bedeckende graue Masse giebt folgende Fasersysteme ab, welche das Mark der Hemisphären bilden: 1. unilaterale Verbindungen verschiedener Rindengebiete (sog. Associationssysteme), 2. bilaterale Verbindungen symmetrisch gelegener, vielleicht auch unsymmetrischer Rindengebiete (sog. Commissurenfasern, durch den Balken und die Commissura anterior verlaufend), 3. radiale Fasersysteme zu den oben genannten im Innern des Gehirns liegenden grauen Massen der Hirnganglien (sog. Stabkranzsysteme). Die dritte Gattung muss die Verbindungen des Seelenorgans mit der Aussenwelt vollständig enthalten, falls nicht noch eine vierte existirt (welche behauptet wird, BROADBENT), nämlich Fasern die vom hinteren Theil der Rinde ununterbrochen durch den Pedunculus cerebri in die weisse Substanz des Rückenmarks gehen. — Die Hirnganglien stehen nun theils direct mit Nerven in Verbindung (vordere Hirnnerven), theils communiciren sie unter einander; die stärksten Verbindungen endlich führen durch Vermittelung der Hirnstiele zum Kleinhirn, zur grauen Substanz des verlängerten Marks und des Rückenmarks, also zu den nächsten Endigungen fast aller peripherischen Nerven.

Betrachtet man als die Aufgabe aller nervösen Verbindungen die Projection der sensiblen und motorischen Körperoberfläche im Seelenorgan, so kann man folgendes Schema dieser Projection aufstellen (MEXNERT): Das Projectionssystem erster Ordnung, besser vielleicht als inneres zu bezeichnen, verbindet die Grosshirnrinde mit den grossen Hirnganglien (Stabkranzsysteme), das der zweiten Ordnung oder das mittlere (Pedunculi etc.) die Hirnganglien mit der grauen Substanz des Rückenmarks und den analogen Bestandtheilen des verlängerten Marks ("centrales Röhrengrau", weil diese Substanz dem Centralcanal des Rückenmarks und dessen Fortsetzung — Calamus scriptorius, Boden des vierten Ventrikels, Aquaeductus Sylvii, dritter Ventrikel — anliegt); das Projectionssystem dritter Ordnung oder das äussere endlich bilden die peripherischen Nerven. Das zweite System ist weniger mächtig als das erste und dritte, es findet also an den Knotenpuncten eine Reduction und dann wieder eine Vermehrung der

Faserzahl statt. Im mittleren System findet eine Kreuzung wahrscheinlich sämmtlicher Fasern statt, d. h. dieselben überschreiten die Mittelebene, um sich zur anderen Körperhälfte zu begeben. - Dies Schema ist natürlich nicht vollkommen durchführbar; Abweichungen finden sich besonders bei den vorderen Hirnnerven, bei denen eine dem centralen Röhrengrau entsprechende Unterbrechung und somit die mittlere Projection zu fehlen scheint*); ferner würden die oben erwähnten Fasern die vom Rindirect zum Höhlengrau gehen, dengrau ein Beispiel vom Fehlen des mittleren Projectionssystems liefern. - Das Kleinhirn bildet ein abseits gelegenes Centrum, welches mit allen übrigen communicirt und aus dem auch Nervenfasern des äusseren Systems entspringen (Theile des Trigeminus und Acusticus).

*) Manche nehmen bei den höheren Sinnesnerven die peripherischen Ganglienzellen als das dem Röhrengrau entsprechende Organ, betrachten also z. B. die Opticusfasern als mittleres, die Radialfasern der Netzhaut als äusseres Projectionssystem.

Faserzüge des Gehirns

Das vorstehende Schema verdeutlicht die drei Projectionssysteme. R ist das Grau der Grosshirnrinde, G die Hirnganglien, H das centrale Höhlengrau, 1, 2, 3 die Fasern der drei Projectionssysteme, a Associations- und c Commissurenfasern. Die punctirten Fasern stellen die erwähnten Abweichungen dar: 3a z. B. Opticusfasern, 1a die BROADBENT'schen Verbindungsfasern.

Die Verbindungen der Hirnganglien unter einander und mit der grauen Substanz des Rückenmarks und deren cerebralem Analogon sind der schwierigste und am wenigsten sichere Theil der Hirnanatomie. Beim Uebergang des Rückenmarks in das verlängerte Mark bricht der Centralcanal im Calamus scriptorius nach hinten durch und bildet nun an der hinteren Oberfläche eine flache Grube, die Rautengrube. Die den Centralcanal umgebende graue Substanz des Rückenmarks begiebt sich gleichfalls zur hinteren Oberfläche und liegt am Boden der Rautengrube, die bisherigen Vorderhörner nach aussen von der Fortsetzung der Hinterhörner. Weiter nach oben gehen sie in zerstreuter liegende graue Massen, die sog. "Kerne" der hinteren Hirnnerven über, offenbar Analoga der grauen Rückenmarkssubstanz. Die Hauptmasse des verlängerten Marks besteht aus weissen Strängen, den Fortsetzungen der weissen Rückenmarksstränge, die sich theils zu den Hirnganglien, nämlich zu den Vierhügeln und durch die Pedunculi cerebri zu den Sehhügeln, Streifenhügeln und dem Linsenkern, theils zum Kleinhirn begeben. Von den weissen Hintersträngen des Rückenmarks begiebt sich der in den Funiculi graciles und cuneati enthaltene Theil durch die Pedunculi cerebelli in das Kleinhirn, der Rest durch die äusseren Bündel der Pyramiden und die Pedunculi cerebri in das Grosshirn (zum Theil direct zur Rinde des Hinterhauptlappens, s. oben), ein kleiner Fasertheil geht direct in den Trigeminus über, welcher also eine spinale Wurzel führt. Die Vorder- und Seitenstränge verlaufen theils durch die Pyramiden und Pedunculi cerebri zum Streifenhügel und Linsenkern (zum Theil vielleicht ebenfalls direct zur Hirnrinde), theils zu den Vierhügeln und durch die Haube zu den Sehhügeln, theils endlich durch die Corpora restiformia und die Pedunculi cerebelli zum Kleinhirn. -Die Kleinhirnhemisphären, welche hiernach durch die Pedunculi cerebelli mit sämmtlichen weissen Strängen des Rückenmarks communiciren, sind ausserdem durch die Crura cerebelli ad pontem mit der Brücke und dadurch unter einander, endlich durch die Crura cerebelli ad corpora quadrigemina ("Bindearme"), welche in Wirklichkeit nicht mit den grauen Massen der Vierhügel in Verbindung treten, mit der Grosshirnrinde verbunden. Das verlängerte Mark enthält ausserdem

Hermann, Physiologie. 5. Aufl.

29

noch die hemisphärenartigen Einlagerungen der Oliven, über deren Verbindungen nichts Sicheres ermittelt ist.

Ueber die Ursprünge der Hirnnerven ist folgendes ermittelt:

1. Olfactorius. Der an der Basis der Hirnlappen liegende Tractus olfactorius, der vorn in den Bulbus übergeht, ist das Rudiment des bei Thieren stark entwickelten Lobus olfactorius, eines ganz den Grosshirnhemisphären analog gebauten Hirnlappens. Seine Markstränge communiciren mit verschiedenen Theilen der Grosshirnrinde, nach Einigen auch mit dem Streifenhügel; vom Bulbus entspringen die eigentlichen Nervi olfactorii, welche die Siebplatte durchbohren.

2. Opticus. Der Tractus opticus entspringt theils vom äusseren Kniehöcker und dem Schhügel, theils vom inneren Kniehöcker und dem vorderen Vierhögelganglion. Um die Pedunculi cerebri herumbiegend bilden die Tractus das Chiasma, in welchem nach den Einen eine halbe, nach Andern eine totale Kreuzung stattfindet (vgl. p. 379).

3. Oculomotorius und

4. Trochlearis, entspringen in der Nähe des Aquaeductus Sylvii aus einem gemeinsamen grauen Kerne, welcher sowohl mit dem oberen Vierhügelganglion als durch den Pedunculus mit dem Linsenkern communicirt (mittlere Projection). Während der Oculomotorius, den Pedunculus durchbohrend an dessen unterer Fläche dicht an der Brücke austritt, geht der Trochlearis nach oben, durchbohrt das Dach des Aquaeductus, sich dabei kreuzend und schlingt sich, ähnlich dem Tractus opticus, um den Pedunculus herum nach unten.

5. Trigeminus. Seine Fasern haben sehr mannigfache Ursprünge: a. in der Ebene des Austritts des Stamms (aus der Brücke) liegt der sog. "sensible Trigeminuskern", ein Analogon des Hinterhorns der grauen Substanz, mit kleinen Ganglienzellen; von hier entspringt ein Theil der Fasern; b. die sog. aufsteigende Wurzel (vgl. oben) kommt aus dem Hinterstrang des Rückenmarks von weit unten, mindestens bis in die Mitte des Halsmarks; die Fasern stammen aus der grauen Substanz des Hinterhorns und verlaufen in dem weissen Hinterstrang; an der Seite des verlängerten Marks verlaufen sie eine Strecke weit sehr nahe der Oberfläche; diese, sehr empfindliche Stelle, dicht hinter dem Funiculus cuveatus, zuweilen wenig entwickelt, ist das Tuberculum Rolandi; c. absteigende Wurzeln, und zwar erstens aus dem in der Gegend der Vierhügel liegenden grosszelligen "motorischen Trigeminuskern" (über dessen weiteren Zusammenhang mit den Hirnganglien nichts bekannt ist), zweitens Fasern aus einem Haufen grosser blasiger Zellen (ähnlich den Zellen der Spinalganglien) zur Seite des Aquaeductus Sylvii, drittens Fasern aus der Subst. ferruginea, die unter dem Locus coeruleus im obern Theil der Rautengrube liegt, diese Fasern sind gekreuzt; d. Fasern aus dem Kleinhirn, im Bindearm verlaufend.

6. Abducens. Seine Fasern stammen aus einem grosszelligen Kern in der Tiefe des vorderen Theils des Bodens der Rautengrube; die weiteren Verbindungen dieses Kerns, der auch an den Facialis Fasern abgiebt, sind unbekannt.

7. Facialis. Er stammt aus einem dem vorigen ähnlichen, etwas weiter unten gelegenen Kern, mit einer Anzahl Fasern auch aus dem Abducenskern; ein anderer, absteigender Faserantheil stammt aus dem Linsenkern, und zwar aus dem der anderen Seite. Die Verbindungen des Facialiskerns sind unbekannt.

8. Acusticus. Er bezieht seine Fasern hauptsächlich aus drei unter einander zusammenhängenden Kernen, welche im Niveau des breitesten (mittleren) Theils der Rautengrube zwischen den Corpora restiformia und vor denselben liegen. Sowohl aus diesen Kernen als direct aus dem Acusticusstamme lassen sich viele Fasern in die Pedunculi cerebelli und das Kleinhirn verfolgen, ja andere Verbindungen sind bisher nicht sicher bekannt; ein Theil der Fasern kreuzt sich zwischen Kern und Austritt.

9. Glossopharyngeus und

10. Vagus entspringen aus zum Theil gemeinsamen Kernen in der unteren Hälfte der Rautengrube und in der Tiefe des verlängerten Marks in der Nähe der Olive (die dem Vaguskern entsprechende Stelle am Boden der Rautengrube heisst Ala cinerea). Diese Kerne geben auch an den Accessorius Fasern ab. Ihre Verbindungen sind nicht bekannt.

11. Accessorius. Ausser von den vorigen Kernen entspringen seine Fasern von einem langgestreckten, bis zum 5. Halswirbel herabreichenden, der äusseren Seite des Vorderhorns anliegenden Kern; sie treten in einer grösseren Anzahl Wurzeln aus, die am Rückenmark in einer besonderen Linie des Seitenstrangs liegen, zwischen den vorderen und hinteren Cervicalwurzeln; die Linie ist etwas spiralig, unten mehr nach hinten gedreht.

12. Hypoglossus. Seine Fasern entspringen grösstentheils aus zwei in der Tiefe der Medulla oblongata liegenden grosszelligen Kernen, im Niveau des untersten Theils der Rautengrube; ein Theil der Fasern scheint ohne die Kerne zu berühren höher im Hirn zu entspringen; auch Verbindungen zur Olive sind behauptet.

Die anatomischen Ermittelungen sind noch zu unvollständig und unsicher um physiologische Schlüsse auf die Function der genannten Hirntheile zu gestatten. Ein so gewonnener Satz ist z. B. der dass von den beiden Abtheilungen der Pedunculi cerebri welche als Fuss (Basis oder Pedunculus im engeren Sinne) und als Haube (Tegmentum) bezeichnet werden, die erstere welche mit Linsenkern und Streifenhügel in Verbindung steht und in der Thierreihe mit der Entwickelung der Grosshirnhemisphären gleichen Schritt hält, die bewussten Empfindungen und Bewegungen vermittle, die letztere dagegen, welche mit Seh- und Vierhügeln verbunden ist, wesentlich die Reflexe vom Opticus auf den motorischen Apparat besorge (MEYNERT). Auch das physiologische Experiment ist auf diesem Gebiet im höchsten Grade unsicher. Die gewöhnlichen Reizversuche geben theils kein Resultat (vgl. p. 441), theils sind die mit electrischer Reizung gewonnenen Erfolge wegen der unvermeidlichen Stromschleifen zu sicheren Schlüssen nicht hinreichend streng localisirt. An Stelle exacter Durchschneidungs- und Reizversuche tritt hier das

Verlängertes Mark.

viel rohere Experiment der Verletzung und zwar der feinsten und complicirtesten Apparate mit unverhältnissmässig groben Mitteln (wie bei einer Taschenuhr die mit Pistolenschüssen zerlegt werden soll, Ludwig), deren Erfolge abgesehen von der mangelhaften Localisation der Verletzung selbst, die mannigfaltigsten Deutungen zulassen, denn sie können beruhen auf Reizung von Centren, Lähmung von Centren, Reizung leitender Apparate, Lähmung leitender Apparate, ohne dass meist zwischen diesen vier Möglichkeiten entschieden werden kann, so dass die Deutung selbst constanter Erfolge stets unsicher ist. — Das dritte und vor der Hand beste Forschungsmittel ist die Beobachtung pathologischer Fälle mit genauer Constatirung des Sectionsbefundes.

Die einigermassen sicheren Thatsachen sind folgende:

A. Verlängertes Mark.

Im verlängerten Mark sind im Wesentlichen ähnliche Einrichtungen vorhanden wie im Rückenmark. Die graue Substanz desselben, deren Zusammenhang mit der des Rückenmarks und mit den unteren Hirnnerven, etwa vom Abducens ab, schon besprochen ist, ist ohne Zweifel der Sitz vielfacher Reflexe im Bereich dieser Nerven, und ferner einer Anzahl von motorischen Innervationen, die zum Theil als automatisch betrachtet werden, zum Theil aber (nach Einigen sämmtlich) reflectorisch sind. Sie betreffen theilweise Functionen von so grosser Wichtigkeit für den Gesammtorganismus, dass Verletzungen der Medulla oblongata das Leben mehr gefährden als die irgend eines anderen Hirn- oder Rückenmarkabschnitts.

1. Die Innervation der unwillkürlichen Athembewegungen und der Erstickungskrämpfe. Verletzung einer beschränkten Stelle am Boden der Rautengrube an der Spitze des Calamus scriptorius hebt plötzlich die Athmung auf, und führt daher bei Warmblütern augenblicklichen Tod herbei (Noeud vital, Point vital, FLOURENS). Die Stelle erstreckt sich zu beiden Seiten der Mittellinie; ist die Verletzung einseitig, so stehen nur die gleichseitigen Athemmuskeln still.

Nach neueren Angaben (GIERKE) besteht diejenige Stelle deren Verletzung die Athmung aufhebt, nicht in einer gangliösen Masse, sondern in zwei Bündeln feiner Nervenfasern, die zum Theil aus den eintretenden Vagusfasern, zum Theil aus den Kernen des Vagus und Trigeminus stammen, und sich zum Rückenmark von welchem die eigentlichen Athemnerven entspringen) begeben. Während

Athmungscentrum.

Exstirpation jener Kerne für sich die Athmung nicht aufhebt, hat die Zerstörung dieser zum Theil intercentralen, zum Theil sogar einfach centripetalen Verbindungen zwischen Vagus, Trigeminus und spinalem Ursprungsgebiet der motorischen Athemnerven eine respirationslähmende Wirkung. Die Ansicht dass diese Verbindungen das Wesentliche des Athmungscentrums ausmachen, scheint aber unzulässig da der Sitz der rhythmischen Erregung doch kaum anders als in einem gangliösen Apparat gesucht werden kann. Möglicherweise liegt dieser Apparat im Rückenmark selbst, wenn sich die Angabe bestätigt dass nach Durchschneidung des Halsmarks die Thiere noch athmen wenn sie mit Strychnin vergiftet sind (P. ROKITANSKY).

Es ist noch nicht ganz festgestellt, ob dies Centrum automatisch die rhythmischen Athembewegungen auslöst, oder ob seine Thätigkeit nur durch Erregung centripetaler Nerven hervorgebracht wird, also nur reflectorischer Natur ist (vgl. p. 155). Das Athmungscentrum ist das einzige, bei welchem über die Bedingungen der Automatie (oder im andern Falle: des reflectorischen Vorganges) Näheres bekannt ist. Die Thätigkeit bedarf nämlich (vgl. p. 155 f.) 1. der Gegenwart sauerstoffhaltigen Blutes, ohne welches die Erregbarkeit schwindet, 2. eines gewissen Gasverhältnisses im Blute, welches als Reiz wirkt; je geringer der Sauerstoffgehalt und je grösser der Kohlensäuregehalt des Blutes ist, um so intensiver wird die Thätigkeit und um so mehr Muskeln werden in Action versetzt (Dyspnoe); sinkt letzterer unter eine gewisse Grenze, so hört die Thätigkeit auf (Apnoe). - Genauer besteht das Athmungscentrum aus zwei Centren, deren rhythmische Thätigkeit, obwohl in der Stärke keine gegenseitige Abhängigkeit zu bestehen scheint, doch zeitlich abwechselt, nämlich das der Inspirations- und das der Exspirationsmuskeln. Beide innerviren eine gewisse Gruppe von Muskeln, die aber nicht alle Theil nehmen, sondern deren Ergreifung in ähnlicher Weise von der Stärke des Reizes abhängt, wie die Ausbreitung der Reflexe im Rückenmark (p. 436, 442). Ferner besitzt dieses Centrum Beschleunigungs- und Hemmungsnerven im Sinne des p. 429 Gesagten. Reizung dieser Nerven, deren Verlauf schon p. 153 f. angegeben ist, scheint im Allgemeinen die Thätigkeit des Centrums nicht vermehren oder vermindern, sondern nur deren zeitliche Vertheilung modificiren zu können. Die verlangsamenden Fasern für das Inspirations- sind gleichzeitig erregende für das Exspirationscentrum und umgekehrt. Man kann sich mit Zuhülfenahme der p. 429 erörterten Vorstellung das Verhältniss so denken (ROSENTHAL): Sowohl für die Innervation der Inspiratoren als für die der Exspiratoren ist ein Widerstand der p. 429 bezeichneten Art zu supponiren, welcher den Rhythmus bewirkt.

Athmungscentrum.

Nimmt man noch an, dass die Vergrösserung des einen Widerstandes den Andrang der Reizung gegen den anderen verstärkt, dass ferner Reizung der Vagusfasern den inspiratorischen Widerstand schwächt, Reizung der Laryngeusfasern ihn verstärkt, so kann man alle im 4. Capitel angeführten Erscheinungen ableiten. Für gewöhnlich muss der inspiratorische Widerstand so klein angenommen werden, dass gar kein Andrang des Reizes gegen den exspiratorischen erfolgt, also keine active Exspiration stattfindet. Wird der inspiratorische Widerstand verstärkt, durch Reizung der verlangsamenden oder Durchschneidung der beschleunigenden Fasern, so werden erstens die Inspirationen seltener und tiefer, zweitens aber treten durch den Andrang des Reizes gegen den exspiratorischen Widerstand und Ueberwindung desselben Exspirationsmuskeln in Thätigkeit, und in um so grösserer Zahl und Stärke, je stärker der Andrang ist. Wird umgekehrt jener geschwächt (durch Vagusreizung), so werden erstens die Inspirationen immer schneller und kleiner, zuletzt tetanisch, zweitens verschwinden alle activen Exspirationen, wenn solche überhaupt vorhanden waren. Wird endlich der Reiz verstärkt, d. h. wird das Blut sauerstoffärmer oder kohlensäurereicher, so müssen offenbar sowohl Inspiration als Exspiration an Frequenz, Stärke und Zahl der betheiligten Muskeln zunehmen (resp. active Exspirationen eintreten, die vorher nicht vorhanden waren), - Dyspnoe (p. 155).

Diese Verhältnisse kann man sich am besten mit Hülfe des bereits p. 429 gebrauchten Beispiels klar machen; nur mit der Modification, dass man den Gasstrom durch ein getheiltes Rohr in zwei Flüssigkeiten strömen lässt: die eine, die man sich für den Normalzustand sehr dünn im Vergleich zur zweiten denken muss, stellt den Inspirations-, die zweite den Exspirationswiderstand dar. Der Reizung des Vagus entspricht Verdünnung, der des Laryngeus Verdickung der ersten Flüssigkeit. Der Dyspnoe entspricht Vermehrung des Drucks des einströmenden Gases. Die in der ersten Flüssigkeit aufsteigenden Blasen entsprechen den Inspirationsinnervationen, die in der zweiten den Exspirationsanregungen. Zugleich zeigt das Beispiel, dass aus einfachem Grunde für die Fälle, wo in beiden Gefässen Blasen aufsteigen (active In- und Exspiration), ein alternirendes Aufsteigen sich herstellen muss.

Die Zunahme der Athemfrequenz durch erhöhte Temperatur (p. 153) kann auch durch Erwärmung des Gehirns allein (Einlegen der Carotiden in Heizröhren) hervorgerufen werden (FICK & GOLD-STEIN), beruht also auf einer Veränderung des Athemcentrums. Künstliche Respiration bewirkt bei hoher Temperatur keine Apnoe (ACKERMANN).

Dyspnoische Krämpfe. Herzhemmungscentrum.

Erreicht der Reiz für das Centrum der Athembewegur 3en eine abnorme Stärke, so werden ausser den normalen und accessorischen Respirationsmuskeln immer mehr Muskeln ergriffen, zunächst die Kiefermuskeln (Luftschnappen), dann fast sämmtliche Körpermuskeln (allgemeine epileptiforme Convulsionen). Offenbar liegt hier nur eine weitere Ausbreitung der Erregung in der grauen Substanz der Medulla oblongata und vielleicht des Rückenmarks vor, und in der That nehmen auch andre Centra derselben (Pupillendilatationscentrum, vasomotorisches Centrum, Herzhemmungscentrum) an der Erregung Theil. Einige bezeichnen dies dadurch, dass sie ein besonderes Krampfcentrum in der Med. obl. annehmen.

Nach neueren Untersuchungen mit directer Reizung der Medulla oblongata würden die Krämpfe bei Reizung eines Bezirks auftreten, der (beim Kaninchen) oben durch die Vierhügel, unten durch die Alae einereae, innen durch die Eminentiae teretes, aussen durch den Locus coeruleus und das Tuberculum acusticum begrenzt wird; ferner wäre diese Stelle (welche also durch das Erstickungblut erregt wird) nicht das eigentliche Krampfcentrum, sondern nur der peripherische Angriffspunct eines reflectorischen Krampfcentrums, welches im Pons liegt (NOTHNAGEL).

Ausser bei gehemmtem Gaswechsel des Blutes treten diese Convulsionen auch auf, wenn nur das Blut oder die Substanz des Gehirns an Sauerstoff verarmt oder mit Kohlensäure überladen wird, z. B. bei Stagnation des Blutes in den Gehirngefässen (durch Verschluss sämmtlicher zuführenden Arterien), oder bei Verblutung. Diese Beobachtungen (KUSSMAUL & TENNER) haben zu der Bezeichnung "anämische Krämpfe" geführt, welche aber nicht mehr zulässig ist, seit die wahre Natur des Vorganges erkannt ist (ROSENTHAL), und seit man ihn auch durch Stagnation mittels venöser Stauung hervorgebracht hat (HERMANN & ESCHER).

2. Die Regulirung der Herzbewegungen. Die (möglicherweise rhythmische, p. 72) Innervation der herzhemmenden Vagusfasern hat ihr Centrum in der Medulla oblongata, an einer nicht näher bekannten Stelle. Bei Warmblütern ist dies Centrum beständig thätig, aber nicht, wie man bisher angenommen hat, automatisch, sondern reflectorisch, da der "Tonus" des Vagus nach Durchschneidung gewisser centripetaler Nerven aufhört (vgl. p. 76). Reizung dieser Nerven vermehrt die hemmende Action (Goltz, BERNSTEIN). — Ob auch das Centrum der beschleunigenden Herznerven (s. unten beim Sympathicus) in der Med. obl. seinen Sitz hat, ist noch unentschieden.

Vasomotorisches und Pupillen-Centrum.

Zwischen dem Herzhemmungs- und dem Athmungscentrum besteht insofern ein Zusammenhang, als mit jeder Athmungsperiode eine Erregung der hemmenden Vagusfasern (DONDERS) zusammenfällt, die wahrscheinlich mit dem Ende der Inspiration zusammenfällt; wegen des Latenzstadiums (p. 72) fällt jedoch der langsamere Herzschlag auf den Beginn der Exspiration (PFLÜGER, DONDERS).

3. Die Contraction der Arterienmuskeln. Das allgemeine vasomotorische Centrum liegt sicher höher als der Anfang des Rückenmarks (Durchschneidung des Halsmarkes lähmt sämmtliche Arterien, Ludwig & Thirr) und zwar beginnt es bei Kaninchen etwa 3 mm oberhalb des Calamus scriptorius, seine obere Grenze, die sich weniger genau angeben lässt, entspricht dem oberen Theil der Rautengrube; das Centrum liegt bilateral ziemlich weit von der Mittellinie, in dem Theil des verlängerten Marks der die Fortsetzung der spinalen Seitenstränge enthält (in denen die vasomotorischen und pressorischen Fasern verlaufen, p. 445); es enthält zum Theil grosse multipolare Ganglienzellen (Owsjannikow, DITTMAR). Das Centrum ist in beständiger, automatischer oder vielleicht nur reflectorischer Action begriffen. Alles was über dieselbe und ihre Beeinflussung durch den Gasgehalt des Blutes und durch regulatorische Nerven bekannt ist, s. p. 76. Vom vasomotorischen Centrum gehen Fasern in das Rückenmark und treten von diesem, wahrscheinlich nachdem sie in der grauen Substanz nochmals eine Unterbrechung erlitten haben (vgl. p. 445), allmählich ab, um meist durch sympathische Vermittlung zu den Arterien zu treten. Daher bewirkt Rückenmarksdurchschneidung Erweiterung aller Arterien im Bereich unterhalb des Schnittes, Reizung dagegen Verengerung (LUDWIG & THIRY); erstere vermindert, letztere erhöht den Blutdruck mit der entsprechenden Wirkung auf das Herz (p. 75); ferner wirkt erstere abkühlend, letztere temperatursteigernd auf den Organismus (p. 214).

Reizung der Pedunculi cerebri bewirkt Verengerung sämmtlicher Gefässe (BUDGE); dies schliesst nicht aus, dass das eigentliche Centrum in der Med. obl liege; der Versuch scheint anzudeuten, dass das Grosshirn einen Einfluss auf das Centrum ausüben kann — Erröthen und Erblassen bei psychischen Erregungen (BUDGE; vgl. auch den Einfluss der Grosshirnwegnahme auf die Wirkung der sensiblen Nerven, p. 77).

4. Die Innervation des Dilatator pupillae und anderer glatter Augenmuskeln. Der genauere Sitz desjenigen Centrums welches Fasern zur Regio oculopupillaris des Rückenmarks entsendet (p. 444), ist nicht bekannt. Auch dies Centrum ist beständig thätig, möglicherweise reflectorisch. Beeinflusst wird es in sehr ähnlicher Weise wie das Athmungs- und vasomotorische Centrum, so dass z. B. bei Dyspnoe sich die Pupille erweitert und die Augengefässe erblassen, u. s. w.

Viele schon erwähnte Umstände deuten darauf, dass zwischen den hier genannten vier Centren ein inniger Zusammenhang besteht, so namentlich ihre Erregung durch einen gewissen Gasgehalt des Blutes, die Uebereinstimmung ihrer Rhythmik, soweit rhythmische Erregungen stattfinden u. s. w. (vgl. p. 76, 155, 345).

5. Die Innervation des Schlingactes. Der Beweis dass das Schlingcentrum in der Med. obl. liegt, ist hauptsächlich hergenommen von dem Auftreten von Schlingkrämpfen bei Reizzuständen der Med. obl. und von der anatomischen Thatsache dass die beim Schlingen betheiligten Nerven aus der Med. obl. stammen. Der genauere Sitz des Centrums ist nicht sicher festgestellt. Dies Centrum wird nur reflectorisch in Action versetzt (p. 134), steht also ganz in gleicher Linie mit den zahllosen Apparaten des Rückenmarks für geordnete Reflexbewegungen.

6. Die Innervation der Kaubewegungen. Aus ähnlichen Gründen wie beim Schlingcentrum (Kaumuskelkrämpfe — Trismus), wird ein Centrum für Kaubewegungen in der Med. obl. angenommen. Auch dies würde aber nur eine Fortsetzung der Rückenmarksapparate für geordnete Reflexe sein, welche auch für geordnete willkürliche Bewegungen benutzt werden (p. 443).

7. Das Diabetescentrum. Verletzungen am Boden der Rautengrube, nahe der Mittellinie in einem etwas oberhalb des Calamus scriptorius beginnenden und etwa bis zum breitesten Theil der Rautengrube reichenden Bezirk bewirkt vorübergehenden Diabetes (p. 172), zuweilen nur Vermehrung der Harnsecretion, Diabetes insipidus (BERNARD). Die frühere Annahme, dass hier ein Centrum der die Zuckerbildung in der Leber beherrschenden Nerven gereizt, nach Andern gelähmt werde, das mit dem Vagus zusammenhängt, ist in Folge der veränderten Anschauungen über die Vorgänge in der Leber (p. 170 f.) zweifelhaft geworden. Viele vermuthen wie schon a. a. O. erwähnt ist, dass es sich um Verletzungen des Gefässnervencentrums handle, welches etwa diese Gegend einnimmt (s. oben), und dass Gefässlähmung in der Leber, in der Niere etc. die Ursache der Erscheinungen sei. —

Sonstige Functionen des verlängerten Marks sind nicht sicher bekannt (abgesehen von den eingangs erwähnten Reflexen im Bereich der unteren Hirnnerven, z. B. Speichelreflex, p. 91). Die Function

Bedeutung der Hirnganglien.

der Oliven ist völlig räthselhaft. Ueber die Kreuzung der Faserzüge im verlängerten Mark, sowie über Zwangsbewegungen durch Verletzung, s. unten.

