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PREFACE

No one recognises more fully than I the errors of omission and commission
to be found in the first edition of “ General and Practical Opties.” It has,
however, apparently served the purpose for which it was designed, and 1
trust that some, at least, of its faults will be found remedied in this second
edition, in which the subject-matter has been entirely rewritten, there being
but few paragraphs of the original left untouched. In addition, the arrange-
ment has been materially changed, some seemingly unnecessary matter
having heen omitted, while a large amount of new matter has been intro-
duced, and most of the diagrams are new.

Although primarily intended as a texthook for candidates for the
examination of the Worshipful Company of Spectacle Makers, it is written
also for other students of optics as a reference book for those engaged in
spectacle work, and as an introduction to the study of more pretentious
volumes and those dealing with special hranches of optical science.

In the preface to the first edition I acknowledged my indebtedness to
Dr. George Lindsay Johnson. In this I have to acknowledge the valuable
aid, in writing, compiling, revising, and correcting the work, of Mr. H. Oscar
Wood, who has also made all the new diagrams,

As I have said in the preface to © Visual Optics and Sight-Testing,” 1
have endeavoured to cover in the two works all that is essential for the
sight-testing optician.

LIONEL LAURANCE.

vii
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GENERAL AND PRACTICAL
OPTICS

CHAPTER 1
LIGHT

Light.—Everything we see around us is rendered visible by means of
a form of radiant energy which is termed light. With the exception of
certain manifestations such as fluorescence, phosphorescence, ete., all light
has its source in bodies which are in a condition of white heat or incan-
descence. The source of light itself may not be visible, but the reflected
light by which objects—the sky, moon, trees, houses, etc.—are seen can
invariably be traced to the sun, or to some artificial source of incandescence.

It was once supposed that light was something which radiated from the eye
to the objects seen, and later it was thought to be due to minute corpuscles
which proceeded from a visible object to the eye at great speed, but it has
now been proved that light is due to vibrations set up in the luminiferous
ether by the molecular agitations of an incandescent body.

Ether.—This is a medium believed to ocecupy all space throughout the
universe, penetrating between the molecules and atoms of which bodies ave
composed, so that every body is saturated with ether, nor can any vacuum,
however perfect, remove the slightest fraction of it. Exceedingly little is
known about its nature, its properties being chiefly negative, since it cannot
be appreciated by any of the senses. It has been concluded, however, that
it possesses density, rigidity and elasticity, properties enabling it to pro-
pagate transverse undulations or waves, which are generated by vibrations
in incandescent materia! bodies ; these waves travel to an infinite distance
without appreciable loss of energy. Ether is the connecting medium of the
universe, and it is due to its presence that material bodies are capable of
acting on one another at a distance, and by which such forms of energy as
light, heat, magnetism, electricity, ete., are made manifest.

Light Waves and Rays.—Since every point of a source of light generates

an oscillation which travels in every direction, let one of these parts L

(Fig. 1) be considered a point of vibrating incandescent matter. This forms
1
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the centre of a tiny sphere whose diameter equals a wave length, and
according to the accepted theory of Huyghen, every point on the circum-
ference of this sphere forms a new centre of disturbance which generates a
fresh sphere, and each of these spheres again forms fresh ones, and so on.
Now, as these tiny spheres may be supposed to lie side by side overlapping
each other, tangents to points on their combined circumference (which points
are ends of radii from the primary centre of disturbance) will, if taken
collectively, form a wave-front (¢ b ¢ d ¢). As each wave-front forms a
centre for the formation of a fresh row of spheres, the diameter of each
sphere is equal to a wave-length. Each successive wave-front may therefore
be considered as the crest (/7 or 2/F"), and the space between it and the
next wave-front as the trough of a wave (1777 or 111F7). But although we
may consider light as advancing in the form of a simple wave-front which
forms part of an ever-enlarging sphere, yet in reality the process is exceed-
ingly complex, and cannot be entered into here.

The wave motion of the ether is always fransverse, i.e. at right-angles
to the direction of propagation of the light. The ether particles themselves

M

do not travel, but merely oscillate, much in the same way as a cork bobs up
and down in the water as a wave passes by ; or, to employ another illustra-
tion, as the vibrations of a rope, fixed at one end, travel along it when it
is shaken at the other extremity.

Although light is propagated from a Inminous point in a series of wave
fronts, it is more convenient to consider the direction of propagation of any
particular point on the main wave, which can be shown as a straight line.
From the luminous point L (Fig. 1) the light radiates in every direction, and
any line of propagation such as La, Ll etc., is termed a ray of light. Thus
“rays” are really the imaginary radii of the wave fronts, and as such bave
no material existence. For diagrammatic purposes, however, their assump-
tion is most convenient, as they indicate the directions in whieh portions of
the real wave-front are travelling.

Wave Length and Frequency.—The frequency of a wave motion is the
time taken by it to perform one undulation, or to travel over a distance
of one wave length. If, therefore, V be the velocity of light in mm. per
second, Li the wave-length in mm., and T the number of vibrations executed
in one second, V=LT. In free ether (i.e. space) all waves travel with the
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same velocity and, therefore, it follows that the short waves of blue and
violet must have a higher frequency than the longer red waves in order that
their velocities may be equal. It is only when light passes into material
bodies, like glass or water, that the velocities of the various waves become
unequal, the natural result being the phenomenon of refraction (q.v.).

Radiant Energy.—When the temperature of a bhody is raised, the
increased molecular activity causes a generation of ether waves of certain
length and frequency, which constitutes what is termed radiant heat. If the
temperature is raised still more, the activity is proportionally inereased, so
that the waves become shorter and the vibrations more rapid. Thus, when
the temperature of a body reaches about 500° centigrade, it not only emits
the relatively long waves of heaf, but also the shorter waves of light ; the
difference between the two forms of radiant energy— heat and light—existing
solely in the difference in length of the waves. The undulations must be of
a certain shortness and rapidity in order to become ““ light ” as distinet from
“ heat.”

Some bodies transmit light and not heat rays, and others the reverse.
Bodies which transmit the invisible heat rays without becoming quickly
warmed themselves are termed diatherinanous ; those which do not transmit
adiant heat without themselves hecoming rapidly heated, are termed
athermanous or adiathermanous.

The longest light waves, i.e. those of least frequency, give rise to the
visual sensation of red when the temperature of a body is raised to about
500° C. On further raising the temperature of the body, shorter waves are
also produced which, being of different lengths and frequencies, cause the
sensation of various colours, varying from red, the longest, to violet, the
shortest visible waves. White is a sensation caused by the combined action
of all waves ranging between red and violet, and is produced when the
temperature reaches about 1000° C.

The existence of what is known as the infra red waves, or those beyond
the visible red of the spectrum which are too long, or too slow, to cause
vision, may be shown in various ways. Thus a blackened thermometer bulb
placed just beyond where the red in the spectrum ceases will show a rise
of temperature, proving the existence of heat rays. Again, by employing a
lens made of rocksalt, which readily transmits the long heat waves, the
latter can be demonstrated when the visible spectrum is eut off.

Similarly the spectrum extends beyond the visible violet end, this
portion, called the wltra-violet, consisting of waves whose vibrations are too
rapid, or whose length is too short, to cause the sensation of sight. The
existence of the ultra-violet waves can be proved by placing beyond the
visible violet a screen painted with a solution of a fluorescent liguid such
as quinine, which fluoresces brightly under the influence of the ultra-violet
light. A quartz prism, which is very transparent to the short vibrations,
must be used to produce the spectrum.
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In addition to the effect on the eye, and the sensation of heat, it is
obvious that light waves possess many other properties, especially the
chemical actions which oceur in photography, bleaching, the generation of
carbonic acid, and the formation of chlorophyll necessary for vegetable life,
although, for the latter, the heat rays may be equally active or may be more
so than the short waves.

Thus 1t may be said that, in general, the spectrum within certain limits
consists of the long infra-red (heat) waves, the luminous or visible portion,
and the short ultra-violet actinic (chemical) waves. In addition there are
the long Hertzian (electrical) waves beyond the infra-red, and what are
supposed to be the X rays beyond the ultra-violet, as shown in the table on
page 9.

The incandescence of the sun is, of course, the principal source from
which light on the earth is derived. Impaet, friction, electricity, chemical
combination, combustion, in fact anything which causes increased molecular
motion also may give rise to light.

r

Density of Media.—The speed with which light travels within a certain
medium depends on the nature of the latter or, more exactly, on the
elasticity of the ether within it; thus light travels more slowly in a dense
medium, i.e. one in which its component particles are ecrowded together like
glass, than in a rare one, such as air.

Velocity of Light.—Light travels in air at about 186,000 miles or
300,000 kilometres per second ; the velocity is lessened in denser media, the
decrease being roughly proportional to the density, although this is not
invariably the case. Thus, in glass, the rate of progression is about one
third less, and in water one fourth less, than it is in air. In air the speed is
slightly less than in space or a vacuum. 186,000 miles is a distance equal to
about eight times the circumference of the earth at the equator, a journey
travelled by light in one second. From the sun it takes about eight minutes
for light to reach the earth, some 93 million miles distant. At this rate
light travels six million million miles in a year, and the distance of a fixed
star, being so enormous, is measured in light years, thus expressing the
number of years the light from the star takes to reach the earth.

Measurement of Light-Speed.—There are at least four methods by which
the velocity of light has been measured. The earliest methods, by reason
of the imperfection of optical instruments, were of necessity astronomical
ones.

Romer's Method.—It was known that one of Jugpiter's moons I (Fig. 2)
became eclipsed by the planet J every 48% hours. At a certain period of
the earth’s annual revolution round the sun 1t is in opposition to Jupiter.
If light were to travel instantaneously, the eclipse, and its observation by
an observer on the earth, would occur simultaneously. The light, however,
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has to travel from Jupiter to the earth before the eclipse can be seen. Let
R and r be respectively the radii of the orbits of Jupiter and the earth round
the sun. Then J X (i.e., R —r) is the distance the light has to travel at a
velocity V. This time therefore will be (R —1)/V seconds after the eclipse
has taken place. After six months the earth and Jupiter will again be in
opposition, the earth now being at E” on the other side of the sun. The
eclipse will therefore be observed (R +r)/V seconds after the occurrence, the
difference hetween the two observations being equal to Zr=186 million
miles,

Romer observed that, as the earth moved from F to £’, the observed
time steadily exceeded the calculated time. Thus he found that an eclipse
observed when the earth was at £’ occurred 995 seconds later than when it
was observed at E. Since the diameter of the earth’s orbit is 186 million
miles, V =186,000,000/995 = 186,000 miles per second (approx.).

Bradley’'s Method.—The apparent direction of light from a star, owing
to the earth’s motion, makes an angle with its true direction. As the earth
pursues its elliptical orbit round the sun it must move in an opposite direc-

Fic. 2.

tion to that which it took six months before, so that a telescope directed to
a star somewhere along a line at right angles to the earth’s motion must be
pointed slightly in front of the mean caleulated position at the first period
of observation, and a similar distance behind at the second ohservation.
The angle which the telescope makes between the calculated and the
observed position is called the aberration of the star.

Bradley knew the velocity of the earth’s motion, he measured the angle
of aberration, and from these data he proved the velocity of light to be,

_ velocity of earth 18 miles 18 . e
f = ——— '}F = = = 180,000 miles per sec.
tan of angle tan 20

0001

Bradley’s method may be illustrated as follows; if a shot from a cannon
C (Fig. 3) be fired at a ship, moving at right angles to the direction of the
shot, the latter will not pass through the ship at right angles to its line
of travel, but obliquely as if the shot came in the direction of the dotted
line (.

Fizean's Method.—Iizeau's method depends on the interruption of a
beam of light by the teeth of a revolving wheel. The light from a source &
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(Fig. 4)—rendered convergent by a lens L—falls on a plane unsilvered
mirror m which is inclined at 45° and situated between the lens and its
focus F, the latter being at the teeth of the wheel. Another lens L, placed
at its prineipal focal length on the other side of the wheel and in a line with
the mirror, renders the light from /" parallel. The beam of light is collected
by a third lens L”, situated at a distance (say four miles), and is brought to
a focus on a spherical mirror 1, from which it is reflected, so as to return
along the same path, finally forming a real image at /' which is viewed by
the observer at £ through an eyepiece.

Suppose the light escapes through the first gap while the wheel is turning

¢ el
S \"T'T-“

Fig. 3.

slowly, then it will, after travelling eight miles, pass through the same
opening and a flickering image is seen. If the speed is greater the second
tooth blocks out the light, but if still greater the light passes through the
second gap, the wheel having revolved one tooth while the light travelled
eight miles, and so reappears to an observer at £. The result is checked

—

Fic. 4.

by another observer at £’ who sees the light through an opening in AL
The speed of the wheel being further increased the light appears and dis-
appears as an additional tooth or gap passes by before the light returns.
The speed of the toothed wheel, the size of the teeth, and the distance
between i and M being known, Fizean, and later Cornu, who improved on

the apparatus, found the velocity of light in air to be about 300,000 km, per
second.

Foucault’'s Method.—Light (Fig. 5) is passed through a slit S and a
lens L on to a plane mirror M, whence the light passes to a concave mirror M,
placed at a distance equal to its radius. From M, the light is again reflected
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back to M, and retracing its path is partly reflected by the glass plate M, to
the eye at 7. If A/, is then rapidly rotated it will have had time to turn
through an appreciable angle during the time that the light has travelled
from M to M, and back again, so that it will not be reflected back to the
same spot on the mirror M,. Thus the image seen by the observer through
the telescope will not be formed on the cross wires at @, but will be found
shifted to some point b If the speed be known at which the mirror M,
is rotated, and the distance which the light has to travel from M, to M, and
back (which in this case is equal to eight yards) the velocity of light can be
calculated by the displacement of the image from « to / as seen through the
telescope 7. _

Solar Light, which is white, is a combination of seven distinet colours—
namely, red, orange, yellow, green, blue, indigo, and violet. Some authori-
ties omit indigo and consider the spectrum to consist of six main eolours, and
some even omit the yellow, which colour, indeed, occupies but a small space

Fra. 5.

in the spectrum. The combination of these colours in correct proportion
produces white light.

Sunlight is said to consist of about 50 parts red, 30 parts green, and
20 parts violet in 100, and has about 30 per cent. of luminous rays. Artificial
light has a higher proportion of heat or red rays, and the proportion of
luminous rays is much smaller, varying from 20 per cent. for electricity (arc),
10 per cent. for oils and coal-gas, to one per cent. for aleohol. With the
exception of the electric are and similar sources, artificial light is very deficient
in actinic (violet and ultra-violet) light.

Cause of Colour.—Ethereal waves of certain length and eertain frequency
always produce a mental sensation of a definite colour, in a person of normal
colour perception. Whether the length of the wave or its frequency, or
both, give rise to the definite sensation, and whether the retina or the mind
differentiates between the varions waves, are points which are not yet pre-
cisely settled. The sensation of red is produced by comparatively long waves
of low frequency, the sensation of violet by short waves of high frequency.
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while the remaining colours are produced by wave-lengths and frequencies
between these two.

The Spectrum.—When sunlight passes through a dense medium, the
shorter violet waves are more retarded and, if refracted, are bent to a greater
extent than the longer red waves, so that the component colours become
separated. The dispersed colours, caused by refraction of white light by a
prism, can be seen on a screen as a bright-coloured band, called the spectrum,
which contains red, orange, yellow, green, blue, indigo and violet. The
various colours are not sharply separated, but merge so imperceptibly into
one another that it is almost impossible to locate where one colour ends and
another commences, The space in the spectrum, formed by a prism, oceupied
by the different colours varies with the refracting medium used for its pro-
duction. If a spectrum of solar rays, refracted by a given prism of flint

AaBC D e F G Bl
| |
i | |
| | |
“-__‘ RE-D wﬂ.q.n.n.rﬁ.ﬁ. fEM;’f {;:-.-?.nv g ..SLL-"E -.FAMﬁwq-.f.raLFr S
F1c.

N B X ST
| Line. Position in Spectrum. Metal or Gas producing the Line, ].-:i:t?'l-ﬁ-
|
I B
' A Red 2 e .. | Oxzygen (O) .. . i 759
. i Red S Pl .. Water Vapour i i 783

B Red o i .. Oxygen 2 i 686
- C Orange-red 1 .. Hydrogen {II} o = 656
i I Yellow .. e .. Sodium (Na) . i 689
{ E Green i A .. Iron (Fe) Cah*mm [Ga]l =t 527
b Blue-green i .. Magmesium (Mg) 7 2 518
F Blue bl 3 ..  Hydrogen e o 215 456
I ; Dark Blue L .. Hydrogen Iron o 2 130
H Violet A5 = .. Caleium (Bright Line) i 397

glass, the red being somewhat crowded and the violet drawn out, be divided
mto 360 parts the proportional space occupied by each colour will be approxi-
mately as follows—red 50, orange 35, yellow 15, green 50, blue 60, indigo 50,
violet 100 ; total, 360.

Fraunhofer’s Lines.—When a gas is rendered incandescent the spectrum
of the light, emitted by it, consists of one or more isolated bright lines on a
dark ground which are characteristic of the gas in question ; this is known as
a line spectrum.

The solar spectrum is of the confinuous variety caused by the intensely
incandescent nucleus, crossed by dark bands or lines on the bright ground.
These lines, which are very numerous and of varying widths, are called the
Fraunhifer lines. The experiments of Kirchhoff, Bunsen and Fraunhifer
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have proved that the flame of each element radiates characteristic wave
lengths which produce the bright lines of its spectrum, and that the vapour
of this same element at a lower temperature transmits freely all wave-lengths
except those which it would itself give out if it were incandescent, and these
waves it absorbs. Thus salt, if burnt in a Bunsen flame, emits monochromatic
yellow light, and white light from a keller source would be robbed of precisely
the same colour, i.e. yellow, on its passage through a sodium flame. The
dark absorption bands, of the solar spectrum, correspond to the bright lines
of specific substances, and are the result of the absorption of certain wave
lengths from the hot nuclens of the sun by the relatively cooler layers of
incandescent gases continually being ejected to form the outer envelope.
Some of the Fraunhifer lines are due to certain unknown substances, while
some are said to be due to absorption by the terrestrial atmosphere.  Absorp-
tion spectra can be produced experimentally. The chief Fraunhofer lines are
indicated by letters of the alphabet, and as they always correspond to rays of a
definite wave-length, they form a convenient means of identifying any par-
ticular part of the spectrum. Fig. 6 shows their approximate positions.
TABLE OF WAVE.LENGTHS AND FREQUENCIES.

Number of Vilwations in Billlons
Prar Becondd.

Wave-Lengths in pp. Charaeter.

| 100,000,000 (100 mm.) | Electrical vibrations (Hertzian |
| waves).
3,000,000 (3 mm.) Shortest are about 3 mm. |
| Longest 1 meter to several miles, |
i 61,000 4°8] | Longest heat waves measnred by

' | Langley by his bolometer.

|

#,000 37 - ' Longest heat waves measured by
| : -Infra-red spectrum Ruebens and Snow by Iium'-sm:[- l
! prism and bolometer. |
i =12 370 Longest waves capable of huiu;.':|
seen by thesspectroscope, ae- |

cording to Helmholts.
750 4007 | Red.

| Ha0 400 Crrange. j
I 690 208 Ordinary visible spec- | Yellow. :
i 530 | 5G6 - il b T I
I 460 | dsp] “tRem | Blue, |
' 420 | 710 ! Indigo. .
! 375 . 800 | Violet, ;
| 330 | 909 | Shortest waves visible according |
| , to Soret. ;
! 210 11,430 | Shortest waves visible according |
! { = Ultra-violet spectram to Mascart. :
! 185 11,620 | Shortest  waves photographed |

| ' through fluor-spar prism alone.

| 100 | 3,000, | Shortest waves photographed by

means of fluor.spar prism,

vacuum eamern and bromide of
silver plate without gelatine.

— - X and Rintgen Rays (). |

NoTe. —A billion is a million times a million. A micromillimetre .i.l_'r_.e_zutl!i'll]i”iﬂlll,]l‘
part of a millimetre or the billionth part of a kilometre. A micron u=one thousandth of
a millimetre.
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Speed and Frequency of Light.—The visible spectrum consists of those
light waves whose lengths vary approximately between 750 and 400 pp, and
whose vibrations respectively vary between 400 and 750 billions per second.
The speed of light in air is 300,000 kilometres per second, and if we express
the length of the waves in billionths of a kilometre, that is, in pp, and the
frequencies in hillions per second, then by dividing 300,000 by the wave-
length in pp the number of billions of frequencies per second for any kind of
light is obtained. The wave-length multiplied by the frequency of any part
of the spectrum is a constant, i.e. LT =V = 300,000.

In the yellow, which is the most luminous part of the solar spectrum, the
number of billionths of a kilometre of the wave-length is equal to the billions
of frequencies per second, namely, about 548. The mean refractive index of
glass, or any other substance, is expressed by that of yellow light (the I line).

Luminous Bodies.—Waves of light are termed incident when they fall on a
body. A body is said to be luminous when it ig, in itself, an original source
of light. Every visible body, which is not in itself a source of light, is
illuminated by the light it receives from a luminous source, but it may be
convenient to consider that every visible body is luminous, since light is
emitted or radiated from every point of it. The rays diverging from these
points travel without change so long as they are in the same medium.

Transparency and Translucency.—A body is said to be transparent when
light passes freely through it, with a minimum of absorption or reflection.
It is translucent when it transmits only a portion of the light, as frosted
glass and tortoise-shell. Much of the light incident on such a body is

reflected, scattered or absorbed, so that objects cannot be seen clearly
through it.

Opacity.—A substance is said to be opaque when all the rays of light,
incident on it, are either absorbed or reflected, so that none traverse it.

Reflection.—Reflection is the rebound of light waves from the surface, on
which they are incident, into the original medium. The reflection is regular
from a polished surface and irregular from a roughened surface. Irregularly
reflected light causes the reflecting surface to become visible ; regularly
reflected light causes the image of the original source of light to be seen, the
reflecting surface being practically invisible.

The rougher the surface, the greater is the proportion of irregularly
reflected light ; the smoother the surface, the greater that of regularly
reflected light. The proportion of light regularly reflected from a partially
roughened surface is increased as the angle of incidence of the light becomes
greater, so that a reflected and fairly distinet image may be obtained with
very oblique incidence of the light from a body which ordinarily gives no
definite reflected image.

Total regular reflection never occurs, for even a silvered mirror or highly
polished surface of metal fails to veflect all the light falling on it, but the pro-
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portion reflected by metallic surfaces does not vary so much with the inei-
dence of the light as it does with glass. Polished silver reflects some
90 per cent., polished steel some 60 per cent., and mirrors reflect about 70
to 85 per cent. of the incident light. Nor is there ever total irregular reflec-
tion ; even fresh snow absorbs some of the light it receives.

Opacity, Transparency, Absorption and Reflection.—No substance iz
absolutely transparent, the clearest glass or water absorbing some of the
incident light. It is estimated that below 50 fathoms the sea is pitch dark,
at least to the human eye, and even glass of sufficient thickness is opaque.
Again any ordinary opaque object such as stone, metal, ete., may be ground
or hammered into a sheet so thin as to permit the passage of some light
through it. Thus gold leaf of sufficient thinness is translucent and transmits
greenish rays. Iv follows, therefore, that transparency and opacity are
relative, and depend not only on the nature of the medium, but also on its
thickness,

A body which is usually opaqgue may be rendered translueent by making
it less capable of reflection. This fact is very often made use of in practice.
For instance, if a drop of Canada Balsam be dropped on to a camera focuss-
ing-screen, and a cover glass pressed over it, the screen becomes immediately
transparent at that spot, so that the aerial image may be readily focussed
with a magnifying-glass, and very minute details observed. The liquid
occupies the spaces between the particles of the surface and, being of the
same index of refraction, converts the whole into a homogeneous refracting
body which transmits nearly all the light. Moistening a piece of paper with
oil or water makes it much more translucent for the same reason. The fibres
of which the paper is made are of a higher index of refraction than the air, so
that, when the latter is replaced by oil or water, the two indices are then
more nearly alike ; and being homogeneous, less light is scattered. The
glass tube of a soda-water siphon is plainly visible in the water, but if the
latter were replaced by oil of the same refractive index as that of the tube,
the tube would be rendered invisible.

Some of the incident light is reflected from the polished surface of a trans-
parent body, and the proportion reflected varies with the nature of the body
and with the angle of incidence, it being greater as such angle increases,
The proportion reflected is very small (about eight per cent.) when the light
is incident perpendicularly, and it is almost totally reflected if the angle of
incidence is nearly 90°.

If with perpendienlar incidence practically all the light is transmitted and
none reflected, and if with an extremely oblique incidence (nearly 90°) prac-
tically none is transmitted and all reflected, there must be some angle of
incidence at which half the light is reflected and half transmitted and
refracted. This occurs when the light is incident at about 70° with the
normal to the point of incidence. Also the proportion reflected increases as
the index of refraction of the medium is greater and vice verso. If glass is
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dusty, the irregularly reflected light is increased and the glass becomes more
visible. Seratches on a piece of glass roughen the surface and so tend to
destroy its transparency by irregularly reflecting the light. If the scratches
be multiplied indefinitely, the glass ceases to be transparent and becomes
translucent. Thus, in the case of every transparent body, some of the
incident light is always transmitted, some absorbed and some reflected. Of
the light falling from all sides on to a piece of well-polished transparent glass,
about 75 per cent. is refracted and transmitted, 15 per cent. is regularly
reflected and gives an image of the source from which the light proceeds,
about five per cent. is irregularly reflected, and so makes the glass itself
visible, while the remainder is lost, being absorbed and changed into
heat, ete. :

Linear Propagation of Light.—The propagation of light is rectilinear, and
the familiar instance of sunlight, admitted through a hole in the shutter into
a darkened room, illustrates this fact by the illumination of the dust particles
in the air along its path. The illuminated dust renders the course of the
light visible, for, were the air to be deprived of it, by filtration, the space
over which the light passes would be invisible.

A circle may be regarded as the common terminal of a multitude of straight
lines diverging from a point. A wave front as it advances is an are of a circle
of which the luminous point is the centre; the multitude of straight lines
contained in the arc are termed rays of light. Thus the rays of light
diverging from a luminous point form a cone, of which the point itself is the
vertex, and such a collection of rays is called a pencil of light.

Divergence of Light.—In nature, rays of light always diverge from
luminous points, but if the luminous point be very distant the angle of diver-
gence becomes so small that the rays may be considered parallel to each
other, and the luminous point is then said to be at infinity. A collection of
parallel rays is called a leam of light.

As light radiates from luminous points which have no real magnitude, any
body on which it falls must be larger than such points, the pencil from any
given point constituting a cone of which the point of origin is the apex (or
vertex) and the illuminated body the base. From a luminant of sensible size
an innumerable number of such cones of light proceed, all having as their
common base the illuminated object itself.

The angle of divergence is that angle included between the rays, proceed-
ing from the luminous point, which fall on the outermost edges of the object ;
consequently the angle of divergence varies inversely with the distance
between the source of light and the illuminated body, and directly with the
size of the latter. Rays of light which diverge from a very distant point are
always regarded as parallel, and those from a near point as divergent. This
being so, there must be some distance at which divergence can be assumed,
for practical purposes, to merge into parallelism.
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Parallel Light.—In visual opties 20 feet or 6 metres marks the shortest
distance from which light is regarded as parallel, and this distance, or any
beyond it, is regarded as infinity, which is written thus: sc. For 50111:3
branches of opties a much greater distance is taken as the divergence limit.
Thus in photographic opties it may amount to 100 yards or more, while in
astronomy the nearest «c point may be taken as several miles. If / is the
angle of divergence, a the aperture of the lens, and S the distance of the
source, the angular divergence of light is, with suflicient exactitude, found
from lun d=a/S. For example, suppose the source of light is at 6 M., and
the pupil of the eye to be 35 mm. in diameter, then the visual angle of
divergence will be 27, since
3°D
6000

Since a divergence of 2° is so small as to be negligible, it explains why
6 M. is considered the same as s in this connection. At 20 em., with the
same pupil, the divergence of the light is one degree.

Similarly, therefore, if light is converging to a focus a great distance off, it

tan d = = 00006 ={an 2’

Fic. 7.

may be considered parallel—for visual purposes—at any distance greater
than 6 M. from the focus. Light is never naturally convergent, but can be
rendered so by means of a lens or reflector. A collection of convergent rays
1s also called a pencil of light : the apex of the pencil, towards which they
are convergent, is the focus.

The Flame.—A flame (Fig. 7) consists of three cone-shaped portions,
viz. :

(A) The dark central portion surrounding the wick is called the cone
of generation or obscure cone. It is of low temperature and is composed of
gaseous products holding in suspension fine carbon particles which have not
vet become incandescent.

(B) The luminous part surrounding A, called the cone of decomposition
or luminous cone, in which the earbon 1s in a state of intense incandescence,
and in which luminosity is greatest.

(C) The thin external envelope which is light yellow towards the summt
and light blue at the base. It is the cone of complete combustion giving




14 GENERAL AND PRACTICAL OPTICS

but little light, and is the main source of heat. Here the temperature is high
and combustion complete on account of the free access of the oxygen of the air.

The flame in general is brighter at the top where the light predominates,
and darker towards the base where heat is in excess. The outer envelope,
being mixed with oxygen, is called the oxydising element, while the inner
cone, consisting mainly of unconsumed gas, is called the reducing element of
the flame, since at that spot metals may be reduced from their compounds.

A flame is produced by the incandescence of earbon particles which have
been brought to a high temperature, the combustion, when once started,
being continued owing to the heat produced by the chemical action itself.
In a lamp or candle flame the material consumed is drawn up by ecapillarity
throngh the wick.

Heat being produced by combustion, and luminosity being the result
of the incandescence of unconsumed particles of carbon, the luminosity of a
flame is low when combustion 1s complete, as is the case with the flame of
some gases and of aleohol. It is high in a coal-gas flame, or in that produced
by the combustion of oils and fats, where a considerable quantity of incan-
descent carbon is present. If the combustion be intensified by the intro-
duection and intimate mixture of a sufficient supply of oxygen, as is done in
the ordinary blow-pipe or Bunsen burner in which coal-gas is consumed,
luminosity is decreased and heat is increased; the flame produced is then of
a faint blue instead of the usual yellowish colour. The oxyhydrogen flame
also gives very great heat, and yet is of a pale bluish colour and almost
invisible ; but when made to impinge on a lime eylinder, 1t renders it white
hot at the point of contact, giving rise to an intensely brilliant spot of light,
so that the temperature of a flame is neither indicated by the luminosity nor
by the colour alone. To obtain maximum luminosity the supply of air must
he neither too large nor too small. If too large the carbon is consumed too
quickly, and if too small the earbon passes off unconsumed as soot.

On the other hand, although the femperature of the Bunsen flame, or any
other source of complete combustion, is very much higher than that of
luminous or incandescent sources, yet its power of radiation is considerably
less. This can be illustrated by means of an experiment with a Bunsen
burner and a thermopile, the latter being an apparatus exceedingly sensitive
to radiant heat and its detection when placed some distance from a source.

With the complete combustion flame practically no rise in temperature
is indicated by the thermopile, but when the oxygen is cut off and the flame
becomes luminous, the index of the pile immediately swings over to a higher
reading. Thus it will be seen that, for the production of radiant heat, the
source must consist of rapidly vibrating incandescent particles capable of
transferring their energy to the surrounding ether. For local heat, from
conduction and convection air currents, the greatest temperatures are secured
by complete combustion, where practically no energy is wasted in agitating
the surrounding ether.



CHAPTER II
SHADOWS AND PHOTOMETRY

Shadows.—Since light travels in straight lines with the waves vibrating
at right angles to their line of travel, any opaque obstacle in their path will
arrest their march and produee a negative image of the object, called a shadow.

Umbra and Penumbra.— When the source of jlight is very small and in
line with the centre of the obstacle, and the ground on which the shadow is

u
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cast is at right angles to the central ray of the pencil of light, the shadow has
an outline exactly corresponding to that of the body, because then, as in
Fig. 8, the periphery of I cuts off the light equally in every direction, The
shape of the shadow otherwise depends on the inclination of the sereen to the

P
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opaque body and the source of light. If the light S is, or approximates to, a
point, the shadow is uniformly dark and its edges elearly defined as at « " on
the sereen.

If, however, the source of light S is of definite size relative to the inter-
cepting body (Fig. 9), the edges of the shadow are not sharp and the shadow

15
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exhibits two parts, viz, a very dark centre u «' called the umbra, from which
the light is entirely cut off, and a less black outer portion Pu, P'u’, called
the penumbra, which receives a certain amount of illumination. The space Pu
receives light from &', but none from S”, while P'u’ receives light from S, but
none from S°. The area u ' receives light from neither S nor 5”.

Fig. 9 shows the umbra and penumbra when the luminant Sis smaller than
the intercepting body B. Both become larger as the shadow is further from
the intercepting body, since the umhral and penumbral cones are divergent.

Fii. 10,

When the luminant S and the cbstructing body B are of equal size
(Fig. 10), the umbra is cylindrical in section and does nov vary in size with
its distance from the body or screen, but the penumbra increases as the
screen 1s further away,

Fig. 11 shows the source larger than the intercepting body. In this case,
as the distance between B and the screen increases, the umbra decreases,
since the umbral cone is convergent, while the penumbra increases owing to

Frc. 11.

the penumbral cone being divergent; beyond a certain point there is no
wmbra, as when the screen is at ' C” or beyond it at E £'. When the hand
is held close to a wall, in a well-illuminated room, the projected shadow is
almost entirely umbra ; as the hand is moved away the umbra decreases and
the penumbra increases until, at a certain distance, the whole shadow becomes
penumbral. The larger the size of the luminant as compared with that of
the intercepting body, the smaller is the umbra, and the larger the penumbra,
and wice versa.
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The umbral and penumbral portions of a shadow are not sharply separated,
but merge imperceptibly into each other. Generally the brighter the light,
the deeper is the shadow cast, for then the contrast between the illuminated:
ground and the part from which the light is totally or partially obstructed is
greater than in a dull light, when shadows are barely perceptible.

Calculations of Umbrz and Penumbra.—The caleulations for determining
the size of the umbra and penumbra are somewhat complicated and vary
with the conditions under which the shadow is cast, so that every case must
be worked out on its own merits, and from general principles. But if we
assume that the size of the luminant is small compared with its distance from
the intercepting body (and this is practically what oceurs in the great majority
of cases), most of the complications disappear, enabling the necessary calcula-
tions to be much simplified. Here, the angle subtended by the luminant at
the intercepting body being small, either the edge or centre of the luminant
may be assumed to be in line with either edge of the body, so that the edge
of the geometrical shadow may always be regarded as evactly bisecting the
penuwmbral cone on eilher side. By the geometrical shadow is meant an imagin-

Fic, 12, C

ary space on the sereen equal in size to the intercepting hody, so that an
umbra is formed when P, the calculated size of a penumbral cone, is smaller
than B, but there is no umbra if / is greater than B. In this latter case the
encroachment of the penumbral dise on either side of the geometrical shadow
is more than half the size of the geometrical shadow itself.

In Fig. 12 let U/ be the size of the umbra, P that of either penumbral
cone, S that of the source of light, &2 that of the intercepting body, and €' the
screen. The eentral line of the whole shadow may be considered as coinciding
with the eentral line conneeting S, £ and €. Now the angle subtended by S
at the edge of B equals the angle of the penumbral cone, so that the penumbra
on each side of {J can be caleulated from the simple proportion P/S=d, /d,,
where d, is the distance of S to B, and d, that of I to screen. Thus

I‘j p JHrrrrL
iy
and from what has been said above it may be taken that (Fig. 12)—
U=B-P
and the total penumbra =2P+ U

[
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If P is greater than B, then U is negative, and must be reckoned as such
in finding the size of the total penumbra.

As an example, if S be a square window 2 ft. in diameter, the size of U
and P on a wall 20 ft. distant, cast by a coin 1 inch in diameter held 1 ft.
from the wall, would be calculated as follows.

“h
P=22%1_1-96 inches
19
U=1-126= — 26 inches.
Total penumbra =2-52 — -26 =226 inches.

Thus there is no umbra, it being a negative quantity, as on EE' Fig. 11.
If the coin were 2 in. in diameter, the other conditions being similar, we

should have

2.
P=24%1_1.96 inches
19
U=2-1'26=-74 inches.
Total penumbra =252 4+ -74 = 3-26 inches.

Here the umbra is real or positive, as in Fig. 12.
When the size of the luminant is unknown, or 1s inaccessible, the size

can be caleculated from
P=d [fon o

when @ is the angle subtended at the edge of £ by the luminant. The
values of U and of the total penumbra are found as before, after P has been
caleculated.

Thus if B is 3 inches in diameter, and 100 inches from a wall, S being
the sun subtem:]ing an angle of 307,

P =100 tan 30" =100 x ‘0087 =37 inch.
U=3--8T=213%" :
The total penumbra = *87 + 3 = 3:87 inches.

Shadows cast on the Ground. the case of shadows cast by vertical
objects on to an horizontal plane, generally a simple proportion will suffice.
For example, what is the length of the shadow cast by a stick 3 ft. long,
20 ft. from a small lamp 10 ft. from the ground 7 Then, if the length of the
shadow be x, the distance of the lamp to the end of the shadow is 20 +x.
and 204+x : x as 10 : 3 ; therefore

(20 4+ x)/x =10/3 or 10x = 60 + 3x.
Tx=60, and x=8 4/7 ft. which is the length of the shadow.

Shadows cast by Lenses. A concave lens, when placed between a small
source of light and a sereen, casts a shadow like a semi-opaque body. The
transmitted rays being divergent, only very few impinge on the secreen
immediately behind the central portion of the lens, and the diverged rays
fall on the screen away from the axial line, on a space which receives increased
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illumination, so that the shadow is surrounded by a luminous zone. The
luminous zone becomes larger and fainter as the distance between the screen
and the lens is increased. A convex lens throws a very bright image on a
screen if placed near the focus, because it condenses to a small area all the
light passing through it. The bright area is surrounded by a shadow, this
being the area from which all light is excluded. If bright light be passed
through a prismmn the space on a sereen immediately behind it exhibits a
shadow, the light deviated by the prism falling on another part of the screen,
which, being also illuminated directly, exhibits there a bright area.

Intensity of Illumination.—In order to illustrate how the intensity of
illumination varies with the distance between a source of light and an
illuminated area, let the source of light, say a’candle flame, be supposed to
be at the centre of a sphere of one foot radius, and let the intensity of the
light at the surface be considered as unity. The area of a sphere is equal
to 4wr® r being the radius. Now if the radius of the spherical envelope be
increased from one foot to two feet, its area will then be quadrupled, since
the superficial area of a sphere varies as the square of its radius, and there-

M
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fore the amount of light received on each point of the sphere is one-fourth
of what it was when the radius was one foot. If the sphere be three feet in
radius its area will be increased nine times. In this latter ecase, the avail-
able light is distributed over nine times the area of the one foot sphere, so
that the intensity of illumination over a given area is but one-ninth that of
the first sphere, and in this way the intensity may be calculated for a sphere
of any size,

=

Fie. 13.

The Law of Inverse Squares.—Since any flat surface virtually forms a
portion of a sphere having the source of light for its centre, it may be
stated, without much ervor, that the illumination of a flat surface also vayies
inversely with the square of its distance from the source of light. This distribu-
tion of the illuminating agent is illustrated in Fig. 13.

Let S (Fig. 13) be the source of light and .{, /' and (' screens subtending
equal angles, placed vertically at distances of 1, 2 and 3 feet respectively.
The same amount of light from S is received by all, but ), being at a
distance from S which is three times greater than that of ., is superficially
nine times as large ; and it follows, therefore, that each unit of area of
receives only 1/9th of the quantity of light received by each similar unit of
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A, while b at 2 feet receives 1/4th. If at a given distance, say 1 foot, a
certain intensity of illumination L is obtained from a lamp, and the lamp
be moved to a greater distance, say 9 feet, then the intensity becomes
1/92=1/81 of the illumination received at a distance of one foot. If it be
increased to 10 feet it will require 10° =100 luminants to obtain an equal
intensity as at 1 foot.

Obliquity of Illuminated Surface.—The intensity of illumination depends
also on the inclination of the surface to the light, with which it varies as the
cosine of the angle which the surface makes with the normal.

Suppose for example parallel light impinges on a vertical screen ./ b.
If 4 B be inclined to the position £ D), so that the angle of inelination
A B D=60° then only those rays between ' and £ will fall on B D, as in
Fig. 14, Now cos O L D=bC/ED=1/2. Also from inspection it is clear
that £ C is half of I 4, which equals B [). Therefore, if the screen he
nelined 60° from the vertical it will receive half the light that it does when
it is vertical.

Suppose L be the amount of light falling on "a unit of A, the area of the
" A
C D

!

/
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'
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sereen, 1 metre from the light; then if the sereen is inclined at 45° to the
normal, and removed to five times the distance, the intensity of illumination
per unit area is cos 45°/d*="7071/25= 028, or about 1/36 of the light re-
ceived on the screen at 1 M distance. The total amount of light received each
instant is =L A, and the amount of light received on the screen inclined at
45° is therefore I. A/36. This holds good also for the light reflected from a
surface, as can be seen from Fig. 14, where the oblique surface B D= .4 B.

Apparent Exceptions.—An ohject or source of light appears equally
bright at all distances from the eye. The brightness of an object varies
inversely as the square of the distance, so that an object at one yard is four
times as bright as one at two yards, but at the same time the image on the
retina occupies four times the area, so that it is only a fourth as bright as it
would be if the object were twice as far away. Thus the light gained by
bringing the object nearer is exactly neutralized by spreading it over a pro-
portionately larger area. It may therefore be said that the law of inverse
squares holds good only for light received directly on a screen, and that
if it passes through a lens system so as to form an image, as in a camera or
the eye, the brightness of the image is the same whatever the distance of
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the object may be, provided the distance between lens and screen is not
altered.

A luminous or illuminated surface appears equally bright at whatever
angle it is seen, This apparently contradicts the law of cosines, but although
an inclined surface receives less light, the area perceived is correspondingly
diminished. Therefore its brightness as perceived by the eye is the same in
both cases since the foreshortening which the tilted reflecting surface under-
goes is, like the amount of light it receives, proportional to the cosine of the
angle of inclination,

The sun and moon appear as flat dises and not as hemispheres, since their
surfaces are apparently equally illuminated, and in the same way a cannon
ball or cylinder of metal, heated white hot, appears quite flat.

When light is condensed by a lens or mirror, the illumination of a sereen
varies directly as the square of the distance up to the focus ; beyond the focus
it varies inversely as the square of the distance.

Photometry.— The measurement of the luminosity of a light source, or of
the illumination of a surface, 1s termed photometry, and the instrument or
apparatus employed is called a photometer,

A luminous source, unless it be a minute point such as a star, has a
definite surface which is seldom of equal luminosity thronghout. The quantity
of light emitted varies at different points of the surface, but the sum of the
light emitted from every point is the total luminosity, and it is this which is
measured by the photometer. It is necessary to differentiate between
luminosity, or the illuminating power of the source light, and illumination or
the amount of light received from the source of a body. The intrinsie
intensity of luminosify 1 is the mean quantity of light emitted normally from
a unit of surface. It is expressed by [=d¢/S, where ¢ is the total amount of
light emitted, and S is the area of the luminous source. The intensity of
tllumination is the total amount of light which falls on a unit of the illuminated
surface.

The power of a light source is expressed in “standard candles™ as
described in the next article ; the term “candle-feet " expresses the luminosity
of so many standard candles at 1 foot distance.

Photometric Standards.—The nsual standard of illumination in (reat
Britain is that given by a sperm candle { inch in diameter, } of a pound in
weight, and burning 120 grains per hour. It has a variation of about 20%.
The luminosity of gas, with an ordinary burner, is equal to that of from
12 to 16 British candles (B.C.).

There are various other photometric units, among them the following :—

In Germany the standard is the Hefner-Alteneck lamp, ealled a “ Hefner-
lamp " (H), having a eylindrical wick 8 mm. in diameter burning amylacetate,
the flame being 40 mm. high. It is correct to about 29

The “Pentane " standard consists of a mixture of pentane gas and air,
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which is burnt at the rate of } cubic foot per hour; the flame is cireular,
2} inches high and } inch in diameter. There is neither wick nor chimney to
the flame. Pentane is a volatile liquid, like naptha, prepared from petroleum,
The form designed by Vernon Harcourt is a 10 candle-power standard, and
is largely used in this country. It is said to vary less than 19

The French * Carcel " is a lamp of speeial construction burning 42 grammes
of colza o1l per hour.

The “Violle” or absolute unit was the standard invented by M. Violle,
and adopted at the International Congress at Paris in 1884. It consists of
the light emitted from a square em. of platinum heated to its melting point.
Of all the standards it is the most exact and reliable, but it is expensive and
diffieult to apply. ;

The International Congress of 1890 adopted as the standard the ©“ Bougie-
decimale " or decimal candle, the unit illumination of a surface being that
produced by one bougie-decimal at one metre.

The British candle and the hougie-decimal have about the same intensities.

The “ Carcel " equals about 91 candles, and the ¢ Violle " unit about 20 candles.
Thus 20 bougie-decimals = 1975 B.C. = 228 Hefner =208 Carcel=1 Violle.

Measurement of Light Sources.—Photometry consists in making a com-
parison of the unknown illuminating power of any source of light with that
of a standard unit. Direct comparison would be difficult, but the stronger
light can be placed at a greater distance, where it produces an intensity of
illumination equal to that of the standard light at some shorter distance. The
illuminating powers of the two sources of light are respectively as the squares
of the distances at which, on a given surface, they produce equal intensities
of illumination. If we represent the respective luminosities of the source to
be measured and that of the standard candle by L and C, and the distances of
the two when they are equal in intensity by a and b, then

L C = = Ca?®
HE I b*

[f a standard candle at 1 ft. and light at 4 ft. give equal intensity of
illumination at some common point, then the greater luminant is 1 x 42 =
16 c.p.
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Four candles 4 feet from a screen have the same effect as one candle at
2 feet, for 22/42=4/16=1/4.

The Rumford Photometer.—The shadow or Ruinford photometer consists
of a vertical white screen before which is placed a rod. The standard candle
is placed (preferably at one foot) in front of the screen and the rod casts a
shadow. The lamp or other luminant (Fig. 15) to be measured is placed so
far away that the shadow cast by the rod from its light is of equal intensity
to that of the other. The space on the screen, occupied by the candle’s
shadow, is illuminated only by the light from the lamp, while that occupied
by the lamp’s shadow is illuminated only by the candle. It is these intensi-
ties of illuminations that are actually compared, although apparently it is the
shadows themselves. The lights should be placed so that the two shadows
lie near to each other without overlapping. The luminant measured is of so
many candle power according to the distance at which the shadow pertaining
to it equals in depth that pertaining to the standard candle, for then L/a2=
C/b2,

The Bunsen Photometer.—The grease spof or Bunsen photometer consists
of a sheet of white paper, suitably mounted in a frame, on which there is

Fic. 17.

a spot rendered semi-transparent by grease or oil. If the paper be viewed
on the side remote from the candle the grease spot looks lighter than the
balance of the paper, because more light penetrates (Fig. 16). Viewed from
the other side, the greased spot looks darker, because less light is reflected
from it than from the rest of the paper (Fig. 17). Used as a photometer,
the paper is placed one foot from the standard candle, the light from which
is totally reflected by the ungreased part of the paper and transmitted to a
great extent by the grease spot. The luminant to be tested is placed on the
other side of the screen at such a distance that the amount of light from it,
transmitted by the grease spot, equals that passing the other way ; then the
paper appears of uniform brightness all over. If we take one foot as unity,
then the candle power of the light to be tested will be equal to the square
of its distance in feet from the grease spot.

The Slab Photometer.—The paraffin slih photometer consists of two thick
slabs of solid paraffin separated by an opaque layer of tin foil. The two
lights to be compared are placed one on either side, and their intensities are
compared by viewing the sides of the two slabs simultaneously.

The Lummer-Brodhun Photometer.—This photometer is largely used in
scientific laboratories, being accurate to about 17%. Its superiority over
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the Bunsen and some other photometers is due to the fact that, with these,
the two images to be compared cannot be seen simultaneously. With the
Lummer-Brodhun instrument only one combined image is seen by one eye.

The instrument (Fig. 18) consists of a rail on which the two luminants
L, and L, can be made to travel at right angles to the opaque screen 4 B,
which is whitened on both sides. From . B the light is reflected to the
two mirrors M, and M, and thence through the cube of glass (' ) made of
two right angle prisms cemented together, the hypothenuse of one of which
is partly cut away.

The observer looks through a short telescope placed in front of D. The
light from L, which reaches the telescope passes through the central cemented
portion of ¢ and [, while that from L, is reflected from the peripheral
portion of 2. The two lights therefore enter the eye simultaneously in two

Faut I
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concentrie rings, as shown in the figure, the lights being moved to and fro
along the rail until the two circles appear equally bright,

The Simmance-Abady ‘ Flicker ” Photometer.——This consists essentially
of a white circular dise or wheel, the edge of which is peculiarly bevelled by
being “chucked ” eccentrically at two positions with the turning tool set
obliquely at 45°. Thus the periphery of the wheel, when revolved, presents
a bevel of 45° on the one side, say the right, and no bevel on the left, then
graduates to a knife edge, and finally to a bevel of 45° on the left and no
bevel on the right.

This wheel is so fixed in a box that part only of it projects, and imme-
diately in front of it, but leaving its projeeting portions unobscured, there
15 a sighting tube carrying a Cx. lens for magnifying purposes. The box
contains a clockwork arrangement by means of which the wheel is made to
revolve at a rapid speed. The box itself is fixed on a bar 60 inches long,
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scaled in terms of a standard candle, and along which the apparatus can be
freely moved.

The two luminants which are to be compared are placed one at each end
of the bar, and the light from them falls on that part of the revolving dise
which projects from the box. When the light falls on the bevelled edge at
45% it is reflected, and passing through the sighting tube, is seen by the
observer. When incident on the unbevelled part of the dise, the light does
not pass through the sighting tube, so that each luminant is alternately light
and durk to the observer’s eye, and both are light at the same time when the
knife edge is immediately in front of the sighting tube. Then when the
intensities are equal the light is absolutely steady, while it flickers when
they are not. If there is flickering the apparatus is moved until this disap-
pears, and the position is found where L/a*=C/b%. The smallest alteration
of the position of the apparatus towards either light causes flicker. The
test is made more sensitive, and the point of balanced infensities more exactly
located, when the speed of revolution of the wheel is lessened. The
apparatus can be set obliquely for measuring lights at any angle.

Photometry of Coloured Lights.—One of the great difficulties of photo-
metry is the difference in the nature and colour of various lights ; and the
comparison or measurement of actually coloured or monochromatic lights 1s
still more difficult, or rather impossible, by ordinary photometry.

The eye, although fairly accurate in judging the difference of hue of
two sources, is very deficient in the comparison of the relative intensities
of two differently coloured lights. These difficulties seem, however, to be
obviated by the Simmance-Abady photometer. Here the rapidly alternating
light from the sources does not afford the eye sufficient time to appreciate
the difference of colour but only their difference of intensity, since the flicker
depends on intensity of illumination on the two sides of the bevelled disc,
and is independent of the colour of these illuminations.

Therefore by the flicker photometer coloured lights, and therefore also
the transmissive qualities of coloured and smoked glasses, can be compared
and measured. By it also the illuminating power of the effect of daylight can
be measured as well as that of different sources of artificial light. Coloured
lights may, however, be compared by ocelusion, using for the purpose a serie
of properly graduated smoked glasses.

Calculations in Photometry.—Having by means of a photometer made
the intensities of illumination equal, the candle power of the luminant is
caleulated from the formula L=Ca?*b%. When b is unity (say 1 foot) of
course no division is necessary, as the squareof 1 is 1. Thus if the luminant
at 3 feet is equal to the standard candle at 1 foot, the former is of 5= 25
c.p. If the candle is at 2 feet and the luminant at 8 feet the latter is
8%/27=64/4=16 c.p.

To compare the intensity of illumination of two sources of light L and
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C of different powers, if L be 30 c.p. placed at 20 ft., while Cis 200 c.p.
at 70 feet, their relative intensities are

30 . 200
IJ= - i ]. =

400 sy C=2500
200 400 5

so that the intensity C= 9 L (approx.)

4900 ™ 30 ~
The relative distances for equality of illumination of two sources of 9 c.p.
and 36 e.p. are as +/9 : /36=3 :6o0ras1:2
What candle power in a lamp at 100 feet would give the same illumina-
tion as one of 1,000 candles at 30 feet?

Now since Lo G ST 00
az b2 T 1002 302°
or 900 L = 10,000,000, so that L.=11,111.

At what distance should an arc lamp of 1,200 c.p. be placed so as to give

an illumination three times as great as that of an incandescent light of 70 c.p.
at 15 feet !

70 1200
e ik
152 b?

therefore 210b2= 1200 x 152; that is b= 36 feet (approx.)

The e.p. needed at 13 feet to give on a wall an illumination of 5 candle
feet is L/13%=25, or L =845 c.p.

Neutral Glasses.—The absorption of light by smoke glass can be caleu-
lated fairly closely by means of a simple photometer such as the Bumsen.
Take any two sources of light, A and B, balance them photometrically in the
usual way, and measure the distance d in feet or inches of one of them, say
B, from the screen. Then interpose the smoke glass to be tested between
A and the screen, when it will be found necessary to withdraw B in order to
secure a second balance ; let this distance be b. Then the relative intensities
of illumination of A, with and without the smoke glass, are as 1/b?: 1/d*. If
the first distance d is unity, the fraction of light transmitted by the glass is
1/b%, or 100/b? per cent., and the amount blocked out is

] i
h2 _.,1 o 100 {b"lji] .
h-' h..
It will be noticed that only B is moved, A remaining fixed ; nor does the
actual distance of the latter from the screen affect the result in any way.
The smoke glass should, of course, be sufficiently large to cover the light
completely, but its position between A and screen is immaterial.

Thusif B, when at 2 ft., balanced A, and had to be moved to 3 it. when a
smoke glass was interposed, the light transmitted 1s 2°/3==4/9 or 457/, and
the amount blocked out is 5/9 or 557,

Coloured Glasses.—To measure the absorptive or transmissive power of a
coloured glass the method deseribed above can be employed, but, for the
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reason given previously, ordinary artificial lights, which are generally white or
yellowish, cannot be employed alone. To overcome this difficulty the follow-
ing procedure may be followed. Suppose the glass to be measured is green.
Place over the two sources A and B a green glass lighter in tint than the one
to be measured ; this renders the light uniform, though duller, in tint, and the
necessary measurements can then be carried out exactly as for neutral glﬂsses.

Small Apertures.—Since light travels in straight lines, if that from a
candle be allowed to pass through a small aperture on to a white screen, an
inverted image of the flame is formed on the latter. The relative sizes of
image and object are as their respective distances from the aperture ; thus
they are equal in size when the two are equi-distant from the aperture. The
image is smaller if the sereen be brought nearer to the aperture, or if the
candle be moved further away, and vice versa. Generally the smaller the
aperture, the sharper but less bright is the image. The shape of the small
aperture does not materially affect the distinctness of the image, nor does it
have any appreciable effect on its shape, because it is immaterial whether the
image be made up of innumerable circles, squares, triangles, ete., of confusion
so long as they are sufficiently small to lose their identity to the eye in the
slight overlapping which takes place between the images of adjacent points
of the object. This is seen when the sun shines throngh the gaps in the
foliage of a tree. Each of these gaps varies in size and shape, but the
luminous images of the sun form bright dises on the ground, all identical in
shape unless the gaps are large.

In order that a distinct image of a flame may be seen on a screen, it is
necessary that the rays from each point of the luminous body should have a
separate focus on a sereen. This may be said to occur when the light passes
through a minute aperture, because then only a very narrow penecil of light
—the cross section of which is similar in shape to that of the aperture—from
each point can reach the sereen, and for the same reason the image thus
formed is faint. If twenty apertures be made near one another, twenty
images of the flame will be seen on the screen, and the number of images will
increase with the number of holes, until the images will so overlap one
another that it will be found impossible to distinguish them separately, in
which case there will be a general illumination of the screen.

Although the smaller the pin-hole the better is the image defined, yet if
the aperture be too small the image is blurred by diffraction. Hence the
aperture must be theoretically that diameter which is too small for diffusion
and too large for diffraction to blur the image. The aperture is found from

J4 fi;ﬂi-., where f, is the distance of the screen from the aperture, and A is the

wave-length, this being ‘0004 for photographic and 0006 for visual effect.
A (the aperture), f, and A are expressed in mm. If A be a constant "0004,
and f, be in inches, we can simplify the above to A =2 J/i,, the value of A
being in mm. The intensity of the light is A/f,, The respective sizes of
object and image O/ =f,/f,, where f, is the distance of the object.



CHAPTER III
REFLECTION AND MIRRORS

A normal 1s a straight line perpendienlar to a given point, as P C in
Fig. 19, and the angle of incidence is that which an umlda,ut ray nmhes
w Ith the normal at the point of incidence,

Irregular Reflection.— W hen light falls on an unpolished surface such as
ground glass it is, owing to the irregular nature of the surface, incident at
all conceivable angles, at each point of the surface. The inecident light is
broken up so that each point of the surface, giving rise to a fresh series
of waves, becomes a source of light. No image is therefore formed either
of the original source, or of any external object, but the diffused light
diverging in every direction renders the surface visible, no matter from what

F

direction it is viewed, and it is either coloured or white according as some
wave-lengths are, or are not, absorbed.

Regular Reflection.— When light falls on a smooth polished surface it is
regularly reflected in definite directions according to the following laws :—

The angle of reflection is equal to the angle of incidence.
1) The angle of reflection is equal to the angle of incidene
(2) The incident and reflected rays are in the same plane as the normal to
the point of incidence, and lie on opposite sides of it.

Oblique Incidence.—In Fig. 19, . b is a reflecting surface at which the
ray { C is incident at the point C, and reflected in the direction C' . F ('is
the normal to . £ at C, and the angle of reflection £ € P is equal to the
angle of incidence I ¢/ . The perpendicular divides equally the angle I ' £
between the incident and reflected rays, and all three lines are in the plane
of the paper.

28
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Perpendicular Incidence.—If the ray be incident in a divection P C' normal
to the surface the angle of incidence is zero, and therefore the angle of
reflection is also zero ; the ray is thus reflected back along its original path.

Images.—An image of a point is formed when the light, diverging from
it, is caused, by reflection or refraction, to converge to, or to appear to diverge
from, some other point. An image is said to be real or pesitive when the
reflected or refracted rays from the original object point are made to converye
and actually mieet in the image point. If the original rays, after reflection or
refraction, are divergent, they are referred back by the eye to an imaginary
image point, and the latter is then said to be virfual or negalive (see page 86),
Similarly the real or virtual image of an object is made up of the real or
virtual images of its innumerable points.

A real image can be received and seen on a sereen, or it can be seen in the
air, where it actually exists. A virtual image cannot be formed on a screen ;
it is only mentally conceived where it appears to be.

Mirror.—A mirror is an opaque body with a highly polished surface, It
is usually made of glass backed by a film of mercurial amalgam, or coated
with an extremely thin layer of silver.

Reflection by Plane Mirror.—If a beam of parallel light falls on a plane
mirror all the rays, having similar angles of incidence, are reflected under
equal angles, and are therefore reflected as parallel light. If a pencil of
divergent rays be thus incident, after reflection they are equally divergent,
and appear to come from a point as far behind the mirror as the original
luminous point is sitnated in front of it.  Accordingly, if an object stands in
front of a plane mirror the rays, diverging from each point on it, are reflected
from the surface of the mirror and enter the eye of an observer as so many
cones of light diverging from so many points behind the mirror, and these
points, from which the light appears to diverge, constitute the virtual image
of the original object.

If the object is parallel to the surface of the mirror the image is also
parallel ; if the object is oblique to the surface the image forms a similar
angle with it.
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Construction of Image.—The image can be graphically constructed hy
drawing straight lines from the extremities of the object, perpendicular to the
mirror or plane of the mirror, and continuing such lines as far behind the
mirror as the object points are in front of it. Thus, in Fig. 20, if a liue be
drawn from B to £, and another from 4 to .4‘, and B’ A" be connected, the
image ' 4" is obtained. Rays diverging from .4, after reflection, enter the
eye £, and are projected to a virtual focus at 4’, from which point they
appear to diverge. Those from B are projected to /', so that 4" B is the
virtnal image of 4 B. A’ is apparently as far behind M M as A is in front
of it ; so also B and £’ are equally distant from M J. The complete image
is erect and corresponds exactly as regards shape, distance, and size to the
object itself, the relative directions of the rays from each point on the object
being unchanged by the reflection.

Lateral Inversion by Reflection.—The image is, however, laterally
inverted, the right hand of a person becoming the left of his image in the

Fig. 21. RrGh =5

mirror, and vice versa. If the eye regards 4 B (Fig. 20) directly, A4 is to
the right of .4 B, but looking into the mirror A4’ is seen to the left of 4" 5.
If the top of an inverted page of printed matter be held obliquely down-
wards against a mirror the letters will be in their true order from left to
right, and at the same angle to the mirror, as the page, but they will be
upside down. Engravers sometimes use a mirror in front of the letters
or objects they wish to draw on a wood-block and copy the image they see
in the mirror. On taking an impression of the block the letters or objects
are in their right position.

Distance of Image.—If a person stands in front of a plane mirror, say at
2 ft., and looks into it he sees an image of himself at a distance of 4 feet.
[f an object is placed in contact with a glass mirror its image appears
behind the silvered surface, and only twice the thickness of the glass itself
separates object and image, although the image appears rather nearer owing
to vertical displacement by refraction. If the mirror 1s of polished metal
the two are in contact.

Position of Image.—Since the angle (0 C' M, between the mirror I/ M
and the object 0 €' (Fig. 21) and the angle I ¢’ M, between the mirror and
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the image C' I, are equal, it follows that the angle 0 (' I between the object
and the image is twice as large as either ; therefore if the mirror be placed
at an angle of 45° with the object, the object and image are at right angles
to each other, as is shown in Fig. 22,

Angular Displacement of Image.—If a mirror be turned through any
angle the image will move through twice that angle. This is easily proved
from the first law of regular reflection, for since the angles of incidence and
reflection are equal, it follows that the total angular displacement between
the incident and reflected rays is twice the angle of incidence. But the
angle of incidence of a ray is the same as the angle of inclination of the
mirror. Therefore any reflected ray or image must turn through twice the
angle of inclination of the mirror, and must travel at twice the angular
speed. This fact must be allowed for in the construction of the sextant.
In the reflecting galvanometer it is an advantage in that 1t doubles the
delicacy of the readings.

The Sextant (Fig. 23) is used to measure the angle subtended at the eye
by the sun and the horizon, from which the angular elevation of the sun
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can be calculated. It also serves to measure the angle between two in-
accessible objects.

A small mirror J, revolves about a horizontal axis to which is attached
a pointer ¢ moving over a scale of degrees. M, is a small fixed mirror
of which one half is silvered and the other half is clear, and is so inclined
that when M, and M, are parallel the pointer indicates zero on the scale.
T is a small telescope so directed forwards that it receives at the same time
light from the horizon by direct transmission through the clear part of M,,
and by reflection, from the silvered part, the light which has been reflected
to M, from M.

Let L, be a ray emanating from the sun, and L, a ray from the horizon.
Then to an eye £ the image of the sun along the path L; will apparently
coincide with the image of the horizon seen directly along L,. The angle
which L; makes with L;, which is parallel to L, is the angular distance
between the sun and the horizon, but &, the pointer, only moves through {,
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which is half this angle ; therefore the secale over which G moves is divided
into half degree spaces, which, however, are numbered as whole degrees
in order that direct readings may he taken from the scale, to which also a
vernier (q.v.) is attached for greater accuracy.

Size of Mirror.—The smallest plane mirror which will enable a person to
see the whole of himself reflected is one which is about half his height, the
top of the mirror being on a level with a point midway between the eyes
and the top of the head, also it must be half the breadth, one eye being
closed, and rather less if both are open. To see in a mirror the whole of a
test chart placed over one’s head, the size of the mirror should be one half
that of the chart in both diameters; for other distances of objeet and
observer see page 349, :

Multiple Images.—When there is but one reflecting surface, as in a
metal mirror, there is but one image, but in a glass mirrer having two
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reflecting surfaces, namely, the front surface of the glass 4 ¢ (Fig. 24) and
its silvered hack surface £ [), there are multiple images of an object. Let
a candle flame O be held near to a glass mirror and a series of images will
be seen by an eye F ; the first image /,, that nearest to the eandle, is formed
by direct reflection from the front surface of the glass along a £ ; the second
image [,, which is the brightest, is directly reflected from the silvered
surface along ¢ E.

The other images [, [,, ete., all equally distant from each other, are formed
by repeated internal reflection between the silvered surface and the front of
the glass, but some of the light escaping by refraction at e o - - - after each
reflection, the images become progressively fainter. Ordinarily on looking
into a mirror only two i1mages are noticeable, the faint one reflected from
the front and the bright one from the back surface (Fig. 25), but the more
oblique the line of view and consequently the greater the angle of incidence
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of the light to the mirror, the greater is the separation and number of

images seen. The total number visible also depends, of course, on the
luminosity of the flame.

Parallel Mirrors.—If two plane mirrors M and " (Fig. 26) are parallel
to each other, and an object O is placed between them, a series of images
(the first of which are I and I’), infinite in number, is produced by reflection
of the light backwards and forwards between the two mirrors, As with the
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single mirror, the repeatedly reflected light soon becomes too feeble for the
images to remain visible. The number depends, therefore, on the brightness

of O.

I‘mlined Mirror.— When two mirrors 4 M, B M are mutually inelined
(Fig. 27), the multiple images formed are situated on an imaginary circle
]}J-SSltlg thmugh the object, zmd whose radius is equal to the distance of the
object from the junction of the mirrors. There being 360° in the complete
circle the number of images produced, including the object itself, is found

by dividing 360° by the angle between the mirrors, or the angle may bhe
caleulated by dividing 360° by the total number of images seen, including
the object. Thus, if the angle is 90° there are four, if 60° there are six,
and if 45° there are eight images. A single mirror may be regarded as two
inclined to each 'DthEI‘ at an angle of 180°; there are then two images, or
rather the object itself and its smgle image in the mirrors. If two mirrors
are parallel the angle between them is zero and the images are therefore
3
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360/0 =an infinitely great number, although, as stated above, comparatively
few are visible to the eye.

When the number of degrees between the mirrors is an exact even
divisor of 360, as 45° or 60° the complete figure is symmetrical; if the
number is an exaet odd divisor of 360, such as 120° and 72° the figure is
not symmetrical from every point of view, as when the angle is an exact even
divisor of 360°. If the number is not an exact divisor of 360, the figure is
asymmetrical, as some of the images are either incomplete or overlapping.

Construction of Multiple Images.—To find by construction the images
formed by inclined mirrors, let M 4 and M B (Fig. 27) be the mirrors at any
angle, and O the object between them. With M as centre and M O as radius,
deseribe a circle ; measure off 4 I, equal to 0 4, and B I, equal to 0 £ ;
measure off 4 I, equal to 4 1,, and similarly B I, equal to B I,. * Then take
A I equal to 4 I, and so on until two images coincide or overlap.

Kaleidoscope.— The principle of the kaleidoscope depends on the multiple
reflection cansed by two inclined mirrors, The mirrors are placed lengthways
in a tube, which is closed at one end by a dise of transparent glass, beyond
which is one of frosted glass. DBetween these two glass dises there are a
number of small coloured objects, or fragments of coloured glass. Looking
through the open end of the tube an image is seen consisting of a certain
number of images, the whole forming a more or less symmetrical figure. The
usual form of kaleidoscope has three mirrors inclined to each other at 60°,
and the figure is symmetrically hexagonal, or rather it looks triangular, as
shown in Fig. 27. The whole central figure, as seen in a kaleidoscope, is
surrounded by others formed by repeated reflections of the light.

Curved Mirrors.

Spherical Mirrors.—A spherical mirror is a portion of a sphere, the cross
section of which is an are of a cirele ; its centre of curvature is the centre of
the sphere of which it forms a part. It may be either concave or convex, and
can be considered as made up of an infinite number of minute plane mirrors,
each at right angles to one of the radii of the sphere.

Concave Mirror.—Let 4 B be a concave mirror (Fig. 28) and (' its centre
of curvature. Then all straight lines drawn from C to any part of 4 B are
radii. They are therefore all of equal length and perpendicular or normal to
the surface of the mirror. All rays therefore starting from (', on reaching
the surface of the mirror, will be reflected back along the same paths and form
an image at the same point (.

The point D) is the vertex or pole, and the surface 4 B between the extremi-
ties of the reflecting surface is the aperfure. The line passing through ¢ and D
is the principal axis ; all other lines passing through €' to the surface are
secondairy azes.

If a luminous point be situated infinitely far away, on the principal axis
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the angle of divergence being very small, the rays are considered parallel to
each other and to the principal axis. Let 4’4, B'B, D’'D, ete., be such
rays, and let C4, C' B, and ' D be joined ; then, since these latter are radii,
they each form a right angle at A, B and [) respectively with the surface of
the mirror. Therefore 4 C is a normal to the surface at 4, and the ray "4
will be reflected to F, making the angle of reflection F.4 (' equal to the angle
of incidence 4’4 (. All the other rays, in the same way, are, provided the
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aperture is not too great, reflected to F, which i1s the common image of a
luminous point sitnated at . F is the principel focus of the mirror, and the
distance D F is the principal focal distunce or focal length. D) F is equal to half
the radius D C.

A Cc. mirror therefore renders parallel light convergent, and since the
image can be received on a screen, or seen in the air in front of the mirror,
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the focus of a Ce. mirror is real or positive. If light is divergent it is made,
by a Ce. mirror, convergent, parallel, or less divergent as the case may be.

The course of a ray can be traced backwards along the same path as that
by which it arrived ; so that if F be the object-point, the rays F E, F 4, etc.,
will be reflected parallel to the axis along the lines £ £, 4 A’, etc. Thus,
image and object are interchangeable.

Convex Mirror.—Let 4 I (Fig. 30) be a convex mirror, C' the centre of
curvature, /) the pole, and C I} L the principal axis. Then if the object point
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is at o on the principal axis the rays proceeding from it to the mirror are
parallel. Let K I be one of these rays meeting the mirror at J, and let C H be
a normal to the surface. The ray K I will be reflected at I to I @, so that
the angle of reflection H I ¢ is equal to the angle of incidence H I K, and the
reflected ray I &, produced backwards, cuts the axis at F, which is the
principal focus of the mirror.

A Cx. mirror therefore renders parallel light divergent, and divergent
light still more divergent. The image thus formed is imaginary, so that the
focus of a convex mirror is virfual or negative.

Conjugate Foci.—Conjugate foci may be defined as the positions of object
and image. If the image is real these positions are such that they may be
reversed and the object placed where the image previously was and vice-
versa, the distance of the two conjugate points from the mirror remaining
the same. In other words the direction of the light can be reversed without
altering the positions of the two conjugate foci. Conjugate focal distances are
the distances of the conjugates from the mirror.

Conjugate Focal Distances. Cec. Mirror.—If the object-point (Fig. 31)
be on the principal axis between € and o, say at f, the image must be at f]

Fre. 81.

somewhere between F and C. An object at sc will have its image at F, and
it is obvious that the angle of incidence f A C is smaller than the angle L K C';
therefore the angle of reflection f, K C, which equals the angle of incidence
f K C, must in the same way be smaller than the angle ' K C, and therefore
f1» the image of f, will lie nearer to €' than F.

As the object-point approaches C, its real image also approaches C'; when
the object-point arrives at C the image will also be at () the ray €' K being
reflected back along its own path. When the object-point arrives at f, the
real image is obviously at f, and when it reaches F its image is at oe.

When the object-point, as f,, passes F towards the vertex, the reflected
ray K I lies outside A L. Then the focus will no longer be on the same side
of the mirror as the object, but will be found by prolonging the ray K [
backwards to f; on the other side of the mirror. In this case the image is
not actually formed, but is virtual or negative, existing only in the brain of
an observer whose eye is looking into the mirror. As the object-point
travels on towards the vertex the image f, also approaches until the two meet
at, and touch, the mirror.
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Conjugate Focal Distances, Cx. Mirror.—As the object point f (Fig. 32)
approaches the mirror the image f, also approaches the mirror from F to D,
because the angle of incidence LKT increases with the nearness of the
object, until at ) object and image coincide, so that, no matter where the
object is, the image is always formed hehind the mirror either at F, or
between it and D, by prolongation backwards of the divergent rays, and is
always imaginary or virtual.

Imagzes on Secondary Axes.—In the preceding cases the object is sup-
posed to be on the principal axis, so that the image is also on the principal

Fra, 32.

axis. If the object be situated on some secondary axis the image is on that
same secondary axis, Also the object hitherto has been considered as a
point ; it can now be supposed to have a definite size.-

Construction of Images—Cec. Mirror.—It is known that (1) a ray
parallel to the principal axis passes, after reflection, through the principal
focus ; (2) a ray passing through F, after reflection, is parallel to the principal
axis; (3) a ray proceeding through ¢, the centre of curvature, is reflected
along its original path. It is possible to make a graphical construction of
the image of an object placed in front of a spherical mirror by tracing any

Fic. 33.

two of such rays from the extremities of the object, and their course after
reflection. The point where these rays meet is the point where all the rays,
which diverge from the object-point, also meet, and is therefore the image of
that point.

The graphical construction when the object is beyond C'is as follows.

Let 4 B (Fig. 33) be the object, (' the centre of curvature, and let /' be
the principal focus. Draw 4 K parallel to the axis, connect A F, and produce
it onward ; draw 4 L through . These two lines cut each other in .4’
which is therefore the image of .4, situated on the secondary axis 4 C L.
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In the same way, rays drawn from B meet at B, and both B and B’ are
on the secondary axis BCK. By connecting B’ and A’ the image of 4 B is
obtained, and it is real, inverted, and smaller than the object. If the object
were at 5’ 4" within the centre of curvature and beyond F, the image would
be A B, real and inverted, but larger.

The course of any ray other than those mentioned can be constructed by

drawing the normal to the point of ineidence and making the angle of refiec-
tion equal to the angle of incidence.

Graphical construction when the object is within F.
Let 4 B (Fig. 34) be the object. Draw A K, connect I’ and K, and pro-

duce towards A" ; draw ' A4, producing it similarly. These lines meet on
the secondary axis C 4 4’ in the point .{', which is therefore the image point
of A. Any ray A D is reflected as if proceeding from A4’. In the same way
B’ can be shown to be the image of B. By connecting B’ and 4’ the image
B' A" is obtained. It is virtual, erect and enlarged.

The graphical construction of an image formed by an object at F resolves
itself into lines parallel to the secondary axes, so that the image is at infinity
(Fig. 35).

If the object is at (, object and real image coincide, but the image is

; o f B
= B2

1‘\ A
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inverted (Fig. 36). If the object is at ) (Fig. 34), no rays can be drawn,
since object and virtual image are in contact with the mirror and coincide.

Construction of Images—Cx. Mirror.—Draw 4 K (Fig. 37) and connect
K with F; join 4 (. Where these cut each other at 4’ is the image of 4 ;
it is on the secondary axis 4.4"C. Any other ray from A4 can be shown to
be reflected as if proceeding from A'.

By similar construction the position of B', the image-point of B, is deter-
mined, and connecting 4’5’ the complete image of the object 4 B is obtained,
" being on the secondary axis £ C.

In the case of a convex mirror, wherever the object may be placed, the
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image A’ B is always virtual (imaginary) erect and smaller than the object,
but if .4 B is in contact with the mirror, the image 4" 5’ coincides with it.

Relative Sizes of Image and Object.—Since, as will be seen from the
foregoing figures, both objeet and image subtend the same angle at the vertex
of the mirror, or at the centre of curvature, the relative magnitude of object
and image are proportional to their respective distances from the mirror, or
from its centre of curvature, and this rule holds good for all images, both
virtual and real, and for convex and concave mirrors.

Conjugate Foci of Spherical Mirrors.

For the convention of optical signs see page 86. List of symbols faces
preface.

Conjugate Focal Distances.-—If I be the principal focal distance, then
1/F is the reflecting power of the mirror, the two being reciprocals of each
other ; thus, if ¥ be 10, then 1 F=1/10. If f; be the distance of the object
from which light diverges to the mirror, we can represent the divergence of
the light by 1/f; and this quantity is considered negative.

Fig. 37.

Now a Ce. mirror converges the incident light, but if the latter proceeds
from a very distant object the divergence is negligible, and therefore the
focus of the light is at F as a result of the converging power 1/F of the
mirror, which is reckoned positive. If, however, the light proceeds from a
near object the divergence is appreciable, and a focus is obtained at some
other distance, f,, which distance is determined by the addition of the
divergence of the light to the converging power of the mirror, i.e. 1/F—1/f;=
1/f,, where 1/f, is the reciprocal of the distance f,.

A Cx. mirror diverges incident parallel light ; its power is negative and
representative by — 1/F.  When light is parallel f, is at F, but when it is
divergent f, is determined by adding the divergence of the light to the
diverging power of the mirror, that is, — 1/F —1/f;=1/f,. In the case of a
Ce. mirror f, is positive or negative according as 1/f, is respectively a smaller
or greater quantity than 1/F. With a Cx. mirror f, is always negative.

Since convergence is considered positive and divergence negative, if — 1/f,
represents the divergence of light from a distance f,, then 1/f; represents con-
vergence to the distance f}, while 1/f, is that power which causes parallel rays
to converge to f,, and - 1/f, that power causing them to diverge from that
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distance. Thus the total power of a mirror 1/F is equal to the sum of the
powers which represent the distances of the object and image. In other
words the reciprocal of the principal focal distance is equal to the sum of the
reciprocals of any pair of conjugate foci. Then we can write the formnla

o] o 1. 1.1
MU F f ot

This formula is one of the most important in optics. It enables us to
find the focal length of a mirror if f; and f, are known ; or if F and f, are
known we can find f, (the image). It is universal and holds true for both
concave and convex mirrors and, as will be seen, for lenses as well. Since
the two fractions 1/f, + 1/f, added together always produce the same sum; it
follows that however much the one is increased the other is decreased in the
same proportion. Thus if a Ce. mirror be of 20 in. radius or 10 in. focal
length the sum 1/f, +1/f, is always 1/10. If a Cx. mirror has F = — 10 in.,
the sum 1/f, + 1/f, is always — 1/10; here f, is always negative, as it may be
also when 1/F is positive. The formula may also be written F/f, + F/f,=1.

Geometrical Proof of the Formula—Ce. Mirror.—Let O (Fig. 38) be any
object point situated on the axis of the mirror J M. Let ¢ M be any radius
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and O M a ray incident on M and reflected to J, the image point, such that
the angles 0 M/ C and I M C are equal.

If, in any triangle, one of the angles be bisected by a line passing through
the opposite side, the latter is so divided that the ratio of the one segment
to the adjacent side is equal to that between the other segment and its
adjacent side. Thus in the triangle O M I,

IC:IM::0C:OM
IC_OC
IM OM

But since the semi-aperture M D is considered small, 7}/ may be taken
as equal to { D, and similarly 0 M to O D

or

: IC 0C
4 D 0D
But ID=f, OD=f,and D C=r
Then
r—fo_fie W fih 2
e S

Whence i+ 1/f,=2/r=1/F
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because the radius of curvature is twice the principal focal distance. This
is easily proved, for let L M be a ray parallel to the axis and incident at J/
so that, after reflection, it passes through F. Then the angles L/ C and
FMC are equal, as are the angles LM (' and M CJD between the
parallels LM and O0. Now M (D is equal to F M C; therefore the
angles F M €' and F ' I are also equal, so that F M= F C,

But, the aperture being small, D F may be considered equal to M F=F (.
Therefore D €' is equal to twice JJ F—in other words, the radius of curvature
is twice the principal focal length.

Another Proof.—In Fig. 39 4 B is an object whose image is B 4’. The

[ .

5

Zd
Cy

Fic. 39.

aperture of the mirror is considered small, so that 1) M may be considered
a straight line. In the similar triangles 4 F C'and 4 M A’

FC AF BF
MA' AM BD
But FC=F,MA'=DB=f, BF=f,-F, and B D=j;
Then
F_fi-F
f: 4
That is F/fo+F/f;=1 or 1/f,+1/f,=1/F

\
B A
Aorlias
i == = Y M
[ I } B

Fra. 40.

Proof for Cx. Mirror.—The aperture being small, D M (Fig. 40), as
before, may be considered a straight line. Then
b AR A% EF
CE AB DM FM
CB=2F-f, CB=2F+f,, FB=F-f, and}F M=F
Then

EF_‘ :'.| F_f:h A
aF +§i= F whence F(fe-f)=hHrt

That is - 1/F=1/f, = 1/f,
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In all the above proofs it will be noticed that an approximation is intro-
duced by considering the portion of the reflecting surface utilized as flat.
If this were not done the formule would be very complicated, and a different
value would be got out for each size of aperture—in other words the
spherical aberration of the mirror is ignored in our simple formula, which is
indeed permissible seeing that the portion of the mirror chiefly responsible
for the production of the image is that immediately surrounding the
vertex.

Calculations on Conjugate Foci.—A positive result when working these
problems denotes either a real image, or a concave mirror. If the result is
negative the image is virtual, or if the principal focus is being found, the
mirror 1s convex.,

Examples—Cc. Mirror.—Let the mirror be of 10 in. F, and let the
object be at <o ; then we have

1/fo=1/F=1/fi=1/10-1/ 0=1/10-0=1/10

The image is real and at the principal focal distance, since f,=F.

[t must be remembered that we regard, in these calculations, any consider-
able distance as w. In visual objects any distance beyond 6 M. or 20 feet is

so taken, but there we are dealing with short focal length systems.
If the objeet be at I the calculation is

1/f,=1/F - 1/F=0/F fi=F/0= c
so that the image is at oo, and F and oo are conjugate distances.
If the object is at 30 in., we get
1/f,=1/10-1/30=1/15
Therefore the image is 15 in. and real.
I the object were at 15 in. we find
1/f,=1/10—1/15=1/30
15 in. and 30 in. are conjugate foci with respect to a 10 in. concave
mirror ; if the object be at 15 in. its image is at 30 in. ; if the former is at
30 in. the latter is at 15 in.
If the object be at twice F, that is, at the centre of curvature, say 20 in.,
in front of a 10 in. eoncave mirror, the image is at the same distance, since

1/f,=1/10 - 1/20=1/20 or f,=20 ins.

When the object is within the principal focal distance, a higher number
than 1/F being deducted from it, the result is a negative quantity. Thus
if the object be placed 6 inches in front of a 10 in. concave mirror, then

1/f,=1/10-1/6= —1/15

so that the virtual image is 15 inches behind the mirror.
Here =15 in. is the conjugate of 6 in. in respect to a 10 in. concave
mirror, and 6 in. is the conjugate of —15 in., buf nof of 15 in. That is to
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say, if the rays of light incident on the mirror are convergent to a point 15 in.
behind it, they will be reflected so as to come to a focus 6 in. in front of it.
If light is incident on a 10” mirror convergent to 15” hehind it we get
a real image at 6” for
1/f,=1/10+1/15=1/6

From these calculations it will be seen that a real or positive image is
obtained with a concave mirror so long as the object is beyond F, and that
the image becomes virtual or negative when the object is nearer than F.
Also that in all cases 1/F=1/f;+1/f,. Thus when the light diverges
from 30" and is converged to 15" we find 1/10=1/30+41/15. When it
diverges from 6” before reflection, and from 15" after reflection we get
1/10=1/6+( - 1/15).

Relative Distances of O and I.—The nearer the object is to I, the more
distant is the real image ; as the object recedes from F, the image approaches
it, but no positive image of an object can be nearer than F since no object
can be more distant than =. If, however, the rays are convergent before
reflection, then f, passes to the mirror side of F.

The planes of unit magnificavion for real images lie at the point where
the object coincides with the centre of curvature of the Ce. mirror, for then
the image is equal in size to the object and at the same distance.

The nearer the object is to F, the more distant also is the negative image.
As the object recedes from F and approaches the mirror, the image also
approaches the mirror, but the image i1s always more distant than the object.
When the object touches the reflecting surface, the image does so likewise,
this being the plane of unit magnification for virtual images formed by a
Ce. mirror.

