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ERRATA

IM;.—Linﬁ 4 from bottom, add ** green ™ aiter ** yellow ™
98.—Line 3 from top, for > put <

34.—For * Romford »’ read ** Rumford "

34,—1n the formula, for “ Ca ™ read “ Ca®”

58.—1In the formula, for “A + F " read “A"

64.—Line 5 from top, for ** Snellen's ” read ** Snell’s ”
65— Line 13 from top, for ** veloeity "' read ** velocities ™

G9.—Line 11 from top, nsert “mnormal to the™ bhefoie

‘ hypotheneuse ™

v OB
73.—Line 4 from top. A general expression is iRn

82.—Line 8 from bottom, for ** dispersion '’ read ** refractivity "’

“ pefractivity ” read ** dispersion "
82.—Fig. 71. Delete the parallel light entering the slit.
89.—Last line, add & after 1.745
|.—Line 12 from top, for “AE " read “M E"
100.—Line 8 from top, for “ 61.4" read ** 62.6"

the word

, and for

113.—Line 17 from top, for * plano-convex " read * plano-concave ™’

115.—Line 4 {from bottom, for * surved " read ** eurved "
116.—Top line, for “r = .2" read *“t = .2~

116.—Line 3, 2nd formula, for .2 4+ 10" read “.2 x 10"
143.— Line 4 from bottom, for “ oo ' read 0"

180.—Lines 11 and 12 from bottom, for * centre " read ** central.”

181.—Line 5 from top, for * three-leg " read * four-leg.”
206.— Line 9 from bottom, for “ ¢’ read “ G "
946.—Line 12 from top, for “ 52 a ” yead ** .53 a™
256.—Last line, for “F" read “ Fy"

258.—Fig. 192 should show the two convexr surfaces facing each other.

259.—Line 5 from top, for * 2 in.” read ** 4 in."”
259.—Line 15 from top, for ** F " read “ Fy”

259.—Line 16 from top, for “ F.” read “ F"

260.—Line 15 from top, for ** Unifocal " read ** Unofoeal
261, —Line 10 from top, delefe **Adon lens ”

2G1.—Line 20 from top, delefe whole line in italies.

267.—Line 6 from bottom, after ¢ which is " insert * measured frcm the

lens situated ™
979.—-Line 13 from top, for “F,{,” read “ F, £.)”
319.—Line 2 from bottom, for “Ft + 1" read “F,t 4+ 1"
322, —Line 3 from bottom, for “ F* read ** F.”
323.—1st formula, for “ F'* read < F."
323.—38rd formula, for * F” read v

326.—Fig. 249. The ray in the prisms A and B should be undeviated.

356.— Line 9 from top, for “R,” read “R "

391.—Table of Refractive indices, for “ Gum Damman” read *Gum

Dammar " ; for * >tyrex " read * Styrax "
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PREFACE.

ORKS on general optics are usually either too mathe-
matical or of a nature unsuited for the purpose of
reading up for the Spectacle Makers' Examination,

and for understanding and working out the simple problems which

continually arize in the course of an optician s business.

While the author has tried to supply this want, he has not
neglected to treat more completely those subjects which are
intimately connected with Qpﬂutacic work, and are rarvely, if indeed
ever, met with in any of the books written for schools, colleges, and
hﬂ:‘]n:ia!:}] Institutes, Also an endeavour has heen made to aive the
student a practical insight into more complicated subjects such as
lens svstems, aberrations, etc., sufficient, at least, to serve as a
foundation for the rn‘EIlrlll‘l.' of hizher works.

This book, although it embraces a vet wider field, has, in fact,
been written to cover the syllabus of the General and Practical
Examination of the Worshipful Company of Spectacle Makers,
which must be passed by all candidates whether they take the Final
in Visual Opties or in Higher Optics and Optical Instruments. No
attempt has been made to deal with the subjects required for these
latter examinations, except in the most {-lufmq_-]nm':.‘ manner possible
in  order to satisfy the regquirements of the Preliminary
Examination.

No excuse iz needed for having departed from the academie
convention as to signs in the formule connected with lenses and
refracting surfaces. Convex and concave curvatures arve assumed to
he positive and negative respectively as they are convex or concave
to the medium of lower index, thus giving positive focal lengths
to those lenses and surfaces which tend to produce real images, and
negative focal lengths to those which can form only wvirtual images.
This convention serves perfectly well for svstems of not more than
three or four surfaces and it coineides with the common usage of the
optical trade.



The author takes this opportunity of acknowledging the invalu-
able help and advice so freely given by Dr. Geo. Lindsay Johnson.
He has done so much for this work that he might almost be claimed

as a joint author.

The author’s thanks are equally due to Mr. Oscar Wood for his
assistance generally and, indeed, the brief deseription of the Gauss
Equation and some of the artieles on instruments were written

entirely by him.

To those students who wish to pursue their studies further, the
author would suggest the following works as being among the most
Silvanus

b

snitable for their purpose, wviz., Percival’s “‘Opties,’
Thompson’s “Light Visible and Invisible,” Lindsay Jehnson's
““Photographic Optics and Colour Photography’ and his other
works on optical instruments, Maddox’s “*Ophthalmological
Prisms,”” Glazebrook’s “*Physical Optics’™ and *‘Practical Physies,””
Edser's ““Light for Students,”” and the numerous contributions of
Dr. C. V. Drysdale and Mr. 3. D. Chalmers, M.A. Also Prof.
Thompson’s ““Optical Tables” is of great wvalue as a book of
reference for opticians.
LIONEL LAURANCE.
Loxpox, August, 1908.



GENERAL AND PRACTICAL
OPTICS.

CHAPTER I.
LIGHT.

Light.—Lverything we see around us is rendered visible by
means of a form of radiant energy which is termed light. With
the exception of fluorescence, phosphorescence and a few manifesta-
tions of energy which need not concern us here, all light has its
source in bodies which are in a condition of white heat or incan-
descence. It is not necessary that the source of light should be seen.
Thus the sky, moon, trees, Louses, etc., are visible by means of
reflected light, which can invariably be traced to the sun, or to
some artificial source of incandescence. The way in which the light
from these sources reaches the eve, and so renders objects visible,
has occupied mankind from the earliest ages.

It was once supposed that light was something which radiated
from the eve to the objects scen, that is, a sort of tentacle or
invisible fecler which darted out from the eve. Later it was
thuught to be due to infinitely small corpuscles which streamed out
from every visible object to the eye at great speeds, but other
]'r]l&:llulm:tm of |i;__'_'||t. showed this t]u:ul'_}' to be untenable, and III'I_}\.'{_:II
bevond a doubt that light is due to a series of vibrations set up
in the luminiferous ether by the molecular agitations of an incan-
descent I:uul}',

Ether.—This medium is believed to occupy all space throughout
the visible universe, penetrating inside and between the molecules
and atoms of which all bodies are composed, so that no body exists
which is not saturated with ether, nor can any vacuum, however
perfect, remove the slightest fraction of it. Execedingly little
is known about the nature of the ether, sinee its properties are
chiefly negative, and it can wneither be perceived by any of the
senses, nor can it be collected or weighed. 1t has been coneluded,
however, that it possesses density, rigidity, elasticity, as well as the
property of propagating transverse undulations or waves, which
are generated by vibrations in incandescent material bodies. These
waves travel to an infinite distance without appreciable loss of
energy, and it is due to the presence of ether that material bodies
are capable of acting on one another at a distance, and by which
the various forms of energy, e.g., light, heat, magnetism, elec-
tricity, &e., are made manifest.



2 LIGHT.

Light Waves.—8ince every part of a source of light generates
an oscillation which travels in every dircetion, let one of these parts
L (Fig. 1) be considered an incandescent point of vibrating matter.
This forms the centre of a tiny sphere whose diameter equals a
wave-length A, A,. Hvery point on the circumference of this
sphere forms a new centre of disturbance which generates a fresh
sphere, and each of these spheres again forms fresh ones, and so on.
Now, as these tiny spheres may be supposed to lie side by side
overlapping each other, tangents to points on their combined

Fig, 1.

circumference (which points are ends of radii from the primary
centre of disturbance) will, if taken collectively, form a wave-front
(a" bede). Aseach wave-front forms a centre for the formation
of a fresh row of spheres, the diameter of each sphere is equal to a
wave-length.  Each successive wave-front may therefore be con-
sidered as the erest (A, A;) and the space between it and the next
wave-front as the trough of a wave (A/, A;,). We may consider
light as advancing in the form of a wave-front which forms part
of an ever enlarging sphere.

The wave motion of the ether is always transverse, i.e., at right-
angles to the direction of propagation of the light.  The ether
particles themselves do pot travel but merely oscillate, much in
the same way as a cork bobs up and cdown in the water as the wave
passes by.  Or, to employ another illustration, as the vibrations
of a rope, fixed at one end, travel along it when shaken at the other
extremity.

Although light 18 propagated from a luminons point in a series
of wave-fronts, it is more simple for our purpose to consider the
direction of the propagation, which can be shown by a straight line.
I'rom the luminous point L (Iig. 1) the light radiates in every
direction, and any line of propagation, such as Lb, Le, etc., is
termed a ray of light.



LIGHT. 3

Radiant Energy.—When the temperature of a body is raised,
the inereased molecular activity causes a generation of ether waves
of diminished length and heightened frequeney, which constitutes
what is termed heat. If the temperature is raised still morve, the
activity is proportionally increased, so that the waves hecome shorter
and the vibrations more rapid. Thus, when the temperature of a
body reaches about 5009 centigrade, it not only emits the velatively
long waves of heat, but also the shorter waves of light ; the difference
between the two forins of radiant energy—heat and light—existing
solely in the length of the waves. The undulations must be of a
certain shortness and rapidity in order to become “light’’ as
distinet from ““heat.”

In their passage to the earth, the calorific or heat rays radiated
from the sun are, to a great extent, absorbed by the atmosphere.

Some bodies transmit light and not heat rayvs, and others the
reverse.  Bodies which transmit the invisible heat rays without
becoming quickly warmed themselves are termed diathermanous;
those which do not transmit radiant heat are termed athermanous
or adiathermanous.

The longest light waves, i.e., those of least frequency, give rise to
the visual sensation of red when the temperature of a body is raised
to about 3002 C. On further raising the temperature of a body,
shorter waves are also produced which, being of different lengths
and frequencies, cause the sensation of various colours, varyving
from red, the longest, to violet, the shortest visible waves. White
is a sensation caused by the combined action of all waves ranging
between red and violet. White is produced when the temperature
reaches about 10009 C, :

The existence of the spectrum beyond the visible red (infra red),
which eonsists of longer waves, may be shown in various
ways. Thus a blackened thermometer bulb placed just beyvond
‘where the red in the spectrum ceases will show a rise of tempera-
ture, proving the existence of heat rays. Again, by employing a
lens made of rocksalt, heat waves can be demonstrated when the
visible spectrum is cut off.

By painting the screen, on which the the speetrum is thrown, with
a fluorescent liquid such as a solution of quinine, just beyond the
violet end, or by using a quartz prism, the existence of rays beyvond
the visible violet end of the spectrum (ultra violet) may be shown
to exist.

In addition to the effect on the eye, and the sensation of heat, it
is obvious that light waves possess many other properties, such as
the chemical actions which oceur in phetography, bleaching, the
generation of carbonie acid, and the formation of chlorophyll
necessary for vegetable life.

The incandescence of the sun is, of course, the principal source
from which light on the earth is derived. Impact, friction,
electricity, chemical combination, combustion, in fact anything
which causes increased molecular motion may give rise to light.
Sunlight is white, while artificial lights usnally appear more or less
coloured,

c



1 LIGHT.

Velocity of Light.—Light travels in air at about 186,000
miles or 300,000 kilometres per second; the wvelocity is somewhat
lessened in denser media, the deerease being roughly proportionate
to the density ; thus, in glass, the rate of progression is about one-
third less and in water one-fourth less than it is in air. . In space
or a vacuum the speed is almost the same as in air. 186,000 miles
is a distance cqual te about eight times the circumference of the
earth at the equator, a journey travelled by light in one second.
From the sun it takes about eight minutes for light to reach the
earth, some 93 million miles distant. At this rate light travels
six million million miles in a year, and the distance of a fixed star
15 said to Dbe so many light years, thus expressing the number of
vears the light from the star takes to reach the earth.

Measurement of Light-Speed. —There are at least four
methods by which the velocity of light has been measured. The
earliest methods, by reason of the imperfeetion of eptical instru-
ments, were of necessity astronomical ones.

E‘l‘

Fig. 2.

Rimer’'s Method.—It was known that one of Jupiter's
moons passed into the shadow of the planet every 48} hours and
heeame eclipsed. At a certain period of the earth’s annual
revolution the earth is in opposition to Jupiter (Fig. 2). If light
were to travel instantaneously the eclipse and the observation of
the same by an observer on the earth would oceur simultaneously.
The light, however, has to travel from Jupiter to the earth before
the eclipse can be seen.  Let R and r be respectively the radii of the
orbits of Jupiter and the earth round the sun. Then J E (i.e,
R—r) is the distance the light has to travel at a veloeity V. The
time therefore will be (R — r)/V seconds after the eclipse has taken
place. After six months the earth and Jupiter will again be in
opposition, the earth now being at Ef on the other side of the sun.
The eclipse will therefore be observed (R + r)/V seconds after the
occurrence, the difference between the two observations being equal
to 2r = 186 million miles.

Réomer observed that as the ecarth moved from E to E’! the
ohserved time steadil v exceeded the ealeulated time. Thus he found



LIGHT. ,

that an eclipse observed when the earth was at Ef occurred 995
seconds later than when it was observed at E. Since the diameter
of the earth’s orbit is 186 million miles,

156,000,000

V = ——— = about 186,000 miles per second,
195

Bradley’s Aberration Method.—The apparent dirvection of
light from a star owing to the earth’s motion makes an angle with
its true direction. The velocity of the earth being known, that of
the light has been determined from observations of a star at dif-
ferent periods of the vear.

The astronomer Bradley was led to discover this method when
driving along a road in a shower of rain which happened to be
falling vertically. He noticed that the latter instead of falling
directly on his head beat against his face obliquely.  This led him
to consider that the movement of the earth round the sun will cause
the caleulated position of a star to vary slightly from its olserved

e e i 9

position. As the earth pursues its elliptical orbit round the sun
it must move in an opposite direction to that which it took exactly
six months before, so that a telescope directed to a star situated
somewhere along a line at right angles to the earth’s motion must
be pointed slightly in front of the nean calculated position at the
first period of observation, and a similar distance behind at the
sceond observation.  The angle which the telescope makes between
the caleulated and the observed position is called the aberration
of the star.

Bradley knew the velocity of the earth’s motion, and he measured
the angle of aberration, and from these data he proved the velocity
V of light to be about 180,000 miles per second. Thus:

velocity of earth 18 miles 18
v _— = —— _— T ———
tan of aberration tan 20" 0,0001

= 180,000 miles per second, which is nearly correct.
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This may also be illustrated by the experiment of firing a shot
at a moving ohject. Thus, if a shot from a cannon C (Fig. 3) be
directed towards a ship meoving at right angles to the direction of
the shot, the latter will not pass through it at right angles to the
direction of the ship, but ulnli:llu-]}' as if the shot came in the
dirvection of the dotted line €

Fizeau's Method. —Fizean's method depends ¢n the inter-
ruption of a beam of light by the teeth of a revolving wheel.
The light from a source 8 (Fig. 4)—rendered convergent by a lens
L—falls on a plane unsilvered mirror m which is inclined at 45°
and situated between the lens and its focus I, the latter being at
the teeth of a wheel.  Another lens Lf, placed at its principal foeal
length on the other side of the wheel and in a line with the mirror,
renders the light from F parallel.  The beam of light is collected by
a third lens L?, situated at a distance (say four miles), and is
brought to a foeus on a spherical mirror M, from which it is
refleeted, so as to return along the same path, finally forming a
real image at 19, and is viewed by the observer at II through an

1."‘|.'{'||‘j1.'l‘4.‘.

o
IFig. 4
g. %

Suppose the light escapes through the first gap while the wheel
ig turning slowly, then it will, after travelling eight miles, pass
through the same opening and a flickering image is scen. If the
speed is greater the second tooth blocks out the light, but if etill
greater the light passes through the second gap, the wheel having
revolved one tooth while the light travelled eight miles, and so
reappears to an observer at K. The result is checked by another
observer at B! who sees the light through an opening in M. The
speed of the wheel being further inereased the light appears and
disappears as an additional tooth or gap passes by before the light
returns.  The speed of the toothed wheel, the size of the teeth, and
the distance between m and M being known, Fizeau, and later
Cornu, who improved on the apparatus, found the velocity of light
in air to be about 300,000 km. per second.
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Foucault's Method.—A beam of light is passed through
a slit S and a lens L on to a plane mirror M, which is made to
revolve at a known speed. From M, the light passes to a coneave
mirror M, placed at a distance equal to its radius. IFrom
this the light is again reflected back to M, and retracing its path is
partly refleeted by the glass plate M, to the cve at T. If M, is
then l'ﬁ-]}il”"l' rotated it will have had time to turn thl‘uu;_-'h an
appreciable angle during the time that the light has travelled from
M, to M, and back again, so that it will not be reflected back to the
same spot on the mirror M,. Thus the image seen by the observer
through the telescope will not be formed on the eross wires at a,
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but will be found shifted to some point b, If the speed be

known at which the mirror M, is rotated, and the distance which
the light has to travel from M, te M, and back (which in this
case is equal to eight yards) the velocity of light can be caleulated
by the displacement of the image from a to b as scen through
the telescope T.

The Spectrum.—3Sunlight being produced by a combina-
tion of waves of different lengths, its component parts are re-
tarded unequally when passing through a dense medium. The
shorter violet waves are more retarded and, if refracted, these are
bent to a greater extent than the longer red waves so that the
component colours of white light become separated. If white light
be passed through a prism, the dispersed colours ean be seen on a
sereen ag a bright coloured hand, ealled the spectrum, which
consists of red, orance, }'t-]]ntﬁmﬂ*, indigo and violet, but
most authorities now omit the indigo and consider the spectrum
to consist of only six colours. The following table shows the entive
range of the =pectryum as far as is known.
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Tapre oF WaAvE-LENGTHS AND FREQUENCIES.

Wave-lengths in
(o o

100,000,060 (100 wmm.)
3,000,000 (3 mm.)

61,000

5,000

812

100

No. of vibrations in
billions per second.

}Tnl‘m-md speclium

Sl

1K)
4060
s

Sl II,.t'.?h-ulinznr_i.' visible spec-
trum

-Ultra-violet s pectrom

Character.

Electrical vibrations,

Shortest are about 3 mm.

Longest 1 meter to several
milea,

I.mlgc'st. waves measured
by Langley by his bolo-
meter.

Longest waves measured

by Buebens and Snow
by fluor-spar prism and
bolometer.

Longest waves capable of
being seen by the spee-
troscope, according to
Helmbholtz.

Ked.

Orange,

Yellow.

(ireen,

| Blue.

Iniligo.

| Violet.

| Shortest waves visible ac-

cording Lo Scret.

Shortest waves visible ac-
cording 1o Mascart.

Shortest  waves  photo-
graphed through fluor-
apar prism alone,

Shortest waves photo-
graphed by means of
fluor-spar prism,vacunm
camera and bromide of
silver plate without gel-
aline,

Notre.—A billion iz a millien times a million.
millimetre. A

metre M =
F =

one
one thousandth of a millimetre.

millionth of a

A micromilli-
micron
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Fraunhofer’'s Lines.—I'raunhofer, who first reduced spectro-
scopy to a science, discovered that incandescent gases give rise
to certain bright lines in the spectrum which were characteristie
of cach particular element of which they are composed.  Kirchoff
also found that if the light were passed through gases or vapours,
cooled below the temperature of the source of the same elements,
these bright lines would become absorbed, and they would he
replaced by dark lines, identical in position and thickness. These
lines are found in great numbers in the solar spectrum, and are
indicated by letters of the alphabet. As they always correspond
to rays of a definite wave-length, thev form a convenient means of
identifying any particular part of the spectrum. The following
is a diagram of the spectrum, showing the chief Fraunhofer lines
in their approximate position.

Aal¢ D Eb F ¢ H
| ] i
. | .
x‘-—. ReEnH "u_.;_;:].:-.qm:,l.&' _.l-’.il {fﬂi:ﬁf‘_‘_r.l‘:f{l'f-"ﬁﬁ'l & .EFLUF:_{Mgm‘H:_.:M“‘}’fﬂLJ‘f‘ s
Line | Position Metal or gas Wave-
= in spectrum, ]_llul'.].u{.-lllh the line. Liengths.
| FJL
A Red oo || AmEmAR (LR Caas e wes ToY
Il.- Red .o s | Water Vapour ... ... ..| 733
3 Red ! Oxygen ... e es| . GBG
G Orange-red ... +..| ﬂ}dmgul {H} i wed 608
D Yellow ... ... ...| Bodium (Ma) ... ... 589
E | Green ... ... ...| Iron (Fe) Calcium {L“n.] O
b Blue-green ... ...| Ithgnﬂsmm (Mgl o | D18
F Bhae: | .o o .| Hydrogen ;... oo i o 486
G Dark Blue ... ... Hydrogen Iron .. ...| 430
H Violet ... ... ...| Calcium (Bright Line) ...| 397

The visible spectrum approximately consists of those light waves
whose lengths vary between 800 and 400 pp, and whose vibrations
respectively vary between 400 and 800 billions per second. The
mean refractive index of glass or any other substance is expressed
by that of the D line and written p,. For achromatising glasses
for visual purpoeses the lines C and I are combined. For photo-
eraphic purposes where violel light plays an important part, the
lines D and G are usually combined. For astrophotographic pur-
poses in which vision is of little consequence lines I and H (or
beyvond) are brought tegether.
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Speed and Frequency of Light.—The speed of Jight in air
is 300,000 kilometres per secomnd, and there are a billion pp in a
kilometre; the frequencies of wave-lengths in a second of time
varyving inverscly with the lergth of ‘hese waves. If we express the
length of the waves in billionths of the kilometre, that is to say in
pp, and the frequencies in billions per sccond, then by 1,‘:1v1dmg
300,000 by the wave-length in pp the number of billions of
frequencies per sccond for any kind of light is obtained. In the
most luminous part of the solar spectrum, the number of billionths
of a kilometre of the wave-length is equal to the billions of fre-
quencies per second, namely, about 548,

Complementary Colours.—It is usual to denominate red, green,
and blue-violet as primary colours because their visual impressions
cannot he l‘l.!]rl'mhu'i.'-il by a mixture of other spectrum hues. The
intermediate colours are termed secondary because they are

Iig. 6.

Diagram illustrating complementary colours in light.

obtained by the combination or overlapping of the primaries. A
complementary colour is that which, when combined with another
colour, forms white light. Thus red and green-blue form white,
so also do violet and green-yellow. The complement of green is
purple, which i1s not in the speetrum. Yellow is formed by the
fusion of orange-red and green and is the narrowest of all the
colours of the spectrum, and its complement is blue.

The primary green is not the brightest part, but inclines rather
towards the vellow, and the primary violet inclines rather towards
the blue.

Colour Sensation.—According to the theory propounded by
Young and Helmholtz, there exist in the eve three primary eolour
sensations which are supposed to be conveved to the brain by three
sets of nerves, causing the sensation of red, green and violet
respectively.  Each set of nerves conveys, however, not only the
sensation of its special colour but also to a slight extent that of
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the other two. By stimulating one or more of these nerves, in
varving ‘proportions, all the colours of the spectrum can be con-
veyed to the Dbrain. These curves are shown in the diagram

(Fig. 7).

E F G M

L - - =

Fig. 7.

Colours of Light.—A mixture of spectrum red and spectrum
ereen will if mixed in certain proportions produce a sensation of
yvellow. I spectrum red, green and Dlue-violet in the right pro-
portions be mixed white light is formed. If the wave-lengths of
red and green be added together the mean will give the wave-
length of vellow. Thus, taking the wave-length of erange-red as
equal to 656 and that of blue-green as 518, then 656 + 518 = 1174
and 1174 3 = D37, which i.'.ul‘rt:r:|mt||1;~=. to the ‘h\'u'h'u-lf.rl;;_’til of J‘i.'“u\'l.'
light. Again, takinge the wave-lengths of the three colours red,
green, and blue respectively, the sum divided by three will give the
wave-length for the brightest part of the yellow, which is the nearest
approach to white light which the epectrum afiords.  Thus,
748 + 527 + 486 = 1761 and 1761 /3 = 587, which is about the
wave-length of the whitest part of the spectrum.  The quantity of
light of one colour necessary to mix with any other to produce white
light, or a third colour, docs not appear to follow any law, but the
proportions usually remain the same for different observers;
oceasionally, however, the amount is found to be very difierent,
even among persons who are not colour blind to standard tests.

Many colours, such as brown, pink, and purple, do not exist in
the spectrum, the latter being a combination of extreme red and
extreme violet Light. A colour is said to be saturated when pure or
not diluted with white. A colour such as hrown, is merely orange
diluted with white.

If three picces of eoloured glass corvesponding to the summils
of the three curves of red, ereen and blue-violet be superimposed,
since cach absorbs some of the components of white light, the three
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will absorb the whole of the visible spectrim and no light whatever
can be seen through the combination. 1f, on the other hand, the
three colours be thrown on a screen from three separate lanterns and
made to overlap the result is an approximately white dise.

The natural colours of objects may be initated by applying the
above facts to photography. Three separate photographs are taken
of an object or landscape, made up of any number of colours and
shades, cach through a glass selected to mateh as nearly as possible
one of the three primary colours. A positive is taken from each
on a film or paper, stained with the colour complementary to the
colour of the glass used for that particular negative, and the three
prints are superposed. This may be done either by laying the films
exactly over each other and looking through them as a transparency,
or each colour may be printed on the same piece of paper, and
examined as an opaque object. In this way an approximate
facsimile in colour of the original object ean be obtained.

Black may be deseribed as a sensation caused by want of colour,
but 1t is very different from what is seen, or rather not seen, in
the area oceupied by the blind spot, the latter being incapable of
conveyving any sensation of light at all and is qguite different from
black, which produces a distinet sensation. That is why the area
occupied hy the blind spot is unnoticed when we look at the sky
or other bright field,

Composition of Solar Light. —The various colours in the
spectrum are not sharply separated, but merge so imperceptibly
into one another that it is almost impossible to locate where one
colour ends and another commences. The spaece in the spectrum,
formed by a prism, oceupied by the different colours varies with
the refracting medium used for its production. If a spectrum of
solar rays refracted by a given prism of flint glass be divided into
460 parts the proportional space oceupied by each eolour will be
approximately as follows—ved 50, orange 35, vellow 15, green 50,
blue 60, indige 50, violet 100 ; total, 360.

The red end of the spectrum iz, however, crowded together by
the refraction of the prism, while the blue end is spread out con-
siderably ; for actually the extent of spectrum on either side of
the central green-vellow is about equal, as 18 seem in the
spectrum obtained by a difiraction grating.  For similar reasons,
i.e., the crowding at the red and the spreading at the blue end of
the prismatic spectrum, the red end seems Drighter than the blue,
but actually the luminosity of the spectrum diminighes about equally
on both sides from the most luminous part, which is the yellow.

Sunlight is said to eonsist of about 30 parts green, H0 parts red,
and 20 parts vielet in 100 and has ahout 30 per cent. of luminous
rays. Artificial light has a higher proportion of heat or red
rays and the proportion of lnminous rays is much smaller, vary-
ing from 20 per cent. for electricity (are), 10 per cent. for oils
and coal-gas, to one per cent. for aleohal.
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Luminous Bodies.—Waves of light are termed incident when
they fall on a body. A body is said to be luminous when it is,
in ltaulf an {}11gl|m] souree of light. Every visible body, which is
not in itself a source of light reflects some of the llght received
from a luminous source, but it may be convenient to consider that
every visible body is luminous and thercfore a source of light. A
body is rendered luminous by the light emitted or radiated from
every point of it.  The rays diverging from these points travel
without change so long as they are in the same medium.

Transparency and Translucency.—A body is said to be
transpearent when light passes freely through it with a minimum of
absorption or reflection. It is called translucent when it transmits
only a portion of the light, such as frosted glass and tortoise-shell.
Much of the light incident on such a body is reflected, scattered or
absorbed, and so objeets cannot be seen clearly through it.

Reflection.—Reflection is the rebound of light waves from the
surface, on which they are incident, into the original medium. The
reflection is regular from a polished surface and drregular from a
ruuglu:m_-d surface. Irregularly reflected light causcs the reflect-
ing surface to become visible ; regularly reflected light causes the
image of the original source of light to be seen.

The rougher the surface, the greater is the proportion of irregu-
larly reflected light ; the smoother the surface, the greater that of
vegularly reflected light. The proportion of light regularly re-
flected from a partially roughened surface is inereased as the angle
of incidence of the light hecomes greater, so that a reflected image
mayv be obtained, with ecertain positions of light and surface, from
a body which ordinarily gives no definite refleeted image.

Tolal regular reflection never occurs, for even a silvered mirror
or highly-polished surface of metal fails to reflect all the light falling
on it, but the proportion reflected by metallie surfaces does not vary
with the incidence of the light as is the case with glass. TPolished
silver reflects some 90 per cent., polished steel some 60 per cent.,
and mirrors reflect about 70 to 85 per cent. of the ineident light.
Nor is there ever total irregular reflection ; even fresh snow absorbs
gsome of the light it receives.

Opacity.—A substance is said to be opaque when all the rays
of light, incident on it, are cither absorhed or reflected, so that
none traverse it.

Opacity, Transparency, Absorption, and Reflection.—No
substance is absolutely transparent, the clearest glass or water
absorbs some of the incident light. It is Lrﬁi.imaﬂr‘nl that below 50
fathoms the sea is piteh dark, at least to the human eye, and even
glass of suflicient thickness is opagque.  Again any ordinary opague
object such as stone, metal, ete., may be ground or hammered into
a sheet so thin as to permit the passage of some light through it.
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Thus gold leaf of sufficient thinness is translucent and transmits
greenish rays. It follows, therefore, that transparency and opacity
depend not only on the nature of the medium, but also on its
thickness.

A body which is usually opagque may be rendered translucent
by making it less capable of reflection.  This fact is very often
made use of in practice. For instanee, if a drop of Canada Balsam
be dropped on to a camera focussing-screen, and a cover glass
pressed over it, the sereen becomes immediately transparent at that
spot, so that the aerial image may be readily focussed with a
magnifying-glass, and very minute details observed. The liguid
oceupies the spaces between the particles of the surface and, being
of the same index of refraction, converts the whole inte a homo-
rencous  refracting body which transmits nearly all the light.
Moistening a picee of paper with oil or water makes it much more
translucent for the same reason.  The fibres of which the paper is
made are of a higher index of refraction than the air, so that,
when the latter is replaced by oil or water, the two indices are
then more nearly alike; and being homogencous, less light is
scattered.

Some of the incident light is reflected from the polished surface
of a transparent body, and the proportion reflected wvaries
with the mnature of the body and with the angle of
incidence, it being greater as such angle inereases. The propor-
tion reflected is very small (about eight per cent.) when the light is
incident |H:||m||11|r_ulur1} and it is almost totally reflected if the
angle of ineidence is mearly 909.  Also the ]nnpm*tmn reflected
increases as the index of refraction of the medium is greater ani
viee versa. 1f glass is dusty, the irregularly reflected light is in-
ereased and the glass hecomes more visible.  Scratches on a piece
of glass roughen the surface and so tend to destroy its transparency
by uru:"ul.uh reflecting the light.  If the seratehes be multiplied
im]vfmltl_lj the glass ceases to be transparent and becomes trans-
ucent.

Thusg, in the case of every transparent body, some of the
incident light is alwavs transmitted, some absorbed and some
reflected.  Of the light falling from all sides on to a picce of well-
polished transparent glass, about 75 per cent. is refracted and
transmitted, 15 per cent. is regularly reflected and gives an
image of the source from which the light proceeds, about five per
cent. is irregularly reflected, and so makes the glass itself visible,
while the remainder is lost, being absorbed and changed into

heat, ete.

Polarising Angle.—If with perpendicular incidence all the
light is transmitted and none reflected, and if with an extremely
oblique incidence (nearly 90°9) none is transmitted and all is re-
flected, there must be some angle of incidence at which half the
light is reflected and half transmitted and refracted. This occurs
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when the light is incident at what is termed the polarising angle,
and then the reflected and refracted rays are at right angles to
each other, as shown in the following diagram—

In Fig. 8 A B is a polished surface of glass, on which a beam of
light ED is incident at the point D.  The reflected light is
represented by D C and the refracted light, at right angles to it, by
D F. The perpendicular, at the point of incidence P DI is the
normal or perpendicnlar to the surface, P D K is the angle of
incidence, P D C the angle of reflection, and P’ D I' the angle of
vefraction. The polarising angle of glass is about 5717,

Colours of Bodies.—A substance is said to be of a certain
colour when it reflects or transmits rays of certain wave-lengths and
absorbs the rest of the speetrum. Thus an object which absorbs
the violet and green and reflects the red waves appears red. If it
absorbs red waves and reflects green and violet it has a blue colour.
A green body absorbs all but the green waves.  One which is orange
in colour reflects red and green and absorbs violet. The colour
reflected by a body is usually the same as that which it transmits,
but some bodies transmit the complementary colour to that which
they reflect. Dark colours reflect little light, and slight differences
between them are hardly appreciated in dull illumination;
similarly, light colours refleet much light, and slight differences are
hardly noticed in very bright illumination. All colonrs lose their
distinetive hue in proportion as the light reflected becomes reduced.
Thus with dull illumination all colonrs appear dark grey. The
proportion of light reflected varies with the nature and colour of
the body. Approximately a coloured body retlects 20 per cent to
50 per cent. of the light which falls on it.

A body which reflects light of all wave-lengths is called white;
a body which has affinity for all the colours, so that all are absorbed
and none reflected, is called black. No body, however, is of a
nature so chemically pure as to ahsorh entirely or reflect all the
incident light ; the whitest body, such as fresh snow, reflects about
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70 per cent. of light, white paper reflects from 35 to 40 per cent.,
while black velvet reflects about one per ecent., the proportion
reflected inereasing with the thickness of the body.

Colour is a quality of the illuminating light itself, and not of
the body which reflects it.  In order to appear of a certain colour,
the ﬂhji."l‘.f must receive that eolonr in the light and rvefleet it, and
at the same time ahsorh all the other colours,

Coloured Bodies and Lights.— The real colour of a body is
that which it exhibits in white sunlight; it often appears of a
different colour in ordinary artificial light. Ior example, some
blues and greens ean barely be distinguished by gaslight and still
less by lamp or candle light. Moreover, a deep orange surface in
bright daylight creates the same impression that a white one does
when seen by lamp light. The nearer the light of the illuminant
resembles that which the body absorbs, the darker the latter will
appear, since it will refleet less light. Should the light be of a
colour exactly corresponding to that which the body absorbs, none
will be reflected, and the body will consequently appear black.

If a coloured body be viewed through a coloured glass, which
absorbs the rays refleeted by the body, the latter appears black.
Thus a red body appears black through a green glass of the proper
shade, the red rays reflected by the bady not traversing the glass.
A body viewed through a glass, or by light, of the same colour
appears almost white, or at least bavely distinguishable from a
white u]:jw'l, :

If a blue-green and a red glass be placed towether, the light
transmitted by the one is absorbed by the other, and the com-
bination is rendered opague.  Cobalt glass transmits red and blue,
ordinary green glass transmits blue and green; on the two being
placed together original white light transmitted appears blue.

Mixing Pigment Colours.—The primary colours in pigments
(paints or colouring II'l.Il‘!tl‘_‘I':} are red, :I.‘E.'”EIW, and blie. 11]1}-' other
colour is obtained by mixing two primaries. Thus, blue and yellow
pigments combined make green. A blue pigment reflects violet
and green, vellow reflects red and green. If the two pigments be
mixed, there are reflected a certain quantity of violet and of red
and a double quantity of green. The red, the violet, and a portion
of the green combine to form white light, so that there is a residue
of green light which gives the nature of the colour to the misture
of the two pigments. If coloured ecrystals are pulverised they
become lighter and more white in eolour since their power of
absorbtion of colour becomes less.  Thus, if bhichromate of potash
or sulphate of copper erystals are reduced to an impalpable powder
the result in cither case is a nearly white dust.

In some instances the result of the misture of pigments is surpris-
ingly different from mixing the same colours in light. Thus if
yellow and blue spectrum eolours are superposed on a sereen they
produce the sensation of white, but if yellow and blue pigments are
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mixed they eause the sensation of green. If we draw yellow and
blue sectors alternately on a dise, which is rapidly spun round,
the result is white, provided the colours ave of the right tint and
of the right proportion. Otherwise, especially in artificial light,
they might give a purple tint. The colour, whether white or purple,
is always muddy or impure becanse trge spectrum colours can never
be produced by pigments or artiticial means, In pigments, a
Eﬂlfﬂllfiﬂl'}' [‘-{Illﬂtl' i..‘\" li'll]'iﬂilli"l] r]'{:llll I]Jl'! Hli?i"l.[l"l“ i'IP LV D ].H'i“lill'll'
colours. A tertiary colour results Hom a mixture of two secondary
colours, Combining the three primary eolours in certain propor-
tions produces grey; also, if they are mixed in certain other pro-
portions and diluted with white an innumerable number of inter-
mediate colours can be formed.

Complementary Colours in Pigments.—The complement of
a primary colour is that secondary colour which results from the
mixture of the other two 11I'i1rI:Ll‘iv:-'.. Tl complement  of
a secondary colour is that primary colour which is not contained
in it. Thus the complement of red is green, which is formed by
combining yellow and blue. The complement of yellow is violet,
which is a combination of blue and red. The complement of blue
is orange, which is produced by a mixture of red and yellow.

Diagram illustrating Complementary Colours in Pigments.

Qualities of Colours.—Colours in pigments possess three
qualities, viz., tone, brightness, and purity. Tone or hue is that
quality which differentiates between the various colours—say, red
and orange; it depends on the wave-length. Brightness, intensity,
or luminosity is that quality which represents the strength of a
colour ; it depends on the amount of light reflected; one which
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reflects little light is a dark colour, and one which reflects much
light is a light colour. Fullness, saturation, tint, or purity is
that quality which represents the depth of a colour; the less the
admixture of white or black the purer is the colour. Red mixed
with white forms pink, whereas red mixed with black makes a kind
of marcon. Yellow or orange becomes straw or brown according
as it is mixed respeetively with white or black.

Density of Media.—The speed with which light travels within
a certain medium depends on the nature of the medium, or, more
exactly, on the elasticity of the ether within it; thus, light travels
more slowly in a dense medium, i.e., one in which its component
particles are crowded together like glass, than in a rare one, such
as air.

Linear Propagation of Light.—The propagation of light is
rectilinear, and the familiar instance of sunlight, admitted through
a hole in the shutter into a darkened room, illustrates this fact by
the illumination of the dust particles in the air along its path.
The illuminated dust renders the course of the light visible, for,
were the air to be deprived of it by filtration, the space over whmh
the light passes would be invisible. The dircction of a wave-front,
as it advances, may be considered a line which is called a ray. The
rays of light diver reing from a luminous point form a cone, of
which the point llbl.]r is the vertex, and such collection of rays is
valled a peneil of light.

Divergence of Light.—In nature, rays of light always diverge
from luminous points. If the luminous point be very distant the
angle of divergence becomes so small that the rays may be con-
sidered parallel to each other, and the luminous point is then said
to be at infinity. A collection of parallel rays is called a beam of
light.

As light radiates from luminous points which have ne real
magnitude, any body on which it falls must be larger than such
points, the pencil from any given point constituting a cone of
which the point of origin is the apex (or vertex) and the illuminated
body the base. And from a luminant of sensible size an innumer-
able number of such econes of light proceed, all having their bases
on the illuminated object.

The angle of divergence is that angle included between the rays,
proceeding from the luminous point, which fall on the outermost
edges of the object; consequently the angle of divergence varies
inversely with the distance between the source of light and the
illuminated body, and directly with the size of the latter. Rays
of light which diverge from a very distant point are always regarded
as parallel, and those from a near point as divergent. This being
g0, there must be some distanee at which divergence merges into
parallelism.
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Parallel Light.—In visual optics, 20 feet or 6 metres marks
the shortest distance from which light may be regarded as parallel,
and this distance, or any beyond it, regarded as infinity which is
written thus o0,  For some branches of optics a much greater
distance is taken as the divergence limit. Thus in photographic
optics it may amount to 100 yards or more, while in astronomy
the nearest o0 point may be taken at several miles. If d is the
angle of divergence, a the aperture of the lens, and 5 the distance
of the source, the divergence of light is, with sufficient exactitude,
found from tan d = a/8. For example, suppose the source of
light is at 6 M and the pupil of the eve 3.5 mm, then the visual
angle of divergence will be 27, for

35
6,000

Sinee a divergence of 2/ is so small as to be negligible, it explains
why 6 M is considered o0. At 20 cm., with the same pupil, the
divergence of the light is one degree.

Light is never naturally convergent, but can be rendered so by
means of a lens or reflector. A collection of convergent rays is also
called a pencil of light. The apex of the pencil, towards which
they are convergent, is the focus.

tand = = 0005 = tan 2'.

Small Apertures.—If the light from a candle be allowed to
pass through a small aperture on to a white screen, an inverted
image of the flame is seen. The relative size of the image and of
the flame itself are as their respective distances from the aperture;
thus they are equal in size when the two are equi-distant from the
aperture. The image is smaller if the screen be brought nearer
to the aperture or if the candle be moved further away, and vice
versa. Generally, the smaller the aperture, the sharper but less
bright is the image. The shape of the small aperture does not
materially affect the distinetness of the image, nor dees it have
any appreciable effect on its shape. This is seen when the sun
shines vertically through the gaps in the foliage of a tree. Each of
these gaps varies in size and shape, but the luminous images of
the sun form bright discs on the ground, all identical in shape
unless the gaps are large.

In order that a distinet image of a flame may be seen on a screen,
it is necessary that the rays from each point of the luminous body
should have a separate focus on the screen. This may be said
to occur when the light passes through a minute aperture,
because then only a small beam of light from each point can
reach the screen, and for the same reason the image thus formed
is faint. If twenty apertures be made, near one another, twenty
mmg{:‘; of the flame will be seen on the sereen, and the number of
images will increase with the number of holes, until the images
will so overlap one another that it will be found impossible to
distinguish them separately, in which case there will bo a general
illumination of the sereen.

D
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The Flame.—A flame consists of three cone-shaped portions,
viZ, i —

(A) The dark central portion surrounding the wick is called the
cone of generation or obscure cone. 1t is of low temperature and
is composed of gaseons products holding in suspension fine carbon
particles which have not yet become incandescent.

(B) The luminous part surrounding A, called th!s cone of decom-
position or luminous cone, in which l}]«!:- Eﬂ.rimf] is in a state of
intense incandescence, and in which luminosity is greatest.

(C) The thin external envelope which iE} light yellow towards
the summit and light blue at the base. It is the cone of complete
combustion giving but little light, and is the main source of heat,
The temperature is high and combustion complete on account of
the free access of the oxygen of the air.

The flame in general is brighter at the top where the light pre-
dominates, and darker towards the base where heat is in excess.
The outer envelope, being mixed with oxygen, is called the oxydis-
ing element, while the inner cone, consisting mainly of unconsumed
ras, is called the reducing element of the flame, since at that spot
metals may be reduced from their compounds.

A flame is produced by the incandescence of carbon
particles which have been brought to a high temperature; the
combustion, when once started, being continued owing to the heat
" produced by the chemieal action itself. In a lamp or candle flame
the material consumed is drawn up by capillarity through the wick.

Heat being produced by combustion, and luminesity being the
result of the incandescence of unconsumed particles of carbon, the
luminosity of a flame is low when combustion is complete, as is the
case with the flame of some gases and of alcohol. It is high in a
coal-gas flame, or in that produced by the comhbustion of oils and
fats, where a considerable quantity of incandescent carbon is
present. If the combustion be intensified by the introduetion and
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intimate mixture of a sufficient supply of oxvgen, as is done in the
Bunsen burner (Fig. 11), in which coal-gas is consumed, luminosity
is decreased and heat is increased ; the flame produced is then of
a faint blue instead of the usual yellowish colour. The oxyhydrogen

flame also gives very great heat, and yet is of a pale bluish colour
and almost invisible ; but when made to impinge on a lime eylinder,
it renders it white hot at the point of contact, giving rise to an
intensely brilliant spot of light, so that the temperature of a flame
is neither indicated by the luminosity nor by the colour alone. To
obtain maximum luminosity the supply of air must be neither too
large nor too small. If too large the carbon is consumed too
quickly, and if too small the carbon passes off unconsumed as soot.

Interference.—If from two adjacent points of light P, and P,
(Fig. 12) waves of light are propagated, the crests and troughs
of the waves from I’, will coincide with those from P, along certain
lines marked B, and they reinforce each other, thus causing

Fig. 12.

increased wave motion. Between these lines marked D the crests

from the one source coincide with the troughs of the waves from the

other, with the result that the wave motion is neutralised at these

spots owing to the inferference of the one set of waves with the
D 2
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other.  Alternate lines of light and darkness, known as inter-
ference bands or fringes, are in this way produced.

The light bands are along lines so situated that any point on them
is a whole number of wave-lengths from ', and P,. The dark bands
are along lines so situated that any point on them is one half wave-
length further from the one source than the adjacent white band.
The shorter the waves which interfere with each other, the less is
the distance between the light and the dark bands.

1f, as in white light, there are waves of difierent lengths, the
interference bands, instead of being alternately light and dark,
take the form of coloured bands which are alternately red, blue,
and white, the latter occurring where all the various colour bands
coincide. At certain distances from the central bright band, the
fringes disappear owing to the coincidence of so many bands of
different colours. :

The colours of thin films, such as soap bubbles, layers of grease
on water, ete., are due to interference. The light is reflected from
the outer surface, and again from the inner surface of the film,
and the light reflected from the two surfaces is not in the same
phase—that is to say, similar points in two waves are not simulta-
neously moving in the same direction and to the same extent.

Newton's Rings.—When two plane or two similarly eurved
surfaces, the one convex and the other concave, are placed
in contact, the film of air contained between them is of equal
thickness, but if the one surface is not truly plane, or of exactly
similar curvature to the other, the film of air is of varying thick-
ness, and colours, due to interference, are exhibited. This
constitutes a method of determining a true plane or a uniform
curvature. If a convex surface is placed in contact with a plane,
or another convex surface, the film of air contained between them
must be of gradually increasing thickness. At the centre the film is
very thin, and a central black spot results, which is surrounded
by a series of alternately bright and dark rings if monochromatic
light is employed, or by coloured rings if the incident light is
white. These are termed Newton's Rings. If the rings are viewed
by transmitted light the centre is bright and the surrounding rings
are alternately bright and dark, or of colours which are com-
plementary to those seen by reflected light.

Diffraction. —When light reaches the edge of a body owing
to its undulatory motion, some of the waves bend round the
edge of the obstacle and penetrate the shadow cast by it. This
phenomenon is known as diffraction. If monochromatic light is
admitted through a small aperture the edge of the shadow is
characterised by a series of alternate light and dark bands or rings,
parallel to the edge of the shadow. These bands become less and
less distinet as they are further from the edge of the shadow, and
they are broader in proportion to the length of the waves. If the
source of illumination be white light, the diffraction fringes of the
different colours overlap and a series of coloured fringes are seen.
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It is essential that the aperture be narrow, or small, since other-
wise the unimpeded waves so out-number the retarded ones that
the diffraction effect is more or less lost. The wider the opening,
the narrower do the bands become. If a wvery fine obstacle such
as a hair or thin wire be placed between the light and a screen,
a series of fringes can be seen both within and bevond the
reometrical shadow.  If the obstacle be circular, such as a small
round patch on a piece of clear glass, the shadow is seen surrounded
by alternate light and dark rings, or, if the source be sunlight, by
a series of spectra. These bands encroach on the shadow, at the
centre of which a bright dot can be seen.

The sun shining on twigs and leaves of trees causes a glistening

appearance due to diffraction bands. A star seen through a per-
fectly corrected telescope, or small objects seen by the microscope,
appear bordered by one or more faint rings.