B. Hirnganglien und weisse Hirnmassen.

Das Gebiet zwischen verlängertem Mark und Grosshirnrinde enthält eine Anzahl umfangreicher grauer Massen, die oben schon aufgezählten sogenannten Hirnganglien, und ferner ein höchst complicirtes System weisser Verbindungen, deren Hauptzüge ebenfalls schon angegeben sind.

Bei niederen Wirbelthieren, z. B. beim Frosch, lässt sich nachweisen dass nach Aufhebung der bewussten Actionen durch Entfernung der Grosshirnhemisphären (s. unten), das Thier noch eine Anzahl complicitter Handlungen ausführen kann, welche wegfallen wenn man auch die übrigen oberhalb des verlängerten Marks gelegenen Hirntheile entfernt. Besonders sind solche Thiere noch im Stande unter verwickelten Bedingungen ihr Gleichgewicht zu erhalten und sich z. B. auf einer Ebene deren Neigung allmählich zunimmt, durch geeignete Bewegungen vor dem Herabgleiten zu schützen (Goltz). Ferner fallen in diese Theile, beim Frosche hauptsächlich in die den Vierhügeln und Schhügeln entsprechenden Lobi optici, Vorrichtungen welche die Rückenmarksreflexe hemmen können (SETSCHENOW, vgl. p. 438). Da die Hirnganglien nach dem p. 447 f. Gesagten nicht bloss mit der grauen Substanz des Rückenmarks und den analogen Theilen des verlängerten Markes, und dadurch mit fast der ganzen Körperperipherie, - sondern auch mit den höheren Sinnesnerven in Verbindung stehen, und dadurch von viel mannigfacheren und complicirteren Combinationen centripetaler Erregungen getroffen werden als die einfacheren Reflexapparate des Rückenmarks, so scheinen sie der Sitz viel complicitterer Reflexe und Coordinationen zu sein als diese letzteren, da mit der Mannigfaltigkeit der centripetalen Erregungscombinationen auch die der centrifugalen Erregungen zunehmen muss. Die Dignität dieses Reflexgebietes wird anscheinend dadurch noch bedeutend erhöht dass es in der ihm untergeordneten Gruppe der Centra des "Röhrengrau" nicht bloss Erregungen hervorrufen, sondern auch Reflexe hemmen kann. Die oben erwähnte Fähigkeit der Beherrschung des Gleichgewichts ist vermuthlich nur ein kleiner Theil der Leistungsfähigkeit dieser Centra; der Antheil der höheren Sinnesnerven an jener Fähigkeit wird begreiflich wenn man bedenkt dass erstens der Inhalt des Gesichtsfeldes in Verbindung mit dem

458

Hirnganglien. Zwangsbewegungen. Drehschwindel.

Muskelgefühl der Augenmuskeln unsre Locomotionen mächtig beherrscht*), und dass zweitens auch der Acusticus höchst wahrscheinlich mit peripherischen Apparaten verbunden ist die über die Kopfstellung Aufschluss geben können (vgl. p. 409); dazu kommen nun noch die centripetalen Eindrücke von der ganzen Haut und den Muskeln, deren Einfluss auf die Körperhaltung ebenfalls schon erwähnt ist (p. 423).

Mit dieser Eigenschaft der genannten Hirntheile steht vermuthlich die Thatsache in Verbindung dass nach einseitigen Verletzungen derselben die Thiere eine Art höchst abnormer Locomotionen, sog. Zwangsbewegungen ausführen. Die Hauptformen derselben sind: 1) Vorwärtsbewegung in der Peripherie eines Kreises (Reitbahngang, Manégebewegung), 2) Rotation um die Längsaxe des Körpers (Roll- oder Wälzbewegung), 3) Bewegung des Vordertheils um das feststehende Hintertheil (Zeigerbewegung). Sie treten ein bei Verletzung des Streifenhügels, des Sehhügels, des Pedunculus cerebri, der Brücke, gewisser Theile des verlängerten Marks und des Kleinhirns; bestimmtere Angaben über Form und Richtung derselben im einzelnen Falle lassen sich nicht mit Sicherheit geben. Die Richtung wechselt in Folge der Kreuzung (s. unten), je nachdem das Niveau der Verletzung mehr nach vorn oder nach hinten liegt. Die frühere Erklärung dass Centra welche Bewegung in einer gewissen Richtung hervorbringen, durch die Verletzung gereizt, in krankhafte Erregung gerathen, ist unzulässig weil die Bewegungen häufig nur als abnorme Ausführung einer intendirten Bewegung (Fluchtbewegung) auftreten; auch genügt die Verletzung weisser Fasermassen, z. B. der Pedunculi, zur Erzeugung von Zwangsbewegungen, und auch bei Verletzungen der Grosshirnrinde werden solche zuweilen beobachtet. Auch die Annahme blosser Lähmung einzelner Muskelgruppen (z. B. bei der Reitbahnbewegung Lähmung der dem Bahncentrum zugewandten Körperhälfte) ist nicht ausreichend, weil diese Lähmung häufig nicht vorhanden ist. Die wahrscheinlichste Erklärung ist daher folgende: Da die Locomotionen nach den äusseren sensiblen Erregungen in Verbindung mit der Kenntniss der Lage der Körpertheile, besonders des Kopfes und der Augäpfel, dirigirt werden, so müssen Ver-

^{*)} Nach Betrachtung einer continuirlichen Bewegung oder nach Rotation des Körpers bei offenen Augen tritt bekanntlich Schwindel ein wenn das Auge auf ruhende Gegenstände gerichtet wird. Die Ursache liegt darin dass während der Bewegung das Auge zum Fixiren eines Punctes in einer bestimmten Richtung gedreht werden musste und diese Drehung durch Gewöhnung auch nachher beim Fixiren ruhender Puncte stattfindet, wodurch diese eine scheinbare Bewegung in entgegengesetztem Sinne machen (Helmholtz).

Vier-, Seh- und Streifenhügel. Linsenkern.

letzungen welche zu falschem Urtheil über diese Dinge führen, z. B. eine andere Kopfhaltung als die vorhandene vortäuschen, ja auch Verletzungen im motorischen Gebiete welche zu abnormen Innervationen der Kopf- oder Augenmuskeln führen ohne die entsprechende Kenntnissnahme, abnorme Locomotionen herbeiführen können. Wirklich sind abnorme Kopfstellungen bei den Zwangsbewegungen häufig vorhanden. Auch bei den rein reflectorisch, ohne Zuthun der Seele, dirigirten Locomotionen werden Verletzungen der Leitungsbahnen unter Umständen solche Erfolge haben können. — Der bei galvanischer Durchströmung des Kopfes auftretende Schwindel, der sich bis zu Zwangsbewegungen steigern kann (PURKINJE, HITZIG) gehört ebenfalls hierher.

Aeusserst unvollständig sind die Kenntnisse über die speciellen Functionen der einzelnen Hirnganglien. Die Vierhügel, welche einerseits mit dem Opticus andrerseits mit dem Oculomotoriuskern communiciren (p. 450), kennzeichnen sich anatomisch, und auch experimentell, als ein Hauptreflexheerd zwischen der Netzhaut und den inneren und äusseren Muskeln des Auges. Nach Zerstörung derselben hört die reflectorische Pupillenverengerung auf; bei Reizung verengt sich die Pupille der gegenüberliegenden, nach andern beider Seiten (FLOURENS, LONGET, BUDGE; nach neueren Angaben [KNOLL] sollen diese Erfolge nur eintreten wenn der Tractus opticus getroffen wird, die Vierhügel wären hiernach nicht Centra des Irisreflexes; wohl aber soll sich bei Reizung des vorderen Vierhügels die gleichseitige Pupille erweitern, so lange der Halssympathicus erhalten ist, also das Centrum ciliospinale, p. 445, erregt werden). Reizung des vorderen Vierhügels bewirkt ferner Drehung beider Augäpfel nach der entgegengesetzten Seite (ADAMÜK). - An dem ebenfalls mit dem Opticus communicirenden Sehhügel lässt sich ohne die gröbsten Verletzungen anderer Hirntheile nicht experimentiren. Da seine Verletzung Zwangsbewegungen macht, so vermuthet man dass er den Einfluss des Sehorgans auf die coordinirten Locomotionen vermittle (s. oben). Tauben, denen das Grosshirn mit Schonung der Sehhügel exstirpirt ist, folgen einem im Kreis bewegten Lichte mit dem Kopfe (LONGET). Die innige Verbindung des Sehhügels mit der Grosshirnrinde (p. 447) deutet ausserdem auf Functionen für die bewussten Sehwahrnehmungen hin. - Vom Streifenhügel und Linsenkern sind fast nur anatomische Data bekannt. Diese Organe, welche ebenso wie die zu ihnen führenden Fasermassen der Basis pedunculi (p. 451), in ihrer Entwicklung in der Thierreihe mit der der Grosshirnrinde gleichen

Kreuzung der Faserstränge.

Schritt halten, spielen wahrscheinlich bei der Vermittelung bewusster Empfindungen und Bewegungen eine Rolle, die aber vollständig unbekannt ist. Verletzungen des Linsenkerns macht stets Hemiplegie. Auf Verletzungen des Streifenhügels ist neuerdings eine Art krampfhafter Fluchtbestrebung beobachtet worden (NOTHNAGEL). — Ueber die physiologische Stellung und Function der zahlreichen grauen Einlagerungen der Brücke ist nicht das Mindeste bekannt.*)

In den weissen Längsfasermassen zwischen den Hirnganglien und dem centralen Röhrengrau (also im mittleren Projectionssystem, MEYNERT, vgl. p. 418) findet eine anscheinend vollständige Kreuzung beider Seiten Statt. Der physiologische Nachweis derselben liegt hauptsächlich in der Thatsache dass bei pathologischen Veränderungen und bei Verletzungen in einer Grosshirnhemisphäre immer nur Theile der entgegengesetzten Körperhälfte von der Verbindung mit dem Seelenorgan getrennt, also unempfindlich oder nicht mehr willkürlich beweglich sind. Nur wenn das Leiden auch die an der Basis liegenden Hirnnerven durch Druck etc. beeinträchtigt, kommen am Kopfe auch gleichseitige Lähmungen vor. Ueber den Ort der Kreuzung sind die anatomischen und die physiologischen Ermittelungen nicht durchweg im Einklang. Während z. B. die Anatomie schon im Rückenmark, in der vorderen weissen Commissur, eine Kreuzung von Fasern der weissen Stränge nachweist, folgt halbseitigen Durchschneidungen der letzteren immer nur gleichseitige Lähmung (Volk-MANN, v. BEZOLD); die gekreuzten Commissurenfasern sind daher vielleicht nur coordinatorische (wie die im Schema p. 446 mit 4 bezeichneten). Im verlängerten Mark finden Kreuzungen statt: erstens zwischen den Pyramiden, dieselben betreffen, nach dem Zusammen hange mit den Rückenmarksträngen zu urtheilen, sowohl motorische als sensible Fasern (erstere kreuzen sich mehr unten); zweitens in dem die Medianebene der Med. obl. einnehmenden weissen Blatt, der sog. Raphe, wo besonders Kreuzungen der Verbindungsstränge zwischen den grauen Kernen der Hirnnerven und dem Kleinhirn, sowie der von den Kernen zu den Hirnstielen gehenden Fasern stattfinden. Ein drittes und letztes, sehr wenig bekanntes Kreuzungsgebiet liegt in der Varolsbrücke. In den Hirnstielen ist die Kreuzung vollendet. - Eine sehr bemerkenswerthe Ausnahme von dem allgemeinen Kreuzungsschema machen der Olfactorius, Opticus und Trochlearis.

^{*)} Hier sei erwähnt dass von der physiologischen Bedeutung des Hirnanhangs und der Zirbel nichts bekannt ist.

Der Olfactorius zeigt gar nichts der Kreuzung Analoges. Beim Opticus findet die Kreuzung ausserhalb des Gehirns, im Chiasma statt, und ist nach Einigen nur eine halbe (vgl. p. 379); für vollständige Kreuzung wird neuerdings angeführt, dass Durchschneidung des Nervus opticus gleichseitige, Durchschneidung des Tractus gekreuzte Pupillenerweiterung macht (KNOLL; nach diesem Autor hebt Durchschneidung des Opticus den Tonus des Sphincter vollständig auf, so dass Oculomotoriusdurchschneidung nun nicht mehr erweiternd wirkt; der Sphinctertonus ist also nur reflectorischer Natur). Auch der Trochlearis kreuzt sich, wenn auch innerhalb der Hirnsubstanz, so doch nach seinem Austritt aus dem Kern, also in der äusseren Projection (vgl. p. 450); wenn also die Kreuzung in der mittleren Projection vollkommen ist, so müssten für den Trochlearis beide Kreuzungen sich aufheben. Physiologische und pathologische Thatsachen fehlen.

C. Kleinhirn.

Dem Kleinhirn wurden früher ohne genügende Begründung psychische Functionen, z. B. der Geschlechtstrieb (GALL) und andere willkürlich abgezweigte Gebiete zugeschrieben. Die pathologischen Thatsachen und die Resultate der Exstirpation sprechen am meisten dafür dass es ähnlich den oben besprochenen Theilen ein grosses coordinatorisches Centralorgan für geordnete Locomotion enthalte (FLOURENS, LONGET, R. WAGNER). Unbeholfenheit der Bewegungen, häufiges Fallen, bei Vögeln Unfähigkeit zu fliegen, sind die Folgen seiner Erkrankung oder Wegnahme. Der Zusammenhang des Kleinhirns mit sämmtlichen Rückenmarksträngen, ferner mit den Grosshirnganglien und der Grosshirnrinde, besonders aber seine innige Beziehung zum Acusticus machen diese Function ebenfalls einigermassen plausibel; möglicherweise spielt der Acusticus, dessen Beziehung zur Beurtheilung der Kopfhaltung schon mehrfach erwähnt ist (p. 459), hier eine analoge Rolle wie der Opticus für die Coordinationsapparate des Mittelhirns. Taubheit ist bei Fehlen des Kleinhirns nicht vorhanden. Bei einseitigen Kleinhirnerkrankungen scheinen die Bewegungsstörungen hauptsächlich die entgegengesetzte Körperhälfte zu betreffen. Reizungen des Kleinhirns bewirken weder Bewegungen noch anscheinend Schmerzen.

D. Grosshirnrinde.

Die Grosshirnrinde muss als das hauptsächliche oder ausschliessliche Organ der psychischen Thätigkeiten betrachtet werden.

Grosshirnrinde.

Die wesentlichsten Beweise hierfür sind folgende: 1. In der Thierreihe findet man eine um so stärkere Entwicklung des Grosshirns im Vergleich zur Körpermasse und zum Gesammthirn, je mehr sich die geistigen Fähigkeiten denen des Menschen nähern. Ueber den Grad der Entwicklung giebt das Gewicht Aufschluss und ausserdem die Zahl der Gyri, weil eine Vermehrung der letzteren die verhältnissmässige Grösse der Oberfläche und somit die Menge der allein in Betracht kommenden grauen Substanz vermehrt. 2. Bei angeborener Kleinheit der Grosshirnhemisphären (Microcephalie, Cretinismus), bei Entartung derselben (Hydrocephalus etc.) findet sich eine entsprechende Verminderung der höheren Seelenthätigkeiten (Blödsinn). 3. Verletzungen, Compressionen, Erkrankungen des Grosshirns sind fast immer mit Bewusstlosigkeit, Benommenheit, Schlafsucht oder psychischer Aufregung verbunden. 4. Abtragung der Grosshirnhemisphären (am besten bei Vögeln gelingend) bringt einen schlafähnlichen Zustand hervor, in welchem alle willkürlichen Bewegungen fehlen. Jedoch bestehen noch Reactionen gegen Sinneseindrücke; nur sind dieselben von einer vorauszuberechnenden Regelmässigkeit. Bei schichtweiser Abtragung soll eine allmähliche Abnahme aller Seelenfunctionen eintreten (FLOURENS).

Man behauptet ausserdem, dass den verschiedenen Graden geistiger Begabung beim Menschen verschiedene Grösse, Ausbildung und Gewicht des Grosshirns zu Grunde liege, indessen weichen die Resultate der Wägungen häufig hiervon ab. Abhängig von der Ausbildung des Grosshirns ist die Höhe, Breite und Vorwölbung der Stirn; ein Maass für die letztere bietet der Gesichtswinkel, gebildet von einer durch den hervorragendsten Punct der Stirn und die Oberkieferfuge, und einer anderen durch die Schädelbasis gezogenen Linie. Je spitzer dieser Winkel, um so thierähnlicher ist das menschliche Gesicht. - An den Thierhirnen lässt sich die relative Entwicklung der Grosshirnhemisphären am besten durch Vergleichung mit den Vierhügeln ermessen, deren Grösse mitder psychischen Entwicklung offenbar gar nichts zu thun hat. - Unter den Säugethierhirnen zeichnen sich die der Monotremen und Marsupialien durch Fehlen des Balkens aus; von den Furchen ist die Fossa Sylvii, welche seitlich und unten den Schläfenlappen vom Stirnlappen trennt, die constanteste; bei vielen Säugethieren (Mus, Talpa, Sorex, Chiropteren) ist sie die einzige; andere (Lepus, Cavia, Castor etc.) zeigen ausserdem einige longitudinale Furchen und Gyri an der Convexität. Auf einer höheren Stufe (Canis) wird die Fossa Sylvii von drei concentrischen Furchen umzogen und dadurch vier "Urwindungen" gebildet; zugleich tritt am Vorderhirn eine quere Furche auf die von der oberen Längsspalte ausgeht (Fossa Rolandi oder Sulcus cruciatus) und von der vierten Urwindung umbogen wird. Bei vielen anderen windungsreicheren Säugethierhirnen sind die Urwindungen schwerer zu erkennen. Auf die complicirten Windungen des menschlichen Gehirns und ihre Benennungen kann hier nicht eingegangen werden.

Seelenthätigkeiten.

Das Wesen der psychischen Processe kann nur nach einer Richtung hin Gegenstand der Erörterung an dieser Stelle sein. Völlig undefinirbar ist nämlich, wie bereits in der Einleitung angeführt, die Vorstellung, der seelische Vorgang, welcher auf unbegreifliche Weise mit der materiellen Thätigkeit der Seelenorgane verknüpft ist. Eine andere Frage aber ist, ob der materielle Vorgang eine von den Vorstellungen unabhängige Kette ist zwischen centripetalen und centrifugalen Erregungen, eine Art complicirten Reflexes, an den die Vorstellung als wirkungsloses Wesen geknüpft ist, oder ob die Vorstellung activ eingreifen kann in den materiellen Process, also selbstständig zur Erregung einzelner Apparate führt. Die erstere Anschauung leugnet das Vorhandensein des freien Willens, indem sie davon ausgeht, dass es nicht festgestellt ist, ob nicht genau dieselbe Verkettung von centripetalen Eindrücken in demselben Organismus stets genau denselben Effect haben (dieselbe scheinbar willkürliche Bewegung hervorrufen) würde. Der zweiten steht die Schwierigkeit entgegen, einem naturwissenschaftlich undefinirbaren Vorgange einen Eingriff in die den physicalischen Gesetzen folgenden materiellen Theilchen zuzuschreiben.

Ein wesentlicher Unterschied zwischen dem psychischen Vorgange und dem geordneten Reflexe liegt jedenfalls darin, dass für den letzteren nur die augenblicklich einwirkenden centripetalen Erregungen, für den psychischen Vorgang aber auch längst vergangene centripetale Erregungen von Einfluss sind. Den Seelenorganen müssen also von Seiten der materialistischen Anschauung Apparate zugeschrieben werden, in welchen die centripetalen Erregungen eine dauernde Veränderung hinterlassen. Welcher Art diese Veränderungen seien, dafür fehlt jeder Anhaltspunct zu Vermuthungen. - Umgekehrt ist man nur da zur Annahme psychischer Functionen berechtigt, wo die motorische Reaction auf sensible Erregung eine Miteinwirkung vergangener Erregungen erkennen lässt (denn das andere Criterium zur Entscheidung der Frage, ob nämlich Vorstellungen vorhanden sind oder nicht, ist unanwendbar, da man strenggenommen an keinem fremden Organismus das Dasein von Vorstellungen erkennen kann). Es ist daher unstatthaft, dem Rückenmark wegen der p. 435 angeführten zweckmässigen Reactionen geköpfter Thiere oder Schlafender Seelenorgane zuzuschreiben, denn diese Reactionen sind offenbar nur der Ausfluss der momentan einwirkenden Erregungen, wie ihre Regelmässigkeit zeigt, sie sind daher als reine Reflexe aufzufassen.

Schema der Centralorgane. Vertheilung der Rindenfunctionen.

Es ergiebt sich hiernach folgendes Gesammtschema des Centralnervensystems. Ein erstes Centrum ("centrales Röhrengrau"), anscheinend ohne directen Connex mit den höheren Sinnesnerven, besorgt die einfachsten geordneten Reflexe, bei denen wesentlich Organe der erregten Körpergegend selbst betheiligt sind, man könnte diese einfachste Art geordneter Reflexe als "Niveau-Reflexe" bezeichnen. Ein zweites Centrum höherer Art ("Hirnganglien, Kleinhirn?"), mit allen Bezirken des ersten Centrums, ausserdem aber mit den höheren Sinnesnerven verbunden, und ferner auch mit Hemmungsfasern für das erste Centrum versehen, besorgt complicirtere Actionen und Reflexe, bei denen distante Theile des Körpers betheiligt sind, z. B. Reactionen der Extremitäten auf Gesichtseindrücke, Locomotionen die nach dem Gesichtsfelde dirigirt werden etc.). Ein drittes Centrum höchster Art endlich (Grosshirnrinde), mit allen übrigen verbunden, hat die Eigenschaft durch gewisse centripetale Eindrücke (die während des "Wachens" erfolgen) auf längere Zeit oder auf immer so verändert zu werden, dass in ihm ungleich complicirtere Actionen zu Stande kommen können, indem zu den mannigfachen Combinationen der momentanen centripetalen Eindrücke auch noch zahllose Eindrücke der Vergangenheit auf die centrifugalen Erregungen bestimmend einwirken. Die Anzahl der möglichen Combinationen wird hierdurch so ungeheuer gross und unübersehbar dass man Spielraum genug hat um alle Handlungen als Resultate centripetaler Beeinflussungen erklären zu können. Die Erregungen dieses höchsten Centrums sind nun mit Vorstellungen verbunden, und hier ist die Grenze der physiologischen Betrachtung.

Näheres über die Einrichtungen in den Centren der Grosshirnrinde anzugeben ist vor der Hand nicht möglich. Die völlig willkürliche phrenologische Eintheilung der Seelenthätigkeiten nach "Trieben" und die noch willkürlichere Localisirung derselben in Bezirken der Hirnrinde ist längst als Phrase und Irrthum erkannt. Einen einzelnen Punct des Gehirns als Sitz des Bewusstseins anzunehmen ist ebenfalls unmöglich, weil man so ziemlich für jeden Hirntheil Fälle kennt in welchen derselbe zerstört war oder fehlte, ohne dass das Bewusstsein mangelte. Locale Hirndefecte bewirken immer nur Trennung gewisser (gegenüberliegender, s. oben) Körperregionen von dem Zusammenhang mit der Seele, während das Bewusstsein selbst nach Zerstörung einer ganzen Hemisphäre noch bestehen kann. Leider besitzt man keine sicheren Erfahrungen darüber, ob nach solchen Zerstörungen ein Theil der Erinnerungsbilder aus-Hermann, Physiologie. 5. Aufl. 30

465

gelöscht ist, und welcher Zusammenhang zwischen dem Ort der Zerstörung und der Schädigung der Erinnerung eventuell besteht.

Die halbseitigen Lähmungen bei Zerreissungen in der weissen Substanz einer Hemisphäre beweisen dass die Seele mit bestimmten Regionen des Körpers mittels bestimmter Fasern communicirt. Die nächste Frage ist nun, ob eine Gruppe solcher Fasern aus einem bestimmten Gebiete der Hirnrinde entspringt oder aus sehr verschiedenen, ja aus allen Theilen derselben. Für das erstere spricht die Erfahrung dass bei pathologischen Veränderungen in einer bestimmten Gegend des Vorderhirns, nämlich der Insel (dem in der Tiefe der Fossa Sylvii gelegenen Rindentheil, zu welchem man gelangt wenn man den zwischen beide Aeste der Fossa herabragenden sog. Klappdeckel in die Höhe hebt), und der zwischen ihr und dem Linsenkern liegenden grauen Platte der Vormauer, ein Zustand auftritt, in welchem die Sprache versagt, während die Patienten die Worte aufschreiben können ("Aphasie"). Die experimentellen Angaben über die specielleren sensiblen und motorischen Functionen der Rindengebiete sind höchst unsicher. Mechanische Verletzungen der Rinde machen nach den meisten Autoren weder Schmerz noch Bewegungen. Die neuerdings durch electrische Reizung der Oberfläche hervorgerufenen Bewegungen (FRITSCH & HITZIG, FERRIER) können, da sie auf mechanische und chemische Reizung nie eintreten, sehr wohl auf Erregung tiefer gelegener Theile beruhen, da diese den Stromschleifen unvermeidlich ausgesetzt sind (ganz besonders gilt dies von den FER-RIER'schen Versuchen). Nach diesen Angaben würde besonders der vordere Theil der Hirnrinde mit motorischen Apparaten in Verbindung stehen. Versuche mit Zerstörung kleiner Rindenpartien durch Ausschneiden (FRITSCH & HITZIG) oder durch Aetzung mittels Injectionen in das Gewebe (NOTHNAGEL, FOURNIÉ) ergaben grösstentheils Abnormitäten in Haltung und Bewegung einzelner Glieder, die als Verlust des Muskelsinns gedeutet werden (NOTHNAGEL). Aus all diesen Angaben lässt sich keine auch nur annähernde Vorstellung von der Art und räumlichen Vertheilung der Rindenfunctionen gewinnen.

Die meisten Fälle der oben erwähnten Aphasie betreffen Läsionen der linken Hemisphäre (mit rechtsseitiger Rumpflähmung combinirt). Man hat daraus, mit Widerstreben, geschlossen dass das sog. Sprachcentrum unsymmetrisch, uniliteral sei; indess kommen auch Fälle von Aphasie mit rechtsseitiger Läsion vor (BOUILLAUD), und die grössere Häufigkeit der anderen wird auf circulatorische Verhältnisse bezogen. — Die Resultate der electrischen Rindenreizung sind folgende (FRITSCH & HITZIG). In dem Bogen welchen die 4. Urwindung

Reizung der Hirnrinde. Coordination. Association.

um den Sulcus cruciatus herum beschreibt (beim Hunde, p. 463) liegt im vorderen Schenkel eine Stelle deren Reizung die Nackenmuskeln zur Contraction bringt, im lateralen Theil eine Stelle für die Extensoren und Adductoren, etwas dahinter für die Flexoren und Rotatoren des Vorderbeins, im hinteren Schenkel eine Stelle für die Muskeln des Hinterbeins. Im hinteren Schenkel der die vierte umziehenden 3. Urwindung liegt eine Stelle für die vom Facialis versorgten Muskeln. Trotz des geringen Abstandes der Electroden sind Stromschleifen durch tiefere Theile unmöglich auszuschliessen. Dass geringe Verschiebung der Electroden den Erfolg ändert, schliesst den Verdacht nicht aus, da auch die Stromschleifen streng mit der Lage der Electroden ihre Lage wechseln. — Zu erwähnen ist noch dass es bei Kaninchen in der Nähe der hinteren Hemisphärenspitze eine Stelle giebt, deren Verletzung nach einiger Zeit heftige Vorwärtsoder Seitwärtsbewegung bewirkt, welche bald vorübergeht (Nothmagel); hier scheint es sich mehr um eine Trugempfindung des Thieres als um einen directen motorischen Einfluss zu handeln.

Directe Verbindungen der Hirnrinde mit sensiblen oder motorischen Nervenfasern des äusseren Systems sind nach den oben dargestellten anatomischen Ermittelungen zweifelhaft und jedenfalls nur in einzelnen Gebieten vorhanden. Vielmehr scheint es dass auch zu den bewussten Empfindungen und den willkürlichen Bewegungen dieselben Zwischenapparate benutzt werden welche den Reflexen niederer und höherer Ordnung dienen. Da in diesen Apparaten motorische Nervencentra so verbunden sind dass Muskeln in geordneter Weise bei den Reflexen zusammenwirken, so ist es möglich dass diese Coordinationsapparate auch bei den willkürlichen geordneten Bewegungen vom Seelenorgan aus in toto zur Thätigkeit gebracht werden, und dadurch gleichsam der Seele Beschäftigung erspart wird. Dies wird um so wahrscheinlicher, als wir die einzelnen Muskeln meist gar nicht isolirt willkürlich zu contrahiren vermögen. Vermuthlich ist das Seelenorgan nicht bloss mit incitirenden, sondern auch mit hemmenden Fasern für diese Centra versehen. Ob auch für die centripetalen Erregungen Zwischenapparate vorhanden sind, welche dieselben für das Seelenorgan umgestalten, ist zweifelhafter, und jedenfalls wären diese viel unverständlicher.

Neben den angeführten zweckmässigen Zusammenordnungen von Bewegungen giebt es auch solche, welche als Mängel oder Schwächen bezeichnet werden können; man nennt sie im Gegensatz zu den Coordinationen "associirte Bewegungen" oder "Mitbewegungen" (im engeren Sinne). Hierher gehört z. B. das Runzeln der Stirn bei einer starken körperlichen (oder geistigen) Anstrengung. Von den Bewegungsassociationen kann man sich durch den Willen jedesmal, und durch häufige Wiederholung dieses Wollens

30*

Mitempfindung. Geschwindigkeit psychischer Processe.

(Uebung) dauernd frei machen (vgl. die Unabhängigkeit beider Hände von einander beim Clavierspieler).

Als "Mitempfindung" bezeichnet man Empfindungen im Bereiche anderer Fasern als objectiv erregt sind. Ein derartiger Fall ist schon erwähnt (p. 422, 442), nämlich die "Irradiation", das Uebergreifen der scheinbaren Erregung auf die Nachbarschaft einer erregten Hautnervenfaser, durch die Verhältnisse der grauen Rückenmarkssubstanz. In anderen Fällen erscheinen auch entfernte Fasern erregt, vermuthlich ebenfalls durch nahes Entspringen in der grauen Substanz; z. B. Kitzel im Kehlkopf bei Berührung des äusseren Gehörgangs nahe dem Trommelfell (beide werden von Vagusfasern versorgt). Auch die Irradiation lässt sich durch Uebung- vermindern (Verkleinerung der Empfindungskreise bei Blinden, p. 419).