Examples—Cx. Mirror.—Let the mirror be of 10 in. F and the object
at oc. Then
1/fo=-1F-1/cc=-1/10-0= - 1/10

The image is virtual or negative and at F.
If the object be in front of the mirror at a distance equal to F of a
Cx. mirror, the image is at half F. Thus with a 10” mirror
1/f,= - 1/10-1/10= - 1/5
If an object is situated 30 in. in front of the convex mirror

1/f,= —1/10-1/30= — 1/74 in.

The image is virtual and 7} in. behind the mirror.

— 71 in. is conjugate to 30 in. with respect to a 10 in. convex mirror,
and 30 in. is the conjugate of —T} in. but not of 7} in. If light were
convergent to a point 7} in. behind the surface, the convergence would be,
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by reflection, so much reduced that an image would be formed 30 in. in front
of a 10 in. convex mirror.

Thus if light converges to a point within F the image is real, if conver-
gent to F the light is parallel after reflection, since the convergence of the
* light and divergence of the mirror neutralise each other. If the light is
convergent to a point beyond F the virtual image formed is also beyond F.
In all cases, however, 1/ F=1/f, +1/f..

Relative Distances of O and I.—The image of a real object formed by a
convex mirror is therefore always virtual, and eannot be at a greater distance
from it than F, the object being then at . When the object is nearer
than o the image recedes from F towards the mirror, and when the object
touches the surface the image does likewise. This is the plane of unit
magnification of a Cx. mirror.

Another Expression for Conjugate Foci.—If the distance of the object
from F=A, and that of the image from F=0B, then AB=F2, That is,
B=F?/A. This is generally known as Newton’s formula. Following are
some examples :

Let F=10and f,=30,th n A=30-10=20
and B=100/20=5, or f,=5+10=15 in,

Let F=10and f,=6, then A=6-10= -4
and B=100/-4=-250" f,= -25+10= -15 in.

Let F= -10 and f,= 30, then A=30-(-10)=40
and B=100/40=25, or fy=25+(—-10)= - 75 in.

These examples should be compared with those worked by the ordinary
formula.

Size of the Image formed by a Spherical Mirror.—In the case of both Ce.
and Cx. mirrors the size of the image bears the same relation to the size of
the object, as the distance of the image does to the distance of the object
from the mirror, or from the centre of curvature. That is

holly=Falty or hy =My fylfy

where /%, is the size of the objeet, L, is the size of the image, f, is the
distance of the image, and f, is the distance of the object. In the caleulation
f, and f, must be in the same terms, then h, will be in the same terms as h,.
This rule holds good in all cases, whether the image be real or virtual, since
both object and image sublend the same angle af the centre of curvature or at the
vertex, so that their respective sizes depend solely on their respective distances from C
or from the verlex,

Suppose the object is 30” from a 10 in. Ce. mirror and 2” in height, while
the image is at 15%, then

ho=0,1glfi=2 % 15/30=1"
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If the object were at 15 in. and the image therefore at 30 in, the image
would be 47 high if the object were 27,

When the object is 30” from a 10 in. Cx. mirror its image is virtual
at 73 in. and if /, =2"

e 0 Ly LA
Ir2= =5

In the above examples the distances from the mirror have been taken, but
the same ratios would exist were they taken from C. Thus 30” and 15" from
a 10" Ce. mirror are 30—20=10" and 20—-15=5" from (, and obviously
30/15=10/5. Similarly with the Cx. mirror, 30" and 7} in. from it are
3{!+?0—50 and 20-71=121 from the centre of curvature, and 30/7-5=
50/12-5. All formule for m.wmﬁc:i,tmn with lenses apply also to mirrors.

It must not be forgotten Erhat although a distance may be taken as o for
the calculation of f,, its definife distance is needed for caleulating /. Thu.s
suppose an object 3 yards high is an eighth of a mile from a 30" mirror.
What is the distance and size of the image? The image is at F=30", and

fy = S x 30 = 1 rard or *4 inch.

2= 990 x 36 88 9

Fic. 41.

When the object is inaccessible so that the actual size cannot be deter-
mined, the size of image can readily be found from the angle which the
object subtends at the centre of curvature. For example, what will be the
size of the image of the moon formed by a concave mirror of 16 in. focus!

The object being at o= (Fig. 41) the rays from each point of it are
parallel, and the image [ will be formed at the principal focus and .- f, =16 ins.
But although the object is at = it has a definite size subtending an angle «
of 327, and we utilise the size of the angle subtended by the object instead of
the object itself. Now object and image subtend the same angle at C, and
since fan 32" =+0093 and f, = 16 ins., we have, as the size of the image,

16 x *0093 = 0-1488 in., or about } in.

Recapitulation of Conjugates.—Cec. Mirror.

When O is at o=, I is real, inverted, diminished and at F.

When €/ 1s between = and 2F, I is real, inverted, diminished and between
2F and F.

When O is at 2F, [ is real, inverted, equal to 0 and at 2F.

When 0 is between 2/ and F, I is real, inverted, enlarged and between
AF and o
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When 0 is at F, I is infinitely great and at ce.

When 0 is within F, [ is virtual, erect, enlarged and on the other side of
the mirror.

When () is at the mirror, { is virtual, erect, equal to 0 and at the mirror.

Cx. Mirror.

When iz oo, [ is virtual, erect, diminished and at F.

When 0 is within =, [ is virtual, erect, diminished and within F.

When O is at the mirror, [ is virtual, erect, equal to 0 and at the mirror.

The virtnal image of a Cx. or Ce. mirror is laterally inverted as in a plane
mirror. The real image of a Ce. mirror is entirely reversed, and therefore
not laterally inverted in this sense,

Aperture of a Mirror.—In order that a true image of a point may be
obtained with a spherical mirror, it is essential that the aperture should be

E

I

: Fig. 42,

small compared with its radius, subtending an angle of, say, not more than
20° at (, so that the arc of the aperture may be approximately a straight
line. Suppose £ F (Fig. 42) be the aperture of the mirror, ¢! D the principal
axis, and C the centre of curvature. Join £ F. Then if the angle £ C' D be
small (under 10°%) the distance [ & will also be small, so that ¢ @ may,
without much error, be taken as equal to ' E ; also

EDC=GE C=E G C=a right angle.

Now tan u.=f‘; E, sin @ = Jk: %, and cos a = E g

Since £ C is taken as equal ¢ C, sin e=tan a=the arc £ ), and
cos a=1/1=1.

Thus all caleulations involving mirrors—and, as will be seen later, lenses
also—are greatly simplified, since the sine and tangent may be considered
equal for small angles and ean be replaced by the are, and the cosine by
unity, whenever the angular aperture is s 1 all.



CHAPTER IV
REFRACTION AND THE REFRACTIVE INDEX

Normal Incidence of Light.—The fact that the velocity of light is lessened
in a dense medium is the cause of refraction. When a beam of light,
traversing the air, is incident normally on a refracting medium such as a
sheet of glass, the whole of the wave-front is retarded simultaneously and
equally. The plane of the wave after entering the glass is unchanged in
direction and continues so during its progression through the denser medium.
On reaching the second surface, the whole of the wave-front is again inci-
dent at the same time, and each part of it is equally increased in speed as it
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passes again into the rarer medium, so that its line of progression remains
unchanged.

Oblique Incidence of Light.—DBut if the plane wave-front 4 4" (Fig. 43)
be incident on the first surface obliquely, one part B' meets the denser
medium sooner than the rest and this is retarded, while the others are still
in the rarer medium advancing at an undiminished rate of speed. Kach
wavelet on reaching the glass becomes retarded, one by one, until the whole
of the wave-front has passed into the denser medium, and in consequence the
wave-front is changed in direction. The angular change of direction depends
on the distance that the more rapidly advancing parts of the wave-front

a7
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travel before their speed is also checked, that is; on the obliquity of the inei-
dence of the light, and on the retardation itself, that is, on the refracting
power of the medium. When the whole of the wave-front €' C” has entered
the denser medium, it travels without further deviation but at a diminished
rate of speed. On reaching the second surface of the glass the wave-front
D 1) is again incident sooner at one point £ than at others. The wavelet at
that point increases its speed, while the remainder is still moving less rapidly
in the denser medium ; then the other wavelets emerge and increase their
speed until, having passed into a rarer medium, the entire wave-front £ E'
travels with its original velocity and in a direction parallel to its original
direction.

The Laws of Refraction.— M hen a ray of monochromatic light (i.e. light
of a single wave-length) is incident obliquely on the boundary between two
media of different optical densities :—

(1) The incident and refracted rays are in the same plane as the normal
to the point of incidence, and lie on opposite sides of it.

(2) A constant ratio exists between the sines of the angles of incidence
and refraction ; this ratio is governed solely by the relative density of the
two media, and is known as the inder of refraction with respect to the two
media.

It will be seen later that the value of the index also depends upon the
colour of the light, but, for the present, we shall consider all light as mono-
chromatie.

From the second law we can deduce the following :

A ray passing obliquely from a rarer into a denser medium is refracted
towards the normal at the boundary plane between the two media.

A ray passing obliquely from a denser into a rarer medium is refracted
away from the normal at the boundary plane between the two media.

A ray suffers no deviation if, at the point of incidence, it is normal to the
surface of the medium which it enters.

Index of Refraction.—The index of refraction between two media is fhe
ratio of the velocities of the light in these media. For example, supposing light
to travel at a speed of « in the first medium and at a speed of # in the second,
then the index of refraction from the first to the second medium is »/y, but
if the direction of the light is reversed, then the index is said to be y/z. If
the light travels three miles in the first, while, in the same time, it is travel-
ling two miles in the second, then the index is 3/2=1'5; from the second to
the first the index would be 2/3. '

Snell's Law of Sines.—The second law of refraction states that the con-
stant ratio between the sines of the angles of incidence and refraction is the
index of refraction ; it ean be shown that the ratio of the velocities of the
light in the two media are as the sines of the angles of incidence and refrac-
tion. In Fig. 44, let S5 be the bounding surface between the media—the
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second being denser than the first—in which the velocities of the light are
respectively /7, and V,. Let [)C be a plane wave-front incident on the sur-
face at the angle ) C' A =i which, after refraction, passes into the second
medium at the angle of refraction C 4 E=r.

Then 4 D and (' £ are distances travelled by the extremities of the wave
in equal times, the one portion at [) being in the rarer and that at C in the
denser medium ; it follows, therefore, that the ratio A4 D/CE is the refractive
index for light travelling in that direction hetween the two media. Now
since the “rays” A4 D) and C'E are perpendicular to the wave-front, the
angles 4 )¢ and A EC are right angles. Therefore, the hypotenuse 4 C
being common to the triangles A ) ("and 4 £ €, 4 D and (' £ are numerically
the sines of the angles of incidence and refraction respectively, so that

Y, AD gind
Vo, CE sinr
That is, the index of vefraction, or the velative velocities of light in the two media,
is given by the ratio of the sines of the angles of incidence and refraction.
This proof holds equally when the incident wave is curved, since we may

Fic, 44,

assume the portion D €' under consideration to he so small as to he sensibly
straight—in other words, we may work from the “ray ” F' B, which is really
the path taken by a very small portion of the wave front itself. Similarly if
the medium S8 is curved, the portion A ' may also be considered plane.
Further the ratio sin ¢/sin # is quite independent of the angle of incidence
since, whatever course a wave may take through the same pair of media, its
velocity in each, and therefore the ratio of the velocities, must remain
constant,

Absolute Refractive Index.—With the exception of certain metals, the
velocity of light is a maximum in free ether, i.e. a vacuum, through which
all waves, of whatever length, travel with equal speed. Its progression
through air is very slightly slower, but for all practical purposes no distine-
tion need be, nor is, made between free ether and the atmosphere. The
optical density of air is therefore taken as unity or 1, and the density of any
other medium, such as water or glass, is expressed in terms of this unit and
is called the absolute index of refraction, generally denoted by the Greek letter
p (mu). Thus if the p of a certain kind of glass is 1-5, it implies that light
travels one and a half times as fast in air as in the glass; or to put it in

4
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another way, the velocity in the glass is only 1/1:5:=2/3 that in air. There-
fore p, or the absolule index of refraction, expresses the optical density of a
medinm, and if p=1-5, the medium to which it pertains has an optical
density 1'5 times greater than air. To a certain extent the optical density
varies directly with the true density, but there are notable exceptions, as for
instance with some of the metals, but these are opaque ; the departure from
the rule is more noticeable in comparing such transparent media as oil and
water ; the former has the greater optical density but the lesser specific
gravity than the latter.

When reference is made to the p of a substance it is invariably under-
stood to mean the absolute inder as compared with aiv. In addition ju, unless
otherwise stated, refers to wellow light ; the reason for this restriction will
appear later when chromatism and chromatic aberration are discussed.

It should be noted that the angle of incidence of a wave is that which it
makes with the surface, as A C D in Fig. 44, the corresponding angle of
refraction being E 4 C. The angle of incidence of a ray is that which it
makes with the normal as F B N, the angle of refraction being @ BN, Itis
immaterial, however, as to whether the ray or the wave is taken since
obviously the angles of incidence 4 C') and F BN are equal, as are the
angles of refraction E 4 C and () B N’

It iz usnal, when several media are involved in a ealeulation, to refer to
their indices as p,, p,, py, ete., but when there are only two media, one of
which is air, the index of the denser is denoted simply by u without any
suffix, that of air being, as before stated, always taken as 1, although actually
it 1s about 1-000294.

Relative Refractive Index.—The relative index of rvefraction (usually
written ) is the expression of the refractivity when light passes from one
dense medium into another, say, from water into glass or vice versa. It is
found by dividing the absolute index of the medium into which the ray
passes, by the absolute index of the medium from which it proceeds ; thus.
when light passes from water p=1-333 into glass p=1:545 the relative
index is i P

sin i 1-545
fr=cinr 1383 L

Again, the sines of the angles of incidence and refraction, as light passes
through two such media, are to each other as the veloeities of the light in
those two media.

Reciprocal p's.—In the case of any two such media A and B the index of
refraction for light passing from A into B is the reciprocal of the index for
light passing from B into A. Thus, when light passes from air into glass,
the sines of the angles of incidence and refraction are, say, as 3 : 2, and the
index is 3/2. If it passes from glass into air, the sines of the two angles are
as 2 : 3 and the index is 2/3. Taking the example of the last paragraph,
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the relative p is 1'16, but if the light passed from the glass to the water
p=1-333/1-545=1/1-16.

The Course of a Ray.—As an example of the application of the sine
law, let a ray be incident from air (x=1) at 30° with the normal, to glass
of p=15, and it is required to find the course of the ray after refraction.
We have sin i/sin » = p, from which sin r=sin i/p.

gin r= Sill. %0? = ‘50?0
1-5 15

Now 3333 =sin 19° 30’ (approx.), so that y=19° 30". Therefore the ray has
been deviated towards the normal by an amount equal to 30° - 19° 30’ = 10-5°.

It should be observed that, apart from the angle of incidence, the
actual deviation which light undergoes, when passing from one medium into
another of different density, depends on fthe rafio between the p's of the two
media, and not on the high value of the pu of the second medium. Thus

= 3333

the refraction is greater when light passes from air into glass of = 1'5 than
when it passes from water into glass of p=1-6.

Graphical Constructions.—The course of the light can also be graphically
constructed in the following manner. Let VG (Fig. 45) be the ray
incident at the angle i to the surface 4 B of p=15. At the point of
incidence & drop the normal C F and with G as centre describe a circle of
any radius—the longer the latter the more accurate will be the construction.
From the point D where the circle cuts the incident ray drop the perpen-
dicular I (' and divide it into three equal parts. Then drop a similar per-
pendicular £ F from £ on the other side of the surface, such that the length
of EF is equal to two of the parts into which [ ' was divided. Then G E
is the course of the refracted ray. This construction is merely a graphical
representation of the sine law because if, in the right angled triangles C D
and F E (7, the hypotenuse D G is equal to G E, C D and £ F are numeri-
cally the sines of ¢ and » respectively, and as these have been divided in the
ratio of 3 and 2, ¢ £ must be the direction of the refracted ray.
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This construction is universal and can be applied to any pair of media.
Thus suppose, in the above example, that the first medium was water of
=133 instead of air, C'D and F £ would have to be divided into 15 and
13'3 parts respectively. To calculate the deviation, if ¢ be 30°

sin ¢ p, 15
sinr p, 133
or
sin r= l'—j';-s_m s diedie O Sirny
1125 15
whence
r=26 (approx.)

The deviation, therefore, in this case is only 30 — 26 = 4°,

Another and perhaps more simple construction is shown in Fig. 46. Let
D & be any ray incident at & on the surface S S of a medium whose p=15
or 3/2. From [) drop the perpendicular ) & and divide B @& into three
equal spaces. Then from G mark off @ 4 equal to two such spaces. From 4
drop a perpendicular and from & draw a line G E, equal in length to G D,
cutting the perpendicular from 4 in E. Then & E is the direction of the
refracted ray. In thisconstruction B G and .4 & takes the place respectively
of DC and E F in Fig. 45.

In order to trace the course of a ray of light through any refracting
body, with plane or curved surfaces, the procedure is the same, but in the
case of a curved surface the tangent to the curve, at the point on which the
ray is incident, is considered to contain the plane of ineidence and of
refraction.

TABLE OF REFRACTIVE INDICES (FOR THE D LINE).
(For other Media see Appendi,)

Air .. e " i3 L . .. 1000
Water i i o i by S LT
Aleohol .. s e o of ve 1866
Pebible - e S o kel S T
Canada Balsam .. - i o wor 1°585
Tourmaline o o o i . 17638
Crown glass ve o ‘e .« say 1-500 to 1600
Flint ., o 1°530 to 1800

Diamond .. e = o i R

The index of glass varies with the materials used in its manufacture, and as a rule the
higher the g the softer is the glass.

Refractivity.—It should he particularly noted that the refraction or
deviation eaused by any medium is not proportional to its p but to the
difference between its p and that of air =1. We say that the mean refrac-
tivily of a substance is (n— 1), The refracting values of any two media—lenses,
prisms, etc., having similar forms—would vary not as their p's, but as their
(n—1)s.
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Dispersion.—The shorter waves, with rare exceptions, are retarded by
a medium, more than the longer waves, so that when white light undergoes
refraction its components are refracted to different extents and the various
colours become separated, producing what is known as dispersion or chro-
matism, which subject is treated in a later chapter.
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Critical Angle and Total Reflection..—When a ray of light passes from
a dense into a rare medium, it is bent away from the normal, with which it
makes a larger angle than before refraction. In Fig. 47 let p, be the index
of the dense and g, that of the rare medium, and let 4 /' be the incident
and B C the refracted ray. As A4 B makes a larger angle with the normal
the corresponding angle of refraction becomes still larger. Hence if the

Fic, 47.

ray 4" B be incident at an angle sufficiently large, the angle of refraction
becomes a right angle, and the refracted ray & " will skim along the bound-
ing surface. The angle of incidence in the denser medium which produces
this result is termed the crifical angle, because the Elightuﬁt further inerease
of it prevents the ray from passing out of the denser medium. If the
incident ray be A” B it is reflected as B €, and folal infernal veflection takes
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place. Internal reflection is termed fofal to distinguish it from ordinary

reflection, which is always accompanied by a certain amount of absorption
or transmission.

Let C' be the ecritical angle, which is equal to ¢ in the dense medium.
Then

sin ¢ _sin 7

1 M2

But r=90° and sin 90°=1, the greatest possible value of any sine.
Therefore
sin C_ 1 o sin G= "
" s Ha

Thus the sine of the critical angle is equal to the relative index from the denser
to the raver medivm. If the rarer medium he air, x =1, so that, for a denser
medium bounded by air,

sin C= 1
F

Suppose the ray to pass from glass p=1'5 toair ; then 1/u=1/15= 0666,
so that the sine of the critical angle is ‘666, which is sin 41° 46’. This is
the greatest angle at which a ray can be incident in order to emerge from
glass of p=1-5 into air, and the emergent ray is then parallel to the surface.

For light passing from one dense medium into another

gin C=F1_ .
P2 Pr

where p, is the relative index of refraction for the two media. Thus for glass
and water where p, =152/1-33=1-14, sin C=1/1'14="877=sin 61-18".

This principle affords a method of determining the refractive index of a
medium. If the angle in the denser medium, at which the incident ray just
ceases to emerge into the other, be measured, 1 divided by the sine of that
angle is equal to the p of the medium, or the relative p of the two media.

The critical angle when light passes through several media is the same as
that which obtains directly between the first and the last.

TABLE OF CRITICAL OR LIMITING ANGLES.

_———— — e —_——

| Medium Index of Refraction. Critical Angle. |
|
! Chromate of lead .. e 2-99 ; 20°
| Diamond .. o o 4 o 2:47 24° |
Various precious stones .. e o — 25° to 30°
Flint glass .. - i i £ ' 38° to 40°
Crown glass .. A i s e _— ; 40° to 43°
Pehble e oo e L o 154 40°
Water = e 50 o S 133 . 48 30'
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It will be seen, from the above, that the critical angle varies inversely
with . That of glass in general is about 40°,

Some Effects of Total Reflection.—On looking upwards through the side
of an aquarium tank the surface above one’s head glistens like quicksilver,
owing to the light being reflected downwards. A metal ball, blackened
by a smoky flame, immersed in water appears brilliantly polished, because the
thin film of air surrounding it totally reflects the light.

If a tank half full of water has some benzine on the top, the two liquids,
owing to their different specific gravities, do not mix. As the benzine has
the higher index, a beam of light from above may be totally reflected at the
surface of the water and emerges upwards, the surface common to the two
liquids, seen obliquely from above, glistening like polished silver. If a tank,
containing carbon-disulphide be filled up with water, the lower liquid has the
higher refractive index, so that but little light is reflected and the boundary
surface will appear a dull matt grey.

A tank filled with water has a glass window with a collimating lens behind
which is a light, and an aperture opposite to it which can be opened by a
tap. On opening the aperture the light, in a parallel heam, emerges with

,';F' H.Il
B c '
@
5— \
Fic., 48, Fic. 49. Fiz. 50.

the stream of water, which it follows on account of internal reflection. The
appearance of the jet is such that it is called the cascade of silver ; were the
jet of water perfectly smooth it would appear dark. Similarly,if a solid bent
tube of glass has a strong source of light brought close to one end, and the
other is placed against the opening of the stage of a microscope, the light
traversing the tube by internal reflection forms a powerful evenly-illuminated
disc under the stage, and a slide will be uniformly illuminated from below.
Here no light is scattered since the tube is smooth,

Reflecting Prisms.—If the principal angle of a prism exceeds twice the
critical angle of the medium of which it is made, total reflection ensues for
incident light. All glass has a eritical angle of less than 45°. If, therefore
(Fig. 48), a ray .4 I enters a right-angled prism normally making an angle of
45° with the normal to the surface 1" Z, the ray will be totally reflected in the
direction B C. The light is not refracted at the surfaces I 1" and [} Z of
the prism because it is incident normally to each. Thus a right-angled prism
serves as a total reflector when the light is incident perpendicularly to the
one face, the direction of the emergent light being at right angles to the
original course. There is reflection even if the light does not enter at right
angles to 1) ¥, provided it makes, after refraction, an angle greater than 42°
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with the normal to the hypotenuse 1"Z. Thus the ray E LG will be also
totally reflected. The dispersion which takes place as the ray enters is
reversed as it leaves the prism, so that the emergent ray consists of white
light similar to that which entered.

If the light falls normally on the hypotenuse side of a right-angled
prism it causes total reflection twice at B and C, as in Fig. 49, so that the
final direction C D) of the light is parallel to its original course 4 B. These
forms of prisms are, with variations of shape, extensively employed in prism
binoculars, range finders, etc.

By means of a right-angled prism, as indicated in Fig. 50, vertical without
lateral inversion may be obtained. This prism is largely used in process
photography.

Use is made of the property of total reflection in order to learn whether
a prism is ground to a right angle. If the ray ! m (Fig. 51) enters the

YN
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prism at m it is reflected at O in the direction p, and is then partly reflected
and partly refracted. The reflected ray emerges at p° in the direction p'g,
which, if the prism be truly worked, makes an angle of 90° with [ m pro-
duced, no matter what the direction of ! m may be ; but if there is any error
in the angles of the prism, »’¢ will not meet ! m at right angles.

Displacement due to Refraction.—In Fig. 52 let ' be a luminous point in
a dense medinm from which, after refraction, rays diverge away from the
normal at the surface of the medium, and enter an observer’s eye. These rays
being projected backwards intersect at €, the virtual image of €, which is
situated nearer to the refracting surface, at a point dependent on the obliquity
of the emergent rays and the index of refraction of the dense medium. This
explains why a stick 4 & C' partly immersed in water, in an oblique direction,
appears bent towards the surface, the hend commencing at the level of the
water.
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The apparent position of an object in a dense medium depends upon the
position of the observing eye with respect to the surface ; the nearer the eve
to the latter, the greater must be the obliquity of the emergent light and the
greater also the apparent raising of the object. If the eye be practically on
the surface of the medium, the object is also apparently raised to the surface,

o
|

Fra. 52,

but is very distorted and indistinct. This will be seen from Fig. 53, which re-
presents the surface of a dense medium and O the object. A ray O . N,
normal to the surface, passes out unrefracted, but other rays from () which
are oblique to the surface, are bent away from the normal and when referred

back by the eye appear to come from points I, I, I on O N, these being
the images of 0 when the eye is at I, (', and IV respectively. Actually, how-
ever, the images are formed nearer than (0 N on a curve, this being known
as a caustic by vefraction, but it is sufficient for our purpose to consider the

images as lying on the normal & N. The exact position of any particular
image depends upon the obliguity of the line of vision, the g of the medium,
and the depth of the object, and can be caleulated as follows,

In Fig. 54, let O be the object and 0 B any ray making an angle with
the normal V N'. After refraction it will take the course B B, so that toan
eye at B’ the object is apparently raised to 7. It is required to find the
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apparent depth of the image, i.e. the distance 4 [ in terms of the real depth
A 0, pand r, the angle of view with the normal.

Now the angle AOB=0BN'=iand Al B=NBB =~

Also A O=A B/tan ¢, and A=A B/tan
Therefore AI/A O=taniftan r
and A= AQn i:AO c08 7

tan r jr COS ¢

Let the real depth A O be { and the apparent depth #. Then

L cos r
OS2

[ =

Thus, knowing p and r we can calculate the value of i, and after that
from the known depth { for any angle of view.

Vertical Displacement.—If, however, the eye be on, or near to, the
normal () 4, the above expression can be greatly simplified, because then the
angles r and i are very small, only a very narrow pencil being able to enter
the pupil of the eye. In these circumstances both cos r and cos ¢ are practi-
cally unity, since the cosine of 0° is 1. Therefore without any appreciable
error we may say that
t

I

¢ =

that is, the apparent depth of a medivm viewed vertically from above is equal to the
real depth divided by the p of the medivm. If the medium be water whose index
is 4/3, then the apparent depth is 3/4 that of the real depth ; with glass
p=105,t'=2/3 ¢

On the other hand, if the eye were supposed to be in the dense medium
and viewing an object in air, the apparent position of O would be greater
than the real distance such that ' = #p.

An object in a dense medium is apparently raised a distance o of

d=t—tjp=i E=1)
'i.l.
(p—1)/p is about 1/4 in the case of water, and 1/3 for glass,

The foregoing explains why a fish appears nearer the surface than it
really is, and also why, when the eye is near the surface, it appears dis-
torted, being thinner if length-ways (parallel) to the surface, and stunted
if viewed with its head towards the surface. Light from its under
portions suffers relatively more deviation than that from the upper, thus
giving the idea of vertical compression. Supposing the course of a bullet to
be unaltered by the water, one would have to aim, with a rifle, well beneath
a fish in order to hit it. To reach a coin at the bottom of a bath one would
have to dive towards a point apparently nearer. Again if a coin were hidden
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from view by the rim of a basin, it may come into view if water be poured
into the basin,

Refraction through a Parallel Plate.—If aray 4 B (Fig. 55) be incident
on a medinm with parallel surfaces such as a plate of glass in air, it will be
refracted towards the normal at the first surface in the direction B C, and
will emerge at the second as C' D parallel to its original course 4 B. This is
due to the refraction at the second surface being exactly reversed to that at
the first, so that the angular deviation is zero.

Lateral Displacement.—The ray, however, as a whole is laterally dis-
placed over the distance /7D, the extent depending upon the angle of
ineidence ¢, the p of the medium, and its thickness £. Let d be the displace-
ment and 7 the angle of refraction in the plate.

Now HD=EC, the angle E B F=1, (' BF=r, and E B (C=1i-r, while
F B =t the thickness.

Then EC=BCsin EBC=BC sin (i —7)
but BC=BF/cos CBF={/cos r
Thl]l“ﬁfﬂl‘& E U o fE=f,. Ein {'i — .I"}
Ccos 1

The value of » must be first found from i and g, and then the displace-
ment « calculated.

If the angle of incidence be small, and the displacement taken as if
it were on the flat surface, we can get an approximate value for d as
follows :

d=1{(tan ¢-tan r), and substituting tan i/u for tan r we have d=¢
(tan i — tan #/p)

Whence ! tan i (n—-1)
1

Lateral displacement causes slight distortion of a near object when
viewed through a plate, but if the thickness is small, the effect is unappreci-
able. If the object be at such a distance that the incident light may be
considered parallel, there can be no distortion whatever,

Multiple Parallel Media.—If any number of parallel plates of different
indices be superposed their combined action is similar to that of a single
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plate of uniform index. That is, light incident on the first surface emerges
parallel from the last provided always that the first and the last media have the sume
inder and that the various component layers have themselves parallel surfaces. The
refraction that occurs on the passage of light through various parallel media
would be such that sin 7 x p of 1st medium =sin » x p of last medium, and if
the 1st and last media are of equal optical density sin é=sin 7. When the
first and last media have not the same index the deviation suffered by the
light, on emergence, is the same as if the light entered from the first directly
into the last medium.

Lateral and Vertical Displacements.—In Fig. 56 the point L viewed
obliquely by an eye at A A4 through a transparent medium N, whose two
refracting surfaces are plane and parallel, is seen as L’ laterally displaced and
nearer. If L is viewed from P situated vertically above, it appears to be
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nearer, at I, but not laterally displaced. It is easily proved that the
distance L [ is given by
d(p—1)

JL

as for an object situated in a dense medium as previously described. Thus
for glass of index 15, any objeet viewed through a parallel plate would
always appear nearer by about 1/3 the thickness of the plate.

Eye in Dense Media.— There is, of course, no eritical angle for light
passing from a rare into a dense medinm, so that to an eye under, say, water,
a field of 180° including all external objects down to the surface, is visible.
Owing, however, to refraction, the light from external objects is crowded
into a cone whose angle is twice the critical angle of—in this case—water.
This can be seen from Fig. 57, where F is an eye looking upwards from the
dense medium,

Rays 4 B and DC from objects level with the surface are practically
parallel to the latter and therefore are refracted into the water at the critical
angle £ BN’ and E ¢ N’ and are referred back in the direction & and F.
The cone F E @ contains a distorted view of all external objects, and its
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angle (' E B is equal to the sum of the angles £ B N' and E C' N’, that is, to
twice the critical angle of water—about 96°.  Also, as previously mentioned,
objects directly above appear more distant by an amount equal to about 1/3
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their real distance, but those closer to the surface are displaced to a rather
areater extent. The distortion and indistinctness are greatest for objects
near the surface, and disappear for those directly above,



CHAPTER V
REFRACTION BY PRISMS

Ir the two surfaces of a refracting medium are not parallel to each other,
all incident light must suffer refraction, since no ray can be perpendicular to
both surfaces.

Prism.—An optical prism iz a transparent body, usually made of glass,
but it may for speecial reasons consist of quartz, rocksalt, luorspar, ete. It
has two plane refracting surfaces A4 B, 4 € (Fig. 58), which meet in a line
at A, termed the apex or edge of the prism. The third side B €, opposite
this edge and joining the two refracting surfaces, is called the base. The
latter may slope in any direction, as it does not affeet the course of the

light,
[f a ray be incident in a direction perpendicular to the first surface, it
A
B c
Fic. 58,

passes through the prism without deviation until it reaches the second
surface, when it is refracted away from the normal. If a ray be incident
otherwise than normally on the first surface, as it passes from the rarer
into the denser medium, it is refracted towards the normal to the first
surface, and on emergence is again refracted at the second surface as it passes
from the denser into the rarer medium.

Provided that the angle of incidence be the same, the rays are refracted
to the same extent, no matter on what part of the first surface of a prism
they are incident. If the rays (Fig. 58), incident on the prism, are parallel
before refraction, they are similarly situated in relation to each other after
refraction, and emerge from the prism parallel. If they are divergent before

62
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refraction (Fig. 59) they emerge from the prism divergent; if they are
convergent, they are convergent on passing out. Nevertheless, as will be
seen later, the degree of divergence or convergence is not quite the same
after refraction as before.

The Principal Angle.—In Fig. 58 the angle formed at A, by the two
refracting surfaces, is called the principal angle, sometimes known as the

Fie. 59,

refracting angle, or angle of inclination. While the principal angle merely
indicates the shape of the prism, vet the refracting power of the latter is
governed chiefly by it.

The Degree.—A prism is usually indicated by the number of degrees
included between its two inclined sides, A prism of, say, 10%is one in which
the two sides enclose an angle of that amount.

The Angle of Deviation.-—Let the incident ray D E (Fig. 60) be directed
towards a point H in the centre of the prism. Being refracted at £ it takes

the direction E F' and passes out in the direction F' & as if proceeding from
J. The angle of deviation of the prism is, in this case, / /{7, becanse D E,
instead of following the path I I, appears after refraction to follow the path
JF @G An object at D, when viewed through the prism from @, appears
as if it were situated at J. The deviating angle constitutes the important
optical property of a prism and expresses its power or refracting effect.
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Defining Terms.—In the prism (Fig. 61) the line of junction 4 B of the
two refracting surfaces is termed the edge. FC D E is the base, A BD U
and A4 b E F are the two refracting surfoces.  The plane 4 B K I containing
the edge of the prism and situated symmetrically with respect to the two
surfaces is the base apex plane ; generally it bisects the base. Any line, as
L M, at right angles to the edge of the prism and lying in the base-apex
plane, is a fase apex line. The line G f, parallel to the edge and lying in the
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base-apex plane, midway between the edge and base, is the axis of the prism.
A prineipal section of a prism is any section, as A4 F'C, cutting it from edge
to base perpendicularly to the axis.

Shape of Prism.— A prism, as regards the outer margins of its refracting
surfaces, may be of any shape—square, circular, or oval ; neither the shape
nor size of its refracting surfaces influences the course of the light passing
through it.

In a circular or oval prism the thinnest part L (Fig. 62) is considered to

be the apea. M N is the base opposite to the apex. The cenfral line L M
of the plane (4 B K I of Fig. 60) connecting the thinnest and thickest
parts of a round or oval prism is called its base aper line: It is usually
marked on the circular prisms of the trial case by two small scratches, one
at the apex and the other at the base. 0 P, tangent to L and perpendicular
to L M, is the imaginary edge. P M N shows a section of such a prism
along the base-apex line.
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Deviation by a Prism.—The apparent deviation of an object caused by
a prism is the combined result of the refraction suffered by the rays at the
two surfaces, and although commonly said to be towards the apex it is
actually towards the edge of a square prism, or the imaginary edge of a
circular prism, in a direction parallel to the base-apex plane. A ray incident
at X (Fig. 62), from an object beyond the prism, is refracted towards 1™ and
is referred back towards Z, the line of deviation Z X' }” being parallel to the
base apex-line LM. The effect of a prism is to bend the light fowards the
buse and an object seen through the prism appears deviated towards the edye.

Deviating Power of Prism.—The deviation of a ray passing through a
prism depends on (1) the angle of the prism, (2) the index of refraction of
the medium, and (3) the angls of incidence of the ray. The larger the
angle formed by the two refracting surfaces the greater is the angle formed
by the incident ray and the normal, and, therefore, the greater is the deviat-
ing effect of the prism. The deviating effect also depends on the index of
refraction of the medium of which the prism is made, since the higher the
index the more is a ray, incident at a given angle, refracted.

As will be seen in the next paragraph the deviation of a ray passing
through a prism is & minimum when the incident ray makes a certain angle
with the first surface, and since, unless otherwise stated, minimum devia-
tion is implied, (3) above is usually ignored when the power of a prism 1s
considered.

Minimum Deviation.—For every prism there is one position in which
an incident ray will be less deflected than in any other. From this position,
if the prism be rotated round its axis so that either the edge or base is
advanced towards the source of light, an object viewed through the prism
appears still more deviated towards the edge of the prism.

Minimum deviation obfains when the incident and emergent ruys arve equi-
distant from the edge, and, as shown in Fig. 63, the angles of incidence and
einergence (i and ¢) are also equal.  In this position the course of the ray, as it
traverses the prism, forms, with its sides, the base of an isosceles triangle,
and a perpendicular let fall on it from the prism apex will bisect it.

For any other incidence of the ray, as ¢ increases, ¢ decreases less rapidly ;
while if ¢ decreases, ¢ increases more rapidly, so that, in any case, the total
deviation is greater.

To Calculate p of a Prism.—In the prism B A C (Fig. 63) P is the
principal angle and d is the deviating angle. Let ¢ be the angle of incidence,
r the angle of refraction at the first service, u the angle of incidence at the
second surface, ¢ the angle of emergence which the refracted ray makes with
the normal F N, and p the index of the prism.

Draw A4 M to bisect the principal angle P. Produce the incident ray
D E to K, and produce the emergent ray & F backward to meet D K in () ;

K
H
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then the total deviation of the incident ray is equal to d. Produce the
normals L E and N F to meet at L.
As the prism is in the position of minimum deviation
t=¢ and t=p+7, and e=q+u.

In the triangle ¢) £ F the external angle 4 equals the two equal internal
and opposite angles p and g.

In the right-angled triangle 4 E M the angle at 4=90°-4 M E. In
the right-angled triangle 0 E MM, the angle +=90°- A4 M E. Therefore
OQFE M=E A M. Thatisr=P/2.

Now the angle p=g¢=d/2
Then i=r+p=P2+d/2=(P+d)/2
Therefore A (P +r])

_8Bin 3 \ &

T e (P)
sin (

This formula enables us to find the index of refraction of a prism when P
the principal angle and d the angle of minimum deviation are known, P and
being measured by the spectrometer (q.v.).

Fiz, 63.

Example.— What is the index of a prism whose angle of minimum devia-
tion is 28° and principal angle 45°7 We have
. (P+d L rARR 2Rt
: ST b i
i ( ) ) ( 2 }_s:in 36° 80’ 6948 ...,
: (P) o (45° ~sin 22° 30" '3827
sin sin )

sl

B B!

— a=d

To Calculate the Angle of Deviation.—If p and P are known d can be
found thus:— Pad

gin | —
= ( 2 ) p sin P/2=8in (P+d)/2

sin (1:)
Let : (P +d)/2 be called a.

Then 2a=P+d and 2a —P=d.

Since
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To find the value of 4 we require two steps, thus
(1) Find & from sin a=p sin P/2; (2) then d=2a - P,
Expressed as a formula this becomes
d=2 [sin"! (p sin P/2)]-P
that is, d equals twice that angle whose sine is g sin P/2 less P.

Example.—What is the angle of deviation of a prism whose principal
angle is 60° and index 1-62 7

Here p 8in P/2 =162 sin 30°=1'62 x *5="81
and ‘81 =sin 54° (nearly)
Therefore d=(2x5H4)-60=48°

To Calculate the Principal Angle.—The angle P at which a prism of
known index must be ground, so that a certain angle of deviation be obtained

is found as follows :—
i P+d NS ] o
s1n ( 2_) sin (3 +2)
m= =

. P /P
sl ( ) Sl ( )
2 2

_sin P/2 cos d/2 +cos P/2 sin /2 sin d/2

=cos d/2 +

sin P/2 tan P/2
that is sin /2
=cos d/2 +
4 i tan P2
whence tan P/2 = sin /2
" p-cos d/2

Example.—What angle must be given to a prism of 36” minimum devia-
tion when p=1'586"1
E sin 18° 3090 +3090

tan —-=

= = = = 4882
2 1586 —cos 158° 1-5H86--9511 -6349

whence P/2 =26 (nearly), and P =52°

Simplified Formule.—When the angle of incidence or emergence is zero,
i.e. when the incident ray is normal to the first surface, or the emergent ray
is normal to the second, the formule for finding p, d or P when the other two
values are known, become simplified to

_sin (¢+P)
zin P

d=[sin"1 (n sin P)]-P
and

sin
tan P=
= cos



68 GENERAL AND PRACTICAL OPTICS

Further Simplified Formulz.—By substituting angles for their sines,
which can be done without serious error when the angle of the prism is
small, as in ophthalmic prisms, the formule may be greatly simplified. The
original formula ean be written

d+P d
= J_:l = 1] B ]_
whence d=P (p-1)
and d
P=
p=-1

If the refractive index=1'5 then p - 1=1/2 and

:
gt

]

Thus for a prism of 5° the angle of deviation would be taken to be 2° 30"
It is thus usual to consider that the deviation of ophthalmic prisms is half
the prineipal angle, although the glass used has an index slightly greater
than 1:5. In addition, when a prism is thin, any moderate departure from
the position of wminimum deviation does not result in any appreciable increase
of deviation, so that this factor may also be ignored,

Examples.—If the refracting angle of a prism is 10° and the deviating
angle 5:25, then
JF.J.::.-:.:I*EE.
1

+1=1-525,
A prism of 10° principal angle, whose index is 154, has an angle of

deviation of
d=10% 54 =54°=5° 24",

If a prism of 6-25° deviation is required, the index of refraction being 1:56,
the prism angle is

p=t=t

=2 _11'166 or 11° 10"
26
The Angle of Incidence.——In Fig. 63, we have seen that, when deviation
is a minimum, the angle of refraction r at the first surface is equal to half the
principal angle P, so that
i}
SIN &= g SIN "= @ SiN =
When the incidence is normal at the first surface, the principal angle of the
prism is equal to the angle of incidence at the second surface; when the
emergent light is normal at the second surface, the principal angle is equal to
the angle of refraction at the first surface. Hence for normal emergence sin
i=p sin P/2.
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For thin prisms, i.e. those having P of not more than about 10° or so, we
may omit the sines and then
;P E
9

il

so that if p be taken as 15, which is about that found in ophthalmic prisms,
i=3P/4.

Neutralising Prisms.—Two prisms of similar angle « will, when placed in
opposition, i.e. base to apex, neutralise each other. If they are also of
similar P and p they act as a plate, having parallel surfaces, on light passing
obliquely through them. If the u's are unequal, so also must be the angles
P, that is, P, (u; — 1) =P, (g — 1).

Therefore to caleulate the thin prism P,, made of glass of a certain index
of refraction, which will neutralise the deviation of another I’,, whose index
is different, we have only to put

111 P ]-jg f,l'at._. = I_}
(1 = 1)

Then the prisms, being placed base over apex, act as a single plate

=]
A\
P

e o

ﬁ-r—**‘?'J
E_.,m-*""f /

Fig. 64,

(although the surfaces are not parallel) since their respective deviations are
equal and opposite.

Thus if a crown glass prism of 15° whose p=154, has to be neutralised
by a flint prism whose index = 1-62, then from the above formula

p _15x54

o =13°,
G L)

Of course, should the prisms be thick, P, and P, are not then directly
proportional to d or to (- 1), so that here the value of the deviation of P
must first be calculated from the exact formula, and from this the correspond-
ing value of P, for an index of p, may be obtained.

Displacement by a Prism.—In Iig. 64 the object 4 is seen, through the
prism, at 4’ ; if the object is at B or at C| it is seen at B’ or C” respectively,
The angular displacement of the object by a given prism depends entirely on
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the magnitude of d, and no matter how near or how distant the object (as
may be seen from the figure) the angle d is invariable ; but the actual dis-
placement 4 A', I B',C € is proportional to the distance of the object, and is
represented by the tangent of the angle of deviation at the distance.

Construction.—To trace the course of a ray D E refracted by the prism
A B C of p 1-5 it is only necessary to use a double construction like that of
Fig. 46. Draw D F (Fig. 65) normal to 4 € and divide E F into three equal
parts; from E on £ 4 mark off E ¢ equal to two such parts. Draw G I
normal to £ 4 and eonnect E with 7 I by a line E I (cutting 4 B at the

point J)such that £ H=E . Then E J will be the direction of the refracted
ray in the prism. Draw E K normal to 4 B; divide J K into two equal
parts ; on J B, from J, mark off J L equal to three such parts; draw M L
normal to 4 B; connect J with M L by a line J M, such that J M =J E,
Then J M is the direction of the ray of emergence. The angle of deviation
D N 0 is found by prolonging M J backwards and 0} E forwards so that they
meet at V.

Should the p of the prism have any other value than 15 then E FandJ L
must be to E @ and J K respectively as p:1. Thus if p=1'6 the propor-
tional parts would be 16 and 10, or & and 5.



CHAPTER VI
REFRACTION BY CURVED SURFACES

Curved Surface.—A refracting surface is one which separates two media of
different densities, so that, when light passes from the one to the other.
refraction takes place. Only one refraction occurs and in this respect a
surface differs essentially from a lens, where there are at least two surfaces
and two refractions of the light which traverses it.

Since every line drawn from the centre to the circumference of a sphere

Ef —=— : <.\

A B\ c F

Fi:. BS.

is a radius of curvature, every point on the cireumference may be regarded
as a minute plane at right angles to a radius. Thus €' E (Fig. 66) isa normal
to the surface at E, and also when prolonged bheyond the circumference,

Course of Light.—ILet Fig. 66 represent a transparent body having a
curved surface with its centre at C. Any ray of light 4 B or P E directed
towards (', is normal at the point of incidence, and passes into the medium

L,

Fic. 67.

without deviation. A ray D E, which is not normal to the surface, is bent
towards the perpendicular P E C in the direction E F, if the medium is of
a higher index of refraction, or it is bent away from the perpendicular in the
direction E 7, if of a lower index than that of the medium from which the
light proceeds. Both media are supposed to be of indefinite extent.

Cx. and Cec. Surfaces.—In Fig. 67 let a mass of glass have a convex sur-
face, and the outer medium be air. The ray f, A4 directed towards A is

il
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normal to the refracting surface and passes onward without deviation. The
rays fy B and f, D form certain angles with the normals to the surface, and
each, on passing into the denser medium, is bent towards the perpendicular
to an amount governed by the ratio hetween the sines of the angles of inci-
dence and refraction. Thus f; D is bent more than f, B, and the two meet
the line f; f, at the point f,. Similarly, all rays diverging from f; are
refracted to f, ; f, is, therefore, called the focus or the image of the source of
light f,, and the points f, and f, are conjugate foci. If the object were at f,,
the image would be at f,.

The focus thus formed by a conver surface of a medinm of higher index

Fra. 68,

of refraction is posifive or real. If the medinm is of lower index, light enter-
ing it is rendered divergent, and the focus is megative cr wvirtual. If the
surface is concave, as in Fig. 68, the reverse is the case, and f, is virtual and
on the same side of the surface as f;. The boundary plane between the two
media may be regarded either as the convex surface of the one or the concave
surface of the other, but it is more convenient to express it as convex or con-
cave to the medium of lower index, which usually is air. Thus for a dense
medinm having a convex surface in contact with air we could calculate the
position of f, from the refractivity and curvature of the dense medium, or
from those of the rare medium, and the result is the same in the two cases,

Fiz. 69.

for if the curvature of the latter is taken as negative while that of the former
is positive the refractivity of the latter is also negative.

Defining Terms.—The line f, A f, (Fig. 67), which is perpendicular to the
refracting surface and passes through the centre of curvature (' and the
principal foci, is the principal axis; all other lines passing through €' are
secondary aves. A C=r is the radius of curvature, and (' is the cenfre of curva-
ture. f; and f, are the positions occupied by object and image. X, is the
anterior principal focus formed by the light proceeding from a distant source
on the principal axis in the denser medium, and F, is the posterior principal
foeus formed by light proceeding from a distant source in the rarer medium.
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Formul® connecting /] and /,.—In Fig. 69, let O be any object on the axis
of a single surface, and I its image formed by direct refraction of the ray 0 D
incident at . From € draw the radius € ) and let the angle A4 O D=a,
ACD=bhand 4 I D=¢. Suppose the indices of refraction of the first and
second medium be p, and p,.

Then fq 8iN = p, sin
Bus i=a+band r=b-¢
Therefore st (a4 B) = p, sin (b — ¢).

If the incident pencil be considered small and axial, the angles @, b and ¢
| 5
are also small, so that we can write
py (80 a2+ sin b) = py(sin b— sin ¢),
Let 0 d=f,, 4 I=f, and 4 C'=r the radius of curvature.
Then replacing sines by circular measure
W ;
hl( I. + 1) = ;:.qL-] - l) or '“.1 TR P e B
Ji T A Ta Fi- T T Ja
i bl
Therefore My Pa_ P
ho Je E
The Focal Lengths and Power of a Curved Surface.—The refractive
power of a curved surface depends on its curvature and the refractive

'F
| =
it 5,
T e L4
1—.': — e — o & }
4
N, \
r, ]
e S .
} y =
P

Fics. 70 axp 71

index of the medium, so that an increase in either is accompanied by
increase of power. The focal length depends on the refractive power, the
one being inversely proportional to the other, i.e. the greater the power, the
shorter is the focal length.

In Figs. 70 and 71 P is the principal or refracting plane of the surface at
which all refraction is presumed to take place. (€ is the optical centre (or
nodal point) hecause all rays passing through it are unrefracted. In Fig, 70
the light is parallel to the principal axis in the dense medium, and on emer-
gence into the rare medium is refracted so as to meet at the point F, situated
on the principal axis. £ F| is the anterior focol distunce, and F, the anierior
principal focus.
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In Fig. 71 the light is parallel to the prineipal axis in the rare medium,
and after refraction meets at I, in the denser medium. P F, is the posterior
principal focal distance and F, the posterior principal focus. In the formula
given in the preceding article, if f, is at oo so that the light in the denser
medium may be regarded as parallel, the term p,/f, becomes p,/ oc=/0.
Thus

o Y Y |
S1 $

But f; has now become the anterior principal focal length, and may be
written /. Therefore

If f, is at <o s0 t]mt the light in the rarer mmlmm (air) is parallel, the
term p,(f, becomes p,/ oo = (. Therefore

Fo B2 ™M
Ja £
Here f, has become the posterior principal focal length F,. Therefore
1'12: IMQJ
Mo -’-“

The planes passing through ¥, and F, perpendicular to the principal axis
are respectively the anterior and posterior focal planes.

If the one medium is air, p=1, so that it can be omitted from the
formulw ; the index of the dense medium we can then call g, and therefore the
formulae become simplified to

Poa B d R LS
1 e 1 ikl prpm 1
These formula: hold good only when the focus lies within the medium to
which the radius r pertains,
Examples.—If g of the dense medium is 1°5 and the other medium is air,
for a radius of curvature of 8 in. we have

F,= 1;?_ ;=16 in. from P, or 16 +8=24 in. from C.
F,— 29XS _ 54 from P, or 24 - 8=16 in. from C.
3 (15-1)

Thus, ordinary glass having an index of about 1-5, the anterior and pos-
terior focal distances of a curved surface are approximately twice and three
times the radius respectively.
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If the surface is concave towards the light the radius is negative and
would be prefixed in the formule by a -sign, so that F, and F, become
negative quantities, and are situated on the same side of the surface as the
source of light, i.e., F, is in air and F| is in the dense medium.

Thus let r= — 8" and p= 15, then

Fi=—_"=-161in, from P, or — 16+ - 8)=24 in. from C.

)

hl .'-u _H . -
]:.q:] 4 }:f ]'z — 24 in. from P, or - 21 - (-8)=16 in. from C.

2 5

Suppose parallel light passes from water p=1'33 into glass p=1-5 and let
the radius be eight inches : then

19x38 13

S _fon g 706 in. from P, or 70-6 — 8 =626 inches from C.

)
]"2

If the light passes from glass into water,
_ 1:33x8 _10:64
17 16-133 17
In these formul:e the relative p, which equals p,/p,, can be found and the
calculation then made as if the lower p were 1.

F =626 in. from P, or 62-6 4+ 8 =706 inches from C.

Relationship of F, and F,.—The anterior and posterior focal distances
measured from the refracting surface are proportional to the indices of
refraction of the two media.

Thus in the examples given we find respectively

F:E _ M _ 24 15 anid I*:.l T‘f:l't'} _ 15
P 0 16 1 F,” 626 133

_—
—

In a refracting body with a single curved surface r=F, = I ; this holds
good whatever the refractive indices may be. Thus Fi=F,—rand F,=F, +r.
That F, is shorter than F, follows from the law of sines. If the two
media are rvespectively of p,=1 and p,=1'5, when light passes into the
denser medium sin # is 2/3 sin 4, whereas when light passes into the rarer
medium sin 7 is 3 2 sin i ; hence for parallel light the angular deviation is
greater when the focus is formed in the air than when it is formed in the
dense medium, it being in the first case about 1/3 ¢, and in the second case
1/2 of i, the incidence being the same in both cases.

In addition to what is stated in the first paragraph of this chapter, a sur-
face differs from a lens in that, with the former, the first and last media being
different, ¥, differs from F,, whereas with a lens F, =F,. Also as shown in
Fig. 66, the optical centre or nodal point ' does not coincide with the prin-
cipal point which marks the refracting plane at B, the apex of the surface.

To find r or p.—The radius or the refractive index can be found by sub-
stituting known values for the symbols given in the above formule, and then
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equating. Thus if I, be 30 in. and the indices of refraction be respectively
1'5 and 1, we have
30= |-;;}__.r! that is + = ]_': =10 in.
lr r:}

If py=15, r=8, and F, =706, we find p, as follows :—

S L s
10:6= ": " and 1059 = 706 p, =12
'.'—‘I'LI

or 706 p,=93'9. Therefore u, =133,

All the formul® apply when the denser medium has a concave surface,
but care must be taken that the —sign be given to F and to r in all calenla-
tions.

Secondary Axes.—The principal axis of a refracting body passes through
C the centre of curvature and the principal foci (Fig. 72). All other lines
as B C, D are secondary axes; they are radii of curvature of the sur-
face and therefore normals thereto. An object point situnated on the princi-
pal axis has its image on the principal aris. An Q'hjg;:b point, situated on a

7

-
J

i

sceondary axts has its images on fhat same aris and the focus is a secondaiy focus.
An object can have only one point on it situated on the principal axis ; every
other point on its surface is situated on a different secondary axis, and simi-
larly of course with the image of the object.

s
iy

Fie. 72,

Position of an Image Point —The image of a luminous point being on a
line drawn from that point through €, its position on that line can be deter-
mined by calenlation or construction. It is on the opposite side of the re-
fracting surface if the rays converge after refraction ; and on the same side if,
after refraction, they diverge from the axis on which the point is situated.
The greater the convergence or divergence the sooner do the rays meet or
appear to meet and form the image of the object point from which they
originally diverged.

Construction of Image—Cx. Surface.—In Fig. 73 4 I is an object situated
in front of the refracting surface 0 P /{. Rays diverging from 4 and £ have
their images respectively at A4’ and B’, so that B’ 4’ is the image of the
object 4 B and can be constructed in the following way.

There are three rays emanating from any point of the object, say the
point A, the course of which can be easily traced, viz.,
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(1) A ray 4 C directed towards the centre of curvature €. This being
normal to the refracting surface passes into the second medium without
deviation. '

(2) A ray 4 D parallel to the principal axis. This, after refraction passes
through the posterior principal focus F,.

(3) A ray 4 G passing through the anterior principal F,. This, after
refraction, is parallel to the prineipal axis in the second medium.

The point where these rays meet at 4" is common to all the other rays
diverging from 4 and constitutes the image of that point. Similar rays from
B form an image at B".  Any two of the rays mentioned suffice for the con-

struction of the image points 4" and B, and the latter define the position
and size of the entire image of the object A4 B.

The image here is rea! and inverted ; it is smaller or larger than the
object according as the image is nearer to, ov further from, the centre of curva-
ture of the refracting surface than the object itself.

If the object is nearer to the surface than Fy, as .4 B in Fig. T4, the light
after refraction is still divergent, although less so than before refraction, and
as the rays eannot meet no real image is formed. The rays can, however, he
Teferred back so as to meet in front of the refracting surface as A" B,

This iz shown by the construction employed. From A draw A ('; since

:n;":---"_-.—— =

=T]

Fiac. 74.

this passes through € it undergoes no refraction ; draw A ' parallel to the
axis ; this is refracted so as to pass through F,. Since the lines 4 ' K and
G F,, after refraction, diverge, they can meet only by being prolonged hack
to 4" Similarly, B and B If may be drawn, and produced backwards to
meet at B, Thus A'B’ is the virtnal image of A B, is further away than
the object, and is virfual or negative, erect and magnified.

When the object is situated in the anterior focal plane the rays, diverging
from any point on it are, after refraction, parallel to each other and to a
secondary axis in the denser medium so that the image, in theory, is formed
at cc. Similarly if the object lies in the posterior focal plane the light is
parallel in the rarer medinm after refraction.
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Course of Any Ray—Czx. Surface.—Irom the foregoing we are able to con-
struct the course of any ray refracted by a Cx. surface. If an object point
were at /) in the anterior focal plane (Fig. 75) the light diverging from
it is, after refraction, parallel to the secondary axis D €. Therefore any
ray S D () incident on the refracting surface, passes through the first focal
plane at D and through the principal plane at (), and its course, after refrac-
tion at (), will be parallel to L) € drawn from D through C; it therefore
takes the direction € f,. This construction is useful if it be required to
locate the image of a Iuminous point situated on the principal axis; if S 1s
thus situated, f, is its image.

The distance ¢, between the ray and the principal axis in the refracting

G
-E::'__ —_ -If.‘_
e e = ey e a,
s ﬁ el
H
Fig. 75.

plane, is equal to the sum of & and ¢, the distances between the ray and the
axis in, respectively, the first and second focal planes. This fact gives an
alternative construction, because the point f, can be located by measuring
off on the second focal plane ¢=a -0, and then connecting ¢/ through that
point to f,.

Construction of Image — Cc. Surface.— . B is the object (Fig. 76),
Draw .4 (7; this, after refraction, is diverged as if proceeding from F,. Draw

Hr'ﬁ-i___ T
¥ _y_._'_
h‘“'-—_

_:-'—"'_'-'_'_‘-'- 2{\--\-

L
o it

Tk,

Fic. 76.

A €' through the centre of curvature; this is unchanged in direction by
refraction. Now A C and A G are more divergent in the denser medium
than they originally were in the rarer medium, and when projected back-
wards meet at A, which is the virtual image of 4. Similar rays from B
locate its image at B, Consequently 4’ B’ is the image of the object 4 B,
and is virfual or negative, evect and diminished.

Course of any Ray—Cec. Surface.—'lo trace the course of any ray as

@ (Fig. 77) incident on a Ce. surface, we know that if rays diverge from
the focal plane they have their image in a plane D E midway between F, and
the surface. Now S@ cuts the focal plane in /7, and if from H we draw the
secondary axis [l ' we determine the point K, where it cuts D E. The
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ray is refracted as if it came in the direction f, K @, so that if S is on the
principal axis, f, is its image.

If the object point S (Fig. 78) is within Fa, draw Hb connecting &
with the focal plane and the surface. Draw I C' cutting D E in K ; connect

:"r_'_‘_._'_._‘_'_._-_.—-'._-.- --‘-’-

T T 73

Fig. 77.

K with the surface to meet there S f1, crossing the axis in f,, which is the
image of S if the latter is on the prinecipal axis.

Construction for the Course of a Ray.—When F, and F, are not known
the construction as is illustrated in Fig. 79 can be employed. Let A4 B be
the incident ray on a surface of the medium whose centre is C' and p=1-6.

Fie., T8.

Draw D B C normally at the point of incidence, and draw a tangent to the
surface at B, and at right angles to ) B ('; then H K is the refracting plane.
From any point & drop / #{ normally to E F. Measure H B and mark off
B K equal to 10/16 of # B. Drop the normal K L and mark off the line 8 1/
whose length equals that of BG. Then 5 M N is the course of the refracted ray.

Fie., 79,

This method serves also for spheres and lenses by making a second construe-
tion for the second surface.
Formula for Conjugate Foci.—The formula, previously given, for caleu-
lating conjugate foei of a single surface is
* + o TR ) o oF e ata™M 5
hi o r g &1 5
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where f; and f, are the two conjugates, and p, is the refractive index of the
denser medium. p, always pertains io the medinn in which the object is situated,
the other being that of the medium towards which the light proceeds, but
which may or may not be that in which the image is actually situated, since
this may be either real or virtual. The radius ¢ is positive or + when the
surface 1s convex towards the object, and negative or — when concave
towards it.

Size of Image.— Whalever may be the distance of the objeet, ifs size and that of
s image are fo each other as their vespective distances from the centre of curvature,
where the axial rays cross each other. This is shown in Fig. 80, and whether the
image be real or virtual it ean be seen that the object and image always sub-
tend the same angle at C.

Let the distance of the image from the surface be f, and that of the ohject
fi» and let » be the distance from the surface to the centre of curvature.
Let the size of the image be /4, and that of the object &, and their distances

Fiz. 80.

from (' respectively I(' and O ('; then the magnification, in the case of a
real image, is
‘#'I— lrfg_ I {_1 _-fz =T
M=_== =
hy OC fi+r

Should the distance of f, or f; not be known, Jf can be found from F,/(f, - F,)
or (f, — F,)/F; respectively.

The linear size of I or O is found, when the size of the other is known,
from
h, ="l —1) and = gl +7)

Ji+r fa—1

i

If iy and f; are in the same terms, i.e., inches, em., ete., then ki, is expressed
in the same termsas f..

A more useful expression, however, can be found for the magnification as
follows. From the original formula

[ Gl e O el () O ) or Pty e s
fi _,‘F, i g J'l I S
that is,
palfi+7 o o(fs —17) e JfE”l:_;‘g =i
Jur Jor Sipe fiT
so that we can write
f-z s

h f j .
Z-‘ e R H . e 5
= L in place of oy

-
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Thus - %1_.__:’_‘:3-”1

- ,Jrlf-"'z

which is a much more convenient formula for caleulating the size of the
mage.

Unit Magnification.—When the object and its real image are sitnated at
equal distances from €, and on opposite sides of the refracting surface, they
are equal in size and sitnated in the planes of unit magnification. In this
case () is at twice the anterior focal distance and I is at twice the posterior
focal distance from the surface, or O is at 2F, 4+ and [ is at 2F, — ¢ from C.
That is, M=1 when f,+r=f,—r, or when p, fo=p,f,. The two conjugates
are consequently at 2F, and 2F, respectively from the surface. If the image
is virtual, with a concave or convex surface, unit magnification can only occur
when O and I are both at the refracting surface and, of course, therefore
equi-distant from C. Since the axial rays cross at (, the image formed at
I, of a surface is of a size equal to that formed by a lens whose F=F|, and
that formed at F| is the same as that formed by a lens whose F= F,.

Examples.—Let =10 mm., p,=1'5, p;=1, and f;, be in the air at
100 mm. from the surface ; then

16_18-1_ 1 ¢ 150

I = 700™ 100 that 1s, f, = i =375 mm.

The image is real and inverted and its size relative to the object is

A - hﬁ: 37D -=_3|r_3
"I"l 100x 15 150

If %, be, say, 10 mm. then

hy 10 % 375

gy
o =25 mm.
150

Let #=8 mm., p,=1'333, p,=1, and the object be at 3'6 mm. behind
the surface and 2 mm. in size ; then

1 1-1-333 1-333_ -1
Ja =8 36 305

Here wp, is the denser medium containing the object, towards which the
surface is concave. The image is virtual at 3-05 mm. behind the surface, and
1ts size 18

g o 2 x 305 x 1'33 _ Gy R
- 36
That is to say, the pupil of the eye, if 2 mm. in diameter, and 3-6 mm. from

the cornea, appears to be 2:25 mm. in diameter and about 3 mm. behind the
cornea.

6
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Suppose r= — 3", go=1'5, g, =1, f;=20" and &, =2". Then

16 15-=1 1 13 — 90 120
T =S g aan = wan therefore f, = = 612
and o BT g
b/ I3 _
ST o0x15 18

Another Expression for Conjugate Foci.

Sinee ,‘t-"i-l_i_J"'t L e b 1. when Iﬂz o
: J1 % =
we could write
ml, +F‘21'1= ]
S Ja

and if p;=1 and since p, /', =F, we have the most useful formule for con-
jugate foci in

iy fiF fol
L+ =1 O = 1 2‘ &n{] = = B 1‘_
ho e o hi-F ¢ Jo= ¥,

Examples.—Suppose the object be situated 20 inches in front of a convex
surface where /', =6 in.and F,=9in. Then the image is real and

:'l' i
fﬂ_..(}:xﬁ_lbi}

=" - :]_?""]
50-6 14 o

Let an object be situated 5 inches in front of a surface where F, =6 in.
and F,=9 in. Then

&n

fa=

uli ‘-l

%9 4 L5
o g e o — 43 1m.

The image f, is negative or virtual and on the same side of the surface as f].
If f, is situated at F, the divisor of the fraction is 0, so that f, is at oo ;
also if f] is at oc then f, corresponds to £
Let an object be 122 in. in the dense medium having a convex surface
whose F,=9 in., and F, =6 in., then

" IRE =93 *

This example should be compared with the one previously given, where
the object is in front of the refracting surface, 20 inches and 12% inches
being conjugate distances for the given refracting medium,

An objeet 20 inches from a Ce. surface, whose F; and F, are respectively
— 6 and -9 in. has its virtual image

20%x(-9) -
f,=20x(=9)_ -180_

= — 613 in.
20—(-6) 26 2
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Conjugate Focal Distances—Cx. Surfaces.—If the object is at = repre-
sented by 4 (Fig. 81), the light is parallel and, after refraction, meets at
F,. This is the nearest point to the refracting surface at which a real
focus can be obtained.

If the light diverges from an object f, at a finite distance from the
refracting surface, some of the converging power of the medium is required
to neutralise the divergence of the light and there is less residual conver-
gence; the light therefore is convergent to a greater distance behind the
refracting surface than if the light had been previously parallel ; the image
in the denser medium is at some point f, situated between F, and .

A - :__.-—_——-'—-:.T: = ‘ ;
i ¥ 0 \ c R ﬁé

Fig. 81.

As the object approaches from =« the image recedes from F, and vice
versa, until when the object is at F| the image is at =.

If the object is nearer than F) as at O the image is at [ on the same side
of the surface. As ¢ then further approaches the surface so also does [/, and
when O touches the surface 1 does so also.

When 0 is within the dense medium and the light is parallel [ is at F:
as () approaches F, so [ recedes from F,, and when 0 is at F, the image is
at «. When O lies nearer to the surface than #, the image is virtual and
on the same side of the surface as 0,

Thus in Fig. 82 if the object is at 0" the image is further away at I ; if

the object is at ' then the image is at C, and if the object is at (" then the
image is nearer the surface at [”; when O touches the surface I does so
also. If light diverges from a point beyond €' it becomes less divergent by
refraction at the surface, and if from a point nearer than € it becomes more
divergent. It should be particularly noticed, however, that as the object
moves away from the surface in a convex dense medium, the image increases
in size until, when O is at (, [ is there also, but with a magnification equal
to 4« (the dense medium being assumed to be bounded by air). As the object
moves beyond €' towards J/, the image continues to inerease in size, until,
when O is at F,, [ is at = and infinitely magnified.
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Conjugate Focal Distances—Cec. Surfaces.—When the surface of the
dlense medium is concave and the object is at oo the image is at F,. This
is the most distant point from the surface at which an image can be formed.
If the object is within o, the original rays being divergent are rendered
still more divergent after refraction than if they had been orginally parallel ;
hence the image is formed nearer to the surface, that is, as 0 approaches
the surface so also does [,

The virtual image is nearer to the surface than the object so long as 0
is beyond C'; when 0 is at C so also is [, but the latter is diminished by p
times ; when O is within ' then [ is beyond 0, and when O touches the
surface I does so also.

When the object is in a concave dense medium, unit magnification oceurs
when O touches the surface; as O moves away towards F, the image
becomes progressively smaller until when 0 is at o=, I'is at F| and infinitely
diminished.

Virtual Conjugates.—Virtual conjugate foei, formed by Cx. or Ce,
surfaces, are not interchangeable as are real conjugates, but if the light
were directed converging towards f, the image formed would be at f,.

Other Formul= for Conjugate Foci and M.—If 4 and B be respectively
the distance of 0 from F| and of I from F,, then
o . AR R
A B=F, F, and M_(}_A._Fg
Dioptral Formul® for a Single Refracting Surface.—The diopter D is

an expression for the refracting power of a surface and has a value of
D= 100/F, F being in em. We get

D,= 100 (py — ) D, = 100 (pg — 1)
F s
Where g, 1s refractive index of the dense medium,
3] 1 LR 11 1 rare mﬂdillm,

w T, the radius of eurvature of the surface in em.
w Dy, the dioptriec power corresponding to F,.
1
l}" 12 ¥ 3 53 tD [I o

D,:D.as flg 2 fry.

Example.—Find the power of a surface of radius 8 mm. and p=1-333
in air.

B x 1
p = (Rood S ey
‘8 x 133

3125 - 4166 as 1 : 1:333.
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Conjugate Foci.

Since FI+F2= and F,p=F, when the 1st medium is air,

h [
we have
Ty + Fjﬂ: or B,1+1|'_'“'=1
fﬂ-"' Ja ho Ja
hence
1 1 1 1 p 1
— = or =
_f1P* .-"rg }‘3 .Jrl ft Fl

which expressed in diopters becomes
t’gl_.-'rp. + EEE =1, or t’El + (fzp, - Dn.

where d, and d, are the conjugate focal distances expressed dioptrally.



CHAPTER VII
THIN LENSES

Images have been defined in Chapter IIT. When light from an object
enters the eye a real image is formed at the retina, the stimulation produced
by the point foei being conveyed to the brain where the sense of sight exists.
The retinal image 1s not seen, nor is the original objeet ; what is seen is the
mental conception of the light stimulation which is projected out into space,
and usually this coincides in size and distance with the object itself. The
mental image is virtual, and when it coincides with the object we say that we
see the latter, but if it does not thus coincide we say that we see a virtual
image of the object. This occurs whenever, by reflection or refraction, the
course of the incident light is changed as by mirrors, prisms or lenses.

Light diverges from a real image, formed on a screen or in the air, and it
is seen in the same way as an object; the mental image of the real image is
projected so as to coincide with it ; but it can be viewed through a lens or
prism, and a virtual image formed of this real image, as occurs when a micro-
scope or telescope is employed. A real image is an actual thing which exists ;
a virfual image, as the term is commonly employed, is imaginary, it merely
appearing to exist.

Position of Object.—It is always taken that an object is in front of a lens
or mirror, and the image 1s in front or behind according as it is, respectively,
on the same side as, or on the opposite side to, the object.

Optical Signs.—In this work the following convention is followed. Since
light always diverges from luminous points divergence is considered negative,
and therefore convergence is considered positive.

Surfaces, mirrors or lenses that cause, or tend to cause, convergence of
light, are similarly positive, as also are their focal lengths and powers, and the
real images and foei produced by them ; to all these the + sign is assigned.

Surfaces, mirrors or lenses that produce, or tend to produce, divergence,
together with their focal lengths and powers, and virtual images and foci, are
negative and given the — sign.

Thus when a convex spherical surface of glass is in contact with air,
refraction ocenrs, and this may be taken as due either to the Cx. glass sur-
face or to the Ce. air surface ; both are + since both cause convergence of

parallel light. If a double Ce. air lens be in water we could consider the
86
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converging effect which results by caleulation of the two Ce. air surfaces, or
of the two Cx. water surfaces. A Cx. surface is not necessarily positive, nor
a Ce. negative ; when they are reflecting surfaces they are the reverse, as
they are, also, when refracting if they are of lower p than the adjacent
medium. Usually, however, in optics, a Cx. refracting surface is positive
and a Ce. is negative because it has a higher p than the adjacent medinm,
the latter being air, but this may not be the case when light passes sue-
cessively through various media.

Important Consideration.—It is most essential to differentiate between
the direction of axial rays and that of the rays from the various points on an
object with reference to their axes.

From each point of the object a pencil of rays diverges and each pencil
has an axis, which is the axial ray of that pencil. Axial rays always converge
to the optical centre of the lens, and their convergence governs the size of
the angle subtended by the object and the dmage at the lens,

The rays themselves always diverge from the luminous point to the lens,
and their divergence governs the position or distance of the image, the rays after
refraction being more or less divergent or convergent, according to the

E

Fig. 83.

degree of original divergence and the diverging or converging power of the
lens.

Parallel light is merely light having a negligible degree of divergence.

These maost important considerations, for students are apt to confuse the
conditions, should be carefully noted. Thus, in a diagram which shows
light parallel to the axis, and incident on various parts of the lens surface,
the rays are presumed to originate, not in various points, but in one single
point on the axis.

These considerations apply not only to all lenses, but to surfaces and
curved mirrors as well, and all positions of the object,

Definition of Lens.—A lens is a transparent body bounded by one curved
and one plane surface, or by any two curved surfaces, and is usually sur-
rounded by air. This definition, therefore, covers all forms of convex and
concave sphericals as well as cylindrical and other special forms of lenses.

Prismatic Formation.—If two similar prisms 4 C D and B C' D be placed
base to base as in Fig. 83 incident rays E and F' are bent towards the base of
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the prism 4 C D, and rays { and K are bent towards the base of the prism
B C D, so that those refracted by the one prism meet those refracted by the
other. Oneray, viz.,, G C' D) P suffers no deviation since it coincides with the
base of both prisms ; also L and M may be considered incident perpendicular
to the two refracting surfaces, and are therefore also not deviated.

If two prisms C 4 D, E A F, as in Fig. 84, be joined edge to edge all rays
incident on them, being refracted towards the bases, are therefore diverging
from the common edge, except the central ray incident at the junction of
the two edges.

What is true of two is also true of any number of prisms, and a convex

q—%"fﬁﬂ

N/
LN

7
E‘r__-'—ll‘:“"'-——.._
Fic. 84,

or concave lens may be considered as formed of prisms whose bases or apices
respectively have a common centre ; also every meridian must he considered
as if formed of a series of truncated prisms of different angles of inclination,
- but having a common base apex line.

Any two point areas 4 and B (Fig. 85) opposite each other constitute a
portion of a prism whose base, in the Cx., and whose apex, in the Ce., is turned
towards the principal axis of the lens., The areas 4 and B, near the

A A PB AT B
c fAD cW D
e Bidr eW F
G E'.,;'l H & H
B L I
A
Fie. 85

periphery of the lens, are more inclined towards each other than € and D,
situated nearer to the axis, and the inclination between the surfaces decreases
gradually until at 7 If on the principal axis they are parallel. Since the angle
formed by A and B is greater than that formed by € and /), a ray passing
through 4 B is bent to a greater extent than one passing through ' D, while
the ray which passes along the axis is not deviated at all.

Kach zone of a lens, therefore, whether conecave or convex, has a refractive
power which becomes greater as its distance from the axis is increased, and it
is due to this fact that rays diverging from a point, and incident on the lens,
are brought to a common focus practically asa point.
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Forms of Lenses.—There are (Fig. 86) four forms of thin convex and four
of concave spherical lenses :—

1. Equi-convex. Two convex surfaces of equal eurvature.

1’. Equi-concave. ,, concave 2 - 2

2. Bi-convex. Two convex surfaces of unequal curvature,
2. Bi-concave. ,, concave i e o

3. Plano-convex. One side convex, the other plane.

3. Plano-concave. & concave, i -

4. Positive meniscus or periscopic convex, Ux. on one side and Ce. on the
other, the Ce. being the weaker power.

4’. Negative meniscus or periscopic concave, Ce, on one side and Cx. on
the other, the Cx. being the weaker power,

2 3 4 L 2 & 4

1 2 17
X !
. 86,

Variations of the above are made by increasing the interval between the
two surfaces ; these are treated in the chapter on thick lenses,

In any lens of whatever nature or shape, there are innumerable pairs of
points on the two surfaces such that tangents drawn to the surfaces at these
points are parallel. If, therefore, a ray incident at one of these points

gl LS

Fia

emerges from the other, its final direction is parallel te its initial course just
as though it had been incident on a parallel plate. The ray, therefore, is not
deviated but merely laterally displaced by an amount depending upon the
thickness and p of the lens. In Fig. 87 let R and 8 be two parallel points on
the surfaces of the bi-convex lens L. They are located by drawing from the
centres of curvature P and ) any two mutually parailel radii P I and .5,
and therefore, if a ray T R is so incident at R as to emerge at o, the final
direction S 7 of the ray will be parallel to the original course I'R.
While in the lens the ray will take the direction R S, cutting the prineipal
axis P ¢} in 0, which is a fixed point no matter what the position of RS may
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be. Thus any number of pairs of parallel points may be located by drawing
a corresponding number of pairs of parallel radii, and if lines be drawn, as
R S, they will all be found to eut the axis in . This fixed point O is the
optical cenlre, and any line R S passing through it is termed a secondary axis,
sinee it suffers no angular deviation, but only a lateral displacement depend-
ing upon the thickness and p of the lens.

The imaginary point V; on the principal axis, towards which a secondary
axis is directed, is called the firsf nodal poinf, and the corresponding point N,
from which it apparently emerges is the second nodal poind. It is from these
points that the principal and all conjugate focal distances are measured, since,
as will be shown later in the chapter on thick lenses, it is on planes drawn
perpendicular to the axis through N; and N, that the refraction of the sur-
faces of the lens is presumed to take place. The nodal points are also
frequently referred to as principal or equivalent points, but as we shall not be
dealing with them until later it is not necessary to explain here the exact
difference between these terms.

Fig. 89 shows the positions of the optical centre for every type of lens,
as well as the general formation of the latter by the intersection or non-
intersection of spheres and planes,

For our purpose in this chapter we shall, however, regard the thickness
of all lenses as negligible in comparison with the focal length of such lenses.
All lenses employed in visual optics are treated thus, and are said to be thin,
as distinet from others whose thickness cannot be disregarded without intro-
ducing considerable error in caleulating the power and focal length.

This being so, the action of a lens, considered as thin, is greatly simplified
since we may assume the interval between the nodal points and optical
centre as so small that all three fuse into a single point to which we apply
the single term optical centre. Similarly the equivalent planes passing
through the nodal points are also considered to unite into a single refracting
plane passing through the optical centre, from which all distances and foc
are measured. The position of the optical centre depends only upon the
curvature and thickness of the lens, and is distant from each surface by an
amount proportional to the relative radii of eurvature.

Terms of a Lens.—Let Fig. 88 represent a thin Cx. lens; C'C are the
centres of curvature, and O the optical centre. The line 4 (0 B passing
through the two centres of curvature, and the optical centre, is the prineipal
axis; it is perpendicular to both surfaces of the lems. The plane L0 L
passing through O, perpendicular to A B, is the refracting plane, on which
all the refraction effected by both surfaces of a thin lens is presumed to
take place. Any lines as D D, E E directed to (), are secondary axes, which
pass, obliquely to the principal axis, through the lens, and the latter being
thin, they are presumed to suffer no deviation at all.

Formation of Lenses.—In each of the diagrams in Fig. 89, which shows
the actual formation of lenses by the intersection or non-intersection of
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spheres and planes, the radius of curvature is a line drawn from the eentre
of each sphere to the corresponding surface of the lens. The optical centre
in each case is marked 0.

In the equi-Cx. and bi-Cx. (1 and 2}, and the equi-Ce. and bi-Ce. (5 and 6),
the centres (' and (" are on opposite sides of the lens.

In the plano-Cx. (3) and plano-Ce. (7) the curvature of the plano surface

Fiz. 58.

may be considered to be of infinite radius ; the centre then being at infinity
can be considered to be on either side.

A Cx. lens consisting of a complete sphere has the centres of its
opposite surfaces coincident.

In the periscopic Cx. (4) and periscopic Ce. (8) the centres are on the
same side.

Position of Optical Centre.—By calculation, the position of the optical
centre of any lens is found by dividing the thickness of the glass, on the
principal axis, in the ratio of the two radii of curvature ; so that, if the two
surfaces are equal, 0 is equally distant from each, but it is nearer to the more
eurved surface if the two are unequal. If r; and #, be the radii of the two
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surfaces, f the thickness of the lens, and O the optical centre, then the distance
of the latter from the surfaces whose radii are r, and r, is respectively

g=—ta o el
1 + -|'= ?l + () a
Thus in a bi-convex lens where / = -2 inch, and », and 7, are respectively
6 and 10 inches,
I AR 2+ 10 .
= =] = A ’ — 19K .
T 075 in, from r,, and 6+10= 125 in. from s,

The thickness is divided into 6 + 10 = 16 parts, and O lies on the axis
six of these parts from the pole of the shorter curve, or ten parts from the
pole of the longer curve. In lenses whose surfaces are both convex or both
concave () lies within the lens, but in periscopic lenses ¢ lies outside the lens
on the side of the surface of greater power.

Suppose a periscopic convex in which f = -2 in, 7, of the Cx. surface
being 9 in., and », of the Ce. — 12in. Then v, + v, =9 — 12 = -3 and
0 = 1-8/=3= —+6 in. from r, and - 2-4/— 3= +-8 in. from r,.

The distance from the convex surface being negative must he reckoned
away from it, and the two distances coineide *6 in. from the convex surface.
[f the lens were periscopic concave O would be on the Ce. side.

With a plano lens the one surface having r; =9 in. the other r,= oo, if

=32 1n., then

since any number divided by o= =0. () therefore lies on the curved surface
in plano Cx. and Ce. lenses.

Construction of Optical Centre.—The method of finding the optical
centre of any form of lens is shown in Fig. 89. From the centre of curva-
ture U, in any of the diagrams, draw a radius C [ to the curved surface, of
which C is the centre. From €’ draw a radius (" E to its corresponding
surface, and parallel to € D. Connect the extremities of the two radii by
the line D £ and where it cuts the principal axis at 0, is the optical centre
of the lens.

In (3) and (7) €7 being at o, the only radius that can be drawn from (),
parallel to C” E, corresponds to the principal axis itself.

In (4) and (8) the line connecting /) and E has to be produced in order
to cut the principal axis.

Properties of Lenses.—A convex lens has positive refracting power and,
therefore, can form a real focus and a real image; it renders parallel rays
convergent and divergent rays less divergent, parallel or convergent as the
case may be,
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A concave lens has negative refracting power and, therefore, can only
form a virtual or negative focus or image ; it renders parallel rays divergent
and divergent rays more divergent.

The general effect of every spherical (and cylindrical) lens is, as with a
prism, to bend every incident ray of light towards the thickest part. This
property and the foregoing ones apply if the surrounding medium is of lower
density than that of the lens ; otherwise the reverse occurs. When discussing
lenses we take them, unless otherwise stated, to be in air.

The Focus.—A real focus, formed by a lens, is that point at which rays
diverging from a point meet after refraction.

A virtual focus is that point where rays diverging from a point meet
when produced backwards, or whence they appear to diverge, they being
still divergent after refraction.

Principal Focus and Focal Distance.—A principal foeus 1s one formed
on the principal axis by the convergence or divergence of originally parallel
rays. A secondary focus is one formed on a secondary axis.

;

Fre. 940. Fie. 91.

The principal focus of a convex lens is positive and is situated on the
principal axis on the opposite side of the lens from the source of light.

Natural rays signify those rays which proceed from a source of light and
whose course is not altered by a lens or mirror; they may be parallel or
divergent, but never convergent.

The distance between the optical centre and the principal focus is the
principal focal distance of a thin convex lens (Fig. 90), the focus being that
point at which, after refraction, parallel rays meet. It is the nearest point
to a convex lens at which a focus of natural rays ean be obtained. The
parallel rays in the figure are presumed to diverge from a single point on
the principal axis at .

The principal focus of a concave lens is negative, and is situated on the
principal axis on the same side of the lens as the source of light. Thus in
Fig. 91 the distance between () and the prineipal focus is the principal
focal distance of a concave lens.  The principal foeus being the point from
which, after refraction, parallel rays appear to diverge, is the furthest point
from a concave lens at which a focus can be obtained for natural rays.

The value of @ lens is expressed either by its principal focal length /7 or by
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its refractive power I or 1/F, the latter expression heing sometimes termed
the focal power ; both properties depend solely on the eurvature and the
refractive index, thickness being neglected. [F and D vary inversely
with each other, they being reciprocals ; as the one is increased the other is
proportionately diminished. Thus F=1/D, and D=1/F. The meaning of
D and its relationship to F will be found in the next chapter.