Owing to diffraction, there is a limit to the possible magnifying
power of a microscope, since the higher the power of the objective,
the smaller the lenses, and consequently the more marked the
diffraction phenomena.

The colours of many beetles, butterflies, and of mother-of-pearl
are caused by diffraction and interference phenomena, and are not
due to pigmentation at all.

Diffraction Grating,—If a large number of very fine equi-
distant lines—some thousands te the inch—Dbe ruled parallel to each
other on a plate of glass or metal it forms a diffraction grating.
The light transmitted through it, or reflected by it, forms a series
of spectra which can be thrown on a sereen or be examined by a
telescope, and the finer and closer the lines the purer will be the
spectrum obtained. The diffraction spectrum exhibits the colours
in proper proportion, the inequality and irrationality of the spec-
trum formed by a prism being absent, and it enables the wave-
lengths of light to be measured,

Phosphorescence. —This is the name given to the property of
a substance by whu,h without sensible rise of temperature, it
becomes luminous in the dark after exposure to light. The term,
however, also includes ph-,.nmm_lm due to other causes. lealﬂmrm-
cence occurs (a) in minerals, (b) in vegetable matter, (¢) in animals,
and (d) indirectly owing to the radio- activity.

(a) If some chloride or sulphide of calcium or barium be pre-
served from air in a sealed glass it will shine brilliantly for a long
time. Some diamonds are said to possess this property. The rays
which exeite the luminosity are those of high refrangibility, but the
colours of the phosphorescence are of the most varied kinds.
Besides this form of phosphoreseence many minerals exhibit this
property under different eireumstances, thus:—By heating
fluorspar, quinine, ete., by applying friction to quartz or cane-
sugar in the dark, or by cleaving a slab of mica. Fused boric
acid or even water when rapidly drystallised or frozen may exhibit
this phenomenon.
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(b) A number of plants exhibit phosphorescence, as do also fungi
growing in decayed wood. The phosphorescence of decaying vege-
table matter is caused by oxydation, and that of phosphorus is
probably due to the same cause.

(¢) The brilliant phosphorescence observed on tropical seas at
night is due to numberless phosphorescent organisms. The light
emitted by various animals and insects, such as the glow-worm,
firefly, and certain centipedes is phosphorescent, and is found of
almost every colour in one or other species. Putrefying animal
substances as well as vegetable often become phosphorescent.

(d) When an electric current is passed through a vacuum tube
Réntzen ravs are produced, and the walls of the tube emit a
oreenish phosphorescence.  This is assumed to be due te minute
L‘]LLt!IIlLEl particles striking the wall of the tube with immense
velocity and producing phosphorescence and heat by this impact,
the colour of the phosphorescence depending on the nature of the
rlass.  Radimm is found to shine perpetually in the dark, and
bodies exposed to the radiation of radium become themselves radio-
active, i.e., phosphorescent for a time.

Fluorescence.—Fluorescence is the property possessed by certain
bodies of absorbing ultra-violet wawves, invisible to the eye and
emitting by radiation light of longer wave-lengths by which they
appear self-luminous.  This property was first discovered b:,r Stokes
in fluorspar, and so named by him fluorescence. The emission of
light ceases immediately the mwm*a,l souree of light is eut off, and
thus differs from yhm]}}mman{:nm

The phenomenon is not confined to the ultra-violet rays, for if a
solution of chlorophyl be placed in a dark room and a beam of white
light allowed to fall on it, the surface of the solution emits a red
fluorescent light. A solution of quinine emits a pale bluish colour
in the prescnce of daylight. The fluorescence increases if the solu-
tion is held in the violet end of the spectrum, and is visible when
held beyond the limits of the visible spectrum, the invisible ultra-
violet rays exciting fluorescence and becoming changed into visible
blue-violet rays. A thick plate of violet glass placed in front of a
beam of light from the electric are will eause the same phenomenon.
Asculine (the juice of the horse-chestnut bark), barium, and many
other substances are fluorescent, and so are also the cornea, crystal-
line lens, and bacillary laver of the retina.

It has been said that the ozone of the atmosphere is fluorescent,
and, by converting the ultra-violet into visible rays, makes the sky
appear blue.  When invisible rays are changed into luminous rays
by their passage through, or reflection by, a partially transparent
body, the phenomenon is termed lumineseence. The conversion of
light into heat rays is calorescence,
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CHAPTER II.
SHADOWS AND PHOTOMETRY.

Shadows. — Since light rays travel in straight lines, and ether
waves travel in a direction at right angles to their front, any opaque
obstacle in their path will arrest their march and produce a
negative image of the object which is called a shadow. In the same
way, if sound waves meet with an obstacie some of the sound will
be stopped and produce a sound shadow.

Umbra and Penumbra.—When the source of light is in a
line with the centre of the obstacle, and the ground on which the
shadow is cast is at right angles to the central ray of the pencil of
light, the shadow has an outline exactly corresponding to that of
the body, because then, as in Fig. 13, the periphery of O cuts off

Fig. 13.

the light equally in every direction. The shape of the shadow
depends upon the inclination of the sereen to the opaque body and
the source of light. This may be illustrated by the shadow cast
by one’s body along the street. If the source of light is directly
overhead, no shadow is cast, while the nearer the light is to the
horizon the longer the shadow becomes. If the same light approxi-
mates to a point as shown in Fig. 13 the shadow is dark and its
edges clearly defined as at A B on the sereen SS.



26 SHADOWS AND PHOTOMETRY .

If, however, the source of light L is of definite size relative to the
intercepting body (as in Fig. 14), the edges of the shadow are not so
sharp and the shadow exhibits two parts, viz., a very dark centre

Fig. 14.

A B called the umbra, from which the light is entirely cut off, and
a less black outer portion C A, B D, called the penumbra, which
receives a certain amount of illumination. The space C A receives
lhight freom L/, but none from LY, while B D receives light from
L", but none from L/. A B receives light from neither I/ nor L".

I'ig. 14 shows the umbra A B and the penumbra A C, B D when
the luminant L is smaller than the intercepting body. In this case
the umbra A B becomes larger and the penumbra A C, B D smaller,
as the shadow is further from the intercepting body. Doth the
umbral and the penumbral cones are divergent.

Fig. 15,

IPig. 15 shows the source larger than the intercepting body.
In this case, as the distance between O and 8 8 is increased, the
umbra decreases in size, since the umbral cone is convergent, while
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the penumbra increases in size owing to the penumbral cone being
divergent.  Bevond a certain point there is ne umbra.  Thus,
when the hand is held close to a wall, in a well-illuminated room,
the projected shadow is almost entirely umbra; as the hand is
moved away the umbra decreases and the penumbra inereases until,
at a certain distance, the whole shadow becomes penumbral. This
is shown in Fig. 16. .

The larzer the size of the luminant as compared with that of
the intercepting body, the smaller is the umbra, and the larger
the penumbra, and vice versa. If the luminant and the obstructing
body are of equal size, the umbra, which is cylindrical in section,
does not vary in size with its distance from the body or screen, but
the penumbra increases as the screen is further from the body.

The umbral and penumbral portions of a shadow are not separated
from each other by a sharply defined line of demarcation, but
imperceptibly merge into each other.  Generally the brighter the
light, the deeper is the shadow cast by the object, for then the
contrast between the illuminated ground and the part from which
the light is totally or partially obstructed is greater than in a dull
light, when shadows are barely perceptible.

Shadows from Coloured Lights.—A shadow east by a body
when the light is coloured appears to be tinged with the colour
complementary to that of the light. This is due to contrast,
because the illuminated ground is eoloured by the light, although
this fact may be hardly appreciated. If with the Rumford Photo-
meter the two lights employed be red and green, the shadow due
to the former is green and the latter red. In this case only the one
light falls on a space from which the other is excluded, and the
space is therefore coloured by the light it receives. Contrast also
helps to increase the depth of the eolours.

Calculations of Umbrae and Penumbrae.—The caleulations
for determining the size of the umbra and penumbra are com-
plicated, and vary so much with the conditions under which the
shadow is cast that in every case they must be worked out from
general principles.

Let U be the umbra, P the penumbra, S the source of light, B
the intercepting body, and C the sereen. Let sb, se, and be be
respectively the distance between S and B, that between S and C,
and that between B and C.

U= Bwhen S = B; U>B when 8<B; U<B when S=1B.
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s¢ be

If — = — as in Fig. 16 (1), there is no umbra, for then the
S b

penumbral dise has its eentre axially in line with B and 8. When

s¢ be
—(-— there is also no umbra, the penumbra from each side of

5 B

the body overlapping the centre as shown in Fig. 16 (2).

Fig. 16.

The penumbra, if S be distant, can be calculated from the angle
which 8 subtends at B, and it may be considered subtended equally
at the edge of B as at its centre. The angle of the diverging cone
of light at the edge of B is equal to the angle there subtended by S.
Also the eentral line of the penumbral cone may be considered as
coinciding with the central line connecting S, ‘B, and C. Thus,
if S be a square window 2ft. in diameter, the size of U and P on a
wall, 20ft. distant, cast by a coin 1 inch in diameter held 1ft. from
the wall would be estimated as follows: Let A be the angle sub-
tended by S at the edge of the coin, then

2

— = .-”]5 = fhan .

19
Without finding the angular dimension of a, we know that the
one side of the penumbral dise is 105 = 12 = 1.26 in. Since we
take 8 as axially in line with the edge of B, as well as its centre,

1.26

one half of the one side of the penumbral dise, viz. : —— = .63in.

2
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18 behind the edge of B, encroaching on the geometrical umbra, and
similarly on the other side. Thus there is no umbra, for 1 — .63
— .63 = — .26, which is a negative quantity, as in Fig. 16 (2).

The penumbral disc is 1.26 + 1.26 — .26 = 2.26in.
If the coin were 2in. in diameter we should have
U =2- .63 — .63 = .Tdin,,

And P =126 4+ 1.26 + .Y4 = 3.26in.

As another example, the length of the shadow cast by a stick
Jft. long, 20ft. from a small lamp which is 10ft. from the ground,
would be found thus:—

Here the distance of the lamp to the end of the shadow is 20 +
z, and 20 4+ @ : z as 10 : 3 ; therefore

ey ST T 10z = 60 + 3z

T = 60, and ¢ = 51 f.

Ho the length of the shadow is 811,

Shadows cast by Lenses.—A concave lens, when placed
between a light and a screen, casts a shadow like an opaque body.
The transmitted rays being divergent, only very few impinge on
the sereen immediately behind the central portion of the lens. The
diverged rays fall on the sereen away from the axial line, on a space
which is then doubly illuminated, so that the shadow is surrounded
by a luminous zone.  The luminous zone becomes larger and
fainter as the distance hetween the sereen and the lens is inereased.
A convex lens throws a very bright image on a screen if placed near
the focus, because it condenses to a small area all the light passing
through it. “The bright area is surrounded. by a shadow, this
being the area from which light is excluded. If bright light be
passed through a prism the space on a sereen, inunediately behind
it, exhibits a shadow, the light deviated by the prism falling on
another part of the sereen, which, being also illuminated directly,
exhibits there a bright areca.

Intensity of IHumination.—In order to illustrate how the
intensity of illumination varies with the distance between a source
of light and an illuminated area, let the source of light, say a
candle flame, be supposed to be at the centre of a sphere of one foot
radius, and let the intensity of the light at the surface be con-
sidered as unity. The area of a sphere is equal to 4 =% v being
the radius.
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If the radius of the spherical envelope be inereased from one foot
to two feet, its area will then be quadrupled, since the superficial
area of a sphere varies as the square of its radius. If the sphere be
three fect in radius its area will be increased nine times. In this
latter case, the available light is distributed over nine times the
area of the one foot sphere, so that the intensity of illumination
over a given area is but one-ninth that of the first sphere, and in
this way the intensity may be calculated for a sphere of any size.

The Law of Inverse Squares.—Since any flat surface virtu-
ally forms a portion of a sphere having the source of light for its
centre, without much error, it may be stated that the illumination
of a flat surface also varies inversely with the square of its distance
from the source of light. This distribution of the illuminating
agent is illustrated in Fig. 17.

- -'}.J;”'l_.'-
y
. F'J;I-'
Sc'___- i B
e 2
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Fig. 17

Let 8 be the source of ligcht and A, B, and C screens subtending
equal angles, placed vertically at a distance 1, 2, and 3 feet respec-
tively. The same amount of light from L is received by all, but
C, being at a distance from L, which is three times greater than
that of A, is nine times as large; and it follows, therefore, that
cach unit of arca of C receives only 1/9th of the quantity of light
received by each similar unit of A, while B at 2 feet receives 1/4th.

If at a given distance, say 1 foot, a certain intensity of illumina-
tion I is obtained from a lamp, and the lamp be moved to a greater

1 1
distance, say 9 feet, then the intensity becomes — = — or the 81st
g2 81

part of the illumination received at a distance of one foot. If it be
increased to 10 feet it will require 10*° = 100 luminants to obtain
an equal intensity as at 1 foot.

Obliquity of IHluminated Surface.—The intensity of illumina-
tion depends not only on the distanée of the surface from the
light, with which it varies inversely, but also on the inelination
of the surface to the light, with which it wvaries as the cosine
of the angle which the surface makes with the normal.
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Suppose, for example, a series of parallel rays of light impinge
on a vertical screen A B, If A B be inclined to the position B D,
so that the angle of inclination a or A B D = 60°, then only those
rays corresponding to C B will fall on B D, as in Fig. 18,

Now cos ¢ = — = —. Also from inspection it is clear that

B C is half of B A, which equals B D. Therefore, if the sereen be
inclined 602 from the vertical it will receive half the light that it
does when it is vertical.

. G —-7!)
}. —— e S T —— T
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Fig. 18.

Suppose L be the amount of light falling on a unit of A, the area
of the screen, 1 metre from the light. What amount of light will
fall on the sereen when inclined at 45° to the normal and removed
to five times the distance? The total amount of light received each

instant is = L A, and the amount of light received on the sereen
inclined at 459 is therefore equal to

L A cos 45°
d2
The intensity of illumination per unit area is

cos 45 L

d* 25
1

or about — of the light received on the sereen at 1 M distance.
36

This holds good for the light reflected from a surface, as can be
seen from Iig. 18,

Apparent Paradoxes.—In connection with this subject there
are two apparent paradoxes which need explanation.

The first is that an object or source of light appears equally
bright at all distances from the eyve. It is known that the bright-
ness of an object varies inversely as the square of the distance, so
that an object at one vard is four times as bright as one at two
yards, but at the same time the image on the retina occupies
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four times the area, which means it is only a fourth as bright
as it would be if t.mnpmssul into the size it would be were the object
placed twice as far away. Of course if a screen were substituted for
the cye the whole screen would be illuminated, as no image would be
formed on it, no matter where the light is placed, so that there
would be nothing to counteract the law of inverse squares. But
in the former case the light gained by bringing the object nearer
is exactly neutralised by spreading it over a proportionately larger
area.

It may therefore be said that the law of squares holds good only
for light received directly on a sereen, and that if it passes through
a lcm. svstemn so as to form an image, as in a camera, the brightness
of the image is the same whatever the distance of the objeet may be.
This rule does not hold good for a point of light such as a star,
since it can only form a point image on the retina, nor does it
obtain for any object whose image is so small that it will only cover
a single cone on the retina, for then its reduection in size could
produce no effect on the eyve. It is true that distant objects, as a
rule, look more hazy than near ones, but that is due to the partial
opacity of the atmosphere.

The other is that a luminous or illuminated surface appears
equally bright at whatever angle it is seen. This apparently con-
tradicts the law of cosines, but it does not really do so, for although
an inclined surface receives less light, the area pereceived is cor-
I'Lh'itllldlll""]'k diminished. Therefore its brightness as perceived by
the eve is the same in both cases.

The foreshortening which the tilted reflecting surface undergoes
is, like the amount of light it receives, proportional to the cosine
of the angle of inclination.

The sun and moon appear as flat dises and not as hemispheres,
since their surfaces are apparently equally illuminated, and in the
same way a cannon ball or eylinder of metal, heated white hot,
appears quite flat,

Photometry.—The measurement of the luminosity of a light
source, or of the illumination of a surface, is termed pholometry,
and the instrument or apparatus emploved is called a photometer.

A luminous source, unless it he a star, has a definite surface which
is seldom of equal luminosity throughout. The gquantity of light
emitted varies at different points of the surface, but the sum of
the light emitted from every point is the total luminosity, and it
is this which is measured by photometers. The intrinsic intensity
of luminosity I iz the mean quantity of light emitted normally
from a unit of surface.

This is found by the equation I = — where ¢ is the total

S

amount of light and 8 is the surface of the luminous souree.

The intensity of iflumination is the total amount of light which
falls on a unit of the illuminated surface.
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Luminosity and Illumination.—It is necessary, when
considering photometry, to clearly differentiate between luminosity,
or the illuminating power of the source light, and lumination,
or the amount of light received from the source by a body.

Photometric Standards.—The usual standard of illumination
in Great Britain is that given by a sperm candle § inch in diameter,
1 of a pound in weight, and burning 120 grains per hour. It has
a wvariation of about 207. The luminosity of gas, with an
ordinary burner, is equal to that of from 12 to 16 candles.

There are various other photometric units, among them the
following : —

In Germany the standard is the Hefner-Altencck lamp, called
a ‘““Hefnerlamp’ (H), having a eylindrical wick 8mm. in diameter
burning amylacetate, the flame being 40mm. high. It is correct
to about 27/.

The ‘“‘Pentane’’ standard consists of a mixture of pentane gas
C.H,, and air, which is burnt at the rate of } cubie foot per hour;
the flame is a cireular one 2} inches high and } inch in diameter.
There is no wick or chimney round the flame.  Pentanc is a
volatile liquid, like naptha, prepared from petroleum. The form
designed by Vernon Harcourt is a 10 candle-power standard, and
is largely used in this country. It is said to vary less than 17/.

The French ““Carcel’” is a lamp of special construction burning
42 grammes of colza oil per hour.

The “Violle” or absolute unit was the standard invented by
M. Violle, and adopted at the International Congress at Paris in
1834, It consists of the light emitted from a square cm. of
platinum heated to its melting point. Of all the standards it is
the most exact and reliable, but it has the objection of being
expensive and diflicult to apply.

The International Congress of 1890 adopted as the standard the
“Bougie-decimale’ or decimal candle, the unit illumination of
a surface being that produced by one bougie-decimal at one metre.

The British candle and the bougie-decimal have about the same
intensities.  The “‘Carcel’”’ equals about 91 candles, and the
“Violle’' unit about 20 candles. Thus 20 bougie-decimals = 19§
B.C. = 22.8 Hefner = 2.08 Carcel = 1 Violle.

Measurement of Light Sources.—Photometry consists in
making a comparison of the unknown illuminating power of any
gsource of light with that of a standard unit. Direct comparison
would be difficult, but the stronger light can be placed at a greater
distance, where it produces an intensity of illumination equal to
that of the standard light at some shorter distance. The illuminat-
ing powers of the two sources of light are respectively as the squares

of the distance at which, on a given surface, they produce equal
intensities of illumination.
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Let the standard candle at one foot and another luminant at four
feet rive equal intensity of illumination ; then the greater luminant
is of 16 candle power.

Fig. 19.

The Rtmford Photometer.—The shadow or Romford Photo-
meter eonsists of a vertical white sereen before which is placed a
rod. The standard eandle is placed (preferably at one foot) in front
of the screen and the rod casts a shadow. The lamp or other
luminant which is to be measured is placed so far away that the
shadow cast by the rod, from its light, is of equal intensity with
that of the other. The space on the sereen, occupied by the candle’s
shadow, is illuminated only by the light from the lamp, while that
occupied by the lamp’s shadow is illuminated only by the candle.
It is these intensities of illuminations that are aectually compared,
although apparently it is the shadows themselves. The lights
should be placed so that the two shadows lie near to each other
without overlapping. The luminant measured is of so many candle
power according to the distance at which the shadow pertaining to
it equals in depth that pertaining to the standard candle. If we
represent the respective luminosities of the lamp and candle by L
and C, and the distances of the two when the shadows are equal in
intensity by a and b, then

1, u? O >

—_—= or i = ——
C h?* b?

I,

e

£

The Bunsen Photometer.—The giease spot or Bunsen phota-
meter consists of a sheet of white paper, suitably mounted in a
frame, on which there is a spot rendered semi-transparent by
grease or oil.  If the paper be viewed on the side remote from the

Fig. 20.
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candle the grease spot looks lighter than' the balance of the paper,
because more light penctrates.  Viewed from the other side, the
greased spot looks darker, becanse less light is reflected from it
than from the rest of the paper. Used as a photometer, the
paper is placed one foot from the standard candle, the light from
which is totally reflected by the ungreased part of the paper and
transmitted to a great extent by the grease spot.  The luminant
to be tested is placed on the other side of the sereen at such a
distance that the amount of light from it, transmitted by the grease
gpot, equals that passing the other way; then the paper appears
of uniform brightness all over. In the above case, if we take one
foot as unity, then the candle power of the light to be tested will be
equal to the square of its distance from the grease spot expressed
in feet.

The Slab Photometer.—The Paraffin Sladh photomeger consists
of two thick slabs of solid parallin separated by an opague layver
of tin foil. The two lights to be compared are placed one on either
I::i[[ﬁ,, and their illtk!!lﬁit11!$ are t:ulllin:ll'ml h_}' 'Ir"ll!'-‘r'ilig the sides of the
two slabs simultancously.

Radd

Fig. 21.

The Lummer-Brodhun Photometer.-—This photometer is
largely used in scientific laboratories, being accurate to about
1/, Its superior accuracy over the Bunsen and other
previously described photometers is due to the fact that, with
all these, the two images to be compared cannot be seen simulta-
necusly. With the Lummer-Brodhun instrument only one combined
image is seen by one eve. The instrument consists of a rail on
which the two luminants L, and L, ean be made to travel at right
angles to the opague sereen A B, which is whitened on both sides.
The observer looks through a short telescope placed in front of D
and sees the light from the two sides of A B veflected from the two
mirrors M, and M,. The light then passes through the cube of

E
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glass C D made of two right angle prisms, the hypothenuse side
of one of which is partly cut away. These prisms are cemented

together in the centre.

The light which reaches the telescepe from L, passes through the
central cemented portion of C and D, that from L, is reflected from
the peripheral portion of D. The two lights therefore enter the
eye simultaneously in two concentrie rings, as shown in the figure.

The lights are moved to and fro along the rail until the two
circles appear equally illuminated.

The Simmance-Abady ** Flicker’’ Photometer.—-This con-
sists essentially of a white circular disc or wheel, the euge
of which is peculiarly bevelled by being ‘‘chucked’ eccen-
trically at two positions with the turning tool set obliquely at
459, Thus the periphery of the wheel, when revolved, presents a
bevel of 452 on the one side, sayv the right, and no bevel on the
left, then graduates to a knife edge, and finally to a bevel of 459
on the left and no bevel on the right.

This wheel is so fised in a box that only part of it projects, and
immediately in front of it, but leaving its projecting portions
unobscured, there is a sighting tube carrving a Cx. lens for
magnifyving purposes.  The box contains a clockwork arrange-
ment by means of which the wheel is made to revolve at a rapid
speed.  The box itself is fixed on a bar 60 inches long, scaled in
terms of a standard candle, and along which the apparatus ean
be freely moved.

The two illuminants which are to be compared are placed one at
cach end of the bar, and the light from them falls on that part
of the revolving dise which projects from the box. When the light
falls on the bevelled edge at 459 it is reflected, and passing through
the sighting tube, is seen by the observer. When incident on the
unbevelled part of the dise, the light does not pass through the
sighting tube, so that each luminant is alternately light and dark
to the observer’s eye, and both are light at the same time when the
knife edge is immediately in front of the sighting tube.

Then when the intensities are equal the light is absolutely steady,
while it flickers when they are not. If there is flickering the
apparatus is moved until this disappears, and the position is found
where

L C

Elu"l' b‘#

Then the smallest alteration of the position of the apparatus
towards either light causes flicker. The test is made more
sensitive, and the point of balaneed intensities more exactly located,
when the speed of revolution of the wheel is lessened. The
apparatus can be set obligquely for measuring lights at any angle.
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Photometry of Coloured Lights.—One of the great difliculties
of photometry is the difference in the nature and colour of various
ligrhts ; and the comparison or measurcment of actually coloured
or monochromatic lights is still more diflicult, or rather impossible,
by ordinary photometry. These difficulties seem, however, to be
obviated by the Simmance-Abady photometer.

By the flicker photometer coloured lights, and therefore also the
transmissive qualities of coloured and smoked glasses, can be com-
pared and measured, since the flicker depends on equality of
intensity of illumination on the two sides of the bevelled dise, and
is independent of the colour of these illuminations. By means of it
also the illuminating power or the effect of daylight can be measured
as well as that of different sources of artificial light.

Coloured lights may, however, be compared by occlusion, using
for the purpose a series of properly graduated smoked glasses.

Calculations in Photometry.—Having by means of the
photometer made the intensities of illumination equal, the candle
power of the luminant is caleulated from the square of the distance
of the luminant divided by the square of the distance of the
standard candle. When this latter distance is 1 unit (say 1 foot),
of course no division is necessary, as the square of 1 is 1. Thus if
the luminant at 5 feet is cqilul to the standard candle at 1 foot,
the former is of 5% = 23 c.p. If the candle is at 2 feet and the
luminant at 8 feet the latter is

8 64
— = — = l6c.p
g 4 g

To compare the intensity of illumination 1 and ¢ of two sources
of light L and C of different powers.

Li O
11008 s 7 —
ﬂ'ﬂ bﬂ

where a is the distance of Li and b is the distance of C.

Thus four candles 4 feet from a sereen have the same effect as one
candle at 2 feet. For 4/16 = 1/4,
If L be of 30 c.p. and placed at 20 feet, while C is 200 c.p. at
70 feet,
30 200
—_— and c =
400

1 = ;
4900

2 40 50 3
therefore ¢ is — X — - = -] (approx.).
44 3 137 ]

2]
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How many candles at 100 feet would give the same illumination
as 1,000 candles at 30 feet?

| C L 1000
Now since - s et e aes TR

02 I? 1007 302
or 900 L = 10,000,000, go that L, = 11,111.

At what distance should an arc lamp of 1200 c.p. be placed so

as to give an illumination three times as great as that of an
incandescent light of 70 c.p. at 15 feet!

70 1200
e R
15° b

therefore 210b* = 1200 x 15%; that is b = 36 {eet (approxz.).
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CHAPTER III.
REFLECTION AND MIRRORS.

Irregular Reflection.—When a beam of light falls on an un-
polished surface, such as a ground glass globe, it is (owing to the
irregular nature of the surface) incident at all conceivable angles,
and each point of the surface becomes a source of light, so that the
light is reflected irregularly or dispersively. No image is therefore
formed either of the source of light or of any external object.

The difiused reflected light diverges in every direction, so that
the surface becomes wisible, no matter from what direction it is
viewed, and it is either white or ecoloured according as some wave-
lengths are, or are not, absorbed. The incident light is broken up
g0 that each point of the surface gives rise to a fresh series of
waves.

Regular Reflection.—When light falls on a smooth polished
surface it is regularly reflected in definite directions according to
the following laws:—

1.—The angle of reflection is equal to the angle of incidence.

2.—The incident and reflected rays are both in the same plane
as the perpendicular, or normal, to the point of incidence, and lie
on opposite sides of it.

Oblique Incidence.—In Fig. 22, A D is a reflecting surface at
which the ray I C is incident at the point C, and reflected from C
in the direction C R. P C is the perpendicular to A B at C, and

Fig. 22.

the angle of reflection I C P is equal to the angle of incidence
R C P. The perpendicular divides equally the angle included
between the incident and reflected rays, and all three lines are in
the plane of the paper.
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Perpendicular Incidence.—If the ray be incident in a direction
P C, normal to the surface, the angle of incidence being zero, the

angle of reflection is also zero; the ray is then reflected back along
its original path.

Images.—An image is real or positive if it ean be received on
a screen, It is formed by rays of light which are convergent, and
which therefore actually meet.  An image is virtual (imaginary) or
negative if it cannot be received on a sercen. It is formed of rays
of light which do not meet, but which, being divergent, are referred
back to the point from whence they appear to diverge.

In order that an image be distinet the rays of light which diverge
from warious points of the objeet must meet, or appear to meet,
as so many distinct points; each pencil of light must have its own
focus, which may be defined as the image of a luminous point. If
the rays diverging from a luminous point do actually meet again
the focus is real or pesitive, and it is virtual or negative if the
rays, being referred back, appear to diverge from a point from
which they do not really originate.

Mirror.—A mirror is an opaque body with a highly polished
surface. It is usually made of glass backed by a film of mercurial
amalgam, or coated with an extremely thin layer of silver.

Reflection by Plane Mirror.—If a beam of parallel rays falls
on a plane mirror all the rays having similar angles of incidence
are refleeted under equal angles, and are therefore reflected as
parallel rays. If a peneil of divergent rays be thus incident, after
reflection they are equally divergent, and appear to come from a
point as far behind the mirror as the original luminous point is

Fig. 23.

situated in front of it. Accordingly, if an objeet stands in front
of a plane mirror the rays diverging from each point on it are
refleeted from the surface of the mirror and enter the eye of an
observer as so many cones of light diverging from so many points
behind the mirror, and these points, from which the light appears
to diverge, constitute the virtual image of the original object.

If the object is parallel to the surface of the mirror the image
is also parallel; if the object is oblique to the surface the image
forms a similar angle with it.
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In Fig. 23 A B is an object placed in front of the mirror M M.
Rays diverging from A, after reflection, enter the eve E, and are
projected to a virtual focus at A/, from which point they appear to
diverge. Those from B are projected to Bf and AT IV is the image
of A B. A'is apparently ag far hehind M M as A is in front of it;
so also B and B! are equally distant from M M. The complete
image is erect and corresponds exactly as regards shape, distance,
and size to the object itself, the relative dirvections of the rays from
each point on the object being unchanged by the refleetion.

Lateral Displacement by Reflection.—The image is, however,
laterally displaced, the right hand of a person becomes the left of
his image in the mirror and wice versa. If the eve rvegards A B
(Fig. 2.‘!{] directly, A is to the right of A B, but looking into the
mirror A’ is seen to the left of A DY,

If the top of a page of printed matter be held obliquely down-
wards against the mirror the letters will be in the same order from
the left to right, only they will be upside down, and at the same
angle to the mirror as the page, thus resembling a case of
type. Engravers sometimes use a mirror in front of the letters
or obhjects they wish to draw on a wood-block and copy the image
they see in the mirror. On taking an impression of the block the
letters or objects are in their right position.

Distance of Image.—If a person stands at, say 2 leet, in front
of a looking-glass and looks into it he sees an image of himself at
a distance of 4 feet. The light has travelled 2 feet to the mirror
and then 2 feet to his eyes, and is mentally projected backwards
through a distance of 4 feet. If an object is placed in contact with
a glass mirror its image appears behind the silvered surface, and
only twice the thickness of the glass itself separates objeet and
image. The image appears rather nearer owing to vertieal dis-
placement by refraction. If the mirror is of polished metal the two
are in contact.

g, 24. Fig. 25.

Position of Image.——Since the angle O C M, between the
mirror M M’ and the object O C (Fig. 24), and the angle I C M,
between the mirror and the image C I, are equal, it follows that
the angle O C I between the object and the image is twice as large
as either; so if the mirror be placed at an angle of 452 with the
object, the object and image are at right angles to each other, as
is shown in Fig. 25.
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Size of Mirror.—The smallest plane mivror which will enable
a person to see the whole of himsell reflected, 1= one which is half his
height, the top of the mirror heing on a level with his head, This
can be understood without explanation from Fig. 26.

Construction of Image.—The image ean be graphically con-
structed by drawing straight lines from the extremities of the
object, perpendicular to the mirror or plane of the mirror, and
continuing such lines as far belind the mirror as the object points
are in front of it. Thus, in Fig. 23, if a line be drawn from B
to B!, and another from A to A!, and B’ A’ be connected, the
image B A! is obtained.

Angular Displacement of Image.— I{ a mirror be turned
through any angle the image will move through twice that angle.
This can be shown as follows:—Let M N (Fig. 27) be a plane mirror
capable of turning round a vertieal axiz.  Suppose a pointed
indicator fixed to the mirror projects forward at right angles to it,

Fig. 27.

and a sereen in the form of an arc be placed in front of the mirror.
If o lamp be placed in a line with the pointer at 8 its image will
be returned along the same path and be received on the seale at a.
Now let the mirror be turned through the angle ¢ =209, so that
the pointer will be turned to b, but as the light remains in the same
place its reflected image will be removed to ¢, ¢ to the other side
of the pointer. Since the angle of reflection is equal to the angle



REFLECTION AND MIRRORS, 43

of incidence, the image of 8 will be at ¢, which is 202 from b, or
402 from a, showing that the light has turned through twice the
angle of the mirror.

This fact is made use of in the construction of the sextant. Each
degree of rotation of the mirror actually corresponds to two
degrees of deviation of the light, and therefore to assist caleulation
every single degree on the arc is marked as two., The same
principle is applied to the refleeting galvanometer.

Multiple Images.—When there is but one reflecting surface,
as in a metal mirrvor, there is but one image, but in a glass mirror
having two reflecting surfaces, namely, the front surface of the
glass A B (Fig. 28) and its silvered back surface C D, there are
multiple images of an object. Let a candle flame O be held near
to a glass mirror and a series of images will be seen ; the first image
p, that nearest to the candle, is formed by direct refleetion from the
front surface of the glass along a 17; the seeond image p/, which
is very bright, is directly reflected from the silvered surface along
a! b I”.

Fig. 28

E LB

The other images formed along I**. ¢ b, I d ¢/, ete.,
are progressively fainter, they being formed by reflection from the
gilvered surface to the front of the glass, then back to the
silvered surface as a a' b, whence the light is reflected into the
observer’s eyes; they are progressively faint, because by each
reflection some light is lost. The last of the multiple images are
barely visible, and the total number, that can be seen, depends on
the luminosity of the flame.
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On looking into a mirror usually enly two images are noticeable,

the faint one refleeted from the front and the hright one from the
back =urface {_]*'i;;_‘. "i‘.]}.

Fig. 29.

Parallel Mirrors.—If two plane mirrors M and M’ (Fig. 30)
are parallel to each other, and an object O is placed between them, a
series of images (the first of which are [ and 1"}, infinite in number,
is produeced by reflection of the light backwards and forwards
between the two mirrors.  As with the single mirror, the light
finally becomes so feeble that the images are too faint to be visible.

e
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Inclined Mirrors.—When two mirrors are inclined to each
other, the number of images produced, including the object itself,
is found by dividing 360° by the angle between the mirrors, or
the angle may be ealeulated by dividing 3609 by the total number of
images seen, including the objeet. Thus, if the angle is 90° there
are four, if 60° there are six, and if 459 there are eight imapes.

Kaleidoscope.—The prineiple of the kaleidoseope depends on
the multiple reflection caused by two inclined mirrors.  The
mirrors are placed lengthways in a tube, which is closed at one
end by a dise of transparent glass, bevond which is one of frosted
rlags.  Between these two glass disés there are a number of small
coloured objects, or fragments of coloured glass.

Looking through the open end of the tube an image is seen which

consists of a certain number of images, the whole forming a more
or less symmetrical figure.

s = i il N e e
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When the number of degrees between the mirrors is an exact
even divisor of 360 as 402 or 609, the complete  figure is EARUE
metrical ; if the number is an exact add divisor of 360, such as 1200
and 729, the figure is not quite symmetrical ; if the number is not
an exact divisor of 360, the figure is asvmmetrical, as some of the
images are either incomplete or overlapping.

The usual form of kaleidoscope has three mirrors inclined towards
each other at 602, and the fisure is symmetrically hexageual, or

rather it looks triangular, as shown in Fig. 31,

The whole central firure, as seen in a kaleidoscope, is surrounded
by others formed by repeated reflections of the light,

[z

Ly L
Fig. 31.

Construction of Multiple Images.—To find by construction the
images formed by inclined mirrors, let M A and M B (Fig. 31) be the
mirrors at any angle, and O the object between them, With M as
centre and M O as radius, deseribe a eirele ; measure off O I, equal
to twice O A, and O I, equal to twice O B; measure off I, I, equal
to twice I, A, and similarly I, I, equal to twice I, B. Then take
I, I, equal to twice I, A, and so on until two images coincide or
overlap.

CURVED MIRRORS.

Spherical Mirrors.—A spherical mirror is a portion of a sphere,
the cross section of which is an are of a circle; its centre of curva-
ture is the centre of the sphere of which it forms a part. It may be
either concave or convex, and considered as made up of an
infinite number of minute plane mirrors, each at right angles to
one of the radii of the spliere,
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Concave Mirror.—liet A B be a concave mirror (Fig. 32)
and C its centre of curvature.  Then all straight lines drawn from
C to any part of A B are radii. They are therefore all of equal
length and perpendicular to the surface of the mirvor, in ether
worids, normal to it.

All rays therefore starting from C, on reaching the surface of
the mirror, will be reflected back along the same paths and form
an united image at C.

.
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Fig. 33.

The line C D is termed the principal axziz, 1t always passes
through the centre of curvature C and bisects the mirror at right
angles to its surface, as at D ; all other lines passing thrnugh C to
the surface are termed M"{‘DJ‘I{f{H‘i‘j ares. The point D is termed the
verter or pole, and the surface A B between the extremities of the
reflecting surface is called the aperture,

Action of Concave Mirror.—The course of rays incident on
the mirror can be traced after reflection. Thus, in the case of a
luminous point situated infinitely far away, the angle of divergence
being very small, the rays are considered parallel to each other and
to the principal axis. Let A’ A, B’ B, D/ D, ete., be such rays,
and let C A, C B, and C D be _}mn-_-{l, then, since tlwﬁe latter are
radii, they each form a right angle at A, B, and D respectively
with the surface of the mirror. Therefore A C is a normal to the
surface at A, and the ray A’ A will be reflected to F, making the
angle of reflection ' A C equal to the angle of incidence A! A C.
All the other rays, in the same way, are reflected to F, which is the
common image of a luminous point situated at oo, F is the
principal focws of the mirror, and the distance D F is the prineipal
foeal distance or focal length. D F is equal to half the radius D C.

Sinee the image can be received on a screen or scen in the air
in front of the mirror, the focus of a econeave mirror is real or
postlive,

The course of a ray can be traced backwards along the same path
ag that by which it {lll‘l'ﬂ‘_‘d so that if I' be the object-point, the
rays I' E, I' A, etc., will be It:-ﬂwtctl back parallel to the axis along
the lines E Ef, A A’ eote. Thus, image and object are inter-
changeable.
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Conjugate Focal Distances..—If the object-point (Fig. 34) be
on the principal axis between C and ~0, say at f, the image must
be at £ somewhere between F and C. An object at o0 will have its
focus at I', and it is obvious that the angle of incidence [ K C is less
than the angle 1 K C, therefore the angle formed by the reflected
ray f' K C, which equals the angle of incidence f K C, must be
less than the angle I' K C, and therefore {', the image of f, will lie
nearer to C than F.

Fig. 34.

As the object-point gets nearer to C, its image also approaches C,
and when the object-point arrives at C the image will also be at C,
the ray C K being reflected back along its own path. When the
object-point arrives at ' the image is obviously at f, and
when it reaches I its image is at ™.

Immediately the object-point passes I' towards D as at {7 the
reflected ray K 1’ will lie outside K 1. Then the foeus will no longer
be on the same side of the mirror as the object, but will be found
by prolonging the ray K I’ backwards to ' the othes side of the
mirror, as shown in Fig. 35. In this case the image is not
formed in reality, but is virtual or negative.

As the object-point ' travels on towards D the image "' also
approacles until the two meet at D, when both touch the mirror
torether.
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If the object could be supposed to travel past the mirror to the
left side, it would be virtual and negative, and its image (if it could
possibly exist) would be positive; so that, as the object-point
would travel to the left from D to — o0, the image would travel to
the right from I} to F.

-

H

Fig. 36.

Convex Mirror.— Let A B e a convex mirror, C the centre
of curvature, D the pole, and C D L the principal axis. Then
if the object be at &0 in a line with the principal axis the rays
proceeding from it to the mirror are parallel. Let K 1 be one
of these rayvs meeting the mirror at I, and let C H be a normal to
the surface. The ray K I will be refleeted at I to 1 G, so that the
angle of reflection H 1 G iz equal to the angle of ineidence H I K,
and the reflected ray I G, produced backwards, cuts the axis at I,
which is the principal focus of the mirror. As the object-point
approaches the mirror the image also approaches the mirror from
I to D, until at D both object and image coineide.

Furthermore, in the case of a convex mirror, no matter where the
object is, the image is always formed behind the mirror either at
I, or between it and D, by prolongation backwards of the divergent
rays, and is imaginary or virtual.

Images on Secondary Axes.—In the preceding cases the
object is supposed to be on the prinecipal axis, so that the image is
also on the principal axis. If the object be situated on some
secondary axis the image is on that same secondary axis. Also the
object hitherto has been considered as a point; it can now be sup-
posed to have a definite size.

The virtual image of a Cx or Ce mirror is laterally inverted as
in a plane mirror. The real image of a Ce mirror is entirely
reversed and therefore not laterally inverted in this sense.

Construction of Images—Concave Mirror.—It is known that
(1) a ray parallel to the principal axis passes, after reflection,
through the principal foeus; (2) a ray passing through F, after
reflection, is parallel to the prinecipal axis; (3) a ray proceeding
through C the centre of curvature is reflected along its original
path.
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It is possible to make a graphical construction of the image of an
object placed in front of a spherical mirror by tracing any two
of such rayvs from the extremitics of the object, and their course
after reflection. The point where these rays meet is the point
where all the rays, which diverge from the object-point, also meet,
and is therefore the image of that point.

A
- ds
D H
B\
I /

Fig. 37.

Graphical construction when the object is beyond C.

Let A B (IMig. 37) be the object, C the centre of curvature, and
let I be the principal focus. Draw A K parallel to the axis,
connect K I', and produce towards G; draw A L through C; draw
A E through F, and draw 15 A’ parallel to the axis. These three
lines cut each other in A/, which is therefore the image of A,
situated on the secondary axis A C L.

In the same way, rays drawn from B meet at B', and both B
and B’ are on the secondary axis B C K. By connecting B’ and
A’ the image of A B is obtained, and it is real, inverted, and
smaller than the object. If the object were at B/ A’ within the
centre of cuivature and bevond F, the image would be A B, real
and inverted, but larger,

A

N
! SR T

I"ig. 38.

Graphical construction when the object is within I
Let A B (Fig. 38) be the object.

Draw A K, connect I and K, and produce towards A’; draw C A,
producing it similarly.
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These lines meet on the secondary axis C A A" in the point A/,
which is therefore the image point of A. Any ray A D can be
shown to be reflected as if proceeding from A'. In the same way
B! can be shown to be the image of B. By eonnecting B! and
A’ the image B' A" is obtained. It is virtual, ercct, and enlarged.

The graphical construction of an image formed by an object at
F, resolves itsell into lines parallel to the axes, so that the image
is at infinity (Fig. 39, 1).

"ﬁij ﬂJ =2

Fig. 39.

If the object is at C, then image and object coincide, but the
image is inverted (Fig. 349, 2). Lastly, if the object iz at D (Fig.
48) no rays can be drawn, since both image and object are in
contact with the mirror and coincide.

Construction of Images—Convex Mirror.—Draw A K and
connect K with F; join A C.  Where these eut each other at A is
the image of A. It iz on the secondary axis AA'C. Any ray, as
ADor AF, can be shown to be reflected in the directions respec-
tively of A" M and A" O as if proceeding from A'.

: e
e
c — 1, i
é/ \\M
LS

Iig. 40.

By similar sonstruction the position of B/ the image-point of B
ig determined, and, connecting A' BY the complete image of the
object A B is obtained, B being on the sccondary axis B C.

In the case of a convex mirror, wherever the object may be placed,
the image A' B! is always virtual (imaginary) erect and smaller
than thie object, but if A B is in contact with the mirror, the image
A" B! eoincides with it.

e e

e a——
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Size of the Image.—The relative magnitudes of object and
image are proportional to their respective distances from the
mirror, or from its centre of curvature, and this rule holds good
for all images both virtual and real, and for convex and concave
mirrors.

El
D le = _rr__,_,__.-——-“"""_"-
Pl
. i
Fig. 41.

Aperture of a Mirror.—In order that a true image of a point
may be obtained by a spherical mirror, it is essential that the
aperture should be small compared with its radius, subtending, say,
not more than 202 at C, so that the arc of the aperture may be
approximately a straight line. Suppose E F (Ifig. 41) be the
aperture of the mirror, C D the prineipal axis, and C the centre
of curvature. Join E IF. Then if the angle K C D be small (under
109) the distance D G will also be small, so that C G may, without
much error, be taken as equal to C E; also

EDC =GEC = EGOG = aright angle.

I G E G G C
Nowtana = ——, sina = ——, and co8 @ = ——,
G C E C 5 O
Now sinee E C is taken as equal G C sin a = tan @ = the are B D,
1
andcos a = - = 1.
1

Thus all caleulations invelving both lenses and mirrors are
greatly simplified, since the sine and tangent can be replaced by the
arc, and the cosine by unity, whenever the aperture is small.

~_ MY
Fig. 42.

Caustics.— If the aperture be large, rays which diverge from
a point O on the principal axis beyond C, and form a small

angle with the axis, intersect each other and the axis, so as to
g
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form a cusp between the mirror and its centre. Here is the
greatest condensation of the light and consequently the brightest
spot.  Those ravs which form larger angles with the axis inter-
seet cach other in such a way as to form a curve. This i1s known
as a caustic curve, and all the reflected rays are tangential to it.
It can be readily seen by letting the light fall very obliquely on the
inside of a eup half filled with tea,

It will be noticed that as the angles which the rays make with
the axis O M become smaller, their foei approach the image-point
more and more, until when the angle only amounts to a few degrees
they form a common focus.

Ellipsoidal and Parabolic Mirrors.—There are two forms of
curved mirrors which form sharp images of a point, i.e., images
free from spherical aberration.

Fie, 43,

An ellipsoidal mirvor (Fig. 43) is one formed by an are of an
ellipse in a section in the plane of the paper. In every ellipse
there are two foei I", IF, situated on the long diameter, or major
axis. These have the property that any ray, which diverges from
the one focus, after reflection passes through the other foeus, so
that any object at I', forms an image at I°,, and vice versa. If the
one focus is at 0 the curve becomes a parahola.

ik <

B :

4 ¢
N %)

f F <
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& {

Fig. 44.

A parabolic mirror (Fig. 44) has the property that all rays
falling on it parallel to the axis, after reflection, meet at a common
focus I, situated on the principal axis.  And if the object point be
placed at this foeus the rays, after refleetion, form a parallel
beam.
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Such mirrors are employved in reflecting telescopes for bringing
ravs from an infinitely distant object, such as a star, to a sharp
focus. Also for projecting a parallel beam of light as in lighthouse
and optical lanterns, microscopic reflectors, ete.  Such mirrors
possess the advantage over refractors in that all the different waves
of [ight are f:q]]ﬂ.l[:r {lrl)jm:tuﬂ, and there is therefore no chromatic
aberration. IFor this reason they are preferred to refractors for
the photography of eclestial bodies.

Cylindrical Mirror.—With a convex eylindrical mirror the
image is distorted, being diminished across the axis while it is
unchanged in dimension in the direction of the axis. The image
is always virtual, and, as with the plane mirror, there is lateral
inversion.

With a coneave eylindrical mirror, when the object is within the
focal distance, the image is distorted, being magnified across the
axis, and unchanged in the direction of the axis, and there is
lateral inversion.

When the object is beyond the focal distance of a concave mirror
the image is real, unchanged in size in the direction of the axis,
but diminished or magnified across the axis, according as the object
is further from, or nearer to the mirror, than the centre of
curvature.

If the concave mirror is with its axis horizontal the image is
reversed vertically, and there is lateral inversion in the horizontal
meridian,

If the mirror is placed with axis wvertical the image is uprighf,
vertically and reversed horizontally, consequently there is no lateral
inversion. Thus the right of the real image formed is the right
of the object.

Determination of the Focal Length of a Mirror.—The
eurvature of a mirror can be obtained by means of the spherometer,

and from the curvature the foecal length is directly obtainable.
This is the best practical method for both concave and convex
MIirrors.