Mittels der p. 304 f. erwähnten und ähnlicher Methoden lässt sich für gewisse einfache psychische Processe die Geschwindigkeit ermitteln: es zeigt sich in diesen Versuchen (Donders, de JAAGRR), dass ein auf einen Reiz zu gebendes verabredetes Signal um so später erfolgt, je complicirter die zur richtigen Signalgebung nöthige psychische Arbeit ist, und dass ausserdem die Zeit nach dem Sinn, auf den der Reiz wirkt, variirt. Z. B. betrug im Mittel 1. die Zeit zwischen einem Hautreiz und dem Signal, welches nach der getroffenen Hautstelle (zwischen zweien zu wählen) zu variiren war, 0,066 Secunden; 2. bei Lichtreiz: a) Unterscheidung zweier Farben 0,122-0,184, b) Unterscheidung zweier Buchstaben 0,166, c) Unterscheidung zwischen fünf Buchstaben 0,170 (das Signal bestand im Aussprechen des plötzlich gezeigten Buchstaben); 3. bei Gehörsreiz: a) Entscheidung zwischen zwei Vocalen 0,056; b) Entscheidung zwischen fünf Vocalen 0,069-0,088 (Signal Nachsprechen des Vocals). - Lässt man Objecte nur sehr kurze Zeit auf das Auge wirken, so werden sie nicht erkannt: die zum Erkennen nöthige Betrachtungszeit beträgt für grosse Buchstaben etwa 0,0005 Sec., sie ist um so grösser, je kleiner das Object und je weniger es sich von seinem Grunde auszeichnet; - folgt unmittelbar auf das Verschwinden eines Objects ein zweites, so muss das erste, um erkannt zu werden, länger betrachtet werden, und zwar um so länger, je stärker der zweite Reiz und je complicirter gestaltet das erste Object ist (HELMHOLTZ & BAXT). Richtet man vor der (momentanen) Beleuchtung eines bekannten Objectes die Aufmerksamkeit auf einen Theil desselben, so wird derselbe wahrnehmbar, während er es vorher wegen zu kurzer Beleuchtung nicht war (HELMHOLTZ).

Psychophysische Beziehungen.

Da man das Wesen der Vorstellung nicht definiren kann, so existirt begreiflicherweise auch kein directes Maass für dieselbe. Trotzdem hat man in neuerer Zeit in den exacter Betrachtung zugänglichsten Theil der Vorstellungen, nämlich die Empfindungen, durch einen Kunstgriff eine Art Messung eingeführt, durch welche eine bestimmte Beziehung zwischen dem Wachsthum des Erregungszustandes im Sinnesorgane und dem Wachsthum des dadurch bedingten Vorstellungs- (Empfindungs-) Zuwachses constatirt zu sein

468

Psychophysisches Gesetz.

scheint. Es ist aber nicht zu übersehen, dass zwischen dem materiellen Processe im Sinnesorgan und dem im Seelenorgan eine ganze Reihe von Auslösungen existirt, über deren Verhältniss noch nichts bekannt ist, so dass man durchaus noch nicht weiss, wohin die ermittelte Beziehung zu verlegen ist. Man nennt sie die "psychophysische (FECHNER).

Die psychophysischen Ermittelungen wurden dadurch gewonnen, dass man den kleinsten noch durch Empfindungen wahrnehmbaren Erregungszuwachs aufsuchte, d. h. den Erregungszuwachs, der den kleinsten noch sich geltend machenden Empfindungszuwachs bewirkt. Dieser Reizzuwachs ist innerhalb gewisser Grenzen stets der schon vorhandenen Reizgrösse proportional(E.H. WEBER), d. h. je stärker ein Reiz (etwa ein Druck) bereits ist, um so mehr muss er verstärkt werden, wenn eine Verstärkung wahrgenommen werden soll; dies Gesetz gilt für alle Sinnesorgane (FECHNER, VOLK-MANN). Aus ihm folgt, dass die Empfindungen den Logarithmen der Reizgrössen proportional wachsen (FECHNER).

Nennt man einen Reiz β , die zugehörige Empfindung γ , den kleinsten noch merkbaren Empfindungszuwachs d γ , und den ihn bedingenden Reizzuwachs d β , so ist d γ nach dem WEBER'schen Gesetz nicht proportional dem wirklichen Reizzuwachs d β , sondern dem relativen Reizzuwachs, gemessen durch die Reiz-

grösse β , also dem Quotienten $\frac{d\beta}{\beta}$. Es ist also, wenn k eine Constante bedeutet:

$$d\gamma = \frac{k \cdot d\beta}{\beta}$$

Integrirt man diese Gleichung, indem man die Empfindung γ als eine Summe vieler kleiner Empfindungszuwächse betrachtet, so ist

 $\gamma = k \cdot \log nat \beta + Const.$

Wählt man die Integrationsconstante so, dass für $\gamma = 0$ $\beta = b$ wird, d. h. ist b der Werth, den eine Reizstärke, um überhaupt wahrgenommen zu werden, schon haben muss (der "Schwellenwerth", FECHNER), so wird

$$\gamma = k (\log \beta - \log b) = k \cdot \log \frac{\beta}{b},$$

womit ausgedrückt ist, dass γ erst dann anfängt positiv zu werden, wenn $\beta \rangle$ b. Die Formel für γ ("Maassformel", FECHNER), welche durch Aenderung von k für jedes Logarithmensystem gültig wird, zeigt also, dass die Empfindungen wachsen wie die Logarithmen des auf den Schwellenwerth bezogenen Reizes, und deutet im Allgemeinen an, dass mit steigenden Reizen die Empfindungen (entspr. den Logarithmen) zuerst schnell, dann immer langsamer wachsen.

Der oben p. 437 angenommene Widerstand in dem grauen Netz des Rückenmarks, dessen Grösse die Ausbreitung des Irradiationsbezirkes bestimmt (p. 438), kann zum Ausgangspunct einer andern Ableitung der Maassformel dienen, wenn man gewisse Hypothesen zu Hülfe nimmt. Nimmt man an, dass 1. der Widerstand so beschaffen ist, dass die Erregung bei ihrer Ausbreitung immer um

Schlaf.

einen gleichen Bruchtheil ihrer eigenen Grösse sich vermindert, dass 2. der unmerkliche Werth, den sie schliesslich erreicht, gleich dem Schwellenwerth des Reizes ist, und dass 3. die Intensität der Empfindung der Grösse des Ausbreitungsbezirks der irradiirenden Erregung proportional ist, so ergiebt sich dieselbe Beziehung zwischen Reizgrösse, Reizschwelle und Empfindungsgrösse, wie sie die Maassformel ausdrückt; umgekehrt kann die empirische Feststellung der Maassformel durch das WEBER'sche Gesetz zur Bestätigung der obigen Annahmen dienen. Man findet so zugleich, dass der Buchstabe k in der Maassformel dem centralen Widerstand (s. oben) umgekehrt proportional ist (BERNSTEIN).

Auf die weitere Vereinfachung und Anwendung der Maassformel für specielle Fälle kann hier nicht eingegangen werden. In Bezug auf den "Schwellenwerth" des Reizes sei noch bemerkt, dass, da die Wirkung eines Reizes von vielen Umständen abhängt (Intensität, Dauer, Vertheilung auf viele oder wenige empfindende Elemente, Geschwindigkeit des Auftretens etc.), auch die Reizschwelle auf verschiedene Arten repräsentirt sein kann. Der Reiz eines Tones kann z. B. betrachtet werden als das Product aus der Anzahl der ihn zusammensetzenden Schwingungsreize und der Stärke derselben; die Reizschwelle eines höheren Tones wird daher bei geringerer Intensität liegen, als die eines tieferen.

Schlaf.

In den Seelenorganen wechseln zwei verschiedene Zustände, deren physischer Unterschied unbekannt ist, mit einer gewissen Regelmässigkeit ab, der des Wachens und der des Schlafens. Es scheint eine Art des Schlafes zu geben, in welchem gar keine Seelenactionen stattfinden, so dass nur die automatischen und reflectorischen Centralorgane thätig sind. Die auf deren Thätigkeit beruhenden Functionen, Circulation, Athmung, Secretionen, Verdauung u. s. w. gehen ihren regelmässigen Gang, und die sonst noch vorhandenen Reactionen gegen äussere Reize, die sich ganz ähnlich verhalten wie die der Thiere mit exstirpirtem Grosshirn, müssen ganz wie diese als ungestört verlaufende geordnete Reflexbewegungen betrachtet werden. Sie als Erfolge eines noch vorhandenen Restes von Seelenfunctionen, sei es nur im Grosshirn, oder vielleicht in besonderen, nicht am Schlafe theilnehmenden Seelenorganen (des Rückenmarks etc.) aufzufassen, liegt wie schon oben (p. 464) angeführt, kein Grund vor.

Ob Vorstellungen während des Schlafes existiren, kann nur durch Ein Mittel entschieden werden: nämlich durch die Erinnerung. Diese lehrt nun, dass sehr häufig unvollkommene Seelenthätigkeiten während des Schlafes stattfinden, die Träume. Sie sind mit Empfindungsvorstellungen ohne objective Ursache (Hallucinationen), Willensvorstellungen ohne Effect (Täuschung intendirter, aber unmöglicher Bewegungen) und Denkprocessen ohne die gewöhnliche Logik des wachen Zustandes (scheinbare Lösung von Aufgaben, die

Schlaf und Traum.

sich in der Erinnerung als unsinnig erweist) verbunden. Ueber die Zeit des Traumes zu entscheiden giebt es kein Mittel. Eine sehr häufige Beobachtung deutet darauf hin, dass vielleicht die meisten Träume erst im Augenblick des Erwachens oder wenigstens einer plötzlichen Verflachung des Schlafes spielen; denn häufig endet ein Traum mit einer Empfindung, zu der eine objective Ursache vorhanden ist, welche zugleich das Erwachen bedingt; gleichzeitig ergiebt sich hieraus, dass mit den Träumen ausserordentliche Zeittäuschungen verbunden sind.

Das Erwachen aus dem Schlafe scheint meist durch eine Empfindung bewirkt zu werden, welche um so stärker sein muss, je tiefer der Schlaf ist. Die Schlaftiefe lässt sich dadurch ausdrücken, dass man in der p. 469 abgeleiteten Formel den Schwellenwerth b, d. h. die Stärke, die ein Reiz haben muss, um zu einer Vorstellung zu führen, so gross annimmt, dass bei gewöhnlichen Reizungen y negativ wird. Directe Messungen haben ergeben (KOHLSCHÜTTER), dass b, mithin die Schlaftiefe, vom Beginn des Schlafes zuerst sehr schnell, dann langsamer zunimmt, bis etwa zum Ende der ersten Stunde, dann wieder abnimmt, zuerst schnell, dann sehr langsam, um beim Erwachen den gewöhnlichen Werth zu erreichen. Häufig treten ohne bekannte Ursachen Verflachungen ein, denen dann wieder Vertiefungen folgen. Je tiefer der Schlaf überhaupt wird, um so länger dauert er. Je tiefer der Schlaf, je grösser also b ist, um so stärker muss natürlich der Reiz & sein, welcher eine Empfindung, also Wachen, hervorruft.

Die für das Einschlafen geeignetste Bedingung ist die möglichste Entfernung aller Reize, daher die Stille und Dunkelheit der Nacht. Der Schlaf scheint ferner um so leichter einzutreten und um so tiefer zu sein, je grösser die vorhergegangenen Anstrengungen der Seelenorgane waren. Während des Schlafes findet eine Restitution derselben und ferner eine Herstellung der ermüdeten, jetzt grösstentheils erschlafften Muskeln statt. Die vielen sonst noch bekannten Einzelheiten über Schlaf und Traum können hier übergangen werden. Ueber die materielle Veränderung im Gehirn während des Schlafens, Veränderungen des Blutdrucks, der Ernährung etc. sind bisher nur ganz unbewiesene Vermuthungen aufgestellt worden.

Anhang. Circulations- und Ernährungsverhältnisse des Rückenmarks und Gehirns. Die Thätigkeit der Centralorgane ist von der Circulation in denselben in hohem Grade abhängig, wie die Folgen der Anämie, Hyperämie, Stagnation etc. zeigen (p. 455). Es scheinen besondere Vorrichtungen vorhanden zu sein, welche den Blutdruck regeln. Als solche sind zu erwähnen: 1. Hirn und Rückenmark sind in eine knöcherne Kapsel eingeschlossen, die sie, nebst dem Liquor cerebrospinalis, ganz erfüllen. Wegen der Incompressibilität dieser Theile und der Unnachgiebigkeit der Kapsel scheinen nun cardiale und respiratorische Schwankungen der Gefässlumina in diesen Theilen nicht möglich zu sein; damit dieselben zu Stande kommen, muss entweder die Kapsel geöffnet sein (bei eröffnetem Schädel macht das Gehirn respiratorische An- und Abschwellungen, auch zeigt ein mit der Schädelhöhle communicirendes Manometer Respirations- und Pulsschwankungen), oder der Liquor cerebrospinalis muss abgeflossen sein (ist dies z. B. bei Verletzung des Rückgrates geschehen, so macht das Gehirn Respirationsbewegungen, die, wie es scheint, durch Reibung eine Meningitis basilaris hervorbringen - ROSENTHAL). Künstliche oder pathologische Steigerungen des intracraniellen Druckes bewirken mannigfache Functionsstörungen, vermuthlich auf Circulationsstörungen beruhend. - 2. Gegen plötzliche Circulationsunterbrechung durch Verschluss einer Arterie ist das Gehirn durch die Communication seiner vier zuführenden Gefässe mittels des Circulus Willisii gesichert. - 3. Die Blutdruckveränderungen im Gehirn, welche plötzliche Veränderung der Körperstellung (Aufrichten aus horizontaler Lage) hervorbringen könnte, sollen dadurch verhindert sein, dass die Schilddrüse ein collaterales Blutreservoir darstelle (LIEBERMEISTER); geschehe die Stellungsänderung zu plötzlich, so trete vorübergehende Ohnmacht ein. Auch noch in anderer Weise soll die Schilddrüse den Blutdruck im Gehirn reguliren, indem sie, bei starkem arteriellen Blutdruck anschwellend, ihrerseits die Carotiden comprimire (GUYON); bei starken Muskelanstrengungen ist nämlich die Carotis zuweilen pulslos (MAIGNIEN). - 4. Die vasomotorischen Nerven des Gehirns (welche durch das Ganglion cervicale supremum verlaufen, aber nicht sämmtlich im Grenzstrang liegen, NOTHNAGEL) unterliegen den allgemeinen regulatorischen Einflüssen (p. 77).

3. Sympathische Centra und Nerven.

Im Allgemeinen werden diejenigen Nerven als sympathische bezeichnet, welche die Eingeweide und die Gefässe versorgen, gleichgültig welches ihr Ursprung sei; auch werden die marklosen Nervenfasern, welche überwiegend in den sympathischen Nerven enthalten sind, als "sympathische Fasern" bezeichnet. Der Ursprung der sympathischen Fasern ist nicht hinreichend constatirt. Die zahlreichen Ganglienzellen, welche haufenweise in den grossen Körperhöhlen und einzeln in den Parenchymen vieler Eingeweide zerstreut sind, sind jedenfalls als Hauptcentralorgane des Sympathicus zu betrachten; aber es ist anatomisch und physiologisch nachgewiesen dass viele sympathische Fasern theils durch die Rami communicantes der Spinalnerven, theils durch Communicationen mit den Hirnnerven, mit dem Cerebrospinalorgan in Verbindung stehen. Auch sind bereits physiologische Thatsachen dieser Art erwähnt, das Centrum

Sympathicus. Parenchymganglien.

oculospinale (p. 445, 460), ferner der Ursprung der Gefässnerven (p. 456). Jedoch scheint kein einziger sympathischer Nerv mit Willensorganen in Verbindung zu stehen, denn alle Bewegungen der Eingeweide sind völlig un willk ürlich. Ebenso ist die Empfindlichkeit der Eingeweide äusserst gering, so dass man sie den wenigen markhaltigen ("cerebrospinalen") Fasern zuschreibt, welche die sympathischen Nerven enthalten. Fast nur glatte Muskeln, und diese wie es scheint sämmtlich, werden vom Sympathicus beherrscht.

Die Ganglienzellen des Sympathicus und der Spinalganglien sind von einer mit Plattenepithel ausgekleideten Kapsel umgeben (FRÄNTZEL); sie senden gewöhnlich eine grade und eine diese umwindende spiralige Faser aus (ARNOLD, BEALE), so dass sie als bipolar betrachtet werden müssen. Jedoch kommen in den Spinalganglien nur unipolare Zellen vor (COURVOISIER, SCHWALBE).

Die Functionen der sympathischen Centralorgane sind, soweit bekannt: 1. Reflexe, und zwar, soweit sie Muskelbewegungen betreffen, von der Natur der geordneten (p. 435 f.); es müssen daher auch Coordinationseinrichtungen existiren; ausser den motorischen Reflexen existiren auch secretorische. 2. Automatie (motorische und secretorische); möglicherweise sind manche anscheinend automatische Erregungen auch hier reflectorischer Natur, jedoch kann das Cerebrospinalorgan bei diesen Reflexen nicht betheiligt sein, da nach Zerstörung desselben die vom Sympathicus abhängigen ("vegetativen") Functionen noch lange Zeit fortdauern können (BIDDER); auch bei den automatischen Bewegungen sind Coordinationseinrichtungen erkennbar. Die rhythmische Automatie wird auch hier durch regulatorische Nerven, und zwar hemmende und beschleunigende, beeinflusst (vgl. p. 429).

Im Speciellen ist Folgendes über die Leistungen der sympathischen Organe anzuführen:

1. Parenchymganglien. Manche Organe enthalten in ihrer Substanz Ganglienzellen, von denen ihre Function zum Theil beherrscht wird, namentlich das Herz, nach den meisten Autoren auch der Magen, Darm, Uterus etc. Am besten studirt sind die Herzganglien; dieselben besitzen eine rhythmische Automatie, vermöge deren einzelne isolirte Herzstücke rhythmisch pulsiren. Ausserdem existiren Coordinationseinrichtungen, vermöge deren am unverletzten isolirten Herzen die einzelnen Abschnitte in regelmässiger Aufeinanderfolge sich contrahiren. Ferner unterliegt der Rhythmus dem Einfluss beschleunigender und verlangsamender Fasern, beide vom Cerebrospinalorgan entspringend, aber erstere in sympathischen Bahnen (durch das unterste Hals- und oberste Brust-Ganglion), letztere im Vagus verlaufend. Die gewöhnliche Angabe, dass das Herz in den Vorhöfen) auch hemmende Centralorgane enthalte, ist zweifelhaft (vgl. p. 71 und den Nachtrag).

Der die automatische Erregung der Herzganglien bewirkende Reiz ist unbekannt. Am Froschherzen scheint es der Sauerstoff der Luft oder des Blutes zu sein, da bei Abschluss des Sauerstoffs die regelmässigen Pulsationen aufhören (GOLTZ, CYON), obgleich directe Reizung Contractionen bewirkt, die Muskeln also erregbar sind; dagegen scheint die Kohlensäure das hemmende System zu erregen (TRAUBE, CYON). Bei Säugethieren sind die Verhältnisse schwerer zu überschen, da man nicht am isolirten Herzen operiren kann.

Automatische coordinirte Bewegungen durch Parenchymganglien zeigt ferner der Darm in seiner Peristaltik. Auch hier existirt ein Hemmungsnerv (für den Dünndarm) im Splanchnicus (vgl. p. 135 f.). Beschleunigungsnerven scheinen von dem sympathischen Plexus des Abdomen zum Darm zu treten (s. unten). Auch für diese Automatie ist der Reiz unbekannt.

Luftzutritt vermehrt die Bewegungen, ebenso gesteigerte Venosität des Blutes, local z. B. durch Stagnation (p. 136).

Ueber die Innervation des Uterus s. Cap. XII.

2. Ganglien, Plexus und Grenzstrang. Ueber die Wirkung der zahlreichen in diesen Organen befindlichen Ganglienzellen ist durchaus Nichts ermittelt: Durchschneidungs- und Reizungsversuche haben nur den Durchtritt von Fasern ergeben, welche anscheinend vom Cerebrospinalorgan entspringen. Die einzige anscheinend sichere Thatsache, welche einen Reflex in einem Ganglion zu erweisen schien, nämlich die durch das Gangl. submaxillare reflectorisch vermittelte Speichelsecretion (p. 92) ist neuerdings angezweifelt worden (ЕСКНАКР), weil der Erfolg nur bei electrischer Reizung zuweilen eintrete, und zwar durch Stromschleifen, welche die Secretionsnerven selbst treffen.

Im Halstheil des Sympathicus sind folgende Fasern nachgewiesen:

1. Vasomotorische Fasern für die entsprechende Kopfhälfte (p. 74); Ursprung im Cerebrospinalorgan (p. 445).

2. Fasern für den Dilatator pupillae; Ursprung im Cerebrospinalorgan (p. 444).

3. Fasern für die glatten MÜLLER'schen Orbitalmuskeln (p. 387) und auch anscheinend für den Musc. rectus externus (nach Durchschneidung des Sympathicus am Halse tritt Schielen nach innen ein). Hals-, Brust- und Bauchtheil des Sympathicus. Splanchnicus. 475

4. Secretorische Fasern für die Speicheldrüsen (p. 90) und die Thränendrüse (p. 117); Ursprung unbekannt.

5. Beschleunigende Fasern für das Herz (v. BEZOLD).

6. Das unterste Halsganglion leitet (neben dem obersten Brustganglion [G. stellatum], mit dem es häufig vereinigt ist) beschleunigende Fasern zum Herzen, und zwar durch den dritten Ast des Ganglion (E. & M. Cros) — der erste und zweite Ast sind die Wurzeln des N. depressor (p. 76).

7. Zum Cerebrospinalorgan gehende Fasern, welche das Herzhemmungssystem erregen (p. 76).

8. Zum Cerebrospinalorgan gehende Fasern, welche das Gefässcentrum erregen (pressorische Fasern, p. 76).

Am Brusttheil sind noch wenig sichere Versuchsergebnisse gewonnen worden. Das oberste Brustganglion (Gangl. stellatum) leitet beschleunigende Fasern zum Herzen, welche durch den Hals-Grenzstrang (v. BEZOLD, vgl. p. 72) und durch die die Art. vertebralis begleitende Wurzel (v. BEZOLD & BEVER) zum Ganglion treten. - Der zum Brusttheil gehörige Plexus cardiacus wird von den zum Herzen tretenden und von ihm kommenden Vagus-, Depressorund Sympathicus-Fasern zusammengesetzt. Vom Brusttheil entspringen ferner die Splanchnici (major und minor, welchen folgende Fasern zugeschrieben werden (Spl. major): 1. Hemmungsfasern für den Darm (vgl. jedoch p. 136); 2. Beschleunigungsfasern für den Darm (wegen der Wirkung der Reizung nach dem Tode, p. 136); 3. secretionshemmende Fasern für die Nieren (p. 109); 4. vasomotorische Fasern für das grosse Gefässgebiet des Abdomen (p. 74); 5. centripetale Fasern, welche reflectorisch das Herz hemmen (beim Frosche im Grenzstrang liegend (BERNSTEIN); 6. Fasern, deren Reizung einen Zuckergehalt des Harns bewirkt (v. GRÄFE, ECKHARD, PLOCH).

Für den Bauchtheil existiren nur sehr wenige zuverlässige Angaben. Reizung des Grenzstrangs und der Plexus (coeliacus, mesenterici, renalis, suprarenalis, spermaticus, hypogastrici) bewirken meist Bewegungen oder verstärkte Bewegungen der benachbarten Organe: Darm, Blase, Ureteren, Uterus, Samenblasen, Milz (Reizung des Plexus lienalis, Zweig des coeliacus — JASCHKOWITZ); Durchschneidungen und Exstirpationen bewirken meist Circulations- und Ernährungsstörungen. Im Speciellen ist zu erwähnen, dass Exstirpation der Ganglia coeliaca in einem gut constatirten Falle eine vorübergehende Verdauungsstörung bewirkte, bei welcher unverdaute

Nebennieren.

Nahrung per anum entleert wurde (LAMANSKY). Das über die Uterusbewegungen Ermittelte wird im 12. Cap. unter "Geburt" im Zusammenhang angeführt werden. — Die Nebennieren sind nervenreiche, im Innern ganglienähnliche Zellen enthaltende Organe; wegen des Nervenreichthums ist ihre Function von Einigen für nervös gehalten worden, wofür jedoch keine Thatsachen sprechen; über andere Vermuthungen betreffs der Function s. p. 163.

Vierter Abschnitt.

Entstehung, Entwickelung und Ende des Organismus.

Zwölftes Capitel.

A. ALLGEMEINES.

Die Entstehung neuer Organismen ist stets an das Vorhandensein von alten geknüpft. Seitdem die freie Zellbildung fast allgemein verworfen ist, darf man überhaupt aussprechen, dass kein organisches Formgebilde aus formlosem Material, sondern jede Form aus einer bereits bestehenden hervorgeht. Das allgemeine Schema der Neubildung ist entweder das Zerfallen des bestehenden Organismus in Theile, die sich von nun an selbstständig entwickeln, oder die Abspaltung eines sich selbstständig entwickelnden Theiles von dem weiter bestehenden alten Gebilde, welcher entweder mit diesem im Zusammenhange bleibt oder sich von ihm trennt.

Dem eben Gesagten steht gegenüber die noch immer vertheidigte Lehre von der Urzeugung (Generatio spontanea, aequivoca), d. h. die Entstehung von organisirten Wesen aus formlosem Material, z. B. in Gährung oder Fäulniss begriffenen flüssigen Massen. Scheinbare Beweise dafür sind: 1. das Entstehen von pflanzlichen und thierischen Organismen (Pilze, Infusorien) in Aufgüssen organischer Substanzen; 2. das Entstehen von Organismen in völlig abgeschlossenen Höhlen (Entozoen). Jene aber entstehen nachgewiesenermaassen durch die zahlreichen der Luft beigemengten Keime, denn die Infusion bleibt unbelebt, wenn die Luft ohne ihre Beimengungen (durch Ueberbinden der Gefässe mit Filtrirpapier) hinzutritt, oder wenn diese vorher zerstört worden sind (Leitung der Luft durch glühende Röhren). Die Entozoen entstehen aber sicher durch genossene Keime und können in gewissen Stadien ihrer Entwickelung selbst in geschlossene Höhlen einwandern. Trotzdem deutet die Lehre, dass die Erdtemperatur einst so hoch war, dass kein organisirtes Wesen bestehen konnte, darauf hin, dass zu irgend einer Zeit eine wahre Urzeugung stattgefunden haben muss.

Die Achnlichkeit der erzeugten mit den erzeugenden Organismen erstreckt sich nicht bloss auf die allgemeine Form, sondern auch auf besondere Bildungen, welche nicht die Gattung (Genus) oder Art (Species), sondern die Abart (Varietät, Race) characterisiren, so dass selbst zufällig entstandene formelle Eigenthümlichkeiten sich leicht "vererben". Hierauf gründet sich der Versuch, auch die Entstehung der Arten und Gattungen durch vererbte und immer weiter ausgebildete Formabarten zu erklären (DARWIN). Zur Erklärung der Thatsache dass eine einmal vorhandene Formabart sich immer weiter ausbildet, genügt eine Annahme, auf welcher das DARWIN'sche System basirt, nämlich die, dass von den entstehenden Organismen nur ein Bruchtheil die zum Fortbestehen erforderlichen Bedingungen genügend vorfindet, dass demnach unter den entstehenden ein Kampf um das Dasein vorhanden ist. In diesem werden immer diejenigen siegen, deren Eigenschaften für die localen Verhältnisse am günstigsten sind. Ist also in einer Thierart auf irgend eine Weise eine gewisse Formvariation entstanden, welche die betreffenden Individuen für die bestehenden Verhältnisse geeigneter macht (z. B. zur Herbeischaffung der Nahrung, zum Ertragen der Temperatur, zum Kampf gegen Feinde, zur Anlockung des andern Geschlechts zur Begattung), so werden diese bei dem Kampfe um das Dasein unter den gegebenen Umständen die Oberhand behalten, ihre Eigenthümlichkeit wird durch Vererbung sich erhalten und durch weitere Variation in derselben Richtung sich immer mehr von der ursprünglichen Form entfernen. So können von derselben Abstammung in verschiedenen Localitäten so verschiedene Abarten sich ausbilden, dass aus den Varietäten neue Species, aus den Species Genera werden. Dass die Uebergangsformen von einer Species zur andern sich nicht vorfinden können, ergiebt sich sofort, wenn man erwägt, dass unter allen von einer Stammform herrührenden grade die extremen Formen am wenigsten bei dem Kampfe ums Dasein collidiren, die mittleren also am leichtesten zu Grunde gehen. - Eine weitere Durchführung dieses Princips in umgekehrter Richtung gestattet die Anschauung, dass alle thierischen (und pflanzlichen) Formen von nur wenigen, vielleicht einer einzigen Stammform herrühren. - Die DARWIN'sche Anschauung hat noch eine andere fruchtbare Seite; sie ersetzt nämlich auch im Speciellen alle teleologischen Speculationen dadurch, dass sie zeigt, wie von allen zufällig entstandenen Bildungen immer nur die zweckmässigsten sich erhalten konnten, die übrigen aber zu Grunde gehen mussten. - Da die künstliche Thierzüchtung ebenfalls die Erblichkeit gewisser Eigenthümlichkeiten benutzt, und dieselben dadurch weiter ausbildet, dass sie die am meisten damit begabten Individuen vorzugsweise pflegt und zur Fortpflanzung zulässt, so ist das angedeutete Princip von dem Urheber als "natürliche Züchtung" (natural selection) bezeichnet worden.

Zeugungsformen.

Die Grundformen der Zeugung sind folgende:

1. Spaltung des bestehenden Organismus in mehrere gleichwerthige Stücke, welche selbstständig, vereinigt oder getrennt, weiter leben und zur Grösse des alten anwachsen, — Zeugung durch Theilung. Hieran schliesst sich das gesonderte Fortleben der Stücke künstlich getheilter Thiere, welches vielfach beobachtet ist.

2. Abspaltung eines Bestandtheils des alten Organismus, welcher vereinigt mit jenem oder getrennt von ihm sich selbstständig entwickelt, während der erstere weiter besteht. Ist der sich abspaltende Theil ein wesentlicher, mehrzelliger Bestandtheil des alten, der eine Zeit lang oder für immer mit ihm vereinigt bleibt, so nennt man den Vorgang "Zeugung durch Knospenbildung". Ist der sich abspaltende Theil jedoch nur eine einzige Zelle, welche ohne organische Verbindung mit dem Mutterorganismus sich entwickelt, so entsteht eine "Zeugung durch Eibildung" und die sich entwickelnde Zelle heisst "Keimzelle" oder "Ei".