Distance of Principal Focus.—Whether the one side or the other of a
thin equi-convex or equi-concave lens is exposed to the light, F' is at the
same distance from the back surface of the lens since O is situated equally
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distant from each surface; but this is not the case with other forms of
spherical lenses. In Fig. 92 the principal focal distance O F of a bi-convex
lens being measured from 0, it follows that the distance of /' behind the
posterior surface of the lens depends on whether the less curved surface A,
or the more curved surface B, is exposed to the light. If 4 is thus exposed,
I lies further from & than it does from 4 when B faces the light. The same
applies to the bi-concave. With the periscopic convex, as shown in Fig. 93,
and the periscopic concave, the difference in the distance of F as measured
to the right from B or to the left from 4 is very marked. Similarly with

Fic. 94.

the plano Cx. and plano Ce. /' is measured from the curved surface since 0
is situated thereon. In all cases 0 F is the same either way, ie., F; =F,.

To express the focal length of a lens in terms of the radii of curvature,
the refraction at each surface of the lens must be considered, and the two
combined into one expression.

Let 4 I (Fig. 94) be a bi-convex lens of radii », and r, and index u,,
that of the surrounding medium being »,. Then if any ray L A parallel to
the prineipal axis be ineident at I it will be refracted and tend to focus at
Ja the posterior foeal distance of the first surface.
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f2= fa¥'y
He =

Thus

Therefore f, is virtually an object with respect to the second surface, and
the final image is formed at F/, which is the prineipal foeus of the whole lens.
Since the thickness of the lens is disregarded we may take 4 F as being
equal to B F. For the second surface, f,” and f,” being the conjugates

e S0 o LT i e s |
’ ar .
HoJ T

But the image distance f, of the first surface becomes] the virtual object
distance f;" of the second surface, so that we must substitute the former for
the latter, using the negative sign. Then we get

or

= (p, - ( S+ - F=___ s
ol o 01 =
( f 1} 'y ""3) [J'l -+ *'E" “*{2 = 1”'1.-.'

These are the general formule for a thin lens in any medium, but if p, is
air, which is usually the case, and taking p as the index of the lens, the above
simplify to

1 | - . .7
=({n-1 ) 3 F=___"12
.F {f:' ) (TI + ?.2.__1 L [._;.1 +?-2:| {V' o 1}

Since 1/r; and 1/r, represent the curvatures of the two surfaces, the power
of @ lens is equal to the swin of its curvatures multiplied by the vefractivity of the
inediwin of which 1 is made,

A convex surface with regard to a lens is considered positive and a concave
surface negative, as alrcady stated, and this facilitates caleulation where we
have only two surfaces to deal with,

We have to consider the three following conditions :

(«) If both surfaces are of the same nature.

Example.—A Cx. lens of =154 and having surfaces of radii of R in,
and 5 in. The focus is here positive, thus

, 8xb 10

A — '—u:-'l.:l-_1
@+5)(151-1) 702 '
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If the surfaces are concave the negative sign must he prefixed to each ;
the focus also is negative.
F=. _}f}:{-ii} = iﬂ_=—5'?iu.
(=8 =-8)x(154-1) -7-02
If both surfaces have the same radius, i.e. r;=r,, as in an equi-Cx. or
equi-Ce. lens, the formula becomes simplified, for

-~ fistia 2 -3'_’" TR
{1y + f'E} (e — ]} 2r (p— l} 2 (p—-1

Thus if , and r,=5 and p=1-54

i NS,
5dx2 108 3

If p=15it can be seen that in equi-Cx. or equi-Ce. lenses the focal
length is equal to the radius.

(b) If one surface is plane, then r; = % and 1/, =1/ == =0, so that it may
he ignored and only the curved surface considered, and the original formula
simplifies to

:
F= |
If p=1'5, it can be also seen that in a plano Cx. or Ce. lens the focus is
twice the radius.

(¢) If one surface is positive and the other negative, the focus will be

positive or negative as the one or other predominates.

Example.—In a periscopic Cx. let the two surfaces be respectively
—8in. and +4 in. and p=1'6. Here
|.1 P E? = ‘1 = 3 )

={—'5+=L}x'ﬁ=_-ﬁ~4= +13:3 1n.

In a periscopic Ce., if the surfaces are + 8 in. and — 4 in. respectively.

e ETK{_'” =20 =133 in.
B-4)x6 24
Relative Powers.—It can be seen from the above that, the radii being

constant, the power of a lens in air is proportional, not to p, but to (u—1),

the latter being termed the refractivity of the medium. Thus if two lenses

A and B be ground to the same radii but on glasses of different p's, the ratio

of their powers is as (jr, — 1) ¢ (us — 1), their foeal lengths being as (p,—1):

(p, —1).
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To find ».—To calculate the curvature of one of the surfaces v, or +, when
that of the other, as well as p and F, are known, it is necessary to substitute
the values of the known quantities and then equate as in the following
examples,

What radius should be given to the second surface of a lens so that F =
6 in. r;=8 in. and p=1-51

' - 1’2 b= o
(ry+73) (p—1) (B+1) x5
then
: S : : i
6=—"11 . or  2448r =8
TN Sl
1"J.r'I =24 0 = + 48

What should be the radius of the Ce, surface of a meniseus when that of
the Cx. is 5 in., I being 12 in. and p=1-6"

Then

-_|=

::.Ir 3! ! B

{-‘_‘1+.«'1}*(i; or or =12 % (3 +6r,)
and
51

ry= i 1636 in.

To find p.—Similarly by substitution p can be calculated. For example,
F=24 ¢m. and the radii are +6 and =12 em., then

hx =12 = =i3
(6-12) (p-1) -6p+6

24 =

= — 144 p+ 144 and pr=15

Calculations when i, is not Air.—When the first and last media are not
air—that is to say, if the lens is situated in a dense medium—the original
formula is required :—

I AU
(r +73) (pa—py)

Thus, suppose a double Cx. lens of p=1-54 and 8 em. radius placed in
water ; in that medinm
\ 3xa 33 a7k B J—
- OXORESS BORE b
(8+8) (154 —133) 336
Or the relative index p, may be found by dividing p, by gy, and the for-
mula then becomes as with thin lenses in air. Here p,=1'54/1-33=1"158,
and
: o B

e = 2533 em.
(8 +8) x *158
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Let a similar lens, but of = 1+33, be placed in cedar oil of p=1-54, then

Fo.  08x8x1-34 L, E}H~ﬁ{3‘= — 2983 em.

(8+8) (I'33—1-54) — 336

Here the lens acts with a negative effect, and it shows us that an air lens
in water must have a concave curvature in order that it may have a positive
refracting power. Dr. Dudgeon constructed such a lens to enable divers,
without helmets, to see under water. It consisted of two small watch-
glasses of very deep curvature cemented into each end of a vuleanite ring,
the convex surfaces facing each other inside the ring. The lens had no
magnifying power out of water, as it only contained air. In water, however,
the concavity of the lens produced a convexity of the water in contact with
it on each side, and this convexity gave the required refractive power,

Let a Ce. air lens be of 10 inch radius on both surfaces. What will its
focus be in water !

. =10x —l0xI:33 100z i3s 53

i it Rl o | e = — )
(-10-10)(1-1-33) —20x —'33 666

Since a Cx. water lens of the same radius in air has F=15 in., it will be
noticed that the effect is not the same when the conditions are reversed.
This arises from a similar cause to that which produces a difference in the
anterior and posterior foci of a single refracting surface. If light passes
finally into a rare medium the focal distance is shorter than when it thus
passes finally into a dense medium.

Change of F in Dense Media.—The change undergone by the power and
focal length of a lens when transferred from air to some denser medium is
greater than we might perhaps expect at first sight. It has been previously
shown that I¥ is inversely proportional to (p— 1), so that when a lens of index
14, is immersed in a medium of index p,, we have ¥ : F':: (.- 1) : (py —1),
where p, is the relative index p,/p,. In other words the lens has a focal
length F" in the medium as if it were made of a substance whose index is p,,
and surrounded by air. Thus

Fr . Flm = 1) ry = Dlp = 1)
(e — 1) (g —1)

For instance a Cx. lens of radius 8” and p=1'5 has in air a focal length
of 8" and a power of 5 D. If placed in water of p=4/3, I’ is 32 in. and D is
1:25. Thus a glass lens in water has its foeal length increased about four
times, and its power correspondingly reduced to a quarter,

The erystalline lens of the eye suffers an even greater change of power.
In situ its power is about 22 D, but in air it becomes about 125 D. In this
case the relative index between the lens medium and the surrounding
aqueous and vitreous is only some 1-09.
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Cases of Various Media.—When a thin lens of p, separates two media of
py and pg—that is, when there are three different media separated by two
eurved surfaces—the following formula serves for finding the focal length :—

g T S i O i N |
K i

If there are four media we have

1 Ty

o’ PO S A Tl i
l_‘ jll ‘Iﬂ ?.3

The power of any number of surfaces separated by negligible distances
can be found by taking the sum of their anterior focal powers and multiply-
ing it by the reciprocal of the last p—i.e., by 1/u, or 1/p, as the case may be.
If the last medium be air, like the first, we have 1/F equal to the sum of the
anterior focal powers of all the media.

It should be particularly noted that in the numerator of each fraction the
preceding p is always deducted from the p following—e.g, pg — po, and that
r is positive or negative according as it is respectively Cx. or Ce. towards the
direction of the light. In this way all calenlations involved in fused or inset
bifocals are rendered comparatively easy.

We have a case of four media when light passes from air to a surface of
Ha, then to another surface of pg, and finally, by a third surface again into
air.  Such a combination exists if a bi-focal be made by the insertion of
a deeply curved convex segment of high p into a space made for it in a
larger lens of low . Such a combination is also formed by the contact of a
double Ce. lens of, say, p=1'5 with a double Cx. lens of, say, p=16, the
two being of equal curvature. The focal power ean be found by calenlating
for each lens separately and then adding them together, or by calculating for
each surface separately, as indicated above.

Recapitulation of Formule.-—The following is a recapitulation of the
formule for finding the focal length of the various spherical refracting hodies
when the light passes from air. Where numerical examples are appended
they arc in each case for r=6 in. and p=1'5.

Approx.
Value in .
- ] . Ly .
Posterior I of a single surface = Ff‘_l =18 in.=3r
N X ¥ :
Anterior F of a single surface =ﬁ_i =12 in, = 27
. . T
F of all forms of thin lens = I'2 _
(ry+1g) (jr=1)
F of a thin equi-lens = : = 6in,=7r
2(p-1)
F of a thin plano-lens SO =12 in.=2r

Jf.l.-'—'l
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Dioptral Formuls.

Lens in Air.—To find the dioptral power D) of a Cx. or Ce lens, the
radil being in em. :—

“=1EIU (p=1) (ry+1, - (1(11{)_1_10'0) (n=1)
g L Py et
which formule simplify to
_2x 100 (-
7

_100(pn-1) fon
”

D ) for an equi Cx, or Ce,

D a plano Cx. or Ce.
Lens in a Medium Denser than Air.—p, pertains to the lens and p, to
the medium in which it is placed.

D= (10U+ !1_}:;-)' (F,ﬁ ".._El)

L o i

The Construction of Images formed by Thin Lenses.

Course of Light—Cx. Lens.—If a beam of rays shown by the thick lines
in Fig. 95 be incident on the surface of a Cx. lens in a direction parallel to
the principal axis /) F, they are refracted to meet at the point F,, the
principal focus or second focal point, situated on the axis. A line €D
drawn through this point perpendicnlar to the axis is the second focal plane.
The distance from (), the optical centre of the lens, to F, or F,, is the focal
length of the lens. In the same way parallel rays which are incident on the
other surface of the lens (shown by the dotted lines) meet in a point at F,,
the first foeal point. A line 4 £ drawn through it perpendicular to the axis
is the first focal plone. The distance 0 .F; 1s equal to O F,, and L 0 L is the
refracting plane of the lens.

Whatever conrse a ray takes in passing through alens (or any number of
lenses), if the light retraces its course, it follows the same path. It is clear,
therefore, that if the source of light be at F] or F, the rays, after refraction,
pass out of the lens parallel to the prineipal axis. All rays which diverge
from a luminous point on the principal axis are refracted on passing through
a lens, with the exception of the prineipal axial ray which passes through
the optical centre and undergoes no refraction.

If, instead of the object point being on the principal axis, it 1s situated on
a secondary axis £ F/, asin Fig. 95, the rays are similarly bent to meet ina
focus at F,’, and any ray passing through 0 obliquely to f F, is presumed
to he undeviated by the lens.

I of Point on the Axis—Cx. Lens.—The object point 4 being beyond £,
draw the axis 4 B (Fig. 96) and through /] draw the focal plane & fI. From



THIN LENSES 101

A draw any line 4 K D, cutting the first focal plane at K and the refracting
plane of the lens at D. From K draw a line through the optical centre 0
and from /) draw D B parallel to K 0. This refracted ray DB cuts the

Fia. 95.

principal axis at /5, which is the image of the point 4. This construction
holds good hecause rays diverging from any point in the focal plane are
parallel to each other after refraction.

D
l

Fra. 96.

The object point o being on the axis nearer than F| (Fig. 97) from A
draw any line . £, and from F] draw F, C' parallel to 4 E. Draw C'D
parallel to the principal axis eutting the second focal plane in ). Connect

D and E and produce to A4’ on the principal axis; then 4’ is the virtual
image of 4. This construction holds good because A4 E and F| (! are parallel
and therefore meet in the second focal plane ; also /|, €' is, after vefraction,
parallel to the principal axis.
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-

Construction of I for Cx. Lens.—In order to construet the image of an
object formed by a Cx. lens we have three rays diverging from any point
whose course, after refraction, it is easy to follow, viz. :—

(@) The ray parallel to the principal axis, passing, after refraction,
through F,.

(6) The ray which passes through F, and, after refraction, is parallel to
the principal axis.

i i
l B
|
] [ F“\\\ f2
A
B
Fro, 95,

(¢) The ray which passes through the optical centre, and whose course is
not altered by refraction.

It is necessary to draw only two of these rays in order to locate the I of
a point, since where any two rays diverging from a point meet, all other rays
diverging from that same point also meet,

Real I.—In order to construct the complete I of an O, the images 4’ and
B’ of the two extreme points A4 and B should be found, and these suflice to

L]
Fig. 99,

show the location and size of the image (Fig. 98). Draw from 4 the ray
parallel to the axis; this ray, when refracted, passes through F. Draw the
secondary axis 4 4’ passing straight through €. These lines meet at .4’
the image of 4. In the same way B, the image of B, can be constructed.
The images of all intermediate points between 4 and £ could be con-
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structed, but®are not necessary, for B 4’ shows the position and size of
the real inverted image of the object A4 B.

Virtual I.—When the object is nearer the lens than F; (Fig. 99), from
A draw 4 K parallel to C 1) ; E F, is the course of the ray after refraction.
Draw 4 Oec passing through the optical centre.

Since these rays are divergent after refraction, no real image can be
obtained, but by producing them backwards they are made to meet at A4,

Al

Fic. 100,

which is the virtual image of A. Similar rays drawn from B locate it
image as B’ and A’ 5" is the complete virtnal erect image of the
object 4 B,

I at ow.—When the object is at F,, the rays, after refraction, are
parallel to their axes, and, therefore, no image can be constructed, since it
lies at infinity.

Course of Light—Cec. Lens.—If a heam of parallel rays (Fig. 100) is
incident on the surface of a Ce. lens they apparently diverge, after refraction,

1 X

Fia., 101,

from F, and a plane 4 B perpendicular to the axis passing through F is the
focal plane. Oc F is the principal focal distance. Every ray passing through
the lens is refracted, except that passing along the principal axis or a secondary
axis. A point on any axis as /” ()¢ has its image on that same axis.

I of Point on the Axis-Cec. Lens.—To construct the image produced
by a concave lens, the object being a point 4 on the axis, draw any ray
4 B C cutting the focal plane in B and the refracting plane in ¢ (Fig. 101).
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From B draw B 0 through (/ the optical centre. Now B ('and B 0 diverg-
ing from the focal plane apparently come from € on X V| the latter being a
plane midway between the focal and refracting planes. Prolong €€ to 4’
on the principal axis ; ./’ is then.the image of the point .4. This construc-
tion holds good because rays diverging from the foecal plans of a Ce. lens

after refraction apparently come from the plane midway between the focal
and refracting planes.

Construction of I for Ce. Lens.—The construction of the image formed
by a concave lens is the same wherever the object is situated, since the
image is always formed on the same side as the object, and between the
principal focus and the lens. In Fig. 102, let 4 B be an object placed in
front of a concave lens of which /' is the prineipal focus. From 4 trace
A4 0, the axial ray. Draw 4 F parallel to the axis before refraction, and
diverging as if from /' after refraction. These rays, being divergent, can
only unite by being prolonged backwards, when they meet at A’. Similar
rays from B meet at B, its image. The complete image of 4 B is 4" B,

=
N |
= | -
Ppos = L =
. "-;%{___,_,—-""". I' |I -\_H_H"'--.._
—— i\
== Iﬁi_“'—;‘_\x.,_k
H""‘-.

Frc., 102,

Construction for the Course of a Ray. This can be done on the prineiple
shown in Fig. 79, as it is given for a single surface. In the case of a lens
or sphere, after the course has been determined from the first surface, a
second construction is needed for the second surface.

Characteristics of a Convex or Positive Lens.

(a) It is thicker at the centre than at the edge.

(#) It forms a magnified image of an object held within the focus.

(¢) At the proper distance, it forms on a screen an inverted real image of
a laminous object, as a flame or window.

(d) It causes the image of an object, viewed through it, to move in the
confrary direction as the lens is moved.

Characteristics of a Concave or Negative Lens.

(@) It is thinner at the centre than at the edge.

(5) It diminishes the apparent size of an object seen through it.

(¢) No image can be projected by it on a screen.

(d) When moved, an object seen through it appears to move in the sume
direction.
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Refraction and Reflection Compared.—A curved mirror may be regarded
as a dioptric system in which p, = p, and therefore F;=F, The principal
point is at the vertex of the curve, and the optical centre is at the centre of
curvature, they being similar to those of a single refracting surface. When
F of a refracting system lies in a medium similar to that from which the
light proceeds I, = F,, and both are equally distant from the principal and
nodal points, which are then combined. In a reflecting system the source of
light and F lie in air. F is midway between, and therefore equally distant
from the principal and nodal points.

For comparison, the following figures show the difference between the
focal lengths when an ineident heam of light is reflected from, or refracted
by, the surface of a thin plano Cx, or Ce. glass lens of p=1-5.

In Figs. 103 and 104, " is the centre of curvature. Rays of lght

Fro, 108, Fra, 104,

parallel to the axis, if reflected, meet at £, which is half the distance of
from the pole P ; if refracted they meet at F, which is twice the distance of
C' from the surface. The thick lines represent the course of the refracted
rays and the dotted lines that of the reflected rays.

If we use the surface of a Ce. lens as a reflector and find F, then p being
taken as 1'5, the refracting I of that surface is four times as long; orv if the
lens be double Ce. the F of the lens is twice as long as that shown by
reflection. Thus with a plano Ce. if the reflection F is 10 em., the dioptric
F is 40 em.

If we measure the curvature of a mirror by a lens measure scaled in
diopters, the measurement shown is about 1/4 that of reflection, i.e. I of the
mirror is 1/4 that shown by the scale. Thus if a mirror shows 25 D its F
15 100/2'5 x 4 =10 cm.
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THIN LENS CALCULATIONS

LENsES are numbered by two principal systems, namely, the inch and
the dioptrie.

The Inch System of Numeration is based on the measurement of the
focal length of a lens, and the unit is a lens of one inch foens.  Sinece F varies
inversely with the power, a lens which brings parallel light to a focus at
10 ins, or at 20 ins., has respectively 1/10 or 1/20 the power of the unit;
while one whose I¥=1/2 in. has twice the power. The abbreviations Cx. for
convex and Ce. for concave are commonly employed in conjunetion with the
focal notation of lenses.

The Disadvantages of the F System are that the inch in various countries
differs in value, so that a lens of given focal length in one country may not
be the same as one of similar number in another. There are 37 French
inches, while there are 39-37 English inches, in the metre, so that a lens of
18 French (Paris) inches focal length is about equivalent to one of 20 English
or American inches.

Again, the intervals between the lenses, although regular as to their focal
lengths, are irregular as to their refractive powers; thus there is a far
greater difference between the powers of a 5 and a 6 inch, than between a
15 and a 16 inch lens. Further, the unit being a very strong lens, and the
lenses mostly required being weak ones, caleculations involve the use of
vulgar fractions.

Dioptric System.—The dioptric system is based on the refractive power
of lenses, and the unit is the diopter, which is that power which causes
parallel light to focus at 1 metre. The diopter of refraction is a measure of
converging or diverging power, and is not, strictly speaking, synonymous
with the metre, which is a unit of linear measurement ; nevertheless, it is
often convenient to express distances in dioptric measure. The symbols +
and — are always used with this system.

The dioptric system is much more simple than the inch, and is now
universally recognised. The unit being weak, the power of most other
lenses is expressed by whole numbers, while if fractions are involved they are
expressed as decimals. The intervals between the lenses are uniform as

106
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regards their refracting powers, The power of a combination of two or
more lenses is obtained from simple algebraical addition of their numbers.

If alD lens has F=1 M, a 4 D lens, having four times as much power,
has F=1/4 M. DBut since the M can be sub-divided into 100 cm. or
1000 mm. the focal length of a 4 D is more conveniently expressed as
100/4=25em. A 10 D lens has ten times the power of the unit; therefore
its ¥=100/10=10 em., or 1 10 that of the unit. A 050 D has half the
power of the unit ; consequently its F=100/5 = 200 cm., or twice that of the
standard lens,

Conversion.—Since the + 1 D lens has F=1M, or 40 inches, it is equal
to No. 40 of the inch system, and a 40 D lens is the same as a 1 inch lens.
Now the metre (or 100 centimetres) = 39-37 English inches, and for all practi-
cal purposes may be regarded as equivalent to either 40 or 39 inches. There-
fore for conversion from either scale into the other, it is only necessary to
divide 40 or 39 (whichever is the most convenient) by the known number.
FFor instance,

2:5 D=40/2-5=16 in., 13 D=39/13=3 in.,
2 in,=40/2 =20D 13 in.=39/13=3 D

Since many numbers will not divide evenly into 40 or 39, there is fre-
quently a small remainder which need not be considered beyond the 1/4, 1,2
and 3/4 in the lower inch numbers, and 25, 50, and 75 in the dioptral
numbers, Some numbers of both seales have no exact equivalent in spectacle
lenses, numbered according to the other, and the nearest must be taken as
the equivalent power. For instance, it is considered that 3-50 D= No. 117;
325 D=No. 127; 4:50 D= No, 9, etc.

To Find F or D.—Dividing 40 or 100 or 1000 by the dioptral number
gives F in inches, in cm., or in mm. respectively. Thus, a 5 D lens has
F=40/5=28 in,, 100/5= 20 em., or 1000/5 = 200 mm.

If F is known in em., mm., or inches, the dioptral number is found by
dividing respectively into 100 or 1000 or 40; thus, if F=200 mm., then
D=1000/200=5; if F=40 c¢m.,, D=100/40=2:5; if F=160 in, D=
40/160 = *25.

Old Curvature System.—Originally the inch system of numeration was
based on the radius of curvature. No. 10 implied a double Cx. or Ce. lens
having a radius of curvature of 10” on each surface. '

Old Ce. System.—In England concave sphericals were formerly numbered
by an arbitrary system commencing at 0000—the weakest—and terminating
with No. 20-—the strongest. The values of these numbers in the inch and
dioptric scales are to be found in the appendix, but the system is now
obsolete,

Cyls.—The numeration of cvls. is the same as that of sph's.
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Addition of Lenses.—The combined strength 1/F of the two thin lenses
in contact, whose values are indicated by their focal lengths I, and F,
respectively, 1s obtained by the addition of their refractive powers, thus

1/F =1/F, +1/F,

If the two lenses be, say, 24 inch Cx. and 10 inch Cx. their powers are
respectively 1/24 and 1/10; the combined power is

/24 +1/10=234/240=1/T approx.

The two are equivalent to a 1/7 Cx. or a lens of 7 in. F. It is evident
that F of the combination must be shorter than that of either lens alone.
[f the two lenses are concave, say 5 and 8, they equal

-1/54(=-1/8)= - 13/40= - 1/3 approx.

When the one lens is convex and the other concave 1/F is positive or
negative according as F, or F, is the shorter. The two neutralise each other
more or less, and the residual power of the stronger is the power of the
combination. Thus, a 15 Cx. and a 12 Ce. when combined make a lens of
60 inch negative F, thus

1/154+ (- 1/12)=12/180 — 15/180 = — 3/180= — 1/60

A 20 Ce. and a 10 Cx. together give 1/10+4( —1/20)= +1/20 i.e., a 20 Cx.

The summing up of three or four lenses is achieved in a similar manner ;
thus 10 Cx., 16 Cx,, 7T Cx,, and 5 Ce. make together 1/10+1/16+1/7-1/5
= 59/560, that is, 93 Cx. approx.

The strength I} of combined dioptral lenses in contact is obtained by
adding them together algebraically, thus

I_:F = ljl -+ Ij‘.-‘
D, being the power of the one, D, that of the other lens, and D that of the
two combined. For example :
+2Dand+4 D=+6D; +4 Dand -3 D=+1D
- 525 Dand - 250 D= -775 D; +3 Dand -3 D=0, i.e. they
neutralise each other,

+T7TD+450D+1:75 D and =650 D= +6-T5 D

Conjugate Foci with Thin Lenses.

Conjugate Foci.—In the following, let O and I represent object and
image respectively.

The focal distance of a thin Cx. lens is the distance from the optical
centre, which marks the refracting plane, to the plane in which originally
parallel light meets after refraction, and it is that distance from which light
must diverge in order to be parallel after refraction. In the case of a thin
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Ce. lens, it is that distance from the refracting plane from which originally
parallel light appears to diverge after refraction. If F is the focal length, its
reciprocal 1/F is the focal power of the lens. If £, be the distance from the
optical centre from which light from the object diverges, then 1 f; represents
that divergence ; if fy 18 the distance of the image from the optical centre,
then 1/f, is the convergence or divergence of the light which produces the
image. 1/F is positive or negative according as it pertains to a converging
or diverging lens respectively, while 1/f; is always negative. The value of
1/f5 is found by adding the divergence of the light 1/f, to the converging or
diverging power of the lens, that is

1/fo=1/F-1/f whence 1/F=1/f, +1/f,,

that is, the power of the lens is always equal to the sum of the reciprocals of
any pair of conjugate foci, or to the sum of its actions on the light.

With a Cx. lens f, is positive or negative according as the con-
vergence of the lens 1/F is greater or less than the divergence of the light

s ;v\
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1/f;. With a Ce. lens 1/f, is always negative, since the divergence of the
light is added to the divergence of the lens.

By inverting the formula we get a variation which is sometimes more
convenient to use.

F= N/
Ji+Js
therefore ,
F fF
fa=rl and =3
= .I‘rI_E fl .fg_b
It ean also be wri ten
F.-fi+l“.,-'f2= 1.

Geometrical Proofs.—In Fig. 105 A B is the object and 5’4’ is the
image. O is the optical centre of a Ux. lens, O F is its focal length, and F is
the principal focus. Since the triangles 4 4° D and (0 A" F are similar

AD AA BEF

OF OA OF
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Now
AD=0B=f, 0B =f,, and OF=F
Therefore
f-l :_fll +fg or 1 =.f1 + /4
AR ¥ hty
That is

1F=1/f,+1/f,
For a Ce. lens (Fig. 106) in the pairs of similar triangles A OB and
A’OB,DFOand A’F B,
OF A"B A BECE
OB AB DO OF

Now
OB =f, OB=f, and OF=F
Therefore
~*;e-'= B ;,fE, or CRL=UASEr
50 that U
" F'f,-ﬂ —fa)=AN and 1/F=-1/f; + lfifz
that 1s

- 1/F=1/f, - 1/f,
=

Conjugate Distances of O and I and Examples— Cx. Lens.— A convex lens
renders rays convergent, parallel or less divergent, according as the point of
divergence is respectively beyond, at, or within I ; the converging property
of the lens is decreased, neutralised, or exceeded by the divergence of the
light due to the nearness of the object, and since any approach of the object
to a Cx. lens canses the light to be less convergent after refraction, it follows
that any real conjugate focus is more distant than F, so that F is the neaiest
point to the lens at which a real image can be formed by natural rays.

If a lens has F=8 inches and f; is at 40 inches, then f, will he at 10
inches and real, for 1/f,=1/8-1/40=4/40=1/10.

This is proved by 1/10+1/40=1/8, and 8/40+8/10=1.

A real image is 16 inches behind a 7 inch Cx., at what distance is the
object in front of the lens 1 ®

1/fy=1/1—1/16=9/112. The object is at 12 in.
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If, however, the incident light were converging, I would he nearer than F.
Thus if light converges to 15” behind a §” Cx. lens we have

1/fy=1/6+1/15=21/90

The image is at 45", which is nearer to the lens than F.

When O is at =, then I is at F, since 1/F -1/ ==1/F-0=1/F.

As O approaches the lens I recedes from F; when O is at 2 F then I is
at an equal distance. This is the plane of wnif magnification for real images.

When O is at F the power of the lens is just sufficient to render the
incident rays parallel and I is at o, for then 1/f,=1/F-1/F=0 and f,= =.

Therefore = and I are conjugate focal distances.

When O is situated nearer than F, the power of the lens is insufficient to
render the light parallel, and it emerges divergent after refraction, although
less so than before. No real focus is obtained, but if projected backwards
the light meets in front of the lens (on the same side as the object) and forms
a negative focus and virtnal image at f,. Whereas the light diverged -
originally from f; it appears after refraction to diverge from f,. Since the
divergence 1Y) is greater than the convergence 1/F, on deducting the
former from the latter the result is a negative quantity. Thus let the object
be 6 in, from an 8 in. Cx, lens, then

1/f,=1/8-1/6= —1/24.

The I is virtual or negative at 24 inches on the same side of the
lens as O.

As O approaches the lens from F, its virtual 1 also approaches, and when
O touches the lens so also does I, this being the plane of unil magnification for
virfual imiages,

Conjugate Distances of O and I—Cc. Lens.—A concave lens renders
parallel light divergent, and increases the divergence of divergent light ;
therefore any distance of O nearer than o, causes I to be nearer than F, so
that the wmost distant conjugate focus of @ Ce. lens s F. Thus let the lens
be —1/10 and f; at 40 in.; then 1/f,= ~1/10-1/40= =5/40= ~1/8 the
image being at 3 in. negative or virtual. This is proved by the power of
the lens 1/F being equal to - 1/8+1/40= ~1/10.

When O is at =, then I is at F, and as O approaches the lens so also
does I, until when O touches the surface, I does also, this being the plane of
wnit virtual magnification.  If, however, the incident light were convergent, I
would be beyond F—for instance, should light be converging towards a
point 15” behind a 6” Ce. lens, then 1/f,= = 1/6 +1/15= - 9/90 ; the image
is virtual at 10", If he light converged to 6” it would be rendered parallel
by the Ce. lens, and if the convergence were to 5” we should have —1/6 +
1/5= +1,30, or a convergence to 30"

Reciprocity of Conjugates.—Real conjugate foci are interchangeable
distances in the sense that if O is at either of them, I is at the other., Thus
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when O is at 40” in front of an 8” Cx. lens, I is at 10”, and if I were at 107,
O would be at 40”. Virtual conjugates are not interchangeable in this sense.
If O is at 6” from an 8” Cx. lens I is at 24” virtual. O could not be at — 247,
which is a negative distance, and if it were at 24” actually, I would not be
at 6. These conjugates are interchangeable merely in the sense that if light
converged towards the virtual foeus, in this case 247 then I would be at the
real distance 6.

The same oceurs with the virtual conjugate of a Ce. lens. If O is at 40”
and the lens is —1/10 the I is at 8" virtnal ; light would need to converge
to 8” behind the lens in order that a real image be formed at 407,

Dioptral Formulz.

Conjugates of a Cx. Lens.— The veciprocal of the focal distance in tevins of a
melre, or s value ecpressed in dioplers, indicates the power of the lens, A +5 D
lens has a focal length of 20 em., and consequently light diverging from
20 cm, is rendered parallel by it, the converging power of the lens just

Fiz. 107.

neutralising the divergence of the light from 20 em. Similarly light from
% is brought to a focus at 20 em. by a +5 D lens.

[f the light diverges from some point within s it has then a divergence
equal to that of a Ce. lens whose F is equal to the distance; the resulting
image d, is the dioptral result of the addition of the dioptral divergence of
the light ¢, and the dioptral power of the lens . That is

D-d, =d, or D=d, +d,

The power of a lens is equal to the sum of the two conjugates f, and f,
expressed in diopters as J; and d,,.

Suppose a +5 D (Fig. 107) and let f; be 100 em. distant. The lens has
a converging power of 5 1), and the light has a divergence, expressed in
diopters, of 1 D.  Consequently after refraction the light has a convergence
of 5=1=4 D, the 1 being at 25 em.

In Fig. 108 the +5 D is shown as if split into two lenses, the +1 D
rendering parallel the light diverging from f,. while the +4 D brings the
parallel rays to a focus at 25 cm.
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The two distances 100 em. and 25 em. expressed in diopters are + 1 and
+4 respectively. We may therefore write :—

1+4=>5 D =the power of the lens.
5 - 1=4 D=the dioptral distance of I.
5 —4=1 D=the dioptral distance of 0.

Fr:. 108,

Examples.—Suppose the object be placed 50 em. in front of a lens having
its image 12°5 em. behind it, then to find the power of the lens

d, =100/50=2, 1,=100/125 =8 ;
therefore D=24+8=10.

Suppose an object is 200 em. in front of a TD lens, where will the
image be !

Here d, = 100/200 =5, dy=T—-"5=65;
therefore fo=100/6"5=15 cm.

An image is 22 em. behind an 8 D lens, where is the object !
We have do=100/22 = 4-5, dy=8-45=35;
therefore

If Ois at o, then d;, =100/ =0

s0 that D-0=D and 100/D =F,
consequently Iis at F.

If Ois at F, then d;=100/F=D,
and D-D=0 and 100/0 = oo,
consequently I is at o».

If light converges to 50 cm. behind a +5 D lens we have 5+2=+7 D,
or 14 em. as the distance of the I, which is nearer than F.
Let the lens be +5 D and O be at 14 em. (I'ig. 109) then d, =100/14=7;
8
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dy=5-T= -2, and 100/ - 2= - 50, so that f, is at 50 cm. virtual in front
of the lens. While the lens has a converging power of 5 D, the light has a
divergence of 7 I); therefore, after refraction, there is a residual divergence
of 2D. Wehaved,+d,=D, thatis T+ (-2)= +5 D.

Conjugates of a Cc. Lens.-——A concave lens refracts light divergently so
that parallel rays, after refraction, appear to diverge from F (Fig. 110). If
the power of the lensis —5 D), the virtual F will be at 100/5 =20 em. or 8 ins.

Fig. 110,

When f; is nearer than o (Fig. 111) the light incident on the lens being
divergent before refraction is rendered still more divergent ; the divergence
of the light is augmented by that of the lens, consequently the conjugate
focus is neaver than F. Here again f; and —f, are conjugates just as in the

e ||

__,_._.—-"F.-.--l_:n_-.- =

P —

Fia. 111.

case of the virtual focus obtained with a convex lens, because the sum of
their powers d, +( —d,)=D.
Let the lens be —5 D and f; at 100 cm. ; then dg= =5 D -1 D= -6 D,
and 100/ —6= — 16:66 cm.; f, is therefore virtual and 16-66 cm. in front of
=

t

D

B
e, 112,
the lens. If light diverges from 100 em. to a =5 D lens, after refraction it
is divergent as if from 16-66 em. If convergent o a point 16:66 em. behind
a — 5 D lens it is, after refraction, convergent to 100 cm.

Magnification or Relative Sizes of O and I.—In Fig. 112, the object O
and the image [ sublend equal angles af C, the optical centre of the lens, since
both are always contained between the extreme secondary axes 4 4" and 5 B,
It is obvious that the triangles 4 ' B and 4" C b’ are similar.
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Therefore IC PBA
OC AB

Thus the relative sizes of O and I ave proportional to their vespective distances
from the optical centre of fhe lens, and this holds equally true for virtual images of
both Cir. and Ce. lenses,

The ratio B'A’/A B is the magnification, and denotes the linear increase
or decrease in the size of the image with respect to the object. Superficial
magnification applies to area, and is the linear magnification squared.

So long as O is beyond 2 I the I must be smaller than O, since it is nearer
to the lens. When O is at 2 I the size of I is the same as that of O, hecause
both are at the same distance in what are termed the symmefrical planes.
When O is within 2 F, I is larger, because it is further from the lens than O.

To calculate the size of I or of O the following formule are applicible to
all cases, whether the lens be Cx. or Ce. or the image real or virtual.

hy =f.2-, that is, Ir-g=h1f2 and f:1=h?f‘

I"iI="r*'1 1 N

Y,

where f; and f, are the distances of O and I respectively from the lens, ki, is
the linear size of O, and /i, that of I.  In the first formula /; and f; must he
in similar terms, but not necessarily that of f, ; %, will then be in the same
terms as f,, whether inches, em., ete. In the second formula &, and f, must
be in the same terms ; and &, will be in that of f,.

For example let O be at 2 M, and I -625 cm. long at 25 em. distance
from the lens ; then

hy =625 x 2 x 100/25 =5 em.

O is eight times the size of I. If O were at 25 em. and T at 2 M, then 1
would be eight times the size of O.

Let O, 4 yards long, be } mile distant from a +5 D lens; then the object
being at s, f,=20 cm. and

hy =4 x 20/440 =18 cm.

The answer here is in em., showing that O and I need not be in the same
terms, so long as /; and f, are.

When the I formed by a Cx. lens is virtual, it is always larger than O,
since it is always more distant from the lens. With a Ce. lens the virtual I
formed is always smaller than O, since it is always nearer to the lens,

The relative size of the object to the real and the virtual image formed
by a given Cx. lens is the same when O is as far beyond F in the first case
as it is within F in the second case. Thus, suppose O situated at 14 in,
and at 6 in. respectively in front of a 10 in. Cx. lens, it being in either posi-
tion 4 in. from F, then the size of the image in each case is 21 times that of
the object.
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Planes of Unit Magnification.—In order that O and I be equal in size
they must be equally distant from the lens, i.e., they must be situated in the
planes of unit magnification which, for real images, are the symmetrical
planes, which cut the axis at twice the principal focal distance. It can be
seen that then iy =h,. For a virtual I to be equal in size to O, it must be in
contact with the lens. This is true for both Cx. and Ce. lenses, so that the
planes of unit magnification for virtual images is zero. It may be remarked
that both planes of unit magnification are distant from F a distance equal
to F.

Becapitulation of Conjugate Foci.—Cx. Lens.

When O is at e I is real, inverted, infinitely diminished
compared with size of O, and at F.

When O is between wand 2 F 1 s real, inverted, diminished and between
F and 2 F.

When Oisat 2 F I is real, inverted, equal to O and at 2 F.

When O is between 2 F and F I is real, inverted, enlarged and between
2 F and o=,

When O is at F I is infinitely great and at o,

When O is within F I is virtual, erect, enlarged and on same side
as 0,

When O is at the lens I is virtual, erect, equal to O and at the lens.

Cc. Lens.

When O is at o I is virtual, erect, infinitely diminished com-
pared with size of O, and at F.

When O is within I is virtual, erect, diminished and within F.

When O is at the lens [ is virtual, erect, equal to O and at the lens.

Reciprocity of Conjugate Distances from F.—If the distance of the two
conjugates f; and f, of a Cx. lens be measured respectively from I, and F,
they are reciprocals of each other in terms of F. If f, is at a distance n F
beyond F,, then f, is (1/n)F or F/n beyond F,. Thus, for instance, if the
distance of O to F, is 2 I, then the distance of I to F, is F/2.

For M (magnification) = 1, the one conjugate must be at I + F, the other
being at F + F also. For M =2 the one must be at I+ 2 F, the other being
at F+F/2. For M=3 the one must be at F+3 F, the other being at
F +¥/3, and so on. Then we find the rather eurious relationship of the two
conjugates, that if the object is distant n F, the image, with a Cx. lens, is
distant n F/(n — 1), and with a Ce. the latter is at nF/(n+1). Thus if the
distance from a 5” Cx. lens is 5 x 4=20", the image is at 5 x 4/3 =6'66" ; in
the case of a 5” Ce. if the object is at 5 x 4 = 20", the image is at 5 x 4/5=4",

Let the distance of O to F, be called A, and f, to ¥, be called B; then
since n x 1/n=1, it follows that 2 I x I'/n = %, and A B=F=,
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Newton's Formula for Conjugate Foci.—Let the distances A and B be
as defined in the last article. Now the ordinary formula for conjugate foci is
I O | i 1

B P8 WLl

that is A B=F"

This last gives us an alternative formula for caleulating conjugate foei.
The ratio between the sizes of image and object k, and /4, is

h, ¥ B

s T

Sinee, with a given lens, I'2 is a constant, the value of A B, the multiple
of the distances beyond F of any pair of conjugates, is also a constant.

When employing these formula it is essential to remember that positive
quantities are measured forwards from F, and backwards from F, ; also that
in Ce. lenses F, is on the remote side of the lens, and ¥, on the object side.
A is always reckoned from I, and B from F,. These points make this
otherwise valuable formula difficult of application. To obtain f; or f, the
value of F must be added to A or B respectively.

Examples.—Thus, suppose f; to be 50 em. in front of a Cx. lens of 10 em.
focus, we get 40 B=10%=100, so that B=100/40=25, and f,=25+10
=125 cm.

If Ois 5 cm. high, we have &,/5= 10/40, so that 40 &, = 50, or ky=1-25 cm.

If an object 5 em. high be placed 8 cm. in front of a lens of 10 em. F, then
A=8-10= -2, and -2 B=10*=100, so that B=100/-2= - 50, and
fo= =50+ 10= - 40 cm.

ho/5=10/2, so that 2h,=50, or k=25 ecm. The image is negative at
40 em. and 1s 25 em. high.

If an object 5 em. high be placed 50 em. in front of a Ce. lens, whose
F=10cm., then A=50 - (- 10)=60,and 60 B=102=100. B=10060=1-66
and f, =166 +( - 10)= — 833 cm,

ha/5=10/60, so that 60k,=50, or &, =833 em. The image is negative
at 8:33 em. and is *833 em. high.

Geometrical Proof.—In Fig. 113, showing the object 4 £ and the image
B'4’, it can be seen that the triangles A4 B0 and A"B'0 are similar,
Therefore

OB _AB_MO _OF,
OB A'F A'F BF,
the triangles M O F, and 4’B’F, being also similar.

But O B=F+A4, OB =F+B,0F,=F, and B'F,=B8. Therefore

F+A F

e P
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Power of a Lens.—It has been proved that the power of a Cx. or Ce. lens
L is equal to the sum of the powers of any pair of its conjugate foci, whether
the image be real or virtual ; the following examples illustrate this law.

If the conjugates are 20 and 50 cm. Lisb4+2=+7D
5 N 5» 20 and — 50 em. y D=2=4+3D
” S w  — 20 and 50 em. R e
2 i o Band. 10 s 1/H+1/10=3/10
T T 43 5" and- - 10" " } 5—-1/10=1/10
i s e R = 1/5+ 1/10= = 1/10

Light Divergent.—Whether light actually diverges from some point
nearer than o, say 50 em., or whether parallel light is rendered divergent by
an added —2 D lens, the converging f,ﬂ‘&ct of, say, a +5 D lens is equally
reduced, and in both cases f, is at +5—2=31 =233 cm. behind the lens,
If f; were 14 em. (7 D) in front of a +5 D, or if - 7D were added to a +5 D,
the effect in both cases would be that the light, after refraction, diverged as
if proceeding from 50 em.

Similarly whether light diverges from 50 em. (2D) in front of a =5 D
lens, or whether a — 2 I) be added to the — 5 D, and the two combined act on

parallel light, the focus f, in either cases is at —5—-2= -7 D or 14 cm.
negative.

Removal of I.—To move the image from f, to some other position f,’
more distant or nearer, there must be added to the lens another Ce. or Cx.
respectively whose power is the difference between 1/f," and 1/f,.

Thus, supposing f, to be at 20 em. and f," to be 25 em., the required
lens is Ce. because f," is more distant than f,. The power necessary is
4-5=~1D. Ifitis required to place the image at 16 in. behind the lens
instead of at f,, which is 20 in., then the added lens must be positive of
1/16—1/20 or 80 inches F.

Position of O for given M.—Supposing it be required to find where O
should be placed from a given lens so that the image be a certain number of
times larger or smaller. For example, the lens is a 6 in. Cx., the object
2 inches long, and it is required that the real image should measure 18 inches.
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In this case if « is the object conjugate it follows that 18x/2 or 9x must be
the image conjugate, so that

1/6=1/c+1/92=10/9

whence 92=60 in. and » =62 in.

O, therefore, must be placed 63 in. from the lens, and the image will be
at 6% x 9=60 in. from the lens.

If a virtual image is required to measure 18 in,, then 1/9x is negative,
and the caleulation becomes 1/6=1/x—1/92=8/9z, whence z=5] in.

When either the object distance f, or the image distance f, is not known
the magnification M of the image is found respectively from

! =‘f:3 —F i M = ¥
| P il M f_F

These are deduced from the ordinary conjugate foci expression. M is
positive for a real, but negative for a virtual, image, and is expressed as a
fraction when there is diminution. By transposing the above and sub-
stituting f, for Mf,; a further variation of the original expression is obtained
for finding the position of O and I when the one has to be magnified a
certain number of times, such calculations being readily solved by the

formulse
Ja=FM+1) and £y =foM

As before, M is negative when I is virtual, with either a Cx. or a Ce.
lens, and it is expressed as a fraction when diminution is required.

Position of Lens for given Distance between O and I.—The calculation
of the position of a given lens between two given points, so that O be at the
one and I at the other, necessitates finding two conjugate distances such that
the sum of their reciprocals is equal to the power of the lens. Let ¢ be the
distance between object and image, and x represent the one conjugate ; then

E" = .]a;+ i 1__,. or 2 de= - dF

the solution of which involves a quadratic equation.

With a Cx. lens when d is not less than 4 F, the image is real and may
be at either conjugate, and there are two positions for the convex lens,
between object and image, which will fulfil the given conditions. In every
case d is the sum of the two solutions. When « is less than 4F, the shorter
conjugate is positive and is the distance of the object; the greater is
negative and is that of the virtual image, 4 then being a negative quantity.

When the lens is concave, 4 is positive but F is negative. The greater



120 sENERAL AND PRACTICAL OPTICS

conjugate is positive and is the distance of the objeet, while the smaller is
negative and is that of the virtual image.
Let F =7 in. and the distance between O and I be 36 in. Then

z? - 3bx= — 252

To find 2 we must add to each side of the equation the square of half the
coefficient of », viz. 36, that is 182=2324. This turns the whole of the left
hand side into a perfect square, so that it only remains to extract the square
root of each side, and solve the resultant simple equation.

Thus a?—36x4+324= —202+324 =72

12— 360+ 324 = o/T72. :
Therefore g—18=+85
and i=+854+18=26'5 or —-85418=95

The lens may be either 9+5 in, or 265 from O.
Let F=5 in. and the distance between O and I be 16 in.; then  is
negative, so that
1+ 160 = + 80
2%+ 162 4+ 64 = 80 + 64 = 144
extracting the square roots, we get » +8= +12

and =412 -8= 44 or —-12—-8=-20

The lens is 4 in. from the O and 20 in. from the virtual L
Let F be 5 in. Ce. and d, as before, 16 in.

.r"-: —_ iﬁ: = HD
%=~ 160+ 64 =80+ 64 =144
r —8= = 12

* =+124+8=+20,0or —12+8= —4.

Therefore the lens is 20 in. from O and 4 in. from the virtual 1.

If the strength of the lens is expressed in diopters it is better to convert
it into focal length for this calculation, but the two distances A and B can
also be caleulated by the following method, in which two numbers, whose
sum and multiple are known, have to be found. Thus

A+B=d, and A B=100d/D



CHAPTER IX
MAGNIFYING POWER OF LENSES

Apparent Magnification.—Hitherto those chapters on lenses have only
dealt with the ratio hetween the actual sizes of object and image (real and
virtual), which ratio may vary to an indefinite extent depending upon the
position of the object with respect to the lens. In the present article, how-
ever, we shall deal with what is known as the apparent magnification of the
object—or rather, its image—when viewed through a Cx. lens used as a
reader or loupe. In contra-distinction to the real magnification mentioned
above, the apparent magnuification is not subject to such great variations.

Magnification, as before mentioned, is expressed by the linear increase of
the image with respect to the object, the superficial magnification being the
square of the linear. Thus x 3 implies an inercase of three diameters,
while x 1/3 expresses a corresponding reduction, the image being one third
the size of the original object.

h.

'FI

[ .;dEIn'

Fic. 114.

Apparent Size of Object.—The apparent size of any object depends
solely upon the angle it subtends at either the nodal or anterior focal point
of the eye. Generally, the visual angle, as it is known, is taken at the
nodal point, but for our purpose in the present chapter it will Lbe more
convenient to work from the angle subtended by the object at the anterior
focus.

In Fig. 114 let 7 be the refracting plane of the eye, F| the anterior
focus, » the corresponding anterior focal length, and ¢ any object distant
d from F,. Then any ray drawn from the extremities of (), through F,,
must, after refraction at /, be parallel to the principal axis within the eye.
Therefore (7 £ on the refracting plane, will represent the size of the retinal
image of (), while ¢ S will denote the corresponding image when 0 is moved
to O at a distance d’ from /. Therefore the size of the retinal image is
proportional to the distance of the object from Fy, since ¢ and & remain

121
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constant, although O changes position. Actually the projection of € £ and
(/S on to the retina would give the images formed were the retina capable of
movement to and fro like an ordinary screen to receive the real image as in
the camera.

Now, in the ordinary way, when a person views a near object so as to
get the best possible general view of it, he unconsciously holds it, not at his
near point, but at the most convenient distance called the distance of most
distinet vision. This distance of most distinet vision varies, of course,
considerably in different individuals, depending upon age, length of eveball,
ete., but is taken, on the average, to be 10”. Further, in order to see the
object clearly at this distance the emmettropic person (whom we shall take
in illustration) must exert a certain amount of accommodation, namely, 4 D
for 107, and this, by increasing the refraction of the eye and shortening the
anterior foeus, slightly reduces the size of the retinal image as compared
with what he would obtain if no accommodation were used. In the latter
case, however, the image would be blurred ; but by means of a pinhole in
the anterior focus it could be sharpened up, and its size would then be seen
to be larger than that obtained in the usual way by accommodation. In
other words, if an emmetrope views an object at 10” th rough a +4 D lens,
the object is at the principal focus, the light emerges parallel, and all accom-
modation is suppressed. The result is an increase in the retinal image which
is simply the difference between what he obtained without the diminishing effect
of accommodation, and the reduced image seen with the necessary accommo-
dation, the lens being removed. But, provided the lens is so placed that its
optical centre—or in the case of a combination of lenses, its second nodal
point—coincides with the anterior focus of the eye, there is no magnification
due to the lens itself because, as will be seen from Fig. 114, it cannot, in
this position, alter the direction of the extreme rays F, R, F,8 governing
the size of the images () I and ) S. Thus if the lens be so placed (and such
is generally the case, F, heing some 15 mm. from the cornea) no matter
what its strength, if cannot alter the size of the refinal image, although, by
throwing it out of focus, there may be some appearance of magnification.
The only effect a lens, when used as a simple microscope, can have is fo enalble
the object to be seen wnder @ larger angle by overcoming the extreme divergence
of the rays from a very near distance. Thus if a watchmaker fixes a 2” lens
n front of his eye at the anterior focus, he sees an object 6 times as large as
he would without the lens at 10”. If he were able to see distinetly at 27
with the same accommodation, the object would appear the same size as
with the lens. It is necessary to assume that the same degree of accommo-
dation is used in all such cases in order to estimate the true apparent
magnification due to the lens. Light from an object at 2” is, however, so
divergent that it cannot be focussed on the retina by the unaided eye. If,
however, no accommodation be used at 10” or 2” the magnification would be
simply the ratio d,/d; (Fig. 114) in this case 5. But if accommodation be
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that is to say, the quantity 1 +d/F is the same as d/f,, where f, is the con-
jugate focus of .

This is the usually accepted formula to express the magnifying power
when the lens is placed at F,, or near to it. Since d is taken as 107
we have

M=1+10/F

Thus with a 42" lens M=1+10/2 = 6.
For lenses expressed in diopters,

10 0., 100 10D

M=1 .
tF 10/D 10

Thus with a + 20 D the M =1+ 20/4 = 6.
When the lens is very strong the formula may be simplified to
M=10/F or D/t

Thus with a 1/4” lens M =10/} =40 instead of 1 +40=41.

Fic. 115.

Magnification being practically the ratio between the distance of most
distinet vision and the focal length of the lens, it follows that the magnify-
ing power of any lens is smaller for a myopic eye whose distance of distinet
vision is shorter than 10”. On the other hand, the magnification is greater
for the hypermetrope whose position of most acute vision is greater
than 10%.

Thus for an emmetrope and a 2” lens where d =10, M=1+10/2 = 6.

For a hypermetrope, where d =16, M=1+16/2=9.

For a myope, where d=6, M=1+6/2=4.

It may be noticed in passing that the M is the size of the image formed
at I (Fig. 115) compared with the projection of O—indicated by the dotted
line—on to the plane of I at the distance d.

If the object be within the focus of the lens, and the eye be withdrawn
from the latter, the retinal image becomes smaller, but when the O is beyond
F, i.e., adapted for a hyperope, the retinal image increases in size as the eye
is drawn back. Should, however, the object be exactly in the focal plane,
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the retinal image undergoes no change, since the emergent light is parallel.
In all three cases, however, the field of view is reduced, less being seen of the
object than when the eye is close to the lens.

For an object to be seen at its best through a loupe or hand glass, it
should be placed slightly within the focus. Firstly, because, owing to the
curvature of the field, especially in strong lenses, only the central portions
are clearly defined, the object having to be moved nearer to bring the
peripheral parts into focus, whereas, if the edges are rendered clear by
bringing the object within the focus, a slight effort of accommodation will
render also the centre sharp. Secondly, it is almost impossible to view a
near object without involuntary accommodation, and therefore its exertion to
a slight extent renders the observation more comfortable.

Apart from the actual magnification obtained with a lens there are one or
two mental conceptions which influence the effect. Thus, since a Cx. lens
suppresses accommodation, the object is conceived to be more distant, and,
therefore, for a given retinal image, to be larger in size. Also a Cx. lens
reduces the divergence of the light, which is referred back by the mind to an
image whose distance enhances its apparent size in excess of the actual
caleulated magnification.

Needless to say the whole of the foregoing remarks and formule apply
equally to a combination of lenses like that found in an ordinary eyepiece,
provided the equivalent focal length and position of the nodal points he
known.

In the same way that magnification results from vision of a near object
through a Cx. lens, because the angle under which the image is seen is then
larger, diminution is obtained with a Ce. lens because the angle under which
the image is seen is then correspondingly smaller,

Finally, for any position of the objeet, and for any Cx. lens, withdrawal
of the lens towards the object at first increases the magnification, which
reaches a maximum when half way between the anterior focus and the
object ; M then decreases until, when the lens touches the object, the mag-
nification is the same as what it was when the lens was coineident with
the anterior focus, this being zero. This maximum, when a Cx. lens is about
mid-way between eye and object, holds good in all cases, but is quite inde-
pendent of the elearness of the image, which may either be blurred or sharp,
depending upon the strength of the lens. Similarly the greatest diminution
occurs when any concave lens is mid-way between eye and object, but in this
case, provided there is sufficient accommodative power, the image is clear,
These facts explain some of the phenomena in connection with spectacle
lenses.



CHAPTER X
CYLINDRICALS

The Cylinder.—A cylinder is a body (Fig. 116) generated by the revolu-
tion of a rectangle about one of its sides as an axis. Such a body consists of
two flat circular ends and an intermediate convex surface.

The eylinder possesses no curvature in any line parallel to the axis 4 B.
At right angles to the axis, in any plane parallel to the direction ' D, the
curvature is spherical and has its maximum value. In any other direction,
as K F, the curvature is that of an ellipse of which E'F" is an example. The
curvature is always less than that of the cirele €' [), diminishing as the direc-
tion departs from C' I) and approaches that of 4 .

Frs. 116.

Therefore any section of the cylinder taken at right angles to its axisisa
circle whose centre lies on the axis of the cylinder; a section in the plane of
the axis is a parallelogram, and one anywhere between these two is an
ellipse.

Fig. 117 represents a Cx. eylindrical lens. It is a segment of a cylinder
on the one side and has a plane surface on the other; it is formed by a
cylinder and a plane which intersect each other. The Ce. eylindrical lens
(Fig 118) has a hollowed surface on one side ; it is formed by a eylinder and
a plane which do not intersect each other.

A Cx. eyl. lens may be conceived as formed of a series of prisms whose
126
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bases are directed towards a central line and whose apices are outwards, In
the same way a Ce. eyl. may be considered to he formed of prisms whose
apices are directed towards a central line and whose bases are outwards.

Wl
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Fie, 117. Fic, 1184,

Meridian.—The term meridian in connection with lenses signifies a plane
passing through the geometrical centre of a lens, as shown in Fig. 119,

The Principal Meridians.—Since in the direction of its axis (Fig. 120)
a cyl. lens has no curvature, it has in that direction no refractive power; the

o
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Fra. 118.

directions of maximum curvature 4 L C, DE F, G I{ K, are at right angles to
the axis. The meridian of no refraction—i.e. the axis—and the meridian of
greatest refraction, at right angles to the axis, are termed the firo principal

[
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Fig. 120.

meridians, and these alone need be considered when treating of cyl. lenses.
The position of a cylindrical is indicated by the direction in which its axis
is placed, while its power is expressed by the maximum refractivity. By
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means of these two meridians the path of all rays passing through the lens
may be traced.

The Refraction of a Cylindrical, —A sph. lens has equal curvature and
therefore similar refractivity in every meridian, so that a point image of a
point object is obtained. In a eyl. it is only the meridian at right angles to
the axis that can form a focus, because a ray proceeding from a point and
meeting the surface in an intermediate meridian cannot meet the other rays
which pass through the same meridian.  All the light from an object point
refracted by a eyl. passes through two focal lines, one of which is at the focal
distance of the meridian of greatest refraction, and the other at . The
eylindrical lens has therefore two focal distances, and the image of a point
is not a point, as with the spherical, but two lines. But since the one focus
is at =, it need not be considered, so that we can say that the image of a
point formed by a cyl. is a line, as shown in Fig. 120,

Using for illustration a +5 D eyl. axis vertical, if the object be a point
of light the image will be a row of focal points along a Ver. line, which fuse
into a thin streak of light at 20 em. parallel fo the axis of the eyl., and this is
called the focal line. If the eyl. be rotated around its centre E the streak
also will be rotated with it.

In any intermediate mer. the refraction is such that a ray from a distant
point is deviated so as to meet all the other rays in the focal line, and the
deviation is less than in the maximum, and more than in the axial, meridian.
Thus although intermediate meridians of a eyl. are elliptical in curvature and
have no true foci, we can say that the power of a cyl. varies from 0 at the
axis to its maximum power D in the meridian at right angles thereto. These
intermediate powers can be expressed by a formula, as will be shown later.

The focal line is sitnated at the focal distance of the meridian of greatest
power, which, in this case, is the horizontal meridian, and the lens being
+5 D eyl, it 1s at 20 em. At any other distance the streak broadens out
into a band of light, and a section of the emergent light, at any distance from
the lens, is rectangular in outline.

Since the image of an object consists of the images of its various points
and each objeet point has its own line image, the complete image consists of
an infinite number of streaks, parallel to the axis, and narrow as the focal
length is short and viee-versa. The length of a streak is that of the aperture
of the lens in the meridian of its axis. We commonly refer to this streak
image as the focal line.

The refraction of a Ce. eylindrical is similar to that of a Cx., but, of
course, the focus and the foeal line are virtual, and are formed in front of the
lens. The shape of the refracted pencil, however, is not so apparent, hecause
the pupil of the eye acts as a very small stop, so that the focal line, on look-
ing through the lens, is so short as to appear little different from the point
focus of a concave spherieal, unless the eyl. be very strong. A single
cylindrical power is called a plano- or simple cyl.
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A square seen through a cyl. lens appears to be a rectangle of natural
size in the meridian of the axis, but magnified by a Cx., and diminished by a
Cc., across the axis.

If the cyl. is obliqgue the square takes the form of a parallelogram, the
obliquity of the sides being due to the fact that the light from each point
diverges from, or tends towards, a line parallel to the axis. The skew thus
given causes the light from each point on the object to appear to come from
points in space other than what they actually do. The series of obligue
parallel lines (or ellipses) which constitute the virtual object of which the
retinal image is formed results in vertical and horizontal lines appearing
oblique. This explains also the dipping of eross lines as a eyl. is rotated (vide
neutralisation). The apparent obliquity is lessened if the lens is near to the
object or very near to the eye.

Viewing a circular object, say a shilling, through a Cx. eyl. axis Ver., the
image is an oblate ellipse in form, having its minor axis vertical and equal to
the diameter of the shilling, With a similar Ce. eyl. the image is a prolate
ellipse.

Combined Cylindricals.—If two Cx. cyls. of similar power be placed in
contact with their axes corresponding in, say, the vertical meridian, the
cyl. power is doubled. If the second eyl. be at right angles to the first, the
result will be equivalent to @ sph, lens of the same power as the single eyl
In this case the greatest power of the one corresponds with the axis of the
other, and in all intermediate meridians any deficiency of power in the one
is supplied by the other, so that if the second cyl. be rotated from axis
vertical to axis horizontal the vertical image streak will be seen to shrink
antil, when the two axes are at right angles, it will have become a point of
light, or a complete image as the case may be. When the axes are oblique to
one another, the effect is that of some sph.-cyl,, whose two prineipal powers
vary with the angle between the axes. Two unlike eyls. are always equiva-
lent to some sph.-cyl. combination no matter what may be the inclination of
their axes, except in the case of the axes being parallel, when they constitute
a plano-cyl. The effect is the same whether the two cyl. powers be ground
on opposite sides of a piece of glass, or whether two plano-cyls. be placed in
contact. A lens having such powers is termed a cross-cyl.

The Refraction of a Sphero-Cylindrical.—When a sph. is combined with
a eyl,, the eurvature of the former is ground on the one side of the lens, and
that of the latter on the other. Such a ecombination is called a sphero-
cylindrical or compound eylindrical, in contradistinction to a plano or simple
eyl. Since there is no curvature and consequently no refractive power along
the axis of the cyl.,, only the power of the sph. exists in that Mer., whereas at
right angles to the axis there is the united power of the sph. and the eyl. As
with the plano-cyl.,, these are the two principal Mers. of the combination,
which alone need be considered in practice.
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Let us consider a +4 D Sph. +4 D Cyl. Axis Ver. and let the object be a
point at . All the light incident on the lens is so refracted as to pass
through a vertical line at 12:5 em. to which it 1s converged : thence, expand-
ing horizontally and converging vertically, it again meets in a horizontal
line at 25 em. The vertical meridian acts as a plano- Cx. lens, the horizontal
as a double Cx. lens, and these principal meridians have true foei. A ray
incident in any intermediate meridian is converged to a certain extent in
the vertical plane and to a still greater extent in the horizontal, the resultant
deviation being intermediate as to direction and extent. Hence, although an
intermediate meridian of a sphero-cyl. has no true focus, since a ray, passing
through it, does not meet the other rays passing through it, we can assign to
it a definite dioptral power as in the case of a plano-cyl. Such power depends
on the angular distance of the meridian in question from the axis, and it Is,
in all cases, somewhere between the highest and lowest powers of the com-
bination,

The action of a concave sph.-eyl. is similar to that of the corresponding
convex sph.-cyl., the only difference being that the foei and images are
virtual.

As with the simple eyl, the images at the two focal planes of an object of
definite size, consist of bands of light, whose width and length depend on the
powers of the lens and its aperture or diameter.

A section of the cone of light emergent from the lens is elliptical except
where the Hor. and Ver. lines are formed ; also at some position between
the lines where the cone of light has equal diameter in both Mers. producing
what is termed the circle of least confusion.

The Principal Meridians and Powers.—The power of the sph. alone is
that of the Mer. in which the axis lies. The power of the sph. plus that of
the cyl. constitutes that of the Mer. at right angles to the axis. For
examples see Tronsposing. The positions of the principal Mers. are easily
recognised when Ver. and Hor. ; when they are oblique their angular
positions can be estimated or determined (vide Neufralisation).

The Interval of Sturm.—Let a screen be held close behind a Cx. sph.-eyl.,
say +4 Sph. = +4 Cyl. Axis Ver. ; then the light from a small bright
source, some distance in front of the lens, is cast as a light patch on the
screen.  If now the latter be gradually drawn away from the lens (Fig. 121)
at the distance 125 em., which is equal to F of the combined sph. and eyl.
powers, a Ver. line is formed at F,; as the screen is still slowly receded
the line developes gradually into a Ver. (prolate) oval at €, an almost
perfect circle at B, a Hor. (oblate} oval at .4, and finally into a Hor. line
at F,. The sereen is then at 25 em., which is F of the sph. The space
between the two principal focal distances /| and F,, represented by the two
sharp lines, is termed the inferval of Sturm. As the sereen is still further
removed from the lens, the patch of light takes the form of an ever enlarging
Hor. ellipse.
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Calculations of the Interval of Sturm.—The two focal lines are at the
focal distances of the two principal meridians, and their lengths are pro-
portional to the diameter of aperture of the lens and to their distances from
the latter.

Let the lengths be I, and L,, the focal distances F|; and F,, and the
dioptrie powers D, and [),. The formuli are given in terms of F and D.

_[11].?2 = LEF]. LJ I ]1 = LE[ }2
Let d be the effective aperture of the lens, and & the length of the
interval of Sturm, i.e. the distance between F, and F, (Fig. 121), or the
dioptrie difference D, - 1),
Ly =dS/F,=d 5/, L,=dS/F, =d8/D,

The circular disec of confusion B divides & into two parts / and «
distant, respectively, from L, and L, proportional to their distances from
the lens.

S=a+b and bla=1,(L,=T;/F,=D,/D,

L

Fy B 7
S

Then E is distant from L, and L, respectively

SP. D,

_ SF, _ SD,
F P, Ditb;

and a=__ =
F,+F¥, D,+D,

1}:

B cannot be midway between [, and L,, but is always nearer to L. Its
size is
B=bL,S=aL,S
Its distance from the lens is
2F,F, _ 200

Example with +4 D Sph. < +2 D Cyl. having d=5 em.

0=

F,=1666 cm. Fo=25 em, S=25-16'66=8'33 cm.
Dwx B33 5w B33 =
= ' =16 : 5 == = 2'H em.
L, 55 166 em " 16-66 C
L ¥ T 3 11
B it L T R

T 2541666

G 66 25
C— ® 1666 % j:ﬂﬂum.

25+ 1666

333x 25 5Hx166
B: L= —— 1 *111. = —
833 833 2 1666 + 25
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When the combination is negative the interval of Sturm is also nega-
tive ; when the combination is mired, it is peculiar; thus when F,=10"
and F,= —-20%, and d=1" we find B behin! L; and negative. 8= — 30,
Li=+19, Ly=-3,b=+30, a= -60, 5= -3, U= +40.

If the power of shorter F is concave, B lies in front of L; and is again
negative. If the + and — powers are numerically equal, B is at .



CHAPTER XI
TRANSPOSING ANﬁ TORICS

Angle Notation.

Standard Notation.—The Standard angle notation for the location of the
various meridians of a lens (Fig. 119), refers to both the right and left eyes.
The numeration commences on the right-hand of the imaginary horizontal
line drawn through the lens when looked at from the front, the front of the
lens being that face of it remote from the eye of the wearer.

This notation corresponds with the tl]gﬂllﬂ]!ltilll’ﬂI division of the fucle
into 360 degrees. The upper right quadrant contains the angles between 0°
and 90°, and the upper left those between 90° and 130°. The notation need
not be earried beyond 130° (the half-circle), since a meridian eorresponds to
a diameter, i.e., to two continuous radii—for instance, 45° is the same
meridian as 225° ; 10° the same as 190°, etc. The vertical meridian 1s 90°,
and the horizontal is 0° or 180°, but is preferably indicated as 180°.

Other Notations.—Some trial frames and prescription forms are marked
differently from that shown in Fig. 119, and it frequently oceurs that the
optician has to transfer from one notation to another. The most commonly
met with are the bi-nasal and the bi-temporal methods, in which the zero is
placed at, respectively, the two nasal and the two temporal extremities of the
horizontal line of the eye, the numeration running upwards or conversely
running downwards. Sometimes the zero is placed in the vertical meridian,
the numeration proceeding to the right and left. Indeed, there are many
different methods of nofating the fwo eyes, but it is hardly necessary to
attempt to detail them all here. Fig. 122 shows a notation reverse to the
standard,

Suppose a prescription be written with the indicated cylindrical axis at
125° according to the notation of Fig. 122. To translate this to standard
notation, it must be considered how many degrees the required position is
from the horizontal or the vertical. In this case 125° in Fig. 122, is 35°
from the vertical on the right and, therefore, corresponds to 55° of Fig. 119.
If the location of the axis is 40° from the horizontal on the right, it would
be 40° in Fig. 119 and 140° in Fig. 122. The same mode of caleulating
applies if the cyllmh ical axis is mdlca,ted as s0 many degrees with a stroke
to show the direction of inclination. This last-mentioned method of axis

133
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indication is unfortunately used by many medical men, thus making the
reading of their prescriptions diffieult to the optician. Many oculists also do
not use the = sign, but write the combination with a dividing line, thus :—

+4 5.
+2:50 C. Axis 70
In all these methods it is, however, understood that the direction indi-
cated refers to the front of the lens, or the surface away from the wearer’s
eye.
Transposing : The Powers of Cylindrical and Toric Lenses.

Transposition of Sph. Lenses.—A Cx. sph., say, +6 D), can be made in
the form of a plano-Cx., in which all the power is on the one side ; as an
equi-Cx., in which the power is equally divided between the two surfaces ; as
a bi-Cx., in which the powers are unequally divided between the two surfaces;
or as a periscopic-Cx., in which the Cx. power on the one side is more than
6 D, but the total is reduced to + 6 D by the necessary Ce. eurvature of the
other surface. Similarly, a concave spherical can be made in the various

Fia. 122,

forms as indicated above. The change from one form to another, without
altering the refractive power of a lens, is called a fransposition. The power
of the one surface increases proportionately as that of the other decreases, so
that the number of possible forms for a given sph. power is endless ; but the
position of the optical centre varies with the different forms of a lens.

Transposition of Cyl. Lenses.—Lenses which contain a eyl. element are
susceptible of only two or three changes of form, and it is to such a change,
which does not alter the refractive powers of the two principal meridians,
that the term * transposition ” is generally applied.

When the two powers have the same sign, they are said to be of lile
nature, or congeneric ; when they are of opposite signs (the one+and the
other - ) they are of unlike nature, or contrageneric. A plano (or simple) cyl.
possesses no sph. element, but may be regarded as a sph.-cyl., whose sph,
element is of infinitely great radius, and it will be so treated in this article.

A sph.-cyl. has sph. and eyl. elements, and may be a eompound eyl , having
+ or —powers in both principal meridians, or a mired cyl., having a + power
in the one and — power in the other.
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A ciruss eyl is one formed of two similar or two dissimilar cyls. erossed at
right angles.

Powers and Principal Meridians.—The one principal Mer. of a sph.-eyl.
corresponds to the axis of the eyl,, and its power is that of the sph. alone ;
the other is at right angles to the axis of the eyl., and its power is the
algebraical sum of the sph. and eyl. Thus

The powers of +3 8. +2 C. Ax. 70° are + 3 at 70° and + 5 at 160°,

Those of +3 8. <=-10C. Ax. 110° are + 3 at 110° and + 2 at 20°.

Those of +3 8.==-3 C. Ax. 5% are + 3 at 5° and 0 at 95°.

Those of +3 S. = -5 C. Ax. 120° are + 3 at 120° and - 2 at 30°.

In the cross-eyl. the two principal powers are those of the cyls. them-
selves, each being in the Mer. corresponding to the axis of the other.
Thus the powers of +2 C. Ax. 40°S+5 C. Ax. 150° are +2 at 130°
and +5 at 40°. Those of +2 C. Ax. 70°< -4 C. Ax. 160° are +2 at 160°
and —4 at 70°,

Possible Combinations.—A cyl. combination may consist of two different
powers of similar nature,as +2 and +5, or — 3 and -7, or of two powers

+5C +35 +4C +585
s +30 35720
A B [

IF'ig. 123.

of dissimilar nature as +2 and =2, or +3 and - 4. They can be made in
three forms, viz., a cross-cyl. and two forms of sph.-cyl., but if the one power
is 0 it can be made only as a plano-eyl,, and in one form of sph.-cyl. If there
are two similar equal powers the possible forms are only those of a cross-cyl.
and of a sph.

The Various Forms of a Lens with Cyl. Element.— Where two unequal
powers in the two principal meridians are required, as +3 at 180° and +5
at 90°,

(¢) The + 3 needed at 180° (Fig. 123} can be obtained from + 3 C. Ax. 90°,
and the +5 at 90° from +5 C. Ax. 180° the axis of each cyl. being at right
angles to the direction in which the power is required, as in ./,

(#) The 3 needed at 180° can be obtained from +3 sph., which also
supplies 3 of the +5 D needed at 90° the balance of the latter being
obtained from +2 C. Ax. 130°, which gives +2 at 90° and 0 at 130°,

(¢) The +5 needed at 90° can be obtained from -+5 sph,, but this not
only supplies the + 3 needed for 180° but is 2 D too strong. To reduce the
latter to +3 D a -2 C, Ax. 90° is required, this giving —2 at 180° and
0 at 90° as in C.
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If the two parts of any of the forms (a) (4) (¢) be placed over one another,
the total combination is, in each ecase, +5 at 90° and + 3 at 180°, The three
forms are thus made up bhy—

(@) A cyl. of each of the two powers, the axis of each being at right
angles to the meridian where the power is needed.

(#) A sph. of the lower power and a cyl. of the difference hetween the
two powers, the axis corresponding to the meridian of least power. If the
lower power is 0, the sph. is also 0.

(¢) A sph. of the higher power and a cyl. of the opposite sign and of the
difference between the two, the axis being in the meridian of greater power,

Whether the two powers are of like or unlike nature, the number of the
eyl. is obtained by the algelraical sublraction of the power taken as the sph.
from that of the other principal power. Thus in the example the powers are
+3dand + 5, so that if the sph. 154 3, the eyl. is +2; if the sph. is +5 the
eyl. is —2. If the two powers are +2 and — 3, then, if the sph. is + 2, the
eyl. is =5 ; if the sph.is — 3, the cyl. is +5.

For — 4 at 60° and = 7 at 150°, the three forms are:

(@) —4 C. Ax. 150°< -7 C. Ax. 60°.
() =4 8.= -3 C. Ax. 60°,
(¢) -7 8.<+3C. Ax. 150°,
For —1 at 45° and +5 at 135° they are :
() —1C. Ax. 135° +5 C. Ax. 45°,
@) =18.=+60. Ax 15
(¢) +5 8. = -6 C. Ax. 135°
For + 3 at 120° and 0 at 30° they are:
(@) 0S.=+3C. Ax. 30°,
4 +38.<-30C. Ax. 120°,

Rules.—(1) o transpose a sph.-cyl. or plano-cyl. into andther form of sph.-
eyl. or plano-cyl.

The following apply to all cases, but when the original or the transposed
form is a plano-cyl., the one power being 0, the sph. may also be 0.

(2) The new sph. is found by adding algebraically the power of the sph.

to that of the cyl.

(¢) The new cyl. has the same power as the original cyl., but its sign is
changed and its axis is at right angles.

(2) To franspose o sph.-cyl. into a cross-cyl.

(1) The one eyl. of the new form has the same number and sign as that
of the original sph. and its axis is at right angles to that of the
original cyl.

(/) The other eyl. has its axis in the same meridian as that of the
original cyl., and a sign and number which results from the
algelraical addition of the powers of the original sph. and the original
evl.
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(3) To transpose a cross-cyl. into a spl.-cyl.

(¢) The sph. of the new form has the number and sign of the first
original eyl.

() The new eyl. has its axis corresponding to that of the second original
eyl. and a sign and number which results from the alyebivical sub-
fraction of the first from that of the second original cyl

Sinee either original cyl. may be taken as the first, there are two forms

of sph.-cyls. into which a cross-cyl. can be transposed.

Examples.—The above rules can he better appreciated by studying the

example at the same time. In the following examples, which illustrate all

possible combinations, the first is the mlgmul and those ff)“ﬁ‘nllltr are the
torms into which it can be transposed.

(1) +4 S.<+2C. Ax, 20°=
+68.=-20C. Ax. 110°
e Ay 110° =B Ax: 20

(2) -2508.©-150 C. Ax. 175°=
~ 400 8.+ 150 C. Ax. 85°
- 250 C. Ax. 85°~ 400 C. Ax. 175°

(3) +3508.<-250C. Ax. 45°=
+1008S.=+250C. Ax. 135°
+100C. Ax. 45°<4+3:50 C. Ax. 135°

(4) +38.©-3C. Ax. 105°=
+3 C. Ax. 15°

(5) +2:508.=— 450 C. _’L\:. }16°=
~2:00 8. =+ 450 C. Ax. 25°
+250 C. Ax. 25° <= -2 00 C. Ax. 115°

(6) —1:25 S.=+175 C. Ax. 160°=
+ (50 8.= =115 C. Ax, TO®
— 1250, Ax. 70° =4050 C, Ax. 160°

(1) +275 C. Ax. 95°
£ e 'jf_f. Ax. 5°

C. Ax B0°=+3 (. Ax. 1707 =
S.—=+10C Ax,. 170°
S.=1 0. Ax, 80°

50 C, Ax. 155°<— 250 (. Ax. 656° =
50 8.~ -3 C. Ax. 155°

50 5. <+ 3 C. Ax. 65°

= -2"25 (. Ax. 165°=
50 .'-. Ax. 165':’

50 . Ax.
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(11] +3-50 C. Ax. 120°=-0-75 C. Ax. 30°=
+ 360 S.=-4256 C. Ax. 30°
R T e e R B

(12) =1000 C. Ax. 180°Z=+2 C. Ax. 90°=
+28.—=-12 C. Ax. 180°
- 108.—=+12 C, Ax. 90

(13) + 3-50 C. Ax. 90 =+ 3-50 C. Ax. 180°
+ 3-50 3.

(14) -4 8.=
—4 C. = - 4 C. with axes at right angles,

Comparison of Original and Transposed Forms.—The two prineipal
powers and Mers. of the original form of a combination can be extracted and
compared with those of the transposed form, and they must be alike if the
transposition is correct. Thus, suppose —3 S. = +4 C. Ax. 90°. The two
principal powers are — 3 at 90° and + 1 at 180°. The power of the — 3 Sph.
15 in both principal meridians, while that of the +4 C. Ax, 90° is only at
180°; its axis, being at 90°, contributes no refractive power to that meridian,

L 0 —]7,
= e e S

A B {5

The two components separated are represented by 4 and P of Fig. 124,
When combined they are represented by (. The two forms into which they
can be transposed are

(@) +18.=-4 C. Ax. 180°
(0) +1C. Ax. 90°= -3 C. Ax 180°

Proof by Neutralisation.—Since a transposition simply assigns the needed
powers in a different way, as regards the two surfaces of a lens, and does not
change the refractive power of the combination, that combination which will
neutralise the original form will also neutralise the transposed forms. Thus—

() +18.= -4 C. Ax. 180° transposes into
(b) -3 8.=+4 C. Ax. 90°
(@) is neutralised by — 1 8 =+ 4 (. Ax. 1807 and these also neutralise (5) as
can be seen by adding them together thus—
(=35.T+4C. Ax. 90°%)+ (-1 8. +4 C. Ax. 180°%)

The 2 sphs.= —4 S, the 2 ¢yls. = +4 8.; -4 S5.4+4 8.=0.
It is never required in practice to give crossed eyls. for any combination,
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since the effect can be equally well obtained from a sph.-eyl., and at much
less cost. The best form to employ is usually a +Sph. < -Cyl, or a
- 5ph. = + Cyl,, since from these we obtain a certain periscopic effect with-
out additional expense.

Toric or Toroidal Lenses.

A toric lens is one having two principal powers worked on the same
surface with their axes at right angles to each other, as shown in Fig. 125,
The curvature of the lens along A B is, say, +3 D, while along €' D it is,
say, +3 D. It is, therefore, equal to +3 8. = +2 (€. and has the same
optical effects. The name is derived from the tore or arched moulding used
at the base of pillars. It can be illustrated by a bent tube or rod ; the side
of an egg or the bowl of a spoon resembles a toric surface.

The eurvature of a toroidal surface is spherical in the two principal
meridians, and elliptical in the intermediate ones. It can be either convex or

........

concave. Astigmatism of the cornea is due to the toroidal shape of the
latter.

Since the possible toric forms of & combination is exceedingly great, it is
usual to employ tools of a given base curve. Often an assortment is kept of
toric lenses having the one surface unworked, and on which any spherical
curve can be ground. The base cuive indicates the standard or fired power of
the toric surface. It is usually the lower of the two powers, but may be, and
occasionally is, the higher. In the following it will be taken as if it were
always the lower toric power.

Advantages of the Toric Lens.—The utility of the toric form is that by
its means the refracting power of a lens can more nearly be divided between
the two surfaces. Thus if +10 8. = 41 C. be required, instead of there
being + 10 8. on the one surface and + 1 C. on the other, it can be made
with +4 5. on the one surface anda +6 C. &+7 C. on the other. Or it
can be made with any other convex spherical power, the virtual cylindricals
of the toric surface being accordingly stronger or weaker, but always having
1 D difference between them. Thus, a strong lens as needed in aphakia or
high myopia can be made less thick and unsightly, and more nearly resem
bling a Dex. or Dee.  Another, and perhaps greater, advantage of the toric
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surface is that, with it, a sph.-cyl. can be made periscopie, if so needed, to
any extent, as shown in the following example. The advantages of highly
periscopic lenses are mentioned under Menisei.

Required +-50 8. = +-25 C. Ax. 90°. As a toric periscopic lens on a
Cx. base of € D, the combination would be

=550 5.
+ 60 C. Ax. 180° = +6:256 (. Ax. 90°

Conversion to Toric Form.—Toric tools or plano-torie lenses are usually
made on a base curve of either 3 D), or 6 D, or sometimes 9 I, the other
curve always being the sfronger by an amount equal to the cylindrical effect
required in the finished lens. The number of the toric tool or blank is
therefore simply the difference in the principal powers, since we always know
the wealer power to be either 3, 6, or 9 as the case may be ; thus a 2 D) tool
is one having a 6 D curve in one direction and 8 D at right angles ; or if the
series is on a 3 D base, the curvatures would be 3 and 5.

Therefore if a +185. = +1:5 C. were required in torie form with +6
base curve, a 1'5 tool would be used, giving on the Cx. surface powers of
+6 and +7'5. On the other surface —5 D sph. would be necessary in
order to reduce the principal powers to +1 D and + 25 D, as required in the
original lens. The result, therefore, is the same as that of an ordinary sph.-
eyl., but has the advantage of the periscopic form.

The series of tools being in pairs, the torie surface can be made concave
if the powers of the original lens are not suitable for a convex toric. For
example, the above sph.-cyl. could be made with =6 D and - 7-5 D powers
on the one side, the adjusting spherical on the other being +8:5 D. Here
a greater periscopic effect is secured with the same toric powers than when
they were convex.

To convert a sph.-cyl. combination into a toric form, it is merely neces-
sary to select the base curve and required tool, and then add to the other
surfaee that Cx. or Ce. sph. necessary to bring the powers to the requisite
strength. Due regard must, of course, be paid to the powers of the original
lens when selecting the base eurve in order to get the best result. If thisis
not done the result may be a periscopic little greater than what could be
obtained from the ordinary sph.-eyl, and on the other hand it may be so
deep as to render the lens elumsy or unsuitable for mounting in a frame.
Thus if —58. = —1 C. Ax. 45° be required in toric form, on a — 6 base,

+1 8.
-6 C. Ax. 135° < -7 C. Ax. 45°
would differ but little from the sph.-cyl. form of -6 S. = +1 C. Ax.
135%; and on a + 6 base, the sph. being —12 D, the lens would be thicker
and heavier with no great increase in advantage over: the ordinary
sph.-eyl. It is in Ox. sph.-cyls. where the toric is most useful, hecause
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generally only a very small periscopic effect can be obtained by ordinary
transposition. A toric surface may be expressed as fwo powers in certain
meridians, or as the fivo virfual eylindricals, which are contained therein, with
their axes at right angles and in certain meridians. The latter method is
followed in this article. It may be added that the usual base power is 6 D.