Fig. 45.

Concave Mirror.—Let O be an object placed on the axis of
the mirror M (Fig. 45) beyvond the centre of curvature C. The
mirror forms a real image [ between I' and C, and this can be
received on a sercen which is moved until the image is as sharp

F 2
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as possible. Measure the distances M O and M I, which may be
written f, and f, respectively. Then r, the radius of curvature,
is found from the formula

2 1 1 1

— e ey

T
Thus let the aistance of the objeet be 45in. and the image 20in.
from the pole, then
1 I | 1 65
r

I I

—=

= - = — 4+ — = — . r=28m, or F = liin. (approx.)

¥ 45 20 900

Another method. Since at the centre of curvature image and
object correspond in size and position, it is evident that if the
object be elsewhere, the image at that same position will be blurred
or invisible. Make a hole, say, }in. square in a card and fix a
piece of wire gauze across the aperture. Place a candle so that
the flame is behind the gauze, and hold the card upright, slightly
to one side of the axis. Now move the candle and eard
to and fro in front of the mirroer. A position is found at
which the image of the gauze is sharply defined on the card, and
by slightly shifting the card the image can be adjusted close to
the hole. The image and object are then identical in size and
shape, but the image 1is inverted. The slightest movement
of the card to or from the mirror causes the image to become hazy.
Measure the distance from the mirror to the card at the position
of best definition, and this distance is equal to the radius of curva-
ture, or twice the principal focal distance of the mirror.

Convex Mirror.—Cover the mirror M (Fig. 46) with lamp black
by means of a smoky ecandle, but leaving clear a small central
space 1 I'. Let parallel light from the sun, or from a collimator
in front of a flame, fall on the mirror. The rays after reflection
diverge as if coming from F. Place a vertical screen S, having
a central hole of slightly greater diameter than I I', at such a
distance from the mirror that the ring of light i i’ formed on 8 is
exactly twice as large as I 1.  Then the focal length of M is equal
to the distance of 8 from the mirror ; the radius of curvature being
twice that distance.
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CONJUGATE FOCI OF SPHERICAL MIRRORS.

The method of making simple algebraical calculations is to be
found in the appendix.

Conjugate Focal Distances.—If F be the principal focal
distance then 1/I° is the reflecting power of the mirror,
because these two quantities are reciprocals of each other; thus,
if I be 10, then 1/I" = 1/10. Let f, be the distance of the object,
then its reciprocal 1/f, is that power which brings parallel
rays to a focus at the distance of f,. [If we eall f, the distance of
the image from the mirror, then 1/f, is that power which causes
parallel rays to meet at the distance of f,.

Conjugate foci are a pair of positions, oceupied by the object
and its image, which are so related that when the objeet is at the
one, the image is at the other. Conjugate focal distances are the
distances of the conjugate foci from the mirror (or lens).

In a concave mirror I is positive, 1/I" is a positive quantity, and
the total power of a concave mirror 1/F is equal to the sum of the
powers which represent the distances of the object and image. In
other words the reciprocal of the principal foeal distance is equal
to the sum of the reciprocals of any pair of conjugate foci.

—

1 1 1 1 1

[l
1
-"I

DT DR e N

Thus if the mirror be of 20in. radius or 10in. I, the sum of
1/6, + 1/f; is always 1/10.

This formula is one of the most important in opties. It enables
us to find the radius or focal length of a mirror if f, and f, are
known ; or if r and f, are known we can find £, (the image). It is
universal and holds true for both concave and convex mirrors and,
as will be seen, for lenses as well.

Fig. 47.

Proof of the Formula.—Let O he a point on the axis of a
mirror A P. Draw the radius A C to the point of incidence A.
Thus a is the angle of incidence, and if b is made equal to a, the
image of O will be I. Then if the aperture A P is small compared
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with I, the angle A P C may be considered a right angle. TFor
the same reason A O may be considered equal to P O, A Cto P C,
and A Tto P L

Now a = d — e
and b= e —d

Then, as the anglcs ¢, d and e are small

AP AP
sina = sind — sin e = AR
B2 R 8
AP AP
and gsinh =sne — sind = —— — =
IE. P
But a=>

AP AP AT AT

B I or EP cCP

1 | 1 1
or e
CP OF 157 5 CF
| 1 1 I
That is == SR
r f, f, r
1 1 pL 1
Therefore R
5 f, S [
. 1 1
Sinee the two fractions — 4 — added together always produce
Jecon

the same sum, it follows that however much the one is inereased the
other is decreased in the same proportion.

Another Expression for Conjugate Focal Distances.—We

may also express the formula in another way. If the distance of
the object from F = A and that of the image from F = B then
A Bo="F=

That is, the product of the distances of image and object
from the principal focus is equal to the square of the principal
focal distance. It is a good practice to work out the following
problems by this formula. The results should always be the same
ag when worked out by the other method.

3]

. .
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Examples—Concave Mirror.—(1) If an objeet be situated
beyond IY, say at 30in. in front of a concave mirror of 10in. focal
length, then

1 1 2 1
— = — = — = — ie¢ the image is ab 15in.

10 30 30 15

Now 1hin. and 30in. are conjugate foei in respeet to a 10in.
concave mirror, so that if the object be at 15in. its image is at 30in.

f_'ﬂ} If the f..lhjt'l'l bhe at illﬁllil}‘. tlie Tormula becomes

I 1 | Lk
— —_ = = —
i oo I" I

'l'hujnlu;__fu then is at the principal focal distance, f; being equal
to I,
(3) If the object be at I the caleulation is

1 1 |
-——.—:U:=—

i) I’ oo
g0 then the image is at &0, and F and ~0 are conjugate distances.

(4) If the object be at twice I, that is at the centre of curvature,
say, 20in. in front of a 10in. concave mirror, the image is at the
same distance, since

1 1 1
— — — = —, or I is at 20in.
10 20 20

(5) Suppose, lastly, the objeet is placed within the prinecipal
focal distance. The conjugate focus is then negative, a higher
number than 1/I° being deducted from it, the result is a minus
quantity.

Thus if the object be placed six inches in front of a 10in. concave
wirror, then,

1 1 ! 1

= — — == —— .

10 6 60 15

g0 that the image is 15in. behind the mirror. The proof of this
is that

| 1 I 1 1 1
— 4 - - roor— + ( — - ) - .
I i, F 6 15 10

Here —15in. is the conjugate of Gin. in respect to a 10in.
concave mirror, and Gin. is the conjugate of —I15in. but not &f
15in. That is to say, if the rayvs of light incident on the mirror
are convergent to a point 15in. behind it, they will be reflected so
as to come to a focus Gin. in front of it.
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Using the formula A B = F* we have

" 100
I-! — e — = —25
A T - 6=10
The negative image is -25 + 10 = -13, or 15in. behind the

mirror.

Nature of Image.-—From these ea'culations it will be seen
that a real or positive image is obtained with a concave mirror so
long as the object is beyond I, and that image becomes virtual or
negative when the object is nearer than I°.

Relative Distances of 0 and I.—The nearer the object is to
I, the more distant is the real image; as the objeet recedes from
I, the image approaches it, but no positive image of an object can
be nearer than IY since no object can be more distant than oc. If,
however, the rayvs are convergent before reflection, then f, passes
to the mirror side of F.

Thus, if light is converging to 20ins. behind a 10in. Ce mirror
1/f, = 1/10 + 1/20, or the image iz formed Gzins. in front of
the mirror.

The planes of unit magnification for real images lie at the point
where the object eoincides with the centre of curvature of the Ce.
mirror, for then the dmage is equal in size to the object and at the
same distance,

The nearer the object is to ¥, the more distant also is the negative
image. As the object recedes from I and approaches the mirror,
the image also approaches the mirror, and when the object touches
the reflecting surface, the image does so likewise, this being the
plane of unit magnification for virtual images formed by a Ce.
mirror.

Recapitulation of Conjugate Foci.—To recapitulate the position
of £, and f, with respect to a Ce mirror,
It the object is ab e=..... ... ...veevinnthe 1mage is real, inverted,
diminished and at F.
- w5 between == and 21...the image is real, inverted,
diminished and between
2F and I

- i » 8t 2F ... ............the image is real, inverted,
EEIIPM to the object and at
v 08 ;

s w1+ between 2F and I ...the image is real, inverted,
enlarged and between 2F
and oo,

; A o T i the image is infinitely great
and at oo,

5 o . within Fo..o ...........the image is virtual, ereet,

and enlarged and on the
other side of the mirror.

. 5 ot the mirror............the image is virtual, erect,
and at the mirror.

bk
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Conjugate Foci—Convex Mirror.-—Eemembering that in a
convex mirror F and 1/ are negative, the rules governing the
calculations of conjugate foci are the same as with a concave
mirror.

1 1 1 1 1 1
__—__.i__, or —_ — = — = —
I i f, F f, f.

Thus, if an object is situated 30in. in front of a convex mirror
of 10in. focal length

1 1 1

_—— = — = = —in

10 30 ("

The image is virtual and 7lin. behind the mirror.

—T}in. is conjugate to 30in. with respect to a 10in. convex
mirror and 30in. is the conjugate of —T74in., but not of 7}in,
If rays were convergent to a point Tlin. behind the surface, the
convergence would be, by reflection, so much reduced that they
wonld meet 30in. in frout of a 10in. convex mirror.

Using the formula A B = 1'* we have

100

: — = 2}, or 21 — 10 = — Tiin,
30 — (-10)

If the object be at infinity, the caleulation is

| 1 1 |
Sopscie, A velifon oo ST n Al
. es 0 i

the image being at the principal focal distance.

If the object be in front of the mirror at a distance equal to I of
a 10in. Cx. mirror, the image is at half I' or din. for

1 1 1

Relative Distances of O and I.—The image of a real object
formed by a convex mirror is then always virtual and cannot he
at a greater distance from it than I, the object being then at oo.
When the object is nearer than o¢ the image recedes from IY towards
the mirror, and when the object touches tlw surface the image doces
likewise, This is the plane of unit magnification of a Cx. mirror.
If, however, rays be convergent before reflection, f, will be beyvond
F at a distance dependent on the degree of convergency, and if
thc"g. be directed towards F thm. would be reflected as parallel rays,
while if convergent to a shorter distance than I they would he
reflected as less comvergent rays to a real image in front of the
Mirror.
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Thus, if light is convergent to 4 ins. behind a 10 in. ex. mirror
1/f, = — 1/10 + 14, or the image is formed 6% ins. in front of
the mirror.

Size of the Image formed by a Spherical Mirror.—In the
case of both Ce. and Cx. mirrors the size of the image bears the
same relation to the size of the object as the distance of the image
does to the distance of the ohject from the mirror or from the
centre of enrvature.  This rule holds good whether the image be
real or virtual, and in all eases, since both object and image
subtend the same angle at the centre of curvature; so that their
respective sizes depend solely on their respective distances from C.
The working formula is:—

0 f, -
e - I [3a]
[

Where O is the size of the object, T is the size of the image, £, is
the distance of the image, anil fl 15 the distance of the {'.lhjl;ﬂl:t.
The application of the given formula is illustrated in the follow-
ing examples:—
Let an objeet 2in. in diameter be placed 16in. in front of a Gin.
concave mirror, then
1 | 1 10

U R A

The image is at 97 inches in front of the mirror and

2 x 96 1 1
[ = ——  w — = 1 - ing.
10 16 b

The relative sizes 2 and 1! are as the relative distances from

the mirror 16 and 9% or as the distances from C, the centre of
curvature, 4 and 23.

Moon
e

= S - — F =i

What will be the size of the image of the moon formed by a
concave mirror of 16in. foeus?

The object being at oo (Fig. 43) the rays from each point of
it are parallel, and the image I will be formed at the principal
focus and . f, = 16ins. DBut although the object is at oo it has
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a definite size subtending an angle @ of 32/, and we reckon the
gize of the angle subtended by the object instead of the object
itself. Now object and image subtend the same angle at C, and
sinee tan 32' = .0093 and f, = 16 ins, we have

16 = .0093 = 0.1488ins., or about lin.

Let an object Jin. in diameter be placed Bin. in front of a 12in.
mirror. What is the size of the image?

1 1 1 4 1
Gl e = e i - = — = &
s8-8 9 a4

The image is at 24in. virtual,
1 f
1 x 24

therefore its size = ——— = 1lin.

8

1:14 as 8 : 24, or as the distance from C, 16 : 48.

Suppose an object 2in. long placed 20in. in front of an &in. Cx.
mirror then,

1 T | 98
i 8.9 16D

2: % as 20 : 53, or as the distances from C, 36 : 102,
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CHAPTER 1Y.
REFRACTION AND THE REFRACTIVE INDEX.

Normal Incidence of Light —The fact that the velocity of
light is lessened in a dense medium, is the cause of refraction.
When a beam of parallel rays, traversing the air, is incident
normally on a refracting medium such as a sheet of glass, the
whole of the wave-front is retarded simultancously and equally.
The plane of the wave after entering the glass is unchanged in
direction and continues so during its progression through the
denser medium. On reaching the second surface, the whole of
the wave-front is again incident at the same time, and each part
of it is equally inereased in speed as it passes again into the
rarer medium, so that its line of progression remains unchanged.

Fig. 49.

Oblique Incidence of Light.—Dut if the plane wave-front
A AT (Fig. 49) be incident on the first surface obliquely, one part
B’ meets the denser medium sooner than the rest and this is
retarded, while the others are still in the rarer medium advancing
at an undiminished rate of speed. The rest of the wavelets on
reaching the glass become retarded, one by one, until the whole of
the wave-front has passed into the denser medium and in
consequence the wave-front is changed in direction. The extent
of the alteration of divection depends on the distance that the more
rapidly advancing parts of the wave-front travel before their
speed is also checked, that is, on the obliquity of incidence of
the rays, and on the retardation itself, that is, on the refracting
power of the medium. When the whole of the wave-front C C' has
arrived within the denser medium, it travels without deviation
but at a diminished rate of speed. On reaching the second surface
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of the glass the wave-front D D' is again incident sooner at one
point D’ than at others. The wavelet at that point increases its
speed, while the remainder is still moving less rapidly in the denscr
medium ; then the other wavelets emerge and increase their speed
until, having passed into a raver mediam, the entire wave-front
E Ef travels with its original velocity and iu a direction parallel
to its orviginal direction.

The Laws of Refraction are as follows :—

1. A ray passing obliquely from a rare into a denser medium
is refracted towards the perpendicular at the boundary
plane between the two media.

2. A ray passing obliquely from a dense into a rarer medium
is refracted away from the perpendicular at the boundary
plane between the two media.

3. A ray suffers no deviation if, at the point of incidence, it
is perpendicular to the surface of the medium which it
enters.

4. The extent of the deviation suffered by a ray of light as it
passes from one medium into another is governed by the
difference in the refracting powers of the two media.
Generally, the refracting power of a medium is propor-
tional to its density, and is measured by the retardation
suffered by a ray entering it from a vacuum.

The incident and refracted rays are in the same plane as
the perpendicular to the refracting surface and on opposite
sides of it.

6. A constant ratio exists between the sine of the angle of
incidence and the sine of the angle of refraction, termed
the index of refraction. This is denoted by the Greek
letter p (mu).

et

The Law of Sines.—In order to illustrate the course of a ray
as it passes from one medium to another (Fig. 50), let A B be a
refracting surface separating air of index p, = 1 from a denser
medium glass of p, = 1.5. Let D G be a ray incident on the
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surface at the point G to which the line CGF is the normal; then
D G C is the angle of incidenee and E G I the angle of refraction,
and if we call D G C the angle i and E G I the angle r, then

sin 1 I
—_— = ——, Or Bl 1 gy = BI0 T
sin r I

This is called Snell® . Law or the Law of Sines, which holds true
whatever may be the inclination of the incident ray.

If E G were the incident ray it would be refracted s G D as it
passes from the dense to the rare medium.

If the first medium is air po= 1 then

sin i
—— =, or the p of the dense medinm.
+ sinr

If the angles i and r are very small, they may be taken in place
of their sines and the law may be written

i
J[.t=—.01'i=F-I".
r

Velocity of Light and p. —The velocity of the light in the
first medinom is to the velocity in the second medium, as s the
refractive index of the second medinm, is to p,, that of the first, or
the rate of progression of light in a medium is inversely pro-
portional to its optical density.

Let V) be the velocity of the light in the first medium, which is
air, and V, the velocity in the second and denser medium.

Then in Fig, 49 B B’ C is equal to the angle of incidence of the
wave BB B/, and is the same as i in Fig. 50. Also B’ C C! in Fig. 49
is the angle of refraction of the wave, and is the same as r in
Fig. 50.

Now B C and B’ C' in Fig. 49 represent the relative distances
that the wave has travelled in a given time in the two media, so
that B € = ¥, and Bf Cf = ¥..

Then B! C being common to the two triangles B B! C and B! C ¢/,
il follows that

B C sin 1 Y,

= :---:}4

B'C’ sin r V.

Absolute p.—The index of relract'on of a vacuum is taken as
unity or 1, so that any other medium (with the exeeption of certain
me nlh} h[ ‘ing denser, has an index greater than 1. This numerical
expression indicates the refractivity of a medium with respect to
a vacuum and is the absolute index of refraction.

L)

(8]

6]

[T]
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Since the index of refraction of air is 1.000294, a figure which
differs but very slightly from 1, for all practical purposes the p of
air mav be taken as the standard index of refraction rvepresented
vumerically by 1.

Relative j.—The relative inder of vefraction is the expression
of the refractivity when light passes from one dense medium into
another, say, from water into glass or rice versa. It is found by
dividing the index of the medium, into which the ray passes, by
the index of the medium from which it proceeds; thus when light

passes from water p = 1.333 into glass u = 1.545 the relative
index is
1.545
-—— = 1.16
1.333

The sines of the angles of incidence and refraction as light
passes through two such media are to each other as the velocitgsof
the light in those two media.

Reciprocal p's.—In the case of any two media A and B the
index of refraction for light passing from A into I is the reciproeal
of the index for light passing from B into A. Thus, when light
passes from air into glass, the sines of the angles of incidence and
refraction are as 3 is to 2 and the index is 3/2,  If it passes from
glass into air, the sines of the two angles are as 2 is to 3 and the
index is 2/3.
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Fig. 51.

Course of a Light Ray.—Fig. 5l illustrates the method of
tracing the course of a refracted ray. Let the media be respectively
&ir, p, = 1, and glass, py = LA, and let C D he a ray of light
incident at D.  From any point G on C D drop a perpendicular
G I' on to the normal E D. Measure F G and mark off D I equal
to grds of I' G. From H, let fall a perpendicular H L and connect
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D with H L by a line D K, whose length equals G D. Then D K is
the direction of the refracted ray. The method of construction for
a ray K D passing from the denser medium into the rare medium
is similar, but the construction is reversed.

The line I G is the numerator and H D is the denominator of
the fraction representing p; in water I GG would e four parts and
D H three parts, and in order to make the measurements casy F G
can be taken anywhere on E D. Thus suppose p, is 1.55, F «
could be 15.5 mm. in length and D H would then be 10 min.

Fig. 52.

Another Method which is based on the construction shown
in Fig. 50. Let D G (Fig. 52) be any ray incident at G on the
surface 8 S of a medium whose p = 1.5 or 3/2. From D drop the
perpendicular D B and divide B G into three equal spaces. Then
from G mark off G A equal to two such spaces. From A drop a
perpendicular and from G draw a line G E, equal in length to G D,
entting the perpendicular from A in E. Then G E is the direction
of the refracted ray.

TFig. 53.

Critical Angle and Total Reflection.—When a ray of light
enters a rare from a denser medium, it is bent away from the
normal with which it makes a larger angle than before; the sine
of the angle of refraction is greater than the sine of the angle of
incidence. In Fig. 53 let pu, be the dense and yu, the rare medium,
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Let A B be the incident and B C the refracted ray. As A B makes
a larger angle with the normal the corresponding angle of refrac-
tion becomes still larger. Hence if the ray A’ B be incident at an
angle sufliciently large, the refracted angle becomes a right angle,
and the refracted ray B C! will skim along the boundary surface.
The incident angle which produces this result is termed the Critieal
Angle, because the slightest further increase of it prevents the ray
from Ilnﬁﬁ;iug out of the denser medinm. If the incident ray b
A" B it is reflected as B C" and internal reflecetion takes place.

If i is the angle of incidence in the dense medium and r the
angle of refraction in the rare medium and p' the relative index
from the dense to the rare medium, then sin i = p/sin r. DBut
r = 902 and the sine of 909 = 1, which is the greatest possible
value that a sine can have.  Thercfore sin 1 = pf, or the sine of the
eritical angle equals the relative index of refraction.

Let p, be the index of refraction of the rare and p, that of the
dense medium ; let ¢ be the critical angle. If the rare medium
15 alr,

then sin i g, = sin r pn,,
but p, = 1 and zin r 1, alsoe = i,
therefore sin ¢ p, = 1,
1 1
that is pg = ——, OF gin ¢ = -—.
sin ¢ JLa

Thus the sine of the critical angle of any medinm bounded by air
equals 1 divided by the refractive index.

Suppose the ray to pass from glass to air, then 1/p = 1/1.5 =
0.666, so that the sine of the critical angle for glass is .666, which
= sin 41° 46/, This is the greatest angle at which a ray can be
incident in order to emerge from glass of p = 1.5 into air, and the
emergent ray is then parallel to the surface. The critical angle of
water is 482 30/,

This principle affords a method of determining the refractive
index of any medium. If the angle at which the incident ray just
ceases to emerge into air (or vacuum) be measured, one divided
by the sine of that angle is equal to the refractive index of the
medium,

Internal reflection is termed fofal to distinguish it from ordinary
reflection, which is always accompanied by a certain amount of
absorption or transmission.

Critical Angle for Various Media.—Since 1.33/1.5 = 836
= sin 629, the critical angle for light passing from glass to water
is 629, but the critical angle for light passing from water to air
is about 499, thercfore light |lélHHiI];_" from glass to water and thence

i

8]
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to air would be totally reflected at the upper surface of the water
for any angle of original ineidence over 419 as shown in Fig. 54.

Thus the critical angle for light passing through various media
into air is the same as that from the first medium directly
into air.

:;.Ail‘

Fig. 54,

Parallel Incidence and Emergence of Light.—If a ray of
light passes, at the critical angle, through a plate of glass with
parallel sides, it enters and emerges parallel or nearly parallel to
the surface of the glass. 1If a laver of water be poured on to the
surface of the glass the ray passes through the water at the eritical
angle of water and emerges parallel to the initial ray which entered
the glass at nearly 909 with the normal, as in Fig. 54. If there
were any number of parallel plates superposed, all of different
refractive indices, the ray finally emerges from the last plate at the
same angle as that at which it entered the first plate, provided that
the media outside the first and last plates be the same.

Eifects of Total Reflection.—Total reflection explains why on
looking into the water of a large aquarium tank the surface above
one’s head glistens like quicksilver, owing to all the light being
reflected downwards. A metal ball, blackened by a smoky flame,
unmersed in water appears brilliantly polished, owing to the thin
lilm of air surrounding it which totally refleets the light.

Total Reflecting Prisms.— The eritical angle or angle of total
reflection for erown glass is about 422, If, therefore, a ray (A B)
enters a prism and makes an angle greater than 42° with the
normal to the surface Y Z, the ray will be totally reflected in the
direction B C, Fig. bb (1).

s~
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If the prineipal angle of a prism exceeds twice the critical angle
of the medium, of which it is made, total reflection ensues for all
incident light.

Right-Angled Reflection.—The ray is not refracted at the
surfaces D Y and D Z of the prism because it is incident normally
to each. Thus a right-angled prism serves as a total reflector when
the light is incident perpendicularly to the one face, the direction of
the emergent light being at right angles to the original course.

But the ray need not enter at right angles to D Y, any direction
will do provided, it makes, after refraction, an angle greater than
420 with thefivpothentuse Y Z.  Thus the ray E B G will be totally
reflected. The dispersion which takes place as the ray enters the
glass is reversed as it leaves the prism, so that the emergent ray
consists of white light similar to that which entered.

Parallel Reflection.—If the light falls normally on the hypo-
theneuse of a right-angled prism it causes total reflection twice at
B and C, as in Fig. 55 (2), so that the final direction C D of the
light is parallel to its original course A B. By means of a right-
angled prism, as indicated in Fig. 55 (3), vertical without lateral
inversion may be obtained. This prism is largely used in process

photography.

Fig., 56.

Testing Prisms.—Use is made of this property of total
reflection in order to learn whether a prism is ground to a right
angle. If the ray | m (Fig. 56) strikes the prism so near to D that
it is reflected in the dirvection p, it will then be partly reflected and
partly refracted. The reflected ray emerges at p' in the direction
p' q, which makes an angle of 90° with 1 m produced, if the prism
be truly worked, no matter the direction of 1 m; but if there is
any error in the angles of the prism p’ q will not meet 1 m at right

angles.
| Bl



i0 REFRACTION AND THE REFRACTIVE INDEX.

Effccts of Total Reflection.—If a tank half full of water has
some benzine on the top, the two liguids, owing to their different
specilic gl‘u'l.‘ilil_!:-:._ do not mix. As the benzine has a ]lig]mr index
than the water, a beam of light which is made to enter the henzine
from above may be totally reflected at the surface of the water and
emerge upwards, as is shown in Fig. 57 (1). The surface common
to the two liguids, seen obliquely from above, will glisten like
polished silver,

rf." RSB
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Tig. 57.

If another tank, Fig. 57 (2), containing carbon-disulphide be
filled up with water, the lower liguid has the higher refractive
index, so that only a few of the rays are reflected, the bulk of them
being refracted downwards through the earbon-disulphide. Instead
of the boundary surface glistening like silver it will appear as a
dull matt surface, since most of the rays pass back into the heavier
liquid.

Anothet experiment is the cascade of silver. This consists of
a tank fitted with a glass window at A and an aperture at B which
can be opened by a tap. Facing A is a collimating lens. On
filling the tank with water and opening the tap the light which
[HASECE i a |u1|‘u”1_'] Leam tln'::ﬁ]gh A CHICTEICE at B and enters the
stream of water, whicl it follows on acconnt of internal reflection.
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The appearance of the jet is that of glistening silver, owing to the
escape of a portion of the light by scattering ; but were the jet of
water perfectly smooth the seattering would not oceur, and the jet
would appear dark.

Another experiment on similar lines, but of practical value in
microscopy, is as follows (I'ig. 59). A solid tube of glass half an
inch in diameter is bent into any desired shape. A strong light is
brought close to one end, and the other is bent up against the open-
ing of the stage of a microscope. The light by total reflection will
form a powerful evenly-illuminated disc under the stage, and any
slide will be uniformly illuminated from below. Here no light is
scattered since the tube is smooth.

TasrLe oF LivMiTiNG or CRITICAL ANGLER.

Medium. Index of Refraction.  Critical Angle.
Chromate of lead 2.92 200
Diamond 2.47 240
Various precious stones 200 to 30°
Flint glass of about 1.60 480 to 400
Crown glaﬁs of about 1.0:4 400 to 430
Pebble 1.54 400
Water 1.33 480 30/

It will be seen, from the above, that the eritical angle varies
inversely with u.

— < 1.-. .'- - = i
e et N R T
Eay ]

Fig. 60.

Displacement due to Refraction.—In Fig. 60 let C be the
luminous point in a dense medium from which rays diverge and,
after refraction, enter an observer’s eve. These rays being pro-
jected backwards, intersect at €/, the virtual image of C which i
Jected bDackwards, 1ntersect at O, the virtual image of C which 18
situated nearer to the refracting surface, at a point dependent on
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the obliquity of the emergent rays and the index of refracticr of
the dense medinm.  This explaing why an oar or teaspoon A B C
partly inunnersed in the water, in an obligue direction, appears
bent towards the :4111'1‘;11::_;* the bend commencing at the level of the
water,

Vertical Displacement.—In Fig. 61 B is a luminous point in
a dense medium observed from a position A, situated vertically
above it. The ray B I passes out without deviation. B C' and
B D' are refracted in the directions ¢! C and IV D, so the point I
has its image 1" where C C' and D IV meet when referred backwarids.

Let ¢ be the actual distance B from the surface and let ! be its

apparent distance, that is, E B = t and E I' = t'. Then
t
v = —
i
If p, is water whose index of refraction is 4/3, then t/ = 3/4 t;

that is to say, B appears, when viewed from above vertically, to be
1/4 nearer to the surface than it really is.

An objeet in a dense medinm is apparently raised a distance of

p—1
PR
&

where t is ithe thickness of the medium or the actual distance
of the object viewed from the bounding surface.  This explains
why a fish appears nearer to the surface than it really is,
and if locked at obliquely with the eye near to the surface of the
water it appears distorted, being thinner if viewed lengthways
(parallel) to the surface and shortened if viewed with its head
directed to the surface.

19]
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The apparent depth of a transparent body viewed vertic ally is
similarly obtained by dividing its real de ]J'”I In its refractive index.
The 11|1|Iﬂltllt de lJtll 18 lessened as the view ]H.lIHJH."i nore U]!llr|l]l.,
but there is no definite expression by which it can be caleulated.

,Iiofr *H,'J:" -a:-.‘l,I.;,-r.,h-a_-fﬂf < iﬁ:ﬁ_

Lateral Dlsplacement —As a.T(kafdg,r Cf'mv. n if a ray of light
A B (Fig. 62) be incident on a denser refracting medium which
has two parallel plane surfaccs, it is refracted at the first point of
ineidence B in the direction B C and again at € in the direction
of CD. Therefore rays refracted by a body, bounded by two plane
parallel surfaces, emerge in a direction parallel to their original

Fig. 62,

course, but they are laterally dizplaced, the amount of such dis-
placement depending on the obliquity of the light, i.e., on the angle
of incidence i, the index of refraction p, and the thickness of the

medium t. Let d be the lateral displacement = B! D (Fig. 62),
then
t sin (1 -r) ,
d = —— 54
cos I

If the angle of incidence is small an approximate value of d is found
from
ttan i (p — 1)
d = ——————,
-

Lateral displacement causes distortion of an objeet viewed, but
an object seen through a plate-glass is not appreciably distorted
if the thickmess of the glass is small; nor is one which is at a
considerable distance.

[11]

12]
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Latzral and Vertical Displacements.—In Fig. 63 the point
L viewed obliquely by an eve at A A through a transparent medium
N, whose two refracting surfaces are plane and parallel, is seen
as L/ laterally displaced and nearer. If L is viewed from B,
situated vertically above, it appears to be nearer (at 1), but not
latterally displaced.

Rays divergent before refraction are, after refraction, divergent
as if from a nearer spot. If convergent they are, after refraction,
convergent to a more distant point.

Fig. 63.

SOME OPTICAL PHENOMENA OF THE ATMOSPHERE.

Blueness of Sky.—If the air above us were absolutely trans-
parent and of uniform density, light from the sun would reach the
carth without any loss, and the sun, moon, and stars would appear
set in a sky which would be black both during the day-time and
at night.

But the air containg a great quantity of aqueous vapour, and
the hlue colour of the sky is said to be due to refleetion from the
minute particles of this vapour suspended in the higher layers
of the atmosphere. Tvndall showed that when mastie iz thrown
into water the minute particles of the mastic which are insoluble
emit a deep blue colour similar to that of the unclouded sky. Large
quantities of so-called cosmie dust also are held in suspension in the
air, and this is believed, by some scientists, to be a cause. By
others the blue of the sky is said to be due to polarisation by
oblique reflection from particles of vapour, salt, ete., in the air.

If a cloud of smoke be blown into the air, the smoke particles
reflect the short blue waves more freely, and the cloud assumes a
blue tint, and if a white sereen be held, in bright sunlight, behind
the smoke, the sereen assumes a reddish brown hue.

e
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Aerial Perspective.—If two obhjects, one light and the other
dark, be seen at a considerable distance, they lose some of their
contrast, the licht object becoming darker ]n absorption of its
reflected light by the intervening air and the dark object hecoming
lighter by the Fﬂll“_"l‘d,i]iit"ti. light diffused through the air. This
causes what is kuown as a erml perspective.  If the air is clear and
the added light is blue, distant hills throw deep shadows of a purple
blue eolour in bright sunshine.

Sun on Horizon.—When the sun is low down on the horizon
its rays have to pass through a thicker layer of atmosphere filled
with dust particles and moisture, and hmu;,: deprived of some of
its blue and wielet rays, which become absorbed or reflected, it
appears reddish.  For the same reason the sun appears red in
a fog.

Near the horizon the sun or moon appears larger than when
higher in the heavens, because they are mentally qujwiu] beyvond
the horizon, being cmupalul with terrestrial {I'i}jﬂ_‘f,t‘! whereas when
scen in the zenith this cannot be done, as they stand alone. Of
course they are not really larger as measurements with a telescope
show. They are slightly flattened vertically when near the horizon
and appear a trifle higher up than they really are, owing to the
refraction of the air and the greater obliquity of 1hf: light from
their lower edges. Refraction diminishes the dip of the horizon
and so slightly increases its apparent distance.

0 Cool at?
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Fig. 64.

Mirage (Fata Morgana).—If the layers of the air are of
markedly unequal density as is sometimes the ease in hot climates,
especially on a desert, where the warmest layers are the lowest, the
phenomenon known as the mirage may be seen.  Objects above the
surface reflect rays which, on passing to the surface, traverse layers
which become gradually less refracting., The angle of incidence
accordingly increases from laver to laver so that the rays become
more and more parallel to the surface, until at length the eritical
angle is reached, beyond which refraction becomes changed to
internal refleetion, and the rayvs are ll'ﬂl'ft‘r:-ll in the contrary direc-
tion and ascend to reach the ahser rver’s eye.  The rays which enter
the eye then appear, from their diree Hnn. to proceed from a point
below the ground, and the fﬂljm't appears inverted,

This is shown in Fig. 64, where light from an object O, on reach-
ing the eve at E, appears to come from M below the level of the
ground.
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If the lowest strata of air are the densest, as in Fig. 65, they
give rise to the same phenomenon, but the mirage M is in the
contrary direction, so that land or ships at sea appear above the
horizou.  This occurs in very cold climates, in which the lowest
strata are the coldest, and consequently the most dense.

Cotd waler

Fig. 65.

Scintillation.—The twinkling of a star is due to irregularities
in the atmosphere causing variations in the path of the waves,
which partially interfere.  This produces variations in the
apparent hrightness and colour of a source of light, subtending a
very small angle at the eve. It is not observed in the case of a
planet, because this has a real magnitude.

Sun

The Rainbow.—A rainbow is visible when the sun is behind
the observer and a shower of rain in front of him. The bow forms
a portion of the base of a cone, which has its apex situated at the
observer’s eye, its base in the plane drawn through the falling
layer of raindrops, and its axis a prolongation of a line drawn
from the sun to the observer. The same effect may be seen in the
spray of a waterfall. Since the sun’s rays falling on the raindrops
are parallel, the course of light through all the drops must be the
same, and it is therefore sufficient to trace the course of a ray
through a single drop. Let a pencil of rays from the sun meet the
drop at A. On entering it is refracted towards the back of the
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drop to B, is refleeted thence to C, and is again refracted on
emergence and proceeds in the direction C R. The emergent ray
C R makes, with the entering ray, the angle A N C. A number
of rays enter the drop parallel at A, but at difierent positions to
its spherical surface, so that the emergent rays are divergent (see
I and V, Fig. 66), the divergence varving with the different
colours, so that the outside of the how is always red, and the inside
blue-violet.

The extent of the bow depends on the position of the sun; when
at the horizon the bow forms a semi-circle to an ohzerver at the
sea-level. As the sun rises the are sinks so that its centre is below
the horizon, and the are gets smaller.

Fig. 67.

A secondary larger rainbow is often seen concentrie with the
first. In this the order of colours is reversed, the red being inside
and the violet on the outside. This secondary bow is much fainter
than the primary, because the rays undergo two reflections instead
of one, as shown in Fig. 67, where the emergent rays cross the
entering rays, thus giving rise to the reversal of the colours.

The rays proceed from the sun to a point A, where they undergo
refraction and are reflected at B and C, and are again refracted
at ). The final directions of the ravs vary with the colour of the
light, and therefore the bow appears blue on the outside and red
within.  The secondary bow is also somewhat broader than the
primary.

Fig. 68.

. Fig. 68 shows the general appearance and relative positions of
‘ the two bows.
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THE DETERMINATION OF u

Prism Method.—If the principal and deviating angles of a
prism are known its refractive index can be found by the

formula
gy el =d
1, 2 BN ( )
2

po=
: P
sin ( )

I}

E=

where I' is the principal angle of the prism, and d is the angle of
minimum deviation. It should be noted that

P d
sin ( -)
2

is the sine of half the sum and not half the sine of I* + d. A proof
of the above formula will be found in Chapter V.

This is the most acenrate method of determining the refractive
index of a transparent body. If the medium is a liquid it must
be enclosed in a hollow glass prism. :

The index of refraction for the different lines of the spectrum can
he determined by this method, and the dispersion between any two
eiven lines thus arrived at.

Example.—Given a certain prism whose principal angle P is
found to be 592 57" and the angle of minimum deviation d is
432 21/, then

P4+ d 59° 57 + 48° 217 [

= = H° Y, and — = 29° 58';
9 2 2
sin o4 9
20 that po= —
sin 29° hY'
Now sgin 549 9 = RB1055 and sin 299 587 = 49962,
81055
Therelore = — 1 [E 1
A9962

If the incident light is allowed to fall perpendicularly on tﬂ one
of the surfaces the formula |:u O1es ‘Hl]]]lbll[liﬁi to

sin (P + d) P+ 4d
p o= - . or still more simply p = :
sin I’ P
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Lens and Critical Angle Methods.— ¢ can also be caleulated
from the focal length and radii of curvature of a lens made of the
medium in question, or from the critical angle.

Microscope Method. —The microscope aflords a means of nding
the index of refraction of a transparent plate in the following way.
A fine line is focussed and the plate is then placed above the line.
Now the microscope must be raised in order that the line be clearly
seen, since the rays proceeding from it are divergent, as if from a
peint nearer to the objective.

The distance that the microscope objective has to be raised—as
read on the index attached to the millhead of the fine adjusting
serew—cquals the distance between the real position of the line and
its apparent position when seen throngh the plate. Let t be the
thickness of the glass and d the distance that the olijective has to
be raised, then :

t

p = —

t — d

Thus, if the thickness of the plate be lmm. and the ohject-glags
has to be raised . 38mm,

i — = LB
1.~ 38 * .63

7
Ao |
e ry
g | P
?r.-.}-l/" CE 1 1
s v ¢
454 A
v L |
-F A1
= |87V ]
et PP U
el (P =
T pe— ;,f"*%_“,_f =g ]
m— = ribe T x LR
i - i
- = S e —— - ey,

Vertical Displacement Method.—The refractive index of a
transparent body, such as glass, can be roughly found as follows: —
Make a dot d on the back of the block of glass; then find such a
position for a pin P, placed vertically in front of the glass, that
on moving one's head from side to side the virtual image of the
pin, reflected from the front surface, appears to be behind that
surface at such a distance I, that it coincides with the wirtual
image of the dot scen through the glass. In this case the apparent
thickness of the glass is P/ S which = P 8.

Therefore I

16)

[17]
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A A PR A,

The Refraclive Index of an Opaque Solid.—Let A B be a ray
of light incident on a polished body N and reflected in the direction
B C. If the angle of incidence A B P be the polarising angle of
the medium N, then any light transmitted or absorbed is refracted
in the direction B D at right angles to B C. Therefore, if the
polarising angle i of an opaque body be known, its refractive index
is the tangent of that angle; for in Fig. 70, if the angle of the
incidence is i, then the angle of refraction r = 180 — (90 + i).

sin 1 sin 1 gin 1

Now p = — = ——— = —— = fan L
sin 1 gin 180 — i) cos i
And since 1 = p, the polarising angle
p = tan p.

By making exceedingly thin prisms of less than one minute of are,
Kundt successfully determined the refractive indices of a number
of the metals. Thus, if an incident ray fall perpendicularly on to
one of the surfaces of such a prism, the refractive index can be
quite approximately arrived at by the formula

P 4+ d
L e

r

The interest of these experiments lies in the fact that the results
showed a refractive index for silver, gold, copper, magnesium, and
sodinm as being less than that of a vacuum, and this, ne doubt,
accounts for the absence of a polarising angle in some substances.
Further, the red rays in some eases were found to be more refracted
than the blue, so that metals form a good example of anomalous
dispersion. Lastly, the refractive indices of the metals were found
te he proportional to their electric conduetivity, i.e., those metals

which were the hest conductors had the lowest refractive index, and
vICE VErsa.

(18]
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The Refractive Index of a Liquid.—Take a small quantity
and place it between a plate of plane glass and a convex lens of
known radins and focal length F,.  The liquid then forms a plano-
concave lens. If now I of the combination be found, that of the
concave I, is learnt from :

1 1 1

PR R

Its radius is also known, it being that of the convex lens, so the
refractive index p can be caleulated from

r + F,
po=—
I,
Tavre or Rerracrive Ixpices.
For the Mean (1)) Line.
(For other Media sce Appendix.)

P ... 1.000
Water (s ... 1,333
Aleohol B R
Pebble . ... 1.hd44
Canada Balsam e D5
Tourmaline ... ... 1.636
Crown glass ... .. say 1.000 to 1.600
Flint A B NN 1 T
Diamond ... PRI 1 L

The index of glass varies with the materials used in its manu-
facture, and as a rule the higher the p the softer is the glass.

DISPERSION,

When white light undergoes refraction its components are
refracted to different extents, so that the various colours become
separated, producing what is known as dispersion.

Dispersion or Chromatism.—This is due to the fact that
the shorter waves, with rare exceptions, are retarded by the
refracting medium, more than the longer waves.

Dispersive Index.—Each refracting medium has what may be
termed an index of dispersion, which represents the differences
between the indices of refraction of the lines A and H of the
spectrum. Thus, water has an index of refraction for the line A
of 1.3289, and for the line H of 1.3434. The difference between
1.3434 and 1.3289 is .0145, which is the index of dispersion of
water. Mean dispersion is represented by the difference between
the indices of refraction of lines C and F, and partial dispersion
is that between the refractive indices of any two given lines of the
gpectrum.  The dispersion of a medium iz independent of its

(19]
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refracting power, some media of high mean refraction having low
dispersion and wviee versa, generally however high refractivity and
high dispersivity accompany each other.  The following table gives
in the third column the mean dispersion, and in the fourth column
the total dispersion of the visible speetrum :—

Tavre or DISPERSIONS.
Mean. Tolal.

Waler e = 1.381T iy = 13378 L0061 0145
Aleohol pe = 1.3621 py = 1.3683 0062 0149
PPebble 014
Canada Balsam 021
Tourmaline 019

Crown Glass if  p, = 1.5376 py = 1.5462 00586 018
Flint Glass if pe = L1.6199 pe = 1.6335 0136 .026
Diamond pe = 2.4102 py = 2.4355 0253 .056

The dispersion of various kinds of glass differs with the materials
used in their manufacture.

Dispersive Effect.—The true dispersive power is not, however,
represented by the index of dispersion, since to compare the dis-
persion of one medinm with that of another the amcunt of refrac-
tion effected by the two media should be equal. For instance, the
diamond disperses the various rays more than crown glass, but it
also refracts to a greater extent, and if the refractivity of these
two media were equal their dispersive powers would also be nearly

o 1:11.: The true dispersive effect or efficiency, which is the relative
for equal m s represented by the symbol

v (nu) and expressed by

o — 1
T .
By = Mo
Air and gases whose p approximately = 1 have no appreciable

dispersion, and their v may be taken as = 100,

Fig. 71.

Refraction Spectrum.—In order to produce a spectrum by
refraction the light should be admitted into a dark room through
a small horizontal aperture, preferably about 20mm. long by 1 to

20]
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2mm. wide; if the aperture be large or round the colours overlap,
and the gpectruin obtained is not pure.  The light, being thus
admitted, is incident on a prism placed in its path in the position
of minimum deviation.

If an achromatie bi-convex lens of, say, 3 feet focus is put at twice
its focal length from the slit and elose to the prism, a sharp pure
spectrumn is formed on a screen situated 6 feet beyond the lens,  If
the prism be placed base up the violet is above and the red below.
All the different colours are seen well defined, but the red end of
the spectrum is somewhat erowded, while the blue is spread out,

Refraction and Dispersion.—Relraction by a simple medium
is, so far as known, always accompanied by dispersion or
chromatism, and cven when a prism or lens is, as is termed, fully
achromatised by one or more other prisms or lenses some dispersion
still obtains.  Although two or even three colours may be brought to
a common focus, this can never be done for every colour of the
spectrum, and, as will be seen further on, with two lenses, only
two colours can be accurately hrought to focus, the coincidence
of the others being merely approximate. This want of coincidence
of all the colours of the spectrum is due to trrafionality of the
spectrum,

If we take a number of prisms of different substances, but of the
same angle, it will be found that those having the higher refractive
index usually, but not of neccessity, possess the longer spectra.
These difierent spectra can be made of the same length by altering
the angles or the position of the prisms, or by adjusting the position
of the screen.
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Fig. 72.

If, as in the accompanying diagram (Fig. 72), the spectra be
placed one under the other so that the B lines at the red and the
H lines at the blue correspond in position, it will be found that the
intermediate lines do not do so. This fact renders it difficult to
fix the exact position of lines in the spectrum, since a special scale
has to be made for each spectroscope.

1
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Anomalous Dispersion.—In glass, water and most substances,
the order of refrangibility is from the red through the orange,
vellow, green, blue, indigo to violet, which is the most refrangible,
but certain substances have the property of refracting the normally
more refrangible rays less and the less refrangible more. This is
called anomalows dispersion. The substances which exhibit this
peculiarity possess what is called surface colour, i.e., they have a
different colour when viewed by reflected light to what they have by
transmitted light. As they refleet only a certain colour, the com-
plementary colours are transmitted, and their speetra exhibit an
absorption band of more or less considerable dimensions, it being
the space which would have been oceupied by the reflected colour
had it been transmitted. Such substances are termed diehrote.
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Most metals except gold and copper, as well as many of the
aniline products, possess this abnormal dispersion, the order of
colours being changed.  Moreover, Kundt found, in these dyes,
the dispersion abnormally inereased on the ved side of the band
but diminished on the violet side; so that in the case of fuchsin,
for example, the red end, usually se short, is actually more
extended than the violet end.

Recomposition of Dispersed Light.— To recombine the
spectrum of a prism in order to form white light we may adopt
several methods.

I. By employing a prism of equal dispersive power. This is
placed in the path of the dispersed light, having its base turned

in the epposite direction to that of the first prism. (Newton's
method).

2. A series of plane mirrors may be so arranged that each
receives a different portion of the spectrum; from cach the light is
reflected  to the same part of a sereen where the colours are
re-combined.

3. By receiving the dispersed light on a coneave mirror, from
which it is reflected on to a sereen, and then by rapidly oscillating
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the mirror or the screen the impression of white light is produced.
Or the prism or the screen may be oscillated or rotated to produce
a similar effect without the interposition of the concave mirror.

Any mechanical arrangement of rotation or oscillation by which
the colours of the spectrum, whether produced by dispersion or
by transmission through coloured glasses, or by reflection from
pigments, are caused to successively enter the eye with sufficient
rapidity, produces the impression of white. Different colour
sensations result while others are still existing, and the combination
of all results in a sensation of white or grey. Colour tops or discs
divided into sectors of different colours are examples of this
phenomenon.

Diffraction Spectrum.—Dispersion can be obtained by re-
flection from, or transmission through, a diffraction grating which
consists of a piece of glass or metal ruled with very fine lines—some
thousands to the inch—and the closer and the more 1::.;.':(:”}‘ :_*tjlli-
distant the lines, the purer is the spectrum produced.  The lines
of the grating break up the original waves into fresh series, of
which some are quenched by interference. Unlike the spectrum
obtained Dby prismatic  refraction, the colours are evenly
distributed in accordance with their wave-lengths, so that the red
end is not condensed, nor the violet end dispersed, while the red
and orange occupy more, and the blue or violet occupy less space
than in a refraction spectrum ; also the most luminous part is more
nearly in the centre. Such diffraction gratings afford an acceurate
standard |l}' which to measure the wave-lengths of light and the
relative positions of the lines.
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CHATTER V.
REFRACTION BY PRISMS AND LENSES.