Die Zeugung durch Theilung und durch Knospung kommt nur bei niederen Thierformen vor; dagegen ist die Zeugung durch Eibildung in der ganzen übrigen Thierreihe bis zum Menschen, und auch bei vielen niederen Thieren neben den erstgenannten Zeugungsformen, vorhanden.

Die Eizelle ist das Product eines besonderen Organs, des Eierstocks. Nur bei wenigen Thieren geht die Entwicklung des Eies ohne Weiteres bis zu Ende vor sich (Parthenogenesis). Die Regel ist, dass zur Entwicklung überhaupt, oder wenigstens über eine gewisse niedere Grenze hinaus, der Zutritt eines besonderen Elementes zum Ei erforderlich ist. Dies Element ist der Samen, das Product eines anderen Organs, des Hodens. Eierstock und Hoden sind entweder (bei den höheren Thierformen) auf verschiedene Individuen vertheilt, und dann heisst das eierstocktragende "weiblich", das hodentragende "männlich", - oder sie sind beide in einem einzigen Individuum verhanden, welches dann "hermaphroditisch" genannt wird (bei vielen niederen Thierformen). Der Zutritt des Samens zum Ei heisst "Befruchtung" und die Zeugung durch zu befruchtende Eier "geschlechtliche Zeugung". Die Zeugung durch Theilung, Knospung oder unbefruchtete Eier (Parthenogenesis) heisst im Gegensatze dazu "ungeschlechtliche Zeugung."

480 Geschlechtliche Zeugung. Parthenogenesis. Reife. Fruchtbarkeit.

Unzweifelhaft ist eine Parthenogenesis bis jetzt nur bei wenigen Arten festgestellt; sie kommt hier überall nur neben geschlechtlicher Zeugung vor, und liefert stets nur Individuen eines einzigen Geschlechtes (z. B. bei den Bienen und bei Polistes [einer Wespenart] männliche, bei den Psychiden weib-Das bekannteste Beispiel, das der Bienen, möge hier etwas nähere Beliche). trachtung finden: Im Bienenstocke finden sich drei Arten von Individuen Männchen (Drohnen), zeugungsunfähige Weibchen (Arbeiter) und ein zeugungsfähiges Weibchen (die Königin). Die Königin wird einmal im Jahre bei dem sog. "Hochzeitsfluge" von einem der sie umschwärmenden Männchen befruchtet und kehrt mit gefülltem Receptaculum seminis zurück. Sie ist jetzt im Stande beim Legen die Eier zu befruchten oder unbefruchtet zu lassen; beides geschieht und zwar je nach der Zelle, in welche das Ei gelegt wird; in die Drohnenzellen gelangen unbefruchtete, in die Arbeiterzellen befruchtete Eier. Der Zutritt oder Nichtzutritt des Samens hängt entweder vom Willen (Instinct) der Königin oder von den mechanischen Verhältnissen der Zelle, in welche sie den Hinterleib eindrängt, ab. Ob die befruchteten Eier sich zum verkümmerten Weibchen (Arbeiter), oder zum ausgebildeten Weibchen (Königin) entwickeln, ist von der Fütterung der Larve durch die Arbeiter, vielleicht auch von der Form und Grösse der Zelle abhängig.

Ein Rudiment parthenogenetischer Entwicklung liegt bei vielen Thieren darin, dass unbefruchtete Eier die Anfänge der Entwicklung (erste Stadien der Furchung) durchmachen, dann aber stehen bleiben; dies ist bisher beobachtet beim Schwein (BISCHOFF), beim Kaninchen (HENSEN), beim Huhn (OELLACHEB), bei Salpen (KUPFFEB).

Geschlechtsreife. Fruchtbarkeit.

Die Bedingungen zur Fortpflanzung treten in allen Organismen erst auf einer gewissen Stufe ihrer Entwicklung ein, meist erst wenn das Grössenwachsthum vollendet ist, so dass der bis dahin zur Vergrösserung verwandte Ueberschuss der Einnahmen über die Ausgaben von da ab zur Production der Keimstoffe oder selbst (bei Lebendiggebärenden) zur Ernährung des sich entwickelnden Eies verwandt wird. Bei den geschlechtlich zeugenden Thieren tritt erst um diese Zeit (Zeit der Reife, Pubertät) die vollständige Entwicklung der keimbereitenden Organe (Eierstock, Hoden) ein. Die Fortpflanzung geschieht von hier ab längere Zeit hindurch, oft bis zum Tode, meist in regelmässigen Intervallen. Sehr verschieden in der Thierreihe ist die Zahl der von einem Individuum oder einem Paare gelieferten Nachkommenschaft, - die Fruchtbarkeit. Man kann bei der quantitativen Bestimmung derselben von zwei Gesichtspuncten ausgehen. Betrachtet man die Fortpflanzung als Function des Mutterorganismus im Zusammenhang mit den übrigen, also als Ausgabe im Verhältniss zu den übrigen Ausgaben und den Einnahmen des Stoffwechsels, so kommt es darauf an, das Verhältniss zwischen dem

Fruchtbarkeit. Geschlechtliche Zeugung.

Gewichte des Thieres und dem Gewichte des von ihm gelieferten Zeugungsmaterials in dem Zustande, in welchem es den Körper verlässt (also Eier bei eigebärenden, Jungen bei lebendiggebärenden, Samen bei männlichen Thieren), festzustellen. Solche Bestimmungen (LEUCKART) zeugen eine enorme Verschiedenheit der Zeugungsausgaben; so beträgt z. B. die jährliche Zeugungsausgabe des weiblichen Organismus beim Menschen etwa 1/14, beim Schwein 1/2, bei der Maus fast das 3fache, beim Huhn das 5fache, bei der Bienenkönigin das 110fache des Körpergewichts. Betrachtet man dagegen die Zeugung in ihrer Beziehung zur Erhaltung der Thierart, so muss man statt der Gewichtsvergleichung die Zahl der wirklich entstehenden Nachkommenschaft bestimmen. Die Bestimmungen der ersten Art sind hierfür nicht zu verwenden, weil einmal dasselbe Gewicht an Zeugungsmaterial eine äusserst verschiedene Anzahl von Individuenanlagen bei verschiedenen Thierarten repräsentirt, und weil zweitens für die Befruchtung und Entwicklung eine grosse Anzahl von Umständen zusammentreffen muss, die nur verhältnissmässig selten vorhanden sind, so dass im Allgemeinen nur ein kleiner Bruchtheil des Zeugungsmaterials wirklich seine Bestimmung erfüllt. Die Anzahl der Nachkommenschaft lässt sich aber nur in den wenigsten Fällen direct bestimmen; da man indess annehmen darf, dass das Resultat der Fortpflanzung die Erhaltung der Thierart in einer annähernd constanten Individuenzahl ist, so folgt daraus, dass die Anzahl der Nachkommenschaft in bestimmtem Verhältnisse zur mittleren Lebensdauer der Thierart steht. Bezeichnet man letztere in Jahren mit n, die constante Individuenzahl mit a, so werden innerhalb eines Jahres a/n neue Individuen entstehen. Auf jedes einzelne Individuum kommen also jährlich im Durchschnitt 1/n Junge. Wieviel von dieser Production auf jedes zeugende Individuum kommt, hängt hauptsächlich ab: 1. davon, ob geschlechtlich, d. h. durch Concurrenz von zweien erzeugt wird, 2. von der Zahl der Zeugenden im Verhältniss zur Gesammtzahl, also von der Dauer des Zeugestadiums im Verhältniss zur Lebensdauer. Die Anzahl der producirten Keime wird nun die hieraus sich ergebenden Zahlen um so mehr im Allgemeinen übertreffen, je seltener die Bedingungen zur Befruchtung oder Entwicklung verwirklicht werden.

Geschlechtliche Zeugung.

Das Ei (Ovum, Ovulum) stellt in seiner einfachsten Gestalt eine kugelige Zelle dar, deren meist lecithinhaltiges körniges Proto-Hermann, Physiologie. 5. Aufl. 31

Ei. Brunst.

plasma Dotter (Vitellus) oder Hauptdotter genannt wird; ausser ihm besitzen viele Eier einen (secundär eingelagerten, s. unten) Nebendotter, der mitunter aus eingewanderten Zellen besteht. Der blasenförmige Kern der Eizelle heisst Keimbläschen (Vesicula germinativa) und das Kernkörperchen Keimfleck (Macula germinativa). An vielen Eiern ist eine Zellmembran nicht bestimmt nachzuweisen, und in den meisten Fällen findet man die Zelle mit einer ihr nicht angehörigen mannigfach gestalteten Hülle umgeben, welche, wo eine Eimembran ("Dotterhaut") vorhanden ist, als Auflagerung auf diese betrachtet wird. Diese Hülle ist in der einfachsten Form eine structurlose, ziemlich dicke Membran, so dass sie im optischen Querschnitt als heller Ring erscheint (Zona pellucida der Säugethiere und des Menschen). Bei den meisten Eiern ist sie von zahllosen Porencanälchen durchbohrt, bei einigen mit zottigen Auswüchsen besetzt, die mannigfachsten Formen endlich finden sich bei wirbellosen Thieren. Bei vielen Thieren besitzt die Hülle eine grössere, für die Befruchtung wesentliche Oeffnung, die Micropyle (KEBER); namentlich bei zahlreichen Wirbellosen und bei Fischen, vielleicht auch bei höheren Wirbelthieren. Die chemischen Bestandtheile des Eidotters sind hauptsächlich: Lecithinabkömmlinge (Vitellin, Ichthin, Protagon (?), vgl. p. 35), verschiedene Eiweisskörper, ein dem Hämatoidin verwandter Farbstoff (p. 29), ein stärkeartiger Körper, Salze, Wasser.

In vielen Fällen besitzt das Ei noch accessorische Umhüllungen, die es theils von seiner Bildungsstätte im Ovarium mitnimmt (so der Discus proligerus s. unten; ferner ist das Gelbe des Vogeleies, als der ganze Eierstockfollikel, s. unten p. 487, und als Ovulum nur die sog. "Keimscheibe" oder der "Hahnentritt" anzusehen), theils auf seinem Wege durch die Ausführungsgänge erhält (so wird das Weisse und die Schaalen des Vogeleies dem Ei erst auf seinem durch peristaltische Bewegung erfolgenden Wege durch die Tuba umgossen, daher die spiralige Windung der "Hagelschnüre" [Chalazen]; ähnlich erhält das Kaninchenei eine Eiweissumhüllung in der Tuba).*)

Die Lösung der reifen Eier aus ihrer Bildungsstätte im Ovarium findet zu gewissen Zeiten, den Brunstzeiten statt, welche ein- oder mehrmals jährlich eintreten; die Menge der gleichzeitig

^{*)} Nach neueren Untersuchungen (His) besteht das Gelbe des Vogeleies aus dem eigentlichen Ei (Hauptdotter) mit dem Keimbläschen, und dem Nebendotter, den durch die Zona hindurchgewanderten Zellen der Membrana granulosa des Follikels. Beim Säugethierei wandert höchstens ein kleiner Theil der Granulosazellen in das Ei ein, der Rest bildet das Follikelepithel und den Discus proligerus. Bei beiden wird der ganze Follikelinhalt bei der Eilösung (s. unten) ausgestossen, beim Vogel bleibt er (durch die Zona und die äusseren Hüllen) vereinigt, beim Säugethier gehen die Granulosaabkömmlinge welche ausserhalb des Eies liegen, verloren.

entleerten Eier schwankt von 1 (Mensch) bis zu vielen Tausenden. Nur zur Brunstzeit ist im Allgemeinen eine fruchtbare Begattung möglich.

Der Samen besteht aus mannigfach, für jede Thierart characteristisch gestalteten Körperchen, welche in einer eiweissreichen Flüssigkeit (über deren Bestandtheile s. unten) suspendirt und meist in eigenthümlicher Bewegung begriffen sind. Die Form dieser Samenkörperchen (Zoospermien, Spermatozoen) ist bei allen Wirbelthieren und vielen Wirbellosen ähnlich, sie bestehen aus einem kugligen, ovalen oder cylindrischen (zuweilen korkzieherartig gewundenen) Körper oder Kopf und einem feinen bedeutend längeren Faden oder Schwanz, der fortwährend in peitschender Bewegung begriffen ist. Bei den Wirbellosen zeigen sich mannigfache andere, zum Theil bewegungslose Formen.

Die Befruchtung besteht in einer Berührung des Samens mit dem gelösten Ei. Diese geschieht entweder bereits innerhalb der weiblichen Geschlechtsorgane, indem der Samen in dieselben eingeführt wird, oder ausserhalb derselben, indem der Samen über die bereits entleerten Eier ergossen, oder zufällig (z. B. durch das sie umspülende Wasser) ihnen zugeführt wird. Auch künstliche Befruchtung ist möglich; selbst sehr kleine Mengen Samen scheinen zur Befruchtung zu genügen, sobald sie noch Samenkörperchen enthalten (SPALLANZANI). Die in den erstgenannten Fällen erforderliche Vereinigung des männlichen und weiblichen Körpers heisst Begattung. Sie geschieht bei der Mehrzahl der Thiere in den Brunstzeiten (s. oben), in welchen, im Zusammenhang mit den Zuständen der keimbereitenden Organe, in beiden Geschlechtern der Trieb zur Begattung, der "Geschlechtstrieb", erwacht. Wahrscheinlich ist bei allen Thieren der Act der Begattung mit wollüstigen Empfindungen verbunden.

Das Wesen der Befruchtung ist noch nicht aufgeklärt. Höchst wahrscheinlich ist überall zur Befruchtung das Eindringen eines oder mehrerer Zoospermien in das Innere des Eies erforderlich. Wenigstens hat man an den befruchteten Eiern der verschiedensten Thierarten Zoospermien im Eiinhalt bemerkt. Das Eindringen geschieht, wo eine Micropyle vorhanden ist, vermuthlich durch diese, sonst vielleicht durch actives Einbohren in die Eikapsel; von Beiden sind Andeutungen beobachtet worden. Bald nach der Berührung oder dem Eindringen des Samens beginnt auf unerklärliche Weise veranlasst oder wenigstens gefördert (p. 480), die Entwicklung des

81*

Entwicklung. Bedingungen der Entwicklung.

Eies zum Embryo. Die eingedrungenen Samenfäden verschwinden nach kurzer Zeit; über ihre Veränderungen ist nichts Sicheres beobachtet.

Entwicklung des befruchteten Eies.

Die Entwicklung des Eies beginnt in allen Fällen mit einer Bildung zahlreicher Zellen, durch fortschreitende Theilung der Eizelle, — dem sog. "Furchungsprocess". Aus den gebildeten Zellen entstehen die Organe des Embryo in so mannigfacher Weise, dass allgemein für alle Thiere geltende Principien sich nicht aufstellen lassen. Bei den Eiern mit Nebendotter (Vögel, Amphibien, Fische, strenggenommen auch Säugethiere) findet nur partielle Furchung statt, d. h. es nimmt nicht der ganze Dotter an der Furchung Theil, sondern nur die das Keimbläschen enthaltende Partie desselben, der Hauptdotter (p. 482) oder Bildungsdotter. Der sich nicht furchende Nebendotter, welcher von den Granulosazellen des Follikels herrührt (s. p. 482 und unten p. 488), betheiligt sich nicht morphologisch, sondern nur durch Abgabe seiner chemischen Bestandtheile an den Embryo, am Aufbau des letzteren; man nennt ihn deshalb auch den Nahrungsdotter.

Die Entwicklung des Eies geschieht in den meisten Fällen ausserhalb des mütterlichen Organismus, in den verschiedensten dazu geeigneten Localitäten. In den meisten Fällen ist eine gewisse Temperatur für die Entwicklung erforderlich, welche theils durch die zum Legen gewählte Localität gegeben ist, theils durch Benutzung der Sonnenwärme erreicht wird, theils endlich durch die elterlichen Organismen von ihrer Körpertemperatur abgegeben wird, indem sie mit ihrem Körper die Eier bedecken ("Brütung"); sie kann auch künstlich ersetzt werden ("künstliche Brütung"). Die zweite Bedingung der Entwicklung ist der Zutritt von Sauerstoff. In dem sich entwickelnden Ei finden ebenso wie im entwickelten Organismus Oxydationsprocesse Statt, welche Sauerstoff verzehren und Kohlensäure liefern. Der Verkehr der Gase mit der Atmosphäre oder dem gashaltigen Wasser geschieht durch die porösen Eihüllen hindurch. - In vielen Fällen (innerer Befruchtung) geschieht die Eientwicklung innerhalb des mütterlichen Organismus, in einer Erweiterung der ausführenden Geschlechtsorgane, dem Uterus (z. B. bei den Säugethieren und beim Menschen). Die beiden Bedingungen der Entwicklung sind hier in sehr vollkommener Weise verwirklicht; die Temperatur wird durch den Aufenthalt in dem constant tempe-

484

Geburt. Metamorphosen, Generationswechsel.

rirten mütterlichen Körper erhalten; die Athmung geschieht durch das sehr früh entwickelte Gefässsystem des Embryo, welches an einer der Uteruswand anliegenden Stelle des Eies ein Capillarsystem bildet, dessen Wände mit denen der ebendaselbst stark entwickelten mütterlichen Capillaren in unmittelbarer Berührung sind. Es geschieht also hier, in der "Placenta", ein Uebertritt von Sauerstoff aus dem Blute der Mutter in das des Embryo, und von Kohlensäure auf umgekehrtem Wege. Dasselbe Organ vermittelt auch den Uebertritt von Nahrungsstoffen aus dem mütterlichen in den embryonalen Organismus. Ist die Entwicklung bis zu einem gewissen Grade gediehen, so wird das Ei durch die äussere Geschlechtsöffnung entleert; dieser Vorgang heisst die Geburt.

Modificationen der Entwicklung.

Die Ausbildung des Eies zum vollkommenen, dem erzeugenden ähnlichen Organismus geschieht nicht immer in ununterbrochener Entwicklung. In gewissen Thierclassen bleibt die Entwicklung auf bestimmten Stufen längere Zeit stehen; auf diesen Entwicklungsstufen zeigt der Organismus häufig ganz ähnliche Functionen wie der entwickelte, willkürliche Bewegung, Nahrungsaufnahme und Verdauung etc.; man nennt diesen Zustand den "Larvenzustand", das bekannteste Beispiel bieten die Larvenzustände bei der Entwicklung ("Metamorphose") der Insecten. Selbst Zeugung kommt in solchen Larvenzuständen vor, und zwar Theilung oder Knospung; in diesem Falle nennt man den Vorgang "Generationswechsel". Da die Larven meist eine von dem fertigen Organismus völlig verschiedene Form haben und ihr Leben sich von dem eines ausgebildeten Thieres nicht unterscheidet, so sind zahlreiche Larven als besondere Thierarten beschrieben worden, ehe man ihre Entstehung und weitere Entwicklung kannte. Namentlich in den Fällen des Generationswechsels sind die Larven (hier auch "Ammen" genannt), da die Functionen eines fertigen Thieres selbst mit Einschluss der Vermehrung bei ihnen vorkommen, und ihre Form meist ausserordentlich von der Endform abweicht, lange Zeit für besondere Thierformen, ja für Thiere ganz verschiedener Klassen oder Ordnungen gehalten worden.

Als Beispiele der einfachsten Form des Generationswechsels können die Blattläuse angeführt werden; bei ihnen gehen im Frühjahr aus befruchteten Eiern ungeschlechtliche Junge hervor, welche gleichbeschaffene Jungen lebendig gebären; dies wird mehrere Generationen hindurch fortgesetzt, bis endlich im Spätherbst die Jungen theils männlich, theils weiblich geboren werden, sich begatten und überwinternde befruchtete Eier produciren; im Frühjahr beginnt wieder derselbe Cyclus Die lebendiggebärenden Generationen können nicht etwa als parthenogenetische Weibchen (p. 480) betrachtet werden, weil sie nie sich in die eierlegenden Weibchen der Endgeneration umwandeln können (LEUCKART). -Ein complicirteres Beispiel bilden die Eingeweidewürmer aus der Abtheilung der Cestoden, z. B. der Bandwurm, Taenia solium. Der im Darme des Menschen lebende Bandwurm besteht aus einem Kopf mit Saugnäpfen und Hakenkränzen, und aus einer Kette von Gliedern, welche zunächst dem Kopfe am kleinsten sind, und von hier aus an Länge und Breite zunehmen. Die kleinsten sind die jüngsten, sie entstehen fortwährend neu durch Abschnürung vom sogenannten Halse (Knospung). Jedes Glied ist als Individuum zu betrachten und enthält männliche und weibliche Geschlechtsorgane, von den jüngsten an in fortschreitender Ausbildung. Zwischen den einzelnen Gliedern finden nun Begattungen statt, so dass die ältesten (letzten) stets befruchtete und schon in Entwicklung begriffene Eier enthalten. Diese Glieder ("Proglottiden") werden von Zeit zu Zeit abgestossen und mit dem Kothe entleert. Vermuthlich können nun die Eier wenn sie direct wieder in einen menschlichen Darm gelangen, sich wieder zu Bandwurmköpfen entwickeln und neue Glieder bilden; dies wäre ein Wechsel zwischen zwei Generationen, eine durch Knospung und eine geschlechtlich (hermaphroditisch) sich vermehrend. Der gewöhnliche Vorgang ist aber der, dass die Eier in einem der zahlreichen Thiere, in welche sie mit der Nahrung hineingelangen, und zwar stets vorzugsweise in einer bestimmten Thierart, die Taenia solium z. B. im Schwein, sich entwickeln. Hier bohrt sich der mit Haken versehene Embryo einen Weg in bestimmte zu seinem Aufenthalt geeignete Theile (Leber, Gehirn, Muskeln etc., die Taenia solium z. B. beim Schwein in das Unterhautzellgewebe; - möglicherweise wird ein Theil des Weges durch Eindringen in das Blut, Embolie und Wiederfreiwerden zurückgelegt), und entwickelt dort einen blasenförmigen Anhang (Cyste), in den er sich hineinstülpen kann, So entsteht aus der Taenia solium der Cysticercus cellulosae ("Finne") des Schweins, welcher mit dem Schweinefleisch wieder in den Menschendarm gelangt, seine Blase (durch Verdauung) verliert und Glieder ansetzt Bei anderen, z. B. beim Echinococcus des Menschen etc. (in Leber, Nieren etc., herstammend von der Taenia Echinococcus des Hundedarms) entstehen in einer aus dem Embryo sich entwickelnden kopflosen Blase ("Acephalocyst") viele kleine Cysten mit Taenienköpfen, und häufig in diesen wieder neue Generationen. Hier wechseln also mit der geschlechtlichen Zeugung zwei verschiedene Arten ungeschlechtlicher Zeugung ab, die eine, welche durch mehrere Generationen hindurchgehen kann, durch Knospung von der Embryoblase, die zweite durch Knospung vom Taenienkopfe.

B. ZEUGUNG BEIM MENSCHEN.

Die Fortpflanzung des Menschen geschieht durch geschlechtliche Zeugung mit innerer Befruchtung und intrauteriner Entwicklung. Die Geburt tritt etwa 280 Tage nach der Eilösung ein. Gewöhnlich wird nur ein Ei, selten zwei, noch seltener drei und mehr auf einmal entwickelt.

Die Geschlechtsreife ("Pubertät") tritt beim Menschen etwa im 13.—17. Jahre allmählich ein, beim Weibe etwas früher als beim Manne, ferner früher in heissen Klimaten als in kalten. Ausser der Entwicklung der Geschlechtsorgane (und ihrer Umgebung, z. B. der Schaamhaare) und den damit zusammenhängenden Functionen (Menstruation beim Weibe, Samenergiessungen beim Manne) zeigen sich in dieser Zeit auch mannigfache andere körperliche Veränderungen, so die Entwicklung der Brustdrüsen, des Panniculus adiposus beim Weibe, Stimmwechsel (p. 283), Bartentwicklung beim Manne. Zugleich treten auch gewisse psychische Veränderungen ein und es entwickelt sich der Geschlechtstrieb.

Die Zeugungsfähigkeit dauert beim Weibe etwa bis zum 45. bis 50. Lebensjahre; beim Manne ist noch keine bestimmte Grenze nachgewiesen. Beim Weibe ist auch das Aufhören der Zeugungsfähigkeit und der Menstruation, — die "Involution" — mit gewissen Körperveränderungen, namentlich der Geschlechtstheile verbunden, bei denen aber das Krankhafte vom Normalen noch nicht genügend gesondert ist.

Bereitung der Eier.

Das reife menschliche Ovulum ist eine Kugel von 0,18-0,2^{mm} Durchmesser. Die äussere Hülle ist eine ziemlich dicke, helle, structurlose Membran, welche als heller Ring ("Zona pellucida") erscheint. Eine unter ihr liegende Dottermembran (s. p. 482) ist nicht nachgewiesen. Der Dotter ist ein zähes und körniges Protoplasma, wahrscheinlich contractil; in ihm, meist excentrisch, zeigt sich das Keimbläschen als helle Blase mit dem dunklen Keimfleck. Die Existenz eines den Hauptdotter umgebenden Nebendotters ist wahrscheinlich. Eine "Micropyle" (p. 482) ist nicht mit Sicherheit nachweisbar. Die chemischen Bestandtheile des menschlichen Eies sind vermuthlich die p. 482 angeführten.

Die Bildung des Eies geschieht in den ("GRAAF'schen") Follikeln des Eierstocks, kuglichen Blasen, welche im reifen Zustande etwa die Grösse einer Erbse haben, und in das Stroma des Ovariums eingebettet sind. Ihre Hülle besteht in einer gefässhaltigen bindegewebigen, geschichteten Kapsel, welche innen von einem mehrschichtigen Epithel (Membrana granulosa s. germinativa) ausgekleidet ist. Letzteres ist an einer Stelle zu einem Zellenhaufen (Cumulus s.

Eibildung. Eilösung.

Discus proligerus) gewuchert, in welchen das Ovulum eingebettet ist. Der Hohlraum des Follikels ist von einer gelblichen eiweisshaltigen Flüssigkeit erfüllt.

Die Entwicklung der Ovula und der Follikel geschieht bei den Säugethieren und beim Menschen nach neueren Untersuchungen (PFLÜGER, HIS, WAL-DEYER, KOSTER U. A.) folgendermassen: Die bindegewebige Anlage des Ovariums, ein Theil des Bindegewebes des Wolff'schen Körpers (s. unten, Entwicklung) ist mit einem vom Peritonalepithel verschiedenen Cylinderzellenlager ("Keimepithel") bedeckt, welches sich frühzeitig durch Wucherung verdickt, und in das ebenfalls wuchernde Bindegewebsstroma hineinwächst. Durch die gegenseitige Durchwachsung entsteht ein cavernöses, von Zellen ganz erfülltes Röhrensystem in dem Ovarialstroma (VALENTIN): die sog. Eischläuche. Einzelne der Zellen zeichnen sich bald durch Grösse und Aussehen vor den übrigen aus, es sind die Eizellen (nach PFLÜGER "Ureier", welche erst durch weitere Theilung die Eier bilden). Später schnüren sich die Schläuche zu Abtheilungen ab, deren jede eine, seltener mehrere Eizellen, umgeben von den kleineren Inhaltszellen (Granulosazellen) enthält; in diesen Abtheilungen, den Anlagen der Follikel, entsteht dann im Zellenlager eine mit Flüssigkeit erfüllte Höhle, welche ringsum vorschreitet und das Zellenlager in eine der Follikelwand anliegende (Membr, granulosa) und in eine mit dieser in Zusammenhang bleibende, das nunmehr wandständige Ei umgebende Zellschicht (Cumulus proligerus) theilt. Beim Reifen der Eier erhalten diese ihre Zona pellucida und den Nebendotter, beides wahrscheinlich Producte der dem Ei unmittelbar anliegenden Schicht von Granulosazellen (diese Schicht zeichnet sich durch Cylindergestalt der Zellen aus). Wo der Nebendotter aus Zellen besteht, sind dies durch die Zona eingewanderte Granulosazellen; beim Vogelei sind alle Granulosazellen eingewandert, und das Gelbe stellt den ganzen Follikel (ohne Liquor) dar (p. 482 Anm.).

Von den Follikeln des Ovariums gelangen in bestimmten Intervallen einer oder mehrere "zur Reife"; d. h. ihre Grösse und Wandspannung nimmt durch Vermehrung des flüssigen Inhalts so bedeutend zu, dass sie platzen; da die reifenden Follikel jedesmal sich der Oberfläche des Ovariums nähern, und vor dem Bersten unmittelbar unter der Bindegewebshülle desselben liegen, so gelangt der ausfliessende Inhalt sammt dem in die Zellen des Cumulus proligerus gehüllten Ei unmittelbar in die Bauchhöhle. Dadurch aber dass sich vor dem Bersten die ausgefranzte Mündung der Tuba an die Ovarialfläche so anlegt, dass sie kelchartig die Stelle des Follikels umfasst, gelangt das Ei (mit seltenen Ausnahmen, die dann zur Bauchschwangerschaft führen können) in den Canal der Tuba, und wird durch dessen nach aussen gerichtete Flimmerbewegung in den Uterus getrieben. Der Vorgang der Eilösung ist mit einer capillaren Blutung der Uterinschleimhaut verbunden, welche als Menstruation (Regel, monatliche Reinigung) bekannt ist. Die Eilösung geschieht beim Weibe während

Menstruation. Corpus luteum.

des Geschlechtslebens, mit Ausnahme der Schwangerschaft und Säugezeit, alle 28 Tage; fast stets wird Ein Ovulum, selten zwei oder mehr auf einmal entleert; die Blutung hält meist mehrere Tage an. Bei Säugethieren geschieht die Eilösung (Brunst) seltener (1 oder mehreremal jährlich), und hier werden gewöhnlich viele Ovula in kurzer Zeit entleert; auch hier ist ein Blutabgang aus den Genitalien vorhanden. Die Bedeutung dieser Blutung scheint eine "Anfrischung" (im chirurgischen Sinne) der Uterinschleimhaut zu sein, behufs Aufnahme des Eies, falls dasselbe befruchtet wird (PFLÜGER); hierfür spricht, dass Thiere, welche mehrere Placentarstellen haben (s. unten), nur aus diesen Placentarstellen zur Brunstzeit bluten. - Die geplatzte und entleerte Follikelwand, welche meist einen bei der Zerreissung hineingelangten Bluttropfen einschliesst, verändert sich (zum Theil schon vor der Berstung) in eigenthümlicher Weise. Die Zellen der Membrana germinativa wuchern zuerst und füllen sich mit einem gelben Fette an, während die Kapsel selbst immer weniger von dem Stroma des Ovarium zu unterscheiden ist. So entsteht das sog. "Corpus luteum", welches wiederum immer mehr in das Innere des Ovariums hineinrückt. Nachdem es eine gewisse Grösse erreicht hat (meist schon vor dem Eintritt der nächsten Menstruation: denn man findet meist nur einen gelben Körper im Ovarium), schrumpft es zu einer bald unkenntlichen, zuweilen Pigmentkrystalle (Hämatoidin, von dem Bluttropfen herrührend) enthaltenden Narbe zusammen. Auch an der Rissstelle der Ovarialhülle bleibt eine Narbe zurück, so dass die ursprünglich glatte Oberfläche mehr und mehr uneben wird. -Während der Schwangerschaft wird das zuletzt entstandene Corpus luteum viel langsamer und zu einer viel bedeutenderen Grösse entwickelt, so dass man, vor der Erkenntniss der periodischen Eilösung (BISCHOFF), jene allein als "corpora lutea vera" bezeichnete. --Dass bei der Menstruation entleerte Blut ist mit Uterinschleim, besonders mit Epithelzellen und Schleimkörperchen vermengt; wahrscheinlich rührt daher seine grössere Alkalescenz und seine Unfähigkeit zu gerinnen.