Rules for Conversion to Toric Form.

(1) Convert the combination into cross-cyls. with their axes.

(2) Find the difference between the two powers.

(3) The lower power of the toric surface is the base curve.

(4) The higher power is the base plus the difference found in (2),

(5) Find the spherical to be worked on the other surface to reduce the
powers to the originals as found in (1).

(6) Assign the axes of the torie to conform with those of (1),

For erample +1 Sph. = + 2 Cvl. Ax. 45° to a base curve +6 I,
i P )

(1) The combination= +1 C. Ax, 135° &+ 3 C. Ax. 45°,
(2) The difference is 2,

(3) The base curve 1s + 6.

(4) The other toric curve is + 8.

(5) The spherical is - 5.

(6) The axis of (3) is 135°; that of (4) is 45° i.e.

_:jS'l
+6 0 Az 135 +8 (. Ax. 45°

The same combination on a base curve of = 6 D,

(1) and (2) are the same.

(3) The base is - 6.

(4) The other toric curve is — 8,

(5) The adjusting sph. 1s + 9.

(6) The axis of (3) is 45%; that of (4) is 135°, i.e.

+9 8,
—B 0. Ax. 45° — — 8 U, Ax. 135°

The above rules seem somewhat complicated, but after a little practice
only (5) and (6) require any consideration. It iz useful to remember that

(@) With the base of same sign as the two powers required, the sph. is
the base less the lower power, and the base axis is reverse to the original
eyl. axis.

(6) With the base of opposite sign to the two powers required, the sph. is
the base plus the higher power, and the base axis is the same as the original
eyl. axis.

When the combination is mixed these last rules cannot apply.
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Advantages of Menisci.—Of course the advantages derived from the use
of periscopic sph. lenses apply also to toric lenses, which are merely deep
menisei possessing a eyl. element.

A periscopic Cx. or Ce. sph. is preferable to a Dex. or Dee. A +sph.
= —cyl. is better than a + sph. =+eyl. A concave surface near to the eye
prevents side reflections of light, allows of the frame being fitted closer,
and, what is most important of all, the ficld of clear view is widened by
the elimination of the obligue aberrations, coma and radial astigmatism.

There is one defect noticeable sometimes in torie and deep meniscus
lenses, especially if the powers be weak., The wearer complains of * ghost ”
or secondary image of any bright object such as a window. This is caused
in the same way as the multiple images in plane mirrors, since a weak lens
made deeply periscopie has its surfaces nearly parallel. Also the elimination
of oblique point aberration tends te render more prominent any residual dis-
tortion in the peripheral portions of the field, or when using the edges of the
lens.

Again, a deep Ce. rear surface is apt to act as a powerful Ce. mirror and
to produce magnified virtual images of the wearer’s own corneal reflections,
these being most marked when looking in the neighbourhood of bright lights.

In a meniscus lens the optical centre lies on the remote side of a Cx., and
on the near side of a Ce., with respect to the eye, so that the effect of the
lens 1s somewhat increased in both cases as compared with an ordinary lens
of similar dioptric number. But since the distance of the optical centre
depends largely on the thickness of the lens, any difference of effect resulting
from the toric or meniscus form is negligible if the lens be thin, asis usually the
case with spectacle lenses. It is, however, sometimes noticeable with strong
lenses. The term torie is often misapplied to deep meniscus spherical lenses.

Wide-angle or Periscopic Lenses.—The form of lens which allows of
best vision over a fair range, of say 50° or 60°, i.e., 25° or 30° on each side
of the axis, is one which eliminates radial astigmatism and produces a flat
field ; the two do not necessarily accompany each other, and the former is
the more important.

The subject has been treated by Ostwalt and Wollaston, and more
recently by Dr. Percival in his “ Prescribing of Spectacles” and by Mr, A.
Whitwell in the Opfician. The calculations, which are of a complicated
nature, are based on motion of the eye about the centre of rotation some
27 mm. behind the plane of the lens. The actual best forms as to the curva-
ture of the two surfaces vary with the power of the lens, with the p and with
the distance of vision ; it is, however, nearly always a deep meniscus. With
refractive indices between 1'5 and 1-54, for Cx. lenses up to, say, +8 D, the
one surface 1s abont =7 I} or about + 20 D ; for concaves the one surface
is either —7 D or —20 D added to half the power of the required lens.
These are only very approximate figures for distant vision ; the true figures
differ for every p, every power of lens, every distance of lens from eye, and,
moreover, for every distance of vision.



CHAPTER XII

ANALYSIS AND NEUTRALISATION OF THIN LENSES
AND PRISMS

Neutralisation.—Neutralisation consists of finding that lens (or lenses) of
opposite refraction and of known power (from the test case) which stops the
movement caused by the lens to be analysed.

A Cx. and a Ce. lens (Fig. 126) of the same power, when placed in con-
tact, have no converging or diverging eflect, the convergence of the Cx. being
counteracted by the divergence of the Ce, and incident parallel light
emerges parallel. Two such lenses, when moved in front of the eye, cause no

movement of the image of the object viewed through them, as ocenrs with a
plane glass,

Cx. and Cec. Lenses.—If an object is viewed through a lens and the lens
be then moved, the virtual image secen moves in the opposite direction

with « Cr. lens, and in the same divection with o Ce. lens.  If the lens is dis-
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placed downwards, a horizontal line is seen through a peripheral portion of
the lens, which is of greater deviating power than the centre, and the line
appears deviated in the direction of the apices of the virtual prisms of which
the lens 18 formed, that is, towards the edge of a Cx., and towards the centre
of a Ce. lens. The degree of deviation and the rapidity of movement of the
line is proportional to the strength of the lens ; also the deviation is greater,
as the part of the lens looked through is near the periphery. The apparent
motion of the object viewed, as the lens is moved, is due tothe fact that the lens
inereases gradually in prismatic or deviating power from centre to periphery. If
the line be first viewed through, say, the bottom of the lens, and this then
moved downwards, the motion of the image is continuously with or agains

throughout the journey. If, instead of the lens, the head is moved, an
143
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image seen goes with the head if the lens is Cx., and in the opposite diree-
tion if it is Ce. ; for if the head is moved, say, to the right it produces the
same effect as if the lens had been moved to the left.

Analysing Card.—Analysis and nentralisation are facilitated by the use
of an analysing card, as shown in Fig. 127, although, in its absence, any
clearly-defined straight vertical, or horizontal line, as the sash of a window,
serves the purpose. The card should be 18 or 20 inches square, with two
erossed black lines about  inch in width, running vertically and horizontally,
and for most work should be distant not less than 3 or 4 feet.

A square card viewed through a sph. is slightly increased or decreased in
size equally in every direction and (disregarding distortion) remains a true
square. 1f viewed through a cyl., axis vertical, the square is apparently in-
creased in size across the axis, by a Cx., and diminished by a Ce. ; the size is
not altered in the direction of the axis, so that the square appears a rect-
angle in both cases, Diminution caused by a Ce., and magnification cansed
by a Cx., disappear when the two of equal power are placed together.

Fi1c. 127. Fre. 128.

Determination of Cylindrical Element.—The first step in the analysis of
a spectacle lens is to learn whether or not it contains a cyl. element. A lens
having a sph. power only, on being rotated around its geometrical centre in
a plane parallel to the card, does not cause any change in the appearance of
the lines of the analysing chart, because its refractive power is alike in all
meridians, If the lens has a cyl. element the lines become oblique, as
shown in Fig. 128, where the dotted lines represent the black lines of the
chart as seen when the lens is rotated. This obliquity occurs because the
power of the lens is not the same in all meridians.

Determination of Nature of Sphericals.—If the lens has only sph. power,
the next necessary step is to learn whether it is Cx. or Ce. by moving the
lens horizontally while observing the vertical line, or vertically while
observing the horizontal line.

When the vertical line is first viewed through the centre of the lens the
part 4 B seen through the glass is continuous with the parts €' and D) seen
beyond its edges (Fig. 129). Then if the lens is moved, say, to the right,
A B becomes broken away from ' and D to the left if the lens is Cx.
(Fig. 130), and to the right if it is Ce. (Fig. 131). When making this test
the lens should be moved slowly in a certain direction, and not rapidly from
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side to side or nup and down. If the lens is held too close to the eyes the line
(" and /) beyond the edges cannot be seen, so that the best distance is about
& or 10 inches. If, however, the lens is a strong Cx. it must be held nearer
the observer’s eves, or nothing can be seen through it owing to the strong
convergence of the light, but the nature of such a lens can be at once recog-
nised both from its form and from the fact that the lines, seen through it, are
indistinet. Again, if held at a distance somewhat greater than its focal
length, for instance, if a 4 in. Cx. be held 107 in front of the eye, the light
will have erossed in the air, to enter the eye divergently, and the apparent
movement of the objeet when the lens is moved is the same as with a Ce.
lens.  What is really observed is an inverted aerial image of the objeet, but
the inversion of the chart may not he noticeable. Only very strong Cx.
lenses can, when held a few inches from the eye, form an aerial image suflici-
ently far away to be distinctly seen. The central thickness, however, of a
strong Cx. lens sufliciently indicates its character.

If the glass is plano, that part 4 B of the vertical line seen through the
glass remains confinuous with the parts € and D on either side ; no displace-
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ment occurs on moving the glass or on rotating it.  Also there is no move-
ment of either line on moving a prism in front of the eye, but both lines are
not continuous, nor do they remain sta tionary on rotation of the prism,

Neutralisation of Sphericals.—If the unknown lens is Cx., a Ce.
selected from the trial case, as near the power as can be Ju:IurerL and then tlu,
two held together are again moved. If the movement is still that of a Cx.

the power of the neutralising Ce. is insuflicient, and a stronger one must he
tried. If with the first neutm.lmlucr lens the movement of the two combined
is that of a Ce., the n-utralising lvus is too strong, and a weaker one must be
taken. A few trials will enable one to find a lens which, when placed in
contact with the unknown lens and moved, causes no displacement of the
line ; then the number of the neutralised Cx. equals that of the neutralising
Ce. To find the power of an unknown Ce. lens, a neutralising Cx. must, of
course, be used. Practice will soon enable one to judge, by the degree or
rapidity of movement, the approximate nentralising power needed, as well as
to appreciate such slight movements as oceur when neutralisation is nearly,
but not quite, effected. When nentralising, the lenses must be in actual
contact, because if separated the Cx. acts with inereased effect.

10
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The Principal Meridians of a Cylindrical.—If the lens contains a eyl
element the cross lines of the analysing card are seen continuous within and
beyond the edges of the lens, as in Fig. 132, only when the axis of the lens is
horizontal or vertical. The two principal Mers. then correspond in direction
to the lines of the chart. Such a position for a eyl. must be found in order
(2) to learn whether it is a plano- or a sph.-eyl, (}) to determine whether it
is Cx. or Ce., and (¢) to neutralise it. This position being found, the lens is
first moved vertically and then horizontally. If no movement is observed in
the one direction it is a plano-cyl. ; if there is movement in both directions
it is asph.-cyl,, or its equivalent, a cross-cyl.

Movement against indicates Cx. power and movement wifh indicates Ce.
power in that meridian. If there is movement in both Mers. they may be
both ageinst, both wifh, or the one against and the other with. The move-
ment in the one Mer. differs in degree or nature from that in the other if
there is a eyl. element.

The axis of a piano-cyl. lies in the meridian in which there is no move-
ment, The axis of the cyl, in a sph.-eyl, which has two positive or two

Fre. 132,

negative powers, is in that principal meridian in which there is the lesser
movement. When there are + and — powers the axis of the cyl. is also pre-
sumed to be in the principal meridian of lesser movement. 1In all cases the
axis of the actual cyl. might be in the meridian of greater movement,
because the same principal powers can be obtained in lenses of various forms.
(See Transposing.)

The angular position of the axis is the some as that of the neutralising eyl.
This can be determined after a little practice, with a fair degree of accuracy,
when the lens is held as when in use. With more aceuracy its numerical
position can be determined by holding the lens against the neutralising lenses
when the latter are in a trial frame, with the long diameter of the neutralised
lens horizontal.  The axis of the trial lens, being marked by a scratch, can
be read off from the notation of the frame.

There are several forms of inclinometers or axis-finders—that of Dr.
Maddox, for instance, is a most excellent one—designed for the purpose of
alding in the location of the axis of an unknown cylindrical spectacle lens.
A quick and fairly accurate method of locating the axis is by means of the
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protractor on the ““Orthops” rule. For real accuracy the procedure is as
follows :

Holding the lens and the neutralisers in position, the axis of the eyl. is
marked with a grease pencil on the lens by a line coinciding with the axis of
the neutralising cyl. ; also the optical centre is marked by a dot. The lens
is then placed on a protractor with the dot at the centre, the long diameter
of the lens being exactly horizontal ; the angular position of the axis is then
indicated on the protractor. Care must be taken that the same meridian is
covered by the marked grease line both above and below the central hori-
zontal line. When the axis is oblique and the lens is not in a frame, con-
sideration must be given as to which of the two faces of the lens is supposed
to be directed outwards, since the location of the axis varies accordingly.
The rule is that the less convex, or the more concave, surface of a lens is
placed next to the eye.

Neutralisation of Cylindricals.—To neutralise a plano-cyl. the procedure
is the same as with a sph., only that eyvls. of opposite nature are employed.
Care must be taken that the cyl. axis is always exactly vertical or horizontal,
and that the axis of the neutraliser precisely corresponds to it, In order
that this may be the case, confinuity of the crossed lines at the edges of the lens
maust be looked for, and constantly maintoined during the process of neutralisalion.

In a sph.-cyl. the lesser movement is that due to the sph. alone, while the
greater movement is cansed by the united powers of the sph. and the evl.
The lens being held with its axis, say, vertical, that sph. of opposite refraction
15 found which neutralises, in the Ver. meridian, the movement of the Hor.
line. This having heen achieved, the lens and the neutralising sph. are held
together, and the cyl. element is then nentralised with a eyl. awis vertical, of
opposite refraction, in the same manner as if the lens were a plano-cyl. The
rapidity and exactitude of the neutralisation depends, as with a plano-cyl.,
on the care exercised in keeping the principal meridians exactly puavallel fo the
fiwo lines of the cord, and the awes of the lwo eyls, eractly corresponding.

Neutralisation of a sph.eyl. can also be effected by neutralising each
principal meridian separately with a sph. or with a eyl. whose axis is placed
at right angles to the meridian that is being neutralised, the two powers thus
found being transposed into a sph.-eyl. combination. These methods are,
however, not so exact, especially for beginners,

Cross eyls., tories and obliquely crossed cyls. are all merely special forms
?f sph.-eyls. and so are analysed and neutralised in a similar manner to these

atter.

Expressing Sphero-Cylindricals.—Since any lens which has two principal
meridians can be put up in various forms, the neutralising comhination, while
correctly indicating the refracting powers of the lens, may not represent the
exact form in which it is made. It is always correct to express a combina-
tion as a sph.-eyl. with a sph. of the lower power,
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True Form of a Lens.—This can be learnt by (#) ordinary inspection,
(#) reflection from the surfaces, (r) the lens measure or spherometer, (d) by a
straight-edge which, when in contact, easily shows the difference between
Cx. and Ce. curvature.

The Scissors Movement.—On rotating a cyl. in a plane parallel to the
analysing chart the lines on the latter appear to make a scissors-like move-
ment, and if the rotation be continued, appear to move back again, the
amount of dipping being dependent on the strength of the eyl. Each line
appears to bend towards the meridian of greatest positive, or least negative,
refraction, so that they hoth rotate towards the axis of a Ce. or away from
the axis of a Cx. eyl, and since they incline towards each other, they are
never at right angles except when the principal meridians of the lens corre-
spond to them in direction.

The inclining of the cross lines is due to the prismatic formation of the
lens, the apparent displacement being towards the edges of the vivtual prisms con-
tained in the lens. Thus rotation is useless for determining the nature of a
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eyl. since the scissors movement is the same for both Cx. and Ce., the one
end of the horizontal line moving up and the other down, one end of the
vertical line moving to the right and the other to the left. For instance, a
Cx. eyl. axis Ver. and a Ce. eyl. axis Hor., both rotated, say, clock-wise,
canse similar movements of the cross lines, An attempt to neutralise by
“stopping ” the apparent inclinations might result in selecting for that pur-
pose another eyl. of similar power and nature, the two together making a
sph. lens.

Reversion of a Cyl.—If a eylindrical (Fig. 133), having its axis at, say,
60° when the one face is to the front, is turned over so that the other face
becomes the front, the axis is then at 120° (Fig. 134). If the one position
were 5°, the other would be 175° It is only when the axis is vertical or
horizontal that no change oceurs on turning the lens over. When the one
inclination 1s 45% or at 135° turning the lens over brings the axis to a posi-
tion at right angles to the former one. The change in the numerical position
of the axis, caused by turning an oblique eylindrical, is calculated as so many
degrees above or below the horizontal, or to the right or to the left of the
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vertical, and assigning its position accordingly ; or it is done by simply
deducting the numerical position of the axis from 180°, Thus, suppose the
axis 1s at 60°, this is 30° to the right of the vertical ; on turning the lens the
axis is at 90 + 30° = 120°, i.e., 30° to the left of the vertical, or more simply
by 180° = 60°=120°. The corresponding positions of the axis as the one face
or the other is in front are shown in the following table :

1st Position - 0° 100 200 307 40° 50" 60 ki 80" 90°

When reversed .. 130° 170° 1607 150° 140 130 120° 110° 100° 90°

Prisms.—The Base-Apex Plane.—As a prism, a sphero-prism, or a
decentered sph. is rotated in front of the analyser, it is found that, in a
certain position, there is « continuily of one of the lines within and beyond the
edges of the glass, as in Fig. 135, where the vertical line .4 B is continuous.
The direction of this line indicates that of the base-apex plane of the prism,
or of the prismatic element of the lens. If the Hor. line ' D is deflected
upwards, as to E F, the apex is then pointing upwards towards 4, and the
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Fre. 135,

hase is down towards £. If the deflection of €D is downwards towards
G I the edge of the prism is pointing downwards, and the base is up. If
properly marked, the indicating scratches of circular trial prisms lie over
A B when that line appears unbroken by the prism.

Neutralisation of Prisms.—The strength of a prism can be learnt by
neutralisation. The base apex line being located, the displacement of a bar
of the analyser can be neutralised by trying one prism after another from
the test case and placing it in opposition to the unknown prism ; that is,
placing the base of the former over the edge of the latter, until that test
prism is found which causes the bar to be seen continuous beyond and
through the two prisms, The number of the test prism, which neutralises
the unknown prism, indicates the value of the latter. By this method the
deviating wngle is veally neutralised, although the neutraliser may be numbered
according to its principal angle.

If the prism is combined with a sph. (or a sph.-cyl.) this latter must be
first neutralised. With the lens and the neutraliser held together, the two
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being geometrically cenfred, the prismatic element is located and neutralised.
It must be remembered that the smallest decentration, with respect to each
other, of neutralising Cx. and Ce. lenses, introduces considerable prismatic
etfect not actually existing in the lens which is under analysis., Therefore
the geometrical centres of all the lenses showld exactly coincide when any prismatic
element is suspected, or is being measured.

If the angular inelination of an oblique prism is needed the base apex
line, when located, should be marked with a grease pencil and the angular
position determined on a protractor, as with the axis of a eyl.

Points on Neutralising.— [t is essential that the front of the lens, i e., the
Cx. surface of a periscopie, or the more Cx. or less Ce. surface of any lens, he
held towards the observer.

A lens possessing sph., eyl. and prismatic elements should be neutralised
in that order. Practice is necessary to nettralise rapidly and correctly, and
it is well to commence with simple sphs., and then proceed to plano-cyls. and
finally to sph.-eyls. and other compound lenses.

If the sph. is strong compared with the eyl. it is difficult to appreciate
the latter until the sph. is partly neutralised. Similarly it is diffienlt to
appreciate a weak sph., when combined with a strong eyl., until the latter is
wholly or partly neutralised. When the two powers of a sph.-eyl. are
nearly equal it is not always easy to determine in which Mer. the movement
is the lesser, but this becomes easy enough when the lens is partly neutralised.

A simple prism may be mistaken for a plano, since neither causes move-
ment ; rotation is needed to distinguish between them.

It is necessary to guard against supposing a prismatic element to exist,
when it may be produced by holding the nentralising lens out of eentre with
the lens which is being tested.

Holding several lenses together is difficult, but is rendered easier if the
surfaces are fitted together, i.e. Cx. to Ce.

To determine very weak powers, or to determine whether neutralisation
is obtained, hold the lens or combination at arm’s length, and move in the
ordinary way; by this means the apparent movement of the object is
increased and enables very weak powers to be detected,

Strong Opposite Lenses.—It is difficult to get absolute neutralisation
with strong lenses, say over 10 D, there being always some slight move-
ment in the peripheral portion of the lenses, although near the centre there
may be practically none. This is due to the thickness of the Cx., or rather
to the interval between the optical centres of the two lenses. As shown in
Fig. 136 by the dotted lines, the two lenses actually constitute a Cx. men-
iscus, for, with the same radius of curvature, the total lens is one formed of
two intersecting circles,

The thickness of a Ce. lens in the centre, no matter how strong it be, can
be ignored, but this is not the case with a strong Cx. If the focal length of
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the Cx. is equal to that of the Ce., it is clear that ). of the Ce. is further
from the centre of the combination than is F, of the Cx. Parallel light inci-
dent on B is rendered divergent as if proceeding from F,., a point outside /',
and is therefore slightly convergent after refraction by . If parallel light
is incident on 4, it is converged to F,, a point nearer than F,, so that it is
still slightly convergent after refraction. Thus a strong Cx. and Ce, lens of
similar p and radius do not actually neutralise each other.

This can also be explained in another way. If the light be incident on
the Cx. it is converged, and the convergence is increased as it traverses the
thickness of the two lenses to an extent that the final Ce. surface is unable to
neutralise. On the other hand, if the light is incident first on the Ce. sur-
face it is diverged, but in passing through the Cx. some divergence is lost,
with the result that the Cx surface over-neutralises it and produces a slight
positive effect. Thus with either lens to the front, the result is the swme Cx.
power, but when the Cx. lens is in advance of the Ce. the ¢ffectivity of the
resultant Cx. power is enhanced. Again, if a ray of light originally parallel
to the axis traverses first a Cx. and then a Ce. of equal dioptric power, or vice-
versa, its passage in both cases is, in the Cx., at a part of the lens more distant

T, 1

Fic. 136.

from the axis than that of the Ce. and, therefore, where the prismatic element
is greater in the former. '

The Ce. being thin at its axis, its required radius for a given focal length
would be calenlated by the formula where thickness is neglected, while
that of the Cx. would need to be calculated with its thickness considered.
The +20 D from a trial case, being of a large diameter, is about -75 cm.
thick in the centre, and its radius would need to be shorter than that of the
—20 D to have equal equivalent power. Giving the same radius to each, the
true or equivalent power of the Cx. is weaker than that of the Ce. In order
that two strong opposite lenses should neutralise, the Ce. must be the more
powerful, the focal length of the Cx. being approximately one-third its thick-
ness longer than that of the Ce., which, however, is not the case when the
radii of curvature of the two are equal. In short, although a thick Cx. has
a longer equivalent focal length than a Ce. of similar radius and p, it is not
sufficiently so for the Cx. to be neutralised by the Ce. For a - 20 D whose
F= -5 em. to neutralise a Cx. having a thickness of 75 cm., the latter
would need have F=525 em., or D= +19, and if p=13 would require a
radius of curvature of 5125 em. 1n other words the back foci of the lenses
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mnst be equal. If, therefore, a Cx. and a Cec. do neutralise, the latter is
stronger, but the difference is quite inappreciable in weak lenses, and not of
importance in spectacle lenses, even if strong.

In modern cases of test lenses the concaves are of their indicated strength,
but the convexes are made to neutralise the concaves of similar numerieal
value. Up to 10 D the difference is inappreciable, but the + 10 D is only
9-8 D approximately, and the +20 is +18:75 D approx., the intermediate

Fic. 187,

numbers being of proportional nominal value. Whether there is good
reason for this arrangement is very doubtful indeed.

Strong Cx. and Ce. lenses may neutralise each other at the centre and
not at the periphery or vice-versa, with excess of either Cx. or Ce. effect at
the one or other; or there may be Ce. effect at the centre and Cx. at the
periphery, or the reverse. In such cases the lenses are not in contact either
at the centre or at the periphery (Fig. 157), and the phenomenon is due to
the inereased effect of a Cx. owing to separation. It is this separation that
renders the nentralisation of tories and deep menisei so difficult.



CHAPTER XIII
OBLIQUE CYLINDRICALS AND OBLIQUE SPHERICALS

Powers of a Single Cyl.—If a lens measure be placed in contact with
the maximum meridian M of a eyl. (Fig. 138) we obtain the highest possible
curvature from that eylindrical. Along the axis the instrument would indi-
cate 0, and between these two the recorded power would vary. Suppose
the two fixed legs touch atv d d, then the sag. of the central leg indicates the
power which is based on the formula »=d?/2 8 (vide The Spherometer), and
the curvature ¢= 2 S/d?%, where d is half the distance d J. If the sag were a
fixed quantity ¢ varies inversely with ¢* Let the instrument be turned so
that the legs lie on the meridian M, at an angle & with M ; then d/cos b=d,.
If now the sag were the same as before it is because the distance between the
legs is greater, curvature ¢, at M, bearing to the curvature ¢ at M the
relationship ¢,/e=d?/d;?, where d, is the new distance ; between the

My M i

central and one of the fixed legs in the meridian M,. But d,=d/cos b, so
that

€y _ .«E'T _ _{;q:;‘- b_ —_—

C ttrl‘ o

or =0 cos® b

Now the dioptric powers D at M, and D, at M, are directly proportional
to the curvatures ¢ and ¢, respectively, so that in the meridian 3/, the power
of the lens D; =D cos® I, or what is the same, D, =D sin® a where a is the
angle between M, and the axis. Similarly it can be shown that in the
meridian M, at right angles to M, the power D, =D sin® b, or D cos*a. If
we consider the angle a between a given meridian and the axis of a eyl the
power varies as sin® @ ; if we consider the angle # between it and the maxi-
mum meridian, the power varies as cos? b,

153
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Although we thus refer to the refractive power of a eyl. in any oblique
meridian, yet this latter does not cause a point focus. A cyl. brings incident
light to a line focus, parallel to the axis, and if a meridian of maximum
power be isolated by means of a stenopieie slit, so that the oblique meridians
are cut off, the line is reduced to a point, since the effective curvature in that
meridian is spherical, and the result is similar to that of an ordinary spherical
lens. If the slit be slowly rotated the meridians successively uncovered are
elliptical in curvature, and the point focus, first obtained, gradually widens
into a line parallel to the axis, showing that, although the effective part of
the lens is oblique, the effective curvafure is always that of the maximum
meridian. If the rotation be continued until the slit is parallel to the axis,
the line reaches its maximum length just as though the whole lens were
uncovered. Thus the only meridian capable of producing a true focus is the
maximum principal meridian, which has a spherical curvature. It is, how-
ever, as mentioned in Chap. XIIL, useful to assume that the oblique
meridians of a cyl. have certain powers relative to the maximum, and the
following is a brief summary of the necessary calculations; a distinetion

Fig. 139. Fic. 140,

must, however, be drawn between the incomplete line foci of such powers
and the point foci produced by spherieal curvatures.

Oblique Refractions of a Cyl.—Iig. 139 represents a Cx. eyl lens whose
axis Au. is vertical, and whose mlaximum power M is horizontal. Let this lens
he a + 5 D, and the object be a point at .. Any ray of light incident in the
meridian Az, central to the meridian M, suffers no deviation, it being normal
to the lens at hoth surfaces. Any ray incident in Mer. M is refracted to an
extent governed by its distance from the central point of Ax., such that it
meets all other rays, incident in that meridian, in a point in line with,
and 20 em. behind it.  Any ray, as b, incident in an intermediate meridian,
say that of 70° is refracted so as to meet all other rays, incident in the plane
bea, in a point in line with ¢, and also 20 em. distant. The deviation
suffered by the ray &, refracted in an intermediate meridian, is less than that
which occurs when refracted as ¢ in meridian M, both being equidistant
from the central point of Ax. The total image is a Ver. line.

[n the case of a sph.-cyl. (Fig. 140) a ray incident at b in an oblique
meridian is refracted by the sph. to a point on the principal axis, and by the
eyl. to a point in line with ¢, with the resultant deflection in the direc-
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tion &', so that it meets rays incident in a plane b ¢ « parallel to M in ¥, and
those incident in a plane parallel to 4z in ¢'; or if the lens be regarded as
consisting of crossed cyls., the deviation is towards both axes, resulting in
an oblique deviation towards ¢ in the first, and 4° in the second foeal line.

Let D be the maximum power of a cyl., D, the power in a given Mer.,
and D, that at right angles to D, ; let @ be the angle between the axis and
the Mer. of D;,. Then the powers of a eyl. in any pair of given meridians
are, as shown on page 153, found hy

Dy =1} ain®* a and D, =D cos® a

The power along the axis is 0, and at right angles it is D, so that the
total power of this pair of opposite Mers. is D4+ 0=D. Likewise the sum of

the powers of any pair of opposite Mers. is equal to D, for sin® « 4 cos®* a=1,
so that D sin® a+D cos? a=D, + D, =D.

Thus the powers of a +3 D. Cyl. Ax. 180°, at 20° and 110°, are :—
D;=3x'11696="35 D. at 20°; D,=3 x -88303=2'65 D. at 110°.

Let 4 ¥ and A4 Z (Fig. 141) represent the forces exerted, respectively, in

o p=1

Fia. 141.

the Hor. and Ver. mers. by, say, a 3-5 D. Cyl. Ax. 60°, Let H be the
horizontal and V the vertical effect, Now X V=4 Z=sin 60° and
X Z=4 V=cos 60° whence H=D sin® e =36 x -T5=2:625, V=D cos® a=
35 % *25=-875 and 2625 4 875=35=D.

In these calculations it is merely necessary to find either D, or D, since
the other can be obtained by subtraction from D. Thus if V="875, H=
3'5 — -875= 2625 and vice-versa.

Following are the approximate powers of unit eyl. in different Mers.
calculated as mentioned.

.chru-.-afmm.ﬁx,i' 0|5 |10]15]20]25)| 80 8 | 40 | 45 | 50 | 55 | 60 | 85 | 70 | == | 20 | 85 | 90 |
Proportional ) e N
Power a i

01 |08 07! 12 (18|25 | 8% | 42| 50 | 5% o775 82| 88| 0e | 97 | 09 10

To find the powers in any Mer. of a given cyl., multiply the decimal
corresponding to the angle between the axis and the Mer., by D of the lens.
Thus 4'5 D cyl. at 25° from the axis =18 x 45 =-81 D.
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Obliquely crossed Cylindricals.—If two cyls. D and D’ are placed with
their axes corresponding in the Ver. Mer. their combined Ver. power =0,
and the Hor.=D+1D’. If one or both eyls. be rotated, they are equivalent
to a combination of some two other principal powers. When the two axes
are at right angles the combination is equal to a sph. if D=1, and to an
ordinary eross-cyl. if D and D’ are unequal. It should he particularly noted
that, with any obliguity of the axes, two (or more) cyls. ave always equivalent fo
some other cross-cyl. whose ares are at right angles, and ave, therefore, also equiva-
lent to some sph.-cyl. The sum of the two principal powers D, and D, is

always equal to the sum of the individual maximum powers D and 1V,
that is j

D+D'=D,+D,

Not only the powers of the principal mers., but also the sum of the powers of
any pair of mers, at vight angles to each other =D+ D', Rotation of the axis of
one or both eyls., merely locates the refraction in varying quantities as

Fie. 142,

regards each of any pair of opposite meridians, and does not alter the total
power.

Let b (Fig. 142) be the angle between the axes of two eylindricals D and
17, of which D is the higher of the two. Let D, and D, be the two resulting
powers, D, being the higher. Let ¢ be the angle which the axis of D; makes
with that of D, the stronger original lens, and let d be the angle which the
axis of ), makes with that of I. Then angle b=c¢+4d. Now D, corre-
sponds with the axis of D,, and D, with the axis of D,.

From the foregoing we have D+D'=D, + D,
and D sin® ¢4+ D’ sin? d =D,, also Dcos? e+ D cos*d=D,
Multiplying these together we get
D, D, =D2 sin? ¢ cos® ¢+ 1 ? sin® d cos® d + D D’ sin® ¢ cos® d
+ D D’ sin® d cos® ¢

but  D®sin® e cos® ¢+ 1) 2 sin® o cos® d=2D 1) sin ¢ cos ¢ sin d cos d
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so that
DD, =D IV (sin? ¢ cos? d +sin® d cos® ¢)+ 2D D’ sin ¢ cos ¢ sin d cos d
=D D’ (sin ¢ cos d +sin d cos ¢)*

but sin ¢ cos d +sin d cos e=sin (¢+d)=sin b
therefore D,D,=D D’ sin® b
and since D;+D,=D+D’

we can, knowing the mulfiple and the swm of the two numbers, arrive at their
difference N, thus

N=D,-D,= V(D+D)=4D D" sinZ b

Then we get in the resultant combination

The higher power D. — []I+ 11 + \.
Wi 5

and the lower power I, D+D' ~-N
R o

D, is the spherical + the eylindrical; D, is the spherical; N is the
eylindrical.
The following relationships exist.
nWT f
e L

and D? B vz Nz

sin d cos®d  sin®e¢cos?e sin? b cost b

also Nsinccose=1 sin b cos b
Now from above Nigin®ecos®ce=D"2sin? b cos? b

=1V sin® & (D’ = I¥ sin® FJ}
s0 that

N2 gin? ¢ cos? ¢=D" sin* b (D, + D, — D = D’ sin? §)
=D, D sin* b+ D,D’ sin® b= D D’ sin? b — (D’ sin? })?
substituting D, D, for D D’ sin* b we get

N2 sin? ¢ cos? ¢= DIV sin? b + D,D’ sin? § - D, D, - (D’ sin® 5)?
{I} — D sin? §) {Jl sin? :’i-ll,}

Sinee sin? c+cos®c=1, N=Nsin?c¢+N cos® ¢
But N=D;+D,= (D, - I¥ sin? b) + (D’ sin* b - D)
That is N sin®? ¢+ N cos? c=(D; = D sin® &) + (I sin® - D,
And from above

N sin? ¢ x N cos? ¢= (D, - D sin® §)(D" sin? b - D,)

Then we deduce that
N sin? ¢=D' sin? b - D, and N eos? c=D; =D sin? b
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Now Nsincecose=D" sin b cos b
Therefore fined Nsinccosc¢ D" sin b cos b
N cos? ¢ JJl— . D’ sin2 b
or Er Nsin?¢ _1¥Vsin® b-D,
N it ccon: I oin inos b
But D' sinzd-D, LY sin® & DI sin2 b D
: =l - : _=tanb— — tanh
DY sinb cos b D" sinbeosd DDV sin b cos b g D, AL
So that fanipe (Dy = :][.':}_E,:a,u_ l
1

The value of ¢ is the angular distance of D,, the stronger resultant cyl.,
from that of D, the stronger original. We could find a formula for J, but it
iz unnecessary, and of course ¢ +d =10, The distance d’ of the axis of D,, the
weaker resultant, from that of D, the weaker original eyl., 1s found from

(D, - D’) tan &
D,

Now since (D, — D) tan b= (D, — D) tan b, it is an easy matter to confirm
the calculations, but care must be taken with the —signs. When D and D
are of similar signs d' is negative ; also both ¢ and d’ are taken as negative
when D and D' are of opposite signs. The two resultant axes must he 90°
apart, i.e. b—(c—d")=90° A positive measurement is towards the other
axis, and a negative one is away from it.

tan d' =

Example.—+3 C. Ax. 70° < +2 C. Ax. 20° D+D'=+5, b=50°
D, =415, D,="85, c=18° 18, ¢ being measured towards 1)’ from D). The
combination is + 85 8. © +3-30 C. Ax. 51° 42,

It will be seen that D )" sin? b=D,D,, i.e. 3 x 2 x -5868 = 4-15 x ‘85 = 3-52.

The sum of the maximum powers of the two original cyls., in this
example +5 D, is not changed by altering the position of the two axes with
respect to each other, for the sum of the two principal meridians of the
resultant cyls. is similarly +5 D. That is, D, + D,=4"15+-85=5 D.

Example.— + 4 C. Ax. 20°= — 2:75 C. Ax. 65°, D+ D' = +1:25, b= 45°,
D, =305, D,= —1'80, ¢=17° 15". The combination is —1-80 8. < +4-:85
C. Ax, 2° 45, or +3:05 8. = —4:85 C. Ax. 92° 45,

D,+D,= +305-1'80= + 1-25.

Here by calculation tan ¢ is a minus quantity, and the angle is measured
from the axis of I) away from the axis of D)’ instead of towards it.

Two Equal Like Cyls.—Here the calculation is simplified, for when
D=1, ¢=d, so that it is unnecessary to caleulate N or e. Thus

2 D sin? §/2=D, 2 D cos? b/2=D,

and, as stated, c=10/2
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Thus +4 D C. Ax. 10° = +4 D C. Ax. 60°
= + 14288 S.< +5-1424 C. Ax. 35°.

Two Equal Unlike Cyls.—Here also the calculation is simplified, for
D=-D,D+D=0, D;+D,=0, and N needs no calculation.

D I¥sin*b=D,D, = - D2sin*b=D,? or I,2; therefore D sind=D,, and
-IYsinb= - D,

cos b measured negatively from the Cx., for the resultant

tane = ; i : ;
1 +sin & Cx., or from the Ce. for the resultant Ce.
l +sin & measured from the Cx. positively for the resultant
or tan ¢= , : . :
cos b Ce., or from the Ce. for the resultant Cx.

The tweo measurements = 90°,
Thus +4DC Ax. 60° = —4DC, Ax. 120°
=+ 3464 C. Ax. 45° < -3-464 C. Ax. 135°.

Gra.ﬁhical Illustration of Formulz.

Draw A4 D (Fig. 143) in units of length =0, and A4 IV =1/, making the
angle A D=b. On A D mark of 4 H=D, - D, and prolong 4 D a

r./ﬁ
17

A H D F
Fre., 143,

distance D F=A4 H =D, —D so that 4 F'=1,. From £ drop £ H normal to
H, and K H=(D,- D) tan b. From I draw )@ equal and parallel to 4 E ;
connect E G and from & drop the normal G F to F so that ¢ F=FH.
\ s - b, — an b
Connect A . Then GAF=¢ and GF = tan #'={l l ﬂ] ya
1
To find b the angle between two eyls. D and IV in order to produce any
two effects Dy and D, we have sin® = D,D,/D IV, but of course it is possible
only when Dy + D,=D+ 1.

The Cylindrical Effect of Oblique Sphericals.

Let Fig. 144 represent the face of a Cx. lens placed normally to the light.
Let the effect of the refraction in the vertical plane be ignored and that of
the horizontal considered by itself. Rays of light parallel to the axis pass-
ing through ¢¢’ would meet in a point behind, and in line with, O.; similar
rays incident at d " and ¢ ¢ would meet in corresponding points behind the
lens, forming a radial line focus parallel to &/ B, Now if a beam of light be
incident to the lens obliquely in the vertical plane, it is so refracted that the
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focal line is nearer to the lens and inclined to the principal axis in proportion
as the incidence of the light is obligue.

Again, considering the vertical plane by itself, the refracting effect is to
produce a tangential line foeus parallel to 4 A4°. The tangential line meeting
its corresponding radial line combine to form point foei for rays parallel to
the prinecipal axis, but when the incidence i1s oblique the two do not combine,
the tangential focal line lies nearer to the lens than the radial.

Thus with normal incidence of the ray there is a point focus of a point
source in the foeal plane ; with oblique incidence a point source gives rise to
two foeal lines, the tangential at a shorter distance than the radial and both
within F. This, as an aberration, is called radial astigmatism (q.v.).

Now since a spherical lens acts with an astigmatic effect on an oblique
pencil of light, a spherical held obliguely to the incident light acts as if it
were a sphero-cylindrical lens. When a spherical lens is held upright,
parallel to a sereen, and at its focal distance, a luminous point on the axis
will have a point image on the screen. If now the lens be rotated around,
say, a horizontal axis, the image becomes confused and drawn out as if a

Fic. 144.

cylindrical had been added to the spherical. Two bright focal lines are
formed on the screen when the lens is held at the proper distance for each.
The second focal line is, in this casec, vertical, and slightly within the focus
of the lens, the first line being horizontal and still nearer to the lens. Thus
the effect produced by obliguity of a spherical is that of a slightly stronger spherical
combined with o cylindrical whose axis corresponds to the wris of rotation. The
refraction is therefore inereased in both meridians, but mostly in that at right
angles to the axis of rotation.

The increase of power in the meridian of the rotation is owing to the fact
that the light has to pass through a rather greater thickness of lens when the
latter is oblique than when it is placed normally. The increase in power in
the meridian at right angles to the axis of rotation is due partly to the same
canse, but is much enhanced by the increased obliquity of the light to the
lens surface. It is this increase of power which enables some people who are
astigmatic or under corrected to see hetter by looking obliquely through
their glasses.

In Fig. 145 let a represent the angle of rotation of the lens, /' the focal



OBLIQUE CYLINDRICALS AND OBLIQUE SPHERICALS 161

length, and F; and F, the effective focal lengths of, respectively, the
meridians of greatest and least power. A B is the principal axis of the lens,
and €' D is the secondary axial ray on which the focal lines are formed. The
pencil of incident light is presumed to be parallel to €' D, so that rays as d
and ¢, or d" and ¢, incident in planes parallel to the axis of rotation, meet
each other to form the radial focal line F/,. Raysas{and #, or ¢ and ¢,
incident in planes at right angles to the first, meet each other to form the
tangential focal line ;. The angle of rotation e is that between (' D and the
principal axis, and b is the angle of refraction at the first surface. The
distances of F, and F, are found from the following formul:e,

e sin b —sin b

]'11 s 1‘1 - ﬁi]! = Sill !.1 o I"1 s
4 sin (e—h) 7 sina cos b—sin b cos «
F,= 8 e and F,= i s el F, cos? a
: 7 pcos b—cos o jeos b-cosa °
or
D= D (e cos b —cos a) g D _D(pcosb—cosa)_ D,
po=1 ' (p—1)cos®a  cos®

"'/—\\ = ”f’g F

Therefore with a distant source of light, if the two focal distances be
measured, the angle of rotation of the lens can be fouud from the equations

F, I__-. D, lJ = C0s°

When p=15 simplified approximate formule are obtained by substitution,

2 —sin® a =1 X
/ for — B=2 _ which hold good for small

in those given, of .
2 [t Ccos bh—cos @

angles. They can be written
F,=F (3 -sin? a)/3 F;=F, cos’ a
D, =3D/(3 - sin® «) D;=D,/cos? a
Examples.—A 10" Cx. lens is rotated 20°;

F,=10(3 -°117)/3=961  and  F;=96x 883 =5848"
11
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If a +4 D be rotated 20°
D,=4x3/(3="11T)=53 and D, =4-13/-883 = 4.68

Sinee D, does not vary greatly from D, the increased or cylindrical effect
produced by obliquity of a spherical lens is

C=D,-D,=D/cos? « =D =D tan? a,

Table of Cylindrical Effect of Oblique Sphericals.

The following table gives the approximate effects obtained by rotating a
1D lens; the effect on other lenses is proportional. The rotation is
supposed to be around a horizontal axis,

Angle of | F, Fy Sph.-Cyl. Combination. | Cyl. rotated

Rotation. | Ver. Mer. Hor. Mer. D, D, - D or D;. |
b 99 100 . 1:00 = 001 1-01 -
10° 96 99 101 = 003 104 |
15° i 91 98 1:02 <= 0:07 1:09 .
20° 84 96 1-04 = 016 1-20 !
o52 (ki 94 1:06 = 0:24 1-30
30° 70 91 109 < 0:34 1:43
352 59 88 1:13 = 0:5] 1:70
40° a0 86 1:16 < 0-84 2:00
45° 42 83 ; 120 = 1:20 2-40

| |

The effect increases rapidly with a greater obliguity.

The effective power of a cylindrical rotated around its axis is found by
the same formule as for D, and F,. It is, in effect, a stronger cyl. If it is
rotated across its axis its effect also is that of a slightly stronger eyl. If a
sph.-cyl., both powers being of similar nature, be rotated round the axis of
the eyl., the eyl. effect is increased. If rotated round its meridian of greatest
power, the sph. effect is inereased, and the cyl. decreased. A rotation oblique
to the principal Mers. results in a new combination altogether,



CHAPTER XIV
OPHTHALMIC PRISMS

The Deviation caused by a Prism.—When a glass, possessing a prismatic
element, is rotated around its geometrical centre, the base apex plane and
the edge of the prism are similarly rotated. If the cross lines of the chart
A BEC D (Fig. 146) be observed they, being deviated towards the edge of
the prism, move around with the latter, the junction Z of the cross lines
being deflected towards the edge of the prism. As the glass is rotated the
vertical line moves horizontally and the horizontal line moves vertically, but
the two always remain at right angles to each other,and do not become dis-
torted as when a eylindrical is rotated. The movement is the same whether
the prismatic element be derived from a prism or from decentration.

£

B
Fie, 146.

Ophthalmie prisms are presumed to be fhin, i.e., not exceeding, say, 20°
principal angle.

The Notation of Prisms.

Principal Angle.— The numeration of prisms according to the principal
angle (i.e. its form) is similar to the numeration of lenses according to their
curvature. Slight differences cannot be easily recognised, and the true
optical effect is not indicated. Two prisms of, say, 3° the one of p=15,
and the other p 1+54, are both prisms of 3°, but their optical properties are
not the same.

Angle of Deviation.—The angle of deviation indicates the true optical

value of the prism, it being the result of the angle of inclination of the two
163
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refracting surfaces and of the refracting power of the medium, with both of
which it varies direetly. This system has the drawback that the angle itself
is inconvenient to measure in practice. The unit is a prism of 1° deviation
(1°d).

Relationship of the © and the °d.—If p=1-5, 1°=1/2°, but the °d
increases with respect to the © as the p i1s higher. The number of degrees in
the deviating angle of a prism being about half that of its principal angle, the
°d is practically double the value of the °. Therefore, if two prisms of the
same strength be numbered respectively in the two systems, its number in
°d would be about half that in °. In the following paragraphs, however, juis
taken as 152, and, therefore, the relative values are slightly less than two
Lo one,

Prism Diopter.—This prism notation, introduced by Mr. Charles Prentice
of New York, being based on the linear deviation itself, presents many
advantages. The unit is the 14, which is the strength of a prism that causes
a deviation of 1 em. (on a tangent) at a distance of 1 metre. The deviation
is, therefore, 1 in 100, and NA/100 =tan . Separate prisms, numbered in
prism diopters, when placed together are not, however, exactly equal to the
sum of their powers. This is due to the fact that, the deviation being
measured on a tangent surface, equal inerease in the linear deviation does
not result in a corresponding increase of angular deviation. Thus 1A is
equal to 34" 221" and 104 =5° 45, but if 10 single 1A prisms were com-
bined the total angular deviation, caused by them, would be 34" 221" x 10 =
5% 43" 45", The difference is, however, so very inconsiderable, especially in
the weak prisms needed in spectacle work, as to be of no practical
lmportance.

The A is nearly equal to the ® when the glass has p=1'54. The 1° has
then -54° deviation or 32° 127, and the tangent included by such an angle at
1 M. is 94 em. That of the A being 1 em., there is a difference of about 6.
When p=1-54, the principal angle required to produce 1A is 1° 3% If
p=1:575, the °= A, for -575° = 34" 30”, the tangent of which is -01. When
p=152, the °=-94, and this is the refractive index of the glass usually
employed. It must, however, be remembered that these values can only be
considered true for small angles such as oecur in the optics of spectacle
work.

Relative Values.—The relative values of the three units mentioned, in
terms of the deviation they cause at 1 M., are, the ®°=-9; the A=1 ; the
“d=1-745, or say 1'75. Their equivalences are as follows :—

1° = -52%] = -9A
1A = 57% =1-1°
1°d = 1-7454 = 1-9°

Calculations in Prism Measurement.—Calculations with prisms can be
made as follows, but for degrees and degrees of deviation, while sufficiently
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accurate for practical purposes, they are not exact, since tangents of angles
are used in place of angles themselves.

Let P represent the power of the prism, M its distance in metres from
the object viewed, C the deviation in centimetres, and K a constant for each
system of prism notation. Then

C=PMK.
For the ° C=PxMx -9
For the @d C=PxMx175
For the A C=Px M.

Thus at 3 metres, the deviation caused by a 4° a 4°d, and a 44
respectively is
4° x3x 9 =108 em.
4% x 3 x 1'756 =21 em.
44 x3=12 cm.

If the deviation caused by a prism at four metres is 5 cm., the prism is

W oqis, s O ___aod. or 2-14BA.
4 %9 4 4% 175 i 4

The distance at which a prism of 5° one of 5°d, and one of 5A respec-
tively causes a deviation of 15 em., is
15 15

5} 1
=333 M. =176 M. s
A% % 9 5°d x 1-75 o

;|

_‘123 M.

Prism Nomenclature.—A prism placed in a spectacle frame with its base
towards the nose is termed 4+ or base in, while a prism placed with its base
towards the temple is termed — or base ouf. A prism is called forizontal or
vertical according as the base-apex line is horizontal or vertical respectively,

Conversion of Prismatic Values.—For conversion from one system of
prism notation to another it is only necessary to remember the relative linear
deviation that each unit produces at 1 M., p being 1-32. Thus

1° =4 x-9=36A, or 4 x -9/1-75 = 206°d
4A = 4/-9 = 4-44°, or 4/1-75 =228°d
$°d =4 x 1'75/9=T7T7% or 4 x 176 =74

Centrad.—Another prism unit is the eentrad, which causes at 1 M. a
deviation of 1 em. on the arc of the cirele. The deviation is again 1 in 100,
and the difference between the arc and the tangent of small angles being
negligible, the centrad and A may be considered equal. A given prism
numbered in A would be of fractionally higher number than if numbered in
centrads. The centrad more nearly agrees with the metre angle (which is
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measured by the sine of the angle) than the prism diopter, because there is less
difference in value between the sine and the are than between the sine and
the tangent. It is, however, very much more inconvenient to measure on a
curved than on a flat surface, and the centrad has never come into general
nuse. NA/IQO=are d. Caleulations for centrads can be taken as the same as
for A's.

The Metran.—Another unit prism suggested by L. Laurance is the
metran. This is a prism which causes a deviation of 3 em. when placed in
front of the eye at one metre from the scale. It has, therefore, about 1-75°
(or 1° 457) deviation, and is the same as the metre angle for the average inter-

pupillary distance of 2% in. or 60 mm. The symbol is thus 4 A .

False Images of a Prism.—On looking at a candle flame through a
prism a second fainter image can be seen, which is often a source of annoy-’
ance to the wearer. This image is formed by internal reflection of some of
the light incident on the prism from the flame, and is projected parallel to
the base-apex line under an angle about five or six times the deviating angle
of the prism, so that in a strong prism it lies too far away to be observed
unless specially sought for. In his work ¢ The Clinical Use of Prisms,”
Dr. E. E. Maddox indicates that it can be utilised for the exact horizontal or
vertical adjustment of the base-apex line of weak prisms by noting that the
direct and the reflected image are in the same horizontal or vertical plane,

Measurement of Prisms.—The measurement of the principal angle of a
prism is goniometry, that of its deviating angle is prismetry.

Determining the Principal Angle.—The principal angle of a prism can be
roughly measured by enclosing it between the legs of a pair of compasses and
measuring the angle so obtained on a protractor or by any instrument made
for the purpose. A goniometer, consisting of a pivotted arm, at one end of
which there are two legs which rest on the face of the prism, serves the same
purpose, the other end indicating the angle on a scale. It can also be deter-
mined by the pin method described further on in Chap. XXVIIL., and most
accurately of all by the spectrometer described in Chap. XXIII. Also, without
much error, for weak ophthalmic prisms, the fungent scale can be, and is,
generally employed.

Determining the Deviating Angle.—For this the specfromefer method
(Chap. XXIIL.) is the true one ; an approximate pin method iz described in
Chap. XXVIIL. The fangent scale and neutralisation (Chap. XII.) methods
are the practical ones for thin prisms.

The Tangent Scale.—A tangent scale, shown in Fig. 148, constitutes the
most convenient method of measuring ophthalmic prisms. It consists of a
card, say, 12 inches wide and 30 inches long, sealed so that the intervals
between the divisions represent the tangents of the angles of deviation, and
was originally designed by Dr. Maddox. The intervals vary in size with the
distance at which the card is used.
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The line A ' (Fig. 147) is looked at through the prism, which is held
sufficiently low for the figures on the card to be seen over it, the base being
directed towards 4 while the edge points to B. If the line 4 B is displaced
upwards or downwards the prism must be rotated in a plane parallel to the
card until 4 B is continwous and seen unbroken through the prism. The base-
apex line being horizontal, the horizontal deviation is greater than with any
other position of the prism in a plane parallel to the card, and therefore the
number towards which the deviated part of A4 (' points indicates the pris-

A o e oy
a /

Fra. 147

matic power of the prism in degrees of deviation. (zenerally, however, the scale
is so arranged as to read prism diopters or degrees. The deviation caused
by the prism varies if its position departs from that of the minimum devia-
tion ; consequently, when A I is unbroken, the prism must be rotated on its
axis in order to secure minimum deviation, this being the numerical strength
of the prism. Thus, in Fig. 147, the prism is presumed to be in the position
of minimum deviation, and the indicated number is 3, but if the edge of the
prism were turned either towards or away from the scale, the indicated
deviation would be greater than 3.

e e e ——
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Fic. 148.

If the prism is combined with sph. or cyl. powers, these must be
neutralised before the prismatic power can be measured on a tangent scale,
care being taken that the geometrical centres of newtralising and neutralised
lenses cxactly coincide ; otherwise a false measure of the prismatic power is
obtained.

A tangent scale arranged for one system could be utilised for others by
holding the prism at the proper distance. Thus, the intervals of the
“Orthops ” scale (Fig. 148) are 3'5 em., so that used at 2 M. the numbers



168 GENERAL AND PRACTICAL OPTICS

indicate degrees of deviation, and at 3:5 M. prism diopters. If used at 4 M.
it serves for ordinary degrees.

Another Tangent Measurement. — The deviation of a prism can be
measured by the following modification of the ordinary tangent scale.
Parallel light is passed through a suitable Cx. cyl. and brought to a sharp
focus as a vertical line at the zero of a tangent scale. The prism is then
introduced, quite close to the cylindrical, with its edge towards the zero and
at right angles to the horizontal line ; the sharply focussed line of light is
then deviated to some number on the scale, which indicates the value of the
prism. This method is suggested by Dr. Maddox.

Obligque Prisms.

Direction of Deviation.—A prism so changes the direction of light that
an object viewed through it appears in a different position from that which

Fic. 149.

it really occupies. The deviation is parallel to the base-apex line and
towards the edge of the prism.

If a cross bar be viewed through a prism held with base-apex line hori-
zontal, the vertical bar is displaced horizontally to an extent dependent on
the strength of the prism, and there is no vertical displacement of the hori-
zontal bar. If, now, the prism be rotated a few degrees in a plane parallel
to the card, so that the base-apex line is oblique to both bars, the horizontal
deviation becomes less, and a vertical deviation is introduced (Fig. 149). If
the rotation be continued, the horizontal deviation eontinues to decrease and
the vertical to inerease, until when the base-apex line is vertical all the devia-
tion is vertical, and there is none in the horizontal plane. The maximum
effect d of the prism is always in the base-apex plane, and when the latter is
oblique, its effect can be divided into V, a vertical, and H, a horizontal
component, which are equal when the base-apex line is at 45°.
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Indirect Effects.—Suppose V to represent the vertical and H=H’ the
horizontal forces of a rotated prism. Let P= 0 () represent the power of the
prism, and # the angular rotation of its base-apex line from the horizontal,
Then, since sin »=V/P and cos r=H/P, V=P sin » and H=P cos . Thus
let the base-apex line of a 5°d prism be at 20° from the horizontal ; then
V=5x3420=1'71° and H=>5 x *9397 = 4698°. If the hase-apex line is at
45° a 64 has V=6 x'T071 =4-24A and H=6 x ‘7071 = 4-24A,

Given a 4°d prism, the position of the base-apex line so that the vertical
effect be 1°d is sinr=1/4=-25=sin14° 29" from the horizontal. Then
V=4x256=1% and H=4 x -9681 =3-872°d. If with a 6A a horizontal
effect of 3A is needed, cosr=3/6=5=cos 60° so that the base-apex line
must be at 60° V being -6 x 866 = 5-2A,

If, instead of the angular distance of the base-apex line from the hori-
zontal, its distance from the vertical is considered, the sine would apply to
the horizontal, and the cosine to the vertical meridian in these caleulations.

If P’ represent the effect of a prism in a given meridian, P the power of
the prism, and » the angle hetween the given meridian and the base-apex
line, the effect in the given meridian is P’=P cos ». Thus to find the effect
at 40° of a 4° prism whose base-apex line is vertical, P’ =4 x -6427 = 2-57°,
r being 50°, the cosine of which is *6427.

Neutralisation.—The vertical or horizontal effects of an oblique prism, or
the effect in any oblique meridian of a vertical or horizontal prism, can also
be obtained by direct neutralisation in the meridian whose power has to be
learnt.

Following are the approximate powers of unit prism at different Mers.
caleulated as shown above.

1
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Resultant Prisms.

A resultant prism is the combined effect of two prisms whose base-apex
lines are oblique, or at right angles to, eachi other; the term can also be
applied to any number of prisms with base apex-lines in various directions,
since the combined effect is always that of some single prism.

In Fig. 150 let 4 B and A C represent the deviations caused by two
prisms P; and P, whose base-apex lines are crossed at the angle a. To con-
struct graphically the resultant deviation we have only to complete the
parallelogram 4 B C D by drawing ' D equal and parallel to 4 B, and £ D
equal and parallel to 4 C. Then A I} is the resultant deviation, and #is the
angle it makes with the horizontal. If a third prism P, were now intro-
duced, a similar construction between A [ and P, would give the single
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resultant of the three prisms P;, P, and P, and so on for any further
number.

Calculation of Resultant Prism.—By means of the cosine formula in
trigonometry, it can be proved that A D*=ADB*+AC*+2AB'AC cos a.
But AD is the resultant prism P, and A B and A C the original prisms P,
and P, respectively. Therefore

P= P 4+PZ+2P,Pycos a
and
P, sina
tan r= % ;
Py + Poeos «
Suppose two prisms of 6° and 8° respectively whose base-apex lines are
30° apart, we find

P= /6*4+ 8242 % 6 x 8 x 866

= /36 +64+83'136= /183:136 =13-53°.
and
S .4 '5 BT i et = i
64 (8 x 't‘.-ﬁﬁ}_ 3091 =tan 17° 11

tan r=

Fre. 150,

The resultant prism is 13-53° and its base-apex line is 17° 11° from that
of the 6° prism.
When P, =P, the formule simplify to P = (P, +P,) cos a/2, and r=a/2.

Prisms at Right Angles.—It is, however, rare that mutually oblique
prisms are required ; in the great majority of cases the components are
vertical and horizontal. When sueh is the case a=90° so that, since
sin 90° = 1, and cos 90° =0, the formule simplify to

P= V24 H?
and
tan r=V/H

Or, with a reasonable degree of accuracy, the resultant base-apex line may be
found by dividing 90° by the sum of V and H, and multiplying the result by
the weaker of the two original figures. This gives the angular distance from
the stronger of the original prisms.
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Thus, suppose a 3°d base-apex line horizontal, and 2°d base-apex line
vertical be required, then

P= J324+22= J13=3-6%
tan r=V/H = 2/3 = 666 = tan 33° 40’ so that r= 33° 40

The resultant prism needed is 3-6°d (3° 36’) with its base-apex line
inclined 33° 40" from the horizontal, or 56° 20" from the vertical ; that is,
approximately, 3-5%d base-apex line at 35°.  Or by the simplified method the
resultant base-apex line would have been found 90/(3 +2) =18, and 18 x 2=
36° from the 3° prism, or 18 x 3 =54° from the 2° prism.

Construction.—To construet graphically the resultant of two prisms at
right angles draw a straight vertical line /7 (Fig. 151) as many inches (or
cm.) long as there are units (degrees, ete.) in the vertical prism, and a hori-
zontal line I/ as many inches (or em.) long as there are degrees in the
horizontal prism. The ends of these two lines being connected by a third
line, P, the number of inches (or em.) in P represents the number of degrees

H
Fic. 151.

in the resultant prism ; and the inclination of P with respect to H and V|
measured by a protractor, is the inclination of the base-apex line of the
resultant prism in its relation to the horizontal and vertical.

Practical Measurement.— A resultant prism can be found by holding the
horizontal and vertical prisms together and finding on a tangent scale the
maximum oblique deviation, that is, the value of the resultant prism. Or
the two original prisms can be put into a trial frame and neutralised by a
single prism from the trial case ; the power of the neutraliser is that of the
resultant prism, and its inclination is at once indicated.

Rotary Prism.—A rotary prism consists of two vertical prisms of equal
power conveniently mounted. In the primary position the base of the one
coincides with the edge of the other, so that the effect is 0. From this posi-
tion they are rotated towards the horizontal, so that their bases approach
each other ; thus a gradually inereasing hovizontal effect is obtained while the
vertical effect always remains 0. The maximum effect is obtained when the
two bases coincide in the horizontal meridian. If the primary position is
horizontal a similar vertical effect is obtained by rotation.



CHAPTER XV
DECENTRATION

Prismatic Effect of Lenses.

Optical Centre.—The optical centre of a sph. lens lies, as mentioned
previously, on the principal axis at a distance from each surface proportional
to its radius of curvature. It is situated, therefore, on the line passing
through the thickest part of a convexand the thinnest part of a concave lens,
and is that point through which the secondary axes pass.

Geometrical Centre.—The geometrical centre is that point of the lens
which is equi-distant from the opposite edges. It can be located by inspec-
tion, or, more exactly, by drawing a horizontal line across the lens, connect-
ing the two extremities of the long diameter, and a vertical line connecting
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Fie, 152.

the highest and lowest points; where the two lines eut each other is the
geometrical centre.

Locating the 0. C.—To locate the optical centre the lens must be moved
about until cross lines seen through it are continuous with the parts
of the lines seen beyond the edges, as in Fig. 152, where G is the
geometrical centre of the lens. The optical centre O coineides with that
point of the lens opposite to the intersection of the cross lines, and can
be, if necessary, marked by a dot with a grease pencil or pen and ink.
The test should be made with fine cross lines drawn on a small card
placed on the table, the lens being held steadily a short distance above the
card, and in a plane parallel to it. This method is preferable for strong
lenses, but the analysing card at a reasonable distance is better for a very

172



DECENTRATION 173

weak lens. Aceuracy is enhanced by employing a pinhole, through which
the ohservation is made, when the near test card is used.

The same procedure is employed for a sph.-eyl., but the principal
meridians must be parallel with the lines of the eard. With a plano-eyl., there
being only a line of no priksmntit: effect, and, therefore, no optical centre,
the central point of the axis may be regarded as such, w hen the cross
lines are seen unbroken.

Centered and Decentered Lenses.—A lens is said to be centered when its
optical and geometrical centres coincide, and is said to be decentered when
they do not. When an object is viewed through the geometrical centre of a
decentered lens the effect is precisely the same as if the lens were combined
with a prism. Similarly, if a centered lens is looked through at a point which
isnot in line with the optical and geometrical centres the effect is the same as
if a sphero-prism were substituted.

To learn whether a spherical lens is truly centered it must be held
parallel to the analysing card and viewed through its geometrical centre. If
centered (Fig. 153) the junction of the two lines of the card is seen in line
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with the exact centre of the lens, the lines being continuous beyond the
edges as in Fig. 153, If decentered the junction of the two lines is seen
not to coineide with the exact centre of the lens and the vertical line, as in
Fig. 154, or the horizontal line as in Fig. 155, is broken at the edges of the
lens, or both are broken.

In a sph. lens there is only one point, i.e. the optical centre in the refract-
ing plane of the lens where there is no prismatic effect. In a plano-eylin-
cluc-.nl there is a line without prismatie effect along the axis,

In Fig. 156 let the lens bea + eyl., whose axis 4 X isat 45°, B C being a
vertical, and D E a horizontal line. On looking through the lens the points
FGH on the vertical line I ' are seen deflected by the prismatic action of
the eyl. to F"G'H’, upwards and to the left, the virtual prisms being base
down and to the right. The points K L M on the horizontal line DE are
seen deflected to K'L'M’, also upwards and to the left, the virtnal prisms
being base down and to the right. On the other side of the axis the virtual
prisms are base up and to the left, and the deflections are downwards and
to the right. Thus a convex eylindrical axis, say, 45° causes a vertical line
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BC to appear as B'C’, and a horizontal line DE to appear as D'E’, both

being deviated away from the axis.
If another equal + eyl be placed axis at right angles to the first, the
horizontal deviation of the vertical line, and the vertical deviation of the

horizontal, are neutralised, but the vertical effect in the vertical meridian
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and the horizontal effect in the horizontal are doubled, the combination
being equivalent to a sph. lens in which the prismatic effects are equal in

every meridian.

With a concave cyl. the edges of the virtual prisms are towards the axis,
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and if a —eyl. Ax. 45° be looked through (Fig. 157) a vertical line B C appears
as B’ €, and a horizontal line I) E appears as I E', the deviation of these
lines being towards the axis of the lens, or towards the apices of the virtual

prisms.
In a sph.-eyl. lens there is (as in the case of a sph.) a point of no prismatic



DECENTRATION 175

effect. This is where the axis of the cylindrical cuts that of the spherical,
and it is therefore at the geometrical centre of a centered lens.

In Fig. 158 let the lens be a + sph.-cyl,, whose axis A4 X is at 45°
Let /¥ be a point situated between the vertical and the axis. There is, at
this point, the effect () I of a prism base down to the left derived from the
sph.  The eyl. contributes a prismatic effect 5, the base of the virtual
prism being down to the right. Thus there are two vertical effects both
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directed upwards, and two horizontal, the one directed to the left and the
other to the right. These latter nentralise each other at some point B, and
similarly at every point on the line £ F.

Between the axis and the horizontal, at some point C, there is the effect
O C of a prism base down and to the left derived from the sph., and from the
cyl. there is the effect P € of a prism base up and to the left. There are

Frc. 159.

thus two horizontal effects both directed to the left, and two vertical, the
one up and the other down. At some point (' the opposing vertical effects
neutralise each other, and similarly we have a neutralising effect all along
the line & H.

In a Ce. sph.-cyl. there are similar prismatic effects, but in the opposite
directions.

Let Fig. 159 be a combination of + Cyl. Ax, 45°Z - Cyl. Ax. 135° the
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two being of equal power. € ) is the axis of the convex eyl., and E F that
of the concave. At some point . the convex cyl. has an effect X4 of a
prism base down and to the right, the concave has an effect V.4 of one base
up and to the right. The up and down vertical effects neutralise each other,
but there is a combined lateral effect. At the point £ the convex aets with
an effect X' /¥ base up and to the left, and the concave with an effect V' B
base up and to the right. The right and left horizontal effects neutralising
each other, the combined deviation being vertical. Thus the point .4 is
deviated to the left, and I is deviated downwards. A wvertical line is seen
inclined to the left above, and to the right below ; a horizontal line is inelined
downwards on the right, and upwards on the left.

Locating the Lines of No Prism Effect.—If an oblique sph.-eyl. be moved
horizontally until the oblique image of a vertical line is seen in contact at
B (Fig. 160), at the upper edge of the lens, with the line itself seen above
the lens, and similar contact is then obtained at the lower edge of the lens,
say at €, the line connecting these two contact peints indicates the line of no
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horizontal prismatic effect. Similarly the points can be found where, by
moving the lens vertically upwards and downwards, a horizontal bar is, at
each side, in contact with its image ; the line connecting them indicates the
line of no vertical prismatic effect.

The Decentering of Spherical Lenses.

Prismatic effect can be obtained by decentering a lens as well as by com-
bining a prism with it. The prismatic effect thus obtained by decentration
is called a vivfual prism.

How to Decenter.—Decentering is achieved by so cutting the unedged
glass dise that the optical centre is nearer than the geometrical centre to one
part of the edge of the finished lens. Thus in Fig. 161 & is the geometrical
centre of the finished lens, and 0, the optical eentre, lies nearer the right edge.
[n a centered lens O and @ coincide. To decenter a lens, the optical centre ()
is located, as previously described, by means of a card having two fine cross
lines. 0 is marked by a dot, the amount of decentering is measuring off, and
the point which is to be the geometrical centre of the edged lens is marked
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as . The lens is then eut out so that & is the geometrical centre, the dis-
tance 0 & being the decentration of the lens.

It should be observed that the decentration is indicated by the position of
0, the fixed point of a lens, with rveference to . To achieve this the distance is
marked off confrary to the decentration required, so that @ is actually altered.
If O has to be in, the distance measured off, in order to mark where @ is to
be, is onf from (),

Another method is to place in contact with the lens a prism, equal to the
effect required, with its base in the opposite direction; mark the optical
centre as then found, and this point is the geometrical centre needed. By

Fra. 161.

this method one can at once see whether the required effect can be obtained
by decentering, it not being possible if the marked point be too near the
periphery, much less if, as may be the case, it is beyond the lens, It is
specially suitable for oblique decentrations and for oblique sph.-cyls. Thus
suppose 14 base in effect is needed on a +4 1) lens; a 14 base oul is placed
with the lens, the O. C. is then displaced outwards, the lens must be shifted
inwards to find the point of no prism efiect, and this being marked indicates
where the geometrical centre of the finished lens must be.

Fiz, 162, Hra. 163.

To Measure Decentration.— 1o measure the decentration of a lens, the
1
geometrical centre must be marked with a fine dot, and the optical centre
ound and similar 1 g istance between them is the decentration.
f 1 and larly marked ; the distance het tl the decentrat
This distance can be measured by placing the lens on a metric rule.

Sphero-Prism and Decentered Lenses.—\When a prism is combined with

a sph., the curved surfaces are inclined towards each other at an angle

(Fig. 162), just as if the lens had been split and a prism inserted. If from a

large lens (Fig. 163) one part be cut away, the effect is the same; in both
figures the principal axis of the lens is shown by the thick vertical line.

The two surfaces of a lens are inclined towards each at an angle which

increases from the centre to the periphery, although the curvature remains
12
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the same ; therefore the effect produced on a ray of light by the outer zones
of a lens is as if a prism of given power were used, fhe prismatic power being
greafer as the part of the lens, through which the ray passes, is inore distant from
the axis,

A ray of light, 4 B (Fig. 164), passes through the optical centre ) of a
lens L, and through the prism F; it is undeviated by the lens, but is bent
by the prism towards its base in a dirvection to the right in the diagram. If
the prism be removed (Fig. 165) and the convex lens decentered to the

A
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right, the ray 4 B is bent in the same way as if it had passed through O and
a prism. If a concave lens (Fig. 166) be decentered to the left the same
effect is obtained. Similarly all the rays contained in a beam of light,
parallel to the axis, and refracted by a spherical lens, are bent towards, or
away from, the axis to an extent dependent on the distance from the axis of
that part of the lens through which cach ray passes. Thus all the rays
parallel to the axis before refraction meet, after refraction (disregarding
aberration) on the axis at a single point.

—

R
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Fie. 167. Fic. 1868,
If the principal axis passes through the geometrical centre of the lens, the

rays, after refraction, converge towards, or diverge from, a point (F) on a
straight line drawn from the luminous point through the geometrical centre
of the lens.

But if U, the optical centre of the lens, is displaced, the rays are not only
rendered convergent or divergent, but are also bent towards or away from
the displaced axis (Figs. 167, 168) in the same manner as they would be if a
prism had been added to the lens.
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Direction of Decentration.—To produce the effect of a prism with its
base in a eertain direction, a convex lens must be decentered in thaf same direc-
tion, and a concave in the opposite diveclion.

Effect Produced by Decentering.—The prismatic power obtained hy
decentration is directly proportional to the amount of decentration and to
the strength of the lens, so that the decentration necessary to obtain a
desired prismatic effect is directly proportional to the effect required, and
inversely proportional to the power of the lens. The calculation may be
made in any of the systems of prism notation, but the prismatic effect of
decentering lenses can best be illustrated in connection with prism diopters.

In Fig. 169 let S8 be a sereen situated at the focal distance of a +1D
lens ; the distance O F is therefore one metre. All rays of light as 4 B, (' D),
parallel to the axis are bent so as to meet at /. The ray 4 B incident at £
sitnated, say, 1 em. from the axis, instead of falling on the screen at 1, as
it would if it were unrefracted, euts the axis at F. Consequently, the ray is
deviated the distance B'F= B0/ =1 cm. at 1 M. The ray ' ) incident, say,
2 em. from the axis, is deviated the distance I’ F= ) 00=2 em, avt 1 M since
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it also meets the axis at F. The effect of placing the geometrical centre of
the lens at B or at 1) would, therefore, be the same as having the lens normally
centered and combined with a prism of 14 or 24 respectively, since these
prisms also have the effect of deviating a ray 1 em. or 2 em. respectively at
a distance of one metre.

In Fig. 170 the lens is a +2 [} and S5, the screen, is 1 M from it ; a ray
A B, parallel to the axis, and incident at &, 1 em. from the axis, meets the
latter at F, 50 em. from the lens and the screen at & instead of at £”. The
ray is deviated a distance 5’ F=1 em. at 50 em., and B”"G =2 em. at 1 M, so
that the prismatic effect is the same as that of a 2% acting on a ray un-
refracted by the lens. If the lens were +4 D), 4 B would meet the axis at
25 cem. from the lens and would be there deviated 1 em., while at 1 M it
would be deviated B”/ =4 em. and have the effect of 4=, The +2 D at a
point 2 em. from the axis has the effect of 42, while the 4 D at the same
point has the effect of an added 82,

Limitations to Decentering.-—The smaller the size of the lens required
and the larger the dise from which it is eut, the greater is the extent of
decentration possible with the ordinary disc used in the trade. If the edged
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lens were nearly as large as the unedged disc no decentering would be
possible. Since the usual finished lens is longer in the horizoutal thanin the
vertical diameter, a greater vertical than horizontal deeentration is possible.
Thus a lens which must be of No. 1 eye size when edged can be decentered
about 4 mm. horizontally and about 7 mm. vertically : for 2 or 3 eye lenses
the extents are greater, while for 0 and 00 eyes they are smaller. The
average size of the uncut disc is 40 mm. square,

Formuls for Decentration.—Since a + 1 D lens decentered 1 em. has the
effect of 12, the formule for calculating decentrations and their effect are
extremely simple when the prismatic power is expressed in prism diopters.
Let P represent the prismatic effect needed, D the dioptral number of the
lens, and C the decentration in cenfimefres, then

B and C=PFP/D.

Thus if, on a 4'5 D lens, the effect of 24 is required, the lens must be

decentered
C= 2/4*5="444 em.

If a 4 D lens is decentered 75 ¢m. the prismatic effect in & is
P=-75x4=35,

If the optical centre of the lens is found to be 75 e¢m. from the geometri-
cal centre, and the prismatic effect, as measured on a tangent scale, is 32,
the lens 1s
D=3/75=4 D.

Two similar lenses decentered with respect to each other, have no pris-
matic effect ; the one is base out, the other is base in. Two lenses which
neutralise, if slid one over the other, have a prismatic effect introduced
thereby, the Cx. being moved the one way, and the Ce. the other. If C be
the amount of the slide, D) C=2, or 2/C=1D), where D 1s the power of the
one lens, the base of the virtual prism being towards the Cx. lens. In this
case the effect is doubled.

By introducing the necessary constant K, the formulie for prism diopters
apply also for degrees, whose constant is ‘94 when p=1-54, is ‘9 when
p=152 and 87 when p=1'5. For degrees of deviation the constant is
1-745; or with a sufficient degree of accuracy 1'735, so that

P=D C/K
Suppose the effect of 2°l on an 8 D lens is required, the decentration

will be
C=2x1-75/8="44 cm.



DECENTRATION 181

If on a 5 D lens the effect of 3-5° is required, it must be decentered
C=35x"95=-63 cm.

A 4 D is decentered 75 em., the prismatic effect will then he

P=-75x4/l'T5=175°d, or  T5x4/9=33"

In using these formule, parts of degrees should be expressed as decimals,
and not as minutes and seconds, and the decentration in em. and decimals
thereof. These rules, while sufficiently accurate for practical spectacle work,
especially as no lens can be decentered to a very great extent, are not exact
since the variation of angles have been taken as equivalent to that of their
tangents.

Formulz Involving F.—Where F or 1/F is given, it is easier, for caleula-
ting decentrations, to convert I into diopters, but the calculations can he
made by the following formula, where both F and the decentration are
expressed in inches or em., K being the constant—

Decentration = PFK /100
Thus, how much should a 4 in. lens be decentered for 1°7
C=1x4x%x'9/100=-036 in.

More Exact Formule.—More accurate formule for decentration for
degrees of deviation are as follows, where I and D have the usual signifi-
cations, and P is the degree of deviation—

tan P=C/F or C=F tan P;
and
tan P=C D/100 or C=100 tan P/D.

These formule are illustrated in Fig. 169, where [ 0 is the tangent of
the angle of deviation of the ray € /).

Resultant Decentrations.

The value of a prism in any meridian is Pcosr, where » is the angle
between the base-apex line and the meridian in question. Similarly the
prismatic value of a decentration is at its maximum along the line of decen-
tration, and its value at any other meridian is D Cecos 7. Therefore, if a lens
had to be decentered for both vertical and horizontal prismatic effects, each
may be made separately or the two obtained by a single oblique decentra-
tion; put in another way, a lens decentered obliquely causes a vertical and
horizontal prismatic effect equal to D Ceosr, where » is the angular distance
between the direction of decentration and the horizontal or vertical.
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In Fig. 171 let © be the optical centre. If the geometrical centre is
moved horizontally from ¢ to & and vertically to #, the true displacement is
along /v. A resultant decentration is caleulated by finding, by the formula
previously given, the oblique prismatic effect required and its angle r, and
then decentering accordingly.

Thus suppose a + 5 D lens has to be decentered for a horizontal effect of
24, and a vertieal effect of 1:52 ; then

P= /22 +152=2-54
tan r=1'5/2 =756 =tan 36° 52,
and C=25/5="5 em.

The two needed prismatic effects are obtained by decentering the lens
‘5 em. along meridian, say, 37°.

The Ver. and Hor. decentration V and H could be found separately and
a resultant decentration then ecaleulated, but the above method is more
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simple. Thus, in the above example, H='4 em., V=-3cm., and 42+ 32
=5 em., the angle » being found as shown above,

Instead of finding tan », the direction can be obtained without serious
error, for small values, by dividing 90° proportionally to the two needed
decentrations, in this case 4 and 3. We should find 90/(4 +3)=12-8 and
128 x 3= 38'5° from the stronger of the two original decentrations—that is,
about 38° from the horizontal,

The Effects of Oblique Decentering.— When a sph. is decentered
obliquely we have, in the meridian of decentration, P=D C, and since O =
cos#, and V i =sin #, the Hor, effect H, and the Ver. effect V, of an oblique
decentration P, are found by the equations

H=PFP cos r andd V=P sin r.

But P=D C, where D is the dioptral number of the lens, and C the decen-
tration in cm. ; therefore

H=DC cos r and V=DC sin r.
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Thus, if a +7 D sph. be decentered ‘6 em. at 30° P=Tx6=424,
H=7x%'6x-866=36372,and V=Tx 6 x'5=2"12,

The necessary constants can be introduced into the formule when the
prismatic effects are required in degrees or degrees of deviation, or the
effects in & can be converted by the usual methods.

The Decentration of Cylindricals.

In the following article, for the sake of brevity, we will term wupright
those cyls. and sph.-eyls. whose principal Mers. are Ver. and Hor., in contra-
distinetion to those which are obligue.

A lens which possesses a cyl. element should not be decentered except in
its principal meridians, that is to say, upright cyls. ought never to be decen-
tered obliquely, nor should oblique cyls. be decentered horizontally or verti-
cally. However, as will be shown later on, such decentrations can be made,
but the results are diffienlt to calculate owing to the fact that the virtual
prisms in a cyl. have their base-apex lines at right angles to the axis. The
reason why sphs. are so easy to decenter is because the base-apex lines of all
the virtual prisms radiate from the optical centre, so that any possible decen-
tration must always lie in a virtual base-apex plane.

Upright Cyls.—The effect of decentering a cyl. arross its axis is the
same as decentering a sph. in that direction ; along the axis there is, of course,
no effect, since there is no refractive power. Thus a eyl. axis Ver. can be
decentered horizontally, but not vertically ; a eyl. axis Hor. can only be
decentered vertically.

If +4C. Ax. 90° requires decentration for a horizontal prismatic effect
of 32, C=2{4="+5 em.

Oblique Cyls.—The decentration of an oblique eyl. along the axis has no
effect, while acioss the axis the effect is, in the principal meridians, the same
as with the Ver. and Hor. decentration of upright eyls. Thus if a 4 eyl
Ax. 60° be decentered 4 mm. at 150°, the prineipal effect P along 150° =D C,
that is, P=4x-4=162., This, however, produces Hor. and Ver. effects,
because any single oblique displacement can always be resolved into two
components at right angles.

If a plano-cyl. axis oblique be moved horizontally, vertically or in any
oblique direction in front of the eye, any object viewed through it will appear to
move in a direction across the aais, thus showing that the resultant effect is
always at right angles to the axis, or in the meridian of maximum power.
Indeed this result is only to be expected, since the virtual prisms in a eyl
lie only in one dirvection with their base-apex lines across the axis. There-
fore no matter what oblique decentration be made to a cyl, the resultant
effect is as though a smaller decentration had been made in the principal
power at right angles to the axis.,
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In Fig. 172 let z y be the axis of the cyl. at an angle @ with the horizontal,
and let o'y’ be its position when the lens is decentered from o to + in the
meridian of maximum refraction. We can resolve the single displacement
o 7 into two components o d and ¢ ¢=d v lying in the Hor. and Ver. planes
respectively, and these expressed in terms of the single decentration o r will
enable us to find the resulting Hor. and Ver. prismatic effects H and V.

Now ord=a. ..od=orsina, and dr=or cos a.

Let C represent the distance o and D the maximum power of the cyl
Then

P=DC H=DC sin g, V=D C cos a.

Precisely similar prismatic effects are obtained if the lens is decentered
horizontally to /i or vertically to #, but the maximum effect remains in the
dirzetion ¢ r, and ean then be considered the resultant effect of the Hor. and

xR

£

F
S

A
|
o
/‘a
1
Fig. 172.

L

e

& d
.fr‘
k)

Vert. components o d and o ¢ with the base-apex line of the virtual prism
parallel to o ».

Now o r=0 /i sin a =0 v cos «, so that if the decentration of an oblique
cyl. is Hor. we have to write C sin « instead of C, and then

P=DCsinag, H=DCsin2 o, V=DC cos a sin «a.
If the decentering is Ver., C cos a replaces C, so that
P=DCcosa, V=DC cos® ¢, H=D C sin « cos a.

As an example, let the lens be +4 D. axis 60° decentered along or=C= 4
em. at 150°, as in the example already given ; then

P=4x'4=164
H=4x"'4x"866=13864, V=4x:4x*5="82
oh=o07fsin 60°=4/-866 =462 em. ov=07r/cos 60°=4/5="8 cm.
Then if a +4 C. Ax. 60° is decentered 462 cm. horizontally,
P=4x-462 x -866 =164
H=4x 462 x-75=13864, V=4 x 462 x -5 x ‘866 =82
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Orif a +4 D Cyl. Ax. 60° be decentered 8 em. vertically,
P=4x8x5=161
H=4x'8x866x5=1'3864, V=4 x'8x25="84

[t should be noted that a horizental or vertical efiect alone can never be
obtained by decentering an obligue cyl., and that is why it is inadvisable to
decenter such lenses.