If the two surfaces of a refracting medium are not parallel to
cach other every incident ray must suffer refraction, gince no ray
can be perpendienlar to both surfaces.

Prism.—An optical prism is a transparent body usually made
of wlass, but it may for Hlu'(.'i.‘il reasons consist of quartz, rocksalt,
fluorspar, ete. It has two plane refracting surfaces A B, A C
(FFig. 74), which meet in a line at A, termed the apex or edge
of the prism.  The side B C opposite this edge and joining the two
refracting surfaces is ealled the base. The latter may slope in
any direction, as it docs not affect the course of the rays. :

Fig. T4.

If a ray be incident in a direetion perpendicular to the first
surface it passes through the prism without deviation until it
reaches the second surface, when it is refracted away from the
perpendicular.

If a ray be incident otherwise than normally on the first surface
as it passes from the rarer into the denser medium it is refracted
towards the perpendicular to the first surface, and on emergence
is again refracted, as it passes from the denser inte the rarer
medium, away from the perpendicular to the second surface.

Provided that the angle of incidence be the same, the rays are
refracted to the same extent, no matter on what part of the first
surface of a prism they are ineident. IF the rays (Fig. 74) incident
on the prism are parallel before refraction they are similarly
situated in relation to each other after refraction and emerge from

i
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the prism parallel. 1If they are divergent before refraction (Fig.
72} they emerge from the prism divergent. If they are convergent,
they are convergent on passing out. Nevertheless, as will be seen
later, the degree of divergence or convergence is not the same after
refraction as it was before,

Refracting Angle.—In Fig. 76 the angle formed at A, by the
two refracting surfaces, is called the prineipal angle, refracting
angle, or angle of inclination. The refracting power of the prism
15 governed chiefly by the principal angle.

o

Fig. 76.

Angle of Deviation.—Let the incident ray D E (Fig. 76) be
directed towards a point H in the centre of the Ill'i:ﬂrl.
Being refracted at E it takes the direction E I" and passes out in
the direction I G as if proceeding from . The angle of deviation
of the prism is in this case I H G, because D I, instead of following
the path H I, appears after refraction to follow the path H IF G.

An objeet at D, when viewed through the prism from G, appears
as if it were zituated at J. The deviatine ancle constitutes the
important optical property of a prism.

Shape of Prism.—A prism, as regavds the outer margins of
its refracting surfaces, may be of any shape—square, cireular, or
oval ; neither the shape nor size of its surface influences the comse
of the light passing through it.
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Defining Terms. —In the primn (Fig. T7) the line of junction
A B of the two refracting surfaces is termed the edge. FCD E is
the base, A BC D and A B E F are the two 1‘0f|1rhi]tr surfaces.
The plane A I K B containing the edge of the prism and situated
syminetrically with respect to the two surfaces may be termed the
hase apex plane; generally it bisects the base. Any line, as L M,
at right angles to the edge of the prism and lying in the base-apex
plane is a base-apex line.  The line G H, parallel to the edge anid
hm-' in the basc-apex plane, may, if midway hetween the edge
and the hase, be considered the axis of the prism.

A principal section of a prism is any scetion, as A F C, eutling
it from edge to base perpendicularly to the axis.

In a circular or oval prism the thinnest part L (Fig. 78) is
considered to be the apex. M N is the base opposite to the apex.
The central line I M of the plane (A B 1 K of Fig. 77) connecting
the thinnest and thickest parts of a round or oval prism is called
its base-apex line. It is usually marked on the circular prisms
of the trial case by two small seratches, one at the apex and the
other at the base. O P tangent to L and perpendicular to L M
is the imaginary edge. I’ M N shows a section of such a prism
along the base-apex line.

Fig. T8.

Deviation by a Prism.—The apparent deviation of an object
caused by a prisin is the combined result of the refraction suffered
by the rays at the two surfaces, and although commonly said to be
towards the apex, it is actually towards the imaginary edge of a
cirenlar prism in a direction parallel to the base-apex plane. A
ray incident at X (Iig. 19_} from an object bevond the prism, is
refracted towards Y and is referred back towards Z, the liné of
deviation Z X Y being parallél to the base apes-line L M. :
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The Degree.—A prism is usually measured by the number of
degrees included between its two inelined sides. A prism of say
102 iz one in which the two sides enclose an ﬂl]g}u of that amount.

Deviatling Power of Prism.—The deviation of a ray passing
through a prism depends on (Ist) the angle of the prism, (2nd)
the index of refraction of the medium, and (3rd) the angle of
incidence of the rays.

The larger the angle formed by the two refracting surfaces the
ereater is the angle formed by the incident ray and the perpen-
dicular, and therefore the greater is the deviating efiect of the
prismnu.

The deviating effeet also depends on the index of refraction of
the medinum of which the prisin is made, since the higher the index
the more iz a ray incident at a given angle refracted. In
ophthalmic prisms the glass has usually a refractive index of 1.52.
In this case a prism of 12 angle causes a deviation of fJem. at
1 metre distance.

The deviating effect may be assumed to be equal to half the angle
of the prism. This is the case if glass of p of 1.5 is used for the
weak prismns such as are employed in spectacles, so that a prism
whose refracting angle is 89 may be said to have an angle of
deviation of 49; or a prism which deviates a ray 4° (when
incident at minimum deviation) requires to have an angle of 89,
In the case of thick prisms, however, such ealeulation is inadmis-
sible since the error would be considerable.

Degree of Deviation.—Although ephthalmie prisms have been
generally numbered according to their refracting angles, they are
frequently referred to in terms of their deviating angles. A prism
is of 19d (one degree angle of deviation) if, in the position of
minimum deviation, an object is deviated 1.745em. at 1 metre.

The Prism Diopser.—Still more frequently the prism diopter
(symbolised thus <) is used for the unit, This signifiecs a prism
which causes a deviation of lem. at 1 metre.

The value of the # is slightly greater than that of the degree,
9= being equal to 109, but it is of course impossible to give any
real value to the refracting decree, since the refractive index is
ignored. In practice, however, the = and © are often considered
as equal.

Relative Values.—'The ratio between the three units mentioned
15 as follows:—

19 = 529 = . 9a
I, = Af9d = 1,19
1°9d = 1.74bn = 1.99
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Minimum Deviation.—l'or every prism there is one position
in which an incident ray will be less deflected than in any other.
From this position, if the prism be rotated round its axis so that
cither the edge or base is advanced towards the source of light, it
will be noticed that an object viewed through the prism appears
still more deviated towards the edge of the prism.

Minimum deviation obtains when the incident and emergent ravs
are ecqui-distant from the edge, and, as shown in Fig. 79, the
angles of incidence and emergence (i and ¢) are also equal.

In this position the course of the ray, as it traverses the prism,
forms with its sides the base of an isosceles triangle, and a perpen-
dicular let fall on it from the prism apex will bisect it.

For any other incidence of the rayv as i increases, e decreases
less rapidly ; while if i decreases, ¢ inercases more rapidly, so that,
in any case, the total deviation is greater,

The angle of incidence, from which minimum deviation recults,
varies with the angle of the prism and its p. It is found from

P
e

2

where P is the refracting angle and i is the angle of incidence. For
approximate calculations we can substitute for the above formula

3
I = —
1

Fig. 79.

To Determine ;. of a Prism.—In the prism A B C let i be
the angle of incidence, r the angle of refraction, pu the index of
refraction, and e the angle of emergence which the refracted ray
makes with the normal I+ I8

o

st

(24

22]
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Through A draw A M, making the angle E A O = I" A 0. Pro-
dues the ]m.,u]fh[ ray D E to K, and produce the emergent vav G I
backward to meet D K in ), then the total deviation of the incident
ray is eulll_a_I to d. Produce the normals L E and N I to meet at M.

As the prism is in the position of minimum deviation

i=e buti=p+ r,ande = q + u.
We know that sin i = p sin r, and therefore
sin 1
po= —
sin r

In the triangle Q E I the external angle d = the two opposite
and equal internal angles p and q.

In the triangles E A M and O E M, M E is perpendicular to A E
and A O to B O, whiledE is conmnon to both.

L
Therefore r (the angle of refraction) = K A M = —
2
d
Since the angle p = q = —
2
d
then i (the angle of incidence) = v + p = r + —,;
2
E d P +d
Sﬂ-ﬂlﬂ,t i — e _I_ Crd L
2 2 4
P4 d
sin (— )
sin 1 2
and consequently p = — = ——, 23]

sin r
sin ( )
2

This formula enables us to find the index of refraction of a
prism, when the principal angle and the angle of minimum devia-
tion are known, d and I’ being measured by the goniometer or .
spectrometer.

Ezample. —What is the index of refraction of a prism, the angle
of minimum deviation being 5.759 and the principal angle 10.1521

d + P 0.76° 4+ 10.15° 15.90°

—— . e IR . T.[I-lﬂ:; T{.}T‘
2 2 9
| 10.15°
— = = 5.075° Ho 4!
2 a
sin T7° &7 13283
therefore po= el e __ 1.659

sin 5° 4 0837
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To Determine the Angle of Devialion. —If p and P are known
d can be found thus:—

Multiply the sine of half the principal angle by the refractive
index of the prism. Find from the table of natural sines the

angle whose sine is this product, multiply it by two, and deduct
the angle of refraction. The vesult is the angle of deviation.

Example —What is the angle of deviation of a glass prism whose
]H'iu{‘.ipﬂ] angle is 42 and index of refraction 1.5757

We find that sin 20 = 0349, and .0349 x 1.575 = .0047G7H
= gin 3° 9.

Now S A S T

therefore Go18 — d 4 40

or d = (© 18" - 40 = 92018/

To Determine the Principal Angle.—To find P the angle at
which a prism of known index must be ground so that a certain
angle of deviation be obtained the formula is

d
" gin -
P 2
Lan ey
2 d
no— o3

2

Example.—What angle must he given to a prism of 82 deviation
when p = 1.5277 Here

d
sin -
2 sin 4° 0697 0697
= = = =.1316
d 1.527 — eos 4° 1.527 — 9975 0205
po— cos -
2
Now 1316 = tan 72 307; P must therefore be twice this angle
or 15°.

Simplified Formulae., — When the angle of incidence or
enmergence is zero, i.e., when the ineident ray is perpendicular to
the first surface or the emergent ray is perpendicular to the second,

(24

28]
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the formula for finding u, d, or I', when the other two values are
kunown, becomes simplified to

sin {l-l -1 ]]"_I

p S e e
sin I
whenee psin P = sin(d + )
sin
an tan P = 3
p — cos d

By substituting angles for their sines, which ean be done without
serious error, when the angle of the prism is small as in ophthalmie
prisms, the formule may he greatly simplified. Thus,

d + P d
f{ = —=—— of — i 1
I’ p
whenee d =P (p - 1)
d
and P = —
po= 1
If the refractive index = 1.5 them p - 1 = { and
1')
d = —;
2

go that the deviation of this prism is equal to half the prineipal
angle. Thus for a prism of 5° the angle of deviation would he
approximately 29 307,
If the refracting angle of a prism is 102 and the deviating angle
5.25, then
5.25
= + 1 = 1.524,
10

A prism of 102 principal angle, whose index is 1.54, has an
angle of deviation of

d =10 x .54 = 5.4° = 50 24/,

If a prism of 6.259 deviation is required, the index of refrae-
tion being 1.56, the prism angle is

6.25

P — 11.166 or 11° 10",

ob

126,

127]

28]

129]

130]

131

182]
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To calculate the prism I, made of glass of a certain index of
refraction, which will neutralise the deviation of another P,, whose
index is different, we have only to put

P, I}L:, — ]}
e
(p, — 1)

Thus if a crown glass prism of 159, whose p = 1.54 has to be
neutralised by a flint prism whose index = 1.62, then from the
above formula

15 x .04
By= — = 13°
A2

Fig. 80,

Displacement by a Prism.-—In the above figure the object A is
seen, through the prism, at A/, If the object is at B or at C,
it is seen at B or €' respectively. The apparent angular dis-
placement of the object by a given prism depends entirely on the
magnitude of d, and no matter how near or how distant the object
(as may be scen from the fizure) the angle is invariable. But the
actual displacement AAT BB CC! is proportionate to the distance
of the objeet, which distanee is the radius of an lmaginary eirele
within which the angle is contained.  Thus the deviation AAS, ete,
is represented by the tangent of the angle of deviation d.

For the practical methods of determining the deviating and
refracting angles of a prisin see the chapter on prism notation
and measurement.

Construction.—To trace the course of a ray D B refracted by
the prism A B Cof g 1.5, From D (Fig. 81) draw D I perpendicular
to A C and divide E F into three equal parts. Irom E on A I mark
off £ G equal to two such parts. From G draw G I perpendicular
to A B and connect EE with G I by a line E H (eutting A B at the
point J), whose length is equal to E D. Then E I will be the
direction of the refracted ray. From E draw E K perpendicular
to A B. Divide J K into two equal parts. On J B, from J, mark
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off J L equal to three such parts. Draw M L perpendicular to
A B. Connect J with M L by a line J M, whose length is equal to
that of IZ J. Then J M is the dirvection of the ray of emergence.
The angle of deviation I¥ N O is found by prolonging M J back-
wards and D I forwards so that tlu-:.' meet at N. Should the
n of the prism have any other value than 1.5 then E I and J L must
have as many divisions as the numerator and E G and J K as
many as the denominator of the fraction. Thus if p = 1.6 the
proportional parts would be ¢ight and five.

Another method iz as follows. Let D IS be the ineident ray.
Produce B A to . From A HIIJ-II:I A H mark off any three {J1|I|;11
parts. From A as a centre deseribe a cirele G I N L with a radius

A asdl el an s llup

Fig. 82.

A G equal to two such paris, and another circle H K P with a
radius A H equal to three such parts, Through A draw I A parallel
toe D E and produce I A cutting the cirele G I N at 1. Drop a
perpendicular I J on to A II, and produce it backwards to eut the
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outer cirele at K. Then K A will be parallel to E L, the dirvection
of the first refracted ray. From K drop a perpendicular K M
cutting the smaller cirele at N, then A N will be parallel to L 0O,
the direction of the refracted ray after leaving the prism.

In order to trace the course of a ray of light through any
refracting body, with plane or eurved surfaces, the procedure is
the same, but in the case of the curved surface the tangent to the
curve at the point on which the ray falls is considered to be the
plane of ineidence and of refraction.

REFRACTION AT A SPHERICAL SURFACE.

Power of Curved Surface.—The refractive power of a curved
surface depends on its curvature and the refractive index of the
medium, so that an inerease in either is accompanied with increase
of power. The focal length depends on the refractive power, the
one being inversely proportional to the other, i.c., the greater the
power, the shorter is the focal length.
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Curvature of Surface.—Since every line drawn from the centre
to the cirenmference of a sphere is a radius of curvature, every
point on the circumference may be regarded as a minute plane at
right angles to the radius which reaches it. Thus C E is called a
normal to the surface at E, being perpendicular thereto, and this
holds true when the line is prolonged beyvond the cirenmference
to P.

L

Course of Light.—In Tig. 83 let n, represent a transparent
body having a single surface with its centre of curvature at C.
Any ray of light A B or P E proceeding from the medinm n, is,
when incident at the surface, directed towards C, and so is
perpendienlar at the point of incidence. It therefore passes into
the medinm n, without deviation. DBut the ray D E, incident at
E, in a direction which is not perpendicular to the surface, is bent
towards the perpendicular I' E C in the direction E I, if n, is of a
higher index of refraction than n, or it is bent away from the
perpendicular, in the direction E G, if n, is of a lower index,

i -
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In Fig. 8% let n, be a mass of glass in air bounded by a convex
surface. The ray f, A directed towards A, is normal to the re-
fracting surface and passes onward without deviation. The
rays f, B and [, D form the angles B, B f, D, D, with the normals
B, B [' D, D L to the surface, and each, on |rm~-|1|=' into the denser
mmlmm, l:-i bent towards the perpendicular to an amount governed
by the ratio between the sines of the angles of incidence and
vefraction. Thus the ray £, D is bent more than the ray f, B and
the two meet the line £, AC {|r1u'ln;rwruI} at the point f,. Similarly,
all the rays diverging from f, are refracted to f,; f, is, therefore,
called the focus or the image of the object or source of light £f,.  The
points f, and [, are conjugate foci. If the object were at £, the
image would be at f,.
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Lig. 84.

Defining Terms.—The line £, A 1., which is perpendicular to the
refracting surface and passes through the centre of curvature and
I (the principal focus), is called the principal axis; and any point
on it has its image on the same axis. The focus thus formed, by
a convex surface of a medium of a higher index of refraction, is
positive or real. If the medium is of lower index, rays of light
entering it are rendered divergent, and their focus is nerative
or virtual. C is the centre of curvature, A C = r iz the radius of
curvature of the surface.

Formulze Connecting f, and f.— In Fig. 311t D, D i, = i,

the angle of iuri-]mmn CDF, = r, the angle of refraction ; let
the angles D f, A = a, DCA =1, and D, C = ¢; let the index
of the first luwimm in. iy and uf the sccond p,.

Then fiy sIn i = p, sin r,

but Il =& 4+ bandr = b - ¢,

o sin (a + b) = p,sin (b = o).

If the pencil of rays be small, the angles i and r are small, and we
ean omit the sines and replace angles by their tangents.
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Let Af, = f, Af, = f,, and let r be the radius cf curva-
ture A C. i
1 1 1 1
Then p.l(—- - —) —- ,13(_ — _.._)
# r r fe
4y (&1 M s
onr - + —— e
f, r r f,
(&l F: Py —
— + ——
f, 5 1

If the object f, is at o0, we have

LY 7 r My —
this being the posterior prineipal foeal distance V. of the su riace.

Again, if f, the image be at ~ we have

iy s s = My My T
. . S e = ——— O |'J . -
hl b r M= — 4

this being the anterior principal focal distance I, of the surface.

Positive Focal Length.—Fig. 85 (A) shows a beam of rays
which diverge from a single point situated so far away that the
angle of dwm wenee may be neglected and the rays considered
parallel to each other ; these rays, on passing into the denser medium
n,, are refracted tu“‘urllx the principal axis and meet at the point
I',, situated beyond the centre of curvature C.

The distance P F, is called the posterior principal focal dis-
tance; I, is the posterior principal focus of the refracting surface,
and it is situated on the principal axis P C F,. The distance P F,
is governed by the index of refraction and the curvature of the
medium n,, it being longer as the index is low-and the eurvature
small and vice versa.

IESFRRTS JE———

3

136

o




REFRACTION BY DPRISMS AND LENSES. HH)

In Fig. 85 (B) the rays are parallel in the denser medium, and
they will, on emergence into the raver medium n,, each be refracted
a.w:;n_v from the perpendicular at the point of emergence and mect
at the point I, sitnated on the principal axis. P I, is called the
anterior principal foeal distance, and 17, the anterior principal
focus.

In the preceding figures, let n, be some rarve medinm and n, be
a solid body of glass (or an aphu]m eye, that is, an eye from ulm h
the lens has been removed), let p, be the index of refraction of air
and fia that of medium n,, and let r be the radius of curvature;
then the distances of I¥, and IF, from I’ are found by the formule
as given in the preceding p.uagl aph.

P [ (e R ey

If n, is air, p, = unity, and we can substitute 1 for it. Also
i, we can then call yu, so that the formulae become simplified to

[T § r
F, = —— and F, =

po— 1 po— 1

These formulie hold good only when the focus lies within the
medinm to which r the radius pertains.

Thus if the index of n, is 1.5 and the radius of curvature eight
inches, then

1.5 x 8 12
P — o= — 24in. from P,
(1.5 — 1) 8]

or 24 — 8 — 16 inches from C.
8

Fl Tr— —
1.5 — 1 .

| e

— 16in. from P,

e

or 16 + 8 = 24 inches from C.

The anterior and posterior focal distances of the surface of a
glass convex body are approximately twice and three times the
radius respectively.

Negative Focal Length.—If the surface is coneave the radius
is negative and would be prefixed in the formule by a — sign, so
that I, and F, become negative guantites, and they are situated
on the same side of thn surface as the source of light. That is I,
18 in the air and F, is in the dense medium. The caleulations are
the same as for a Cx surface.

[37]
138]
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Relative ;. — Let us suppose the rarer medium to be some
other medium than air, such as water, and let p, and p, be the
indices of refraction of water and glass respectively; we can find
I*, and I, by the original formule.

Eaample —Suppose parallel rays pass from water 4 = 1.33 into
glass p = 1.5 and let the radius be eight inches, then

d (T 13
P, = — = 70.6in. from P,
1.6 — 1.33 A7

or 70.6 — 8 = 6L inches from C.

Ii the rays pass from glass into water,

1:380 x4 10.64
F, === = —— = 62.6in. from P,

1.6 — 1.33 AT
or (2.6 + 2 = 70.6 inches from (,

In these formulx the relative p, which equals p./p,, can be found
and the caleulation then made as if the lower p were air.

Relationship of F, and F..—The anterior and posterior focal
distances arve measured from the refracting surface and they are
proportional to the indices of refraction of the two media.

I'or instance, in the first example

I, It 24 1.5
3 D T |8
F, iy 16 1
“”II itl tllt" -“it’ﬂ[ll!l] l"."iiHI.II:I].l!
B, 70.6 1.5
17 62.6 1.33
It will be seen that in a refracting body with a single eurved
surface, r = F, — F,. Subtracting r from F, we obtain I', or [42
F, + r = F,. This holds good-whatever the rcfractive indices
may be.
To find r or p. —The radius or the refractive index can be found
by substituting known values for the symbols given in the above
formule, and then equating.
Thus, let I' be 30in. and the indices of refraction be :
respectively 1.5 and 1, then to find the radius r we have
it o 15
30 = or r = — = 10Qin,
.9 1.5
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If p, = 1.5, r = 8§, and F;, = 70.6, then we can find p
as follows :—
8 % 1.D
706 = ———: 801059 — 70.6p == 13,
1.6 — p,
or 70.6p1, - 93.9. Thercfore -~ 1.33.

All the formule given apply equally when the denzer medium
has a concave surface, only in this case F' will be negative, and
care must be taken that the — sign be given to it, in any calcula-
tions. e

The curved boundary plane between the two media may be
recarded either as the convex surface of the one or the concave
surface of the other.

Since the anterior and the posterior focal distances of a refracting
surface are not the same, it is not so usual to express its power in
diopters as is done with lenses.

Secondary Axes.—The principal axis of a refracting body has
been shown to be a line which passes through the centre of curvature
and the principal focus (A C I",, Fig. 86). All other lines such
as B C, D C passing through the ecenire of curvature but not
passing through F, are termed sccondary axes; they correspond
te radii of curvature of the surface and are therefore normals. An
object point sitnated on the principal axis always has its image
(focus) on the same axis, and it is therefore called the prineipal
focus. Likewise an object point situated on a secondary axis has
its image on that same axis, and it is called a secondary focus.

L-'E"“_-—':_"" T '_'""-'___""_'_"_—'?"T—- )

e -h.

— -—__..______- :"—'-t" Sl it Kl r bR AL _-
e — e -— T
-.r::"'_,"_'-r_;--:'_ - _E_-:_A___'—‘_-.l.-____.? e — r T —
= i = ,-i.____ e .

5 _F:.._-—""'ﬁ'li"ﬂl,m' g M _:_.._ ")

.---.:- T X, .,-'-""'-Fr -
=" e — i
IFig. 87.

_Construction of I.-—Cx. Surface.—1In Fig 87 A B is an object
pituated in front of the refracting surface D P H. Rayvs diverging
from A and B have their images respectively at A, and B,, there-

fore B, A, is the image of the object A B, and it can be con-
strueted in the following wav.

L

|
|
I
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There are three rays emanating from any peint of the object,
the course of which can be casily traced, viz.:

(1) A ray A C directed towards the centre of curvature C.
This being normal to the refracting surface passes into the second
medium without deviation.

(2) A ray A D which is parallel to the principal axis. This,
after refraction, is directed towards the principal focus I,.

(3) A ray A G passing through the anterior prinecipal focus
F,. This, after refraction, is parallel to the principal axis in
the denser medium as G A,

The point where these three rays meet at A, is common to all
the other rays diverging from A and constitutes the image of
that point, Similar rays drawn from B form an image at B,.
Any two of the rays mentioned suffice for the construction of the
image points A, and B, and the latter define the position and size
of the entire image of the object A B.

The image formed is real and inverted; it is smaller or larger
than the object according as the image iz nearer to, or further from,
the centre of curvature of the refracting surface than the object
itself.

When the object is at ', the rays, after refraction, are parallel
in the denser medimm and, although in theory the image is at 00,
in reality no image is formed. If the object is nearer than T,
as A B in Fig. 88, the rays, after refraction, are still divergent,
although less so than before refraction, and cannot meet, therefore
no real image is obtained. The rays can, however, be referred
back so as to meet in front of the refracting surface as A, B, and
the image, thus obtained, is further away than the object and is
virtual (negative), erect and magnified.

The same construction for a virtual as for a real image ecan be
emploved. Irom A draw A C.  Now sinee this passes through C it
undergoes no refraction. Draw A G parallel to the axis. This
is refracted so as to pass through I,.

The two lines A C K and G F,, after refraction, are divergent,
and prolonged backwards will meet at A,. Similarly, B C and
B H may be drawn, and produced backwards till they meet at B,.
Thus A, B, is the virtual image of A B.

i
l
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Position of Image Point.— The image of a luminous point
being on a line drawn from that point through C, the construction
consists merely of determining its position on that line. It is on
the opposite side of the refracting surface if the rays converge
after refraction; and on the same side if, afier refraction, they
diverge from the axis on which the point is situated. "The gr ater
the convergence or divergence the sooner do the rays meet and form
the image of the object point from which they originally diverged.

'--_____\_\_-__- . -‘l:‘?‘. . - -
i —
e 3 BI i
E;}l'_'-_
Fig. 89

Construction of L.—Cc. Surface—If the curved surface is
concave the construction is as follows :—Draw from A the ray A G;
this, after refraction, is directed as if proc ceding from IY,. Draw
A C through the eentre of curvature; this is unchanged in :!ilu tion
by refraction. Now A Cand A G are very divergent, in the denser
medium n., and when projected bacel kwards meet “at A,, which is
the virtual image of A. Similar rays drawn from B show their
image to be at B,.  Consequently A lpL is the virtual image of the

object A B.

dee (i
‘::.—--"'"'_rd_- X .."‘":__
% I, o O
An o=

Fig. 90,

Conjugate Foci.—Cx. Surface.— 1If in Fig. 90 a luminous point
is situated at o0, as shown by 0,, the light procceding from it is
parallel and, after refraction, meets at IF,. This is the nearest
point to the refracting surfaces at which a focus can be obtained.
If a Tuminous point is situated at I¥, the rays, after refraction, are
parallel to cach other, and the only image that can be conceived is
at o¢; therefore I' and ~0 are conjugates of each other.

If rays diverge from a luminous point situated nearer to the
refracting surface than oo, as shown by O, some of the converging
power of the me dium being expended on the divergence of the light
there is less residnal conver wenee, and the ravs therefore meet at a
greater distance behind t!u. refracting surface than if they had
been previously parallel to cach other; the image in the denser
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medium is at some point situated between F, and oo, as at 1,.
The positions occupied by the object and its image are conjugate
foci and are interchangeable, for if the object were at the one
position the image would be at the other.

As the object recedes from F, the image T approaches F,, and
vice versa until when O is at F, the image is at o¢, while if O is
1 - . = -
nearer than I, as at O, the image is at I, on the same side of the
surface.

Conjugate Foci.—Cc. Surface.— When the surface of the
dense medimm is concave and the object is at o0 the image is at T7,.
This is the most distant point from the surface at which an image
can be formed. If the objeet is within oC, the original rays being
divergent are rendered still more divergent after refraction than
if they had been originally parallel; hence the image is formed
nearer to the surface, that it, as O approaches the surface so also
LI.UL'S I.

Virtual Conjugates.—Virtual conjugate foei, formed by Cx. or
Cec. surfaces, are not interchangeable as are real conjugates, but if
the light were directed converging towards f, the image formed
would be at f,.

Formula for Conjugate Foci.—Lct £, he an objeet and f, its
image. Then if ¥, I",, and f, be known, the position of f, is
learnt by the formula

I, F, [, I,
F — 1. Therefore f, —.

i, f:| = ]1"_I

1-1
Eramples.—Suppose the object to be situated 20 inches in front

of a Cx. spherical surface, whose anterior and posterior focal

lengths are six and nine inches respectively, then its image is

situated at 12%in,, since

20 x 9 150

f, — — — — = 12in.

; 20 — G 14

If f, be a luminons point situated within the anterior focus, the
position of the virtual image is found by the same formula, but T,
being greater than f, on deducting tue greater from the lesser
number a negative quantity remains.

Thus, suppose an object to be situated five inches in front of a

spherical surface where I, = Gin. and I, = 9in. Then
a % 8 15
f, = —— — —— — 45in.
5 — 6 I

The image £, is then negative or virtual and is 45 inches distant on
the same side of the surface as the luminous point f,.

|43]
|44]
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If f, is situated at I, the divisor of the fraction becomes O, so
that the image f, is at o0 ; so also if f, is situated at o0 then f,
corresponds to I,.

If the object f, is within the denser medium the position of the
image f, is found by the formula

i, F,

_r? et -
=B,

Thus, suppose an object to be situated 12%in, behind a
convex refracting surface whose IY; = 9in. and I, = 6in, then

198 % 6 7

f] = == Eni”-

198 = 9 g8

This example should be compared with the one previously given,
where the object is in front of the refracting surface; 20 inches
and 12 6/7 inches being conjugate distances for the given refracting
medium.

Let an object be situated 20 inches from a Ce. surface whose T7,
and F, are respectively —6 and —9in., then the image is virtual
at 6 12/13in., since

2 % (-9) -180

20 _ (B 26

== -61%in.

Universal Formula.—A more universal formula for the expres-
sion of conjurate foci of a single surface is

xF
BN =

x—l*"j

where x and x/ are the two conjugates, I is the principal focal
distance of the surface in the medium ‘fomwards which the light
proceeds and I that in the medium from which it proceeds. Thus
suppose a point is scen one inch behind a eurved surface whose
anterior I is four inches and posterior I' is six inches, then the
actual position of the point is

o ¥ : — = 1.2in.

If the object were known to be at 1.2 inches, its imare is at

1.8 e 4 1.8
= — = =]in.

18— 6 -i8

(48]

46
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Size of I.— The image formed at the posterior focus of a curved
surface is of a size equal to that formed by a lens whose foeal dis-
tance = I, and that formed at the anterior focus is the same as that
formed by a lens whose focal length = F,, because the axial rays
cross at the centre of curvature. Whatever may be the distanee of
the object, its size and that of its image are to each other as their
respective distances from the centre of curvature, where the axial

ravs cross cach other.  This is shown in Figs. 86 to 89, and whether

the image be real or virtual it can be seen that object and image
always subtend the same angle at C.

Formula for Size of L Lct the distance of the image from
the surface be represented by f, and that of the object by f,, and let
r be the distance P C from the surface to the centre of curvature. Let
the size of the image be I and that of the objeet O and their
distanees from C respectively I C and O C, then the magnification
M is

I LG f—=T F, i, — F;
B-I — e — — — &
O O L f, — I F,
Taking the fizures of the example previously given, r = 3ins.

f, = 2ips., and f, = 12%ins., then

I 12¢ — 38 93
0 20 + 3 23

The linear size of 1 or O is found when the size of the other is known
|J}' the formulae
O (f, — 1) I(f, + 1)
] = =y U == .
f, + r f, — r

If O and f, are in the same terms, i.e., inches, em., ete., then I is
{:Illl'ﬂﬁﬁud in the same terms as f,.

Thus again taking the above example, if O be five inches long

5 x 9% 15

23 ]

Further Examples.— To again illustrate the various formulwe
given, suppose an object 1 inch long is situated 20 inches in front
of a refracting surface whose radius of curvature is two inches
and p = 1.5, then

oy

(47)

(48]
49]
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20 x 6 120
Therefore f, = —— = — = 1.5 ins.
20 — 4 16

7.0 — 3 1 1
- — X - = — In.
20 4 2 3 12

Unit Magnification.— When the object and its real image are
situated at equal distances from C, and on opposite sides of the
refracting surface, they are equal in size and situated in the
planes of unit magnification. In this case O is at twice the
anterior focal distance and T is at twice the posterior focal distance
from the surface, or O is at 2F, + r and I is at 2FF, — r from C.

That is
M =1 when O+r=1-r or when ml=p, 0,

and the two conjugates are consequently at 2, and 2F, respectively
from the surface.

If the image is virtual, with a convex or concave surface, unit
magnification can only occur when O and I are both at the refract-
ing surface itself and, of course, therefore equi-distant from C.

Also if the O is very small, unit maguification oceurs at € itself.

Fundamental Formule.— When I, and I, are not known, the
formula, previously proved, for caleulating conjugate foei is

4y frs Mt — M
SR A SO
fy I r

Where £, and [, are the two conjugates, p, is the refractive index
of the denser and p, that of the rarver medium. If the object is
situated within the denser medinm, f, must be regarded as the
object distance and [, the image distance. Thus cither p may be
that pertaining to the object, the other n being that of the medium
towards which the light proceeds but whicl may or may not be
that in which the image is actually situated, since this may be
either real or virtual.

Ezamples.—Let r = 10mm., u, = 1.5, y, = 1, and f, be in
py at 50 mm. from the surface ; then

that 15 ——

150]

[51]



1053 REFRACTION BY PRISMS AND LENSES.

Let r = 10mm., p, = 1.5, g, = 1, and f, in the denser medium
be at 15mm. from the surface; then

1.5 — .0 1
10 15 f,
; ~1.5 1
that is — = — and f; = 20
30 f,
The — sign shows that the focus f, is virtual and in the rame
medium as f,.
Let ¥ = Bmm., By = il s py, = 1, and the object be at 3. 6mm.
behind the surface and 2mm. in size ; then
1 1.333 - 1 1.333 -1
7 8 3 6 3.05

The image is virtual at 3.05mm. behind the surface, and its size is

2 x (8 — 3.05 9.9

== 9 25 mm.

8 — 3.6 4.4

That is to say, the pupil of the eye, if 2mm. in diameter, and 3.6
mm. from the cornea, appears to be 2.20mm. in diameter and
about Jmm. behind the cornea.

Fundamental Formula.—Cc. Surface. - When the surface of
the denser medium is concave r is negative and is given the — sign
in the formula given before.

When two media are separated by a spherical surface, this ean
be considered either the Cx. surface of the denser medium or the
Ce. surface of the rarer medium, the radius in the latter case being
negative.  Again, a dense medium having a Ce. surface in contact
with air, the latter constitutes a Cx. air surface and r is positive.
But when the air surface is considered to give the impression to the
light, the p, — p, of the original formula becomes pn, — jis.

Tabulated Conjugate Focal Distances. —1f r = 10 and
ny = 1.5, then P, = 20 and F, = 30. '

If O is in front of the surface, in the rarer medium
when O is at 100 GO 50 40 30 20 10 b

then 1 is at 375 45 50 60 90 oo — 30 — 10
If O is behind the surface, in the denser medinm

when O is at 100 60 LHO 40 30 20 10 b

then 1 is at a35 40 00 80 ea—dl — 1) =4

As will be scen from the above tables the conjugate focus is shorter
when light passes towards the rarer medium. The planes of unit
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magnification are in this case 40 in the rare and 60 in the dense
medium, since 40 : 60 as 1 : 1.5.  The second conjugate is at o0
when the first is at I' of the medium in which O is situated.

A virtual conjugate in the rarer medium is always more distant
than the object, but it should be noted that a virtual conjugate in
the denser medium is nearer or further away from the surface
than the object, as the object is u-squtn'l,lv nearer to or further
from the surface than C. When O is at C the virtual 1 is also
there situated. Thus in Fig. 91 if the object is at O, then the
image is at I, if the object is at C then the image is at C, and if

Fig. 91.

the object is at O, then the image is at I,. When light diverges
from, or converges to, the centre of curvature it is unaltered in its
course by the I'Lf!ﬂl.,tlﬂll at the surface of the medium, and a very
small object placed there would appear of natural size. 1f ll"[l
diverges from or converges to a point beyond C it becomes li_m
divergent or more convergent by refraction "at the surface.

Other Formula.—It may be noted that if A and B be respee-
tively the distance of O from I*, and of I from ., then

[iagE s T
AB=F Fand — = — = —.
@ e

Dioptral Formulae for a Single Refracting Surface.—
Since F and D are I't'Lfij'}]'m'.f;I:-: of each other, in terms of a metre,
the numerator of the following formule is multiplied Ly 100, in
order to convert distances, expressed in cm., into dioptric powers

D, and D,.
100 ( — r*-} : C 100 (py, — )

—_—— — — — - A — = - — e

I L

Where p, is refractive index of the denser medium,
. " + s sy Tarer medinm,
s r ,, the radius of curvature of the surface in em.
» Dy ,, the dioptrie power corresponding to I,

to b..

LR ] > r3 8] 11 b¥ LR ]

1R ST S T T

162

153
|54]



110 REFRACTION BY PRISMS AND LENSES,

Frample.—Find the power of a surface of radius Cmm. and
@ = 1.333 in zir.

100 x (1.333 — 1)

B = 41.66
P |
100 x (1.333 — 1)
D, = — = 31.25
Beialeay

31.25: 41.66 as 1 : 1.332,

LENSES,

Prismatic Formation.— I two similar prisms ACD and BCD
be placed base to base as in Fig. 92 ineident rays of light E and
I are bent towards the base of the prism A C D and rays H and
K are bent towards the base of the prism B C D, so that those
refracted by the one prism meet those refracted by the other. One
ray, viz., G C D I is not refracted, since it passes through the base
of both prisms.

Rays of light as L and M may be considered incident
perpendicular to the two refracting surfaces, and are therefore also
not deviated.

A

Fig. 93.

If two prisms C A D, E A F, as in Fig. 93, be joined edge to
edge all rays incident on them being refracted towards the bases
are therefore diverging from ecach other, except the central ray
incident at the junction of the two edges.

Et -5
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What is true of two prisms is also true of any number of prisms
placed with their bases or edges together and a convex or coneave
lens may be considered as formed of lu'iﬁt!m whose bhases or ul'riu-;u
respectively are joined at a common centre.

Definition of lens.—A lens is a 1[".11:|.~:[r:lr1:|1l ]mil_r bounded
by one curved and one plane surface or by any two curved surfaces.
This definition, therefore, covers all forms of convex and concave
sphericals as well as cylindrical and parabolic lenses,

ATTTT B
¢V o
E F
& H
|
IS
'\.....II ."- > 5".
Fig. 94.

Graduated Prismatic Formation.—But not only is a lens to
be considered as a multitude of prisms whose bases and edges meet
at a common centre, but every meridian of it must also be con-
sidered as if formed of a series of prisms of different angles of
inclination.

Any two point arcas A and B (Fig. 94) opposite to cach other
constitute a portion of a prism whose base is the principal axis of
the lens, The two areas A and B ncar the periphery of the lens are
more inclined towards each other than C and D, situated nearer to
the axis, and the inclination between the surfaces deereases
oradually until those on the principal axis are parallel.  Since the
angle formed by A and B is greater than that formed by C and D,
a ray passing through A B is bent to a greater extent than one
passing through C D, while the ray which passes along the axis
i not deviated at all. -

Each zone of a lens, therefore, whether concave or convex, has a
refractive power which becomes greater as its distance from the
axis is increased, and it is due to this fact that rayvs diverging
from a point, and ineident on the lens, are brought to a common
focus as a point.

Fig. 95.

The Sphere.—A sphere (Fig. 95) is a body having every point
of its surface equi-distant from a common centre C. Parallel rays
refracted by a sphere come to a focus IY, behind its centre, at a
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distance dependent on its radius of curvature, and on the index of
refraction of the medinm of which it is made. 3

The formula if “Hh[ prasses from air is
|11 — — ., [55]

Thus with a globe of water with r = 4in. and p = 1.333

1.333 x 4 0.332
) C= —— — Bin.
9 (13338 — 1) 666

from the centre of curvature or four inches from its back surface.
If p =15, Fisat 15 r. If p = 2, I is at the back surface of the
sphere, while if p is greater than 2, I' is within the sphere.

When light passes from one dense medium of p, into another of
py the formula is

Jta ¥
F —_—— [56]
2(p: — m)
Thus a globe of glass of p 1.556 and r = 4 inches in water of
p 1.333.
1.566 = 4 6.224
B = == 13.95 from (.

9 (1.556 — 1.333) .446

Fig. 96.

Formation by Spheres.—If, from a sphere of glass (Fig. 96) of
given radius two portions similar to A be cut off and the two
segients brought together, these wounld form a double convex
spherical lens, while one such segment constitutes a plano convex

lens.
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A double concave spherical lens (Fig. 96 B) is formed by a body
hollowed out by a sphere on each side. A plane picce of glass
Lollowed by a sphere on one side (Fig. 96 C) constitutes a plano
concave lens, The focal length of Cx. and Ce. lenses depends as in
the case of the sphere, on the radius of curvature and index of
refraction of the medivm. If the index of vefraction = 1.5 the
focus of an equi-Cx. and Ce. lens is equal to the radius of curvature
and that of planos to the diameter of the sphere which the curves
constitute segments.

r

Forms of Lenses.—There are four forms of convex and four of
concave spherical lenses :—

1. Equi-convex. Two convex surfaces of equal curvature,

I’. Equi-concave. ,, concave

» L

2. Bi-convex. Two convex surfaces of unequal eurvature.

2!, Bi-concave. ,, concave

LR ] LR ] 33

d. Plano-convex. One side convex the other plane.
3. Plano-congayls - coneave |, .

4. DPositive meniseus or periscopic convex. Convex on one side
and concave on the other, the concave having the longer
radius, i.e., the weaker power.

4!. Negative meniscus or periscopic concave. Concave on one side
and convex on the other, the convex having the longer
radius, i.e., the weaker power.

Apparent variations of the above are sometimes made by greatly
increasing the interval between the two surfaces (Fig. 97 B & C), by
which their powers may be profoundly modified (a Steinheil cone is
an example of this form), but they are in any case only exaggerated
forms of the one or the other of the above types.
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Curvature.— In each of the diagrams in Fig. 98 the radius of
curvature is a line drawn from the centre of each sphere to the
corresponding surface of the lens.

In the equi-convex and bhi-convex (Figs, 1 and 2) the centres are
on opposite sides of the lens generated by the two spheres.  In the
plano-convex (3) the curvature of the plano surface mav be con-
sidered to be of infinite radius, the centre then beinge at infinity
can be considered to be on either side. K i

1
£

Fig. 98.

In the periscopic convex (4) the centres are on the same side.

A lens consisting of a complete sphere has the centres of its
opposite surfaces co-ineident.

In the equi-concave and bi-concave (5 and 6) the centres are on
opposite sides.

In the plano-concave (7) the centre of the plano surface can be
considered to be on either side.

In the periscopic concave (8) the centres are on the same side.

Properties of Cx Lens.—A convex lens is thicker at the
centre than at the periphery ; it has positive refracting power and,
therefore, can form a real focns and a real image; it renders
parallel rays convergent and divergent rays less divergent, parallel
or convergent as the case may be,

Properties of Cc Lens.—A concave lens is thinner at the
centre than at the edge; it has negative refracting power and,
thercfore, can ouly form a virtual or negative focus or image; it
renders parallel rays divergent and divergent rays more divergent.

General Property. The general effect of every spherical (and
evlindrical) lens is, as with a prism, to bend every incident ray of

light towards the thickest part.
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Thin Lenses.—I"or the consideration of the properties of lenses
used in visual optics, the thickness of the glass is disregarded, it
being negligible in comparison with the focal lengths of such lenses,
Yet it may be neeessary to loeate, what is called, the optical eentre,
which is situated at a point on the prineipal axis at a distance
from each surface directly proportionate to their respective radii
of enrvature.

Iig. 99.

Terms of a Lens.—In IMig. 99 L I iz an equi-convex lens;
C C are the centres of curvature, O the optical centre. The line
A O B passing through the two centres of curvature, and the optical
centre, is the principal axis. It is perpendicular to both surfaces
of the lens and equi-distant from its extremities L and L. The
plane L O L passing through O, perpendicular to A B, is the
refracting plane.  On 1t all the refraction eficeted by both surfaces
of a thin lens is presumed to take place. Any lines as D D, E E
directed to O, are termed secondary axes. They pass, obliquely
to the principal axis, through the lens, and when the latter is thin
they are presumed to suffer no deviation,

The Optical Centre.—The optical centre may be defined as
that point from which the focal length of the lens is measured, it
being in the plane of refraction; also it is that point where the
secondary axes cut the prineipal axis. Yet for practical purposes,
the thickness of a thin lens mav be so totally disregarded that the
h{m surfaces themselves are taken as coineiding at the refracting
plane.

Position of Optical Centre.—By caleulation, the optical
centre of a Cx. and Ce. lens is found by dividing the thickness of
the glass, on the principal axis, in the ratio of the two radii of
curvature ; so that if the two surfaces are equal O is equally distant
from each, but it is nearer to the more gurved surface if the two
are unequal. Let r and r' be the radii of the two surfaces, t the
thickness of the lens; and O the optical eentre, then

£ t r
——r ) abd -
R r 4+ r

[87]
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Thus in a bi-convex lens where £ = .2 inch and r and ¢/ are
respectively 6 and 10 inches.

2w B 2 N 10
rQ = — = .075in. and 0 ——— — . 195iu;
6 4 10 6 + 10

The thickness is divided into 6 + 10 = 16 parts, and O lies on
the axis six of these parts from the pole of the shorter curve, or
ten parts from the pole of the longer curve. In lenses whose
surfaces are both convex or both concave O lies within the lens, but
in periscopie lenses O lies outside the lens on the side of the surface
of greater power.

In a periscopie convex in which t = .2in. r of the convex surface
being Yin. and r! of the concave — 12in., then
e 1.8
I U — == —- — .Bin.
9 4+ (— 12) —3
2 x =12 - 24
r 0 — 4+ .Bin.
— 249 —3

The distance from the convex surface being negative must be
reckoned away from it, and the two distances coincide .Gin. from
the convex surface. If the lens were periscopic concave O would
he on the Ce. side,

With a plano lens the one surface having r = 9in. the other
r' = o0 and if t =.2in., then

2% 9
I"U'——fﬂ
9 4 oo

since any positive number divided by 0o = 0.

The O therefore lies on the curved surface in plano Cx. and Ce.
lenses.

Construction of Optical Centre.—The method of finding the
optical centre of any form of lens is shown in Fig. 98. From the
centre of eurvature C, in any of the diagrams, draw a radius C D
to the curved surface, of which C is the centre. From C/ draw a
radiug C' E to its corresponding surface, and parallel to C D.
Connect the extremities of the two radii by the line D E and where
it cuts the principal axiz at O, is the optical centre of the lens.

In (3) and (7) €' being at o0, the only radius that can be drawn
from C, parallel to C' E corresponds to the principal axis itself.

In (4) and (8) the line connecting D and E has to be produced in
order to cut the prineipal axis.

Amd
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The Focus.—A real focus, formed by a lens, is that point at
which rays diverging from a point meet, after vefraction.

A wirtual focus is that point where rays diverging from a point
meet when produced backwards or from whenee they appear to
diverge, they being still divergent after refraction.

Principal Focus and Focal Distance.—A principal focus is
one formed on the principal axis by the convergence or divergence
of originally parallel rays. A secondary focus is one formed on a
secondary axis.

e o S . S ————

Fig. 100,

The principal focus of a convex lens is positive and is situated
on the principal axis on the opposite side of the lens from the
source of light.

Natural rays signify those rays which proceed from a source of
light and whose course is not altered by a lens or mirror; they may
be parallel or divergent, but never convergent.

The distance O I*, hetween the optical centre and I' the principal
focus, is the principal focal distance of a thin convex lens (Fig. 100
A), I being that point at which, after refraction parallel rays
meet, It is the nearest point to a convex lens at which a focus of
natural rays can be obtained. The parallel rays in the fizure are
presumed to diverge from a single point at &0, An equi-convex
lens is said to have two principal foei, situated on opposite sides
of the lens and equally distant from O.

The principal focus of a concave lens is negative, and is situated
on the principal axis on the same side of the lens as the source
of light.