Die Vorgänge bei der Menstruation sind noch in vieler Beziehung dunkel; namentlich ist die Ursache der periodischen Follikelreifung, ihr Zusammenhang mit der Uterinblutung, der eigenthümliche Weg der Follikel im Ovarium vor und nach der Berstung, besonders aber die Anlegung des Tubenendes noch nicht hinreichend aufgeklärt. — Die Entdeckung von eigenthümlich gelagerten glatten Muskelfasern in der den Uterus, die Tuben und die Ovarien tragenden Peritonealfalte (ROUGET) scheint die Erklärung für die Mehrzahl dieser Erscheinungen anzudeuten. Es sollen dieselben erstens die Anlegung der Tubenmündung an

Samen,

das Ovarium, und zweitens durch Compression der Venenstämme eine Blutstauung in den Geschlechtsorganen bewirken; die Folge derselben soll eine Art Erection in den den Corpora cavernosa (s. unten) ähnlich gebauten Gefässen sein, welche im Uterus zur Hämorrhagie, im Ovarium aber zur Vermehrung des Inhalts eines Follikels durch Transsudation und schliesslich zum Bersten desselben führt.

Von den weiteren Veränderungen der gelösten Ovula wird erst weiter unten, bei der Befruchtung die Rede sein.

Bereitung des Samens.

Der menschliche Samen, in dem Zustande, in welchem er entleert wird, ist eine sehr zähe, klebrige, weissliche, alkalische Flüssigkeit von eigenthümlichem Geruche, welche an der Luft dünnflüssiger wird. Sie ist ein Gemisch aus den Secreten der in die ausführenden Wege mündenden Drüsen mit dem ursprünglichen Hodensecret, welches alkalisch oder neutral und geruchlos ist und leichter eintrocknet. -Der Samen enthält in grosser Zahl die etwa 0,05 mm langen Samenkörperchen mit mandelförmigem Körper und nach dem Ende zu immer feiner werdendem Schwanze. Die Bewegungen derselben sind pendelnde oder wellenförmige Schwingungen des Schwanzes, durch welche der Körper mit einer Geschwindigkeit von etwa 0,05-0,15 mm in der Secunde in grader Richtung vorwärts getrieben wird, bis ein Widerstand die Richtung ändert. Die Bewegung ist am schnellsten im eben entleerten Samen, sehr langsam oder auch ganz fehlend im Samen des Hodens. Ihre Dauer hängt von sehr vielen Umständen ab; im Allgemeinen von ähnlichen wie die Flimmerbewegung (p. 259). Am längsten erhält sie sich in Flüssigkeiten deren Concentration der des Samens gleich ist oder nahe steht, namentlich lebhaft in den Secreten der Samenausführungswege (Prostatasaft, Cowper'sches Secret, etc.), auch in denen der weiblichen Genitalien; in sehr verdünnten Flüssigkeiten hört sie bald auf, in Wasser, Speichel sogleich. Unabhängig vom Concentrationsgrade heben sie auf: viele Metallsalze, Mineralsäuren, alkoholische und ätherische Substanzen, u. s. w. Dagegen wirken die caustischen Alkalien unter Umständen wieder belebend (p. 260). Die Ursache der Bewegung ist gänzlich unbekannt; die einen halten den Kopf für das active Bewegungsorgan (GROHE), die Andern den Schwanz (Schweigger-Seidel, v. LA VALETTE ST. GEORGE); über die Beziehungen zu den Protoplasma- und Flimmerbewegungen ist schon im 8. Capitel gesprochen worden.

Die hauptsächlichsten chemischen Bestandtheile des Samens sind: Eiweisskörper, Protagon, Fette (?), Wasser und Salze (Kalisalze, Phosphate).

Die Bildung des Samens geschieht in den Hoden so, dass die Zellen der Hodencanälchen die Samenfäden liefern. Die Angaben über die Bildung der letzteren beim Menschen sind noch nicht sicher. Höchst wahrscheinlich entstehen mehrere oder viele Samenfäden in Einer Zelle, und zwar aus kernartigen (von dem eigentlichen Zellkern aber beim Frosche wohl zu unterscheidenden) ovalen Bläschen, deren jedes an einem Ende zum Schwanze des Samenfadens auswächst; zuletzt zerfällt die Zelle, wobei die Samenfäden frei werden; zuweilen sind an ihnen Fragmente der Zelle zu erkennen (Kölliker). Nach Andern sind die samenbildenden Zellen einkernig, und der Kern wächst als Kopf des Samenkörperchens aus der Zelle auf einer Seite heraus, während gegenüber das Zellprotoplasma als Schwanz des Samenkörperchens hervorwächst (v. LA VALETTE ST. GEORGE). Die samenbildenden Zellen entstehen durch Theilung aus den in der Axe der Hodencanälchen liegenden Drüsenzellen (neuerdings werden hierüber abweichende Angaben gemacht, die aber streitig sind). Die Flüssigkeit des Samens entsteht durch unbekannte Secretionsvorgänge der Hodencanälchen; möglicherweise gehen die specifischen Bestandtheile aus denselben Zellen, welche die Samenfäden liefern, hervor. Die Samenfäden der Hodencanälchen zeigen keine oder nur schwache Bewegungen. Die Samenbildung geschieht wie es scheint continuirlich. Ueber die secretorischen Nerven ist Nichts bekannt,

Der gebildete Samen gelangt, nachdem er das schwammige Höhlensystem des Corpus Highmori und die Canäle des Nebenhodens passirt hat, durch das Vas deferens in die Samenblasen, in welchen er sich ansammelt. Auf diesem Wege mischt er sich mit dem Secret der namentlich am unteren Ende zu traubigen Drüsen ausgestülpten Schleimhaut des Vas deferens und mit dem der Samenblasen.

Die Entleerung des Samens geschieht reflectorisch durch Reizungen des Penis, bei der Begattung (s. unten), im Schlafe wohl auch durch schwächere, mit wollüstigen Träumen verbundene Reizungen (Pollutionen durch Harndrang etc.). Stets muss im normalen Zustande eine Erection des Penis vorangehen, d. h. eine strotzende Blutanfüllung der drei Corpora cavernosa, wodurch der Penis verlängert und zu einer abgerundet prismatischen Form gesteift wird; zugleich richtet er sich in die Höhe (wegen der Kürze des Aufhängebandes) und nimmt eine leichte nach der Bauchseite concave Krümmung an. Das Wesen der Erection ist noch nicht hinreichend aufgeklärt. Die Corpora cavernosa bilden ein communicirendes Höhlensystem, in welches die feinsten Verzweigungen der in den Septis verlaufenden Arterien einmünden, und aus welchen die Venen her-

Erection

vorgehen. Da die Septa glatte Muskelfasern enthalten, also das Lumen der Corpora cavernosa activ verändern können, so sind zwei Erklärungen für die Erection möglich, nämlich: 1. eine Hemmung des Blutabflusses aus den Schwellkörpern durch Compression der abführenden Venen; 2. ein vermehrter Zufluss durch Nachlass einer im Ruhezustande vorhandenen tonischen Contraction (Kölliker). --Beides scheint in der That stattzufinden, wie folgende Erfahrungen zeigen: 1. Nachlass einer tonischen Gefässverengerung. Beim Hunde giebt Reizung der Nn. erigentes (Fäden die vom Plexus ischiadicus zum Plexus hypogastricus gehen) Erection (ECKHARD); bei dieser Reizung bluten zugleich angeschnittene Arterien des Penis stärker (Lovés); die Erection kann daher nicht bloss von verhindertem Abfluss herrühren, sondern es muss eine Erschlaffung einer Gefässcontraction vorliegen, deren Modus noch unbekannt ist; der Druck in den Penisgefässen erreicht auch bei stärkster Erection nur 1/6 des Drucks in der Carotis (Lovén). Die Wirkung der Erectionsnerven kann der der Chordafasern auf die Speicheldrüse (p. 90) an die Seite gestellt werden. Die vasomotorischen Fasern des Penis gehen durch den N. pudendus und die N. dorsales penis; Durchschneidung derselben bewirkt für sich keine Erection, verhindert aber die Erection für die Zukunft (HAUSMANN & GÜNTHER). - 2. Eine Compression der abführenden Venen scheint stattzufinden, namentlich beim Maximum der Erection: a. durch den M. transversus perinaei, durch den die Vv. profundae hindurchtreten (HENLE) b. durch trabeculäre, aus glatten Muskelfasern bestehende Vorsprünge in den Venen des Plex. Santorini (LANGER), c. dadurch dass die Vv. profundae durch die Corpora cavernosa selbst hindurchtreten (LANGER). - Das nächste Centrum für die Erection liegt im Lendentheil des Rückenmarks (GOLTZ). Nach Durchschneidung der Grenze zwischen Hals- und Brustmark bewirkt bei Hunden mechanische Penisreizung noch reflectorische Erection (starke Reizung sensibler Nerven verhindert diesen, wie andere Reflexe, p. 440), nicht aber nach Zerstörung des Lendenmarks. Das Gehirn steht mit diesem Centrum in Verbindung; dies ergiebt sich schon aus der Erection durch psychische Zustände; ferner tritt bei Reizung der Pedunculi cerebri, des Halsmarks etc. (Ségalas, Budge, ECKHARD), so auch bei Erhängten häufig, Erection ein.

Die zu den Corpora cavernosa führenden Arterien (Arteriae helicinae) haben einen stark gewundenen Verlauf, wodurch eine starke Volumzunahme des Penis ohne Zerrung der Arterien möglich wird.

Begattung.

Die Erection tritt bei jeder Aufregung des Geschlechtstriebes ein, und ist die Einleitung zur Samenentleerung. Letztere geschieht indess erst nach einer mechanischen Reizung des erigirten Penis, wie sie bei der Begattung durch die Reibung desselben an den unebenen Wandungen der Scheide bewerkstelligt wird. Sie tritt also als Reflexbewegung ein.

Die Entleerung des Samens aus den Samenbehältern in die Harnröhre geschieht wahrscheinlich durch peristaltische Contractionen der Samenleiter und Samenblasen, die Entleerung aus der Harnröhre aber durch rhythmische Contractionen der Mm. bulbo- und ischiocavernosi. Der Weg zur Blase ist durch die Erection des Caput gallinaginis abgeschnitten, welche zugleich die Harnentleerung während der Erection verhindert. Dem sich entleerenden Samen mischt sich das Secret der Prostata und der Cowpen'schen Drüsen bei (s. oben). Auch in den weiblichen Geschlechtsorganen treten durch die sensiblen Reize beim Coitus gewisse Reflexbewegungen ein, welche wahrscheinlich hauptsächlich die Aufnahme des Samens in die inneren Genitalien befördern. Als solche werden angegeben: eine senkrechtere Aufstellung des Uterus (vielleicht durch Erection desselben, --ROUGET) und vermuthungsweise peristaltische Bewegungen des Uterus und der Tuben, nach dem Ovarium gerichtet, welche bei Thieren wenigstens beobachtet sind. Diese würden erklären, wie ein Theil des Samens trotz der entgegengesetzt gerichteten Flimmerbewegung zum Ovarium geleitet wird, ein Vorgang für welchen die regellose Bewegung der Zoospermien nicht verwerthet werden kann. Nach der Ejaculation hört die Erection und die psychische und physische Aufregung sehr schnell auf, beim Manne früher als beim Weibe; bei beiden Geschlechtern folgt eine andauernde Ermattung nach.

Befruchtung.

Der Ort der Berührung zwischen Ovulum und Samen ist noch nicht sicher festgestellt, höchst wahrscheinlich geschieht sie meist auf dem Ovarium selbst oder in der Nähe desselben in den Tuben; denn man findet häufig bei Säugethieren nach der Begattung die Oberfläche der Ovarien mit Samenfäden bedeckt (BISCHOFF); hierdurch sind auch die zuweilen vorkommenden Ovarial- und Abdominalschwangerschaften zu erklären. Eng hängt hiermit die Frage zusammen, ob mit der Begattung eine Eilösung ähnlich der men-

Befruchtung. Decidua.

strualen verbunden ist, oder ob bei fruchtbaren Begattungen nur die durch die Menstruation vorher oder später gelösten Ovula befruchtet werden. Für das letztere spricht die Analogie mit den Säugethieren, die nur zur Brunstzeit befruchtet werden können. Da nun das menschliche Weib zu jeder Zeit befruchtet werden kann, so muss man, wenn die Begattung nicht direct eine Eilösung bewirken kann, annehmen, dass entweder das noch vorhandene und befruchtungsfähige Ovulum der letzten Menstruation befruchtet wird, oder dass der Samen sich bis zur nächsten Eilösung befruchtungsfähig in den weiblichen Genitalien, vielleicht auf dem Ovarium erhält. Vielleicht kommt Beides vor.

Ueber den Vorgang der Befruchtung und ebenso über die ersten Stadien der Entwicklung existiren beim Menschen keine directen Beobachtungen. Man ist daher hier auf die Analogie der Säugethiere angewiesen, welche bei der folgenden Darstellung der Entwickelungsvorgänge fast durchweg benutzt ist. Die jüngsten durch Fehlgeburten oder durch den Tod der Mutter erhaltenen befruchteten menschlichen Eier sind aus ziemlich späten Stadien der Entwickelung.

Das befruchtete Ei gelangt höchst wahrscheinlich durch die Flimmerbewegung der Tubenschleimhaut in den Uterus, an dessen Schleimhaut es sich festsetzt. Man findet es regelmässig von der Uterusschleimhaut überwachsen. Vermuthlich geschieht dieser Vorgang so, dass die umgebenden Partien der Schleimhaut durch starke Wucherung über das Ei hinüberwachsen und dieser hinübergewachsene Theil (Decidua reflexa) sich mit dem Ei vergrössert. Nach einer andern Ansicht gelangt das Ei hinter die Uterinschleimhaut (Decidua vera), (nach FUNKE, indem es in eine Uterindrüse, wie es beim Meerschweinchen wirklich nachgewiesen ist, sich einsenkt, und deren Grund durchbohrt), und stülpt diese als Decidua reflexa vor sich her. Später, nach der Ausbildung der embryonalen Gefässe findet eine innige Verflechtung derselben mit den mütterlichen der Uterinschleimhaut statt (Placenta). - Die starke Entwickelung eines Corpus luteum (verum, s. p. 489) während der Schwangerschaft spricht dafür, dass die periodische Eilösung während derselben unterbrochen ist. Die Unterbrechung dauert während der Säugezeit fort, wie das Fehlen der Menstruation, und noch sicherer der Mangel frischer Corpora lutea während des Säugens beweist.

Eine beginnende Deciduabildung durch Wulstung der Schleimhaut scheint bei jeder Eilösung zu geschehen und die Ursache zur menstrualen Blutung zu sein (PFLÜGER, vgl. p. 489).

Furchung. Keimblase.

C. EIENTWICKLUNG BEI SÄUGETHIEREN UND BEIM MENSCHEN.

Furchung.

Der erste Vorgang der Eientwickelung ist die Furchung Sie beginnt bei Säugethieren schon wenige Stunden (p. 484). nach dem Contact des Samen mit dem Ei, resp. dem Eindringen der Samenfäden in den Dotter (vielleicht schon früher, vgl. p. 480), so dass das Ei erst auf einer späteren Entwicklungsstufe in den Uterus gelangt. Die Furchung besteht in einer fortschreitenden Zelltheilung, bei welcher jede kugelige Zelle in zwei Halbkugeln zerfällt. Ob die erste Zelle mit der Eizelle (dem Hauptdotter) identisch ist, oder errst durch Umwandlungen derselben entsteht, ist zweifelhaft; ebenso das Verhalten des Keimbläschens, welches vor der Furchung unsichtbar wird, und der Modus der Zelltheilung und der Bildung resp. Theilung der Zellkerne. Die Furchung schreitet sehr schnell vorwärts (Dauer beim Menschen unbekannt, beim Kaninchen einige Tage, beim Hunde über 8 Tage), und liefert zuletzt eine grosse Menge kleiner, kugeliger, stark lichtbrechender Zellen, welche zusammen ein maulbeerförmiges Aussehen haben.

Während der Furchung verliert das Ei in der Tuba den Discus proligerus (p. 488) und umgiebt sich entweder wie das Kaninchenei (p. 482) mit accessorischen Hüllen, oder die Zona erhält später im Uterus (z. B. beim Menschen) die erste Anlage feiner radial gestellter Zotten, welche sich verzweigen und eine dichte zottige Hülle um das Ei bilden; die Zona erhält dann den Namen Chorion (frondosum).

Anlage des Embryo.

Die Verwendung der durch die Furchung entstandenen Zellen zum Aufbau des Embryo beginnt mit einer Anlagerung des grössten Theils derselben an die Zona zur Bildung einer geschlossenen Membran, Keimblase (Umhüllungshaut, REICHERT). An einer Stelle derselben bildet sich eine grössere Anhäufung von Zellen, welche direct zur Bildung des Embryo bestimmt ist, der Fruchthof. Die durch jene Anlagerung sowie durch die Vergrösserung des Eies gebildete Höhle ist mit Flüssigkeit gefüllt, oder enthält bei den Eiern mit Nahrungsdotter (p. 484) den letzteren.

Zum Verständniss der Embryonalentwicklung ist eine von der gewöhnlichen descriptiv-anatomischen etwas abweichende Betrachtung des ausgebildeten Körpers erforderlich. Denkt man sich ein Säugethier mit kurzem gradgestrecktem Darm, und sieht man zunächst

496 Schema des Säugethierkörpers. Abschnürung des Embryonalrohrs. Nabel

von allen drüsigen Eingeweiden gänzlich ab, so lässt sich der Körper als ein Rohr betrachten, dessen Lumen das Darmlumen ist, und dessen Wand aus vielen concentrischen Schichten zusammengesetzt ist, nämlich von innen nach aussen: Darmschleimhaut, Darmmuskelhaut, Darmserosa, Rumpfserosa (parietales Blatt des Peritoneum), Rumpfmuskel- und Knochenschicht, Rumpfhaut. Alle diese Schichten sind mit einander verwachsen; nur zwischen Darm- und Rumpfserosa (visceralem und parietalem Peritonealblatt) existirt, bis auf das in der hinteren Medianlinie befindliche Mesenterium, keine Verwachsung, sondern eine Höhle, die Pleuroperitonealhöhle, welche aber leer ist, deren Wände also stets sich vollständig berühren. Das Rohr besitzt eine vollkommene bilaterale Symmetrie. Die Extremitäten, welche kein Lumen haben, können als massive Auswüchse der äusseren Rohrwandung betrachtet werden.

Die embryonale Entstehung dieses Rohrs ist nun im Ganzen folgende: Die Wand entsteht als eine Anfangs platte Verdickung der zuerst gebildeten, das ganze Ei umfassenden Keimblase, - der Fruchthof; diese verdickte Stelle spaltet sich nach und nach in die verschiedenen, den Wandschichten entsprechenden Blätter. Das Lumen aber (Darmlumen, s. oben) ist ein Theil des Lumens der Keimblase, welcher sich dadurch von dem Reste absondert, dass der verdickte, zur Embryonalwand werdende Theil der Keimblase von dem Reste ("dem peripherischen Theile") derselben in Form eines länglichen Rohres sich abschnürt. Der abgeschnürte Rest der Keimblase heisst dann Nabelblase (bei den Eiern mit Nahrungsdotter [vgl. oben]: Dottersack), und die durch die fortschreitende Abschnürung immer enger werdende und zuletzt sich canalförmig ausziehende Communicationsöffnung zwischen dem Lumen des Embryo (Darmlumen) und dem der Nabelblase heisst Nabelgang oder Ductus vitello-intestinalis s. omphalo-entericus. Die zuletzt ringförmig werdende Abschnürungsfalte selbst aber ist der Nabel; da die Verdickung und selbst die Schichtspaltung der Keimblase sich nicht auf das sich abschnürende Stück beschränkt, sondern über die Abschnürungsfalte fort sich eine Strecke weit in den peripherischen Theil der Keimblase fortsetzt, so besteht auch die Nabelwand aus mehreren den Embryonalschichten entsprechenden Schichten.

Die Schichtbildungen in dem Fruchthof oder der Embryonalwand, welche zum grössten Theil schon vor dem Beginn der Abschnürung erfolgen, werden verschieden angegeben. Es soll hier nur Eine Ansicht (der Hauptsache nach die REMAK'sche) durchgeführt,

Keimblätter.

die übrigen aber nachträglich berücksichtigt werden. Es bilden sich drei Schichten, sog. Keimblätter, in der flachen, zuerst ovalen, später biscuitförmig werdenden Verdickung der Keimblase. Die äusserste oder oberste, das sensorielle oder Sinnesblatt, ist die Anlage des Hautepithels mit seinen Anhängen, den Hautdrüsen, und des Centralnervensystems (Hirn und Rückenmark) mit seinen Fortsätzen, den höheren Sinnesorganen. Das Centralnervensystem entsteht aus dem mittleren (Axen-) Theil des Blattes, welcher für sich Medullarplatte heisst, das Hautepithel aus dem peripherischen Theil, dem Hornblatt. - Das innerste (unterste) Keimblatt ist das Darmdrüsenblatt, die Anlage des Darmepithels mit seinen Fortsetzungen, dem Epithel und den Drüsenzellen der in das Darmrohr mündenden Drüsen. - Zwischen beiden liegt das mittlere Keimblatt, das motorisch-germinative Blatt, aus welchem sämmtliche übrigen, aus Bindesubstanzen, Muskeln, Gefässen und Nerven bestehenden Körpertheile, sowie die Harn- und Geschlechtsorgane sich bilden, die Hauptmasse des Organismus. Dieses Blatt spaltet sich schon sehr früh in zwei Platten; die äussere bildet die Rumpfwand, die innere (Darmfaserplatte) die Darmwand mit Ausnahme des Epithels; das Lumen der Spalte bildet die schon erwähnte Pleuroperitonealhöhle. Dadurch dass die Spaltung in der Medianlinie ausbleibt, erhält sich hier eine Verwachsung zwischen Rumpf- und Darmwand, die Anlage des Mesenterium. (Vgl. unten Fig. 43, II., III., IV.)

Entwicklungsvorgänge im Fruchthofe.

In jeder der drei Schichten erfolgen neben dem bereits besprochenen Abschnürungsprocesse gewisse Entwicklungsvorgänge, durch welche sie sich zu ihrem späteren Zustande umgestalten. Die hauptsächlichsten derselben sind: 1. im äusseren Keimblatte die Abschnürung der Medullarplatte von dem Hornblatte und Umwandlung der ersteren in eine Röhre; — 2. im mittleren die mit der Wirbelanlage beginnende Skelettentwicklung, ferner die bereits erwähnte Spaltung und die Bildung des Gefässsystems; — 3. im äusseren und im innersten Blatt das Hineinwachsen von Ausstülpungen des Epithels in die unterliegenden vom mittleren Blatt gebildeten Gewebe, wodurch diese zu hohlen, theilweise in die Rumpfhöhle hineinragenden Fortsätzen, — Drüsenanlagen, — ausgestülpt werden.

Hermann, Physiologie. 5. Aufl.

Medullarrohr. Chorda, Urwirbel.

Acusseres Keimblatt.

1. Am frühesten erfolgt der erstgenannte Vorgang. Die zuerst freiliegende Medullarplatte erhält in der Medianlinie eine Längsfurche, und die dadurch gebildeten beiden symmetrischen Seitenhälften wölben sich gegen einander zusammen, indem sie die seitlich angehefteten Hornplatten über sich hinüberziehen. Die Ursache dieses Vorganges ist das Hervorwachsen von Fortsätzen des mittleren Blattes, welche sich zwischen die sich gegeneinander wölbenden Medullarplatten und das Hornblatt einzudrängen streben. Endlich sind die Medullarplatten zum Medullarrohr geschlossen und die an der Schlussfuge noch angehefteten Hornblätter werden zuletzt durch die Vereinigung der beiderseitigen Fortsätze des mittleren Blattes hier von dem Medullarrohr völlig abgetrennt, so dass dies jetzt vollkommen von einer Fortsetzung des mittleren Blattes umwachsen ist. Diese Umwachsung bildet den Spinalbogen sammt Muskeln, Bändern und Rückenhaut, welche letztere von dem Hornblatt (Epidermis) überkleidet wird, - am Vorderende (Kopfe) aber die Schädelkapsel. Das Medullarrohr wird zum Rückenmark und Hirn, sein Lumen zum Centralcanal des Rückenmarks mit seiner Hirnfortsetzung, den Hirnventrikeln. (Vgl. unten Fig. 43, II., III., IV.)

Mittleres Keimblatt.

2. Die gleichzeitig beginnenden Entwicklungsvorgänge im mittleren Keimblatte betreffen zunächst die Anlage des Wirbelsystems. Das Centrum derselben ist ein in der Medianebene verlaufender, sehr früh sichtbarer Streifen, die Chorda dorsalis. Zu beiden Seiten derselben zeigen sich zwei längsverlaufende Platten, die Urwirbelplatten, welche sich durch Querlinien in eine Anzahl von Urwirbeln theilen. Der Rest des mittleren Keimblatts, soweit er dem Fruchthof angehört, bildet die Seitenplatten. Die Bestimmung der Urwirbel ist folgende: Sie senden nach der Rückseite die "Spinalfortsätze" empor, deren Einfluss auf die Rohrbildung des Cerebrospinalorgans und schliessliche Vereinigung zwischen diesem und dem abgetrennten Hornblatt bereits erwähnt ist. Nach innen dagegen umwachsen sie die Chorda (s. unten Fig. 43, II. und fgde.). Ihre Substanz wandelt sich in mannigfache Gebilde um, nämlich in die Wirbelsäule mit ihren Fortsätzen, den Rippen, ferner die zugehörigen Muskeln, die Spinalnerven und die Rückenhaut. Die Wirbelkörper entstehen aus dem die Chorda umwachsenden Theil, jedoch so, dass in dem mittleren Querschnitt jedes Urwirbels ein Intervertebralknorpel, und aus je zwei an einander grenzenden Hälften zweier Urwirbel ein bleibender Wirbelkörper entsteht.

In den Seitenplatten geschieht ferner die bereits oben erwähnte Spaltung der Embryonalwand in die beiden Platten, die innere, Darmfaserplatte, und die äussere, Hautplatte oder Visceralplatte. Die Spalte bildet die Pleuroperitonealhöhle, die inneren, ungespaltenen, allmählich in der Medianlinie auf der Bauchseite der Wirbelsäule zusammenrückenden Ränder der Seitenplatten bilden die Mittelplatten, die Anlage des Mesenterium, der foetalen Harn- und der Geschlechtsorgane. Die ersteren entstehen als eine strangförmige Verdickung der Mittelplatten, welche später hohl wird, nach Anderen als eine Ausstülpung der Pleuroperitonealhöhle, der WOLFF'sche Canal; über dessen weitere Entwicklung und die übrigen urogenitalen Anlagen s. unten.

Der dritte Vorgang in dem mittleren Keimblatte ist die Entstehung des Gefässsystems. Die erste Entwicklung desselben erfolgt in dem gespaltenen Theil des mittleren Keimblatts in der Darmfaserplatte, und setzt sich nach aussen in den noch ungespaltenen peripherischen Theil des mittleren Keimblatts fort. Der noch nicht sicher festgestellte Modus der Gefäss- und Blutbildung ist nach den meisten Angaben der, dass sich netzförmig anastomosirende Zellbalken sondern, deren peripherische Zellenschicht zur Gefässwand, deren centrale Zellen zu den, zuerst farblosen und kernhaltigen, Blutkörperchen werden; nach einer neueren Angabe (KLEIN) entstehen die Gefässe aus hohl werdenden Zellen, welche sich verlängern und zusammenfliessen, und aus deren Kernen die Blutkörperchen hervorgehen. Die Grenze der Gefässbildung überschreitet sehr bedeutend (s. oben) die Abschnürungsfalte; die Gefässbildung nimmt einen beträchtlichen, kreisförmig begrenzten Theil der Keimblase ein, welcher Area vasculosa genannt wird. Das erste Gefäss, welches kurz vor der allgemeinen Gefässbildung angelegt wird, liegt in der Darmfaserplatte, und zwar in dem vordersten, bereits durch die Abschnürung zum Rohre geschlossenen Theil derselben, - es ist das Herz.

Zur Veranschaulichung der Lage des Herzens diene Folgendes: Die Abschnürungsfalte schreitet am Kopfe und am Schwanze schneller vor, als längs der Seiten. Auf einer gewissen Stufe der Entwicklung gleicht daher die sich abschnürende Embryonalwand einem hinten etwas niedergetretenen Schuh (s. unten Fig. 43, I), dessen freie Ränder sich in den Rest der Keimblase umschlagen. Die Oeffnung des Schuhes ist der noch sehr weite Nabel, der Hohlraum wird zum Darmlumen, längs der Medianlinie der Sohle (Rücken des Embryo) verläuft

32*

Anlage des Gefässsystems.

das Cerebrospinalrohr. Die Wände des Schuhes sind durchweg doppelt, bis auf einen in der Medianlinie der Sohle verlaufenden Streifen (Mesenterium); oben an der Schuhspitze und dem obersten Theil des Vorderblattes ist ebenfalls die Wand einfach, Körper- und Darmwand gemeinsam; der ungespaltene obere Theil des Vorderblatts heisst Schlundplatte. Von der Keimblase aus kann man durch den Nabel in den vorderen, bereits zum Rohre abgeschlossenen Theil des Embryonallumens hineingreifen, — dieser Theil, der zum Vorderdarm wird, heisst "Fovea cardiaca", — ebenso in den hinteren, noch nicht so tiefen, die "Foveola posterior". Die der Keimblase zugekehrte Wand der Fovea cardiaca (das Vorderblatt des Schuhes) ist unterhalb der Schlundplatte ebensowohl doppelt, wie die Sohlenwand. Von den beiden Blättern derselben bildet das innere die vordere Wand des Vorderdarms, das äussere aber den über dem Nabel befindlichen Theil der vorderen Wand des Embryo. Die Höhle zwischen beiden ist der vor dem Darm befindliche Theil der Pleuroperitonealhöhle. (S. unten Fig. 43, I., V., VIII.)