The maximum Ver. effect of a Hor. displacement and vice versa results
when the axis is at 45°.  Also since sin 45° = cos 45°, the effect is equal in
both directions, no matter how decentered.

Only if the maximum meridian nearly corresponds to the line of decen-
tering can the effects in other meridians be ignored. Indeed it may occur
that the Hor. decentering of an oblique cyl. results in a greater Ver., effect
and vice versa.

The Ver. effect of a Hor. decentration of a eyl. whose axis is at, say, 30°
1s the came as when the axis is at 60° This occurs because although the
distance o r (Fig. 172) is less in the first case, the Ver. power of the lens
is greater.

To illustrate these rather peculiar effects referred to let a +4 C. be
decentered horizontally "33 em., the axis being respectively at 45°, 30° and
60°. Then

With axis at 45° P= 934 H= ‘664 V =-664
19 1 3{-]"} P= +E‘ﬁ'ﬂ‘ H= Bgﬂ 11-—= :17"':"
» » 60°  P=1158 H= 12 V=-575

Upright Sph.-Cyls.—Decentering a sph.-eyl. across the axis of the eyl
has the same effect as decentering a sph. whose power 1s that of the two
powers combined ; while in the direction of the axis it is the same as decen-
tering the sph. alone.

If +38 = + 2C. Ax, 90°is to be decentered for 22 horizontally, the
power in the Hor. Mer. is 3 + 2 = 5 D ; therefore the amount of decentra-
tion is .
U= El.-'l =4 cm.

If +38. = +2C. Ax. 90° needs to be decentered for 24 vertically, the
power in the Ver. Mer. 1s 3 D, so that

C=2/3="66 cm.

Oblique Sph.-Cyls.—The effect of decentering an oblique sph.-cyl. in the
prineipal meridians is the same as with Hor. and Ver. decentration when the
axis is Hor. and Ver. respectively.

Suppose a + 3 S. = + 2 C. Ax. 30° is decentered ‘4 em. at 30°
(Fig. 173), then

FP=3x-4=122
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Here the decentration being along the axis of the cyl. only the sph. is
decentered, but there are, besides the effect P in the principal meridian at
30°, certain Hor. and Ver. effects introduced due to the oblique decentering
of the sph. Now a = 30° and as in Fig. 173, when ¢ is moved to r, there
is a Hor, decentration o b = rv = or cos @, and a Ver.one ov =rh =o0r

sin «, therefore
H=DC cos q, V=DCsin a

and in the above example

H=3x4x-866=1048, V=3x-4x5=:-62

When the decentration is across the axis of the eyl. (Fig. 174) we have
in the Mer. of decentration, and in the Hor. and Ver. Mer. the effects of both
the sph. and eyl,, so that if D is the power of the sph. and I that of the
eyl. we have

P=(D+D")C, H=(D+D") C sin a, V=(D+D")C cos a.
Thus suppose + 3 Sph. = +2 Cyl. Ax. 30° be decentered 4 em. at 120°

P=(3+2)x 4=24

H=(3+2)x4x5=14, V=(3+2)x4x866=17324

Now if the lens were decentered horizontally to 4 or vertically to v,
while the effects from the cyl. are the same, those from the sph. are
different.

[f the lens be decentered horizontally, the sph. causes no Ver. effect, but
the cyl. acts as does the plano-eyl. Let D be the power of the sph., I’ that
of the eyl. and P’ the effect across the axis of the latter. Then

P=(D+D)Csine, H=(D+D sin?a)C, V=D'Ccosasing

If the decentration is Ver. the sph. causes no Hor. effect, but the cyl.
acts as when not combined with a sph., and

P'=(D+D) C cos g, H=D'Csinacosa, V=(D+I cos?a)C

Let the axis of the cyl. be 30° as in the example given; then
oh=orfsin 30°=4/5="8 em. and ov=orfcos 30°=4/866='462 cm.
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Thus if a +3 Sph. <= +2 Cyl. axis 30° be decentered ‘8 em. horizontally
we get
P =(3+2)x 8x 5=24

H=(3+2 x -25) x -8 =284, V=2x8x866x5="T7
[f the same lens be decentered 462 cm. vertically

P’ =(3+2) x "462 x -866 = 24
H=2x 462 x 5 x ‘866 =44, V=(3+2x"75) x 462 =2-084

Actual Resultant Prismatic Effects.—While an oblique cyl. decentered
horizontally or vertically always has its greatest prismatic effect across the axis,
with an oblique sph.-cyl. the effect across the axis might, or might not, be
greater than in that meridian in which the displacement is made, this
depending on the power of the spherical. In the last examples P’ is less
than H in the one case and less than V in the other, and the actual resulfant
prismatic power lies between P and the wevidian of decentration.

The Hor. and Ver. effects of decentering an oblique sph.-cyl. having
been calculated the actual resultant effect P can be obtained from the
formule given. Suppose H = 2:84 and V = ‘T4 ; then

P= JH2+ V2= J2:82+ T2= 4/8:33=2-884

tan r=V/H="7/2:8 =25 =tan 14"

These effects may be met with in the case of a frame that is incorrect
as to width or height when the lenses are oblique cyls. or sph.-cyls.

It should be noted that while a Hor. or Ver. prismatic effect can never be
obtained with an oblique plano-cyl., this is often possible with a sphero-cyl.
by adjustment of the decentering so as to neutralise the unneeded effects
introduced.  Praectically this is best achieved, if it be possible, by employing
a prism for the marking as described in “How to Decenter.” It is always
possible if the sph. is strong compared with the cyl.

The Formule and Deductions.—Although definite formule have been
given in the case of obliquely decentered cyls. and sph.-eyls., and for finding
the Hor. and Ver. components and the main effects, they can be worked, in
each case, from first principles as indicated in the following. This may be
necessary if the decentering is neither Hor. nor Ver. nor in the principal
meridians. When a sph.-eyl. is decentered in a direction obliquely to the
principal meridians, there are the displacements which would take place if
the sph. and the eyl. were separately decentered. The prismatic effect due
to the sph. alone lies in the meridian of decentration, while that due to the
eyl., as we have already shown, lies in the meridian at right angles to the
axis, The total effect, therefore, is that of a prism whose base-apex line
corresponds neither to that of the decentration, nor to that of the maximum
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power of the eyl, but to some meridian between them if the powers of the
sph. and eyl. are of the same sign, and outside them if they are of opposite
sign. Thus suppose a + 6 8. = + 2 C. Ax. 30° be decentered 2 mm.
upwards in meridian 70°. The prismatic effect due to the sph. is 6 x -2 =
1-24 base up at 70° while that due to the cyl. is 2 x -2 x 6428 = 262
where 6428 = sin 40° since the direction of decentration 70° is 40° from
the axis of the cyl. Therefore the cyl. produces 264 whose base-apex line
is at 120° and whose base is up. Therefore there are two prismatic effects
erossed at 50° (120° — 70°) and the resultant of these can be found from

P= 122426242 %12 x 26 x 6428 = /1-9087 = 1-38

fapipem s 20X NIBSE S gyl ol e
12 4 26 x 6428

So that the effect of decentering + 6 S. = + 2C. Ax. 30° 2 mm. up in
meridian 70° is 1-384 base up at T8°. Still further, this oblique prismatic
effect may be resolved into its Hor. and Ver., components from the formula
given previously.

Any possible case of decentration can be worked from general principles,
as in the example just given, provided, of course, that proper attention be
paid to signs, ete., but, as can be seen, the procedure is complicated.



CHAPTER XVI
EFFECTIVITY AND BACEK FOCAL DISTANCE

Effect of Altered Position of a Cx. Lens.——The power of a lens 1/ or
D is a fixed quantity ; nevertheless the effect of a lens, in relation to a given
plane behind it, varies with its distance from that plane.

Thus a 10 in. Cx. lens L (Fig. 175) placed 6 in. in front of the plane
P P, has F 4 in. behind it. If now we place a 40 in. Cx. lens in contact
with L, the two combined will have 1/F = 1/10 + 1/40 = 1/8or /' = 8" s0
that the combined focus will be 2 in. behind P /. The same effect would
be produced if we moved the 10 in. lens 2" forward to L'. Therefore a Cx.
lens moved away from a plane acts with increased effectivity, i.e. it acts like
a lens of shorter foeus. If we place a 60 in. Ce. lens in contact with the
10 in. Cx. the two combined will have 1/F = 1/10 — 1/60 = 1/12, i.e.
F = 12 in. and will be at /7 6 in. behind P 7”.  The same effect is produced if
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the 10 in. Cx. were moved to L” 2” nearer to PP’. Therefore, a Cx. lens
acts with a lessened effect as regards the plane when brought nearer to it.

The effectivity 1/F, of a Cx. lens when moved through a given distance
d in the direction of the object is, for parallel light,

A ) b Bl

If d is equal to F, then 1/(F —-d) = 1/(F-F) = 10 = =, in other words
the converging effect will be infinite at the plane, when the lens is placed at
its foeal distance in front of it.

If the lens be moved beyond its focal length, since d is then greater than
F, the effectivity will be negative. Thus, if a + 10 in. lens is 12 in. from a
sereen, its effect there is 1/F = 1/(10-12) = - 1/2, or that of a 2 in. Ce,,
since the light diverges from 2 in. in front of the plane.

189
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Effect of Altered Position of a Cec. Lens.—The effects produced hy
similarly moving a Ce. lens are opposite in character. Let P P’ be the plane,
and L a 10 in. Ce. lens placed 3 in. in front of it (Fig. 176) ;: F will then be
13 in. in front of P /. If a + 60 in. lens be placed in contact with the first
lens the two combined 1/F' = — 1/10 + 1/60 = — 1/12 or F' = — 12*, so
that /' lies 12 + 3 = 15" in front of PP, and the same effect is produced if
the lens be carried to L’ 2 in. further from P/”. Thus, the effectivity of a
Ce. is decreased by increasing the distance between it and a given plane
behind it, the lens acting as one of longer focus, If a 40 in. Ce. is added
1/F = — 1/10 - 1/40 = — 1/8, the same as if the 10in. Ce. were carried to
L” 2 in. nearer to P /¥, so that a Ce. lens acts with an increased effect when
brought nearer to a given plane, ' being then 2 in. nearer.

The effect of a Ce. lens when moved in the direction of the objeet through
a given distance d, for parallel light, is

F.=1{(-F-d)=1{- (Fid)cc Fom —=F—d

Change of Effect.—The altered effect of a lens when moved from one
position to another in front of a plane, or in front of another lens, is the
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FiG. 176.

difference between its effectivity in its original, and in its new, position ;
thus, if a 5 in. Cx. lens be moved from 1 in. to 2 in. away from a plane, the
change is

1 1 [ ]
5-2 5-1"3 4 12

or an increase of effect equal to that of an added 1/12 Cx. A 5 in. Ce.
similarly moved causes a decrease of effect just as if a 1/42 convex had been
added to the concave, as shown by,
1 1 |8 et
l‘.u

S =i

1
42

Variation of Effectivity for Near Objects.—Let a 5in. Cx. L (Fig. 177)
be placed 5 in. in front of P P/, and if the light diverges from f, at 12 in. f,
is at 8% in. behind the lens, or 8% — 5 = 3% in. behind P 7”.

If the lens be now carried outwards 2 in. from its original position, to L’
it is distant 10 in. from f; and 7 in. from P P’ ; f, is now f,’ at 10 in. behind
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the lens, or 3 in. behind P P’, the focus being shortened from 31 to 3 in.
with reference to P . Rewmoval, thevefore, of a Cu. lens towards the source of
light causes increased effectivity so long as the distanee between the Cr. lens and the
object fy is mot less than 2F. At this distance the lens has the highest
possible effectivity for the given position of the object with respect to P I, which
is reduced by any further withdrawal of the lens outwards.  Thus, 1f the lens is
at L" 9 in. from f;, then f,” will be at 11} — 8=3}" behind P P, the focus
being lengthened } in. as compared with the position when the lens is 10 in.
from f, and 7 in. from P P’; there is a lessened eftect of 1/39 at the screen.
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Fie. 177.

Further withdrawal of the lens results in a rapid increase in the distance of
f, behind P P" and a corresponding decrease of effectivity ; thus if the lens
is 6 in. from the source of light, £, is 19 in. behind P P, and when the lens
is 5 in. from f the light, after refraction, is parallel, and f, is at infinity ;
still further removal of the lens from P P’ towards f; renders the light
divergent after refraction. When the + lens is in contact with f; all effect
vanishes.

In Fig. 178 a 5 in. Ce. lens L is placed at P P, and if the light proceeds

P

Fic. 178.

from f, 12 in. distant, f, is at 3% in. in front of * P, If the lens be with-
drawn to L 4 in. from P /* and 8 in. from f}, then f”, lies 3.% in. in front
of the lens, and 7 in. in front of P P’. If the lens is 3 in. from f, then f,
is about 11 in. from /.  When the Ce. lens reaches f its effect is zero as
with a Cx.

Therefore if incident light be divergent an increased effect may be
obtained by increasing the distance between a Cx. lens and a plane behind
it, but the increase for a given movement 1s less than if the light were
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parallel ; there will be a decreased effect if f; is less than 2 F. With a Ce.
lens the resultant effect is always decreased, but the change is smaller as the
distance between the object and lens is less. Thus the change varies not
only with the strength of the lens, but also with the increased or decreased
divergence of the light. When either a Cx. or Ce. lens is in contact with the
object, the light diverges as if the lens were not there at all.

(Quite apart from changes of effect due to change of position of the lens,
increased divergence of the ineident light reduces the effect of a Cx. lens and
increases that of a Ce.  When light is parallel there is only the effect due
to change of position of the lens to consider, but when the light is divergent,
there is alm the increased divergence of the light from the object to be reckoned
for, and the latter tends always to decrease the effect, due to movement, that
would have resulted had the light been parallel and, indeed, with Cx. lenses
may more than neutralise it.

If any lens is in contact with a given plane, then the effectivity at that
plane is represented by the power of the lens itself, e.g. the eflectivity of an
8" lens in contact with the cornea is 1/8 or — 1/8 as the case may be.

- Dioptral Expression.—If the power of the lens be expressed in diopters,
its effective power D, in a new position becomes
D, = 1000/(F - d)
F and d being expressed in mm.,, or by
D.=D/(1-Dd)

d being expressed in terms of a metre.
Thus, suppose a + 8 D lens is moved from contact with a given plane to
a position 10 mm. further forward, i.e. towards the source of light, which is

at =, then since F is 1000/8 = 125 mm.
D, =1000/(125 -10)=8"7

The effectivity of the lens is increased + -7 D,
If a + 10 D lens be moved from 15 to 20 mm. in front of a given plane,
the altered values for parallel light, since F = 100 mm., are

at 15 mm. D, =1000/(100-15)=11-77
at 20 mm. D, =1000/(100-20)=12'5

so that the effectivity is increased by 12-5 — 11-77 = 73 D.
Similarly, moving the lens back from 20 to 15 mm. decreases the effec-
tivity to a like extent.

The distance « (in ems.), which a lens must be in advance of a given
plane in order that it may have a given effectivity at that plane, is found by

d=100/D =100/D,.

where D) is the power of the lens and D, is that of its required effect.
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Effectivity of Two Cx. Lenses.—It has been shown that the combined
power of two thin lenses, placed together, is equal to the sum of their
individual powers, thus

IO i I BB F.Fa
FF K, Y F,+F,

But if the two thin Cx. lenses are separated by an interval / the resultant
effect is not the same as if the two were in contact. The distance of ' behind
the back lens, that is, the back surface or effective focal distance Fy, 1s
shorter than when they are in contact, since the effectivity of the front lens
has now become 1/(F,; - d) in the plane of the second lens F,. Therefore

1 1 1 F,+F,-d (F, -d) F,
o E=r - l=al % »=F, +F,—d
where /| is the front, F, the back lens, and # the distance between them.
In Fig. 179 let L, and L, be two thin lenses of 10" and 7" focal length
respectively, separated by 27, then '
(10-2)x7 &
104+7-2 71

ar 1 =

'E'l

6

Fp= =311 in,

L., L

Fie. 179.

Parallel light incident on L, is converged towards a point /7, 10 in.
behind it, but on its way the light meets, at 2 in. from L,, the 7 in. Cx. lens
L,, and converges towards a point 10 — 2 = 8 in. behind the latter. The
effectivity of L, in the plane of L, is that of 1/8, or the effect is the same as
if an 8 in. lens were in contact with L,, and the common focus Fy is at
311 in. instead of 4% in., where it would be if L, were touching Ly. The
separation of the lenses by carrying L, out from L, is to increase the effect-
ivity of the combination with respect to a plane behind it.

The distance of F, differs considerably, when the two lenses are of
different powers, according as the one or the other lens faces the light.
Thus, if the combination were reversed so that the 7 in. Cx. faced the light,
and the 10 in. Cx. were 2 in. behind it, ¥y = 3} in. instead of 311 in. Fj is
equal on both sides only when the lenses are equal and of same nature.

When 4 is greater than /| the F, is negative.

When d = F,.—If a Cx. lens L; (Fig. 180) is placed at its principal focal
distance in front of another Cx. lens L, the latter has no effect whatever.
Thus when d = F,, the Fly = 0 or 1/F;; = .

13
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When d = F, + F,.—If the interval between two similar Cx."lenses
(Fig. 181), is equal to the sum of their focal lengths, parallel light refracted
by Ly, converges to F, which is also the anterior principal foecal distance of
L,.  Therefore, as the light from I is ineident on L, diverging from its
prineipal focal distance, after refraction by L, it emerges parallel as before

L, L

F1c. 180.
refraction, but the light and, therefore, the virtual image seen through L,
are inverted. Such an arrangement is found in terrestrial telescopes for
reinverting the inverted image formed by the objective, and is known as
the ereeting eye-piece.  In like manner if two unequal Cx. lenses (Fig. 182) are
separated by a distance equal to the sum of their focal lengths, so that

e

L,
Fre. 131.

d = Fy + F,, parallel light, after refraction, emerges parallel and reversed.
If the lens of greater focal length L, is to the front, the combination repre-
sents the prineiple of the astronemical felescope.

The Telescope is used for obtaining an enlarged view of distant objects,
and consists (Fig. 183) of an objective L, of long, and an eye-piece L, of[short

Fic. 132,

F, both corrected for spherical and chromatic aberration. The objective
forms a real inverted image S I of a distant object P R, subtending an angle
u, and this image is viewed through the eye-piece L,. For an emmetropic
eye the distance between L, and L, is equal to the sum of their focal lengths,



EFFECTIVITY AND BACK FOCAL DISTANCE 195

so that the light, after refraction by both lenses, may enter the eye in parallel
beams. The magnification depemh on the ratio between the angle a, which
the object suhten{ls, and b, which the final image " P* subtends.

Let ) be the optical centre of the objective, and P I the extreme axial
rays of the object at =, the one extremity P heing assumed to be on the
principal axis 0 0 of the telescope. Then P QR = a the angle subtended
by the object at (), and S 7" is the real image formed in the flJEd plane of
the ocular, of which O is the optical centre. The angle under which this
image is seen is 5. The magnification therefore is the ratio between the
angle a, under which the object would be seen by the naked eye, and the
angle f, under which it is apparently seen when the telescope is in use. Thus

M= -'rﬁ,f'r:r, = z’ﬂ,.-"t!!

But as these angles involved are very small, we may replace them by
their tangents. Now tan ¢’ = ST/7'Q and tan b = ST/T0. Then

M=ST/TO+S8ST/TQ=TQ/TO

RIS

Fia. 183.

But T' ¢) = F, the focal length of the objective, and I' O = F,, that of
the eve-piece. Therefore

M =F,/F,

A hypermetrope would adjust the telescope so that the distance between
the lenses is greater than I} + F,, the light then entering the eve conver-
gently, while the myope, in order to obtain divergent light, would make the
interval less than /|, + F.,

The final image is inverted with respect to the objeet, and for terrestrial
purposes this difticulty is overcome by means of an erecting eye-piece which,
when suitably placed between the objective and eye-piece, causes a reinver-
sion of the image. For astronomical purposes an erector is not needed, since
inversion of a heavenly body is of no importance, while, on the other hand,
loss of light owing to increase in the number of the refracting surfaces is

avoided.

The Compound Microscope consists of a similar combination, the lens of
shorter focal length being to the front, but in this case, the object viewed
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lies just in front of F of the first lens, and the separation of the lenses is
much greater than Fy+ F,. The compound microscope is used to obtain
a magnitied view of a small near object, the distance between the lenses being
dependent on the available length of the instrument, usually from 6 to 10 in.,
the distance of most distinct vision of the observer being generally 10 in.
also. The first lens L,, called the objective, is a short focus combination,
highly corrected for aberrations, and the second, called the eye-piece, or
ocular, Ly, is also a strong combination, but less so than the other (Fig. 184).

A small object A4 B is placed just beyond # of the objective L,, so that
the latter forms a real, inverted, magnificd image, 5'4’, of the object. This
image is formed practically in the focal plane of the eye-piece L,, and an eye
placed behind the latter sees an enlarged virtual image B”A" of B°A” at the
distance of most distinet vision. Hence there is magnification due both to
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the objective and to the ocular and can be very approximately caleulated as
follows. Let N denote the position of B’A” on the axis.
The magnification due to the objective is

M, =B’A’/A B=CN,C P.

But ' N may be taken as the tube length of the microscope, this value
being a variable quantity depending upon the particular maker, while C' P is
practically equal to the focal length of the objective. Thus M, may be

taken as
tube length/F,

where F, is the focal length of the objective.

Again, the magnification of the eye-piece can be expressed as 1 +d/F,, as
shown in Chap. IX., where F, is the focal length of the eye-piece, but as F,
is always fairly short, the magnification due to the eye-piece may be
expressed by

L]

'f F E

If we imagine the final virtual image B” A” to be projected to the plane
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of the stage on which the object is placed, the distance 4 may also be taken
as equal to the tube length ; the total magnification therefore is

M =M, M, = tube length/F, x d/F.=10*/F F,,

F. and F, being expressed in inches.

It must be remembered that this formula is only approximate, but is
more accurate the higher the powers are with which we are dealing. To
caleulate exactly the magnification of the microscope would be laborious,
seeing that a knowledge of the principal points of objective and eye-piece,
the position of the focal planes, and so forth, is essential.

Construction of Eye-pieces. —If two plano Cx. lenses L; and Ly plane
surfaces ourward, of, say, 4 in. I each, are separated by 3 F of either, that
is, d = 2§ in.

(4-23)x4

Fy= 44432

=1 in.

Thisis the common form of the Ramsden eye-piece (Fig. 185). Used in
a telescope or other instrument, the real image formed by the objective is 17

L, L,
Fie. 185, Fre. 156.

in front of L;, and after refraction by L,, its image is 1 1/3” from it, and
therefore in the focal plane of the second lens L by which the light is
rendered parallel. The front lens of this, and of the two fnllumng comni-
binations, is termed the field lens, and the ba.::lc one is the eye lens.

Fig. 186 represents the Huyghen eye-piece, in which two unequal plano
Cx. lenses L, and L, (where F,=3F,) of, say, respectively 6 in. and 2 in.
focal length are separated by a distance 4 in. equal to the difference between
F, and F,, or half the sum of their focal lengths (F, + F,}/2.

When employed with an instrument .f-,ur:h as the telescope, the light from
the objective is eonvergent on to L, which increases the convergence, so that
the real image is formed 27 from L,, and therefore in its focal plane ; then
the light finally emerges parallel. Both eurved surfaces face the light.

‘Two equal plano Cx. lenses with their curved faces towards the light, and
separated by a distance equal to £ of either, constitute the Kellner eye-piece.
In this case F,,=0, but, when in use, the image formed by the objective lies
in the plane of L,, so that the light then diverges to L, from its focal
distance and is, after refraction, parallel.

The utility of the field lens, in all eye-pieces, is to increase the field of
view,
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Effectivity of Two Cc. Lenses.—In Fig. 187 let L, and L, be two thin Ce.
lenses of, say, 10 in. and 7 in. F respectively ; when close together F lLes
45" in front of them. If L, is advanced 2 in.

s (-10-2)x -7 +84 5
{‘,._—.{- _} = = —4.5 in
0 -2 ol 1
As F, (measured from F£,) is lengthened by separation, the effectivity is
decreased for any plane behind the lenses, although F, is nearer the front lens

) B
Ly

Tk

Fic. 187,

As with Cx. lenses, the distance of F, from the back lens of a combination of
two unequal Ce. lenses, separated by an interval, varies as the one or the
other lens faces the light. Thus, if the T in. Ce. were 2 in. in front of the
10 in., F,=41% in,

19

Effectivity of Cx. and Cec. in Combination.——If there is an interval
between a Cx. and a Ce. of equal focal length, the combination 1s Cx. If,
however, d exceeds I, the light refracted by the Cx. is brought to a focus,
whence it diverges to the Ce., so that F, is negative.

Thus, in Fig. 1881let L, he a 10 in. plano-Cx. and L, a 10in. Ce.  When
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placed in contact parallel light is unaltered by them, but if separated by an

interval less than F, (Fig. 189) parallel light incident on the Cx. is converged

to the Ce. and if d=4 in.

P _(10-4)x =10° =60
BT 10=-10—-4 — -4

15 in.

Thus the rays are rendered less convergent, and form a real focus at 15"
behind L,. This is the principle of the Unofocal photographic lens, in which
the ecomponents are of equal but opposite power.

If the combination be reversed (Fig. 190) so that the light is incident
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first on the Ce. it is rendered divergent as from 10 + 4 =14” from the Cx,,
and
P = 4110114 =1735"

thus /', is at 35", or 20” further from L, than the other back focus. Although
there] is an excess of Cx. power in both cases, F, is nearer to the back lens
when the Cx. faces the light than when the Ce. does so.

If the Ce. lens has a shorter focal length than the Cx. and the two are in
contact, the result will be an excess of negative power. If the Cx. be moved
towards parallel light, it gains in effectivity, but vhe total effect is still nega-
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L, L.
Fre. 190.

tive until, when the separation is equal to the sum of their focal lengths, the
back focal length is infinite. Any further increase of separation will give
the two lenses a positive focal length, which diminishes as the separation con-
tinues, until when d=F of the Cx., the back focal length is zero. Still
further separation produces a negative effect. When d is less than F of the
Cx., but greater than F|+ F,, the principle of the Telephoto lens is
illustrated. '

In order that a Cx. and Ce. should neutralise each other, and parallel rays
emerge from the second lens parallel (Fig. 191) d must be equal to the alge-
braical sum of their focal lengths, and, further, the value of d must always be a

I"I

positive quantity. Thus if /=06 in. and Fy= =6 in,, then 6+(-6)=0; the
two lenses must be in contact in order to neutralise. But if Fy= +6 and
F,= - 4 the two lenses must be separated 6 +(—4)=2 in. In this last case
the emergent rays are parallel to their axes after refraction, whether the
entering rays are first incident on the Cx. or on the Ce. Here by calculation

Fig, 191, Fre, 192,

(6-2)x4 16
T el T
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It will be noticed, therefore, in order that a Cx. and a Ce. may neutralise
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by separation, the Cu. must always be the weaker, the principal focus of the Cx.
being behind the Ce. as far as that of the latter is in front of it.

The Opera-Glass consists of a convex lens, L, placed in front of a concave
lens, L,, of higher power, at a distance equal to the algebraical sum of their
focal lengths so that the lenses neutralise each other by separation. Although
the rays of each pencil emerge parallel from a very distant point after refrac-
tion by both lenses, yet the pencils themselves ave deviated so that an object
appears under a larger angle.

The proof of the ¢ expression for magnification in the case of the opera-glass
can be done very similarly to that ﬂf the telescope. In Fig. 192 ¢ is the
optical centre of the objective as before. An extreme axial ray - from an
object P I at = subtending the angle a at () is incident on the concave, and
is refracted away from the axis in the direction /) such that & is the angle
under which the image is seen. Therefore the magnification is

M=>b/a=0b/a".
The angles, being small, can be replaced by their tangent values, giving

Now @ H=F, — F, the separation necessary for parallel emergent light,
and the point S is really the virtual conjugate of () by refraction at the con-
cave lens. Therefore we have

Sy I S
02 i e L B e e
so that
F, “_'11 = F,)

F,
QH. B
SH- - F)F,

1

SH=
Therefore the magnification

M=

Thus the magnification of the opera-glass is expressed by F/F, asin the
telescope.

When the Ce. is to the front the secondary axial rays of the concave are
less divergent after refraction by the convex, and therefore appear to pro-
ceed from a smaller object, so that diminution occurs when an opera-glass is
turned wrong way round. The magnification in this case is still expressed
by Fy/F, where F, is that of the Cec. ; in practice, of course, the magnifica-
tion is fractional, indicating a diminution equal to the magnification obtained
when the Cx. was to the front.

Thus, if F;=5 in. and F,=2 in., the magnifying power of the opera-
glass is 1;"_’=.>1, If the mmhnmtmn is reversed so that the Ce. is to the
front, M = 2/5, i.e. thereis a diminution to 2/5.
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The emmetrope adjusts the glasses so that the separation is exactly
Fy+ F,. The hypermetrope, requiring convergent light for clear vision,
makes the separation greater, while the myope, needing divergent light,
makes iv shorter.

Dioptral Formula for Effectivity.—The formule for finding the effective
dioptral lens D, of two separated lenses D), and D, are

i % DEd
== T ek Dat e e

D, being the power of the front, and D, that of the back lens; d, the
interval, 1s expressed in terms of a metre in the first, and in centimetres in
the second, of the above formul:e.

Separation for Given Effectivity and Opera-Glass Adjustment.—Suppose
an opera-glass, formed of a +10 D objective and a — 20 D ocular, has to be
adjusted for the vision of a myope of 4D who requires a back focus of
—=4D in order to see clearly through the combination. The distance
between the lenses must be such that the + 10D has an effectivity of
+16 D in the plane of the - 20 D, so that the required - 4 D is left over.

Then

d=100/10-100/16 =10 -6-25=3"75 cm,

Again, suppose a hypermetrope of 4 D similarly desires to see clearly
without accommodation through the same combination of +10D and
—20 D. Here a back focus of +4 D is necessary, so that the + 10D must
have an effectivity of + 24 D in the plane of the Cec. Then

d=100/10-100/24 =10 - 416 =583 cm.

In order to adjust the distance between two lenses so that the effect is
that of a given back focal length the formula for F, already given may be
employed. Let the lenses be 5 Cx. and 2 Ce. and the effect required that of
a 20 Cx, ; then
(b-d)x(-2) -10+2d

Ea e e
60 - 20d = —-10+4 2d.
so that —22d= -T0, and d =3-% iu.

If the effect required with the same lenses is that of 20 Ce., then

o P-Dx(=2) -10+24
EESSG—Sd 5 S

—60+20d= =10+ 24

so that 184 =50, and d =21 in.
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The value of d can also be obtained from the formula

= _|_11 IJ'! =L {:F! + Fz)
= 1112 = Fs:

Effectivity when Light is Divergent-—\When incident light is divergent
the conjugate focus with respect to the front lens of the combination must
be found before the value of (¥, —d) can be applied. The conditions for
neutralising and for obtaining certain effectivities with separated lenses differ
for divergent and parallel light. For example, an object is 20 in. in front of
an 8 in. Cx. lens behind which, at 2 in., a 13 in. Ce. lens is placed ; whereis
the image? Now, the first conjugate f, is at

1/f,=1/8—1/20=1/13}, and 1/(13} - 2) - 1/13 =1/882

Therefore I. is at 88% in. behind the concave.
An object is 40 in. in front of a 7 in. Cx., where should a 5 in. Ce. be
placed so that the rays may be rendered parallel? Now

1/fa=1/7 —1/40 = 33/280

the image f, is thus 81% in. behind the Cx., so that the Ce. must be placed
81% —-5=31% in, behind the Cx.

An object is 40 in. in front of a 7 in. Cx. and a 5 in. Ce. The image
must be 20 in. behind the back lens; how much must the lenses be
separated ! f, is 81§ in. behind the Cx., which must have the effect of 1/5 +
1/20 = 1/4 in the plane of the Ce. The interval between them must therefore
be 818 — 4= 43¢,

Suppose a +3 D lens is placed 20 ¢m. in front of a screen, where must
another equal lens be placed in front of it so that the image of an object
50 em. from the front lens be focussed on the screen? After refraction by
the second lens alone the light is converging to 100 em., but it must converge
to 20 c¢m. behind the second lens, since the effectivity needed is +5 D.
Therefore, the front lens must act as 5 — 3= + 2 D in the plane of the second,
and the interval between them must be 100 - 50 = 50 em.



CHAPTER XVII
EQUIVALENCE OF THIN LENSES

Equivalence.—Any two or more lenses, whether in contact or separated,
can be replaced by a single equivalent lens which has the same refracting
effect as the component lenses.  Or, to put it in another way, since the size
of image is proportional to focal length, any number of lenses can always be
replaced by that single thin lens giving the swine magnification,

[f two thin lenses are placed in contact the resultant focal length is the
same as that of a single lens sitnated in the same plane and whose power
1/F is that of the sum of the two components F; and F,. The combined
power and F may be written

S R
F=T, + ¥, and = F,+F,

L".f
Fic. 193.

1f the lenses are separated by a distance o, we have seen that the effective
power and back surface focal distance are

1 1 | . (F,-d) F,
k,l:: I_‘1] e |"|E+ I"'li]- L.t]l{.]. -I B [_111 + ]-‘2 o []E

It now remains to find an expression for the equivalent focal length
of two thin separated lenses.

Equivalent Lens and Focal Length.—Let L, and L, (Fig. 193) be two
thin lenses separated by a distance d, and let 4B be a ray incident on I,
parallel to the principal axis M N. This is deviated by L,, and, were it not
intercepted by L,, would focus at N, but it is refracted still more at ' to
cross the principal axis in the posterior focus F,,.

Now if the incident ray 4B be produced, and the final refracted ray C'F ,
prolonged backwards, the two will meet in the point P,. Through P, drop

203
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the perpendicular P, E,. Then if a thin lens of focal length E, F,, be intro-
duced into the plane P,E, and the other lenses removed, this single lens
would give precisely the same result as the combination L, L,. For this
reason the plane P, E, is called the second equivalent plane and the point E,
the second equivalent poind.

Similarly if parallel light be incident first on L, it will pass through the
first back foeus F,; and P, E, is located in the same way as P, £,. The plane
P E, is called the first equivalent plane and E, the first equivalent point, and it
is here that the equivalent lens must be situated to replace the combination
for light coming from the side of L,. _

Thus it will be seen that P, and P, correspond to the refracting planes
of a single thin lens, since all refraction appears to take place on either
Py or P, depending upon the direction of the light. E, and E, likewise
correspond to the optical centre, because any ray divected towards E; will,
after refraction, appear to emerge from E, in a direction parallel to its
initial path. This is illustrated in the next diagram.

K]
H"“-.____

R"‘-..,

Fia. 194,

In Fig. 194, P, and P, are the equivalent planes, E, and E, the
equivalent points, /] and F, the principal foei, £ F; and ¢ F, the focal planes.
Liet an oblique parallel beam, of which M is the secondary axis, fall on L;.
The ray M, directed towards E, is bent towards the axis by L,, but is
again rendered parallel to its original direction by L, such that it appears to
proceed from E, towards [{. Another ray K G after refraction by L; and L,
is directed towards ff in the posterior focal plane, apparently proceeding
from a corresponding point N on F, such that the distances of G and N from
the axis are egual. Similarly RET is refracted towards fI, the point of
emergence on P, being S, such that S E,=T E,. Thus // is the image of the
point from which the light originally diverged. Conversely rays diverging
from H, or any other point in the focal plane, will emerge as a parallel beam.

Since the intrinsic power of a combination is a fixed quantity the
equivalent focal length is the same on each side, and is the distance E, F, ov E, F,.
The equivalent planes P, and P, are always situated symmetrically with
respect to the focal planes, and with two ordinarily separated convex lenses
Py and P, are invariably crossed such that £ lies nearer to F, than to F,
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and E, nearer to F| than to F,, that is to say the 2nd equivalent plane lies
nearer to the source of light. Generally, however, the equivalent points and
planes are uncrossed. That which is the first equivalent plane when the
light is incident on the one lens becomes the second equivalent plane when
the lenses are reversed.

The space E,E,, over which the light apparently jumps, is called the
oplical interval ov equivalent thickness.  Were the two lenses brought together
this interval would vanish, so that £, and E, merge to form the optical
centre of the resultant thin combination, and the united planes P, and P,
becomes the refracting plane.

Expression for Fg.—In Fig. 195 4B is a ray parallel to the axis and is
refracted through Fy. the back foens. Let the focal lengths of L, and L, b
F; and F, respectively, d the separation, and Iy the equivalent focal length.

TR
U E; U A

ks Ly
Fiz. 195.

Then we have two pairs of similar triangles CFyN, P,FyE,, and CDN,
BDM.

Therefore
EE Fh 1:'2 "2 BM MD o P MDxN .F“
NFI‘. {.:\_{_ \ YI} ag L'y = :\-]}
Nﬂl‘.’l.' Eﬂ F‘:H =];1]_;; N F. I‘-‘ = nl’}
N F, ] g
}{D:Fl; NI}-_I —E
Fy x Fy (F, - d) %

F,= “1‘1+ Fa —d) {l" u"] 1“ + l —d

This formula, it will be noticed, is<independent of the direction of the
light.

The distance of the second equivalent point E, from L, is found by
subtracting the back from the equivalent focal distance, i.e. Fi— F,. Thus

B _ F1Fy, Fo(F,-d)  Fod
2K, +F,-d F,+F,-d F,+F,-
The corresponding distance’of £, from L, is

i F ]*_ F1 (¥, — d) F, d
1= F +F F,+F,-d~F, +I' —d
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The equivalent thickness is found from the following equations, the first
of which also shows whether the equivalent points are crossed or not.

*

ir'_; fIF — {I*:ll. + I:“EJII = lq'l _q.. J_“q — {.lil

The distance £, 1s measured backwards from the 1st lens and E, forwards
from the second lens, that is in each case fowards the other lens. 1, however,
either is a negative quantity, it is measured in the opposite direction or
away from the other lens.

The positions of E; and E, are unchanged in the combination, no matter
which lens faces the light ; F, is that which theorefically is nearer-the source,
but actually it may not be so. E, is that from which the focal length is
measured, and if the combination is reversed that which was E; then
hecomes F, and vice versa. When the one lens faces the light F 1s
measured from a certain position, and it is measured from another position
if the other lens faces the light.

Fey Fa,

Fic. 196.

Two Cx. Lenses.—Suppose a 5 in. Ux, lens is placed 2 in. from a 10 in.
Cx. lens. Then (Fig. 196)

5x 10 50
F LA i R i i IS
E;=5x 2/13= 1% in. behind L, Ey=10 % 2/13 = 1% in. in front of L,

or 2 — 14 = 1% in. behind L,
f=2-(20+10)/13= - 4/13

If the 10 in. lens faces the light, the two equivalent points change places,
¥, being the same. Since d=2 in., and E; is 10/13 in. behind L,, while
B, is 1y in. in front of L, the distance ¢ is negative, and the two equiva-
lent planes are crossed by 4/13 in.

Special Cases.—The following special cases occur with two separated
Cx. lenses.

(1) When d=F, — F,, then F= F /2, and E, is midway between the two
lenses. This is the case of the Huyghen eye-piece. If /;=3 in., F;=1 in.,
and d=2 in.

Ix1

l"::i+l~

i,=1:];;i1|*
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E, is 1 in, in front of the back lens, midway between the two lenses ;
£, being 3 in. behind the front lens, is 1 in. behind the back lens, and
outside the lens system. Here d>F, but<F,, and if the lens of shorter
focus faces the light /' lies in front of the back lens.

(2) When d=F, + F,, then Fg= o, this being the case of the telescope
(g.v.).

(3) When d>Fy but < Fy+ F,, then Fy is positive and E, and E, may be
one or hoth heyond the lenses and crossed (Fig. 197), d being > F}, the
light, after refraction by L,, is divergent to L, as if a single lens were placed
further than its fosus from a given plane.

— = WPFF = 44

Ly by
Fie. 197.

Let Fi=4in.,, F,=4in., and d=6 in. Then (Fig. 197)

4><4_ 16

I"*=4+4-ﬁ=:3

The lenses being equal

— o I.II,

E,or E,=4x6/2=12 in.

Parallel light incident on L, comes to a focus at 4 in., whenee it diverges

Frc, 198,

to L, and has its focus, after refraction, at 4 in. in front of L, or 8 in.
behind E,. 7= - 18 inches in this case.

hiuppn;se Fi=T7in., F,=16 in, and d=9 in. Then Fy=8 in, E; is
45 . from L;, and £, is 10% in. from L,. The effect is as if an 8 in.
lens were placed 10% in. in front of the plane of L,.  Light, refracted
by this system, is converged to 7 in., and, after the second refraction,
diverges as if from a point 2% in. in front of L,.

(4) When d > Fy + F,, then Fy is negative, and E; and E, are also negative
(Fig. 198). Thus if two 4 in. lenses are 20 in. apart, we get

4 x4 16

R == —]1in.
Ye= i a2 —12- "l
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Here, also, the lenses being similar
E,or E,=4x20/-12= -6 in.

Here the equivalent points, heing npegative, are measured outwards
instead of inwards, and £}, lies behind L, but 17 in front of E,.

(D) When d=F), then Fy=F), and the system illustrates the Kellner
eye-piece (q.v.) if the lenses are equal. If the lenses are 37 and 17 with
d=3", we have F,=3", E,=9" and E,= 3", that is, in the plane of L,.

(6) When d= Is: then Fy=F,, and E| =d, the image being the same as if
the front lens were not there, but its position is shifted. Thus with a
10* and a 17 lens separated by 17 we find Fg=1", E;=1" and E,=;"
which is the distance that the image is shifted. This illustrates the case of
a lens at the anterior focal point of the eye.

(7) When Fi=1F,, then Fy+ Fy=F, or F, This is the case of the
Ramsden eye-piece. Let F), and F, be each of 4 in. foeal length, d being
2/3 Fy=221in. Then

g e
b ramEny o
K, or K,=4 x 22/51=2"

Fy is therefore 3 = 2 = 17,
Equivalence of Two Cec. Lenses.—If /| and F, are both negative, and

for example, /; = — 8in, F, = - 10 in., and d = 2 in., then
. 8x(—-10) 80 :
£ ey T e T
E,i=-8x2/-20=4%1in. E,= -10x2/-20=1 in.

i=2-(1+4)=1in.

Special Cases.—If d equals the difference between /) and F, (both being
concave), then Fy is half that of the stronger lens, and the equivalent point
measured from the weaker lens is midway between the two.

If ', = F,, then F,+ F, = F, or F,

Equivalence of a Cx. and a Cc. Lens.—Suppose F;=10 cm., F,=
- 15 em., and d = 2 em. Then (Fig. 199)

~ 10x(-15) -150
Fe=To-15-2= —7 =2l7em.

Ey=10x2/-T7= —2¢ in front of L,
Ey= =15 x 2/ =7=43% cm. in front of L, or 43 —2=2% em. in front of L,
(=2—(-20+43)=14 cm.

If the negative lens is in front (Fig. 200), E, is 2¢ em. behind the Cx.,
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or —28 2= —4¢& em. behind the Ce. In the first case Fy lies 17} cm.
behind the back lens, and in the second case 24% em. behind it. The
combination resembles that of a positive meniscus in which the optical
centre lies outside the Cx. surface. Whether a combination, such as this,
will have a positive or negative focal length depends, not only on the
respective powers of the components, but also, and essentially, on the value
of d. The weakest Cx. can more than neutralise the strongest Ce. if the
separation be great enough.

Special Cases.—If the two lenses are separated by F, + F, (the sum of
their focal lengths), the negative being of shorter focus, then Fy = o, and
the lenses neutralise each other. This is the case of the speru-glass. Thus
with 9 in, Cx. and a 4 in. Ce. separated by 5 in.

Ox(—4) —36_

S e i e
e E L L,
I
H /
y =
Fia. 199.

Yt
[ B
; . El 5,
Fic. 200,

If d <F, + F,, the combination is negative; if d > F, + F, it is
positive.

When F, = — F,.—If the two lenses have equal focal lengths, 'y — Fy =
F, or F,, and the formula for finding F;; (which is positive) becomes simpli-
fied to Fy = F?/d. In this case E, is negative and both equivalent planes
lies beyond the Cx. lens ; E, = F,and E, = F,; also { = d.

To find d for a given F.—To find the distance ¢ which should
separate two lenses so that they may have a given Fy the following formula

serves.
d=1F, +F, = F,F/F,

If d results in a negative quantity, it shows that the desired result is
impossible.  If both lenses are similar the formula may be written d = 2 F
— F?%/Fy, and if the one lens is Cx. and the other Ce. of equal power, the
formula simplifies to d = F*/F,.

14
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Thus when F, is 10 in. and F, is — 5 in., in order that Fy be 12 in.
d=10-5-10x (- 5)/12=5 — (—41)=91 in,
So that the equivalent foeal length may be 12 in, Ce. we find that
d=10-5-10%(—5)/—-12=5—41_& in,

The Result of Separation.—Separating two Cx. lenses results always in
reduced power or longer Fy—indeed if o is great, Fy may hecome infinite, or
even negative. With Ce. lenses the reverse oceurs, the power being increased,
or Fy shortened. With a Cx. and a Ce. in combination the result varies
with the powers of the two components as in the next paragraph, where the
results are tabulated.

Change of F, for Variation in d.—As « increases with two Cx. lenses,
Fy varies directly, and f varies inversely or becomes negative.

As d increases with two Ce. lenses, Fy varies inversely, and { varies
directly.

As d increases with one Cx. and the other Cc., the Cx. being the
stronger, Iy varies inversely and f varies directly.

As d increases with one Cx. and the other Ce,, the Ce. being the stronger,
and Fy being negative, I',, varies directly, and ¢ varies inversely or becomes
negative.

As  increases with one Cx. and the other Ce., the Ce. being the stronger,
and Iy being positive I, varies inversely, and { varies inversely.

Conjugate Foci.—The equivalent focal length of two separated lenses
being that of a single lens substituted for them, the ordinary formule for
conjugate foci hold good, but the distance of f; is from E,, and that of 7, is
measured from E,, as with thick lenses (q.v.).

Combination of More than Two Lenses.—When more than two lenses
are separated by intervals, the method of finding Fy of the whole system
is to obtain that of the first pair of lenses, and then combine this combina-
tion with the third lens, or another pair of lenses, and so on. It must be
remembered that the distance d between two combinations is that between the
two theoretically most adjacent equivalent poinfs, that is, between E, of the first and
E, of the second combination ; also that the position of the equivalent points
I, and E, of the whole combination is reckoned respectively from E, of the
first, and E, of the second combination. In fact the calculations are similar
to those required for two thick lenses (q.v.).

Dioptral Equivalent Thin Lenses.

With dioptral powers, the equivalent power and points of two separated
lenses are found from the following formule, where D, and D, are the powers
of the two lenses, d is the interval between them expressed in em., Dy is the
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‘equivalent dioptral lens, E; and E, are respectively the first and second
equivalent points, and { is the distance between E; and E,.

D,=D, +D,-D,D, d/100

E, D, D, d DD, d  Dyd
J:[n1+11-{111dfnm;“ nlm = n
Dy Dy, o D,Dyd D, d

T W W LT 00 el 13
izd_'(l_al'i'j_la)

If d is expressed in terms of a metre, we can write :
D.=D;+D,- DD, d
If D, is positive and equal in power to Dy, which is negative, then
D, =D2d/100

The distance between two dioptral lenses so that they may have a
certain equivalent dioptral power is found from

100 (D; + D, —D,))

4= D,D,

which, when Dy and D, are equal, simplifies to

100 (2D —D,)
=T T

If the one lens is positive and the other negative and of equal powers,

the formula becomes
i =100D,./D2



CHAPTER XVIII
THICK LENSES AND COMEBINATIONS

HiTHERTO we have considered all lenses as having no appreciable thickness
in relation to their focal length, so that, as described in a previous chapter,
all the refraction caused by the two surfaces may be presumed to take place
on a single refracting plane passing through the optical centre. Further,
this plane may be taken as coineiding with the surfaces and therefore, for
practical purposes, all measurements may be taken from the lens itself, and
all secondary axes passing through the optical centre assumed to undergo no
lateral deviation. With a thick lens, however, these simplifications are not
permissible,

Let Fig. 201 represent a thick bi-convex lens of which X and ¥ are the

E, !E,__ /B.

Fiz, 201. Fig. 202.

centres of curvature. From X and Y let any two parallel radii, such as X' &
and V.4 be drawn meeting their respective surfaces in B and A ; then tangent
planes drawn through .4 and F are parallel, so that at these points the lens
acts as a plate, and any ray 4’4, incident at A, after transmission and
refraction, emerges as L5 parallel to its original course. As described in
Chapter VII., the point () where the ray cuts the axis is the optical centre,
which is a fixed point whose position on X' }” depends only upon the ratio of
the radii of curvature.

The point £, towards which the secondary axis 4’4 is directed, is the
first equivalent point, while E,, from which it apparently emerges, is the

212



THICK LENSES AND COMBINATIONS 213

second equivalent point. E,; and E, have precisely the same significance
given them as in the previous chapter on thin lens combinations, i.e., they
are the points from which the principal and secondary foci are measured,
and through which pass the planes where all refraction is presumed to take
place. In a single thick Cx. lens, however, £, and E, are never crossed as
may occur in Cx. lens combinations. Fig. 202 shows the equivalent points
and optical centre of a bi-concave lens.

& |

Fia. 203. Fro., 204,

In perisecopic Cx. or Ce. lenses (Figs. 203 and 204) both £, and E,
generally lie outside the lens on the Cx. side of the PCx., and on the Ce.
side of the PCe., but in some cases the one point may be outside, and the
other still within the lens; moreover the optical centre O lies outside the
equivalent points. A ray directed to | appears, after refraction, to proceed
from F,, its course 4 [ within the lens being on a line connecting the
optical centre 0, the point of incidence .{ of the ray at the first surface, and

|

i ¥

JL

Fre, 205, Fig. 206,

the point of emergence £ at the second surface. The position of (/ is therefore
determined by producing £ A to eut the principal axis.

In plano-Cx. and Ce. lenses (Figs. 205 and 206) the only point on the
curved surface parallel to any point on the plane surface is at the vertex,
through which passes the principal axis. Therefore E,, the first equivalent
point, and O, the optieal centre, coincide at the curved surface.

All the secondary axes proceeding from the various points of a hody are
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directed towards E|, and after refraction appear to diverge from E,, but they
eut the principal axis at 0, either actually or virtually, as in periscopic
lenses.

The terms nodal or principal points are sometimes applied to the equiva-
lent points ; but it is better to reserve the latter term for points that possess
the funetions of both the former, as they do in lenses where the first and last
media—usually air—are similar. Nodal and principal points are discussed
in the chapter on Compound Refracting Systems.

The Effect of Thickness.—This is clearly shown in the foregoing
diagrams, and it may be said that a thick lens differs only from a thin one
in that it has a plate-like power of laterally displacing all incident light. In
other words a thin equivalent Cx. lens can be transformed into a thick lens
by splitting it in the refracting plane and cementing the two halves to the
opposites sides of a parallel plate. The consequence is that a thick Cx. has
a weaker equivalent power than a thin one of similar curvature and p, while a
thick Ce. has a stronger equivalent power than a thin one.

: i A 7

Fic. 207. Fic. 208,

Y
:h-n

Course of Rays through Thick Lenses.—Fig. 207 represents a thick Cx.
lens in front of which is the object 4 £. Any ray A P parallel to the axis,
takes the course () .4* after refraction, and passes through F,. The secondary
axis 4 L, directed to K|, proceeds from £, parallel to its original course,
and a third ray .4 F, passing through F|, is refracted as S 4" parallel to the
axis. All three rays meet in the image point .4', so that £’.4"is the complete

eal image of 4 B. Any other ray A4 T directed towards the first equiva-
ent plane at 7" emerges from the second at X and directed toward 4’ such
that B, T = E, X.

The construction in the case of thick Ce. is shown in Fig. 208. It is so

obvious as not to need any special description.

Direct Formulz for a Single Thick Lens in Air.—We will now proceed to
find the back focal length or effectivity, the equivalent focal length, and the
positions of the equivalent points in terms of the radii, thickness and index
of the lens. Let

Fy be the equivalent focal length.

E, and E, be the first and second equivalent points.

T be the distance between E, and E, (the optical interval).
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ry and 1, be the radii of curvature of respectively the first and second
surfaces.

A and B be the first and second surfaces at the principal axis.

i+ be the index of refraction of the glass.

{ be the thickness of the lens on the axis.

Fig. 209 represents a thick bi-convex lens; let R () be a ray incident at
¢ and parallel to the principal axis 4 I ; this will be deviated towards the
axis by the first surface, and would, if not intercepted hy the second surface,
cross 4 B in D, but is brought to a nearer point ¥, by the further refracting
effect of the second surface. Then, from definition, D is the posterior focus
of the first surface, F, the principal focus of the lens as a whole, and B F, the
back focal distance. Let F,(' be produced backward to meet R () prolonged
in P. Now a plane perpendicular to the axis, dropped through P, will
lozate the second equivalent plane and, where it cuts the axis, the second
equivalent point £, All the refraction of incident light from the direction
R@Q (parallel or otherwise) appears to take place on P E, The distance
L, F, is, therefore, the equivalent focal length, since it is the focal length of

Fre. 209,

the single thin lens which, if placed in the plane of £, would have the same
effect as the original thick lens as a whole.

The distance of F,, the principal focus of a lens, measured from the
segeond surface B, is determined by the sum of the anterior focal powers
1/F, and 1/F’ of the two surfaces respectively, that of the first being modi-
fied by #/p, the thickness of the lens, and the index of refraction of the
medium through which the light travels, before it meets the second surface.
‘That is

1/F,=1/(F, - t/p) + 1/F}

Substituting in the formula i /(p— 1) for F',, and »,/(p — 1) for F, we get
1 v 1 _ % 1 P {’_lt-t —_1.]__“ m—1
Ko, rf(p=1)=t/p rzf{p—l}-]url—f{‘uul}-h Ty

p(p=1) (=t (p—1)/p)
= gty = L1g (pr—1)
g0 that pirytg =1y (p—=1)

=BF.= T Y
K, S (p,— i)(a'1+r3—z‘ (e — 1},-"’,-’-:)
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Similarly the back focus from the other surface is
1/F,=1/(F, - t/p)+ 1/F,

which becomes " pryvg—try (p=1)
plp =) (i -t (p-1)/p)

These expressions give the back focal distance F,. It remains now to find
similar formule for the equivalent focal length and the positions of the
equivalent points relative to the poles A and B of the surfaces.

In Fig. 209, since the ray E ¢ is presumed to lie close to the axis, the
ares () A4 and C' B may be taken as straight lines giving two pairs of similar
triangles C' F, B and PF . E,, CDFE and @D .A. Then it follows that

E,F./BF,=PE,/CB=QA/CB=AD/BD
so that E,F.,=BF.,x AD/BD

But F, F, is the equivalent focal distance, & F, is the back foeal distance,
A D the posterior foeus of the first surface, and £ D is this quantity less the
thickness £.  On substituting these values, therefore, in the above equation
we get as the expression for the equivalent focal length

s pryig— g (e —1) By S _.)
St e o S Y e e i

which, when worked down, becomes

I dd
PR (p=1) (ke r = =1)/g)

The distance of E, from the pole B of the second surface, is found by
subtracting the back from the equivalent focal distance, which in terms
similar to t'ln::ac already used is
Bk Tol
2op(rytrg—i(p— 1)/ )

and the corresponding distance of £, ; from { is

[ yf
T p(ry+rg—L(p—1)/p)
Now if, as is convenient, we calenlate the quantity N which enters into the
various formule, that is
N=n+r,—t(p-1)/p

14 7e
we have F = -
{;4 ~-1)N
The back surface foecal distances from the first and second surfaces
respectively are

: A Mt — iy (p—1) o O i U Lrg {n—1)
from A = T G from B= N
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The distances of the first and second equivalent points measured inwards
from respectively the first and second surface on the principal axis are found
from

4! . Tal
154 N’ 1"‘-’-:;,: N

The equivalent thickness T, i.e. the distance between the equivalent
points, is

T, 1)

It should be noted that the formula for F, is the same as for F of a thin
lens, except that the quantity #(p - 1)/p enters into it.
An approximate formula (accurate when p=1-5) is

e "
== (= 1) (1 +1,— 1/3)

Example of a Bi-Cx. Lens.—If #; and r,=10 em. and 6 cm. respectively,
p=15, t=3 em., then

5 o 10x6 . 60 60
®= 5 (10+6-3x5/10) " Bx(16-1)~ 75 > ™
, 10x 3 30 ..
S TER(i6-1) 285 > o
- bix 3 18
E,= =5 Ccm,

15 x (16 -1)~ 225
T=3-(1'333 +-8)="86 cm.

Fy is anteriorly 8 — 1-333 =666 from .4, and posteriorly 8 - 8=7'2 em,
from B. The optical centre is located at

3x6/(104+6)=1'125 em. from B, and 1'875 cm. from A.
A thin lens of same radii and p has

. 10 x 6 60

T i = o= = 1D ¢m.
5x({10+6)" &8 =

Thus we see that in a bi-Cu. thick lens the frue or equivalent focal length is
longer than that of the corresponding thin lens, but its back foeal length is shovter.
In the case of the thick lens =8 cm. from E,, but 7:2 em. from 5, while if
the lens were thin so that =0, / would be 75 em. from 5. If two Cx.
lenses be made of the same glass and similar curvatures, but the one thicker
than the other, the thicker lens is actually the weaker, although its effec-
tivity is greater, i.e. its back foecal distance is shorter.
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Example of a Bi-Ce. Lens.—In Fig. 210 let r, and 7,= — 10 em. and
— 6 em. respectively, p=15 and /=3 cm.

S —10 % (- 6) GUEAINS [
Pﬁ‘ﬁx(—lﬂ—n—3xﬂﬂiu=ﬂx{_|n"“06““

R TN g e
Tl e T

T=3-(1'18-:7)=1:12 em,

-

i CI.

Although the true focal length is the same, if the surface B faces the

Fic. 210.

light, F lies 8-88 em. from .4, while if .{*faces the light F is 9-36 em. from
B. If the lens were thin # =75 em., so that increased thickness causes a Ce. fo
have a greater equivalent power, but a smaller effectivity.

Example with a Plano-Cx. Lens.——Let r; (Fig. 211) that of the curved
surface=6 em. ; r, of the plano = o« ; p=15, and {=3 em. Then since
r,= o, and this quantity occurs in the upper and lower part of the formula,
we can omit it from our calculations as well as the other quantities in the

s |
!
rzka g
I8 |
Fie. 211. Fic. 212.

bracket containing this value. The formula therefore simplifies to that used
for a thin lens, viz. F.=v/(n-1)

Ei=6x3/156 =0, E,=3/1'56=2 em.
F.=6/5=12em. T=3-2=1 cm.

E, is at the curved surface, and E, is 2 cm. in front of the plane surface. In
the above example, when the Cx. surface is exposed to the light, F lies
12—2=10 em. behind the plane, and 13 em. behind the curved surface.

When the plane surface is so exposed, F' lies 12 em. behind the curved and
15 em. behind the plane surface.
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Example with a Plano-Ce. Lens.—If » (Fig. 212) that of the plane
surface = o, as before stated, it may be neglected. Let #,, that of the
Ce.=6 cm., =15, and {= 3 em.

]"_-:1-.-—.3;"‘1-}=:3 [ 1w Eazﬁx?;’lh}t&={]
F.=-6/53=<=12 ¢m. T=3-2=1 em.

£y 1s 2 em. from the plane surface, and E, is at the Ce. surface. If the
curved surface faces the light the focal distance is 12+ 2= 14 em. in front of
the plano and 11 em. from the curved surface. When the light is incident

on the plane surface, /' lies 12 em. from the curved and 9 em. from the plane
surface.

Example of a Positive Meniscus.—In a periscopic Cx. lens (Fig. 213) let
ry and #y of the Cx. and Ce. surfaces respectively be +6 cm. and — 10 em.,
p=1Dand =3 cm.

5 6% (~10) - 60

== 5 (6-10—-3x5/18) "B+ (-5) - ™

Ey=6x3/15x -5=-24em, E,=-10x3/1'5x -5=4 em.

I
v
-
- & E;JI
i
|
| |
Fig. 213, Fic. 214,

E, being negative must be reckoned outwards, so that the distance of hoth
equivalent points are reckoned the same way, the first outwards from the Cx.
surface, the second inwards from the Ce. E; is 24 em. and E, is 4 - 3=
I em. outside the Cx. surface. In this example T=3-(-244+4)=14cm.

In some cases, with a periscopic Cx. lens, the one equivalent point lies
within the Cx. surface, as in Fig. 214. The positions of £, and E, depend on
the curvatures of the two surfaces; the more nearly equal the two curva-
tures, the more are E, and E, displaced towards the Ux. surface or beyond
it. The distance of F, varies very considerably as the one or the other
surface is exposed to the light.

Example of a Negative Meniscus.—In a periscopie Ce., as in Fig. 215, let
r, and 7, of the Cx. and Ce. surfaces respectively = 410 em., and —6 cm.,
p=15and {=23 em.
: [0 x (= 6) - 60
i (+10-6-3x5/1'5) 5x(3)

Elz 10 x 3/1'5 x 3 =666 cm., H.:= —6x3/1'hx3= -4 cm.

- 40 em.

That is, the distance of both equivalent points are reckoned the same way,
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£, inwards from the Cx. surface, and E,, being negative, outwards from the
Cec. surface. The first is 6:66 — 3 = 3:66 em. outside the Ce. surface, and the
second is 4 em. outside it. T =23 - (6:66 — 4)=-33 em.

As with the Cx. in some cases, the one equivalent plane of a Ce. meniscus
lies within the Ce. surface (Fig. 216). Also, the difference in the distance is
very marked as F; or E, is taken as the first equivalent point.

Special Cases.—Certain special cases of menisci are considered in the
following articles.

Afocal Lenses.—In a meniscus when » of the Cx. is longer than that of
the Ce. surface F, = o if

Fytrg=1(p—1)/p, or t=p (i +1)/ (= 1)

Fie. 215. Fi1c. 216.
Thus, in order that F= o when », = -1, r,= +3, and p=15.
=15 (-1+3)/5=6 cm.

This is the principle of the Steinheil cone (Fig. 217), which is practically
a fixed focus opera-glass.

If 1= 410 and {= 3 when p=1-5, then (Fig. 218) », must be — 9 in order
that F, = o,

Fig. 218 illustrates the form of the worked globular or coquille of the

ol i
;k_r_;__gf \V" 2 K

Fic. 217. Fra, 218, Fie. 219, Fic. 220.

iin

optical trade, where a true afocal effect is required. It is evident that to
secure this condition the radius of the Ce. surface must be slightly shorter
than that of the Cx. by an amount equal to approximately a third the thick-
ness of the lens, I, being infinite when i +7,=#(p—1)/p. F, is positive
when r, 47, is less than #(px — 1)/ and negative when 7, + 7, is greater than
t(pr— 1)/p.  That is to say, when the Ce. surface has the shorter radius, F is
positive or negative according as { is sufficiently great or small respectively ;
and that, when # is of certain value, the power of the (x. surface nentralises
that of the Ce.
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Concentric Lenses.—If r,+r,=1 (r, being negative) i.e. if r, —{=r,, s0
that the two centres of curvature coincide, F is negative. Thus (Iig. 219)
let ;=10 em., r,= — 6 em., f=4 cm., and p=1'5. Then

10 x ( —6) — 60
E=.5(10-6—4 x-5/15)" 5 (2'666)

F 45 em.

The prineipal points coincide at the common centre of curvature.

I[f the glass be thin (Fig. 220), and the centres coincide, the concave
radius is shorter ; we then get a slightly concave effect, as is found in the
ordinary unworked globular or coquille.

If ry, the radius of the Cx., is shorter than r,, that of the Ce. I, is posi-
tive ; but if £ is greater than F of the first surface, the light is brought to a
focus within the lens, and, after crossing, diverges to the Ce. surface.

b )
& GG E, E;

e
Momy Ty ]

"""

Fic. 221. Fia, 222, Frc. 223,
Equi-Curved Lenses.—If r,= —», (Fig. 221), F, is positive. Thus, let
;= + 10 em., r,= —10 em., =3 em., and p=15. Then
10 % ( - 10) — 100
T — — — =}
T =S 0-10-83x5/15) =5 — o0 om.

E, or E,=+/(x—1), in this case 10/-5 = 20 cm.

If 7 is greater than I of the Cx., this being towards the light, I lies in
front of the second surface. 1If f is very small I, = <.
The Sphere.—In a sphere (Fig. 222), r, =v, and {=the diameter=2r.
Let p=1-5, and =6 ¢m., so that {=12 em,
6% 6 36
e e O AT
T D (6+6-12x5/1'D) -b(5)

E or B,=6x12/15x8=6cm. T=12—(6+6)=0.

F,

Therefore, the equivalent planes of a sphere coincide and pass through the
centre of curvature (), as in Fig. 222,  The formule, in the case of a sphere,
simplify to

Fo=pr/2(p-1),and F,=r (2 —p)/2(n-1)
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When the p of a sphere is 1'5, F,=1'5 #, and F,=-5r. Caleulations
with a sphere are similar to those of any other thick lens when the object
is situated outside the sphere. If, however, the object be within the sphere,
the caleulations are similar to those connected with a single surface.

The Hemisphere.— With the hemisphere (Fig. 223) the Cx. surface to
the front, Fpo=r/(p—1), E;=r}/ =0, E,={/p; from the Cx. surface
F.=F,=#/(x—1); from the plane surface F,=+/p(p-1). When p=15
F.=2r; F,=2r from the Cx., and 13r from the plane surface.

Other Calculations.—What radius must be given to a DCx. lens so that

['.=5 em. when p=1'5 and =75 cm. Substituting the known values we
have :
= jIE 1._:' IIE
= = e = = = g: =y = =
5 (2r—5x°75/16) 5 (2r—-25) »--125
then
2 —br= —-625.

Adding to both sides of the equation (5/2)= 625
12 —5r+6:25= — 625+ 625
Extracting the square root of each side gives
r—25=1x235
50 that » =25 4 2-35 = 4-85, or 2'5 — 2:35 =15, of which '15 is the impossible

answer. Therefore the required radius is 4-85 em.

The Equivalent Power and Points of a Thick Lens by the Dioptric
System.

Let r, be the radius of the first, and r, that of the second surface, let D, be
the equivalent dioptrie power, and E; and E, the equivalent points. Then
100 (= 1) (ry + 75— 1 (= 1)/p) 100N (p—1)

3 (e ¥ TyTs

El s 'I'lfl,a'rpx, EE - r'Effp:\', T=i= {F‘I e EE}

1 }I-Z

If the distances are expressed in terms of a metre

D=1 (rtrg—t(e—1)/p) N(p-1)
& ?.13.2 le_ﬂ

Calculations of a Thick Lens in Terms of the Foci of its Surfaces.

Instead of expressing the constants of a thick lens in air directly in terms
of its radii and index, we may deduce some simpler formul involving only
the focil of the two surfaces,
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Let f; and f, represent respectively the anterior and posterior focal dis-
tances of the first surface, and f,” and f,” represent respectively the anterior
and posterior focal distances of the second surface. Let { be the thickness of
the lens ; then

fi=rflp=1),  fo=pri/(p-1)
H=prf(p=-1),  Jo' =r/(p=1)

Using the same diagram as for finding the direct formulie given previously,
we see that /), as shown on page 215, serves as a virtual object for the second
surface I of radius r,, and the distance I F;, which is the second back focus
F',, is the final image distance with respect to [ the virtunal object.

Let BD=wu and I Fy=v. Now the expression connecting the conjugate
foci of the second surface [7 1s

/v +pfu=(p—1)/rg

But 1/fy"=(p—1)/ry, and w=.4 D—t=f,—1, the latter expression being
reckoned a negative distance.

Therefore /o - p/{fo—0=1/f
whence T
vTh T h=tT (=)
But ]I!_Jf;; = JH.}'E,-"II{,.( - 1) =fl’
Therefore copo o Jakh=t)
TR R S

The corresponding back focus from A, by similar reasoning, is
,
n LA -0
. T 3 r 3
v g

Equivalent Focus.—In Fig. 209 /” is the second equivalent plane and E,
the second equivalent point. As before we may consider C 5 as being
sensibly straight.

Then EF./BF,=PE,/CB=QA/CB=AD/BD
and E,F,=ADxBF,/BD
But AD=f, BF,=F, and BD=f, —!
Therefore fo' (fa— 1) 1
FI. _'fﬂ xflr +_f£ g x.lr:l Y
fols

“H -t
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It is important to notice that f,f, =f,f,’, so that F. may be taken as

8 s
J 1j +Jp =t
when the light is incident first on the surface B.
Equivalent Points.—The distances of k£, and E, from the surfaces A and
B are found by deducting from the equivalent focal length the respective
back foci. Thus
E=F -F == f‘l.{lp _ofl,{flx‘_i)= - flﬁ
SR Ul R R =l ¢
fpfgr _fzr {.fﬂ —1) et _.ﬁg:_":
Sth-t L EhE—th et

Similarly
E,=F.-F,=

Example.—Let r, =10 em., and r,=6 em., u=15, {=3 em. ; then

f1=10/(1'5 — 1) =20 em. fa=15x10/(1"5 - 1}= 30 em.
i’ =10x6/(1'5-1)=18em. f,=6/(1'5-1)=12 em.

When light is incident first on the surface A

o g e 1
Ff +fo—t 18450

and when imcident on B

3=8 o,

it 20 x 18

L AT s e

8 em.
the equivalent foei, of course, being the same in either case,
The equivalent points E; and E, are distant from A and B respectively

: Sl 20 % 3 B
L‘:f1’+f:¢—-'5=_45 =133 cm.

5 T 12 % 3

"*:.f'l’+j:_,—f:_45 = "5 am.

Thus the back foei from A and B are respectively 8 — 1°33 =666 cm.,
and 8 - "8=7'2 cm.

Combination of Thick Lenses.

Two Thick Lenses in Combination.—Let 4 be the first and & the second
lens of a combination of two thick convex lenses separated by an interval.

Let r, and r, be the radii of curvature of A, and »," and r,” those of B.

Let f, and £, be, respectively, the actual thicknesses of 4 and F.

Let E; and E, be, respectively, the first and second equivalent points
of A.
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Let E," and E," be, respectively, the first and second equivalent points
of B.

Let T, and T, be, respectively, the equivalent thicknesses of _{ and B.

Let F| and F, be, respectively, the focal lengths of .{ and £.

Let d be their distance apart, this being the distance hetween their most
adjacent equivalent points, i.e., the distance between E, and E',.

Let & and £’ be, respectively, the first and second equivalent points of
the combination,

Let /' be the equivalent focal distance of the combination.

Let T be the equivalent thickness of the combination.

The equivalent focal distance /' of two combined lenses is obtained from
the formula

I .\ Y
g T L

which is the same as that previously proved for two thin lenses in combina-
tion. This illustrates the great utility of the equivalent planes in simplify-
ing all thick lens calenlations, since, provided we measure from the
equivalent planes, a combination ean in every way be treated as a simple
system.

Similarly the distance of K, the first equivalent point of the combination,
measured from E,, the first equivalent point of .{, is

I A
““F+F,-¢~ N

The distance of E’, the second equivalent point of the combination,
measured from %,’, the second equivalent point of B, is

E’ E‘i'“r FIEHF
A _11\1+]“2 _'.f ) ‘-\T *

The distance 7'=E E’, between the equivalent points of the combination,
is determined by the following

T=d+T +T,-(E+E) or T=T,+T,-d¥N.
As an example let

;=10 em.,, r,=8 em., and {, =2 cm.
¥ =9 em., j""_,z 7 em,, and f,=2 cm.
p=15and d=2'5 ecm.

Then, when ecaleulated, we obtain

F, =923 em,, E,=-769 cm., E,=-615 ¢m., T, =616 cm.
F,=826 ¢cm., E', =783 em., E', =609 em., T, = '608 cm.

15
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and for the comhination

\ 9-23 x 826 76230800 T
Eegsies o5 a5 e

E 9:23 x 2D 23:075 e
=393 1828 25" 15 _ - Uv0cCm
8:26 x 25 2065
e —_— At ol =
P - 0:334+825--2-5 156 = 1377 cm

T=25+616+ 608 - (1558 +1-377)="81 em.
or T=-616+-605-2-52/15=1-224 - 6-25/15 =81 cm. |

The combination is of 508 em. focal length and its equivalent planes are
"#1 em. apart,
Example with a Convex and a Concave Lens.—Let F,=+12 in.;

EyEr E/Ea
_E/;"?._a l‘lf'\ LT
|5 E =
=3
o b6\ 7 \
Y
Fic. 224,
Fo=-10in.; d=5 in.; Ty="51in.; T,=-2 in. ; then combined we obtain
(Fig. 224)
ey = !
O o e
E=12x5/-3=—201in. E'=-10x5/-3=1666 in.
T=54+5+2-(-20+1666)=2903 in.
or T=5+2-5%-3="T-25/-3="T-(-8'33)=903 in.

Coincidence of E and E'.—In order that £ and £’ should eoincide, d can
be found, for two Cx. or two Ce. lenses, by the following formula.

J(T, + Ty + 4 (F, +12M )~ (T, +Ty)

F[I=

Taking as an Mample a combination where F; =9 in,, F,=8 m,, T, =
2 in., and T,="-3 in.
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V24 3P +4x(9+8)x (2+3) - (-2+3)

J)

I-Iir:

foa= . = E-QF =
J2h 434 -5 5H-8b24 — 5 ]
rf: ) — ] —. 2-6752 111.

Fe

When the lenses are 2:6762 in. apart T = (0.

To find F,. of more than Two Lenses.—When more than two lenses
are in combination the equivalent cardinal points of two of them are deter-
mined, and then this combination is again combined with the third lens, or
with another equivalent lens as the case might he. Thus, if there are four
lenses, A BCD, the equivalent of A and B, also of C and D, are found
separately, and these two equivalent combinations again merged into a single
one, or the focal length of such a combination can be found directly by the
(Gauss equation given later.

The Equivalent Power and Points of Two Thick Lenses by the
Dioptric System,

Let D, and D, be the powers of the two lenses, T, and T, their respec-
tive optical thicknesses, and « the distance in em. between the adjacent
equivalent planes of the two lenses.

D=D,+D,—D,D,d/100
If d is expressed in terms of a metre
T D, +D; ~D;D,d

The first equivalent plane E of the combination is distant from E, of the
first lens
. DyDyd _DDgd Dy
D e, ~ DD R0 DD = D

The second equivalent plane E; of the combination is distant from E, of
the second lens
D, Dyd DDyd  Dyd

¥=D,(D,+D,-D,Dyi/100)= D,D = D
=2+ T +T,-(E+E)

I

Conjugate Foci.—It should be notad that, once the equivalent points and
foci have been located, caleulations of conjugate foci with thick lenses are
the same as with thin lenses provided all measurements are taken from the
adjacent equivalent planes.

Let f, be the distance of the object from E,, f, be the distance of the
image from E,, and F the focal length of the combination. The relative
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sizes of image and object 4, and /i, are proportional to their distances from
their adjacent planes, i.e., the image from the second and the object from the
first ; so that

L/F=1/f;+1/f, and A&/ f,=h/f,

Thus let 4 £ be the object 3 em. long and placed 30 em. in front of E,
of a combination whose F/, =6 c¢m. ; then

1/f,=1/6 = 1/30=4/30, so that f,=7'5 cm. from E,

,I';_E =3 % 75/30="75 em.

Let O be 20 em. from the surface A of the lens ealeulated on page 224,
To find the distance of the conjugate image from [, the distanece f] is 20 em.
from 4 and therefore 20+ 1-33 = 2133 em. from £, and since £ is 8 cm. we
have 1/f,=1/8 — 1/21-33, whence f,=12-8 em. Now f, is measured from
E,, which is *8 em. from . Therefore the distance of the image from the
second surface of the lens i1s 12-8 —8=12 ems. The calculation for the
corresponding thin lens would be 1/f,=1/8 —1/20, whence f,=1333 em.,
and as both surfaces are considered coincident with the optical centre, the
distance of the image, in this case, from the lens is 1'33 ¢m. more than when
a thickness of 3 em. exists. Similar calculations can be made for any type
of thick lens or lens combination.

Construction.—In constructing images formed by a thick lens (Figs. 207
and 208) or system of lenses, the equivalent planes and points must be made
use of in place of the single refracting plane and the optical centre of a thin
lens. The course of any ray incident on the plane of E,| is continued from a
point on the plane of £, equally distant from the principal axis, the rays
being presumed to pass over the optical interval E FE, without further
deviation.

As deseribed on page 214, the construction is made by drawing a ray
parallel to the axis vo the first equivalent plane and continuing its course
from the first equivalent plane through F,; drawing another ray to E, and
continuing it from E, parallel to its original course. These two rays meet
at A’, which is the image of 4. B’ A" isto 4 Bas B'E, 1s to B E,.

Similar constructions serve for other forms of thick lenses, also for systems
of lenses where the equivalent points are crossed, or where they lie outside

the lenses.

Planes of Unit Magnification. —At a distance equal to 2 I' measured from
E, anteriorly, and from E, posteriorly there are two points S; and S, and
their corresponding planes on the principal axis termed the symmefrical points
and planes, which present the following properties (Fig. 225) : (1) An object
point situated in the one symmetrical point has its image at the other ;
(2) any point 4 or B on the one symmetrical plane has its image A" or &',
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respectively, on the other symmetrical plane at an equal distance from the
principal axis. Thus, when an object .{ [} is situated at the one symmetrical
plane, its image "4’ is sitnated at the other, and the two are of equal size :
these are the planes of unit magnification for real images.

The planes of unit virfual magnification for thick lenses and lens systems
lie in the equivalent planes themselves.  In other words the equivalent planes
are images of each other.

Construction for the Course of a Ray.—This is similar to those employed
for other surfaces. Let . B (Fig. 226) be a ray incident at £, Draw the

)

A | B
l\‘x IF (.~
b | .__ff-'
5 :E, E e
E"/ k4

Fic. 225.

normal from €] and with ' as centre describe a cirele ; construct the sines of
the angles of incidence and refraction by the method previously shown, and
trace 7 /), the course of the ray after the first refraction. To [} draw the
normal from C,, and with /) as a centre describe a cirele ; construct the

Fic. 298, Fre, 227,

second pair of sines of the angles of incidence and refraction, and trace D F|
the final course of the ray on emergence.

[n Fig. 227 there is shown another construction. If . F is the incident
ray, from ' draw the normal C'C” to [ and the tangent # ¢/ to L. Then
P ) may be regarded as the refracting surface, which is divided off as pre
viously shown for a surface. 5D is the course of the ray after the first
refraction, and at [} the process is repeated, the emergent ray being D F.
Either method serves for lenses or spheres.



CHAPTER XIX
COMPOUND REFRACTING SYSTEMS

The Nodal Points.

THE literal meaning of the word node is ““ knot,” and is applied to the
point or points on the principal axis of any system through which the
secondary axes pass. Thus the optical centre of a thin lens, and the equiva-
lent points of a thick lens, or system bounded by air or media of the same
optical density, have the properties of nodal points. If, however, the first
and last media are different, then the equivalent points, although retaining
their original property of locating the planes of refraction, no longer act as
the crossing or nodal points of the secondary axes. Instead, we have a
second point or pair of points—the nodul points—displaced towards the
denser medium if the system is positive and towards the rarer if it is
negative.

This can be illustrated very well in the case of a single refracting surface.
Here the refracting plane I is at the vertex of the surface, but the nodal point,
1.e. the centre of curvature C, is in the denser medium if the surface is
convex, and in the raver if concave. Also we know that the difference
between the foci I, and F, is equal to the radius, that is, to the distance of
the nodal point from the refracting plane, and, in addition, the ratio of F; to
F, is also the ratio of the indices of the first and last media. The same
oceurs when a thin lens is bounded, say, on one side by air and on the other
by some medium denser than air. Since all the refraction is presumed to
take place in the refracting plane, the position of the latter does not alter,
but the posterior focus I, becomes lengthened. Then we know that the
distance of the single nodal point from the refracting plane is F, — F,.

For example, suppose a thin 10" Cx. lens L L (Fig. 228) of p 15 to be
bounded on one side by air and on the other by water whose index is 133 ;
the effect is to lengthen the posterior focus to 20 in.,, and the anterior to
15 in. Therefore the distance of the nodal point N through which the
secondary axes now pass is F, — F;, = 20 — 15 = 5” behind the refracting
plane L L, which remains unchanged.

Thick Lens bounded by Different Media.—Precisely the same arguments
apply to a thick lens hounded by different media, but here, since the thick-
ness cannot be neglected, the equivalent planes change their position more

230



COMPOUND REFRACTING SYSTEMS 231

or less as well as being separated from the nodal points. The latter are now
two in number such that N, from E, and N, to E, are both equal to the
difference I, — F,.

As an example, suppose the case of the crystalline lens of the eye with
the cornea and aqueous removed (Fig. 229). Let p, = 1, p, = 145,
pyg = 1'33 7y =10 mm. 7, = 6 mm,, and {, the thickness of the crystalline,
3:6 mm. If light passes from one medium into another and finally into a
third, when the thickness of the central medium cannot be ignored, and the

bounding surfaces are curved, we have a combination of a thick lens separating
different media. Such a combination exists in the present example. In
these circumstances a direct, if rather complicated formula can be deduced.
Let r; and v, be the radii of curvature, and py, p,, and py the three refractive
indices. Then
F, = M7 o
Iy (g = prg) + 1 (g — g ) = Ty — pry) (pa = pg)/ pta

Sl

M1

Let the denominator of the above be called () (in the case of a thick lens
the corresponding quantity was called N, but as the latter is applied to the
nodal point itself, another symbol here prevents confusion.) Then

o Fy=mir/Q Fy = pyryry/Q
E,= b (g = pa)/ 1ol from A. E,= Ju.zr‘zﬂ (;12 - 1'11}""'.”2{!:' from B.
Here, the first and last media being different, I, does not equal F,, but

F/Fy = p/pg.  The back surface foeal distances can be obtained by deducting
E, from F, and E, from F,.
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Working from the given data we find
F,=15-93 and F,=21"18
E. = ‘79 from A and E,= 2-37 from B
The distances of the nodal points from the equivalent points are
N,=F,-F,=21'18 -15-93=1525 from E,
N,=F, - F,=21'18 - 15:93 =525 from E,

or N, 18 6:04 mm. from A, and N, is 2-88 mm. from B

The equivalent thickness or optieal interval T = *44 mm., and the same
interval exists between N; and N,.

Course of Light through Thick Lens System bounded by Different
Media.—When a refracting body consists of more than one curved surface
and is bounded by different media, it has, on its prineipal axis, six cardinal
points, namely, two focal points, two principal points, and two nodal points.
These are sometimes called the Gauss points, and with their aid the course of

G/ L
\_h_._.-‘-"-
& E
1
|
1
H’i T

Fic. 230.

a ray can be traced through any compound system of lenses and media. To
illustrate the course of light we cannot do better than take the case of the
eye itself, which consists of three surfaces S§;, S, and §,, separating four
media py, e, fig and p,, the ﬁl’:-;t,‘ being air and the last vitreous (Fig. 230).
As caleulated on page 240, the distances from S, are

E.=1'96 mm., E,=2:39mm., N,=696mm., N,=T3mm
EF;=15mm., EJF,=20mm., EN,=EN,=5mm, T=-43 mm,

Let I} F, be the principal axis. F) and J, are, respectively, the first and
second focal points, & [/ and L T are their corresponding planes.

B, and E, are, respectively, the first and second principal points, P,
and P, their corresponding planes. N, and N, are, respectively, the first
and second nodal points. E,F) is the first, and E,F, the second principal
foeal distance.

Rays which in p, are parallel to the prineipal axis meet, after refraction,
in p, at the second principal foeal point F,.

Rays which diverge from F), the first prineipal focal point, are after
refraction, parallel to the principal axis in p,.
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Rays which are parallel to the principal axis in p,, meet, after refraction,
in g, at the first prineipal focal point F.

Rays which diverge from [, the second principal focal point, are after
refraction, parallel to the prineipal axis in p,.

A ray directed towards the first principal point, appears after refraction,
to proceed from the second, but the direction after refraction iés nol parallel
fo ils urfgi-;wﬂ COUTSE,

A ray directed to the second principal point appears, after refraction, to
proceed from the first. The two principal points are the images of each
other,

A ray directed to the first nodal point, after refraction, appears to
come from the second, awd ifs divection is parallel to its original course.
A ray directed to the second, appears, after refraction, to come from
the first.