In Fig. 100 B, the distance between O and F, is the principal
focal distance of a concave lens. The principal foeus being the
point from which, after refraction, parallel rays appear to diverge,
it is the furthest point from a concave lens at which a focus can
be obtained for natural rays.

Whether the one side or the other of a thin equi-convex or equi-
concave lens iz exposed to the light, I' is at the same distance from
the back surface of the lens since 0 is situated equally distant from
fﬂch surface ; but this is not the case with other forms of spherical
CNses.

K2
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Distance of Principal Focus.—In Fig. 101 (1) the principal
focal distance O F of a bi-convex lens being measured from O, it
follows that the distance of 17 hehind the posterior surface of the
lens depends on whether the less enrved surface A, or the more
curved sarface B, is exposed to the light.  1f A is thus exposed, F
lies further from B than it does from A when B faces the light,
The same applies to the hi-coneave.  With the periscopic conves,
as shown in Fig. 101 (2), and the periscopic concave, the diffierence
in the distance of F as measured to the right from B or to the left
from A iz very marked.

Fig. 101,

With the plano-Cx. and plane-Ce. lens, when the plane side is
exposed to the light, O 17 is the foeal distance, but if the curved
surface iz thus exposed the point from which the focal distance is
measured changes, as will be explained later on.

Refraction and Reflection.—For comparison, the following
fizures show the difierence between the focal lengths when an
incident beam of light is veflected from or refracted by the surface
of a thin plano Cx. or Ce. glass lens.

o
i

Ay
Fig. 102.

In both diagrams, C is the centre of curvature. Rays of light
parallel to the axis, if refleeted, meet at R, which is half the
distance of € from the pole P; if refracted they meet at I, which
is twice the distance of C from the surface. The thick lines
represent the course of the refracted rays and the dotted lines that
of the reflected rays. If F by refraction were within the glass
P =3P

The virtual foeus of a Cx. mirror and the real focus of a Cx.
surface are on the opposite side of the surface from the source of
lizht, while the real focus of a Ce. mirror and the virtual focus
of a Ce. surface are on the same side.
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THE FOCAL LENGTH OF THIN LENSES.

Formula and Calculations.—The refractive power of a lens
is directly proportionate to its curvature and refractive index, and
is simply the sumn of the anterior focal powers of the two surfaces.
If we know its refractive index and the radii of curvature r and 1/,

p =1
the power of the first surface is —
P
g-=d
and that of the second is e
v
1 p—1 p—1
The total refractive power — is therefore —— + =
]1" l.‘ 1.'
1 1 1 i :
—=(—+ )@= o (—) -0 (58]
F r ! ry
Or it may be written
rr'
I - [59]

We have to consider the three following conditions—
(a) If both surfaces are of the same nature.

Example.—A lens of p 1.54 and having surfaces of radii of fin.
and Din.
B x b 40

The focus is here positive.

If the surfaces are concave the negative sign must be prefixed to
each ; thus

- 8 x ([ -5) 40
e - 8.7 In.
(8 -8 x (154 — 1) — 7.02
The foeus being negative.
If both surfaces have the same radins, i.e., * = r/, as in an

equi-conves or L'1|III-=.'-I.}I|(J.'1'L‘|,- lens, the formula becomes t-;iln]l]i!i(*-[.

for

re y

P — e e ﬁ'ﬂ'
s )i — 1) 2r{p=1) 2 =1)
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Thus if r and ! = b and p = 1.54

] 0
o= — = —— = 463in.
04 x 2 1.08

If the surfaces are concave

]_I‘ = —— = —4.{53 it]-
b4 % 2

If u = 1.5then p — 1 = } and the formula is reduced to I' = r

So that in equi-convex or equi-concave lens the focal length may be
considered as equal to the radius.

(b) If one surface is plane, then ' = acand 1/r' = 1[0 = 0O,
so that it may be ignored and only the curved surface considered,
and the original formula simplifies to

I R e 61

If w = 1.5, then p — 1 = §, and ' = 2 r. BSo that in a plano
Cx. or Ce. lens, the focus is twice the radius.

() If one surface is positive and the other negative, the focus
will be positive or negative according as the positive curvature is
the greater or lesser power.

Frample —Let the two surfaces be respectively — 8in. and
+ 4in. and p = 1.6, Here
-8 x 4 - 32
F = = = + 13.3 in.
(— 84+ 4) x .6 — 24

The focus is positive and the lens is periscopic convex.
If the surface were + 8in. and — 4in. respectively
B x (— 4) — 32

B = = —— = = EET
8 — 4) x .6 2.4

The focus is negative and the lens is periscopic concave. |

To find r.—To caleulate the curvature of one of the surfaces
r or ' when that of the other as well as p and F are known, it
iz only necessary to substitute the values of the known guantitics
and then equate as in the following examples. i




REFRACTION BY PRISMS AND LENSES. 121

What curvature r should be given to the second surface of a lens
so that F = 6in. ' = 8in. and u 1.51

E R 8 r
F = T —
&+ ¥l e = 1) B+ 1 x b5
8 r
then B = « or 24 +3r =8r
4 + S
24 =5 or r = + 4.8

What should be the curvature of the concave surface when that
of the convex of a meniscus is 5in., I' being 12in. and p = 1.61

br
Then 12 = ———; orbr =12 x (3 + .6 1)
(5 + r) .6
36
and r = — = — 16.36in.
- 2.2

To find p.—Similarly by substitution p can be calculated, the
other values being known. lor example, a periscopie lens has
F = 24 em. and the radii of curvature are respectively + 6 and
— 12 ¢m., then to find 7

6 x =12
94 =
6 — 12) (»n - 1)
— 72
oL 4 O S
—b6p+ 06
— 72 = — 144 p + 144
that is p = L0

Calculations when p is relative.—Unless otherwise stated,
a lens is always presumed to have the same medium on both sides
of it, and in the foregoing, the lens is presumed to be surrounded
by air whose p = 1. When the first and last media are not air—
that is to say, if the lens is situated in a dense medium—the
following formula is required :—

rt' o

|
fE = K] (pa — )

pa being the index of the lens and g, that of the medium in which
it is immersed. Thus, suppose a double convex glass lens having

162]
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an index of 1.54 and whose surfaces are each of 8 em. radius placed
in water, its focal length in that medium is

8 x 8 x 1.33 85.12
o= = = 25.33 em.
(8 + 8) (1.54 — 1.33) 3.35

Or the relative index plp  may Le found ]}}‘ i.'[i'l.-‘idil'lg Ha h_}'
iy, and the formula then becomes as with thin lenses in air

r 1.54
' = - — Now —— = 1.1579.
(r + 1) (p, — 1) 1.33

8 % 8

Therefore ik = 25.33 cm.

(8 + 8) x .1579

If the lens be less dense than the adjacent media the formula

is the same.  For instance, let a similar lens, but of p = 1.33, be
placed in cedar oil which has an index of 1.54, then
& x 8 x 1.04 98.606
F = — e — - = —99 33 cm.
@yl sh s D

Here the lens acts with a negative elfeet, and it shows us that
an air lens in water must have a concave curvature in order that
it may have a posilive refracting power.  Dr. Dudgeon eonstructed
such a lens to enable divers, without helimets on, to see under water.
It consisted of two small wateh-glasses of very deep curvature
cemented into each end of a wuleanite ring, the convex surfaces
facing each other inside the ring. The lens had no magnifving
power out of water, us it only contained air. In water, however,
the concavity of the lens produces a convexity of the water in contact
with it on each side, and this convexity produces the required
refractive power,

Let a Ce. air lens be of 10 inch radius on both surfaces. What
will its focus be in water?

— 10 » — 10 x 1.33 100 x 1.33 133

P SRR e == = = 2.
(=10 — 10}l = 189)= =20 = — 83" "6wn

Since a Cx water lens of the same radius in air has I = 1bin., it.

will be noticed that the effect is not the same when the eonditions
are reversed. This arises from a similar cause to that which
produces a difference in the anterior and posterior foci of a single
refracting surface.  If Light passes finally into a rare medinm the
focal distance is shorter than when it thus passes finally into a
dense medium.

Case of three different Media.—When a thin lens of u,
separates two media of p, and p,—that is, when there are three
different media separated by two curved surfaces—the following

A
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formula, which is universal for all conditions, serves for finding
the focal length,
r, Uy py

Yol — ) + vy (p — )

Case of four different Media.—Suppose light to pass from
air to a Cx surface of gy, tlien to another Cx surface of py, amd
finally, by a third Cx surface, into air. Such a combination exists
if a bi-focal is made by the insertion of a deeply-curved bi-convex
segment of high g into a space made for it in a larger lens of
low Ji- Or such a combination is formed by the contact of, say, a
double C C lens of p = 1.5 with a double Cx lens of u = 1.6, the
two being of equal curvature. The focal power can be found by
caleulating for each lens separately and then adding them together,
or by caleulating for each surface separately.  In this case we have
four media and three surfaces, and we can express the focal power
in terms of the following formula:—

P

1 e — My My = My g — M

B Iy ¥y Iy
It mayv be ohserved that the focal lengih of the surface separating
s from M is not caleulated by the formula for the posterior focal
length of a single surface, for the reason that the foeus is finally
formed in the air, and not in the medinm bounded by that surface,
the thickness of the medinmm of g, alzo being neglected.

Recapitulation of Formula.— The following is a recapitula-
tion of the formula for finding the focal length of the various
spherical refracting bodies when the light passes from air. Where
numerical examples are appended they are in cach case for r = Gin,
am]':u = 1.5 Approx.

value in r.

p_l’
Posterior I¥ of a single surface — 18in. —= 8 r
o =1
l‘
Anterior I' of a single surface = — = 18 = 3¢
o= 1
5
I of a thin plano lens S = 18 = B x
- 1
per
I of a sphere = el =h, = 1%x
A (e — 1)
"
F of a thin equi-lens = — = Gin. r
2 (p — 1)

I of all forms of thin lens e R T e,
&+ ¥)fe = 1]

63]

16%]
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DIOPTRAL FORMULA.

Lens in Air.—To find the dioptric number of a Cx. or Ce. lens
when p, r, and 1! are known, the following is the formula, r and rf
being in em.:—

100 (p — 1) (r + 1)

1l [65]
Tt e

100 100 |

or D — (_ & _) =1 6]
I r’

which for a double Cx. or Ce., since r = 1/, becomes

2 100 (p — 1
Loeay (e = 1) o]

and for a plano Cx. or Ce.

100 [ i ]}
Sardiis 168)

r

Thus, what is the power of a lens whose radii of curvature are
10 cm. positive and 40 cm. negative, p being 1.547 Then

(100 x .54) x (10 — 40)
D = = -+ 4.05 D.
10 x (—40) C

What is the dioptric number of a lens whose radii of curvature are
each 6 cm., p being 1.627

100 100
(— 5 —) % 62 = (1686 4 1666) % .62 — L 20(66 D,
6 6

Substitution and equation of the formulwe given can be employed
for finding p or r when the other quantities are known.
Thus r = 4em., D = 10, and p = 1.54 to find r'—

100 100

10 = (--_ s ) % 51
4 i

.54
that i1s 10 = k3.5 f — = r = — 1543 em.

I
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Similarly if p has to be found; for example, let D = 8, r =

25 em., and ' = 10 em., then
100 100
e e (R
95 10

s0 that 8 = 14p — 14 and p = 1.577

l.ens in a medium denser than Air.—The following formula
gives the power of a lens when in a medium other than air, as if
immersed in a liquid; p, pertaining to the lens and p, to the
medium in which it is placed.

e (IU{} i lﬂl}) (p,: —~ Ju,)-

r 3 "
Thus, find the power of a lens of radii = 10 ¢, and — 10 cm. of
pa = 1 immersed in a medium of g, = 1.33,
100 100 1 — 1.33 —.33
I} — ( .- F ) o, ———— e = Q{l o — = -|— 5
-10 ~-10 1.33 1.33

By the same formula the power of a double Cx. lens of 10 cm.
radius and g = 1.33 in air is

1.3 — 1
D =20 ¥ ————— = 4 6.66 D.
1

169
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CIIAPTER VI.
LENSES.

F and D.-The focal length of a lens and its refractive power
are reciprocals of each other. As the one is inereased the other
is proportionately diminished. 1 1" represents the focal length
and I} the refractive power of a lens, then

1 1
F = — and D = —
1 i

Lenses are numbered by two principal systems, namely, the inch
and the dioptrie.

The Inch System —The ineh system is based on the measure-
ment of the focal length of a lens, and the unit of the system iz a
lens of one inch focus, which is extremely short compared with the
focal length of ordinary spectacle lenses.

A lens which brings p:u'.‘ﬂlll ravs to a focus at 10 inches or at
20 inches has |u"-1=ullwh 110 or 120 of the power of the unit ;

while one whose focal length is 1,2 inch has twice the power. The

abbreviations Cx. for convex and Ce. for concave are commaonly
employved in conjunetion with the focal notation of lenses.

0Old Curvature Numeratives.—Originally the inch system of
numeration was based on the radins of ceurvature. No. 10 implies
a double convex or concave lens whose radiug of curvature is 10
inches on cach surface.

Addition of Lenses.—The combined strength of the two thin
lenses, whose values are indieated by their focal lengths, is obtained
by tIm addition of their refractive powers, thus:—

1/F = 1/F, + 1/F,

where I, is the focal length of the one lens, F, that of the other,

and I that of the two combined.

If the two lenses be, sav, 24 inch Cx. and 10 ineh Cx., their
powers are respectively 1/24 and 1/10; the combined power is

+ 1/24 + 1/10 = 10/240 + 24/240 = 34/240 = 1/7 approx.
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The two equal a 1/7 Cx., or a lens of seven inch foeus. It is
evident that the focus of the combination must be shorter than that
of either lens alone.

If the two lenses are concave, sav 5 and 8, they equal
—1/5 + (— 1/8) = — l.'!l."'IU = — 1/3 approx.

When the one lens is convex and the other concave, the
ﬂI}.{i'iJI‘Elifﬂl sum of the two is Hilllil-"ll']_\' obtained, |.,.' I’ hvil:g '!m:-'xiii‘l.'i:'
or negative according as I, or I, is the stronger.  The two
neutralise each other more or less, and the residual power of the
stronger is the power of the combination. Thus, a 15 Cx. and a
12 Ce. when combined make a lens of G0 inch nesative focus.  For
1/156 + {— 1/12) = 12/180 — 15/180 = — 3/180 = — 1/60

1 the same way . and 'x. equal a 20 inch Cx. lens.

In the same way a 20 Ce. and a 10 ( |
For 1/10 + (— 1/20) = + 1/20 or 20 Cx.

The smmming up of three or four lenses is achieved in a similar
manner, thus: —

10 Cx., 16 Cx., 7 Cx., and 5 Ce. make together

1/10 + 1/16 + 1/7 — 1/5 = 58/560, that is 9§ Cx. approx.

When both lenses are Cx, or bhoth Ce. their united power ean be
mentally obtained by dividing the produet of the two original
numbers by their sum.  Thus, an 8 and a 6 Cx. equal

8 x 6 45
—— = — = 3lin. approx.
8 + 6 14

If the one is Cx. and the other Ce. the multiple must be divided by
the difierence (or the alwebraical sum) of the numbers, the result
being Cx. or Ce. according to whichever is the st ronger of the two
original lenses ; thus, 8 Cx. and 10 Ce. equal

[ [ 8N
10 — 8 9

Disadvantages of the F System.—There are certain  dis-
ﬂ.ﬂt"ﬂl;l:lgw-: connected with the inch svstem of lens notation. For
instance, the inch in various countries differs in value, so that a
lens of given foeal length in one country may not he the same as a
lens of similar number in another. There are 37 French inches
but 39.37 English inches in the meire, so that a lens of 18 I'rench
(Paris) inches focal length is about equivalent to one of 20 English
or American inches.

Again, the intervals between the lenses, although regular as to
their focal lengths, are irregular as to their refractive power;
thus there is far greater difference between the power of a 5
and a 6 inch than between a 15 and a 16 inch. Lastly, the unit
being a very strong lens, and the lenses mostly required being weak
ones, calenlations involve the use of vulgar fractions.
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Dioptric System.—The dioptric system is based on the refrac-
tive power of lenses, and the unit is the diopter, which is that
degree of refractive power that brings |ml';1"t'l ravs to a focus at a
distance of 1 metre. The diopter of refraction is a measure of
convercing or diverging power, and is notf, strictly speaking,
gynonyinous with the metre, which is a unit of lineal measurement ;
nevertheless, it is often convenient to express distances in dioptrie
measure. The symbols + and — are always used with this system.

The -.liﬂptril_: system of lens notation is much more Ei!ul]lu than
the inch and presents several advantages. It is universally
recognised in all countries. The unit lens being weak, the power
of most others is expressed by whole numbers, while if fractions
are involved they are expressed as decimals. Also the intervals
between the lenses are uniform as regards their refracting powers,
IPinally, the power of each lens being directly expressed, addition
of two or more lenses consists of simple algebraical addition of
their numbers.

If a1 D lens has a focus of 1 metre (written 1 M) a 4 D lens
(which has four times as much refracting power) has a focus of
1+ M; that is to say, parallel rays of light will be made to mect
at 1 M.

But sinee the metre can be sub-divided into 100 em. or 1000 mm.
the focal length of a 4 D is more conveniently expressed as 1004
= 25 o,

A 10 D lens has ten times the power of the unit, therefore
F-= 100/10 = 10 em.

A 0.50 I has half the power of the unit, consequently its
I = ]l}ljr-‘_ﬁ = 200 cm,

Addition of Lenses.—The strength of the combined dieptral

lenses is obtained by adding them together algebraically,
D, + D.=D

D, being the power of the one, D, that of the other lens, and D that
of the two combined. For example:—

+ 2Dand + 4D = + 6D,

+ 4Dand - 3D = + 1D,

— 5.2 Dand — 250D = - 7.756 D,

+ 3D and — 3D = 0, i.e., they neutralise each other.

+ 7D+ 450D 4+ 1.7 Dand - 650D = + 6.75 D,

Value of the M.—The metre (or 100 centimetres) = 39.37
English inches, but for all practical purposes it may be regarded
as equivalent to 40 (or 39) inches.

Conversion. — Since the + 1 D lens refracts parallel rays to a
foeus at 1 metre or.40 inches, it is equal to the No. 40 Cx. lens of
the inch system, and a 40 1) lens is the same as a 1 inch lens.
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Since a focal length of 1 inch = 40 D, in order to convert from
the inch scale into the dioptric system, we multiply the power of the
lens by 40 ; thus,

No. Bin. = 1/6 x 40 = 405 = 8 D.

And since 1 D = 1/40 (in.), in order to turn from the diopiric

into the inch scale, we multiply the power by 1/40; thus,
10D = 10 x 1/40 = 10/40 = 1/4 or a No. 4.

Or for conversion from either scale into the other divide 40 or 39
(whichever is the more convenient) by the known number. For
instance,

256 D = 40/2.6 = 16in,,

13 D = 39/13 = 3din,,
2in. = 40/2 = 20 D,
13in. = 3913 = 3 D,

In making the division there is often a small fraction left over, as
many numbers will not divide evenly into 40 or 39. For practical
purposes these fractions need not be considered beyond the }, 1,
and § in the lower inch numbers, and .25, .50, and .75 in the
dioptral numbers. Some numbers of both scales have no exact
equivalent in spectacle lenses, numbered according to the other,
and the nearest approximate must be taken as the equivalent
number.  For instance, it is considered that

3.50 D = No. 11; 3.26 D = Neo. 12; 4.50 D = No. 9, ete.

Fractions.—Vulgar fractions are usually employed with the
inch system, as say, 2} ; while fractions of diopters are invariably
expressed in decimals, as say, 6.50 D,

To Find F or D.—Dividing 40 or 100 or 1000 by the dioptral
number gives I' in inches, in em., or in mm. respectively. Thus,
a b D lens has F = 40/6 = 8in., 100/6 = 20 em., or 1000/5
= 200 mm.

If I' is known in em., mm., or inches the dioptral number is
found by dividing respectively into 100 or 1000 or 40 ; thus, if IV is
200 mm., then D = 1000/200 = 5; if F = 40 em., D = 100,40
= 2.5;if F = 160in., D = 40/160 = .25,

The employment of the dioptrie system greatly facilitates the
comprehension of refractive errors of the eve and their correction
by means of lenses, while for rapid calculations it is much superior
to the focal length system.

Old Cec. System. — In England concave sphericals were
formerly numbered by an arbitrary system commencing at 0000—
the weakest—and terminating with No. 20—the strongest. The
values of these numbers in the inch and dioptric scales are to be
found in the appendix, but this svstem is now obsolete,

Cyls.-—The numeration of evlindrical lenses is the same as that
of spherieals.
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CONJUGATE IFOCI OF THIN LENSES
AND THE RELATIVE SIZES OF OBIECT AND IMAGE.

In the following rules and examples let O and [ represent objeet:
and image |'1~:-;|11_':'.ii!.‘{~.|1\': let L be the lens, Oe the optical centre of
the lens, £, the distance of ohjeet from Oe, f, the distance of image
from Oc, I, and I, the first and second principal focal distances
of the lens (often represented by F), and let I be the refractive
power of the lens.

The foeal distance of a thin lens is the distance from the optical
centre of that lens to the point at which parallel rays meet, and
it is that distance from which light must diverge in order to be
parallel after refraction. The reciprocal of the focal distance, or its
value expressed in diopters, indicates the power of the lens.
A + 0 D lens has a foeal length of 20 em., and consequently light
diverging from 20 cm. is rendered parallel by a + 5 D lens, the
converging power of the Cx. lens just neufralises the divergence
of the light from 20 em.  Similarly light from oo is brought to a
focus at 20 em. by a + 5 D lens.

The power of the lens is the same whether acting on parallel
rays or on rayvs diverging from any other point, so that if the rays
proceed from f,, which is a point nearer than oo, the divergence
must be overcome by the refracting power of the lens in order to
render the ravs parallel before it can converge them. Some of the
power of L is thus used, and there is less left for convergence.
Therefore the focus must be further away from the lens than IP.

Suppose we have a 5 D convex lens and let £, be 100 em. distant
from it. The diversence from 100 em, needs a power of 100 /100
= 1 D to neutralize that divergence and to render the light parallel.
Thus 1 D of the total 5 D whieh L possesses is exerted on the side of
the divergent rays, and there is left for convergence 5 — 1 = 4 D,
zo that [, is 100/4 = 25 em. bevond the lens, that iz, at the distance
at which parallel rays would be brought to a focus by a + 4 D lens.

The lens has a converging power of 5 D, the light has a diver-
gence, expressed in diepters, as 1 D.  Consequently after refraction
the licht has a convergence of 4 1.
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In Fig. 104 the + 5 D is shown as if split inte two lenses, the
+ 1 D being used for rendering the rays diverging from f, parallel,
while the + 4 D brings the parailel rays to a focus at 25 cm.

+D +40

Fig. 104,

Cﬂnjugate Distances.— 1, and [, are conjugate foel and arve
interchangeable in the sense that if O is at the one place, 1 is at
the other. The power of a lens is equal to the sum of the two
conjugates f, and f, expressed in diopters as d, and d,, so that

D =d, + d.,. 1707

The formula for finding a conjugate foeus by the dioptric system
is therefore o 2
B e = 4 =i [EJ
In the illustration given the two distances 100 cm. and 25 em.
expressed in diopters are +1 and +4 respectively. We may
therefore write—

1 + 4 = 5D = the power of the lens.

o gn
|

= 4 D = the ll-‘.m'itiuli of 1.
1

|
B b
i

D = the position of O.

Examples, Cx. Lens.— Suppose the object to be placed 50 em.
in front of a lens having its image 12.5 cm. behind it, then to find
the power of the lens

d, = 100/50 = 2, d, = 100/12.5 = 8;

therefore D =2 4+ 8 = 10,

Suppese an object is 200 cm. in frout of a 7 D lens, where will
the image bel
Here - d, = 100/200 = .5, d, =7 - .5 = 6.5;
therefore f, = 100/6.5 = 15 em.

An image is 22 cm. behind an 8 D lens, where is the object? This
18 merely the reverse of the last question.
We have d, = 100/22 = 4.5, d, =8 — 45 = 3.5

therefore f, = 100/3.6 = 30 cm.

If O iz at o0, then d, = 100/ = 0;
so that D —-0=0D and 100/D = F,
consequently Iis at IV
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If 0is at I, then d, = 100/I" = D,
and D— D = 0and 100/0 = og,
consequently I is at oo,

Thus o0 and F are conjugate fceal distances, and image and
object are interchangeable.

Virtual Conjugates. —When O is at I' the power of the lens
is just sufficient to render incident ravs parallel; if, therefore, f;
(IMig. 105) is situated nearer than IY, the power of the lens would
be insufficient to render them even parallel, and they emerge
divergent after refraction, although less so than before refraction.
No real focus is obtained, but if the rays are projected backwards
they meet in front of the lens (on the same side as the object) and
form a negative focus and virtual image at f,. Whereas the light
diverged originally from f, it appears after refraction to diverge
from f,.

Since f, expressed as a power is greater than that of T, on
deducting the former from the latter the result is a negative
quantity, the sign indicating its pesition with regard to the lens.

Framples—Let the power of the lens be + 5 D and f, be at
14 ¢m.,
then d, 100414 = §;d, =5 - 7T = = 2, and 100/= 2 = = BO,

so that f, is at 50 cm. in front of the lens.

In this case, — B0 em. and 4 14 cm. are conjugate foci in respect
toa + 5 Dlens, for + 7D + (— 2D) = + 5 D. That is to say,
if rays diverge from 14 em. to a + T D lens, they appear after
refraction to diverge from 50 em., and if rays converge to 50 cm.
behind a + 7 D lens, they are after refraction convergent to
14 cm.

In other words, while the lens has a converging power of 5 D, the
light has a divergence which may be expressed as T D, Therefore,
after refraction, there is a residual divergence of 2 D.

Position of Conjugates of a Cx. Lens.—A convex lens renders
rays convergent, parallel, or less divergent, according as the point
of divergence 1s l‘u:-tpucli‘l.'uh-' ]_'l{::g.'ulnl, at, or within I'. The con-
verging property of the lens is decreased, neutralised, or exceeded
by the divergence of the light due to the nearness of the object.
And since any approach of the object to a Cx. lens causes the light
to be less convergent after refraction, it follows that any conjugate
focus is more distant than F, and I is the nearest point to L at
which a real image can be formed.
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Conjugate Foci of Cc. Lens.—A\ concave lens refracts light
divergently so that parallel rays from ~0, after refraction, appear
to diverge from I' (Fig. 106, 1). If the power of the lens is — 5 D,
the virtual ¥ will be at 100/5 = 20 cm. or 8ins. Its power is the
same no watter where the object may be.

o

s, 1l
el
D-H“““—»__L

Fig. 106 (1).

Therefore, when f, is nearer than oo (Fig. 106, 2) the rays
incident on the lens, being divergent before refraction, become still
more divergent. The divergence of the lens is augmented by that
caused by the nearness of O, consequently the conjugate focus is
nearer than F. Here again f, and — f, are conjugates, just as
is the case of the virtual focus obtained with a convex lens, for
the sum of their powers d, + (= d.,) = D. In applyving the
formula for calculating f, or f, it must be remembered that both
F and f, are negative.

Vﬁ
*@\A\
-

Fig. 106 (2).

Ezample. —Let L e — 5 D and f, at 100 em., then
d, =—-5D-1D= —-6D, and 100/6 = — 16.66 cm.;
f, is therefore virtual and 16.66 cm. in front of the lens.

If the rays diverge from 100 cm. to o — 5 D lens they are after
refraction divergent as if from 16.66 cm. If they are convergent
to a point 16.66 cm. behind a — 5 D lens they are, after refraction,
convergent to 100 em.

Position of Conjugates of a Cc. Lens.— A coneave lens always
renders rays divergent, and since any distance of 0, nearer than
o0, causes | to be nearer than F, it follows that the most distant
conjugate focus of a Ce. lens is I7.

1.2
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Formula by Inch System.—I'or caleulating conjugate foci by
the inch system, the following formula is used : —

1 1 1

=

F f, fa

F F ¥

and sinee R
F i

we may write the formula 1 = — 4 —.
f, i

By transposing we get
WP~ U, =18, o LR = 1ff = 1k

or by turning the equation upside down

f;
P =
fl '+" fz
[T (1
therefore f, = —— wmd. f = -
f,-F f-F

a variation of the formula which is sometimmes more convenient.

Fig. 107.

Mathematical Proof.—In the above diagram A B = object,
A’ B = image, O = centre of lens, O ' = focal length, I' =
principal foeus; then, as the two triangles A D A, O I Af have
equal angles,

G A A B B!

OP. O ALCaE
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Now AD f and OFT I
f f, + & | F f,
therefore —_— = ————  and — = 2L
| B f, B i e
1 1 1
tha.li is — e e
F f, f,

FExamples and Proofs.—If a lens has F = 8 inches and f, is at
40 inches, then f, will be at 10 inches, for
1/f, = 1/8 — 1/40 = 4/40 = 1/10.

1 1 1 8 8
This is proved by — 4 — = — and — + — = 1.
10 40 8 40 10

Worked by the other method we should get

40 x 8 820
f, = - — 10in.
0 - 8 82

An image is 16 inches behind a 7 inch Cx., at what disiance
is the object in front of the lens?

e = 1T = 1/16 = 9118 the object is at 124in.
16 x 7 112
By the other formula f;, = = = 19%in,
16 — 7 0

If Ois at o0,

then 1/F — 1/ = 1/F - 0 = 1/F, so that [ is at F.
If Ois at I,

then 1/F — 1/ = 0/F, so that I is at o0,
Let the object be Gin. from an 8in. Cx. lens,

then 1/, =1/8 = 1/6 = = 1/24,
f, is virtual or negative at 24 inches on the same side as f,
G x 8B 48
or f, = —— = — = — 24in,
6 -8 -2
Care must be taken when the lens is Ce. that the — sign be

prefixed where necessary.  As an example let the lens he 1/10 Ce
and f, at 40in.,

then 1ff, = — 1/10 — 1/40 = — 5f40 = — 1/3
the image is at 8in. negative or virtual.
40 x (-10) ~400

or fi = ———————— = —— = -Bin.
40 — (-10) a0
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This is proved by the power of the lens being equal to

1/F=—1/8 +1/40= — 1/10;
40 x (= 8) — 320

that is Il ————— o L e (R
40 + (= 8) 33

As before stated, the power of an Cx or Ce lens is equal to the sum
of the powers of any pair of its conjugate foei, whether the image
be real or virtual.

If the conjugates are 20 and 50 cm. the lens has a power of

L

b+2=+T7D.
If they are 20 em. and — 50 cm. the lens is + 5 + (- 2) =
+ 3 D.

If tli{‘y are — 20 em. and + 50 cm. the lengsis — b + 2
— 3 D.

In the same way if the mnjugnt{-s are 5 and 10in. the lens is ll."ﬁ
+ 1/10 = 3/10 or 3}in. Cx.

I

If the conjugates are b and — 10in, the lens in 1/5 — 1/10 =
+ 1/10 or 10 Cx.
If they are — 5 and 10in, the lensis — 1/6 + 1/10 = — 110

or 10in. Ce.

L -1 45D

—

o S

PRI -_lﬁfff“’" i
Fig, 108.

Light Divergent.—Whether rays actually diverge from some

point nearer than oo, say 50 em. (Fig. 108 — 1) or whether
parallel rays are rendered divergent by an added — 2 D lens (Fig.
108 — 2), the converging effect of the convex is equally reduced

and in both cases f, is + 5 — 2 = + 3 D at 33 em. behind the
lens.

If £, were 14 cm. (7 D) in frontof a + B D or if — 7 D were
added to a4+ 5 D the efiect in both cases would be the same;
the light, after refraction, would diverge as if proceeding from
50 em.
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Similarly with a concave lens, whether rayvs (Fig. 109 — 1)

diverge from f, 50 em. (2 D) in front of a — 5 D lens, or whether
(Fig. 109 — 2) a — 2 D he added to the — 5 D and the two
combined act on parallel rays, the focus f, in either case is — 5
— 2 = = 7 D or 14 cm. negative.

i | L -0 -5D
T "-*“‘,;J’

F_'Fr"

e I > 1 i3
-.-_"--.___———"__: v = o l- |'I__
E - S L A—— i:gl\ 4 L'{"“;“"‘""‘-«. =
Fig. 109,

Relative Distances of O and 1 —With a Cx. lens as 0O
approaches I from o0 so I recedes from I until when O ig at I then
Iis at &, When O is within I, I becomes negative and as O
approaches L so also does I until when O is at L, T is at L also.

With a Ce. lens as O approaches from ™0 so I also recedes from I
towards L until when O is at F, T is at I'/2 and when O is at L,
so also is I.

The following diagrams illustrate the positions of f, and f, for
every possible case with thin Cx. and Ce. lenses.

et

Fig. 110,

In Fig. 110 No. 1 shows convergent rays incident on a Cx. lens,

in which case f, is within F.

No. 2 shows parallel rays, with f, coinciding with I,

No. 3 shows f, within o0 but beyond I, and f, is then bevond F.

No. 4 shows f at 2 1Y, and here £, is also at 2 I' on the other side
of the li_ua (2 F bunp: the l'll.‘itlﬂ"i of unit magnification for real
lmagres).

No. 5 shows f, at I and f, is at o0,

No. 6 shows f, within F and f, negative,
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In Iig. 111 No. 1 shows rays rendered convergent, and incident
on a Ue. lens; in such ease f, is bevond IF.
No. 2 shows parallel rays, and f, coineides with 9.
Nos. 3 and 4 shows [, within a0 but bevond I, so that f, is
within .
No. b shows f, at I and f, at /2.
No. 6 shows f, within I' and f, still more so.

Fig. 111,

Magnification or Relative Sizes of 0. and I.—In Fig. 112,
the objeet O and the image I subtend equal angles at N, the optical
centre of the lens.  In the triangles A N O and A/ N T the ﬁ!lg'ﬂ'ﬂ
at N are equal and the angles at O and I are both right angles;
therefore the remaining angles at A and A! are also equal., DBut in
equi-angular triangles the sides containing equal angles are propor-
tionals.

Ay

Fig. 112.
O N AO AD
N 1 A' 1 A D
The ratio B'A'/AB is the magnificalion and denotes the linear
inerease or deerease in the size of the image with respect to the

object.  Superficial magnification applies to area and is the linear
magnification squared.

Therefore

3 -.JE
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That is to say the relative sizes of O and 1 are proportional to
their respective distances from the centre of the lens, and this
holds equally true for virtual images of both Cx. and Ce. lenses.

So long as O is bevond 2 I the image must be smaller than O,
since it is nearer to the lens. When O is at 2 I' the size of I is
the same as that of O, because both are at the same distance in
what are termed the symmetrical conjugate focal planes. When O
is within 2 F, T is larger, because it is further from the lens
than O.

To calculate the size of T or of O the following formule are

applicable to all cases, whether the lens be Cx. or Ce. or the image
real or virtual.

h, h, h, 1, h, f;
_— = — t]lfl-'] 15 ].']._, = ] E.ﬂd lll. =
fi fz f| f‘

where f, and f, are the distances of O and I respectively from the
lens, h, is the linear size of O and h, that of I.

h, and f, in the first formula must be in similar terms, but not
necessarily that of f,; and then h, will be in the same terms as f,
whether inches, em., ete. In the second formula llﬂ anid fz rnust
be in the same terms; and h, will be in that of f,.

For example let O be at 2 M, and I .625 cm. long at 25 em.
distance from the lens; then

625 x 2 x 100
h, = = 5 em. in length

25

0 iz cight times the size of I. If O were at 25 em. and T at 2 M,
then I would be eight times the size of 0.

If O, 2 inches long, is at 10 feet and I at 10 inches, then

2 x 10 1
hy = ——— = —in,

0% 12 6

Let 0, 4 yards long, be | mile distant from a + 5 D lens; then
f, = 20 em. and

4 x 20
h, = —— = .18 em.

440

The answer here is in em., showing that O and T need not be in
the same terms.

The formula which is perhaps most useful for ealculating the

magnification of the image is
¥
M= — ;
A

[79]
180]

181]
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Important Consideration.— It is most essential that students
should differentiate between the direction of axial ravs and that
of the rays from the various points on an object with reference
to their axes.

From each point of the object a pencil of rays diverges and each
pencil has an axis, which is the axial ray of that pencil.

Axial rays always converge to the optical eentre of the lens, and
their convergence governs the Alze aof the angle sulifended by the
alijeet .

The rays themselves always diverge from the lnminous point to
the lens, and their divergence governs the position of the image,
the rays after refraction being more or less divergent or con-
vergent, according to the degree of original fl]'\fl’""f:ll{-i_. and the
diverging or ("ﬂTL'i'{‘l”’lﬂj_{ power of the lum-z

Parallel light is mercly light having a negligible degree of
divergence.

These most vmportant constdervations, for students who are apt
to confuse the conditions, should be earefully noted. Thus, in a
uth;l_,huu which shows light parallel to the axis, and incident on
various parts of the lens surface, these various rays are presumed
to originate, not in various points, but in one single point on the
axis. Also these considerations apply to all lenses, all eurved
mirrors, and all positions of the object.

I
e
el

S | /'\ //F

a =
f, = "H.__ :_;__,_,.-“ H = TL
_-_.—'/f%“‘*-&'ﬁ}l; HEA -
L— !
& |
Fig. 113.
Construction. In Fig, 113 the relationship between O and

the real T of a Cx. lens is shown by construction. Tracing the
rays A C, A N and A D they meet, after refraction, at A’. If A B
and B/ A’ were measured they would be found to be proportional
to f, N and £, N.

A
‘1"‘-5
; “‘T“x;'" e
1 £ W lﬂ' - I

= -

-‘-‘-\-"-I.
/ J Sl
E.
Fig. 114.

When the I formed by a Cx. lens is virtnal (Fig. 114), it is
always larger than O, since it is always more distant from the
I[?HE.

)
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Ezample.—Let O be at 20 em. and I at 50 em. and let O be
5 em. long, then
9 x 00
hi T~ — = 250/20 = 12.5 cm.

20

With a coneave lens (Fig. 115) the virtual I formed is always
smaller than O, since it is always nearer to the lens.

Frample —If O is two inches long and at 40 inches, while I is
at 6% inches.

The relative size of the object to the real and the virtual images
formed by a given Cx. lens is the same when O is as far beyond F
in the first case as it is within F in the second case. Thus, suppose
0 situated at 14in. and at Gin. respectively in front of a 10in. Cx.
lens, it being in either position 4in. from I, then the size of the
image in each case is 21 times that of the nh]ect

Iig. 116,

Planes of Unit Magnification.—In order that O and I be
equal in size they must be equally distant from the lens, i.e., they
must be situated in the planes of unit magnification which, for
real images, are the symmetrical planes P Q and Q' P (Fig. 116),
which cut the axis at twice the principal focal distance. It can be
there seen that h, = h,.

For a virtual I to he equal in size to O, it must be in contact
with the lens. This is true for both Cx. and Ce. lenses, so that
the planes of unit magnification for virtual images is zero. It may
be remarked that both planes of unit magnification are distant
from F a distance equal to T.
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Reciprocity of Conjugate Distances from F. I the dis-
tance of the two conjugales f, and f, of a Cx. lens be measured
respectively from 19, and I, they are reciprocals of ecach other in
terms of . If F, is at a distance N I* beyond I, then f, is
(1/N) I or I'/N beyond I, Thus, for instanee, if the distance f, I,
in Fig. 117, is twice I, then. the distance f, I, is one-half of I

B e g e O g

Fig. 118,

From this we see that for M (magnification) = 1 the one conjugate
must be at I + F.

For M = 2 it must be at I + 2 F, the other conjugate Leing
at F 1+ F/2.

For M = 3 it must he at ¥ + 3 F, the other conjugate Leing

at I «+ I'/3, and so on.

Lt the distance £, ¥, (Fig. 117) be ealled A and £, I, be ealled B,
ani sinee

NF x F/N =1

we obtain the formula for conjugate foei of

A DB = 1"

The ratio between the sizes of objeet and image h, and h, is,
as shown in Fig. 118
h, F B

—_— . —
= —

T e R

Sinece with a siven lens, I'* is a constant, the value of A I is alzo
a constant, and the multiple of the distances heyond IF of any pair
of conjugates is the same.

When employing these formulae it is most essential to remember
that positive quantities are measured forwards from ¥, and back-
wards from Iy,  Also that in Ce. lenses F, is on the remote side
of the lens and I, on the object side.  Also that A is always
reckoned from I, and B from I",. To obtain f, or f, the value of
F must be added to A or B respectively.



LENSES. 143

These points make these otherwise valuable formule difficult of
application.
Ezamples.—Thus, suppose f, to be 50 em. in front of a Cx. lens
of 10 cm. focus, then
A =50 — 10 = 40 cm. or 40/10 = 4 F,
B= 1/4F ='10/4 = 2.5 em.,

/

and f, is at 10 + 2.5 = 12.5 em. from the lens.

Worked by the formula A B = F2 we get 40 B = 102 = 100,
then B = 100/40 = 2.5,
and £, = 2.0 + 10 = 12.5 em. as above.

If O in the above example is 5 em. high, we have
h, /b = 10/40, so that 40 h, = 50, or h, = 1.25 cm.
The imﬂg{, i llU.‘-.HH-' at 12.5 em. and 1.25 em, in height.
Let an object 5 em. high be placed & em. in front of a lens of
10 em. F, then
A=B-—10= —2 and — 208 = 108 = 100
80 B = 100/—2 = —50 and £, — 00 + 10 = — 40cm.
llﬂl.fa = 10/2 so that 2 h, = qd, or h, = 25cm.

The image is negative at 40 em. and is 25 em. high.
Let an object 5 em. high be placed 50 em. in front of a Ce. lens,
whose I' = 10 cm., then
A =080 —(—10) = 60, and 60 B = 10" = 100
- then B = 100/60 = 1.66
and f, = 1.66 + (— 10) = — 8.33 cm.
h,/6 = 10/60 so that 60 h, = 50, or h, = .833 cm.

The image is negative at .33 em. and is .833 em. high.
Tabulated Conjugates in Terms of F.—The relative posi-

tions of O and I, with respect to the lens itself, are, in terms of I,
as follows : —

NF
With Cx. lenses if O is at N times IY, then I is at ——;
N-1

N

with Ce. lenses the latter hecomes ——

N+1

E!%: Lenses.
Oat 10F| 8 | 6| 1 ]-3 |?]1.3‘|1J|
—— I (R i ] |
Im1111+11413|194133' 12| 2.33

]
3| 5 '0l-3|-1|-33

Ce. Lenses.

0 at 41 3 . 15 | 1 85 23
I at 8F | .75 66 b O | .83 3
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FURTHER CALCULATIONS ON THE POSITION
AND SIZE OF 1.

Removal of 1. —To move the image from f, to some other posi-
tion x more distant, or v nearver, there must be added to the lens
another Ce. or Cx. whose power is the difference between

1 1 1

—— e e

X ¥ f,

Thus, supposing f, to be at 20 em. and x to be 25 em,
sincef, =5Dand x = 4D,thend - 5 = - 1D;
the required lens is Ce. becanse x is more distant than f,.

If it is required to place the image at vy, 16in. behind the lens
instead of at f,, which is 20in., then as

1 1 1

— o — T —

16 20 80

the added lens must be positive of 80 inches focus or + 0.5 D.

An object is placed 20 inches in front of a 6in. Cx. lens; the
image is required to be 10 inches. What lens must be added!?

Here1/6 — 1/20 = 7/60 and 1/10 — 7/60 = — 160,

so that a negative lens of 60in focus (or — 0.66 D) must be added
to the Gin. convex lens.

Position of Lens for given M.—Another useful problem is
to find where a given lens should be placed so that the image be a
certain number of times larger or smaller. For example, suppose
the lens is a Gin. Cx., the object 2 inches long, and it is required
that the real image should measure 18 inches. In this case if x is
the one conjugate it follows that 18/2 or 9 x must be the other, so
that

1 1 1 10

(5] % Ox Yx

then 9 x = G60in. and x = 63in.

The lens, therefore, must be placed 63in. from the object and
the image will be at 65 x 9 = 60in. from the lens.

If a virtual image is requirved to measure 18in., then 1/9x is
negative and the caleulation becomes

1 1 1 )
- = — — — = — whenee x = 5}

G X Ix Ix
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The negative sign must also be prefixed before 1/F when the
lens is Ce.

Such ealeulations as the above can also be rveadily solved by the
formula

f, = F (M + 1) and f, = f,/M
when the image is real, and by
f, = I (M — 1) and = dain

when the image is virtual, with ecither a Cx. or Ce. lens.
In both cases M is expressed by a fraction when diminution is
required.

Position of Lens for given distance between . and I.—
The calculation of the position of a given lens between two given
points so that O be at the one and 1 at the other necessitates
finding tweo conjugate distances such that their reciprocals are
equal to the power of the lens. Let d be the distance between
object and image, let x rvepresent the one conjugate, then the
calculation becomes

I X d - x
and for its solution a guadratic equation is required. The above,
however, may be transposed into the somewhat simpler form of

2 —dx = - 4dF.

When d is greater than 4 I, the image is real and may be at
either conjugate, and there are two positions for the convex lens,
between object and image, which will fulfil the given conditions.
In every case d = the smn of the two solutions.

With a Cx. lens when d is less than 4 F, the image is virtual
and is negative. The shorter conjugate is positive and is the
distance of the object; the greater is negative and is that of the
. image, d is then a negative quantity.

When the lens is concave, the image is also virtual, d is positive
but I' is negative. The greater conjugate is positive and is the
distance of the object, while the smaller is negative and is that
of the image.

Let ' = Tin. and the distance between object and image be
3bin, then

x* = J6x = - 252

To find x* we must add to cach side of the equation the square
of half one of the factors, viz. 36, that is 182 = 324. Then

x* — 36 x + 324 = ~ 252 + 324 = 72

o /\/'ﬁ ~ 36 x + 324 = x — 18 and , /72 = + 8.5
X — 15 = 4 8.5
and x = 4+ BS5 4+ 18 = 26.5
or ¥ = — B85 4 18 = 9.5

|84)

85

86]
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The lens may be placed either 9.5in. or 26.5in. in front of the
object.

Let I' = 5in. and the distance between object and image be 16in.
then  is negative, so—

x* + 16 x = + 80
x* 4+ 16 x 4 64 = 80 + bf = 144
nxll':lufing the sipuare roots, we get
X 8 = F 12
X=+4+12 = 8= + 4or—12 — 8B = — 20
The lens is 4in. beyond the object and 20in. from the virtual
1HLare.
Let F be 5in. Ce. and d be, as before, 16in.
Xx* = 16 x = &0

x* = 16 x + 64 = B0 + 6k = 144
x — 8=+ 13
x =+ 12 + 8= + 20, 0or — 12 + 8 = - 4,

Therefore the lens is 20in. from the object and the image is 4in. on
the negative side of the lens.

If the strength of the lens is expressed in diopters it is better
to convert it into focal length for this calculation, but the two
distances A and B can also be caleulated by the following method,
in which two numbers, whose sum and multiple are known have
to be found

100 d
A4+ B=d and AB =

D

THE CONSTRUCTION OF IMAGES FORMED BY
THIN LENSES.

Fig. 119.

Course of Light—Cx. Lens. —If a beam of rays shown by the
thick lines in Fig. 119 is incident on the surface of a Cx. lens in
a direction parallel to the principal axis I, I¥, they are refracted
to meet at the point I',, the principal focus or second focal point,
situated on the axis. A line C D drawn through this point
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perpendicular to the axis is the second focal plane. The distance
from O, the optical centre of the lens, to I', or I, is the focal
length of the lens. In the same way parallel rays which are
incident on the other surface of the lens (shown by the dotted line)
meet in a point at I, the first focal point. A line A B drawn
through it perpendicular to the axis is the first focal plane. The
distance O IY, is equal to O F,.

We have, therefore, a point and a plane on either side of the
lens equi-distant from 0. The plane L O L is the refracting plane
of the lens.

Whatever course a ray takes in passing through a lens (or any
nuinber of lenses) if the light retraces its course, it follows the same
path. It is clear, therefore, that if the source of light be at T, or
I, the rays, after refraction, pass out of the lens parallel to the
principal axis. All rays which diverge from a luminous point are
refracted on passing through a lens, with the exception of the axial
ray, which passes along the principal axis; this undergoes no
refraction.