Das Herz entsteht in der vorderen Medianlinie oberhalb des Nabels nach den Einen (REMAK) als eine cylindrische Verdickung der vorderen Wand des Vorderdarms (s. unten Fig. 43, V., VI.), welche bald hohl wird und mit den übrigen Gefässen im Zusammenhange erscheint, nach Andern (SCHENK, OELLACHER) als eine sich abschnürende Ausstülpung der Vorderdarmwand. Das Herz wächst vorwärts, in die Wandhöhle hinein. Die mit dem Herzen verbundenen Gefässe sind nach zwei Richtungen hin zu verfolgen. Die arteriellen beginnen mit zwei aus dem vorderen Herzende entspringenden Aortenbogen, welche längs der Schlundplatten innen nach hinten umbiegen und nun längs der Chorda zuerst getrennt, in späteren Stadien vereinigt als Aorta herablaufen und sich in die Endäste, die Iliacae communes vertheilen. Meist sind statt Eines Aortenbogens auf jeder Seite mehrere (drei) vorhanden, die sich aber jederseits wieder zur Aorta oder Aortenwurzel vereinigen. Seitlich entspringt von den Aorten eine Reihe von vertical abtretenden Arterien, welche auf der Darmfaserplatte nach den Seiten verlaufen, endlich die Abschnürungsfalte überschreiten und auf die Area vasculosa übergehen, um sich hier zu verzweigen; diese Arterien heissen Arteriae omphalo-mesentericae. Aus dem hinteren Herzende entspringen mit einem kurzen gemeinsamen Stamm zwei Venenstämme, welche die nahe Abschnürungsfalte überschreitend sich ebenfalls auf der Area vasculosa verzweigen, -- die Vv. omphalo-mesentericae. Beide Verzweigungen communiciren durch ein kreisförmig die Area vasculosa begrenzendes Gefäss, den Sinus terminalis (s. unten Fig. 43, I.). Diese Gefässausbreitung dient höchst wahrscheinlich zur ersten Athmung sowie zur Ernährung des Embryo mittels der

Entwicklung der Darmdrüsen. Leber, Lungen etc.

in der Keimblase befindlichen Stoffe; sie schwindet um so früher, je weniger bedeutend der Inhalt der Keimblase für die Ernährung ist (p. 495), und wird später durch die ähnlichen Zwecken dienende Allantois ersetzt. Das Herz beginnt sofort mit seinem Entstehen rhythmisch zu pulsiren, so dass in den neuentstandenen Gefässen die Blutkörperchen sofort eine freilich unregelmässige Wanderung antreten.

Inneres Keimblatt.

3. Von dem inneren Keimblatt, dessen Entwicklungsvorgänge am spätesten beginnen, werden durch Ausstülpung von Fortsätzen, welche in die Darmfaserplatte des mittleren Keimblatts hinein wachsen*), sowohl die kleinen Drüschen des Digestionscanals als auch die Leber, das Pancreas, und ausserdem Lungen und (bleibende) Nieren gebildet. Man sieht leicht, wie die Ausstülpung des inneren Keimblatts das Epithel, resp. die Drüsenzellen eines Drüsencanals bilden muss, die eingestülpte Darmfaserplatte aber die bindegewebige, gefäss-, nerven- und muskelhaltige Umhüllung (Drüsengrundlage). Geht die Ausstülpung so weit, dass auch die Darmfaserplatte selbst vorgestülpt wird, wie bei allen grösseren Drüsen, so muss die ausgestülpte Darmwand offenbar in die Pleuroperitonealhöhle hineinwuchern, in welcher in der That alle in den Darm mündenden Drüsen (vom Peritoneum überzogen) liegen.

Die Leber entsteht durch Ausstülpung zweier hohler Fortsätze ("primitive Lebergänge") von der vorderen Darmwand, dicht am Nabel (oberhalb desselben); die feinsten Zweigehen bilden das vielfach verschlungene Netzwerk der Lebercanälchen (p. 97), deren innige Verflechtung mit den Gefässen das Parenchym der Leberinseln darstellt; die gröberen Canäle sind die Gallencanäle; eine Ausstülpung des einen primitiven Ganges bildet die Gallenblase. Die Leber umwächst den Stamm der V. omphalo-mesenterica (s. oben), welche mit ihren Gefässen Verbindungen eingeht; eine in sie mündende Darmvene, welche bestehen bleibt, bildet mit jenen Verbindungen später die Pfortader. - Der Leber gegenüber, von der hinteren Darmwand aus, entsteht durch Verzweigung und spätere Aushöhlung einer zuerst soliden Ausstülpung das Pancreas. Eine fernere Ausbuchtung der vorderen Darmwand, aber oberhalb des Herzens, welche in die Pleuroperitonealhöhle paarig hineinwuchert, bildet die Lungen mit ihrem Bronchialsystem, der Eingang zur Lunge liegt also im Vorderdarm (später Pharynx). - Ueber die Entstehung der Nieren s. unten p. 507. - Endlich sind noch die sog. "Abschnürungsdrüsen" zu erwähnen, die Schilddrüse und Thymusdrüse: erstere entsteht als blasige Ausstülpung der vorderen Wand des Vorderdarms, welche sich abschnürt, dann durch weitere Ein- und Abschnü-

^{*)} Mit diesem Ausdruck ist dem Epithel keineswegs eine active Rolle zugeschrieben; ebenso gut möglich, ja wahrscheinlicher ist es, dass die Epitheleinstülpung durch die Art des Wachsthums der Darmfaserplatte gebildet wird (Barth, Laskowsky).

Amnion. Allantois.

rung in zwei symmetrische Höhlen theilt, die nun ihrerseits neue sich abschnürende Höhlchen bilden; die Thymusdrüse auf analoge Weise (Näheres unten). — Milz, Lymphdrüsen, Follikel und Nebennieren entstehen aus dem mittleren Keimblatt, die erstere aus den Mittelplatten.

Peripherische Entwicklungsvorgänge.

Neben diesen Entwicklungen im Fruchthof verlaufen gewisse andere im peripherischen Theile der Keimblase, deren Bedeutung darin zu liegen scheint, dass sie dem Embryo eine allseitige Entwicklung gestatten, indem sie ihn in eine Flüssigkeit einbetten (Amnion), und dass sie sein Blut in Diffusionsverkehr mit dem mütterlichen bringen, wodurch Athmung und Ernährung möglich wird (Allantois).

1. Entstehung des Amnion. Schon oben ist erwähnt, dass sich die Spaltung des Fruchthofes in Keimblätter über die Abschnürungsfalte hinaus auf den peripherischen Theil der Keimblase fortsetzt, und ebenso die Spaltung des mittleren Keimblatts in Hautund Darmfaserplatte. Letztere aber erstreckt sich nicht über die ganze Keimblase, sondern nur etwa so weit, wie die Area vasculosa (p. 499). Hier hört das oberflächliche Blatt auf, so dass man von aussen an dieser Stelle, nachdem man das Hornblatt durchbrochen, zwischen beide Blätter des mittleren Keimblatts und schliesslich in die Pleuroperitonealhöhle gelangen kann. Jene Fortsetzung der Hautplatte nun erhebt sich an ihrer Peripherie allmählich aus der Keimblase, und wölbt sich, das obere Keimblatt vor sich hertreibend, über den Embryo von allen Seiten zusammen, bis sie endlich sich über ihm zu einem Sacke, dem Amnion, schliesst, ein Stück des oberen Keimblatts abschnürend, welches nun die Innenfläche des Sackes auskleidet (s. unten Fig. IV., VII., VIII.). Das Amnion ist mit einer serösen Flüssigkeit erfüllt, von welcher der Embryo demnach allseitig umgeben ist; sie enthält ausser den gewöhnlichen Transsudatbestandtheilen Hautsecrete und ferner stickstoffhaltige Oxydationsproducte, vermuthlich durch Diffusion von der Allantois.

2. Entstehung der Allantois. In der Gegend der Abschnürungsfalte entstehen am Schwanzende des Embryo zwei solide Zellenhaufen, welche aus dem äusseren Blatt des mittleren Keimblatts (Hautplatte, p. 499) hervorwachsen und sich bald vereinigen. In diesen Auswuchs, welcher der Darmfaserplatte hart anliegt, wächst eine Ausstülpung des Hinterdarms (der Foveola posterior, p. 500) hinein, so dass er zu einer Blase ausgehöhlt wird; die Blase, die Allan-

Placenta. Nabel.

tois, wächst zwischen Haut- und Darmfaserplatte (durch den "Hautnabel", s. unten) aus dem Embryo heraus und gelangt so zwischen Amnion und Keimblase; immer weiter wuchernd (s. unten Fig.VIII.) umwächst sie das Amnion und gelangt an die Innenwand des Chorion, dem sie sich in mehr oder weniger grosser Ausdehnung anschmiegt. Die Communication zwischen Hinterdarm und Allantois bildet die Cloake, in sie münden die foetalen Urogenitalorgane (p. 499, s. auch unten); der sich verschmälernde Theil der Allantois, welcher durch den Hautnabel hindurchgeht, heisst Urachus. Die Allantois ist stark gefässhaltig. Thre Arterien, die Artt. umbilicales, stammen aus den Iliacae communes; sie führen zu einem stark entwickelten Capillarsystem, dessen Schlingen in die Chorionzotten (p. 495) hineinwuchern; die Venen vereinigen sich zu der unpaarigen V. umbilicalis, welche wieder in den Embryo eintretend, in die V. omphalo-mesenterica mündet, und somit (wie die Pfortader, p. 501) mit den Lebergefässen communicirt; einen Ast sendet sie direct zur Vena cava inf. (Ductus venosus Arrantii). Die stark entwickelten, die Gefässe der Allantois tragenden Chorionzotten wachsen innig in die Uterinschleimhaut hinein, in welcher sich an der entsprechenden Stelle ganz ähnliche Capillarschlingen entwickeln. Beide zusammen bilden die Placenta, in welcher ein Diffusionsverkehr zwischen foetalem und mütterlichem Blute behufs der Athmung und Ernährung stattfindet; das Blut der Nabelvene muss daher heller sein, als das der Nabelarterien, ganz wie später sich Lungenarterien- und Lungenvenenblut verhalten. Die Nabelblase mit der Area vasculosa verliert jetzt ihre Bedeutung und schrumpft sammt ihren Gefässen und dem Ductus vitello-intestinalis zum dünnen Strange zusammen. --Die Flüssigkeit, welche die Allantois enthält, ist ein Transsudat, welchem das Secret der Urnieren, somit stickstoffhaltige Oxydationsproducte beigemischt sind.

Während beim Menschen nur Eine Placenta sich entwickelt, haben manche Thiere (z. B. Wiederkäuer) mehrere Placentarstellen (Placentarcarunkeln), indem an mehreren kleineren Stellen die Chorionzotten in die Deciduazotten hineinwachsen.

Abschluss der embryonalen Entwicklung.*)

Denkt man sich die Abschnürung des Embryo von der Keimblase fast vollendet, so besteht der Nabel aus zwei concentrischen

^{*)} Die Entwicklungsvorgänge sind hier nicht in chronologischer Reihenfolge aufgeführt, hauptsächlich der leichteren Uebersicht wegen. Auch ist die genaue Chronologie für das menschliche Ei in den ersten Stadien noch unbekannt.

Röhren; die innere, der Darmnabel (Ductus omphalo-entericus), verbindet die Darmwand mit der Nabelblase; die äussere, der Hautnabel, verbindet die Bauchwand des Embryo mit dem Amnion (p. 502). Zwischen beiden bleibt ein ringförmiger Raum, durch welchen man in die Pleuroperitonealhöhle gelangt, und durch welchen der Urachus herauskommt (s. oben).

Durch den blossen Abschnürungsprocess wird ein allseitig geschlossenes Darmrohr gebildet, welches mit dem Leibesrohr in der hinteren Medianlinie (Mesenterium) und am ganzen oberen Ende (Schlundplatte) verwachsen ist (s. p. 500). Folgendermassen entsteht nun eine vordere und eine hintere Darmöffnung: In der Schlundplatte entsteht vorn in der Mitte, dicht unter dem Vorderhirn eine Einstülpung, in welche sich das Hornblatt fortsetzt; diese wird immer tiefer und bricht endlich mit einem Spalt in das obere Ende des Vorderdarms (Pharynx) durch; sie ist die Anlage der Mund- und Nasenhöhle. Ferner bilden sich an den Seitentheilen der Schlundplatte je drei von vorn nach hinten gehende rinnenförmige Ausbuchtungen des inneren Blatts, welche schliesslich die Schlundplatte durchbrechen und so jederseits drei Schlundspalten und später noch eine vierte bilden, indem das innere Blatt sich wie die Schleimhaut an den Lippen nach aussen umsäumt; zwischen je zwei Schlundplatten bleibt ein Schlundbogen (auch Visceralbogen, Kiemenbogen), und zwar liegen diese so, dass an ihrer Innenseite je ein Aortenbogen von vorn nach hinten läuft (p. 500). Längs der Schlundbogen wachsen Verdickungen von hinten nach vorn und vereinigen sich endlich. Der Raum zwischen Schädel und erstem Schlundbogenpaar wird durch die Mund- und Nasenhöhle eingenommen, das erste Bogenpaar wird zum Unterkiefer nebst den angrenzenden Schädeltheilen; dadurch, dass es ferner in den Raum der Mund- und Nasenhöhle zwei einander entgegenwachsende Aeste sendet, welche sich zum Oberkiefer und Gaumen entwickeln, wird eine Trennung der Mund- und Nasenhöhle bewerkstelligt (geschieht das Zusammenwachsen dieser Fortsätze nicht vollkommen, so entsteht Hasenscharte, Wolfsrachen etc.). Die übrigen Schlundspalten verwachsen wieder, die Schlundbogen liefern das Zungenbein, einen Theil der Kehlkopfknorpel, die Halshaut etc., in einer hier nicht näher zu erörternden Weise. Die Zunge entsteht als Auswuchs an der Innenseite des Unterkiefers. Die hintere Darmöffnung kommt dadurch zu Stande, dass die Cloake (p. 503), das gemeinsame Darmund Allantoisende, in eine von aussen gebildete Grube durchbricht.

Schlundspalten. Thymus. Gehirn. Auge.

Diese gemeinsame Oeffnung wird später durch eine Brücke, das Perinaeum (gebildet durch Hervorwachsen der Scheidewand zwischen Darm und Allantois) in eine besondere für den Darm (After) und eine für die Allantois (Mündung des Sinus urogenitalis) getheilt. Ueber die weitere Bestimmung der letzteren s. unten.

Von den Schlundspalten verwächst die erste bis auf eine Oeffnung, die Anlage des äusseren Gehörganges. Die zweite, dritte und vierte verwachsen vollständig; indem die Aortenbogen sich von der Innenseite des Schlundbogens zurückziehen und dadurch das Darmdrüsenblatt nach innen mitnehmen, vertiefen sie die dritte und vierte Spalte; durch den aussen erfolgenden Schluss und durch die innen erfolgende Abschnürung vom Darmrohr bildet nun das Drüsenblatt jederseits zwei geschlossene Säckchen, welche sich durch weitere Ausbuchtung und spätere Vereinigung zur Thymusdrüse entwickeln.

Von den übrigen Entwicklungsvorgängen sind hier noch folgende zu erwähnen:

1. Das Medullarrohr (p.498), dessen Lumen sich durch Wandverdickung immer mehr verengt, zeigt schon sehr früh an dem blasigen Hirnende zwei Querfurchen, wodurch drei Hirnblasen entstehen. Jede Blase treibt beiderseits einen blasigen, später gestielten Auswuchs, welche die Anlagen der drei höheren Sinnesorgane mit ihren Nerven darstellen (vorn Olfactorius, zweite Blase Opticus, dritte Acusticus); die Bläschen sind die Anlagen der peripherischen Nervenausbreitungen. - In die Augenblase, welche unmittelbar unter dem Hornblatt liegt, stülpt sich von vorn eine blasenförmige Ausbuchtung des letzteren hinein, welche sich schliesslich abschnürt und die Linse mit ihrer Kapsel bildet. Die so in sich selbst eingestülpte Augenblase fällt vollkommen zur blossen Halbkugel zusammen, dadurch, dass sich die vordere Hälfte (Retina) dicht an die hintere (Chorioidea) anlegt. Zwischen Linse und Retina entsteht dann der Glaskörper, und ringsum, durch Umlagerung vom mittleren Keimblatt aus, die Sclerotica, welche mit der bedeckenden Hautpartie (Cornea) verwächst. - Die drei Hirnblasen stellen dar (der Reihe nach von vorn) den dritten Ventrikel, die Vierhügelhöhle (Aquaeductus Sylvii), und den vierten Ventrikel. Die erste sendet jederseits eine neue Blase aus, deren Höhle den Seitenventrikel (1. und 2.; die Communication mit der Urblase ist das For. Monroi), deren Wand die Grosshirnhemisphäre darstellt; diese Seitenblasen überwuchern beim Menschen alle übrigen. Analog sendet die dritte Blase die beiden Kleinhirnblasen aus. Zwischen der ersten und zweiten Blase entsteht ferner schon frühzeitig eine ziemlich scharfe

Knickung, so dass jene sich auf die Vorderseite des Embryo herumbiegt. Die Ganglien (Thal. opt. etc.) entstehen als Verdickung der Blasenwände.

Ueber die Entstehung der peripherischen Nerven und Ganglienzellen sind die Angaben verschieden; die meisten lassen sie aus dem mittleren Keimblatt hervorgehen, Andere (HENSEN) lassen die Axencylinder durch Auswachsen der Medullar-Ganglienzellen in das mittlere Blatt hinein entstehen, während letzteres (die Umhüllung (Markscheide und Neurilemm) liefere.

2. Der Darmcanal bildet zuerst eine einfache, nur in der Mitte, wo das Mesenterium am längsten ist, schwach geknickte Röhre (s. unten Fig. 43, VIII.). In ihr bildet sich in der Lebergegend eine bauchige Erweiterung, die Anlage des Magens, welcher später durch Drehung seine bleibende Querlage einnimmt und dadurch einen Fundus und die beiden Curvaturen erhält. Durch Verlängerung des Darmrohrs und gleichzeitige Verlängerung des Mesenteriums bilden sich dann die Dünndarmschlingen und die Dickdarmkrümmungen. Das im Embryo liegende Stück des Ductus omph.mesent. reisst am Nabel ab und bildet einen rudimentären Anhang des unteren Heumtheiles.

3. Das Herz, anfangs ein grader medianer Schlauch (p. 500), ändert schon sehr frühzeitig seine Form so, dass das venöse (hintere, untere) Ende sich zum arteriellen aufbiegt, so dass das Ganze (mit den Venenanfängen) eine S förmige Gestalt annimmt (s. unten Fig. 43, I.). Die Ursache hiervon liegt darin, dass eine Zeit lang die Aortenbogen nach hinten an Zahl zunehmen, während die vorderen schwinden; hierdurch wird das vordere Herzende nach hinten geschoben, während das Venenende seinen Platz behält. Es lassen sich jetzt drei Abtheilungen am Herzen erkennen, die hintereinander sich contrahiren, Venensinus (aus welchem später die beiden Auriculae sich ausstülpen), Kammer und Bulbus aortae. Jetzt bildet sich eine längsverlaufende Scheidewand, zuerst in der Kammer, später im Venensinus (unvollkommen), wodurch zwei getrennte Kammern und zwei durch das For. ovale communicirende Vorhöfe entstehen. - Von den drei zuletzt übrigen (s. oben) Aortenwurzelpaaren liefert das erste die Carotiden und Subclaviae (rechts bleibt der gemeinsame Stamm); das zweite bildet links den bleibenden Aortenbogen, der zur ursprünglichen Aorta descendens führt und aus dem die Gefässe des ersten Paares entspringen; sein rechter Ast schwindet. Das dritte Paar giebt die Artt. pulmonales ab; der rechte Bogen schwindet bis auf seine Pulmonalis, der linke bleibt mit der Aorta descendens verbunden, das Verbindungsstück ist der Ductus Botalli. Zuletzt theilt sich der Arterienbulbus so, dass der die Lungenarterien abgebende Abschnitt mit der rechten Kammer und der Rest (mit dem Aortenbogen) mit der linken verbunden ist. Noch aber kann alles Blut auch aus dem rechten Herzen in die Aorta gelangen, auch ohne vorher durch die Lungen zu fliessen, nämlich theils durch das For. ovale, theils durch den Ductus Botalli. Erst wenn die Lungenathmung begonnen hat, nach der Geburt, schliessen sich diese beiden Communicationen, so dass nunmehr das ganze Blut des rechten Herzens in die Lungen geführt wird.

4. Die inneren Harnorgane entwickeln sich folgendermaassen: Die ursprüngliche Anlage jederseits, der Wolff'sche Gang (p. 499), ist am Kopfende blind geschlossen und communicirt am Schwanzende mit dem Hinterdarm (Foveola posterior, p. 500). Das Kopfende sendet nach innen halbfiederförmig eine Reihe von Blinddärmchen aus, welche zum Theil mit Glomerulis (vom mittleren Keimblatt gebildet) besetzt sind. So entsteht der WOLFF'sche Körper, dessen einer Theil, der Urnierentheil, die Function einer Niere versieht, während der Rest (Sexualtheil) zur Bildung der Geschlechtsorgane verwandt wird (s. unten). - Die bleibende Niere entsteht so (KUPFFER), dass vom Schwanzende des WOLFF'schen Ganges eine Ausstülpung röhrenförmig, parallel dem Urnierengang, in die Höhe wächst, die Anlage des Ureters; das obere Ende wächst in einen Zellenhaufen des mittleren Keimblatts (Nierenparenchym) hinein, wodurch das Nierenbecken und durch Verzweigung desselben die Nierenkelche entstehen. Die Harnkanälchen sind entweder (REMAK) weitere Auswüchse der Kelche, deren erweiterte Enden (Kapseln) die Glomeruli umwachsen, oder (KUPFFER) sie entstehen selbstständig in der Niere (von der Peripherie aus) und brechen erst dann nach den Kelchen durch. Ueber die Entwicklung der Harnblase s. unten bei den äusseren Geschlechtstheilen.

5. Die inneren Geschlechtsorgane sind ursprünglich für beide Geschlechter, hermaphroditisch angelegt. Das peritoneale Plattenepithel, welches die freie Oberfläche des Wolfrischen Ganges bekleidet, ist scharf abgegrenzt von einer Cylinderepithellage, welche dem medianen und dem lateralen Winkel desselben aufliegt; dieses ursprünglich, und bei vielen Thieren bleibend, zusammenhängende "Keimepithel", welches wahrscheinlich vom äusseren Keimblatt stammt, ist die Anlage des weiblichen Genitalapparats, nämlich (median) der Eier und Granulosazellen, und (lateral) des Tubenund Uterusepithels. Die Durchwachsung des medianen Theils mit dem Bindegewebe des Wolfrischen Körpers, welche zur Bildung des Eierstocks führt, ist schon oben (p. 488) besprochen. Die laterale Epithellage wird ebenfalls vom Bindegewebe in Form eines longitudinalen Stranges, der später hohl wird, umwachsen, und es entsteht so der MÜLLER'sche Faden resp. Gang, die Anlage der Tube. Die beiden Müller'schen Gänge münden unweit der Wolff'schen in den Hinterdarm. Später vereinigen sich die unteren Enden zu einem gemeinsamen Hohlraum, dem Uterus mit Vagina. Oben erhalten sie in der Nähe des Ovariums eine von Franzen umgebene wandständige Oeffnung; das Stück oberhalb der Oeffnung verkümmert zu einem Bläschen. - Beim männlichen Embryo entsteht der Hoden aus dem Sexualtheile des Wolffschen Körpers, dessen Canälchen stark verlängert und knäuelförmig geschlängelt zu den Hodencanälchen werden, indem sie in die bindegewebige Anlage des Hodens hineinwachsen; der nicht hineingewachsene Theil bildet den Nebenhoden und der Urnierengang das Vas deferens mit den Samenblasen; die nicht zum Hoden verwendeten Röhrchen sind die Vasa aberrantia Halleri. Beim Weibe verkümmert der Sexualtheil des Wolff'schen Körpers zum Rosenmüller'schen Organ oder Parovarium, der Ausführungsgang zum Ligamentum teres uteri. -Der Urnierentheil des WOLFF'schen Körpers verkümmert bei beiden Geschlechtern zum GIRALDés'schen Organ oder Parepididymis, beim Weibe zu einem neben dem Parovarium liegenden gesonderten Gebilde (WALDEYER). - Beim Manne verkümmert ferner die Ovarialanlage zur ungestielten Hydatide (FLEISCHL), ferner die MÜLLER'schen Gänge, von denen nur die vereinigten unteren Enden als Uterus masculinus (E. H. WEBER) oder Vesicula prostatica, und das obere Ende als gestielte Hydatide bestehen bleiben.

6. Die äusseren Harn- und Geschlechtsorgane. Ist mit der Schliessung des Nabels der Urachus abgeschnürt, so bildet das im Embryo zurückbleibende Stück der Allantois die Harnblase (deren Scheitel mit dem Nabel durch den Urachusstrang in Verbindung bleibt). Der unterste Theil der Allantois, welcher zugleich die Oeffnungen der Harn- und Geschlechtsorgane enthält heisst Sinus uro-genitalis. Zu beiden Seiten der Oeffnung des letzteren (p. 505) entstehen zwei Hautwülste, welche beim Weibe die grossen Schamlippen bilden, beim Manne aber über der Oeffnung zum Scrotum zusammenwachsen und sich in einer persistirenden Nahtlinie (Raphe) schliessen. Vor der Oeffnung ferner entsteht ein länglicher Körper,

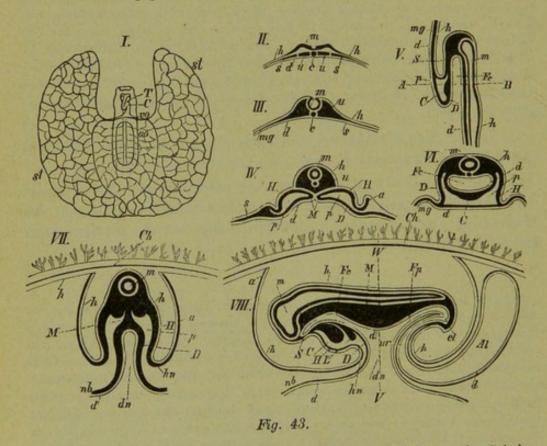
Harn- und Geschlechtsorgane. Aeltere Keimblättertheorien.

509

welcher an der Unterseite eine Rinne trägt, die nach hinten in den Sinus urogenitalis ausläuft. Die Ränder dieser Rinne schliessen sich beim Manne, wodurch die canalförmige Harnröhre entsteht, die an der Spitze des länglichen Körpers, des Penis, mündet; den hinteren Theil der Harnröhre bildet der Sinus urogenitalis. Beim Weibe dagegen bleibt die Rinne offen, ihre Ränder wachsen zu den kleinen Schamlippen aus, und der Körper selbst wird zur Clitoris. Der Sinus urogenitalis aber verkürzt sich so, dass er nur noch eine Grube zwischen den kleinen Schamlippen bildet, in welche die Vagina und die Harnblase (als kurze Harnröhre) gesondert münden. — Beim männlichen Embryo erfolgt im 8. Monat das Herabsteigen der Hoden in das Scrotum, Descensus testiculorum, worüber die anatomischen Lehrbücher nachzulesen sind.

Ueber die Einflüsse welche das Geschlecht des Embryo bestimmen, ist noch nichts Sicheres bekannt Statistisch will man gefunden haben, dass das Alterverhältniss der Eltern einen gewissen Einfluss auf das Ueberwiegen des einen oder andern Geschlechts ausübe; jedoch wird auch dieser Einfluss verschieden angegeben. Neuerdings ist behauptet worden (THURY), dass das Geschlecht von dem Reifezustand abhänge, den die Eier bei der Befruchtung erreicht haben; zuerst sollen die Eier nur zur Entwicklung des weiblichen Geschlechts im Stande sein und erst später eine Umwandlung erleiden, vermöge deren sie Männchen produciren (",Vire"). Jedoch ist dies keineswegs allgemeingültig festgestellt.

7. Die Extremitäten entstehen als warzenartige, erst spät in die Länge wachsende Fortsätze an den Seiten des Rumpfes.


Die Entwicklung der Gewebe, einer der wichtigsten Theile der Entwicklungsgeschichte, wird gewöhnlich als Gegenstand der Histologie betrachtet; auch hier wird daher auf die histologischen Lehrbücher verwiesen.

Die älteren Keimblättertheorien (PANDER, V. BAER, BISCHOFF) nehmen im Wesentlichen nur zwei Keimblätter an, ein äusseres "animales", entspr. den Hautplatten mit dem Sinnesblatt, und ein inneres, "vegetatives", entspr. den Darmfaserplatten mit dem Darmdrüsenblatt; zwischen beiden soll dann aus einem besonderen "Gefässblatt" das Gefässsystem entstehen. Eine ähnliche Keimblättertheorie ist neuerdings aufgestellt worden (HIS), jedoch lässt dicselbe das ganze System der Bindesubstanzen, die Gefässe und das Blut aus dem sog. "weissen Dotter" (des Vogeleies) hervorgehen, der, wesentlich anderen Ursprungs als der Hauptdotter ("Archiblast, Neuroblast"), — er entsteht aus den Zellen der Membr. granulosa, welche durch die Dotterhaut in den Hauptdotter einwandern (s. oben), — theils in der erwähnten Weise durch Einwanderung zwischen beide Keimblätter zum Aufbau des Embryo beiträgt ("Parablast, Hämoblast"), theils bloss

Aeltere Keimblättertheorien.

als "Nahrungsdotter" (p. 484) verwandt wird. — Eine andere Theorie (REICHERT) kennt den Spaltungsvorgang im mittleren Keimblatt ("stratum intermedium"), unterscheidet sich aber von der REMAK'schen dadurch, dass sie kein sensorielles Blatt annimmt, sondern die ursprüngliche Keimblase als "Umhüllungshaut" persistiren und die eigentlichen Keimblätter sich erst nachträglich von innen her an sie anlagern lässt; zwischen Umhüllungshaut und Stratum intermedium entsteht als besonderes (auf den Fruchthof beschränktes) "oberes" Keimblatt die Medullarplatte, die sich zum Medullarrohr zusammenwölbt. Die Umhüllungshaut bildet in ihrem durch das Amnion abgeschnürten Theil (vgl. p. 502) am Embryo die Hornschicht der Haut, und an der Innenseite des Amnion dessen Epithel (Endamnion). — Andere neuere Veränderungen der im Texte angegebenen REMAKschen Keimblätterlehre (SCHENK, PEREMESCHKO u. A.) können hier nicht erwähnt werden, ohne specieller auf die Entwicklungslehre einzugehen.