In the case of a single refracting surface a ray directed to its nodal point
passes through without deviation ; but where, in a compound system, there
are two nodal points, a ray must be dirvected to the first in order to appear
to come from the sccond, or vice versa. The two nodal points are the images
of each other. :

Rays which in g, are parallel to each other, on any secondary axis are,
after refraction, bronght to a focus at some point situated on L 7, the second
tocal plane.

Rays which diverge from a point on ' [, the first foeal plane, are after
refraction, parallel to each other in p,.

Rays which are parallel to each other on any axis in p, are, after refrac-
tion, brought to a focus at some point on & H, the first focal plane.

Rays which diverge from a point on L T the second focal plane, are, after
refraction, parallel to each other in fhys

A ray directed to any point on P, the first principal plane, appears after
refraction, to proceed from a corresponding point situated on F,, the second
principal plane. These two points are on the same side of the wris and
equally distant from if. A ray directed to a peint on P,, the second principal
plane, after refraction, appears to proceed from a corresponding point on /£,
the first, equally distant from the wwis. Therefore every point on the one
principal plane has its image on the other.

The first principal foeal distance of a compound system is E, /7, the
distance between the first principal point and the first principal focus. The
second principal focal distance E, F, is that between the second principal
point and the second principal focus,

E.E, = N,N,.—The distance which separates the two principal points
is equal to that which separates the two nodal points.

N, F, = E,F,.—The distance N, F, between the first nodal point and
the first principal focus is equal to the distance K,F, between the second
principal point and the second principal foeus.
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N,F, = E,F,.—The distance N, #,, between the second nodal point and
the second principal focus, is equal to E, /), the distance between the first
principal point and the first prineipal focus.

EF.-EF BN -EN

E, F; and E, F, bear to each other the same relationship as the indices
of refraction p, of the first medium and p, of the last medium.

Ko/ =Fo/fp,. or B fFo=p /p,, or Fip,= Vo

If the first medium be air and the last medinm be vitreous, with an index
of refraction of 133, then EF, : E;F, : : 1 : 1°33.

Coincidence of E and N.—Therefore it follows that, if the first and last
media through which rays pass, when refracted by a compound dioptrie
system, are of the same indices of refraction, the two principal focal distances
will be equal, and the nodal and principal points coincide. When these points
possess the properties of both principul and nodal points, as they do in lenses
in media of the same density, they are generally termed equivalent points.

E
[ \E B
i

-

o

Fic. 231,

Construction of Image.—In Fig. 231 let P, P, be the equivalent planes,
N, N, the nodal points, I, F, the principal foei, and 4 & any objeet in the
rarer medium.

A ray A P, parallel to the axis is refracted at P, through F,.

A secondary axis .4 N, passes on emergence from .V, parallel to its
original course.

A ray passing through F| is, after refraction, parallel to the axis.

Where these rays meet in 4" is the image of .4, so that 5’4" is the
complete image of 4 5. As will be seen the construction, with the exception
of the displacement of N, and N, is the same as for any ordinary thick lens
or system in air.

Thus we see that, provided the six cardinal points are known, the most
complicated system can be reduced to the simplicity of a single thin lens. If
the first and last media are the same, or have the same optical density, the
equivalent and nodal points coincide so that the relative sizes of image and
object are as their distances from the equivalent points; when the media
are different the relative sizes of image and object depend upon their
distances from the nodal points. In both cases, however, the simple formula
for single thin lenses, and single refracting surfaces, may be used for calcu-
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lating conjugate foci, provided all measurement are taken from the appro-
priate equivalent points.

The Gauss equation, set out in the next chapter, affords a means of
caleulating the position of the cardinal points for any system.

Negative System bounded by Different Media —'This never occurs in
practice so that no special discussion is necessary. To anyone who has,
however, grasped the principles of a positive system a negative combination
would present no additional difficulty.

Combination of Two Systems when ., differs from p.—Let I and I, be the
anterior and posterior focal distances of the first system, and I, and F,,
those of the second system. F, and E, pertain to the first, and E and E,
to the second system. The distance d between the two systems is that
between E, and E,’, i.e. between the two most adjacent points. Let Q be
the distance between F,” and I, that is, Q = F, + F," - d. F, and ¥ are
the anterior and posterior focal lengths of the combined system, P, and P,
are the prineipal points, and N, and N, are the nodal points.

P,=FF'/Q F,=FF./Q
P, =F,d/Q from E, P,=F,d/Q from E',
N,=F.-F,+P, from E,, N.=F,-F,+P, from E,, and T=P,— P,
F.-F,=P,-N,=P, - N,, P,F,=N,F, P,F.=N,F,

Such a system as the above is found in the eye, taking the two com-
ponents independently ; or in a lens placed in front of the eye, the latter, as
a whole, being the second system.



CHAPTER XX
THE GAUSS EQUATION

By the aid of the Ganss equation every optical system can be so simplified
that all problems of conjugate foei, ete., can be worked by the formulwe
applicable to single thin lenses. The calculations in the case of more than
two surfaces are necessarily long, but they always involve the solution of a
continued fraction, so that the difficulties are purely arithmetical.

In using the equation, which serves for any number of surfaces, media
and thicknesses, the pencils of light are presumed to be axial and small ; in
other words, aberrafion is neglected. In order to keep the formule as sym-
metrical as possible and avoid a mixture of signs, the following conventions
must be observed, namely, (1) all distances measured to the left of a surface
are negative, and to the right positive; (2) all thicknesses are considered
negative, and therefore, on substituting actual values, it will be necessary
to use the minus sign.

Thick Lens.—The following formule are deduced from the consideration
of the lens having positive radii of curvature according to the above con-
vention, 1.e. a periscopic with the concave surface turned towards the right.
Let p; be the refractive index of the surrounding medium, i, that of the
lens, f the axial thickness, r, the radius of the first surface, and r, that of
the second. Let u be the object distance, #, the image distance formed by
refraction at the first surface, and » the final image distance after refraction
at the second. The fundamental equation connecting « and », is

Palty = pfue=(pg = p )7y

but in order to simplify the formule (p,—p,)/r, is replaced by F,, while
pg/ty and p u ave replaced by 1/, and 1/u respectively, These last two are
termed reduced expressions, i.e. actual distances divided by the p's of the
media to which they pertain. Similarly in the expression connecting v, and
¢, given later, (p1; — p,)/r, and p, /v are replaced hy F, and 1/» respectively,
while 7 is also employed reduced, being divided by the g in which it is
measured. Consequently the values subsequently found are similarly reduced

and must be multiplied by the p, in which each oceurs, in order that their
true values may be arrived at.
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The fundamental formula reduced becomes
1/o, - 1/u=F, or 1/v,=F, +1/u

whence 1
s Fl +1/u

The expression connecting », and v is
PV = pof (g ) = (py = pa) /75
which, in reduced terms, becomes

Ve—=1/e,+f)=F, or ljp=F,+1/(v,+1)

whence 1
ke 1
FE + "'_1 +1
Substituting in (2) the value of #, in (1) we have
v= 1 |
Fy + -
t+ |

N e
On working out this continued fraction in (3) we get

N w(Ff+1)+¢
Tu(FF g+ F + F)+ Fol+ 1

which, for the sake of brevity, is usnally written

~ Cu+D
. T |
where A=FFi+F,+F,; B=F,+1
C=Fif+1; D=1

No. (5) connects ¢ and # when both are finite distances.

L2
[T
e |

(1)

(3)

If « is at cc

the quantities D and B disappear and » ecancels, so that the focal length

measured from the second surface is

V= C :"L

(6)

The value of v in equation (6) s the back focal distance as measured from

the pole of the second swifuere,

If v is at o, then A v+ B=0, so that by transposition the focal length

measured from the pole of the first surface is
M= =— B ..'"L .

(7)

Before proceeding further an expression for the total magnification M

produced by the lens must be found.
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Let m, be the magnification due to the first surface, and m, that due to
the second ; then the total magnification M is m, x w,.

In Fig. 232 let 4 B be an object in front of the first surface, and £°A’
its corresponding image. A ray from .4 meeting the vertex in = will be
refracted to 4’ such that i and + are the angles of incidence and refraction
respectively. Then my=A’B'/AB

But i and » being small, .{ B/u may be considered equal to sin ¢, and
A'B' vy =sin r, and sin v/sin i= p, [p,.
Therefore my, = A'B A B= p,vy /gt

But #/n, and #,/u, are reduced quantities and therefore to preserve our
notation the refractive indices must be omitted, so that,

my =1, [t
Similarly the magnification m, of the second surface is

iy = (g + f)

zl\(x = B

Fic. 232,

Therefore the total magnification

M=u/u x v/(v; +1)

But from (1) vyfu=1/(Fju+1)
And from (1) and (2) (- I 1
o, + " : ”
bE(]“I-rr, + 1 2 f) =1
Therefore M 1 Fiu+ 1
V=P usrl (P P+ F +F)+Fi+1
1

T (FF+ F 4 o)+ ot + 1
I

“Au+B - : : 3 = &)

Now let the magnification be +1, i.e., let wvirfual image and object be
equal in size. Then Bl

whence u=P,=(1-B)/A . : : : SOy

this distance being measured from the first surface.
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On substituting this value of « in (5), the corresponding value of v is

v 0 DAt Uk b L |
T =1 g w10y

because it can be shown that AD-BC= —1. This distance is measured
from the second surface.

These planes of unit virtnal magnification denote the equivalent planes,
and the points P, and P, where they cut the axis are the equivalen! points. 1f
it were possible to place a small object in the one plane, then its virtual
image, identical in all respects to the object, would be situated in the other.

If the magnification be —1, then the corresponding values of « and »
will locate the symimetrical planes, where object and real image are equal in size.

To find, therefore, the equivalent focal distances, the values of (9) and
(10) must be added to those of u and v in (5); thus

C-1 C(u+(l-B)A)+D
A = A I,'LH' + '[l — 13_},“11} = B
which simplifies to A=1jpv-1/u . ‘ ; ; . (11)

v="P,=

2 4

This expression (11) should be compared with that of a simple thin lens
for the focal length in terms of w and v.  Then if n= =

o=1A. . . . . . @1
and if v= oo u= —1/A 3 : : ; . (13)

The principal focal distance given in (12) and (13) are equal when the
first and last p's are of equal optical density. The values are reduced and
must be multiplied by the p in which each oceurs, so that when in air they

are unchanged.
As a simple example, let r, =6, r,=8, p=1'5, p; =1 (air),and ¢=1; then

1 |
P= V=
1 1
e — 0625 + |
f+ i =666 +
F, + - 0333 + =
which works out to D445 u - 666

'= 1423 u+ 9554
Then, if u= o=

TR
Also o e e S
ploB Lown
P2=C; I ” {”]i-:_.;- 1= _ -39
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The equivalent focal distance
1/A=1/1423=17-02
Multiple Surfaces. —The Gauss equation may be applied to an optical
system having any number of surfaces surrounded by corresponding media
of different densities and thicknesses. The equation

: Cu+D
v AN

is universal, although the various values become more complicated as the
number of surfaces is increased, but the problem always takes this form,
involving the solution of a continued fraction.

Suppose the case of the eye having three surfaces, F|, F; and F; with
thicknesses 7, and f;, with the following data r,=8, ry=10, r;=6, {,=36,
t =36, py=1, po=1:333, p,=1-4b, p,=1-333. Then

Po =y 1-333 - 1

F= o =0416

i _5;3—;13_1'45—1‘333_‘ L

Fy=ot oy
- 1:333 = 1:45

Fo=ta—ba . 0195

The reduced value of
f2= - 3-6/1-333= - 2-T007

and that of fy= —36/145= — 24828
Then we have
1 ]
=35 V== =
]*:._+ | 0195 + 1
fy+1 — 2-4828 + 1
F.+1 T Bl e |
ly+ 1 = 2:7007 + 1
el 1
|.1_|_“ D'HG_'_H

which becomes, when worked out,

. T586 u — 51050
"= 0668 1 + ‘8689

That is A = 0668, B=-8689, C='7586, D= — 51050.

The anterior F= —p, /A= =1/0668= - 15 mm.

The posterior F=p,/A=1333{0665=20 mm.
P,=p,(1-B)/A=-1311/-0668=1-96 mm. from 7,
P,=p,(C-1)/A= —--3128/:0668 = — 4'81 mm. from r,

-

or (2 —4-81 =2-39 mm. trom ¥y
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The nodal points N, and N,, found by subtraction, are, respectively,
696 and 7-39 mm. from r,. Neglecting the intervals between P, and P,
and that between N, and N,, we have P at 2'2 mm. and N at 7-2 mm. from
the cornea.

When working with the (Gauss equation two things must be borne in
mind ; firstly, the convention as to signs upon which the symmetry of the
formulie depend ; and secondly, the use of reduced instead of absolute dis-
stances in order to simplify the formule by the inclusion of the refractive
indices in other terms, Thus v, the final image distance, is always multiplied
by the index of the last medium to give the absolute values of the second
principal focus and the second equivalent point. On the other hand
which, in the final expression, denotes the anterior focus and first principal
point is, except in very rare cases, already reduced, the first medium gener-
ally being air. In fact, the same may be said of v, as a difference in the
indices of the first and last media oceurs only in the case of the eye, and in
certain instruments as, for instance, the immersion objective of the microscope.

The calculation of a continued fraction for three surfaces being compli-
cated, the results obtained may be checked by the following, which is the
continued fraction worked down,

~ UN#R
"SUFEN+FF L+ B+ F) + F R+ Fyly+ 1
where N =F,F, o, + Fyty+ Fit, 4+ Fof + ]
and R=Fglt, +i,+1

16



CHAPTER XXI
CURVATURE SYSTEM

THE various formule in connection with mirrors, prisms and lenses may
also be deduced from a consideration of the actual paths of the waves them-
selves. The following are elementary examples of the application of this
method, which is by some writers preferred to the “ray” theory as repre-
senting the actual physical change in shape and direction undergone by the
waves in refraction and reflection.

Plane Surface.—.4 P (Fig. 233) is a plane wave front incident obliquely
on the surface ' D.  If p, = 1and p, = 1'5 the part of the wave which enters
at [ travels in the same time to F only 2/3 of the distance .{ E. With B as
centre and £ Fas radius describe a small are, a tangent E F from E showing
the inclination of the wave front in the dense medium. At the second

g G
F T I.1 JI
B‘ 1\ ‘l
D"""'h""“"'u}f Ripey
Fic. 233. IF1G. 234,

surface a similar construction shows the wave front ¢ I after emergence,
F’H being 1-5 times E’G.

Course of a Wave through a Prism at Minimum Deviation.—Let
CEBED (Fig. 234) be a prism on which is incident the plane wave 4 F at
angle of incidence ¢. The portion £ of the wave meeting the base of the
prism is retarded to a greater extent than ., the portion in air, so that when
the whole wave enters the prism it takes up the position CJ, r being the
angle of refraction.

Sinee the deviation is supposed to be minimum, the total refraction is
symmetrical with respect to the surfaces CFB and (D), so that M bisects
the principal angle. The wave is then incident on the second surface at the
angle u, and on emergence it is swung over still more towards the base so

243
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that, when completely clear of the prism, it has the position ED making
the angle of emergence ¢ with the second surface, ¢ heing equal to i.

Curvature.—The unit of the dioptric curvature system is a curvature
having a radius of 1 metre, and the curvature of any wave may be denoted
and measured by it. - Thus if light diverges from 1 M or 50 Cm. the wave
1s said to have a divergence of 2D ; at some other distance, say 2 M, the cur-
vature would be -5 D, and so on. Thus if /! denote the actual curvature of
a wave it may be expressed either as the reciprocal of its radius r in metres,
or simply in diopters /). Then £ = 1/r or ). Now we have seen, from
the spherometer formula, that for shallow eurvatures r = d2/2s, where d is
the semi-chord and s the sagitta of the corresponding are of radius r. In
other words, provided the chord remains constant, the radius is inversely
proportional to the sag and vice versa, while the curvature of the are is
directly proportional lo the sag on the swme chord. Thus we may say that 1/r or
R s,or sc R or 1/r. It will be seen that the “curvature” formule
are identical with the “ray " formule, only that, with the exception of p,

Fic. 235. Frc. 236,

all the symbols employed in the one are the reciprocals of those used in the
other, and vice versa.

Cc. Mirror-Plane Incident Wave.—Let P 0 I (Fig. 235) be any Ce. mirror
on which is incident the plane wave PQR. If the aperture be small the
points P and R of the wave front first meeting the mirror may be considered
to be reflected back to M and V while the eentral point ) is travelling to
the vertex (. When () has arrived at () the contour of the reflected wave is
MON : it remains to find the curvature of M ON.

Now since PM=00, 0Q=0Q T and we have T'0=20¢. But, since
the curvature of an arc may be taken as proportional to the sag for equal
chords, T' ) represents the curvature /' of the reflected wave MOV, and
0 ) the curvature C' of the mirror. Thus I'0 = 20 0, or /' = 2 (. Inother
words the eurvature of the reflected wave is double that of the mirror, so
that the focal distance O ' is half the radins O C.

Cc. Mirror - Divergent Wave. — Let PSR (Fig. 236) be a wave
diverging from a near object f;; then while the vertex S of the wave
is travelling to O, the extremities P and R ave reflected to P and £’
respectively such that 7' ¢ = 80. Then POR is the reflected wave con-
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verging towards f,. O ()is the mirror sag, and since T'¢) = S0 we have
TO0=250+@Q8=2Q0 - Q8.

Let F| be the curvature of the object wave P S R, F, that of the image
wave P'() R/, while ' is the curvature of the mirror, and F its focal curva-
ture or power. Then ¢S = F,,0Q0=C, 70 =F,, and F = 2C. There-
fore 70 =200 - @8, or F,=2C - Fy,s0 that F; + F, =2C = F, ie.
the focal power of a Ce. mirror is equal to the sum of the object and image
curvatures, and this is the formula for expressing conjugate foci. It will be
noticed that €, the mirror curvature, is the mean of the object and image
curvatures ; thus C = (F, + F,)/2.

Convex Mirror-Plane Incident Wave.—Let M N (Fig. 237) be a plane
wave incident on the Cx. mirror POf. (Jis now the first incident point,
and this is reflected to ¢, while M and N are travelling to P and E, so that
P (VR is the reflected wave, which can be shown to have a curvature double
that of the mirror, as with a Ce. In other words, since QQ =2 O Q,
F=2C

Convex Mirror-Divergent Wave.—When the wave is divergent from a

near object f; (Fig. 233}, the incident wave is PO R, and the reflected
wave P (/R such that 0" = 0T + 0Q.

S QP =0Q+0Q =0Q+(0Q+0T)=20Q+0T
that is Fo=2C+F,or F,=F+F,

In other words the image curvature is equal to the sum of the object and
mirror curvatures, because both are divergent in effect. Employing the
usual convention as to signs this expression would be written as for a Ce,
mirror, i.e, F; + F, = 2 C = F, the negative sign bheing employed when
substituting the value of F.

Single Surface-Cx.—Let M N (Fig. 239) be a plane wave incident on the
single Cx. refracting surface P R such that P@'R is the refracted wave
convergent towards the posterior principal focus F,. Let € be the curvature
of the surface, Fy that of the refracted light, and p the index of the medium,
the first being air. Then we have Q S = . QQ’. But

QQ'=C-F, and QS=C
C=(C-Fy)r or F,=C(p-1)p
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Similarly an expression can be found for the anterior principal focus of
the same surface M () N. Here (Fig. 240) the plane wave advances from the
denser medium to meet the surface as M N, the retarded wave convergent
towards the anterior focus /', being PQR., Then Q'S = QQ". DBut

QS=F,+C, and OQ' =C
Therefore F, +C = C.
and KF,.=C(u—-1)

For a concave surface the formulie are the same, C being negative.

Fic. 239.

Conjugate Foci-Single Cx. SBurface.—Let f, (Iig. 241) be any near ohject
from which diverges the wave M/ N to the surface PQR, and let f, be the
image formed by the image wave PQ'R. Let TQ=F,, QS =C and
Q'S = F,. Then _

TS=pQ =p(8Q-SQ)

and TS=TQ+QQ +Q'S
p(C=F)=F +(C-F)+F, or pC—pF,=F, +C
that is Fi+pF=C(p-1)

Fic. 241,

Similar formul® may be deduced for a concave surface only here C and F:
are negative.

Thin Convex Lens.—With a lens the curvature of each surface is like-
wise represented by their respective sags, so that in the case of a double Cx.
(Fig. 242) @ S represents the sum of the sags C, and C,. Let M\ be a
plane wave incident on the lens ; then, owing to the greater axial thickness,
the centre of the wave is retarded more than the periphery, the resulting
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wave front taking the form P .S I converging to the focus Fy. TLet I be the
united sags of the lens surface and wave fronts; then T = C, + C, + F.

But
T=pQS=p(C,+0,)

CI+U2+F:F {Cl'l'ui}
whence F=(C,+0C,) (p-1)

i
r—-‘r—:R
Fig. 2492,

In other words the power I of the lens is the product of the united
curvatures and the refractivity of the glass.

Similar formul® in the case of conjugate foci and for concave lenses can
be deduced on the same lines; in numerical examples, of course, C, and C,
of concave lenses are reckoned negative.



CHAFPTER XXII
COLOUR

Primary and Secondary Colours.—There are six or seven distinet colours
which can be identified in the solar spectrum, but it was shown by Young,
and confirmed by Helmholtz, that every shade of colour in nature can be
obtained from the mixture of red, green and violet in certain proportions,
whereas these three colours cannot be produced by mixing other colours.
For this reason red, green and blue-violet are termed the primary colours,
while the other spectrum colours are secondaries. Thus red and green, in
varying proportions, produce orange or yellow, while green and violet
produce blue or indigo.

Complementary Colours.—If two spectrum colours, when ecombined, form
white light, they are said to be complementary to each other. Hence a
complementary colour may be defined as that which, when united with another,
produces white light. The complement of a primary colour is that secondary
colour which results from the mixture of the other two primaries ; the comple-
ment of a secondary colour is that primary colour which is not contained
in it.

Spectrum Colowr, Complement.
Red. GGreen-Blue.
Orange. Blue.

Yellow., Blue-Violet,
(zreen, Purple-Red.
Blue. Orange.

Indigo. Orange-Yellow,
Violet. Green-Yellow.

The purple-red is not in the visible spectrum, it being a combination of
red and violet. A graphical representation of this table will be found on
page 250, where the primary colours of pigments and their complements
are discussed.

The nomenclature applied by various authorities to primary and secondary
colours differs considerably, but they are here employed as nearly as possible
in their popular meaning.

Colour Sensation.—According to Young and Helmholtz, there exist in

the eye three sets of nerves which convey to the brain the three primary
247
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colour sensations of red, green and violet respectively. FEach set of nerves
conveys, however, not only the sensation of its special colour, but also to a
slight extent that of the other two. By stimulating one or more of these
nerves, in varying proportions, all colours can be mentally appreciated.

Stimulation of all three produces the sensation of white, and of none of
them black. Fig. 243 represents diagrammatically the range of the three
colour sensations ; the first eurve is that of the “red ™ nerve ; the second is
that of the “green” nerve, while the third is that of the “violet” nerve.
It is thought, however, that the “red’ nerve is not stimulated by waves
beyond E or F, the “green’’ by those beyond C on the one side and & on
the other, while the limit of the *“violet " nerve is about [). Thus it will
be seen that the primary nerve centres have, according to the Young-Helm-
holtz theory, a sufficient latitude of perception to enable every conceivable
secondary colour or combination to be appreciated by the brain.

Colours of Light.—Spectrum red and green will, if mixed in certain pro-
portions, produce a sensation of yellow. If spectrum red, green and blue-
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violet be mixed in the right proportions white light is formed. If the
wave-lengths of red and green be added together the mean will give the
wave-length of yellow. Thus, taking the wave-length of orange-red as 656
and that of blue-green as 518, then 656 +518=1174, and 1174 2= 58T,
Again, taking the wave-lengths of red, green and blue respectively, the sum
divided by three will give the wave-length for the brightest part of the
yellow, which is the nearest approach to white light which the spectrum
affords ; thus 748 + 527 +486=1761, and 1761/3=587. The quantity of
light of one colour necessary to mix with any other to produce white light,
or a third colour, does not appear to follow any definite law, but the propor-
tions usually remain the same for different observers ; occasionally, however,
the amount is found to be very different, even among persons who are not
colour blind to standard tests. Colours which do not appear in the spectrum
are those formed by a combination of two or more non-adjacent wave-
lengths, the resultant effect on the eye being, in general, that colour corre-
sponding to the mean wave-length of the components. Purple does not
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appear, since it is a mixture of the extremes—red and violet—nor do many
other colours, as brown or pink.

The following table, according to Helmholtz, shows the effects produced
by the addition of any two spectrum colours.

|
Greanish-

Colour, Violet. ' Indigo, r Cyan Blue, | Blue-Green Green, [ Fallowe, Yellow. |
|
| |
Red | Purple Dark rose | Light White Whitish- | Golden Orange |
. rose yellow yellow | I
Orange | Dark rose Light | White | Light Yellow Yellow -
1 ! rose | . yellow
| Yellow Light White | Light Light Greenish —_ - |
! - roge | |  green |  green yellow | j
| Greenish- | White | Light | Light Green - — — |
! yellow green green
| Green Light Sea blue | Blue — — = i
' blue | green |

| Blue-green Deep blue Sea blue — = e =55 —
. Cyan blue  Indigo - — - = s =

— e ——— - —

Brightness of Colour.—In a prismatic spectrum the red appears fuller
than the violet because the former is more crowded together, while the latter
is spread out ; this is not the case to the same degree in a diffraction spectrum,
in which the extent of colour is about equal on either side of the green-
yellow. The latter is the brightest part of the spectrum to the human eye,
and in general the intensity rises from zero, at the extreme red, rapidly to the
yellow and then, dropping off again, but more slowly, to zero at the extreme
violet.

Colours in Pigments.—The primary colours in pigments (paints or
colouring matter) are so-called red, yellow and blue; any other colour is
obtained by mixing two primaries.

The primaries and their complements are shown in Iig. 244, from which
it will be seen that the primaries of pigments are the complements of the primaries
of light. Thus 1, 6 and 10 are the primaries of light, and 4, 7 and 12 are
the primaries of pigments. Although the primaries of pigments are popu-
larly known as red, yellow and blue yet the actual tints are not quite those
usually associated with the terms.

Mixing Colours.—The fundamental difference in the results obtained by
mixing spectrum lights and pigment colours lies in the fact that the former
is an addifive, and the latter a subfractive process. In other words, the
colouration due to mingled lights is due to the sum of the separate wave
lengths, while the resultant colour given off by a mixture of pigments is that
remaining after each pigment has absorbed a certain wave or series of wave-
lengths. The tendency of added lights is to give increased illumination and
to approximate it to white, while with pigments the mixture tends towards
biack.
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Thus, when the primaries of light, i.e. red, green and blue-violet, are
mingled—projected, say, from three separate lanterns—the white screen
reflects all three impartially to the retina, where their superposition produces
the sensation of white. With pigments, however, the final colour is due to
that remaining after each pigment, in a certain mixture, has absorbed from
the ineident white light its own complement. In this way the primary
colours of pigments are those capable of absorbing the three primaries of
white light, i.e. red, green and blue-violet, whose respective complements are
green-blue (peacock blue), purple-red, and yellow. These last three are
therefore the primaries of pigments because, when mixed in the right pro-
portion they (theoretically) produce black. In practice, however, owing to
the inevitable impurities of pigments, and the impossibility of combining the
correct proportions, the result is a dark grey. For the same reasons, it is
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Fic. 244,

impossible accurately to match the spectrum colours by means of pigments,
and this is especially the case towards the violet end; in fact we cannot
imitate violet by any known pigment or combination of pigment colours.

The additive effect can be roughly imitated by painting yellow and blue
sectors alternately on a dise which, when rapidly rotated, gives the impression
of white if the proportions of colour are correct. Here the yellow and blue
alternately impinge so rapidly on the retina that the sensations caused hy
alternate sectors have not time to fade away, and therefore become mentally
mingled, and give rise to the sensation of white. The experiment must,
however, be carried out in white light, but even then the effect is generally
far from pure owing to the inevitable muddiness of the pigments. By
increasing the number of sectors, and repeating the six spectrum colours in
proper proportion all round the dise, a still better white is secured.
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In some instances the result of a pigment mixture may be surprisingly
different from the result of mingling lights of corresponding colours. If
blue and yellow lights are mingled in the right proportion on a white sereen
they cause the sensation of white. If blue and yellow pigments are com-
bined, the blue absorbs red, the yellow absorbs violet, so that green is
produced by such a mixture. Rose red and blue-green are complementary
colours which, added to one another, produce white in the case of coloured
lights (additive effect), but nentralise each other, i.e. produce black in the
case of pigments (subtractive effect). Additive effect can also be produced
by the mixture of pigment or coloured powders, where absorption does not
oceur, but both pigments or powders reflect light. Especially is this so if
the two colours are not complementary, or tending to be so; thus red and
vellow combined in pigment make orange as they do in the case of lights.
Or using the illustration above of blue and yellow pigments combined
making green, a blue pigment reflects violet and green, yellow reflects red
and green, so that if the two pigments be mixed, there is reflected a certain
quantity of violet and of red, and a double quantity of green. The red, the
violet, and a portion of the green combine to form white light, so that there
is a residue of green light, which gives the nature of the colour to the
mixture of the two pigments.

Qualities of Colours.—Colours in pigments possess three qualities, viz.,
tone, brightness and purity. Tone or hue is that quality which differentiates
between the various colours—say, red and orange; it depends on wave-
length. Brightness, intensity, or luminosity is that quality which represents
the strength of a colour; it depends on the amount of light reflected ; one
which reflects little light is a dark colour, and one which reflects much light
is a light colour. Fullness, saturation, tint, or purity is that quality which
represents the depth of a colour; the less the admixture of white or black
the purer is the colour. Red mixed with white forms pink, whereas red
mixed with black makes a kind of maroon. Yellow or orange become straw
or brown according as it is mixed respectively with white or black.

Colours of Bodies.— A substance is said to be of certain colour when it
reflects or transmits rays of certain wave-lengths and absorbs the rest of the
spectrum. Thus an object which absorbs the violet and green and reflects
the red waves appears red; if it absorbs red waves and reflects green and
violet it has a blue colour. A green body absorbs all but the green waves;
one which is orange in colour reflects red and green and absorbs violet. The
colour reflected by a body is usually the same as that which it transmits, but
some bodies transmit the complementary colour to that which they reflect.

A body which reflects light of all wave-lengths is called white ; a body
which has affinity for all the colours, so that all are absorbed and none
reflected, is called black. No body, however, is of a nature so chemically
pure as to absorb entirely or reflect all the incident light. An absolutely
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black body does not exist in nature ; even those coated with lamp-black and
soot reflect some light, which renders them visible, and allows of their form
and solidity being recognised ; on the blackest velvet still blacker shadows
can be cast. Similarly there is no object which reflects all the light it
receives ; pure, fresh snow, which is the whitest of all bodies, absorbs some
30 per cent. of the light it receives, and white paper 50 or 60 9.

Colour does not depend entirely upon the body which reflects it, but is
also a quality of the illuminating light itself. In order to appear of a
certain colour, the object must receive that colour in the light and reflect it,
and at the same time absorb all the other colours. Dark colours reflect
little light, and slight differences between them are hardly appreciated in
dull illomination ; similarly, light colours reflect much light, and slight
differences are hardly noticed in very bright illumination. The proportion
of light reflected varies with the nature and colour of the body. Approxi-
mately a coloured body reflects 20 to 50 9, of the light which falls on it.

White, grey and black are, in eflect, the same and really represent
varying degrees of luminosity, the only difference between them being
in the total amount of light reflected. By all three the treatment of the
different wave-lengths is the same, i.e. there is no selective property as with
coloured bodies, but the extent of the light absorption varies in the three
cases.

Coloured Bodies and Lights.—The real colour of a body is that which it
exhibits in white sunlight ; it often appears of a different colour in ordinary
artificial light. This is due to the fact that some particular colour usually
predominates in artificial light, and therefore the mental standard of white
is temporarily shifted towards that colour. Thus ordinary gas-light —not
incandescent—contains an excess of red and yellow, while blue and violet are
the prevailing colours in the electric are. In this way, the nearer the colour
of a body approaches to that of the illuminant the whiter will it—the body
—appear ; on the other hand should the colour of the body be comple-
mentary to that of the illuminant it will appear darker than it would if
viewed in white light. Should the light be of a colour exaectly correspond-
ing to that which the body absorbs, none will be reflected and the body
will consequently appear black.

Of course a white body seen by coloured light is really coloured although
it is generally interpretated mentally as white. It certainly is so accepted
if the colouration of the luminant is not excessive ; thus by gas light a white
paper is actually reddish-yellow, but we still call it white. As the illumina-
tion becomes progressively feeble all bodies lose their distinctive colours, the
latter being replaced by shades varying from light grey to black, and in a
very dull illumination all appear equally a dark grey. Painting and match-
ing colours is always difficult in artificial light since the latter is not white ;
for example, some blues and greens can harely be distinguished by gas light,
and still less by lamp or candle light.
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Shadows from Coloured Lights.—A shadow cast by a body when the
light is coloured appears to be tinged with the colour complementary to that
of the light. This is due to contrast, because the illuminated ground is
coloured by the light, although this fact may be hardly appreciated.

Coloured Glass.—Pure neutral or smoke glass absorbs part of all the
colours of white light ; if not exactly neutral some one colour penetrates it
more than the others, and gives a distinct tint to a light seen through it. A
glass of definite colour, as red or green, transmits not only its distinctive
colour, but also some of the adjacent colours: thus green transmits some
yellow and blue. Spectrum blue blocks out both the red and violet ends of
the spectrum, and transmits blue, green and a little yellow. Cobalt blue
transmits blue and red, but blocks out green and yellow. Orange, amber,
yellow and green-yellow glass absorb the violet and ultra-violet light.
Smoke glass absorbs a certain quantity of all the colours and therefore to
some extent reduces the visual acuity, but it is usually more transmissive to
one certain colour—generally red. White erown, and still more, flint glass
is absorptive for ultra-violet light, while pebble is specially transmissive
for 1t.

All colours are profoundly modified when viewed through coloured glass,
as they are by coloured lights. If a coloured body be viewed through a
coloured glass which absorbs the rays reflected by the body, the latter
appears black. Thus a red body appears black through a green glass of the
proper shade, the red rays reflected by the body not traversing the glass.
If the ground be black, the object is barely distinguishable from the ground,
or may not be at all, as in the “FRIEND 7 test.

A body viewed through a glass of the same colour appears almost white,
or at least is indistinguishable from a white object seen through the same
glass. Thus with red letters on a white ground, seen through red glass, the
white background becomes coloured the same as the letters, so that the
whole field is of uniform tint ; here the colour of the glass is temporarily the
mental standard of white. On looking at a red object on a green ground,
through a piece of red glass, one sees a white object on a black ground, but
if on a black ground the object appears redder. Similar phenomena result
with other colours.

Superposition of Coloured Glasses.—When two coloured glasses are
placed together we have an example of the subtractive process similar to
that seen in the mixture of pigments. The first glass eliminates from
incident white light all but its own colour, and if the second glass is the
same as the first, no further alteration takes place, except a slight reduction
in intensity. If the second glass is not of the same colour as the first, a
certain amount of absorption by subtraction takes place in the second, and the
more nearly complementary are the two glasses the more nearly will the
whole of the incident light be cut off. For example, if a blue-green and a
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red, or an orange and blue glass, be placed together, the light transmitted
by the one is absorbed by the other, and the combination is rendered opaque.
Cobalt glass transmits red and blue, ordinary green glass transmits blue and
green ; on the two being placed together original white light transmitted
appears blue, since the blue is transmitted by each, but the remaining
colours absorbed. If three pieces of coloured glass corresponding to the
summits of the three curves of red, green and blue-violet be superimposed,
since each absorbs some of the components of white light, the three will
absorb the whole of the visible spectrum, and no light whatever can be seen
through the combination.

The natural colours of objects may be imitated by applying the above
facts to photography. Three separate photographs are taken of an object
or landscape, made up of any number of colours and shades, each through a
glass selected to match as nearly as possible one of the three primary colours.
A positive is taken from each on a film or paper, stained with the colour
complementary to the colour of the glass used for that particular negative,
and the three prints are superposed. This may be done either by laying the
films exactly over each other and looking through them as a transparency,
or each colour may be printed on the same piece of paper, and examined as
an opaque object, In this way an approximate facsimile in colour of the
original object can be obtained.

Transmissiveness of Coloured Glasses.—Ior the method of measuring
this, and the photometry of coloured lights, see Chap. 11.

The quantity of light absorbed depends directly on the thickness of the
glass, and eonsequently no ordinary lens which varies in thickness owing to
its curvature can have the same depth of tint all over. When a certain tint
is selected, by trial with the coloured glasses of the test case, and lenses are
required similarly tinted, a modification is necessary. The lens should be
ordered of a lower tint if Cx. and of a higher if Ce., the former being thick
and the latter thin at the centre. The variation from the No. of the trial
glass would necessarily depend on the strength of the lens required.

Equality of tint can be obtained by employing a plano Cx. or Ce. lens
cemented to a plano coloured glass. For a sphero-cylindrical combination
equality can be obtained by cementing a thin plano spherical and a thin
plano eylindrical to the two sides of a thin plano coloured glass ; or if one
of the components be wealk, in comparison with the other, by employing
coloured glass for the weaker and white for the stronger, both being planos
and cemented together. In this way practical equality of tint can be
obtained.

Since the proportion of incident light transmitted depends on the thick-
ness of the glass, it is not easy to express variations, but approximately the
transmission varies inversely as the square of the thickness. Thus a standard
No. 4 pure smoke glass transmits 1/5 of the incident light; a second No. 4
placed behind the other, transmits 1/5 of that transmitted by the first—i.e.
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1/5x1/5=1/25 of the total light, originally incident on the first glass, is
transmitted by the two together.

Tinted glasses for spectacle work are usually numbered 1 to 6 or A to F.
They vary considerably with respect to the quality and quantity of light
transmitted, but approximately they transmit light as follows :—

Tint No. 1 No. 2 No. 3 No. 4 Mo, 5 No. 6 |
’ or A. or B. or C. orD. orE. | orF.

|
| ]
| Percentage of light{ Smoke 60 50 30 20 10 | 2 |
transmitted \  Blue...| 80 T0 50) 2/ | 20 4 |

The O.5. Standard Colour Glasses for spectacle work are :—

 Percentage of light) | [| st _ . PR . +-1.-i
| transmitted I 80 ,- 60 i o0 |40 ' 30 |1 20 (10| 5 | 25120

The Eye and Colour.—White, being the sensation produced by the mix-
ture of all colours, is the sensation of greatest luminosity. It is the standard
of colour sensation, but this standard may be displaced, as when coloured
illumination is used, or coloured glasses looked through, or by colour fatigue
as when the eye is saturated with a certain colour by gazing at it for some
time.

Black may be described as a sensation caused by want of colour, but it is
very different from what is seen, or rather not seen, in the area occupied by
the blind spot, as the head of the optic nerve of the eye is called. The latter
1s incapable of conveying any sensation of light at all, the resultant absence
of sensation being quite different from black, which produces a distinct sen-
sation. That is why the area occupied by the blind spot is unnoticed when
we look at the sky, or other extended bright field. Of the specific colours,
the human eye is most sensitive to yellow, whether seen in the spectrum or
by reflected light. A yellow body will be seen longest as light is reduced
and it can be seen further, although its colour may not be distinguishable.
Grenerally speaking, as a Lha—LhL(:tulrstm and recognised colour, red is the most
persistent of all; owing to its long wave. length it can be recognised at a
greater distance than others, it freely penetrates haze, fog or smoke glass,
while the penetration of other colours follow more or less in the order of the
spectrum.  For this reason red is employed as the danger signal, while blue-
green is employed as the contrast signal on railways and ships. The sun
appears redder at sunrise and sunset than at midday, also in fog, the blue-
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violet end of the spectrum being absorbed ; the colour of light seen through
a thick impure smoke glass is generally a brilliant red.

Green, which prevails in nature, fatigues the eye least of all the colours ;
then blue-grey, purple, yellow, orange and red, the last being the most
fatiguing ; billiard and card tables are covered with green cloth, and blinds
are usually painted that colour. The sea and sky are blue, red and orange
occurring in nature only in patches, or occasionally as at sunset; the eye is
able to bear those colours best which are most widely distributed in nature,
and most likely in consequence of it. :

With respect to light, in general, it is more satisfactory the nearer it
approaches white, but if coloured lights are used for illumination they
shounld be pale and largely diluted with white. Thus pink and pale orange,
or pale green, are pleasant, but the same colours, pure and saturated, would
prove extremely fatiguing to the sight.



CHAPTER XXIII

CHROMATIC ABERRATION

Dispersion.

Dispersion or Chromatism.—When white light suffers refraction, the
component waves are refracted to different extents, so that the various
colours become separated, producing what is known as dispersion. This is
due to the fact that the shorter waves, with rare exceptions, are retarded,
by the refracting medium, more than the longer waves. Reflection, unlike
refraction, is not accompanied by dispersion, this fact rendering reflecting
sometimes preferable to refracting instruments, A body is said to be clramatic
if it causes dispersion, and achromatic if it does not,

Velocity of Light and Colour.—The velocity of light in free ether is
the same for all colours, and is taken as being so also in air, although this is
not quite the case, blue being retarded slightly more than red in its passage
throngh the atmosphere. If V) he the velocity in air (about 300,000 km.
per second) and V, that in a denser medium, then V,/V,=p  Suppose in
a medium p,=1'5, p,=151, p.=149. Then V,=300,000/15= 200,000
km., V., = 300,000/1-51 = < 200,000 km., and V. = 300,000/1:49 = >
200,000 km. per sec.

Dispersive Index.—Each refracting medium has what may be termed an
index of dispersion, which represents the differences between the indices of
refraction of the lines .{ and I of the spectrum. Thus, water has an index
of refraction for the line .4 of 1-:32x59, and for the line H of 1-3434 ; now
1-3434 — 1:3289 = 0145, which 1s the index of dispersion of water. Jean
dispersion iz represented by the difference between the indices of refraction
of the lines €' and F, i.e. between orange-red and blue, and particl dispersion
is that between the p's of any two given lines of the spectrum.

The table on p. 253 gives in the third column the mean dispersion, and
in the fourth column the total dispersion of the visible spectrum.

The dispersion of various kinds of glass differs with the materials
used in their manufacture, and is independent of their refracting power,
some media of high mean refraction having low dispersion and wviee versa ;
generally, however, high refractivity and high dispersivity accompany each
-other.
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TABLE OF DISPERSIONS.

| | Mean. Total.
1 i |
: Water | me=1:3317 p.=1:3378 | 0061 | 0145
| Aleochol ... | m=13621 p.=1:3683 | 0062 i 0149
Pehble — — ' — | 014
| Canada Balsam ... — - | 021
' Tourmaline — — | 019
'{Juuililassif A, =| 5376 p,=15462 | -0086 0l8 |
' Flint Glass if =1-6199 . =1:6335 1" == H6 026
l}lanmnd ; =2:4102 .=2'4355 | 0253 - 056

v or the Ratio of Refractivity to Dispersion.—Since refractivity and
dispersion are more or less independent of cach other, neither the total nor
the mean dispersion indicates the optical properties of a medium ; for this
we must take the ratio between the mean refractivity and the mean disper-
sion, which ratio is termed the vefroctive efficiency, denoted by the symbol »
(nu), and is expressed by

F r'{“ I I
£ S

Here (pr,— 1) is the mean refractivity for yellow light (D) line) of the
medium, i.e. it is the p of the medium less the p of air=1, while p, — p_ is
the mean dispersion between the ' and F lines of the spectrum produeed by
the particular substance. The formula, therefore, gives us a value which, when
compared with the corresponding v of another medium, will show which of
the two has the higher refractivity as compared with its mean dispersive
power. A high value of v denotes a high mean refractivity and a relatively
low dispersion, while a low » indicates the reverse, i.e. a low refractivity and,
a relatively high dispersion. Thus if, in a variety of flint glass, p,=16,
me =161, and p.=1-59 the efficiency is

56 =1 6

V= 161-159 02" °%
Take also a sample of crown where p, = 1525, p, = 1:532 and
c = 1'523
AT
Y=009" = G0 (approx.)

These values of v, i.e. 30 and 60, show that in the former glass the dis-
persion is relatively twice as great as in the latter glass; or, as it is better
expressed, the erown has twice as much mean refractivity than the flint for
the same amount of dispersion. Thus if two glasses have the same p, but
different mean dispersions, the one with the lower dispersion has the higher v.
If two glasses have the same dispersion but different p’s, the one with
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the higher p has the higher v. In general crown glass has a higher v than
Hint. The formula enables us to caleulate the components of an achromatic
prism or lens, and by its aid glasses can be tabulated in the order of their
etficiencies, so that a selection can be easily made.

The p,, of water is 1'3536, and its mean dispersion is ‘0061, so that the
v is nearly 55, With air p =1-00029, and the mean dispersion is *000002%,
50 that v =100 approx.

Expression for o.—Calculations with respect to chromatism are some-
times based on o (omega), the dispersive power, which is the reciprocal of v,
and is therefore
#Hr— M
| 1 .

() —

6 and A, —The difference between the indices of refraction of the I and
C lines, ie., p. — p, is sometimes represented by the symbol 6, and the
difference between v, and v, (i.e. the v's of two different media), by the
symbol A,

Achromatism of a Parallel Plate.—When light is incident obliquely on
a parallel plate of any medium, no colouration of the object is noticed

W,
H
Jr"‘-."ll__-ﬂ"\\

Fi1c. 245.

because, although dispersion oceurs at the first surface, it is neutralised
by that of the second.

Let 4 b (Fig. 245) represent a beam of parallel light incident on a
plate having parallel surfaces. At B dispersion takes place, so that violet is
deviated the most and red the least, and were it possible for the eye to
receive the beam before it leaves the plate, the object would appear deviated
and tinged with colour just as with an ordinary prism. At the second
surface, however, all the dispersed rays are rendered parallel to each other
and therefore, by their overlapping on the retina, produce the sensation of
white. In other words the appearance of the object, so far as dispersion is
concerned, is the same as though viewed divect. Thus it will be seen that,
in order to cause chromatism or dispersion, a medium must have the power
of alteving the angular deviation of the various eolowrs with respect to each other.

Achromatic Prism or Lens.—When a prism or lens is said to be achrom-

atised its action is similar to that of a plate, while the course of light, as a
whole, is changed.
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Chromatism of a Prism.

Crown and Flint Glass.—Flint glass has a greater refracting power than
crown, but its dispersive power is proportionally still greater ; the relative
refractivities are approximately 1-1 : 1 and their dispersivities 1-4: 1. A flint
prism of 10° and a crown of 11° have each a deviating angle of about 6°, but
the spectrum of the flint glass is considerably the longer. If spectra of the
same lengths be required, the crown glass prism must be stronger than the flint,

Real and Virtual Spectra.—Since a prism refracts the violet waves
most and red the least, the real speetrum projected on to a screen exhibits
violet nearest the base and red nearest the edge of the prism, as shown in
Fig. 246, where L is the source of light. If the light be received by the eye,
the rays are projected back to form a virtual spectrum, and the violet is then
nearest the edge and the red nearest the base. Thus, a disc of light viewed
through a prism, base down, exhibits blue above and red below.

The light from a white body, refracted by a prism, causes a series of

Fic. 246,

separate images of the body, each characterised by a distinetive spectrum
colour. These overlap in the centre so that a white virtual image is seen,
but the ultimate displacements of blue at the one end, and of red at the
other, cause a fringe of blue to appear on that border which is nearest the
edge of the prism, and a red-orange fringe on that nearest the base. If the
body is black or dark, as compared with its background, the red-orange
fringe is towards the edge and the blue fringe towards the base of the prism,
these resulting from the dispersion of the light from the space or body
surrounding the black. Thus a window bar viewed in daylight, through a
prism base down, is blue at the bottom and reddish-vellow on top, but if
viewed in artificial light at night the colours are reversed.

Dispersion of a Prism.—The wave-front of a beam of light, incident on
a prism, is retarded sooner at the base than at the edge, so that the beam is
deviated towards the base of the prism, and since the retardation is greater
as the wave-length is shorter the blue is, as stated above, more deviated
towards the base than the red. Thus when a beam of white light is refracted
by a prism, its various components are separated, and form a band of colours
called the spectrum. The extent of the dispersion varies with the medium



CHROMATIC ABERRATION 261

of which the prism is formed, with the angle of the prism, and with the
angle of incidence of the light, but the dispersion is not a minimum when the
mean ray—yellow—suffers minimum deviation. The dispersion of a prism
can be determined by a spectrometer, the difference between the p's for the
and £ lines being the mean dispersion, In this case the minimum deviation
may be obtained for each colour hefore caleulating its index. The position
of the prism must be that of minimum deviation for the ) line in order that
the deviation of the colours, on either side of the yellow, may be observed
when the mean deviation is minimum.

The Refraction Spectrum.—In order to produce a spectrum by refrac-
tion the light should be admitted through a small horizontal aperture .4
(Fig. 247), preferably about 20 mm. long by 5 to 1 mm. wide placed parallel
to the edge of the prism P. The light, being thus admitted, is incident on
a prism placed in its path in the position of minimum deviation. The
resultant spectrum, however, is said to be impure becanse there is an over-
lapping between adjacent colours, but if an achromatic bi-convex lens L of,
say, 36" F is 72" from the slit and close to the prism, a sharp pure spectrum

Fig. 247,

F Y Il is formed on a sereen situated 727 beyond the lens. If the prism be
placed base up the violet is above and the red below. All the different
colours are seen well defined, but the red end of the spectrum is somewhat
crowded, while the blue is spread out.

Pure Spectrum.—A spectrum is said to be pure when the individual
colours are isolated to the greatest possible extent, this being secured by
having an extremely fine aperture as a source, and an achromatic condensing
lens. The cifect of the lens is to project a real image of the slit, while that
of the prism is to produce, from this single white image, an innumerable
series of others corresponding to every different wave-length, and these,
lying side by side, result in the ordinary pure spectrum. Actually it is
impossible to obtain a theoretically pure spectrum since the source must
always be of some definite magnitude, and therefore a certain amount of
overlapping always takes place between adjacent colours, The purity, how-
ever, reaches a very high standard in the spectroscope where, in addition to
the finest possible slit, the light received by the prism from the collimator is
parallel, so that prismatic distortion is eliminated.
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The Spectroscope (Fig. 248) is used for viewing and comparing spectra
produced by prisms, and consists of horizontal circle, mounted on a stand, to
which are attached a telescope T' and a collimator (', both of which can be
rotated around the circle. The collimator €' is a tube having at one end a
Cx. lens and at the other a narrow slit parallel to the refracting edge of the
prism £. The distance between the slit and the lens is equal to F of the
latter, so that light, entering the slit, is rendered parallel by the lens
before reaching the prism. In the centre of the circle there is a small
table 5 on which the prism is placed.

The Spectrometer is a spectroscope with the addition of a horizontal
scale of degrees on which the position of the moveable telescope can be
indicated, and to which, for accurate readings, a vernier or reading micro-
scope is attached. This enables the principal angle, the deviating angle, and
the dispersion of a prism to be measured.

In order to measure the deviating angle of a prism, €' and I are brought
into line (Fig. 248) so that the image of the slit appears in the centre of the

-

Fia. 248, Fre. 249,

field of view, the objective of the telescope forming a real image of the slit
in the focal plane of the ocular, through which it is viewed, and a reading 1s
taken on the circle. The prism is then placed in position, and the telescope
must be rotated to 7" until the image of the slit can again be seen. The
angular distance through which 7' is moved is the deviating angle of the
prism, care being taken that the deviation is a minimum. This can be done
by slightly rotating the prism backwards and forwards until a position is
found when the slightest movement in eifher direction incieases the
deviation.

The principal angle of a prism is measured by turning the prism until its
edge splits into two halves the beam of light issuing from the collimator
(Fig. 249). The telescope is rotated to 1" until the image of the slit is seen
reflected from the one surface, and then turned to I to receive the image
from the other surface of the prism. Half the angle through which the
telescope has been rotated gives the principal angle of the prism.

The mean refraction is indicated when the yvellow of the spectrum lies on
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the wire placed in the focus of the ocular. When the principal angle and
mean deviating angles are known, the refractive index of the glass, of which
the prism is made, can be caleulated by the method given elsewhere.

The deviation of a prism, for any colour, can be determined by bringing
that colour on to the cross wire and by this means, the total, mean or
partial dispersion of the medium, of which a prism is made, can be deter-
minei.

The spectrum produced by a given source can be studied and, if neces-
sary, the spectra from two sources can, hy suitable arrangement, be formed
side by side for comparison. For very accurate determination of refractive
index and dispersion, various incandescent gases are employed, which give
line spectra, instead of a white source producing a continuous spectrum,

The Diffraction Spectrum is purer than that of refraction, and is referred
to in Chap. XXVII.

Refraction and Dispersion.—Riefraction by a simple medium is, so far as
known, always accompanied by dispersion or chromatism, and even when a
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Fra. 250.

prism or lens is, as is termed, fully achromatised by one or more other
prisms or lenses, some dispersion still obtains. Although two or even three
colours may be brought to a common focus, this can never be done for every
colour of the spectrum, and, as will be seen further on, with two lenses only
two colours can be brought to a common focus, the coincidence of the others
being merely approximate. This want of coineidence of all the colours is
due to irrationality of the spectrwm, which may be defined as the irregularity
of sequence of the principal colours in any two spectra produced by different
media.

If we take a number of prisms of different substances, but of the same
angle, it will be found that those having the higher refractive index usually,
but not of necessity, possess the longer spectra  These different spectra can
be made of the same length by altering the angles or the position of the
prisms, or by adjusting the position of the screen. If (Fig. 250) the spectra
be placed one under the other so that the / lines at the red and the /{ lines
at the blue correspond in position, it will be found that the intermediate
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lines do not do so. This fact renders it difficult to fix the exact position
of lines in the spectrum, since a special scale has to be made for each
spectroscope.

Anomalous Dispersion.—In glass, water and most substances, the order
of refrangibility is from the red through the orange, vellow, green, blue,
indigo to violet, which is the most refrangible, but certain substances have
the property of refracting the normally more refrangible rays less, and
the less refrangible more (Fig. 251). This is called anomalous dispersion.
The substances which exhibit this peculiarity possess what is termed surface
colour, i.e., they have a different colour when viewed by reflected light to
what they have by transmitted light. As they reflect only a certain colour,
the complementary ecolours are transmitted, and their spectra exhibit an
absorption band of more or less considerable dimensions, it being the space
which would have been occupied by the reflected colour had it been trans-
mitted. Such substances are termed dichioic,

Most metals, except gold and copper, as well as many of the aniline
produets, possess this abnormal dispersion, the order of colours being

R _?_,C_._._ S F byl
e -? Er ! | | | Glass
| | ; , [ { | Prism.
._J ._L;____.i_ Ay L
= R ]
|| 1 | | Fuchsin
[ | | Prism.
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Fig. 251.

changed. Moreover, Kundt found, in the aniline products, the dispersion
abnormally increased on the red side of the band, but diminished on the
violet side ; so that in the case of fuchsin, for example, the red end, usunally
so short, is actually more extended than the violet end.

Recomposition of Dispersed Light.—To recombine the spectrum of a
prism in order to form white light we may adopt several methods, as
follows :

1. Employing a prism of equal dispersive power. This is placed in the
path of the dispersed light, having its base turned in the opposite direction
to that of the first prism. (Newton’s method.)

2. A series of plane mirrors may be so arranged that each receives a
different portion of the spectrum; from each the light is reflected to the
same part of a screen, where the colours are re-combined.

3. Receiving the dispersed light on a coneave mirror, from which it is
reflected on to a screen, and then by rapidly oscillating the mirror or the
screen the impression of white light is produced. Or the prism or the
screen may be oscillated or rotated to produce a similar effect without
the interposition of the concave mirror.
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Any mechanical arrangement of rotation or oscillation by which the
colours of the speetrum, whether produced by dispersion or by transmission
through coloured glasses, or by reflection from pigments, are caused to
successively enter the eye with sufficient rapidity, produces the impression
of white. Different colour sensations result while others are still existing,
and the combination of all results in a sensation of white or grey. Colour
tops, or dises divided into sectors of different colours, are examples of
this method.

Achromatic Prism,

Angular Dispersion.—The deviating angle of a prism is that of the mean
ray (I line), and is expressed (in the case of thin prisms) by d = P (p - 1),
where P is the refracting, and d the deviating angle. Now, since the red
ray suffers less, and the blue greater refraction than the [ line, their
angular deviations are respectively

d.=P(p.—1) and d. =P (p, — 1)

d. and d, being the deviating angles, and p. and p,. being the indices of
refraction for red and blue light respectively. The angular dispersion of
the prism expressed in degrees is

Ppe=1) =P (pc-1)=P (s — )

But, as before stated, it is not sufficient merely to know the mean or
angular dispersion of a medium ; we must know the amount of dispersion
which, in any particular case, accompanies a given amount of deviation,
that is, we must know its » value. Suppose the » of a erown prism is 60, and
that of a flint 30, then since » of the erown is twice as great as that of the
flint we know that, for a given deviation, we have twice as much dispersion
in the flint as in the crown. If two prisms of equal deviating angles were
worked from the glasses, the spectrum of the flint would be approximately
double the length of that of the erown.

Similar Prisms.—If two similar prisms, .4 and & (Fig. 252) are placed in
opposition—base to edge—their angles, refractive indices, and dispersions
being the same, both the deviation and dispersion are neutralised, and all
the rays emerge parallel to their original course.

In Fig. 253 let the principal angle of a crown prism of p = 1:54 be 11-3°,
and that of a flint prism of 2 = 1:61 be 10°. Their deviating angles are the
same, namely, 6:1°.  If in the crown p. = 1:534, p,. = 1554, and in the flint
pe = 1-586, p, = 162, their dispersive angles between blue and red are
11-3 x (1554 — 1-534) = -226° for the crown, and 10 x (162 — 1586
= +34° for the flint. The rvesultant angular dispersion is therefore
34 — +226 = *114° = 6’ 50”. Thus, while no deviation of the mean yellow
ray occurs, the red and blue are separated by an angle of nearly 7.
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Achromatised Prism.—If a crown prism of 3°d and p = 154, and a
flint of 2° and p = 161 (Fig. 254), having efficiencies of 45 and 30 respec-
tively, be placed in opposition, they neutralise each other’s dispersion, while
there remains 1° deviation. Such prisms are said to be achromatised, i.e.,
they constitute an achromatic prism which causes deviation without disper-
sion. The prineipal angle P of the erown is 3/-54 = 5:55° and of the flint
2/61 = 3:28° Here, as will be seen from Fig. 254, every ray is deviated to
the same extent, and the recombination of light is secured as with an ordinary
parallel plate.

To Calculate an Achromatic Prism.—In order to caleulate the data for
an achromatic prism, let d represent its deviating angle, and P the principal
angle. Let d,, v, and P, be those of the crown and d,, v, and P, those of
the flint components respectively.

Now we have d = d, + d,, and since they have to be in opposition we
can regard d, as positive and J, as negative. In order that achromatism
may result we must have

dyve= —dyv, or dyv, + doyy =0
B
A c
i
Fig. 252 Fic. 253, Fic. 254.

To cobtain the values of the two components ¢, and d,, we must divide
d, the deviating angle of the required achromatic prism, in proportion to the
values of »; and v,, that is
d vy af' Vo

i andde =~
g I--'2 Vo — L’l

iy = 3

It should be noticed that the deviating, not the principal angle, of the final

prism is divided in the ratio of the v’s, because P is dependent npon o and

the mean refractive index. We find the principal angles of the two

components from P, =d,[/(p,~1) and P,=d,/(jz, — 1), which, however, hold

good only for thin prisms; if strong, P; and P, must be found by the exact
formulwe previously given.

As an example, an achromatic prism of 5°d is needed, the glasses of the
component parts being

Crown ... o e s
Flint ot e — ) pe=1624 pe= 1644,
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5% .1 53 .
T ISR h2T 0anT T
163 -1 63 e
Ye= 1644 1624 02 2"
5x589 2045 . 107 .
d=s59 315 970 — 10-7°d, and Py = ., =20
5% 315 1575 57
- — — —5-7°]. : o _ e
) =315 _589= 74— ~ 27 d, and P, 63 9

10-7° = B*7° = 5°d.,

To find the Achromatising Prism.—The power of the flint prism d,
of v,, which will neutralise the dispersion of a given erown of d; and v, is
caleulated from

vyfva=d,[d, or dy =d,v,/v,

Thus, let the crown be 10:7°d, v, =315, and », = 589, then
d,= 10T x 31'5/58-9 = 5-7°d

and dy+dy=10"7T =57 =5%=d

Chromatism of a Lens.

The effect of dispersion, when the refracting hody is a lens, is to bring
the more refrangible blue and violet to a focus sooner than the less refran-
gible red and orange. This different focalisation of the various colours 1s
termed chiomatism, and the confusion of the image caused by it, chromatic
abervation. The defect, which is made apparent by a fringe of colour on the
edge of the real or virtual image projected by the lens, is due to the nature
of light, and not to the nature of the lens, although its degree varies with the
power of the lens and the kind of glass of which it is made. Indeed, lenses
being prismatic in nature produce similar chromatic phenomena to prisms.

If a horizontal white line (Fig. 255) be observed through the marginal
portion of a convex lens, a blue-violet fringe will be seen on the side towards
the edge of the lens, and a red-orange on the other, the blue being projected
back above the red. Viewed through the periphery of a concave, the colours
are reversed. Looking at a black line, the fringes are seen in the opposite
order to those on a white line, for the reason given in connection with a
prism. The centre of the image, whether virtual or real, of a white object,
appears white, because the different colours are superposed, so that only at
the extremities, where certain colours are not combined with others, is
chromatism apparent.



268 GENERAL AND PRACTICAL OPTICS

Longitudinal and Lateral Aberrations of Colour.—In Fig. 256 a parallel
beam of light from a point source is refracted by a convex lens ; the various
coloured rays meet at different distances behind the lens, the violet focussing
at /7, the yellow at ¥, and the red at £. If a screen be held at V, the
diffusion patch has a reddish-yellow fringe; the red and orange rays, being
convergent to a more distant point R, impinge on the screen outside the
blue and violet. If the screen be placed at £, the fringe becomes blue-violet,
since these rays, having already met at /™ and crossed, impinge on the screen
outside the red and orange. The distance /" [ is the longitudinal aberration,
and the diameter @ b of the disc of confusion in the plane where the extreme
violet and red rays cross each other, is the lateral aberration ; this plane is
very nearly that of /' X, where the yellow light is brought to a focus.

Circle of Least Confusion. At /, the focus of the most luminous yellow
light the cireles of diffusion formed by the red and blue are practically of the
same size, and therefore no coloured fringe is appreciable.

F of the Various Colours.—The index of refraction of a given medium
refers to that of the D (sodium) line, which is situated in the yellow or most

fﬁ%ﬁ"“:r
~—
Fic. 255. Fic. 256.
luminous part of the spectrum. With such a medium, if p, = 1-54, the index

of refraction for the red (line A) might be 1:53 (p, = 1-53), while for
the violet (line H) it might be 1:56 (p, = 1:56). Suppose a thin double
convex lens of 10 in. radius, then—

{FI1+TE} (P"IJ o 1}
- )
that is, P 10 % 10 100 =926 1n.

"= (10+10) x 54 ~ 108

which is the mean focal length as well as that for yellow light. But instead
of p. = 1'54 we must employ p, = 153 and p, = 1*56 in order to find the
focal lengths F, and F, for red and violet light respectively ; thus
F, =943 in. and F, = 893 in.

The difference in the focal lengths of a lens for red and blue light may
be illustrated with a cobalt-blue glass (chromatic dise), which transmits red
and blue light, but absorbs the central part of the spectrum, or by focussing
with a convex lens light which is rendered monochromatic by being passed
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through respectively standard red and blue glass. The difference in the
focal distances with these two eoloured lights is sufficiently well marked to be
appreciated.

Achromatic Lens.

Chromatism can be remedied by making the lens a combination of two
different kinds of glass, so chosen that, while the dispersion of the positive
component is neutralised by that of the negative one, there shall still be
some positive converging power left, so that a real image may be formed.
Such a combination is termed an achromatic lens, and usually consists of a
flint conecave and a crown convex. If a conecave achromatic combination is
required, as occurs sometimes in practice—for instance, in the telephoto
lens—then the concave is of crown and the convex of flint.

Spectrum Lines Combined.— By an achromatic lens two selected lines of
the spectrum, usually the ' and F (orange-red and blue) are brought to a
focus at the same distance ; by uniting these with a third component a third
line could also be focussed at the same distance, but for all practical pur-
poses if the €' and /' lines, which lie near the more central and luminous part
of the spectrum, are combined, the combination is one in which chromatism
does not cause any appreciable blurring of the image, at least for visual
purposes, in which critical definition is not essential. In photographic lenses
the lines U and & or D) and H are usunally selected in order to unite the
violet, which is the most chemically active part of the spectrum, with the
visual focus. For astro-photographic purposes, in which vision is of little
consequence, the lines /' and / (or beyond) are brought together.

Expression for Chromatic Aberration. — Let v, and », represent the two
radii, and I, the focal length of a thin lens for the £ line. Then, if I, and
F, represent the focal lengths, and p, and p, the indices for extreme red
and violet respectively, the chromatic focal difference may be expressed by

e e e s
R r) (- L) () (e 1)
. ) JI.|“I-__- {JU“H = .|”*.1.}
(ry +73) (pa—1) (p = 1)

[f instead of (p,, =1) (.= 1) there be substituted (p,—1)% as may be
done without sensible error, then

g . g (pe = f24) - Fy (i = i)
\ H {f‘]+;‘2} I:J”:J_ 1}.‘" [;""'1:" ]_J
po==1 . . -
v = is the refractive efliciency,
P Ha :
Ly = M. B "
mz"lﬁ" _‘rl" is the dispersive power,
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Both of these are similar to those found in the case of a prism, Then
the longitudinal aberration is ¥, - F,,=F, v=F, w.
As an example let F, =10 in., g, =160 ; p, =161 and p, = 1:625, then

~10x (1625 — 1-60) 025

b= [0 el

S
The lateral chromatic aberration of a lens = diameter of lens/2v.
Similar ealculations can be used for a thick lens.

Calculation for an Achromatic Combination.—To caleulate an achromatie
combination for two lenses in contact, let ' and C he the two lines of the
spectrum which have to be brought to the same focus. Let F he the focal
length of the required combination.

F, and v, are the focal length and efficiency of the erown component, and
F, and v, those of the flint; ¥, i1s negative, and 1/F = 1/F, + 1/F,. In
order that the achromatism to be eliminated

.IJ'IIII].I‘I H™ 1:"Ir]"| i 1.-";]“._{” — j..-"IIFI::_.‘I

or 1‘1| ALy Ill‘l| Mo I"g AT 1'1‘3 I
1‘1-11"“' I'f.a}';rn
But F,,-F,,=F,/v;, and F,, - F,,, =F,/v,, and without serious error,

1A
F,,F,u=F>2and F,, F,, =F,% so that the last equation can be written
F, /v, F2=F,/v,F,?
1;’:'][.11 = lll'llr]l'iﬂlﬂz? CII' '-III];']_ — = IEE];‘

That is Fov,+Fpu,=0

2

The two components 1/F, and 1/F, are obtained by dividing 1/F pro-
portionally to the two efficiencies v, and v, ; that is

| [ | v v
Ik 4 H1 "l”ﬂﬂl“ {“11" Va)
and I Vo Vy
PR e e
or Fi=F (vi—vy)/ vy, and Fo =1 (v, — v,)/vy

As an example, let a positive achromatic lens of 63 in. focal length be
required ; if the indices of refraction for the various lines are p. = 1:527,
pp, = 1:53, p = 1'536 for the crown, and p, = 1630, g, = 1:635, p,. = 1:648
for the flint

1:530 - 1 030
NS 1536 1527 009

18551 | Lie3ne
l"r..p= ® L) = = l:}d:-
27 1648 — 1630 — 018

and v ~v,=DHRB9~35:28 = £ 2361

= H8-89
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Then F,=65 x 23:61/58-89 = +2-61 in.
and F,=065% —2361/3528 = — 4:358 in.
therefore 1/F=1/2-61-1/4-358=1/64 or F=64

which is positive and therefore convex.

To find the Achromatising Ce.—The F of a Ce. of v, which, with a
given Ox. of v, will make the combination achromatie, is found from

n/ve=Fy/F,, or ¥, =F,v /v,

Taking the same figures as in the previous example, if the Cx. has
' = 2-61 in., then
I, =261 x 58:89/3528 = 4:358

Dioptral Formulse.

With dioptral lenses an achromatic combination is calculated from the
following formule. Let D) represent the power of the combination, D, and
D, the powers vespectively of the Cx. and Ce., v, and v, the respective
efticiencies of the erown and flint lenses, v, being negative,

In order to achromatise each other the relationship must be D, v, = — D, »,
or Dy v+ Dy, =0. The two components must equal D, that is D=D, 4-D,,.
To obtain the values of D, and D,, which together equal D, we must divide
the latter proportionally to v, and v, that is

1'} 1 I ] 1,
= ! and li‘2 = e

D, =
l ] I, | |
1| i-"E I2 I-]

Taking the same glasses as in the previous example where 1, = 58-89,
v, =3528and F = 64", or D = 6
D, =06 x 58-89/23:61 = 14'97, and D, =6 x 35°28/23-61 = —8-97
D +Dp=+1497-89T=+6=D

Students should note the similarity of these formule with those for eal-
culating achromatic prisms,

To find the Achromatising Ce.—Since the powers of the two component
lenses are proportional to their efficiencies, if v, =60 and v, =50, a +6 D and
a — 5 D will make an achromatic +1 D.

If D, the power of the convex, is known, and it is needed to calculate the
concave required to make it achromatie, the formulwe are

v /vy =Dy/Dy, or Dy=Dyv,/v,
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As in the foregoing example, if the ecrown is + 1497, the flint con-
cave 1s
D,=1497 x 35-28/58-88 =8-97

Illustrating Example.—As an example, give an equi-cx. lens of erown
glass whose radius of curvature is 10 in., there is needed to caleulate the
radius of curvature of a flint Ce. so that the two combined malke an
achromatic combination.

If in the crown p,=1:5175 and p, — p. = 0037, then

AT e =08
If in the flint pu,=1571 and p,. —p.=-01327, then

pp—1 D7l
BT pe— e "0132%

Now 1 st Mgl 1 1 _
F,= 5175 x (10 + IU)F‘J'{HH for the convex,
and 1 1 43 43 ] e th
B~ 97669 ™ 50 T ST0:008 . 15000 v hes e
then 1 1 ] 3-595 1

F = 9:662 ~13:257 — 128:089 — 3563 1°F the combination,

or F =3563 ins.

Now, the radii of curvature of the two adjacent surfaces must be equal,
that is, 10 in. Therefore #, the second radius of the Ce., is found from

- 105

Whence r= =31-15 in.

Second Illustrating Example.—A plano-Cx. achromatic combination is ,
required of ¥ = 20 in. Let the glasses he

pe= 1935, p,=154, p.=1555 for the crown, and p.=1:59, p,=1:60,
e = 1-63 for the flint,

Then v, =°54/-02 =27, and v,='60/04=15
Now  F;=20x12/27=888 Cx, and F,=20x —12/15=16 Cec.
The combination will therefore be

— 16 x 8-88

P = ie+ass

= + 20 1n.

If the one surface of the concave is plano, F, = v/(p — 1), so that
r= —16 x "6 = — 96 in. for the curved surface of the negative lens.
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Since the Cx. must have one surface of radius 96 in.

ReRR rx 96 96 r
L e T, {i"—l—ﬂ'l}}= D4 v+ 5184

whence + = 96 (approx.), so that the positive lens is a double convex, the

combination consisting of a double convex lens and a plano-concave.

Illustrating the Dioptral Formule.—To work such a calenlation hy
diopters, since 20in. = 2D we have D; = 2 x 27/12 = 45 for the crown,

and D, = 2 x - 15/12 = - 2-5 for the flint,
For a plano + = (. — 1)/} in terms of a metre, so that » = 6/ - 25 =
- 24 M., or — 24 cm.
Since D (p=1) (r+7")
i’

substituting, we get for the second radius of the crown

s DEX(2447) 12964+ 547
VETTar T e

That is 108 r = 1296 + 54 r, whence 54 r = 1296, or r = 24 M. or
24 cm.

As shown previously, the lens is a double convex of 24 em. or 96 in.
adins,

Lens Combinations.—A combination of lenses having only one achroma-
tised component is not as a rule perfectly achromatic, so that in order that
the whole combination may be achromatic, the achromatised component
must be suitably overcorrected.

Achromatism of a Single Lens.—A single lens cannot be achromatie for
a real image ; but when it is used as a mugnifier the virtual image is really
composed of a series of images formed by every different colour which, being
contained within the same visual angle, combine on the retina to form a
single impression. This image, however, appears coloured at the edges,
owing to the chromatic effects of spherical aberration, which is greater for
blue than for red. Then, if spherical aberration is eliminated, as in the
Huyghen eyepiece, the virtual image is colourless.

Separated Lenses.—If the lenses are not in contact the conditions for
achromatism are different. Two lenses made of the same material can be
rendered achromatie, for virtual images only, by being separated by a proper
distance, which is the case with. Huyghen's eye-piece. Those rays which
pass through the thin part of the field lens pass through a thicker portion of
the eye lens, but as the violet is relatively nearer to the axis than the red,
and so is less refracted, all the components of white light form the same
visual angle on emergence. Thus, two Ux. lenses of equal v separated by a

18
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distance equal to (F, + F,)/2 form an achromatic combination for virtual
images.

Chromatic Difficulties.—Although a combination of lenses may bring
different coloured rays to the same focus, the images are not necessarily of
the same size. Furthermore, a combination achromatie for an axial peneil
of light need not be so for oblique pencils. Finally, if a lens be achroma-
tised for light proceeding from a given plane, it may not be so for light
proceeding from other planes. Conversely, if a positive and a negative lens
neutralise for the D line, the two, being of different dispersions, may not
neutralise for red or violet.

Irrationality of Dispersion.—One of the difficulties in optics is to find
different glasses so that all the lines of the spectrum will nearly coincide.
Thus, if we select two kinds of glass for an achromatic prism or lens, so that
the C and F, or D and H, lines coincide, it will be found that other lines
will not. This defect is called irrationality of dispersion, and the spectrum
which remains in an achromatic lens or prism 1s called residual or secondary.
As before stated, it suffices, for practical purposes, to unite two certain lines
of the spectrum according to the use to which the lens is put. With
modern glasses and by careful selection it is often possible to unite prac-
tically three spectrum lines with two glasses, but a formula for this purpose
cannot he made.

Apochromatie Lens.—A combination which actually unites three lines of
the spectrum is termed apochromatic ; for such a lens at least three different
sorts of glasses must be employed, the residual spectrum still left being so
small as to be negligible. For such a combination 1/F = 1/F; + 1/F, +
1/F,, and Fyv; + Fov, + Fyvp = 0.



CHAPTER XXIV
ABERRATIONS OF FORM

Prismatic Aberrations of Form.

Small Light Pencils.—A pencil of light parallel before refraction is
parallel after refraction by a prism; even if divergent or convergent, any
difference may be neglected provided the pencil of light be small and the
axial ray suffers minimum deviation ; such a pencil may be considered as
respectively coming from, or meeting at, a single point. Although, in prisms
of small angle, the effects of aberration due to the form of the prism can be
ignored, considerable distortion of the image is produced by strong prisms,
and this is inereased by nearness of the object, largeness of the object, and
abnormal position of the prism.

Large Light Pencils.—In Fig. 257, which is purposely exaggerated for
sake of clearness, let a wide pencil of light diverge from a point L, of which

Frs. 257.

L. E is the central ray, presumed to suffer minimum deviation, and L D), L F,
L P, and L) extreme rays. Since LD, LE, and L F are incident on the
surface of the prism at different angles in the base-apex plane, they suffer
unequal deviation towards I/, ¢ and N respectively, and if L. £ is at minimum
deviation, the others cannot be also. After refraction at both surfaces,
therefore, L ) and L F are deviated relatively more than L E, and cut this,
when produced backwards, in M" and N"; L /' being more deviated than
L D)y N” is nearer the prism than ‘. Again, the incidence of rays such as
L@ and L Pin a plane parallel with the axis also differs, but to a much
lesser extent than the incidence in the base-apex plane ; notwithstanding,
the vefracted rays I'.X' and E ¥, when produced backwards, meet in ¢,
275
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which is nearer to the prism than the original source L. These two in-
equalities of incidence are the origin of coma in a lens, while together they
are the genesis of radial astigmatism, and for oblique incidence, of distortion
as well.

Thus rays in the pencil emanating from a point do not have a point focus,
there being two focal lines, the one nearer the prism being parallel to the
axis, and the other parallel to the base-apex plane of the prism. The ecircle
of least confusion, which lies between ¢/ and N, may be regarded as the
focus. These defects blur the image and cause it to appear nearer than it
actually is, and if the prism is in such a position that L F or L D suffers
minimum deviation, the whole of the pencil is rendered still more divergent
and the image is still more distorted and nearer.

Distortion due to Inclination.—If the base-apex line is vertical, say edge
upwards, the vertical magnitude of a square object, whether near or distant,
appears increased when the edge of the prism is nearer to it than the base.
This results because light from the bottom of the object is ineident more
nearly at minimum deviation than that from the top, so that the latter
appears drawn upwards, the effect rapidly inereasing as the inclination of
the prism is increased., The vertical dimension is lessened if the base is
nearer the object, because here the light from the bottom is more deviated,
that from the top being more nearly at minimum deviation. Again, the
effect inereases with the inclination, as does also the fofal deviation of the
image in both cases. This distortion is somewhat analogous to that produced
by a lens, since both are due to the same causes.

Distortion due to Thickness.—Distortion is also caused by the greater
thickness of the glass through which the oblique pencils pass from the extremi-
ties of an object. These peneils suffer more deviation than the central pencils,
and therefore appear to come from points relatively higher and more distant
from the centre than those nearer to the centre of the object viewed. Thus
a straight line, parallel to the edge, appears eurved with its convexity towards
the base. A square objec. has its two sides, which are parallel to the edge
of the prism, coneave to the latter direction,

Distortion due to Position of Base-Apex Line.—If a prism be rotated
around its base-apex line—i.e. if, say, a vertical prism, edge upwards, be
rotated horizontally, so that one side of the prism is nearer the object than
the other—the image is lengthened diagonally on the side nearer the object ;
it is drawn out more towards the edge than the base, so that a square object
appears as a distorted parallelogram.

Distortion due to Bize of Object.—1f a narrow pencil of light from the
centre of an object enters the eye through a prism, and suffers minimum
deviation and but little aberration, the pencils from other points cannot do
so ; the peripheral portions of a large object are blurred compared with the
centre.
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Lens Aberrations of Form.

Apart from chromatism, the image formed by a spherical lens suffers
from five distinet aberrations due to its shape, and these must be severally
corrected before the lens is capable of forming a geometrically perfect image
of an object. The first is spherical aberration, the second coma, the third
radial astigmatism, the fourth curvature of the field, the fifth distortion.

The first three errors mentioned are point aberrations, and lenses corrected
for them are called stigmatic as distinct from astigmatic, the literal meaning
of which is * without a point ”; a lens corrected for spherical aberration is
termed aplanatic (not wandering). The last two errors are aberrations of a
plane, and lenses free from them are termed rectilinear or orthoscopic.

Spherical Aberration.

Since a lens may be regarded as consisting of an infinite number of
prisms whose angles of inclination inerease with the distance from the axis,
it follows that the deviation effected by the various zones of a lens depends

=

Fiz. 258,

on this distance. In a Cx. lens the varying inclination of the different parts
of the two surfaces of each meridian causes parallel light to converge, but,
actually, the refraction of a spherical lens is such that light from a point is
not brought to a focus at a single point, the rays transmitted by the marginal
zones of the lens meeting sooner than those transmitted nearer the centre,
as depicted in Fig, 258,

Each zone of a lens has its own focal length, varying from the principal
focus F, for rays refracted in the zones immediately surrounding the prin-
cipal axis, to a point where rays .{ and B passing through the most external
zones, meet the axis. The inability to unite in a single point all the rays
diverging from an object point on the principal axis is called spherical aberra-
tion, which is due, not to the fact that the deviating power is greater towards
the periphery, for that is a natural property of a lens, but to the fact that
the deviating power increases foo vapidly towards the periphery, with the
result that wave fronts are not truly spherical after refraction,

Minimum Deviation.—In Fig. 259 the opposite points D and E of the

lens constitute a portion of a prism G K H, and the ray .4 D, incident such
that its point of incidence £ and its point of emergence E are equi-distant
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from the edge, therefore suffers minimum deviation. The deviation of the
ray A £ C is not minimum, and is relatively more bent from its course than
the ray 4 D). It is mainly owing to the departure from minimum deviation
incidence of the light at the periphery that the deviating power there is
unduly inereased and spherical aberration produced.

Central and Peripheral Refraction.—If a piece of black paper, the same
size as a lens, be divided by cutting out a disc one half of the diameter, there
will be a ring and a disc of equal widths. Dy gumming first the ring and

3
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then the disc on to the lens we can observe the result of central and
peripheral refraction separately. When the peripheral part of the lens
(Fig. 260) is blocked out only the central area of the lens is effective, and
parallel rays, as a whole, meet slightly within /.  When the central portion
of the lens is covered (Fig. 261) and only the periphery acts on the light,
the latter, as a whole, meets still further within £,

_J.-——'_"'_-_'_

\/

Circle of Least Confusion.—When the whole lens is exposed to the light
(Fig. 258), the converging circles of confusion from the central, and the
diverging circles from the peripheral area, are of ahout the same mean
diameter at C, where the illumination is greatest and the disc of light of
minimum size. At any point either nearer or further the dise is larger than
at C, but the greatest concentration of light occurs at £, where the image of
a luminous point is a bright spot surrounded by a halo caused by the
diverging light from the periphery of the lens.

Fia. 260.
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The distance of the image from a Cx. lens in the three cases where the
periphery only, the centre only, or the whole of the lens is effective, can be
shown by experiment, the object being a bright flame placed behind a small
aperture covered by a piece of yellow glass in order to make the light more
or less monochromatic.

Longitudinal and Lateral Aberration.—The distance between the
extreme foci is called the longitudinal aberration; the diameter of the disc
A B (Fig. 258), caused by the overlapping of the rays refracted by the
margin of the lens when the screen is held in its theoretical focus, is called
the laferal aberration. The lateral aberration increases more rapidly than
the longitudinal with an increase in the aperture of a lens, the latter varying
as the square of the aperture, and the former as the cube of the aperture.

Influencing Factors.—The definition of an image depends on the small-
ness of the circles of confusion of which it is constituted, and these circles
are dependent on the degree of spherical aberration. The latter is proportional
to the incidence of the light, the aperture, form, index, and thickness of the
lens; as these factors are changed spherical aberration is inereased or decreased.
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Fio. 262, Fic., 263,

Influence of Form.—The degree of spherical aberration is least when the
rays in general are, after refraction at the first surface, more nearly parallel
to the bases of the virtual prisms of which the lens is formed, so that the
total refraction 1s approximately divided between the two surfaces, and
therefore the angles of incidence and emergence are equal.

Best Form of Single Lens.—As a general rule, for parallel light, the
more curved the front and thz less curved the back surface of the lens, the
smaller is the spherical aberration (Iig. 262) ; as the object is nearer the lens
and the light becomes more and more divergent less curvature is needed for
the front, and more for the back surface; in these cases an approach to
minimum deviation at the periphery of the lens is obtained. A very high
degree of spherical aberration results if the less eurved surface is exposed
to parallel light (Fig. 263), or the more curved surface to light diverging
from the focus of the lens, since a considerable departure from minimum
deviation for peripheral rays then oceurs. Since the incidence varies with
distance of the object, spherical aberration depends not only on the formof a
given lens but also on the distance of the luminous point from that lens.



280 GENERAL AND PRACTICAL OPTICS

The curvatures needed for a lens having minimum aberration varies with
the index of refraction of the glass, the difference between the two radii of
curvature inereasing directly with p. A plano-convex, or hetter, the erossed
lens, with its more curved surface turned to the light, is the form of single
lens which gives the best definition for objects at extreme distances. The
same lens turned the other way is the best for very near objects, while the
double convex is the best when the incident rays diverge from twice the
focal distance, for then, object and image being equi-distant from the lens.
the incident and emergent rays form equal angles with the two surfaces, If
used for all distances the double Cx. is perhaps the best form of single lens.