If, instead of the object point being on the principal axis, it is
situated on a secondary axis E F/,, as in Fig. 119, the rays are
similarly bent so as to meet in a focus at I/, and any ray passing
through O obliquely to ¥, I, is presumed to be not deviated by
the lens.

Fig. 120,

I of Point on the Axis —Cx. Lens.—To construct the image
produced by a convex lens the object being a point A on the axis.
(Fig. 120), the procedure is as follows:—

Draw the axis A B, and through I¥, draw the focal plane G H.
From A draw any line A K D, cutting the first focal plane at K
and the refracting plane of the lens at D. From K draw a line
through the optical centre O and from D draw D B parallel to
K 0, this refracted rav D B cuts the prineipal axis at B, which is
the image of the point A. Thiz construction holds good because
ravs diverging from a point in the focal plane are parallel to each
other after refraction,

M
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Construction of I for Cx. Lens.- In order o construet the image
of an object formed by a Cx. lens we have three rayvs diverging from
any point, whose course after refraction it is easy to follow, viz. :—

(a) The ray which is parallel to the principal axis and which,
after refraction, passes through F,.

(b) The ray which passes through I', and which, after refrac-
tion, is parallel to the principal axis.

() The ray which passes throngh Oe, the optical centre, and
whose course ig not altered by refraction.

It is necessary to draw only two of these rays so as to locate the
I of a point, since where anyv two ravs diverging from a point
meet, all other rays diverging from that same point also meet.

Fig. 121.

Real I.—In order to construct the complete T of an O, the images
A' and B of the two extreme points A and B should be located,
and these suftice to show the location and size of the image (Fig.
121).

The construction is as follows:—

Draw the principal axis £, f, through Oc,

Draw from A the line A C parallel to the axis. This line when
refracted passes through I7,.

Draw A D passing through I,. This, after refraction, is parallel
to the axis as D A/,

Lastly, draw A Af passing straight through Oc.

These three lines meet at A', the image of A. In the same way B/,
the image of B, can be constructed. The images of all intermediate
points between A and B could be constructed, but are not necessary,
for B! A’ shows the position and size of the real inverted image of
the object A B.
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Virtual I.—When the object is nearer the lens than I' (Fig. 122)
the construction is as follows:—

Draw the principal axis C D.

From A draw A E parallel to C D, and E F, is the course of the
refracted ray.

Draw A Oc passing through the optical centre.

"‘-u...______\_

o e
"\-\_‘_‘M\ / g
-, | -

A o
; Fig. 122.
=]
Since these ravs are divergent, after refraction, no real image
can be obtained, but by producing them backwards they are made
to meet at Af, which is the virtual image of A. Similar lines

drawn from B locates its image as B and A’ B’ is the complete
virtual image of the object A B.

I ar o0.—When the object is at I, the rays, after refraction,
are parallel to their axes, and, therefore, no image can be con-
structed, since it lies at infinity.

Fig. 123.

_ Course of Light—Cc. Lens.—Ila beam of parallel rays (Fig. 123)is
incident on the surface of a Ce. lens they apparently diverge, after
refraction, from F, and a plane A B perpendicular to the axis

passing through I is the focal plane. Oc¢ IV is the focal distance.

M2
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Every ray passing through the lens is refracted, except that passing
along the principal axis or a secondary axis. A point on any axis
has its image on that sane axis.

5
A — g S
: e e e

b

IFig. 124,

I of Point on the Axis—Cc. Lens.—To coustruct the image
produced by a concave lens, the object being a point A on the axis.

Draw anv rayv A B C cutting the focal plane in B and the
refracting plane in C (Fig. 124). From B draw B D parallel to
the principal axis, such a ray, after refraction, l“l‘t‘l‘gm asF C'D D,
from F. Mark X Y, a plane midway between the focal and
refracting planes. Then draw C C7 A cutting I D at C! in the
plane X Y and where this line cuts the prineipal axis at A’ is the
image of the point A. This construction holds good because if
there were ravs B C, B D diverging from B in the focal plane, they
wonld meet after refraction at C' in the plane X Y midway between
the foeal and refracting planes.

A
S
it
e i
Pbeme - Feh

Fig. 125.

Construction of I for Cec. Lens.—The construction of the
image formed by a concave lens is the same wherever the object is
sitnated, since the image is always formed on the same side as the
object, and between the prineipal focus and the lens. In Fig. 125,
let A B be an object placed in front of a concave lens of which F
is the pripeipal focus.
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From A trace A O, the axial ray.

Draw A E futl‘ﬂ]]ul to the axis before refraction and di'.‘ul'giu:__{
as if from I, after refraction.

These rayvs, heing divergent, can only meet by being prolonged
back when they meet at A'. Similar rays from B meet at B/ its
image. The complete image of A B is A' B

MAGNIFYING POWER OFF LENSES.

The magnification of an object may be considered in two ways.
Firstly, its absolute magnification, and secondly, its apparent or
relative magnification.

The former is expressed by the ratio between the angle sub-
tended by the image at the eye and the angle subtended by the
object at the eye. Thus, if the former angle is #, and the latter
¢, then the magnification = #,/d,.

It may also be defined as the ratio between the size of the image
and the size of the object when both are compared at the same
distance from the eye. This is the true magnification applicable to
all optical instruments and is independent of the distance of the
near point of vision of the observer’s eve.

The apparent magnification is the size of the object compared
with that of the image observed at the point of most distinet vision.
It is this latter with which this article has to deal.

Magnification, as before mentioned, is expressed by inerease in
diameter, the superficial area which is the true magnification is
found by squaring the linear. When X3 is written, it implies
that the length of image is three times the original object. While
if X4 it means that the length of the image is one-third of the
ohject.

Al‘
%.
'
c &'a
B B!
Fig. 126.

The nearer the ohject is to the eve the larger is the visual magni-
tude, since the secondary axial rays from the extremities of an
object enter the eve under a larger angle and erossing at N (Fig.
126), the nodal point of the eye, cover a larger area on the retina,
Thus, if the object A B he approached to half the distance, as at
A' B', the angles A/ N B' will be double the angle A N B, and
consequently the diameter of the image on the retina a' b will be
approximately double that of a b.  This is the apparent size of the
object and is determined by tan V, where V is the angle subtended
by half the object A C at N. Since tan V = AC/CN it is obvions
that V is increased by reducing the distance C N.
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This is illustrated again in Fig. 127, where the object A B is
shown in three positions with its corresponding images.

For the same reason a convex lens causes magnification because it
allows the object to be seen at a nearer distance to the eye than
can be done without the lens. A pinhole held close to the eye also
acts as a magnifier and the smaller the hole, the nearer the object
can be approached, without losing definition, and consequently the
higher the magnification obtained. This is not, however, a sub-
stitute for a lens, since a small hole euts off an immense amount of
light, and eauses blurring hy obstruetion of the light-waves at its
margin.

B
)

2.5
lr

L]
: g
Eiz. 127,

If a watchmaker fixes a 2-inch lens in front of his eye he sees
an objeet five times as large as he would without it. If he were
able to see distinetly at two inches, without a lens, the object would
appear almost as large. Light from an object at two inches is,
however, so divergent that it cannot be focussed on the retina by the
unaided eve.

[t may be here noted that the size of the image is governed simply
by the distance, from the axis, of that ray which, before refraction,
passes through I, and, after refraction, is parallel to the axis,

Magnification is rather an elastic term and more difficult to
estimate in relation to the eve than it is when the image is thrown
on to a sereen. In the latter ease the image can be direectly
measured, and divided by the actual length of the object, the result
being the true linear magnification. DBut in the case of the eye
the solution is not so simple. Firstly, the nearest distance at
which objects can be distinetly seen, by the naked eye, varies
greatly with different people, and at different ages in the same
person; the retinal image of the object also wvaries both with
accommodation and with the shape of the eyeball. In the case of a
myope, the image being formed in front of the retina, much
diffusion results, which, although it renders the object indistinet,
makes it appear larger, and this apparent size increases with the
brightness of the object.

Again, as will be shown, the magnification varies with the
distance of the lens both from the eve and from the object.

And lastly, when looking at any near object, either with the
naked eve or through a spectacle lens, there is a mental effect
which, although it does not modify the actual size of the image on
the retina, does its apparent relative size to the mind. The images
of what is scen are virtnal (aerial) images of ohjeets projected into
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space and, as a rule, coinciding in position and magnitude with
the objects seen. Thus, if several persons were lH-I-.,{_.[l to look at
the moon with the naked eve or through a telescope, and then
requested to draw its apparent size, they would probably all draw
a different sized figure.

When an object is to be seen to the best advantage through a
loupe or magnifying lens, the object should be placed a little within
its focus. IFirstly, if the object be so held, the image is better
defined, since if the lens is a strong one evervthing is out of foeus
except that part of the objeet which lies close to the principal axis.

Secondly, it is almost impossible to view a near object without
accommodation, therefore if the light is slightly divergent, when
incident at the eve, the accommodation insensibly exerted, forms
the image on the retina,

If the distance hetween the object and the lens is short, magnifica-
tion is small and if the distance = 0, that i1s if the lens touches the
object, M = 1, the object and image bheing equal in size. The
greatest magnification results when the distance is nearly equal to
F, but the actual distance at which the object is placed is found
by the formula

1/, = 1[/F — (= 1/d)

where 1 /I represents the power of the lens and d is the distance to
which the image is projected, and this (and theréfore also f, which
is the distance of the object), varies with the observing eye.

Fig. 128

To find the magnification of a simple magnifying trla% (loupe),
let the prinéipal focal distance of the lens be O ¥/ or O F (Fig. 128)
A" B! is the image plane since it is the plane of most distinet
vision with the unaided eyve. Let A B be the ohject plane. The
magnifying power M will then be the ratio

I L & R () f,

0] ADB P (8] f,
f, and f; being the two conjugates ; and

Foeid 1
o e BT
. f,

[68]
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Since the image is virtual f, is negative and is the distance of
most distinet vision. It may be expressed by d; therefore f, the
distance of the object A B, is

1 1 1 I’ d
— = () =— o =
F d i F 4 d
i d d d (F + d)
and M=—=—= =
O f, Fd/{F4d) " d
| [T S | il
or }u[ — or e —I— ].
P Iy

This formula is that usually accepted to express the lens magnify-
ing power when the lens is close to the eve or at least when the
interval is neglected,  And since 10 inches iz the distance commonly
adopted as that of most distinet vision, for the average normal eye,
the formula is generally written

M =1+ 10/F.
This formula becomes, for lenses expressed in diopters,

M=1 4 D,LL.
Thus with a 2-inch Convex lens M =1 4 ]ﬂfﬂ = 0
Or with a + 20D lens M =1+ 20/4 = 6

When a lens is very strong the formula may be simplified to

M = 10/F.

Thus with a }-inch lens M = 10/} = 40 times instead of 10/}
+ 1 = 41 times.

Magnifieation is the ratio hetween a b and A' B/ (Fig. 129), a b
being the object as it would be seen in the plane of most distinet
vision by the eye unaided, and A" B’ being the image of A B, pro-
jected to that plane. The position of the object is the distance
which is the conjugate of d. But since d is taken from the eye
itself the distance between the lens and the eye must also be taken
into account.
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Fig. 129.

Let d be the distance of distinet vision and e the distance of the
lens from the nodal point of the eve; then

F4+d-e d — e (93]
M = or + 1
I iy

Suppose the eve be two inches from a 2in. Cx. lens; then
M=1+ (10-2)/2 = 5 times, instead of M =1 + 10/2 = 6 times.

It iz evident, thercfore, that as e inereases, the magnification
decreases, and the magnification must econsequently be at a
maximum when the eye is close up to the lens, i.e., when e = 0,

If d be 10 inches and the lens of T = 2in. bhe held close to the
eye, the object is at 1/2 — (— 1/10) = 6/10 at 1.666in. from the
lens and also from the eve,

50 M = 10/1.666 = 6 times,

But if the lens is 2in. from the eye, the conjugate is at 10in.
from the eye, or 8in. from the lens, so that the object must be
1/2 — (=1/8) = 5/8 at 1.6in. from the lens,

and M = 8/1.6 = 5 times.

Magnification being a ratio between the distanee at which an
object is placed and the distance of most distinet vision, it follows
that the magnifying power of any given lens is smaller for a myopie
eye, whose point of distinet vision is shorter than 10 inches, while
it is greater for the hypermetropie eve, whose position of most acute
vision is greater than 10in. The magnifyving power of a 2in.
lens ig:—

For an emmetrope, where d = 10 inclhes, M = 1 + 10/2 = 6.
For a hypermetrope, where d = 16 inches, M = 1 + 16/2 = 9.

For a myope, where d = 6 inches, M=1+ 6/2 =4
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Yet if the distance of most acute vision varies, so also does the
distance at which the object is held, in frout of the magnifyving
lens, in order to be most distinetly scen. For the myopie eve the
object would be held nearer, so that the light may be more
divergent after refraction, while for the hypermetropic eye it
would be held further away, so that the light may be less divergent,
or the object may he even placed beyond the feoal distance of the
lens in order that the light be convergent after refraction. To the
myopic eve a given convex lens acts as a stronger one, while to the
hypermetropic eye it acts as a weaker one would to an emmetropic
eye. Thus the magnifying power of a lens is, for all eyes, more
nearly equal than would appear from the previous paragraph.

If the object iz placed exactly in the foeal plane of the lens, the
light after refraction is parallel and is focussed at the retina by a
hypermetropie or emmetropic eye. If the image is projected to the
distance of most distinet wvision, magnification obtains. In this
case there would be no change in M, as ¢ 1s increased or decreased
beyond that which results from the altered distance of the object
from the eve.

When a lens is in front of the eyve, and not used as a magnifier,
it has another effeet which is ]J{-r]mps hest demonstrated when the
lens is fairly weak. When a Cx. lens is within I, (the anterior
focus of the eve) it causes diminution of the retinal image; at T,
it causes neither M nor diminution; beyond F, it causes increase
which is greater as its distance iz greater, until when the lens is
midway between I, and the object, M is at a maximum ; bevond this
point the M becomes less until, when the lens touches the object,
it is 0. This M is independent of the elearness of the image and
explains some of the phenomena of spectacle lenses. With a
Ce. lens the retinal image increases when the lens is within I ;
there is no effect at F,, while bevond F, the diminution of the
retinal image becomes greater, to reach a maximum at the midway
distance ; after this the diminution becomes less, and it is 0 when
lens and objeet are in contact,

Another factor which operates in causing magnification by a
Cx. lens is that when the latter is in front of the eve the united
nodal point is further forward, so that the size of the retinal image
is inereased. This is the reason that magnification oceurs with a
Cx. lens, although a person can sce quite distinetly without it at
a certain distance. Also since the Cx. lens suppresses accommoda-
tion the object is conceived to be more distant, and therefore for
a given sized retinal image to be larger in size. Finally, even if
the object be in the plane of most distinet vision, the interposition
of a Cx. lens between it and the eyve causes the light to be rendered
less divergent, as if proceeding from a more distant and larger
object.
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CYLINDRICAL LENSES

The Cylinder.—A cylinder is a |m|.1ir (Fig. 130) whish is
generated by a revolution of a rectangle about one of its sides
as an axis. Such a body consists of two flat circular ends and an
intermediate convex surface.

Any section of the eylinder taken at right angles to its axis is
a ecircle whose centre coincides with the centre of the axis of the
eylinder.

The eylinder possesses no curvature in any line parallel to the
axis A B. At right angles to the axis, in any line parallel to the
direction C D, t.ho curvature of the cvlmder has its maximum
value. In any other direction, as E T, the boundary is an elipse,
of which E/ F/ is an example. The curvature is always less than
that of the cirele C D, diminishing as the direction departs from
C D and approaches that of A B.

Fig. 131 (1) shows a convex cylindrical lens. It is a segment
of a eylinder on the one side and has a plane surface on the other ;
1t 18 formed by a eylinder and a plane which interseet each other.
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The concave evlindrical lens (Fig. 131, 2) has a hollow surface
on one side. It is formed by a t'._vlim]trr and a [Jlum.‘ which do not
intersect each other.

A convex eylindrical lens may be conceived as formed of a series
of prisms whose bases meet along a central line and whose apices
are outwards. In the same way a concave cylindrical may be con-
sidered to be formed of prisms whose apices mect along a ecentral
line and whose bases are outwards.

Curvature and Power.—Since in the direction of its axis A B
(Fig. 132) a cylindrical lens haz no curvature, it has in that
direction no refractive powers. Fig. 133 shows that such a lens
has its greatest power in the meridian of greatest curvature A B C,
DETF,GHE, at right angles to the axis, and the dioptral number
of the lens is that which results from the curvature of the meridian
of greatest refraction,
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Meridian. —The term meridian in connection with lenses signifies
a plane passing through the geometrieal centre of a lens, as shown
in Fig. 134.

ARNES

+4D

+1iD

Fig. 134.

Spherical and Cylindrical.—A\ sphervical lens has equal curva-
ture and therefore similar refractivity in every meridian, but in
a eylindrical it is otherwise. For example, a + 4 D eylindrical
lens has 4 D positive power in the meridian at right angles to the
axis, no power in the meridian corresponding to its axis, and in
the intermediate meridians a power which varies between 0 anl
+ 4.  The meridian of no refraction—i.e., the axis—and the
meridian of greatest refraction at right angles to the axis are
termed the two principal meridians, and these alone need be con-
sidered in any eylindrical lens. The position of the cylindrical
is indicated by the direction in which its axis is placed, while its
power is expressed by the maximum refractivity found in the
meridian at right angles to the axis. By means of these two
meridians the path of all rays passing through the cylindrical may
be traced. This is the reason why they are called the principal
meridians.

The Focal Lines.—It is only the meridian at right angles to
the axis which can form a focus, for a ray proceeding from a point
and meeting the surface in an intermediate meridian cannot meet
the other rays which pass through that same meridian. All the
light, from an object point, refracted by a eylindrical passes
through two focal lines, one of which is at the focal distance of the
meridian of the greatest refraction and the other is at oo, The
eylindrical lens has therefore two focal distances, and the image
of a point is not a point, as with the spherical, but two lines. DBut
since the one focus is at o, 1t need not be considered so that we can
say that the image of a point is a line.

The refraction of a evlindrical lens is shown in Fig. 133, where
ABC, DEF, GHK represent ares of greatest eurvature corre-
sponding to one of the principal meridians, and B E H represents
the axis of the lens.
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None of the ravs diverging from O passing through the planes
A B C, ete., will be tlwlatul up or down, but form flat planes of
light which come to a focus, as with an nrfhna,l_v spherical lens of
the same power, at I, I, 1, which are conjugates to 0, 0, 0. And
what is true for the three planes shown is also true for any number
of planes llul"lﬂli_'l to A B C, ete. Thus if the {ﬂjjcul‘r be a point
of light the image will be a row of focal points along the vertical
line I, I, I, which fuse into a thin streak of light parallel to the
axis of the eylindrical, and this is called the foeal line. 1f the
evlindrical be rotated around its central line the streak also will
be rotated with it. This focal line is situated at the focal distance
of the meridian of greatest power, which in this case is the
horizontal meridian. Thus, if the :ﬂmvu lens were a + 5 D Cyl.
the focal line would be at 20 em. At any other distance the streak
would broaden out into a band of light.

Each luminous point.on the object given rise to its focal line,
go that the complete image of an object is a narrow band of light,
which is commonly referred to as the foeal line. The band is
narrower, at the focal distance, as the focal lutlglll is shorter.

Two Cylindricals.—If another cylindrical of similar power
be placed in contact with that shown in Iig. 133, and with its axis
in the same direction, the image will be unaltered, but its position
will be brought to a plane half way hetween B and 1.

If the second cylindrical be rotated until the axis is at right
angles to the first, the result will be equivalent to a spherical lens
of the same power as the single evlindrical. In this case the
greatest power of the one corresponds with the axis of the other,
and in all intermediate meridians any deficiency of power in the
one is supplied by the other. So that if the second eylindrical be
rotated from axis vertical to axis horizontal the wertical streak
will be seen to shrink until, when the two axes are at right angles,
it will have dwindled to a point of light.

Instead of placing a second eylindrical in contact, the curva-
ture representing the second may be ground on to the second
surface of the first lens and the nlmml {_'ﬂi:{.‘t is the same.

Sphero = Cylindricals. — If a spherical is combined with a
eylindrical, the enrvature of the former is ground on the one =ide
of the lens, and that of the latter on the other. Such a combina-
tion is called a sphero-evlindrieal or compound exlindrical in
contra-distinction to a plane-exlindrical or simple exlindrical.

Cross Cylindricals.—If one exlindrical power is ground on the
one side and another on the other side the lens is termed a cross-
eylindrical. But any two cxlindrical powers whether ground on
opposite sides of a piece of glass, or whether as two plano-
cylindricals placed in contact, are alwayvs equivalent to some gphero-
eylindrical combination, ne matter what may be the inclination
of their axes, except only in the ease of the axes being parallel,
when they constitute a plano-cyl; or when they are at right angles
and the two powers are similar they are equal to a spherical.
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Powers of Sphero=Cyl.—Since there is no curvature and con-
sequently no refractive power along the axis of the eylindrical, only
the power of the spherical exists there, whereas at right angles to
the axis there is the united power of the spherical and the eylin-
drical. As with the plano-ecylindrical, these are the two principal
meridians of the combination, and which alone need be considered
in practice. Thus, with 4+ 2 Sph. = + 3 Cyl. Ax. 909, the two
principal meridians are 902 and 1809, and the two principal
powers are

+ 2D at 90%and (+ 2D + 3 D) = + 5D at 1809,
A combination of — 2.5 Sph. = — 0.75 Cyl. Ax. 70° has
— 2.5 D power at T0° and — 3.25 D at 1609,
Or one power might be pesitive and the other negative, thus
+ 2.25 Sph. T — 3.50 Cyl. Ax. 1359 has

+ 2.25 D at 1359 and (+ 2.25 — 3.50 =) — 1.25 D at 45°.

IZ.I_‘ L ng Fl C

Focal Lines.—1If a Cx. Sph.-Cyl., say, + 4 Sph. = + 4 Cyl.
(Fig. 135), having its axis vertical, be held in front of a screen
at the distance 25 em., which is equal to ¥ of the ﬁ.phvli(,.L] i
horizontal line of llt"ili is formed at F,; as the sereen is slowly
approached to the lens this line develops gradually into a hor izontal
oblate oval at A, an almost perfect cirele at B, a vertical prolate
oval at C, and finally into a bright vertical line at I",. The lens
is then at 12.5 em., which is I of the combined spherical and
eylindrieal powers. The space between the two principal foeal
distances I, and F,, represented by the two sharp lines, is termed
the tuterval of Sturm.

The diffusion patehes formed in the interval of Sturm are due to
the different refracting powers of the various meridians of the lens,
but all the light refracted by the lens passes through l]m two
so-called focal lines.

The cone of light emergent from the lens is more or less elliptical,
except at B, where the horizontal line of light formed at F, and
the wertical line formed at ¥, are broadened out to equal extents,
and the elliptical cones of light, emerging from the lens, are more
nearly of equal lengths than at any other distance, so that a circle
is there formed.
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Interval of Sturm.—The two focal lines are at the focal
distances of the two principal meridians, and their lengths are
proportional to the diameter of the lens and to their distances from
the lens. If the lengths are L, and L, and the focal distances
I, and I,

L,F, =L, F,

If 4 is the diameter of the lens and S the length of interval of
Sturm, that is, the distances between F, and F, (Fig. 135),
d S d S
I, = — and L, =
F, F,

The cireular disc of confusion at B divides the interval of
Sturm at a point which is distant from I, and L, proportional to
their distances from the lens, so that if the two parts be called
a and b,

i TJ, F,
S=a+4bad — = — = —
b L, I,
Then the cireular dise of confusion iz distant from I, and L.,
8 B _ 5 I,
= -~ —and b = ———
e F, + I

The size of the cireular dis¢ of confusion D depends on the
diameter of the lens, and is

i I‘u b T:,
B = — —
5 5
Ezample.—Thus, with + 4 Sph. = 4+ 2 Cyl. Ax. 90 the two
principal powers are + 4 D and + 6 D, and let d = 5 em. Then
F, = 16,66 cm. and F, = 25 cm.
and S = 20 = 16.66 = 8.33 cm.
5 = 8.33
Length of the 1st foeal line Lj = ——— = 1 66 em.
25
o x 8.33
Length of the 2nd foecal line I, = ——— = 2.5 em
16.66

a3 1.66 16.66 3.33
2

8.33 x 16.6
Distance of B from L; = a = = 3.33 em.
25 4 16.66

.I='-' oy
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8.3 x 25
Distance of B from I, = b = —- — = 5 em,
25 4+ 16.66

Length of 3 =a+b=233345=18.33 em.

d.43 x 2.5 o x 1.66
BERln = ——— = - = 1 ¢m,

8.33 8.33

THE CYLINDRICAL EFFECT OF OBLIQUE SPHERICALS.

Since a spherical lens acts with an astigmatic effcet on an oblique
pencil of light, a spherical held obliquely to the incident light acts
as if it were a sphero-cylindrical lens. Suppose a spherical lens
be held at its foeal distance from a screen and parallel to it, the
light from a flat luminous ohject forms on the screen a complete
image, but if the lens be held obliquely the image is confused and
drawn out as if a evlindrical had been uddd:d to the aplmuull
Two bright focal lines are formed on the screen when the lens is
held at the proper distance for each.

The effect produced by obliquity of a spherical is that of a slightly
stronger spherical combined with a evlindrical whose axis cor-
responds to the axis of rotation. The refraction is therefore
increased in both meridians, but mostly in that at right angles to
the axis of rotation. It is this increase of power which enables
some people to see better by looking obliquely through their glasses.

Rotation of a ecylindrical lens around its axis causes similar
increased effect in the meridian of greatest power.

When a spherical lens is held upright and parallel to a sereen
a luminous point on a level with the axis will, when the lens is
rotated round a vertical axis, no longer form a focus on the screen,
but will form two ill-defined astigmatic lines, one horizontal, a
little within the original focus, and a seccond, vertical, consider-
ably nearer the lens.

Fig. 136.

If a lens be tilted round a horizontal axis a similar effect is
produced, which will be caleulated. In Fig. 136 let a represent
N
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the angle of rotation of the lens, and therefore also the angle of
incidence of the central ray of a beam of light parallel to the
principal axis before the lens was rotated. The increase of power
in the meridian of the rotation iz owing, as can be seen in the
figure, to the fact that the light has to pass through a greater
thickness of the lens when the latter iz oblique than when it is
placed normally.

b is the angle of refraction at the refracting plane (the lens being
considered thin).

Let I represent the focal length and D the dioptric power of the
lens. ILet I', and F, represent the foeal lengths, and D, and D,
the dioptriec powers of the meridians of least and greatest effect
respectively.

A B is therefore the principal axis of the lens. C D is the central
ray of an ineident beam of light which, had the lens been normally
placed, would have been the prineipal axial ray. D E is the ray
after refraction. A D C = a, the angle of incidence, and B D E
= b, the angle of refraction. Now b is found from the equation
w gin b = gin a. Then

Fp-=10
P, = -
(e cos b) — cos a
B fn — 1) cos® a
Po=— —— = F, cos® a
I:Ju cos ]'Il} — COB &
i ]1{{;1 cos b) — cos n}
Also e T
I p—1
1 D-{[p. cos b) — cos E'l..} D
And - D= S i
Iy (r — 1) cos® a cos® a
1A
Hence —or — = ¢os’ a
By Iy
: El
Since does not differ greatly from

jpeos b — cos a

2 p — min® a

2 p
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the following simplified formule can be used, in place of the fore-
going, for approximate caleulations: —

2 — sin® a 98]
T "L e ——— 1 F. = I eos® | : :
F, I : wmd 1, , Cos* n 99|
2 F. d

Iy
D 2p : D, 1100/
D, = — . and D, = 1011

2 p— sin° a cos® o

The effective power of a cylindrical rotated around ils axis is
found for the same formule as for D,

Ezample.—Let a spherical lens of p = 1.5 and 100 em. focal
length be rotated 30°9. Then a == 309, sin® a = .25 and cos® o
= .iD.

100 x (3 — .25)
B o= — = 0166 cm.
5]

F. = 9166 x .76 = 6B.i4 em.

The lens has now twa foeal distances of about 92 and GO em.

Let an inelination of 252, around its horizental meridian, be
given toa + 5 D Sph. of u = 1.5,

sin? 250 = .1734 and cos® a = .8210,
H x 3
D, = — = 633 D,
3 = .1754
5.32
D, = — = 6486 D.
8216

or + 5.32 Sph. = + 1.1& Cyl. Ax. 180.

If the source of light is distant and the two focal distances he
measured, the angle of rotation of the lens can be found from the
equations

F,/F, or D,[/D; = cos® a. [102]

Sinee for a rough approximation D, dees not vary greatly from
D, the increased or eylindrical effect produced by obliquity of a
spherieal lens is
D
C = ——— — DorDtan? a. [103]

cos® a

Thus in the above example where a = 252 and D = 5,

b
= 609 — 5 = 1.09 D.

82138
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TasLE oF Cyrispricar. Erreer or OpBLIQUE SPHERICALS.

The following table gives the approximate eylindrical eflect
obtained by rotating a 1 D lens. The effect on other lenses is
]_n'ﬂpurtim]zltu_ The rotation is Hllppl_‘lﬂml to be around a wvertical
nxis. The ealeulations are made from the simplified formule for
D, and D), in the last page.

Iegree of  Horizontal Veriieal The Tower of the 1 D
obliquity. foens in em. foens in em. beco wes in diopters.
oe ] 100 L1005 001 %
102 96 99 1.01 S 003 C
150 91 98 1.02 S 007 C
200 23 0 1.04 ST 016 C
200 i 04 1.06 80283 C
300 il 01 1.09 8034 C
350 54 s .13 8 =057
409 a0 86 1.16 S Z0.84 C
450 42 23 1.200 8 —1.20 G

The efiect increases rapidly with a greater obliquity.
A 1 D evlindrical rotated arvound its axis becomes

Degree of

abliguity, Diopters.
oo 1.01 C
10 1.04 C
15© 1.09 C
20© 1.20 C
250 1.29 C
J0e 1.43 C
3h0 1.0 ¢
102 2.00 C

459 2.40 C



THE ANALYSIS AND NEUTRALISATION OF LENSES. 1G7

CHAPTER VII.

THE ANALYSIS AND NEUTRALISATION OF
LENSES.

Characteristics of a convex or positive lens.

(a) It is thicker at the centre than the edge.

(b) It gives a magnified image of an object held within the focus.

(e) If held at the proper distance in front of a sereen it forms
an inverted real image of a sufliciently lnminous object as a candle
flame or window,

(d) If an object distant a few feet be looked at through the
lens, and the latter moved vertically or horizontally, the object
appears to move in the confrary direction.

Characteristics of a concave or negative lens.
(a) Tt is thinner at the centre than at the edge.
(b) It diminishes the apparent size of an object seen through it.
(¢) No image can be projected by it on a sereen.
(dY When moved vertically or horizontally, an objeet seen
through it appears to move in the same direction.

Definitions.—The analysis of a lens consists of determining its
nature ; neutralization is the determination of its refracting power
or focal length by means of a lens of opposite nature, which converts
the former into a lens of no power. When analysing or neutralis-
ing a lens, care should he taken that it is held so that the front is
facing the observer. The front is that surface which is the more
remote from the wearer’s eve, and is the less concave or more convex
of the two surfaces.

e

Fig. 137.

Analysing Card.—The work is generally facilitated by the use
of an analysing card, as shown in Fig. 137, although in its absence
any clearly-defined straight vertical or horizontal line, as the sash
of a window, serves the purpose,
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The card should be 18 or 20 inches square, with two crossed black
lines about } inch in width, running vertically and horizontally,
and for most work should be fixed at a distance of not less than
three or four feet.

The first step in testing a spectacle lens is to Iearn whether or not
it contains a cylindrical element.

S

Fig. 138,

Determination of Cylindrical element.—To distinguish
between a lens having a spherical power only from one having a
cylindrical element, the analvsing card is viewed through the lens
and the latter turned around its geometrical centre in a plane
parallel to the card. If the lens is spherical the lines remain
unmoved because ifs refractive power is alike in all meridians, 1f
the lens has a eylindrical element the lines become oblique, as shown
in Iig. 138, where the dotied lines represent the black lines of the
card, as scen when the lens is rotated.  This obliquity occurs
bhecause the refractive power of the lens varies in its different
meridians.

Determination of Nature of power.—If the lens has only
slplmrjuul power, the next necessary step is to learn whether it is
conves or concave. This is done by moving the lens horizontally
while observing the vertical line, or vertically while observing the
horizontal line.

.

i

0]

(&

Fig. 139.

o

When the vertical line is first viewed through the centre of the
lens the part A B seen throuch the glass is continuous with the
prarts C and D scen bevond its L-i]gf_-?. “.} If the lens is moved, say,
to the right, A B becomes broken away from C and D. It is to the
left of C and D (2) if the lens is convex, and to the right (3) if it

-
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ig concave ; that is to say, if the line appears to move in the opposite
direction to the lens the latter is convex, if in the same direction
the lens is concave. When making Hu:-:: test the lens should be
moved slowly in a certain direction, and not rapidly from side to
side or up and down. If the lens is held too close to the eves the
line C and D beyond the edges eannot be seen, so that the best
distance is about 8 or 10 inches, If, Im-.wﬂ' the lens is a strong
convex it must be held nearer the observer’s eves or nothing ecan
be seen through it owing to the convergence of the light, but the
nature of such a lens can be at onee recognised both from its form
and from the fact that the lines, seen through it, are indistinet.

If the glass is a plano, that part A B of the vertical line seen
through the glass remains continuons with the parts C and D on
either side; that is to say, no displacement occurs on moving the
Elass.

Fig. 140,

If the lens is displaced downwards, a horizontal line, not shown
in Fig. 140, but which is in the direction 0O, is seen through
the ]}Lll]}hfml portion of the lens, which is of greater refract-
ing power than the centre, and the line appears deviated in
the dircetion of the apices of the prisms of which the lens is formed,
that is, towards the edge (1) in a convex, and towards the centre
(2) in a concave lens. The degree of deviation and the rapidity of
movement of the line is proportional to the strength of the lens;
also the deviation is greater, as the part of the lens looked through
15 near the periphery. The apparent mofion of the object, viewed
as the lens 1s moved, is due to the fact that the lens increases
gradually in prismatic or deviating power from centre to periphery.

If the line be first viewed through the, say, bottom of lens and
this then moved downwards the motion of the image is continuously
with or against throughout the journey.

If, instead of the lens, the head is moved, an object observed
goes with the head if the lens is convex, and in the opposite
direction if it is concave; for if the head is moved, say, to the
right it produces the same cffeet as if the lens had been moved to
the left.

If a convex lens is looked through when held at a distance greater
than its focal length, for instance, if a 3 or 4in. Cx. lens be
Leld 10 inches in front of the eve, the refracted ravs, having erossed
in the air, enter the eve 1]HLI"'{IIL and the apparent movement of
the object when the lens is moved is the same as with a concave lens,
and moreover the apparent size is diminished.  What is really
observed is an inverted mrial image of the object. As the analysing
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card is, however, the same in all directions, the inversion may not
be noticeable, but the mistake as to the nature of a lens in such a
case should be impossible, its central thickness indicating its nature
without any special test, and only very strong convex lenses can,
when held a few inches from the eye, form an wmrial image
sufliciently far away to be seen.

1 2
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Neutralisation.— Neutralisation consists of finding that lens
of opposite refraction and of known power (from the test case)
which annuls the movement caused by the lens to be measured.

A convex and a concave lens (Fig. 141, 1 and 2) of the same power
when placed in contact have practically no refracting power, the
convergence of the convex being counteracted by the divergence
of the concave, and incident parallel rays emerge parallel as
through a plane glass.

If the unknown lens is convex, a concave is selected from the trial
case, as near the power as can be judged from the rapidity of the
movement, and then the two held together are again moved. If
the movement is still that of a convex the power of the neutralising
concave is insufficient and a stronger one must be tried. If with
the first neutralising lens the movement of the two combined is
that of a concave, the neutralising lens is too strong and a weaker
one must be tried.

A few trials will enable one to find a lens which, when placed in
contact with the unknown lens and moved, causes no displacement
of the line. The number of the neutralised convex equals that of
the nentralising concave. To find the number of an unknown
eoncave lens a neutralising convex must of course be used. Practice
will soon enable one to see by the degree of movement the approxi-
mate neutralising power needed, as well as to appreciate such slight
movements as oceur when neutralisation is nearly, but not quite,
effected.

When neutralising, the lenses must be actually in contact, because
if separated the convex acts with greater effect than does a concave
of the same power.  If the convex is in advance it more than
neutralises the concave; if the concave is in advance it only
partially neutralises the convex.
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Neutralising Strong Lenses.—But even when the two are
in actual contact, if the lens is strong, say, over 8 D or 10 D, it is
difficult to get absolute neutralisation, there being always some
slight movement in the peripheral portion of the lenses, although
near the centre there may be practically none when the two lenses
are of the same dioptral power.

|

Fig. 142

The failure to obtain a perfect neutralisation with strong lenses
is due to the thickness of the convex. As shown in Fig. 142 by the
dotted lines, the two lenses ;mlun]l.w constitute a convex meniscus,
for with the same radius of curvature the total lens is one formed
of two intersecting cireles,

The thickness of a concave lens 1n the centre, no matter how
strong it be, ean be ienored, but this is not the case with a strong
convex. If the foecal lengih of the convex is equal to that of the
eoneave, it is clear that Iy of the coneave is further from the central
poinb of the combination than is ¥, of the convex. If the rays of
light parallel to the axis are incident on B, they are rendered
divergent as if proceeding [rom F,, a point outside I'y, and are
therefore rendered by A slightly convergent after refraction.
Similarly if parallel rays are incident on A they are converged
to meet at Fy, a point nearer than F, and the diverging power
of the coneave being insuflicient to render them parallel, they are
Eligllt]:.' convergent after refraction. Thus a strong convex anil
& strong concave lens of similar g aund radius do not actually
neutralise cach other.

The concave ]}viug thin at i1ts axis, its ]'|~r||1irrr|I rading would he
caleulated |}J' the formula where thickness is m*:_rln:iu:'!, while that
of the convex would be caleulated with its thickness considered.
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The + 20 D from a trial case, being of large diameter, is about
.75 em. thick in the centre, and its radius would need to be shorter
than that of the — 20 D to have equal power. Giving the same
radius to each, the convex is weaker than the concave, but at the
same time the latter fails to neutralise the former owing to the
interval between their optical centres. In order that two strong
opposite lenses should neutralise, the concave must be stronger, the
focal leneth of the convex being appreximately one-third its
thickness longer than that of the concave, which, however, is not
the case when the radii of eurvature of the two are equal. In
ghort, although a thick convex has a longer focal length than a
concave of similar radins and 4, it is not sufficiently so for the
convex to be ncutralised by the coneave. For a — 20 D whose
I' = — 5 em. to exactly neutralise a convex having a thickness
of .75 em., the latter would need have I = 5.25 em., and if p =
1.50 would require a curvature of 5.125 em. ] :
If, therelfore, a convex and a concave neutralise each other, the
latter is stronger, but the difference is quite inappreciable in weak
lenses and not of importance in spectacle lenses, even if strong.

1 2 g
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Fig. 143,

5

Neutralisation of Cylindricals. — A square card (Fig. 143, 1)
viewed throngh a h:!ﬂwrit":ﬂ 15 h‘li;‘]lll}' increased or decreased in
size equally in every direction and (disregarding distortion)
remains a true square. If viewed through a convex cylindrical
]l:.u'irtg ils nxis, BV, *r-.'t'iit':i], Lhe sipuare 1% -'.I|i]i-'.ll'l‘ll|:1"h' inereased
in size horizontally (2), and through a concave it is diminished
horizontally (3).

Since the size is not altered in the direction of the axis the
sipuare appears oblong in both eases, and the diminution caused by
a concave, and the magnification caused by a convex, disappear
when the two of equal power are placed together.

On rotating a cylindrical lens in a plane parallel to the analysing
chart the lines on the latter appear to move obliquely either with
or against the lens, and if the rotation be continued appear to
move back again.  The amount of ““dipping’’ being dependent
on the strength of the evlindrical.  The line appears bent towards
the meridian of greatest posilive, or least negalfive, refraction,
therefore it moves towards the axis of a concave or away from the
axis of a convex evlindrical. And while the one line is thus declin-
ing, the other line moves in the opposite direction, so that the two
incline towards each other, as shown in Fig. 138, Thus the
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vertical or the horvizontal line bends the one way or the other, when
the lens is rotated, according as it is convex or concave and accord-
ing as the axis is being moved towards or away from the line
viewed.

The dipping occurs on account of the prismalic formation of
the lens, the apparent displacement being towards the edges of the
virtual prisms contained in the lens.  Thus, if the upper part of a
CONvex ul.‘lim]l'iu;ll, axis vertical, is rotated to the right downwards,
the lower part is at the same time rotated to the left, upwards;
then the vertical line inelines to the left above, and to the right
below, while the horizontal line inclines upwards to the left and
downwards to the right, each moving towards the thin parts of the
lens. And as the rotation is continued and the axis approaches
the horizontal and the thin part approaches the vertical, both lines
again move back towards their real positions.  Similar oblique
displacements occur when the maximum meridian of a concave
is rotated to the right, away from the vertical above. The contrary
takes place when the axis of a concave or the maximum meridian
of a convex is thus rotated.

Therefore the direction in which the viewed line inclines as a
evlindrical is rolated does not indicate whether it i1s convex or
concave, and to attempt to neutralise by “‘stopping’ the apparent
inclinations might result simply in selecting for that purpose
another eylindrical of similar power and nature, the two together
making a spherical lens.

vkl Bt
o

Fig. 144,

Locating the Principal Meridians.—The cross lines of the
analysing card are seen continuous within and beyond the edges
of the lens as in Fig. 144, when it is in such a position that ils axis
is horizontal or vertical, that is to say, when the axis is parallel
to the one line and the meridian of greatest power is parallel to the
other. The two principal meridians are in the same planes as the
two lines of the chart.

Such a position for a evlindrical must be found in order (a) to
learn whether it is a plano or a sphero-cylindrical, (b) to determine
whether it is convex or concave, and (¢) to neutralise it.

This position being found, the lens is first moved vertically and
then horizontally. If no movement is observed in the one direction
it is a plano-cylindrical ; if there is movement in both directions
it is a sphero-cylindrical or its equivalent, a cross-eylindrical.
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The axis of a plano-cylindrical lies in the meridian in which
there is no movement. The axis of the cylindrical in a sphero-
cylindrical combination which has two positive or two negative
powers is in that principal meridian which causes the lesser move-
ment.

When they are both + and — powers in a combination the axis
of the eylindrical is also presumed to be in the principal meridian
of lesser movement. DBut in all cases the axis of the aclual cylin-
drical might be in the meridian of greater movement, owing to the
fact that the same principal powers can be obtained in lenses of
various forms (see transposing).

To neutralise a plano-eylindrical the procedure is the same as
with a spherical only that eylindrieals of opposite nature are
employed. Care must be taken that the eylindrical axis is always
exactly vertical or horizontal, and that the axis of the neutraliser
precisely corresponds to it. In order that this may be the case,
continuity of the erossed lines at the edges of the lens must be
looked for and constantly maintained during the process of
neutralisation.

In the sphero-cylindrical the lesser movement is that caused by
the spherical lens alone, while the greater movement is caused IJ:.'
the united powers of the <.phr.-1'iml and the exlindrieal.

The lens being held with its axis, say, vertical, that spherical
of opposite refraction is found which neutralizes, in the vertical
meridian, the movement of a horizontal line. This having been
achieved the lens and the neutralising spherical are held together,
and the eylindrical element is then neutralised with a eylindrical
axis vertical, of opposite refraction in the same manner as if the
lens were a plano-eyvlindrical. The rapidity and exactitude of the
neulralisation depends, as with a plano-cylindrical, on the care
excreised in keeping the prineipal meridians exactly corresponding
to the two lines of the card, and the axes of the two cylindricals
exactly in line with each other.

Neutralisation of a sphero-evlindrieal can also be effceted by
neutralising each principal meridian separately with a spherieal
or with a L;.luu!nw.] whose axis is placed at right angles to the
meridian that is being neutralised, the two powers thus found
being transposed into a sphero-cylindrical combination. This
method is, however, not so exact, especially for beginners.

A cross-cylindrical is neutralised in the same way as a sphero-
cxhindrical either by a spherical and a eylindrical, by two
-.-'|n|u:lu als, or hy two eylindricals whose axes are tJru:z.w{I at right
angles ; but the first method is the Dest.

Obliquely Crossed Cylindricals.— Since the two principal
powers of a compound lens arve always at right angles to each other,
a combination consisting of two cyvlindricals whose axis are
nlnli![ml\' inclined can be neutralised by two suitable evlindricals
whose axis are at right angles, or by a aplmnml and a mlmdrmnl
Provided always that the exact principal powers are such as have
equivalents in the trial case, which, however, is not often the case.

e



THE ANALYSIS AND NEUTRALISATION OF LENSES. 175

Mixed Cylindricals.—A mixed evlindrical is one which has a
convex power in the one principal meridian and concave in the
other. It might be either a sphero-evlindrical or a eross-eylin-
drical, and it is neuntralised in the same way as other forms of
compound lenses,

Toric Lenses.—A toric or toroidal lens is a special form of
sphero-cylindrical, and is analysed and neutralised in a similar
manner.

Expressing Sphero-Cylindricals.—Since any lens which has
two prineipal meridians ean be put up in various forms, a neutral-
ising combination may be found which, while correctly indicating
the refractive powers of the lens, may not represent the exact form
in which it is made. If, however, transposing be understood, it
is an easy matter to consider other forms for the same combination.
It is always correct to express a compound cembination as a
sphero-cylindrical with a spherical of the lower power,

The true form of a combination can be learnt by using a lens
measure or spherometer, or by using a straight-edge, or even by
inspection, the difference hetween the enrvature of a concave and of
a convex evlindrieal being easily noted.

Order of Neutralisation —A lens which possesses spherical,
eylindrieal, and prismatic elements should be nentralised in that
order, but it is necessary to guard against the common error of
supposing a prismatic element to exist, when it is produced by
holding the neutralising lens out of centre with the lens which is
being tested. It is essential that the geometrical centres of all the
lenses should exactly coineide when nentralising.

To Learn to Neutralise.—DPractice is necessary in order to
neutralise rapidly and correctly, and it is well to commence with
simple spherieals and then proceed to plano-evlindricals and com-
pound lenses of known powers.

Focalisation.—The power of an unknown eonvex lens ean also
be obtained by focalisation, that is, by measuring the distance
between the lens and its principal focus.

A bright object, such as a flame or a window, at a distance of
20 feet or more, may be taken as the object, the rays proceeding
from which, being parallel, are hy a convex lens brought to a focus
at . By moving the lens backwards and forwards a position
for it is found where, on a white sereen placed behind it, the
sharpest obtainable image of the Iuminous object is formed. The
measured distance between the sereen and the lens is its principal
focal distance in inches or centimetres. The brighter the luminant
and the darker the place where the white sereen is located, the
easier it is to focalise. The distance should be read off from the
scale whose zero end is at the sereen. The image is quite sharp
only at the exact principal focal distance of the lens. At any other
~ distance the image is indistinet.
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As the focal distance is shorter, the image is smaller but sharper
and brighter, so that this method serves very well for fairly strong
econvex sphericals.  If, bowever, the convex lens be weak and
therefore of long foeal length, the image on the sereen is large
and indistinet, and the exact principal foeal distance is difficult
to determine.  If 1P is very short, the exact distance also becomes
hard to determine with accuracy.

To focalise the periscopic convex lens the distance of the optical
centre from the lens should be considered. The distance from the
lens to the sereen should be taken first with the one face and then
with the other, turned towards the source of light. The mean of
the two measured distances is the true focal length. Or, if the
symmetrical planes be located, the distance between them divided
by four gives the foeal length of a periscopic lens.

With ordinary periscopic spectacle lenses, the distanee of I8, from
the lens itself, is sufliciently exact in praetice.

Focalising Cx. Plano=Cyls.—If a convex plano-eylindrical
be at its prineipal foeal distance in front of a sercen, parallel light,
refracted by it, forms on the sereen a bright line which corresponds
to the direction of the axis of the eylindrical. By finding the
distance at which the line is narrowest and brightest the focal
length of the lens may be directly determined.