Zur Verdeutlichung einiger Hauptpuncte der Entwicklung mögen nachstehende schematische Zeichnungen dienen, bis auf I sämmtlich Durchschnitte des Embryo. — I. ist eine Flächenansicht desselben von innen (von der Keimblasenhöhle aus); sie zeigt den schuhförmigen Embryo (p. 499) mit den Gefässen der Area vasculosa. Durch das Vorderblatt des Schuhes hindurch sieht man das bereits Sförmig gekrümmte Herz, von dem oben zwei Aortenwurzeln, unten

die beiden Vv. omphalo-mesentericae ausgehen; durch die Oeffnung des Schuhes (Nabel) sieht man die beiden noch getrennten Aorten mit den paarig abgehenden Aa. omphalo-mesentericae; in der Area vasculosa sind die Arterien schwach, die

Geburt.

Venen stark gezeichnet. Die übrigen Figuren sind theils Querschnitte (II., III., IV., VI., VII.), theils mediane Längsschnitte des Embryo (V. und VIII.). Der Querschnitt VI. entspricht der Linie AB im Längsschnitt V.; der Querschnitt VII. ebenso der Linie VW in VIII. – Die Bezeichnungen sind überall dieselben:

h Hornblatt

- m Medullarrohr.
- mg mittleres Keimblatt (mot.-germ.).
- d Darmdrüsenblatt.
- e Chorda dorsalis.
- u Urwirbelplatten.
- s Seitenplatten.
- p Pleuroperitonealhöhle.
- H Hautplatten.
- D Darmfaserplatten.
- M Mittelplatten (Mesenterium).
- S Schlundplatte.
- Ch Chorion frondosum
- nb Nabelblase.
- C Herz.
- T Aortenbogen.

dn Darmnabel (Duct. omph.-mesent.). hn Hautnabel.

Fe Fovea cardiaca (Vorderdarm).

- Fp Foveola posterior (Hinterdarm).
- a Amnion (abgelöster und umgeschlagener peripherischer Theil der Hautplatte; in Fig. IV. links noch mit der Darmfaserplatte verbunden, rechts schon abgelöst und sich erhebend).
- Al Allantois.
- ur Urachus.
- cl Cloake (noch ohne Afteröffnung).
- vo V. omph.-mesent.
- ao Art. omph.-mesent.
- st Sinus terminalis.
- L Leber.

Um die Zeichnungen möglichst übersichtlich zu machen, sind auf den Querschnitten IV. und VII. in den Mittelplatten 'die Durchschnitte der beiden Aorten, der beiden Wolff'schen Körper etc. nicht angedeutet.

Geburt.

Durch das sich entwickelnde Ei wird der Uterus immer stärker ausgedehnt, so dass zugleich auch der Cervix völlig verstreicht. Zugleich nimmt seine Wanddicke durch Wachsthum und Neubildung von Muskelfasern, ausserdem auch durch mächtige Entwicklung der Blutgefässe ausserordentlich stark zu. Endlich, etwa 280 Tage nach der Befruchtung, wird durch völlig unbekannte Ursachen die Entleerung des nunmehr entwickelten Eies eingeleitet. Sie geschieht durch rhythmische, schmerzhafte Contractionen der Uterusmuskeln, die Wehen, unterstützt durch die Bauchpresse (p. 157).

Ueber die Innervation des Uterus ist Folgendes ermittelt: Reizung der Plexus hypogastrici bewirkt Contractionen, ebenso Reizung des Rückenmarks bis hinauf zum Kleinhirn; die vom Rückenmark zum Uterus tretenden Fasern entspringen hauptsächlich aus der Gegend des letzten Brust- und des 3. und 4. Lendenwirbels. Sie treten in sympathische Bahnen über, durchziehen das Gangl. mesenter. inf., und verlaufen in einem der Aorta aufliegenden Strange zum Uterus (FRANKENHÄUSER). — Ausser der spinalen Innervation scheint der Uterus noch nähere, vielleicht theilweise in seinem Parenchym liegende Centra zu haben. Dieselben werden durch dyspnoisches Blut erregt (OSER & SCHLESINGER), analog den Centren der Medulla oblongata (p. 452 fl.) und des Darms (p. 136), so dass Erstickung, Compression der Aorta (Spiegelberg), Verblutung u. s. w. Uteruscontractionen bewirken. Auch das im Gehirn liegende Centrum für die Uterusbewegungen (s. oben) wird durch dyspnoisches Blut, somit durch die oben bezeichneten Umstände, erregt (Osen & Schlesinger).

Das Ei wird beim Menschen nicht unversehrt ausgestossen, sondern zuerst, nach Zerreissung seiner Hüllen, der Embryo, erst später der Rest des Eies. Jene Hüllen sind von aussen nach innen: 1. die Decidua reflexa (p. 494), 2. das Chorion, welches an der Stelle, wo die Allantois anliegt (in normaler Lage nicht am Ausgang des Uterus) die Placenta bildet, am Muttermunde also zottenlos ist, 3. das Amnion (die Nabelblase liegt als unscheinbares Gebilde der Placenta an, vgl. p. 503). Diese Hüllen wölben sich in Folge des Drucks der ersten Wehen blasenförmig durch den Muttermund vor, reissen endlich an einer Stelle, und nachdem sofort ein grosser Theil des Liquor amnii (Fruchtwasser) abgeflossen, liegt ein Theil des Foetus, gewöhnlich der Schädel, frei vor. Jetzt tritt mehr oder weniger schnell die Austreibung ein, verzögert durch die Widerstände, welche theils die Beckenenge, theils die Enge des Muttermundes, der Scheide und der Vulva bieten. Gleichzeitig löst sich auch die Placenta, nicht nur die foetale, sondern auch die mütterliche, also ein Theil der Uterusschleimhaut (p. 503) von der sich contrahirenden Uteruswand allmählich ab, ein Vorgang der natürlich mit Blutung verbunden sein muss. Nach der Geburt des freien Foetus befindet sich die Placenta mit den an ihren Rand gehefteten Eihäuten, wenn auch schon abgelöst, doch fast stets noch im Uterus, und der Foetus hängt mit ihr durch den langen Nabelstrang zusammen. Dieser besteht aus folgenden Gebilden: 1. der Stiel der Allantois (Fortsetzung des Urachus), mit den Umbilicalgefässen, den noch pulsirenden beiden Arterien und der Vene, welche durch frühere Drehungen des Foetus fast stets spiralig gewunden sind; 2. der geschrumpfte Ductus omphalo-mesentericus mit der Nabelblase; 3. alles Andere umgebend der vom Hautnabel ausgehende röhrenförmige Stiel des Amnion, welches dann die Innenseite der Placenta überkleidet und an ihrem Rande auf die des Chorion übergeht. Die Hauptmasse des Nabelstranges bilden die drei Umbilicalgefässe, eingebettet in ein weiches Bindegewebe (Schleimgewebe), die WHARTON'sche Sulze.

Sowie die Placenta sich abzulösen beginnt, hört die foetale Respiration durch das mütterliche Blut auf, und es tritt in Folge dessen eine Veränderung der Blutgase ein, welche die erste Inspi-

Geburt. Wachsthum.

ration durch die Lungen veranlasst (SCHWARTZ; vgl. p. 155). Die im Uterus befindliche Placenta ist jetzt für das Kind unwesentlich und der Nabelstrang, dessen Arterien zu pulsiren aufhören, kann, nach vorheriger Unterbindung im foetalen Stück, durchschnitten werden, wenn man nicht bis zur Austreibung der Placenta mit den Eihäuten ("Nachgeburt") warten will. Das Kind ist mit dem angehäuften Hauttalg (Vernix caseosa) überzogen. Nachdem die Nachgeburt erfolgt und durch fortschreitende Contractionen des Uterus ("Nachwehen") die Blutung gestillt ist, beginnt eine Regeneration der Uterusschleimhaut und Verkleinerung der Muskelschicht mit Neubildung von Faserzellen; erstere ist mit einem schleimigen, anfangs bluthaltigen Ausfluss (Lochien) verbunden. - Mit der Geburt beginnen die mütterlichen Milchdrüsen zu secerniren (p. 114), und erst beim Nachlass dieser Secretion, etwa nach 10 Monaten, tritt die seit der Befruchtung unterbrochene Menstruation wieder ein.

D. EXTRAUTERINE ENTWICKLUNG.

Mit der Geburt sind bekanntlich weder die formellen noch die functionellen Entwicklungsvorgänge abgeschlossen. Namentlich der Beginn des extrauterinen Lebens und die folgende Zeit bis zur Pubertät sind durch wichtige Entwicklungsvorgänge ausgezeichnet. In diesen Zeitraum (Säuglings- und Kindesalter) fällt die Entwicklung der Knochen, der ersten und zweiten Zähne (über beide Gewebsbildungsprocesse s. d. hist. Lehrbb.), das energischste Wachsthum, vor allem aber die Entwicklung der Seelenthätigkeiten, welche von der ersten niederen, dem Reflexe nahestehenden Stufe durch die Mannigfaltigkeit der äusseren Eindrücke (Erfahrung, Lernen) immer weiter sich ausbilden.

Das Wachsthum ist die Zunahme in allen Dimensionen und im Gewichte des Körpers, bewirkt durch einen Ueberschuss der Einnahmen über die Ausgaben. Sämmtliche Gewebe und Körpertheile nehmen daran Theil, so dass im Allgemeinen die Proportionen des wachsenden Körpers erhalten bleiben; das Schema des Wachsthums ist hauptsächlich die Zunahme der Anzahl der gewebsbildenden Elemente, im Allgemeinen der Erfolg der Zelltheilung, — weit weniger die Vergrösserung der bereits bestehenden; jedoch kommt auch diese als Wachsthumsmodus vor. Das gewöhnliche Maass für das Wachsthum ist die Längenzunahme des Körpers, und diese wiederum hauptsächlich an das Längenwachsthum der Hermann, Physiologie. 5, Aufl. 33 Knochen geknüpft, welches etwa bis zum 22. Lebensjahre dauert. — Das Wachsthum in anderen Dimensionen und die Gewichtszunahme dauert etwa bis zum 40. Jahre fort.

Eine Gewichtsabnahme kommt vor in den ersten Lebenstagen nach der Geburt; ferner nach dem 40.—50. Lebensjahre, woran sich etwa vom 50. Jahre ab eine Längenabnahme schliesst.

Man theilt gewöhnlich das menschliche Leben in folgende Zeitabschnitte ("Lebensalter"): 1. Säuglingsalter, von der Geburt bis zur ersten Dentition (die 7-9 ersten Monate): stärkstes Wachsthum, Längenzunahme um 2/3 (20^{cm}); - 2. Kindesalter, bis zur zweiten Dentition (9. Monat - 7. Jahr); Wachsthum im 2. Jahre etwa 10, im 3. etwa 7, dann jedes Jahr etwa $5\frac{1}{2}$ ^{cm}; - 3. Knabenalter, bis zur Pubertät (7.-14. Jahr); - 4. Jünglingsalter, bis zur Vollendung des Längenwachsthums (15.-22. Jahr); - 5. Alter der Reife (früheres Mannesalter), bis zur Involution beim Weibe und beginnenden Rückbildung beim Manne (22.-45. Jahr); - 6. Alter der langsamen Rückbildung (späteres Mannesalter und Greisenalter), vom 45. Jahre ab bis zum Ende.

Die Rückbildung im späteren Leben besteht in mannigfaltigen Abnutzungs-, Schrumpfungs- und Zerfallprocessen, bei denen das Krankhafte vom Normalen noch zu wenig gesondert ist, als dass die Erscheinungen hier aufgeführt werden könnten.

E. TOD.

Der Tod unterbricht die für das Leben characteristischen Vorgänge im Organismus (vgl. die Einleitung), in welchem jetzt eine Reihe von Processen beginnt, die man als "Fäulniss" zusammenfasst.

Das entscheidende Moment, welches das Ende des Lebens bezeichnet, wird sehr verschieden aufgefasst. Am natürlichsten sieht man die Leistungen des Organismus, Bewegung und Wärmebildung, namentlich die erstere wegen ihrer leichten Erkennbarkeit, als Characteristicum des Lebens an; unter den Bewegungen aber kann man begreiflicherweise nur eine automatische als Merkmal des Lebens benutzen, und unter diesen ist die regelmässigste, und zugleich auffallendste die Herzbewegung. Gewöhnlich wird daher der Stillstand des Herzens als Zeichen des Todes angesehen.

Wenn nun auch hiergegen eingewendet werden kann, dass das Aufhören einer Leistung nicht als Zeichen für das Aufhören aller angesehen werden darf, so ist doch anhaltender Herzstillstand zugleich ein sicheres Zeichen des nahen Todes, denn die Leistung jedes Organs

Todesursachen.

ist an die Zufuhr sauerstoffhaltigen Blutes gebunden, und diese bewirkt das Herz; der Herzstillstand ist daher zugleich eine der unfehlbarsten Todes-Ursachen.

Die Aufsuchung der Todesursachen ergiebt Folgendes: Da die Leistungen das Resultat der Oxydationsprocesse sind, so ergeben sich sofort drei Arten des allgemeinen Todes: 1. Mangel an Oxydationsmaterial oder an den für die Lebensprocesse unentbehrlichen unorganischen Stoffen, also mangelhafte Ernährung; 2. Mangel der Zufuhr sauerstoffhaltigen Blutes; 3. Mangel der Bedingungen für die oxydirende Wirkung des Sauerstoffs. Je nachdem diese Umstände auf einen einzelnen oder auf alle Körpertheile einwirken, kann allgemeiner oder nur localer Tod eintreten. Letzterer (Necrose, Gangrän) kann wiederum zum allgemeinen Tode führen, wenn er Organe betrifft deren Zerstörung diesen herbeiführt. - Das Ineinandergreifen der Lebensprocesse macht eine strenge Sonderung jener drei Todesarten unmöglich; jeder der drei Umstände zieht meist die beiden anderen nach sich; es wird daher nur soweit auf die einzelnen Rücksicht zu nehmen sein, als sie primäre Todesursachen abgeben.

I. Mangelhafte Ernährung bildet eine sehr häufige, aber wohl stets nur mittelbar wirkende Todesursache (Aufhören der Leistungen in den Herz- oder Athemmuskeln). Ihrer Natur nach bewirkt sie einen allmählichen Tod; der Hungertod (p. 189), der Tod durch "Altersschwäche", zum Theil auch der locale Tod durch örtliche Kreislaufsstörungen, gehören hierher.

II. Die Zufuhr sauerstoffhaltigen Bluts kann mangelhaft werden oder aufhören: 1. durch Mangel an Blut, Verblutung durch Oeffnung grosser Gefässe oder des Herzens selbst. Ist die Blutung nicht tödtlich, erfolgt ein Wiederersatz durch Wasser (p. 170), so kann doch die Menge der rothen Blutkörperchen so gering sein, dass sie nicht den genügenden Sauerstoffverkehr unterhalten können. — 2. durch Aufhören der Blutbewegung; dies tritt ein: a. local durch Verschluss (Unterbindung, Thrombose, Embolie oder Durchschneidung) der zuführenden Arterien, oder Hemmung des Blutabflusses durch Hindernisse in den Venen; die Folge ist localer Tod (s. oben) oder auch direct allgemeiner Tod, wenn nämlich die Kreislaufsstörung die Hauptgefässstämme betrifft; — b. allgemein durch positiven Druck im Thorax (p. 66) oder durch Nachlass und Stillstand der Herzbewegung; dieser kann wiederum eintreten durch Zerstörung oder mangelhafte Ernährung (Atrophie) der.

33*

Todesursachen,

Herzsubstanz, Unterbrechung des Kreislaufs in den Coronararterien. starke Reizung der Medulla oblongata oder der Vagi (bei Vergiftungen vorkommend), oder durch mangelhafte Sauerstoffzufuhr. --Auch wäre ein Aufhören des Kreislaufs durch völlige Unwirksamkeit der Herzbewegungen denkbar, z. B. bei Zerstörung oder Unwirksamkeit der Herzklappen. - 3. durch Hinderung der Sauerstoffaufnahme des Blutes; hierher gehören sämmtliche p. 158 aufgeführten, Erstickung herbeiführenden Einflüsse, von denen einer, nämlich das Aufhören der activen Athembewegungen (abgesehen von der natürlich unschädlichen Apnoe durch Sauerstoffüberschuss p. 155), hier in seinem Zustandekommen etwas näher betrachtet werden soll. Es können nämlich dazu führen: a. Lähmung des Athmungscentrums in der Medulla oblongata, durch Verletzung oder Zerstörung (z. B. durch Apoplexie), mangelhafte Blut- oder Sauerstoffzufuhr (aus schon genannten Ursachen), endlich Einwirkung lähmender Gifte (Chloroform); b. Störung in der Nervenleitung zu den Athemmuskeln, z. B. Durchschneidung oder Compression der Phrenici, Vergiftung durch Curare; c. Lähmung der Athemmuskeln, des Zwerchfells; d. Tetanus der Athemmuskeln, z. B. durch Strychninvergiftung, oder durch Reizung der Vagi; e. mechanische Hindernisse der Thoraxausdehnung, z. B. Druck. - 4. durch Austreibung des Sauerstoffs aus dem Blute (Kohlenoxydvergiftung) oder durch Entziehung desselben (durch reducirende Gifte; vgl. p. 161).

III. Von den Bedingungen der Oxydationsprocesse ist noch äusserst wenig bekannt. Es ist schon früher erwähnt (p. 212), dass die mittlere Körpertemperatur ein Erforderniss zum Leben ist. Starke oder wenigstens auhaltende Erhöhungen und Erniedrigungen derselben (Erhitzung oder Abkühlung mit gleichzeitiger Aufhebung der Wärmeregulationsmittel) führen den Tod herbei. Möglicherweise giebt es auch Gifte, welche ähnlich den gährungshemmenden Mitteln, die Oxydationsprocesse unmöglich machen.

Auf welche Weise nun die auf den Organismus wirkenden Schädlichkeiten (Krankheiten, Verletzungen, abnorme äussere Verhältnisse) den Tod herbeiführen können, zu ermitteln, ist eine Aufgabe der pathologischen Wissenschaften. Als physiologischer ("natürlicher") Tod wird gewöhnlich der Tod durch "Altersschwäche" bezeichnet, eine Todesart, deren nächste Ursache nicht bekannt ist, deren entferntere Ursachen aber in der im Alter abnehmenden Leistungsfähigkeit sämmtlicher Organe, theils durch Atrophie, theils durch Degeneration zu suchen sind.

Der abgestorbene Körper fällt, nachdem die Erscheinung der Todtenstarre vorüber ist, der Fäulniss anheim, wofern diese nicht durch schnelles Eintrocknen oder fäulnisswidrige Mittel verhindert wird. Die Fäulniss, über welche noch wenig bekannt ist, besteht in einer langsamen Oxydation der organischen Bestandtheile durch den Sauerstoff der Luft, unter dem Einfluss eines Ferments, als welches wahrscheinlich stets Vibrionen zu betrachten sind (PASTEUR). Ein Vorläufer der Fäulniss, welcher neben der Todtenstarre als ein annähernd sicheres Todeszeichen benutzt wird, sind die sog. "Todtenflecke" (Livores), enstanden durch Diffusion des Farbstoffs der Blutkörperchen, zunächst in das Serum, dann in die Flüssigkeiten der Gefässwände, Parenchyme und der Haut.

Nachträge und Berichtigungen.

- Seite 36. Das Protagon ist durch neuere Untersuchungen (HOPPE-SEXLER & DIACONOW) als ein Gemenge erkannt worden, in welchem Lecithin neben Cerebrin enthalten ist. Das Cerebrin (W. MÜLLER), C₁₇ H₃₃ NO₃(?), ist ein Glucosid, und zeigt die dem Protagon zugeschriebene Eigenschaft mit Wasser zu quellen. Mit Mineralsäuren gespalten liefert es ausser andern, nicht untersuchten Producten einen linksdrehenden zuckerartigen Körper.
- Seite 71. Die im Text mitgetheilte Anschauung ist neuerdings, besonders durch toxicologische Erfahrungen, wieder unwahrscheinlicher geworden als die ältere, welche im Herzen selbst, besonders in den Vorhöfen, hemmende Centra annahm, die mit dem Vagus in Verbindung stehen, aber eigenen Tonus besitzen. Es giebt Gifte, welche, auch nach Durchschneidung der Vagi, diastolischen Herzstillstand hervorrufen, in welchem jede Reizung eine einzelne Contraction auslöst, so besonders das Muscarin. Das Atropin umgekehrt macht schnelleren Herzschlag, verhindert die Wirkung der Vagusreizung und des Muscarins. Es genügt nicht, diese Wirkungen als Reizung, resp. Lähmung der hemmenden Vagusenden zu erklären; denn das Nicotin, welches (nach einem entgegengesetzten Anfangsstadium) dem Atropin ähnlich wirkt, vermag den Muscarinstillstand nicht zu verhindern, lähmt also dem Centrum nähere Nervenstellen als das Atropin; vermuthlich sind nun letztere die Vagusendigungen, während Muscarin und Atropin auf gangliöse Hemmungsapparate wirken (Schmiedeberg, Böнм). - Der Stannius'sche Versuch wäre dann so zu erklären, dass nach Abtrennung der Sinusganglien im Reste des Herzens die hemmenden Centra über die motorischen überwiegen, während im Ventrikel für sich die letzteren allein vorhanden sind (v. BEZOLD). - Dass der Vagus neben den hemmenden auch beschleunigende Fasern führt (p. 72), geht u. A. daraus hervor, dass bei Atropinvergiftung (s. oben) Vagusreizung den Herzschlag beschleunigt (Schmiedeberg).
- Seite 106. Nach neueren Untersuchungen (HEIDENHAIN) treten leicht erkennbare Stoffe, welche in den Harn übergehen (z. B. indigschwefelsaures Natron), nach Einspritzung in die Gefässe nur in den gewundenen Harnkanälchen der Niere auf, nicht in den Kapseln und in den graden Harnkanälchen. Dies beweist, dass in den Kapseln nur Wasser, vielleicht auch Salze zur Secretion kommen, die specifischen Bestandtheile des Harns aber durch die Epithelien der gewundenen Kanälchen dem Blute entnommen werden Der Versuch entscheidet also für die Bowman'sche und gegen die Ludwig'sche Theorie der Harnsecretion (ebenso die im Texte erwähnte Beobachtung v. WITTICH's an der Vogelniere, die sich auch an Säugethieren durch Injectionen von harnsaurem Natron reproduciren lässt), zumal da auch nach Beseitigung der Kapselfunction durch Aetzung der Rinde die Kanälchen noch Farbstoff aufnehmen, der aber in diesem Falle wegen des mangelnden Wasserdurchflusses in ihnen liegen bleibt. (HEIDENHAIN).

Seite 238, Zeile 24, lies "pro Secunde" statt "pro Stunde".

REGISTER.

(Bei den chemischen Körperbestandtheilen ist nur der Ort ihrer chemischen Besprechung, nicht die Stellen die sich auf ihr Vorkommen beziehen, angegeben.)

Abart 477. Abdominaltypus der Athmung 150. Abführmittel 136. Abklingen 364. Absonderung 79, paralytische 92. Absorption s. Gase und Aufsaugung. Accommodation 338, 344. Acephalocyst 486. Acetabulum 266. Achromasie des Auges 346. Acrylsäure 16. Aderfigur, PURKINJE'sche 351, 366. Adipocire 177. Acquivalent, endosmotisches 82; mechanisches der Wärme 5. Aether, Wirkung auf Blut 39. Aetherarten 19. After 134, 445; Entstehung 505. Alanin 25, 26. Albumin 33. Albuminate 32. Albuminoide 33. Alkohol, Wirkung auf Blut 39. Alkohole 18. Allantoin 28 Allantois 502, 505, 508. Alloxan, Alloxantin 24. Amboss s. Gehörknöchelchen. Ameisensäure 14. Amide 23. Amidosäuren 24, 26. Amine 21. Ammenzustand 485. Ammoniak 21, 46, 139. Amnion 502. Ampullen 396. Amylum s. Stärke. Analgesie 442. Anelectrotonus s. Electrotonus. Anhydride 19, 30. Anissäure, Anisursäure 17, 105. Antagonisten 263. Antimonwasserstoff 161.

Antozon 11. Aortenbögen 500, 504, 506. Aphasie 466. Apnoe 155, 156, 437, 440, 453. Arbeit 201; Maass derselben 5. Arbeits-Consumption 204. Area vasculosa 499, 500. Aromatische Säuren 17. Arsenwasserstoff 161. Arten, Entstehung 477. Arterien 53, 60, 66, 500; Innervation und Tonus 73, 445, 456. Arterienblut 47, 53. Arterienpuls 63, 66. Arthrodie 265. Asche 12. Asphyxie s. Erstickung. Aspiration des Thorax 65, 146. Assimilation 36, 130, 168. Association 467. Astigmatismus 347. Athemnerven 153. Athmung 137, 452, 516; der Muskeln 222; künstliche 159; Wirkung auf den Blutdruck 65, 152; im Ei 484. Athmungscentrum 153, 452. Athmungsgeräusche 152. Atmograph 152. Atmosphäre 137 Atropin 345, 518. Aufsaugung 118. Auge 322; schematisches 324; facettir-tes 388; Entstehung 505. Augenbewegungen 366, 460. Augenbrauen 388. Augendrehpunct 366. Augenleuchten 358. Augenlider 386. Augenmuskeln 370, 386. Augenspiegel 349. Ausgaben des Körpers 181, 202. Auslösung 6, 289. Automatie 425, 428. Axencylinder 291.

Butter 116.

Baeder, kalte 212, 213. Baldriansäure 14. Balken 447. Bandwürmer 486. Barbitursäure 24. Basstaubheit 402. Bauchpresse 157. Bauchspeichel s. Pancreassaft. Becherzellen 121. Befruchtung 479, 483, 493. Begattung 483, 493; Centrum bei Fröschen 435. Bell'scher Lehrsatz 320. Benzoësäure 17, 105. Benzol 17. Bernsteinsäure 16. Beschleunigungsnerven 429. Bicuspidalklappe 57. Bier 179. Bildungsdotter 484. Bilicyanin 29. Bilifuscin 29. Biliphäin 29. Biliprasin 29. Bilirubin 29, 98. Biliverdin 29. Bindegewebe 87, 120. Binocularsehen 372. Blase s. Harnblase. Blattläuse 486. Blei 10. Blut 37, 162; Analyse 48; Entstehung 499. Blutbewegung 52, 59; Geschwindigkeit 67; Innervation 70. Blutdruck s. Blutbewegung. Blutgase 42, 139. Blutgerinnung 49. Blutkörperchen 38, 41, 78, 162. Blutkrystalle 40. Blutkuchen 49. Blutmenge 48, 169. Blutplasma 41. Blutserum 42, 49. Blutvertheilung 70. Bogengänge 396, 409. Brechact 136. Brechungsgesetze 325. Brillen 342. Brod 179. Bronzed skin 163. Brücke s. Varolsbrücke. Brütung 484. Brunst 482, 489. Brustdrüse 113. Brustkasten s. Thorax. Bruststimme 283. Büschel, Haidinger'sche 348. Butalanin 25.

Butterfette 19. Buttersäure 14. Calabargift 345. Calcium 10. Canäle, halbcirkelförmige 396, 409. Capacität, vitale 151. Capillaren 53, 64, 67, 69. Caprinsäure 14. Capronsäure 14. Caprylsäure 14. Carbamid s. Harnstoff. Carbaminsäure 23, 105. Cardinalpuncte 332, 333. Cardiograph 59. Carnin 28. Carunkeln 503. Casein 32, 33. Castratenstimme 283. Catelectrotonus s. Electrotonus. Cellulose 20, 127, 180. Centralorgane, nervöse 7, 425 Centrum ciliospinale s. Iris. Cerebellum s. Kleinhirn. Cerebrin 518. Chalazen 482. Charniergelenk 265. Chenocholalsäure 17. CHEYNE-STOKES'sches Phänomen 156, Chiasma opticum 379, 462. Chitin 36. Chlor 10, 160. Chlorbenzoësäure 17. Chlornatrium 13, 195. Chloroform, Wirkung auf das Blut 39. Chlorwasserstoffsäure 13. Cholalsäure 17. Choleinsäure 26, 93. Cholepyrrhin 29. Cholesterin 18. Choletelin 29. Cholin 22 Choloidinsäure 17. Cholsäure s. Cholalsäure, Glycocholsäure. Chondrin 36. Chorda dorsalis 498. Chorda tympani 90, 413. Chorioidea 348. Chorion 495, 503. Chromasie des Auges 346. Chylus 125. Chylusgefässe 119. Chymus 128. Ciliarmuskel 340. Clitoris, Entstehung 509. Cloake 503, 504. Coitus s. Begattung. Colloidsubstanzen 81.

Colostrum 115. Combinationstöne 399. Complementärfarben 354. Complementärluft 151. Consonanten 286. Consonanz 403. Contraction s. Muskel; idiomusculäre 239.Contrast, simultaner 365; successiver 364Coordination 443, 467. Cornea s. Hornhaut. Coronargefässe 57. Corpora cavernosa 491; quadrigemina s. Vierhügel. Corpus callosum s. Balken. Corpus luteum 489. Corpus striatum s. Streifenhügel. Contri'sches Organ 397, 402. Costaltypus der Athmung 150. Cretinismus 463. Cruor 49. Crusta phlogistica 49. Cumulus proligerus 487. Curare 172, 226. Cysticercus 486. Cystin 26.

Daltonismus 357. Darm, Entstehung 496, 499, 504. Darmathmung 138. Darmbewegung 134, 136. Darmdrüsenblatt s. Keimblätter. Darmfisteln, THIRY'sche 102. Darmgase 129. Darmsaft 102. Darmverdauung 128. Darmzotten 120. DARWIN'sche Theorie 477. Decidua 494. Denken s. Seelenthätigkeiten. Diabetes 172, 457. Dialursäure 24. Diapedesis 78. Diastole 55. Dicrotie 64. Differenztöne 399. Diffusion 81. Dilatator iridis s. Iris. Diphthongen 286. Discs 218 Discus proligerus 488. Disdiaclasten 219, 256. Dissonanz 403. Doppelbilder, Vernachlässigung 379. Dotter, Dotterhaut s. Ei. Dottersack 496. Drehschwindel 459. Dromograph 69. Dromometer 69.