The term crossed is applied to a lens having unequal radii of curvature,
it being usually a bi-Cx. or bi-Ce. whose radii are 6 : 1 approximately. To
obtain minimum spherical aberration the radii of the two surfaces of the lens
should be in the ratio of 142 g, and 1 -2 p+4/p.  These quantities, when
p=15, are as 6 is to 1. When p=1'686, the value of 1 =2 p+4/p 15 0, s0
that the one surface should be plano, and if the index is higher the lens must
be a meniscus, this quantity being then negative,

A B a D
: 2
oo |1 7 H 171¢
. /
+4,5 + 1,67 +2,07 +1,07
= =1 f-;_i;ht

' Fre. 264.

A Numerical Expression for Longitudinal Aberration is sometimes
given, as below, for parallel light and thin lenses, where p=1-5. The values
are in terms of d® FF, where d is the semi-diameter of the lens.

A crossed Cx. (Fig. 264) with the more curved surface to the light 1-07

A plano-Cx., with the curved surface to the light P ek
An equi-Cx. ... e - LABT
A crossed Cx. with the less enrved surface to the light ... Sy T
A plano-Cx. with the plane surface to the light ... few D

These values would vary with the index of refraction, and for different
distances of the source of light ; also with the thickness of the lens if this
cannot be neglected. The aberration of course inecreases with the diameter
or power of the lens.

Least Time.—Since light travels in a straight line it takes the least
possible time to reach a given point, and this principal of least time holds
wood for refraction. Thus, various rays diverging from a point in air and
passing into another denser medium must arrive at the same point, at the same
time, if a focus is to be obtained. With a lens, disregarding spherical aber-
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ration, this oceurs because although the distance from 4 to B, and thence to
F, is greater than from A to €' and /' (Fig. 265), yet the distance traversed
in the denser medium is greater in the case of .4 C' /. The law of refraction
p Sin i=p, sin r is in accordance with the principal of least time. If a lens
is corrected for spherical aberration all rays diverging from an object point
must reach the same image point and in the same time, no matter what course
they take. In other words the optical length (which is the actual distance
of travel multiplied by the p of the medium in which this takes place) must
be the same for all rays between the object and image points.

Fic. 265,

Let the distance of 4 from any point on the refracting surface (Fig. 266)
be d,, and the corresponding distance of F be d, ; then d, p, + d, p, is the
optical length of any ray diverging from .4 and refracted to F, so that for
A X, 4 Band 4 € to meet at F' it would be necessary that d, p, + d, p, be
a constant for any incidence of the light,ie. A Bp, + BFp, = A CUp, +
CFpy=AXp, + X Fp, As this cannot ocecur with spherical surfaces,
spherical aberration may be said to be due to the fact that all the rays
diverging from a point on the axis cannot reach the same point in a given time,
or rather that, within a given time, the rays reach different points of the axis.

Fia. 266,

In the case of a lens the influence of the two surfaces has to be con-
sidered, since each ray travels in three different media. If d; be its course
in the first medium p, d, its course in the second medium g, and dj its
course in the third medium pg, then d, ju;, + o, pr, + dy py, would need to be
equal for each ray in order that all rays diverging from an object-point may
meet, after refraction, at a single image-point.

Influence of Thickness.—A ray A F traversing a thick lens (Fig. 267) is
retarded in the denser medinm, and can only reach, in a given time, a point
G' on the principal axis which lies nearer to the lens than /, the point
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reached by a similar ray passing through a thin lens. Thus, spherical
aberration increases with the thickness of the lens.

Remedies.—A theoretical remedy would be found if the speed of the
light could be increased, or the refractive power of the lens decreased at the
periphery. This would necessitate the lens being made of a medium whose
index of refraction decreases as the distance from the prineipal axis increases,
which oceurs in the crystalline lens of the eye; or the lens would need to
have less curvature at the periphery than at the centre, i.e. one having some
conic curve. If the lens be ground down to a smaller size so that only the
central area is left, or what amounts to the same thing, if a stop or diaphragm
is used in combination with the lens, the marginal rays are cut off and
spherical aberration is consequently lessened. In general, also, the aberra-
tion 1s reduced by increasing the number of refracting surfaces. Thus there
may be employed two positive lenses, in place of one, by which the
eurvatures are diminished for the same refractive power, or the positive
and negative components of a system separated by an interval, by which

Fiiz 267.

the positive power of the combination is increased. This last method is
sometimes made use of in photographic and microscopic lenses.

Since the defect depends on curvature, a Cx. having a high p and low
curvature may be combined with a Ce. so that, in an achromatic combination
of given focal length, the two surfaces in contact being similar, the aberration
of the front surface of the convex is neutralised by that of the back surface
of the concave. This method of neutralising the aberration by means of a
eompensating Ce. is the only true practical means of correcting a lens.

Aplanatic Lens.—A lens, or lens combination, corrected for spherical
aberration is termed aplanatic, but no combination of lenses can be rendered
entirely aplanatic for all distances of the object, nor can it be for other than
monochromatic light ; but by employing a stop, as is done in most optical
instruments, and a judicious choice of form, it may be rendered so for
practical .purposes. A single surface may be aplanatic and also a single
spherical lens, but only for one distance of object (vide Chap. XXV.).

Positive and Negative Aberration.— Positive aberration obtains when the
marginal rays come to a focus hefore the central, negative aberration if the
central rays come to a focus before the marginal.
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Under and Over Correction.—A lens combination which partially
neutralises the positive aberration is wader-corrected, and if it more than
neutralises the positive, it produces negafive aberration, and is said to be
over-corrected.  In photographic lenses it may happen that spherical aberration
is completely eliminated for the axis and periphery, while it may still oceur
in the intermediate zones.

The Oblique Aberrations.

A beam of light diverging from a point on the prineipal axis would, on
passing through a lens corrected for central echromatic and spherical aberra-
tion, meet again as a point on the prineipal axis. When, however, the
luminous point is situated on a secondary axis, turther aberrations are
introduced by the oblique incidence of the light, these being the point
aberrations coma and radial astigmatism, and the plane and line aberrations
eurvature of field and distortion,

If a bright point of light be placed obliquely below the axis of a lens and
a white sereen moved behind it, we shall find that the image is blurred at all
distances, the image assuming various triangular, comet-shaped, enp-shaped,
and pear - shaped figures, which are the result of coma. If coma be
reduced by placing a fairly small diaphragm in front of the lens and the
screen is held within the focus, and slowly drawn away, the image is seen to
form a symmetrical ellipse, and then successively a horizontal line, a hori-
zontal ellipse, an irregular ecircle, a vertical ellipse, a vertical line, and
finally broadens out into a blurred patch. These lines result from radial
astigmatism.

Coma.

Coma is an aberration produced by the unequal refracting effect of the
different parts of the various meridians of a lens, on an oblique pencil of
light ; it is spherical aberration for oblique light. Instead of a point image
of a point object, situated on a secondary axis, there results a blurred halo
of confusion partly surrounding a bright point, and extending therefrom in a
direction away from the axis.

Let d and ¢ (Fig. 268) be rays proceeding from a distant point on an
oblique axis ./ B. The ray ¢ meets the surface of the lens sooner than d,
and since ¢ departs more from minimum deviation than does d, the ray ¢ ¢
cuts the axial ray at ¢” sooner than does o d” at d”,

The confusion dise produced by coma presents various forms, as before
stated, but it is usually more or less pear- or comet-shaped, the narrow
brilliant part being directed towards the principal axis. It is, therefore,
non-symmetrical, and in this respect differs from the confusion discs of
spherical and chromatic aberration, which are always symmetrical with
respect to the axis of the beam of light,
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Influencing Factors.—Coma is directly proportional to the obliquity of
the incident light to the principal axis. It is enhanced in a lens of large
aperture, and, in general, whatever tends to increase spherical aberration
tends also to increase coma.

Remedies.—Coma is reduced in a lens of such form as will cause the
incidence of the rays, passing through any meridian of the lens, to be more
equal. Thus it is less marked in plano and meniscus lenses than in doubles,
for the reason that, in such lenses, less refraction takes place at the second
surface. The chief remedy for coma is reduction of the effective aperture of
the lens by the employment of a stop, the latter being placed a short distance
from the concave surface of the meniscus.

The Sine Condition.—In order that coma be eliminated from a lens, the
sines of the angles ¢ and o formed by an incident ray with the axis, hefore

Fig. 261,

and after refraction, should have a constant ratio; that is, sina/sine’=a
constant (Fig. 268),

Radial Astigmatism.

Radial Astigmatism is an aberration which results from the unequal
refraction of different meridians of a lens on an oblique pencil of light ;
instead of a point image of a point object situated on a secondary axis, there
is produced two line foei through which pass all the rays contained in the
pencil.

For every oblique axis there are two principal meridians or planes; the
first is that containing the oblique axis and the prineipal axis, and is termed
the sagittal plane; the second is that at right angles to the sagittal, and is
called the meridional plane. The astigmatism is essentially the distance
between the focal lines produced by the difference in the effective power of
the lens in the meridional and sagittal planes of incidence.

When a luminous point is oblique to the principal axis, the effective
aperture of the lens is an ellipse in which the sagittal plane of incidence
corresponds to the short diameter, and the meridional plane to the long
diameter. In the meridional plane the light has to traverse a greater thick-
ness of the lens, and is more oblique than an axial pencil ; it is, therefore,
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rendered more convergent, and has its foeus nearer the lens than the focal
plane, thus forming the second focal line &t I” (IMig. 269). In the sagittal
plane the light has also a greater thickness to traverse than an axial pencil
would have, and it is still more oblique than in the meridional plane. I,
therefore, has its focus still nearer the lens, and forms the first focal line
T'T". Consequently radial astigmatism is due to the increased angles of incidence
of obligue light and increased effective thickness of the lens,

In Fig. 269 let a penecil of light be incident on a lens from a distant point
A, situated on the secondary axis .4 X, and let it be presumed to be the
central lower point of a body facing the lens ; then S8 is the sagittal and
M M the meridional plane, in this case §8’ being vertical and I/ )" hori-
zontal. All rays in a sagittal plane as ¢ and ¢, b and d, meet in points along
the line T 7", which is the first or fangenfial focal line whence, diverging in
one direction and converging in the other, they continue to the second or
radial focal line £ I’ ; R is the meeting point of ¢ and d, while [’ is that of

Fie. 269,

a and b, Thus the fangential line is the focus of the sugittal plane, while the
radial line is that of the meridional plane, each focal line being at right angles
to the plane of which it is the focus.

The radial line is nearer to the lens than the focal plane on the principal
axis, and the tangential is still nearer, the distance between them being the
astigmatism. DBetween the two foeal lines there is a position where the
cross-section of the refracted light is most nearly circular, and this may be
regarded as the mean focus of the oblique pencil of light. The caleulation
for the distances of I' 7" and I ' are shown in Chap. XIII., where they are
termed I, and F, respectively.

To illustrate oblique refraction, let Fig. 270 represent the focal plane of
a Cx. lens viewed from behind. Rays parallel to the prineipal axis and
directed before refraction to the points « b ¢ and d, are refracted towards
and meet in the point F. [f the rays are parallel to an oblique axis, as
represented in Fig, 269, ¢ meets ¢in I and b in £, while d meets ¢ in 7" and
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bin £, but 7' 7", as already stated, lies nearer the lens than E E', and both
are neaver than £

Radial astigmatism has been illustrated with the light diverging from a
point on the lower edge of an object, so that the resulting tangential focal
line is horizontal and the radial line is vertical. If the luminous point is to
the right or left of the object, the tangential line is vertical and the radial
line horizontal ; if the sagittal plane is oblique both lines are oblique, there
being a pair of astigmatic lines at right angles for each secondary axis.

The tangential and radial lines of the numberless secondary axes consti-

Fre., 270.

tute curved surfaces (Fig. 271), both within the prinecipal focal plane ; these
curved surfaces meet at the principal axis in the focal plane, where the two
focal lines fuse into a point image. The circles of least confusion form a
surface 0 0 concave towards the lens lying between £ B and 7' 7" and this
may be regarded as the focal plane of an ordinary lens.

Influencing Factors.—LRadial astigmatism is in direct proportion to the
obliguity of the incident light, and is greater as the lens aperture is larger.

Fic. 271.

[t is also greater with certain forms of lenses than others, and, in general,
the more nearly a lens is of double Cx. form the more marked it is.
Remedies. —Anything that tends to equalise the effective thickness of the
lens and the angles of incidence in all meridians will reduce radial astig-
matism. Thus a meniscus lens combined with a stop to eut off the extreme
peripheral rays is the primary remedy, especially if the stop be placed some
little distance— about a fifth the focal length—on the concave side. This
has the effect of shortening both focal lines and throwing them back so that
the circle of least confusion lies more nearly in the focal plane; by still
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further displacing the stop away from the lens both lines may even be
thrown behind the focal plane. In addition, by combining glasses of high
refractive power and low dispersion with those of opposite quality certain
conditions are fulfilled which, besides eliminating chromatism, correct astig-
matism over a wide area. With the newer varieties of optical glass a degree
of correction is secured which was not possible with the older kinds, wherein
refractivity and dispersion were more or less proportional.

Sphero-Cyl. Lens.—There is a difference between the astigmatism of a
sphero-eylindrical and the radial astigmatism of a spherical lens, inasmuch
as the former oceurs when the object point lies on the principal axis and is
due to the varying curvature of the lens; while in the latter the curvature is
equal in all meridians and it is due to the oblique inecidence of the light, the
direction of the focal lines varying with the position of the object point.

Curvature of the Field.

Curvature of the Field.—If A be a point on the lower extremity of an
object the light diverging from it, after refraction by the lens, forms two
focal lines and between them is situated the circle of least confusion, which
may be regarded as the focus of the rays diverging from .{. On the surface
containing the circles of least confusion the sharpest representation of the
periphery of the object is formed, and since the effective power of a lens is
greater as the light is more oblique, this surface forms a portion of a sphere
with its concave surface towards the lens. The 1mage of a convex object
would be still more curved than that of a flat object, but a concave object
might be so placed as to neutralise curvature of field. (See Figs. 269 and 271.)

While curvature of field is partly due to the same canse which produces
radial astigmatism, i.e., the increased power of a lens for oblique light, it is
not entirely so, for if 7' " were made to coincide with B E’ there would still
be curvature. Even if the peripheral foci were at the same distance from
the optical centre (or second equivalent point) as the focus on the principal
axis they would form radii of a circle and curvature would still remain.
Thus, a sphere has equal refracting effect on rays from any poiut and is
therefore entirely free from astigmatism, but the field is nevertheless curved.
Therefore, if the image formed by a lens is projected on to a flat screen,
either the centre or the periphery may be foeussed sharply, but it is impos-
sible to obtain both defined at the same time.

Condition for a Flat Field.—In order that an achromatic combination of
two lenses may form a flat image, the condition (known as the Petzval con-
dition) which must be satisfied is that F, p,= — Fopy, or Fy p, +F,py, = 0,
where g, and I, refer to the ecrown, and p, and F, to the fint components
respectively. In order that this shall not controvert the condition for
achromatism, the crown, with less dispersion, must have a higher refractive
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index than the flint, a condition which has already been referred to in the
section on radial astigmatism, and in this case v, /v, = p,/p,.

Remedies.—The field can be flattened by placing in front of the lens a
stop which, by narrowing the beam, determines at what particular point on
a secondary axis the focus, as represented by the disc of least confusion,
shall be formed. A distance, dependent on the form of the lens, can be
found at which curvature is a minimum, this, for single lenses, generally
being about one-fifth the focal length.

If a Cx. and a Ce. of equal power be separated to have convex effect,
the distance may be so adjusted as to make the image flat. The oblique
rays, after refraction by the convex, meet the concave nearer to the periphery,
and the diverging effect is thereby increased ; therefore the final convergence
is to a point further away, for oblique pencils, than would be the case after
refraction by a single Cx. lens, whose power is equal to the effective power
of the combination.

Curvature is said to be under-corrected, or positive, when the image is
concave towards the lens, and negative if, by over-correction, the image
hecomes convex. The image is flat if the focal length of each oblique pencil
is equal to F'/cos ¢, ¢ being the angle which the oblique axis makes with the
principal axis.

An almost perfectly flat and undistorted virtual image is obtained with
two equal plano-convex lenses placed with their convex surfaces facing each
other, or by two plano-convex lenses whose respective focal distances are as
I and 3, hoth curved surfaces facing the same way. Such combinations
represent, respectively, the Ramsden and Huyghenian eye-pieces.

Distortion.

Distortion is an aberration in the magnification of the image. There are
several forms of distortion known to photographers, but the only kind,
dependent on the lens itself, is curvilinear distortion, which results because
certain natural defects of a lens due to its prismatic formation cause the peri-
pheral image points to be relatively further from or nearer to the axis than
their corresponding object points. Distortion of the image is a natural con-
sequence of refraction ; even a near object seen through a thick plate appears
distorted, or one viewed through a prism, a square appearing to have its two
sides, parallel to the edge and base, curved with its concavity towards the
edge of the prism. Similarly a square object (Fig. 272) seen through a
Cx. lens has its virfual image concaved outwards, termed pincushion or posi-
tive distortion (Fig. 273). If viewed through a Ce. lens it appears convex
outwards—~barrel or negative distortion (Fig. 274). The image is drawn out
in the first, and compressed in the second case towards the periphery. The
real image of a square formed by a Cx. lens of full aperture is barrel-shaped.

Causes of Distortion.—Distortion is chiefly the result of spherical
aberration, which causes too great a deviation for peripheral pencils of light,
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but the effect may be varied considerably by alteration of the position of the
stop.

Another, but lesser factor, also contributes to distortion, and must he
considered. In the formation of a real image each of the incident rays
leaves the second equivalent plane at the same distance from the principal
axis that it meets the first equivalent plane, so that the refracted rays meet,
on the secondary axis, at a point nearer the prineipal axis than they would
if the secondary axis were undeviated as in a lens infinitely thin. As the
distance of the object point from the principal axis increases so the dis-
proportion between the distance of the object and image points from the
principal axis also increases.

Distortion is therefore an inherent fault of the lens, and is the direct
result of spherical aberration and of the increased thickness of glass when the
light refracted by it is incident obliquely. The degree of distortion varies
directly with the thickness of the lens and the obliquity of the light.

Further, any arrangement of the stop, or separation of the components
of a lens system, which causes the light forming the image to be refracted

Fia. 272, Fre. 273.

by a portion only of the lens, or of one of the component lenses, will produce
distortion.

Influence of a Stop.—A diaphragm is used with a single lens, or com-
bination, in order to diminish spherical aberration, coma, astigmatism and
curvature of field. This accentuates and brings into prominence distortion,
so that rectilinear lines of the object near the margin appear curved in the
image.

When a stop is in front of a Cx. lens the effective area of the lens for an
oblique pencil lies mainly on the opposite side of the principal axis to that
of the object point, so that the mean focus lies between [ and R, (Fig. 275)
nearer to the axis than if the whole lens were effective. Thus the natural
negative distortion of a Cx. lens is enhanced.

“When a stop is behind the lens (Fig. 276) the effective area of the latter
for an oblique pencil is chiefly on the same side of the lens as the object
point, so that the mean focus lies between R and I, more distant from the
principal axis than if there were no stop. The consequence is that the

natural distortion of the lens is not only corrected, but positive distortion is
19
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produced. The distortion is due to the lens and not to the stop, for if a
combination be corrected for distortion the stop may be in front of the lenses,
between the lenses or behind them, and no distortion ensues.

Remedies.—Distortion is eliminated by employing a combination of
lenses with the stop placed between the two components. Then those oblique
rays which pass through the one side of the front element must pass through

Fig. 275. Fic. 278.

the other side of the back element and rice versa, so that the distorting effect
of the front lens is neutralised by that of the back lens.

Separation of the component parts of a lens system can be utilised for
the correction of distortion, and in single lenses it may be reduced somewhat
by altering the thickness of the lens and the eurves.

The Tangent Condition.—A chief ray X U or 1" €' (Fig. 277) is one which
passes through C, the cenfre of the stop. If it be produced forwards and,
A

X

Y
Z

Fic. 277.

after refraction, be produced backwards the point of intersection p is a
chief poind,

When the chief points thus formed all lie in a plane perpendicular to the
axis, i.e., the refracting plane, the chief rays when produced back to the axis
will meet in a single point C’. The lens is then said to be spherically
corrected with regard to the stop.

Fach chief ray makes with the principal axis, before refraction, some
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angle b, and, after refraction, some angle ', and when the foregoing con-
ditions obtain, tan ¥’ tan b =a constant for every chief ray ; the image will
then be uniformly magnified throughout, i.e. the image will be free from
distortion when the fangent condition is fulfilled, as in Fig, 277.

Aberrations in General.

In the brief description of the aberrations contained in the foregoing
articles certain points are worthy of special note. All the aberrations of a
single lens are reduced by the use of a stop with the exception of distortion,
which is generally increased, or anvhow made more apparent. The con-
struction of a good lens also largely depends upon the use of meniscus com-
ponents without which a wide stigmatic field would be impossible, while,
needless to say, erown and flint glasses are essential for achromatism. The
nature of the corrections depends largely upon the use to which the lens is
to be put, but on the whole, the designer of a photographic objective has a
harder task than the maker of telescope and microscope objectives. Of all,
perhaps, the photographic objective must be the most generally perfect,
sinee it is required to produce a flat, stigmatic and undistorted image over a
wide field whose diameter is net infrequently equal to the focal length of the
lens. To secure this a kind of compromise must be effected between central
and peripheral definition, since the type of lens—the crossed and plano—
giving the best central correction for spherical aberration and chromatism,
is useless for eliminating the obligue aberrations,

If a first-class photographic lens designed for wide angled work be
examined, it will be found to contain at least one deeply periscopic com-
ponent, and in all rectilinear objectives both are of meniscus shape. For
extreme wide angle work the periscopic tvpe must he still further deepened
until we find, in the Hypergon of Busch, a lens consisting of two thin
hemispheres with a stop at their common centre. Generally, therefore, the
smaller the angular field the flatter are the curves required to produce it.

In the telescope, prism binocular and opera glass only a narrow angular
field—not exceeding a few degrees—is required, and therefore the oblique
aberrations may be comparatively ignored, and all the attention centred on
the correction of spherical aberration and chromatism, which may be done
to an exceedingly high degree of perfection. Thus any good telescope or
opera-glass objective will be found to he, as a whole, either plano Cx. or
bi-Cx. with the greater curvature towards the light, which is practically
parallel in all cases.

Rather more care must be bestowed on the microscope objective since
here some correction must be given to flatness of field and coma, so that it
may be said to occupy an intermediate position between the telescope and
photographic objectives, and here, the object being near I, the objective is a
plano Cx. lens, or, at any rate, the bottom component is plano-convex,
having its plano surface directed outwards.
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Again, in visual opties, the deep periscopic and torie is now recognised as
being far superior to the double in that the field of sharp definition is greatly
extended by the elimination of most of the oblique aberrations.

A plano-Cx. condenser is turned the one way or the other according as
the source is near or distant and according as the beam of light projected is
large or not.

Spherical aberration is a defect of the image on the prineipal axis, and,
therefore, for best definition it is necessary to distinguish between point
objects and objects of definite size. Thus the eye lens of an ocular is
always plano Cx. with the curved surface towards the object to be viewed,
which is the real image formed by the objective, and notwithstanding that
this object lies in the focal plane of the eye lens. This is because the object
viewed is of definite size and not merely a point on the axis.

Aberrations of a Cc. Lens.—Although in the foregoing articles Cx. lenses
have been used in diagrams and examples, it must not be forgotten that

by Neglh
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Ce. lenses suffer from precisely similar aberrations. They are, of course,
opposite to what would be produced in the virtual image of a Cx., e.q. the
distortion of the virtual image with a Ce. is barrel, whereas it is pincushion
with a Cx., so that when two lenses are neutralised in the ordinary way
their aberrations are also practically neutralised, unless the lenses are very
thick or of deep periscopic form.

Aberrations of a Mirror.—If the angular aperture of a spherical mirror
be large, rays which diverge from a point 0 on the principal axis (Fig. 278)
do not meet in a single conjugate image point after reflection. This is due
to spherical aberration, so that the image consists of a series of imperfectly
formed foci in the shape of a curve, called a caustic, illustrated in Fig. 278.
Those rays, however, immediately round the principal axis, having a diver-
gence of only a few degrees mutually unite in a single point, which is taken
as the geometrical image since at this spot, i.e. the focus, the condensation of
light is greatest. Those rays making larger and larger angles with the axis
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are reflected to cut the latter in points nearer and nearer to the vertex of the
mirror, and their intersection one with another gives rise to the increase of
illumination forming the caustic curve, to which every ray is tangential.
Caustics by reflection can readily be seen when light from a lamp or the sun
falls obliquely on to a eup half filled with milk or tea.

Caustics may, of course, be virfual as well as real, which occurs when the
object point is either within F of a Ce., or in front of a Cx. mirror. Their
effect, however, is never noticed hecanse the pupil of the eye acts as a small
stop and limits the divergence of the rays to a minute angle. Thus practi-
cally only one point on a virtual caustic may be viewed from one position,
and the image thus seen apparently moves when the position of the eye is
altered because a new pencil, apparently diverging from another point on the
ecaustic, now enters the eye.

Mirrors suffer also from coma, radial astigmatism, eurvature of the field,
and distortion, but, as before stated, not from echromatic aberration. The
two astigmatic focal lines of a small oblique pencil of parallel light at an
angle of incidence i, are distant F cos i and F/cos i from the mirror.



CHAPTER XXV
CONICS AND APLANATIC REFLECTION AND REFRACTION

Conic Sections.

CoNIC sections, or conies, deal with the figures—and their peculiar pro-
perties—obtained by sections, in any direction, through a right eircular cone.
In this chapter we shall discuss only those geometrical properties of conics
as are necessary for the consideration of the optical properties of media
having curves which, in section, belong to this class, as distinet from the
usual spherical surface.

The cone is generated by the revolution of a line B £ (Fig. 279) around
a fixed point A4, where it intersects a fixed straight line aa’. As BB is
revolved around A the figures traced out constitute the surfaces of two similar
cones I} A B and B A4 B", of which A is the common apex or vertex, and

a '
B

Fic. 279.

aa’ is the common axis. Any section S at right angles to the axis of the
cone 1s circular ; if the section is through 4 it is a poinf; a section through
A along the surface is a line. Any section, as S E, oblique to a«/, is
elliptical ; any section, as S P, parallel to a generating line, is parabolic ; any
section, as 5 H, which, if produced, would eut B” B*, is hyperbolic. These
last three are true conics.

Let 1) A E (Fig. 280) be a conic section of which A is the verfex, and
L I, a line cutting the vertex, and symmetrical to the two sides, is the aais.
F is a fixed point called the focus, and k T X is a fixed line perpendicular to

the axis, called the directriz. In all conic eurves there is constant ratio,
204
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called the eccentricity, for every point P on the curve, between d, the distance
of the point from F, and d,, its perpendicular distance from R T'X. Thus
dy/d, represents the eccentricity. If d, is smaller than d,, so that d,/d, <1,
the curve is that of an ellipse ; if , is greater than d,, so that d,/d,> 1, the
curve is that of a hyperbola ; if d; = d,, so that dy/d, = 1, the curve is that
of a parabols.

The Ellipse.
On the line L L’ (Fig. 281) erect the directrix £ "X ; take any point F
and divide F' T at A so that A F/ AT equals the eccentricity. Fis any point
dy

Fie. 280,

on the curve such that F P/P R = A F/4 T = d,/d, = the constant eccen
tricity, which is less than unity. /7 is another point on the axis such that
P'F + P I is a constant equal to . B (Fig. 282).

Fig. 282 illustrates the closed elliptical curve of which 4 and B are the
two vertices, /' and /" the foci, and (' the centre. The chief property with
which we are concerned here is that just mentioned, viz. PF + PF' =A D =

F
R el
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x
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a constant. The bounding eurve 4 P D B is the perimeter, .4 /7 is the long,
or major, axis, and that at right angles through (' the short, or minor,
axis. It will be seen that the ellipse cuts the major axis in two points
A and B.

Construetion.—An ellipse may be constructed by putting stout pins
through two points, as /' and /" in Fig. 282, which become the two foei, and
passing over them a suitable length of slack thread. A pencil held upright
and pressed against the thread outward from the foci, as P’ or 1), on being
‘moved around, deseribes the ellipse on paper.

If the two axes or the contour of the ellipse are known, to find F and /™
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we have DF =DF, and DF + DF = AF + AF = AF 4+ BF' = a
constant, so that ) ' = 4 (.  With a pair of compasses measure -/ C and
connect J) with the long diameter .4 B by lines whose lengths are equal to
A C; these lines cut 4 B in the foei /' and /. The distance of each focus
from the one extremity of the minor axis equals half the major axis,

There is no exact method by which the perimeter of an ellipse can be
calculated, but the following formula gives it with a fair degree of exactitude.
Let @ and b be respectively the long and short axis, and P be the perimeter ;
then

When the length of the one axis « is known, that of the other, b, is found
from

b= /2 (P/m)? —a?

If the two axes are equal the figure becomes a circle, so that the peri-

L.l'

e N
Fic, 283.

meter of the ellipse is analogous to the circumference of a circle. Since
the circuamference of a circle equals = times the diameter, the diameter
of the circle whose circumference is equal to the perimeter of a given

ellipse 1s
2, 12
diameter = /\/ % -_:E’

-t

An ellipsoid is a solid body generated by the revolution of an ellipse
about one of its axes; it is prolefe when formed on the major axis, and oblale
when formed on the minor axis.

The Hyperbola.

On the line L I’ (Fig. 283) erect £’ 1" X’ and take any point F’ on L L".
Divide £” 7” at ¥V” so that F'F [T’ equals the eccentricity. Take V so
that V" F'/ VT = P F'/V' T, and mark Fso that FF = V' F. Take T so that
VI = VT, and erect £ 7X. The point C is midway between ¥ and V’.
In the hyperbola F and 77 are the two vertices, F and #” are the two foci,
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(' is the centre, L I is the transverse axis, and B T X and B’ T" X" are the two
directrices.

P is any point on the curve such that F"P/R'P = V' F/V'T" = dy/dy =
a constant more than unity. The distance P /' — P }” is a constant, and is
equal to " ¥ ; this latter is the property of the hyperbola with which we
are chiefly concerned.

Construction.—To the right extremity A of a rod F 4 (Fig. 284), fasten
a string whose length S'is somewhat less than that of the rod. Draw the

L F FY )
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axis £, L', take F and F" as the foci, and put stout pins through them ;
attach the other end of the string to F”. Then a pencil P pressed against
the lower edge of the rod, the string being kept taut, will trace the
hyperbola as the rod is rotated around F. 1f the string be lengthened to
2 F A - 8, the other branch of the hyperbola can be traced.

The Parabola.

On the line L L’ (Fig. 285) erect £ T'X, and divide F T at ¥ such that
VFE=VT In the parabola ¥ is the vertex, ' is the focus, I 1/ is the

P
R
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axis, and £ "X the directrix. The parabola may be regarded as a special
case of either an ellipse or hyperbola whose one vertex and focus is at o,
F is any point on the curve such that FP/RP = VF/VT =d/d, = 1,
which is the chief property of the parabola with which we have to
deal here.

Construction.—Fix a string on a rod as for the hyperbola, but let the
length S be exactly equal to 4 .  Draw the axis L L', take some point F
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as the focus and put a stout pin through it; at T erect the direetrix, and
attach the string to the pin at /. The pencil, used as for the hyperbola,
traces the curve as B, the base of the rod, is gradually passed along the
directrix at 7" and at right angles thereto.

Aplanatic Reflection and Refraction.

We have seen that reflection or refraction at single spherical surfaces is
always accompanied by more or less spherical aberration ; it is possible, how-
ever, to conceive surfaces that ave aplanatic, i.e. capable of producing a point
image of a point object situated on the principal axis; such surfaces are, in
general, one of the three conic sections briefly deseribed in the foregoing
article. ;

Sinee light takes the shortest possible path in its course through any
medium, if we make the optical length of all rays diverging from the object
point equal, the image point will be aplanatic ; therefore it is convenient to
apply the principal of least fime in order to determine the nature of the
surface in each particular case. As briefly pointed out in Chapter XXIV, the

Fre. 287. Fic. 288.

optical length of any ray is its actual distance multiplied by the p of the
medium in which it is travelling.

Reflection.

Cec. Surface-Real Conjugates within co.—Let it be required to construct
a mirror (Fig. 287) capable of producing an aplanatic image, f, of some point
Jfy within cc on the principal axis. Then if d," d,” . .. and d," d,” . . . be the
incident and reflected rays, d,” + d,” must equal 4,” + d,”, and likewise for
any other incident reflected ray. Thus, in general, d; + ¢, = a constant, so
that fhe mirror must be an ellipsovd of vevolution with f, and f, as the foci.
The object could, of course, be at f, and the image at f;. The mirror is
however, aplanatic only for these two points, aberration appearing imme-
diately the object point is displaced from either. For every pair of conju-
zates a different curve is needed, so that ellipsoidal mirrors have no practical
utility, as their limited application never occurs.

It should be noted that spherical mirrors of any aperture are aplanatic

if the light diverges from, or converges to, a point at the centre of
curvature.
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Cc. Surface-One Conjugate at co.—If the object point be at o (Fiz 288)
the curve of the vefleeting surface becomes that of @ parabole of which F is the
focus. Here the directrix £ I' X represents a plane wave interrupted by the
mirror, and in order that all points on such a wave may meet at a single
point, they must be converged to /' in precisely equal times, so that, as
before, d,” + d,” = d," + d,”, etc. If the object point be at F, the light is
reflected as a parallel beam.

Parabolic mirrors are employed in reflecting telescopes for bringing rays
from an infinitely distant object, such as a star, to a sharp focus. Also for
projecting a parallel beam of light, as in lighthouse and optical lanterns,
microscopic reflectors, ete.  Such mirrors possess the advantage over refrac-
tors in that all light waves are equally projected, and therefore chromatic
aberration does not occur. For this reason also they are preferred to refrac-
tors for the photography of celestial bodies.

Ce. Surface-Virtual Conjugate.—Let f; (Fig. 289) be the object point,
and f, its virtual image; the latter is then aplanatic if 4" — d,, d," — d,”",
ete. be a constant. This results if the curvature of the mirror is fhat of o
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hyperbola, f, and f, being the foei. If the virtual object point be at f, and
the image at f, the same curvature is required. Like the ellipsoidal, the
hyperbolic mirror is of no practical value.

Cx. Surface.—An aplanatic convex reflecting surface for a near object
must be hyperbolic (Fig. 290), while for parallel light it must be parabolic.

Refraction.

The refracting surface which could be aplanatic for light of a certain
wave-length could not be so for other wave-lengths. The conditions to be
fulfilled for aplanatism in refraction is the same as for reflection, that is, all
the rays diverging from an object point must reach the image point at the
same time. It is, however, much more complicated than in reflection for
whereas in the latter the light before and after contact with the surface is in
the same medium, this is not the case in refraction, the velocity of the light
differing before and after contact with the refracting surface.

Single Cx. Surface-Near Objects.—Let f, (Fig. 291) be an object point
in air; its real image f, in the denser medium will be aplanatic if the
distances d," + pd,’, d," + pd,” ete. be equal. The light travels along
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dy’ d," ete. at a velocity V', while it travels along d,’, d,” ete., at a lessened
velocity V,. The curvature of the surface, where d; + pd, is a constant, is
that of a Carfesian oval. If f, were the object in the dense medium, and f]
the image in air the same conditions apply.

Single Cx. Burface-One Conjugate at c.—If the object point f, (Fig. 292)
be at o, again the condition for aplanatism is that d," + pd.', d," + pd,”,
ete. be a constant ; the curve must then be that of an ellipsoid, i.e. all points
on a plane wave £ ' X must be retarded so that they reach the focus f, in the

same time that each point would have travelled to £ 7'.X if uninterrupted.

Fic. 291, Fig. 292,

If the object be at f,, so that the light is projected parallel, the same surface
is required.

Single Ce. SBurface.—If f, is the virtual image of f; (Fig. 293) it 1s
aplanatic if d," — pd,’, d,” — pd,” ete. is a constant, and the curvature of
the surface for this condition is also that of a Cartesian oval. If however
d, = pd, the curve is spherical.

Cx. Spherical Surface.—If a luminous point be situated within the dense
medium of a single convex refracting surface (Fig. 294), a position on the
axis can be found such that the virtual image is aplanatic. The distance of
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f, from the surface must be r + #/p, or » (p + 1)/p, and therefore the image
1o is formed at » + pr, or r(p + 1). As the distances of f, and f; are
respectively #/p and pr from €, the magnification is f,/f; = p% This prin-
ciple is made use of in Abbé’s homogeneous immersion objective employed
in high power microscopes.

In this case the bottom lens of the objective is a hemisphere whose plane
surface is towards the object, and when immersed in cedar oil of the same
index as that of the glass the whole forms a single refracting body as
shown in Fig. 294. The object is then placed at f,, and its aplanatic image
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is formed at f,, which in turn serves as an object for the remainder of the
objective components. ~

| Aplanatic Lens.—If, in a Ce. periscopic lens (Fig. 295), the object at f;
taces the concave surface, the virtual image at f, isaplanatic whend’; = pd,’.
In this case r; the radius of the firsv surface must be f,/(x + 1), while that of
the second surface must be (f; + t)/p (f being the thickness), for then f, lies

in the centre of curvature of the second surface; pf, = f,, hoth measured
from the first surface.

Example.—Let f; =15 em., /=2 em., and p=1'5; then
ry=153/(1'5+1)=6 em., and r,=(15+2)/1'5=11'33 em.
After refraction at the first surface we have
1-5/fy=—"5/6—=1/15= —4:5/30
Therefore —4-5f,=45, or fo=—10

An aplanatic Cx. meniseus results when the object faces the Ce. surface
(Fig. 296) if v, = f, and », = p(f; + £)/(» + 1). In this case the rays from

¥ig. 295, Fic. 204.

f1 are normal to the first surface, and d, is constant, as is also d,, for all rays;
fa lies in the aplanatic point of the second surface corresponding to the value
of f, given in Fig. 204 illustrating the case of the single surface.

Example.—Let f, =15 em., {=2 em., and p=1'5; then r,= —15 em,,
re=15(15+2)/(1"5+1)=255/2"5
so that 7y =102 em.

If there are two unknown quantities 7, and ¢, values must be found for
them so that p f, =f,, both measured from the second surface.

These are the only cases where aplanatism can be obtained with lenses :
there is no case for parallel light, nor for double Cx. and Ce. lenses, but, as
explained under spherical aberration, this can be minimised by employing
certain forms of lenses and a stop.

Curvature.—If a surface is spherical its curvature is 1/r, and this applies
also to all eurved surfaces other than spherical. In the case of the former
the curvature is equal at all points on the surface, but this is not so with
conic and other curves. The curvature at any point on any refracting or,
reflecting surface is determined by drawing to it a normal from the axis, the
length of this line being the radius of eurvature of that particular point.



CHAPTER XXVI
POLARISATION AND PEBBLES

Polarised Light.—The beam of light transmitted by a homogeneous mediumn,
such as air or glass, is ordinary in the sense that it consists of waves whose
transverse vibrations lie in every direction across the line of travel, whereas
the vibrations of polarised light are confined to certain directions only. The
polarisation of light may be plane, circular, or elliptical. The plane of polari-
sation of plane-polarised light is that plane from which the vibrations are
eliminated, the latter being executed at right angles to the plane of
polarisation. Suppose a rope attached to a wall and vibrated at the free
end ; vibrations or waves will run along the rope in any plane. If, how-
ever, the rope be passed between two upright sticks all vibrations will be
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stopped except those in the vertical plane. The former illustrates ordinary
unpolarised light, and the latter plane polarised light waves,

Polarisation by Reflection.— At a certain angle of incidence, which varies
with the p of the medium, the reflected and refracted beams L and R
(Fig. 297) from the glass surface 4 I are at right angles to each other. The
vibrations of the incident light which are perpendicular to the surface pene-
trate it and are transmitted, while some of those parallel to the surface are
reflected.  The reflected beam is thus polarised, the vibrations being confined
to a plane parallel to the reflecting surface, while the plane of polarisation
is perpendicular to the surface, and is therefore the same as the plane of

incidence of the light.
302
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The angle of incidence necessary to obtain polarisation of the reflected
beam is found by the equation p = tan P, where P is the polarising angle.
Thus P differs with the optical density of a medium, the polarising angle of
water being 53° that of glass about 57° and that of a diamond G68°.
Differently coloured rays have different polarising angles, so that white light
is never completely polarised by reflection. The polished surfaces of metal
have no polarising effect.

Polarised reflected light can be bhest obtained from a sheet of glass
blackened on the further side, and, of course, suitably placed with respect to
the incidence of the light. The blackening is not essential, but it prevents
reflection from the second surface of the glass,

Polarisation by Refraction.—The light, incident at the polarising angle
on a transparent body, which is refracted and transmitted at right angles to
the reflected beam, is partially polarised, the plane of polarisation being at
right angles to that of the polarised reflected light. Pure polarised refracted
light can only be obtained when a beam is transmitted obliquely through a
bundle of thin glass plates bound together, so that, by repeated reflection,
all light polarised in the opposite direction is got rid of.

Double Refraction.—Most crvstals polarise light owing to double refrac
tion, notably calcite (Iceland spar), quartz, and tourmaline. A light wave in
air or in any homogeneous body vibrates in every direction across its line of
propagation, and its velocity is uniform and inversely proportional to what
15 termed the optical density of the medium. In a erystal, owing to its
molecular structure, the retardation of waves, when incident obliquely to
the axis of erystallisation, is greater in one direction than in another, so
that the rays are transmitted along two separate paths, the one ray being
called ordinary, and the other the exfrasrdinary ray.

The separated waves caused by double refraction differ in that one of
them is spherical and the other elliptical. The ray corresponding to the
spherical wave is said to be ordinary, because it obeys the ordinary laws of
refraction of light in homogencous media, but the evfraordinary ray conforms
to no fixed law, since it is not at right angles to the wave front, nor does
the refracted ray lie in the same plane as the incident and normal to the
point of incidence. Both rays are polarised in planes at right angles to each
other and travel at unequal speeds, except in the direction of what iz known
as the oplic axis, where both waves have the same velocity and where no
double refraction oceurs. In planes at right angles to the optie axis there is
also no double refraction in the ordinary sense, but the waves are retarded
unequally, the one travelling more slowly behind the other.

Rock Crystal or Pebble.—Rock crystal or quartz is a pure, usually
colourless, crystalline variety of silica, which oecurs in nature in the form of
a hexagonal (six-sided) prism, terminating in a six-sided pyramid. Its
average index of refraction (p = 1'54) is about the same as that of ordinary
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crown glass, but lower than that of flint glass, its dispersion (p, — p,)= 014
heing lower than either. When cut into a slab or ground to form a lens, it
is more usually styled a pebble. It is much harder than glass, more brittle,
and a better conductor of heat, and it transmits much more readily than glass
the ultra-violet rays which lie outside the visible spectrum. Its density is
265, that of glass being from about 2-4 to 3-4.

The relative scarcity and greater difficulty of working pebble makes it
comparatively dear. Its low dispersive power and freedom from liability to
become scratched seem to be its sole advantages, so that, all being con-
sidered, pebble is not superior to good optical glass for spectacle lenses,
although perhaps for simple spherical convex lenses which are frequently
put on and off, and therefore specially liable to become scratched in the
centre, it is sometimes to be preferred. As lenses, the pebble should be
quite clear and free from striae, specks, and flaws, and should be axis cut.

Axis-Cut Pebble.—Axis-cut pebble is that which is cut invo slabs at right
angles to its line of erystallisation, so that when the surfaces receive their
spherical curvatures, the axis of the crystal coincides with the principal axis
of the lens. Axis-cut is more expensive than non-axis-cut pebble, because
in cutting it there is not so good an opportunity of utilising those parts of
the crystal which are free from flaws, as when the slabs are cut without
regard to any particular direction.

To Recognise Pebble.—Pebble is recognised by (a) feeling colder to the
tongue than glass, () by the fact that on account of its hardness a file makes
no impression on it, and (¢) by the polariscope test. By the latter the
difference between axis-cut and ordinary pebble can also be seen. As
supplied to the optical trade pebble is usnally quite colourless, and when in
the form of a lens it has a sharper ring than glass.

Double Refraction in Pebble.—Pebble possesses the property of double
refraction, the refractive index for the ordinary ray being 1-548 and for the
extraordinary ray 1:558, and since the index is higher for the extraordinary
than for the ordinary way, pebble is described as a posifive erystal. It is
because the difference in the p's of the two rays is so small that double
refraction by a pebble spectacle lens is not appreciable, the images being too
close together to be seen double, the more so since the substance of the lens
is thin.

Tourmaline.—Tourmaline cut parallel to its axis reduces an incident
beam of light to two sets of polarised waves, the one in the planc of the axis
of the erystal, the other at right angles to it. By a curious property of
tourmaline the former (the ordinary ray) is absorbed almost immediately,
and the latter (the extraordinary ray) only is transmitted, so that all the
emergent plane polarised light is vibrating in the plane parallel to the
axis. The plane of polarisation of a tourmaline plate can be determined
by analysing the light polarised by reflection from a plate of glass. If
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held at the proper angle, the position of complete or partial extinetion is
found when the axis of the tourmaline is at right angles to the surface of
the glass, that is, in the plane of incidence of the light.

Iceland Spar.—Spar or calcite, like quartz and tourmaline, has the power
of double refraction, but since the ordinary wave has a higher index than
the extraordinary, it is termed a negafive erystal. The index of the ordinary
ray is 1-659 and that of the extraordinary 1-486, so that the comparatively
large difference between the indices causes a corresponding high degree of
double refraction, l:lmhlmg the doubling of objects to be plainly seen through
slabs only a few mm. in thickness.

Nicol Prism.—This 1s a device whereby a beam of pure polarised light is
obtained by transmission through a piece of spar. The latter is cleaved
obliquely to its axis, and the two segments recemented by balsam whose
index of refraction is 154, or about midway between the indices of the two
rays. Now the angle of cleavage with the axis is so arranged that, when
the ordinary ray is incident on the layer of balsam, it does so at an angle
greater than the eritical angle for indices of 1-659 and 1-540, and is there-
fore totally reflected to one side. On the other hand, the extraordinary
ay, whose index is lower than that of the balsam, is transmitted, and
constitutes a plane polarised beam of light which is, however, only half the
intensity of the original beam. On account of the searcity of spar Nicol
prisms are now expensive to make, and are largely replaced by reflecting
polariscopes of some form or other.

The Pebble Tester.—The simple polariscope consists of two plates of
tourmaline cut parallel to their axes and suitably mounted. These plates
are sometimes fitted to the ends of a wire spring like a pair of sugar tongs
and called a pincetfe. 1f the two plates are placed in such a position that
their axes are parallel, the plane polarised beam of light transmitted by the
first plate will traverse the second, and if a polariscope, so fixed, is lumkul
through, green or brown light—due to the colour of the tourmalin
seen. The combination hw'l{h much more opaque than would pieces of ghas
of the same intensity of colour, because half the light received by it is
quenched. The outer plate which polarises the light is called the polaiiser,
and the second plate—the one near the eye—is t;ﬂiul the analyser. 1f, now,
the analyser be rotated, while still looking through the instrument, the light
will be found to become less and less bright, until, when it has been turned
throngh a quarter-circle, the two axes being then at right angles to one
another, the plane polarised beam transmitted by the polariser is stopped by
the analyser. 1f the axis of the polariser is, say, horizontal, it ean transmit
only waves whose vibrations are horizontal, while the analyser can transmit
only those whose direction is vertical ; consequently all the light is blocked
out. So long as the two axes are oblique to one another, some light passes
through both plates.

20
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It is in the position of exfinction of the two plates that the polariscope
serves as a pebble tester, so that if required for that purpose, it should be
looked through and the one plate rotated until the dariness is complete.
Unless this is done it is useless for the work, although even if it cannot be
made quite darl there is an appreciable difference in the quantity of light
transmitted by glass and by pebble placed between the plates, as explained
in the following paragraph. Fig. 298 shows the two tourmalines with their
axes parallel, Fig. 299 with their axes oblique, and Fig. 300 with their axes
at right angles.

Recognition of Pebble by Polariscope.—!f an ordinary glass lens, being
homogeneous in nature, is placed between the two plates of the polariscope,
it has no effect on the plane polarised beam of light transmitted by the
polariser, and nothing can be seen through the instrument. A pebble placed
in the instrument, by virtue of its double refracting nature, so twists or
rearranges the vibrations of the beam transmitted by the first tourmaline
plate that the light is incident on the second plate in directions other than
at right angles to its axis, and part of it is transmitted. Hence with a
pebble tester a pebble can be distinguished from glass, since, when a pebble
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placed between the tourmalines, light is seen, while none is seen when glass
is s0 placed.

Also most erystals, when viewed through a polariscope, present
arrangements of colour which are characteristic of them. If a pebble cut
parallel to the axis of the crystal (non-axis cut) is placed between the dark
tourmalines and rotated there are found two positions in which no light
passes ; the one is where the axis of the pebble is parallel to, or in the same
line with, the axis of the polariser, and the other is where it bears the same
relation to the axis of the analyser. In either case, the polarised beam of
light received by the pebble cannot he made to vibrate so as to be transmitted
by the analyser.

Recognition of Axis-Cut Pebble.—A ray of light transmitted by quartz
cut perpendicular to its axis (axis-cut pebble) is not bifurcated. Such pebble
possesses the property of rofating the plane of polarisation, so that the
vibrations transmitted from the polariser are no longer at right angles to the
axis of the analyser. The amount of twisting undergone by the plane of
polarisation is proportional to the thickness of the quartz, and, provided
monochromatic light were used, extinction could again be obtained by
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rotating the analyser through a sufficient angle. With white light, however,
this is impossible, as the rotation of the plane of polarisation depends also
upon the wave-length, i.e. colour of the ineident ray, and therefore the angle
of extinction differs for each wave-length. In addition, light transmitted
obliquely through the polariscope and pebble undergoes double refraction at
the latter, and a kind of interference (too complicated to he gone into here)
is set up between the ordinary and extraordinary rays having effects some-
what similar to Newton’s rings. These are cansed by the unequal oblique
distances travelled by the two rays within the pebble, and a series of brightly
coloured rings are seen (if white light be used) crossed by two dark brushes
at right angles to each other. If the analyser be now turned so that its axis
is parallel to that of the polariser, the rings will be seen to change to their
complementary colours, and clear spaces are substituted for the dark brushes
previously formed. A white cloud is the best source in these experiments.

When the pebble is cut nearly, but not quite, perpendicular to its axis,
coloured ares of circles (incomplete rings) are seen; the light also cannot be
blocked out, no matter what its position between the plates of tourmaline,
hecause the axis cannot be made parallel to that of either the polariser or
analyser. The intensities of the colours and the sizes of the ares are both
dependent on the nearness of the section of the pebble to that of right angles
to the axis, i.e., on its nearness to axis-cut.

Advantage of Axis-Cut Pebble.—Rock crystal which is axis-cut is prefer-
able for lenses to that which is non-axis cut, because in the former there is
no double refraction for light parallel to the axis.

Unannealed Glass.—(Glass which is unannealed, or has been subjected to
pressure, strain, or twisting, polarises light and therefore acts in the polari-
scope somewhat similarly to a pebble, in that light is transmitted and eolours
are seen; but the effects produced by unannealed glass can never be
mistaken for those of ecrystals since the patterns of colours, even if not
irregular, as is generally the case, are totally unlike those caused by any
kind of erystal.



CHAPTER XXVII
PHENOMENA OF LIGHT

Interference.—If from two adjacent points of light P, and P, (Fig. 301)
waves of light are propagated, the crests and troughs of the waves from /|
will coincide with those from P, along certain lines marked Z, and they
reinforce each other, thus cansing doubly inereased wave motion. Between
these lines, marked /), the crests from the one source coincide with the
troughs of the waves from the other, with the result that the wave motion
is neutralised at these spots owing to the inferference of the one set of waves
with the other. Alternate lines of light and darkness, known as interference
bands or fringes, are in this way produced. The light bands are along lines
so situated that any point on them is a whole number of wave-lengths from
P, and P,. The dark bands are along lines so situated that any point on
them is one half wave-length further from the one source than the adjacent
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white band. The shorter the waves which interfere with each other, the
less is the distance between the light and the dark bands. If, as in white
light, there are waves of different lengths, the interference bands, instead of
being alternately light and dark, take the form of coloured hands which are
alternately red, blue, and white, the latter occurring where all the various
colour bands coincide.

It must be remembered, however, that in order to secure interference
between the light from two sources, the latter must be eractly similar, giving
out waves of precisely the same length, amplitude and sequence. For
preference the sources should be the duplieated images of a single source
obtained by means of a double prism or other device. In addition the
sources must be as small as possible—in fact the smaller they are the finer
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are the interference bands—and also they must not be separated by too great
a distance ; otherwise the bands are so narrow as to be indistinguishable
except with artificial magnification.

The colours of thin films, such as soap bubbles, layers of grease on water,
ete., are due to interference. Part of the light is reflected from the outer,
and purl; fmm the iunm', fsurﬁmu Uf thc ﬁ]m, and the light reflected from the
two sui ., the portion {Jf the wave reflected
from the inner Slllfﬂ{,b Ila,.a to tthi over a greater distance than that from
the outer surface. If the thickness of the film, therefore, be such that the
inner wave emerges half a wave-length, or any odd number of half wave-
lengths, behind the outer wave, the two portions of the original waves will
interfere, and darkness will result at that spot for that particular wave-
length. Should, however, the inner wave emerge in the same phase, i.e., a
whole wave-length or any number of wave-lengths behind the outer wave,
reinforcement will take place.

Newton's Rings.—When two plane, or two similarly eurved, surfaces,
the one convex and the other concave, are placed in contact, the film of air
contained between them is of equal thickness, but if the one surface is not
truly plane, or of exactly similar curvature to the other, the film of air is of
varying thickness, and colours, due to interference, as explained above, are
exhibited. This constitutes a method of determining a true plane or a
uniform curvature. If a convex surface is placed in contact with a plane, or
another convex surface, the film of air contained between them must be of
gradually increasing thickness. At the centre the film is very thin, and a
central black spot results, which is surrounded by a series of alternately
bright and dark rings if monochromatic light is employed, or by coloured
rings if the incident light is white. These are termed Newfon's Rings. If
the rings are viewed by transmitted light the centre is bright and the sur-
rounding rings are alternately bright and dark, or of colours which are
complementary to those seen by reflected light.

The width and regularity of the rings afford a very delicate test for
similarity between two curves, and is made use of for testing the surfaces of
the components of high-class photographic objectives, ete. The standard
curve is called a fesf plate on to which is placed the surface to be tested. The
absence of coloured rings shows true eontact over the whole of the surfaces,
but the pres nce of rings proves a difference in curvature and the lens is
rejected as incorrect ; complete absence of any rings is, however, rare, and
the surface is considered satisfactory if the rings are very wide and of a dull
colour.

Diffraction.-—When light reaches the edge of a body owing to its
undulatory motion some of the waves bend round the edge of the obstacle
and penetrate the shadow cast by it.  This phenomenon is known as diffrae-
tim. If monochromatic light is adwmitted through a small aperture the
edge of the shadow is characterised by a series of alternate light and dark
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bands or rings, parallel to the edge of the shadow. These bands become less
and less distinet as they are progressively further away from it, and they
are broader in proportion to the length of the waves. If the source of illu-
mination be white light, the difiraction fringes of the different colours over-
lap and a series of coloured fringes are seen. It is essential that the aperture
be narrow, or small, since otherwise the unimpeded waves su out-number the
retarded ones that the diffraction effect is more or less lost—in other words
the diffraction effects are lost in the general penumbra (q.v.).

Diffraction bands can also be seen by looking through a narrow slit, at
say, the filament of an electric glow lamp, the slit being parallel to the
filament. If a very fine obstacle, such as a hair or thin wire, be placed
between the light and a screen, a series of fringes can be seen both within
and beyond the geometrical shadow. If the obstacle be ecircular, such as a
small round patch on a piece of clear glass, the shadow is seen surrounded by
alternate light and dark rings, or, if the source be sunlight, by a series of
spectra. These bands encroach on the shadow, at the centre of which a
bright dot can be seen. Of course, especially favourable conditions must be
chosen to view the diffraction bands on account of the necessary smallness of
the source, and the consequent loss of light. A star seen through a per-
fectly corrected telescope, and small objects seen by the microscope, appear
bordered by one or more faint rings. Owing to diffraction, there is a limit
to the possible magnifying power of a microscope, since the higher the power
of the objective, the smaller the lenses, and consequently the more marked
the diffraction phenomena.

The colours of many beetles and of mother-of-pear] are caused by diffrac-
tion and interference phenomena, and are not due to pigmentation at all ;
here the wing-cases of the beetles, or the motherof-pearl, are very finely
striated, which causes them to act like irregular diffraction gratings.

Diffraction Grating.—A large number of very fine equidistant lines—
some thousands to the inch—ruled parallel to each other on a plate of glass
or metal forms a diffraction grating.

Difiraction Spectrum.—Dispersion can be obtained by reflection from, or
transmission through, a glass diffraction grating, or by reflection from a
metal grating ; the transmitted or reflected light forms a series of spectra
which can be thrown on a screen, or he examined by a telescope, and the
finer and closer the lines the purer will be the spectrum obtained.

The lines of the grating seatter a small portion of the original waves into
fresh and regular series, of which some are quenched by interference.
Unlike the spectrum obtained by prismatic refraction, the colours as the
direct result of interference are evenly distributed in accordance with their
wave-lengths, so that the red end is not condensed, nor the violet end dis-
persed, while the red and orange occupy more, and the blue or violet oceupy
less space than in a refraction spectrum : also the most luminous part is
more nearly in the centre. Such diffraction gratings afford an accurate
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means by which to measure the wave-lengths of light and the relative
positions of the Fraunhofer lines,

Fig. 303 represents a portion of a highly magnified section of a glass
grating, 0 and F being the clear spaces between the lines. The distance
¢ I, equal to one ruling and one space, forms a grating element.

Imagine parallel light falling on the grating from the direction L ; the
bulk of the light passes through uninterrupted, so that an eye placed some-
where in the neighbourhood of L’ will see the original source very much as it
would through a piece of plane glass. On moving the eye to one side, so
that the direction of view is oblique to the grating, colours will commence to
appear, these being in the regular spectrum sequence from violet, which
makes the smallest angle with the surface, to red, which makes the greatest.
A short interval with no colour will oceur after the red, but on increasing
the obliquity of the eye to the grating, a second series of colours, in the same
order as the first, but more drawn out and fainter, will be observed. This is
shown diagrammatically in Fig. 302. The first, VG [, is the primary
spectrum ; FG" K" is the secondary spectrum, beyond which are others,
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provided the grating is not too fine ; usually only the primary and secondary
spectra can be seen from a grating having about 15,000 lines to the inch. As
previously stated, it is by the reinforcement of the wavelets diverging from
the grating spaces along certain lines oblique to the surface, aided by certain
amount of interference, that the spectra are produced.

In Fig. 303 consider a certain direction ) P oblique to the normal L I,
making with the latter the angle «; or, conversely, suppose the grating itself
be tilted through that angle with respect to the incident light. Then the
wavelets diverging from ¢ and £ will either reinforce or interfere with each
other according as () P is an even or odd nuwmber of half wave-lengths—in other
words, as the difference in the paths of travel of the wavelets is an even or
odd number of half wave-lengths. Let P be equal to the smallest possible
even number, i.e. fwo, of half wave-lengths. Then in the direction ¢/ there
will be reinforcement for that particular colour, giving rise, in the eye or
observing telescope, to an image of the original source if the light be mono-
chromatie, or to a spectrum if white light be employed. Now

PQ=QR sin q, or w=E sin q,
where w is one wave-length of the light in ¢uestion, and E is a grating
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element. The element K is known, and the angle @ can be found by means
of a revolving telescope as in the ordinary spectrometer (q.v.); therefore the
wave-length w is easily caleulated from the above formula.

Example.—Let the grating have 15,000 lines to the inch, and suppose
the angle a for a particular part of the spectrum, say the yellow (/) line, to
be 20° 15,000 lines to the inch corresponds to 25-4/15,000 mm. to every
grating element F, and sin 20°=-342. Therefore w=25-4 x -342/15,000
=-000579=579 pp, which corresponds very closely with the [ line of the
spectrum from which the observation was taken.

If the secondary spectrum be employed to obtain the necessary data for
the above caleulation, w will then represent fwo wave-lengths, so that

w=EK sin a/2

the result being the same as in the example given, but a is rather more than
40°, since sin ¢ must be exactly twice as great.

It should be observed that no spectrum is formed when the eye or the
observing telescope is normal to the grating, the various reinforcing and
interfering wavelets overlapping to form white. As will be seen from the
formula, the number of spectra formed is smaller as E is smaller, i.e. as the
number of lines to the inch is greater, and vice versa.

By the employment of metal gratings, specially in the form of concave
mirrors which focus the spectra direct on to a screen or photographic plate,
inereased intensity of light is secured. In all such experiments the most
suitable source is a fine slit, brightly illaminated, placed parallel to the
rulings, the spectrum consisting of an innumerable number of diffracted images
of the slit ranged side by side, and representing, as nearly as is possible, a
separate image for every wave-length.

Luminescence.

This is the general name given to the property of a body by which,
without sensible rise of temperature, it becomes luminous.

The luminosity of phosphorus, fungi, and decaying vegetable matter is
caused by oxidation. Chemical action also (or physiological action) is the
cause of the light emitted by shell and deep-sea fishes, fire flies, glow worms,
beetles, insects, animaleule, and the bacteria found in putrefying vegetable
and animal matter. Thus the brilliant light observed on tropical seas at
night is due to numberless luminescent organisms. The light emitted by
various insects is found of almost every colour in one or other species.
Liuminescence can also be produced by heating fluorspar, quinine, ete., by
applying friction to quartz or cane-sugar in the dark, or by cleaving a slab of
mica. Fused boric acid or even water when rapidly erystallised or frozen
may exhibit this phenomenon.

When a high tension current is passed through a vacuum tube, Riontgen
rays are produced, and the walls of the tube emit a greenish luminescence
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which is assumed to be due to minute electrified particles striking the wall
of the tube with immense velocity and producing light and heat by their
impact, the colour of the lnuminescence depending on the nature of the glass.
Radium is found to shine perpetually in the dark, and bodies exposed to the
radiation of radiumm become themselves radio-active, ie. luminescent for a
time. Luminescence also includes the following phenomena.

Phosphorescence is the term frequently given to the foregoing phenomena
of luminescence, but it is more properly applied to the property of a body of
being lwminous in the dark after exposure to light. Some diamonds, fluorspar
and various minerals possess this property ; chloride or sulphide of caleium
or barinm, preserved from air in a sealed glass, will shine brilliantly for a
long time.

Phosphorescence is excited by rays of high refrangibility, higher than
those which produce the phosphorescent light, although the latter may be
found of every colour of the spectrum. Phosphorescence is supposed to be
due to the absorption of light, and its later radiation, as light of longer
wave-length, after the exeiting action has been removed.

Fluorescence.—Fluorescence is the property possessed by certain bodies
of absorbing ultra-violet waves, invisible to the eye, and of emitting, hy
radiation, light of longer wave-lengths by which they appear self-luminous.
This property was first discovered by Stokes in fluorspar, and so named by
him fluorescence. The emission of light ceases immediately the original
source of light is cut off, and in this fluorescence differs from phosphoreseence.

The phenomenon is not confined to the ultra-violet rays, for if a solution
of chlorophyll be placed in a dark room and a beam of white light allowed to
fall on it, the surface of the solution emits a red fluorescent light. A solution
of quinine emits a pale bluish colour in the presence of daylight. The
fluorescence increases if the solution is held in the violet end of the spectrum,
and is visible when held beyond the limits of the visible spectrum, the
invisible ultra-violet rays exeiting flnorescence and becoming changed into
visible blue-violet rays. Similar effects may be seen with uranium glass,
which fluoresces a brilliant green when placed in ultra-violet light. A thick
plate of violet glass placed in front of a heam of light from the electric arc
will canse the same phenomenon. Alsculine (the juice of the horse-chestnut
bark), barium, and many other substances are fluorescent, and so are also
the cornea, crystalline lens, and bacillary layer of the retina.

It has been said that the ozone of the atmosphere is fluorescent, and, by
converting the ultra-violet into visible rays, makes the sky appear blue.

Fluorescence is generally taken to be the absorption of invisible light
and its radiation as visible light while the exciting cause is present.

Calorescence is the name given by Tyndall to the conversion of the
invisible infra-red waves into visible light. This he achieved by focussing an
electric light, by a reflector, on to some platinum foil after passing it through
substances opaque to visible, but transparent to infra-ved light.
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Some Optical Phenomena.

Blueness of Sky.—If the air were absolutely transparent and of uniform
density, light from the sun would reach the earth without any loss, and the
sun, moon, and stars would be set in a sky which would appear black both
during the day-time and at night. The air, however, contains a great quan-
tity of agueous vapour, and the blue colour of the sky is said to be due to
reflection from the minute particles of this vapour suspended in the higher
layers of the atmosphere. Tyndall showed that when mastie is thrown into
water the minute insoluble particles of the mastic emit a deep blue colour
similar to that of the unclouded sky. If a cloud of smoke be blown into the
air, the smoke particles reflect the short blue waves more freely, and the
cloud assumes a blue tint, and if a white sereen be held, in bright sunlight,
behind the smoke, the screen assumes a reddish brown hue. Large quan-
tities of so-called cosmic dust also are held in suspension in the air, and this
is believed, by some scientists, to be a cause. By some the blue of the sky
is said to be due to polarisation by oblique reflection from particles of
vapour, salt, ete., in the air; by others it is thought to be caused by
Huorescence of the ozone.

Acerial Perspective.—If two objects, one light and the other dark, be seen
at a considerable distance, they lose some of their contrast, the light object
becoming darker by absorption of its reflected light by the intervening air,
and the dark object becoming lighter by the superadded light diffused
through the air. This causes what is known as aerial perspective. If the
air 1s clear and the added light is blue, distant hills throw deep shadows of a
purple blue eolour in bright sunshine.

The Horizon.— When the sun is low down on the horizon its light has to
pass through a thicker layer of atmosphere filled with dust particles and
moisture ; some of its blue and violet rays are absorbed or reflected, and it
thus appears reddish, and for the same reason it appears red in a fog.

Near the horizon, the sun and moon appear larger than when higher in
the heavens hecause they are mentally projected beyond the horizon, as
compared with terrestrial objects, whereas when seen in the zenith this
cannot be done, as they stand alone ; they are not really larger as measure-
ments with a telescope show. They also appear slightly flattened vertically,
when near the horizon, and appear a trifle higher up than they really are,
owing to the refraction of the air and the greater obliquity of the light from
their lower edges.

Refraction diminishes the dip of the horizon and so slightly increases its
apparent distance. The distance of the horizon can be computed approxi-
mately from @ = /1:5 , where h is the height in feet of the observer above
the sea or earth level, and d is the distance in miles.

Mirage (Fata Morgana).—If the layers of the air are of markedly
unequal density, as is sometimes the case in hot climates, especially on a
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desert where the warmest layers are the lowest, the phenomenon known as
the mirage may be seen. Light from objects above, on its passage to the
earth, traverses layers of air which become gradually less refracting, the
angles of incidence accordingly increasing so that the light bhecomes more and
more parallel to the surface, until at length the critical angle is reached,
beyond which refraction changes to rveflection. The light is then reflected in
the contrary direction, and ascends to reach the observer’s eye as if proceed-
ing from a point below the ground, and objects appear inverted. 'This is
shown in Fig. 304, where light from an object ¢, on reaching the eye at E,
appears to come from M helow the level of the ground,
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If the lowest strata of air are the densest, as in Fig. 305, they give rise
to the same phenomenon, but the mirage J/ is in the contrary direction,
so that a landscape, or a ship at sea, may appear above the horizon, This
occurs in very cold climates.

Scintillation.—The twinkling of a star is due to irregularities in the
atmosphere cansing variations in the path of the waves, which partially
interfere. This produces variations in the apparent brightness and colour of
a source of light, subtending a very small angle at the eye, such as a star. It
is not observed in the case of a planet, because this has a real magnitude,

Fre. 306. F1c. 307.

The Rainbow.—A rainbow is visible when the sun is behind the observer
and a shower of rain in front of him, or it may be seen in the spray of a
waterfall. Since the sun’s rays falling on the raindrops are parallel, the
course of light through all the drops must be the same, and it is therefore
sutficient to trace the course of a ray through a single drop. Let a pencil of
rays from the sun meet the drop at . (Fig. 306). On entering it is
refracted and dispersed towards £ and C at the back of the drop, thence
reflected to D E, where it is refracted to emerge in the directions I /i which
make an angle with the entering ray. The emergent dispersed light thus
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diverges to the observer’s eye, and the various colours, being unequally
refracted, are projected back as R’ J7, so that the outside of the bow is red
and the inside blue-violet. The extent of the bow depends on the position
of the sun; when the latter is at the horizon the bow forms a semi-circle to
an observer at sea-level. As the sun rises the arc sinks so that its centre
is below the horizon, and is smaller.

A secondary larger, broader, and fainter, rainbow is generally seen con-
centric with the primary. The rays from the sun to a point A (Fig. 307)
undergo refraction and are reflected twice at £ ' and B (”, and again re-
fracted at D £. In the emergent light violet is helow and red above ; these,
being reversed on projection, as ¥’ and £, the secondary bow is blue on the
outside and red within. '

Eclipses.—.A\ total eclipse of the sun occurs when the moon is so situated
that some portion of the earth lies in the umbra of the shadow cast by it ;
the eclipse is partial to those portions of the earth in the penumbra of the
shadow. An eclipse of the moon oceurs when the moon lies in the shadow
" cast from the sun by the earth.



CHAPTER XXVIII
GENERAL EXPERIMENTAL WORK

Ix order to grasp the various formule and the theories underlying them,
the student should perform for himself the simpler experiments connected
with general optics. Most of the following can be done with quite rough or
improvised apparatus, and a complete optical bench, meeting all requirements,
can be obtained at a very moderate cost,

The Optical Bench.—An optical bench should preferably be scaled in
em. and mm. and be about 2 M long, thus enabling fairly weak lenses,
mirrors, ete., to be tested. In addition there should be

(1) A frosted lamp at the zero end of the scale.

(2) A collimator consisting, for preference, of a pinhole fixed in the foeal
plane of a Cx. lens, the lamp being placed behind the pinhole when the
collimator is in use.

(3) A screen of ground glass and another, interchangeable with it, of
opague stiff white card having a central aperture equal in diameter at least
to the collimating lens.

(4) A plate with an aperture of same definite size—say 20 mm.—
with fine cross wires, to serve as an object, when the lamp is placed
hehind it.

(5) Three or four carriers for lenses and mirrors—one of these should be
universal and capable of holding any diameter lens from the smallest up to
one of, say, 3”.

(6) Two or three clips on a single stand capable of taking lenses in con-
tact or combinations of separated lenses. This should also be capable of a
horizontal votation round the support as a vertical axis.

(7) A small horizontal astronomical telescope with adjustable eye-piece.

All should he on movable stands and adjustable as to height, since axial
alignment is essential in most experiments.

Parallax is the term applied to the apparent displacement of an object due
to the observer’s position. We generally employ the term to indicate the
apparent change in the position of one object, in relation to that of another,
when the observer changes his point of view. Let an object A be in front
of an upright pencil P, and another object B be behind P, and all three in

the same straight line in front of the observer. Now on moving the
317
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head to, say, the right, a gap will be visible between P> and A and another
between P and B; also A will be to the lefi of P, and B to the vight of P. If
there are two comparatively near small objects P and X, seen close together
in the same direct line, the distance of the one P being known, if the head
be moved sideways—(«) X is actually in the same plane as P, i.e., coincident
with it, if no gap between them results; () X is nearer than P if X has
apparently moved in the epposite divection to the observer’s head ; (¢) X is
more remole than P if X has moved in the same direction. By placing P
respectively nearer, or further away, a position can be found for it such t!l&b
parallax between them is said to be destroyed, since no apparent separation
results from any degree of movement on the part of the observer; the dis-
tance of P then equals that of X. This principle is utilised for locating the
position of virtual images formed by mirrors and lenses.

The Refractive Index of Solids.

Plate Method.-—A parallel plate (Fig. 308) of the medium, say glass, is
placed on a sheet of white paper on a drawing board or other smooth surface.

1._:P4 5 IP

Fic. 308. Fig. 209,

A pin P, is then stuck in any position and a second pin P, is placed close to
the side of the plate and sufficiently to the left of P, so that a line P, P,
makes a fairly large angle ¢ with the normal N N’. Now observe through
the plate the pins F; P,, which will appear displaced towards the right.
Stick two more pins Pyand P, in the board such that all four appear in one
straight line. Draw the trace of the plate with a fine peneil, remove it and
the pins, and with a compass, with P, as centre describe any circle—the
larger the better—provided it falls within P,. Where this cuts the course
of the ray in ¢ and M dro, the perpendiculars @ N and M N, the
latter being the sines of ¢ and r respectively ; then p= @ N/MWN'. This
method is only approximate unless carefully done and therefore three
or four readings for different values of ¢ should be taken and the mean result
extracted.

Displacement Method.—The refractive index of a transparent body, such
as glass, can be roughly found as follows :—Make a dot d (Fig. 309) on the
back of the block of glass; then find such a position for a pin P, placed
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vertically in front of the glass, that on moving one’s head from side to side
the virtual image of the pin, reflected from the front surface, appears to be
behind that surface at such a distance P’ that, owing to absence of parallax,
it coincides with the virtual image of the dot seen through the glass. In
this case the apparent thickness of the glassis /7§ which = I’S. Thenp =
d S/ P 8.

Microscopic Method. —The refractive index can be more accurately deter-
mined by means of a low power microscope in the following way. A fine
line is focussed and the plate is then placed above the line. Now the
wicroscope must be raised in order that the line be clearly seen, since
the rays proceeding from it are divergent as if from a point nearer to
the objective. The distance that the microscope objective has to be
raised equals the distance between the real position of the line and its
apparent position when seen through the plate. Let 7 be the thickness of
the glass, and ¢ the distance that the objective has to be raised; then
p = t/(t = d). The necessary measurements can be made fairly accurately
by means of a mm. scale, some point on the tube being taken as an index,
In some cases a fixed scale with a vernier attached to the microscope, or the

Fig. 310.

scale on the millhead of the fine adjusting serew can be used. Thus, if the
thickness of the plate be 1 mm. and the object-glass has to be raised -38 mm.
p=1/63=161

Bench Method.— Should the medium be in the form of a fairly large
body with two parallel surfaces, the index may be found on the bench as
follows. Take any Cx. lens L (Fig. 310) of convenient strength and project
an image of the cross wires D) on to the sereen S, such that S is somewhere
near the second symmetrical plane ; carefully note the position of /. Then
introduce the medium M, whose index is to be tested, between L and [, when
the image on § will be found out of focus owing to the apparent vertical
displacement of /). Inorderagain to secure a sharp focus on S the dise must
be drawn back to some point £ whose position is also read from the bench.
Then, if { be the thickness of the medium and  the distance hetween 1) and
I’’—the apparent displacement—we have, as for the microscope, p = £/(f —d).
To secure accurate results the image on S must be well defined, and there-
fore a small achromatic lens should be nsed in the experiment, This method
serves equally well for liquids if they are enclosed in a tank whose glass sur-
faces are parallel and whose thickness is very small compared with the deptl
of the liquid itself.
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Prism Method.—This is the most accurate of all if a spectrometer is
available. The prineipal and deviating angles being measured as deseribed
in Chapter XXI1II, the refractive can be found from

sin {(P +d)/2}
5 5in (P72)

where P is the principal angle of the prism, and d is the angle of minimum
deviation. If the ineident light is allowed to fall perpendicularly on to one
of the surfaces the formula becomes simplified to p = sin (P + d)/sin P. If
white light be used a spectrum will, of course, be formed, but the index for
any particular colour ean be obtained by bringing the eross wire of the teles
cope over that particular colonr. Thus the mean index is calenlated from
the yellow (/7 line) and the mean dispersion from the difference between the
indices of blue-violet (/' line) and orange red (C line). Hence », the effec-
tivity, may be obtained (Chapter XXIII).

Example.-——(Given a certain prism whose principal angle P is found to be
59° 57" and the angle of minimum deviation J for the D line is 40° 21’
then

(P +d)/2 = (59° 57" + 40° 21°)/2=50° &, and P/2 = 29° 58"

so that p=sin 50° 9 /sin 29° 58 =-T6772/-49949= 1536

[ 0
|

E 2

B Cc
Fig. 311. Fic., 312,

Approximate Prism Method.—If a spectrometer is not available, the value
of Pand d can be found roughly as follows. Place the prism (Fig. 311) on the
drawing-hoard and turn the apex towards a window. Now look into
the surface 4 B, which acts as a plane mirror, and select the image of a
vertical window bar ; get the image as near as possible fo the apex A4 and put
the pin P, in position so that it is in line with 4. Do the same with the other
surface 4 !. Draw the trace of the prism, remove it and the pins; then
the angle formed by the lines P, 4 and P, 4 (i.e. P, A F,) is twice the
principal angle and an ordinary protractor is used to measure it.

To find the deviating angle d, erect, in any conveuient position, two
pins I, and I, (Fig. 312), place the prism with one side in contact with 27, ;
then on looking through the prism somewhere in the direction 7, the pins
will appear displaced towards 4. Seeure minimum deviation by rotating
the prism both ways, and finally erect two other pins P, and P, such that all
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tour appear in one line. Then, by making the necessary tracings and con-
nections with a fine pointed peneil, the angle of minimum deviation d can be
measured on a protractor.

Lens Method.—If the substance be in the form of a thin lens, its focal
length and radii can be measured, as deseribed elsewhere, and then

' 1
P=(r+r)FT

Critical Angle.—Should it be possible to measure C, the critical angle of
a medium—but generally this is neither easy nor accurate—the refractive
index is then p = 1/sin C.  Such a method might be suitable for a substance
like butter for which other methods are not suitable. A special apparatus—
a refractometer—would be required.

Polarising Angle — » of an Opaque Solid.—Let 4 B be a ray incident on
a smooth or polished body N and reflected in the direction £ . If the angle

Fic. 313.

of incidence A I} P be the polarising angle of the medium N, any light
transmitted or absorbed is refracted in the direction B D at right angles to
B . If the polarising angle of an opaque body be known, its refractive
index is the tangent of that angle; in Fig. 313, if the angle of incidence
is 7, then the angle of refraction + = 180 — (90 + 2) = (90° — i). Now

jr=sin i/sin r=sin i/sin (90 —1)=sin i/cos i=tan i

and since i = p, the polarising angle, then p = tan p.

The polarising angle can be fairly accurately found as follows. Arrange
a small source of light that can be conveniently raised and lowered on the
one side, and on the other side similarly arrange a piece of tourmaline from
a pebble tester, the axis being vertical. Then on raising or lowering equally
both source and tourmaline a position will be found where the reflected
image is entirly cut off. Measure the distance d from the point of reflection
to the verfieal plane of the tourmaline, and also the height & of the latter

above the horizontal. Then p = tan p = A/d.
21
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The . of Metals.—By making exceedingly thin prisms of less than one
minute of are, Kundt successfully determined the refractive indices of a
number of the metals. Thus, if an incident ray fall perpendicularly on to
one of the surfaces of such a prism, the refractive index can be quite approxi-
mately arrived at by the formula p = d/P + 1. The results showed a refrac-
tive index for silver, gold, copper, magnesium, and sodium as being less than
that of a vacuum, and this, no doubt, accounts for the absence of a polarising
angle in some substances. The red rays in some cases were found to be
more refracted than the blue, so that metals form good examples of anomalous
dispersion. The refractive indices of the metals were found to be propor-
tional to their electric conductivities, 1.e. those metals which were the best
conductors had the lowest refractive index, and vice versa.

The Refractive Index of Liquids.

In general, experiments similar to those for learning the indices of solids
can be employed for liquids, but the arrangement is different in some
instances. In all cases, however, the caleulations are the same.,

Displacement Method.—The liquid is placed in a bowl at the bottom of
which is some small object d. Above the surface S a pinhead or other con-
venient object P is placed and is raised or lowered until its image, formed by
reflection from the surface, apparently coincides, from the absence of parallax,
with the image of d at P'. Measure d S and PS and proceed as with a
solid.

Microscope Method.—With the microscope first focus the bottom of a
small tank, and secondly its image when the liquid has been poured in.
Thirdly focus the surface of the liquid, which generally has some conspicuous
dusk specks floating about. The difference between the third and first
readings gives the real depth, and that between the second and third the
apparent depth. Proceed as with a solid.

Prism Method.—The liquid is placed in a special hollow glass prism of
which each refracting surface consists of a plate with parallel sides. The
index is then found as with a solid.

Lens Method. —Take a small quantity of the liquid and place it between
a thin plate of glass and a Cx. lens of known radius and focal length F, ; the
liguid then forms a plano-Ce. lens. If now I of the combination be found,
that of the Ce. F, can be learnt. Its radius is also known, it being that of
the Cx. lens, so the refractive index p can be caleulated from 1/F, = 1/F —
1/F;, and p = (r + F,)/F,.

Polarising Angle.—Care being taken to keep the surface of the liquid
perfectly clear and steady, the method is the same as with a solid.

Critical Angle.—As with a solid.
Bench Method.—As described on page 319.
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Plane Surfices.

Movement.—A plano spectacle glass can be determined with sufficient
accuracy by observing an object (preferably erossed lines) through it while
rotating and moving the glass. If the glass has no power due to eurvature
the image will appear stationary ; moreover, if the surfaces be true planes
no distortion or irregular movements can be detected. If the glass be held
obliquely to the eye, so that the direction of vision forms a small angle with
the surface, any unevenness of the surface becomes more apparent.

Contact.—If one surface be a plane, this can be determined by applying
to it a straight edge, or another plano-glass, and observing whether there is
contact throughout when holding the applied surfaces against a bright
background. Real contact between two surfaces is also quite easily felt.

Spherometer. — A plane surface may also be tested by the spherometer

{ri.\?.)‘l‘
Whitworth Plane.—DBy contact with a Whitworth true plane surface,
which has been smeared with some red putty powder, and observing whether

any portion has or has not taken an impression.

Newton's Rings,—The absence of rings between a known plane surface
and the one tested is the most aceurate method, which is described generally
in Chap. XXVII. See also Reflection tests and Telescopic tests.

Reflection Tests.—A plane surface can be distinguished from a curved
one by viewing the reflected image from a bright source of light. If a plane,
it acts precisely as a plane mirror, while if a sph. or eyl., the image is altered
in size or distorted. If the object viewed is a square, then a Cx. surface will
cause it to appear compressed vertically, i.e. in the direction of view, so
that it has the appearance of a horizontal rectangle, while a Ce. surface
causes vertical extension, giving the appearance of a vertical rectangle. In
every instance the lens should be held as eclose and obligue to the eye
as possible.

As the lens is rotated, while still viewing the reflected image, there is no
change in the appearance of the latter if the surface is sph. or plane, whereas
if eyl. the image does change. If the object viewed be of some definite
shape, say a vertical window bar, it is seen quite distinctly when the axis of
the eyl. is in line with the direction of view, whereas it is indistinet when
the axis is oblique to the plane containing the eve and the bar. The image
is most indistinet when the axis is at right angles to the line of vision, the
general image being drawn out if the surface is Ce., and compressed if Cx.,
as with sph. surfaces. This is an extremely delicate test for locating the
axis of a eyl.
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Focal Length of Ce. Mirrors.

Direct Focalisation.—On the optical bench parallel light is obtained
from the collimator ' (Fig. 314), and passed through the perforated screen
S on to the mirror M whose focal length is to be measured. The mirror is
slightly tilted and moved to and fro until the image of the pinhole is
thrown sharply on to the screen at F. Thedistance M F is the required
focal length.

Conjugate Focalisation.—If the cross wires be substituted for the colli-
mator such that a real comjugafe image be formed on the screen S, we have
1/F = 1/f, + 1/f,, where f, is the distance of the cross wires, and f, is the
conjugate distance M S of the sereen, to the mirror.