Focalising Cx. Sphero-Cyls.—If a convex sphero-eylindrieal
be held in front of a sereen, parallel light, refracted by it, forms
on the sereen a line at the focal distance of the spherical and
anotuer at the focal distance of the united powers of the spherical
and the cvlindrical.  The first is at right angles to the eylindrical
axis, and the latter corresponds to it. By finding these two places,
and measuring the distance between the lens and the screen for
ench, the focal length and powers of the two principal meridians of
the lens can be learnt.  Thus, suppose the two distances are H0 and
33 em., then the combination is + 2 D and + 3 D, or + 2 D Sph.
— + 1D Cyl. If the focal distances are 10 and 8 inches the lens
is 1/10 Cx. Sph. = 1/20 Cx. Cyl., since 1/8 — 1/10 = 1/20.

If the combination consists of a strong splerical and a very weak
eylindrieal it is, however, almost impossible to obtain the exact
focal distances of cach Ijl'i!iuiiml meridian, the difference between
them being so small; thus, with a + 10 D Sph. = + .5 D Cyl. the
two distances are 9.5 cm. and 10 em. Such a lens iz diffieult to

distinguish from a spherical by focalisation.

Focalising Strong Cx. S5phs.—To foecalise a very strong Cx
lens it is better to combine it with a Ce lens of sufficient power
to lengthen the Focal distance to a reasonable extent, For instance,
it is diflicult to determine whether a lens hag F of 2in. or 24in.
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But if this lens be focalised together with a, say, 3in. Ce the differ-
ence between the one and the other is much more marked, it being
then 3in. The focus of the unknown lens is obtained by the
formula

1 1 1

— S - — il J'l_ ]) —= I}|

F, It B,

where I' and D are, respectively, the focal distance and the power
of the two lenses combined, l"'1 andd ]-}1 thoze of the added Ce. and ].;'2
and D, are those of the unknown Cx.

Thus if F = 9in. and ¥, = - 3in.

1 1 1 4
—_— = = = (— -—) = — The lens is 2}in. Cx.
P, g 3 9
or I, = 456 — (= 13) = 176 D or say + 18 D.
If = 6in. and F;, = -3in. then
1 1 1 3
— = - = (— —) = — The lens is 2in. Cx.
F, 6 4 6
or D, = 65 — (-13) = 19.5 D or say + 20 D.

When — 8 D is added to 4 10 Sph. = + .H Cyl. there is an
interval of 10 em. between the two foeal dines, instead of .5 em. as
in the original lens.

Focalising Cc. and Weak Cx. Sph’s.- To focalise a weak
Cx. or any Ce. lens a sufliciently strong convex spherical, say,
+ b D, should be combined with it.  Then the foeal distance (or
distances) of the two lenses is found in the manner above indicated
and that of the unknown lens is ealeulated, as when a Ce. is added,
by the formula

i SE P e orD, = D = D

Thus, if I = 6in. and F, = Tin. the unknown lens is 1/6
— 1/7 = 1/42 Cx.

IfD=6andD, = 5,thenD, =6 — 5 = + 1.
Calculating Compound Lenses by Focalisation.—If there

are two focal distances at 15 and 33 em. and D = 4 5, the actual
powers a and b of the combination are

(a) 100/15 = 6.5 — 5 = + 1.5
(b) 100/33 = 3 = B = — 2

The lens is + 1.6 Cyl. 7= — 2 Cxl. or a sphero-Cyl. possessing
similar powers,
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Or the last form of caleculation may be solved in another way.
The sphero-cylindrical combination of the two lenses can be caleu-
lated, and the power of the adided spherical deducted from that of
the spherical of the combination.  Thus, if the added lens be + 5D
and the two focal distances are found to be 25 and 16 cm. the
powers are

+ 4 D and + 6.25 D

and the united combination is + 4 D Sph. = + 2.25 D Cyl.

Now, deducting the + D D from the spherieal, the unknown lens
is found to he

= 1 8ph. Z + 2.25 Cyl.
If F = 6in. Cx. and I, = 8in. Cx., then 1/6 — 1/8 = 1/24 Cx.
If ¥ = 10in. Cx. and F|, = 8in. Cx., then 1/10 — 1/8 = 1/40 Ce.
If two foci are obtained at, say, 10 and 6 inches, when F, =8

Cx., the united combination is
1/10 Cx. Sph. Z (1/6 — 1/10) = 1/15 Cx. Cyl.

Deducting the 1/38 from the 1/10 Sph. we get

L0 — T1y8 = e 1A
The unknown lens, therefore, is — 1/40 Sph. = + 1/15 Cyl.
Similar procedure is followed when both the focal distances are

found to be either longer or shorter than that of the added spherical
alone. '

Curvature of a Lens.—The curvature of a lens is indica,t:ed
by a spherometer, or lens measure, anid frq’m the m:wvature its
power can be ealeulated if p be known; but sinee t.hfz index nf_ re-
fraction of glass used for spectacle lenses varies but little and since
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the lenses themselves are weak, such an instrument can be directly
scaled for diopters or focal lengths.  Although the exact power
of a very strong spectacle lens may not be indicated by this instru-
ment, it is sufliciently near for all practical purposes. See Fig. 145.

The Spherometer. — The spherometer used in the optical trade
consists of a small nickel-plated box resembling a pocket-aneroid.
It contains a spring connected with a hand or pointer which
indieates the dioptral number or focal length of the lens on a dial.
Projecting from the top of the box are three metal pins, the centre
one of which projects beyond the other two, and it alone is move-
able, and is connected with the spring.

When the surface of a lens 18 pressed on to the pins until
arrested by the two side ones, the central pin becomes depressed
and causes the pointer to revolve and indicate the power of the
lens (as represented by its curvature) in diopters. Care must be
taken that the plane of the lens is at right angles to the plane of
the pins. It is also important to see that the pointer indicates zero
when a plane glass is applied to the instrument.

The surface is spherical if, on rotating the lens, while pressed
against the pins, the index remains stationary, and it is a plane
if 0 is then indicated by the pointer.

If the index moves to difierent positions, when the lens is rotated,
it indicates a cylindrical surface, the maximum power being shown
by the highest number attained. The axis of the evlindrical is
indicated when the index points at 0.

If the lens be a Sph.-Cyl. or eross-Cyl. the power of each surface
is distinet from the other. But when both surfaces are spherieal,
the power of the one must be added to that of the other to obtain
the dioptral number of the lens. Thus with — 3 D on each surface,
the lens is — 6 D. If the one surface is + 2.75 and the other
— 1, the lens is + 1.75 D Sph.

The Four Leg Spherometer.—This is an instrument for
ascertaining the radins of a sphere from the curvature of a portion
of its surface. The most accurate form consists of three legs unit-
lng in a common centre, so that their points deseribe an equilateral
triangle. A fourth leg moves up and down in the centre, by means
u"l’ a fine serew, the head of which supports a round horizontal plate.
The latter has its edge almost touching a vertical scale divided into
'Ill-lli., or .5 mm. as the ecase may be, and the plate itself iz usunally
divided into 100 parts. The elevation or depression, therefore, of
the centre leg above the plane of the other three can be read with
considerable aceuracy.

0
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By a well-known proposition of Euclid it ean be proved that if
two chords of a circle intersect at right angles the product of their
respective parts are equal.  Thus in Fig. 145a, if A B and CD are
at right angles, z

N A

s =G e =k
But a=2r-18
#=8@2r - 8)

d® + 52 : B
Whence e S '_[ii f
25 N |

Fig. 145a,

Now 8, the sagitta, is measured by the Eunlrn:.leg of the sphero-
meter, and d by the distance between the centrélleg and an outside
leg.  Therefore r, the radius of curvature, is easily found from the
formula.

1f, however, the distance E between any two fixed legs is taken,

the formula becomes g
E: 4+ 382

S i |

because B = d  §

When the sagitta 8 is very small compared with r (as is nearly
always the case), the :p.mnht;. involving S* in the formule may be ﬁ
ne{ri;_mt-.l and they become respectively

d* I T
ol and RS '
28 6 S




THE AYALY SIS AND NEUTRALISATION OF LENSES. 181

The ordinary dial spherometer, described before, is of course
merely a mechanical instrument, graduated in diopters from known
curves. To be absolutely accurate, a corrcetion for the variations
of the refractive index should be made in gevery case, but for
gpectacle work the error is negligible.  The Iug form is essen-
tially used in scientific work, for the determination of radii alone,
the focal power being subsequently determined from a knowledge
of the refractive index.

Methods of Determining the Power of a Lens.—We see
then that the focal length or power of a spectacle lens can he

found by
A, Nentralisation with a lens of opposite refractivity,

B. Direct focalisation. Or indirect focalisation, if concave or

weak convex.

C. The spherometer or lens measure.

These are the practical methods and are sufliciently accurate.
A 18 the most exaet, while € is the quickest, and can, moreover,
be emploved for convex or concave mirrors. When greater
precision 1s required there are a number of other methods, some of
which are given under the article on thick lenses,

In addition to the above, other methods, such as the following,
are suitable for determining the power of a thin lens and are some-
times useful.

D.  The method of symmetrical planes.

E. Measurement of any }l:.Lir of uulljligillu foei,

IF. Magnification method.

G. Focalisation of the reflected image from the surface of a
concave lens.  (Reflection).

H. Measurement of the distance at which a lnninous area of
given diameter is projected by a concave lens.  (Luminous
area).

I. Measurement of the focal length of a concave lens by experi-
ment.

Method D.—Symmetrical Planes.—(Donders.)—The method
of symmetrical planes is rapid and accurate to within 0.25 D for
Cx. sphericals. It depends on the principal that when image and
objeet are identical in size, the distance of O and 1 from the lens
18 2 I, and the total distance between them is four times the focal
length of a thin lens.

This method is best applied on an optical bench, but the latter is
not absolutely necessary. The lens is placed in a elip midway
between the two screens. The one is opaque with an aperture
behind which a lamp is placed; the other consists of frosted glass,
The two screens are moved equally towards or away from the
lens until the image on the frosted glass sereen is sh.up and of

0oz
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equal size to the aperture of the other. The experiment is made
more accurate if the frosted glass is scaled, and equal mevements
of the two screens is facilitated if the carriers arve connccted by a
band suitably arranged for moving themn equally. If the lens is
weak Cx., or if it is Ce., it should be placed between a pair of
strong U:. lenses so as to obtain the symmetrical conjugate foei.
The caleulation then required is the same as given for focalisation.

Method E.—Conjugate Foci.— If ihe distance of the object from
a convex lens be f, and the distance of its image on the opposite
side be f,, then the power of the lens is

| JF = 1f, + L5

Suppose a candle be 10 inches from a lens and its image 15 inches,
the lens will be
1/10 + 1/15 = 1/6 or 6in. F.

It is easier to convert each distance into diopters, and caleu-
late by

D=D 4+ D,
If the object is at 25 cin. and the image at 20 cm. the lens is

100 100
—_— .—----:-_'il -}-E:ﬂ[}-
25 20

This method only serves for fairly strong convex spherical lenses,
but ean be applied to concave and weak convex lenses by adding a
convex of suflicient strength, calenlating the power of the two com-
bined and then deducting that of the added lens, as shown for
focalisation. Method ID is a special case of the general method E.

Method F.—Magnification.—The magnification is the ratio
between the sizes of 1 and O, which are proportional to their
respective distances from the centre of a thin lens. Let M repre-
sent the magnifieation and £, and f, respectively, the distance of
object and image, then

B T i,

F f, M+ 1

If the total distance L between f, and f, be taken and the sizes
of O and I be measured, I¥ can be fa:-unfl from the following formula
where M is the magnification—

L M

| e T
M + 1)
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Thus, let O 12in. high, and I = 4in. when L is 24in.; then
M =4,
24 x 38
and B = —— = 4lin,
(1 1y

When an object is so situated that a lens placed one meter from
a sercen forms a sharp image on it, then the dioptrie power of the
lens D = M + 1. This method was given by Prof. 5. I’. Thompson.

Since the I is fixed at 1 M, the O must be at a shorter distance
if the lens is more than + 2 D, while it is at 1 M if the lens
is + 2D when M = 1. If the lens is + 1 D the object
must be at o0, and M may be said to be zero.  Therefore,
if the lens is Cx. but less than 1 D, or if Ce., in order to obtain
an image a convex lens of adequate strength must be added, the
power of the latter being deducted from that of the two combined.

The source of light is preferably a square diaphragm of 1 em.
diameter placed in front of a lamp. The lens heing 1 M. from the
seroeen a Hlml']j ilnngu is obtained [1_} "u]Jquln;__f the position of the
light. The size of the image is determined by actual measurement
or by a scale on the screen. If, for instance, the image is 4 em.
long, M =4and D =4 4+ 1 = 5.

Fig. 146.

Method G.—Reflection.—The focal length of a double coneave
lens can be learnt by using it as a mirror. Let the light from C,
a distant flame {l‘lg 146), fall on the lens, the back surface of
which is covered by a dark eard D D, In front of the lens a small
gsereen of cardboard 5 is held, so that, if necessary, by inelining
the lens very slightly an image of the flame is obtained on the
upper part of 8, the distance of 8 being inereased or diminished
until the image is sharp. The distance hetween P and 8 is the
principal focal distance of the concave reflector and is equal to half
the radius of curvature. The focal length of a double Ce. crown
glass lens is very nearly equal to the radius of curvature; conse-
quentl}r if the lens is double concave lens, twice the distance P S
= I, or if the lens is plano-concave, four times P S = T, A
coneave cylindrical ean be similarly measured, the refleeted image
being then a line of light,

[110]
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Method H.— Luminous Area.—Parallel rayvs s & are allowed to
pass through the lens A B (Fig. 147) on to a white sereen M N,
forming there a bright ring surrounding a dark central area.

”\
-.. E = E

+ |- - | WSS, R
o H g

Fig. 147.

The concave lens renders light from a distant objeet divergent,
as if proceeding from I¥, and when the dise of light on the sereen
is twice the diameter of the lens, the foeal length of the lens P F
is equal to the distance P O of the lens to the sereen. A space
equal to twice the diameter of the lenz zhould be marked
on the screen, or an aperture B S may be placed in the path of the
light bhefore it falls on the lens and a space equal to twice B 8
marked on M N.

The lens is moved to and fro until the luminous dise fills the
marled space.  This method is also applicable to simple and com-
pound cylindricals by measuring the lens and the dise in the two
principal meridians.

Method 1.— Experiment.— The distance of the virtual image in
front of a concave lens can be determined experimentally. Draw a
line on a board (Iig. 148) to represent the axis, and cut a slot so
as Just to allow the lens being inserted as far as its centre.

Place two pins, a and b, in the marked axis with their heads
at exactly the same height above the board. IMlace a third pin, e,
on the axis bevond the lens, and while looking along the tops of
a and b push the pin into the board until the head of ¢ appears
to be in line with a and b. Place another rather longer pin, d, a
little distance beyond ¢ and push it into the board until all four
heads appear in a straight line. Remove the lens and lay a
straight edge on the top of d and ¢. The point where the ruler
tonches the board is I' of the lens and O f is the focal length.
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A position is found for a long pin =o that the image of a distant
ahject, seen through a Ce. lens, coincides with the pin seen above
the lens. On moving the head there is no parallax between image
and pin when the distanee of the pin equals F,

Methods of Testing a Plane Surface.— Movement.—A
plano spectacle glass can be determined with suflicient accuracy
by observing an object (preferably test tvpes or ruled lines) through
it while moving the glass to and fro. 1If the glass has no pewer
due to curvature the image will appear stationary.

If the surface he a true plane no distortion or irregular maove-
ments can be detected,

If the glm-;:-; b held l?ll]ii'lli']_\‘ to the ove, S0 that the dirvection
of vision forms a small angle with the surface, any unevenness
of the surface becomes much more apparent.

Contact.—If one surface be a plane, this can be determined by
applyving to it a straight edge, or another plano-glass, and observ-
ing whether there is contact throughout when holding the applied
surfaces against a bright background. Real contact between two
surfaces is also quite easily felt.

Reflection.—A plane surface can also be roughly distinguished
from a curved one by viewing the reflected image from a bright
source of light, If a plane, it acts precisely as a plane mirror,
while if a spherical or eylindrical, the image is altered in size or
distorted.

Spherometer.—A true plane surface may also be tested by the
spherometer (q.v.).

The following are more accurate methods.,
[l

Whitworth Plane.— By contact with a Whitworth true plane
surface, which has been smeared with some red putty powder, and
observing whether any portion has or has not taken an impression.

Telescope. — By optical means, which is the most accurate
method of all, but requires more skill, as given in the next para-

graph.

Lens data by Telescopic Method.—A telescope is adjusted for
infinity. A beam of light rendered parallel by a collimator placed
at as small angle as possible, with the telescope, so that this angle
may be negligible, or better still, an auto-collimating telescope may
be used. The light from the collimator is then allowed to fall on
the surface to be tested, and is, after reflection, reeceived in the
telescope.

If now, on looking through the telescope, the image seen of the
source of light is sharp, the surface is a plane. If the surface
is convex, the evepiece of the telescope must be racked out, and
if concave, racked in, in order to get a sharp image. If the surface
is irregular, a sharp image cannot be obtained at that spot.
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The focal length F of the reflecting surface if curved or the
radins of curvature r, is obtained from the following formule

2 —d(f — a)
Jer=1F= — ;
d

Where f is the foeal length of the telescope objeet glass, a is the
distance between the objective and the refleeting surface, and d is
the distance which the oeular has to be racked in or out, in order
to obtain a clear image. If the ocular has to he racked out, as
oceurs when the surface is convex, d must be reckoned as a nega-
tive quantity.

The distance a must be less than f, and if, as is advisable, a be
made equal to f, the formule simplify to

The focal length of a lens can also be obtained from the same
formule and operation.

The telescope adjusted for oo, is turned so as to face the collima-
tor, from which parallel light emerges.  When the lens is interposed
the eyepicce must be racked in, to obtain a sharp image, if the
lens is convex, and out if the lens is concave, when d is considered
of negative value.
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ANGLE NOTATION.

Standard Notation.— The Standard angle notation for the loca-
tion of the various meridians of a lens (Fig. 149), refers to both
the right and left eyes.  The numeration commences on the right-
hand of the imaginary horizontal line drawn through the lens
when looked at from the front, the front of the lens being that
face of it which iz remote from the eve of the wearer.

This notation corresponds with the trigonometrical division of
the cirele into 360 degrees. The upper right quadrant contains
the angles between 09 and 902 and the upper left those hetween

M1

gt |
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902 and 120°. The mnotation meed not be ecarried beyond
1809 (the half-cirele), since a meridian corresponds to a diameter,
i.e., to two continuous radii, for instance, 459 is the same meridian
as 2259; 10° the same as 1909, ete. The vertieal meridian is 909
and the horizontal is 02 or 1809, but is preferably indicated as

1809,

Locating the Axis of a Cyl.—The position of the axis of a
eylindrical lens is, when vertical or lorizontal, at onece
recognised.  When it is oblique, 1ts angular position ecan
be estimated by that of the marked axis of the neuntralis-
ing cylindrical, or its position may be determined by held-
ing the lens against the neutralising lenses when the latter are
in a trial frame, the long diameter of the neutralised lens being
in the horizontal line of the trial frame. The axis of the neutralised
eylindrical corresponds to that of the trial lens, which, being
marked by a seratch, can be read off from the angle notation of
the trial frame.

There are several forms of inclinometers or axis-finders—that
of Dr. Maddox, for instance, is a most excellent one—designed
for the purpose of aiding in the location of the axis of
an unknown cylindrieal spectacle lens. A quick and fairly
accurate method of lﬂ{:ﬂliltg the axis is h}' means of the protractor
on the ““Orthos’ rule. .

To learn the exact meridian of the axis of an oblique eylindrical
the axis should be marked by a line with pigment or a grease
peneil,  If the lens be then placed on a protractor, with the (optical)
centre at the centre of the cirele, the exact angle which the axis
forms with the vertical or horizontal can be read off.

A grease pencil is one which contains a rod of colouring matter
which adheres to glass.

When the axis is oblique and the lens is not in a frame,
consideration must be given as to which of the two faces of the lens
is supposed to he directed outwards, since the location of the axis
varies aceordingly. The rule is that the less convex or the more
coneave surface of a lens is, as before stated, placed next to the eve.

Fig. 150,

Reversion of a Cyl.—If a cylindrical (Fig. 150 A), having
its axis at, say, 602 when the one face is to the front, is turned
over so that the other face becomes the front, the axis is then at
1209 (Fig. 150 B). If the one position were 59, the other would
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be 1752, Tt is only when the axis is vertical or horizontal that
no change occurs on turning the lens over.  When the one inelina-
tion is 452 or at 135%9, turning the lens over brings the axis to a.
position at right angles to the former one. The change in the
numerical position of the axis caused by turning an oblique
cylindrical, is caleulated as so many degrees above or below the
horizontal or to the right or to the left of the vertical, and assign-
ing its position accordingly. Or it is done by simply deducting
the numerical position of the axis from 12802, Thus, suppose the
axis is at 60°, this is 30° to the right of the vertieal ; on turning
the leng the axis is at 9029 4 30° = 1209, ji.e., 30° to the left of
the vertical, or more simply by 12009 — 60°9 = 1209, The corre-
sponding positions of the axiz as the one face or the other is in
front are shown in the following table : —

1st Position. 0° 10° 20° 30° 40° 50° GO° T0° 80° 90°
When reversed. 180° 170° 1607 150° 1407 130° 120° 110° 100° 90°

Other Angle Notations.— Some trial frames and prescription
forms are marked diffevently from that shown in Fig. 149, and it
frequently cccurs that the optician has to transfer from one nota-
tion to another. There are many different methods of nofating
the two eyes, but it is hardly necessary to attempt to detail them
all here.  The most commonly met with arve the bi-nasal and the
bhi-temporal methods, in which the zero is placed at, respectively,
the two nasal and the two temporal extremities of the horizontal
line of the eye.

Translating Axis Notations.— Suppose a preseription  be
written with the indicated cylindrical axis at 1202 according to
the notation of Fig. 151. To translate this to standard notation,
it must be considered how many degrees the required position is
from the horizontal or the vertical. In this case 1259, in Fig. 151,
is 359 from the vertical on the right and, therefore, corresponds
to 532 of Fiz. 149. If the location of the axis is 40° from the
horizontal on the right, it would be 402 in Fig. 149 and 1409 in
Fig. 151. The same mode of caleulating applies if the eylindrical
axis is indicated as so many degrees with a stroke to show the
direction of inclination.
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This last-mentioned method of axis indication is unfortunately
used by many medical men, thus making the reading of their pre-
seriptions difficult to the optician.

Many oculists also do not use the T sign, but write the com-
bination with a dividing line, thus:—

+ 4 Sph.

+ 2.50 Cyl. Axis 70

In all these methods it is, however, understood that the direction
indicated refers to the front of the lens or the surface away from
the wearer’s eve.
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CHAPTER VIII.

TRANSPOSING.

THE POWERS OF CYLINDRICAL AND TORIC LENSES.
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Fig. 152.

Note.—Throughout this chapter the ablweviated expressions of
Sph. and Cyl. are employed ; also the D to represent diopters is
omitted for the sake of brevity. The symbol T represents ‘‘com-
bined with.”’

Transposition of Sph. Lenses.—As shown in TFig. 152 a <+
spherical lens, say, + 6 D, can be made in the form A of a plane-
convex, in which all the power is on the one side; as B equi-convex,
in which the power is equally divided hetween the two surfaces; as
C, a bi-convex, in which the powers are unequally divided between
the two surfaces; or as D, a periscopic-convex, in which the convex
power on the one side is more than 6 D, but the total is reduced
to that quantity by the concave curvature of the other surafee, The
change from one form to another, without altering the refractive
power of a lens, is called a transposition.

Similarly, a concave spherical ean be made in the various forms
as indicated above and as shown in the diagram.

The power of the one surface inereases proportionately as that
of the other decreases, so that the number of possible forms for a
riven power is endless,

The ealeulations for the needed eurvature and the position of
the optical centre, which varies with the form of the lens, are given
clsewhere,

s
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Transposition of Cyl. Lenses.—Lenses which contain a
eylindrical element are suseeptible of only two or three changes of
form, and it is to such a change which does not alter the refractive
powers of the two principal meridians, that the term “‘transposi-
tion”” is generally applied.

When the two powers of a combined lens have the same sign, they
are said to be of fithe or similar nature, or congeneric; when they
are of opposite signs (the one + and the other —) they are said
to be of unfike or dissimilar nature, or contragenerie,

A.plano (or simple) exl. is one possessing no sph. element.

A sph.-cyl. is formed of a sph. and a exl. and may be either a

componid eyl., having + or — powers in both principal meridians,
or a mived cyl., having a + power in the one and — power in the
other.

The plano-cylindrical may, however, be regarded as a special
form of sph.-cyl., the curvature of whose sph. element is of in-
finitely great radius, and it will be so treated in this article.

A eross eyl is one formed of two similar or two dissimilar cvls.
crossed ab right angles.

Powers and Principal Meridians. —The one principal meridan
of a sph.-eyl. corresponds to the axis of the eyl., and its power is
that of the sph. alone, the other is at right angles to the axis of the
eyl. and its power is the algebraical sum of that of the sph. and that
of the eyl. Thus '

+ 3 Sph. = 4+ 2 Cyl. Ax. 709. The two powers are
+ 3 at T0° and + 5 at 160°.

3 8ph. = — 1Cyl. Ax. 110°. The two powers are
Jat 110° and + 2 at 209,

3 8ph. T — 3 Cyl. Ax. 59. The two powers are

J at B9 and 0 at 959,

d Sph. = — 5 Cyl. Ax. 1209, The two powers are
3 at 120° and — 2 at 300°.

+ A+ +

In the cross-cyl. the two principal powers ave those of the cyls.
themselves, each being in the meridian corresponding to the axis of
the other. Thus—

+ 2 Cyl. Ax. 409 = + 5 Cyl. Ax. 130°. The two powers are

+ 2 at 1302 and + 5 at 409,

+ 2 Cyl. Ax. 700 T — 4 Cyl. Ax. 1609, The two powers are
+ 2at 160° and — 4 at 709,
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Possible Combinations.—A\ c¢yl. combination may consist of twe

powers of similar nature but of different numbers,
gay, + 2and 4+ 5, o — 3 and = T,
or of two powers of dissimilar nature and of the same number,
as + 2and - 2,

or of different numbers like + 3 and — 4.

Such combinations can be put in three forms, viz.,, a cross-eyl.
and two forms of sph.-cyl..

If the one power is 0 it can be made only as a plano-cyl. and
in one form of sph.-cvl. -

If there are two equal powers of similar nature the possible
forms are only those of a cross-cyl. and of a sph.

+5C +35 +4C +55
i h 35 35 =10
A B o
Fig. 153.

The Various Forms of a Lens with Cyl. Element.— Where
two unequal powers in the two prinecipal meridians are required,
a8 + 4 at 180° and 4 5 at 909,

A. The + 3 needed at 130° can be obtained from + 3 Cyl. Ax.
909, and the + 5 at 90° from + 5 Cyl. Ax. 1809, the axis of each
Cyl. being at right angles to the direction in which the power is
required.

B. The 3 needed at 180° can be obtained from 4 3 Sph., which
also supplies 3 of the + 5 D necded at 902, the balance of the latter
is obtained from + 2 Cyl. Ax. 1809, which gives 4+ 2 at 90° and
0 at 1809,

C. The + 5 necded at 902 can be obtained from + 5 Sph., but
this not only supplies the + 3 needed for 180° but is 2 D too
strong. To reduce the latter to + 3 D a = 2 Cyl. Ax. 90° is
required, this giving — 2 at 130° and 0 at 909,

If the two parts of any of the forms A. B. C, bhe ]]I:H’:L“l] over
one another, the total combination is, in cach case, +5 at 902 and
+ 3 at 1800,

The rules for the three forms are:—

A. A eyl. of each of the two powers, the axis of each heing at
right angles to the meridian where the power is needed,

B. A sph. of the lower power and a cyl. of the dilference
between the two powers, the axis corresponding to the meridian of
least power. If the lower power is 0, the sph. is also 0.

C. A sph. of the higher power and a eyl. of the difference
between the two, the axis being in the meridian of greater power.
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Whether the two powers are of like or unlike nature the number
of the cyl. is obtained by the algebraical subtraction of the power
taken as the sph. from that of the other principal power.

Thus in the example the powers are + 3 and 4 5, so that if the
sph. is + 3, the cyl. is + 2; if the sph. is + 5 the cyl. is — 2.

If the two powers are + 2 and — 3, then, if the sph. is + 2, the
eyl. is — b; if the sph. is — 3, the eyl. is + 5.
If there Is required — 4 at 60° and — 7 at 1509, the three
possible forms are:
A. — 4 Cyl. Ax. 150° =~ — 7 Cyl. Ax. 60°.

B. — ¢4 qlp]'l.. —~ = 3 Cyl. Ax. 60°.
G, = 7 Bph. — + 3 Cyl. Ax. 15(°,
Should there be required — 1 at 459 and + 5 at 1332 they are
found in:
A. — 1 Cyl. Ax. 135° — +4 & Cyl. Ax. 45°, ¥
B. — 1 5ph. = 4+ 6 Cyl. Ax. 45°

C. + 5 Sph. =~ — 6 Cyl. Ax. 135°.
If the powers needed are + 3 at 1209 and 0 at 30° the possible
forms are:

o =

B. 4+ 3 Sph. =~ — 3 Cyl. Ax. 120

A. 0 5ph, — + 3 Cyl. Ax. 30°

Rules for Transposing.

(1) To transpose a sph.-eyl. or plano-cyl. into another
form of sph.-cyl. or plano-cyl.

The following ap ply to all cases, but when the original or the
transposed form is a plano-cyl. the one power being 0 tln. sph. may
also be 0.

() The new sph. is found by adding algebraically the power of

the sph. to that of the eyl

(b) The new cyl. has the same power as the original cyl, but its
sign is changed and its axis is reversed.

(2) To transpose a sph.-eyl. into a eross-cyl.

(a) The one cyl. of the new form has the same number and sign
as that of the original sph. and its axis is at right angles
to that of the original eyl.

(b) The other eyl. has its axis in the same meridian as that of
the or m‘nml cyl. and a sign and number which results from
the Aim:lu*u: al addition of the powers of the original sph.
and the original evl.

(3) To transpose a eross-cyl. info a sph.-eyl.

(a) The sph. of the new form has the number and sign of the
first original eyl.

(b) The new eyl. has its axis corresponding to that of the second
original exl. and a sign and number which results from the
algebraical subtraction of the first from that of the second
original cvl.

Since either original evl. may be taken as the first, there are two

forms of sph.-cyls. into which a cross-cyl. can be transposed,
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Equal Cyls. of like power are equivalent to a spherical of the
same sign and power.

(1) T'o transpose a sph, into a eross-cyl,

(n) Give the number and sign of the original sph. te hoth eyls.
whose axes may be in any pair of meridians at right
angles to each other.

Eramples.—The above rules ean be better appreciated by study-
ing the example at the same time. In all the following examples,
the first combination is the original and these following are the
forms into which it can be transposed.

These examples illustrate all possible combinations.

(1) -+ 4 Bph. = 4+ 2 Cyl. Ax. 20° =
6 Sph. — — 2 Cyl. Ax. ll{]IJ

+ 4 Cyl. Ax. 110° —~ -+ 6 Cyl. Ax. 209
(2)y — 2.50 Sph. — — 1.50 Cyl. Ax. l"""

— 4.00 Sph. — + 1.50 Cyl. Ax. 85°

— 2.50 L}I Ax. 85° — — 4.00 Cyl. Ax. 175°
(3) <4 3.50 Sph. — — 2.50 Cyl. Ax. 45° =

+ 1.00 Sph. = + 2.50 Cyl. Ax. 135°

+ 1.00 U}‘l. et i —i— 3.50 Cyl. Ax. 135°
(4) + 3 8ph. = — 3. Cyl. Ax. 105° =

+ 3 Cyl. Ax. 15°
+ 2.50 Sph. =
— 2.00 Sph. &
+ 2.50 Cyl. Ax. 25°
(6) — 1.256 Sph. T Ax, 160° =
Eph. T :,-‘ . Ax. Ti”
oyl Ax. T0° & 4 0.50 Cyl. Ax. 160°
Cyl. Ax. 95° =
Sph. &= — 2.%5 Cyl. Ax. &°
vl. Ax. 80° = 4+ 3 Cyl. Ax, 1T0° =
Sph. = 4+ 1 Cyl. Ax. 170°
Sph. © — 1 Cyl. Ax. 80°
.00 Gyl ."Lx 155° — — 2.50 Cyl. Ax. 65° =
20 Sph. = — 3 f_le Ax. 155°
50 Bph. = —l— 3 Cyl. Ax. 65°
20 Cyl. Ax. 78° = — 2.256 Cyl. Ax. 165° =
25 Sph. = = 4.50 Cyl. Ax. 155”
25 Sph Z + 4.50 Cyl. Ax. 75°
a0 Cyl. i'kx 120° = — 0.756 Cyl. Ax. 80° =
50 Sph. — — 4.25 Cyl. Ax. 30°
756 Sph. = + 4.25 Cyl. Ax. 12(P
1'[]I 00 Cy ], Ax, 180° = + 2 Cyl. Ax. 90° =
2 Sph. & — 12 Cyl. Ax. IBD"’“
10 Sph. = + 12 Cyl. Ax. 90°
(13) 3.50 Cyl. Ax. 90 = + 3.50 Cyl. Ax. 180°
4.00 Sph.

(14) — 4 Sph, =

— 4 Cyl. © — 4 Cyl. with axes at right angles.

50 Cyl. Ax. 115°
50 Cyl. Ax, 25°
= 200 Cyl. Ax. 115°

(5)
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Comparison of Original and Transposed Forms.—The two
principal powers and meridians of the original form of a combina-
tion can be extracted and compared with those of the transposed
form, and they must be alike if the transposition is correct.

Thus, suppose — 3 Sph. = + 4 Cyl. Ax. 90~

The two prineipal powers are — 3 at 909 and + 1 at 1809 as
in Fig. 154 C.
The power of the — 3 Sph. is in both principal meridians, while

that of the + 4 Cyl. Ax. 902 is only at 1809 its axis being at
909 it contributes no refractive power to that meridian.

= 34

A B c
Iig. 154.

The two components separated are represented by A and B of Fig.
154. When combined they are represented by C.

+1 -4 0 ~3

+1 +1
0 [ 0
T E
Fig. 155.

The two forms into which — 3 Sph. Z + 4 Cyl. Ax. 90° can be
transposed are
(a) -+ 1 Bph. & — 4 Cyl. Ax. 180°
(b) + 1 Cyl. Ax. 90° = — 3 Cyl. Ax. 180°

whose powers are shown diagrammatically in Fig. 155 as D and E
respectively.

Proof by Neutralisation. — Since a transposition simply
assigns the needed powers in a different way, as regards the two
surfaces of a lens, and does not change the refractive power of the
ecombination, that combination which will neutralise the original
form will also neutralise the transposed forms. Thus—

A. + 1 8ph. = — 4 Cyl. Ax. 18(° transposed into
B. — 3 8ph. = + 4 Cyl. Ax. 90°.

A 1s neutralised by — 1 Sph. = + 4 Cyl. Ax. 1809, and these

also neutralise B as can be seen h‘;nﬁlding them together thus—
— 3 5ph. T + 4 Cyl. Ax, 90° added to
= 1 5ph. T + 4 Cyl. Ax. 180°
the 2 Sphs. = — ¢ .q|r]|_, and the 2 n].'ll-:. = + 4 Sph.,
and — 4 Sph. and + 4 Sph., of course, neutralise cach other.

f'l-
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It is never required in practice to give crossed cylinders for any
combination, since the effect can be equally well obtained by com-
bining a "-ph and a € 'n.I , and at much less cost. The hm,t form
to employ is usually o + Sph. = — Cyl, ora — Sph. = + Cyl,
since from “these we u]:la.iu a certain  periscopic  effect  without
additional expense.

TORIC OR TOROIDAL LENSES.

¢
o

B B

D
IFig. 156,

A toric lens is one having two principal powers worked on the
same surface with their axes at right angles to each other, as shown
in Fig. 156. The curvature of the lens along A B is, say, + 3 D,
while along C D it is, say, + b D. It is, therefore, equal to
+ 3 Sph. = + 2 Cyl. and has the same optical effects. The name
is derived from the tore or arched moulding used in the econstruction
of crypts and pillars. It can be illustrated by a bent tube or rod.
Any portion of the area of an egg or howl of a spoon resembles a
toric curvature.

Sinee the possible combinations in the forms of various torie
lenses may be infinitely great, it is usual to employ tools of a
given base curve, and often an assortment of plano-toric lenses is
kept, on the plane side of which any spherical curve can be ground.
These tools or the plano-toric lenses are usnally made on a base
eurve of either 3 D or 6 D or sometimes 9 D, i.e., a lens equal to a
spherical of 3 D or 6 D combined with a eylindrical power. Thus,
if + 1D Sph. Z + 1.5 Cyl. were required a plano-torie lmving
4+ 6 D Cyl. power in one principal meridian and + 7.5 D Cyl. in
the other would be selected, and a eoncave surface corresponding to
5 D would be ground on a plane surface, the 1usuit1ng lens l:u-emg
equivalent to a sphero- (.’-"nlllll.:ll‘lbﬂl of + 1 D Sph. = + 1.5 Cyl.
In the same way a coneave toric tool or lens may be employed.

Advantages of the Toric Lens.—The utility of the torie form
is that by its means the refracting power of a lens can more nearly
be divided between the two surfaces. Thus if + 10 D Sph. T +
I D Cyl. be required, instead of there being + 10 Sph. on the one
surface and + 1 Cyl. on the other it can be made with + 5 D Sph.
on the one surface and + 5 Cyl. = + 6 Cyl. on the other. Or it
can be made with any other convex spherical power, the virtual
cylindricals of the torie surface being accordingly stronger or
weaker, but always having 1 D djfi'-:-reuct between them,
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Thus, a strong lens as needed in aphakia or high myopia can be
made less thick and more nearly resembling a Dex. or Dece.

Another and perhaps greater advantage of the toric lens is that
with it a Sph.-Cyl. can be made periscopic, if so needed, to any
extent, as is shown in the following example.

Required + .50 Sph. T + .25 Cyl. Ax. 90°, As a toric lens,
periscopie 3 D, the combination would be
— 3 Sph.

+ 8.50 Cyl. Ax. 180° = + 8.75 Cyl. Ax. 90°

If the toriec were of a base curve of 6 D, the sph. would be — 5.50
and the cyls. + 6 D and + 6.25 D.

To convert a Sph.-Cyl. combination into a torie form it is merely
necessary to select the spherical and then change the equivalent
eylindricals of the original form into others as much stronger or
weaker as may be necessary to neutralise or supplement the spherieal
selected.,

The term “‘toric’’ is often misapplied to deep meniscus spherical
lenses.

Advantages of Menisci.—0f course the advantages derived
from the use of |w1'im‘|:-]:ti1: .~t|1h. lenses {l]II:II"I.' also to toric lenses,
which are merely deep menisei possessing a cyl. element.

A periscopic Cx. or Ce. Sph. is preferable to a Dex, or Dee. A
+ sph. T — eyl. is better than a + sph. T + cyl. A concave
surface near to the eve prevents side reflections of light, allows
of the lens and frame being placed nearer to the eve, and inereases
the effect of a Cx., while it decreases that of a Ce.  These last result
because the optical centre lies outside the lens of a meniseus form
on the Cx. side of the Cx. and on the Ce. side of the Ce., and the
distance is greater as the form of the lens is more periscopie.

But since the distance of the optical centre depends also on the
thickness of the lens, any resultant difference of effect resulting
from the toric or meniscus form of the lens is negligible if the
lens is thin, as is usually the case with spectacle lenses.

THE REFRACTIVE POWERS OF A SINGLE CYLINDRICAL.
Note :—

Tables of natural sines and cosines and of sin® and cos® are to
be found in the appendix. The abbreviations Hor. Ver. are used
in this chapter to represent horizontal and vertical. H. and V.
represent respectively the Horizontal and Vertical refractive powers
and D is the dioptral power of tne eylindrical.

The two principal meridians of a single evlindrieal are

(a) The meridian which corresponds to the axis, in which the
vefractive power is zero; and

(b) The meridian at right angles to the axis in which the re-
fractive power is greatest; this may be termed the mazimum
meridian,

P2
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The power of the latter indicates the dioptral number of the lens
and may be represented by D.  Every other meridian has a
different refractive power which varies between 0 and D

The power of any intermediate meridian of a l'}'li]ll]i‘i{:ai. :l.[rplius,
however, only to a line of curvature. If any surface area of the
lens be disclosed, the maximum curvature of the lens, which is
oblique to that meridian, is the effective eurvature and governs the
refractive power and foeal length.

Since all the light refracted by a eyl. passes through a line at the
focal distance of the maximuwm meridian, the focus of light passing
through any meridian is always the same as that of the maximum
meridian, for we cannot reduce the effective width of the opening
to that of a geometrical line.

Let D be the maximum refractive power of a eylindrical, D, the
refractive power in a given meridian, and I}, the power of the
meridian at right angles to that of D,. Let a be the angle between
the axis and the given meridian. Then the power of a eylindrieal
in any given meridian ig found by the equation

D, = Digin® a, and D, = D coa® a.

Thus wanted the refractive power at 202 of a + 3 D Cyl. Ax.
1809, then
.34202 11694 = + 0.35.

- Since the refractive power along the axis is 0 and at right angles
it is D, the total power of this pair of opposite meridians is
D+ 0 =D. :

And the sum of the powers of any other pair of opposite meri-

dians of a single ceylindrical is always equal to D, for
gin®* a 4+ cos® a = 1.

Then Dsgin*a + Deos*a =D, + D, = D,

Thus with a 4 D Cyl. Ax. 909 the sum of the powers at 90° and
1809 ig 4 D; similarly those at 309 and 1202 or those at 602 and
150° = 4 D.

V. and H. of an oblique eylindrical are found by the same
formule.

e 3 %

5

Fig. 157.

Let X Y and X Z (Fig. 157) represent the forces exerted, respec-
tively, in the vertical and horizontal meridians by, say, 3.5 D Cyl.

[11

11
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Ax. 609, Then XY = sin 602 and X Z = cos 609 Let h be the
angle between the axis and the horizontal, then
H = Dsin*h and V = D cos? h.
In this case H = 3.5 x .75 = 2.625 D
Nio=panx B = 85 D
and 2.625 + .8750 = 3.5 D.

If the power of any meridian be known, that of its opposite
meridian can be obtained by subtraction, for

sINCe D + D, = D, then D — D, = D,,
go that in the above example, having found V = 875, we know
H = 3.5 — .87 = 2.62H or vice versa.

The following table gives the proportionate powers of unit eyl. in
every meridian at intervals of 5°.  The calculations have been
carried only to the second decimal place.

Degrees.  Proportionate Degrees.  Proportionate

pﬂ"ﬁ'cl‘. PU“’GI’.

0 .00 90 1.00
5 01 93 .99
10 03 100 97
15 i R T ¢ 03
20 5 O R 1 88
25 18 115 82
30 25 120 75
35 3 125 6T
10 42 130 58
45 50 135 50
50 ) 140 .42
55 & | 148 33
60 s | 150 25
65 =2 1565 A8
70 T A B 12
75 .93 165 07
80 07 170 03
85 .99 175 01
90 1.00 180 .00

To find the power, in any meridian, of a given evl. the decimal
corresponding to the angle hetween the axis and the meridian in
question must he multiplied by the dioptral number of the lens,

Thus the power of a + 4.50 D Cyl. 252 from the axis is 4.5 x
18 = .81 D.

The hor. power of + 3.50 D Cyl. Ax. 609 = 3.5 x.75 = 2.625 D,
and since the ver. meridian is 30° from the axis, V = 3.5 x .25
= 875 D.

[115)
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TWO OBLIQUELY CROSSED EQUAL CYLINDRICALS
OF LIKE NATURE.

4

Figz. 158.

Note : —
A table of sin® and cos® is to be found in the appendix.

If two cyls. (Fig. 158) of the same number and sign, say -+ 4 D,
are placed (A) with their axes corresponding in the vﬂltm-ll
meridian, their combined Ver power = 0 and Hor = + 8 D. If
the one cyl. be rotated to the right and the other equally to the
left (13) thev are equal to a combination of some two other prinecipal
powers, that of the Ver meridian increasing and that of the Hor
decreasing with every inerease of rotation. In any position the
sum of the two |111uupa,l powers D, and D, is alwa:,s Lqual to the
sum of the individual maximum ]m'l.'. ers D and D/, that is,

D + D, =D + DL

When the two axes are at right angles (C) the two principal
powers are each + 4 D, i.e., the combination is equivalent to a
+ 4 D Sph. If the rotation be continued until the two axes are
horizontal, V = + 8 and H =

With any obliquity of the axes the two cyls. are always equivalent
to some other cross-cyl. whose axes are at right angles, and are
therefore also equivalent to a sph.-eyl.

Let 'V be the Ver and H the Hor eficels of two similar eylindricals
whose axes are equally distant from the Ver., then from [113]

V=2Dsin*aand H = 2 D cos? a.

Thus if two 4 D evlindricals he votated 309 from the Ver in

opposite directions,
¥ =23x4x .20=2D, andH % 2 »x & x 75 =861,
and 6 + 2 =80D.

Let b be the angle hetween the axes of two combined exls., D and
DY their maximum powers, D, the rvesultant power of the one
principal meridian, and D, that of the other principal meridian.

When D and IV are equal
D, = 2Dsin?a and D, = 2 D cos® a,

but since 2a = b,
therefore D, = 2 D sin®* b/2 and D, = 2 D cos® b/2

[

1

[
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Thus, suppose the resultant combination of 4 Cyl. axis 40° T

4 Cyl. Ax. 809 be required, b = 409, and therefore b/2 = 209,
then D, = 8 x .3420%® = 96 and D, = 8 x .0397% = T7.04,
or 0.96 Sph. Z 6.08 Cyl. Ax. 609,

The resultant axis is midway between those of the original Cyls.

Now it can be shown that
28in®*b/2 =1 —coeband 2¢08*°h/2 =1 + cos b;
therefore the former formule may be written more simply,
D,=D—-Decosband D, = D + D cos b.

As an example, suppose 4 Cyl. Ax. 102 T 4 Cyl. Ax. 60°
b = H0® and cos H50° = G428 ; then
D, = 4 — (4 x .6428) = 4 — 2.5712 = 1.4288
D, = 4 + (4 x .G428) = 4 + 2.5712 = 6.5712
or 1.4288 Sph. = 5.1424 Cyl. Ax. 359,

or say 1.5 Sph. b Cyl. Ax. 309,

Since D, + D, = D + D/, it is only necessary to calculate for,
say, D,, then D, is obtained by subtraction. If D + D' = 8 and
D, = 1.4288, then D, = 8 — 1.4288 = (.57T12.

Not only the total of the principal meridians of two similar cyls.
= D + D/ (and this does not vary as they are rotated), but the
total power of any two meridians at right angles to each other
similarly = D + D/, 1If each cyl. is + 4 D, for any inclination
of the axes, the total power of any pair of meridians at right angles
to each other = + 8 D. Rotation of the axes of one or both
eylindricals merely locates the refraction in varying quantities as
regards each of any pair of opposite meridians.