Druckfigur 351. Drucksinn 420. Drüsen 84. Ductus Botalli 507; omphalo-entericus s. Nabel; thoracicus 119; venosus Arrantii 503. Durst 180, 423. Dyslysin 17. Dyspnoe 155, 158, 345, 453. Echinococcus 486. Ei 479, 481, 488. Ei als Nahrungsmittel 179. Eientwicklung s. Entwicklung. Eierstock 479, 487; Entwicklung 488, 507. Eihäute 512. Eischläuche 488. Eisen 10. Eiterung 78. Eiweisskörper 32, 193. Elain 19. Elainsäure 17. Elastin 34 Electricität, Wirkung auf Blut 39; auf Muskeln und Nerven 294, 295, 305; auf das Auge 351, 357; Entstehung im Körper 5; bei der Blutgerinnung 50; im Muskel 246; im Nerven 306. Electrotonus 295, 297, 306, 308. Embryo s. Entwicklung. Emmetropie 342. Empfindung s. Seelenthätigkeiten. Empfindungen, excentrische 312. Empfindungskreise, der Haut 421; der Netzhaut 360. Endosmose 81. Energie, specifische 311, 355, 400. Entwicklung 484, 495. Entzündung 78, 211. Erbrechen s. Brechact. Erection 491. Erinnerung 464. Ermüdung, der Muskeln 228, 233, 243; des Auges 352. Erregungsgesetz, allgemeines 296; PFLÜGER'sches 297, 299. Erstickung 155, 157. Essigsäure 14. Excrete 79, 181. Exspiration 65, 150. Faeces s. Koth. Fäulniss 517. Farbenblindheit 357. Farbenkreisel 354, 364.

Farbensehen 352, 364.

Faserzellen, contractile 255.

Fermente, hydrolytische 19, 35.

Faserstoff s. Fibrin.

Farbstoffe 29.

Fernpunct 342. Fernrohr 361. Fettbildung 168, 172, 177, 194. Fette 19. Fettgewebe 195. Fettsäuren 14 Fettwachs s. Adipocire. Fibrin 33, 49, 50. Fibrinferment 51. Fibroin 34. Fieber 214. Filtration 80. Finne 486. Fistel, THIRY'sche 102. Fistelstimme 282. Fixiren 350, 360. Fleck, blinder 350, 359; gelber 351, 358. Fleisch 178; s. auch Muskeln. Fleischansatz 193. Fleischmilchsäure 15. Fleischprismen 218. Flimmerbewegung 259. Flüstern 283. Fluor 10. Fluorescenz der Augenmedien 347. Follikel, lymphatische 124, 163; GBAAFsche s. Eierstock. Fovea cardiaca 500. Fovea centralis s. Netzhaut. Foveola posterior 500. Fruchtbarkeit 480. Fruchthof 495. Fussgelenke 272. Furchung 484, 495.

Gähnen 153. Galle 93, 96. Gallenblase 99. Gallenfarbstoffe 29. Gallenfisteln 99. Gallensäuren 17, 25, 26; Wirkung auf Blut 39 Gang s. Gehen. Ganglienzellen 426, 433, 473. Ganglion, ciliare 345; coeliacum 475; submaxillare 91. Gase, Absorptionsgesetze 42; lockere Bindung 43; Wirkungen 160. Gasspannung inFlüssigkeiten 43,139,142. Gaswechsel, des Blutes 139; s. auch Athmung. Geburt 485, 511. Gedächtniss 464. Gedanken s. Seelenthätigkeiten. Gefässbildung 499. Gefässcentrum 74, 76, 445, 456. Gefässe s. Arterien, Venen, Capillaren. Gefässnerven 73, 445, 456. Gehen 273, 459.

Gehirn 447; Zusammensetzung 427; Ernährung 471; Entstehung 498, 505. Gehirnganglien 447, 458. Gehirnnerven 314, 450. Gehörgang 390. Gehörknöchelchen 392, 394. Gehörorgan 388; Entstehung 505. Gelbsucht 97. Gelenke 264. Gelenkschmiere 87, 266. Gemüse 180. Generatio spontanea 477. Generationswechsel 485. Geräusch 399, 403. Geruchsorgan 410; Entstehung 505. Geschlechter 479; Entstehung 509. Geschlechtsreife 480, 487. Geschlechtstheile, Entwicklung 507. Geschlechtstrieb 483, 487. Geschmack, electrischer 312, 414. Geschmacksorgan 412. Gesichtserscheinungen, subjective 363; entoptische 365. Gesichtsfeld 359. Gesichtswinkel 463. Getreidekörner 179. Gewürze 175. Ginglymus 265. GIRALDÉS'sches Organ 508. Glanz, stereoscopischer 384. Globulin 33, 41. Glottis s. Kehlkopf. Glucoside 20, 36, 518. Glutin 34. Glycerin 18, 171. Glycerinphosphorsäure 20; s. a. Lecithin. Glycin 25, 105. Glycocholsäure 25. Glycocoll s. Glycin. Glycogen 20, 170, 225. Glycolsäuren 15. Grosshirn 462. Grubengas 160. Guanidin 22, 28. Guanin 28. Guanogallensäure 17. Gummi 20. Gurgeln 157.

Hämatin 29, 39. Hämatodynamometer 61. Hämatoidin 29, 40, 98. Hämatoin 40. Hämatokrystallin s. Hämoglobin. Hämin 40. Hämochromogen 40. Hämodromometer 69. Hämoglobin 35, 39, 44.

Hämotachometer 69. Häute, seröse 87. Haftbänder 266. Haftwärme 2. Hagelschnüre 482. Hallucinationen 365. Hammer s. Gehörknöchelchen. Harmonie 403. Harn 103, 518. Harnblase 110; Entstehung 508. Harnfarbstoffe 30. Harnleiter 109. Harnröhre, Entstehung 509. Harnsäure 27. Harnstoff 23. Hauchen 157. Hautathmung 138. Hautempfindungen 416. Hautnerven 415. Hautresorption 123. Hautströme 249. Hauttalg 113. Hemiopie 379. Hemmungsbänder 267. Hemmungsnerven 429. Hermaphroditismus 479. Herz 53, 59, 77; Entstehung 499, 506. Herzen, accessorische 67. Herznerven 71, 75, 455, 518. Herzstoss 58. Herztöne 58. Hidrotsäure 112. Hippursäure 25, 105. Hirn s. Gehirn. Hoden 479, 491; Entwicklung 508. Hodensack, Entstehung 508. Höhlenflüssigkeiten 82, 87. Hören s. Gehörorgan. Hörrohr 390. Horn 34. Hornabstossung 182. Hornhaut 87, 323; Nervenendigungen 258, 416. Horopter 374. Hüftgelenk 266, 270. Hülsenfrüchte 180. Hunger 180, 423. Hungern 189. Husten 157. Hyalin 36. Hydatide 508. Hydrobilirubin 29. Hydrodiffusion 81. Hydrolytische Spaltungen und Fermente s. Spaltung, Fermente. Hyocholalsäure 17. Hyperästhesie, Hyperkinesie 439. Hypermetropie 342. Hypoxanthin 28.

Ichthin 35. Icterus 97. Identität der Netzhäute 373, 379, 382. Inanition 189. Indican 103. Indol 101. Inosinsäure 28. Inosit 18. Insel 466. Inspiration 65, 148. Intercostalmuskeln 149. Involution 487, 514. Iris 341, 343, 444, 456, 460. Irradiation 364, 443. Isoxanthin 28.

Läse 116. Käsestoff s. Casein. Kalium 10. Kaltblüter 209. Kauen 131, 457. Kehlkopf 150, 156, 278; unterer der Vögel 280. Kehlkopfspiegel 281. Keimbläschen, Keimfleck s. Ei. Keimblätter 497, 509. Keimblase 495. Keimdrüsen s. Eierstock, Hoden. Keimepithel 507 Keimscheibe 482. Keratin 34. Kiefergelenk 131. Kiemen 145. Kiemenbogen, Kiemenspalten 504. Kiesel 10. Kieselsäure 14. Klang 276, 399. Klappen, des Herzens 57; der Venen 66. Kleinhirn 462. Kniegelenk 267, 271. Knochengewebe 86. Knochenleitung 389. Knochenmark 163. Knochenverbindungen 263. Knorpelgewebe 86. Knospung 479. Kochsalzgenuss 195. Kohlenhydrate 18, 178. Kohlenoxyd 45, 161. Kohlensäure 15, 16, 46, 140, 160, 161. Kohlenstoff 10, 187. Kopfgelenk 269. Kopfstimme 283. Koth 129, 134, 182. Kothentleerung 134. Krämpfe, bei Erstickung 158, 455. Kraft, lebendige 2. Kraftwechsel 8, 197. Krampfcentrum 455.

Kreatin 26 Kreatinin 28. Kreislauf s. Blutbewegung. Kropf 132. Krystalloidsubstanzen 81. Kumiss 116. Kupfer 10. Kurzsichtigkeit 342. Kymographion 64, 66. Kynurensäure 28. Labdrüsen 94. Labyrinth des Ohrs 395, 409. Lachen 153. Larven 485. Laryngoscop 281. Laufen 273. Lebenskraft 1. Leber 96, 165, 166, 170; Entstehung 501. Lecithin 22. Legumin, Leguminosenfrüchte 180. Leichenstarre s. Muskelstarre. Leichenwachs 177. Leim 34, 192. Leimzucker s. Glycin. Leistungen 2, 197. Leitung im Nerven s. Nervenleitung. Leitungsvermögen, galvanisches der Muskeln und Nerven 305. Leucin 25, 31, 105. Leucinsäure 15. Leukämie 164. Lichtentwicklung 5. Lidschlag 387. Linse 323, 333, 339. Linsen, Wirkung 335. Linsenkern 447, 460. Liquor, pericardii, peritonei, pleurae 87; cerebrospinalis 87, 472; sanguinis 41; lymphae 125; amnii 502; allantoidis 503. Lithium 10. Lithofellinsäure 17. Lochien 512. Locomotionscentra 459. Loupe 336, 361. Luftröhren s. Tracheen. Lunge 146, 207; Wärmebildung 139, 211; Entstehung 501. Lungenkreislauf 53, 152. Lungensäure 141. Luxusconsumption 195. Lymphdrüsen 125, 163. Lymphe 125, 142. Lymphgefässe 119, 126. Lymphherzen 126. Lymphkörperchen 41, 125, 164.

Mästung 194. Magen, Entstehung 506; Anhangsapparate 132. Magenbewegung 133, 135. Magendrüsen 94. Magensaft 92. Magenverdauung 127. Maguesium 10. Malonsäure 16. Manégebewegung 459. Mangan 10. Margarin 19. Margarinsäure 14. Mark, Markscheide 291. Mark, verlängertes 452. Medulla oblongata 452. Medullarplatte, Medullarrohr 498, 505. MEIBOM'sche Drüsen 113, 387. Melanin 30. Melodie 405. Menstruation 488. Mesenterium 497, 499. Metamorphose, progressive und regres-sive 36; der Insecten 485. Methylamin 22. Methylchlorür 161. Methyluramin 22, 27. Micropyle s. Ei. Microscop 361. Milch 113, 179; Verdauung 93 Milchsäure 15, 16. Milchzucker 18. Milz 38, 163; Entstehung 502. Mischfarben 353. Mitbewegung, Mitempfindung 467, 468. Mitralklappe 57. Molecularbewegung 257. Molken 116. Mucin 34, 91. MÜLLER'scher Gang 508. Mundbildung 504. Mundschleim 88. Mundverdauung 127. Muscarin 518. Muskelarbeit 240, 253; Stoffverbrauch 205, 229. Muskelathmung 222, 229. Muskelgefühl 423. Muskelgeräusch 238. Muskelirritabilität 226. Muskelkraft 244. Muskeln 217; quergestreifte 217, 260; glatte 255. Muskelplasma 220. Muskelreize 227, 299. Muskelserum 220. Muskelstarre 223, 231, 245, 254. Muskelstrom 246. Muskelton 238. Muskeltonus s. Tonus. Muskelwirkung 260. Muskelzuckung 235. Myographion 240.

Myopie 342. Myosin 33, 220, 231. Nabel, Nabelblase, Nabelgang 496, 503, 512. Nabelstrang 512. Nachbilder 363. Nachgeburt, Nachwehen 513. Nachstrom, electrotonischer 306. Nachtöne 406. Nahepunct 342. Nahrung 174; vollständige 188. Nahrungsdotter 484. Nahrungsmittel 175, 178. Nahrungsstoffe 3, 4, 174, 176, 198, 205. Nase 77, 150, 156, 410, 504. Natrium 10. Nebeneierstock, Nebenhoden 508. Nebennieren 163, 476, 502. Neigungsstrom 248. Nerven 291; Entstehung 506; motorische 311; sensible 311; trophische 311, 316; intercentrale 313; vasomotorische s. Gefässnerven; secretorische 85, 89, 311; regulatorische 429; reflectorische 311; pressorische, depressorische 75; specif. Energie s. Energie. Nervenendigungen, im Muskel 219, 256; in der Cornea 258, 416; in den Drüsen 85; in den Sinnesorganen s. diese. Nervenendknäuel 416. Nervenendkolben 416. Nervenleitung 301, 310. Nervenreize 295. Nervenstrom 306. Nervensystem 289. Nervus, abducens 316, 450; accessorius 317, 451; acusticus 317, 396, 409, 451; depressor 75; facialis 316, 413, 451; glossopharyngeus 317, 451; hypo-glossus 318, 451; oculomotorius 315, 450; olfactorius 314, 410, 450; opticus 314, 351, 379, 450; splanchnicus 135, 173, 475; sympathicus 72, 472; trigeminus 90, 315, 450; trochlearis 315, 450; vagus 72, 153, 317, 451. Netzhaut 348, 350, 355, 373. Neurilemm 291. Neurin s. Cholin. Neuroglia 426. Nicotin 345, 518. Niere 105, 518; Entstehung 507. Niesen 157. Noeud vital s. Athmungscentrum. Normalfläche 375, 378, 386. Nussgelenk 265. Obertöne 276.

Obst 180. Oecoid 39. Oelsäuren 16. Oesophagus 133. Ohr 388. Ohrenschmalz 112, 409. Ohrmuschel 390, 408. Ohrtrompete s. Tuba Eustachii. Olein 19. Oleinsäure 17. Ophthalmometer 325. Ophthalmoscop 349. Optometer 343. Organe 5. Organismus 1. Orientirungsprincip 369. Ortsinn 419. Otolithen 396, 398. Ovarium s. Eierstock. Ovulum s. Ei. Oxalsäuren 16, 105. Oxalursäure 24. Oxydation 2, 199. Ozon 10, 45.

PACINI'sche Körperchen 415, 424. Palmitin 19. Palmitinsäure 14. Pancreas, Entstehung 501. Pancreassaft 100. Pancreatin 100. Papillen, der Haut 416; der Zunge 413 Parabansäure 24 Parelectronomie 251. Parenchyme 85. Parenchymsäfte 80, 85, 123. Parepididymis 508. Parotis s. Speichel. Parovarium 508. Parthenogenesis 479. Paukenfell, Paukenhöhle s. Trommelfell, Trommelhöhle. Paukensaite s. Chorda tympani. Pedunculus cerebri 451, 456. Penis 416; Erection 491; Entstehung 509. Pepsin 92. Peptone 31, 93, 101, 168. Periode 488. Peristaltik s. Darmbewegungen. Perspiration 138. Pflanzen, Stoffwechsel 4. Pfortader 53, 97; Entstehung 501. Phantasmen 365. Pharynx 132. Phonautograph 285 Phosphor 10. Phosphorsäure 14. Phosphorwasserstoff 161. Phrenograph 152. Phrenologie 465. Physiologie, Aufgabe 1, 8. Pigmente 29. Piqure s. Zuckerstich,

Placenta 145, 485, 503, 513. Plasma s. Blut, Lymphe, Muskeln. Pneumograph 152 Pneumothorax 146. Point vital s. Athmungscentrum. Pons Varolii s. Varolsbrücke. Primärstellung 367, 375. Proglottiden 486. Projectionssysteme 448. Propionsäure 14. Protagon 36, 518. Proteinstoffe s. Eiweisskörper. Protoplasma 217, 257. Pseudopodien 257. Pseudoscop 384. Psychophysik 468. Ptyalin 89. Pubertät 480, 487. Puls 63, 66. Pulsfrequenz s. Herz. Pupille s. Iris. Purpur 354. Raddrehungen 368, 370. Räuspern 157. Rahm 116. Reflex 8, 425, 435, 465. Reflexhemmung 438, 440. Reflexkrämpfe 436. Regel, Reinigung 488. Reitbahngang 459. Reizschwelle 469. Reserveluft 151. Residual air 151. Resonanz, Resonatoren 400. Resorption 118. Respiration s. Athmung. Retina s. Netzhaut. Richtungslinien 334, 359. Riechhaut 410. Rippen 149. Rollbewegung 459. ROSENMÜLLER'sches Organ 508. Rothblindheit 357. Rückenmark 433; Chemie 427; Einfluss auf die Körperwärme 214; Entstehung 498. Rückenmarksnerven 320, 433. Rückenmarksseele 435, 464. Säurebildung, im Blute 50; im Muskel 223, 229; im Nerven 301. Säuren 13. Säurestarre 224. Saftkanälchen 120. Salicylsäure, Salicylursäure 17, 105. Salze 12, 13, 168, 186, 195. Salzsäure s. Chlorwasserstoffsäure.

Samen 479, 483, 490. Samenkörperchen 259, 483, 490.

Santonin 358. Sarcode s. Protoplasma. Sarcolemm 218, 221. Sarcosin 26, 105. Sarcous elements s. Fleischprismen. Sarkin s. Hypoxanthin. Sattelgelenke 265. Sauerstoff 3, 10, 47, 50, 140, 187. Schaamlippen, Bildung 508. Schallleitung 389. SCHEINER'scher Versuch 338, 343. Schielen 372. Schilddrüse 163, 472; Entstehung 501. Schlaf 470. Schleim 34, 88, 103 Schleimbeutel 87. Schleimkörperchen 88, 258. Schleimstoff s. Mucin. Schliessmuskel s. Sphincter. Schlingen 132, 134, 457. Schluchzen 153. Schlucken s. Schlingen. Schlund 133. Schlundbogen, Schlundspalten 504. Schlundkopf 132. Schlundplatte 500. Schmeckbecher 413. Schmelz s. Zahnschmelz. Schmerz 416. Schnäuzen 157. Schnecke 395, 397, 402. Schraubengelenke 265. Schritt s. Gehen. Schwarz 353. Schwebungen 403. Schwefel 10, 187. Schwefelsäure 13. Schwefelwasserstoff 161. Schweflige Säure 160. Schweiss, Schweissdrüsen 111, 210, 212. Schwelle 469. Schwerpunct des Körpers 270, 272. Schwindel 459. Scrotum, Entstehung 508. Secretion s. Absonderung. Secundärstellungen 368, 375, 376. Seelenthätigkeiten 8, 425, 430, 462. Sehaxe 360, 367. Sehen 350, binoculares 372. Sehhügel 447, 460. Sehnenscheidenflüssigkeit 87. Sehstrahlen 334, 359. Sehwinkel 334, 361. Seidenleim 34. Seifen 15. Selbststeuerung des Herzens 57. Semilunarklappen 57. Sericin 34. Serin 26. Serum s. Blutserum.

Seufzen 153. Sinnesblatt s. Keimblätter. Sinnesorgane 7, 322. Sinus urogenitalis 508. Sitzen 273. Skelett 263. Spaltung, hydrolytische 3, 19, 35, 130. Spannkraft 2. Speckhaut 49. Speichel 88. Speichelkörperchen 89, 258. Speisen 175, 178. Spermatozoen s. Samenkörperchen. Sphincter ani 134, 445; iridis s. Iris; vesicae 111, 446. Sphygmograph 64. Spinalwurzeln 320, 444. Spiralgelenke 267. Spirometer 151. Spitzenstoss 58. Sprachcentrum 466. Sprache 283. Sprunggelenk 272. Stäbchen s. Netzhaut. Stärke 20. Stapedius 394. Stearin 19. Stearinsäure 14. Stehen 268. Steigbügel s. Gehörknöchelchen. STENSON'scher Versuch 225, 228. Stercobilin 29. Stereoscopie 381. Stethograph 152. Stethoscop 390. Stiekoxyd 45, 160, 161. Stiekoxydul 160, 161. Stickstoff 11, 46, 160, 187. Stickstoff-Deficit 187. Stimmbänder, Stimmritze s. Kehlkopf. Stimmcentrum 435. Stimme 275. Stimmwechsel 283, 487. Stoffwechsel 4, 10, 162, 174, 204, 222, 229. Stomata 120. Strabismus 372. Streifenhügel 447, 460. Stromesschwankung, negative s. Muskelstrom, Nervenstrom. Stromuhr 69. Strychnin 436. Sublingualdrüse s. Speichel. Submaxillardrüse s. Speichel. Summationstöne 399. Sumpfgas 160. Symphysen 263. Synchondrosen 263. Synovia 87, 266. Synthesen, pflanzliche 4; thierische 11, 169, 232.

Syntonin 32, 33. Systole 55. Tachometer 69. Taenien 486. Talgdrüsen 113. Tapetenphänomen 386. Tapetum 350. Tastkörperchen 416. Tastsinn 417. Taurin 26. Taurocholsäure 26. Telestereoscop 384. Temperaturen des Körpers 209. Temperaturregulation 212. Temperatursinn 422. Temperatursteigerung, postmortale 215, 245. Tensor chorioideae 340. Tensor tympani 392, 394. Tertiärstellungen 368, 377. Tetanus 238; secundärer 250, 306; RITTER'scher 298. Thalamus opticus s. Schhügel. Thaumatrop 363. Thoracometer 152. Thorax 55, 65, 146. Thränen 117. Thränenapparat 387. Thymusdrüse 163; Entstehung 501, 505. Timbre 276, 399. Tod 514. Todtenstarre s. Muskelstarre. Tone 276, 286, 398; subjective 406. Tonus, der Arterien 73, 445; der Muskeln 443; der Sphincteren 111, 445; der Iris s. Iris, Tracheen 145. Transsudate 82. Traubenzucker 18. Traum 470. Tricrotie 64. Tricuspidalklappe 57. Trimethylamin 22 Trommelfell 390, 392. Trommelhöhle 393. Tuba Eustachii 393; Fallopiae 488, 493, 494. Tyrosin 26, 31. Ultraroth, Ultraviolett 352. Umhüllungshaut 495, 510. Urachus 503. Urari s. Curare. Ureier 488. Ureter s. Harnleiter. Urin s. Harn. Urniere 507.

Urobilin 29, 30.

Urohämatin 30.

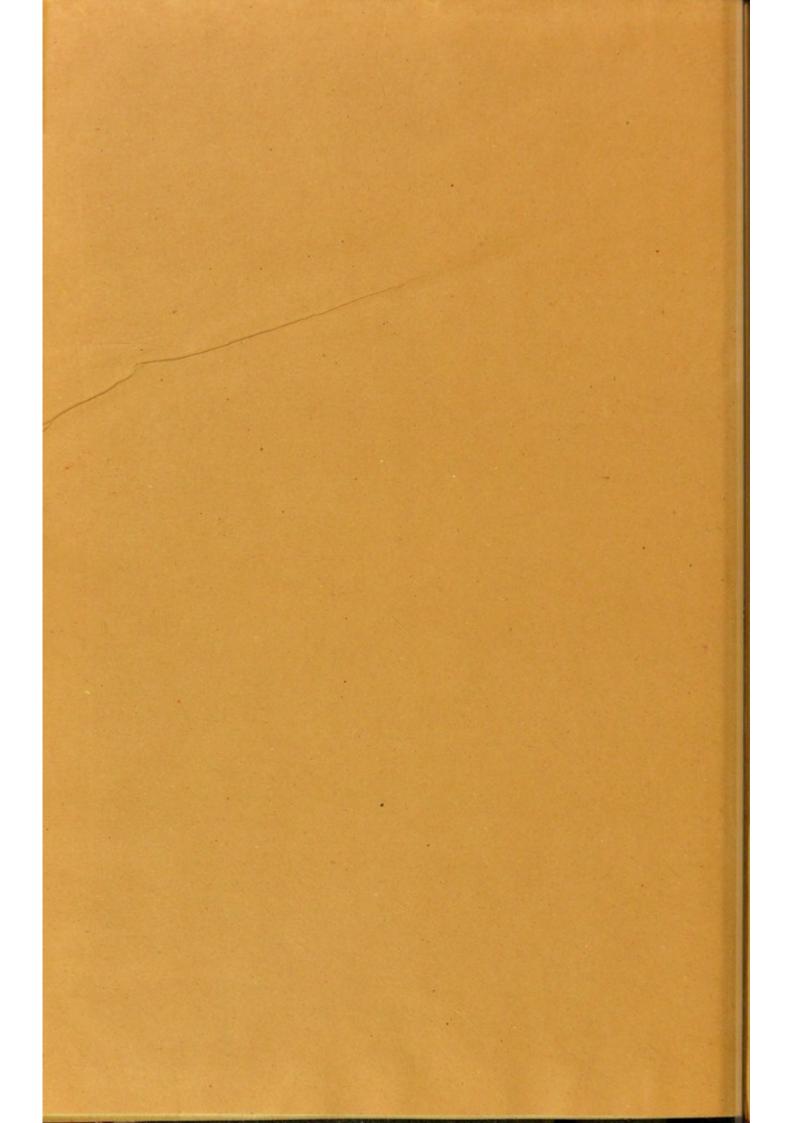
Urwirbel 498. Urzeugung 477. Uterus 484, 494, 511; Entstehung 508; masculinus 508.

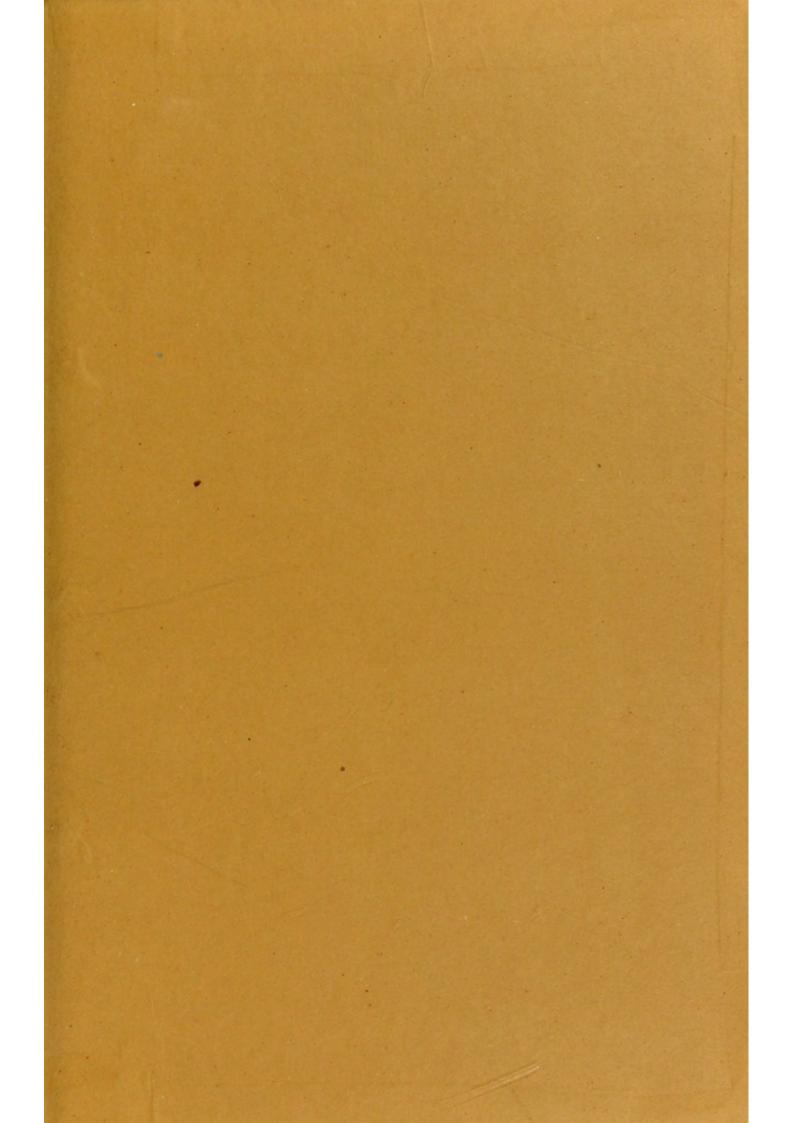
VALSALVA'scher Versuch 393. Varolsbrücke 459, 461. VATER'sche Körperchen 415, 424. Venen 53, 65, 70. Venenblut 47, 53. Venenklappen 66. Ventilationscoëfficient 152. Ventriculus Morgagni s. Kehlkopf. Verbrennungswärme 198. Verdauung 122, 126. Verdauungssäfte 88. Vergrösserung 361. Verhornung 182. Verhungern 189. Vernix caseosa 113, 513. Vibrissae 409. Vierhügel 447, 460. Vire 509. Visceralbogen 504. Visirebene 369, 372. Vitellin 35. Vocale 284. Vorhöfe, Function 56. Vorstellung s. Seelenthätigkeiten.

W achsthum 513. Wärme, thierische s. Temperaturen. Wärmeausgaben 209. Wärmebildung 200, 207; im Blute 50, 208; in den Drüsen 83, 208; in den Muskeln 208, 245; in den Lungen 139, 207, 211. Wärmestarre 223. Walrath 20. Warmblüter 209. Wasser 12, 13, 167, 186, 195. Wasserathmung 145. Wasserstarre 223. Wasserstoff 11, 160, 187. Wasserstoff superoxyd 13. Wehen 511. Weine 180. Weitsichtigkeit 342. Wiederkäuer, Mägen 132. Wille s. Seelenthätigkeiten. Winterschlaf 214. Wirbelsäule 270; Entstehung 498. WoLFF'scher Körper 499, 507. Wollust 423. Worara, Wurali s. Curare.

Xanthin 28. Xanthoproteinsäure 32.

Zahnschmelz 86. Zapfen s. Netzhaut. Zeitmessung, physiologische 236, 432, 468. Zellen, contractile 257. Zerstreuungskreise 337. Zeugung 477, 486. Zona pellucida s. Ei. Zooid 39. Zoospermien s. Samenkörperchen. Zotten 84; des Darms 120. Zuckeranhydride 20. Zuckerarten 18. Zuckerbildung in der Leber 170, 457. Zuckerstich 109, 172, 457. Zuckung 235; secundăre 250, 306; paradoxe 302, 306. Zuckungsgesetz 297. Züchtung, natürliche 477. Zunge 133, 413. Zungen, Zungenpfeifen 277. Zwangsbewegungen 409, 459. Zweckmässigkeit 477. Zwerchfell 148.




Druck von H. S. Hermann in Berlin,