Symmetrical Planes.—An especially rapid and accurate way to find /' is
to use the cross wires and the disc containing them as both object and
screen. The mirror is advanced towards S until the image of the wires
appears sharply on the surrounding dise, which must then be at the centre

I | C
— ———] 5 S
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Fig. 315.

of curvature. The radius of curvature is thus directly measured, and equals
2F, 1e., F = #/2.

Parallax.—If an object be placed within F, the wirfual image can be
located as described under convex mirrors, and the focal length found from
the conjugates, care being taken to reckon the distance of the image as a
negative quantity.

The Spherometer.—See this method for Cx. mirrors.

Focal Length of Cx. Mirrors.

Projection Method.—Arrange a collimator and perforated screen (Fig.
315) as for a Ce. mirror, the screen being between €' and M. On 5 deseribe
a cirele & N concentric with the central aperture and of twice the diameter
of C, the collimator lens. The action of the mirror being divergent it will
reflect the parallel heam as a cone apparently diverging from F. Move the
mirror to and fro until the projected area of illumination on S exactly fills
the cirele O N.  Then the distance of sereen to M equals F of the mirror.

Parallax Method.—Take two rather stiff wires or knitting needles (Fig.
316) and place one P, represented by the arrow in front of 1f such that its
virtual image is /, seen on looking into the mirror from the same side as P,.
Behind M place a second needle P, such that it approximately coincides
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with [ seen in the mirror. Now move the head from side to side, and if
there is apparent separation between the virtual image [ of P, and the
actual pin P, the latter must be moved towards or from the mirror until all
parallax disappears. Then if P, M be f,, and P, ) be f,, we have, since f,
is a negative quantity, 1/F = 1/f, + (— 1/f.).

Convergence towards C. of C.-—Set up the cross wire ) (Fig. 317) and in
front of it place any convex lens L so that the latter projects a real image
at a distance L €' greater than the radius of the mirror ; the distance L (' is
measured. On interposing M and moving it to and fro a position will be
found where the image of the wires is received back on to the dise 1.
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When such is the case the convergent light from L must be incident on M
directed towards the centre of curvature (/ because it has returned along its
own path. Then the radius of the mirror is the distance J/ , between the
mirror and the real image formed by the lens, and W' = L - LM, M
must be slightly tilted to throw the image to the one side of the dise
containing the eross wires.

Spherometer (q.v.).-—The radius of the reflecting surface of a Cx. (or Ce.
glass mirror) can be found approximately with the spherometer, but the
results are uncertain on account of the amalgam coating. If, however, it

Fic. 317.

has truly parallel surfaces and is thin, the radius of the front surface may
be taken to be that of the second or reflecting surface. The latter is slightly
shorter in a Cx. (and longer in a Ce.) mirror than when the front surface is
measured.

Single Thin Convex Lenses.

Direct Focalisation.—The power of an unknown Cx. lens can be obtained
by measuring the distance between the lens and its principal focus.  Set up
the collimator €' (Fig. 318), and in front of, and near to it, place the
unknown lens L. On the other side of £, place the sereen S, and move the
latter to and fro unti! the image /' of the collimator aperture is sharpest
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possible ; then L I is the principal focal length. If the lens is weak, or very
strong, indirect focalisation (q.v.) is needed. Instead of the collimator, any
distant bright source as a window or artificial light, can be employed. As F
is short, the image 1s small, sharp, and bright, so that this method serves
very well for fairly strong Cx. spherieals, but is uncertain for weak or very
strong ones.

To focalise a periscopic Cx. lens the distance of the optical centre from
the lens must be obtained. The distance from the lens to the screen should
be taken first with the one face, and then with the other, turned towards the
source of light. The mean of the two measured distances is the true focal
leﬁgth. With ordinary periscopic spectacle lenses, the distance of F, from
the lens itself, is sufficiently exact in practice.

Indirect Focalisation.—If the lens is weak and therefore of long F the
image on the screen is large and indistinet, and the exact principal focal
distance is difficult to determine. If F is very short. the exaect distance also
hecomes hard to determine with accuracy. For these we employ indirect
focalisation. The procedure is to combine, with the unknown lens, another
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Fig. 318,

known lens ; find the focal length of the combination, and then deduct from the
power of the combination that of the unknown lens ; thus

SR

P R
where F and D are, respectively, the focal length and the power of the two
lenses combined, F, and D, those of the added lens, and F, and D, are those
of the unknown ]Lus. I‘he. approximate power to be aflderl can he found
experimentally, and it is better to divide this power between a pair of lenses,
placing one on either side of the unknown lens,

A very strong Cx. lens should be combined with a Ce. lens of sufficient
power to lengthen the focal distance to a reasonable extent. For instance,
it is difficult to determine whether F = 2in. or 2} in. ; but if the lens he
focalised with, say, a 3in. Ce., the difference between the one and the
other is much more marked, it being then about 1 in. Thus if F = 9 in. and
F,= - 3m.

1

or D,=D-1y

1/F,=1/9—(—1/3)=4/9 ; the lens is 2} in. Cx.
or Dy=45—(—13)=175, or say+ 18.
If F=6 in. and I, = — 3 in., then
1/F,=1/6—(—1/3)=3/6; the lens is 2 in. Cx.
or Dy=65 - (—13)=195, or say + 20.
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To focalise a weak Cx. lens a sufficiently strong Cx., say + 5 D., should
be combined with it. Thus, if F = 6 in. and F; = 7 in. the unknown lens is
1/6 - 1/7=1/42Cx,. If D=6,and D, = 5,then D, =6 - 5 = + 1.

Conjugate Focalisation.—Using the cross wires /) (Fig. 319) as an object,
and placing the lens L at a reasonable distance from it, a real conjugate
image may be formed on the screen S. If the distance of the object from
the lens be f, and the distance of its image on the opposite side be f,, then
the power of the lens is

1/F =1/f,+1/f,

Suppose f, be 10 inches from the lens, and f, at 15 inches; then
1/F=1/104+1/15=1/6, or F =46 in.

[t is easier to convert each distance into diopters, and caleulate by

D=d, +d,
D P T~
-:_'.:_;"-"""'FF - R 2
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—e ‘lﬂ- L T — ﬁ
Fic. 319.

Thus, if ¢, is 25 em. and d, is 20 em., the lensis
100/254+100/20=4+5=9D,

This method only serves for fairly strong Cx. spherical lenses, but can
be applied to weak Cx. lenses by adding another Cx., and ealeulating as
shown in #ndireet focalisation.

Symmetrical Planes.—(Donders.)—The method of symmetrical planes is
rapid and accurate, and depends on the prineiple that when image and object
are identical in size, the distance of O and I from the lens is 2 F, and the
total distance between them is four times the focal length of a thin lens. It
is a special case of conjugale jfocalisafion, and the cross wires constitute
the object.

The lens is placed midway between D and S, which are moved equally
towards or away from the lens until the image on the screen is sharp and of
equal size to the aperture of 1).  The experiment is made more accurate if the
sereen is scaled, and equal movements of the two is facilitated if the carriers
are connected by a band suitably arranged for moving them equally. If the
lens is weak it should be placed between a pair of strong Cx. lenses, if very
strong between a pair of Ce. lenses, in order to obtain the symmetrica
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conjugate foci. The caleulation then required is the same as given in indirect
focalisation. The distance between the symmetrical planes divided by 4
gives I of a thin periscopic Cx. lens.

Single Thin Concave Lenses.

Indirect Focalisation.—The unknown Cec. is combined with a known
stronger Cx. spherical, or, better, placed between a pair of Cx. lenses, in
order to obtain a real focus. The calculation involved is the deduction of
the unknown Cx, from the combined power measured.

Thus if F=25 em. and F,= 10 cm. we get for the Cc.

1/25-1/10= —15/250= - 1/16, 0or -6 D.

If F=15” and F, = 5", the Ce. is 1/15—1/5= - 1/7+.

If D=4 and D, =10, the Ce. is 4—10= -6 D.

Conjugate Focalisation can be employed for a Ce. by combining it with
a stronger Cx. Thus, if f;=10" f,=15" and F, =5, we find the Ce. to be
of 30" F, for 1/104+1/15=1/6 and 1/6 — 1/5= —=1/30.

Or more easily by diopters; let d; =50 em., d,=20 em., and D, =10.
Then the Ce. is 100/50+100/20=24+5=7, and T—10= -3 D

= =

Fic. 320, Fic. 321,

Projection Method.—This is similar to the projection method for Cx.
mirrors.

A parallel beam from C (Fig, 320) is allowed to fall on the unknown Ce.
lens, and 1s diverged by the latter as if proceeding from F. If now S be
moved back until the luminous area exactly fills the marked circle Jf N—
which is twice the diameter of ("—then the focal length of the lens is equal
to [ S, the distance of lens to sereen.

Parallax Method.—This is similar to the method for Ce. mirrors, with
the exception that both object and image are on the seme side of the lens,
while the observer must be on the opposife side. A long pin P, (Fig. 321) is
set up, and its virtual image I is observed through the lens. A second
locating longer pin P, is now taken and moved to and fro until, on moving
the head, there is an absence of parallax between them, F°,, seen above the
lens, apparently coinciding with / seen through the lens. Then, if Z; to L
be fi, and P, to L be f,, the latter being a negative quantity,

1/F=1/f, + (= 1/f,)

Locating the virtual image with a Ce. lens is more diffienlt and confusing
than with a Cx. mirror because the ohserver sees two objects and two
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images. If, however, it be remembered that the more distani image must be
made to coincide with the nearer object pin, no mistake can be made. The
actual pin P, seen above the lens, and the image of I, seen fhrough it, must
be ignored.

Reflection.—The Ce. surfaces of a negative lens may be employed as
positive mirrors for measuring their radii of curvature. The image is,
however, rather faint, and therefore if the disc holding the cross wires is not
already white, a piece of white paper should be stuck to one side of the
aperture. The distance of lens to disc is equal to the radius of curvature,
and as the focal length of a double Ce, erown lens is very nearly equal to
the radins, the measured distance can be taken as the required focal length.
If the index of the glass is exactly 1-5, then F is exactly equal to the radius,
but should the index be known to be other than 1-5, F can be calculated
from the lens formula. More properly each surface should be caleulated
separately since the lens may not be a double Ce. sph., the refractive I of a
lens surface being approximately = 2r. If parallel light is employed, as it
should he, we get F by reflection, and this equals »/2 for each suifuee. In
this case F of each surface by refraction equals 4 I by reflection. For
example, if with parallel light F is found to be 1" for the one surface, and at
8” for the other, the lens is 1/16 +1/32 = 1/10 nearly.

Cylindrical and Sphero-Cylindrical Lenses.

Cx. Cyls. and Sph.-Cyls.—If a Cx. plano-cyl. be at its principal focal
distance in front of a sereen, parallel light from a point source refracted by
it forms on the screen a bright line which corresponds to the direction of
the axis of the cyl. By finding the distance at which the line is sharpest
and brightest the focal length of the lens can be directly determined. The
procedure is the same as for Cx. sph. lenses.

If a Cx. sph.-cyl. be held in front of a screen, parallel light, refracted by
it, forms on the sereen a line at the focal distance of the sph., and another
at the foeal distance of the united powers of the sph. and eyl. ; the first is
at right angles to the eyl. axis, and the latter corresponds to it. By finding
these two lines, and measuring the distance between the lens and the sereen
for each, the focal length un(l-pmvm's of the two principal meridians of the
lens can be lemrnt. Thus, suppose the two distances are 50 and 33 em.,
then the combination is +2D and +3 D, or +2 8. =+ 1 C. If the focal
distances are 10 and 8 inches the lens is 1/10 Cx.. S. = 1/40 Cx. C,, since
1/8 —1/10 = 1/40.

Conjugate focalisation can also be employved, using, as before, a point
source of light ; when both powers are very wealk or strong, or the one very
weak {;nmpn,r{;ti with the other, indirect focalisation is indicated.

Ce. Cyls. and Sph.-Cyls..—With negative eyls. a Cx. sph. of sufficient
power must be added to render the whole positive. The two principal
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powers are then caleulated, and the added sph. deducted from each to give
the powers of the unknown lens.

The projection method (q.v.) is applicable to Ce. eyls. and sph.-cyls., the
size of the luminous dise being twice the diameter of the lens in fhe fwo
principal meridians. The luminous disc is elliptical in shape, so that it
suffices to measure its long and short axes.

The reflection method (q.v.) can also be employed, the principal meridians
corresponding to the directions of the wires. The image of the one wire is
seen parallel to the eyl. axis, and twice the measured radius equals F. The
other surface, if sph., must be measured separately.

Indirect Focalisation.—The procedure is («) find the two foei, of which
the weaker power is the sph.; (§) deduct the weaker from the stronger,
giving the eyl.; (¢) deduct the added power from the sph. Or, alterna-
tively, (a) find the two powers, (/) deduct the added power from each, so
that (¢) the weaker power is the sph. and the stronger less the weaker is
the eyl. Examples of both procedures are given in the following.

Examples.—The added lens is 10” Cx., and the first focal line F, is found
to be at 7%, and the second F, at 8”. Then the eyl. is 1/7—1/8=1/56, and
the sph. is 1/8—1/10=1/40, the lens being 1/40 Cx. S. = 1/56 Cx. C. Or,
by diopters, the eyl. is 575 —5= ++75 D, the sph. is 5—4=1 D, the lens
being +1 5. < + 75 C.

A +4 I)is added to an unknown lens and the foei are found at 33 and
50 em. The actual powers of the lens are therefore 100/33—4= —1 D, and
100/50—4= —2 D, which is equivalent to —18.=~ -1 C. or any trans-
position of the same.

If the two focal distances at 15 and 33 em. and the added lens = +5 D,
the actual powers are 100/15=65—5= + 15 and 100/33=3—5= —2, the
lens being + 15 C.=—2 C. or a sph.-cyl. possessing similar powers.

If the two foci are at 10 and 6 in., when the added lens is 8” Cx., the
combination is 1/10 Cx. 8. = (1/6—1/10)=1/15 Cx. C. and 1/10—1/8=
—1/40. Thelensis —1/40 8. = +1/15 C.

Telescope Tests.—More accurate results can be obtained with lenses if
the telescope be employed in their focalisation. This is really the reverse of
the usual procedure, as will be seen from Fig. 322, The collimator C is
reversed, so that its lens faces the lamp and the pinhole P is away from it.
The telescope is adjusted for parallel light by pulling the eye-piece well out,
and gradually pushing it in, until some distant objectis seen sharply through
it ; the eye-piece is then fixed and the telescope 1" replaced on the bench.
The lens to be measured is placed in a elip between P and 1" and moved to
and fro until the image of P is seen sharply through 7. Then the distance
L P, from pinhole to lens, will be the focal length of the lens, since only
parallel light can have emerged from L to enter the telescope and give rise
to a sharp image therein, With a cyl. the image will be a line ; with a
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sph.-eyl. there will be two line images at different distances. As in the
other tests, a known sph. must be added, if the unknown lens is too strong,
too weak, is negative, or the difference between the principal powers insufti-
ciently marked to give accurate results. The smaller the pinhole used in
this experiment the sharper will be the lines obtained.

For plane surfaces the telescope is adjusted for infinity. A beam of light
rendered parallel by a collimator is allowed to fall obliquely on the surface
to be tested and is, after reflection, received in the telescope.

If now, on looking through the telescope, the image seen of the source of
light is sharp, the surface is a plane. If the surface is Cx., the eye-piece of

Fie. 322,

the telescope must be pulled out, and if Ce., pushed in, in order to get a sharp
image. If the surface is irregular, a sharp image cannot be obtained at any
spot. The presence of asfigmatisin, whereby one portion of the image is
better defined than the other, is the surest proof of convexity or concavity
of a surface.

Thick Lenses and Combinations of Thin or Thick Lenses.

Symmetrical Plane Method for a Positive Combination.—To find ex-
perimentally the equivalent focal length of a thick Cx. lens or combination,

Fie. 323,

it is necessary to locate the equivalent planes, since the focal distances are
the distances between these planes and the principal foci.

et the system of lenses be suitably mounted (Fig. 323). Parallel
light from the collimator ' is refracted by it, and the principal foeus F), is
formed on the screen S, whose position on the bench is noted,  Now substitute
the cross wires [ for the collimator and move them about until the image
formed on S, drawn back to S, is the same size. Then 5 is the second
symmetrical plane, and is therefore at 2/ froimn some plane—the 2nd equivalent
plone—not yet located. But the distance between 2F and F, i.e. the difference in
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the bench veadings of the position of S” and S is the equivalent focal length. There-
fore measuring from £, towards the lens a distance equal to /, the second
equivalent plane E, is located. If the combination be turned round, and the
process repeated, ¥ will, of course, be found to have the same value, and the
first equivalent plane £, can be located. In some combinations f&; and £,
will be found to be crossed, as illustrated in Fig. 323.

Rotation—Positive Combination.—This is, perhaps, the quickest and
most accurate method of all for finding the equivalent focal length and
equivalent points of a combination, especially a fixed system such as a photo-
graphic objective.

Since the secondary axes govern the position and size of the image, and
since they all pass out of the system through the second equivalent point, it
is obvious that if the combination be rotated horizontally around a vertical
axis immediately beneath E, the image from originally parallel light will remain
stationary. If the system be rotated around any point other than £, the
image will move. Allow the light from the collimator (Fig. 324) to fall on
the lenses so that the screen S locates . The combination is mounted in

X

Fic. 324.

a special carrier capable of longitudinal adjustment from and towards S, and
also rotation round the vertical axis 4. Then, by a combination of lateral
swing and longitudinal movement of the lenses a position can be found where
the image on S is motionless. Finally adjust S to secure the sharpest
possible image ; then the distance from .4 to S on the bench is the equiva-
lent focal length, and the prolongation of 4 upwards locates the second
equivalent plane E,. By reversing the combination in the carrier £, can be
similarly found.

This method is especially easy with photographic objectives on account
of their wide angle of sharp definition ; with uncorrected lenses, however,
only a small rotation will be found possible before the image rapidly becomes
confused from obligue aberration.

Conjugate Foci Method for a Positive Combination.—Since F/*=_4 B,
where 4 and B are the distance of O and I beyond F, respectively, on the
one and the other side of the lens system, this enables the focal length to be
experimentally determined. Thus focus parallel light on the screen, and
mark /', (Fig. 325); repeat the process on the other side and similarly mark
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Fy. Then place the cross wires at a convenient distance f, so that its image
is, say, /o ; measure F, f, = B, also the distance fi Iy = A, and calculate from
F= /JAB.

The Gauss Method for a Positive Combination.—Let » be the angle
subtended at the lens by any two distant objects (Fig. 326) 4 and £, one of
which B is situated on the prineipal axis. This angle can be measured hy
means of a theodolite, and therefore the angle u” subtended by the image

A A
i =
Fic. 325

B’A" at the second equivalent point €' is also known, since it is equal to .
Then
tan ' =4"/C B or CE=F=4/tan «

The image /" can be directly measured on the sereen.  Since this method
is independent of the position of the equivalent planes, these are not shown
in the figure, C being the 2nd equivalent point. If v = 45° (Fig. 327), then
since tan 45 = 1, F = 1, i.e., the size of the image £”.4" is equal to the focal
length of the lens.

Thin Lens Method for Cx. System. -If a single thin lens is found which
gives on a screen an image equal in size to that formed by a combination,

Fre. 326, Fic. 327.

the focal distance of the former is that of the latter: also the place at
which the single lens is situated determines the second equivalent point of
the combination. If the latter is turned so that the original back lens faces
the light, the spot at which the single thin lens must be placed in order to
give a similar image to that of the combination, fixes the position of the first
equivalent point.

L. Laurance’s Method for a Positive Combination.—Focus sharply for
parallel light to locate the principal focus £, ; then move the screen back to
1o (Fig. 328) which is n inches from F (say 1/3 of its focal length). Move the
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cross wires in front of the lens until its image is sharply focussed on the
screen at f, and mark its position . Again withdraw the screen to f.,
which is exactly one (or more) inches further back, so that it is now »’ inches
from F'; shift the w.res to P until the image is once more in focus at f.'.
Measure the distance P I through which the object has heen moved ; call

it . Then
3 o 1w
= \/.rf,’—u

If »" be exactly 1 in. longer than n, then #” — » = 1, and therefore need not
be regarded. Further if » =1 and a" = 2, the calculation simplifies to
F = ,/2d. This is the true focal length, since it is independent of the
position of the equivalent planes, which can be found by measuring the focal
distance backwards from the principal focus. Thus supposing d = 3-5%,
F= ./2 x 35 = 2:65" approx.

Rotation—Negative Combination.—The rotation method also serves for
a negative combination, but in this case the virfual image formed of originally

parallel light must be observed ; to do this the combination must be placed
hetween the telescope and the collimator. Focus carefully on the virtual
image formed by the lens by drawing out the eye-piece, and get the image
on the vertical cross wire of the telescope. Rotate the combination as de-
scribed for a positive combination until the image seen through the telescope
is stationary and sharp. Remove the combination from the carrier and bring
up some object until its image is also seen clearly in the telescope. Then
the distance of this object to the standard which originally held the Ce.
system will be the focal length of the latter.

J. R. Dallmeyer's Method for a Negative Combination.—Take an
achromatic positive lens and focus the image of the cross wires on a sereen ;
measure the size of the image formed and let it be m (Fig. 329). Place the
negative lens, whose focus is to be found, a short distance within the con-
vergent beam of the positive lens, i.e., between it and the screen. Focus the
image formed by the combination and measure its distance D from the back
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surface or flange of the negative lens: measure the size m, of the mmage
formed. The size of w, compared with the size of the image produced by
the positive lens alone is M = mn,/in.

Now move the negative a little nearer the positive lens (which latter
must be kept in a fixed position) and focus a second time on the screen;
measure the distance I)° of the sereen from the back of the negative lens or
its flange. The size of the image i, compared with the size of m 1is
M’ = my/m. Then the focal length I of the negative lensis

_ pen
F=yr M

This equation 1s i!ll’.li}pl.}lldﬂllt- of the pr,:.‘:il:iuu of the u:luix'u,lunl; ]JI:HIL"!-E..
and therefore will hold true for any negative combination of lenses.

The Radius of Deep Curves and the Focal Length of Very Strong Lenses.

Curved Surfaces—Reflaction.—If the object be sufficiently distant com-
pared with that of the image, as is the case with mirrors of small radius,

Fla. 329,

when the object is, say, a metre distant, then the radius » of the curved
surface bears to the distance of the image from the pole of the mirror, the
relationship of » = 2F, where F is the focal distance and the distance of the
image. Let &y and /i, be the sizes of, respectively, the object and the image,
and f; the distance of the object from the mirror, while f, is its focal length.
Then

fo=fiho/Ny, and r=2f,

The radius of curvature, of strongly curved lenses and mirrors, whether Cx.
or Ce., can be measured by employing an instrument like the ophthalmometer.
The distance between the two objects heing known, that between the two
images can be measured by a micrometer scale placed in the focus of the
eye-piece of the telescope. f) is the distance of the objects from the curved
surface, /i, is the distance between them, k, is here the distance between the
two images, as seen in the micrometer, and F is the distance between the
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objective and the micrometer. The relative size of the image formed at f,
and that formed at the micrometer is as f;:F, so that the above formula
must be multiplied by f,/F, and we then obtain

217 by

SR

Curved Surfaces——Gauges.—The radius of small convex lenses is also
determined by accurately made gauges, or more generally by glass cups of
known eurvature, usually known as test-plates. When the curvature of the
lens to be gauged does not correspond to that of the cup, interference rings
are exhibited, while these are not shown if the two curves exactly correspond ;
or they are faint, and of slight brilliancy of colour, if the curves nearly
correspond. A total absence of colour is, however, in practice, rarely
found.

Curved Surfaces—Dr. C. V. Drysdale’s Method. —Dr. Drysdale explains
a method of determining the radius of eurvature of small surfaces as follows.

J =g
|
| 1 i
Ll

r——‘—_.._—..l-‘=
Fic. 380. Fie. 331. Fic. 332. Fic. 388. Fic. 334.

A microscope has a portion removed from the tube so that light, from a
distant source placed at the side, enters the aperture and falls on a trans-
parent reflecting surface M inclined at 45° so that part of the light is trans-
mitted down the tube towards, and through, the objective, by which it is
brought to a focus at /' as in Fig. 330. If, then, the reflecting surface of
a mirror or lens is placed at the focus of the objective, the light is reflected
hack and seen by the observer, in the field of the eye-piece, as an image of
the source. This position or distance of the objective from the reflecting
surface is then marked on some part of the microscope. The tube of the
latter must be racked npwards, if the surface examined is Ce. (Fig. 531) or
downwards if Cx. (Fig. 332), until the image can again be clearly seen.
The focus of the objective now coincides with the centre of curvature of the
refleeting surface, for the light passing through the objective is incident on
the reflecting surface normally and is reflected back along its original course.
The distance between the first and second positions of the microscope objec-
tive, when the image 1s clearly seen, is the radius of curvature. The eye-
piece is arranged for parallel light by separation of the components, the
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adjustment being made by turning the reflector so that the light admitted is
reflected towards the eye-piece. The curvature of any zone of the surface
can be obtained by using a suitable diaphragm.

A later improvement made by Dr. Drysdale on the arrangement of the
instrument used in the above method consists of an illuminator immediately
above the microscope objective and a lens above the illuminator, which serves
as the objective of the telescope and obviates the necessity of separating the
eve-piece lenses.

Focal Length—Dr. C. V. Drysdale’s Method.—By a similar use of the
microscope the focal length of small lenses can be found. Employing no
objective in the microscope and a plane mirror behind the lens to be tested,
this mirror is moved to and fro until the image is sharp in the field of the
eye-piece. The mirror is then at the focal length of the lens, the light con-
verged by the latter heing reflected back and refracted again as parallel.
The lower focal point is thus found, as in Fig. 333.

Replacing the objective (Fig. 334), the lens is moved further back to such
a position that it is at its focal length behind the focal point of the objective.
Then the light converged by the objective and refracted by the lens is
parallel, and falling on the mirror, is again reflected as parallel, to be
refracted by the lens to meet at the focal point of the objective, by which it
is again refracted as parallel light. The image is sharp in the field of the
eye-piece, and the upper focal point is found as in Fig. 334.

The two focal points being marked, the back surface focal lengths arve
obtained. If, now, the mirror be moved a given distance A downwards, and
the objective moved upwards by a distance B until the image is clear, we
obtain the equivalent focal length from F, = /A B, where A and B are the
distances of the conjugates beyond F, on each side.

Dr. Drysdale has also made an experimental microscope in which the
lens under examination can be oscillated around its second equivalent point.
This enables the focal length to be determined, and further, by this means,
aberrations can be easily detected.

L
25



CHAPTER XXIX
PRACTICAL SUBJECTS AND CALCULATIONS

The Vernier.—/” (Fig. 335) is an attachment to instruments where great
precision of linear or angular measurement is required, and it obviates the
necessity of the division of the main scale into very minute parts. It con-
sists of a short scale which slides along the main scale 8 to which it is
attached.

The 77 is the same length as a definite number of divisions of S, but
contains one division more. Thus, if 7 is divided into 10 parts, these equal
nine divisions of S, or if ¥ has 30 divisions they correspond to 29 of S.
Thus each division of V is smaller than each division of S by a fraction
whose denominator is the number of divisions of I, viz., 1/10th or 1/30th,
respectively, in the examples just quoted. The greater the number of
divisions of V" the more accurate are the readings, but also the more difficult
s its use.

The scale itself may be divided into whole terms of measurement, as

I
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mm. or degrees, or more commonly into main fractions of such terms as
L mm. or } degrees. Such whole terms, or main fractions thereof, are read
from the S itself, the measurement being the last beyond which the zero of
the ¥ has passed. The minute measurement is obtained from the I by
finding that division mark of the V- corvesponding o, or in exact line with, a
division mark of 8. Thus, if 10 /7 = 9 §, and the third division mark of V
is in line with a division of S, the exact measurement is 3/10 more than the
whole number indicated by S itself. If 7 has 60 parts and the 33rd is in
line with an S division, the fractional reading is §3 plus the whole division
indicated on 8.

Fig. 336 illustrates a reading on a scale 5 directly divided to inches and
tenths of inches with a vernier J” whose 10 divisions = 9 of the scale. The
length of an object ) whose one extremity is at zero of S is 65 in., the
dth division of /" coinciding with a division of the scale. The 60 in. is read

358
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from the scale itself, where the right-hand extremity of 0 lies between the
6th and 7th division of &'; the balance *05 in. is read from the V. The limit
of accuracy is } in.

As another example, let the secale be divided to inches and tenths of
inches, and let 25 77 = 24 8. If the zero of J” showed 5 in. and six spaces
of % in., plus a certain distance when the fourth division of 77 is in line with
a scale mark, the total measurement would be 5 + % + ¥, or 5616 in.
The accuracy of the reading is carried to ;1 in.

Instruments have been made with the V divisions longer than those of S,
so that, say, 9 7 = 10 8. The /7 divisions are then on the near side of the
zero, and are read backwards. Verniers for fine straight rules are usually
made so that 10 /7= 9 S, thus measuring to {; mm. For box sextants
and small surveying instruments 30 77 = 29 8, so that 1° divisions are sub-
divided to minutes. For barometers the readings are usually taken to
¢c mm. when 10 ¥ =9 §, or to 515 in. when 25 F = 245. For marine
sextants and theodolites 60 77 = 59 S, measurements being taken to 1/10 of
207 or of 10, giving limits of accuracy of, respectively, 20” or 10” in the
case of these two instruments.

The Four Leg Spherometer.—This is an instrument for ascertaining the
radius of zurvature of a spherical surface. The most accurate form consists
of three legs arranged around a ecommon centre, so that their points deseribe
an equilateral triangle, a fonrth leg n the centre moving up and down, by
means of a fine screw, the head of which supports a round horizontal plate.
The latter has its edge almost touching a vertical scale divided into mm. or
'D> mm. as the case may be, and the plate itself is usually divided into
100 parts. The elevation or depression, therefore, of the central lcg, from
the plane of the other three, can be read with considerable accuracy.
Generally the piteh of the thread is so arranged that two complete revolu-
tions of the plate lowers or raises the central leg 1 mm., and as the plate
itself is divided in 100 parts, the elevation or depression of the leg can be
read to an accuracy of 005 mm.

Now if two chords of a cirele intersect at right angles the product of their
respective parts are equal. Thus in Fig. 337 4 b and C D are at right
angles, and the line 4 £ is divided into WO equal parts ¢ and , so that

Sxa=dxd=d?

But a=2r—15, so that d>=5 (2r—25)
Whenee d* + 582
ST

Now 8, the sagitia, generally referred to as the[sag of the curve for any
particular chord A £, is measured by the central leg of the spherometer, and
d by the distance between the central leg and an outside leg. Therefore 1,
the radius of eurvature, i found from the above formula.
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Fig. 338 shows a plan of the instrument, ' being the eentral leg, and
X, ¥ and Z the three fixed legs ; the distances C X, C ¥, ¢'Z = d, and the
angles X C £ and Z C £ are each 60°. Let £ be the distance between any
two of the fixed legs, say X and Z; then
' 5 5 '.-'_!HF \I'Ir:;
E/2=d sin 60°, or E=""

=]

[ fﬁ \‘n'lr.{
whence d=E/J3
Substituting in the previous formula the value of d in terms of E we get
- (E/J3)P+ 82 E2/3+ 82
that is ) E24+3 82
R

This formula is applied when, instead of ¢, between a fixed and the
central leg, being taken, the distance E between two adjacent fixed legs is
measured.

When the sagitta S is very small compared with » (as is nearly always

Fic. 337. Fra. 338,

the case), the quantity involving 5% in the formule may he neglected, and
they hecome respectively

r=d2/28 andl E2/6S

As an example of the application of the spherometer in caleulating the
powers of surfaces, suppose the distance between the movable and a fixed leg
be 24 mm., and all four legs are brought into contact with a Cx. surface
when the central leg is elevated 25 mm. Then, using the simplified
formula,

6
r=, . 95= 5 =115 mm. (approx.)

Now the focal length of the surface of a thin lens bounded by air is given
by the formula F = »/(x — 1), or the dioptral power D by 1000 (u - 1)/r.
Therefore, supposing p to be 1-6,

D=1000(16—1)/115= 525 D (approx.)
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The Lens Measure used in the optical trade, is a mechanical instrument,
based on the construction of the spherometer. Projecting from the top of a
small watch-like case are three metal pins, the centre one of which projects
beyond the other two, and is moveable. This latter acts on a spring con-
nected with a pointer which indicates on a dial the dioptral number, or focal
length, of the lens. The dial is graduated from known curves whose powers
are caleulated on an index of 1'52, this being the average p of the glass used
in ophthalmic lenses,

When the surface of a lens 1s pressed on the pins, until arrested by the
two side ones, the central pin becomes depressed, and causes the pointer to
revolve and indicate the power of the lens (as represented by its curvature)
in diopters. Care must be taken that the plane of the lens is at right angles
to the plane of the pins ; it is also important to see that the pointer indicates
zero when a plane glass is applied to the instrument. The surface is sph.
if, on rotating the lens, while pressed against the pins, the index remains
stationary, and it is a plano if zero is then indicated by the pointer. If the
index moves to different positions, when the lens is rotated, it indicates a
eyl. or toroidal surface, the maximum power being shown by the highest
number attained. The axis of a cyl. is indicated when the index points to
zero, while the base curve of a toric is indicated by the lowest power regis-
tered. The maximum curvature of a cyl., and the highest and lowest
eurvatures of a toric, are, of course, spherical ; the intermediate curvatures,
although elliptical, are indicated as if they were spherical, but in all cases
the power shown by the lens measure in an intermediate meridian is the
same as that obtained by calculation, viz. D) cos®a, where @ is the angular
distance between the meridian of greatest power D and the meridian
measured.

If the lens be a sph.-cyl., cross-cyl. or toric, the power of each surface is
distinet from the other. But when both surfaces are sph., the power of the
one must be added to that of the other to obtain the dioptral number of the
lens ; thus with — 3 D on each surface, the lensis — 6 D. If the one surface
is + 275 and the other — 1, the lens is + 1-75 I) sph.

Should, however, the lens measure be used on a lens not having an index
for which it is graduated, the powers registered will naturally be wrong.
This can be rectified, provided the lens index is known, in the following way.
Let D, be the true power of the lens, and D, that given by the lens
measure, which is scaled for an index of p, ; let g, be the index of the lens.
Then

T Ao
- (m—1)

Or, knowing that the measure is gauged for p = 1'52, we can write

D ZIJI{F,E— 1)

2 52
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Thus supposing the reading is 5 D, and the lens index to be 1:6; D,,
the true power of the surface measured, is

Surfacing tools or dises are those employed for grinding the curvature
of lenses ; they must, of necessity, be ganged for some given refractive index,
iy, usually 1-52. Now if used on glass whose index p, is higher or lower
than this, the lens produced would be respectively stronger or weaker than
the indicated power. Let D, be the power of the surface produced if the
index is p,, and D, that produced if the index is p, ; then, as above,

The dioptral tool D) that should be employed to produce a given
surface power D,, when the glassis of p, and the tool is gauged for p,, is

found from G =1

(re—1)
Thus suppose the tools are made for glass of p, = 152, and a lens of
10D has to be made of glass of p, = 1:54, we should employ a tool of

10 x 52/-54 = 9-5 D.

=1

If focal lengths are indicated we have
Fi(p=1)=Fy(p,—1)

Blank Discs for Lenses.—When a lens of certain power and diameter is
required to be worked, it is essential that some idea of the thickness of the
necessary blank be obtained in order to aveid undue labour in grinding it
down if too thick, or failure to obtain the necessary finished lens if the blank
is too thin.

The spherometer formula affords a ready means of caleulating the
minimum thickness required. S, the sag in the original formula, we can
now call f the thickness of the dise, and in place of « we can write ¢/2 which
is half the diameter of the lens; # is the radius, and I and D have the usual

1gnifi R : 2
significance. Therefore 1= (c/2)2/2r

This formula gives the minimum thickness, and about 1 mm. must be added
for the bevel of a CUx., or the central thickness of a Ce. lens ; { varies directly
with the size of the lens, and inversely with +. If the radii of the surfaces
are given, each is caleulated for separately and the two quantities found added
together. With sufficient accuracy the radius of a plano Cx. or Ce. lens is
half the focal length, and that of a double Cx. or Ce. is equal to the foeal
length. If, say, a lens of 10 Cm. F were needed in plano Cx. form,
r = 5 Cm. ; if the lens were double Cx. each r = 10 ¢m. ; therefore if we con-
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sider I' instead of r, the thickness is the same for both forms of lenses.
Then, all measurements being in mm., we have

I=(e/2)/2r=c*/8r=¢2/4 F =¢2 D/4000
These formule serve for all lenses no matter how the powers are distributed
provided both surfuces are Cr. or both Ce.  For periscopics the surface of greater
power only need be reckoned for, but a slightly greater added thickness than
1 mm. is then desirable. The long diameter of an oval lens must be taken for «.
Examples.—hequired a + 20 D. double Cx. lens of 375 mm. diameter,
that is, ordinary test case size. Then

375 O 3THx320
=Txb0 U 1000 =0 mm.

that is 6 + 1 = 7 mm. total thickness of disc.

Suppose a glass without power be required of a radius of 20 em. and
diameter 30 mm. ; then, the lens being periscopie,

/ 30 56 . 1 of 2
=300 x 8~ 20 mm. or say a total oI 2 mm.
For ordinary spectacle lenses the approximate thicknesses are
leye ... 1+4+300/F, or1+-3D,. 0eye ... 1+4+350/F, or1+-35 D.

00 eye ... 14400/F, or 144 D. | 000eye ... 1+450/F, or 1+ 45 D.

Lens Sizes.— American standard eyes, with their axes, and length of wire
needed to make a standard eye wire in mm., are given in the following :

Xo, Axes. Wire. Mo, Axes, | Wire, || XNo. Axes. Wire,

e . S e W | |
4 33-Bx24-5 HA3-H 1 366 % 275 [ 1035 000 40D x 319 1175 |
3 34 x 26 959 | 0 378 = 288 1075 ﬂﬂﬂé 425 x 335 122-3 |
2 30 =205 986 | 00 297 x 307 1138 || 0000 4473 = 36 1282

Jumbo ... .. 46x38 ... . 134-3 i

— e ———————————————

OPTICAL SOCIETY STANDARDS.

C'un'-l::-
Ne. | Length of Periphery. ;I:::I::‘:'L"lﬁ Long Dinmeters,
Nioo
B i :
i i Oval. ‘Iﬁ':]g | Ifj':_'::fd Pantos, | L Oval., | Round. |
1 | 92'5 mm. _ I 3375 3B | 3 44 a6 29°5
2 M5, = 92'5+:a| 3 34 35'56 | 815 345 365 | 30
| 8 | 976 ,, = 04'5+3 2 35 | 36°5 ‘ 825 | 355 875 | 81
| 4 |101-5 ,, = 97'5+4] 1 865 38 [ 34 | 37 — 325 |
o |1065 ,, =101'b+5 ] a8 | 895 | 865 | 3845 —_ 34 |
6 1125 ,, =106"5+6 00 10 415 | 875 | 40°5 — | 38
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This numeration, on the same basis of measurement, applies to all shapes
of eyes for spectacles and eye-glasses, the ratio of the long to the short axis

of the oval lens being approximately 1-3 to 1, and that of the long oval
15 to 1.

Power of Cement Bifocals.—The power of the segment or wafer in a
cement bi-focal is that which, added to the main lens, gives the power
required for reading. The index of refraction of the Canada balsam, by
means of which the wafer is joined to the main lens, is practically the same
as that of the glass, so that it need not be considered.

The free surface of the segment must be the total reading power less the
power of the free surface of the main lens. The power of the contact sur-
face of the segment must be equal to that of the contact surface of the main
lens, but of opposite nature, so that no power results from them. Suppose
the two powers be + 2 for distance and + 3 for reading (Fig. 339). If the
main lens is double Cx. with + 1 on each surface, the segment would need
to be — 1 on the contact and + 2 on free surface. If for the same powers
the main lens is periscopic Cx., the two surfaces would probably be + 3-25

A -125 -12% -5
II'
2 cm
. adl.

Frc. 339.

i
Ty

Fic. 341. Fic. 342,

and — 1°25 (Fig. 340). The wafer would then be + 1:25 on the contact
surface, and — *25 on the other, the wafer being placed on the Ce. side of
the main lens. If placed on the Cx. side, the contact surface of the wafer
must be — 3:25, and the free surface + 4:25 D (Fig. 341).

If the main ]ens is — 5D Ce. and the reading power is — 2-5, then the
segment requires to be a + 25 on the contact surface and plano on the
other (Fig. 342). If the main lens is — 7 periscopic Ce. with, say, + 1-25
on the one surface, the segment, if placed on the Ce. side, is + 825 on
the contact, and — 625 on the free surface, for a reading power of -5 D.

When the main lens is a plano-cyl. the segment is attached to the
plane surface. When the main lens is a sph.-cyl. the segment is attached
to the spherical surface. Thus with, say, + 3 Sph. = + 2 Cyl. with an
addition of + 2 for reading, the wafer must have powers of — 3 and + 5

Centering of Cement Bifocals.—The added segment is always Cx., the
lower part being weaker if the upper is Ce., and stronger if the upper is Cx.
If the wafer is itself centered, the prismatic effect due to deeentration of the
main lens remains. For a properly centered lower, the segment of the bifocal
must have a prismatic effect contrary to that of the main lens where they
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are united. This is obtained by decentering the segment to the reqguisite
extent. When the main lens is Cx. the prismatic effect of its lower portion
is hase up, so that the wafer must be base down, its thick part being at the
edge of the main lens. If the latter is Ce. its prismatic effect is base down,
and therefore the segment must be hase up, i.e., its thin part must be at the
edge of the main lens.

In Fig. 343 A is the geometrical and optical centre of the main lens, and
I’ is the optical centre of the reading position; the distance .4 B is usually
about 8 mm., but may vary. Let D), be the total power of the main lens,
and C, be the distance 4 B. Let D, be the power of the segment by itself,
and C, its needed decentration in em. Now, in order that there be no
prismatic effect at L' it is necessary that D, C,=D,C,, so that the formula
for caleculating the needed decentration of the segment is

D, is the power of the spherical, or the vertical power of a eyl, or
sphero-cyl., whose principal meridians are vertical and horizontal.

A

2>

Frc. 343,

Examples.—Let the upper be +4°5 D. and the lower + 6 ; the segment is
+ 15, so that
C, =40 x '8/1'5 =24 em., the thick part down.

Let the upper be —3'5 and the lower — 1, the segment being +25; then
C,=3bx-8/2:5=1"1 em., the thick part up.

The amount of decentering is often very large, and demands either that
the blank from which the segment is taken be of extra large dimensions, or
the segment be ground on a prism.

It is necessary to place the optical centres of the lowers each 1-5 mm., or
so, inwards in order to allow for convergence when reading. If the main lenses
are Cx. their prism action is base ouf, and that of Ce.s in. To neutralise
this the segments must be decentered in if the main lenses are Cx., and
decentered ont if they are Ce., such horizontal decentration being considered
apart from the placing of the centres of the wafers 1'5 mm. in from those of
the uppers. The difference hetween the centres in each eye for distance and
reading varies with the interpupillary distance, but 1-5 mm. is a good
average distance. In all cases the actual amount of decentering of the wafer
required, so that the optical centre of the lower may be in a certain position
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—which position should be marked by a dot—can be obtained by sliding
the segment over the main lens while viewing the small crossbar as deseribed
for eentering.

Inset Bifocals.—To calculate the curvature of the segment, let 1), be the
distance power of the whole lens, and D, the reading power; let y1; be the
index of the main lens, and p, the higher index of the segment. The radius
of curvature of a surface, separating two dense media, when the focus is
finally in air, is

r=F (py—py) =100 (py — p1y)/D

The following caleculation is necessary for finding the tool which, made
for produeing a certain dioptriec power D when the index is p,, shall give to
the internal surface of the segment of p, the necessary power D, after allow-
ing for the powers obtained from the two outer surfaces D, and D; (Fig. 344).
Let Dy he the outer power of the surface containing the segment, D, the
outer power of the segment, I, the power of the surface not containing the

o |Ps Dy D, Dg = Dyf (Ds D5/ |Ds
T
I'. D:T :DS D, I Iy o DS 3]31 u«!—
A B C D E
Fiu. 344

segment, and D, the power of the internal segment surface between the two
glasses. Then Dg=D, - (D, + D;)
JThe lens may be of various forms, as shown in Fig. 344.

D D, (py— I}={I}2— Ili.— Dg) (py—1)
Po=1y P2 = 4

Now D, being of higher p, although of the same curvature as Dy, which
is known, is of greater power such that D, =D, (p,—1)/(,—1). Therefore

= [Dcpe el —,_1_}] Pr—1
D= [De Dﬁ._ iy — 1 (F’E_F’i)
(i S i |

The values of D,, Dy and Dy and those of the two p's being known, this
equation serves for all forms, whether Cx. or Ce., shown in Fig. 344. For a
sph.-eyl. form A is used and D, disappears from the equation ; for a plano-cyl.
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form £ is employed and D, disappears, Thus for a plano-cyl. of form .4
having D, = — 15, and D,=0, the p’s being 152 and 1-65, we find

0x(152-1)—[—1 )(lﬁj—l] + 975
1:65-1-52 ‘13

D= g
Let Dy= + 5 and D, = + 225, made periscopic so that Dy= + 125 and
D= —75; using form (1)) we get

95— (—*75)] '

[ 2 —(1
= 165 — 1'52 BTl

If the p's are 1'52 and 165, D=4 (D,—D;)—5 D, for forms C, D and
E;D=4D,—5 D, for form .{ ; D=4 (D,— D,) for form B,

If the p’s are 1'5 and 16, D=5 (D,—D;)—6 D, for forms , ), and E ;
D=5 D,—6 D, for form A ; D=5 (D,— D) for form B.

The disc selected must be rather thicker than for ordinary lenses, especi-
ally if the segment is of high power. Having insets of known powers the
selection of a suitable blank and the curvatures of the two outer surfaces
are as follows. Let the two p's be 1'65 and 1-52 so that for a given curva-
ture producing D, we have D, =5 Dy/4, ie. D, is 1/4 stronger than Dy, and
D;=D,=D,/4. Now part of the additional power for reading is obtained
from D, — Dy, and part from D, i.e. D,— D, = (D, —D;)+D;; therefore the
powers needed on the two surfaces are Dy = 4 (D, — D, — D), and D, =D, — D,

It is preferable to seleet a disc such that D is higher than the addition
needed for reading, and in that case D, is Ce. if D, is Cx. In all cases it is
advisable to caleulate two or three combinations in order to arrive at the
most suitable, A Ce. curvature on the surface of D, should be avoided ; other-
wise there is danger of working through to the segment. If D;=D,—-Dy
the surface D, is plano; therefore for sph.-cyls. select Dy=D,—1-25D,,
the eyl. being ground on to the side of D, and the sph. on that of D,.

The proportional increase of power of D, over D, is found from

I:g”;z - .I”Fl:' —(m—1)
(1 — 1)

so that if the two p's are other than those given above, the factor 4 in the
value of D, would vary accordingly.

As examples, for D;= +2:25, and D,= +35 select Dg=15; then
Dy=4x (1'25—15)= -1 ﬂ,lltl IJa—"'25+ 1=+ 325.

For D, = —3+5, and 1}2__ 25 select Dy =25 ; then Dy =4 x (1:25—2+3)
=—5and D,;=—-35+5=15.

For +6 5. = —2 C. with +8 sph. for reading, D,= +8—-1-25 x 6 ="5.

For =10 8. < =3 C. with =7 sph. for uadlllg == i+ 120
x 10=5"5.

To Construct Test Types after Snellen.—Each letter at a certain distance
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¢ must subtend an angle of 5" and each limb of such letter an angle of 1°.
In small angles as these, the are, chord, sine and tangent may be considered
equal. The general formula is then

S=d tan V

where S is the size of the letter, ¢ is the distance in mm., and V is the
visual angle. Since tan 5 =-001455 and tan 1”=-000291, for use at any
metric distance, the diameter of each letter, being square, is the same each
way and is obtained from

5= 1000 x ‘001455 = 1455 d (d being in M. and S in mm.).

The diameter of each limb is similarly obtained from '291 d, but it is
quite accurate to divide the letter dimension by 5 in order to obtain the
limb dimension.

If the letters and distances are in Imperial measure, the diameter of
letter in inches =12 x *00145 =-0174 d (d being in feet).

Thus for 6 M. the types are 6 x 1455 =875 mm., those for 12 M. are
175 mm., and so on for every other distance. If the visual angle is other
than 5° the required size of type in mm. is

S =M x 000291 x visual angle in minutes of are.

The size of types can also be deduced from circular measure. The
radian = 57-3° = 3438’, the arc subtending it being equal to the radius or, in
this case, the distance ; if an angle is smaller the are, subtending it, is propor-
tionately smaller, so that

V/3438=8/d or S=Vd/3438
Suppose the types be required for 18 M. under a visual angle of 4’ ; then
S=4 x 18000/3438 = 21 mm. (approx.)

To Construct Tangent Scales.—For prism diopters the card must be
scaled so that each division shall be 1 em. for each M distance at which it is
used, e.¢. the divisions are each 2 em. for 2 M., 6 em. for 6 M. and so on.
For distances and spaces in Imperial measure each division is 2-4 inches for
20 ft., and for other distances in proportion.

[n order that equal divisions should accurately indicate equal increase of
angular deviating power of prisms, the scale should be on an arc at the
centre of which the prism is held. This, in fact, was the basis of the Cenfrad
notation which, however, owing to the inconvenience of such an arrange-
ment, did not come into general use.

For Degrees of Deviation.—The divisions should be d tanl®,  tan2® ete.,
where d is the distance at which the chart is used ; that is, the successive
s paces should increase in size from zero, since equal increases in the angles
of deviation correspond to greater increases in the tangents; but for small
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angles the error is negligible, so that it is customary and sufficiently accurate
to make each division in em.= 1745 d, where « is the distance in metres.
Thus for use at 3 M. each division would be 3 x 1:745 =525 em. approx.
and so on for everv other distance. For distances in Imperial measure the
divisions are ‘01745 x 12 =-21 in. for each foot ; that i1s, 4-2 in. for 20 ft.

For Degrees.—If p is taken as 1-5 the division should be 875 em. for
each M. ; if p= 152, they should be -9 em. ; if p =154 they should be 94 cm.
In practice the & seale serves for degrees.

Combined Scale.—A scale as shown in Fig. 148 can be made to indicate
both prism diopters and degrees of deviation. If used at 2 M. the numbers
give degrees of deviation, at 3-5 M. they indicate prism diopters, the divisions
being each 3'5 em. Thus if a given prism at 2 M. indicates, say, 4 it 1s a
4°d ; if held at 3-5 M. it will indieate 72, which is the equivalent of 4°d.

Mirror for Reversed Test Types.—The necessary size S of the mirror
depends on the size C of the chart, and the distances M and d respectively of
chart and subject from the mirror; it should be just large enough to he

Figc. 345,

filled entirely by the image of the chart. S/C=d/(d+M) so that
S=Cd/(d+M). If, as is generally the case, d + M =6 M., the subject and
the chart being at the same distance, 1.e. 3 M. from the mirror, the latter is
just one half the size of the chart in both dimensions.

Confusion Discs.—The size of a disc of confusion € (Fig. 345) depends
on its distance b from the foeus, the distance f from the lens to F, and on .{
the aperture of the lens; thus A/C=f/b, or C=A /f.

For instance, with a +4 D lens the disc of confusion at 15 em. from the
lens, which is 25 —15=10 em. from £, is 10/25 of .{. It would be the same
size at (7 if 35 em. from the lens, and also 10 em. from /. If (" is 40 cem.
from 4, then (“/4 =15/25. In these cases the source of light is presumed
to be distant. If the source of light is not large the same caleulation gives
very approximately the diameter of the whole cone of light. If the object
is near, the conjugate distance f, must be taken instead of /'

If a screen be held close behind a Cx. lens facing a distant bright source,
the emergent light is similar in size to the lens aperture, and it becomes
smaller as the screen is receded, the minimum being reached at the focus,
after which it again increases in size.

With cylindrical lenses the two diameters must be calculated, the con-
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fusion dise being elliptical. These two dimensions (' and C” at any distance

are found from
C=Aa/F, an C'=AWF,

where « and » are the distances respectively from F, and F..

Thus what is the size of the confusion disc formed at 30 em. by a
+4 5. = +2 C. Ax. 90° the diameter of the lens 4 being 5 em.? Now
F,=16-66, and ¢=30-16:66=13-33 em.; F,=25, and §=30—-25=5 cm,,
50 that

C=5x1333/1666 =4 cm. and C'=5x5/25=1 cm.

The disc is 4 em. horizontally and 1 em. vertically. The size and dis-
tance of the circular dise where C and C° are equal are shown in *The
Interval of Sturm,” Chap. X., and from the above we find at 20 em. both
dimensions to be 1 em. It is difficult to show the two diameters in one
diagram, but a separate one for each clearly shows the principles involved.

Reflecting Refractors.—If a lens be used so that light refracted by the
first surface is reflected back from the second surface, and again refracted by
the first we have a reflecting refractor, known as a Mangin mirror.

A Cx. surface 1s a positive refractor and a negative reflector, while a Ce.
surface is a negative refractor and positive reflector, but the second surface
of a lens, used in this way, if Cx. as a refractor, becomes Ce. as a reflector
and is positive in both cases ; if the second surface of the lens is a Ce. re-
fractor, it becomes a Cx. reflector, and is negative in both cases,

To caleulate the focal length of a reflecting lens it is necessary to add the
reflective power of the second surface to the refractive power of the first
surface as the light enters and emerges. The lens is treated as thin, and »
is the radius of curvature of a plano or double Cx. or Ce. F is the resultant
focal length.

For a plano Cx. or Ce. with the plane surface as a reflector

1 p=1 p—=1 2(u-1) . 7
I;L— o + _‘_. - jl' 0l I' e E(P == i:]
For a plano Cx. or Ce. with the curved surface as a reflector

o :
1~ = £b or F= :

¥ 2
For a double Cx. or Ce.

l p—1 2p p—1 4p-—2 : il
e b e ol 1'=4f;,'_g

For doubles of unequal radius and periscopie lenses, v, being the radius
of the first, and r, that_of the second or reflecting surface, we get
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L p—1 2p p—1 2u(ri+v,)—2r, , T1Tg
E‘ — : T ; — S _1_. 1... — E:.l' 4 — ._} T e .} :
¥y LE- B Fy¥e -Hf-‘1+-'g}‘~*2

the — sign being prefixed when v, or 7, has a diverging effect.

Since a curved surface has more reflecting than refracting power, the
effect of a Cx. or Ce. periscopic may be positive or negative as the one or the
other surface faces the light. In order that incident parallel light emerge as
parallel it 1s necessary that

— 'ﬂ'“rf. i o
.i.-'n = or — lllq _— 1
R | 2" p—1
or approximately »,= — 3, i.c. when the radius of the reflecting surface is

equal to the posterior focal length of the first surface, parallel light retraces
1ts own course ; or the power of the mirror must equal twice the power of
the lens, that is, 2/r,=2 (p— 1) (1/r; + 1/r,) care being taken that the proper
signs be affixed for converging and diverging effects,

When p=1-5, let I be the focal length and D’ the dioptrie power of the
lens ; then, used as a reflecting refractor, a plano Cx. or Ce. with the plano
surface reflecting

F=y=F/2 or =2D
With a plano Cx. or Ce. with the curved surface reflecting
F=#/3=F/6 or D=61)
With a double Cx. or Ce.
F=vr/4=F'/4 or D=41Dr

The above formulie show that, in all cases, the power of the whole system
is equal to the power of the reflector plus twice the power of the lens. Asa
reflector a surface has about four times as much power as it has as a refractor,
so that 1/F=2/F, +6/F,, or D=2D, +6D,, where F, and D, refer to the
first, and F, and D, to the second surface. Thus with a lens of D= + 1 and
D,=+2, we have D= +14; if D;= +4 and D,= —2, we get D= —4; if
this lens were turned the other way D= + 20,

Images Formed by cyl. Lenses and Mirrors.— Hitherto the formation of
images by eyls. has only been considered so far as the production of foeal
lines from point sources is concerned. Nevertheless, a plano eyl. can
produce an image of sorts, although naturally very ill defined and distorted,
from an ordinary object ; such images, even when real, are best examined hy
the eye, because the pupil of the latter acts as a stop, and cuts down the
excessive confusion caused by the absence of point foel.

Cx. c¢yl.—The real image produced on a screen by a plano Cx. eyl is
made up of focal lines approximately equal to the axial diameter of the lens ;
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in consequence the real image is an infinite number of streaks parallel to
the axis. Viewed from behind by the eye, the image seen is partly real,
partly virtual, is equal in size to the object along the axis, and may be
diminished, magnified, or of the same size across the axis. With the axis,
say, horizontal, the image is not laterally reversed, but is inverted ; with the
axis vertical the image is reversed but not inverted. When the object is
within F the image is wholly virtual, there is neither reversal nor inversion,
there being unit magnification along the axis, and enlargement across it.

Ce. ecyl.—Here the image is always virtual, is equal in size to the object
along the axis, and diminished across the axis. There is neither reversal nor
inversion. ;

Cyl. Mirrors.—Remembering that a Ce. eyl. mirror acts similarly to a
Cx. cyl. lens, and a Cx. eyl. mirror to a Ce. ¢yl. lens, what has been said in
the foregoing paragraphs with regard to lenses applies equally to mirrors.

Optical Glass.

(+lass is a hard, generally transparent or translucent substance, made by
the fusion of silica with potash, soda, lime, lead and other substances, such
as pearlash, arsenie, manganese, saltpetre, chalk, ete. It is brittle, sonorous,
ductile when heated, and fusible only at a very high temperature. It is
usually not soluble, but is acted on by hydrofluoric acid, and is a very bad
conductor of heat. There are many varieties of glass, and the process of
manufacture, as regards the ingredients used and the treatment after
complete fusion of the various components, depends on the nature of the
glass produced.

If suddenly cooled, glass becomes extremely brittle owing to the state of
tension produced by the cooling of the outer portions while the inner are
still in a molten condition ; annealing tends to reduce brittleness. Glass
used for optical purposes must be homogeneous, i.e., of equal density and
refractive power throughout, and perfectly transparent ; it is therefore care-
fully mixed and gradually cooled. It should also be free from air bubbles,
striae and colour for spectacle lenses, although a few air bubbles, if small,
may he of little or no consequence in a camera lens. The solid block of glass
is usually polished on two sides, so as to allow of the detection of defects,
and from it clear dises of appropriate size are cut.

Lenses are made of crown glass, which contains lime, or of flint glass,
which contains lead. Flint has generally a higher refractivity and chroma-
tivity ; the greater the proportion of lead in the glass the greater, usually,
are the refractive and dispersive powers. It is denser, heavier, and softer
than crown, and is almost perfectly colourless. Crown glass has the
advantage of low:r dispersion and is harder, so that it does not so easily
become scratched, but it 15 more brittle than flint. It has sometimes a
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decided greenish tint, due to the presence of iron. The pinkish tint found
in some glass results from the admixture of manganese.

According to its component ingredients and manufacture, the indices of
refraction of glass vary for the various lines of the spectrum. The mean p of
different kinds of glass made for optical purposes can he taken as 1:574, that
of the crowns being 1:524, and of the flints 1-624.

The following may be taken as very rough examples of the proportions
of the materials entering in the manufacture of optical glass :—

Flint Glass (100 parts).—S8ilica 50, lead 30, potash 10, other in-
gredients 10.

Crown Glass (100 parts).—Silica 70, soda 10, lime 10, other in-
gredients 10.

In the following table some examples (not actual kinds) are given to
illustrate the refraction, dispersion and speeific gravity of different kinds of
optical glass, and the method generally employed in arranging them in the
order of their v values or efficiencies.

TABLE OF OPTICAL GLASSES.

: Dispersion.
My — .

H'E el e

Description. 50 B R 7 Medium. Gravity
C-F=éu| A-D | D-F | F-G ;
| Very light Crown 1458 66 0073 | -0050 | <0055 | ‘0040 | 2-25
| Light ,, (1550 62 | 0081 0055 | ‘0065 0045 250
Ordinary ,, 1:53 GO ‘0087 0060 | -0070 | 0050  2-75
Heavy s | 1:D6 55 0102 | 0065 | 0075 | 0055 | 3 .
| _Very heavy, 160 52 ‘0115 | 0070 | -0085 | 0065 35
i Very light Flint 1-54 48 0123 | -0075 | <0090 | -0070 3
Light . 158 43 | 0135  -0085 | -0095 | <0080  3-25
Ordinary ,, 162 40 0155 | -0095 | -0115 | 0100 | 3:50
Heavy , 168 35 0194 0105 0130 0110 4
Very heavy ,, 1'85 24 ‘0354 | 0185 | -0280 | <0250 | 55
REFRACTIVE INDICES OF VARIOUS MEDIA.
Air ... e pip=1-000 Oil of Cassia ... eor pp=10618
Tee ... ceo pp=1310 01l of Fennel ... ces pp=1-544
Water (distilled) ... p,=1:336 Anilin Oil .., oo pp,=1-580
Sea-water ... . pp=1343 | Uil of Cloves ... e pp=153:
Blood ... .. pe=1354 | Oilof Cinnamon er pp=1-508
Albumen . pe=1360 | Cedar Oil (Lens immer-
Absolute Aleohol ... p,=1366 | sion oil) ... ciw  Ppe=17D13
Oil of Bergamot o pp=1464 | Naphtha v pg=14¥5
Olive Ol e flgm= 1470 Turpentine ... v pp=1-478
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REFRACTIVE INDICES OF VARIOUS MEDIA— Condined.

Glycerine pp = 1-460 Rock Crystal Pebble
Gum Arabic pe=1:512 (ordinary ray) ... p,=1544
Spermaceti . pe=1444 Rock Crystal Pebbl
Bisulphide of Carbon... p,=1-687 (extraordinary) pp=1-553
Alum ... pen M =17157 Tourmaline (ordinary
Sugar ... e =1-535 ray) ces il =1036
Rock Salt = 1555 Tourmaline (extraordi-
Salt Solution ... pe= 1375 nary) wor pp=1-620
Phosphorus po=2-224 [celand Spar or Calcite
Diamond pp= 2470 (ordinary ray) p = 1659
Chromate of Lead 2, = 2:500 [celand Spar or Calcite
to 2-:970 (extraordinary) Py, = 1486
Canada Balsam (liquid) p, = 1520 Felspar . - pa=1"T64
” % (hard)  p,=1-535 Fluor Spar ... e pn=1434
REFRACTIVE INDICES OF SOME METALS (KUNDT).
Red. Yellow (L), Blue
| Silver — 0-27 =
| Gold 0-38 0-58 100
| Copper (045 (165 095
Platinum 1-T6 1G4 144
| 1-81 J=pa 1-54
| Nickel il 2-01 1-85
Cobalt 2-61 2-26 2:16

The Transmissiveness of various transparent media to different parts of
tl.m visible and invisible spectrum varies considerably. Thus crown and
flint glass are comparatively opaque to heat rays and equally transparent to
light rays, but while crown is rather opaque to the ultra-violet, flint is ex-
ceedingly so. Most erystals, as fluor spar and pebble, are exceedingly trans-
parent to the ultra-violet, and fluor spar also to the infra-red rays. Rock
salt and iodine are very transparent, while alum is very opaque, to the infra-
red rays.

. Opacity.—The cause of opacity may be said to be due to the restraining
influence exerted by bodies—or rather, their composition—on the passage
through them of waves of certain lengths. The light is not, however, lost,
but is converted into some other form of energy—perhaps generally heat—
but the rise in temperature would be slight. It is due to the infra-red or
heat radiations accompanying light that an opaque body becomes markedly
heated when exposed to general radiation. A rise due to opacity to ethereal
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vibration must, however, be distinguished from that caused by the nature of
the surface, i.e., its absorptive power, which has a much more powerful
influence in raising the temperature of a body. Thus polished and blackened
metal may be equally opaque, but the latter would be rendered much the
hotter by freer absorption of heat. In fact it would be difficult to eliminate
the factor of absorption in the measurement of the rise of temperature
produced by opacity to light.
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LENS SCALE

OF THE APPROXIMATELY RELATIVE VALUES oF LENSES NUMEERED BY
THE DIOPTRIC SYSTEM AND BY FocaAL LENaTH IN My AND INCHES.

No. of Cc.

Diopters. . Foeal Length | Focal Length in Cld English System,
Refractive Power. im Mm. Inches, (These Nos. have a vory
| Unecertain Yalue.)
— ] e - - =
0°125 8000 - 320 —
025 4000 - 160 0000
0375 2666 100 -—
0°50 2000 - 80 : 000
0625 1600 60 . 00
075 1333 52 =
0-875 1143 48 0
1-00 1000 40 ; —
1125 888 36 i 1
125 800 32 —_
1-375 i27 f 30 -_
1-50 666 26 —
1-625 G616 24 2
175 570 22 55
1'875 833 21 . —
200 500 20 21
2-125 470 19 e
2-25 144 ' 18 3
2:375 421 ' 17 -
2-50 400 16 33
2-625 381 15 ! -
275 363 14 4
3:00 333 13 13
3-25 308 | 12 ' 5
350 236 | 11 6
4+00 250 ' 10 7
4-50 222 9 - 8
500 200 8 ! 9
550 182 i 10
#-00 166 | 6% =
G50 154 [ (i | 11
7700 142 5k -
7°50 133 53 =
8-00 125 ] 12
8-50 | 118 . 43 13
9-00 111 | 43 ' 14
9°50 105 4} 15
10-00 100 4 16
10-50 95 33 17
11-00 20 34 18
12:00 =3 a4 19
1300 if 3 20
1400 71 | 23 21
16-00 62 ' 2% 23
158-00 55 I 2% 23 ,
2000 50 | 2 24 ,
22-00 45 | 1% =
26°00 38 1% —_—
32:00 31 . 13 —
4000 25 1 —

b
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METRIC MEASURE.

1 Kilometre (K.)= 1000 metres = i mile. The K. =1 hillion pp.

1 Metre (M.) =10 decimetres = ;555 Kilometre = 39-37 inches.

1 Decimetre (Dm.) = 10 centimetres = {'; Metre = 3-937 inches.

1 Centimetre (em.)= 10 millimetres = §; Metre = 0:3937 inch.

1 Millimetre (mm.)= 1000 microns = ;535 l‘Ietre=U'{)3937 inch.

1 Micron (p) = 1000 micromillimetres = g5 mm. = s5-}55 inch.

1 "cimmnnllmu,tu, {,u;,u).. 10 f‘-.ng,tmm units = rggd-oos MM. = 3355503 inch.
1 fm"atmm unit (A.) =% pp=1o.3e0 p= 10505000 M.

To convert mm. to inches multiply by -03937 or divide by 25-4,
em. to inches multiply by 3937 or divide by 2-54.

33 31
i »w M. to inches multiply by 39-37 or divide by 0254,
5 ,» M. to feet multiply by 3-28 or divide by ‘3048,

Approximate Conversions.

Feet to M. multiply by 3 and divide hy 10,

Feet to em. multiply by 30

Inches to em. multiply by 21 or multiply by 10 and divide by 4
Inches to mm. multiply by 25 or multiply by 100 and divide by 4.
M. to feet multiply by 10 and divide by 3.

M. to inches multiply by 40,

Cm. to inches divide by 2 or multiply by 4 and divide by 10.
Mm. to inches divide by 25 or multiply by 4 and divide by 100.

Equivalents of Standards of Measurement..

I millimetre (mm.) ... ” .= 03937 English inch.
53 .= 03694 Paris inch.
- ...= 03824 Prussian inch.
i i3 coo= 03796 Austrian inch,

1 English inch, also I 5. an{l Hu%mn oo =254 mm.

1 Paris inch . e =32707 ,,

1 Prussian mch also ll'.uusll cmd ’Hm\wEgun =26-15 ,,

1 Austrian inch =263

| Swiss inch ... Ge=30

1 Swedish inch = o T

1 English inch b - ...= ‘94 Paris inch.

1 Paris inch ... ...= 107 English inches.
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COMMERCIAL NOTATION FOR OPERA GLASSES AND
TELESCOFES.

The French inch is divided into 12 lignes or lines, in which the diameter
of the object glass of m-dinm'y opera glasses and small telescopes is expressed.

Lines ... | 5 6 7| 8| o/ton 1’ 1851415 ]h 17118 1‘I 2021 22 "? D (25| 26,07 I."- D 0IR1182 85 34!35|3ﬁ!3?'ﬂﬂ|31'i11}
5 hﬂ_u_m______;_p_n_____m______“;.;,__
| M ' () ! '
i {:I-i‘l]';ﬂrl!i.} : 11 13II-'r ITE‘EI}I‘.'HI'."-I ELi-‘."JIZﬂ';IEH “Ilith -1-|;.| (43 45 4 4952 --11 ._-.h S8y Ir] 3 60 67 T'I} T2 -I Tl "3 h1|33 S 8T |

| ] IR 65 i

THE GREEK ALPHABET, WITH THE ENGLISH EQUIVALENTS
AND THE PRONUNCIATION OF THE LETTERS.

e = — ———

{Aa ... alpha a R 1 v Epl oxhe on
|BE ...béta ...b K « ... kappa... k 2os...sigma s
['y ...gamma g(hard) AAX...lamda...! iy R TR B
Ad ...delta...d Mg...mau ..m Y v ... apsilonu or y
| Ee¢ ...epsilon e¢(short) | Nv...nu ...m Pt ...phi ...ph
(Z¢ ...zéta ...z Bl s St Xx . ,chi ... ch (hard)
|Hy ...éta ...e(long) Oo ...omieron o(short) ¥ ...psi ...ps
-HEJE‘:... théta #h [Ir..p oo i Qw ...oméga o (long)

— e —

SINES, TANGENTS, ETC.

Small Angles.—The sin or tan of 1°=-01745; those of any angle
smaller than 1° can be found roughly by subdividing -01745. Thus the sin
or tan of 1'='0003; of 5 =-00145; of 10'=-0029; of 15" =-00435, and so
on. The cosine of these small angles may be taken as 1.

For an angle intermediate to those in the table, the value of the sine or
tangent may he found by adding to the next lower the proportional difference
between the next higher and lower values. Thus suppose sin 14° 40" be
needed ; now sin 14° 30’ =-2504, and sin 15°=-2588. The difference for
30" =-2588 — 2504 = -0084 so that

! : L ‘0084 x10 . oe
sin 14° 40’ = 2504 + 30 2504 + 0028 = -2532

For the cosine and cotangent, which decreases as the angle increases, the
proportional value of the intermediate angle must be subtracted from the

next higher. Thus

cos 52° 18" =+6157 — (*6157 — -6088) x 25 ="6157— 0041 =-6116
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360 GENERAL AND PRACTICAL OPTICS

TABLE OF SINE SQUARED AND COSINE SQUARED.

Read downwards from 07 to 45° and upwards from 45° to 90°.

Degrees, Sin.*
0 000000
1 000306
2 001218
3 002735
1 00487 2
9 007526
i 010920
T 014859
b 019377
2 024461

10 030137
11 036405
12 043183
13 050625
14 058516
15 066977
16 075995

| i 85498
18 095481

19 106015
20) 116964
21 128450
22 140325
Degrees. Cos.?

=

Cos,”

1000000
999694
998782
997265
995128
992414
9R9080
985141
9R0625
975529
969863
963595
956817
949375
941484
933023
923005
914502
904519
893985
S83036
871550
859675

Sin.*®

Degrees,

90
89
S8

e
o

=6
=4
83
82
=1
80
79

Degrees.

Degrees,

23
24
25
26
a7
28
29
S0
31
32
33
34
2]
56
a7
a8
39
40
41
42
43
44
45

Degrees.

| Sin.? | Cos.* |Uegmea.
[ |

| 152646 | 847354 67
165405 | 834595 | 66
178591 | 821409 | 65

192195 | 807805 ! 64

| 206116 | 793884 | 63
220430 | 779560 i 62

| 235031 | 764969 | 61
250000 | 750000 | 60 |

| 265225 | 734775 59

| 280794 | 719206 58

| 206589 | 703411 | 57

| 312605 | 687395 | 56
329017 | 670983 | 55
345499 | 654501 | 54
362163 | 637837 | 53

| 379086 | 620914 | 52
396018 | 603982 | &l
413192 | 586808 | 50
430467 | 569533 | 49 |

| 447695 | 552305 48 4

| 465124 | 534876 47

| 482608 | 517392 46

| 500000 | 500000 45

| [t

Cos.2 | Bin? .De;.:me:;.i

USETUL DATA.

The circumference of a circle = 2.

The area of a cirele = =2,

The volume of a sphere = =d*/6.

The diameter of a circle=C/.

The surface of a sphere = =d?.

The area of a triangle = Per x base/2.

The length of an are=-017457 x No. of degrees.

The area of a sector of circle =area of circle x degrees of are/360.

The area of a cireular ring ==/4 x (d,*>—d,?).

The perimeter of an elli pse=m J(:F + %)/ 2.

The value of #=23'14159 or approx. 22/7.

The area of an ellipse = mal/4.

The radian is an angle subtended by an arc equal to its radius=360/27 =

180/7 =57-3°.
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J. & H. TAYLOR,

Manutacturing Opticians,

BirmingHam : DIOPTRIC WORKS, ALBION STREET,
Lonpon : 33, KIRBY STREET, HATTON GARDEN,

Beg to announce the issue of their new Catalogue, in which will be

found

“THE FINEST WORK IN THE WORLD."

‘Che book also contains a mine of information useful to the

practical man.

‘Che following Standard Works are also published by the firm :

THE KEY TO SIGHT TESTING (Second Edition).
10s. 6d. (Postage 5d.).

GEOMETRICAL OPTICS. 2s. 6d. (Postage 34.).

THE MANIPULATION AND FITTING OF OPH-
THALMIC FRAMES. 4s. 6d. (Postaze 3d.).

THE RECOGNITION OF OCULAR DISEASE
(Written for Oplicians). 7s. 6d. (Postaze 4d.).

TAYLOR'S MONTHLY,

A Journal of practical information in Optics, will be forwarded free

every month upon receipt of business card and requesl.



OR HOPSSSPECLAINE S

M P I e T T

THE ORTHOPS CHART.

A complete self-contained chart designed for the
most modern system of sight testing. Every detail
has been determined or calculated with a definite
object, and on scientific principles.

THE ORTHOPS
NEAR MUSCLE-TEST.

It 15 now generally recognized that a complete
knﬂwledge of the muscular imbalance cannot be
obtained from the distance-test alone. The
Drthops near muscle-test, which has been de-

signed to afford such a near test at the customer’s
ordinary reading point, is small and inexpensive,
and no refractiomist should be without it. It is emploved in the ordinary way
with thf: Maddox rod or groove, tnabling the imbalunce for distance and near
to be compared almost simultareously.

THE ORTHOPS TRIAL-FRAME.

This frame combines all the simplicity and rapidity in use of the best variety
of drop frame combined with all the necessary facial adjustments.  In it the clumsy
and painful hook sides have been abolished in favour of long powerful straight
sides which keep the frame firmly yet comfortably in place. It i1s hand-made,
and therefore light and rigid : it holds three lenses in each eye, and the broad
swinging bridge adapts itsell to any type of nose.

THE ORTHOPS FRAME AND FACE-RULE.

This well-known rule is practically unique in that with it facial and frame
measurements can be taken with equal ease and accuracy. Made in boxwood or
xylunite. Full descriptive pamph!et on applicatiﬂn‘

Orthops Specialities can be obtained from all Wholesale Optical
Houses,



URTHORS  SPECIALITIES,

PR R e

THE ORTHOSCOPE.

An instrument forming a fixed Opl‘it]‘lﬂlmﬂi[ﬂpt‘. Capable of giring, with the
ordinar}r size of pup“, a perfect p{ciurc of the fundus. The held of view 1s three
inches in width, and the magnification ten diameters. For a small extra charge
the Orthoscope can be adapted for efficient retinoscopy.

L

THE ORTHOPS POINTER.

A handy instrument enabling far and near points to be measured with quickness
and accuracy. An essental in the testing-room.

<

THE ORTHOPS RETINOSCOPE.

Spccfal]}' designed to increase the illumination in cases of ]ligh amttmpia. etc.,
where the reflex 1s very dull and sluggish, and thereforz practically invisible with
the GI‘CIIDHT}-' plane or concave mirror.

-

THE ORTHOPS RECORD-BOOK.

Complete in every detail for the practical refractionist, and without the mass
of confusing spaces for unnecessary da‘a so frequently four d in record-books.

-

THE ORTHOPS TANGENT-SCALE.

A conveniently arranged scale for giving measurements in eithcr prism-diopters,
degrees, or degrees of dewiation.

=

THE ORTHOPS OPHTHALMIC BRACKET.

An ideal bracket, giving all the necessary positions, but having the minimum
number of joints. Rigid and well made, compiete with reflector, cover, and irs
diaphragm.

Orthops Specialities can be obtained from all Wholesale Optical
Houses.
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cases.
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They are within the reach of all,

and a postcard will bring Samples.

WILLMOTTS, LTD., EVESEHIAM,: Worcs

OPTICAL CASE PATENTEES AND MANUFACTURERS.

London™ Office and Showrooms :

55, HATTON GARDEN, LONDON, E.C.

‘Eef{:pﬁmnc ; Haﬂmrn, 5{]96



“DUPLEX" 'CASES.

(Patent No. 3240/13)

Designed to accommodate two pairs of eye-glasses, or two pairs of spectacles,
or one of each.

The accompanying illustration indicates how a diagonal partition separates the
overlapping two pairs of glasses, with the most important result that

THE “DUPLEX"” CASE IS CAPABLE OF CONTAINING
TWO PAIRS OF GLASSES WHILE BEING SCARCELY
MORE BULKY THAN A SINGLE CASE.

As every optician knows, customers complain of the inconvenience of carrying two
cases when, as very frequently happens, they require to have about them two pairs

of glasses.
THE “DUPLEX" CASE REMOVES

THIS CAUSE OF COMPLAINT.

In many an instance two pairs of glasses would be purchased if they could be
carried conveniently.

THE “DUPLEX” CASE ALLOWS THIS TO BE DONE.

Surely no optician will neglect the opportunity of selling two pairs of glasses
instead of one.

THE “DUPLEX"” CASE VERY STRONGLY
OFFERS THIS OPFODRTIUNITY.

“Duplex ™ cases are made in various qualities and in two sizes—for two pairs
of eye-glasses or for two pairs of spectacles.
They can be obtained from all wholesale opiical houses, or direct from the

manufacturers :

WILLMOTTS, L'TD., EVESHAM, Worcs.
And 55, HATTON GARDEN, LONDON, E.C.

5



THE DEFEANCE ¢

(In 1/10 12-Kt. Gold-hlled, and 10-Kt. Sclid Gold),

FINGER-PIECE. MOUNTING

Is the neatest mounting; the last word in this type of Spectacle Ware.

Made with Platinum-lined Guards, Shell Guards, Cork Guards,
and our special No. 70 Guards.

Manufactured s::r]ehi by the

BAY STATE OPTICAL COMPANY

ATTLEBORO, MASS., USA,,

And 42, GRAY'S INN ROAD, LONDON, W.C,

And obtainable from all the Leading Wholesale Houses.

‘J] :T"CB “To zave needless curfe.ﬂpar:n"cricq: e E:.:g fo .rmﬁfg the “‘Crade thaf the
“PDefiance” NMounfing can be supplied through the recognized whole-

sale houses only.



The “HARLEY " Roll Top Trial Case

~um—

—_———

AL ST = =

L o I:J"I"'l-' Y

ST

] ll.

Advantages :

(a) LENSES MORE ACCESSIBLE.
(6) NO LID IN THE WAY.
() CONTENTS BETTER DISPLAYED.

i 5, d.
No. 10712/1. With Skeleton Tray No. | 1
No. 10712/2.  With Skeleton Tray No. 2 i0 17 6
No. 107123, With Skeleton Tray No. 3 10 2 6

Full parliculars as to the contents of these Trays from
RA PHAEL'S, vLtp., OpTicAL Works,

HATTON GARDEN, LONDON. EC.
ACanufacturers of Optical Appliances of all kinds.

PRICE LIST UPON RECEIPT OF TRADE CARD.

o



WATCH PATTERN
LENS MEASURE.

A new and ingenious idea.
Neat and accurate.

Nickel Plated or Oxydized.
no. 10961, 15s. each.

Instructions sent with each Instrument.

% No. 10961,

THE NEW FORM

COMBINATION
PERIMETER

DEVISED BY

DR EETLES

Can be used as a hand or table

instrument.

PRICE COMPLETE, WITH

COLOURED DISCS,

No, 10831,

£1 . 7s. 6d. each.

No. 10831,

TO BE OBTAINED FROM ALL WHOLESALE OPTICAL HOUSES,
Or from RAPHAEL'S, Ltd., Optical Works, Hatton Garden, London, E.C.

I2



JTHE

WORTH-BLACK AMBLYOSCOPE.

No. 10833.

This 15 an improved instrument for fusion training ; it trains an

amblyopic eye to see.

[t was originally devised by Dr. Worth with horizontal adjustment

only. The vertical adjustment was afterwards devised and added by

Dr. Black of Milwaukee.

PRICE COMPLETE, WITH SET OF 12 PICTURES,

No. 10833, 1 18s. each.

RAPHAEL'S, Ltp., OpTicaL WoRKs,
HATTON GARDEN, LONDON, E.C.

NCanufacturers of Optizal Appliances of all kinds.

PRICE LIST UPON RECEIFT OF TRADE CARD.
13



THE "“PROTRACTOMETER

THe PROTRACTOMETER"

o ¥ 8o

A new form of Optical Protractor for the checking and setting of spectacl

lenses. Exceptionally useful for Bi-focal lenses.

It has an 1vorine surface, and is mounted on metal, size 63 in. X 6 in.

No. 11561, Price 2s. each.

TO BE OBTAINED FROM ALL WHOLESALE OPTICAL HOUSES,
Or from RAPHAEL'S, Litd., Optical Works, Hatton Garden, London, F.C.

T4



The “INTERNATIONAL ™ CURLSIDE RULE.

(Regd. No. 622908.)
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[lustration of the ; - i § A
Rule and method
of measuring a
Curlside. : | No. 10959,
Price 2/6

each.

TO BE OBTAINED FROM ALL WHOLESALE OFTICAL HOUSES.

Write for Hlusirated Pamphlet explaining its use fo
RAPHAEL'S, LTD., OPTICAL WORKS, HATTON GARDEN, LONDON, ELC,
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OPTICAL BENCHES. |

INVALUARLE TO STUDENTS.

By ‘'means of either of cur Benches the experiments
essential to Students and found in the Examination

Papers, become much easier to undersiand and are easily
performed.  They indelibly fix the fundamental laws of
l:}pl:i-r_“s in the mind,

No. 1 BENCH
(As Hustration) |

This Model is the one demonstrated by I
Dr. Wm. Eules at the Narlham]:ﬂnn Institute
It is made of solid mahogany, two metres long
and graduated in millimetres. 'With the outht ard
Six Metal B&ﬁl::ﬁ, with Stcms anﬁ ﬁhdiusting Serew. I
to regulate height and centre, Price £4 4s.

Mo, 2 BENCH.

A cheaper but thoroughly serviceable Bench, one meire long, and graduated in millimetres. The Bench a
Stand: are made of Solid Walnut, with Bras:: Stems, a.::l;uslabln:- for |u:|:1!|t There are six Basze: and th |
necessary Accessories to form the complete outht as given below. Price £1 15s,

MNo. 1 BENCH has the 'Fn“owing Clutht : MNo. 2 BENCH haz the l'u]lcrwing Clutht : |
6 Metal Bases 6 Wooden Bases
|—Collimator, with Achromatic Object Glass | Single Lens Holder
2—Double Lens Holder 2—Twa Supplementary Lens Clip Holders
3—Lamp Holder for 1-eye Spectacle Lenses
4—Sereen with Cross Wires 3--Glass Screen
5—Universal Lens Holder 4 - Nodal Peint Filling
6— Focussing Screen 5—Telescope (Galilean)
7—MNodal Peint Fitting fi—Double Lens Holder
8—Telescope with Cross Wires, and Achro- 7—Cros=s Wire Screen
malic Object Glass and Huyghenian ' B—Collimator with Sirgle Lens
Eyepiece. 9__Siandard Rod
9—Siandard Red 10—Plane Mirror

List of Students’ Requisites sent on application.

RAPHAEL’S, LTD., OpTticaAL WORKS,
HATTON GARDEN, LONDON, E.C.

1
