Table of the powers resulting from the rotation of two similar
unit eyls: —

= et ———

Hotation  Total
ofeach  angle Ver. Hor

eylirom between effect. effect. Ep]mmvﬂyliﬂdrinai equivalent.
the ver. theaxes. EX) .
0 0= 0 200 00 D. Sph. = 200 D. Cyl. Ax. 90°
5 10 2 198 02 :: P (| B o » 90
10 20 06 19| 06, , 09, 188 , 4 . W

1

15 30 A AR A o BT e one O
20 40 2+ RN 1 18 (IR0 T R - w90
25 50 o S I P I | - LN R A
50 60 50 150 .50 S 1 1 e ., IR 1
35 70 66 134| a8 A - N 1|
40 8 8L 116 82 s A e 23 w90
45 50 100 10001100 ., . . 0D

50 100 1.16 T T SRR | e o ||
55 110 1.54 ANl B e T R . 180
Gi) 120 1.50 LA S e e L B G s TBED
65 130 184 46 | .86 3 B 1T = . 180
7 140 1.76 20 9y T S R
i 150) 1.86 dd | .14 ; IR e i w180
80 160 1.94 7 o SRS S T -
85 170 1.98 02| e, PR 1| TSR |
a0 180 200 il 0 200 .. i » 180

[119]
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In order to learn the Ver and Hor powers of the two equal eyls,
whose axes have been located, multiply the number of one of them
by the figures in the third and fourth columns of the table, Thus,
if each cylindrical is 4 D and they are rotated each 209, then

V=4x.24=9DandH =4 x 1.76 = 7.04 D.
The resultant sph.-eyl. would be .96 Sph. T 6.08 Ax. Ver.

That is, a sph. of the lower power and a eyl. of the differential
power.

From the table the powers of the two principal meridians can be
calculated, or the resultant sph.-eyl. of any two equal cyls. whose
axes are inclined at any angle, the axis of the sph.-cyl. being
midway between those of the two original cyls. Thus, suppose

4 Cyl. Ax. 109 T 4 Cyl. Ax. 709,
the angle of separation is G0%, and from the table we get
A0 sSph. 7 1.00 Cyl., which, multiplied by 4, gives
2.00 Sph. T 4 Cyl. Ax. 409,
40° being midway between 10 and 7009,

The following table gives the rotation necessary to produce

certain Ver. and Hor. effects from two combined eyls. Both eyls.

are 4 D and their primary position of axes is ver.; the rotation
of the one is to the right and the other to the left.

Table of the powers resulting from the rotation from the vertical
of two similar 4 D Cyls. : —

Total :J..n;gff:
Rotation of between the

each Cyl. two axes. Ver, effect. Hor. effeet.
o o | D D
(.00 0.00 0.00 8.00
7.12 14.24 0.125 7.875
10.10 20.20 0.25 7.76
14.30 29.00 0.50 7.50
17.50 35.40 0.75 7.25
20.41 41.22 1.00 7.00
23.16 16.32 1.25 6.75
25.40 51.20 1.50 6.50
27.04 32,46 1.7h 6.20
40,00 G000 2.00 6.00
32.00 64.00 2.25 5.75
34.00 6. 00 2.50 5.50
35.55 71.50 2.7 5.26
3745 T75.430 $.00 5.00
49.35 T79.10 3.25 4.75
41.25 32.50 3.50 4.50
43,13 26,26 3.75 4.25
45.00 90.00 4.00 4.00
4.25 3.756

46.47 36,26
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Total angle
Rotation of between the

each Cyl. two axes. Ver. effect. Hor. effect.
43,39 22,50 4 .50 3.50
50.25 79.10 4.7 3.25
52.15 75.30 5.00 3.00
o4, 5l 71.50 0,25 2.7D
56,00 GR.00 5.50 2.50
H&.00 G4.00 5.70 2.25
60,00 G0.00 .00 2.00
6G2.70 0546 6G.25 1.75
G4.20 51.20 (i, 50 1.50
66.44 16.32 G.TD 1.25
G9.19 41.22 7.00 1.00
72.10 35.40 T.95 0.75
75.30 29.00 7.50 0.50
79.50 20.20 T.75 0.25
90,00 0.00 2,00 0.00

For other cyls. weaker or stronger than 4 D the Ver. and Hor.
effects are proportional for the given rotations.

TWO OBLIQUELY CROSSED EQUAL CYLINDRICALS
OF UNLIKE NATURE.

4D f 34D0C m{w
A K /B c
—jetdeo | ___// <l b —ame
d
|

If two eyls. of opposite refraction and equal power, say 4 D (Fig.
159), are placed (A) with their axes corresponding they neutralise
each other, since they act like a plate of glass. With their axes
at right an-flu. (C) tliﬂ constitute a eross evl. and D + DY = 0,
With their axes at any inclination to each other (B) they fulm a
cross eyl. of certain powers D, and D,, which vary with the angle
between the two axes. With a \Il"ltt 4]1“1(1 of inclination their
dioptric powers are small, and they reach their maximum when
the axes are at right angles to each other.

Now Dt b l}_; =D+ D bhutDh + DV 0, =0 also D, + l_'l'2 = [},

Also D, D, =DD sin?h

but since numevically D = D/ and D, = D,
we have D, D, = DPgin®*h = Di or Di.
therefore D, orD, = Deinb

[120]
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Erample: + 4 Cyl. Ax. 60° T — 4 Cyl. Ax. 1202, Here b =

602 ; therefore

D, or D, = 4 x .B660 = 3.464,
that is, we obtain + 3.464 Cyl. T — 3.464 Cyl. with the axes at
right angles.

Two cyls. of opposite refraction and equal power inclined at an
angle have their two prineipal powers I}, and D, equal, the one
being + and the other —, also the sum of the powers of any pair
of opposite meridians = 0.

The position of ¢, the axis of the resultant + eyl., is midway
between g, the axis of the original + eyl., and m,, the maximum
meridian of the original — eyl. The axis of the resultant — cyl.

¢, similarly is midway between the axis g, of the original — eyl
and m the maximum meridian of the original + eyl. That is,
g + m, g+ m,
0, = —— and Gy = e
2 2

In the foregoing example the axis and the maximum meridian
of the original + cyl. are respectively 60° and 1500, Those of
the original — eyl. are respectively 1202 and 30°. Then

60 + 30 190 + 150
e ————— e = 135°
2 2

Therefore + 4 Cyl. Ax. 602 = — 4 Cyl. Ax. 1200 =
+ 3.464 Cyl. Ax. 439 T — 3.464 Cyl. Ax. 1350,

Table of the powers vesulting from the rotation of two equal unit
evls. of unlike nature.
Rotation Total angle

of each  between the
Cyl.[vom 45° two axes. Resultant Cyls.

— e ——

0 0 4+ .0000 Cyl. Ax. 90— .0000 Cyl. Ax. 150
5 10 4 AT36 - o =086 G N
10 20 gL oAdan o s aqnfy s
15 3[} T E"nuu 13 E LT [ 3000 'E LR | ]
Eﬂ 40 T 6428 11 e T ﬁigﬂ 1 ar
29 5{} "I' TGDD 11 L T *Tﬁﬁﬂ ' L )
aﬂ ﬁ‘ﬂ "| -Ebbﬂ 21 2l e 865{} 1 L ]
33 70 4 9397 o, G a— 00T G
4“ 8‘0 “i‘ 93'18 11 Jall i 9848 3 mon
45 90 +1.0000 ,, ,, , =L100000 ., . i
50 100 L TO8E8 0 T asie s
29 110 = B3IT s o= 00T G
i) 120 L 8860 5 s —nuBOED
6 130 £ TBB0 L. s e = aTOB0N T
70 140 L Bd9B L. s L= iRdER SR
75 150 LoBO00 o g ae— 0000
80 160 o BON o T o adal) S
85 170 b ATSE e AR
E":' 18” + -U{]ﬂt} L ] LB ] (5 Rt 'ﬂmﬂ e 13 ¥
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For other eyls. the above resultant cyls. must be multiplied or
divided accordingly. It should be observed that after a total
rotation of 902 the resultant powers diminish in the same ratio
as they previously increased. Thus either + 1 Cyl. Ax. 609 T
— 1 Cyl. Ax. 309, or + 1 Cyl. Ax. 1209 — — 1 Cyl. Ax. 150°
are equivalent to + .5 Cyl. Ax. 90° T - .5 Cyl. Ax. 1800,

Table of powers resulting from rotating + 4 Cyl. from 459
towards the Ver. and — 4 Cyl. towards the Hor. : —

Rotation Total angle
of each between the + Cyl. — Cyl.
Cylindrical two axes. Aux, 90P, Ax, 1807,
6" o 1
0 0 0 0
b3 1.46 0.125 0.125
1.45 3.30 0.25 0.25
3.35 7.10 0.50 0.50
6.25 10.50 0.75 0.75
7.15 14.30 1.00 1.00
9.6 18.12 1.25 1.25
11. 23. 1.50 1.50
12.55 25.50 1.76 1.7H
15. 30, 2.00 2.00
| 34.12 2.25 2.25
19.20 38.40 2.50 2.50
21.43 42.26 2.75 2.7
24.18 48.306 3.00 3.00
27.10 54.20 3.25 3.25
30,30 G1. 3,00 3.50
34.50 69.40 3.75 3.70
45. 90. 4.00 4.00

For other cyls. stronger or weaker than 4 D the + and — effects
for the given rotation are proportional.

TWO OBLIQUELY CROSSED UNLIKE CYLINDRICALS.

To calculate D, and D, the resultant powers of any two cyls. D
and D’ crossed at any angle b, we know that
D, + D, =D + D! and that D, D, = D D! sin? b,
From these data the unknown quantities can be calculated—since
their sum and their multiple are known. Or they can be worked
out by the following formulee, which represent the extraction of two
such quantities :—

_ — e — —

D 4 D —»\/m + D) — 4 (D IV sinth)

RN T Y

£)

i

B e P \/'L” L) — 4 (D D' sin® b)
2
or more simply B = DixMF — D,

D,

[122)

1123
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Thus, as an example, + 3 Cyl. Ax. 70° = + 2 Cyl. Ax. 200,

Here b = 509 and sin® 502 = 5868, Then

+3+2—\/J+2}*—43x2x.5858}

RSl it
9
—afas — 1408
- |
> T T +\/{3+2}3—4(dx2x.5858}
' 1 =X H -
5 95 — 14.08
S +/ = 40
9
Or i SN Sl R

The two principal powers are + .35 and + 4.15, so that the

combination is
+ .85 D Cyl. = + 4.15 D Cyl. or .85 D Sph. Z 3.30 Cyl.
It will be seen that
D D'sin* b = D, D,, for
$i% 3 % (DEGE = 85 ¥ 4lh = 3.5

The sum of the total maximum powers of the two original eyls.,

in this example 5 D, is not changed by altering the positions of the

two axes, for the sum of the two principal meridians of the resul-
tant evlindricals is similarly 5 D.

Working Formule.—From the foregoing formule we can then
deduce the following working formule for finding direcily S the
resultant sph., C the eyl., and ¢ the angular position of the axis
of the resultant eyl. of any two t}l:liqllul:,,' crossed eyls. 1 —

The cyl. being the difference between the two resultant powers is
D, - D, = @, which is obtained from the following formula:—

C = \/{I) + D) — 4 (D D' sin® b)
The sph. being the lower of the two resultant powers, .is then

D4+ D -C
H'_:

2
The position of the axis is
IY sin 2 b
tan 2 e

D' + (D cos 2 h)
e being the angle between the axis of the resultant cyl. and that of
DY, or a similar position with reference to D is found by substituting
in the above formula D' for D and D for D/,
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Thus, taking the former example of + 3 Cyl. Ax. 70° T + 2 Cyl.
Ax. 20°0. Here b = 509, 50 2 b = 100°. Now sin 100° = 9848
and cos 100° = — 1736, therefore

3 x .9648 E,EJQH
tan 2 c = = - — H = tan ﬁ‘:igj:r
3 x (- .1736)]  1.4792

half of which is 312 42'; this measured from 202 locates the &]lglu
of the resultant evl. at alﬂ 42! or

2 x .9848 1.9696
fan2¢ = - = .T421 = tan 36° 80'.
3 + [2 x (= .1736)] 2.6528

half of which is 189 18’; this measured from 70° gives similarly
510 49/
B1O 427,

It must be remembered that when b is greater than 45° and less
than 1359 cos 2b is negative ; also if b is greater than 90° (and does
not exceed 130°) sin 2b is negative. In such cases the negative
sign must be prefixed.

Approximate Calculations for the Axis.—The formula for
finding the axis of the resnltant cyl. being complicated, it may be
approximately located hy Ell‘\'-'lilll:l” the angle between the two
original C‘ul‘\, if l||1,.1 lu, of like nature, ||f:|1|{)1’*l‘,m|m1;{,l:, to their
two powers. The error is not great where the two eyls. do not vary
much in strength.  In this case the interval hetween the axes of the

two original l.‘-}‘].h'-. is T0 — 20 = 50° and 50/56 = 10,
and 10 x 3 = 302 from the weaker original cyl.,
and 10 x 2 = 20° from the stronger.

Thus the axis of the resultant exvl. would be located at H09 instead
of 519 42/,

Unlike Cyls.—When the ecyls. are of unlike nature care must
be taken with the signs, and in locating the axis of the resultant
eyls. The angular distance of the axis of the resultant + eyl. must
be reckoned away from the axis of the original + cyl. and ‘towards
the meridian of greatest power of the — eyl. "mul]ul}, if the
resultant eyl. is — the axis lies between the axis of the original
— ¢yl. and the meridian of greatest power of the + eyl

As with cyls. of like nature, the total powers of obliquely erossed
unlike cyls. are not altered ; the sum of the two resultant principal
powers is the sum of the maximum refractive powers of the two
original cyls.

Thus, as an example, + 4 Cyl. Ax. 200 = — 2.75 Cyl. Ax. 659,
b = 452 and sin® 45° = 5.

Now D, +D,=D+ IV =4- 275 = + 1.25,

4

and D, [},_, = .76) x b = — B.5,

2]

x (—
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Using the formule before given we have

44975 _\/{+ 41— 975) —4(4 x — 2.75 x.5)

D = e . I : . — 150
2
42T A (L4 2T — 4% 2755
P 15 +4/ (4 AT Sl T

2

D, + D, = — 180 + 3.05 = + 1.25
D,D, = — 1.80 x 3.05 = — 5.5.

Using the other (working) formule, we should obtain:—

A +4- 08 - L(dx 20 <5 =il

+ 4 — 975 — 485

3. T (L 1

b

b = 45%and 2 b = 909; now sin 90° = 1 and cos 90° = 0; then

- ATH w1 — 275
fan2¢ = — — = = =.6875 = tan 34% 8{
4 + (275 x 0) 4

half of which iz 179 15/, so that the axis of the resultant 4+ cyl. lies
at 200 — 179 15/ = 29 45/,

The combination is — 1.80 8ph. = + 4.80 Cyl. Ax. 2° 45/,
or it may bhe + 3.06 Sph. T - 4.85 Cyl. Ax. 920 4V,
for we could caleulate

= — 1.4545 = tan 55° 30/,

4 % 1 4
tan2¢c = -

- 275 4+ (4 x ) — 995
half of which is 279 45/, so that the axis of the resultant — eyl. is
at 60C + 270 45/ = 92 4P/,
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CHAPTER IX.
PRISMS AND PRISMATIC EFFECT OF LENSES.
CENTERING OF LENSES.

Optical Centre.— The optical centre of a spherical lens lies,
as mentioned previeusly, on the prineipal axis at a distance from
each surface proportional fo its radius of curvature. It is situated
therefore on the line passing through the thickest part of a convex
and the thinnest part of a concave lens, and is that point through
which rays of light pass without refraction.

Geometrical Centre.—The geometrical centre is that point
of the lens which is (*:11!1—1“31&111.. from the opposite edges. It
can be located by inspection, or, more exactly, by drawing a hori-
zontal line across the lens, connecting the two extremities of the long
diameter, and a vertical line connecting the highest and lowest
points ; where the two lines cut each other is the geometrieal centre,

Cen'red and Decentred Lenses.—A lens is said to be centred
when its optical and geometrical centres coineide, and is said to be
decentered when they do not.  When an object is viewed through
the geometrical centre of a decentered lens the effeet is 1r1mhuh
the same as if the lens were combined with a prism.  Similarly, if
& centered lens is looked through at a point which is not in line
with the optical and geometrical centre the effect is the same as if
a sphero-prism were substituted.

BT ea R R
0 A

To learn whether a spherical lens is truly centred it must be held
parallel te the analvsing card and viewed through its geometrical
centre. If centred (Iig. 160) the junetion of the two lines of the
card is seen in line with the exact centre of the lens, they being
continuons as seen through the lens and beyond the cqlirc If
decentered the junction of the two lines is scen not to coincide with
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the exact centre of the lens and the vertical line in (B) or the
horizontal line in (C) is broken at the edges of the lens.  The lines
are seen as in (A) through a centred lens.

\ >

=
i
I3

,.__

Fig. 161,

Locating the 0. C.—To loeate the optical centre the lens must
be moved about until the eross lines seen through it are continuous
with the parts of the lines seen beyond the edges, ag in Fig. 161,
where G is the geometrical centre of the lens.  The optical centre O
coincides with that point of the lens opposite to the intersection
of the eross lines, and can be, if necessary, marked by a dot.

IPor greater accuracy the test should be made with fine cross
lines drawn on a small card placed on the table, the lens being
held steadily a short distance above the card and in a plane parallel
to it. This method is preferable for strong lenses, but the analys-
ing card at a reasonable distance is better for a very weak lens.

Positions of No Prism Effect.— In a spherical there is
only one point in the refracting plane of the lens, the optieal
centre, where there is no prismatic effect. This point lies on a
principal axis. In a plano-cylindrical there is a line without
prismatic effect along the axis.

In Fig. 162 let the lens be a + eylindrical whose axis A X is af
450, B C is a vertical and D E a horizontal line. On looking
through the lens the points ' G H on the vertical line B C are seen
deflected by the prismatic action of the cylindrical to I’ G' H,
upwards and to the left, the virtual prisms being base down and
to the right. The points K L M on the horizontal line D E are
seen deflected to K/ L! M/, also upwards and to the left, the virtual
prisms being base down and to the right. On the other side of the
axis the virtual prisms are base up and to the left, and the deflec-
tions are downwards and to the right. Thus a convex evlindrical
axis at, say, 452 causes a vertical line B C to appear as B! €' and
a horizontal line D E to appear as the dotted line D' B! in Fig. 162,



PRISUS AND PRISMATIC EFFECT OF LENSES. 211

If another equal + cylindrical were placed axis at right angles
to the first, the horizontal deviation of the vertical line, and the
vertical deviation of the horizontal are neutralised, but the vertical
effect in the vertical meridian and the horizontal efiect in the
horizontal are doubled, the combination being equivalent to a
spherical lens in which the prismatic effecls are equal in every
meridian,

With a concave cylindrical the edges of the virtual prisms are
towards the axis, and if a —Cyl. Ax. 4529 be looked through
(Fig. 163) a vertical line B C appears as B/ €' and a horizontal
line D E appears as D' I, the deviation of these lines being towavds
the axis of the lens.

i
(''C
Fig. 163.

In a sphero-cylindrical lens there is (as in the case of a spherical)
a point of no prismatic effcct. This is where the axis of the eylin-
drical cuts that of the spherical, and it is therefore at the

geometrical centre of a centered lens.
Q
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In Fig. 164 let the lens be a 4 sphero-eylindrical whose axis A X
is at 459, Let B be a point situated between the vertical and the
axis. There is at this peint, derived from the spherical, the effect
O B of a prism base down to the left. The eylindrical contributes
a prismatic effeet P B, the base of the virtual prism being down to
the right. Thus there are two wertical effects both directed
upwards, and two horizontal, the one directed to the left and the
other to the right.  These latter neutralise each other at some point
B, and similarly at every point on the line E T,

Kgser
ol
Fig. 164.

Between the axis and the horizontal, at some point C, there is
the effect O C of a prism base down and to the left derived from the
spherieal, and from the cylindrical there is the cffeet ' C of a
prism base up and to the left. There are thus two horizontal
effects hoth directed to the left, and two vertical, the one up and the
other down. At some point C the opposing vertical effects
neutralise each other, and similarly we have a neutralising effect
all along the line G H.

[n a Ce sphero-eyvlindrical there are similar prismatic efiects,
but directed in the opposite directions.

Fig. 163.

Let Fig. 165 be a combination of + Cyl. Ax. 45©¢ T - Cyl
Ax. 1359, the two of equal power. C I} is the axis of the convex
eylindrical, and E F that of a concave. At some point A the convex
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eylindrical has an effect X A of a prism base down and to the right,
the concave has an eficet Y A of one base up and to the right. The
up and down wertical effcets neutralise each other and there is a
eombined lateral effect. At the point B the convex acts with an
efiecct X B base up and to the left, and the concave with an effect
Y B base up and to the right. The right and left horizontal cficets
neuntralising each other, the combined deviation is vertical.

Thus the point A 18 deviated to the left, and B is deviated down-
wards. The vertical line is seen inclined to the left above, and to
the right below.  The horizontal line is inclined downwards on the
right, and upwards on the left.

i
D I'/ / A\'- S -
\E[/ - __f_{,,/'J
|

Fig. 166.

Locating the Lines of No Prism Effect. — An ollique
sphero-eylindrical is moved horizontally until the oblique image
of a vertical line is seen in contact, at B (Fig. 166), at the upper
edre of the lens, with the line itself, seen above the lens.  Similar
contact is then obtained at the lower edge of the lens, say at C.
Connecting these two contact points indicates the line of no hori-
zontal prismatic effect.

Similarly the points where the vertical prismatic efiects are
neutralised are those where, by moving the lens vertically upwards
and downwards, a horizontal bar is at each side, in contact with
its image. The line connecting them indicates the line of no
vertical prismatic efiect.

The peculiar prismatic efiects of the eyl. and sph.-eyl. explain the
appearance of objects seen through them. Thus a square body
observed through an oblique sphero-cylindrical appears distorted,
the various parts of its image being more deflected in certain
directions than in others. If such a body is seen through a concave
sphero-eylindrical axis vertical the deflection is greater horizontally
than it is vertically, and between the vertical and the horizontal
the deflection gradually decreases; hence the square appears to be
a rectangle with its short axis herizontal.

02

-
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THE MEASUREMENT AND NUMERICAL NOTATION
O PRISMS.

ha

Fig. 167.

The Deviation caused by Prisms.—When a glass which
possesses a prismatic clement is rotated around its geometrical
centre the base apex plane and the edge of the prism are of course
rotated also. Consequently if the cross lines of the chart A B C D
(k1 ig. 167) be observed they, being deviated towards the edge of the
prism, move around with thc latter, the junction Z of the cross lines
being always deflected towards the ulgu of the prism. As the glass
is rotated the vertical line moves horizontally and the horizontal
line moves vertically, but the two always remain at right angILE
to each other and do not become (ﬂﬂhtm, as when a cy lm:lrl-;.u.l is
rotated. The movement of“the lines is the same, whether the
prismatic element is derived from a prism or from t'lucuntratiﬂnp

Fig. 168,

Locating the Base-Apex Plane.—A\s a prism, a sphero-
prism, or a decentered spherical is rotated in front of the
analyser it is found that at a certain position there is a cuutmmty :
of one of the lines within and beyond the edges of the glass, as in
Fig. 168, where the vertical line A B is continuous. The direction
of this line indicates that of the base-apex plane of the prism, or
of the virtual prism contained in a decentered spherical,
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There is little difficulty in locating by inspection the base and
edge of a square prism, but if circular or oval the ]::i:-:v-:lrwx line
is found by thus rotating the prism until a, say, vertieal line is
gseen through it unbroken and continuons above and below the
prism, as in Fig. 168,

If the.lhorizontal line C D is deflected upwards as to E F, the
apex is then pointing upwards towards A and the base is down
towards B. If the deflection of C D is downwards towards G H the
edge of the prism is pointing downwards,

Circular trial prisms should be tested as to their indicated base-
apex lines. If properly marked the seratches lic over A B when
that line appears unbroken by the prism.

False Images of a Prism.—0On looking at a candle flame
through a prism a second fainter image ean be seen which is often
a source of annoyance to the wearer. "This image is formed by
internal reflection of some of the rayvs incident on the prism from
the flame, and is projected along a line parallel to the base-apex
line under an angle about five or six times the deviating angle of
the prism, so that in a strong prism it lies too far outside the prism
to be observed unless specially sought for.  Its position also varies
slightly with the refractive index of the glass. In a weak prism
Dr. E. E. Maddox indicates, in his work “The Clinical Use of
Prisms,’’ that it ean be utilized for the exact horizontal or vertical
adjustment of the base apex line hy noting that the direct and the
reflected image are in the same horizontal or vertical plane.

THE VARIOUS METHODS OF NOTATING PRISMS.

Refracting Angle.—The numeration of prisms according to the
refracting angle, that is by the physical form, is similar to the
numeration of lenses by the radius of eurvature.  Slight differences
in the angle cannot be easily recognised, and the true optical
effect is not taken into consideration. If there be two prisms
of, say, 39, the one of glass u = 1.50 and the other pu 1.54, they
are both prisms of 32, but their prismatic effects are by no means
identical.

Angle of Deviation.—The angle of deviation indicates the
optical property of the prism, and is the combined result of the
angle of inclination of the two refracting surfaces and of the
refracting power of the medium, with both of which it varies
dircutl}', thus the true optical eficet is indicated ; but this system
has a drawhack in that the angle itgelf cannot bhe measured. The
unit is, of course, 129 deviation (marked 1 ©d).

)

Relationship of the " and the “d.—The nummber of degrees
in the deviating angle of a prism being about half that of its
principal angle, the former unit is nearly double the value of the
latter. Therefore, if two prisms of the same strength be numbered
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respectively in degrees of deviation and degrees of inelination, the
number of the former would be about half that of the latter. But
in the following parvagraphs, p is taken as 1.52, and, therefore, the
relative values are less than two to one.

Prism Dinpter.—The prism notation introduced by Mr. Charles
Prentice of New York, being based on the deviation itself, presents
many advantages. The unit is the prism diopter (indicated by the
sien & or P. D.) which is the strength of a prism that causes a
deviation of 1 em. (on a tangent) at a distance of 1 metre. The

deviation is, therefore, 1 in 100, and

N. prism diopters
————— = fangent of the angle of deviation.

separate prisms, numbered in prism diopters, when placed together
are not exactly equal to the sum of their powers. Thus 14 is
equal to 34 221 and 10~ = 59 45/ but if 10 single 1~ prisms
were placed one in front of the other the total angular deviation
caused by them would he 34/ 221" x 10 = 5 43 457, The
difference is, however, so very inconsiderable, especially in the
weak prisms needed in spectacle work, as to be of no practical
importance, :

The prizsm diopter iz nearly equal to the ordinary prism degree
when the glass has an index of refraction of 1.54. The 1°© has
then .54° deviation or 32! 12" and the tangent included by such
an angle at 1 M is .94 em. That of the prism diopter being one
centimetre, there is a difference 1‘:]1[}' of about G per cent. The
principal angle, when p = L1.54, required to produce 14 is 1©
. If p = 1.575 the prism degree is just equal to the prism
diopter, for .575°9 = 34/ 307, the tangent of which is .01. When
p = 1.52 the © = 94, and this is the refractive index of the
glass usually emploved. Tt must, however, be remembered that
these values can only be considered true for small angles such as
oceur in the opties of spectacle work.

Centrad.— Another prism unit is the centrad which causes a
deviation of 1 em., on the arc of the circle, at one metre. The
deviation is again 1 in 100 and the difference between the are
and the tangent of small angles being negligible, the centrad and
2 may he considered equal. A given prism numbered in © would
he of fractionally higher number than if numbered in centrads.
The ecentrad more nearly agrees with the metre angle (which is
measured by the sine of the angle) than the prism diopter, hecanse
there is less difference in value between the sine and the are than
between the sine and the tangent. It is, however, wvery much
more inconvenient to measure on a eurved than on a flat surface,
and the centrad has never come into general use,

N Centrads
——————— = ar¢ of the angle of deviation.

100

i
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The Metran.—Another unit prism suggested by L. Lanrance
is the metran. This unit is a ]r.'t'i:tlu which canses a deviation of
3 em. when placed in front of the eve at one meter from the seale,
It has, therefore, about 1.75° (or 1° .45') deviation and is the
same as the metre angle for the average interpupillary distance
of 23in. or 60mm. The symbol i= thus 14 .

Conversion of Prismatic Expression.—I'or conversion from
one system of prism notation to another, the following rules apply :
To convert refracting degrees into degrees of deviation, multiply
by .52 ; (or divide by 1.9}, thus
459 = 4.5 x .02 = 2.3404.

To convert degrees of deviation into refracting degrees, divide
by .62 ; (or multiply by 1.9), thus

Tod — 13.59.

To convert degrees into prism diopters, multiply by .9; (or
divide by 1.1), thus
2 = 6 x 3= bhds
To convert prism diopters into degrees, divide by .9 {or multiply
by 1.1) thus

4
s = — = 4.44°

9

To convert degrees of deviation inte prism diopters multiply
by 1.76—more exactly by 1.745; (or divide by .575) thus

3 x 1.75 = b.25=

To convert prism diopters inte degrees of deviation, divide by
1.75; (or multiply by .575) thus

3.5
3.8 = —— =929(,

1.75

The ealculation for centrads ean be taken as the same as that
for prism diopters.

To convert metrans into prism degrees, multiply by 3.5,
To convert prism degrees into metrans, divide by 3.5,

To convert metrans into prism diopters, multiply by 3.

To convert prism diopters into metrans, divide by 3.

To convert metrans into degrees of deviation, multiply by 1.
To convert degrees of deviation into metrans, divide by 1.

=] =]
e |

el }
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Tabular Relative Values.—The following tfable gives for
comparison the angles of deviation of the various unit prisms and
the approximate displacement caused by them at eertain distances.

Actual deviation in ems. at

Unit. | Angle ol deviation. | M. 3 ML 6 M.
1% {p = 1.50) 30 or .5° H72 9.62 5.15
[Ffw =1,52)" || = 3T “EI" o' G 9 2.7 54
1°(p = 1.54) | 32" 32" or .54° 04 2.82 5.64
1 =155 a4" 30" or .575 155 o f.
1o I 34" 30" or .HTH° 1].- 3 G
1 centrad 34’ 12" or .B7T° ] o 6
1 metran 1°45' or 1.75° 3 9 18

The relative values are:

The degree of deviation being 1. the value of the refracting
degree is .529d and that of the prism diopter is .575%d.

The degree being 1 the value of the degree of deviation is 1.99
and that of the prisin diopter is 1.19,
The prism diopter being 1 the value of the degree of deviation is
1.745~ (say 1.75 or 13) and the degree is .94,
Therefore 19,4 = 1.9° = 1.746= (1.75).
ol 120 o 5294 = 10  —  ga
34/ 307 or 57594 = 1.1° = 1.0~
Or the following simplified seale can be used:
1.7h= = 1%d.

1.7590 or 3= = 1 A or 1 M A (the unit of convergence).

The following table gives the approximate equivalent values of
prisms 1n the three systems of notation :—

Refracting Degrees Degrees of Deviation Prism Diopters
or Principal Angle in or Deviating Angle in and
Degrees and deeimals.  Degrees and minutes. ﬂumm ls.
25 5 .22
o7 g 25
A0 15 A5
.00 17 a0
75 G 68
82 26" 75
U5 S0 87
1.00 31' A0
1.10 35! 1.00
1.25 39 1.12
1.39 43’ 1.25

1.43 45 1.30



PRISMS AND PRISMATIC EFFECT OF LENSES.

Refracting Degrees
or Principal Angle in
Degrees and decimals.
1.50
1.65
1.75
190
2.00
2.20
2.30
2.50
2.76
2.85
3.00
3.30
3.50
3.85
4.00
4.50
4.80
5.00
5.50
5.70
.00
G.GO
7.0
7.70
8.00
R.GH
8.80
.00
0.50
10, 0
100,510
11.00
11.50
12,00
12.50
13.00
14.00
15.00
16G.00
17.00
18.00)
19,00
20.00
21.00
22.00

Degrees of Deviation
or Deviating Angle in
Degrees and minutes.
47"
53!
a4’
1°
1°.2'
!
1015/
1017
19,26/
19,30/
10,34/
19,45/
1€ 50/
90
204/
20,18/
20 30/
20,34/
20 52/
30
Je.8!
30,30/
49401
40
40 R/
492 30/
49,36/
40, 40/
50
591
59,30/
a9 4h!
(G2
62,18/
GO, 30!
-0
=230
20
&80 30/
=
90, 304
103
1002 30!
11
112,30/

219

Prism Diopters

ikl

decimals,

1.
1.
|
i

1.
2.
2.
2.
2.
2.
2.
3.
3.
3.
¥
4.
4,

4.
A
25
A0
.00
.30
Rl
.20
BT
i
A0
AD
T
9.62
)
o)
i

1

iy Bl

13,

b
A
L)
A0
17.

14
15
16

17.
18
19.
20,

ud

45
a0
a7
T
=0
00
18
25
50
62
70
(i}
15
511
]
(0
37
a0

()
(M)

i1}
)

M

1
()0
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Measurement of Prisms.—The measurement of the refracting
angle of a prism is termed gontometry, while that of its deviation
is termed prismetry.

Neutralisation of Prisms.—The strength of a prism can be
learnt by neutralisation. The base apex line being located, the
displacement of a bar of the analyser can be nentralised by selecting
one prism after another from the test case and placing it in
opposition to the unknown prism; that is, placing the base of
the former over the edge of the latter, until that test prism is
found which . causes the bar to be scen continuous beyond and
through the two prisms. The number of the known prism which
neutralises the deviation of the unknown prism, indicates the
value of the latter. By this method, however, the deviating angle
is really neutralised although the neutraliser may be numbered
according to its refracting angle.

Determining the Principal Angle.—The principal angle of
a prism can be roughly measured by enclosing it between the legs
of a pair of compasses and measuring the angle so obtained on a
protractor or by any instrument made for the purpose. Also the
deviating angle can be measured and the principal angle
caleulated, provided the index of refraction be known.

The principal angle can be determined also by a goniometer
congisting of a pivotted arm, at one end of which there are two
legs which rest on the face of the prismn; the other end indicates
the angle on a scale.

l:,.

Fig. 169.

Mere aceurately the refracting angle is determined by directing
towards its apex a small beam of parallel light from a collimator Cf
of the goniometer, described in the next paragraph, and observing
through the telescope T light reflected first from one surface and
then from the other when the telescope is respectively at, say,
T and T". The angle through which the telescope has been turned
from T’ to T" is twice the refracting angle.

Determination of the Degree of Deviation.—The deviating
angle of a prism is accurately determined by the goniometer (Fig.
169), which consists of a horizontal circle marked in degrees suitably
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mounted on a stand on which two telescopes, C and T, can be
rotated. One of these, C, is a collimator, from which light emerges,
as a parallel beam, through a narrow slit.  The other T iz an
observing telescope. In the centre of the circle there is a small
table on which the prism is placed.

In order to measure the deviating angle of a prism the tubes C
and T are brought into line so that the image of the slit appears
in the centre of the field of view. A reading is taken on the circle.
The prism is then placed in position and the telescope must be
rotated until the image of the slit ean be seen. The angular dis-
tance through which T is moved is the deviating angle of the
prism, care being taken that the deviation is a minimum. This
can be done by slightly rotating the prism backwards and forwards
until a poesition is found when the slightest movement in either
direction inereases the deviation,
At
L‘ i

|-
|
|

Fig. 170.

The Tangent Scale.—A tangent scale, shown in Hig. 170,
constitutes the most convenient method of measuring prisms. It
consists of a card, say, 12 inches wide and 30 inches long, scaled
5o that the intervals between the divisions represent the tangent
measurement of the angle of deviation. These intervals, there-
fore, vary in size with the distance at which the card is used.

The line A C (Fig. 170) is looked at through the prism, which
is held sufficiently low for the fizures on the card to he scen over
it, the base heing directed towards A while the edge points to B.

If the line A B is displaced upwards or downwards the prism
must be rotated in a plane parallel to the card until A B is
continuous and seen unbroken through the prism. The base apex
line is then horizontal, and the horizontal deviation is then greater
than with any other position of the prism in this plane.

The number towards which the deviated part of A C points
indicates the prismatic power of the prism in degrees, degrees
of deviation or prism diopters, according to the arrangement of
the tangent seale.

The tangent scale was originally designed by Dr. Maddox.

Minimum and other Deviations.—DBut the deviation eaused by
the prism varies also if its position departs from that of the
minimum deviation. Consequently, when B is unbroken, the
prism must be rotated on its axis in order to find the minimum
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deviation, this being the numerieal strength of the prism. Thus,
in Fig. 170 the prism ig presumed to be in the position of
minimum deviation and the indicated number is 3, but if the
edge of the prism were turned either towards the scale, or away
from it, the indicated deviation would be greater than 3.

If the prism is combined with spherical or eylindrical powers,
these must be neutralised bhefore the prismatic power can he
measured on a tangent scale, care heing taken that the peometrical
centres of neutralising and neutralised lenses exactly coineide,
otherwise a false measure of the prismatie power is obtained.

B WM U wp 0T 8 8 4 3%

Fig. 1704.

A tangent scale arranged for one system could be utilised for
others by holding the prism at the proper distance. Thus, the
intervals of the **Orthops’ seale (IFig. 170a) are 3.5 em., so that
this used at 2 M. indicates degrees of deviation and at 3.5 M.
indicates prism diopters.  If used at 4 M. it would serve for
ordinary degrees.

The deviation of a prism can be measured by the following
modification of the ordinary tangent seale.

Another Tangent Measurement.—Parallel light is passed
through a suitable Cx. eylindrieal lens and is brought to a sharp
focus, as a vertical line at the zero of a tangent scale. The prism
is then introduced near to the eyvlindrical with its base at right
angles to the zero line and the sharply-focussed line of light is
deviated to some number on the seale which indicates the value of
the prism. This method is mentioned by Dr. E. E. Maddox in his
work on prisms. i

Distance for Tangent Scales.—In theory six metres is the
proper distance for measuring prisms on a tangent scale, since
from that distanee the light has no appreciable divergence, but
in practice shorter distances, say, three or four metres, are
preferable.

Calculations in Prism Measurements.—Caleulations eon-
cerning the deviation caused by prisms at the given distapeces can
be made from the following formula, but for degrees and degrees
of deviation, while sufliciently accurate for practical purposes,
they are not exact since tangents of angle arve used in place of the
angles themselves.

Let P orepresent the power of the prism, M its distance in metres
from the object viewed, C the deviation in eentimetres, and K a
constant for each system of prism notation. Then

e — Al
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For the refracting angle, C = P x M x .9
For the l]cvi:ltillg :lllglu, 0 =P »x M x 1.75
FFor prism diopters, C =P x M

Thus at 3 metres, the deviation caused by a 49, a 49 d, and a 4=
respectively is

49 » 3 x .9 = 10.8 em,

400 x 3 x1.76 = 21 cm.

44 x 3 = 12 om.

If the deviation caused by a prism at four metres is 5 cm,. the
prism is
] ] 9
=140 o — = .7 or — = 1.25~,
d o 9 4 % 1.75 4
Example. —At what distance will a prism of 52, one of 59d, and
one of 5= respectively cause a deviation of 15 cm.
15 15 15
= 3.33 M. = LY7o M. — = 3 M.
59 % .9 5°d x 1.75 o

The following table shows the deviation caused by prisms at
various distances. The figures, in the 4 M. and 6 M. columns, are
only approximately true in the decimals. PFor other distances the
deviations may be considered proportional.

Talble of Deviation in Cm. at

Prism. 2 Metres. 3 Metres. 4 Metres, G Metres.
1ed 3.49 0.24 7.00 10.50
2Cd G.498 10.48 14.00 21.00
3°d 10,48 15.73 21.00 31.50
4°d 13.28 20.97 23.00 42.00
o%d 17.49 26.24 35.00 52.50
6ed 21.02 J1.54 42.00 63.00
ed 24.565 36.83 49.00 73.75
8°d 28.10 42.16 56.25 84.25
9ed 31.GT 47.52 G3.50 95.00

10@d 35.26 52.90 T0.50 106.00
1124 38.87 58.32 77.70 116.50
1294 42.51 63.77 85.00 127.50
13°d 46.17 6G9.26 92.50 138.50
149d 49.86 T4.80 99.75 149.50
1594 53.58 80.37 107.00 160.75
16°d 57.34 26.01 114.75 172.00
179d 61.14 91.71 122.25 183.50
1894 G4.08 07.47 130,00 195.00
192 63,86 105,30 1300 206.50
2094 72.80 109.20 145.50 218.50
A table for #s is hardly necessary since the caleulation C = P M

I8 80 Very casy.
For degrees the distances in the above table can be halved without
much error arising.
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Table showing the number of a prism which causes a given
deviation at 1 M.

Deviation Angle of Degrees of the Prism
in cm. deviation. refracting angle. diopters.
(n = 1.52)

.25 o 27 .25

.50 | frd .bH .50

1D 26/ .52 16
1.00 BhY 1.10 1.00
1.25 45 1.37 1.25
1.50 b2 1.66G 1.50
1.75 12 2.00 1.75
2.00 12.9f 2.25 2.00
2.256 el 2.50 2.25
2.50 19,26/ 2.75 2.50
2.75 10.35/ 3.00 2.75
3.00 19,43/ 3.33 3.00
3.25 10.52f 3.60 3.25
3.50 20 3.8 3.50
3.79 20.9/ 4.00 3.75
4.00 20,18/ 4.40 4.00
4.50 20_35¢ 5.00 4.50
5.00 20.52¢ 5.50 5.00
5.50 30.9 6.00 5.50
6.00 30, 26/ 6.G0 6.00
6.50 S04 T.15 6.50
7.00 4° 7.70 7.00
7.50 40 18/ 8.25 7.50
3.00 4 35/ 880 5.00
3.50 40 521 935 8.50
9.00 BN 9.90 9.00
9.50 a9, 26! 10.45 9.50
10. 5O.43/ 11.00 10.
11, GO. 17! 12.10 11,
12, GO.50/ 13.20 12.
13. 70.24! 14.30 13.
14. 79.58/ 15.40 14.
15. 80,32/ 16.560 15.
16. 90.6/ 17.60 16.
i 90.39/ 18.70 17.
18. 100,12/ 19.80. - 18,
19: 100 46/ 20.90 19,
20. 119.19 22.00 20.

A tangent scale divided into spaces of 1 em. and used with the
last table would indicate the power which produces the deviation
caused by a certain prism at a certain distance. Thus if a prism
at three metres cansed 6.75 cm. deviation on such a scale, it wonld
at 1 M. cause 6.75/3 = 2.25 em., so that the prism is 2.2b2 or
1217 d or 2.509,
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Prism Nomenclature.—A prism placed with its base towards
the nose is termed + or base in, while a prism placed with its
base towards the temple is termed — or base out. A prism is called
horizontal, or vertical, according as the base apex line is
horizontal or vertical respectively.

OBLIQUE PRISMS.

Direction of Deviation.—A prism so changes the direction of
light that an object viewed through it appears in a different position
from that which it really occupies. The deviation is parallel to
the base apex line and towards the edge of the prism.

If a cross bar is viewed through a prism held with base apex line
horizontal, the vertical bar is displaced horizontally to an extent
dependent on the strength of the prism, and there is no vertical
displacement of the horizontal bar. If, now, the prism be rotated
a few degrees in a plane parallel to the card, so that the base
apex line is oblique to both bars the horizontal deviation becomes
less, and a vertical deviation is occasioned as in Fig. 167. If the
rotation be continued the horizontal deviation continnes to decrease
and the vertical to increase, until when the base apex line is vertical
all the deviation is wertical and there is none in the horizontal
plane.

The maximum effect d of the prism (Iig. 167) is always in the
plane of the base apex line, and when the latter is oblique, its
effect can be divided into V, a vertical, and H, a horizontal com-
ponent, which are equal when the base apex line is at 452, In
every position of the prism the two bars of the card are perpen-
dicular to each other.

H' Q.-

Fig. 171.

Indirect Effects.—(I"ig. 171).—Suppose V to represent the
vertical and H = H’ the horizontal forees of a rotated prism. Lot
P = 0 Q represent the power of the prism, and r the angular
rotation of its base apex line from the horizontal.
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v H
Then, since gin r = — and COS & = —
ll _[J
Y = Psinr and H = P cos r.

Thus : let the base apex line of a 59d prism be at 209 from the
horizontal, then:

¥=50x 3420 = 1.T1%and H = 5 x .9397 = 4.698%,

If the base apex line is at 459, a 6= has

V=06x .T0il = 4242 and II = 6 x 707l = 4 .24=,

The vertical or horizontal effects of an oblique prism, or the
effect in any oblique meridian of a vertical or horizontal prism can
also be obtained by direet ncutralisation in the meridian, the
power of which has to be learnt.

The rotation r from the horizontal needed to obtain a required
vertical or horizontal effeet is respectively,

V H
sl I — and COE T = —

D P
Ervample.—Given a 42 d prism, at what position should the base
apes ling be pl'.u‘.{,':]. go that its vertical ¢licet he 19 d? Here
1|

gin ¥ = - = .25 = sgin 14° 29
4

The hase apex line must be inclined 149 297 to the horizontal.

Then V = 4 x .20 = 19 and H = 4 x 0631 = 3.872°.

1f with a 6= a horizontal effect of 3= is needed, then
cos r = — = .5 = cos 6OP

the base-apex line must be at 60° and ¥V = 6 x .866 = 5.24,

If instead of the angular distanee, of the base apex line, from
tlie horizontal, its distance from the vertical is considered, the sine
would apply te the horizontal, and the cosine to the vertical
meridian in these caleulations.

[1¢

[19

_ﬁ;l-n.
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Let P’ represent the efieet of a prism in a given meridian, P the
power of the prism and r the angle hetween the given meridian
and the base apex line; then the effect in the given meridian is
P = ey,
Dzample.—Tind the effect at 40° of a 4° prism whose base apex
line is vertical. Now the meridian 40° is 50° from the vertical
go that r = 50° and cos H0° = G427, therefore

Pl = 4 x .6427 = 2.b7O.

The maximum effcet of a prism is in the direction of its base apex
line, while at right angles to this the clicet is zero. Let the prism
be G2 base apex line horizontal.

The effect at 180° is H = 6 % cog8 0° = 6 x 1 = 69,
The effect at 90° is V = 6 x cos 902 = 6 x 0 = 09,

TaBLE oF THE Errgct oF A UNir Prisy vy Vantovs MERIDIANS.

The angle between the given meridian The power of unit prisin
and the base apex Line. in that meridian.

0e 1.0000

ae L9032
109 03438
150 L9659
200 _ 9397
259 D063
300 B660
3509 8192
409 7660
450 .T071
o0e G428
5Hho 07306
GO L0000
(oo 4426
T0e 3420
ino 2088
200 AT36
850 L0872
0o L0000

For other prisms multiply the number obtained from column 2.
I
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228 PRISMS AND PRISMATIC EFFECT OF LENSES,

Tavre or e Horizoxtan axp VeErTIcAL EFFEcTs or OBLIQUE
Uxir Prisa.

Base-apex line at Horizontal effect. Vertical effect.
0° or 1809 15 0
5o, 45/ 050 1
=10 9922 125
100.00¢ 9848 1736
11°. 30! 9799 2
140,30/ L9681 .26
179.30/ 537 3
190,30/ L9426 333
200.00¢ 9397 342
22000/ 9272 B
230.33/ D165 4
250.50¢ 9 4358
290.00/ BT75 4848
J0°.00/ 866 -5
360.50¢ .8 G
380,40/ - .T808 L6259
402,00/ LTG6 G428
419 25/ 75 G615
419,50/ L7451 G606
440,26/ LT143 |
452,00/ 071 071
459,35/ A .T143
48910/ 666G 7451
4580 35/ G615 .7b
50°.00/ 6428 66
519.2¢/ 625 1808
53°.1¢/ 6 8
60200/ b 266
612,00/ AR848 870
64210/ 4358 .9
66°.25/ A 9165
63°.00/ 370 9272
T0°.00/ 342 9397
T0°.30/ 333 9426
720,30/ .3 L9537
759.30/ .25 9681
789.30f 2 9799
20200 17356 D848
820.50/ 125 9922
84010/ A 9950
D02, 00! 0 1

For other prisms mullip]:g the figures in the 2nd and drd
columns.
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RESULTANT PRISMS.

Calculation.—A resultant prism is the combined result of
two other prisms whose base-apex lines are at right angles to each
other. If vertical and horizontal prismatic effeets are needed the
two can be obtained from a single oblique prism.

To calculate a rvesultant prism the formula is

P = \/ Ve 4 H

Where P represents the power of the resultant prism and V and
H respectively the required vertical and horizontal effects.

If r represents the angle which the base-apex line of the resultant
prism makes with the horizontal, then

A

tanr = —

I8

Or, with a reasonable degree of accuracy the resultant base-apex
line may be found by dividing 902 by the sum of V and H and
multiplying